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1 Summary

The Commission on Risk Assessment and Risk Management retained Cambridge
Environmental Inc. to conduct case studies of health risk assessment that conform with
proposed regulatory reform legislation  and to comment, as risk assessors, on the required1

methods.  The principal relevant mandate in these legislative proposals is that the
conservative point estimates of risk currently generated and relied upon be augmented with
estimates that are in some sense "best" — that are central tendency estimates, generated by
taking better account of the uncertainties and variabilities in the underlying data and
assumptions.  

To illustrate the techniques required to satisfy such a mandate, we studied four cases.  The
objective of the first case study was to estimate incremental lifetime risk of cancer to an
individual in a population whose water supply had been contaminated with part-per-billion
levels of 1,1-dichloroethylene (1,1-DCE).  The second case study differed from the first only
in that 1,1-DCE was allowed, consistent with its dose-response data, to have either an
anticarcinogenic or a carcinogenic potency, rather than being constrained to have only a
carcinogenic potency, as is the current regulatory norm.  The third case study differed from
the first only in that it considered exposure to similar levels of vinyl chloride, a potent and
known human carcinogen, rather than exposure to the equivocally carcinogenic 1,1-DCE. 
The fourth case study estimated incremental lifetime risk of cancer associated with
occupational exposures, rather than low-level environmental exposures, to 1,1-DCE. 

For each case study, we first estimated the incremental lifetime risk of cancer to a
"reasonably maximally exposed individual" using the methods currently recommended by
U.S. EPA.  We then prepared a distribution of risk estimates by choosing parameter values
for each variable from the distribution defined for that variable and combining these choices
in the risk equation.  These latter tasks required (1) significant research in the scientific
literature, and (2) not a small amount of statistical and computational expertise.  Using
computer software we created, we repeated the risk calculation about 20,000 times,
gathering up each estimate of incremental lifetime risk of cancer to define its distribution. 
From the distribution, we could estimate the mean, median, and 95  percentile (and otherth

statistics) of the distribution for the incremental lifetime risk of cancer.  Each of these might
be considered a "best" estimate of risk.

The results of the four case studies are summarized in the following table.
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Table 1 Statistics of the distributions of risk estimates from the case studies 

Case Median Mean 95 Current
(50 percentile EPA-styleth

percentile) Point-

th

estimate
(reasonably
maximum
exposure)

1,1-DCE, standard 1.2 × 10  1.6 × 10  1.7 × 10  1.3 × 10  –9 –6 –6 –4

1,1-DCE, non-standard –2.0 × 10  –9.5 × 10  1.7 × 10  —–9 –6 –6

Vinyl chloride (standard) 1.4 × 10  8.8 × 10  2.0 × 10  4.1 × 10  –6 –5 –4 –4

1,1-DCE workers 1.4 × 10  3.6 × 10  8.4 × 10  2.7 × 10  –8 –3 –3 –2

Several comparisons are noteworthy.  In the first case study, U.S. EPA methods (specifically,
those used for risk assessment of Superfund sites) yielded a point-estimate of risk of
1.3 x 10 .  Although such an upper-bound point estimate is typically assumed by many to be–4

at about the 95  percentile of the risk estimate distribution, it corresponded here to the 99.8thth

percentile of such a distribution.  The probabilistic method employed here found that the 95th

percentile of the distribution was about 80-fold lower — 1.7 x 10 .  These two different–6

estimates — both upper-bound — would likely indicate dramatically different intervention
strategies.  Risks as high as the former often require extensive remediation, whereas risks
as low as the latter usually do not.

The second case study, in which exposures to 1,1-DCE were allowed to confer either
beneficial or detrimental effects on cancer risk, yielded two central tendency estimates of risk
that were negative — so suggested that low levels of 1,1-DCE might confer no excess risk of
cancer, and might even confer a small benefit.  Nonetheless, the 95  percentile of theth

distribution of risk estimates in the second case study was identical to that estimated in the
first case study (1.7 x 10 ).  Thus, allowing the relevant portions of the bioassay data–6

themselves to define the slope and bounds of the dose-response curve — as opposed to
imposing standard, regulatory restrictions on that curve — yielded both dramatically different
central tendency estimates and identical upper-bound estimates.  

The third case study, in which exposures to vinyl chloride were substituted for dose-
equivalent exposures to 1,1-dichloroethylene, yielded a point estimate of risk (4.1 x 10 ) that–4

was only three times larger than the point estimate generated in the first study for 1,1-DCE. 
Such a minor difference belies the substantial differences in the quality and quantity of data
surrounding the carcinogenicity of these two chemicals.  In contrast, the probabilistic
methods yield a 95  percentile estimate for the risks from vinyl chloride that is some 120-th

times larger than the estimate from 1,1-DCE.  



3

Finally, the fourth case study suggested that (1) occupational exposures to 1,1-DCE were, as
expected, substantially riskier than low-level environmental exposures, and (2) that the point-
estimate of risk is only some three-fold larger than the 95  percentile estimate.  Underth

certain circumstances, such as relatively high exposures, the deterministic and probabilistic
methods may thus yield reasonably similar upper-bound estimates of risk.

Working through these case studies, we have reached certain conclusions about the
proposed risk assessment reforms.  Among these opinions are:

�� Performing risk assessment holistically and probabilistically is not easy.  
Considerable research must be made into the ranges of plausible estimates for a vast
number of inputs.  Considerable quantitative expertise, including computer-
programming skills, are required to design and implement the method.  The risk
assessor must genuinely understand — as opposed to merely use — many sorts of
models — and perhaps be able to create some anew.  He or she must combine
distributions in valid manners.  

�� Current point-estimates of risk may obscure underlying scientific complexities
and other important information.   Public health policy demands upper-bound
estimates of risk; but if these are calculated too crudely, they prevent efficient, health-
protective decision-making.  

�� Under various circumstances, probabilistic risk assessment may indeed be
informative and worthwhile.   Techniques used to generate risk estimates should
scale with the situation to be assessed.  Some situations can be shown to be
harmless under almost any method of risk analysis; running full Monte Carlo analyses
on these would be inefficient.  Other situations are much harder to call, have high
stakes, or otherwise demand more sophisticated analysis.  For such situations,
probabilistic methods, carefully and honestly implemented, may offer the best current
hope.

�� Health risk assessment is typically dominated by uncertainty, rather than by
variability.   Distributions of estimates of health risk are remarkably broad; and most
of that breadth is due to our fundamental uncertainty about the health effects of low-
level exposures to environmental chemicals, not to variations in people's exposures. 
The high ends of a risk distribution are driven primarily by "pessimistic" interpretations
of, but consistent with, the dose-response data.  These data typically derive from
over-exposed rodents whose responses may or may not predict human responses in
the situation under analysis.  

�� Central tendency, mean or median estimates of risk are unlikely to provide a
full, useful basis for public health decision-making.  One really needs the full
distribution.  However, a properly derived 95  percentile estimate of risk,th

supplemented with mean and median estimates, may provide a set of three
bottom lines that can indeed be a basis for sound public policy.   There is no
single estimator of risk appropriate to all situations, and the definition of the estimator
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matters greatly.  Further, no matter what estimator of risk might be chosen, the
estimate must be compared with some standard for decision-making, and that choice
of standard is also crucial. 

�� An entirely scientific risk assessment is a mirage.  There is no single right way
to do it.   Sound policy should indeed rest on sound science.  But risk assessment is
not and cannot be a wholly scientific undertaking.  Risk assessment often turns upon
details that are inherently unknowable.  In general, probabilistic and holistic risk
assessments could lead to improved decision-making.  Whether such assessments
prove to be more defensible than the status quo is harder to say.
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2 Introduction

Current standard methods for risk assessments — typified by approaches taken by the U.S.
EPA — are designed to overestimate risks and are reported in such a way that the extent of
overestimation in the risk estimates is impossible to discern.  The former property — that of
producing an overestimate — is often desirable and/or mandatory, depending upon the
context.  The latter property — obscuring the extent of overestimation — is neither desirable
nor mandatory.  

In standard risk assessments, the overestimates arise from a number of causes, principally:

�� the selection of models that are inherently conservative,
�� the selection for those models of parameter estimates that are conservative, and
�� the concatenation in the risk assessment of these conservative parameters without

taking account of the probability for all such parameters to be simultaneously at the
high end of their range.

Without a mechanism to account for the implausibility of the concatenation of extreme values
— or to moderate the conservatism of each parameter during such a concatenation — one
cannot evaluate the extent of the overestimate. 

The case studies presented below illustrate risk assessment techniques that can take
account of the probabilities for extreme values in parameter estimates, and so can meet
some of the requirements of legislation under consideration by Congress.  The relevant
requirements are to provide (1) more complete uncertainty analyses; and (2) more complete
descriptions of the ranges of risk estimates, including identification of "best estimates."  In
particular, the case studies presented below incorporate quantitatively the uncertainty or
variability in each parameter used in estimating risks to human health, by using probabilistic
techniques.  The uncertain or variable parameters include those used to describe toxicity,
model fate and transport, and estimate doses to exposed humans.  The resulting estimates
of risk include "best estimates," together with the surrounding uncertainty distributions.  The
report describes the hypothetical exposure circumstances, outlines the methods used to
estimate risks, and explains the concomitant estimates of risks to human health.
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3 Summary of methods

The main features of the case studies may be summarized by a set of selections that we
made:

�� We initially selected a hazardous waste site for which we had previously prepared a
health risk assessment.  This Superfund site will remain unidentified, since it is used
solely to provide a realistic set of concentration measurements from a situation
resembling that adopted for the case study.  The site has been thoroughly studied,
and provides ample measurements of concentrations of hazardous contaminants in
well water.

�� We selected a single environmental medium for study — groundwater providing a
supply of drinking water.  We selected groundwater because it is frequently of interest
for health risk assessments and because there are important pathways from this
medium leading to the three major routes of exposure.  Two of the pathways are
direct:  contaminated groundwater that supplies domestic water will entail exposure to
contaminants through (1) ingestion of drinking water and cooking water, and (2)
dermal absorption of contaminants during showering and bathing.  The third pathway,
via air, leads to inhalation of vapors released from the groundwater, with the largest
exposures occurring during showering.

�� We initially selected a single chemical of concern for study — 1,1-dichloroethene (1,1-
DCE, also known as 1,1-dichloroethylene or vinylidene chloride).  We selected 1,1-
DCE for two reasons:  (1) the groundwater at the selected hazardous waste site had
been well-characterized for concentrations of 1,1-DCE at fifteen sample sites, some of
which presented interesting problems of interpretation, and (2) the ambiguous
carcinogenicity of 1,1-DCE presents challenges to the risk assessor.  The generic
issues involved in estimating additional risks to health associated with exposure to
1,1-DCE at the representative site are thus germane to many other chemicals and
scenarios.

�� We selected a single health endpoint for risk characterization — cancer.  We focus on
lifetime incremental risk of cancer:  (1) because it is usually the focus of environmental
health risk assessments; (2) because of the challenges to risk assessors in selecting
and applying appropriate models of cancer causation; and (3) because of the
particular challenges of assessing the carcinogenic potency of 1,1-DCE in humans. 
1,1-DCE has shown some carcinogenic potency in a small minority of bioassays
performed in laboratory rodents.

�� We evaluated two additional exposure scenarios to illustrate further the character of
the distributions of risk estimates that may be produced.  The first additional case
study postulated exposures to vinyl chloride at waterborne concentrations equal to
those for 1,1-DCE to illustrate the effect of a very different set of animal bioassay
results.  The second additional case study postulated much higher exposures to 1,1-



       One may have to worry about two dose-response models (one for rodents2

and one for humans), together with an interspecies extrapolation model — see
Appendix B.  All of these can be checked only at high doses.
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DCE — exposures that traditional point estimates of risk would unequivocally label as
unacceptable.  

�� The results of the case studies presented here are all conditional on the correctness
of the models used in them.  Some of these, like the exposure models, are likely to be
good representations of reality, and could in principle be checked against
measurements (although the parameter values may have been mis-estimated).  Other
models are, notoriously, much more uncertain.  Principal among these are the
assumed dose-response model(s) and the interspecies extrapolation model, the latter
of which cannot be checked against measurements.   To illustrate the potential effects2

of choice of a different model, we also re-evaluated the initial case study for 1,1-DCE
with a dose-response model assumption that allowed for the possibility of beneficial
effects — that is, that allowed for the possibility, consistent with the data, that low
levels of 1,1-DCE might protect against cancer.

In these case studies it is infeasible to illustrate all the interesting and possibly controversial
aspects of risk assessments incorporating uncertainty.  For example, some of the aspects
not examined here are:

�� What measures of risk should be evaluated?  We selected the lifetime incremental
cancer risk to a randomly chosen individual.  We made this choice because:  (1)
individual risk estimates are typically the basis of regulatory action; and (2) we could
then treat variability among the population as an uncertainty for a random individual. 
Other risk measures are just as interesting and/or relevant, but may require very
careful definition to ensure that "variability" and "uncertainty" can be adequately
defined.

�� Of the many bioassays testing the carcinogenicity of 1,1-DCE in laboratory animals,
very few have produced any positive results.  We have here used only those positive
bioassays (one for ingestion exposures, one for inhalation exposures) used for
constructing point estimates to evaluate some of the uncertainties in carcinogenic
potency estimates; although it is feasible to incorporate all the bioassay results in a
consistent manner.  The latter approach is likely what is envisioned in the legislation: 
but it requires considerable extra effort and represents a substantial departure from
the usual restriction to the most sensitive species, strain, sex, and organ/endpoint.

�� In some wells, there are clear variations of concentration of 1,1-DCE with time.  We
have here assumed that the variation in measured concentrations in each well are
due to random fluctuations, with the distribution of such fluctuations unchanging in
time.  One could obviously make other assumptions, such as obtaining estimates of
concentrations from a groundwater model.
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�� Each of the case studies examined is for a single chemical.  The evaluation of multiple
simultaneous chemical exposures is not in principal very different (providing the
effects of the chemicals do not interact), but the differences from the point estimates
can become more exaggerated (see Crouch et al., 1983).  The point estimates of risk
for multiple chemicals correspond to the addition of several extreme percentiles of the
distributions for individual chemicals, while the probabilistic approach correctly takes
account of the likelihoods for the various values.

3.1 The risk measure selected

Many measures of risk could be computed for the situation described.  A probabilistic risk
assessment incorporates uncertainty in the parameters of the exposure models, uncertainty
in the potency of each contaminant, and variability among the individuals for whom risks are
calculated.  The treatment of these uncertainties and variabilities in the risk assessment
depends on the risk measure(s) that are being assessed.  To simplify our task, we have
chosen to evaluate estimates of risk for a randomly chosen individual from the exposed
population.  The effect of this choice is that, by definition, all the variability distributions for
characteristics of individuals within a population become uncertainty distributions when
contributing to this measure of risk.  For this measure of risk there can be no variability — 
only uncertainty.

It may be argued that this measure of risk is not the most useful one, or the one that is
generally called for, or the one that is "obvious" for this situation, and myriad other objections
to it may be raised.  We agree.  In general, many distinct measures of risk are, or should be,
required to fully characterize that risk; and different measures may be important to different
people, at different times for the same person, or for different policy or information purposes. 
It is essential that the correct measure(s) of risk be evaluated for any particular purpose, and
a specification of the measure(s) generally required should perhaps be a principal feature of
any new legislation.

For the purposes of this document, however, the measure chosen is adequate as an
illustration.  The conclusions we draw are strictly valid for this measure of risk, for the
situation under analysis.  It is likely that some or all of these conclusions may be extrapolated
to other measures of risk and/or for other situations, since the conclusions are based on
generic properties of the results, but there are plausible situations for which some of the
conclusions may be invalid for some measures of risk.

In this risk assessment of 1,1-DCE, therefore, the result of the probabilistic analysis is a
distribution of incremental carcinogenic risk estimates for an individual:

�� randomly selected from the U.S. population (because of our assumption that the
exposed population has characteristics identical to the U.S. population);

�� exposed to a concentration of 1,1-DCE randomly selected from the 1,1-DCE
concentrations in the fifteen wells at the site (because of our assumption that each
well serves an identical population); and

�� under conditions corresponding to our hypothetical exposure situation.  



9

We reiterate that for an individual randomly selected from the U.S. population, the
uncertainty in personal characteristics such as average shower duration, water ingestion
rate, and weight is the same as the variability of these characteristics in the population as a
whole.  Because the risk assessment is calculating risks associated with individuals, all
distributions used in the risk assessment represent uncertainty distributions for an individual,
and a distinction need not be made between distributions resulting from uncertainty in
parameters and those resulting from variability among individuals.

3.2 Approach

The approach taken here is to adhere to the usual structure of risk assessments:  hazard
identification, exposure assessment, dose-response assessment, and risk characterization. 
Most of the descriptions are abbreviated from what would be expected in a complete risk
assessment, since the situation has been artificially constructed and such details are not the
major focus of the effort.  In each section, however, we detail the typical approach that would
be used (the "point estimate"), and then explain the modifications required for a probabilistic
approach.  Several of the more technical details have been relegated to the appendices. 
Appendix A.1 gives details of the practical implementation of simple random number
distributions, while the rest of Appendix A details the more complex distributions, together
with descriptions of the data whence they are derived.  Appendix B is devoted to the
evaluation of carcinogenic potencies.

The result we seek  — a risk estimate — involves the combination of many parameters, each
of which has an associated probability distribution.  While the models involved can usually be
reduced to fairly simple mathematical forms, it is generally intractable to obtain analytically
the probability distribution for the final result.  The general problem is that of performing a
multi-dimensional integral over the support of all the distributions involved.  The method we
have used for this multi-dimensional integration is the Monte Carlo method, with the precise
steps involved detailed in the risk characterization (Section 7.2.1).




 ��
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       We originally intended to perform an assessment where concentrations3

varied with time according to some simple model (although probably not this
one).  Other analyses were subsequently deemed more important and
enlightening.
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(1)

4 Hazard Identification

4.1 General description

The process of hazard identification typically:  (1) begins with a description of the site and its
surroundings, (2) goes on to identify the chemicals that may pose a hazard, (3) describes the
configurations of the sources containing those chemicals, and (4) is completed by a
summary of the concentrations in the sources of the chemicals to be included in the
exposure assessment.  Because of the nature of this risk assessment example, however,
only a limited amount of detail need be provided.  

The site contained a manufacturing facility that made use of various chlorinated organic
solvents, and some of these solvents were discarded in a way that resulted in contamination
of an aquifer that supplied domestic water to nearby residents.

Concentrations of chlorinated organics in groundwater at fifteen wells were measured over
periods of two to six years, depending on the well.  Concentrations of 1,1-DCE showed
moderate variability across wells and, in some wells, through time.  Concentrations at some
times in some wells were below detection limits.  It is possible to write plausible statistical
models to account for the observations — for example, one might consider the statistical
model:

where 
C is the concentration measured at time t,
µ,� are parameters of the statistical model, andtime

� is a random error term. 

The error term � is defined by the requirement that at each time t, C(t) is a random variate
with a distribution that is a truncated normal, the normal having mean µ + � t and standardtime

deviation ), with the truncation being at zero concentration.  Table 2 gives maximum
likelihood estimates of the µ, � , ), and a test of the hypothesis that �  is non-zero.   Atime          time

3

better approach would be to use groundwater models to indicate the time variation of
concentration to be expected in well waters; but for the current analysis, it was assumed that
the long-term average concentration in each well was independent of time, the observed
variations being fluctuations about this long-term average.



      At the actual site, there was a substantial question as to whether anybody4

would in the future be exposed to the groundwater from the contaminated wells,
since water from them had been replaced by water from other sources because
of the contamination.  We gloss over such essential details, as do most "baseline"
risk assessments, by presuming exposure.

       The approach used by the EPA at the site whence came the measurements5

does not correspond to current guidance, so a direct comparison with that
approach is not relevant here.
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In a situation such as that postulated for exposure to the water from these wells,  current4

EPA guidance calls for estimating a (lifetime average) concentration estimate for a
reasonably maximally exposed (RME) individual.   That concentration estimate is generally5

taken as an upper 95  percentile estimate for the concentration to which any individual mayth

be exposed.  For the hypothetical exposure situation at this site, 1/15 of the exposed
population is exposed to each well, so that one should perhaps choose the highest mean
concentration as the point estimate, or perhaps an upper confidence limit on that highest
mean estimate.  What would probably be done in a standard style assessment is indicated in
Table 3, which lists the mean concentrations for each well, together with the grand mean of
the means (average) and the standard deviation of the means (ignoring any uncertainty in
each mean).  In addition there is the typical calculation for "upper confidence limit."  There
are several policy decisions involved in such calculations:

�� In calculating the mean concentration in each well, each measurement reported as
non-detect has been treated as though the true concentration were 1/2 of the
minimum detection limit.  This policy usually has a small effect on estimates of
average concentration, although in Well 15 (where all measurements were at or below
the detection limit) it may have introduced a substantial bias.

�� In evaluating the distribution of mean concentrations across wells, the uncertainties in
each well's mean have been ignored, although such uncertainties could be taken into
account with a more complex calculation.  In this case, the effect is probably small.

�� The upper confidence limit (UCL) concentration has been estimated as the grand
mean (of means of well concentrations) plus the appropriate t–statistic (for a 95th

percentile) multiplied by the estimated standard deviation of well means.  For the UCL
so calculated to be an accurate estimate of 95  percentile, there is an implicitth

assumption that the distribution of well means is normal, although it clearly is not
normal in this case:  a probability plot of the well means indicates that the distribution
is closer to lognormal.

�� Applying the "mean plus t-statistic times standard deviation" approach to this
exposure situation is incorrect, since individuals are exposed (while in a single
residence) to just one of the 15 wells.
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The UCL estimate in Table 3 is used as the "point estimate" for comparison with the results
of the probabilistic assessment, since that is the value we think most likely to be used in an
EPA risk assessment, despite its faults.  Using the highest mean estimate of concentration in
the wells would increase this to 19.74 ppb, and taking an upper confidence limit on this
estimate of highest mean would increase the point estimate further still.  Treating the
distribution of mean values as lognormal (and assuming that somehow individuals could be
exposed to concentrations higher than the mean in the worst case well) would give an
estimate of approximately 27 ppb.

Table 2 Parameters of a time dependent model for concentrations
of 1,1-DCE in wells

Well Number Estimates for the statistical model of equation (1)

µ (ppb) �  (ppb/s) ) (ppb) ptime
a

1 2.1 9.3e-04 1.2 0.836 

2 1.1 4.2e-03 2.5 0.254 

3 7.3 -5.3e-03 2.3 0.087 

4 10.2 -1.5e-02 2.0 0.001 

5 9.4 -7.9e-03 6.7 0.503 

6 1.2 5.0e-03 2.7 0.254 

7 26.0 -9.2e-03 7.9 0.017 

8 0.0 1.1e-03 1.1 0.015 

9 0.8 2.2e-05 0.3 0.857 

10 0.0 8.2e-03 4.2 2.4e-07 

11 17.3 -7.3e-03 14.7 0.056 

12 19.0 -6.5e-03 7.5 0.009 

13 0.9 -3.2e-04 0.3 0.182 

14 0.7 -1.6e-04 0.3 0.505 

15 0.2 4.3e-05 0.0 1.000 

 probability of observing data under the null hypothesis that �  = 0.a
time
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Table 3 Average concentrations of 1,1-DCE in wells

Well Number Average Well Number Average
Concentration Concentration

(ppb) (ppb)

1 2.59 10 5.92

2 3.46 11 16.00

3 5.20 12 15.68

4 4.56 13 0.78

5 7.64 14 0.65

6 3.86 15 0.50

7 19.74 Average 5.90

8 1.13 Standard 6.25
Dev.

9 0.85 UCL 16.91

For the probabilistic assessment, the distribution of average concentrations to which a
random individual may be exposed was taken to be the distribution of average
concentrations for the fifteen wells (i.e. each average well concentration was selected with
equal probability).  The averages used were those given in Table 3, so that once again the
policy decision has been made to treat non-detects as 1/2 the detection limit.  In addition, the
uncertainty for each mean has been ignored (since it is small compared with the variability,
and the variability of concentrations is treated as an uncertainty in this assessment).
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4.2 Summary of source concentrations

The source concentrations used for the point estimate, and for the probabilistic assessment,
are shown in Table 4.

Table 4 Summary of source concentrations

Source:  Groundwater

Chemical Point estimate of Probabilistic estimate of
concentration concentration

1,1-DCE 16.91 ppb 15 well mean concentrations
from Table 3, with equal

probability
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5 Exposure assessment

Exposure assessment ordinarily begins with fate and transport analyses.  In this case, we
assume that concentrations in well water are equivalent to concentrations in tap water, so
that there is no other fate and transport modeling required.  In general, modelling fate and
transport within a water distribution system can be an extraordinarily complicated and
uncertain undertaking.  At the site supplying the concentration measurements, the 15 wells
using the contaminated aquifer fed at various points into a distribution system that was also
supplied from an uncontaminated aquifer at different points.  Tap concentrations (some of
which were also measured) thus did not necessarily correspond to well concentrations. 
Provided, however, that fate and transport can be modeled (as is required for point
estimates), the probabilistic techniques used here could be applied to fate and transport
analyses also.

For each exposure route included here, we describe below the mathematical representation
of the physical models used to estimate doses and the distributions of parameter values that
will be substituted in the equations to accomplish the probabilistic assessment.  The point
estimates for the parameters of these models are those recommended by U.S. EPA in its
current guidance under Superfund (e.g., EPA, 1989a).

5.1 Exposure by direct ingestion

The average lifetime exposure to 1,1-DCE through drinking contaminated tapwater (e ,w

mg/kg-day) is estimated by:

where the terms are:

e lifetime average dose received through direct ingestion of water (mg/kg-day),w

C concentration of 1,1-DCE in drinking water (mg/l),w

� consumption rate of tap water (l/day) at age t (yrs),w

f fraction of tap water consumed at home,w

B body weight (kg) at age t (yrs),
T lifetime (yrs), and
t , t the age range (yrs) of exposure.1  2

The physical model is here the trivial one of expressing tap water intake consumed in the
home as a fraction of body weight at each age during which exposure occurs, averaging over
a lifetime by integrating with respect to age and dividing by total lifetime, and assuming that
the concentration of 1,1-DCE in consumed tap water is identical to that at the tap.  This last
assumption is almost certainly incorrect — 1,1-DCE is sufficiently volatile that a considerable
fraction will evaporate from tap water used for beverages and food — so that this model is
itself inherently conservative.
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5.1.1 Point estimate for ingestion

Tapwater consumption was taken to be the EPA-recommended value of 2 liters/day,
independent of age (by policy, this is a standard value).  The fraction f  was set to unityw

(conservative upper bound estimate).  Body weight was assumed to be 70 kg, and lifetime
70 years (both policy standards).  The age range of exposure was defined simply as being
any 30 year period (t  – t  = 30 years), since all terms in the integral in equation (2) are2  1

independent of age using the standard point estimate default values.  The 30-year exposure
period is a policy standard.

5.1.2 Probabilistic estimate for ingestion

Contaminated tap water intake (as a function of age and sex) was approximated by using
total tap water intake (Appendix A.6), including direct and indirect (e.g. in beverages and
cooking) uses of tapwater, although the values given are probably now overestimates
(Appendix A.6.3).  The fraction of tap water consumed at home was arbitrarily assumed to be
a uniform (0.5,1) distribution, to take some account of the consumption of large fractions of
their liquids at other locations by large fractions of the population.  The distribution of body
weight at each age was taken to be lognormal, with parameters given in Appendix Section
A.5.  The selection of the age range t , t  and the lifetime T for each sample of the Monte1  2

Carlo assessment are described in Section 7.2.1, since they are common to all the models. 
The duration of exposure (t  – t ) was always arranged to be the residence period in a2  1

household, corresponding to the assumption that anybody moving would move far enough
away to be no longer supplied by the same water system.  The integration in equation (2)
was approximated by summation at 1 year intervals.

The integral in equation (2) has to be applied to individuals, so that the variations with age of
its various terms are required for individuals, not for populations (as are given in Appendix
A).  These variations were approximated by assuming that individuals remain at the same
percentiles on the relevant distribution at all ages.  Thus, for example, at an initial age
selected as described in Section 7.2.1, a weight for an individual was obtained from the
relevant age-sex-specific weight distribution, and the percentile on this distribution was
noted.  This individual's weight at other ages (as required in the integral in equation (2)) was
then estimated by choosing the same percentile from the weight distribution at those other
ages.  The same approach applies for tap water consumption, and for fraction of tap water
consumed at home.

5.2 Exposure by inhalation while showering

Various modeling efforts and measurements indicate that the majority of air exposures to
volatile organic compounds (VOCs) present in tap water occurs during showers.  When
water containing VOCs such as 1,1-DCE is used for showering, the VOCs may volatilize from
the water into surrounding air (Andelman, 1985).  The amount of such transfer depends
upon factors such as:  duration of showering, volume of the shower stall and bathroom,
ventilation rates and patterns of the shower and bathroom, water flow rate, shower head
style, and water droplet size.  Airborne concentrations depend also on chemical-specific
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(3)

factors including:  solubility in water, vapor pressure, Henry's law constant, and diffusion
constants.

Simple physical models of the evaporation of VOCs at fairly high concentrations from shower
water involve the factors just mentioned, and generally suggest a linear relation between air
concentration and water concentration.  More complex models should involve more complex
phenomena, such as adsorption of the VOCs to walls and plastic components of showers,
that become more important at low concentrations, and that may lead to more complex
relationships between air concentration and water concentration (in particular, the slope of
the air concentration versus water concentration relationship may be lower at low
concentrations).  In either case, attempting to predict air concentration from water
concentration would require many parameters (such as ventilation rates, shower room sizes,
and compositions of materials in shower stalls) that are specific to specific exposure
circumstances, and that cannot be predicted for populations.

To estimate the average airborne concentrations of VOCs present during showering, we rely
on experimental measurements by Jo et al. (1990).  Jo et al. (1990) measured the
concentration of chloroform (a chlorinated VOC similar to 1,1-DCE) in bathroom air after
volunteers showered with water containing chloroform as a byproduct of chlorination.  For
each test, 10-minute air samples were collected from the breathing zone in the shower stall. 
There was limited ventilation between the shower stall and the rest of the bathroom — a
shower curtain covered most of this space.

We adopt a simple approach in which we assume that the measurements of Jo et al. (1990)
are representative of all individual exposures to VOCs, and assess the relationship between
VOC concentration in air and VOC concentration in shower water (assumed to be identical to
VOC concentration in tap water) by applying a statistical model to their measurements.  The
statistical model adopted is the simplest available for practical purposes (a quadratic
relationship with zero constant term) that agrees with the theoretical ideas mentioned:

where the terms are:

C the shower air concentration (µg/m ),a
3

� a constant coefficient, estimated as 2.07 ± 1.01 5/m ,3

� a constant coefficient, estimated as 0.164 ± 0.035 5 /µg-m , and2 3

C the tap water concentration (µg/5).w

Our decision to select a quadratic correlation with zero constant term is a policy decision,
based on theoretical ideas.

Application of the correlation derived from Jo et al. (1990) to the risk assessment requires
the following assumptions:
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(4)

�� Differences in the shower size, ventilation characteristics, water temperature, water
flow rate, and water droplet size between the Jo et al. experiment and other
bathrooms will not significantly alter the correlation; and

�� The volatilization of 1,1-DCE during shower use is similar to that of chloroform.

Lifetime average exposure to 1,1-DCE while showering was calculated from the 1,1-DCE
concentration in shower air by averaging such exposure over a lifetime:

where the terms are:

c average 1,1-DCE concentration in air averaged over a lifetime (µg/m ),i
3

C concentration of 1,1-DCE in shower air (µg/m ),a
3

f fraction of the day spent in the shower,d

N number of showers per day,
t age (yrs),
T lifetime (yrs), and
t , t the age range (yrs) of exposure.1  2

5.2.1 Point estimate for inhalation

The best fit estimates for � and � in equation (4) were used.  Shower duration was taken to
be 6.8 minutes (the average of the distribution of Appendix A.3), with 1 shower per day (a
guess).  Lifetime was fixed at the standard 70 years, and the age range was again taken to
be any 30 year period — no terms in equation (4) depend on age, so that the integration is
trivial.

5.2.2 Probabilistic estimate for inhalation

Normal uncertainty distributions were assumed for the parameters � and � in equation (3),
corresponding to the statistical model used to estimate them from the data, with parameters
given below equation (3), except that these distributions were truncated at zero to ensure
that positive concentrations of 1,1-DCE in water could never give negative concentrations in
air.  The distribution for shower duration (and hence the fraction the day spent in the shower)
is given in Appendix A.3.  The number of showers per day was assumed to have a triangular
distribution with range 0.25 to 2 per day, and mode 1 per day.  Treatment of lifetime T and
age range t  to t  is described in Section 7.2.1.1  2

As for the ingestion estimates, the variation with age for individuals was treated by assuming
that all individuals stayed at the same percentile of each age-sex-specific distributions;
although none of the distributions was assumed to vary with age for the terms in equation
(4), so that the integral is trivial.
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(5)

5.3 Exposure by dermal absorption while showering

The lifetime average absorbed dose of contaminants due to dermal absorption while
showering can be evaluated using (EPA, 1989a):

where the terms are:

e lifetime average dose received through dermal absorption while showeringd

(mg/kg-day),
C concentration of 1,1-DCE in shower water (µg/5),w

A surface area (m ),2

! skin permeability for 1,1-DCE (m/hr),
f fraction of the day spent in the shower,d

N number of showers per day,
t duration of exposure (yrs),
B body weight (kg),
t , t age range (yrs) of exposure, and1  2

T lifetime (yrs).

This equation may be derived from a physical model in which 1,1-DCE is assumed to
permeate through the skin according to Fick's law, with the shower water washing over the
whole of the body surface and containing a constant concentration of 1,1-DCE, while the
concentration of 1,1-DCE in the interior of the body remains very much smaller than the
concentration in the shower water.

Rough calculations show that the doses estimated using this model are small fractions of
those occurring by other routes, so little time was spent on it.  The model is, however,
probably substantially in error, since measurements attempting to isolate the inhalation and
dermal absorption components of doses during showering indicate that dermal absorption
may contribute as much as 1/2 the total dose.  More recent models of dermal absorption also
predict much higher doses, but they appear to over-estimate.

5.3.1 Point estimate of dermal exposure

Human surface area was taken to be 1.94 m  (a measured average value for adults).  Skin2

permeability for 1,1-DCE was taken to be 8 × 10  m/hr, the same as the permeability as–6

water (EPA, 1988).  Other parameters were as for inhalation, Section 5.2.1.
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5.3.2 Probabilistic estimate of dermal exposure

Human surface area was taken to be age-dependent, with values given in Appendix A.8. 
Skin permeability for 1,1-DCE was taken to be 8 × 10  m/hr, the same as the permeability as–6

water (EPA, 1988).  Other parameters, and the approach, were as for inhalation (Section
5.2.2).  The approach taken was substantially simpler here (surface area distributions as a
function of weight and sex could be evaluated, for example), but since the calculated
contribution of this route was small, less effort was directed to it.
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5.4 Summary of parameter estimates for the exposure assessment

5.4.1 Point estimates

Table 5 summarizes the point estimates, and the sources of those estimates, that would
most likely be used in a standard risk assessment and that are used for comparison here. 
The entries labelled with "Policy standard" are generally upper bound estimates that may
have been derived from upper percentile estimates of some population parameters, but the
distributions may not be relevant in the circumstances in which these "standards" are used.

Table 5 Parameters used to calculate risks under current U.S. EPA guidance

Symb Description Value Source
ol

� Tap water consumption rate 2 5/day Policy standardw

f Fraction of water consumed at home 1 Upper boundw

B Body weight 70 kg Policy standard

t –t Exposure duration (period of 30 yrs Policy standard2 1

residence)

T Lifetime 70 yrs Policy standard

� Coefficient in shower air concentration 2.07 5/m Fit to data
equation

3

� Coefficient in shower air concentration 0.164 Fit to data
equation 5 /µg-m2 3

N Number of showers taken per day 1 Guess

A Body surface area 1.94 m Measured2

average

! Skin permeability for 1,1-DCE 8 × 10 Based on water–6

m/hr

d Average shower duration 0.114 hr Measured
average
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5.4.2 Probabilistic estimate

Table 6 summarizes the parameters used for the probabilistic estimate, and cross-references
the details of the distributions used.

Table 6 Parameters used to calculate risks under current U.S. EPA guidance

Symb Description Value Source
ol

� Tap water consumption rate App. A.6 Measurementsw

f Fraction of water consumed at home App. A.6.4 Guessw

B Body weight App. A.5 Measurements

t –t Exposure duration (period of See Sect. 7.2.12 1

residence)  

T Lifetime

� Coefficient in shower air concentration Section Fit to data
equation 5.2.2

� Coefficient in shower air concentration Fit to data
equation

N Number of showers taken per day App. A.3.3 Guess

A Body surface area App. A.8 50  percentileth

! Skin permeability for 1,1-DCE 8 × 10 Based on water–6

m/hr

d Average shower duration App. A.3 Measurements
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6 Dose-response assessment

6.1 General approach

The following sections indicate the details of the evaluation of carcinogenic potencies and
unit risks for 1,1-DCE and vinyl chloride.  The methods are described in Appendix B for both
point estimates of potency or unit risk, and probability distributions for these quantities.  The
point estimates correspond to those usually used by the EPA and published on-line in the
Integrated Risk Information System (IRIS) or in the annual Health Effects Assessment
Summary Tables (HEAST).  The distributions are obtained using exactly the same models,
and making minimal extensions to the methodology (even though a slightly more radical
modification would be desirable — see Appendix B.3).

The computations for the standard analyses of both point estimates and distributions were
made using MSTAGE 2.0 (Crouch, 1992).  This program is designed to produce the required
probability distributions in tabular form.  In the Monte Carlo analysis, the distributions were
handled by special-purpose software that read the tables and stored them as inverse cubic
splines on an inverse lognormal scale.

For the non-standard analyses of 1,1-DCE described in Section 6.3, tables of the required
distributions were obtained using the optimization routines available in Borland's Quattro Pro
spreadsheet (similar routines are available in most competing products), and then again
handled in the Monte-Carlo analysis by the special-purpose software.  Other implementation
issues are discussed in Section 11.3.

Throughout Section 6, various values are given to 4 significant figures solely to allow others
to duplicate the analysis exactly.  The true accuracy or reliability of most of the figures is
approximately 10% (1 significant figure).

6.2 1,1-Dichloroethene (1,1-DCE), standard analyses

1,1-Dichloroethene has been assigned a carcinogen classification of C — possible human
carcinogen — by EPA.  Point estimates for the carcinogenic potency and unit risk of 1,1-DCE
are given on IRIS (1995) as 0.6 kg-day/mg and 5.0 × 10  m /µg respectively.–5 3

At the time of the EPA Health Assessment Document for Vinylidene Chloride (EPA, 1985a)
there had been eighteen rodent bioassays reported, of which eleven were of inhalation
exposure, five were of ingestion exposure, and two were of exposure topically or
subcutaneously.  Most of these studies were not carried out at maximum tolerated doses or
exposures, and so had less than the possible maximum sensitivity.  Just one of the inhalation
studies yielded any positive results (according to the original authors), and the inhalation unit
risk estimate is based on an analysis of this one study.  None of the ingestion studies yielded
any positive response (according to the original authors), with upper bounds on the possible
potency estimate ranging from 0.16 kg-d/mg (when extrapolated to humans using the
standard EPA surface area extrapolation) in a study using drinking water, to 0.6 kg-d/mg
(extrapolated to humans) in a gavage study.  The last — the highest upper bound — is the
basis for the EPA ingestion potency estimate.
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In what follows, we also use just the single studies selected by the EPA for its point estimates
of carcinogenic potency or unit risk.  Incorporation of the other studies in a probabilistic
manner would have little effect on the inhalation unit risk estimates, since the other studies
were generally of lower sensitivity than the study that produced a positive response.  For the
ingestion potency estimate, however, incorporation of the other studies might have a fairly
large effect, since one drinking water study had a sensitivity four times higher than the study
selected by the EPA as the basis for their potency estimate.  Appendix B sketches how one
may go about incorporating multiple bioassays to obtain a single distribution for carcinogenic
potency or unit risk.

6.2.1 Carcinogenic potency of 1,1-DCE by ingestion

The data used, and EPA's analysis, are summarized in EPA (1985a) and IRIS (1995), and in
Table 7.  Analysis by the standard EPA multistage procedure (Appendix B, Section B.1)
leads to an estimate of q * in rats of 0.1072 kg-d/mg, and extrapolation to humans using the1

1/3 power of body weight gives an estimate of human carcinogenic potency of Q * of 0.58541

kg-d/mg.  The value of Q * published by EPA (EPA, 1985a; IRIS, 1995) is 0.6 kg-d/mg.1

The dose-response curves assumed in the standard multistage procedure (maximum
likelihood estimate, and that corresponding to q *) are shown in Figure 1.  The error bars1

around the experimental results are 95  percentiles on estimates of tumor probability,th

assuming binomial statistics.  Application of the methodology described in Appendix B
(Section B.2) leads to the uncertainty distribution (for experimental uncertainty alone) shown
in Figure 2.  The scale in Figure 2 incorporates the standard EPA extrapolation to humans,
and so has a 95  percentile equal to the estimate of 0.5854 kg-d/mg.  When incorporatingth

the lognormal distribution for interspecies extrapolation described in Appendix B (Section
B.8), the distribution for q  in rats is needed as the starting point, and this is equivalent to the1

distribution of Figure 2 with all potency values multiplied by the factor  (0.43/70)  = 0.1831.6 1/3
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Table 7 Experimental results for lifetime ingestion of 1,1-DCE by rats
(NCI/NTP, 1982)

Experimental Dose Response
mg/kg-d Number of rats with tumor/

(by gavage, 5 d/wk, 104 wk) Number of rats examined

0 6/50

1 5/48

5 13/47

Period of Dosing: 104 wk
Length of animal lifetime: 111 wk
Tumor site and type: Adrenal pheochromocytomas
Animals: Male F344 rats, estimated average weight 0.43 kg
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Figure 1 Dose-response data for 1,1-DCE ingestion (NCI/NTP, 1982: see Table 7).



Distribution for potency by ingestion

0E+00 1E-01 2E-01 3E-01 4E-01 5E-01 6E-01 7E-01 8E-01 9E-01

Potency estimate (kg-d/mg)

0

10

20

30

40

50

60

70

80

90

100
Pe

rc
en

til
e

27

Figure 2 Cumulative (solid line) and differential (dashed line) distribution for the
carcinogenic potency of 1,1-DCE by ingestion.
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6.2.2 Inhalation unit risk for 1,1-DCE

The data used, and EPA's analysis, are summarized in EPA (1985a) and IRIS (1995), and in
Table 8.  Analysis by the standard EPA multistage procedure (Appendix B, Section B.1)
leads to an estimate of unit risk in mice of 0.1959 ppm  or 4.846 × 10  m /µg.  The EPA–1    –5 3

standard extrapolation to humans is unity on this dose measure, so that the EPA point
estimate of carcinogenic potency in humans is also 4.846 × 10  m /µg.  The value published–5 3

by EPA (IRIS, 1995) is 5.0 × 10  m /µg.–5 3

The dose-response curves assumed in using the standard multistage procedure (maximum
likelihood estimate, and upper 95  percentile on the linear term) are shown in Figure 3. th

Application of the methodology described in Appendix B (Section B.2) leads to the
uncertainty distribution (for experimental uncertainty alone) shown in Figure 4.  This figure
incorporates the standard EPA extrapolation to humans, and so has a 95  percentile equalth

to 4.846 × 10  m /µg.  When incorporating the lognormal distribution for interspecies–5 3

extrapolation described in Appendix B (Section B.8), the distribution for unit risk based on
equivalence of doses on a weight basis is needed as the starting point, and this is equivalent
to the distribution of Figure 4 with all unit risk values multiplied by the factor7

(0.045/70)  = 0.08631.1/3

Table 8 Experimental results for lifetime observation after 1 year exposure to
1,1-DCE by inhalation (Maltoni et al., 1985)

Experimental exposure Response
ppm Number of mice with tumor/

4 hr/day, 4 to 5 day/week, for 52 weeks Number of mice examined

0 0/126

10 0/25

25 28/119

Length of Experiment: 121 weeks
Tumor site and type: Kidney adenocarcinomas
Animals: Male Swiss mice, average weight 45 g (approx)
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Figure 3 Dose-response curves for 1,1-DCE inhalation (Maltoni et al., 1985: see
Table 8).
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Figure 4 Cumulative (solid line) and differential (dashed line) distribution for
inhalation unit risk for 1,1-DCE.
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(6)

6.3 1,1-Dichloroethene, non-standard analyses

Section 6.2 has given details of the analysis of the bioassays of 1,1-DCE based on the
standard dose-response (or exposure-response) curve currently in use.  That dose-response
model is of the form:

where:
p is the lifetime probability of tumor,
d is the lifetime average dose rate of the material under test, and
q i = 0,1,...,m, are the m + 1 parameters of the model, which are subject to thei 

conditions q  � 0.i

The effect of the positivity conditions on the parameters in this dose-response equation is to
force the assumed probability of tumor to be non-decreasing as a function of dose.  Indeed, if
the probability of tumor increases at any dose, including the very high doses of animal
bioassays, then it is necessarily assumed to be an increasing function of dose at all doses,
including the very low doses of interest for human risk assessment.  The effect of this
assumption is to make a biased assessment of what might be happening at doses well below
the range where experimentally observable responses occur — the possibility of a beneficial
effect on response, for example, is completely denied.

In this section, we relax the constraint just discussed.  Suppose that, at low enough doses,
no assumption is made about the plausibility of increasing or decreasing response rates as a
function of dose, so that a beneficial effect of low doses is considered as plausible as a
deleterious effect.  As in the standard approach, the simplest method of analysis is to
assume some dose-response relationship, but one that does not contain all the positivity
constraints generally used with equation (6).  All that is logically required for equation (6) to
be a dose-response relationship is that the polynomial term in the exponent of this equation
remain non-negative, not that every term within the polynomial be non-negative.  Therefore,
we adopt equation (6) as the dose-response relationship, but with these relaxed constraints.

As a further simplification, we examine only the lowest dose tested (together with the control
group) in order to remove to the extent possible the effect of what might happen at high
doses, and restrict the polynomial in the exponent of equation (6) to two terms, so that we
are effectively just fitting straight lines between two points (one of which is the zero-dose
point) on the dose-response curve.  Thus we examine the effect of assuming a dose-
response curve of the form

where no restriction is placed on the sign of a , but we require that a  + a d be non-negative1      0  1

for all doses within the range examined (since d = 0 is always included, this requires that
a  � 0).0
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With this dose-response curve, the approach described in Appendix B may also be used to
obtain an uncertainty distribution (due to experimental uncertainties only) for the parameter
a .  Since a  is equivalent to q  in the standard analysis (except that it may be negative), it1    1    1

may also be called the potency (or unit risk, if the analysis is for inhalation exposure), and
interpreted and used in the same way as the potency to evaluate the effect of exposures.  In
particular, we here assume that it may be extrapolated to humans in the same way as the
standard potency estimate, and that the product of the extrapolated a  and human dose (or1

exposure) gives the increment (or decrement, if a  is negative) in risk of cancer for humans. 1

That is, if a  is positive, the material tested is a carcinogen; if a  is negative, it is an anti-1          1

carcinogen.

Figure 5 and Figure 6 show the uncertainty distributions for the ingestion potency and unit
risk respectively for 1,1-DCE, using the two lowest doses or exposures (including zero dose)
from Table 7 and Table 8.  These have been extrapolated to humans using the standard
EPA approach, and so are directly comparable with Figure 2 and Figure 4.
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Figure 5 Cumulative (solid line) and differential (dashed line) distribution for the
ingestion potency of 1,1-DCE using the non-standard approach,
extrapolated to humans using the standard EPA method.



Distribution for unit risk by inhalation

-3E-05 -2E-05 -1E-05 -3E-21 1E-05 2E-05 3E-05 4E-05 5E-05 6E-05 7E-05

Unit risk estimate (cubic meters/microgram)

0

10

20

30

40

50

60

70

80

90

100
Pe

rc
en

til
e

0

CarcinogenicAnti-carcinogenic

34

Figure 6 Cumulative (solid line) and differential (dashed line) distribution for the
inhalation unit risk for 1,1-DCE using the non-standard approach,
extrapolated to humans using the standard EPA method.
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6.4 Vinyl chloride (standard analyses)

Vinyl chloride has been assigned a carcinogen classification of A, known human carcinogen. 
Point estimates for the carcinogenic potency and unit risk of vinyl chloride are provided in
HEAST (1994).  The values given are 1.9 kg-d/mg and 8.4 × 10  m /µg respectively.  These–5 3

values are qualified as being under review, with the additional general comment:

The most recently reviewed quantitative toxicity values listed here appear in
EPA documents published in 1984 and 1985.  The agency is aware that these
values do not incorporate considerable information that is now available.  The
Office of Health and Environmental Assessment's position is that these toxicity
values do not reflect state-of-the-art science for vinyl chloride.  EPA now has
individual animal data, not available when the oral unit risk was calculated, that
may influence this value.  Additional information that may be factored into a
revised quantitative toxicity value includes data on increased sensitivity
observed in young animals and data on metabolism/pharmacokinetics.  A unit
risk for air that considers information on young age exposure increases the risk
(i.e. lowers the risk specific dose) by at least 3-fold.  The consideration of
metabolism pharmacokinetics will further increase the risk.  One unpublished
physiologically-based pharmacokinetic model prediction results in a 100-fold
increased risk.

We here obtain uncertainty distributions for carcinogenic potency and unit risk, based on the
same data as used by EPA to obtain the point estimates above.  This approach specifically
ignores any new data contributing to the general comment just cited.

6.4.1 Carcinogenic potency of vinyl chloride by ingestion

The data used, and EPA's analysis, are summarized in EPA (1985b).  Feron et al. (1981)
report a lifetime oral dosing study of rats, with the results summarized in Table 9.  Analysis
by the standard EPA multistage procedure (Appendix B, Section B.1) leads to an estimate of
q * in rats of 0.2942 kg-d/mg, and extrapolation to humans using the 1/3 power of body1

weight gives an estimate of human carcinogenic potency Q * of 1.925 kg-d/mg.  The value1

published by EPA (EPA, 1985b; HEAST, 1994) is 1.9 kg-d/mg.

The dose-response curves assumed in using the standard multistage procedure (maximum
likelihood estimate, and to obtain q *) are shown in Figure 7.  Application of the methodology1

described in Appendix B (Section B.2) leads to the uncertainty distribution (for experimental
uncertainty alone) shown in Figure 8.  This figure incorporates the standard EPA
extrapolation to humans, and so has a 95  percentile equal to the estimate of 1.925 kg-d/mg. th

When incorporating the lognormal distribution for interspecies extrapolation described in
Appendix B (Section B.8), the distribution for q  in rats is needed as the starting point, and1

this is equivalent to the distribution of Figure 8 with all potency values multiplied by the
factor  (0.25/70)  = 0.1529.8 1/3
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Table 9 Experimental results for lifetime ingestion of vinyl chloride by
rats (Feron et al., 1981)

Experimental Dose Response
mg/kg-d Number of rats with tumor/

(daily, for life) Number of rats examined

0 2/57

1.8 26/58

5.6 42/59

17 56/57

Length of Experiment: 1001 days
Tumor site and type: Liver neoplastic nodules, hepatocellular carcinoma

and angiosarcoma, or lung angiosarcoma
Animals: Female Wistar rats, assumed body weight 0.25 kg



Experimental Maximum likelihood 95th percentile on q1

-5 0 5 10 15 20

Experimental dose (mg/kg-day)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pr

ob
ab

ili
ty

 o
f t

um
or

37

Figure 7 Dose-response data for vinyl chloride ingestion (Feron et al., 1981: see
Table 9).
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Figure 8 Cumulative (solid line) and differential (dashed line) distribution for the
ingestion potency of vinyl chloride.
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6.4.2 Unit risk of vinyl chloride by inhalation

The original data used by EPA to obtain a unit risk by inhalation are summarized in EPA
(1985b).  The methods used by EPA are summarized in EPA (1985b) and HEAST (1994). 
Unfortunately, the combination of two approaches has led to use of methods at variance with
those that would now be used by EPA.  The data used, shown in Table 10 and Figure 9, are
a subset of those reported by Maltoni et al. (1980), who also gave results for 1 and 5 ppm
exposures, and for several exposures above 50 ppm.  Incorporating the experimental results
from the lower exposures has little effect on the calculations that follow, and the higher doses
are excluded by the methodology itself.

The approach taken by EPA was convoluted.  An equivalent lifetime exposure concentration
C  was computed from the experimentally applied concentration C  to take account of thee        a

intermittent and less-than-lifetime exposures:

where:
f  = fraction of lifetime exposed1

   = ((4 hours/day)/(24 hours/day)
 × (5 days/week)/(7 days/week)
 × (365 days exposure)/(1029 days lifetime)

   = 0.04223.

Table 10 Experimental results for lifetime observation after 1 year exposure to
vinyl chloride by inhalation (Maltoni et al., 1980)

Experimental exposure Response
ppm Number of rats with tumor/

4 hr/day, 5 day/week, for 1 year Number of rats examined

0 0/363

10 1/119

25 5/120

50 1/60

Length of Experiment: 1029 days
Tumor site and type: Liver angiosarcoma
Animals: Male and female Sprague-Dawley rats, assumed body

weight 0.35 kg
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       Any exposure could be used here, so long as all exposures are normalized9

to it and the same exposure is used later in the analysis wherever C  is used.a,m
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This equivalent lifetime exposure was then converted to an equivalent lifetime average
absorbed dose d in mg/kg-d by:

where:
� = 0.5 is an estimate of the fraction of inhaled vinyl chloride that is absorbed,
V = 0.223 m /day is the assumed breathing rate of the rats, andr

3

M = 0.35 kg is the assumed body weight of the rats.r

With such doses obtained from the exposures shown in Table 10, and the results shown
there, a "potency" q * in rats was obtained using the standard EPA procedure (see Appendix1

B, Section B.1).  This potency may be represented as:

where:
q* is the result obtained from the standard EPA procedure applied to the results of

Table 10, but with doses (exposures) normalized to a maximum value of unity,
and

d is the dose corresponding to the maximum exposure  (C  = 50 ppm =m         a,m
9

1.278 × 10  µg/m ).5 3 

This potency estimate in rats was then extrapolated to humans using the standard method:

where:
Q * is the estimate of potency in humans, and1

M = 70 kg is the standard human body weight.h

Finally, to obtain the value in HEAST (1994), EPA applied a standard conversion, assuming
a 70 kg person breathing 20 m /day, to obtain the estimated unit risk for humans U as3





K

K

�

�



K

U

U

K

���

�

�

� D�P

K

U

U

K

���




�

� D�P

41

where:
V = 20 m /day is the estimate of human breathing rate.h

3

The net effect of this sequence of manipulations was to obtain the estimated unit risk U in
humans as:

This expression (and hence the reported EPA unit risk of 8.4 × 10  m /µg, HEAST 1994)–5 3

shows two differences from the current standard EPA approach to estimating a unit risk from
inhalation data.  First, it incorporates the term 1/� = 2, accounting for absorption, which is
strictly incorrect for a standard "unit risk" that relates external exposure to risk.  Second, the
term:

which has the value 2.622 with the assumed values used for vinyl chloride, is generally taken
to be unity in performing such extrapolations, since breathing rates are expected to
extrapolate between species approximately as the 2/3 power of body weight.  Thus the
current standard approach for estimating unit risk would give:

To maintain consistency with the published EPA point estimate, we have used that estimate
as the point estimate, and normalized the uncertainty distribution for potency (experimental
uncertainty) shown in Figure 10 so that its 95  percentile is equal to the EPA point estimate. th

To incorporate the interspecies extrapolation uncertainty (see Appendix B (Section B.8)), the
distribution in Figure 10 is multiplied by a lognormal uncertainty distribution with median
1/30.67 and geometric standard deviation exp(2.2).  The factor 30.67 comes from the
extraneous factor 2 × 2.622 introduced by the EPA's manipulations, together with a factor of
5.848 ( = (M /M ) ) to reduce the results to a body weight basis, as required by the h  r 

1/3 

approach of Appendix B.8.
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Figure 9 Dose-response data for vinyl chloride inhalation (Maltoni et al., 1980: see
Table 10).
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Figure 10 Cumulative (solid line) and differential (dashed line) distribution for the
inhalation unit risk of vinyl chloride.
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(16)

7 Risk Characterization

Once exposures and doses are calculated for an individual, the incremental carcinogenic risk
for that individual is calculated using the equation:

where the terms are:

R incremental carcinogenic risk,c

e lifetime average dose received through direct ingestion of water (mg/kg-day),w

c lifetime average air concentration (µg/m ),i
3

e lifetime average dose received through dermal absorption (mg/kg-day),d

Q carcinogenic oral slope factor (kg-day/mg), and
U inhalation unit risk (m /µg).3

Substituting the doses and exposure (e , e , and c ) obtained from Section 5, together withw  d   i

potency and unit risk estimates from Section 6 gives the risk estimate.

7.1 Point estimates of risk

Using the point estimates of doses and exposures detailed in Section 5 calculated using the
point estimate of water concentration given in Section 4, together with the point estimates for
carcinogenic potency and unit risk given in Section 6, yields the point estimate of incremental
carcinogenic risk of 1.3 × 10 .  This is the usual value that would be calculated, and the–4

correct statement of its use would be something like:

The calculated upper bound incremental carcinogenic risk estimate is 1.3 × 10 .  It is–4

likely that the true risk lies somewhere below this value, and may be zero.

The majority of this risk estimate is due to the direct ingestion of tap water, accounting for
93.6% of the total risk.
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7.2 Probabilistic estimate of risk

To obtain the probabilistic estimate of risk, the probabilistic estimates given in Sections 4, 5,
and 6 must be correctly combined.  The method of combination used was the Monte Carlo
procedure to be described (Section 7.2.1), the resulting distribution being given in Section
7.2.2.

7.2.1 Monte Carlo procedure

The Monte Carlo algorithm can be described by the pseudo-code (each entry is further
described below):

repeat
Select an exposure point concentration
Select an age for an individual
Select the sex of the individual
Define the individual's lifetime
Select the exposure duration
Insert the individual into the exposure duration
Select an average shower duration
Select the number of showers per day
Select a weight percentile for this individual
Select a water ingestion rate percentile for this individual
Select the fraction of water consumed at home for this

individual
Define the individual's surface area
Select model parameters
Select a potency and unit risk
Select an interspecies extrapolation factor
Integrate exposures over exposure duration
Calculate incremental carcinogenic risk for the individual
Store the incremental carcinogenic risk in a list of values

until 20,000 values have been stored.
Sort the list of incremental carcinogenic risks
Output the percentiles of the distribution of risk estimates

The individual operations in this pseudo-code are:
 
�� Select the exposure point concentration.

Randomly select, with equal probability, an exposure point concentration from the 15
well mean concentrations of 1,1-DCE in groundwater (Section 4.2).

�� Select an age for the individual.
Randomly select an age for the individual from the age distribution for the population
of the United States (Appendix A.4).
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�� Select the sex of the individual.
Randomly select the sex for the individual from the age-dependent sex distribution for
the population of the United States (Appendix A.4).

�� Define the individual's lifetime.
The lifetime of the individual was set equal to the selected age plus the average life
expectancy for individuals in the United States at that age (Appendix A.7).  This
approximation was deemed adequate for the current analysis.  A better approach
would be to use the age-sex-specific distribution for life expectancy at every age; but
we suspect the extra complexity would not be worth the effort.

�� Select the exposure duration.
The exposure duration was assumed to be equal to the length of stay in a residence,
corresponding to the assumption that any move would be to another residence that is
not supplied by the same water system.  For a large enough water system, this
assumption might not apply, and a more complex model of the exposure situation
might then be in order.  Exposure duration was thus randomly selected from the
distribution of household residence times (all residences) in the United States
(Appendix A.2).

�� Insert the individual into the exposure duration.
The individual was randomly placed (a uniform distribution) at some point during the
exposure duration.  For example, if the age of the individual is selected to be 35 years
and the duration of exposure was 5 years, the individual was assumed to be exactly
age 35 at some randomly selected point during the 5 year period of exposure.  If the
period of exposure then started before the birth of the individual, the exposure period
was truncated to the date of birth.  Likewise, if the exposure period lasted beyond the
death of the individual, the exposure period was truncated at the age of death.  This
procedure was selected somewhat arbitrarily, but no data appear to be available to
design a better procedure.

�� Select an average shower duration.
Randomly select the shower duration (to be used in the shower inhalation and dermal
absorption models) from the distribution of shower lengths (Appendix A.3).

�� Select the number of showers per day.
Randomly select the number of showers per day from a triangular distribution with a
minimum value of 0.25, a maximum value of 2, and a peak at 1 shower per day
(Appendix A.3).
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�� Select a weight percentile.
Randomly select (uniformly) a percentile between 0 and 100 to be used for the
individual's weight.  A percentile is selected for the weight of an individual, and then
the individual is assumed to remain at the same percentile for his or her entire lifetime,
although the absolute value of his or her weight will change as he or she ages.  The
weight is calculated from sex, age, and the weight percentile (Appendix A.5).

�� Select a water ingestion rate percentile.
Randomly select (uniformly) a percentile between 0 and 100 to be used for the
individual's tap water ingestion rate.  Again, the individual is assumed to remain at the
same percentile for his or her entire lifetime, although the absolute value of his or her
tap water ingestion rate will change as he or she ages.  The water ingestion rate is
calculated from sex, age, and the water ingestion rate percentile (Appendix A.6).

�� Select the fraction of water consumed at home.
Randomly select the fraction of water consumed at home from a uniform distribution
ranging from 0.5 to 1 (Section 5.1.2).

�� Define the individual's surface area.
Calculate the individual's surface area from the age and sex (Appendix A.8).  We used
the 50  percentile estimate of body surface area where a more complete analysisth

would use distributions of surface area by age, weight, and sex (or more probably, by
age and sex only).  However, since surface area is only used in a minor exposure
route, the failure to use the full distributions will have negligible effect on the result.

�� Select model parameters.
Randomly select values for the shower inhalation model parameters � and � in
equation (3) of Section 5.2 from the distributions for those parameters (Section 5.2.2). 
In the dermal absorption model, the permeability of 1,1-DCE across the skin was fixed
at the value for water, 8 × 10  m/hr.  Again, because dermal absorption is a small–6

contributor according to the models used here, this failure to use an uncertainty
distribution has only a small effect.

�� Select a potency and unit risk.
Randomly select a potency and unit risk from the uncertainty distributions for these
values based on the bioassay data (Section 6).

�� Select an interspecies extrapolation factor.
Randomly select an interspecies extrapolation factor from the uncertainty distribution
for the interspecies extrapolation factor (Appendix B).  The same extrapolation factor
was used for both inhalation unit risk and carcinogenic potency, corresponding to the
assumption that no component of the uncertainty is associated with the route of
exposure.  There is no logical reason for this assumption, and this problem has not
been examined empirically.  For 1,1-DCE it is plausible that the mechanisms of action
are independent of exposure route.  For vinyl chloride, there appears to be a
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substantial amount of metabolism in the rat lung, so that the mechanisms of action
could be different by the different routes.

�� Integrate exposures over exposure duration.
After all parameters had been selected from their respective distributions, the
exposure models were applied.  Because certain characteristics of an individual
change as the individual's age changes, total exposures from each exposure pathway
were integrated over the periods of exposure (approximating the integrals by sums
over annual intervals).  The characteristics for individuals were changed with age by
maintaining them at the same percentiles of their respective distributions.

�� Calculate incremental carcinogenic risk for the individual.
Equation (16) was used to calculate the incremental carcinogenic risk for the
individual.

�� Store the incremental carcinogenic risk in a list of values.
Incremental carcinogenic risks for each individual were stored in a large array of
values.

�� Sort the list of incremental carcinogenic risks.
The array of risk values was sorted from lowest to highest to obtain percentile
estimates for the incremental carcinogenic risk.

�� Output the percentiles of the distribution of risk estimates.
The percentile values were printed at every 0.2 percentile (every 40 entries), and
plotted graphically.

7.2.2 Probabilistic risk estimates, standard dose-response model

The procedure defined in Section 7.2.1 was performed with several variations to evaluate the
effects of several of the uncertainty distributions on the resultant distribution for risk.

�� All distributions were used exactly as specified in Section 7.2.1.  Figure 11 shows the
resulting distribution for risks to a random individual exposed to the contamination. 
This graph (and all subsequent graphs of distributions of risk estimates) also shows
the expected value of the distribution (mean estimate) and the point estimate
calculated as described in Section 7.1.  The median estimate of risk is 1.2 × 10 , the–9

mean estimate is 1.6 × 10 , the 95  percentile estimate is at 1.7 × 10 , and the point–6   th       –6

estimate of 1.3 × 10  is above the 99.8  percentile.–4    th

�� Subsequent cases allow some of the parameters to be selected from their uncertainty
distributions while holding others constant at their point estimate values.  This allows
an evaluation of the extent to which each distribution affects the final distribution of
risk values.
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Figure 12 shows the distribution of risks resulting from sampling the distribution for
carcinogenic potency and unit risk for humans, while holding all other parameters constant at
the value used in calculating the point estimate.  The similarity with the overall distribution
(Figure 11) shows that the uncertainty of carcinogenic potency and unit risk values is a major
contributor to the overall uncertainty in estimated carcinogenic risks.  The human
potency/unit risk estimates are obtained by evaluating potency/unit risk estimates in
laboratory animals (rats or mice), and multiplying by an interspecies conversion factor. 
Figure 13 shows the effect of sampling only from the uncertainty in animal potency/unit risk,
while setting all other parameters to their point estimates (i.e. incorporating only the
uncertainty due to the small numbers of animals tested).  While this uncertainty is relatively
large, it is clear that the majority arises from the interspecies factor.

To emphasize that most of the uncertainty is in the estimate of toxicity, Figure 14 through
Figure 17 illustrate the uncertainty distributions due to other major parameters in the
assessment (all other parameters were held at their point estimates to make these graphs). 
Figure 14 is the uncertainty due to the water concentration distribution (the fifteen steps in
the distribution correspond to the fifteen separate well concentrations from which the
exposure point concentration was selected), while Figure 15 shows the effect of all personal
characteristics like age, sex, weight, water ingestion rate, and average shower duration. 
Finally, Figure 16 and Figure 17 (the same graph on different scales) show the minor
uncertainty in this simple exposure situation of the small amount of fate and transport
modeling — parameters such as � and � in Equation (3).



point estimate mean

Incorporating All Specified Uncertainty

1E-12 1E-11 1E-10 1E-09 1E-08 1E-07 1E-06 1E-05 1E-04 1E-03
Estimate of Risk

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Cu
m

ul
at

iv
e 

Pr
ob

ab
ili

ty

50

Figure 11 1,1-DCE: distribution of incremental
carcinogenic risk: all uncertainties included.
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Figure 12 1,1-DCE: distribution of carcinogenic risk:
uncertainty in carcinogenic potency values
only.
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Figure 13 1,1-DCE: distribution of risk: uncertainty in
bioassay analysis only.
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Figure 14 1,1-DCE: distribution of risk: uncertainty in
water concentrations only.



point estimate mean

Incorporating Uncertainty in Personal Characteristics

1E-12 1E-11 1E-10 1E-09 1E-08 1E-07 1E-06 1E-05 1E-04 1E-03
Estimate of Risk

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Cu
m

ul
at

iv
e 

Pr
ob

ab
ili

ty

54

Figure 15 1,1-DCE: distribution of risk: uncertainty in
individual characteristics only.
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Figure 16 1,1-DCE: distribution of risk: uncertainty in fate,
transport, and exposure model parameters
only.
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Figure 17 1,1-DCE: distribution of risk: uncertainty in fate,
transport, and exposure model parameters
only.



       The long positive and negative tails on the distribution also make the mean10

extremely difficult to estimate accurately.  The standard error in estimating its
value is still about ± 4 × 10 , or 40%, after 100,000 iterations of the Monte Carlo–7

analysis.  Obtaining it to within 10% would take another 1,500,000 iterations!
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8 Probabilistic analysis with a non-standard dose-response model

There have been suggestions that an alternative approach to the evaluation of carcinogens
may be to examine only what could happen in the low-dose region, and to drop the
assumption that the dose-response curve for carcinogenesis is non-decreasing — so that
beneficial effects are possible at low doses.  To illustrate what might happen with such an
alternative approach, we implemented one example of this idea and applied it to our case
study on 1,1-DCE.  The only change in the case study was the substitution of the non-
standard dose-response models (for carcinogenic potency and unit risk) described in Section
6.3.  There are myriad assumptions involved in this simple substitution that we do not list or
evaluate (such as whether the interspecies extrapolation, which was empirically evaluated
using the standard dose-response model, still applies with this alternative dose-response
model).

The resultant distributions for risk are vastly different in some respects from those obtained
in Section 7, but very similar in others.  They are illustrated in Figure 17 and Figure 18, the
latter being a blown-up version of the former, showing the central region more clearly.  The
difference in shape between Figure 17 and Figure 11 is obvious, Figure 17 showing that with
the non-standard dose-response curve there is almost equal probability for carcinogenic and
anti-carcinogenic effects, but with high probability the overall effect (positive or negative) is
very small.  The median of the distribution is very slightly negative, –2 × 10 .  The mean is–9

also slightly negative, about –9.5 × 10 , but the distribution has very long positive and–7

negative tails, so the mean estimate will be of minor interest if there is any asymmetry in the
values assigned to positive and negative effects.   The 95  percentile is at 1.7 × 10 , and10   th      –6

the standard point estimate of 1.3 × 10  is at the 99.8  percentile.–4    th
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Figure 18 Distribution of risks for 1,1-DCE allowing
negative potency values.
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Figure 19 An expanded view of Figure 18.
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9 Risk assessment for vinyl chloride

The Monte Carlo analysis of incremental carcinogenic risk associated with 1,1-
dichloroethylene was repeated with vinyl chloride replacing 1,1-DCE as the chemical of
concern — i.e. all the concentration values were assumed to be concentrations of vinyl
chloride, not 1,1-DCE.  For simplicity, all of the models in the risk assessment were assumed
to apply to vinyl chloride exactly as they apply to 1,1-DCE.  The only difference between the
two risk assessments occurs in the distributions of carcinogenic potency values for the two
compounds.  Vinyl chloride is a much more potent carcinogen than 1,1-DCE and there is less
uncertainty in the results of bioassays on vinyl chloride than there is in bioassays on 1,1-
DCE.

Figure 20 through Figure 26 below correspond to the similar figures in Section 7 for 1,1-DCE,
showing the effect of the various uncertainties taken singly.  A comparison of Figure 22 and
Figure 13 reveals the most significant difference between the data for the two compounds. 
The contribution of uncertainty in the bioassay analysis for vinyl chloride to the uncertainty in
the final distribution of risks for a random individual is small relative to other uncertainties
such as those in  personal characteristics and or in the extrapolation from animals to
humans.  For 1,1-DCE, uncertainty in the bioassay analysis is a larger contributor to the total
uncertainty.

The risk estimates obtained are:  median 1.4 × 10 , mean 8.8 × 10 , 95  percentile–6     –5  th

2.0 × 10 , and a point estimate 4.1 × 10 , which is at the 97.0  percentile of the distribution.–4        –4      th
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Figure 20 Vinyl chloride: distribution of incremental
carcinogenic risk: incorporating all
uncertainties.
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Figure 21 Vinyl chloride: distribution of risk: uncertainty in
carcinogenic potency values only.
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Figure 22 Vinyl chloride: distribution of risk: uncertainty in
bioassay analysis only.
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Figure 23 Vinyl chloride: distribution of risk: uncertainty in
water concentrations only.
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Figure 24 Vinyl chloride: distribution of risk: uncertainty in
individual characteristics only.
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Figure 25 Vinyl chloride: distribution of risk: uncertainty in
fate, transport, and exposure model
parameters only.
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Figure 26 Vinyl chloride: distribution of risk: uncertainty in
fate, transport, and exposure model
parameters only.
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(17)

10 Inhalation risks to 1,1-DCE workers

The methodology described in Section 7 was repeated to evaluate a very simple case study
of risks to workers exposed to 1,1-DCE through the inhalation pathway, to illustrate what
might happen at higher exposures.  This case study was designed solely to show the type of
distribution obtained at higher exposures, so it has been highly simplified.

Since only the inhalation pathway was evaluated, only three distributions were needed for
the Monte Carlo risk assessment — exposure, the inhalation unit risk of 1,1-DCE, and the
length of exposure.  The inhalation unit risk distribution was obtained previously (Section
6.2.2), and the duration of exposure was fixed at 40 years.

Risks associated with the inhalation of 1,1-DCE by workers were estimated using (the model
is the same as that used for the general population):

where the terms are:

R incremental carcinogenic risk,carc

C average workplace concentration of 1,1-DCE in air (µg/m ),air
3

f fraction of the day spent in the workplace (1/3),d

f fraction of the week spent in the workplace (5/7),w

f fraction of lifetime spent working with 1,1-DCE (4/7), andl

U unit risk for 1,1-DCE (m /µg).3

The fractions that appear in Equation (17) correspond to an 8 hour workday with 5
days/week spent at the workplace (corresponding to approximately 2087 hours per year —
vacations have been omitted, but so has overtime).  It was assumed that a worker will work
with 1,1-DCE for 40 years out of a 70 year lifetime, a conservative estimate of the length of
time that someone might work at one location.  The average worker would probably spend
considerably less than 40 years working in a situation involving exposure to 1,1-DCE.
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Figure 27 Lognormal distribution of 1,1-DCE concentrations in the workplace

10.1 Concentrations of 1,1-DCE in workplace air

The distribution of average 1,1-DCE concentrations in workplace air was assumed to be
lognormal, with median 0.74 ppm, mean 0.89 ppm (corresponding to a geometric standard
deviation of exp(0.6)), so that the majority of workers were assumed to be exposed to
concentrations less than OSHA's limit of 1 ppm for an 8 hour time weighted average.  For the
point estimate an air concentration of 1 ppm is assumed, corresponding to the OSHA limit for
workplace concentrations.  The distribution of 1,1-DCE concentrations used in the case study
is illustrated in Figure 27.
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Figure 28 Distribution of incremental carcinogenic risks for workers

10.2 Incremental carcinogenic risks

Figure 28 is a graph showing the distribution of incremental carcinogenic risks obtained in
this case study.  The median estimate of risk is 1.4 × 10 , the mean is 3.6 × 10 , and the–8       –3

95  percentile of the distribution is 8.4 × 10 .  Assuming a workplace air concentration of 1th        –3

ppm, a duration of exposure of 40 years, and a unit risk corresponding to the EPA value
(5.0 × 10  m /µg), the point estimate of incremental carcinogenic risk for these workers is–5 3

2.7 × 10 , at the 97.7  percentile.–2    th
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11 Comparisons, implications, and comments

11.1 Results and their implications

Some comparisons from the case studies may be illuminating.  In Table 11, we summarize
the median, mean, 95  percentile, and point estimates of individual carcinogenic risk fromth

1,1-DCE and vinyl chloride for the four case studies examined.

Table 11 Statistics of the distributions of risk estimates from the case studies 

Case Median Mean 95 Current
(50 percentile EPA-styleth

percentile) Point-

th

estimate
(reasonably
maximum
exposure)

1,1-DCE, standard 1.2 × 10  1.6 × 10  1.7 × 10  1.3 × 10  –9 –6 –6 –4

1,1-DCE, non-standard –2.0 × 10  –9.5 × 10  1.7 × 10  —–9 –6 –6

Vinyl chloride (standard) 1.4 × 10  8.8 × 10  2.0 × 10  4.1 × 10  –6 –5 –4 –4

1,1-DCE workers 1.4 × 10  3.6 × 10  8.4 × 10  2.7 × 10  –8 –3 –3 –2

For the primary case study — that involving a probabilistic assessment of risk from 1,1-DCE
in contaminated water at a Superfund site — the difference between the 95  percentileth

estimate of risk and the point estimate may make all the difference in the world.  The point
estimate of risk — 1.3 × 10  — would be taken (and indeed was taken, in the actual case–4

upon which our study was based) to be a clear, risk-based signal for groundwater
remediation; and that remediation might well cost on the order of $10,000,000 –
$20,000,000.  It would not matter that this point estimate is at the 99.8  percentile of theth

distribution of risk estimates — indeed, one would not even know its percentile rank using
only point-estimate techniques.  On the other hand, the 95  percentile estimate of risk  —th

shown here to be only slightly more than one-in-one million — might be taken as risk-based
grounds for not undertaking remediation; or at least for choosing a "remedy" that would be
far less expensive and/or extensive.

This point requires some elaboration.  Risk management decisions, as they are called,
change with time, across regions, and among decision-makers.  At some times and in some
regions, individual, upper-bound risk estimates of greater than 10  suffice for demanding–6

remediation at Superfund sites; but for other situations, remediation is only required if risk
estimates exceed 10 .  Several states now use the 10  risk level as their "bright line" for–5        –5

decision-making; and some of those had preferred the 10  benchmark until it became clear–6

how many sites/situations violated such a guideline, at which point their expectations
relaxed.  The 10  benchmark has not been shunned entirely, though; so that even doing risk–6

assessment "right" — if that is what the sort of Monte Carlo approach we have taken here is



72

taken to be — those responsible may still have to spend the same sort of money on
remediation and so on as at present.

The "standard" and "non-standard" analyses of 1,1-DCE (which differ only in the model used
to interpolate the dose-response data from the rodent bioassay) show substantial — indeed,
diametric — differences in the median and mean estimates.  These two "best estimates" of
risk in the "non-standard" analysis have a negative sign, indicating that exposure to 1,1-DCE
at the low levels postulated might confer a net benefit!  Clearly the definition of what statistic
is the "best" estimator has to be carefully made to match the desired end point, since
different choices of statistic may lead to diametrically opposed choices for policy.

In either the "standard" or "non-standard" analyses, the median estimates of risk (for
carcinogenesis in the standard case, and for anti-carcinogenesis in the non-standard case)
are extremely small — that is, quite close to zero.  Moreover, the upper end of the
uncertainty distribution is not substantially changed by the change in analysis method.  The
95  percentile of the distribution of risk estimates for both the standard and the non-standardth

approaches are identical for all practical purposes.

Such identical results for the high-end estimate might seem peculiar.  After all, the standard
approach assumes that all doses of 1,1-DCE may be carcinogenic, even though there is no
evidence of carcinogenicity between the zero-dose and low-dose groups.  In contrast, the
non-standard approach makes no such assumption, and indeed allows the dose-response
line in this region — the negative slope of which indicates anti-carcinogenesis — to be as
negative as the underlying uncertainty suggests.  These different approaches do indeed give
vastly different sorts of risk estimate distributions at the low and mid-ranges (compare Figure
11 with Figure 17); but if one wishes to be 95% certain that a random individual's risk is a
certain value or lower, then that value turns out to be the same for both approaches.  

This point is lost on many critics of EPA-style risk assessment.  Many such critics, believing
that standard, regulatory risk assessments are heavily biased toward over-estimating the
"real" risk, suppose that a full and honest incorporation of uncertainty and variability will
vastly lower estimates of risk, even for those at the high end.  Forgotten in this notion is that
uncertainties and variabilities run in both directions.  A compound may indeed be much less
carcinogenic than the EPA-style point-estimate of potency suggests, for example; but it may
also be more carcinogenic than EPA's point estimate allows.  We return to this theme in the
subsection following.



      Even the Monte Carlo distributions given here do not capture all of the11

differences between the carcinogenic potencies of vinyl chloride and 1,1-DCE. 
Vinyl chloride is classified as a known human carcinogen, whereas 1,1-DCE is
classified as a possible human carcinogen.  The qualitative distinction, while
important, is not reflected in the width of the distribution of risk estimates because
both potency estimates derive from rodent bioassay data so have the same
uncertainty in interspecies extrapolation.  This uncertainty is the same despite the
fact that most analysts feel far more confident that vinyl chloride is a human
carcinogen than that 1,1-DCE is a human carcinogen.  One could remove the
uncertainty in interspecies extrapolation for vinyl chloride by basing the potency
estimate on epidemiologic data.  One would then have to introduce, however, the
uncertainty in the estimates of human exposure in the epidemiologic studies,
which may be as large or larger than the uncertainty in interspecies extrapolation.
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Comparison of the standard analyses of 1,1-DCE and vinyl chloride is also illuminating.  The
only differences between these two case studies are the carcinogenic potency estimates for
the two substances — all other details are assumed to be identical.  The standard EPA point
estimate of carcinogenic potency for vinyl chloride is approximately a factor of three higher
than that for 1,1-DCE, and the unit risk estimate is only 60% higher.  These differences
account for the relatively small factor of three difference in the point estimates of risk.

The proximity of the point estimates for risks from equal exposures to 1,1-DCE and vinyl
chloride signals the erroneous nature of the point estimate approach.  Vinyl chloride is a
clear and strong carcinogen in both rodents and people; 1,1-DCE is a marginal rodent
carcinogen at best.  Surely the risks from the two compounds should differ by more than a
factor of three.  The distributions provided by the Monte Carlo approach do indeed display a
much greater disparity between the standard 1,1-DCE and vinyl chloride cases.11

11.2 Implications of, and general comments on, the proposed risk assessment
reforms

Working through these case studies, we have developed certain opinions about the
proposed risk assessment reforms.  As we have made clear, we wonder about the new
emphasis on best estimate(s) of risk, as opposed to the old (and current) emphasis on an
upper-bound estimate of risk.  Best estimate, per the bills, means a "central estimate of risk,"
arrived at using the "most plausible and realistic assumptions . . . given current scientific
information."  We suppose that this emphasis, and the specific language, is an expression of
the belief that current risk assessments inappropriately concatenate many upper-bound
factors — so that the product is a highly implausible estimate of risk that applies to few or no
real people exposed in the real world.  We know of at least three groups who often share this
view.
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First are the regulated communities — whether private companies, municipalities, or others
— who bear many of the costs of complying with certain regulations that may do little to
reduce actual risk to the public health.  The second is the research toxicology community, at
least some members of which wonder why information they generate regarding mechanisms
of carcinogenesis, for example, is largely ignored in favor of default assumptions such as
that essentially all chemical carcinogens are nearly equally potent at all non-zero levels of
exposure.  

The third group, perhaps less well known, are the local regulatory authorities.  Some of those
responsible, for example, for writing or re-writing permits for facilities express frustration at
U.S. EPA risk estimates for regulated chemicals.  The Agency explains that the risk
estimates are upper-bound values; and that the true value is likely to be lower, and may even
be zero.  But the local permit writer may not wish to know what the risk "might be," or "might
be less than;" he or she wants to know what the risk is, at least given current scientific
evidence and expert judgement.   

Some people therefore believe that a focus on a best estimate of risk would help.  Perhaps
those paying for compliance with regulations would feel (if not be) less burdened; perhaps
results from the laboratory would be translated into more chemical-specific inputs for risk
assessment; and perhaps permit writers would be better able to match permit conditions with
actual, or at least expected, risk reduction.

But there are two distinct problems that are not acknowledged by such people or in the
proposed legislation.  First, there is no single estimator of risk that should be used in all
situations, and the definition of the estimator is what is most important.  Second, no matter
what estimator of risk might be chosen, the estimate has to be compared with some standard
or another, and the choice of standard is also important.

It is plainly inadequate to perform a risk assessment such as the one we have performed (for
the risk to a randomly chosen individual), and then use a central tendency (e.g. the median
estimate) estimator, if the legislative requirement is, for example, to set a standard that
protects everybody with an adequate margin of safety.  What is required in such situation is
to analyze the legislative requirement (protection of everybody with a margin of safety), and
then to choose a suitable measure of risk — for example, an estimate of the risk to the most
exposed member of the population might be a suitable choice.  Given such a choice, one
could demand that the estimator for this most exposed member of the population be the
median for the uncertainty distribution of risk to that person (and then apply a safety factor of
some sort — to afford the "adequate margin").  However, many of the parameters going into
the evaluation of risk would certainly not be central tendency values, since the most exposed
person will be extreme in some ways.  Similar considerations apply in every other situation.

The second problem is the selection of the standard against which to compare.  Why perform
a risk assessment if not to compare the result to some standard?  The current standard is an
upper bound "risk estimate" of 10  to 10 , depending on the situation.  If one simply–4  –7

demands that the current upper bound estimate be replaced with a central tendency value,
what is to prevent the standard of comparison from changing to 10  or 10  or whatever?  If–8  –11
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one is going to change the rules of evaluation of risk estimates, one also has to take care to
accurately define the standards against which those estimates will be compared.

More useful might be new rules of thumb based on both central-tendency and 95  percentileth

estimates of risk, or on other properties of the distribution of risk.  Imagine two scenarios; air
pollutant � poses a central-tendency risk estimate of 1 in 100,000,000 and a 95  percentileth

risk estimate of 1 in 1,000; while air pollutant � poses a central-tendency risk of 1 in 10,000
and an upper-bound risk that is the same as for air pollutant �, 1 in 1,000.  The current
practice in risk management would be to regard both air pollutants as equally risky — equally
in need of reduction via regulation.  Perhaps the new approach would make air pollutant � a
much stronger candidate for regulation — because the "real" risk (per risk assessment
focussed on "best estimates") is 10,000 times greater for � than for �, even though, at the
upper-bound, each could be equally risky.

More fundamentally, credible efforts at risk assessment reform should recognize that the
notion of an entirely scientifically objective risk assessment is a mirage.  To the extent that
the authors of the reform legislation believe otherwise, we believe they have been misled.

Science is a method of observing the natural world and conducting tests of various
hypotheses about how the world operates.  Good science elicits a high degree of consensus
among those who analyze it exactly because of its objectivity, reproducibility, and
explanatory power.  

Of course, science contributes heavily to risk assessment:  it does so in such areas as
identifying physical relationships that govern the transport of underground pollutants to the
air, testing the ability of a chemical to cause cancer in laboratory animals, and measuring the
volume of air inhaled in a day by persons of different ages.  In each case, a scientific goal is
clearly specified and can be reached by measurement of the quantities or processes of
interest.

Unfortunately for those desiring certainty and consensus, risk assessment problems are
frequently unresolvable by purely scientific methods.  Only scientific questions can be
answered by scientific methods, and risk assessment problems are often largely or entirely
non-scientific.  Thus, the solutions (or resolutions) to risk assessment questions vary greatly
in the degrees to which they are rooted in scientific observations and deduction.  The critical
factors determining whether a risk assessment question can be satisfactorily answered using
only scientific tools include:  has careful science been done on this or similar problems in the
past?  If so, have scientists been able to observe this problem on a scale that is directly
useful for public policy?  Usually, the answers are "no."

A typical risk assessment problem is one like that examined in the case studies presented
here:  what are the chances that exposure to a certain amount of a chemical will cause
cancer in people?  Were a scientist assigned this problem, given no additional information
about the particular concerns of the questioner, and forced to answer it as "scientifically" as
possible, he would be limited in his work to one area of study:  epidemiology.  He would find
people exposed to the chemical at the proper level, and comparable people with no
exposure, monitor their health, and use statistics to evaluate the significance of any



      Of course, we are simplifying even here.  The soundness of the12

epidemiologic study itself is subject to many things: how well the exposures can
or have been quantified; how well exposures to other potentially harmful or
helpful substances have been accounted for; and so on.
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differences in cancer rates between the two groups.  In other words, he would look to actual
instances of the problem of interest.  Few inferences would be needed in applying the results
of exposure to one group of people to another.

Alas, epidemiology is like a low-powered telescope — it does not allow one to see very far. 
The scientist's unarguable, objective conclusion might be that the exposure of interest may,
at most, double one's rate of cancer, or may have no effect.  This sound scientific answer12

to the question posed may be useless for public policy, which might wish to discriminate very
small increases in cancer risk.

In order to produce results that are useful for policy, scientists must turn away from the most
relevant and objective information — that gained from deliberate or accidental human
exposure — towards other branches of science such as rodent toxicology.  The study of
carcinogenesis in laboratory animals is a science in its own right — but the demand that it be
applied to the human situation ipso facto introduces unscientific elements into the analysis. 
The less like the situation of interest are the phenomena that science has been able to
observe and test, the more inferences and assumptions must be made.  Many inferences are
chains of reasoning that have not been, or cannot be, adequately tested by scientific method.

Risk assessment problems of concern to legislators and regulators are rife with such
questions that science cannot answer.  Whether a novel chemical that causes cancer in one
strain of rat, but not in others or in mice, is able to cause cancer in humans is an issue
science can not answer at the present.  It is conceivable, however, that this question could
be answered in the future, either because accidental human exposure supplies the
response, or because the biochemistry and molecular biology of rodents and humans is
learned in such detail that the inferential gaps narrow to insignificance.  

Importantly, other elements of risk assessment problems will never be answerable by
scientific methods.  Such elements are future behaviors by persons, institutions, molecules,
the weather, and cannot be predicted in detail.  Past experience guides scientists in making
long-term predictions about average or typical behaviors, but is of less use in predicting
outcomes for particular individuals at particular points in time; indeed, there is no guarantee
that even past trends will continue.  

Limits to the knowable are inescapable.  As Ralph Gomory (1995) has written:

We are all taught what is known, but we rarely learn about what is not known,
and we almost never learn about the unknowable.  That bias can lead to
misconceptions about the world around us. . . . 
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[People do not] try to predict the automobile accidents they will be involved in. 
To know that we will be struck by a car next year, we would have to know, with
impossible accuracy, the particulars of the life of the driver, his habits, his
timing, his way of pressing the accelerator and so forth. . . . It is clear that all
these details are unknown, and we do not try very hard to learn about them
because we instinctively realize they are also unknowable. 

In distinguishing the known or the unknown from the unknowable, the level of
detail can be decisive.  The level of detail is what separates the delusion of the
gambler from the wealth of the casino owner.  The gambler attempts to predict
the individual and unpredictable spins of the roulette wheel; the owner
concerns himself with the quite predictable average outcome.

Risk assessment almost always depends upon details that are inherently unknowable. 
Accordingly, how could anyone suppose there is one way to do it right?

11.3 Implementation issues

Another issue of interest to us is the substantially increased complexity of risk assessment
performed per the proposed reforms.  First, it is a fairly complex undertaking to derive the
many distributions about model parameters that serve as inputs to these risk assessments. 
The task requires a great deal of research and some statistical expertise; although once
defined and derived, these distribution parameters could be made available to the risk
assessment community in ways similar to the publication of toxicity values in EPA's
Integrated Risk Information System (IRIS) and in its various guidance documents.  
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Second, a more-than-typical breadth and depth of expertise is needed to perform
probabilistic risk assessments.  The risk assessor must genuinely understand (as opposed to
merely use) the models (and perhaps be able to create some anew); and he or she must
combine distributions in valid manners.  In our experience, there are very few risk analysts
who can do this well, whether inside of EPA or elsewhere.

Third, even simple probabilistic risk assessments require considerable computational
complexity.  Although software exists to perform probabilistic assessments as add-ons to
spreadsheet programs that run on personal computers, our experience has been that these
programs become prohibitively slow when applied to assessments of any appreciable size. 
Our main case study, for example, involves only one chemical of concern, only one
contaminated medium, three exposure routes, and only one end-point — carcinogenic
response.  Existing software would require approximately one-half hour to calculate the
10,000 - 20,000 iterations necessary to adequately characterize the distribution of risks. 
Risk assessments of the usual size may require analysis of ten to fifty chemicals of concern,
three to five contaminated media, ten to twenty exposure routes, and at least two dose-
response distributions (carcinogenic and non-carcinogenic responses).  These combine
multiplicatively, so that commercially available software soon becomes prohibitively slow.

The implementation of some of the more complex distributions discussed in Appendix A is
also not straightforward in commercially available software.  Such distributions can be
approximated by tabular data, but we worry that certain important features may be lost.  As
an example, EPA published (EPA, 1989b) a table corresponding to the shower data shown in
Appendix A.3, but omitted the top 2% of households with average shower lengths of more
than 20 minutes.  If extreme values are of interest, then such extreme values must obviously
be incorporated into the input data.

To prepare such assessments, then, one must write one's own software.  We have done so
for this case; and in this case, our software conducts the 20,000 iterations in three minutes or
so (on a 486/66 PC compatible machine with all language debugging checks turned on).
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Appendix A: Random numbers and distributions

This appendix describes many of the distributions used in the case studies.  Section A.1
gives details of some of the standard distributions, while subsequent sections describe
specific distributions that build on the material of Section A.1.

A.1 Random number generation

The Monte Carlo technique strictly requires random numbers for its implementation.  For our
implementation, we used the standard computer technique of approximating this ideal with
pseudo-random numbers.  The basic generator is for the uniform distribution.  All the other
distributions are generated from the uniform distribution, so that given a uniform random
number generator, the other distributions are generated exactly (Devroye, 1986).

A.1.1 Standard uniform pseudo-random variate generation

The generator used is a linear congruential generator of the form:

where:

x is a sequence of 8 byte (64 bit) integers,n

A = 6,364,136,223,846,793,005 (hexadecimal 5851F42D4C957F2D }, and
B = 264

and all integer arithmetic is performed exactly.  The multiplier A is an "excellent" one that
passes the spectral test (Knuth, 1981).

A sequence of real values in the range [0,1) is obtained by multiplying the 8 byte (64 bit)
integer x  by 2 , and these real values are returned with full 64 bit precision by using the 80n

–64

bit extended precision real format of the INTEL  iAPX  coprocessors.  
® ®

The seeds used for each run may be chosen arbitrarily by hand or approximately randomly
from the system clock.  Four word (2 byte) values are obtained, and adjoined to form the 8-
byte seed.

During all calculations, intermediate real values are held with 64 bit precision, again using the
80 bit extended precision real data format.  Results are stored with the 52 bit precision of the
IEEE standard double precision real number, all conversions from higher precision being
performed by rounding.
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A.1.2 Arbitrary uniform random variates

Given a standard uniform random variate U, a random variate uniform on the range [a,b) is
obtained as:

A.1.3 Triangular distribution random variates

The triangular distribution is defined by a range (a,b) and a point p where the distribution has
its mode.  Given a standard uniform random variate U, a random variate T from such a
triangular distribution is obtained as:

A.1.4 Exponential random variates

Given a standard uniform random variate U, an exponential random variate E with density
function e /� is obtained as:–�x

A.1.5 Normal random variates

Given standard uniform variates U , U , two independent standard (mean zero, standard1  2

deviation 1) random normal variates are generated as:

Given a standard normal random variate N, a variate n from a normal distribution with mean
µ and standard deviation ) is generated as:
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A.1.6 Lognormal random variates

Given a standard normal random variate N, a lognormal variate with median exp(µ) and
geometric standard deviation ) is generated as:

A.1.7 Gamma random variates

A 
(a,b) random variate has density function:

In an obvious pseudo-code (where random  returns a standard uniform variate), the algorithm
for a gamma random variate is (Devroye, 1986):

c:=a-ln(4); �:=Sqrt(2*a-1); d:=a+ �;
if (a<1) then begin  { Johnk's generator }

repeat
y:=random ; z:=random ;1/a  1/(1-a)

until (y+z) � 1;
            return -ln(random)*y/(y+z);

end else begin   { Cheng's rejection algorithm GB }
repeat

u:=random; v:=random;
y:=ln(v/(1-v))/ �; x:=a*exp(y); z:=u*Sqr(v); r:=c+d*y-x;

until r � ln(z);
return b*x;

end

A.1.8 References for Section A.1

Knuth, D.E., 1981.  The art of computer programming, Vol. 2: Seminumerical Algorithms. 
Addison-Wesley Publishing Co., Reading, MA.

Devroye, L., 1986.  Non-uniform random variate generation.  Springer-Verlag, NY.
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(A.9)

(A.10)

(A.12)

(A.13)

A.2 Expected time of residence in U.S. housing

A.2.1 Analysis (Israeli and Nelson 1992)

Israeli and Nelson (1992) obtained data from the American Housing Surveys of 1985 and
1987 (U.S. Dept. of Commerce, 1985,1987) on the numbers of people who remained in their
houses after various periods (Table A.1 and Table A.2).

Let S(t) be the fraction of households found in a survey to have moved into their current
residences at least t years before the survey.  Assume that S is ergodic, with S(0) = 1, and
S(�) = 0, and let P = 1 - S be the probability for a household to have lived in its current
residence for less than t years.  Then the density function p(t) is given by:

and the average time T  for a household being in a current residence is:CR

provided tS(t) � 0 as t � �.

Now let M(t) be the probability that the total residence time for a household is less than t
years, and m(t) its corresponding density function.  Then the ergodic hypothesis implies that:

so that:

and the expected total residence time T is given by:

provided tR(t) � 0 as t � �.
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(A.14)

(A.15)

A.2.2 Numerical fitting to data

Israeli and Nelson (1992) used the data of Table A.1 and Table A.2 to fit the functional form:

with a , b  non-negative.  This functional form was chosen by examining the empirical valuesi  i

S  for S(t) obtained from the data, and noting that they resembled survival functions ine

mortality analysis.  This functional form was fitted by minimization of (S - S ) /S.  No reasone
2

was given for choosing 1/S as the weight function — it was simply baldly stated that this was
the weight function to be used.  In addition, when certain of the parameters would have been
selected to be zero by the minimization, they were constrained at positive value.

There are three problems with Israeli and Nelson's analysis.  First, the functional form (A.14)
is not very convenient for integration or generation of random variables.  Second, the fitting
procedure arbitrarily chose 1/S(t) as the weight function.  Third, Israeli and Nelson apparently
did not choose very stringent termination criteria for their optimization — the values they give
are distinctly different from the true optima.  There are very high correlations between the
values of the parameters when fitting data with this parameterization, so that very different
values of the parameters give almost identical results.

Choosing different weight functions for the optimization (e.g. 1/S , or minimizing2

(ln(S/S )) )gives substantially different values for many of the parameters, so different in facte
2

that the estimated mean time of residence T is changed more than the estimated standard
deviation of this value.  Thus the standard deviations given by Israeli and Nelson must be
treated with the utmost caution.

There does not seem to be any theoretical reason for choosing any particular weight
function.  The data could be considered a multinomial distribution, but the error terms turn
out to be much larger than would be expected.  For this analysis, a somewhat different
functional form was chosen for S:

where 0 is the cumulative standard normal function.  The minimization was of the sum of
squares of the logarithm of the ratio S/S , in order to minimize the relative deviations of S. e

The sum of squared relative errors obtained using this procedure are of (on average) slightly
smaller than those obtained using Israeli and Nelson's function (A.14) — it varies from
household type to household type.  The functional form (A.15) has the advantage that it, and
the required derivatives of it, are easy to generate using standard random number
generators.

Graphs of S(t) and relative residuals (S - S )/S  similar to those given by Israeli and Nelsone e

(1992) are given in Figure A.1 and Figure A.2 respectively.  The relative residuals are
smaller on average than those obtained by Israeli and Nelson, principally because their total
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sum of squares has been minimized for each fit (Israeli and Nelson's fitting procedure did not
do this).

With the functional form of equation (A.15), the fitted parameters for S(t) are given in Table
A.3.  Differentiating, and using equation (A.11), leads to:

where obviously the q , q , and q  may be expressed in terms of p , p , p , b , b , and c. 1  2   3       1  2  3  1  2

Table A.4 lists these new parameter combinations.  Evidently, M is easy to generate, since,
as indicated by equation (A.16), it is basically a linear combination of three exponentials.

Table A.1 Number of households (in thousands) in 1985 in residence for given
periods

Years at 0-1 1-6 6-11 11-16 16-26 26-36 36-46 46+
current
residence

Allhses 13762 28539 15729 9221 10800 6257 2563 1554

renters 10181 14407 3960 1645 1292 463 184 147

owners 3581 14132 11769 7576 9508 5794 2379 1407

farms 82 370 364 245 267 224 169 133

urban 11213 21797 11339 6472 8155 4649 1691 915

rural 2549 6743 4390 2749 2646 1608 872 639

ne-rgn 1993 5679 3373 2058 2608 1734 779 506

mw-rgn 3196 6986 4017 2283 2859 1654 684 464

s-rgn 5216 9717 5147 3206 3568 1957 793 460

w-rgn 3357 6157 3193 1674 1766 912 307 125
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Table A.2 Number of households (in thousands) in 1987 in residence for given
periods

Years at 0-3 3-8 8-13 13-18 18-28 28-38 38-48 48-0
current
residence

Allhses 33920 17436 12613 7907 9711 5720 2292 1289 

renters 20748 6462 2674 1212 997 369 162 101 

owners 13172 10973 9939 6695 8714 5352 2130 1188 

farms 254 263 273 230 245 228 132 115 

urban 26925 12750 8920 5446 7223 4208 1511 763 

rural 6995 4686 3693 2461 2488 1512 781 525 

ne-rgn 5715 3795 2677 1766 2369 1522 679 429 

mw-rgn 7717 4300 3226 1975 2510 1562 628 349 

s-rgn 12216 5849 4191 2795 3307 1791 721 401 

w-rgn 8273 3492 2519 1371 1525 845 263 110 

Table A.3 Parameters values for S(t)

Parameter p p p b b c1 2 3 1 2

Allhses 0.17644 0.37879 0.44477 0.867172 0.152536 0.044961

renters 0.721652 0.278348 0 0.414087 0.092416 0

owners 0.026999 0.319026 0.653975 0.837465 0.131792 0.045264

farms 0 0.174707 0.825293 0 0.198312 0.036499

urban 0.437141 0.002709 0.560151 0.387579 0 0.050599

rural 0.033778 0.521369 0.444853 1.749067 0.15848 0.040468

ne-rgn 0.057417 0.342395 0.600188 0.850485 0.217075 0.043474

mw-rgn 0.135745 0.371613 0.492642 0.925708 0.16766 0.044606

s-rgn 0.243396 0.440004 0.316601 0.784831 0.10414 0.045152

w-rgn 0.205905 0.414007 0.380088 0.993516 0.182416 0.050828
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Table A.4 Parameters values for R(t)

Parameter q b q b q c1 1 2 2 3

Allhses 0.674803 0.867172 0.254826 0.152536 0.07037 0.044961

renters 0.92074 0.414087 0.07926 0.092416 0 0

owners 0.256138 0.837465 0.476301 0.131792 0.26756 0.045264

farms 0 0 0.590423 0.198312 0.409577 0.036499

urban 0.882241 0.387579 0 0 0.117759 0.050599

rural 0.378544 1.749067 0.529421 0.15848 0.092035 0.040468

ne-rgn 0.339167 0.850485 0.516235 0.217075 0.144598 0.043474

mw-rgn 0.61149 0.925708 0.303189 0.16766 0.085321 0.044606

s-rgn 0.769477 0.784831 0.184578 0.10414 0.045945 0.045152

w-rgn 0.692271 0.993516 0.255567 0.182416 0.052163 0.050828 

A.2.3 Important caveats

�� The two housing surveys were in 1985 and 1987, so these results may be out of date.
�� The analysis requires an ergodic assumption.
�� There is no theoretical justification for the shape of the fitted curves.
�� We do not know the correct error structure for fitting parametric curves, so there is

some element of arbitrariness here.  This is emphasized by the finding that different
fitting methods give estimates of mean values that differ by more than the estimated
standard deviation of the estimated mean values.

A.2.4 References for Section A.2

Israeli, M., and C.B. Nelson, 1992.  Distribution and expected time of residence for U.S.
households.  Risk Analysis 12:65–72.

U.S. Department of Commerce, 1985. With the Bureau of the Census, and U.S. Department
of Housing and Urban Development.  American Housing Survey for the United States
1985, Current Housing Reports (H-150-85, 28–29, 1988).

U.S. Department of Commerce, 1987.  With the Bureau of the Census, and U.S. Department
of Housing and Urban Development.  American Housing Survey for the United States
1987, Current Housing Reports (H-150-87, 52–53, 1989).
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Figure A.1 Observed and fitted values for S(t)
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Figure A.2 Relative residuals for all groups
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A.3 Showers

A.3.1 Data and distributions

James and Knuiman (1987) have provided some histograms of estimated shower duration
and shower flow rates, based on measurements in 2550 homes in Western Australia.  The
measurements were of total water use in the homes, together with diaries of activities,
supplemented by accurate flow measurements over time for appliances in approximately 150
homes.  We have digitized the shower duration data with sufficiently high accuracy
(estimated total homes in the printed histogram 2494 to 2506, versus actual number 2500) to
ensure that the digitization uncertainty is much lower than multinomial variations to be
expected in subsamples from a total of 2500.  The results of this digitization are given in
Table A.5.

Table A.5 Observed shower durations

Shower Observed Shower Observed
duration number of duration number of
(mins) houses (mins) houses

0–1 5 10–11 135 

1–2 12 11–12 105 

2–3 61 12–13 56 

3–4 166 13–14 46 

4–5 318 14–15 32 

5–6 394 15–16 26 

6–7 372 16–17 13 

7–8 287 17–18 20 

8–9 239 18–19 15 

9–10 190 19–20 8 

20+ 50 

We found that the cumulative distribution M(t) of shower duration can be very accurately
represented by a linear combination of two functions:

where 0 is the standard cumulative normal function, and 
(A,x) is the incomplete gamma
function given by:
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A.3.2 Shower duration and results

We used equation (A.17) to estimate the fraction of houses within each of the observed
duration ranges (bins) in Table A.5.  The observed number of houses were assumed to be
binomial samples from the total number of 2550 houses included (this is negligibly different
from the actual multinomial distribution), so that the expected standard deviation of the
fraction in each bin could be estimated.  The difference between predicted and observed
frequencies, expressed as a number of expected standard deviations, was used as a
measure of deviation.  The sum of the squares of these deviations (approximately a 315

2

variate) was minimized to obtain the best fits.  A plot of the deviations at the best fit value of
the parameters appeared to be effectively a standard normal distribution, and the minimized
sum had the value 14.8, indicating that no fit could be expected to be better.

The best fit parameters obtained are shown in Table A.6, and a comparison with the
observed values is shown in Figure A.3.

Table A.6 Best fit parameter values

Parameter Value

A 8.616678 

B 67.32715 

C 1.259006 

a 0.91886 

b 7.916431 

f 0.061406 
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A.3.3 Number of showers per day

Data were not available describing the number of a times a person showers per day.  In the
absence of such data, the distribution was estimated to be a triangular distribution with
endpoints at 0.25 and 2 showers per day.  The peak of the distribution was assumed to be at
1 shower per day.

A.3.4 Important caveats

�� The data on shower duration are from a survey in Western Australia during 1981 to
1982.  The results may be out of date, and may be inapplicable in other areas (e.g. in
the U.S.).

�� There is no theoretical justification for the shapes of the distributions adopted.
�� In deriving the histograms of "data", James and Knuiman (1987) extrapolated from the

available measurements.  The reliability of these extrapolations is not known.
�� The distribution for the number of showers per day is not based on experimental data.
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Figure A.3 Comparison of observed and predicted fractions of houses

A.3.5 References for Section A.3

James, I.R., and M.W. Knuiman, 1987.  An application of Bayes methodology to the analysis
of diary records from a water use study.  J. Amer. Stat. Assoc. 82:705–711.
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A.4 U.S. Population, 1991

A.4.1 Total population versus age

The distribution by age of the total population varies with calendar year, but it is useful to
have such a distribution available to incorporate the major features.  Currently those major
features are (i) the Gompertz nature of the distribution at large ages, and (ii) the presence of
an appreciable baby-boom generation in middle age.

We use the data as given in U.S. Bureau of the Census (1993) for population in 1991 by
single years up to age 85, by 5 year intervals from 85 to 100, and the total at age greater
than 100.  The following functional form provides an adequate fit for the distribution:

where N(t) is the number of persons in the population per year of age, A, B, C, �, �, t  are0

the fitted parameter, and t is age in years.  Fitted values for these parameters are shown in
Table A.7.  Figure A.4 shows the agreement between data and fitted curve.

Table A.7 Parameters for the population
distribution

Parameter Value

A 8.183238 

B 0.004138 

� (per year) 0.071444 

t  (years) 45.02922 0

C 0.043491 

� (per year) 0.004953 

To obtain the values of Table A.7, the logarithm of N as given by equation (A.19) was fitted
by least squares to the logarithm of 1991 one-year age group population totals tabulated by
the U.S. Bureau of the Census (1993).  For ages 85 to 100, only five year age ranges were
available, so the sum of one-year values predicted by equation (A.19) were used, with the
difference (in logarithms) from the measured values weighted by 1/R5.  A similar approach
was taken for the total of all ages above 100 (the sum was carried out to age 120) with the
same weighting applied.



Observed Estimated Estimated

0 20 40 60 80 100 120
Age (1 year bins to 85, 5 year bins to 100, all above 100)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
Fr

ac
tio

n 
of

 p
op

ul
at

io
n 

in
 a

ge
 ra

ng
e 

bi
n

P

 � � % 	�

�

A–16

Figure A.4 Population distribution in 1991, observed and fitted

(A.20)

A.4.2 Male fraction of the population

It is sometimes necessary to know how the male fraction in the population varies with age. 
For 1991, data on this may be obtained from U.S. Bureau of the Census (1993).  A
reasonable estimate for the male fraction is given by:

where f  is the male fraction at age t (years), and a, b, c, t  are fitted parameters.  Them             1

parameter values are given in Table A.8, and the fit to the empirical values is shown in
Figure A.5.

The fit was obtained by minimizing the sum of squares of the logarithms of the ratio of values
given by equation (A.20) to the empirical values.
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Figure A.5 Male fraction of population, 1991

Table A.8 Parameters for male fraction of
population

Parameter Value

a 0.140646 

b 0.377303 

c 7.502904 

t  (years) 83.96292 1
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A.4.3 Important caveats

�� The population distribution strictly applies to 1991 only, and is only designed to
produce smoothed (over ages) estimates.  It is adequate for many risk assessment
purposes where only a rough idea of the population distribution is needed.

�� The fit to the population distribution is not very good for the changing population
distribution in the age range 0 to 20.

�� The male-to-female ratio also strictly applies to 1991 only.  It is probably adequate for
many risk assessment purpose, since it is unlikely to change substantially for some
time.

�� A better approach for estimating population age distributions would be to explicitly
incorporate Census Bureau population projections, to take account of projected birth
and death rates.  However, this was too complex to do in this context.

A.4.4 References for Section A.4

U.S. Bureau of the Census, 1993.  Statistical Abstract of the United States: 1993 (113th
edition).  Washington, DC.
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A.5 Body weight

A.5.1 Data

Body weight data were collected as part of the second National Health and Nutrition
Examination Survey, conducted from 1976 to 1980.  The distribution used in the risk
assessment is based on percentile data reported in Vital and Health Statistics (NCHS, 1987). 
Data are presented for each sex for the age groups of 6-11 months, each year until age 20,
— 18-24 years, and every ten years from age 25 until age 75.

A.5.2 Body weight as a function of age

Examination of the data for each age group shows that the body weights are approximately
lognormally distributed.  The mean (µ) and standard deviation ()) as functions of time were
parameterized using equations of the form:

where t is the age of the individual in years.

There is no theoretical justification for the selection of a model of this form.  This form was
chosen because it accurately fits the experimental data.  The power in the exponential of the
standard deviation fit ()) has been set to 4.  This value is a compromise between the best
value for males (the best fit is at an exponent of 7 or 8) and the value for females (the best fit
is 2).  The best values for the parameters in the two equations above are summarized in
Table A.9 below.  Figure A.6 and Figure A.7 below show the means and standard deviations
of the natural log transformed data and the best fit to the data for males.  Figure A.8 and
Figure A.9 show the same information for females.



Observed Predicted

0 10 20 30 40 50 60 70
Age (years)

0

10

20

30

40

50

60

70

80

90

Av
er

ag
e 

bo
dy

 w
ei

gh
t (

kg
)

A–20

Figure A.6 Average body weight for males as a function of
age
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Figure A.7 Standard deviation of the natural log transformed
body weight data for males
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Figure A.8 Average body weight data for females as a
function of age
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Figure A.9 Standard deviation of the natural log transformed
body weight data for females
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Table A.9 Best fit values for body weight parameterization

Parameter Males Females

a 4.06661e+00 3.90383e+00 0

a 1.37603e-02 1.06805e-02 1

a -1.49397e-04 -9.72316e-05 2

b -2.00685e+00 -1.97114e+00 

c 1.47094e-01 1.84877e-01 0

c -1.39216e-02 -2.04753e-02 1

c 9.77090e-04 1.59966e-03 2

A 1.63829e-01 2.03999e-01 

B -6.97297e-03 -2.12621e-02 0

B -2.75757e-02 -6.50109e-02 1

B 4.34040e-05 2.25515e-02 2

B 2.86364e-03 -3.00811e-03 3

B -5.31960e-04 1.89083e-04 4

B 2.83428e-05 -4.65941e-06 5

C 1.01888e-01 6.57724e-02 

A.5.3 References for Section A.5

National Center for Health Statistics (NCHS), M. F. Najjar and M. Rowland:  Anthropometric
Reference Data and Prevalence of Overweight, United States, 1976-80.  Vital and
Health Statistics, 1987.  Series 11, No. 238.  DHHS Pub. No. (PHS) 87-1688.  Public
Health Service, Washington.
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A.6 Water consumption, 1977-78

A.6.1 Data source

Water consumption estimates suitable for estimating distributions have been made by
Ershow and Cantor (1989), based on the 1977–1978 Nationwide Food Consumption Survey
(NFCS) of the U.S. Department of Agriculture.  The study design of the NFCS allowed a
weighting to obtain population estimates, and Ershow and Cantor provide such estimates for
mean and standard deviation for the parameters they estimate.  In addition, Ershow and
Cantor provide percentiles of the distribution of raw values in the survey data.  These
distributions allow some estimation of the shapes of the distributions, but they cannot be
used directly because the weighting factors have been omitted.

A.6.2 Tapwater intake per unit body weight

Ershow and Cantor (1989, Table 14) provide estimates for weighted mean and standard
deviation, and unweighted percentiles, for each sex and for age groups [0,0.5), [0.5–1),
[1–4), [4,7), [7,11), [11,15), [15,20), [20,45), [45,65), [65,75), [75+], of the U.S. population.  It
is mentioned in the text that the values and distributions for infants under the age of one may
be misleading, because of technical difficulties in evaluating the tapwater component of such
infants' intake.

Examination of the (unweighted) distributions indicates that they are practically
indistinguishable from lognormal in each age group (although the distribution for the whole
population is not lognormal).  However, we chose to use the given weighted means and SD
estimates (rather than the unweighted percentiles) as the basis for what follows, in order to
correctly obtain weighted population estimates.

We require a smooth interpolation function for the parameters of a lognormal variability
distribution for tapwater intake per unit body weight at each age.  The functional form chosen
was:

for both mean (µ) and standard deviation ()) of the logarithm of tapwater intake per unit body
weight (measured in g/kg-day), where A, B, C, D, �, and k are fitted constants, with k = 1 for
the standard deviation.  This form was chosen simply to give a good fit to the available data,
and to look sufficiently smooth.

The values of A, B, C, D, �, and k were obtained by a fitting procedure, using all the age
ranges above one-year.  First, the observed standard deviation (s) for each age range was
slightly modified to take account of the variation of the mean value of tapwater intake across
each age range included in the data.  The observed mean values (m) were assumed to apply
to the center of each age range involved (80 for the oldest group), and interpolated linearly
between those central ages to estimate values (m  and m ) at the lower and upper end pointsl  u

of each age range.  The corrected value s  was obtained as:c
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(A.24)

(A.25)

(A.26)

by assuming a uniform distribution of values for m within each age range.  For the highest
age range, the estimated correction was taken to be identical to that for the next lower age
group (since there was little variation with age at large ages).  This procedure resulted in
very small corrections to the s.

The observed estimate of arithmetic mean (m) and corrected standard deviation (s ) werec

fitted to the functional forms (A.22) for µ and ) by minimizing the weighted sums of squared
deviations:

where:

and the expected variances (approximate for s ) used as weights are given by:2

where n is the (unweighted) number of observations for the age range.

Results for the parameters A, B, C, D, �, and k are shown in Table A.10 for males, and Table
A.11 for females.  Comparison of these parametric fits with the original data are shown in
Figure A.10 and Figure A.11.
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Table A.10 Water consumption per unit body weight,
Males

Parameter µ )

A 2.978778 0.410696 

B 0.53693 0.218693 

C 0.327883 -0.02207 

D -0.03348 0.002701 

� 0.187475 0.087092 

k 0.91258 1

Table A.11 Water consumption per unit body weight,
Females

Parameter µ )

A 3.019445 0.289118 

B 0.610601 0.270106 

C 0.071572 0.006551 

D -0.01294 0.000456 

� 0.026765 0.043997 

k 1.441246 1

A.6.3 Important caveats for tapwater intake per unit body weight

�� There is no theoretical justification for the functional forms (A.22).  They merely
provide a reasonable fit to the data.

�� For ages less than one-year, the estimates obtained, while reasonable, bear no
relation to the measurements.  The measurements are themselves suspect in this age
range.

�� The data were obtained in 1977–1978.  Since then, the consumption of carbonated
soft drinks has increased by approximately 50%, from approximately 300
gram/person-day to 450 gram/person-day (based on estimates of deliveries to market
and resident population, U.S. Bureau of the Census, 1993).  Since total water intake is
unlikely to have changed much, most of this change has probably been in tapwater
intake.  Since the change amounts to around 2 g/kg-day for adults, or 10% of the total
tapwater intake, there could have been a significant change in mean tapwater intake.

�� The estimates obtained by Ershow and Cantor (1989) for components of the intake of
water do not agree very well with those obtained by evaluation of apparent market
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consumption (U.S. Bureau of the Census, 1993).  The differences are considerable for
soft drinks, beer and wine.  Such comparisons are difficult, however, because of
potentially different definitions.  The Census Bureau estimates for any given year have
themselves varied from year to year for no apparent reason.
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Figure A.10 Water consumption per unit bodyweight, arithmetic mean and
standard deviation, for males, as a function of age
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Figure A.11 Water consumption per unit bodyweight, arithmetic mean and
standard deviation, for females, as a function of age

A.6.4 Fraction of water consumed at home

No studies describing the fraction of water ingested from the domestic water supply were
available.  We assumed a uniform distribution of fractions ranging from 0.5 to 1.0 with a
central estimate of 0.75.  The value 1.0 is used for this fraction when calculating the best
estimate under U.S. EPA guidance.

A.6.5 References for Section A.6

Ershow, A.G., and K.P. Cantor, 1989.  Total water and tapwater intake in the United States:
population-based estimates of quantities and sources.  Life Sciences Research Office,
Federation of American Societies for Experimental Biology, MD 20814.  May 1989. 
Prepared under National Cancer Institute Order #263-MD-810264.

U.S. Bureau of the Census, 1993.  Statistical Abstract of the United States: 1993 (113th
edition).  Washington, DC.
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Figure A.12 Average remaining life expectancy as a function of age

A.7 Life expectancy

The life expectancy for an individual was estimated from the age of the individual based on a
fit to data in the Statistical Abstract of the United States:  1993 (U.S. Bureau of the Census,
1993).  A graph of average remaining life as a function of age is approximately linear until
age 50, at which point it can be more closely approximated by an exponential.  Life
expectancy for individuals in the risk assessment was calculated as:

where - is the age of the individual and T  is the remaining life expectancy for therem

individual.  The value of T in Equation (A.27) above is simply T  plus the original age of therem

individual.  Figure A.12 below is a plot of the life expectancy data and the equations above.
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A.8 Surface area

The surface areas used to calculate dermal exposures to 1,1-DCE while showering were the
50th percentile surface areas for males and females (Anderson et al., 1985).  Table A.1
below lists the surface areas for individuals as a function of age.

Table A.1 Surface area as a function of age

Age Age
(years) (years)

Surface Area (m ) Surface Area (m )2 2

Males Females Males Females

<1 0.465 0.436 10 1.18 1.17

1 0.532 0.505 11 1.23 1.30

2 0.603 0.579 12 1.34 1.40

3 0.664 0.649 13 1.47 1.48

4 0.731 0.706 14 1.61 1.55

5 0.793 0.779 15 1.70 1.57

6 0.866 0.843 16 1.76 1.60

7 0.936 0.917 17 1.80 1.63

8 1.00 1.00 18+ 1.94 1.69

9 1.07 1.06
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Appendix B: Obtaining distributions for carcinogenic potencies derived from
studies on laboratory animals

Carcinogenic potency estimates are generally based either on data from experiments in
laboratory animals, or on results from epidemiology.  The analyses of the different types of
data to obtain distributions are different for the two cases.  However, the underlying
philosophy (using likelihood methods) is similar, so similar that the results from both types of
data can be consistently combined if both are available.

This appendix starts by describing the current method for obtaining an estimate of
carcinogenic potency from a single experiment on one species/strain/sex of laboratory
animal.  The method is then extended to allow calculation of a probability distribution for the
carcinogenic potency in that laboratory animal; and modified slightly to make it self-
consistent.  In this modified form, the method may then be used to combine different
experiments on laboratory animals.

The results from laboratory animals are extrapolated to humans.  We describe the current
method for performing this extrapolation, and describe the empirical data available on such
inter-species extrapolation.  From the empirical data, we propose a probabilistic extrapolation
method that may be combined with the distributions obtained from animal experiments to
obtain a probabilistic estimate for the carcinogenic potency in humans.

It should be noted that all the methods described here make an assumption that the models
used for analysis of either animal data or epidemiology are correct, in the sense that they
correctly extrapolate the dose-response curve to unmeasured (and possibly unmeasurable)
regions (e.g. to low doses, or to greater age, and so forth).  More precisely, there are various
combinations of conditions under which the methods described in this Appendix would give
accurate results.  For example, if:

1 the standard multistage dose-response formula accurately represents the
dose-response curve for laboratory strains of mice and rats in the
experimentally measurable region (greater than about 10% response); and

2 a simple one-hit dose-response model accurately extrapolates from high doses
(or exposures), corresponding to epidemiologically measurable relative risks, to
extremely low doses (or exposures) in humans; and

3 the observed correlations between potency parameters (Sections B.6 and B.7)
are biologically meaningful, and not an accident of experimental designs; and

4 various other assumptions used in the analyses (e.g. that the results of animal
bioassays are binomial samples, that all the animals receive the same dose)
are correct;

then the methodology derived here would be accurate.  Other combinations of equally
implausible conditions may also suffice.  However, it has to be realized that there are some
currently unpredictable sources of uncertainty — the extrapolation to low doses being
perhaps the best example — that probably still dominate.  The uncertainties that are derived
using the methods to be described have to be considered incomplete; the true uncertainty is
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almost certainly larger in some respects.  However, the assumptions going into the selection
of models is generally held to be conservative, in the sense that the estimates of human
potency obtained from the model will be overestimates.  Thus, any uncertainties due to
selection of the wrong models are likely to be biased — the true potencies are likely to be
lower rather than higher.

B.1 The current approach

The method starts with the current approach, so this will be summarized (see Anderson et
al., 1983).  It is assumed that the dose-response relationship for tumor incidence at the end
of a lifetime bioassay can be represented by:

In this formula the terms are:

p(d) Lifetime probability of tumor at a lifetime average dose rate d, and
q 0 � j � m, the m + 1 parameters of the model.j

The end-of-life tumor data may be characterized by an array of values:

where r  of the n  animals in the dose group receiving dose d  are observed to have a tumor ati   i        i

the end of their lifetime, for i = 1,2,...k.  Here k is the total number of dose groups, and in the
standard method the value of m is chosen to be k – 1, so that there are the same number of
parameters as dose groups.  The method of fitting the parameters is maximum likelihood.  At
this point, the choice of type of tumor to be analyzed is not specified:  it is assumed that a
single such array of values can be selected for each bioassay. 

The parameters q  of this model are estimated by fitting the dose-response relationship to thej

results using maximum likelihood.  With all sorts of assumptions about the similarity of the
animals, their dosing, and their treatment, the observed number r  out of n  at dose rate di   i    i

may be taken to be a binomial sample with probability p(d ).  Then the likelihood for the set ofi 

results given in the scheme in (B.2) is given by:
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so that the loglikelihood is, apart from trivial constants that may be omitted:

where J should be considered a function of the parameters q .j

The value of the maximum J  of this function is obtained by maximizing with respect to all the0

parameters q , subject to the restriction q  � 0, and then a single value q * is derived byj      j        1

applying the asymptotic theory of maximum likelihood to obtain an approximate 95% upper
confidence limit on q .  Asymptotically the function f (q ) defined by:1       s

should be 3  distributed with one degree of freedom, where:2

J is the maximum value of the loglikelihood function, and0

J1(q ) is the value of the loglikelihood when re-maximized with parameters

number s held fixed at the value q .s

Equivalently, h = Rf should be normally distributed with zero mean and unit variance (the sign
of the square root is the same as the sign of the deviation of q  from its maximum likelihoods

value).

Specifically, q * is obtained as the larger solution of:1

where 3  is the (1-2�) point of the 3  distribution with one degree of freedom and2        2
1,1-2�

� = 0.05.  This q * is the basis for the values commonly known by some such term as the1

"carcinogenic potency slope factor," and published by EPA in IRIS or the HEAST (an extra
factor for interspecies extrapolation is applied to obtain the published values).  There are
several computer programs available to evaluate q * and similar estimators of potency (e.g.1

Crump, Howe, and Landingham, 1987; Crouch, 1992).
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B.2 A distribution from the current approach

The confidence limit on q  defined in Section B.1, equation (B.6), is applied with � = 0.05 to1

obtain the point estimate q * in the standard approach.  However, simply varying � and1

obtaining both solutions of equation (B.6) immediately gives a cumulative distribution for q ,1

and the differential distribution is straightforward to obtain by differentiation.  This cumulative
distribution may be expressed as:

where 0 is the cumulative standard normal function (B.6) and the sign of the square root is
chosen to be the same as the sign of the deviation of q  from its maximum likelihood value. 1

Such a definition of the cumulative distribution for q  is perhaps the closest approximation1

that can be obtained to the current approach.

An example of the distribution obtained by this approach may be seen in Figure B.1, based
on the results obtained in an experiment with acrylonitrile in the drinking water of Sprague-
Dawley rats summarized in Table B.1 (corresponding to Table 13-35A in EPA, 1983).  Both
cumulative and differential distributions are plotted, with scales on the left and right of the
figure respectively.
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Figure B.1 Cumulative and differential distribution for q  for rats (see Table B.1)1

(It should be noted that the differential distribution is continuous, although it may have kinks
in it where its derivative exhibits finite jumps.)



B–6

(multiple tumor types and sites, excluding mammary gland tumors in females)

Males Females

Average Number Number Average Number Number
dose with at dose with at
mg/kg-d tumor risk mg/kd-d tumor risk

0 4 80 0 3 80
3.42 18 47 4.36 24 48
8.53 36 48 10.76 37 48
21.18 45 48 24.97 45 48

Table B.1 End of life data for rats fed AN in their drinking water (Quast et al., 1980; as
cited in EPA, 1983)

While this procedure may be the closest possible to the current approach, it has substantial
disadvantages, some of which are associated with the arbitrariness of the current approach. 
The main disadvantages that we have identified are:

�� Fixing the number of parameters to include in the dose-response curve leads to
substantial variation of the distributions (and also the 95  percentile) with inclusion orth

exclusion of dose groups.  Such variations are due entirely to the arbitrary selection of
the maximum power in the dose-response curve to be one less than the number of
dose groups.

�� In many cases, the density function vanishes for the whole range of values below the
50  percentile (or some other percentile) with a delta function of strength 50% (orth

other value) at zero.  This is unreasonable.  What the data is indicating is indifference
to (equal likelihood for) any values less than the 50  percentile.th

�� With this definition for the density function, it is difficult to consistently add in other
experimental or epidemiological results in a way that is mathematically symmetrical
and that agrees with probability theory.

�� The density function can have some rather strange and unnecessary properties — for
example, square root singularities — that do not seem to be a reflection of any real
characteristics of the data.
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B.3 Using the likelihood function to obtain a distribution

The problems discussed in Section B.2 can be overcome simply and consistently by:

�� Adopting the likelihood principal — by treating the likelihood function as an empirical
distribution function.

�� Removing the unphysical restriction on the highest power allowed in the model.  Some
restriction is still necessary, but this should be based on a physical idea that the dose-
response curve cannot plausibly be expected to increase faster than, say, the 7th

power of dose.

The first suggestion may be philosophical anathema for some statisticians, but for the small
samples involved here is probably as good a procedure as the current approach, and is quite
practical.  It has the minor disadvantage that it requires a numerical integration to obtain
percentiles of the distribution, but the whole point of this method is the use of the complete
distribution.

The second suggestion removes the unphysical behavior of the distribution under addition or
removal of results at single doses.  It can be implemented in a straightforward fashion, since
it corresponds to the current approach with a large number of parameters allowed to be non-
zero.  Except in degenerate cases, the actual number of parameters that are non-zero is
limited to the number of dose-groups automatically, by the imposition of the positivity
constraints in equation (B.1), and the degenerate cases are taken care of by the
distributional approach (the density function is flat — i.e. the likelihood is constant — over the
regions of degeneracy).

B.4 Adding in extra information

There are at least two ways in which extra information may be incorporated into the analysis
described so far.  All that is involved is a modification of the likelihood function, since this
defines the distribution.

The first obvious modification is to add in some probability for a chemical to not be a
carcinogen at all at low enough doses.  In the procedure described in Section B.2, a
(potentially high) probability for non-carcinogenicity arises automatically, since the cumulative
distribution necessarily starts at the (approximate) value p of the significance for the linear
term in the dose-response curve — i.e. there is a probability of p that the potency is zero,
and p can be large (it is quite typically 0.5).  In the modification of Section B.3, this possibility
of zero potency is entirely eliminated, since the likelihood function can only indicate
indifference between small values of potency (zero has no preferred role).  This approach
thus ignores the weight-of-evidence that may be available as to whether the chemical under
study is a carcinogen at all at low doses.  However, it is straightforward to augment the
distribution obtained in Section B.3 to include a probability of zero potency — all that is
mathematically required is to add a delta function of the required strength at the origin.  The
size of the probability for zero potency has to be determined by some other method, for
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example the best judgement of toxicologists; or perhaps, by the p-value for the dose-
response curve as a whole (i.e. a measure of the objective probability that the experiment is
demonstrating an increased tumor response at any dose).  This last approach will be used
here, using the smallest p-value derived in any experiment.

An alternative, and very general, method of modification of Section B.3 is to use a different
dose-response curve in the same type of analysis.  As an example, a dose-response curve
that incorporates any of the known pharmacokinetics of the chemical under test may be
substituted.  The principles of analysis remain identical, although the implementation of such
principles may become difficult.  We have not at this point incorporated any other than the
multi-stage formula as a dose-response curve.

B.5 Multiple animal experiments

The current approach for using the results of multiple experiments is ad hoc.  Typically, if
there are several experiments (e.g. for different sexes or different strains) giving somewhat
different estimates for q *, those values will be averaged together in some way (typically by1

finding a weighted geometric mean) and the result used as the published estimate.  Such an
approach corresponds to an assumption that the different experiments are measuring the
same parameter (i.e. that q  is the same for the different sexes, strains, or whatever), with1

experimental and/or other errors, so that some form of averaging is appropriate.

The most direct extension of this to the approach described in Section B.3 is to make the
assumption that such different experiments are measuring the same parameter, and the
difference in parameter values obtained in the different experiments is simply due to the
binomial randomness of the experiments (i.e. the size of the experimental groups).  Then the
loglikelihood functions for the different experiments may simply be added to obtain the
loglikelihood function for the combination of experiments.

Alternatively, it may be thought that there is some additional difference between the
experiments — they are measuring the same parameter, but there is uncertainty in addition
to that built into the analysis of each experiment.  Then the correct procedure is to add the
loglikelihoods and add also the loglikelihood for the additional uncertainty, to obtain the
loglikelihood for the combined experiments.

B.6 Empirical observations of interspecies ratios (animal data only)

Various authors have examined the problem of interspecies comparisons.  The following
discussion subsumes the analyses of Crouch and Wilson (1979), Crouch (1983), Gaylor and
Chen (1986), Chen and Gaylor (1987) and Metzger et al. (1989), since all these analyses
used the NTP dataset, or the dataset published by Gold et al. (1984).

The summary data in the Gold et al. (1992) database (kindly supplied in computer readable
form by Lois Gold) were analyzed (this incorporates Gold et al., 1984, 1986, 1987, 1990). 
Equation (B.1) was applied to 4499 experiments on 1136 chemicals, and comparisons
between mice, rats and hamsters made.  Some results are shown in the following figures,
which show scatterplots of q * (the upper 95% confidence limit on q  in equation (B.1))1        1
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       All the figures shown have been computed with an extrapolation to a full1

lifetime corresponding to an (age)  power law added as a multiplier in the3

exponent in equation (B.1), rather than the (age)  power law used by Gold et al.2

(1992).  Only experiments that were
significant at p � 0.05 have been included — no conclusions are changed by
altering this inclusion criterion between p � 0.05 and p � 0.001.
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derived from experiments in different species, together with the distribution of the ratios of
values of q * for two species.   These plots show the empirical distributions plotted on a scale1

1

on which samples from a lognormal distribution should be approximately a straight line.  This
plot was obtained by ordering the samples in increasing size and then plotting (Cunnane,
1978):

versus the logarithm of the i  sample value, where:th

N is the total number samples, and
0 is the inverse cumulative normal function.–1

From these analyses, it is possible to derive statistics on these interspecies ratios, and to
reject the standard interspecies factor equal to the 1/3 power of body weight (similarly for a
proposed factor equal to the 1/4 power of body weight) — Figure B.8.  Summarizing the
results:

�� There is a very large variation from chemical to chemical in the ratio of carcinogenic
potencies, or potency slopes, between species,

�� The distribution of interspecies ratios appears to be approximately lognormal, 

�� The GSD (uncertainty factor) of this distribution is approximately 8.2 = exp(2.1) for all
comparisons, and 

�� The median (or any other parameter) of the distribution does not agree with any
simple allometric scaling law.
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B.7 Empirical observations of interspecies ratios (animal-human data)

Allen, Crump, Shipp et al. (Allen et al., 1987; Allen et al., 1988; Crump et al., 1989) examined
animal-human comparisons.  Figure B.9 and Figure B.10 show results from  their "Analysis
0," which is closest to standard method.  They used a "Risk-Related-Dose" (RRD) which is
equivalent (within a constant factor) to the inverse of q *.  On Figure B.9, most uncertainty1

estimates are very large — those shown as reaching the edges, top or bottom of this figure
extending to zero or infinity.

Examination of these figures indicates that we can write:

where the median interspecies factor is A = 1.2 ×/÷ 1.8  at 1 standard error (and so is not
significantly different from unity), and J is an uncertainty term, with mean zero and standard
deviation 2.4, implying an uncertainty factor of 11.  The data are too sparse to consider this a
good estimate of the standard deviation of the laboratory animal to human distribution, but it
is indistinguishable from between-species uncertainties found for laboratory animals.  The
median value A corresponds to rough equality for RRDs (and hence q *) between humans1

and animals with dosing on a per-unit-body weight basis.

B.8 Empirically based distribution for human potency

The results of Sections B.6 and B.7 may now be combined to give an empirical lognormal
distribution for animal to human extrapolation.  The data shown in section B.7 indicate that
the least biased estimate for the median of this extrapolation is approximately 1.2, with an
uncertainty of a factor of 1.8, when doses are measured on a per-unit-body weight basis
(and Section B.6 indicates that there is no simple allometric scaling law that can improve on
this estimate).  The data shown in Section B.6 indicate that there is also an additional
uncertainty of a factor of exp(2.1) = 8.2, while the data of Section B.7 agree with this. 
Combining the uncertainty of the median with the remaining uncertainty leads to a total
uncertainty of approximately a factor of exp(2.2).

Thus, to obtain a distribution for human potency requires first an estimate of carcinogenicity
in test animals, using the methods of sections B.3 through B.5, followed by a convolution with
the empirical interspecies distribution, which is lognormal with median of approximately 1.0
(the best estimate is 1.2, but we suggest the use of 1.0, since this is well within the error
estimate) and has a geometric standard deviation of a factor of exp(2.2) = 9.0.  In general,
the uncertainty in the interspecies extrapolation greatly dominates the uncertainty obtained in
sections B.3 through B.5 (which is essentially simply a measurement error); except that
section B.5 indicates how to add in additional information that may result in an appreciable
probability for a human potency of zero.
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Figure B.2 Scatterplot of q * in mice and rats1
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Figure B.3 Interspecies ratios of q * (Mouse/Rat)1
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Figure B.4 Scatterplot of q * in rats and hamsters1
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Figure B.5 Interspecies ratios of q * (Rat/Hamster)1
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Figure B.6 Scatterplot of q * for hamsters and mice1
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Figure B.7 Interspecies ratios of q * (Hamster/Mouse)1
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Figure B.8 Empirical estimates of geometric mean interspecies factors for q * (Error1

bars are ±2 SE)
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Figure B.9 Allen, Crump, Shipp, et al. base case
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Figure B.10 Distribution of uncertainty component of animal to human comparison
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