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ABSTRACT

Assessment of environmental condition is critical to wise management and policy
decisions.  However, for some concerns such as sustainability, it is difficult to assess
environmental condition because it involves disparate social objectives and an understanding of
complex ecological systems.  Here, a general framework is proposed to examine sustainability of
environmental resources in objective, measurable ways.  By using soil quality as an example,
sustainability research is taken beyond theory and into application.

Sustainability depends on the quality of resource endowment.  Endowment of a natural
resource can be modeled as an index of quality to assess the degree of sustainable management. 
This index, consisting of the most important identifying characteristics of the resource, is placed
into a dynamic model of production to determine how resource use affects three different
versions of sustainability.  The economic, social, and environmental impacts are identified for
each sustainability requirement, and the long-term path of resource quality is evaluated.

Soil quality was chosen as a natural resource because its importance is immediately
obvious and because there is a wealth of data compared to other resources.  Three general soil
types—stable, neutral, and susceptible—were selected.  The index of soil quality was used in a
corn production setting to address three questions:  (1) What are the impacts of different
definitions of sustainability on the economy and the environment?  (2) Do U.S. soil conservation
policies address sustainability objectives?  (3) How do substitution, reversibility, and uncertainty
affect optimal soil use?  

Results show that impacts, as well as the ability to meet sustainability goals, are highly
dependent on soil type and on how sustainability is defined.  In some cases, soil can be managed
the same under any definition, but, in other cases, different sustainability concepts are at odds. 
In general, the deeper and better the soil, the more obvious and consistent was the approach to
sustainability.  Lower quality soil types require more complex approaches.

The results of this study can be used to help determine which soils need to be protected,
identify tradeoffs between conservation and nitrate leaching as erosion occurs, show how risk
and uncertainty affect soil conservation decisions, and provide other information helpful to
policy makers dealing with soil management.  Additionally, the methods used here can be useful
to evaluate other, more complex natural resources such as forest health.  
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1.  INTRODUCTION

Society’s ability to produce goods depends on the availability and quality of inputs.  Inputs

may be natural, and either renewable or nonrenewable.  They may also be unnatural, or

reproducible human made inputs, such as labor, technology, and physical capital.  For a long time

these delineations were unimportant.  The rise of the popular sustainability movement has,

however, given impetus to questions of where inputs come from and which resources are

affected.  Disregard for sustainability may reduce long-term economic productivity and

encourage environmental and ecological losses.  Sustainability of the production process requires

that inputs from natural resources be given equal consideration to outputs or consumption

because resources provide more services to society than simply producing goods.  

Assessing natural resource sustainability is not easy.  Ecosystems are complex compared to

the broad terms used to express societal goals, such as “clean water” and “sustainable”

environment.  Consequently, policy makers need complex information about ecosystems

expressed in simple terms.  Ecosystem assessment is the process of interpreting and evaluating

scientific data and information for the purpose of answering policy-relevant questions about

ecological resources.  Addressing policy concerns involves more than integration and aggregation

of facts.  Ecosystem assessment must help assign significance or value to the information

collected through appraisal and judgment.  It is desirable to keep value judgments to a minimum

and to make such judgments as objective and transparent as possible.  However, the intrusion of

values is unavoidable when condensing information about a complex system into a simple

measure.

1.1 PURPOSE

Sustainability suffers a similar predicament to many worthy causes.  A majority want to

achieve it, but few can agree upon the means.  Inputs are closely tied to each other and therefore

society’s use of its natural resource endowment may have profound impacts on its future. 

Sustainability advocates offer three general convictions.  One group asserts that the flows from
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natural capital should be transformed into human capital to maintain sustainability.  Another

contends that perpetuating a constant stock of natural capital is the only way to achieve

sustainability.  A third group specifies no formula for sustainability, asserting only that the end

result should provide equity across generations. 

The dilemma is not trivial.  Society has a fixed endowment of natural resources and the

consequences of miscalculating appropriate resource management could be severe. 

If management is too conservative, production in some sectors of the economy may needlessly

degenerate, and social welfare (standard of living) for future generations could decrease. 

If management overly exploits natural resources, basic environmental functions may go

unfulfilled, leaving irreversible damages for future generations.  

1.2 OBJECTIVES

The objective of this study is to evaluate the sustainability of a production process that uses

both renewable and nonrenewable inputs.  Sustainability will be examined by testing for the

existence of substitutability, reversibility and uncertainty criteria for three different definitions of

sustainability.  This study is applied to soil quality for producing crops.  And, although it is

applied to agriculture, it offers some general procedures that may be applied to other areas of

production (such as forests), where the loss of nonrenewable resources is of great concern.

To explore sustainability in an agricultural production setting, sustainability literature and

economic theory are coupled with an empirical model of production.  The objective may be met

by addressing the following three questions:  (1) What are the impacts of different definitions of

sustainability on the economy and the environment?  (2) Do U.S. soil conservation policies

address sustainability objectives?  (3) How do substitution, reversibility, and uncertainty affect

optimal soil management?
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2.  WHAT IS SUSTAINABILITY?

2.1 DEFINITION

Sustainability has been defined by many people in an almost equal number of ways

(Pezzey, 1992; Gold, 1994).  In effect, it is much easier to agree to be sustainable than it is to

define or achieve it (Helmers and Hoag, 1993; Schuh and Archibald, 1993).  Definitions range

from a precise sustain-me approach that focuses on one concern only, such as the health of rural

economies (DowElanco, 1994) or environmental conservation (U.S. Department of Agriculture,

1980), to an all-inclusive definition that addresses many considerations.  However, a review of

the economic and development literature shows that most definitions are centered around

economic, environmental and social welfare objectives (Cernea, 1993; Munasinghe, 1993; Rees,

1993). 

It is difficult to get people to agree about what is sustainable when objectives are valued so

differently.  Although there are many interpretations, the three well known definitions we have

adopted for this study are (1) sustainability as constant consumption, (2) sustainability as a

constant stock of natural resources, and (3) sustainability as intergenerational equity.  

2.1.1 Constant Consumption

Hartwick (1977, 1978) and Solow (1974a, 1974b) defined sustainability as the ability of

society to maintain a constant stock of consumption (or productivity).  This definition, referred to

as weak sustainability, addresses economic concerns.  Under weak sustainability, natural capital

(natural resources) and manmade capital (physical capital) may substitute for each other in the

production process.  Researchers (Dixit et al., 1980; Hartwick, 1977, 1978; Page, 1977; Solow,

1974a, 1991) have proven theoretically that total production and per capita consumption may be

maintained as long as profits from the use of natural resources are invested into physical capital.  

Weak sustainability does not require any particular endowment of capital or final goods to be

passed on to future generations.  Instead, it requires only that a general capacity to reproduce be

maintained.  
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2.1.2 Constant Stock of Natural Resources

A second and seemingly contradictory definition focuses on the means of sustainability by

placing great importance on the form in which productive capacity is transferred across

generations.  Pearce and Atkinson (1993, 1995), among others (Beckerman, 1992; Boulding,

1973; Daly, 1995; Jansson et al., 1994), contend that natural and manmade capital complement

each other in the production process.  In this relationship, known as strong sustainability, natural

capital that is not easily reproducible is the limiting factor of production and, therefore, must be

preserved for production to be sustainable.

Those who support strong sustainability defend their position by invoking three arguments.

First, uncertainty of the consequences of natural resource depletion should lead decision makers

to adopt a conservative position with regard to resource use.  As Pearce and Warford (1996) note,

this is comparable to the notion of safe minimum standards for plant and animal species

advocated by Bishop (1978) and discussed by Lesser and Zerbe (1993).  Second, natural resource

depletion is permanent and any permanent change should be approached very slowly and

carefully.  Third, not only do natural resources provide inputs for production, they also perform

multiple functions in the environment.  Resources should be preserved to ensure fulfillment of

these other functions.  

2.1.3 Intergenerational Equity

A third and more general definition, created by the World Commission on the Environment

and Development, contends that sustainability is a process “…of change in which the

exploitation of resources, the direction of investment, the orientation of technological

development and institutional change are made consistent with future as well as present needs”

(World Commission on Environment and Development, 1987, p. 13).  In other words,

sustainability requires that the needs of the present are met without compromising the ability of

future generations to meet their needs. 

This definition differs from the previous two in that it imposes neither substitutability nor

complementary relationships on natural and human inputs but requires some undefined measure

of intergenerational equity to be fulfilled.  This allows researchers the opportunity to test

different criteria for their contribution to sustainability.
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Support for both consumption and preservation of resources is reflected in governmental

policies and legislation.  Over the course of six decades, the U.S. Department of Agriculture has

promoted both soil conservation (set asides) and maximum production (plant fence row to fence

row) policies.  Similarly, logging has been restricted in some areas of the country and expanded

in other areas.  These examples suggest that society benefits from both the consumption and the

preservation of its natural resources.  But how much should be preserved?  How much may be

consumed?  Comparing the impacts of different resource management levels can help determine

where the optimal level of resource protection lies and what a genuine notion of sustainability

may be.

2.2 THREE COMMON THEMES

When resources are placed in a production setting, three criteria can be used to evaluate the

impacts of each definition of sustainability on resource management:  substitutability,

reversibility, and uncertainty.  The values placed on these criteria by society and by individuals

can determine the allocation of resources.  

2.2.1 Substitutability

Substitutability refers to the change in the use of one input as the price or the availability of

another input changes.  Ease of substitution is extremely relevant when one or more inputs to

production are becoming scarce, since sustainability will depend on how easily and effectively

other resources can substitute for the scarce input. 

Substitution among inputs can be broken into three general cases:  perfect substitution,

imperfect substitution, and complements.  Inputs are perfect substitutes when there is one input

that can completely replace another.  For example, if the current supply of coal was depleted,

other fuels or hydroelectric power could be used in its place to maintain energy production. 

Inputs are imperfect substitutes when one input can partially replace a scarce input; however,

some minimum amount of the scarce input is needed to maintain production.  A high percentage

of the human workforce may be replaced with machines, but one human will always be needed to

make sure the machinery is operating properly.  Inputs are complements when they can only be
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used in some fixed proportion to produce a given level of output.  Water is produced when two

parts of hydrogen mix with one part of oxygen.  Water will not form when any other ratio of

hydrogen to oxygen is combined. 

Theory addresses the substitutability of inputs on two general levels:  factor

interdependence and technical interdependence.  Factor interdependence measures how the

change in the price of one input will affect the demand for another input as output is held

constant.  Technical interdependence measures how the change of the price in one input will

affect the demand for another as both prices and output are allowed to change.  The differences,

though subtle, are important.  Under factor substitution, in order to maintain output at a given

level, as the use of one input goes up the use of its substitute goes down.  Because output is free

to change under technical substitution, both inputs are free to move either up or down.  Under

factor complementarity, for output to remain constant, the level of both inputs applied must

remain the same.  Yet under technical complementarity, inputs are free to change, provided they

both move in the same direction.  Factor and technical interdependence examples are illustrated

below.

Substitution/complementarity relationships are mapped on a single quadrant graph

(Figure 2-1) with the scarce/unique input on one axis and a potential substitute on the other axis. 

An isoquant measures the various combinations of the two inputs which produce some constant

level of output.  The optimal input mix is found where the isoquant is tangent to a line

representing the current price ratio (PR1) of the two inputs.  In all three panels in Figure 2-1, the

optimal input mix rests at point M.  

The ease of substitution is defined by the curvature of the isoquant.  The flatter the

isoquant, the greater the substitution possibilities.  Once the isoquant forms a 90  angle, it is no

longer possible to substitute away one input for another and maintain the given level of output. 

Suppose the ratio of prices changes from PR1 to PR2a.  In order to find the new optimal input mix

that produces the same level of output, a parallel shift is made from the new price ratio line to

another (from PR2a to PR2b) so that the parallel line is tangent to the isoquant.  The new point of

tangency (N) represents the new optimal input mix.  In Panel 1, the flat isoquant line suggests

that even if all coal is depleted, energy production will be maintained with hydroelectric power. 

In Panel 2, the slight curve in the isoquant suggests that machinery is an imperfect substitute 
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Figure 2-1.  Partial substitution/complementary relationships.

for human labor—some degree of human labor will be necessary to maintain production.  The

kink in the isoquant in Panel 3 illustrates that there is no other mix of hydrogen and oxygen that

can produce the given amount of water as effectively.

Any two inputs that are perfect factor substitutes will be perfect technical substitutes.  Any

two inputs that are perfect factor complements will be perfect technical complements.  However,

as illustrated in Figure 2-2, imperfect factor complements can become either technical substitutes

or technical complements.  

Assume that an automobile factory has the option to use both human labor and machinery

to produce cars.  In the first panel of Figure 2-2, as the ratio of human wages to machinery prices

changes from PR1 to PR2b, more automobiles can be produced by increasing the use of machinery

and decreasing the use of human labor (from Y0 to Y1).  These inputs, which are factor

substitutes, are also technical substitutes.  However, in other types of production (perhaps

another factory that uses both human and mechanical inputs), changes in output levels can only

be made by some fixed ratio of change in the level of inputs used.  In this case, two inputs that

were factor substitutes are technical compliments.
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Figure 2-2.  Degrees of technical interdependence.

2.2.2 Reversibility and Uncertainty

Reversibility and uncertainty are best explained together.  Reversibility pertains to the

ability of production to revert back to a former input mix once it has chosen others.  Uncertainty

refers to any unforeseen circumstances (both positive and negative) that may either follow as a

consequence of, or impact production.  Uncertainty arises with respect to all prices, input supply,

output supply, profits, and environmental impacts.  

As production depletes a natural resource it becomes more dependent on other inputs. 

If use of these replacement inputs later leads to unforeseen consequences, the producer may not

be able to readjust because it is costly, difficult and time consuming, or even impossible.  The

ability to reverse input mixes becomes extremely important for two reasons, especially when

circumstances resulting from uncertainty are negative.  First, in many cases these impacts do not

limit themselves to the particular production process but may affect other sectors of the economy

or the environment.  Second, these impacts may be irreversible.  The three scenarios that follow

illustrate degrees of reversibility and possible consequences. 
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Scenario 1 

Reversibility:  Easy

Consequences:  Minimal

A manufacturer may use plantation trees or synthetics to produce

office paper.  If the stock of mature plantation trees is depleted,

production can be maintained with synthetic substitutes.  If the

price of synthetics increases greatly in the future, the manufacturer

can harvest the newest crop of mature trees, and manage the

plantation so that it provides a continuous supply of wood for the

future.  It may take time, however, and be difficult to acquire an

equilibrium of trees, creating serious income or cook flow

problems.

Scenario 2

Reversibility:  Difficult

Consequences:  Moderate

  to Serious

A land manager controls a parcel that is 50% dry land and 50%

wetlands.  The wetlands are drained in order to have 100% dry

land for agricultural production.  Later the land manager finds that

the wetlands helped control water flow (important for production)

and provided habitat for rare birds.  Part or all of the natural

wetlands may be restored, but it may take time, effort and expense. 

Water flow and species habitat may be hampered until the wetland

is restored.  

Scenario 3

Reversibility:  Impossible

Consequences:  Severe

A tea maker uses exotic and domestic tea leaves to produce a

flavorful tea.  The exotic leaf is necessary to production because it

alone can produce the special taste.  Other manufactures use this

leaf in other production processes and native insects depend on the

leaf as a vital food source.  As the exotic leaf is consumed,

production remains relatively unaffected.  When the plant

becomes more scarce, however, production drops until it reaches

zero as the leaf is completely depleted.  Multiple production

processes have been slowed or halted, and two natural resources

(the exotic leaf and the insect species) have been lost forever. 

The process of irreversibility is illustrated in Figure 2-3.  Again, the isoquant represents all

the various combinations of two inputs which can be used to generate the same specified level of
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Figure 2-3.  Illustrating irreversibility.

output.  Let this particular level correspond to the demand for the product in the market. 

Returning to the tea leaves example, when the exotic plant is plentiful (P), the tea manufacturer

has the option to (a) move away from domestic leaves and use more exotic, or (b) move away

from the exotic and use more domestic, in response to availability and price of the two types of

leaves.  However, as supplies of the exotic plant become scarce (S), the manufacturer will be

forced to move the input mix further down the curve in the (b) direction.  Graphically, the

isoquant has been truncated, as shown in Panel II.  Although in theory the isoquant still looks the

same, the loss of the exotic plant has reduced the manufacturer’s real set of possible input

combinations to exclude the upper portion of the isoquant.  At some point, as the supply of the

exotic plant falls below its critical level (Sc), the plant can no longer reproduce itself.  Output

levels will drop with the loss of the plant, since there simply is not enough input to produce the

desired output.  Ultimately, the plant is extinct and production no longer possible.  

When input mixes dependent on substitutes for natural resources lead to unforeseen

negative consequences, it is likely that the magnitude of the negative impact will be much larger

for society than it will be for the individual producer.  Profits for a tea maker may decline, if the

quality of tea is reduced by the loss of the exotic plant.  However, two natural resources—a plant

and an insect species—have been completely destroyed.  Reversing societal decisions can be
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Appropriate Input Substitution for Scarce Resources

Rule 1: A scarce input may be partially (completely) depleted when an imperfect (perfect) substitute
exists that imposes little or no negative externality (i.e., negative economic, environmental
or social impacts). 

Consequence: Output may be maintained or increased, as shown in the cases of energy and
automobile production.

Rule 2: Resource conservation may be needed if an input’s contribution is unique to a production,
ecological or valuation process and not easily substitutable.

Consequence: If the resource is regenerative, production can be maintained at a level that
requires the use of a resource that is less than or equal to its regenerative
rate.  If the resource is finite, then production levels must decrease in order
to preserve the resource.

slow or impossible (it might take a lawsuit to restrict the harvesting of the exotic plants— during

this time the plants could become extinct).  Therefore, it is also likely that the risk that society

attaches to depleting a natural resource will be higher than that for an individual.  Individuals will

be more likely to deplete a natural resource than society, and thus, when left to individuals, it is

likely that the resulting level of natural resource conservation will be suboptimal from society’s

point of view.

2.3 ASSESSING SUSTAINABILITY

There are many ways to consider whether the actions of society are sustainable.  Here, the

following question is asked:  How should society manage a unique resource stock to provide both

economic and environmental services?  To begin to answer this question, the following points

should be considered.

Society is endowed with a stock of a natural resource.

This resource provides economic and environmental services.

If the economic services of the resource are stressed, will it crash or can an equilibrium be

found where some environmental services are maintained?

What is the relationship between the stock of the resource and the economic and environmental

services it provides?
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What is a sustainable path for the economic and environmental services?

Case 1: The resource quality crashes and both the economic and environmental values are lost.

Case 2: All environmental values are preserved and no economic value gained.

Case 3: A sustainable combination of both economic and environmental services is found

based on the value of each.
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3.  A CASE STUDY OF SOIL CONSERVATION IN
THE UNITED STATES

3.1 BACKGROUND

Although many studies have discussed an assessment of the environment based on

sustainability criteria, few have been able to model real natural resources.  Consequently, these

studies usually are unable to provide empirical conclusions that support theories about

substitution, reversibility and uncertainty.  This study conducts a detailed empirical analysis of

one of the most impacted ecosystems in the country, soil on American farms.  Soil management

is a reasonable place to start when examining environmental assessment.  One reason is that soil

is the most studied environmental stock in the world.  Examined first for its part in promoting

crop production (Hilgard, 1892; Karlen et al., 1997; Olsen, 1943; Walker and Young, 1986), data

and analyses now also exist to explain the role of soil in food quality and safety and ecosystem

management (Johnson et al., 1992; Kennedy and Papendick, 1995; National Research Council,

1993; Parr et al., 1992; Warkentin, 1995).  Results from these studies illustrate other reasons why

environmental assessment may begin with the soil.

Soil has an important impact on the environment.  For example, according to the National

Research Council, erosion from agriculture is responsible for over half of all surface water

pollution (National Research Council, 1993).  Soil is now recognized for its positive impact on

many functions of the ecosystem, such as nutrient recycling, rainfall partitioning and buffering. 

However, when it leaves the farm, soil is also responsible for negative impacts that affect water

quality, air quality and wildlife habitat. 

For over a half century, the U.S. Government and farmers have spent billions of dollars for soil

conservation on croplands in an effort to reduce soil erosion and reduce impacts on wildlife

and water (U.S. Department of Agriculture, 1994).

Because soil quality is related food production, it can significantly impact human life.  

There are two further reasons which make soil an appropriate area of focus.  First, recent

research in soil science has produced a list of measurable soil characteristics that can be used to

describe the quality (stock) of a particular soil (Bowman et al., 1989; Doran et al., 1996; Kiniry
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et al., 1983; Larson and Pierce, 1994; Pierce et al., 1983).  This creates some general consensus

about the assessment endpoint of soil quality.  Second, data for soil are more abundant in the

U.S. than data for any other natural resource.  There are extensive national homogenous

databases (Soils-5, National Resource Inventories) with soil variables for polygons as small as a

few acres.  In addition, a team at the USDA Blacklands Research Center in Temple, Texas,

supports the most extensive soil management database available to date.  Together, these data

can be used in simulation models to examine the impacts of the multiple objectives of

sustainability on resource assessment.  Policies or management that maintains soils, and those

that maintain other objectives such as economic returns, can be compared.  Using biophysical

models of soil productivity, potential impacts can be observed before they actually happen. 

The existing soils, sociology, development, ecology and economic literature was surveyed

for two purposes.  The first was to determine what, if any, related work has been undertaken. 

This included a review of the many notions of sustainability and the criteria used to judge

sustainability.  The second purpose was to gather theories that would help formulate theoretical

underpinnings for resource management.

A review of the literature showed that many studies have acknowledged the need for an

extensive study of sustainability, but none have yet undertaken an analysis of multiple concepts

and criteria of sustainability via an expansive resource data set.  Perhaps this is because no single

discipline possesses all the theoretical and empirical tools needed to attempt a project of this

proportion.  By combining sustainability and evaluation criteria from the social and ecologic

literature with soil quality, degradation, and regeneration relationships adopted from the

agronomy and soil science fields, the following proposal was made:  for soil, sustainable resource

management will be determined by the availability of soil and substitute inputs subject to the

ease of substitution and the risks associated with irreversibility and uncertainty.

This postulation is tested by developing an index of soil quality and applying it in a

dynamic model of production.  



1Parent material is defined as the “unconsolidated and more or less chemically weathered mineral material
from which soils may be synthesized,” (Buckman and Brady, 1960).  These materials develop from igneous,
sedimentary and metamorphic rocks. 

3-3

3.2 CONCEPTUAL FRAMEWORK

3.2.1 Introduction to Soil Quality

Soil is a dynamic, heterogeneous, living system of micro-organisms, organic matter, water,

gases and mineral particles.  Each system, comprised of surface and subsurface layers, or

horizons, is formed from long term interactions of parent materials,1 weathering and biological

processes.  The resulting combination is called a soil series, of which there are over 17,000

classified in the United States to date (Natural Resources Conservation Service, 1995).

The particular combination of a soil’s many chemical, biological and physical properties

determines its ability to function.  The definition of soil quality proposed by the Soil Science

Society of America encompasses the multiple functions of the soil.  “[Soil quality] is the capacity

of a specific kind of soil to function within natural or managed ecosystem boundaries, to sustain

plant and animal productivity, maintain or enhance water and air quality and support human

health and habitation” (Karlen et al., 1997, p. 6).  

Soils acquired their particular characteristics through years of formation, and may still be

modified by natural processes (primarily erosion, yet also temperature and water content) and

human activities (mixing or erosion) today.  Changes in these soil properties can alter the soil’s

ability to function and, therefore, could have implications for sustainability.  

3.2.2 Soil Quality Assessment 

Assessing soil quality is often compared to assessing human health (Larson and Pierce,

1991; Doran and Parkin, 1994; Acton and Gregorich, 1995).  During a medical exam, key

indicators such as temperature, heart rate, blood pressure, height and weight are measured that

together make a general account of health.  If these measurements are within accepted levels, the

individual is assumed to be functioning normally.  If these measurements are outside of an

acceptable range, further tests can be conducted to determine the cause for the irregularity and

perhaps prescribe a healing treatment.  Similarly, if there exists a set of basic measurable soil

indicators, there would be a means of assessing soil health.  If the indicators are within an



2See National Research Council (1993), Doran et al. (1994) and Karlen et al. (1997) for more details.
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acceptable range, the soil can be presumed to possess the capacity to carry out its functions. 

If these indicators are outside of the acceptable range, a careful look at other chemical, physical,

and biological soil properties may help identify the cause of the abnormality.  

The assessment endpoint (quality) may vary substantially for different purposes.  Using the

health analogy, someone well enough to walk may not be well enough to run a marathon. 

Consequently, any measure of soil quality must consider the intended use.  For soil, producing

native grasses may be easier to sustain than monocultural cropping.  Therefore, using a series of

indices to describe soil quality, each with its own purpose, is recommended.  Here, the focus is

on two such indices, the quality of soil for producing crops, and nitrate leaching.  No specific

index is developed for nitrate leaching, but rather the impact of quality for yield on leaching is

investigated to determine consistency between the two objectives. 

3.2.3 An Index of Soil Quality 

Recently, many researchers have recommended so called “complete” sets of soil quality

indicators.2  However, a model developed by Pierce et al. (1983) seems to be the best starting

point here.  The Pierce model is simple to understand, and not only does it specify both a set of

soil quality indicators and a standard to measure them against, but it can also be used to predict

the changes in soil quality (and possibly production) brought on by resource degradation.  In this

model, soil productivity (PI) was calculated as

PI SAWC SBD SPH WF
i

r

i i i i=
=
∑( * * * ),

1

(3-1)

where SAWC is the sufficiency of available water capacity, SBD is the sufficiency of bulk

density, SPH is the sufficiency of pH, WF is a weighting factor associated with each ith horizon,

and r is the number of 10-centimeter horizons in the rooting depth. 

In the Pierce et al. (1983) study, soil quality was calculated for three different soils types: 

(1) stable soil (soil quality does not change much with erosion), (2) neutral soil, and

(3) susceptible soil (soil quality may change greatly with erosion).  The researchers forecasted

potential impacts of erosion on soil quality and production for each soil type.  The analysis



3From this insight, it is evident that soil is a very unusual resource.  Erosion can remove some of the soil
base and negatively impact soil quality.  But in some cases, by partially depleting the soil resource base, soil quality
may improve and therefore better perform its multiple functions in its ecosystem.  See Popp (1997) for further
discussion of this particular case. 
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revealed four important insights about the relationship between erosion and soil productivity and

the relationship between soil productivity and production.  

(1) Erosion can change the levels of available water capacity, bulk density and pH in the soil and

thus change the productivity of a soil.  

(2) Susceptible soils will experience greater changes in soil quality than stable soils under

conditions of erosion.

(3) A positive (negative) change in soil productivity will likely have a positive (negative) effect

on agricultural production.

(4) The directional change in soil productivity depends on the relative quality of subsoils as

compared to the quality of the surface soils.3

3.2.4 Soil Quality in a Production Setting

In agricultural production, yield is a function of weather conditions, added inputs and soil

quality.  Added inputs include variables of production that the farmer can control, such as tillage

level and use of fertilizers and chemicals.  In addition to these inputs, there is an endowment of

soil quality.  Soil quality is a unique input in the production process because (1) unlike added

inputs, the farmer has no control over the initial endowment, and (2) as illustrated in Figure 3-1,

soil quality can contribute to the effectiveness of the added inputs and thereby have implications

for production levels and the mix of inputs a farmer will use in production. 

Assuming that a farmer chooses an optimal mix of two added inputs, fertilizer and water,

a maximum yield can be attained (Yf,w) as in Figure 3-1.  Including soil quality (sq) in the

production of the crop can have a positive impact on the plant growth.  The amount of impact

depends on how much soil quality affects how water and fertilizer contribute to plant growth. 

If soil quality acts independently of both water and fertilizer, productivity of those inputs does

not change.  If their productivity levels do not change, the farmer will continue to use those

inputs in the same way, regardless of what happens to soil quality.  For example, if soil quality 
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Figure 3-1.  Impacts of soil quality on production.

adds 50 units of productivity to the production process, output will be 50 units more for every

level of fertilizer and water used.

Sometimes soil quality and other inputs, such as water and fertilizer, are dependent on each

other (complements or imperfect substitutes).  For example, a reduction in soil quality due to

erosion might make fertilizer less productive.  If fertilizer is less productive than before, a farmer

might have to reduce fertilizer and, consequently, the output, as soil quality is diminished. 

An example of how productivity increases for fertilizer as soil quality is improved (or diminishes

as soil quality is reduced) is shown in the second panel of Figure 3-1.  Productivity gains are



4Only cases of deterioration are examined here.  Although all soils have a natural rate of regeneration, that
rate is slow enough for soil to be considered a nonrenewable resource for the time frame of this research.  

5Similarly, the erosion rate also will be determined, in part, by the slope of the land.  The process remains

the same; only the rate will differ.
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greater at higher levels of fertilizer input due to the multiplicative impacts of soil quality and

fertilizer working together.  

Soil quality could affect all added inputs in the production process.  As shown in the third

panel of Figure 3-1, output will increase the most for this example, because both water and

fertilizer are more productive.  The substitutability of soil quality for other inputs, therefore,

greatly impacts the importance of protecting a given endowment of soil.  Given that soil quality

improves output, farmers would rather have some endowment of soil quality than none at all. 

And, to the extent soil quality improves the productivity of other inputs, farmers would rather

have higher levels of soil quality than lower levels. 

3.2.5  Soil Quality Degradation—Natural Influences

All natural resources change over time through the normal operations of the natural

environment.4  Eutrophication (the aging process of a lake) provides a good example.  When a

lake is newly formed, there is little plant life.  But as time goes on, plant life multiplies and the

water slowly disappears until the lake no longer exists.  Tourists may walk around the lake on

paved trails to observe plant life in its natural habitat.  Just looking at the lake has no impact on

the eutrophication process.  Eutrophication depends only on the resource quality, which in this

case is the characteristics of the lake and the living organisms within it.

Similarly, all soils are subject to a natural rate of change caused by erosion.  Erosion

removes soil from the surface and eventually exposes the subsurface layers.  Soil quality

degradation will depend, in part, on how much change erosion can cause (i.e., where potential

change is determined by the quality of the topsoil compared to the quality of the lower

horizons5).  This will depend on the quality of the surface horizon when compared to the lower

horizon, on the ability of natural processes to offset erosion, and on the influence of human

activities that accelerate slow erosion rates.
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There are many paths of change soils may take.  This study examines three general cases as

depicted in Figure 3-2.  Soils whose subsurface layers have a similar quality to the top soil are

called stable soils.  As these soils are worn away by erosion, their quality remains relatively

unchanged (Panel 1).  Some soils have lower layers that are similar but reduced in quality.  These

are called neutral soils because as they are impacted by erosion; the soil degrades for a time but

then stabilizes, as shown in Panel 2.  Other soils, susceptible soils, are very vulnerable to erosion

because beneath a thin good quality top layer is a very poor quality soil.  With erosion, the

quality of the soil declines continuously until it (asymptotically or actually) reaches zero, as

shown in Panel 3.  Examples of these soil cases are discussed further in Pierce et al. (1983).

3.2.6  Soil Quality Degradation—Human Influences

Humans can influence soil quality degradation by altering the rate of erosion.  Some inputs

in a production process may increase or decrease erosion rates.  As shown in each of the panels

of Figure 3-3, the natural path of soil quality is altered up or down.  Conventional tillage

equipment (such as a moldboard plow) may loosen soils, making it easier for them to be carried

away by wind and water.  This soil using input can have initial positive impacts on production,

but will increase the rate of production decline later.  Inputs that do not have any impact on soil

degradation are considered to be soil neutral inputs.  A producer may choose to establish

conservation practices, such as placing vegetative cover on fallow land, contour plowing, or

terracing.  These practices may or may not impact current production levels, but will slow the

rate of soil degradation.  

3.2.7 Managing Soil Quality for Sustainability

As soil quality changes, farmers will attempt to adjust the input mix to maintain economic

viability (and meet environmental standards if society requires them).  In other words, these firms

manage for sustainability.  Managers begin by asking, Is the production process sustainable as

soil quality declines?  The answer depends on the relationship between soil quality and output, as

well as the relationship between soil quality and other inputs.  The impacts of depreciating

natural capital can be complex.  Human resources have a technical relationship among

themselves and with the natural capital (soil quality).  The relationship between any input and 
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Figure 3-2.  Three types of soil and their paths  of soil quality deterioration.

soil quality will be independent, substitutable, or complementary.  Moreover, this relationship

may change as soil quality deteriorates.  It is expected that as long as substitutes exist, as soil

quality decreases, the use of other inputs will follow one of the paths in Figure 3-4 in an attempt

to maintain output levels.

A producer may choose to irreversibly depreciate soil quality in favor of a substitute, as

shown in Panel 1.  When the input mix changes this dramatically, yields may be maintained for

a time.  However, unforeseen economic and environmental consequences may ensue.  For
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Figure 3-3.  The effect of erosion on soil quality. 

Figure 3-4.  Possible trade-off between soil quality and other inputs.

example, the increased use of a compensating input in one sector may cause excess demand in

the overall economy, increasing the price of the input, and reducing its affordability in all sectors. 

Whereas moderate use of a particular input may cause little or no environmental damage, vast
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increases in the use of an input in a short period of time may overwhelm the assimilative capacity

of the environment and cause long term damage.  In either circumstance, a producer may want

(or be forced) to change the optimal input mix to include more soil quality and less of one or

more other inputs.  If soil quality has followed a path of degradation, as in Panels 2 or 3,

increasing soil quality may still be possible.  However, if soil quality has followed a path of

irreversible decline, as in Panel 1, the possibility of altering the input mix to include more soil

quality has been eliminated and production may no longer be sustainable.  

3.3 A DYNAMIC MODEL OF SUSTAINABILITY IN PRODUCTION

The empirical dimension of this investigation builds upon the works of Clark and Furtan

(1983), McConnell (1983), Pierce et al. (1983), Saliba (1985), Segarra and Taylor (1987) and

Hoag (1997).  Although none of these projects sought to study sustainability directly, their

theoretical and empirical innovations have identified many of the key determinants of production

and the impacts of changes in soil quality.  Along with data for real inputs and the characteristics

of soil quality, the models in the above studies provide the basis for a dynamic model of

production and soil quality that illustrates the economic, social, and environmental aspects of

various definitions of sustainability. 

Production of any crop Y is a function of soil quality (SQ), soil using inputs, and soil

neutral inputs.  In agricultural production, tillage (L) is a soil using input, whereas soil nitrogen

(SN), nitrogen fertilizer applied (N), and sprayed pesticides (P) are soil neutral inputs. 

Accounting for precipitation (W) as well, production can be expressed as some function f:

Y f SQ L SN N P Wt t t t t t t= ( , , , , , ) . (3-2)

Soil quality is some function g of the characteristics that impact its ability to perform in its

environment.  Pierce et al. (1983) stated that these characteristics were available water capacity

(AWC), bulk density (BD), and pH (PH).  Recent studies (Doran et al., 1996; Karlen et al., 1997)

have stated that soil organic matter (SOM) is also an important indicator of soil quality.  Together

these four components can be used to create an index of soil quality:
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SN k SN N W L Y LCHt t t t t t t= − − − − − −( , , , , , ).1 1 1 1 1 1 (3-5)

SQ g AWC BD PH SOMt t t t t= ( , , , ) . (3-3)

The change in soil quality each year is determined by annual soil loss.  Soil loss in any

period depends upon both the natural level of soil loss (a function of the previous period’s soil

quality) and the decisions (M) a producer makes each period, which can increase (tillage) or

decrease (soil conservation) the rate of soil loss.  Therefore, the change in soil quality in each

year can be expressed as some fraction h of soil quality and management decisions:  

SQ h SQ Mt t t= −( , ).1 (3-4)

Soil nitrogen, in any period, is some function k of the soil nitrogen level, nitrogen applied,

the level of tillage, what was taken up by the crop (proxied by yield) and what leached out

(LCH), all from the previous period:

Leaching, in any period, is some function m of soil nitrogen, nitrogen applied, tillage,

precipitation, and crop uptake in the same period:

LCH m SN N W Yt t t t t= ( , , , ) . (3-6)

Together, Equations 3-2 through 3-6 provide the basis for a producer’s dynamic problem

that can be used to address economic, environmental, and social aspects of production.  Simply

stated, the producer’s problem is to maximize the discounted profits of production subject to the

availability of soil quality and the level of the environmental byproducts of production:

max II = ∑ + −

− − −

=

−

t

T
t

y t t t t tr P f SQ L SN P W

u L u N u P u SC

0

1 2 3 4

1( ) [ ( , , , , )

],
(3-7)
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subject to SQ h SQ Mt t1 1= −( , ), (3-8)

SN k SN N L Y LCHt t t t t t= − − − − −( ),, , , ,1 1 1 1 1 (3-9)

LCH m SN N L W Yt t t t t t= ( , , , , ) (3-10)

where Py is the price of the output, the ui are prices for the various management practices, and r is

the discount rate. 

A producer’s management decisions influence the level of crop production in any given

year and have economic, environmental, and social consequences.  Social considerations are

captured by tracing the paths of the economic and environmental impacts, thus allowing the use

of this model to examine the various concepts of sustainability and soil quality identified above

in a more meaningful way.  By imposing the different definitions of sustainability on the model,

the conditions described below are expected.

For each soil type, there is an optimal path of input use that will result in the optimal amount of

soil quality depletion, output, profit, and environmental waste.

When output levels are not allowed to fall on a stable soil, soil depletion may be averted by

changing the input mix.  As a result, soil quality and profits may remain stable and

environmental impacts minimal.

When output levels are not allowed to fall on a susceptible soil, adjustment of the input mix

may not be enough to compensate for the depleted soil quality.  As a result, output may not be

maintained, profits may fall, and environmental impacts may become worse through the

increased use of substitutes for soil quality (i.e., more fertilizers that can run off into water

bodies).

Because stable soils are not easily impacted by erosion, maintaining soil quality on a stable soil

may require only slight adjustments to the optimal input mix.  Profits, output, input levels, and

environmental impacts may remain stable.  
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Maintaining soil quality on susceptible soils will likely require large investments in soil

conservation capital.  Output may be maintained, but profits will decrease unless the revenue

from the maintained output exceeds the cost of soil conservation.  

These conditions, among others, can be investigated over multiple soils and regions of the

country.  Empirical results of this investigation are presented in Chapter 4.
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4.  ANALYSIS AND RESULTS 

This analysis is divided into four parts.  First, soil series and crop management data are

placed into a model to simulate crop growth and other economic and environmental aspects of

production.  Using some of the soil characteristics produced by the simulation runs, a new index

of soil quality is generated.  Next, through regression analysis, simplified mathematical

representations of a producer’s dynamic problem from the simulation output are estimated.

Finally, these functions are placed into an optimization framework where the three definitions of

sustainability are examined.  

4.1 DATA COLLECTION

Nonirrigated corn production on three soils each in Minnesota, Iowa, and Missouri were

chosen as the setting to test the impacts of the various definitions of sustainability.  The state,

crop, and soil selections were based on previous studies using productivity indices (Kiniry et al.,

1983; Pierce et al., 1983), and on advice from experts from the Natural Resources Conservation

Service (Ceolla, 1997; Tammons, 1997).  Three levels of tillage, fertilizer, and pesticide use for

corn producers in those states were taken from a national survey of producers (U.S. Department

of Agriculture, 1990-1995), the USDA’s newest and most extensive data set on soil quality

characteristics, and on information from USDA about soil management patterns.  This data has

been integrated into a simulation model framework (EPIC) by members of the Natural Resource

Conservation Service in Temple, Texas, thereby providing a setting that simulates in multiyear

periods the economic, environmental, and social impacts of production on soils and for realistic

management practices. 

4.1.1 EPIC Simulation Model

The Environmental Policy Integrated Climate (formerly Erosion Productivity Impact

Calculator), or EPIC, model has been used extensively to evaluate crop productivity, degradation

of soil resources, impacts on water quality, responses to different input levels and management
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practices, responses to spatial variations in climate and soils, and risks of crop failure (Mitchell

et al., 1995).  It has also, in part, been designed to track and answer the following questions, all

of which are related to the issues of sustainability (Dyke and Heady, 1985).

To what extent can capital and labor substitute for soil resources altered by erosion?

What is the additional cost incurred when these substitutions are made? 

When do these substitutions become physically or economically impossible? 

Crop production was simulated for 100 years based on the soil and management

specifications listed in Table A4-1 (all tables cited in this chapter are located in Appendix 4A).

Corn production was simulated for nine tillage/fertilizer management scenarios:

(1) conventional/low,

(2) conventional/medium,

(3) conventional/high, 

(4) conservation/low,

(5) conservation/medium,

(6) conservation/high,

(7) no till/low,

(8) no till/medium, and

(9) no till/high.

Starting values for all other variables were set to the EPIC defaults.  A total of 81 scenarios, nine

tillage/fertilizer scenarios on nine soils, were run for 100-year increments.  As a result,

8,100 observations were generated for more than 200 soil, production, weather, economic, and

environmental indicator variables. Simulated yields were calibrated against actual reported yields

in the three regions to help ensure that the model results were representative of the study area. 

4.2 DEVELOPMENT OF A SOIL QUALITY INDEX

Because many studies advocate the importance of soil organic matter for soil quality (Acton

and Gregorich, 1995; Bowman et al., 1989; Doran et al., 1996; Karlen et al., 1997; Olsen et al.,

1994), the index developed by Pierce et al. (1983) was adapted to include organic matter

information.  A sufficiency for soil organic matter was created based on the works of Bowman

and Petersen (1996) and Pieri (1995).  Calculations for the other index components were



6Details about the index formulation can be found in Popp (1997).

4-3

consistent with the methods used by Pierce et al. (1983).  Soil quality (SQ), in any given year, is

the summation of the product of a weighting factor (WF) and sufficiencies of available water

capacity (SAWC), bulk density (SBD), pH (SPH), and organic matter content (SOMC) for each

ith horizon in the rooting depth:6

SQ SAWC SBD SPH SOMC WF
i

r

i i i i i= ∑
=1

( * * * * ). (4-1)

Values for the individual sufficiency equations and weighting factors range from zero to

one. When multiplied together, these sufficiencies form an index of soil quality that also ranges

from zero to one.  The closer the value is to one, the better the soil quality. 

Table 4A-2 shows the ranges of soil quality for each soil under three levels of tillage. 

Fertilizer levels are ignored because fertilizer is a soil neutral input and has no influence on

inherent soil quality.  Even under conventional tillage, stable soils reach a steady state quality at

0.72.  Neutral soils are impacted by erosion and tillage more than stable soils, but eventually their

soil quality levels stabilize at about 0.66.  The quality of susceptible soils decreased at an

increasing rate, even under no till practices, suggesting that susceptible soils may become

completely depleted over time. 

4.2.1 Soil Quality and Yield

As reported in Table 4A-3, yield fluctuations over the 100 years were considerable.  For

example, yields as high as 166.7 bushels and as low as 100.4 bushels were recorded on the Iowa

stable soil.  Moreover, yields on neutral and susceptible soils sometimes were greater than on

stable soils.  For example, Minnesota’s neutral soil produced a high yield of 197.4, whereas the

high yield on the stable soil was only 164.7.  These fluctuations occur in EPIC-type growth

models because of extreme weather events within the simulation period or other modeling

factors.  On average, over the 100 years, soil quality/yield relationships were as expected for all

soil types.  That is, the stable soils produced higher yields than neutral soils, and produced much

higher yields than the susceptible soils.  
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These results from the simulation model are consistent with the proposition that soil quality

is an important input into agricultural production.  The better the soil quality, the greater the yield

per unit of input.  Also, soils that are more susceptible to erosion (whether natural erosion or

erosion induced by human activities) have greater losses in soil quality.  

4.3 ECONOMETRIC EVALUATION OF RELATIONSHIPS

Soil quality was placed in a dynamic setting to examine how changes can influence the use

of other inputs.  This can be a convoluted process; EPIC expresses crop production as a

complicated relationship among hundreds of variables.  Dynamic sustainability questions are,

however, more manageable when the components of the optimization model are expressed as a

function of a few key variables.  Using fewer variables also provides more degrees of freedom

and reduces the possibility of multicollinearity.  A brief discussion of the pertinent data

manipulation techniques follows.

The EPIC simulation model generates data both across characteristics and over time.  Panel

data has been used frequently to address questions in classical areas of economics, such as

market structure return, investment, and market demand.  Rarely has it been employed to

examine agricultural and resource issues in economics.  Using the fixed effect regression

technique on the panel data, the following four equations over nine soils were estimated:  

Y f SQ L SN N P Wt t t t t t t= =( , , , , , ) .adj R 2 729 (4-2)

SQ h SQ Lt t t= =− −( , ) .1 1 986adj R 2 (4-3)

SN k SN W N L Y LCHt t t t t t t= =− − − − − −( , , , , ) .1 1 1 1 1 1 999adj R 2 (4-4)

LCH n SN N W SQ P Lt t t t t t t= =( , , , , , ) . ,adj R 2 737 (4-5)

recalling that Y is corn yield or output, SQ is soil quality, SN is soil nitrogen, N is added fertilizer,

P is pesticide, W is precipitation, L is tillage (the soil conservation component of M, tillage and

soil conservation, was added later in the optimization section of the project), LCH is leaching,

and t and t-1 represent current and previous period values, respectively.  Using methods suggested
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by Hsiao (1986), Maddala (1993), and Vickner (1997), all equations were tested and corrected

for misspecification, homoskedasticity, and serial correlation associated with panel data analysis. 

Although the set of relevant variables has been reduced from over 200 to only 14, the adjusted

R2 values reveal that these variables have captured between 73% and 100%  of the variation in

the dependent variable for each equation. 

For the fixed effects model, some of the estimated parameters are unique to a particular

group.  Therefore, even within the regression equation for corn production, there are actually nine

estimated equations.  The sets of parameters for the four estimated equations for each soil are

given in Tables 4A-4 through 4A-7.

The production function (Equation 4-2) was fitted to the transcendental functional form. 

This form is extremely relevant to the issues of sustainability because it allows the substitution

and complementarity relationships among inputs and soil quality to change over the range of

input use (time).   For example, fertilizer and soil quality may be substitutes at high levels of soil

quality.  Once soil quality is reduced below a certain level, however, the relationship may

become complementary, meaning that further increases in fertilizer use cannot offset the declines

in production due to loss of soil quality.  This and other scenarios are examined in the dynamic

model.

The soil quality function (Equation 4-3) has both quadratic and linear elements.  The soil

nitrogen function (Equation 4-4) was estimated as a linear function.  The leaching function

(Equation 4-5) was estimated as a logarithmic function, meaning that as the value of the variables

increases, their impact on leaching is still increasing, but at a decreasing rate. 

4.4 TESTING THE DEFINITIONS OF SUSTAINABILITY IN AN
OPTIMIZATION FRAMEWORK

The optimization portion of the analysis was conducted using the GAMS (General

Algebraic Modeling System)/MINOS approach (Brooke et al., 1992).  This model solves the

producer’s dynamic problem over discrete time.  Along with the equations estimated through

regression analysis, corn fertilizer, tillage, pesticide, and soil conservation prices and discount

rates taken from the USDA (U.S. Department of Agriculture, 1996, 1997) were incorporated into

the GAMS framework to create a total of nine optimization problems, one for each soil in each
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region.  From these baselines, new scenarios were created to meet the conditions for the

following objectives:

Profit maximization—Profit may be maximized based on the selection of fertilizer, tillage,

pesticide, and soil conservation practices in the production process.

Sustainability as constant consumption—Yield in any year must be at least 90% of the yield

recorded in the first year of the baseline scenario.

Sustainability as a constant stock of a resource—Conservation practices must be implemented

every year in the 100-year period.

Sustainability as intergenerational equity—Leaching over the 100-year period must be at least

10% less than leaching over the 100-year period in the baseline scenario.

Sustainability as intergenerational equity—Measured by income potential or profitability over

the 100-year period.

Baseline scenarios for all nine soils are in Appendix 4A.  

Sustainability scenarios were constructed based upon sustainability definitions found in the

literature.  Based on the soil quality indices created from the soils data generated by EPIC, the

initial level of soil quality was set between 0.78 and 0.80, depending on the soil.  Discounted

profit, and the paths for soil quality degradation and fertilizer, tillage, pesticide,7 and soil

conservation were noted in all relevant runs.  Highlights from three sustainability scenarios are

summarized in Tables 4A-8 to 4A-10. 

4.4.1 Baseline Scenario

In the baseline scenario, producers maximized discounted profits over the 100-year period

by choosing an optimal input mix of soil quality, tillage, pesticide, and fertilizer.  Soil

conservation options were not offered.  As no conservation measures were available, the path of

soil quality depreciation generated by both natural and human influences over 100 years could be

observed. 

In this scenario, soil quality on stable soils depreciated from 0.80 in the early years of

production but reached a steady state at around 0.72, even with the use of conventional tillage
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practices.  The optimal mix of soil quality and added inputs generated high annual yields, no less

than 134 bushels per acre, and discounted profits of at least $7,100 per acre.  In Iowa and

Missouri, fertilizer leaching increased as soil quality was degraded.  On the Minnesota stable

soil, leaching decreased initially and then increased. 

Steady states for soil quality and input use were also attained on the neutral soil, but later in

the planning period.  Soil quality leveled out at roughly 0.66 on all three neutral soils. 

Discounted profits were at least $6,500 and minimum yield in any year was at least 122 bushels. 

Conventional tillage was used throughout the planning period on all soils.  Although still

relatively low, fertilizer leaching was greater than for stable soils.  In all three cases, leaching

increased as soil quality decreased over time. 

None of the susceptible soils reached a steady state.  The Iowa susceptible soil had

degraded to 0.198 by the end of the planning period and the Minnesota soil quality fell to 0.254. 

For all soils, fertilizer inputs initially increased as soil quality fell, but then decreased as the

relationship between soil quality and fertilizer became complementary.  No till replaced

conventional tillage as depletion of soil quality intensified.  As these input levels fell, production

levels also fell about half (on average from 120 bushels to 60 bushels) on all susceptible soils. 

Although leaching rates on two susceptible soils were up to nearly 11 lbs/year, leaching levels for

the Missouri susceptible soil diminished from 1.6 to 0.59 lbs/year as soil quality was degraded.  

4.4.2 Profit Maximization Scenario

A soil conservation option was added to the baseline scenario to determine profitability of

soil conservation.  The option available was dependent on soil type.  A mathematical

representation of the impact of the respective conservation practice was included in the soil

quality equation in GAMS.  Details are found in Popp (1997).

Implementing easy and inexpensive conservation measures on all stable soils for the entire

100 years slightly improved soil quality from 0.80 to 0.811 on average.  Annual yields increased

and discounted profits were slightly greater than in the baseline.  The input mix stayed relatively

constant throughout the entire planning period.  In Iowa and Missouri, soil quality and the added

inputs produced a high steady output and high profits with low levels of leaching.  In Minnesota,

however, an overall increase in soil quality led to high output and profit levels but increased, then

decreased leaching.  
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Conservation measures were somewhat effective in maintaining soil quality on all neutral

soils, but because of regional price differences for input, output, and conservation practices, the

most profitable level of conservation varied.  Consequently, the point in time and the level that

soil quality reached a steady state varied among the neutral soils.  Given the high cost of

conservation practices for neutral soils (such as terracing) compared to other inputs, soil quality

was degraded and substituted with slightly more fertilizer for most years in the planning period. 

As fertilizer costs grew, both conservation tillage and terraces were introduced into the

production process.  Conservation tillage practices were introduced on all soils late in the

production period.  Conservation practices were introduced and maintained on the land for

5 years in Minnesota, 10 years in Iowa and 19 years in Missouri.  When compared to the baseline

scenario, minimum yields were raised about 3 bushels on each neutral soil, profits increased

slightly and leaching was reduced about 10%.  

None of the susceptible soils reached a steady state of soil quality even when conservation

measures were available.  Conservation practices for susceptible soils were the most costly of the

soil conservation investments.  On the Iowa and Missouri soils, conservation practices were not

effective enough in maintaining soil quality and yield to justify their expense at any time in the

production period.  Consequently, for these two soils, the paths of input use and soil quality

degradation that provide the best solution to this scenario are the same as those for the baseline

scenario.  Conservation practices were employed for 5 years on the Minnesota soil.  As a result,

profits increased about 1% over the baseline scenario and soil quality had fallen to 0.260 at the

end of the 100 years, as opposed to 0.254 in the baseline scenario.  

4.4.3 Sustainability as Constant Consumption

The first definition of sustainability examined was the ability of society to maintain a

constant stock of consumption.  The condition required to fulfill this definition of sustainability

was that annual yields for the entire 100-year period could not fall below 90% of the yield

attained in the first year of the baseline scenario.8  Results are summarized in Tables 4A-8

through 4A-10.
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For the stable and neutral soils, the best solution to the constant consumption scenario was

also the solution to the profit maximization scenario.  The same did not hold for susceptible soils.

As previously noted, annual yields fell about 50% on the susceptible soils in the baseline

scenarios.  On the Minnesota susceptible soil (where annual yield was required to be at least

110.42 bushels), the depreciation of soil quality was greatly slowed by implementing soil

conservation for 70 years, and reducing tillage intensity to no till.  Fertilizer levels were also

adjusted.  As a result, the minimum yield attained on the Minnesota susceptible soil was

110.47 bushels.  Although fertilizer leaching increased from 1.73 to 2.86 lbs over the 100-year

period, it was drastically lower than under the two previous scenarios on this soil. 

For the Iowa and Missouri susceptible soils, there was no optimal path of input mix that

could maintain annual yields at 90% throughout the entire planning horizon.  Presumably, this is

because conservation practices were ineffective in keeping soil quality at levels needed to

produce at least 108 bushels of corn on each soil every year.  

4.4.4 Sustainability as Constant Resource Stock  

The second definition of sustainability states that the stock of soil quality must be preserved

in order for production to be sustainable.  One option a producer might consider is to temporarily

or permanently retire land from production.  However, in this study, sustainability is examined

under a production setting.  Therefore, conservation measures, whether it be contouring, residue

management, or terracing (depending on soil type), were fully implemented every year of the

planning period.  Given the differing levels of effectiveness for different conservation practices,

each soil was examined first for its ability to maintain soil quality with the help of conservation

and then for its impacts on other inputs, leaching, and profit. 

As soil conservation practices were already implemented on the stable soils in the profit

maximization and constant consumption scenarios, the soil management plan that met the

requirements of the previous two scenarios also fulfilled the constant stock requirement. 

Although the constant stock and constant consumption definitions are often cited as having

competing objectives, these objectives are compatible on stable soils. 

When all conservation measures were applied to neutral soils, soil quality again increased

from an average of 0.79 to 0.81.  Annual yields increased and fertilizer leaching decreased. 
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However, increases in total output over the planning period did not offset the added cost brought

on by 100 years of conservation practices.  As a result, profit levels fell.

Conservation practices were unable to bring susceptible soils into a steady state with

continuous cropping over the 100-year period.  However, erosion decreased such that soil quality

on average was only reduced to 0.63, compared to an average of 0.25 in previous scenarios. 

Fertilizer levels again initially increased and eventually declined (sharply in Missouri).  Annual

yields fell from an average of 120 bushels to 105 bushels.  This is greatly improved over the

profit maximization scenario where annual yields fell from 120 bushels to about 60 bushels. 

However, the high cost of conservation needed to improve soil quality and output greatly reduced

the profit level when compared to the constant consumption scenario.  

4.4.5 Sustainability as Intergenerational Equity—Reduced Leaching

The third definition of sustainability requires that the needs of the present are met without

compromising the ability of future generations to meet their own needs.  As mentioned in

Chapter Three, there is no consensus regarding the appropriate measurement of intergenerational

equity.  Two requirements based on quality of life measures, leaching reduction and income

potential, are explored here. 

The first possibility considers human health issues.  Groundwater contamination can result

when fertilizer leaches through the soil.  Society may implement a policy to reduce overall nitrate

leaching.  One way to achieve this is to set a tax on the price of fertilizer.  This type of command

and control policy that targets the source of the contamination is effective in reducing pollution

(Baumol and Oates, 1990).  Otherwise, if policy makers believe producers have free information

concerning the interactions of fertilizer and leaching on their particular soil, producers may be

left to choose the most appropriate means to reduce pollution from their activities.

Although command and control policies may reduce leaching, it is difficult to find the tax

rate associated with the desired level of pollution.  In this optimization run, a 10% tax was levied

on the per pound cost of fertilizer.  Interestingly, this tax rate was ineffective in reducing leaching

at least 10% on all soils.  Furthermore, output and profits were lower than under other

sustainability requirements. 

The second method undertaken required that leaching in any one year be no greater than

90% of the leaching in the baseline scenario.  Under this method, where the  producers were free
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to choose their own means to meet the goal, the results were much improved.  By reducing the

amount of fertilizer applied in production and maintaining soil quality with soil conservation

practices, all stable soils attained a reduction of at least 10% of overall leaching.  For these soils,

the solution that fulfills the requirements of the other two definitions of sustainability is also

befitting to this intergenerational equity scenario.  Even in Minnesota, where leaching initially

worsened with improvements in soil quality, overall reductions in leaching were sufficient to

fulfill the sustainability condition. 

In all scenarios, the optimal input mixes changed most dramatically on the neutral soils. 

Fertilizer levels decreased as conservation measures were added to maintain soil quality. 

Leaching reductions were attained but overall production and profit levels fell compared to those

that resulted in the constant consumption scenario.  When all conservation measures are

implemented over the entire planning period, as in the constant stock scenario, leaching is

reduced more than 10%.  

Management decisions on two of the susceptible soils (Iowa and Minnesota) were

somewhat similar to those practiced on neutral soils.  Soil conservation measures and reduced

tillage were implemented early to maintain soil quality.  When conservation practices ceased to

be profitable (after about 10 years), fertilizer increased to offset soil quality losses and then

decreased as it became complimentary to soil quality.  Overall, leaching was reduced a little more

than 10% on these soils.  As with the neutral soils, the level of nitrogen leached over the

100 years was much less under the constant stock scenario. When leaching is reduced by the

10% minimum, profits are about 25% higher than under the constant stock scenario.

Given the direct relationship between leaching and soil quality on the Missouri susceptible

soil, as well as the high cost of conservation, the best way to meet the leaching requirement was

to let soil quality degrade.  The input mix fluctuated greatly throughout the 100-year period and

overall production fell compared to the constant stock scenario.  However, on this soil, both

profit and total leaching over the entire period were lower.  

4.4.6 Sustainability as Intergenerational Equity—Income Potential

Income potential, proxied by greatest net discounted profits over the planning period, may

also be used as a measure of intergenerational equity.  The best solution to this intergenerational

equity condition was already solved in the profit maximization scenario.  This scenario, where
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there was no minimum yield, no maximum leaching, no input tax, and no soil conservation

requirements, is intuitively the most profitable of all scenarios no matter what soils are examined. 

Sustainability of any other kind usually results in some kind of economic, environmental, or

social cost.  

4.5 SCENARIO WRAP-UP

Table 4A-10 provides a summary of the compatibility of the definitions on the nine soils. 

In terms of the compatibility of different sustainability requirements, no conflicts arise on stable

soils.  The optimal resource management policy that satisfies the conditions for all three

definitions generates many benefits such as stable high profits, output, and soil quality.  It also

allows for a stable input mix and limits negative externalities such as leaching.  On neutral and

susceptible soils, however, economic, social, and environmental consequences vary both by

sustainability definition and by soil type.  Furthermore, as soil degradation worsened, so did most

of the consequences.  On neutral soils, the goals of the constant consumption and

intergenerational equity (income potential) definitions may be met with the same optimal path of

soil quality degradation and input mix.  The goals of the constant resource stock, reduced

leaching and intergenerational equity definitions are also met, but each with its own optimal

input mix, output, leaching, and profit.  

Attaining sustainability on susceptible soils was difficult no matter what the definition. 

Susceptible soils tended to erode easily, leach, and lose their productive capabilities and

profitability.  Attempting to control any one of these factors (such as maintaining soil quality) led

to negative impacts elsewhere (in this case, in profits and fluctuations in input demand). 

No optimal mix of added inputs and soil quality was found that could even attain the conditions

for the constant consumption definition of sustainability on two soils.  The conditions of other

definitions could be met with one exception (i.e., the two means to attain intergenerational equity

on the Missouri susceptible soil were compatible).  
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Figure 4-1.  Paths of soil quality with and without soil conservation possibilities.

4.5.1 Observations About Reversibility and Uncertainty

In the above scenario, soil quality on the stable and neutral soils reached a steady state over

the 100-year planning period.  Of concern, however, is the recognition that conservation

measures (such as no till practices, residue management, and terracing) could be implemented to

stabilize the level of soil quality above its natural steady state of reversibility and uncertainty.

The same possibilities do not hold for the susceptible soil.  As shown in Figure 4-1, this

soil erodes easily and cannot attain a steady state when continuously cropped for 100 years. 

However, as long as the endowment of soil quality is high, soil conservation measures, if

undertaken immediately, may greatly slow degradation (i.e., elongate the shape of the

degradation curve) and help minimize unforeseen circumstances.  These conservation practices

cannot slow this process forever.  As shown in Figure 4-2, there is some level of soil quality

below which even conservation practices cannot slow degradation.  It is at this point that

irreversibility becomes a reality.  Therefore, in order to maintain quality of these soils, other

types of conservation practices, such as set asides in grass cover, may be needed.  However, this

removes, at least temporarily, this land from the production process.
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Figure 4-2. The impact of soil conservation on soil quality reversibility on susceptible
soils.
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TABLE 4A-1.  SOIL AND MANAGEMENT FOR SIMULATION MODEL SCENARIOS
Tillage Machinery a

Soil Type Conventional Conservation No Till Fertilizerb (pounds per acre)

Region Stable Neutral Susceptible Tillage Pesticide Tillage Pesticide Tillage Pesticidec Low Medium High

Iowa Tama Dinsdale Nordness Tandem Disk;
Field and row
cultivators

Atrazine
Lasso
Furadan

Field and
row
cultivators

Atrazine
Lasso
Furadan

None Atrazine
Lasso
Furadan

50 100 150

Missouri Haymond Mexico Hartville Tandem Disk;
Field and row
cultivators

Atrazine
Lasso
Furadan

Field and
row
cultivators

Atrazine
Lasso
Furadan

None Atrazine
Lasso
Furadan

50 100 150

Minnesota
Port
Byron

Kenyon Rockton Moldboard
plow; Field
and row
cultivators

Banvel
Dual

Chisel plow;
Field and
row
cultivators

Banvel
Dual

None Banvel
Dual 2,4-D
Roundup

50 100 150

aDoes not include machinery common to all practices such as pesticide and fertilizer applicators or combines. 
bActual pounds of nitrogen applied at low, medium, and high levels.
cAtrazine levels in Missouri and Minnesota increased under no-till practices compared to levels used under conventional and conservation practices.
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TABLE 4A-2.  SIMULATED SOIL QUALITY OVER 100 YEARS FOR
THREE TILLAGE LEVELS 

Soil Quality Index
Conventional Conservation No-Till

Region Soil Type High Low High Low High Low

Iowa Stable 0.80 0.73 0.80 0.77 0.82 0.80
Neutral 0.80 0.66 0.80 0.68 0.80 0.70
Susceptible 0.79 0.20 0.79 0.33 0.79 0.47

Missouri Stable 0.80 0.72 0.80 0.79 0.80 0.80
Neutral 0.80 0.66 0.80 0.67 0.80 0.70
Susceptible 0.78 0.19 0.78 0.36 0.78 0.42

Minnesota Stable 0.80 0.71 0.80 0.78 0.80 0.79
Neutral 0.80 0.64 0.80 0.68 0.80 0.69
Susceptible 0.79 0.07 0.79 0.18 0.79 0.31

TABLE 4A-3.  SIMULATED YIELDS BY STATE AND SOIL TYPE FOR A
100-YEAR SIMULATION

Yield (bushels per acre)
Region Soil Type Low High Mean

Iowa Stable 100.4 166.7 128.9
Neutral 92.6 167.2 108.2
Susceptible 63.9 168.5 76.8

Missouri Stable 105.6 177.0 130.0
Neutral 94.3 177.0 116.9
Susceptible 46.9 159.0 57.3

Minnesota Stable 103.0 164.7 131.0
Neutral 94.1 197.4 101.8
Susceptible 26.5 157.3 48.0
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TABLE 4A-4.  REGRESSION COEFFICIENT ESTIMATES IN THE PRODUCTION FUNCTION

Soila Type/
Location

Variable Coefficients b,c,

A La Lb Wa Wb Na Nb SNa SNb Pa Pb SQa SQb

Stable/IA -6.47 0.558 -1.69 1.115 -0.036 2.85 -0.03 0.146 -0.001 0.56 -0.316 0.65 -0.316

*** *** *** *** *** *** *** *** *** ** ** *** **
Neutral/IA -5.35 0.558 -1.69 1.115 -0.036 2.51 -0.026 0.146 -0.001 0.56 -0.316 0.65 -0.316

*** *** *** *** *** *** *** *** *** ** ** *** **
Susceptible/IA -8.64 0.558 -1.69 1.115 -0.036 3.48 -0.039 0.146 -0.001 0.56 -0.316 0.65 -0.316

*** *** *** *** *** *** *** *** *** ** ** *** **
Stable\MO -1.11 0.558 -1.69 1.115 -0.036 1.48 -0.013 0.146 -0.001 0.56 -0.316 0.65 -0.316

*** *** *** *** *** *** *** *** *** ** ** *** **
Neutral/MO 2.37 0.558 -1.69 1.115 -0.036 0.311 -0.0023 0.146 -0.001 0.56 -0.316 0.65 -0.316

*** *** *** *** *** *** *** *** *** ** ** *** **
Susceptible/MO 1.91 0.558 -1.69 1.115 -0.036 0.448 -0.005 0.146 -0.001 0.56 -0.316 0.65 -0.316

*** *** *** *** *** *** *** *** *** ** ** *** **
Stable/MN -1.02 0.558 -1.69 1.115 -0.036 1.23 -0.01 0.146 -0.001 0.56 -0.316 0.65 -0.316

*** *** *** *** *** *** *** *** *** ** ** *** **
Neutral/MN 0.81 0.558 -1.69 1.115 -0.036 0.727 -0.0056 0.146 -0.001 0.56 -0.316 0.65 -0.316

*** *** *** *** *** *** *** *** *** ** ** *** **
Susceptible/MN 0.22 0.558 -1.69 1.115 -0.036 0.883 -0.0077 0.146 -0.001 0.56 -0.316 0.65 -0.316

*** *** *** *** *** *** *** *** *** ** ** *** **
aIA, MO, and MN represent Iowa, Missouri, and Minnesota, respectively.  A is the intercept term, L is tillage, W is precipitation, N is applied fertilizer, SN is soil nitrogen, P is pesticide, and SQ is soil
 quality.
bThe production function is the transcendental form:   and, therefore, there are two coefficients (a and b, respectively) assigned to each variable.y Ax e x ea b x a b x= 1 1 1 1 2 2 2 2
cThese are the final values (after deviation from baseline values are accounted for in dummy variables) in the fixed effects model.
***Significant at the 1% level.
**Significant at the 5% level.
*Significant at the 10% level.
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TABLE 4A-5.  REGRESSION COEFFICIENTS IN THE SOIL QUALITY FUNCTION
Variable Coefficientb, c

Soila Type/Location SQt-1 SQt-1
2 1/SQt-1 Lt-1

Stable/IA 0.999 0 0 -0.0001
*** *** *** **

Neutral/IA 1.0265 -0.039 0 -0.0002
*** *** *** **

Susceptible/IA 0.9998 0 -0.0113 -0.0021
*** *** *** **

Stable/MO 0.999 0 0 -0.0001
*** *** *** **

Neutral/MO 1.0265 -0.04 0 -0.0002
*** *** *** **

Susceptible/MO 1 0 -0.0112 -0.0003
*** *** *** **

Stable/MN 0.999 0 0 -0.0001
*** *** *** **

Neutral/MN 1.0265 -0.04 0 -0.0002
*** *** *** **

Susceptible/MN 0.999 0 -0.0112 -0.0003
*** *** *** ***

aIA, MO, and MN represent Iowa, Missouri, and Minnesota, respectively.  SQ represents soil quality and
 L represents the estimated part of M, tillage.
bFor stable and susceptible soils, the soil quality function takes on a linear form .  The soil quality indexY A Bx= +
for the neutral soils is of the quadratic form .y A b x b xx= + + 2

2
cThese are the final values (after deviation from baseline values are accounted for in dummy variables) in the fixed
effects model.

***Significant at the 1% level.
**Significant at the 5% level.
*Significant at the 10% level.
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TABLE 4A-6.  REGRESSION COEFFICIENTS IN THE SOIL NITROGEN FUNCTION
FOR ALL SOILS

Variable Coefficientb,c

Soila Type/Location A SNt-1 Nt-1 Wt-1 LCHt-1 Lt-1 Yt-1

Stable/IA 1.32 0.986 0.057 -0.026 -0.062 -0.784 -0.03
*** *** ** ** *** ** ***

Neutral/IA 1.32 0.978 0.057 -0.026 -0.062 -0.784 -0.029
*** *** ** ** *** ** ***

Susceptible/IA 1.3 0.965 0.057 -0.026 -0.062 -0.784 -0.028
*** *** ** ** *** ** ***

Stable/MO 0.283 0.986 0.057 -0.026 -0.062 -0.784 -0.026
*** *** ** ** *** ** ***

Neutral/MO -0.326 0.976 0.057 -0.026 -0.062 -0.784 -0.022
*** *** ** ** *** ** ***

Susceptible/MO -0.492 0.981 0.057 -0.026 -0.062 -0.784 -0.02
*** *** ** ** *** ** ***

Stable/MN 0.393 0.99 0.057 -0.026 -0.062 -0.784 -0.03
*** *** ** ** *** ** ***

Neutral/MN 0.308 0.989 0.057 -0.026 -0.062 -0.784 -0.033
*** *** ** ** *** ** ***

Susceptible/MN -1.065 0.97 0.057 -0.026 -0.062 -0.784 -0.016
*** *** *** ** *** *** ***

aIA, MO, and MN represent Iowa, Missouri, and Minnesota, respectively.  A represents the intercept term, SN is soil
 nitrogen, W is precipitation, LCH is leaching, and L is tillage.  
bThe soil nitrogen function takes on a linear form .ii xbAy +=
cThese are the final values (after deviation from baseline values are accounted for in dummy variables).  
***Significant at the 1% level.
**Significant at the 5% level.
*Significant at the 10% level.
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TABLE 4A-7.  REGRESSION COEFFICIENTS IN THE LEACHING FUNCTION
FOR ALL SOILS

Variable Coefficientb, c

Soila Type/Location A L W N SN P SQ

Stable/IA -7.31 0.01 0.87 0.29 0.613 0.02 -1.429
*** * *** *** *** NSd **

Neutral/IA -10.02 0.01 2.38 0.29 0.618 0.02 -1.68
*** * *** *** *** NS **

Susceptible/IA -5.9 0.01 0.22 0.29 0.5477 0.02 -2.004
NS * *** *** *** NS **

Stable/MO -5.008 0.01 0.807 0.29 0.4227 0.02 0.016
*** * *** *** *** NS **

Neutral/MO -5.68 0.01 0.724 0.29 0.623 0.02 -1.426
*** * *** *** *** NS **

Susceptible/MO -5.45 0.01 0.692 0.29 0.619 0.02 .7
*** * *** *** *** NS **

Stable/MN -7.56 0.01 1.22 0.29 0.5623 0.02 0.0108
*** * *** *** *** NS **

Neutral/MN -7.82 0.01 1.33 0.29 0.618 0.02 -1.495
*** * *** *** *** NS **

Susceptible/MN -5.6 0.01 0.69 0.29 0.516 0.02 -1.845
*** * *** *** *** NS **

aIA, MO, and MN represent Iowa, Missouri, and Minnesota, respectively.  A is the intercept term, L is tillage, W is
precipitation, N is nitrogen applied, SN is soil nitrogen, P is pesticide, and SQ is soil quality.  

bThe leaching function takes on a logarithmic form.
cThese are the final values (after deviation from baseline values are accounted for in dummy variables). 
dNS indicates that the variable is not significant at the 10% level.
***Significant at the 1% level.
**Significant at the 5% level.
*Significant at the 10% level.  
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TABLE 4A-8.  SUMMARY OF THE CONDITIONS, RESULTS, AND IMPACTS OF THREE DEFINITIONS OF
SUSTAINABILITY ON THREE STABLE SOILS

SUSTAINABILITY SCENARIOS
Constant Consumption Constant Stock Equity as Reduced Leaching

Annual Conditiona Impactsb Annual Condition Impacts Final Condition Impacts General
Soil and Result Over Time and Result Over Time and Result Over Time Observations

Condition Profit = $7,266.34 Condition Profit = $7,266.34 Condition Profit = $7,266.34 The conditions
of all three
definitions
were met using
the same input
management
plan.

Minimum yield = 126.82 Yield rose from 140.92 to
142.85

Full conservation every year Yield rose from 140.92 to
142.85

Maximum leach = 0.783 lbs Yield rose from 140.92 to
142.85

SQ rose from 0.80 to 0.808 SQ rose from 0.80 to 0.808 SQ rose from 0.80 to 0.808

Result Conservation all years Result Conservation all years Result Conservation all years

IA Minimum yield = 140.92 Input mix steady SQ rose from 0.80 to 0.808 Input mix steady Leaching fell from 0.68 to 0.61 Input mix steady

Maximum yield = 142.82 Leach fell from 0.68 to 0.61 Leach fell from 0.68 to 0.61 Leach fell from 0.68 to 0.61

Condition Profit = $7,268.27 Condition Profit = $7,268.27 Condition Profit = $7,268.27 The conditions
of all three
definitions
were met using
the same input
management
plan.

Minimum yield = 125.05 Yield rose from 138.96 to
141.22

Full conservation
every year

Yield rose from 138.96 to
141.22

Maximum leach = 1.97 lbs Yield rose from 138.96 to
141.22

SQ rose from 0.80 to 0.809 SQ rose from 0.80 to 0.809 SQ rose from 0.80 to 0.809

MO Result Conservation all years Result Conservation all years Result Conservation all years

Minimum yield = 138.96 Input mix steady SQ rose from 0.80 to 0.809 Input mix steady Leaching fell from 1.94 to 1.16 Input mix steady

Maximum yield = 141.22 Leach fell from 1.94 to 1.16 Leach fell from 1.94 to 1.16 Leach fell from 1.94 to 1.16

Condition Profit = $7,252.73 Condition Profit = $7,252.73 Condition Profit = $7,252.73 The conditions
of all three
definitions
were met using
the same input
management
plan.

Minimum yield = 129.05 Yield rose from 143.38 to
145.78

Full conservation every year Yield rose from 143.38 to
145.78

Maximum Leach = 2.007 lbs Yield rose from 143.38 to
145.78

SQ rose from 0.80 to 0.811 SQ rose from 0.80 to 0.811 SQ rose from 0.80 to 0.811

MN Result 100 years conservation Result Conservation all years Result Conservation all years

Minimum yield = 143.38 Input mix steady SQ rose from 0.80 to 0.811 Input mix steady Leaching fell from 1.93 to 1.64 Input mix steady

Maximum yield = 145.78 Leach fell from 1.93 to 1.64 Leach fell from 1.93 to 1.64 Leach fell from 1.93 to 1.64

aCondition states the requirement for the relevant definition of sustainability; result states whether the condition has been met and provides the relevant statistics.
bImpacts presented over time are:  net discounted profit; yield trend with first and final year statistics; soil quality trend over time and first and last year statistics; number of years conservation was
 implemented, whether input use was steady, had small changes over the 100 years or was volatile; leaching trend and first and last year statistics.  
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TABLE 4A-9.  SUMMARY OF THE CONDITIONS, RESULTS, AND IMPACTS OF THREE DEFINITIONS OF
SUSTAINABILITY ON THREE NEUTRAL SOILS

SUSTAINABILITY SCENARIOS

Constant Consumption Constant Stock Equity as Reduced Leaching
Annual Conditiona Impactsb Annual Condition Impacts Final Condition Impacts General

Soil and Result Over Time and Result Over Time and Result Over Time Observations

Condition Profit = $6,573.95 Condition Profit = $6,300.79 Condition Profit = $6,555.19 The conditions of
the definitions were
met with different
management plans.

Minimum yield = 120.14 Yield fell from 133.49 to
128.41

Full conservation every year Yield rose from 134.18 to
139.79

Maximum leach  = 4.0 lbs. Yield fell from 133.30 to
125.00

SQ fell from 0.79 to 0.687 SQ rose from 0.80 to 0.808 SQ fell from 0.79 to 0.699

IA Result 10 years conservation Result 100 years conservation Result 13 years conservation

Yield fell but minimum met Small input mix changes SQ rose from 0.79 to 0.805 Small input mix changes Condition met but leach
rose from 3.62 to 3.99

Input mix volatile

Minimum yield = 128.41 Leach rose from 3.62 to 4.39 Leach fell from 3.62 to 2.38 Leach rose from 3.62 to
3.99Maximum yield = 133.49

Condition Profit = $6,718.82 Condition Profit = $6,339.64 Condition Profit = $6,608.62 The conditions of
the definitions were
met with different
management plans.

Minimum yield = 119.97 Yield down from 133.30 to
126.47

Full conservation every year Yield rose from 133.34 to
140.57

Maximum leach =
2.943 lbs.

Yield fell from 133.30 to
125.47

SQ down from 0.79 to 0.716 SQ rose from 0.790 to 0.808 SQ fell from 0.79 to 0.72

MO Result 19 years conservation Result 100 years conservation Result 24 years conservation

Yield fell but minimum met Small input mix changes SQ rose from 0.790 to
0.808

Small input mix changes Condition met but leach
rose from 2.77 to 2.94

Input mix volatile

Minimum yield = 126.47 Leach rose from 2.75 to 2.96 Leach fell from 2.77 to 2.04

Maximum yield = 133.30

Condition Profit = $6,751.25, Condition Profit = $5,850.53 Condition Profit = $6,048.32 The conditions of
the definitions were
met with different
management plans.

Minimum yield = 121.97 Yield fell from 135.51 to
127.06

Full conservation every year Yield rose from 135.54 to
140.19

Maximum leach =
2.54 lbs.

Yield fell from 135.51 to
126.32

SQ fell from 0.79 to 0.672 SQ rose from 0.79 to 0.808 SQ fell from 0.79 to 0.685

MN Result 5 years conservation Result 100 years conservation Result 11 years conservation

Yield fell but minimum met Small input mix changes SQ rose from 0.79 to 0.808 Small input mix changes Condition met but leach
rose from 1.83 to 2.51

Input mix volatile

Minimum yield = 127.06 Leach rose from 1.83 to 2.79 Leach fell from 1.83 to 1.60 Leach rose from 1.83 to
2.51Maximum yield = 135.51

aCondition states the requirement for the relevant definition of sustainability; result states whether the condition has been met and provides the relevant statistics.
bImpacts presented over time are:  net discounted profit; yield trend with first and final year statistics; soil quality trend over time and first and last year statistics; number of years conservation was implemented,
whether input use was steady, had small changes over the 100 years or was volatile; leaching trend and first and last year statistics.  
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TABLE 4A-10.  SUMMARY OF THE CONDITIONS, RESULTS, AND IMPACTS OF THREE DEFINITIONS OF
SUSTAINABILITY ON THREE SUSCEPTIBLE SOILS

SUSTAINABILITY SCENARIOS

Constant Consumption Constant Stock Intergenerational Equity
Annual Conditiona Impactsb Annual Condition Impacts Final Condition Impacts General

Soil and Result Over Time and Result Over Time and Result Over Time Observations

Condition No mix of inputs could
maintain annual output

at 108.14

Condition Profit = $3,790.37 Condition Profit = $4,907.27 Best minimum yield
attainable is met
with constant stock
conditions (83%
instead of 90%).

Minimum yield = 108.14 Full conservation
every year

Yield fell from 120.15 to
100.14

Maximum leach = 8.757 lbs. Yield fell from 120.14 to
66.32

SQ fell from 0.789 to 0.633 SQ fell from 0.79 to 0.260

IA Result Result 100 years conservation Result 10 years conservation

Condition not met SQ fell from .789
to .633

Small input mix changes Condition met but leach rose
from 1.37 to 8.68

Inputs volatile

Leach rose from 1.37 to 2.97 Leach rose 1.37-8.68

Condition No mix of inputs could
maintain annual output

at 109.15

Condition Profit = $4,169.17 Condition Profit = $4,952.40 Best minimum yield
attainable is met
with constant stock
conditions (85%
instead of 90%).

Minimum yield = 109.15 Full conservation
every year

Yield fell from 121.30 to
103.07

Maximum leach= 1.49lbs Yield fell from 116.79 to
60.03

SQ fell from 0.79 to 0.58 SQ fell from 0.79 to 0.715

MO Result Result 100 yrs conservation Result 0 years conservation

Condition not met SQ fell from 0.790
to 0.58

Input mix volatile Leaching fell from 1.49 to 0.58 Input mix volatile

Leach fell from 1.66 to 1.09 Leach fell from 1.49 to 0.58

Condition Profit = $4,309.72 Condition Profit = $3,435.17 Condition Profit = $4,695.47, Best minimum yield
attainable is met
with constant stock
conditions (85%
instead of 90%).

Minimum yield = 110.42 Yield fell from 122.71 to
110.47 over time

Full conservation
every year

Yield fell from 122.69 to
109.10

Maximum leach  = 10.66 lbs. Yield fell from 122.67 to
60.55

SQ fell from 0.79 to 0.601 SQ fell from 0.79 to 0.672 SQ fell from 0.79 to 0.258

70 years conservation 100 yrs conservation 11 years conservation

MN Result Small input mix changes Result Small input mix changes Result Input mix volatile

Yield fell but minimum met Leach rose from 1.73 to
2.86

SQ fell from 0.79
to 0.672

Leach fell from 1.73 to 2.02 Condition met but leach rose
from 1.73 to 10.36

Leach rose from 1.73 to
10.36Minimum yield = 110.47

Maximum yield = 122.71

aCondition states the requirement for the relevant definition of sustainability; result states whether the condition has been met and provides the relevant statistics.
bImpacts presented over time are:  net discounted profit; yield trend with first and final year statistics; soil quality trend over time and first and last year statistics; number of years conservation was
  implemented, whether input use was steady, had small changes over the 100 years or was volatile; leaching trend and first and last year statistics.
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TABLE 4A-11.  COMPATIBILITY OF SUSTAINABILITY DEFINITIONS
ON DIFFERENT SOILS

Sustainability Definitions Attained
with the Same Soil Management Plana

Constant Constant Intergenerational Equity
Soilb Type/Location Consumption Soil Stock Leaching Income

Stable/IA X X X X

Stable/MO X X X X

Stable/MN X X X X

Neutral/IA X - - X

Neutral/MO X - - X

Neutral/MN X - - X

Susceptible/IA N/Ac - - -

Susceptible/Mo N/Ac - - -

aAn x is used to indicate all definitions that are compatible on the particular soil.  
bIA, MO, and MN represent Iowa, Missouri, and Minnesota, respectively.
cOn the Iowa and Missouri susceptible soils, the conditions for the constant consumption definition of
sustainability could not be achieved.  
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5.  CONCLUSIONS

Assessment of environmental condition is critical to wise management and policy

decisions.  However, it is difficult when there is so much dimensionality in objectives and

complexity in defining, measuring, monitoring, and predicting environmental outcomes. 

This research proposes a general method to examine the sustainability of resource

management.  For a unique production input, the endowment of a natural resource may be

modeled as an index of quality.  This index, consisting of the most important identifying

characteristics of the resource, may be placed into a production setting where the benefits of

economic use and preservation may be compared.

The methods used for soil conservation here provide one approach to assessing

sustainability.  Basic findings are summarized below.  For simplicity, soil had one objective: 

crop production.  This allowed an effective model, although other objectives such as leaching

and soil quality were accounted for.  Extrapolating this process to another environmental good,

such as forest health, would require expanding to multiple outputs and would be more difficult to

model.  Therefore, the concepts that can be easily demonstrated by this relatively simple (but still

very difficult) example can serve as a guide for how more complex systems might function and

for future models with an expanded scope. 

5.1 SELECTED FINDINGS 

As shown in the above scenarios, different definitions of sustainability have different impacts

on soils.  Management practices that fulfill the requirements (constant output, constant resource

stock, and intergenerational equity) of one definition will not necessarily fulfill the

requirements of another.  Besides yielding different results across definitions, results varied by

soil.  On a stable soil, the optimal profit making strategy is the same as the constant

consumption and constant resource stock; public intervention is not necessary and societal and

private conflicts over sustainability are avoided.  However, the pursuit of profits on a

susceptible soil does not yield a constant output, nor does the constant output assure a constant
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resource stock, and leaching also requires a different management scheme from any of the

others.

Soil conservation measures were implemented over the entire 100-year period in order to meet

the conditions for the different definitions of sustainability on all stable soils.  Therefore, one

may conclude that a soil conservation policy would meet sustainability objectives on stable

soils.  However, policies are not needed since conservation is already the most profitable

management scheme.  Neutral and susceptible soils prove more of a challenge, since the most

profitable management does not always satisfy the other versions of sustainability.

All conservation measures were implemented on neutral and susceptible soils only when

sustainability was defined as constant resource stock.  When the condition for sustainability is

constant consumption or intergenerational equity, conservation measures were used

sporadically throughout the 100-year period, and in some cases, not at all.  Therefore, in

general, one may conclude that soil conservation measures do not meet sustainability objectives

on neutral and susceptible soils.  

Reversibility is not a problem on stable soils, since it is already in the economic interest of the

farmer to preserve soil quality.  Neutral soils may be preserved longer, thus averting the

problem of reversibility, but may also fall into the same trap as susceptible soils, depending on

conservation costs and on whether it is closer to a stable or susceptible soil.

Reversibility is not possible on some soils once a critical level has been surpassed.  In this case,

susceptible soils with an initial soil quality level below .8 (as is the case for many soils that

have already been in production for years) will continue to be mined for their quality until their

productivity is greatly reduced.  However, when the initial endowment is above .8, conservation

measures can greatly reduce the rate of degradation.  The smaller the endowment of soil

quality, the less effective and less profitable conservation measures are in preserving it.

5.2  FURTHER RESEARCH OPPORTUNITIES

This research is the first step in uncovering the relationship between the path of change for

a natural resource and various definitions of sustainability.  This concept is expected to hold

across a wide range of soils and crops within the United States.  However, further research is

needed to support this claim.  Management data for 17 additional crops on hundreds of soils
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across 63 regions, soon to be released by the National Resources Conservation Services, can be

utilized in a sensitivity analysis to examine the extent to which these relationships hold over

other crops and other soils.  

In addition, these results may be contingent on various assumptions of the research.  The

following assumptions could be examined in the future.  

The Discount Rate—Sensitivity analysis could be used to determine the rate which is needed

for all objectives of sustainability to be met on one or all soils.

Relevant Time Frame—Further study is needed to best determine the appropriate time frame

for managing each resource in a sustainable manner.

Clear Definitions—There is much discussion among those who support a particular definition

as to its exact meaning.  Research could help determine the degree of flexibility within each

definition so that the same management plan remains acceptable.

Technological Advancements—Inclusion of technological advancements could be modeled to

improve the results of this study.

Conservation Cost Share—Sensitivity analysis could help determine what percentage of

conservation costs should be carried by society and by the producer in order to sustain a soil

resources.

Improvements to Soil Quality Index—This is the first soil quality index used for productivity

purposes to include a sufficiency for soil organic matter.  Further research could help identify

what other purposes this index may be applied to.
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