

Air Quality Criteria for Ozone and Related Photochemical Oxidants (Second External Review Draft)

Volume II of III

Air Quality Criteria for Ozone and Related Photochemical Oxidants

Volume II

National Center for Environmental Assessment-RTP Office Office of Research and Development U.S. Environmental Protection Agency Research Triangle Park, NC

DISCLAIMER

This document is a second external review draft for review purposes only and does not constitute U.S. Environmental Protection Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

PREFACE

National Ambient Air Quality Standards (NAAQS) are promulgated by the United States Environmental Protection Agency (EPA) to meet requirements set forth in Sections 108 and 109 of the U.S. Clean Air Act (CAA). Sections 108 and 109 require the EPA Administrator (1) to list widespread air pollutants that reasonably may be expected to endanger public health or welfare; (2) to issue air quality criteria for them that assess the latest available scientific information on nature and effects of ambient exposure to them; (3) to set "primary" NAAQS to protect human health with adequate margin of safety and to set "secondary" NAAQS to protect against welfare effects (e.g., effects on vegetation, ecosystems, visibility, climate, manmade materials, etc); and (5) to periodically review and revise, as appropriate, the criteria and NAAQS for a given listed pollutant or class of pollutants.

In 1971, the U.S. Environmental Protection Agency (EPA) promulgated National Ambient Air Quality Standards (NAAQS) to protect the public health and welfare from adverse effects of photochemical oxidants. The EPA promulgates the NAAQS on the basis of scientific information contained in air quality criteria issued under Section 108 of the Clean Air Act. Following the review of criteria as contained in the EPA document, Air Quality Criteria for Ozone and Other Photochemical Oxidants published in 1978, the chemical designation of the standards was changed from photochemical oxidants to ozone (O₃) in 1979 and a 1-hour O₃ NAAQS was set. The 1978 document focused mainly on the air quality criteria for O₃ and, to a lesser extent, on those for other photochemical oxidants (e.g., hydrogen peroxide and the peroxyacyl nitrates), as have subsequent revised versions of the ozone document. To meet Clean Air Act requirements noted above for periodic review of criteria and NAAQS, the O_3 criteria document, *Air Quality Criteria for Ozone and Other Photochemical Oxidants*, was next revised and then released in August 1986; and a supplement, *Summary of Selected New Information on Effects of Ozone on Health and Vegetation*, was issued in January 1992. These documents were the basis for a March 1993 decision by EPA that revision of the existing 1-h NAAQS for O_3 was not appropriate at that time. That decision, however, did not take into account some newer scientific data that became available after completion of the 1986 criteria document. Such literature was assessed in the next periodic revision of the O_3 air quality criteria document (completed in 1996) and provided scientific bases supporting the setting by EPA in 1997 of an 8-h O_3 NAAQS that is currently in force together with the 1-h O_3 standard.

The purpose of this revised air quality criteria document for O_3 and related photochemical oxidants is to critically evaluate and assess the latest scientific information published since that assessed in the above 1996 Ozone Air Quality Criteria Document (O_3 AQCD), with the main focus being on pertinent new information useful in evaluating health and environmental effects data associated with ambient air O_3 exposures. However, some other scientific data are also presented and evaluated in order to provide a better understanding of the nature, sources, distribution, measurement, and concentrations of O_3 and related photochemical oxidants and their precursors in the environment. The document mainly assesses pertinent literature published or accepted for publication through 2004.

The present Second Draft O_3 AQCD (dated August 2005) is being released for public comment and review by the Clean Air Scientific Advisory Committee (CASAC) to obtain comments on the organization and structure of the document, the issues addressed, the approaches employed in assessing and interpreting the newly available information on O_3 exposures and effects, and the key findings and conclusions arrived at as a consequence of this assessment. Public comments and recommendations will be taken into account making any appropriate further revisions to this document for incorporation into the final version of the document to be completed and issued by February 28, 2006. Evaluations contained in the present document will be drawn on to provide inputs to associated PM Staff Paper analyses prepared by EPA's Office of Air Quality Planning and Standards (OAQPS) to pose options for consideration by the EPA Administrator with regard to proposal and, ultimately, promulgation of decisions on potential retention or revision, as appropriate, of the current O_3 NAAQS. Preparation of this document was coordinated by staff of EPA's National Center for Environmental Assessment in Research Triangle Park (NCEA-RTP). NCEA-RTP scientific staff, together with experts from other EPA/ORD laboratories and academia, contributed to writing of document chapters. Earlier drafts of document materials were reviewed by non-EPA experts in peer consultation workshops held by EPA. The document describes the nature, sources, distribution, measurement, and concentrations of O₃ in outdoor (ambient) and indoor environments. It also evaluates the latest data on human exposures to ambient O₃ and consequent health effects in exposed human populations, to support decision making regarding the primary, health-related O₃ NAAQS. The document also evaluates ambient O₃ environmental effects on vegetation and ecosystems, man-made materials, and surface level solar UV radiation flux and global climate change, to support decision making on secondary O₃ NAAQS.

NCEA acknowledges the valuable contributions provided by authors, contributors, and reviewers and the diligence of its staff and contractors in the preparation of this draft document.

Air Quality Criteria for Ozone and Related Photochemical Oxidants (Second External Review Draft)

VOLUME I

Exec	cutive Summary	E-1
1.	INTRODUCTION	1-1
2.	PHYSICS AND CHEMISTRY OF OZONE IN THE ATMOSPHERE	2-1
3.	ENVIRONMENTAL CONCENTRATIONS, PATTERNS, AND EXPOSURE ESTIMATES	3-1
4.	DOSIMETRY, SPECIES HOMOLOGY, SENSITIVITY, AND ANIMAL-TO-HUMAN EXTRAPOLATION	4-1
5.	TOXICOLOGICAL EFFECTS OF OZONE AND RELATED PHOTOCHEMICAL OXIDANTS IN LABORATORY ANIMALS AND IN VITRO TEST SYSTEMS	5-1
6.	CONTROLLED HUMAN EXPOSURE STUDIES OF OZONE AND RELATED PHOTOCHEMICAL OXIDANTS	6-1
7.	EPIDEMIOLOGICAL STUDIES OF HUMAN HEALTH EFFECTS ASSOCIATED WITH AMBIENT OZONE EXPOSURE	7-1
8.	INTEGRATIVE SYNTHESIS: EXPOSURE AND HEALTH EFFECTS	8-1
9.	ENVIRONMENTAL EFFECTS: OZONE EFFECTS ON VEGETATION AND ECOSYSTEMS	9-1
10.	TROPOSPHERIC OZONE EFFECTS ON UV-B FLUX AND CLIMATE CHANGE PROCESSES	0-1
11.	EFFECT OF OZONE ON MAN-MADE MATERIALS 1	1-1

Air Quality Criteria for Ozone and Related Photochemical Oxidants (Second External Review Draft) (cont'd)

VOLUME II

CHAPTER 2 ANNEX (ATMOSPHERIC PHYSICS/CHEMISTRY)	AX2-1
CHAPTER 3 ANNEX (AIR QUALITY AND EXPOSURE)	AX3-1
CHAPTER 4 ANNEX (DOSIMETRY)	AX4-1
CHAPTER 5 ANNEX (ANIMAL TOXICOLOGY)	AX5-1
CHAPTER 6 ANNEX (CONTROLLED HUMAN EXPOSURE)	AX6-1
CHAPTER 7 ANNEX (EPIDEMIOLOGY)	AX7-1

VOLUME III

CHAPTER 9 ANNEX (ENVIRONMENTAL EFFECTS) AX9-1

					Page
List of T	ables				II-xiii
List of F	Figures				II-xviii
	-				
U.S. En	vironmenta	l Protection A	gency Project	Feam for Development of Air Quality	
				mical Oxidants	II-xxxv
				Advisory Board (SAB) Staff Office	
				e (CASAC) Ozone Review Panel	II-xxxviii
Abbrevi	ations and	Acronyms	- 	· · · · · · · · · · · · · · · · · · ·	II-xli
		2			
AX2.	PHYSICS	S AND CHEM	IISTRY OF OZ	CONE IN THE ATMOSPHERE	AX2-1
	AX2.1	INTRODUC	TION		AX2-1
	AX2.2	TROPOSPH	ERIC OZONE	CHEMISTRY	AX2-2
		AX2.2.1	Atmospheric S	Structure	AX2-2
		AX2.2.2	Overview of C	Dzone Chemistry	AX2-3
		AX2.2.3	Initiation of th	e Oxidation of VOCs	AX2-6
		AX2.2.4	Chemistry of I	Nitrogen Oxides in the Troposphere	AX2-11
		AX2.2.5	The Methane	Oxidation Cycle	AX2-14
		AX2.2.6	The Atmosphe	eric Chemistry of Alkanes	AX2-20
		AX2.2.7	The Atmosphe	eric Chemistry of Alkenes	AX2-23
		AX2.2.8	The Atmosphe	eric Chemistry of Aromatic Hydrocarbons .	AX2-31
			AX2.2.8.1	Chemical Kinetics and Atmospheric	
				Lifetimes of Aromatic Hydrocarbons	AX2-32
			AX2.2.8.2	Reaction Products and Mechanisms	
				of Aromatic Hydrocarbon Oxidation	AX2-36
			AX2.2.8.3	The Formation of Secondary Organic	
				Aerosol as a Sink for Ozone Precursors	AX2-44
		AX2.2.9	Importance of	Oxygenated VOCs	AX2-44
		AX2.2.10	Influence of M	Iultiphase Chemical Processes	AX2-45
			AX2.2.10.1	HO _x and Aerosols	AX2-47
			AX2.2.10.2	NO _x Chemistry	AX2-50
			AX2.2.10.3	Halogen Radical Chemistry	AX2-52
			AX2.2.10.4	Reactions on the Surfaces of Crustal	
				Particles	AX2-56
			AX2.2.10.5	Reactions on the Surfaces of Aqueous	
				H ₂ SO ₄ Solutions	AX2-57
			AX2.2.10.6	Oxidant Formation in Particles	AX2-58
	AX2.3	PHYSICAL	PROCESSES I	NFLUENCING THE ABUNDANCE	
		OF OZONE			AX2-59
		AX2.3.1	Stratospheric-	Tropospheric Ozone Exchange (STE)	AX2-61
		AX2.3.2		ion in the Troposphere	
			AX2.3.2.1	Observations of the Effects of	
				Convective Transport	AX2-72
			AX2.3.2.2	Modeling the Effects of Convection	AX2-75
		AX2.3.3	Nocturnal Low	w-Level Jets	

	AX2.3.4	Intercontiner	ntal Transport of Ozone and Other Pollutants .	AX2-82
		AX2.3.4.1	The Atmosphere/Ocean Chemistry	
			Experiment, AEROCE	AX2-82
		AX2.3.4.2	The North Atlantic Regional Experiment,	
			NARE	
	AX2.3.5	The Relation	of Ozone to Solar Ultraviolet Radiation,	
			d Air Temperature	AX2-88
		AX2.3.5.1	Solar Ultraviolet Radiation and Ozone	AX2-88
		AX2.3.5.2	Impact of Aerosols on Radiation and	
			Photolysis Rates and Atmospheric	
			Stability	AX2-89
		AX2.3.5.3	Temperature and Ozone	AX2-89
AX2.4	THE RELA	ATION OF OZO	ONE TO ITS PRECURSORS AND	
	OTHER O	XIDANTS		AX2-93
	AX2.4.1	Summary of	Results for the Relations Among Ozone,	
		its Precursor	s and Other Oxidants from Recent	
		Field Experiment	ments	AX2-96
		AX2.4.1.1		
			and Related Experiments	AX2-96
		AX2.4.1.2	Results from Studies on Biogenic and	
			Anthropogenic Hydrocarbons and	
			Ozone Production	. AX2-100
		AX2.4.1.3	Results of Studies on Ozone Production	
			in Mississippi and Alabama	. AX2-101
		AX2.4.1.4	The Nocturnal Urban Plume Over	
			Portland, Oregon	. AX2-102
		AX2.4.1.5	Effects of VOCs in Houston on	
			Ozone Production	. AX2-102
		AX2.4.1.6	Chemical and Meteorological Influences	
			on the Phoenix Urban Ozone Plume	. AX2-103
		AX2.4.1.7	Transport of Ozone and Precursors	
			on the Regional Scale	. AX2-103
		AX2.4.1.8	Model Calculations and Aircraft	
			Observations of Ozone Over	
			Philadelphia	
		AX2.4.1.9	The Two-Reservoir System	. AX2-105
AX2.5	METHODS USED TO CALCULATE RELATIONS BETWEEN			
			JRSORS	
	AX2.5.1		ransport Models	
	AX2.5.2		Ozone Precursors	
	AX2.5.3		ally-Based Models	
	AX2.5.4	Chemistry-T	ransport Model Evaluation	. AX2-129

			AXA.5.4.1 AX2.5.4.2	Evaluation of Emissions Inventories Availability and Accuracy of Ambient	
	AX2.6	TECHNIQU	JES FOR MEA	Measurements SURING OZONE AND ITS	AX2-143
		PRECURSO			
		AX2.6.1	Sampling and	Analysis of Ozone	AX2-144
		AX2.6.2	Sampling and	Analysis of Nitrogen Oxides	AX2-147
			AX2.6.2.1	Calibration Standards	AX2-148
			AX2.6.2.2	Measurement of Nitric Oxide	AX2-149
			AX2.6.2.3	Measurements of Nitrogen Dioxide	AX2-150
			AX2.6.2.4	Monitoring for NO ₂ Compliance Versus	
				Monitoring for Ozone Formation	AX2-151
		AX2.6.3	Measurements	s of Nitric Acid Vapor, HNO ₃	AX2-151
		AX2.6.4	Sampling and	Analysis of Volatile Organic	
				Polar Volatile Organic Compounds	
	REFERE	NCES			AX2-156
AX3.				TIONS, PATTERNS, AND	
	AX3.1				
	AX3.2			ENTRATIONS	AX3-4
		AX3.2.1		istribution of Metrics for Characterizing	
				Vegetation to Ozone	
	AX3.3			IN OZONE CONCENTRATIONS	AX3-39
		AX3.3.1		oility of Ozone Concentrations in	1 3/2 40
			Urban Areas		AX3-40
		AX3.3.2		orizontal and Spatial Variability in	
				ntrations	
	1 7/2 1	AX3.3.3		ntrations at High Elevations	
	AX3.4			OZONE CONCENTRATION	
		AX3.4.1		ns in Urban Areas	
		AX3.3.2			
	AX3.5	AX3.3.3		ns in Nonurban Areas	
	АЛЭ.Э	AX3.5.1		ations in Urban Areas	
		AX3.5.1 AX3.5.2		ations in Nonurban Areas	
	AX3.6			CENTRATIONS	
	AX3.0 AX3.7			DZONE, OTHER OXIDANTS, AND	AA3-105
	AA3./			JZONE, OTHER OXIDANTS, AND	AV2 114
	AX3.8			EN SURFACE OZONE AND	AA3-114
	АЛЭ.0			EN SURFACE OZONE AND	AV2 101
		AX3.8.1			
		AX3.8.1 AX3.8.2		e of Ozone with Nitrogen Oxides	
		AAJ.0.2			···· AAJ-123

(cont'd)

Page

	AX3.8.3	Co-Occurrent	ce of Ozone with Sulfur Dioxide	AX3-125
	AX3.8.4	Co-Occurrent	ce of Ozone and Daily PM ₂₅	AX3-126
	AX3.8.5		ce of Ozone with Acid Precipitation	
	AX3.8.6		ce of Ozone with Acid Cloudwater	
AX3.9	THE METH	HODOLOGY F	OR DETERMINING POLICY	
			ND OZONE CONCENTRATIONS	AX3-130
	AX3.9.1	Introduction		AX3-130
	AX3.9.2	Capability of	Global Models to Simulate	
		Tropospheric	Ozone	AX3-146
	AX3.9.3	Mean Backgr	ound Concentrations: Spatial and	
		Seasonal Var	iation	AX3-150
	AX3.9.4	Frequency of	High-Ozone Occurrences at	
			-	AX3-152
AX3.10	OZONE EX	XPOSURE IN V	ARIOUS MICROENVIRONMENTS	AX3-160
	AX3.10.1	Introduction		AX3-160
	AX3.10.2	Summary of t	he Information Presented in the	
		Exposure Dis	cussion in the 1996 Ozone	
		Criteria Docu	ment	AX3-161
	AX3.10.3		Human Exposure	
	AX3.10.4	Quantification	n of Exposure	AX3-162
	AX3.10.5	Methods to E	stimate Personal Exposure	
		AX3.10.5.1	Direct Measurement Method	
		AX3.10.5.2	Indirect Measurement Method	AX3-164
	AX3.10.6	Ozone Expos	ure Models	
		AX3.10.6.1	1 1	
		AX3.10.6.2	Ambient Concentrations Models	AX3-180
		AX3.10.6.3	Microenvironmental Concentration	
			Models	
	AX3.10.7		posures and Monitored Concentrations	
		AX3.10.7.1	Personal Exposure Measurements	
		AX3.10.7.2	Monitored Ambient Concentrations	AX3-189
		AX3.10.7.3	Ozone Concentrations in	
			Microenvironments	
	AX3.7.4		ting Ozone Concentrations Indoors	
	AX3.10.8		ncentrations Within Microenvironments	
	AX3.10.9		ion of Exposure	
		AX3.10.9.1	Use of Ambient Ozone Concentrations .	AX3-216
		AX3.10.9.2	Exposure Selection in Controlled	
			Exposure Studies	AX3-218
		AX3.10.9.3	Exposure to Related Photochemical	
			Agents	AX3-219

I age

AX4.	DOSIMI AX4.1			RESPIRATORY TRACT	
	AX4.2			E DOSIMETRY INVESTIGATIONS	
	111177.2	AX4.2.1		nse Studies	
		AX4.2.2		the Studies	
	AX4.3			G	
	AX4.4			SENSITIVITY AND ANIMAL-TO-	
				ION	AX4-16
	REFERE				
AX5.	ANNEX	ТО СНАРТ	ER 5 OF OZON	IE AQCD	AX5-1
	REFERE	ENCES			AX5-64
AX6.	CONTR	OLLED HUN	MAN EXPOSU	RE STUDIES OF OZONE AND	
	RELATI	ED PHOTOC	CHEMICAL OX	IDANTS	AX6-1
	AX6.1	INTRODU	CTION		AX6-1
	AX6.2	PULMON	ARY FUNCTIC	N EFFECTS OF OZONE EXPOSURE	
		IN HEALT	THY SUBJECTS	8	AX6-2
		AX6.2.1	Introduction		AX6-2
		AX6.2.2	Acute Ozone	Exposures for Up to 2 Hours	AX6-3
	AX6.2.3 Prolonged Ozone Exposures			zone Exposures	AX6-10
			AX6.2.3.1	Effect of Exercise Ventilation Rate	
				on FEV_1 Response to 6.6 h Ozone	
				Exposure	AX6-13
			AX6.2.3.2	Exercise Ventilation Rate as a Function	
				of Body/Lung Size on FEV ₁ Response	
				to 6.6 h Ozone Exposure	AX6-14
			AX6.2.3.3	Comparison of 6.6 h Ozone Exposure	
				Pulmonary Responses to Those	
				Observed in 2 h Intermittent Exercise	
				Ozone Exposures	
		AX6.2.4		zone Exposures	
		AX6.2.5		of Pulmonary Function Responses	
			AX6.2.5.1	Pathophysiologic Mechanisms	AX6-22
			AX6.2.5.2	Mechanisms at a Cellular and	1376 07
	AVCO			Molecular Level	AX6-27
	AX6.3		LMONARY FUNCTION EFFECTS OF OZONE EXPOSURE		
				EEXISTING DISEASE	AA0-28
		AX6.3.1		h Chronic Obstructive Pulmonary	AVC 22
		AVE22		Agthma	
		AX6.3.2		1 Asthma	
		AX6.3.3	•	Allergic Rhinitis	
		AX6.3.4	Subjects with	n Cardiovascular Disease	AX0-39

Table of Contents (cont'd)

Page

	AX6.4	INTERSUE	BJECT VARIABILITY AND REPRODUCIBILITY	
		OF RESPO	NSE	AX6-40
	AX6.5		CE OF AGE, GENDER, ETHNIC, ENVIRONMENTAL	
			ER FACTORS	AX6-44
		AX6.5.1	Influence of Age	
		AX6.5.2	Gender and Hormonal Influences	
		AX6.5.3	Racial, Ethnic, and Socioeconomic Status Factors	
		AX6.5.4	Influence of Physical Activity	
		AX6.5.5	Environmental Factors	
		AX6.5.6	Oxidant-Antioxidant Balance	
		AX6.5.7	Genetic Factors	
	AX6.6		D EXPOSURES TO OZONE	
	AX6.7		ON EXERCISE PERFORMANCE	
	1 11 1017	AX6.7.1	Introduction	
		AX6.7.2	Effect on Maximal Oxygen Uptake	
		AX6.7.3	Effect on Endurance Exercise Performance	
	AX6.8		ON AIRWAY RESPONSIVENESS	
	AX6.9		ON INFLAMMATION AND HOST DEFENSE	
	11110.9	AX6.9.1	Introduction	
		AX6.9.2	Inflammatory Responses in the Upper	
		11110.9.2	Respiratory Tract	AX6-113
		AX6.9.3	Inflammatory Responses in the Lower	AA0-115
		AA0.9.3	Respiratory Tract	A V6 115
		AX6.9.4	Adaptation of Inflammatory Responses	
		AX6.9.4 AX6.9.5	Effect of Anti-Inflammatory and Other	AA0-121
		AA0.9.3	Mitigating Agents	AV6 122
		AX6.9.6	Changes in Host Defense Capability Following	AA0-122
		AA0.9.0		AV6 124
	AVC 10		Ozone Exposure	
	AX6.10		LMONARY EFFECTS OF OZONE	
	AX6.11		IXED WITH OTHER POLLUTANTS	
		AX6.11.1	Ozone and Sulfur Oxides	
		AX6.11.2	Ozone and Nitrogen-Containing Pollutants	AX6-135
		AX6.11.3	Ozone and Other Pollutant Mixtures Including	1376 130
	1 37 6 1 9	CONTRACT	Particulate Matter	
	AX6.12		LED STUDIES OF AMBIENT AIR EXPOSURES	
		AX6.12.1	Mobile Laboratory Studies	
		AX6.12.2	Aircraft Cabin Studies	
	REFERE	NCES		AX6-143
AX7.			TUDIES OF HUMAN HEALTH EFFECTS	
			I AMBIENT OZONE EXPOSURE	AX/-1
	AX7-1		pidemiologic Studies of Human Health Effects	
			with Ambient Ozone Exposure	
	AX7-2	Description	of Summary Density Curves	AX7-115

<u>Number</u>		Page
AX2-1	Comparison of the Atmospheric Lifetimes (τ) of Low Molecular Weight Hydrocarbons Due to Reaction with OH, NO ₃ , Cl, Br and O ₃	AX2-7
AX2-2	Calculated Atmospheric Lifetimes of Biogenic Volatile Organic Compounds (adapted from Atkinson and Arey, 2003)	. AX2-25
AX2-3	Hydroxyl Rate Constants and Atmospheric Lifetimes of Mono- and Di-cyclic Aromatic Hydrocarbons (adapted from Atkinson 2000)	. AX2-34
AX2-4	Chemistry-Transport Models (CTM) Contributing to the Oxcomp Evaluation of Predicting Tropospheric O ₃ and OH (Prather and Ehhalt, 2001)	AX2-120
AX2-5	Emissions of Nitrogen Oxides by Various Sources in the United States in 1999	AX2-121
AX2-6	Emissions of Volatile Organic Compounds by Various Sources in the United States in 1999	AX2-122
AX2-7	Emissions of Ammonia by Various Sources in the United States in 1999	AX2-123
AX2-8	Emissions of Carbon Monoxide by Various Sources in the United States in 1999	AX2-124
AX3-1	Ozone Monitoring Seasons by State	AX3-3
AX3-2	Summary of Percentiles of Pooled Data Across Monitoring Sites for May to September 2000-2004 Concentrations are in ppb	. AX3-11
AX3-3	Seasonal (April to October) Percentile Distribution of Hourly Ozone Concentrations (ppm), Number of Hourly Mean Ozone Occurrences ≥ 0.08 and ≥ 0.10 , Seasonal 7-h Average Concentrations, SUM06, and W126 Values for Sites Experiencing Low Maximum Hourly Average Concentrations with Data Capture of $\geq 75\%$. AX3-18
AX3-4	The Top 10 Daily Maximum 8-h Average Concentrations (ppm) for Sites Experiencing Low Maximum Hourly Average Concentrations with Data Capture of \geq 75%	. AX3-23
AX3-5	Summary Statistics for Ozone (in ppm) Spatial Variability in Selected U.S. Urban Areas	. AX3-42
AX3-6	Description of Mountain Cloud Chemistry Program Sites	. AX3-60

<u>Number</u>]	Page
AX3-7	Seasonal (April-October) Percentiles, SUM06, SUM08, and W126 Values for the MCCP Sites	3-61
AX3-8	Summary Statistics for 11 Integrated Forest Study Sites AX	3-65
AX3-9	Trends in Warm Season (May to September) Daily Maximum 8-h O ₃ Concentrations at National Parks in the United States (1990 to 2004) AX3	-112
AX3-10	Range of Annual (January-December) Hourly Ozone Concentrations (ppb) at Background Sites Around the World (CMDL, 2004) AX3-	-136
AX3-11	Range of annual (January-December) Hourly Median and Maximum Ozone Concentrations (ppb) at Background Stations in Protected Areas of the United States (CASTNet, 2004)	-136
AX3-12	Range of annual (January-December) Hourly Median and Maximum Ozone Concentrations (ppb) at Canadian Background Stations (CAPMoN ^a , 2003) AX3	-136
AX3-13	Number of Hours ≥ 0.05 ppm for Selected Rural O ₃ Monitoring in the United States by Month for the Period 1988 to 2001 AX3	-138
AX3-14	Number of Hours ≥ 0.06 ppm for Selected Rural O ₃ Monitoring Sites in the United States by Month for the Period of 1988 to 2001 AX3	-140
AX3-15	Global Budgets of Tropospheric Ozone (Tg year ⁻¹) for the Present-day Atmosphere	-145
AX3-16	Description of Simulations Used for Source Attribution (Fiore et al., 2003a) AX3	-149
AX3-17	Number of Hours with Ozone Above 50 or 60 ppbv at U.S. CASTNet Sites in 2001 AX3	-154
AX3-18	Activity Pattern Studies Included in the Consolidated Human Activity Database (CHAD) AX3	-174
AX3-19	Personal and Population Exposure Models for Ozone AX3	-179
AX3-20	Personal Exposure Measurements AX3	-186
AX3-21	Indoor/Outdoor Ozone Ratios AX3	-191
AX3-22	Indoor and Outdoor O ₃ Concentrations in Boston, MA AX3	-196

<u>Number</u>		Page
AX3-23	Indoor and Outdoor O ₃ Concentrations in Hong Kong A	X3-198
AX3-24	Indoor and Outdoor Ozone Concentrations A	X3-201
AX3-25	Rate Constants (h ⁻¹) for the Removal of Ozone by Surfaces in Different Indoor Environments	X3-210
AX4-1	New Experimental Human Studies on Ozone Dosimetry	. AX4-4
AX4-2	New Ozone Dosimetry Model Investigations	AX4-12
AX5-1	Cellular Targets of Ozone Interaction	. AX5-2
AX5-2	Effects of Ozone on Lung Monooxygenases	. AX5-3
AX5-3	Antioxidants, Antioxidant Metabolism, and Mitochondrial Oxygen Consumption	. AX5-4
AX5-4	Lipid Metabolism and Content of the Lung	. AX5-5
AX5-5	Effects of Ozone on Protein Synthesis	. AX5-7
AX5-6	Effects of Ozone on Differential Gene Expression	. AX5-8
AX5-7	Effects of Ozone on Lung Host Defenses	. AX5-9
AX5-8	Effects of Ozone on Lung Permeability and Inflammation	AX5-18
AX5-9	Effects of Ozone on Lung Structure: Acute and Subchronic Exposures	AX5-29
AX5-10	Effects of Ozone on Lung Structure: Subchronic and Chronic Exposures	AX5-33
AX5-11	Effects of Ozone on Pulmonary Function	AX5-36
AX5-12	Effects of Ozone on Airway Responsiveness	AX5-38
AX5-13	Effects of Ozone on Genotoxicity/Carcinogenicity	AX5-45
AX5-14	Systemic Effects of Ozone	AX5-46
AX5-15	Interactions of Ozone With Nitrogen Dioxide	AX5-53
AX5-16	Interactions of Ozone with Formaldehyde	AX5-55

Number		Page
AX5-17	Interactions of Ozone with Tobacco Smoke AX	5-56
AX5-18	Interactions Of Ozone With Particles AX	5-57
AX5-19	Effects of Other Photochemical Oxidants AX	5-63
AX6-1	Controlled Exposure of Healthy Humans to Ozone for 1 to 2 Hours During Exercise	X6-5
AX6-2	Pulmonary Function Effects after Prolonged Exposures to Ozone AX	6-11
AX6-3	Ozone Exposure in Subjects with Preexisting Disease AX	6-29
AX6-4	Classification of Asthma Severity AX	6-37
AX6-5	Age Differences in Pulmonary Function Responses to Ozone AX	6-45
AX6-6	Gender and Hormonal Differences in Pulmonary Function Responses to Ozone	6-52
AX6-7	Influence of Ethnic, Environmental, and Other Factors AX	6-61
AX6-8	Changes in Forced Expiratory Volume in One Second After Repeated Daily Exposure to Ozone	6-72
AX6-9	Pulmonary Function Effects with Repeated Exposures to Ozone AX	6-73
AX6-10	Ozone Effects on Exercise Performance AX	6-83
AX6-11	Airway Responsiveness Following Ozone Exposures AX	6-88
AX6-12	Studies of Respiratory Tract Inflammatory Effects from Controlled Human Exposure to Ozone AX	6-99
AX6-13	Studies of Effects on Host Defense, on Drug Effects and Supportive In Vitro Studies Relating to Controlled Human Exposure to Ozone AX6	-106
AX6-14	Ozone Mixed with Other Pollutants AX6	-131
AX6-15	Acute Effects of Ozone in Ambient Air in Field Studies with a Mobile Laboratory AX6	-140
AX7-1	Effects of Acute O ₃ Exposure on Lung Function and Respiratory Symptoms in Field Studies	X7-3

Number		<u>Page</u>
AX7-2	Effects of Acute O ₃ Exposure on Cardiovascular Outcomes in Field Studies	AX7-28
AX7-3	Effects of O ₃ on Daily Emergency Department Visits	AX7-35
AX7-4	Effects of O ₃ on Daily Hospital Admissions	AX7-47
AX7-5	Effects of Acute O ₃ Exposure on Mortality	AX7-64
AX7-6	Effects of Chronic O ₃ Exposure on Respiratory Health	AX7-95
AX7-7	Effects of Chronic O ₃ Exposure on Mortality and Incidence of Cancer	AX7-112
AX7-8	Ozone-Associated Cardiovascular Mortality Risk Estimates (95% CI) per Standardized Increment	AX7-121

List of Figures

<u>Number</u>		Page
AX2-1	Schematic overview of O ₃ photochemistry in the stratosphere and troposphere	AX2-4
AX2-2	General chemical mechanism for the oxidative degradation of VOCs	AX2-21
AX2-3	Hydroxyl radical initiated oxidation of a) propane and b) propene	AX2-24
AX2-4	Structures of a selected number of terpene and sesquiterpene compounds	AX2-27
AX2-5	Products from the reaction of terpenes with ozone	AX2-30
AX2-6	Initial steps in the photooxidation mechanism of toluene initiated by its reaction with OH radicals	AX2-39
AX2-7a	Cross section through a tropopause folding event on March 13, 1978 at 0000 GMT	AX2-63
AX2-7b	Ozone mixing ratios pphm (parts per hundred million) corresponding to Figure AX2-7A	AX2-66
AX2-7c	Condensation nuclei concentrations (particles cm ⁻³) corresponding to Figure AX2-7a	AX2-67
AX2-8	Schematic diagram of a meteorological mechanism involved in high concentrations of O_3 found in spring in the lower troposphere off the American east coast	AX2-70
AX2-9a,b	(a) Contour plot of CO mixing ratios (ppbv) observed in and near the June 15, 1985, mesoscale convective complex in eastern Oklahoma	AX2-74
AX2-10	The diurnal evolution of the planetary boundary layer while high pressure prevails over land	AX2-79
AX2-11	Locations of low level jet occurrences in decreasing order of prevalence (most frequent, common, observed)	AX2-79
AX2-12	Schematic diagram showing the diurnal behavior of O_3 and the development of secondary O_3 maxima resulting from downward transport from the residual layer when a low-level jet is present	AX2-81
AX2-13	The nocturnal low-level jet occupies a thin slice of the atmosphere near the Earth's surface	AX2-81
AX2-14	A scatter plot of daily maximum 8-h O_3 concentration versus daily maximum temperature in the Baltimore, MD Air Quality Forecast Area	AX2-90

Number	Pag	<u>e</u>
AX2-15	A scatter plot of daily maximum 1-h average O_3 concentration versus daily maximum temperature in the Baltimore, MD Air Quality Forecast Area AX2-9	1
AX2-16	A scatter plot of daily maximum 8-h average O ₃ concentrations versus daily maximum temperature downwind of Phoenix, AZ	1
AX2-17	Measured values of O_3 and NO_z ($NO_y - NO_x$) during the afternoon at rural sites in the eastern United States (gray circles) and in urban areas and urban plumes associated with Nashville, TN (gray dashes), Paris, FR (black diamonds) and Los Angeles, CA (X's)	6
AX2-18	Conceptual two-reservoir model showing conditions in the PBL and in the lower free troposphere during a multi-day O ₃ episode	6
AX2-19	Seasonal variability in O ₃ concentrations observed at a number of pressure surfaces at six ozonesonde sites and the predictions of 13 global scale chemistry-transport models	8
AX2-20	Seasonal variability in O ₃ concentrations observed at a number of pressure surfaces at six ozonesonde sites and the predictions of 13 global scale chemistry-transport models AX2-11	9
AX2-21a,b	Impact of model uncertainty on control strategy predictions for O ₃ for two days (August 10[a] and 11[b], 1992) in Atlanta, GA AX2-13	0
AX2-22	Ozone isopleths (ppb) as a function of the average emission rate for NO _x and VOC (10^{12} molec. cm ⁻² s ⁻¹) in zero dimensional box model calculations	2
AX2-23a	Time series for measured gas-phase species in comparison with results from a photochemical model AX2-13	3
AX2-23b	Time series for measured gas-phase species in comparison with results from a photochemical model	5
AX2-24	Correlations for O_3 versus NO_z ($NO_y - NO_x$) in ppb from chemical transport models for the northeast corridor, Lake Michigan, Nashville, the San Joaquin Valley and Los Angeles	7
AX2-25a,b	Evaluation of model versus measured O ₃ versus NO _y for two model scenarios for Atlanta AX2-13	8
AX2-26a,b	Evaluation of model versus: (a) measured O_3 versus NO_z and (b) O_3 versus the sum $2H_2O_2 + NO_z$ for Nashville, TN AX2-13	.9

Number	Page
AX2-27	Time series of concentrations of RO_2 , HO_2 , and OH radicals, local O_3 photochemical production rate and concentrations of NO_x from measurements made during BERLIOZ
AX3-1	Countywide mean daily maximum 8-h O ₃ concentrations, May to September 2002 to 2004 AX3-6
AX3-2	Countywide 95th percentile value of daily maximum 8-h O ₃ concentrations, May to September 2002 to 2004 AX3-7
AX3-3	Locations of monitoring sites used for calculating countywide averages across the United States
AX3-4	Distribution of nationwide daily maximum 1-h average O ₃ concentrations from May to September 2000 to 2004 AX3-9
AX3-5	Distribution of nationwide daily maximum 8-h average O ₃ concentrations from May to September 2000 to 2004 AX3-9
AX3-6	Distribution of nationwide 24-h average O ₃ concentrations from May to September 2000 to 2004 AX3-10
AX3-7	Box plots showing O_3 averaged by month from 1993 to 2002 in the five regions in the eastern United States derived by Lehman et al. (2004) AX3-12
AX3-8	Hourly average O ₃ concentrations observed at selected rural-agricultural sites from April to October 2001 AX3-14
AX3-9	Hourly average O ₃ concentrations observed at selected rural-forest sites from April to October 2001 AX3-15
AX3-10	Hourly average O ₃ concentrations observed at selected rural-commercial or -residential sites from April to October 2001 AX3-16
AX3-11a-d	Daily 8-h maximum O3 concentrations observed at selected national park sites
AX3-12	Seasonal SUM06 and W126 exposure indices for the Ouachita National Forest for the period of 1991 to 2001 AX3-27
AX3-13	Six-month (April to September) 24-h cumulative W126 exposure index with the number of hourly average concentrations ≥ 0.10 ppm (N100) occurring during 2001 for the eastern United States

<u>Number</u>		Page
AX3-14	Six-month (April to September) 24-h cumulative SUM06 exposure index with the number of hourly average concentrations ≥ 0.10 ppm (N100) occurring during 2001 for the eastern United States	AX3-30
AX3-15	Six-month (April to September) 24-h cumulative W126 exposure index with the number of hourly average concentrations ≥ 0.10 ppm (N100) occurring during 2001 for the central United States	AX3-31
AX3-16	Six-month (April to September) 24-h cumulative SUM06 exposure index with the number of hourly average concentrations ≥ 0.10 ppm (N100) occurring during 2001 for the central United States	AX3-32
AX3-17	Six-month (April to September) 24-h cumulative W126 exposure index with the number of hourly average concentrations ≥ 0.10 ppm (N100) occurring during 2001 for the western United States	AX3-33
AX3-18	Six-month (April to September) 24-h cumulative SUM06 exposure index with the number of hourly average concentrations ≥ 0.10 ppm (N100) occurring during 2001 for the western United States	AX3-34
AX3-19	The 95% confidence interval for the 6-month (April to September) 24-h cumulative W126 exposure index for 2001 for the eastern United States	AX3-35
AX3-20	The 95% confidence interval for the 6-month (April to September) 24-h cumulative SUM06 exposure index for 2001 for the eastern United States .	AX3-35
AX3-21	The 95% confidence interval for the 6-month (April to September) 24-h cumulative N100 exposure index for 2001 for the eastern United States	AX3-36
AX3-22	The 95% confidence interval for the 6-month (April to September) 24-h cumulative W126 exposure index for 2001 for the central United States	AX3-36
AX3-23	The 95% confidence interval for the 6-month (April to September) 24-h cumulative SUM06 exposure index for 2001 for the central United States .	AX3-37
AX3-24	The 95% confidence interval for the 6-month (April to September) 24-h cumulative N100 exposure index for 2001 for the central United States	AX3-37
AX3-25	The 95% confidence interval for the 6-month (April to September) 24-h cumulative W126 exposure index for 2001 for the western United States	AX3-38
AX3-26	The 95% confidence interval for the 6-month (April to September) 24-h cumulative SUM06 exposure index for 2001 for the western United States .	AX3-38

Number	Pag	<u>e</u>
AX3-27	The 95% confidence interval for the 6-month (April to September) 24-h cumulative N100 exposure index for 2001 for the western United States AX3-3	9
AX3-28	Locations of O_3 sampling sites (a) by AQS ID# (b) and intersite correlation statistics (c) for the Charlotte, NC-Gastonia-Rock Hill, SC MSA AX3-4	3
AX3-29	Locations of O_3 sampling sites (a) by AQS ID# (b) and intersite correlation statistics (c) for the Baton Rouge, LA MSA	4
AX3-30	Locations of O_3 sampling sites (a) by AQS ID# (b) and intersite correlation statistics (c) for the Detroit-Ann Arbor-Flint, MI CMSA	5
AX3-31	Locations of O_3 sampling sites (a) by AQS ID# (b) and intersite correlation statistics (c) for the St. Louis, MO-IL MSA	6
AX3-32	Locations of O_3 sampling sites (a) by AQS ID# (b) and intersite correlation statistics (c) for the Phoenix-Mesa, AZ MSA	8
AX3-33	Locations of O_3 sampling sites (a) by AQS ID# (b) and intersite correlation statistics (c) for the Fresno, CA MSA	9
AX3-34	Locations of O_3 sampling sites (a) by AQS ID# (b) and intersite correlation statistics (c) for the Bakersfield, CA MSA	50
AX3-35	Locations of O_3 sampling sites (a) by AQS ID# (b) and intersite correlation statistics (c) for the Los Angeles-Orange County, CA CMSA	51
AX3-36	Locations of O_3 sampling sites (a) by AQS ID# (b) and intersite correlation statistics (c) for the Riverside-Orange County, CA CMSA AX3-5	;3
AX3-37	Vertical profile of O ₃ obtained over low vegetation AX3-5	57
AX3-38	Vertical profile of O ₃ obtained in a spruce forest AX3-5	8
AX3-39a-d	Seven- and 12-h seasonal means at (a) Whiteface Mountain and (b) Shenandoah National Park for May to September 1987, and integrated exposures at (c) Whiteface Mountain and (d) Shenandoah National Park for May to September 1987	53
АХ3-40а-е	Integrated exposures for three non-Mountain Cloud Chemistry Program Shenandoah National Park sites, 1983 to 1987 AX3-6	54
AX3-41	Composite, nationwide diurnal variability in hourly averaged O ₃ in urban areas AX3-6	59

<u>Number</u>	Page
AX3-42	Composite, nationwide diurnal variability in 8 hour average O ₃ in urban areas AX3-70
AX3-43a-f	Diurnal variability in hourly averaged O ₃ in selected urban areas AX3-71
AX3-43g-l	Diurnal variability in hourly averaged O ₃ in selected urban areas AX3-72
AX3-44a-f	Diurnal variability in 8 hour averaged O_3 in selected urban areas AX3-74
AX3-44g-l	Diurnal variability in 8 hour averaged O_3 in selected urban areas AX3-75
AX3-45a-d	Time of occurrence of daily maximum 1-h O_3 concentration in four cities, averaged from April to October, 2000 to 2004 AX3-77
AX3-46a-d	Time of occurrence of daily maximum 8-h average O ₃ concentration in four cities, averaged from April to October, 2000 to 2004 AX3-78
AX3-47a-d	Diurnal variations in hourly averaged O ₃ on weekdays and weekends in four cities
AX3-47e-h	Diurnal variations in hourly averaged O ₃ on weekdays and weekends in four cities
AX3-48a-d	Diurnal variations in 8-h averaged O ₃ on weekdays and weekends in four cities
AX3-48e-h	Diurnal variations in hourly averaged O ₃ on weekdays and weekends in four cities
AX3-49a	Diurnal variations in hourly averaged O_3 at a site in downtown Detroit, MI AX3-84
AX3-49b	Diurnal variations in hourly averaged O ₃ at a site downwind of downtown Detroit AX3-84
AX3-50a	Diurnal variations in hourly averaged O ₃ at a site in downtown St. Louis, MO AX3-85
AX3-50b	Diurnal variations in hourly averaged O ₃ at a site downwind of downtown St. Louis
AX3-51a	Diurnal variations in hourly averaged O_3 at a site in San Bernadino, CA AX3-86
AX3-51b	Diurnal variations in hourly averaged O ₃ at a site in Riverside County well downwind of sources AX3-86

<u>Number</u>	Page
AX3-52a	Diurnal variations in 8-h average O ₃ at a site in downtown Detroit, MI AX3-87
АХ52-b	Diurnal variations in 8-h average O ₃ at a site downwind of downtown Detroit, MI
AX3-53a	Diurnal variations in 8-h average ozone at a site in downtown St. Louis, MO
AX3-53b	Diurnal variations in 8-h average O_3 at a site downwind of downtown St. Louis, MO
	AX3-88
AX3-54a	Diurnal variations in 8-h average O_3 at a site in San Bernadino, CA AX3-89
AX3-54b	Diurnal variations in 8-h average O ₃ at a site in Riverside County well downwind of sources AX3-89
AX3-55	Composite diurnal variability in hourly O ₃ concentrations observed at CASTNET sites AX3-90
AX3-56	Composite diurnal variability in 8-h average O ₃ concentrations observed at CASTNET sites
AX3-57	The comparison of the seasonal diurnal patterns for urban-influenced (Jefferson County, KY) and a rural-influenced (Oliver County, ND) monitoring sites using 2002 hourly data for April-October
AX3-58a-d	Diurnal behavior of O ₃ at rural sites in the United States in July AX3-93
AX3-59	Composite diurnal O ₃ pattern at selected national forest sites in the United States using 2002 hourly average concentration data AX3-94
AX3-60a,b	Composite diurnal pattern at (a) Whiteface Mountain, NY and (b) the Mountain Cloud Chemistry Program Shenandoah National Park site for May to September 1987 AX3-95
AX3-61a-h	Seasonal variations in O ₃ concentrations as indicated by the 1-h maximum in each month at selected sites, 2002 AX3-97
AX3-62a-f	Diurnal variability in 1-h average O ₃ concentrations in EPA's 12 cities AX3-98
AX3-62g-l	Diurnal variability in 1-h average O ₃ concentrations in EPA's 12 cities AX3-99
AX3-63a-f	Diurnal variability in 8-h average O ₃ concentrations in EPA's 12 cities AX3-100

<u>Number</u>		Page
AX3-63g-l	Diurnal variability in 8-h average O_3 concentrations in EPA's 12 cities	AX3-101
AX3-64	Year-to-year variability in nationwide mean daily maximum 8-h O ₃ concentrations	AX3-104
AX3-65	Year-to-year variability in nationwide 95th percentile value of the daily maximum 8-h O_3 concentrations	AX3-105
AX3-66a-h	Year-to-year variability in mean daily maximum 8-h O ₃ concentrations at selected national park (NP), national wildlife refuge (NWR), and national monument (NM) sites	AX3-106
AX3-66i-p	Year-to-year variability in mean daily maximum 8-h O ₃ concentrations at selected national park (NP), national wildlife refuge (NWR), and national monument (NM) sites	AX3-107
AX3-66q-v	Year-to-year variability in mean daily maximum 8-h O_3 concentrations at selected national park (NP), national wildlife refuge (NWR), and national monument (NM) sites	AX3-108
AX3-67a-h	Year-to-year variability in 95th percentile of daily maximum 8-h O ₃ concentrations at selected national park (NP), national wildlife refuge (NWR), and national monument (NM) sites	AX3-109
AX3-67i-p	Year-to-year variability in 95th percentile of daily maximum 8-h O ₃ concentrations at selected national park (NP), national wildlife refuge (NWR), and national monument (NM) sites	AX3-110
AX3-67q-v	Year-to-year variability in 95th percentile of daily maximum 8-h O ₃ concentrations at selected national park (NP), national wildlife refuge (NWR), and national monument (NM) sites	AX3-111
AX3-68a-d	Measured O_3 (ppbv) versus PAN (pptv) in Tennessee, including (a) aircraft measurements, and (b, c, and d) suburban sites near Nashville	AX3-116
AX3-69	Measured correlation between benzene and NO _y at a measurement site in Boulder, CO	AX3-117
AX3-70	Binned mean PM _{2.5} concentrations versus binned mean O ₃ concentrations observed at Fort Meade, MD from July 1999 to July 2001	AX3-120
AX3-71	The co-occurrence pattern for O ₃ and NO ₂	AX3-123
AX3-72	The co-occurrence pattern for O_3 and NO_2 using 2001 data from the AQS	AX3-124

Number	Page
AX3-73	The co-occurrence pattern for O_3 and SO_2 AX3-125
AX3-74	The co-occurrence pattern for O_3 and SO_2 using 2001 data from AQS AX3-127
AX3-75	The co-occurrence pattern for O_3 and $PM_{2.5}$ using 2001 data from AQS AX3-127
AX3-76a	Monthly maximum hourly average O ₃ concentrations at Yellowstone National Park, Wyoming in 1998, 1999, 2000, and 2001 AX3-132
AX3-76b	Hourly average O_3 concentrations at Yellowstone National Park, Wyoming for the period January to December 2001 AX3-132
AX3-77	(a) Contour plot of CO mixing ratios (ppbv) observed in and near the June 15, 1985, mesoscale convective complex in eastern Oklahoma AX3-134
AX3-78	Maximum hourly average O_3 concentrations at rural monitoring sites in Canada and the United States in February from 1980 to 1998 AX3-142
AX3-79	Schematic diagram of a meteorological mechanism involved in high concentrations of O_3 found in spring in the lower troposphere off the American East Coast
AX3-80	Ozone vertical profile at Boulder, Colorado on May 6, 1999 at 1802 UTC (1102 LST) AX3-147
AX3-81	CASTNet stations in the continental United States for 2001 AX3-151
AX3-82	Monthly mean afternoon (1300 to 1700 hours LT) concentrations (ppbv) in surface air averaged over the CASTNet stations (Figure AX3-81) in each U.S. quadrant for March to October 2001
AX3-83	Probability distributions of daily mean afternoon (1300 to 1700 LT) O_3 concentrations in surface air for March through October 2001 at U.S. CASTNet sites (Figure AX3-83): observations (thick solid line) are compared with model results (thin solid line)
AX3-84	Daily mean afternoon (13 to 17 LT) O_3 concentrations in surface air at Voyageurs National Park (NP), Minnesota in mid-May through June of 2001
AX3-85	Same as Figure AX3-85 but for Yellowstone National Park, Wyoming in March to May 2001 AX3-158

List of Figures

0	
((2.1)	
(cont'd)	
(com u)	

Number	Page
AX3-86	Same as Figure AX3-86 but for March of 2001 at selected western (left column) and southeastern (right column) sites
AX3-87a	Detailed diagram illustrating components of an exposure model AX3-170
AX3-87b	Detailed diagram illustrating components of an exposure model AX3-171
AX3-88	Measured outdoor O ₃ concentrations (thin line) and modeled indoor concentrations (bold line) AX3-183
AX3-89	Air exchange rates and outdoor and indoor O_3 concentrations during the summer at telephone switching station in Burbank, CA AX3-199
AX3-90	Air exchange rates and outdoor and indoor O_3 concentrations during the fall at a telephone switching station in Burbank, CA
AX3-91	Diurnal variation of indoor and outdoor O_3 and PAN concentrations measured in a private residence, Freising, Germany, August 11-12, 1995 AX3-202
AX3-92	Indoor and outdoor O ₃ concentration in moving cars AX3-203
AX3-93	Indoor/outdoor concentration ratios for PAN at 10 southern California museums AX3-205
AX3-94	Ozone decay processes versus time measured for several indoor rooms AX3-211
AX6-1	FEV_1 decrements as a function of O_3 concentration following a 2 h exposure with incremental exercise (15 min intervals) or rest AX6-8
AX6-2	Average FEV ₁ decrements (\pm SE) for prolonged 6.6 h exposures to 0.12 ppm O ₃ as a function of exercise \dot{V}_E AX6-15
AX6-3	The forced expiratory volume in 1 s (FEV_1) is shown in relation to exposure duration (hours) under three exposure conditions AX6-18
AX6-4a,b	Recovery of spirometric responses following a 2 h exposure to 0.4 ppm O ₃ with IE AX6-22
AX6-5	Plot of the mean FEV_1 (% baseline) vs. time for ozone exposed cohorts AX6-26
AX6-6	Frequency distributions of percent decrements in FEV ₁ for 6.6-h exposure to four concentrations of ozone AX6-42

Number	Page
AX6-7	Effect of O_3 exposure (0.42 ppm for 1.5 h with IE) on FEV ₁ as a function of subject age AX6-50
AX6-8	Regression curves were fitted to day-by-day postexposure FEV_1 values obtained after repeated daily acute exposures to O_3 for 2 to 3 h with intermittent exercise at a V_E of 24 to 43 L/min (adaptation studies) AX6-81
AX7-1	Density curves of the O_3 -associated excess risk of cardiovascular mortality in the warm season per standardized increment (see Section 7.1.3.2) AX7-122

Authors, Contributors, and Reviewers

CHAPTER 2 ANNEX (ATMOSPHERIC PHYSICS/CHEMISTRY)

Principal Author

Dr. Joseph Pinto—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Russell Dickerson-University of Maryland, College Park, MD

Contributing Authors

Dr. Brooke Hemming—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Daniel Jacob-Harvard University, Cambridge, MA

Dr. William Keene—University of Virginia, Charlottesville, VA

Dr. Tadeusz Kleindienst—National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC

Dr. Jennie Moody-University of Virginia, Charlottesville, VA

Mr. Charles Piety—University of Maryland, College Park, MD

Dr. Sandy Sillman—University of Michigan, Ann Arbor, MI

Dr. Jeffrey Stehr—University of Maryland, College Park, MD

Dr. Bret Taubman-Pennsylvania State University, State College, PA

Contributors and Reviewers

Dr. Christoph Bruhl, Max Planck Institute for Atmospheric Chemistry, Mainz, Germany

Dr. Mohammed Elshahawy, Department of Meteorology and Astronomy, Cairo University, Giza, Egypt.

Dr. Arlene Fiore, NOAA/GFDL, Princeton, NJ

Mr. Chris Geron, NRML, U.S. EPA, Research Triangle Park, NC

Dr. David Golden, Stanford University, Palo Alto, CA

II-xxix

Authors, Contributors, and Reviewers

(cont'd)

Contributors and Reviewers

(cont'd)

Dr. John Merrill, University of Rhode Island, Kingston, RI

Dr. Sam Oltmans, NOAA, CMDL, Boulder, CO

Dr. David Parrish, NOAA/AL, Boulder, CO

Dr. Perry Samson, Depart. Atmos. Ocean, and Space Sciences, University of Michigan, Ann Arbor, MI

Dr. Sandy Sillman, University of Michigan, Ann Arbor, MI

Dr. Melvin Shapiro, National Center for Atmospheric Research, Boulder, CO

CHAPTER 3 ANNEX (AIR QUALITY AND EXPOSURE)

Principal Authors

Ms. Beverly Comfort—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Joseph Pinto—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Arlene Fiore-NOAA/GFDL, Princeton, NJ

Dr. Daniel Jacob-Harvard University, Cambridge, MA

Dr. Alan S. Lefohn-ASL & Associates, Helena, MT

Dr. Clifford Weisel-Rutgers University, New Brunswick, NJ

Contributing Authors

Dr. Jee-Young Kim——National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Dennis Kotchmar—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Authors, Contributors, and Reviewers (cont'd)

Contributing Authors

(cont'd)

Dr. Timothy Lewis—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Mr. Thomas McCurdy-U.S. EPA, NERL U.S. EPA, Research Triangle Park, NC

Contributors and Reviewers

Dr. Christoph Bruehl-Max Planck Institute for Atmospheric Chemistry, Mainz, Germany

Dr. Russell Dickerson-University of Maryland, College Park, MD

Dr. Judith Graham—American Chemistry Council, Washington, D.C.

Dr. Laszlo Horvath-Hungarian Meteorological Service, Budapest, Hungary

Dr. Ted Johnson-TRJ Associates, Durham, NC

Dr. John Merrill-University of Rhode Island, Kingston, RI

Dr. Jennie Moody-University of Virginia, Charlottesville, VA

Dr. Sam Oltmans-NOAA CMDL, Boulder, CO

Dr. Michiel G.M. Roemer, TNO, The Netherlands

Dr. Sandy Sillman—University of Michigan, Ann Arbor, MI

Dr. Tamas Weidinger—University of Budapest, Budapest, Hungary

CHAPTER 4 ANNEX (DOSIMETRY)

Principal Authors

Dr. John Overton—U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory-Research Triangle Park, NC 27711 (retired)

Dr. James S. Brown—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

II-xxxi

Authors, Contributors, and Reviewers

(cont'd)

Principal Authors

(cont'd)

Dr. Lori White—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Contributors and Reviewers

Dr. Gary Hatch—U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, NC

CHAPTER 5 ANNEX (ANIMAL TOXICOLOGY)

Principal Authors

Dr. Lori White—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Mr. James Raub—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (Retired)

Dr. Deepak Bhalla-Wayne State University, Detroit, MI

Dr. Carroll Cross-University of California, Davis, CA

Dr. Mitch Cohen-NYU School of Medicine, New York University, New York, NY

Contributors and Reviewers

Dr. Steven Kleeberger—National Institute of Environmental Health Sciences, Research Triangle Park, NC 27711

Dr. George Liekauf-University of Cincinnati, Cincinnati, OH

Dr. David Basset—Wayne State University, Detroit, MI

Dr. E.M. Postlethwait—University of Texas Medical Branch, Galveston, TX

Dr. Kent Pinkerton—University of California, Davis, CA

II-xxxii

Authors, Contributors, and Reviewers (cont'd)

Contributors and Reviewers

(cont'd)

Dr. Jack Harkema-Michigan State University, East Lansing, MI

Dr. Edward Schelegle—University of California, Davis, CA

Dr Judith Graham—American Chemical Council, Arlington, VA

CHAPTER 6 ANNEX (CONTROLLED HUMAN EXPOSURE)

Principal Authors

Dr. James S. Brown—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Mr. James Raub—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (Retired)

Dr. William C. Adams-University of California, Davis, CA (Retired)

Dr. Milian J. Hazucha-University of North Carolina, Chapel Hill, NC

Dr. E. William Spannhake-Johns Hopkins University, Baltimore, MD

Contributors and Reviewers

Dr. Edward Avol-University of Southern California, Los Angeles, CA

Dr. Henry Gong-Ranchos Los Amigos Medical Center, Los Angeles, CA

Dr. Jane Q. Koenig—University of Washington, Seattle, WA

Dr. Michael Madden—National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, NC

Dr.William McDonnell—National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, NC

Authors, Contributors, and Reviewers (cont'd)

CHAPTER 7 ANNEX (EPIDEMIOLOGY)

Principal Authors

Dr. Dennis Kotchmar—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Jee-Young Kim—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. David Svendsgaard—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr Kaz Ito-New York University, New York, NY

Dr. Pat Kinney-School of Public Health, Columbia University, New York, NY

Reviewers

Dr. Richard Burnett-Health Canada, Ottawa, Canada

Dr. Vic Hasselblad-Duke University, Durham, NC

Dr. Lucas Neas—National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, NC

[Note: Any inadvertently omitted names of authors/reviewers will be inserted in the final draft of this O_3 AQCD, as will more complete addresses for all authors/reviewers.]

U.S. Environmental Protection Agency Project Team for Development of Air Quality Criteria for Ozone and Related Photochemical Oxidants

Executive Direction

Dr. Lester D. Grant (Director)—National Center for Environmental Assessment-RTP Division, (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Scientific Staff

Dr. Lori White(Ozone Team Leader)—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Joseph Pinto—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Ms. Beverly Comfort—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Brooke Hemming—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. James S. Brown—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Dennis Kotchmar—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Jee-Young Kim—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. David Svendsgaard—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Srikanth Nadadur—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. Timothy Lewis—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Dr. William Hogsett—National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Corvallis, OR

U.S. Environmental Protection Agency Project Team for Development of Air Quality Criteria for Ozone and Related Photochemical Oxidants (cont'd)

Scientific Staff

(cont'd)

Dr. Christian Andersen—National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Corvallis, OR

Dr. Jay Garner—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (retired)

Mr. Bill Ewald—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (retired)

Mr. James Raub—National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (retired)

Technical Support Staff

Ms. Nancy Broom—Information Technology Manager, National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Mr. Douglas B. Fennell—Technical Information Specialist, National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Ms. Emily R. Lee—Management Analyst, National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Ms. Diane H. Ray—Program Specialist, National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

Ms. Donna Wicker—Administrative Officer, National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (retired)

Mr. Richard Wilson—Clerk, National Center for Environmental Assessment (B243-01), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

U.S. Environmental Protection Agency Project Team for Development of Air Quality Criteria for Ozone and Related Photochemical Oxidants (cont'd)

Document Production Staff

Ms. Carolyn T. Perry-Manager, Computer Sciences Corporation, 2803 Slater Road, Suite 220, Morrisville, NC 27560

Mr. John A. Bennett-Technical Information Specialist, Library Associates of Maryland, 11820 Parklawn Drive, Suite 400, Rockville, MD 20852

Mr. William Ellis-Records Management Technician, InfoPro, Inc., 8200 Greensboro Drive, Suite 1450, McLean, VA 22102

Ms. Sandra L. Hughey-Technical Information Specialist, Library Associates of Maryland, 11820 Parklawn Drive, Suite 400, Rockville, MD 20852

Mr. Matthew Kirk—Graphic Artist, Computer Sciences Corporation, 2803 Slater Road, Suite 220, Morrisville, NC 27560

Dr. Barbara Liljequist—Technical Editor, Computer Sciences Corporation, 2803 Slater Road, Suite 220, Morrisville, NC 27560

Ms. Faye Silliman—Word Processor, InfoPro, Inc., 8200 Greensboro Drive, Suite 1450, McLean, VA 22102

U.S. Environmental Protection Agency Science Advisory Board (SAB) Staff Office Clean Air Scientific Advisory Committee (CASAC) Ozone Review Panel

<u>Chair</u>

Dr. Rogene Henderson*, Scientist Emeritus, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM, 87108, Phone: 505-348-9464, Fax: 505-348-8541, (rhenders@lrri.org) (FedEx: Dr. Rogene Henderson, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM, 87108, Phone: 505-348-9464)

Members

Dr. John Balmes, Professor, Department of Medicine, University of California San Francisco, University of California - San Francisco, San Francisco, California, 94143, Phone: 415-206-8953, Fax: 415-206-8949, (jbalmes@itsa.ucsf.edu)

Dr. Ellis Cowling*, University Distinguished Professor-at-Large, North Carolina State University, Colleges of Natural Resources and Agriculture and Life Sciences, North Carolina State University, 1509 Varsity Drive, Raleigh, NC, 27695-7632, Phone: 919-515-7564, Fax: 919-515-1700, (ellis_cowling@ncsu.edu)

Dr. James D. Crapo*, Professor, Department of Medicine, National Jewish Medical and Research Center. 1400 Jackson Street, Denver, CO, 80206, Phone: 303-398-1436, Fax: 303- 270-2243, (crapoj@njc.org)

Dr. William (Jim) Gauderman, Associate Professor, Preventive Medicine, University of Southerm California, 1540 Alcazar #220, Los Angeles, CA, 91016, Phone: 323-442-1567, Fax: 323-442-2349, (jimg@usc.edu)

Dr. Henry Gong, Professor of Medicine and Preventive Medicine, Medicine and Preventive Medicine, Keck School of Medicine, University of Southern California, Environmental Health Service, MSB 51, Rancho Los Amigos NRC, 7601 East Imperial Highway, Downey, CA, 90242, Phone: 562-401-7561, Fax: 562-803-6883, (hgong@ladhs.org)

Dr. Paul J. Hanson, Senior Research and Development Scientist, Environmental Sciences Division, Oak Ridge National Laboratory (ORNL), Bethel Valley Road, Building 1062, Oak Ridge, TN, 37831-6422, Phone: 865-574-5361, Fax: 865-576-9939, (hansonpz@comcast.net)

Dr. Jack Harkema, Professor, Department of Pathobiology, College of Veterinary Medicine, Michigan State University, 212 Food Safety & Toxicology Center, East Lansing, MI, 48824, Phone: 517-353-8627, Fax: 517-353-9902, (harkemaj@msu.edu)

U.S. Environmental Protection Agency Science Advisory Board (SAB) Staff Office Clean Air Scientific Advisory Committee (CASAC) Ozone Review Panel (cont'd)

Members

(cont'd)

Dr. Philip Hopke, Bayard D. Clarkson Distinguished Professor, Department of Chemical Engineering, Clarkson University, Box 5708, Potsdam, NY, 13699-5708, Phone: 315-268-3861, Fax: 315-268-4410, (hopkepk@clarkson.edu) (FedEx: 8 Clarkson Avenue, Potsdam, NY 136995708)

Dr. Michael T. Kleinman, Professor, Department of Community & Environmental Medicine, 100 FRF, University of California - Irvine, Irvine, CA, 92697-1825, Phone: 949-824-4765, Fax: 949-824-2070, (mtkleinm@uci.edu)

Dr. Allan Legge, President, Biosphere Solutions, 1601 11th Avenue NW, Calgary, Alberta, CANADA, T2N 1H1, Phone: 403-282-4479, Fax: 403-282-4479, (allan.legge@shaw.ca)

Dr. Morton Lippmann, Professor, Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, Phone: 845-731-3558, Fax: 845-351-5472, (lippmann@env.med.nyu.edu)

Dr. Frederick J. Miller*, Consultant, 911 Queensferry Road, Cary, NC, 27511, Phone: 919-467-3194, (fjmiller@nc.rr.com)

Dr. Maria Morandi, Assistant Professor of Environmental Science & Occupational Health, Department of Environmental Sciences, School of Public Health, University of Texas - Houston Health Science Center, 1200 Herman Pressler Street, Houston, TX, 77030, Phone: 713-500-9288, Fax: 713-500-9249, (mmorandi@sph.uth.tmc.edu) (FedEx: 1200 Herman Pressler, Suite 624)

Dr. Charles Plopper, Professor, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California - Davis, Davis, California, 95616, Phone: 530-752-7065, (cgplopper@ucdavis.edu)

Mr. Richard L. Poirot*, Environmental Analyst, Air Pollution Control Division, Department of Environmental Conservation, Vermont Agency of Natural Resources, Bldg. 3 South, 103 South Main Street, Waterbury, VT, 05671-0402, Phone: 802-241-3807, Fax: 802-241-2590, (rich.poirot@state.vt.us)

Dr. Armistead (Ted) Russell, Georgia Power Distinguished Professor of Environmental Engineering, Environmental Engineering Group, School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Room 3310, Atlanta, GA, 30332-0512, Phone: 404-894-3079, Fax: 404-894-8266, (trussell@ce.gatech.edu)

U.S. Environmental Protection Agency Science Advisory Board (SAB) Staff Office Clean Air Scientific Advisory Committee (CASAC) Ozone Review Panel

Members

(cont'd)

Dr. Elizabeth A. (Lianne) Sheppard, Research Associate Professor, Biostatistics and Environmental & Occupational Health Sciences, Public Health and Community Medicine, University of Washington, Box 357232, Seattle, WA, 98195-7232, Phone: 206-616-2722, Fax: 206 616-2724, (sheppard@u.washington.edu)

Dr. Frank Speizer*, Edward Kass Professor of Medicine, Channing Laboratory, Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115-5804, Phone: 617-525-2275, Fax: 617-525-2066, (frank.speizer@channing.harvard.edu)

Dr. James Ultman, Professor, Chemical Engineering, Bioengineering program, Pennsylvania State University, 106 Fenske Lab, University Park, PA, 16802, Phone: 814-863-4802, Fax: 814-865-7846, (jsu@psu.edu)

Dr. Sverre Vedal, Professor of Medicine, Department of Environmental and Occupational Health Sciences, School of Public Health and Community Medicine, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105-6099, Phone: 206-616-8285, Fax: 206-685-4696, (svedal@u.washington.edu)

Dr. James (Jim) Zidek, Professor, Statistics, Science, University of British Columbia, 6856 Agriculture Rd., Vancouver, BC, Canada, V6T 1Z2, Phone: 604-822-4302, Fax: 604-822-6960, (jim@stat.ubc.ca)

Dr. Barbara Zielinska*, Research Professor, Division of Atmospheric Science, Desert Research Institute, 2215 Raggio Parkway, Reno, NV, 89512-1095, Phone: 775-674-7066, Fax: 775-674-7008, (barbz@dri.edu)

Science Advisory Board Staff

Mr. Fred Butterfield, CASAC Designated Federal Officer, 1200 Pennsylvania Avenue, N.W., Washington, DC, 20460, Phone: 202-343-9994, Fax: 202-233-0643 (butterfield.fred@epa.gov) (Physical/Courier/FedEx Address: Fred A. Butterfield, III, EPA Science Advisory Board Staff Office (Mail Code 1400F), Woodies Building, 1025 F Street, N.W., Room 3604, Washington, DC 20004, Telephone: 202-343-9994)

^{*}Members of the statutory Clean Air Scientific Advisory Committee (CASAC) appointed by the EPA Administrator

ABBREVIATIONS AND ACRONYMS

AA	ascorbic acid
ACh	acetylcholine
ADSS	aged and diluted sidestream cigarette smoke
AED	aerodynamic diameter
AER	air exchange rate
AEROCE	Atmospheric/Ocean Chemistry Experiment
AF	adsorbed fraction
AGL	above ground level
AHCs	aromatic hydrocarbons
AHR	airway hyperreactivity
AirPEX	Air Pollution Exposure (model)
AirQUIS	Air Quality Information System (model)
AIRS	Aerometric Information Retrieval System
ALI	air-liquid interface
AM	alveolar macrophage
A _p	peripheral lung
AP	alkaline phosphatase
AP-CIMS	Atmospheric Pressure Chemical Ionization Mass Spectrometer
APEX	Air Pollutants Exposure Model
APHEA	Air Pollution on Health: European Approach (study)
AQCD	Air Quality Criteria Document
ASC	ascorbate
A/V	surface-to-volume ratio
BAL	bronchoalveolar lavage
BALF	bronchoalveolar lavage fluid
BALT	bronchus-associated lymphoid tissue
B[a]P	benzo[a]pyrene
BC	black carbon
BEIS	Biogenic Emission Inventory System

BERLIOZ	Berlin Ozone Experiment
BHC	biogenic hydrocarbons
BHR	bronchial hyperresponsiveness
BME	Bayesian Maxim Eutropy
BMZ	basement membrane zone
BP	blood pressure
BrdU	bromodeoxyuridine
BS	black smoke
BSA	body surface area
BSA	bovine serum albumin
С	concentration
$\mathbf{C} \times \mathbf{T}$	concentration \times time; concentration times duration of exposure
С ₂ Н ₂ -Н	ethane
C3a	complement protein fragment
CAAA	Clean Air Act Amendments of 1990
CADS	Cincinnati Activity Diary Study
CAPs	concentrated ambient particles
CAR	centriacinar region
CASTNet, CASTNET	Clean Air Status and Trends Network
CAT	cell antioxidant capacity
CBL	convective boundary layer
CC16	Clara cell secretory protein
CCh	carbachol
CCSP	Clara cell secretory protein
CE	continuous exercise
CEPEX	Central Equatorial Pacific Experiment
CFD	computational fluid dynamics
CG	cloud-to-ground (flash)
CHAD	Consolidated Human Activities Database
CH ₂ =C(CH ₃)–CHO	methacrolein

CH ₃ –CCl ₃	methyl chloroform
CH ₃ –CHO	acetaldehyde
CH ₃ –CO	acetyl
CH ₃ -C(O)-CH=CH ₂	methyl vinyl ketone
CH ₃ –O(O)CH ₃	acetone
CH ₃ -C(O)O ₂ , CH ₃ -O(O)OO	acetyl peroxy, peroxyacetyl
CH ₃ O	methoxy
CH ₃ OOH	methyl hydroperoxide
CH ₃ O ₂	methyl peroxy
CH_4	methane
CI	confidence interval
CIMS	Chemical Ionization Mass Spectroscopy
CINC	cytokine-induced neutrophil chemoattractant
CIU, CBU	cumulative inhalation unit
CL	chemiluminescence
CMAQ	Community Model for Air Quality
CMDO	chloromethylbutenone
CMD	count mean diameter
CMSA	consolidated metropolitan statistical area
CN	condensation nuclei
CNS	central nervous system
СО	carbon monoxide
CO ₂	carbon dioxide
COD	coefficient of divergence
ConA	concanavalin A
COPD	chronic obstructive pulmonary disease
СТМ	chemistry transport model
СҮР	cytochrome P-450
Cyt.	cytochrome
Δ	delta, mean change in a variable

II-xliii

DD	
νu	doubling dose
DHBA	2,3-dehydroxybenzoic acid
DI	dry intrusion
DIAL	differential absorption lidar (system)
DNA	deoxyribonucleic acid
DOAS	differential optical absorption spectroscopy
DOC	dissolved organic carbon
DPPC	dipalmitoylglycero-3-phosphocholine
DR	disulfide reductase
DTPA	diethylenetriaminepentaacetic acid
EBC	exhaled breath condensate (fluid)
ECG	electrocardiographic
EDMAS	Exposure and Dose Modeling and Analysis System
ELF	epithelial lining fluid
EM	electron microscopy
ENA	epithelial cell-derived neutrophil-activating peptide
EOFs	empirical orthogonal functions
EPA	U.S. Environmental Protection Agency
EPEM	Event Probability Exposure Model
EPR	electron paramagnetic resonance
EPRI	Electric Power Research Institute
ERAQS	Eastern Regional Air Quality Study
ETS	environmental tobacco smoke
EVR	equivalent ventilation rate
f, f, f_B	frequency of breathing
F	female
F344	Fischer 344 (rat)
FA	filtered air
FA	fractional absorption; absorbed fraction

FEF	forced expiratory flow
FEF ₂₅₋₇₅	forced expiratory flow between 25 and 75% of vital capacity
FEF _x	forced expiratory flow after X% vital capacity (e.g., after 50% vital capcity)
FEV_1	forced expiratory volume in 1 second
FIVC	forced inspiratory vital capacity
Fn	fibronectin
FRC	functional residual capacity
FS	field stimulation
FTIR	Fourier Transform Infrared Spectroscopy
FVC	forced vital capacity
GAM	General Additive Model
GCE	Goddard Cumulus Ensemble (model)
GC-FID	gas chromatography-flame ionization detection
GDT	glutathione-disulfide transhydrogenase
GEE	Generalized Estimating Equations
GEOS-1 DAS	NASA Goddard Earth Orbiting System Data Assimilation System
GEOS-CHEM	three-dimensional model of atmospheric composition driven by assimilated Goddard Earth Orbiting System observations
GLM	General Linear Model
GM-CSF	granulocyte-macrophage colony stimulating factor
G6PD	glucose-6-phosphate dehydrogenase
GR	glutathione reductase
GSH	glutathione; reduced glutathione
GSHPx, GPx	glutathione peroxidase
GSSG	glutathione disulfide
GST	glutathione-S-transferase
GSTM1	glutathione S-transferase μ -1 (genotype)
GSTM1null	glutathione S-transferase µ-1 null (genotype)
H^{+}	hydrogen ion; symbol for acid
НСО	formyl

H ₂ CO, HCHO	formaldehyde
HDMA	house dust mite allergen
HF	Howland Forest
H_2O_2	hydrogen peroxide
H_2SO_4	sulfuric acid
HCs	hydrocarbons
ННР-С9	1-hydroxy-1-hydroperoxynonane
HIST	histamine
HLA	human lymphocyte antigen
HNE	4-hydroxynonenal
HNO ₂	nitrous acid
HNO ₃	nitric acid
HONO	nitrous acid
HOONO	pernitrous acid
HR	heart rate
HRV	heart rate variability
5-HT	5-hydroxytryptamine
hv	solar ultraviolet proton
IAS	interalveolar septum
IBM	individual-based model or modeling
IC	inspiratory capacity
IC	intracloud (flash)
ICAM	intracellular adhesion molecule
ICEM	Indoor Chemistry and Exposure Model
ICS	inhaled steroids
ID#	identification number
IE	intermittent exercise
Ig	immunoglobulin (e.g., IgA, IgE, IgG, IgM)
IL	interleukin (e.g., IL-1, IL-6, IL-8)
IN	intranasal

INF	interferon
inh	inhalation
iNOS	inducible nitric oxide synthase
I/O	indoor-to-outdoor ratio
ip	intraperitoneal
IPCC	Intergovernmental Panel on Climate Change
IPMMI	International Photolysis Frequency Measurement and Modeling Intercomparison
IQR	interquartile range
ISCCP	International Satellite Cloud Climatology Project
IT	intratracheal
IU	International Units
iv	intravenous
j(NO ₂)	photolysis rate coefficient for O ₃ to NO ₂
j(O ₃)	photolysis rate coefficient for O_3 to $O(^1D)$
K _a	intrinsic mass transfer coefficient/parameter
K _{TB}	tracheobronchial region overall mass transfer coefficient
LDH	lactate dehydrogenase
LFHFR	low frequency/high frequency
LFT	lower free troposphere
LIF	laser-induced fluorescence
LIS	lateral intercellular space
LLJ	low-level jet
LM	light microscopy
LOESS	locally estimated smoothing splines
LPS	lipopolysaccharide
LT	leukotriene (e.g., LTB ₄ , LTC ₄ , LTD ₄ , LTE ₄)
LT	local time
LST	local standard time
LWC	liquid water content
Μ	male

II-xlvii

MAQSIP	Multiscale Air Quality Simulation Platform
MBL	marine boundary layer
NBTH	3-methyl-2-benzothiazolinone acetone azine
МССР	Mountain Cloud Chemistry Program
MCh	methacholine
МСМ	master chemical mechanism
МСР	monocyte chemotactic protein
MENTOR	Modeling Environment for Total Risk Studies
MET	metabolic equivalent of work
МНС	major histocompatibility
MIESR	matrix isolation ESR spectroscopy
MIP	macrophage inflammatory protein
MLN	mediastinal lymph node
MM	Mt. Mitchell
MM5	NCAR/Penn State Mesoscale Model
MMAD	mass median aerodynamic diameter
MoOx	molybdenum oxides
MOZAIC	Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft
MPAN	methacryloylperoxynitrate; peroxy-methacrylic nitric anhydride
mRNA	messenger ribonucleic acid
MS	mass spectrometry
MS	Mt. Moosilauke
MSA	metropolitan statistical area
MS/MS	tandem mass spectrometry
MT	metallothionein
n, N	number
N_2O_5	dinitrogen pentoxide
N/A	not available
NAAQS	National Ambient Air Quality Standards
NADH	reduced nicotinamide adenine dinucleotide

II-xlviii

NADP	National Atmospheric Deposition Program
NADPH	reduced nicotinamide adenine dinucleotide phosphate
NADPH-CR	reduced nicotinamide adenine dinucleotide phosphate- cytochrome c reductase
NAG	N-acetyl-β-d-glucosamine
NAPBM	National Air Pollution Background Network
NARE	North Atlantic Regional Experiment
NBS	National Bureau of Standards
NCAR	National Center for Atmospheric Research
NCEA-RTP	National Center for Environmental Assessment Division in Research Triangle Park, NC
NCICAS	National Cooperative Inner-City Asthma Study
NCLAN	National Crop Loss Assessment Network
ND	not detectable
NEM	National Ambient Air Quality Standards Exposure Model
NESCAUM	Northeast States for Coordinated Air Use Management
NF	national forest
NF-κB	nuclear factor kappa B
NH ₃	ammonia (gas)
$\mathrm{NH_4^+}$	ammonium ion
NHAPS	National Human Activity Pattern Survey
NHBE	cultured human bronchial epithelial (cells)
$(NH_4)_2SO_4$	ammonium sulfate
NIST	National Institute of Standards and Technology
NK	natural killer (cells)
NL	nasal lavage
NLF	nasal lavage fluid
NM	national monument
NMHCs	nonmethane hydrocarbons
NMOCs	nonmethane organic compounds
NMVOCs	nonmethane volatile organic compounds

NO	nitric oxide
NO ₂	nitrogen dioxide
NO ₃ ⁻	nitrate
NOAA	National Oceanic and Atmospheric Administration
NOAELs	non-observable-adverse-effect levels
NOS	nitric oxide synthase
NO _x	nitrogen oxides
NO _y	total reactive nitrogen; sum of NO_x and NO_z ; odd nitrogen species
NO _z	nitrogen-containing species, the sum of the products of the oxidation of NO_x
NP	national park
NQO1wt	NAD(P)H-quinone oxidoreductase wild type (genotype)
NRC	National Research Council
NS	national seashore
NS	nonsignificant
NS	nonsmoker
NSAID	non-steroidal anti-inflammatory agent
NSBR	nonspecific bronchial responsiveness
NTE	nasal trubinate epithelial (cells)
NTRMs	NIST Traceable Reference Materials
NWR	national wildlife refuge
O_2^-	superoxide
O ₃	ozone
O(³ P)	ground-state oxygen atom
OAQPS	Office of Air Quality Planning and Standards
OBMs	observationally based methods
$O(^{1}D)$	electronically excited oxygen atom
ОН	hydroxy
8-OHdG	8-hydroxy-2'-deoxyguanosine
OLS	ordinary least squares
OPE	ozone production efficiency

OVA	ovalbumin
O _x	odd oxygen species
р	probability
P ₉₀	values of the 90th percentile absolute difference in concentrations
PAF	platelet-activating factor
PAHs	polycyclic aromatic hydrocarbons
PAMS	Photochemical Aerometric Monitoring System
PAN	peroxyacetyl nitrate
P_aO_2	partial pressure of arterial oxygen
PAR	proximal alveolar region
<i>p</i> -ATP	para-acetamidophenol
PBL	peripheral blood lymphocytes
PBL	planetary boundary layer
PBM	population-based model or modeling
PBN	C-phenyl N-tert-butyl nitrone
РВРК	physiologically based pharmacokinetic (approach)
PC ₂₀	provocative concentration that produces a 20% decrease in forced expiratory volume in 1 second
PC ₅₀	provocative concentration that produces a 50% decrease in forced expiratory volume in 1 second
PCA	principal component analysis
pCO ₂	partial pressure of carbon dioxide
PD ₂₀ FEV ₁ , PC ₂₀ FEV ₁	provovative dose or concentration that produces a 20% decrease in FEV_1
$PD_{100}SR_{aw}$	provocative dose that produces a 100% increase in SR_{aw}
PD ₂₀	provocative dose that produces a 20% decrease in forced expiratory volume in 1 s
PE	postexposure
PEF	peak expiratory flow
PEFR	peak expiratory flow rate
PEM	personal exposure monitor
PG	prostaglandin (e.g., PGD ₂ , PGE, PGE ₁ , PGE ₂ PGF _{1α} , PGF _{2α})

6PGD	6-phosphogluconate dehydrogenase
РНА	phytohemagglutinin
PIF	peak inspiratory flow
PM	particulate matter
Pm _{0.1}	pressure at mouth at 0.1 second of inspiration against a transiently occluded mouthpiece, an index of inspiratory drive
PM_{10}	combination of coarse and fine particulate matter (mass median aerodynamic diameter $\leq 10 \ \mu m$)
PM _{2.5}	fine particulate matter (mass median aerodynamic diameter $\leq 2.5 \ \mu m$)
PMNs	polymorphonuclear neutrolphil leukocytes; neutrophils
PND	postnatal day
pNEM	Probabilistic National Ambient Air Quality Standard Exposure Model
PNN ₅₀	proportion of adjacent NN intervals differing by more than 50 ms
POC	particulate organic carbon
ppb	parts per billion
ppbv	parts per billion by volume
pphm	parts per hundred million
ppm	parts per million
PPN	peroxypropionyl nitrate
PPPs	power plant plumes
pptv	parts per trillion by volume
PRB	policy relevant background
PTR-MS	proton-transfer-reaction mass spectroscopy
PUL	pulmonary
PWM	pokeweed mitogen
r	correlation coefficient
R	intraclass correlation coefficient
r^2	correlation coefficient
\mathbb{R}^2	multiple correlation coefficient
RACM	Regional Air Chemistry Mechanism

RADM	Regional Acid Deposition Model
rALP	recombinant antileukoprotease
RAMS	Regional Atmospheric Modeling System
RANTES	regulated on activation, normal T cell-expressed and -secreted (cells)
R _{aw}	airway resistance
RB	respiratory bronchiole
R'CO	acyl
RC(O)OO, R'C(O)O ₂	peroxyacyl, acyl peroxy
RDBMS	Relational Database Management Systems
REHEX	Regional Human Exposure Model
RER	rough endoplasmic reticulum
RH	relative humidity
RIOPA	Relationship of Indoor, Outdoor, and Personal Air (study)
R _L	total pulmonary resistance
RMR	resting metabolic rate
rMSSD	square root of the mean of the squared difference between adjacent normal RR intervals
RO ₂	organic peroxy
ROI	reactive oxygen intermediate/superoxide anion
RONO	organic nitrate
RO ₂ NO ₂	peroxy nitrate
ROS	reactive oxygen species
RR	relative risk
RRMS	relatively remote monitoring sites
RT	respiratory tract
R _T	total respiratory resistance
R _T	transepithelial resistance
PV	potential vorticity
$\sigma_{\rm g}$	sigma-g, geometric standard deviation
S	smoker
SAC	Staphylococcus aureus Cowan 1 strain

SAI	Systems Applications International
S_aO_2	oxygen saturation of arterial blood
SAPRC	Statewide Air Pollution Research Center, University of California, Riverside
SAROAD	Storage and Retrieval of Aerometric Data (U.S. Environmental Protection Agency centralized database; superseded by Aerometric Information Retrieval System [AIRS])
$\mathrm{SAW}_{\mathrm{grp}}$	small airway function
sc	subcutaneous
SC	stratum corneum
SCAQS	Southern California Air Quality Study
SD, S-D	Sprague-Dawley
SD	standard deviation
SDNN	standard deviation around RR intervals
SE	standard error
SES	socioeconomic status
SG _{aw}	specific airway conductance
SH	Shenandoah National Park
SHEDS	Simulation of Human Exposure and Dose System
SO ₂	sulfur dioxide
SO4 ²⁻	sulfate
SOD	superoxide dismutase
SOS	Southern Oxidant Study
SO _x	sulfur oxides
SP	substance P
SP	surfactant protein (e.g., SP-A, SP-D)
SR _{aw}	specific airway resistance
SRBC	sheep red blood cell
SRM	standard reference material
STE	stratospheric-tropospheric exchange
STEP	Stratospheric-Tropospheric-Exchange Project

STPD	standard temperature and pressure, dry
STRF	Spatio-Temporal Random Field
SUM06	seasonal sum of all hourly average concentrations ≥ 0.06 ppm
SUM07	seasonal sum of all hourly average concentrations ≥ 0.07 ppm
SUM08	seasonal sum of all hourly average concentrations ≥ 0.08 ppm
Т	time (duration of exposure)
T ₃	triiodothyronine
T_4	thyroxine
TAR	Third Assessment Report
TB	terminal bronchiole
ТВ	tracheobronchial (region)
TBA	thiobarbituric acid
TBARS	thiobarbituric acid reactive substances
^{99m} Tc-DTPA	radiolabeled diethylenetriaminepentaacetic acid
T _{co}	core temperature
TDLAS	tunable-diode laser absorption spectroscopy
TEM	transmission electron microscopy
Tg	teragram
T _i	inspiratory time
TLC	total lung capacity
TLR	Toll-like receptor
TNF	tumor necrosis factor
TOMS	Total Ozone Mapping Satellite; total ozone mapping spectrometer
TOPSE	Tropospheric Ozone Production About the Spring Equinox
TRIM	Total Risk Integrated Methodology (model)
TRIM EXPO	Total Risk Integrated Methodology Exposure Event (model)
TPLIF	two-photon laser-induced fluorescence
TSH	thyroid-stimulating hormone
TSP	total suspended particulate
TTFMS	two-tone frequency-modulated spectroscopy
TVA	Tennessee Valley Authority

TTTT A	4
TWA	time-weighted average
TX	thromboxane (A_2, B_2)
UA	uric acid
UAM	Urban Airshed Model
URT	upper respiratory tract
UTC	Coordinated Universal Time
UV	ultraviolet
UV-A	ultraviolet radiation of wavelengths 320 to 400 nm
UV-DIAL	Ultraviolet Differential Absorption Lidar
VC	vital capacity
VCAM	vascular cell adhesion molecule
V _D	anatomic dead space
$\dot{V}_{\rm E}$	minute ventilation; expired volume per minute
\dot{V}_{Emax}	maximum minute ventilation
$\dot{V}_{max25\%}$	maximum expiratory flow at 25% of the vital capacity
$\dot{V}_{max50\%}$	maximum expiratory flow at 50% of the vital capacity
$\dot{V}_{max50\% TLC}$	maximum expiratory flow at 50% of the total lung capacity
$\dot{V}_{max75\%}$	maximum expiratory flow at 75% of the vital capacity
VMD	volume mean diameter
$\dot{V}O_{2max}$	maximal oxygen uptake (maximal aerobic capacity)
VOCs	volatile organic compounds
V _T	tidal volume
V _T	tracheal transepithelial potential
V_{TB}	dose to tracheobronchial region
V_{Tmax}	maximum tidal volume
W126	cumulative integrated exposure index with a sigmoidal weighting function
WF, WFM	White Face Mountain
WT	White Top Mountain
WT	wild type

ANNEX AX2. PHYSICS AND CHEMISTRY OF OZONE IN THE ATMOSPHERE

2

1

- 3
- 4

5 AX2.1 INTRODUCTION

6 This annex (Annex AX2) provides detailed supporting information for Chapter 2 on the 7 physics and chemistry of ozone (O₃) in the atmosphere. The organization of the material in this 8 annex follows that used in prior Air Quality Criteria Documents, i.e., material is presented in 9 sections and subsections. This annex provides material supporting Chapter 2 of the current draft 10 Air Quality Criteria Document for Ozone.

Section AX2.2 focuses on the chemistry of O₃ formation. A very brief overview of atmospheric structure is presented in Section AX2.2.1. An overview of O₃ chemistry is given in Section AX2.2.2. Information about reactive chemical species that initiate the oxidation of VOCs is given in Section AX2.2.3. The chemistry of nitrogen oxides is then discussed briefly in Section AX2.2.4. The oxidation of methane, the simplest hydrocarbon is outlined in

16 Section AX2.2.5.

17 The photochemical cycles leading to O_3 production are best understood by considering the 18 oxidation of methane, structurally the simplest VOC. The CH₄ oxidation cycle serves as a model 19 which can be viewed as representing the chemistry of the relatively clean or unpolluted 20 troposphere (although this is a simplification because vegetation releases large quantities of 21 complex VOCs, such as isoprene, into the atmosphere). Although the chemistry of the VOCs 22 emitted from anthropogenic and biogenic sources in polluted urban and rural areas is more 23 complex, a knowledge of the CH₄ oxidation reactions aids in understanding the chemical 24 processes occurring in the polluted atmosphere because the underlying chemical principles are 25 the same. The oxidation of more complex hydrocarbons (alkanes, alkenes, and aromatic 26 compounds) is discussed in Sections AX2.2.6, AX2.2.7, and AX2.2.8, respectively. The 27 chemistry of oxygenated species is addressed in Section AX2.2.9. Greater emphasis is placed on 28 the oxidation of aromatic hydrocarbons in this section because of the large amount of new 29 information available since the last Air Quality Criteria for Ozone document (AQCD 96) was 30 published (U.S. Environmental Protection Agency, 1996) and because of their importance in O₃ 31 formation in polluted areas. Multiphase chemical processes influencing O₃ are discussed in

1 Section AX2.2.10. Meteorological processes that control the formation of O₃ and other oxidants 2 and that govern their transport and dispersion, and the sensitivity of O₃ to atmospheric 3 parameters are given in Section AX2.3. Greater emphasis is placed on those processes for which 4 a large amount of new information has become available since AQCD 96. The role of stratospheric-tropospheric exchange in determining O₃ in the troposphere is presented in Section 5 6 AX2.3.1. The importance of deep convection in redistributing O_3 and its precursors and other oxidants throughout the troposphere is given in Section AX2.3.2. The possible importance of 7 8 nocturnal low-level jets in transporting O_3 and other pollutants is presented in Section AX2.3.3. 9 Information about the mechanisms responsible for the intercontinental transport of pollutants and 10 for the interactions between stratospheric-tropospheric exchange and convection is given in 11 Section AX2.3.4. Much of the material in this section is based on results of field programs 12 examining atmospheric chemistry over the North Atlantic ocean. The sensitivity of O₃ to solar 13 ultraviolet radiation and temperature is given in Section AX2.3.5. The relations of O₃ to its 14 precursors and to other oxidants based on field and modeling studies are discussed in Section 15 AX2.4. Methods used to calculate relations between O_3 its precursors and other oxidants are 16 given in Section AX2.5. Chemistry-transport models are discussed in Section AX2.5.1. Emissions of O₃ precursors are presented in Section AX2.5.2. Issues related to the evaluation of 17 18 chemistry-transport models and emissions inventories are presented in Section AX2.5.3. 19 Measurement methods are summarized in Section AX2.6. Methods used to monitor ground-20 level O₃ are given in Section AX2.6.1, NO and NO₂ in Section AX2.6.2, HNO₃ in Section 21 AX2.6.3 and some important VOCs in Section AX2.6.4.

- 22
- 23

24 AX2.2 TROPOSPHERIC OZONE CHEMISTRY

25 AX2.2.1 Atmospheric Structure

The atmosphere can be divided into several distinct vertical layers, based primarily on the major mechanism by which that portion of the atmosphere is heated or cooled. The lowest major layer is the troposphere, which extends from the earth's surface to about 8 km above polar regions and to about 16 km above tropical regions. The troposphere is heated by convective transport from the surface, and by the absorption of infrared radiation emitted by the surface, principally by water vapor and CO₂. The planetary boundary layer (PBL) is the sublayer of the

1 troposphere that mixes with surface air on time scales of a few hours or less. It typically extends 2 to 1-2 km altitude and is often capped by a temperature inversion. The sublayer of the 3 troposphere above the PBL is called the free troposphere. Ventilation of the PBL with free 4 tropospheric air takes place on a time scale of a week. Vertical mixing of the whole troposphere takes place on a time scale of a month or two. The stratosphere extends from the tropopause, or 5 6 the top of the troposphere, to about 50 km in altitude. The upper stratosphere is heated by the 7 absorption of solar ultraviolet radiation by O₃, while dissipation of wave energy transported 8 upwards from the troposphere is a primary heating mechanism in the lower stratosphere. 9 Heating of the stratosphere is balanced by radiative cooling due to infrared emissions to space 10 by CO₂, H₂O, and O₃. As a result of heating of the upper stratosphere, temperatures increase 11 with height, inhibiting vertical mixing. A schematic overview of the major chemical cycles 12 involved in O₃ formation and destruction in the stratosphere and troposphere is shown in Figure 13 AX2-1. The figure emphasizes gas phase processes, but the importance of multiphase processes 14 is becoming apparent. The sequences of reactions shown in the lower right quadrant of the 15 figure will be discussed in Section AX2.2. The reader is referred to any of the large number of 16 texts on atmospheric chemistry, such as Wayne (2000) or Seinfeld and Pandis (1998), for an 17 introduction to stratospheric photochemistry, including the impact of O₃-destroying compounds.

18 19

AX2.2.2 Overview of Ozone Chemistry

20 Ozone is found not only in polluted urban atmospheres but throughout the troposphere, 21 including remote areas of the globe. Even without ground-level production, some O₃ would be 22 found in the troposphere due to downward transport from the stratosphere. Tropospheric 23 photochemistry leading to the formation of O₃ and other photochemical air pollutants is 24 complex, involving thousands of chemical reactions and thousands of stable and reactive 25 intermediate products. Other photochemical oxidants, such as peroxyacetyl nitrate (PAN), are 26 among the reactive products. Ozone can be photolyzed in the presence of water to form 27 hydroxyl radical (OH), which is responsible for the oxidation of NO_x and SO_x to form 28 nitric (HNO₃) and sulfuric acid (H_2SO_4), respectively. Ozone participates directly in the 29 oxidation of unsaturated hydrocarbons, via the ozonolysis mechanism, yielding secondary 30 organic compounds that contribute to aerosol formation and mass, as well as formaldehyde 31 (H₂CO) and other carbonyl compounds, such as aldehydes and ketones.

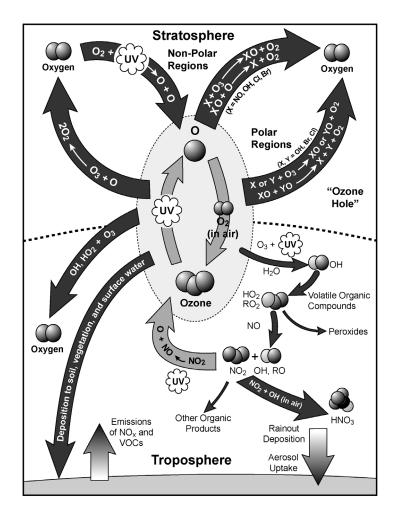


Figure AX2-1. Schematic overview of O₃ photochemistry in the stratosphere and troposphere.

There is a rapid photochemical cycle in the troposphere that involves the photolysis of
 nitrogen dioxide (NO₂) by solar UV-A radiation to yield nitric oxide (NO) and a ground-state
 oxygen atom, O(³P),

$$NO_2 + hv \rightarrow NO + O(^{3}P), \qquad (AX2-1)$$

O(³P) then reacts with molecular oxygen to form O₃: A molecule from the surrounding air
collides with the newly-formed O₃ molecule, removing excess energy to allow it to stabilize.

Reaction AX2-2 is the only significant reaction forming
$$O_3$$
 in the troposphere.
NO and O_3 react to reform NO₂:
NO + $O_3 \rightarrow NO_2 + O_2$. (AX2-3)
This reaction is responsible for O_3 decreases found near sources of NO (e.g., highways)
especially at night. The oxidation of reactive VOCs leads to the formation of reactive radical
species that allow the conversion of NO to NO₂ without the participation of O_3 (as in
reaction AX2-3).

 $O(^{3}P) + O_{2} + M \rightarrow O_{2} + M$ where M - an air molecule

$$NO \xrightarrow{HO_2^{\bullet}, RO_2^{\bullet}} NO_2.$$
 (AX2-4)

 (ΔX_{2})

14

O₃ can, therefore, accumulate as NO₂ photolyzes as in reaction AX2-1 followed by reaction
 AX2-2.

17 It is often convenient to speak about families of chemical species, that are defined in terms 18 of members which interconvert rapidly among themselves on time scales that are shorter than 19 that for formation or destruction of the family as a whole. For example, an "odd oxygen" (O_x) family can be defined as $\sum (O({}^{3}P) + O({}^{1}D) + O_{3} + NO_{2})$ in much the same way as the NO_x 20 21 $(NO + NO_2)$ family is defined. We can then see that production of O_x occurs by the schematic 22 reaction AX2-4, and that the sequence of reactions given by reactions AX2-1 through AX2-3 23 represents no net production of O_x. Definitions of species families and methods for constructing 24 families are discussed in Jacobson (1999) and references therein. Other families that include 25 nitrogen containing species, and will be referred to later in this chapter, are NO_z which is the 26 sum of the products of the oxidation of NO_x = \sum (HNO₃ + PAN (CH₃CHO-OO-NO₂) + HNO₄ + other organic nitrates + particulate nitrate); and NO_{y} , which is the sum of NO_{x} and NO_{z} . 27

1

AX2.2.3 Initiation of the Oxidation of VOCs

2 The key reactive species in the troposphere is the OH radical. OH radicals are 3 responsible for initiating the photochemical oxidation of CO and most anthropogenic and biogenic VOCs, including those responsible for depleting stratospheric O₃ (e.g., CH₃Br, 4 5 hydroclorofluorocarbons), and those which contribute to the greenhouse effect (e.g., CH_4). Because of their role in removing so many potentially damaging species, OH radicals have 6 7 sometimes been referred to as the atmosphere's detergent. In the presence of NO, reactions of 8 OH with VOCs lead to the formation of O_3 . In addition to OH radicals, there are several other 9 atmospheric species such as NO₃, Cl, and Br radicals and O₃ that are capable of initiating VOC 10 oxidation. Rate coefficients and estimated atmospheric lifetimes (the e-folding time) for 11 reactions of a number of alkanes, alkenes and dienes involved in O₃ formation with these 12 oxidants at concentrations characteristic of the relatively unpolluted planetary boundary layer are 13 given in Table AX2-1. As can be seen from Table AX2-1, there is a wide range of lifetimes 14 calculated for the different species. However, under certain conditions the relative importance of 15 these oxidants can change from those shown in the table. For hydrocarbons whose atmospheric 16 lifetime is much longer than a day, diurnally averaged concentrations of oxidant concentrations 17 can be used, but for those whose lifetime is much shorter than a day it is more appropriate to use 18 either daytime or night-time averages depending on when the oxidant is at highest 19 concentrations. During these periods, these averages are of the order of twice the values used in 20 Table AX2-1.

The main source of OH radicals is the photolysis of O_3 by solar ultraviolet radiation at wavelengths < 340 nm (solar radiation at wavelengths < 320 nm is also referred to as UV-B) to generate electronically excited O(¹D) atoms (Jet Propulsion Laboratory, 2003),

24

$$O_3 + hv \rightarrow O_2 + O(^1D). \tag{AX2-5}$$

25

- The O(¹D) atoms can either be deactivated to the ground state O(³P) atom by collisions with N_2 and O_2 , or they react with water vapor to form two OH radicals:
- 28

29

 $O(^{1}D) + H_{2}O \rightarrow 2(\bullet OH)$ (AX2-6)

- - Hydrocarbon	k, cm ³ molecule ⁻¹ s ⁻¹										
	ОН		NO ₃		Cl		Br		O ₃		
	$k \times 10^{12}$	τ	$k \times 10^{12}$	τ	$k \times 10^{10}$	τ	$k \times 10^{12}$	τ	$k \times 10^{18}$	τ	
Alkanes											
Ethane	0.24	48 d	$< 1.0 \text{ x } 10^{-5}$	> 13 y	0.57	6.7 mo	3.1×10^{-7}	$1.0\times 10^6 \ y^2$	< 0.01	> 3.2	
Propane	1.1	11 d	0.00021	> 0.60	1.3	90 d	0	$6.5\times 10^3 \ y^2$	< 0.01	> 3.2	
2-Methylpropane	2.1	5.6 d	< 0.00007	>18 y	1.3	90 d	< 1.0 ×	$> 3.2\times 10^7 \ y^2$	< 0.01	> 3.2	
<i>n</i> -Butane	2.3	5.2 d	0.000046	2.8 y	2.3	50 d	< 1.0 ×	$> 3.2 \times 10^7 \ y^2$	< 0.01	> 3.2	
2-Methylbutane	4	2.9 d	0.00016	0.79 y	2	60 d	NA	NA	NA	NA	
<i>n</i> -Pentane	3.8	3.0 d	0.000081	1.6 y	2.5	46 d	NA	NA	NA	NA	
2,2-Dimethylbutane	2.7	4.3 d	NA	NA	NA	NA	NA	NA	NA	NA	
2,3-Dimethylbutane	6.4	1.8d	0.00041	110 d	2	60 d	0.0064	50 y	NA	NA	
2-Methylpentane	5.6	2.1 d	0.000017	7.5 y	2.5	47 d	NA	NA	NA	NA	
3-Methylpentane	5.8	2.0 d	0.00002	6.3 y	2.5	46d	NA	NA	NA	NA	
<i>n</i> -Hexane	5.2	2.2 d	0.00011	1.2 y	3.1	38 d	NA	NA	NA	NA	
2,2,4-Trimethylpentane	3.8	3.0 d	0.000075	1.7 y	2.3	50 d	0.0068	47 y	NA	NA	

Table AX2-1. Comparison of the Atmospheric Lifetimes (τ) of Low Molecular Weight Hydrocarbons Due to Reaction with
OH, NO ₃ , Cl, Br and O ₃

	k, cm ³ molecule ⁻¹ s ⁻¹										
	ОН		NO ₃		Cl		Br		O ₃		
	$k \times 10^{12}$	τ	$k \times 10^{12}$	τ	$k \times 10^{10}$	τ	$k \times 10^{12}$	τ	$k \times 10^{18}$	τ	
Alkenes											
Ethene	8.5	33 h	0	230 d	0.99	3.8 m	0.18	1.8 y	1.6	7.2 d	
Propene	26	11 h	0.01	4.9 d	2.3	50 d	5.3	22 d	10	1.2 d	
2-Methylpropene	51	5.4 h	0.34	3.3 h	0.42	9.0 m	NA	NA	11	1.1 d	
1-Butene	31	9.0 h	0.013	3.6 d	1.4	65 d	3.4	34 d	9.6	1.2 d	
trans-2-Butene	64	4.3 h	0.39	2.8 h	NA	NA	0.23	1.4 y	190	1.5 h	
cis-2-Butene	56	5.0 h	0.35	3.2 h	NA	NA	6.3	18 d	125	2.3 h	
1,3-Butadiene	67	4.1 h	0.1	11 h	4.2	28 d	57	2.0 d	6.3	1.8 d	
Isoprene	100	2.8 h	0.68	1.6 h	5.1	23 d	74	1.6 d	13	21 h	
2-Methyl-2-butene	87	3.2 h	9.4	0.12 h	NA	NA	19	6.1 d	400	0.69 h	
1-Pentene	31	9.0 h	0.7	1.6 h	NA	NA	NA	NA	11	1.1 d	
trans-2-Pentene	67	4.1 h	1.6	0.69 h	NA	NA	NA	NA	320	0.86 h	
cis-2-Pentene	65	4.3 h	1.4	0.79 h	NA	NA	NA	NA	210	1.3 h	
2,4,4-Trimethyl-1-pentene	65	4.3 h	0.51	2.2 h	NA	NA	NA	NA	NA	NA	

Table AX2-1 (cont'd). Comparison of the Atmospheric Lifetimes (τ) of Low Molecular Weight Hydrocarbons Due to	0					
Reaction with OH, NO₃, Cl, Br and O₃						

Notes: NA = Reaction rate coefficient not available. Rate coefficients were calculated at 298k and 1 atmosphere. y = year. d = day.

 $OH = 1 \times 10^{6}/cm^{3}$; $NO_{3} = 2.5 \times 10^{8}/cm^{3}$; $Cl = 1 \times 10^{3}/cm^{3}$; $Br = 1 \times 10^{5}/cm^{3}$; $O_{3} = 1 \times 10^{12}/cm^{3}$. Value for Br calculated based on equilibrium with BrO = 1 ppt. ¹Rate Coefficients were Obtained from the NIST Online Kinetics Database for Reactions of Alkanes and for all Cl and Br Reactions. All Other Rate Coefficients were Obtained from the Evaluation

of Calvert et al. (2000).

²Lifetimes should be regarded as lower limits.

Sources: NIST online kinetics database (http://kinetics.nist.gov/index.php).

1 The $O({}^{3}P)$ atoms formed directly in the photolysis of O_{3} in the Huggins and Chappuis bands or 2 formed from deactivation of $O({}^{1}D)$ atoms reform O_{3} through reaction AX2-2. Hydroxyl radicals 3 produced by reactions AX2-5 and AX2-6 can react further with species such as carbon monoxide 4 and with many hydrocarbons (for example, CH₄) to produce HO₂ radicals.

5 Measurements of OH radical concentrations in the troposphere (Poppe et al., 1995; Eisele 6 et al., 1997; Brune et al., 1999; Martinez et al., 2003; Ren et al., 2003) show that, as expected, 7 the OH radical concentrations are highly variable in space and time, with daytime maximum concentrations of $> 3 \times 10^6$ molecules /cm³ in urban areas. A global, mass-weighted mean 8 9 tropospheric OH radical concentration also can be derived from the estimated emissions and 10 measured atmospheric concentrations of methylchloroform (CH₃CCl₃) and the rate constant for 11 the reaction of the OH radical with CH₃CCl₃. Krol et al. (1998) derived a global average OH concentration of 1.07×10^6 molecules /cm³ for 1993 along with an upward trend of about 12 0.5%/yr between 1978 and 1993. Using an integrated data set of observed O₃, H₂O, NO_y, CO, 13 VOCs, temperature and cloud optical depth, Spivakovsky et al. (2000) calculated a global annual 14 15 mean OH concentration of 1.16×10^6 molecules cm⁻³, consistent to within 10% of the value

16 obtained by Krol et al. (1998).

HO₂ radicals do not initiate the oxidation of hydrocarbons, but serve to recycle OH mainly
by way of reaction with NO, O₃, and itself (the latter produces H₂O₂, which can photolyze to
yield OH). The HO₂ radicals also react with organo-peroxy radicals produced during the
oxidation of VOCs to form organo-peroxides (cf. Section AX2.2.5, reaction AX2-20, e.g.).
Organo-peroxides undergo wet or dry deposition (Wesely and Hicks, 2000) or degrade further by
photolysis and reaction with OH (Jet Propulsion Laboratory, 2003).

23 At night, NO₃ assumes the role of primary oxidant (Wayne, 1991). Although it is generally 24 less reactive than OH, its high abundance in the polluted atmosphere compensates for its lower 25 reactivity. For several VOCs, however, including dimethylsulfide, isoprene, some terpenes 26 (a-pinene, limonene, linalool) and some phenolic compounds (phenol, o-cresol), oxidation 27 by NO₃ at night is competitive with oxidation by OH during the day, making it an important 28 atmospheric removal mechanism for these compounds (Wayne, 1991) (see Table AX2-1). The role of NO₃ radicals in the chemistry of the remote marine boundary layer has been examined 29 30 recently by Allen et al., (2000) and in the polluted continental boundary layer by Geyer and 31 Platt (2002).

1 Cl atoms, derived from products of multiphase processes can initiate the oxidation of most 2 of the same VOCs as OH radicals, however, the rate coefficients for the reactions of alkanes with 3 Cl atoms are usually much higher. Cl will also oxidize alkenes and aromatic compounds, but 4 with a significantly lower rate constant than for OH reactions. Following the initial reaction with Cl, the degradation of the hydrocarbon proceeds as with OH and NO₃, generating an 5 6 enhanced supply of odd hydrogen radicals leading to O₃ production in the presence of 7 sufficient NO_v. The corresponding reactions of Br with hydrocarbons proceed in a similar 8 manner, but with rate coefficients that can be substantially lower or higher.

9 Chlorine and bromine radicals will also react directly with O₃ to form ClO and BrO 10 radicals, providing a sink for odd oxygen if they do not react with NO to form NO₂ (e.g., 11 Pszenny et al., 1993). As with other oxidants present in the atmosphere, Cl chemistry provides a 12 modest net sink for O_3 when NO_x is less than 20 pptv, and is a net source at higher NO_x . Kasting 13 and Singh (1986) estimated that as much as 25% of the loss of nonmethane hydrocarbons in the 14 nonurban atmosphere can occur by reaction with Cl atoms, based on the production of Cl atoms 15 from gas phase photochemical reactions involving chlorine containing molecules (HCl, CH₃Cl, 16 CHCl₃, etc.). Elevated concentrations of atomic Cl and other halogen radicals can be found in polluted coastal cities where precursors are emitted directly from industrial sources and/or are 17 18 produced via acid-catalyzed reactions involving sea-salt particles (Tanaka et al., 2000; Spicer 19 et al., 2001).

20 Substantial chlorine-VOC chemistry has been observed in the cities of Houston and 21 Beaumont/Port Arthur, Texas (Tanaka et al., 2000; Chang et al., 2002; Tanaka et al., 2003a). 22 Industrial production activities in those areas frequently result in large releases of chlorine gas 23 (Tanaka et al., 2000). Chloromethylbutenone (CMBO), the product of the oxidation of isoprene 24 by atomic Cl and a unique marker for chlorine radical chemistry in the atmosphere (Nordmeyer 25 et al., 1997), has been found at significant mixing ratios (up to 145 pptv) in ambient Houston air 26 (Riemer and Apel, 2001). However, except for situations in which there are strong local sources 27 such as these, the evidence for the importance of Cl as an oxidizing agent is mixed. Parrish et al. 28 (1992, 1993) argued that ratios of selected hydrocarbons measured at Pt. Arena, CA were 29 consistent with loss by reaction with OH radicals and that any deviations could be attributed to 30 mixing processes. Finlayson-Pitts (1993), on the other hand had suggested that these deviations 31 could have been the result of Cl reactions. McKeen et al. (1996) suggested that hydrocarbon

1 ratios measured downwind of anthropogenic source regions affecting the western Pacific Basin 2 are consistent with loss by reaction with OH radicals only. Rudolph et al. (1997), based on data 3 for several pairs of hydrocarbons collected during a cruise in the western Mediterranean Sea, the eastern mid- and North Atlantic Ocean and the North Sea during April and May of 1991, also 4 5 found that ratios of hydrocarbons to each other are consistent with their loss given mainly by reaction with OH radicals without substantial contributions from reactions with Cl. Their best 6 7 estimate, for their sampling conditions was a ratio of Cl to OH of about 10⁻³, implying a concentration of Cl of about 10³/cm³ using the globally averaged OH concentration of 8 9 about 10⁶/cm³ given above. In contrast Wingenter et al. (1996) and Singh et al. (1996a) inferred significantly higher concentrations of atomic Cl (10^4 to 10^5 cm⁻³) based on relative concentration 10 11 changes in VOCs measured over the eastern North Atlantic and Pacific Oceans, respectively. Similar approaches employed over the high-latitude southern ocean yielded lower estimates of 12 Cl concentrations (10³ cm⁻³; Wingenter et al., 1999). Taken at face value, these observations 13 indicate substantial variability in Cl concentrations and uncertainty in "typical" values. 14

15

16 AX2.2.4 Chemistry of Nitrogen Oxides in the Troposphere

17 In the troposphere, NO, NO₂, and O₃ are interrelated by the following reactions:
18

$$NO + O_3 \rightarrow NO_2 + O_2 \tag{AX2-3}$$

$$NO_2 + hv \rightarrow NO + O(^{3}P)$$
 (AX2-1)

$$O(^{3}P) + O_{2} + M \rightarrow O_{3} + M$$
(AX2-2)

19

20 The reaction of NO_2 with O_3 leads to the formation of the nitrate (NO_3) radical,

21

22

 $NO_2 + O_3 \rightarrow NO_3^{\bullet} + O_2, \tag{AX2-7}$

23

24 which in the lower troposphere is nearly in equilibrium with dinitrogen pentoxide (N_2O_5):

25

$$NO_3 \cdot + NO_2 \xleftarrow{M} N_2 O_5.$$
 (AX2-8)

26

August 2005

However, because the NO₃ radical photolyzes rapidly (with a lifetime of ≈ 5 s for an overhead sun [Atkinson et al., 1992a]),

3

$$NO_3 \cdot + hv \rightarrow NO + O_2$$
 (10%) (Ax2-9a)

$$\rightarrow \text{NO}_2 + \text{O}(^3\text{P}) \quad (90\%) \tag{AX2-9b}$$

4

5 its concentration remains low during daylight hours, but can increase after sunset to nighttime 6 concentrations of $< 5 \times 10^7$ to 1×10^{10} molecules cm⁻³ (< 2 to 430 ppt) over continental areas 7 influenced by anthropogenic emissions of NO_x (Atkinson et al., 1986). This leads to an increase 8 of N₂O₅ concentrations during the night by reaction (AX2-8).

9 The tropospheric chemical removal processes for NO_x involve the reaction of NO_2 with the 10 OH radical and the hydrolysis of N_2O_5 in aqueous aerosol solutions to produce HNO_3 .

11

•OH + NO₂
$$\longrightarrow$$
 HNO₃ (AX2-10)

12

$$N_2O_5 \xrightarrow{H_2O(1)} HNO_3$$
 (AX2-11)

13

14 The gas-phase reaction of the OH radical with NO₂ initiates the major and ultimate removal 15 process for NO_x in the troposphere. This reaction removes radicals (OH and NO_2) and competes 16 with hydrocarbons for OH radicals in areas characterized by high NO_x concentrations, such as 17 urban centers (see Section AX2.4). In addition to gas-phase nitric acid, Golden and Smith 18 (2000) have concluded that, pernitrous acid (HOONO) is also produced by the reaction of NO_2 19 and OH radicals on the basis of theoretical studies. However, a recent assessment (Jet 20 Propulsion Laboratory, 2003) has concluded that this channel represents a minor yield 21 (approximately 15% at the surface). HOONO will thermally decompose or photolyze. 22 Gas-phase HNO₃ formed from reaction AX2-10 undergoes wet and dry deposition to the surface 23 and uptake by ambient aerosol particles. The tropospheric lifetime of NO_x due to reaction 24 AX2-10 ranges from a few hours to a few days. Gever and Platt (2002) concluded that reaction AX2-11 constituted about 10% of the removal of NO_x at a site near Berlin, Germany during 25

1 spring and summer. However, during winter the relative importance of reaction AX2-11 could 2 be much higher because of the much lower concentration of OH radicals and the enhanced 3 stability of N₂O₅ due to lower temperatures and intensity of sunlight. Note that reaction AX2-11 4 surely proceeds as a heterogeneous reaction. OH radicals also can react with NO to produce nitrous acid (HNO₂): 5 6 •OH + NO \xrightarrow{M} HNO₂. (AX2-12) 7 In the daytime, HNO₂ is rapidly photolyzed back to the original reactants: 8 9 $HNO_2 + hv \rightarrow \bullet OH + NO.$ 10 (AX2-13) 11 12 At night, HNO₂ can be formed by heterogeneous reactions of NO₂ in aerosols or at the earth's 13 surface (Lammel and Cape, 1996; Jacob, 2000; Sakamaki et al., 1983; Pitts et al., 1984a; 14 Svensson et al., 1987; Jenkin et al., 1988; Lammel and Perner, 1988; Notholt et al., 1992a,b). 15 This results in accumulation of HNO₂ during nighttime. Modeling studies suggest that 16 photolysis of this HNO₂ following sunrise, could provide an important early-morning source of 17 OH radicals to drive O₃ formation (Harris et al., 1982). 18 Another important process controlling NO_x concentrations is the formation of organic 19 nitrates. Oxidation of VOCs produces organic peroxy radicals (RO₂), as discussed in the 20 hydrocarbon chemistry subsections to follow. Reaction of these RO₂ radicals with NO and NO₂ 21 produces organic nitrates (RONO₂) and peroxynitrates (RO₂NO₂): 22 23 $RO_2^{\bullet} + NO \xrightarrow{M} RONO_2$ (AX2-14) 24 $RO_2^{\bullet} + NO_2 \xrightarrow{M} RO_2NO_2$ (AX2-15) 25 26 27 Reaction (AX2-14) is a minor branch for the reaction of RO₂ with NO (the major branch produces RO and NO₂, as discussed in the next section). The organic nitrate yield increases with 28 29 carbon number (Atkinson, 2000).

The organic nitrates may react further, depending on the functionality of the R group, but
they will typically not return NO_x and can therefore be viewed as a permanent sink for NO_x.
This sink is usually small compared to HNO₃ formation, but the formation of isoprene nitrates
may be a significant sink for NO_x in the United States in summer (Liang et al., 1998).

The peroxynitrates produced by (AX2-15) are thermally unstable and most have very short 5 6 lifetimes (less than a few minutes) against thermal decomposition to the original reactants. They 7 are thus not effective sinks of NO_x . Important exceptions are the peroxyacylnitrates (PANs) 8 arising from the peroxyacyl radicals RC(O)OO produced by oxidation and photolysis of 9 carbonyl compounds. PANs have lifetimes ranging from ~1 hour at room temperature to several 10 weeks at 250K. They can thus provide an effective sink of NO_x at cold temperatures, but also a 11 reservoir allowing eventual release of NO_x as air masses warm, in particular by subsidence. By 12 far the most important of these PANs compounds is peroxyacetylnitrate (PAN), with formula 13 $CH_3C(O)OONO_2$. PAN is a significant product in the oxidation of most VOCs. It is now well 14 established that PAN decomposition provides a major source of NOx in the remote troposphere 15 (Staudt et al., 2003). PAN decomposition in subsiding Asian air masses over the eastern Pacific 16 could make an important contribution to O₃ enhancement in the U.S. from Asian pollution 17 (Hudman et al., 2004).

18

19

AX2.2.5 The Methane Oxidation Cycle

20 The photochemical cycles leading to O_3 production are best understood by considering the 21 oxidation of methane, structurally the simplest VOC. The CH₄ oxidation cycle serves as a model 22 which describes the chemistry of the relatively clean or unpolluted troposphere (although this is 23 a simplification because vegetation releases large quantities of complex VOCs into the 24 atmosphere). Although the chemistry of the VOCs emitted from anthropogenic and biogenic 25 sources in polluted urban and rural areas is more complex, a knowledge of the CH₄ oxidation 26 reactions aids in understanding the chemical processes occurring in the polluted atmosphere 27 because the underlying chemical principles are the same.

Methane is emitted into the atmosphere as the result of anaerobic microbial activity in wetlands, rice paddies, the guts of ruminants, landfills, and from mining and combustion of fossil fuels (Intergovernmental Panel on Climate Change, 2001). The major tropospheric removal process for CH_4 is by reaction with the OH radical,

2

1

3 In the troposphere, the methyl radical reacts solely with O_2 to yield the methyl peroxy (CH₃O₂• 4 radical (Atkinson et al., 1992a):

•OH + CH₄ \rightarrow H₂O + \dot{C} H₃.

$$\dot{C}H_3 + O_2 \xrightarrow{M} CH_3O_2^{\bullet}$$
 (AX2-17)

(AX2-16)

5

In the troposphere, the methyl peroxy radical can react with NO, NO₂, HO₂ radicals, and
other organic peroxy (RO₂) radicals, with the reactions with NO and HO₂ radicals being the most
important (see, for example, World Meteorological Organization, 1990). The reaction with NO
leads to the formation of the methoxy (CH₃O) radical,

10

$$CH_3O_2^{\bullet} + NO \rightarrow CH_3\dot{O} + NO_2.$$
 (AX2-18)

The reaction with the HO₂ radical leads to the formation of methyl hydroperoxide
(CH₃OOH),

$$CH_3O_2 \bullet + HO_2 \bullet \rightarrow CH_3OOH + O_2,$$
 (AX2-19)

13 which can photolyze or react with the OH radical (Atkinson et al., 1992a):

$$CH_3OOH + hv \rightarrow CH_3\dot{O} + \bullet OH.$$
 (AX2-20)

$$\bullet OH + CH_3OOH \rightarrow H_2O + CH_3O_2 \bullet$$
 (AX2-21a)

14 15

or

$$\rightarrow$$
 H₂O + CH₂OOH fast decomposition
 \dot{C} H₂OOH + M \rightarrow H₂CO + •OH (AX2-21b)

Methyl hydroperoxide is much less soluble than hydrogen peroxide (H_2O_2) , and so wet 2 deposition after incorporation into cloud droplets is much less important as a removal process 3 than it is for H₂O₂. CH₃OOH can also be removed by dry deposition to the surface or transported 4 by convection to the upper troposphere. The lifetime of CH₃OOH in the troposphere due to photolysis and reaction with the OH radical is estimated to be ≈ 2 days. Methyl hydroperoxide is 5 6 then a temporary sink of radicals, with its wet or dry deposition representing a loss process for tropospheric radicals. 7 8 The only important reaction for the methoxy radical (CH_3O) is 9 $CH_3\dot{O} + O_2 \rightarrow H_2CO + HO_2^{\bullet}$. (AX2-22) 10 $HO_2 + NO \rightarrow OH + NO_2$ 11 (AX2-23) 12 The HO₂ radicals produced in (AX2-22) can react with NO, O₃, or other HO₂ radicals according 13 to, 14 $HO_2 \cdot + O_3 \rightarrow \cdot OH + 2O_2$ (AX2-24) 15 16 $HO_2^{\bullet} + HO_2^{\bullet} \rightarrow H_2O_2 + O_2.$ (AX2-25) 17 18 Formaldehyde (H₂CO) produced in reaction AX2-22 can be photolyzed: 19 20 $H_2CO + hv \rightarrow H_2 + CO$ (55%) (AX2-26a) 21 \rightarrow •H + HCO (45%) (AX2-26b) 22 23 Formaldehyde also reacts with the OH radical, 24 25 •OH + H₂CO \rightarrow H₂O + HCO. (AX2-27)

1

The H atom and HCO (formyl) radical produced in these reactions react solely with O₂ to form
the HO₂ radical:

3

4

$$\bullet H + O_2 + M \rightarrow HO_2 \bullet + M \tag{AX2-28}$$

$$H\dot{C}O + O_2 \rightarrow HO_2^{\bullet} + CO_1$$
 (AX2-29)

5 The lifetimes of H₂CO due to photolysis and reaction with OH radicals are \approx 4 h and 1.5 days, respectively, leading to an overall lifetime of slightly less than 4 hours for H₂CO for overhead 6 7 sun conditions (Rogers, 1990). 8 The final step in the oxidation of CH₄ involves the oxidation of CO by reaction with the 9 OH radical to form CO₂: 10 11 $CO + \bullet OH \rightarrow CO_2 + \bullet H$ (AX2-30)12 $H\dot{C}O + O_2 \rightarrow HO_2^{\bullet} + CO.$ (AX2-29) 13 14 15 The lifetime of CO in the lower troposphere is ≈ 2 months at midlatitudes. 16 NO and HO₂ radicals compete for reaction with CH₃O₂ and HO₂ radicals, and the reaction 17 route depends on the rate constants for these two reactions and the tropospheric concentrations 18 of HO₂ and NO. The rate constants for the reaction of the CH₃O₂ radicals with NO (reaction 19 AX2-18) and HO₂ radicals (reaction AX2-19) are of comparable magnitude (e.g., Jet Propulsion 20 Laboratory, 2003). Based on expected HO₂ radical concentrations in the troposphere, Logan 21 et al. (1981) calculated that the reaction of the CH₃O₂ radical with NO dominates for NO mixing ratios of >30 ppt. For NO mixing ratios <30 ppt, the reaction of the CH₃O₂ radical with HO₂ 22 23 dominates. The overall effects of methane oxidation on O3 formation for the case when 24 NO >30 ppt can be written as: 25

$$CH_4 + \bullet OH + O_2 \rightarrow CH_3O_2 \bullet + H_2O \qquad (AX2-16, AX2-17)$$

$$CH_3O_2 \bullet + NO \rightarrow CH_3O \bullet + NO_2 \qquad (AX2-18)$$

$$CH_3O \bullet + O_2 \rightarrow H_2CO + HO_2 \bullet (AX2-22)$$

$$HO_2 \bullet + NO \rightarrow \bullet OH + NO_2 \qquad (AX2-23)$$

$$2(NO_2 + hv \rightarrow NO + O(^{3}P)) \qquad (AX2-1)$$

$$2(O(^{3}P) + O_2 + M \rightarrow O_3 + M) \qquad (AX2-2)$$

Net:
$$CH_4 + 4O_2 + 2hv \rightarrow H_2CO + 2O_3 + H_2O$$
 (AX2-31)

1

2 Further O_3 formation occurs, based on the subsequent reactions of H_2CO , e.g.,

3

$$H_2CO + hv + 2O_2 \rightarrow 2HO_2^{\bullet} + CO$$
 (AX2-26b; AX2-28; AX2-29)

$$2(\text{HO}_2 \bullet + \text{NO} \to \bullet \text{OH} + \text{NO}_2)$$
(AX2-23)

$$2(NO_2 + hv \rightarrow NO + O(^{3}P))$$
 (AX2-1)

$$2(O(^{3}P) + O_{2} + M \rightarrow O_{3} + M)$$
 (AX2-2)

Net:
$$H_2CO + 4O_2 + hv \rightarrow CO + 2O_3 + 2 \cdot OH.$$
 (AX2-32)

4

5 Reactions in the above sequence lead to the production of two OH radicals which can further

6 react with atmospheric constituents (e.g., Crutzen, 1973). There is also a less important

7 pathway:

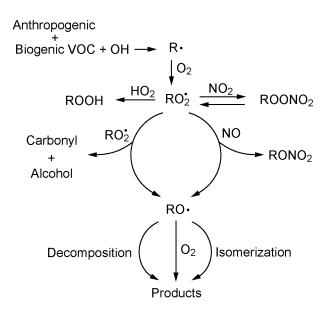
13These reaction sequences are important for tropospheric chemistry because formaldehyde is an14intermediate product of the oxidation of most VOCs. The reaction of O_3 and HO_2 radicals leads15to the net destruction of tropospheric O_3 :

16

$$\mathrm{HO}_{2}^{\bullet} + \mathrm{O}_{3} \to \bullet\mathrm{OH} + 2\mathrm{O}_{2} \tag{AX2-24}$$

17

18	Using the rate constants reported for reactions AX2-23 and AX2-24 (Atkinson et al., 1992a) and
19	the background tropospheric O_3 mixing ratios given above, the reaction of HO_2 radicals with NO
20	dominates over reaction with O_3 for NO mixing ratios >10 ppt. The rate constant for
21	reaction AX2-25 is such that an NO mixing ratio of this magnitude also means that the HO_2
22	radical reaction with NO will be favored over the self-reaction of HO ₂ radicals.
23	Consequently, there are two regimes in the "relatively clean" troposphere, depending on
24	the local NO concentration: (1) a "very low-NO _x " regime in which HO ₂ and CH_3O_2 radicals
25	combine (reaction AX2-19), and HO ₂ radicals undergo self-reaction (to form H_2O_2) and react
26	with O ₃ (reactions AX2-25 and AX2-24), leading to net destruction of O ₃ and inefficient OH
27	radical regeneration (see also Ehhalt et al., 1991; Ayers et al., 1992); and (2) a "low-NO _x "
28	regime (by comparison with much higher NO_x concentrations found in polluted areas) in
29	which HO ₂ and CH ₃ O ₂ radicals react with NO to convert NO to NO ₂ , regenerate the OH radical,


1	and, through the photolysis of NO ₂ , produce O_3 . In the "low NO _x " regime there still may be
2	significant competition from peroxy-peroxy reactions, depending on the local NO concentration.
3	Nitric oxide mixing ratios are sufficiently low in the remote marine boundary layer
4	relatively unaffected by transport of NO_x from polluted continental areas (< 15 ppt) that
5	oxidation of CH_4 will lead to net destruction of O_3 , as discussed by Carroll et al. (1990) and
6	Ayers et al. (1992). In continental and marine areas affected by transport of NO_x from
7	combustion sources, NO mixing ratios are high enough (of the order of ~one to a few hundred
8	ppt) for the oxidation of CH_4 , nonmethane hydrocarbons (NMHCs) and CO to lead to net O_3
9	formation (e.g., Carroll et al., 1990; Dickerson et al., 1995). Generally, NO mixing ratios
10	increase with altitude and can be of the order of fifty to a few hundred ppt in the upper
11	troposphere depending on location. The oxidation of peroxides, carbon monoxide and acetone
12	transported upward by convection, in the presence of this NO, can lead to local O ₃ formation
13	(e.g., Singh et al., 1995; McKeen et al., 1997; Wennberg et al., 1998; Brühl et al., 2000).

14

15 AX2.2.6 The Atmospheric Chemistry of Alkanes

The same basic processes by which CH_4 is oxidized occur in the oxidation of other, even more reactive and more complex VOCs. As in the CH_4 oxidation cycle, the conversion of NO to NO₂ during the oxidation of VOCs results in the production of O₃ and the efficient regeneration of the OH radical, which in turn can react with other VOCs (Figure AX2-2). The chemistry of the major classes of VOCs important for O₃ formation such as alkanes, alkenes (including alkenes from biogenic sources), and aromatic hydrocarbons will be summarized in turn.

23 Reaction with OH radicals represents the main loss process for alkanes and as also 24 mentioned earlier, reaction with nitrate and chlorine radicals are additional sinks for alkanes. 25 For alkanes having carbon-chain lengths of four or less, the chemistry is well understood and the 26 reaction rates are slow in comparison to alkenes and other VOCs of similar structure and 27 molecular weight. See Table AX2-1 for a comparison of reaction rate constants for several 28 small alkanes and their alkene and diene homologues. For alkanes larger than C5, the situation 29 is more complex because the products generated during the degradation of these compounds are 30 usually not well characterized. Branched alkanes have rates of reaction that are highly

Figure AX2-2. General chemical mechanism for the oxidative degradation of VOCs. Source: Atkinson (2000).

dependent on carbon backbone structure. Stable products of alkane photooxidation are known to
 include carbonyl compounds, alkyl nitrates, and hydroxycarbonyls.

3 Alkyl nitrates form primarily as an alternate product of reaction AX2-34 (below). Several modeling studies have predicted that large fractions of NO_v exist as alkyl and hydroxy alkyl 4 5 nitrates (Calvert and Madronich, 1987; Atherton and Penner, 1988; Trainer et al., 1991). In NO_x- and VOC-rich urban atmospheres, 100 different alkyl and 74 different hydroxy alkyl 6 7 nitrate compounds have been predicted and identified (Calvert and Madronich, 1987; Schneider 8 and Ballschmiter, 1999; Schneider et al., 1998). Uncertainties in the atmospheric chemistry of 9 the alkanes include the branching ratio of reaction AX2-34, i.e., the extent to which alkyl nitrates 10 form versus RO and NO₂. These uncertainties affect modeling predictions of NO_x 11 concentrations, NO-to-NO₂ conversion and O₃ formation during photochemical degradation of 12 the VOCs. Discrepancies between observations and theory have been found in aircraft 13 measurements of NO_v (Singh et al., 1996b). Recent field studies conducted by Day et al. (2003) 14 have shown that large fractions of organic nitrates, which may be associated with isoprene

1 2

8 9

10

11

12 13 14

oxidation products, are present in urban and rural atmosphere that have not been previously measured and considered in NO_v calculations to date.

Alcohols and ethers in ambient air react almost exclusively with the OH radical, with the reaction proceeding primarily via H-atom abstraction from the C – H bonds adjacent to the oxygen-containing function group in these compounds (Atkinson and Arey, 2003).

6 The following list of general reactions, analogous to those described for methane,
7 summarizes the role of alkane oxidation in tropospheric O₃ formation.

- $\bullet OH + RH \rightarrow H_2O + \bullet R \tag{AX2-34}$
 - $\bullet \mathbf{R} + \mathbf{O}_2 + \mathbf{M} \to \mathbf{RO}_2 \bullet + \mathbf{M} \tag{AX2-35}$

$$RO_2^{\bullet} + NO \rightarrow RO^{\bullet} + NO_2$$
 (AX2-36)

$$HO_2 \bullet + NO \to \bullet OH + NO_2$$
 (AX2-23)

$$RO\bullet + O_2 \rightarrow R'CHO + HO_2\bullet$$
(AX2-37)

$$2(NO_2 + hv \rightarrow NO + O) \tag{AX2-1}$$

$$2(O + O_2 + M \rightarrow O_3 + M)$$
 (AX2-2)

Net:
$$RH + 4O_2 + 2hv \rightarrow R'CHO + 2O_3 + H_2O$$
 (AX2-38)

25 26

The oxidation of alkanes can also be initiated by other oxidizing agents such as NO_3 and Clradicals. In this case, there is net production of an OH radical which can re-initiate the oxidation sequence. The reaction of OH radicals with aldehydes forms acyl (R'CO) radicals, and acyl peroxy radicals (R'C(O)O₂) are formed by the addition of O₂. As an example, the oxidation of ethane (C₂H₅–H) yields acetaldehyde (CH₃–CHO). Acetyl (CH₃–CO) and acetylperoxy (CH₃–C(O)O₂) radicals can then be formed. Acetylperoxy radicals can combine with NO₂ to form peroxyacetyl nitrate (PAN) via:

34

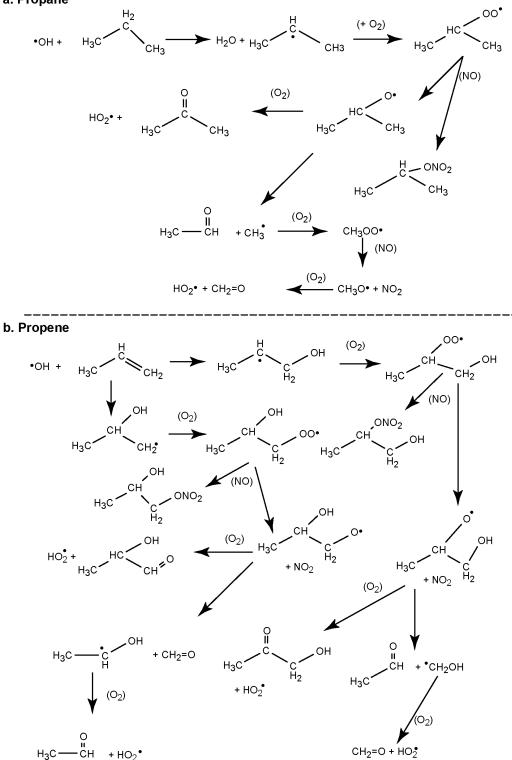
$$CH_{3}C(O)O_{2}^{\bullet} + NO_{2} + M \Leftrightarrow CH_{3}C(O)O_{2}NO_{2} + M$$
 (AX2-39)

35

PAN can act as a temporary reservoir for NO₂. Upon the decomposition of PAN, either locally
or elsewhere, NO₂ is released to participate in the O₃ formation process again. During the
oxidation of propane, the relatively long-lived intermediate acetone (CH₃ – C(O) CH₃) is formed,
as shown in Figure AX2-3. The photolysis of acetone can be an important source of OH
radicals, especially in the upper troposphere (e.g., Singh et al., 1995). Examples of oxidation
mechanisms of more complex alkanes and other classes of hydrocarbons can be found in
comprehensive texts such as Seinfeld and Pandis (1998).

8

9


AX2.2.7 The Atmospheric Chemistry of Alkenes

10 As shown in Figure AX2-3, the presence of a double carbon-carbon bond, i.e., > C = C <, 11 in a VOC can greatly increase the range of potential reaction intermediates and products, 12 complicating the prediction of O₃ production. The alkenes emitted from anthropogenic sources 13 are mainly ethene, propene, and the butenes, with lesser amounts of the $\geq C_5$ alkenes. The major biogenic alkenes emitted from vegetation are isoprene (2-methyl-1,3-butadiene) and $C_{10}H_{16}$ 14 15 monoterpenes (Atkinson and Arey, 2003), and their tropospheric chemistry is currently the focus 16 of much attention (Zhang et al., 2002; Sauer et al., 1999; Geiger et al., 2003; Sprengnether et al., 17 2002; Witter et al., 2002; Bonn and Moortgat, 2003; Berndt et al., 2003; Fick et al., 2003; 18 Kavouras et al., 1999; Atkinson and Arey, 2003).

19 Alkenes react in ambient air with OH and NO₃ radicals and with O₃. The mechanisms 20 involved in their oxidation have been discussed in detail by Calvert et al. (2000). All three 21 processes are important atmospheric transformation processes, and all proceed by initial addition 22 to the > C = C < bonds or, to a much lesser extent, by H atom extraction. Products of alkene 23 photooxidation include carbonyl compounds, hydroxy alkyl nitrates and nitratocarbonyls, and 24 decomposition products from the high energy biradicals formed in alkene-O₃ reactions. 25 Table AX2-2 provides estimated atmospheric lifetimes for biogenic alkenes with respect to 26 oxidation by OH, NO₃ and O₃. The structures of most of the compounds given in Table AX2-2 27 are shown in Figure AX2-4.

Uncertainties in the atmospheric chemistry of the alkenes concern the products and mechanisms of their reactions with O_3 , especially the yields of OH radicals, H_2O_2 , and secondary organic aerosol in both outdoor and indoor environments. However, many product analyses of important biogenic and anthropogenic alkenes in recent years have aided in the narrowing of

Figure AX2-3. Hydroxyl radical initiated oxidation of a) propane and b) propene.

Source: Calvert et al. (2000).

August 2005

	Lifetime for Reaction with			
Biogenic VOC	OH ^b	O ₃ ^c	NO ₃ ^d	
Isoprene	l.4 h	0.92 d	1.6 h	
Monoterpenes				
Camphene	2.6 h	13 d	l.7 h	
2-Carene	l.7 h	1.2 h	4 min	
3-Carene	16 h	8.0 h	7 min	
Limonene	49 min	1.4 h	5 min	
Myrcene	39 min	35 min	6 min	
cis-/trans-Ocimene	33 min	31 min	3 min	
α-Phellandrene	27 min	5.6 min	0.9 min	
β-Phellandrene	50 min	5.9 h	8 min	
α-Pinene	2.6 h	3.2 h	11 min	
β-Pinene	l.8 h	0.77 d	27 min	
Sabinene	l.2 h	3.4 h	7 min	
α-Terpinene	23 min	0.7 min	0.5 min	
γ-Terpinene	47 min	2.0 h	2 min	
Terpinolene	37 min	9.1 min	0.7 min	
Sesquiterpenes				
β-Caryophyllene	42 min	1.4 min	3 min	
α-Cedrene	2.1 h	9.8 h	8 min	
α-Copaene	1.5 h	1.8 h	4 min	
α-Humulene	28 min	1.4 min	2 min	
Longifolene	2.9 h	> 23 d	1.6 h	
Oxygenates				
Acetone ^e	61 d ^f	$> 3.2 y^{g}$	$> 8 y^{f}$	
Camphor	2.5 d ^h	$> 165 d^{h}$	$> 300 \ d^{h}$	
1,8-Cineole	1.0 d ⁱ	$> 77 \ d^{j}$	1.5 y ⁱ	
cis-3-Hexen-1-ol	1.3 h ^k	4.3 h ^k	4.1 h ^k	
cis-3-Hexenyl acetate	18 h ^k	5.1 h ^k	4.S h ^k	
Linalool	52 min ^k	39 min ^k	6 min ^k	

Table AX2-2. Calculated Atmospheric Lifetimes of Biogenic Volatile Organic Compounds (adapted from Atkinson and Arey, 2003)^a

	Lifetime for Reaction with			
Biogenic VOC	OH ^b	O ₃ ^c	NO ₃ ^d	
Oxygenates (cont'd)				
Methanol	12 d ^f	> 3.2 y ^g	2.0 y ^f	
2-Methyl-3-buten-2-ol	2.4 h ¹	1.2 d ^m	7.7 d ⁿ	
6-Methyl-5-hepten-2-one	53 min°	0.7 h°	9 min°	

Table AX-2 (cont'd). Calculated Atmospheric Lifetimes of Biogenic Volatile Organic Compounds (adapted from Atkinson and Arey, 2003)^a

^a Rate coefficients rom Calvert et al. (2000) unless noted otherwise.

^bAssumed OH radical concentration: 1.0×10^6 molecule cm⁻³.

^cAssumed O_3 concentration: 1×10^{12} molecule cm⁻³, 24-h average.

^d Assumed NO₃ radical concentration: 2.5×10^8 molecule cm⁻³, 12-h nighttime average.

^e Photolysis will also occur with a calculated photolysis lifetime of ~60 day for the lower troposphere, July, 40° N (Meyrahn et al., 1986).

^fAtkinson et al. (1999).

^gEstimated.

^hReissell et al. (2001).

ⁱCorchnoy and Atkinson (1990).

^jAtkinson et al. (1990).

^k Atkinson et al. (1995).

¹Papagni et al. (2001).

^m Grosjean and Grosjean (1994).

ⁿ Rudich et al. (1996).

^o Smith et al. (1996).

1	these uncertainties.	The reader is r	eferred to extensive	reviews by	Calvert et al.	(2000) and
-						(

2 Atkinson and Arey (2003) for detailed discussions of these products and mechanisms.

3

4 **Oxidation by OH**

As noted above, the OH radical reactions with the alkenes proceed mainly by OH radical addition to the > C = C < bonds. As shown in Figure AX2-3, for example, the OH radical reaction with propene leads to the formation of two OH-containing radicals. The subsequent reactions of these radicals are similar to those of the alkyl radicals formed by H-atom abstraction from the alkanes. Under high NO conditions, CH₃CHCH₂OH continues to react — producing several smaller, "second generation," reactive VOCs.

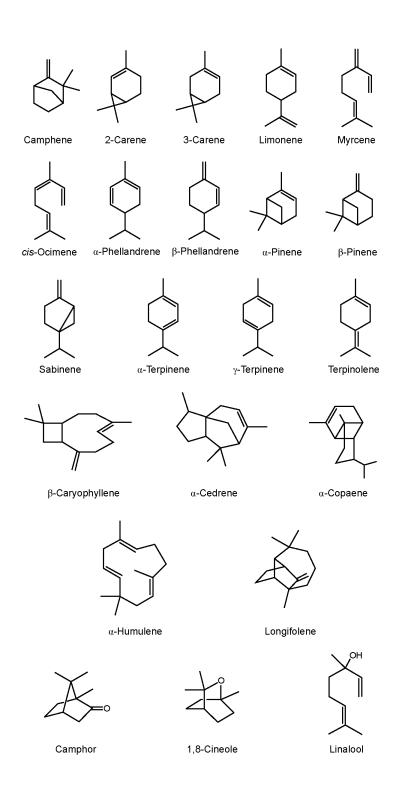


Figure AX2-4. Structures of a selected number of terpene and sesquiterpene compounds.

Source: Atkinson and Arey (2003).

1	For the simple $\leq C_4$ alkenes, the intermediate OH-containing radicals appear to undergo
2	mainly decomposition at room temperature and atmospheric pressure. Hence, for propene, the
3	"first-generation" products of the OH radical reaction in the presence of NO are HCHO and
4	CH ₃ CHO, irrespective of which OH-containing radical is formed.
5	For the more complex alkenes of biogenic origin, multiple products may be possible from
6	the initial oxidation step. Each product will further react, following a distinct degradation
7	pathway. Formaldehyde (HCHO), methacrolein ($CH_2 = C(CH_3)$ -CHO) and methyl vinyl
8	ketone (CH ₃ -C(O)-CH=CH ₂ have been identified as the major products of the OH-isoprene
9	reaction. These products also react with OH radicals and undergo photolysis. Yields of these
10	products(and others) are sensitive to the concentration of NO_x used in laboratory experiments.
11	For $NO_x \sim 100$ ppt, methacrolein, methyl vinyl ketone and formaldehyde are formed with yields
12	of roughly 20%, 16%, and 33% and yields of other carbonyl compounds are about 17%, based
13	on the results of Ruppert and Becker (2000) and references therein. Ruppert and Becker also
14	observed much lower yields of C5-unsaturated diols (2 to 5%), methanol and methyl
15	hydroperoxide indicating the presence of peroxy radical interactions. For $NO_x \sim 1$ ppb, the yields
16	of methacrolein are similar to those for $NO_x \sim 100$ ppb, but the yields of methyl vinyl ketone
17	(~33%), formaldehyde (~60%) are much higher and the diols, methanol and methyl
18	hydroperoxide were not observed. Orlando et al. (1999) found that the major products of the
19	oxidation of methacrolein were CO, CO ₂ , hydroxyacetone, formaldehyde and
20	methacryloylperoxynitrate (MPAN) in their experiment. Horowitz et al. (1998) suggested that
21	isoprene may be the principal precursor of PAN over the United States in summer. Hydroperoxy
22	and organic peroxy radicals formed during the oxidation of isoprene and its products can oxidize
23	NO to NO ₂ , initiating photochemical O ₃ formation. It should be noted that only about two-thirds
24	of the carbon in isoprene can be accounted for on a carbon atom basis for $NO_x \ge 1$ ppb. The
25	values are much lower for lower NO_x concentrations. The situation is much better for
26	methacrolein. Observed products can account for more than 90% of the reacted carbon.
27	The rates of formation of condensible, oxidation products of biogenic compounds that may
28	contribute to secondary organic aerosol formation is an important matter for the prediction of

ambient aerosol concentrations. Claeys et al. (2004) found that 2-methyltetrols are formed from
the oxidation of isoprene in yields of about 0.2% on a molar basis, or 0.4% on a mass basis.

1 2 These are semivolatile compounds that can condense on existing particles. On the other hand, pinene oxidation leads to substantial organic aerosol formation.

3

4

Oxidation by Nitrate Radical

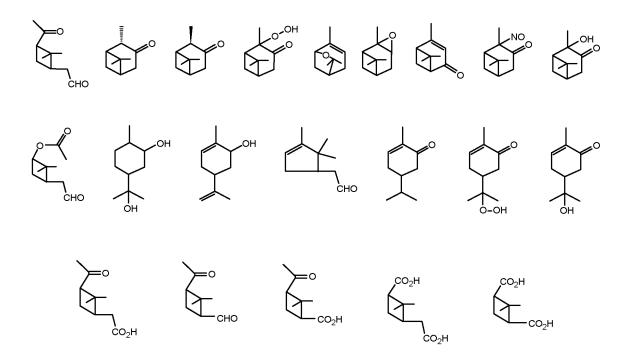
NO₃ radical reacts with alkenes mainly by addition to the double bond to form a
b-nitrooxyalkyl radical (Atkinson 1991, 1994, 1997). The abstraction pathway may account for
up to 20% of the reaction. For propene, the initial reaction is followed by a series of reactions

- 8 9
- 10

$$NO_{3} \cdot + CH_{3}CH = CH_{2} \rightarrow CH_{3}\dot{C}HCH_{2}ONO_{2}$$

$$\rightarrow CH_{3}CH(ONO_{2})\dot{C}H_{2}$$
(AX2-40)

12 13


11

14 that (Atkinson, 1991) to lead to the formation of, among others, carbonyls and nitrato-carbonyls 15 including formaldehyde (HCHO), acetaldehyde (CH₃CHO), 2-nitratopropanal 16 (CH₃CH(ONO₂)CHO), and 1-nitratopropanone (CH₃C(O)CH₂ONO₂). By analogy to OH, 17 conjugated dienes like butadiene and isoprene will react with NO₃ to form d-nitrooxyalkyl 18 radicals. (Atkinson, 2000). If NO₃ is available for reaction in the atmosphere, then NO 19 concentrations will be low, owing to the rapid reaction between NO₃ and NO. Consequently, nitrooxyalkyl peroxy radicals are expected to react primarily with NO₂, yielding thermally 20 21 unstable peroxy nitrates, NO₃, HO₂, and organoperoxy radicals (Atkinson, 2000). 22 Several studies have undertaken the quantification of the products of NO₃⁻ initiated 23 degradation of several of the important biogenic alkenes in O₃ and secondary organic aerosol 24 formation, including isoprene, a- and b-pinene, 3-carene, limonene, linalool, and 2-methyl-3-25 buten-2-ol. See Figure AX2-4 for the chemical structures of these and other biogenic 26 compounds. The results of these studies have been tabulated by Atkinson and Arey (2003). 27 28 **Oxidation by Ozone**

Unlike other organic compounds in the atmosphere, alkenes react at significant rates
with O₃. Ozone initiates the oxidation of alkenes by addition across carbon-carbon double
bonds, at rates that are competitive with reaction with OH (see Table AX2-1). The addition

1 of O₃ across the double bond yields an unstable ozonide, a 5-member ring including a single 2 carbon-carbon bond linked to the three oxygen atoms, each singly bound. The ozonide 3 rearranges spontaneously and then fragments to form an aldehyde or ketone, depending on the 4 original position of the double bond, and a high energy Criegee biradical. Collisional energy transfer may stabilize the radical, preventing it from decomposing. Low pressure studies of the 5 6 decomposition of the Criegee biradical have shown high yields of the OH radical. At atmospheric pressures, the rates of OH production have not been reliably established, due to 7 8 complications arising from subsequent reactions of the OH produced with the ozonide fragments (Calvert et al., 2000). 9

10 The ozonolysis of larger biogenic alkenes yields high molecular weight oxidation products 11 with sufficiently low vapor pressures to allow condensation into the particle phase. Many 12 oxidation products of larger biogenic alkenes have been identified in ambient aerosol, 13 eliminating their further participation in O₃ production. Figure AX2-5 shows the chemical 14 structures of the oxidation products of a-pinene and illustrates the complexity of the products. 15 Carbonyl containing compounds are especially prevalent. A summary of the results of product 16 yield studies for several biogenic alkenes can be found in Atkinson and Arey (2003).

Figure AX2-5. Products from the reaction of terpenes with O₃.

Source: Atkinson and Arey (2003).

August 2005

NO₂ also participates to a very small degree in the oxidation of alkenes by addition to
double bonds in a manner similar to O₃. Rate constants for reactions of this type range
from 10⁻¹⁸ to 10⁻²⁴ for dienes and monoalkenes (King et al., 2002). It should also be noted
that O₃ reacts with terpenoid compounds released from household products such as air fresheners
and cleaning agents in indoor air to produce ultrafine particles (Wainman et al., 2000; Sarwar
et al., 2002)

7

8

AX2.2.8 The Atmospheric Chemistry of Aromatic Hydrocarbons

9 Aromatic hydrocarbons represent a major class of compounds found in gasoline and other 10 liquid fuels. Upon vaporization, most of these compounds react rapidly in the atmosphere 11 (Davis et al., 1975) and following a series of complex processes, involving molecular oxygen 12 and oxides of nitrogen, produce O₃. Reaction with OH radicals serves as the major atmospheric 13 loss process of aromatic hydrocarbons. Atmospheric losses of alkyl aromatic compounds by O₃ 14 and nitrate radicals have been found to be minor processes for most monocyclic aromatic 15 hydrocarbons. (However, the reaction with of the nitrate radical with substituted 16 hydroxybenzenes, such as phenol or o-,m-,p-cresol, can be an important atmospheric loss 17 process for these compounds.) Much of the early work in this field focused on the temperature 18 dependence of the OH reactions (Perry et al., 1977; Tully et al., 1981) using absolute rate 19 techniques. Typically two temperature regions were observed for a large number of aromatic 20 compounds and the complex temperature profile suggested that two mechanisms were operative. 21 In the high temperature region, hydrogen (H)-atom abstraction from the aromatic ring 22 dominates, and in the temperature regime less than 320K, OH addition to the aromatic ring is the 23 dominant process. Thus, at normal temperatures and pressures in the lower troposphere, ring 24 addition is the most important reactive process followed by H-atom abstraction from any alkyl 25 substituents. The kinetics of monocyclic aromatic compounds are generally well understood and 26 there is generally broad consensus regarding the atmospheric lifetimes for these compounds. By 27 contrast, there is generally a wide range of experimental results from product studies of these 28 reactions. This leads to a major problem in model development due to a general lack of 29 understanding of the product identities and yields for even the simplest aromatic compounds, 30 which is due to the complex reaction paths following initial reaction with OH, primarily by the 31 addition pathway.

1 Two comprehensive reviews, which provide a detailed understanding of the current state-2 of-science of aromatic hydrocarbons have been written in the past five years. Atkinson (2000) 3 reviewed the atmospheric chemistry of volatile organic compounds, of which aromatic 4 hydrocarbons are included in one section of the review. More recently Calvert et al. (2002) 5 conducted a highly comprehensive examination of the reaction rates, chemical mechanisms, 6 aerosol formation, and contributions to O₃ formation for monocyclic and polycyclic aromatic 7 hydrocarbons.

8

9

AX2.2.8.1 Chemical Kinetics and Atmospheric Lifetimes of Aromatic Hydrocarbons

10 Rate constants for the reaction of species in the atmosphere with aromatic hydrocarbons 11 vary widely depending on the number of aromatic rings and substituent groups. Reactions of O_3 with aromatic hydrocarbons (AHCs) are generally slow except for monocyclic aromatic 12 13 hydrocarbons having unsaturated substituent groups. For example, indene and styrene have atmospheric lifetimes of 3.3 h and 23 h with respect to reaction with O₃, which are much longer 14 15 than that due to reactive loss with either OH or NO₃. Thus, the atmospheric lifetimes and 16 reaction products of O_3 and aromatic hydrocarbons will be ignored in this discussion. In 17 addition to chemical reaction, some organic compounds photolyze in the lower atmosphere. 18 Virtually all aromatic precursors are not subject to photolysis, although many of the ring 19 fragmentation products having multiple carbonyl groups can photolyze in the troposphere.

20 The reaction rates and atmospheric lifetimes of monocyclic aromatic compounds due to 21 reaction with OH radicals are generally dependent on the number and types of substituent groups 22 associated with the ring. These reaction rates have been found to be highly temperature and 23 pressure dependent. The temperature regimes are governed by the processes involved and show 24 a quite complex appearance. At room temperature (~300 K), both addition to the aromatic ring 25 and H-atom abstraction occur with the addition reaction being dominant. For the two smallest 26 monocyclic aromatic hydrocarbons, the initial addition adduct is not completely stabilized at 27 total pressures below 100 torr.

Numerous studies have been conducted to measure the OH + benzene rate constant over a wide range of temperatures and pressures. An analysis of absolute rate data taken at approximately 100 torr argon and not at the high pressure limit yielded a value of 1.2×10^{-12} cm³ 1 molec⁻¹ s⁻¹. Atkinson (1989) recommended a value of 1.4×10^{-12} cm³molec⁻¹ s⁻¹ at room 2 temperature and atmospheric pressure. This recommendation has been refined only slightly and 3 is reflected in the recent value recommended by Calvert et al. (2002) which is given as 4 1.39×10^{-12} cm³ molec⁻¹s⁻¹. This recommended value for the reaction of OH + benzene together 5 with values for other monocyclic aromatic hydrocarbons is given in Table AX2-3.

6 In general, it is observed that the OH rate constants with monocyclic alkyl aromatic 7 hydrocarbons are strongly influenced by the number of substituent groups found on the aromatic 8 ring. (That is, the identity of the alkyl substituent groups has little influence on the overall 9 reactions rate constant.) Single substituent single-ring aromatic compounds which include 10 toluene, ethyl benzene, n-propylbenzene, isopropylbenzene, and t-butylbenzene have average OH reaction rate constants ranging from 4.5 to 7.0×10^{-12} cm³ molec⁻¹ s⁻¹ at room temperature 11 and atmospheric pressure. These rate constants lead to atmospheric lifetimes (see below) that 12 13 are still greater than 1 day. Rate constants for monocyclic aromatic compounds with greater 14 than 10 carbon atoms or more are generally not available.

The dominant monocyclic aromatic compounds with two substituents are m-,o-, and p-xylene. Their recommended OH rate constants range from 1.4 to 2.4×10^{-11} cm³ molec⁻¹ s⁻¹. Similarly, the three isomers of ethyltoluene have recommended OH rate constants ranging from 1.2 to 1.9×10^{-11} cm³ molec⁻¹ s⁻¹. The only other two substituent single-ring aromatic compound for which the OH rate constant has been measured is p-cymene (para-isopropyltoluene), giving a value of 1.5×10^{-11} cm³ molec⁻¹ s⁻¹.

OH rate constants for the C₉ trimethyl substituted aromatic hydrocarbons (1,2,3-; 1,2,4-; 1,3,5-trimethylbenzene) are higher by a factor of approximately 2.6 over the di-substituted compounds. Rate constants for the three isomers range from 3.3 to 5.7×10^{-11} cm³ molec⁻¹ s⁻¹. While concentrations for numerous other trisubstituted benzene compounds have been reported (e.g., 1,2-dimethyl-4-ethylbenzene), OH rate constants for trimethylbenzene isomers are the only trisubstituted aromatic compounds that have been reported.

Aromatic hydrocarbons having substituent groups with unsaturated carbon groups have much higher OH rate constants than their saturated analogues. The smallest compound in this group is the C_8 AHC, styrene. This compound reacts rapidly with OH and has a recommended rate constant of 5.8×10^{-11} cm³ molec⁻¹ s⁻¹. (Calvert, 2002). Other methyl substituted styrene-

	OH Rate Constant	τ _{on}
Compound	(×10 ¹²)	(as indicated)
Benzene	1.4	8.3 d*
Toluene	5.6	2.1 d
Ethylbenzene	7	1.7 d
<i>n</i> -Propylbenzene	5.8	2.0 d
Isopropylbenzene	6.3	1.8 d
<i>t</i> -Butylbenzene	4.5	2.6 d
o-Xylene	14	20 h
<i>m</i> -Xylene	23	12 h
<i>p</i> -Xylene	14	19 h
o-Ethyltoluene	12	23 h
<i>m</i> -Ethyltoluene	19	15 h
<i>p</i> -Ethyltoluene	12	24 h
<i>p</i> -Cymene	14	19 h
1,2,3-Trimethylbenzene	33	8.4 h
1,2,4-Trimethylbenzene	33	8.6 h
1,3,5-Trimethylbenzene	57	4.8 h
Indan	19	15 h
Styrene ³	58	4.8 h
α-Methylstyrene	51	5.4 h
Napthalene	23	12 h
1-Methylnapthalene	53	4.8 h
2-Methylnapthalene	52	8.8 h

Table AX2-3. Hydroxyl Rate Constants and Atmospheric Lifetimes of Mono- and Di-cyclic Aromatic Hydrocarbons (adapted from Atkinson 2000)

¹Rate coefficients given as cm³/molec-sec.

² Lifetime for zero and single alkyl substituted aromatic based on OH concentration of 1×10^6 molec cm⁻³. ³ Lifetime for reaction of styrene with NO₃ is estimated to be 44 min based on a nighttime NO₃ concentration of 2.5×10^8 molec cm⁻³ and a rate coefficient of 1.5×10^{-12} cm³/molec-sec.

type compounds (e.g., α-methylstyrene) have OH rate constants within a factor of two of that
 with styrene. However, for unsaturated monocyclic aromatic hydrocarbons other processes
 including atmospheric removal by NO₃ radicals can also be important, particularly at night when
 photolysis does not substantially reduce the NO₃ radical concentration (see below).

Polycyclic aromatic hydrocarbons are found to a much lesser degree in the atmosphere 5 6 than are the monocyclic aromatic hydrocarbons. For example, measurements made in Boston 7 during 1995 (Fujita et al., 1995) showed that a single PAH (napthalene) was detected in the 8 ambient morning air at levels of approximately 1% (C/C) of the total monocyclic aromatic 9 hydrocarbons. 1-methyl and 2-methylnaphthalene have sufficient volatility to be present in the 10 gas phase. Other higher molecular weight PAHs (\leq 3 aromatic rings), if present, are expected to 11 exist in the gas phase at much lower concentrations than napthalene and are not considered here. 12 OH rate constants for napthalene and the two methyl substituted napthalene compounds have 13 been reviewed by Calvert et al. (2002). The values recommended (or listed) by Calvert et al. 14 (2002) are given in Table AX2-3. As seen in the monocyclic aromatic hydrocarbons, the 15 substitution of methyl groups on the aromatic ring increases the OH rate constant, in this case by 16 a factor of 2.3.

Some data is available for the reaction of OH with aromatic oxidation products. (In this 17 18 context, aromatic oxidation products refer to those products which retain the aromatic ring structure.) These include the aromatic carbonyl compound, benzaldehyde, 2,4-; 2,5-; and 19 20 3,4-dimethyl-benzaldehyde, and t-cinnamaldehyde. Room temperature rate constants for these compounds range from 1.3×10^{-11} cm³ molec⁻¹ s⁻¹ (benzaldehyde) to 4.8×10^{-11} cm³ molec⁻¹ s⁻¹ 21 (t-cinnamaldehyde). While the yields for these compounds are typically between 2 to 6%, they 22 23 can contribute to the aromatic reactivity for aldehydes having high precursor concentration (e.g., 24 toluene, 1,2,4-trimethylbenzene). OH also reacts rapidly with phenolic compounds. OH reaction rates with phenols and o-, m, and p-cresol are typically rapid (2.7 to 6.8×10^{-11} cm³ 25 molec⁻¹ s⁻¹) at room temperature. Five dimethylphenols and two trimethylphenols have OH 26 reaction rates ranging between 6.6×10^{-11} and 1.25×10^{-10} cm³ molec⁻¹ s⁻¹. Finally, unlike the 27 28 aromatic aldehydes and phenols, reaction rates for OH + nitrobenzene and OH + m-nitrotoluene 29 are much lower than the parent molecules, given their electron withdrawing behavior from the aromatic ring. The room temperature rate constants are 1.4×10^{-13} and 1.2×10^{-12} , respectively. 30

1 The NO₃ radical is also known to react with selected AHCs and aromatic photooxidation 2 products. Reaction can either occur by hydrogen atom abstraction or addition to the aromatic 3 ring. However, these reactions are typically slow for alkyl aromatic hydrocarbons and the 4 atmospheric removal due to this process is considered negligible. For AHCs having substituent groups with double bonds (e.g., styrene, α -methylstyrene), the reaction is much more rapid, due 5 to the addition of NO₃ to the double bond. For these compounds, NO₃ rate constants are on the 6 order of 10^{-12} cm³ molec⁻¹ s⁻¹. This leads to atmospheric lifetimes on the order of about 1 h for 7 typical night time atmospheric NO₃ levels of 2.5×10^8 molec cm⁻³ (Atkinson, 2000). 8

9 The most important reactions of NO₃ with AHCs are those which involve phenol and 10 methyl, dimethyl, and trimethyl analogs. These reactions can be of importance due to the high 11 vields of phenol for the atmospheric benzene oxidation and o-,m-,p-cresol from toluene oxidation. The NO₃ + phenol rate has been given as 3.8×10^{-12} cm³ molec⁻¹ s⁻¹. Similarly, the 12 13 cresol isomers each has an extremely rapid reaction rate with NO₃ ranging from 1.1 to $1.4 \times 10^{-11} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$. As a result, these compounds, particularly the cresol isomers, can 14 15 show rapid nighttime losses due to reaction with NO₃ with nighttime lifetimes on the order of a 16 few minutes. There is little data for the reaction of NO₃ with dimethylphenols or 17 trimethylphenols which have been found as products of the reaction of OH + m, p-xylene and OH + 1,2,4-; 1,3,5-trimethylbenzene. 18

19

20 AX2.2.8.2 Reaction Products and Mechanisms of Aromatic Hydrocarbon Oxidation

21 An understanding of the mechanism of the oxidation of AHCs is important 1 if O₃ is to be 22 accurately predicted in urban atmospheres through modeling studies. As noted above, most 23 monocyclic aromatic hydrocarbons are removed from the atmosphere through reaction with OH. 24 Thus, product studies of the OH + AHC should provide the greatest information regarding the 25 AHC oxidation products. However, the effort to study these reactions has been intractable over 26 the past two decades due to a number of difficulties inherent in the OH-aromatic reaction 27 system. There are several reasons for the slow progress in understanding these mechanisms. 28 (1) Product yields for OH-aromatic systems are poorly understood; for the most studied system, 29 OH-toluene, approximately 50% of the reaction products have been identified under conditions where NO₂ reactions do not dominate the removal of the OH-aromatic adduct. (2) As noted, the 30 reaction mechanism can change as the ratio of NO₂ to O₂ changes in the system (Atkinson and 31

1 Aschmann, 1994). Thus, reaction product distributions that may be measured in the laboratory 2 at high NO_2 (or NO_x) concentrations may not be applicable to atmospheric conditions. This also 3 limits the usefulness of models to predict O₃ formation to the extent that secondary aromatic 4 reactions are not completely parameterized in the system. (3) Aromatic reactions produce highly polar compounds for which there are few calibration standards available. In most cases, 5 6 surrogate compounds have to be used in GC/MS calibrations. Moreover, it is not at all clear 7 whether the present sampling techniques or analytical instruments are appropriate to measure the 8 highly polar products produced in these systems. (4) Finally for benzene and toluene in 9 particular, reaction rates of the products are substantially faster than that of the parent 10 compounds. Thus, it is difficult to measure yields accurately without substantial interferences 11 due to secondary reactions. Even given these difficulties, over the past decade a body of 12 knowledge has been developed whereby the initial steps in the OH-initiated photooxidation have 13 been established and a wide range of primary products from each of the major reaction systems 14 have been catalogued.

Benzene is one of the most important aromatic hydrocarbons released into the atmosphere and is a recognized carcinogen. However, its reaction with OH is extremely slow and its contribution to urban O₃ formation is generally recognized to be negligible (Carter, 1994). As a result, relatively few studies have been conducted on the OH reaction mechanism of benzene. Major products of the oxidation of benzene have been found to be phenol and glyoxal (Berndt et al., 1999; Tuazon et al., 1986).

21 Most of the product analysis and mechanistic work on alkyl aromatic compounds in the gas 22 phase has focused on examining OH reactions with toluene. The primary reaction of OH with 23 toluene follows either of two paths, the first being an abstraction reaction from the methyl group 24 and the second being addition to the ring. It has previously been found that H-atom abstraction 25 from the aromatic ring is of minor importance (Tully et al., 1981). A number of studies have 26 examined yields of the benzyl radical formed following OH abstraction from the methyl group. 27 This radical forms the benzyl peroxy radical, which reacts with nitric oxide (NO) leading to the 28 stable products benzaldehyde, with an average yield of 0.06, and benzyl nitrate, with an average 29 yield less than 0.01 (Calvert et al., 2002). Thus, the overall yield for the abstraction channel is 30 less than approximately 7%.

1 It is now generally recognized that addition of OH to the aromatic ring is the major process 2 removing toluene from the atmosphere and appears to account for more than 90% of the reaction 3 yield for OH + toluene. The addition of OH to the ring leads to an intermediate OH-toluene 4 adduct that can be stabilized or can redissociate to the reactant compounds. For toluene, OH addition can occur at any of the three possible positions on the ring (ortho, meta, or para) to form 5 6 the adduct. Addition of OH to the toluene has been shown to occur predominately at the ortho 7 position (yield of 0.81) with lesser amounts at the meta (0.05) and para (0.14) positions (Kenley 8 et al., 1981). The initial steps for both the abstraction and addition pathways in toluene have 9 been shown in Figure AX2-6; only the path to form the ortho-adduct is shown, viz. reaction (2). 10 The OH-toluene adduct formed is an energy-rich intermediate that must be stabilized by 11 third bodies in the system to undergo further reaction. Stabilization has been found to occur at 12 pressures above 100 Torr for most third bodies (Perry et al., 1977; Tully et al., 1981). Therefore, 13 at atmospheric pressure, the adduct will not substantially decompose back to its reactants as 14 indicated by reaction (-2). The stabilized adduct (I) is removed by one of three processes: 15 H-atom abstraction by O_2 to give a cresol, as in reaction (5); an addition reaction with O_2 , as in 16 reaction (6); or reaction with NO_2 to give m-nitrotoluene as in reaction (7). The simplest fate for the adduct (I) is reaction with O₂ to form o-cresol. Data from a 17 18 number of studies (e.g., Kenley et al., 1981; Atkinson et al., 1980; Smith et al., 1998; Klotz 19 et al., 1998; summarized by Calvert et al., 2002) over a wide range of NO₂ concentrations 20 (generally above 1 ppmv) show an average yield of approximately 0.15 for o-cresol. Most of the 21 measurements suggest the o-cresol yield is independent of total pressure, identity of the third body, and NO₂ concentration (Atkinson and Aschmann, 1994; Moschonas et al., 1999), but the 22 23 data tend to be scattered. This finding suggests that the addition of NO_2 to the hydroxy 24 methylcyclo-hexadienyl radical does not contribute to the formation of phenolic-type 25 compounds. Fewer studies have been conducted for m and p-cresol yields, but the results of two 26 studies indicate the yield is approximately 0.05 (Atkinson et al., 1980; Gery et al., 1985; Smith 27 et al., 1998). The data suggests good agreement between the relative yields of the cresols from 28 the product studies at atmospheric pressure and studies at reduced pressures. Thus, H-atom 29 abstraction from adducts formed at all positions appears to represent approximately 20% of the 30 total yield for toluene.

31

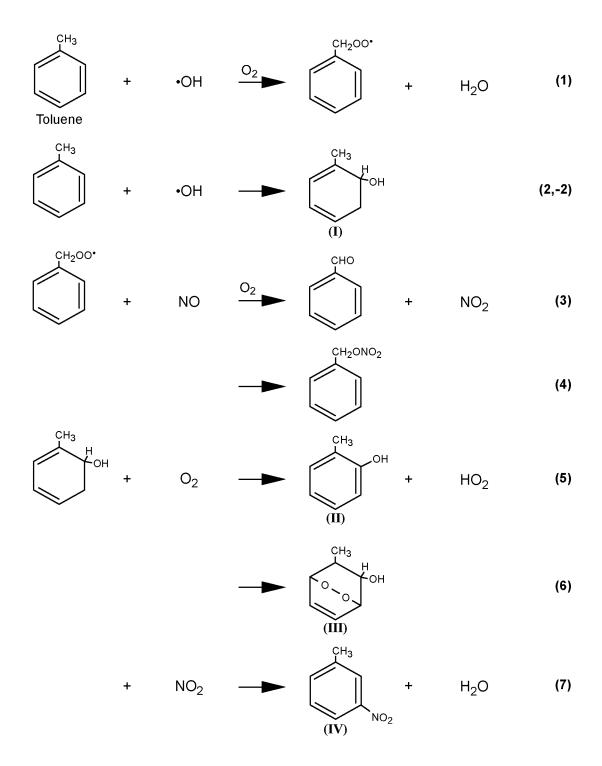


Figure AX2-6. Initial steps in the photooxidation mechanism of toluene initiated by its reaction with OH radicals.

1 The OH-toluene adduct also reacts with O_2 to form a cyclohexadienyl peroxy radical (III), 2 shown as a product of reaction (6) after rearrangement. This radical can undergo a number of 3 possible processes. Most of these processes lead to ring fragmentation products, many of which 4 have been seen in several studies (Dumdei and O'Brien, 1984; Shepson et al., 1984). Ring-5 fragmentation products are frequently characterized by multiple double bonds and/or multiple 6 functional groups. As such, these products are highly reactive and extremely difficult to detect 7 and quantify.

8 Klotz et al. (1997; 1998) have suggested that the intermediate could also follow through a 9 mechanism where toluene oxide/oxepin could be formed following the addition of O₂ to the OH-aromatic adduct. Recent experiments suggest that the formation of o-cresol through the 10 11 photolysis of toluene oxide/oxepin is only a minor contributor to the overall o-cresol that has 12 been measured (Klotz et al., 1998). This result contrasts to the high yield observed for the 13 formation of phenol from the photolysis of benzene oxide/oxepin (Klotz et al., 1997). Recently, 14 Berndt et al. (1999) used a flow tube to test the hypothetical formation of benzene oxide/oxepin 15 from the OH + benzene reaction at pressures below 100 torr. They saw very little evidence for 16 its formation.

17 A few studies have been conducted to identify fragmentation products using a variety of 18 instruments. Several approaches have been used that employ structural methods, particularly 19 mass spectrometry (MS), to identify individual products formed during the photooxidation. 20 In one approach (Dumdei and O'Brien, 1984), the walls of the reaction chamber were extracted 21 following an extended irradiation. In this study, the analysis was conducted by tandem mass 22 spectrometry (MS/MS), which allowed products to be separated without the use of a 23 chromatographic stationary phase. The investigators reported 27 photooxidation products from 24 toluene, with 15 reportedly from ring fragmentation processes. However, the study was purely 25 qualitative and product yields could not be obtained. No distinction could be made between 26 primary and secondary products from the reaction because extended irradiations and species in 27 various isotopic forms could not be differentiated. More refined approaches using atmospheric 28 pressure ionization-tandem mass spectrometry has been used to study toluene (Dumdei et al., 29 1988) and m and p-xylene (Kwok et al., 1997) photooxidation.

In another study, Shepson et al. (1984) demonstrated that a number of these fragmentation
 products could be analyzed by gas chromatography. Fragmentation products detected in two

1 investigations (Dumdei and O'Brien, 1984; Shepson et al., 1984) included glyoxal, methyl 2 glyoxal, butenedial, 4-oxo-2-pentenal, hydroxybutenedial, 1-pentene-3,4-dione, 1-butene-3,4-3 dione, and methyl vinyl ketone. Additional evidence (Shepson et al., 1984) for fragmentation 4 processes came from the detection of 2-methylfuran and furfural. These compounds, although cyclic in structure, result from a bridged oxygen intermediate. Yields of the detected 5 6 fragmentation products were subsequently measured in a number of studies (e.g., Bandow et al., 7 1985a,b; Tuazon et al., 1986; Smith et al., 1998), were typically under 15% on a reacted carbon 8 basis.

9 An additional possible pathway for reaction of the OH-toluene adduct is by reaction with NO₂ to give isomers of nitrotoluene. A yield of approximately 0.015 at NO₂ concentrations 10 11 of about 1 ppmv has been measured (Atkinson et al., 1991). Although this yield itself is fairly 12 minor, the investigators reported a positive intercept in plotting the nitrotoluene concentration 13 against the NO₂ concentration; however, the data were considerably scattered. The positive intercept has been interpreted as suggesting that the OH-toluene adduct does not add O₂. This 14 15 finding would require, therefore, another mechanism than that described above to be responsible 16 for the fragmentation products.

17 The results of this study can be compared to experiments which directly examined the OH 18 radical loss in reactions of OH with toluene and other aromatic compounds. Knipsel and co-19 workers (Knispel et al., 1990) have found a double exponential decay for toluene loss in the presence of added O₂, a rapid decay reflective of the initial adduct formation and a slower decay 20 reflecting loss of the adduct by O₂ or other scavengers. From the decay data in the presence 21 of O_2 , they determine a loss rate for the OH-toluene of 5.4×10^{-16} cm³ molec⁻¹ s⁻¹. Use of this 22 rate constant suggests that the loss rate of 2500 s⁻¹ for the adduct in the presence of air at 23 atmospheric pressure. This loss rate compares to a loss due to NO₂ (with a nominal atmospheric 24 concentration of 0.1 ppmv) of about 100 s⁻¹. This finding suggests that removal of the OH-25 toluene adduct by O_2 is a far more important loss process than removal by NO_2 under 26 27 atmospheric conditions which is in contrast other findings (Atkinson et al., 1991). This finding 28 was confirmed by the recent experiments from Moschonas et al. (1999).

Therefore, studies on the disposition of toluene following OH reaction can be summarized as follows. It is generally accepted that H-atom abstraction from the methyl group by OH is a relatively minor process accounting for a 6 to 7% yield in the OH reaction with toluene.

1 Addition of OH to toluene to form an intermediate OH-toluene adduct is the predominant 2 process. At atmospheric pressure, ring-retaining products such as the cresol and nitrotoluenes 3 account for another 20% of the primary reaction products (Smith et al., 1999). The remaining 4 70 to 75% of the products are expected to be ring fragmentation products in the gas phase, having an uncertain mechanism for formation. Many of these fragmentation products have been 5 6 detected, but appear to form at low yields, and relatively little quantitative information on their 7 formation yields exists. As noted earlier, some of these products contain multiple double bonds, 8 which are likely to be highly reactive with OH or photolyze which enhances the reactivity of 9 systems containing aromatics. Mechanisms that cannot adequately reflect the formation of 10 fragmentation products are likely to show depressed reactivity for the oxidation of toluene and 11 other aromatic compounds.

The number of studies of the multiple-substituted alkyl aromatics, such as the xylenes or the trimethylbenzenes, is considerably smaller than for toluene. Kinetic studies have focused on the OH rate constants for these compounds. For the xylenes, this rate constant is typically a factor of 2 to 5 greater than that for OH + toluene. Thus, the OH reactivity of the fragmentation products is similar to that of the parent compounds, potentially making the study of the primary products of the xylenes less prone to uncertainties from secondary reactions of the primary products than is the case for toluene.

19 Products from the OH reaction with the three xylenes have been studied most 20 comprehensively in a smog chamber using long-path FTIR (Bandow and Washida, 1985a) and 21 gas chromatography (Shepson et al., 1984; Atkinson and Aschmann, 1994; Smith et al., 1999). 22 Ring-fragmentation yields of 41, 55, and 36% were estimated for o-, m, and p-xylene, 23 respectively, based on the dicarbonyl compounds, glyoxal, methyl glyoxal, biacetyl, and 3-24 hexene-2,5-dione detected during the photooxidation. These values could be lower limits, given 25 that Shepson et al. (1984) report additional fragmentation products from o-xylene, including 26 1-pentene-4,5-dione, butenedial, 4-oxo-pentenal, furan, and 2-methylfuran. In the earlier 27 studies, aromatic concentrations were in the range of 5 to 10 ppmv with NO_x at 2 to 5 ppmv. 28 At atmospheric ratios of NO₂ and O_2 , the observed yields could be different. Smith et al. (1999) 29 examined most of the ring retaining products in the OH + m-xylene and OH + p-xylene systems. 30 In each case, tolualdehyde isomers, dimethylphenol isomers, and nitro xylene isomers specific 31 for each system were detected. The total ring retaining yield for OH + m-xylene was 16.3%; the yield for OH + p-xylene it was 24.5%. A mass balance approach suggests that respective ringfragmentation yields of 84% and 76%, respectively. Kwok et al. (1997) also measured products
from the OH + m and p-xylene systems using atmospheric pressure ionization-tandem mass
spectrometry. Complementary ring-fragmentation products to glyoxal, methylglyoxal, and
biacetyl were detected from the parent ion peaks, although the technique did not permit the
determination of reaction yields.

7 Smith et al. (1999) also studied ring fragmentation products from the reaction of OH 8 with 1,2,4- and 1,3,5-trimethylbenzene. Ring-retaining products from the reaction with 9 1,2,4-trimethylbenzene gave three isomers each of dimethylbenzaldehyde and trimethylphenol 10 as expected by analogy with toluene. However, the ring-retaining products only accounted for 11 5.8% of the reacted carbon. Seven additional ring-fragmentation products were also detected 12 from the reaction, although the overall carbon yield was 47%. For 1,3,5-trimethylbenzene, its 13 reaction with OH leads to only two ring-retaining products, 3,5-dimethyl-benzaldehyde and 14 2,4,6-trimethylphenol, given its molecular symmetry. Only a single fragmentation product was 15 detected, methyl glyoxal, at a molar yield of 90%. The overall carbon yield in this case was 16 61%. The formation of relatively low yields of aromatic aldehydes and methylphenols suggests that NO_x removal by these compound in these reaction systems will be minimized (see below). 17

18 In recent years, computational chemistry studies have been applied to reaction dynamics of 19 the OH-aromatic reaction systems. Bartolotti and Edney (1995) used density functional-based 20 quantum mechanical calculations to help identify intermediates of the OH-toluene adduct. These 21 calculations were consistent with the main addition of OH to the ortho position of toluene followed by addition of O₂ to the meta position of the adduct. The reaction energies suggested 22 23 the formation of a carbonyl epoxide which was subsequently detected in aromatic oxidation 24 systems by Yu and Jeffries, (1997). Andino et al. (1996) conducted ab initio calculations using 25 density functional theory with semiempirical intermediate geometries to examine the energies of 26 aromatic intermediates and determine favored product pathways. The study was designed to 27 provide some insight into the fragmentation mechanism, although only a group additivity 28 approach to calculate ΔH_{rxn} was used to investigate favored reaction pathways. However, the 29 similarity in energies of the peroxy radicals formed from the O₂ reaction with the OH-aromatic 30 adduct were very similar in magnitude making it difficult to differentiate among structures.

A detailed analysis of toluene oxidation using smog chamber experiments and chemical
 models (Wagner et al., 2003) shows that there are still large uncertainties in the effects of
 toluene on O₃ formation. A similar situation is likely to be found for other aromatic
 hydrocarbons.

5

6

AX2.2.8.3 The Formation of Secondary Organic Aerosol as a Sink for Ozone Precursors

Aromatic hydrocarbons are known to generate secondary organic aerosol (SOA) following their reaction with OH or other reactive oxidants. Secondary organic aerosol refers to the formation of fine particulate matter either through nucleation processes or through condensation onto existing particles. Over the last 12 years numerous experiments have been conducted in environmental chambers to determine the yield of secondary organic aerosol as a function of the reacted aromatic hydrocarbon. A review of the results of these studies can be found in the latest Air Quality for Particulate Matter Document (U.S. Environmental Protection Agency, 2003).

14 The extent to which aromatic reaction products are removed from the gas phase and 15 become incorporated in the particle phase will influence the extent to which oxygenated organic 16 compounds will not be available for participation in the aromatic mechanisms that lead to O_3 17 formation. However, this may be overstated to some degree for products of aromatic precursors. 18 First, at atmospheric loading levels of organic particulate matter, the SOA yields of the major 19 aromatic hydrocarbons are in the low percent range. Second, the aromatic products that are 20 likely to condense on particles are likely to be highly oxygenated and have OH reaction rates 21 that make them largely unreactive. Thus, while there may be some reduction of O₃ formation, it 22 is not expected to be large.

23

24 AX2.2.9 Importance of Oxygenated VOCs

The role of oxygenated VOCs in driving O₃ production has generated increasing interest over the past decade. These VOCs include carbonyls, peroxides, alcohols, and organic acids. They are produced in the atmosphere by oxidation of hydrocarbons, as discussed above, but are also directly emitted to the atmosphere, in particular by vegetation (Guenther et al., 2000). In rural and remote atmospheres, oxygenated VOCs often dominate over nonmethane hydrocarbons in terms of total organic carbon mass and reactivity (Singh et al., 2004). The most abundant by mass of these oxygenated VOCs is usually methanol, which is emitted by vegetation and is present in U.S. surface air at concentrations of typically 1-10 ppbv (Heikes
 et al., 2002).

Most oxygenated VOCs react with OH to drive O₃ production in a manner similar to the hydrocarbon chemistry discussed in the previous sections. In addition, carbonyl compounds (aldehydes and ketones) photolyze to produce peroxy radicals that can accelerate O₃ production, thus acting as a chemical amplifier (Jaeglé et al., 2001). Photolysis of formaldehyde by (A.26b) was discussed in section AX2.2.5. Also of particular importance is the photolysis of acetone (Blitz et al., 2004):

9

$$(CH_3)_2C(O) + hv \xrightarrow{2O_2} CH_3C(O)O_2^{\bullet}$$
 (AX2-41)

10

producing organic peroxy radicals that subsequently react with NO to produce O_3 . The peroxyacetyl radical CH₃C(O)OO can also react with NO₂ to produce PAN, as discussed in Section AX2.2.4. Photolysis of acetone are a minor but important source of HO₂ radicals in the upper troposphere (Arnold et al., 2004).

15

16 AX2.2.10 Influence of Multiphase Chemical Processes

17 In addition to reactions occurring in the gas phase, reactions occurring on the surfaces of or 18 within cloud droplets and airborne particles also occur. Their collective surface area is huge, 19 implying that collisions with gas phase species occur on very short time scales. The integrated 20 aerosol surface area ranges from 4.2×10^{-7} cm²/cm³ for clean continental conditions to 1.1×10^{-5} cm²/cm³ for urban average conditions (Whitby, 1978). There have been substantial 21 22 improvements in air quality especially in urban areas since the time these measurements were 23 made and so the U.S. urban values should be scaled downward by roughly a factor of two to 24 four. The resulting surface area is still substantial and the inferred collision time scale of a 25 gaseous molecule with a particle ranges from a few seconds or less to a few minutes. These 26 inferred time scales imply that heterogenous reactions will generally be much less important than 27 gas phase reactions for determining radical concentrations especially when reaction probabilities 28 much less then unity are considered. A large body of research has accumulated recently

1 regarding chemical processes in cloud droplets, snow and ice crystals, wet (deliquesced)

2 inorganic particles, mineral dust, carbon chain agglomerates and organic carbon-coated particles.

3 Jacob's (2000) comprehensive review of the potential influences of clouds and aerosols on 4 tropospheric O₃ cycling provides the starting point for this section. Updates to that review will also be provided. Jacob's review evaluates the literature available through late 1999, discusses 5 6 major areas of uncertainty, recommends experiments to reduce uncertainties, and (based on then current information) recommends specific multiphase pathways that should be considered in 7 8 models of O₃ cycling. In regard to the latter, Jacob's recommendations should be viewed as 9 conservative. Specifically, only reasonably well-constrained pathways supported by strong 10 observational evidence are recommended for inclusion in models. Several poorly resolved 11 and/or controversial pathways that may be significant in the ambient troposphere lack sufficient 12 constraints for reliable modeling. Some of these areas are discussed in more detail below. 13 It should be noted at the outset that many of the studies described in this section involve either 14 aerosols that are not found commonly throughout the United States (e.g., marine aerosol) or 15 correspond to unaged particles (e.g., soot, mineral dust). In many areas of the United States, 16 particles accrete a layer of hydrated H₂SO₄ which will affect the nature of the multiphase

17 processes occurring on particle surfaces.

18 Major conclusions from this review are summarized as follows (comments are given in19 parentheses):

20 HO_x Chemistry

21 (1) Catalytic O_3 loss via reaction of $O_2^- + O_{3(aq)}$ in clouds appears to be inefficient.

22 (2) Aqueous-phase loss of HCHO in clouds appears to be negligible (see also Lelieveld and Crutzen, 1990).

- (3) Scavenging of HO₂ by cloud droplets is significant and can be acceptably parameterized with a reaction probability of $\gamma_{HO_2} = 0.2$, range 0.1 to 1, for HO₂ $\rightarrow 0.5$ H₂O₂. However, this approach may overestimate HO₂ uptake because the influence of HO_{2(aq)} on the magnitude (and direction) of the flux is ignored.
- 24 (4) The uptake of alkyl peroxy radicals by aerosols is probably negligible.
 - (5) Hydrolysis of CH₃C(O)OO in aqueous aerosols may be important at night in the presence of high PAN and aerosol surface area; $\gamma_{CH_3C(O)OO} = 4 \times 10^{-3}$ is recommended.

25

1 *NO_x Chemistry*

2

5

- (6) Hydrolysis of N₂O₅ to HNO₃ in aqueous aerosols is important (Section AX2.2.4) (and can be parameterized with $\gamma_{\text{HNO}_3} = 0.01$ to 0.1 [Schutze and Herrmann, 2002; Hallquist et al., 2003]).
- 3 (7) Although the mechanism is uncertain, heterogeneous conversion of NO₂ to HONO on aerosol surfaces should be considered with $\gamma_{NO_2} = 10^{-4}$ (range 10^{-6} to 10^{-3}) for NO₂ \rightarrow 0.5 HONO + 0.5 HNO₃. (This reaction also occurs on snow, Crawford et al., 2001). Wet and dry deposition sinks for HONO should also be considered although scavenging by aerosols appears to be negligible.
- 4 (8) There is no evidence for significant multiphase chemistry involving PAN.
 - (9) There is no evidence for significant conversion of HNO_3 to NO_x in aerosols.
- 6 *Heterogeneous ozone loss*
- 7 (10) There is no evidence for significant loss of O₃ to aerosol surfaces (except during dust storms observed in East Asia, e.g., Zhang and Carmichael, 1999).
- 8 Halogen radical chemistry
 - (11) There is little justification for considering BrO_x and ClO_x chemistry (except perhaps in limited areas of the United States and nearby coastal areas).
- 10 Most of the above conclusions remain valid but, as detailed below, some should be 11 qualified based on recently published findings and on reevaluation of results form earlier 12 investigations.
- 13

9

14 AX2.2.10.1 HO_x and Aerosols

15 Field measurements of HO_x reviewed by Jacob (2000) correspond to regions with 16 relatively low aerosol concentrations (e.g., Mauna Loa [Cantrell et al., 1996]; rural Ontario [Plummer et al., 1996]; and the upper troposphere [Jaeglé et al., 1999]). In all cases, however, 17 18 significant uptake of HO_2 or $HO_2 + RO_2$ radicals by aerosols was inferred based on imbalances 19 between measured concentrations of peroxy radicals and photochemical models of gas-phase 20 chemistry. Laboratory studies using artificial aerosols (both deliquesced and solid) confirm 21 uptake but the actual mechanism remains unclear. Several investigations report significant HO_x and H₂O₂ production in cloud water (e.g., Anastasio et al., 1994). However the potential 22 23 importance of this source is considered unlikely because measurements in continental air show

1	no evidence of missing sources for HO_x or H_2O_2 . No investigations involving the potential
2	influences of marine aerosols as sources or sinks for HO_x were considered in the above analysis.
3	Relative to conservative seawater tracers such as Mg ²⁺ and Na ⁺ , organic C associated with
4	sea-salt aerosols is typically enriched by 2 to 3 orders of magnitude in both polluted (e.g.,
5	Hoffman and Duce, 1976, 1977; Turekian et al., 2003) and remote regions (Chesselet et al.,
6	1981). This organic C originates from three major sources: 1) organic surfactants concentrated
7	from bulk seawater on walls of subsurface bubbles (Tseng et al., 1992), 2) the surface microlayer
8	of the ocean (Gershey, 1983), and 3) condensation of organic gases (Pun et al., 2000).
9	Coagulation of chemically distinct aerosols (e.g., via cloud processing) may also contribute
10	under some conditions.
11	Resolving chemical processes involving particles in the marine boundary layer (MBL) is
12	constrained by the relative scarcity of measurements of particulate organic carbon (POC)
13	(Penner, 1995) and its molecular composition (Saxena et al., 1995). In MBL regions impacted
14	by direct continental outflow, POC may constitute more that half of the total dry aerosol mass
15	(Hegg et al., 1997). Carbon isotopic compositions in the polluted North Atlantic MBL indicate
16	that, on average, 35% to 40% of POC originates from primary (direct injection) and secondary
17	(condensation of gases) marine sources (Turekian et al., 2003).
18	The photolysis of dissolved organic compounds is a major source for OH, H ₂ O ₂ , and
19	C-centered radicals in both the surface ocean (e.g., Blough and Zepp, 1995; Blough, 1997;
20	Mopper and Kieber, 2000) and in marine aerosols (e.g., McDow et al., 1996). Relative to the
21	surface ocean, however, production rates in the aerosol are substantially greater per unit volume
22	because organic matter is highly enriched (Turekian et al., 2003) and aerosol pH is much lower
23	(Keene et al., 2002a). Lower pHs increase rates of many reactions including acid-catalyzed
24	pathways such as the breakdown of the HOCl ⁻ radical (King et al., 1995), the formation of H_2O_2
25	from the photolysis of phenolic compounds (Anastasio et al., 1997), and the photolysis of organic
26	acids.
27	To provide a semi-quantitative context for the potential magnitude of this source, we
28	assume a midday OH production rate in surface seawater of 10 ⁻¹¹ M sec ⁻¹ (Zhou and Mopper,
29	1990) and a dissolved organic carbon enrichment of 2 to 3 orders of magnitude in sea-salt

- 30 aerosols. This yields an estimated OH production rate in fresh (alkaline) sea-salt aerosols of 10^{-9}
- 31 to 10^{-8} M sec⁻¹. As discussed above, rapid (seconds to minutes) acidification of the aerosol

1 should substantially enhance these production rates. Consequently, the midday OH production 2 rates from marine-derived organic matter in acidified sea-salt aerosols may rival or perhaps 3 exceed midday OH scavenging rates from the gas phase (approximately 10⁻⁷ M sec⁻¹; [Chameides and Stelson, 1992]). Scavenging is the only significant source for OH in acidified sea-salt 4 aerosols considered by many current models.

5

6 Limited experimental evidence indicates that these pathways are important sources of HO_x 7 and RO_y in marine air and possibly in coastal cities. For example, the absorption of solar energy by organic species dissolved in cloud water (e.g., Faust et al., 1993; Anastasio et al., 1997) and in 8 9 deliquesced sea-salt aerosols (Anastasio et al., 1999) produces OH, HO₂, and H₂O₂. In addition, Fe(III) complexation by oxalate and similar ligands to metal such as iron can greatly enhance 10 11 radical production through ligand to metal charge transfer reactions (Faust, 1994; Hoigné et al., 12 1994). Oxalate and other dicarboxylic anions are ubiquitous components of MBL aerosols in 13 both polluted (e.g., Turekian et al., 2003) and remote regions (Kawamura et al., 1996).

14 Substantial evidence exists for washout of peroxy radicals. Near solar noon, mixing ratios of total HO_x plus RO_x radicals generally fall in the 50 ppt range, but during periods of rain these 15 16 values dropped to below the detection limit of 3 to 5 ppt (Andrés-Hernández et al., 2001; Burkert et al., 2001a; Burkert et al., 2001b; Burkert et al., 2003). Such low concentrations cannot be 17 18 explained by loss of actinic radiation, because nighttime radical mixing ratios were higher.

19 Burkert et al. (2003) investigated the diurnal behavior of the trace gases and peroxy radicals 20 in the clean and polluted MBL by comparing observations to a time dependant, zero-dimensional chemical model. They identified significant differences between the diurnal behavior of RO₂^{*} 21 22 derived from the model and that observed possibly attributable to multiphase chemistry. The 23 measured HCHO concentrations differed from the model results and were best explained by 24 reactions involving low levels of Cl.

25 Finally, photolytic NO₃⁻ reduction is important in the surface ocean (Zafiriou and True, 26 1979) and could contribute to OH production in sea-salt aerosols. Because of the 27 pH-dependence of HNO₃ phase partitioning, most total nitrate (HNO₃ + particulate NO₃⁻) in 28 marine air is associated with sea salt (e.g., Huebert et al., 1996; Erickson et al., 1999). At high 29 mM concentrations of NO_3^- in sea-salt aerosols under moderately polluted conditions (e.g., 30 Keene et al., 2002) and with quantum yields for OH production of approximately 1% (Jankowski 31 et al., 2000), this pathway would be similar in magnitude to that associated with scavenging

from the gas phase and with photolysis of dissolved organics. Experimental manipulations of marine aerosols sampled under relatively clean conditions on the California coast confirms that this pathway is a major source for OH in sea-salt solutions (Anastasio et al., 1999).

Although largely unexplored, the potential influences of these poorly characterized radical
sources on O₃ cycling in marine air are probably significant. At minimum, the substantial
inferred concentrations of HO₂ in aerosol solutions would diminish and perhaps reverse HO₂
scavenging by marine aerosols and thereby increase O₃ production relative to models based on
Jacob's (2000) recommended reaction probability.

9

1

2

3

10 AX2.2.10.2 NO_x Chemistry

11 Jacob (2000) recommended as a best estimate, $\gamma_{N_2O_5} = 0.1$ for the reaction probability of N2O5 on aqueous aerosol surfaces with conversion to HNO3. Recent laboratory studies on 12 13 sulfate and organic aerosols indicates that this reaction probability should be revised downward, 14 to a range 0.01-0.05 (Kane et al., 2001; Hallquist et al., 2003; Thornton et al., 2003). Tie et al. 15 (2003) found that a value of 0.04 in their global model gave the best simulation of observed NO_x 16 concentrations over the Arctic in winter. A decrease in N₂O₅ slows down the removal of NO_x and thus increases O₃ production. Based on the consistency between measurements of NO_v 17 18 partitioning and gas-phase models, Jacob (2000) considers it unlikely that significant HNO₃ is 19 recycled to NO_x in the lower troposphere. However, only one of the reviewed studies (Schultz 20 et al., 2000) was conducted in the marine troposphere and none were conducted in the MBL. 21 An investigation over the equatorial Pacific reported discrepancies between observations and 22 theory (Singh et al., 1996b) that might be explained by HNO₃ recycling. It is important to 23 recognize that both Schultz et al. (2000) and Singh et al. (1996b) involved aircraft sampling 24 which, in the MBL, significantly under represents sea-salt aerosols and thus most total NO₃ $(HNO_3 + NO_3)$ and large fractions of NO_v in marine air (e.g., Huebert et al., 1996). 25 26 Consequently, some caution is warranted when interpreting constituent ratios and NOv budgets 27 based on such data. 28 Recent work in the Arctic has quantified significant photochemical recycling of NO₃⁻

to NO_x and perturbations of OH chemistry in snow (Honrath et al., 2000; Dibb et al., 2002;

- 30 Domine and Shepson, 2002), which suggests the possibility of similar multiphase pathways
- 31 occurring in aerosols. As mentioned above, recent evidence also indicates that NO_3^{-1} is

photolytically reduced to NO₂⁻ (Zafariou and True, 1979) in acidic sea-salt solutions (Anastasio
et al., 1999). Further photolytic reduction of NO₂⁻ to NO (Zafariou and True, 1979) could
provide a possible mechanism for HNO₃ recycling. Early experiments reported production
of NO_x during the irradiation of artificial seawater concentrates containing NO₃⁻ (Petriconi and
Papee, 1972). Based on the above, we believe that HNO₃ recycling in sea-salt aerosols is
potentially important and warrants further investigation. Other possible recycling pathways
involving highly acidic aerosol solutions and soot are reviewed by Jacob (2000).

8 Ammann et al. (1998) reported the efficient conversion of NO_2 to HONO on fresh soot 9 particles in the presence of water. They suggest that interaction between NO₂ and soot particles 10 may account for high mixing ratios of HONO observed in urban environments. Conversion 11 of NO₂ to HONO and subsequent photolysis to NO + OH would constitute an NO_x-catalyzed O_3 sink involving snow. High concentrations of HONO can lead to the rapid growth in OH 12 13 concentrations shortly after sunrise, giving a "jump start" to photochemical smog formation. 14 Prolonged exposure to ambient oxidizing agents appears to deactivate this process. Broske et al. 15 (2003) studied the interaction of NO₂ on secondary organic aerosols and concluded that the 16 uptake coefficients were too low for this reaction to be an important source of HONO in the troposphere. 17

18 Choi and Leu (1998) evaluated the interactions of nitric acid on a model black carbon soot 19 (FW2), graphite, hexane and kerosene soot. They found that HNO₃ decomposed to NO₂ 20 and H₂O at higher nitric acid surface coverages, i.e., $P(HNO_3) > = 10^{-4}$ Torr. None of the soot 21 models used were reactive at low nitric acid coverages, at $P(HNO_3) = 5 \times 10^{-7}$ Torr or at lower 22 temperatures (220K). They conclude that it is unlikely that aircraft soot in the upper 23 troposphere/lower stratosphere reduces HNO₃.

Heterogeneous production on soot at night is believed to be the mechanism by which HONO accumulates to provide an early morning source of HO_x in high NO_x environments (Harrison et al., 1996; Jacob, 2000). HONO has been frequently observed to accumulate to levels of several ppb over night, and has been attributed to soot chemistry (Harris et al., 1982; Calvert et al., 1994; Jacob, 2000).

Longfellow et al. (1999) observed the formation of HONO when methane, propane, hexane and kerosene soots were exposed to NO₂. They estimate that this reaction may account for some part of the unexplained high levels of HONO observed in urban areas. They comment that

- without details about the surface area, porosity and amount of soot available for this reaction,
 reactive uptake values cannot reliably be estimated. They comment that soot and NO₂ are
 produced in close proximity during combustion, and that large quantities of HONO have been
 observed in aircraft plumes.
- Saathoff et al. (2001) studied the heterogeneous loss of NO₂, HNO₃, NO₃/N₂O₅, 5 6 HO₂/HO₂NO₂ on soot aerosol using a large aerosol chamber. Reaction periods of up to several 7 days were monitored and results used to fit a detailed model. They derived reaction probabilities 8 at 294 K and 50% RH for NO₂, NO₃, HO₂ and HO₂NO₂ deposition to soot, HNO₃ reduction 9 to NO₂, and N₂O₅ hydrolysis. When these probabilities were included in photochemical box model calculations of a 4-day smog event, the only noteworthy influence of soot was a 10% 10 11 reduction in the second day O_3 maximum, for a soot loading of 20 µg m⁻³, i.e., a factor of 2 to 12 10 times observed black carbon loadings seen during extreme U.S. urban pollution events, 13 although such concentrations are observed routinely in the developing world.
- Muñoz and Rossi (2002) conducted Knudsen cell studies of HNO₃ uptake on black and grey decane soot produced in lean and rich flames, respectively. They observed HONO as the main species released following nitric acid uptake on grey soot, and NO and traces of NO₂ from black soot. They conclude that these reactions would only have relevance in special situations in urban settings where soot and HNO₃ are present in high concentrations simultaneously.
- 19

20

AX2.2.10.3 Halogen Radical Chemistry

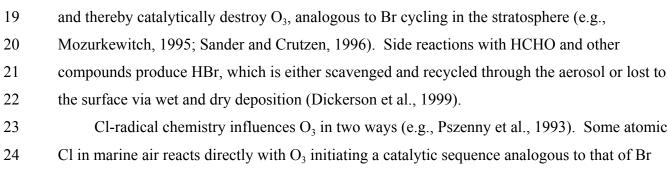
Barrie et al. (1988) first suggested that halogen chemistry on snow surfaces in the Arctic could lead to BrOx formation and subsequent O_3 destruction. More recent work suggests that halogen radical reactions may influence O_3 chemistry in mid latitudes as well.

The weight of available evidence supports the hypothesis that halogen radical chemistry significantly influences O_3 cycling over much of the marine boundary layer at lower latitudes and in at least some other regions of the troposphere. However, proposed chemical mechanisms are associated with substantial uncertainties and, based on available information, it appears unlikely that a simple parameterization (analogous to those recommended by Jacob (2000) for other multiphase transformations) would adequately capture major features of the underlying transformations.

1 Most of the Cl and Br in the marine boundary layer are produced in association with 2 sea-salt aerosols by wind stress at the ocean surface (e.g., Gong et al., 1997). Fresh aerosols 3 rapidly dehydrate towards equilibrium with ambient water vapor and undergo other chemical 4 processes involving the scavenging of reactive gases, aqueous-phase transformations, and 5 volatilization of products. Many of these processes are strongly pH-dependent (Keene et al., 6 1998). Throughout most of the marine boundary layer, sea-salt alkalinity is tritrated rapidly 7 (seconds to minutes) by ambient acids (Chameides and Stelson, 1992; Erickson et al., 1999) and, 8 under a given set of conditions, the pHs of the super- μ m, sea-salt size fractions are buffered to 9 similar values via HCl phase partitioning (Keene and Savoie, 1998; 1999; Keene et al., 2002). 10 Model calculations based on the autocatalytic halogen activation mechanism (Vogt et al., 11 1996; Keene et al., 1998; Sander et al., 1999; von Glasow et al., 2002a,b; Pszenny et al., 2003; Sander et al., 2003) predict that most particulate Br- associated with acidified sea-salt aerosol 12 13 would react to form Br₂ and BrCl, which subsequently volatilize and photolyze in sunlight to produce atomic Br and Cl. Most Br atoms recycle in the gas phase via 14

15

$$\bullet Br + O_3 \to BrO \bullet + O_2 \tag{AX2-42}$$


16

$$BrO_{\bullet} + HO_{2}^{\bullet} \to HOBr + O_{2} \tag{AX2-43}$$

17

$$HOBr + hv \rightarrow \bullet OH + \bullet Br \tag{AX2-44}$$

18

- 25 (AX2-42 through AX2-44 above). However, most atomic Cl in the MBL reacts with
- 26 hydrocarbons (which, relative to the stratosphere, are present at high concentrations) via
- 27 hydrogen extraction to form HCl vapor. The enhanced supply of odd hydrogen radicals from

1	hydrocarbon oxidation leads to O_3 production in the presence of sufficient NO _x . Thus, Cl
2	chemistry represents a modest net sink for O_3 when NO_x is less than 20 pptv and a net source at
3	higher NO _x . Although available evidence suggest that significant Cl-radical chemistry occurs in
4	clean marine air, its net influence on O_3 appears to be small relative to that of Br and I.
5	In addition to Br and Cl, several lines of recent evidence suggests that an autocatalytic
6	cycle also sustains I-radical chemistry leading to significant net O ₃ destruction in marine air
7	(Vogt et al., 1996, 1999; von Glasow et al., 2002a). The cycle is initiated by photolysis of
8	organoiodine compounds emitted from the ocean surface to generate atomic I (Carpenter et al.,
9	1999). Iodine atoms react almost exclusively with O ₃ to form IO. Most IO photodissociates in
10	sunlight to generate I and atomic O, which rapidly recombines with O ₂ to form O ₃ .
11	Consequently, this cycle has no net effect on O_3 (Stutz et al., 1999). However, alternative
12	reaction pathways analogous to reactions AX2-42 through AX2-44 above lead to catalytic O_3
13	destruction. Model calculations suggest that HOI recycles via acid-catalyzed aerosol scavenging
14	to form ICl and IBr, which subsequently volatilize and photolyze to form halogen atoms. The
15	net effect of this multiphase pathway is to increase concentrations of volatile reactive I. The self
16	reaction of IO to form I and OIO may further enhance O ₃ destruction (Cox et al., 1999;
17	Ashworth et al., 2002). IO also reacts with NO_2 to form INO_3 , which can be scavenged by
18	aqueous aerosols. This pathway has been suggested as a potentially important sink for NO_x in
19	the remote MBL and would, thus, contribute indirectly to net O ₃ destruction (McFiggans et al.,
20	2000).
21	Various lines of observational evidence support aspects of the above scenarios. Most
22	measurements of particulate Br in marine air reveal large depletions relative to conservative sea-
23	salt tracers (e.g., Sander et al., 2003) and, because HBr is highly soluble in acidic solution, these
24	deficits cannot be explained by simple acid-displacement reactions (e.g., Ayers et al., 1999).
25	Observed Br depletions are generally consistent with predictions based on the halogen activation
26	mechanism. In contrast, available, albeit limited, data indicate that I is highly enriched in marine

aerosols relative to bulk seawater (e.g., Sturges and Barrie, 1988), which indicates active
multiphase iodine chemistry.

Direct measurements of BrO in marine air by differential optical absorption spectroscopy
 (DOAS) reveal mixing ratios that are near or below analytical detection limits of about 1 to 3 ppt
 (Hönninger, 1999; Pszenny et al., 2003; Leser et al., 2003) but within the range of model

1	predictions. Column-integrated DOAS observations from space reveal substantial mixing ratios
2	of tropospheric BrO (e.g., Wagner and Platt, 1998). Although the relative amounts in the MBL
3	cannot be resolved, these data strongly suggest active destruction of tropospheric O ₃ via the
4	reaction sequence of AX2-42 through AX2-44. Similarly, measurements of IO (McFiggans
5	et al., 2000) and OIO (Allan et al., 2001) indicate active O ₃ destruction by an analogous pathway
6	involving atomic I. In addition, anticorrelations on diurnal time scales between total volatile
7	inorganic Br and particulate Br and between volatile inorganic I and particulate I have been
8	reported (e.g., Rancher and Kritz, 1980; Pszenny et al., 2003). Although the lack of speciation
9	precludes unambiguous interpretation, these relationships are also consistent with predictions
10	based on the halogen activation mechanism.
11	Large diurnal variabilities in O ₃ measured over the remote subtropical Atlantic and Indian
12	Oceans (Dickerson et al., 1999; Burkert et al., 2003) and early morning depletions of O_3
13	observed in the remote temperate MBL (Galbally et al., 2000) indicate that only about half of the
14	inferred O_3 destruction in the MBL can be explained by conventional HO_x/NO_x chemistry.
15	Model calculations suggest that Br- and I-radical chemistry could account for a "missing" O_3
16	sink of this magnitude (Dickerson et al., 1999; Stutz et al., 1999; McFiggans et al., 2000; von
17	Glasow et al., 2002b). In addition to the pathway for O_3 destruction given by R AX2-39 to R
18	AX2-41, in areas with high concentrations of halogen radicals the following generic loss
19	pathways for O ₃ can occur in the Arctic at the onset of spring and also over salt flats near the
20	Dead Sea (Hebestreit et al., 1999) and the Great Salt Lake (Stutz et al., 2002) analogous to their
21	occurrence in the lower stratosphere (Yung et al., 1980).
22	

$$\bullet X + O_3 \to XO \bullet + O_2 \quad (X = Br, Cl, I)$$
 (AX2-45)

$$\bullet Y + O_3 \rightarrow YO \bullet + O_2 \quad (Y = Br, Cl, I)$$
 (AX2-46)

$$XO \bullet + YO \bullet \to \bullet X + \bullet Y + O_2$$
 (AX2-47)

Net:
$$2O_3 \rightarrow 3O_2$$
 (AX2-48)

23

Note that the self reaction of ClO radicals is likely to be negligible in the troposphere. There are
three major reaction pathways involved in reaction AX2-47. Short-lived radical species are

1 produced. These radicals rapidly react to yield monoatomic halogen radicals. In contrast to the 2 situation in marine air, where DOAS measurements indicate BrO concentrations of 1 to 3 ppt, 3 Stutz et al. (2002) found peak BrO concentrations of about 6 ppt and peak ClO concentrations of 4 about 15 ppt. They also derived a correlation coefficient of -0.92 between BrO and O₃ but much smaller values of r between ClO and O₃. Stutz et al. attributed the source of the reactive 5 6 halogens to concentrated high molality solutions or crystalline salt around salt lakes, conditions 7 that do not otherwise occur in more dilute or ocean salt water. They also suggest that halogens 8 may be released from saline soils. The inferred atmospheric concentrations of Cl are about 9 10^{5} /cm³, or about a factor of 100 higher than found in the marine boundary layer by Rudolph et al. (1997) indicating that, under these conditions, the Cl initiated oxidation of hydrocarbons 10 11 could be substantial.

Most of the well-established multiphase reactions tend to reduce the rate of O₃ formation in 12 13 the polluted troposphere. Direct reactions of O_3 and atmospheric particles appears to be too slow 14 to reduce smog significantly. Removal of HO₂ onto hydrated particles will decrease the 15 production of O₃ by the reaction of HO₂ with NO. The uptake of NO₂ and HNO₃ will also result 16 in the production of less O₃. Conditions leading to high concentrations of Br, Cl, and I radicals can lead to O₃ loss. The oxidation of hydrocarbons (especially alkanes) by Cl radicals, 17 18 in contrast, may lead to the rapid formation of peroxy radicals and faster smog production in 19 coastal environments where conditions are favorable for the release of gaseous Cl from the 20 marine aerosol. There is still considerable uncertainty regarding the role of multiphase processes 21 in tropospheric photochemistry and so results should be viewed with caution and an appreciation 22 of their potential limitations.

23

24 AX2.2.10.4 Reactions on the Surfaces of Crustal Particles

Field studies have shown that O_3 levels are reduced in plumes containing high particle concentrations (e.g., DeReus et al.; 2000; Berkowitz et al., 2001; Gaffney et al., 2002). Laboratory studies of the uptake of O_3 on un-treated mineral surfaces (Hanisch and Crowley, 2002; Michel et al., 2002,2003) have shown that O_3 is lost by reaction on these surfaces and this loss is catalytic. Values of γ of $1.2 \pm 0.4 \times 10^{-4}$ were found for reactive uptake on α -Al2O₃ and $5 \pm 1 \times 10^{-5}$ for reactive uptake on SiO2 surfaces. Usher et al. (2003) found mixed behavior for O_3 uptake on coated surfaces with respect to untreated surfaces. They found that γ drops

1	from $1.2 \pm 0.4 \times 10^{-4}$ to $3.4 \pm 0.6 \times 10^{-5}$ when α -Al2O ₃ surfaces are coated with NO ₃ derived
2	from HNO ₃ , whereas they found that γ increases to $1.6 \pm 0.2 \times 10^{-4}$ after these surfaces have
3	been pre-treated with SO_2 . Usher et al. also pre-treated surfaces of SiO_2 with either a C8-alkene
4	or a C8-alkane terminated organotrichlorosilane. They found that γ increased to $7\pm2\times10^{-5}$ in
5	the case of treatment with the alkene, but that it decreased to $3 \pm 1 \times 10^{-5}$ for treatment with the
6	alkane. Usher et al. (2003) suggested, on the basis of these results that mineral dust particles
7	coated with nitrates or alkanes will affect O_3 less than dust particles that have accumulated
8	coatings of sulfite or alkenes. These studies indicate the importance of aging of airborne
9	particles on their ability to take up atmospheric gases. Reactions such as these may also be
10	responsible for O_3 depletions observed in dust clouds transiting the Pacific Ocean.
11	Underwood et al. (2001) studied the uptake of NO_2 and HNO_3 on the surfaces of dry
12	mineral oxides (containing Al, Ca, Fe, Mg, Si and Ti) and naturally occurring mineral dust.
13	A wide range of values of $\gamma(NO_2)$ were found, ranging from $< 4 \times 10^{-10}$ for SiO ₂ to 2×10^{-5} for
14	CaO, with most other values $\sim 10^{-6}$. Values of γ for Chinese loess and Saharan dust were also of
15	the order of 10^{-6} . They found that as the reaction of NO ₂ proceeds on the surfaces that reduction
16	to NO occurs. They recommended a value of γ for HNO ₃ of about $1\times 10^{-3}.$ Not surprisingly,
17	the values of γ increased from those given above if the surfaces were wetted. Underwood et al.
18	(2001) also suggested that the uptake of NO_2 was likely to be only of marginal importance but
19	that uptake of HNO_3 could be of significance for photochemical oxidant cycles.
20	Li et al. (2001) examined the uptake of acetaldehyde, acetone and propionaldehyde on the
21	same mineral oxide surfaces listed above. They found that these compounds weakly and
22	reversibly adsorb on SiO_2 surfaces. However, on the other oxide surfaces, they irreversibly
23	adsorb and can form larger compounds. They found values of γ ranging from 10^{-6} to $10^{-4}.$
24	These reactions may reduce O ₃ production efficiency in areas of high mineral dust concentration

- 25 26
- 27

AX2.2.10.5 Reactions on the Surfaces of Aqueous H₂SO₄ Solutions

such as the American Southwest or in eastern Asia as noted earlier.

The most recent evaluation of Photochemical and Chemical Data by the Jet Propulsion Laboratory (Jet Propulsion Laboratory, 2003) includes recommendations for uptake coefficients of various substances on a variety of surfaces including aqueous H₂SO₄ solutions. Although much of the data evaluated have been obtained mainly for stratospheric applications, there are 1 studies in which the range of environmental parameters is compatible with those found in the 2 troposphere. In particular, the uptake of N₂O₅ on the surface of aqueous H₂SO₄ solutions has 3 been examined over a wide range of values. Typical values of γ are of the order of 0.1 (e.g., Jet Propulsion Laboratory, 2003). Values of γ for NO₂ are much lower (5 × 10⁻⁷ to within a factor of 4 three) and thus the uptake of NO₂ on the surface of aqueous H₂SO₄ solutions is unlikely to be of 5 6 importance for oxidant cycles. The available data indicate that uptake of OH and HO₂ radicals 7 could be significant under ambient conditions with values of γ of the order of 0.1 or higher for 8 OH, and perhaps similar values for HO_2 .

9

10

AX2.2.10.6 Oxidant Formation in Particles

11 Water is a major component of sub-micron particles in the atmosphere. However, 12 photochemical reactions in particles have not been studied to the same extent as they have in 13 hydrometeors (e.g., Lelieveld and Crutzen, 1991). Friedlander and Yeh (1998) point out that H₂O₂ and hydroxymethylhydroperoxide (HOCH₂OOH) are especially likely to be found in 14 15 the aqueous component of atmospheric particles, based on observed gas-phase concentrations 16 and Henry's law solubility data; the concentrations in particles could be higher if the condensed 17 hydroperoxides form peroxyhydrate complexes (Wexler and Sarangapani, 1998). Laboratory 18 studies have found that UV irradiation of dissolved organic carbon (DOC) in collected cloudwater samples is a source of free radicals to the aqueous phase (Faust et al., 1992, 1993) 19 20 but the mechanisms involved and the atmospheric fate of these radicals are unclear. Chemical 21 reactions involving dissolved transition metal ions could also provide significant sources of 22 radicals in particles (Jacob, 2000). However, only about 10 to 15% of the mass of organic 23 compounds in particles are quantified typically, but many of the compounds, in particular 24 aldehydes, could photolyze to produce free radicals. There are three basic mechanisms for the 25 formation of SOA (Pandis et al., 1992; Seinfeld and Pankow, 2003). These are (1) condensation 26 of oxidized end-products of photochemical reactions (e.g., ketones, aldehydes, organic acids, and 27 hydroperoxides), (2) adsorption of semivolatile organic compounds (e.g., polycyclic aromatic 28 hydrocarbons) onto existing organic particles, and (3) dissolution of water-soluble gases that can 29 then undergo subsequent reactions in particles (e.g., aldehydes). The first and third mechanisms 30 are expected to be of major importance during the summer when photochemistry is at its peak. 31 Information about the chemistry of formation of secondary organic aerosol (SOA) was reviewed

1 in Section 3.3.1 and available information about the composition of organic compounds in

- 2 particles was summarized in Appendix 3C of the latest PM AQCD (U.S. Environmental
- 3 Protection Agency, 2004).

4 Recent measurements of aerosol-phase reactive oxygen species (ROS) in Rubidoux, CA and New York City have revealed relatively high concentrations, of the order of 5 to 6×10^{-7} in 5 Rubidoux and 1×10^{-7} M m⁻³ in New York City, expressed as equivalent H₂O₂ (Venkatachari 6 7 et al., 2005a,b). The ROS were found in particles of all sizes, with particularly high 8 concentrations in the ultrafine range. However, this finding could also be related to the 9 condensation of vapors onto particles occurring during adiabatic expansion in the nano stages of 10 the sampler. A weak correlation was found with O₃, but large ROS concentrations were still 11 found at night and in winter. The composition and sources of the ROS are not clear. Millimolar 12 concentrations of hydroperoxides, as estimated by Friedlander and Yeh (1998), would contribute only 10^{-12} M m⁻³ based on a typical liquid water volume fraction in air of 10^{-9} . Formation of 13 peroxyhydrates would lead to higher values but would have to be very large to account for the 14 15 ROS observations. Ozone and PAN are orders of magnitude less water-soluble than the 16 hydroperoxides (Jacob, 2000) and would not contribute significantly to the ROS. Radical oxidants (e.g., OH or the superoxide ion O_2^{-}) do not seem to be present in sufficient abundance 17 in the atmosphere to possibly account for the ROS (Jacob, 2000). Low-volatility organic 18 19 peroxides produced from the oxidation of large substituted organic compounds could possibly 20 make a major contribution. Formation of these peroxides in the aerosol phase could be 21 facilitated by photochemical reactions of dissolved organic components (Anastasio et al., 1997) 22 and by reactions of transition metals (Jacob, 2000). Transition metals participate in the Haber-23 Weiss set of reactions, including Fenton's reaction, generating free radicals from hydrogen 24 peroxide even in the dark.

- 25
- 26

AX2.3 PHYSICAL PROCESSES INFLUENCING THE ABUNDANCE OF OZONE

The abundance and distribution of O₃ in the atmosphere is determined by complex
interactions between meteorology and chemistry. This section will address these interactions,
based mainly on the results of field observations. The importance of a number of transport

1

mechanisms, whose understanding has undergone significant advances since the last AQCD 2 for O_3 , will be discussed in this section.

3 Major episodes of high O₃ concentrations in the eastern United States and in Europe are 4 associated with slow moving, high pressure systems. High pressure systems during the warmer seasons are associated with the sinking of air, resulting in warm, generally cloudless conditions, 5 6 with light winds. The sinking of air results in the development of stable conditions near the 7 surface which inhibit or reduce the vertical mixing of O₃ precursors. The combination of 8 inhibited vertical mixing and light winds minimizes the dispersal of pollutants emitted in urban 9 areas, allowing their concentrations to build up. Photochemical activity involving these 10 precursors is enhanced because of higher temperatures and the availability of sunlight. In the 11 eastern United States, high O₃ concentrations during a large scale episode can extend over a 12 hundred thousand square kilometers for several days. These conditions have been described in 13 greater detail in AQCD 96. The transport of pollutants downwind of major urban centers is 14 characterized by the development of urban plumes. However, the presence of mountain barriers 15 can limit mixing as in Los Angeles and Mexico City and will result in even longer periods and a 16 higher frequency of days with high O₃ concentrations. Ozone concentrations in southern urban 17 areas, such as Houston, TX and Atlanta, GA tend to follow this pattern and they tend to decrease 18 with increasing wind speed. In northern cities, like Chicago, IL; New York, NY; and Boston, 19 MA the average O₃ concentrations over the metropolitan areas increase with wind speed 20 indicating that transport of O₃ and its precursors from upwind areas is important (Husar and 21 Renard, 1998; Schichtel and Husar, 2001).

22 Aircraft observations indicate that there can be substantial differences in mixing ratios of 23 key species between the surface and the atmosphere above (Fehsenfeld et al., 1996a; Berkowitz 24 and Shaw, 1997). Convective processes and small scale turbulence transport O₃ and other 25 pollutants both upward and downward throughout the planetary boundary layer and the free 26 troposphere. Ozone and its precursors were found to be transported vertically by convection into 27 the upper part of the mixed layer on one day, then transported overnight as a layer of elevated 28 mixing ratios and then entrained into a growing convective boundary layer downwind and 29 brought back down to the surface. High concentrations of O₃ showing large diurnal variations at 30 the surface in southern New England were associated with the presence of such layers 31 (Berkowitz et al., 1998). Because of wind shear, winds several hundred meters above the ground 1 can bring pollutants from the west, even though surface winds are from the southwest during 2 periods of high O₃ in the eastern United States (Blumenthal et al., 1997). Low level nocturnal 3 jets can also transport pollutants hundreds of kilometers. Turbulence associated with them can 4 bring these pollutants to the surface and in many locations result in secondary O₃ maxima in the early morning (Corsmeier et al., 1997). Based on analysis of the output of model studies 5 6 conducted by Kasibhatla and Chameides (2000), Hanna et al. (2001) concluded that O₃ can be 7 transported over thousands of kilometers in the upper boundary layer of the eastern half of the 8 United States during specific O₃ episodes.

9 Stratospheric-tropospheric exchange (STE) will be discussed in Section AX2.3.1. The 10 vertical redistribution of O_3 and other pollutants by deep, or penetrating convection is discussed 11 in Section AX2.3.2. The potential importance of transport of O_3 and precursors by low-level jets 12 is the topic of Section AX2.3.3. Issues related to the transport of O_3 from North America are 13 presented in Section AX2.3.4. Relations of O_3 to solar ultraviolet radiation and temperature will 14 then be discussed in Section AX2.3.5.

- 15
- 16

AX2.3.1 Stratospheric-Tropospheric Ozone Exchange (STE)

17 In the stratosphere, O₃ formation is initiated by the photodissociation of molecular 18 oxygen (O_2) by solar ultraviolet radiation at wavelengths less than 242 nm. Almost all of this 19 radiation is absorbed in the stratosphere (except for regions near the tropical tropopause), 20 preventing this mechanism from occurring in the troposphere. Some of the O_3 in the 21 stratosphere is transported downward into the troposphere. The potential importance of this 22 source of tropospheric O₃ has been recognized since the early work of Regener (1941), as cited 23 by Junge (1963). Stratospheric-tropospheric exchange (STE) of O₃ and stratospheric 24 radionuclides produced by the nuclear weapons tests of the 1960s is at a maximum during late 25 winter and early spring (e.g., Ludwig et al., 1977 and references therein). Since AQCD 96 on O₃ 26 substantial new information from numerical models, field experiments and satellite-based 27 observations has become available. The following sections outline the basic atmospheric 28 dynamics and thermodynamics of stratosphere/troposphere exchange and review these new 29 developments.

30

1 There are several important mechanisms for injecting stratospheric O₃ into the troposphere, 2 they include tropopause folds (Reed, 1955; Danielsen, 1968), cut-off lows (Price and Vaughan, 3 1993), clear air turbulence, mesoscale convective complexes and thunderstorms, breaking 4 gravity waves (Poulida et al., 1996; Langford and Reid, 1998; Stohl et al., 2003) and streamers. Streamers are dry, stratospheric intrusions visible in satellite water vapor imagery that are 5 6 sheared into long filamentary structures that often roll into vortices and exhibit visible evidence 7 of the irreversible mixing of moist subtropical tropospheric and dry polar stratospheric air 8 (Appenzeller et al., 1996; Wimmers et al., 2003). They are often present at a scale that eludes 9 capture in large scale dynamical models of the atmosphere that cannot resolve features less than 10 1 degree (~100 km). Empirical evidence for stratospheric intrusions comes from observations of 11 indicators of stratospheric air in the troposphere. These indicators include high potential 12 vorticity, low water vapor mixing ratios, high potential temperature, enhancements in the ratio of ⁷Be to ¹⁰Be in tropospheric aerosols, as well as enhancements in O₃ mixing ratios and total 13 14 column amounts. These quantities can be observed with in situ aircraft and balloons, as well as 15 remotely sensed from aircraft and ground-based lidars and both geostationary and polar (low 16 earth orbiting) space platforms.

17 The exchange of O_3 between the stratosphere and the troposphere in middle latitudes 18 occurs to a major extent by tropopause folding events (Reiter, 1963; Reiter and Mahlman, 1965; 19 Danielsen, 1968; Reiter, 1975; Danielsen and Mohnen, 1977; Danielsen, 1980). The term, 20 tropopause folding is used to describe a process in which the tropopause intrudes deeply into the 21 troposphere along a sloping frontal zone bringing air from the lower stratosphere with it. 22 Tropopause folds occur with the formation of upper level fronts associated with transverse 23 circulations that develop around the core of the polar jet stream. South of the jet stream core, the 24 tropopause is higher than to the north of it. The tropopause can be imagined as wrapping around 25 the jet stream core and folding beneath it and extending into the troposphere (cf. Figure 26 AX2-7a). Although drawn as a heavy solid line, the tropopause should not be imagined as a 27 material surface, through which there is no exchange. Significant intrusions of stratospheric air 28 occur in "ribbons" ~200 to 1000 km in length, 100 to 300 km wide and about 1 to 4 km thick (Hoskins, 1972; Wimmers et al., 2003). These events occur throughout the year and their 29 30 location follows the seasonal displacement of the polar jet stream.

31

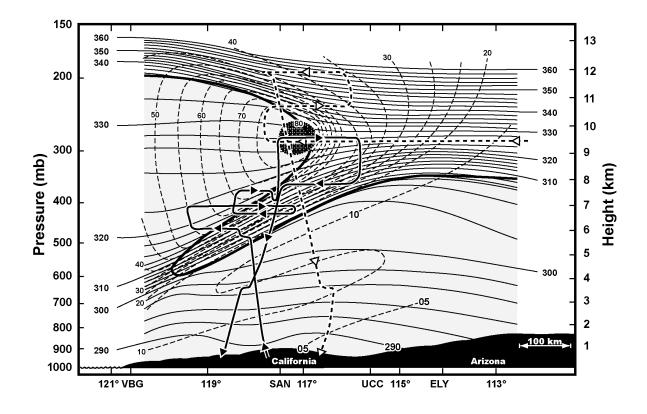


Figure AX2-7a. Cross section through a tropopause folding event on March 13, 1978 at 0000 GMT. Potential temperatures (K) are represented by thin solid lines. Wind speeds (m s⁻¹) are given by thin dashed lines. The hatched area near the center of the figure indicates the location of the jet stream core. The tropopause defined by a potential vorticity of 100 × 10⁻⁷ K mb⁻¹ s⁻¹ is shown as the heavy solid line. The two Sabreliner flight tracks through this cross section are shown as a heavy solid line with filled arrows and heavy dashed line with open arrows. Longitude is shown along the x-axis. Upper air soundings were taken at Vandenberg AFB, CA (VBG); San Diego, CA (SAN); Winnemucca, NV (UCC); and Ely, NV (ELY).

Source: Adapted from Shapiro (1980).

The seasonal cycle of O₃ exchange from the stratosphere into the troposphere is not caused by a peak in the seasonal cycle of upper tropospheric cyclone activity. Instead, it is related to the large scale pattern of tracer transport in the stratosphere. During winter in the Northern Hemisphere, there is a maximum in the poleward, downward transport of mass, which moves O₃ from the tropical upper stratosphere to the lower stratosphere of the polar- and midlatitudes.

1 This global scale pattern is controlled by the upward propagation of large-scale and small-scale 2 waves generated in the troposphere. As the energy from these disturbances dissipates, it drives 3 this stratosphere circulation. As a result of this process, there is a springtime maximum in the 4 total column abundance of O_3 over the poles. The concentrations of O_3 (and other trace substances) build up in the lower stratosphere until their downward fluxes into the lower 5 6 stratosphere are matched by increased fluxes into the troposphere. Thus, there would be a 7 springtime maximum in the flux of O₃ into the troposphere even if the flux of stratospheric air 8 through the tropopause by tropopause folding remained constant throughout the year (Holton 9 et al., 1995). Indeed, cyclonic activity in the upper troposphere is active throughout the entire 10 year in transporting air from the lower stratosphere into the troposphere (Mahlman, 1997; and 11 references therein). Oltmans et al. (1996) and Moody et al. (1996) provide evidence that 12 stratospheric intrusions contribute to the O₃ abundance in the upper troposphere over the North 13 Atlantic even during the summer.

There are a number of techniques that have been used to quantify the amount of O_3 in the 14 15 free troposphere or even the amount of O₃ reaching the surface that can be attributed to 16 downward transport from the stratosphere. Earlier work, cited in AQCD 96 relied mainly on the 17 use of ⁷Be as a tracer of stratospheric air. However, its use is ambiguous because it is also 18 formed in the upper troposphere. Complications also arise because its production rate is also sensitive to solar activity (Lean, 2000). The ratio of ⁷Be to ¹⁰Be provides a much more sensitive 19 tracer of stratospheric air than the use of ⁷Be alone (Jordan et al., 2003 and references therein). 20 21 More recent work than cited in AQCD 96 has focused on the use of potential vorticity (PV) as a 22 tracer of stratospheric air. Potential vorticity is a *dynamical tracer* used in meteorology. 23 Generally, PV is calculated from wind and temperature observations and represents the 24 rotational tendency of a column of air weighted by the static stability, which is just the distance 25 between isentropic surfaces. This quantity is a maximum in the lower stratosphere where static 26 stability is great and along the jet stream where wind shear imparts significant rotation to air 27 parcels. As air moves from the stratosphere to the troposphere, PV is conserved, and therefore it 28 *traces* the motion of O_3 . The static stability is lower in the troposphere, so to preserve PV, fluid 29 rotation will increase. This is why STE is associated with cyclogenesis, or the formation of 30 storms along the polar jet stream. Dynamical models clearly capture this correspondence 31 between the location of storm tracks and preferred regions for STE. However, because PV is

1 destroyed at a faster rate with increasing depth, it is not useful as a tracer of stratospheric air 2 reaching the surface. Appenzeller et al. (1996) found that maps of PV coupled with satellite 3 images of humidity can provide indications of the intrusion of stratospheric air into the 4 troposphere, however, they had no measurements of O_3 . Even if measurements of O_3 were available, the extrapolation of any relations to other events would still be problematic as Olsen 5 6 et al. (2002) have noted that there are seasonal and geographic variations in the relation between 7 O₃ and PV. Recent flights of the NCAR C130 during the TOPSE campaign measured in situ O₃, and curtains of O₃ above and below the aircraft observed with a lidar and clearly showed a 8 9 correspondence between high PV and stratospheric levels of O₃ and satellite depictions of dry air 10 indicating the presence of tropopause folding (Wimmers and Moody, 2004a,b). 11 Detailed cross sections through a troppause folding event showing atmospheric structure, 12 O₃ mixing ratios and condensation nuclei (CN) counts are given in Figures AX2-7a, AX2-7b, 13 and AX2-7c (Shapiro, 1980). Flight tracks of an NCAR Sabreliner obtaining data through the tropopause fold are also shown. The core of the jet stream is indicated by the hatched area near 14 15 the center of Figure AX2-7a. As can be seen from Figure AX2-7 a and b, there is a strong 16 relation between the folding of the tropopause, indicated by the heavy solid line and O₃. CN 17 counts during the portions of the flights in the lower troposphere were tropospheric were typically of the order of several \times 10³ cm⁻³ and 100 or less in the stratospheric portion. 18 19 However, it is clear that CN counts in the fold are much higher than in the stratosphere proper, 20 suggesting that there was active mixing between tropospheric and stratospheric air in the fold. Likewise, it can also be seen form Figure AX2-7b that O₃ is being mixed outside the fold into the 21 22 middle and upper troposphere. The two data sets shown in Figures AX2-7b and 7c indicate that 23 small scale turbulent processes were occurring to mediate this exchange and that the folds are 24 mixing regions whose chemical characteristics lie between those of the stratosphere and the 25 troposphere (Shapiro, 1980). Chemical interactions between stratospheric and tropospheric 26 constituents are also possible within tropopause folds. These considerations also imply that in 27 the absence of turbulent mixing, tropopause folding can be a reversible process.

28 Several recent papers have attempted to demonstrate that the atmosphere is a fluid 29 composed of relatively distinct airstreams with characteristic three-dimensional motions and 30 corresponding trace gas signatures. Based on aircraft observations, satellite imagery, and back 31 trajectories, it has been shown that dry airstreams, or dry intrusions (DA or DI) always advect

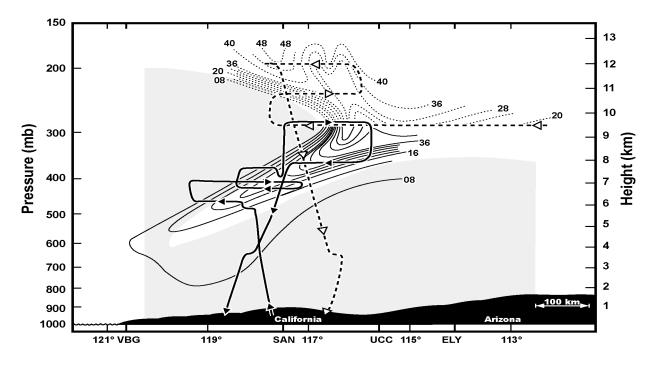


Figure AX2-7b. Ozone mixing ratios pphm (parts per hundred million) corresponding to Figure AX2-7A. The two Sabreliner flight tracks through this cross section are shown as a heavy solid line with filled arrows and a heavy dashed line with open arrows. Longitude is shown along the x-axis. Upper air soundings were taken at Vandenberg AFB, CA (VBG); San Diego, CA (SAN); Winnemucca, NV (UCC); and Ely, NV (ELY).

Source: Adapted from Shapiro (1980).

1	stratospheric O ₃ into the middle and upper troposphere (Cooper et al, 2001; Cooper et al.,
2	2002a), however the seasonal cycle of O_3 in the lowermost stratosphere allows greater quantities
3	of O ₃ to enter the troposphere during spring (Cooper et al., 2002b). Other work has focused on
4	the signatures of PV to show specific instances of STE (Olsen and Stanford, 2001). This
5	correlation between TOMS gradients and PV was also used to derive the annual mass flux of O_3
6	from STE and generated an estimate somewhat higher (500 Tg/yr over the Northern
7	Hemisphere) than the estimates of most general circulation models. The IPCC has reported a
8	large range of model estimates of STE, expressed as the net global flux of O ₃ in Tg/yr, from a
9	low of 390 to a high of 1440 (reproduced as Table AX2-3C-1). A few other estimates have been

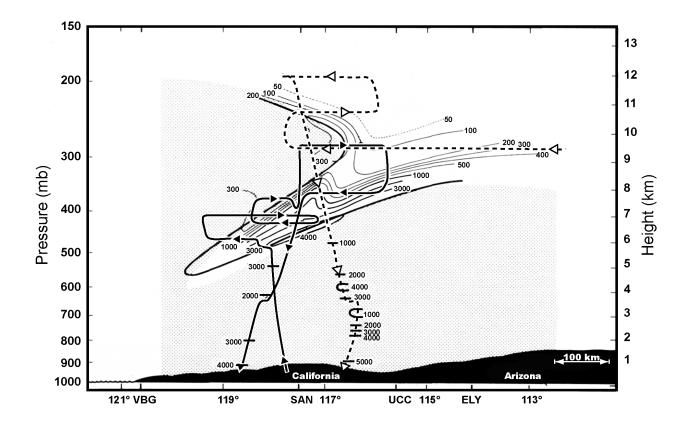


Figure AX2-7c. Condensation nuclei concentrations (particles cm⁻³) corresponding to Figure AX2-7a. The two flight Sabreliner flight tracks through this cross section are shown as a heavy solid line with filled arrows and a heavy dashed line with open arrows. Longitude is shown along the x-axis. Upper air soundings were taken at Vandenberg AFB, CA (VBG); San Diego, CA (SAN); Winnemucca, NV (UCC); and Ely, NV (ELY).

Source: Adapted from Shapiro (1980).

1 dynamics (450 Tg/yr Murphy and Fahey, 1994; 510 Tg/yr extratropics only, Gettleman et al., 2 1997; and 500 Tg/yr midlatitude NH only (30 to 60N) (Olsen et al., 2002). These values 3 illustrate the large degree of uncertainty that remains in quantifying this important source of O_3 . Based on the concept of tracing airstream motion, a number of Lagrangian model studies 4 5 have resulted in climatologies that have addressed the spatial and temporal variability in stratosphere to troposphere transport (Stohl, 2001; Wernli and Borqui, 2002; Seo and Bowman, 6 7 2002; James et al., 2003a,b; Sprenger and Wernli, 2003; Sprenger et al., 2003). Both Stohl 8 (2001) and Sprenger et al. (2003) produced one year climatologies of tropopause folds based on

1 a 1° by 1° gridded meteorological data set. They each found the probability of deep folds 2 (penetrating to the 800 hPa level) was a maximum during winter (December through February). 3 The highest frequency of folding extended from Labrador down the east coast of North America. 4 However, these deep folds occurred less than 1% of the six hour intervals for which meteorological data is assimilated for grid points in the United States. They observed a higher 5 6 frequency of more shallow folds (penetrating to the upper troposphere) and medium folds (penetrating to levels between 500 and 600 hPa) of about 10% and 1 to 2% respectively. These 7 8 events occur preferentially across the subtropics and the southern United States. At higher 9 latitudes other mechanisms such as the erosion of cut-off lows and the breakup of stratospheric 10 streamers are likely to play an important role in STE. Stohl (2001) also described the region of 11 strong stirring in the upper extratropical troposphere related to the midlatitude storm tracks. 12 Stohl (2001) demonstrated that airstreams with strong vertical motion are all highly incoherent, 13 they stir their air parcels into a new environment, producing filamentary tracer structures and 14 paving the way for subsequent mixing. A 15-year climatology by Sprenger and Wernli (2003) 15 shows the consistent pattern of STE occurring over the primary storm tracks in the Pacific and 16 Atlantic along the Asian and North American coasts. This climatology, and the one of James 17 et al. (2003a,b) both found that recent stratospheric air associated with deep intrusions are 18 relatively infrequent occurrences in these models. Thus, stratospheric intrusions are most likely 19 to directly affect the middle and upper troposhere and not the planetary boundary layer. 20 However, this O₃ can still exchange with the planetary boundary layer through convection as 21 described later in this sub-section and in Section AX2.3.2, AX2.3.3 and AX2.3.4.

22 Interannual variations in STE are related to anomalies in large-scale circulation such as the 23 North Atlantic Oscillation which causes changes in storm track positions and intensities, and the 24 El Niño-Southern Oscillation, which results in anomalous strong convection over the eastern Pacific (James et al., 2003a,b). It should also be remembered that the downward flux of O₃ into 25 26 the troposphere is related to the depletion of O₃ within the wintertime stratospheric polar 27 vortices. The magnitude of this depletion and the transport of O₃ depleted air to midlatitudes in 28 the stratosphere (Mahlman et al., 1994; Hadjinicolaou and Pyle, 2004) shows significant 29 interannual variability which may also be reflected in the downward flux of O₃ into the 30 troposphere. All of these studies, from the analysis of individual events to multiyear 31 climatologies are based on the consideration of the three-dimensional motion of discrete

1 airstreams in the atmosphere. However, there is a significant body of work that reports that 2 airstreams are not entirely independent of each other (Cooper et al., 2004a,b). Midlatitude 3 cyclones typically form in a sequential manner, some trailing in close proximity along a quasi-4 stationary frontal boundary, with each system influenced by remnants of other systems. For example, a rising stream of air ahead of a cold front (also known as a warm conveyor belt or 5 6 WCB) on the back (western) side of a surface anticyclone may entrain air that has subsided 7 anticyclonically into the surface high pressure system from the upper troposphere and the lower 8 stratosphere (also known as a Dry Airstream or DA) that intruded into the mid-troposphere in a 9 cyclone that is further downstream. Convective mixing of the boundary layer in the WCB will 10 distribute this enhanced O₃ throughout the lower troposphere and down to the surface (Davies 11 and Shuepbach, 1994; Cooper and Moody, 2000). The net effect is that the DA of one cyclone 12 may feed into the WCB of the system immediately upwind. Similarly, the lofting of warm moist 13 air in the WCB may inject surface emissions into the upper troposphere adjacent to the western 14 side of the subsiding Dry Airstream of the storm system immediately downwind, with 15 subsequent interleaving of these two airstreams (Prados et al., 1999; Parrish et al., 2000; Cooper 16 et al., 2004a,b) as illustrated schematically in Figure AX2-8. The ultimate mixing of these 17 airstreams, which inevitably occurs at a scale that is not resolved by current models confounds 18 our ability to attribute trace gases to their sources.

19 These studies suggest that both downward transport from the stratosphere and upward 20 transport from the atmospheric boundary layer act in concert with their relative roles determined 21 by the balance between the amount of O₃ in the lower stratosphere and the availability of free 22 radicals to initiate the photochemical processes forming O_3 in the boundary layer. Dickerson 23 et al. (1995) pointed out that springtime maxima in O₃ observed in Bermuda correlate well with 24 maxima in carbon monoxide. Carbon monoxide, O₃ and its photochemical precursors may have 25 been transported into the upper troposphere from the polluted continental boundary layer by 26 deep convection. The photochemical processes involve the buildup of precursors during the 27 winter at Northern mid- and high latitudes. Parrish et al. (1999) have noted that reactions 28 occurring during the colder months may tend to titrate O₃. However, as NO_x and its reservoirs 29 are transported sourthward they can initiate O₃ formation through reactions described in 30 Section AX2.2 (see also Stroud et al., 2003).

31

Altitude

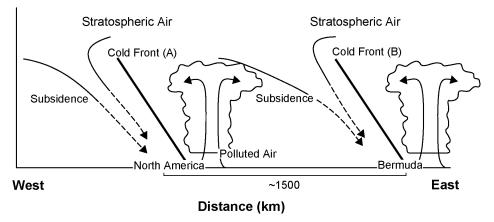


Figure AX2-8. Schematic diagram of a meteorological mechanism involved in high concentrations of O₃ found in spring in the lower troposphere off the American east coast. Subsidence behind the first cold front meets convection ahead of a second cold front such that polluted air and O₃ from the upper troposphere/lower stratosphere are transported in close proximity (or mixed) and advected over the north Atlantic Ocean. The vertical scale is about 10 km; the horizontal scale about 1500 km. (Note that not all cold fronts are associated with squall lines and that mixing occurs even in their absence.)

Source: Prados (2000).

1

AX2.3.2 Deep Convection in the Troposphere

Much of the upward motion in the troposphere is driven by convergence in the boundary 2 layer and deep convection. Deep convection, as in developing thunderstorms can transport 3 pollutants rapidly to the middle and upper troposphere (Dickerson et al., 1987). The outflow 4 5 from these systems results in the formation of layers with distinctive chemical properties in the middle troposphere. In addition, layers are formed as the result of stratospheric intrusions. 6 Layers ranging in thickness typically from 0.3 to about 2 km in the middle troposphere (mean 7 8 altitudes between 5 and 7 km) are ubiquitous and occupy up to 20% of the troposphere to 12 km 9 (Newell et al., 1999). The origin of these layers can be judged by analysis of their chemical 10 composition (typically by comparing ratios of H₂O, O₃ and CO to each other) or dynamical 11 properties (such as potential vorticity). Thus, pollutants that have been transported into the

middle and upper troposphere at one location can then be transported back down into the
 boundary layer somewhere else.

3 Crutzen and Gidel (1983), Gidel (1983), and Chatfield and Crutzen (1984) hypothesized 4 that convective clouds played an important role in rapid atmospheric vertical transport of trace 5 species and first tested simple parameterizations of convective transport in atmospheric chemical 6 models. At nearly the same time, evidence was shown of venting of the boundary layer by 7 shallow fair weather cumulus clouds (e.g., Greenhut et al., 1984; Greenhut, 1986). Field 8 experiments were conducted in 1985, which resulted in verification of the hypothesis that deep 9 convective clouds are instrumental in atmospheric transport of trace constituents (Dickerson 10 et al., 1987; Luke et al., 1997). Once pollutants are lofted to the middle and upper troposphere, 11 they typically have a much longer chemical lifetime and with the generally stronger winds at 12 these altitudes they can be transported large distances from their source regions. Photochemical 13 reactions occur during this long-range transport. Pickering et al. (1990) demonstrated that 14 venting of boundary layer pollutants by convective clouds (both shallow and deep) causes 15 enhanced O₃ production in the free troposphere. Therefore, convection aids in the 16 transformation of local pollution into a contribution to global atmospheric pollution. Downdrafts 17 within thunderstorms tend to bring air with less pollution from the middle troposphere into the 18 boundary layer.

19 Field studies have established that downward transport of larger O₃ and NO_x mixing ratios 20 from the free troposphere to the boundary layer is an important process over the remote oceans 21 (e.g., Piotrowicz et al., 1991), as well as the upward transport of very low O₃ mixing ratios from 22 the boundary layer to the upper troposphere (Kley et al., 1996). Global modeling by Lelieveld 23 and Crutzen (1994) suggests that the downward mixing of O₃ into the boundary layer (where it is 24 destroyed) is the dominant global effect of deep convection. Some indications of downward 25 transport of O_3 from higher altitudes (possibly from the stratosphere) in the anvils of 26 thunderstorms have been observed (Dickerson et al., 1987; Poulida et al., 1996; Suhre et al., 27 1997). Ozone is most effective as a greenhouse gas in the vicinity of the tropopause. Therefore, 28 changes in the vertical profile of O_3 in the upper troposphere caused by deep convection have 29 important radiative forcing implications for climate. 30 Other effects of deep convection include perturbations to photolysis rates, which include

31 enhancement of these rates in the upper portion of the thunderstorm anvil. In addition,

thunderstorms are effective in the production of NO by lightning and in wet scavenging of
 soluble species.

- 3
- 4 AX2.3.2.1 Observations of the Effects of Convective Transport

5 Some fraction of shallow fair weather cumulus clouds actively vent boundary layer 6 pollutants to the free troposphere (Stull, 1985). The first airborne observations of this 7 phenomenon were conducted by Greenhut et al. (1984) over a heavily urbanized area, measuring 8 the in-cloud flux of O_3 in a relatively large cumulus cloud. An extension of this work was 9 reported by Greenhut (1986) in which data from over 100 aircraft penetrations of isolated 10 nonprecipitating cumulus clouds over rural and suburban areas were obtained. Ching and 11 Alkezweeny (1986) reported tracer (SF₆) studies associated with nonprecipitating cumulus (fair 12 weather cumulus and cumulus congestus). Their experiments showed that the active cumulus 13 clouds transported mixed layer air upward into the overlying free troposphere and suggested that 14 active cumuli can also induce rapid downward transport from the free troposphere into the mixed 15 layer. A UV-DIAL (Ultraviolet Differential Absorption Lidar) provided space-height cross 16 sections of aerosols and O₃ over North Carolina in a study of cumulus venting reported by Ching 17 et al. (1988). Data collected on evening flights showed regions of cloud debris containing 18 aerosol and O₃ in the lower free troposphere in excess of background, suggesting that significant 19 vertical exchange had taken place during afternoon cumulus cloud activity. Efforts have also 20 been made to estimate the vertical transport by ensembles of nonprecipitating cumulus clouds in 21 regional chemical transport models (e.g., Vukovich and Ching, 1990). 22 The first unequivocal observations of deep convective transport of boundary layer 23 pollutants to the upper troposphere were documented by Dickerson et al. (1987). Instrumentation aboard three research aircraft measured CO, O₃, NO, NO_x, NO_y, and 24 25 hydrocarbons in the vicinity of an active mesoscale convective system near the 26 Oklahoma/Arkansas border during the 1985 PRE-STORM experiment. Anvil penetrations about 27 two hours after maturity found greatly enhanced mixing ratios of all of the aforementioned

- 28 species compared with outside of the cloud. Among the species measured, CO is the best tracer
- of upward convective transport because it is produced primarily in the boundary layer and has an
- 30 atmospheric lifetime much longer than the timescale of a thunderstorm. In the observed storm,
- 31 CO measurements exceeded 160 ppbv as high as 11 km, compared with ~70 ppbv outside of the

1 cloud (Figure AX2-9a). Cleaner middle tropospheric air appears to have descended in 2 downdrafts forming a pool of lower mixing ratio CO beneath the cloud. Nonmethane 3 hydrocarbons (NMHC) with moderate lifetimes can also serve as tracers of convective transport 4 from the boundary layer. Ozone can also be an indicator of convective transport. In the polluted 5 troposphere large O₃ values will indicate upward transport from the boundary layer, but in the 6 clean atmosphere such values are indicative of downward transport from the uppermost 7 troposphere or lowermost stratosphere. In this case measured O_3 in the upper rear portion of the 8 anvil peaked at 98 ppbv, while boundary layer values were only ~65 ppbv (Figure AX2-9b). It is 9 likely that some higher-O₃ stratospheric air mixed into the anvil.

10 The large amount of vertical trace gas transport noted by Dickerson et al. (1987) cannot, 11 however, be extrapolated to all convective cells. Pickering et al. (1988) reported airborne 12 measurements of trace gases taken in the vicinity of a line of towering cumulus and 13 cumulonimbus clouds that also occurred during PRE-STORM. In this case trace gas mixing 14 ratios in the tops of these clouds were near ambient levels. Meteorological analyses showed that 15 these clouds were located above a cold front, which prevented entry of air from the boundary 16 layer directly below or near the clouds. Instead, the air entering these clouds likely originated in 17 the layer immediately above the boundary layer which was quite clean. Luke et al. (1992) 18 summarized the air chemistry data from all 18 flights during PRE-STORM by categorizing each case according to synoptic flow patterns. Storms in the maritime tropical flow regime 19 transported large amounts of CO, O₃, and NO_v into the upper troposphere with the 20 21 midtroposphere remaining relatively clean. During frontal passages a combination of stratiform 22 and convective clouds mixed pollutants more uniformly into the middle and upper levels; high 23 mixing ratios of CO were found at all altitudes.

Prather and Jacob (1997) and Jaeglé et al. (1997) noted that in addition to the primary
pollutants (e.g., NO_x, CO, VOCs), precursors of HO_x are also transported to the upper
troposphere by deep convection. Precursors of most importance are water vapor, formaldehyde,
hydrogen peroxide, methylhydroperoxide, and acetone. HO_x is critical for oxidizing NO to NO₂
in the O₃ production process.

Over remote marine areas the effects of deep convection on trace gas distributions differ
 from that over moderately polluted continental regions. Chemical measurements taken by the
 NASA ER-2 aircraft during the Stratosphere-Troposphere Exchange Project (STEP) off the

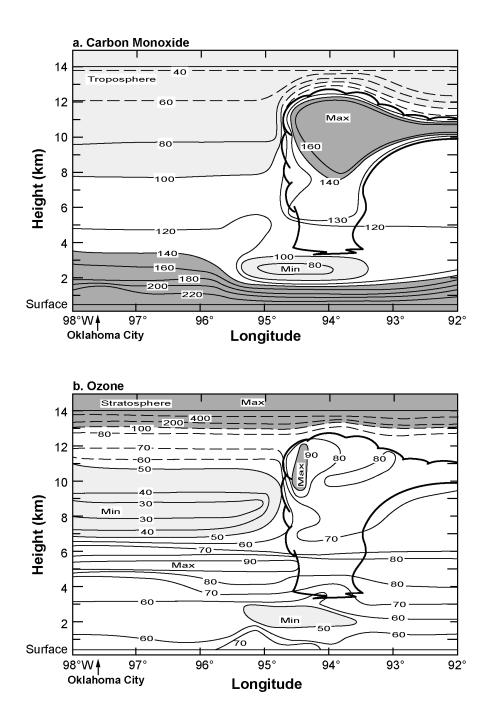


Figure AX2-9a,b. (a) Contour plot of CO mixing ratios (ppbv) observed in and near the June 15, 1985, mesoscale convective complex in eastern Oklahoma. Heavy line shows the outline of the cumulonimbus cloud. Dark shading indicates high CO and light shading indicates low CO. Dashed contour lines are plotted according to climatology since no direct measurements were made in that area. (b) Same as (a) but for O₃ (ppbv).

Source: Dickerson et al. (1987).

1 northern coast of Australia show the influence of very deep convective events. Between 2 14.5 and 16.5 km on the February 2 to 3, 1987 flight, perturbations in the chemical profiles were noted that included pronounced maxima in CO, water vapor, and CCN and minima of NO_v, 3 and O₃ (Pickering et al., 1993). Trajectory analysis showed that these air parcels likely were 4 transported from convective cells 800 to 900 km upstream. Very low boundary layer mixing 5 6 ratios of NO_{y} and O_{3} in this remote region were apparently transported upward in the convection. A similar result was noted in CEPEX (Central Equatorial Pacific Experiment; Kley et al., 1996) 7 8 where a series of ozones onde ascents showed very low upper tropospheric O_3 following deep 9 convection. It is likely that similar transport of low-O₃ tropical marine boundary layer air to the 10 upper troposphere occurs in thunderstorms along the east coast of Florida. Convection over the 11 Pacific will likely transport halogens to the upper troposphere where they may aid in the 12 destruction of O₃. This low-O₃ convective outflow will likely descend in the subsidence region 13 of the eastern Pacific, leading to some of the cleanest air that arrives at the west coast of the United States 14

- 15
- 16

AX2.3.2.2 Modeling the Effects of Convection

17 The effects of deep convection may be simulated using cloud-resolving models, or in 18 regional or global models in which the convection is parameterized. The Goddard Cumulus 19 Ensemble (GCE) model (Tao and Simpson, 1993) has been used by Pickering et al. (1991; 20 1992a,b; 1993; 1996), Scala et al. (1990) and Stenchikov et al. (1996) in the analysis of 21 convective transport of trace gases. The cloud model is nonhydrostatic and contains detailed 22 representation of cloud microphysical processes. Two and three dimensional versions of the 23 model have been applied in transport analyses. The initial conditions for the model are usually 24 from a sounding of temperature, water vapor and winds representative of the region of storm 25 development. Model-generated wind fields can be used to perform air parcel trajectory analyses 26 and tracer advection calculations. Once transport calculations are performed for O₃ precursors, a 27 1-D photochemical model was employed to estimate O₃ production rates in the outflow air from 28 the convection. These rates were then compared with those prior to convection to determine an 29 enhancement factor due to convection.

30 Such methods were used by Pickering et al. (1992b) to examine transport of urban plumes
31 by deep convection. Transport of the Oklahoma City plume by the 10 – 11 June 1985

PRE-STORM squall line was simulated with the 2-D GCE model. In this event forward
trajectories from the boundary layer at the leading edge of the storm showed that almost 75% of
the low level inflow was transported to altitudes exceeding 8 km. Over 35% of the air parcels
reached altitudes over 12 km. Tracer transport calculations were performed for CO, NO_x, O₃,
and hydrocarbons. The 3-D version of the GCE model has also been run for the 10 – 11 June
1985 PRE-STORM case. Free tropospheric O₃ production enhancement of a factor of 2.5 for
Oklahoma rural air and ~4 for the Oklahoma City case were calculated.

8 Stenchikov et al. (1996) used the 2-D GCE model to simulate the North Dakota storm 9 observed by Poulida et al. (1996). This storm showed the unusual feature of an anvil formed 10 well within the stratosphere. The increase of CO and water vapor above the altitude of the 11 preconvective tropopause was computed in the model. The total mass of CO across the model 12 domain above this level increased by almost a factor of two during the convective event. VOCs 13 injected into the lower stratosphere could enhance O₃ production there. Downward transport of 14 O₃ from the stratosphere was noted in the simulation in the rear anvil.

15 Regional estimates of deep convective transport have been made through use of a traveling 16 1-D model, regional transport models driven by parameterized convective mass fluxes from 17 mesoscale meteorological models, and a statistical-dynamical approach. Pickering et al. (1992c) 18 developed a technique which uses a combination of deep convective cloud cover statistics from 19 the International Satellite Cloud Climatology Project (ISCCP) and convective transport statistics 20 from GCE model simulations of prototype storms to estimate the amount of CO vented from the 21 planetary boundary layer (PBL) by deep convection. This statistical-dynamical approach was 22 used by Thompson et al. (1994) to estimate the convective transport component of the boundary layer CO budget for the central United States $(32.5^{\circ} - 50^{\circ} \text{ N}, 90^{\circ} - 105^{\circ} \text{ W})$ for the month of 23 24 June. They found that the net upward deep convective flux (~ 18×10^5 kg-CO/month) and the shallow convective flux (~ 16×10^5 kg-CO/month) to the free troposphere accounted for about 25 26 80% of the loss of CO from the PBL. These losses roughly balanced horizontal transport of CO (~ 28×10^5 kg-CO/month), the oxidation of hydrocarbons (~ 8×10^5 kg-CO/month) and 27 anthropogenic and biogenic emissions ($\sim 8 + \sim 1 \times 10^5$ kg-CO/month) into the PBL in the central 28 United States. In this respect the central United States acts as a "chimney" for venting CO and 29 30 other pollutants.

1 Regional chemical transport models have been used for applications such as simulations of 2 photochemical O₃ production, acid deposition, and fine particulate matter. Walcek et al. (1990) 3 included a parameterization of cloud-scale aqueous chemistry, scavenging, and vertical mixing 4 in the chemistry model of Chang et al. (1987). The vertical distribution of cloud microphysical properties and the amount of subcloud-layer air lifted to each cloud layer are determined using a 5 6 simple entrainment hypothesis (Walcek and Taylor, 1986). Vertically-integrated O₃ formation 7 rates over the northeast U.S. were enhanced by \sim 50% when the in-cloud vertical motions were 8 included in the model.

9 Wang et al. (1996) simulated the 10 - 11 June 1985 PRE-STORM squall line with the 10 NCAR/Penn State Mesoscale Model (MM5; Grell et al., 1994; Dudhia et al., 1993). Convection 11 was parameterized as a subgrid-scale process in MM5 using the Kain and Fritsch (1993) scheme. 12 Mass fluxes and detrainment profiles from the convective parameterization were used along with 13 the 3-D wind fields in CO tracer transport calculations for this convective event. The U.S. 14 Environmental Protection Agency has developed a Community Multiscale Air Quality (CMAQ) 15 modeling system that uses MM5 with the Kain-Fritsch convective scheme as the dynamical 16 driver (Ching et al., 1998).

Convective transport in global chemistry and transport models is treated as a subgrid-scale 17 18 process that is parameterized typically using cloud mass flux information from a general 19 circulation model or global data assimilation system. While GCMs can provide data only for a 20 "typical" year, data assimilation systems can provide "real" day-by-day meteorological 21 conditions, such that CTM output can be compared directly with observations of trace gases. 22 The NASA Goddard Earth Observing System Data Assimilation System (GEOS-1 DAS and 23 successor systems; Schubert et al., 1993; Bloom et al., 1996) provides archived global data sets for the period 1980 to present, at $2^{\circ} \times 2.5^{\circ}$ or better resolution with 20 layers or more in the 24 25 vertical. Convection is parameterized with the Relaxed Arakawa-Schubert scheme (Moorthi and 26 Suarez, 1992). Pickering et al. (1995) showed that the cloud mass fluxes from GEOS-1 DAS are 27 reasonable for the 10-11 June 1985 PRE-STORM squall line based on comparisons with the 28 GCE model (cloud-resolving model) simulations of the same storm. In addition, the GEOS-1 29 DAS cloud mass fluxes compared favorably with the regional estimates of convective transport 30 for the central U.S. presented by Thompson et al. (1994). However, Allen et al. (1997) have

1

- 2
- 3

4

AX2.3.3 Nocturnal Low-Level Jets

5 Nocturnal low-level jets (LLJ) are coincident with synoptic weather patterns involved with 6 high O₃ episodes implying that they may play an important role in the formation of severe O₃ 7 events (Rao and Zurbenko, 1994). LLJ can transport pollutants hundreds of kilometers from 8 their sources. Figure AX2-10 shows the evolution of the planetary boundary layer (PBL) over 9 land during periods when high-pressure weather patterns prevail (Stull, 1999). During synoptic 10 weather patterns with stronger zonal flow, a schematic of the boundary layer could look quite 11 different with generally more uniform mixing present. As can be seen from Figure AX2-10, the 12 PBL can be divided into three sublayers: a turbulent mixed layer (typically present during 13 daylight hours), a less turbulent residual layer which occupies space that was formerly the mixed 14 layer, and a nocturnal, stable boundary layer that has periods of sporadic turbulence (Stull, 15 1999). The LLJ forms in the residual layer. It is important to note, that during the nighttime, the 16 PBL often comprises thin, stratified layers with different physical and chemical properties (Stull, 17 1988).

shown that the GEOS-1 DAS overestimates the amount and frequency of convection in the

tropics and underestimates the convective activity over midlatitude marine storm tracks.

18 At night, during calm conditions, the planetary boundary layer is stably stratified and as a 19 result verticle mixing is inhibited. On cloud-free evenings the LLJ begins to form shortly after 20 sunset. The wedge of cool air in the stable nocturnal boundary layer decouples the surface layer 21 from the residual layer and acts like a smooth surface allowing the air just above it (in the 22 residual layer) to flow rapidly past the inversion mostly unencumbered by surface friction (Stull, 23 1999). As the sun rises, its energy returns to heat the land and the lower atmosphere begins to 24 mix as the warm air rises. The jet diminishes as the nocturnal temperature inversion erodes and 25 surface friction slows winds speeds. If stable synoptic conditions persist, the same conditions 26 the next night could allow the low-level jet to reform with equal strength and similar 27 consequences. LLJ formation results in vertical wind shear that induces mixing between the 28 otherwise stratified layers.

LLJs are often associated with mountain ranges. Mountains and pressure gradients on
either side of a developing LLJ help concentrate the flow of air into a corridor or horizontal
stream (Hobbs et al., 1996). Figure AX2-11 shows that LLJs commonly form east of the Rocky

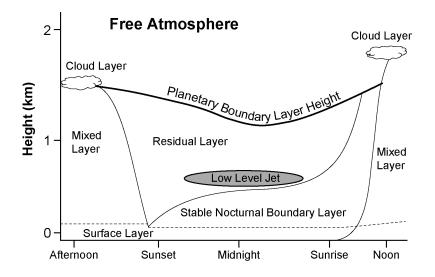


Figure AX2-10. The diurnal evolution of the planetary boundary layer while high pressure prevails over land. Three major layers exist (not including the surface layer): a turbulent mixed layer; a less turbulent residual layer which contains air formerly in the mixed layer; and a nocturnal, stable boundary layer which is characterized by periods of sporadic turbulence.

Source: Adapted from Stull (1999) Figures 1.7 and 1.12.

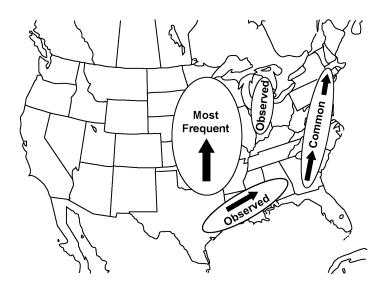


Figure AX2-11. Locations of low-level jet occurrences in decreasing order of prevalence (most frequent, common, observed). These locations are based on 2-years radiosonde data obtained over limited areas. With better data coverage, other low-level jets may well be observed elsewhere in the United States.

Source: Bonner (1968).

Mountains and east of the Appalachian Mountains (Bonner, 1968). There may be other locations in the U.S. where LLJs occur. The width of the jet can vary from location to location and from one weather pattern to another, but is typically less than several hundred km not greater than 1000 km long. In extreme cases, winds in a LLJ can exceed 60 ms⁻¹ but average speeds are typically in the range of 10 to 20 ms⁻¹.

6 Nocturnal low-level jets are not unique to the United States; they have been detected in 7 many other parts of the world (Corsmeier, 1997, Reitebuch, et al., 2000). Corsmeier et al. 8 (1997) observed secondary maxima in surface O_3 at nighttime at a rural site in Germany, 9 supporting the notion that downward transport from the residual layer was occurring. The 10 secondary maxima were, on average, 10% of the next day's O₃ maximum but at times could be 11 as much as 80% of the maximum (Corsmeier et al., 1997). The secondary O₃ maxima were well 12 correlated with an increase in wind speed and wind shear. The increased vertical shear over the 13 very thin layer results in mechanical mixing that leads a downward flux of O₃ from the residual to the near surface layer (see Low-level jets AX2-12 and AX2-13). Analysis of wind profiles 14 15 from aerological stations in northeastern Germany revealed the spatial extent of that particular 16 LLJ was up to 600 km in length and 200 km in width. The study concluded the importance of O_3 transport by low-level jets was twofold: O₃ and other pollutants could be transported hundreds 17 18 of kilometers at the jet core level during the night and then mixed to the ground far from their 19 source region. Salmond and McKendry (2002) also observed secondary O₃ maxima (in the 20 Lower Fraser Valley, British Columbia) associated with low-level jets that occasionally 21 exceeded half the previous day's maximum O₃ concentration. The largest increases in surface O₃ concentration occurred when boundary layer turbulence coincided with O₃ levels greater than 22 23 80 parts per billion were observed aloft. In addition, the study suggests horizontal transport 24 efficiency during a low-level jet event could be as much as six times greater than transport with 25 light winds without an LLJ. Reitebuch et al. (2000) observed secondary O₃ maxima associated with low-level jet evolution in an urban area in Germany. The notion that O₃ was transported 26 27 downward from the residual layer to the surface was supported by observed decreases in 28 concentrations of NO, NO₂ and CO in the residual layer during secondary O₃ maxima. Unlike O₃ in the residual layer, concentrations of NO, NO₂, and CO should be lower than those found 29

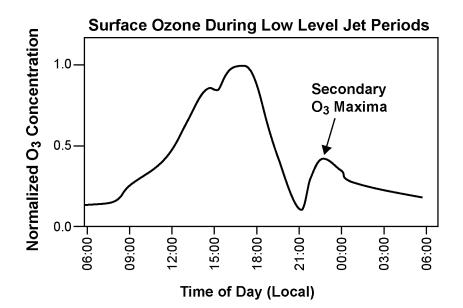


Figure AX2-12. Schematic diagram showing the diurnal behavior of O_3 and the development of secondary O_3 maxima resulting from downward transport from the residual layer when a low-level jet is present.

Source: Adapted from Reitbuch et al. (2000); Corsmeier et al. (1997); and Salmond and McKendry (2002).

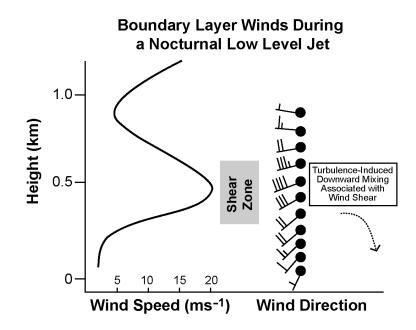


Figure AX2-13. The nocturnal low-level jet occupies a thin slice of the atmosphere near the Earth's surface. Abrupt changes in wind speed and wind direction with height associated with the low-level jet create conditions favorable for downward transport of air to the surface layer.

Source: Singh et al. (1997); Corsmeier et al. (1997).

nearer the surface (Reitebuch et al., 2000; Seinfeld and Pandis, 1998). As in other studies, wind
speed and directional shear were detected during these events. Calculations of the average wind
speed and duration of the LLJ suggested that pollutants were transported several hundred
kilometers. A study of the PBL and the vertical structure of O₃ observed at a costal site in Nova
Scotia described how temperature and differences of surface roughness in a marine environment
can induce LLJ formation and pollution transport (Gong et al., 2000). In this case, rather strong
horizontal sea surface temperature gradients provided the necessary baroclinic forcing.

8 While the studies mentioned above have shed light on the possible role of the LLJ in the 9 transport of O_3 and its precursors, quantitative statements about the significance of the LLJ in 10 affecting local and regional O_3 budgets can not yet be made. This inability reflects the lack of 11 available data for wind profiles in the planetary boundary layer in areas where LLJ are likely to 12 occur and because of the inadequacy of numerical models in simulating their occurrence.

13

14 AX2.3.4 Intercontinental Transport of Ozone and Other Pollutants

15 AX2.3.4.1 The Atmosphere/Ocean Chemistry Experiment, AEROCE

The AEROCE experiment, initiated in the early 1990s set out to examine systematically 16 17 the chemistry and meteorology leading to the trace gas and aerosol composition over the North 18 Atlantic Ocean. One particular focus area was to determine the relative contribution of 19 anthropogenic and natural processes to the O₃ budget and oxidizing capacity of the troposphere 20 over the North Atlantic Ocean. Early results using isentropic back trajectories suggested that 21 periodic pulses of O_3 mixing ratios up to 80 ppb were associated with large-scale subsidence 22 from the mid-troposphere, favoring a natural source (Oltmans and Levy, 1992). Moody et al. 23 (1995) extended this work with a five-year seasonal climatology and found the highest 24 concentrations of O₃ were always associated with synoptic scale post-frontal subsidence off the 25 North American continent behind cold fronts, and this pattern was most pronounced in the 26 April-May time frame. These post-frontal air masses had uniformly low humidity and high 27 concentrations of ⁷Be, a cosmogenic tracer produced in the upper troposphere and lower 28 stratosphere. However, the pulsed occurrence of these postfrontal air masses also frequently delivered enhanced concentrations of species such as $SO_4^{=}$, NO_3^{-} , ²¹⁰Pb, etc. suggesting a 29 30 component originating in North America. In a subsequent analysis of data from one year (1992) 31 when CO observations were available, Dickerson et al. (1995) concluded that anthropogenic

1

sources made a significant contribution to surface O₃, and using a simple mixing model they 2 determined that 57% of the air had a continental boundary layer origin.

3 Based on these observations of the synoptically modulated concentrations, AEROCE 4 conducted an aircraft and ozonesonde intensive in the spring of 1996. The intention was to adopt a meteorologically informed sampling strategy to clearly distinguish the characteristics of 5 6 air masses ahead of and behind eastward progressing cold fronts. Sixteen research flights were 7 conducted with the University of Wyoming King Air research aircraft. The goal was to 8 differentiate the sources of enhanced O₃ mixing ratios observed on Bermuda after the passage of 9 cold fronts, and to identify the major processes controlling the highly variable O₃ mixing ratios 10 in the mid-to-upper troposphere over eastern North America and the North Atlantic Ocean 11 during April and May. In addition to aircraft flights, near-daily ozonesondes were launched in a 12 quasi-zonal transect from Purdue, Indiana, to Charlottesville, Virginia to Bermuda. An effort 13 was made to time the release of ozonesondes to cleanly differentiate pre and post-frontal air 14 masses

15 In several aircraft flights, the presence at altitude of distinct layers of air with elevated 16 concentrations of nonmethane hydrocarbons (NMHCs) attested to the dynamic vertical mixing 17 associated with springtime frontal activity. Layers of mid-tropospheric air of high O₃ (140 ppb) 18 and low background NMHC mixing ratios (1.44 ppbv ethane, 0.034 ppbv propene, 0.247 ppbv 19 propane, and 0.034 ppbv isobutene, 0.041 ppbv n-butane, 0.063 ppbv benzene, 0.038 ppbv 20 toluene) were indicative of descending, stratospherically influenced air on a flight to the east of 21 Norfolk, VA on April 24 (alt 4600m). However layers of elevated NMHC concentrations 22 (1.88 ppbv ethane, 0.092 ppbv propene, 0.398 ppbv propane, 0.063 ppbv isobutene, 0.075 ppbv 23 n-butane, 0.106 ppbv benzene, 0.0102 ppbv toluene) occurred along with 60-70 ppbv of O₃ on a 24 flight west of Bermuda April 28 (alt. 4100m), indicating air had been lofted from the continental 25 boundary layer. Meteorological evidence, supported by ozonesonde observations and earlier 26 King Air flights, indicated that stratosphere/troposphere exchange associated with an upstream 27 frontal system had injected and advected dry, O₃-rich air into the mid-troposhere region over the 28 continent. This subsiding air mass provided deep layers of enhanced O₃ in the offshore, 29 postfrontal area. Convection from a developing (upwind) system lifted continental boundary 30 layer air into the proximity of the dry, subsiding air layer (Prados, et al., 1999). This resulted in 31 a mixture of high concentrations of anthropogenic pollutants along with naturally enhanced O₃.

1 Ozone mixing ratios exceeded those attributable to boundary layer venting or in-transit 2 photochemical production. These meteorological processes led to pollution and stratospherically 3 enhanced O₃ co-occurring in post-frontal air masses over the North Atlantic Ocean. A similar 4 event in February 1999 was observed by Parrish et al. (2000). It confirmed the occurrence of thin layers of anthropogenic and stratospheric air that subsequently mix. These results, along 5 6 with recent modeling studies suggest that North American pollution clearly does contribute to 7 the periodic influx of less-than-pristine air observed in the marine boundary layer over Bermuda 8 (e.g., Li et al., 2002) and yet these incursions are not inconsistent with observing enhancements 9 in O_3 due to stratospheric exchange.

10 The ozonesonde climatology of AEROCE clearly established that O₃ mixing ratios were 11 always enhanced and increased with height in post-frontal air masses. Postfrontal O₃ in the lower troposphere over Bermuda originates in the postfrontal midtroposphere over the continent, 12 13 supporting the hypothesis that naturally occurring stratospheric O₃ makes a contribution to air in the marine boundary layer (Cooper et al., 1998). A schematic of the meteorological processes 14 15 responsible for the close proximity of natural and man-made O₃ can be seen in Figure AX2-8 16 from Prados (2000). Cold fronts over North America tend to be linked in wave-like patterns 17 such that the subsidence behind one front may occur above with intrusions of convection ahead of the next cold front. Pollutants, including VOC and NOx, precursors to O₃, may be lofted into 18 19 the mid-to-upper troposphere where they have the potential to mix with layers of air descending 20 from O₃-rich but relatively unpolluted upper troposphere and lower stratosphere. Through this complex mechanism, both stratospheric and photochemically produced O₃ may be transported to 21 22 the remote marine environment where they have large-scale impacts on the radiative and 23 chemical properties of the atmosphere. Recent three-dimensional modeling studies of air mass 24 motion over the Pacific provide further evidence that these complex mechanisms are indeed 25 active (Cooper et al., 2004b).

26

27 AX2.3.4.2 The North Atlantic Regional Experiment, NARE

NARE was established by the International Global Atmospheric Chemistry Project to study
 the chemical processes occurring in the marine troposphere of the North Atlantic, the marine
 region expected to be the most impacted by industrial emissions from eastern North America and
 western Europe. Surface measurements from several surface sites were initiated in 1991, with

1 major field intensives in summer 1993, spring 1996, early autumn 1997 and a few winter flights 2 in 1999. In the summer of 1993, airborne and ground-based measurements of O_3 and O_3 3 precursors were made in the North Atlantic region by an international team of scientists to 4 determine how the continents that rim the North Atlantic are affecting atmospheric composition 5 on a hemispheric scale (Fehsenfeld et al., 1996a; Fehsenfeld et al., 1996b). The focus of NARE 6 was to investigate the O₃ budget of the North Atlantic region. Previous observations indicated that the O₃ produced from anthropogenic sources is greater than that reaching the lower 7 8 troposphere from the stratosphere and that O₃ derived from anthropogenic pollution has a 9 hemisphere wide effect at northern mid latitudes. This study was performed to better quantify 10 the contribution of continental sources to the O₃ levels over the North Atlantic. 11 Buhr et al. (1996) measured O₃, CO, NO, and NO_v as well as meteorological parameters aboard the NCAR King Air in August 1993 during 16 flights over and near the Gulf of Maine. 12 13 They found that O₃ produced from anthropogenic precursors was dominant throughout the

14 experimental region below 1500 m, in altitude.

15 The National Research Council of Canada Twin Otter aircraft was used to measure the O₃ 16 and related compounds in the summertime atmosphere over southern Nova Scotia (Kleinman 17 et al., 1996a; Kleinman et al., 1996b). Forty-eight flights were performed, primarily over the 18 surface sampling site in Chebogue Point, Nova Scotia, or over the Atlantic Ocean. They found 19 that a wide variety of air masses with varying chemical content impact Nova Scotia. The effect 20 depends on flow conditions relative to the locations of upwind emission regions and the degree 21 of photochemical processing associated with transport times ranging from about 1 - 5 d. Moist 22 continental boundary layer air with high concentrations of O₃ and other anthropogenic pollutants 23 was advected to Nova Scotia in relatively thin vertical layers, usually with a base altitude of 24 several hundred meters. Dry air masses with high concentrations of O₃ often had mixed 25 boundary layer and upper atmosphere source regions. When a moist and dry air mass with the 26 same photochemical age and O₃ concentration were compared, the dry air mass had lower concentrations of NO_v and aerosol particles, which was interpreted as evidence for the selective 27 28 removal of soluble constituents during vertical lifting.

Due to strong, low-level temperature inversions over the North Atlantic, near surface air is often unrepresentative of the eastward transport of the North American plume because of a decoupling from the air transported aloft (Kleinman et al., 1996a; Daum et al., 1996; Angervine

1	et al., 1996). Pollution plumes were observed in distinct strata up to 1 km. Plume chemical
2	compositions were consistent with the occurrence of considerable photochemical processing
3	during transit from source regions over the eastern seaboard of the U.S. Ozone concentrations
4	reached 150 ppbv, NO_x conversion to its oxidation products exceeded 85%, and high hydrogen
5	peroxide concentrations were observed (median 3.6 ppbv, maximum 11 ppbv). CO and O_3
6	concentrations were well correlated ($R^2 = 0.64$) with a slope (0.26) similar to previous
7	measurements in photochemically aged air (Parrish et al., 1998). Ozone depended nonlinearly
8	on the NO _x oxidation product concentration, but there was a correlation ($r^2 = 0.73$) found
9	between O ₃ and the concentration of radical sink species as represented by the quantity
10	$((NO_y - NO_x) + 2H_2O_2).$
11	Banic et al. (1996) determined that the average mass of O_3 transported through an area
12	1 m in horizontal extent and 5 km in the vertical over the ocean near Nova Scotia to be 2.8 g s ^{-1} ,
13	moving from west to east. Anthropogenic O_3 accounted for half of the transport below 1 km,
14	35 to 50% from 1 to 3 km, 25 to 50% from 3 to 4 km, and only 10% from 4 to 5 km. Merrill and

15 Moody (1996) analyzed the meteorological conditions during the NARE intensive period 16 (August 1 to September 13, 1993). They determined the ideal meteorological scenario for 17 delivering pollution plumes from the U.S. East Coast urban areas over the Gulf of Maine to the 18 Maritime Provinces of Canada to be warm sector flow ahead of an advancing cold front. In the 19 winter phase of NARE, O₃ and CO were measured from the NOAA WP-3D Orion aircraft from 20 St. John's, Newfoundland, Canada, and Keflavik, Iceland, from February 2 to 25, 1999 (Parrish 21 et al., 2000). In the lower troposphere over the western North Atlantic Ocean, the close 22 proximity of air masses with contrasting source signatures was remarkable. High levels of 23 anthropogenic pollution immediately adjacent to elevated O₃ of stratospheric origin were

observed, similar to those reported by Prados et al. (1999). In air masses with differing amounts of anthropogenic pollution, O_3 was negatively correlated with CO, which indicates that emissions from surface anthropogenic sources had reduced O_3 , in this wintertime period, even in air masses transported into the free troposphere.

The influence of the origin and evolution of airstreams on trace gas mixing ratios has been studied in great detail for NARE aircraft data. The typical midlatitude cyclone is composed of four major component airstreams, the warm conveyor belt, the cold conveyor belt, the post coldfront airstream and the dry airstream (Cooper et al., 2001). The physical and chemical

1	processing of trace species was characterized for each airstream, and a conceptual model of a
2	midlatitude cyclones was developed (Cooper et al., 2002a). This showed how airstreams within
3	midlatitude cyclones drew and exported trace gases from the polluted continental boundary
4	layer, and the stratospherically enhanced mid-troposphere. Using back trajectories, airstream
5	composition was related to the origin and transport history of the associated air mass. The
6	lowest O ₃ values were associated with airstreams originating in Canada or the Atlantic Ocean
7	marine boundary layer; the highest O_3 values were associated with airstreams of recent
8	stratospheric origin. The highest NO _y values were seen in polluted outflow from New England
9	in the lower troposphere. A steep and positive O_3/NO_v slope was found for all airstreams in the
10	free troposphere regardless of air mass origin. Finally, the seasonal variation of photochemistry
11	and meteorology and their impact on trace gas mixing ratios in the conceptual cyclone model
12	was determined (Cooper et al., 2002b). Using a positive O_3/CO slope as an indicator of
13	photochemical O_3 production, O_3 production during late summer-early autumn is associated with
14	the lower troposphere post-cold-front airstream and all levels of the WCB, especially the lower
15	troposphere. However, in the early spring, there is no significant photochemical O ₃ production
16	for airstreams at any level, and negative slopes in the dry air airstream indicate STE causes the
17	O_3 increase in the mid- and upper troposphere.
18	Stohl et al. (2002) analyzed total odd nitrogen (NO _y) and CO data taken during NARE in
19	spring 1996 and fall 1997. They studied the removal timescales of NO _y originating from surface
20	emissions of NO_x and what fraction reached the free troposphere. NO_x limits O_3 production in
21	the free troposphere and can be regenerated from NO _y after the primary NOx has been
22	exhausted. It was determined that $< 50\%$ of the NO _y observed above 3 km came from
23	anthropogenic surface emissions. The rest had to have been emitted in situ.
24	Several studies (e.g., Stohl and Trickl, 1999; Brunner et al., 1998; Schumann et al., 2000;
25	Stohl et al., 2003; Traub et al., 2003) have identified plumes that have originated in North
26	America over Europe and over the eastern Mediterranean basin (e.g., Roelofs et al., 2003; Traub
27	et al., 2003). Modeling studies indicate that North American emissions contribute roughly 20%
28	to European CO levels and 2 to 4 ppb to surface O ₃ , on average. Episodic events, such as forest
29	fires in North America have also been found to result in elevated CO and O ₃ levels and visible
30	haze layers in Europe (Volz-Thomas, et al., 2003). The O_3 is either transported from North
31	America or formed during transport across the North Atlantic Ocean, perhaps as the result of

interactions between the photochemical degradation products of acetone with emissions of NO_x
 from aircraft (Bruhl et al., 2000; Arnold et al., 1997). In addition, North American and European
 pollution is exported to the Arctic. Eckhardt et al. (2003) show that this transport is related to
 the phase of the North Atlantic Oscillation which has a period of about 20 years.

- 5
- 6

7

AX2.3.5 The Relation of Ozone to Solar Ultraviolet Radiation, Aerosols, and Air Temperature

8 AX2.3.5.1 Solar Ultraviolet Radiation and Ozone

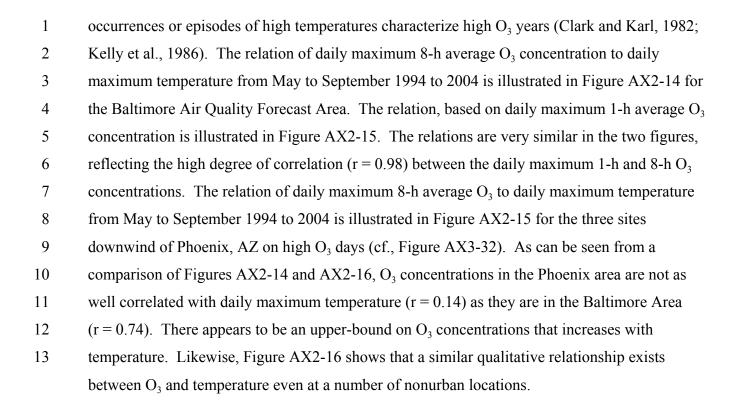
9 The effects of sunlight on photochemical oxidant formation, aside from the role of solar 10 radiation in meteorological processes, are related to its intensity and its spectral distribution. 11 Intensity varies diurnally, seasonally, and with latitude, but the effect of latitude is strong only in 12 the winter. Ultraviolet radiation from the sun plays a key role in initiating the photochemical 13 processes leading to O₃ formation and affects individual photolytic reaction steps. However, 14 there is little empirical evidence in the literature, directly linking day-to-day variations in 15 observed UV radiation levels with variations in O₃ levels.

16 In urban environments the rate of O₃ formation is sensitive to the rate of photolysis of several species including H₂CO, H₂O₂, O₃, and especially NO₂. Monte Carlo calculations 17 18 suggest that model calculations of photochemical O₃ production are most sensitive to uncertainty in the photolysis rate coefficient for NO₂ (Thompson and Stewart, 1991; Baumann et al., 2000). 19 20 The International Photolysis Frequency Measurement and Modeling Intercomparison (IPMMI) 21 hosted recently by NCAR in Boulder, CO brought together more than 40 investigators from 22 8 institutions from around the world (Bais et al., 2003; Cantrell et al., 2003 and Shetter et al., 23 2003). They compared direct actinometric measurements, radiometric measurements, and numerical models of photolysis rate coefficients, focusing on O₃ to O(¹D) and NO₂, referred to as 24 25 $j(O_3)$ and $j(NO_2)$.

The combination of direct measurements and comparisons to model calculations indicated that for clear skies, zenith angles less than 70°, and low aerosol loadings, the absolute value of the $j(NO_2)$ at the Earth's surface is known to better than 10% with 95% confidence. The results suggest that the cross sections of Harder et al. (1997a) may yield more accurate values when used in model calculations of $j(NO_2)$. Many numerical models agreed among themselves and with direct measurements (actinometers) and semi-direct measurements (radiometers) when using ATLAS extraterrestrial flux from Groebner and Kerr (2001). The results of IPMMI
 indicate numerical models are capable of precise calculation of photolysis rates at the surface
 and that uncertainties in calculated chemical fields arise primarily from uncertainties in the
 variation of actinic flux with altitude in addition to the impact of clouds and aerosols on
 radiation.

- 6
- 7 8

AX2.3.5.2 Impact of Aerosols on Radiation and Photolysis Rates and Atmospheric Stability


9 Because aerosol particles influence the UV flux there is a physical link between particles 10 and gases that depends on the concentration, distribution, and refractive index of the particles. 11 Scattering of UV radiation by tropospheric aerosol particles can strongly impact photolysis rates 12 and thus photochemical O₃ production or destruction. The effect shows high sensitivity to the properties of the aerosol. Particles in the boundary layer can accelerate photochemistry if the 13 14 single scattering albedo is near unity, such as for sulfate and ammoniated sulfate aerosols, or 15 inhibit O₃ production if the single scattering albedo is low, such as for mineral dust or soot 16 (Dickerson et al., 1997; Jacobson, 1998; Liao et al., 1999; Castro et al., 2001; Park et al., 2001). 17 Any aerosol layer in the free troposphere will reduce photolysis rates in the boundary layer.

18 The interaction of aerosols, photochemistry, and atmospheric thermodynamic processes 19 can impact radiative transport, cloud microphysics, and atmospheric stability with respect to 20 vertical mixing. Park et al. (2001) developed a single-column chemical transport model that 21 simulates vertical transport by convection, turbulent mixing, photochemistry, and interactive 22 calculations of radiative fluxes and photolysis rates. Results from simulations of an episode over 23 the eastern United States showed strong sensitivity to convective mixing and aerosol optical 24 depth. The aerosol optical properties observed during the episode produced a surface cooling of up to 120 W/m² and stabilized the atmosphere suppressing convection. This suggests two 25 26 possible feedbacks mechanisms between aerosols and O₃-reduced vertical mixing would tend to 27 increase the severity of O₃ episodes, while reduced surface temperatures would decrease it.

28 29

AX2.3.5.3 Temperature and Ozone

An association between surface O₃ concentrations and temperature has been demonstrated
 from measurements in outdoor smog chambers and from measurements in ambient air.
 Numerous ambient studies done over more than a decade have reported that successive

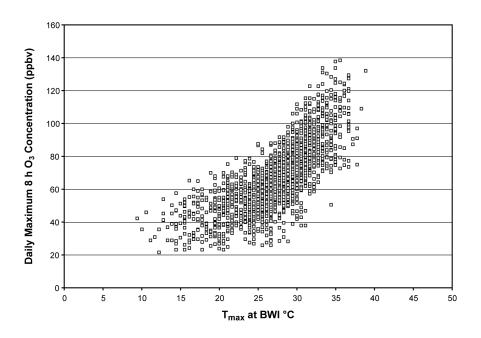


Figure AX2-14. A scatter plot of daily maximum 8-h O₃ concentration versus daily maximum temperature in the Baltimore, MD Air Quality Forecast Area.

Source: Piety (2005)

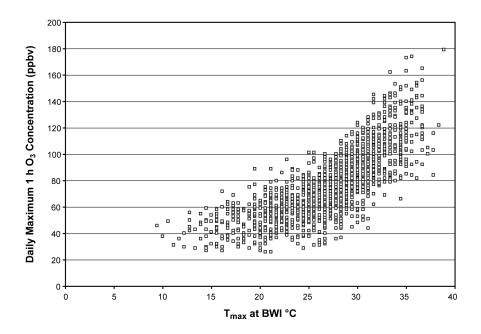


Figure AX2-15. A scatter plot of daily maximum 1-h average O₃ concentration versus daily maximum temperature in the Baltimore, MD Air Quality Forecast Area.

Source: Piety (2005)

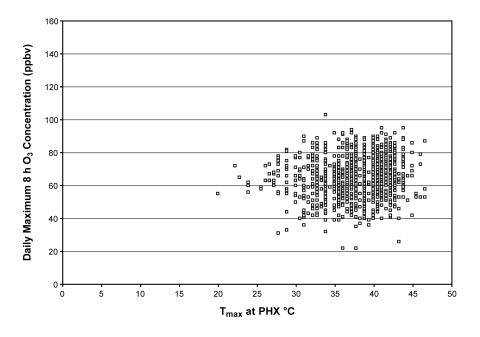


Figure AX2-16. A scatter plot of daily maximum 8-h average O₃ concentrations versus daily maximum temperature downwind of Phoenix, AZ.

Source: Piety (2005)

1	The notable trend in these plots is the apparent upper-bound to O ₃ concentrations as a			
2	function of temperature. It is clear that, at a given temperature, there is a wide range of possible			
3	O ₃ concentrations because other factors (e.g., cloudiness, precipitation, wind speed) can reduce			
4	O ₃ production rates. The upper edge of the curves may represent a practical upper bound on the			
5	maximum O ₃ concentration achieved under the most favorable conditions. Relationships			
6	between peak O_3 and temperature also have been recorded by Wunderli and Gehrig (1991) for			
7	three locations in Switzerland. At two sites near Zurich, peak O ₃ increased 3 to 5 ppb/°C for			
8	diurnal average temperatures between 10 and 25 °C, and little change in peak O_3 occurred for			
9	temperatures below 10 °C. At the third site, a high-altitude location removed from			
10	anthropogenic influence, a much smaller variation of O ₃ with temperature was observed.			
11	Some possible explanations for the correlation of O ₃ with temperature include:			
12	(1) Increased photolysis rates under meterological conditions associated with higher temperatures;			
13	 Increased H₂O concentrations with higher temperatures as this will lead to greater OH production via R(2-6); 			
14	(3) Enhanced thermal decomposition of PAN and similar compounds to release NO _x at higher temperatures;			
15	(4) Increase of anthropogenic hydrocarbon (e.g., evaporative losses) emissions or NO _x , emissions with temperature or both;			
16	(5) Increase of natural hydrocarbon emissions (e.g., isoprene) with temperature; and			
17	(6) Relationships between high temperatures and stagnant circulation patterns.			
18	(7) Advection of warm air enriched with O_3 .			
19	Cardelino and Chameides (1990) and Sillman and Samson (1995) both identified the			
20	temperature-dependent thermal decomposition of PAN as the primary cause of the observed			
21	O ₃ -temperature relationship. When temperatures are low PAN is relatively stable. Formation of			
22	PAN represents a significant sink for NO_x (in low NO_x rural areas) and radicals (in high NO_x			
23	urban areas). This has the effect of slowing the rate of O ₃ production. Sillman and Samson			
24	found that the impact of the PAN decomposition rate could explain roughly half of the observed			
25	correlation between O_3 and temperature. Jacob et al. (1993) found that warm events in summer			
26	in the United States were likely to occur during stagnant meteorological conditions, and the			
27	concurrence between warm temperatures and meteorological stagnation also explained roughly			

half of the observed O₃-temperature correlation. Other possible causes include higher solar
 radiation during summer, the strong correlation between biogenic emission of isoprene and
 temperature, and the somewhat weaker tendency for increased anthropogenic emissions
 coinciding with warmer temperatures.

However, it should also be noted that a high correlation of O_3 with temperature does not necessarily imply a causal relation. Extreme episodes of high temperatures (a heat wave) are often multiday events — high O_3 episodes are also multiday events, concentrations build, temperatures rise, but both are being influenced by larger-scale regional or synoptic meteorological conditions. It also seems apparent, that while there is a trend for higher O_3 associated with higher temperatures, there is also much greater variance in the range of O_3 mixing ratios at higher temperatures.

- 12
- 13
- 14 15

AX2.4 THE RELATION OF OZONE TO ITS PRECURSORS AND OTHER OXIDANTS

16 Ozone is unlike many other species whose rates of formation vary directly with the 17 emissions of their precursors. Ozone changes in a nonlinear fashion with the concentrations of its precursors. At the low NO_x concentrations found in most environments, ranging from remote 18 19 continental areas to rural and suburban areas downwind of urban centers the net production of O₃ 20 increases with increasing NO_x. At the high NO_x concentrations found in downtown metropolitan 21 areas, especially near busy streets and roadways, and in power plant plumes there is net 22 destruction (titration) of O_3 by reaction with NO. In between these two regimes there is a 23 transition stage in which O_3 shows only a weak dependence on NO_x concentrations. In the high 24 NO_x regime, NO₂ scavenges OH radicals which would otherwise oxidize VOCs to produce 25 peroxy radicals, which in turn would oxidize NO to NO₂. In the low NO_x regime, the oxidation 26 of VOCs generates, or at least does not consume, free radicals and O_3 production varies directly 27 with NO_x. Sometimes the terms VOC limited and NO_x limited are used to describe these two 28 regimes. However, there are difficulties with this usage because (1) VOC measurements are not 29 as abundant as they are for nitrogen oxides, (2) rate coefficients for reaction of individual VOCs 30 with free radicals vary over an extremely wide range, and (3) consideration is not given to CO 31 nor to reactions that can produce free radicals without invoking VOCs. The terms NO_x-limited

and NO_x-saturated (e.g., Jaegle et al., 2001) will be used wherever possible to describe these two
regimes more adequately. However, the terminology used in original articles will also be kept.
The chemistry of OH radicals, which are responsible for initiating the oxidation of hydrocarbons,
shows behavior similar to that for O₃ with respect to NO_x concentrations (Hameed et al., 1979;
Pinto et al., 1993; Poppe et al., 1993; Zimmerman and Poppe, 1993). These considerations
introduce a high degree of uncertainty into attempts to relate changes in O₃ concentrations to
emissions of precursors.

8 Various analytical techniques have been proposed that use ambient NO_x and VOC 9 measurements to derive information about O₃ production and O₃-NO_x-VOC sensitivity. It has 10 been suggested that O₃ formation in individual urban areas could be understood in terms of 11 measurements of ambient NO_x and VOC concentrations during the early morning (e.g., National 12 Research Council, 1991). In this approach, the ratio of summed (unweighted by chemical 13 reactivity) VOC to NO_x is used to determine whether conditions were NO_x-sensitive or VOC 14 sensitive. This procedure is inadequate because it omits many factors that are recognized as 15 important for O_3 production: the impact of biogenic VOCs (which are not present in urban 16 centers during early morning); important individual differences in the ability of VOCs to 17 generate free radicals (rather than just total VOC) and other differences in O₃ forming potential 18 for individual VOCs (Carter, 1995); the impact of multiday transport; and general changes in 19 photochemistry as air moves downwind from urban areas (Milford et al., 1994).

Jacob et al. (1995) used a combination of field measurements and a chemistry-transport model (CTM) to show that the formation of O_3 changed from NO_x -limited to NO_x -saturated as the season changed from summer to fall at a monitoring site in Shenandoah National Park, VA. Photochemical production of O_3 generally occurs simultaneously with the production of various other species: nitric acid (HNO₃), organic nitrates, and hydrogen peroxide. The relative rate of production of O_3 and other species varies depending on photochemical conditions, and can be used to provide information about O_3 -precursor sensitivity.

There are no hard and fast rules governing the levels of NO_x at which the transition from NO_x-limited to NO_x -saturated conditions occurs. The transition between these two regimes is highly spatially and temporally dependent. Similar responses to NO_x additions from commercial aircraft have also been found for the upper troposphere (Bruhl et al., 2000). Bruhl et al. (2000) found that the NO_x levels for O_3 production versus loss are highly sensitive to the radical sources 1 included in model calculations. They found that the inclusion of only CH₄ and CO oxidation

- 2 leads to a decrease in net O₃ production in the North Atlantic flight corridor due to NO emissions
- 3 from aircraft. However, the inclusion of acetone photolysis was found to shift the maximum in
- 4 O_3 production to higher NO_x mixing ratios, thereby reducing or eliminating areas in which there
- is a decrease in O₃ production rates due to aircraft emissions. 5
- 6 Trainer et al. (1993) suggested that the slope of the regression line between O_3 and 7 summed NO_x oxidation products (NO_{22} equal to the difference between measured total reactive 8 nitrogen, NO_y , and NO_x) can be used to estimate the rate of O_3 production per NO_x (also known 9 as the O₃ production efficiency, or OPE). Ryerson et al. (1998, 2001) used measured 10 correlations between O₃ and NO₂ to identify different rates of O₃ production in plumes from large point sources.
- 11

12 Sillman (1995) and Sillman and He (2002) identified several secondary reaction products that show different correlation patterns for NO_x-limited conditions and NO_x-saturated conditions. 13 14 The most important correlations are for O₃ versus NO_y, O₃ versus NO_z, O₃ versus HNO₃, and 15 H_2O_2 versus HNO₃. The correlations between O_3 and NO_4 , and O_3 and NO_7 are especially important because measurements of NOv and NOx are widely available. Measured O3 versus 16 17 NO_z (Figure AX2-17) shows distinctly different patterns in different locations. In rural areas and 18 in urban areas such as Nashville, TN, O₃ shows a strong correlation with NO_z and a relatively steep slope to the regression line. By contrast, in Los Angeles O₃ also increases with NO_z, but 19 20 the rate of increase of O₃ with NO₂ is lower and the O₃ concentrations for a given NO₂ value are 21 generally lower.

22 The difference between NO_x-limited and NO_x-saturated regimes is also reflected in 23 measurements of hydrogen peroxide (H_2O_2) . Hydrogen peroxide production is highly sensitive 24 to the abundance of free radicals and is thus favored in the NO_x-limited regime, typical of 25 summer conditions. Differences between these two regimes are also related to the preferential 26 formation of sulfate during summer and to the inhibition of sulfate and hydrogen peroxide 27 during winter (Stein and Lamb, 2003). Measurements in the rural eastern United States (Jacob 28 et al., 1995) Nashville (Sillman et al., 1998), and Los Angeles (Sakugawa and Kaplan, 1989) 29 show large differences in H₂O₂ concentrations between likely NO_x-limited and NO_x-saturated 30 locations.

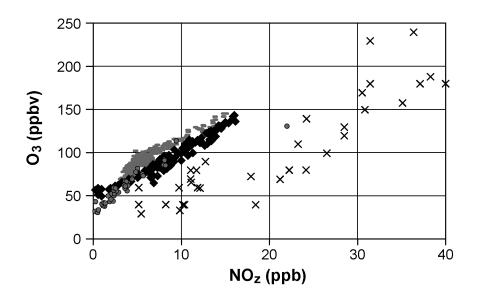


Figure AX2-17. Measured values of O_3 and NO_z ($NO_y - NO_x$) during the afternoon at rural sites in the eastern United States (gray circles) and in urban areas and urban plumes associated with Nashville, TN (gray dashes), Paris, FR (black diamonds) and Los Angeles, CA (X's).

Sources: Trainer et al. (1993), Sillman et al. (1997, 1998, 2003).

1	The discussion in Section AX2.4.1 centers mainly on the relations among O_3 , NO_x and its
2	oxidation products, represented as $NO_z (NO_y - NO_x)$ and VOCs derived from the results of field
3	studies. Most of these studies examined processes occurring in power plant and urban plumes.
4	
5	AX2.4.1 Summary of Results for the Relations Among Ozone, its Precursors
6	and Other Oxidants from Recent Field Experiments
7	AX2.4.1.1 Results from the Southern Oxidant Study and Related Experiments
8	The Southern Oxidant Study (SOS) was initiated to describe the sources, variation, and
9	distribution of O ₃ and its precursors in the southeastern United States during the summer season
10	(Hübler et al., 1998; Meagher et al., 1998; Goldan et al., 2000). Specific issues that were
11	addressed included: (1) the role of biogenic VOC and NO_x emissions on local and regional O_3
12	production, (2) the effect of urban-rural exchange/interchange on local and regional O_3
13	production, (3) sub-grid-scale photochemical and meteorological processes, and (4) the

1 provision of a high-quality chemical and meteorological data set to test and improve observation 2 and emission-based air quality forecast models. Some of the more significant findings of the 3 1994 to 1995 studies include the following: (1) Ozone production in Nashville was found to be 4 close to the transition between NO_x -limited and NO_x -saturated regimes. (2) The number of molecules of O_3 produced per molecule of NO_x oxidized in power plant plumes, or the O_3 5 6 production efficiency (OPE) was found to be inversely proportional to the NO_x emission rate, 7 with the plants having the highest NO_x emissions exhibiting the lowest OPE. (3) During 8 stagnant conditions, winds at night dominated pollutant transport and represent the major 9 mechanism for advecting urban pollutants to rural areas-specific findings follow.

10 As part of SOS, the Tennessee Valley Authority's instrumented helicopter conducted 11 flights over Atlanta, Georgia to investigate the evolution of the urban O_3 plume (Imhoff et al., 12 1995). Ozone peak levels occurred at 20 - 40 km downwind of the city center. The OPE 13 obtained from five afternoon flights ranged between 4 and 10 molecules of O_3 per molecule 14 of NO_x .

15 Berkowitz and Shaw (1997) measured O₃ and its precursors at several altitudes over a 16 surface site near Nashville during SOS to determine the effects of turbulent mixing on atmospheric chemistry. Early morning measurements of O₃ aloft revealed values near 70 ppb, 17 18 while those measured at the surface were closer to 25 ppb. As the daytime mixed layer 19 deepened, surface O₃ values steadily increased until they reached 70 ppb. The onset of 20 turbulence increased isoprene mixing ratios aloft by several orders of magnitude and affected the 21 slope of O₃ as a function of NO_y for each of the flight legs. Measurements from nonturbulent 22 flight legs yielded slopes that were considerably steeper than those from measurements made in 23 turbulence. This study shows that the concentration of O_3 precursors aloft is dependent on the 24 occurrence of turbulence, and turbulent mixing could explain the evolution of O₃ concentrations 25 at the surface. In general, conclusions regarding pollutant concentrations must account for both 26 chemical and local dynamic processes.

Gillani et al. (1998) analyzed data from instrumented aircraft during SOS that flew through the plumes of three large, tall-stack, base-load, Tennessee Valley Authority (TVA) coal-fired power plants in northwestern Tennessee. They determined that plume chemical maturity and peak O_3 and NO_z production occurred within 30 to 40 km and 4 hours of summer daytime convective boundary layer (CBL) transport time for a coal-fired power plant in the Nashville,

1 TN urban O₃ nonattainment area (Gallatin). For a rural coal-fired power plant in an isoprene-2 rich forested area about 100 km west of Nashville (Cumberland), plume chemical maturity and 3 peak O₃ and NO₂ production were realized within approximately 100 km and 6 hours of CBL 4 transport time. Their findings included approximately 3 molecules of O₃ and more than 0.6 molecules of NO₂ may be produced in large isolated rural power plant plumes (PPPs) per 5 6 molecule of NO_x release; the corresponding peak yields of O_3 and NO_z may be significantly 7 greater in urban PPPs. Both power plants can contribute as much as 50 ppb of excess O₃ to the 8 Nashville area, raising the local levels to well above 100 ppb. Also using aircraft data collected 9 during SOS, Ryerson et al. (1998) concluded that the lower and upper limits to O₃ production 10 efficiency in the Cumberland and Paradise PPPs (located in rural Tennessee) were 1 and 11 2 molecules of O_3 produced per molecule of NO_x emitted. The estimated lower and upper limits to O₃ production efficiency in the Johnsonville PPP (also located in rural Tennessee) were 12 higher, at 3 and 7. 13

14 The NOAA airborne O_3 lidar provided detailed, three-dimensional lower tropospheric O_3 15 distribution information during June and July 1995 in the Nashville area (Senff et al., 1998; 16 Alvarez et al., 1998). The size and shape of power plant plumes as well as their impacts on O_3 17 concentration levels as the plume is advected downwind were studied. Specific examples 18 include: the July 7 Cumberland plume that was symmetrical and confined to the boundary layer, 19 and the July 19 Cumberland plume that was irregularly shaped with two cores, one above and 20 the other within the boundary layer. The disparate plume characteristics on these two days were 21 the result of distinctly different meteorological conditions. Ozone in the plume was destroyed at a rate of 5 to 8 ppbv h^{-1} due to NO_x titration close to the power plant, while farther downwind, 22 O_3 was produced at rates between 1.5 and 4 ppbv h⁻¹. The lidar O_3 measurements compared 23 24 reasonably well with in situ values, with the average magnitude of the offsets over all the flights 25 at 4.3 ppbv (7%).

The highest O₃ concentrations observed during the 1995 SOS in middle Tennessee occurred during a period of strong, synoptic-scale stagnation from July 11 through July 15. This massive episode covered most of the eastern United States (e.g., Ryan et al., 1998). During this time, the effects of vertical wind profiles on the buildup and transport of O₃ were studied by Banta et al. (1998) using an airborne differential absorption lidar (DIAL) system. Vertical cross sections showed O₃ concentrations exceeding 120 ppb extending to nearly 2 km above ground

1 level, but that O₃ moved little horizontally. Instead, it formed a dome of pollution over or near 2 Nashville. Due to the stagnant daytime conditions (boundary layer winds ~ 1 to 3 m s⁻¹), 3 nighttime transport of O₃ became disproportionately important. At night, in the layer between 100 and 2000 m AGL (which had been occupied by the daytime mixed layer), the winds could 4 be accelerated to 5 to 10 m s⁻¹ as a result of nocturnal decoupling from surface friction. Data 5 from surface and other aircraft measurements taken during this period suggest that the 6 7 background air and the edges of the urban plume were NO_x sensitive and the core of the urban 8 plume was hydrocarbon sensitive (Valente et al., 1998). Also revealed was the fact that the 9 surface monitoring network failed to document the maximum surface O₃ concentrations. Thus, monitoring networks, especially in medium-sized urban areas under slow transport conditions, 10 11 may underestimate the magnitude and frequency of urban O₃ concentrations greater than 120 ppb. 12 13 Nunnermacker et al. (1998) used both aircraft and surface data from SOS to perform a detailed kinetic analysis of the chemical evolution of the Nashville urban plume. The analysis 14 15 revealed OH concentrations around 1.2×10^7 cm⁻³ that consumed 50% of the NO_x within approximately 2 hours, at an OPE of 2.5 to 4 molecules for each molecule of NO_x. 16 Anthropogenic hydrocarbons provided approximately 44% of the fuel for O₃ production by the 17 18 urban plume. 19 Surface and aircraft observations of O₃ and O₃ precursors were compared during SOS to 20 assess the degree to which mid-day surface measurements may be considered representative of 21 the larger planetary boundary layer (PBL) (Luke et al., 1998). Overall agreement between 22 surface and aircraft O₃ measurements was excellent in the well-developed mixed layer $(r^2 = 0.96)$, especially in rural-regional background air and under stagnant conditions, where 23 24 surface concentrations change only slowly. Vertical variations in trace gas concentrations were 25 often minimal in the well-mixed PBL, and measurements at the surface always agreed well with 26 aircraft observations up to the level of measurements (460 m above ground level). Under 27 conditions of rapidly varying surface concentrations (e.g., during episodes of power plant plume

fumigation and early morning boundary layer development), agreement between surface and aloft was dependent upon the spatial (aircraft) and temporal (ground) averaging intervals used in

- 30 the comparison. Under these conditions, surface sites were representative of the PBL only to
- 31 within a few kilometers horizontally.

1	On four days during SOS, air samples were taken in the plume of the Cumberland Power
2	Plant in central Tennessee using an instrumented helicopter to investigate the evolution of
3	photochemical smog (Luria et al., 1999, 2000). Twelve crosswind air-sampling traverses were
4	made between 35 and 116 km from this Power Plant on 16 July 1995. Winds, from the west-
5	northwest during the sampling period, directed the plume toward Nashville. Ten of the traverses
6	were performed upwind of Nashville, where the plume was isolated, and two were made
7	downwind of the city. The results indicated that even six hours after the plume left the stacks,
8	excess O ₃ production was limited to the edges of the plume. Excess O ₃ production within the
9	plume was found to vary from 20 ppb up to 55 ppb. It was determined that this variation
10	corresponded to differences in ambient isoprene levels. Excess O ₃ (up to 109 ppbv, 50 to
11	60 ppbv above background), was produced in the center of the plume when there was sufficient
12	mixing upwind of Nashville. The power plant plume apparently mixed with the urban plume
13	also, producing O_3 up to 120 ppbv 15 to 25 km downwind of Nashville.
1.4	

14 Nunnermacker et al. (2000) used data from the DOE G-1 aircraft to characterize emissions 15 from a small power plant plume (Gallatin) and a large power plant plume (Paradise) in the 16 Nashville region. Observations made on July 3, 7, 15, 17, and 18, 1995, were compiled, and a 17 kinetic analysis of the chemical evolution of the power plant plumes was performed. OPEs were 18 found to be 3 in the Gallatin and 2 in the Paradise plumes. Lifetimes for NO_x (2.8 and 4.2 hours) 19 and NO_{v} (7.0 and 7.7 hours) were determined in the Gallatin and Paradise plumes, respectively. 20 These NO_x and NO_y lifetimes imply rapid loss of NO_z (assumed to be primarily HNO₃), with a 21 lifetime determined to be 3.0 and 2.5 hours for the Gallatin and Paradise plumes, respectively.

- 22
- 23 24

AX2.4.1.2 Results from Studies on Biogenic and Anthropogenic Hydrocarbons and Ozone Production

Williams et al. (1997) made the first airborne measurements of peroxy-methacrylic nitric anhydride (MPAN), which is formed from isoprene-NO_x chemistry and is an indicator of recent O₃ production from isoprene and therefore biogenic hydrocarbons (BHC). They also measured peroxyacetic nitric anhydride (PAN), peroxypropionic nitric anhydride (PPN), and O₃ to estimate the contributions of anthropogenic hydrocarbons (AHC) and BHC to regional tropospheric O₃ production.

31

- 1 Airborne measurements of MPAN, PAN, PPN, and O3 were made during the 1994 and 2 1995 Nashville intensive studies of SOS to determine the fraction of O₃ formed from 3 anthropogenic NO_x and BHC (Roberts et al., 1998). It was found that PAN, a general product of 4 hydrocarbon-NO_x photochemistry, could be well represented as a simple linear combination of contributions from BHC and AHC as indicated by MPAN and PPN, respectively. The 5 6 PAN/MPAN ratios, characteristic of BHC-dominated chemistry, ranged from 6 to 10. The PAN/PPN ratios, characteristic of AHC-dominated chemistry, ranged from 5.8 to 7.4. These 7 8 ratios were used to estimate the contributions of AHC and BHC to regional tropospheric O_3 9 production. It was estimated that substantial O₃ (50 to 60 ppbv) was produced from BHC when 10 high NO_x from power plants was present in areas of high BHC emission.
- 11

12 AX2.4.1.3 Results of Studies on Ozone Production in Mississippi and Alabama

13 Aircraft flights made in June 1990 characterized the variability of O₃ and reactive nitrogen 14 in the lower atmosphere over Mississippi and Alabama. The variety and proximity of sources 15 and the photochemical production and loss of O₃ were found to be contributing factors (Ridley 16 et al., 1998). Urban, biomass burning, electrical power plant, and paper mill plumes were all 17 encountered during these flights. Urban plumes from Mobile, AL had OPEs as high as 6 to 18 7 ppbv O₃ per ppbv of NO_x. Emissions measured from biomass burning had lower efficiencies 19 of 2 to 4 ppbv O_3 per ppbv of NO_x , but the average rate of production of O_3 was as high as 20 58 ppbv hr⁻¹ for one fire where the plume was prevented from vertical mixing. Near-source 21 paper mill and power plant plumes showed O₃ titration, while far-field observations of power 22 plant plumes showed net O₃ production. Early morning observations below a nocturnal 23 inversion provided evidence for the nighttime oxidation of NO_x to reservoir species.

24 Aircraft measurements of O₃ and oxides of nitrogen were made downwind of Birmingham, AL to estimate the OPE in the urban plume (Trainer et al., 1995). NO_x emission rates were 25 estimated at 0.6×10^{25} molecules s⁻¹ with an uncertainty of a factor of 2. During the 26 27 summertime it was determined that approximately seven O₃ molecules could be formed for every molecule of NO_x emitted by the urban and proximately located power plant plumes. The 28 29 regional O₃, the photochemical production of O₃ during the oxidation of the urban emissions, and 30 wind speed and direction all combined to dictate the magnitude and location of the peak O₃ 31 concentrations observed in the vicinity of the Birmingham metropolitan area.

1 Aircraft observations of rural U.S. coal-fired power plant plumes in the middle Mississippi 2 and Tennessee Valleys were used to quantify the nonlinear dependence of tropospheric O_3 3 formation on plume NO_x concentration, determined by plant NO_x emission rate and atmospheric 4 dispersion (Ryerson et al., 2001). The ambient availability of reactive VOCs, primarily biogenic isoprene, was also found to affect O₃ production rate and yield in these rural plumes. Plume O₃ 5 6 production rates and yields as a function of NO_x and VOC concentrations differed by a factor of 7 2 or more. These large differences indicate that power plant NO_x emission rates and geographic 8 locations play a large role in tropospheric O₃ production.

9

10

AX2.4.1.4 The Nocturnal Urban Plume Over Portland, Oregon

11 Aircraft observations of aerosol surface area, O₃, NO_v and moisture were made at night in 12 the Portland, Oregon urban plume (Berkowitz et al., 2001). Shortly after sunset, O₃, relative 13 humidity, NO_v and aerosol number density were all positively correlated. However, just before dawn, O₃ mixing ratios were highly anti-correlated with aerosol number density, NO_y and 14 15 relative humidity. Back-trajectories showed that both samples came from a common source to 16 the northwest of Portland. The pre-dawn parcels passed directly over Portland, while the other 17 parcels passed to the west of Portland. Several hypotheses were put forward to explain the loss 18 of O₃ in the parcels that passed over Portland, including homogeneous gas-phase mechanisms 19 and a heterogeneous mechanism on the aerosol particle surface.

20

21 AX2.4.1.5 Effects of VOCs in Houston on Ozone Production

22 Aircraft Observations of O₃ and O₃ precursors over Houston, TX, Nashville, TN; New 23 York, NY; Phoenix, AZ, and Philadelphia, PA showed that despite similar NO_x concentrations, 24 high concentrations of VOCs in the lower atmosphere over Houston led to calculated O₃ 25 production rates that were 2 to 5 times higher than in the other 4 cities (Kleinman et al., 2002). 26 Concentrations of VOCs and O₃ production rates are highest in the Ship Channel region of 27 Houston, where one of the largest petrochemical complexes in the world is located. As a result, 28 Houston lays claim to the highest recorded hourly average O₃ concentrations in the United States 29 within the last 5 years (in excess of 250 ppb).

30

1

AX2.4.1.6 Chemical and Meteorological Influences on the Phoenix Urban Ozone Plume

2 The interaction of chemistry and meteorology for western cities can contrast sharply with 3 that of eastern cities. A 4-week field campaign in May and June of 1998 in the Phoenix area 4 comprised meteorological and chemical measurements (Fast et al., 2000). Data from models and observations revealed that heating of the higher terrain north and east of Phoenix produced 5 6 regular, thermally driven circulations during the afternoon from the south and southwest through most of the boundary layer, advecting the urban O₃ plume to the northeast. Deep mixed layers 7 8 and moderate winds aloft ventilated the Phoenix area during the study period so that multiday 9 buildups of locally produced O_3 did not appear to contribute significantly to O_3 levels. 10 Sensitivity simulations estimated that 20% to 40% of the afternoon surface O₃ mixing ratios 11 (corresponding to 15 to 35 ppb) was due to the entrainment of O₃ reservoirs into the growing 12 convective boundary layer. The model results also indicated that O₃ production in this arid region is NO_x-saturated, unlike most eastern U.S. sites. 13

14

15 AX2.4.1.7 Transport of Ozone and Precursors on the Regional Scale

16 Instrumented aircraft flights by the University of Maryland in a Cessna 172 and Sonoma 17 Technology, Inc. in a Piper Aztec measured the vertical profiles of trace gases and 18 meteorological parameters in Virginia, Maryland, and Pennsylvania on July 12 – 15, 1995 during 19 a severe O₃ episode in the mid-Atlantic region (Ryan et al., 1998). Ozone measured upwind of 20 the urban centers reached 80 to 110 ppbv. Layers of high O₃ aloft were associated with local concentration maxima of SO₂ and NO_y, but not CO or NO_x. This, together with a back trajectory 21 22 analysis, implicated coal-fired power plants in the industrialized Midwest as the source of the 23 photochemically aged air in the upwind boundary of the urban centers. When the PBL over the 24 Baltimore-Washington area deepened, the O₃ and O₃ precursors that had been transported from 25 the west and northwest mixed with the local emissions and O₃ in excess of 125 ppbv was 26 measured at the surface.

During the blackout of August 14, 2003 Marufu et al. (2004) measured profiles of O_3 , SO_2 and CO over areas in western Pennsylvania, Maryland and Virginia. They found notable decreases in O_3 , SO_2 , and NO_x , over areas affected by the blackout but not over those that were not affected. They also found that CO concentrations aloft were comparable over areas affected and not affected by the blackout. They attributed the differences in concentrations between what was observed and what was expected to the reduction in emissions from power plants mainly in
the Ohio Valley. They also reasoned that the CO concentrations were relatively unaffected
because they arise from traffic emissions, which may have been largely unaffected by the

- 4 blackout. However, the blackout also disrupted many industries, small scale emission sources,
- 5 and rail and air transportation.

6 The Department of Energy G-1 aircraft flew in the New York City metropolitan area in 7 the summer of 1996 as part of the North American Research Strategy for Tropospheric 8 Ozone-Northeast effort to ascertain the causes leading to high O₃ levels in the northeastern 9 United States (Kleinman et al., 2000). Ozone, O₃ precursors, and other photochemically active 10 trace gases were measured upwind and downwind of New York City to characterize the O₃ 11 formation process and its dependence on NO_x and VOCs. During two flights, the wind was 12 south southwesterly and O₃ levels reached 110 ppb. On two other flights, the wind was from the 13 north-northwest and O₃ levels were not as high. When the G-1 observed O₃ around 110 ppb, the 14 NO_x/NO_y ratio measured at the surface was between 0.20 and 0.30, indicating an aged plume.

15

16 AX2.4.1.8 Model Calculations and Aircraft Observations of Ozone Over Philadelphia

17 Regional-scale transport and local O₃ production over Philadelphia was estimated using a 18 new meteorological-chemical model (Fast et al., 2002). Surface and airborne meteorological and chemical measurements made during a 30-day period in July and August of 1999 as part of the 19 20 Northeast Oxidant and Particulate Study were used to evaluate the model performance. Both 21 research aircraft and ozonesondes, during the morning between 0900 and 1100 LST, measured layers of O₃ above the convective boundary layer. The model accounted for these layers through 22 23 upwind vertical mixing the previous day, subsequent horizontal transport aloft, and NO titration 24 of O₃ within the stable boundary layer at night. Entrainment of the O₃ aloft into the growing 25 convective boundary contributed to surface O₃ concentrations. During the study period, most of 26 the O₃ appeared to result from local emissions in the vicinity of Philadelphia and the Chesapeake 27 Bay area, but during high O₃ episodes, up to 30 to 40% of the O₃ was due to regional transport 28 from upwind sources.

29

1

AX2.4.1.9 The Two-Reservoir System

2 Studies described above and aircraft observations made in August 2002 over the mid-3 Atlantic region show that a two-reservoir system illustrated schematically in Figure AX2-18 may 4 realistically represent both the dynamics and photochemistry of severe, multiday haze and O₃ episodes over the eastern United States (Taubman et al., 2004). The first reservoir is the PBL, 5 6 where most precursor species are injected, and the second is the lower free troposphere (LFT), 7 where photochemical processes are accelerated and removal via deposition is rare. Bubbles of air lifted from urban and industrial sources were rich in CO and SO₂, but not O₃, and contained 8 9 greater numbers of externally mixed primary sulfate and black carbon (BC) particles. 10 Correlations among O₃, air parcel altitude, particle size, and relative humidity suggest that 11 greater O₃ concentrations and relatively larger particles are produced in the LFT and mix back down into the PBL. Backward trajectories indicated source regions in the Midwest and 12 13 mid-Atlantic urban corridor, with southerly transport up the urban corridor augmented by the 14 Appalachian lee trough and nocturnal low-level jet (LLJ). This concept of two-reservoirs may 15 facilitate the numerical simulation of multiday events in the eastern United States. A relatively 16 small number of vertical layers will be required if accurate representation of the sub-gridscale 17 transport can be parameterized to represent the actual turbulent exchange of air between the PBL 18 and lower free troposphere.

19

20 21

AX2.5 METHODS USED TO CALCULATE RELATIONS BETWEEN OZONE AND ITS PRECURSORS

22 Atmospheric chemistry and transport models are the major tools used to calculate the 23 relations between O₃, its precursors, and other oxidation products. Other techniques, involving statistical relations between O₃ and other variables have also been used. Chemistry-transport 24 25 models (CTM) are driven by emissions inventories for O₃ precursor compounds and by 26 meterological fields. Emissions of precursor compounds can be divided into anthropogenic and 27 natural source categories. Natural sources can be further divided into biotic (vegetation, 28 microbes, animals) and abiotic (biomass burning, lightning) categories. However, the distinction 29 between natural sources and anthropogenic sources is often difficult to make as human activities 30 affect directly, or indirectly, emissions from what would have been considered natural sources 31 during the pre-industrial era. Emissions from plants and animals used in agriculture are usually

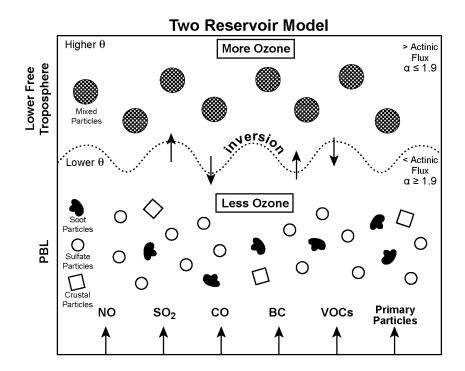


Figure AX2-18. Conceptual two-reservoir model showing conditions in the PBL and in the lower free troposphere during a multiday O_3 episode. The dividing line, the depth of the mixed layer, is about 1000 m. Emissions occur in the PBL, where small, unmixed black carbon, sulfate, and crustal particles in the PM_{2.5} size range are also shown. Ozone concentrations as well as potential temperature (θ) and actinic flux are lower in the PBL than in the lower free troposphere, while RH is higher. Larger, mixed sulfate and carbonaceous particles (still in the PM_{2.5} size range) and more O_3 exist in the lower free troposphere.

Source: Taubman et al. (2004).

referred to as anthropogenic. Wildfire emissions may be considered natural, except that forest management practices may have led to the buildup of fuels on the forest floor, thereby altering the frequency and severity of forest fires. Needed meteorological quantities such as winds and temperatures are taken from operational analyses, reanalyses, or circulation models. In most cases, these are off-line analyses, i.e., they are not modified by radiatively active species such as O₃ and particles generated by the model. A brief overview of atmospheric chemistry-transport models is given in Section AX2.5.1. A discussion of emissions inventories of precursors that are used by these models is given in Section AX2.5.2. Uncertainties in emissions estimates have also been discussed in Air Quality Criteria for Particulate Matter (U.S. Environmental Protection Agency, 2000). So-called "observationally based models" which rely more heavily on observations of the concentrations of important species are discussed in Section AX2.5.3. Chemistry-transport model evaluation and an evaluation of the reliability of emissions inventories are presented in Section AX2.5.4.

8

9

AX2.5.1 Chemistry-Transport Models

10 Atmospheric chemistry-transport models (CTMs) are used to obtain better understanding 11 of the processes controlling the formation, transport, and destruction of O₃ and other air 12 pollutants; to understand the relations between O₃ concentrations and concentrations of its 13 precursors such as NO_x and VOCs; and to understand relations among the concentration patterns 14 of O₃ and other oxidants that may also exert health effects. Detailed examination of the concentrations of short-lived species in a CTM can provide important insights into how O₃ is 15 16 formed under certain conditions and can suggest likely avenues for data analysis and future 17 experiments and field campaigns. The dominant processes leading to the formation of O_3 in a 18 particular time period, questions about whether NO_x or VOCs were more important, the 19 influence of meteorology and of emissions from a particular geographic region, and the 20 transformation or formation of other pollutants could be examined using a CTM.

21 CTMs are also used for determining control strategies for O₃ precursors. However, this 22 application has met with varying degrees of success because of the highly nonlinear relations 23 between O₃ and emissions of its precursors. CTMs include mathematical descriptions of 24 atmospheric transport, emissions, the transfer of solar radiation through the atmosphere, 25 chemical reactions, and removal to the surface by turbulent motions and precipitation for 26 chemical species of interest. Increasingly, the trend is for these processes to be broken down and handled by other models or sub-models, so a CTM will likely use emissions and meteorological 27 28 data from at least two other models.

There are two major formulations of CTMs in current use. In the first approach,
grid-based, or Eulerian, air quality models, the region to be modeled (the modeling domain) is
subdivided into a three-dimensional array of grid cells. Spatial derivatives in the species

1 continuity equations are cast in finite-difference form over this grid, and a system of equations 2 for the concentrations of all the chemical species in the model are solved numerically at each 3 grid point. The modeling domain may be limited to a particular airshed or provide global 4 coverage and extend through several major atmospheric layers. Time dependent continuity (mass conservation) equations are solved for each species including terms for transport, chemical 5 6 production and destruction, and emissions and deposition (if relevant), in each cell. Chemical 7 processes are simulated with ordinary differential equations, and transport processes are 8 simulated with partial differential equations. Because of a number of factors such as the 9 different time scales inherent in different processes, the coupled, nonlinear nature of the 10 chemical process terms, and computer storage limitations, all of the terms in the equations are 11 not solved simultaneously in three dimensions. Instead, a technique known as operator splitting, 12 in which terms involving individual processes are solved sequentially, is used. In the second 13 application of CTMs, trajectory or Lagrangian models, a large number of hypothetical air parcels 14 are specified as following wind trajectories. In these models, the original system of partial 15 differential equations is transformed into a system of ordinary differential equations.

16 A less common approach is to use a hybrid Lagrangian/Eulerian model, in which certain 17 aspects of atmospheric chemistry and transport are treated with a Lagrangian approach and 18 others are treaded in a Eulerian manner (e.g., Stein et al., 2000). Both modeling approaches have 19 their advantages and disadvantages. The Eulerian approach is more general in that it includes 20 processes that mix air parcels and allows integrations to be carried out for long periods during 21 which individual air parcels lose their identity. There are, however, techniques for including the 22 effects of mixing in Lagrangian models such as FLEXPART (e.g., Zanis et al., 2003), ATTILA 23 (Reithmeir and Sausen, 2002), and CLaMS (McKenna et al., 2002).

24 Major modeling efforts within the U.S. Environmental Protection Agency center on the 25 Models3/Community Modeling for Air Quality (CMAQ, Byun et al., 1998) and the Multi Scale 26 Air Quality Simulation Platform (MAQSIP, Odman and Ingram, 1996) whose formulations are 27 based on the regional acid deposition model (RADM, Chang et al., 1987). A number of other 28 modeling platforms using the Lagrangian and Eulerian frameworks have been reviewed in 29 AQCD 96. CTMs currently in use are summarized in the review by Russell and Dennis (2000). 30 The domains of MAQSIP and CMAQ are flexible and can extend from several hundred km to 31 the hemispherical scale. In addition, both of these classes of models allow the resolution of the

1 calculations over specified areas to vary. CMAQ and MAQSIP are both driven by the MM5 2 mesoscale meteorological model (Seaman, 2000 and references therein), though both may be 3 driven by other meteorological models (e.g., RAMS and Eta). Simulations of regional O₃ 4 episodes have been performed with a horizontal resolution of 4 km. In principle, calculations over limited domains can be accomplished to even finer scales. However, simulations at these 5 6 higher resolutions require better parameterizations of meteorological processes such as boundary 7 layer fluxes, deep convection and clouds (Seaman, 2000), and knowledge of emissions. 8 Resolution at finer scales will likely be necessary to resolve smaller-scale features such as the 9 urban heat island; sea, bay, and land breezes; and the nocturnal low-level jet.

10 Currently, the most common approach to setting up the horizontal domain is to nest a finer 11 grid within a larger domain of coarser resolution. However, a number of other strategies are 12 currently being developed, such as the stretched grid (e.g., Fox-Rabinowitz et al., 2002) and the 13 adaptive grid. In a stretched grid, the grid's resolution continuously varies throughout the 14 domain, thereby eliminating any potential problems with the sudden change from one resolution 15 to another at the boundary. One must be careful in using such a formulation, because certain 16 parameterizations that are valid on a relatively coarse grid scale (such as convection, for 17 example) are not valid or should not be present on finer scales. Adaptive grids are not set at the 18 start of the simulation, but instead adapt to the needs of the simulation as it evolves (e.g., Hansen 19 et al., 1994). They have the advantage that, if the algorithm is properly set up, the resolution is 20 always sufficient to resolve the process at hand. However, they can be very slow if the situation 21 to be modeled is complex. Additionally, if one uses adaptive grids for separate meteorological, 22 emissions, and photochemical models, there is no reason a priori why the resolution of each grid 23 should match; and the gains realized from increased resolution in one model will be wasted in 24 the transition to another model. The use of finer and finer horizontal resolution in the 25 photochemical model will necessitate finer-scale inventories of land use and better knowledge of 26 the exact paths of roads, locations of factories, and, in general, better methods for locating 27 sources. The present practice of locating a source in the middle of a county or distributing its 28 emissions throughout a county if its location is unknown will likely not be adequate in the future.

The vertical resolution of these models continues to improve as more layers are added to capture atmospheric processes and structures. This trend will likely continue because a model with 25 vertical layers, for example, may have layers that are 500 m thick at the top of the

1 planetary boundary layer. Though the boundary layer height is generally determined through 2 other methods, the chemistry in the model is necessarily confined by such layering schemes. 3 Because the height of the boundary layer is of critical importance in simulations of air quality, 4 improved resolution of the boundary layer height would likely improve air quality simulations. The difficulty of properly establishing the boundary layer height is most pronounced when 5 6 considering tropopause folding events, which are important in determining the chemistry of the 7 background atmosphere. In the vicinity of the tropopause, the vertical resolution of most any 8 large scale model is quite unlikely to be able to capture such a feature. Additionally, any current 9 model is likely to have trouble adequately resolving fine scale features such as the low-level jet. 10 Finally, models must be able to treat emissions, meteorology, and photochemistry differently in 11 different areas. Emissions models are likely to need better resolution near the surface and 12 possibly near any tall stacks. Photochemical models, on the other hand, may need better 13 resolution away from the surface and be more interested in resolving the planetary boundary 14 layer height, terrain differences, and other higher altitude features. Meteorological models share 15 some of the concerns of photochemical models, but are less likely to need sufficient resolution to 16 adequately treat a process such as dry deposition beneath a stable nocturnal boundary layer. 17 Whether the increased computational power necessary for such increases in resolution will be 18 ultimately justified by improved results in the meteorological and subsequent photochemical 19 simulations remains to be seen.

20 CTMs require time dependent, three-dimensional wind fields for the time period of 21 simulation. The winds may be either generated by a model using initial fields alone or four 22 dimensional data assimilation can be used to improve the model's meteorological fields (i.e., 23 model equations can be updated periodically [or "nudged"] to bring results into agreement with 24 observations). Most modeling efforts have focused on simulations of several days duration (a 25 typical time scale for individual O₃ episodes), but there have been several attempts at modeling 26 longer periods. For example, Kasibhatla and Chameides (2000) simulated a four month period 27 from May to September of 1995 using MAQSIP. The current trend appears to be toward 28 simulating longer time periods. This will impose additional strains on computational resources, 29 as most photochemical modeling until recently has been performed with an eye toward 30 simulating only summertime episodes of peak O_3 . With the shift toward modeling an entire year 31 being driven by the desire to understand observations of periods of high wintertime PM (e.g.,

Blanchard et al., 2002), models will be further challenged to simulate air quality under
 conditions for which they may not have been used previously.

3 Chemical kinetics mechanisms (a set of chemical reactions) representing the important 4 reactions that occur in the atmosphere are used in air quality models to estimate the net rate of formation of each pollutant simulated as a function of time. Chemical mechanisms that 5 6 explicitly treat the chemical reactions of each individual reactive species are too lengthy and 7 demanding of computer resources to be incorporated into three-dimensional atmospheric models. 8 As an example, a master chemical mechanism includes approximately 10,500 reactions 9 involving 3603 chemical species (Derwent et al., 2001 and references therein). Instead, 10 "lumped" mechanisms, that group compounds of similar chemistry together, are used. The 11 chemical mechanisms used in existing photochemical O₃ models contain significant uncertainties that may limit the accuracy of their predictions; the accuracy of each of these mechanisms is also 12 13 limited by missing chemistry. Because of different approaches to the lumping of organic 14 compounds into surrogate groups, chemical mechanisms, can produce somewhat different results 15 under similar conditions. The CB-IV chemical mechanism (Gery et al., 1989), the RADM II 16 mechanism (Stockwell et al., 1990), the SAPRC (e.g., Wang et al., 2000a; Wang et al., 2000b; 17 Carter, 1990) and the RACM mechanisms can be used in CMAQ. Jimenez et al. (2003) 18 provide brief descriptions of the features of the main mechanisms in use and they compared 19 concentrations of several key species predicted by seven chemical mechanisms in a box model 20 simulation over 24 h. The average deviation from the average of all mechanism predictions for O₃ and NO over the daylight period was less than 20%, and 10% for NO₂ for all mechanisms. 21 22 However, much larger deviations were found for HNO₃, PAN, HO₂, H₂O₂, C₂H₄ and C₅H₈ 23 (isoprene). An analysis for OH radicals was not presented. The large deviations shown for most 24 species imply differences between the calculated lifetimes of atmospheric species and the 25 assignment of model simulations to either NO_x limited or radical limited regimes between 26 mechanisms. Gross and Stockwell (2003) found small differences between mechanisms for 27 clean conditions with differences becoming more significant for polluted conditions, especially 28 for NO₂ and organic peroxy radicals. They caution modelers to consider carefully the 29 mechanisms they are using.

As CTMs incorporate more processes and knowledge of aerosol- and gas-phase chemistry
 improves, a "one atmosphere" approach is evolving. For example, CMAQ and PM-CAMx now

incorporate some aerosol processes, and several attempts are currently underway to study
 feedbacks of chemistry on atmospheric dynamics using meteorological models, usually MM5
 (e.g., Grell et al., 2000; Liu et al., 2001; Lu et al., 1997; and Park et al., 2001). This coupling
 may be necessary to accurately simulate cases such as the heavy aerosol loading found in forest
 fire plumes (Lu et al., 1997 and Park et al., 2001).

6 Spatial and temporal characterizations of anthropogenic and biogenic precursor emissions 7 must be specified as inputs to a CTM. Emissions inventories have been compiled on grids of 8 varying resolution for many hydrocarbons, aldehydes, ketones, CO, NH₃, and NO_x. Emissions 9 inventories for many species require the application of some algorithm for calculating the 10 dependence of emissions on physical variables such as temperature. For many species, 11 information concerning the temporal variability of emissions is lacking, so long term (e.g., 12 annual or O₃-season) averages are used in short term, episodic simulations. Annual emissions 13 estimates are often modified by the emissions model to produce emissions more characteristic of 14 the time of day and season. Significant errors in emissions can occur if an inappropriate time 15 dependence or a default profile is used. Additional complexity arises in model calculations 16 because different chemical mechanisms are based on different species, and inventories 17 constructed for use with another mechanism must be adjusted to reflect these differences. This 18 problem also complicates comparisons of the outputs of these models because one chemical 19 mechanism will necessarily produce species that are different from those in another and neither 20 output will necessarily agree with the measurements.

21 The effects of clouds on atmospheric chemistry are complex and introduce considerable 22 uncertainty into CTM calculations. Thunderstorm clouds are optically very thick and have 23 major effects on radiative fluxes and thus on photolysis rates. Madronich (1987) provided 24 modeling estimates of the effects of clouds of various optical depths on photolysis rates. In the 25 upper portion of a thunderstorm anvil, photolysis is likely to be enhanced (as much as a factor of 26 2 or more) due to multiple reflections off the ice crystals. In the lower portion of the cloud and 27 beneath the cloud, photolysis is substantially decreased. Thunderstorm updrafts, which contain 28 copious amounts of water, are regions where efficient scavenging of soluble species occurs 29 (Balkanski et al., 1993). Direct field measurements of the amounts of specific trace gases 30 scavenged in observed storms are sparse. Pickering et al. (2001) used a combination of model 31 estimates of soluble species that did not include wet scavenging and observations of these

1 species from the upper tropospheric outflow region of a major line of convection observed near 2 Fiji. Over 90% of the nitric acid and hydrogen peroxide in the outflow air appeared to have been 3 removed by the storm. Walcek et al. (1990) included a parameterization of cloud-scale aqueous 4 chemistry, scavenging, and vertical mixing in the regional scale, chemistry-transport model of Chang et al. (1987). The vertical distribution of cloud microphysical properties and the amount 5 6 of subcloud-layer air lifted to each cloud layer were determined using a simple entrainment 7 hypothesis (Walcek and Taylor, 1986). Vertically-integrated O₃ formation rates over the 8 northeastern United States were enhanced by ~50% when the in-cloud vertical motions were 9 included in the model.

10 In addition to wet deposition, dry deposition (the removal of chemical species from the 11 atmosphere by interaction with ground-level surfaces) is an important removal process for 12 pollutants on both urban and regional scales and must be included in CTMs. The general 13 approach used in most models is the three-resistance method, in which where dry deposition is parameterized with a deposition velocity, which is represented as $v_d = (r_a + r_b + r_c)^{-1}$ where r_a , r_b , 14 15 and r_c represent the resistance due to atmospheric turbulence, transport in the fluid sublayer very 16 near the elements of surface such as leaves or soil, and the resistance to uptake of the surface 17 itself. This approach works for a range of substances although it is inappropriate for species 18 with substantial emissions from the surface or for species whose deposition to the surface 19 depends on its concentration at the surface itself. The approach is also modified somewhat for aerosols: the terms r_{b} and r_{c} are replaced with a surface deposition velocity to account for 20 21 gravitational settling. In their review, Wesley and Hicks (2000) point out several shortcomings 22 of current knowledge of dry deposition. Among those shortcomings are difficulties in 23 representing dry deposition over varying terrain where horizontal advection plays a significant 24 role in determining the magnitude of r_a and difficulties in adequately determining a deposition 25 velocity for extremely stable conditions such as those occurring at night (e.g., Mahrt, 1998). 26 Under the best of conditions, when a model is exercised over a relatively small area where dry 27 deposition measurements have been made, models still commonly show uncertainties at least as 28 large as \pm 30% (e.g., Massman et al., 1994; Brook et al., 1996; Padro, 1996). Wesley and 29 Hicks (2000) state that an important result of these comparisons is that the current level of 30 sophistication of most dry deposition models is relatively low and relies heavily on empirical 31 data. Still larger uncertainties exist when the surface features are not well known or when the

surface comprises a patchwork of different surface types, as is common in the eastern United
 States.

3 The initial conditions, i.e., the concentration fields of all species computed by a model, and 4 the boundary conditions, i.e., the concentrations of species along the horizontal and upper 5 boundaries of the model domain throughout the simulation must be specified at the beginning of 6 the simulation. It would be best to specify initial and boundary conditions according to 7 observations. However, data for vertical profiles of most species of interest are sparse. 8 Ozonesonde data have been used to specify O₃ fields, but the initial and boundary values of 9 many other species are often set equal to zero because of a lack of observations. Further, 10 ozonesondes are thought to be subject to errors in measurement and differences arising from 11 improper corrections for pump efficiency and the solutions used (e.g., Hilsenrath et al., 1986; 12 Johnson et al., 2002). The results of model simulations over larger, preferably global, domains 13 can also be used. As may be expected, the influence of boundary conditions depends on the 14 lifetime of the species under consideration and the time scales for transport from the boundaries 15 to the interior of the model domain (Liu et al., 2001).

16 Each of the model components described above has an associated uncertainty, and the 17 relative importance of these uncertainties varies with the modeling application. The largest 18 errors in photochemical modeling are still thought to arise from the meteorological and 19 emissions inputs to the model (Russell and Dennis, 2000). Within the model itself, horizontal 20 advection algorithms are still thought to be significant source of uncertainty (e.g., Chock and 21 Winkler, 1994) though more recently those errors are thought to have been reduced (e.g., Odman 22 et al., 1996). There are also indications that problems with mass conservation continue to be 23 present in photochemical and meteorological models (e.g., Odman and Russell, 1999); these can 24 result in significant simulation errors. Uncertainties in meteorological variables and emissions 25 can be large enough that they would lead one to make the wrong decision when considering 26 control strategies (e.g., Russell and Dennis, 2000; Sillman et al., 1995). The effects of errors in 27 initial conditions can be minimized by including several days "spin-up" time in a simulation to 28 allow species to come to chemical equilibrium with each other before the simulation of the 29 period of interest begins.

While the effects of poorly specified boundary conditions propagate through the model's
domain, the effects of these errors remain undetermined. Many regional models specify constant

1 O₃ profiles (e.g., 35 ppb) at their lateral and upper boundaries; ozonesonde data, however, 2 indicate that the mixing ratio of O₃ increases vertically in the troposphere (to over 100 ppb at the 3 tropopause) and into the stratosphere (e.g., Newchurch et al., 2003). The practice of using 4 constant O₃ profiles strongly reduces the potential effects of vertical mixing of O₃ from above the planetary boundary layer (via mechanisms outlined in Section AX2.3) on surface O₃ levels. 5 The use of an O₃ climatology (e.g., Fortuin and Kelder, 1998) might reduce the errors that would 6 7 otherwise be incurred. Because many meteorological processes occur on spatial scales which 8 are smaller than the grid spacing (either horizontally or vertically) and thus are not calculated 9 explicitly, parameterizations of these processes must be used and these introduce additional 10 uncertainty.

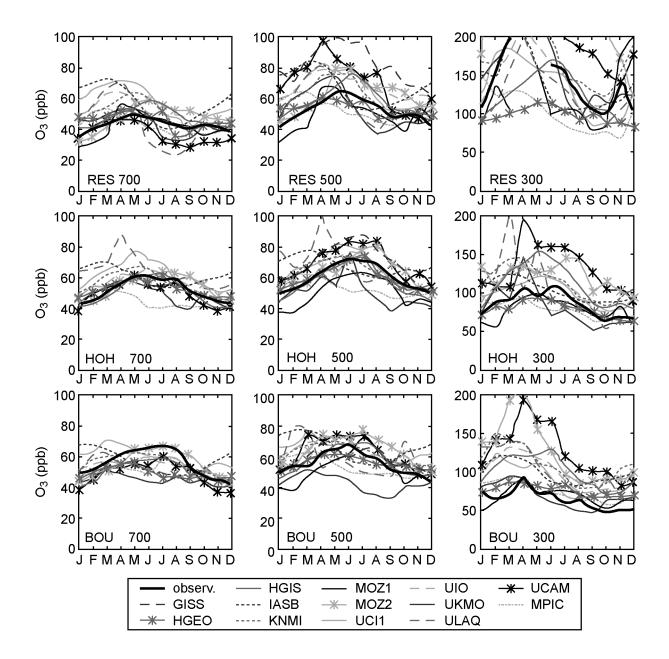
11 Uncertainty also arises in modeling the chemistry of O₃ formation because it is highly 12 nonlinear with respect to NO_x concentrations. Thus, the volume of the grid cell into which 13 emissions are injected is important because the nature of O₃ chemistry (i.e., O₃ production or 14 titration) depends in a complicated way on the concentrations of the precursors and the OH 15 radical. The use of ever-finer grid spacing allows regions of O₃ titration to be more clearly 16 separated from regions of O₃ production. The use of grid spacing fine enough to resolve the 17 chemistry in individual power-plant plumes is too demanding of computer resources for this to 18 be attempted in most simulations. Instead, parameterizations of the effects of subgrid scale 19 processes such as these must be developed; otherwise serious errors can result if emissions are 20 allowed to mix through an excessively large grid volume before the chemistry step in a model 21 calculation is performed. In light of the significant differences between atmospheric chemistry 22 taking place inside and outside of a power plant plume (e.g., Ryerson et al., 1998 and Sillman, 23 2000), inclusion of a separate, meteorological module for treating large, tight plumes is 24 necessary. Because the photochemistry of O_3 and many other atmospheric species is nonlinear, 25 emissions correctly modeled in a tight plume may be incorrectly modeled in a more dilute 26 plume. Fortunately, it appears that the chemical mechanism used to follow a plume's 27 development need not be as detailed as that used to simulate the rest of the domain, as the 28 inorganic reactions are the most important in the plume (e.g., Kumar and Russell, 1996). The 29 need to include explicitly plume-in-grid chemistry disappears if one uses the adaptive grid 30 approach mentioned previously, though such grids are more computationally intensive. The

1 differences in simulations are significant because they can lead to significant differences in the 2 calculated sensitivity of O_3 to its precursors (e.g., Sillman et al., 1995).

Because the chemical production and loss terms in the continuity equations for individual species are coupled, the chemical calculations must be performed iteratively until calculated concentrations converge to within some preset criterion. The number of iterations and the convergence criteria chosen also can introduce error.

7 The importance of global transport of O_3 and its contribution to regional O_3 levels in the United States is slowly becoming apparent. There are presently on the order of 20 8 9 three-dimensional global models that have been developed by various groups to address 10 problems in tropospheric chemistry. These models resolve synoptic meteorology, O₃-NO_y-CO-11 hydrocarbon photochemistry, wet and dry deposition, and parameterize sub-grid scale vertical 12 mixing such as convection. Global models have proven useful for testing and advancing 13 scientific understanding beyond what is possible with observations alone. For example, they can 14 calculate quantities of interest that we do not have the resources to measure directly, such as 15 export of pollution from one continent to the global atmosphere or the response of the 16 atmosphere to future perturbations to anthropogenic emissions.

The finest horizontal resolution at which global simulations are typically conducted is ~200 km² although rapid advances in computing power continuously change what calculations are feasible. The next generation of models will consist of simulations that link multiple horizontal resolutions from the global to the local scale. Finer resolution will only improve scientific understanding to the extent that the governing processes are more accurately described at that scale. Consequently there is a critical need for observations at the appropriate scales to evaluate the scientific understanding represented by the models.


Observations of specific chemical species have been useful for testing transport schemes. Radon-222 simulations in sixteen global models have been evaluated with observations to show that vertical mixing is captured to within the constraints offered by the mean observed concentrations (Jacob et al., 1997). Tracers such as cosmogenic ⁷Be and terrigenic ²¹⁰Pb have been used to test and constrain model transport and wet deposition (e.g., Liu et al., 2001).

Other chemical species obtained from various platforms (surface measurements, aircraft,
 satellites) are useful for evaluating the simulation of chemical and dynamical processing in
 global models. For example, Emmons et al. (2000) compiled available measurements of

1 12 species relevant to O₃ photochemistry from a number of aircraft campaigns in different 2 regions of the world and used this data composite to evaluate two global models. They 3 concluded that one model (MOZART) suffered from weak convection and an underestimate of 4 nitrogen oxide emissions from biomass burning, while another model (IMAGES) transported too much O_3 from the stratosphere to the troposphere (Emmons et al., 2000). The global coverage 5 6 available from satellite observations offers new information for testing models. Recent efforts 7 are using satellite observations to evaluate the emission inventories of O₃ precursors that are 8 included in global models; such observations should help to constrain the highly uncertain 9 natural emissions of isoprene and nitrogen oxides (e.g., Palmer et al., 2003; Martin et al., 2003).

10 A comparison of numerous global chemistry-transport models developed by groups around 11 the world was included in Section 4.4 of the recent report of the Intergovernmental Panel on 12 Climate Change (Prather and Ehhalt, 2001). In that report, monthly mean O_3 (O_3) and carbon 13 monoxide (CO) simulated by the various models was evaluated with O₃ observations from global 14 ozonesonde stations at 700, 500, and 300 hPa and with surface CO measurements from 15 17 selected NOAA/CMDL sites. The relevant figures (Figures AX2-4-10 and AX2-4-11) are 16 reproduced here (as Figures AX2-19 for O₃ and AX2-20 for CO) along with the references in 17 their Table AX2-10 (as Table AX2-4). Overall, the models capture the general features of the O_3 18 and CO seasonal cycles but meet with varying levels of success at matching the observed 19 concentrations and the amplitude of the observed seasonal cycle. For O₃, the models show less 20 disagreement in the lower troposphere than in the upper troposphere, reflecting the difficulty of 21 representing the exchange between the stratosphere and troposphere and the loose constraints on 22 the net O_3 flux that are provided by observations.

23 An evaluation of five global models with data from the Measurement of Ozone and Water 24 Vapor by Airbus In-Service Aircraft (MOZAIC) project over New York City and Miami 25 indicates that the models tend to underestimate the summer maximum in the middle and lower 26 troposphere over northern mid-latitude cities such as New York City and to underestimate the 27 variability over coastal cities such as Miami which are strongly influenced by both polluted 28 continental and clean marine air masses (Law et al., 2000). Local maxima and minima are 29 difficult to reproduce with global models because processes are averaged over an entire model 30 grid cell. Much of the spatial and temporal variability in surface O₃ over the United States is 31 modulated by synoptic meteorology (e.g., Logan, 1989; Eder et al., 1993; Vukovich, 1995, 1997;

Figure AX2-19. Seasonal variability in O₃ concentrations observed at a number of pressure surfaces at six ozonesonde sites and the predictions of 13 global scale chemistry-transport models.

Source: IPCC Third Assessment Report (2001).

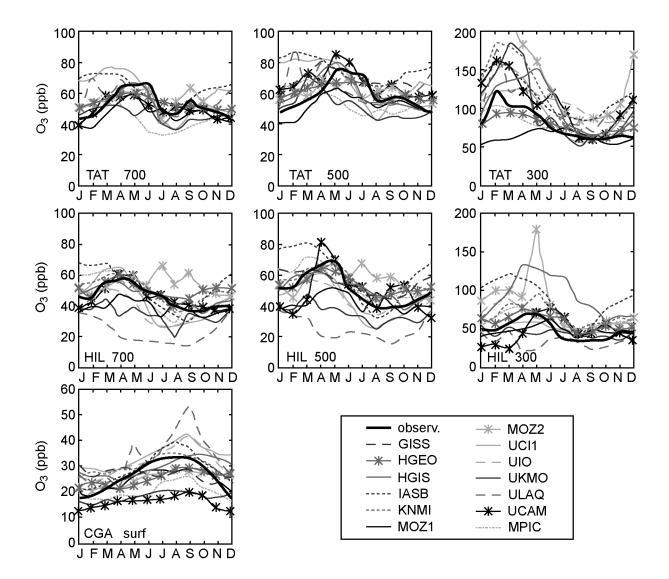


Figure AX2-20. Seasonal variability in O₃ concentrations observed at a number of pressure surfaces at six ozonesonde sites and the predictions of 13 global scale chemistry-transport models.

Source: IPCC Third Assessment Report (2001).

1 Cooper and Moody, 2000) which is resolved in the current generation of global models.

- 2 For example, an empirical orthogonal function analysis on observed and simulated fields over
- 3 the eastern United States in summer has shown that a $2^{\circ} \times 2.5^{\circ}$ horizontal resolution global
- 4 model (GEOS-CHEM) captures the synoptic-scale processes that control much of the observed
- 5 variability (Fiore et al., 2003). Further evaluation of the same model showed that it can also

CTM	Institute	Contributing Authors	References
GISS	GISS	Shindell/Grenfell	Hansen et al. (1997)
HGEO	Harvard U.	Bey/Jacob	Bey et al. (2001a)
HGIS	Harvard U.	Mickley/Jacob	Mickley et al. (1999)
IASB	IAS/Belg.	Mülller	Müller and Brasseur (1995, 1999)
KNMI	KNMI/Utrecht	van Weele	Jeuken et al. (1999), Houweling et al. (2000)
MOZ1	NCAR/CNRS	Hauglustaine/Brasseur	Brasseur et al. (1998), Hauglustaine et al. (1998)
MOZ2	NCAR	Horowitz/Brasseur	Brasseur et al. (1998), Hauglustaine et al.(1998)
MPIC	MPI/Chem	Kuhlmann/Lawrence	Crutzen et al. (1999), Lawrence et al. (1999)
UCI	UC Irvine	Wild	Hannegan et al. (1998), Wild and Prather (2000)
UIO	U. Oslo	Berntsen	Berntsen and Isaksen (1997) Fuglestvedt et al. (1999)
UIO2	U. Oslo	Sundet	Sundet (1997)
UKMO	UK Met Office	Stevenson	Collins et al. (1997), Johnson et al. (1999)
ULAQ	U. L. Aquila	Pitari	Pitari et al. (1997)
UCAM	U. Cambridge	Plantevin/Johnson (TOMCAT)	Law et al. (1998, 2000)

Table AX2-4. Chemistry-Transport Models (CTM) Contributing to the Oxcomp Evaluation of Predicting Tropospheric O₃ and OH (Prather and Ehhalt, 2001)

capture many of the salient features of the observed distributions of O₃ as well as its precursors
 in surface air over the United States in summer, including formaldehyde concentrations and
 correlations between O₃ and the oxidation products of nitrogen oxides (O₃: NO_y-NO_x), all of
 which indicate a reasonable photochemical simulation (Fiore et al., 2002).
 A significant amount of progress in evaluating the performance of three-dimensional
 global models with surface, aircraft, and satellite data has been made in recent years.
 Disagreement among model simulations mainly stems from differences in the driving

8 meteorology and emissions. The largest discrepancies amongst models and between models and

1 observations occur in the upper troposphere and likely reflect uncertainties in exchange between

- 2 the stratosphere and troposphere and photochemical processes there; the models agree better
- 3 with observations closer to the surface. Synoptic-scale meteorology is resolved in these models,
- 4 enabling them to simulate much of the observed variability in pollutants in the lower
- 5 troposphere.
- 6

8

7 AX2.5.2 Emissions of Ozone Precursors

Estimated annual emissions of nitrogen oxides, VOCs, CO, and NH₃ for 1999 (U.S.

9 Environmental Protection Agency, 2001) are shown in Tables AX2-5, AX2-6, AX2-7, and

10 AX2-8. Methods for estimating emissions of criteria pollutants, quality assurance procedures

- 11 and examples of emissions calculated by using data are given in U.S. Environmental Protection
- 12 Agency (1999).

Source	Emissions ¹ (10 ¹² g/y)	Notes
On-road vehicle exhaust	7.8	Gasoline (58%) and diesel (42%) vehicles.
Non-road vehicle exhaust	5	Diesel (49%) and gasoline (3%) vehicles; railroads (22%); marine vessels (18%); other sources (8%).
Fossil fuel combustion	9.1	Electric utilities (57%); industry (31%); commercial, institutional and residential combustion (12%).
Industrial Processes	0.76	Mineral products (43%); petrochemical products (17%); chemical mfg. (16%); metal processing (11%); misc. industries (12%).
Biomass burning	0.35	Residential wood burning (11%); open burning (8%); wildfires (81%).
Waste disposal	0.053	Non-biomass incineration.
Natural sources ²	3.1	Lightning (50%); soils(50%).
Total	26	

Table AX2-5. Emissions of Nitrogen Oxides by Various Sources in theUnited States in 1999

¹Emissions are expressed in terms of NO₂.

²Estimated on the basis of data given in Guenther et al. (2000).

Source: U.S. Environmental Protection Agency (2001).

Source	Emissions (10 ¹² g/y)	Notes
On-road vehicles	4.8	Exhaust and evaporative losses from gasoline (95%) and diesel (5%) vehicles.
Non-road vehicles	2.9	Exhaust and evaporative losses from gasoline (80%) and diesel (12%) vehicles; aircraft and other sources (8%).
Fossil fuel combustion	0.27	Electrical utilities; industrial, commercial, institutional, and residential sources.
Chemical industrial processes	0.36	Mfg. of organic chemicals, polymers and resins, and misc. products.
Petroleum industrial processes	0.39	Oil and gas production (64%); refining (36%).
Other industrial processes	0.48	Metal processing (15%); wood processing (32%); agricultural product processing (21%); misc. processes (18%).
Solvent volatilization	4.4	Surface coatings (44%); other industrial uses (20%); non- industrial uses (e.g., pesticide application, consumer solvents) (36%).
Storage and transport of volatile compounds	1.1	Evaporative losses from petroleum products and other organic compounds.
Biomass burning	1.2	Residential wood combustion (37%); open burning (22%); agricultural burning (22%); wildfires (19%).
Waste disposal	0.53	Residential burning (63%); waste water (23%); landfills (6%); non-biomass incineration (8%).
Biogenic sources ¹	4.4	Approximately 98% emitted by vegetation. (Isoprene [35%], monoterpenes [25%], and all other reactive and non-reactive compounds [40%]).
Total	21	

Table AX2-6. Emissions of Volatile Organic Compounds by Various Sources in the
United States in 1999

¹Estimated on the basis of data given in Guenther et al. (2000).

Source: U.S. Environmental Protection Agency (2001).

Source	Emissions (10 ¹² g/y)	Notes
Exhaust from on-road and non-road engines and vehicles	0.25	Exhaust from on-road (96%) and non-road (4%) vehicles.
Fossil fuel combustion	0.044	Combustion by electric utilities, industry, commerce, institutions, residences.
Industry	0.18	Chemical manufacturing (67%); petroleum refining (9%); other industries (25%).
Agriculture	3.9	Livestock (82%); fertilizer application (18%).
Waste disposal and recycling	0.08	Wastewater treatment (99%).
Natural sources	0.032	Unmanaged soils; wild animals.
Total	4.5	

Table AX2-7. Emissions of Ammonia by Various Sources in the United States in 1999

Source: U.S. Environmental Protection Agency (2001).

1 Emissions of nitrogen oxides associated with combustion arise from contributions from 2 both fuel nitrogen and atmospheric nitrogen. Sawyer et al. (2000) have reviewed the factors 3 associated with NO_x emissions by mobile sources. Estimates of NO_x emissions from mobile 4 sources are generally regarded as fairly reliable although further work is needed to clarify this 5 point (Sawyer et al., 2000). Both nitrifying and denitrifying bacteria in the soil can produce 6 NO_x , mainly in the form of NO. Emission rates depend mainly on fertilization levels and soil temperature. About 60% of the total NO_x emitted by soils occurs in the central corn belt of the 7 8 United States. The oxidation of NH₃ emitted mainly by livestock and soils, leads to the 9 formation of NO. Estimates of emissions from natural sources are less certain than those from 10 anthropogenic sources.

Natural sources of oxides of nitrogen include lightning, oceans, and soil. Of these, as
reviewed in AQCD 96, only soil emissions appear to have the potential to impact surface O₃ over
the U.S. On a global scale, the contribution of soil emissions to the oxidized nitrogen budget is
on the order of 10% (van Aardenne et al., 2001; Finlayson-Pitts and Pitts, 2000; Seinfeld and
Pandis, 1998), but attempts to quantify emissions of NO_x from fertilized fields show great

Source	Emissions (10 ¹² g/y)	Notes
On-road vehicle exhaust	50	Gasoline-fueled light-duty cars (54%) and trucks (32%), heavy-duty trucks (9%); diesel vehicles (5%); motorcycles (0.4%).
Non-road engines and vehicle exhaust	25	Gasoline-fueled (lawn and garden [44%], light commercial [17%], recreational [14%], logging [4%], industry and construction [6%, other [1%]); diesel-fueled (5%); aircraft (4%); other (5%).
Fossil fuel combustion	2	Electric utilities (22%); industry (58%); commercial, institutional and residential combustion (20%).
Industrial Processes	3.7	Metal processing (45%); chemical mfg. (29%); petrochemical production; (10%); mineral products (5%); wood products (10%); misc. industries (1%).
Biomass burning	16	Residential wood burning (21%); open burning (21%); agricultural burning (41%); wildfires (17%).
Waste disposal	0.42	Non-biomass incineration.
Other	0.19	Structural fires (45%); storage and transport (38%); misc. sources (17%).
Biogenic emissions ¹	4.7+	Primary emissions from vegetation and soils; secondary formation (?).
Total	102+	

Table AX2-8. Emissions of Carbon Monoxide by Various Sources in the
United States in 1999

¹Estimated on the basis of data given in Guenther et al. (2000).

Source: U.S. Environmental Protection Agency (2001).

1 variability. Soil NO emissions can be estimated from the fraction of the applied fertilizer

2 nitrogen emitted as NO_x , but the flux varies strongly with land use and temperature. The fraction

3 nitrogen. Estimated globally averaged fractional applied nitrogen loss as NO varies from 0.3%

4 (Skiba et al., 1997) to 2.5% (Yienger and Levy, 1995). Variability within biomes to which

5 fertilizer is applied, such as shortgrass versus tallgrass prairie, accounts for a factor of

6 three in uncertainty (Williams et al., 1992; Yienger and Levy, 1995; Davidson and Kingerlee,

7 1997).

1 The local contribution can be much greater than the global average, particularly in summer 2 especially where corn is grown extensively. Williams et al. (1992) estimated that contributions 3 from soils in Illinois contribute about 26% of the emissions from industrial and commercial 4 processes in that State. In Iowa, Kansas, Minnesota, Nebraska, and South Dakota soil emissions may dominate. Conversion of ammonium to nitrate (nitrification) in aerobic soils appears to be 5 6 the dominant pathway to NO. The mass and chemical form of nitrogen (reduced or oxidized) 7 applied to soils, the vegetative cover, temperature, soil moisture, and agricultural practices such 8 as tillage all influence the amount of fertilizer nitrogen released as NO.

As pointed out in the previous AQCD for O₃, emissions of NO from soils peak in summer
when O₃ formation is at a maximum. A recent NRC report outlined the role of agricultural in
emissions of air pollutants including NO and NH₃ (NRC, 2002). That report recommends
immediate implementation of best management practices to control these emissions, and further
research to quantify the magnitude of emissions and the impact of agriculture on air quality.
Civerolo and Dickerson (1998) report that use of the no-till cultivation technique on a fertilized
cornfield in Maryland reduced NO emissions by a factor of seven.

16 Annual global production of NO by lightning is the most uncertain source of reactive 17 nitrogen. In the last decade literature values of the production rate range from 2 to 20 Tg-N per 18 year. However, the most likely range is from 3 to 8 Tg-N per year, because the majority of the 19 recent estimates fall in this range. The large uncertainty stems from several factors: (1) a large 20 range of NO production rates per flash (as much as two orders of magnitude); (2) the open 21 question of whether cloud-to-ground (CG) flashes and intracloud flashes (IC) produce 22 substantially different amounts of NO; (3) the global flash rate; and (4) the ratio of the number of 23 IC flashes to the number of CG flashes. Estimates of the amount of NO produced per flash have 24 been made based on theoretical considerations (e.g., Price et al., 1997), laboratory experiments 25 (e.g., Wang et al., 1998); field experiments (e.g., Stith et al., 1999; Huntrieser et al., 2002), and 26 through a combination of cloud-resolving model simulations, observed lightning flash rates, and 27 anvil measurements of NO (e.g., DeCaria et al., 2000). The latter method was also used by 28 Pickering et al. (1998), who showed that only ~5% to 20% of the total NO production by 29 lightning in a given storms exists in the boundary layer at the end of a thunderstorm. Therefore, 30 the direct contribution to boundary layer O₃ production by lightning NO is thought to be small. 31 However, lightning NO production can contribute substantially to O₃ production in the middle

and upper troposphere. DeCaria et al. (2000) estimated that up to 7 ppbv of O₃ were produced in
the upper troposphere in the first 24 hours following a Colorado thunderstorm due to the
injection of lightning NO. A major uncertainty in mesoscale and global chemical transport
models is the parameterization of lightning flash rates. Model variables such as cloud top height,
convective precipitation rate, and upward cloud mass flux have been used to estimate flash rates.
Allen and Pickering (2002) have evaluated these methods against observed flash rates from
satellite, and examined the effects on O₃ production using each method.

8 Literally tens of thousands of organic compounds have been identified in plant tissues. 9 However, most of these compounds either have sufficiently low volatility or are constrained so 10 that they are not emitted in significant quantities. Less than 40 compounds have been identified 11 by Guenther et al. (2000) as being emitted in large enough quantities to affect atmospheric 12 composition. These compounds include terpenoid compounds (isoprene, 2-methyl-3-buten-2-ol, 13 monoterpenes), compounds in the hexanal family, alkenes, aldehydes, organic acids, alcohols, 14 ketones and alkanes. As can be seen from Table AX2-6, the major species emitted by plants are 15 isoprene (35%), 19 other terpenoid compounds (25%) and 17 non-terpenoid compounds (40%) 16 (Guenther et al., 2000). Of the latter, methanol contributes 12% of total emissions.

17 Because isoprene has been identified as the most abundant of biogenic VOCs (Guenther 18 et al., 1995, 2000; Geron et al., 1994), it has been the focus of air quality model analyses in 19 many published studies (Roselle, 1994; Sillman et al., 1995). The original Biogenic Emission 20 Inventory System (BEIS) of Pierce et al. (1991) used a branch-level isoprene emission factor of 14.7 μ g (g-foliar dry mass)⁻¹ h⁻¹ for high isoprene emitting species (e.g., oaks, or North 21 22 American *Quercus* species). When considering self-shading of foliage within branch enclosures, this is roughly equivalent to a leaf level emission rate of 20 to 30 μ g-C (g-foliar dry mass)⁻¹ h⁻¹ 23 24 (Guenther at al, 1995). Geron et al (1994) reviewed studies between 1990 and 1994 and found that a much higher leaf-level rate of 70 μ g-C (g-foliar dry mass)⁻¹ h⁻¹ + 50% was more realistic, 25 26 and this rate was used in BEIS2 for high isoprene emitting tree species. BEIS3 (Guenther et al., 27 2000) applied similar emission factors at tree species levels (Geron et al 2000a, 2001) and more 28 recent canopy environment models to estimate isoprene fluxes.

The results from several studies of isoprene emission measurements made at leaf, branch,
tree, forest stand, and landscape levels have been used to test the accuracy of BEIS2 and BEIS3.
These comparisons are documented in Geron et al. (1997) and Guenther et al. (2000). The

1 results of these studies support the higher emission factors used in BEIS2 and BEIS3. Typically, 2 leaf emission factors (normalized to standard conditions of PAR = 1000 μ mol m⁻² and leaf 3 temperature of 30 °C) measured at the top of tree canopies equal or exceed those used in 4 BEIS2/3, while those in more shaded portions of the canopy tend to be lower than those assumed in the models, likely due to differences in developmental environments of leaves within the 5 6 canopy (Monson et al., 1994; Sharkey et al., 1996; Harley et al., 1996; Geron et al., 2000b). 7 Uncertainty in isoprene emissions due to variability in forest composition and leaf area remain in 8 BVOC emission models and inventories. Seasonality and moisture stress also impact isoprene 9 emission, but algorithms to simulate these effects are currently fairly crude (Guenther et al, 10 2000). The bulk of biogenic emissions occur during the summer, because of their dependence 11 on temperature and incident sunlight. Biogenic emissions are also higher in southern states than 12 in northern states for these reasons. The uncertainty associated with natural emissions ranges 13 from about 50% for isoprene under midday summer conditions to about a factor of ten for other 14 compounds (Guenther et al., 2000). In assessing the relative importance of these compounds, it 15 should be borne in mind that the oxidation of many of the classes of compounds result in the 16 formation of secondary organic aerosol and that many of the intermediate products may be 17 sufficiently long lived to affect O₃ formation in areas far removed from where they were emitted. 18 The oxidation of isoprene can also contribute about 10% of the source of CO (U.S. 19 Environmental Protection Agency, 2000). Direct emissions of CO by vegetation is of much 20 smaller importance. Soil microbes both emit and take up atmospheric CO, however, soil 21 microbial activity appears to represent a net sink for CO. 22 Emissions from biomass burning depend strongly on the stage of combustion. Smoldering 23 combustion, especially involving forest ecosystems favors the production of CH₄, NMHC and 24 CO at the expense of CO_2 , whereas active combustion produces more CO_2 relative to the other 25 compounds mentioned above. Typical emissions ratios (defined as moles of compound per 26 moles of emitted CO₂ expressed as a percentage) range from 6 to 14% for CO, 0.6 to 1.6% for

- 27 CH_4 , and 0.3 to 1.1% for NMHCs (Andreae, 1991). Most NMHC emissions are due to
- 28 emissions of lighter compounds, containing 2 or 3 carbon atoms.
- 29

1

AX2.5.3 Observationally-Based Models

2 As an alternative to chemistry-transport models, observationally-based methods (OBMs), 3 which seek to infer O₃-precursor relations by relying more heavily on ambient measurements, can be used. Observationally-based methods are intuitively attractive because they provide an 4 5 estimate of the O_3 -precursor relationship based directly on observations of the precursors. These 6 methods rely on observations as much as possible to avoid many of the uncertainties associated 7 with chemistry/transport models (e.g., emission inventories and meteorological processes). 8 However, these methods have large uncertainties with regards to photochemistry. As originally 9 conceived, the observation-based approaches were intended to provide an alternative method for 10 evaluating critical issues associated with urban O₃ formation. The proposed OBMs include 11 calculations driven by ambient measurements (Chameides et al., 1992; Cardelino et al., 1995) 12 and proposed "rules of thumb" that seek to show whether O_3 is primarily sensitive to NO_x or to 13 VOC concentrations (Sillman, 1995; Chang et al., 1997; Tonnesen and Dennis, 2000a,b; 14 Blanchard et al., 1999; Blanchard, 2000). These methods are controversial when used as 15 "stand-alone" rules, because significant uncertainties and possible errors have been identified for 16 all the methods (Chameides et al., 1988, Lu and Chang, 1998, Sillman and He, 2002; Blanchard 17 and Stockenius, 2001). Methods such as these are most promising for use in combination with 18 chemistry/transport models principally for evaluating the accuracy of model predictions.

19 Recent results (Tonnesen and Dennis, 2000a; Kleinman et al., 1997; 2000, 2001; 20 Kleinman, 2000) suggest that ambient VOC and NO_x data can be used to identify the instantaneous production rate for O3 and how the production rate varies with concentrations of 21 22 NO_{y} and VOCs. The instantaneous production rate for O_{3} is only one of the factors that affect 23 the total O₃ concentration, because O₃ concentrations result from photochemistry and transport 24 over time periods ranging from several hours to several days in regional pollution events. Ozone 25 concentrations can be affected by distant emissions and by photochemical conditions at upwind 26 locations, rather than instantaneous production at the site. Despite this limitation, significant 27 information can be obtained by interpreting ambient NO_x and VOC measurements. Kleinman 28 et al. (1997, 2000, 2001) and Tonnesen and Dennis (2000a) both derived simple expressions that 29 relate the NO_x-VOC sensitivity of instantaneous O₃ production to ambient VOC and NO_x. These 30 expressions usually involve summed VOC weighted by reactivity.

1 Cardelino et al. (1995, 2000) developed a method that seeks to identify O_3 -NO_x-VOC 2 sensitivity based on ambient NO_x and VOC data. Their method involves an area-wide sum of 3 instantaneous production rates over an ensemble of measurement sites, which serve to represent 4 the photochemical conditions associated with O_3 production in metropolitan areas. Their 5 method, which relies on routine monitoring methods, is especially useful because it permits 6 evaluation for a full season rather than just for individual episodes.

7

8

AX2.5.4 Chemistry-Transport Model Evaluation

9 The comparison of model predictions with ambient measurements represents a critical task 10 for establishing the accuracy of photochemical models and evaluating their ability to serve as the 11 basis for making effective control strategy decisions. The evaluation of a model's performance, 12 or its adequacy to perform the tasks for which it was designed can only be conducted within the 13 context of measurement errors and artifacts. Not only are there analytical problems, but there 14 are also problems in assessing the representativeness of monitors at ground level for comparison 15 with model values which represent typically an average over the volume of a grid box.

16 Chemistry-transport models for O₃ formation at the urban/regional scale have traditionally 17 been evaluated based on their ability to correctly simulate O₃. A series of performance statistics 18 that measure the success of individual model simulations to represent the observed distribution 19 of ambient O₃, as represented by a network of surface measurements were recommended in U.S. 20 Environmental Protection Agency (1991; see also Russell and Dennis, 2000). These statistics 21 consist of the following:

- Unpaired peak O₃ within a metropolitan region (typically for a single day).
 - Normalized bias equal to the summed difference between model and measured hourly concentrations divided by the sum of measured hourly concentrations.
- Normalized gross error, equal to the summed unsigned (absolute value) difference between model and measured hourly concentrations divided by the sum of measured hourly concentrations.

25

23

1

Unpaired peak prediction accuracy, A_{u} ;

$$A_{u} = \frac{C_{p}(x,t)_{\max} - C_{o}(x',t')_{\max}}{C_{o}(x',t')_{\max}} * 100\%,$$
(AX2-49)

3 Normalized bias, D;

4 5

2

7

9

 $D = \frac{1}{N} \sum_{i=1}^{N} \frac{\{C_p(x_i, t) - C_o(x_i, t)\}}{C_o(x_i, t)}, \quad t = 1, 24.$ (AX2-50)

8 Gross error, E_d (for hourly observed values of O₃ >60 ppb)

$$E_d = \frac{1}{N} \sum_{i=1}^{N} \frac{\left| C_p(x_i, t) - C_o(x_i, t) \right|}{C_o(x_i, t)}, \quad t = 1, 24.$$
(AX2-51)

10

11 The following performance criteria for regulatory models were recommended in U.S. 12 Environmental Protection Agency (1991): unpaired peak O_3 to within ±15% or ±20%; normalized bias within $\pm 5\%$ to $\pm 15\%$; and normalized gross error less than 30% to 35%, but 13 14 only when $O_3 > 60$ ppb. This can lead to difficulties in evaluating model performance since 15 nighttime and diurnal cycles are ignored. A major problem with this method of model 16 evaluation is that it does not provide any information about the accuracy of O₃-precursor 17 relations predicted by the model. The process of O₃ formation is sufficiently complex that 18 models can predict O₃ correctly without necessarily representing the O₃ formation process 19 properly. If the O₃ formation process is incorrect, then the modeled source-receptor relations will also be incorrect. 20 21 Studies by Sillman et al. (1995, 2003), Reynolds et al. (1996) and Pierce et al. (1998) have 22 identified instances in which different model scenarios can be created with very different

 O_3 -precursor sensitivity, but without significant differences in the predicted O_3 fields.

Figures AX2-21a,b provide an example. Referring to the O_3 -NO_x-VOC isopleth plot

25 (Figure AX2-22), it can be seen that similar O_3 concentrations can be found for photochemical

26 conditions that have very different sensitivity to NO_x and VOCs.

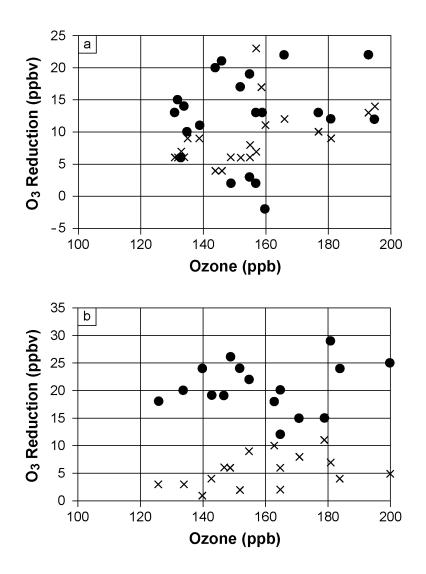


Figure AX2-21a,b. Impact of model uncertainty on control strategy predictions for O_3 for two days (August 10[a] and 11[b], 1992) in Atlanta, GA. The figures show the predicted reduction in peak O_3 resulting from 35% reductions in anthropogenic VOC emissions (crosses) and from 35% reductions in NO_x (solid circles) in a series of model scenarios with varying base case emissions, wind fields, and mixed layer heights.

Source: Results are plotted from tabulated values published in Sillman et al. (1995, 1997).

Global-scale chemistry-transport models have generally been evaluated by comparison
 with measurements for a wide array of species, rather than just for O₃ (e.g., Wang et al., 1998;
 Emmons et al., 2000; Bey et al., 2001b; Hess, 2001; Fiore et al., 2002). These have included
 evaluation of major primary species (NO_x, CO, and selected VOCs) and an array of secondary

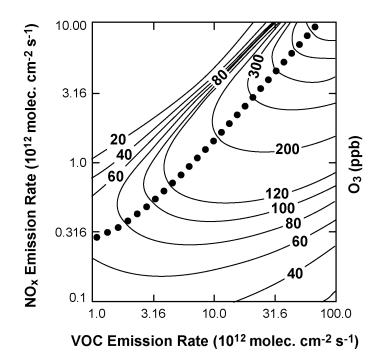


Figure AX2-22. Ozone isopleths (ppb) as a function of the average emission rate for NO_x and VOC (10^{12} molec. cm⁻² s⁻¹) in zero dimensional box model calculations. The isopleths (solid lines) represent conditions during the afternoon following 3-day calculations with a constant emission rate, at the hour corresponding to maximum O_3 . The ridge line (shown by solid circles) lies in the transition from NO_x -saturated to NO_x -limited conditions.

species (HNO₃, PAN, H_2O_2) that are often formed concurrently with O_3 . Models for 1 2 urban/regional O₃ have also been evaluated against a broader ensemble of measurements in a 3 few cases, often associated with measurement intensives (e.g., Jacobson et al., 1996, Lu et al., 4 1997; Sillman et al., 1998). The results of a comparison between observed and computed 5 concentrations from Jacobson et al. (1996) for the Los Angeles Basin are shown in Figures AX2-23a,b. 6 The highest concentrations of primary species usually occur in close proximity to emission 7 8 sources (typically in urban centers) and at times when dispersion rates are low. The diurnal 9 cycle includes high concentrations at night, with maxima during the morning rush hour, and low

10 concentrations during the afternoon (Figure AX2-23a). The afternoon minima are driven by the

11 much greater rate of vertical mixing at that time. Primary species also show a seasonal

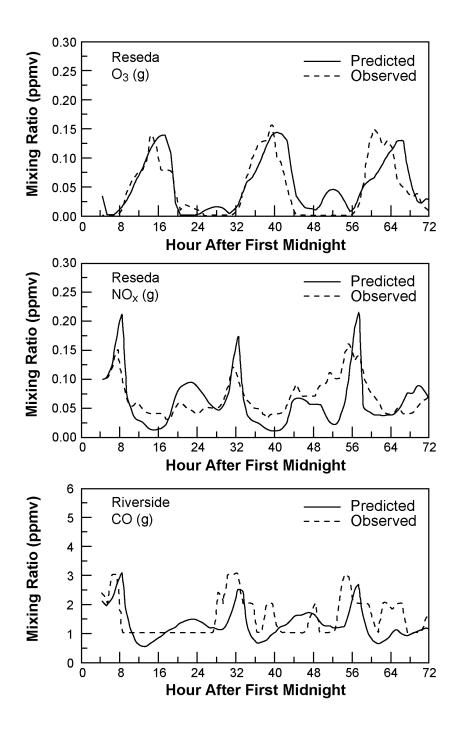


Figure AX2-23a. Time series for measured gas-phase species in comparison with results from a photochemical model. The dashed lines represent measurements, and solid lines represent model predictions (in parts per million, ppmv) for August 26 - 28, 1988 at sites in southern California. The horizontal axis represents hours past midnight, August 25. Results represent O₃ and NO_x at Reseda and CO at Riverside.

Source: Jacobson et al. (1996).

1 maximum during winter, and are often high during fog episodes in winter when vertical mixing, 2 is suppressed. By contrast, secondary species such as O₃ are typically highest during the 3 afternoon (the time of greatest photochemical activity), on sunny days and during summer. 4 During these conditions concentrations of primary species may be relatively low. Strong correlations between primary and secondary species are generally observed only in downwind 5 6 rural areas where all anthropogenic species are high simultaneously. The difference in the 7 diurnal cycles of primary species (CO, NO_x and ethane) and secondary species (O₃, PAN and 8 HCHO) is evident in Figure AX2-23b.

Models for urban/regional O₃ have been evaluated less extensively than global-scale
models in part because the urban/regional context presents a number of difficult challenges.
Global-scale models typically represent continental-scale events and can be evaluated
effectively against a sparse network of measurements. By contrast, urban/regional models are
critically dependent on the accuracy of local emission inventories and event-specific
meteorology, and must be evaluated separately for each urban area that is represented.

15 The evaluation of urban/regional models is also limited by the availability of data. 16 Measured NO_x and speciated VOC concentrations are widely available through the EPA PAMs 17 network, but questions have been raised about the accuracy of those measurements and the data 18 have not yet been analyzed thoroughly. Evaluation of urban/regional models versus 19 measurements has generally relied on results from a limited number of field studies in the United States. Short term research-grade measurements for species relevant to O₃ formation, including 20 21 VOCs, NO_x, PAN, nitric acid (HNO₃) and hydrogen peroxide (H_2O_2) are also widely available at 22 rural and remote sites (e.g., Daum et al., 1990, 1996; Martin et al., 1997; Young et al., 1997; 23 Thompson et al., 2000; Hoell et al., 1996, 1997; Fehsenfeld et al., 1996a; Emmons et al., 2000; 24 Hess, 2001; Carroll et al., 2001). The equivalent measurements are available for some polluted 25 rural sites in the eastern United States (e.g.) but only at a few urban locations (Meagher et al., 26 1998; Hübler et al., 1998; Kleinman et al., 2000, 2001; Fast et al., 2002; new SCAQS-need 27 reference). Extensive measurements have also been made in Vancouver (Steyn et al., 1997) and 28 in several European cities (Staffelbach et al., 1997; Prévôt et al., 1997, Dommen et al., 1999; 29 Geyer et al., 2001; Thielman et al., 2001; Martilli et al., 2002; Vautard et al., 2002). 30 The results of straightforward comparisons between observed and predicted concentrations 31 of O₃ can be misleading because of compensating errors, although this possibility is diminished

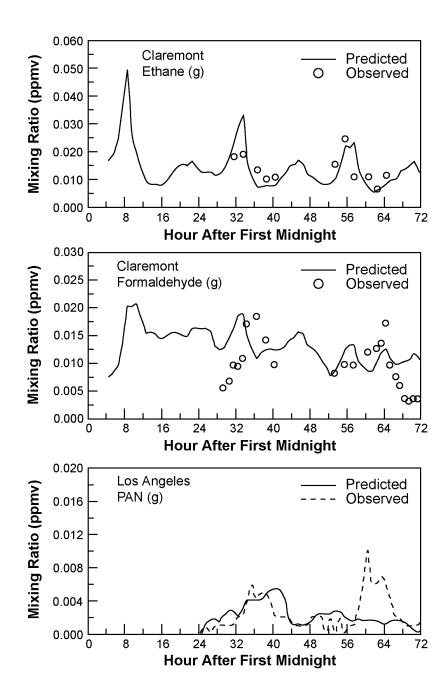


Figure AX2-23b. Time series for measured gas-phase species in comparison with results from a photochemical model. The circles represent measurements, and solid lines represent model predictions (in parts per million, ppmv) for August 26 – 28, 1988 at sites in southern California. The horizontal axis represents hours past midnight, August 25. Results represent ethane and formaldehyde at Claremont, and PAN at Los Angeles.

Source: Jacobson et al. (1996).

1 when a number of species are compared. Ideally, each of the main modules of a chemistry-2 transport model system (for example, the meteorological model and the chemistry and radiative 3 transfer routines) should be evaluated separately. However, this is rarely done in practice. 4 To better indicate how well physical and chemical processes are being represented in the model, comparisons of relations between concentrations measured in the field and concentrations 5 6 predicted by the model can be made. These comparisons could involve ratios and correlations between species. For example, correlation coefficients could be calculated between primary 7 8 species as a means of evaluating the accuracy of emission inventories; or between secondary 9 species as a means of evaluating the treatment of photochemistry in the model. In addition, 10 spatial relations involving individual species (correlations, gradients) can also be used as a 11 means of evaluating the accuracy of transport parameterizations. Sillman and He (2002) 12 examined differences in correlation patterns between O₃ and NO₂ in Los Angeles, CA, Nashville, 13 TN and various sites in the rural United States. Model calculations (Figure AX2-24) show 14 differences in correlation patterns associated with differences in the sensitivity of O_3 to NO_x 15 and VOCs. Primarily NO_x-sensitive (NO_x-limited) areas in models show a strong correlation 16 between O₃ and NO₂ with a relatively steep slope, while primarily VOC-sensitive (NO_xsaturated) areas in models show lower O_3 for a given NO_2 and a lower O_3 -NO₂ slope. They 17 18 found that differences found in measured data ensembles were matched by predictions from 19 chemical transport models. Measurements in rural areas in the eastern U.S. show differences in 20 the pattern of correlations for O₃ versus NO₂ between summer and autumn (Jacob et al., 1995; 21 Hirsch et al., 1996), corresponding to the transition from NO_x-limited to NO_x-saturated patterns, 22 a feature which is also matched by chemistry-transport models.

23 The difference in correlations between secondary species in NO_x-limited to NO_x-saturated 24 environments can also be used to evaluate the accuracy of model predictions in individual 25 applications. Figures AX2-25a and AX2-25b show results for two different model scenarios for 26 Atlanta. As shown in the figures, the first model scenario predicts an urban plume with high $NO_{\!_{\rm V}}$ and $O_{\!_3}$ formation apparently suppressed by high $NO_{\!_{\rm Y}}$. Measurements show much lower 27 28 NO_v in the Atlanta plume. This error was especially significant because the model locations 29 with high NO_v were not sensitive to NO_x, while locations with lower NO_v were primarily 30 sensitive to NO_x. The second model scenario (with primarily NO_x-sensitive conditions) shows 31 much better agreement with measured values. Figure AX2-26a,b shows model-measurement

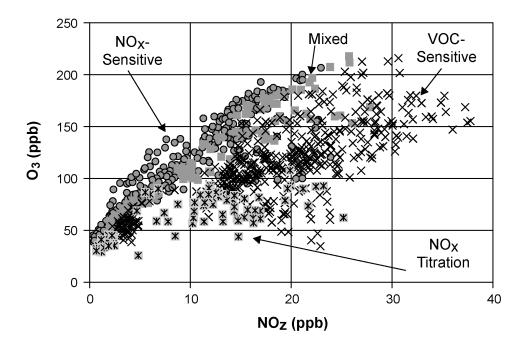


Figure AX2-24. Correlations for O_3 versus NO_z ($NO_y - NO_x$) in ppb from chemical transport models for the northeast corridor, Lake Michigan, Nashville, the San Joaquin Valley and Los Angeles. Each location is classified as NO_x -limited or NO_x -sensitive (circles), NO_x -saturated or VOC-sensitive (crosses), mixed or with near-zero sensitivity (squares), and dominated by NO_x titration (asterisks) based on the model response to reduced NO_x and VOC.

Source: Sillman and He (2002).

comparisons for secondary species in Nashville, showing better agreement with measured
 conditions. Greater confidence in the predictions made by chemistry-transport models will be
 gained by the application of techniques such as these on a more routine basis.

The ability of chemical mechanisms to calculate the concentrations of free radicals under atmospheric conditions was tested in the Berlin Ozone Experiment, BERLIOZ (Volz-Thomas et al., 2003) during July and early August at a site located about 50 km NW of Berlin. (This location was chosen as O₃ episodes in central Europe are often associated with SE winds.) Concentrations of major compounds such as O₃, hydrocarbons, etc., were fixed at observed values. In this regard, the protocol used in this evaluation is an example of an observationally based method. Figure AX2-27 compares the concentrations of RO₂ (organic peroxy), HO₂

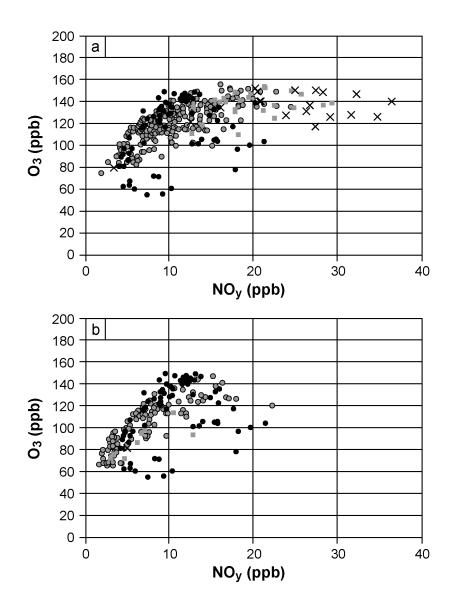


Figure AX2-25a,b. Evaluation of model versus measured O₃ versus NO_y for two model scenarios for Atlanta. The model values are classified as NO_xlimited (circles), NO_x-saturated (crosses), or mixed or with low sensitivity to NO_x (squares). Diamonds represent aircraft measurements.

Source: Sillman et al. (1997).

1 (hydroperoxy) and OH (hydroxyl) radicals predicted by RACM (regional air chemistry

2 mechanism; Stockwell et al., 1997) and MCM (master chemical mechanism; Jenkin et al, 1997

3 with updates) with observations made by the laser induced fluorescence (LIF) technique and by

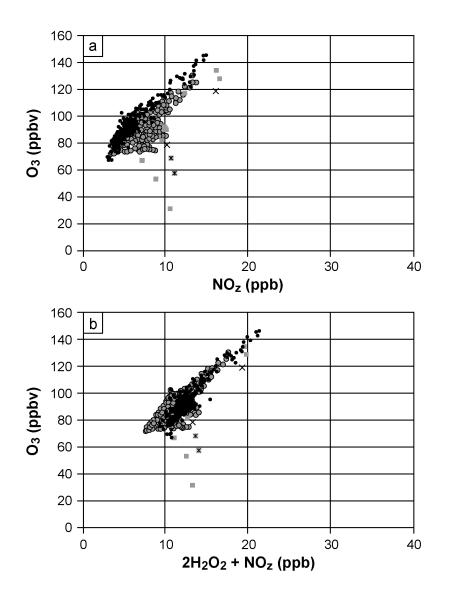


Figure AX2-26a,b. Evaluation of model versus: (a) measured O_3 versus NO_z and (b) O_3 versus the sum $2H_2O_2 + NO_z$ for Nashville, TN. The model values are classified as NO_x -limited (gray circles), NO_x -saturated (×s), mixed or with near-zero sensitivity (squares), or dominated by NO_x titration (filled circles). Diamonds represent aircraft measurements.

Source: Sillman et al. (1998).

1 matrix isolation ESR spectroscopy (MIESR). Also shown are the production rates of O_3

2 calculated using radical concentrations predicted by the mechanisms and those obtained by

3 measurements, and measurements of NO_x concentrations. As can be seen, there is good

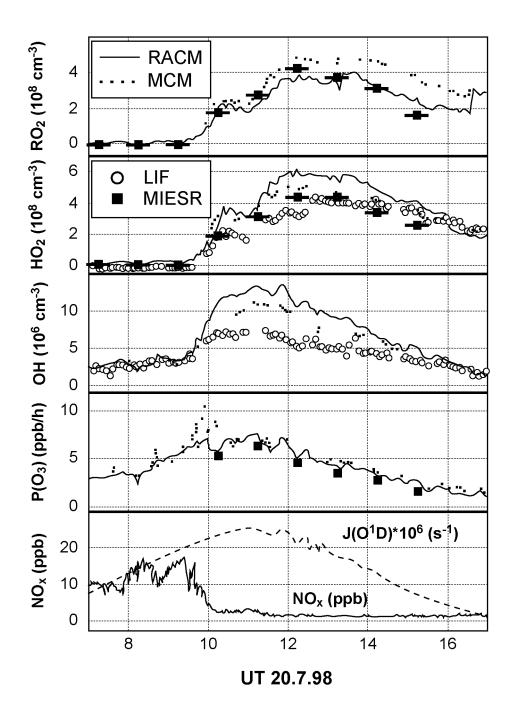


Figure AX2-27. Time series of concentrations of RO₂, HO₂, and OH radicals, local O₃ photochemical production rate and concentrations of NO_x from measurements made during BERLIOZ. Also shown are comparisons with results of photochemical box model calculations using the RACM and MCM chemical mechanisms.

Source: Volz-Thomas et al. (2003).

1 agreement between measurements of organic peroxy, hydroperoxy and hydroxyl radicals with 2 values predicted by both mechanisms at high concentrations of NO_x (> 10 ppb). However, at 3 lower NO_x concentrations, both mechanisms substantially overestimate OH concentrations and moderately overestimate HO₂ concentrations. Agreement between models and measurements is 4 generally better for organic peroxy radicals, although the MCM appears to overestimate their 5 6 concentrations somewhat. In general, the mechanisms reproduced the HO₂ to OH and RO₂ to OH ratios better than the individual measurements. The production of O₃ was found to increase 7 8 linearly with NO (for NO <0.3 ppb) and to decrease with NO (for NO >0.5 ppb).

9 OH and HO_2 concentrations measured during the $PM_{2.5}$ Technology Assessment and 10 Characterization Study conducted at Queens College in New York City in the summer of 2001 11 were also compared with those predicted by RACM (Ren et al., 2003). The ratio of observed to 12 predicted HO_2 concentrations over a diurnal cycle was 1.24 and the ratio of observed to 13 predicted OH concentrations was about 1.10 during the day, but the mechanism significantly 14 underestimated OH concentrations during the night.

- 15
- 16 AXA.5.4.1 Evaluation of Emissions Inventories

17 Comparisons of emissions model predictions with observations have been performed in a 18 number of environments. A number of studies of ratios of concentrations of CO to NO_x and 19 NMOC to NO_x during the early 1990s in tunnels and ambient air (summarized in Air Quality 20 Criteria for Carbon Monoxide [U.S. Environmental Protection Agency, 2000]) indicated that 21 emissions of CO and NMOC were systematically underestimated in emissions inventories. 22 However, the results of more recent studies have been mixed in this regard, with many studies 23 showing agreement to within \pm 50% (U.S. Environmental Protection Agency, 2000). 24 Improvements in many areas have resulted from the process of emissions model development, 25 evaluation, and further refinement. It should be remembered that the conclusions from these 26 reconciliation studies depend on the assumption that NO_x emissions are predicted correctly by 27 emissions factor models. Road side remote sensing data indicate that over 50% of NMHC and 28 CO emissions are produced by less than about 10% of the vehicles (Stedman et al., 1991). These 29 "super-emitters" are typically poorly maintained vehicles. Vehicles of any age engaged in off-30 cycle operations (e.g., rapid accelerations) emit much more than if operated in normal driving

modes. Bishop and Stedman (1996) found that the most important variables governing CO
 emissions are fleet age and owner maintenance.

3 Emissions inventories for North America can be evaluated with comparisons to measured 4 long-term trends and or ratios of pollutants in ambient air. A decadal field study of ambient CO at a rural cite in the Eastern U.S. (Hallock-Waters et al., 1999) indicates a downward trend 5 6 consistent with the downward trend in estimated emissions over the period 1988 to 1999 (U.S. Environmental Protection Agency, 1997), even when a global downward trend is accounted for. 7 8 Measurements at two urban areas in the United States confirmed the decrease in CO emissions 9 (Parrish et al., 2002). That study also indicated that the ratio of CO to NO_x emissions decreased 10 by almost a factor of three over 12 yr (such a downward trend was noted in AQCD 96). 11 Emissions estimates (U.S. Environmental Protection Agency, 1997) indicate a much smaller 12 decrease in this ratio, suggesting that NO_x emissions from mobile sources may be 13 underestimated and/or increasing. The authors conclude that O₃ photochemistry in U.S. urban 14 areas may have become more NO_x-limited over the past decade. 15 Pokharel et al. (2002) employed remotely-sensed emissions from on-road vehicles and fuel 16 use data to estimate emissions in Denver. Their calculations indicate a continual decrease in CO, HC, and NO emissions from mobile sources over the 6 yr study period. Inventories based on the 17 18 ambient data were 30 to 70% lower for CO, 40% higher for HC, and 40 to 80% lower for NO 19 than those predicted by the recent MOBILE6 model. 20 Stehr et al. (2000) reported simultaneous measurements of CO, SO₂ and NO_y at an East 21 Coast site. By taking advantage of the nature of mobile sources (they emit NO_x and CO but little SO₂) and power plants (they emit NO_x and SO₂ but little CO), the authors evaluated emissions 22

estimates for the eastern United States. Results indicated that coal combustion contributes 25 to
 35% of the total NO_x emissions in agreement with emissions inventories (U.S. Environmental
 Protection Agency, 1997).

Parrish et al. (1998) and Parrish and Fehsenfeld (2000) proposed methods to derive
emission rates by examining measured ambient ratios among individual VOC, NO_x and NO_y.
There is typically a strong correlation among measured values for these species (e.g., Figure
AX2-14) because emission sources are geographically collocated, even when individual sources
are different. Correlations can be used to derive emissions ratios between species, including
adjustments for the impact of photochemical aging. Investigations of this type include

1 correlations between CO and NO_v (e.g., Parrish et al., 1991), between individual VOC species 2 and NO_v (Goldan et al., 1995,1997, 2001; Harley et al., 1997) and between various individual 3 VOC (Goldan et al., 1995, 1997; McKeen and Liu, 1993; McKeen et al., 1996). Buhr et al. 4 (1992) derived emission estimates from principal component analysis (PCA) and other statistical methods. Many of these studies are summarized in Trainer et al. (2000), Parrish et al. (1998), 5 6 and Parrish and Fehsenfeld (2000). Goldstein and Schade (2000) also used species correlations 7 to identify the relative impacts of anthropogenic and biogenic emissions. Chang et al. (1996, 8 1997) and Mendoza-Dominguez and Russell (2000, 2001) used the more formal techniques of 9 inverse modeling to derive emission rates, in conjunction with results from chemistry-transport 10 models. Another concern regarding the use of emissions inventories is that emissions from all 11 significant sources have been included. This may not always be the case. As an example, 12 hydrocarbon seeps from off-shore oil fields may represent a significant source of reactive 13 organic compounds in near by coastal areas (Quigley et al., 1999).

14

15 AX2.5.4.2 Availability and Accuracy of Ambient Measurements

16 The use of methods such as observationally based methods or source apportionment 17 models, either as stand-alone methods or as a basis for evaluating chemistry/transport models, 18 is often limited by the availability and accuracy of measurements. Measured speciated VOC and 19 NO_x are widely available in the United States through the PAMS network. However, challenges 20 have been raised about both the accuracy of the measurements and their applicability.

21 Parrish et al. (1998) and Parrish and Fehsenfeld (2000) developed a series of quality 22 assurance tests for speciated VOC measurements. Essentially these tests used ratios among 23 individual VOC with common emission sources to identify whether the variations in species 24 ratios were consistent with the relative photochemical lifetimes of individual species. These 25 tests were based on a number of assumptions: the ratio between ambient concentrations of 26 long-lived species should show relatively little variation among measurements affected by a 27 common emissions sources; and the ratio between ambient concentrations of long-lived and 28 short-lived species should vary in a way that reflects photochemical aging at sites more different 29 from source regions. Parrish et al. used these expectations to establish criteria for rejecting 30 apparent errors in measurements. They found that the ratios among alkenes at many PAMS sites 31 did not show variations that would be expected due to photochemical aging.

- 1 The PAMs network currently includes measured NO and NO_x. However, Cardelino and 2 Chameides (2000) reported that measured NO during the afternoon was frequently at or below 3 the detection limit of the instruments (1 ppb), even in large metropolitan regions (Washington, 4 DC; Houston, TX; New York, NY). NO_x measurements are made with commercial 5 chemilluminescent detectors with molybdenum converters. However these measurements 6 typically include some organic nitrates in addition to NO_x, and cannot be interpreted as a "pure" NO_x measurement (see summary in Parrish and Fehsenfeld, 2000). 7 8 Total reactive nitrogen (NO_v) is included in the PAMS network only at a few sites. The 9 possible expansion of PAMS to include more widespread NO_v measurements has been suggested (McClenny, 2000). A major issue concerning measured NO_y is the possibility that HNO₃, 10 11 a major component of NO_v, is sometimes lost in inlet tubes and not measured (Luke et al., 1998; 12 Parrish and Fehsenfeld, 2000). This problem is especially critical if measured NO_v is used to 13 identify NO_x -limited versus NO_x -saturated conditions. The correlation between O_3 and NO_y 14 differs for NO_x-limited versus NO_x-saturated locations, but this difference is driven primarily by 15 differences in the ratio of O₃ to HNO₃. If HNO₃ were omitted from the NO_y measurements, than 16 the measurements would represent a biased estimate and their use would be problematic. 17 18 **TECHNIQUES FOR MEASURING OZONE AND ITS** 19 AX2.6 PRECURSORS 20 21 AX2.6.1 Sampling and Analysis of Ozone 22 Numerous techniques have been developed for sampling and measurement of O₃ in the 23 ambient atmosphere at ground level. As noted above, sparse surface networks tend to 24 underestimate maximum O₃ concentrations. Today, monitoring is conducted almost exclusively 25 with UV absorption spectrometry with commercial short path instruments, a method that has 26 been thoroughly evaluated in clean air. The ultimate reference method is a relatively long-path 27 UV absorption instrument maintained under carefully controlled conditions at NIST (e.g., Fried 28 and Hodgeson, 1982). Episodic measurements are made with a variety of other techniques based 29 on the principles of chemiluminescence, electrochemistry, DOAS, and LIDAR. The rationale, 30 history, and calibration of O₃ measurements were summarized in AQCD 96, so this section will
 - August 2005

1 focus on the current state of ambient O_3 measurement, tests for artifacts, and on new

2 developments.

3 Several reports in the reviewed scientific literature have investigated interferences in O₃ 4 detection via UV radiation absorption. Kleindienst et al. (1993) investigated the effects of water vapor and VOCs on instruments based on both UV absorption and chemiluminescence. They 5 6 concluded that water vapor had no significant impact on UV absorption-based instruments, but 7 could cause a positive interference of up to 9% in chemiluminescence-based detectors at high 8 humidities (dew point of 24 C). In smog chamber studies, aromatic compounds and their 9 oxidation products were found to generate a positive but small interference in the UV absorption 10 instruments. Kleindienst et al. concluded that "when the results are scaled back to ambient 11 concentrations of toluene and NO_x, the effect appears to be very minor (ca. 3 percent under the study conditions)." Narita et al. (1998) tested organic and inorganic compounds and found 12 13 response to several, but not at levels likely to interfere with accurate determination of O₃ in an urban environment. More recently, Arshinov et al. (2002) reported a positive interference in UV 14 15 absorption instruments from ambient aerosols, but this interference is eliminated by use of 16 appropriate particle filters. The possibility for substantive interferences in O₃ detection exists, but such interferences have not been observed even in urban plumes. Ryerson et al. (1998) 17 18 measured O₃ with UV absorption and chemiluminescence instruments operated off a common 19 inlet on the NOAA WP-3 research aircraft. As reported by Parrish and Fehsenfeld (2000) 20 "Through five field missions over four years, excellent correlations were found between the 21 measurements of the two instruments, although the chemiluminescence instrument was 22 systematically low (5%) throughout some flights. The data sets include many passes through the Nashville urban plume. There was never any indication (< 1%) that the UV instrument 23 24 measured systematically higher in the urban plume." The same group tested the air of Houston, 25 El Paso, Nashville, Los Angeles, San Francisco, and the East Coast. They observed only one 26 instance of substantive positive interference defined as the UV absorption technique showing 27 more than a few ppb more than the CL. This occurred in Laporte, TX under heavily polluted 28 conditions and a low inversion, at night (Jobson et al., 2004). 29

Leston et al. (2005) reported positive and negative interferences in UV absorption
 techniques for measuring O₃ (relative to the CL technique) in Mexico City and in a smog
 chamber study. They suggested that O₃ measured in ambient air could be too high by 20 to

1 40 ppb under specific conditions due to positive interference by a number of organic compounds, 2 mainly those produced during the oxidation of aromatic hydrocarbons and some primary 3 compounds such as styrene and naphthalene. However, they did not collocate CL and UV 4 instruments at any ambient air monitoring sites in the United States. In addition, the 5 concentrations of these compounds were many times higher in both of these environments than 6 are typically found at ambient air monitoring sites in the United States. Although Hg is also potentially a strong interfering agent, because the Hg resonance line is used in this technique, its 7 8 concentration would also have to be many times higher than is typically found in ambient air. 9 Thus, it seems unlikely that such interferences would amount to more than one or two ppb 10 (within the design specifications of the FEM), except under conditions conducive to producing 11 high concentrations of the substances they identified as causing interference. These conditions 12 might be found next to a plant producing styrene, for example. Leston et al. (2005) also noted that the use of alternative materials in the scrubber could alleviate many potential problems 13 14 under these conditions.

15 Ozone can also be detected by differential optical absorption spectroscopy (DOAS) at a 16 variety of wavelengths in the UV and visible parts of the spectrum. Prior comparisons of DOAS results to those from a UV absorption instrument showed good agreement, on the order of 10% 17 18 (Stevens et al., 1993). Reisinger (2002) reported a positive interference due to an unidentified 19 absorber in the 279 to 289 nm spectral region used by many commercial short-path DOAS 20 systems for the measurement of O₃. Results of that study suggest that effluent from wood 21 burning, used for domestic heating, may be responsible. Vandaele et al. (2002) reported good 22 agreement with other methods in the detection of O_3 (and SO_2) over the course of several years 23 in Brussels. While the DOAS method remains attractive due to its sensitivity and speed of 24 response further intercomparisons and interference tests are recommended.

Electrochemical methods are commonly employed where sensor weight is a problem, such as in balloon borne sondes, and these techniques have been investigated for ambient monitoring. Recent developments include changes in the electrodes and electrolyte solution (Knake and Hauser, 2002) and selective removal of O_3 for a chemical zero (Penrose et al., 1995). Interferences from other oxidants such as NO_2 and HONO remain potential problems and further comparisons with UV absorption are necessary. Because of potential interferences from water vapor (ASTM, 2003a,b), all instruments should be either calibrated and zeroed with air humidity
 near ambient or demonstrated to be insensitive to humidity.

Change in the vibration frequency of a piezoelectric quartz crystal has been investigated as a means of detecting O₃. Ozone reacts with polybutadiene coated onto the surface of a crystal, and the resulting change in mass is detected as a frequency change (Black et al., 2000). While this sensor has advantages of reduced cost power consumption and weight, it is lacks the lifetime and absolute accuracy for ambient monitoring.

8 In summary, new techniques are being developed, but UV absorption remains the method 9 of choice for ambient O₃ monitoring near the Earth's surface. These commercial UV absorption 10 detectors are available at a moderate price. They show good absolute accuracy with only minor 11 cross sensitivity in clean to moderately polluted environments; they are stable, reliable, and 12 sensitive.

13

14 AX2.6.2 Sampling and Analysis of Nitrogen Oxides

15 The role of nitrogen oxides in tropospheric O₃ formation was reviewed thoroughly in the 16 previous AQCD and will be only briefly summarized here. Reactive nitrogen is generally 17 released as NO but quickly converted in ambient air to NO₂ and back again, thus these two 18 species are often referred to together as NO_x (NO + NO₂). The photochemical interconversion of NO and NO₂ leads to O₃ formation. Because NO₂ is a health hazard at sufficiently high 19 20 concentrations, it is itself a criteria pollutant. In EPA documents, emissions of NO_x are 21 expressed in units of mass of NO₂ per unit time, i.e., the total mass of NO_x that would be emitted if all the NO were converted to NO2. Ambient air monitors have been required to demonstrate 22 23 compliance with the standard for NO₂ and thus have focused on measuring this gas or 24 determining an upper limit for its concentration.

NO_x can be further oxidized to species including nitrous acid (HNO₂), nitric acid (HNO₃), aerosol nitrate (NO₃⁻), and organo-nitrates such as alkyl nitrates (RONO₂) and peroxy acetyl nitrate, PAN, (CH₃C(O)O₂NO₂). The sum of these species (explicitly excluding N₂, N₂O, and reduced N such as NH₃ and HCN) is called NO_y. Nitrates play important roles in acid rain, and nutrient cycling including over nitrification of surface ecosystems and in the formation of fine particulate matter, but are generally inactive photochemically. Some studies refer specifically to the oxidized or processed NO_y species, NO_y-NO_x, as NO_z because this quantity is related to the 1 2

3

4

5

degree of photochemical aging in the atmosphere. Several NO_z species such as PAN and HONO can be readily photolyzed or thermally dissociated to NO or NO_2 and thus act as reservoirs for NO_x . This discussion focuses on current methods and on promising new technologies, but no attempt is made here to cover the extensive development of these methods or of methods such as wet chemical techniques, no longer in widespread use. More detailed discussions of the histories of these methods may be found elsewhere (U.S. Environmental Protection Agency, 1993, 1996).

6 7

8

AX2.6.2.1 Calibration Standards

9 Calibration gas standards of NO, in nitrogen (certified at concentrations of approximately 10 5 to 40 ppm) are obtainable from the Standard Reference Material (SRM) Program of the 11 National Institute of Standards and Technology (NIST), formerly the National Bureau of 12 Standards (NBS), in Gaithersburg, MD. These SRMs are supplied as compressed gas mixtures 13 at about 135 bar (1900 psi) in high-pressure aluminum cylinders containing 800 L of gas at 14 standard temperature and pressure, dry (STPD; National Bureau of Standards, 1975; Guenther 15 et al., 1996). Each cylinder is supplied with a certificate stating concentration and uncertainty. 16 The concentrations are certified to be accurate to ± 1 percent relative to the stated values. 17 Because of the resources required for their certification, SRMs are not intended for use as daily 18 working standards, but rather as primary standards against which transfer standards can be 19 calibrated.

20 Transfer stand-alone calibration gas standards of NO in N₂ (in the concentrations indicated 21 above) are obtainable from specialty gas companies. Information as to whether a company 22 supplies such mixtures is obtainable from the company, or from the SRM Program of NIST. 23 These NIST Traceable Reference Materials (NTRMs) are purchased directly from industry and 24 are supplied as compressed gas mixtures at approximately 135 bars (1,900 psi) in high-pressure 25 aluminum cylinders containing 4,000 L of gas at STPD. Each cylinder is supplied with a 26 certificate stating concentration and uncertainty. The concentrations are certified to be accurate 27 to within ± 1 percent of the stated values (Guenther et al., 1996). Additional details can be found 28 in the previous AQCD for O₃ (U.S. Environmental Protection Agency, 1996).

- 29
- 30

1 AX2.6.2.2 Measurement of Nitric Oxide

2 Gas-Phase Chemiluminescence (CL) Methods

3 Nitric oxide, NO, can be measured reliably using the principle of gas-phase 4 chemiluminescence induced by the reaction of NO with O₃ at low pressure. Modern commercial NO_x analyzers have sufficient sensitivity and specificity for adequate measurement in urban and 5 many rural locations (U.S. Environmental Protection Agency, 1996). The physics of the method, 6 7 detection limits, interferences, and comparisons under field comparisons have been thoroughly 8 reviewed in the previous AQCD. Research grade CL instruments have been compared under 9 realistic field conditions to spectroscopic instruments, and the results indicate that both methods 10 are reliable (at concentrations relevant to smog studies) to better than 15 percent with 95 percent 11 confidence. Response times are on the order of 1 minute. For measurements meaningful for 12 understanding O₃ formation, emissions modeling, and N deposition, special care must be taken 13 to frequently zero and calibrate the instrument. A chemical zero, by reacting the NO up stream 14 and out of view of the PMT, is preferred because it accounts for unsaturated hydrocarbon or 15 other interferences. Calibration should be performed with NIST-traceable reference material of 16 compressed NO in N₂. Standard additions of NO at the inlet will account for NO loss or conversion to NO₂ in the lines. In summary CL methods, when operated in an appropriate 17 18 manner, can be suitable for measuring or monitoring NO (e.g., Crosley, 1996).

19 20

Spectroscopic Methods for Nitric Oxide

21 Nitric oxide has also been successfully measured in ambient air with direct spectroscopic 22 methods; these include two-photon laser-induced fluorescence (TPLIF), tunable diode laser 23 absorption spectroscopy (TDLAS), and two-tone frequency-modulated spectroscopy (TTFMS). 24 These were reviewed thoroughly in the previous AQCD and will be only briefly summarized 25 here. The spectroscopic methods demonstrate excellent sensitivity and selectivity for NO with 26 detection limits on the order of 10 ppt for integration times of 1 min. Spectroscopic methods 27 compare well with the CL method for NO in controlled laboratory air, ambient air, and heavily 28 polluted air (e.g., Walega et al., 1984; Gregory et al., 1990; Kireev et al., 1999). These 29 spectroscopic methods remain in the research arena due to their complexity, size, and cost, but 30 are essential for demonstrating that CL methods are reliable for monitoring NO concentrations involved in O_3 formation — from 100's of ppb to around 20 ppt. 31

Atmospheric pressure laser ionization followed by mass spectroscopy has also been reported for detection of NO and NO₂. Garnica et al. (2000) describe a technique involving selective excitation at one wavelength followed by ionization at a second wavelength. They report good selectivity and detection limits well below 1 ppb. The practicality of the instrument for ambient monitoring has yet to be demonstrated.

6

7

AX2.6.2.3 Measurements of Nitrogen Dioxide

8 Gas-Phase Chemiluminescence Methods

Since the previous AQCD, photolytic reduction followed by CL has been improved and the
method of laser-induced fluorescence has been developed. Ryerson et al. (2000) developed a
photolytic converter based on a Hg lamp with increased radiant intensity in the region of peak
NO₂ photolysis (350 to 400 nm) and producing conversion efficiencies of 70% or more in less
than 1 s. Because the converter produces little radiation at wavelengths less than 350 nm,
interferences from HNO₃ and PAN are minimal.

Alternative methods to photolytic reduction followed by CL are desirable to test the
 reliability of this widely used technique. In any detector based on conversion to another species
 interferences can be a problem. Several atmospheric species, PAN and HO₂NO₂ for example,
 dissociate to NO₂ at higher temperatures.

Laser induced fluorescence for NO2 detection involves excitation of atmospheric NO2 with 19 20 laser light emitted at wavelengths too long to induce photolysis. The resulting excited molecules 21 relax in a photoemissive mode and the fluorescing photons are counted. Because collisions would rapidly quench electronically excited NO₂, the reactions are conducted at low pressure 22 23 (Cohen, 1999; Thornton et al., 2000; Day et al., 2002). For example Cleary et al. (2002) 24 describe field tests of a system that uses continuous, supersonic expansion followed by 25 excitation at 640 nm with a commercial cw external-cavity tunable diode laser. Sensitivity is 26 adequate for measurements in most continental environments (145 ppt in 1 min) and no interferences have been identified. 27

Matsumi et al. (2001) describe a comparison of laser-induced fluorescence with a photofragmentation chemiluminescence instrument. The laser-induced fluorescence system involves excitation at 440 nm with a multiple laser system. They report sensitivity of 30 ppt in 10 s and good agreement between the two methods under laboratory conditions at mixing ratios up to 1.0 ppb. This high-sensitivity laser-induced fluorescence system has yet to undergo long term field tests.

3 NO₂ can be detected by differential optical absorption spectroscopy (DOAS) in an open, 4 long-path system (Kim and Kim, 2001). Vandaele et al. (2002) reported that the DOAS 5 technique measured higher NO₂ concentrations than were reported by other techniques in a 6 three-year study conducted in Brussels. Harder et al. (1997b) conducted an experiment in rural Colorado involving simultaneous measurements of NO₂ with DOAS and photolysis followed by 7 8 chemiluminescence. The found differences of as much as 110% in clean air from the west, but 9 for NO₂ mixing ratios in excess of 300 ppt, the two methods agreed to better than 10%. Stutz 10 and Platt (1996) report less uncertainty.

11

12 AX2.6.2.4 Monitoring for NO₂ Compliance Versus Monitoring for Ozone Formation

13 Observations of NO₂ have been focused on demonstrating compliance with the NAAQS for NO2. Today, few locations violate that standard, but NO2 and related NOv compounds remain 14 15 among the most important atmospheric trace gases to measure and understand. Commercial 16 instruments for NO/NO_x detection are generally constructed with an internal converter for 17 reduction of NO_2 to NO, and generate a signal referred to as NO_x . These converters, generally 18 constructed of molybdenum oxides (MoOx), reduce not only NO₂ but also most other NO_y species (Fehsenfeld et al., 1987; Crosley, 1996; Nunnermacker et al., 1998). Thus the NO_x 19 20 signal is more accurately referred to as NO_v. Unfortunately with an internal converter, the instruments may not give a faithful indication of NO_v either — reactive species such as HNO₃ 21 22 will adhere to the walls of the inlet system. Most recently, commercial vendors such as Thermo 23 Environmental (Franklin, MA) have offered NO/NO_v detectors with external Mo converters. 24 If such instruments are calibrated through the inlet with a reactive nitrogen species such as 25 propyl nitrate, they should give accurate measurements of total NO_v, suitable for evaluation of 26 photochemical models. States should be encouraged to make these NO_v measurements where 27 ever possible.

28

29 AX2.6.3 Measurements of Nitric Acid Vapor, HNO₃

Accurate measurement of nitric acid vapor, HNO₃, has presented a long-standing analytical
 challenge to the atmospheric chemistry community. In this context, it is useful to consider the

major factors that control HNO₃ partitioning between the gas and deliquesced-particulate phases
in ambient air. In equation form,

$$HNO_{3g} \Leftrightarrow [HNO_{3aq}] \Leftrightarrow [H^+] + [NO_3^-]$$
(AX2-52)

7 where K_{H} is the Henry's Law constant in M atm-1 and Ka is the acid dissociation constant in M. 8 Thus, the primary controls on HNO₃ phase partitioning are its thermodynamic properties 9 (K_H, K_a, and associated temperature corrections), aerosol liquid water content (LWC), solution pH, and kinetics. Aerosol LWC and pH are controlled by the relative mix of different acids and 10 11 bases in the system, hygroscopic properties of condensed compounds, and meteorological 12 conditions (RH, temperature, and pressure). It is evident from relationship XX that, in the 13 presence of chemically distinct aerosols of varying acidities (e.g., super-µm predominantly sea 14 salt and sub-µm predominantly S aerosol), HNO₃ will partition preferentially with the less-acidic 15 particles, which is consistent with observations (e.g., Huebert et al., 1996; Keene and Savoie, 16 1998; Keene et al., 2002). Kinetics are controlled by atmospheric concentrations of HNO₃ vapor and particulate NO₃⁻ and the size distribution and corresponding atmospheric lifetimes of 17 18 particles against deposition. Sub-µm-diameter aerosols typically equilibrate with the gas phase 19 in seconds to minutes while super-um aerosols require hours to a day or more (e.g., Meng and 20 Seinfeld, 1996; Erickson et al., 1999. Consequently, smaller aerosol size fractions are typically 21 close to thermodynamic equilibrium with respect to HNO₃ whereas larger size fractions (for 22 which atmospheric lifetimes against deposition range from hours to a few days) are often 23 undersaturated (e.g., Erickson et al., 1999; Keene and Savioe, 1998).

24 Many sampling techniques for HNO₃ (e.g., standard filterpack and mist-chamber samplers) 25 employ upstream prefilters to remove particulate species from sample air. However, when 26 chemically distinct aerosols with different pHs (e.g., sea salt and S aerosols) mix together on a 27 bulk filter, the acidity of the bulk mixture will be greater than that of the less acidic aerosols with 28 which most NO_3^- is associated. This change in pH may cause the bulk mix to be supersaturated 29 with respect to HNO₃ leading to volatilization and, thus, positive measurement bias in HNO₃ 30 sampled downstream. Alternatively, when undersaturated super-um size fractions (e.g., sea salt) 31 accumulate on a bulk filter and chemically interacts over time with HNO₃ in the sample air

3

4

5

6

- 1 stream, scavenging may lead to negative bias in HNO₃ sampled downsteam. Because the 2 magnitude of both effects will vary as functions of the overall composition and thermodynamic 3 state of the multiphase system, the combined influence can cause net positive or net negative 4 measurement bias in resulting data. Pressure drops across particle filters can also lead to artifact 5 volatilization and associated positive bias in HNO₃ measured downstream. 6 Widely used methods for measuring HNO₃ include standard filterpacks configured with 7 nylon or alkaline-impregnated filters (e.g., Goldan et al., 1983; Bardwell et al., 1990; 8 respectively) and standard mist chambers (Talbot et al., 1990). Samples are typically analyzed 9 by ion chromatography. Intercomparisons of these measurement techniques (e.g., Hering et al., 10 1988; Tanner et al., 1989; Talbot et al., 1990) report differences of a factor of two or more. 11 More recently, sensitive HNO₃ measurements based on the principle of Chemical 12 Ionization Mass Spectroscopy (CIMS) have been reported (e.g., Huey et al., 1998; Mauldin 13 et al., 1998; Furutani and Akimoto, 2002; Neuman et al., 2002). CIMS relies on selective 14 formation of ions such as SiF_5 HNO₃ or HSO₄ HNO₃ followed by detection via mass 15 spectroscopy. Two CIMS techniques and a filter pack technique were intercompared in Boulder, 16 CO (Fehsenfeld et al., 1998). Results indicated excellent agreement (within 15%) between the two CIMS instruments and between the CIMS and filterpack methods under relatively clean 17 18 conditions with HNO₃ mixing ratios between 50 and 400 pptv. In more polluted air, the 19 filterpack technique generally yielded higher values than the CIMS suggesting that interactions 20 between chemically distinct particles on bulk filters is a more important source of bias in 21 polluted continental air. Differences were also greater at lower temperature when particulate NO_3^- corresponded to relatively greater fractions of total NO_3^- . 22
- 23

24 AX2.6.4 Sampling and Analysis of Volatile Organic Compounds

Hydrocarbons can be measured with gas chromatography followed by flame ionization
detection (GC-FID). Detection by mass spectroscopy is sometimes used to confirm species
identified by retention time (Westberg and Zimmerman, 1993; Dewulf and Van Langenhove,
1997). Preconcentration is typically required for less abundant species. Details are available in
AQCD 96.

Because of their variety, nonmethane hydrocarbons pose special analytical problems,
and several laboratory and field studies have recently addresses the uncertainty of VOC

1 measurements. An intercomparison conducted with 16 components among 28 laboratories, 2 showed agreement on the order of 10s of percents (Apel et al., 1994). In a more recent 3 intercomparison (Apel et al., 1999) 36 investigators from around the world were asked to 4 identify and quantify C_2 to C_{10} hydrocarbons (HCs) in a mixture in synthetic air. Calibration was based on gas standards of individual compounds, such as propane in air, and a 16-compound 5 6 mixture of C₂ to C₁₆ –alkanes, all prepared by NIST and certified to ± 3 percent. The 7 top-performing laboratories, including several in the United States, identified all the compounds 8 correctly, and obtained agreement of generally better than 20 percent for the 60 compounds. 9 Intercomparison of NMHCs in ambient air has only recently been reported by a European group 10 of 12 – 14 laboratories (Slemr et al., 2002). Some compounds gave several groups difficulties, 11 including isobutene, butadiene, methyl pentanes, and trimethyl benzenes. These 12 intercomparisons illustrated the need for reliable, multicomponent calibration standards.

13 14

AX2.6.4.1 Polar Volatile Organic Compounds

15 Many of the more reactive oxygen- and nitrogen-containing organic compounds play a role 16 in O₃ formation and are included among list of 189 hazardous air pollutants specified in the 1990 17 CAAA (U.S. Congress, 1990). These compounds are emitted directly from a variety of sources 18 including biogenic processes, biomass burning, industry, vehicles, and consumer products. 19 Some can also be formed in the atmosphere by photochemical oxidation of hydrocarbons. 20 Although these compounds have been referred to collectively as PVOCs, their reactivity and 21 water solubility, rather than just polarity, make sampling and measurement challenging. As 22 indicated in the earlier AQCD, few ambient data exist for these species, but that database has 23 grown. The previous AQCD discusses two analytical methods for PVOCs - cryogenic trapping 24 techniques similar to those used for the nonpolar hydrocarbon species, and adsorbent material 25 for sample preconcentration. Here we discuss recently developed methods.

Several techniques for sampling, preconcentrating and detecting oxygenated volatile organic compounds were inter-compared during the 1995 Southern Oxidants Study Nashville Intensive (Apel et al., 1998). Both chemical traps and derivatization followed by HPLC and pre-concentration and gas chromatography followed by mass spectrometric of flame ionization were investigated. Both laboratory and field tests were conducted for formaldehyde, acetaldehyde, acetone, and propanal. Substantial differences were observed indicating that reliable sampling and measurement of PVOCs remains an analytical challenge and high research
 priority.

3 Chemical ionization-mass spectroscopy, such as proton-transfer-reaction mass 4 spectroscopy (PTR-MS) can also be used for fast-response measurement of volatile organic 5 compounds including acetonitrile (CH₃CN), methanol (CH₃OH), acetone (CH₃COCH₃), acetaldehyde (CH₃CHO), benzene (C₆H₆) and toluene (C₆H₅CH₃) (e.g., Hansel et al., 1995a,b; 6 7 Lindinger et al., 1998; Leibrock and Huey, 2000; Warneke et al., 2001). The method relies on 8 gas phase proton transfer reactions between H_3O^+ primary ions and volatile trace gases with a 9 proton affinity higher than that of water. Into a flow drift tube continuously flushed with 10 ambient air, H_3O^+ ions (from a hollow cathode ion source) are injected. On collisions between 11 H_3O^+ ions and organic molecules protons H^+ are transferred thus charging the reagent. Both 12 primary and product ions are analyzed in a quadrupole mass spectrometer and detected by a 13 secondary electron multiplier/pulse counting system. The instrument has been successfully 14 employed in several field campaigns and compared to other techniques including gas 15 chromatography and Atmospheric Pressure Chemical Ionization Mass Spectrometer (AP-CIMS) 16 (Crutzen et al., 2000; Sprung et al., 2001). Sufficient sensitivity was observed for urban and 17 rural measurements; no interferences were discovered, although care must be exercised to avoid 18 sampling losses. Commercial instruments are becoming available, but their price still precludes 19 widespread monitoring.

REFERENCES

- Allan, B. J.; McFiggans, G.; Plane, J. M. C. (2000) The nitrate radical in the remote marine boundary layer. J. Geophys. Res. [Atmos.] 105(D19): 24,191-24,204.
- Allan, B. J.; Plane, J. M. C.; McFiggans, G. (2001) Observations of OIO in the remote marine boundary layer. Geophys. Res. Lett. 28: 1945-1948.
- Allen, D. J.; Pickering, K. E. (2002) Evaluation of lightning flash rate parameterizations for use in a global chemical transport model. J. Geophys. Res. [Atmos.] 107(D23): 10.1029/2002JD002066.
- Allen, D. J.; Pickering, K. E.; Molod, A. (1997) An evaluation of deep convective mixing in the Goddard Chemical Transport Model using ISCCP cloud parameters. J. Geophys. Res. [Atmos.] 102: 25,467-25,476.
- Allen, D.; Pickering, K.; Stenchikov, G.; Thompson, A.; Kondo, Y. (2000) A three-dimensional total odd nitrogen (NO_y) simulation during SONEX using a stretched-grid chemical transport model. J. Geophys. Res. [Atmos.] 105: 3851-3876.
- Altshuller, A. P. (1986) The role of nitrogen oxides in nonurban ozone formation in the planetary boundary layer over N America, W Europe and adjacent areas of ocean. Atmos. Environ. 20: 245-268.
- Altshuller, A. P.; Lefohn, A. S. (1996) Background ozone in the planetary boundary layer over the United States. J. Air Waste Manage. Assoc. 46: 134-141.
- Alvarez, II; Senff, C. J.; Hardesty, R. M.; Parrish, D. D.; Luke, W. T.; Watson, T. B.; Daum, P. H.; Gillani, N. (1998) Comparisons of airborne lidar measurements of ozone with airborne in situ measurements during the 1995 Southern Oxidants study. J. Geophys. Res. [Atmos.] 103: 31155-35171.
- American Society for Testing and Materials (ASTM) International. (2003a) Standard test method for ozone in the atmosphere: continuous measurement by ethylene chemiluminescence. In: Annual Book of ASTM Standards 2003, v. 11.03: D 5149-02. West Conshohocken, PA: American Society for Testing and Materials; pp. 443-447.
- American Society for Testing and Materials (ASTM) International. (2003b) Standard test methods for continuous measurement of ozone in ambient, workplace, and indoor atmospheres (ultraviolet absorption). In: Annual Book of ASTM Standards 2003, v. 11.03: D 5156-02. West Conshohocken, PA: American Society for Testing and Materials; pp. 448-454.
- Ammann, M.; Kalberer, M.; Jost, D. T.; Tobler, L.; Rössler, E.; Piguet, D.; Gäggeler, H. W.; Baltensperger, U. (1998) Heterogeneous production of nitrous acid on soot in polluted air masses. Nature (London) 395: 157-160.
- Anastasio, C.; Faust, B. C.; Allen, J. M. (1994) Aqueous phase photochemical formation of hydrogen peroxide in authentic cloud waters. J. Geophys. Res. [Atmos.] 99: 8231-8248.
- Anastasio, C.; Faust, B. C.; Rao, C. J. (1997) Aromatic carbonyl compounds as aqueous-phase photochemical sources of hydrogen peroxide in acidic sulfate aerosols, fogs, and clouds. 1. Non-phenolic methoxybenzaldehydes and methoxyacetophenones with reductants (phenols). Environ. Sci. Technol. 31: 218-232.
- Anastasio, C.; Newberg, J. T.; Williams, D. K.; Chu, G. B.; Mathew, B. M. (1999) Photoformation of hydroxyl radical in sea salt particles. EOS Trans. Am. Geophys. Union 80: F147.
- Andino, J. M.; Smith, J. N.; Flagan, R. C.; Goddard, W. A., III; Seinfeld, J. H. (1996) Mechanism of the atmospheric photooxidation of aromatics: a theoretical study. J. Phys. Chem. 100: 10,967-10,980.
- Andreae, M. O. (1991) Biomass burning: its history, use, and distribution and its impact on environmental quality and global climate. In: Levine, J. S., ed. Global biomass burning: atmospheric, climatic, and biospheric implications. Cambridge, MA: MIT Press; pp. 1-21.
- Andrés Hernández, M. D.; Burkert, J.; Reichert, L.; Stöbener, D.; Meyer-Arnek, J.; Dickerson, R. R.; Doddridge, B. G.; Burrows, J. P. (2001) Marine boundary layer peroxy radical chemistry during the AEROSOLS99 campaign: measurements and analysis. J. Geophys. Res. (Atmos.) 106(D18): 20,833-20,846.
- Andronache, C.; Chameides, W. L.; Rodgers, M. O.; Martinez, J. E.; Zimmerman, P.; Greenberg, J. (1994) Vertical distribution of isoprene in the lower boundary layer of the rural and urban southern United States. J. Geophys. Res. [Atmos.]) 99: 16,989-17,000.
- Angevine, W. M.; Buhr, M. P.; Holloway, J. S.; Trainer, M.; Parrish, D. D.; MacPherson, J. I.; Kok, G. L.; Schillawski, R. D.; Bowlby, D. H. (1996) Local meteorological features affecting chemical measurements at a North Atlantic coastal site. J. Geophys. Res. (Atmos.) 101(D22): 28,935-28,946.
- Apel, E. C.; Calvert, J. G.; Fehsenfeld, F. C. (1994) The nonmethane hydrocarbon intercomparison experiment (NOMHICE): tasks 1 and 2. J. Geophys. Res. [Atmos.] 99(D8): 16,651-16,664.

1

- Apel, E. C.; Calvert, J. G.; Riemer, D.; Pos, W.; Zika, R.; Kleindienst, T. E.; Lonneman, W. A.; Fung, K.; Fujita, E.; Shepson, P. B.; Starn, T. K.; Roberts, P. T. (1998) Measurements comparison of oxygenated volatile organic compounds at a rural site during the 1995 SOS Nashville Intensive. J. Geophys. Res. (Atmos.) 103(D17): 22,295-22,316.
- Apel, E. C.; Calvert, J. G.; Gilpin, T. M.; Fehsenfeld, F. C.; Parrish, D. D.; Lonneman, W. A. (1999) The Nonmethane Hydrocarbon Intercomparison Experiment (NOMHICE): task 3. J. Geophys. Res. [Atmos.] 104(D21): 26,069-26,086.
- Appenzeller, C.; Davies, H. C. (1992) Structure of stratospheric intrusions into the troposphere. Nature 358: 570-572.
- Appenzeller, C.; Davies, H. C.; Norton, W. A. (1996) Fragmentation of stratospheric intrusions. J. Geophys. Res. [Atmos.] 101: 1435-1456.
- Arnold, F.; Bürger, V.; Droste-Fanke, B.; Grimm, F.; Krieger, A.; Schneider, J.; Stilp, T. (1997) Acetone in the upper troposphere and lower stratosphere: impact on trace gases and aerosols. Geophys. Res. Lett. 24: 3017-3020.
- Arnold, S. R.; Chipperfield, M. P.; Blitz, M. A.; Heard, D. E.; Pilling, M. J. (2004) Photodissociation of acetone: atmospheric implications of temperature-dependent quantum yields. Geophys. Res. Lett. 31(L07110): 10.1029/2003GL019099.
- Arshinov, M. Y.; Belan, B. D.; Krasnov, O. A.; Kovalevskii, V. K.; Pirogov, V. A.; Plotnikov, A. P.; Tolmachev, G. N.; Fofonov, A. V. (2002) Comparison of ultraviolet and chemiluminescent ozonometers. Atmos. Oceanic Opt. 15: 656-658.
- Ashworth, S. H.; Allan, B. J.; Plane, J. M. C. (2002) High resolution spectroscopy of the OIO radical: implications for the ozone-depleting potential of iodine. Geophys. Res. Lett. 29: 65-1 65-4.
- Atherton, C. S.; Penner, J. E. (1988) The transformation of nitrogen oxides in the polluted troposphere. Tellus B 40: 380-392.
- Atkinson, R. (1989) Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. Washington, DC: American Chemical Society. (J. Phys. Chem. Ref. Data Monograph no. 1).
- Atkinson, R. (1990) Gas-phase tropospheric chemistry of organic compounds: a review. Atmos. Environ. Part A 24: 1-41.
- Atkinson, R. (1991) Kinetics and mechanisms of the gas-phase reactions of the NO_x radical with organic compounds. J. Phys. Chem. Ref. Data 20: 459-507.
- Atkinson, R. (1994) Gas-phase tropospheric chemistry of organic compounds. Washington, DC: American Chemical Society. (J. Phys. Chem. Ref. Data Monograph no. 2).
- Atkinson, R. (1997) Atmospheric reactions of alkoxy and β-hydroxyalkoxy radicals. Int. J. Chem. Kinet. 29: 99-111.
- Atkinson, R. (2000) Atmospheric chemistry of VOCs and NO_x. Atmos. Environ. 34: 2063-2101.
- Atkinson, R.; Arey, J. (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos. Environ.: 10.1016/S1352-2310(03)00391-1.
- Atkinson, R.; Aschmann, S. M. (1994) Products of the gas-phase reactions of aromatic hydrocarbons: effect of NO₂ concentration. Int. J. Chem. Kinet. 26: 929-944.
- Atkinson, R.; Carter, W. P. L.; Darnall, K. R.; Winer, A. M.; Pitts, J. N., Jr. (1980) A smog chamber and modeling study of the gas phase NO_x-air photooxidation of toluene and the cresols. Int. J. Chem. Kinet. 12: 779-836.
- Atkinson, R.; Winer, A. M.; Pitts, J. N., Jr. (1986) Estimation of night-time N₂O₅ concentrations from ambient NO₂ and NO₃ radical concentrations and the role of N₂O₅ in night-time chemistry. Atmos. Environ. 20: 331-339.
- Atkinson, R.; Aschmann, S. M.; Arey, J.; Carter, W. P. L. (1989) Formation of ring-retaining products from the OH radical-initiated reactions of benzene and toluene. Int. J. Chem. Kinet. 21: 801-827.
- Atkinson, R.; Arey, J.; Zielinska, B.; Aschmann, S. M. (1990) Kinetics and nitro-products of the gas-phase OH and NO₃ radical-initiated reactions of naphthalene-d8, fluoranthene-d10 and pyrene. Int. J. Chem. Kinet. 22: 999-1014.
- Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr, J. A.; Troe, J. (1992a) Evaluated kinetic and photochemical data for atmospheric chemistry: supplement IV, IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. J. Phys. Chem. Ref. Data 21: 1125-1568.
- Atkinson, R.; Aschmann, S. M.; Arey, J.; Shorees, B. (1992b) Formation of OH radicals in the gas phase reactions of O₃ with a series of terpenes. J. Geophys. Res. [Atmos.] 97: 6065-6073.
- Atkinson, R.; Kwok, E. S. C.; Arey, J.; Aschmann, S. M. (1995) Reactions of alkoxyl radicals in the atmosphere. Faraday Discuss. 100: 23-37.

- Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr, J. A.; Rossi, M. J.; Troe, J. (1999) Evaluated kinetic and photochemical data for atmospheric chemistry, organic species: supplement VII. J. Phys. Chem. Ref. Data 28: 191-393.
- Ayers, G. P.; Penkett, S. A.; Gillett, R. W.; Bandy, B.; Galbally, I. E.; Meyer, C. P.; Elsworth, C. M.; Bentley, S. T.; Forgan, B. W. (1992) Evidence for photochemical control of ozone concentrations in unpolluted marine air. Nature (London) 360: 446-449.
- Ayers, G. P.; Gillett, R. W.; McAiney, J. M.; Dick, A. L. (1999) Chloride and bromide loss from sea-salt particles in the southern ocean air. J. Atmos. Chem. 33: 299-319.
- Bais, A. F.; Madronich, S.; Crawford, J.; Hall, S. R.; Mayer, B.; Van Weele, M.; Lenoble, J.; Calvert, J. G.; Cantrell, C. A.; Shetter, R. E.; Hofzumahaus, A.; Koepke, P.; Monks, P. S.; Frost, G.; McKenzie, R.; Krotkov, N.; Kylling, A.; Swartz, W. H.; Lloyd, S.; Pfister, G.; Martin, T. J.; Roeth, E.-P.; Griffioen, E.; Ruggaber, A.; Krol, M.; Kraus, A.; Edwards, G. D.; Mueller, M.; Lefer, B. L. (2003) International Photolysis Frequency Measurement and Model Intercomparison (IPMMI): Spectral actinic solar flux measurements and modeling. J. Geophys. Res. [Atmos.] 108(D16): 10.1029/2002JD002891.
- Balkanski, Y. J.; Jacob, D. J.; Gardener, G. M.; Graustein, W. C.; Turekian, K. K. (1993) Transport and residence times of tropospheric aerosols inferred from a global three-dimensional simulation of ²¹⁰Pb. J. Geophys. Res. [Atmos.] 98: 20,573-20,586.
- Bandow, H.; Washida, N. (1985a) Ring-cleavage reactions of aromatic hydrocarbons studied by FT-IR spectroscopy. II photooxidation of *o*-, *m*-, and *p*-xylenes in the NO_x-air system. Bull. Chem. Soc. Jpn. 58: 2541-2548.
- Bandow, H.; Washida, N. (1985b) Ring-cleavage reactions of aromatic hydrocarbons studied by FT-IR spectroscopy. III photooxidation of 1,2,3-, 1,2,4-, and 1,3,5-trimethylbenzene in the NO_x-air system. Bull. Chem. Soc. Jpn. 58: 2549-2555.
- Banic, C. M.; Leaitch, W. R.; Isaac, G. A.; Couture, M. D.; Kleinman, L. I.; Springston, S. R.; MacPherson, J. I. (1996) Transport of ozone and sulfur to the North Atlantic atmosphere during the North Atlantic Regional Experiment. J. Geophys. Res. [Atmos.] 101: 29,091-29,104.
- Banta, R. M.; Senff, C. J.; White, A. B.; Trainer, M.; McNider, R. T.; Valente, R. J.; Mayor, S. D.; Alvarez, R. J.; Hardesty, R. M.; Parrish, D.; Fehsenfeld, F. C. (1998) Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode. J. Geophys. Res. [Atmos.] 103: 22,519-22,544.
- Bardwell, C. A.; Maben, J. R.; Hurt, J. A.; Keene, W. C.; Galloway, J. N.; Boatman, J. F.; Wellman, D. (1990) A technique using high-flow, dichotomous filter packs for measuring major atmospheric chemical constituents. Glob. Biogeochem. Cycles 4: 151-163.
- Barrie, L. A.; Bottenheim, J. W.; Crutzen, P. J.; Rasmussen, R. A. (1988) Ozone destruction at polar sunrise in the lower Arctic atmosphere. Nature 334: 138-141.
- Bartolotti, L. J.; Edney, E. O. (1995) Density functional theory derived intermediates from the OH initiated atmospheric oxidation of toluene. Chem. Phys. Lett. 245: 119-122.
- Baugues, K. (1986) A review of NMOC, NO_x and NMOC/NO_x ratios measured in 1984 and 1985. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards; report no. EPA-450/4-86-015. Available from: NTIS, Springfield, VA; PB87-166963/HSU.
- Baumann, K.; Williams, E. J.; Angevine, W. M.; Roberts, J. M.; Norton, R. B.; Frost, G. J.; Fehsenfeld, F. C.; Springston, S. R.; Bertman, S. B.; Hartsell, B. (2000) Ozone production and transport near Nashville, Tennessee: results from the 1994 study at New Hendersonville. J. Geophys. Res. [Atmos.] 105(D7): 9137-9153.
- Behnke, W.; George, C.; Sheer, V.; Zetzsch, C. (1997) Production and decay of ClNO₂ from the reaction of gaseous N₂O₅ with NaCl solution: bulk and aerosol experiments. J. Geophys. Res. 102: 3795-3804.
- Bell, G. B. (1960) Meteorological conditions during oxidant episodes in coastal San Diego County in October and November, 1959. Sacramento, CA: State of California, Department of Public Health.
- Benjamin, S. G.; Carlson, T. N. (1986) Some effects of surface heating and topography on the region severe storm environment. Part I: three dimensional simulations. Mon. Weather Rev. 114: 307-329.
- Bergin, M. H.; Pandis, S. N.; Davidson, C. I.; Jaffrezo, J.-L.; Dibb, J. E.; Russell, A. G.; Kuhns, H. D. (1996) Modeling of the processing and removal of trace gas and aerosol species by Arctic radiation fogs and comparison with measurements. J. Geophys. Res. [Atmos.] 101: 14,465-14,478.
- Berkowitz, C. M.; Shaw, W. J. (1997) Airborne measurements of boundary layer chemistry during the Southern Oxidant Study: a case study. J. Geophys. Res. [Atmos.] 102: 12,795-12,804.

- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
- Berkowitz, C. M.; Fast, J. D.; Sprinston, S. R.; Larsen, R. J.; Spicer, C. W.; Doskey, P. V.; Hubbe, J. M.; Plastridge, R. (1998) Formation mechanisms and chemical characteristics of elevated photochemical layers over the northeast United States. J. Geophys. Res. [Atmos.] 103: 10,631-10,647.
- Berkowitz, C. M.; Fast, J. D.; Easter, R. C. (2000) Boundary layer vertical exchange processes and the mass budget of ozone: observations and model results. J. Geophys. Res. [Atmos.] 105: 14,789-14,805.
- Berkowitz, C. M.; Zaveri, R. A.; Bian, X.; Zhong, S.; Disselkamp, R. S.; Laulainen, N. S.; Chapman, E. G. (2001) Aircraft observations of aerosols, O₃ and NO_y in a nighttime urban plume. Atmos. Environ. 35: 2395-2404.
- Berndt, T.; Böge, O.; Herrmann, H. (1999) On the formation of benzene oxide/oxepin in the gas-phase reaction of OH radicals with benzene. Chem. Phys. Lett. 314: 435-442.
- Berndt, T.; Böge, O.; Stratmann, F. (2003) Gas-phase ozonolysis of α-pinene: gaseous products and particle formation. Atmos. Environ. 37: 3933-3945.
- Berntsen, T.; Isaksen, I. S. A. (1997) A global three-dimensional chemical transport model for the troposphere. 1. Model description and CO and ozone results. J. Geophys. Res. [Atmos.] 102: 21,239-21,280.
- Bey, I.; Jacob, D. J.; Logan, J. A.; Yantosca, R. M. (2001a) Asian chemical outflow to the Pacific in spring: origins, pathways, and budgets. J. Geophys. Res. [Atmos.] 106: 23,097-23,113.
- Bey, I.; Jacob, D. J.; Yantosca, R. M.; Logan, J. A.; Field, B.; Fiore, A. M.; Li, Q.; Liu, H.; Mickley, L. J.; Schultz, M. G. (2001b) Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation. J. Geophys. Res. [Atmos.] 106: 23,073-23,095.
- Bierbach, A.; Barnes, I.; Becker, K. H.; Wiesen, E. (1994) Atmospheric chemistry of unsaturated carbonyls: butenedial, 4-Oxo-2-Pentenal, 3-Hexene-2,5-Dione, Maleic Anhydride, 3H-Furan-2-one, and 5-Methyl-3H-Furan-2-one. Environ. Sci. Technol. 28: 715-729.
- Bishop, G. A.; Stedman, D. H. (1990) On-road carbon monoxide emission measurement comparisons for the 1988-1989 Colorado oxy-fuels program. Environ. Sci. Technol. 24: 843-847.
- Bishop, G. A.; Stedman, D. H. (1996) Measuring the emissions of passing cars. Acc. Chem. Res. 29: 489-495.
- Black, D. R.; Harley, R. A.; Hering, S. V.; Stolzenburg, M. R. (2000) A new, portable, real-time monitor. Environ. Sci. Technol. 34: 3031-3040.
- Blanchard, C. L. (2000) Ozone process insights from field experiments. Part III: extent of reaction and ozone formation. Atmos. Environ. 34: 2035-2043.
- Blanchard, C. L.; Stoeckenius, T. (2001) Ozone response to precursor control: comparision of data analysis methods with the predictions of photochemical air quality simulation models. Atmos. Environ. 35: 1203-1215.
- Blanchard, C. L.; Lurmann, F. W.; Roth, P. M.; Jeffries, H. E.; Korc, M. (1999) The use of ambient data to corroborate analyses of ozone control strategies. Atmos. Environ. 33: 369-381.
- Blanchard, P.; Brook, J. R.; Brazil, P. (2002) Chemical characterization of the organic fraction of atmospheric aerosol at two sites in Ontario, Canada. J. Geophys. Res. [Atmos.] 107(D21): 10.1029/2001JD000627.
- Bloom, S. C.; Takacs, L. L.; Da Silva, A. M.; Ledvina, D. (1996) Data assimilation using incremental analysis updates. Mon. Weather Rev. 124: 1256-1271.
- Blough, N. V. (1997) Photochemistry in the sea-surface microlayer. In: Liss, P. S.; Duce, R. A., eds. The sea surface and global change. New York, NY: Cambridge University Press, pp. 383-424.
- Blough, N. V.; Zepp. R. G. (1995) Reactive oxygen species in natural waters. In: Foote, C. S.; Valentine, A.; Greenberg, A.; Liebman, J. F., eds. Active Oxygen in Chemistry. New York, NY: Chapman and Hall, Ch.8, pp. 280-333.
- Blumenthal, D. L.; Lurmann, F. W.; Kumar, N.; Dye, T. S.; Ray, S. E.; Korc, M. E.; Londergan, R.; Moore, G. (1997) Transport and mixing phenomena related to ozone exceedances in the northeast U.S. (analysis based on NARSTO-northeast data). Available: http://capita.wustl.edu/otag/reports/otagrept/otagrept.html (30 October 2003).
- Bonn, B.; Moortgat, G. K. (2003) Sesquiterpene ozonolysis: origin of atmospheric new particle formation from biogenic hydrocarbons. Geophys. Res. Lett. 30: 10.1029/2003GL017000.
- Bonner, W. D. (1968) Climatology of the low level jet. Mon. Weather Rev. 96: 833-850.
- Bottenheim, J. W.; Barrie, L. A.; Atlas, E.; Heidt, L. E.; Niki, H.; Rasmussen, R. A.; Shepson, P. B. (1990)
 Depletion of lower tropospheric ozone during Arctic spring: The Polar Sunrise Experiment 1988. J. Geophys. Res. (Atmos.) 95: 18,555-18,568.
- Brasseur, G. P.; Hauglustaine, D. A.; Walters, S.; Rasch, P. J.; Müller, J.-F.; Granier, C.; Tie, X. X. (1998)
 MOZART, a global transport model for ozone and related chemical tracers: 1. model description. J. Geophys. Res. [Atmos.] 103: 28,265-28,289.
- Brook, J. R.; Sirois, A.; Clarke, J. F. (1996) Comparison of dry deposition velocities for SO₂, HNO₃, and SO₄²⁻ estimated with two inferential models. Water Air Soil Pollut. 87: 205-218.

- Bröske, R.; Kleffmann, J.; Wiesen, P. (2003) Heterogeneous conversion of NO₂ on secondary organic aerosol surfaces: a possible source of nitrous acid (HONO) in the atmosphere? Atmos. Chem. Phys. 3: 469-474.
- Browell, E. V.; Fenn, M. A.; Butler, C. F.; Grant, W. B.; Ismail, S.; Ferrare, R. A.; Kooi, S. A.; Brackett, V. G.; Clayton, M. B.; Avery, M. A.; Barrick, J. D. W.; Fuelberg, H. E.; Maloney, J. C.; Newell, R. E.; Zhu, Y.; Mahoney, M. J.; Anderson, B. E.; Blake, D. R.; Brune, W. H.; Heikes, B. G.; Sachse, G. W.; Singh, H. B.; Talbot, R. W. (2001) Large-scale air mass characteristics observed over the remote tropical Pacific Ocean during March-April 1999: results from PEM-Tropics B field experiment. J. Geophys. Res. [Atmos.] 106: 32,481-32,501.
- Brueggemann, N.; Schnitzler, J.-P. (2002) Comparison of isoprene emission, intercellular isoprene concentration and photosynthetic performance with water-limited oak (*Quercus pubescens* Willd. and *Quercus robur* L.) saplings. Plant Biol. 4: 456-463.
- Brühl, C.; Pöschl, U.; Crutzen, P. J.; Steil, B. (2000) Acetone and PAN in the upper troposphere: impact on ozone production from aircraft emissions. Atmos. Environ. 34: 3931-3938.
- Brune, W. H.; Tan, D.; Faloona, I. F.; Jaeglé, L.; Jacob, D. J.; Heikes, B. G.; Snow, J.; Kondo, Y.; Shetter, R.;
 Sachse, G. W.; Anderson, B.; Gregory, G. L.; Vay, S.; Singh, H. B.; Davis, D. D.; Crawford, J. H.; Blake, D. R. (1999) OH and HO₂ chemistry in the North Atlantic free troposphere. Geophys. Res. Lett. 26: 3077-3080.
- Brunner, D.; Staehelin, J.; Jeker, D. (1998) Large-scale nitrogen oxide plumes in the tropopause region and implications for ozone. Science (Washington, DC) 282: 1305-1309.
- Buhr, M. P.; Trainer, M.; Parrish, D. D.; Sievers, R. E.; Fehsenfeld, F. C. (1992) Assessment of pollutant emission inventories by principal component analysis of ambient air measurements. Geophys. Res. Lett. 19: 1009-1012.
- Buhr, M.; Parrish, D.; Elliot, J.; Holloway, J.; Carpenter, J.; Goldan, P.; Kuster, W.; Trainer, M.; Montzka, S.; McKeen, S.; Fehsenfeld, F. C. (1995) Evaluation of ozone precursor source types using principal component analysis of ambient air measurements in rural Alabama. J. Geophys. Res. [Atmos.] 100: 22,853-22,860.
- Buhr, M.; Sueper, D.; Trainer, M.; Goldan, P.; Kuster, B.; Fehsenfeld, F. (1996) Trace gas and aerosol measurements using aircraft data from the North Atlantic Regional Experiment (NARE 1993). J. Geophys. Res. [Atmos.] 101: 29,013-29,027.
- Burkert, J.; Behmann, T.; Andres-Hernández, M. D.; Stöbener, D.; Weißenmeyer, M.; Perner, D.; Burrows, J. P. (2001a) Measurements of peroxy radicals in a forested area of Portugal. Chemosphere Glob. Change Sci. 3: 327-338.
- Burkert, J.; Andrés-Hernández, M. D.; Stöbener, D.; Burrows, J. P.; Weißenmeyer, M.; Kraus, A. (2001b) Peroxy radical and related trace gas measurements in the boundary layer above the Atlantic Ocean. J. Geophys. Res. (Atmos.) 106: 5457-5477.
- Burkert, J.; Andrés-Hernández, M. D.; Reichert, L.; Meyer-Arnek, J.; Burrows, J. P.; Doddridge, B. G.; Dickerson, R. R.; Muehle, J.; Zhan, A.; Carsey, T. (2003) Trace gas and radical diurnal behavior in the marine boundary layer during INDOEX 1999. J. Geophys. Res. (Atmos.) 108(D8): 10.1029/2002JD002790.
- Byun, D.; Young, J.; Gipson, G.; Schere, K.; Godowitch, J. (1998) Urban air quality simulation with community multi-scale air quality (CMAQ) modeling system. Research Triangle Park, NC: U.S. Environmental Protection Agency, National Exposure Research Laboratory; report no., EPA--600/A-98/115. Available from: NTIS, Springfield, VA; PB99-102246.
- Calvert, J. G.; Madronich, S. (1987) Theoretical study of the initial products of the atmospheric oxidation of hydrocarbons. J. Geophys. Res. [Atmos.] 92: 2211-2220.
- Calvert, J. G.; Heywood, J. B.; Sawyer, R. F.; Seinfeld, J. H. (1993) Achieving acceptable air quality: some reflections on controlling vehicle emissions. Science (Washington, DC) 261: 37-45.
- Calvert, J. G.; Yarwood, G.; Dunker, A. M. (1994) An evaluation of the mechanism of nitrous acid formation in the urban atmosphere. Res. Chem. Intermed. 20: 463-502.
- Calvert, J. G.; Atkinson, R.; Kerr, J. A.; Madronich, S.; Moortgat, G. K.; Wallington, T. J.; Yarwood, G. (2000) The mechanisms of atmospheric oxidation of the alkenes. New York, NY: Oxford University Press, Inc.
- Calvert, J. G.; Atkinson, R.; Becker, K. H.; Kamens, R. M.; Seinfeld, J. H.; Wallington, T. J.; Yarwood, G. (2002) The mechanisms of atmospheric oxidation of aromatic hydrocarbons. New York, NY: Oxford University Press, Inc.
- Cantrell, C. A.; Shetter, R. E.; Gilpin, T. M.; Calvert, J. G.; Eisele, F. L.; Tanner, D. J. (1996) Peroxy radical concentrations measured and calculated from trace gas measurements in the Mauna Loa Observatory Photochemistry Experiment 2. J. Geophys. Res. (Atmos.) 101: 14,653-14,664.

- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
- Cantrell, C. A.; Calvert, J. G.; Bais, A.; Shetter, R. E.; Lefer, B. L.; Edwards, G. D. (2003) Overview and conclusions of the International Photolysis Frequency Measurement and Modeling Intercomparison (IPMMI) study. J. Geophys. Res. (Atmos.) 108(D16): 10.1029/2002JD002962.
- Cardelino, C. A.; Chameides, W. L. (1990) Natural hydrocarbons, urbanization, and urban ozone. J. Geophys. Res. [Atmos.] 95: 13,971-13,979.
- Cardelino, C. A.; Chameides, W. L. (1995) An observation-based model for analyzing ozone precursor relationships in the urban atmosphere. J. Air Waste Manage. Assoc. 45: 161-180.
- Cardelino, C. A.; Chameides, W. L. (2000) The application of data from photochemical assessment monitoring stations to the observation-based model. Atmos. Environ. 34: 2325-2332.
- Carpenter, L. J.; Sturges, W. T. Liss, P. S.; Penkett, S. A.; Alicke, B.; Hebestreit, K.; Platt, U. (1999) Short-lived alkyl iodides and bromides at Mace Head, Ireland: links to biogenic sources and halogen oxide production. J. Geophys. Res. (Atmos.) 104: 1679-1689.
- Carroll, M. A.; Hastie, D. R.; Ridley, B. A.; Rodgers, M. O.; Torres, A. L.; Davis, D. D.; Bradshaw, J. D.;
 Sandholm, S. T.; Schiff, H. I.; Karecki, D. R.; Harris, G. W.; Mackay, G. I.; Gregory, G. L.; Condon, E. P.;
 Trainer, M.; Hubler, G.; Montzka, D. D.; Madronich, S.; Albritton, D. L.; Singh, H. B.; Beck, S. M.;
 Shipham, M. C.; Bachmeier, A. S. (1990) Aircraft measurement of NO_x over the eastern Pacific and
 continental United States and implications for ozone production. J. Geophys. Res. [Atmos.] 95: 10,205-10,233.
- Carroll, M. A.; Bertman, S. B.; Shepson, P. B. (2001) Overview of the program for research on oxidants, photochemistry, emissions and transport (PROPHET) summer 1998 measurements intensive. J. Geophys. Res. [Atmos.] 106: 24,275-24,288.
- Carter, W. P. L. (1990) A detailed mechanism for the gas-phase atmospheric reactions of organic compounds. Atmos. Environ. Part A 24: 481-518.
- Carter, W. P. L. (1994) Development of ozone reactivity scales for volatile organic compounds. J. Air Waste Manage. Assoc. 44: 881-899.
- Carter, W. P. L. (1995) Computer modeling of environmental chamber studies of maximum incremental reactivities of volatile organic compounds. Atmos. Environ. 29: 2513.
- Castro, T; Madronich, S; Rivale, S; Muhlia, A; Mar, B. (2001) The influence of aerosols on photochemical smog in Mexico City. Atmos. 35: 1765-1772..
- Chameides, W. L.; Stelson, A. W. (1992) Aqueous-phase chemical processes in deliquescent sea-salt aerosols: A mechanism that couples the atmospheric cycles of S and sea salt. J. Geophys. Res. [Atmos.] 97(D18): 20,565-20,580.
- Chameides, W. L.; Lindsay, R. W.; Richardson, J.; Kiang, C. S. (1988) The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. Science (Washington, DC) 241: 1473-1475.
- Chameides, W. L.; Fehsenfeld, F.; Rodgers, M. O.; Cardelino, C.; Martinez, J.; Parrish, D.; Lonneman, W.; Lawson, D. R.; Rasmussen, R. A.; Zimmerman, P.; Greenberg, J.; Middleton, P.; Wang, T. (1992) Ozone precursor relationships in the ambient atmosphere. J. Geophys. Res. [Atmos.] 97: 6037-6055.
- Chang, J. S.; Brost, R. A.; Isaken, I. S. A.; Madronich, S.; Middleton, P.; Stockwell, W. R.; Walcek, C. J. (1987) A three-dimensional Eulerian acid deposition model: physical concepts and formulation. J. Geophys. Res. [Atmos.] 92: 14,681-14,700.
- Chang, M. E.; Cardelino, C.; Hartley, D.; Chang, W. L. (1996) Inverse modeling of biogenic emissions. Geophys. Res. Lett. 23: 3007ff.
- Chang, M. E.; Hartley, D. E.; Cardelino, C.; Hass-Laursen, D.; Chang, W. L. (1997) On using inverse methods for resolving emissions with large spatial inhomogeneities. J. Geophys. Res. (Atmos.) 102: 16,023-16,036.
- Chang, S.; McDonand-Buller, E. C.; Kimura, Y.; Russell, M. M.; Tanaka, P. L.; Allen, D. T. (2002) Spatial and temporal impacts of chlorine chemistry on ozone formation in southeastern Texas. Austin, TX: The Texas Natural Resource Conservation Commission; Contract No. 9880077600-18. Available: ftp://ftp.tnrcc.state.tx.us/pub/OEPAA/TAD/Modeling/HGAQSE/Contract_Reports/Others/Impacts_Chlorine_ on Ozone Formation.pdf (17 December 2003).
- Chatfield, R. B.; Crutzen, P. J. (1984) Sulfur dioxide in remote oceanic air: cloud transport of reactive precursors. J. Geophys. Res. 89: 7111-7132.
- Chen, L.-W. A.; Chow, J. C.; Doddridge, B. G.; Dickerson, R. R.; Ryan, W. F.; Mueller, P. K. (2003) Analysis of summertime PM_{2.5} and haze episode in the mid-Atlantic region. J. Air Waste Manage. Assoc. 53: 946-956.
- Cheng, M.-D.; Hopke, P. K.; Zeng, Y. (1993) A receptor-oriented methodology for determining source regions of particulate sulfate observed at Dorset, Ontario. J. Geophys. Res. [Atmos.] 98: 16,839-16,849.

- Chesselet, R.; Fontugne, M.; Buat-Menard, P.; Ezat, U.; Lambert, C. E. (1981) The origin of particulate organic carbon in the marine atmosphere as indicated by its stable carbon isotopic composition. Geophys. Res. Lett. 8: 345-348.
- Ching, J. K. S.; Alkezweeny, A. J. (1986) Tracer study of vertical exchange by cumulus clouds. J. Clim. Appl. Meteorol. 25: 1702-1711.
- Ching, J. K. S.; Shipley, S. T.; Browell, E. V. (1988) Evidence for cloud venting of mixed layer ozone and aerosols. Atmos. Environ. 22: 225-242.
- Ching, J. K. S.; Byun, D.; Young, J.; Binkowski, F. S.; Pleim, J.; Roselle, S.; Godowitch, J.; Benjey, W.; Gipson, G. (1998) Science features in Models-3 Community Multiscale Air Quality System. In: Preprints of the 10th Joint AMS/AWMA Conference on Applications of Air Pollution Meteorology; Phoenix, AZ. Pittsburgh, PA: Air & Waste Management Association.
- Chock, D. P.; Winkler, S. L. (1994) A comparison of advection algorithms coupled with chemistry. Atmos. Environ. 28: 2659-2675.
- Choi, W.; Leu, M.-T. (1998) Nitric acid uptake and decomposition on black carbon (soot) surfaces: its implications for the upper troposphere and lower stratosphere. J. Phys. Chem. A 102: 7618-7630.
- Choi, Y. J.; Ehrman, S. H. (2004) Investigation of sources of volatile organic carbon in the Baltimore area using highly time-resolved measurements. Atmos. Environ. 38: 775-791.
- Civerolo, K.; Dickerson, R. R. (1998) Nitric oxide soil emissions from tilled and untilled cornfields. Agric. For. Meteorol. 90: 307-311.
- Civerolo, K. L.; Mao, H. T.; Rao, S. T. (2003) The airshed for ozone and fine particulate pollution in the eastern United States. Pure Appl. Geophys. 160: 81-105.
- Claeys, M.; Wang, W.; Ion, A. C.; Kourtchev, I.; Gelencsér, A.; Maenhaut, W. (2004) Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide. Atmos. Environ. 38: 4093-4098.
- Clark, T. L.; Karl, T. R. (1982) Application of prognostic meteorological variables to forecasts of daily maximum one-hour ozone concentrations in the northeastern United States. J. Appl. Meteorol. 21: 1662-1671.
- Cleary, P. A.; Wooldridge, P. J.; Cohen, R. C. (2002) Laser-induced fluorescence detection of atmospheric NO₂ with a commercial diode laser and a supersonic expansion. Appl. Optics 41: 6950-6956.
- Cleveland, W. S.; Guarino, R.; Kleiner, B.; McRae, J. E.; Warner, J. L. (1976) The analysis of the ozone problem in the northeast United States. In: Specialty conference on: ozone/oxidants-interactions with the total environment; March; Dallas, TX. Pittsburgh, PA: Air Pollution Control Association; pp. 109-119.
- Cleveland, W. S.; Kleiner, B.; McRae, J. E.; Warner, J. L. (1976) Photochemical air pollution: transport from New York City area into Connecticut and Massachusetts. Science (Washington, DC) 191: 179-181.
- Cohen, R. C. (1999) Laser-induced fluorescence detection of atmospheric NO₂ at parts per trillion mixing ratios: implications for nitrogen oxide photochemistry in the stratosphere and troposphere. Abstr. Pap. Am. Chem. Soc. (Phys.) 218(Pt. 2): 262.
- Collins, W. J.; Stevenson, D. S.; Johnson, C. E.; Derwent, R. G. (1997) Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its response to NO_x emission controls. J. Atmos. Chem. 26: 223-274.
- Comes, F. J.; Armerding, W.; Grigonis, R.; Herbert, A.; Spiekermann, M.; Walter, J. (1992) Tropospheric OH: local measurements and their interpretations. Ber. Bunsen-Ges. Phys. Chem. 96: 284-286.
- Cooper, O. R.; Moody, J. L. (2000) Meteorological controls on ozone at an elevated eastern United States regional background monitoring site. J. Geophys. Res. [Atmos.] 105: 6855-6869.
- Cooper, O. R.; Moody, J. L.; Davenport, J. C.; Oltmans, S. J.; Johnson, B. J.; Chen, X.; Shepson, P. B.; Merrill, J. T. (1998) Influence of springtime weather systems on vertical ozone distributions over three North American sites. J. Geophys. Res. [Atmos.] 103: 22,001-22,013.
- Cooper, O. R.; Moody, J. L.; Parrish, D. D.; Trainer, M.; Ryerson, T. B.; Holloway, J. S.; Hübler, G.; Fehsenfeld, F. C.; Oltmans, S. J.; Evans, M. J. (2001) Trace gas signatures of the airstreams within North Atlantic cyclones: case studies from the North Atlantic Regional Experiment (NARE '97) aircraft intensive. J. Geophys. Res. [Atmos.] 106: 5437-5456.
- Cooper, O. R.; Moody, J. L.; Parrish, D. D.; Trainer, M.; Ryerson, T. B.; Holloway, J. S.; Hübler, G.; Fehsenfeld, F. C.; Evans, M. J. (2002a) Trace gas composition of mid-latitude cyclones over the western North Atlantic Ocean: a conceptual model. J. Geophys. Res. [Atmos.] 107(D7): 10.1029/2000JD000901.
- Cooper, O. R.; Moody, J. L.; Parrish, D. D.; Trainer, M.; Holloway, J. S.; Hübler, G.; Fehsenfeld, F. C.; Oltmans, S. J.; Evans, M. J. (2002b) Trace gas composition of mid-latitude cyclones over the western North Atlantic Ocean: a seasonal comparison of O₃ and CO. J. Geophys. Res. [Atmos.] 107(D7): 10.1029/2001JD000902.

- Cooper, O.; Forster, C.; Parrish, D.; Dunlea, E.; Hübler, G.; Fehsenfeld, F.; Holloway, J.; Oltmans, S.; Johnson, B.; Wimmers, A.; Horowitz, L. (2004a) On the life cycle of a stratospheric intrusion and its dispersion into polluted warm conveyor belts. J. Geophys. Res. (Atmos.) 109(D23S09): 10.1029/2003JD004006.
- Cooper, O. R.; Forster, C.; Parrish, D.; Trainer, M.; Dunlea, E.; Ryerson, T.; Hübler, G.; Fehsenfeld, F.; Nicks, D.; Holloway, J.; De Gouw, J.; Warneke, C.; Roberts, J. M.; Flocke, F.; Moody, J. (2004b) A case study of transpacific warm conveyor belt transport: the influence of merging airstreams on trace gas import to North America. J. Geophys. Res. (Atmos.) 109(D23S08): 10.1029/2003JD003624.
- Corchnoy, S. B.; Atkinson, R. (1990) Kinetics of the gas-phase reactions of OH and NO₃ radicals with 2-Carene, 1,8-cineole, *p*-cymene, and terpinolene. Environ. Sci. Technol. 24: 1497-1502.
- Cornell, S.; Rendell, A.; Jickells, T. (1995) Atmospheric inputs of dissolved organic nitrogen to the oceans. Nature 376: 243-246.
- Cornell, S. E.; Jickells, T. D.; Thornton, C. A. (1998) Urea in rainwater and atmospheric aerosols. Atmos. Environ. 32: 1903-1910.
- Cornell, S.; Mace, K.; Coeppicus, S.; Duce, R.; Huebert, B.; Jickells, T.; Zhuang, L. Z. (2001) Organic nitrogen in Hawaiian rain and aerosols. J. Geophys. Res. (Atmos.) 106: 7973-7983.
- Corsmeier, U.; Kalthhoff, N.; Kolle, O.; Motzian, M.; Fiedler, F. (1997) Ozone concentration jump in the stable nocturnal boundary layer during a LLJ-event. Atmos. Environ. 31: 1977-1989.
- Cowling, E. B.; Chameides, W. L.; Kiang, C. S.; Fehsenfeld, F. C.; Meagher, J. F. (2000) Introduction to special section: Southern Oxidant Study Nashville/Middle Tennessee Ozone Study, part 2. J. Geophys. Res. (Atmos.) 105: 9075-9077.
- Cox, R. A.; Bloss, W. J.; Jones, R. L.; Rowley, D. M. (1999) OIO and the atmospheric cycle of iodine. Geophys. Res. Lett. 26: 1857-1860.
- Crawford, J. H.; Davis, D. D.; Chen, G.; Buhr, M.; Oltmans, S.; Weller, R.; Mauldin, L.; Eisele, F.; Shetter, R.; Lefer, B.; Arimoto, R.; Hogan, A. (2001) Evidence for photochemical production of ozone at the South Pole surface. Geophys. Res. Lett. 28: 3641-3644.
- Crosley, D. R. (1996) NO_v blue ribbon panel. J. Geophys. Res. [Atmos.] 101(D1): 2049-2052.
- Crutzen, P. (1973) A discussion of the chemistry of some minor constituents in the stratosphere and troposphere. Pure Appl. Geophys. 106-108: 1385-1399.
- Crutzen, P. J.; Gidel, L. T. (1983) A two-dimensional photochemical model of the atmosphere. 2. The tropospheric budgets of the anthropogenic chlorocarbons, CO, CH₄, CH₃Cl and the effect of various NO_x sources on tropospheric ozone. J. Geophys. Res. [Atmos.] 88: 6641-6661.
- Crutzen, P. J.; Lawrence, M. G.; Pöschl, U. (1999) On the background photochemistry of tropospheric ozone. Tellus 51A-B: 123-146.
- Crutzen, P. J.; Williams, J.; Pöschl, U.; Hoor, P.; Fischer, H.; Warneke, C.; Holzinger, R.; Hansel, A.; Lindinger,
 W.; Scheeren, B.; Lelieveld, J. (2000) High spatial and temporal resolution measurements of primary organics and their oxidation products over the tropical forest of Surinam. Atmos. Environ. 34: 1161-1165.
- Cziczo, D. J.; Abbatt, J. P. D. (1999) Deliquescence, efflorescence, and supercooling of ammonium sulfate aerosols at low temperature: implications for cirrus cloud formation and aerosol phase in the atmosphere. J. Geophys. Res. [Atmos.] 104: 13,781-13,790.
- Czoschke, N. M.; Jang, M.; Kamens, R. M. (2003) Effect of acidic seed on biogenic secondary organic aerosol growth. Atmos. Environ. 37: 4287-4299.
- Danielsen, E. F. (1968) Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity. J. Atmos. Sci. 25: 502-518.
- Danielsen, E. F. (1980) Stratospheric source for unexpectedly large values of ozone measured over the Pacific Ocean during Gametag, August 1977. J. Geophys. Res. C: Oceans Atmos. 85: 401-412.
- Danielsen, E. F. (1993) In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger-scale upwelling in tropical cyclones. J. Geophys. Res. [Atmos.] 98(D5): 8665-8681.
- Danielsen, E. F.; Mohnen, V. A. (1977) Project Dustorm report: ozone transport, in situ measurements, and meteorological analyses of tropopause folding. J. Geophys. Res. [Atmos.] 82: 5867-5877.
- Danielsen, E. F., Hipskind, R. S.; Gaines, S. E.; Sachse, G. W.; Gregory, G. L.; Hill, G. F. (1987) Three-dimensional analysis of potential vorticity associated with tropopause folds and observed variations of ozone and carbon monoxide. J. Geophys. Res. [Atmos.] 92: 2103-2111.
- Daum, P. H.; Kleinman, L. I.; Hills, A. J.; Lazrus, A. L.; Leslie, A. C. D.; Busness, K.; Boatman, J. (1990) Measurement and interpretation of concentrations of H₂O₂ and related species in the upper midwest during summer. J. Geophys. Res. [Atmos.] 95: 9857-9871.

- Daum, P. H.; Kleinman, L. I.; Newman, L.; Luke, W. T.; Weinstein-Lloyd, J.; Berkowitz, C. M.; Busness, K. M. (1996) Chemical and physical properties of plumes of anthropogenic pollutants transported over the North Atlantic during the North Atlantic Regional Experiment. J. Geophys. Res. [Atmos.] 101: 29,029-29,042.
- Davidson, E. A.; Kingerlee, W. (1997) A global inventory of nitric oxide emissions from soils. Nutr. Cycling Agroecosyst. 48: 37-50.
- Davies, T. D.; Schuepbach, E. (1994) Episodes of high ozone concentrations at the earth's surface resulting from transport down from the upper troposphere/lower stratosphere: a review and case studies. Atmos. Environ. 28: 53-68.
- Davis, D. D.; Bollinger, W.; Fischer, S. (1975) A kinetics study of the reaction of the OH free radical with aromatic compounds I. Absolute rate constants for reaction with benzene and toluene at 300°K. J. Phys. Chem. 79: 293-294.
- Day, D. A.; Wooldridge, P. J.; Dillon, M. B.; Thornton, J. A.; Cohen, R. C. (2002) A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO₂, peroxy nitrates, alkyl nitrates, and HNO₃. J. Geophys. Res. (Atmos.) 107(D5-D6): 10.1029/2001JD000779.
- Day, D. A.; Dillon, M. B.; Wooldridge, P. J.; Thornton, J. A.; Rosen, R. S.; Wood, E. C.; Cohen, R. C. (2003) On alkyl nitrates, O₃, and the "missing NO_y". J. Geophys. Res. [Atmos.] 108(D16): 10.1029/2003JD003685.
- DeCaria, A. J.; Pickering, K. E.; Stenchikov, G. L.; Scala, J. R.; Stith, J. L.; Dye, J. E.; Ridley, B. A.; Laroche, P. (2000) A cloud-scale model study of lightning-generate NO_x in an individual thunderstorm during STERAO-A. J. Geophys. Res. [Atmos.] 105: 11601-11616.
- DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J. (1992) Chemical kinetics and photochemical data for use in stratospheric modeling: evaluation number 10. Pasadena, CA: National Aeronautics and Space Administration, Jet Propulsion Laboratory; JPL publication no. 92-20.
- Dennis, R. L.; Novak, J. H. (1992) EPA's third generation modeling system (Models-3): an overview. In: Berglund, R. L., ed. Tropospheric ozone and the environment II: effects, modeling and control [papers from an international specialty conference]; November; Atlanta, GA. Pittsburgh, PA: Air & Waste Management Association; pp. 137-147. (A&WMA transactions series no. 20).
- De Reus, M.; Dentener, F.; Thomas, A.; Borrmann, S.; Ström, J.; Lelieveld, J. (2000) Airborne observations of dust aerosol over the North Atlantic Ocean during ACE 2: indications for heterogeneous ozone destruction. J. Geophys. Res. [Atmos.] 105: 15,263-15,275.
- Derwent, R. G.; Jenkin, M. E. (1991) Hydrocarbons and the long-range transport of ozone and PAN across Europe. Atmos. Environ. Part A 25: 1661-1678.
- Derwent, R. G.; Jenkin, M. E.; Saunders, S. M. (1996) Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions. Atmos. Environ. 30: 181-199.
- Derwent, R. G.; Jenkin, M. E.; Saunders, S. M.; Pilling, M. J. (1998) Photochemical ozone creation potentials for organic compounds in northwest Europe calculated with a master chemical mechanism. Atmos. Environ. 32: 2429-2441.
- Derwent, R. G.; Collins, W. J.; Johnson, C. E.; Stevenson, D. S. (2001) Transient behaviour of tropospheric ozone precursors in a global 3-D CTM and their indirect greenhouse effects. Climatic Change 49: 463-487.
- Dewulf, J.; Van Langenhove, H. (1997) Analytical techniques for the determination and measurement data of 7 chlorinated C1- and C2-hydrocarbons and 6 monocyclic aromatic hydrocarbons in remote air masses: an overview. Atmos. Environ. 31: 3291-3307.
- Dibb, J. E.; Arsenault, M.; Peterson, M. C. (2002) Fast nitrogen oxide photochemistry in Summit, Greenland snow. Atmos. Environ. 36: 2501-2511.
- Dickerson, R. R.; Huffman, G. J.; Luke, W. T.; Nunnermacker, L. J.; Pickering, K. E.; Leslie, A. C. D.; Lindsey, C. G.; Slinn, W. G. N.; Kelly, T. J.; Daum, P. H.; Delany, A. C.; Greenberg, J. P.; Zimmerman, P. R.; Boatman, J. F.; Ray, J. D.; Stedman, D. H. (1987) Thunderstorms: an important mechanism in the transport of air pollutants. Science (Washington, DC) 235: 460-465.
- Dickerson, R. R.; Doddridge, B. G.; Kelley, P.; Rhoads, K. P. (1995) Large-scale pollution of the atmosphere over the remote Atlantic Ocean: evidence from Bermuda. J. Geophys. Res. [Atmos.]100: 8945-8952.
- Dickerson, R. R.; Kondragunta, S.; Stenchikov, G.; Civerolo, K. L.; Doddridge, B. G.; Holben, B. N. (1997) The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science (Washington, DC) 278: 827-830.
- Dickerson, R. R.; Rhoads, K. P.; Carsey, T. P.; Oltmans, S. J.; Burrows, J. P.; Crutzen, P. J. (1999) Ozone in the remote marine boundary layer: a possible role for halogens. J. Geophys. Res. [Atmos.] 104: 21,385-21,395.

- Djurić, D.; Damiani, M. S., Jr. (1980) On the formation of the low-level jet over Texas. Mon. Weather Rev. Vol. 108: 1854-1865.
- Dodge, M. C. (1977) Combined use of modeling techniques and smog chamber data to derive ozone-precursor relationships. In: Dimitriades, B., ed. International conference on photochemical oxidant pollution and its control - proceedings: volume II; September 1976; Raleigh, NC. Research Triangle Park, NC: U.S. Environmental Protection Agency, Environmental Sciences Research Laboratory; pp. 881-889; report no. EPA-600/3-77-001b. Available from: NTIS, Springfield, VA; PB-264233.
- Dodge, M. C. (1977) Effect of selected parameters on predictions of a photochemical model. Research Triangle Park, NC: U.S. Environmental Protection Agency, Environmental Sciences Research Laboratory; EPA report no. EPA-600/3-77-048. Available from: NTIS, Springfield, VA; PB-269858.
- Dominé, F.; Shepson, P. B. (2002) Air-snow interactions and atmospheric chemistry. Science (Washington, DC) 297: 1506-1510.
- Dommen, J.; Prévôt, A. S. H.; Hering, A. M.; Staffelbach, T.; Kok, G. L.; Schilawsky, R. D. (1999) Photochemical production and aging of an urban air mass. J. Geophys. Res. (Atmos.) 104: 5493-5506.
- Dudhia, J. (1993) A nonhydrostatic version of the Penn State-NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front. Mon. Weather Rev. 121: 1493-1513.
- Dumdei, B. E.; O'Brien, R. J. (1984) Toluene's degradation products under simulated atmospheric conditions. Nature (London) 311: 248-250.
- Dumdei, B. E.; Kenny, D. V.; Shepson, P. B.; Kleindienst, T. E.; Nero, C. M.; Cupitt, L. T.; Claxton, L. D. (1988) MS/MS analysis of the products of toluene photooxidation and measurement of their mutagenic activity. Environ. Sci. Technol. 22: 1493-1498.
- Eckhardt, S.; Stohl, A.; Beirle, S.; Spichtinger, N.; James, P.; Forster, C.; Junker, C.; Wagner, T.; Platt, U.; Jennings, S. G. (2003) The North Atlantic oscillation controls air pollution transport to the Arctic. Atmos. Chem. Phys. 3: 1769-1778.
- Eder, B. K.; Davis, J. M.; Bloomfield, P. (1993) A characterization of the spatiotemporal variability of non-urban ozone concentrations over the Eastern United States. Atmos. Environ. 27A: 2645-2668.
- Eder, B. K.; Davis, J. M.; Bloomfield, P. (1994) An automated classification scheme designed to better elucidate the dependence of ozone on meteorology. J. Appl. Meteorol. 33: 1182-1199.
- Edney, E. O.; Driscoll, D. J.; Weathers, W. S.; Kleindienst, T. E.; Conver, T. S.; McIver, C. D.; Li, W. (2001) Formation of polyketones in irradiated toluene/propylene/NO_x/air mixtures. Aerosol Sci. Technol. 35: 998-1008.
- Ehhalt, D. H.; Dorn, H.-P.; Poppe, D. (1991) The chemistry of the hydroxyl radical in the troposphere. In: Last, F.
 T.; Watling, R., eds. Acidic deposition: its nature and impacts. Proceedings of the international symposium; September 1990; Glasgow, United Kingdom. Proc. R. Soc. Edinburgh, Sect. B: Biol. Sci. 97: 17-34.
- Eisele, F. L.; Mount, G. H.; Tanner, D.; Jefferson, A.; Shetter, R.; Harder, J. W.; Williams, E. J. (1997) Understanding the production and interconversion of the hydroxyl radical during the tropospheric OH photochemistry experiment. J. Geophys. Res. 102: 6457-6465.
- Emmons, L. K.; Carroll, M. A.; Hauglustaine, D. A.; Brasseur, G. P.; Atherton, C.; Penner, J.; Sillman, S.; Levy, H., II; Rohrer, F.; Wauben, W. M. F.; van Velthoven, P. F. J.; Wang, Y.; Jacob, D.; Bakwin, P.; Dickerson, R.; Doddridge, B.; Gerbig, C.; Honrath, R.; Hübler, G.; Jaffe, D.; Kondo, Y.; Munger, J. W.; Torres, A.; Volz-Thomas, A. (1997) Climatologies of NO_x and NO_y: a comparison of data and models. Atmos. Environ. 31: 1837-1850.
- Emmons, L. K.; Hauglustaine, D. A.; Müller, J.-F.; Carroll, M. A.; Brasseur, G. P.; Brunner, D.; Staehelin, J.; Thouret, V.; Marenco, A. (2000) Data composites of airborne observations of tropospheric ozone and its precursors. J. Geophys. Res. [Atmos.] 105: 20,497-20,538.
- Erickson, D. J.; Seuzaret, C.; Keene, W. C.; Gong, S.-L. (1999) A general circulation model based calculation of HCl and CINO₂ production from sea-salt dechlorination: reactive chlorine emissions inventory. J. Geophys. Res. [Atmos.] 104: 8347-8372.
- Fast, J. D.; Zhong, S. Y. (1998) Meteorological factors associated with inhomogeneous ozone concentrations within the Mexico City basin. J. Geophys. Res. (Atmos.) 103: 18,927-18,946.
- Fast, J. D.; Doran, J.; Shaw, W. J.; Coulter, R. L.; Martin, T. J. (2000) The evolution of the boundary layer and its effect on air chemistry in the Phoenix area. J. Geophys. Res. [Atmos.] 105: 22,833-22,848.
- Fast, J. D.; Zaveri, R. A.; Bian, R. X.; Chapman, E. G.; Easter, R. C. (2002) Effect of regional-scale transport on oxidants in the vicinity of Philadelphia during the 1999 NE-OPS Field Campaign. J. Geophys. Res. [Atmos.] 107(D16): 10.1029/2001JD000980.

- Faust, B. C. (1994) A review of the photochemical redox reactions of iron(III) species in atmospheric, oceanic, and surface waters: influences on geochemical cycles and oxidant formation. In: Helz, G. R.; Zepp, R. G.; Crosby, D. G., eds. Aquatic and Surface Photochemistry. Boca Raton, FL: Lewis Publishers; pp. 3-37.
- Faust, B. E.; Allen, J. M.; Anastasio, C. (1992) Aqueous-phase photochemical formation of peroxides peroxyl radicals and singlet molecular oxygen in authentic cloud waters [abstract]. Presented at: 203rd national meeting of the American Chemical Society; April; San Francisco, CA. Abstr. Pap. Am. Chem. Soc. 203: ENVR94.
- Faust, B. C.; Anastasio, C.; Allen, J. M.; Arakaki, T. (1993) Aqueous-phase photochemical formation of peroxides in authentic cloud and fog waters. Science 260: 73-75.
- Fehsenfeld, F. C.; Dickerson, R. R.; Hübler, G.; Luke, W. T.; Nunnermacker, L. J.; Williams, E. J.; Roberts, J. M.; Calvert, J. G.; Curran, C. M.; Delany, A. C.; Eubank, C. S.; Fahey, D. W.; Fried, A.; Gandrud, B. W.; Langford, A. O.; Murphy, P. C.; Norton, R. B.; Pickering, K. E.; Ridley, B. A. (1987) A ground-based intercomparison of NO, NO_x, and NO_y measurement techniques. J. Geophys. Res. [Atmos.] 92: 14,710-14,722.
- Fehsenfeld, F.; Calvert, J.; Fall, R.; Goldan, P.; Guenther, A. B.; Hewitt, C. N.; Lamb, B.; Liu, S.; Trainer, M.; Westberg, H.; Zimmerman, P. (1992a) Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biogeochem. Cycles 6: 389-430.
- Fehsenfeld, F. C.; Trainer, M.; Parrish, D. D.; Volz-Thomas, A.; Penkett, S. (1996a) North Atlantic Regional Experiment (NARE) 1993 summer intensive: foreword. J. Geophys. Res. [Atmos.] 101: 28,869-28,875.
- Fehsenfeld, F. C.; Daum, P.; Leaitch, W. R.; Trainer, M.; Parrish, D. D.; Hübler, G. (1996b) Transport and processing of O₃ and O₃ precursors over the North Atlantic: an overview of the 1993 North Atlantic Regional Experiment (NARE) summer intensive. J. Geophys. Res. [Atmos.] 101(D22): 28877-28891.
- Fehsenfeld, F. C.; Huey, L. G.; Sueper, D. T.; Norton, R. B.; Williams, E. J.; Eisele, F. L.; Mauldin, R. L., III; Tanner, D. J. (1998) Ground-based intercomparison of nitric acid measurement techniques. J. Geophys. Res. [Atmos.] 103(D3): 3343-3353.
- Ferman, M. A.; Monson, P. R. (1978) Comparison of rural and urban air quality. Presented at: 71st annual meeting of the Air Pollution Control Association; June; Houston, TX. Pittsburgh, PA: Air Pollution Control Association; paper no. 78-10.4.
- Fick, J.; Pommer, L.; Nilsson, C.; Andersson, B. (2003) Effect of OH radicals, relative humidity, and time on the composition of the products formed in the ozonolysis of α-pinene. Atmos. Environ. 37: 4087-4096.
- Finlayson-Pitts, B. J. (1993) Comment on "Indications of photochemical histories of Pacific air masses from measurements of atmospheric trace species at Point Arena, California" by D. D. Parrish et al. J. Geophys. Res. [Atmos.] 98(D8): 14,991-14,993.
- Finlayson-Pitts, B. J.; Pitts, J. N., Jr. (1993) Atmospheric chemistry of tropospheric ozone formation: scientific and regulatory implications. Air Waste 43: 1091-1100.
- Finlayson-Pitts, B. J.; Pitts, J. N., Jr. (2000) Chemistry of the upper and lower atmosphere theory, experiments and applications. San Diego, CA: Academic Press.
- Fiore, A. M.; Jacob, D. J.; Bey, I.; Yantosca, R. M.; Field, B. D.; Fusco, A. C.; Wilkinson, J. G. (2002) Background ozone over the United States in summer: origin, trend, and contribution to pollution episodes. J. Geophys. Res. (Atmos.) 107(D15): 10.1029/2001JD000982.
- Fiore, A. M.; Jacob, D. J.; Mathur, R.; Martin, R. V. (2003) Application of empirical orthogonal functions to evaluate ozone simulations with regional and global models. J. Geophys. Res. (Atmos.) 108(D14): 10.1029/2002JD003151.
- Fishman, J.; Wozniak, A. E.; Creilson, J. K. (2003) Global distribution of tropospheric ozone from satellite measurements using the empirically corrected tropospheric ozone residual technique: identification of the regional aspects of air pollution. Atmos. Chem. Phys. 3: 893-907.
- Forstner, H. J. L.; Flagan, R. C.; Seinfeld, J. H. (1997) Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: molecular composition. Environ. Sci. Technol. 31: 1345-1358.
- Fortuin, J. P. F.; Kelder, H. (1998) An ozone climatology based on ozonesonde and satellite measurements. J. Geophys. Res. 103: 31,709-31,734.
- Fox-Rabinovitz, M. S.; Takacs, L. L.; Govindaraju, R. C. (2002) A variable-resolution stretched-grid general circulation model and data assimilation system with multiple areas of interest: studying the anomalous regional climate events of 1998. J. Geophys. Res. [Atmos.] 107(D24): 10.1029/2002JD002177.
- Fried, A.; Hodgeson, J. (1982) Laser photoacoustic detection of nitrogen dioxide in the gas-phase titration of nitric oxide with ozone. Anal. Chem. 54: 278-282.

- Friedlander, S. K.; Yeh, E. K. (1998) The submicron atmospheric aerosol as a carrier of reactive chemical species: case of peroxides. Appl. Occup. Environ. Hyg. 13: 416-420.
- Fuglestvedt, J. S.; Berntsen, T. K.; Isaksen, I. S. A.; Mao, H.; Liang, X.-Z.; Wang, W.-C. (1999) Climatic forcing of nitrogen oxides through changes in tropospheric ozone and methane; global 3D model studies. Atmos. Environ. 33: 961-978.
- Fujita, E. M.; Croes, B. E.; Bennett, C. L.; Lawson, D. R.; Lurmann, F. W.; Main, H. H. (1992) Comparison of emission inventory and ambient concentration ratios of CO, NMOG, and NO_x in California's south coast air basin. J. Air Waste Manage. Assoc. 42: 264-276.
- Fujita et al. (1995).
- Furutani, H.; Akimoto, H. (2002) Development and characterization of a fast measurement system for gas-phase nitric acid with a chemical ionization mass spectrometer in the marine boundary layer. J. Geophys. Res. (Atmos.) 107(D1-D2): 10.1029/2000JD000269.
- Fusco, A. C.; Logan, J. A. (2003) Analysis of 1970-1995 trends in tropospheric ozone at Northern Hemisphere midlatitudes with the GEOS-CHEM model. J. Geophys. Res. (Atmos.) 108: 10.1029/2002JD002742.
- Gaffney, J. S.; Marley, N. A.; Drayton, P. J.; Doskey, P. V.; Kotamarthi, V. R.; Cunningham, M. M.; Baird, J. C.; Dintaman, J.; Hart, H. L. (2002) Field observations of regional and urban impacts on NO₂, ozone, UVB, and nitrate radical production rates in the Phoenix air basin. Atmos. Environ. 36: 825-833.
- Galbally, I. E.; Bentley, S. T.; Meyer, C. P. (2000) Mid-latitude marine boundary-layer ozone destruction at visible sunrise observed at Cape Grim, Tasmania, 41°S. Geophys. Res. Lett. 27: 3841-3844.
- Galloway, J. N.; Whelpdale, D. M. (1980) An atmospheric sulfur budget for eastern North America. Atmos. Environ. 14: 409-417.
- Galmarini, S.; Duynkerke, P. G.; de Arellano, J. V. G. (1997) Evolution of nitrogen oxide chemistry in the nocturnal boundary layer. J. Appl. Meteorol. 36: 943-957.
- Garnica, R. M.; Appel, M. F.; Eagan, L. (2000) A REMPI method for the ultrasensitive detection of NO and NO₂ using atmospheric pressure laser ionization mass spectrometry. Anal. Chem. 72: 5639-5646.
- Gauss, M.; Myhre, G.; Pitari, G.; Prather, M. J.; Isaksen, I. S. A.; Berntsen, T. K.; Brasseur, G. P.; Dentener, F. J.; Derwent, R. G.; Hauglustaine, D. A.; Horowitz, L. W.; Jacob, D. J.; Johnson, M.; Law, K. S.; Mickley, L. J.; Müller, J.-F.; Plantevin, P. H.; Pyle, J. A.; Rogers, H. L.; Stevenson, D. S.; Sundet, J. K.; Van Weele, M.; Wild, O. (2003) Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere. J. Geophys. Res. (Atmos.) 108(D9): 10.1029/2002JD002624.
- Geiger, H.; Barnes, I.; Bejan, I.; Benter, T.; Spittler, M. (2003) The tropospheric degradation of isoprene: an updated module for the regional atmospheric chemistry mechanism. Atmos. Environ. 37: 1503-1519.
- Geron, C. D.; Guenther, A. B.; Pierce, T. E. (1994) An improved model for estimating emissions of volatile organic compounds from forests in the eastern United States. J. Geophys. Res. [Atmos.] 99: 12,773-12,791.
- Geron, C. D.; Nie, D.; Arnts, R. R.; Sharkey, T. D.; Singsaas, E. L.; Vanderveer, P. J.; Guenther, A.; Sickles, J. E., II; Kleindienst, T. E. (1997) Biogenic isoprene emission: model evaluation in a southeastern United States bottomland deciduous forest. J. Geophys. Res. [Atmos.] 102(D15): 18,889-18,901.
- Geron, C. ; Guenther, A.; Sharkey, T.; Arnts, R.R. (2000a) Temporal variability in basal isoprene emission factor. Tree Physiol. 20: 799-805.
- Geron, C.; Rasmussen, R.; Arnts, R. R.; Guenther, A. (2000b) A review and synthesis of monoterpene speciation from forests in the United States. Atmos. Environ. 34: 1761-1781.
- Geron, C. D.; Harley, P.; Guenther, A. (2001) Isoprene emission capacity for US tree species. Atmos. Environ. 35: 3341-3352.
- Gershenzon, Y. M.; Grigorieva, V. M.; Ivanov, A. V.; Remorov, R. G. (1995) O₃ and OH sensitivity to heterogeneous sinks of HO_x and CH₃O₂ on aerosol particles. Faraday Discuss. 100: 83-100.
- Gershenzon, M. Y.; Il'in, S.; Fedotov, N. G.; Gershenzon, Y. M.; Aparina, E. V.; Zelenov, V. V. (1999) The mechanism of reactive NO₃ uptake on dry NaX (X=Cl, Br). J. Atmos. Chem. 34: 119-135.
- Gershey, R. M. (1983) Characterization of seawater organic matter carried by bubble-generated aerosols. Limnol. Oceanogr. 28: 309-319.
- Gertler, A. W.; Sagebiel, J. C.; Dippel, W. A.; O'Connor, C. M. (1999) The impact of California phase 2 reformulated gasoline on real-world vehicle emissions. J. Air Waste Manage. Assoc. 49: 1339-1346.
- Gery, M. W.; Fox, D. L.; Jeffries, H. E.; Stockburger, L.; Weathers, W. S. (1985) A continuous stirred tank reactor investigation of the gas-phase reaction of hydroxyl radicals and toluene. Int. J. Chem. Kinet. 17: 931-955.
- Gery, M. W.; Whitten, G. Z.; Killus, J. P. (1988) Development and testing of the CMB-IV for urban and regional modeling. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Sciences Research Laboratory; report no. EPA-600/3-88-012. Available from: NTIS, Springfield, VA; PB88-180039.

- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
- Gery, M. W.; Whitten, G. Z.; Killus, J. P.; Dodge, M. C. (1989) A photochemical kinetics mechanism for urban and regional scale computer modeling. J. Geophys. Res. [Atmos.] 94: 12,925-12,956.
- Gettelman, A.; Holton, J. R.; Rosenlof, K. H. (1997) Mass fluxes of O₃, CH₄, N₂O, and CF₂Cl₂ in the lower stratosphere calculated from observational data. J. Geophys. Res. 102(D15): 19,149-19,159.

Geyer, A.; Alicke, B.; Konrad, S.; Schmitz, T.; Stutz, J.; Platt, U. (2001) Chemistry and oxidation capacity of the nitrate radical in the continental boundary layer near Berlin. J. Geophys. Res. (Atmos.) 106: 8013-8025.

- Geyer, A.; Platt, U. (2002) Temperature dependence of the NO₃ loss frequency: A new indicator for the contribution of NO₃ to the oxidation of monoterpenes and NO_x removal in the atmosphere. J. Geophys. Res. (Atmos.) 107(D20): 10.1029/2001JD001215.
- Gidel, L. T. (1983) Cumulus cloud transport of transient tracers. J. Geophys. Res. [Atmos.] 88: 6587-6599.
- Gillani, N. V.; Pleim, J. E. (1996) Sub-grid-scale features of anthropogenic emissions of NO_x and VOC in the context of regional Eulerian models. Atmos. Environ. 30: 2043-2059.
- Gillani, N. V.; Meagher, J. F.; Valente, R. J.; Imhoff, R. E.; Tanner, R. L.; Luria, M. (1998) Relative production of ozone and nitrates in urban and rural power plant plumes. 1. Composite results based on data from 10 field measurement days. J. Geophys. Res. [Atmos.] 103: 22,593-22,615.
- Gilpin, T.; Apel, E.; Fried, A.; et al. (1997) Intercomparison of six ambient (CH₂O) measurement techniques. J. Geophys. Res. (Atmos.) 102(D17): 21,161-21,188.
- Goldan, P. D.; Kuster, W. C.; Albritton, D. L.; Fehsenfeld, F. C.; Connell, P. S.; Norton, R. B.; Huebert, B. J. (1983) Calibration and tests of the filter-collection method for measuring clean-air, ambient levels of nitric acid. Atmos. Environ. 17: 1355-1364.
- Goldan, P. D.; Trainer, M.; Kuster, W. C.; Parrish, D. D.; Carpenter, J.; Roberts, J. M.; Yee, J. E.; Fehsenfeld, F. C. (1995) Measurements of hydrocarbons, oxygenated hydrocarbons, carbon monoxide, and nitrogen oxides in an urban basin in Colorado: implications for emission inventories. J. Geophys. Res. [Atmos.] 100: 22,771-22,783.
- Goldan, P. D.; Kuster, W. C.; Fehsenfeld, F. C. (1997) Non-methane hydrocarbon measurements during the tropospheric OH photochemistry experiment. J. Geophys. Res. (Atmos.) 102: 6315-6324.
- Goldan, P. D.; Parrish, D. D.; Kuster, W. C.; Trainer, M.; McKeen, S. A.; Holloway, J.; Jobson, B. T.; Sueper, D. T.; Fehsenfeld, F. C. (2000) Airborne measurements of isoprene, CO, and anthropogenic hydrocarbons and their implications. J. Geophys. Res. [Atmos.] 105: 9091-9105.
- Goldan et al. (2001).
- Golden, D. M.; Smith, G. P. (2000) Reaction of OH + NO2 + M: a new view. J. Phys. Chem. A 104: 3991-3997.
- Goldstein, A. H.; Schade, G. W. (2000) Quantifying biogenic and anthropogenic contributions to acetone mixing ratiosin a rural environment. Atmos. Environ. 34: 4997-5006.
- Gong, S. L.; Barrie, L. A.; Blanchet, J.-P. (1997) Modeling sea-salt aerosols in the environment: 1. model development. J. Geophys. Res. 102: 3805-3818.
- Gong, W.; Mickle, R. E.; Bottenheim, F. F.; Beauchamp, S.; Waugh, D. (2000) Marine/coastal boundary layer and vertical structure of ozone observed at a coastal site in Nova Scotia during the 1996 NARSTO-CE field campaign. Atmos. Environ. 34: 4139-4154.
- Gorzelska, K.; Galloway, J. N.; Watterson, K.; Keene, W. C. (1992) Water-soluble primary amine compounds in rural continental precipitation. Atmos. Environ. 26: 1005-1018.
- Goult, J. (1938) Vents en alititude a Fort Lamy (Tach). Ann. Phys. (Paris, France) 5: 373-379.
- Grassi, B.; Pitari, G.; Visconti, G. (1997) Results of a chemical-transport model with interactive aerosol microphysics. In: Bojkov, R.; Visconti, G. Proceedings of the XVIII Quadrennial Ozone Symposium; September, 1996; L'Aquila, Italy.
- Greenhut, G. K. (1986) Transport of ozone between boundary layer and cloud layer by cumulus clouds. J. Geophys. Res. [Atmos.] 91: 8613-8622.
- Greenhut, G. K.; Ching, J. K. S.; Pearson, R., Jr.; Repoff, T. P. (1984) Transport of ozone by turbulence and clouds in an urban boundary layer. J. Geophys. Res. [Atmos.] 89: 4757-4766.
- Gregg, J. W.; Jones, C. G.; Dawson, T. E. (2003) Urbanization effects on tree growth in the vicinity of New York City [letter]. Nature 424: 183-187.
- Gregory, G. L.; Hoell, J. M., Jr.; Torres, A. L.; Carroll, M. A.; Ridley, B. A.; Rodgers, M. O.; Bradshaw, J.; Sandholm, S.; Davis, D. D. (1990) An intercomparison of airborne nitric oxide measurements: a second opportunity. J. Geophys. Res. [Atmos.] 95: 10,129-10,138.

- Grell, G. A.; Dudhia, J.; Stauffer, D. R. (1994) Description of the fifth-generation Penn State/NCAR mesoscale model (MM5). Boulder, CO: National Center for Atmospheric Research, Mesoscale and Microscale Meteorology Division; report no. NCAR/TN-398+STR. Available from: NTIS, Springfield, VA; PB95-206348.
- Grell, G. A.; Emeis, S.; Stockwell, W. R.; Schoenemeyer, T.; Forkel, R.; Michalakes, J.; Knoche, R.; Seidl, W. (2000) Application of a multiscale, coupled MM5/chemistry model to the complex terrain of the VOTALP valley campaign. Atmos. Environ. 34: 1435-1453.
- Gröbner, J.; Kerr, J. B. (2001) Ground-based determination of the spectral ultraviolet extraterrestrial solar irradiance: providing a link between space-based and ground-based solar UV measurements. J. Geophys. Res. (Atmos.) 106(D7): 7211-7217.
- Grosjean, E.; Grosjean, D. (1994) Rate constants for the gas-phase reactions of ozone with unsaturated aliphatic alcohols. Int. J. Chem. Kinetics 26: 1185-1191.
- Grosjean, D.; Williams, E. L., II; Grosjean, E.; Novakov, T. (1994) Evolved gas analysis of secondary organic aerosols. Aerosol Sci. Technol. 21: 306-324.
- Gross, A.; Stockwell, W. R. (2003) Comparison of the EMEP, RADM2 and RACM Mechanisms. J. Atmos. Chem. 44: 151-170.
- Guenther, A.; Hewitt, C. N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; McKay, W. A.; Pierce, T.; Scholes, B.; Steinbrecher, R.; Tallamraju, R.; Taylor, J.; Zimmerman, P. (1995) A global model of natural volatile organic compound emissions J. Geophys. Res. (Atmos.) 100(D5): 8873-8892.
- Guenther, A.; Baugh, W.; Davis, K.; Hampton, G.; Harley, P.; Klinger, L.; Vierling, L.; Zimmerman, P.; Allwine, E.; Dilts, S.; Lamb, B.; Westberg, H.; Baldocchi, D.; Geron, C.; Pierce, T. (1996) Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques. J. Geophys. Res. (Atmos.) 101: 18,555-18,567.
- Guenther, F. R.; Dorko, W. D.; Miller, W. R.; Rhoderick, G. C. (1996) The NIST traceable reference material program for gas standards. Washington, DC: U.S. Department of Commerce, National Institute of Standards and Technology; NIST special publication 260-126.
- Guenther, A.; Geron, C.; Pierce, T.; Lamb, B.; Harley, P.; Fall, R. (2000) Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmos. Environ. 34: 2205-2230.
- Hadjinicolaou, P.; Pyle, J. A. (2004) The impact of Arctic ozone depletion on northern middle latitudes: interannual variability and dynamical control. J. Atmos. Chem. 47: 25-43.
- Hallock-Waters, K. A.; Doddridge, B. G.; Dickerson, R. R.; Spitzer, S.; Ray, J. D. (1999) Carbon monoxide in the U.S. mid-Atlantic troposphere: evidence for a decreasing trend. Geophys. Res. Lett. 26: 2861-2864.
- Hallquist, M.; Stewart, D. J.; Stephenson, S. K.; Cox, R. A. (2003) Hydrolysis of N₂O₅ on sub-micron sulfate aerosols. Phys. Chem. Chem. Phys. 5: 3453-3463.
- Hameed, S.; Pinto, J. P.; Stewart, R. W. (1979) Sensitivity of the predicted CO-OH-CH₄ perturbation to tropospheric NO_x concentrations. J. Geophys. Res. C: Oceans Atmos. 84: 763-768.
- Hanisch, F.; Crowley, J. N. (2003) Ozone decomposition on Saharan dust: an experimental investigation. Atmos. Chem. Phys. 3: 119-130.
- Hanna, A. F.; Mathur, R.; Pinto, J.; Jang, C. (2001) Seasonal modeling of the export of pollutants from North America using the Multi Scale Air Quality Simulation Pattern (MAQSIP). Presented at: Workshop on photooxidants, particles, and haze across the Arctic and North Atlantic: observations and models; June; New York, NY. Palisades, NY: Center for International Earth Science Information Network (CIESIN). Available: http://www.ciesin.org/pph/uploads/H_A_Seasonal_Modeling_PDF.pdf (29 December 2003).
- Hannegan, B.; Olsen, S.; Prather, M.; Zhu, X.; Rind, D.; Lerner, J. (1998) The dry stratosphere: a limit on cometary water influx. Geophys. Res. Lett. 25: 1649-1652.
- Hansel, A.; Jordan, A.; Taucher, J. (1995a) Analysis of volatile organic compounds using proton-transfer-reaction-mass spectrometry (PTR-MS) in the ppb range. In: Becker, K. H.; Carr, W. E.; Kunhardt, E. E., eds. Proceedings of the XXII International conference on phenomena in ionized gases; July-August; Hoboken, NJ. Hoboken, NJ: Stevens Institute of Technology; pp. 181-182.
- Hansel, A.; Jordan, A.; Holzinger, R.; Prazeller, P.; Vogel, W.; Lindinger, W. (1995b) Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level. Int. J. Mass Spectrom. Ion Proc. 149/150: 609-619.
- Hansen, K.; Draaijers, G. P. J.; Ivens, W. P. M. F.; Gundersen, P.; van Leeuwen, N. F. M. (1994) Concentration variations in rain and canopy throughfall collected sequentially during individual rain events. Atmos. Environ. 28: 3195-3205.

- Hansen, J.; Sato, M.; Ruedy, R.; Lacis, A.; Asamoah, K.; Beckford, K.; Borenstein, S.; Brown, E.; Cairns, B.;
 Carlson, B.; Curran, B.; de Castro, S.; Druyan, L.; Etwarrow, P.; Ferede, T.; Fox, M.; Gaffen, D.; Glascoe, J.;
 Gordon, H.; Hollandsworth, S.; Jiang, X.; Johnson, C.; Lawrence, N.; Lean, J.; Lerner, J.; Lo, K.; Logan, J.;
 Luckett, A.; McCormick, M. P.; McPeters, R.; Miller, R.; Minnis, P.; Ramberran, I.; Russell, G.; Russell, P.;
 Stone, P.; Tegen, I.; Thomas, S.; Thomason, L.; Thompson, A.; et al. (1997) Forcings and chaos in
 interannual to decadal climate change. J. Geophys. Res. [Atmos.] 102: 25,679-25,720.
- Hara, K.; Osada, K.; Hayashi, M.; Matsunaga, K.; Shibata, T.; Iwasaka, Y.; Furuya, K. (1999) Fractionation of inorganic nitrates in winter Arctic troposphere: coarse aerosol particles containing inorganic nitrates. J. Geophys. Res. (Atmos.) 104: 23,671-23,679.
- Hard, T. M.; Mehrabzadeh, A. A.; Chan, C. Y.; O'Brien, R. J. (1992) FAGE measurements of tropospheric HO with measurements and model of interferences. J. Geophys. Res. [Atmos.] 97: 9795-9817.
- Harder, J. W.; Brault, J. W.; Johnston, P. V.; Mount, G. H. (1997a) Temperature dependent NO₂ cross sections at high spectral resolution. J. Geophys. Res. [Atmos.] 102: 3861-3879.
- Harder, J. W.; Williams, E. J.; Baumann, K.; Fehsenfeld, F. C. (1997b) Ground-based comparison of NO₂, H₂O, and O₃ measured by long-path and in situ techniques during the 1993 Tropospheric OH Photochemistry Experiment. J. Geophys. Res. 102: 6227-6243.
- Harley, P.; Guenther, A.; Zimmerman, P. (1996) Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (*Liquidambar styraciflua*) leaves. Tree Physiol. 16: 25-32.
- Harley et al. (1997).
- Harris, G. W.; Carter, W. P. L.; Winer, A. M.; Pitts, J. N., Jr.; Platt, U.; Perner, D. (1982) Observations of nitrous acid in the Los Angeles atmosphere and implications for predictions of ozone-precursor relationships. Environ. Sci. Technol. 16: 414-419.
- Harris, J. M.; Oltmans, S. J.; Bodeker, G. E.; Stolarski, R.; Evans, R. D.; Quincy, D. M. (2003) Long-term variations in total ozone derived from Dobson and satellite data. Atmos. Environ. 37: 3167-3175.
- Harrison, R. M.; Peak, J. D.; Collins, G. M. (1996) Tropospheric cycle of nitrous acid. J. Geophys. Res. (Atmos.) 101: 14,429-14,439.
- Hauglustaine, D. A.; Brasseur, G. P.; Walters, S.; Rasch, P. J.; Müller, J.-F.; Emmons, L. K.; Carroll, M. A. (1998) MOZART, a global chemical transport model for ozone and related chemical tracers 2. model results and evaluation. J. Geophys. Res. (Atmos.) 103: 28291-28335.
- Hebestreit, K.; Stutz, J.; Rosen, D.; Matveiv, V.; Peleg, M.; Luria, M.; Platt, U. (1999) DOAS measurements of tropospheric bromine oxide in mid-latitudes. Science 283: 55-57.
- Hegg, D. A.; Livingston, J.; Hobbs, P. V.; Novakov, T.; Russell, P. (1997) Chemical apportionment of aerosol column optical depth off the mid-Atlantic coast of the United States. J. Geophys. Res. (Atmos.) 102: 25,293-25,303.
- Heikes, B. G.; Chang, W.; Pilson, M. E. Q.; Swift, E.; Singh, H. B.; Guenther, A.; Jacob, D. J.; Field, B. D.; Fall, R.; Riemer, D.; Brand, L. (2002) Atmospheric methanol budget and ocean implication. Glob. Biogeochem. Cycles 16: 10.1029/2002GB001895.
- Henry, R. C.; Lewis, C. W.; Hopke, P. K.; Williamson, H. J. (1984) Review of receptor model fundamentals. Atmos. Environ. 18: 1507-1515.
- Hering, S. V.; Lawson, D. R.; Allegrini, I.; Febo, A.; Perrino, C.; Possanzini, M.; Sickles, J. E., II; Anlauf, K. G.;
 Wiebe, A.; Appel, B. R.; John, W.; Ondo, J.; Wall, S.; Braman, R. S.; Sutton, R.; Cass, G. R.; Solomon, P. A.; Eatough, D. J.; Eatough, N. L.; Ellis, E. C.; Grosjean, D.; Hicks, B. B.; Womack, J. D.; Horrocks, J.;
 Knapp, K. T.; Ellestad, T. G.; Paur, R. J.; Mitchell, W. J.; Pleasant, M.; Peake, E.; MacLean, A.; Pierson, W. R.; Brachaczek, W.; Schiff, H. I.; Mackay, G. I.; Spicer, C. W.; (1988) The nitric acid shootout: field comparison of measurement methods. Atmos. Environ. 22: 1519-1539.
- Herlihy, L. J.; Galloway, J. N.; Mills, A. L. (1987) Bacterial utilization of formic and acetic acid in rainwater. Atmos. Environ. 21: 2397-2402.
- Hess, P. G. (2001) Model and measurement analysis of springtime transport and chemistry of the Pacific Basin. J. Geophys. Res. (Atmos.) 106: 12,689-12,717.
- Hilsenrath, E.; Attmannspacher, W.; Bass, A.; Evans, W.; Hagemeyer, R.; Barnes, R. A.; Komhyr, W.;
 Mauersberger, K.; Mentall, J.; Proffitt, M.; Robbins, D.; Taylor, S.; Torres, A.; Weinstock, E. (1986) Results from the ballon ozonr intercomparison campaign (BOIC). J. Geophys. Res. 91: 13,137-13,152.
- Hirsch, A. I.; Munger, J. W.; Jacob, D. J.; Horowitz, L. W.; Goldstein, A. H. (1996) Seasonal variation of the ozone production efficiency per unit NO_x at Harvard Forest, Massachusetts. J. Geophys. Res. [Atmos.] 101: 12,659-12,666.

- Hobbs, P. V.; Locatelli, J. D.; Martin, J. E. (1996) A new conceptual model for cyclones generated in the lee of the Rocky Mountains. Bull. Am. Meteorol. Soc. 77: 1169-1178.
- Hoell, J. M.; Davis, D. D.; Jacob, D. J.; Rodgers, M. O.; Newell, R. E.; Fuelberg, H. E.; McNeal, R. J.; Raper, J. L.; Bendura, R. J. (1996) Pacific exploratory mission in the tropical Pacific: PEM-Tropics A, August-September 1996. J. Geophys. Res. (Atmos.) 104: 5567-5583.
- Hoell, J. M.; Davis, D. D.; Liu, S. C.; Newell, R. E.; Akimoto, H.; McNeal, R. J.; Bendura, R. J. (1997) The Pacific exploratory mission A west phase B: February-March, 1994. J. Geophys. Res. [Atmos.] 102(D23): 28223-28239.
- Hoffman, E. J.; Duce, R. A. (1976) Factors influencing the organic carbon content of marine aerosols: a laboratory study. J. Geophys. Res. (Atmos.) 81: 3667-3670.
- Hoffman, E. J.; Duce, R. A. (1977) Organic carbon in marine atmospheric particulate matter: concentration and particle size distribution. Geophys. Res. Lett. 4: 449-452.
- Hoigné, J.; Zuo, Y.; Nowell, L. (1994) Photochemical reactions in atmospheric waters: role of dissolved iron species. In: Helz, G. R.; Zepp, R. G.; Crosby, D. C. Aquatic and Surface Photochemistry. Boca Raton, FL: Lewis Publishers.
- Holton, J. R. (1967) The diurnal boundary layer wind oscillation above sloping terrain. Tellus 19: 199-205.
- Holton, J. R.; Haynes, P. H.; McIntyre, M. E.; Douglass, A. R.; Rood, R. B.; Pfister, L. (1995) Stratosphere-troposphere exchange. Rev. Geophys. 33: 403-439.
- Hönninger, G. (1999) Referenzspektren reaktiver halogenverbindungen für DOAS-messungen. Heidelberg, Germany: Ruprecht Karls University.
- Honrath, R. E.; Guo, S.; Peterson, M. C. (2000) Photochemical production of gas phase NO_x from ice crystal NO₃⁻. J. Geophys. Res. (Atmos.) 105: 24,183-24,190.
- Hopke, P. K. (1985) Receptor modeling in environmental chemistry. New York, NY: John Wiley & Sons.
- Horowitz, L. W.; Liang, J.; Gardner, G. M.; Jacob, D. J. (1998) Export of reactive nitrogen from North America during summertime: sensitivity to hydrocarbon chemistry. J. Geophys. Res. 103(D11): 13451-13476.
- Hoskins, B. J. (1972) Non-boussinesq effects and further development in a model of upper tropospheric frontogenesis. Q. J. Roy. Meteorol. Soc. 98: 532-541.
- Houweling, S.; Dentener, F.; Lelieveld, J.; Walter, B.; Dlugokencky, E. (2000) The modeling of tropospheric methane: how well can point measurements be reproduced by a global model? J. Geophys. Res. (Atmos.) 105: 8981-9002.
- Hübler, G.; Alvarez, R., II; Daum, P.; Dennis, R.; Gillani, N.; Kleinman, L.; Luke, W.; Meagher, J.; Rider, D.;
 Trainer, M.; Valente, R. (1998) An overview of the airborne activities during the Southern Oxidants Study (SOS) 1995 Nashville/Middle Tennessee ozone study. J. Geophys. Res. [Atmos.] 103: 22,245-22,259.
- Hudman, R. C.; Jacob, D. J.; Cooper, O. C.; Evans, M. J.; Heald, C. L.; Park, R. J.; Fehsenfeld, F.; Flocke, F.;
 Holloway, J.; Hübler, G.; Kita, K.; Koike, M.; Kondo, Y.; Neuman, A.; Nowak, J.; Oltmans, S.; Parrish, D.;
 Roberts, J. M.; Ryerson, T. (2004) Ozone production in transpacific Asian pollution plumes and implications for ozone air quality in California. J. Geophys. Res. (Atmos.) 109(D23): 10.1029/2004JD004974.
- Huebert, B. J.; Zhuang, L.; Howell, S.; Noone, K.; Noone, B. (1996) Sulfate, nitrate, methanesulfonate, chloride, ammonium, and sodium measurements from ship, island, and aircraft during the Atlantic Stratocumulus Transition Experiment/Marine Aerosol Gas Exchange. J. Geophys. Res. (Atmos.) 101: 4413-4423.
- Huey, L. G.; Dunlea, E. J.; Lovejoy, E. R.; Hanson, D. R.; Norton, R. B.; Fehsenfeld, F. C.; Howard, C. J. (1998) Fast time response measurements of HNO₃ in air with a chemical ionization mass spectrometer. J. Geophys. Res. 103(D3): 3355-3360.
- Hunsaker, C.; Graham, R.; Turner, R. S.; Ringold, P. L.; Holdren, G. R., Jr.; Strickland, T. C. (1993) A national critical loads framework for atmospheric deposition effects assessment: II. Defining assessment end points, indicators, and functional subregions. Environ. Manage. 17: 335-341.
- Huntrieser, H.; Feigl, C.; Schlager, H.; Schröder, F.; Gerbig, C.; Van Velthoven, P.; Flatøy, F.; Théry, C.; Petzold, A.; Höller, H.; Schumann, U. (2002) Airborne measurements of NO_x, tracer species, and small particles during the European Lightning Nitrogen Oxides Experiment. J. Geophys. Res. 107(D11): 10.1029/2000JD000209.
- Husain, L.; Coffey, P. E.; Meyers, R. E.; Cederwall, R. T. (1977) Ozone transport from stratosphere to troposphere. Geophys. Res. Lett. 4: 363-365.
- Husar, R. B.; Renard, W. P. (1998) Ozone as a function of local wind speed and direction: Evidence of local and regional transport. Presented at: 91st annual meeting and exhibition of the Air & Waste Management Association; June; San Diego, CA. Pittsburgh, PA: Air & Waste Management Association; online paper no. 98-A922. Available: http://capita.wustl.edu/capita/CapitaReports/REPORTS1.HTML (13 November 2003).

- Imhoff, R. E.; Valente, R.; Meagher, J. F.; Luria, M. (1995) The production of O₃ in an urban plume airborne sampling of the Atlanta urban plume. Atmos. Environ. 29: 2349-2358.
- Intergovernmental Panel on Climate Change (IPCC). (1995) Climate change 1994: radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Cambridge, United Kingdom: University Press.
- Intergovernmental Panel on Climate Change (IPCC). (1996) Climate change 1995: the science of climate change: contribution of working group I to the second assessment of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom: Cambridge University Press.
- Intergovernmental Panel on Climate Change (IPCC). (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom: Cambridge University Press.
- Jacob, D. J. (2000) Heterogeneous chemistry and tropospheric ozone. Atmos. Environ. 34: 2131-2159.
- Jacob, D. J.; Logan, J. A.; Gardner, G. M.; Yevich, R. M.; Spivakovsky, C. M.; Wofsy, S. C.; Sillman, S.; Prather, M. J. (1993) Factors regulating ozone over the United States and its export to the global atmosphere. J. Geophys. Res. [Atmos.] 98: 14,817-14,826.
- Jacob, D. J.; Horowitz, L. W.; Munger, J. W.; Heikes, B. G.; Dickerson, R. R.; Artz, R. S.; Keene, W. C. (1995) Seasonal transition from NO_x- to hydrocarbon-limited conditions for ozone production over the eastern United States in September. J. Geophys. Res. 100: 9315-9324.
- Jacob, D. J.; Prather, M. J.; Rasch, P. J.; Shia, R.-L.; Balkanski, Y. J.; Beagley, S. R.; Bergman, D. J.; Blackshear, W. T.; Brown, M.; Chiba, M.; Chipperfield, M.; De Grandpré, J.; Dignon, J. E.; Feichter, J.; Genthon, C.; Grose, W.L.; Kasibhatla, P. S.; Köhler, I.; Kritz, M. A.; Law, K.; Penner, J. E.; Ramonet, M.; Reeves, C. E.; Rotman, D. A.; Stockwell, D. Z.; VanVelthoven, P. F. J.; Verver, G.; Wild, O.; Yang, H.; Zimmermann, P. (1997) Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers. J. Geophys. Res. [Atmos.] 102: 5953-5970.
- Jacobi, C.; Becker, C.; Kratzsch, T.; Siemer, A.; Roth, R. (1994) Experimental investigations of nocturnal low-level jets with some remarks on flight safety. Contrib. Atmos. Phys. 67: 71-82.
- Jacobson, M. Z. (1997) Development and application of a new air pollution modeling system Part III. aerosol-phase simulations. Atmos. Environ. 31: 587-608.
- Jacobson, M. Z. (1998) Studying the effects of aerosols on vertical photolysis rate coefficient and temperature profiles over an urban airshed. J. Geophys. Res. [Atmos.] 103: 10,593-10,604.
- Jacobson, M. Z. (1999) Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption. J. Geophys. Res. (Atmos.) 104: 3527-3542.
- Jacobson, M. Z.; Lu, R.; Turco, R. P.; Toon, O. P. (1996) Development and application of a new air pollution modeling system-Part I: gas-phase simulations. Atmos. Environ. 30: 1939-1963.
- Jacobson, M. C.; Hansson, H.-C.; Noone, K. J.; Charlson, R. J. (2000) Organic atmospheric aerosols: review and state of the science. Rev. Geophys. 38: 267-294.
- Jaeglé, L.; Jacob, D. J.; Wennberg, P. O.; Spivakovsky, C. M.; Hanisco, T. F.; Lanzendorf, E. J.; Hintsa, E. J.;
 Fahey, D. W.; Keim, E. R.; Proffitt, M. H.; Atlas, E. L.; Flocke, F.; Schauffler, S.; McElroy, C. T.;
 Midwinter, C.; Pfister, L.; Wilson, J. C. (1997) Observed OH and HO₂ in the upper troposphere suggests a major source from convective injection of peroxides. Geophys. Res. Lett. 24: 3181-3184.
- Jaeglé, L.; Jacob, D. J.; Brune, W. H.; Faloona, I. C.; Tan, D.; Kondo, Y.; Sachse, G. W.; Anderson, B.; Gregory, G. L.; Vay, S.; Singh, H. B.; Blake, D. R.; Shetter, R. (1999) Ozone production in the upper troposphere and the influence of aircraft during SONEX: approach of NO_x-saturated conditions. Geophys. Res. Lett. 26: 3081-3084.
- Jaeglé, L.; Jacob, D. J.; Brune, W. H.; Faloona, I.; Tan, D.; Heikes, B. G.; Kondo, Y.; Sachse, G. W.; Anderson, B.; Gregory, G. L.; Singh, H. B.; Pueschel, R.; Ferry, G.; Blake, D. R.; Shetter, R. E. (2000) Photochemistry of HO_x in the upper troposphere at northern midlatitudes. J. Geophys. Res. (Atmos.) 105(D3): 3877-3892.
- Jaeglé, L.; Jacob, D. J.; Brune, W. H.; Wennberg, P. O. (2001) Chemistry of HO_x radicals in the upper troposphere. Atmos. Environ. 35: 469-489.
- Jaffe, D.; Price, H.; Parrish, D.; Goldstein, A.; Harris, J. (2003) Increasing background ozone during spring on the west coast of North America. Geophys. Res. Lett. 30: 10,1029/2003GL017024.
- Jaffe, D.; McKendry, I.; Anderson, T.; Price, H. (2003) Six 'new'episodes of trans-Pacific transport of air pollutants. Atmos. Environ. 37: 391-404.
- James, P.; Stohl, A.; Forster, C.; Eckhardt, S.; Seibert, P.; Frank, A. (2003a) A 15-year climatology of stratosphere-troposphere exchange with a Lagrangian particle dispersion model: 1. Methodology and validation. J. Geophys. Res. 108(D12): 10.1029/2002JD002637.

- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
- James, P.; Stohl, A.; Forster, C.; Eckhardt, S.; Seibert, P.; Frank, A. (2003b) A 15-year climatology of stratosphere-troposphere exchange with a Lagrangian particle dispersion model. 2. Mean climate and seasonal variability. J. Geophys. Res. (Atmos.) 108(D12): 10.1029/2002JD002639.
- Jang, M.; Kamens, R. M. (2001) Characterization of secondary aerosol from the photooxidation of toluene in the presence of NO, and 1-propene. Environ. Sci. Technol. 35: 3626-3639.
- Jankowski, J. J.; Kieber, D. J.; Mopper, K.; Neale, P. J. (2000) Development and intercalibration of ultraviolet solar actinometers. Photochem. Photobiol. 71: 431-440.
- Jenkin, M. E.; Cox, R. A.; Williams, D. J. (1988) Laboratory studies of the kinetics of formation of nitrous acid from the thermal reaction of nitrogen dioxide and water vapour. Atmos. Environ. 22: 487-498.
- Jenkin, M. E.; Saunders, S. M.; Pilling, M. J. (1997) The tropospheric degradation of volatile organic compounds: a protocol for mechanism development. Atmos. Environ. 31: 81-104.
- Jet Propulsion Laboratory. (2003) Chemical kinetics and photochemical data for use in atmospheric studies. Pasadena, CA: California Institute of Technology; JPL publication no. 02-25. Available: http://jpldataeval.jpl.nasa.gov/pdf/JPL_02-25_1_intro_rev0.pdf (18 December 2003).
- Jeuken, A. B. M.; Eskes, H. J.; Van Velthoven, P. F. J.; Kelder, H. M.; Hólm, E. V. (1999) Assimilation of total ozone satellite measurements in a three-dimensional tracer transport model. J. Geophys. Res. (Atmos.) 104: 5551-5563.
- Jimenez, P.; Baldasano, J. M.; Dabdub, D. (2003) Comparison of photochemical mechanisms for air quality modeling. Atmos. Environ. 37: 4179-4194.
- Jobson, B. T.; Berkowitz, C. M.; Kuster, W. C.; Goldan, P. D.; Williams, E. J.; Fehsenfeld, F. C.; Apel, E. C.; Karl, T.; Lonneman, W. A.; Riemer, D. (2004) Hydrocarbon source signatures in Houston, Texas: influence of the petrochemical industry. J. Geophys. Res. 109: D24305: 10.1029/2004JD004887.
- Johnson, W. B.; Viezee, W. (1981) Stratospheric ozone in the lower troposphere I. presentation and interpretation of aircraft measurements. Atmos. Environ. 15: 1309-1323.
- Johnson, C. E.; Collins, W. J.; Stevenson, D. S.; Derwent, R. G. (1999) The relative roles of climate and emissions changes on future oxidant concentrations. J. Geophys. Res. (Atmos.) 104: 18,631-18,645.
- Johnson, B. J.; Oltmans, S. J.; Vömel, H.; Smit, H. G. J.; Deshler, T.; Kröger, C. (2002) Electrochemical concentration cell (ECC) ozonesonde pump efficiency measurements and tests on the sensitivity to ozone of buffered and unbuffered ECC sensor cathode solutions. J. Geophys. Res. 107(D19): 10.1029/2001JD000557.
- Jordan, C. E.; Dibb, J. E.; Finkel, R. C. (2003) ¹⁰Be/⁷Be tracer of atmospheric transport and stratosphere-troposphere exchange. J. Geophys. Res. 108(D8): 10.1029/2002JD002395.
- Junge, C. E. (1962) Global ozone budget and exchange between stratosphere and troposphere. Tellus 14: 363-377.
- Junge, C. E. (1963) Air chemistry and radioactivity. New York, NY: Academic Press. (Van Mieghem, J.; Hales, A. L., eds. International geophysics series: v. 4).
- Kain, J. S.; Fritsch, J. M. (1993) Convective parameterization in mesoscale models: the Kain-Fritsch scheme. In: Emanuel, K. A.; Raymond, D. J., eds. The Representation of Cumulus Convection in Numerical Models. Boston, MA: American Meteorological Society; pp. 165-170. (Meteorological Monographs, v. 24, no. 46).
- Kane, M. M.; Rendell, A. R.; Jickells, T. D. (1994) Atmospheric scavenging processes over the North Sea. Atmos. Environ. 28: 2523-2530.
- Kane, S. M.; Caloz, F.; Leu, M.-T. (2001) Heterogeneous uptake of gaseous N₂O₅ by (NH₄)₂SO₄ NH₄HSO₄, and H₂SO₄ aerosols. J. Phys. Chem. A 105: 6465-6470.
- Karamchandani, P.; Santos, L.; Sykes, I.; Zhang, Y.; Tonne, C.; Seigneur, C. (2000) Development and evaluation of a state-of-the-science reactive plume model. Environ. Sci. Technol. 34: 870-880.
- Karamchandani, P.; Seigneur, C.; Vijayaraghavan, K.; Wu, S.-Y. (2002) Development and application of a state-of-the-science plume-in-grid model. J. Geophys. Res. (Atmos.) 107: 10.1019/2002D002123.
- Kasibhatla, P.; Chameides, W. L. (2000) Seasonal modeling of regional ozone pollution in the eastern United States. Geophys. Res. Lett. 27: 1415-1418.
- Kasting, J. F.; Singh, H. B. (1986) Nonmethane hydrocarbons in the troposphere: impact on the odd hydrogen and odd nitrogen chemistry, J. Geophys. Res. 91: 13,239-13,256.
- Kavouras, I. G.; Mihalopoulus, N.; Stephanou, E. G. (1999) Secondary organic aerosol formation vs primary organic aerosol emission: in situ evidence for the chemical coupling between monoterpene acidic photooxidation products and new particle formation over forests. Environ. Sci. Technol. 33: 1028-1037.
- Kawamura, K.; Seméré, R.; Imai, Y.; Fuji, Y.; Hayashi, M. (1996) Water soluble dicarboxylic acids and related compounds in Antarctic aerosols. J. Geophys. Res. 101: 18,721-18,728.
- Keene, W. C.; Savoie, D. L. (1998) The pH of deliquesced sea-salt aerosol in polluted marine air. Geophys. Res. Lett. 25: 2181-2194.

- 123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
- Keene, W. C.; Savoie, D. L. (1999) Correction to "The pH of deliquesced sea-salt aerosol in polluted marine air." Geophys. Res. Lett. 26: 1315-1316.
- Keene, W. C.; Sander, R.; Pszenny, A. A. P.; Vogt, R.; Crutzen, P. J.; Galloway, J. N. (1998) Aerosol pH in the marine boundary layer: a review and model evaluation. J. Aerosol Sci. 29: 339-356.
- Keene, W. C.; Pszenny, A. A. P.; Maben, J. R.; Sander, R. (2002) Variation of marine aerosol acidity with particle size. Geophys. Res. Lett. 29(7): 10.1029/2001GL013881.
- Kelly, N. A.; Wolff, G. T.; Ferman, M. A. (1982) Background pollutant measurements in air masses affecting the eastern half of the United States I. air masses arriving from the northwest. Atmos. Environ. 16: 1077-1088.
- Kelly, N. A.; Ferman, M. A.; Wolff, G. T. (1986) The chemical and meteorological conditions associated with high and low ozone concentrations in southeastern Michigan and nearby areas of Ontario. J. Air Pollut. Control Assoc. 36: 150-158.
- Kenley, R. A.; Davenport, J. E.; Hendry, D. G. (1981) Gas-phase hydroxyl radical reactions. Products and pathways for the reaction of OH with aromatic hydrocarbons. J. Phys. Chem. 85: 2740-2746.
- Kim, B. M.; Henry, R. C. (2000) Application of SAFER model to the Los Angeles PM10 data. Atmos. Environ. 34: 1747-1759.
- Kim, K.-H.; Kim, M.-Y. (2001) Comparison of an open path differential optical absorption spectroscopy system and a conventional in situ monitoring system on the basis of long-term measurements of SO₂, NO₂, and O₃. Atmos. Environ. 35: 4059-4072.
- King, D. W.; Lounsbury, H. A.; Millero, F. J. (1995) Rates and mechanisms of Fe(II) oxidation at nonmolar total iron concentrations. Environ. Sci. Technol. 29: 818-824.
- King, M. D.; Canosa-Mas, C. E.; Wayne, R. P. (2002) A structure activity relationship (SAR) for predicting rate constants for the reaction of nitrogen dioxide (NO₂) with alkenes. Phys. Chem. Chem. Phys. 4: 295-303.
- Kireev, S. V.; Shnyrev, S. L.; Zhiganov, A. A. (1999) A laser fluorimeter for NO and NO₂ in atmosphere. Instrum. Exp. Tech. 42: 701-703.
- Kleindienst, T. E.; Hudgens, E. E.; Smith, D. F.; McElroy, F. F.; Bufalini, J. J. (1993) Comparison of chemiluminescence and ultraviolet ozone monitor responses in the presence of humidity and photochemical pollutants. Air Waste 43: 213-222.
- Kleindienst, T. E.; Smith, D. F.; Li, W.; Edney, E. O.; Driscoll, D. J.; Speer, R. E.; Weathers, W. S. (1999) Secondary organic aerosol formation from the oxidation of aromatic hydrocarbons in the presence of dry submicron ammonium sulfate aerosol. Atmos. Environ. 33: 3669-3681.
- Kleinman, L. I. (2000) Ozone process insights from field experiments part II: observation-based analysis for ozone production. Atmos. Environ. 34: 2023-2034.
- Kleinman, L. I.; Daum, P. H.; Lee, Y.-N.; Springston, S. R.; Newman, L.; Leaitch, W. R.; Banic, C. M.; Isaac, G. A.; MacPherson, J. I. (1996a) Measurement of O₃ and related compounds over southern Nova Scotia. 1. Vertical distributions. J. Geophys. Res. [Atmos.] 101: 29,043-29,060.
- Kleinman, L. I.; Daum, P. H.; Springston, S. R.; Leaitch, W. R.; Banic, C. M.; Isaac, G. A.; Jobson, T. B.; Niki, H. (1996b) Measurement of O₃ and related compounds over southern Nova Scotia. 2. Photochemical age and vertical transport. J. Geophys. Res. [Atmos.] 101: 29,061-29,074.
- Kleinman, L. I.; Daum, P. H.; Lee, J. H.; Lee, Y.-N.; Nunnermacker, S. R.; Springston, L.; Newman, J.; Weinstein-Lloyd, J.; Sillman, S. (1997) Dependence of ozone production on NOand hydrocarbons in the troposphere. Geophys. Res. Lett. 24: 2299-2302.
- Kleinman, L. I.; Daum, P. H.; Imre, D. G.; Lee, J. H.; Lee, Y.-N.; Nunnermacker, L. J.; Springston, S. R.; Weinstein-Lloyd, J.; Newman, L. (2000) Ozone production in the New York City urban plume. J. Geophys. Res. [Atmos.] 105: 14,495-14,511.
- Kleinman, L. I.; Daum, P. H.; Lee, Y.-N.; Nunnermacker, L. J.; Springston, S. R.; Weinstein-Lloyd, J.; Rudolph, J. (2001) Sensitivity of ozone production rate to ozone precursors. Geophys. Res. Lett. 28: 2903-2906.
- Kleinman, L. I.; Daum, P. H.; Imre, D.; Lee, Y.-N.; Nunnermacker, L. J.; Springston, S. R.; Weinstein-Lloyd, J.; Rudolph, J. (2002) Ozone production rate and hydrocarbon reactivity in 5 urban areas: a cause of high ozone concentration in Houston. Geophys. Res. Lett. 29: 10.1029/2001GL014569.
- Kley, D.; Crutzen, P. J.; Smit, H. G. J.; Vomel, H.; Oltmans, S. J.; Grassl, H.; Ramanathan, V. (1996) Observations of near-zero ozone concentrations over the convective Pacific: effects on air chemistry. Science 274: 230-233.
- Klotz, B.; Barnes, I.; Becker, K. H.; Golding, B. T. (1997) Atmospheric chemistry of benzene oxide/oxepin. J. Chem. Soc. Faraday Trans. 93: 1507-1516.
- Klotz, B; Barnes, I.; Becker, K. H. (1998) New results on the atmospheric photooxidation of simple alkylbenzenes. Chem. Phys. 231: 289-301.
- Knake, R.; Hauser, P. C. (2002) Sensitive electrochemical detection of ozone. Anal. Chim. Acta 459: 199-207.

- Knispel, R.; Koch, R.; Siese, M.; Zetzsch, C. (1990) Adduct formation of OH radicals with benzene, toluene, and phenol and consecutive reactions of the adducts with NO_x and O₂. Ber. Bunsen-Ges. Phys. Chem. 94: 1375-1379.
- Koch, T. G.; Banham, S. F.; Sodeau, J. R.; Horn, A. B.; McCoustra, M. R. S.; Chesters, M. A. (1997) Mechanisms for the heterogeneous hydrolysis of hydrogen chloride, chlorine nitrate and dinitrogen pentoxide on water-rich atmospheric particle surfaces. J. Geophys Res. (Atmos.) 102: 1513-1522.
- Konrad, S.; Schmitz, T.; Buers, H.-J.; Houben, N.; Mannschreck, K.; Mihelcic, D.; Müsgen, P.; Pätz, H.-W.;
 Holland, F.; Hofzumahaus, A.; Schäfer, H.-J.; Schröder, S.; Volz-Thomas, A.; Bächmann, K.; Schlomski, S.;
 Moortgat, G.; Großmann, D. (2003) Hydrocarbon measurements at Pabstthum during the BERLIOZ
 campaign and modeling of free radicals. J. Geophys. Res. [Atmos.] 108(D4): 10.1029/2001JD000866.
- Kotamarthi, V. R.; Gaffney, J. S.; Marley, N. A.; Doskey, P. V. (2001) Heterogeneous NO_x chemistry in the polluted PBL. Atmos. Environ. 35: 4489-4498.
- Krol, M.; Van Leeuwen, P. J.; Lelieveld, J. (1998) Global OH trend inferred from methylchloroform measurements. J. Geophys. Res. [Atmos.] 103: 10,697-10,711.
- Kumar, N.; Russell, A. G. (1996) Development of a computationally efficient, reactive subgrid-scale plume model and the impact in the northeastern United States using increasing levels of chemical detail. J. Geophys. Res. [Atmos.] 101: 16,737-16,744.
- Kwok, E. S. C.; Aschmann, S. M.; Atkinson, R.; Arey, J. (1997) Products of the gas-phase reactions of *o*-, *m* and *p*-xylene with the OH radical in the presence and absence of NO_x. J. Chem. Soc. Faraday Trans. 93: 2847-2854.
- Lamb, B.; Gay, D.; Westberg, H.; Pierce, T. (1993) A biogenic hydrocarbon emission inventory for the U.S.A. using a simple forest canopy model. Atmos. Environ. Part A 27: 1673-1690.
- Lammel, G.; Cape, J. N. (1996) Nitrous acid and nitrite in the atmosphere. Chem. Soc. Rev. 25: 361-369.
- Lammel, G.; Perner, D. (1988) The atmospheric aerosol as a source of nitrous acid in the polluted atmosphere. J. Aerosol Sci. 19: 1199-1202.
- Langford, A. O.; Reid, S. J. (1998) Dissipation and mixing of a small-scale stratospheric intrusion in the upper troposphere. J. Geophys. Res. 103(D23): 31,265-31,276.
- Lantz, K. O.; Shetter, R. E.; Cantrell, C. A.; Flocke, S. J.; Calvert, J. G.; Madronich, S. (1996) Theoretical, actinometric, and radiometric determinations of the photolysis rate coefficient of NO2 during the Mauna Loa Observatory Photochemistry Experiment 2. J. Geophys. Res. (Atmos.) 101(D9): 14,613-14629.
 - Law, K. S.; Plantevin, P. H.; Shallcross, D. E.; Rogers, H. L.; Pyle, J. A.; Grouhel, C.; Thouret, V.; Marenco, A. (1998) Evaluation of modeled O₃ using measurement of ozone by airbus in-service aircraft (MOZAIC) data. J. Geophys. Res. (Atmos.) 103: 25,721-25,737.
- Law, K. S.; Plantevin, P.-H.; Thouret, V.; Marenco, A.; Asman, W. A. H.; Lawrence, M.; Crutzen, P. J.; Muller, J. F.; Hauglustaine, D. A.; Kanakidou, M. (2000) Comparison between global chemistry transport model results and measurement of ozone and water vapor by airbus in-service aircraft (MOZAIC) data. J. Geophys. Res. (Atmos.) 105: 1503-1525.
- Lawrence, M. G.; Crutzen, P. J.; Rasch, P. J.; Eaton, B. E.; Mahowald, N. M. (1999) A model for studies of tropospheric photochemistry: description, global distributions and evaluation. J. Geophys. Res. (Atmos.) 104: 26,245-26,277.
- Lean, J. L. (2000) Short term, direct indices of solar variability. Space Science Reviews 94: 39-51.
- Lefohn, A. S.; Oltmans, S. J.; Dann, T.; Singh, H. B. (2001) Present-day variability of background ozone in the lower troposphere. J. Geophys. Res. [Atmos.] 106: 9945-9958.
- Leibrock, E.; Huey, L. G. (2000) Ion chemistry for the detection of isoprene and other volatile organic compounds in ambient air. Geophys. Res. Lett. 27: 1719-1722.
- Lelieveld, J.; Crutzen, P. J. (1990) Influences of cloud photochemical processes on tropospheric ozone. Nature (London) 343: 227-233.
- Lelieveld, J.; Crutzen, P. J. (1991) The role of clouds in tropospheric photochemistry. J. Atmos. Chem. 12: 229-267.
- Lelieveld, J.; Crutzen, P. J. (1994) Role of deep cloud convection in the ozone budget of the troposphere. Science 264: 1759-1761.
- Lelieveld, J.; Dentener, F. J. (2000) What controls tropospheric ozone? J. Geophys. Res. [Atmos.] 105: 3531-3551.
- Leser, H.; Hönninger, G.; Platt, U. (2003) MAX-DOAS measurements of BrO and NO₂ in the marine boundary layer. Geophys. Res. Lett. 30: 10.1029/2002GL015811.
- Leston, A. R.; Ollinson, W. M.; Spicer, C. W.; Satola, J. (2005) Potential interference bias in ozone standard compliance monitoring. J. Air Waste Manage. Assoc.: in press.

- Leu, M.-T. (2003) Laboratory studies of interaction between trace gases and sulphuric acid or sulphate aerosols using flow-tube reactors. Int. Rev. Phys. Chem. 22: 341-376.
- Li, Q.; Jacob, D. J.; Logan, J. A.; Bey, I.; Yantosca, R. M.; Liu, H.; Martin, R. V.; Fiore, A. M.; Field, B. D.; Duncan, B. N. (2001) A tropospheric ozone maximum over the Middle East. Geophys. Res. Lett. 28: 3235-3238.
- Li, Q.; Jacob, D. J.; Fairlie, T. D.; Liu, H.; Martin, R. V.; Yantosca, R. M. (2002) Stratospheric versus pollution influences on ozone at Bermuda: reconciling past analyses. J. Geophys. Res. 107(D22): 10.1029/2002JD002138.
- Liang, J.; Horowitz, L. W.; jacob, D. J.; Wang, Y.; Fiore, A. M.; Logan, J. A.; Gardner, G. M.; Munger, J. W. (1998) Seasonal variations of reactive nitrogen species and ozone over the United States, and export fluxes to the global atmosphere. J. Geophys. Res. (Atmos.) 103: 13,435-13,450.
- Liao, H.; Yung, Y. L.; Seinfeld, J. H. (1999) Effects of aerosols on tropospheric photolysis rates in clear and cloudy atmospheres. J. Geophys. Res. (Atmos.) 104: 23,697-23,707.
- Lillis, D.; Cruz, C. N.; Collett, J.; Richards, L. W.; Pandis, S. N. (1999) Production and removal of aerosol in a polluted fog layer: model evaluation and fog effect on PM. Atmos. Environ. 33: 4797-4816.
- Lin, C.; Milford, J. B. (1994) Decay-adjusted chemical mass balance receptor modeling for volatile organic compounds. Atmos. Environ. 28: 3261-3276.
- Lin, X.; Trainer, M.; Liu, S. C. (1988) On the nonlinearity of the tropospheric ozone production. J. Geophys. Res. [Atmos.] 93: 15,879-15,888.
- Lindinger, W.; Hansel, A.; Jordan, A. (1998) Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chem. Soc. Rev. 27: 347-354.
- Liu, M.-K.; Seinfeld, J. H. (1975) On the validity of grid and trajectory models of urban air pollution. Atmos. Environ. 9: 555-574.
- Liu, S. C.; Trainer, M.; Fehsenfeld, F. C.; Parrish, D. D.; Williams, E. J.; Fahey, D. W.; Hübler, G.; Murphy, P. C. (1987) Ozone production in the rural troposphere and the implications for regional and global ozone distributions. J. Geophys. Res. [Atmos.] 92: 4191-4207.
- Liu, X. H.; Hegg, D. A.; Stoelinga, M. T. (2001a) Numerical simulation of new particle formation over the northwest Atlantic using the MM5 mesoscale model coupled with sulfur chemistry. J. Geophys. Res. [Atmos.] 106: 9697-9715.
- Liu, H.; Jacob, D. J.; Bey, I.; Yantosca, R. M. (2001b) Constraints from ²¹⁰Pb and ⁷Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields. J. Geophys. Res. [Atmos.] 106: 12,109-12,128.
- Logan, J. A. (1989) Ozone in rural areas of the United States. J. Geophys. Res. [Atmos.] 94: 8511-8532.
- Logan, J. A.; Prather, M. J.; Wofsy, S. C.; McElroy, M. B. (1981) Tropospheric chemistry: a global perspective. J. Geophys. Res. C: Oceans Atmos. 86: 7210-7254.
- Logan, J. A. (1994) Trends in the vertical distribution of ozone: an analysis of ozonesonde data. J. Geophys. Res. (Atmos.) 99: 25,553-25,585.
- Longfellow, C. A.; Ravishankara, A. R.; Hanson, D. R. (1999) Reactive uptake on hydrocarbon soot: focus on NO₂. J. Geophys. Res. (Atmos.) 104: 13,833-13,840.
- Lonneman, W. A.; Seila, R. L. (1993) Hydrocarbon compositions in Los Angeles and New York 20 years later. Presented at: International symposium on measurement of toxic and related air pollutants. Pittsburgh, PA: Air & Waste Management Association.
- Lu, C.-H.; Chang, J. S. (1998) On the indicator-based approach to assess ozone sensitivities and emissions features. J. Geophys. Res. (Atmos.) 103: 3453-3462.
- Lu, R.; Turco, R. P.; Jacobson, M. Z. (1997) An integrated air pollution modeling system for urban and regional scales: 1. Structure and performance. J. Geophys. Res. [Atmos.] 102: 6063-6079.
- Ludwig, F. L.; Reiter, E.; Shelar, E.; Johnson, W. B. (1977) The relation of oxidant levels to precursor emissions and meteorological features: v. 1, analysis and findings. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards; report no. EPA-450/3-77-022a. Available from: NTIS, Springfield, VA; PB-275 001.
- Luke, W. T. (1997) Evaluation of a commercial pulsed fluorescence detector for the measurement of low-level SO₂ concentrations during the Gas-Phase Sulfur Intercomparison Experiment. J. Geophys. Res. (Atmos.) 102: 16,255-16,265.
- Luke, W. T.; Dickerson, R. R.; Ryan, W. F.; Pickering, K. E.; Nunnermacker, L. J. (1992) Tropospheric chemistry over the lower Great Plains of the United States. 2. Trace gas profiles and distributions. J. Geophys. Res. 97(D18): 20647-20670.

- Luke, W. T.; Watson, T. B.; Olszyna, K. J.; Gunter, R. L.; McMillen, R. T.; Wellman, D. L.; Wilkison, S. W. (1998) A comparison of airborne and surface trace gas measurements during the Southern Oxidants Study (SOS). J. Geophys. Res. [Atmos.] 103: 22,317-22,337.
- Luria, M.; Valente, R. J.; Tanner, R. L.; Gillani, N. V.; Imhoff, R. E.; Mueller, S. F.; Olszyna, K. J.; meagher, J. F. (1999) The evolution of photochemical smog in a power plant plume. Atmos. Environ. 33: 3023-3036.
- Luria, M.; Tanner, R. L.; Imhoff, R. E.; Valente, R. J.; Bailey, E. M.; Mueller, S. F. (2000) Influence of natural hydrocarbons on ozone formation in an isolated power plant plume. J. Geophys. Res. [Atmos.] 105: 9177-9188.
- Madronich, S. (1987) Photodissociation in the atmosphere. 1. Actinic flux and the effects of ground reflections and clouds. J. Geophys. Res. [Atmos.] 92: 9740-9752.
- Madronich, S.; McKenzie, R. L.; Caldwell, M. M.; Bjorn, L. O. (1995) Changes in ultraviolet radiation reaching the Earth's surface. Ambio 24: 143-152.
- Mahlman, J. D. (1997) Dynamics of transport processes in the upper troposphere. Science 276: 1079-1083.
- Mahlman, J. D.; Pinto, J. P.; Umscheid, L. J. (1994) Transport, radiative, and dynamical effects of the Antarctic ozone hole: a GFDL ``SKYHI" model experiment. J. Atmos. Sci. 51: 489-508.
- Mahrt, L. (1998) Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn. 11: 263-279.
- Martilli, A.; Neftel, A.; Favaro, G.; Kirchner, F.; Sillman, S.; Clappier, A. (2002) Simulation of the ozone formation in the northern part of the Po Valley. J. Geophys. Res. (Atmos.) 107(D22): 10.1029/2001JD000534.
- Martin, D.; Tsivou, M.; Bonsang, B.; Abonnel, C.; Carsey, T.; Springer-Young, M.; Pszenny, A.; Suhre, K. (1997) Hydrogen peroxide in the marine atmospheric boundary layer during the Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange experiment in the eastern subtropical North Atlantic. J. Geophys. Res. (Atmos.) 102: 6003-6015.
- Martin, R. V.; Jacob, D. J.; Chance, K. V.; Kurosu, T. P.; Palmer, P. I.; Evans, M. J. (2003) Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns. J. Geophys. Res. 108(D17): 10.1029/2003JD003453.
- Martinez, M.; Harder, H.; Kovacs, T. A.; Simpas, J. B.; Bassis, J.; Lesher, R.; Brune, W. H.; Frost, G. J.; Williams, E. J.; Stroud, C. A.; Jobson, B. T.; Roberts, J. M.; Hall, S. R.; Shetter, R. E.; Wert, B.; Fried, A.; Alicke, B.; Stutz, J.; Young, V. L.; White, A. B.; Zamora, R. J. (2003) OH and HO2 concentrations, sources, and loss rates during the Southern Oxidants study in Nashville, Tennessee, summer 1999. J. Geophys. Res. (Atmos.) 108(D19): 10.1029/2003JD003551.
- Marufu, L. T.; Taubman, B. F.; Bloomer, B.; Piety, C. A.; Doddridge, B. G.; Stehr, J. W.; Dickerson, R. R. (2004) The 2003 North American electrical blackout: an accidental experiment in atmospheric chemistry. Geophys. Res. Lett. 31(L13106): 10.1029/2004GL019771.
- Massman, W. J.; Pederson, J.; Delany, A.; Grantz, D.; Denhartog, G.; Neumann, H. H.; Oncley, S. P.; Pearson, R.; Shaw, R. H. (1994) An evaluation of the regional acid deposition model surface module for ozone uptake at 3 sites in the San-Joaquin valley of California. J. Geophys. Res. [Atmos.] 99: 8281-8294.
- Matsumi, Y.; Murakami, S.-I.; Kono, M. (2001) High-sensitivity instrument for measuring atmospheric NO₂. Anal. Chem. 73: 5485-5493.
- Mauldin, R. L., III; Tanner, D. J.; Eisele, F. L. (1998) A new chemical ionization mass spectrometer technique for the fast measurement of gas phase nitric acid in the atmosphere. J. Geophys. Res. 103(D3): 3361-3367.
- McClenny, W. A., ed. (2000) Recommended methods for ambient air monitoring of NO, NO₂, NO_y, and individual NO_z species. Research Triangle Park, NC: U.S. Environmental Protection Agency, National Exposure Research Laboratory; report no. GPRA APM #442.
- McDow, S. R.; Jang, M.; Hong, Y.; Kamens, R. M. (1996) An approach to studying the effect of organic composition on atmospheric aerosol photochemistry. J. Geophys. Res. (Atmos.) 101(D14): 19,593-19,600.
- McFiggans, G.; Allan, B.; Coe, H.; Plane, H. M. C.; Carpenter, L. J.; O'Dowd, C. (2000) A modeling study of iodine chemistry in the marine boundary layer. J. Geophys. Res. (Atmos.) 105: 14,371-14,385.
- McFiggans, G.; Cox, R. A.; Mössinger, J. C.; Allan, B. J.; Plane, J. M. C. (2002) Active chlorine release from marine aerosols: roles for reactive iodine and nitrogen species. J. Geophys. Res. 17(D15): 10.1029/2001JD000383.
- McKeen, S. A.; Liu, S. C. (1993) Hydrocarbon ratios and photochemical history of air masses. Geophys. Res. Lett. 20: 2363-2366.
- McKeen, S. A.; Liu, S. C. (1997) Hydrocarbon ratios and the photochemical history of air masses. Geophys. Res. Lett. 20: 2363-2366.

- McKeen, S. A.; Liu, S. C.; Hsie, E.-Y.; Lin, X.; Bradshaw, J. D.; Smyth, S.; Gregory, G. L.; Blake, D. R. (1996) Hydrocarbon ratios during PEM-WEST A: a model perspective. J. Geophys. Res. (Atmos.) 101(D1): 2087-2109.
- McKeen, S. A.; Mount, G.; Eisele, F.; Williams, E.; Harder, J.; Goldan, P.; Kuster, W.; Liu, S. C.; Baumann, K.; Tanner, D.; Fried, A.; Sewell, S.; Cantrell, C.; Shetter, R. (1997) Photochemical modeling of hydroxyl and its relationship to other species during the Tropospheric OH Photochemistry Experiment. J. Geophys. Res. (Atmos.) 102: 6467-6493.
- McKenna, D. S.; Konopka, P.; Grooß, J.-U.; Günther, G.; Müller, R.; Spang, R.; Offermann, D.; Orsolini, Y. (2002) A new chemical Lagrangian model of the stratosphere (CLaMS) 1. formulation of advection and mixing. J. Geophys. Res. 107(D16): 10.1029/2000JD000114.
- Meagher, J. F.; Cowling, E. B.; Fehsenfeld, F. C.; Parkhurst, W. J. (1998) Ozone formation and transport in southeastern United States: overview of the SOS Nashville/Middle Tennessee Ozone Study. J. Geophys. Res. [Atmos.] 103: 22,213-22,223.
- Mendoza-Dominguez, A.; Russell, A. G. (2000) Iterative inverse modeling and direct sensitivity analysis of a photochemical air quality model. Environ. Sci. Technol. 3: 4974-4981.
- Mendoza-Dominguez, A.; Russell, A. G. (2001) Estimation of emission adjustments from the application of four-dimensional data assimilation to photochemical air quality modeling. Atmos. Environ. 35: 2879-2894.
- Meng, Z.; Seinfeld, J. H. (1996) Time scales to achieve atmospheric gas-aerosol equilibrium for volatile species. Atmos. Environ. 30: 2889-2900.
- Meng, Z.; Dabdub, D.; Seinfeld, J. H. (1997) Chemical coupling between atmospheric ozone and particulate matter. Science (Washington, DC) 277: 116-119.
- Mentel, T. F.; Sohn, M.; Wahner, A. (1999) Nitrate effect in the heterogeneous hydrolysis of dinitrogen pentoxide on aqueous aerosols. Phys. Chem. Chem. Phys. 1: 5451-5457.
- Merrill, J. T.; Moody, J. L. (1996) Synoptic meteorology and transport during the North Atlantic Regional Experiment (NARE) intensive: overview. J. Geophys. Res. [Atmos.] 101: 28,903-28,921.
- Meyers, T.; Sickles, J.; Dennis, R.; Rusell, K.; Galloway, J.; Church, T. (2001) Atmospheric nitrogen deposition to coastal estuaries and their watersheds. In: Valigura, R. A.; Alexander, R. B.; Castro, M. S.; Meyers, T. P.; Paerl, H. W.; Stacey, P. E.; Turner, R. E., eds. Nitrogen Loading in Coastal Water Bodies: an Atmospheric Perspective. Washington, DC: AGU Press.
- Meyrahn, H.; Pauly, J.; Schneider, W.; Warneck, P. (1986) Quantum yields for photodissociation of acetone in air and an estimate for the life time of acetone in the lower troposphere. J. Atmos. Chem. 4: 277-291.
- Michel, A. E.; Usher, C. R.; Grassian, V. H. (2002) Heterogeneous and catalytic uptake of ozone on mineral oxides and dusts: a Knudsen cell investigation. Geophys. Res. Lett. 29: DOI:10.1029/2002GL014896.
- Michel, A. E.; Usher, C. R.; Grassian, V. H. (2003) Reactive uptake of ozone on mineral oxides and mineral dusts. Atmos. Environ. 37: 3201-3211.
- Mickley, L. J.; Murti, P. P.; Jacob, D. J.; Logan, J. A.; Koch, D. M.; Rind, D. (1999) Radiative forcing from tropospheric ozone calculated with a unified chemistry-climate model. J. Geophys. Res. [Atmos.] 104: 30,153-30,172.
- Mihelcic, D.; Holland, F.; Hofzumahaus, A.; Hoppe, L.; Konrad, S.; Müsgen, P.; Pätz, H.-W.; Schäfer, H.-J.;
 Schmitz, T.; Volz-Thomas, A.; Bächmann, K.; Schlomski, S.; Platt, U.; Geyer, A.; Alicke, B.; Moortgat,
 G. K. (2003) Peroxy radicals during BERLIOZ and Pabstthum: measurements, radical budgets and ozone production. J. Geophys. Res. [Atmos.] 108(D4): 10.1029/2001JD001014.
- Milanchus, M. L.; Rao, S. T.; Zurbenko. I. G. (1998) Evaluating the effectiveness of ozone management efforts in the presence of meteorological variability. J. Air Waste Manage. Assoc. 48: 201-215.
- Milford, J. B.; Russell, A. G.; McRae, G. J. (1989) A new approach to photochemical pollution control: implications of spatial patterns in pollutant responses to reductions in nitrogen oxides and reactive organic gas emissions. Environ. Sci. Technol. 23: 1290-1301.
- Milford, J. B.; Gao, D.; Sillman, S.; Blossey, P.; Russell, A. G. (1994) Total reactive nitrogen (NO_y) as an indicator of the sensitivity of ozone to reductions in hydrocarbon and NO_x emissions. J. Geophys. Res. 99: 3533-3542.
- Milne, P. J.; Zika, R. G. (1993) Amino acid nitrogen in atmospheric aerosols: occurrence, sources, and photochemical modification. J. Atmos. Chem. 16: 361-398.
- Milne, P. J.; Prados, A. I.; Dickerson, R. R.; Doddrige, B. G.; Riemer, D. D.; Zika, R. G.; Merrill, J. T.; Moody, J. L. (2000) Nonmethane hydrocarbon mixing ratios in continental outflow air from Eastern North America: export of ozone precursors to Bermuda. J. Geophys. Res. [Atmos.] 105: 9981-9990.
- Mochida, M.; Hirokawa, J.; Kajii, Y.; Akimoto, H. (1998) Heterogeneous reactions of Cl₂ with sea salts at ambient temperature: implications for halogen exchange in the atmosphere. Geophys. Res. Lett. 25: 3927-3930.

56

- Mohnen, V. A.; Reiter, E. R. (1977) International conference on oxidants, 1976 analysis of evidence and viewpoints: part III. the issue of stratospheric ozone intrusion. Research Triangle Park, NC: U.S. Environmental Protection Agency, Environmental Sciences Research Laboratory; EPA report no. EPA-600/3-77-115. Available from: NTIS, Springfield, VA; PB-279 010.
- Monks, P. S. (2000) A review of the observations and origins of the spring ozone maximum. Atmos. Environ. 34: 3545-3561.
- Monson, R. K.; Harley, P. C.; Litvak, M. E.; Wildermuth, M.; Guenther, A. B.; Zimmerman, P. R.; Fall, R. (1994) Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves. Oecologia 99: 260-270.
- Moody, J. L.; Oltmans, S. J.; Levy, H., II; Merrill, J. T. (1995) Transport climatology of tropospheric ozone: Bermuda, 1988-1991. J. Geophys. Res. [Atmos.] 100: 7179-7194.
- Moody, J. L.; Davenport, J. C.; Merrill, J. T.; Oltmans, S. J.; Parrish, D. D.; Holloway, J. S.; Levy, H., II; Forbes, G. L.; Trainer, M.; Buhr, M. (1996) Meteorological mechanisms for transporting O₃ over the western North Atlantic Ocean: a case study for August 24-29, 1993. J. Geophys. Res. 101(D22): 29,213-29,227.
- Moody, J. L.; Wimmers, A. J.; Davenport, J. C. (1999) Remotely sensed specific humidity: development of a derived product from the GOES Imager Channel 3. Geophys. Res. Lett. 26: 59-62.
- Moorthi, S.; Suarez, M. J. (1992) Relaxed Arakawa-Schubert: a parameterization of moist convection for general circulation models. Mon. Weather Rev. 120: 978-1002.
- Mopper, K.; Kieber, D. J. (2000) Marine photochemistry and its impact on carbon cycling. In: Demers, S.; Vernet, M., eds. Effects of UV Radiation on Marine Ecosystems. New York, NY: Cambridge University Press, Ch. 4, pp. 101-129.
- Morales-Morales, R. (1998) Carbon monoxide, ozone, and hydrocarbons in the Baltimore metropolitan area [dissertation]. College Park, MD: University of Maryland, Department of Meteorology. Available from: University Microfilms International, Ann Arbor, MI; publication no. 9908993.
- Moschonas, N.; Danalatos, D.; Glavas, S. (1999) The effect of O₂ and NO₂ on the ring retaining products of the reaction of toluene with hydroxyl radicals. Atmos. Environ. 33: 111-116.
- Mount, G. H.; Eisele, F. L. (1992) An intercomparison of tropospheric OH measurements at Fritz Peak Observatory, Colorado. Science (Washington, DC) 256: 1187-1190.
- Mount, G. H.; Williams, E. J. (1997) An overview of the tropospheric OH photochemistry experiment, Fritz Peak/Idaho Hill, Colorado, fall 1993. J. Geophys. Res. [Atmos.] 102: 6171-6186.
- Mozurkewich, M. (1995) Mechanisms for the release of halogens from sea-salt particles by free radical reactions. J. Geophys. Res. (Atmos.) 100: 14,199-14,207.
- Müller, J.-F.; Brasseur, G. (1995) IMAGES: a three-dimensional chemical transport model of the global troposphere. J. Geophys. Res. (Atmos.) 100: 16,445-16,490.
- Müller, J.-F.; Brasseur, G. (1999) Sources of upper tropospheric HO_x: a three-dimensional study. J. Geophys. Res. (Atmos.) 104: 1705-1715.
- Munger, J. W.; Fan, S.-M.; Bakwin, P. S.; Goulden, M. L.; Goldstein, A. H.; Colman, A. S.; Wofsy, S. C. (1998) Regional budgets of nitrogen oxides from continental sources: variations of rates for oxidation and deposition with season and distance from source regions. J. Geophys. Res. (Atmos.) 103: 8355-8368.
- Muñoz, M. S. S.; Rossi, M. J. (2002) Heterogeneous reactions of HNO₃ with flame soot generated under different combustion conditions. Reaction mechanism and kinetics. Phys. Chem. Chem. Phys. 4: 5110-5118.
- Murphy, D.; Fahey, D. (1994) An estimate of the flux of stratospheric reactive nitrogen and ozone into the troposphere. J. Geophys. Res. (Atmos.) 99: 5325-5332.
- Narita S.; Uchiyama S.; Takemi K. (1998) The interference and cross sensitivity for an UV ozone monitor. Ozone Sci. Eng. 20: 495-497.
- National Bureau of Standards. (1975) Catalog of NBS standard reference materials, 1975-76 edition. Washington, DC: U.S. Department of Commerce, National Bureau of Standards; NBS special publication no. 260.
- National Research Council. (1991) Rethinking the ozone problem in urban and regional air pollution. Washington, DC: National Academy Press.
- National Research Council. (1999) Ozone-forming potential of reformulated gasoline. Washington, DC: National Academy of Sciences.
- National Research Council. (2002) Estimating the public health benefits of proposed air pollution regulations. Washington, DC: National Academy of Sciences. Available at:
 - http://books.nap.edu/books/0309086094/html/index.html [7 November, 2002].
- National Research Council. (2003) Air emissions from animal feeding operations: current knowledge and future needs. Available: http://www.nap.edu/books/0309087058/html/ (5 February 2004).

- Neff, J. C.; Holland, E. A.; Dentener, F. J.; McDowell, W. H.; Russell, K. M. (2002) Atmospheric organic nitrogen: implications for the global N cycle. Biogeochemistry 57/58: 99-136.
- Neuman, J. A.; Huey, L. G.; Dissly, R. W.; Fehsenfeld, F. C.; Flocke, F.; Holecek, J. C.; Holloway, J. S.; Hübler, G.; Jakoubek, R.; Nicks, D. K., Jr.; Parrish, D. D.; Ryerson, T. B.; Sueper, D. T.; Weinheimer, A. J. (2002)
 Fast-response airborne in-situ measurements of HNO₃ during the Texas Air Quality Study. J. Geophys. Res. (Atmos.) 107: 10.1029/2001JD001437.
- Newberg, J.; Williams, D.; Chu, G.; Matthew, B.; Anastasio, C. (2000) Photoformation of hydroxyl radical in sea-salt particles. In: Preprints of Extended Abstracts presented at the 219th American Chemical Society National Meeting; March; San Francisco, CA. Columbus, OH: American Chemical Society; ENVR 176.
- Newchurch, M. J.; Ayoub, M. A.; Oltmans, S.; Johnson, B.; Schmidlin, F. J. (2003) Vertical distribution of ozone at four sites in the United States. J. Geophys. Res. 108(D1): 10.1029/2002JD002059.
- Newell, R. E.; Thouret, V.; Cho, J. Y. N.; Stoller, P.; Marenco, A.; Smit, H. G. (1999) Ubiquity of quasi-horizontal layers in the troposphere. Nature (London) 398: 316-319.
- Nordmeyer, T.; Wang, W.; Ragains, M. L.; Finlayson-Pitts, B. J.; Spicer, C. W.; Plastridge, R. A. (1997) Unique products of the reaction of isoprene with atomic chlorine: potential markers. Geophys. Res. Lett. 24: 1615-1618.
- North American Research Strategy for Tropospheric Ozone (NARSTO) Synthesis Team. (2000) An assessment of tropospheric ozone pollution: a North American perspective. Palo Alto, CA: Electric Power Research Institute.
- Notholt, J.; Hjorth, J.; Raes, F. (1992a) Formation of HNO₂ on aerosol surfaces during foggy periods in the presence of NO and NO₂. Atmos. Environ. Part A 26: 211-217.
- Notholt, J.; Hjorth, J.; Raes, F.; Schrems, O. (1992b) Simultaneous long path field measurements of HNO₂, CH₂O and aerosol. Ber. Bunsen Ges. Phys. Chem. 96: 290-293.
- Nunnermacker, L. J.; Imre, D.; Daum, P. H.; Kleinman, L.; Lee, Y.-N.; Lee, J. H.; Springston, S. R.; Newman, L.; Weinstein-Lloyd, J.; Luke, W. T.; Banta, R.; Alvarez, R.; Senff, C.; Sillman, S.; Holdren, M.; Keigley, G. W.; Zhou, X. (1998) Characterization of the Nashville urban plume on July 3 and July 18, 1995. J. Geophys. Res. 103(D21): 28,129-28,148.
- Nunnermacker, L. J.; Kleinman, L. I.; Imre, D.; Daum, P. H.; Lee, Y.-N.; Lee, J. H.; Springston, S. R.; Newman, L.; Gillani, N. (2000) NO_y lifetimes and O₃ production efficiencies in urban and power plant plumes: analysis of field data. J. Geophys. Res. [Atmos.] 105: 9165-9176.
- O'Brien, R. J.; Green, P. J.; Nguyen, N.-L.; Doty, R. A.; Dumdel, B. E. (1983) Carbon balances in simulated atmospheric reactions: aromatic hydrocarbons. Environ. Sci. Technol. 17: 183-186.
- Odman, M. T.; Ingram, C. I. (1996) Multiscale air quality simulation platform (MAQSIP): source code documentation and validation. Research Triangle Park, NC: MCNC; technical report ENV-96TR002-v1.0. Available: http://www.ce.gatech.edu/~todman/maqsip.pdf (9 September 2003).
- Odman, M. T.; Russell, A. G. (1999) Mass conservative coupling of non-hydrostatic meteorological models with air quality models. In: Grying, S.-E.; Batchvarova, E., eds. Air Pollution Modeling and its Application XIII. New York, NY: Plenum Press.
- Odum, J. R.; Hoffmann, T.; Bowman, F.; Collins, D.; Flagan, R. C.; Seinfeld, J. H. (1996) Gas/particle partitioning and secondary organic aerosol yields. Environ. Sci. Technol. 30: 2580-2585.
- Olsen, M. A.; Stanford, J. L. (2001) Evidence of stratosphere-to-troposphere transport within a mesoscale model and total ozone mapping spectrometer total ozone. J. Geophys. Res. [Atmos.] 106: 27,323-27,334.
- Olsen, M. A.; Douglass, A. R.; Schoeberl, M. R. (2002) Estimating downward cross-tropopause flux using column ozone and potential vorticity. J. Geophys. Res. 107(D22): 10.1029/2001JD002041.
- Olszyna, K. J.; Bailey, E. M.; Simonaitis, R.; Meagher, J. F. (1994) O₃ and NO_y relationships at a rural site. J. Geophys. Res. [Atmos.] 99: 14,557-14,563.
- Oltmans, S. J.; Levy, H., II. (1992) Seasonal cycle of surface ozone over the North Atlantic. Nature 358: 392-394.
- Oltmans, S. J.; Levy, H., II; Harris, J. M.; Merrill, J. T.; Moody, J. L.; Lathrop, J. A.; Cuevas, E.; Trainer, M.; O'Neill, M. S.; Prospero, J. M.; Vömel, H.; Johnson, B. J. (1996) Summer and spring ozone profiles over the North Atlantic from ozonesonde observations. J. Geophys. Res. 101: 29,179-29,200.
- Oltmans, S. J.; Lefohn, A. S.; Scheel, H. E.; Harris, J. M.; Levy, H., II; Galbally, I. E.; Brunke, E.-G.; Meyer, C. P.; Lathrop, J. A.; Johnson, B. J.; Shadwick, D. S.; Cuevas, E.; Schmidlin, F. J.; Tarasick, D. W.; Claude, H.; Kerr, J. B.; Uchino, O.; Mohnen, V. (1998) Trends of ozone in the troposphere. Geophys. Res. Lett. 25: 139-142.
- Orlando, J. J.; Tyndall, G. S.; Paulson, S. E. (1999) Mechanism of the OH-initiated oxidation of methacrolein. Geophys. Res. Lett. 26: 2191-2194.

- Padro, J. (1996) Summary of ozone dry deposition velocity measurements and model estimates over vineyard, cotton, grass and deciduous forest in summer. Atmos. Environ. 30: 2363-2369.
- Palmer, P. I.; Jacob, D. J.; Fiore, A. M.; Martin, R. V.; Chance, K.; Kuruso, T. P. (2003) Mapping isoprene emissions over North America using formaldehyde column observations from space. J. Geophys. Res. 108(D6): 10.1029/2002JD002153.
- Pandis, S. N.; Paulson, S. E.; Seinfeld, J. H.; Flagan, R. C. (1991) Aerosol formation in the photooxidation of isoprene and β-pinene. Atmos. Environ. Part A 25: 997-1008.
- Pandis, S. N.; Harley, R. A.; Cass, G. R.; Seinfeld, J. H. (1992) Secondary organic aerosol formation and transport. Atmos. Environ. Part A 26: 2269-2282.
- Papagni, C.; Arey, J.; Atkinson, R. (2001) Rate constants for the gas-phase reactions of OH radicals with a series of unsaturated alcohols. Int. J. Chem. Kinet. 33: 142-147.
- Park, R. J.; Stenchikov, G. L.; Pickering; Dickerson, R. R.; Allen, D. J.; Kondragunta, S. (2001) Regional air pollution and its radiative forcing: studies with a single column chemical and radiation transport model. J. Geophys. Res. [Atmos.] 106: 28,751-28,770.
- Parrish, D. D.; Fehsenfeld, F. C. (2000) Methods for gas-phase measurements of ozone, ozone precursors and aerosol precursors. Atmos. Environ. 34: 1921-1957.
- Parrish, D. D.; Trainer, M.; Buhr, M. P.; Watkins, B. A.; Fehsenfeld, F. C. (1991) Carbon monoxide concentrations and their relatin to concentrations of total reactive oxided nitrogen at two rural U.S. sites. J. Geophys. Res. (Atmos.) 96: 9309-9320.
- Parrish, D. D.; Hahn, C. J.; Williams, E. J.; Norton, R. B.; Fehsenfeld, F. C.; Singh, H. B.; Shetter, J. D.; Gandrud, B. W.; Ridley, B. A. (1992) Indications of photochemical histories of Pacific air masses from measurements of atmospheric trace species at Point Arena, California. J. Geophys. Res. [Atmos.] 97: 15,883-15,901.
- Parrish, D. D.; Hahn, C. J.; Williams, E. J.; Norton, R. B.; Fehsenfeld, F. C.; Singh, H. B.; Shetter, J. D.; Gandrud, B. W.; Ridley, B. A. (1993) Reply [to Comment on "Indications of photochemical histories of Pacific air masses from measurements of atmospheric trace species at Point Arena, California" by D. D. Parrish et al.]. J. Geophys. Res. (Atmos.) 98(D8): 14,995-14,997.
- Parrish, D. D.; Trainer, M.; Young, V.; Goldan, P. D.; Kuster, W. C.; Jobson, B. T.; Fehsenfeld, F. C.; Lonneman, W. A.; Zika, R. D.; Farmer, C. T.; Riemer, D. D.; Rodgers, M. O. (1998) Internal consistency tests for evaluation of measurements of anthropogenic hydrocarbons in the troposphere. J. Geophys. Res. (Atmos.) 103(D17): 22,339-22,359.
- Parrish, D. D.; Ryerson, T. B.; Holloway, J. S.; Trainer, M.; Fehsenfeld, F. C. (1999) Does pollution increase or decrease tropospheric ozone in winter-spring? Atmos. Environ. 33: 5147-5149.
- Parrish, D. D.; Holloway, J. S.; Jakoubek, R.; Trainer, M.; Ryerson, T. B.; Hübler, G.; Fehsenfeld, F. C.; Moody, J. L.; Cooper. O. R. (2000) Mixing of anthropogenic pollution with stratospheric ozone: a case study from the North Atlantic wintertime troposphere. J. Geophys. Res. [Atmos.] 105: 24,363-24,374.
- Parrish, D. D.; Trainer, M.; Hereid, D.; Williams, E. J.; Olszyna, K. J.; Harley, R. A.; Meagher, J. F.; Fehsenfeld, F. C. (2002) Decadal change in carbon monoxide to nitrogen oxide ratio in U.S. vehicular emissions J. Geophys. Res. (Atmos.) 107(D13): 10.1029/2001JD000720.
- Paul, J. W.; Beauchamp, E. G. (1993) Nitrogen availability for corn in soils amended with urea, cattle slurry, and solid and composted manures. Can. J. Soil Sci. 73: 253-266.
- Paul, J. W.; Beauchamp, E. G.; Zhang, X. (1993) Nitrous and nitric oxide emissions during nitrification and denitrification from manure-amended soil in the laboratory. Can. J. Soil Sci. 73: 539-553.
- Penner, J. E. (1995) Carbonaceous aerosols influencing atmospheric radiation: black and organic carbon. In: Charlson, R. J.; Heintzenberg, J., eds. Aerosol Forcing of Climate. New York, NY: John Wiley and Sons; pp. 91-108.
- Penrose, W. R., Pan, L.; Stetter, J. R.; Ollison, W. M. (1995) Sensitive measurement of ozone using amperometric gas sensors. Anal. Chim. Acta 313: 209-219.
- Perry, R. A.; Atkinson, R.; Pitts, J. N., Jr. (1977) Kinetics and mechanism of the gas phase reaction of OH radicals with aromatic hydrocarbons over the temperature range 296-473 K. J. Phys. Chem. 81: 296-304.
- Petriconi, G. L.; Papee, H. M. (1972) On the photolytic separation of halogens from sea water concentrates. Water Air Soil Pollut. 1: 117-131.
- Pickering, K. E.; Dickerson, R. R.; Huffman, G. J.; Boatman, J. F.; Schanot, A. (1988) Trace gas transport in the vicinity of frontal convective clouds. J. Geophys. Res. 93: 759-773.
- Pickering, K. E.; Thompson, A. M.; Dickerson, R. R.; Luke, W. T.; McNamara, D. P.; Greenberg, J. P.; Zimmerman, P. R. (1990) Model calculations of tropospheric ozone production potential following observed convective events. J. Geophys. Res. [Atmos.] 95: 14,049-14,062.

- Pickering, K. E.; Thompson, A. M.; Scala, J. R.; Tao, W.-K.; Simpson, J.; Garstang, M. (1991) Photochemical ozone production in tropical squall line convection during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A. J. Geophys. Res. 96: 3099-3114.
- Pickering, K. E.; Thompson, A. M.; Scala, J. R.; Tao, W.-K.; Simpson, J. (1992a) Ozone production potential following convective redistribution of biomass burning emissions. J. Atmos. Chem. 14: 297-313.
- Pickering, K. E.; Thompson, A. M.; Scala, J. R.; Tao, W.-K.; Dickerson, R. R.; Simpson, J. (1992b) Free tropospheric ozone production following entrainment of urban plumes into deep convection. J. Geophys. Res. 97(D16): 17985-18,000.
- Pickering, K. E.; Scala, J. R.; Thompson, A. M.; Tao, W.-K.; Simpson, J. (1992c) A regional estimate of the convective transport of CO from biomass burning. Geophys. Res. Lett. 19: 289-292.
- Pickering, K. E.; Thompson, A. M.; Tao, W.-K.; Kucsera, T. L. (1993) Upper tropospheric ozone production following mesoscale convection during STEP/EMEX. J. Geophys. Res. 98: 8737-8749.
- Pickering, K. E.; Thompson, A. M.; Tao, W.-K.; Rood, R. B.; McNamara, D. P.; Molod, A. M. (1995) Vertical transport by convective clouds: comparisons of three modeling approaches. Geophys. Res. Lett. 22: 1089-1092.
- Pickering, K. E.; Thompson, A. M.; Wang, Y.; Tao, W.-K.; McNamara, D. P.; Kirchhoff, W. J. H.; Heikes, B. G.; Sachse, G. W.; Bradshaw, J. D.; Gregory, G. L.; Blake, D. R. (1996) Convective transport of biomass burning emissions over Brazil during TRACE A. J. Geophys. Res. [Atmos.] 101: 23,993-24,012.
- Pickering, K. E.; Wang, Y.; Tao, W.-K.; Price, C.; Müller, J.-F. (1998) Vertical distributions of lightning NO_x for use in regional and global chemical transport models. J. Geophys. Res. [Atmos.] 103: 31,203-31,216.
- Pickering, K. E.; Thompson, A. M.; Kim, H.; DeCaria, A. J.; Pfister, L.; Kucsera, T. L.; Witte, J. C.; Avery, M. A.; Blake, D. R.; Crawford, J. H.; Heikers, B. G.; Sachse, G. W.; Sandholm, S. T.; Talbot, R. W. (2001) Trace gas transport and scavenging ini PEM-Tropics B South Pacific Convergence Zone convection. J. Geophys. Res. [Atmos.] 106: 32,591-32,602.
- Pierce, T. E.; Waldruff, P. S. (1991) PC-BEIS: a personal computer version of the biogenic emissions inventory system. J. Air Waste Manage. Assoc. 41: 937-941.
- Pierce, T; Geron, C.; Bender, L.; Dennis, R.; Tonnesen, G.; Guenther, A. (1998) Influence of increased isoprene emissions on regional ozone modeling. J. Geophys. Res. (Atmos.) 103: 25,611-25,630.
- Pierson, W. R.; Gertler, A. W.; Bradow, R. L. (1990) Comparison of the SCAQS tunnel study with historical data.
 Presented at: 83rd annual meeting & exhibition of the Air and Waste Management Association; June;
 Pittsburgh, PA. Pittsburgh, PA: Air and Waste Management Association; paper no. 90-175.3.
- Piety, C. A. (2005) The relation between daily maximum ozone and daily maximum temperature [memorandum to Dr. Joseph Pinto]. Research Triangle Park, NC: U.S. Environmental Protection Agency; July 18.
- Pinto, J. P.; Bruhl, C.; Thompson, A. M. (1993) The current and future envirionmental role of atmospheric methane. In: Khalil, M. A. K., ed. Atmospheric methane sources, sinks, and role in global change, p. 514-531. (NATO ASI Series, v. 113).
- Piotrowicz, S. R.; Bezdek, H. F.; Harvey, G. R.; Springer-Young, M.; Hanson, K. J. (1991) On the ozone minimum over the equatorial Pacific Ocean. J. Geophys. Res. 96: 18,679-18,687.
- Pippin, M. R.; Bertman, S.; Thornberry, T.; Town, M.; Carroll, M. A.; Sillman, S. (2001) Seasonal variation of PAN, PPN, MPAN and O₃ at the upper midwest PROPHET site. J. Geophys. Res. (Atmos.) 106: 24,451-24,463.
- Pitari, G.; Grassi, B.; Visconti, G. (1997) Results of a chemical transport model with interactive aerosol microphysics. In: Bojkov, R.; Visconti, G., eds. Proceedings of the XVIII Quadrennial Ozone Symposium; September 1996; L'Aquila, Italy, pp. 759-762.
- Pitts, J. N., Jr.; Sanhueza, E.; Atkinson, R.; Carter, W. P. L.; Winer, A. M.; Harris, G. W.; Plum, C. N. (1984a) An investigation of the dark formation of nitrous acid in environmental chambers. Int. J. Chem. Kinet. 16: 919-939.
- Pitts, J. N., Jr.; Biermann, H. W.; Atkinson, R.; Winer, A. M. (1984b) Atmospheric implications of simultaneous nighttime measurements of NO₃ radicals and HONO. Geophys. Res. Lett. 11: 557-560.
- Placet, M.; Mann, C. O.; Gilbert, R. O.; Niefer, M. J. (2000) Emissions of ozone precursors from stationary sources: a critical review. Atmos. Environ. 34: 2183-2204.
- Plummer, D. A.; McConnell, J. C.; Shepson, P. B.; Hastie, D. R.; Niki, H. (1996) Modeling of ozone formation at a rural site in southern Ontario. Atmos. Environ. 30: 2195-2217.
- Pokharel, S. S.; Bishop, G. A.; Stedman, D. H. (2002) An on-road motor vehicle emissions inventory for Denver: an efficient alternative to modeling. Atmos. Environ. 36: 5177-5184.

- Poppe, D.; Wallasch, M.; Zimmermann, J. (1993) The dependence of the concentration of OH on its precursors under moderately polluted conditions: a model study. J. Atmos. Chem. 16: 61-78.
- Poppe, D.; Zimmermann, J.; Bauer, R.; Brauers, T.; Brüning, D.; Callies, J.; Dorn, H.-P.; Hofzumahaus, A.; Johnen, F.-J.; Khedim, A.; Koch, H.; Koppmann, R.; London, H.; Müller, K.-P.; Neuroth, R.; Plass-Dülmer, C.; Platt, U.; Rohrer, F.; Röth, E.-P.; Rudolph, J.; Schmidt, U.; Wallasch, M.; Ehhalt, D. H. (1994) Comparison of measured OH concentrations with model calculations. J. Geophys. Res. [Atmos.] 99: 16,633-16,642.
- Poppe, D.; Zimmerman, J.; Dorn, H. P. (1995) Field data and model calculations for the hydroxyl radical. J. Atmos. Sci. 52: 3402-3407.
- Poulida, O.; Dickerson, R. R.; Heymsfield, A. (1996) Troposphere-stratosphere exchange in a midlatitude mesoscale convective complex: 1. Observations. J. Geophys. Res. [Atmos.] 101: 6823-6836.
- Prados, A. I. (2000) The export of ozone and other atmospheric trace species from North America: observations and numerical simulations [dissertation]. College Park, MD: The University of Maryland.
- Prados, A. I.; Dickerson, R. R.; Doddridge, B. G.; milne, P. A.; Moody, J. L.; Merrill, J. T. (1999) Transport of ozone and pollutants from North America to the North Atlantic Ocean during the 1996 AEROCE intensive experiment. J. Geophys. Res. 104: 26,219-26,233.
- Prather, M.; Ehhalt, D. (2001) Atmospheric chemistry and greenhouse gases. In: Houghton, J. T.; Ding, Y.; Griggs, D. J.; Noguer, M.; van der Linden, P. J.; Dai, X.; Maskell, K.; Johnson, C. A., eds. Climate Change 2001: The Scientific Basis; pp. 239-287. Cambridge, MA: Cambridge University Press. Available: http://www.grida.no/climate/ipcc_tar/wg1/ (20 January 2004).
- Prather, M. J.; Jacob, D. J. (1997) A persistent imbalance in HO_x and NO_x photochemistry in the upper troposphere driven by deep tropical convection. Geophys. Res. Lett. 24: 3189-3192.
- Prenni, A. J.; DeMott, P. J.; Kreidenweis, S. M. (2003) Water uptake of internally mixed particles containing ammonium sulfate and dicarboxylic acids. Atmos. Environ. 37: 4243-4251.
- Prévôt, A. S. H.; Staehelin, J.; Kok, G. L.; Schillawski, R. D.; Neininger, B.; Staffelbach, T.; neftel, A.; Wernli, H.; Dommen, J. (1997) The Milan photooxidant plume. J. Geophys. Res. (Atmos.) 102: 23,375-23,388.
- Price, J. D.; Vaughan, G. (1993) The potential for stratosphere-troposphere exchange in cut-off-low systems. Q. J. R. Meteorol. Soc. 119: 343-365.
- Price, C.; Penner, J.; Prather, M. (1997) NO_x from lightning: 1. Global distribution based on lightning physics. J. Geophys. Res. [Atmos.] 102: 5929-5941.
- Pszenny, A. A. P.; Keene, W. C.; Jacob, D. J.; Fan, S.; Maben, J. R.; Zetwo, M. P.; Springer-Young, M.; Galloway, J. N. (1993) Evidence of inorganic chlorine gases other than hydrogen chloride in marine surface air. Geophys. Res. Lett. 20: 699-702.
- Pszenny, A. A. P.; Moldanová, J.; Keene, W. C.; Sander, R.; Maben, J. R.; Martinez, M.; Crutzen, P. J.; Perner, D.; Prinn, R. G. (2004) Halogen cycling and aerosol pH in the Hawaiian marine boundary layer. Atmos. Chem. Phys. 4: 147-168.
- Pun, B. K.; Seigneur, C.; Grosjean, D.; Saxena, P. (2000) Gas-phase formation of water-soluble organic compounds in the atmosphere: a retrosynthetic analysis. J. Atmos. Chem. 35: 199-223.
- Quigley, D. C.; Hornafius, J. S.; Luyendyk, B. P.; Francis, R. D.; Clark, J.; Washburn, L. (1999) Decrease in natural marine hydrocarbon seepage near Coal Oil Point, California, associated with offshore oil production. Geol. 27: 1047-1050.
- Rancher, J.; Kritz, M. A. (1980) Diurnal fluctuations of Br and I in the tropical marine atmosphere. J. Geophys. Res. 85: 5581-5587.
- Rao, S. T.; Zurbenko, I. G. (1994) Detecting and tracking changes in ozone air quality. J. Air Waste Manage. Assoc. 44: 1089-1092.
- Rao, S. T.; Zurbenko, I. G.; Neagu, R.; Porter, P. S.; Ku, J. Y.; Henry, R. F. (1997) Space and time scales in ambient ozone data. Bull. Am. Meteorol. Soc. 78: 2153-2166.
- Rao, S. T.; Ku, J. Y.; Berman, S. (2003) Summertime characteristics of the atmospheric boundary layer and relationships to ozone levels over the eastern United States. Pure Appl. Geophys. 160: 21-55.
- Reed, R. J. (1955) A study of a characteristic type of upper-level frontogenesis. J. Meteorol. 12: 226-237.
- Regener, E. (1941) Ozonschicht und atmospharische turbulenz. Ber. Dtsch. Wetterdienstes US-Zone No. 11: 45-57. Reid, J. P.; Sayer, R. M. (2003) Heterogeneous atmospheric aerosol chemistry: laboratory studies of chemistry on
- water droplets. Chem. Soc. Rev. 32: 70-79.
- Reisinger, A. R. (2000) Unidentified interference in DOAS measurements of ozone. Appl. Spectrosc. 54: 72-79.
- Reissell, A.; Arey, J.; Atkinson, R. (2001) Atmospheric chemistry of camphor. Int. J. Chem. Kinet. 33: 56-63.
- Reitebuch, O.; Strassburger, A.; Emeis, S.; Kuttler, W. (2000) Nocturnal secondary ozone concentration maxima analysed by sodar observation and surface measurements. Atmos. Environ. 34: 4315-4329.

56

- Reiter, E. R. (1963) A case study of radioactive fallout. J. Appl. Meteorol. 2: 691-705.
- Reiter, E. R. (1975) Stratospheric-tropospheric exchange processes. Rev. Geophys. Space Phys. 13: 459-474.
- Reiter, E. R.; Mahlman, J. D. (1965) Heavy radioactive fallout over the southern United States, November 1962. J. Geophys. Res. 70: 4501-4520.
- Reithmeier, C.; Sausen, R. (2002) ATTILA: atmospheric tracer transport in a Lagrangian model. Tellus 54B: 278-299.
- Ren, X. R.; Harder, H.; Martinez, M.; Lesher, R. L.; Oliger, A.; Shirley, T.; Adams, J.; Simpas, J. B.; Brune, W. H. (2003) HOx concentrations and OH reactivity observations in New York City during PMTACS-NY2001. Atmos. Environ. 37: 3627-3637.
- Reynolds, S.; Michaels, H.; Roth, P.; Tesche, T. W.; McNally, D.; Gardner, L.; Yarwood, G. (1996) Alternative base cases in photochemical modeling: their construction, role, and value. Atmos. Environ. 30: 1977-1988.
- Ridley, B. A.; Carroll, M. A.; Dunlap, D. D.; Trainer, M.; Sachse, G. W.; Gregory, G. L.; Condon, E. P. (1989)
 Measurements of NO_x over the eastern Pacific ocean and southwestern United States during the spring 1984
 NASA GTE aircraft program. J. Geophys. Res. [Atmos.] 94: 5043-5067.
- Ridley, B. A.; Walega, J. G.; Lamarque, J.-F.; Grahek, F. E.; Trainer, M.; Hübler, G.; Lin, X.; Fehsenfeld, F. C. (1998) Measurements of reactive nitrogen and ozone to 5-km altitude in June 1990 over the southeastern United States. J. Geophys. Res. 103: 8369-8388.
- Riemer, D. D.; Apel, E. C. (2001) Confirming the presence and extent of oxidation by Cl in the Houston, Texas urban area using specific isoprene oxidation products as tracers. Miami, FL: University of Miami, Rosenstiel School of Marine and Atmospheric Science. Available: http://clearinghouse.ces.utexas.edu/TexAQS/DB_Files/ConfirmingPresenceandExtentOfOxidationByCI.pdf (5 February 2004).
- Riemer, N.; Vogel, H.; Vogel, B.; Schell, B.; Ackermann, I.; Kessler, C.; Hass, H. (2003) Impact of the heterogeneous hydrolysis of N₂O₅ on chemistry and nitrate aerosol formation in the lower troposphere under photosmog conditions. J. Geophys. Res. (Atmos.) 108(D4): 10.1029/2002JD002436.
- Roberts, J. M.; Williams, J.; Baumann, K.; Buhr, M. P.; Goldan, P. D.; Holloway, J.; Hübler, G.; Kuster, W. C.; McKeen, S. A.; Ryerson, T. B.; Trainer, M.; Williams, E. J.; Fehsenfeld, F. C.; Bertman, S. B.; Nouaime, G.; Seaver, C.; Grodzinsky, G.; Rodgers, M.; Young, V. L. (1998) Measurements of PAN, PPN, and MPAN made during the 1994 and 1995 Nashville Intensives of the Southern Oxidant Study: implications for regional ozone production from biogenic hydrocarbons. J. Geophys. Res. [Atmos.] 103: 22,473-22,490.
- Robinson, G. N.; Worsnop, D. R.; Jayne, J. T.; Kolb, C. E.; Davidovits, P. (1997) Heterogeneous uptake of ClONO₂ and N₂O₅ by sulfuric acid solutions. J. Geophys. Res. (Atmos.) 102: 3583-3601.
- Rodgers, M. O.; Davis, D. D. (1989) A UV-photofragmentation/laser-induced fluorescence sensor for the atmospheric detection of HONO. Environ. Sci. Technol. 23: 1106-1112.
- Roelofs, G. J.; Scheeren, H. A.; Heland, J.; Ziereis, H.; Lelieveld, J. (2003) A model study of ozone in the eastern Mediterranean free troposphere during MINOS (August 2001). Atmos. Chem. Phys. 3: 1199-1210.
- Rogers, J. D. (1990) Ultraviolet absorption cross sections and atmospheric photodissociation rate constants of formaldehyde. J. Phys. Chem. 94: 4011-4015.
- Roselle, S. J. (1994) Effects of biogenic emission uncertainties on regional photochemical modeling of control strategies. Atmos. Environ. 28: 1757-1772.
- Rudich, Y.; Talukdar, R. K.; Fox, R. W.; Ravishankara, A. R. (1996) Rate coefficients for reactions of NO₃ with a few olefins and oxygenated olefins. J. Phys. Chem. 100: 5374-5381.
- Rudolph, J.; Ramacher, B.; Plass-Dülmer, C.; Müller, K.-P.; Koppmann, R. (1997) The indirect determination of chlorine atom concentration in the troposphere from changes in the patterns of non-methane hydrocarbons. Tellus B 49: 592-601.
- Ruppert, L.; Becker, K. H. (2000) A product study of the OH radical-initiated oxidation of isoprene: formation of C₅-unsaturated diols. Atmos. Environ. 34: 1529-1542.
- Russell, K. M. (2002) Characterization and dry deposition of atmospheric nitrogen at the mid-Atlantic United States coast [dissertation]. Richmond, VA: University of Virginia. Available from: University Microfilms, Ann Arbor, MI; AADAA-13044880.
- Russell, A.; Dennis, R. (2000) NARSTO critical review of photochemical models and modeling. Atmos. Environ. 34: 2283-2324.
- Ryan, W. F.; Doddridge, B. G.; Dickerson, R. R.; Morales, R. M.; Hallock, K. A.; Roberts, P. T.; Blumenthal, D. L.; Anderson, J. A.; Civerolo, K. (1998) Pollutant transport during a regional O₃ episode in the mid-Atlantic states. J. Air Waste Manage. Assoc. 48: 786-797.

- Ryerson, T. B.; Buhr, M. P.; Frost, G. J.; Goldan, P. D.; Holloway, J. S.; Hübler, G.; Jobson, B. T.; Kuster, W. C.; McKeen, S. A.; Parrish, D. D.; Roberts, J. M.; Sueper, D. T.; Trainer, M.; Williams, J.; Fehsenfeld, F. C. (1998) Emissions lifetimes and ozone formation in power plant plumes. J. Geophys. Res. 103(D17): 22,569-22,583.
- Ryerson, T. B.; Williams, E J.; Fehsenfeld, F. C. (2000) An efficient photolysis system for fast-response NO₂ measurements. J. Geophys. Res. (Atmos.) 105(D21): 26,447-26,461.
- Ryerson, T. B.; Trainer, M.; Holloway, J. S.; Parrish, D. D.; Huey, L. G.; Sueper, D. T.; Frost, G. J.; Donnelly,
 S. G.; Schauffler, S.; Atlas, E. L.; Kuster, W. C.; Goldan, P. D.; Hübler, G.; Meagher, J. F.; Fehsenfeld, F. C. (2001) Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science (Washington, DC) 292: 719-723.
- Saathoff, H.; Naumann, K. H.; Riemer, N.; Kamm, S.; Möhler, O.; Schurath, U.; Vogel, H.; Vogel, B. (2001) The loss of NO₂, HNO₃,,NO₃/N₂O₅ and HO₂/HOONO₂ on soot aerosol: a chamber and modeling study. Geophys. Res. Lett. 28: 1957-1960.
- Sakamaki, F.; Hatakeyama, S.; Akimoto, H. (1983) Formation of nitrous acid and nitric oxide in the heterogeneous dark reaction of nitrogen dioxide and water vapor in a smog chamber. Int. J. Chem. Kinet. 15: 1013-1029.
- Sakugawa, H.; Kaplan, I. R. (1989) H₂O₂ and O₃ in the atmosphere of Los Angeles and its vicinity: factors controlling their formation and their role as oxidants of SO₂. J. Geophys. Res. [Atmos.] 94: 12,957-12,973.
- Salmond, J. A.; McKendry, I. G. (2002) Secondary ozone maxima in a very stable nocturnal boundary layer: observations from the Lower Fraser Valley, BC. Atmos. Environ. 36: 5771-5782.
- Samson, P. J.; Shi, B. (1988) A meteorological investigation of high ozone values in American cities. Ann Arbor, MI: University of Michigan, Space Physics Research Laboratory, Department of Atmospheric, Oceanic, and Space Sciences.
- Sander, R.; Crutzen, P. J. (1996) Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea. J. Geophys. Res. [Atmos.] 101: 9121-9138.
- Sander, R.; Rudich, Y.; Von Glasow, R.; Crutzen, P. J. (1999) The role of BrNO₃ in marine tropospheric chemistry: a model study. Geophys. Res. Lett. 26: 2858-2860.
- Sander, R.; Keene, W. C.; Pszenny, A. A. P.; Arimoto, R. Ayers, G. P.; Chainey, J. M.; Crutzen, P. J.; Duce, R. A.; Huebert, B. J.; Maenhaut, W.; Turekian, V. C.; Van Dingenan, R. (2003) Inorganic bromine in the marine boundary layer: a critical review. Atmos. Chem. Phys. 3: 1301-1336.
- Santer, B. D.; Wehner, M. F.; Wigley, T. M. L.; Sausen, R.; Meehl, G. A.; Taylor, K. E.; Ammann, C.; Arblaster, J.; Washington, W. M.; Boyle, J. S.; Bruggemann, W. (2003) Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301: 479-483.
- Sarwar, G.; Corsi, R.; Kumura, Y.; Allen, D.; Weschler, C. J. (2002) Hydroxyl radicals in indoor environments. Atmos. Environ. 36: 3973-3988.
- Sauer, F.; Schaefer, C.; Neeb, P.; Horie, O.; Moortgat, G. (1999) Formation of hydrogen peroxide in the ozonolysis of isoprene and simple alkenes. Atmos. Environ. 33: 229-241.
- Sawyer, R. F.; Harley, R. A.; Cadle, S. H.; Norbeck, J. M.; Slott, R.; Bravo, H. A. (2000) Mobile sources critical review: 1998 NARSTO assessment. Atmos. Environ. 34: 2161-2181.
- Saxena, P.; Hildemann, L. M.; McMurry, P. H.; Seinfeld, J. H. (1995) Organics alter hygroscopic behavior of atmospheric particles. J. Geophys. Res. [Atmos.] 100: 18,755-18,770.
- Saylor, R. D. (1997) An estimate of the potential significance of heterogeneous loss to aerosols as an additional sink for hydroperoxy radicals in the troposphere. Atmos. Environ. 31: 3653-3658.
- Scala, J. M.; Garstang, M.; Tao, W.-K.; Pickering, K. E.; Thompson, A. M.; Simpson, J.; Kirchhoff, V. W. J. H.; Browell, E. V.; Sachse, G. W.; Torres. A. L.; Gregory, G. L.; Rasmussen, R. W.; Khalil, M. A. K. (1990) Cloud draft structure and trace gas transport. J. Geophys. Res. 95: 17,015-17,030.
- Schere, K. L.; Wayland, R. A. (1989) Development and evaluation of the regional oxidant model for the northeastern United States. In: Schneider, T.; Lee, S. D.; Wolters, G. J. R.; Grant, L. D., eds. Atmospheric ozone research and its policy implications: proceedings of the 3rd US-Dutch international symposium; May 1988; Nijmegen, The Netherlands. Amsterdam, The Netherlands: Elsevier Science Publishers; pp. 613-622. (Studies in environmental science 35).
- Schere, K. L.; Wayland, R. A. (1989) EPA regional oxidant model (ROM2.0): evaluation on 1980 NEROS data bases. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Research and Exposure Assessment Laboratory; report no. EPA/600/3-89/057. Available from: NTIS, Springfield, VA; PB89-200828/HSU.
- Schichtel, B. A.; Husar, R. B. (1998) Eastern U.S. transport climatology during average, high and low ozone days. Online paper 98-A884. Available: http://capita.wustl.edu/capita/CapitaReports (30 October 2003).

56

- Schichtel, B. A.; Husar, R. B. (2001) Eastern North American transport climatology during high- and low-ozone days. Atmos. Environ. 35: 1029-1038.
- Schneider, M.; Ballschmiter, K. (1999) C₃-C₁₄-alkyl nitrates in remote South Atlantic air. Chemosphere 38: 233-244.
- Schneider, M.; Luxenhofer, O.; Deissler, A.; Ballschmiter, K. (1998) C₁-C₁₅ alkyl nitrates, benzyl nitrate, and bifunctional nitrates: Measurements in California and South Atlantic air and global comparison using C₂Cl₄ and CHBr₃ as marker molecules. Environ. Sci. Technol. 32: 3055-3062.
- Schubert, S. D.; Rood, R. B.; Pfaendtner, J. (1993) An assimilated dataset for earth science applications. Bull. Am. Meteorol. Soc. 74: 2331-2342.
- Schultz, M. G.; Jacob, D. J.; Bradshaw, J. D.; Sandholm, S. T.; Dibb, J. E.; Talbot, R. W.; Singh, H. B. (2000) Chemical NO_x budget in the upper troposphere over the tropical South Pacific. J. Geophys. Res. 105: 6669-6679.
- Schumann, U.; Schlager, H.; Arnold, F.; Ovarlez, J.; Kelder, H.; Hov, Ø.; Hayman, G.; Isaksen, I. S. A.; Staehelin, J.; Whitefield, P. D. (2000) Pollution from aircraft emissions in the North Atlantic flight corridor: overview on the POLINAT projects. J. Geophys. Res. 105(D3): 10.1029/1999JD900941.
- Schutze, M.; Herrmann, H. (2002) Determination of phase transfer parameters for the uptake of HNO₃, N₂O₅ and O₃ on single aqueous drops. Phys. Chem. Chem. Phys. 4: 60-67.
- Scudlark, J. R.; Russell, K. M.; Galloway, J. N.; Church, T. M.; Keene, W. C. (1998) Dissolved organic nitrogen in precipitation at the mid-Atlantic U.S. coast—methods evaluation and preliminary data. Atmos. Environ. 32: 1719-1728.
- Seaman, N. L. (2000) Meteorological modeling for air quality assessments. Atmos. Environ. 34: 2231-2259.
- Seila, R. L.; Lonneman, W. A.; Meeks, S. A. (1989) Determination of C₂ to C₁₂ ambient air hydrocarbons in 39 U.S. cities from 1984 through 1986. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Research and Exposure Assessment Laboratory; report no. EPA/600/3-89/058.
- Seinfeld, J. H. (1988) Ozone air quality models: a critical review. JAPCA 38: 616-645.
- Seinfeld, J. H. (1989) Urban air pollution: state of the science. Science (Washington, DC) 243: 745-752.
- Seinfeld, J. H.; Pandis, S. N. (1998) Atmospheric chemistry and physics: from air pollution to climate change. New York, NY: John Wiley & Sons, Inc.
- Seinfeld, J. H.; Pankow, J. F. (2003) Organic atmospheric particulate material. Ann. Rev. Phys. Chem. 54: 121-140.
 - Senff, C. J.; Hardesty, R. M.; Alvarez, R. J., II; Mayor, S. D. (1998) Airborne lidar characterization of power plant plumes during the 1995 Southern Oxidants Study. J. Geophys. Res. [Atmos.] 103: 31,173-31,189.
- Seo, K.-H.; Bowman, K. P. (2001) A climatology of isentropic cross-tropopause exchange. J. Geophys. Res. [Atmos.] 106: 28,159-28,172.
- Seo, K.-H.; Bowman, K. P. (2002) Lagrangian estimate of global stratosphere-troposphere mass exchange. J. Geophys. Res. (Atmos.) 107(D21): 10.1029/2002JD002441.
- Sexton, K. (1982) Evidence of an additive effect for small city plumes. Presented at: 75th annual meeting of the Air Pollution Control Association; June; New Orleans, LA. Pittsburgh, PA: Air Pollution Control Association; paper no. 82-31.4.
- Sexton, K.; Westberg, H. (1980) Elevated ozone concentrations measured downwind of the Chicago-Gary urban complex. J. Air Pollut. Control Assoc. 30: 911-914.
- Sexton, F. W.; Michie, R. A., Jr.; McElroy, F. F.; Thompson, V. L. (1981) Technical assistance document for the calibration and operation of automated ambient non-methane organic compound analyzers. Research Triangle Park, NC: U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory; report no. EPA-600/4-81-015. Available from: NTIS, Springfield, VA; PB82-147406.
- Sexton, F. W.; Michie, R. M., Jr.; McElroy, F. F.; Thompson, V. L. (1982) A comparative evaluation of seven automated ambient nonmethane organic compound analyzers. Research Triangle Park, NC: U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory; report no. EPA-600/4-82-046. Available from: NTIS, Springfield, VA; PB82-230798.
- Shafran, P. C.; Seaman, N. L.; Gayno, G. A. (2000) Evaluation of numerical predictions of boundary layer structure during the Lake Michigan ozone study. J. Appl. Meteorol. 39: 412-420.
- Shapiro, R. (1977) Genetic effects of bisulfite (sulfur dioxide). Mutat. Res. 39: 149-175.
- Shapiro, M. A. (1980) Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci. 37: 994-1004.
- Sharkey, T. D.; Singsaas, E. L.; Vanderveer, P. J.; Geron, C. D. (1996) Field measurements of isoprene emission from trees in response to temperature and light. Tree Physiol. 16: 649-654.
- Shepson, P. B.; Edney, E. O.; Corse, E. W. (1984) Ring fragmentation reactions on the photooxidations of toluene and *o*-xylene. J. Phys. Chem. 88: 4122-4126.

- Shepson, P. B.; Mackay, E.; Muthuramu, K. (1996) Henry's Law constants and removal processes for several atmospheric 6-hydroxy alkyl nitrates. Environ. Sci. Technol. 30: 3618-3623.
- Shetter, R. E.; Junkermann, W.; Swartz, W. H.; Frost, G. J.; Crawford, J. H.; Lefer, B. L.; Barrick, J. D.; Hall, S. R.; Hofzumahaus, A.; Bais, A.; Calvert, J. G.; Cantrell, C. A.; Madronich, S.; Müller, M.; Kraus, A.; Monks, P. S.; Edwards, G. D.; McKenzie, R.; Johnston, P.; Schmitt, R.; Griffioen, E.; Krol, M.; Kylling, A.; Dickerson, R. R.; Lloyd, S. A.; Martin, T.; Gardiner, B.; Mayer, B.; Pfister, G.; Roeth, E. P.; Koepke, P.; Ruggaber, A.; Schwander, H.; Van Weele, M. (2003) Photolysis frequency of NO₂: Measurement and modeling during the International Photolysis Frequency Measurement and Modeling intercomparison (IPMMI). J. Geophys. Res. (Atmos.) 108(D16): 10.1029/2002JD002932.
- Sillman, S. (1995) The use of NO_y, H₂O₂ and HNO₃ as indicators for O₃-NO_x-ROG sensitivity in urban locations. J. Geophys. Res. 100: 14,175-14,188.
- Sillman, S. (1999) The relation between ozone, NO_x and hydrocarbons in urban and polluted rural environments. Atmos. Environ. 33: 1821-1845.
- Sillman, S. (2000) Ozone production efficiency and loss of NO_x in power plant plumes: photochemical model and interpretation of measurements in Tennessee. J. Geophys. Res. [Atmos.] 105: 9189-9202.
- Sillman, S.; He, D.-Y. (2002) Some theoretical results concerning O₃-NO_x-VOC chemistry and NO_x-VOC indicators. J. Geophys. Res. (Atmos.) 107: 10.1029/2001JD001123.
- Sillman, S.; Samson, P. J. (1995) Impact of temperature on oxidant photochemistry in urban, polluted rural and remote environments. J. Geophys. Res. [Atmos.] 100: 11,497-11,508.
- Sillman, S.; Logan, J. A.; Wofsy, S. C. (1990) The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes. J. Geophys. Res. [Atmos.] 95: 1837-1851.
- Sillman, S.; Al-Wali, K. I.; Marsik, F. J.; Nowacki, P.; Samson, P. J.; Rodgers, M. O.; Garland, L. J.; Martinez, J. E.; Stoneking, C.; Imhoff, R.; Lee, J.-H.; Newman, L.; Weinstein-Lloyd, J.; Aneja, V. P. (1995) Photochemistry of ozone formation in Atlanta, GA-models and measurements. Atmos. Environ. 29: 3055-3066.
- Sillman, S.; He, D.; Cardelino, C.; Imhoff, R. E. (1997) The use of photochemical indicators to evaluate ozone-NO_x-hydrocarbon sensitivity: case studies from Atlanta, New York, and Los Angeles. J. Air Waste Manage. Assoc. 47: 1030-1040.
- Sillman, S.; He, D.; Pippin, M. R.; Daum, P. H.; Imre, D. G.; Kleinman, L. I.; Lee, J. H.; Weinstein-Lloyd, J. (1998) Model correlations for ozone, reactive nitrogen, and peroxides for Nashville in comparison with measurements: implications for O₃-NO_x-hydrocarbon chemistry. J. Geophys. Res. [Atmos.] 103: 22,629-22,644.
- Sillman, S.; Vautard, R.; Menut, L.; Kley, D. (2003) O₃-NO_x-VOC sensitivity and NO_x-VOC indicators in Paris: results from models and atmospheric pollution over the Paris area (ESQUIF) measurements. J. Geophys. Res. (Atmos.) 108: 10.1029/2002JD001561.
- Singh, H. B.; Ludwig, F. L.; Johnson, W. B. (1977) Ozone in clean remote atmospheres: concentrations and variabilities. New York, NY: Coordinating Research Council, Inc.; report no. CRC-APRAC CAPA-15-76. Available from: NTIS, Springfield, VA; PB-272290.
- Singh, H. B.; Viezee, W.; Johnson, W. B.; Ludwig, F. L. (1980) The impact of stratospheric ozone on tropospheric air quality. J. Air Pollut. Control Assoc. 30: 1009-1017.
- Singh, H. B.; Kanakidou, M.; Crutzen, P. J.; Jacob, D. J. (1995) High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere. Nature (London) 378: 50-54.
- Singh, H. B.; Gregory, G. L.; Anderson, B.; Browell, E.; Sachse, G. W.; Davis, D. D.; Crawford, J.; Bradshaw, J. D.; Talbot, R.; Blake, D. R.; Thornton, D.; Newell, R.; Merrill, J. (1996a) Low ozone in the marine boundary layer of the tropical Pacific Ocean: photochemical loss, chlorine atoms, and entrainment. J. Geophys. Res. [Atmos.] 101: 1907-1917.
- Singh, H. B.; Herlth, D.; Kolyer, R.; Salas, L.; Bradshaw, J. D.; Sandholm, S. T.; Davis, D. D.; Crawford, J.; Kondo, Y.; Koike, M.; Talbot, R.; Gregory, G. L.; Sachse, G. W.; Browell, E.; Blake, D. R.; Rowland, F. S.; Newell, R.; Merrill, J.; Heikes, B.; Liu, S. C.; Crutzen, P. J.; Kanakidou, M. (1996b) Reactive nitrogen and ozone over the western Pacific: distribution, partitioning, and sources. J. Geophys. Res. 101: 1793-1808.
- Singh, M. P.; McNider, R. T.; Meyers, R.; Shekhar, G. (1997) Nocturnal wind structure and dispersion of pollutants: an analytical study. Atmos. Environ. 31: 105-115.
- Singh, H. B.; Salas, L. J.; Chatfield, R. B.; Czech, E.; Fried, A.; Walega, J.; Evans, M. J.; Field, B. D.; Jacob, D. J.; Blake, D.; Heikes, B.; Talbot, R.; Sachse, G.; Crawford, J. H.; Avery, M. A.; Sandholm, S.; Fuelberg, H. (2004) Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-P. J. Geophys. Res. (Atmos.) 109(D15S07): 10.1029/2003JD003883.

- Sirju, A. P.; Shepson, P. B. (1995) Laboratory and field investigation of the DNPH cartridge technique for the measurement of atmospheric carbonyl compounds. Environ. Sci. Technol. 29: 384-392.
- Skiba, U.; Fowler, D.; Smith, K.A. (1997) Nitric oxide emissions from agricultural soils in temperate and tropical climates: sources, controls and mitigation options. Nutrient Cycling Agroecosystems. 48 (1-2): 139-153.
- Slemr, F.; Seiler, W. (1984) Field measurements of NO and NO₂ emissions from fertilized and unfertilized soils. J. Atmos. Chem. 2: 1-24.
- Slemr, J.; Slemr, F.; Partridge, R.; D'Souza, H.; Schmidbauer, N. (2002) Accurate Measuements of Hydrocarbons in the Atmosphere (AMOHA): three European intercomparisons. J. Geophys. Res. [Atmos.] 107(D19): 10.1020/2001JD001357.
- Smith, F.; Strong, R. (1977) Independent performance audits on rams station sensors audit #4. interim report. Research Triangle Park, NC: Research Triangle Institute; EPA contract no. 68-02-2407.
- Smith, A. M.; Rigler, E.; Kwok, E. S. C.; Atkinson, R. (1996) Kinetics and products of the gas-phase reactions of 6-methyl-5-hepten-2-one and *trans*-cinnamaldehyde with OH and NO₃ radicals and O₃ at 29672K. Environ. Sci. Technol. 30: 1781-1785.
- Smith, D. F.; McIver, C. D.; Kleindienst, T. E. (1998) Primary product distribution from the reaction of hydroxyl radicals with toluene at ppb NO_x mixing ratios. J. Atmos. Chem. 30: 209-228.
- Smith, D. F.; Kleindienst, T. E.; McIver, C. D. (1999) Primary product distributions from the reaction of OH with *m*-, *p*-xylene, 1,2,4- and 1,3,5-trimethylbenzene. J. Atmos. Chem. 34: 339-364.
- Spicer, C. W.; Chapman, E. G.; Finlayson-Pitts, B. J.; Plastridge, R. A.; Hubbe, J. M.; Fast, J. D.; Berkowitz, C. M. (1998) Unexpectedly high concentrations of molecular chlorine in coastal air (letter). Nature (London) 394: 353-356.
- Spicer, C. W.; Billick, I. H.; Yanagisawa, Y. (2001) Nitrous acid interference with passive NO₂ measurement methods and the impact on indoor NO₂ data. Indoor Air 11: 156-161.
- Spivakovsky, C. M.; Logan, J. A.; Montzka, S. A.; Balkanski, Y. J.; Foreman-Fowler, M.; Jones, D. B. A.;
 Horowitz, L. W.; Fusco, A. C.; Brenninkmeijer, C. A. M.; Prather, M. J.; Wofsy, S. C.; McElroy, M. B.
 (2000) Three-dimensional climatological distribution of tropospheric OH: update and evaluation. J. Geophys. Res. (Atmos.) 105: 8931-8980.
- Spokes, L. J.; Yeatman, S. G.; Cornell, S. E.; Jickells, T. D. (2000) Nitrogen deposition to the eastern Atlantic Ocean, the importance of south-easterly flow. Tellus Ser. B 52B: 37-49.
- Sprenger, M.; Wernli, H. (2003) A northern hemispheric climatology of cross-tropopause exchange for the ERA 15 time period (1979-1993). J. Geophys. Res. 108(D12): 10.1029/2002JD002636.
- Sprenger, M.; Maspoli, M. C.; Wernli, H. (2003) Tropopause folds and cross-tropopause exchange: a global investigation based upon ECMWF analyses for the time period March 2000 to February 2001. J. Geophys. Res. (Atmos.) 108(D12): 10.1029/2002JD002587.
- Sprengnether, M.; Demerjian, K. L.; Donahue, N. M.; Anderson, J. G. (2002) Product analysis of the OH oxidation of isoprene and 1,3-butadiene in the presence of NO J. Geophys. Res. (Atmos.) 107(D15): 10.1029/2001JD000716.
- Sprung, D.; Jost, C.; Reiner, T.; Hansel, A.; Wisthaler, A. (2001) Acetone and acetonitrile in the tropical Indian ocean boundary layer and free troposphere: aircraft-based intercomparison of AP-CIMS and PTR-MS measurements. J. Geophys. Res. 106: 28,511-28,528.
- Staffelbach, T.; Neftel, A.; Blatter, A.; Gut, A.; Fahrni, M.; Stähelin, J.; Prévôt, A.; Hering, A.; Lehning, M.; Neininger, B.; Bäumle, M.; Kok, G. L.; Dommen, J.; Hutterli, M.; Anklin, M. (1997) Photochemical oxidant formation over southern Switzerland 1. results from summer 1994. J. Geophys. Res. (Atmos.) 102: 23,345-23,362.
- Staudt, A. C.; Jacob, D. J.; Ravetta, F.; Logan, J. A.; Bachiochi, D.; Krishnamurti, T. N.; Sandholm, S. T.; Ridley, B. A.; Singh, H. B.; Talbot, R. W. (2003) Sources and chemistry of nitrogen oxides over the tropical Pacific. J. Geophys. Res. (Atmos.) 108(8239): 10.1029/2002JD002139.
- Stedman, D. H.; Bishop, G.; Peterson, J. E.; Guenther, P. L. (1991) On-road CO remote sensing in the Los Angeles Basin: final report. Sacramento, CA: California Air Resources Board, ARB Contract No. A932-189.
- Stehr, J. W.; Dickerson, R. R.; Hallock-Waters, K. A.; Doddridge, B. G.; Kirk, D. (2000) Observations of NO_y, CO, and SO₂ and the origin of reactive nitrogen J. Geophys. Res. 105(D3): 3553-3563.
- Stein, A. F.; Lamb, D. (2002) Chemical indicators of sulfate sensitivity to nitrogen oxides an volatile organic compounds. J. Geophys. Res. (Atmos.) 107: 10.1029/2001JD001088.
- Stein, A. F.; Lamb, D. (2003) Empirical evidence for the low- and high-NO_x photochemical regimes of sulfate and nitrate formation. Atmos. Environ. 37: 3615-3625.

- 123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
- Stein, A. F.; Lamb, D.; Draxler, R. R. (2000) Incorporation of detailed chemistry into a three-dimensional Lagrangian-Eulerian hybrid model: application to regional tropospheric ozone. Atmos. Environ. 34: 4361-4372.
- Stenchikov, G.; Dickerson, R.; Pickering, K.; Ellis, W. Jr.; Doddridge, B.; Kondragunta, S.; Poulida, O.; Scala, J.; Tao, W.-K. (1996) Stratosphere-troposphere exchange in a midlatitude mesoscale convective complex. 2. Numerical simulation. J. Geophys. Res. [Atmos.] 101: 6837-6851.
- Stevens, R. K.; Drago, R. J.; Mamane, Y. (1993) A long path differential optical absorption spectrometer and EPA-approved fixed-point methods intercomparison. Atmos. Environ. Part B 27: 231-236.
- Steyn, D. J.; Bottenheim, J. W.; Thomson, R. B. (1997) Overview of tropospheric ozone in the Lower Fraser Valley, and the Pacific '93 field study. Atmos. Environ. 31: 2025-2036.
- Stith, J.; Dye, J.; Ridley, B.; Laroche, P.; Defer, E.; Baumann, K.; Hübler, G.; Zerr, R.; Venticinque, M. (1999) NO signatures from lightning flashes. J. Geophys. Res. [Atmos.] 101: 6837-6851.
- Stockwell, W. R.; Middleton, P.; Chang, J. S.; Tang, X. (1990) The second generation Regional Acid Deposition Model chemical mechanism for regional air quality modeling. J. Geophys. Res. [Atmos.] 95: 16,343-16,367.
- Stockwell, W. R.; Kirchner, F.; Kuhn, M.; Seefeld, S. (1997) A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. 102(D22): 25847-25879.
- Stohl, A. (2001) A 1-year Lagrangian "climatology" of airstreams in the Northern Hemisphere troposphere and lowermost stratosphere. J. Geophys. Res. (Atmos.) 106: 7263-7279.
- Stohl, A.; Trickl, T. (1999) A textbook example of long-range transport: simultaneous observation of ozone maxima of stratospheric and North American origin in the free troposphere of Europe. J. Geophys. Res. 104(D23): 30,445-30,462.
- Stohl, A.; Spichtinger-Rakowsky, N.; Bonasoni, P.; Feldmann, H.; Memmesheimer, M.; Scheel, H. E.; Trickly, T.; Hübener, S.; Ringer, W.; Mandl, M. (2000) The influence of stratospheric intrusions on alpine ozone concentrations. Atmos. Environ. 34: 1323-1354.
- Stohl, A.; Trainer, M.; Ryerson, T. B.; Holloway, J. S.; Parrish, D. D. (2002) Export of NO_y from the North American boundary layer during 1996 and 1997 North Atlantic Regional Experiments. J. Geophys. Res. 107(D11): 10.1029/2001JD000519.
- Stohl, A.; Bonasoni, P.; Cristofanelli, P.; Collins, W.; Feichter, J.; Frank, A.; Forster, C.; Gerasopoulos, E.;
 Gäggeler, H.; James, P.; Kentarchos, T.; Kromp-Kolb, H.; Krüger, B.; Land, C.; Meloen, J.; Papayannis, A.;
 Priller, A.; Seibert, P.; Sprenger, M.; Roelofs, G. J.; Scheel, H. E.; Schnabel, C.; Siegmund, P.; Tobler, L.;
 Trickl, T.; Wernli, H.; Wirth, V.; Zanis, P.; Zerefos, C. (2003) Stratosphere-troposphere exchange: a review and what we have learned from STACCATO. J. Geophys. Res. 108(D12): 10.1029/2002JD002490.
- Stroud, C.; Madronich, S.; Atlas, E.; Ridley, B.; Flocke, F.; Weinheimer, A.; Talbot, B.; Fried, A.; Wert, B.; Shetter, R.; Lefer, B.; Coffey, M.; Heikes, B.; Blake, D. (2003) Photochemistry in the arctic free troposphere: NO, budget and the role of odd nitrogen reservoir recycling. Atmos. Environ. 37: 3351-3364.
- Stull, R. B. (1985) A fair-weather cumulus cloud classification scheme for mixed layer studies. J. Clim. Appl. Meteorol. 24: 49-56.
- Stull, R. B. (1988) An introduction to boundary layer meteorology. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 9-16; 499-506. (Atmospheric Sciences Library, v. 13).
- Stull, R.B. (1999) An introduction to boundary layer meteorology. Dordrecht, The Netherlands: Kluwer Academic Publishers; pp. 9-15, 500-505.
- Stull, R. B. (2000) Meteorology for scientists and engineers: a technical companion book to C. Donald Ahrens' Meteorology Today. 2nd ed. New York, NY: Brooks Cole.
- Sturges, W. T.; Barrie, L. A. (1988) Chlorine Bromine and Iodine in Arctic aerosols. Atmos. Environ. 22: 1179-1194.
- Stutz, J.; Platt, U. (1996) Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods. Appl. Opt. 35: 6041-6053.
- Stutz, J.; Hebestreit, K.; Alicke, B.; Platt, U. (1999) Chemistry of halogen ozides in the troposphere: comparison of model calculations with recent field data. J. Atmos. Chem. 34: 65-85.
- Stutz, J.; Ackermann, R.; Fast, J. D.; Barrie, L. (2002) Atmospheric reactive chlorine and bromine at the Great Salt Lake, Utah. Geophys. Res. Lett. 29: 10.1029/2002GL014812.
- Suhre, K.; Cammas, J.-P.; Nédelec, P.; Rosset, R.; Marenco, A.; Smit, H. G. J. (1997) Ozone-rich transients in the upper equatorial Atlantic troposphere (letter). Nature 388: 661-663.
- Sundet, J. K. (1997) Model studies with a 3-D global CTM using ECMWF data [thesis]. Oslo, Norway: University of Oslo, Department of Geophysics.

- Svensson, R.; Ljungstroem, E.; Lindqvist, O. (1987) Kinetics of the reaction between nitrogen dioxide and water vapour. Atmos. Environ. 21: 1529-1539.
- Talbot, R. W.; Vijgen, A. S.; Harris, R. C. (1990) Measuring tropospheric HNO₃: problems and prospects for nylon filter and mist chamber. J. Geophys. Res. [Atmos.] 95: 7553-7542.
- Tan, D.; Faloona, I.; Simpas, J. B.; Brune, W.; Shepson, P. B.; Couch, T. L.; Sumner, A. L.; Carroll, M. A.; Thornberry, T.; Apel, E.; Riemer, D.; Stockwell, W. (2001) HO_x budgets in a deciduous forest: results from the PROPHET summer 1998 campaign. J. Geophys. Res. (Atmos.) 106: 24,407-24,427.
- Tanaka, P. L.; Oldfield, S.; Neece, J. D.; Mullins, C. B.; Allen, D. T. (2000) Anthropogenic sources of chlorine and ozone formation in urban atmospheres. Environ. Sci. Technol. 34: 4470-4473.
- Tanaka, P. L.; Riemer, D. D.; Chang, S.; Yarwood, G.; McDonald-Buller, E. C.; Apel, E. C.; Orlando, J. J.; Silva, P. J.; Jimenez, J. L.; Canagaratna, M. R.; Neece, J. D.; Mullins, C. B.; Allen, D. T. (2003a) Direct evidence for chlorine-enhanced urban ozone formation in Houston, Texas. Atmos. Environ. 37: 1393-1400.
- Tanaka, P. L.; McDonald-Buller, E. C.; Chang, S.; Yarwood, G.; Kimura, Y.; Neece, J. D.; Mullins, C. B.; Allen, D. T. (2003b) Development of a chlorine mechanism for use in the Carbon Bond IV chemistry model. J. Geophys. Res. [Atmos.] 108(D4): art. no. 4145.
- Tanner, R. L.; Kelly, T. J.; Dezaro, D. A.; Forrest, J. (1989) A comparison of filter, denuder, and real-time chemiluminescence techniques for nitric acid determination in ambient air. Atmos. Environ. 23: 2213-2222.
- Tao, W.-K.; Simpson, J. (1993) The Goddard Cumulus Ensemble Model. Part I: model description. Terr. Atmos. Oceanic Sci. (TAO) 4: 35-71.
- Taubman, B. F.; Marufu, L. T.; Piety, C. A.; Doddridge, B. G.; Stehr, J. W.; Dickerson, R. R. (2004) Airborne characterization of the chemical, optical, and meteorological properties, and origins of a combined ozone-haze episode over the eastern United States. J. Atmos. Sci. 61: 1781-1793.
- Tesche, T. W.; Roth, P. M.; Reynolds, S. D.; Lurmann, F. W. (1993) Scientific assessment of the urban airshed model (UAM-IV). Washington, DC: American Petroleum Institute; API publication no. 4556.
- Thielman, A.; Prévôt, A. S. H.; Grüebler, F. C.; Staelhelin, J. (2001) Empirical ozone isopleths as a tool to identify ozone production regimes. Geophys. Res. Lett. 28: 2369-2372.
- Thielman, A.; Prévôt, A. S. H.; Staelhelin, J. (2002) Sensitivity of ozone production derived from field measurements in the Italian Po basin. J. Geophys. Res. (Atmos.) 107(D22): 10.1029/2000JD000119.
- Thompson, A. M. (1992) The oxidizing capacity of the Earth's atmosphere: probable past and future changes. Science (Washington, DC) 256: 1157-1165.
- Thompson, A. M.; Stewart, R. W. (1991) Effect of chemical kinetics uncertainties on calculated constituents in a tropospheric photochemical model. J. Geophys. Res. 96(D7): 13,089-13,108.
- Thompson, A. M.; Pickering, K. E.; Dickerson, R. R.; Ellis, W. G., Jr.; Jacob, D. J.; Scala, J. R.; Tao, W.-K.; McNamara, D. P.; Simpson, J. (1994) Convective-transport over the central United States and its role in regional CO and O₃ budgets. J. Geophys. Res. [Atmos.] 99: 18,703-18,711.
- Thompson, A. M.; Singh, H. B.; Schlager, H. (2000) Subsonic assessment ozone and nitrogen oxide experiment (SONEX) and pollution from aircraft emissions in the North Atlantic Flight Corridor (POLINAT 2).
 J. Geophys. Res. 105: 3595-3603.
- Thornton, J. A.; Wooldridge, P. J.; Cohen, R. C. (2000) Atmospheric NO₂: in situ laser-induced fluorescence detection at parts per trillion mixing ratios. Anal. Chem. 72: 528-539.
- Thornton, J. A.; Braban, C. F.; Abbatt, J. P. D. (2003) N₂O₅ hydrolysis on sub-micron organic aerosol: the effect of relative humidity, particle phase and particle size. Phys. Chem. Chem. Phys. 5: 4593-4603.
- Tie, X. X.; Emmons, L.; Horowitz, L.; Brasseur, G.; Ridley, ,B.; Atlas, E.; Stround, C.; Hess, P.; Klonecki, A.; Madronich, S.; Talbot, R.; Dibb, J. (2003) Effect of sulfate aerosol on tropospheric NO_x and ozone budgets: model simulations and TOPSE evidence. J. Geophys. Res. (Atmos.) 108(D4): 10.1029/2001JD001508.
- Tonnesen, G. S.; Dennis, R. L. (2000a) Analysis of radical propagation efficiency to assess ozone sensitivity to hydrocarbons and NO_x 1. Local indicators of odd oxygen production sensitivity. J. Geophys. Res. (Atmos.) 105: 9213-9225.
- Tonnesen, G. S.; Dennis, R. L. (2000b) Analysis of radical propagation efficiency to assess ozone sensitivity to hydrocarbons and NO_x 2. Long-lived species as indicators of ozone concentration sensitivity. J. Geophys. Res. 105: 9227-9241.
- Trainer, M.; Buhr, M. P.; Curran, C. M.; Fehsenfeld, F. C.; Hsie, E. Y.; Liu, S. C.; Norton, R. B.; Parrish, D. D.;
 Williams, E. J.; Gandrud, B. W.; Ridley, B. A.; Shetter, J. D.; Allwine, E. J.; Westberg, H. H. (1991)
 Observations and modeling of the reactive nitrogen photochemistry at a rural site. J. Geophys. Res. [Atmos.]
 96: 3045-3063.

- Trainer, M.; Parrish, D. D.; Buhr, M. P.; Norton, R. B.; Fehsenfeld, F. C.; Anlauf, K. G.; Bottenheim, J. W.; Tang, Y. Z.; Wiebe, H. A.; Roberts, J. M.; Tanner, R. L.; Newman, L.; Bowersox, V. C.; Meagher, J. F.; Olszyna, K. J.; Rodgers, M. O.; Wang, T.; Berresheim, H.; Demerjian, K. L.; Roychowdhury, U. K. (1993) Correlation of ozone with NO_v in photochemically aged air. J. Geophys. Res. [Atmos.] 98: 2917-2925.
- Trainer, M.; Ridley, B. A.; Buhr, M. P.; Kok, G.; Walega, J.; Hübler, G.; Parrish, D. D.; Fehsenfeld, F. C. (1995) Regional ozone and urban plumes in the southeastern United States: Birmingham, a case study. J. Geophys. Res. [Atmos.] 100: 18,823-18,834.
- Trainer, M.; Parrish, D. D.; Golday, P. D.; Roberts, J.; Fehsenfeld, F. C. (2000) Review of observation-based analysis of the regional factors influencing ozone concentrations. Atmos. Environ. 34: 2045-2061.
- Traub, M.; Fischer, H.; De Reus, M.; Kormann, R.; Heland, J.; Ziereis, H.; Schlager, H.; Holzinger, R.; Williams, J.; Warneke, C.; De Gouw, J.; Lelieveld, J. (2003) Chemical characteristics assigned to trajectory clusters during the MINOS campaign. Atmos. Chem. Phys. 3: 459-468.
- Tseng, R.-S.; Viechnicki, J. T.; Skop, R. A.; Brown, J. W. (1992) Sea-to-air transfer of surface-active organic compounds by bursting bubbles. J. Geophys. Res. (Atmos.) 97: 5201-5206.
- Tuazon, E. C.; MacLeod, H.; Atkinson, R.; Carter, W. P. L. (1986) α-Dicarbonyl yields from the NO_x-air photooxidations of a series of aromatic hydrocarbons in air. Environ. Sci. Technol. 20: 383-387.
- Tully, F. P.; Ravishankara, A. R.; Thompson, R. L.; Nicovich, J. M.; Shah, R. C.; Kreutter, N. M.; Wine, P. H. (1981) Kinetics of the reactions of hydroxyl radical with benzene and toluene. J. Phys. Chem. 85: 2262-2269.
- Turekian, V. C.; Macko, S. A.; Keene, W. C. (2003) Concentrations, isotopic compositions, and sources of size-resolved, particulate organic carbon and oxalate in near-surface marine air at Bermuda during spring. J. Geophys. Res. (Atmos.) 108(D5): 10.1029/2002JD002053.
- U.S. Congress. (1990) Clean Air Act amendments of 1990, PL 101-549, November 15. Washington, DC: U.S. Government Printing Office.
- U.S. Environmental Protection Agency. (1991) Guideline for regulatory application of the urban airshed model. Research Triangle Park, NC: Office of Air Quality Planning and Standards; report no. EPA-450/4-91-013. Available from: NTIS, Springfield, VA; PB92-108760/HSU.
- U.S. Environmental Protection Agency. (1993a) Air quality criteria for oxides of nitrogen. Research Triangle Park, NC: Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office; report nos. EPA/600/8-91/049aF-cF. 3v. Available from: NTIS, Springfield, VA; PB95-124533, PB95-124525, and PB95-124517.
- U.S. Environmental Protection Agency. (1993) Regional interim emission inventories (1987-1991), v. II: emission summaries. Research Triangle Park, NC: Office of Air Quality Planning and Standards; report no. EPA-454/R-93-021b. Available from: NTIS, Springfield, VA; PB93-236115.
- U.S. Environmental Protection Agency. (1996) Air quality criteria for ozone and related photochemical oxidants,
 v. I-III. Research Triangle Park, NC: Office of Research and Development; report no.
 EPA/600/P-93/004aF-cF. Available from: NTIS, Springfield, VA; PB96-185582. PB96-185590, and
 PB96-185608. Available: www.epa.gov/ncea/ozone.htm [25 February 2002].
- U.S. Environmental Protection Agency. (1997) National air pollutant emission trends 1990-1996. Research Triangle Park, NC: Office of Air Quality Planning and Standards; report no. EPA/454/R-97/011. Available from: NTIS, Springfield, VA.
- U.S. Environmental Protection Agency. (1999) Control measure evaluations: the Control Measure Data Base for the National Emissions Trends Inventory (ControlNET) [draft report]. Research Triangle Park, NC: Office of Air Quality Planning and Standards; report no. EPA/452/D-01/001. Available from: NTIS, Springfield, VA; PB2001-105812.
- U.S. Environmental Protection Agency. (2000) Air quality criteria for carbon monoxide. Research Triangle Park, NC: National Center for Environmental Assessment; report no. EPA/600/P-99/001F. Available: http://www.epa.gov/ncea/pdfs/coaqcd.pdf (7 May 2003).
- U.S. Environmental Protection Agency. (2001) National air quality and emissions trends report, 1999. Research Triangle Park, NC: Office of Air Quality Planning and Standards; report no. EPA 454/R-01-004. Available: http://www.epa.gov/oar/aqtrnd99/ [7 May 2003].
- U.S. Environmental Protection Agency. (2003) Air quality criteria for ozone and related photochemical oxidants. Research Triangle Park, NC: Office of Research and Development: manuscript in preparation.
- U.S. Environmental Protection Agency. (2004) Air quality criteria for particulate matter. Research Triangle Park, NC: National Center for Environmental Assessment; report no. EPA/600/P-99/002aF-bF. 2v. Available: http://cfpub.epa.gov/ncea/ [9 November, 2004].

- Underwood, G. M.; Song, C. H.; Phadnis, M.; Carmichael, G. R.; Grassian, V. H. (2001) Heterogeneous reactions of NO₂ and HNO₃ on oxides and mineral dust: a combined laboratory and modeling study. J. Geophys. Res. [Atmos.] 106: 18,055-18,066.
- Usher, C. R.; Michel, A. E.; Stec, D.; Grassian, V. H. (2003) Laboratory studies of ozone uptake on processed mineral dust. Atmos. Environ. 37: 5337-5347.
- Valente, R. J.; Imhoff, R. E.; Tanner, R. L.; Meagher, J. F.; Daum, P. H.; Hardesty, R. M.; Banta, R. M.; Alvarez, R. J.; McNider, R. T.; Gillani, N. V. (1998) Ozone production during an urban air stagnation episode over Nashville, Tennessee. J. Geophys. Res. [Atmos.] 103: 22,555-22,568.
- Van Aardenne, J. A.; Dentener, F. J.; Olivier, J. G. J.; Goldewijk, C. G. M. K.; Lelieveld, J. (2001) A 1 ° x 1° resolution data set of historical anthropogenic trace gas emissions for the period 1980-1990. Glob. Biogeochem. Cycles 15: 909-928.
- Vandaele, A. C.; Tsouli, A.; Carleer, M.; Colin, R. (2002) UV Fourier transform measurements of tropospheric O₃, NO₂, SO₂, benzene, and toluene. Environ. Pollut. 116: 193-201.
- Vaughan, W. M.; Chan, M.; Cantrell, B.; Pooler, F. (1982) A study of persistent elevated pollution episodes in the northeastern United States. Bull. Am. Meteorol. Soc. 63: 258-266.
- Vautard, R.; Martin, D.; Beekman, M.; Drobinski, P.; Friedrich, R.; Jaubertie, A.; Kley, D.; Lattuati, M.; Moral, P.; Neininger, B.; Theloke, J. (2002) Paris emission inventory diagnostics from the ESQUIF airborne measurements and a chemistry transport model. J. Geophys. Res. (Atmos.) 108(D17): 10.1029/2002JD002797.
- Venkatachari, P.; Hopke, P. K.; Grover, B. D.; Eatough, D. J. (2005a) Measurement of particle-bound reactive oxygen species in Rubidoux aerosols. J. Atmos. Chem. 50: 49-58.
- Venkatachari, P.; Hopke, P.K.; Brune, W. H.; Ren, X.; Lesher, R.; Mao, J.; Mitchell, M. (2005b) Characterization of reactive oxygen species trends in Flushing, New York. Atmos. Environ.: in press.
- Viezee, W.; Johnson, W. B.; Singh, H. B. (1979) Airborne measurements of stratospheric ozone intrusions into the troposphere over the United States [final report]. Menlo Park, CA: SRI International; SRI project 6690.
- Viezee, W.; Singh, H. B. (1982) Contribution of stratospheric ozone to ground-level ozone concentrations a scientific review of existing evidence. Research Triangle Park, NC: U.S. Environmental Protection Agency, Environmental Science Research Laboratory; grant CR-809330010.
- Vogt, R.; Crutzen, P. J.; Sander, R. (1996) A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer. Nature 383: 327-330.
- Vogt, R.; Sander, R.; Von Glasow, R.; Crutzen, P. J. (1999) Iodine chemistry and its role in halogen activation and ozone loss in the marine boundary layer: a model study. J. Atmos. Chem. 32: 375-395.
- Volz-Thomas, A.; Geiss, H.; Hofzumahaus, A.; Becker, K.-H. (2003) Introduction to special section: photochemistry experiment in BERLIOZ. J. Geophys. Res. [Atmos.] 108(D4): 10.1029/JD002029.
- Von Glasow, R.; Sander, R.; Bott, A.; Crutzen, P. J. (2002a) Modeling halogen chemistry in the marine boundary layer. 1. Cloud-free MBL. J. Geophys. Res. 107(D17): 10.1029/2001JD000942.
- Von Glasow, Sander, R.; Bott, A.; Crutzen, P. J. (2002b) Modeling halogen chemistry in the marine boundary layer.
 2. Interactions with sulfur and cloud-covered MBL. J. Geophys. Res. 107(D17): 10.1029/2001JD000943.
- Vuilleumier, L.; Bamer, J. T.; Harley, R. A.; Brown, N. J. (2001) Evaluation of nitrogen dioxide photolysis rates in an urban area using data from the 1997 Southern California Ozone Study. Atmos. Environ. 35: 6525-6537.
- Vukovich, F. M. (1995) Regional-scale boundary layer ozone variations in the eastern United States and their association with meteorological variations. Atmos. Environ. 29: 2259-2273.
- Vukovich, F. M. (1997) Time scales of surface ozone variations in the regional, non-urban environment. Atmos. Environ. 31:1513-1530.
- Vukovich, R. M.; Ching, J. K. S. (1990) A semi-impirical approach to estimate vertical transport by nonprecipitating convective clouds on a regional scale. Atmos. Environ. 24A: 2153-2168.
- Vukovich, F. M.; Bach, W. D., Jr.; Crissman, B. W.; King, W. J. (1977) On the relationship between high ozone in the rural surface layer and high pressure systems. Atmos. Environ. 11: 967-983.
- Wagner, T.; Platt, U. (1998) Satellite mapping of enhanced BrO concentrations in the troposphere. Nature (London) 395: 486-490.
- Wagner, V.; Jenkin, M. E.; Saunders, S. M.; Stanton, K.; Wirtz, M.; Pilling, J. (2003) Modelling of the photooxidation of toluene: conceptual ideas for validating detailed mechanisms. Atmos. Chem. Phys. 3: 89-106.
- Wahner, A.; Mentel, T. F.; Sohn, M.; Stier, J. (1998) Heterogeneous reaction of N₂O₅ on sodium nitrate aerosol. J. Geophys. Res. (Atmos.) 103: 31,103-31,112.

- Wainman, T.; Zhang, J.; Weschler, C. J.; Lioy, P. J. (2000) Ozone and limonene in indoor air: a source of submicron particle exposure. Environ. Health Perspect. 108: 1139-1145.
- Walcek, C. J.; Taylor, G. R. (1986) A theoretical method for computing vertical distributions of acidity and sulfate production within cumulus clouds. J. Atmos. Sci. 43: 339-355.
- Walcek, C. J.; Stockwell, W. R.; Chang, J. S. (1990) Theoretical estimates of the dynamic, radiative and chemical effects of clouds on tropospheric trace gases. Atmos. Res. 25: 53-69.
- Walega, J. G.; Stedman, D. H.; Shetter, R. E.; Mackay, G. I.; Iguchi, T.; Schiff, H. I. (1984) Comparison of a chemiluminescent and a tunable diode laser absorption technique for the measurement of nitrogen oxide, nitrogen dioxide, and nitric acid. Environ. Sci. Technol. 18: 823-826.
- Wang, Y.; Tao, W.-K.; Pickering, K. E.; Thompson, A. M.; Kain, J. S.; Adler, R. F.; Simpson, J.; Keehn, P. R.; Lai, G. S. (1996) Mesoscale model simulations of TRACE A and preliminary regional experiment for storm-scale operational and research meteorology convective systems and associated tracer transport. J. Geophys. Res. [Atmos.] 101: 24,013-24,027.
- Wang, Y.; DeSilva, A. W.; Goldenbaum, G. C.; Dickerson, R. R. (1998a) Nitric oxide production by simulated lightning: dependence on current, energy, and pressure. J. Geophys. Res. [Atmos.] 103: 19,149-19,159.
- Wang, Y.; Logan, J. A.; Jacob, D. J. (1998b) Global simulation of tropospheric O₃-NO_x-hydrocarbon chemistry, 2. Model evaluation and global ozone budget. J. Geophys. Res. (Atmos.) 103: 10,727-10,755.
- Wang, L. H.; Milford, J. B.; Carter, W. P. L. (2000a) Reactivity estimates for aromatic compounds. Part I: uncertainty in chamber-derived parameters. Atmos. Environ. 34: 4337-4348.
- Wang, L. H.; Milford, J. B.; Carter, W. P. L. (2000b) Reactivity estimates for aromatic compounds. Part 2. uncertainty in incremental reactivities. Atmos. Environ. 4349-4360.
- Warneke, C.; Van Der Veen, C.; Luxembourg, S.; De Gouw, J. A.; Kok, A. (2001) Measurements of benzene and toluene in ambient air using proton-transfer-reaction mass spectrometry: calibration, humidity dependence, and field intercomparison. Int. J. Mass Spectrom. 207: 167-182.
- Watson, J. G.; Chow, J. C.; Fujita, E. M. (2001) Review of volatile organic compound source apportionment by chemical mass balance. Atmos. Environ. 35: 1567-1584.
- Wayne, R. P. (2000) Chemistry of Atmospheres: an introduction to the chemistry of the atmospheres of Earth, the planets, and their satellites. 3rd ed. New York, NY: Oxford University Press, Inc.
- Wayne, R. P.; Barnes, I.; Biggs, P.; Burrows, J. P.; Canosa-Mas, C. E.; Hjorth, J.; Le Bras, G.; Moortgat, G. K.; Perner, D.; Poulet, G.; Restelli, G.; Sidebottom, H. (1991) The nitrate radical: physics, chemistry, and the atmosphere. Atmos. Environ. Part A 25: 1-203.
- Wennberg, P. O.; Cohen, R. C.; Stimpfle, R. M.; Koplow, J. P.; Anderson, J. G.; Salawitch, R. J.; Fahey, D. W.;
 Woodbridge, E. L.; Keim, E. R.; Geo, R. S.; Webster, C. R.; May, R. D.; Toohey, D. W.; Avallone, L. M.;
 Proffitt, M. H.; Loewenstein, M.; Podolske, J. R.; Chan, K. R.; Wofsy, S. C. (1994) Removal of stratospheric
 O₃ by radicals in situ measurements of OH, HO₂, NO, NO₂, CLO, and BRO. Science 266: 398-404.
- Wennberg, P. O.; Hanisco, T. F.; Jaeglé, L.; Jacob, D. J.; Hintsa, E. J.; Lanzendorf, E. J.; Anderson, J. G.; Gao, R.-S.; Keim, E. R.; Donnelly, S. G.; Del Negro, L. A.; Fahey, D. W.; McKeen, S. A.; Salawitch, R. J.; Webster, C. R.; May, R. D.; Herman, R. L.; Proffitt, M. H.; Margitan, J. J.; Atlas, E. L.; Schauffler, S. M.; Flocke, F.; McElroy, C. T.; Bui, T. P. (1998) Hydrogen radicals, nitrogen radicals, and the production of O₃ in the upper troposphere. Science (Washington, DC) 279: 49-53.
- Wernli, H.; Bourqui, M. (2002) A Lagrangian "1-year climatology" of (deep) cross-tropopause exchange in the extratropical Northern Hemisphere. J. Geophys. Res. (Atmos.) 107(D1-D2): 10.1029/2001JD000812.
- Wesely, M. L.; Hicks, B. B. (2000) A review of the current status of knowledge on dry deposition. Atmos. Environ. 34: 2261-2282.
- Westberg, H.; Zimmerman, P. (1993) Analytical methods used to identify nonmethane organic compounds in ambient atmospheres. In: Newman, L., ed. Measurement challenges in atmospheric chemistry. Washington, DC: American Chemical Society, pp. 275-291.
- Wexler, A. S.; Sarangapani, R. (1998) Particles do not increase vapor deposition in human airways. J. Aerosol Sci. 29: 197-204.
- Whitby, K. T. (1978) The physical characteristics of sulfur aerosols. Atmos. Environ. 12: 135-159.
- Wild, O.; Prather, M. J. (2000) Excitation of the primary tropospheric chemical mode in a global CTM. J. Geophys. Res. (Atmos.) 105: 24,647-24,660.
- Williams, E. J.; Guenther, A.; Fehsenfeld, F. C. (1992) An inventory of nitric oxide emissions from soils in the United States. J. Geophys. Res. [Atmos.] 97: 7511-7519.

- Williams, J.; Roberts, J. M.; Fehsenfeld, F. C.; Bertman, S. B.; Buhr, M. P.; Goldan, P. D.; Hubler, G.; Kuster, W. C.; Ryerson, T. B.; Trainer, M.; Young, V. (1997) Regional ozone from biogenic hydrocarbons deduced from airborne measurements of PAN, PPN, and MPAN. Geophys. Res. Lett. 24: 1099-1102.
- Williams, E. J.; Baumann, K.; Roberts, J. M.; Bertman, S. B.; Norton, R. B.; Fehsenfeld, F. C.; Springston, S. R.; Nunnermacker, L. J.; Newman, L.; Olszyna, K.; Meagher, J.; Hartsell, B.; Edgerton, E.; Pearson, J. R.; Rodgers, M. O. (1998) Intercomparison of ground-based NO_y measurement techniques. J. Geophys. Res. 103: 22,261-22,280.
- Wimmers, A. J. (2003) (dissertation). Charlottesville, VA: University of Virginia, R. J. Reynolds Institute for Environmental Science.
- Wimmers, A. J.; Moody, J. L. (2001) A fixed-layer estimation of upper-tropospheric specific humidity from the GOES water vapor channel: parameterization and validation of the altered brightness temperature product. J. Geophys. Res. [Atmos.] 106: 17,115-17,132.
- Wimmers, A. J.; Moody, J. L. (2004a) Tropopause folding at satellite-observed spatial gradients: 1. Verification of an empirical relationship. J. Geophys. Res. [Atmos.] 109(D19306): 10.1029/2003JD004145.
- Wimmers, A. J.; Moody, J. L. (2004b) Tropopause folding at satellite-observed spatial gradients: 2. Development of an empirical model. J. Geophys. Res. [Atmos.] 109(D19307): 10.1029/2003JD004146.
- Wimmers, A. J.; Moody, J. L.; Browell, E. V.; Hair, J. W.; Grant, W. B.; Butler, C. F.; Fenn, M. A.; Schmidt, C. C.; Li, J.; Ridley, B. A. (2003) Signatures of tropopause folding in satellite imagery. J. Geophys. Res. (Atmos.) 108(D4): 10.1029/2001JD001358.
- Winer, A. M.; Peters, J. W.; Smith, J. P.; Pitts, J. N., Jr. (1974) Response of commercial chemiluminescent NO-NO₂ analyzers to other nitrogen-containing compounds. Environ. Sci. Technol. 8: 1118-1121.
- Winer, A. M.; Arey, J.; Atkinson, R.; Aschmann, S. M.; Long, W. D.; Morrison, C. L.; Olszyk, D. M. (1992) Emission rates of organics from vegetation in California's Central Valley. Atmos. Environ. Part A 26: 2647-2659.
- Wingenter, O. W.; Kubo, M. K.; Blake, N. J.; Smith, T. W., Jr.; Blake, D. R.; Rowland, F. S. (1996) Hydrocarbon and halocarbon measurements as photochemical and dynamical indicators of atmospheric hydroxyl, atomic chlorine, and vertical mixing obtained during Langrangian flights. J. Geophys. Res. (Atmos.) 101(D1): 4331-4340.
- Wingenter, O. W.; Blake, D. R.; Blake, N. J.; Sive, B. C.; Rowland, F. S.; Atlas, E.; Flocke, F. (1999) Tropospheric hydroxyl and atomic chlorine concentrations, and mixing timescales determined from hydrocarbon and halocarbon measurements made over the Southern Ocean. J. Geophys. Res. (Atmos.) 104(D17): 21819-21828.
- Winner, D. A.; Cass, G. R. (2001) Modeling the long-term frequency distribution of regional ozone concentrations using synthetic meteorology. Environ. Sci. Technol. 35: 3718-3726.
- Witter, M.; Berndt, T.; Böge, O.; Stratmann, F.; Heintzenberg, J. (2002) Gas-phase ozonolysis: rate coefficients for a series of terpenes and rate coefficients and OH yields for 2-methyl-2-butene and 2,3-dimethyl-2-butene. Int. J. Chem. Kinet. 34: 394-403.
- Wolff, G. T. (1993) On a NO_x-focused control strategy to reduce O₃. J. Air Waste Manage. Assoc. 43: 1593-1596.
- Wolff, G. T.; Korsog, P. E. (1992) Ozone control strategies based on the ratio of volatile organic compounds to nitrogen oxides. J. Air Waste Manage. Assoc. 42: 1173-1177.
- Wolff, G. T.; Lioy, P. J. (1978) An empirical model for forecasting maximum daily ozone levels in the northeastern U.S. J. Air Pollut. Control Assoc. 28: 1034-1038.
- Wolff, G. T.; Lioy, P. J. (1980) Development of an ozone river associated with synoptic scale episodes in the eastern United States. Environ. Sci. Technol. 14: 1257-1260.
- Wolff, G. T.; Lioy, P. J.; Meyers, R. E.; Cederwall, R. T.; Wight, G. D.; Pasceri, R. E.; Taylor, R. S. (1977) Anatomy of two ozone transport episodes in the Washington, D.C., to Boston, Mass., corridor. Environ. Sci. Technol. 11: 506-510.
- Wolff, G. T.; Lioy, P. J.; Wight, G. D.; Meyers, R. E.; Cederwall, R. T. (1977) An investigation of long-range transport of ozone across the midwestern and eastern United States. Atmos. Environ. 11: 797-802.
- Wolff, G. T.; Lioy, P. J.; Wight, G. D.; Pasceri, R. E. (1977) Aerial investigation of the ozone plume phenomenon. J. Air Pollut. Control Assoc. 27: 460-463.
- Wolff, G. T.; Lioy, P. J.; Wight, G. D.; Pasceri, R. E. (1977) Aerial investigation of photochemical oxidants over the northeast. In: Bufalini, J. J.; Lonneman, W. A., eds. Proceedings of symposium on 1975 northeast oxidant transport study; January 1976; Research Triangle Park, NC. Research Triangle Park, NC: U.S. Environmental Protection Agency, Environmental Sciences Research Laboratory; pp. 70-86; EPA report no. EPA-600/3-77-017. Available from: NTIS, Springfield, VA; PB-265370.

- World Meteorological Organization. (1990) Scientific assessment of stratospheric ozone: 1989. Volume II. Appendix: AFEAS report. Geneva, Switzerland: Global Ozone Research Monitoring Project; report no. 20.
- World Meteorological Organization. (1992) Scientific assessment of ozone depletion: 1991 [preprint]. Geneva, Switzerland: World Meteorological Organization; report no. 25.
- Wright, E. S.; Vang, M. J.; Finkelstein, J. N.; Mavis, R. D. (1982) Changes in phospholipid biosynthetic enzymes in type II cells and alveolar macrophages isolated from rat lungs after NO₂ exposure. Toxicol. Appl. Pharmacol. 66: 305-311.
- Wunderli, S.; Gehrig, R. (1991) Influence of temperature on formation and stability of surface PAN and ozone. A two year field study in Switzerland. Atmos. Environ. Part A 25: 1599-1608.
- Yienger, J. J.; Levy, H., II. (1995) Empirical model of global soil-biogenic NO_x emissions. J. Geophys. Res. 100(D6): 11,447-11,464.
- Young, V. L.; Kieser, B. N.; Chen, S. P.; Nii, H. (1997) Seasonal trends and local influences on nonmethane hydrocarbon concentrations in the Canadian boreal forest. J. Geophys. Res. (Atmos.) 102: 5913-5918.
- Yu, J.; Jeffries, H. E. (1997) Atmospheric photooxidation of alkylbenzenes II. evidence of formation of epoxide intermediates. Atmos. Environ. 31: 2281-2287.
- Yu, J.; Jeffries, H. E.; Sexton, K. G. (1997) Atmospheric photooxidation of alkylbenzenes I. carbonyl product analyses. Atmos. Environ. 31: 2261-2280.
- Yung, Y. L.; Pinto, J. P.; Watson, R. T.; Sander, S. P. (1980) Atmospheric bromine and ozone perturbations in the lower stratosphere. J. Atmos. Sci. 37: 339-353.
- Zafiriou, O. C.; True, M. B. (1979) Nitrate photolysis in seawater by sunlight. Mar. Chem. 8: 33-42.
- Zanis, P.; Trickl, T.; Stohl, A.; Wernli, H.; Cooper, O.; Zerefos, C.; Gaeggeler, H.; Schnabel, C.; Tobler, L.; Kubik, P. W.; Priller, A.; Scheel, H. E.; Kanter, H. J.; Cristofanelli, P.; Forster, C.; James, P.; Gerasopoulos, E.; Delcloo, A.; Papayannis, A.; Claude, H. (2003) Forecast, observation and modelling of a deep stratospheric intrusion event over Europe. Atmos. Chem. Phys. 3: 763-777.
- Zenker, T.; Fischer, H.; Nikitas, C.; Parchatka, U.; Harris, G. W.; Mihelcic, D.; Müsgen, P.; Pätz, H. W.; Schultz, M.; Volz-Thomas, A.; Schmitt, R.; Behmann, T.; Wiessenmayer, M.; Burrows, J. P. (1998) Intercomparison of NO, NO₂, NO₂, O₃, and RO, measurements during the oxidizing capacity of the tropospheric atmosphere (OCTA) campaign 1993 at Izana. J. Geophys. Res. [Atmos.] 103: 13,615-13,634.
- Zhang, Y.; Carmichael, G. R. (1999) The role of mineral aerosol in tropospheric chemistry in East Asia--a model study. J. Appl. Meteorol. 38: 353-366.
- Zhang, J. S.; Rao, S. T. (1999) The role of vertical mixing in the temporal evolution of ground-level ozone concentrations. J. Appl. Meteorol. 38: 1674-1691.
- Zhang, D.-L.; Zheng, W.-Z. (2004) Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J. Appl. Meteorol. 43: 157-169.
- Zhang, S.-H.; Shaw, M.; Seinfeld, J. H.; Flagan, R. C. (1992) Photochemical aerosol formation from α-pinene and β-pinene. J. Geophys. Res. [Atmos.] 97: 20,717-20,729.
- Zhang, K.; Juiting, M.; Civerolo, K. C.; Berman, S.; Ku, J.; Rao, S. T.; Doddridge, B.; Philbrick, R. C.; Clark, R. (2001) Numerical investigation of boundary layer evolution and nocturnal low-level jets: local versus non-local PBL schemes. Environ. Fluid Mech. 1: 171-208.
- Zhang, D.; Lei, W. F.; Zhang, R. Y. (2002) Mechanism of OH formation from ozonolysis of isoprene: kinetics and product yields. Chem. Phys. Lett. 358: 171-179.
- Zhang, D.; Zang, J.; Shi, G.; Iwasaka, Y.; Matsuki, A.; Trochkine, D. (2003) Mixture state of individual Asian dust particles at a coastal site of Qingdao, China. Atmos. Environ. 37: 3895-3901.
- Zhou, X.; Mopper, K. (1990) Determination of photochemically produced hydroxyl radicals in seawater and freshwater. Mar. Chem. 30: 71-88.
- Zimmermann, J.; Poppe, D. (1993) Nonlinear chemical couplings in the tropospheric NO_x-HO_x gas phase chemistry. J. Atmos. Chem. 17: 141-155.
- Zondlo, M. A.; Barone, S. B.; Tolbert, M. A. (1998) Condensed-phase products in heterogeneous reactions: N₂O₅, ClONO₂, and HNO₃ reacting on ice films at 185 K. J. Phys. Chem. A 102: 5735-5748.

ANNEX AX3. ENVIRONMENTAL CONCENTRATIONS, PATTERNS, AND EXPOSURE ESTIMATES

2

1

- 3
- 4

5

AX3.1 INTRODUCTION

6 Identification and Use of Existing Air Quality Data

7 Topics discussed in this annex include the characterization of ambient air quality data for ozone (O_3) , the uses of these data in assessing the exposure of vegetation to O_3 , concentrations 8 9 of O₃ in microenvironments, and a discussion of the currently available human exposure data and 10 exposure model development. The information contained in this chapter pertaining to ambient 11 concentrations is taken primarily from the U.S. Environmental Protection Agency (EPA) Air Quality System (AQS; formerly the AIRS database). The AQS contains readily accessible 12 13 detailed, hourly data that has been subject to EPA quality control and assurance procedures. 14 Data available in AQS were collected from 1979 to 2001. As discussed in previous versions of 15 the O₃ Air Quality Criteria Document or AQCD (U.S. Environmental Protection Agency, 1986, 16 1996), the data available prior to 1979 may be unreliable due to calibration problems and 17 measurement uncertainties.

18 As indicated in the 1996 O₃ AQCD (U.S. Environmental Protection Agency, 1996a), O₃ is 19 the only photochemical oxidant other than nitrogen dioxide (NO_2) that is routinely monitored 20 and for which a comprehensive database exists. Data for peroxyacetyl nitrate (PAN), hydrogen 21 peroxide (H₂O₂), and other oxidants either in the gas phase or particle phase typically have been 22 obtained only as part of special field studies. Consequently, no data on nationwide patterns of 23 occurrence are available for these non- O_3 oxidants; nor are extensive data available on the 24 relationships of levels and patterns of these oxidants to those of O_3 . However, available data for 25 gas-phase and particle-phase oxidants will be discussed.

26 27

Characterizing Ambient Ozone Concentrations

The "concentration" of a specific air pollutant is typically defined as the amount (mass) of that material per unit volume of air. However, most of the data presented in this annex are expressed as "mixing ratios" in terms of a volume-to-volume ratio (parts per million [ppm] or parts per billion [ppb]). Data expressed this way are often referred to as concentrations, both in the literature and in the text, following common usage. Human exposures are expressed in units
 of mixing ratio times time.

Several different types of indicators are used for evaluating exposures of vegetation to O₃.
The peak-weighted, cumulative exposure indicators used in this chapter for characterizing
vegetation exposures are SUM06 and SUM08 (the sums of all hourly average concentrations
≥0.06 and 0.08 ppm, respectively) and W126 (the sum of the hourly average concentrations that
have been weighted according to a sigmoid function that is based on a hypothetical vegetation
response [see Lefohn and Runeckles, 1987]). Further discussion of these exposure indices is
presented in Chapter 9.

10 The U.S. Environmental Protection Agency (U.S. EPA) has established "ozone seasons" 11 for the required monitoring of ambient O₃ concentrations for different locations within the 12 United States and U.S. territories (CFR, 2000). Table AX3-1 shows the O₃ seasons during which 13 continuous, hourly averaged O₃ concentrations must be monitored. Note that O₃ monitoring is 14 optional outside of the "ozone season" and is monitored in many locations throughout the year.

15 In Section AX3.2, surface O₃ concentrations are characterized and the difficulties of 16 characterizing background O₃ concentrations for controlled exposure studies and for assessing 17 the health benefits associated with setting the NAAQS are discussed. In addition, hourly 18 averaged concentrations obtained by several monitoring networks have been characterized for 19 urban and rural areas. Spatial variations that occur within urban areas, between rural and urban 20 areas, as well as variations with elevation are discussed in Section AX3.3. The diurnal 21 variations for the various urban and rural locations are found in Section AX3.4, where urban and 22 rural patterns are described. In Section AX3.5 seasonal variations in 1-h and 8-h average 23 concentrations are discussed. Section AX3.6 of this annex summarizes the historical trends for 24 1980 to 2001 on a national scale and for selected cities. The most recent U.S. EPA trends results 25 are also presented. Section AX3.7 describes available information for the concentrations and 26 patterns of related photochemical oxidants. Section AX3.8 describes the co-occurrence patterns of O₃ with NO₂, sulfur dioxide (SO₂), and 24-h PM_{2.5}. Indoor O₃ concentrations, including 27 28 sources and factors affecting indoor O₃ concentrations, are described in Section AX3.9. Section 29 AX3.10 describes human population exposure measurement methods, factors influencing 30 exposure, and exposure models.

State	Start Month — End	State	Start Month — End
Alabama	March — October	Nevada	January — December
Alaska	April — October	New Hampshire	April — September
Arizona	January — December	New Jersey	April — October
Arkansas	March — November	New Mexico	January — December
California	January — December	New York	April — October
Colorado	March - September	North Carolina	April — October
Connecticut	April — September	North Dakota	May — September
Delaware	April — October	Ohio	April — October
District of Columbia	April — October	Oklahoma	March — November
Florida	March — October	Oregon	May — September
Georgia	March — October	Pennsylvania	April — October
Hawaii	January — December	Puerto Rico	January — December
Idaho	April — October	Rhode Island	April — September
Illinois	April — October	South Carolina	April — October
Indiana	April — September	South Dakota	June — September
Iowa	April — October	Tennessee	March — October
Kansas	April — October	Texas ¹	January — December
Kentucky	March — October	Texas ¹	March — October
Louisiana	January — December	Utah	May — September
Maine	April — September	Vermont	April — September
Maryland	April — October	Virginia	April — October
Massachusetts	April — September	Washington	May — September
Michigan	April — September	West Virginia	April — October
Minnesota	April — October	Wisconsin	April 15 — October 15
Mississippi	March — October	Wyoming	April — October
Missouri	April — October	American Samoa	January — December
Montana	June — September	Guam	January — December
Nebraska	April — October	Virgin Islands	January — December

 Table AX3-1. Ozone Monitoring Seasons by State

¹The ozone season is defined differently in different sections of Texas.

Source: CFR (2000a).

1

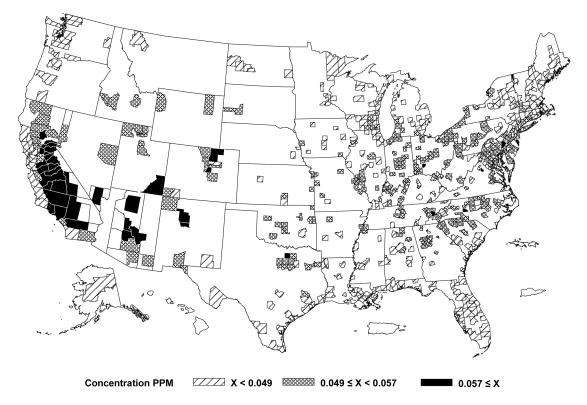
AX3.2 SURFACE OZONE CONCENTRATIONS

2 Data for O₃ concentrations in a number of different environments, ranging from urban to 3 remote, are summarized and characterized in this section. The main emphasis is placed on the characterization of the variability of O₃ concentrations in these different environments. Another 4 5 important issue relates to the determination of background concentrations. There are a number of different uses of the term background depending on the context in which it is used. Various 6 7 definitions of background have been covered in the 1996 O₃ AQCD (U.S. Environmental 8 Protection Agency, 1996a) and in Air Quality Criteria for Particulate Matter (PM AQCD; U.S. 9 Environmental Protection Agency, 1996b). This section deals with the characterization of 10 background O₃ concentrations that are used for two main purposes: (1) performing experiments 11 relating the effects of exposure to O₃ on humans, animals, and vegetation; and (2) assessing the 12 health benefits associated with setting different levels of the NAAQS for O₃. Ozone background 13 concentrations used for NAAQS setting purposes are referred to as policy relevant background 14 (PRB) concentrations. PRB concentrations are defined by the U.S. EPA Office of Air Quality 15 Programs and Standards (OAQPS) as those concentrations that would be observed in the United 16 States if anthropogenic sources of O₃ precursors were turned off in continental North America 17 (the United States, Canada and Mexico), i.e., the definition includes O₃ formed from natural 18 sources everywhere in the world and from anthropogenic O₃ precursors outside of North 19 America. The 1996 O₃ AQCD considered two possible methods for quantifying background O₃ 20 concentrations for the two purposes mentioned above. The first method relied on mathematical 21 models and historical data. The second method used the distribution of hourly average O_3 22 concentrations observed at clean, relatively remote monitoring sites (RRMS) in the United States 23 (i.e., those which experience low maximum hourly concentrations). At the time of the 1996 O_3 24 AQCD, simulations of mathematical models were limited; therefore, the second method was 25 employed to quantify background O₃ concentrations. 26 Sections AX3.2.1 and AX3.2.2 review data for O₃ concentrations in urban and nonurban 27 (but influenced by urban emissions) environments. Section AX3.2.3 reviews the data from 28 relatively clean remote sites, addresses the issue of how to use these data to help set background 29 levels for controlled exposure studies, and presents evidence of trends in O₃ concentrations at

- 30 these sites. The characterization of PRB O₃ concentrations will be the subject of Section
- 31 AX3.2.4. Two alternative approaches for establishing PRB concentrations are presented: the

first uses data from relatively clean, remote monitoring sites and the second uses numerical
 models. The strengths and weaknesses of each approach are presented in the hopes of
 stimulating discussion that will resolve issues related to the use of either of these alternative
 methods.

5


6

Ozone Air Quality at Urban, Suburban, and Nonurban Sites

7 Figure AX3-1 shows the mean daily maximum 8-h O₃ concentrations and Figure AX3-2 shows the 95th percentile values of the daily maximum 8-h O₃ concentrations, based on 8 9 countywide averages across the United States from May to September 2000 to 2004. The 10 locations of the monitoring sites used to calculate background O₃ concentrations are shown in 11 Figure AX3-3. The period from May to September was chosen because, although O₃ was 12 monitored for different lengths of time across the country, all O₃ monitors should be operational 13 during these months. Data flagged because of quality control issues were removed with 14 concurrence by the local monitoring agency. Only days for which there were 75% complete data 15 (i.e., 18 of 24 hours) were kept, and a minimum of 115 of 153 days were required in each year. 16 Cut points for the tertile distributions on each map were chosen at the median and 95th 17 percentile values. These cut points were chosen as they represent standard metrics for 18 characterizing important aspects of human exposure used by the EPA. Any other percentiles or 19 statistics that are believed to be helpful for characterizing human exposures could also be used. 20 Blank areas on the maps indicate no data coverage. It should be noted that county areas can be 21 much larger in the West than in the East, but monitors are not spread evenly within a county. As 22 a result, the assigned concentration range might not represent conditions throughout a particular 23 county and so large areas in western counties where there are not any monitors were blanked out. 24 As shown in Figure AX3-1, the median of the countywide, mean daily maximum 8-h O₃ 25 concentration across the United States is 49 ppb, and the corresponding 95th percentile value is 26 57 ppb. Although the median and 95th percentile value of the countywide means are fairly 27 close, these results cannot be taken to imply that mean O_3 concentrations lie in a relatively

28 narrow range throughout the United States, because data coverage is not as complete in the West

- as it is in the East. High mean daily maximum 8-h O₃ concentrations are found in California
- 30

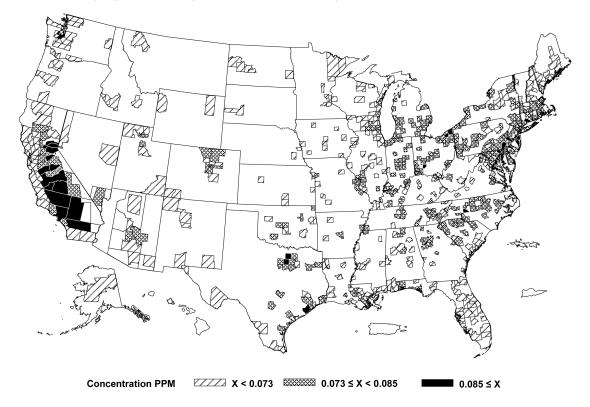

Seasonal (May-September) Mean of Daily Maximum 8-Hour Values, 2002-2004

Figure AX3-1. Countywide mean daily maximum 8-h O₃ concentrations, May to September 2002 to 2004.

Source: Fitz-Simons et al. (2005).

and states in the Southwest as well as in several counties in the East. As shown in 1 2 Figure AX3-2, the nationwide median of the countywide, 95th percentile value of the daily 3 maximum 8-h O₃ concentration is 73 ppb and 5% of these values are above 85 ppb. High values for the 95th percentiles are found in California, Texas, and in the East, but not necessarily in the 4 5 same counties as shown for the mean daily maximum 8-h concentrations in Figure AX3-1. Although mean O₃ concentrations in Houston, TX were below the nationwide median, its 6 7 95th percentile value ranks in the highest 5% nationwide. Conversely, mean O₃ concentrations 8 in southwestern states are among the highest in the United States, but peak values (i.e., 95th or

Seasonal (May-September) 95th Percentile of Daily Maximum 8-Hour Values, 2002-2004

Figure AX3-2. Countywide 95th percentile value of daily maximum 8-h O₃ concentrations, May to September 2002 to 2004.

Source: Fitz-Simons et al. (2005).

1 98th percentile values) in those counties are not among the highest peak values in the United States. In other areas where the highest mean O₃ concentrations occurred, such as California; 2 3 Dallas-Fort Worth, TX; and the Northeast Corridor, the highest peak values also were observed. 4 Although countywide averages are shown, it should be noted that considerable spatial variability can exist within a county, especially within urban areas as described in Section 5 AX3.3. In addition, there can also be differences in the diurnal profile of O_3 among monitors 6 7 within counties. 8 Box plots showing the percentile distribution of nationwide O₃ concentrations for

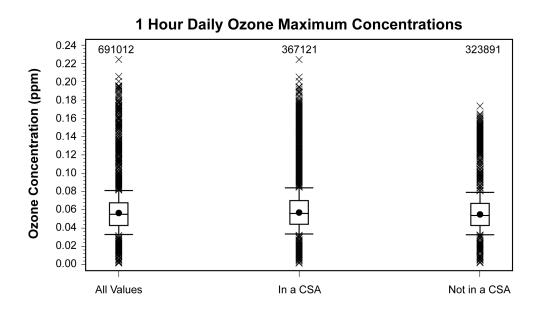
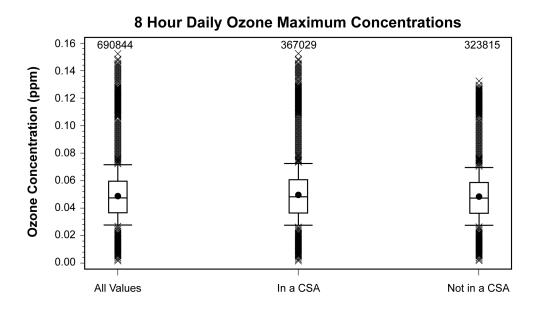
9 different averaging periods (1-h daily maximum, 8-h daily maximum and 24-h daily average) are

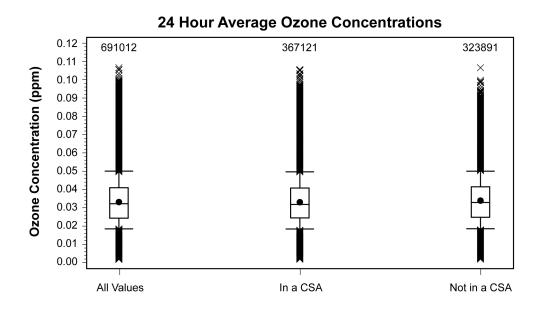
Figure AX3-3. Locations of monitoring sites used for calculating countywide averages across the United States.

Source: Fitz-Simons et al. (2005).

given in Figures AX3-4 to AX3-6 and the numerical values are given in Table AX3-2. The
differences between the 50th and 95th percentile values can be used to provide indications of
differences in O₃ levels between "typical" O₃ days and "high" O₃ days. These differences are
approximately 40, 30, and 25 ppb for the daily 1-h, 8-h, maxima and daily averaged O₃
concentrations. As might be expected, the daily maximum 1-h and 8-h O₃ concentrations are
highly correlated.
Lehman et al. (2004) have shown that the eastern United States can be divided into five

regions, each of which exhibit spatial, relatively coherent patterns of O_3 properties at nonurban sites. Only sites classified as being rural or suburban and with land usage of forest, agriculture, or residential were included in the analyses. These criteria were chosen to avoid sites where O_3 is scavenged by NO that can be found in high concentrations near major sources, such as traffic


Figure AX3-4. Distribution of nationwide daily maximum 1-h average O₃ concentrations from May to September 2000 to 2004. Medians, interquartile ranges, minima and maxima and means (as dots are shown). Values above box plots give number of observations.

Source: Fitz-Simons et al. (2005).

Figure AX3-5. Distribution of nationwide daily maximum 8-h average O₃ concentrations from May to September 2000 to 2004. Medians, interquartile ranges, minima and maxima and means (as dots are shown). Values above box plots give number of observations.

Source: Fitz-Simons et al. (2005).

Figure AX3-6. Distribution of nationwide 24-h average O₃ concentrations from May to September 2000 to 2004. Medians, interquartile ranges, minima and maxima and means (as dots are shown). Values above box plots give number of observations.

Source: Fitz-Simons et al. (2005).

in urban cores. The five regions, shown in Figure AX3-7, are characterized by different patterns
 of O₃ properties such as temporal persistence and seasonal variability. Figure AX3-7 shows
 nonurban, monthly average, daily maximum 8-h O₃ concentrations in the five regions in the
 eastern United States from April to October 1993 to 2002.

5 Regional differences are immediately apparent. Highest concentrations among all the 6 regions are generally found in the Mid-Atlantic region (mean of 52 ppb) with highest values 7 throughout the percentile distribution except for the overall maximum. Lowest mean 8 concentrations (42 ppb) are found in Florida. In the northern regions (the Northeast, Great 9 Lakes) and the Mid-Atlantic region, highest median and peak concentrations are found in July, 10 whereas in the Southwest, highest median concentrations are found in August, with highest 11 peaks in June and September, i.e., outside the warmest summer months. In Florida, highest 12 monthly averaged median and peak concentrations are found during the spring. High O_3 13 concentrations tend to be most persistent (3-4 days of persistence) in the southern regions, less 14 persistent in the Mid-Atlantic region (2-3 days) and least persistent in the northern regions (1 or

				C	oncentra		c in ppo.						
]	Percentile	s				
Pooled Group/ Avg. Time	Number of Values	Mean	1	5	10	25	30	50	70	75	90	95	99
Daily 1-h Maxim	num Concentr	ations											
Monitors in CSAs	367,121	58	20	29	34	44	46	56	66	70	84	94	116
Monitors not in CSAs	323,891	55	20	28	33	43	45	54	64	67	79	87	104
8-h Daily Maxim	um Concentr	ations											
Monitors in CSAs	367,029	50	16	23	28	37	40	49	58	61	73	81	98
Monitors not in CSAs	323,815	49	16	23	28	37	39	48	57	59	70	77	91
24-h Average Co	oncentrations												
Monitors in CSAs	367,121	33	10	15	18	24	26	32	39	41	50	56	68
Monitors not in CSAs	323,891	34	10	15	18	25	27	33	39	41	50	56	68

Table AX3-2. Summary of Percentiles of Pooled Data Across Monitoring Sites for May to September 2000-2004Concentrations are in ppb.

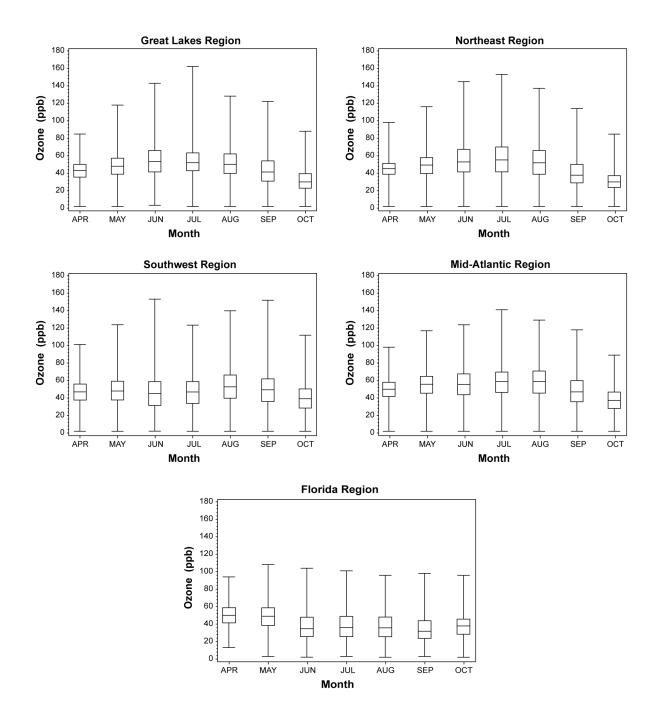


Figure AX3-7. Box plots showing O₃ averaged by month from 1993 to 2002 in the five regions in the eastern United States derived by Lehman et al. (2004). The boxes define the interquartile range and the whiskers, the extreme values.

Source: Lehman et al. (2004).

2 days). Analyses, such as these, are not available for the western United States, in part because
 of the difficulty in defining regions with relatively coherent O₃ properties.

3 Box plots showing the percentile distribution of hourly average O₃ concentrations for 4 different types of rural sites for 2001 are given in Figures AX3-8 (rural-agricultural), AX3-9 (rural-forest) and AX3-10 (rural-residential or commercial). Shown below the figures are the 5 6 number of observations and various metrics for characterizing vegetation exposures. Note that high O₃ concentrations are found at sites that are classified as rural, as in Anne Arundel Co., 7 8 MD; Yosemite NP, CA; and Crestline, CA. Land use designations might not give an accurate 9 picture of exposure regimes in rural areas, because the land use characterization of "rural" does 10 not necessarily mean that a specific location is isolated from anthropogenic influences. Rather, 11 the characterization refers only to the current use of the land, not to the presence of sources. 12 Since O₃ produced from emissions in urban areas is transported to more rural downwind 13 locations, elevated O₃ concentrations can occur at considerable distances from urban centers. 14 In addition, major sources of O₃ precursors such as power plants and highways are located in 15 nonurban areas and also produce O_3 in these areas. Due to lower rates of chemical scavenging in 16 nonurban areas, O₃ tends to persist longer in nonurban than in urban areas, also tending to lead to 17 higher exposures in nonurban areas influenced by anthropogenic precursor emissions.

18 19

Ozone Air Quality Data at Relatively Remote Monitoring Sites (RRMS)

20 RRMS are sites that are located in the national parks that tend to be less affected by 21 obvious pollution sources than other sites. This does not mean that they are completely 22 unaffected by local pollution, as evidenced by the number of visitors to these national parks. 23 It is important to characterize hourly average O₃ concentrations at RRMS so that assessments of 24 the possible effects of O₃ on human health and vegetation use ranges of concentrations in their 25 experiments that mimic the range that is found in the United States. Hourly average 26 concentrations used as controls in controlled O₃ exposures for both human health and vegetation 27 studies appear to be lower than those experienced at RRMS in the United States or in other parts 28 of the world (see Chapter 9). Typically, ambient air is filtered to remove O_3 before being 29 admitted into the exposure chambers. As a result, O₃ concentrations might only be a few ppb 30 within these chambers.

31

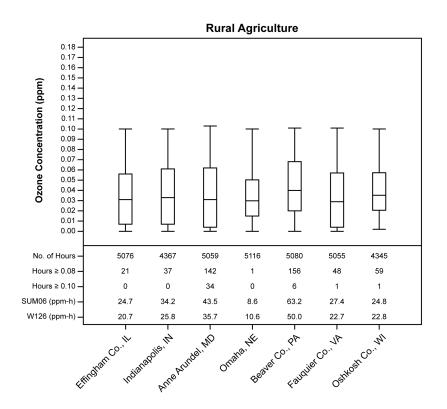
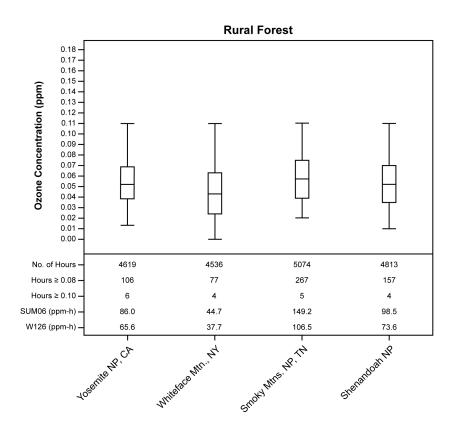



Figure AX3-8. Hourly average O₃ concentrations observed at selected rural-agricultural sites from April to October 2001. The whiskers represent minimum and maximum concentrations. The boxes represent the 10th and 90th percentile concentrations.

Source: Fitz-Simons et al. (2005).

1	Box plots showing the percentile distribution of annual hourly averaged O ₃ concentrations
2	at four relatively remote monitoring sites (RRMS) are given in Figures AX3-11a-d. As can be
3	seen from Figures AX3-11a-d, annual mean values of the daily 8-h maximum O_3 concentration
4	have not changed much over the past 10 years of available data. Mean values range typically
5	from about 0.020 ppm to about 0.040 ppm. Concentrations only rarely exceed 0.080 ppm, in
6	contrast to observations at other "rural" sites shown in Figures AX3-8 to AX3-10.
7	The extent to which distributions found at sites with low maximum hourly average
8	concentrations in the western United States are representative of sites in the eastern and
9	midwestern United States is debatable because of regional differences in sources of precursors
10	and transport patterns. Given the high density of sources in the eastern and midwestern United
11	States, it is unclear whether a site could be found in either of these regions that would not be

Figure AX3-9. Hourly average O₃ concentrations observed at selected rural-forest sites from April to October 2001. The whiskers represent minimum and maximum concentrations. The boxes represent the 10th and 90th percentile concentrations.

Source: Fitz-Simons et al. (2005).

1 influenced by the transport of O_3 from nearby urban areas. Thus, with the exception of the

2 Voyageurs NP site in Minnesota, observations at RRMS are limited to those obtained in the

3 western United States. However, not all national park sites in the West can be considered to

4 be free of strong regional pollution influences, e.g., Yosemite NP (CA), as can be seen from

5 Figure AX3-9.

The 1996 O₃ AQCD (U.S. Environmental Protection Agency, 1996a) concluded that the
annual average "background" concentration of O₃ near sea level ranged from 0.020 to 0.035 ppm
and that, during the summer, the 1-h daily maximum ranged from 0.03 to 0.05 ppm. The 1996
O₃ AQCD also included O₃ hourly average concentrations measured at several clean, RRMS
mostly located in the western United States. Table AX3-3 provides a summary of the

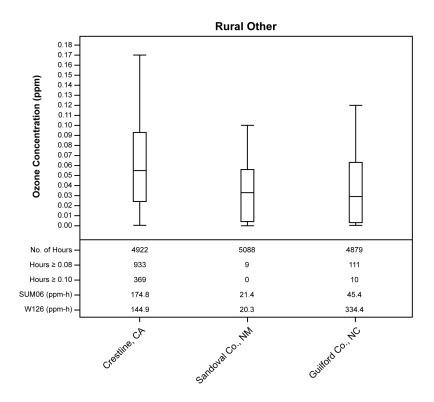


Figure AX3-10. Hourly average O₃ concentrations observed at selected rural-commercial or -residential sites from April to October 2001. The whiskers represent minimum and maximum concentrations. The boxes represent the 10th and 90th percentile concentrations.

Source: Fitz-Simons et al. (2005).

1 characterization of the hourly average concentrations recorded from 1988 to 2001 at some of the 2 monitoring sites previously analyzed. The percentile distribution of the hourly average 3 concentrations (April to October), number of hourly average occurrences ≥ 0.08 and ≥ 0.10 ppm, 4 seasonal 7-h average concentrations, the SUM06, and W126 values were characterized for those 5 site years with a data capture of \geq 75%. From 1988 to 2001, no hourly average concentrations ≥0.08 ppm were observed at monitoring sites in Redwood NP (CA), Olympic NP (WA), Glacier 6 NP (MT), Denali NP (AK), Badlands (SD), and Custer NF (MT) during the months of April to 7 October. There were eight occurrences of hourly average O_3 concentrations ≥ 0.08 ppm from 8 9 April to October of 1997 at the monitoring site in Theodore Roosevelt NP (ND). However, no 10 hourly average concentrations ≥ 0.08 ppm were observed from April to October in any other year

11

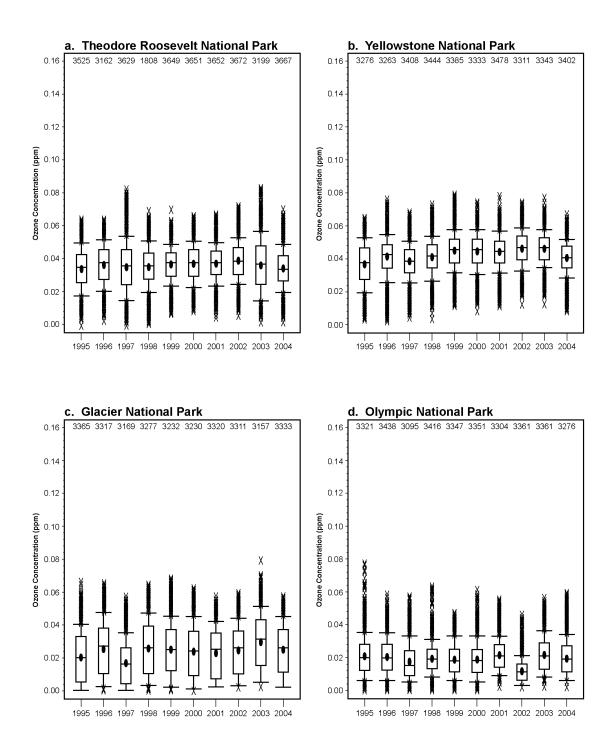


Figure AX3-11a-d. Daily 8-h maximum O3 concentrations observed at selected national park sites. The whiskers on the box plot represent the 10th and 90th percentile concentrations. The "X"s above and below the whiskers are the values that fall below and above the 10th and 90th percentile concentrations. The dots inside the box represent the mean. The number of observations is shown above each box plot.

Source: Fitz-Simons et al. (2005).

	E	xperie					y Aver	age Cu				_		27370		
						Percentile	es			-	No. of	Ho	urs	- Seasonal	SUM06	W126
Site	Year	Min.	10	30	50	70	90	95	99	Max.	Obs.	≥0.08	≥0.10	7-h	(ppm-h)	(ppm-h)
Redwood NP 060150002	1988	0.002	0.011	0.018	0.023	0.029	0.038	0.041	0.046	0.06	4825	0	0	0.026	1.8	0.1
(California)	1989	0.000	0.010	0.017	0.022	0.027	0.034	0.038	0.042	0.047	4624	0	0	0.024	1.0	0.0
235 m	1990	0.000	0.011	0.018	0.023	0.028	0.035	0.038	0.043	0.053	4742	0	0	0.025	1.2	0.0
	1991	0.001	0.012	0.019	0.025	0.031	0.038	0.041	0.045	0.054	4666	0	0	0.027	1.7	0.0
	1992	0.000	0.010	0.017	0.021	0.026	0.035	0.039	0.045	0.055	4679	0	0	0.023	1.1	0.0
	1993	0.000	0.010	0.017	0.022	0.027	0.035	0.038	0.042	0.054	4666	0	0	0.025	1.1	0.0
	1994	0.001	0.011	0.018	0.024	0.028	0.035	0.038	0.043	0.050	4846	0	0	0.026	0.0	1.2
Olympic NP	1989	0.000	0.003	0.010	0.015	0.022	0.030	0.035	0.046	0.065	4220	0	0	0.021	0.7	0.1
(Washington) 530090012	1990	0.000	0.005	0.012	0.018	0.023	0.030	0.034	0.043	0.064	4584	0	0	0.022	0.8	0.3
125 m	1991	0.000	0.006	0.014	0.019	0.024	0.033	0.036	0.044	0.056	4677	0	0	0.025	0.9	0.0
	1993	0.000	0.004	0.010	0.016	0.021	0.029	0.034	0.041	0.064	4595	0	0	0.022	0.7	0.3
	1994	0.000	0.006	0.013	0.019	0.025	0.033	0.038	0.043	0.062	4044	0	0	0.025	0.2	0.8
	1995	0.000	0.006	0.014	0.020	0.027	0.037	0.040	0.048	0.077	4667	0	0	0.027	0.8	1.9
	1996	0.000	0.006	0.013	0.019	0.025	0.034	0.038	0.043	0.058	4811	0	0	0.025	0.0	1.0
	1997	0.000	0.005	0.010	0.015	0.022	0.035	0.040	0.046	0.057	4403					
	1998	0.000	0.008	0.014	0.019	0.025	0.033	0.037	0.044	0.063	4792	0	0	0.024	0.3	1.1
	1999	0.000	0.006	0.014	0.019	0.026	0.036	0.039	0.044	0.050	4656	0	0	0.024	0.0	1.1
	2000	0.000	0.006	0.013	0.019	0.025	0.035	0.039	0.045	0.061	4676	0	0	0.024	0.1	1.2
	2001	0.002	0.009	0.017	0.023	0.028	0.036	0.041	0.046	0.055	4643	0	0	0.027	0.0	1.4
											1					

Table AX3-3. Seasonal (April to October) Percentile Distribution of Hourly Ozone Concentrations (ppm), Number of Hourly Mean Ozone Occurrences ≥0.08 and ≥0.10, Seasonal 7-h Average Concentrations, SUM06, and W126 Values for Sites Experiencing Low Maximum Hourly Average Concentrations with Data Capture of ≥75%

						Percentile	es					Но	urs			
Site	Year	Min.	10	30	50	70	90	95	99	Max.	No. of Obs.	≥0.08	≥0.10	Seasonal 7-h	SUM06 (ppm-h)	W126 (ppm-h)
Glacier NP	1989	0.000	0.003	0.015	0.026	0.036	0.046	0.050	0.058	0.067	4770	0	0	0.036	5.9	1.8
300298001 (Montana)	1990	0.000	0.003	0.014	0.026	0.035	0.044	0.047	0.052	0.066	5092	0	0	0.036	4.1	1.3
963 m	1991	0.000	0.001	0.014	0.027	0.036	0.046	0.049	0.056	0.062	5060	0	0	0.036	5.3	0.7
	1992	0.000	0.001	0.013	0.025	0.033	0.043	0.048	0.055	0.077	4909	0	0	0.033	4.1	1
	1993	0.000	0.000	0.010	0.020	0.029	0.040	0.044	0.050	0.058	5071	0	0	0.029	0.0	2.3
	1994	0.000	0.001	0.014	0.026	0.036	0.046	0.050	0.056	0.061	5072	0	0	0.036	0.1	5.4
	1995	0.000	0.000	0.010	0.022	0.031	0.041	0.045	0.051	0.066	4744	0	0	0.023	0.3	2.3
	1996	0.000	0.002	0.013	0.025	0.035	0.046	0.051	0.058	0.065	4666	0	0	0.035	1.9	5.4
	1997	0.000	0.000	0.008	0.017	0.026	0.041	0.045	0.053	0.058	4378	0	0	0.027	0.0	2.3
	1998	0.000	0.003	0.013	0.025	0.035	0.047	0.051	0.058	0.064	4649	0	0	0.036	1.4	5.6
	1999	0.000	0.002	0.015	0.026	0.035	0.046	0.051	0.058	0.068	4540	0	0	0.035	1.3	5.4
	2000	0.000	0.001	0.011	0.023	0.033	0.044	0.048	0.055	0.062	4551	0	0	0.033	0.7	3.8
	2001	0.000	0.000	0.013	0.025	0.033	0.042	0.044	0.049	0.057	4643	0	0	0.033	0.0	2.7
Yellowstone NP	1988	0.002	0.020	0.029	0.037	0.044	0.054	0.058	0.070	0.098	4257	17	0	0.043	14.0	8.9
(Wyoming) 560391010	1989	0.002	0.018	0.027	0.036	0.044	0.052	0.057	0.063	0.071	4079	0	0	0.042	11.0	6.7
2484 m	1990	0.000	0.015	0.023	0.029	0.036	0.043	0.046	0.053	0.061	4663	0	0	0.034	3.8	0.5
	1991	0.004	0.020	0.030	0.037	0.042	0.048	0.051	0.057	0.064	4453	0	0	0.042	7.7	1.2
	1992	0.001	0.018	0.029	0.036	0.042	0.051	0.056	0.064	0.075	4384	0	0	0.042	10.7	6.3
	1993	0.000	0.018	0.028	0.036	0.042	0.047	0.050	0.054	0.060	4399	0	0	0.041	6.5	0.2
	1994	0.003	0.022	0.033	0.040	0.046	0.053	0.056	0.062	0.072	4825	0	0	0.046	6.0	15.2
	1995	0.004	0.022	0.033	0.040	0.045	0.052	0.055	0.059	0.065	4650	0	0	0.045	2.8	12.5

Table AX3-3 (cont'd). Seasonal (April to October) Percentile Distribution of Hourly Ozone Concentrations (ppm), Number of Hourly Mean Ozone Occurrences ≥0.08 and ≥0.10, Seasonal 7-h Average Concentrations, SUM06, and W126 Values for Sites Experiencing Low Maximum Hourly Average Concentrations with Data Capture of ≥75%

						Percentile	es					Ho	urs			
Site	Year	Min.	10	30	50	70	90	95	99	Max.	No. of Obs.	≥0.08	≥0.10	Seasonal 7-h	SUM06 (ppm-h)	W126 (ppm-h)
Yellowstone NP	1997	0.005	0.026	0.035	0.040	0.045	0.051	0.054	0.060	0.068	4626	0	0	0.043	3.3	12.4
(Wyoming) 560391011	1998	0.004	0.029	0.038	0.043	0.048	0.055	0.058	0.064	0.073	4827	0	0	0.046	9.9	20.0
2468 m	1999	0.012	0.033	0.040	0.046	0.051	0.059	0.062	0.069	0.079	4733	0	0	0.049	27.1	29.8
	2000	0.009	0.031	0.039	0.045	0.050	0.057	0.060	0.065	0.074	4678	0	0	0.047	17.0	23.4
	2001	0.012	0.034	0.041	0.046	0.050	0.057	0.060	0.065	0.078	4869	0	0	0.048	16.9	25.6
Denali NP	1988	0.003	0.018	0.024	0.028	0.033	0.044	0.050	0.053	0.056	4726	0	0	0.031	0.0	4.0
(Alaska) 022900003	1990	0.003	0.017	0.024	0.029	0.034	0.040	0.043	0.048	0.050	3978	0	0	0.030	2.1	0.0
640 m	1991	0.005	0.018	0.024	0.028	0.034	0.041	0.043	0.047	0.057	4809	0	0	0.030	2.7	0.0
	1992	0.003	0.016	0.023	0.028	0.034	0.044	0.047	0.050	0.054	4800	0	0	0.031	3.7	0.0
	1993	0.002	0.017	0.023	0.028	0.033	0.041	0.043	0.048	0.055	4773	0	0	0.030	2.6	0.0
	1994	0.003	0.017	0.022	0.027	0.033	0.042	0.045	0.049	0.053	4807	0	0	0.030	0.0	2.9
	1995	0.001	0.013	0.019	0.025	0.032	0.042	0.044	0.052	0.059	4825	0	0	0.028	0.0	3.0
	1996	0.002	0.015	0.022	0.028	0.035	0.044	0.047	0.052	0.063	4831	0	0	0.031	0.1	4.1
	1997	0.001	0.015	0.023	0.030	0.038	0.045	0.048	0.051	0.084	4053	1	0	0.032	0.2	4.0
	1998	0.004	0.018	0.023	0.030	0.036	0.048	0.050	0.055	0.058	4782	0	0	0.032	0.0	6.0
	1999	0.002	0.016	0.024	0.029	0.036	0.045	0.048	0.054	0.058	4868	0	0	0.032	0.0	4.7
	2000	0.003	0.014	0.019	0.025	0.029	0.034	0.036	0.038	0.049	4641	0	0	0.025	0.0	1.0
	2001	0.002	0.016	0.023	0.029	0.036	0.048	0.051	0.055	0.068	4868	0	0	0.032	0.7	11.1
Badlands NP 460711001	1989	0.006	0.020	0.027	0.034	0.041	0.049	0.053	0.060	0.071	4840	0	0	0.040	9.2	3.1
(South Dakota)	1990	0.006	0.019	0.027	0.032	0.037	0.044	0.048	0.054	0.063	4783	0	0	0.037	4.8	0.8
730 m	1991	0.005	0.020	0.028	0.033	0.040	0.047	0.050	0.056	0.066	4584	0	0	0.038	6.2	0.7

Table AX3-3 (cont'd). Seasonal (April to October) Percentile Distribution of Hourly Ozone Concentrations (ppm), Number of Hourly Mean Ozone Occurrences ≥0.08 and ≥0.10, Seasonal 7-h Average Concentrations, SUM06, and W126 Values for Sites Experiencing Low Maximum Hourly Average Concentrations with Data Capture of ≥75%

						Percentile	s			_	N. 6	Но	urs	- ~ .		
Site	Year	Min.	10	30	50	70	90	95	99	Max.	No. of Obs.	≥0.08	≥0.10	Seasonal 7-h	SUM06 (ppm-h)	W126 (ppm-h)
Theod. Roos.	1984	0.000	0.017	0.025	0.032	0.039	0.047	0.050	0.059	0.068	4923	0	0	0.038	7.0	2.8
NP 380530002	1985	0.000	0.019	0.026	0.032	0.038	0.046	0.049	0.054	0.061	4211	0	0	0.038	5.0	0.1
(North Dakota) 730 m	1986	0.004	0.017	0.027	0.033	0.039	0.047	0.050	0.056	0.062	4332	0	0	0.039	5.5	0.4
	1989	0.004	0.023	0.032	0.039	0.045	0.054	0.058	0.065	0.073	4206	0	0	0.046	14.2	11.0
	1992	0.005	0.019	0.027	0.033	0.039	0.047	0.050	0.056	0.063	4332	0	0	0.040	6.1	0.8
	1993	0.004	0.018	0.025	0.031	0.037	0.045	0.048	0.055	0.064	4281	0	0	0.038	4.6	0.7
	1994	0.000	0.018	0.028	0.035	0.041	0.049	0.052	0.058	0.079	4644	0	0	0.041	1.1	8.4
	1995	0.000	0.018	0.028	0.035	0.041	0.050	0.053	0.058	0.064	4242	0	0	0.042	1.2	7.7
	1996	0.003	0.022	0.031	0.037	0.043	0.051	0.054	0.059	0.064	3651	0	0	0.044	1.8	8.5
	1997	0.000	0.016	0.029	0.037	0.044	0.053	0.058	0.069	0.082	4344	8	0	0.046	11.8	14.6
Theod. Roos.	1999	0.007	0.024	0.031	0.037	0.042	0.049	0.052	0.058	0.070	5105	0	0	0.041	1.6	10
NP 380070002	2000	0.002	0.021	0.031	0.036	0.043	0.050	0.053	0.058	0.066	5105	0	0	0.041	2.3	10.5
(North Dakota) 808 m	2001	0.002	0.023	0.031	0.036	0.042	0.049	0.052	0.058	0.064	5099	0	0	0.041	1.9	9.2
Custer NF, MT	1978	0.000	0.010	0.020	0.035	0.040	0.050	0.055	0.060	0.070	4759	0	0	0.033	3.0	8.3
300870101 (Montana)	1979	0.010	0.025	0.035	0.040	0.045	0.050	0.055	0.060	0.075	5014	0	0	0.043	7.3	13.2
1006 m	1980	0.010	0.025	0.035	0.040	0.050	0.055	0.060	0.065	0.070	4574	0	0	0.043	22.4	19.7
	1983	0.010	0.025	0.035	0.040	0.045	0.05	0.055	0.060	0.065	4835	0	0	0.042	4.2	10.7

Table AX3-3 (cont'd). Seasonal (April to October) Percentile Distribution of Hourly Ozone Concentrations (ppm), Number of Hourly Mean Ozone Occurrences ≥0.08 and ≥0.10, Seasonal 7-h Average Concentrations, SUM06, and W126 Values for Sites Experiencing Low Maximum Hourly Average Concentrations with Data Capture of ≥75%

1	at this site. Except for 1988, the year in which there were major forest fires at Yellowstone NP
2	(WY), the monitoring site located there experienced no hourly average concentrations
3	\geq 0.08 ppm. Logan (1989) noted that O ₃ hourly average concentrations rarely exceed 0.08 ppm
4	at remote monitoring sites in the western United States. In almost all cases for the above sites,
5	the maximum hourly average concentration was ≤ 0.075 ppm. The top 10 daily maximum 8-h
6	average concentrations for sites experiencing low maximum hourly average concentrations with
7	a data capture of \geq 75% are summarized in Table AX3-4. The highest 8-h daily maximum
8	concentrations do not necessarily all occur during the summer months. For example, at the
9	Yellowstone National Park site, the first three highest 8-h daily maximum concentrations
10	occurred in April and May in 1998, and the fourth highest, 8-h daily maximum concentration did
11	not occur until July of that year. In 1999, the first three highest, 8-h daily maximum
12	concentrations were observed in March and May, and the fourth highest value occurred in April.
13	In 2000, the four highest values occurred in May, June, July, and August.
14	The 1996 O ₃ AQCD (U.S. Environmental Protection Agency, 1996a) noted that the
15	7-month (April to October) average of the 7-h daily average concentrations (0900 to 1559 hours)
16	observed at the Theodore Roosevelt National Park monitoring site in North Dakota were 0.038,
17	0.039, and 0.039 ppm, respectively, for 1984, 1985, and 1986 and concluded that the range of
18	7-h seasonal averages for the Theodore Roosevelt National Park site was representative of the
19	range of maximum daily 8-h average O3 concentrations that may occur at other fairly clean sites
20	in the United States and other locations in the Northern Hemisphere. However, as shown in
21	Table AX3-4, the representative (as given by the fourth highest) daily maximum 8-h average O_3
22	concentrations at fairly clean sites in the United States are higher than the 0.038 and 0.039 ppm
23	values cited in the 1996 O_3 AQCD, and more appropriate values should be used.
24	As described in the 1996 O ₃ AQCD, the O ₃ monitoring site in the Ouachita National Forest,
25	AR experienced distributions of hourly average concentrations similar to some of the western
26	sites. However, since 1993, this site has seen significant shifts, both increases and decreases, in
27	hourly average concentrations. Figure AX3-12 shows the changes that have occurred from 1991
28	to 2001. The large changes in hourly average O_3 concentrations observed at the Ouachita
29	National Forest may indicate that this rural site is influenced by the transport of pollution. Given
30	the high density of sources in the eastern and midwestern United States, it is unclear whether a
31	

			urly Avera	8			-				
Site	Year	1	2	3	4	5	6	7	8	9	10
Redwood NP	1988	0.061	0.058	0.053	0.052	0.049	0.047	0.046	0.046	0.045	0.045
060150002 (California)	1989	0.044	0.043	0.043	0.043	0.042	0.042	0.042	0.042	0.041	0.041
235 m	1990	0.051	0.048	0.048	0.047	0.047	0.046	0.045	0.044	0.043	0.043
	1991	0.048	0.047	0.046	0.045	0.045	0.045	0.044	0.044	0.043	0.043
	1992	0.060	0.053	0.045	0.045	0.045	0.044	0.044	0.043	0.043	0.042
	1993	0.049	0.046	0.043	0.043	0.043	0.042	0.042	0.042	0.041	0.041
	1994	0.048	0.048	0.046	0.046	0.045	0.044	0.044	0.043	0.043	0.043
Olympic NP	1989	0.054	0.052	0.047	0.044	0.044	0.044	0.042	0.042	0.038	0.038
30090012 Washington)	1990	0.056	0.048	0.046	0.046	0.043	0.040	0.040	0.039	0.038	0.038
125 m	1991	0.050	0.048	0.045	0.043	0.042	0.041	0.041	0.041	0.041	0.041
	1993	0.055	0.052	0.044	0.042	0.040	0.039	0.038	0.038	0.037	0.037
	1994	0.050	0.046	0.042	0.042	0.042	0.042	0.041	0.041	0.040	0.040
	1995	0.064	0.063	0.050	0.049	0.045	0.045	0.044	0.044	0.044	0.044
	1996	0.046	0.046	0.046	0.046	0.043	0.042	0.041	0.041	0.041	0.040
	1997	0.052	0.051	0.046	0.045	0.045	0.045	0.044	0.043	0.042	0.042
	1998	0.051	0.050	0.049	0.046	0.044	0.043	0.042	0.041	0.041	0.041
	1999	0.045	0.044	0.044	0.043	0.043	0.042	0.042	0.042	0.042	0.041
	2000	0.051	0.051	0.048	0.047	0.045	0.044	0.043	0.042	0.042	0.042
	2001	0.051	0.050	0.047	0.045	0.045	0.044	0.044	0.044	0.043	0.043

Table AX3-4. The Top 10 Daily Maximum 8-h Average Concentrations (ppm) for Sites Experiencing Low Maximum Hourly Average Concentrations with Data Capture of ≥75%

		Maximui	n Houriy	Average C	concentrat	ions with 1	Data Capt	ure of $\geq /3$	070		
Site	Year	1	2	3	4	5	6	7	8	9	10
Glacier NP	1989	0.062	0.061	0.060	0.059	0.058	0.057	0.056	0.056	0.056	0.056
300298001 (Montana)	1990	0.058	0.057	0.055	0.054	0.053	0.053	0.052	0.052	0.052	0.052
963 m	1991	0.060	0.057	0.057	0.057	0.056	0.055	0.055	0.054	0.054	0.053
	1992	0.062	0.056	0.055	0.054	0.054	0.054	0.053	0.053	0.053	0.053
	1993	0.055	0.052	0.051	0.051	0.050	0.050	0.049	0.049	0.049	0.048
	1994	0.057	0.057	0.056	0.056	0.055	0.055	0.055	0.055	0.054	0.053
	1995	0.061	0.055	0.053	0.052	0.052	0.052	0.051	0.051	0.051	0.050
	1996	0.059	0.059	0.058	0.058	0.057	0.057	0.055	0.056	0.055	0.055
	1997	0.056	0.054	0.052	0.052	0.052	0.051	0.050	0.050	0.050	0.050
	1998	0.060	0.059	0.058	0.058	0.056	0.056	0.055	0.055	0.055	0.054
	1999	0.065	0.065	0.060	0.058	0.056	0.055	0.055	0.055	0.055	0.054
	2000	0.059	0.058	0.058	0.056	0.054	0.052	0.051	0.050	0.050	0.050
	2001	0.054	0.052	0.049	0.049	0.049	0.048	0.047	0.047	0.047	0.047
Yellowstone NP	1988	0.068	0.068	0.067	0.066	0.066	0.066	0.064	0.064	0.063	0.061
560391010 (Wyoming)	1989	0.067	0.065	0.064	0.063	0.063	0.061	0.061	0.061	0.061	0.060
2484 m	1990	0.057	0.056	0.054	0.054	0.053	0.052	0.050	0.050	0.049	0.048
	1991	0.059	0.058	0.058	0.057	0.056	0.056	0.056	0.055	0.055	0.055
	1992	0.066	0.064	0.064	0.063	0.063	0.061	0.061	0.059	0.059	0.058
	1993	0.057	0.054	0.054	0.054	0.053	0.053	0.053	0.052	0.052	0.052
	1994	0.067	0.063	0.063	0.061	0.061	0.061	0.061	0.061	0.059	0.059
	1995	0.064	0.062	0.061	0.060	0.059	0.059	0.059	0.059	0.059	0.058

Table AX3-4 (cont'd). The Top 10 Daily Maximum 8-h Average Concentrations (ppm) for Sites Experiencing Low Maximum Hourly Average Concentrations with Data Capture of ≥75%

		Maximur	-	0			-				
Site	Year	1	2	3	4	5	6	7	8	9	10
Yellowstone NP	1997	0.065	0.065	0.062	0.061	0.061	0.060	0.057	0.056	0.056	0.056
560391011 (Wyoming)	1998	0.069	0.068	0.066	0.066	0.063	0.063	0.061	0.061	0.061	0.060
2468 m	1999	0.078	0.074	0.073	0.071	0.070	0.070	0.070	0.069	0.068	0.067
	2000	0.070	0.069	0.067	0.065	0.065	0.065	0.064	0.064	0.063	0.063
	2001	0.068	0.068	0.066	0.066	0.065	0.064	0.064	0.064	0.064	0.063
Denali NP	1988	0.055	0.054	0.054	0.053	0.053	0.053	0.052	0.052	0.052	0.052
022900003 (Alaska)	1990	0.049	0.048	0.048	0.048	0.048	0.047	0.047	0.046	0.046	0.046
640 m	1991	0.054	0.054	0.050	0.050	0.047	0.046	0.046	0.046	0.045	0.044
	1992	0.053	0.052	0.052	0.051	0.050	0.050	0.049	0.049	0.049	0.049
	1993	0.053	0.053	0.051	0.048	0.048	0.047	0.047	0.046	0.046	0.046
	1994	0.053	0.051	0.049	0.049	0.049	0.048	0.048	0.048	0.048	0.048
	1995	0.058	0.056	0.056	0.054	0.051	0.050	0.049	0.046	0.046	0.046
	1996	0.058	0.053	0.053	0.053	0.052	0.052	0.052	0.052	0.051	0.051
	1997	0.054	0.053	0.052	0.051	0.051	0.050	0.050	0.049	0.049	0.049
	1998	0.057	0.056	0.056	0.055	0.054	0.054	0.054	0.054	0.053	0.053
	1999	0.056	0.056	0.054	0.054	0.054	0.053	0.053	0.053	0.052	0.051
	2000	0.046	0.046	0.044	0.044	0.044	0.043	0.043	0.042	0.042	0.042
	2001	0.061	0.058	0.057	0.055	0.055	0.055	0.053	0.053	0.053	0.053
Badlands NP	1989	0.069	0.066	0.064	0.063	0.060	0.058	0.057	0.057	0.057	0.057
460711001 (South Dakota)	1990	0.061	0.059	0.055	0.055	0.054	0.052	0.052	0.051	0.051	0.050
730 m	1991	0.058	0.058	0.056	0.056	0.056	0.055	0.055	0.054	0.054	0.053

Table AX3-4 (cont'd). The Top 10 Daily Maximum 8-h Average Concentrations (ppm) for Sites Experiencing Low Maximum Hourly Average Concentrations with Data Capture of ≥75%

			n Hourly .	Trefage C			Data Capt		, 70		
Site	Year	1	2	3	4	5	6	7	8	9	10
Theod. Roos. NP	1984	0.064	0.062	0.062	0.062	0.059	0.058	0.057	0.057	0.057	0.057
380530002 (North Dakota)	1985	0.058	0.055	0.055	0.054	0.054	0.054	0.053	0.053	0.053	0.052
730 m	1986	0.059	0.058	0.057	0.056	0.055	0.055	0.054	0.053	0.053	0.052
	1989	0.073	0.069	0.066	0.065	0.065	0.064	0.063	0.063	0.063	0.063
	1992	0.060	0.059	0.058	0.058	0.056	0.056	0.056	0.054	0.054	0.054
	1993	0.062	0.059	0.056	0.056	0.055	0.053	0.052	0.052	0.052	0.052
	1994	0.066	0.064	0.058	0.058	0.057	0.056	0.056	0.056	0.056	0.055
	1995	0.060	0.059	0.058	0.058	0.058	0.058	0.057	0.057	0.056	0.055
	1996	0.060	0.059	0.059	0.059	0.058	0.058	0.057	0.057	0.057	0.056
	1997	0.080	0.073	0.072	0.071	0.069	0.068	0.066	0.066	0.063	0.063
Theod. Roos. NP	1999	0.063	0.060	0.059	0.058	0.057	0.057	0.057	0.056	0.056	0.056
380070002 (North Dakota)	2000	0.062	0.061	0.060	0.059	0.059	0.057	0.057	0.057	0.057	0.057
808 m	2001	0.060	0.059	0.059	0.058	0.058	0.057	0.057	0.056	0.055	0.055
Custer NF, MT	1978	0.069	0.065	0.063	0.062	0.061	0.061	0.060	0.060	0.060	0.058
800870101 Montana)	1979	0.073	0.066	0.066	0.065	0.063	0.060	0.060	0.060	0.059	0.059
1006 m	1980	0.069	0.069	0.069	0.068	0.067	0.067	0.066	0.066	0.064	0.064
	1983	0.064	0.061	0.060	0.060	0.059	0.058	0.058	0.058	0.056	0.056

Table AX3-4 (cont'd). The Top 10 Daily Maximum 8-h Average Concentrations (ppm) for Sites Experiencing Low Maximum Hourly Average Concentrations with Data Capture of ≥75%

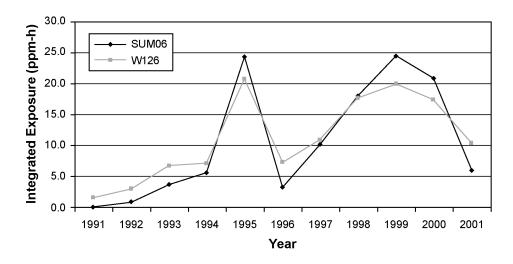


Figure AX3-12. Seasonal SUM06 and W126 exposure indices for the Ouachita National Forest for the period of 1991 to 2001.

site could be found in either of these regions that would not be influenced by the transport of O₃
from urban areas. Thus, with the exception of the Voyageurs National Park site, observations in
this section are limited to those obtained at relatively clean, remote sites in western North
America.

5

6

7

AX3.2.1 Nationwide Distribution of Metrics for Characterizing Exposures of Vegetation to Ozone

8 The previous O₃ AQCD (U.S. Environmental Protection Agency, 1996a) concluded that 9 higher hourly average concentrations (≥ 0.10 ppm) should be provided greater weight than 10 mid-level (0.06 to 0.099 ppm) and lower hourly average concentrations in predicting injury and 11 yield reduction for agricultural crops and forests. The most recent findings concerning the 12 importance of the higher hourly average concentrations in comparison to the mid-level and lower 13 values will be discussed in Chapter 9. Because of a lack of air quality data collected at rural and 14 remote locations, interpolation techniques, such as kriging, have been applied to the estimation 15 of O₃ exposures across the United States (Reagan, 1984; Lefohn et al., 1987; Knudsen and 16 Lefohn, 1988). "Kriging" (Matheron, 1963) has been used in the analyses of air quality data 17 (Grivet, 1980; Faith and Sheshinski, 1979) and was used to provide estimates of seasonal O_3 18 values for the National Crop Loss Assessment Network (NCLAN) for 1978 through 1982 (May

to September of each year) (Reagan, 1984). These values, along with updated values, coupled
 with exposure-response models, were used to predict agriculturally related economic benefits
 anticipated by lower O₃ levels in the United States (Adams et al., 1985, 1989).

4 For 2001, ordinary kriging was used to estimate the seasonal W126, SUM06, and number of hours ≥ 0.10 ppm (N100), using hourly average concentrations accumulated over a 24-h 5 6 period. As discussed in Chapter 9, the correlation between the number of occurrences of hourly 7 average concentrations ≥ 0.10 ppm and the magnitude of the W126 and SUM06 values is not 8 strong. Because of this, the N100 was also estimated, along with the W126 and SUM06 9 exposure indices. For the period of April through September, the estimates of the seasonal W126, SUM06, and N100 exposure index values were made for each 0.5° by 0.5° cell in the 10 11 continuous United States. The kriged values, the variance, and the 95% error bound for each 0.5° by 0.5° cell were estimated. Because of the concern for inner-city depletion caused by NO_x 12 scavenging, data from specific monitoring stations located in large metropolitan areas were not 13 included in the analysis. 14

15 Figure AX3-13 shows the kriged values for the 24-h cumulative seasonal W126 exposure 16 index and the N100 index for 2001 for the eastern United States. Note that for some of the areas 17 with elevated W126 values (e.g., >35 ppm-h), the number of hourly average concentrations was 18 estimated to be <22. Figure AX3-14 illustrates the kriged values using the 24-h cumulative 19 seasonal SUM06 exposure index and the N100 index for 2001 for the eastern United States. 20 Figures AX3-15 and AX3-16 show the W126 and SUM06 values, respectively, with the N100 21 values for the central United States region. For 2001, the number of hourly average 22 concentrations ≥ 0.10 ppm was usually ≤ 22 for the 6-month period. Figures AX3-17 and 23 AX3-18 illustrate the W126 and SUM06 values, respectively, for the western United States 24 region. Note that in the Southern California and Central California areas, the number of hourly 25 average concentrations ≥ 0.10 ppm was in the range of 48 to 208 for the 6-month period. This is 26 considerably greater than the frequency of occurrences for the higher hourly average 27 concentrations observed in the eastern and central United States.

Due to the scarcity of monitoring sites across the United States, especially in the Rocky
 Mountain region, the uncertainty in the estimates for the various exposure indices vary.
 Figures AX3-19 through AX3-27 illustrate the 95% confidence intervals associated with the

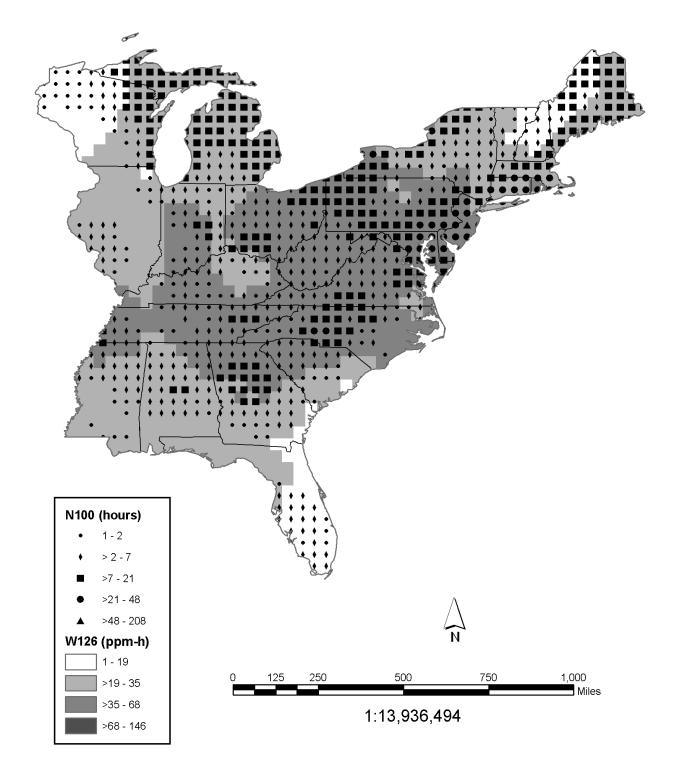


Figure AX3-13. Six-month (April to September) 24-h cumulative W126 exposure index with the number of hourly average concentrations ≥0.10 ppm (N100) occurring during 2001 for the eastern United States.

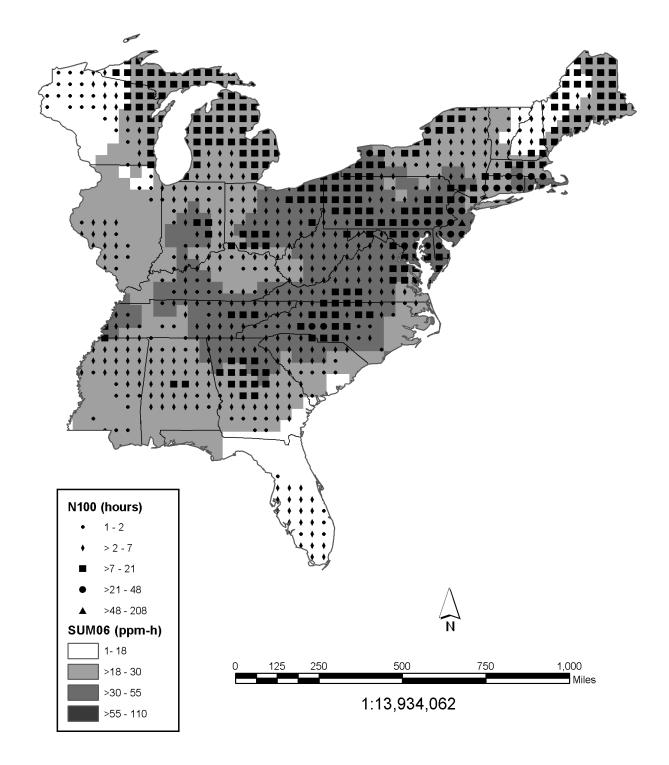


Figure AX3-14. Six-month (April to September) 24-h cumulative SUM06 exposure index with the number of hourly average concentrations ≥0.10 ppm (N100) occurring during 2001 for the eastern United States.

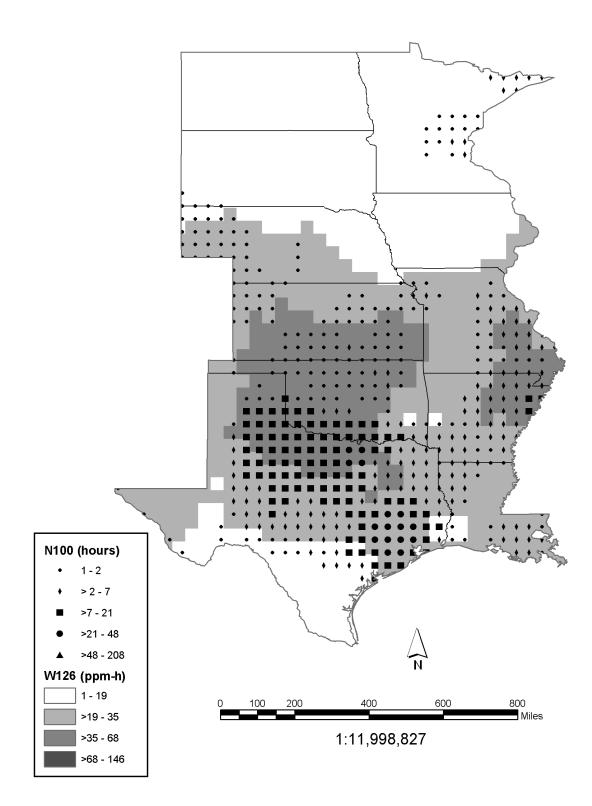


Figure AX3-15. Six-month (April to September) 24-h cumulative W126 exposure index with the number of hourly average concentrations ≥0.10 ppm (N100) occurring during 2001 for the central United States.

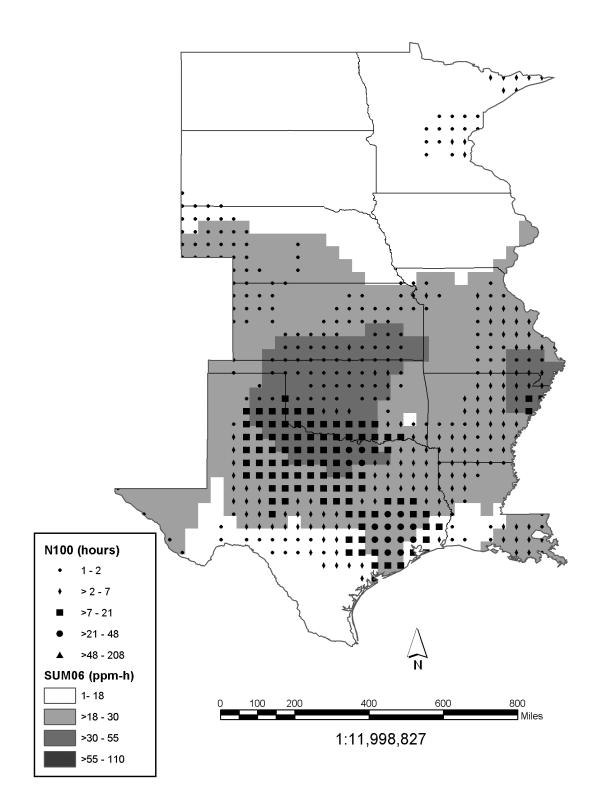


Figure AX3-16. Six-month (April to September) 24-h cumulative SUM06 exposure index with the number of hourly average concentrations ≥0.10 ppm (N100) occurring during 2001 for the central United States.

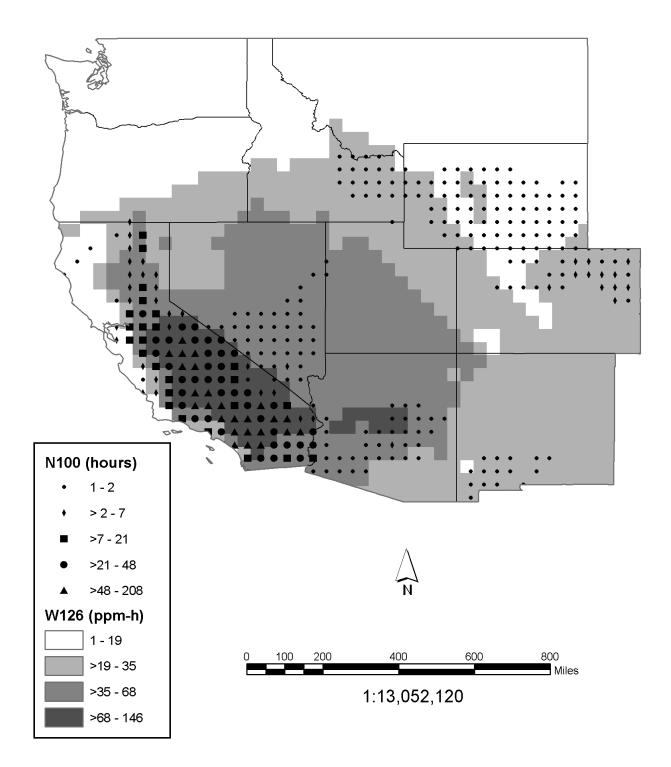


Figure AX3-17. Six-month (April to September) 24-h cumulative W126 exposure index with the number of hourly average concentrations ≥0.10 ppm (N100) occurring during 2001 for the western United States.

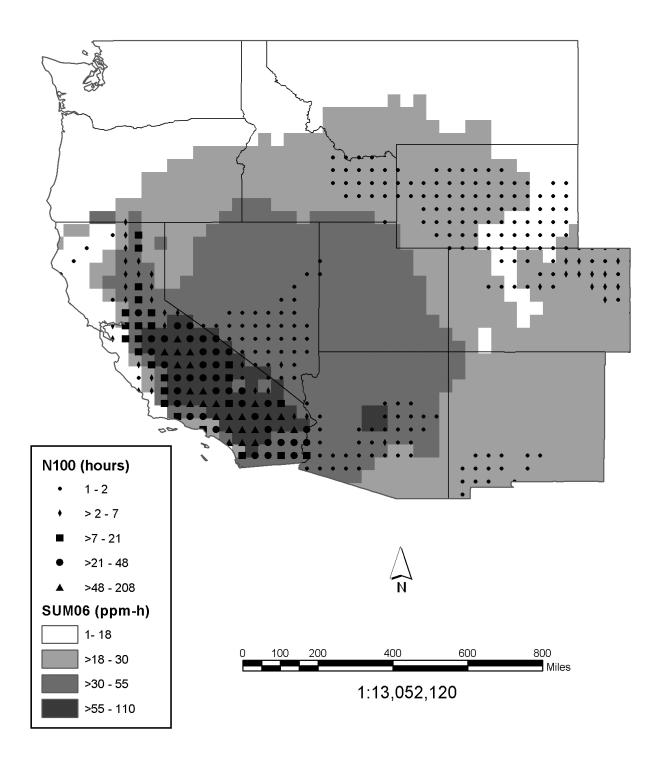


Figure AX3-18. Six-month (April to September) 24-h cumulative SUM06 exposure index with the number of hourly average concentrations ≥0.10 ppm (N100) occurring during 2001 for the western United States.

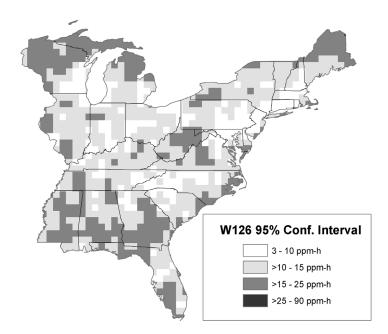


Figure AX3-19. The 95% confidence interval for the 6-month (April to September) 24-h cumulative W126 exposure index for 2001 for the eastern United States.

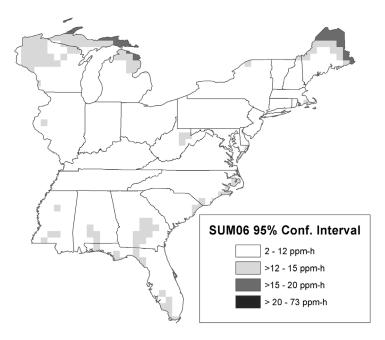


Figure AX3-20. The 95% confidence interval for the 6-month (April to September) 24-h cumulative SUM06 exposure index for 2001 for the eastern United States.

Figure AX3-21. The 95% confidence interval for the 6-month (April to September) 24-h cumulative N100 exposure index for 2001 for the eastern United States.

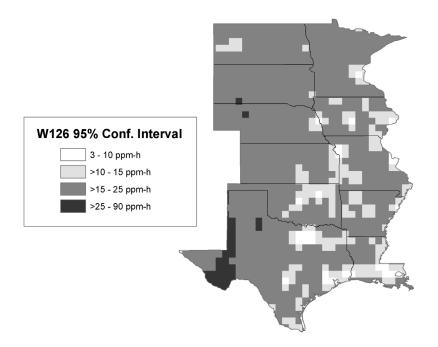


Figure AX3-22. The 95% confidence interval for the 6-month (April to September) 24-h cumulative W126 exposure index for 2001 for the central United States.

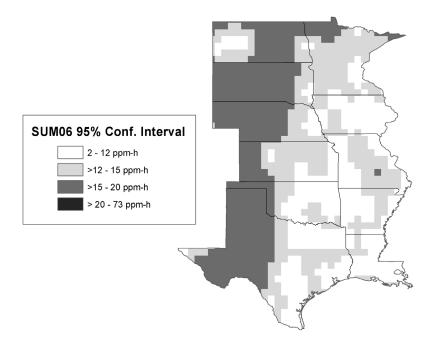


Figure AX3-23. The 95% confidence interval for the 6-month (April to September) 24-h cumulative SUM06 exposure index for 2001 for the central United States.

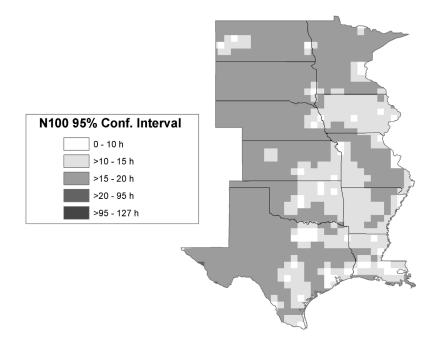


Figure AX3-24. The 95% confidence interval for the 6-month (April to September) 24-h cumulative N100 exposure index for 2001 for the central United States.

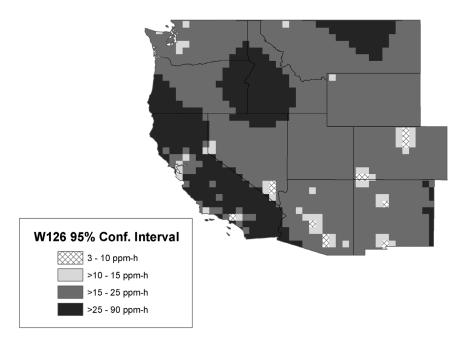


Figure AX3-25. The 95% confidence interval for the 6-month (April to September) 24-h cumulative W126 exposure index for 2001 for the western United States.

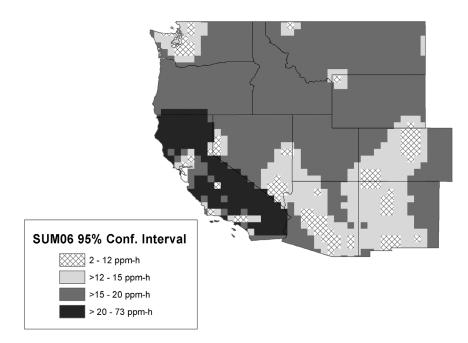


Figure AX3-26. The 95% confidence interval for the 6-month (April to September) 24-h cumulative SUM06 exposure index for 2001 for the western United States.

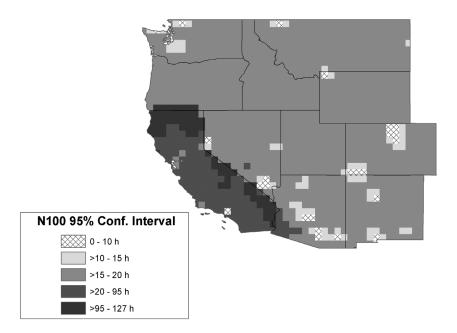


Figure AX3-27. The 95% confidence interval for the 6-month (April to September) 24-h cumulative N100 exposure index for 2001 for the western United States.

1 indices by region. In some cases, the uncertainty in the estimates of the exposure indices is 2 large. However, based on the actual hourly average concentrations measured, the pattern of 3 distinct differences across the regions in the United States for the number of hourly average 4 concentrations ≥ 0.10 ppm is real even though the uncertainty in the kriged estimates may be 5 large.

- 6
- 7
- 8 A

AX3.3 SPATIAL VARIABILITY IN OZONE CONCENTRATIONS

9 The spatial variability of O₃ concentrations in different environments in the United States 10 occurring across a variety of spatial scales is characterized in this section. This information will 11 be useful for understanding the influence of regional or altitudinal differences in O₃ exposure on 12 vegetation and for establishing the spatial variations in O₃ concentrations as they are used in 13 epidemiologic studies. Intracity variations in O₃ concentrations are described in Section 1 AX3.3.1. Small scale horizontal and vertical variations in O_3 concentrations are discussed in

Section AX3.3.2. Ozone concentrations at high elevations are characterized in Section AX3.3.3.

- 2 3
- 4

AX3.3.1 Spatial Variability of Ozone Concentrations in Urban Areas

A number of processes can contribute to spatial variability in O₃ concentrations in urban
areas. Ozone formation occurs more or less continuously downwind of sources of precursors,
producing a gradient in O₃ concentrations. Ozone "titration" by reaction with NO can deplete O₃
levels near NO sources such as highways and busy streets. Differences in surface characteristics
affect the rate of deposition of O₃. Mixing of O₃ from aloft can also lead to local enhancements
in O₃ concentration.

11 The spatial variability in O₃ concentrations in 24 MSAs across the United States is 12 characterized in this section. These areas were chosen to provide analyses to help guide in risk 13 assessments, to provide a general overview of the spatial variability of O₃ in different regions of 14 the country, and also to provide insight in to the spatial distribution of O₃ in cities where health 15 outcome studies have been conducted. Statistical analyses of the human health effects of 16 airborne pollutants based on aggregate population time-series data have often relied on ambient 17 concentrations of pollutants measured at one or more central sites in a given metropolitan area. 18 In the particular case of ground-level O₃ pollution, central-site monitoring has been justified as a 19 regional measure of exposure partly on grounds that correlations between concentrations at 20 neighboring sites measured over time are usually high (U.S. Environmental Protection Agency, 21 1996a). In analyses where multiple monitoring sites provide ambient O_3 concentrations, a 22 summary measure such as an averaged concentration has often been regarded as adequately 23 characterizing the exposure distribution. Indeed, a number of studies have referred to 24 multiple-site averaging as the method for estimating O₃ exposure (U.S. Environmental 25 Protection Agency, 1996a). It is hoped that the analyses presented here will shed some light on 26 the suitability of this practice. Earlier analyses were reported in the previous O₃ AQCD (U.S. 27 Environmental Protection Agency, 1996a). The analyses presented there concluded that the 28 extent of spatial homogeneity is specific to the MSA under study. In particular, cities with low 29 traffic densities that are located downwind of major sources of precursors are heavily influenced 30 by long range transport and tend to show smaller spatial variability (e.g., New Haven, CT) than 31 those source areas with high traffic densities located upwind (e.g., New York, NY).

1 Metrics for characterizing spatial variability include the use of Pearson correlation 2 coefficients (r), values of the 90th percentile (P_{90}) absolute difference in concentrations, and 3 coefficients of divergence $(COD)^1$. These methods of analysis follow those used for 4 characterizing PM_{2.5} and PM_{10-2.5} concentrations in Pinto et al. (2004) and in the latest edition of the PM AQCD (U.S. Environmental Protection Agency, 2004a). Data were aggregated over the 5 6 local O₃ season as indicated in Table AX3-1. The length of the O₃ season varies across the country. In several southwestern states, it lasts all year long. In other areas, such as in New 7 8 England, the mid-Atlantic states, the Midwest and the Northwest it can be 6 months long, but 9 typically it lasts from April through October.

10 Table AX3-5 shows the urban areas chosen, the range of 24-h average O₃ concentrations 11 over the O₃ season, the range of intersite correlation coefficients, the range of P₉₀ differences in O₃ concentrations between site pairs, and the range in COD values. A COD of zero implies 12 13 that values in both data sets are identical, and a COD of one indicates that two data sets are 14 completely different. In general, statistics were calculated for partial MSAs. This was done so 15 as to obtain reasonable lower estimates of the spatial variability that is present, as opposed to 16 examining the consolidated MSAs. In Boston, MA and New York, NY, this could not be readily 17 done, and so statistics were calculated for the consolidated MSAs. More detailed calculations 18 for a subset of nine MSAs are given in Figures AX3-28 through AX3-36.

As can be seen, there are no clearly discernible regional trends in the ranges of parameters shown. Additional urban areas would need to be examined to discern broadscale patterns. The data indicate considerable variability in the concentration fields. Mean O₃ concentrations vary within individual urban areas from factors of 1.4 to 4.0.

The highest annual mean O_3 concentration (0.058 ppm) is found in the Phoenix, AZ MSA at a site which is located in the mountains well downwind of the main urban area. The lowest annual mean O_3 concentration (0.010 ppm) was found in Lynwood in the urban core of the Los Angeles MSA. CO and NO_x monitors at this site recorded the highest concentrations in

¹ The COD is defined as follows:

$$COD_{jk} = \sqrt{\frac{1}{p} \sum_{i=1}^{p} \left(\frac{x_{ij} - x_{ik}}{x_{ij} + x_{ik}}\right)^2}$$
 (AX3-1)

where x_{ij} and x_{ik} represent the 24-h average PM_{2.5} concentration for day *i* at site *j* and site *k* and *p* is the number of observations.

Urban Area	Number of Sites	Minimum Mean Conc.	Maximum Mean Conc.	Minimum Corr. Coeff.	Maximum Corr. Coeff.	Minimum P ₉₀ ª	Maximum P ₉₀	Minimum COD ^b	Maximum COD
Boston, MA	18	0.021	0.033	0.46	0.93	0.012	0.041	0.17	0.45
New York, NY	29	0.015	0.041	0.45	0.96	0.0080	0.044	0.17	0.55
Philadelphia, PA	12	0.020	0.041	0.79	0.95	0.011	0.036	0.23	0.46
Washington, DC	20	0.022	0.041	0.72	0.97	0.010	0.032	0.17	0.45
Charlotte, NC	8	0.031	0.043	0.48	0.95	0.012	0.038	0.17	0.32
Atlanta, GA	12	0.023	0.047	0.63	0.94	0.013	0.045	0.24	0.55
Tampa, FL	9	0.024	0.035	0.74	0.94	0.011	0.025	0.20	0.35
Detroit, MI	7	0.022	0.037	0.74	0.96	0.0090	0.027	0.19	0.36
Chicago, IL	24	0.015	0.039	0.38	0.96	0.0080	0.043	0.16	0.50
Milwaukee, WI	9	0.027	0.038	0.73	0.96	0.0090	0.025	0.18	0.33
St. Louis, MO	17	0.022	0.038	0.78	0.96	0.0090	0.031	0.15	0.41
Baton Rouge, LA	7	0.018	0.031	0.81	0.95	0.0090	0.029	0.23	0.41
Dallas, TX	10	0.028	0.043	0.67	0.95	0.011	0.033	0.16	0.36
Houston, TX	13	0.016	0.036	0.73	0.96	0.0090	0.027	0.20	0.38
Denver, CO	8	0.022	0.044	0.60	0.92	0.013	0.044	0.16	0.46
El Paso, TX	4	0.022	0.032	0.81	0.94	0.012	0.023	0.24	0.31
Salt Lake City, UT	8	0.029	0.048	0.52	0.92	0.012	0.043	0.13	0.51
Phoenix, AZ	15	0.021	0.058	0.29	0.95	0.011	0.057	0.15	0.61
Seattle, WA	5	0.015	0.038	0.63	0.94	0.0080	0.024	0.16	0.46
Portland, OR	5	0.015	0.036	0.73	0.91	0.011	0.025	0.20	0.50
Fresno, CA	6	0.030	0.047	0.90	0.97	0.0090	0.027	0.17	0.40
Bakersfield, CA	8	0.028	0.047	0.23	0.96	0.013	0.052	0.20	0.58
Los Angeles, CA	14	0.010	0.042	0.42	0.95	0.010	0.053	0.22	0.59
Riverside, CA	18	0.018	0.054	0.38	0.95	0.013	0.057	0.15	0.64

Table AX3-5. Summary Statistics for Ozone (in ppm) Spatial Variability in Selected U.S. Urban Areas

^aP90 = 90th percentile absolute difference in concentrations. ^bCOD = coefficient of divergence for different site pairs.

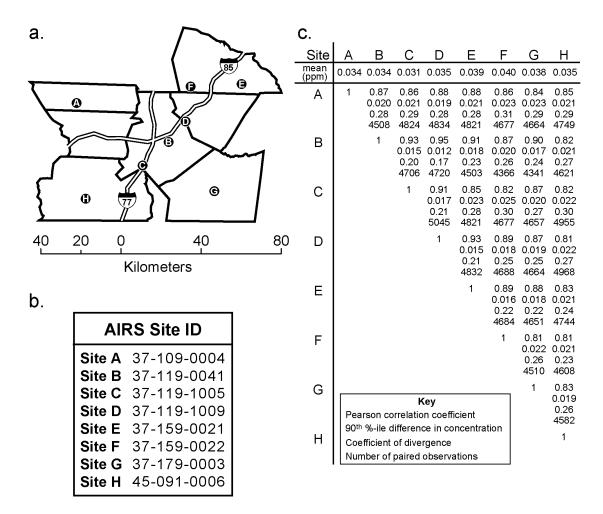
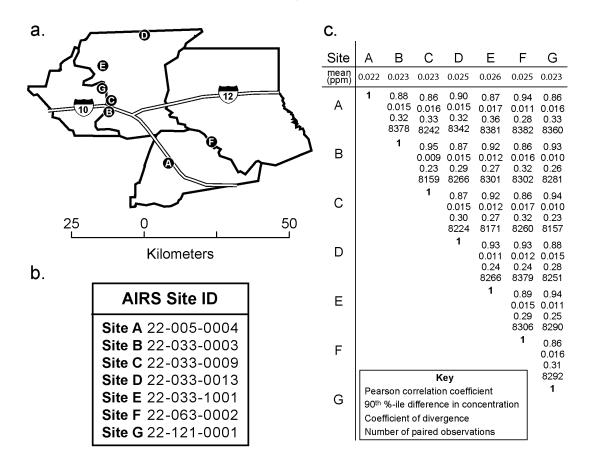
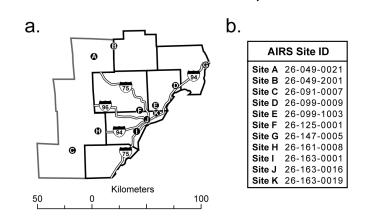



Figure AX3-28. Locations of O₃ sampling sites (a) by AQS ID# (b) and intersite correlation statistics (c) for the Charlotte, NC-Gastonia-Rock Hill, SC MSA. The mean observed O₃ concentration at each site is given above its letter code. For each data pair, the Pearson correlation coefficient, 90th percentile difference in absolute concentrations, the coefficient of divergence, and number of observations are given.


1 California, indicating that titration of O_3 by NO freshly emitted from tail pipes of motor vehicles

- 2 is responsible for the low O_3 values that are found. Ratios of highest to lowest mean O_3
- 3 concentrations in these two MSAs are among the highest shown in Table AX3-5. Both of these
- 4 MSAs are characterized by sunny, warm climates; sources of precursors that are associated with
- 5 O_3 titration to varying degrees in their urban centers; and with maximum O_3 found well

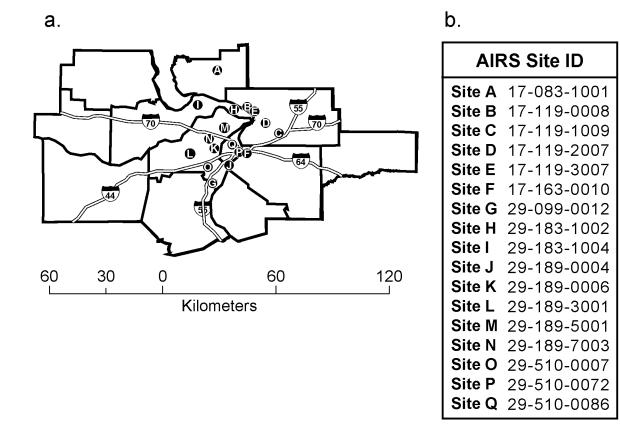
August 2005

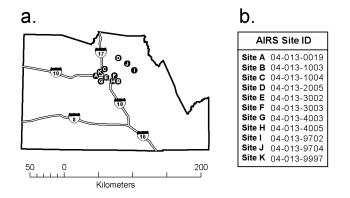
- Figure AX3-29. Locations of O₃ sampling sites (a) by AQS ID# (b) and intersite correlation statistics (c) for the Baton Rouge, LA MSA. The mean observed O₃ concentration at each site is given above its letter code. For each data pair, the Pearson correlation coefficient, 90th percentile difference in absolute concentrations, the coefficient of divergence, and number of observations are given.
- downwind of the urban centers. Intersite correlation coefficients show mixed patterns, i.e.,
 in some urban areas all pairs of sites are moderately to highly correlated, while other areas show
 a very large range of values. As may be expected, those areas which show smaller ratios of
 seasonal mean concentrations also exhibit a smaller range of intersite correlation coefficients.
- 5 Within the examined urban areas, P_{90} values were evenly distributed between all site pairs
- 6 considered. The CODs indicate variability among site pairs. However, there are a number of

Detroit - Ann Arbor - Flint, MI CMSA

C. Site в С D F F G κ Α н .1 mean (ppm) 0.035 0.037 0.033 0.032 0.031 0.028 0.031 0.032 0.026 0.028 0.028 А 0.93 0.84 0.84 0.86 0.86 0.81 0.86 0.82 0.84 0.85 0.012 0.019 0.019 0.020 0.020 0.019 0.024 0.022 0.019 0.020 0.20 0.24 0.26 0 27 0.30 0.26 0 27 0.35 0.32 0.29 4151 4253 4341 4338 4163 4228 4324 4247 4333 4103 0.84 0.86 0.85 0.84 0.82 0.84 0.81 0.81 0.84 В 0.019 0.017 0.020 0.023 0.019 0.021 0.025 0.024 0.021 0.22 0.25 4152 4252 0.28 0.33 0.25 0.28 0.37 0.36 0.32 4341 4104 4339 4164 4230 4323 4248 0.85 1 0.86 0.87 0.78 0.92 0.84 0.86 0.86 С 0.020 0.020 $0.022 \ 0.023 \ 0.015 \ 0.025 \ 0.023$ 0.021 0.37 0.27 0.28 0.32 0.27 0.25 0.35 0.32 4072 4159 3930 4156 4164 4049 4143 4068 0.91 0.88 0.86 0.86 0.84 0.87 0.90 D 1 0.014 0.019 0.017 0.019 0.022 0.020 0.016 0.26 0.31 0.25 0.27 0.34 0.31 0.27 4260 4022 4259 4086 4148 4245 4193 0.94 0.83 0.89 0.88 0.94 0.96 Е 0.014 0.020 0.017 0.020 0.013 0.010 0.25 0.24 0.27 0.31 0.24 0.19 4112 4346 4172 4235 4330 4255 0.91 0.85 0.93 0.93 0.83 F 0.021 0.015 0.020 0.013 0.014 0.29 0.25 0.31 0.23 0.24 4109 3944 4000 4093 4025 0.79 0.76 0.80 0.83 G 0.022 0.024 0.022 0.020 0.28 0.36 0.33 0.29 4169 4233 4329 4255 0.88 0.89 н 1 0.89 0.019 0.017 0.017 0.34 0.29 0.27 4062 4153 4081 0.89 0.90 I 0.016 0.018 0.29 0.29 4217 4144 0.95 J 0.011 0.21 4242 Key Pearson correlation coefficient 1 Κ 90th %-ile difference in concentration Coefficient of divergence Number of paired observations

Figure AX3-30. Locations of O₃ sampling sites (a) by AQS ID# (b) and intersite correlation statistics (c) for the Detroit-Ann Arbor-Flint, MI CMSA. The mean observed O₃ concentration at each site is given above its letter code. For each data pair, the Pearson correlation coefficient, 90th percentile difference in absolute concentrations, the coefficient of divergence, and number of observations are given.



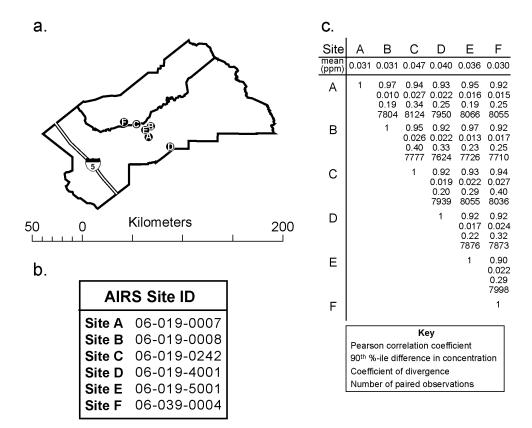

Figure AX3-31. Locations of O₃ sampling sites (a) by AQS ID# (b) and intersite correlation statistics (c) for the St. Louis, MO-IL MSA. The mean observed O₃ concentration at each site is given above its letter code. For each data pair, the Pearson correlation coefficient, 90th percentile difference in absolute concentrations, the coefficient of divergence, and number of observations are given.

St. Louis, MO - IL CMSA

C

C.																	
Site	А	В	С	D	Е	F	G	Н	Ι	J	Κ	L	Μ	Ν	0	Ρ	Q
mean (ppm)	0.037	0.035	0.031	0.029	0.031	0.028	0.035			0.032		0.025		0.030	0.028	0.024	0.03
А	1			0.84 0.022	0.85 0.021			0.89 0.016								0.82 0.027	
		0.19 5055	0.26 4935	0.29 5032	0.29 5021	0.38 5045	0.28 5049	0.21 5052	0.20 4735	0.28 5077	0.29 5073	0.37 5075	0.31 5077	0.32 5071	0.36 5035	0.40 5034	0.3 506
В		1	0.87 0.017	0.90 0.016	0.93 0.013	0.86 0.021	0.82 0.019	0.93 0.012	0.90 0.014	0.83	0.85 0.018	0.84 0.024	0.87 0.019	0.84 0.020	0.84	0.87 0.022	0.8 0.01
			0.26 4963	0.26 5061	0.23 5048	0.34 5077	0.28 5078	0.18 5082	0.19 4766	0.27 5106	0.27	0.34 5105	0.30	0.30 5101	0.33 5064	0.35	0.3 509
С			1	0.92	0.88	0.92	0.87	0.90	0.88	0.88	0.87	0.85	0.90	0.88	0.86	0.88	0.9
				0.012 0.24 4941	0.015 0.26 4933	0.014 0.29 4952	0.26	0.015 0.23 4963	0.016	0.016 0.25 4985	0.26	0.020 0.32 4983	0.015 0.26 4985	0.016 0.27 4979	0.018 0.30 4943	0.017 0.32 4942	0.0
D				1	4933 0.93	4952 0.90	4958 0.85	0.91	0.88	0.86	4981 0.84	0.84	4900 0.87	0.85	0.86	0.88	0.9
-					0.012 0.22	0.29	0.26	0.23	0.25	0.27	0.27	0.30	0.27	0.28	0.28	0.016 0.29	0.2
Е					5024 1	5050 0.90	5055 0.84	5058 0.93	4742 0.90	5083 0.85	5079 0.84	5081 0.88	5085 0.88	5077 0.86	5042 0.88	5040 0.89	507 0.9
																0.017	
_						5039	5045	5046	4728	5069	5065	5067	5069	5065	5027	5027	505
F						1										0.92	
							0.28 5067	0.32 5070	0.32 4754	0.29 5095	0.30 5091	0.32 5093	0.27 5095	0.27 5091	0.26 5053	0.28 5053	0.2 508
G							1	0.87 0.017	0.86 0.017	0.95 0.012	0.91 0.015	0.88 0.022	0.88 0.018	0.88 0.017	0.89 0.020	0.86 0.023	0.9 0.0
								0.23 5075	0.24 4756	0.22 5100	0.25 5096	0.33 5098	0.27 5100	0.26 5094	0.29 5058	0.35 5057	0.2 508
Н								1	0.94	0.87	0.88	0.87	0.92	0.90	0.86	0.87 0.022	0.9
									0.15	0.24 5103	0.24	0.32	0.26	0.27 5097	0.31 5062	0.35	0.2
Ι									1	0.86	0.90	0.88	0.91	0.90	0.85	0.86	0.9
										0.28	0.25	0.33	0.27	0.28	0.32	0.022	0.3
J										4784 1	4782 0.92	4782 0.91	4784 0.91	4778 0.91	4742 0.90	4743 0.88	477 0.9
0											0.013 0.26	0.018 0.30	0.015 0.24	0.014 0.23	0.016 0.25	0.019 0.30	0.0
LZ.											5124 1	5126 0.87	5128 0.90	5122 0.91	5086 0.86	5085 0.87	51 ⁻ 0.9
K											1					0.020	
												5122	5124	5118	5082	5081	51
L												1				0.88	
													0.28 5126	0.28 5120	0.27 5084	0.27 5083	0.2 511
М													1	0.96 0.009	0.87 0.018	0.87 0.019	0.9 0.0
														0.18 5122	0.26 5086	0.29 5085	0.2 511
Ν														1		0.86 0.019	
															0.26 5080	0.31 5079	0.2 511
0															1	0.92 0.014	0.9
																0.26 5045	0.2
Р				Key]									1	0.9
-				ion coe nce in a	fficient concent												0.0
0				ergenc	e vations												507 1
Q		mber 0	n palle	u ubsel	vauoris	,	J										

Figure AX3-31 (cont'd).



ī

Site	A	В	С	D	Е	F	G	Н	Т	J	К
mean (ppm)	0.021	0.025	0.028	0.046	0.021	0.024	0.024	0.028	0.038	0.041	0.024
A	1	0.87 0.017 0.38 7580	0.91 0.018 0.35 8031	0.59 0.046 0.59 7991	0.93 0.012 0.31 7925	0.89 0.016 0.35 7593	0.91 0.014 0.32 7901	0.90 0.017 0.34 6651	0.78 0.034 0.54 8020	0.78 0.037 0.55 8081	0.95 0.011 0.27 7920
В		1	0.90 0.018 0.25 7962	0.69 0.038 0.46 7912	0.89 0.016 0.41 7872	0.92 0.013 0.33 7502	0.89 0.015 0.30 7826	0.93 0.014 0.22 6768	0.83 0.027 0.38 7895	0.85 0.029 0.41 8011	0.90 0.016 0.32 7858
С			1	0.62 0.040 0.47 8377	0.92 0.019 0.40 8326	0.92 0.016 0.34 7965	0.91 0.017 0.28 8273	0.92 0.016 0.24 7022	0.82 0.027 0.39 8367	0.82 0.030 0.41 8468	0.95 0.013 0.28 8319
D				1	0.58 0.047 0.61 8286	0.63 0.043 0.56 7925	0.58 0.042 0.51 8231	0.61 0.043 0.49 6992	0.67 0.025 0.23 8332	0.79 0.018 0.16 8429	0.58 0.045 0.56 8281
E					1	0.92 0.014 0.35 7894	0.94 0.012 0.35 8180	0.93 0.015 0.37 6938	0.82 0.033 0.57 8279	0.80 0.037 0.58 8369	0.95 0.012 0.31 8238
F						1	0.90 0.015 0.35 7863	0.94 0.012 0.30 6599	0.82 0.030 0.50 7913	0.84 0.033 0.52 8009	0.93 0.013 0.31 7846
G							1	0.93 0.014 0.25 6882	0.81 0.029 0.44 8225	0.80 0.033 0.46 8322	0.93 0.013 0.29 8166
Н								1	0.82 0.029 0.41 6963	0.83 0.032 0.43 7078	0.93 0.013 0.25 6912
Ι									1	0.86 0.016 0.17 8411	0.81 0.031 0.50 8265
J				coeffici	ent centratior	'n				1	0.80 0.035 0.51 8367
К		fficient of p		jence bservati	ons						1

Figure AX3-32. Locations of O₃ sampling sites (a) by AQS ID# (b) and intersite correlation statistics (c) for the Phoenix-Mesa, AZ MSA. The mean observed O₃ concentration at each site is given above its letter code. For each data pair, the Pearson correlation coefficient, 90th percentile difference in absolute concentrations, the coefficient of divergence, and number of observations are given.

- Figure AX3-33. Locations of O₃ sampling sites (a) by AQS ID# (b) and intersite correlation statistics (c) for the Fresno, CA MSA. The mean observed O₃ concentration at each site is given above its letter code. For each data pair, the Pearson correlation coefficient, 90th percentile difference in absolute concentrations, the coefficient of divergence, and number of observations are given.
- 1 cases where sites in an urban area may be moderately to highly correlated but showed substantial 2 differences in absolute concentrations. In many cases, values for P₉₀ equaled or exceeded 3 seasonal mean O_3 concentrations. This was reflected in both values for P_{90} and for the COD. It is instructive to compare the metrics for spatial variability shown in Table AX3-5 to 4 those calculated for PM_{2.5} and PM_{10-2.5} in the PM AQCD (U.S. Environmental Protection 5 Agency, 2004a). The values for concentrations and concentration differences are unique to the 6 7 individual species, but the intersite correlation coefficients and the COD values can be directly 8 compared.

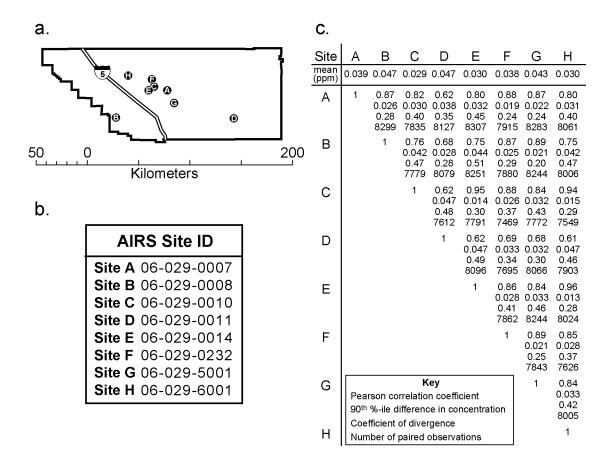


Figure AX3-34. Locations of O₃ sampling sites (a) by AQS ID# (b) and intersite correlation statistics (c) for the Bakersfield, CA MSA. The mean observed O₃ concentration at each site is given above its letter code. For each data pair, the Pearson correlation coefficient, 90th percentile difference in absolute concentrations, the coefficient of divergence, and number of observations are given.

- 1 In general, the variability in O_3 concentrations is larger than for $PM_{2.5}$ concentrations and
- 2 comparable to that obtained for $PM_{10-2.5}$. Intersite correlation coefficients in some areas (e.g.,
- 3 Philadelphia, PA; Atlanta, GA; Portland, OR) can be very similar for both PM_{2.5} and for O₃.
- 4 However, there is much greater variability in the concentration fields of O_3 as evidenced by the
- 5 much higher COD values. Indeed, COD values are higher for O_3 than for $PM_{2,5}$ in each of the
- 6 urban areas examined. In all of the urban areas examined for O_3 some site pairs are always very

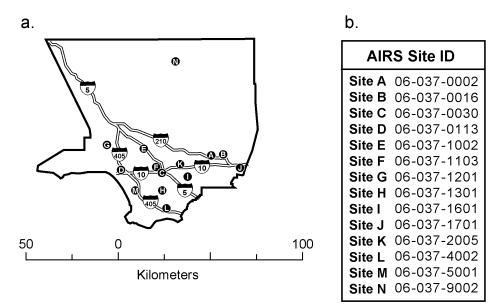
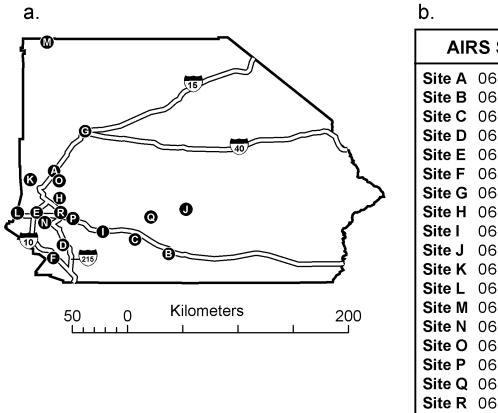


Figure AX3-35. Locations of O₃ sampling sites (a) by AQS ID# (b) and intersite correlation statistics (c) for the Los Angeles-Orange County, CA CMSA. The mean observed O₃ concentration at each site is given above its letter code. For each data pair, the Pearson correlation coefficient, 90th percentile difference in absolute concentrations, the coefficient of divergence, and number of observations are given.


Los Angeles - Orange County, CA CMSA

C.

Site	A	в	с	D	Е	F	G	н	Ι	J	к	L	М	Ν
mean (ppm)	0.021	0.029	0.021	0.020	0.018	0.019	0.021	0.013	0.016	0.013	0.021	0.022	0.027	0.042
A	1	0.95 0.017 0.32 8378	0.87 0.020 0.33 6723	0.64 0.028 0.41 8387	0.88 0.018 0.38 8202	0.85 0.020 0.36 8292	0.82 0.021 0.37 8364	0.72 0.029 0.44 8362	0.89 0.019 0.41 8381	0.91 0.022 0.46 8386	0.91 0.015 0.33 8384	0.61 0.029 0.44 8379	0.55 0.035 0.45 8341	0.58 0.048 0.47 6321
В		1	0.82 0.029 0.36 6722	0.60 0.034 0.42 8386	0.86 0.028 0.44 8201	0.80 0.029 0.45 8291	0.80 0.027 0.42 8363	0.67 0.038 0.53 8361	0.84 0.030 0.52 8380	0.88 0.032 0.59 8385	0.87 0.024 0.39 8383	0.57 0.033 0.47 8378	0.53 0.034 0.46 8340	0.56 0.042 0.42 6321
С			1	0.75 0.021 0.32 6731	0.88 0.018 0.35 6546	0.95 0.010 0.22 6636	0.84 0.019 0.29 6708	0.83 0.020 0.37 6729	0.91 0.013 0.37 6725	0.85 0.020 0.49 6730	0.90 0.017 0.24 6728	0.72 0.022 0.31 6723	0.68 0.030 0.37 6686	0.61 0.048 0.45 4998
D				1	0.76 0.023 0.31 8210	0.82 0.018 0.31 8300	0.73 0.023 0.31 8372	0.77 0.023 0.36 8370	0.77 0.022 0.35 8389	0.69 0.027 0.43 8394	0.73 0.024 0.34 8392	0.75 0.021 0.31 8387	0.81 0.025 0.30 8349	0.62 0.046 0.40 6321
E					1	0.90 0.014 0.29 8184	0.86 0.019 0.31 8187	0.79 0.023 0.35 8185	0.90 0.015 0.33 8204	0.87 0.019 0.38 8210	0.91 0.014 0.28 8207	0.67 0.027 0.37 8202	0.66 0.034 0.37 8164	0.59 0.050 0.45 6322
F						1	0.85 0.018 0.31 8277	0.85 0.019 0.36 8275	0.93 0.012 0.33 8294	0.86 0.019 0.42 8300	0.91 0.015 0.26 8297	0.76 0.021 0.35 8292	0.74 0.029 0.40 8254	0.66 0.047 0.50 6325
G							1	0.74 0.026 0.36 8347	0.86 0.020 0.35 8366	0.84 0.023 0.45 8371	0.86 0.017 0.31 8369	0.67 0.026 0.36 8364	0.68 0.028 0.36 8349	0.70 0.042 0.43 6326
Н								1	0.86 0.017 0.26 8364	0.74 0.018 0.37 8369	0.80 0.025 0.38 8367	0.84 0.021 0.35 8362	0.73 0.033 0.43 8324	0.61 0.053 0.51 6299
Ι									1	0.89 0.016 0.31 8388	0.93 0.015 0.30 8386	0.77 0.022 0.34 8381	0.71 0.032 0.39 8343	0.66 0.048 0.48 6321
J										1	0.90 0.021 0.43 8391	0.67 0.028 0.46 8386	0.62 0.037 0.50 8348	0.63 0.053 0.56 6323
К											1	0.71 0.025 0.37 8384	0.65 0.031 0.40 8346	0.65 0.045 0.46 6321
L												1	0.74 0.025 0.33 8341	0.62 0.043 0.42 6321
Μ	Pea	rson co		ey n coeffi	cient								1	0.63 0.038 0.36 6299
Ν	90 th Coe	%-ile d	ifferenc of diver	e in co	ncentrat	ion								1

Figure AX3-35 (cont'd).

	RS Site ID
Site A	06-065-0012
Site B	06-065-2002
Site C	06-065-5001
Site D	06-065-6001
Site E	06-065-8001
Site F	06-065-9001
Site G	06-071-0001
Site H	06-071-0005
Site I	06-071-0012
Site J	06-071-0017
Site K	06-071-0306
Site L	06-071-1004
Site M	06-071-1234
Site N	06-071-2002
Site O	06-071-4001
Site P	06-071-4003
Site Q	06-071-9002
Site R	06-071-9004

Figure AX3-36. Locations of O₃ sampling sites (a) by AQS ID# (b) and intersite correlation statistics (c) for the Riverside-Orange County, CA CMSA. The mean observed O₃ concentration at each site is given above its letter code. For each data pair, the Pearson correlation coefficient, 90th percentile difference in absolute concentrations, the coefficient of divergence, and number of observations are given.

Riverside - Orange County, CS CMSA

C.

С.																		
Site	Α	В	С	D	Е	F	G	Н	I	J	Κ	L	М	Ν	0	Ρ	Q	R
mean (ppm)	0.037	0.035	0.042	0.033	0.026	0.036	0.030	0.047	0.048	0.044	0.032	0.022	0.038	0.020	0.037	0.032	0.040	0.026
A	1	0.032 0.33		0.026 0.34	8386		0.031 0.38	0.038 0.38	0.037 0.39	0.034 0.37	0.031 0.36	0.037 0.47	0.036 0.38	0.040 0.54	0.029 0.35	0.028 0.35	0.037 0.38	0.033 0.41
В		1	0.023 0.25	0.34	0.64 0.039 0.42 8388	0.036 0.33 8040	0.031 0.33 7919	0.33 8393	0.038 0.34 8233	0.029 0.30 8017	0.031 0.34 7678	0.043 0.46 8389	0.031 0.31 7990	0.046 0.51 8395	0.031 0.31 8179	0.038 0.37 8392	0.035 0.33 8059	0.040 0.42 8369
С			1	0.38 8393	8385	0.036 0.35 8034	0.035 0.39 7752	0.32 8391	0.030 0.32 8059	0.025 0.28 7852	0.034 0.38 7506	0.049 0.52 8384	0.030 0.30 7823	0.052 0.56 8393	0.030 0.32 8005	0.039 0.40 8390	0.031 0.33 7896	0.045 0.46 8362
D				1	0.33 8387	0.019 0.25 8036	0.029 0.34 7742	0.41 8393	0.041 0.45 8049	0.039 0.42 7842	0.031 0.37 7496	0.028 0.42 8386	0.039 0.41 7813	0.032 0.51 8395	0.033 0.38 7995	0.023 0.33 8392	0.040 0.44 7885	0.024 0.35 8364
E					1	0.026 0.36	0.031 0.38	0.66 0.048 0.51 8385	0.046 0.54	0.045 0.51	0.032 0.42	0.017 0.34	0.042 0.50	0.018 0.43	0.037 0.46	0.025 0.39	0.042 0.52	0.015 0.36
F						1	0.031 0.33	0.64 0.042 0.37 8034	0.039 0.39 7709	0.037 0.36 7487	0.031 0.37 7171	0.032 0.43 8027	0.037 0.36 7610	0.034 0.53 8036	0.032 0.35 7640	0.026 0.31 8033	0.039 0.38 7545	0.028 0.35 8010
G							1	0.042 0.40 7740	0.041 0.43 8067	0.035 0.40 7758	0.022 0.33 7684	0.035 0.41 7740	0.033 0.39 7669	0.038 0.49 7744	0.029 0.36 7861	0.72 0.032 0.37 7739	0.038 0.41 7592	0.033 0.40 7720
Н								1	0.030 0.26	0.033 0.26 7840	0.038 0.40 7494	0.051 0.56 8384	0.037 0.27 7811	0.054 0.59 8393	0.030 0.31 7993	0.71 0.041 0.39 8390	0.036 0.28 7883	0.047 0.46 8363
I									1	0.022 0.19	0.039 0.43 7836	0.049 0.59 8047	0.027 0.24 7940	0.052 0.61 8051	0.030 0.34 8059	0.68 0.040 0.42 8046	0.024 0.16 7899	0.046 0.48 8027
J										1	0.035 0.41	0.048 0.56 7840	0.024 0.21 7677	0.051 0.59 7844	0.028 0.32 7826	0.60 0.041 0.39 7839	0.025 0.21 7689	0.046 0.45 7820
K											1	0.036 0.44 7494	0.032 0.40 7430	0.039 0.51 7498	0.024 0.34 7626	0.70 0.033 0.41 7493	0.037 0.42 7352	0.034 0.42 7477
L												1	0.044 0.54 7814	0.013 0.40 8386	0.041 0.50 7993	0.88 0.027 0.43 8383	0.045 0.55 7885	0.018 0.40 8357
М													1	0.048 0.57 7815	0.028 0.31 7817	0.49 0.039 0.40 7811	0.023 0.22 7665	0.042 0.45 7796
N														1	0.043 0.54 7996	0.87 0.029 0.50 8392	0.047 0.58 7887	0.019 0.45 8364
0															1	0.033 0.37	0.58 0.030 0.33 7842	0.037 0.43
Ρ																1	0.039 0.41	0.92 0.020 0.33 8361
Q				relat	Key ion co												1	0.45 0.041 0.46 7866
R	C	oeffic	ient o	of div	nce ir erger d obs	nce		ratior										1

Figure AX3-36 (cont'd).

highly correlated with each other (i.e., r > 0.9) as seen for PM_{2.5}. These sites also show less
 variability in concentration and are probably influenced most strongly by regional production
 mechanisms.

- 4
- 5 6

AX3.3.2 Small-scale Horizontal and Spatial Variability in Ozone Concentrations

7 **Ozone concentrations near roadways**

Apart from the larger scale variability in surface O₃ concentrations, there is also significant 8 9 variability on the micro-scale (< a few hundred meters), especially near roadways and other 10 sources of emissions that react with O₃. These sources are not confined to urban areas. Sources 11 of emissions that react with O₃ such as highways and power plants are also found in rural areas. 12 Johnson (1995) described the results of studies examining O₃ upwind and downwind of 13 roadways in Cincinnati, OH. In these studies, O₃ upwind of the roadway was about 50 ppb and 14 these values were not found again until distances of about 100 m downwind. The O₃ profile 15 varied inversely with that of NO, as might be expected. For peak NO concentrations of 30 ppb, 16 the O_3 mixing ratio was about 36 ppb, or about 70% of the upwind value. The magnitude of the 17 downwind depletion of O₃ depends on the emissions of NO, the rate of mixing of NO from the 18 roadway and ambient temperature and so depletions of O₃ downwind of roadways are expected, 19 but with variable magnitude. Guidance for the placement of O₃ monitors (U.S. Environmental 20 Protection Agency, 1998) states a separation distance that depends on traffic counts. For 21 example, a minimum separation distance of 100 m from a road with 70,000 vehicles per day is 22 recommended for siting an O₃ monitor to avoid interference that would mean a site is no longer 23 representative of the surrounding area. An average rate of about 3,000 vehicles per hour passing 24 by a monitoring site implies a road with rather heavy traffic. As noted earlier in Section 25 AX3.3.1 for the Lakewood, CA monitoring, O_3 levels are lower at sites located near traffic than 26 those located some distance away and the scavenging of O₃ by emissions of NO from roadways 27 is a major source of spatial variability in O₃ concentrations. It should also be noted that 28 scavenging of O₃ by NO near roadways was more pronounced before the implementation of 29 stringent NOx emissions controls.

30

1 Vertical Variations in Ozone Concentrations

2 In addition to horizontal variability in O₃ concentrations, there are also variations in the 3 vertical profile of O_3 in the lowest layers of the atmosphere to consider. The planetary boundary 4 layer consists of an outer and an inner portion. The inner part of the planetary boundary layer extends from the surface to about one-tenth the height of the planetary boundary layer. Winds 5 6 and transported properties, such as O₃, are especially susceptible to interactions with obstacles, such as buildings and trees in the inner boundary layer (atmospheric surface layer) (e.g., Garratt, 7 8 1992). Inlets to ambient monitors (typically at heights of 3 to 5 meters) are located in, and 9 human and vegetation exposures occur in this part of the boundary layer.

10 Photochemical production and destruction of O_3 occurs throughout the planetary boundary 11 layer. However, O_3 is also destroyed on the surfaces of buildings, vegetation, etc. On most 12 surfaces, O_3 is destroyed with every collision. In addition, O_3 is scavenged by NO emitted by 13 motor vehicles and soils. These losses imply that the vertical gradient of O_3 should always be 14 directed downward. The magnitude of the gradient is determined by the intensity of turbulent 15 mixing in the surface layer.

16 Most work characterizing the vertical profile of O_3 near the surface has been performed in nonurban areas with the aim of calculating fluxes of O₃ and other pollutants through forest 17 18 canopies and to crops and short vegetation etc. Corresponding data are sparse for urban areas. 19 However, monitoring sites are often set up in open areas such as parks and playgrounds where 20 surface characteristics may be more similar to those in rural areas than to those in the 21 surrounding urban area. The vertical profile of O₃ measured over low vegetation are shown in 22 Figure AX3-37. These measurements were obtained as part of a field campaign to measure the 23 fluxes of several gas and aerosol phase pollutants using the gradient-flux technique in a remote 24 area in Hortobagy National Park in Hungary during late spring of 1994 (Horvath et al., 1995). 25 The labels stable and unstable in the figure refer to atmospheric stability conditions and average 26 represents the overall average. Ozone concentrations were normalized to their values at 4 m 27 height. As can be seen from the figure, there was a decrease of about 20% in going from a 28 height of 4 m down to 0.5 m above the surface during stable conditions, but O₃ decreased by 29 only about 7% during unstable conditions. The average decrease was about 10% for all 30 measurements. As might be expected, O₃ concentrations at all heights were very highly 31 correlated with one another. Of course, these values represent averages and there is scatter about

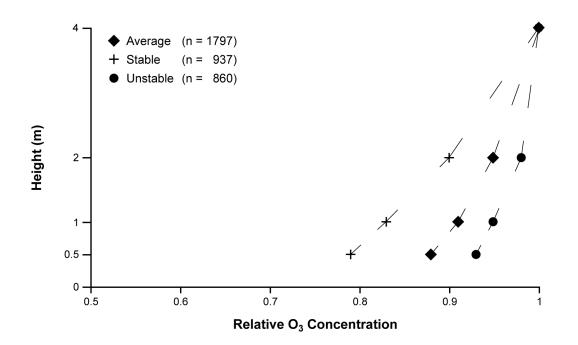


Figure AX3-37. Vertical profile of O_3 obtained over low vegetation. Values shown are relative to concentrations at 4 m above the surface. Ozone concentrations for unstable and unstable conditions were 41.3 and 24.1 ppb, and average O_3 concentration weighted by stability class was 33.1 ppb at 4 m.

Source. Horvath et al. (1995).

them, particularly under strong stable conditions. However, these conditions tend to occur mainly during night and the stability regime during the day in urban areas tends more towards instability because of the urban heat island effect. Figure AX3-38 shows the vertical profile of O_3 obtained in a spruce forest in northwestern Hungary in late summer 1991 by the same group (Horvath et al., 2003). The fall off of O_3 in this case is due to uptake by trees, reaction with ambient NO and with NO emitted by the soil in the forest in addition to deposition on the surface.

8

9

AX3.3.3 Ozone Concentrations at High Elevations

10 The distributions of hourly average concentrations experienced at high-elevation cities are 11 similar to those experienced in low-elevation cities. For example, the distribution of hourly 12 average concentrations for several O₃ sites located in Denver were similar to distributions

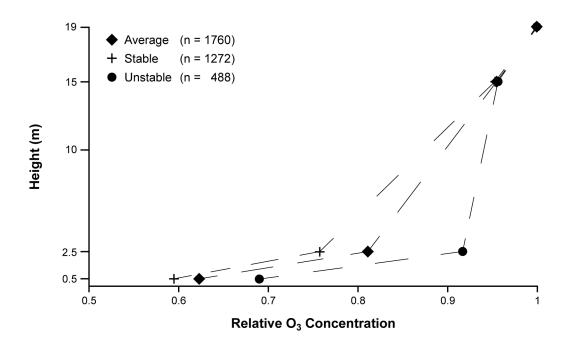


Figure AX3-38. Vertical profile of O₃ obtained in a spruce forest. Values shown are relative to concentrations at 19 m above the surface. Mean tree height is 14.5 m. Ozone concentrations for unstable and unstable conditions were 36.7 and 33.8 ppb, and the average O₃ concentration weighted by stability class was 34.6 ppb at 19 m.

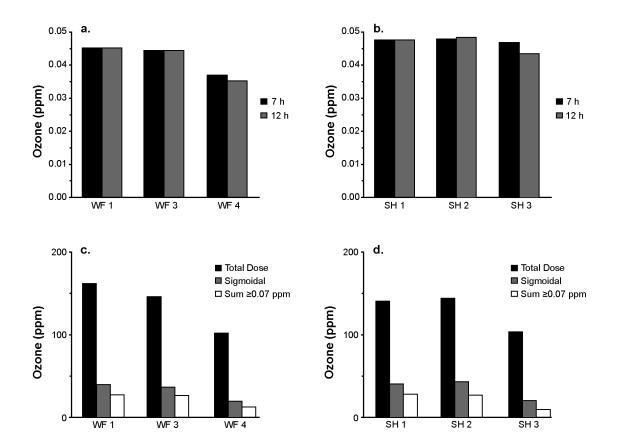
Source: Horvath et al. (2003).

observed at many low-elevation sites elsewhere in the United States. However, the use of
 absolute concentrations (e.g., in units of micrograms per cubic meter) in assessing the possible
 impacts of O₃ on vegetation at high-elevation sites instead of mixing ratios (e.g., parts per
 million) may be an important consideration (see Chapter 9, for further considerations about
 exposure and effective dose considerations for vegetation assessments).

Concentrations of O₃ vary with altitude and latitude. Although a number of reports contain
data on O₃ concentrations at high altitudes (e.g., Coffey et al., 1977; Reiter, 1977; Singh et al.,
1977; Evans et al., 1985; Lefohn and Jones, 1986), fewer reports present data for different
elevations in the same locality. Monitoring data collected by the Mountain Cloud Chemistry
(MCCP) provide useful information for investigating O₃ exposure differences at different
elevations. When applying different exposure indices to the MCCP data, there appears to be no
consistent conclusion concerning the relationship between O₃ exposure and elevation.

1	Lefohn et al. (1990a) summarized the characterization of gaseous exposures at rural sites in
2	1986 and 1987 at several MCCP high-elevation sites. Aneja and Li (1992) have summarized
3	the O_3 concentrations for 1986 to 1988. Table AX3-6 summarizes the sites characterized by
4	Lefohn et al. (1990a). Table AX3-7 summarizes the concentrations and exposures that occurred
5	at several of the sites for the period 1987 to 1988. In 1987, the 7- and 12-h seasonal means were
6	similar at the Whiteface Mountain WF1 and WF3 sites (Figure AX3-39a). The 7-h mean values
7	were 0.0449 and 0.0444 ppm, respectively, and the 12-h mean values were 0.0454 and
8	0.0444 ppm, respectively. Note that, in some cases, the 12-h mean was slightly higher than the
9	7-h mean value. This resulted when the 7-h mean period (0900 to 1559 hours) did not capture
10	the period of the day when the highest hourly mean O ₃ concentrations were experienced.
11	A similar observation was made, using the 1987 data, for the MCCP Shenandoah National Park
12	sites. The 7-h and 12-h seasonal means were similar for the SH1 and SH2 sites (Figure
13	AX3-39b). Based on cumulative indices, the Whiteface Mountain summit (1483-m) site (WF1)
14	experienced a higher exposure than the WF3 (1026-m) site (Figure AX3-39c). Both the sum of
15	the were higher at the WF1 site than at the WF3 site. The site at the base of the mountain (WF4)
16	experienced the lowest exposure of the three O3 sites. Among the MCCP Shenandoah National
17	Park sites, the SH2 site experienced marginally higher O ₃ exposures, based on the index that
18	sums all of the hourly average concentrations (referred to as "total dose" in Figure AX3-39c) and
19	sigmoidal values, than the SH1 high-elevation site (Figure AX3-39d). The reverse was true for
20	concentrations ≥ 0.07 ppm (SUM07) and the number of hourly concentrations ≥ 0.07 ppm the
21	sums of the concentrations ≥ 0.07 ppm and the number of hourly concentrations ≥ 0.07 ppm.
22	When the Big Meadows, Dickey Ridge, and Sawmill Run, Shenandoah National Park, data for
23	1983 to 1987 were compared, it again was found that the 7-h and 12-h seasonal means were
24	insensitive to the different O ₃ exposure patterns. A better resolution of the differences was
25	observed when the cumulative indices were used (Figure AX3-40). There was no evidence that
26	the highest elevation site, Big Meadows, consistently had experienced higher O3 exposures than
27	the other sites. In 2 of the 5 years, the Big Meadows site experienced lower exposures than the
28	Dickey Ridge and Sawmill Run sites, based on the sum of all concentration or sigmoidal indices.
29	For 4 of the 5 years, the SUM07 index yielded the same result.
20	

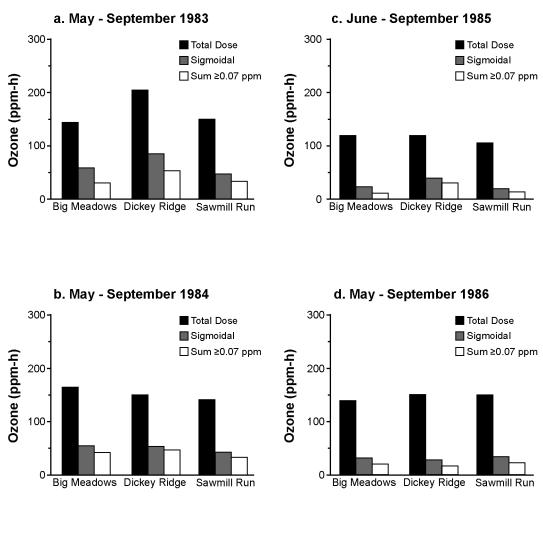
30

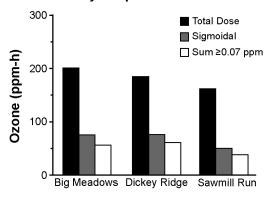

Site	Elevation (m)		Latitude			Longitude	
Howland Forest (HF1), ME	65	458°	11'		68°	46'	
Mt. Moosilauke (MS1), NH	1000	438°	59'	18"	71°	48'	28"
Whiteface Mountain (WF1), NY	1483	448°	23'	26"	73°	51'	34"
Shenandoah NP (SH1), VA	1015	38°	37'	12"	78°	20'	48"
Shenandoah NP (SH2), VA	716	38°	37'	30"	78°	21'	13"
Shenandoah NP (SH3), VA	524	38°	37'	45"	78°	21'	28"
Whitetop Mountain (WT1), VA	1689	36°	38'	20"	81°	36'	21"
Mt. Mitchell (MM1), NC	2006	35°	44'	15"	82°	17'	15"
Mt. Mitchell (MM2), NC	1760	35°	45'		82°	15'	

Site	Year	Min.	10	30	50	70 (ppm)	90	95	99	Max.	No. Obs.	SUM06	SUM08 (ppm-h)	W126
Howland Forest, ME	1987	0.000	0.013	0.021	0.028	0.035	0.046	0.052	0.065	0.076	4766	5.9	0.0	7.7
(HF1)	1988	0.000	0.012	0.021	0.028	0.036	0.047	0.054	0.076	0.106	4786	10.9	2.9	11.6
Mt. Moosilauke, NH	1987	0.006	0.027	0.036	0.045	0.053	0.065	0.074	0.086	0.102	4077	45.0	9.5	40.1
(MS1)	1988	0.010	0.026	0.033	0.043	0.055	0.076	0.087	0.113	0.127	2835	51.9	21.2	43.4
Whiteface Mountain, NY (WF1)	1987	0.011	0.029	0.037	0.046	0.053	0.067	0.074	0.087	0.104	4703	63.5	12.2	50.5
(36-031-0002)	1988	0.014	0.025	0.033	0.043	0.056	0.078	0.089	0.110	0.135	4675	94.4	40.8	78.3
Whiteface Mountain, NY (WF3)	1987	0.010	0.025	0.033	0.039	0.047	0.064	0.075	0.091	0.117	4755	45.4	14.4	40.3
Whiteface Mountain, NY (WF4)	1987	0.000	0.011	0.023	0.031	0.041	0.056	0.065	0.081	0.117	4463	23.8	5.1	21.3
	1987	0.008	0.034	0.044	0.051	0.058	0.067	0.074	0.085	0.105	3539	59.4	7.8	46.5
Mt. Mitchell, NC	1988	0.011	0.038	0.054	0.065	0.075	0.095	0.106	0.126	0.145	2989	145.1	69.7	116.6
(MM1)	1989	0.010	0.038	0.047	0.054	0.059	0.068	0.072	0.081	0.147	2788	54.8	3.5	40.7
	1992	0.005	0.036	0.043	0.048	0.053	0.063	0.069	0.081	0.096	3971	37.8	4.4	36.7
Mt. Mitchell, NC	1987	0.017	0.032	0.042	0.049	0.056	0.067	0.073	0.083	0.096	3118	47.0	5.1	37.4
(MM2)	1988	0.009	0.029	0.041	0.050	0.060	0.080	0.092	0.110	0.162	2992	68.7	28.1	57.7
Shenandoah Park,	1987	0.000	0.023	0.036	0.044	0.054	0.069	0.076	0.085	0.135	3636	54.2	8.5	42.0
VA (SH1)	1988	0.006	0.024	0.036	0.047	0.058	0.077	0.087	0.103	0.140	3959	80.9	29.6	67.2
Shenandoah Park,	1987*	0.003	0.027	0.040	0.049	0.059	0.071	0.077	0.086	0.145	2908	55.7	7.8	41.8
VA (SH2)	1988	0.006	0.029	0.042	0.054	0.064	0.083	0.095	0.108	0.145	4661	133.8	55.8	109.4

						70					No.		SUM08	
Site	Year	Min.	10	30	50	(ppm)	90	95	99	Max.	Obs.	SUM06	(ppm-h)	W126
Shenandoah Park,	1987	0.000	0.018	0.029	0.037	0.047	0.061	0.068	0.080	0.108	3030	23.1	2.6	19.2
VA (SH3)	1988	0.000	0.020	0.031	0.040	0.051	0.067	0.076	0.097	0.135	4278	52.3	15.6	44.2
Whitetop Mountain,	1987	0.01	0.038	0.051	0.059	0.066	0.078	0.085	0.096	0.111	4326	147.7	32.4	105.7
VA (WT1)	1988	0.000	0.030	0.046	0.058	0.068	0.084	0.094	0.119	0.163	3788	133.8	51.0	102.8

Table AX3-7 (cont'd). Seasonal (April-October) Percentiles, SUM06, SUM08, and W126 Values for the MCCP Sites


*Calculations based on a May-September season.



Source: Lefohn et al. (1990a).

1 Taylor et al. (1992) indicated that the forests they monitored experienced differences in O_3 2 exposure. The principal spatial factors underlying this variation were elevation, proximity to 3 anthropogenic sources of oxidant precursors, regional-scale meteorological conditions, and airshed dynamics between the lower free troposphere and the surface boundary layer. 4 Table AX3-8 summarizes the exposure values for the 10 EPRI Integrated Forest Study sites 5 6 located in North America. 7 An important issue for assessing possible impacts of O_3 at high-elevation sites that requires further attention is the use of mixing ratios (e.g., parts per million) instead of absolute 8 9 concentration (e.g., in units of micrograms per cubic meter) to describe O₃ concentration.

Figure AX3-40a-e. Integrated exposures for three non-Mountain Cloud Chemistry Program Shenandoah National Park sites, 1983 to 1987.

Source: Lefohn et al. (1990b).

Site	Year	Quarter	24-h	12-h	7-h	1-h Max.	SUM06 10 ³ ppb-h	SUM08 10 ³ ppb-h
HIGH ELEVATION SIT	ES							
Whiteface Mtn, NY	1987	2	42	43	42	104	13.2	2.5
	1987	3	45	44	43	114	30.1	11.8
	1988	2	49	50	49	131	33.5	13.9
	1988	3	44	43	43	119	22.6	10.4
Great Smoky Mtns NP	1987	2	54	52	49	99	57.1	10.9
	1987	3	53	51	49	95	34.3	8.8
	1988	2	71	70	68	119	126.3	61.2
	1988	3	59	57	55	120	74.7	22.2
Coweeta Hydrologic Lab, NC	1987	2	50	48	47	85	32.4	2.6
	1987	3	47	44	42	95	24.1	2.4
	1988	2	61	59	59	104	81.6	18.5
	1988	3	57	54	51	100	63.6	19.8
LOW ELEVATION SITE	ES							
Huntington Forest, NY	1987	2	36	42	42	88	9.8	0.9
	1987	3	24	32	33	76	5.4	0.2
	1988	2	40	46	46	106	19.2	6.1
	1988	3	37	46	48	91	18.6	2.7
Howland, ME	1987	2	34	39	39	69	1.9	0.0
	1987	3	26	32	31	76	3.8	0.0
	1988	2	36	41	41	90	8.1	2.9
	1988	3	24	30	30	71	1.7	0.0
Oak Ridge, TN	1987	2	42	53	50	112	39.5	13.5
	1987	3	29	44	41	105	24.3	9.0
	1988	2	40	57	58	104	26.4	9.8
	1988	3	32	47	51	122	19.7	7.7
Thompson Forest, WA	1987	2	36	43	41	103	10.7	3.6
	1987	3	30	36	34	94	10.3	2.1
	1988	2	32	39	37	103	8.1	2.3
	1988	3	32	39	36	140	13.5	6.7

Table AX3-8. Summary Statistics for 11 Integrated Forest Study Sites^a

Site	Year	Quarter	24-h	12-h	7-h	1-h Max.	SUM06 10 ³ ppb-h	SUM08 10 ³ ppb-h
LOW ELEVATION SIT	ES (cont'o	d)						
B.F. Grant Forest, GA	1987	2	32	46	48	99	26.1	5.1
	1987	3	33	52	54	102	31.3	10.3
	1988	2	47	63	64	127	53.1	21.9
	1988	3	32	47	48	116	24.1	7.4
Gainesville, FL	1987	2	42	53	50	b	b	b
	1987	3	29	44	41	b	b	b
	1988	2	35	48	51	84	23.4	0.5
	1988	3	20	29	30	70	1.9	0.1
Duke Forest, NC	1987	2	38	48	52	100	29.2	7.8
	1987	3	52	59	50	124	b	b
	1988	2	54	69	75	115	b	b
	1988	3	38	51	54	141	52.9	23.4
Nordmoen, Norway	1987	2	32	40	41	75	2.4	0.0
	1987	3	14	18	20	32	0.0	0.0
	1988	2	22	28	29	53	0.0	0.0
	1988	3	11	15	16	30	0.0	0.0

Table AX3-8 (cont'd). Summary Statistics for 11 Integrated Forest Study Sites.^a

^aConcentration in ppb.

^bData were insufficient to calculate statistic.

Source: Taylor et al. (1992).

In most cases, mixing ratios or mole fractions are used to describe O₃ concentrations. Lefohn et al. (1990b) pointed out that the manner in which concentration is reported may be important when assessing the potential impacts of air pollution on high-elevation forests. Given the same part-per-million value experienced at both a high- and low-elevation site, the absolute concentrations (i.e., micrograms per cubic meter) at the two elevations will be different, because both O₃ and ambient air are gases, and changes in pressure directly affect their volume. According to Boyle's law, if the temperature of a gas is held constant, the volume occupied by 1 the gas varies inversely with the pressure (i.e., as pressure decreases, volume increases). This 2 pressure effect must be considered when measuring absolute pollutant concentrations. At any 3 given sampling location, normal atmospheric pressure variations have very little effect on air 4 pollutant measurements. However, when mass/volume units of concentration are used and pollutant concentrations measured at significantly different altitudes are compared, pressure 5 6 (and, hence, volume) adjustments are necessary. In practice, the summit site at Whiteface 7 Mountain had a slightly higher O₃ exposure than the two low-elevation sites (Lefohn et al., 8 1991). However, at Shenandoah National Park sites, the higher elevation site experienced lower 9 exposures than lower elevation sites in some years.

10 These exposure considerations are trivial at low-elevation sites. However, when one 11 compares exposure-effects results obtained at high-elevation sites with those from low-elevation 12 sites, the differences may become significant (Lefohn et al., 1990b). In particular, assuming that 13 the sensitivity of the biological target is identical at both low and high elevations, some 14 adjustment will be necessary when attempting to link experimental data obtained at 15 low-elevation sites with air quality data monitored at the high-elevation stations. This topic is 16 further discussed in Annex AX9 when considering effective dose considerations for predicting vegetation effects associated with O₃. 17

- 18
- 19 20

AX3.4 DIURNAL PATTERNS IN OZONE CONCENTRATION

21 AX3.4.1 Introduction

Diurnal variations in O_3 at a given location are controlled by a number of factors such as the relative importance of transport versus local photochemical production and loss rates, the timing for entrainment of air from the nocturnal residual boundary layer and the diurnal variability in mixing layer height.

The form of an average diurnal pattern provides some information on sources, transport, and chemical formation and destruction effects at various sites (Lefohn, 1992). Atmospheric conditions leading to limited transport from source regions will produce early afternoon peaks. However, long-range transport processes will influence the actual timing of a peak, from afternoon to evening or early morning hours. Ozone is rapidly depleted near the surface below the nocturnal inversion layer (Berry, 1964). Mountainous sites, which are above the nocturnal

1 inversion layer, do not necessarily experience this depletion (Stasiuk and Coffey, 1974). Taylor 2 and Hanson (1992) reported similar findings, using data from the Integrated Forest Study. The 3 authors reported that intraday variability was most significant for the low-elevation sites due to 4 the pronounced daily amplitude in O₃ concentration between the predawn minimum and mid-afternoon-to-early evening maximum. The authors reported that interday variation was 5 6 more significant in the high-elevation sites. Ozone trapped below the inversion layer is depleted 7 by dry deposition and chemical reactions if other reactants are present in sufficient quantities 8 (Kelly et al., 1984). Above the nocturnal inversion layer, dry deposition does not generally 9 occur, and the concentration of O₃ scavengers is generally lower, so O₃ concentrations remain 10 fairly constant (Wolff et al., 1987). A flat diurnal pattern is usually interpreted as indicating a 11 lack of efficient scavenging of O₃ or a lack of photochemical precursors, whereas a strongly 12 varying diurnal pattern is taken to indicate the opposite.

13 An analysis that identified when the highest hourly average concentrations were observed 14 at rural agricultural and forested sites was described in 1996 O₃ AQCD. A review of the hourly 15 average data collected at all rural agricultural and forested sites in Environmental Protection 16 Agency's AQS database for 1990 to 1992 was undertaken to evaluate the percentage of time 17 hourly average concentrations ≥ 0.1 ppm occurred during the period of 0900 to 1559 hours in 18 comparison with the 24-h period. It was found that 70% of the rural-agricultural and forested 19 sites used in the analysis experienced at least 50% of the occurrences ≥ 0.1 ppm during the period 20 of 0900 to 1559 hours when compared to the 24-h period. When O₃ monitoring sites in 21 California were eliminated, approximately 73% of the remaining sites experienced at least 50% 22 of the occurrences ≥ 0.10 ppm during the daylight 7-h period when compared with the 23 24-h period.

24

25

Diurnal Variations in the Nationwide Data Set

Composite urban, diurnal variations in hourly averaged O₃ for April through October 2000
to 2004 are shown in Figure AX3-41. As can be seen from Figure AX3-41, daily 1-h O₃ maxima
tend to occur in mid-afternoon and daily 1-h O₃ minima tend to occur during the early morning.
However, there is also considerable spread in these times. Therefore, some caution must be
exercised in extrapolating results from one city to another and when attempting to judge the time
of day when the daily 1-h maximum occurs.

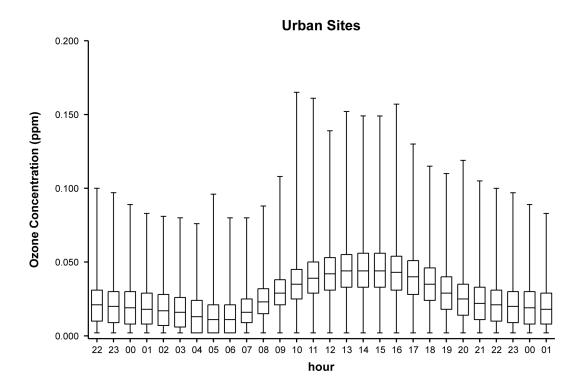


Figure AX3-41. Composite, nationwide diurnal variability in hourly averaged O₃ in urban areas. Values shown are averages from April to October 2000 to 2004.
 Boxes define the interquartile range and the whiskers the minima and maxima.

Source: Fitz-Simons et al. (2005).

1	Corresponding data for 8 hour average O_3 data are shown in Figure AX3-42. As can be
2	seen from Figure AX3-42, daily maximum eight hour O_3 concentrations tend to occur from
3	about 10 a.m. to about 6 p.m. As can be seen from Figure AX3-42, they can also occur at
4	slightly different times and the variation in the 8-h averages is smoother than for the 1-h
5	averages. The minima in the 8 h averages tend to occur starting at about midnight.
~	

6 7

AX3.3.2 Diurnal Patterns in Urban Areas

8 Diurnal Variations in EPA's 12 Cities

9 The diurnal variability of hourly averaged O₃ in the twelve urban areas considered for
10 inclusion in EPA's human health exposure assessment-risk assessment for the current review is
11 illustrated in Figure AX3-43a-l for April to October. Daily maximum 1-h concentrations tend to

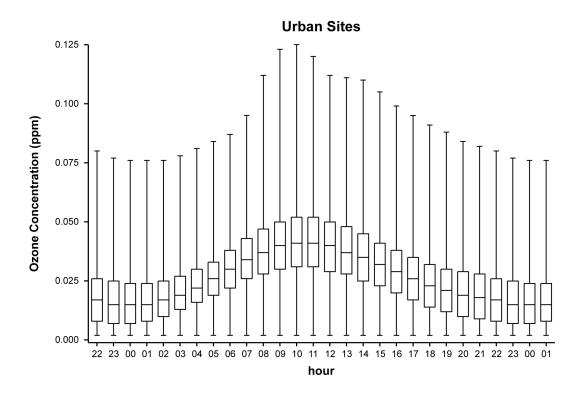


Figure AX3-42. Composite, nationwide diurnal variability in 8 hour average O_3 in urban areas. Values shown are averages from April to October 2000 to 2004. Boxes define the interquartile range and the whiskers the minima and maxima. The hour refers to the start of the 8-h averaging period.

Source: Fitz-Simons et al. (2005).

1	occur in mid-afternoon. However, as can be seen from the figures, the diurnal patterns vary
2	from city to city, with high values (≥ 0.100 ppm) occurring either late in the evening as in
3	Boston, past midnight as in Los Angeles and Sacramento, or mid-morning as in Houston.
4	Typically, high values such as these are found during the daylight hours in mid to late afternoon.
5	The reasons for the behavior of O_3 during the night at the above mentioned locations are not
6	clear. Measurement issues may be involved or there may be physical causes such as transport
7	phenomena, as discussed in Chapter 2. As discussed in Chapter 2, and in greater detail in
8	Section AX2.3.3, nocturnal low level jets are capable of producing secondary O ₃ maxima
9	at night.

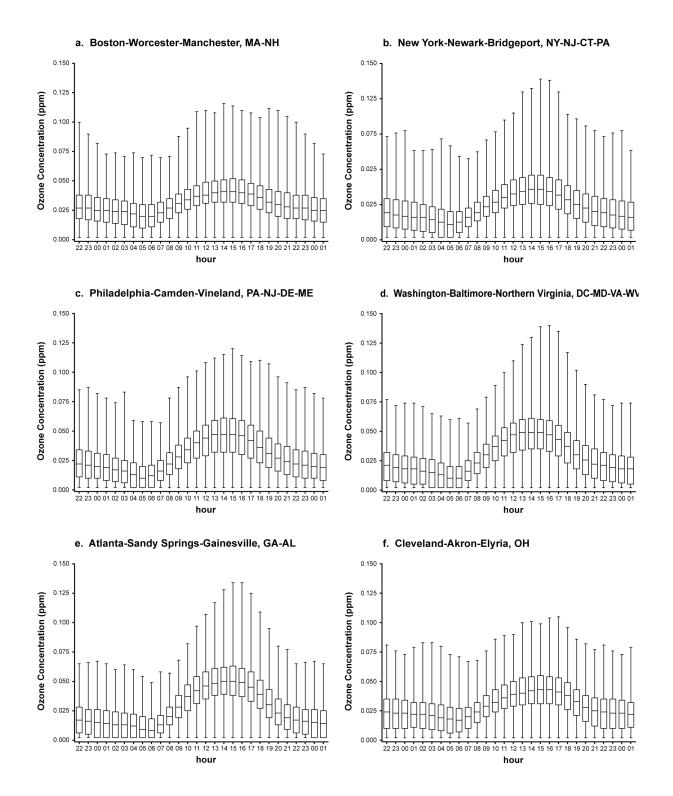
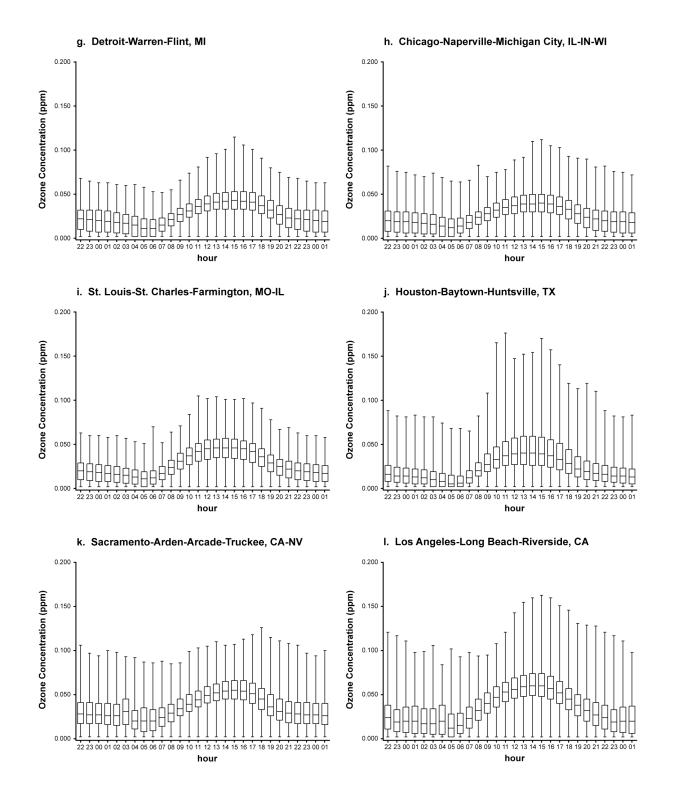



Figure AX3-43a-f. Diurnal variability in hourly averaged O₃ in selected urban areas. Values shown are averages from April to October 2000 to 2004. Boxes define the interquartile range and the whiskers the minima and maxima.

Source: Fitz-Simons et al. (2005).

Figure AX3-43g-l. Diurnal variability in hourly averaged O₃ in selected urban areas. Values shown are averages from April to October 2000 to 2004. Boxes define the interquartile range and the whiskers the minima and maxima.

Source: Fitz-Simons et al. (2005).

1 The diurnal variability of O₃ averaged over 8 hours in the same twelve urban areas is 2 shown in Figures AX3-44a-1. The diurnal patterns of O₃ are broadly similar between 1-h 3 averages and 8-h averages. A typical pattern shows the 8-h daily maximum occurring from 4 about 10 a.m to about 6 p.m., with some deviations from these times. However, as shown in Figures AX3-44a for Boston and AX3-44k for Sacramento, the highest 8-h daily maximum 5 6 values occur starting in mid-afternoon and extending into late evening. These results suggest 7 that transport processes are playing the dominant role in determining the timing of the highest 8 daily maxima in these areas.

9 On days with high 1-h daily maximum concentrations (e.g., ≥ 0.12 ppm) the maxima tend 10 to occur in a smaller time window centered in the middle of the afternoon, compared to days in 11 which the maximum is lower. For example, on the high O₃ days the 1-h maximum occurs from 12 about 11 a.m. to about 6 p.m. However, on days in which the 1-h daily maximum is ≤ 0.080 13 ppm, the daily maximum can occur at any time during the day or night, with only a 50% 14 probability that it occurs between 1 and 3 p.m., in each of the 12 cities. Photochemical reactions 15 in combination with diurnal emissions patterns are expected to produce mid-afternoon peaks in 16 urban areas. These results suggest that transport from outside the urban airshed plays the major 17 role for determining the timing of the daily maxima for low peak O₃ levels. This pattern is more typical for the Los Angeles-Long Beach-Riverside, CA area even for high O₃ days. 18

19 The same general patterns emerge for the timing of the 1-h daily maximum O₃ 20 concentration as are found for the daily maximum 8-h average O₃ concentration. As mentioned 21 above, the daily maximum 8-h O₃ concentrations are generally found between the hours of 22 10 a.m and 6 p.m. However, there are significant fractions of the time when this is not the case 23 for high values, as in Houston, TX and Los Angeles, CA, or in general for lower values at any of 24 the cities examined. Although the 8-h average O₃ concentration is highly correlated with the 25 daily maximum 1-h average O₃ concentration, there are situations where the daily maximum 8-h 26 average O₃ concentration may be driven by very high values in the daily maximum 1-h 27 average O₃ concentration as illustrated in Figure 3-43j. In cases such as these, the predicted 8-h 28 average might overestimate the short-term O₃ concentration later in the day.

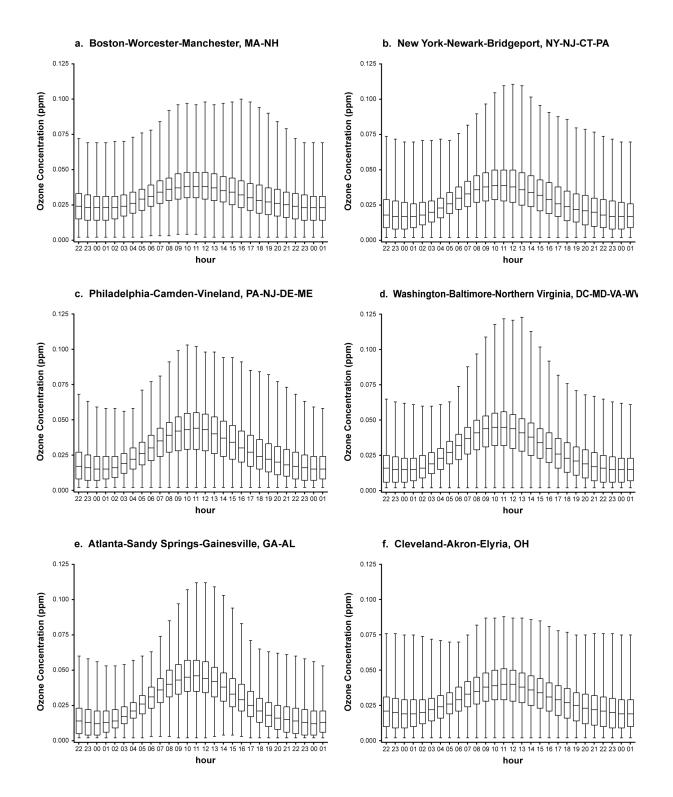


Figure AX3-44a-f. Diurnal variability in 8 hour averaged O₃ in selected urban areas.
Values shown are averages from April to October 2000 to 2004.
Boxes define the interquartile range and the whiskers the minima and maxima. The hour refers to the start of the 8-h averaging period.

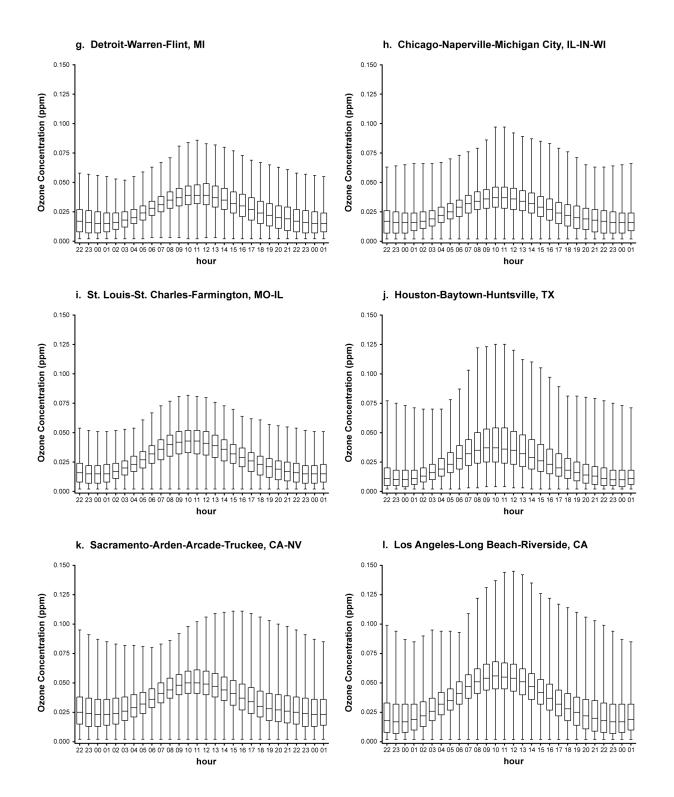


Figure AX3-44g-l. Diurnal variability in 8 hour averaged O₃ in selected urban areas.
Values shown are averages from April to October 2000 to 2004.
Boxes define the interquartile range and the whiskers the minima and maxima. The hour refers to the start of the 8-h averaging period.

- 1 As an aid to better understanding the nature of the diurnal patterns shown in the figures for 2 EPA's 12 cities, Figures AX3-45a-d show the hours in which the 1-h daily maximum O_3 3 concentration occurs in four of the cities. As can be seen from Figures AX3-45a-c for the 4 Philadelphia, Atlanta, and Houston areas, the maximum tends to occur from about 2 p.m. to 4 p.m. about half of the time, and most values occur between about 12 p.m to 6 p.m at higher 5 6 values of the daily maximum 1-h O₃ concentration. Although values at Houston can occur 7 earlier, these are most likely due to episodic releases from the petrochemical industries. 8 For lower values of the 1-h daily maximum, most of the daily maxima still occur in the 9 afternoon, but maxima can also occur at any time of the day or night. In the Los Angeles area, 10 as shown in Figure AX3-45d high values of daily 1-h O₃ maxima can occur at any time during 11 the day or night but with most values occurring during the afternoon.
- Figures AX3-46a-d show the hours in which the 8-h daily maximum O₃ concentration begins. The mean time is about 10 a.m. at these four cities indicating that the 8-h daily maximum tends to occur on average from about 10 a.m to 6 p.m. However, there can be deviations from these times. The same general pattern in which the maxima tend to occur within a narrower time frame at high values than at low values is found in the four cities shown.
- 17 The patterns of diurnal variability for both 1-h and 8-h averages have remained quite stable 18 over the 15 year period from 1990 to 2004, with times of occurrence of the daily maxima 19 varying by no more than an hour from year to year in each of the 12 cities.
- 20

21

Weekday/Weekend Differences

22 In addition to varying diurnally, O₃ concentrations also vary from weekdays to weekends. 23 Heuss et al. (2003) described the results of a nationwide analysis of weekday/weekend 24 differences that demonstrated significant variation in these differences across the United States. 25 Weekend 1-h or 8-h maximum O₃ varied from 15% lower to 30% higher than weekday levels 26 across the U.S. The weekend O₃ increases were primarily found in and around large coastal 27 cities in California and large cities in the Midwest and Northeast Corridor. Many sites that 28 experienced elevated weekday O_3 also had higher O_3 on weekends even though the traffic and O_3 29 precursor levels were substantially reduced on weekends. The authors reported that detailed 30 studies of this phenomenon indicated that the primary cause of the higher O₃ on weekends was

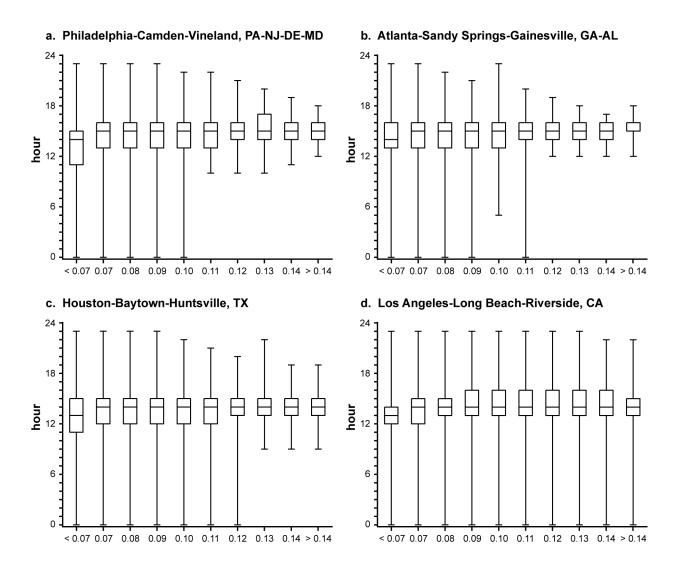


Figure AX3-45a-d. Time of occurrence of daily maximum 1-h O₃ concentration in four cities, averaged from April to October, 2000 to 2004.

- 1 the reduction in oxides of nitrogen emissions on weekends in a volatile organic compound
- 2 (VOC)-limited (NO_x-saturated) chemical regime (cf., Chapter 2). Heuss et al. (2003)
- 3 hypothesized that the lower O_3 on weekends in other locations may result from NO_x reductions
- 4 in a NO_x -limited regime (cf., Chapter 2).

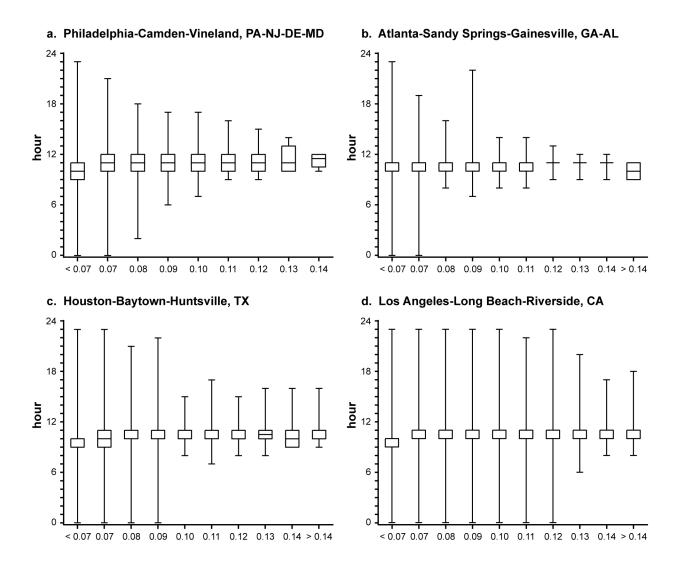


Figure AX3-46a-d. Time of occurrence of daily maximum 8-h average O₃ concentration in four cities, averaged from April to October, 2000 to 2004. The hour refers to the start of the 8-h averaging period.

Pun et al. (2003) described the day-of-week behavior for O₃ in Chicago, Philadelphia, and
 Atlanta. In Chicago and Philadelphia, maximum 1-h average O₃ increases on weekends. In
 Atlanta, O₃ builds up from Mondays to Fridays and declines during the weekends. Fujita et al.
 (2003) pointed out that since the mid-1970s, O₃ levels in portions of California's South Coast

5 Air Basin on weekends have been as high as or higher than levels on weekdays, even though

1 emissions of O_3 precursors are lower on weekends. Blanchard and Tanebaum (2003) noted that

2 despite significantly lower O₃ precursor levels on weekends, 20 of 28 South Coast Air Basin

3 sites showed statistically significant higher mean O_3 levels on Sundays than on weekdays.

4 Chinkin et al. (2003) noted that ambient O_3 levels in California's South Coast Air Basin can be

as much as 55% higher on weekends than on weekdays under comparable meteorological
conditions.

Figures AX3-47a-h show the contrast in the patterns of hourly averaged O₃ in the greater 7 8 Philadelphia, Atlanta, Houston and Los Angeles areas from weekdays to weekends from May to 9 September 2004. Daily maximum concentrations occur basically at the same time on either 10 weekdays or weekends. Mean O₃ concentrations at midday are about the same on weekdays and 11 weekends in Atlanta, Philadelphia, and Houston, but are higher on weekends in the Los Angeles 12 area. Figures AX3-48a-h show the weekday/weekend differences for the 8-h averages. As can 13 be seen from the figures, the lowest O₃ concentration observed during weekend afternoons tend 14 to be higher than on weekday afternoons. On weekends, traffic volumes are lower and there are 15 fewer diesel vehicles on the road, resulting in a lower rate of scavenging by NO. The spike in 16 values shown for Houston in mid-morning shown in Figure AX3-47 resulted from the release of 17 highly reactive hydrocarbons from the petrochemical industry (which could occur on any day of 18 the week). Otherwise, the maximum O_3 concentrations could be seen to occur during the week 19 as they do in Philadelphia and Atlanta, in contrast to Los Angeles.

20

21

Spatial Variability in Diurnal Patterns

22 Daily maxima in either the 1-h or 8-h averages do not necessarily occur at the same time of 23 day at each site in the 12 cities, and the diurnal pattern observed at individual sites can vary from 24 the composites shown in Figures AX3-41 and 42. Differences in diurnal patterns between sites 25 are related to differences in transport times from sources of precursors, chemical reactions, in 26 particular, titration of O₃ by NO from local sources. Figure AX3-49a shows the diurnal pattern 27 of 1-h average O₃ at a site in downtown Detroit, MI (cf. Site J in Figure AX3-30). This site is 28 affected by nearby traffic emissions. Figure AX3-49b shows the diurnal pattern at a site well 29 downwind (cf, Site D in Figure AX3-30). The peak 1-h average O₃ concentrations tend be 30 higher at the downwind site than at the site in the urban core. Figure AX3-50a shows the diurnal 31 patterns at a site in downtown St. Louis (cf. Site P in Figure AX3-31) and Figure AX3-50b

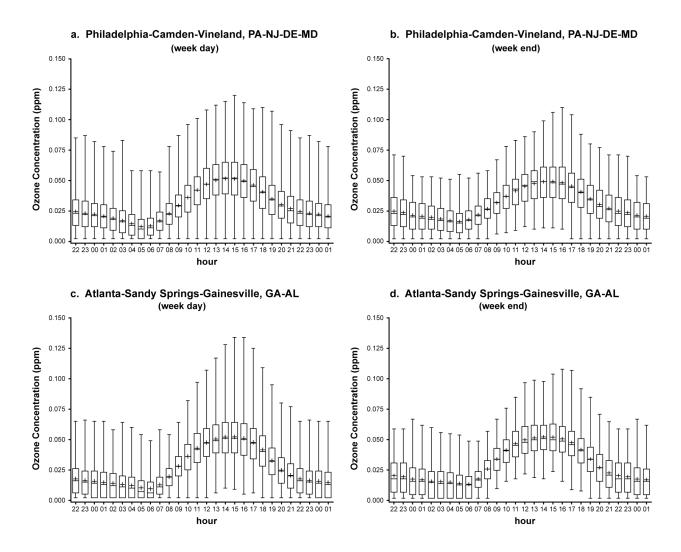


Figure AX3-47a-d. Diurnal variations in hourly averaged O₃ on weekdays and weekends in four cities. Values shown represent averages from May to September of 2004.

shows the diurnal pattern at a site downwind (Site A in Figure AX3-31). The same general
relations are observed at the two sites in the St. Louis urban area as in the Detroit urban area.
Figure AX3-51a shows the diurnal pattern observed at a site in San Bernadino, CA. This site is
affected by transport of precursors from Los Angeles County, production from local precursors
and by nearby NO sources driving O₃ to very low levels at night as shown. A relatively high
peak 1-h O₃ concentrations is reached at 2 to 3 p.m. Figure AX3-51b shows the diurnal pattern
of O₃ at a site about 80 km to the east of the site mentioned above (cf. Site Q in Figure AX3-36)

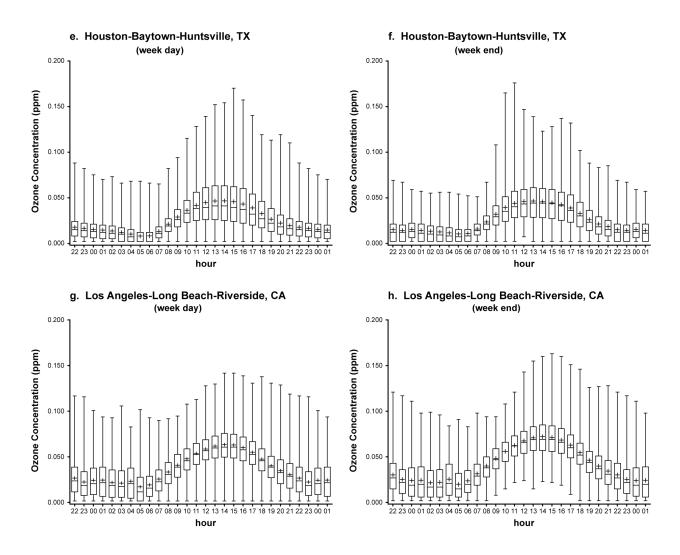


Figure AX3-47e-h. Diurnal variations in hourly averaged O₃ on weekdays and weekends in four cities. Values shown represent averages from May to September of 2004.

in a relatively unpopulated area. The diurnal pattern of hourly averaged O₃ is much flatter and
the 1-h peak concentration is reached about 5 or 6 p.m., on average. The cause of the rise in
concentrations at 2 a.m. is not clear.

The diurnal variation in the 8-h averages observed at the two contrasting sites in these three areas are shown in Figures AX3-52a,b, 53a,b, and 54a,b. As might be expected the patterns are somewhat flatter than for the 1-h averages. This implies that the difference in 8-h averages can be substantial (i.e., over a factor of two) during early morning and afternoon and evening.

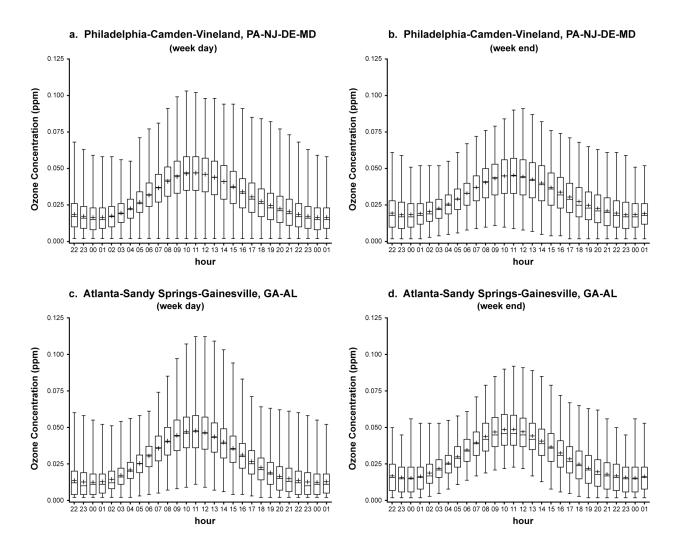


Figure AX3-48a-d. Diurnal variations in 8-h averaged O₃ on weekdays and weekends in four cities. Values shown represent averages from May to September of 2004. The hour refers to the start of the 8-h averaging period.

2 3

> 4 5

1

The general pattern that emerges from the site to site variability within the urban areas examined is that peaks in 1-h average concentrations are higher and tend to occur later at downwind sites than in the urban cores. To the extent that monitoring site are either near to or remote from sources of precursors in urban/suburban areas, the behavior of O_3 will follow these basic patterns. Similar relations are found for the 8-h average O_3 concentrations.

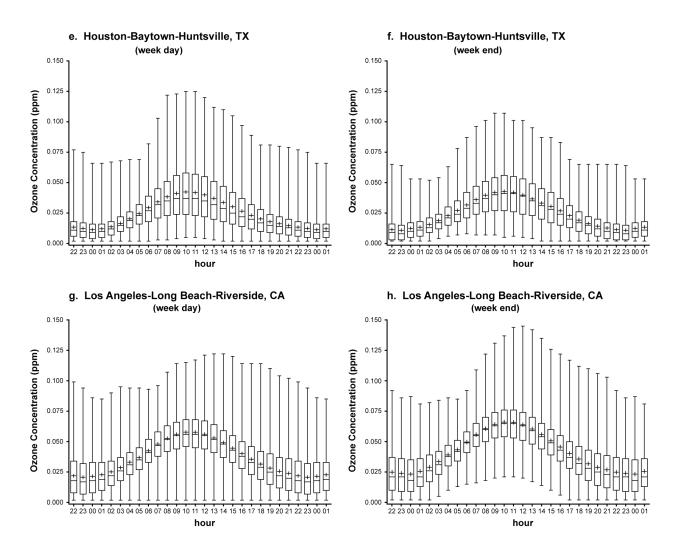


Figure AX3-48e-h. Diurnal variations in hourly averaged O₃ on weekdays and weekends in four cities. Values shown represent averages from May to September of 2004.

1 AX3.3.3 Diurnal Patterns in Nonurban Areas

Composite diurnal patterns of O_3 are shown in Figure AX3-55 for hourly averaged O_3 and in Figure AX3-56 for 8 hour average O_3 at rural (CASTNET) sites. As can be seen from a comparison of Figures AX3-55 and AX3-56 with Figures AX3-42 and AX3-43, diurnal patterns of O_3 are smoother and shallower at the rural sites than at the urban sites. Maxima in hourly averaged O_3 concentrations also tend to occur in afternoon. However, highest concentrations

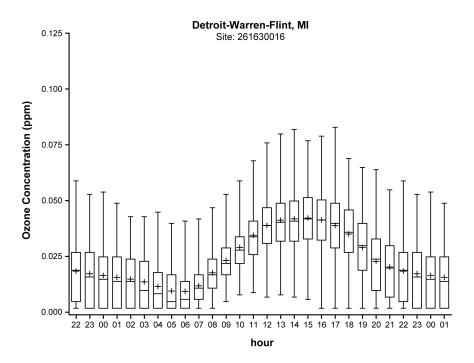
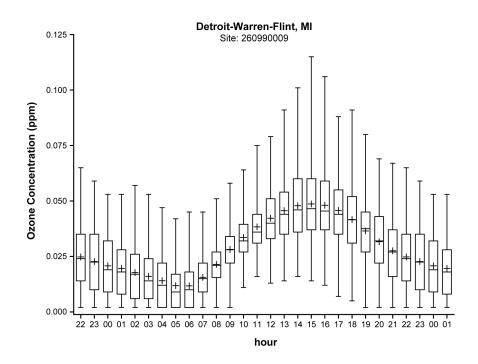
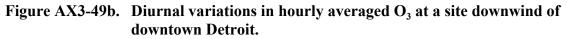




Figure AX3-49a. Diurnal variations in hourly averaged O₃ at a site in downtown Detroit, MI.

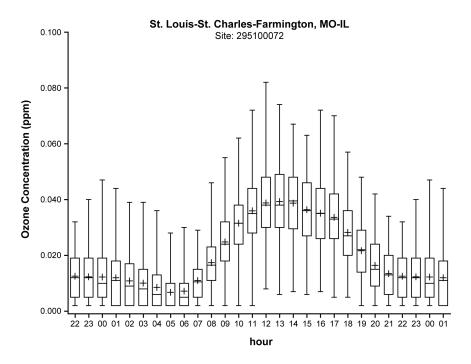


Figure AX3-50a. Diurnal variations in hourly averaged O₃ at a site in downtown St. Louis, MO.

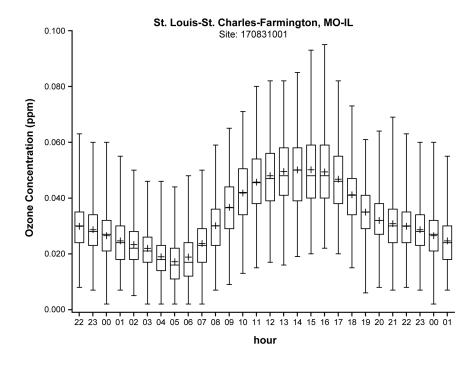


Figure AX3-50b. Diurnal variations in hourly averaged O₃ at a site downwind of downtown St. Louis.

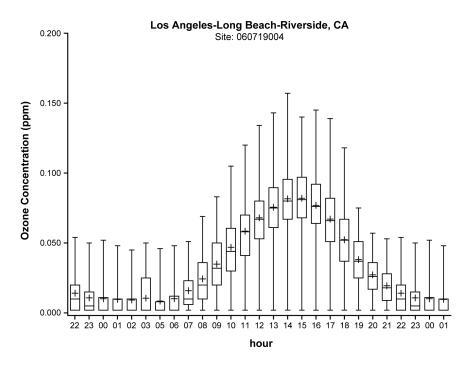


Figure AX3-51a. Diurnal variations in hourly averaged O₃ at a site in San Bernadino, CA.

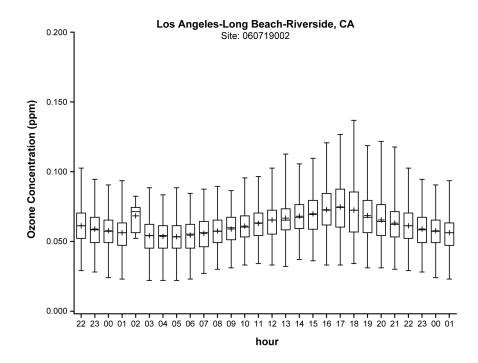


Figure AX3-51b. Diurnal variations in hourly averaged O₃ at a site in Riverside County well downwind of sources.

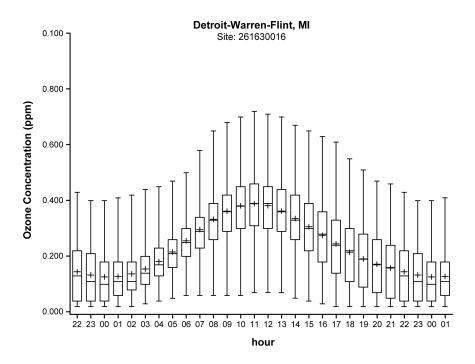
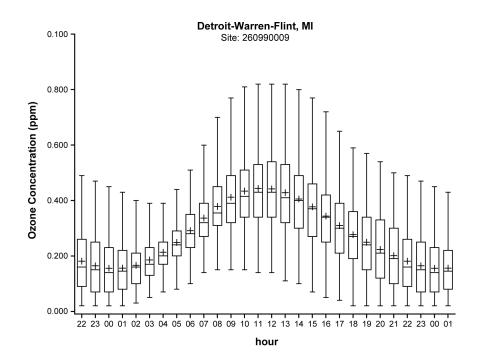
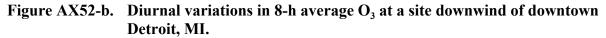




Figure AX3-52a. Diurnal variations in 8-h average O₃ at a site in downtown Detroit, MI.

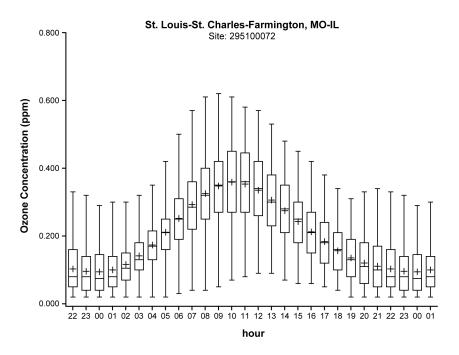
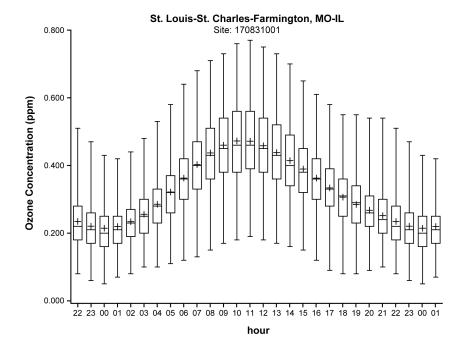



Figure AX3-53a. Diurnal variations in 8-h average ozone at a site in downtown St. Louis, MO.

Figure AX3-53b. Diurnal variations in 8-h average O₃ at a site downwind of downtown St. Louis, MO.

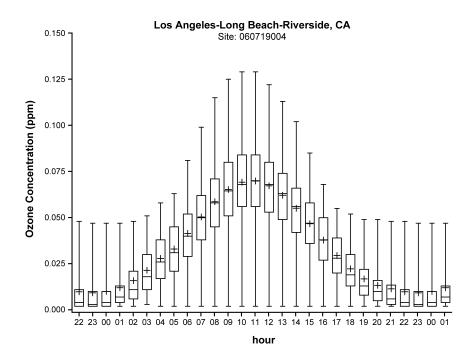
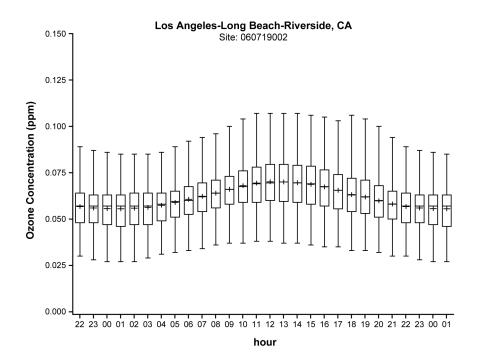



Figure AX3-54a. Diurnal variations in 8-h average O₃ at a site in San Bernadino, CA.

Figure AX3-54b. Diurnal variations in 8-h average O₃ at a site in Riverside County well downwind of sources.

Rural (CASTNET) Sites

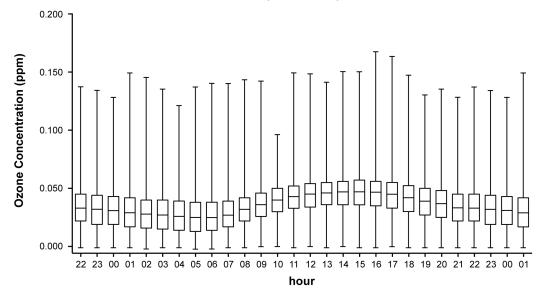
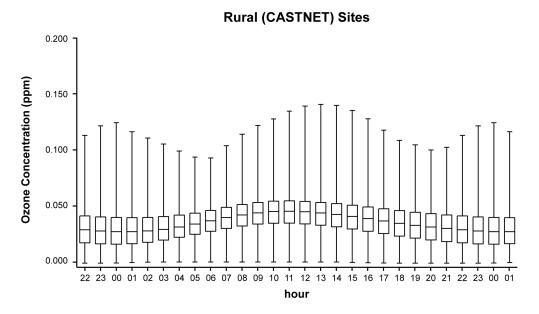
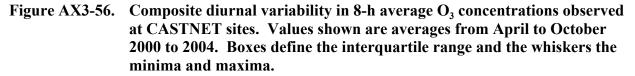




Figure AX3-55. Composite diurnal variability in hourly O₃ concentrations observed at CASTNET sites. Values shown are averages from April to October 2000 to 2004. Boxes define the interquartile range and the whiskers the minima and maxima.

Source: Fitz-Simons et al. (2005).

1 observed during any particular hour at night at the CASTNET sites (~0.130 ppm) are

- 2 substantially higher than observed in urban areas (<0.100 ppm) and daily 1-h maxima at
- 3 CASTNET sites have exceeded 0.150 ppm. The diurnal variations in 8-h average O_3
- 4 concentrations are also much smaller at the CASTNET sites than at the urban sites. Note also
- 5 that the maxima in 8-h average O_3 concentrations are higher at the CASTNET sites than at the 6 urban sites.

The diurnal variability of O₃ in urban/suburban areas or in areas affected by local power 7 8 plants and highways is usually much greater than in other more isolated areas. The diurnal 9 variability of two sites that are characteristic of these two patterns is shown in Figure AX3-57. 10 The Jefferson County, KY site is characterized as suburban-residential in the AQS database and 11 is near Louisville, KY. High levels of O₃ and NO can be found there. The Oliver County, 12 ND site is characterized as rural-agricultural in the AQS database. This site is fairly isolated 13 from combustion sources of precursors and is not near any large urban area. As can be seen 14 from Figure AX3-57, the diurnal variability of O₃ is much smaller at the North Dakota site than 15 it is at the Kentucky site. The Kentucky site is influenced strongly by emissions of NO that 16 scavenge O₃ during the night and by photochemical reactions that form O₃ during the day. These sources are lacking in the vicinity of the North Dakota site, and O₃ observed there arrives mainly 17 18 from transport from distant source regions.

19 Logan (1989) described the diurnal variability of O₃ at several rural locations, shown in 20 Figure AX3-58, and noted that on average, daily profiles show a broad maximum from about 21 noon to about 6 p.m. at all the eastern sites, except for the peak of Mt. Washington. Further 22 results that document the diurnal behavior of O₃ in the United States during the past few decades 23 can be found in the previous AQCD for O₃. Figure AX3-59 shows diurnal patterns for several 24 national forest sites in the EPA AQS database for 2002. Several of the sites analyzed exhibit 25 fairly flat average diurnal patterns. Such a pattern is based on average concentrations calculated 26 over an extended period and caution is urged in drawing conclusions concerning whether some 27 monitoring sites illustrated in the figure experience higher cumulative O₃ exposures than other 28 sites. Variation in O₃ concentration occurs from hour to hour on a daily basis, and, in some 29 cases, elevated hourly average concentrations are experienced either during daytime or nighttime 30 periods (Lefohn and Mohnen, 1986; Lefohn and Jones, 1986; Logan, 1989; Lefohn et al., 1990a; 31 Taylor et al., 1992). Because the diurnal patterns represent averaged concentrations calculated

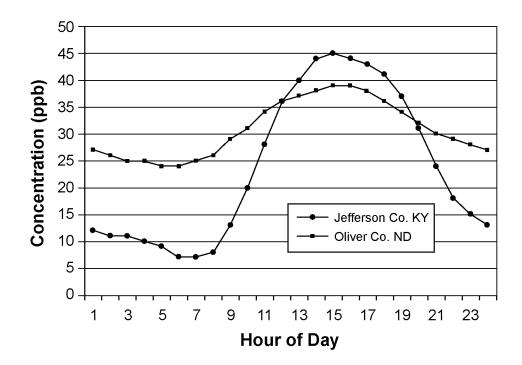


Figure AX3-57. The comparison of the seasonal diurnal patterns for urban-influenced (Jefferson County, KY) and a rural-influenced (Oliver County, ND) monitoring sites using 2002 hourly data for April-October.

over an extended period, the smoothing from the averaging tends to mask the elevated hourly
 average concentrations.

3 Lefohn et al. (1990b) characterized O₃ concentrations at high-elevation monitoring sites. 4 The authors reported that a fairly flat diurnal pattern for the Whiteface Mountain summit site 5 (WF1) was observed (Figure AX3-60a), with the maximum hourly average concentrations 6 occurring in the late evening or early morning hours. A similar pattern was observed for the 7 mid-elevation site at Whiteface Mountain (WF3). The site at the base of Whiteface Mountain 8 (WF4) showed the typical diurnal pattern expected from sites that experience some degree of O_3 9 scavenging. More variation in the diurnal pattern for the highest Shenandoah National Park sites 10 occurred than for the higher elevation Whiteface Mountain sites, with the typical variation for 11 urban-influenced sites in the diurnal pattern at the lower elevation Shenandoah National Park site 12 (Figure AX3-60b). Aneja and Li (1992), in their analysis of the five high-elevation Mountain 13 Cloud Chemistry Program (MCCP) sites, noted the presence of the flat diurnal pattern typical of

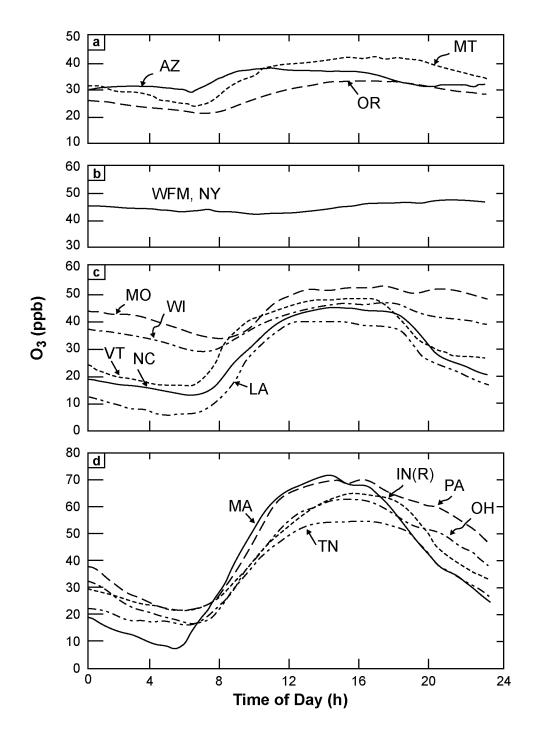


Figure AX3-58a-d. Diurnal behavior of O₃ at rural sites in the United States in July. Sites are identified by the state in which they are located.
(a) Western National Air Pollution Background Network sites (NAPBN); (b) Whiteface Mountain (WFM) located at 1.5 km above sea level; (c) eastern NAPBN sites; and (d) sites selected from the Electric Power Research Institute's Sulfate Regional Air Quality Study. IN(R) refers to Rockport.

Source: Logan (1989).

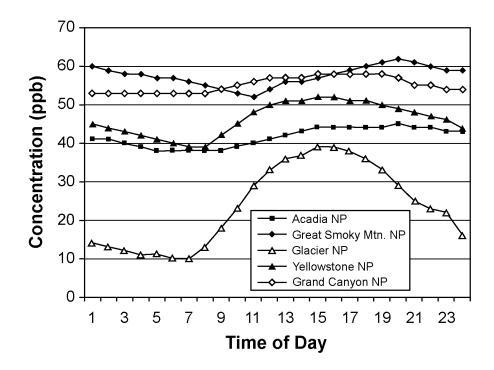


Figure AX3-59. Composite diurnal O₃ pattern at selected national forest sites in the United States using 2002 hourly average concentration data.

Source: U.S. Environmental Protection Agency (2003a).

1 high-elevation sites that has been described previously in the literature. Aneja and Li (1992) 2 noted that the peak of the diurnal patterns over the period of May to October (1986 to 1988) 3 occurred between 1800 and 2400 hours for the five sites, whereas the minimum was observed 4 between 0900 and 1200 hours. However, it is important to note that, as indicated by Lefohn et al. (1990b), the flat diurnal pattern was not observed for all high-elevation sites. 5 6 As mentioned earlier, nonurban areas only marginally affected by nearby sources usually have a 7 flatter diurnal profile than sites located in urban areas. Nonurban O₃ monitoring sites experience 8 differing types of diurnal patterns, as shown in this section. The difference in diurnal patterns 9 may influence the potential for O_3 exposures to affect vegetation. 10

11

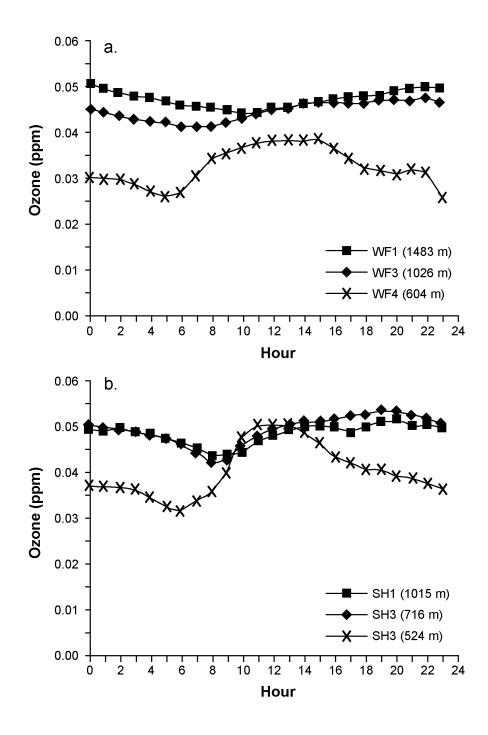
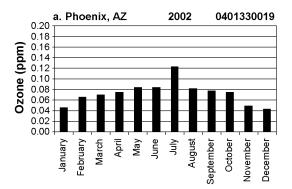


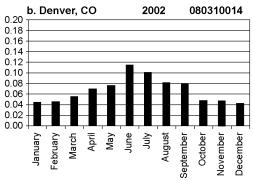
Figure AX3-60a,b. Composite diurnal pattern at (a) Whiteface Mountain, NY and (b) the Mountain Cloud Chemistry Program Shenandoah National Park site for May to September 1987.

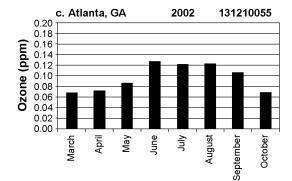
Source: Lefohn et al. (1990a).

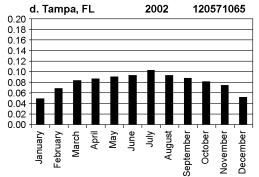
1 AX3.5 SEASONAL VARIATIONS IN OZONE CONCENTRATIONS

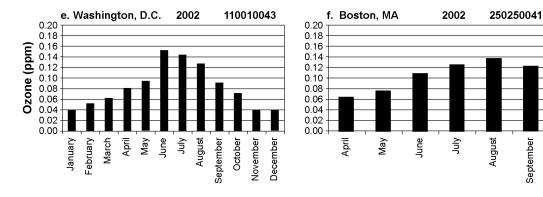
2 AX3.5.1 Seasonal Variations in Urban Areas


3 Seasonal Variability


Figures AX3-61a-h show maximum 1-h O₃ concentrations by month for selected urban sites for 2002. As can be seen from the figure, maximum 1-h O₃ concentrations tend to occur mainly in July and August, but may also occur in other months. For example, they occurred in June in Washington, DC and Denver, CO. The number of months for which data are shown depends on local preference for the length of monitoring during the year. Due to a number of factors, the absolute magnitude and the timing of the maximum hourly average concentrations varies from year to year.


It should not be assumed that highest O₃ levels are confined to the summer. Highest average O₃ concentrations generally occur at RRMS during the second quarter (i.e., during April or May) versus the third quarter of the year as for urban sites or for nonurban sites heavily affected by regional pollution sources.


15 The seasonal behavior of O₃ varies across the 12 cities and high O₃ values are also found at 16 some of the 12 cities outside of summer (e.g., Houston and Los Angeles). Figures AX3-62a-1 17 show the diurnal variability of hourly average O₃ averaged over November through March for 18 EPA's 12 cities. Daily maxima tend to occur between about 1 and 2 p.m. standard time is used 19 across the U.S. accounting for the one hour shift from the warm season. As expected, maximum 20 values tend to be lower than during the warmer months. The diurnal patterns are not as clear as 21 in the warmer season as there is a greater tendency for highest values to occur throughout the 22 day and not only during early afternoon. In most northern cities, the extreme values of the daily 23 maximum 8-h average O₃ concentration are a little more than half of those during the 24 warm season and the ratio of the medians are more similar as can be judged by comparison of 25 Figures AX3-41a-1 with Figures AX3-62a-1. Differences are even smaller for the southern cities. 26 Indeed, some of the highest values are found in the Houston CSA outside of summer. 27 Figures AX3-63a-l show the diurnal variability of 8-h average O₃ averaged over November


- through March for EPA's 12 cities.
- 29

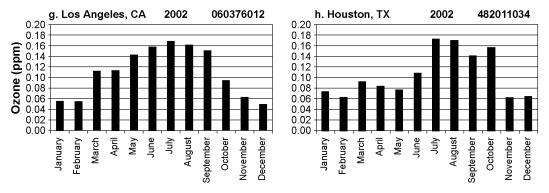


Figure AX3-61a-h. Seasonal variations in O_3 concentrations as indicated by the 1-h maximum in each month at selected sites, 2002.

Source: U.S. Environmental Protection Agency (2003a).

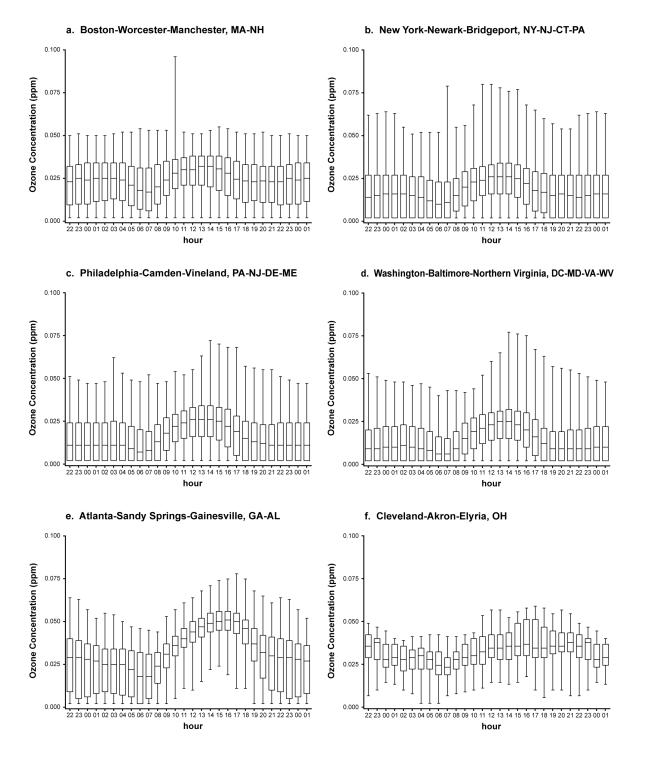


Figure AX3-62a-f. Diurnal variability in 1-h average O₃ concentrations in EPA's 12 cities.
 Values shown represent averages from November through March, 2000 to 2004. Boxes define the interquartile range and the whiskers, the minima and maxima.

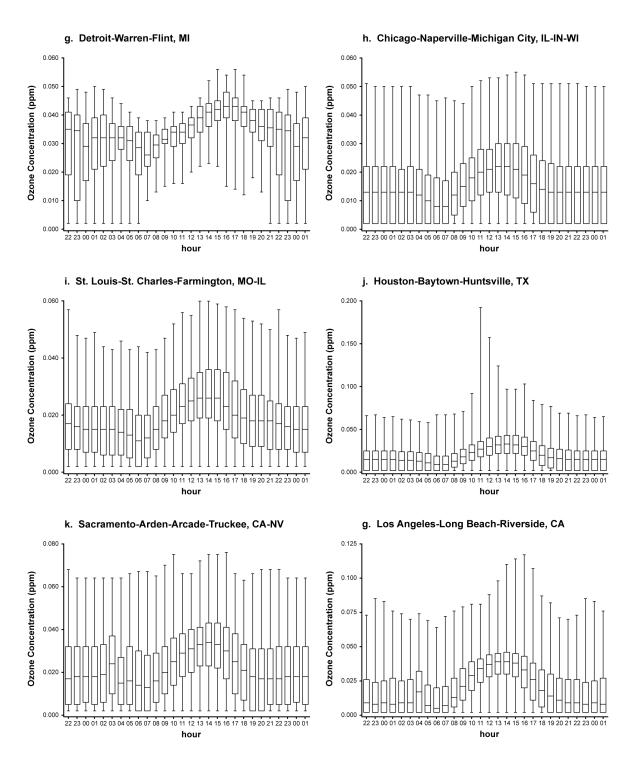


Figure AX3-62g-l. Diurnal variability in 1-h average O₃ concentrations in EPA's 12 cities. Values shown represent averages from November through March, 2000 to 2004. Boxes define the interquartile range and the whiskers, the minima and maxima.

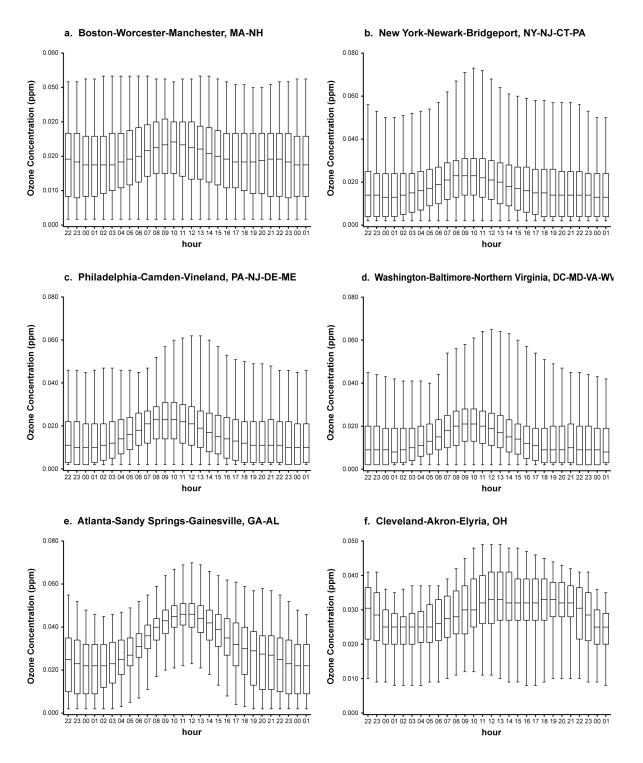


Figure AX3-63a-f. Diurnal variability in 8-h average O₃ concentrations in EPA's 12 cities. Values shown represent averages from November through March, 2000 to 2004. Boxes define the interquartile range and the whiskers, the minima and maxima. The hour refers to the start of the 8-h averaging period.

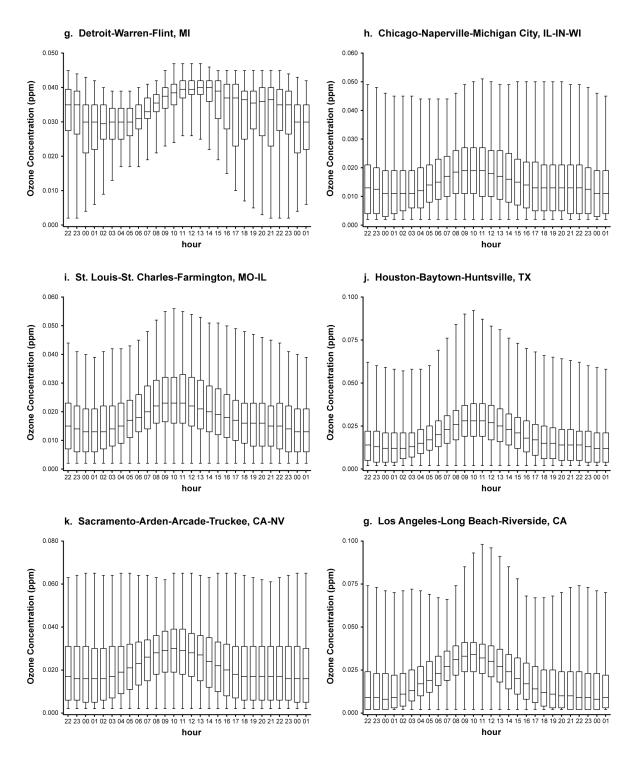


Figure AX3-63g-l. Diurnal variability in 8-h average O₃ concentrations in EPA's 12 cities.
Values shown represent averages from November through March, 2000 to 2004. Boxes define the interquartile range and the whiskers, the minima and maxima. The hour refers to the start of the 8-h averaging period.

1

AX3.5.2 Seasonal Variations in Nonurban Areas

It is important to characterize the seasons in which the highest O₃ concentrations would be 2 3 expected to occur in nonurban areas in assessing the effects of O₃ on vegetation. It should not be 4 assumed that highest O₃ concentrations occur at all locations during the summer. For example, 5 places where highest average O₃ concentrations are observed during the spring (i.e., the months 6 of April or May) versus the summer (Evans et al., 1983; Singh et al., 1978; Lefohn et al., 2001) 7 are found at many national parks in the West. Figure AX3-23 shows the hourly average 8 concentrations for Yellowstone National Park (WY) for the period of January to December 2001. 9 Note that, at the Yellowstone National Park site, the highest hourly average concentrations tend 10 to occur during April and May. Lefohn et al. (2001) and Monks (2000) noted that this was also 11 observed for other RRMS in North America and northern Europe.

12 Differences in the timing of peak O₃ concentrations may be associated with the 13 observations by Logan (1989) that spring and summer O₃ concentrations in rural areas of the 14 eastern United States are severely impacted by anthropogenic, and possibly natural emissions of 15 NO_x and hydrocarbons, and that O_3 episodes occur when the weather is particularly conducive to 16 photochemical formation of O_3 . Taylor et al. (1992) reported that the temporal patterns 17 of O₃ during quarterly or annual periods exhibited less definitive patterns at 10 forest sites in 18 North America. Based on the exposure index selected, different patterns were reported. 19 Meagher et al. (1987) reported that for rural O₃ sites in the southeastern United States, the daily 20 maximum 1-h average concentration was found to peak during the summer months. Taylor and 21 Norby (1985)

reported that Shenandoah National Park experienced both the highest frequency of episodes and
 the highest mean duration of exposure events during the month of July.

Aneja and Li (1992) reported that the maximum monthly O_3 levels at several rural sites occurred in either the spring or the summer (May to August), and the minimum occurred in the fall (September and October). The timing of the maximum monthly values differed across sites and years. However, in 1988, an exceptionally high O_3 concentration year occurred, and the highest monthly average concentration occurred in June for almost all of the five sites investigated. June 1988 was also the month in which the greatest number of O_3 episodes

30 occurred in the eastern United States.

1	Lefohn et al. (1990a) characterized the O_3 concentrations for several sites in the United
2	States exhibiting low maximum hourly average concentrations. Of the three western national
3	forest sites evaluated by Lefohn et al. (1990a), Apache National Forset (AZ), Custer National
4	Forest (MT), and Ochoco National Forest (OR), only at Apache National Forest (AZ) did
5	maximum monthly mean concentrations occur in the spring. The Apache National Forest site
6	was above mean nocturnal inversion height, and no decrease of concentrations occurred during
7	the evening hours. Highest hourly maximum concentration, as well as the highest
8	W126 O_3 exposures were also found at this site. Most of the maximum monthly mean
9	concentrations occurred in the summer at the other. Maximum monthly mean O ₃ concentrations
10	were found at the White River Oil Shale site in Colorado during the spring and summer months.
11	The W126 sigmoidal weighting exposure index was also used to identify the month of
12	highest O_3 exposure to vegetation. A somewhat more variable pattern was observed than when
13	the maximum monthly average concentration was used. In some cases, the highest W126
14	exposures occurred earlier in the year than was indicated by the maximum monthly
15	concentration. For example, in 1979, the Custer National Forest site experienced its highest
16	W126 exposure in April, although the maximum monthly mean occurred in August. In 1980, the
17	reverse occurred.
18	There was no consistent pattern for those sites located in the continental United States.
19	Maximum O ₃ exposures during the spring and summer at the Theodore Roosevelt NP, Ochoco,
20	and Custer National Forest sites and the White River Oil Shale site. The sites at which highest

O₃ exposures occurred during the period from fall to spring did not necessarily also have the
 lowest O₃ exposures.

23 24

25 AX3.6 TRENDS IN OZONE CONCENTRATIONS

26 Evidence for Trends in Ozone Concentrations at Rural Sites in the United States

Year-to-year variability in the nationwide May to September, mean daily maximum 8-h O₃
concentrations are shown in Figure AX3-64. Data flagged because of quality control issues was
removed with concurrence by the local monitoring agency. Only days for which there was
75% data capture (i.e., 18 of 24 hours) were kept, and a minimum of 115 of 153 days (i.e.,
75% data capture) were required in each year. Missing years were filled in using simple

Mean of Daily Maximum 8-Hour Values, 1990 - 2004 0.12 0.11 0.10 Ozone Concentration (ppm) 0.09 0.08 0.07 0.06 • • 0.05 • 0.04 0.03 0.02 0.01 **** 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

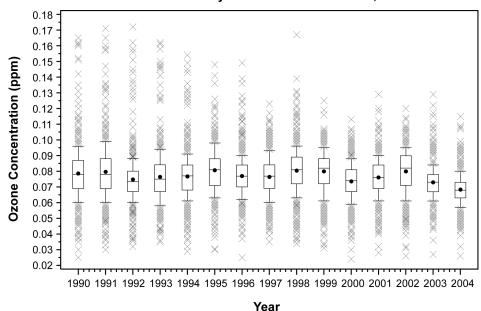
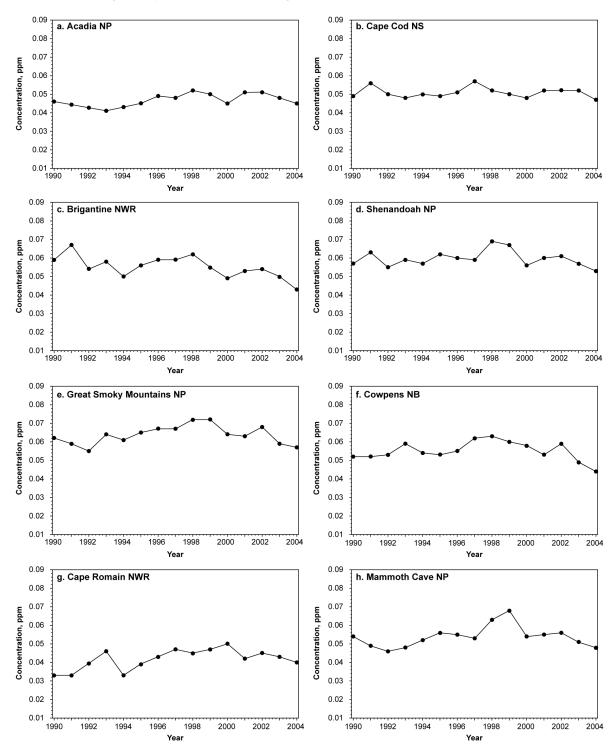
Nationwide Trends, May to September

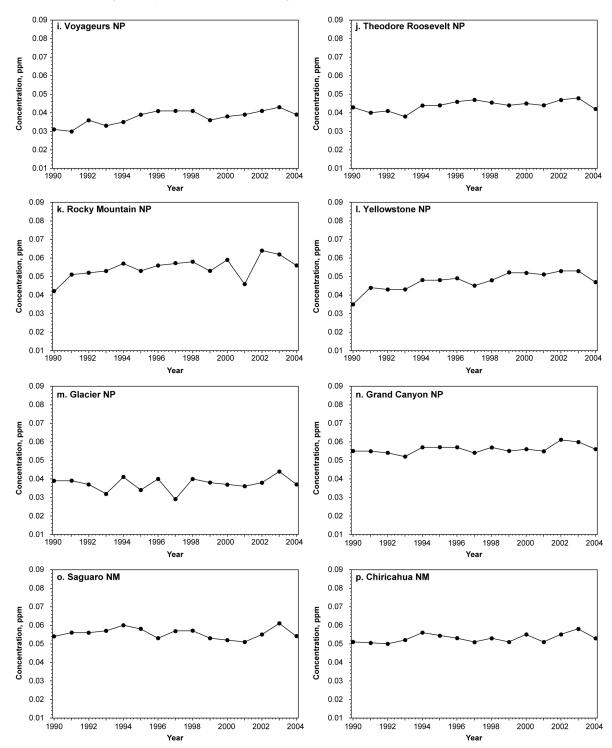
Figure AX3-64. Year-to-year variability in nationwide mean daily maximum 8-h O₃ concentrations. The whiskers on the box plot represent the 10th and 90th percentile concentrations. The "X"s above and below the whiskers are the values that fall below and above the 10th and 90th percentile concentrations. The dots inside the box represent the mean, for the statistic, at all sites.

Source: Fitz-Simons et al. (2005).

1 linear interpolation, as done in EPA Trends reports. Year-to-year variability in the 2 corresponding 95th percentile values of the daily maximum 8-h O₃ concentrations are shown in 3 Figure AX3-65. Sites considered in this analysis are shown in the map in Figure AX3-3. 4 Mean O₃ concentrations were slightly lower in 2003 and 2004 than in earlier years, and as was 5 shown in Figures AX3-1 and AX3-2, most sites are located in the East. The summer of 2003 was slightly cooler than normal in the East (Levinson and Waple, 2004) and the summer of 2004 6 was much cooler than normal in the East (Levinson, 2005) accounting in part for the dip in O₃ 7 8 during these 2 years. Trends in compliance metrics such as the fourth highest daily maximum 9 8-h and the second highest 1-h daily maximum can be found in the EPA Trends reports and so 10 are not repeated here.

Nationwide Trends, May to September 95th Percentile of Daily Maximum 8-Hour Values, 1990 - 2004


Figure AX3-65. Year-to-year variability in nationwide 95th percentile value of the daily maximum 8-h O₃ concentrations. The whiskers on the box plot represent the 10th and 90th percentile values for the statistic. The "X"s above and below the whiskers are the values that fall below and above the 10th and 90th percentile values. The dots inside the box represent the mean, for the statistic, at all sites.

Figures AX3-66a-h show year-to-year variability in mean daily 8-h O₃ concentrations 1 2 observed at selected national park sites across the United States. Figures AX3-67a-h show year-3 to-year variability in the 95th percentile value of daily maximum 8-h O_3 concentrations at the 4 same sites shown in Figures AX3-66a-h. The same criteria used for calculating values in 5 Figures AX3-64 and AX3-65 were used for calculating the May to September seasonal averages for the national parks shown in Figures AX3-66a-h and 67a-h. Trends at these national parks are 6 7 shown in Table AX3-9. However, several monitoring sites were moved during the period from 8 1990 to 2004. Sites were moved at Acadia NP in 1996, Joshua Tree NP in 1993, Mammoth 9 Cave NP in 1996, Voyageurs NP in 1996, and Yellowstone NP in 1996 and offsets in O₃ 10 concentrations have resulted. As a result, trends are not shown for these sites.

May to September Mean of Daily Maximum 8-Hour Values, 1990 - 2004

Figure AX3-66a-h. Year-to-year variability in mean daily maximum 8-h O₃ concentrations at selected national park (NP), national wildlife refuge (NWR), and national monument (NM) sites.

May to September Mean of Daily Maximum 8-Hour Values, 1990 - 2004

Figure AX3-66i-p. Year-to-year variability in mean daily maximum 8-h O₃ concentrations at selected national park (NP), national wildlife refuge (NWR), and national monument (NM) sites.

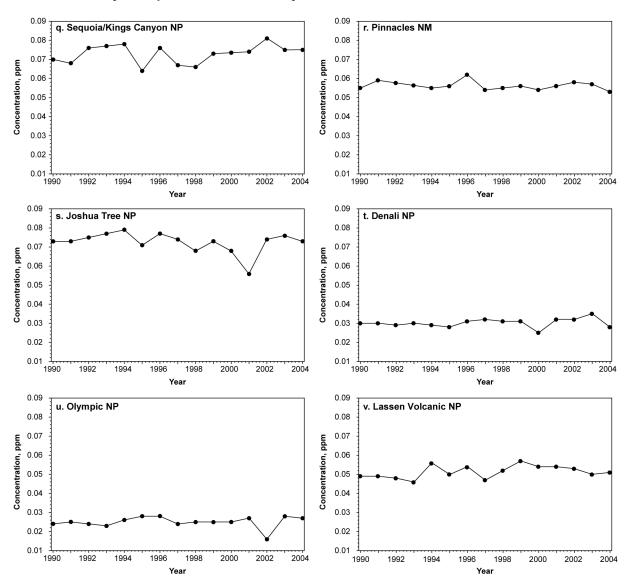
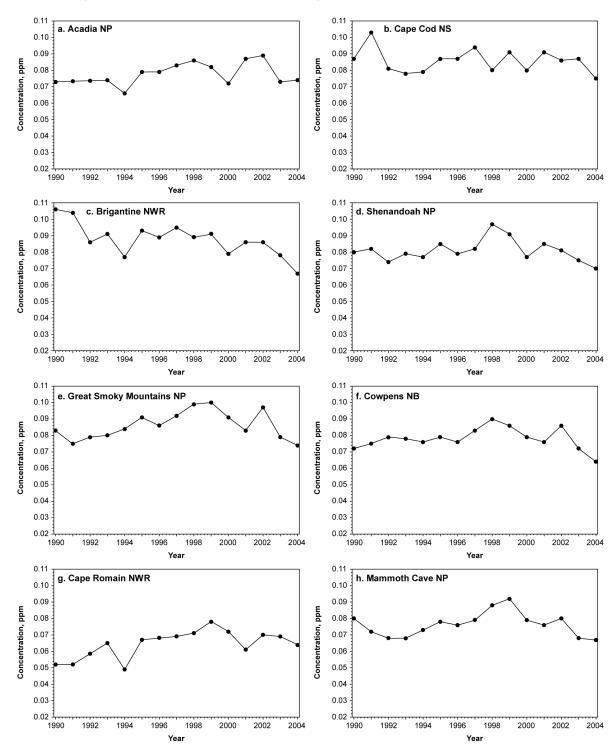



Figure AX3-66q-v. Year-to-year variability in mean daily maximum 8-h O₃ concentrations at selected national park (NP), national wildlife refuge (NWR), and national monument (NM) sites.

1 2

3

As noted in The Ozone Report—Measuring Progress through 2003 (U.S. Environmental Protection Agency, 2004b), O_3 trends in national parks in the South and the East are similar to nearby urban areas and reflect the regional nature of O_3 pollution. For example, O_3 trends in

May to September 95th Percentile of Daily Maximum 8-Hour Values, 1990 - 2004

Figure AX3-67a-h. Year-to-year variability in 95th percentile of daily maximum 8-h O₃ concentrations at selected national park (NP), national wildlife refuge (NWR), and national monument (NM) sites.

Source: Fitz-Simons et al. (2005).

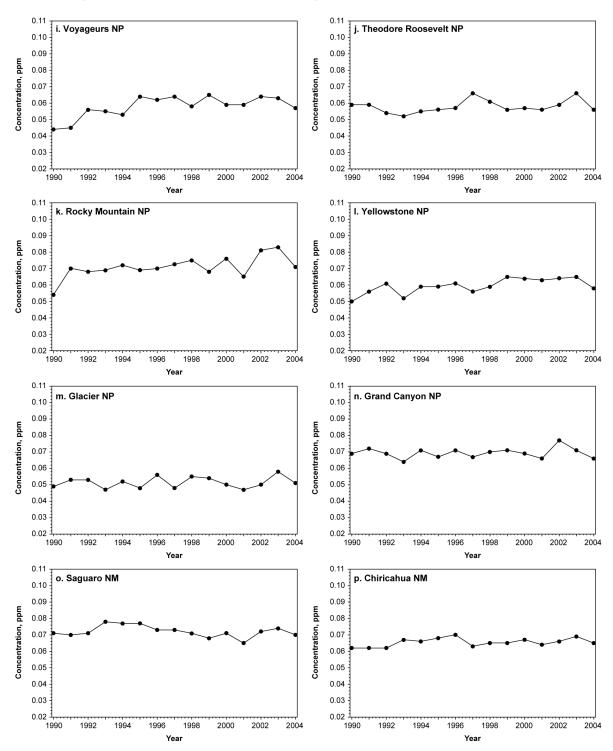


Figure AX3-67i-p. Year-to-year variability in 95th percentile of daily maximum 8-h O₃ concentrations at selected national park (NP), national wildlife refuge (NWR), and national monument (NM) sites.

Source: Fitz-Simons et al. (2005).

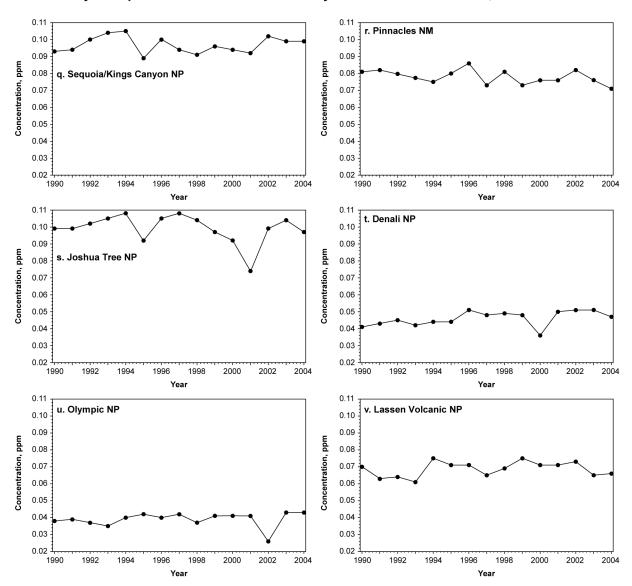


Figure AX3-67q-v. Year-to-year variability in 95th percentile of daily maximum 8-h O₃ concentrations at selected national park (NP), national wildlife refuge (NWR), and national monument (NM) sites.

Source: Fitz-Simons et al. (2005).

- 1 Charleston, SC and Charlotte, NC track those in nearby Cowpens NP and Cape Romaine NP in
- 2 South Carolina; O₃ in Knoxville and Nashville, TN tracks O₃ in Great Smoky NP; O₃ in
- 3 Philadelphia, PA and Baltimore, MD tracks Brigantine NP in New Jersey; and New York, NY

	Μ	lean	P	95	P 98			
Site	trend	p–value	trend	p–value	trend	p–value		
Acadia NP (ME)	0.040^{1}	0.037	1.0^{1}	0.037	-0.2	0.349		
Brigantine NWR (NJ)	-0.80^{2}	0.014	-1.7^{2}	0.004	-1.9 ²	0.003		
Cape Cod NS (MA)	0	0.423	0	0.349	-0.5	0.19		
Cape Romain NWR (SC)	0.7^{1}	0.046	1.0^{1}	0.01	1.0	0.07		
Chiricahua NM (AZ)	0.22^{1}	0.046	0.2	0.084	0.15	0.218		
Cowpens NB (SC)	0	0.423	0.1	0.349	0.4	0.349		
Denali NP (AK)	0.17	0.12	0.6^{1}	0.01	0.6^{1}	0.002		
Glacier NP (MT)	0	0.5	0.1	0.349	0.27	0.19		
Grand Canyon NP (AZ)	0.25	0.07	0	0.5	0.13	0.218		
Great Smoky Mountains NP (NC-TN)	0.29	0.248	0.9	0.19	0.4	0.423		
Joshua Tree NP (CA) ³	_	_	_	_	_	_		
Lassen Volcanic NP (CA)	0.25	0.141	0.2	0.19	0	0.5		
Mammoth Cave NP (KY) ³	_	_	_	_	_	_		
Olympic NP (WA)	0.14	0.141	0.3 ¹	0.037	0.2	0.19		
Pinnacles NM (CA)	-0.1	0.218	-0.5	0.07	-0.56	0.057		
Rocky Mountain NP (CO)	0.91 ¹	0.004	1.0^{1}	0.014	0.88	0.07		
Saguaro NM (AZ)	-0.2	0.279	-0.3	0.19	-0.38	0.141		
Sequoia/Kings Canyon NP (CA)	0.38	0.218	0	0.461	0	0.539		
Shenandoah NP (VA)	0	0.461	-0.2	0.385	0.33	0.279		
Theodore Roosevelt NP (ND)	0.38 ¹	0.023	0.2	0.19	0.2	0.141		
Voyageurs NP (MN) ³	—	—	_	_	—	_		
Yellowstone NP (WY) ³	_					_		

Table AX3-9. Trends in Warm Season (May to September) Daily Maximum 8-h O₃ Concentrations at National Parks in the United States (1990 to 2004). Trends are given as ppb yr⁻¹.

¹Upward trend, significant at p = 0.05 level.

² Downward trend, significant at p = 0.05 level. ³ Site moved. See text for details.

and Hartford, CT track O₃ in Cape Cod NS. The situation is not as clear in the West, where
national parks are affected differently by pollution sources that are located at varying distances
away (e.g., Lassen Volcanic National Park and Yosemite National Park, CA). However, data
obtained at these sites still provide valuable information about the variability in regional
background concentrations, especially since the West has not been broken down into regions as
has been done by Lehman et al. (2004) and shown in Figure AX3-7.

7 Caution should be exercised in using trends calculated at national parks to infer 8 contributions from distant sources either inside or outside of North America, because of the 9 influence of local and regional pollution. For example, using a 15-year record of O₃ from Lassen 10 Volcanic National Park, a rural elevated site in northern California; data from two aircraft 11 campaigns; and observations spanning 18 years from five U.S. West Coast, marine boundary 12 layer sites, Jaffe et al. (2003) reported that O₃ in air arriving from the eastern Pacific in spring 13 has increased by approximately 10 ppb from the mid-1980s. They concluded that this positive 14 trend is due to increases of emissions of O_3 precursors in Asia. They found positive trends in O_3 15 in all seasons. They also noted that diurnal variations during summer were about 21 ppb, but 16 only about 6 ppb during spring. Although Lassen Volcanic National Park site is not close to any 17 major emission sources or urban centers, the site experiences maximum hourly average O_3 18 concentrations above 0.080 ppm during April to May and above 0.100 ppm during the summer 19 (U.S. Environmental Protection Agency, 2003a), suggesting local photochemical production, at 20 least during summer. However, local springtime photochemical production cannot be ruled out. 21 The authors suggested that the likely cause for the spring increases is transport from Asia, 22 because emissions of precursors have decreased in California over the monitoring period. The 23 springtime increases appears to be inconsistent with the summer increases, when there is 24 evidence for the occurrence of more localized photochemical activity. Although emissions of O₃ 25 precursors may have decreased in California as a whole over the monitoring period, there still 26 may be regional increases in areas that could affect air quality in Lassen.

- 27
- 28
- 29

1 2

AX3.7 RELATIONS BETWEEN OZONE, OTHER OXIDANTS, AND OXIDATION PRODUCTS

3 Tables of measurements of PAN and peroxypropionyl nitrate (PPN, CH₃CH₂C(O)OONO₂) 4 concentrations were given in the 1996 O₃ AQCD (U.S. Environmental Protection Agency, 5 1996a). Measurements were summarized for rural and urban areas in the United States, Canada, 6 France, Greece, and Brazil. The use of measurements from aboard serve to illustrate or support 7 certain U.S. results as well as to demonstrate the widespread presence of PANs in the 8 atmosphere. Additional data for H₂O₂ were also presented in the 1996 O₃ AQCD. Data for these 9 species are obtained as part of specialized field studies and not as part of routine monitoring 10 operations and thus are highly limited in their ranges of applicability. As a result, it is difficult 11 to relate the concentrations of O₃, other oxidants, and oxidation products on the basis of rather 12 sparse data sets. This information is simply not available for a large number of environments. 13 Instead, it might be more instructive to examine the relations between O₃ and other products of 14 atmospheric reactions on the basis of current understanding of atmospheric photochemical 15 processes.

16 In order to understand co-occurrence between atmospheric species, an important 17 distinction must be made between primary (directly emitted) species and secondary 18 (photochemically produced) species. In general, it is more likely that primary species will be 19 more highly correlated with each other, and that secondary species will be more highly 20 correlated with each other than will species from mixed classes. By contrast, primary and 21 secondary species are less likely to be correlated with each other. Secondary reaction products 22 tend to correlate with each other, but there is considerable variation. Some species (e.g., O₃ and 23 organic nitrates) are closely related photochemically and correlate with each other strongly. 24 Others (e.g., O_3 and H_2O_2) show a more complex correlation pattern.

Although NO₂ is produced mainly by the reaction of directly emitted NO with O₃ with some contributions from direct emissions, in practice, it behaves like a primary species. The timescale for conversion of NO to NO₂ is fast (5 min or less), so NO and NO₂ ambient concentrations rapidly approach values determined by the photochemical steady state. The sum NO + NO₂ (NO_x) behaves like a typical primary species, while NO and NO₂ reflect some additional complexity based on photochemical interconversion. As a primary species, NO₂ generally does not correlate with O₃ in urban environments. In addition, chemical interactions 1 among O_3 , NO and NO₂ have the effect of converting O_3 to NO₂ and vice versa, which can result 2 in a significant anti-correlation between O_3 and NO₂.

Organic nitrates consist of PAN, a number of higher-order species with photochemistry
similar to PAN (e.g., PPN), and species such as alkyl nitrates with somewhat different
photochemistry. These species are produced by a photochemical process very similar to that
of O₃. Photochemical production is initiated by the reaction of primary and secondary VOCs
with OH radicals, the resulting organic radicals subsequently react with NO₂ (producing PAN
and analogous species) or with NO (producing alkyl nitrates). The same sequence (with organic
radicals reacting with NO) leads to the formation of O₃.

10 In addition, at warm temperatures, the concentration of PAN forms a photochemical steady 11 state with its radical precursors on a timescale of roughly 30 minutes. This steady state value 12 increases with the ambient concentration of O₃ (Sillman et al., 1990). Ozone and PAN may 13 show different seasonal cycles, because they are affected differently by temperature. Ambient O₃ increases with temperature, driven in part by the photochemistry of PAN (see description 14 15 above). By contrast, the photochemical lifetime of PAN decreases rapidly with increasing 16 temperature. The ratio O₃/PAN should show seasonal changes, with highest ratios in summer, 17 although there is no evidence from measurements. Measured ambient concentrations 18 (Figures AX3-68a-d) show a strong correlation between O₃ and PAN, and between O₃ and other 19 organic nitrates (Pippin et al., 2001; Roberts et al., 1998).

20 Individual primary VOCs are generally highly correlated with each other and with NO_x 21 (Figure AX3-69). A summary of the results of a number of field studies of the concentrations of 22 precursors including NO_x and nonmethane organic compounds (NMOCs) are summarized in the 23 1996 O_3 AQCD.

24 Formation of H₂O₂ takes place by self-reaction of photochemically generated HO₂ radicals, 25 so that there is large seasonal variation of H₂O₂ concentrations and values in excess of 1 ppb are 26 mainly limited to the summer months (Kleinman, 1991). Although H₂O₂ is produced from 27 photochemistry that is closely related to O₃, it does not show a consistent pattern of correlation 28 with O₃. Hydrogen peroxide is produced in abundance along with O₃ only when O₃ is produced 29 under NO_x -limited conditions. When the photochemistry is NO_x -saturated much less H_2O_2 is 30 produced. In addition, increasing NO_x tends to slow the formation of H₂O₂ under NO_x-limited 31 conditions.

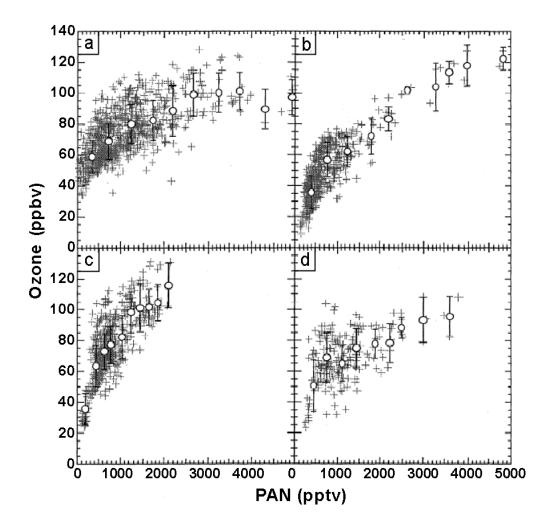


Figure AX3-68a-d. Measured O₃ (ppbv) versus PAN (pptv) in Tennessee, including (a) aircraft measurements, and (b, c, and d) suburban sites near Nashville.

Source: Roberts et al. (1998).

(2000). Gro
 in Riverside
 values appro

1

Measurements of gas phase peroxides in the atmosphere were reviewed by Lee et al. (2000). Ground level measurements of H_2O_2 taken during the 1970s indicated values of 180 ppb in Riverside, CA and 10 to 20 ppb during smog episodes in Claremont and Riverside, with

4 values approaching 100 ppb in forest fire plumes. However, later surface measurements always

5 found much lower values. For example, in measurements made in Los Angeles and nearby areas

6 in the 1980s, peak values were always less than about 2 ppb and in a methods intercomparison

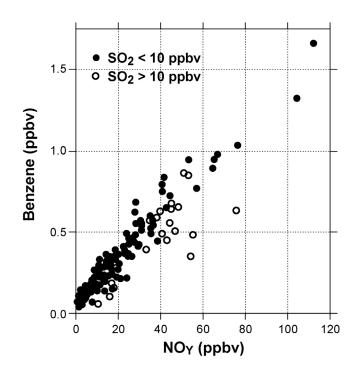


Figure AX3-69. Measured correlation between benzene and NO_y at a measurement site in Boulder, CO. Instances with $SO_2 > 10$ ppb are identified separately (open circles), because these may reflect different emission sources.

Source: Goldan et al. (1995).

1 study in Research Triangle Park, NC in June 1986, concentrations were <2.5 ppbv. Higher 2 values ranging up to 5 ppb were found in a few other studies in Kinterbish, Alabama and 3 Meadview, Arizona. Several of these studies found strong diurnal variations (typically about a 4 factor three) with maximum values in the mid-afternoon and minimum values in the early 5 morning. Mean concentrations of organic hydroperoxides at the surface at Niwot Ridge, CO in 6 the summer of 1988 and State Park, GA during the summer of 1991 were all less than a few ppb. 7 Early aircraft measurements of H_2O_2 over the eastern United States were reported by Heikes et al. (1987). More recent aircraft measurements of hydroperoxide (H₂O₂, CH₃OOH and 8 9 HOCH₂OOH) concentrations were made as part of the Southern Oxidants Study intensive 10 campaign in Nashville, TN in July 1995 (Weinstein-Lloyd et al., 1998). The median 11 concentration of total hydroperoxides in the boundary layer between 1100 and 1400 CDT was 12 about 5 ppbv, with more than 50% contribution from organic hydroperoxides. Median O₃ was

1 about 70 ppbv at the same time. The concentrations of the hydroperoxides depended strongly on

2

3

wind direction. For example, values were about 40% lower when winds originated from the N/NW as opposed to the S/SW.

- 4 Elevated O_3 is generally accompanied by elevated HNO₃, although the correlation is not as strong as between O₃ and organic nitrates. Ozone often correlates with HNO₃, because they have 5 the same precursor (NO_x) . However, HNO_3 can be produced in significant quantities in winter, 6 7 even when O₃ is low. The ratio between O₃ and HNO₃ also shows great variation in air pollution 8 events, with NO_x-saturated environments having much lower ratios of O₃ to HNO₃ (Ryerson 9 et al., 2001). Aerosol nitrate is formed primarily by the combination of nitrate (supplied 10 by HNO₃) with ammonia, and may be limited by the availability of either nitrate or ammonia. 11 Nitrate is expected to correlate loosely with O₃ (see above), whereas ammonia is not expected to correlate with O₃.
- 12

13 In addition to nitrate, other oxidants are present in airborne cloud droplets, rain drops and 14 particulate matter. Measurements of hydroperoxides, summarized by Reeves and Penkett 15 (2003), are available mainly for hydrometeors, but are sparse for ambient particles. 16 Venkatachari et al. (2005a) sampled the concentrations of total reactive oxygen species (ROS) in 17 particles using a cascade impactor in Rubidoux, CA during July 2003. Although the species 18 constituting ROS were not identified, the results were reported in terms of equivalent H_2O_2 19 concentrations. Unlike O₃ and gas phase H₂O₂ which show strong diurnal variability (i.e., about 20 a factor of three variation between afternoon maximum and early morning minimum), the 21 diurnal variation of particle phase ROS was found to be much weaker (i.e., less than about 20%) 22 at least for the time between 8 a.m. and midnight. Because the ROS were measured in the fine 23 aerosol size fraction, which has a lifetime with respect to deposition of much greater than a day, 24 little loss is expected but their concentrations might also be expected to increase because of 25 nighttime chemistry, perhaps involving NO₃ radicals. The concentration of ROS, expressed as equivalent H₂O₂ (5.2 to 6.1×10^{-7} M/m³, ranged from 20% to 100% that of O₃ (diurnal average: 26 30%), with highest values at night. The ratio was likely higher at the early morning minimum 27 28 for O₃. In a companion study conducted in Queens, NY during January and early February 2004, Venkatachari et al. (2005b) found much lower concentrations of ROS of about 1×10^{-7} M/m³. 29 30 However, O₃ levels were also substantially lower leading to ROS concentrations about 20% 31 those of O_3 . It is of interest to note that gas phase OH concentrations measured at the same time

ranged from about 7.5 × 10⁴/cm³ to about 1.8 × 10⁶/cm³, implying the presence of significant
 photochemical activity even in New York City during winter.

3 Peroxyacetylnitrate (PAN) is produced during the photochemical oxidation of a wide range 4 of VOCs in the presence of NO_x. It is removed by thermal decomposition and also by uptake to vegetation (Sparks et al., 2003; Teklemariam and Sparks, 2004). PAN is the dominant member 5 6 of the broader family of peroxyacylnitrates (PANs), which includes as other significant 7 atmospheric components peroxypropionyl nitrate (PPN) of anthropogenic origin and 8 peroxymethacrylic nitrate (MPAN) produced from oxidation of isoprene. Measurements and 9 models show that PAN in the United States includes major contributions from both 10 anthropogenic and biogenic VOC precursors (Horowitz et al., 1998; Roberts et al., 1998). 11 Measurements in Nashville during the 1999 summertime Southern Oxidants Study (SOS) 12 showed PPN and MPAN amounting to 14% and 25% of PAN, respectively (Roberts et al., 13 2002). Measurements during the TexAQS 2000 study in Houston indicated PAN concentrations 14 of up to 6.5 ppbv (Roberts et al., 2003). PAN measurements in southern California during the 15 SCOS97-NARSTO study indicated peak concentrations of 5-10 ppbv, which can be contrasted to 16 values of 60-70 ppbv measured back in 1960 (Grosjean, 2003). Vertical profiles measured from aircraft over the United States and off the Pacific coasts show PAN concentrations above the 17 18 boundary layer of only a few hundred ppty, although there are significant enhancements 19 associated with long-range transport of pollution plumes including from Asia (Kotchenruther 20 et al., 2001a; Roberts et al., 2004). Decomposition of this anthropogenic PAN as it subsides 21 over North America can lead to significant O₃ production, enhancing the O₃ background 22 (Kotchenruther et al., 2001b; Hudman et al., 2004).

23 Relations between primary and secondary components discussed above are illustrated by 24 considering data for O₃ and PM₂₅. Ozone and PM₂₅ concentrations observed at a monitoring site 25 in Fort Meade, MD are plotted as binned means in Figure AX3-70. These data were collected between July 1999 and July 2001. As can be seen from the figure, PM_{2.5} tends to be anti-26 correlated with O₃ to the left of the inflection point (at about 30 ppbv O₃) and PM_{2.5} tends to be 27 28 positively correlated with O₃ to the right of the inflection point. Data to the left of the minimum in PM_{2.5} were collected mainly during the cooler months of the year, while data to the right of 29 30 the minimum were collected during the warmer months. This situation arises because PM_{25} 31 contains a large secondary component during the summer and has a larger primary component

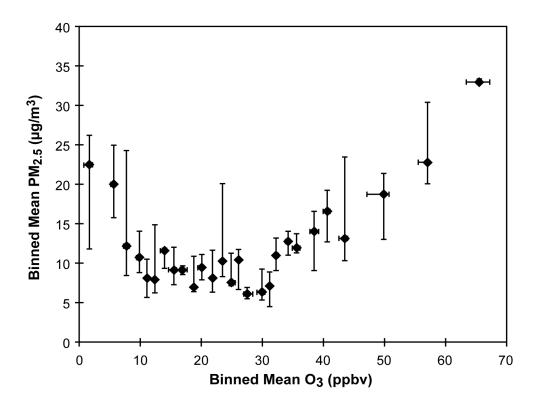


Figure AX3-70. Binned mean PM_{2.5} concentrations versus binned mean O₃ concentrations observed at Fort Meade, MD from July 1999 to July 2001.

Source: Chen (2002).

1 during winter. During the winter, O₃ comes mainly from the free troposphere, above the 2 planetary boundary layer and, thus, may be considered a tracer for relatively clean air. 3 Unfortunately, data for PM2.5 and O3 are collected concurrently at relatively few sites in the 4 United States throughout an entire year, so these results, while highly instructive are not readily 5 extrapolated to areas where appreciable photochemical activity occurs throughout the year. Ito et al. (2005) showed the relation between PM_{10} and O_3 on a personal basis in several urban areas 6 7 (cf., Figure 7-24). Although PM_{10} contains proportionately more primary material than does PM_{2.5}, relations similar to those shown in Figure AX3-70 are found, reflecting the dominant 8 9 contribution from $PM_{2.5}$ to PM_{10} .

10

1 2

3

AX3.8 RELATIONSHIP BETWEEN SURFACE OZONE AND OTHER POLLUTANTS

AX3.8.1 Introduction

4 Several attempts have been made to characterize gaseous air pollutant mixtures (Lefohn 5 and Tingey, 1984; Lefohn et al., 1987). The characterization of co-occurrence patterns under ambient conditions is important for relating human health and vegetation effects to controlled 6 7 chamber studies and to ambient conditions. Lefohn et al. (1987) discussed the various patterns 8 of pollutant exposures. Pollutant combinations can occur at or above a threshold concentration 9 either together or temporally separated from one another. Patterns that show air pollutant pairs 10 appearing at the same hour of the day at concentrations equal to or greater than a minimum 11 hourly mean value were defined as simultaneous-only daily co-occurrences. When pollutant 12 pairs occurred at or above a minimum concentration during the 24-h period, without occurring 13 during the same hour, a "sequential-only" co-occurrence was defined. During a 24-h period, if 14 the pollutant pair occurred at or above the minimum level at the same hour of the day and at 15 different hours during the period, the co-occurrence pattern was defined as "complexsequential." 16

For characterizing the different types of co-occurrence patterns for O_3/NO_2 , O_3/SO_2 , 17 18 and NO₂/SO₂, Lefohn and Tingey (1984) used a 0.05 ppm threshold to identify the number of 19 hourly simultaneous-only co-occurrences for the period May through September at a large 20 number of air quality urban monitoring sites along with rural sites. The selection of a 0.05-ppm 21 threshold concentration was based on vegetation effects considerations. Data used in the 22 analysis included hourly averaged (1) Environmental Protection Agency Storage and Retrieval 23 of Aerometric Data (SAROAD; now AQS) data for 1981, (2) EPRI-SURE and Eastern Regional 24 Air Quality Study (ERAQS) data for 1978 and 1979, and (3) Tennessee Valley Authority (TVA) 25 data from 1979 to 1982. Lefohn and Tingey (1984) concluded, for the pollutant combinations, 26 that (1) the co-occurrence of two-pollutant mixtures lasted only a few hours per episode and (2) 27 the time interval between episodes was generally large (weeks, sometimes months).

Lefohn et al. (1987), using a 0.03-ppm threshold, grouped air quality data from rural and RRMS (as characterized in the EPA database) within a 24-h period starting at 0000 hours and ending at 2359 hours. Data were analyzed for the May to September period. Data used in the

1 analysis included hourly averaged (1) Environmental Protection Agency AQS (SAROAD) data 2 from 1978 to 1982, (2) EPRI-SURE and -ERAQS data for 1978 and 1979, and (3) TVA data 3 from 1979 to 1982. Patterns that showed air pollutant pairs appearing at the same hour of the 4 day at concentrations equal to or greater than a minimum hourly mean value were defined as simultaneous-only daily co-occurrences. When pollutant pairs occurred at or above a minimum 5 6 concentration during the 24-h period, without occurring during the same hour, a "sequential-7 only" co-occurrence was defined. During a 24-h period, if the pollutant pair occurred at or 8 above the minimum level at the same hour of the day and at different hours during the period, 9 the co-occurrence pattern was defined as "complex-sequential." A co-occurrence was not 10 indicated if one pollutant exceeded the minimum concentration just before midnight and the 11 other pollutant exceeded the minimum concentration just after midnight. As will be discussed 12 below, studies of the joint occurrence of gaseous NO_2/O_3 and SO_2/O_3 reached two conclusions: 13 (1) hourly simultaneous and daily simultaneous-only co-occurrences are fairly rare and (2) when 14 co-occurrences are present, complex-sequential and sequential-only co-occurrence patterns 15 predominate. The authors reported that year-to-year variability was found to be insignificant; 16 most of the monitoring sites experienced co-occurrences of any type less than 12% of the 17 153 days.

Since 1999, monitoring stations across the United States have been routinely measuring the 24-h average concentrations of $PM_{2.5}$. Because of the availability of the $PM_{2.5}$ data, daily co-occurrence of $PM_{2.5}$ and O_3 over a 24-h period was characterized. Because $PM_{2.5}$ data are mostly summarized as 24-h average concentrations in the AQS data base, a daily co-occurrence of O_3 and $PM_{2.5}$ was subjectively defined as when an hourly average O_3 concentration ≥ 0.05 ppm and a $PM_{2.5}$ 24-h concentration $\ge 40 \ \mu g/m^3$ occurred over the same 24-h period.

For exploring the co-occurrence of O₃ and other pollutants (e.g., acid precipitation and acidic cloudwater), limited data are available. In most cases, routine monitoring data are not available from which to draw general conclusions. However, published results are reviewed and summarized for the purpose of assessing an estimate of the possible importance of co-occurrence patterns of exposure.

29

1 AX3.8.2 Co-Occurrence of Ozone with Nitrogen Oxides

2 Ozone occurs frequently at concentrations equal to or greater than 0.05 ppm at many rural 3 and remote monitoring sites in the United States (U.S. Environmental Protection Agency, 4 1996a). Therefore, for many rural locations in the United States, the co-occurrence patterns 5 observed by Lefohn and Tingey (1984) for O₃ and NO₂ were defined by the presence or absence 6 of NO₂. Lefohn and Tingey (1984) reported that most of the sites analyzed experienced fewer 7 than 10 co-occurrences (when both pollutants were present at an hourly average concentration 8 ≥ 0.05 ppm). Figure AX3-71 summarizes the simultaneous co-occurrence patterns reported by 9 Lefohn and Tingey (1984). The authors noted that several urban monitoring sites in the South 10 Coast Air Basin experienced more than 450 co-occurrences. For more moderate areas of the 11 country, Lefohn et al. (1987) reported that even with a threshold of 0.03 ppm O₃, the number of 12 co-occurrences with NO₂ was small.

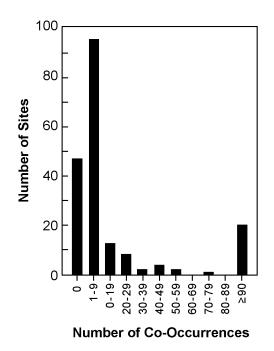


Figure AX3-71. The co-occurrence pattern for O₃ and NO₂.

Source: Lefohn and Tingey (1984).

- 1 Using 2001 data from the U.S. EPA AQS database, patterns that showed air pollutant pairs 2 of O_3/NO_2 appearing at the same hour of the day at concentrations ≥ 0.05 ppm were 3 characterized. The data were not segregated by location settings categories (i.e., rural, suburban, 4 and urban and center city) or land use types (i.e., agricultural, commercial, desert, forest, 5 industrial, mobile, or residential). Data capture was not a consideration in the analysis. The data 6 were characterized over the EPA-defined O_3 season (Table AX3-1). In 2001, there were 7 341 monitoring sites that co-monitored O₃ and NO₂. Because of possible missing hourly average 8 concentration data during periods when co-monitoring may have occurred, no attempt was made 9 to characterize the number of co-occurrences in the 0 category. Thus, co-occurrence patterns 10 were identified for those monitoring sites that experienced one or more co-occurrences. 11 Figure AX3-72 illustrates the results of the analysis. Similar to the analysis summarized 12 by Lefohn and Tingey (1984), most of the collocated monitoring sites analyzed, using the 2001 13 data, experienced fewer than 10 co-occurrences (when both pollutants were present at an hourly
- 14 average concentration ≥ 0.05 ppm).
- 15

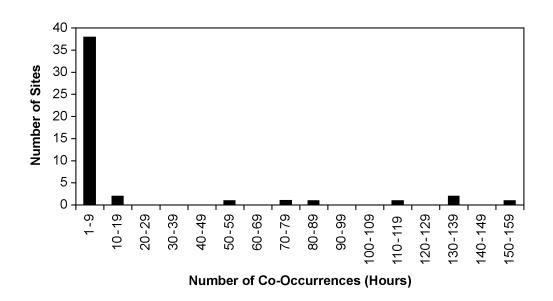
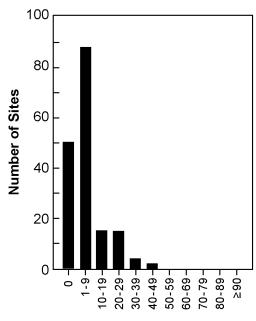



Figure AX3-72. The co-occurrence pattern for O₃ and NO₂ using 2001 data from the AQS.

1 AX3.8.3 Co-Occurrence of Ozone with Sulfur Dioxide

Because elevated SO₂ concentrations are mostly associated with industrial activities (U.S. Environmental Protection Agency, 1992), co-occurrence observations are usually associated with monitors located near these types of sources. Lefohn and Tingey (1984) reported that, for the rural and nonrural monitoring sites investigated, most sites experienced fewer than lo co-occurrences of SO₂ and O₃. Lefohn et al. (1987) reported that even with a threshold of 0.03 ppm O₃, the number of co-occurrences with SO₂ was small. Figure AX3-73 illustrates the simultaneous co-occurrence results reported by Lefohn and Tingey (1984).

Number of Co-Occurrences

Figure AX3-73. The co-occurrence pattern for O₃ and SO₂.

Source: Lefohn and Tingey (1984).

Meagher et al. (1987) reported that several documented O₃ episodes at specific rural
 locations appeared to be associated with elevated SO₂ levels. The investigators defined the
 co-occurrence of O₃ and SO₂ to be when hourly mean concentrations were ≥0.10 and 0.01 ppm,
 respectively.

1 The above discussion was based on the co-occurrence patterns associated with the presence 2 or absence of hourly average concentrations of pollutant pairs. Taylor et al. (1992) have 3 discussed the joint occurrence of O₃, nitrogen, and sulfur in forested areas using cumulative 4 exposures of O₃ with data on dry deposition of sulfur and nitrogen. The authors concluded in their study that the forest landscapes with the highest loadings of sulfur and nitrogen via dry 5 6 deposition tended to be the same forests with the highest average O₃ concentrations and largest cumulative exposure. Although the authors concluded that the joint occurrences of multiple 7 8 pollutants in forest landscapes were important, nothing was mentioned about the hourly 9 co-occurrences of O_3 and SO_2 or of O_3 and NO_2 .

10 Using 2001 data from the EPA AQS database, patterns that showed air pollutant pairs 11 of O_3/SO_2 appearing at the same hour of the day at concentrations ≥ 0.05 ppm were characterized. 12 The data were not segregated by location settings categories (i.e., rural, suburban, and urban and 13 center city) or land use types (i.e., agricultural, commercial, desert, forest, industrial, mobile, or residential). Data capture was not a consideration in the analysis. In 2001, there were 14 15 246 monitoring sites that co-monitored O₃ and SO₂. As discussed previously, because of 16 possible missing hourly average concentration data during periods when co-monitoring may 17 have occurred, no attempt was made to characterize the number of co-occurrences in the 0 18 category. Thus, co-occurrence patterns were identified for those monitoring sites that 19 experienced one or more co-occurrences. Figure AX3-74 shows the results from this analysis 20 for the simultaneous co-occurrence of O_3 and SO_2 . Similar to the analysis summarized by 21 Lefohn and Tingey (1984), most of the collocated monitoring sites analyzed, using the 2001 22 data, experienced fewer than 10 co-occurrences (when both pollutants were present at an hourly 23 average concentration ≥ 0.05 ppm).

24

25 AX3.8.4 Co-Occurrence of Ozone and Daily PM_{2.5}

Using 2001 data from the EPA AQS, the daily co-occurrence of $PM_{2.5}$ and O_3 over a 24-h period was characterized. There were 362 sites where $PM_{2.5}$ and O_3 monitors were collocated. As described in the introduction selection of this annex, a daily co-occurrence of O_3 and $PM_{2.5}$ is subjectively defined as an hourly average O_3 concentration ≥ 0.05 ppm and a $PM_{2.5}$ 24-h concentration $\ge 40 \ \mu g/m^3$ occurring over the same 24-h period. Figure AX3-75 illustrates the

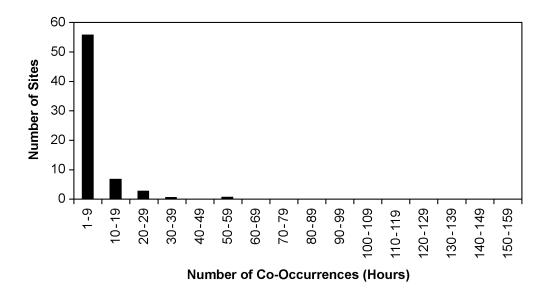


Figure AX3-74. The co-occurrence pattern for O₃ and SO₂ using 2001 data from AQS.

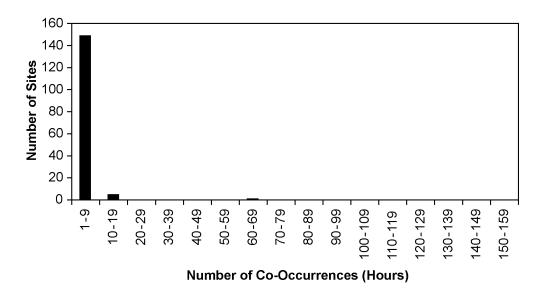


Figure AX3-75. The co-occurrence pattern for O₃ and PM_{2.5} using 2001 data from AQS.

1 daily co-occurrence patterns observed. Using 2001 data from the AQS, the daily co-occurrence

of $PM_{2.5}$ and O_3 was infrequent.

2 3 1

AX3.8.5 Co-Occurrence of Ozone with Acid Precipitation

2 Concern has been expressed about the possible effects on vegetation from co-occurring 3 exposures of O₃ and acid precipitation (Prinz et al., 1985; National Acid Precipitation Assessment Program, 1987; Prinz and Krause, 1989). Little information has been published 4 5 concerning the co-occurrence patterns associated with the joint distribution of O₃ and acidic 6 deposition (i.e., H⁺). Lefohn and Benedict (1983) reviewed the EPA SAROAD monitoring data 7 for 1977 through 1980 and, using National Atmospheric Deposition Program (NADP) and EPRI 8 wet deposition data, evaluated the frequency distribution of pH events for 34 NADP and 8 EPRI 9 chemistry monitoring sites located across the United States. Unfortunately, there were few sites 10 where O_3 and acidic deposition were co-monitored.

11 As a result, Lefohn and Benedict (1983) focused their attention on O₃ and acidic deposition 12 monitoring sites that were closest to one another. In some cases, the sites were as far apart as 13 144 km. Using hourly O₃ monitoring data and weekly and event acidic deposition data from the 14 NADP and EPRI databases, the authors identified specific locations where the hourly mean O₃ 15 concentrations were ≥ 0.1 ppm and 20% of the wetfall daily or weekly samples were below pH 16 4.0. Elevated levels of O_3 were defined as hourly mean concentrations equal to or greater than 17 0.1 ppm. Although for many cases, experimental research results of acidic deposition on 18 agricultural crops show few effects at pH levels >3.5 (National Acid Precipitation Assessment 19 Program, 1987), it was decided to use a pH threshold of 4.0 to take into consideration the 20 possibility of synergistic effects between O₃ and acidic deposition.

21 Based on their analysis, Lefohn and Benedict (1983) identified five sites with the potential 22 for agricultural crops to experience additive, less than additive, or synergistic (i.e., greater than 23 additive) effects from elevated O₃ and H⁺ concentrations. The authors stated that they believed, 24 based on the available data, the greatest potential for interaction between acid rain and O_3 25 concentrations in the United States, with possible effects on crop yields, may be in the most 26 industrialized areas (e.g., Ohio and Pennsylvania). However, they cautioned that, because no 27 documented evidence existed to show that pollutant interaction had occurred under field growth 28 conditions and ambient exposures, their conclusions should only be used as a guide for further 29 research.

In their analysis, Lefohn and Benedict (1983) found no collocated sites. The authors
 rationalized that data from non-co-monitoring sites (i.e., O₃ and acidic deposition) could be used

because O_3 exposures are regional in nature. However, work by Lefohn et al. (1988) has shown that hourly mean O_3 concentrations vary from location to location within a region, and that cumulative indices, such as the percent of hourly mean concentrations ≥ 0.07 ppm, do not form a uniform pattern over a region. Thus, extrapolating hourly mean O_3 concentrations from known locations to other areas within a region may provide only qualitative indications of actual O_3 exposure patterns.

7 In the late 1970s and the 1980s, both the private sector and the government funded research 8 efforts to better characterize gaseous air pollutant concentrations and wet deposition. The event-9 oriented wet deposition network, EPRI/Utility Acid Precipitation Study Program, and the weekly 10 oriented sampling network, NADP, provided information that can be compared with hourly 11 mean O₃ concentrations collected at several co-monitored locations. No attempt was made to include H⁺ cloud deposition information. In some cases, for mountaintop locations (e.g., 12 13 Clingman's Peak, Shenandoah, Whiteface Mountain, and Whitetop Mountain), the H⁺ cloud 14 water deposition is greater than the H⁺ deposition in precipitation (Mohnen, 1989), and the 15 co-occurrence patterns associated with O₃ and cloud deposition will be different from those 16 patterns associated with O₃ and deposition by precipitation.

17 Smith and Lefohn (1991) explored the relationship between O₃ and H⁺ in precipitation, 18 using data from sites that monitored both O₃ and wet deposition simultaneously and within 19 one-minute latitude and longitude of each other. The authors reported that individual sites 20 experienced years in which both H⁺ deposition and total O₃ exposure were at least moderately high (i.e., annual H⁺ deposition ≥ 0.5 kg ha⁻¹ and an annual O₃ cumulative, sigmoidally weighted 21 22 exposure (W126) value \geq 50 ppm-h). With data compiled from all sites, it was found that 23 relatively acidic precipitation (pH \leq 4.31 on a weekly basis or pH \leq 4.23 on a daily basis) 24 occurred together with relatively high O₃ levels (i.e., W126 values ≥ 0.66 ppm-h for the same 25 week or W126 values ≥ 0.18 ppm-h immediately before or after a rainfall event) approximately 26 20% of the time, and highly acidic precipitation (i.e, pH \leq 4.10 on a weekly basis or pH \leq 4.01 on 27 a daily basis) occurred together with a high O_3 level (i.e., W126 values ≥ 1.46 ppm-h for the 28 same week or W126 values ≥ 0.90 ppm-h immediately before or after a rainfall event) 29 approximately 6% of the time. Whether during the same week or before, during, or after a 30 precipitation event, correlations between O₃ level and pH (or H⁺ deposition) were weak to

nonexistent. Sites most subject to relatively high levels of both H⁺ and O₃ were located in the
 eastern United States, often in mountainous areas.

- 3
- 4

AX3.8.6 Co-Occurrence of Ozone with Acid Cloudwater

5 In addition to the co-occurrence of O_3 and acid precipitation, results have been reported on 6 the co-occurrence of O₃ and acidic cloudwater in high-elevation forests. Vong and Guttorp 7 (1991) characterized the frequent O₃-only and pH-only, single-pollutant episodes, as well as the 8 simultaneous and sequential co-occurrences of O₃ and acidic cloudwater. The authors reported 9 that both simultaneous and sequential co-occurrences were observed a few times each month 10 above the cloud base. Episodes were classified by considering hourly O₃ average concentrations 11 ≥ 0.07 ppm and cloudwater events with pH ≤ 3.2 . The authors reported that simultaneous 12 occurrences of O₃ and pH episodes occurred two to three times per month at two southern sites 13 (Mitchell, NC and Whitetop, VA) and the two northern sites (Whiteface Mountain, NY and 14 Moosilauke, NH) averaged one episode per month. No co-occurrences were observed at the 15 central Appalachian site (Shenandoah, VA), due to a much lower cloud frequency. Vong and 16 Guttorp (1991) reported that the simultaneous occurrences were usually of short duration 17 (mean = 1.5 h/episode) and were followed by an O₃-only episode. As would be expected, 18 O₃-only episodes were longer than co-occurrences and pH episodes, averaging an 8-h duration.

- 19
- 20

21 22

AX3.9 THE METHODOLOGY FOR DETERMINING POLICY RELEVANT BACKGROUND OZONE CONCENTRATIONS

23 AX3.9.1 Introduction

Background O₃ concentrations used for NAAQS-setting purposes are referred to as Policy Relevant Background (PRB) O₃ concentrations. Policy Relevant Background concentrations are those concentrations that would result in the United States in the absence of anthropogenic emissions in continental North America (the United Sates, Canada and Mexico). Policy Relevant Background concentrations include contributions from natural sources everywhere in the world and from anthropogenic sources outside these three countries. For the purposes of informing decisions about O₃ NAAQS, EPA assesses risks to human health and environmental effects to O₃ levels in excess of PRB concentrations. Issues concerning the methodology for
 estimating PRB O₃ concentrations are described in detail in Annex AX3, Section AX3.9.

Contributions to PRB O₃ include: photochemical interactions involving natural emissions
of VOCs, NO_x, and CO; the long-range transport of O₃ and its precursors from outside North
America; and stratospheric-tropospheric exchange (STE). Processes involved in STE are
described in detail in Annex AX2.3. Natural sources of O₃ precursors include biogenic
emissions, wildfires, and lightning. Biogenic emissions from agricultural activities are not
considered in the formation of PRB O₃.

9 Most of the issues concerning the calculation of PRB O₃ center on the origin of springtime 10 maxima in surface O₃ concentrations observed at monitoring sites in relatively unpolluted areas 11 of the United States and on the capability of the current generation of global-scale, three-12 dimensional chemistry transport models to correctly simulate their causes. These issues are 13 related to the causes of the occurrence of high O₃ values, especially those averaged over 1-h to 14 8-h observed at O₃ monitoring sites during late winter through spring (i.e., February to June). 15 The issues raised do not affect interpretations of the causes of summertime O₃ episodes as 16 strongly. Summertime O₃ episodes are mainly associated with slow-moving high-pressure 17 systems characterized by limited mixing between the planetary boundary layer and the free 18 troposphere (Section AX2.3).

19 Springtime maxima are observed at national parks mainly in the western United States that 20 are relatively clean (Section AX3.2.2; Figures AX3-76a,b) and at a number of other relatively 21 unpolluted monitoring sites throughout the Northern Hemisphere. Spring maxima in 22 tropospheric O₃ were originally attributed to transport from the stratosphere by Regener (1941) 23 as cited by Junge (1963). Junge (1963) also cited measurements of springtime maxima in O_3 24 concentrations at Mauna Loa (elevation 3400 m) and at Arkosa, Germany (an alpine location, 25 elevation 1860 m). Measurements of radioactive debris transported downward from the 26 stratosphere as the result of nuclear testing during the 1960s also show springtime maxima 27 (Ludwig et al., 1977). However, more recent studies (Lelieveld and Dentener, 2000; Browell 28 et al., 2003) attribute the springtime maximum in tropospheric O₃ concentrations to tropospheric 29 production rather than transport from the stratosphere. It should be noted here that O₃ in the free 30 troposphere is subject to chemical loss on time scales much shorter than for decay of most

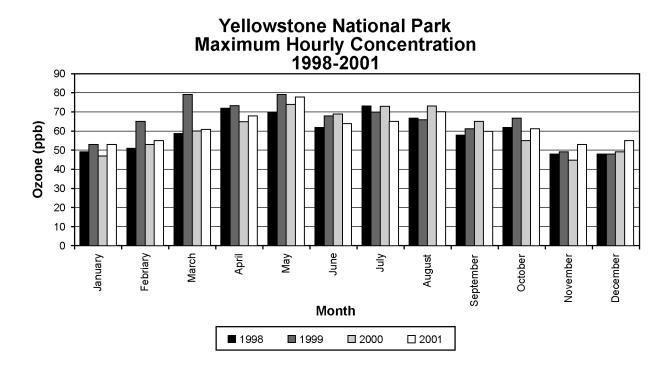


Figure AX3-76a. Monthly maximum hourly average O₃ concentrations at Yellowstone National Park, Wyoming in 1998, 1999, 2000, and 2001.

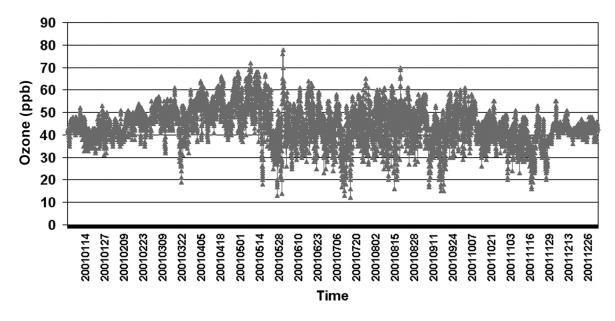


Figure AX3-76b. Hourly average O₃ concentrations at Yellowstone National Park, Wyoming for the period January to December 2001.

Source: U.S. Environmental Protection Agency (2003a).

1

radio-isotopes produced by nuclear testing that were used as tracers of stratospheric air such

2 as ${}^{14}C$, ${}^{137}Cs$ and ${}^{90}Sr$.

3 Springtime O₃ maxima were observed in low-lying surface measurements during the late 4 19th century. However, these measurements are quantitatively highly uncertain, and extreme caution should be exercised in their use. Concentrations of approximately 0.036 ppm for the 5 6 daytime average and of 0.030 ppm for the nighttime averages were reported for Zagreb, Croatia using the Schonbein method during the 1890s (Lisac and Grubišić, 1991). Of the numerous 7 8 measurements of tropospheric O₃ made in the 19th century, only the iodine catalyzed oxidation 9 of arsenite has been verified with modern laboratory methods. Kley et al. (1988) reconstructed 10 the apparatus used between 1876 and 1910 in Montsouris, outside Paris, and evaluated it for 11 accuracy and specificity. They concluded that O₃ mixing ratios ranged from 5 to 16 ppb with 12 uncertainty of ± 2 ppb. Interferences from SO₂ were avoided as the Montsouris data were 13 selected to exclude air from Paris, the only source of high concentrations of SO₂ at that time. Uncertainties in the humidity correction to the Schonbein reading will lead to considerable 14 15 inaccuracies in the seasonal cycle established by this method (Pavelin et al., 1999). Because of 16 the uncertainties in the earlier methods, it is difficult to quantify the differences between 17 surface O₃ concentrations measured in the last half of the 19th century at certain locations in 18 either Europe or North America with those currently monitored at remote locations in the world.

19 Observations of O_3 profiles at a large number of sites indicate a positive gradient in O_3 mixing ratios with increasing altitude in the troposphere and a springtime maximum in O_3 20 21 concentrations in the upper troposphere (Logan, 1999). As discussed in Section AX2.3.1, STE 22 affects the middle and upper troposphere more than the lower troposphere. It is, therefore, 23 reasonable to suppose that the main cause of this positive gradient is STE. However, deep 24 convection transports pollutants upward and can result in an increase in the pollutant mixing 25 ratio with altitude downwind of surface source regions as shown in Figure AX3-77. This effect 26 can be seen in differences in ozonesonde profiles as one moves eastward across the United States 27 (Newchurch et al., 2003). In addition, O₃ formed by lightning-generated NO_x also contributes to 28 the vertical O₃ gradient. (Lelieveld and Dentener, 2000). This O₃ could be either background or 29 not, depending on the sources of radical precursors. Another contributing factor is the increase 30 of O₃ lifetime with altitude (Wang et al., 1998). Free-tropospheric O₃ is not predominantly of 31 stratospheric origin, nor is it all natural; it is mostly controlled by production within the

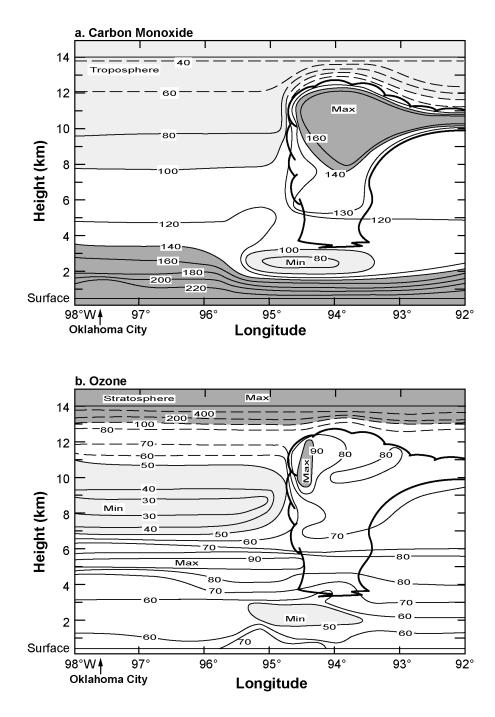


Figure AX3-77. (a) Contour plot of CO mixing ratios (ppbv) observed in and near the June 15, 1985, mesoscale convective complex in eastern Oklahoma. Heavy line shows the outline of the cumulonimbus cloud. Dark shading indicates high CO and light shading indicates low CO. Dashed contour lines are plotted according to climatology since no direct measurements were made in that area. (b) Same as (a) but for O₃ (ppbv).

Source: Dickerson et al. (1987).

1 troposphere and includes a major anthropogenic enhancement (e.g., Berntsen et al., 1997;

2 Roelofs et al., 1997; Wild and Akimoto, 2001).

3 Stohl (2001), Wernli and Borqui (2002), Seo and Bowman (2002), James et al. (2003a,b), 4 Sprenger and Wernli (2003), and Sprenger et al. (2003) addressed the spatial and temporal 5 variability in stratosphere to troposphere transport. Both Stohl (2001) and Sprenger et al. (2003) 6 produced 1-year climatologies of tropopause folds based on a 1° by 1° gridded meteorological 7 model data set. They each found that the probability of deep folds (penetrating to the 800 hPa 8 level) was maximum during winter (December through February) with the highest frequency of 9 folding extending from Labrador down the east coast of North America. However, these deep 10 folds occurred in <1% of the 6-h intervals for which meteorological data was assimilated for grid 11 points in the continental United States, with a higher frequency in Canada. They observed a 12 higher frequency of more shallow folds (penetrating to the upper troposphere) and medium folds 13 (penetrating to levels between 500 and 600 hPa) of about 10% and 1 to 2%, respectively. These 14 events occur preferentially across the subtropics and the southern United States. At higher 15 latitudes, other mechanisms such as the erosion of cut-off lows and the breakup of stratospheric 16 streamers are likely to play an important role in STE. A 15-year model climatology by Sprenger 17 and Wernli (2003) showed the consistent pattern of STE occurring over the primary storm tracks 18 along the Asian and North American coasts. This climatology, and the one of James et al. 19 (2003a,b) both found that recent stratospheric air associated with deep intrusions are relatively 20 infrequent occurrences in these models. Thus, stratospheric intrusions are most likely to directly 21 affect the middle and upper troposphere, not the planetary boundary layer. However, this O₃ can 22 still exchange with the planetary boundary layer through convection or through large-scale 23 subsidence as described later in this subsection and in Sections AX2.3.2, AX2.3.3, and AX2.3.4. 24 These results are in accord with the observations of Galeni et al. (2003) over Greece and those of 25 Ludwig et al. (1977) over the western United States. It should also be remembered that 26 stratospheric O₃ injected into the upper troposphere is subject to chemical destruction as it is 27 transported downward toward the surface.

Ozone concentrations measured at RRMS in the Northern Hemisphere have been compiled by Vingarzan (2004) and are reproduced here in Tables AX3-10, AX3-11, and AX3-12. Data for annual mean/median concentrations show a broad range, as do annual maximum 1-h concentrations. Generally, concentrations increase with elevation and the highest concentrations

Location	Elevation (m)	Period of Record	Range of Annual Means
Pt. Barrow, Alaska	11	1992-2001	23-29
Ny Alesund, Svalbard, Spitsbergen ^a	475	1989-1993	28-33 ^b
Mauna Loa, Hawaii ^c	3397	1992-2001	37-46 ^d

Table AX3-10. Range of Annual (January-December) Hourly Ozone Concentrations (ppb) at Background Sites Around the World (CMDL, 2004)

^aUniversity of Stockholm Meteorological Institute. ^bAnnual medians ^c10:00 - 18:00 UTC. ^dHigh elevation site.

Source: Vingarzan (2004).

Table AX3-11. Range of annual (January-December) Hourly Median and MaximumOzone Concentrations (ppb) at Background Stations in Protected Areas of the
United States (CASTNet, 2004)

Location	Elevation (m)	Period of Record	Range of Annual Medians	Range of Annual Maxima
Denali NP, Alaska	640	1998-2001	29-34	49-68
Glacier NP, Montana	976	1989-2001	19-27	57-77
Voyageurs NP, Minnesota	429	1997-2001	28-35	74-83
Theodore Roosevelt NP, North Dakota	850	1983-2001	29-43	61-82
Yellowstone NP, Wyoming	2469	1996-2001	37-45 ^ª	68-79 ^a
Rocky Mountain NP, Colorado	2743	1994-2001	40-47ª	68-102 ^a
Olympic NP, Washington	125	1998-2001	19-22	50-63
North Cascades NP, Washington	109	1996-2001	14-18	48-69
Mount Rainier NP, Washington	421	1995-2001	38371	54-98
Lassen NP, California	1756	1995-2001	38-43ª	81-109 ^a
Virgin Islands NP, U.S. Virgin Islands	80	1998-2001	19-24	50-64

^aHigh elevation site.

Source: Vingarzan (2004).

Location	Elevation (m)	Period of Record	Range of Annual Medians	Range of Annual Maxima									
Kejimkujik, Nova Scotia ^b	127	1989-2001	25-34	76-116									
Montmorency, Quebec	640	1989-1996	28-32	73-99									
Algoma, Ontario ^a	411	1988-2001	27-33	76-108									
Chalk River, Ontario	184	1988-1996	25-31	79-107									
Egbert, Ontario ^a	253	1989-2001	27-32	90-113									
E.L.A., Ontario	369	1989-2001	28-33	64-87									
Bratt's Lake, Saskatchewan	588	1999-2001	26-29	63-68									
Esther, Alberta	707	1995-2001	26-31	63-78									
Saturna Island, British Columbia	178	1992-2001	23-27	65-82									

Table AX3-12. Range of annual (January-December) Hourly Median and Maximum Ozone Concentrations (ppb) at Canadian Background Stations (CAPMoN^a, 2003)

^aCanadian Air and Precipitation Monitoring Network.

^bStations affected by long-range transport of anthropogenic emissions.

Source: Vingarzan (2004).

are found during spring. The overall average of the annual median O_3 concentrations at all sites in the continental United States is about 30 ppb and excluding higher elevation sites it is about 24 ppb. Maximum concentrations may be related to stratospheric intrusions, wildfires, and intercontinental or regional transport of pollution. However, it should be noted that all of these sites are affected by anthropogenic emissions to some extent making an interpretation based on these data alone problematic.

7 Daily 1-h maximum O₃ concentrations exceeding 50 or 60 ppb are observed during late 8 winter and spring in southern Canada and at sites in national parks as shown in Tables 9 AX3-13, AX3-14, and Figure AX3-78. That these high values can occur during late winter 10 when there are low sun angles and cold temperatures may imply a negligible role for 11 photochemistry and a major role for stratospheric intrusions. However, active photochemistry 12 occurs even at high latitudes during late winter. Rapid O₃ loss, apparently due to multiphase 13 chemistry involving bromine atoms (see Section 2.2.10) occurs in the Arctic marine boundary 14 layer. The Arctic throughout much of winter is characterized by low light levels, temperatures, 15 and precipitation, and can act as a reservoir for O₃ precursors such as PAN and alkyl nitrates, 16 which build up and can then photolyze when sun angles are high enough during late winter and 17 early spring. Long-range transport of total odd nitrogen species (NO_v) (defined in AX2.2.2) and VOCs to Arctic regions can occur from midlatitude-source regions. In addition, O₃ can be 18 19 transported from tropical areas in the upper troposphere followed by its subsidence at mid and 20 high latitudes (Wang et al., 1998).

21 Penkett (1983), and later Penkett and Brice (1986), first observed a spring peak in PAN at high northern latitudes and hypothesized that winter emissions transported into the Arctic would 22 23 be mixed throughout a large region of the free troposphere and transformed into O₃ as solar 24 radiation returned to the Arctic in the spring. Subsequent observations (Dickerson, 1985) 25 confirmed the presence of strata of high concentrations of reactive nitrogen compounds at high 26 latitudes in early spring. Bottenheim et al. (1990, 1993) observed a positive correlation 27 between O₃ and NO₂ in the Arctic spring. Jaffe et al. (1991) found NO_y concentrations 28 approaching 1 ppb in Barrow, Alaska, in the spring and attributed them to long-range transport. 29 Beine et al. (1997) and Honrath et al. (1997) measured O₃, PAN, and NO_x in Alaska and 30 Svalbard, Norway and concluded that PAN decomposition can lead to photochemical O₃ 31 production. At Poker Flat, Alaska, O₃ production was directly observable. Herring et al. (1997)

Site Name	Month	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Denali National Park, Alaska	February	0	0	0	0	0	0	0	0		0	0	0	0	14
Denali National Park, Alaska	March	0	0	0	0	0	0	0	0	52	0	122	17	0	24
Denali National Park, Alaska	April	217	0	2	0	64	10	31	21	12	51	236	119	0	302
Denali National Park, Alaska	May	26	1	0	24	10	17	1	54	97	35	79	29	0	98
Denali National Park, Alaska	June	0	0	0	0	0	0	0	0	27	0	0	22	0	6
Yellowstone National Park, Wyoming	February	0		0	11	3	0	21	6	0	1	5	252	23	77
Yellowstone National Park, Wyoming	March	194		2	4	95	26	285	14	7	98	150	509	286	307
Yellowstone National Park, Wyoming	April	228		17	16	217	62	311	185	65	163	385	517	242	461
Yellowstone National Park, Wyoming	May	225		2	10	196	47	180	193	212	216	289	458	240	350
Yellowstone National Park, Wyoming	June	58		67	139	33	28	116	81	94	149	78	212	181	172

 Table AX3-13. Number of Hours ≥0.05 ppm for Selected Rural O3 Monitoring in the United States by Month for the Period 1988 to 2001

Site Name	Month	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Glacier National Park, Montana	February			0	0	0	0	0	8	0	0	0	0	0	0
Glacier National Park, Montana	March			49	9	24	10	23	40	35	9	6	17	5	4
Glacier National Park, Montana	April			31	64	29	5	45	16	46	52	49	128	16	0
Glacier National Park, Montana	May			20	81	67	41	66	51	51	4	122	103	63	23
Glacier National Park, Montana	June			24	37	31	5	29	13	119	0	3	0	6	0
Voyageurs National Park, Minnesota	February	3	0	0	0	0	43	22	0	0	23	0	6	32	0
Voyageurs National Park, Minnesota	March	6	2	0	0	1	94	10	39	49	220	40	215	60	0
Voyageurs National Park, Minnesota	April	48	0	31	22	27	56	65	30	64	128	254	221	175	0
Voyageurs National Park, Minnesota	May	183	33	14	10	174	78	96	107	111	146	191	247	143	62
Voyageurs National Park, Minnesota	June	92		2	0	55	50	66	190	37	221	25	23	28	95

Table AX3-13 (cont'd). Number of Hours ≥0.05 ppm for Selected Rural O₃ Monitoring in the United States by Month for the Period 1988 to 2001

for the Period of 1988 to 2001															
Site Name	Month	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Denali National Park, Alaska	February	0	0	0	0	0	0	0	0		0	0	0	0	0
Denali National Park, Alaska	March	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Denali National Park, Alaska	April	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Denali National Park, Alaska	May	0	0	0	0	0	0	0	0	2	0	0	0	0	9
Denali National Park, Alaska	June	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Yellowstone National Park, Wyoming	February	0		0	0	0	0	0	0	0	0	0	6	0	0
Yellowstone National Park, Wyoming	March	37		0	0	0	0	0	0	0	1	0	120	1	4
Yellowstone National Park, Wyoming	April	59		0	0	29	0	20	4	0	0	64	158	11	77
Yellowstone National Park, Wyoming	May	20		0	0	61	3	42	24	38	26	54	169	49	139
Yellowstone National Park, Wyoming	June	8		7	18	2	1	13	0	0	22	4	27	43	18
Glacier National Park, Montana	February			0	0	0	0	0	0	0	0	0	0	0	0
Glacier National Park, Montana	March			1	0	0	0	0	0	0	0	0	0	0	0

Table AX3-14. Number of Hours ≥0.06 ppm for Selected Rural O₃ Monitoring Sites in the United States by Month for the Period of 1988 to 2001

Site Name	Month	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Glacier National Park, Montana	April			0	0	1	0	0	0	0	0	2	1	0	0
Glacier National Park, Montana	May			2	7	13	0	0	4	5	0	16	19	8	0
Glacier National Park, Montana	June			0	3	1	0	1	0	16	0	0	0	0	0
Voyageurs National Park, Minnesota	February	1	0	0	0	0	1	8	0	0	0	0	0	0	0
Voyageurs National Park, Minnesota	March	0	0	0	0	0	34	0	5	2	15	0	9	4	0
Voyageurs National Park, Minnesota	April	9	0	1	0	0	5	8	0	17	2	57	24	41	0
Voyageurs National Park, Minnesota	May	77	6	0	0	40	9	40	2	27	46	53	139	43	6
Voyageurs National Park, Minnesota	June	30		0	0	28	17	5	113	12	115	0	5	0	32

Table AX3-14 (cont'd). Number of Hours ≥0.06 ppm for Selected Rural O₃ Monitoring Sites in the United States by Month for the Period of 1988 of 2001

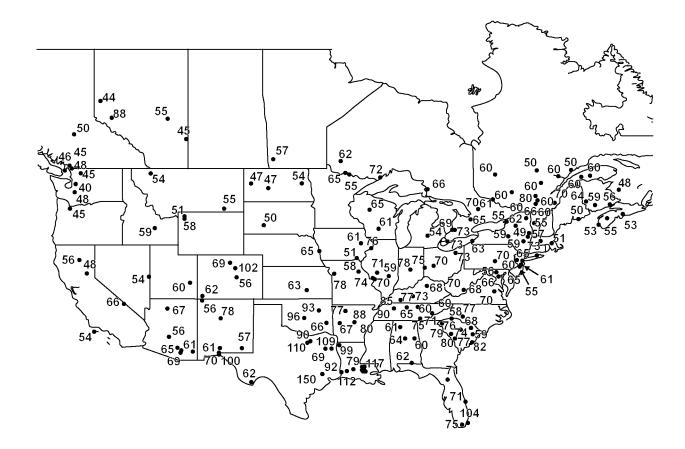


Figure AX3-78. Maximum hourly average O₃ concentrations at rural monitoring sites in Canada and the United States in February from 1980 to 1998.

Source: Lefohn et al. (2001).

1 tracked springtime O₃ maxima in Denali National Park, Alaska, an area one might presume to be 2 pristine. They measured NO_x and hydrocarbons and concluded that, in the spring, O₃ was 3 produced predominantly by photochemistry at a calculated rate of 1 to 4 ppb/day, implying that the O₃ observed could be produced on timescales ranging from about a week to a month. 4 Solberg et al. (1997) tracked the major components of NO_v in remote Spitsbergen, Norway for 5 the first half of the year 1994. They observed high concentrations of PAN (800 ppt) peaking 6 7 simultaneously with O₃ (45 to 50 ppb) and attributed this to the long-range transport of pollution 8 and to photochemical smog chemistry. These investigators concluded, in general, that large 9 regions of the Arctic store high concentrations of O₃ precursors in the winter and substantial 10 quantities of O₃ are produced by photochemical reactions in the spring. Although reactions with

high-activation-energy barriers may be ineffective, reactions with low- or no activation-energy
barriers (such as radical-radical reactions) or negative temperature dependencies will still
proceed. Indeed, active photochemistry is observed in the coldest regions of the stratosphere and
mesosphere. While it is expected that photochemical production rates of O₃ will increase with
decreasing solar zenith angle as one moves southward from the locations noted above, it should
not be assumed that photochemical production of O₃ does not occur during late winter and spring
at mid- and high-latitudes.

8 Perhaps the most thorough set of studies investigating causes of springtime maxima in 9 surface O₃ has been performed as part of the AEROCE and NARE studies (cf. Sections 10 AX2.3.4a,b) and TOPSE (Browell et al., 2003). These first two studies found that elevated or 11 surface $O_3 > 40$ ppb at Bermuda, at least, arises from two distinct sources: the polluted North American continent and the stratosphere. It was also found that these sources mix in the upper 12 13 troposphere before descending as shown in Figure AX3-79. (In general, air descending behind 14 cold fronts contributions from intercontinental transport and the stratosphere.) These 15 studies also concluded that it is impossible to determine sources of O₃ without ancillary data that 16 could be used either as tracers of sources or to calculate photochemical production and loss rates. 17 In addition, subsiding back trajectories do not necessarily imply a free-tropospheric or 18 stratospheric origin for O₃ observed at the surface, since the subsiding conditions are also 19 associated with strong inversions and clear skies that promote O₃ production within the boundary 20 layer. Thus, it would be highly problematic to use observations alone as estimates of PRB O₃ 21 concentrations, especially for sites at or near sea level.

22 The IPCC Third Assessment Report (TAR) (2001) gave a large range of values for terms in 23 the tropospheric O₃ budget. Estimates of O₃ STE of O₃ ranged over a factor of three from 391 to 24 1440 Tg/year in the twelve models included in the intercomparison; many of the models 25 included in that assessment overestimated O₃ STE. However, the overestimates likely reflected 26 errors in assimilated winds in the upper troposphere (Douglass et al., 2003; Schoeberl et al., 27 2003; Tan et al., 2004; van Noije et al., 2004). The budgets of tropospheric O₃ calculated since 28 the IPCC TAR are shown in Table AX3-15. Simulation of stratospheric intrusions is notoriously 29 difficult in global models, and O₃ STE is generally parameterized in these models. However, as 30 can be seen from inspection of Table AX3-15, improvements in assimilation techniques have 31 improved and narrowed estimates of STE. A model intercomparison looking at actual STE

Altitude

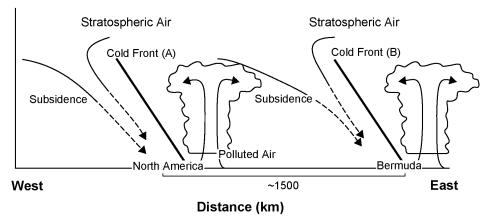


Figure AX3-79. Schematic diagram of a meteorological mechanism involved in high concentrations of O_3 found in spring in the lower troposphere off the American East Coast. Subsidence behind the first cold front meets convection ahead of a second cold front such that polluted air and O_3 from the upper troposphere/ lower stratosphere are transported in close proximity (or mixed) and advected over the North Atlantic Ocean. The vertical scale is about 10 km; the horizontal scale about 1500 km. (Note that not all cold fronts are associated with squall lines and that mixing occurs even in their absence.)

Source: Prados (2000).

- 1 events found significant variations in model results that depended significantly on the type and 2 horizontal resolution of the model (Meloen et al., 2003; Cristofanelli et al., 2003). In particular, 3 it was found that the Lagrangian perspective (as opposed to the Eulerian perspective used in 4 most global scale CTMs) was necessary to characterize the depths and residence times of 5 individual events (Sprenger and Wernli, 2003; James et al., 2003a,b). A few studies of the magnitude of the O₃ STE have been made based on chemical observations in the lower 6 7 stratosphere or combined chemistry and dynamics (e.g., 450 Tg/year net global [Murphy and 8 Fahey, 1994]; 510 Tg/year net global extratropics only [Gettelman et al., 1997]; and 9 550 ± 140 Tg/year [Olsen et al., 2002]). 10 Even if the magnitude of cross-tropopause O₃ fluxes in global CTMs are calculated 11 correctly in an annual mean sense, it should be noted that stratospheric intrusions occur
- 12 episodically following the passage of cold fronts at midlatitudes. Of major concern is the ability

Reference	Model	Stratosphere- Troposphere Exchange (STE)	Chemical Production ²	Chemical Loss ²	Dry Deposition	Burden (Tg)	Lifetime (days) ³
TAR ⁴	11 models	770 ± 400	3420 ± 770	3470 ± 520	770 ± 180	300 ± 30	24 ± 2
Lelieveld and Dentener (2000)		570	3310	3170	710	350	33
Bey et al. (2001a) ⁵	GEOS-CHEM	470	4900	4300	1070	320	22
Horowitz et al. (2003)	MOZART-2	340	5260	4750	860	360	23
Von Kuhlmann et al. (2003)	MATCH-MPIC	540	4560	4290	820	290	21
Shindell et al. (2003)	GISS	417	NR ⁶	NR	1470	349	NR
Park et al. (2004)	UMD-CTM	480	NR	NR	1290	340	NR
Rotman et al. (2004)	IMPACT	660	NR	NR	830	NR	NR
Wong et al. (2004)	SUNYA/UiO GCCM	600	NR	NR	1100	376	NR

Table AX3-15. Global Budgets of Tropospheric Ozone (Tg year⁻¹) for the Present-day Atmosphere¹

¹ From global CTM simulations describing the atmosphere of the last decade of the 20th century.

² Chemical production and loss rates are calculated for the odd oxygen family, usually defined as $O_x = O_3 + O + NO_2 + 2NO_3 + 3N_2O_5 + HNO_4 +$ peroxyacylnitrates (and sometimes HNO₃), to avoid accounting for rapid cycling of O₃ with short-lived species that have little implication for its budget. Chemical production is mainly contributed by reactions of NO with peroxy radicals, while chemical loss is mainly contributed by the O(¹D) + H₂O reaction and by the reactions of O₃ with HO₂, •OH, and alkenes. Several models in this table do not report production and loss separately ("NR" entry in the table), reporting instead net production. However, net production is not a useful quantity for budget purposes, because (1) it represents a small residual between large production and loss, (2) it represents the balance between STE and dry deposition, both of which are usually parameterized as a flux boundary condition.

³Calculated as the ratio of the burden to the sum of chemical and deposition losses

⁴ Means and standard deviations from an ensemble of 11 CTM budgets reported in the IPCC TAR. The mean budget does not balance exactly because only 9 CTMs reported chemical production and loss statistics.

⁵ The Martin et al. (2003b) more recent version of GEOS-CHEM gives identical rates and burdens.

⁶Not reported.

1 of global-scale CTMs to simulate individual intrusions and the effects on surface O₃ 2 concentrations that may result during these events. As noted in Section AX2.3.1, these 3 intrusions occur in "ribbons" ~ 200 to 1000 km long, 100 to 300 km wide, and 1 to 4 km thick. 4 An example of a stratospheric intrusion occurred in Boulder, CO (EPA AQS Site 080130011; formally AIRS) on May 6, 1999 (Lefohn et al., 2001). At 1700 UTC (1000 hours LST) 5 6 an hourly average concentration of 0.060 ppm was recorded and by 2100 UTC (1400 hours 7 LST), the maximum hourly average O_3 concentration of 0.076 ppm was measured. At 0200 8 UTC on May 7, 1999 (1900 hours LST on May 6), the hourly average concentration declined to 9 0.059 ppm. Figure AX3-80 shows the O₃ vertical profile that was recorded at Boulder, CO on 10 May 6, 1999, at 1802 UTC (1102 hours LST). The ragged vertical profile of O_3 at > 4 km 11 reflects stratospheric air that has spiraled downward around an upper-level low and mixed with 12 tropospheric air along the way. Thus, stratospheric air which is normally extremely cold and dry 13 and rich in O₃, loses its characteristics as it mixes downward. This process was described in 14 Section AX2.3.1 and illustrated in Figures AX2-7a,b and c.

15 The dimensions given above imply that individual intrusions are not resolved properly in 16 the current generation of global-scale CTMs (Figure AX3-80). However, as noted in Section 17 AX2.3.1, penetration of stratospheric air directly to the planetary boundary layer rarely occurs in 18 the continental United States. Rather, intrusions are more likely to affect the middle and upper 19 troposphere, providing a reservoir for O₃ that can exchange with the planetary boundary layer. 20 In this regard, it is important that CTMs be able to spatially and temporally resolve the exchange 21 between the planetary boundary layer and the lower free troposphere properly.

22

23 AX3.9.2 Capability of Global Models to Simulate Tropospheric Ozone

24 The current generation of global CTMs includes detailed representation of tropospheric 25 O₃-NO_x-VOC chemistry. Meteorological information is generally provided by global data 26 assimilation centers. The horizontal resolution is typically a few hundred km, the vertical 27 resolution is 0.1 to 1 km, and the effective temporal resolution is a few hours. These models can 28 simulate most of the observed variability in O₃ and related species, although the coarse 29 resolution precludes simulation of fine-scale structures or localized extreme events. On the 30 synoptic scale, at least, all evidence indicates that global models are adequate tools to investigate the factors controlling tropospheric O_3 . Stratosphere-troposphere exchange of O_3 in global 31

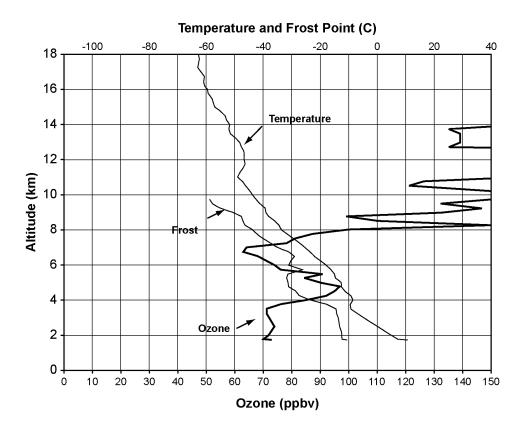


Figure AX3-80. Ozone vertical profile at Boulder, Colorado on May 6, 1999 at 1802 UTC (1102 LST).

Source: Lefohn et al. (2001).

1 models is generally parameterized. The parameterizations are typically constrained to match the 2 global mean O₃ cross-tropopause flux, which is in turn constrained by a number of observational proxies (550 \pm 140 Tg O₃ year⁻¹ [Olsen et al., 2002]). The model simulations are routinely 3 4 compared to ozonesonde observations in the middle and upper troposphere to test the simulation of stratospheric influence on tropospheric O₃ (Logan, 1999). Such evaluations show that the 5 parameterized cross-tropopause O₃ flux in global models results in a good simulation of 6 7 tropospheric O₃, at least in a mean sense; and that the current generation of models can 8 reproduce the tropospheric ozonesonde climatology to within 5 to 10 ppby, even at mid- and 9 high-northern latitudes in winter, with the correct seasonal cycle. 10 Fiore et al. (2003a) used the GEOS-CHEM global tropospheric chemistry model to

11 quantify PRB O₃ concentrations across the United States. A net global O₃ flux of 490 Tg O₃

year⁻¹ from the stratosphere to the troposphere is imposed in the GEOS-CHEM model, 1 2 consistent with the range constrained by observations (Olsen et al., 2002). Previous applications 3 of the model have demonstrated that it simulates the tropospheric ozonesonde climatology 4 (Logan, 1999) generally to within 5 to 10 ppbv, including at mid- and high-latitudes (Bey et al., 2001a) over Bermuda in spring (Li et al., 2002) and at sites along the Asian Pacific rim (Liu 5 6 et al., 2002). The phase of the seasonal cycle is reproduced to within 1 to 2 months (Bey et al., 2001a; Li et al., 2002; Liu et al., 2002). An analysis of the ²¹⁰Pb-⁷Be-O₃ relationships observed 7 8 in three aircraft missions over the western Pacific indicates that the model does not 9 underestimate the stratospheric source of O_3 (Liu et al., 2004). These studies and others (Li 10 et al., 2001; Bey et al., 2001b; Fusco and Logan, 2003) demonstrate that the model provides an 11 adequate simulation of O_3 in the free troposphere at northern midlatitudes, including the mean influence from the stratosphere. However, it cannot capture the structure and enhancements 12 13 associated with stratospheric intrusions, leading to mean O₃ under-prediction in regions of 14 preferred stratospheric downwelling.

15 Fiore et al. (2002a, 2003b) presented a detailed evaluation of the model simulation for O_3 16 and related species in surface air over the United States for the summer of 1995. They showed 17 that the model reproduces important features of observations including the high tail of O₃ 18 frequency distributions at sites in the eastern United States (although sub-grid-scale local peaks 19 are underestimated), the O_3 to $(NO_y - NO_x)$ relationships, and that the highest O_3 values exhibit the largest response to decreases in U.S. fossil fuel emissions from 1980 to 1995 (Lefohn et al., 20 21 1998). Empirical orthogonal functions (EOFs) for the observed regional variability of O₃ over 22 the eastern United States are also well reproduced, indicating that GEOS-CHEM captures the 23 synoptic-scale transport processes modulating surface O₃ concentrations (Fiore et al., 2003b). 24 One model shortcoming relevant for the discussion below is that excessive convective mixing 25 over the Gulf of Mexico and the Caribbean leads to an overestimate of O₃ concentrations in 26 southerly flow over the southeastern United States. Comparison of GEOS-CHEM with the 27 Multiscale Air Quality Simulation Platform (MAQSIP) regional air quality modeling system 28 (Odman and Ingram, 1996) at 36 km² horizontal resolution showed that the models exhibit 29 similar skill at capturing the observed variance in O₃ concentrations with comparable model 30 biases (Fiore et al., 2003b).

1 Simulations to Quantify Background Ozone Over the United States

2 The sources contributing to the O₃ background over the United States were quantified by 3 Fiore et al. (2003a) with three simulations summarized in Table AX3-16: (1) a standard 4 simulation, (2) a background simulation in which North American anthropogenic NO_x , 5 NMVOC, and CO emissions are set to zero, and (3) a natural O₃ simulation in which global 6 anthropogenic NO_x, NMVOC and CO emissions are set to zero and the CH₄ concentration is set 7 to its 700 ppbv pre-industrial value. Anthropogenic emissions of NO_x, nonmethane volatile 8 organic compounds (NMVOCs), and CO include contributions from fuel use, industry, and 9 fertilizer application. The difference between the standard and background simulations 10 represents regional pollution, i.e., the O₃ enhancement from North American anthropogenic 11 emissions. The difference between the background and natural simulations represents 12 hemispheric pollution, i.e., the O₃ enhancement from anthropogenic emissions outside North 13 America. Methane and NO_x contribute most to hemispheric pollution (Fiore et al., 2002b). 14 A tagged O₃ tracer simulation (Fiore et al., 2002a) was used to isolate the stratospheric 15 contribution to the background and yielded results that were quantitatively consistent with those 16 from a simulation in which O₃ transport from the stratosphere to the troposphere was suppressed 17 (Fusco and Logan, 2003). All simulations were initialized in June 2000; results are reported for 18 March through October 2001.

Simulation	Description	Horizontal Resolution
Standard	Present-day emissions as described in the text	$2^{\circ} \times 2.5^{\circ}$
Background	North American anthropogenic NO_x , NMVOC, and CO emissions set to zero	$2^{\circ} \times 2.5^{\circ}$
Natural	Global anthropogenic NO_x , NMVOC, and CO emissions set to zero and CH_4 concentration set to its 700 ppbv preindustrial value	$4^{\circ} \times 5^{\circ}$
Stratospheric	Tagged O_3 tracer originating from the stratosphere in standard simulation	$2^{\circ} \times 2.5^{\circ}$

 Table AX3-16. Description of Simulations Used for Source Attribution

 (Fiore et al., 2003a)

2

1 The standard and background simulations were conducted at $2^{\circ} \times 2.5^{\circ}$ horizontal resolution, but the natural simulation was conducted at $4^{\circ} \times 5^{\circ}$ resolution to save on 3 computational time. There was no significant bias between $4^{\circ} \times 5^{\circ}$ and $2^{\circ} \times 2.5^{\circ}$ simulations (Fiore et al., 2002a), particularly for a natural O₃ simulation where surface concentrations were 4 controlled by large-scale processes. 5

6

7

AX3.9.3 Mean Background Concentrations: Spatial and Seasonal Variation

8 The analysis of Fiore et al. (2003a) focused on the 2001 observations from the Clean Air 9 Status and Trends Network (CASTNet) of rural and remote U.S. sites (Lavery et al., 2002) 10 (Figure AX3-81). Figure AX3-82 shows the mean seasonal cycle in afternoon (1300 to 1700 11 hours LT) O₃ concentrations averaged over the CASTNet stations in each U.S. quadrant. 12 Measured O₃ concentrations (asterisks) are highest in April to May, except in the Northeast 13 where they peak in June. Model results (triangles) are within 3 ppbv and 5 ppbv of the 14 observations for all months in the Northwest and Southwest, respectively. Model results for the 15 Northeast are too high by 5 to 8 ppbv when sampled at the CASTNet sites; the model is lower 16 when the ensemble of grid squares in the region are sampled (squares). The model is 8 to 17 12 ppby too high over the Southeast in summer for reasons discussed in Section AX3.9.2.

18 Results from the background simulation (no anthropogenic emissions in North America; 19 see Table AX3-16) are shown as diamonds in Figure AX3-82. Mean afternoon background O_3 20 ranges from 20 ppbv in the Northeast in summer to 35 ppbv in the Northwest in spring. It is 21 higher in the West than in the East because of higher elevation, deeper mixed layers, and 22 longer O₃ lifetimes due to the arid climate (Fiore et al., 2002a). It is also higher in spring than in 23 summer, in part because of the seasonal maximum of stratospheric influence (Figure AX3-82) 24 and in part because of the longer lifetime of O_3 (Wang et al., 1998).

25 Results from the natural O₃ simulation (no anthropogenic emissions anywhere; Table 26 AX3-16) are shown as crosses in Figure AX3-82. Natural O₃ concentrations are also highest in 27 the West and in spring when the influence of stratospheric O_3 on the troposphere peaks (e.g., 28 Holton et al., 1995). Monthly mean natural O₃ concentration ranges are 18 to 23, 18 to 27, 13 to 29 20, and 15 to 21 ppbv in the Northwest, Southwest, Northeast, and Southeast, respectively. The 30 stratospheric contribution (X's) ranges from 7 ppby in spring to 2 ppby in summer.

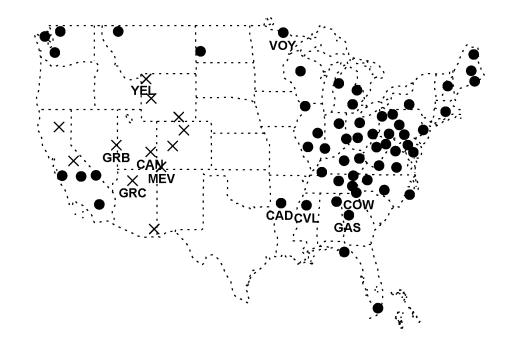


Figure AX3-81. CASTNet stations in the continental United States for 2001. Sites discussed in Section AX3.9.4 are labeled: VOY = Voyageurs NP, MI; COW = Coweeta, NC; YEL = Yellowstone NP, WY; CAD = Caddo Valley, AR; CVL = Coffeeville, MS; GAS = Georgia Station, GA; GB = Great Basin, NV; GRC = Grand Canyon, AZ; CAN = Canyonlands, UT; MEV = Mesa Verde, CO. Crosses denote sites > .5 km altitude.

1	The difference between the background and natural simulations in Figure AX3-82
2	represents the monthly mean hemispheric pollution enhancement. This enhancement ranges
3	from 5 to 12 ppbv depending on region and season. It peaks in spring due to a longer O_3 lifetime
4	(Wang et al., 1998) and to e efficient ventilation of pollution from the Asian continent (Liu et al.,
5	2003). In contrast to hemispheric pollution, the regional pollution influence (O_3 produced from
6	North American anthropogenic emissions, shown as the difference between the squares and
7	diamonds) peaks in summer and is highest in the East. For the data in Figure AX3-82, it ranges
8	from 8 ppbv in the northern quadrants in March to over 30 ppbv in the eastern quadrants in
9	summer. Monthly mean observed O_3 concentrations are influenced by both regional and
10	hemispheric pollution in all U.S. regions from March through October.

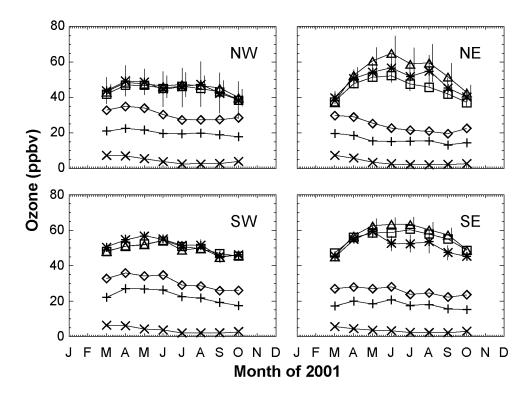


Figure AX3-82. Monthly mean afternoon (1300 to 1700 hours LT) concentrations (ppbv) in surface air averaged over the CASTNet stations (Figure AX3-81) in each U.S. quadrant for March to October 2001. Observations (asterisks) are compared with model values from the standard simulation sampled at the CASTNet sites (triangles) and sampled for the entire quadrant (squares). The vertical lines show the standard deviation in the observed and simulated values. Monthly mean model results for the background (diamonds), natural (crosses), and stratospheric (X's) contributions (Table AX3-16) to surface O_3 are shown. The U.S. quadrants are centered at 98.75° W and 37° N.

Source: Fiore et al. (2003a).

1 AX3.9.4 Frequency of High-Ozone Occurrences at Remote Sites

Lefohn et al. (2001) pointed out the frequent occurrence of high-O₃ events (>50 and

3 60 ppbv) at remote northern U.S. sites in spring. Fiore et al. (2003a) replicated the analysis of

- 4 Lefohn et al. (2001) at the four CASTNet sites that they examined: Denali National Park
- 5 (Alaska), Voyageurs National Park (Minnesota), Glacier National Park (Montana), and
- 6 Yellowstone National Park (Wyoming). The number of times that the hourly O₃ observations at

1 the sites are >50 and 60 ppbv for each month from March to October 2001 were then calculated 2 (see results in Table AX3-17) and compared with the same statistics for March to June 3 1988 to 1998 from Lefohn et al. (2001), to place the 2001 statistics in the context of other years. 4 More incidences of O₃ above both thresholds occur at Denali National Park and Yellowstone National Park in 2001 than in nearly all of the years analyzed by Lefohn et al. (2001). The 5 6 statistics at Glacier National Park, Montana indicate that 2001 had fewer than average incidences 7 of high-O₃ events. At Voyageurs National Park in Minnesota, March and April 2001 had 8 lower-than-average frequencies of high-O₃ events, but May and June were more typical. 9 Overall, 2001 was considered to be a suitable year for analysis of high-O₃ events. Ozone 10 concentrations >70 and 80 ppbv occurred most often in May through August in 2001 and were 11 found to be associated with regional pollution by Fiore et al. (2003a).

12 Fiore et al. (2003a) focused their analysis on mean O₃ concentrations during the afternoon 13 hours (1300 to 1700 LT), as the comparison of model results with surface observations is most 14 appropriate in the afternoon when the observations are representative of a relatively deep mixed 15 layer (Fiore et al., 2002a). In addition, the GEOS-CHEM model does not provide independent 16 information on an hour-to-hour basis, because it is driven by meteorological fields that are 17 updated every 6-h and then interpolated. Fiore et al. (2003a) tested whether an analysis 18 restricted to these mean 1300 to 1700 LT surface concentrations captures the same frequency 19 of $O_3 > 50$ and 60 ppbv that emerges from an analysis of the individual hourly concentrations 20 over 24 hours. Results are reproduced here in Table AX3-17, which shows that the percentage 21 of individual afternoon (1300 to 1700 LT) hours when $O_3 > 50$ and 60 ppbv at the CASTNet sites 22 is always greater than the percentage of all hourly occurrences above these thresholds, indicating 23 that elevated O₃ concentrations preferentially occur in the afternoon. Furthermore, Table 24 AX3-17 shows that the frequency of observation of high-O₃ events is not diminished when 4-h 25 average (1300 to 1700 LT) concentrations are considered, reflecting persistence in the duration 26 of these events. Model frequencies of high-O₃ events from 1300 to 1700 LT at the CASTNet 27 sites are similar to observations in spring, as shown in Table AX3-17, and about 10% higher in 28 the summer, largely because of the positive model bias in the Southeast discussed in 29 Section AX3.9.2.

Site	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Observations ≥ 50 ppbv								
Denali NP, Alaska (64° N, 149° W, 0.6 km)	24	302	98	6	0	0	0	0
Voyageurs NP, Minnesota (48° N, 93° W, 0.4 km)	0	0	62	95	14	17	33	0
Glacier NP, Montana (49° N, 114° W, 1.0 km)	4	0	23	0	6	12	0	0
Yellowstone NP, Wyoming (45° N, 110° W, 2.5 km)	307	461	350	172	140	261	173	77
All CASTNet sites (71)	5468 (11%)	15814 (32%)	17704 (36%)	16150 (33%)	14489 (29%)	15989 (32%)	9874 (20%)	5642 (11%)
All sites, 1300-1700 LT only (hourly data)	1817 (21%)	4684 (56%)	5174 (61%)	4624 (56%)	4613 (54%)	5075 (60%)	3343 (40%)	1945 (23%)
All sites, 1300-1700 LT mean (4-hour average)	435 (20%)	1153 (55%)	1295 (61%)	1147 (55%)	1161 (54%)	1283 (60%)	841 (40%)	478 (22%)
All sites, model 1300-1700 LT mean	254 (12%)	1249 (59%)	1527 (69%)	1505 (71%)	1475 (67%)	1500 (68%)	1080 (51%)	591 (27%)
		Observ	vations ≥ 6	50 ppbv				
Denali NP	0	0	9	2	0	0	0	0
Voyageurs NP	0	0	6	32	0	0	15	0
Glacier NP	0	0	0	0	0	0	0	0
Yellowstone NP	4	77	139	18	6	26	1	2
All sites	519 (1%)	4729 (10%)	8181 (16%)	8199 (17%)	5705 (11%)	7407 (15%)	3492 (7%)	2073 (4%)
All sites, 1300-1700 LT only	235 (3%)	1798 (22%)	2808 (33%)	2721 (33%)	2235 (26%)	2758 (33%)	1416 (17%)	878 (10%)
All sites, 1300-1700 LT mean	56 (3%)	428 (20%)	697 (33%)	671 (32%)	550 (26%)	677 (32%)	358 (17%)	214 (10%)
All sites, model 1300-1700 LT mean	13 (1%)	377 (18%)	834 (38%)	964 (45%)	910 (41%)	834 (38%)	502 (24%)	204 (9%)

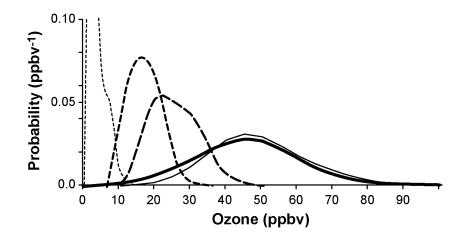
Table AX3-17. Number of Hours with Ozone Above 50 or 60 ppbvat U.S. CASTNet Sites in 2001

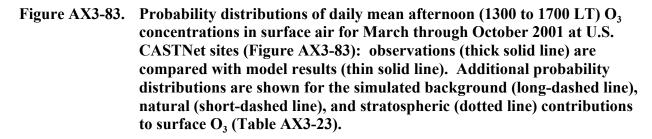
Data from 71 U.S. CASTNet sites are included in this analysis: those in Figure AX3-105 plus Denali NP. Percentages of total occurrences are shown in parentheses.

NP = National Park; LT = Local Time.

Reproduced from Fiore et al. (2003a).

NATURAL VERSUS ANTHROPOGENIC CONTRIBUTIONS TO HIGH-OZONE OCCURRENCES


3 Figure AX3-83, reproduced from Fiore et al. (2003a), shows probability distributions of daily mean afternoon (1300 to 1700 LT) O3 concentrations in surface air at the CASTNet sites 4 5 for March through October 2001. Model distributions for background, natural, and stratospheric O₃ (Table AX3-16) are also shown. The background (long-dashed line) ranges from 10 to 6 50 ppbv with most values in the 20 to 35 ppbv range. The full 10 to 50 ppbv range of 7 8 background predicted here encompasses the previous 25 to 45 ppbv estimates shown in 9 Table 3-8. However, background estimates from observations tend to be at the higher end of the 10 range (25 to 45 ppbv), while these results, as well as those from prior modeling studies 11 (Table 3-8) indicate that background O₃ concentrations in surface air are usually below 40 ppbv. 12 The background O₃ concentrations derived from observations may be overestimated if 13 observations at remote and rural sites contain some influence from regional pollution (as shown 14 below to occur in the model), or if the O_3 versus $NO_v - NO_x$ correlation is affected by different 15 relative removal rates of O₃ and NO_y (Trainer et al., 1993). Natural O₃ concentrations 16 (short-dashed line) are generally in the 10 to 25 ppbv range and never exceed 40 ppbv. The 17 range of the hemispheric pollution enhancement (the difference between the background and 18 natural O₃ concentrations) is typically 4 to 12 ppbv and only rarely exceeds 20 ppbv (< 1% total 19 incidences). The stratospheric contribution (dotted line) is always less than 20 ppbv and usually 20 below 10 ppby. Time series for specific sites are presented below.


21

CASE STUDIES: INFLUENCE OF THE BACKGROUND ON ELEVATED OZONE EVENTS IN SPRING

24 High-O₃ events were previously attributed to natural processes by Lefohn et al. (2001) at: 25 Voyageurs National Park, Minnesota in June and Yellowstone National Park, Wyoming in 26 March through May. Fiore et al. (2003a) used observations from CASTNet stations in 27 conjunction with GEOS-CHEM model simulations to deconstruct the observed concentrations 28 into anthropogenic and natural contributions. 29 At Voyageurs National Park in 2001, O_3 concentrations > 60 ppbv occurred frequently in 30 June but rarely later in summer (Table AX3-17). A similar pattern was observed in 1995 and 31 1997 and was used to argue that photochemical activity was probably not responsible for these

32 events (Lefohn et al. 2001). Figure AX3-84 from Fiore et al. (2003a) shows that GEOS-CHEM

1 captures much of the day-to-day variability in observed concentrations from mid-May through 2 June, including the occurrence and magnitude of high-O₃ events. The simulated background 3 contribution (diamonds) ranges from 15 to 36 ppbv with a 25 ppbv mean. The natural O₃ level 4 (crosses) is 15 ppby on average and varies from 9 to 23 ppby. The stratospheric contribution 5 (X's) is always < 7 ppby. The dominant contribution to the high-O₃ events on June 26 and 29 is from regional pollution (44 and 50 ppbv on June 26 and 29, respectively, calculated as the 6 7 difference between the triangles and diamonds in Figure AX3-84). The background contribution 8 (diamonds) is < 30 ppbv on both days, and is composed of a 20 ppbv natural contribution (which 9 includes 2 ppby of stratospheric origin) and a 5 ppby enhancement from hemispheric pollution 10 (the difference between the diamonds and crosses). Beyond these two high-O₃ events, 11 Figure AX3-84 shows that regional pollution drives most of the simulated day-to-day variability and explains all events above 50 ppbv. In 2001, monthly mean observed and simulated O₃ 12 13 concentrations are lower in July (37 and 42 ppby, respectively) and August (35 and 36 ppby) 14 than in June (44 and 45 ppbv). Fiore et al. (2003a) hypothesized that the lower mean O_3 and the

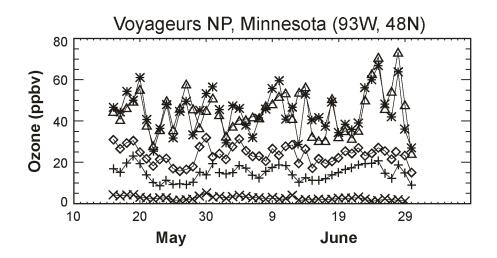
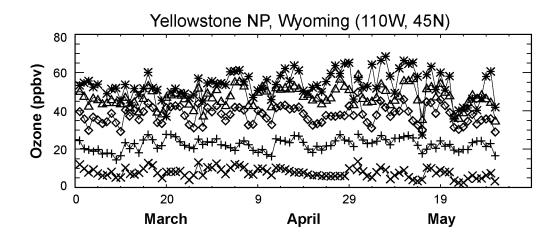
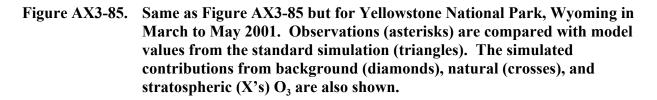




Figure AX3-84. Daily mean afternoon (13 to 17 LT) O₃ concentrations in surface air at Voyageurs National Park (NP), Minnesota in mid-May through June of 2001. Observations (asterisks) are compared with model values from the standard simulation (triangles). The simulated contributions from background (diamonds), natural (crosses), and stratospheric (X's) O₃ are also shown.

lack of O₃ >60 ppbv in July and August reflects a stronger Bermuda high-pressure system
 sweeping pollution from southern regions eastward before it could reach Voyageurs National
 Park.

Frequently observed concentrations of O₃ between 60 to 80 ppbv at Yellowstone NP in 4 5 spring (Figures AX3-76a,b) have been attributed by Lefohn et al. (2001) to natural sources, 6 because they occur before local park traffic starts and back-trajectories do not suggest influence 7 from long-range transport of anthropogenic sources. More hours with $O_3 > 60$ ppbv occur in 8 April and May of 2001 (Table AX3-17) than in the years analyzed by Lefohn et al. (2001). Fiore 9 et al. (2003a) used GEOS-CHEM to interpret these events; results are shown in Figure AX3-85. 10 The mean background, natural, and stratospheric O_3 contributions in March to May are higher at 11 Yellowstone (38, 22, and 8 ppbv, respectively) as compared to 27, 18, and 5 ppbv at the two 12 eastern sites previously discussed. The larger stratospheric contribution at Yellowstone reflects 13 the high elevation of the site (2.5 km). Fiore et al. (2003a) argued that the background at Yellowstone National Park should be considered an upper limit for U.S. PRB O₃ concentrations, 14

1 because of its high elevation. While Yellowstone receives a higher background concentration 2 than the eastern sites, the model shows that regional pollution from North American 3 anthropogenic emissions (difference between the triangles and diamonds) contributes an 4 additional 10 to 20 ppbv to the highest observed concentrations in April and May. One should not assume that regional photochemistry is inactive in spring. 5 Higher-altitude western sites are more frequent recipients of subsidence events that 6 transport high concentrations of O₃ from the free troposphere to the surface. Cooper and Moody 7 8 (2000) cautioned that observations from elevated sites are not generally representative of 9 lower-altitude sites. At Yellowstone, the background O₃ rarely exceeds 40 ppbv, but it is even 10 lower in the East. This point is illustrated in Figure AX3-86, from Fiore et al. (2003a), with time 11 series at representative western and southeastern CASTNet sites for the month of March, when 12 the relative contribution of the background should be high. At the western sites, the background 13 is often near 40 ppbv but total surface O₃ concentrations are rarely above 60 ppbv. While 14 variations in the background play a role in governing the observed total O₃ variability at these 15 sites, regional pollution also contributes. Background concentrations are lower (often <30 ppbv)

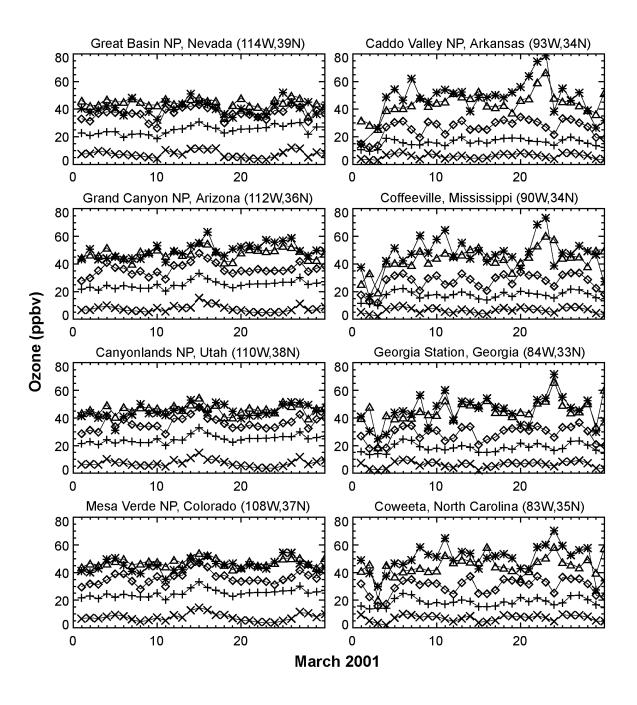


Figure AX3-86. Same as Figure AX3-86 but for March of 2001 at selected western (left column) and southeastern (right column) sites. Observations (asterisks) are compared with model values from the standard simulation (triangles). The simulated contributions from background (diamonds), natural (crosses), and stratospheric (X's) O₃ are also shown.

1 in the southeastern states where regional photochemical production drives much of the observed 2 variability. Cooper and Moody (2000) have previously shown that the high O₃ concentrations at 3 an elevated, regionally representative site in the eastern United States in spring coincide with 4 high temperatures and anticyclonic circulation, conditions conducive to photochemical O₃ production. Peak O₃ concentrations in this region, mainly at lower elevations, are associated 5 6 with lower background concentrations because chemical and depositional loss during stagnant 7 meteorological conditions suppress mixing between the boundary layer and the free troposphere 8 (Fiore et al., 2002a). Surface O_3 concentrations >80 ppbv could conceivably occur when 9 stratospheric intrusions reach the surface. However, based on information given in Section 10 AX2.3.2, these events are rare.

- 11
- 12

AX3.10 OZONE EXPOSURE IN VARIOUS MICROENVIRONMENTS 13

14

AX3.10.1 Introduction

15 There are many definitions of exposure. Human exposure to O₃ and related photochemical 16 oxidants are based on the measured O₃ concentrations in the individual's breathing zone as the 17 individual moves through time and space. Epidemiological studies generally use the ambient 18 concentrations as surrogates for exposure. Therefore, human exposure data and models provide 19 the best link between ambient concentrations (from measurements at monitoring sites or 20 estimated with atmospheric transport models), lung deposition and clearance, and estimates of 21 air concentration-exposure-dose relationships.

22 This section discusses the current information on the available human exposure data and 23 exposure model development. This includes information on (a) the relationships between O_3 24 measured at ambient monitoring sites and personal exposures and (b) factors that affect these 25 relationships. The information presented in this section is intended to provide critical links 26 between ambient monitoring data and O₃ dosimetry as well as between the toxicological and 27 epidemiologic studies presented in Annexes AX4, AX5, AX6, and AX7 of this document. 28

- 29
- 30

1 2

AX3.10.2 Summary of the Information Presented in the Exposure Discussion in the 1996 Ozone Criteria Document

3 The 1996 O₃ AQCD (U.S. Environmental Protection Agency, 1996a), based on then 4 currently available information, indicated that less emphasis should be placed on O₃ 5 concentrations measured at ambient monitoring stations. Fixed monitoring stations are generally 6 used for monitoring associated with air quality standards and do not provide a realistic 7 representation of individual exposures. Indoor/outdoor O₃ ratios reported in the literature were 8 summarized for residences, hospitals, offices, art galleries, and museums. The differences in 9 residential I/O were found to be a function of ventilation conditions. The I/O ratios were less 10 than unity. In most cases, indoor and in-transit concentrations of O_3 were significantly different 11 from ambient O₃ concentrations. Ambient O₃ varied from O₃ concentrations measured at fixed-12 site monitors. Very limited personal exposure measurements were available at the time the 13 1996 O₃ AQCD was published, so estimates of O₃ exposure or evaluated models were not 14 provided. The two available personal exposure studies indicated that only 40% of the variability 15 in personal exposures was explained by the exposure models using time-weighted indoor and 16 outdoor concentrations. The discussion addressing O₃ exposure modeling primarily addressed 17 work reported by McCurdy (1994) on population-based models (PBMs). Literature published 18 since publication of the 1996 O₃ AQCD has also focused on PBMs. A discussion of individual-19 based models (IBMs) will be included in the description of exposure modeling in this document 20 to improve our mechanistic understanding of O₃ source-to-exposure events and to evaluate their 21 usefulness in providing population-based estimates.

22

23

AX3.10.3 Concepts of Human Exposure

24 Human exposure to O₃ and related photochemical oxidants occurs when individuals come 25 in contact with the pollutant through "(a) the visible exterior of the person (skin and openings 26 into the body such as mouth and nostrils) or (b) the so-called exchange boundaries where 27 absorption takes place (skin, mouth, nostrils, lung, gastrointestinal tract)" (Federal Register, 1986). Consequently, exposure to a chemical, in this case O_3 , is the contact of that chemical 28 29 with the exchange boundary (U.S. Environmental Protection Agency, 1992). Therefore, 30 inhalation exposure to O₃ is based on measurements of the O₃ concentration near the individual's 31 breathing zone that is not affected by exhaled air.

1 AX3.10.4 Quantification of Exposure

2 Quantification of inhalation exposure to any air pollutant starts with the concept of the 3 variation in the concentration of the air pollutant in the breathing zone, unperturbed by exhaled 4 breath, as measured by a personal exposure monitor as a person moves through time and space. 5 Since the concentrations of O₃ and related photochemical oxidants vary with time and location and since people move among locations and activities, the exposure and dose received changes 6 7 during the day. Furthermore, the amount of pollutant delivered to the lung is dependent upon the 8 person's minute ventilation rate. Thus, the level of exertion is an important consideration in 9 determining the potential exposure and dose. Inhalation exposure has been defined as the 10 integral of the concentration as a function of time over the time period of interest for each 11 individual (Ott, 1982, 1985; Lioy, 1990):

12

13
$$E = \int_{t_1}^{t_2} c(t) dt$$
 (AX3-2)

14 where *E* is inhalation exposure, c(t) is the breathing zone concentration as a function of time and 15 t_1 and t_2 the starting and ending time of the exposure, respectively.

16

17 AX3.10.5 Methods to Estimate Personal Exposure

18 There are two approaches for measuring personal exposure; direct and indirect methods 19 (Ott, 1982, 1985; Navidi et al., 1999). Direct approaches measure the contact of the person with 20 the chemical concentration in the exposure media over an identified period of time. For the 21 direct measurement method, a personal exposure monitor (PEM) is worn near the breathing zone 22 for a specified time to either continually collect for subsequent analysis or directly measure the 23 concentrations of the pollutant and the exposure levels. The indirect approach models 24 concentrations of a pollutant in specific microenvironments. Both methods are associated with 25 measurement error. 26

- 20
- 27
- 28

1

AX3.10.5.1 Direct Measurement Method

The passive monitors commonly used in the direct method provides integrated personal exposure information. The monitor's sensitivity to wind velocity, badge placement, and interference with other copollutants may result in measurement error.

5 Modified passive samplers have been developed for use in determining O_3 exposure. The 6 difficulty in developing a passive O₃ monitor is in identifying a chemical or trapping reagent that 7 can react with O₃. Zhou and Smith (1997) evaluated the effectiveness of sodium nitrite, 8 3-methyl-2-benzothiazolinone acetone azine (MBTH), p-acetamidophenol (p-ATP), and indigo 9 carmine as O₃-trapping reagents. Only sodium nitrite and MBTH gave sensitive, linear 10 responses at environmentally relevant concentrations. However, MBTH overestimated the O₃ 11 concentrations significantly, suggesting an interference effect. Sodium nitrite was found to be a 12 valid reagent when an effective diffusion barrier was used. Scheeren and Adema (1996) used an 13 indigo carmine-coated glass-fiber filter to collect spectrophotometrically measured O₃. The 14 detection limit was 23 ppb for a 1-h exposure, with no interfering oxidants identified. The 15 reagent was valid for a relative humidity range of 20 to 80%. The uptake rate was wind velocity 16 dependent. However, wind velocity dependencies was compensated for by using a small 17 battery-operated fan that continuously blew air across the face of the monitor at a speed of 18 1.3 m/s. The overall accuracy of the sampler, after correcting for samples collected under low-19 wind conditions, was $11 \pm 9\%$ in comparison to a continuous UV-photometric monitor. Sample 20 stability was > 25 days in a freezer. Bernard et al. (1999) employed a passive sampler consisting 21 of a glass-fiber filter coated with a 1,2-di(4-pyridyl)ethylene solution. The sample was analyzed 22 spectrophotometrically after color development by the addition of 3-methyl-2-benzothiazolinone 23 hydrazone hydrochloride. The sampler was used at 48 sites in Montpellier, France. The results 24 from the passive sampler were highly correlated (0.9, p < 0.0001) with the results from the UV 25 absorption analyzer of the regional air quality network. Detection limits were 17 ppb for 12-h 26 and 8 ppb for 24-h samples with an overall variation coefficient of 5% for field-tested paired 27 samples. The imprecision was estimated to be 1.0 ppb.

A series of studies have been conducted using a passive sampler developed by Koutrakis et al. (1993) at the Harvard School of Public Health. The sampler used sodium nitrate as the trapping reagent and included a small fan to assure sufficient movement of air across the face of the badge when sampling was done indoors. The passive sampler has been evaluated against the 1 standard UV absorption technique used in studies in southern California (Avol et al., 1998a;

Geyh et al., 1999, 2000; Delfino et al., 1996), Baltimore, MD (Sarnat et al., 2000), and Canada
(Brauer and Brook, 1997).

4 Avol et al. (1998a) used nitrite-coated passive samplers to measure O₃ air concentrations 5 indoors and outdoors of 126 homes between February and December 1994 in the Los Angeles 6 metropolitan area. The detection limit of the method was near 5 ppb. The inconsistent sampler 7 response due to changes in wind pattern and changes in personal activity made the sampler 8 unacceptable for widespread use. The results of the study are discussed later in this chapter. 9 Geyh et al. (1997, 1999) compared passive and active personal O₃ air samplers based on 10 nitrite-coated glass-fiber filters. The active sampler was more sensitive allowing for the 11 collection of short-term, 2.6-h samples. Comparison between the two samplers and UV 12 photometric O₃ monitors demonstrated generally good agreement (bias for active personal 13 sampler of $\sim 6\%$). The personal sampler also had high precision (4% for duplicate analyses) and 14 good compliance when used by children attending summer day camp in Riverside, CA.

15 16

AX3.10.5.2 Indirect Measurement Method

17 The indirect method determines and measures the concentrations in all of the locations or 18 "microenvironments" a person encounters or determines the exposure levels through the use of 19 models or biomarkers. The concept of microenvironments is critical for understanding human 20 exposure and aids in the development of procedures for exposure modeling using data from 21 stationary monitors (indoor and outdoor). Microenvironments were initially defined as 22 individual or aggregate locations (and sometimes even as activities taking place within a 23 location) where a homogeneous concentration of the pollutant is encountered for a specified 24 period of time. Thus, a microenvironment has often been identified with an "ideal" (i.e., 25 perfectly mixed) compartment of classical compartmental modeling. More recent and general 26 definitions view the microenvironment as a "control volume," indoors or outdoors, that can be 27 fully characterized by a set of either mechanistic or phenomenological governing equations, 28 when properly parameterized, given appropriate initial and boundary conditions. The boundary 29 conditions typically reflect interactions with the ambient air and with other microenvironments. 30 The parameterizations of the governing equations generally include the information on attributes 31 of sources and sinks within each microenvironment. This type of general definition allows for 32 the concentration within a microenvironment to be nonhomogeneous, provided its spatial profile

1 and mixing properties can be fully predicted or characterized. By adopting this definition, the 2 number of microenvironments used in a study is kept manageable, while existing variabilities in 3 concentrations are still taken into account. The "control volume" variation could result in a 4 series of microenvironments in the same location. If there are large spatial gradients within a location for the same time period, the space should be divided into the number of 5 6 microenvironments needed to yield constant pollutant concentrations; the alternative offered by 7 the control volume approach is to provide concentration as a function of location within it, 8 so that the appropriate value is selected for calculating exposure. Thus, exposure to a person in a 9 microenvironment is calculated using a formula analogous to equation AX3-3, but as the sum of 10 the discrete products of measured or modeled concentrations (specific to the receptor and/or 11 activity of concern) in each microenvironment by the time spent there. The equation is 12 expressed as:

13

$$E = \sum_{i=1}^{n} c_i \Delta t_i \tag{AX3-3}$$

14

15 where *i* specifies microenvironments from 1 to n, c_i is the concentration in the *i*th 16 microenvironment, and Δt_i is the duration spent in the *i*th microenvironment. The total exposure 17 for any time interval for an individual is the sum of the exposures in all microenvironments 18 encountered within that time interval. The concentration and time component in this approach 19 can contribute to measurement error. However, this method should provide an accurate 20 determination of exposure provided that all microenvironments that contribute significantly to 21 the total exposures are included and the concentration assigned to the microenvironment is 22 appropriate for the time period spent in those environments. Results from the error analysis 23 models developed by Navidi et al. (1999) indicated that neither the microenvironmental or 24 personal sampling approach gave reliable health effect estimates when measurement errors were 25 uncorrected. The nondifferential measurement error biased the effect estimates toward zero 26 under the model assumptions. However, if the measurement error was correlated with the health 27 response, a bias away from the null could result.

28 Microenvironments typically used to determine O₃ exposures include indoor residences, 29 other indoor locations, outdoors near roadways, other outdoor locations, and in-vehicles. 1 Outdoor locations near roadways are segregated from other outdoor locations because N₂O

2 emissions from automobiles alter O₃ and related photochemical oxidant concentrations compared

3 to concurrent typical ambient levels. Indoor residences are typically separated from other indoor

4 locations, because of the time spent there and potential differences between the residential

5 environment and the work/public environment. A special concern for O_3 and related

6 photochemical oxidants is their diurnal weekly (weekday-weekend) and seasonal variability.

7 Few indoor O₃ sources exist, but include electronic equipment, O₃ generators, and copying

8 machines. Some secondary reactions of O₃ take place indoors that produce related

9 photochemical oxidants that could extend the exposures to those species above the estimates

10 obtained from O_3 alone. (See discussion on O_3 chemistry and indoor sources and concentrations

- 11
- 12

13

AX3.10.6 Ozone Exposure Models

later in this Annex.)

14 Measurement efforts to assess population exposures or exposures to large numbers of 15 individuals over long time periods is labor intensive and costly, so exposure modeling is often 16 done for large populations evaluated over time. Predicting (or reconstructing) human exposure 17 to O₃ through mechanistic models is complicated by the fact that O₃ (and associated 18 photochemical oxidants) is formed in the atmosphere through a series of chemical reactions that 19 are nonlinear and have a wide range of characteristic reaction timescales. Furthermore, these 20 reactions require the precursors VOCs and NO_x that are emitted by a wide variety of both anthropogenic and natural (biogenic) emission sources. This makes O₃ a secondary pollutant 21 22 with complex nonlinear and multiscale dynamics in time and space. Concentration levels 23 experienced by individuals and populations exposed to O_3 are therefore affected by (1) emission 24 levels and spatiotemporal patterns of the gaseous precursors: VOCs and NO_x, that can be due to 25 sources as diverse as a power plant in a different state, automobiles on a highway five miles 26 away, and the gas stove in one's own kitchen; (2) ambient atmospheric as well as indoor 27 microenvironmental transport, removal and mixing processes (convective, advective, dispersive 28 and molecular/diffusional); and (3) chemical transformations that take place over a multitude of 29 spatial scales, ranging from regional/sub-continental (100 to 1000 km), to urban (10 to 100 km), 30 to local (1 to 10 km), to neighborhood (< 1 km), and to microenvironmental/personal. These

1 2 transformations depend on the presence of co-occurring pollutants in gas and aerosol phases, both primary and secondary, and on the nature of surfaces interacting with the pollutants.

Further, the strong temporal variability of O_3 , both diurnal and seasonal, makes it critical that definitions of integrated or time-averaged exposure employ appropriate averaging times in order to produce scientifically defensible analyses for either causes of O_3 production or health effects that result from O_3 exposure. An understanding of the effect of temporal profiles of concentrations and contacts with human receptors is essential. Short-term integrated metrics, such as hourly averages, 8-h running averages, etc., are needed to understand the relationship between O_3 exposure and observed health and other effects.

10 Health effects associated with O₃ have mostly been considered effects of acute exposures. 11 Peak O₃ and related photochemical oxidants concentrations typically occur towards the latter portion of the day during the summer months. Elevated concentrations can last for several 12 13 hours. Regional O₃ episodes often co-occur with high concentrations of airborne fine particles 14 making it difficult to assess O₃ dynamics and exposure patterns. Furthermore, O₃ participates in 15 multiphase (gas/aerosol) chemical reactions in various microenvironments. Several recent 16 studies show that O₃ reacts indoors with VOCs and NO_x in an analogous fashion to that occurring in the ambient atmosphere (Lee and Hogsett, 1999; Wainman et al., 2000; Weschler 17 18 and Shields, 1997). These reactions produce secondary oxidants and other air toxics that could 19 play a significant role in cumulative human exposure and health-related effects within the 20 microenvironment.

21

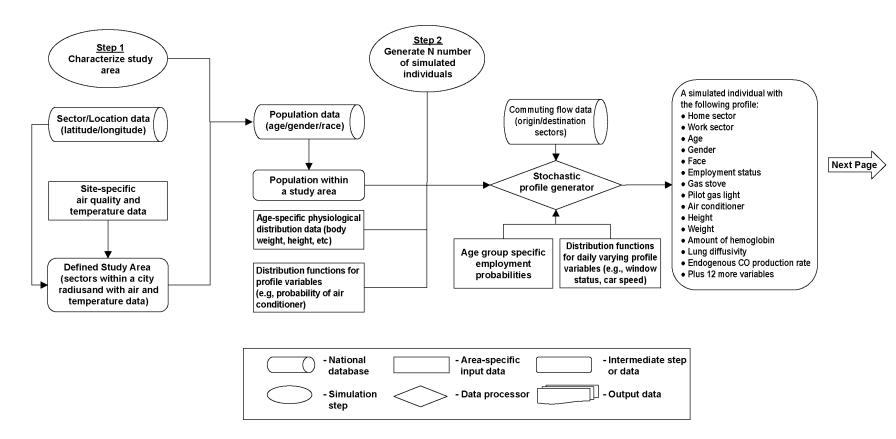
22 Terminology

Models of human exposure to O₃ can be characterized and differentiated based upon a
variety of attributes. For example, exposure models can be classified as (1) potential exposure
models, typically maximum outdoor concentration versus "actual" exposure, including locally
modified microenvironmental outdoor and indoor exposures; (2) population versus "specific
individual"-based exposure models; (3) deterministic versus probabilistic models; and
(4) observation versus mechanistic air quality model-driven estimates of spatially and temporally
varying O₃ concentration fields, etc.
Some points should be made regarding terminology and the directions of exposure

Some points should be made regarding terminology and the directions of exposure
 modeling research (as related specifically to O₃ exposure assessments) before proceeding to

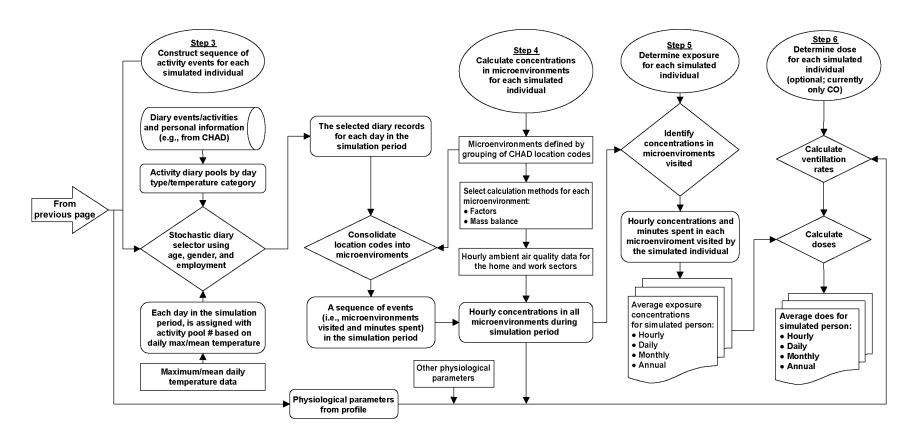
1 discuss specific recent activities and developments. First, it must be understood that significant 2 variation exists in the definitions for much of the terminology used in the published literature. 3 The science of exposure modeling is an evolving field and the development of a "standard" and 4 commonly accepted terminology is a process in evolution. Second, very often procedures/efforts listed in the scientific literature as "exposure models/exposure estimates," etc., may in fact refer 5 6 to only a subset of the steps or components required for a complete exposure assessment. For 7 example, some efforts focus solely on refining the subregional or local spatiotemporal dynamics of local O3 concentrations starting from "raw" data representing monitor observations or regional 8 9 grid-based model estimates. Nevertheless, such efforts are included in the discussion of the next 10 subsection, as they can provide improved tools for the individual components that constitute a 11 complete exposure assessment. On the other hand, formulations that are identified as exposure 12 models, but focus only on ambient air quality predictions, are not included in the discussion that 13 follows, as they do not provide true exposure estimates but, rather, ambient air estimates. These 14 models are reviewed in an earlier section of this annex. It is recognized that ambient air 15 concentrations are used as surrogates for exposure in some epidemiological studies. Third, 16 O₃-exposure modeling is very often identified explicitly with population-based modeling, while models describing the specific mechanisms affecting the exposure of an individual to O₃, and 17 18 possibly some of the co-occurring gas and/or aerosol phase pollutants, are usually associated 19 with studies focusing on indoor chemistry modeling. Finally, in recent years, the focus of either 20 individual- or population-based exposure modeling research has shifted from O₃ to other 21 pollutants, mostly airborne toxics and particulate matter. However, many of the modeling 22 components that have been developed in these efforts are directly applicable to O₃ exposure 23 modeling and are, therefore, mentioned in the following discussion.

24


25

A General Framework for Assessing Exposure to Ozone

Once the individual and relevant activity locations for Individual Based Modeling (IBM), or the population and associated spatial (geographical) domain for Population Based Modeling (PBM) have been defined, along with the temporal framework of the analysis (period, resolution), the comprehensive modeling of individual/population exposure to O₃ (and related pollutants) will generally require several steps (or components, as some of them do not have to be performed in sequence). The steps represent a "composite" outline based on frameworks


1 described in the literature over the last 20 years (Ott, 1982, 1985; Lioy, 1990; Georgopoulos and 2 Lioy, 1994; U.S. Environmental Protection Agency, 1992, 1997) as well as on the structure of 3 various existing inhalation exposure models (McCurdy, 1994; Johnson et al., 1992; Nagda et al., 4 1987; U.S. Environmental Protection Agency, 1996c; ICF Consulting, 2003; Burke et al., 2001; McCurdy et al., 2000; Georgopoulos et al., 2002a,b; Freijer et al., 1998; Clench-Aas et al., 1999; 5 6 Künzli et al., 1997). The conceptional frameworks of the models are similar. Figures 7 AX3-87a,b provides a conceptual overview of an exposure model. The steps involved in 8 defining exposure models include (1) estimation of the background or ambient levels of O_3 9 through geostatistical analysis of fixed monitor data, or emissions-based, photochemical, air 10 quality modeling; (2) estimation of levels and temporal profiles of O_3 in various outdoor and 11 indoor microenvironments such as street canyons, residences, offices, restaurants, vehicles, etc. 12 through linear regression of available observational data sets, simple mass balance models, 13 detailed (nonlinear) gas or gas/aerosol chemistry models, or detailed combined chemistry and 14 computational fluid dynamics models; (3) characterization of relevant attributes of individuals or 15 populations under study (age, gender, weight, occupation, etc.); (4) development of activity 16 event (or exposure event) sequences for each member of the sample population or for each cohort for the exposure period; (5) calculation of appropriate inhalation (in general intake) rates 17 18 for the individuals of concern, or the members of the sample population, reflecting/combining 19 the physiological attributes of the study subjects and the activities pursued during the individual 20 exposure events; (6) combination of intake rates and microenvironmental concentrations for each 21 activity event to assess dose; (7) calculation of event-specific exposure and intake dose distributions for selected time periods (1-h and 8-h daily maximum, O₃ season averages, etc.); 22 23 and (8) use of PBM to extrapolate population sample (or cohort) exposures and doses to the 24 entire populations of interest. This process should aim to quantify, to the extent possible, 25 variability and uncertainty in the various components, assessing their effects on the estimates of 26 exposure. 27 Implementation of the above components of comprehensive exposure modeling has

benefitted significantly from recent advances and expanded availability of computational

Figure AX3-87a. Detailed diagram illustrating components of an exposure model.

Source: ICF Consulting and ManTech Environmental Technology, Inc. (2003)

Figure AX3-87b. Detailed diagram illustrating components of an exposure model.

Source: ICF Consulting and ManTech Environmental Technology, Inc. (2003)

1

- 2
- 3 4

AX3.10.6.1 Population Exposure Models

Existing comprehensive inhalation exposure models treat human activity patterns as 5 6 sequences of exposure events in which each event is defined by a geographic location and 7 microenvironment. The U.S. EPA has supported the most comprehensive efforts in this area, 8 leading to the development of the National Ambient Air Quality Standard Exposure Model and 9 Probabilistic National Ambient Air Quality Standard Exposure Model (NEM and pNEM) 10 (Johnson, 2003) and the Modeling Environment for Total Risk Studies/Simulation of Human 11 Exposure and Dose System (MENTOR/SHEDS) (McCurdy et al., 2000). The Total Risk 12 Integrated Methodology Inhalation Exposure (TRIM.Expo) model, also referred to as the Air 13 Pollutants Exposure (APEX) model, was developed by the U.S. EPA as a tool for estimating 14 human population exposure to criteria and air toxic pollutants. TRIM.Expo serves as the human 15 inhalation exposure model within the Total Risk Integrated Methodology (TRIM) framework 16 (ICF Consulting and ManTech Environmental Technology, Inc. (2003)). TRIM.Expo, a PC-17 based model derived from the probabilistic NAAQS Exposure Model (pNEM), was used in the 18 last O₃ NAAQS review (Johnson et al., 1996a, 1996b). Over the past five years, TRIM.Expo has 19 undergone several significant improvements in the science reflected in the model and in the 20 databases input to the model.

technologies such as Relational Database Management Systems (RDBMS) and Geographic

Information Systems (Purushothaman and Georgopoulos, 1997, 1999a,b).

21 Recent European efforts have produced some formulations that have similar general 22 attributes as the above models but generally involve major simplifications in some of their 23 components. Examples of recent European models addressing O₃ exposures include the AirPEx 24 (Air Pollution Exposure) model (Freijer et al., 1998), which basically replicates the pNEM 25 approach, and the AirQUIS (Air Quality Information System) model (Clench-Aas et al., 1999). 26 The NEM/pNEM, TRIM.Expo, and MENTOR/SHEDS families of models provide 27 exposure estimates, defined by concentration and minute ventilation rate for each individual 28 exposure event, and provide distributions of exposure and O3 dose over any averaging period of 29 concern from 1 h to an entire O₃ season. The above families of models also simulate certain 30 aspects of the variability and uncertainty in the principal factors affecting exposure. pNEM 31 divides the population of interest into representative cohorts based on the combinations of

1 demographic characteristics (age, gender, employment), home/work district, residential cooking 2 fuel, and then assigns activity diary records (Glen et al., 1997) to each cohort according to 3 demographic characteristic, season, day-type (weekday/weekend), and temperature. TRIM.Expo 4 and MENTOR/SHEDS generates a population demographic file containing a user-defined number of person-records for each census tract of the population based on proportions of 5 6 characteristic variables (age, gender, employment, housing) obtained for the population of 7 interest, and then assigns the matching activity information based on the characteristic variables. 8 A discussion of databases on time-activity data, and their influence on estimates of long-term 9 ambient O₃ exposure, can be found in Künzli et al. (1997), McCurdy (2000), and McCurdy et al. 10 (2000).

11 More recent exposure models are designed (or have been redesigned) to obtain such 12 information from CHAD (Consolidated Human Activities Database; www.epa.gov/chadnet1; 13 see Table AX3-18). There are now about 22,600 person-days of sequential daily activity pattern 14 data in CHAD. All ages of both genders are represented in CHAD. The data for each subject 15 consist of one or more days of sequential activities, in which each activity is defined by 16 start time, duration, activity type (140 categories), and microenvironment classification 17 (110 categories). Activities vary from 1 min to 1 h in duration. Activities longer than 1 h are 18 subdivided into clock-hour durations to facilitate exposure modeling. A distribution of values 19 for the ratio of oxygen uptake rate to body mass (referred to as metabolic equivalents or METs) 20 is provided for each activity type listed. The forms and parameters of these distributions were 21 determined through an extensive review of the exercise and nutrition literature. The primary 22 source of distributional data was Ainsworth et al. (1993), a compendium developed specifically 23 to "facilitate the coding of physical activities and to promote comparability across studies." 24 Other information on activity patterns has been reported by Klepeis et al. (1996, 2001); Avol 25 et al. (1998b); Adams (1993); Shamoo et al. (1994); Linn et al. (1996); Künzli et al. (1997). 26 Use of the information in CHAD provides a rational way for incorporating realistic intakes 27 into exposure models by linking inhalation rates to activity information. As mentioned earlier, 28 an exposure event sequence derived from activity-diary data is assigned to each population unit 29 (cohort for pNEM- or REHEX-type models, or individual for TRIM.Expo or MENTOR/SHEDS-30 type models). Each exposure event is typically defined by a start and duration time, a 31 geographic location and microenvironment, and activity level. The most recent pNEM,

	Calendar Time			Diary					
Study Name	Period of the Study	Age ¹	Days ²	Type ³	Time⁴	Rate ⁵	Documentation or Reference	Notes	
Baltimore	Jan-Feb 1997 Jul-Aug 1998	65+	391	Diary; 15-min blocks	24-h Standard	No	Williams et al. (2000a,b)	Multiple days, varying from 5-15; part of a $PM_{2.5}$ PEM study	
CARB: Adolescents and Adults	Oct 1987-Sept 1988	12-94	1762	Retrospective	24-h Standard	No	Robinson et al. (1991) Wiley et al. (1991a)		
CARB: Children	Apr 1989-Feb 1990	0-11	1200	Retrospective	24-h Standard	No	Wiley et al. (1991b)		
Cincinnati (EPRI)	Mar-Apr and Aug 1985	0-86	2614	Diary	24 h; nominal 7 pm-7 am	Yes	Johnson (1989)	3 consecutive days; 186 P-D removed ⁷	
Denver (EPA)	Nov 1982-Feb 1983	18-70	805	Diary	24 h; nominal 7 pm-7 am	No	Akland et al. (1985) Johnson (1984)	Part of CO PEM ⁶ study; 2 consec. days; 55 P-D removed ⁷	
Los Angeles: Elem. School Children	Oct 1989	10-12	51	Diary	24-h Standard	Yes	Spier et al. (1992)	7 P-D removed ⁷	
Los Angeles: High School Adoles.	Sept-Oct 1990	13-17	43	Diary	24-h Standard	Yes	Spier et al. (1992)	23 P-D removed ⁷	
National: NHAPS-A ⁸	Sept 1992-Oct 1994	0-93	4723	Retrospective	24-h Standard	No ⁹	Klepeis et al. (1995) Tsang and Klepeis (1996)	A national random-probability survey	
National: NHAPS-B ⁸	As above	0-93	4663	Retrospective	24-h Standard	No ⁹	As above	As above	
University of Michigan: Children	Feb-Dec 1997	0-13	5616	Retrospective	24-h Standard	No	Institute for Social Research (1997)	2 days of data: one is a weekend day	
Valdez, AK	Nov 1990-Oct 1991	11-71	401	Retrospective	Varying 24-h period	No	Goldstein et al. (1992)	4 P-D removed ⁷	
Washington, DC (EPA)	Nov 1982-Feb 1983	18-98	699	Diary	24 h; nominal 7 pm-7 am	No	Akland et al. (1985) Hartwell et al. (1984)	Part of a CO PEM ⁶ study; 6 P-D removed ⁷	

Table AX3-18. Activity Pattern Studies Included in the Consolidated Human Activity Database (CHAD)

¹All studies included both genders. The age range depicted is for the subjects actually included; in most cases, there was not an upper limit for the adult studies. Ages are inclusive. Age 0 = babies < 1 year old.

² The actual number of person-days of data in CHAD after the "flagging" and removal of questionable data. See the text for a discussion of these procedures.

³ Retrospective: a "what did you do yesterday" type of survey; also known as an ex post survey. Diary: a "real-time" paper diary that a subject carried as he or she went through the day.

⁴ Standard = midnight to midnight.

⁵Was activity-specific breathing rate data collected?

 6 PEM = a personal monitoring study. In addition to the diary, a subject carried a small CO or PM_{2.5} monitor throughout the sampling period.

⁷P-D removed = The number of person-days of activity pattern data removed from consolidated CHAD because of missing activity *and* location information; completeness criteria are listed in the text.

⁸National Human Activity Pattern Study; A = the air version; B = the water version. The activity data obtained on the two versions are identical.

⁹A question was asked regarding which activities (within each 6-h time block in the day) involved "heavy breathing," lifting heavy objects, and running hard.

Source: U.S. Environmental Protection Agency (2004a)

1 TRIM.Expo, and MENTOR/SHEDS models have defined activity levels using the activity 2 classification coding scheme incorporated into CHAD. A probabilistic module within the 3 TRIM.Expo and MENTOR/SHEDS-type models converts the activity classification code of each 4 exposure event to an energy expenditure rate, which in turn is converted into an estimate of 5 oxygen uptake rate. The oxygen uptake rate is then converted into an estimate of ventilation rate 6 (V_E) , expressed in L/min. Johnson (2001) reviewed the physiological principles incorporated 7 into the algorithms used in pNEM and TRIM.Expo to convert each activity classification code to 8 an oxygen uptake rate and describes the additional steps required to convert oxygen uptake 9 to VE

McCurdy (1997a,b, 2000) recommended that ventilation rate be estimated as a function of
 energy expenditure rate. The energy expended by an individual during a particular activity can
 be expressed as:

13

EE = (MET)(RMR)(AX3-4)

14

where EE is the average energy expenditure rate (kcal/min) during the activity, MET (metabolic equivalent of work) is a ratio specific to the activity and is dimensionless, and RMR is the resting metabolic rate of the individual expressed in terms of number of energy units expended per unit of time (kcal/min). If RMR is specified for an individual, then the above equation requires only an activity-specific estimate of MET to produce an estimate of the energy expenditure rate for a given activity. McCurdy et al. (2000) developed MET distributions for the activity classifications appearing in the CHAD database.

An important source of uncertainty in existing exposure modeling involves the creation of multiday, seasonal, or year long exposure activity sequences based on 1- to 3-day activity data for any given individual from CHAD. Currently, appropriate longitudinal data are not available and the existing models use various rules to derive longer-term activity sequences using 24-h activity data from CHAD.

The pNEM family of models used by the EPA has evolved considerably since the
introduction of the first NEM model in the 1980s (Biller et al., 1981). The first such
implementations of pNEM/O₃ in the 1980s used a reduced form of a mass balance equation to

1	estimate indoor O ₃ concentrations from outdoor concentrations. The second generation of
2	$pNEM/O_3$ was developed in 1992 and used a simple mass balance model to estimate indoor O_3
3	concentrations. Subsequent enhancements to pNEM/O ₃ and its input databases included
4	revisions to the methods used to estimate equivalent ventilation rates (ventilation rate divided by
5	body surface), to determine commuting patterns, and to adjust ambient O ₃ levels to simulate
6	attainment of proposed NAAQS. During the mid-1990s, the EPA applied updated versions of
7	pNEM/O3 to three different population groups in nine selected urban areas (Chicago, Denver,
8	Houston, Los Angeles, Miami, New York, Philadelphia, St. Louis, and Washington): (1) the
9	general population of urban residents, (2) outdoor workers, and (3) children who tended to spend
10	more time outdoors than the average child. Reports by Johnson et al. (1996a,b,c) describe these
11	versions of pNEM/O ₃ and summarize the results of the application of the model to the nine urban
12	areas. These versions of pNEM/O ₃ used a revised probabilistic mass balance model to determine
13	O ₃ concentrations over 1-h periods in indoor and in-vehicle microenvironments (Johnson, 2003).
14	The model assumed that there are no indoor sources of O ₃ , that the outdoor O ₃ concentration and
15	AER during the clock hour is constant at a specified value, and that O_3 decays at a rate
16	proportional to the outdoor O ₃ concentration and the indoor O ₃ concentration.
17	The new pNEM-derived model, TRIM.Expo, differs from earlier pNEM models in that the

probabilistic features of the model are incorporated into a Monte Carlo framework. Instead of dividing the population of interest into a set of cohorts, TRIM.Expo generates individuals as if they were being randomly sampled from the population. TRIM.Expo provides each generated individual with a demographic profile that specifies values for all parameters required by the model. The values are selected from distributions and databases that are specific to the age, gender, and other specifications stated in the demographic profile. The EPA plans to develop future versions of TRIM.Expo applicable to O_3 and other criteria pollutants.

The latest version of TRIM.Expo allows for finer geographical units such as census tracts and automatically assigns population to the nearest monitor within a cutoff distance. Exposure district-specific temperatures can be specified and the user can select the variables that affect each parameter (e.g., the AER parameter in certain indoor microenvironments may depend on air conditioning status or window position). The mass balance algorithms have been enhanced to allow window position or vehicle speed to also be considered in determining AERs. The TRIM.Expo model simulates individual movement through time and space to provide
 an estimate of exposure to a given pollutant in the indoor, outdoor, and in-vehicle
 microenvironments. The model is highly versatile, allowing input data for specific applications.
 TRIM.Expo provides a good balance in terms of precision and resource expenditure compare
 with the more narrowly focused site-specific model and the broadly applicable national
 screening-level models.

A key strength of TRIM.Expo is its ability to estimate hourly exposures and doses for all simulated individuals in the sampled population. TRIM.Expo is capable of estimating exposures of workers in the geographic area where they work, in addition to the geographic area where they live. TRIM.Expo is able to represent much of the variability in the exposure estimates resulting from the variability of the factors affecting human exposure by incorporating stochastic processes representing the natural variability of personal profile characteristics, activity patterns, and microenvironment parameters .

14 A limitation of TRIM.Expo is that uncertainty in the predicted distributions has not been 15 addressed. Certain aspects of the personal profiles are held constant (e.g., age) which could be 16 an issue for simulations with long timeframes. The combined data set for activity patterns 17 (CHAD) are from a number of different studies and may not constitute a representative sample. 18 However, the largest portion of CHAD (about 40 percent) is from a study of national scope and 19 research has shown that activity patterns are generally similar once you take into account age, 20 gender, day of week, and season/temperature. The commuting data addresses only home-to-21 work travel and may not accurately reflect current commuting patterns. The population not 22 employed outside the home is assumed to always remain in the residential census tract. 23 Although several of the TRIM. Expo microenvironments account for time spent in travel, the 24 travel is assumed to always occur in basically a composite of the home and work tract. Seasonal 25 or year long sequences for a simulated individual are created by sampling human activity data 26 from more than one subject, possibly causing an underestimation of the variability from person 27 to person and an overestimation of the day to day variability for any given individual. The 28 model does not capture certain correlations among human activities that can impact 29 microenvironmental concentrations (e.g., cigarette smoking leading to an individual opening a 30 window, which in turn affects the amount of outdoor air penetrating the residence).

1 MENTOR/SHEDS estimates the population distribution of pollutant exposure by randomly 2 sampling from various input distributions. MENTOR/SHEDS is capable of simulating 3 individuals exposures in eight microenvironments (outdoors, residence, office, school, store, 4 restaurant, bar, and vehicles) using spatial concentration data for each census tract for outdoor pollutant concentrations. The indoor and in-vehicle pollutant concentrations are calculated using 5 6 specific equations for the microenvironment and ambient pollutant concentration relationship. 7 Model simulations use demographic data at the census tract level. Randomly selected 8 characteristics for a fixed number of individual are selected to match demographics within the 9 census tract for age, gender, employment status, and housing type. Smoking prevalence 10 statistics by gender and age is randomly selected for each individual in the simulation. Diaries 11 for activity patterns are matched for the simulated individual by demographic characteristics. 12 The essential attributes of some of the O₃ exposure models and approaches are summarized in Table AX3-19. 13

14 Rifai et al. (2000) compared applications of an updated version of REHEX, REHEX-II. 15 The applications used NHAPS data for the southern states and the 48-state NHAPS or the 16 Houston-specific time-activity pattern data. The results indicated a sensitivity to the specificity of the activity data: using Houston-specific data resulted in higher estimates of human exposure 17 18 in some of the scenarios. For example, using NHAPS data lead to an estimated 275 thousand-19 exposure-hours between 120 to 130 ppb, while use of the Houston-specific activity data lead to 20 an estimated 297 thousand-exposure-hours between 120 and 130 ppb (8% higher). Using the 21 Houston-specific activity data in the model resulted in about 2,400 person-exposure-hours above 190 to 200 ppb O₃ while no exposure above this threshold was estimated when the NHAPS 22 23 activity were used in the model.

24 Of the above families of models only NEM/pNEM implementations have been extensively 25 applied to O₃ studies. However, it is anticipated that TRIM.Expo will be useful as an exposure 26 modeling tool for assessing both criteria and hazardous air pollutants in the future. The 1996 O₃ 27 AQCD (U.S. Environmental Protection Agency, 1996a) focused on the pNEM/O₃ family of 28 models, referring to the review by McCurdy (1994) for the fundamental principles underlying its 29 formulation and listing, in addition to the "standard" version, three pNEM/O₃-derived models 30 (the Systems Applications International NEM [SAI/NEM]; the Regional Human Exposure 31 Model [REHEX]; and the Event Probability Exposure Model [EPEM]).

Model Name	Model Type	Microenvironments or Predictors	Notes	Reference
pNEM	Probabilistic	General population, outdoor workers, outdoor children	Provides estimates of exposure within a defined population for a specified period of time. Uses activity records from CHAD and CADS	Johnson et al. (1996a,b,c)
TRIM.Expo	PC-based	Outdoors, indoor residence, in-vehicle	Simulates movement through time and space. Estimates hourly exposures and doses. Uncertainties in predicted distributions have not been addressed.	ICF Consulting and ManTech Environmental Technology, Inc. (2003)
Mentor/SHEDS	Probabilistic	General population, outdoors, indoors, indoors, in-vehicle	Employees detailed person oriented exposure approach that includes personal activity data, physiology, and microenvironmental conditions. Allows calculation of exposure and dose for each activity event.	Georgopoulos et al. (2005)
REHEX		General population	Provides estimates of exposure for 1-day to 3 yrs. Can represent variability in activities of the population to capture extremes in exposure	Lurmann and Colome (1991)

distributions.

Table AX3-19. Personal and Population Exposure Models for Ozone

1

AX3.10.6.2 Ambient Concentrations Models

2 As mentioned earlier, background and regional outdoor concentrations of pollutants over a 3 study domain may be calculated either through emissions-based mechanistic modeling or 4 through ambient-data-based modeling. Emissions-based models calculate the spatiotemporal 5 fields of the pollutant concentrations using precursor emissions and meteorological conditions as 6 inputs. The ambient-data-based models typically calculate spatial or spatiotemporal 7 distributions of the pollutant through the use of interpolation schemes, based on either 8 deterministic or stochastic models for allocating monitor station observations to the nodes of a 9 virtual regular grid covering the region of interest. (See later discussion on population exposure 10 models). Kriging, a geostatistical technique, provides standard procedures for generating an 11 interpolated O₃ spatial distribution for a given time period, using data from a set of observation 12 points. The kriging approach, with parameters calculated specifically for each hour of the period 13 of concern, was compared to the Urban Airshed Model (UAM-IV), a comprehensive 14 photochemical grid-based model for deriving concentration fields. The concentration fields 15 were then linked with corresponding population data to calculate potential outdoor population 16 exposure. Higher exposure estimates were obtained with the photochemical grid-based model when O_3 concentrations were <120 ppb, however, the situation was reversed when O_3 17 concentrations exceeded 120 ppb. The authors concluded that kriging O₃ values at the locations 18 19 studied can reconstruct aspects of population exposure distributions (Georgopoulos et al., 20 1997a,b).

21 Carroll et al. (1997a,b) developed a spatial-temporal model, with a deterministic trend 22 component, to model hourly O_3 levels with the capacity to predict O_3 concentrations at any 23 location in Harris County, Texas during the time period between 1980 and 1993. A fast model-24 fitting method was developed to handle the large amount of available data and the substantial 25 amount of missing data. Ozone concentration data used consisted of hourly measurements from 26 9 to 12 monitoring stations for the years 1980 to 1993. Using information from the census tract, 27 the authors estimated that exposure of young children to O_3 declined by approximately 20% over 28 the analysis period. The authors also suggested that the O₃ monitors are not sited in locations to 29 adequately measure population exposures. Several researchers have questioned the suitability of 30 the model for addressing spatial variations in O₃ (Guttorp et al., 1997; Cressie, 1997; Stein and 31 Fang, 1997).

1 Spatiotemporal distributions of O₃ concentrations have alternatively been obtained using 2 methods of the "Spatio-Temporal Random Field" (STRF) theory (Christakos and Vyas, 3 1998a,b). The STRF approach interpolates monitoring data in both space and time simultaneously. This method can analyze information on "temporal trends," which cannot be 4 incorporated directly in purely spatial interpolation methods such as standard kriging. Further, 5 6 the STRF method can optimize the use of data that are not uniformly sampled in either space or 7 time. The STRF theory was further extended in the Bayesian Maximum Entropy (BME) 8 framework and applied to O₃ interpolation studies (Christakos and Hristopulos, 1998; Christakos 9 and Kolovos, 1999; Christakos, 2000). The BME framework can use prior information in the 10 form of "hard data" (measurements), probability law descriptors (type of distribution, mean and 11 variance), interval estimation (maximum and minimum values) and even constraint from 12 physical laws. According to these researchers, both STRF and BME were found to successfully 13 reproduce O_3 fields when adequate monitor data are available.

14

15 AX3.10.6.3 Microenvironmental Concentration Models

Once specific ambient/local spatiotemporal O₃ concentration patterns have been derived, microenvironments that can represent either outdoor or indoor settings must be characterized. This process can involve modeling of various local sources and sinks as well as interrelationships between ambient/local and microenvironmental concentration levels. Three approaches have been used in the past to model microenvironmental concentrations: empirical, mass balance, and detailed computational fluid dynamics (CFD).

The empirical fitting approach has been used to summarize the findings of recent field studies (Liu et al., 1995, 1997; Avol et al., 1998a). These empirical relationships could provide the basis for future, "prognostic" population exposure models.

Mass balance modeling has ranged from very simple formulations, assuming ideal (homogeneous) mixing and only linear physicochemical transformations with sources and sinks, to models that take into account complex multiphase chemical and physical interactions and nonidealities in mixing. Mass balance modeling is the most common approach used to model pollutant concentrations in enclosed microenvironments. As discussed earlier, the simplest microenvironmental setting is a homogeneously mixed compartment in contact with possibly both outdoor/local environments as well as with other microenvironments. The air quality of this idealized microenvironment is affected primarily by transport processes (including
infiltration of outdoor air into indoor air compartments, advection between microenvironments,
and convective transport); sources and sinks (local outdoor emissions, indoor emissions, surface
deposition); and local outdoor and indoor gas and aerosol phase chemistry transformation
processes (such as the formation of secondary organic and inorganic aerosols).

Numerous indoor air quality modeling studies have been reported in the literature;
however, depending on the modeling scenario, only a limited number address physical and
chemical processes that affect O₃ concentrations indoors (Nazaroff and Cass, 1986; Hayes, 1989,
1991). An example of a mass balance indoor air model for O₃ and benzene can be found in the
work of Freijer and Bloemen (2000). They used outdoor O₃ measurements to parameterize a
simplified linearized formulation of transport, transformation, and sources and sinks in the
indoor microenvironment.

13 The pNEM/O₃ model includes a sophisticated mass balance model for enclosed (indoor and 14 vehicle) microenvironments. The general form of this mass balance model is a differential 15 equation that accounts for outdoor concentration, AER, penetration rate, decay rate, and indoor 16 sources. Each of these parameters is represented by a probability distribution or by a dynamic 17 relationship to other parameters that may change according to time of day, temperature, air 18 conditioning status, window status, or other factors (Johnson, 2003). The simplest form of the 19 model is represented by the following differential equation for a perfectly mixed 20 microenvironment without an air cleaner:

21

$$\frac{dC_{IN}}{dt} = vC_{OUT} + \frac{S}{V} - vC_{IN}$$
(AX3-5)

22

where dC_{IN} is the indoor pollutant concentration (mass/volume), *t* is time in hours, *v* is the air exchange rate, C_{OUT} is the outdoor pollutant concentration (mass/volume), *V* is the volume of the microenvironment, and *S* is the indoor source emission rate.

Nazaroff and Cass (1986) extended the mass balance model to include multiple
 compartments and interactions between different compounds. The extended model takes into
 account the effects of ventilation, filtration, heterogeneous removal, direct emission, and

- photolytic and thermal and chemical reactions. A more in-depth discussion of the mass balance
 model may be found in Shair and Heitner (1974) and in Nazaroff and Cass (1986).
- 3 Freijer and Bloemen (2000) used the one-compartment mass balance model to examine the 4 relationship between O₃ I/O ratios as influenced by time patterns in outdoor concentrations, ventilation rate, and indoor emissions. The microenvironment was 250 m³. Three different 5 ventilation patterns with the same long-term average AER (0.64 h^{-1}) were used. A source 6 7 pattern (direct emissions) of zero was used, because O₃ sources are not common. The time series for outdoor O₃ concentrations consisted of 100-day periods during the summer, with hourly 8 9 measured concentrations. The following assumptions were made: $(1) O_3$ concentration in the air 10 that enters the microenvironment is equal to the concentration of the outside air minus the 11 fraction removed by filtration, (2) the O_3 concentration that leaves the microenvironment equals 12 the O_3 concentration in the microenvironment, (3) the decay processes in the microenvironment 13 are proportional to the mass of the pollutant, and (4) addition or removal of O_3 in the 14 microenvironment also may occur through independent sources and sinks.
- 15 Figure AX3-88 represents the measured outdoor O₃ concentrations and modeled indoor O₃

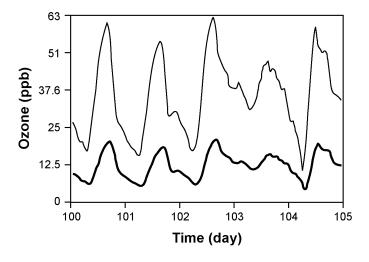


Figure AX3-88. Measured outdoor O₃ concentrations (thin line) and modeled indoor concentrations (bold line).

Source: Adapted from Freijer and Bloemen (2000).

- 16 concentrations. The indoor modeled O_3 concentrations were found to equal approximately 33%
- 17 of the outdoor monitored concentrations.
- 18

1 Few indoor air models have considered detailed nonlinear chemistry, which, however, can 2 have a significant effect on the indoor air quality, especially in the presence of strong indoor 3 sources. Indeed, the need for more comprehensive models that can take into account the 4 complex, multiphase processes that affect indoor concentrations of interacting gas phase 5 pollutants and particulate matter has been recognized and a number of formulations have 6 appeared in recent years. For example, the Exposure and Dose Modeling and Analysis System 7 (EDMAS) (Georgopoulos et al., 1997a) included an indoor model with detailed gas-phase 8 atmospheric chemistry. This indoor model accounts for interactions of O₃ with indoor sinks and 9 sources (surfaces, gas releases) and with entrained gas. The indoor model was dynamically 10 coupled with the outdoor photochemical air quality models, UAM-IV and UAM-V (Urban 11 Airshed Models), which provided the gas-phase composition of entrained air, and with a 12 physiologically based O₃ uptake and dosimetry model. Subsequent work (Isukapalli and 13 Georgopoulos, 2000; Isukapalli et al., 1999) expanded the framework and features of the 14 EDMAS model to incorporate alternative representations of gas-phase chemistry as well as 15 multiphase O₃ chemistry and gas/aerosol interactions. The new model is a component of the 16 integrated Modeling Environment for Total Risk studies (MENTOR). 17 Sarwar et al. (2001, 2002) modeled estimates of indoor hydroxyl radical concentrations

using a new indoor air quality model, Indoor Chemistry and Exposure Model (ICEM). The
ICEM uses a modified SAPRC-99 atmospheric chemistry mechanism to simulate indoor
hydroxyl radical production and consumption from reactions of alkenes with O₃. It also allows
for the simulation of transport processes between indoor and outdoor environments, indoor
emissions, chemical reactions, and deposition. Indoor hydroxyl radicals, produced from O₃ that
penetrates indoors, can adversely impact indoor air quality through dark chemistry to produce
photochemical oxidants.

Sørensen and Weschler (2002) used CFD modeling to examine the production of a
 hypothetical product from an O₃-terpene reaction under two different ventilation scenarios. The
 computational grid used in the model was nonuniform. There were significant variations in the
 concentrations of reactants between locations in the room, resulting in varying reaction rates.
 Because the "age of the air" differed at different locations in the room, the time available for
 reactions to occur also differed between locations.

Very few studies have focused on mechanistic modeling of outdoor microenvironments.
Fraigneau et al. (1995) developed a simple model to account for fast NO-O₃ reaction/dispersion
in the vicinity of a motorway. Proyou et al. (1998) applied a simple three-layer photochemical
box model to an Athens street canyon. However, the adjustments of O₃ levels for sources, sinks,
and mixing in outdoor microenvironments are done in a phenomenological manner in existing
exposure models, driven by limited available observations. On-going research is evaluating
approaches for quantifying local effects on outdoor O₃ chemistry in specific settings.

8 Finally, one issue that should be mentioned is that of evaluating comprehensive prognostic 9 exposure modeling studies, for either individuals or populations, with field data. Attempts had 10 been made to evaluate pNEM/O₃-type models using personal exposure measurements (Johnson 11 et al., 1990). Although databases that would be adequate for performing a comprehensive 12 evaluation are not expected to be available any time soon, a number of studies are building the 13 necessary information base, as discussed previously. Some of these studies report field 14 observations of personal, indoor, and outdoor O₃ concentrations and describe simple 15 semiempirical personal exposure models that are parameterized using observational data and 16 regression techniques.

17

18 AX3.10.7 Measured Exposures and Monitored Concentrations

19 AX3.10.7.1 Personal Exposure Measurements

Passive O₃ monitors have been used in several field studies to determine average daily O₃ 20 21 exposure as well as in scripted studies to evaluate O₃ exposures over one to several-hour time 22 periods. Table AX3-20 list the results of O₃ exposure studies. Delfino et al. (1996) measured 23 12-h personal daytime O₃ exposures in asthmatic patients in San Diego from September through 24 October 1993. They found that the mean personal exposures were 27% of the mean outdoor 25 concentrations. Individual exposure levels among the 12 asthmatic subjects aged 9 to 16 years 26 varied greatly. Mean personal O₃ exposure levels were lower on Friday, Saturday, and Sunday 27 than on other days of the week (10 versus 13 ppb), while the ambient air concentrations were 28 higher Friday through Sunday. The authors suggested that the differences were due to higher 29 weekday NO emissions from local traffic which titrated the ambient O₃ levels. The lower personal exposure levels on Friday, Saturday, and Sunday may have been an artifact of greater 30 noncompliance, with the badges remaining indoors and, therefore, being exposed to lower O₃ 31

Location, Population, Sample Duration	n	Personal Exposure Mean ^a (range) (ppb)	Reference
San Diego, CA, Asthmatics ages 9-18 years, 12 hour	12	12 ± 12 (0-84) 10 weekend 12 weekday	Delfino et al. (1996)
Vancouver, Canada, Adult Workers, Daily High indoor time Moderate indoor time Only outdoor	585	(ND-9) (ND-12) (2-44)	Brauer and Brook (1997)
Southern California, Subjects 10-38 years Spring Fall	24	13.6 ± 2.5 (- to 80) 10.5 ± 2.5 (- to 50)	Liu et al. (1997)
Montpellier, France, Adults, Hourly Winter Summer	16	$\begin{array}{c} 34.3 \pm 17.6 \ (6.588) \\ 15.4 \pm 7.7 \ (6.540) \\ 44.1 \pm 18.2 (1188) \end{array}$	Bernard et al. (1999)
Souther California, Children 6-12 years, ≥ 6 days Upland - winter - summer Mountain - winter - summer	169	$6.2 \pm 4.7 (0.5-41) 19 \pm 18 (0.5-63) 5.7 \pm 4.2 (0.5-31) 25 \pm 24 (0.5-72)$	Geyh et al. (2000)
Baltimore, MD, Technician, Hourly ^b Winter Summer	1	3.5 ± 7.5 (ND-49) 15 ± 18 (ND-76)	Chang et al. (2000)
Baltimore, MD, Adults 75 ± 7 years, Daily Winter Summer	20	3.5 ± 3.0 (ND-9.9) 0. ± 1.8 (ND-2.8)	Sarnat et al. (2000)

Table AX3-20. Personal Exposure Measurements

 $^{a}ND = not detected.$

^bMeasurements made following scripted activities for 15 days.

concentrations. The overall correlation between the personal exposure concentrations between 1 2 any two individuals and with the outdoor stationary site was only moderate (r = 0.45; range: 3 0.36 to 0.69). The O₃ concentrations at the stationary site exceeded the personal levels by an 4 average of 31 ppb. Avol et al. (1998b) observed a poor correlation between personal exposure 5 and fixed-site monitoring concentrations (r = 0.28, n = 1336 pairs) for a cohort of children 6 (healthy, wheezy, and asthmatic). Personal exposure measurements were generally lower than 7 integrated hourly data. Sarnat et al. (2000) measured personal O₃ exposures during a 12-day 8 longitudinal study of 20 older adults (>64 years) in Baltimore, MD. The subjects spent >94% of

1 the time indoors. Ten subjects participated in the summer and winter exposures and the 2 remaining 10 participated in either the summer or winter exposure. No statistically significant 3 overall correlations were identified between the personal and the ambient O₃ concentrations 4 during either the winter or summer. Only a single individual (n = 14 summer and 13 winter) had a significant correlation with outdoor concentrations. Geyh et al. (2000) measured indoor and 5 6 outdoor concentration and personal O₃ exposures in 169 elementary school children from 116 7 homes during a year-long sampling protocol in 2 communities in southern California (Upland 8 and Mountain communities). Samples were collected for 1 week per month. Boys had higher 9 O₃ exposure than girls, probably reflecting the greater amount of time boys spent outdoors 10 compared to girls (3.8 versus 3.2 h for the spring/summer and 2.9 versus 2.2 h for the 11 fall/winter). The average personal O₃ exposures were lower than the levels measured at the 12 nearest monitor stations retrieved from the AIRS. There was no significant difference in the O_3 13 exposure for both groups during the non-O₃ season (6.2 and 5.7 ppb for Upland and the 14 mountain communities, respectively), however, children in the mountainous region were 15 exposed to 35% more O3 than children in Upland during the O_3 season (18.8 and 25.4 ppb for 16 Upland and the mountain communities) (two-tailed *t*-test, p < 0.01). During the O₃ season, 17 differences were found in indoor concentrations and personal O₃ exposures between the two 18 communities participating in the study based on ambient air concentrations and differences in air 19 exchange rates in the homes.

20 Brauer and Brook (1997) conducted personal exposure evaluations in three groups in 21 Frazer Valley, Vancouver, Canada. The groups were divided by the amount of time spent 22 outdoors: (1) the majority of the workday was spent indoors or commuting (25 medical clinic 23 workers), (2) an intermediate amount of time was spent outdoors (25 overnight camp staff 24 members), and (3) the entire exposure monitoring period was outdoors (15 adult farm workers). 25 Time-activity data were collected for the first two groups to assess the proportion of time spent 26 outdoors. For groups 1 and 2, the lowest quartile of participants based on the fraction of time 27 spent outdoors (0 to 25% and 7.5 to 45%, respectively) had significantly lower O₃ exposure 28 (mean personal exposure to outdoor concentration ratio = 0.18 and 0.35, respectively) compared 29 to those in the upper quartile (mean ratio = 0.51 and 0.58, respectively; p < 0.05; Bonferroni 30 multiple range test). The mean ratio was 0.96 with values ranging from near 0 to 2 for group 3, 31 the group that spent the entire exposure-monitoring period outdoors. The authors attributed the

1 extreme low ratios to random measurement error at low O₃ air concentrations (estimated at 2 35%), local variability in O₃ concentrations, and to differences between ground-level 3 concentrations (where the personal samples were collected) 3-m above ground level (where the 4 continuous monitors were located). The highest ratios may be due to either locale variability in 5 O₃ concentrations or to an interference affecting the personal O₃ samplers, particularly at the 6 lower concentration range, leading to a small positive error. Temporal plots of O₃ for the mean 7 daily personal exposures and ambient concentrations showed the same general trend with 8 general agreement between the personal exposures and ambient air concentrations for group 3. 9 However, for groups 1 and 2, the day-to-day variability of the personal exposures and ambient 10 O₃ concentrations had consistent patterns, suggesting that the ambient air was the primary source 11 for O_3 exposure. The day-to-day variability in personal and continuous measurements was 0.60, 12 0.42, and 0.64 for groups 1 through 3, respectively. The actual O_3 concentrations measured in 13 the personal air space were always considerably lower than the ambient concentrations. Bernard 14 et al. (1999) assessed O₃ personal exposure and in the home and outdoor O concentration for up 15 to 110 subjects. Measurements were conducted over 5-day periods between June 1995 and 16 October 1996. As anticipated, O₃ concentrations were higher during the warmer months. Mean O₃ concentrations for 70 subjects were 22, 35, 17.4, 40.5, and 18 ppb for personal, outdoor 17 18 home, indoor home, outdoor work, and indoor work, respectively for measurements made during 19 the warmer months.

20 In a study by Liard et al. (1999), 55 mild to moderate asthmatic adults (18 to 65 y old) and 21 39 children (7 to 15 y old) were monitored for O_3 exposure. Subjects were monitored during 22 three periods, 4 days per monitoring period and asked to keep a diary of time spent outdoors and 23 in a car. Many of the study subjects O₃ exposures were often below the level of detection for the 24 method used. Ozone exposure levels correlated with the hours spent outdoors. Ozone personal 25 exposure correlated poorly with the ambient monitoring measurements, however, the mean 26 values for all subjects correlated with those measurements from the ambient monitoring site (r = 0.83, p < 0.05). Linn et al. (1996) estimated short-term O_3 exposures in 269 children from 27 28 three communities in the Los Angeles Basin by monitoring air at head level in school class 29 rooms, on the roof of one level school buildings, and in personal microenvironments of selected 30 individuals. Monitoring was carried out for six weeks in the fall, winter, and spring, two 31 successive weeks per season at each of three schools. Each subject was monitored for one week

in each season over a two year period. According to the authors there were meaningful
 associations between personal exposures and central monitoring site O₃ measurements (r = 0.61).
 Based on information reported in the questionnaires, outdoor activity increased slightly in
 communities/seasons with higher pollution.

Lee et al. (2004) found that personal O₃ exposure was positively correlated with time spent 5 6 outdoors (r = 0.19, p < 0.01) and negatively correlated with time spent indoors (r = -0.17, 7 p < 0.01) in elementary school children. Thirty-three elementary school children from two 8 Nashville, TN area school districts participated in a six week long O₃ monitoring study during 9 the summer vacation. The study participants maintained a dairy of daily activities during the 10 study period. An additional 62 children from the same school completed a telephone interview 11 on time/activity at least eight times during the study period. Study participants wore a passive 12 sampler during their non-sleep time and the sampler was placed near their bed at night. 13 A passive monitor also was placed outside and inside of the home. Personal exposure correlated 14 with the amount of time spent outdoors. Exposures ranged from 0.0013 to 0.0064 ppm for 15 indoor concentrations compared to ambient concentrations of 0.011 to 0.042 ppm O₃.

16

17 AX3.10.7.2 Monitored Ambient Concentrations

18 Ozone has been measured more extensively than the other photochemical oxidants. Ambient monitors have been established in most areas of the country, with extensive monitoring 19 20 in regions that have been in noncompliance with the previous 1-h daily NAAQS. Monitoring 21 station-measured hourly concentrations also have been used as surrogates of exposure in 22 epidemiological studies and in evaluating exposure-related health effects. According to the 23 Guideline on Ozone Monitoring Site Selection (U.S. Environmental Protection Agency, 1998), 24 when designing an O₃ monitoring network, consideration should be given to (1) proximity to 25 combustion emission sources, (2) distance from primary emission sources, and (3) the general 26 wind direction and speed to determine the primary transport pathways of O_3 and its precursors. 27 Finally, the 1-h daily maximum and 8-h average O₃ concentrations can have different spatial 28 patterns with elevated daily 8-h O₃ concentrations typically being over a wider spatial area. 29 Therefore, O₃ monitoring networks should determine the highest concentrations expected to 30 occur in the area, representative concentrations for high population density areas, the impact of

sources or source categories on air pollution levels, and general background concentration levels
 (U.S. Environmental Protection Agency, 1998).

3 The guideline also states that the monitor's O₃ inlet probe should be placed at a height and 4 location that best approximates where people are usually found. However, complicating factors (e.g., security considerations, availability) sometimes result in the probe placement being 5 6 elevated 3 to 15 m above ground level, a different location than the breathing zone (1 to 2 m) of 7 the populace. Although there are some commonalities in the considerations for the sampling 8 design for monitoring and for determining population exposures, differences also exist. These 9 differences between the location and height of the monitor compared to the locations and 10 breathing zone heights of people can result in different O₃ concentrations between what is 11 measured at the monitor and exposure and, therefore, should be considered when using ambient 12 air monitoring data as a surrogate for exposure in epidemiological studies and risk assessments. 13 Further, since most people spend the majority of their time indoors, where O₃ levels tend to be much lower than outdoor ambient levels, the use of ambient monitoring data to determine 14 15 exposure generally overestimates true personal O₃ exposure, resulting in exposure estimates 16 biased towards the null. Information on monitored ambient concentrations of O₃ and other 17 photochemical oxidants appears earlier in this chapter.

18 19

AX3.10.7.3 Ozone Concentrations in Microenvironments

20 The 1996 O₃ AQCD for Ozone (U.S. Environmental Protection Agency, 1996a) reported 21 O₃ I/O ratios for a variety of indoor environments including homes, office/laboratories, a 22 hospital, museums, a school room, and automobiles and other vehicles. Ozone I/O ratios ranged 23 from 0.09 to 1.0 for residences, 0.19 to 0.8 for offices/laboratories, hospital and school rooms, 24 and 0.03 to 0.87 for museums and art galleries. The higher O₃ ratios were generally noted in 25 indoor environments with high AERs or 100% outside air intake. Studies published since 26 completion of the 1996 O₃ AQCD are discussed in this section. The findings of the more recent 27 studies on O₃ I/O ratios are included in Table AX3-21.

Northeast States for Coordinated Air Use Management (NESCAUM, 2002) monitored
 levels of O₃ inside and outside of nine schools located in the New England states. The schools
 represented a variety of environmental conditions in terms of ambient O₃ concentration, sources,
 geographic location, population density, traffic patterns, and building types. Schools were

- 12
Boston, MA, Hon Winter – cont Summer – con
Mexico City, Sch Windows/Doo Cleaner off (4 Windows/Doo cleaner on (47
Los Angeles, CA

Table AX3-21. Indoor/Outdoor Ozone Ratios

Location and Ventilation Conditions	Indoor/Outdoor Ratio Mean (range)	Comments	Reference
Foronto, Canada, Homes Winter – weekly (68) Summer – weekly (38) Summer – 12 h/day (128) – 12 h/night (36)	$0.07 \pm 0.10 \text{ (ND - 0.63)}$ $0.40 \pm 0.29 \text{ (ND - 1.15)}$ $0.30 \pm 0.32 \text{ (ND - 1.42)}$ $0.43 \pm 0.54 \text{ (ND - 2.89)}$	Electrostatic air cleaners were present in about 50% of the homes. Air conditioners were present in about 80% of the homes, most were central units that used recycled air. Air conditioners used in only 13 of the 40 homes on a daily basis. Measurements were made both inside and outside of the homes for 5 consecutive 24-h periods. Homes with electrostatic air cleaners had higher I/O ratios during the winter months. The mean average weekly AER for all homes during the winter months was $0.69 \pm 0.88 \text{ h}^{-1}$ with 50% of the homes with an AER of less than 0.41 h^{-1} . For the summer months, the mean average AER was $1.04 \pm 1.28 \text{ h}^{-1}$ with 50% of the homes with an AER of less than 0.52 h .	Liu et al. (1995)
Boston, MA, Homes (26) Winter – continuously 24 h Summer – continuously 24 h	0.30 ± 0.42 (ND - 1.31) 0.22 ± 0.25 (ND - 0.88)	Study examined the potential for O_3 to react with VOCs to form acid aerosols. Carbonyls were formed. No clear trend of O_3 with AERs. The average AER was $0.9 h^{-1}$ during the winter and 2.6 h ⁻¹ during the summer. Four residences in winter and nine in summer with 24 h average concentrations. Air concentrations varied from 0-34.2 ppb indoors and 4.4-40.5 ppb outdoors.	Reiss et al. (1995)
Mexico City, School Windows/Doors Open (27) Windows/Doors Closed, cleaner off (41) Windows/Doors Closed, cleaner on (47)	$\begin{array}{c} 0.73 \pm 0.04 \\ 0.17 \pm 0.02 \\ 0.15 \pm 0.02 \end{array}$	Study conducted over 4-day period during winter months. Two-min averaged measurements were taken both inside and outside of the school every 30 min from 10 a.m. to 4 p.m. Estimated air exchange rates were 1.1, 2.1, and 2.5 h^{-1} for low, medium, and high flow rates. Ozone concentrations decreased with increasing relative humidity.	Gold et al. (1996)
Los Angeles, CA Homes (95) Other locations (57)	0.28 0.18	Study conducted in September. Monitored O_3 concentrations consisted of twenty-one 24-h periods beginning at 7 p.m. and ending at 7 p.m. on the following day. Ozone concentrations were higher at the fixed monitoring sites during the afternoon. The weather was sunny and the temperature was high. I/O ratio was lower when windows were closed. The effect of air conditioning on the I/O was varied.	Johnson (1997)

Location and Ventilation Conditions	Indoor/Outdoor Ratio Mean (range)	Comments	Reference	
Mexico City Homes (237) Schools (59) $0.20 \pm 0.18 (0.04 - 0.99)$ $0.1 - 0.3$ $0.3 - 0.4$		Ozone monitoring occurred between September and July. Study included 3 schools and 145 homes. Most of the homes were large and did not have air conditioning. Ninety-two percent of the homes had carpeting, 13% used air filters, and 84% used humidifiers. Thirty-five percent opened windows frequently, 43% sometimes, and 22% never between 10 a.m. and 4 p.m. Ozone was monitored at the schools sites from 8 a.m. to 1 p.m. daily for 14 consecutive days. Homes were monitored for continuous 24-h periods for 14 consecutive days. I/O based on 1-h average concentrations.		
Los Angeles, Homes (239) Summer Winter	$\begin{array}{l} 0.37 \pm 0.25 \; (0.06 - 1.5) \\ 0.43 \pm 0.29 \\ 0.32 \pm 0.21 \end{array}$	Four hundred and eighty-one samples collected inside and immediately outside of home from February to December. Ratios based on 24-h average O_3 concentrations indoors and outdoors. Low outdoor concentrations resulted in low indoor concentrations. However, high outdoor concentrations resulted in a range of indoor concentrations and ratios. I/O ratios were highest during the summer months.	Avol et al. (1998a)	
California Homes no AC, window opened (20) AC, windows closed (3)	0.68 (n = 20) 0.09 (n = 3)	I/O ratio was determined for 20 homes. Only 3 of the homes operated the air conditioning. I/O ratios based on 24-h continuous ambient concentrations and 0.5-1 h average indoor concentrations.	Lee et al. (1999)	
Munich Germany Office Gymnasium Classroom Residence Bedroom Livingroom Hotel room Car	0.4 - 0.9 0.49 - 0.92 0.54 - 0.77 0.47 - 1.0 0.74 - 1.0 0.02 0.4 - 0.6	Indoor concentrations were dependent on the type of ventilation.	Jakobi and Fabian (1997)	
La Rochelle, France	0 - 0.45	I/O ratio determined for 8 schools. Monitoring conducted for a 2-wk period. Schools located in various areas with different ambient O_3 concentrations, types of ventilation systems, and the presumed air-tightness of building envelop. Building air-tightness and ambient O_3 concentration influenced indoor O_3 I/O.	Blondeau et al. (2005)	

Table AX3-21 (cont'd). Indoor/Outdoor Ozone Ratios

Location and Ventilation Conditions	Indoor/Outdoor Ratio Mean (range)	Comments	Reference
Montpellier, France, Homes (110)	0.41	Ozone measurements were made over 5-day periods in and outside of 21 homes during the summer and winter months. The winter I/O ratio was 0.31 compared to 0.46 during the summer months.	Bernard et al. (1999)
Southern CA, Homes Upland Mountains	0.68 ± 0.18 (windows open) 0.07 - 0.11 (AC used)	Ozone measurements were taken at 119 homes (57 in Upland and 62 in towns located in the mountains) during April and May. I/O ratios were based on average monthly outdoor concentrations and average weekly indoor concentrations. I/O ratio was associated with the home location, number of bedrooms, and the presence of an air conditioner. I/O ratios based on subset of the homes.	Geyh et al. (2000); Lee et al. (2002)
Krakow, Poland Museums (5)	0.13 - 0.42	Ozone continuously monitored at five museums and cultural centers. Monitoring conducted during the summer months for 21-46 h or 28-33 days at each of the sites. The I/O was found to be dependent on the ventilation rate, i.e., when the ventilation rate was high, the I/O ratio approached unity, while in rooms sequestered from the outdoor air or where air was predominantly recycled through charcoal filters, the O_3 levels indoors were greatly reduced resulting in low I/O ratios.	Salmon et al. (2000)
Buildings, Greece Thessaloniki Athens	0.24 ± 0.18 (0.01 to 0.75)	There was no heating/air conditioning system in the building at Thessaloniki. Windows were kept closed during the entire monitoring period. Complete air exchange took place every 3 h. I/O ratio ranged from 0.5-0.90, due to low deposition velocity on indoor surfaces. The air conditioning system in continuous use at the Athens site recirculated the air. Complete air exchange was estimated to be 1 h. Monitoring lasted for 30 days at each site, but only the 7 most representative days were used for calculation of the I/O ratio.	Drakou et al. (1998)
Southern California, Museum	0.19 ± 0.05	Measurements made over a 2-wk period (24-h avg). Ratio for concentrations at the buffer zone with the roll-up door closed.	Hisham and Grosjean (1991)

Table AX3-21 (cont'd). Indoor/Outdoor Ozone Ratios

ND = not detectable.

monitored during the summer months to establish baseline O₃ concentrations and again during
the fall after classes started. A monitor was placed directly outside of the school entrance and
50 feet away from the entrance in the hall. Where available, monitors were placed at locations
identified as "problem" classrooms, classrooms with carpeting, or in rooms close to outdoor
sources of O₃. As expected, outdoor concentrations of O₃ were higher than those found indoors.
Averaged O₃ concentrations were low during the early morning hours (7:30 a.m.) but peaked to
approximately 25 and 40 ppb around 1:30 p.m. indoors and outdoors, respectively.

8 Gold et al. (1996) compared indoor and outdoor O_3 concentrations in classrooms in Mexico 9 City under three different ventilation conditions: windows/doors open, air cleaner off; 10 windows/doors closed, air cleaner off; and windows/doors closed, air cleaner on. Two-minute 11 averaged outdoor O₃ levels varied between 64 and 361 ppb, while indoor O₃ concentrations ranged from 0 to 247 ppb. The highest indoor O₃ concentrations were noted when the 12 windows/doors were open. The AERs were estimated to be 1.1, 2.1, and 2.5 h^{-1} for low, 13 14 medium, and high air flow rates, respectively. The authors indicated that the indoor levels, and 15 therefore O_3 exposure to students in schools, can be reduced to < 80 ppb by closing windows and 16 doors even when ambient O₃ levels reach 300 ppb.

In a second Mexico City study, Romieu et al. (1998) measured O₃ concentrations inside 17 18 and outside of 145 homes and three schools. Measurements were made between November and 19 June. Most of the homes were large and did not have air conditioning. Ninety-five percent of 20 the homes had carpeting, 13% used air filters, and 84% used humidifiers. Thirty-five percent of 21 the homeowners reported that they opened windows frequently between the hours of 10 a.m. and 22 4 p.m., while 43% opened windows sometimes and 22% reported that they never opened 23 windows during that time period. Homes were monitored for continuous 24-h periods for 24 14 consecutive days. Schools were monitored from 8 a.m. to 1 p.m. or continuously for 24 h. 25 During the school monitoring periods the windows were frequently left open and the doors were 26 constantly being opened and closed. The mean indoor and outdoor O₃ concentrations during 5-h 27 measurements at the schools were 22 ppb and 56 to 73 ppb, respectively. The mean indoor and 28 outdoor O₃ concentrations for measurements made over a 7- and 14-day period at the test homes 29 were 5 and 27 ppb and 7 and 37 ppb, respectively. Ozone concentrations inside of homes were 30 dependent on the presence of carpeting, the use of air filters, and whether the windows were 31 open or closed. Air exchange rates were not reported.

1	Reiss et al. (1995) compared indoor and outdoor O ₃ concentrations for residences in the
2	Boston, MA area. Four residences were monitored during the winter months and nine residences
3	during the summer months. Outside monitors were placed ~ 1 m away from the house.
4	Monitoring was conducted over a continuous 24-h period. There were no indoor sources of O ₃ .
5	Indoor O ₃ concentrations were higher during the summer months, with concentrations reaching
6	34.2 ppb. Indoor O ₃ concentrations reached as high as 3.3 ppb during the winter monitoring
7	period. In one instance, O_3 concentrations were higher indoors than outdoors. The authors
8	attributed that finding to analytical difficulties. Outdoor O ₃ concentrations were generally higher
9	during the summer monitoring period, with concentrations reaching 51.8 ppb. Indoor
10	concentrations were dependent on the outdoor O ₃ concentrations and AER. Indoor and
11	outdoor O ₃ concentrations, including the AERs at the times of the monitoring are included in
12	Table AX3-22.
13	Avol et al. (1998a) monitored 126 home in the Los Angeles metropolitan area during
14	February and December. Uniformly low ambient O ₃ concentrations were present during the
15	non- O_3 seasons. Indoor O_3 concentrations were always below outdoor O_3 concentrations. The
16	mean indoor and outdoor $\rm O_3$ concentrations over the sampling period were 13 \pm 12 ppb and 37 \pm
17	19 ppb, respectively. There was a correlation between indoor O_3 concentration and ambient
18	temperatures. The effect was magnified when the windows were open. When a central
19	refrigerant recirculating air conditioner was used, indoor O ₃ concentrations declined. The
20	authors were able to predict indoor O_3 levels with nearly the same accuracy using measurements
21	made at regional stations coupled with window conditions as with measurements made directly
22	outside the homes coupled with window conditions, suggesting that monitoring station data may
23	be useful in helping to reduce errors associated with exposure misclassification. The authors
24	cautioned that varying results may occur at different locations with different housing stock or at
25	different times of the year.
26	Lee et al. (2002) reported indoor and outdoor O3 concentrations in 119 homes of school
27	children in two communities in southern California: Upland and San Bernadino county.
28	Measurements were made over one year. Outdoor and indoor O_3 concentrations were based on
29	cautioned that varying results may occur at different locations with different housing stock or at

- 30 different times of the year.
- 31

				Indoo	or Data	Outdo	or Data
Residence	Indoor Ozone (ppb)	Outdoor Ozone (ppb)	AER (h ⁻¹)	Relative Humidity (%)	Temp. (°F)	Relative Humidity (%)	Temp. (°F)
Winter							
1 - Day 1	3.3	11.2	1	25-45	67-75	88	25
1 - Day 2	0	15	0.8	22-40	65-76	62	27
2 - Day 1	2.6	24.4	1	3-19	67-71	44	17
2 - Day 2	1.7	4.4	1	3-8	55-70	40	17
3 - Day 1	20.4	15.6	1	8-24	62-69	33	36
3 - Day 2	3.1	24.5	0.9	13-19	64-70	51	38
4 - Day 1	2.2	11.4	0.7	26-37	60-72	57	39
4 - Day 2	0.3	20.7	0.7	29-38	61-70	77	36
Summer							
1 - Day 1	5.6	32.4	3	28-44	71-74	44	65
1 - Day 2	0.6	13.4	2.3	37-44	70-74	59	60
2 - Day 1	0.8	14.3	2.4	48-54	73-79	54	70
2 - Day 2	5	24.1	2.1	46-60	72-78	64	73
3 - Day 1	34.2	38.9	4.6	48-63	64-80	52	71
3 - Day 2	6.9	14	3.1	45-53	65-69	52	62
4 - Day 1	4.3	30	1.4	37-60	66-75	51	67
4 - Day 2	4.9	40.5	1.8	38-68	67-79	64	67
5 - Day 1	1.4	17.5	5.1	30-50	69-74	54	58
5 - Day 2	1.9	19	3.5	39-63	N/A	40	64
6 - Day 1	0.8	8.2	0.5	59-73	74-77	76	72
6 - Day 2	1.7	18.6	0.7	43-66	76-78	47	76
7 - Day 1	3.9	40.1	1.1	57-70	70-77	51	75
7 - Day 2	0	33.9	1.1	58-73	72-75	64	72
8 - Day 1	22.9	51.8	3.2	66-81	71-77	75	75
8 - Day 2	23.5	31.6	6.3	43-67	66-79	48	72
9 - Day 1	1.6	20.9	2.1	N/A	N/A	37	70
9 - Day 2	1.2	25	1.7	33-52	75-79	70	66

Table AX3-22. Indoor and Outdoor O₃ Concentrations in Boston, MA

N/A = not available Adapted from: Reiss et al. (1995)

1 Lee et al. (2002) reported indoor and outdoor O₃ concentrations in 119 homes of school 2 children in two communities in southern California: Upland and San Bernadino county. 3 Measurements were made over one year. Outdoor and indoor O₃ concentrations were based on monthly and weekly averages, respectively. Housing characteristics were not found to affect 4 indoor O₃ concentrations. Indoor O₃ concentrations were significantly lower than outdoor O₃ 5 6 concentrations. Average indoor and outdoor O₃ concentrations were 14.9 and 56.5 ppb. Homes with air conditioning had lower O₃ concentrations, suggesting decreased ventilation or greater 7 O₃ removal. 8

9 Chao (2001) evaluated the relationship between indoor and outdoor levels of various air 10 pollutants, including O₃, in 10 apartments in Hong Kong during May to June. Air monitoring 11 was conducted over a 48-h period. All participants had the habit of closing the windows during 12 the evenings and using the air conditioner during the sleep hours. Windows were partially open 13 during the morning. The air conditioners were off during the working hours. Indoor O_3 concentrations were low in all of the monitored apartments, ranging from 0 to 4.9 ppb with an 14 15 average of 2.65 ppb. Outdoor O₃ concentrations ranged from 1.96 to 15.68 ppb. Table AX3-23 16 provides information on the indoor and outdoor O₃ concentrations and the apartment 17 characteristics.

18 Drakou et al. (1995) demonstrated the complexity of the indoor environment. 19 Measurements of several pollutants, including O₃, were made inside and outside of two 20 nonresidential buildings in Thessaloniki and Athens, Greece. The building in Thessaloniki was a 21 58-m³ metal structure. The ceiling and walls were covered with colored corrugated plastic 22 sheeting, and the flooring was plastic tile. There was no heating/air conditioning system and the 23 building was closed during the monitoring period. The AER ranged from 0.3 to 0.35 h⁻¹. The 24 building in Athens was a 51-m³ concrete structure. The air conditioning system (recirculated air) 25 worked continuously during the monitoring period. A window was opened slightly to accommodate the monitors' sampling lines. The AER was approximately 1 h^{-1} . Monitoring 26 27 lasted for 30 days at both locations, however, only data from the 7 most representative days were 28 reported. Indoor O₃ concentrations closely followed the outdoor concentrations at the 29 Thessaloniki building. The averaged 7-day indoor and outdoor O₃ concentrations were 9.39 and 30 15.48 ppb, respectively. The indoor O₃ concentrations at the Athens location were highly 31 variable compared to the outdoor concentration. The authors suggested that a high hydrocarbon

Apartment No.	Floor Area	Floor No.	Window Opening Frequency	AER (h ⁻¹)	Indoor O ₃ Conc.	Outdoor O ₃ Conc.
1	40	14	Seldom	1.44	0	1.96
2	47	13	Sometimes	1.97	4.96*	6.01*
3	140	2	Sometimes	0.83	1.0*	6.96*
4	67	5	Seldom	5.27	4.96*	8.76*
5	86	11	Sometimes	1.64	3.0*	7.80*
6	43	32	Sometimes	15.83	4.01*	8.76*
7	47	9	Always	15.91	0	3.0*
8	30	6	Seldom	3.25	2.05*	3.0*
9	26	35	Sometimes	2.1	4.9	15.68
10	20	15	Seldom	5.5	4.01*	4.96*

Table AX3-23. Indoor and Outdoor O₃ Concentrations in Hong Kong

*Estimated Concentration.

Adapted from Chao (2001).

1 intrusion may be the reason for the variability in O₃ concentrations noted at this site. The 2 averaged 7-day indoor and outdoor O₃ concentrations were 8.14 and 21.66 ppb, respectively. 3 Weschler et al. (1994) reported that indoor O_3 concentrations closely tracked outdoor O_3 4 concentrations at a telephone switching station in Burbank, CA. The switching building was 5 flat-roofed, two-story (first floor and basement), uncarpeted, with unpainted brick walls. Each floor was 930 m² with a volume of 5095 m³. Indoor O₃ concentrations were measured on the 6 7 first floor using a perfluorocarbon tracer or an UV photometric analyzer. The AER were 8 obtained by dividing the volumetric flow to the first floor by the volume of the first floor space 9 or by perfluorocarbon tracer techniques. The AER ranged from 1.0 to 1.9 h^{-1} . The major source of O₃ at the switching station was transport from outdoors. Indoor O₃ 10 11 concentrations closely tracked outdoor concentrations, measuring from 30 to 70% of the outdoor

12 concentrations. Indoor O_3 concentrations frequently exceed 50 ppb during the summer months,

but seldom exceeded 25 ppb during the winter. During the early spring through late fall, indoor
 O₃ concentrations peaked during the early afternoon and approach zero after sunset. Ozone sinks

- 1 included a surface removal rate between 0.8 and 1.0 h^{-1} and reactions with NO_x. Figures
- 2 AX3-89 and AX3-90 compare the outdoor and indoor O_3 concentrations, including the AER, for
- 3 two 1-week periods during the study.
- 4

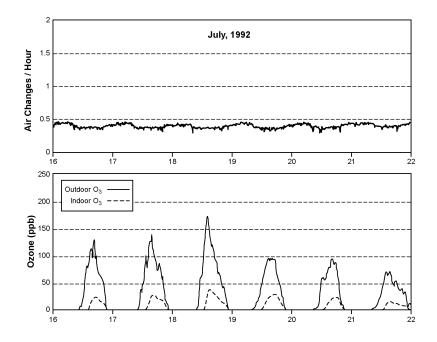


Figure AX3-89. Air exchange rates and outdoor and indoor O₃ concentrations during the summer at telephone switching station in Burbank, CA.

Source: Weschler et al. (1994).

The relationships between indoor and outdoor O_3 concentrations in five museums and cultural centers (Wawel Castle, Matejko Museum, National Museum, Collegium Maius, and Cloth Hall) in Krakow, Poland were reported by Salmon et al. (2000). Measurements were made for up to 46 h and up to 33 days. Air exchange measurements were only made for the Matejko Museum and Wawel Castle. Both were naturally ventilated. However, the summertime AER for the Matejko Museum was more than twice that of the Wawel Castle site, 1.26 to 1.44 h⁻¹ compared to 0.56 to 0.66 h⁻¹. The highest indoor O_3 concentrations were noted at the Matejko Museum during the summer. The findings are included in Table AX3-24 for those locations with reported AERs.

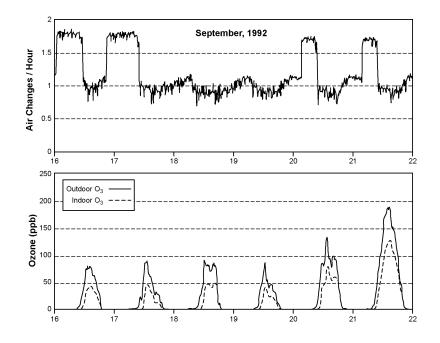


Figure AX3-90. Air exchange rates and outdoor and indoor O₃ concentrations during the fall at a telephone switching station in Burbank, CA.

Source: Weschler et al. (1994).

1 Figure AX3-91 shows O₃ and PAN concentrations in a private residence in Germany. All 2 measurements were made in naturally ventilated rooms. 3 Johnson (1997) conducted a scripted study using four trained technicians to measure 4 hourly average O₃ concentrations between 07:00 and 19:00 h in Los Angeles, CA during 5 September and October 1995. The ratio of the microenvironmental concentrations to the fixed 6 site monitor on days when the O_3 levels ≥ 20 ppb were as follows: indoor residence, 0.28; other 7 locations indoors, 0.18; outdoor near roadways, 0.58; other locations outdoors, 0.59; and in-8 vehicle, 0.21. The concentrations indoors and within vehicles varied depending on whether the 9 windows were opened (higher) or closed (lower) and the use of air conditioning. The lower 10 outdoor concentrations, particularly near roadways, probably reflect the reaction of O₃ with NO 11 emitted by automobiles. 12 A study of the effect of elevation on O₃ concentrations found that concentrations increased 13 with increasing elevation. The ratio of O_3 concentrations at street level (3 m) compared to the

14 rooftop (25 m) was between 0.12 and 0.16, though the actual concentrations were highly

Location	Duration (hours)	AER	Average O ₃ (ppb)
Matejko Museum	26		1988-2000
Outdoors (Town Hall Tower)			20
Indoors (third floor, west)		1.26	8.5
Wawel Castle	43		
Outdoors (Loggia)			14.7
Indoors (Senator's Hall)		0.63	2.5
Wawel Castle, outdoors	31.8		42 ^a
Wawel Castle, Room 15	31		8
Wawel Castle, Senator's Hall	31.8		7
Matejko Museum, outdoors	26.9		21 ^b
Matejko Museum, Indoor Gallery	26.9		9

Table AX3-24. Indoor and Outdoor Ozone Concentrations

^aOn Loggia of Piano Nobile Level, high above the street. ^bAt street level.

Adapted from Salmon et al. (2000).

1 correlated (r = 0.63) (Väkevä et al., 1999). Differential O₃ exposures may, therefore, exist in 2 apartments that are on different floors. Differences in elevation between the monitoring sites in 3 Los Angeles and street level samples may have contributed to the lower levels measured by 4 Johnson (1997). Furthermore, since O₃ monitors are frequently located on rooftops in urban 5 settings, the concentrations measured there may overestimate the exposure to individuals outdoors in streets and parks, locations where people exercise and maximum O₃ exposure is 6 7 likely to occur. 8 Chang et al. (2000) conducted a scripted exposure study in Baltimore during the summer of 9 1998 and winter of 1999, during which 1-h O₃ samples were collected by a technician who also 10 changed his or her activity every hour. The activities chosen were selected to simulate older

11 (> 65 years) adults, based on those activities reported in the National Human Activity Pattern

12 Survey (NHAPS). The scripted activities took place in five different microenvironments:

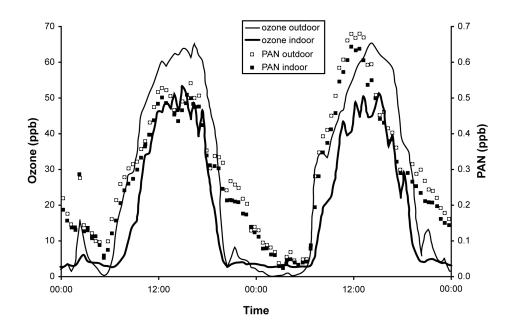


Figure AX3-91. Diurnal variation of indoor and outdoor O₃ and PAN concentrations measured in a private residence, Freising, Germany, August 11-12, 1995.

Source: Jaboki and Fabian (1997).

1 indoor residential (apartment in 24-h air conditioned high rise building), indoor other (restaurant, 2 post office, hospital, shopping mall, and bingo parlor), outdoor near roadway, outdoor away 3 from roadway, and inside motor vehicle. Personal O₃ exposures were significantly lower in 4 indoor than the outdoor microenvironments, because more time was spent indoors. Mean 5 summer concentrations were 15.0 ± 18.3 ppb, with a maximum of 76.3 ppb. Significant correlation was noted for the indoor nonresidential microenvironments and ambient O_3 (r = 0.34 6 7 in summer, r = 0.46 in winter), however, the authors indicated that this finding was unclear due 8 to the low personal/ambient ratios. The personal O₃ exposure levels within the outdoor and in-9 vehicle microenvironments were significantly correlated with ambient concentration, although 10 the ratio of personal exposure to ambient levels was less than one, with only the top 5% of the 11 ratios exceeding one, indicating that the ambient measurements lead to the maximum 12 concentrations and exposures. The indoor concentrations did not correlate with outdoor 13 measurements (r = 0.09 and r = 0.05 for summer and winter, respectively). The correlation for 14 outdoor near roadway and outdoor away from roadway was moderate to high ($0.68 \le r \le 0.91$).

1 The scripted exposure studies show that the O₃ concentrations in the various 2 microenvironments were typically lower than the ambient air concentrations measured at 3 monitoring stations. Exposure models are useful for accounting for the reduced concentrations 4 usually encountered in various microenvironments compared to ambient monitoring station concentrations (see discussion on exposure models earlier in this annex). 5 6 Riediker et al. (2003) measured mobile source pollutants inside highway patrol vehicles in 7 Wake County, NC. Measurements were made during the 3 p.m. to midnight shift between 8 August 13 and October 11, 2001 in two patrol cars each day for a total of 50 shifts. All areas of 9 rural and urban Wake County were patrolled. The prominent areas patrolled were major 10 highways and interstates. Ozone concentrations inside the cars were compared with the O₃ 11 measurements at the fixed station in northern Raleigh. The average O₃ concentration inside the 12 cars was 11.7 ppb, approximately one-third of the ambient air concentration. Jakobi and Fabian 13 (1997) found that O₃ concentrations in a moving car were independent of the type of ventilation 14 (windows closed and ventilator operation/ventilator off and windows open). Ozone 15 concentrations inside the car were found to closely follow the outdoor concentrations. When the 16 car was parked, O₃ concentrations outdoors greatly exceeded concentrations inside the car (see 17 Figure AX3-92).

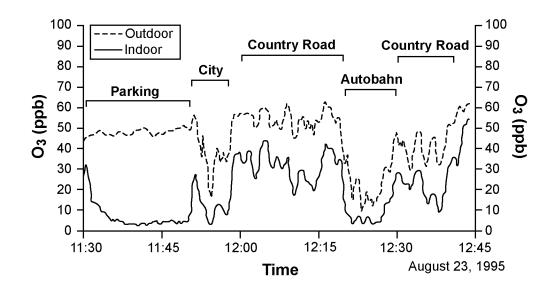


Figure AX3-92. Indoor and outdoor O₃ concentration in moving cars.

Source: Jaboki and Fabian (1997).

1 Few studies have been conducted in indoor environments containing O₃ sources. Black 2 et al. (2000) measured O₃ concentrations in a photocopy room at the University of California 3 during one business day. The room volume was 40 m³. Ozone concentrations were generally below 20 ppb, but increased proportionately with increasing photocopier use. Ozone 4 concentrations reached 40 ppb when the hourly average number of copies reached 45. Helaleh 5 6 et al. (2002) reported daily average O₃ concentrations from 0.8 to 1.3 ppb and 0.9 to 1.0 ppb in a 7 laboratory and photocopy room at a university in Japan. Outdoor O₃ concentrations ranged from 8 6 to 11 ppb. Because only limited information was available on the sampling system used in the 9 study, the adequacy of the sampling system cannot be determined. Jakobi and Fabian (1997) 10 measured O₃ concentrations in an office associated with the use of a photocopier and a laser 11 printer. They noted a 3.0 ppb increase in O₃ from the use of a 3-year old printer run for 20 min 12 at a copy rate of 8 pages/min. There was no detectable change in O₃ concentrations from the use 13 of the laser printer.

14 The U.S. Environmental Protection Agency (Steiber, 1995) measured O₃ concentrations 15 from the use of three home/office O_3 generators. The O_3 generators were placed in a 27 m³ room 16 with doors and windows closed and the heating, ventilating and air conditioning system off; the AER was 0.3 h⁻¹. The units were operated for 90 min. Ozone concentrations at the low output 17 18 setting ranged from nondetectable to 14 ppb (averaged output). At the high output setting, 19 averaged output O₃ concentrations exceeded 200 ppb in several cases and had spike 20 concentrations as high as 480 ppb.

21

Figure AX3-93 includes PAN indoor/outdoor ratios for 10 museums. Four of the museums 22 were equipped with HVAC and chemical infiltration systems.

23

24 AX3.7.4 Factors Affecting Ozone Concentrations Indoors

25 In the absence of an indoor source, O₃ concentrations in indoor environments will depend 26 on the outdoor concentration, the air exchange rate (AER) or outdoor infiltration, indoor 27 circulation rate, removal by indoor surfaces, reactions with other indoor pollutants, and 28 temperature and humidity. Indoor concentrations generally closely track outdoor O₃ 29 concentrations. Limited information on PAN concentrations indoors also indicate that indoor 30 PAN concentrations tract outdoor concentrations (Jakobi and Fabian, 1997; Hisham and 31 Grosjean, 1991). Since outdoor concentrations of photochemical oxidants are generally higher

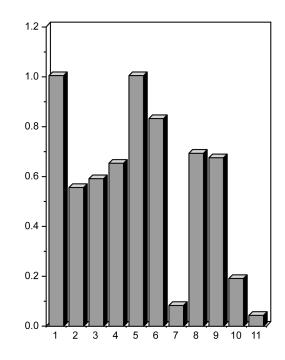


Figure AX3-93. Indoor/outdoor concentration ratios for PAN at 10 southern California museums. Code to locations: <u>1</u> El Pueblo Historical Park, Los Angeles; <u>2</u> Olivas Adobe House, Ventura; <u>3</u> Southwest Museum, Los Angeles; <u>4</u> Page Museum, Los Angeles; <u>5</u> Museum of Natural History, Los Angeles; <u>6</u> Research Library, University of California, Los Angeles; <u>7</u> Scott Gallery, Huntington Museum, Pasadena; <u>8</u> The J. Paul Getty Museum, Malibu; <u>9</u> Los Angeles County Museum of Art, Los Angeles; <u>10</u> Gene Autry Western Heritage Museum, Los Angeles (buffer zone); <u>11</u> Gene Autry Museum (Conservation Room).

Source: Hisham and Grosjean (1991).

1 during the warmer months, indoor concentrations will also be highest during that time period.

- 2 (See discussion on ambient concentrations of O_3 earlier in this chapter.)
- 3

4 Air Exchange Rates

Indoor O₃ increases with increasing air exchange rate (Gold et al., 1996; Lee et al., 1999;
Jakobi and Fabian, 1997). The AER is the balance of the flow of air in and out of a
microenvironment. Infiltration through unintentional openings in the building envelope is the
dominant mechanism for residential air exchange. Duct systems account for 30% of the total
leakage area of a house. Natural ventilation, airflow through opened windows and doors, also

influences air exchange in residential buildings. Forced or mechanical ventilation is the
 dominant mechanism for air exchange in nonresidential buildings.

3 Air exchange rates vary depending on the temperature differences, wind effects, 4 geographical region, type of heating/mechanical ventilation system, and building type (U.S. 5 Environmental Protection Agency, 1997; Weschler and Shields, 2000; Colome et al., 1994; 6 Johnson et al., 2004). Air exchange rates are generally higher during the summer and lower 7 during the winter months (Wilson et al., 1996; Murray and Burmaster, 1995; Colome et al., 8 1994; Research Triangle Institute, 1990). The Gas Research Institute, Pacific Gas and Electric 9 Company, San Diego Gas and Electric Company, and Southern California Gas Company 10 measured the air exchange rates in a subset of 293 randomly selected homes in California as part 11 of an air pollution monitoring study. The average AER varied by type of heating system (wall furnaces >forced-air > electric) and building type (multifamily units > single-family units) 12 13 (Billick et al., 1984, 1996; Colome et al., 1994).

Howard-Reed et al. (2002) determined that opening a window or exterior door causes the greatest increase in AERs with differences between the indoor and outdoor temperature being important when the windows were closed. Johnson and Long (2004) conducted a pilot study to evaluate the frequency that windows were left open in a community. They found that a visual 2-h survey could be used to estimate the frequency that windows are left open. The occupancy, season, housing density, absence of air conditioning, and wind speed were factors in whether the windows were open.

21 Johnson et al. (2004) conducted a study using scripted ventilation conditions to identify 22 those factors that affected air exchange inside a test house in Columbus, OH. The test house was 23 a wood-framed, split-level structure with aluminum siding covering the wood outer walls. The 24 house had one exterior door located in the front and another at the rear of the house, single-pane 25 glazed windows, central gas heat, a window air-conditioning unit, and ceiling fans in three 26 rooms. Eighteen scenarios with unique air flow conditions were evaluated to determine the 27 effect on the AER. The elements of the scenarios included: exteriors doors open/closed, interior 28 doors open/closed, heater on/off, air conditioner on/off, a ceiling fans on/off. The lower level 29 was sealed off during the study. The various scenarios were evaluated during the winter season. 30 The average AER for all scenarios ranged from 0.36 to 15.8 h^{-1} . When all windows and doors were closed, the AER ranged from 0.36 to 2.29 h^{-1} (0.77 h^{-1} geometric mean). When at least one 31

1 exterior door or window was open the AER ranged from 0.5 to 15.8 h^{-1} (1.98 h^{-1} geometric 2 mean).

Williams et al. (2003a, 2003b) reported air exchange rates ranging from 0.001 h⁻¹ to
4.87 h⁻¹ (overall arithmetic mean of 0.72 h⁻¹) in houses in the Research Triangle Park area in
North Carolina. Air exchange measurements were made in 37 homes as part of a year long study
PM panel study.

7 Air exchange rates for homes in Houston, TX, Los Angeles County, CA, and Elizabeth, NJ 8 were reported by Meng et al. (2005e) as part of the Relationship of Indoor, Outdoor and Personal 9 Air (RIOPA) study. The RIOPA study was designed to determine indoor (residual), outdoor, 10 and personal exposure to several classes of pollutants. Approximately 100 homes from each of 11 the areas were sampled across all four seasons. The mean air exchange rate for the Los Angeles County homes was 1.22 h^{-1} , similar to the air exchange rate (1.51 h⁻¹) homes in Los Angeles 12 13 previously reported by Wilson et al. (1996). The mean air exchange rate for Houston and Elizabeth was 0.71 h^{-1} and 1.22 h^{-1} , respectively. Air exchange rates for New Jersey were 14 15 higher than other reported values in the northeast region. The authors attributed these 16 differences to differences in the age of housing stock in the various areas.

17 Chan et al. (2005) compared air leakage measurements for more than 70,000 houses across 18 the United States, classified as low-income households, energy program houses, and convention 19 houses, to the building size, construction date and various construction characteristics, and 20 geographical location. The construction date and building size were the two most significant 21 predictors of leakage areas. Older and smaller houses had higher normalized leakage areas than 22 the newer and larger houses. Based on their evaluation of new and older residential 23 constructions, Sherman and Matson (1997) found that existing home stock (pre-1980) was quite 24 leaky with an AER of approximately 20.0 h⁻¹. Newer constructions were considerably more airtight. 25

Murray and Burmaster (1995) conducted an analysis of data compiled by Brookhaven National Laboratories on AERs for 2,844 residential structures in four climatic regions based on heating degree days. (Region 1: IN, MN, MT, NH, NY1, VT, WI; Region 2: CO, CT, IL, NJ, NY2, OH, PA, WA; Region 3: CA3, MD, OR, WA; Region 4: AZ, CA4, FL, TX). Data were also separated by seasons (winter, spring, summer, and fall). The highest overall AERs occurred during the spring and fall season. However, air exchange rates were variable within and between seasons and between regions. Data from the warmest region during the summer months should
be reviewed with caution because many of the measurements were made in southern California
where windows were more likely to be open than in other areas of the country where airconditioning is used.

Air exchange rates for 49 nonresidential buildings (14 schools, 22 offices, and 13 retail 5 establishments) in California were reported by Lagus Applied Technology, Inc. (1995). Average 6 7 mean (median) AERs were 2.45 (2.24), 1.35 (1.09), and 2.22 (1.79) h^{-1} for schools, offices, and retail establishments, respectively. Air infiltration rates for 40 of the 49 buildings were 0.32, 8 0.31, and 1.12 h^{-1} for schools, offices, and retail establishments, respectively. Air exchange 9 10 rates for 40 nonresidential buildings in Oregon and Washington (Turk et al., 1989) averaged 11 1.5 (1.3) h^{-1} (mean median). The geometric mean of the AERs for six garages was 1.6 h^{-1} (Marr et al., 1998). Park et al. (1998) reported AERs for three stationary cars (cars varied by age) 12 under different ventilation conditions. Air exchange rates ranged from 1.0 to 3.0 h^{-1} for 13 windows closed and fan off, 13.3 to 23.5 h^{-1} for windows opened and fan off, 1.8 to 3.7 h^{-1} for 14 windows closed and fan on recirculation (two cars tested), and 36.2 to 47.5 h^{-1} for windows 15 closed and fan on fresh air (one car tested). An average AER of 13.1 h⁻¹ was reported by Ott 16 17 et al. (1992) for a station wagon moving at 20 mph with the windows closed.

18 19

Ozone Removal Processes

The most important removal process for O₃ in the indoor environment is deposition on and 20 21 reaction with indoor surfaces. The rate of deposition is material specific. The removal rate 22 indoors will depend on the indoor dimensions, surface coverings, and furnishings. Smaller rooms generally have larger surface-to-volume ratios (A/V) and remove O₃ faster. Fleecy 23 24 materials, such as carpets, have larger A/V ratios and remove O₃ faster than smooth surfaces (Weschler, 2000). O₃ can react with carpet, decreasing O₃ concentrations and increasing 25 emissions of formaldehyde, acetaldehyde, and other C_5-C_{10} aldehydes. Off-gassing of 26 27 4-phenylcyclohexene, 4-vinylcyclohexene, and styrene was reduced (Weschler et al., 1992). The 28 rate of O₃ reaction with carpet diminishes with cumulative O₃ exposure (Morrison and Nazaroff, 29 2000, 2002). Reiss et al. (1995) reported significant quantities of acetic acid and smaller 30 quantities of formic acid off-gassing from O₃ reactions with latex paint. The emission rate also 31 was relative humidity-dependent, increasing with higher relative humidity. Klenø et al. (2001)

1	evaluated O ₃ removal by several aged (1- to 120-month) but not used building materials (nylon
2	carpet, linoleum, painted gypsum board, hand polished stainless steel, oiled beech parquet,
3	melamine-coated particle board, and glass plate). Initially, O ₃ removal was high for all
4	specimens tested with the exception of the glass plate. Ozone removal for one carpet specimen
5	and the painted gypsum board remained high throughout the study. For the oiled beech parquet
6	and melamine-coated particle board, O_3 removal leveled off to a moderate rate. Morrison et al.
7	(1998) reported that small amounts of O_3 (~9%) are removed by lined ductwork of ventilation
8	systems. The removal efficiency decreases with continued exposure to O ₃ . Unlined ductwork is
9	less efficient in removing O ₃ . Ozone is scavenged by fiberglass insulation (Liu and Nazaroff,
10	2001). More O_3 was scavenged (60 to 90%) by fiberglass that had not been previously exposed.
11	Table AX3-25 lists the removal rates for O_3 in different indoor environments.
12	Jaboki and Fabian (1997) found the O_3 decays exponentially. PAN decay is dependent on
13	room temperature and possibly the properties and structure of the materials it comes in contact
14	with. They examined O ₃ and PAN decay in several closed rooms and in a car after a period of
15	intensive ventilation. Figure AX3-94 plots the O_3 and PAN decay rates in these environments.
16	Several studies have examined factors within homes that may scavenge O_3 and lead to
17	decreased O ₃ concentrations (Lee et al., 1999; Wainman et al., 2000; Weschler and Shields,
18	1997). These reactions produce related oxidant species while reducing indoor O_3 levels. Lee
19	et al. (1999) studied 43 homes in Upland, CA in the Los Angeles metropolitan region and
20	reported that O ₃ declined faster in homes with more bedrooms, greater amounts of carpeting, and
21	lower ceilings (all of which alter the A/V ratio) and with the use of air conditioning. Homes
22	with air conditioning had indoor/outdoor (I/O) ratios of 0.07, 0.09, and 0.11. Homes without air
23	conditioning had an I/O ratio of 0.68 ± 0.18 . Closed windows and doors combined with the use
24	of an air cleaner resulted in an I/O ratio of 0.15. The O_3 I/O ratio was < 0.2 in homes with gas
25	stoves.
26	

27

Ozone Removal Through Chemical Processes

Ozone chemical reactions in the indoor environment are analogous to those reactions occurring in the ambient air (See Annex AX2). Ozone reactions with unsaturated VOCs in the indoor environment are dependent on the O_3 indoor concentration, the indoor temperature and, in most cases, the air exchange rate/ventilation rate and mixing factor. The air exchange rate

	Indoor Environments	
Indoor environment	Surface Removal Rate, k _d (A/V), h ⁻¹	Reference
Aluminum Room (11.9 m ³)	3.2	Mueller et at. (1973)
Stainless Steel Room (14.9 m ³)	1.4	
Bedroom (40.8 m ³)	7.2	
Office (55.2 m^3)	4.0	
Home (no forced air)	2.9	Sabersky et al. (1973)
Home (forced air)	5.4	
Department Store	4.3	Thompson et al. (1973)
Office (24.1 m ³)	4.0	Allen et al. (1978)
Office (20.7 m^3)	4.3	
Office/Lab	4.3	Shair and Heitner (1974)
Office/Lab	3.2	Shair (1981)
Office/Lab	3.6	Shan (1981)
13 Buildings, 24 ventilation systems	3.6ª	Nazaroff and Cass (1986)
Museum	4.3	× ,
Museum	4.3	
Office/Lab	4	Weighbor et al. (1090)
Office/Lab	4 3.2	Weschler et al. (1989)
Office	2.5	
Lab	2.5	
Cleanroom	7.6	
Telephone Office	$0.8 - 1.0^{b}$	Weschler et at. (1994) ^b
43 Homes	2.8 ± 1.3	Lee et al. (1999)

Table AX3-25. Rate Constants (h⁻¹) for the Removal of Ozone by Surfaces in DifferentIndoor Environments

 a A/V = assumes surface area to volume ratio = 2.8 m⁻¹

^b Large office, small A/V

Source: Weschler (2000).

1 2 determines the amount of time available for chemical reactions to take place. At low air

exchange rate, the residence time for the pollutants is longer, the reaction time is greater, and the

3 concentration of the products produced by O_3 chemistry is greater (Weschler and Shields, 2000,

4 2003). Since O_3 is primarily an outdoor pollutant, the air exchange rate will influence the

5 amount of O_3 occurring indoors.

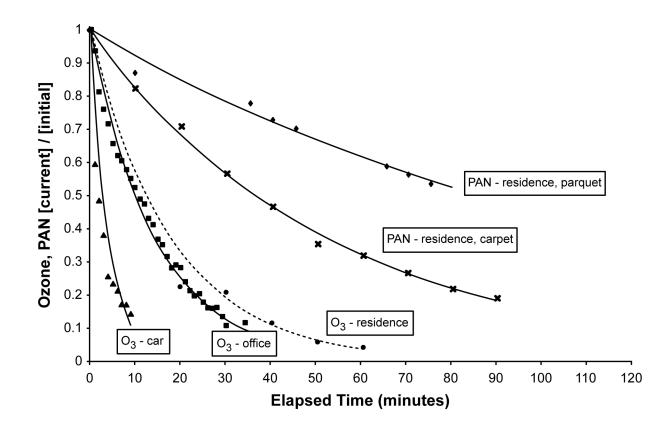


Figure AX3-94. Ozone decay processes versus time measured for several indoor rooms. Room temperature in all cases was ~27 °C and 29 °C in the car.

Adapted from: Jaboki and Fabian (1997).

1 Most unsaturated VOCs in the indoor environment are terpenes or terpene-related 2 compounds from cleaning products, air fresheners, and wood products. Some of the reaction 3 products may more negatively impact human health and artifacts in the indoor environment than their precursors (Wolkoff et al., 1999; Wilkins et al., 2001; Weschler et al., 1992; Weschler and 4 5 Shields, 1997; Rohr et al., 2002; Nøjgaard et al., 2005). The reactions products of O₃ and 6 terpenes are Criegee biradicals, nitrate radicals, and peroxyacetyl radicals. Secondary reaction 7 of the pollutants may form hydroxy, alkyl, alkylperoxy, hydroperoxy, and alkoxy radicals. The reaction of O₃ with alkenes can produce aldehydes, ketones, and organic acids (Weschler and 8 9 Shields, 2000; Weschler et al., 1992).

10

1 The indoor chemistry of O_3 is described by the following equations. The initial reaction 2 produces an ozonide which rapidly decomposes into one of the two possible combinations. 3 $O_3 + R_1C(O)R_2C = CR_3R_4 \rightarrow ozonide$ 4 (AX3-6) 5 ozonide $\rightarrow R_1C(O)R_2 + [R_3R_4C \bullet OO \bullet]^*$ 6 (AX3-7) 7 8 or 9 ozonide $\rightarrow [R_1R_2C \bullet OO \bullet]^* + R_3C(O)R_4$ 10 (AX3-8) 11 12 The biradical (*) then rearranges or reacts to produce the highly reactive intermediate products 13 (hydroxy, hydroperoxy, and alkylperoxy radicals) and stable products (aldehydes, ketones and organic acids). 14 15 Hydroxy radicals formed from the reaction of O₃ with VOCs are lost to further reaction 16 with VOCs. For each molecule of O₃ consumed, approximately one molecule of the hydroxy 17 radical is produced. The hydroxy radical also is formed through the reaction of nitric oxide and hydroperoxy, and other intermediate products formed from the reaction of O₃ with unsaturated 18 19 VOCs (Sarwar et al., 2002; Orzechowska and Paulson, 2002). The hydroxy radical can react 20 with various nitrogen compounds, sulfur dioxide, carbon monoxide and other compounds to 21 produce significantly more toxic compounds. In studies by Fick et al. (2003, 2004), the 22 formation of norpinonic and pinonic acid in a ventilation system injected with α -pinene in the 23 presence of O₃ was reported to be almost exclusively the result of oxidation by hydroxy radicals. 24 Fan et al. (2003) attributed the formation of some secondary organic aerosols from the reaction of O₃ with 23 VOCs (as toluene) to reactions with hydroxy radicals. Van den Bergh et al. (2000) 25 26 found that formaldehyde, acetaldehyde, acetone, campholenealdehyde, and pinonaldehyde are 27 generated from the reaction of α -pinene with hydroxy radicals. A list of the VOCs occurring in 28 the indoor environment known to react with O₃ and OH radicals is found in Weschler (2000) and 29 Nazaroff and Weschler (2004).

1	Wilkins et al. (2001) found that formaldehyde, formic acid, acetic acid, methacrolein, and
2	methylvinyl ketone were produced within 30 seconds of mixing approximately 4.0 ppm O_3 ,
3	500 ppm isoprene and 4.0 ppm NO_2 . Only a small amount of the O_3 remained. Similar findings
4	were reported by Clausen et al. (2001). A 16 second reaction of a mixture of 4.0 ppm O_3 and
5	48 ppm linomene was found to produce 1-methyl-4-acetcyclohexene, 3-isopropenyl-6-
6	oxoheptanal, formaldehyde and formic acid. Acetone, acrolein and acetic acid also were
7	detected, however, the authors found the production of these compounds difficult to explain
8	based on the structure of linomene and suggested that they may be artefacts. When \propto -pinene
9	was injected into a ventilation system containing 75 ppb O ₃ norpinic acid, pinic acid, glyoxal,
10	methyl glyoxal, norpinionic acid, pinonic acid, a C_4 dicarbonyl ($C_4H_6O_2$), a C_5 dicarbonyl
11	$(C_5H_8O_2)$, norpionaldehyde, and pinonaldehyde were formed (Fick et al., 2003, 2004).
12	The reaction between O_3 and terpenes has been shown to increase the concentration of
13	indoor particles (Weschler and Shields, 1999, 2003; Weschler, 2004; Clausen et al., 2001; Fan et
14	al, 2003; Wainman et al., 2000). Sarwar et al. (2002) suggested that the hydroxy radical reacts
15	with terpenes to produce products with low vapor pressures that contribute to fine particle
16	growth. The acidity of particles was found to enhance the yield of secondary organic aerosols
17	when α -pinene ozonolysis was carried out in the presence of ammonium sulfate and sulfuric
18	acid. There was almost a 40% increase in organic carbon particles when α -pinene ozonolysis
19	occurred in the presence of sulfuric acid aerosols compared to ammonium sulfate aerosols
20	(Iinuma et al., 2004). Rohr et al. (2002, 2003) measured particle formation in a plexiglas
21	chamber as part of a mouse bioassay study. They found an increase in ultrafine particle numbers
22	as the result of O_3 and α -pinene reactions. When O_3 was introduced into the test chamber,
23	particle concentrations increased to $>10^7$ particles/cm ³ . Clausen found that the reaction of
24	limonene vapor with O_3 increased the particle concentration to 3×10^5 from a background
25	concentration of $<10^3$ particles/cm ³ . Poupard et al. (2005) and Blondeau et al. (2005) found a
26	negative correlation between O ₃ and particle concentration in eight school buildings in France.
27	The researchers assumed that the increased particle concentration and decreased O_3
28	concentration was likely the result of homogeneous processes involving O ₃ . However, the
29	assumption could not be verified because the particles were not analyzed for chemical
30	composition.

1 Weschler et al. (1992) suggested that the reaction been O_3 and NO_2 in the indoor 2 environment may be a significant source of HNO₃. When there are elevated concentrations of 3 both O₃ and NO₂ in the indoor environment, the following reaction sequence may occur: 4 $O_3 + NO_2 \rightarrow NO_3 + O_2$ 5 6 $NO_3 + NO_2 \rightleftharpoons N_2O_5$ 7 (AX3-9) 8 $N_2O_5 + H_2O \rightarrow 2HNO_3$ 9 10 $NO_3 + ORG \rightarrow HNO_3 + ORG$ 11 12 13 PAN and PPN are thermally unstable and will decomposed in the indoor environment to 14 peroxyacetyl radicals and NO₂ (See equation AX3-10). Decomposition and formation of PAN in 15 the indoor environment is influenced by NO₂ and NO. 16 $CH_3C(O)OONO_2 \approx CH_3C(O)OO + NO_2$ 17 (AX3-10) 18 19 When the concentration ratio of NO/NO_2 is greater than 7, less than 10% of the 20 peroxyaceyl radicals will revert to PAN. Decomposition of PAN is expected to be a relatively 21 fast process when indoor O₃ levels are low and when motor vehicle emissions are large or there 22 is an indoor source of NO_x (Weshcler and Shields, 1997). 23 24 Sources and Emissions of Indoor Ozone 25 Ozone enters the indoor environment primarily through infiltration from outdoors through 26 cracks and crevices in the building envelope (unintentional and uncontrolled ventilation) and 27 through building components such as windows and doors and ventilation systems (natural and 28 controlled ventilation). Natural ventilation is driven by the natural forces of wind and 29 temperature. Possible indoor sources of O₃ are office equipment (photocopiers, facsimile 30 machines, and laser printers) and air cleaners (electrostatic air filters and precipitators and O₃ 31 generators). Generally O₃ emissions from photocopiers and laser printers are limited due to 32 installed filtering systems (Black and Worthan, 1999; Leovic et al., 1996; Aldrich et al., 1995). 33 However, emissions increase under improper maintenance conditions (Leovic et al., 1996). 34 Well-maintained photocopiers and laser printers usually emit low levels of O₃ by catalytically

reducing the O₃ to oxygen (Aldrich et al., 1995). Leovic et al. (1996, 1998) measured O₃
 emissions from four dry-process photocopiers. Ozone emissions ranged from 1300 to
 7900 μg/h.

4 Most electrostatic air filters and precipitators are designed to minimize the production of O3. However, if excessive arcing occurs, the units can emit a significant amount of O3 into the 5 indoor environment (Weschler, 2000). Niu et al. (2001) measured O₃ emissions from 27 air 6 cleaners that used ionization processes to remove particulates. The test were conducted in a 7 8 $2 \times 2 \times 1.60$ m³ stainless steel environmental chamber. The tests were terminated after 1.5 h 9 if no increase in O₃ concentration was noted. If an increase in O₃ was noted, the test was 10 continued, in some cases, for up to 20 h. Most of the evaluated units emitted no O₃ or only 11 small amounts. Five units were found to emit O_3 ranging from 56 to 2757 µg/h.

12 There are many brands and models of O₃ generators commercially available. The amount of O3 emitted by each unit depends on the size of the unit. Ozone emission rates have been 13 14 reported to range from tens to thousands of micrograms per hour (Weschler, 2000; Steiber, 15 1995). Ozone emissions supposedly can be regulated using the units control features. However, 16 available information suggests that O₃ output may not be proportional to the control setting. 17 Some units are equipped with a sensor that automatically controls O₃ output by turning the unit 18 on and off. The effectiveness of the sensor is unknown (U.S. Environmental Protection Agency, 2002). 19

20 Peroxyacyl nitrates (PAN and PPN) have no known direct emission sources and are 21 formed in the atmosphere from the reaction of NO₂ and hydrocarbons (Grosjean et al., 1996). 22 Peroxyacyl nitrates primarily occur in the indoor environment from infiltration through the 23 building envelop and through openings in the building envelopment. Peroxyacyl nitrates also 24 may be formed in the indoor environment through radical chemistry. PAN may be formed from 25 the reaction of the OH \cdot or NO₃ with acetaldehyde to form the acetyl radical, CH₃CO. The acetyl radical then reacts with oxygen to form and acetylperoxy radical which reacts with NO_2 to form 26 27 PAN.

29 30 30 $OH \cdot (or NO_3) + CH_3CHO \rightarrow CH_3CO \cdot$ (AX3-11) 31 32 33 $CH_3CO \cdot + O_2 \rightarrow CH_3C(O)OO \cdot$ (AX3-12)

August 2005

28

AX3-215 DRAFT–DO NOT QUOTE OR CITE

34 35

$$CH_3C(O)OO + NO_2 \rightarrow CH_3C(O)OO NO_2$$
 (AX3-13)

36

37 PPN is formed from when the reaction of the OH· with propionaldehyde (Weschler and
38 Shields, 1997).

38 39

40 AX3.10.8 Trends in Concentrations Within Microenvironments

41 There have not been sufficient numbers of measurements of personal exposures or indoor 42 O_3 concentrations to directly document trends over time or location. However, since O_3 concentrations in all microenvironments are primarily derived from ambient sources, trends in 43 44 ambient air concentrations should reflect trends in personal exposure unless there are differences in activity patterns over time or locations. Overall, a significant downward trend in ambient O₃ 45 46 concentrations has occurred from 1980 in most locations in the United States, although the trend 47 in the latter part of the 1990s suggests that continued improvements in air quality may have 48 leveled off. Greater declines in ambient O₃ concentrations appear to have occurred in urban centers than in rural regions. The decline in daily and weekly average O₃ concentrations from 49 50 1989 to 1995 in rural regions was 5% and 7%, respectively (Wolff et al., 2001; Lin et al., 2001; 51 Holland et al., 1999). A detailed discussion of O₃ trends appears earlier in this annex.

52

53

AX3.10.9 Characterization of Exposure

54 AX3.10.9.1 Use of Ambient Ozone Concentrations

55 The use of ambient air monitoring stations is still the most common surrogate for assigning 56 exposure in epidemiological studies. Since the primary source of O₃ exposure is the ambient air, 57 monitoring concentration data would provide the exposure outdoors while exercising, a potential 58 important exposure to evaluate in epidemiological studies as well as a relative assignment of 59 exposure with time if the concentration were uniform across the region; the time-activity pattern 60 were the same across the population; and the housing characteristics, such as ventilation rates and the O₃ sinks contributing to its indoor decay rates, were constant for the study area. Since 61 62 these factors vary by population and location there will be errors in not only the magnitude of the 63 total exposure, but also in the relative total exposure assignment based solely on ambient 64 monitoring data. As discussed earlier in this section, spatial differences in O₃ concentrations 65 within a city and between the height of the monitor and the breath zone (1 to 2 m) exist,

increasing uncertainties. The potential exists to obtain more complete exposure assignments for
 both individuals and populations by modeling O₃ exposure based on ambient air concentration to
 account for spatial variations outdoors and for time spent indoors, provided housing
 characteristics and activity patterns can be obtained. For cohort studies, measurement of
 personal O₃ exposures using passive monitors is also possible.

6 The potential for error in determining pollutant exposure was expressed by Krzyzanowski 7 (1997), who indicated that while the typical estimate of exposure in epidemiological studies is "an average concentration of the pollutant calculated from the data routinely collected in the area 8 9 of residence of the studied population. This method certainly lacks precision and, in most cases, 10 the analyses that use it will underestimate the effect of specific concentrations of a pollutant on 11 health." It is further stated that when estimating exposure for epidemiological studies it is 12 important to define: (1) representativeness of exposure or environmental data for the population 13 at risk, (2) appropriateness of the averaging time for the health outcome being examined, and 14 (3) the relationship between the exposure surrogate and the true exposure relative to the 15 exposure-response function used in the risk assessment. Zeger et al. (2000) suggested that the 16 largest biases will occur because of errors between ambient and average personal exposure 17 measures. Sheppard et al. (2005a) further indicated that for non-reactive pollutants with non-18 ambient sources, exposure variability will introduce a large exposure error. However, for acute 19 effects, time series studies using ambient concentration measurements are adequate (Sheppard, 20 2005b).

21 Numerous air pollutants can have common ambient air sources resulting in strong 22 correlations among pollutant ambient air concentrations. As a result, some observed 23 associations between an air pollutant and health effects may be due to confounding by other air 24 pollutants. Sarnat et al. (2001) found that while ambient air concentrations of some air pollutants were correlated, personal PM_{2.5} and several gaseous air pollutant (O₃, SO₂, NO₂, CO, 25 26 and exhaust-related VOCs) exposures were not generally correlated. The findings were based on 27 the results of a multipollutant exposure study of 56 children and elderly adults in Baltimore, MD 28 conducted during both the summer and winter months. Ambient pollutant concentrations were 29 not associated with corresponding personal exposures, except for PM_{2.5}. The gaseous pollutants 30 were found to be surrogates of PM25 and were generally not correlated. The authors concluded 31 that multipollutant models in epidemiologic studies of PM_{2.5} may not be suitable, and health

1 effects attributed to the gaseous pollutants may be the result of $PM_{2.5}$ exposure. It should be

- 2 noted that the 95th percentile O_3 concentrations in the study was lower than 60 ppb, an O_3
- 3 concentration at which respiratory effects are noted. It would be important to examine whether 4 O_3 is a surrogate for personal PM_{2.5} at high O_3 levels when attributing adverse health effects to
- 4 O_3 is a surrogate for personal PM_{2.5} at high O_3 levels when attributing adverse health effects to 5 O_3 or PM_{2.5}.

6 Künzli et al. (1996) assessed potential lifetime exposure to O₃ based on the responses to a 7 standardized questionnaire completed by 175 college freshmen in California. Questions 8 addressed lifetime residential history, schools attended, general and outdoor activity patterns, 9 driving habits and job history. The purpose was to determine what O₃ monitoring data to use for 10 each time period of their lives, the potential correction factor for indoor levels and periods of 11 high activity to account for differential doses to the lung due to physical activity. The reliability 12 of the responses was checked by having each respondent complete the questionnaire twice, on 13 different days, and the results compared. A lifetime O₃ exposure history was generated for each 14 participant and a sensitivity analysis performed to evaluate which uncertainties would cause the 15 greatest potential misclassification of exposure. Assigned lifetime O₃ concentrations from the 16 nearest monitor yielded highly reliable cumulative values, although the reliability of residential location decreased with increasing residential locations. Individuals involved in moderate and 17 18 heavy exercise could be reliably identified. Such an approach can be used to evaluate health 19 outcomes associated with chronic exposures to O₃.

20 21

AX3.10.9.2 Exposure Selection in Controlled Exposure Studies

22 Ozone exposures in the environment are variable over time due to changes in the ambient 23 concentrations during the day as the photochemical reactions proceed and also because people 24 move between microenvironments that have different concentrations (Johnson, 1997). 25 Exposures are repeated on sequential days since weather conditions that produce O_3 can move 26 slowly through or become stagnant within a region. For simplicity, most controlled-exposure 27 experiments are conducted at a single concentration for a fixed time period, with a limited 28 number of studies being repeated on a single individual. Few studies have been conducted using 29 multipollutants or photochemical agents other than O₃, to better represent "real-world" exposures with the exception of NO₂. Studies by Hazucha et al. (1992), Adams (2003), and Adams and 30 31 Ollison (1997) examined the effect of varying O₃ exposure concentrations on pulmonary 32 function. A description of, and findings in, the studies appears in Annex AX5 of this document.

1

AX3.10.9.3 Exposure to Related Photochemical Agents

2 Exposures to other related photochemical agents have not been measured using personal 3 samplers nor are these agents routinely measured at O₃ monitoring stations. Photochemical 4 agents produced in the ambient air can penetrate indoors and react with other pollutants to produce other potentially irritating compounds. Reiss et al. (1995) reported that organic acids, 5 6 aldehydes and ketones were produced indoors by reactions of O₃ with VOCs. The produced compounds included oxidants that can be respiratory irritants. The indoor concentrations were 7 8 dependent upon the O₃ concentrations indoors and the AER within the building. Weschler and 9 Shields (1997) summarized indoor air chemical reactions that depend directly or indirectly on 10 the presence of O_3 . They indicated that O_3 concentrations are lower indoors than outdoors partly 11 because of gas-phase reactions that produce other oxidants in an analogous fashion to 12 photochemical smog in ambient air. The production of these species indoors is a function of the 13 indoor O₃ concentration and the presence of the other necessary precursors, VOCs, and NO₂, along with an optimal AER. A variety of the photochemical oxidants related to O₃ that are 14 15 produced outdoors, such as PAN and PPN, can penetrate indoors. These oxidants are thermally 16 unstable and can decompose indoors to peroxacetyl radicals and NO₂ through thermal decay. 17 PAN removal increases with increasing temperature, and at a given temperature, with increasing 18 NO/NO₂ concentration ratio (Grosjean et al., 2001). Other free radicals that can form indoors include HO• and HO₂[•]. These free radicals can produce compounds that are known or suspected 19 20 to be irritating. Little is known about exposure to some of these agents, as not all have been 21 identified and collection and analytical methodologies have not be developed for their routine 22 determination. Lee et al. (1999) reported that homogeneous (gas phase) and heterogenous (gas 23 phase/solid surface) reactions occur between O₃ and common indoor air pollutants such as NO 24 and VOCs to produce secondary products whose production rate depends on the AER and 25 surface area within the home. Wainman et al. (2000) found that O₃ reacts indoors with 26 d-limonene, emitted from air fresheners, to form fine particles in the range of 0.1 to 0.2 µm and 27 0.2 to $0.3 \mu m$. The indoor process also produces compounds that have been identified in the 28 ambient atmosphere. These species, plus others that may form indoors from other terpenes or 29 unsaturated compounds can present an additional exposure to oxidants, other than O₃, at higher 30 concentrations than present in ambient air, even as the O₃ concentration is being reduced 31 indoors.

1 The announcement of smog alerts or air quality indices may influence individuals to alter 2 behaviors (avoidance behavior). Neidell (2004), in his evaluation of the effect of pollution on 3 childhood asthma, examined the relationship between the issuance of smog alerts or air quality 4 indices for several counties in California and hospital admissions for asthma in children under age 18 years (not including newborns). Smog alerts are issued in California on days when O_3 5 concentrations exceed 200 ppb. There was a significant reduction in the number of asthma-6 7 related hospital admissions in children ages 1 to 12 years on smog alert days, indicating that 8 avoidance behavior might be present on days of high O₃ concentrations.

9 Ozone exposure modeling has been conducted for the general population and sensitive 10 subgroups. The pNEM/O₃ model takes into consideration the temporal and spatial distribution 11 of people and O₃ throughout the area of consideration, variations in O₃ concentrations within microenvironments, and the effects of exertion/exercise (increased ventilation) on O₃ uptake. 12 13 The pNEM/ O_3 model consists of two principal parts: the cohort exposure program and the 14 exposure extrapolation program. The methodology incorporated much of the general framework 15 described earlier in this section on assessing O_3 exposure and consists of five steps: (1) define 16 the study area, population of interest, subdivisions of the study area, and exposure period; 17 (2) divide population of interest into a set of cohorts; (3) develop exposure event sequence for 18 each cohort for the exposure period; (4) estimate pollutant concentration and ventilation rate for 19 each exposure event; and (5) extrapolate cohort exposures to population of interest (U.S. 20 Environmental Protection Agency, 1996b).

21 There are three versions of the pNEM/ O_3 model: general population (Johnson et al., 22 1996a), outdoor workers (Johnson et al., 1996b), and outdoor children (Johnson et al., 1996c, 23 1997). These three versions of the model have been applied to nine urban areas. The model also 24 has been applied to a single summer camp (Johnson et al., 1996c). The general population 25 version of the model uses activity data from the Cincinnati Activity Diary Study (CADS; 26 Johnson, 1989). Time-activity studies (Wiley et al., 1991a; Johnson, 1984; Linn et al., 1993; 27 Shamoo et al., 1991; Goldstein et al., 1992; Hartwell et al., 1984) were combined with the CADS 28 data for the outdoor worker version of the model. Additional time-activity data (Goldstein et al., 29 1992; Hartwell et al., 1984; Wiley et al., 1991a,b; Linn et al., 1992; Spier et al., 1992) were also 30 added to CADS for the outdoor children of the model (U.S. Environmental Protection Agency, 31 1996b). Home-work commuting patterns are based on information gathered by the U.S. Census

1 Bureau. Ozone ambient air concentration data from monitoring stations were used to estimate 2 the outdoor exposure concentrations associated with each exposure event. Indoor O₃ decay rate 3 is assumed to be proportional to the indoor O_3 concentration. An algorithm assigns the 4 equivalent ventilation rate (EVR) associated with each exposure event. The outdoor children model uses an EVR-generator module to generate an EVR value for each exposure event based 5 6 on data on heart rate by Spier et al. (1992) and Linn et al. (1992). The models produce exposure 7 estimates for a range of O₃ concentrations at specified exertion levels. The models were used to 8 estimate exposure for nine air quality scenarios (U.S. Environmental Protection Agency, 1996b).

9 Korc (1996) used the REHEX-II model, a general purpose air pollution exposure model 10 based on a microenvironmental approach modified to account for the influence of physical 11 activity along and spatial and the temporal variability of outdoor air pollution. Ozone exposure 12 was estimated by demographic groups across 126 geographic subregions for 1980 to 1982, and 13 for 142 geographic subregions for 1990 to 1992. Simulation results were determined for 14 population race, ethnicity, and per capita income and included indoor, in-transit, and outdoor 15 microenvironments. Exposure modeling was stratified by age because of differences in time-16 activity patterns. Exposure distributions by regional activity pattern data were not considered, 17 rather it was assumed that all individuals within a county had the same exposure distribution by 18 race, ethnicity, and socioeconomic status. Model results for southern California indicated that 19 the segment of the population with the highest exposures were children 6 to 11 years old. 20 Individuals living in low income districts may have greater per capita hours of exposure to O_3 21 above the NAAQS than those living in higher income districts. The author indicated that O₃ 22 exposure differences by race and ethnicity have declined over time. The noninclusion of details 23 on activity patterns for different populations in the model limit the extrapolations that can be 24 made from the model results.

25 Children appear to have higher exposures than adults and the elderly. Asthmatics appear to 26 ventilate more than healthy individuals, but tend to protect themselves by decreasing their 27 outdoor exercise (Linn et al., 1992). Additional data are still needed to identify and better define 28 exposures to potentially susceptible populations and improve exposure models for the general 29 population and subpopulation of concern.

REFERENCES

- Adams, W. C. (1993) Measurement of breathing rate and volume in routinely performed daily activities [final report]. Sacramento, CA: California Environmental Protection Agency, Air Resources Board; contract no. A033-205.
- Adams, W. C. (2003) Comparison of chamber and face mask 6.6-hour exposure to 0.08 ppm ozone via square-wave and triangular profiles on pulmonary responses. Inhalation Toxicol. 15: 265-281.
- Adams, W. C.; Ollison, W. M. (1997) Effects of prolonged simulated ambient ozone dosing patterns on human pulmonary function and symptomatology. Presented at: 90th annual meeting of the Air & Waste Management Association; June; Toronto, Ontario, Canada. Pittsburgh, PA: Air & Waste Management Association; paper no. 97-MP9.02.
- Adams, R. M.; Hamilton, S. A.; McCarl, B. A. (1985) An assessment of the economic effects of ozone on U.S. agriculture. J. Air Pollut. Control Assoc. 35: 938-943.
- Adams, R. M.; Glyer, J. D.; Johnson, S. L.; McCarl, B. A. (1989) A reassessment of the economic effects of ozone on U.S. agriculture. JAPCA 39: 960-968.
- Ainsworth; Haskell, W. L.; Leon, A. S.; Jacobs, D. R., Jr.; Montoye, H. J.; Sallis, J. F.; Paffenbarger, R. S., Jr. (1993) Compendium of physical activities: classification of energy costs of human physical activities. Med. Sci. Sports Exer. 25: 71-80.
- Aldrich, F. D.; Brooks, B. O.; Davis, W. F.; DeBroy, J. A.; Li, S. T.; Schimke, R.; Utter, G. M. (1995) Health and productivity impact of organic volatiles from electronic office equipment. Presented at: Pacific Rim conference on occupational and environmental health; October; Sydney, Australia.
- Allen, R. J.; Wadden, R. A.; Ross, E. D. (1978) Characterization of potential indoor sources of ozone. Am. Ind. Hyg. Assoc. J. 39: 466-471.
- Aneja, V. P.; Li, Z. (1992) Characterization of ozone at high elevation in the eastern United States: trends, seasonal variations, and exposure. J. Geophys. Res. [Atmos.] 97: 9873-9888.
- Avol, E. L.; Navidi, W. C.; Colome, S. D. (1998a) Modeling ozone levels in and around southern California homes. Environ. Sci. Technol. 32: 463-468.
- Avol, E. L.; Navidi, W. C.; Rappaport, E. B.; Peters, J. M. (1998b) Acute effects of ambient ozone on asthmatic, wheezy, and healthy children. Cambridge, MA: Health Effects Institute; research report no. 82.
- Beine, H. J.; Jaffe, D. A.; Herring, J. A.; Kelley, J. A.; Krognes, T.; Stordal, F. (1997) High-latitude springtime photochemistry. Part I: NO_x, PAN and ozone relationships. J. Atmos. Chem. 27: 127-153.
- Bernard, N. L.; Gerber, M. J.; Astre, C. M.; Saintot, M. J. (1999) Ozone measurement with passive samplers: validation and use for ozone pollution assessment in Montpellier, France. Environ. Sci. Technol. 33: 217-222.
- Berntsen, T. K.; Isaksen, I. S. A.; Myhre, G.; Fuglestvedt, J. S.; Stordal, F.; Larsen, T. A.; Freckleton, R. S.; Shine, K. P. (1997) Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing. J. Geophys. Res. [Atmos.] 102: 28,101-28,126.
- Berry, C. R. (1964) Differences in concentrations of surface oxidant between valley and mountaintop conditions in the southern Appalachians. J. Air Pollut. Control Assoc. 14: 238-239.
- Bey, I.; Jacob, D. J.; Yantosca, R. M.; Logan, J. A.; Field, B.; Fiore, A. M.; Li, Q.; Liu, H.; Mickley, L. J.; Schultz, M. G. (2001a) Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation. J. Geophys. Res. (Atmos.) 106: 23,073-23,095.
- Bey, I.; Jacob, D. J.; Logan, J. A.; Yantosca, R. M. (2001b) Asian chemical outflow to the Pacific in spring: origins, pathways, and budgets. J. Geophys. Res. [Atmos.] 106: 23,097-23,113.
- Biller, W. F.; Feagans, T. B.; Johnson, T. R.; Duggan, G. M.; Paul, R. A.; McCurdy, T.; Thomas, H. C. (1981) A general model for estimating exposure associated with alternative NAAQS. Presented at: 74th annual meeting of the Air Pollution Control Association; June; Philadelphia, PA. Pittsburgh, PA: Air Pollution Control Association; paper no. 81-18.4.
- Billick, I.; Johnson, D.; Moschandreas, D.; Relwani, S. (1984) An investigation of operational factors that influence emission rates from gas appliances. In: Berglund, B.; Lindvall, T.; Sundell, J., eds. Indoor air. Volume 4: chemical characterization and personal exposure. Proceedings of the 3rd international conference on indoor air quality and climate; August; Stockholm, Sweden. Stockholm, Sweden: Swedish Council for Building Research; pp. 181-187.
- Billick, I. H.; Behrens, D. W.; Becker, E. W.; Garrison, C. A.; Wilson, A. L.; Colome, S. D.; Tian, Y. (1996) California residential indoor air quality study: an overview. In: Proceedings of the 1995 international gas research conference; November 1995; Cannes, France. Rockville, MD: Government Institutes, Inc.; pp. 1707-1716.

- Black, M. S.; Worthan, A. W. (1999) Emissions from office equipment. In: Raw, G.; Aizlewood, C.; Warren, P., eds. Indoor Air '99, v. 2. London, England: Construction Research Communications Ltd.; pp. 454-459.
- Black, D. R.; Harley, R. A.; Hering, S. V.; Stolzenburg, M. R. (2000) A new, portable, real-time monitor. Environ. Sci. Technol. 34: 3031-3040.
- Blanchard, C. L.; Tanenbaum, S. J. (2003) Differences between weekday and weekend air pollutant levels in southern California. J. Air Waste Mange. Assoc. 53: 816-828.
- Blondeau, P.; Iordache, V.; Poupard, O.; Genin, D.; Allard, F. (2005) Relationship between outdoor and indoor air quality in eight French schools. Indoor Air 15: 2-12.
- Böhm, M.; McCune, B.; Vandetta, T. (1991) Diurnal curves of troposheric ozone in the western United States. Atmos. Environ. Part A 25: 1577-1590.
- Bottenheim, J. W.; Barrie, L. A.; Atlas, E.; Heidt, L. E.; Niki, H.; Rasmussen, R. A.; Shepson, P. B. (1990)
 Depletion of lower tropospheric ozone during Arctic spring: The Polar Sunrise Experiment 1988. J. Geophys. Res. (Atmos.) 95: 18,555-18,568.
- Bottenheim, J. W.; Barrie, L. A.; Atlas, E. (1993) The partitioning of nitrogen oxides in the lower Arctic troposphere during Spring 1988. J. Atmos. Chem. 17: 15-27.
- Brauer, M.; Brook, J. R. (1997) Ozone personal exposures and health effects for selected groups residing in the Fraser Valley. In: Steyn, D. G.; Bottenheim, J. W., eds. The Lower Fraser Valley Oxidants/Pacific '93 Field Study. Atmos. Environ. 31: 2113-2121.
- Browell, E. V.; Hair, J. W.; Butler, C. F.; Grant, W. B.; De Young, R. J.; Fenn, M. A.; Brackett, V. G.; Clayton, M. B.; Brasseur, L. A.; Harper, D. B.; Ridley, B. A.; Klonecki, A. A.; Hess, P. G.; Emmons, L. K.; Tie, X.; Atlas, E. L.; Cantrell, C. A.; Wimmers, A. J.; Blake, D. R.; Coffey, M. T.; Hannigan, J. W.; Dibb, J. E.; Talbot, R. W.; Flocke, F.; Weinheimer, A. J.; Fried, A.; Wert, B.; Snow, J. A.; Lefer, B. L. (2003) Ozone, aerosol, potential vorticity, and trace gas trends observed at high-latitudes over North America from February to May 2000. J. Geophys. Res. [Atmos.] 108(D4): 10.1029/2001JD001390.
- Burke, J. M.; Zufall, M. J.; Özkaynak, H. (2001) A population exposure model for particulate matter: case study results for PM_{2.5} in Philadelphia, PA. J. Exposure Anal. Environ. Epidemiol. 11: 470-489.
- Carroll, R. J.; Chen, R.; George, E. I.; Li, T. H.; Newton, H. J.; Schmiediche, H.; Wang, N. (1997a) Ozone exposure and population density in Harris County, Texas. J. Am. Stat. Assoc. 92: 392-404.
- Carroll, R. J.; Chen, R.; George, E. I.; Li, T. H.; Newton, H. J.; Schmiediche, H.; Wang, N. (1997b) Ozone exposure and population density in Harris County, Texas (rejoinder). J. Am. Stat. Assoc. 92: 414-415.
- Chan, C.-C.; Wu, T.-H. (2005) Effects of ambient ozone exposure on mail carriers' peak expiratory flow rates. Environ. Health Perspect. 113: 735-738.
- Chang, L.-T.; Koutrakis, P.; Catalano, P. J.; Suh, H. H. (2000) Hourly personal exposures to fine particles and gaseous pollutants—results from Baltimore, Maryland. J. Air Waste Manage. Assoc. 50: 1223-1235.
- Chao, C. Y. (2001) Comparison between indoor and outdoor air contaminant levels in residential buildings from passive sampler study. Build. Environ. 36: 999-1007.
- Chen, L.-W. A. (2002) Urban fine particulate matter: chemical composition and possible origins (dissertation). College Park, MD: University of Maryland, Department of Chemical Physics. Available from: University Microfilms, Ann Arbor, MI; AADAA-I3078297.
- Chinkin, L. R.; Coe, D. L.; Funk, T. H.; Hafner, H. R.; Roberts, P. T.; Ryan, P. A. (2003) Weekday versus weekend activity patterns for ozone precursor emissions in California's South Coast Air Basin. J. Air Waste Manage. Assoc. 53: 829-843.
- Christakos, G. (2000) Modern spatiotemporal geostatistics. New York, NY: Oxford University Press. (International Association for Mathematical Geology; studies in mathematical geology: 6).
- Christakos, G.; Hristopulos, D. T. (1998) Spatiotemporal environmental health modelling. *A tractatus stochasticus*. Boston, MA: Kluwer Academic Publishers.
- Christakos, G.; Kolovos, A. (1999) A study of the spatiotemporal health impacts of ozone exposure. J. Exposure Anal. Environ. Epidemiol. 9: 322-335.
- Christakos, G.; Vyas, V. M. (1998a) A composite space/time approach to studying ozone distribution over eastern United States. Atmos. Environ. 32: 2845-2857.
- Christakos, G.; Vyas, V. M. (1998b) A novel method for studying population health impacts of spatiotemporal ozone distribution. Soc. Sci. Med. 47: 1051-1066.
- Clausen, P. A.; Wilkins, C. K.; Wolkoff, P.; Nielsen, G. D. (2001) Chemical and biological evaluation of a reaction mixture of R-(+)-limonene/ozone: formation of strong airway irritants. Environ. Int. 26: 511-522.
- Clench-Aas, J.; Bartonova, A.; Bøhler, T.; Grønskei, K. E.; Sivertsen, B.; Larssen, S. (1999) Air pollution exposure monitoring and estimating. Part I. Integrated air quality monitoring system. J. Environ. Monit. 1: 313-319.

- Code of Federal Regulations. (2000) Appendix D to part 58—Network design for state and local air monitoring stations (SLAMS), national air monitoring stations (NAMS), and photochemical assessment monitoring stations (PAMS). C. F. R. 40: pt. 58, app. D.
- Coffey, P.; Stasiuk, W.; Mohnen, V. (1977) Ozone in rural and urban areas of New York State: part I. In: Dimitriades, B., ed. International conference on photochemical oxidant pollution and its control proceedings: volume I; September 1976; Raleigh, NC. Research Triangle Park, NC: U.S. Environmental Protection Agency, Environmental Sciences Research Laboratory; pp. 89-96; report no. EPA-600/3-77-001a. Available from: NTIS, Springfield, VA; PB-264232.
- Colome, S. D.; Wilson, A. L.; Tian, Y. (1994) California residential indoor air quality study. Volume 2. Carbon monoxide and air exchange rate: an univariate and multivariate analysis. Chicago, IL: Gas Research Institute; report no. GRI-93/0224.3.
- Cooper, O. R.; Moody, J. L. (2000) Meteorological controls on ozone at an elevated eastern United States regional background monitoring site. J. Geophys. Res. [Atmos.] 105: 6855-6869.
- Cressie, N. (1997) Ozone exposure and population density in Harris County, Texas [comment]. J. Am. Stat. Assoc. 92: 411-413.
- Cristofanelli, P.; Bonasoni, P.; Collins, W.; Feichter, J.; Forster, C.; James, P.; Kentarchos, A.; Kubik, P. W.; Land, C.; Meloen, J.; Roelofs, G. J.; Siegmund, P.; Sprenger, M.; Schnabel, C.; Stohl, A.; Tobler, L.; Tositti, L.; Trickl, T.; Zanis, P. (2003) Stratosphere-troposphere exchange: a model and method evaluation. J. Geophys. Res. 108(D12): 10.1029/2002JD002600.
- Delfino, R. J.; Coate, B. D.; Zeiger, R. S.; Seltzer, J. M.; Street, D. H.; Koutrakis, P. (1996) Daily asthma severity in relation to personal ozone exposure and outdoor fungal spores. Am. J. Respir. Crit. Care Med. 154: 633-641.
- Dickerson, R. R. (1985) Reactive nitrogen compounds in the Arctic. J. Geophys. Res. 90: 10,739-10,743.
- Dickerson, R. R.; Huffman, G. J.; Luke, W. T.; Nunnermacker, L. J.; Pickering, K. E.; Leslie, A. C. D.; Lindsey, C. G.; Slinn, W. G. N.; Kelly, T. J.; Daum, P. H.; Delany, A. C.; Greenberg, J. P.; Zimmerman, P. R.; Boatman, J. F.; Ray, J. D.; Stedman, D. H. (1987) Thunderstorms: an important mechanism in the transport of air pollutants. Science (Washington, DC) 235: 460-465.
- Douglass, A. R.; Schoeberl, M. R.; Rood, R. B.; Pawson, S. (2003) Evaluation of transport in the lower tropical stratosphere in a global chemistry and transport model. J. Geophys. Res. [Atmos.] 108(D9): 10.1029/2002JD002696.
- Drakou, G.; Zerefos, C.; Ziomas, I. (1995) A preliminary study on the relationship between outdoor and indoor air pollution levels. Fresenius' Environ. Bull. 4: 689-694.
- Drakou, G.; Zerefos, C.; Ziomas, I.; Voyatzaki, M. (1998) Measurements and numerical simulations of indoor O₃ and NO_x in two different cases. Atmos. Environ. 32: 595-610.
- Evans, G.; Finkelstein, P.; Martin, B.; Possiel, N.; Graves, M. (1983) Ozone measurements from a network of remote sites. J. Air Pollut. Control Assoc. 33: 291-296.
- Evans, E. G.; Rhodes, R. C.; Mitchell, W. J.; Puzak, J. C. (1985) Summary of precision and accuracy assessments for the state and local air monitoring networks: 1982. Research Triangle Park, NC: U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory; report no. EPA-600/4-85-031. Available from: NTIS, Springfield, VA; PB85-208171.
- Faith, R.; Sheshinski, R. (1979) Misspecification of trend in spatial random-function interpolation with application to oxidant mapping. Philadelphia, PA: Siam Institute for Mathematics and Society; technical report no. 28.
- Fan, Z.; Lioy, P.; Weschler, C.; Fiedler, N.; Kipen, H.; Zhang, J. (2003) Ozone-initiated reactions with mixtures of volatile organic compounds under simulated indoor conditions. Environ. Sci. Technol. 37: 1811-1821.
- Federal Register. (1986) Guidelines for estimating exposures. F. R. (September 24) 51: 34,042-34,054.
- Fick, J.; Pommer, L.; Nilsson, C.; Andersson, B. (2003) Effect of OH radicals, relative humidity, and time on the composition of the products formed in the ozonolysis of α-pinene. Atmos. Environ. 37: 4087-4096.
- Fick, J.; Nilsson, C.; Andersson, B. (2004) Formation of oxidation products in a ventilation system. Atmos. Environ. 38: 5895-5899.
- Fiore, A. M.; Jacob, D. J.; Bey, I.; Yantosca, R. M.; Field, B. D.; Fusco, A. C.; Wilkinson, J. G. (2002a) Background ozone over the United States in summer: origin, trend, and contribution to pollution episodes. J. Geophys. Res. (Atmos.) 107(D15): 10.1029/2001JD000982.
- Fiore, A. M.; Jacob, D. J.; Field, B. D.; Streets, D. G.; Fernandes, S. D.; Jang, C. (2002b) Linking ozone pollution and climate change: the case for controlling methane. Geophys. Res. Lett. 29(19): 10.1029/2002GL015601.
- Fiore, A.; Jacob, D. J.; Liu, H.; Yantosca, R. M.; Fairlie, T. D.; Li, Q. (2003a) Variability in surface ozone background over the United States: implications for air quality policy. J. Geophys. Res. (Atmos.) 108(D24): 10.1029/2003JD003855.

- Fiore, A. M.; Jacob, D. J.; Mathur, R.; Martin, R. V. (2003b) Application of empirical orthogonal functions to evaluate ozone simulations with regional and global models. J. Geophys. Res. (Atmos.) 108(D14): 10.1029/2002JD003151.
- Fitz-Simons, T.; McCluney, L.; Rizzo, M. (2005) Analysis of 2004 ozone data for the ozone NAAQS review [memorandum to Dr. Joseph Pinto]. Research Triangle Park, NC: U.S. Environmental Protection Agency; August 22.
- Fraigneau, Y. C.; Gonzalez, M.; Coppalle, A. (1995) Dispersion and chemical reaction of a pollutant near a motorway. Sci. Total Environ. 169: 83-91.
- Freijer, J. I.; Bloemen, H. J. T. (2000) Modeling relationships between indoor and outdoor air quality. J. Air Waste Manage. Assoc. 50: 292-300.
- Freijer, J. I.; Bloemen, H. J. T.; de Loos, S.; Marra, M.; Rombout, P. J. A.; Steentjes, G. M.; Van Veen, M. P. (1998) Modelling exposure of the Dutch population to air pollution. J. Haz. Mat. 61: 107-114.
- Fujita, E. M.; Stockwell, W. R.; Campbell, D. E.; Keislar, R. E.; Lawson, D. R. (2003) Evolution of the magnitude and spatial extent of the weekend ozone effect in California's South Coast Air Basin, 1981-2000. J. Air Waste Manage. Assoc. 53: 802-815.
- Fusco, A. C.; Logan, J. A. (2003) Analysis of 1970-1995 trends in tropospheric ozone at Northern Hemisphere midlatitudes with the GEOS-CHEM model. J. Geophys. Res. (Atmos.) 108: 10.1029/2002JD002742.
- Garratt, J. R. (1992) The atmospheric boundary layer. Cambridge, United Kingdom: Cambridge University Press. (Houghton, J. T.; Rycroft, M. J.; Dessler, A. J., eds. Cambridge atmospheric and space science series).
- Georgopoulos, P. G.; Lioy, P. J. (1994) Conceptual and theoretical aspects of human exposure and dose assessment. J. Exposure Anal. Environ. Epidemiol. 4: 253-285.
- Georgopoulos, P. G.; Arunachalam, S.; Wang, S. (1997a) Alternative metrics for assessing the relative effectiveness of NOx and VOC emission reductions in controlling ground-level ozone. J. Air Waste Manage. Assoc. 47: 838-850.
- Georgopoulos, P. G.; Walia, A.; Roy, A.; Lioy, P. J. (1997b) Integrated exposure and dose modeling and analysis system. 1. Formulation and testing of microenvironmental and pharmacokinetic components. Environ. Sci. Technol. 31: 17-27.
- Georgopoulos, P.; Yonone-Lioy, M. J.; Opeikum, R. E.; Lioy, P. (2002a) Environmental dynamics and human exposure to copper. Volume I: environmental dynamics and human exposure issues. New York, NY: International Copper Association.
- Georgopoulos, P.; Wang, S. W.; Vyas, V. M.; Lioy, P. J.; Tan, H. C. (2002b) Environmental dynamics and human exposure to copper. Volume 2: framework and data sources for assessing human exposure to copper in the United States. New York, NY: International Copper Association.
- Georgopoulos, P. G.; Wang, S.-W.; Vyas, V. M.; Sun, Q.; Burke, J.; Vedantham, R.; McCurdy, T.; Ozkaynak, H.
 (2005) A source-to-dose assessment of population exposures to fine PM and ozone in Philadelphia, PA, during a summer 1999 episode. J. Exposure Anal. Environ. Epidemiol. 15: 10.1038/sj.jea.7500422.
- Gettelman, A.; Holton, J. R.; Rosenlof, K. H. (1997) Mass fluxes of O₃, CH₄, N₂O, and CF₂Cl₂ in the lower stratosphere calculated from observational data. J. Geophys. Res. [Atmos.] 102: 19,149-19,159.
- Geyh, A. S.; Wolfson, J. M.; Koutrakis, P.; Mulik, J. D.; Avol, E. L. (1997) Development and evaluation of a small active ozone sampler. Environ. Sci. Technol. 31: 2326-2330.
- Geyh, A. S.; Roberts, P. T.; Lurmann, F. W.; Schoell, B. M.; Avol, E. L. (1999) Initial field evaluation of the Harvard active ozone sampler for personal ozone monitoring. J. Exposure Anal. Environ. Epidemiol. 9: 143-149.
- Geyh, A. S.; Xue, J.; Ozkaynak, H.; Spengler, J. D. (2000) The Harvard Southern California chronic ozone exposure study: assessing ozone exposure of grade-school-age children in two southern California communities. Environ. Health Perspect. 108: 265-270.
- Glen, G.; Lakkadi, Y.; Tippett, J. A.; del Valle-Torres, M. (1997) Development of NERL/CHAD: the National Exposure Research Laboratory consolidated human activity database. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Research and Development; contract no. 68-D5-0049.
- Gold, D. R.; Allen, G.; Damokosh, A.; Serrano, P.; Hayes, C.; Castillejos, M. (1996) Comparison of outdoor and classroom ozone exposures for school children in Mexico City. J. Air Waste Manage. Assoc. 46: 335-342.
- Goldan, P. D.; Trainer, M.; Kuster, W. C.; Parrish, D. D.; Carpenter, J.; Roberts, J. M.; Yee, J. E.; Fehsenfeld, F. C. (1995) Measurements of hydrocarbons, oxygenated hydrocarbons, carbon monoxide, and nitrogen oxides in an urban basin in Colorado: implications for emission inventories. J. Geophys. Res. [Atmos.] 100: 22,771-22,783.
- Goldstein, B. R.; Tardiff, G.; Hoffnagle, G.; Kester, R. (1992) Valdez health study: summary report. Anchorage, AK: Alyeska Pipeline Service Company.

- Grivet, C. D. (1980) Modeling and analysis of air quality data [dissertation]. Palo Alto, CA: Stanford University. Available from: University Microfilms International; Ann Arbor, MI; publication no. 80-16,824.
- Grosjean, D. (2003) Ambient PAN and PPN in southern California from 1960 to the SCOS97-NARSTO. Atmos. Environ. 37(suppl. 2): S221-S238.
- Grosjean, E.; Grosjean, D.; Fraser, M. P.; Cass, G. R. (1996) Air quality model evaluation data for organics: 3. Peroxyacetyl nitrate and peroxypropionyl nitrate in Los Angeles air Environ. Sci. Technol. 30: 2704-2714.
- Grosjean, E.; Grosjean, D.; Woodhouse, L. F. (2001) Peroxyacetyl nitrate and peroxypropionyl nitrate during SCOS 97-NARSTO. Environ. Sci. Technol. 35: 4007-4014.
- Guttorp, P.; Meiring, W.; Sampson, P. D. (1997) Ozone exposure and population density in Harris County, Texas [comment]. J. Am. Stat. Assoc. 92: 405-408.
- Hartwell, T. D.; Clayton, C. A.; Ritchie, R. M.; Whitmore, R. W.; Zelon, H. S.; Jones, S. M.; Whitehurst, D. A. (1984) Study of carbon monoxide exposure of residents of Washington, DC and Denver, Colorado. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Research and Development, Environmental Monitoring Systems Laboratory; report no. EPA-600/4-84-031.
- Hayes, S. R. (1989) Estimating the effect of being indoors on total personal exposure to outdoor air pollution. JAPCA 39: 1453-1461.
- Hayes, S. R. (1991) Use of an indoor air quality model (IAQM) to estimate indoor ozone levels. J. Air Waste Manage. Assoc. 41: 161-170.
- Hazucha, M. J.; Folinsbee, L. J.; Seal, E., Jr. (1992) Effects of steady-state and variable ozone concentration profiles on pulmonary function. Am. Rev. Respir. Dis. 146: 1487-1493.
- Heikes, B. G.; Kok, G. L.; Walega, J. G.; Lazrus, A. L. (1987) H₂O₂, O₃ and SO₂ measurements in the lower troposphere over the eastern United States during fall. J. Geophys. Res. 92: 915-931.
- Helaleh, M. I. H.; Ngudiwaluyo, S.; Korenaga, T.; Tanaka, K. (2002) Development of passive sampler technique for ozone monitoring. Estimation of indoor and outdoor ozone concentration. Talanta 58: 649-659.
- Herring, J. A.; Jaffe, D. A.; Beine, H. J.; Madronich, S.; Blake, D. R. (1997) High-latitude springtime photochemistry. Part II: sensitivity studies of ozone production. J. Atmos. Chem. 27: 155-178.
- Heuss, J. M.; Kahlbaum, D. F.; Wolff, G. T. (2003) Weekday/weekend ozone differences: what can we learn from them? J. Air Waste Manage. Assoc. 53: 772-788.
- Hisham, M. W. M.; Grosjean, D. (1991) Sulfur dioxide, hydrogen sulfide, total reduced sulfur, chlorinated hydrocarbons and photochemical oxidants in southern California museums. Atmos. Environ. Part 25: 1497-1505.
- Holland, D. M.; Principe, P. P.; Vorburger, L. (1999) Rural ozone: trends and exceedances at CASTNet sites. Environ. Sci. Technol. 33: 43-48.
- Holton, J. R.; Haynes, P. H.; McIntyre, M. E.; Douglass, A. R.; Rood, R. B.; Pfister, L. (1995)
 Stratosphere-troposphere exchange. Rev. Geophys. 33: 403-439.Honrath, R. E.; Hamlin, A. J.; Merrill, J. T. (1996) Transport of ozone precursors from the Arctic troposphere to the North Atlantic region. J. Geophys. Res. 101: 29,335-29,351.
- Honrath, R. E.; Hamlin, A. J.; Merrill, J. T. (1996) Transport of ozone precursors from the Arctic troposphere to the North Atlantic region. J. Geophys. Res. 101: 29,335-29,351.
- Horowitz, L. W.; Liang, J.; Gardner, G. M.; Jacob, D. J. (1998) Export of reactive nitrogen from North America during summertime: sensitivity to hydrocarbon chemistry. J. Geophys. Res. [Atmos.] 103(D11): 13451-13476.
- Horowitz, L. W.; Walters, S.; Mauserall, D. L.; Emmons, L. K.; Rasch, P. J.; Granier, C.; Tie, X.; Lamarque, J.-F.; Schultz, M. G.; Tyndall, G. S.; Orlando, J. J.; Brasseur, G. P. (2003) A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART, version 2. J. Geophys. Res. [Atmos.] 108(D24): 10.1029/2002JD002853.
- Horváth, L.; Nagy, Z.; Weidinger, T.; Artz, R.; Luke, W. T.; Valigura, R.; Pinto, J. P.; Womack, J. (1995)
 Measurement of fluxes of trace gases (O₃, NO_x, SO₂, CO₂, HNO₃), particulate sulfate and nitrate, water vapour over short vegetation by gradient and eddy correlation techniques in Hungary. EGS XX. General Assembly; April; Hamburg, Germany. Ann. Geophys. 13(suppl. 2): C490.
- Horváth, L.; Pinto, J.; Weidinger, T. (2003) Estimate of the dry deposition of atmospheric nitrogen and sulfur species to spruce forest. Időjárás (Q. J. Hung. Meteorol. Serv.) 107: 249-255.
- Howard-Reed, C.; Wallace, L. A.; Ott, W. R. (2002) The effect of opening windows on air change rates in two homes. J. Air Waste Manage Assoc. 52: 147-159.
- Hudman, R. C.; Jacob, D. J.; Cooper, O. R.; Evans, M. J.; Heald, C. L.; Park, R. J.; Fehsenfeld, F.; Flocke, F.; Holloway, J.; Hubler, G.; Kita, K.; Koike, M.; Kondo, Y.; Neuman, A.; Nowak, J.; Oltmans, S.; Parrish, D.;

Roberts, J. M.; Ryerson, T. (2004) Ozone production in transpacific Asian pollution plumes and implications for ozone air quality in California. J. Geophys. Res. (Atmos.) 109(D23): 10.1029/2004JD004974.

- ICF Consulting; ManTech Environmental Technology, Inc. (2003) Total Risk Integrated Methodology TRIM.Expo(Inhalation) user's document. Volume I: air pollutants exposure model (APEX, version 3) user's guide. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. Available: http://www.epa.gov/ttn/fera/data/apex322/apexusersguidevoli4-24-03.pdf [7 September, 2004].
- Iinuma, Y.; Böge, O.; Gnauk, T.; Herrmann, H. (2004) Aerosol-chamber study of the α-pinene/O₃ reaction: influence of particle acidity on aerosol yields and products. Atmos. Environ. 38: 761-773.
- Intergovernmental Panel on Climate Change (IPCC). (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom: Cambridge University Press.
- Isukapalli, S. S.; Purushothaman, V.; Georgopoulos, P. G. (1999) Mechanistic modeling of the interrelationships between indoor/outdoor air quality and human exposure in a GIS framework. Presented at: 92nd Air & Waste Management Association Annual Meeting; June; St. Louis, MO. Pittsburgh, PA: Air & Waste Management Association.
- Ito, K.; De Leon, S. F.; Lippmann, M. (2005) Associations between ozone and daily mortality, analysis and meta-analysis. Epidemiology 16: 446-457.
- Jaffe, D. A.; Honrath, R. E.; Herring, J. A.; Li, S.-M.; Kahl, J. D. (1991) Measurements of nitrogen oxides at Barrow, Alaska during spring: evidence for regional and northern hemispheric sources of pollution. J. Geophys. Res. [Atmos.] 96: 7395-7405.
- Jaffe, D.; Price, H.; Parrish, D.; Goldstein, A.; Harris, J. (2003) Increasing background ozone during spring on the west coast of North America. Geophys. Res. Lett. 30: 10.1029/2003GL017024.
- Jakobi, G.; Fabian, P. (1997) Indoor/outdoor concentrations of ozone and peroxyacetyl nitrate (PAN). Int. J. Biometeorol. 40: 162-165.
- James, P.; Stohl, A.; Forster, C.; Eckhardt, S.; Seibert, P.; Frank, A. (2003a) A 15-year climatology of stratosphere-troposphere exchange with a Lagrangian particle dispersion model: 1. Methodology and validation. J. Geophys. Res. 108(D12): 10.1029/2002JD002637.
- James, P.; Stohl, A.; Forster, C.; Eckhardt, S.; Seibert, P.; Frank, A. (2003b) A 15-year climatology of stratosphere-troposphere exchange with a Lagrangian particle dispersion model. 2. Mean climate and seasonal variability. J. Geophys. Res. (Atmos.) 108(D12): 10.1029/2002JD002639.
- Johnson, T. (1984) A study of personal exposure to carbon monoxide in Denver, Colorado. Research Triangle Park, NC: U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory; report no. EPA-600/4-84-014.
- Johnson, T. A. (1989) Human activity patterns in Cincinnati, Ohio. Palo Alto, CA: Electric Power Research Institute; report no. EPRI EN-6204.
- Johnson, T. R. (1995) Recent advances in the estimation of population exposure to mobile source pollutants. J. Exposure Anal. Environ. Epidemiol. 5: 551-571.
- Johnson, T. (1997) A pilot study in Los Angeles to measure personal ozone exposures during scripted activities. Washington, DC: American Petroleum Institute, Health and Environmental Sciences Department; API publication no. DR 218.
- Johnson, T. (2001) A guide to selected algorithms, distributions, and databases used in exposure models developed by the Office of Air Quality Planning and Standards (DRAFT). Research Triangle Park, NC: U.S. Environmental Protection Agency, CERM report TR01.
- Johnson, T. (2003) A guide to selected algorithms, distributions, and databases used in exposure models developed by the Office of Air Quality Planning and Standards. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Research and Development; EPA grant no. CR827033. Available: http://www.epa.gov/ttn/fera/data/human/report052202.pdf [9 April, 2004].
- Johnson, T.; Long, T. (2004) Determining the frequency of open windows in residences: a pilot study in Durham, North Carolina during varying temperature conditions. J. Exposure Anal. Environ. Epidemiol.: 10.1038/sj.jea.7500409.

- Johnson, T. R.; Paul, R. A.; Capel, J. E.; McCurdy, T. (1990) Estimation of ozone exposure in Houston using a probabilistic version of NEM. Presented at: 83rd annual meeting and exhibition of the Air & Waste Management Association; June; Pittsburgh, PA. Pittsburgh, PA: Air & Waste Management Association; paper no. 90-150.1.
- Johnson, T. R.; Wijnberg, L.; Capel, J. E.; Vostal, J. J. (1992) The use of activity diary data to estimate the probability of exposure to air pollution. In: Berglund, R. L., ed. Tropospheric ozone and the environment II: effects, modeling and control [papers from an international specialty conference]; November; Atlanta, GA. Pittsburgh, PA: Air & Waste Management Association; pp. 713-724. (A&WMA transactions series no. 20).
- Johnson, T.; Capel, J.; McCoy, M. (1996a) Estimation of ozone exposures experienced by urban residents using a probabilistic version of NEM and 1990 population data. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards; contract no. 68-DO-0062.
- Johnson, T.; Capel, J.; McCoy, M.; Mozier, J. W. (1996b) Estimation of ozone exposures experienced by outdoor workers in nine urban areas using a probabilistic version of NEM. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards; contract no. 63-D-30094, work assignment nos. 0-1 and 1-4.
- Johnson, T.; Capel, J.; Mozier, J.; McCoy, M. (1996c) Estimation of ozone exposures experienced by outdoor children in nine urban areas using a probabilistic version of NEM. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards; contract no. 63-D-30094.
- Johnson, T.; Mozier, J.; Capel, J. (1997) Supplement to "Estimation of ozone exposures experienced by outdoor children in nine urban areas using a probabilistic version of NEM (April 1996)". Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards.
- Johnson, T.; Myers, J.; Kelly, T.; Wisbith, A.; Ollison, W. (2004) A pilot study using scripted ventilation conditions to identify key factors affecting indoor pollutant concentrations and air exchange rate in a residence. J. Exposure Anal. Environ. Epidemiol. 14: 1-22.
- Junge, C. E. (1963) Air chemistry and radioactivity. New York, NY: Academic Press. (Van Mieghem, J.; Hales, A. L., eds. International geophysics series: v. 4).
- Kelly, N. A.; Wolff, G. T.; Ferman, M. A. (1984) Sources and sinks of ozone in rural areas. Atmos. Environ. 18: 1251-1266.
- Kleinman, L. I. (1991) Seasonal dependence of boundary-layer peroxide concentration the low and high NO_x regimes. J. Geophys. Res. (Atmos.) 96(D11): 20721-20733.
- Klenø, J. G.; Clausen, P. A.; Weschler, C. J.; Wolkoff, P. (2001) Determination of ozone removal rates by selected building products using the FLEC emission cell. Environ. Sci. Technol. 35: 2548-2553.
- Klepeis, N. E.; Tsang, A. M.; Behar, J. V. (1996) Analysis of the national human activity pattern survey (NHAPS) respondents from a standpoint of exposure assessment. Washington, DC: U.S. Environmental Protection Agency, Office of Research and Development; report no. EPA/600/R-96/074.
- Klepeis, N. E.; Nelson, W. C.; Ott. W. R.; Robinson, J. P. Tsang, A. M.; Switzer, P.; Behar, J. V.; Hern, S. C.; Engelmann, W. H. (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J. Exposure Anal. Environ. Epidemiol. 11: 231-252.
- Kley, D.; Volz, A.; Mulheims, F. (1988) Ozone measurements in historic perspective. In: Isaksen, I. S. A., ed. Tropospheric ozone - regional and global scale interactions: proceedings of the NATO advanced workshop on regional and global ozone interaction and its environmental consequences; June 1987; Lillehammer, Norway. Dordrecht, The Netherlands: D. Reidel Publishing Company; pp. 63-72. [NATO Advanced Science Institutes (ASI) studies: series C, mathematical and physical sciences v. 227].
- Knudsen, H. P.; Lefohn, A. S. (1988) The use of geostatistics to characterize regional ozone exposures. In: Heck, W. W.; Taylor, O. C.; Tingey, D. T., eds. Assessment of crop loss from air pollutants: proceedings of an international conference; October 1987; Raleigh, NC. Essex, United Kingdom: Elsevier Science Publishers, Ltd.; pp. 91-105.
- Korc, M. E. (1996) A socioeconomic assessment of human exposure to ozone in the South Coast Air Basin of California. J. Air Waste Manage. Assoc. 46: 547-557.
- Kotchenruther, R. A.; Jaffe, D. A.; Beine, H. J.; Anderson, T. L.; Bottenheim, J. W.; Harris, J. M.; Blake, D. R.; Schmitt, R. (2001a) Observations of ozone and related species in the northeast Pacific during the PHOBEA campaigns: 2. Airborne observations. J. Geophys. Res. (Atmos.) 106: 7463-7483.
- Kotchenruther, R. A.; Jaffe, D. A.; Jaegle, L. (2001b) Ozone photochemistry and the role of peroxyacetyl nitrate in the springtime northeastern Pacific troposphere: results from the Photochemical Ozone Budget of the Eastern North Pacific Atmosphere (PHOBEA) campaign. J. Geophys. Res. (Atmos.) 106: 28,731-28,742.

- Koutrakis, P.; Sioutas, C.; Ferguson, S. T.; Wolfson, J. M.; Mulik, J. D.; Burton, R. M. (1993) Development and evaluation of a glass honeycomb denuder/filter pack system to collect atmospheric gases and particles. Environ. Sci. Technol. 27: 2497-2501.
- Krzyzanowski, M. (1997) Methods for assessing the extent of exposure and effects of air pollution. Occup. Environ. Med. 54: 145-151.
- Künzli, N.; Lurmann, F.; Segal, M.; Ngo, L.; Balmes, J.; Tager, I. B. (1996) Reliability of lifetime residential history and activity measures as elements of cumulative ambient ozone exposure assessment. J. Exposure Anal. Environ. Epidemiol. 6: 289-310.
- Künzli, N.; Kelly, T.; Balmes, J.; Tager, I. B. (1997) Reproducibility of retrospective assessment of outdoor time-activity patterns as an individual determinant of long-term ambient ozone exposure. Int. J. Epidemiol. 26: 1258-1271.
- Lagus Applied Technology, Inc. (1995) Air change rates in non-residential buildings in California. Sacramento, CA: California Energy Commission; contract no. 400-91-034; July.
- Lavery, T. F.; Rogers, C. M.; Howell, H. K.; Burnett, M. C.; Wanta, C. A. (2002) Clean air status trends network (CASTNet) 2000 annual report. Available: http://www.epa.gov/castnet/library/annual00.html (9 September 2003).
- Lee, E. H.; Hogsett, W. E. (1999) Role of concentrations and time of day in developing ozone exposure indices for a secondary standard. J. Air Waste Manage. Assoc. 49: 669-681.
- Lee, K.; Vallarino, J.; Dumyahn, T. Ozkaynak, H.; Spengler, J. (1999) Ozone decay rates in residences. J. Air Waste Manage. Assoc. 49: 1238-1244.
- Lee, M.; Heikes, B. G.; O'Sullivan, D. W. (2000) Hydrogen peroxide and organic hydroperoxide in the troposphere. Atmos. Environ. 34: 3475-3494.
- Lee, K.; Xue, J.; Geyh, A. S.; Özkaynak, H.; Leaderer, B. P.; Weschler, C. J.; Spengler, J. D. (2002) Nitrous acid, nitrogen dioxide, and ozone concentrations in residential environments. Environ. Health Perspect. 110: 145-150.
- Lee, K.; Parkhurst, W. J.; Xue, J.; Özkaynak, H.; Neuberg, D.; Spengler, J. D. (2004) Outdoor/indoor/personal ozone exposures of children in Nashville, Tennessee. J. Air Waste Manage. Assoc. 54: 352-359.
- Lefohn, A. S. (1992) The characterization of ambient ozone exposures. In: Lefohn, A. S., ed. Surface level ozone exposures and their effects on vegetation. Chelsea, MI: Lewis Publishers, Inc.; pp. 31-92.
- Lefohn, A. S.; Benedict, H. M. (1983) The potential for the interaction of acidic precipitation and ozone pollutant doses affecting agricultural crops. Presented at: 76th annual meeting of the Air Pollution Control Association; June; Atlanta, GA. Pittsburgh, PA: Air Pollution Control Association; paper no. 83-2.2.
- Lefohn, A. S.; Jones, C. K. (1986) The characterization of ozone and sulfur dioxide air quality data for assessing possible vegetation effects. J. Air Pollut. Control Assoc. 36: 1123-1129.
- Lefohn, A. S.; Mohnen, V. A. (1986) The characterization of ozone, sulfur dioxide, and nitrogen dioxide for selected monitoring sites in the Federal Republic of Germany. J. Air Pollut. Control Assoc. 36: 1329-1337.
- Lefohn, A. S.; Runeckles, V. C. (1987) Establishing standards to protect vegetation ozone exposure/dose considerations. Atmos. Environ. 21: 561-568.
- Lefohn, A. S.; Tingey, D. T. (1984) The co-occurrence of potentially phytotoxic concentrations of various gaseous air pollutants. Atmos. Environ. 18: 2521-2526.
- Lefohn, A. S.; Davis, C. E.; Jones, C. K.; Tingey, D. T.; Hogsett, W. E. (1987) Co-occurrence patterns of gaseous air pollutant pairs at different minimum concentrations in the United States. Atmos. Environ. 21: 2435-2444.
- Lefohn, A. S.; Knudsen, H. P.; McEvoy, L. R., Jr. (1988) The use of kriging to estimate monthly ozone exposure parameters for the southeastern United States. Environ. Pollut. 53: 27-42.
- Lefohn, A. S.; Krupa, S. V.; Winstanley, D. (1990a) Surface ozone exposures measured at clean locations around the world. Environ. Pollut. 63: 189-224.
- Lefohn, A. S.; Shadwick, D. S.; Mohnen, V. A. (1990b) The characterization of ozone concentrations at a select set of high-elevation sites in the eastern United States. Environ. Pollut. 67: 147-178.
- Lefohn, A. S.; Benkovitz, C. M.; Tanner, R. L.; Smith, L. A.; Shadwick, D. S. (1991) Air quality measurements and characterizations for terrestrial effects research. In: Irving, P. M., ed. Acidic deposition: state of science and technology, volume I, emissions, atmospheric processes, and deposition. Washington, DC: The U.S. National Acid Precipitation Assessment Program. (State of science and technology report no. 7).
- Lefohn, A. S.; Shadwick, D. S.; Ziman, S. D. (1998) The difficult challenge of attaining EPA's new ozone standard. Environ. Sci. Technol. 32: 276A-282A.
- Lefohn, A. S.; Oltmans, S. J.; Dann, T.; Singh, H. B. (2001) Present-day variability of background ozone in the lower troposphere. J. Geophys. Res. [Atmos.] 106: 9945-9958.

- Lehman, J.; Swinton, K.; Bortnick, S.; Hamilton, C.; Baldridge, E.; Ender, B.; Cox, B. (2004) Spatio-temporal characterization of tropospheric ozone across the eastern United States. Atmos. Environ. 38: 4357-4369.
- Lelieveld, J.; Dentener, F. J. (2000) What controls tropospheric ozone? J. Geophys. Res. [Atmos.] 105: 3531-3551.
- Leovic, K. W.; Sheldon, L. S.; Whitaker, D. A.; Hetes, R. G.; Calcagni, J. A.; Baskir, J. N. (1996) Measurement of indoor air emissions from dry-process photocopy machines. J. Air Waste Manage. Assoc. 46: 821-829.
- Leovic, K. W.; Whitaker, D.; Brockmann, C.; Bayer, C. W.; Sojka, P. E. (1998) Evaluation of low-emitting products for use in the indoor environment. Presented at: 91st annual meeting of the Air & Waste Management Association; June; San Diego, CA. Pittsburgh, PA: Air & Waste Management Association; paper no. 98-TP48.02 (A292).
- Levinson, D. H., ed. (2005) State of the climate in 2004. Bull. Am. Meteorol. Soc. 86: S1-S86.
- Levinson, D. H.; Waple, A. M., eds. (2004) State of the climate in 2003. Bull. Am. Meteorol. Soc. 85: S1-S72.
- Li, Q.; Jacob, D. J.; Logan, J. A.; Bey, I.; Yantosca, R. M.; Liu, H.; Martin, R. V.; Fiore, A. M.; Field, B. D.; Duncan, B. N. (2001) A tropospheric ozone maximum over the Middle East. Geophys. Res. Lett. 28: 3235-3238.
- Li, Q.; Jacob, D. J.; Fairlie, T. D.; Liu, H.; Martin, R. V.; Yantosca, R. M. (2002) Stratospheric versus pollution influences on ozone at Bermuda: reconciling past analyses. J. Geophys. Res. 107(D22): 10.1029/2002JD002138.
- Liard, R.; Zureik, M.; Le Moullec, Y.; Soussan, D.; Glorian, M.; Grimfeld, A.; Neukirch, F. (1999) Use of personal passive samplers for measurement of NO₂, NO, and O₃ levels in panel studies. Environ. Res. 81: 339-348.
- Lin, C.-Y. C.; Jacob, D. J.; Fiore, A. M. (2001) Trends in exceedances of the ozone air quality standard in the continental United States, 1980-1998. Atmos. Environ. 35: 3217-3228.
- Linn, W. S.; Shamoo, D. A.; Hackney, J. D. (1992) Documentation of activity patterns in 'high-risk' groups exposed to ozone in the Los Angeles area. In: Tropospheric ozone and the environment II: effects, modeling and control: papers from an Air & Waste Management Association international specialty conference; November, 1991; Atlanta, GA. Pittsburgh, PA: Air & Waste Management Association; pp. 701-712. (A&WMA publication TR-20).
- Linn, W. S.; Spier, C. E.; Hackney, J. D. (1993) Activity patterns in ozone-exposed construction workers. J. Occup. Med. Toxicol. 2: 1-14.
- Linn, W. S.; Shamoo, D. A.; Anderson, K. R.; Peng, R.-C.; Avol, E. L.; Hackney, J. D.; Gong, H., Jr. (1996) Short-term air pollution exposures and responses in Los Angeles area schoolchildren. J. Exposure Anal. Environ. Epidemiol. 6: 449-472.
- Lioy, P. J. (1990) Assessing total human exposure to contaminants: a multidisciplinary approach. Environ. Sci. Technol. 24: 938-945.
- Lisac, I.; Grubišić, V. (1991) An analysis of surface ozone data measured at the end of the 19th century in Zagreb, Yugoslavia. Atmos. Environ. Part A 25: 481-486.
- Liu, D.-L.; Nazaroff, W. W. (2001) Modeling pollutant penetration across building envelopes. Atmos. Environ. 35: 4451-4462.
- Liu, L.-J. S.; Koutrakis, P.; Leech, J.; Broder, I. (1995) Assessment of ozone exposures in the greater metropolitan Toronto area. J. Air Waste Manage. Assoc. 45: 223-234.
- Liu, L.-J. S.; Delfino, R.; Koutrakis, P. (1997) Ozone exposure assessment in a southern California community. Environ. Health Perspect. 105: 58-65.
- Liu, H.; Jacob, D. J.; Chan, L. Y.; Oltmans, S. J.; Bey, I.; Yantosca, R. M.; Harris, J. M.; Duncan, B. N.; Martin, R. V. (2002) Sources of tropospheric ozone along the Asian Pacific Rim: an analysis of ozonesonde observations. J. Geophys. Res. [Atmos.] 107(D21): 10.1029/2001JD002005.
- Liu, H.; Jacob, D. J.; Bey, I.; Yantosca, R. M.; Duncan, B. N.; Sachse, G. W. (2003) Transport pathways for Asian pollution outflow over the Pacific: interannual and seasonal variations. J. Geophys. Res. (Atmos.) 108(D20): 10.1029/2002JD003102.
- Liu, H.; Jacob, D. J.; Dibb, J. E.; Fiore, A. M.; Yantosca, R. M. (2004) Constraints on the sources of tropospheric ozone from ²¹⁰Pb-7Be-O₃ correlations. J. Geophys. Res. (Atmos.) 109(D7): 10.1029/2003JD003988.
- Logan, J. A. (1989) Ozone in rural areas of the United States. J. Geophys. Res. [Atmos.] 94: 8511-8532.
- Logan, J. A. (1999) An analysis of ozonesonde data for the troposphere: recommendations for testing 3-D models and development of a gridded climatology for tropospheric ozone. J. Geophys. Res. 104: 16,115-16,149.
- Ludwig, F. L.; Reiter, E.; Shelar, E.; Johnson, W. B. (1977) The relation of oxidant levels to precursor emissions and meteorological features: v. I, analysis and findings. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards; report no. EPA-450/3-77-022a. Available from: NTIS, Springfield, VA; PB-275 001.

- Lurmann, F.; Colome, S. (1991) An assessment of current and future human exposure to ozone in the South Coast Air Basin. Santa Rosa, CA: Sonoma Technology, Inc.; report no. STI-90070-1022-FR; 1991 AQMP revision, technical report V-H.
- Marr, L. C.; Morrison, G. C.; Nazaroff, W. W.; Harley, R. A. (1998) Reducing the risk of accidental death due to vehicle-related carbon monoxide poisoning. J. Air Waste Manage. Assoc. 48: 899-906.
- Martin, R. V.; Jacob, D. J.; Yantosca, R. M.; Chin, M.; Ginoux, P. (2003) Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. J. Geophys. Res. [Atmos.] 108(D3): 10.1029/2002JD002622.
- Matheron, G. (1963) Principles of geostatistics. Econ. Geol. 58: 1246-1266.
- McCurdy, T. R. (1994) Human exposure to ambient ozone. In: McKee, D. J., ed. Tropospheric ozone: human health and agricultural impacts. Boca Raton, FL: Lewis Publishers; pp. 85-127.
- McCurdy, T. (1997a) Human activities that may lead to high inhaled intake doses in children aged 6-13. Environ. Toxicol. Pharmacol. 4: 251-260.
- McCurdy, T. (1997b) Modeling the dose profile in human exposure assessments: ozone as an example. Rev. Toxicol. 1: 3-23.
- McCurdy, T. (2000) Conceptual basis for multi-route intake dose modeling using an energy expenditure approach. J. Exposure Anal. Environ. Epidemiol. 10: 86-97.
- McCurdy, T.; Glen, G.; Smith, L.; Lakkadi, Y. (2000) The National Exposure Research Laboratory's Consolidated Human Activity Database. J. Exposure Anal. Environ. Epidemiol. 10: 566-578.
- Meagher, J. F.; Lee, N. T.; Valente, R. J.; Parkhurst, W. J. (1987) Rural ozone in the southeastern United States. Atmos. Environ. 21: 605-615.
- Meloen, J.; Siegmund, P.; Van Velthoven, P.; Kelder, H.; Sprenger, M.; Wernli, H.; Kentarchos, A.; Roelofs, G.; Feichter, J.; Land, C.; Forster, C.; James, P.; Stohl, A.; Collins, W.; Cristofanelli, P. (2003)
 Stratosphere-troposphere exchange: a model and method intercomparison. J. Geophys. Res. 108(D12): 10.1029/2002JD002274.
- Meng, Q. Y.; Turpin, B. J.; Korn, L.; Weisel, C. P.; Morandi, M.; Colome, S.; Zhang, J.; Stock, T.; Spektor, D.;
 Winer, A.; Zhang, L.; Lee, J. H.; Giovanetti, R.; Cui, W.; Kwon, J.; Alimokhtari, S.; Shendell, D.; Jones, J.;
 Farrar, C.; Maberti, S. (2005) Influence of ambient (outdoor) sources on residential indoor and personal
 PM2.5 concentrations: analyses of RIOPA data. J. Exposure Anal. Environ. Epidemiol. 15: 17-28.
- Mohnen, V. A. (1989) Mountain cloud chemistry project: wet, dry and cloud water deposition. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Research and Exposure Assessment Laboratory; report no. EPA/600/3-89/009. Available from: NTIS, Springfield, VA; PB89-148597.
- Monks, P. S. (2000) A review of the observations and origins of the spring ozone maximum. Atmos. Environ. 34: 3545-3561.
- Morrison, G. C.; Nazaroff, W. W. (2000) The rate of ozone uptake on carpets: experimental studies. Environ. Sci. Technol. 34: 4963-4968.
- Morrison, G. C.; Nazaroff, W. W. (2002) The rate of ozone uptake on carpet: mathematical modeling. Atmos. Environ. 36: 1749-1756.
- Morrison, G. C.; Nazaroff, W. W.; Cano-Ruiz, J. A.; Hodgson, A. T.; Modera, M. P. (1998) Indoor air quality impacts of ventilation ducts: ozone removal and emissions of volatile organic compounds. J. Air Waste Manage. Assoc. 48: 941-952.
- Mueller, F. X.; Loeb, L.; Mapes, W. H. (1973) Decomposition rates of ozone in living areas. Environ. Sci. Technol. 7: 342-346.
- Murphy, D. M.; Fahey, D. W. (1994) An estimate of the flux of stratospheric reactive nitrogen and ozone into the troposphere. J. Geophys. Res. (Atmos.) 99: 5325-5332.
- Murray, D. M.; Burmaster, D. E. (1995) Residential air exchange rates in the United States: empirical and estimated parametric distributions by season and climatic region. Risk Anal. 15: 459-465.
- Nagda, N. L.; Rector, H. E.; Koontz, M. D. (1987) Guidelines for monitoring indoor air quality. Washington, DC: Hemisphere Publishing Corporation.
- National Acid Precipitation Assessment Program. (1987) Interim assessment: the causes and effects of acidic deposition, volume I, executive summary. Washington, DC: Office of the Director of Research.
- Navidi, W.; Thomas, D.; Langholz, B.; Stram, D. (1999) Statistical methods for epidemiologic studies of the health effects of air pollution. Cambridge, MA: Health Effects Institute; research report no. 86.
- Nazaroff, W. W.; Cass, G. R. (1986) Mathematical modeling of chemically reactive pollutants in indoor air. Environ. Sci. Technol. 20: 924-934.
- Nazaroff, W. W.; Weschler, C. J. (2004) Cleaning products and air fresheners: exposure to primary and secondary air pollutants. Atmos. Environ. 38: 2841-2865.

Neidell, M. J. (2004) Air pollution, health, and socio-economic status: the effect of outdoor air quality on childhood asthma. J. Health Econ. 23: 1209-1236.

Newchurch, M. J.; Ayoub, M. A.; Oltmans, S.; Johnson, B.; Schmidlin, F. J. (2003) Vertical distribution of ozone at four sites in the United States. J. Geophys. Res. 108(D1): 10.1029/2002JD002059.

- Niu, J.; Tung, T. C. W.; Burnett, J. (2001) Ozone emission rate testing and ranking method using environmental chamber. Atmos. Environ. 35: 2143-2151.
- Nøjgaard, J. K.; Christensen, K. B.; Wolkoff, P. (2005) The effect on human eye blink frequency of exposure to limonene oxidation products and methacrolein. Toxicol. Lett. 156: 241-251.
- Northeast States for Coordinated Air Use Management (NESCAUM). (2002) Indoor/outdoor school air monitoring project. Boston, MA. Available: http://www.nescaum.org/pdf/schoolmonitoring.pdf [29 October, 2003].
- Odman, M. T.; Ingram, C. I. (1996) Multiscale air quality simulation platform (MAQSIP): source code documentation and validation. Research Triangle Park, NC: MCNC; technical report ENV-96TR002-v1.0. Available: http://www.ce.gatech.edu/~todman/magsip.pdf (9 September 2003).
- Olsen, M. A.; Douglass, A. R.; Schoeberl, M. R. (2002) Estimating downward cross-tropopause flux using column ozone and potential vorticity. J. Geophys. Res. 107(D22): 10.1029/2001JD002041.
- Oltmans, S. J.; Lefohn, A. S.; Scheel, H. E.; Harris, J. M.; Levy, H., II; Galbally, I. E.; Brunke, E.-G.; Meyer, C. P.; Lathrop, J. A.; Johnson, B. J.; Shadwick, D. S.; Cuevas, E.; Schmidlin, F. J.; Tarasick, D. W.; Claude, H.; Kerr, J. B.; Uchino, O.; Mohnen, V. (1998) Trends of ozone in the troposphere. Geophys. Res. Lett. 25: 139-142.
- O'Neill, M. S.; Ramirez-Aguilar, M.; Meneses-Gonzalez, F.; Hernandez-Avila, M.; Geyh, A. S.; Sienra-Monge, J. J.; Romieu, I. (2003) Ozone exposure among Mexico City outdoor workers. J. Air Waste Manage. Assoc. 53: 339-346.
- Orzechowska, G. E.; Paulson, S. E. (2002) Production of OH radicals from the reactions of C_4 - C_6 internal alkenes and styrenes with ozone in the gas phase. Atmos. Environ. 36: 571-581.
- Ott, W. R. (1982) Concepts of human exposure to air pollution. Environ. Int. 7: 179-196.
- Ott, W. R. (1985) Total human exposure: an emerging science focuses on humans as receptors of environmental pollution. Environ. Sci. Technol. 19: 880-886.
- Ott, W.; Langan, L.; Switzer, P. (1992) A time series model for cigarette smoking activity patterns: model validation for carbon monoxide and respirable particles in a chamber and an automobile. In: Measuring, understanding, and predicting exposures in the 21st century: proceedings of the conference; November 1991; Atlanta, GA. J. Exposure Anal. Environ. Epidemiol. 2(suppl. 2): 175-200.
- Park, J.-H.; Spengler, J. D.; Yoon, D.-W.; Dumyahn, T.; Lee, K.; Ozkaynak, H. (1998) Measurement of air exchange rate of stationary vehicles and estimation of in-vehicle exposure. J. Exposure Anal. Environ. Epidemiol. 8: 65-78.
- Park, R. J.; Pickering, K. E.; Allen, D. J.; Stenchikov, G. L.; Fox-Rabinovitz, M. S. (2004) Global simulation of tropospheric ozone using the University of Maryland Chemical Transport Model (UMD-CTM): 1. Model description and evaluation. J. Geophys. Res. [Atmos.] 109(D9): 10.1029/2003JD004266.
- Pavelin, E. G.; Johnson, C. E.; Rughooputh, S.; Toumi, R. (1999) Evaluation of preindustrial surface ozone measurements made using Schönbein's method. Atmos. Environ. 33: 919-929.
- Penkett, S. A. (1983) PAN in the natural atmosphere. Nature (London) 302: 293-294.
- Penkett, S. A.; Brice, K. A. (1986) The spring maximum in photo-oxidants in the Northern Hemisphere troposphere. Nature (London) 319: 655-657.
- Pinto, J. P.; Lefohn, A. S.; Shadwick, D. S. (2004) Spatial variability of PM2.5 in urban areas in the United States. J. Air Waste Manage. Assoc. 54: 440-449.
- Pippin, M. R.; Bertman, S.; Thornberry, T.; Town, M.; Carroll, M. A.; Sillman, S. (2001) Seasonal variation of PAN, PPN, and O3 at the upper Midwest PROPHET site. J. Geophys. Res. (Atmos.) 106: 24,451-24,463.
- Poupard, O.; Blondeau, P.; Iordache, V.; Allard, F. (2005) Statistical analysis of parameters influencing the relationship between outdoor and indoor air quality in schools. Atmos. Environ. 39: 2071-2080.
- Prados, A. I. (2000) The export of ozone and other atmospheric trace species from North America: observations and numerical simulations [dissertation]. College Park, MD: The University of Maryland.

Prinz, B.; Krause, G. H. M. (1989) State of scientific discussion about the causes of the novel forest decline in the Federal Republic of Germany and surrounding countries. In: Bucher, J. B.; Bucher-Wallin, I., eds. Air pollution and forest decline, v. I: Proceedings of the 14th international meeting for specialists in air pollution effects on forest ecosystems; October 1988; Interlaken, Switzerland. Birmensdorf, Switzerland: Eidgenossische Anstalt fur das forstliche Versuchswesen (EAFV); pp. 27-34.

- Prinz, B.; Krause, G. H. M.; Jung, K.-D. (1985) Untersuchungen der LIS Essen zur Problematik der Waldschäden [Investigations of the LIS Essen into the problem of forest damage]. In: Kortzfleisch, G., ed. Waldschäden: Theorie und Praxis auf der Suche nach Antworten [Forest damage: theory and practice in the search for answers]. München, Germany: R. Oldenbourg Verlag; pp. 143-194.
- Proyou, A. G.; Ziomas, I. C.; Stathopoulos, A. (1998) Application of a three-layer photochemical box model in an Athens street canyon. J. Air Waste Manage. Assoc. 48: 427-433.
- Pun, B. K.; Seigneur, C.; White, W. (2003) Day-of-week behavior of atmospheric ozone in three U.S. cities. J. Air Waste Manage. Assoc. 53: 789-801.
- Purushothaman, V.; Georgopoulos, P. G. (1997) Computational tools to aid the estimation and visualization of potential human exposure to ozone. In: Proceedings of the Air & Waste Management Association Specialty Conference on Computing in Environmental Resource Management; December, 1996; Research Triangle Park, NC. Pittsburgh, PA: A&WMA; VIP-68.
- Purushothaman, V.; Georgopoulos, P. G. (1999a) Evaluation of regional emissions control strategies for ozone utilizing population exposure metrics: a new GIS-based approach applied to the July 1995 episode over the OTAG domain. Piscataway, NJ: Environmental and Occupational Health Sciences Institute, Ozone Research Center; ORC technical report, ORC-TR99-02.
- Purushothaman, V.; Georgopoulos, P. G. (1999b) Integrating photochemical modeling, geostatistical techniques and geographical information systems for ozone exposure assessment. Piscataway, NJ: Environmental and Occupational Health Sciences Institute, Ozone Research Center; ORC technical report, ORC-TR99-01.
- Reagan, J. (1984) Air quality data interpretation. In: Heck, W. W.; Taylor, O. C.; Adams, R. M.; Bingham, G. E.; Miller, J. E.; Preston, E. M.; Weinstein, L. H., eds. National Crop Loss Assessment Network (NCLAN) 1982 annual report. Corvallis, OR: U.S. Environmental Protection Agency, Corvallis Environmental Research Laboratory; pp. 198-219; report no. EPA-600/4-84-049. Available from: NTIS, Springfield, VA; PB84-169358.
- Reeves, C. E.; Penkett, S. A. (2003) Measurements of peroxides and what they tell us. Chem. Rev. 103: 5199-5218.
- Regener, E. (1941) Ozonschicht und atmosphärische turbulenz. Ber. Dtsch. Wetterdienstes US-Zone No. 11: 45-57.
- Reiss, R.; Ryan, P. B.; Koutrakis, P.; Tibbetts, S. J. (1995) Ozone reactive chemistry on interior latex paint. Environ. Sci. Technol. 29: 1906-1912.
- Reiter, E. R. (1977) The role of stratospheric import on tropospheric ozone concentrations. In: Dimitriades, B., ed. International conference on photochemical oxidant pollution and its control - proceedings: volume I; September 1976; Raleigh, NC. Research Triangle Park, NC: U.S. Environmental Protection Agency, Environmental Sciences Research Laboratory; pp. 393-410; report no. EPA-600/3-77-001a. Available from: NTIS, Springfield, VA; PB-264232.
- Research Triangle Institute. (1990) An investigation of infiltration and indoor air quality. Albany, NY: New York State Energy Research and Development Authority; report no. NYERDA 90-11.
- Riediker, M.; Williams, R.; Devlin, R.; Griggs, T.; Bromberg, P. (2003) Exposure to particulate matter, volatile organic compounds, and other air pollutants inside patrol cars. Environ. Sci. Technol. 37: 2084-2093.
- Rifai, H. S.; Hopkins, L.; Mehdizadeh, F. (2000) Developing human exposure estimates for indoor/outdoor air pollution in Houston. In: Environmental Institute of Houston - 1999 Annual Report. Houston, TX: Environmental Institute of Houston.
- Roberts, J. M.; Williams, J.; Baumann, K.; Buhr, M. P.; Goldan, P. D.; Holloway, J.; Hübler, G.; Kuster, W. C.;
 McKeen, S. A.; Ryerson, T. B.; Trainer, M.; Williams, E. J.; Fehsenfeld, F. C.; Bertman, S. B.; Nouaime, G.;
 Seaver, C.; Grodzinsky, G.; Rodgers, M.; Young, V. L. (1998) Measurements of PAN, PPN, and MPAN
 made during the 1994 and 1995 Nashville Intensives of the Southern Oxidant Study: implications for regional
 ozone production from biogenic hydrocarbons. J. Geophys. Res. [Atmos.] 103: 22,473-22,490.
- Roelofs, G. J.; Lelieveld, J.; Van Dorland, R. (1997) A three-dimensional chemistry/general circulation model simulation of anthropogenically derived ozone in the troposphere and its radiative climate forcing. J. Geophys. Res. [Atmos.] 102: 23,389-23,401.
- Rohr, A. C.; Wilkins, C. K.; Clausen, P. A.; Hammer, M.; Nielsen, G. D.; Wolkoff, P.; Spengler, J. D. (2002) Upper airway and pulmonary effects of oxidation products of (+)-α-pinene, *d*-limonene, and isoprene in BALB/*c* mice. Inhalation Toxicol. 14: 663-684.
- Rohr, A. C.; Shore, S. A.; Spengler, J. D. (2003) Repeated exposure to isoprene oxidation products causes enhanced respiratory tract effects in multiple murine strains. Inhalation Toxicol. 15: 1191-1207.
- Romieu, I.; Lugo, M. C.; Colome, S.; Garcia A. M.; Avila, M. H.; Geyh, A.; Velasco, S. R.; Rendon, E. P. (1998) Evaluation of indoor ozone concentration and predictors of indoor-outdoor ratio in Mexico City. J. Air Waste Manage. Assoc. 48: 327-335.

- Rotman, D. A.; Atherton, C. S.; Bergmann, D. J.; Cameron-Smith, P. J.; Chuang, C. C.; Connell, P. S.; Dignon, J. E.; Franz, A.; Grant, K. E.; Kinnison, D. E.; Molenkamp, C. R.; Proctor, D. D.; Tannahill, J. R. (2004) IMPACT, the LLNL 3-D global atmospheric chemical transport model for the combined troposphere and stratosphere: model description and analysis of ozone and other trace gases. J. Geophys. Res. [Atmos.] 109(D4): 10.1029/2002JD003155.
- Ryerson, T. B.; Trainer, M.; Holloway, J. S.; Parrish, D. D.; Huey, L. G.; Sueper, D. T.; Frost, G. J.; Donnelly,
 S. G.; Schauffler, S.; Atlas, E. L.; Kuster, W. C.; Goldan, P. D.; Hübler, G.; Meagher, J. F.; Fehsenfeld, F. C. (2001) Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science (Washington, DC) 292: 719-723.
- Sabersky, R. H.; Sinema, D. A.; Shair, F. H. (1973) Concentrations, decay rates, and removal of ozone and their relation to establishing clean indoor air. Environ. Sci. Technol. 7: 347-353.
- Salmon, L. G.; Cass, G. R.; Bruckman, K.; Haber, J. (2000) Ozone exposure inside museums in the historic central district of Krakow, Poland. Atmos. Environ. 34: 3823-3832.
- Sarnat, J. A.; Koutrakis, P.; Suh, H. H. (2000) Assessing the relationship between personal particulate and gaseous exposures of senior citizens living in Baltimore, MD. J. Air Waste Manage. Assoc. 50: 1184-1198.
- Sarnat, J. A.; Schwartz, J.; Catalano, P. J.; Suh, H. H. (2001) Gaseous pollutants in particulate matter epidemiology: confounders or surrogates? Environ. Health Perspect. 109: 1053-1061.
- Sarwar, M.; Corsi, R.; Kimura, Y.; Allen, D.; Weschler, C. (2001) Hydroxyl radicals in indoor environments. In: Proceedings of the Air & Waste Management Association's 94th Annual Conference & Exhibition; June; Orlando, FL. Pittsburgh, PA: Air & Waste Management Association.
- Sarwar, G.; Corsi, R.; Kumura, Y.; Allen, D.; Weschler, C. J. (2002) Hydroxyl radicals in indoor environments. Atmos. Environ. 36: 3973-3988.
- Scheeren, B. A.; Adema, E. H. (1996) Monitoring ambient ozone with a passive measurement technique method, field results and strategy. Water Air Soil Pollut. 91: 335-350.
- Schoeberl, M. R.; Douglass, A. R.; Zhu, Z.; Pawson, S. (2003) A comparison of the lower stratospheric age spectra derived from a general circulation model and two data assimilation systems. J. Geophys. Res. (Atmos.) 108(D3): 10.1029/2002JD002652.
- Seo, K.-H.; Bowman, K. P. (2002) Lagrangian estimate of global stratosphere-troposphere mass exchange. J. Geophys. Res. (Atmos.) 107(D21): 10.1029/2002JD002441.
- Shair, F. H. (1981) Relating indoor pollutant concentrations of ozone and sulfur dioxide to those outside: economic reduction of indoor ozone through selective filtration of the make-up air. ASHRAE Trans. 87(pt. 1): 116-139.
- Shair, F. H.; Heitner, K. L. (1974) Theoretical model for relating indoor pollutant concentrations to those outside. Environ. Sci. Technol. 8: 444-451.
- Shamoo, D. A.; Johnson, T. R.; Trim, S. C.; Little, D. E.; Linn, W. S.; Hackney, J. D. (1991) Activity patterns in a panel of outdoor workers exposed to oxidant pollution. J. Exposure Anal. Environ. Epidemiol. 1: 423-438.
- Shamoo, D. A.; Linn, W. S.; Peng, R.-C.; Solomon, J. C.; Webb, T. L.; Hackney, J. D.; Gong, H., Jr. (1994) Time-activity patterns and diurnal variation of respiratory status in a panel of asthmatics: implications for short-term air pollution effects. J. Exposure Anal. Environ. Epidemiol. 4: 133-148.
- Sheppard, L.; Slaughter, J. C.; Schildcrout, J.; Liu, L.-J. S.; Lumley, T. (2005a) Exposure and measurement contributions to estimates of acute air pollution effects. J. Exposure Anal. Environ. Epidemiol. 15: 366-376.
- Sheppard, L. (2005b) Acute air pollution effects: consequences of exposure distribution and measurements. J. Toxicol. Environ. Health Part A 68: 1127-1135.
- Sheppard, L.; Slaughter, J. C.; Schildcrout, J.; Liu, L.-J. S.; Lumley, T. (2005) Exposure and measurement contributions to estimates of acute air pollution effects. J. Exposure Anal. Environ. Epidemiol. 15: 366-376.
- Sherman, M. H.; Matson, N. E. (1997) Residential ventilation and energy characteristics. Presented at: 1997 American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) winter meeting; February; Philadelphia, PA. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Report no. CONF-9702141. ASHRAE Trans. 103: 717-730.
- Shindell, D. T.; Faluvegi, G.; Bell, N. (2003) Preindustrial-to-present-day radiative forcing by tropospheric ozone from improved simulations with the GISS chemistry-climate GCM. Atmos. Chem. Phys. 3: 1675-1702.
- Sillman, S.; Logan, J. A.; Wofsy, S. C. (1990) The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes. J. Geophys. Res. [Atmos.] 95: 1837-1851.
- Singh, H. B.; Ludwig, F. L.; Johnson, W. B. (1977) Ozone in clean remote atmospheres: concentrations and variabilities. New York, NY: Coordinating Research Council, Inc.; report no. CRC-APRAC CAPA-15-76. Available from: NTIS, Springfield, VA; PB-272290.
- Singh, H. B.; Ludwig, F. L.; Johnson, W. B. (1978) Tropospheric ozone: concentrations and variabilities in clean remote atmospheres. Atmos. Environ. 12: 2185-2196.

- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
- Smith, L. A.; Lefohn, A. S. (1991) Co-occurence of ozone and wet deposited hydrogen ion in the United States. Atmos. Environ. Part A 25: 2707-2716.
- Solberg, S.; Krognes, T.; Stordal, F.; Hov, Ø.; Beine, H. J.; Jaffe, D. A.; Clemitshaw, K. C.; Penkett, S. A. (1997) Reactive nitrogen compounds at Spitsbergen in the Norwegian Arctic. J. Atmos. Chem. 28: 209-225.
- Sørensen, D. N.; Weschler, C. J. (2002) Modeling-gas phase reactions in indoor environments using computational fluid dynamics. Atmos. Environ. 36: 9-18.
- Spier, C. E.; Little, D. E.; Trim, S. C.; Johnson, T. R.; Linn, W. S.; Hackney, J. D. (1992) Activity patterns in elementary and high school students exposed to oxidant pollution. J. Exposure Anal. Environ. Epidemiol. 2: 277-293.
- Sprenger, M.; Wernli, H. (2003) A northern hemispheric climatology of cross-tropopause exchange for the ERA 15 time period (1979-1993). J. Geophys. Res. 108(D12): 10.1029/2002JD002636.
- Sprenger, M.; Maspoli, M. C.; Wernli, H. (2003) Tropopause folds and cross-tropopause exchange: a global investigation based upon ECMWF analyses for the time period March 2000 to February 2001. J. Geophys. Res. (Atmos.) 108(D12): 10.1029/2002JD002587.
- Stasiuk, W. N., Jr.; Coffey, P. E. (1974) Rural and urban ozone relationships in New York State. J. Air Pollut. Control Assoc. 24: 564-568.
- Steiber, R. S. (1995) Ozone generators in indoor air settings. Research Triangle Park, NC: U.S. Environmental Protection Agency, National Risk Management Research Laboratory; report no. EPA-600/R-95-154. Available from: NTIS, Springfield, VA; PB96-100201.
- Stein, M. L.; Fang, D. (1997) Ozone exposure and population density in Harris County, Texas [comment]. J. Am. Stat. Assoc. 92: 408-411.
- Stohl, A. (2001) A 1-year Lagrangian "climatology" of airstreams in the Northern Hemisphere troposphere and lowermost stratosphere. J. Geophys. Res. (Atmos.) 106: 7263-7279.
- Tan, W. W.; Geller, M. A.; Pawson, S.; Da Silva, A. (2004) A case study of excessive subtropical transport in the stratosphere of a data assimilation system. J. Geophys. Res. (Atmos.) 109(D11102): 10.1029/2003JD004057.
- Taylor, G. E., Jr.; Hanson, P. J. (1992) Forest trees and tropospheric ozone: role of canopy deposition and leaf uptake in developing exposure-response relationships. Agric. Ecosyst. Environ. 42: 255-273.
- Taylor, G. E., Jr.; Norby, R. J. (1985) The significance of elevated levels of ozone on natural ecosystems of North America. In: Lee, S. D., ed. Evaluation of the scientific basis for ozone/oxidants standards: proceedings of an APCA international specialty conference; November 1984; Houston, TX. Pittsburgh, PA: Air Pollution Control Association; pp. 152-175. (APCA transactions: TR-4).
- Taylor, G. E., Jr.; Ross-Todd, B. M.; Allen, E.; Conklin, P.; Edmonds, R.; Joranger, E.; Miller, E.; Ragsdale, L.;
 Shepard, J.; Silsbee, D.; Swank, W. (1992) Patterns of tropospheric ozone in forested landscapes of the
 Integrated Forest Study. In: Johnson, D. W.; Lindberg, S. E., eds. Atmospheric deposition and forest nutrient
 cycling: a synthesis of the integrated forest study. New York, NY: Springer-Verlag; pp. 50-71. (Billings, W.
 D.; Golley, F.; Lange, O. L.; Olson, J. S.; Remmert, H., eds. Ecological studies: analysis and synthesis: v. 91).
- Thompson, C. R.; Hensel, E. G.; Kats, G. (1973) Outdoor-indoor levels of six air pollutants. J. Air Pollut. Control Assoc. 23: 881-886.
- Trainer, M.; Parrish, D. D.; Buhr, M. P.; Norton, R. B.; Fehsenfeld, F. C.; Anlauf, K. G.; Bottenheim, J. W.; Tang, Y. Z.; Wiebe, H. A.; Roberts, J. M.; Tanner, R. L.; Newman, L.; Bowersox, V. C.; Meagher, J. F.; Olszyna, K. J.; Rodgers, M. O.; Wang, T.; Berresheim, H.; Demerjian, K. L.; Roychowdhury, U. K. (1993) Correlation of ozone with NO_v in photochemically aged air. J. Geophys. Res. [Atmos.] 98: 2917-2925.
- Turk, B. H.; Grimsrud, D. T.; Brown, J. T.; Geisling-Sobotka, K. L.; Harrison, J.; Prill, R. J. (1989) Commercial building ventilation rates and particle concentrations. ASHRAE Trans. 95(part 1): 422-433.
- U.S. Environmental Protection Agency. (1986) Air quality criteria for ozone and other photochemical oxidants. Research Triangle Park, NC: Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office; report nos. EPA-600/8-84-020aF-eF. 5v. Available from: NTIS, Springfield, VA; PB87-142949.
- U.S. Environmental Protection Agency. (1992) National air quality and emissions trends report, 1991. Research Triangle Park, NC: U.S. Environmental Protection Agency,Office of Air Quality Planning and Standards; report no. EPA/450-R-92-001. Available from: NTIS, Springfield, VA; PB93-143998.

- U.S. Environmental Protection Agency. (1996a) Air quality criteria for ozone and related photochemical oxidants. Research Triangle Park, NC: Office of Research and Development; report nos. EPA/600/AP-93/004aF-cF. 3v. Available from: NTIS, Springfield, VA; PB96-185582, PB96-185590, and PB96-185608. Available: http://cfpub2.epa.gov/ncea/.
- U.S. Environmental Protection Agency. (1996b) Air quality criteria for particulate matter. Research Triangle Park, NC: National Center for Environmental Assessment-RTP Office; report nos. EPA/600/P-95/001aF-cF. 3v.
- U.S. Environmental Protection Agency. (1996c) Review of national ambient air quality standards for ozone: assessment of scientific and technical information. OAQPS staff paper. Research Triangle Park, NC: Office of Air Quality Planning and Standards; report no. EPA/452/R-96/007. Available from: NTIS, Springfield, VA; PB96-203435. Available: http://www.epa.gov/ttn/naaqs/standards/ozone/s_o3_pr_sp.html (9 September 2003).
- U.S. Environmental Protection Agency. (1997) Responses to significant comments on the 1996 proposed rule on the national ambient air quality standards for particulate matter (December 13, 1996; 61 FR 65638). Research Triangle Park, NC: National Center for Environmental Assessment; docket number A-95-54; July. ECAO-CD-92-0671; STD-081.
- U.S. Environmental Protection Agency. (1998) Guideline on ozone monitoring site selection. Research Triangle Park, NC: U.S. Environmental Protection Agency, National Center for Environmental Assessment; EPA-454/R-98-002.
- U.S. Environmental Protection Agency. (2002) Latest findings on national air quality: 2001 status and trends. Research Triangle Park, NC: Office of Air Quality Planning and Standards; report no. EPA-454/K-02-001. Available: http://www.epa.gov/air/aqtrnd01/ (22 July 2003).
- U.S. Environmental Protection Agency. (2003) Technology Transfer Network: Air Quality System (AQS). Washington, DC: Office of Air and Radiation. Available: http://www.epa.gov/ttn/airs/airsaqs/ [24 August, 2005].
- U.S. Environmental Protection Agency. (2004a) Air quality criteria for particulate matter. Research Triangle Park, NC: National Center for Environmental Assessment; report no. EPA/600/P-99/002aF-bF. 2v. Available: http://cfpub.epa.gov/ncea/ [9 November, 2004].
- U.S. Environmental Protection Agency. (2004b) The ozone report: measuring progress through 2003. Cincinnati, OH: U.S. Environmental Protection Agency; report no. EPA454/K-04-001.
- Väkevä, M.; Hämeri, K.; Kulmala, M.; Lahdes, R.; Ruuskanen, J.; Laitinen, T. (1999) Street level versus rooftop concentrations of submicron aerosol particles and gaseous pollutants in an urban street canyon. Atmos. Environ. 33: 1385-1397.
- Van den Bergh, V.; Vanhees, I.; De Boer, R.; Compernolle, F.; Vinckier, C. (2000) Identification of the oxidation products of the reaction between α-pinene and hydroxyl radicals by gas and high-performance liquid chromatography with mass spectrometric detection. J. Chromatogr. A 896: 135-148.
- Van Noije, T. P. C.; Eskes, H. J.; Van Weele, M.; Van Velthoven, P. F. J. (2004) Implications of enhanced Brewer-Dobson circulation in European Centre for medium-range weather forecasts reanalysis ERA-40 for the stratosphere-troposphere exchange of ozone in global chemistry transport models. J. Geophys. Res. (Atmos.) 109(D19308): 10.1029/2004JD004586.
- Venkatachari, P.; Hopke, P. K.; Grover, B. D.; Eatough, D. J. (2005a) Measurement of particle-bound reactive oxygen species in Rubidoux aerosols. J. Atmos. Chem. 50: 49-58.
- Venkatachari, P.; Hopke, P.K.; Brune, W. H.; Ren, X.; Lesher, R.; Mao, J.; Mitchell, M. (2005b) Characterization of reactive oxygen species trends in Flushing, New York. Atmos. Environ.: in press.
- Vingarzan, R. (2004) A review of surface ozone background levels and trends. Atmos. Environ. 38: 3431-3442.
- Vong, R. J.; Guttorp, P. (1991) Co-occurence of ozone and acidic cloudwater in high-elevation forests. Environ. Sci. Technol. 25: 1325-1329.
- Von Kuhlmann, R.; Lawrence, M. G.; Crutzen, P. J.; Rasch, P. J. (2003) A model for studies of tropospheric ozone and nonmethane hydrocarbons: model description and ozone results. J. Geophys. Res. [Atmos.] 108(D9): 10.1029/2002JD002893.
- Wainman, T.; Zhang, J.; Weschler, C. J.; Lioy, P. J. (2000) Ozone and limonene in indoor air: a source of submicron particle exposure. Environ. Health Perspect. 108: 1139-1145.
- Wang, Y.; Logan, J. A.; Jacob, D. J. (1998) Global simulation of tropospheric O₃-NO_x-hydrocarbon chemistry 2. Model evaluation and global ozone budget. J. Geophys. Res. (Atmos.) 103: 10,727-10,755.
- Weinstein-Lloyd, J. B.; Lee, J. H.; Daum, P. H.; Nunnermacker, L. J.; Springston, S. R.; Newman, L. (1998)
 Measurements of peroxides and related species during the 1995 summer intensive of the Southern Oxidants
 Study in Nashville, Tennessee. J. Geophys. Res. (Atmos.) 103: 22361-22373.

- Wernli, H.; Bourqui, M. (2002) A Lagrangian "1-year climatology" of (deep) cross-tropopause exchange in the extratropical Northern Hemisphere. J. Geophys. Res. (Atmos.) 107(D2): 10.1029/2001JD000812.
- Weschler, C. J. (2000) Ozone in indoor environments: concentration and chemistry. Indoor Air 10: 269-288.
- Weschler, C. J. (2004) Chemical reactions among indoor pollutants: what we've learned in the new millennium. Indoor Air 14(suppl. 7): 184-194.
- Weschler, C. J.; Shields, H. C. (1997) Potential reactions among indoor pollutants. Atmos. Environ. 31: 3487-3495.
- Weschler, C. J.; Shields, H. C. (1999) Indoor ozone/terpene reactions as a source of indoor particles. Atmos. Environ. 33: 2301-2312.
- Weschler, C. J.; Shields, H. C. (2000) The influence of ventilation on reactions among indoor pollutants: modeling and experimental observations. Indoor Air. 10: 92-100.
- Weschler, C. J.; Shields, H. C. (2003) Experiments probing the influence of air exchange rates on secondary organic aerosols derived from indoor chemistry. Atmos. Environ. 37: 5621-5631.
- Weschler, C. J.; Shields, H. C.; Naik, D. V. (1989) Indoor ozone exposures. JAPCA 39: 1562-1568.
- Weschler, C. J.; Hodgson, A. T.; Wooley, J. D. (1992) Indoor chemistry: ozone, volatile organic compounds, and carpets. Environ. Sci. Technol. 26: 2371-2377.
- Weschler, C. J.; Shields, H. C.; Naik, D. V. (1994) Indoor chemistry involving O₃, NO, and NO₂ as evidenced by 14 months of measurements at a site in southern California. Environ. Sci. Technol. 28: 2120-2132.
- Wild, O.; Akimoto, H. (2001) Intercontinental transport of ozone and its precursors in a three-dimensional global CTM. J. Geophys. Res. [Atmos.] 106: 27,729-27,744.
- Wiley, J. A.; Robinson, J. P.; Piazza, T.; Garrett, K.; Cirksena, K.; Cheng, Y.-T.; Martin, G. (1991a) Activity patterns of California residents. Final report. Sacramento, CA: California Air Resources Board; report no. ARB/R93/487. Available from: NTIS, Springfield, VA.; PB94-108719.
- Wiley, J. A.; Robinson, J. P.; Cheng, Y.-T.; Piazza, T.; Stork, L.; Pladsen, K. (1991b) Study of children's activity patterns: final report. Sacramento, CA: California Air Resources Board; report no. ARB-R-93/489.
- Wilkins, C. K.; Clausen, P. A.; Wolkoff, P.; Larsen, S. T.; Hammer, M.; Larsen, K.; Hansen, V.; Nielsen, G. D. (2001) Formation of strong irritants in mixtures of isoprene/ozone and isoprene/ozone/nitrogen dioxide. Environ. Health Perspect. 109: 937-941.
- Williams, R.; Suggs, J.; Rea, A.; Leovic, K.; Vette, A.; Croghan, C.; Sheldon, L.; Rodes, C.; Thornburg, J.; Ejire, A.; Herbst, M.; Sanders, W., Jr. (2003a) The Research Triangle Park particulate matter panel study: PM mass concentration relationships Atmos. Environ. 37: 5349-5363.
- Williams, R.; Suggs, J.; Rea, A.; Sheldon, L.; Rodes, C.; Thornburg, J. (2003b) The Research Triangle Park particulate matter panel study: modeling ambient source contribution to personal and residential PM mass concentrations. Atmos. Environ. 37: 5365-5378.
- Wilson, A. L.; Colome, S. D.; Tian, Y.; Becker, E. W.; Baker, P. E.; Behrens, D. W.; Billick, I. H.; Garrison, C. A. (1996) California residential air exchange rates and residence volumes. J. Exposure Anal. Environ. Epidemiol. 6: 311-326.
- Wolff, G. T.; Lioy, P. J.; Taylor, R. S. (1987) The diurnal variations of ozone at different altitudes on a rural mountain in the eastern United States. JAPCA 37: 45-48.
- Wolff, G. T.; Dunker, A. M.; Rao, S. T.; Porter, P. S.; Zurbenko, I. G. (2001) Ozone air quality over North America: part I—a review of reported trends. J. Air Waste Manage. Assoc. 51: 273-282.
- Wolkoff, P.; Clausen, P. A.; Wilkins, C. K.; Hougaard, K. S.; Nielsen, G. D. (1999) Formation of strong airway irritants in a model mixture of (+)-α-pinene/ozone. Atmos. Environ. 33: 693-698.
- Wong, S.; Wang, W.-C.; Isaksen, I. S. A.; Berntsen, T. K.; Sundet, J. K. (2004) A global climate-chemistry model study of present-day tropospheric chemistry and radiative forcing from changes in tropospheric O₃ since the preindustrial period. J. Geophys. Res. [Atmos.] 109(D11): 10.1029/2003JD003998.
- Zeger, S. L.; Thomas, D.; Dominici, F.; Samet, J. M.; Schwartz, J.; Dockery, D.; Cohen, A. (2000) Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environ. Health Perspect. 108: 419-426.
- Zhou, J.; Smith, S. (1997) Measurement of ozone concentrations in ambient air using a badge-type passive monitor. J. Air Waste Manage. Assoc. 47: 697-703.

ANNEX AX4. DOSIMETRY OF OZONE IN THE RESPIRATORY TRACT

5 AX4.1 INTRODUCTION

1

2 3

4

This annex serves to provide supporting material for Chapter 4 - Dosimetry, Species,
Homology, Sensitivity, and Animal-to-Human Extrapolation. It includes tables that summarize
new literature published since the last O₃ criteria documents (U.S. Environmental Protection
Agency, 1996). In addition, it provides descriptions of those new findings, in many cases, with
more detail than is provided in the chapter.

11 Dosimetry refers to the measurement or estimation of the quantity of or rate at which a 12 chemical and/or it reaction products are absorbed and retained at target sites within the 13 respiratory tract (RT). The compound most directly responsible for toxic effects may be the 14 inhaled gas O₃ or one of its chemical reaction products. Complete identification of the actual 15 toxic agents and their integration into dosimetry is a complex issue that has not been resolved. 16 Thus, most dosimetry investigations are concerned with the dose of the primary inhaled 17 chemical. In this context, a further confounding aspect can be the units of dose (e.g., mass 18 retained per breath, mass retained per breath per body weight, mass retained per breath per 19 respiratory tract surface area). That is, when comparing dose between species, what is the 20 relevant measure of dose? This question has not been answered; units are often dictated by the 21 type of experiment or by a choice made by the investigators. There is also some lack of 22 agreement as to what constitutes "dose." Dahl's seminal paper (1990) classified O₃ as a reactive 23 gas and discussed the characterization of dose measurement by parameters including: 24 (1) inhaled O_3 concentration; (2) amount of O_3 inhaled as determined by minute volume, vapor 25 concentration, and exposure duration; (3) uptake or the amount of O_3 retained (i.e., not exhaled); 26 (4) O_3 or its active metabolites delivered to target cells or tissues; (5) O_3 or its reactive 27 metabolites delivered to target biomolecules or organelles; and (6) O₃ or its metabolites 28 participating in the ultimate toxic reactions - the effective dose. This characterization goes from 29 least complex to greatest, culminating in measurement of the fraction of the inhaled O₃ that 30 participates in the effects of cellular perturbation and/or injury. Understanding dosimetry as it relates to O₃-induced injury is complex due to the fact that O₃ interacts primarily with the 31

epithelial lining fluid (ELF) which contains surfactant and antioxidants. In the upper airways
ELF is thick and highly protective against oxidant injury. In lower airways ELF is thinner, has
lower levels of antioxidants, and thus, allows more cellular injury. Adding to the complexity is
the fact that O₃ can react with molecules in the ELF to create even more reactive metabolites,
which can then diffuse within the lung or be transported out of the lung to generate systemic
effects. Section 5.3.1 contains further information on the cellular targets of O₃ interactions and
antioxidants.

8 Experimental dosimetry studies in laboratory animals and humans, and theoretical 9 (dosimetry modeling) studies, have been used to obtain information on O₃ dose. Since the last 10 ozone criteria document (U.S. Environmental Protection Agency, 1996), all new experiments 11 have been carried out in humans to obtain direct measurements of absorbed O₃ in the RT, the 12 upper RT (URT) region proximal to the tracheal entrance, and in the tracheobronchial (TB) 13 region; no uptake experiments have been performed using laboratory animals. Experimentally 14 obtaining dosimetry data is extremely difficult in smaller regions or locations, such as specific 15 airways or the centriacinar region (CAR; junction of conducting airways and gas exchange 16 region), where lesions caused by O_3 occur. Nevertheless, experimentation is important for 17 determining dose, making dose comparisons between subpopulations and between different 18 species, assessing hypotheses and concepts, and validating mathematical models that can be used 19 to predict dose at specific respiratory tract sites and under more general conditions.

20 Theoretical studies are based on the use of mathematical models developed for the 21 purposes of simulating the uptake and distribution of absorbed gases in the tissues and fluids of 22 the RT. Because the factors affecting the transport and absorption of gases are applicable to all 23 mammals, a model that uses appropriate species or disease-specific anatomical and ventilatory 24 parameters can be used to describe absorption in the species and in different-sized, aged, or 25 diseased members of the same species. More importantly, models also may be used to make 26 interspecies and intraspecies dose comparisons, to compare and reconcile data from different 27 experiments, to predict dose in conditions not possible or feasible experimentally, and to better 28 understand the processes involved in toxicity.

A review (Miller, 1995) of the factors influencing RT uptake of O₃ stated that structure of the RT region, ventilation, and gas transport mechanisms were important. Additionally, local dose is the critical link between exposure and response. A more detailed discussion of experimental and theoretical dosimetry studies is available in the 1996 O₃ AQCD (Volume III,
 Chapter 8, U.S. Environmental Protection Agency, 1996).

- 3
- 4

5

AX4.2 EXPERIMENTAL OZONE DOSIMETRY INVESTIGATIONS

6 There have been some advances in understanding human O₃ dosimetry that better enable 7 quantitative extrapolation from laboratory animal data. The next two sections review the 8 available new experimental studies on O_3 dosimetry, which involve only human subjects and are 9 all from the same laboratory. Of the studies considered in the following discussion, five 10 involved the use of the bolus response method as a probe to obtain information about the 11 mechanism of O₃ uptake in the URT and TB regions. Of the remaining two investigations, one 12 focused on total uptake by the RT and the other on uptake by the nasal cavities. Table AX4-1 13 provides a summary of the newer studies.

14

15

AX4.2.1 Bolus-Response Studies

The bolus-response method has been used as a probe to explore the effects of physiological
and anatomical differences or changes on the uptake of O₃ by human beings.

Asplund et al. (1996) studied the effects of continuous O_3 inhalation on O_3 bolus uptake and Rigas et al. (1997) investigated the potential effects of continuous coexposure to O_3 , nitrogen dioxide (NO₂), or sulfur dioxide (SO₂) on O_3 absorption. In both of these studies,

subjects were exposed "continuously" to a gas for 2 h. Every 30 min, breathing at 250 mL/s,

a series of bolus test breaths was performed targeted at the lower conducting airways.

23 Differences in bolus-response absorbed fraction from an established baseline indicated the

degree to which the "continuous" gas exposure affected the absorption of O_3 . Depending on the

25 gas and concentration, changes in absorbed fraction ranged from -3 to +7 % (see Table AX4-1).

26 Continuous O_3 exposure lowered the uptake of O_3 , whereas NO_2 and SO_2 increased the uptake

27 of O_3 . The investigators concluded that in the tested airways, NO_2 and SO_2 increased the

capacity to absorb O_3 because more of the compounds oxidized by O_3 were made available.

29 On the other hand, they conjectured that continuous O_3 exposure depleted these compounds,

30 thereby reducing O_3 uptake.

Purpose/Objective	Subject Characteristics	Region of Interest	Breathing Patterns/Exposure	Results	Reference
Determine the effect of continuous O ₃ inhalation on O ₃ uptake	8 male, 3 female, 22-31 years old, 166-186 cm, 64-93 kg	Central conducting airways (70-120 mL from lips)	2 h of continuous exposure at rest: 0.0, 0.12, and 0.36 ppm O ₃ . Spontaneous breathing. Bolus test breaths every 30 minutes using 250 mL/sec constant flow rate.	Averaged over all subjects and the 4 measurement intervals, the absorbed fraction (AF) changed +0.04, -0.005, and -0.03 for the 0, 0.12, and 0.36 ppm continuous exposures, respectively. These changes are approximately +6, -1, and -4 % based on an average AF value of 0.7 in the range 70-120 ml. ^b Both nonzero exposures were significantly different than the air exposure.	Asplund et al. (1996)
Evaluate the influence of V_D on intersubject variation of O_3 dose.	10 male, 22-30 years old, 163-186 cm, 64-92 kg; 10 female, 22-35 years old, 149-177 cm, 48-81 kg	Conducting airways	Bolus-response test $(V_T = 500 \text{ml at } 250 \text{ mL/sec} \text{ constant flow rate})$. Fowler single-breath N ₂ washout method to determine V _D .	On average, for the same V_p , women had a larger AF than men; women had a smaller V_D than men. However, for the same value of V_p/V_D , AF for men and women were indistinguishable. Further analysis indicated "that previously reported gender differences may be due to a failure in properly accounting for tissue surface within the conducting airways".	Bush et al. (1996a)
Investigate the effect of continuous exposure to O_3 , nitrogen dioxide and sulfur dioxide on O_3 absorption.	6 male, 21-29 years old, 165 185 cm, 60-92 kg; 6 female, 19-33 years old, 152-173 cm, 48-61 kg	Lower conducting airways (70-120 mL from lips)	2 h of continuous exposure at rest: O ₃ (0, 0.36 ppm), SO ₂ (0, 0.36 ppm), or NO ₂ (0, 0.36, 0.75 ppm). 5-min Bolus test every 30 minutes: $V_T = 500$ ml; 250 mL/sec constant flow rate.	Averaging over all subjects or by gender, all exposures except O_3 resulted in an increase of AF. Based on an AF reference value ^b , the change in AF ranged from -3 to $+7$ %. Only the O_3 and the NO ₂ (0.36 ppm) exposures were significantly different from the air exposures.	Rigas et al. (1997)

Table AX4-1. New Experimental Human Studies on Ozone Dosimetry^a

Purpose/Objective	Subject Characteristics	Region of Interest	Breathing Patterns/Exposure	Results	Reference
Compare the absorption of chlorine and O_3 . Determine how the physical-chemical properties of these compounds affect their uptake distribution in the RT.	5 male, 21-26 years old, 168-198 cm, 64-95 kg; 5 female, 18-28 years old, 162-178 cm, 55-68 kg ^c	Conducting airways. Nasal and oral routes	Bolus-response technique; $V_T = 500$ ml; 3 constant flow rates: 150, 250, and 1000 mL/sec.	Ozone dose to the URT was sensitive to the mode of breathing and to the respiratory rate. With increased airflow rate, O_3 retained by the upper airways decreased from 95 to 50%. TB region dose ranged from 0 to 35%. Mass transfer theory indicated that the diffusion resistance of the tissue phase is important for O_3 . The gas phase resistances were the same for O_3 and Cl_2 .	Nodelman and Ultman (1999a) ^c
To determine O ₃ uptake relative to inhaled O ₃ dose.	5 male, 5 female, 18-35 years old, 175 ± 13 (SD) cm, 72 ± 13 (SD) kg	Respiratory tract; oral breathing	Breath-by-breath calculation of O_3 retention based on data from fast response analyzers for O_3 and airflow rates. Oral breathing: 0.2 or 0.4 ppm O_3 at V_E of approximately 20 L/min for 60 min or 40 L/min for 30 min.	The FA for all breaths was 0.86. Concentration, minute volume, and time have small but statistically significant effects on AF when compared to intersubject variability. The investigators concluded: for a given subject, constant O_3 exposure, a given exercise level, and time <2 h, inhaled dose is a reasonable surrogate for the actual uptake of O_3 . However, the actual doses may vary considerably among individuals who are exposed to similar inhaled doses.	Rigas et al. (2000)

Table AX4-1 (cont'd). New Experimental Human Studies on Ozone Dosimetry^a

Purpose/Objective	Subject Characteristics	Region of Interest	Breathing Patterns/Exposure	Results	Reference
Study the effect of gas flow rate and O_3 concentration on O_3 uptake in the nose.	7 male, 3 female, 26 ± years, 170 ± 11 (SD) cm, 75 ± 20 (SD) kg	Nasal cavities	For a given flow rate and exposure concentration, the subjects inhaled through one nostril and exhale through the other. For two 1-h sessions, a series of 9-12 measurements of AF were carried out for 10 s each: (1) O ₃ exposure concentration = 0.4 ppm; flow rates = 3, 5, 8, and 15 L/min. (2) O ₃ exposure = 0.1, 0.2, and 0.4 ppm; flow rate = 15 L/min.(3) O ₃ exposure = 0.4 ppm, flow rate = 15 L/min; AF was measured every 5 min for 1 h.	(1) With the exposure concentration at 0.4 ppm O_3 , AF decreased from 0.80 to 0.33 when the flow rate was increased from 3 to 15 L/min. (2) At a flow rate of 15 L/min, the AF changed from 0.36 to 0.32 when the exposure concentration increased from 0.1 to 0.4 ppm O_3 . (3) Statistical analysis indicated that the AF was not associated with the time at which the measurement was taken.	Santiago et al. (2001)
Evaluate intersubject variability in O ₃ uptake; correlate differences in breathing pattern and lung anatomy with O ₃ uptake	nonsmokers, 32 male, 22.9 ± 0.8 years old, 178 ± 1 cm, 80.6 ± 2.5 kg; 28 female, 22.4 ± 0.9 years old, 166 ± 1 cm, 62.1 ± 2.2 kg	Respiratory tract; oral breathing	Continuous: 1 h exposure to 0.25 ppm, exercising at $30L/min$. Bolus: breath-by- breath calculation of O ₃ retention. Timing of bolus varied to create penetration volumes of 10 to 250 ml. Peak inhaled bolus of ~1 ppm.	Continuous: Fractional O_3 uptake efficiency ranged from 0.70 to 0.98 (mean 0.89 ± 0.06). Inverse correlation between uptake and breathing frequency. Direct correlation between uptake and tidal volume. Intersubject differences in forced respiratory responses not due to differences in O_3 uptake. Bolus: The penetration volume at which 50% of the bolus was taken up was 90.4 ml in females and 107 ml in males. Distribution of O_3 shifts distally as the size of the airway increases.	Ultman et al. (2004)

Table AX4-1 (cont'd). New Experimental Human Studies on Ozone Dosimetry^a

^a See Appendix A for abbreviations and acronyms.
^b Fig. 4, Hu et al. (1994), for the 250 mL/s curve and penetration volume range of 70 – 120 ml; the average AF is approximately 0.7.
^c Subject characteristics are from Nodelman and Ultman (1999b).

1 Bush et al. (1996a) investigated the effect of lung anatomy and gender on O₃ absorption in 2 the conducting airways during oral breathing using the bolus-response technique. Absorption 3 was measured using this technique applied to 10 men and 10 women. Anatomy was defined in 4 terms of forced vital capacity (FVC), total lung capacity (TLC), and dead space (V_D). The absorbed fraction data were analyzed in terms of a function of penetration volume, airflow rate, 5 6 and an "intrinsic mass transfer parameter (K_a)", which was determined for each subject and found to be highly correlated with V_D, but not with height, weight, age, gender, FVC, or TLC. 7 That is, in all subjects, whether men or women, dosimetry differences could be explained by 8 9 differences in V_D. Based on Hu et al. (1994), where absorbed fraction was determined for several flow rates, Bush et al. (1996a) inferred that K_a was proportional to flow rate/ V_D . The 10 11 investigators point out that the applicability of their results may be limited because of their 12 assumptions that K_a was independent of location in the RT and that there was no mucous resistance. They also suggested that the dependence of K_a on flow rate and V_D be restricted to 13 flow rates <1000 mL/s until studies at higher rates have been performed. 14

15 With flow rates of 150, 250, and 1000 mL/s, Nodelman and Ultman (1999b) used the 16 bolus-response technique to compare the uptake distributions of O₃ and chlorine gas (Cl₂), and to 17 investigate how their uptakes were affected by their physical and chemical properties. Ozone 18 dose to the URT was found to be sensitive to the mode of breathing and to the airflow rate. With 19 increased rate, O₃ retained by the upper airways decreased from 95 to 50% and TB region dose 20 increased from 0 to 35%. At the highest flow rate only 10% of the O_3 reached the pulmonary 21 region. Mass transfer theory indicated that the diffusion resistance of the tissue phase is 22 important for O_3 . The gas phase resistances were found to be the same for O_3 and Cl_2 as 23 expected. These resistances were inversely related to the volumes of the oral and nasal cavities 24 during oral and nasal breathing, respectively.

Ultman et al. (2004) used both bolus and continuous exposures to test the hypotheses that differences in O_3 uptake in lungs are responsible for variation in O_3 -induced changes in lung function parameters and that differences in O_3 uptake are due to variations in breathing patterns and lung anatomy. Thirty-two males and 28 female nonsmokers were exposed to bolus penetration volumes ranging from 10 to 250 ml, which was determined by the timing of the bolus injection. The subjects controlled their breathing to generate a target respired flow of 1000ml/sec. At this high minute ventilation, there was very little uptake in the upper airway and

1 most of the O₃ reached areas where gas exchange takes place. To quantify intersubject 2 differences in O₃ bolus uptake, they measured the penetration volume at which 50% of the O₃ 3 was taken up. Values for penetration volume ranged from 69 to 134 ml and were directly 4 correlated with the subjects' values for anatomic dead space volume. A better correlation was seen when the volume of the upper airways was subtracted. The penetration volume at which 5 6 50% of the bolus was taken up was 90.4 ml in females and 107 ml in males. This significant 7 difference in uptake suggests to the authors that in females the smaller airways, and associated 8 larger surface-to-volume ratio, enhance local O₃ uptake and cause reduced penetration of O₃ into 9 the distal lung. Thus, these findings indicate that overall O₃ uptake is not related to airway size, 10 but that the distribution of O_3 shifts distally as the size of the airway in increased.

11

12 General comment on estimating mass transfer coefficients: Bush et al. (1996b) and Nodelman 13 and Ultman (1999a) used a simple model to analyze their bolus-response data. This model 14 presented by Hu et al. (1992, 1994) assumed steady-state mass transfer by convection (but no 15 dispersion) and the mass transfer of O_3 to the walls of a tube of uniform cross-sectional area. 16 These assumptions led to an analytical solution (for the absorbed fraction) which was a function 17 of an "overall mass transfer coefficient," penetration volume, and airflow rate. As the 18 investigators have shown, the model is very useful for statistical analysis and hypothesis testing. 19 Given the absorbed fraction data, the model overall mass transfer coefficients were estimated for 20 each flow rate. In those bolus-response studies that used this method to analyze data, there was 21 no discussion of the models' "accuracy" in representing mass transfer in the human respiratory 22 tract with respect to omitting dispersion. In addition, the formulation of the gas phase mass 23 transfer coefficient does not take into account that it has a theoretical lower limit greater than 24 zero as the airflow rate goes to zero (Miller et al., 1985; Bush et al., 2001). As a consequence, 25 there is no way to judge the usefulness of the values of the estimated mass transfer coefficients 26 for dosimetry simulations that are based on convection-dispersion equations, or whether or not 27 the simple model's mass transfer coefficients, as well as other parameters derived using these 28 coefficients, are the same as actual physiological parameters.

- 29
- 30

1

AX4.2.2 General Uptake Studies

Rigas et al. (2000) performed an experiment to determine the ratio of O_3 uptake to the quantity of O_3 inhaled (fractional absorption, FA). Five men and five women were exposed orally to 0.2 or 0.4 ppm O_3 while exercising at a minute volume of approximately 20 L/min for 60 minutes or 40 L/min for 30 minutes. Ozone retention was calculated from breath-by-breath data taken from fast response analyzers of O_3 and airflow rates. The FA was statistically analyzed in terms of subject, exposure concentration, minute volume, and exposure time.

Fractional absorption ranged from 0.56 to 0.98 with a mean \pm SD of 0.85 \pm 0.06 for all 8 9 2000 recorded breaths. Intersubject differences had the largest influence on FA, resulting in a 10 variation of approximately 10%. Statistical analysis indicated that concentration, minute 11 volume, and exposure time had statistically significant effects on FA. However, relatively large 12 changes in these variables were estimated to result in relatively small changes in FA. Note: the 13 quantity of O₃ retained by the RT is equal to FA times the quantity of O₃ inhaled; thus, relatively 14 large changes in concentration, minute volume, or exposure time may result in relatively large 15 changes in the amount of O₃ retained by the RT or absorbed locally. Also, according to Overton 16 et al. (1996), difference in PAR dose due to anatomical variability may be considerably larger 17 than corresponding small changes in FA would indicate.

Santiago et al. (2001) studied the effects of airflow rate and O_3 concentration on O_3 uptake in the nasal cavities of three women and seven men. Air was supplied at a constant flow rate to one nostril and exited from the other nostril while the subject kept the velopharyngeal aperture closed by raising the soft palate. Thus, a constant unidirectional flow of air plus O_3 was restricted to the nasal cavities. The fraction of O_3 absorbed was calculated using the inlet and outlet concentrations. Inlet concentration and airflow rate were varied in order to determine their effect on O_3 uptake.

The mean FA decreased from 0.80 to 0.33 with an increase in flow rate from 3 to 15 L/min. The effect of both flow rate and subject on FA was statistically significant. Further analysis indicated that the overall mass transfer coefficient was highly correlated with the flow rate and that the gas phase resistance contributed from 6.3% (15 L/min) to 23% (3 L/min) of the total resistance to O_3 transfer to the nasal cavity surface. Concentration had a small, but statistically significant effect on FA, when the inlet concentration was increased from 0.1 to 0.4 ppm O_{32} FA decreased from 0.36 to 0.32. The investigators observed that differences in FA 1 2 among subjects were important; generally, subject variability accounted for approximately half of the total variation in FA.

3 As mentioned above Ultman et al. (2004) tested hypotheses that differences in O₃ uptake in 4 lungs are responsible for variation in O₃-induced changes in lung function parameters and that differences in O₃ uptake are due to variations in breathing patterns and lung anatomy. Thirty-5 6 two males and 28 female nonsmokers were exposed continuously for 1 h to either clean air or 7 0.25 ppm ozone while exercising at a target minute ventilation of 30 L/min. They first 8 determined the forced expiratory response to clean air, then evaluated O_3 uptake measuring dead space volume, cross-sectional area of peripheral lung (A_p) for CO₂ diffusion, FEV₁, FVC, 9 10 and $\text{FEF}_{25\%-75\%}$. The fractional O₃ uptake efficiency ranged from 0.70 to 0.98, with a mean of 11 0.89 ± 0.06 . They found an inverse correlation between uptake and breathing frequency and a 12 direct correlation between uptake and tidal volume. There was a small, but statistically 13 significant decrease in uptake efficiency during the four sequential 15 minute intervals of the 1 h 14 exposure $(0.906 \pm 0.058 \text{ vs.} 0.873 \pm 0.088)$, first and last interval, respectively), in part due to the 15 increased breathing frequency and decreasing tidal volume occurring over the same period. Ozone uptake rate correlated with individual %A_n, but did not correlate with individual %FEV₁. 16 Neither of these parameters correlated with the penetration volume determined in the bolus 17 18 studies mentioned above. The authors concluded that the intersubject differences in forced 19 respiratory responses were not due to differences in O₃ uptake. However, these data did partially 20 support the second hypothesis, i.e., that the differences in cross-sectional area available for gas 21 diffusion induce differences in O₃ uptake.

- 22
- 23
- 24

AX4.3 DOSIMETRY MODELING

When all of the animal and human in vivo O₃ uptake efficiency data are compared, there is
a good degree of consistency across data sets (U.S. Environmental Protection Agency, 1996).
This agreement raises the level of confidence with which these data sets can be used to support
dosimetric model formulations.

Recent data indicate that the primary site of acute cell injury occurs in the conducting
 airways (Postlethwait et al., 2000). These data must be considered when developing models that
 attempt to predict site-specific locations of O₃-induced injury. The early models computed

relationships between delivered regional dose and response with the assumption that O₃ was the
 active agent responsible for injury. It is now known that reactive intermediates such as

3 hydrohydroxyperoxides and aldehydes are important agents mediating the response to O_3

epithelial lining fluid (ELF) and ELF-derived reactions products.

4 (further discussed in Section 5.3.1). Thus, models must consider O_3 reaction/diffusion in the

5

Table AX4-2 presents a summary of new theoretical studies on the uptake of O₃ by the RTs
(or regions) of humans and laboratory animals that have become available since the 1996 review.
They are discussed below.

Overton and Graham (1995) described the development and simulation results of a
dosimetry model that was applied to a TB region anatomical model that had branching airways,
but which had identical single-path pulmonary units distal to each terminal bronchiole. The
anatomical model of the TB region was based on Raabe et al. (1976), which reported lung cast
data for the TB region of a 330 g rat.

Rat effects data (from the PAR) are available that are identified with the lobe and the
generation in the lobe from which tissue samples were obtained (Pinkerton et al., 1995, 1998).
Models, like Overton et al. (1996), can be helpful in understanding the distribution of the
magnitude of such effects as well as suggesting sampling sites for future experiments.

18 Using computational fluid dynamics (CFD), Cohen-Hubal et al. (1996) explored the effect 19 of the mucus layer thickness in the nasal passage of a rat. The nasal lining was composed of 20 mucus and tissue layers in which mass transfer was by molecular diffusion with first order 21 chemical reaction. Physicochemical parameters for O_3 were obtained from the literature. Three 22 scenarios were considered: 10 µm thick mucus layer, no mucus layer, and two nasal passage 23 regions each with a different mucus layer thickness. Predictions of overall uptake were within 24 the range of measured uptake. Predicted regional O₃ flux was correlated with measured cell 25 proliferation for the CFD simulation that incorporated two regions, each with a different mucus 26 thickness.

The reaction rate constant used by Cohen-Hubal and co-workers may be too low. Using bolus-response data, Hu et al. (1994) and Bush et al. (2001) estimated a reaction rate constant that is more than a 1000 times as large as that used by Cohen-Hubal et al. (1996). A rate constant this large could result in a conclusion different than those based on the smaller constant.

Purpose/Objective	Type of mass transport model/Anatomical model ^b	Species/ RT region of interest/Regional anatomical models	Ventilation and Exposure	Results	Reference
To describe an RT dosimetry model that uses a branching TB region anatomical model and to illustrate the results of its application to a rat exposed to O ₃ .	One-dimensional (along axis of airflow), time-dependent, convection-dispersion equation of mass transport applied to each airway or model segment. URT: single path; TB: asymmetric branching airways. PUL: single path anatomical model distal to each terminal bronchiole.	Rat/ RT/URT: Patra et al. (1987). TB: multiple path model of Raabe et al. (1976). PUL: Mercer et al. (1991).	f = 150 bpm; $V_T = 1.5, 2.0,$ 2.5 mL. One constant concentration.	(1) For $V_T = 2.0$ mL, f = 150 bpm: The general shape of the dose versus generation plot along any path from the trachea to a sac is independent of path: generally the tissue dose decreases with increasing generation index. In the TB region, the coefficient of variation for dose ranges from 0 to 34 %, depending on generation. The maximum ratio of the largest to smallest dose in the same generation is 7; the average ratio being 3. In the first PUL region model segment, the coefficient of variation for the dose is 29 %. (2) The average dose to the first PUL region model segment increases with increasing V_T .	Overton and Graham (1995)
To incorporate into the CFD model of Kimbell et al. (1993) resistance to mass transfer in the nasal lining and to investigate the effects of this lining on O_3 uptake.	Three dimensional steady- state Navier-Stokes equations for solving air velocity flow field. Three dimensional steady-state convection- diffusion equation for O ₃ transport. Three-dimensional CFD model of the nasal passages of a rat.	Rat/nasal passages Nasal passages: Kimbell et al. (1993).	Steady-state unidirectional ("inhalation") flow rate = 576 mL1/min. One constant concentration.	Predictions of overall uptake were within the range of measured uptake. Results suggest that mucus resistance is important for describing O_3 dosimetry and this thickness may play a role for determining patterns of O_3 -induced lesions in the rat nasal passage.	Cohen- Hubal et al. (1996)
To determine if the single-path model is able to simulate bolus inhalation data recorded during oral breathing at quiet respiratory flow.	Single-path, one-dimensional (along axis of airflow), time-dependent, convection- dispersion equation of mass transport. Single-path anatomical model.	Human/ RT/URT (oral): Olson et al. (1973). LRT: Weibel (1963).	$V_T = 500$ mL, f = 15 bpm, constant flow rate = 250 mL/s. Bolus-response simulations. (protocol used is described by Hu et al., 1992).	Simulations are sensitive to conducting airway volume but are relative insensitive to characteristics of the respiratory airspace. Although the gas-phase resistance to lateral diffusion limits O_3 absorption during quiet breathing, diffusion through mucus may become important at the large respiratory flows that are normally associated with exercise. The single-path convection-diffusion model was a reasonable approach /to simulate the bolus-response data.	Bush et al. (1996b)

Table AX4-2. New Ozone Dosimetry Model Investigations^a

Purpose/Objective	Type of mass transport model/Anatomical model ^b	Species/ RT region of interest/Regional anatomical models	Ventilation and Exposure	Results	Reference
To assess age- and gender-specific differences in regional and systemic uptake.	PBPK, at ages 1, 3, 6, months and 1, 5, 10, 15, 25, 50, and 75 years.	Human/ET/TB	Pulmonary ventilation ranged from 34 mL/s (in 1-month-old) to 190 mL/s (in 15-year-old). V _T varied with age	Regional extraction is insensitive to age. Extraction per unit surface area is 2- to 8-fold higher in infants compared to adults. PU and ET regions have a large increase in unit extraction with increasing age. Early postnatal period is time of largest differences in PK, due to immaturity of metabolic enzymes.	Sarangapani et al. (2003)
To examine the impact on predictions due to the value used for the TB region volume at FRC and due to TB region volume change during respiration.	Single-path, one-dimensional (along axis of airflow), time-dependent, convection- dispersion equation of mass transport. Single-path anatomical model.	Human /RT/ URT: Nunn et al. (1959) LRT: Weibel (1963) Rat / RT/ URT: Patra et al. (1987) TB: Yeh et al. (1979) PUL: Mercer et al. (1991)	Human: $V_T = 500$, 2250 mL; f = 15, 30 bpm. Rat: $V_T = 1.4$, 2.4 ml; f = 96, 157 bpm. One constant concentration.	 A better understanding and characterization of the role of TB region expansion (mainly the rat) and volume is important for an improved understanding of respiratory-tract dosimetry modeling of reactive gases. Extrapolations based on dose in the PAR can differ significantly from those based on exposure concentration or total uptake. Human subjects who appear similar outwardly may have very different PAR doses and potentially different responses to the same exposure.(Uptake by the URT was not considered.) 	Overton et al. (1996)
To make parameter modifications so that a single-path model would simulate AF from bolus-response experiments involving O_3 (and Cl_2).	Single-path, one-dimensional (along axis of airflow), time- dependent, convection- dispersion equation of mass transport. Single-path anatomical model.	Human/ RT/URT (oral): Olson et al. (1973). URT (nasal): Olson et al. (1973) and Guilmette et al. (1989) LRT: Weibel (1963).	Oral & nasal breathing. Flow rates = 150, 250, 1000 mL/s, $V_T = 500$ mL. Bolus-response simulations	(Simulation results for O_3 only) (1) Using parameter values from the literature and assuming that absorption was gas-phase controlled, the simulations of O_3 data were realistic at flow rate = 250 mL/s, but not realistic at 1000 mL/s. (2) Accurate simulations at 250 mL/s required modification of mass transfer coefficients reported in the literature for the conducting airways. (3) It was necessary to include a diffusion resistance for the epithelial lining fluid based on an assumed O_3 reaction rate constant that was much greater than in in vitro estimates. (4) Partial validation of the final parameters (determined at 250 mL/s) was obtained by simulations of bolus-response data at flow rates of 150 and 1000 mL/s. Validation was obtained also by simulating internal measurements of O_3 in subjects exposed during quiet breathing.	Bush et al. (2001)

Table AX4-2 (cont'd). New Ozone Dosimetry Model Investigations ^a

^aSee Appendix A for abbreviations and acronyms.

^bThe anatomical models used in an investigation generally differ from those described in the references, e.g., dimensions are often scaled to dimensions appropriate to the dosimetry investigation; or the original structure may be simplified, keeping or scaling the original dimensions.

1 With an RT dosimetry model, Overton et al. (1996) investigated the sensitivity of 2 absorbed fraction (AF), proximal alveolar region (PAR) dose, and PAR dose ratio to TB region 3 volume (V_{TB}) and TB region expansion in human beings and rats. The PAR was defined as the 4 first generation distal to terminal bronchioles and the PAR dose ratio was defined as the ratio of a rat's predicted PAR dose to a human's predicted PAR dose. This ratio relates human and rat 5 6 exposure concentrations so that both species receive the same PAR dose. In rats the PAR is a region of major damage from O_3 . For each species, three literature values of V_{TB} were used: 7 a mean value and the mean \pm twice the SD. The following predictions were obtained: 8

9 (1) The sensitivity of AF and PAR dose to V_{TB} depends on species, ventilation, TB region overall mass transfer coefficient (k_{TB}), and expansion. For $k_{TB} = 0.26$ cm/s and quiet breathing, 10 11 AF was predicted to vary by less than 3% for the ± 2 SD range of V_{TB}. In contrast, the PAR 12 dose predicted for the smallest V_{TB} is five times larger than the PAR dose predicted with the largest V_{TB} . The effect of V_{TB} is much less during heavy exercise: the ratio of maximum to 13 14 minimum PAR dose was approximately 1.5. In any case, the simulations predicted that fractional changes in AF due to different V_{TB} are not, in general, a good predictor of the 15 16 fractional changes in PAR doses.

17 (2) Relative to no expansion in the TB region, expansion decreases both AF and PAR
18 dose. The largest effect of including expansion in the human simulations was to decrease the AF
19 by ≈8%; in rats, the maximum decrease was ≈45%. The PAR doses decreased relatively more,
20 25 and 65% in human beings and rat, respectively.

 $\begin{array}{cccc} & (3) & \text{The authors attempted to obtain an understanding as to uncertainty or variability in} \\ & \text{estimates of exposure concentrations (that give the same PAR dose in both species) if the} \\ & \text{literature mean value of } V_{TB} \text{ was used. For various values of } f, V_T, k_{TB}, \text{ and expansion, the PAR} \\ & \text{dose ratios at upper and lower values of } V_{TB} \text{ deviated in absolute values from the PAR dose ratio} \\ & \text{calculated at the mean values of } V_{TB} \text{ by as little as } 10\% \text{ to as large as } 310\%. \\ & \text{The smallest} \\ & \text{deviation occurred at the largest } V_T \text{ and smallest } k_{TB} \text{ for both species; whereas, the largest} \\ & \text{deviation occurred at the smallest } V_T \text{ and largest } k_{TB} \text{ for both species.} \\ \end{array}$

Bush et al. (2001) modified the single-path model of Bush et al. (1996b) in order to be able to simulate absorbed fraction data for O_3 (and Cl_2 , which is not considered) for three airflow rates and for oral and nasal breathing. By adjusting several parameters a reasonable agreement between predicted and experimental values was obtained. On the other hand, the O_3 plots of the

1 experimental and predicted values of absorbed fraction versus penetration volume (e.g., 2 Figures 4 and 5 of Bush et al., 2001) show sequential groups composed of only positive or only 3 negative residuals, indicating a lack of fit. Possibly adjusting other parameters would eliminate 4 this. To obtain an independent validation of the model, Bush et al. (2001) simulated measurements of O₃ concentrations made by Gerrity et al. (1995) during both inhalation and 5 6 exhalation at four locations between the mouth and the bronchus intermedius of human subjects. 7 Simulated and experimental values obtained are in close agreement. Note, however, that Bush 8 et al. made no quantitative assessment of how well their simulations agreed with the 9 experimental data; assessments were made on the basis of visual inspection of experimental and 10 simulated values plotted on the same figure. Thus, evaluation of the model was, or is, 11 subjective.

12 Recently Sarangapani et al. (2003) used physiologically based pharmacokinetic (PBPK) 13 modeling to characterize age- and gender-specific differences in both regional and systemic uptake of O_3 in humans. This model indicated that regional extraction of O_3 is relatively 14 15 insensitive to age, but extraction per unit surface area is 2- to 8-fold higher in infants compared 16 to adults, due to the region-specific mass transfer coefficient not varying with age. The PU and 17 ET regions have a large increase in unit extraction with increasing age because both regions 18 increase in surface area. Males and females in this model have similar trends in regional 19 extraction and regional unit extraction. In early childhood, dose metrics were as much as 20 12 times higher than adult levels, but these differences leveled out with age, such that inhalation 21 exposures varied little after age 5. These data suggest that the early postnatal period is the time 22 of the largest difference in pharmacokinetics observed, and this difference is primarily due to the 23 immaturity of the metabolic enzymes used to clear O₃ from the respiratory tract.

Mudway and Kelly (2004) attempted to model O₃ dose-inflammatory response using a meta-analysis of 23 exposures in published human chamber studies. The O₃ concentrations ranged from 0.08 to 0.6 ppm and the exposure durations ranged from 60 to 396 minutes. The analysis showed linear relationships between O₃ dose and neutrophilia in bronchoalveolar lavage fluid (BALF). Linear relationships were also observed between O₃ dose and protein leakage into BALF.

- 30
- 31

1 2

AX4.4 SPECIES HOMOLOGY, SENSITIVITY AND ANIMAL-TO-HUMAN EXTRAPOLATION

3 Biochemical differences among species are becoming increasingly apparent and these 4 differences may factor into a species' susceptibility to the effects of O_3 exposure. Lee et al. 5 (1998) compared SD rats and rhesus monkeys to ascertain species differences in the various 6 isoforms of CYP moonoxygenases in response to O₃ exposure (discussed in more detail in 7 Section 5.3.1.2). Differences in activities between rat and monkey were 2- to 10-fold, depending 8 on the isoform and the specific lung region assayed. This study supports the view that 9 differential expression of CYPs is a key factor in determining the toxicity of O₃. As further 10 characterization of species- and region-specific CYP enzymes occurs, a greater understanding of 11 the differences in response may allow more accurate extrapolation from animal exposures to 12 human exposures and toxic effects.

Arsalane et al. (1995) compared guinea pig and human AM recovered in BALF and
subsequently exposed in vitro to 0.1 to 1 ppm for 60 minutes. Measurement of inflammatory
cytokines showed a peak at 0.4 ppm in both species. Guinea pig AM had an increase in IL-6 and
TNF-α while human AM had increases in TNF-α, IL-1b, IL-6 and IL-8. This exposure also
caused an increase in mRNA expression for TNF-α, IL-1b, IL-6 and IL-8 in human cells.
At 0.1 ppm exposures, only TNF-α secretion was increased. These data suggest similar cytokine
responses in guinea pigs and humans, both qualitatively and quantitatively.

20 Dormans et al. (1999) continuously exposed rats, mice, male guinea pigs to filtered air, 21 0.2, or 0.4 ppm O_3 for 3 to 56 days or for 28 days to follow recovery at 3, 7, and 28 days PE. 22 Depending on the endpoint studied, the species varied in sensitivity. Greater sensitivity was 23 shown in the mouse as determined by biochemical endpoints, persistence of bronchiolar 24 epithelial hypertrophy, and recovery time. Guinea pigs were more sensitive in terms of the 25 inflammatory response though all three species had increases in the inflammatory response after 26 three days that did not decrease with exposure. In all species the longest exposure to the highest 27 dose caused increased collagen in ductal septa and large lamellar bodies in Type II cells, but that 28 response also occurred in rats and guinea pigs at 0.2 ppm. No fibrosis was seen at the shorter 29 exposure times and the authors question whether fibrosis occurs in healthy humans after 30 continuous exposure. The authors do not rule out the possibility that some of these differences

1

may be attributable to differences in total inhaled dose or dose actually reaching a target site.

Overall, the authors rated mice as most susceptible, followed by guinea pigs and rats.

2

Comparisons of airway effects in rats, monkeys and ferrets resulting from exposures of 1.0 ppm O_3 for 8 h (Sterner-Kock et al. 2000) demonstrated that monkeys and ferrets had a similar inflammatory responses and epithelial necrosis. The response of these two species was more severe than that seen in rats. These data suggest that ferrets are a good animal model for O_3 -induced airway effects due to the similarities in pulmonary structure between primates and ferrets.

9 The rat is a key species used in O₃ toxicological studies, but Watkinson and Gordon, 10 (1993) suggest that, because the rat has both behavioral and physiological mechanisms that can 11 lower core temperature in response to acute exposures, extrapolation of these exposure data to 12 humans may be limited. Another laboratory (Iwasaki et al., 1998) has demonstrated both 13 cardiovascular and thermoregulatory responses to O₃ at exposure to 0.1, 0.3, and 0.5 ppm O₃ 8 h/day for 4 consecutive days. A dose-dependent disruption of HR and T_{co} were seen on the 14 15 first and second days of exposure, which then recovered to control values. Watkinson et al. 16 (2003) exposed rats to 0.5 ppm O_3 and observed this hypothermic response which included lowered HR, lowered T_{co}, and increased inflammatory components in BALF. The authors 17 18 suggest that the response is an inherent reflexive pattern that can possibly attenuate O₃ toxicity in rodents. They discuss the cascade of effects created by decreases in T_{co} , which include: 19 20 (1) lowered metabolic rate, (2) altered enzyme kinetics, (3) altered membrane function, 21 (4) decreased oxygen consumption and demand, (5) reductions in minute ventilation, which 22 would act to limit the dose of O₃ delivered to the lungs. These effects are concurrent with 23 changes in HR which lead to: (1) decreased CO, (2) lowered BP, (3) decreased tissue perfusion, 24 all of which may lead to functional deficits. The hypothermic response has not been observed in 25 humans except at very high exposures.

26

REFERENCES

- Arsalane, K.; Gosset, P.; Vanhee, D.; Voisin, C.; Hamid, Q.; Tonnel, A.-B.; Wallaert, B. (1995) Ozone stimulates synthesis of inflammatory cytokines by alveolar macrophages *in vitro*. Am. J. Respir. Cell Mol. Biol. 13: 60-68.
- Asplund, P. T.; Ben-Jebria, A.; Rigas, M. L.; Ultman, J. S. (1996) Longitudinal distribution of ozone absorption in the lung: effect of continuous inhalation exposure. Arch. Environ. Health 51: 431-438.
- Bush, M. L.; Asplund, P. T.; Miles, K. A.; Ben-Jebria, A.; Ultman, J. S. (1996a) Longitudinal distribution of O₃ absorption in the lung: gender differences and intersubject variability. J. Appl. Physiol. 81: 1651-1657.
- Bush, M. L.; Raybold, T.; Abeles, S.; Hu, S.-C.; Ben-Jebria, A.; Ultman, J. S. (1996b) Longitudinal distribution of ozone absorption in the lung: simulation with a single-path model. Toxicol. Appl. Pharmacol. 140: 219-226.
- Bush, M. L.; Zhang, W.; Ben-Jebria, A.; Ultman, J. S. (2001) Longitudinal distribution of ozone and chlorine in the human respiratory tract: simulation of nasal and oral breathing with the single-path diffusion model. Toxicol. Appl. Pharmacol. 173: 137-145.
- Cohen-Hubal, E. A.; Kimbell, J. S.; Fedkiw, P. S. (1996) Incorporation of nasal-lining mass-transfer resistance into a CFD model for prediction of ozone dosimetry in the upper respiratory tract. Inhalation Toxicol. 8: 831-857.
- Dahl, A. R. (1990) Dose concepts for inhaled vapors and gases. Toxicol. Appl. Pharmacol. 103: 185-197.
- Dormans, J. A. M. A.; Van Bree, L.; Boere, A. J. F.; Marra, M.; Rombout, P. J. A. (1999) Interspecies differences in time course of pulmonary toxicity following repeated exposure to ozone. Inhalation Toxicol. 11: 309-329.
- Gerrity, T. R.; Biscardi, F.; Strong, A.; Garlington, A. R.; Brown, J. S.; Bromberg, P. A. (1995) Bronchoscopic determination of ozone uptake in humans. J. Appl. Physiol. 79: 852-860.
- Guilmette, R. A.; Wicks, J. D.; Wolff, R. K. (1989) Morphometry of human nasal airways *in vivo* using magnetic resonance imaging. J. Aerosol. Med. 2: 365-377.
- Hu, S. C.; Ben-Jebria, A.; Ultman, J. S. (1992) Longitudinal distribution of ozone absorption in the lung: quiet respiration in healthy subjects. J. Appl. Physiol. 73: 1655-1667.
- Hu, S.-C.; Ben-Jebria, A.; Ultman, J. S. (1994) Longitudinal distribution of ozone absorption in the lung: effects of respiratory flow. J. Appl. Physiol. 77: 574-583.
- Iwasaki, T.; Takahashi, M.; Saito, H.; Arito, H. (1998) Adaptation of extrapulmonary responses to ozone exposure in conscious rats. Ind. Health 36: 57-60.
- Kimbell, J. S.; Gross, E. A.; Joyner, D. R.; Godo, M. N.; Morgan, K. T. (1993) Application of computational fluid dynamics to regional dosimetry of inhaled chemicals in the upper respiratory tract of the rat. Toxicol. Appl. Pharmacol. 121: 253-263.
- Lee, C.; Watt, K. C.; Chang, A. M.; Plopper, C. G.; Buckpitt, A. R.; Pinkerton, K. E. (1998) Site-selective differences in cytochrome P450 isoform activities: comparison of expression in rat and rhesus monkey lung and induction in rats. Drug Metab. Dispos. 26: 396-400.
- Mercer, R. R.; Anjilvel, S.; Miller, F. J.; Crapo, J. D. (1991) Inhomogeneity of ventilatory unit volume and its effects on reactive gas uptake. J. Appl. Physiol. 70: 2193-2205.
- Miller, F. J. (1995) Uptake and fate of ozone in the respiratory tract. Toxicol. Lett. 82/83: 277-285.
- Miller, F. J.; Overton, J. H., Jr.; Jaskot, R. H.; Menzel, D. B. (1985) A model of the regional uptake of gaseous pollutants in the lung: I. the sensitivity of the uptake of ozone in the human lung to lower respiratory tract secretions and exercise. Toxicol. Appl. Pharmacol. 79: 11-27.
- Mudway, I. S.; Kelly, F. J. (2004) An investigation of inhaled ozone dose and the magnitude of airway inflammation in healthy adults. Am. J. Respir. Crit. Care Med. 169: 1089-1095.
- Nodelman, V.; Ultman, J. S. (1999a) Longitudinal distribution of chlorine absorption in human airways: comparison of nasal and oral quiet breathing. J. Appl. Physiol. 86: 1984-1993.
- Nodelman, V.; Ultman, J. S. (1999b) Longitudinal distribution of chlorine absorption in human airways: a comparison to ozone absorption. J. Appl. Physiol. 87: 2073-2080.
- Nunn, J. F.; Campbell, E. J. M.; Peckett, B. W. (1959) Anatomical subdivisions of the volume of respiratory dead space and the effect of position of the jaw. J. Appl. Physiol. 14: 174-176.
- Olson, D. E.; Sudlow, M. F.; Horsfield, K.; Filley, G. F. (1973) Convective patterns of flow during inspiration. Arch. Intern. Med. 131: 51-57.
- Overton, J. H.; Graham, R. C. (1995) Simulation of the uptake of a reactive gas in a rat respiratory tract model with an asymmetric tracheobronchial region patterned on complete conducting airway cast data. Comput. Biomed. Res. 28: 171-190.

1

- Overton, J. H.; Graham, R. C.; Menache, M. G.; Mercer, R. R.; Miller, F. J. (1996) Influence of tracheobronchial region expansion and volume on reactive gas uptake and interspecies dose extrapolations. Inhalation Toxicol. 8: 723-745.
- Patra, A. L.; Ménache, M. G.; Shaka, N. B.; Gooya, A. (1987) A morphometric study of nasal-pharyngeal growth for particle deposition in the rat. Am. Ind. Hvg. Assoc. J. 48: 556-562.
- Pinkerton, K. E.; Menache, M. G.; Plopper, C. G. (1995) Consequences of prolonged inhalation of ozone on F344/N rats: collaborative studies. Part IX. Changes in the tracheobronchial epithelium, pulmonary acinus, and lung antioxidant enzyme activity. Cambridge, MA: Health Effects Institute; pp. 41-98; research report no. 65. Available from: NTIS, Springfield, VA; PB95-261996.
- Pinkerton, K. E.; Weller, B. L.; Menache, M. G.; Plopper, C. G. (1998) Consequences of prolonged inhalation of ozone on F344/N rats: collaborative studies. Part XIII. A comparison of changes in the tracheobronchial epithelium and pulmonary acinus in male rats at 3 and 20 months. Cambridge, MA: Health Effects Institute; research report no. 65.
- Postlethwait, E. M.; Joad, J. P.; Hyde, D. M.; Schelegle, E. S.; Bric, J. M.; Weir, A. J.; Putney, L. F.; Wong, V. J.; Velsor, L. W.; Plopper, C. G. (2000) Three-dimensional mapping of ozone-induced acute cytotoxicity in tracheobronchial airways of isolated perfused rat lung. Am. J. Respir. Cell Mol. Biol. 22: 191-199.
- Raabe, O. G.; Yeh, H. C.; Schum, G. M.; Phalen, R. F. (1976) Tracheobronchial geometry: human, dog, rat, hamster. Albuquerque, NM: Lovelace Foundation; report no. LF-53.
- Rigas, M. L.; Ben-Jebria, A.; Ultman, J. S. (1997) Longitudinal distribution of ozone absorption in the lung: effects of nitrogen dioxide, sulfur dioxide, and ozone exposures. Arch. Environ. Health 52: 173-178.
- Rigas, M. L.; Catlin, S. N.; Ben-Jebria, A.; Ultman, J. S. (2000) Ozone uptake in the intact human respiratory tract: relationship between inhaled dose and actual dose. J. Appl. Physiol. 88: 2015-2022.
- Santiago, L. Y.; Hann, M. C.; Ben-Jebria, A.; Ultman, J. S. (2001) Ozone adsorption in the human nose during unidirectional airflow. J. Appl. Physiol. 91: 725-732.
- Sarangapani, R.; Gentry, P. R.; Covington, T. R.; Teeguarden, J. G.; Clewell, H. J., III. (2003) Evaluation of the potential impact of age- and gender-specific lung morphology and ventilation rate on the dosimetry of vapors. Inhalation Toxicol. 15: 987-1016.
- Sterner-Kock, A.; Kock, M.; Braun, R.; Hyde, D. M. (2000) Ozone-induced epithelial injury in the ferret is similar to nonhuman primates. Am. J. Respir. Crit. Care Med. 162: 1152-1156.
- Ultman, J. S.; Ben-Jebria, A.; Arnold, S. F. (2004) Uptake distribution of ozone in human lungs: intersubject variability in physiologic response. Boston, MA: Health Effects Institute; research report no. 125. Available: http://www.healtheffects.org/Pubs/Ultman.pdf [29 July, 2005].
- U.S. Environmental Protection Agency. (1996) Air quality criteria for ozone and related photochemical oxidants. Research Triangle Park, NC: Office of Research and Development; report nos. EPA/600/AP-93/004aF-cF. 3v. Available from: NTIS, Springfield, VA; PB96-185582, PB96-185590, and PB96-185608. Available online at: www.epa.gov/ncea/ozone.htm.
- Watkinson, W. P.; Gordon, C. J. (1993) Caveats regarding the use of the laboratory rat as a model for acute toxicological studies: modulation of the toxic response via physiological and behavioral mechanisms. Toxicology 81: 15-31.
- Watkinson, W. P.; Campen, M. J.; Wichers, L. B.; Nolan, J. P.; Costa, D. L. (2003) Cardiac and thermoregulatory responses to inhaled pollutants in healthy and compromised rodents: modulation via interaction with environmental factors. Environ. Res. 92: 35-47.
- Weibel, E. R. (1963) Morphometry of the human lung. New York, NY: Academic Press Inc.
- Yeh, H. C.; Schum, G. M.; Duggan, M. T. (1979) Anatomic models of the tracheobronchial and pulmonary regions of the rat. Anat. Rec. 195: 483-492.

AX5. ANNEX TO CHAPTER 5 OF OZONE AQCD

Concentration ppm	Duration	Species	Effects	Reference
0.22	4 h with exercise	Rat, male, SD, 90 days old, 300-330 g, n = 6/group	Demonstrated the ozonation of PUFA to form nonanal and hexanal in rat BALF. Increases in nonanal not accompanied by significant changes in lung function, epithelial permeability, or airway inflammation. Hexanal levels did not increase significantly. Levels of both aldehydes returned to baseline by 18 h PE.	Frampton et al. (1999)
0.5 - 10 both with and without 5% CO_2	1 h	Rat, male, SD, 90 days old, 300-330 g, n = 6-14/group	O_3 plus CO_2 increased the V_T and the yield of aldehydes with a maximal aldehyde yield at 2.5 ppm for 1 h. 0.5 ppm O_3 with 5% CO_2 , levels of hexanal and nonanal increased at 30 minutes, decreased slightly from that level at 60 minutes, was maximal at 90 minutes and then dropped to 60 minutes levels at 120 minutes. Levels of heptanal did not change appreciably during this time course. Suggests that levels of these aldehydes were dependent on a dynamic relationship between their production and the disappearance from the ELF.	Pryor et al. (1996)
0.25 - 1.0	30-60 min	Rat, male, SD, 250-275 g, n = 3-5/group 3 model systems:isolated epithelial lining fluid, intact lung, and liposome suspensions	PUFAs directly react with O ₃ . The amount of bioactive lipids produced is inversely related to AA availability.	Postlethwait et al. (1998)
0.3 - 1.1	Chemical systems: 15-10 min. Cell: 1-2 h	Interfacial films (dipalmitoylglycero-3- phosphocholine (DPPC));Rat, SD BALF; human lung fibroblast cell line	DPPC films: reduced O_3 reactive absorption by antioxidants. Human lung fibroblast cell line: AA produced cell injury; high levels of O_3 and AA were needed to induce cell injury; the DPPC films reduced the amount of cell injury. Suggests that O_3 reactions with ELF substrates cause cell injury; that films of active, saturated phospholipids reduce the local dose of O_3 -derived reaction products; and that these interfacial phospholipids modulate the distribution of inhaled O_3 and the extent of site-specific cell injury.	Connor et al. (2004)
0.4	1 h with exercise	Human AM	Ozone exposure caused apoptosis, an increase in a 32-kDa protein adduct, and an increase in ferritin and a 72-kDa heat shock protein. Exposure of AM to HNE replicated these effects suggesting that creation of protein adducts and apoptotic cell death are cellular toxic effects of acute O_3 exposure and that they are mediated, at least in part by HNE.	Hamilton et al. (1998)

Table AX5-1. Cellular Targets of Ozone Interaction

Concentration ppm	Duration	Species	Effects	Reference
1.0	8 h	Rat, male, SD, 350-600 g,	Increases CYP2E1 activity in lobar-bronchi and major daughter airway with 8 h exposure. Decreased CYP2E1 activities in both major and minor	Watt et al. (1998)
1.0	90 days	n = 3-6/group	daughter airways with 90 day exposure. O_3 does not result in consistent dramatic alterations in CYP2E1 activities.	. ,
0.8	8 h / day for 90 days	Rat, male, SD, 275-300 g	CYP2B activity increased. Linked to Clara cells in distal lung only—not in trachea or proximal airway.	Paige et al. (2000a)
1	2 h	Mice, male, 2-3 months old, Clara Cell Secretory Protein deficient, WT strain 129 n = 3/group	CCSP-<-mice had increases in IL-6 and MT mRNA that preceded decreases in Clara cell CYP2F2 mRNA. WT mice had levels change, but to a lesser degree.	Mango et al (1998)
NA		Rat, male, SD, adult monkey, Rhesus, 0.75 to 9.7 years old	Microdissection for regiospecific and species-specific differences in isoforms of CYPs. Rat parenchyma: both CYP1A1 and CYP2B were highest. Rat airways: CYP2E1 was highest. Rat airways and parenchyma: P450 reductase activities were high, and conversely, low in trachea. Monkeys: did not exhibit site-selective differences in CYP2B1, CYP1A1, or P450 reductase; however, they had high CYP2E1 activity in parenchyma and distal bronchioles.	Lee et al. (1998)

Table AX5-2. Effects of Ozone on Lung Monooxygenases

CYP = Cytochrome P-450 WT = wild-type MT = metallothionein CCSP = Clara Cell Secretory Protein

Table AX5-3. Antioxidants	, Antioxidant Metabolism	, and Mitochondrial (D xygen Consumption

Concentration ppm	Duration	Species	Effects	Reference
1.0	6 h/day, 5 days/week for 2 or 3 mo.	Rat, male Fischer F344, 30-32 days old, n = 4	Immunohistochemistry and immunogold labeling studies. In epithelial cells in airways and parenchyma: reduced Cu-Zn SOD labeling with O_3 -exposure. In the CAR regions, in both AMs and Type II epithelial cells: significantly increased levels of Mn SOD. Mn SOD levels were not increased in Type I epithelial cells, fibroblasts, or Clara cells. Suggests that the increased levels of Mn SOD in Type II cells in the proximal alveolar duct confer tolerance and protection from further O_3 -induced injury.	Weller et al. (1997)
0.2	6 h	Dog, male, mongrel, ~/9 kg, n = 6/group	Blocking antioxidant transport with probenecid caused heterogeneously distributed increases in peripheral airway resistance and reactivity. Probenecid inhibited O_3 -induced neutrophilic inflammation, which is evidence of a dissociation between airway function and inflammation. Probenecid caused a 50-60% decrease in plasma urate, a decrease in ascorbate, and a decrease in BALF protein. Suggests probenecid has either a direct or indirect effect on either cytokine or leukotriene transport.	Freed et al. (1999)
0, 0.1, 0.25, 0.5, 1.0 or 1.5	30-720 min	Model of continually mixed, interfacial exposure	Modeled the interactions of O_3 with three ELF antioxidants, AA, UA and GSH. Ranking of reactivity with O_3 was UA > AA > GSH. Antioxidants caused no changes in sample pH and protein carbonyl formations. Consumption of the antioxidants occurred in a linear fashion with time and a positive relationship to O_3 concentration. Suggests that GSH is not an important substrate for O_3 ; UA appeared to be the most important substrate.	Mudway and Kelly (1998)

Mn = Manganese SOD = Superoxide Dismutase AM = Alveolar Macrophage BALF = Bronchoalveolar Lavage Fluid AA = Ascorbic Acid

UA = Uric Acid

GSH = Reduced Glutathione

Concentration ppm	Duration	Species/Cell Line	Effects	Reference
NA	60 min	Cultured human epithelial cells (BEAS-2B)	Incubation with $10 \ \mu$ M lipid oxidation products caused significant release of arachidonic acid. Suggests that lipid oxidation products cause activation of specific lipases, which then trigger the activation of second messenger pathways (e.g., phospholipase A ₂ or phospholipase C).	Pryor et al. (1995)
NA		Cultured human bronchial epithelial cells (NHBE) and BEAS-2B cells	Incubation with lipid ozonation product 1-palmitoyl-2-(9-oxononanoyl)-sn-glycero-3-phosphocholine (PC-ALF) and 1-hydroxy-1-hydroperoxynonane (HHP-C9). PC-ALF elicited release of (PAF) and prostaglandin E2, but not IL-6. HHP-C9 caused release of PAF and IL-6 in these cells, but not prostaglandin E2. Suggests that O_3 -induced production of lipid ozonation products causes release of proinflammatory mediators that then generate an early inflammatory response.	Kafoury et al. (1999)
0.06, 0.125, and 0.25 ppm	2 to 48 h	Lung (calf surfactant)	Dose- and time-dependent increase in the formation of 1-palmitoyl-2-(9'-oxo-nonanoyl)-glycerophosphocholine (16:0a/9-al-GPCho), an oxidized phospholipid, which possessed biological activity in three assays. The 16:0a/9-al-GPCho: (1) decreased macrophage viability by necrosis at 6 μM, (2) induced apoptosis in pulmonary epithelial-like A549 cells at 100-200 μM, and (3) elicited release of IL-8 from A549 cells at 50-100 μM.	Uhlson et al. (2002)
0.8	30 min	Human red blood cell (RBC) model	Human RBCs intermittently covered by an aqueous film consisting of rat BALF or BALF plus added reagents that included AA, UA, GSH, Trolox (a vitamin E analog), SOD, catalase, desferrioxamine, deithylenetriaminepentaacectic acid, mannitol or BSA. Oxidation of lipids in BALF or on membranes was assayed by measuring TBARS accumulation and loss of acetylcholinesterase activity. AA and GSH induced dose-dependent oxidative damage to the cell membrane proteins and lipids via secondary oxidant formation. Conclusion: early in O ₃ exposure, ELF antioxidants are high enough to drive reactive absorption of O ₃ into the ELF and to concurrently quench secondary reaction products, thus limiting cell injury. With continued exposure, O ₃ flux would decrease, cellular injury would increase due to depleted antioxidants levels. They hypothesize that especially in areas where O ₃ deposition is high, unreacted O ₃ and cytotoxic products can diffuse to the cell membranes, causing injury.	Ballinger et a (2005)

Concentration ppm	Duration	Species/Cell Line	Effects	Reference
2.0	4 h	Rat BALF exposed to O_3 in vitro.	The major reaction products identified were 5-hydroperoxy- <i>B</i> -homo-6-oxa-cholestan-3,7a-diol, 5β,6β-epoxycholesterol, and 3β-hydroxy-50x0-5,6-seco-cholestan-6-al.	Pulfer and Murphy (2004)
0.2, 0.5, or 1.0	1 h	Cultured human bronchial epithelial cells (16-HBE)	Extracted lipid reaction products either immediately or 24 h PE. Higher levels of 5β , 6β -epoxycholesterol were recovered in the extract immediately PE. Both 5β , 6β -epoxycholesterol and its most abundant metabolite, cholestan-6-oxo- 3β , 5α -diol, were cytotoxic to 16-HBE cells at physiologically relevant concentrations. Both reaction products were also shown to be potent inhibitors of cholesterol synthesis.	
0.5, 1.0, 2.0, or 3.0	3 h	Mice, C57BL/6J, 8-12 week old female. n = 4	In BALF, lavaged cells, and whole lung homogenate there was a dose-dependent increase in formation cholestan-6-oxo- 3β , 5α -diol at exposure levels of 0.5, 1.0 and 2.0 ppm O ₃ , respectively. In BALF and lavaged cells O ₃ induced increases in 5β , 6β -epoxycholesterol at exposure levels of 0.5 and 1.0, respectively.	Pulfer et al. (2005)

Table AX5-4 (cont'd). Lipid Metabolism and Content of the Lung

PAF = Platelet-Activating Factor RBC= Red Blood Cell AA = Ascorbic Acid GSH = Reduced Glutathione IL-6 = Interleukin-6 IL-8 = Interleukin-8 ELF = Epithelial Lining Fluid BALF = Bronchoalveolar Lavage Fluid BSA - Bovine Serum Albumin

TBARS = thiobarbituric acid

UA = Uric Acid

Concentration ppm	Duration	Species	Effects	Reference
0.4	1,3,7,28, or 56 days	Rat, male, Wistar, 200 g, n = 5/group	Centriacinar thickening of septa after 7 days of exposure, which progressed at 28 and 56 days of exposure. After 28 days of O_3 , the increase in collagen content in ductular septa was apparent and it increased progressively until the 56 daytime point. Collagen content decreased with PE recovery, the structural fibrotic changes in ductular septa did not return to control levels. Respiratory bronchioles were present at an increasing degree, which persisted after an 80-day recovery period. Suggests that subchronic O_3 exposures in rats creates a progression of structural lung injury that can evolve into a more chronic form, which included fibrosis.	van Bree et al (2001)

Concentration ppm	Duration	Species	Effects	Reference
1	8 hours for three consecutive nights	Mice, C57BL/6, 20-25 g, n = 5-6/group	Ozone exposure induced changes in expression of 260 genes (80% repressed and 20% induced). Cell cycle genes upregulated: <i>S</i> -adenosyl methionine decarboxylase 3, ribonucleotide reductase, and clusterin. NF- κ B-induced genes upregulated: serum amyloid protein, topoisomerase II α , monocyte chemoattractant protein, platelet-derived growth factor, and inhibitor of apoptosis. Downregulation of transcripts for isoforms of myosins and actins. CYP family genes downregulated:2a4,and 2e1, and 2f2, as were aryl-hydrocarbon receptor and several glutathione transferases. Metallothionein 1 and 2 and lactotransferrin upregulated. Major histocompatibility complex genes and lymphocyte specific proteins downregulated.	Gohil et al. (2003)

 Table AX5-6. Effects of Ozone on Differential Gene Expression

Concentration ppm	Duration	Species	Effects	Reference
Microbiologic End	points			
0.1, 0.3	4 h/day, 5 days/week, 1 or 3 weeks	Rat, male, Fischer F344, 200-250 g	No effect on cumulative mortality from subsequent lung infection with $4-8 \times 10^6$ <i>Listeria monocytogenes</i> , but concentration-related effects on morbidity onset and persistence. One-week exposed rats: listeric burdens trended higher than in controls; 0.3 ppm rats displayed continual burden increases and no onset of resolution; in situ IL-1 α , TNF α , and IFN γ levels 48 and 96 h post-infection (4 × 10 ⁶ level) higher than controls. Three-week exposed rats: no O ₃ -related change in bacterial clearance; IL-1 α , TNF α , and IFN γ levels higher than control only at 48 h post-infection (4 × 10 ⁶) and only with 0.3 ppm rats.	Cohen et al. (2001, 2002)
0.8	3 h	Rat, male, Fischer F344, 8 weeks old, n = 4-10/group	Single exposure to <i>S. zooepidemicus</i> led to differential clearance patterns in exposed rats maintained on <i>ad libitum</i> or O_3 -mitigating calorie-restricted diets.	Dong et al. (1998)
Clearance Endpoin	nts (Non-Microbial)		
0.01 -1.0	10 min	Rat, SD	Single 10 min exposure of tracheal explants, followed by 1 h incubation with particles, led to dose-related increases in uptake of amosite asbestos and titanium dioxide particles. Effect inhibited by added catalase or desferoxamine, but not by superoxide dismutase.	Churg et al. (1996)
0.4	6 h	Dog, male, mixed breed, 1-3 years old, n = 7/group	Increased tracheal permeability to 99m Tc-DTPA after direct sublobar exposure to O ₃ . Clearance halftimes remained significantly lower for 1-7 d PE, but recovered by 14 days PE.	Foster and Freed (1999)
Alveolar Macropha	age Endpoints (Ge	neral)		
0.8	3 h	Rat, male, SD, 250-275 g, n = 5-6/group	Increased ex vivo AM adherence to epithelial cultures mitigated by cell pretreatment with anti-CD11b or anti-ICAM-1 antibodies.	Bhalla (1996)
0.8	3 h	Rat, male, SD, 250-300 g, n = 5/group	Increased ex vivo AM adherence to epithelial cell cultures mitigated by cell pretreatment with anti-TNF α /IL-1 α antibodies.	Pearson and Bhalla (1997)
1.0	4 h	Mice cell line (WEH1-3)	Increased intracellular calcium resting levels in WEHI-3 cells. Decreased rates of calcium influx due to digitonin.	Cohen et al. (1996)

Table AX5-7. Effects of Ozone on Lung Host Defenses

Concentration ppm	Duration	Species	Effects	Reference
Alveolar Macroph	age Endpoints (Fu	nctional)		
0.1, 0.3	4 h/day, 5 days/week, 1 or 3 weeks	Rat, male, Fischer F344, 200-250 g	Superoxide anion: increased AM production (1 week; 0.1, 0.3 ppm); no intergroup differences noted after IFN γ stimulation. H ₂ O ₂ : reduced production (1 week; 0.1, 0.3 ppm); further reduced production after treatment with IFN γ (0.1, 0.3 ppm, 1 and 3 weeks).	Cohen et al. (2001)
0.1, 0.3	4 h/day, 5 days/week, 1 or 3 weeks	Rat, male, Fischer F344, 200-250 g	Increased AM superoxide anion production (1 week; 0.1, 0.3 ppm), Lower H_2O_2 production (1 week; 0.1, 0.3 ppm). Reduced production after treatment with IFN γ - superoxide (0.3 ppm, 1 week) and H_2O_2 (0.1 ppm, 1 week) - relative to cells without IFN γ treatment. No effects from 3-week exposures.	Cohen et al. (2002)
0.3	5 h/day, 5 days/week, 4 weeks	Rat, male, Fischer F344, 200-250 g, n = 10/group	No effect on AM endotoxin-stimulated IL-1 α , IL-6, or TNF α production. Decrease in stimulated, but not spontaneous, superoxide formation; variable effects on H ₂ O ₂ formation. No effect on AM spontaneous, endotoxin-, or IFN γ -stimulated, NO formation.	Cohen et al. (1998)
0.8	3 h	Rat, male, SD, 250- 275 g, n = 5-6/group	Increased AM motility in response to chemotaxin; effect mitigated by cell pretreatment with anti-CD11b or anti-ICAM-1 antibodies.	Bhalla (1996
0.8	3 h	Rat, male, Fischer F344, 8 weeks old, n = 4-10/group	Decrease in AM phagocytic activity.	Dong et al. (1998)
0.8	3 h	Mice, female, (B6J129SV) (C57/BL6X 129 NOS ^{-/-}), 8-16 weeks old, n = 3-12/group	Increased AM spontaneous and IFN γ + LPS-induced NOS expression and NO production and PGE ₂ release. Initial decrease in ROI production, with eventual rebound. Knockout (NOS ^{-/-}) mice AM incapable of similar response to O ₃ – no inducible NO or PGE ₂ above control levels and consistent decreased ROI production.	Fakhrzadeh et al. (2002)
1.0	24 h/day, 3 days	Rat, male, Wistar, 8-12 weeks,	BALF from exposed rats subsequently inhibited IFNγ-induced AM NO production.	Koike et al. (1998, 1999)

Table AX5-7 (cont'd). Effects of Ozone on Lung Host Defenses

Concentration ppm	Duration	Species	Effects	Reference
Cytokines, Chemo	kines: Production	, Binding, and Inducible E	ndpoints	
0.1, 0.3	4 h/day, 5 days/week, 1 or 3 weeks	Rat, male, Fischer F344, 200-250 g,	Superoxide anion: no intergroup differences noted after IFN γ stimulation. H ₂ O ₂ : reduced production after treatment with IFN γ .	Cohen et al. (2001)
0.1, 0.3	4 h/day, 5 days/week, 1 or 3 weeks	Rat, male, Fischer F344, 200-250 g, n = 3-5/group	Decreased expression of CD3 among lung lymphocytes (0.1 ppm only; 3 weeks); effect exacerbated by stimulation with IFN α (but not with IL-1 α). Decreased expression of CD25 (IL-2R) on CD3 ⁺ lymphocytes (0.3 ppm only; 3 weeks); effect worsened by treatment with IL-1 α (0.1, 0.3 ppm; 3 weeks). No effects on IL-2-inducible lympho- proliferation. Reduced AM production of ROIs after treatment with IFN γ ; superoxide anion (0.3 ppm, 1 week) and H ₂ O ₂ (0.1 ppm, 1 week) - relative to untreated cells.	Cohen et al. (2002)
0.3	5 h/day, 5 days/week, 4 weeks	Rat, male, Fischer F344, 200-250 g, n = 10/group	No effect on AM endotoxin-stimulated IL-1 α , IL-6, or TNF α production.	Cohen et al. (1998)
0.3 1.0	24 or 96 h 1, 2, or 4 h,	Mice, male, C57Bl/6J, adult, n = 3/group	0.3 ppm: Increased lung: MIP-2, MCP-1, and eotaxin mRNA expression.	Johnston et al (1999a)
2.5	or 24 h		1.0 ppm: After 4 h, increased lung: MIP-2, MCP-1, eotaxin, and IL-6 mRNA expression.	
			2.5 ppm: After 2 h, increased lung: MIP-2, MCP-1, eotaxin, and IL-6 mRNA expression.	
			No exposure-related increases in lung IL-1 α , IL-1 β , IL-1R α , IL-10, IL-12, or IFN γ mRNA expression.	
1.0	4 h	Mice cell line (WEH1-3)	Decreased binding of IFN γ by WEHI-3 cells. Decreased superoxide anion production by IFN γ -treated cells; no similar effect on H ₂ O ₂ production. Decreased IFN γ -stimulated phagocytic activity. No effect on IFN γ -inducible Ia (MHC Class II) antigen expression.	Cohen et al. (1996)
1.0	6 h	Rat, male, SD, 200-250 g, n = 3-6/group	Increased AM MIP-1 α , CINC, TNF α , and IL-1 β mRNA expression. Induced increase in MIP-1 α and CINC mRNA temporally inhibited by cell treatment with anti-TNF α /IL-1 β antibodies.	Ishii et al. (1997)

Concentration ppm	Duration	Species	Effects	Reference
Cytokines, Chemo	kines: Productio	n, Binding, and Inducible Er	ndpoints (cont'd)	
1.0	24 h/day, 3 days	Rat, male, Wistar, 8-12 weeks old	BALF from exposed rats subsequently inhibited: ConA-stimulated lymphocyte IFN γ production, but had no effect on IL-2 production; IL-2-induced lymphoproliferation; and, IFN γ -induced AM NO production.	Koike et al. (1998, 1999)
1.0	24 h	Mice, male, C57Bl/6J, 8 weeks old, n = 3/group	Increased lung: MIP-2 (4 h PE) and MCP-1 (4 and 24 h PE) mRNA expression.	Johnston et al (2001)
1.0	24 h	Mice, male, C57Bl/6J, 8 weeks old, n = 3/group	Increased lung MIP-2 and MCP-1 mRNA expression (4 and 24 h PE); no effects on mRNA levels of IL-1 α , IL-1 β , IL-1R α , IL-6, MIF, MIP-1 α , MIP-1 β , eotaxin, or RANTES at either time point in recovery period. Enhanced expressions of some cytokines/chemokines were maintained longer than normal by coexposure to endotoxin.	Johnston et al (2002)
1.0	8 h/day, 3 days	Mice (C57Bl/6) (C57Bl/6Ai ⁻ NOS ^{-/-}) n = 3-10/group	Knockout (NOS ^{-/-}) mice have more lavageable MIP-2 after exposure than wild-type; both greater than control.	Kenyon et al. (2002)
1.0, 2.5	4 or 24 h	Mice, male, C57Bl/6J, adult, n = 3/group	Dose-related increases in cytokine/chemokine induction. Increased lung MIP-1 α , MIP-2, eotaxin (4 and 24 h), IL-6 (4 h only), and iNOS mRNA expression.	Johnston et al (2000a)
0.6, 2.0	3 h	Mice, C57BL/6, Rat, Wistar, 14-16 weeks old, $n = 4-6/group$	Increased lung MIP-2 (4 h PE) and MCP-1 mRNA expression (24 h PE); PMN and monocyte increased accumulation in lungs consistent with sequential expression of the chemokines. NF-kB activation also increased 20-24 h PE.	Zhao et al. (1998)
0.8	3 h	Rat, male, SD, 250-300 g, n = 5/group	Increased ex vivo AM adherence to epithelial cells mitigated by cell treatment with anti-TNF α or IL-1 α antibodies.	Pearson and Bhalla (1997)
0.8	3 h	Mice, female, B6J129SV, C57Bl/6X 129 NOS ^{-/} , 8-16 weeks, n = 3-12/group	Increased AM IFN γ + LPS-induced NOS expression and NO production, as well as induced PGE ₂ release. Knockout (NOS ^{-/-}) mice AM incapable of similar response to O ₃ - no inducible NO or PGE ₂ above control levels.	Fakhrzadeh et al. (2002)

Concentration ppm	Duration	Species	Effects	Reference
Cytokines, Chemok	ines: Production,	Binding, and Inducible E	ndpoints (cont'd)	
0.8	3 h	Mice, female, B6J129SV, C57BI/6X 129 NOS ^{-/-} , 8-16 weeks, n = 3-4/group	Increased AM IFN γ + LPS-induced NOS expression and NO production.	Laskin et al. (2002)
2.0	3 h	Rat, female, SD, 200-225 g, n = 4-6/group	Increased AM spontaneous and IFN γ + LPS-induced NOS expression and NO production. AM from exposed rats showed rapid onset/prolonged activation of NF- κ B.	Laskin et al. (1998a)
0.08-0.25 and 1% OVA	4 h, 3 times/week, 4 weeks	Mice, female, BALB/c, C57BL/6, 6-8 weeks old, n = 4-12/group	O_3 - dose-dependent increases in IgE, IL-4, IL-5; recruitment of eosinophils and lymphocytes in BALB/c; O_3 + OVA - increased IgG, antibody titers, leukotrienes, airway responsiveness, immediate cutaneous hypersensitivity reactions in BALB/c. In C57BL/6 only O_3 + OVA caused cutaneous hypersensitivity and altered IgG responses.	Neuhaus- Steinmetz et al. (2000)
Alveolar Macropha	ge/Lung NO- and	iNOS-Related Endpoints		
0.3	5 h/day, 5d/week, 4 weeks	Rat, male, Fischer F344, 200-250 g, n = 10/group	No effect on AM spontaneous, endotoxin-, or IFN γ -stimulated, NO formation.	Cohen et al. (1998)
0.8	3 h	Mice, female, B6J129SV, C57BI/6X 129 NOS ^{-/-} , 8-16 weeks, n = 3-12/group	Increased AM IFN γ + LPS-induced NOS expression and NO production and PGE ₂ release. Knockout (NOS ^{-/-}) mice AM incapable of similar response to O ₃ - no inducible NO or PGE ₂ above control levels.	Fakhrzadeh et al. (2002)
0.8	3 h	Mice, female, B6J129SV, C57BI/6X 129 NOS ^{-/-} , 8-16 weeks, n = 3-4/group	Increased AM spontaneous and IFN γ + LPS-induced NOS expression and NO production. AM from exposed mice showed rapid and prolonged activation of NF- κ B, STAT-1 (expression, activity), phosphoinositide 3-kinase, and protein kinase B.	Laskin et al. (2002)

Concentration ppm	Duration	Species	Effects	Reference
Alveolar Macroph	age/Lung NO- an	nd iNOS-Related Endpoints ((cont'd)	
1.0	8 h/day, 3 days	Mice, C57Bl/6, C57Bl/6Ai ⁻ NOS ^{-/-} , n = 3-10/group	Knockout (NOS ^{-/-}) mice have more lavageable PMN, MIP-2, and protein in lungs after exposure than wild-type.	Kenyon et al. (2002)
1.0	24 h/day, 3 days	Rat, male, Wistar, 8-12 weeks, n = 2/group	BALF from exposed rats subsequently inhibited IFN _γ -induced AM NO production.	Koike et al. (1998, 1999)
1.0, 2.5	4 or 24 h	Mice, male, C57Bl/6J, adult, $n = 3$ /group	Dose-related increase in lung iNOS mRNA expression.	Johnston et al (2000a)
2.0	3 h	Rat, female, SD, 200-250 g, n = 1-3/group	Increased AM spontaneous, IFNγ, and LPS-induced NO production, as well as spontaneous and LPS-induced NOS expression. Effect somewhat ameliorated by pretreatment with bacterial endotoxin.	Pendino et al. (1996)
2.0	3 h	Rat, female, SD, 200-225 g, n = 3-6/group	Increased AM spontaneous and IFN γ + LPS-induced NOS expression and NO production. AM from exposed rats showed rapid onset/prolonged activation of NF- κ B.	Laskin et al. (1998b)
3.0	6 h	Rat, female, Brown Norway, 250-300 g, n = 4-8/group	Increased lung iNOS mRNA expression. Effect blocked by pretreatment with dexamethasone.	Haddad et al. (1995)
0.12, 0.5, or 2	3 h	Mice, female, BALB/c, 5-6 weeks	Dose-dependent increases in nitrate and P_{enh} ; increases in nNOS, but not iNOS or eNOS.	Jang et al. (2002)
Surface Marker-R	elated Endpoints			
0.8	3 h	Rat, male, SD, 250-275 g, n = 5-6/group	Increased expression of AM CD11b, but no effect on ICAM-1.	Bhalla (1996)
1.0	4 h	Mice cell line (WEH1-3)	No effect on IFN γ -inducible Ia (MHC Class II) antigen expression on WEHI-3 cells.	Cohen et al. (1996)
1.0	2 h	Rat, female, SD, 170-210 g, n = 8-12/group	Decreased expression of integrins CD18 on AM and CD11b on PMN. No effect on PMN CD62L selection.	Hoffer et al. (1999)

Table AX5-7 (cont'd). Effects of Ozone on Lung Host Defenses

Concentration ppm	Duration	Species	Effects	Reference
Surface Marker-R	Related Endpoints (cont'd)		
1.0	3 days	Rat, male, Wistar and Fischer F344, 8-10 weeks, n = 3/group	Increased expression of surface markers associated with antigen presentation: Ia (MHC Class II) antigen, B7.1, B7.2, and CD11b/c on BAL cells. Effect attributed to influx of monocytes.	Koike et al. (2001)
0.1, 0.3	4 h/day, 5 days/week, 1 or 3 weeks	Rat, male, Fischer F344, 200-250 g	Decreased expression of CD3 among lung lymphocytes (0.1 ppm only; 3 weeks); effect exacerbated by stimulation of cells with IFN α (but not with IL-1 α). Decreased expression of CD25 (IL-2R) on CD3 ⁺ lymphocytes (0.3 ppm only; 3 weeks); effect worsened by treatment of cells with IL-1 α (0.1 and 0.3 ppm; 3 weeks).	Cohen et al. (2002)
NK- and Lympho	cyte-Related Endpo	oints		
0.1, 0.3	4 h/day, 5 days/week, 1 or 3 weeks	Rat, male, Fischer F344, 200-250 g	Decreased expression of CD3 among lung lymphocytes (0.1 ppm only; 3 weeks); effect exacerbated by stimulation of cells with IFN α (but not with IL-1 α). Decreased expression of CD25 (IL-2R) on CD3 ⁺ lymphocytes (0.3 ppm only; 3 weeks); effect worsened by treatment of cells with IL-1 α (0.1 and 0.3 ppm; 3 weeks).	Cohen et al. (2002)
			Lymphoproliferation: no effect on spontaneous or IL-2-inducible forms; 0.1 ppm increased response to ConA mitogen (1 week only); 0.3 ppm - decreased response to ConA (1 week only).	
0.4, 0.8, 1.6	12 h	Mice, male, BALB/c, 6-8 weeks old, n = 5-8/group	Decreased pulmonary delayed-type hypersensitivity reactions to low MW agents, likely via activation of T_H^2 -dependent pathways.	Garssen et al (1997)
1.0	24 h/day, 3 days	Rat, male, Wistar, 8-12 weeks old	Lavage fluid from exposed rats subsequently inhibited ConA-stimulated lymphocyte IFN γ production, but had no effect on IL-2 production; material also inhibited IL-2-induced lymphoproliferation.	Koike et al. (1999)

Table AX5-7 (cont'd). Effects of Ozone on Lung Host Defenses

Concentration ppm	Duration	Species	Effects	Reference
Susceptibility Fact	tors			
0.3	24 to 72 h	Mice C57BL/6J C3H/HeJ C3H/HeOuJ, 6-8 weeks old, n = 4-8/group	Lavageable protein concentration lowered by inhibition of iNOS and by targeted disruption of <i>Nos2</i> ; reduced <i>Nos2</i> and <i>Tlr4</i> mRNA levels in the O_3 -resistant C3H/HeJ mice.	Kleeberger et al. (2001b)
1	4 h	CHO-K1 cell line SP-A	Differences exist biochemically and functionally in SP-A variants. O_3 exposure affects the ability of variants to stimulate TNF α and IL-8.	Wang et al. (2002)
0.3	24 - 72 h	Mice, male, C57BL/6J, C3H/HeJ, C3H/HeOuJ, 6-8 weeks old, n = 5-16/group	Identified a candidate gene on chromosome 4, Toll-like receptor 4 (<i>Tlr4</i>), a gene implicated in endotoxin susceptibility and innate immunity. O ₃ -resistant strain C3H/HeJ and C3H/HeOuJ (differing from the O ₃ -resistant strain by a polymorphism in the coding region of <i>Tlr4</i>) were exposed, greater protein concentrations were demonstrated in the OuJ strain. Differential expression of <i>Tlr4</i> mRNA with O ₃ exposure. Suggests quantitative trait locus on chromosome 4 is responsible for a significant portion of the genetic variance in O ₃ -induced lung hyperpermeability; potential interaction between the innate and acquired immune system.	Kleeberger et al. (2000)
0.1	2 h	Mice, male, C57BL/6, 6-8 weeks old	Sensitized the mice to OVA by intratracheal instillation of OVA-pulsed dendritic cells (the principal antigen-presenting cells in airways). Created Th2 lymphocyte-dependent eosinophilic airway inflammation. Groups of mice exposed to O_3 during sensitization by OVA-pulsed dendritic cells showed no modification of the allergic sensitization process, whereas, previously sensitized mice exposed to O_3 , demonstrated increases in allergen-induced airway inflammation. Suggests that dendritic cells are an important component of O_3 -induced eosinophilic airway inflammation.	Depuydt et al (2002)

Table AX5-7 (cont'd). Effects of Ozone on Lung Host Defenses

Concentration ppm	Duration	Species	Effects	Reference
Susceptibility Fact	ors (cont'd)			
0.1, 0.5, and 1.0	2 h	Human lymphocytes	Subsequent to O_3 exposure, when lymphocytes were stimulated with pokeweed mitogen (PWM, a T-cell-dependent stimulus) or <i>Staphylococcus aureus</i> Cowan 1 strain (SAC, a T-cell-independent stimulus), both B and T cells were found to be affected by O_3 preexposure. T cells also demonstrated an increase in IL-6 and a decrease in IL-2, suggesting that O_3 may have direct effects on IgG-producing cells and concurrently an effect that is mediated by altered production of T cell immunoregulatory molecules.	Becker et al (1991)
NA		Rat BALF; Murine macrophage cell line (RAW 264.7)	Both SP-A and SP-D directly protected surfactant phospholipids and macrophages from oxidative damage. Both proteins blocked accumulation of TBARS and conjugated dienes generated during oxidation of surfactant lipids or low density lipoprotein particles by a mechanism that does not involve metal chelation or oxidative modification of the proteins.	Bridges et a (2000)

Table AX5-7 (cont'd). Effects of Ozone on Lung Host Defenses

AM = Alveolar macrophage; PE = Postexposure (i.e., time after O₃ exposure ceased); MIP = macrophage inflammatory protein; PMN = Polymorphonuclear leukocyte; MLN = Mediastinal lymph node; CINC = cytokine-induce neutrophil chemoattractant; BAL = Bronchoalveolar lavage; DTPA = diethylenetriaminepentaacetic acid; ROI = reactive oxygen intermediate/superoxide anion; IFN = Interferon; BALT = Bronchus-associated lymphoid tissue; MCP = monocyte chemoattractant protein; CON A = Concanavalin A; OVA = Ovalbumin; SP-A = Surfactant Protein A; SP-D = Surfactant Protein D

Concentration ppm	Duration	Species	Effects	Reference
0.1 0.2 0.5	0.5 h, in vitro	Rat, SD, primary alveolar Type II cells	Decreased transepithelial resistance (R_t) after 0.5 ppm from 2 to 24 h PE and at 48 h in monolayers subjected to PMNs. Significantly lower R_t after PMN treatment at 0.2 and 0.5 ppm.	Cheek et al. (1995)
0.1 0.2 0.4 1.0	1 h, in vitro	Guinea pig, male and female, Hartley, and human alveolar macrophages	Exposure of guinea pig alveolar macrophages to 0.4 ppm for 60 minutes produced a significant increase in IL-6 and TNF α , and an exposure of human alveolar macrophages to identical O ₃ concentration increased TNF α , IL-1 β , IL-6 and IL-8 protein and mRNA expression.	Arsalane et al. (1995)
0.2 0.4 0.8	23 h/day for 1 week	Guinea pigs, female (Hartley), 260-330 g n = 4-10/group	Increase in BALF protein and albumin immediately after 0.8 ppm exposure, with no effect of ascorbate deficiency in diet. O_3 -induced increase in BALF PMN number was only slightly augmented by ascorbate deficiency.	Kodavanti et al. (1995)
0.26	8 h/day, 5 days/week for 1-90 days	Mice, male (mast cell-deficient and -sufficient), 6-8 weeks old n = 4-8/group	Greater increases in lavageable macrophages, epithelial cells and PMNs in mast cell -sufficient and mast cell-deficient mice repleted of mast cells than in mast cell-deficient mice. O_3 -induced permeability increase was not different in genotypic groups.	Kleeberger et al. (2001b)
0.3	48 h and 72 h. Exposures repeated after 14 days	Mice, male, C57BL/6J and C3H/HeJ, 6-8 weeks old	Greater BALF protein, inflammatory cell and LDH response in C57BL/6J than in C3H/HeJ after initial exposure. Repeated exposure caused a smaller increase in BALF protein and number of macrophages, lymphocytes and epithelial cells in both strains, but PMN number was greater in both strains of mice compared to initial exposure.	Paquette et al. (1994)
0.1 0.3 1.0	60 min	Rat basophilic leukemia cell line (RBL-2H3)	O_3 inhibited IgE- and A23187 - indued degranulation. Spontaneous release of serotonin and modest generation of PGD2 occurred only under conditions that caused cytotoxicity.	Peden and Dailey (1995)
0.3 2.0	72 h 3 h	Mice, male and female, C57BL/6J and C3H/HeJ	Greater PMN response in C57BL/6J than in C3H/HeJ after acute and subacute exposures. Responses of recombinant mice were discordant and suggested two distinct genes controlling acute and subacute responses. Genes termed Inf-1 and Inf-2.	Tankersley and Kleeberger, (1994)

Concentration ppm	Duration	Species	Effects	Reference
0.3	48 h	Mice, C57BL/6J and C3H/HeJ, 6-8 weeks old	Susceptibility to O_3 is linked to a quantitative trait locus, and TNF α is identified as a candidate gene.	Kleeberger et al. (1997)
0.3	24 or 48 h	Mice, male, C57BL/6J, 8 weeks old n = 3/group	0.3 ppm for 24 h caused increase in mRNA for eotaxin, MIP-1a and MIP-2.	Johnston et al (1999a)
1.0	1, 2 or 4 h	n – Sigroup	1 ppm for 4 h caused increase in mRNA for eotaxin, MIP-1a, MIP-2, and IL-6.	
2.5	2, 4 or 24 h		2.5 ppm for 2 and 4 h caused increase in mRNA for MIP-1a, MIP-2 and IL-6 and metallothionein. Greater increases and lethality after 24 h.	
0.3	72 h	Mice, male {HeJ, OuJ, Nos2 (+/+) [C57BL/6J- Nos2 (+/+)], and Nos2 (-/-) [C57BL/6J-Nos2 (-/-)]}, 6-8 weeks old	O_3 induced permeability was decreased by pretreatment with a nitric oxide synthase inhibitor and in animals with iNOS gene knocked out.	Kleeberger et al. (2001a)
0.4	5 weeks	Guinea pigs, male, (Hartley), 5 weeks old (350-450 g) n = 7-8/group	Ovalbumin instillation in the nose caused an increase in O_3 -induced infiltration of eosinophils in nasal epithelium.	Iijima et al. (2001)
0.15, 0.3, or 0.5	3 h	Rat, male, SD 6-8 weeks old, n = 2-6/group	Time-related increase in permeability and inflammation, with a peak at 8 h PE, after 0.5 ppm. No change following exposure to 0.15 or 3 ppm.	Bhalla and Hoffman (1997)
0.5	4 h, 12-4 PM for daytime and 7-11 PM for nighttime exposures. Exposures repeated 16 h later.	Rat, male, Wistar, 60-90 days old n = 5-15/group	Significantly greater increase in IL-6, but not inflammation, following a nighttime exposure compared to daytime exposure. An initial nighttime exposure resulted in lesser inflammation following a subsequent exposure. Pretreatment with IL-6 receptor antibody abolished cellular adaptive response without affecting inflammatory response induced by initial nighttime exposure.	McKinney et al. (1998)

Concentration ppm	Duration	Species	Effects	Reference
0.5 1.0 2.0		Rat, male, Fisher, 90 days old n = 6-12/group	Increase in BALF protein and albumin occurred immediately after 2 ppm exposure, and at 18 h after 1 ppm. No increase after 0.5 ppm. The movement of water and protein into airspace were not coupled.	Cheng et al. (1995)
1.0-2.0	3 h	Mice, C57BL/6, 6-8 weeks old and rats, Wistar, 14-16 weeks old n = 4-6/group	Steady state MCP-1 mRNA increase after 0.6 ppm, with maximal increase after 2 ppm. After 2 ppm, MIP-2 mRNA peaked at 4 h PE and MCP-1 mRNA peaked at 24 h PE. BALF neutrophils and monocytes peaked at 24 and 72 h PE, respectively. BALF MCP-1 activity induced by O_3 was inhibited by an anti-MCP-1 antibody.	Zhao et al. (1998)
0.5	24 h following a 3-day (6 h/day) exposure to cigarette smoke	Mice, male, B6C3F1, 25 \pm 2 g, 10 weeks old, n = 6/group	BALF protein, neutrophils and lymphocytes were increased in animals exposed to smoke and then to O_3 . Macrophages from this group also responded with greater release of TNF α upon LPS stimulation.	Yu et al. (2002)
0.5	8 h during nighttime	Rat, male, Wistar, SD and Fischer F344, 90 days old n = 3-8/group	Exposure resulted in a significantly greater injury, inflammation and BALF levels of IL-6 in Wistar than in SD or F344 rats.	Dye et al. (1999)
0.8	2h and 6 h	Rats, male, Fisher F344, Juvenile (2 months; 180-250 g), Adult (9 months; 370-420 g), Old (18 months; 375-425 g), Senescent (24 months; 400-450 g) n = 2/group	Comparable effect on the leakage of alveolar protein in rats of different age groups, but a greater increase occurred in interleukin-6 and N-acetyl-beta-D-glucosaminidase in senescent animals than in juvenile and adult rats.	Vincent et al. (1996).
0.8	3 h	Rat, male, SD, 6-8 weeks old, n = 5/group	Increased adhesion of macrophages from exposed animals to rat alveolar type II epithelial cells in culture. Treatment with anti-TNF α + anti-IL-1 α antibody decreased adhesion in vitro, but not permeability in vivo.	Pearson and Bhalla (1997)

Concentration ppm	n Duration	Species	Effects	Reference
0.8	3 h	Rat, male, SD 6-8 weeks old, n = 5/group	Increase in fibronectin protein in BALF and lung tissue, and fibronectin mRNA in lung tissue. The increase produced by O_3 was amplified in animals pre-treated intra-tracheally with rabbit serum to induce inflammation.	Gupta et al. (1998)
0.8	3 h	Rat, male, SD, 200-225 g, n = 2-9/group	Treatment of animals with IL-10 prior to O_3 exposure caused a reduction in O_3 induced BALF protein, albumin and fibronectin and tissue fibronectin mRNA.	Reinhart et al (1999)
0.8	8 h	Monkey, male, Rhesus, 3 years 8 months-3 years 10 month old n = 2-6/group	Pretreatment of monkeys with a monoclonal anti-CD18 antibody resulted in a significant inhibition of O_3 -induced neutrophil emigration and accumulation of necrotic airway epithelial cells.	Hyde et al. (1999)
0.8 1.0-2.0	48 h 3 h	Rat, male, SD, 6-8 weeks old, 200-225 g, n = 3-8/group	Cyclophosphamide treatment ameliorated O_3 -induced BALF neutrophils and albumin after short term and 1-day exposure. Anti-neutrophil serum reduced lavageable neutrophils but did not affect permeability.	Bassett et al. (2001)
0.8	8 h	Monkeys, male, Rhesus, 3 years 8 months-3 years 10 months old (5.1-7.6 kg) n = 2-6/group	Tracheal epithelium of exposed animals expressed b6 integrin. The integrin expression was reduced or undetectable in animals treated with CD-18 antibody.	Miller et al. (2001)
0.8	3 h	Mice, female, C57BL6X129NOSII knockout and wild-type B6J129SV F2, 8-16 weeks old, n = 3-12/group	Alveolar macrophages from O_3 exposed wild-type mice produced increased amounts of NO, peroxynitrite, superoxide anion, and PGE2. Nitrogen intermediates were not produced and PGE2 was at control level in exposed NOSII knockout mice. These mice were also protected from O_3 -induced inflammation and injury.	Fakhrzadeh et al. (2002)
1.0	5 min exposure of airway segments following bronchoscopy	Dogs, male, Mongrel, Adult, n = 1-4/group	Mast cells from O_3 -exposed airways of ascaris sensitive dogs released significantly less histamine and PGD2 following in vitro challenge with ascaris antigen or calcium ionophore.	Spannhake (1996)

Concentration ppm	Duration	Species	Effects	Reference
1.0	8 h, assayed 1 and 2 h PE	Monkeys (Rhesus)	Increase in steady state IL-8 mRNA in airway epithelium. Increase in IL-8 protein staining declined at 24 h after exposure.	Chang et al. (1998)
0.2 0.5 1.0	In vitro at liquid/air interface	Primary TBE, BEAS-2b S and HBE1	Dose related increase in IL-8 release in the conditioned media. Ozone produced greater toxicity in cell lines than in primary cultures.	
1.0	3 h	Rat, male, SD, 6-8 weeks old, n = 4-5/group	Time-related increase in BALF protein, fibronectin (Fn), and alkaline phosphatase (AP) activity. Fn mRNA detected in macrophages, and AP in Type II cells and in BALF PMNs from exposed animals only.	Bhalla et al. (1999)
1	2 h	Rats, female, SD, 170-210 g n = 8-12/group	The expression of CD18 on alveolar macrophages and CD11b on blood PMNs was lowered by exposure, but CD62L expression on blood PMNs was not affected.	Hoffer et al. (1999)
1	3 h	Rat, male, SD, 6-8 weeks old, n = 5/group	Time-related increase in BALF albumin, PMNs, MIP-2 and ICAM-1, and increase in MIP-2 mRNA only at early time point in BALF macrophages. MIP-2 mRNA not detected in lung tissue.	Bhalla and Gupta (2000
1	3 h	Rat, male, SD, 250-275 g, n = 6/group	Ozone induced increase in BALF albumin, fibronectin and PMN number was associated with an increase in expression of TNF α , IL-1 α , IL-6 and IL-10 mRNA. Pretreatment with anti-TNF α antibody caused downregulation of gene expression and reduction of BALF albumin and PMN number, but not fibronectin.	Bhalla et al. (2002)
1	6 h	Rat, male, SD, 200-250 g, n = 3-6/group	Increase in number of macrophages with mRNA transcripts and immunocytochemical staining of IL-1, TNF α , MIP-2 and cytokine- induced neutrophil chemoattractact (CINC). Chemokine activities were reduced by treatment of macrophages with anti-IL-1 β and anti-TNF α antibodies.	Ishii et al. (1997)
0.5 1.0 2.5	4 h	Mice, male (129 wild-type or Clara Cell Secretory Protein -/-), 2-5 months old, n = 3/group	Increases in IL-6 and metallothionein mRNA by 2 h after exposure to 1 ppm. mRNA increases were further enhanced in CCSP -/- mice.	Mango et al. (1998)

Concentration ppm	Duration	Species	Effects	Reference
1.0	8 h/night for three nights	Mice, (C57Bl/6 wild-type and iNOS knockout) n = 3-10/group	O_3 exposure produced greater injury, as determined by measurement of MIP-2, matrix metalloproteinases, total protein, cell content and tyrosine nitration of whole lung protein, in iNOS knockout mice than in wild-type mice.	Kenyon et al. (2002)
1.0	4 h	Mice, male (129 strain, wild-type and Clara Cell Secretory Protein- deficient), 2-3 mo old, n = 3/group	Increases in abundance of mRNAs encoding eotaxin, MIP-1a and MIP-2 in CCSP-/-, but no change in wild-type mice.	Johnston et al. (1999b)
1.2	6 h	Rat, male, Brown Norway, 200-250 g, n = 4/group	Eotaxin mRNA expression in the lungs increased 1.6-fold immediately after and 4-fold at 20 h. Number of lavageable eosinophils increased 3- and 15-fold respectively at these time points. Alveolar macrophages and bronchial epithelial cells stained positively for eotaxin.	Ishii et al. (1998)
2.0	3 h	Mice, male, C57BL/6J, 6-8 weeks old, n = 5-10/group	O_3 -induced increase in protein and PMNs in BALF, and pulmonary epithelial cell proliferation were significantly reduced in animals pre-treated with UK-74505, a platelet activating factor-receptor antagonist.	Longphre et a (1999)
2.0	3 h	Rat, female, SD, 6-8 weeks old	BALF cells from exposed animals released 2 to 3 times greater IL-1 and TNF α , and greater fibronectin. Immunocytochemistry showed greater staining of these mediators in lung tissue from exposed rats.	Pendino et al. (1994)
1.1	8 h	Rat, Wistar, -depleted of neutrophils, 43 days old, n = 9-10/group	Epithelial necrosis in the nasal cavity, bronchi, and distal airways. Proliferation of terminal bronchiolar epithelial cells also decreased by O_3 exposure, suggesting a role for neutrophils in the repair process.	Vesely et al. (1999)
0.32	48 h (subacute) 3 h (acute)	Mice, male, C57BL/6J, WT TNRF1KO TNRF2KO 6-8 weeks old, n = 3-12/group	TNFR1 and TNFR2 KOs less sensitive to subacute O_3 exposure than WT. With acute exposures, airway hyperreactivity was diminished in KO mice compared to WT mice, but lung inflammation and permeability were increased.	Cho et al. (2001)

Concentration ppm	Duration	Species	Effects	Reference
0.3	24 to 72 h	Mice C57BL/6J C3H/HeJ C3H/HeOuJ 6-8 week old, n = 5-16/group	Differential expression of <i>Tlr4</i> mRNA.	Kleeberger et al. (2000)
2.0	3 h	Mice C3H/HeJ, A/J, C57BL/6J, 129/SvIm, CAST/Ei, BTBR, DBA/2J, FVB/NJ, BALB/cJ, n = 6-24/group	Two strains consistently O ₃ -resistant: C3H/HeJ and A/J. Two strains consistently O ₃ -vulnerable: C57BL/6J and 129/SvIm. Five strains with inconsistent phenotypes with intermediate responses: CAST/Ei, BTBR, DBA/2J, FVB/NJ, and BALB/cJ.	Savov et al. (2004)
1	3 h- examined at 3 h PE	Guinea pigs, male, Dunkin-Hartley, OVA-sensitized	PMN levels significantly increased, without any change in BAL protein levels, suggesting a lack of correlation between the two endpoints. Increased AHR.	Sun et al. (1997)
1	1 h examined 24 h PE		Increase in PMN, no increase in BAL protein levels. No increased AHR, suggesting a dissociation between PMN levels and AHR.	
0.4	1 or 5 days/ 12 h/day, recovery period in fresh air of 5, 10, 15, or 20 days after the 5-day preexposure	Rat, Wistar, male, 7 weeks old, n = 5/group	Exposure for 5 days caused lower BALF proteins, fibronectin, IL-6, and inflammatory cells than animals exposed for 1 day. Postexposure challenge with single O_3 exposures at different time points showed that a recovery of susceptibility to O_3 (as measured by BALF levels of albumin, IL-6, and the number of macrophages and neutrophils) occurred at ~15-20 days, but total protein and fibronectin levels remained attenuated even at 20 days post-5-day exposure. The recovery with regards to BrdU labeling occurred in 5-10 days after the 5 day exposure.	Van Bree et al. (2002)
2	2 h, examined 2, 12, and 48 h PE	Rat, female, SD, 200-250 g n = 4-7/group	Adherence of neutrophils to pulmonary vascular endothelium was maximal within 2 h after exposure and returned to control levels by 12 h PE.	Lavnikova et al. (1998)

Concentration ppm	Duration	Species	Effects	Reference
1.0 or 2.5	4, 20, or 24 h, examined immediately PE 10 min	Mice, C57Bl/6J, 36 h and 8 week old Endotoxin (10 ng) n = 3/group	RPA for IL-12, IL-10, IL-1 α , IL-1 β , IL-1Ra, MIF, IFN γ , MIP-1 α , MIP-2,IL-6, and Mt. Newborn mice: increased Mt mRNA only. 8-week-old mice: increased MIP-1 α , MIP-2, IL-6, and Mt mRNA.	Johnston et al. (2000b)
			Both age groups had similar cytokine/chemokine profiles with endotoxin exposure, suggesting that the responses to endotoxin, which does not cause epithelial injury, and the responses to O_3 , which does, demonstrate that differences in inflammatory control between newborn and adult mice is secondary to epithelial injury.	
0.8	3 days, continuous	Rat, male, SD, 30 days old, n = 6/group	General dietary restriction to 20% of the freely-fed diet for 60 days caused an extreme reduction in body weight and higher survivability. Levels of antioxidants and detoxifying enzymes increased less than in freely fed animals.	Elsayed (2001)
1.8	3 h	Mice, female, C57BL/6J CBA C3H/HeJ AKR/J SJL/J, 6-8 weeks old, n = 4-7/group	Both exposure levels caused a transient increase in CC16 in serum that correlated with BALF changes in protein, LDH, and inflammatory cells. Inverse relationship between preexposure levels of CC16 in BALF and epithelial damage based on serum CC16 levels and BALF markers of inflammation. Inverse	Broeckaert et al. (2003)
0.11	24/h day for up to 3 days, assays immediately or at 16 h PE		relationship between preexposure levels of albumin in BALF and lung epithelium damage. Suggests that a major determinant of susceptibility to O_3 is basal lung epithelial permeability. C57BL/6J mice had lower levels of CC16a (the more acidic form) than C3H/HeJ. Both the strains had similar levels of CC16b. Suggests that basal lung epithelial permeability is a major determinant of susceptibility; greater epithelial permeability observed in C57BL/6J may be due to difference in the expression of CC16a and possibly other antioxidant/inflammatory proteins.	
0.1 - 2 2	3 h, assayed 6 h PE (exposure-response) 3 h, assayed 0, 2, 6, or 24 h PE (time-course)	Mice, C57BL/6, n = 2-4/group	$O_3 \ge 1$ ppm increased MIP-2 mRNA and recruitment of neutrophils. MIP-2 increase was immediate and decreased to control by 24 h PE.	Driscoll et al. (1993)

Concentration ppm	Duration	Species	Effects	Reference
1 or 3	2-6 h, assayed at 2, 8 and 24 h PE	Rat, female, Brown Norway, 250-300 g, n = 4-8/group	MIP-2 peaked at 2 h and rapidly declined. PMNs in BALF increased at 2, 8 and 24 h. No significant increase in AMs, eosinophils, lymphocytes or epithelial cells. MIP expression preceded increase in PMN. Both responses suppressed by dexamethasone, which suggests a mechanism of glucocorticoid regulation of inflammation.	Haddad et al. (1995)
lor 3	3 h	Rat, male, Brown Norway, 200-250 g, n = 3/group	Increase in lung CINC mRNA within 2 h PE exposure. Significant increase in PMNs in BALF 24 h PE. Anti-CINC antibody (1 mg, i.v.) suppressed neutrophilia but not the increase in AHR to acetylcholine. Anti-CINC antibody inhibited BALF neutrophilia induced at 3 ppm AHR. Results suggest that CINC causes O ₃ -induced neutrophil chemoattraction, but is not involved in the induction of ozone-induced AHR.	Koto et al. (1997)
0.12, 0.24, 0.5	3h, NfκB assayed 0 h PE, TNFα assayed 0, 1, 2, 4, 16, 20 or 22 h PE	Cultures of human nasal epithelial (HNE) cells	Electron spin resonance signal suggested free radical production. Small dose-response activation of NF κ B coincided with O ₃ -induced free radical production. TNF α increased with exposures to 0.24 and 0.5 ppm at 16 h PE. Results suggest that the human airway epithelium plays a role in directing the inflammatory response to inhaled O ₃ via free radical-mediated NF κ B.	Nichols et al. (2001)
0.8	3h	Rats, SD, 200-250g, n = 5-6/group	AMs from O_3 -exposed rats exhibited greater motility and greater adhesion in cultures of epithelial cells (ARL-14). O_3 -induced motility and adhesion were attenuated with AMs incubated in the presence of Mabs to leukocyte adhesion molecules, CD11b, or epithelial cell adhesion molecules, ICAM-1. Increased surface expression of CD11b but no change in ICAM-1 expression in AMs from O_3 -exposed rats. Demonstration of alteration of AM functions following O_3 exposure. Possible dependence of these functions on the biologic characteristics, rather than the absolute expression, of cell adhesion molecules.	Bhalla (1996)

Concentration ppm	Duration	Species	Effects	Reference
2	3h	Mice, male and female, C57BL/6J, assayed immediately or 3, 6, 9, or 21 h PE	Increase in tissue expression of ICAM-1 3 -9 h PE, remaining until 21 h PE. Bronchioles and terminal bronchiole/alveolar duct regions: Enhanced ICAM-1-IR 0 - 3 h PE, returning to baseline by 21 and 9 h, respectively. Lung parenchyma: maximal ICAM-1 expression and PMN influx concurrent 3 h, followed by transepithelial migration of PMNs to the airway lumen. Suggests regional variations in airway inflammatory activity; upregulation of ICAM-1 may play a role in local regulation of PMN influx to the airways after acute exposure.	Takahashi et al. (1995a)
2	4 h	Rat, SD, male, 225-250 g, treated with 10 mg/kg ebselen every 12 h from 1 h before O_3 exposure, n = 4/group	Ebselen significantly decreased pulmonary inflammation (albumin and PMN in BALF) 18 h PE without altering AM expression of iNOS. Ebselen inhibited the nitration reaction of tyrosine residues and enhanced expression of Cu-, Zn-, and Mn SOD. Suggests that ebselen scavenges peroxynitrite during O ₃ -induced inflammation and may protect against acute lung injuries by modulating the oxidant-related inflammatory process.	Ishii et al. (2000a)
3	2 h	Human transformed bronchial epithelial cells (16-HBE) Guinea pigs, Hartley, male, 450-550 g, n = 3-5/group	NO donors increased IL-8 production dose-dependently. TNF α plus IL-1 β plus INF γ increased IL-8 in culture supernatant of epithelial cells. NOS inhibitors (aminoguanidine plus NG-nitro-L-arginine methyl ester) attenuated the cytokine-induced IL-8 production.	Inoue et al. (2000)
			O_3 induced AHR to acetylcholine and increased PMN in BALF. Persisting for 5 h. Pretreatment with NOS inhibitors did not affect AHR or PMN accumulation 0 h PE, but, inhibited at 5 h PE.	
			Suggests that endogenous NO, through upregulation of IL-8, modulates O_3 -induced airway inflammation and AHR.	

August 2005

Table AX5-8 (cont'd)	Effects of Ozone on	Lung Permeability and Inflammation
----------------------	---------------------	------------------------------------

Concentratio ppm	on Duration	Species	Effects	Reference
0.12, 0.5, 1, or 2	3h	Mice, female, BALB/c, 5-6 weeks old	O_3 exposure caused dose-dependent increases in nitrate (indicative of in vivo NO generation). Increases in enhanced pause (P _{enh}) were also dose-dependent. Increases in NOS-1, but not in NOS-3 or iNOS isoforms. Suggest that NOS-1 may induce airway responsiveness by neutrophilic airway inflammation.	Jang et al. (2002)

PMN = Polymorphonuclear leukocyte PE = Postexposure (time after O₃ exposure ceased) BAL = Bronchoalveolar lavage BALF = Bronchoalveolar lavage fluid

Table AX5-9. Effects of Ozone on Lung Structure: Acute and Subchronic Exposures

Concentration ppm	Duration	Species	Effects	Reference
0.1 0.5 1.0	8 h/ day × 1 day 8 h/day × 1 day 8 h/day × 1, 10, 75, and 90 days	Rat; male, SD, 350-600 g, n = 3-6/group	No dose-related response on CYP2E1, one of six P450 enzymes identified in respiratory tissue. CYP2E1 activity was elevated (250% and 280%) in the lobar bronchi/major daughters airways immediately after 1.0 ppm O_3 exposure for 1 day and 10 days, respectively, but not in the trachea or distal bronchioles; CYPE1 activity was unchanged and decreased after 1.0 ppm O_3 exposure for 75 and 90 days, respectively.	Watt et al. (1998)
0.2 0.4	3, 7, 28, and 56 days; 3-, 7-, and 28-day recovery from 28 days of exposure	Mice, male, NIH, Rat, male, Wistar RIV:Tox Guinea pig, male, Hartley Crl:(HA)BR, 7 weeks old, n = 3-9/group	Concentration-related centriacinar inflammation, with a maximum after 3 days of exposure; number of alveolar macrophages and pulmonary cell density increased progressively until 56 days of exposure, with the guinea pig the most sensitive species. Concentration and exposure-time dependent hypertrophy of bronchiolar epithelium in mouse only. Exposure to 0.2 ppm for 3 and 7 days caused significant histological and morphometric changes in all 3 species; exposure for 56 days caused alveolar duct fibrosis in rat and guinea pigs. Total recovery in rats after 28-day exposure, but not in guinea pigs or mice.	Dormans et al. (1999)
0.2 0.4 0.8	23 h/day for 7 days	Guinea pig, female, Hartley; ±AH ₂ diet	Treatment-related lesions were observed after exposure to 0.4 and 0.8 ppm O_3 ; lesions were primarily seen in the terminal bronchioles and consisted of mononuclear cell and neutrophilic infiltrate and thickening of the peribronchiolar interstitium. Effects were only marginally exacerbated by the AH ₂ (ascorbic acid) deficient diet and lesions were resolved after 1 week in FA.	Kodavanti et al. (1995)
0.4	12 h/day; 1- or 7-day exposure	Rat, Wistar RiV:TOX, male and female, 1, 3, 9, & 18 months of age, n = 5-6/group	Centriacinar inflammation (increased alveolar macrophages and PMNs; increased proximal and ductular septal density) was greatest in young rats (1 month and 3 months for 1-and 7-day exposures, respectively) and decreased with age. No major gender differences were noted.	Dormans et al. (1996)

Table AX5-9 (cont'd). Effects of Ozone on Lung Structure: Acute and Subchronic Exposures

Concentration ppm	Duration	Species	Effects	Reference
0.4 1.0	2 h	Monkey; adult male Rhesus	Reduced glutathione (GSH) increased in the proximal intrapulmonary bronchus after 0.4 ppm O_3 and in the respiratory bronchiole after 1.0 ppm O_3 . Local O_3 dose (measured as excess ¹⁸ O) varied by as much as a factor of three in different airways of monkeys exposed to 1.0 ppm, with respiratory bronchioles having the highest concentration and the parenchyma the lowest concentration. After exposure to 0.4 ppm, the O_3 dose was 60% to 70% less and epithelial injury was minimal, except in the respiratory bronchiole, where cell loss and necrosis occurred, but was 50% less than found at 1.0 ppm.	Plopper et al. (1998)
0.5	8 h + BrdU to label epithelial cells	Rat, male, Fischer F344, 13 weeks old, n = 6/group	O_3 exposure induced a transient influx of neutrophils and a significant (17%) loss of NTE cells 2-4 h after exposure. Increased epithelial DNA synthesis was first detected 12 h PE. LI and ULLI indices of epithelial cell DNA synthesis were greatest 20-24 h and still elevated 36 h PE; numeric density of NTE cells returned to control levels 20-24 h PE.	Hotchkiss et al. (1997)
0.5	8 h/day, 3 or 5 days; + fluticasone propionate (FP) intranasally	Rat, male, Fischer F344, 203-232 g, n = 6/group	No significant difference of fluticasone propionate on morphometry of the maxilloturbinates; O_3 exposure caused neutrophilic rhinitis with 3.3- and 1.6-fold more intraepithelial neutrophils (3-day and 5-day exposure, respectively) and marked mucous cell metaplasia (5-day exposure only) with numerous mucous cells and approximately 60 times more intraepithelial mucosubstances in the nasal transitional epithelium; FP-treated rats exposed to O_3 had minimal nasal inflammation and mucous cell metaplasia.	Hotchkiss et al. (1998)
0.5	8 h/day, 3 days + endotoxin (100 μg/mL) intranasally	Rat, male, Fischer F344/N Hsd, 12 weeks old, n = 6/group	Endotoxin-induced neutrophilia in nasal mucosa with NTE; mucous cell metaplasia was not detected in air/endotoxin-exposed rats, was observed in O_3 /saline-exposed rats, and was most severe in O_3 /endotoxin-exposed rats.	Fanucchi et al. (1998)

Concentration ppm	Duration	Species	Effects	Reference
0.5	8 h/day, 1, 2, or 3 days + BrdU to label epithelial cells + antirat neutrophil antiserum	Rat, male, Fischer F344/N, 10-12 weeks old, n = 6-8/group	Acute O ₃ exposure induced a rapid increase in rMuc-5AC mRNA levels prior to the onset of mucous cell metaplasia; neutrophilic inflammation coincided with epithelial DNA synthesis and upregulation, but was resolved when mucous cell metaplasia first appeared in the NTE.	Cho et al. (1999a, 2000)
			Maxilloturbinates lined with NTE determined the epithelial labeling index, numeric densities of neutrophils, total epithelial and mucous secretory cells, amount of stored intraepithelial mucosubstances, and steady-state ratMUC-5AC (mucin) mRNA levels. Four days after a 3-d exposure, antiserum-treated, O ₃ -exposed rats had 66% less stored intraepithelial mucosubstances and 58% fewer mucous cells in their NTE than did controls. Antiserum treatment had no effects on O ₃ -induced epithelial cell proliferation or mucin mRNA upregulation.	
0.5	8 h/day, 3 days + endotoxin	Rat, male, Fischer F-344, 10-12 weeks old, n = 6/group	Enhanced epithelial lesions in the NTE and respiratory epithelium of the nose and conducting airways by endotoxin and O_3 exposures, respectively; synergistic effects of coexposure mediated by neutrophils. Endotoxin increased rMuc-5AC mRNA levels in the NTE of O_3 -exposed rats; neutrophil depletion, however, had no effect on endotoxin-induced upregulation of mucin gene mRNA levels. Endotoxin enhanced the O_3 -induced increase in stored mucosubstances (4-fold increase), but only in neutrophil-sufficient rats.	Wagner et al. (2001a,b)
0.5	8 h/day, 1 and 3 days + OVA (1%, 50 μL/nasal passage)	Rat, male, Brown Norway, 10-12 weeks old, n = 6/group	O_3 enhanced the appearance of eosinophils in the maxilloturbinates of OVA-challenged rats but did not increase inflammation in other nasal tissues; O_3/OVA coexposures for 3 days increased the number of epithelial cells as well as the appearance of mucus-containing cells in the NTE lining the maxilloturbinates.	Wagner et al. (2002)
1	8 h	Rat, male, SD, 10 weeks old, Ferret, male, 18 months old, Monkey, male, Rhesus, 4 years old, n = 4-8/group	Severe, acute infiltration of neutrophils along with necrotic bronchiolar epithelium in all lung regions, especially in the centriacinar region; necrosis and inflammation was more severe in ferrets and monkeys than in rats.	Sterner-Kock et al. (2000)

Table AX5-9 (cont'd). Effects of Ozone on Lung Structure: Acute and Subchronic Exposures

Concentration ppm	Duration	Species	Effects	Reference
0.5	8 h/day for 3 days, assayed 2h or 4 days PE	Rat, male, Fischer F344/N, with or without prior exposure to 100 μg/day	2 h PE: Endotoxin/O ₃ rats had 48 and 3 times more PMNs in the NTE than did saline/air- and saline/O ₃ -exposed rats, respectively at 2 h PE. O ₃ -only rats had 35% more NTE cells and 2-fold more mucin mRNA than did saline/air-exposed rats.	Cho et al. (1999b)
		endotoxin, 10-12 weeks old, n = 8/group	4 days PE: Endotoxin/ O_3 rats had 5 and 2 times more IM and mucous cells, respectively, than did saline/air- and saline/ O_3 - rats.	
		n o/group	No mucous cell metaplasia was present in those rats killed at 4 days postexposure. Suggests that pre-existing rhinitis augments O_3 -induced mucous cell metaplasia.	
0.8	8 h/day for 90 days	Rats, SD, male, 275-300g, treated i.p. with 1-nitronaphthalene (0, 50, or 100 mg/kg)	1-nitronaphthalene (a pulmonary toxicant requiring metabolic activation)- treated rats exposed to O_3 showed greater histopathologic and morphometric effects in the centriacinar region of the lung. Caused denudation of the basement membrane and necrosis of remaining epithelial cells. Increased severity of ciliated cell toxicity in O_3 -exposed rats. No differences in the intrapulmonary airways or trachea in sensitivity to 1-nitronaphthalene, suggesting a site-selective synergy between O_3 and 1-nitronaphthalene.	Paige et al (2000b)

Table AX5-9 (cont'd). Effects of Ozone on Lung Structure: Acute and Subchronic Exposures

LM = Light microscopy EM = Electron microscopy

IAS = Interalveolar septum PMN = Polymorphonuclear leukocyte

Concentration ppm	Duration	Species	Effects	Reference
Mexico City <u>Ambient</u> : 0.018 (≥ 0.12 for 18 1-h intervals)	23 h/day for 7 weeks	Rat, male and female, Fischer F344, 8 weeks old	No inflammatory or epithelial lesions in nasal airways or respiratory tract.	Moss et al. (2001)
0.12 0.5 1.0	6 h/day, 5 days/week for 20 months	Rat, male, Fischer F344, 6-8 weeks old	LM morphometry of CAR remodeling. Thickened tips of alveolar septa lining ADs (alveolar entrance rings) 0.2 mm from TB in rats exposed to 0.12 ppm and to 0.6 mm in rats exposed to 1.0 ppm. At 0.5 and 1.0 ppm, atrophy of nasal turbinates, mucous cell metaplasia in NTE, increased volume of interstitium and epithelium along ADs due to epithelial metaplasia, and bronchiolar epithelial hyperplasia. At 1.0 ppm, increased AMs and mild fibrotic response (increase in interstitial matrix and cellular interstitium; the latter due to increase in volume in interstitial fibroblasts). More effects in PAR than in terminal bronchioles. Effects not influenced by gender or by aging. Effects similar to, or model of, early fibrotic human disease (e.g., idiopathic pulmonary fibrosis).	Catalano et al. (1995a,b); Chang et al. (1995); Harkema et al. (1994, 1997a,b) Pinkerton et al. (1995); Plopper et al. (1994); Stockstill et al. (1995)
0.12 0.50 1.0	6 h/day, 5 days/week for 24 and 30 months	Mice, male and female, B6C3F1, 6-7 weeks old, n = 50/group	Effects in the nose and centriacinar region of the lung at 0.5 and 1.0 ppm. Nasal lesions were mild: hyaline degeneration, hyperplasia, squamous metaplasia, fibrosis, suppurative inflammation of transitional and respiratory epithelium; and atrophy of olfactory epithelium. Lung lesions: alveolar/bronchiolar epithelial metaplasia and histiocytosis in terminal bronchioles, alveolar ducts, and proximal alveoli. Severity was greatest in mice exposed to 1.0 ppm O_3 , but there was minimal interstitial fibrosis.	Herbert et al. (1996)
0.12 1.0	6 h/day, 5 days/week, for 2 or 3 months	Rat, male, Fischer F344/N, 4-5 weeks old, n = 4/group	Morphometric changes (epithelial thickening, bronchiolarization) occurred after 2 or 3 months exposure to 1.0 ppm O_3 ; effects were similar to those found with 20 months exposure (<i>see Pinkerton et al., 1995</i>)	Pinkerton et al. (1998)

Table AX5-10. Effects of Ozone on Lung Structure: Subchronic and Chronic Exposures

Concentration ppm	Duration	Species	Effects	Reference
0.011	6 months	Rat, male, Wistar, 2 months	$CO = 1.25$ ppm; PM = 35.18 µg/m ³ ; $SO_2 = 29.05$ µg/m ³ . Induction of secretory hypertrophy, acidic mucous secretion, and ciliary damage.	Lemos et al. (1994)
0.25 0.5	8 h/day, 7 days/week for 13 weeks	Rat, male, Fischer F344/N HSD, 10-14 weeks old n = 5-6/group	Mucous cell hyperplasia in nasal epithelium after exposure to 0.25 and 0.5 ppm O_3 ; still evident after 13 weeks recovery from 0.5 ppm O_3 exposure. Mucous cell metaplasia found only after 0.5 ppm O_3 , but still detectable 13 weeks PE.	Harkema et al. (1999)
0.4	23.5 h/day for 1, 3, 7, 28, or 56 days	Rat, Wistar, 7 weeks old, n = 5/group	Acute inflammatory response (increased PMNs and plasma protein in BALF) reached a maximum at day 1 and resolved within 6 days during exposure; AMs in BALF increased progressively up to day 56, and slowly returned to near control levels with PE recovery. Histological examination and morphometry of the lungs revealed CAR inflammatory responses throughout O ₃ exposure; thickening of septa was observed at day 7. Ductular septa thickened progressively at days 7, 28, and 56 of exposure; showed increased collagen at day 28, which was further enhanced at day 56. Increased RBs with continuous exposure. Collagen and bronchiolization remained present after a recovery period.	Van Bree et al. (2002)
0.5	8 h/day for 1, 3, and 6 months	Rat, male, Fischer F344/N	Increased Bcl-2, a regulator of apoptosis, after 1 month, decreasing somewhat thereafter, returning to baseline by 13 weeks PE; increased number of metaplastic mucous cells in NTE after 3 and 6 months.	Tesfaigzi et al. (1998)
0.5	8 h/day for 5 days, every 5 days for a total of 11 episodes	Monkey; Rhesus, 30-day-olds, n = 6/group	Increased density and distribution of goblet cells in RB whole mounts stained with AB/PAS; extensive remodeling of distal airway with O_3 and O_3 + HDMA challenge; increased airways resistance and reactivity, and respiratory motor adaptation also occurred. Authors conclude that periodic cycles of acute injury and repair associated with the episodic nature of environmental patterns of O_3 exposure alters postnatal morphogenesis and epithelial differentiation in the distal lung of infant primates.	Schelegle et al. (2003a); Chen et al. (2003); Plopper and Fanucchi (2000

Table AX5-10 (cont'd). Effects of Ozone on Lung Structure: Subchronic and Chronic Exposures

Concentration ppm	Duration	Species	Effects	Reference
0.8	8 h/day for 90 days + 1-NN (100 mg/kg)	Rat, male, SD, 275-301 g	Increased O_3 -induced centriacinar toxicity (histopathology, TEM, morphometry) of 1-Nitronaphthalene (1-NN), a pulmonary cytotoxicant requiring metabolic activation, especially to ciliated cells.	Paige et al. (2000b)
0.5	11 episodes of 5 days each, 8 h/day followed by 9 days of recovery	Monkey, Macaca mulatta, 30 days old	In small conducting airways O_3 caused decrements in density of airway epithelial nerves. Reduction greater with HDMA + O_3 . O_3 or HDMA + O_3 caused increase in number of PGP 9.5 (pan-neuronal marker) in airway. CGRP-IR nerves were in close contact with the PGP9.5 positive cells. Appearance of clusters of PGP9.5 ⁺ /CGRP ⁻ cells. Suggests episodic O_3 alters developmental pattern of neural innervation of epithelial compartment.	Larson et al (2004)
0.5	11 episodes of 5 days each, 8 h/day followed by 9 days of recovery	Monkey, Rhesus, 30 days old, n = 6/group	Abnormalities in the BMZ included: (1) irregular and thin collagen throughout the BMZ; (2) perclecan depeleted or severely reduced; (3) FGFR-1 immunoreactivity was reduced; (4) FGF-2 immunoreactivity was absent in perlecan-deficient BMZ, but was present in the lateral intercelluar space (LIS), in basal cells, and in attenuated fibroblasts; (5) syndecan-4 immunoreactivity was increased in basal cells.	Evans et al. (2003)

RB = Respiratory bronchiole IAS = Interalveolar septum

 $C \times T$ = Product of concentration and time

Table AX5-10 (cont'd). Effects of Ozone on Lung Structure: Subchronic and Chronic Exposures

PE = Postexposure (i.e., time after O_3 exposure ceased)

AM = Alveolar macrophage

LM = Light microscopy

TEM = Transmission Electron Microscopy BMZ = Basement Membrane Zone

Concentration ppm	Duration	Species	Effects	Reference
0.5	6 or 23 h/day over 5 days	Rats, male, Fischer 344, 90 days old, n = 28-36/group, ambient temperature 10, 22, or 34 °C	Toxicity increased with decreases in temperature. At 10 °C: decreased body weight, total lung capacity, BALF protein, alkaline phosphatase activity, % PMN, and lysozyme. Ozone-induced changes in lung volume were attenuated during the 5 exposure days and returned to control levels after 7 days recovery. The responses to repeated O ₃ exposure in rats were exacerbated by reduced ambient temperature, presumably as a result of increased metabolic activity.	Wiester et al. (1996)
2	3 h, assayed 1 and 24 h PE	Mice, male, C57BL/6J C3H/HeJ, 53 days old, n = 5-7/group challenged by CO ₂ (5 or 8%)	C57BL/6J mice: CO_2 -induced changes in V_E were attenuated 1 h after O_3 exposure; V_T was reduced 1 h after O_3 exposure; the diminished V_T 1 h after O_3 was coincident with reduced <i>f</i> , mean inspiratory flow, and slope of V_E -to-%CO ₂ relationship compared with FA.; V_E partially reversed 24 h after O_3 relative to FA. C3H/HeJ: V_T was reduced 1 h after O_3 exposure; increased <i>f</i> to sustain the hypercapnic VE response similar to air exposure. Suggests that control of ventilation during response to CO_2 is governed,	Tankersley et al. (1993)
			in part, by genetic factors in these two strains of mice, implying differential O_3 susceptibility.	
0.3	48 and 72 h, with re-exposure after 14 days of recovery	Mice, C57BL/6J, C3H/HeJ, 6-8 weeks old	V_E and <i>f</i> were measured before and immediately after exposure. Normocapnic V_E was greater following subacute O_3 exposure in C57BL/6J mice than in C3H/HeJ mice, due to increased <i>f</i> and reduced V_T , respectively. Ventilatory responses to both normocapnia and hypercapnia were similar after O_3 reexposure in both strains. Suggests that: increased V_T in C57BL/6J mice may contribute to the increased susceptibility to lung injury due to a greater dose of O_3 reaching the lower lung; mechanistic separation of airway inflammation and ventilation.	Paquette et al. (1994)
2	2-3 h, assayed 0 h PE	Mice, male, C57BL/6J, C3H/HeJ, 4 or 11-12 weeks old, n = 4-6/group	Using ¹⁸ O-labeled O ₃ . C3H/HeJ mice had 46% less ¹⁸ O in lungs and 61% less in trachea, than C57BL/6J. C3H/HeJ mice had a greater body temperature decrease following O ₃ exposure than C57BL/6J mice. Suggests that the differences in susceptibility to O ₃ are due to differences the ability to decrease body temperature and, consequently decrease the dose of O ₃ to the lung.	Slade et al. (1997)

Table AX5-11. Effects of Ozone on Pulmonary Function

Concentration ppm	Duration	Species	Effects	Reference
2	3 h, assayed 6 h after exposure	Mice, male and female, AKR/J, C3H/HeJ, CBA/J, 129/J, NJ, C57BL/6J, C3HeB/FeJ, SJL/J	Measured tracheal transepithelial potential in the six strains and in progeny of B6 and C3 strain mice. Fl mice and second generation backcrosses with the resistant parent were O_3 resistant. Ratios of 1:1 (resistant:susceptible) were obtained with second generation backcrosses with the susceptible parent, suggesting simple autosomal recessive inheritance of susceptibility.	Takahashi et al. (1995b)
			Susceptible phenotype: 129/J, A/J, B6,C3HeB/FeJ, and SJL/J.	
			Resistant phenotype: AKR/J, C3, and CBA/J.	
			Different pattern of susceptibility than with inflammation, suggesting that the responses are controlled by disparate genetic factors.	
2 3 h	3 h	Mice, C3H/HeJ, A/J, C57BL/6J, 129/SvIm,	Used whole body plethysmography and enhanced pause index (P_{enh}) evaluations.	Savov et al. (2004)
		CAST/Ei, BTBR, DBA/2J, FVB/NJ, BALB/cJ, n = 6-24/group	C57BL/6J, BALB/cJ, 129/Svlm, BTBR: were highly sensitive to O_3 ; exhibited significant increases in P_{enh} to MCh at 6 and 24 h after exposure to O_3 .	
			DBA/2J, A/J, FVB/NJ, CAST/Ei, C3H/HeJ: increases in sensitivity to MCh at 6 h after exposure, return to near baseline by 24 h after exposure to O ₃ .	

Table AX5-11 (cont'd). Effects of Ozone on Pulmonary Function

 $V_E =$ Minute ventilation $V_T =$ Tidal volume f = Frequency of breathing FA = Filtered air MCh = Methacholine

		Table AX5-12. Effects of Ozone on Airway Responsiveness					
Concentration ppm	Exposure Duration	Species, Sex, Strain, and Age	Observed Effect(s)	Reference			
0.1 0.3	4 h/day, 4 days/week for 24 weeks	Guinea pig, male and female, Hartley, 200-250 g, n = 10-20/group	O_3 exposure did not produce airway hyperresponsiveness to ACh in nonsensitized animals; in OVA-sensitized animals, there was increased responsiveness to both nonspecific (ACh) and specific (OVA) airway challenge that persisted for 4 weeks after exposure 0.1 and 0.3 ppm O_3 . Effects were not gender specific and were not associated with BALF inflammatory indicators, but were associated with antigen-specific antibodies in blood.	Schlesinger et al. (2002a,b)			
0.15 0.30 0.60 1.2	4 h	Guinea pig, male Hartley, 500-600g, n = 5-8/group	Increased airway responsiveness to Hist, but not ACh, 16-18 h after 1.2 ppm O_3 exposure only. Increased responsiveness to SP occurred after exposure to ≥ 0.3 ppm O_3 .	Segura et al (1997)			
0.3	4 h/day for 1, 3, 6, 12, 24, or 38 days	Guinea pig, male Hartley, 500-600 g, n = 6-7/group	Increased airway responsiveness to SP occurred 16-18 h after exposure to 0.3 ppm O_3 for 1, 3, 6, 12, and 24 days; but not after 48 days. Highly significant correlation between airway responsiveness and BALF total cells, AMs, neutrophils, and eosinophils, suggesting that airway inflammation is involved.	Vargas et al (1998)			
0.5	8 h/day for 5 days, repeated every 14 days for 6 months	Rhesus monkey, male, 30 days old, n = 6/group	Increased airway responsiveness to Hist after 10 episodes of exposure to O_3 + HDMA in sensitized infant monkeys.	Schelegle et al. (2003a			
1	1 h	Guinea pig, male, Dunkin-Hartley, 250-300 g, n = 6-7/group	Increased bronchial responsiveness at 3 h, but not 24 h after O_3 ; OVA had no effect on baseline, but enhanced airway responsiveness 24 h after O_3 .	Sun et al. (1997)			
1	1 h	Mice, male, C57BL/6, 6 weeks old, n = 10-31/group	Ozone caused increased $C_{\rm dyn}$ and $V_{\rm E},$ and decreased P_aO_2 in OVA-sensitized mice.	Yamauchi et al. (2002)			
2	2 h	Rat, male, Fischer F344, 14 months old, n = 6/group	Increased airway responsiveness to MCh 2 h PE.	Dye et al. (1999)			

Table AX5-12. Effects of Ozone on Airway Responsiveness

Concentration ppm	Exposure Duration	Species, Sex, Strain, and Age	Observed Effect(s)	Reference
0.3 - 3.0	3 h	Mice, AJ, male and female, aged 2, 4, 8, or 12 weeks, n = 42-50/group	Nose-only exposure plethysmographs. V_E decreased with increasing age. O_3 caused concentration-related decrease in V_E at all ages, but with less response in the 2-week old. Younger mice with less decrease in O_3 -induced VE demonstrated 3- to 4-times greater inhaled dose when normalized for body weight. The 2- to 4- week mice showed no AHR at any dose, while the 8- and 12 week old mice demonstrated dose-related increases in AHR. Older mice demonstrated increased levels of IL-6 and MIP-2. Suggests that young mice are less sensitive to O_3 for the endpoints of two cytokine and AHR.	Shore et al. (2002)
0.3	5 h	Mice, BALB/c, 3 weeks old, n = 5/group	Mice OVA-sensitized days 7-14; exposed days 21-23, assayed day 24 or 25 Decrease in P_{enh} in rats exposed to O_3 , as a function of MCh concentration.	Goldsmith et al. (2002)
2	3 h	Mice, C57Bl/6J, and ob/ob, 8-12 weeks old, n = 6-7/group	Compared C57BL/6J and ob/ob mice (strain obese due to defect in gene coding for satiety hormone leptin). Intravenous MCh challenge induced AHR and inflammation in both groups, but was greater in obese mice. Dose per gram of lung tissue was greater in obese mice. Suggests obese mice get greater dose of O_3 .	Shore et al. (2003)
2		Rats, male and	Nose-only-exposure plethysmographs exposure.	Shore et al.
	female, SD, 2, 4, 6, 8, or 12 weeks, n = 4-19/group	8,12 week rats: O ₃ -induced 40-50% decreases in V_E (primarily due to decrease in V_T).	(2000)	
			6 week rats: O_3 -induced changes in V_E were significantly less.	
			2, 4 week rats: no O_3 -induced changes in V_E .	
			BALF protein and PGE2 were greater than in older rats. Suggests higher delivered dose to younger rats, decreased ventilatory response, and greater lung injury.	
2	2 h	Guinea pigs, male, Hartley, 400-600 g, n = 6/group	AHR to MCh peaked 2 h PE; PMN in BALF increased until 6 h PE. Tazanolast (a mast cell stabilizing drug, doses 30, 100, or 300 mg/kg) administered before O_3 exposure inhibited O_3 -induced AHR dose- dependently. Suggests that mast cells may play in role in the development of AHR.	Igarashi et al (1998)

Exposure Duration	Species, Sex, Strain, and Age	Observed Effect(s)	Reference
4 h, assayed 4 to 72 PE	Mice, normal WBB6F1 (1/1) and mast cell- deficient WBB6F1- kit W /kit W-v (kit W /kit W-v) 8-12 weeks old, n = 3-11/group	Demonstrated O_3 -induced cutaneous, as well as bronchial, mast cell degranulation. PMN influx observed at 1 ppm only in normal mice. AHR in response to MCh with 1 ppm observed in both. Suggests that mast cells are involved in O_3 -induced PMN influx but not AHR.	Noviski et al. (1999)
2 h	Cat, 2-3 kg, n = 5/group	Cats anesthetized and mechanically ventilated, challenged with ACh. Pretreated with polyethylene glycol-superoxide dismutase (PEG-SOD) or PEG-catalase (PEG-CAT) 5 min before O_3 exposure. PEG-SOD partially prevented O_3 -induced AHR, PEG-CAT did not. Suggests superoxide involvement in O_3 -induced AHR.	Takahashi et al. (1993)
4 h, MCh challenge 6 h PE	Mice FVB/N, and FVB/N with β_2 -AR transgene, 10-14 weeks old, n = 10/group	Targeted expression (using CCSP promoter) of β_2 -adrenergic receptors (β_2 -AR) to airway epithelium to mimic agonist activation. Heterozygous mice from generations 2 to 4 used. MCh challenge dose needed to increase P_{enh} was greater in CCSP- β_2 -AR mice. CCSP- β_2 -AR mice less responsive to O_3 . Suggests that β_2 -ARs regulate airway responsiveness and that β -agonists induce bronchodilation through activation of receptors on smooth muscle cells and epithelial cells.	McGraw et al (2000)
2 h, assayed 2 h PE	Rat, male, SD, 2.5-3.5 months old, n = 5/group	 Neonatal rats treated with capsaicin. Challenged with MCh following O₃. Capsaicin-treated rats: O₃ had no effect on pulmonary conductance; decreased dynamic compliance; increase in AHR. During O₃ exposure: 50% decrease in HR and 2.5 °C decrease in core temperature in both controls and capsaicin rats. Suggests that C-fibers inhibit O₂-induced AHR but do not modulate HR 	Jimba et al. (1995)
	Duration 4 h, assayed 4 to 72 PE 2 h 4 h, MCh challenge 6 h PE	Durationand Age4 h, assayed 4 to 72 PEMice, normal WBB6F1 (1/1) and mast cell- deficient WBB6F1- kit W /kit W-v (kit W /kit W-v) 8-12 weeks old, n = 3-11/group2 hCat, 2-3 kg, n = 5/group4 h, MCh challenge 6 h PEMice FVB/N, and FVB/N with β_2 -AR transgene, 10-14 weeks old, n = 10/group2 h, assayed 2 h PERat, male, SD, 2.5-3.5 months old,	Durationand AgeObserved Effect(s)4 h, assayed 4 to 72 PEMice, normal WBB6F1 (1/1) and mast cell- deficient WBB6F1 hti W /kit W-v (kit W /kit W-v) 8-12 weeks old, $n = 3-11/group$ Demonstrated O ₃ -induced cutaneous, as well as bronchial, mast cell degranulation. PMN influx observed at 1 ppm only in normal mice. AHR in response to MCh with 1 ppm observed in both. Suggests that mast cells are involved in O ₃ -induced PMN influx but not AHR.2 hCat, 2-3 kg, $n = 5/group$ Cats anesthetized and mechanically ventilated, challenged with ACh. Pretreated with polyethylene glycol-superoxide dismutase (PEG-SOD) or PEG-catalase (PEG-CAT) 5 min before O ₃ exposure. PEG-SOD partially prevented O ₃ -induced AHR, PEG-CAT did not. Suggests superoxide involvement in O ₃ -induced AHR.4 h, MCh challenge 6 h PEMice FVB/N, and FVB/N with β_2 -AR transgen, 10-14 weeks old, $n = 10/group$ Targeted expression (using CCSP promoter) of β_2 -adrenergic receptors (β_2 -AR) to airway epithelium to minic agonist activation. Heterozygous mice from generations 2 to 4 used. MCh challenge dose needed to increase P_{unh} was greater in CCSP- β_2 -AR mice. CCSP- β_2 -AR mice less responsive to O_3 . Suggests that β_2 -ARs regulate airway responsiveness and that β_2 -agiosits induce bronchodilation through activation of receptors on smooth muscle cells and epithelial cells.2 h, assayed 2 h PERat, male, SD, $2.5-3.5$ months old, $n = 5/group$ Neonatal rats treated with capsaicin. Challenged with MCh following O_3 . Capsaicin-treated rats: O_3 had no effect on pulmonary conductance; decreased dynamic compliance; increase in AHR. During O_3 exposure: 50% decrease in HR and 2.5 °C decrease in core

Table AX5-12 (cont'd). Effects of Ozone on Airway Responsiveness

Concentration ppm	Exposure Duration	Species, Sex, Strain, and Age	Observed Effect(s)	Reference
1	3 h, assayed 4h PE	Rat, SD, treated with capsaicin or tachykinin antagonists, n = 6/group	Rats treated with CP-99994 (neurokinin-1 receptor antagonist) and SR-48968 (neurokinin-2-receptor antagonist). O_3 induced greater numbers of PMN in BALF of treated rats. The antagonists has no effects on pulmonary mechanics or airway responsiveness.	Takebayash et al. (1998)
		n – 0/group	Suggests that tachykinins are involved in the protective effects of C-fibers against O_3 -induced inflammation.	
			Capsaicin treatment induced increased PMN in BALF. O_3 exposure reduced V_E in both vehicle and capsaicin-treated rats, but the capsaicin treatment caused a greater, more immediate reduction.	
			Suggests that the increase in BALF PMN is not due to a greater inhaled dose of O_3 reaching the lung.	
2	3 h, ACh challenge 0 and 24 h PE	Mice, 8 weeks old, 15-25 g. DBA/2J, AKR/J, A/J, C3H/HeJ,	Differing susceptibility to O_3 : Hyperreactive-DBA/2J, AKR/J, A/J; Hyporeactive-C3H/HeJ, C57BL/6J, SJL/H; Intermediate 129/J. ACh challenge 25 or 50 µg/kg.	Zhang et al. (1995)
		C57BL/6J, SJL/H, 129/J, n = 6-8/group	ACh 24 h PE: Airway responses increased in A/J strain at 25 μ g/kg and in C57BL/6J and SJL/J strains at 50 μ g/kg.	
		n oo,group	Ozone did not alter reactivity in other strains. MCh or carbachol challenge not affected by O_3 , suggesting that cholinesterase function is affected by O_3 . C57BL/6J and A/J mice treated with cyclophosphamide (an immunosuppressant) or anti-PMN caused decreased O_3 -induced PMN levels but did not alter AHR, suggesting that O_3 -induced ACh hyperreactivity correlates with susceptibility and that PMN influx is independent of AHR.	

Concentration ppm	Exposure Duration	Species, Sex, Strain, and Age	Observed Effect(s)	Reference
0.05	4 h, challenged with iv 5-HT	Rats, male, Long- Evans, SD, Fisher 344, Brown-Norway, BDII, BDE, DA,	AHR: developed in Lewis, BDII and Long-Evans rats 90 min after O_3 . Baseline AHR differed among strains; did not correlate with O_3 -induced AHR.	Depuydt et al. (1999)
		Lewis and Wistar, 6-8 weeks old,	PMN influx: did not occur in any strain.	
		n = 10/group	LE rats: AHR lasted ≥ 12 h PE with no change in BALF PMN, LDH, alkaline phosphatase, or protein.	
			Suggests that O_3 induced AHR occurs without airway inflammation and that genetic factors may alter the sensitivity to O_3 .	
0.2	7 h, assayed 3 h PE	Rabbits, New Zealand White, 5 kg, n = 5-7/group	O_3 -induced decrease in tracheal transepithelial potential difference, but no change in lung resistance.	Freed et al. (1996)
		n – 5-7/group	ACh challenge: no change in compartmentalized lung resistance; 140% increase in O_3 -induced lung resistance.	
			Bilateral vagotomy: no change in compartmentalized lung resistance; enhancement of O_3 -induced peripheral lung reactivity.	
			Suggests that O_3 exposure may affect tracheal epithelial function and increase central airway reactivity, possibly through vagally-mediated mechanisms.	
0.4	4 h, assayed by ACh, SP, or histamine challenge 0 or 48 h PE	Rabbits, New Zealand White, male and female, 2.5-3 kg, n = 4-6/group	Used isolated perfused lung model allowing partitioning of the total pressure gradient into arterial, pre- and postcapillary, and venous components. O_3 -induced inhibition of pulmonary mechanical reactivity to ACh, SP, and histamine. No change in baseline pulmonary resistance or dynamic compliance. At 48 h PE O_3 altered vasoreactivity of the vascular bed Ozone-induced modification of the vasoreactivity of the vascular bed at 48 h PE and elevation of arterial segmental pressure. Suggests that O_3 can directly induce vascular constriction both immediately and two days following exposure and can inhibit ACh-, SP-, and histamine-induced changes in lung mechanics.	Delaunois et al. (1998)

Concentration ppm	Exposure Duration	Species, Sex, Strain, and Age	Observed Effect(s)	Reference
0, 0.12, 0.5, or 1.0	6 h/day, 5 days/week for 20 months	Rat, male and female, Fischer 344, 6-7 weeks old	Isolated eighth generation airways following O ₃ exposure. Circumferential tension development was measured in response to bethanechol, acetylcholine, and electrical field stimulation and normalized to smooth muscle area. 0.5 ppm caused an increase in smooth muscle area. Maximum responses of the small bronchi of male rats were significantly reduced after exposure to 0.12 and 0.5 ppm O ₃ . Suggests that O ₃ -induced increases in airway responsiveness do not persist with near-lifetime exposure and that chronic exposure alters smooth muscle cell function.	Szarek et al. (1995)
0.5	8 h/day for 7 days	Guinea pig, male, Hartley, 5 weeks old	Repeated exposure increased rapidly adapting receptor activity to substance P, methacholine, and hyperinflation; no significant effects on baseline or substance P- and methacholine-induced changes in lung compliance and resistance. Suggest that because agonist-induced changes in receptor activity precede lung function changes, the responsiveness of rapidly adapting receptors was enhanced.	Joad et al. (1998)
0.5	8 h/day for 5 days followed by 9 days of FA; for 11 episodes	Monkey, Rhesus, 30-day old, n = 6/group	Half of the monkeys were sensitized to house dust mite allergen (HDMA) at 14 and 28 days of age before exposure. HDMA and histamine aerosol challenges administered until R_{aw} doubled. Baseline R_{aw} elevated after 10 exposure episodes in the HDMA + O ₃ group compared to the FA, HDMA, and O ₃ exposure groups. Aerosol challenge with HDMA at the end of the 10th episode did not significantly affect R_{aw} , V_T , <i>f</i> , or S_aO_2 . AHR appeared to develop following episode 6. Aerosol challenge with HDMA at the end of the 10th episode did not significantly affect R_{aw} , V_T , <i>f</i> , or S_aO_2 . HDMA + O ₃ group: had increases in serum IgG, histamine and eosinophils; greater alteration in airway structure and content suggesting that O ₃ can enhance the structural remodeling and allergic effects of HDMA sensitization exposure groups.	Schelegle et al. (2003a

Concentration ppm	Exposure Duration	Species, Sex, Strain, and Age	Observed Effect(s)	Reference
1	8 h	Rat, Wistar, some treated with capsaicin, n = 6-8/group	Vehicle-treated: O ₃ -induced rapid shallow breathing pattern; BrdU label started at the bifurcation of the main stem bronchi and increased distally. Capsaicin treated: no O ₃ -induced changes in respiratory frequency; reduced BrdU labeling density in the terminal bronchioles supplied by	Schelegle et al. (2001)
			short airway paths. Suggests that O ₃ -induced rapid shallow breathing is protective of conducting airways and allows distribution of injury to more distal regions.	
1	2 h	Rat, male, Wistar, 100-120 days old, n = 7-10/group	Examined the site-specific deposition of ¹⁸ O at breathing frequencies of 80, 120, 16, or 200 bpm at a V_T to produce a constant minute ventilation of 72.8 ml/min/100 g body weight.	Alfaro et al. (2004)
			All frequencies: parenchymal areas had a lower content of ¹⁸ O than trachea and bronchi; right caudal parenchymal levels did not change.	
			80 to 160 bpm: deposition reduced in midlevel trachea and increased in both mainstream bronchi; increased deposition in parenchyma supplied by short (cranial) airway paths.	
			200 bpm: increased deposition in trachea increased; increased deposition in right cranial and caudal bronchi regions: decreased content in right cranial parenchymal.	
			Suggests that the effect of rapid, shallow breathing is to create a more evenly distributed injury pattern with less deposition of O_3) in the trachea and a small effect on deposition in the parenchyma.	

Table AX5-12 (cont'd). Effects of Ozone on Airway Responsiveness

MCh = Methylcholine, ACh = Acetylcholine, Hist = Histamine, 5-HT = 5-Hydroxytryptamine, SP = Substance P, FS = Field Stimulation, CCh = Carbachol, TX = Thromboxane, KCl = Potassium Chloride, Pt = Platinum; Route: iv = intravenous, inh = inhalation., sc = subcutaneous, ip = intraperitoneal, OVA = Ovalbumin, BALF = bronchoalveolar lavage fluid, HDMA = House Dust Mite Allergen, C_{dyn} = Dynamic Lung Compliance, V_E = Minute Ventilation, PaO₂ = partial pressure of arterial oxygen, AHR = airway hyperreactivity, V_T = Tidal Volume, R_{aw} = airway resistance, *f* = frequency of breathing, SaO₂ = oxygen saturation of arterial blood.

Concentration ppm	Exposure Duration	Species, Sex, Strain, and Age	Observed Effect(s)	Reference
1	0, 12, 24, 48, 72, or 96 h	Guinea pigs, Dunkin-Hartley, male, 2 months-old, n = 4/group	Following O_3 exposure, two main bronchi were removed and tracheobronchial cells were isolated and assayed for DNA strand breaks using fluormetric analysis. Ozone induced an increase in BALF protein and in DNA strand breaks, but did not change cell yield or viability. The amount of DNA in alkali lysates was decreased at 72 h, which suggests an increase in strand breaks at that time point.	Ferng et al. (1997)
1 or 2 2	90 min 90 min/day for 5 days	Mice, female, BALB/c (20.6 g) or Muta TM (26.0 g) n = 11-21/group	O ₃ -induced increase in strand breaks up to 200 min following exposure. No effects after 200 min. O ₃ did not affect the level of oxidized amino acids in lung or the level of 8-oxo-deoxyguanosine in nuclear DNA. O ₃ -induced induction of IL-6 mRNA following DNA strand breaks, which does not support inflammation causing DNA damage. Mutagenic mice had no O ₃ -induced mutations in cII transgene.	
0.12, 0.50, and 1.0	6 h/day, 5 days/week for up to 9 months	Mice, female, A/J, n = 29-35/group	At 5 months, no difference in lung tumor multiplicity or incidence. At 9 months, no differences in lung tumor multiplicity between control mice and mice exposed to any concentration of O_3 . The highest, and only statistically significant lung tumor incidence, was found in the mice exposed to 0.5 ppm O_3 . In the O_3 -exposed mice allowed to recover in filtered air, only the mice exposed to 0.12 ppm O_3 had increases in lung tumor incidence and multiplicity. Authors consider the results to be spurious and of no significance for data interpretation.	
0.5	6 h/day, 5 days/week for 12 weeks	Mice, male and female, B6C3F ₁ , 5-6 weeks old, n = 20 M and 20 F	Sporadic differences in mean body weight between O_3 -exposed mice and air-exposed controls, as well as significant differences in the mean absolute and relative weights of liver, spleen, kidney, testes, and ovary. No O_3 -related increased incidence of neoplasms in lung tissue. Oviductal carcinomas observed upon histopathologic examination in 30% of O_3 -exposed female mice.	
0, 0.12, 0.5,or 1.0	6 hr/day, 5 days/wk, to ppm 2-yr and lifetime	Rats, male and female, Fischer F-344/N, n = 5 M + 5 F (acute) n = 50 m + 50 F/group	Cocarcinogenicity study with subcutaneous administration of 0, 0.1, or 1.0 mg/kg body weight of 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK) and inhalation of 0 or 0.5 ppm O ₃ to male rats. O ₃ caused dose-related increase in inflammation in CAR; increased fibrosis; extension of the bronchiolar epithelium to the proximal alveoli; but no increase in neoplasms. NNK (1.0 mg/kg) alone causes increased bronchiolar/alveolar neoplasms.	Boorman et al. (1994)
			NNK + O ₃ : no enhancement of neoplasms. Suggests that O ₃ is not carcinogenic; does not enhance neoplasms growth; and creates mild site-specific lesions which persist with continued exposure.	

Table AX5-13. Effects of Ozone on Genotoxicity/Carcinogenicity

Concentration ppm	Duration	Species	Effects	Reference
NEUROBEHAV	VIORAL EFFE	<u>CTS</u>		
0.1 0.2 0.5 1.0	4 h Rat, male, Wistar, 47-50 days old, n = 25/group		Rats exposed for 4 h to 0.2, 0.5, and 1 ppm O_3 showed long-term memory deterioration and decreased motor activity, which was reversed 24 h later. Brain and pulmonary Cu/Zn SOD levels were increased in animals exposed to 0.1, 0.2, and 0.5 ppm O_3 , but decreased in animals exposed to 1 ppm O_3 .	Rivas-Arancibia et al. (1998)
0.1 0.4 0.7 1.1 1.5	4 h	Rat, male, Wistar, 300-350 g, n = 10/group	O_3 caused memory impairment at ≥ 0.7 ppm (one trial passive avoidance test), decreased motor activity at ≥ 1.1 ppm, and increased lipid peroxidation at ≥ 0.4 ppm. Lipid perioxidation levels from the frontal cortex, hippocampus, striatum and cerebellum increased with increasing O_3 concentration.	Dorado-Martine et al. (2001)
0.3 0.6	30 days	Mice, CD-1 M, F, 28-33 g, n = 6-7/group	O_3 exposure slightly but selectively affected neurobehavioral performance in male mice assessed with a 5-min open-field test on exposure days 4 and 19 and on day 3 after the end of the exposure. O_3 exposure, however, did not grossly affect neurobehavioral development. Reversal learning in the Morris water maze test was consistently impaired in both prenatally and adult exposed mice. In addition, longer latency to step-through in the first trial of the passive avoidance test and a decrease in wall rearing in the hot-plate test were recorded in O_3 prenatally exposed mice. Except for the first open-field test, altered responses were observed only in animals exposed to 0.3 ppm O_3 .	Sorace et al. (2001)
0.35 0.75 1.5	12 h	Rat, male, Wistar, 270 g, n = 10/group	O_3 exposure decreased paradoxical sleep after 2 h of exposure, and increased slow wave sleep after 12 h of exposure at all O_3 concentrations; 5-HT concentrations in the pons increased with increasing O_3 concentration.	Paz and Huitrón Reséndiz (1996)
0.7			Vitamin E administered before or after O_3 exposure blocked memory deterioration (passive avoidance) and increases in lipid peroxidation levels in the striatum, hippocampus and frontal cortex that were associated with oxidative stress.	Guerrero et al. (1999)
0.7	4 h	Rat, male, Wistar, 27 months old, n = 3-4/group	O_3 exposure increased ultrastructural alterations in the hippocampus and prefrontal cortex in aged rats compared with controls. These areas are related to learning and memory functions, which are the first degenerative aging changes observed.	Nino-Cabrera et al. (2002)

Concentration ppm	Duration	Species	Effects	Reference
<u>NEUROBEHAV</u>	VIORAL EFFEC	CTS (cont'd)		
0.7 0.8	4 h	Rat, male, Wistar, 47, 540, or 900 days old, n = 10-30/group	Taurine (43 mg/kg) given before or after O_3 exposure improved memory deterioration in an age-specific manner. Old rats showed peroxidation in all control groups and an improvement in memory with taurine. When taurine was applied before O_3 , peroxidation levels were high in the frontal cortex of old rats and the hippocampus of young rats; in the striatum, peroxidation caused by O_3 was blocked when taurine was applied either before or after exposure.	Rivas-Arancibia et al. (2000)
1	12 h/day during dark period	Rat, female, adult, n = 6/group	O_3 exposure during pregnancy affects the neural regulation of paradoxical sleep and circadian rhythm of rat pups 30, 60, and 90 days after birth.	Haro and Paz (1993)
1	4 h	Rat, male, Wistar, n = 24/group		
1	3 h	Rat, male, Wistar, 275 g, n = 10/group	O_3 or its reaction products affect the metabolism of major neurotransmitter systems as rapidly as after 1 h of exposure. There were significant increases in dopamine (DA), and its metabolites noradrenaline (NA) and 3,4 dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindolacetic acid (5-HIAA) in the midbrain and the striatum.	Gonzalez-Pina and Paz (1997)
1.5	24 h	Rat, male, Wistar, n = 11/group	Adult rats exposed to O_3 spend decreased time in wakefulness and paradoxical sleep and a significant increase in time in slow-wave sleep. Neurochemical changes include increased metabolism of serotonin in the medulla oblongata, pons, and midbrain.	Huitrón-Reséndiz et al. (1994)
0.5	20 h/day for 5 days	Rat, SD, 220-240 g, n = 10-20/group	O_3 produced marked neural disturbances in structures involved in the integration of chemosensory inputs, arousal, and motor control. O_3 inhibited tyrosine hydroxylase activity in noradrenergic brainstem cell groups, including the locus ceruleus (-62%) and the caudal A2 subset (-57%). Catecholamine turnover was decreased by O_3 in the cortex (-49%) and striatum (-18%) but not in the hypothalamus.	Cottet-Emard et al. (1997)

Concentration ppm	Duration	Species	Effects	Reference
NEUROBEHAV	IORAL			
0.4, 0.8, or 1.2	24 h	Cat, male, adult, n = 5/group	Evaluated EEG of sleep-wake organization in cats. $0.4 O_3$ did not change the amount of sleep parameters, did decrease paradoxical sleep during first 8 h of exposure. At 1.2 ppm paradoxical sleep was reduced during O_3 exposure, followed by a dose-related increase of slow-wave sleep. Suggests O_3 -induced changes in sleep patterns.	Paz and Bazan- Perkins (1992)
0.75, 1.5 and 3.0	4h	Rat, male, Wistar, 250-300 g, n = 15/group	Recorded evoked potential in visual cortex and lateral geniculate nucleus. P1, N1 and P2 components delayed in the visual cortex and lateral geniculate nucleus at 3.0 ppm O_3 . N1 component in the visual cortex affected at 1.5 ppm O_3 . Suggest O_3 -induced alterations in synaptic excitability and conduction mechanisms in the visual pathway.	Custodio- Ramierez and Paz (1997)
1-1.5	4 h	Rat, male, Wistar, ~250 g n = 5/group	O_3 -induced loss of dendritic spines on primary and secondary dendrites of granule cells; swelling of Golgi apparatus and mitochondrion; dilation cisterns of the rough endoplasmic reticulum; vacuolation of neuronal cytoplasm. Suggests O_3 -induced oxidative stress creates alterations in the granule layer of the olfactory bulb and possible modifications of function.	Colin-Barenque et al. (1999)
<u>NEUROENDOC</u>	CRINE EFFECTS			
0.5 to 3.0	3 h	Rat, male, SD, 44-47 days old, n = 4-6/group	Hyperthyroid, T_4 -treated rats (0.1 - 1.0 mg/kg/day for 7 days) had increased pulmonary injury (BALF LDH, albumin, PMNs) at 18 h PE compared to control rats.	Huffman et al. (2001)
1.0	24 h	Rat, male, SD, 3-4 months old	Hyperthyroid, T3-treated rats had increased metabolic activity and O_3 -induced pulmonary injury, but lipid peroxidation, as assessed by alkane generation, was not affected.	Sen et al. (1993)

Concentration ppm	Duration	Species	Effects	Reference
<u>CARDIOVASC</u>	CULAR EFFECT	<u>S</u>		
0.1 0.3 0.5	5 h	Rat, Wistar young (4-6 month) and old (22-24 month) n = 9-14/group	Transient rapid shallow breathing with slightly increased HR appeared 1-2 min after the start of O_3 exposure, possibly due to olfactory sensation; persistent rapid shallow breathing with a progressive decrease in HR occurred with a latent period of 1-2 h. The last 90-min averaged values for relative minute ventilation tended to decrease with the increase in the level of exposure to O_3 and these values for young rats were significantly lower than those for old rats. An exposure of young rats to 0.1 ppm O_3 for shorter than 5 h significantly decreased the tidal volume and HR and increased breathing frequency, but no significant changes were observed in old rats. There were no differences between young and old rats in non-observable-adverse-effect-levels (NOAELs) for the O_3 -induced persistent ventilatory and HR responses, when the NOAELs were determined by exposure to 0.3 and 0.5 ppm O_3 .	Arito et al. (1997
0.1 0.3 0.5	8 h/day for 4 days	Rat, male, Wistar, 10 weeks old, n = 9/group	Circadian rhythms of HR and core body temperature were significantly decreased on the first and second O_3 exposure days in a concentration dependent manner, and returned to control levels on the third and fourth days.	Iwasaki et al. (1998)
0.25 to 2.0	2 h to 5 days	Rat, Fischer F344, Mice, C57BL/6J, C3H/HeJ, Guinea pig, Hartley, n = 4-10/group	Robust and consistent decreases in HR and core body temperature; smaller decreases in metabolism, minute ventilation, blood pressure, and cardiac output that vary inversely with ambient temperature and body mass.	Watkinson et al. (2001)
0.5	6 h/day 23 h/day for 5 days	Rat, male, Fischer F-344, 100-120 days old, n = 4-6/group	Minimal extrapulmonary effects were observed at a core body temperature of 34 °C; O_3 exposures at 22 and 10 °C produced significant decreases in heart rate (160 and 210 beats/min, respectively), core body temperature (2.0 and 3.5 °C, respectively), and body weight (15 and 40 g, respectively). Decreases in these functional parameters reached their maxima over the first 2 exposure days and returned to control levels after the 3rd day of exposure.	Watkinson et al. (1995); Highfill and Watkinson (1996)

Concentration ppm	Duration	Species	Effects	Reference
	ULAR EFFECTS	(cont'd)		
0.5	8 h	Rat, male, Fischer F-344, 270-330 g, n = 6/group	O_3 exposure increased atrial natriuretic peptides in the heart, lung, and circulation, suggesting they mediate the decreased BP and pulmonary edema observed with similar O_3 exposures.	Vesely et al. (1994a,b,c)
0	24 h/day	Rat, male, Fischer F-344 kept at one	0.5 ppm O_3 for both 6 h/day and 23 h/day caused decreases in heart rate and core temperature (termed hypothermic response) and increases in BALF	Watkinson et al. (2003)
0.5	6 h/day	of three temperatures: 10 °C, 22 °C,	inflammatory markers. Exercise in 0 ppm O_3 caused increases in bALF and core temperature, 0.5 ppm O_3 decreases. CO_2 and O_3 induced the greatest deficits. Dose, animal mass, and environmental stress are suggested	(2003)
0.5	23h/day	34 °C at rest, moderate or heavy	to modify the hypothermic response.	
0.5		CO ₂ -stimulated ventilation, 100-120 days old, n = 4-8/group		
<u>REPRODUCTI</u>	VE AND DEVELO	OPMENTAL EFFEC	<u>TS</u>	
0.2 0.4 0.6	Continuous up to day 17 of pregnancy	Mice, male and female, CD-1, 25-27 g	No significant effects on either reproductive performance, postnatal somatic and neurobehavioral development (as assessed by a Fox test battery) or adult motor activity (including within-session habituation); some subtle or borderline behavioral deficits were noted, however.	Petruzzi et al. (1995)
0.3	Continuous up	Mice, male and	O ₃ caused subtle CNS effects but did not affect the animals' capability to	Petruzzi et al.
0.6 0.9	to postnatal day 26	female, CD-1, 27-30 g, n = 11-15/group	learn a reflexive response (limb withdrawal); females exposed to 0.6 ppm O_3 showed a reduced preference for the right paw than both their same-sex controls and 0.6 ppm males. The effect was more robust in the case of an organized avoidance response (wall-rearing).	(1999)

Concentration ppm	Duration	Species	Effects	Reference
REPRODUCTI	VE AND DEVELO	OPMENTAL EFFE	CTS (cont'd)	
0.3 0.6	Continuous until gestational day 17	Mice, male and female, CD-1, 28-30 g, n = 6-9/group	Exposure to O_3 did not grossly affect neurobehavioral development, as assessed by somatic and sensorimotor development (postnatal day (PND) 2-20), homing performance (PND 12), motor activity (PND 21), passive avoidance (PND 22-23), water maze performances (PND 70-74), and response to a nociceptive stimulus (PND 100).	Sorace et al. (2001)
0.4 0.8 1.2	Continuous during gestation days 7-17	Mice, CD-1	No effect of O_3 on reproductive performance; no significant somatic developmental effects in O_3 -exposed pups except for a delay in eye opening that was not concentration dependent.	Bignami et al. (1994)
0.6	Continuous from birth to weaning	Mice, male and female, CD-1, 25-27 g, n = 13-16/group	Exposure to O_3 did not produce any significant impairment of the acquisition phase during swimming navigation, a sensitive indicator for hippocampal damage; however, O_3 slightly increased the swimming paths during the last day of the reversal phase. Mice exposed to O_3 showed a slightly but significantly higher swimming speed during all the days, which was unrelated to differences in body weight and to navigational performances. Moreover, mice exposed to O_3 (with the exception of one animal) had a strong tendency to make turns to the left while the controls, independent of sex, preferred clockwise turns.	Dell'Omo et al (1995a,b)
1	12 h/day for entire gestation, assayed at postnatal day 0, 12, and 60	Rat, male and female, Wistar, n = 9-10/group	 Histological and planimetric analysis using sagittal sections of the anterior cerebellar lobe. PND 0: O₃-induced cerebellar necrosis. PND 12: diminished molecular layer; pale nucleoli and perinucleolar bodies in Purkinjie cells. PND 60: Purkinjie cells with clumps of chromatin around periphery. Suggests that gestational exposure to O₃ induces permanent cerebellar damage. 	Rivas-Manzand and Paz (1999)
EFFECTS ON I	LIVER, SPLEEN,	<u>THYMUS</u>		
1.0 2.0	3 h	Rat, female, SD, 200-225 g	High O_3 exposure stimulates hepatocytes to produce increased amounts of nitric oxide as well as protein, possibly mediated by cytokines such as TNF α produced by alveolar macrophages. When macrophage function is blocked, hepatic injury induced by O_3 is prevented.	Laskin et al. (1994, 1996, 1998b); Laskin and Laskin (2001)

Concentration ppm	Duration	Species	Effects	Reference
EFFECTS ON L	LIVER, SPLEE	N, THYMUS (cont'd)		
2.0	2 h	Rat, male, Fischer F-344, 2, 9, or 24 months old, n = 2/group	Utilizing electron paramagnetic resonance (EPR) spectroscopy of chloro extracts of liver homogenates, a significant flux of hydrogen peroxide produced from the reaction of O_3 with lipids of the extracellular lining co be a source of biologically relevant amounts of hydroxyl radical. EPR si for carbon-centered alkoxyl and alkyl adducts were detected with C-phen N-tert-butyl nitrone (PBN) in the liver of animals exposed to O_3 .	(1996) ould gnals
EFFECTS ON C	CUTANEOUS 1	<u> TISSUE</u>		
0.5	2 h	Mice, hairless female	α tocopherol levels in the stratum corneum (SC) were not affected by O ₃ exposure (0.5 ppm) alone, but were significantly depleted by combined exposure to UV and O ₃ .	Valacchi et al. (2000)
0.8	6 h	Mice, SKH-1 hairless	Increased lipid peroxidation in the skin epidermis and dermis activated s proteins HSP27 and HO-1, and activated a proteolytic enzyme system (MMP-9) related to matrix injury and repair processes.	tress Valacchi et al. (2003)
0.8 1.0 10.0	2 h	Mice, SKH-1 hairless	High O_3 depletes hydrophilic antioxidants in the SC: vit. C decreased to GSH decreased to 41%, and uric acid decreased to 44% of control levels exposure to ≥ 1.0 ppm O_3 .	
1.0 5.0 10.0	2 h	Mice	High O_3 exerts an oxidizing effect on the outermost layer of the skin (SC depletes low-molecular-weight antioxidants (α tocopherol, vit. C, glutath uric acid) in a concentration dependent manner; increases malondialdehy levels associated with lipid peroxidation.	nione, (2001)
0, 0.8, 1, and 10	2 h	Mice, SKH-1 hairless	1 ppm O_3 depleted SC levels of vitamin C (80%), GSH (41%), and UA (44%). Suggests that hydrophilic antioxidants in the SC modulate the ef of O_3 -induced oxidative stress.	Weber et al. fects (1999)
RER = Rough endoplasmic reticulum PE = Postexposure (i.e., time after O ₃ exposure ceased) TSH = Thyroid stimulating hormone T_3 = Triiodothyronine T_4 = Thyroxine cyt. = Cytochrome			NADH = Reduced nicotinamide adenine dinucleotideSR $B[a]P = Benzo[a]pyrene$ TBNK = Natural killerIgE	S = Lipopolysaccharide BC = Sheep red blood co A = Thiobarbituric acid C = Immunoglobulin E. A = Phytohemagglutin

	ntration pm					
O ₃	NO ₂	Duration	Species	Endpoints	Interaction	Reference
MORPH	HOLOGY	, -				
0.8	14.4	6 h/day, 7 days/week for 90 days	Rat, male, SD, 10-12 weeks old, n = 4/group	Morphometry of lung parenchyma; DNA probes for procollagen; in situ mRNA hybridization.	Syngeristic; more peripheral centriacinar lesion, but same after 7, 78, and 90 days of exposure.	Farman et al. (1999)
0.3	1.2	Continuous for 3 days	Rat, male, SD, 3 months old, n = 4/group	DNA single strand breaks; polyADPR synthetase of AMs; total cells, protein, and LDH in BALF.	None; effect due to O ₃ .	Bermúdez et al. (1999); Bermúdez (2001)
BIOCH	EMISTR	Y				
0.8	14.4	6 h/day, 7 days/week for 9 weeks	Rat, male, SD, 10-12 weeks old n = 4/group	Lung hydroxyproline, hydrooxypyridinium, DNA, and protein content of whole lung; morphology and labeling index.	Synergistic; fibrosis after 7-8 weeks of exposure; 50% mortality at ~10 weeks.	Farman et al. (1997)
0.4	7	90 days	Rat, male, SD, 200-225 g	PMN, pulmonary edema, fibrosis, MIP-2.	1-3 days: enhanced MIP-2, IL-1 β , TNF α , thioredoxin, and IL-6 expression; pulmonary edema and PMN influx, which reversed by day 8; activation of NF κ B.	Ishii et al. (2000b)
					15-45 days: no tissue responses observed, suggesting adaptation.	
					60 and 90 days: increased lung collagen; increased expression of transforming growth factor-13 and TNF α , activation of NF κ B.	
					MnSOD and GPX not altered during exposure.	
					Suggests that cytokines play a role in the early responses to combined O_3 and NO_2 and that pulmonary fibrosis is more dependent on concentration than on cumulative dose.	

Table AX5-15. Interactions of Ozone With Nitrogen Dioxide

	ntration pm	_				
O ₃	NO ₂	Duration	Species	Endpoints	Interaction	Reference
BIOCH	EMISTR	Y (cont'd)				
0.8	14.4	1, 5, and 8 weeks	Rat, male, SD, 10-12 weeks old, n = 4/group	Immunohistochemisty and morphometric analysis of TNF α and MnSOD levels in alveolar ducts.	 Triphasic response. 1-3 weeks: initial inflammation; TNFα increased in proximal area. 4-5 weeks: partial resolution. 6-8 weeks: rapidly progressive fibrosis; elevated MnSOD; TNFα increased in proximal area. TNFα increased in interstitial cells at all time points. 	Weller et al. (2000)
					Suggests O_3 -induced increases in MnSOD in areas of injury and in more protected areas; O_3 -induced increases in TNF α correlate spatiotemporally with injury.	

BAL = Bronchoalveolar lavage. PG = Prostaglandin. G-6-PD = Glucose-6-phosphate dehydrogenase. GDT = GSH-disulfide transhydrogenase. GSHPX = GSH peroxidase. SOD = Superoxide dismutase.

DR = Disulfide reductase.

NADPH-CR = Reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase.

GSH = Glutathione.

6-PG-D = 6-phosphogluconate dehydrogenase.

O ₃	НСНО	Duration	Species	Endpoints	Interaction	Reference
0.4	3.6	8 h/day for 3 days	Rat, male, Wistar, n = 20/group	O_3 or HCHO: no changes in formaldehyde dehydrogenase, glutathione S-transferase, glutathione reductase, and glucose-6-phosphate dehydrogenase activities.	Proliferative response: No interactive effects	Cassee and Feron (1994)
				O_3 + HCHO: slightly decreased enzyme activities HCHO alone: rhinitis, necrosis, degeneration, hyperplasia and squamous metaplasia of nasal respiratory epithelium.		
				O_3 : PMN influx; disarrangement, flattening and slight basal cell hyperplasia of the nonciliated cuboidal epithelium. Proliferating cell nuclear antigen levels elevated.		
0.6	10	3h, with exercise at 2× resting ventilation	Rat, male, SD, 7 weeks	HCHO did not alter O_3 -induced changes in breathing pattern. Parenchymal injury attributed to O_3 alone.	Additive effects in transitional epithelium and trachea	Mautz (2003)
0.2 - 10	0.4 - 4	30 min	Mice, BALB/c, n = 4	Continuously measured f , V_T , expiratory flow, T_i , T_e , and respiratory patterns during acute exposures. HCHO: appeared to be a pure sensory irritant at lower concentrations. O_3 : induced nondose-dependent transient increase in rapid, shallow breathing. No effect level of HCHO was 0.3 ppm, for O_3 1.0 ppm. Suggests that O_3 and HCHO have the same respiratory effects in BALB/c mice and humans, with similar sensitivities.	Not additive	Nielson et al. (1999)

Table AX5-16. Interactions of Ozone with Formaldehyde

		Duration	Species	Endnaista	Intonation	Dofononco
03	НСНО	Duration	Species	Endpoints	Interaction	Reference
1.5	1.5 7 ml breaths at 1 h 33% challenge	1 h	Guinea pig, male, Hartley, 320-460 g,	Pulmonary resistance and dynamic lung compliance were compared pre- and post- O_3 exposure.	Synergistic	Wu et al. (1997)
			n = 5 to 9	Pre-O ₃ : cigarette smoke induced bronchoconstriction after l min.		
				Post-O ₃ : cigarette smoke induced bronchoconstriction more quickly and for a longer period.		
				Selective antagonism of neurokinin 1 and 2 receptors blocked then enhanced O_3 -induced bronchoconstriction, suggesting that endogenous tachykinins modulate O_3 -induced bronchoconstriction.		
0.5	ADSS 30 mg/m ³	6 h/day for 3 days	Mice, male, B6C3F1, 10 weeks old,	Aged and diluted side stream cigarette smoke (ADSS) exposure followed by O_3 .	Synergism	Yu et al. (2002)
	24 h	n = 11	ADSS + O_3 : greater increase in BALF cells, %PMN, and proteins compared to alone; 402% increase in proliferating cells in CAR; LPS-stimulated release of IL-6 decreased; LPS-stimulated release of TNF α increased.			
				ADSS alone: no change in number of proliferating cells in CAR; LPS-stimulated release of $TNF\alpha$ increased.		
				O ₃ alone: 280% increase in proliferating cells in CAR; LPS-stimulated release of IL-6 decreased.		
				Suggests that O_3 -induced lung injury is enhanced by prior ADSS exposure.		

Conc	centration					
O ₃ (ppm)	PM (mg/m ³)	– Duration	Species	Endpoints	Interaction	Reference
<u>SULFU</u>	RIC ACID					
0.1 0.2	0.02 - 0.15 (0.4 - 0.8 μm)	23.5 h/day or intermittent 12 h/day for up to 90 days	Rat, male, SD, 250-275 g, n = 6/group	Morphology Biochemistry	No interaction	Last and Pinkerton (1997)
0.1 0.3 0.6	0.50 (0.3 μm) 0.125 (0.3 μm)	3 h	Rabbit NZW male, $3.5-4.5$ kg, n = 5/group	AM intracellular pH homeostasis and H ⁺ extrusion	Antagonism	Chen et al. (1995)
0.1 0.3 0.6	0.50 (0.3 μm) 0.125 (0.3 μm)	3 h	Rabbit NZW male, $3.5-4.5$ kg, n = 5/group	Airway responsiveness (in vitro bronchial rings + ACh)	Antagonism	El-Fawal et al. (1995)
0.6	0.5 (0.06 and 0.3 μm MMD)	4 h/day for 2 days	Rat, male, SD, 250-300 g, n = 10/group	Morphology: volume percentage of total parenchyma containing injured alveolar septae;	Synergism: ultrafine $+ O_3$, but not fine	Kimmel et al. (1997)
				bromodeoxyuridine cell labeling index in the periacinar region	Synergism: fine $+ O_3$	
<u>PARTIC</u>	<u>CLE MIXTURES</u>					
0.1	Diesel PM (NIST #2975) reacted with O_3 for 48 h	24 h (IT)	Rat, male, SD, 250-300 g, n = 4-13	Inflammation	Synergism	Madden et al. (2000)
0.16 0.30 0.59	0.05 - 0.22 mg/m ³ ammonium bisulfate 0.03 - 0.10 mg/m ³ C 0.11 - 0.39 pm NO ₂ 0.02 - 0.11 mg/m ³ HNO ₃ ; (0.3 μ m MMAD)	4 h/day, 3 days/week for 4 weeks	Rat, male, Fischer F344N, 11 weeks old, n = 8-30	breathing pattern, morphology, lavagable protein, and clearance	Complex interactions, but possible loss of typical attenuation seen with O_3 only exposure, reflecting persistence of inflammation.	Mautz et al. (2001)

Table AX5-18. Interactions Of Ozone With Particles

	entration	<u>.</u>				
O ₃ (ppm)	PM (mg/m ³)	Duration	Species	Endpoints	Interaction	Reference
<u>PARTIO</u>	CLE MIXTURES (cont'd)					
0.2	0.07 and 0.14 mg/m ³ ammonium bisulfate (0.45 μ m MMMD); 0.05 and 0.10 mg/m ³ carbon	4 h/day, 3 days/week for 4 weeks	Rat, male, Fischer F344, 22-24 months old, n = 5-10	BAL protein and albumin; plasma hydroxylase and fibronectin	Questionable interaction. No changes in BALF protein or prolyl 4-hydroxylase in blood. Small decease in plasma fibronectin with combined exposure.	Bolarin et al. (1997)
0.2	0.50 mg/m ³ ammonium bisulfate (0.45 μm MMMD) and elemental carbon)	4 h/day, 3 days/week for 4 weeks; nose only	Rat, Fischer F344N-NIA, 22-24 months old	DNA labeling of dividing lung epithelial and interstitial cells by 5-bromo-2-deoxyuridine	Synergism. Increased AM phagocytosis and respiratory burst. Decreased lung collagen.	Kleinman et al. (2000)
0.3	0.063 to 1.57 mg/m ³ CAPs (Boston) + ip OVA sensitization	Sensitized at days 7 and 14. Challenged at day 21, 22, and 23. 5 h O_3 exposure	Mice, BALB/c, n = 5-6/group	Airway function	Interaction: increased R _L and airway responsiveness in normal and OVA-sensitized mice.	Kobzik et al. (2001)
0.4	0.20 and 0.50 mg/m ³ fine, H_2O_2 -coated carbon (0.26 μ m MMMD)	4 h/day for 1 or 5 days	Rat, SD, 300 g, n = 10	Inflammation	Synergism for effect on day 5. Greater response at high dose, contrasts with O_3 along where inflammation was greatest at 0.4 ppm on day 1.	Kleinman et al. (1999)
0.5	Endotoxin (IN) 100 μ g 24 h and 48 h after the 3rd O ₃ exposure	8 h/day for 3 days	Rat, Fischer F344, 10-12 weeks old, n = 6/group	Nasal morphology	Synergism: increased intraepithelial mucosubstances and mucous cell metaplasia	Fanucchi et al. (1998) Wagner et al. (2001a,b)
0.5	OVA (IN) 50 μl (1%)	8 h/day for 1 day or 3 consecutive days	Rat, Brown, Norway, 10-12 weeks old, n = 6/group	Nasal morphology	Synergism: increased intraepithelial mucosubstances and mucous all metaplasia.	Wagner et al. (2002)

Table AX5-18 (cont'd). Interactions Of Ozone With Particles

	entration	_				
O ₃ (ppm)	PM (mg/m³)∖	Duration	Species	Endpoints	Interaction	Reference
<u>PARTI</u>	CLE MIXTURES (cont'	d)				
0.8	0.5 mg, 1.5 mg, or 5 mg of PM from Ottawa Canada (EHC-93)	2, 4, and 7 days after IT instillation	Rat, male, Wistar, 200-250 g, n = 5/group	Inflammation	Interaction: increased TNFα in BALF.	Ulrich et al. (2002)
1	0.11 mg/m ³ ultra fine carbon (25 nm CMD) + endotoxin (IH)	6 h	Rat, male, Fischer F344, 10 weeks and 22 months old, n = 3/group Mice, male, TSK, 14-17 months old, n = 6-7/group	Inflammation	Interaction: increased PMNs and ROS release from BALF cells for old rats and mice primed with endotoxin; depressed in young rats.	Elder et al. (2000a,b)
1	Endotoxin (37.5 EU) for 10 minutes	4, 20, or 24 h	Mice, C57BL/6J, 36 h old, 8 weeks old, n = 12/group	Inflammation	Synergism: increased BALF protein and PMNs.	Johnston et al. (2000b, 2002)
1	Endotoxin (IN) 0, 2, or 20 μg in 120 μL	8 h, repeated after 24 h	Rat, male, Fischer F344, 10-12 weeks old, n = 6/group	Lung morphometric analysis and inflammation	Synergism: increased BALF PMNs and mucin glycoprotein; increased intraepithelial mucosubstances and mucingene mRNA.	Wagner et al. (2003)

Conc	entration					
O ₃ (ppm)	PM (mg/m ³)	Duration	Species	Endpoints	Interaction	Reference
PARTIC	CLE MIXTURES (cont	'd)				
0.8	EHC-93,5 mg/m ³ or 50 mg/m ³	4 h exposure, clean air for 32 h, ³ H injection followed by assay at 90 min	Rat, male, Fischer344, 200-250 g, n = 6/group	Control rats: ³ H labeling (indicative of proliferation) low in bronchioles and parenchyma.	Synergism of proliferation	Vincent et a (1997)
				ECH-93 alone: no induction of proliferation.		
				O_3 alone: increased cell labeling in bronchioles and parenchyma, suggestive of reparative cell proliferation.		
				ECH-93 + O_3 : both doses of EHC-93 potentiated proliferation, especially in epithelia of terminal bronchioles and alveolar ducts, but not distal parenchyma. Suggests that ambient PM can enhance O_3 -induced proliferations and exacerbate injury.		
0.8	(EHC93) at 50 mg/m ³	4 h, exposure, clean air for 32 h, ³ H injection followed by assay at 90 min	Rat, male, Fischer344, 200-250g, n = 4/group	O_3 + EHC-93: epithelial cell injury and proliferation (³ H-labeling) higher than single exposures; higher in periductal region than in whole lung counts; greater numbers of AMs and PMNs in lung tissue compartment than in single exposures. Suggests that exposures to urban PM have few effects alone, but can potentiate O_3 -induced injury.	Synergism	Adamson et al. (1999)

Conce	entration					
O ₃ (ppm)	PM (mg/m ³)	– Duration	Species	Endpoints	Interaction	Reference
PARTIC	CLE MIXTURES (cont'd))				
0.15	$HNO_3 50 \ \mu g/m^3$	4 hours/day, 3 days/week for 40 weeks, nose-only exposure	Rat, male, Fischer F344/N, 8 weeks old, n = 4-5/group	O ₃ alone: 28% increase in lung putrescine. HNO ₃ alone: 21% decrease in	Synergism	Sindhu et a (1998)
		hose only exposure	n rorgroup	lung putrescine		
				O_3 and O_3 + HNO ₃ : 56% increase in lung putrescine		
				Pulmonary spermidine and spermine did not change with any exposure.		
				Suggests role of putrescine in regulation of inflammation.		
0.5	Carbon Black (CB), 0.5 or 1.5 mg/rat	Intratracheal CB followed by 7 days or 2 months of O_3	Rat, male, Wistar, 7 weeks old, n = 7-8/group	Phagocytotic capacity: decreased in CB-exposed group, unchanged in O_3 group. Formation of superoxide anion radicals and numbers of ingested particles increased at 2 months in O_3 group.	Synergism	Creutzenbe et al. (1995
				Chemotactic migration: decreased in CB-treated group.		
				Suggests that CB impairs phagocytosis and chemotactic migration in AMs, whereas O ₃ stimulates these functions.		

Table AX5-18 (cont'd). Interactions Of Ozone With Particles

			Table AA5-18	(cont'a). Inter	actions Of Ozone with Pa	irticies	
Conce	entration						
O ₃ (ppm)	PM (mg/m ³	3)	Duration	Species	Endpoints	Interaction	Reference
PARTIC	CLE MIX	TURES (cont'd)					
0.018	CH ₂ O TSP PM ₁₀ PM _{2.5}	3.3 ppb 0.068 mg/m ³ 0.032 mg/m ³ 0.016 mg/m ³	23 h/day for 7 weeks	Rat, male and female, Fischer F344, 9 weeks old, n = 5/group	Exposure to filtered and unfiltered Mexico City air. Histopathology revealed no nasal lesions in exposed or control rats; tracheal and lung tissue from both groups showed similar levels of minor abnormalities.		Moss et al. (2001)
$\sigma g = Ge$ MMAD CMD = PM = P OVA= 0	eometric st = Mass n Count me articulate Ovalbumin			BAL = A $AM = A$ $IN = Int$ $IT = Int$	Aerodynamic diameter Bronchoalveolar lavage Alveolar macrophage tranasal ratracheal ndicated otherwise, whole-body ex	posures used	

Concentration		a .		
ppm	Duration	Species	Effects	Reference
H_2O_2 (10, 20, or 100 ppb) and/or (NH ₄) ₂ SO ₄ (429 or 215 Ág/m ³ ; 0.3-0.4 gm mass median diameter)	2 h, assayed 0 or 24 h PE	Rat, female, SD, n = 4-18/group	Exposures alone or in combination. $H_2O_2 + (NH_4)_2SO_4$: no effect on BALF cell number, viability, protein or LDH at either time point; increased PMNs adhered to vascular epithelium; increased TNF α by AMs at both time points; at 0 h PE, transient increase in superoxide anion by AMs; decreased NO production; nitrotyrosine detected; heme oxygenase-1 expression upregulated in AMs;	Morio et al. (2001)
			H_2O_2 only: decreased NO production which persisted for 24 h.	
			Suggests that PM-induced effects are augmented by H_2O_2 and that PM-induced tissue injury may be modulated by cytotoxic mediators produced by AMs.	
PAN 0.13,0.66,1.31	3 h	PBL from mice, male, CD-1, 5 weeks	In vitro: Exposed peripheral blood lympocytes (PBL) to PAN; assayed for chromosome aberrations, sister chromatid exchanges and DNA damage. DNA damage was observed at cytotoxic concentrations of PAN. No effects at noncytotoxic exposures.	Kligerman et al. (1995)
0.077,0.192,0.384	1 h	old, $n = 25$ Mice, male,	In vivo: Nose-only exposures. No dose-related effects at any exposure level in any	
0, 15, 39, or 78 ppm	1 h	B6C3F1, 6 weeks old,	assay.	
		n = 4	Suggests that PAN, both in vitro and in vivo, is not a DNA damaging agent or clastogen.	
3 ppm PAN	1 month	Hamster, Chinese, n = 4	Measured frequency of thioguanine-resistant lung fibroblasts and frequency of micronuclei in either the bone marrow or the lungs.	Heddle et al. (1993)
			Mutation frequencies not altered from control levels. No chromosome breakage was observed in bone marrow or lung. Suggests no mutagenicity in vivo.	
~300 ppb	4, 7, 10, or 12 h	Salmonella TA100	Gas phase exposure PAN-induced mutants: 59% GC \rightarrow TA; 29% GC \rightarrow AT; 2% GC \rightarrow CG; 10% multiple mutations — primarily GG \rightarrow TT tandem-base	DeMarini et al. (2000)
78 ppm	24 h	Mice, Big	substitutions.	
· · · · ·		Blue [®] , male, 4 week old, n = 15	Nose-only exposure. Mutagenic at the lacI gene in the lung; no tandem-base mutations.	
~80 ppm ³ H-PAN	1 h		Nasal tissue: 3.9% of the radiolabel. Lung: 0.3 % of radiolabel.	
			Suggests that PAN is weakly mutagenic in Salmonella (with a signature GG \rightarrow TT transversion) and in mouse lung.	

REFERENCES

- Adamson, I. Y. R.; Vincent, R.; Bjarnason, S. G. (1999) Cell injury and interstitial inflammation in rat lung after inhalation of ozone and urban particulates. Am. J. Respir. Cell Mol. Biol. 20: 1067-1072.
- Alfaro, M. F.; Putney, L.; Tarkington, B. K.; Hatch, G. E.; Hyde, D. M.; Schelegle, E. S. (2004) Effect of rapid shallow breathing on the distribution of ¹⁸O-labeled ozone reaction product in the respiratory tract of the rat. Inhalation Toxicol.16: 77-85.
- Arito, H.; Takahashi, M.; Iwasaki, T.; Uchiyama, I. (1997) Age-related changes in ventilatory and heart rate responses to acute ozone exposure in the conscious rat. Ind. Health 35: 78-86.
- Arsalane, K.; Gosset, P.; Vanhee, D.; Voisin, C.; Hamid, Q.; Tonnel, A.-B.; Wallaert, B. (1995) Ozone stimulates synthesis of inflammatory cytokines by alveolar macrophages *in vitro*. Am. J. Respir. Cell Mol. Biol. 13: 60-68.
- Avila-Costa, M. R.; Colín-Barenque, L.; Fortoul, T. I.; Machado-Salas, J. P.; Espinosa-Villanueva, J.; Rugerio-Vargas, C.; Rivas-Arancibia, S. (1999) Memory deterioration in an oxidative stress model and its correlation with cytological changes on rat hippocampus CA1. Neurosci. Lett. 270: 107-109.
- Ballinger, C. A.; Cueto, R.; Squadrito, G.; Coffin, J. F.; Velsor, L. W.; Pryor, W. A.; Postlethwait, E. M. (2005) Antioxidant-mediated augmentation of ozone-induced membrane oxidation. Free Radical Biol. Med. 38: 515-526.
- Bassett, D.; Elbon-Copp, C.; Otterbein, S.; Barraclough-Mitchell, H.; DeLorme, M.; Yang, H. (2001) Inflammatory cell availability affects ozone-induced lung damage. J. Toxicol. Environ. Health A 64: 547-565.
- Becker, S.; Quay, J.; Koren, H. S. (1991) Effect of ozone on immunoglobulin production by human B cells in vitro. J. Toxicol. Environ. Health 34: 353-366.
- Bermúdez, E. (2001) Detection of poly(ADP-ribose) synthetase activity in alveolar macrophages of rats exposed to nitrogen dioxide and ozone. Inhalation Toxicol. 13: 69-84.
- Bermúdez, E.; Ferng, S. F.; Castro, C. E.; Mustafa, M. G. (1999) DNA strand breaks caused by exposure to ozone and nitrogen dioxide. Environ. Res. 81: 72-80.
- Bhalla, D. K. (1996) Alteration of alveolar macrophage chemotaxis, cell adhesion, and cell adhesion molecules following ozone exposure of rats. J. Cell. Physiol. 169: 429-438.
- Bhalla, D. K.; Gupta, S. K. (2000) Lung injury, inflammation, and inflammatory stimuli in rats exposed to ozone. J. Toxicol. Environ. Health 59: 211-228.
- Bhalla, D. K.; Hoffman, L. (1997) Time course of airway epithelial and inflammatory changes in rats exposed to moderate levels of ozone. Inhalation Toxicol. 9: 829-842.
- Bhalla, D. K.; Gupta, S. K.; Reinhart, P. G. (1999) Alteration of epithelial integrity, alkaline phosphatase activity, and fibronectin expression in lungs of rats exposed to ozone. J. Toxicol. Environ. Health A 56: 329-343.
- Bhalla, D. K.; Reinhart, P. G.; Bai, C.; Gupta, S. K. (2002) Amelioration of ozone-induced lung injury by anti-tumor necrosis factor-α. Toxicol. Sci. 69: 400-408.
- Bignami, G.; Musi, B.; Dell'Omo, G.; Laviola, G.; Alleva, E. (1994) Limited effects of ozone exposure during pregnancy on physical and neurobehavioral development of CD-1 mice. Toxicol. Appl. Pharmacol. 129: 264-271.
- Bolarin, D. M.; Bhalla, D. K.; Kleinman, M. T. (1997) Effects of repeated exposures of geriatric rats to ozone and particle-containing atmospheres: an analysis of bronchoalveolar lavage and plasma proteins. Inhalation Toxicol. 9: 423-434.
- Boorman, G. A.; Hailey, R.; Grumbein, S.; Chou, B. J.; Herbert, R. A.; Goehl, T.; Mellick, P. W.; Roycroft, J. H.; Haseman, J. K.; Sills, R. (1994) Toxicology and carcinogenesis studies of ozone and ozone 4-(*N*-nitrosomethylamino)-1-(3-pyridyl)-1-butanone in Fischer-344/N rats. Toxicol. Pathol. 22: 545-554.
- Bornholdt, J.; Dybdahl, M.; Vogel, U.; Hansen, M.; Loft, S.; Wallin, H. (2002) Inhalation of ozone induces DNA strand breaks and inflammation in mice. Mutat. Res. 520: 63-71.
- Bridges, J. P.; Davis, H. W.; Demodarasamy, M.; Kuroki, Y.; Howles, G.; Hui, D. Y.; McCormack, F. X. (2000) Pulmonary surfactant proteins A and D are potent endogenous inhibitors of lipid peroxidation and oxidative cellular injury. J. Biol. Chem. 275: 38848-38855.
- Broeckaert, F.; Clippe, A.; Wattiez, R.; Falmagne, P.; Bernard, A. (2003) Lung hyperpermeability, Clara-cell secretory potein (CC16), and susceptibility to ozone of five inbred strains of mice. Inhalation Toxicol. 15: 1209-1230.
- Cassee, F. R.; Feron, V. J. (1994) Biochemical and histopathological changes in nasal epithelium of rats after 3-day intermittent exposure to formaldehyde and ozone alone or in combination. Toxicol. Lett. 72: 257-268.

1

- Catalano, P. J.; Rogus, J.; Ryan, L. M. (1995a) Consequences of prolonged inhalation of ozone on F344/N rats: collaborative studies. Part X: robust composite scores based on median polish analysis. Cambridge, MA: Health Effects Institute; research report no. 65.
- Catalano, P. J.; Chang, L.-Y. L.; Harkema, J. R.; Kaden, D. A.; Last, J. A.; Mellick, P. W.; Parks, W. C.; Pinkerton, K. E.; Radhakrishnamurthy, B.; Ryan, L. M.; Szarek, J. L. (1995b) Consequences of prolonged inhalation of ozone on F344/N rats: collaborative studies. Part XI: Integrative summary. Cambridge, MA: Health Effects Institute; research report no. 65.
- Chang, L.-Y.; Stockstill, B. L.; Ménache, M. G.; Mercer, R. R.; Crapo, J. D. (1995) Consequences of prolonged inhalation of ozone on F344/N rats: collaborative studies. Part VIII: morphometric analysis of structural alterations in alveolar regions. Cambridge, MA: Health Effects Institute; pp. 3-39; research report no. 65.
- Chang, M. M.-J.; Wu, R.; Plopper, C. G.; Hyde, D. M. (1998) IL-8 is one of the major chemokines produced by monkey airway epithelium after ozone-induced injury. Am. J. Physiol. 275: L524-L532.
- Cheek, J. M.; McDonald, R. J.; Rapalyea, L.; Tarkington, B. K.; Hyde, D. M. (1995) Neutrophils enhance removal of ozone-injured alveolar epithelial cells *in vitro*. Am. J. Physiol. 269: L527-L535.
- Chen, L. C.; Qu, Q.; Amdur, M. O.; Schlesinger, R. B. (1995) Alteration of pulmonary macrophage intracellular pH following inhalation exposure to sulfuric acid/ozone mixtures. Exp. Lung Res. 21: 113-128.
- Chen, C.-Y.; Bonham, A. C.; Plopper, C. G.; Joad, J. P. (2003) Plasticity in respiratory motor control: selected contribution: neuroplasticity in nucleus tractus solitarius neurons following episodic ozone exposure in infant primates. J. Appl. Physiol. 94: 819-827.
- Cheng, P.-W.; Boat, T. F.; Shaikh, S.; Wang, O.-L.; Hu, P.-C.; Costa, D. L. (1995) Differential effects of ozone on lung epithelial lining fluid volume and protein content. Exp. Lung Res. 21: 351-365.
- Cho, H. Y.; Hotchkiss, J. A.; Harkema, J. R. (1999a) Inflammatory and epithelial responses during the development of ozone-induced mucous cell metaplasia in the nasal epithelium of rats. Toxicol. Sci. 51: 135-145.
- Cho, H. Y.; Hotchkiss, J. A.; Bennett, C. B.; Harkema, J. R. (1999b) Effects of pre-existing rhinitis on ozone-induced mucous cell metaplasia in rat nasal epithelium. Toxicol. Appl. Pharmacol. 158: 92-102.
- Cho, H. Y.; Hotchkiss, J. A.; Bennett, C. B.; Harkema, J. R. (2000) Neutrophil-dependent and neutrophil-independent alterations in the nasal epithelium of ozone-exposed rats. Am. J. Respir. Crit. Care Med. 162: 629-636.
- Cho, H.-Y.; Zhang, L.-Y.; Kleeberger, S. R. (2001) Ozone-induced lung inflammation and hyperreactivity are mediated via tumor necrosis factor-α receptors. Am. J. Physiol. 280: L537-L546.
- Churg, A.; Brauer, M.; Keeling, B. (1996) Ozone enhances the uptake of mineral particles by tracheobronchial epithelial cells in organ culture. Am. J. Respir. Crit. Care Med. 153: 1230-1233.
- Cohen, M. D.; Zelikoff, J. T.; Qu, Q.; Schlesinger, R. B. (1996) Effects of ozone upon macrophage-interferon interactions. Toxicology 114: 243-252.
- Cohen, M. D.; Zelikoff, J. T.; Chen, L.-C.; Schlesinger, R. B. (1998) Immunotoxicologic effects of inhaled chromium: role of particle solubility and co-exposure to ozone. Toxicol. Appl. Pharmacol. 152: 30-40.
- Cohen, M. D.; Sisco, M.; Li, Y.; Zelikoff, J. T.; Schlesinger, R. B. (2001) Ozone-induced modulation of cell-mediated immune responses in the lungs. Toxicol. Appl. Pharmacol. 171: 71-84.
- Cohen, M. D.; Sisco, M.; Baker, K.; Li, Y.; Lawrence, D.; Van Loveren, H.; Zelikoff, J. T.; Schlesinger, R. B. (2002) Effects of inhaled ozone on pulmonary immune cells critical to antibacterial responses in situ. Inhalation Toxicol. 14: 599-619.
- Colín-Barenque, L.; Avila-Costa, M. R.; Fortoul, T.; Rugerio-Vargas, C.; Machado-Salas, J. P.; Espinosa-Villanueva, J.; Rivas-Arancibia, S. (1999) Morphologic alteration of the olfactory bulb after acute ozone exposure in rats. Neurosci. Lett. 274: 1-4.
- Connor, L. M.; Ballinger, C. A.; Albrecht, T. B.; Postlethwait, E. M. (2004) Interfacial phospholipids inhibit ozone reactive absorption-mediated cytotoxicity in vitro. Am. J. Physiol.: 10.1152/ajplung.00397.2003.
- Cottet-Emard, J.-M.; Dalmaz, Y.; Pequignot, J.; Peyrin, L.; Pequignot, J.-M. (1997) Long-term exposure to ozone alters peripheral and central catecholamine activity in rats. Pfluegers Arch. 433: 744-749.
- Creutzenberg, O.; Bellmann, B.; Klingebiel, R.; Heinrich, U.; Muhle, H. (1995) Phagocytosis and chemotaxis of rat alveolar macrophages after a combined or separate exposure to ozone and carbon black. Exp. Toxicol. Pathol. 47: 202-206.
- Custodio-Ramírez, V.; Paz, C. (1997) Ozone produces functional deficits in the rat visual pathway. Electroencephalogr. Clin. Neurophysiol. 104: 269-273.

- DeMarini, D. M.; Shelton, M. L.; Kohan, M. J.; Hudgens, E. E.; Kleindienst, T. E.; Ball, L. M.; Walsh, D.; de Boer, J. G.; Lewis-Bevan, L.; Rabinowitz, J. R.; Claxton, L. D.; Lewtas, J. (2000) Mutagenicity in lung of Big Blue(R) mice and induction of tandem-base substitutions in *Salmonella* by the air pollutant peroxyacetyl nitrate (PAN): predicted formation of intrastrand cross-links. Mutat. Res. 457: 41-55.
- Delaunois, A.; Segura, P.; Montaño, L. M.; Vargas, M. H.; Ansay, M.; Gustin, P. (1998) Comparison of ozone-induced effects on lung mechanics and hemodynamics in the rabbit. Toxicol. Appl. Pharmacol. 150: 58-67.
- Dell'Omo, G.; Fiore, M.; Petruzzi, S.; Alleva, E.; Bignami, G. (1995a) Neurobehavioral development of CD-1 mice after combined gestational and postnatal exposure to ozone. Arch. Toxicol. 69: 608-616.
- Dell'Omo, G.; Wolfer, D.; Alleva, E.; Lipp, H.-P. (1995b) Developmental exposure to ozone induces subtle changes in swimming navigation of adult mice. Toxicol. Lett. 81: 91-99.
- Depuydt, P.; Joos, G. F.; Pauwels, R. A. (1999) Ambient ozone concentrations induce airway hyperresponsiveness in some rat strains. Eur. Respir. J. 14: 125-131.
- Depuydt, P. O.; Lambrecht, B. N.; Joos, G. F.; Pauwels, R. A. (2002) Effect of ozone exposure on allergic sensitization and airway inflammation induced by dendritic cells. Clin. Exp. Allergy 32: 391-396.
- Dong, W.; Selgrade, M. K.; Gilmour, M. I.; Lange, R. W.; Park, P.; Luster, M. I.; Kari, F. W. (1998) Altered alveolar macrophage function in calorie-restricted rats. Am. J. Respir. Cell Mol. Biol. 19: 462-469
- Dorado-Martínez, C.; Parades-Carbajal, C.; Mascher, D.; Borgonio-Pérez, G.; Rivas-Arancibia, S. (2001) Effects of different ozone doses on memory, motor activity and lipid peroxidation levels, in rats. Int. J. Neurosci. 108: 149-161.
- Dormans, J. A. M. A.; Boere, A. J. F.; van Loveren, H.; Rombout, P. J. A.; Marra, M.; van Bree, L. (1996) Age-related toxicity in rat lungs following acute and repeated ozone exposure. Inhalation Toxicol. 8: 903-925.
- Dormans, J. A. M. A.; Van Bree, L.; Boere, A. J. F.; Marra, M.; Rombout, P. J. A. (1999) Interspecies differences in time course of pulmonary toxicity following repeated exposure to ozone. Inhalation Toxicol. 11: 309-329.
- Driscoll, K. E.; Simpson, L.; Carter, J.; Hassenbein, D.; Leikauf, G. D. (1993) Ozone inhalation stimulates expression of a neutrophil chemotactic protein, macrophage inflammatory protein 2. Toxicol. Appl. Pharmacol. 119: 306-309.
- Dye, J. A.; Madden, M. C.; Richards, J. H.; Lehmann, J. R.; Devlin, R. B.; Costa, D. L. (1999) Ozone effects on airway responsiveness, lung injury, and inflammation. Comparative rat strain and in vivo/in vitro investigations. Inhalation Toxicol. 11: 1015-1040.
- El-Fawal, H. A. N.; McGovern, T.; Schlesinger, R. B. (1995) Nonspecific bronchial responsiveness assessed *in vitro* following acute inhalation exposure to ozone and ozone/sulfuric acid mixtures. Exp. Lung Res. 21: 129-139.
- Elder, A. C. P.; Gelein, R.; Finkelstein J. N.; Cox, C.; Oberdörster, G. (2000a) Endotoxin priming affects the lung response to ultrafine particles and ozone in young and old rats. In: Phalen, R. F., ed. Inhalation toxicology: proceedings of the third colloquium on particulate air pollution and human health (first special issue); June, 1999; Durham, NC. Inhalation Toxicol. 12(suppl. 1): 85-98.
- Elder, A. C. P.; Gelein, R.; Finkelstein, J. N.; Cox, C.; Oberdörster, G. (2000b) Pulmonary inflammatory response to inhaled ultrafine particles is modified by age, ozone exposure, and bacterial toxin. In: Grant, L. D., ed. PM2000: particulate matter and health. Inhalation Toxicol. 12(suppl. 4): 227-246.
- Elsayed, N. M. (2001) Diet restriction modulates lung response and survivability of rats exposed to ozone. Toxicology 159: 171-182.
- Evans, M. J.; Fanucchi, M. V.; Baker, G. L.; Van Winkle, L. S.; Pantle, L. M.; Nishio, S. J.; Schelegle, E. S.; Gershwhin, L. J.; Miller, L. A.; Hyde, D. M.; Sannes, P. L.; Plopper, C. G. (2003) Atypical development of the tracheal basement membrane zone of infant rhesus monkeys exposed to ozone and allergen. Am. J. Physiol. 285: L931-L939.
- Fakhrzadeh, L.; Laskin, J. D.; Laskin, D. L. (2002) Deficiency in inducible nitric oxide synthase protects mice from ozone-induced lung inflammation and tissue injury. Am. J. Respir. Cell Mol. Biol. 26: 413-419.
- Fanucchi, M. V.; Hotchkiss, J. A.; Harkema, J. R. (1998) Endotoxin potentiates ozone-induced mucous cell metaplasia in rat nasal epithelium. Toxicol. Appl. Pharmacol. 152: 1-9.
- Farman, C. A.; Pinkerton, K. E.; Rajini, P.; Witschi, H.; Last, J. A. (1997) Evolution of lung lesions in rats exposed to mixtures of ozone and nitrogen dioxide. Inhalation Toxicol. 9: 647-677.
- Farman, C. A.; Watkins, K.; Van Hoozen, B.; Last, J. A.; Witschi, H.; Pinkerton, K. E. (1999) Centriacinar remodeling and sustained procollagen gene expression after exposure to ozone and nitrogen dioxide. Am. J. Respir. Cell Mol. Biol. 20: 303-311.
- Ferng, S.-F.; Castro, C. E.; Afifi, A. A.; Bermúdez, E.; Mustafa, M. G. (1997) Ozone-induced DNA strand breaks in guinea pig tracheobronchial epithelial cells. J. Toxicol. Environ. Health 51: 353-367.

56

- Foster, W. M.; Freed, A. N. (1999) Regional clearance of solute from peripheral airway epithelia: recovery after sublobar exposure to ozone. J. Appl. Physiol. 86: 641-646.
- Frampton, M. W.; Pryor, W. A.; Cueto, R.; Cox, C.; Morrow, P. E.; Utell, M. J. (1999) Aldehydes (nonanal and hexanal) in rat and human bronchoalveolar lavage fluid after ozone exposure. Cambridge, MA: Health Effects Institute; research report no. 90. Available: www.healtheffects.org/Pubs/Frampton-C.pdf [2000, February 9].
- Freed, A. N.; Chou, C. L.; Fuller, S. D.; Croxton, T. L. (1996) Ozone-induced vagal reflex modulates airways reactivity in rabbits. Respir. Physiol. 105: 95-102.
- Freed, A. N.; Cueto, R.; Pryor, W. A. (1999) Antioxidant transport modulates peripheral airway reactivity and inflammation during ozone exposure. J. Appl. Physiol. 87: 1595-1603.
- Garssen, J.; Van Bree, L.; Van Der Vliet, H.; Van Loveren, H. (1997) Ozone-induced impairment of pulmonary type IV hypersensitivity and airway hyperresponsiveness in mice. Inhalation Toxicol. 9: 581-599.
- Gohil, K.; Cross, C. E.; Last, J. A. (2003) Ozone-induced disruptions of lung transcriptomes. Biochem. Biophys. Res. Commun. 305: 719-728.
- Goldsmith, C.-A. W.; Ning, Y.-Y.; Qin, G.; Imrich, A.; Lawrence, J.; Murthy, G. G., K.; Catalano, P. J.; Kobzik, L. (2002) Combined air pollution particle and ozone exposure increases airway responsiveness in mice. Inhalation Toxicol. 14: 325-347.
- González-Piña, R.; Paz, C. (1997) Brain monoamine changes in rats after short periods of ozone exposure. Neurochem. Res. 22: 63-66.
- Guerrero, A. L.; Dorado-Martínez, C.; Rodriguez, A.; Pedroza-Ríos, K.; Borgonio-Pérez, G.; Rivas-Arancibia, S. (1999) Effects of vitamin E on ozone-induced memory deficits and lipid peroxidation in rats. NeuroReport 10: 1689-1692.
- Gupta, S. K.; Reinhart, P. G.; Bhalla, D. K. (1998) Enhancement of fibronectin expression in rat lung by ozone and an inflammatory stimulus. Am. J. Physiol. 275: L330-L335.
- Haddad, E.-B.; Liu, S. F.; Salmon, M.; Robichaud, A.; Barnes, P. J.; Chung, K. F. (1995) Expression of inducible nitric oxide synthase mRNA in Brown Norway rats exposed to ozone: effect of dexamethasone. Eur. J. Pharmacol. Environ. Toxicol. Pharmacol. Sect. 293: 287-290.
- Hamilton, R. F.; Li, L.; Eschenbacher, W. L.; Szweda, L.; Holian, A. (1998) Potential involvement of 4-hydroxynonenal in the response of human lung cells to ozone. Am. J. Physiol. 274: L8-L16.
- Harkema, J. R.; Morgan, K. T.; Gross, E. A.; Catalano, P. J.; Griffith, W. C. (1994) Consequences of prolonged inhalation of ozone on F344/N rats: collaborative studies. Part VII: effects on the nasal mucociliary apparatus. Cambridge, MA: Health Effects Institute; research report no. 65.
- Harkema, J. R.; Catalano, P. J.; Hotchkiss, J. A. (1997a) Consequences of prolonged inhalation of ozone on F344/N rats: collaborative studies. Part XII. Atrophy of bone in nasal turbinates. Cambridge, MA: Health Effects Institute; research report no. 65.
- Harkema, J. R.; Hotchkiss, J. A.; Griffith, W. C. (1997b) Mucous cell metaplasia in rat nasal epithelium after a 20-month exposure to ozone: a morphometric study of epithelial differentiation. Am. J. Respir. Cell Mol. Biol. 16: 521-530.
- Harkema, J. R.; Hotchkiss, J. A.; Barr, E. B.; Bennett, C. B.; Gallup, M.; Lee, J. K.; Basbaum, C. (1999) Long-lasting effects of chronic ozone exposure on rat nasal epithelium. Am. J. Respir. Cell Mol. Biol. 20: 517-529.
- Haro, R.; Paz, C. (1993) Effects of ozone exposure during pregnancy on ontogeny of sleep in rats. Neurosci. Lett. 164: 67-70.
- Heddle, J. A.; Shepson, P. B.; Gingerich, J. D.; So, K. W. (1993) Mutagenicity of peroxyacetyl nitrate (PAN) in vivo: tests for somatic mutations and chromosomal aberrations. Environ. Mol. Mutagen. 21: 58-66.
- Herbert, R. A.; Hailey, J. R.; Grumbein, S.; Chou, B. J.; Sills, R. C.; Haseman, J. K.; Goehl, T.; Miller, R. A.; Roycroft, J. H.; Boorman, G. A. (1996) Two-year and lifetime toxicity and carcinogenicity studies of ozone in B6C3F1 mice. Toxicol. Pathol. 24: 539-548.
- Highfill, J. W.; Watkinson, W. P. (1996) Ozone toxicity in the rat. II. Modeling changes due to ambient temperatures and duration. J. Appl. Physiol. 80: 1811-1818.
- Hoffer, E.; Baum, Y.; Tabak, A.; Frevert, C. (1999) Adhesion molecules of blood polymorphonuclear leukocytes and alveolar macrophages in rats: modulation by exposure to ozone. Hum. Exp. Toxicol. 18: 547-551.
- Hotchkiss, J. A.; Harkema, J. R.; Johnson, N. F. (1997) Kinetics of nasal epithelial cell loss and proliferation in F344 rats following a single exposure to 0.5 ppm ozone. Toxicol. Appl. Pharmacol. 143: 75-82.
- Hotchkiss, J. A.; Hilaski, R.; Cho, H.; Regan, K.; Spencer, P.; Slack, K.; Harkema, J. R. (1998) Fluticasone propionate attenuates ozone-induced rhinitis and mucous cell metaplasia in rat nasal airway epithelium. Am. J. Respir. Cell Mol. Biol. 18: 91-99.

- Huffman, L. J.; Judy, D. J.; Brumbaugh, K.; Frazer, D. G.; Reynolds, J. S.; McKinney, W. G.; Goldsmith, W. T. (2001) Hyperthyroidism increases the risk of ozone-induced lung toxicity in rats. Toxicol. Appl. Pharmacol. 173: 18-26.
- Huitrón-Reséndiz, S.; Custodio-Ramírez, V.; Escalante-Membrillo, C.; González-Piña, R.; Paz, C. (1994) Sleep alterations and brain regional changes of serotonin and its metabolite in rats exposed to ozone. Neurosci. Lett. 177: 119-122.
- Hyde, D. M.; Miller, L. A.; McDonald, R. J.; Stovall, M. Y.; Wong, V.; Pinkerton, K. E.; Wegner, C. D.; Rothlein, R.; Plopper, C. G. (1999) Neutrophils enhance clearance of necrotic epithelial cells in ozone-induced lung injury in rhesus monkeys. Am. J. Physiol. 277: L1190-L1198.
- Igarashi, A.; Iijima, H.; Tamura, G.; Shirato, K. (1998) Tazanolast inhibits ozone-induced airway hyperresponsiveness in guinea pigs. Am. J. Respir. Crit. Care Med. 157: 1531-1535.
- Iijima, M. K.; Kobayashi, T.; Kamada, H.; Shimojo, N. (2001) Exposure to ozone aggravates nasal allergy-like symptoms in guinea pigs. Toxicol. Lett. 123: 77-85.
- Inoue, H.; Aizawa, H.; Nakano, H.; Matsumoto, K.; Kuwano, K.; Nadel, J. A.; Hara, N. (2000) Nitric oxide synthase inhibitors attenuate ozone-induced airway inflammation in guinea pigs: possible role of interleukin-8. Am. J. Respir. Crit. Care Med. 161: 249-256.
- Ishii, Y.; Yang, H.; Sakamoto, T.; Nomura, A.; Hasegawa, S.; Hirata, F.; Bassett, D. J. P. (1997) Rat alveolar macrophage cytokine production and regulation of neutrophil recruitment following acute ozone exposure. Toxicol. Appl. Pharmacol. 147: 214-223.
- Ishii, Y.; Shirato, M.; Nomura, A.; Sakamoto, T.; Uchida, Y.; Ohtsuka, M.; Sagai, M.; Hasegawa, S. (1998) Cloning of rat eotaxin: ozone inhalation increases mRNA and protein expression in lungs of brown Norway rats. Am. J. Physiol. 274: L171-L176.
- Ishii, Y.; Hashimoto, K.; Hirano, K.; Morishima, Y.; Mochizuki, M.; Masuyama, K.; Nomura, A.; Sakamoto, T.; Uchida, Y.; Sagai, M.; Sekizawa, K. (2000a) Ebselen decreases ozone-induced pulmonary inflammation in rats. Lung 178: 225-234.
- Ishii, Y.; Hirano, K.; Morishima, Y.; Masuyama, K.; Goto, Y.; Nomura, A.; Sakamoto, T.; Uchida, Y.; Sagai, M.; Sekizawa, K. (2000b) Early molecular and cellular events of oxidant-induced pulmonary fibrosis in rats. Toxicol. Appl. Pharmacol. 167: 173-181.
- Iwasaki, T.; Takahashi, M.; Saito, H.; Arito, H. (1998) Adaptation of extrapulmonary responses to ozone exposure in conscious rats. Ind. Health 36: 57-60.
- Jang, A.-S.; Choi, I.-S.; Koh, Y.-I.; Park, C.-S.; Lee, J.-S. (2002) The relationship between alveolar epithelial proliferation and airway obstruction after ozone exposure. Allergy 57: 737-740.
- Jimba, M.; Skornik, W. A.; Killingsworth, C. R.; Long, N. C.; Brain, J. D.; Shore, S. A. (1995) Role of C fibers in physiological responses to ozone in rats. J. Appl. Physiol. 78: 1757-1763.
- Joad, J. P.; Bric, J. M.; Weir, A. J.; Putney, L.; Hyde, D. M.; Postlewait, E. M.; Plopper, C. G. (2000) Effect of respiratory pattern on ozone injury to the airways of isolated rat lungs. Toxicol. Appl. Pharmacol. 169: 26-32.
- Johnston, C. J.; Stripp, B. R.; Reynolds, S. D.; Avissar, N. E.; Reed, C. K.; Finkelstein, J. N. (1999a) Inflammatory and antioxidant gene expression in C57BL/6J mice after lethal and sublethal ozone exposures. Exp. Lung Res. 25: 81-97.
- Johnston, C. J.; Finkelstein, J. N.; Oberdörster, G.; Reynolds, S. D.; Stripp, B. R. (1999b) Clara cell secretory protein-deficient mice differ from wild-type mice in inflammatory chemokine expression to oxygen and ozone, but not to endotoxin. Exp. Lung Res. 25: 7-21.
- Johnston, C. J.; Reed, C. K.; Avissar, N. E.; Gelein, R.; Finkelstein, J. N. (2000a) Antioxidant and inflammatory response after acute nitrogen dioxide and ozone exposures in C57Bl/6 mice. Inhalation Toxicol. 12: 187-203.
- Johnston, C. J.; Oberdörster, G.; Gelein, R.; Finkelstein, J. N. (2000b) Newborn mice differ from adult mice in chemokine and cytokine expression to ozone, but not to endotoxin. Inhalation Toxicol. 12: 205-224.
- Johnston, C. J.; Oberdörster, G.; Finkelstein, J. N. (2001) Recovery from oxidant-mediated lung injury: response of metallothionein, MIP-2, and MCP-1 to nitrogen dioxide, oxygen, and ozone exposures. Inhalation Toxicol. 13: 689-702.
- Johnston, C. J.; Oberdörster, G.; Gelein, R.; Finkelstein, J. N. (2002) Endotoxin potentiates ozone-induced pulmonary chemokine and inflammatory responses. Exp. Lung Res. 28: 419-433.
- Kafoury, R. M.; Pryor, W. A.; Squadrito, G. L.; Salgo, M. G.; Zou, X.; Friedman, M. (1999) Induction of inflammatory mediators in human airway epithelial cells by lipid ozonation products. Am. J. Respir. Crit. Care Med. 160: 1934-1942.
- Kenyon, N. J.; Van Der Vliet, A.; Schock, B. C.; Okamoto, T.; McGrew, G. M.; Last, J. A. (2002) Susceptibility to ozone-induced acute lung injury in iNOS-deficient mice. Am. J. Physiol. 282: L540-L545.

- Kim, M. Y.; Son, J. W.; Cho, M. H.; Choi, C. S.; Chae, C. H.; Lee, M. H. (2001) Oviductural carcinoma in B6C3F1 female mice exposed to 0.5 ppm ozone. Vet. Hum. Toxicol. 43: 370-372.
- Kimmel, T. A.; Chen, L. C.; Bosland, M. C.; Nadziejko, C. (1997) Influence of acid aerosol droplet size on structural changes in the rat lung caused by acute exposure to sulfuric acid and ozone. Toxicol. Appl. Pharmacol. 144: 348-355.
- Kleeberger, S. R.; Levitt, R. C.; Zhang, L.-Y.; Longphre, M.; Harkema, J.; Jedlicka, A.; Eleff, S. M.; DiSilvestre, D.; Holroyd, K. J. (1997) Linkage analysis of susceptibility to ozone-induced lung inflammation in inbred mice. Nat. Genet. 17: 475-478.
- Kleeberger, S. R.; Reddy, S.; Zhang, L.-Y.; Jedlicka, A. E. (2000) Genetic susceptibility to ozone-induced lung hyperpermeability: role of toll-like receptor 4. Am. J. Respir. Cell Mol. Biol. 22: 620-627.
- Kleeberger, S. R.; Ohtsuka, Y.; Ahang, L.-Y.; Longphre, M. (2001a) Airway responses to chronic ozone exposure are partially mediated through mast cells. J. Appl. Physiol. 90: 713-723.
- Kleeberger, S. R.; Reddy, S. P.; Zhang, L.-Y.; Cho, H.-Y.; Jedlicka, A. E. (2001b) Toll-like receptor 4 mediates ozone-induced murine lung hyperpermeability via inducible nitric oxide synthase. Am. J. Physiol. 280: L326-L333.
- Kleinman, M. T.; Mautz, W. J.; Bjarnason, S. (1999) Adaptive and non-adaptive responses in rats exposed to ozone, alone and in mixtures, with acidic aerosols. Inhalation Toxicol. 11: 249-264.
- Kleinman, M. T.; Bufalino, C.; Rasmussen, R.; Hyde, D.; Bhalla, D. K.; Mautz, W. J. (2000) Toxicity of chemical components of ambient fine particulate matter (PM₂) inhaled by aged rats. J. Appl. Toxicol. 20: 357-364.
- Kligerman, A. D.; Mottus, K.; Erexson, G. L. (1995) Cytogenetic analyses of the in vitro and in vivo responses of murine cells to peroxyacetyl nitrate (PAN). Mutat. Res. 341: 199-206.
- Kobzik, L.; Goldsmith, C.-A. W.; Ning, Y. Y.; Qin, G.; Morgan, B.; Imrich, A.; Lawrence J.; Murthy, G. G. K.; Catalano, P. J. (2001) Effects of combined ozone and air pollution particle exposure in mice. Boston, MA: Health Effects Institute; research report no. 106. Available: http://www.healtheffects.org/Pubs/Kobzik.pdf [27 January 2003].
- Kodavanti, U. P.; Hatch, G. E.; Starcher, B.; Giri, S. N.; Winsett, D.; Costa, D. L. (1995) Ozone-induced pulmonary functional, pathological, and biochemical changes in normal and vitamin C-deficient guinea pigs. Fundam. Appl. Toxicol. 24: 154-164.
- Koike, E.; Kobayashi, T.; Nelson, D. J.; McWilliam, A. S.; Holt, P. G. (1998) Effect of ozone exposure on alveolar macrophage-mediated immunosuppressive activity in rats. Toxicol. Sci. 41: 217-223.
- Koike, E.; Kobayashi, T.; Murakami, M.; McWilliam, A. S.; Holt, P. G. (1999) Mechanisms of ozone-induced inhibitory effect of bronchoalveolar lavage fluid on alveolar macrophage-mediated immunosuppressive activity in rats. J. Leukoc. Biol. 66: 75-82.
- Koike, E.; Kobayashi, T.; Shimojo, N. (2001) Ozone exposure enhances expression of cell-surface molecules associated with antigen-presenting activity on bronchoalveolar lavage cells in rats. Toxicol. Sci. 63: 115-124.
- Koto, H.; Salmon, M.; Haddad el-B.; Huang, T.-J.; Zagorski, J.; Chung, K. F. (1997) Role of cytokine-induced neutrophil chemoattractant (CINC) in ozone-induced airway inflammation and hyperresponsiveness. Am. J. Respir. Crit. Care Med. 156: 234-239.
- Larson, S. D.; Schelegle, E. S.; Walby, W. F.; Gershwin, L. J.; Fanuccihi, M. V.; Evans, M. J.; Joad, J. P.; Tarkington, B. K.; Hyde, D. M.; Plopper, C. G. (2004) Postnatal remodeling of the neural components of the epithelial-mesenchymal trophic unit in the proximal airways of infant rhesus monkeys exposed to ozone and allergen. Toxicol. Appl. Pharmacol. 194: 211-220.
- Laskin, D. L.; Laskin, J. D. (2001) Role of macrophages and inflammatory mediators in chemically induced toxicity. Toxicology (Ireland) 160: 111-118.
- Laskin, D. L.; Pendino, K. J.; Punjabi, C. J.; del Valle, M. R.; Laskin, J. D. (1994) Pulmonary and hepatic effects of inhaled ozone in rats. Environ. Health Perspect. 102(suppl. 10): 61-64.
- Laskin, J. D.; Heck, D. E.; Laskin, D. L. (1996) Nitric oxide production in the lung and liver following inhalation of the pulmonary irritant ozone. In: Snyder, R.; Kocsis, J. J.; Sipes, I. G.; Kalf, G. F.; Jollow, D. J.; Greim, H.; Monks, T. J.; Witmer, C. M., eds. Biological Reactive Intermediates V: Basic Mechanistic Research in Toxicology and Human Risk Assessment: proceedings of the Fifth International Symposium; January 1995; Munich, Germany. Adv. Exp. Med. Biol. 387: 141-146.
- Laskin, D. L.; Heck, D. E.; Laskin, J. D. (1998a) Role of inflammatory cytokines and nitric oxide in hepatic and pulmonary toxicity. Toxicol. Lett. 102-103: 289-293.
- Laskin, D. L.; Sunil, V.; Guo, Y.; Heck, D. E.; Laskin, J. D. (1998b) Increased nitric oxide synthase in the lung after ozone inhalation is associated with activation of NF-κB. Environ. Health Perspect. 106(suppl. 5): 1175-1178.

- Laskin, D. L.; Fakhrzadeh, L.; Heck, D. E.; Gerecke, D.; Laskin, J. D. (2002) Upregulation of phosphoinositide 3-kinase and protein kinase B in alveolar macrophages following ozone inhalation. Role of NF-κB and STAT-1 in ozone-induced nitric oxide production and toxicity. Mol. Cell. Biochem. 234-235: 91-98.
- Last, J. A.; Pinkerton, K. E. (1997) Chronic exposure of rats to ozone and sulfuric acid aerosol: biochemical and structural responses. Toxicology 116: 133-146.
- Lavnikova, N.; Prokhorova, S.; Lakhotia, A. V.; Gordon, R.; Laskin, D. L. (1998) Distinct inflammatory responses of adherent vascular lung neutrophils to pulmonary irritants. J. Inflammation 48: 56-66
- Lee, C.; Watt, K. C.; Chang, A. M.; Plopper, C. G.; Buckpitt, A. R.; Pinkerton, K. E. (1998) Site-selective differences in cytochrome P450 isoform activities: comparison of expression in rat and rhesus monkey lung and induction in rats. Drug Metab. Dispos. 26: 396-400.
- Lemos, M.; Lichtenfels, A. J. F. C.; Amaro, E., Jr.; Macchione, M.; Martins, M. A.; King, M.; Böhm, G. M.; Saldiva, P. H. N. (1994) Quantitative pathology of nasal passages in rats exposed to urban levels of air pollution. Environ. Res. 66: 87-95.
- Longphre, M.; Zhang, L.-Y.; Harkema, J. R.; Kleeberger, S. R. (1999) Ozone-induced pulmonary inflammation and epithelial proliferation are partially mediated by PAF. J. Appl. Physiol. 86: 341-349.
- Madden, M. C.; Richards, J. H.; Dailey, L. A.; Hatch, G. E.; Ghio, A. J. (2000) Effect of ozone on diesel exhaust particle toxicity in rat lung. Toxicol. Appl. Pharmacol. 168: 140-148.
- Mango, G. W.; Johnston, C. J.; Reynolds, S. D.; Finkelstein, J. N.; Plopper, C. G.; Stripp, B. R. (1998) Clara cell secretory protein deficiency increases oxidant stress response in conducting airways. Am. J. Physiol. 275: L348-L356.
- Mautz, W. J. (2003) Exercising animal models in inhalation toxicology: interactions with ozone and formaldehyde. Environ. Res. 92: 14-26.
- Mautz, W. J.; Kleinman, M. T.; Bhalla, D. K.; Phalen, R. F. (2001) Respiratory tract responses to repeated inhalation of an oxidant and acid gas-particle air pollutant mixture. Toxicol. Sci. 61: 331-341.
- McGraw, D. W.; Forbes, S. L.; Mak, J. C. W.; Witte, D. P.; Carrigan, P. E.; Leikauf, G. D.; Liggett, S. B. (2000) Transgenic overexpression of beta(2)-adrenergic receptors in airway epithelial cells decreases bronchoconstriction. Am. J. Physiol. 279: L379-L389.
- McKinney, W. J.; Jaskot, R. H.; Richards, J. H.; Costa, D. L.; Dreher, K. L. (1998) Cytokine mediation of ozone-induced pulmonary adaptation. Am. J. Respir. Cell. Mol. Biol. 18: 696-705.
- Miller, L. A.; Barnett, N. L.; Sheppard, D.; Hyde, D. M. (2001) Expression of the β6 integrin subunit is associated with sites of neutrophil influx in lung epithelium. J. Histochem. Cytochem. 49: 41-48.
- Morio, L. A.; Hooper, K. A.; Brittingham, J.; Li, T.-H.; Gordon, R. E.; Turpin, B. J.; Laskin, D. L. (2001) Tissue injury following inhalation of fine particulate matter and hydrogen perioxide is associated with altered production of inflammatory mediators and antioxidants by alveolar macrophages. Toxicol. Appl. Pharmacol. 177: 188-199.
- Moss, O. R.; Gross, E. A.; James, R. A.; Janszen, D. B.; Ross, P. W.; Roberts, K. C.; Howard, A. M.; Harkema, J. R.; Calderón-Garcidueñas, L.; Morgan, K. T. (2001) Respiratory tract toxicity in rats exposed to Mexico City air. Cambridge, MA: Health Effects Institute; research report no. 100. Available: http://www.healtheffects.org/pubs-research.htm [15 May, 2003].
- Mudway, I. S.; Kelly, F. J. (1998) Modeling the interactions of ozone with pulmonary epithelial lining fluid antioxidants. Toxicol. Appl. Pharmacol. 148: 91-100.
- Neuhaus-Steinmetz, U.; Uffhausen, F.; Herz, U.; Renz, H. (2000) Priming of allergic immune responses by repeated ozone exposure in mice. Am. J. Respir. Cell Mol. Biol. 23: 228-233.
- Nichols, B. G.; Woods, J. S.; Luchtel, D. L.; Corral, J.; Koenig, J. Q. (2001) Effects of ozone exposure on nuclear factor-κB activation and tumor necrosis factor-α expression in human nasal epithelial cells. Toxicol. Sci. 60: 356-362.
- Nielsen, G. D.; Hougaard, K. S.; Larsen, S. T.; Hammer, M.; Wolkoff, P.; Clausen, P. A.; Wilkins, C. K.; Alarie, Y. (1999) Acute airway effects of formaldehyde and ozone in BALB/c mice. Hum. Exp. Toxicol. 18: 400-409.
- Niño-Cabrera, H. G.; Colín-Barenque, L.; Avila-Costa, M. R.; Espinosa-Villanueva, J.; Fortoul, T. I.; Rivas-Arancibia, S. (2002) Differences between hippocampus and cerebral cortex in aged rats in an oxidative stress model. Int. J. Neurosci. 112: 373-381.
- Noviski, N.; Brewer, J. P.; Skornik, W. A.; Galli, S. J.; Drazen, J. M.; Martin, T. R. (1999) Mast cell activation is not required for induction of airway hyperresponsiveness by ozone in mice. J. Appl. Physiol. 86: 202-210.
- Paige, R. C.; Royce, F. H.; Plopper, C. G.; Buckpitt, A. R. (2000a) Long-term exposure to ozone increases acute pulmonary centriacinar injury by 1-nitronaphthalene: I. Region-specific enzyme activity. J. Pharmacol. Exp. Ther. 295: 934-941.

- Paige, R. C.; Wong, V.; Plopper, C. G. (2000b) Long-term exposure to ozone increases acute pulmonary centriacinar injury by 1-nitronaphthalene: II. Quantitative histopathology. J. Pharmacol. Exp. Ther. 295: 942-950.
- Paquette, N. C.; Tankersley, C. G.; Zhang, L.-Y.; Kleeberger, S. R. (1994) Repeated subacute ozone exposure of inbred mice: airway inflammation and ventilation. Exp. Lung Res. 20: 579-594.
- Paz, C.; Bazan-Perkins, B. (1992) Sleep-wake disorganization in cats exposed to ozone. Neurosci. Lett. 140: 270-272.
- Paz, C.; Huitrón-Reséndiz, S. (1996) The effects of ozone exposure on the sleep-wake cycle and serotonin contents in the pons of the rat. Neurosci. Lett. 204: 49-52.
- Pearson, A. C.; Bhalla, D. K. (1997) Effects of ozone on macrophage adhesion in vitro and epithelial and inflammatory responses in vivo: the role of cytokines. J. Toxicol. Environ. Health 50: 143-157.
- Peden, D. B.; Dailey, L. (1995) Modulation of mast cell functions by in vitro ozone exposure. Am. J. Physiol. 268: L902-L910.
- Pendino, K. J.; Shuler, R. L.; Laskin, J. D.; Laskin, D. L. (1994) Enhanced production of interleukin-1, tumor necrosis factor-α, and fibronectin by rat lung phagocytes following inhalation of a pulmonary irritant. Am. J. Respir. Cell Mol. Biol. 11: 279-286.
- Petruzzi, S.; Fiore, M.; Dell'Omo, G.; Bignami, G.; Alleva, E. (1995) Medium and long-term behavioral effects in mice of extended gestational exposure to ozone. Neurotoxicol. Teratol. 17: 463-470.
- Petruzzi, S.; De Acetis, L.; Chiarotti, F.; Sorace, A.; Alleva, E. (1999) Limited changes in handedness and morphine reactivity in CD-1 mice after pre- and postnatal ozone exposure. Acta Neurobiol. Exp. 59: 115-122.
- Pinkerton, K. E.; Ménache, M. G.; Plopper, C. G. (1995) Consequences of prolonged inhalation of ozone on F344/N rats: collaborative studies. Part IX. Changes in the tracheobronchial epithelium, pulmonary acinus, and lung antioxidant enzyme activity. Cambridge, MA: Health Effects Institute; pp. 41-98; research report no. 65. Available from: NTIS, Springfield, VA; PB95-261996.
- Pinkerton, K. E.; Weller, B. L.; Ménache, M. G.; Plopper, C. G. (1998) Consequences of prolonged inhalation of ozone on F344/N rats: collaborative studies. Part XIII. A comparison of changes in the tracheobronchial epithelium and pulmonary acinus in male rats at 3 and 20 months. Cambridge, MA: Health Effects Institute; research report no. 65.
- Plopper, C. G.; Fanucchi, M. V. (2000) Do urban environmental pollutants exacerbate childhood lung diseases? Environ. Health Perspect. 108: A252-A253.
- Plopper, C. G.; Chu, F.-P.; Haselton, C. J.; Peake, J.; Wu, J.; Pinkerton, K. E. (1994) Dose-dependent tolerance to ozone: I. tracheobronchial epithelial reorganization in rats after 20 months' exposure. Am. J. Pathol. 144: 404-420.
- Plopper, C. G.; Hatch, G. E.; Wong, V.; Duan, X.; Weir, A. J.; Tarkington, B. K.; Devlin, R. B.; Becker, S.; Buckpitt, A. R. (1998) Relationship of inhaled ozone concentration to acute tracheobronchial epithelial injury, site-specific ozone dose and glutathione depletion in rhesus monkeys. Am. J. Respir. Cell Mol. Biol. 19: 387-399.
- Postlethwait, E. M.; Cueto, R.; Velsor, L. W.; Pryor, W. A. (1998) O₃-induced formation of bioactive lipids: estimated surface concentrations and lining layer effects. Am. J. Physiol. 274: L1006-L1016.
- Pryor, W. A.; Squadrito, G. L.; Friedman, M. (1995) A new mechanism for the toxicity of ozone. Toxicol. Lett. 82/83: 287-293.
- Pryor, W. A.; Bermúdez, E.; Cueto, R.; Squadrito, G. L. (1996) Detection of aldehydes in bronchoalveolar lavage of rats exposed to ozone. Fundam. Appl. Toxicol. 34: 148-156.
- Pulfer, M. K.; Murphy, R. C. (2004) Formation of biologically active oxysterols during ozonolysis of cholesterol present in lung surfactant. J. Biol. Chem. 279: 26331-26338.
- Pulfer, M. K.; Taube, C.; Gelfand, E.; Murphy, R. C. (2005) Ozone exposure in vivo and formation of biologically active oxysterols in the lung. J. Pharmacol. Exp. Ther. 312: 256-264.
- Reinhart, P. G.; Gupta, S. K.; Bhalla, D. K. (1999) Attenuation of ozone-induced lung injury by interleukin-10. Toxicol. Lett. 110: 35-42.
- Rivas-Arancibia, S.; Vazquez-Sandoval, R.; Gonzalez-Kladiano, D.; Schneider-Rivas, S.; Lechuga-Guerrero, A. (1998) Effects of ozone exposure in rats on memory and levels of brain and pulmonary superoxide dismutase. Environ. Res. 76: 33-39.
- Rivas-Arancibia, S.; Dorado-Martínez, C.; Borgonio-Pérez, G.; Hiriart-Urdanivia, M.; Verdugo-Diaz, L.; Durán-Vázquez, A.; Colín-Baranque, L.; Avila-Costa, M. R. (2000) Effects of taurine on ozone-induced memory deficits and lipid peroxidation levels in brains of young, mature, and old rats. Environ. Res. 82: 7-17.
- Rivas-Manzano, P.; Paz, C. (1999) Cerebellar morphological alterations in rats induced by prenatal ozone exposure. Neurosci. Lett. 276: 37-40.

- Savov, J. D.; Whitehead, G. S.; Wang, J.; Liao, G.; Usuka, J.; Peltz, G.; Foster, W. M.; Schwartz, D. A. (2004) Ozone-induced acute pulmonary injury in inbred mouse strains. Am. J. Respir. Cell Mol. Biol. 31: 69-77.
- Schelegle, E. S.; Alfaro, M. F.; Putney, L.; Stovall, M.; Tyler, N.; Hyde, D. M. (2001) Effect of C-fiber-mediated, ozone-induced rapid shallow breathing on airway epithelial injury in rats. J. Appl. Physiol. 91: 1611-1618.
- Schelegle, E. S.; Miller, L. A.; Gershwin, L. J.; Fanucchi, M. V.; Van Winkle, L. S.; Gerriets, J. E.; Walby, W. F.; Mitchell, V.; Tarkington, B. K.; Wong, V. J.; Baker, G. L.; Pantle, L. M.; Joad, J. P.; Pinkerton, K. E.; Wu, R.; Evans, M. J.; Hyde, D. M.; Plopper, C. G. (2003) Repeated episodes of ozone inhalation amplifies the effects of allergen sensitization and inhalation on airway immune and structural development in Rhesus monkeys. Toxicol. Appl. Pharmacol. 191: 74-85.
- Schlesinger, R. B.; Cohen, M. D.; Gordon, T.; Nadziejko, C.; Zelikoff, J. T.; Sisco, M.; Regal, J. F.; Menache, M. G. (2002a) Ozone differentially modulates airway responsiveness in atopic versus nonatopic guinea pigs. Inhalation Toxicol. 14: 431-457.
- Schlesinger, R. B.; Cohen, M.; Gordon, T.; Nadziejko, C.; Zelikoff, J. T.; Sisco, M.; Regal, J. F.; Menache, M. G. (2002b) Ozone-induced modulation of airway hyperresponsiveness in guinea pigs. Boston, MA: Health Effects Institute; research report no. 109.
- Segura, P.; Montaño, L. M.; Bazán-Perkins, B.; Gustin, P.; Vargas, M. H. (1997) Ozone at high-pollution urban levels causes airway hyperresponsiveness to substance P but not to other agonists. Environ. Toxicol. Pharmacol. 3: 91-95.
- Sen, S.; Dulchavsky, S. A.; Dutta, S. (1993) Effects of triiodothyronine (T3) supplementation upon ozone-induced lung injury. Free Radic. Res. Commun. 18: 299-308.
- Shore, S. A.; Abraham, J. H.; Schwartzman, I. N.; Murthy, G. G.; Laporte, J. D. (2000) Ventilatory responses to ozone are reduced in immature rats. J. Appl. Physiol. 88: 2023-2030.
- Shore, S. A.; Johnston, R. A.; Schwartzman, I. N.; Chism, D.; Krishna Murthy, G. G. (2002) Ozone-induced airway hyperresponsiveness is reduced in immature mice. J. Appl. Physiol. 92: 1019-1028.
- Shore, S. A.; Rivera-Sanchez, Y. M.; Schwartzman, I. N.; Johnston, R. A. (2003) Responses to ozone are increased in obese mice. J. Appl. Physiol. 95: 938-945.
- Sindhu, R. K.; Mautz, W. J.; Kikkawa, Y. (1998) Chronic exposure to ozone and nitric acid vapor results in increased levels of rat pulmonary putrescine. Arch. Toxicol. 72: 445-449.
- Slade, R.; Watkinson, W. P.; Hatch, G. E. (1997) Mouse strain differences in ozone dosimetry and body temperature changes. Am. J. Physiol. 272: L73-L77.
- Sorace, A.; De Acetis, L.; Alleva, E.; Santucci, D. (2001) Prolonged exposure to low doses of ozone: short- and long-term changes to behavioral performance in mice. Environ. Res. 85: 122-134.
- Spannhake, E. W. (1996) Down-regulation of canine airway mast cell function following exposure to ozone in vivo. Exp. Lung Res. 22: 163-178.
- Sterner-Kock, A.; Kock, M.; Braun, R.; Hyde, D. M. (2000) Ozone-induced epithelial injury in the ferret is similar to nonhuman primates. Am. J. Respir. Crit. Care Med. 162: 1152-1156.
- Stockstill, B. L.; Chang, L.-Y.; Ménache, M. G.; Mellick, P. W.; Mercer, R. R.; Crapo, J. D. (1995) Bronchiolarized metaplasia and interstitial fibrosis in rat lungs chronically exposed to high ambient levels of ozone. Toxicol. Appl. Pharmacol. 134: 251-263.
- Sun, J.; Chung, K. F. (1997) Interaction of ozone exposure with airway hyperresponsiveness and inflammation induced by trimellitic anhydride in sensitized guinea pigs. J. Toxicol. Environ. Health 51: 77-87.
- Sun, J.; Koto, H.; Chung, K. F. (1997) Interaction of ozone and allergen challenges on bronchial responsiveness and inflammation in sensitised guinea pigs. Int. Arch. Allergy Immunol. 112: 191-195.
- Szarek, J. L.; Stewart, N. L.; Zhang, J. Z.; Webb, J. A.; Valentovic, M. A.; Catalano, P. (1995) Contractile responses and structure of small bronchi isolated from rats after 20 months' exposure to ozone. Fundam. Appl. Toxicol. 28: 199-208.
- Takahashi, T.; Miura, M.; Katsumata, U.; Ichinose, M.; Kimura, K.; Inoue, H.; Takishima, T.; Shirato, K. (1993) Involvement of superoxide in ozone-induced airway hyperresponsiveness in anesthetized cats. Am. Rev. Respir. Dis. 148: 103-106.
- Takahashi, N.; Yu, X.-Y.; Schofield, B. H.; Kleeberger, S. R.; Scott, A. L.; Hasegawa, S.; Spannhake, E. W. (1995a) Expression of ICAM-1 in airway epithelium after acute ozone exposure in the mouse. J. Appl. Physiol. 79: 1753-1761.
- Takahashi, M.; Kleeberger, S. R.; Croxton, T. L. (1995b) Genetic control of susceptibility to ozone-induced changes in mouse tracheal electrophysiology. Am. J. Physiol. 269: L6-L10.
- Takebayashi, T.; Abraham, J.; Murthy, G. G. K.; Lilly, C.; Rodger, I.; Shore, S. A. (1998) Role of tachykinins in airway responses to ozone in rats. J. Appl. Physiol. 85: 442-450.

- Tankersley, C. G.; Kleeberger, S. R. (1994) Ozone-induced inflammation and altered ventilation in genetically susceptible mice: a comparison of acute and subacute exposures. Toxicol Lett. 72: 279-289.
- Tankersley, C. G.; Fitzgerald, R. S.; Mitzner, W. A.; Kleeberger, S. R. (1993) Hypercapnic ventilatory responses in mice differentially susceptible to acute ozone exposure. J. Appl. Physiol. 75: 2613-2619.

Tesfaigzi, J.; Hotchkiss, J. A.; Harkema, J. R. (1998) Expression of the Bcl-2 protein in nasal epithelia of F344/N rats during mucous cell metaplasia and remodeling. Am. J. Respir. Cell Mol. Biol. 18: 794-799.

- Uhlson, C.; Harrison, K.; Allen, C. B.; Ahmad, S.; White, C. W.; Murphy, R. C. (2002) Oxidized phospholipids derived from ozone-treated lung surfactant extract reduce macrophage and epithelial cell viability. Chem. Res. Toxicol. 15: 896-906.
- Ulrich, M. M. W.; Alink, G. M.; Kumarathasan, P.; Vincent, R.; Boere, A. J.; Cassee, F. R. (2002) Health effects and time course of particulate matter on the cardiopulmonary system in rats with lung inflammation. J. Toxicol. Environ. Health Part A 65: 1571-1595.
- Valacchi, G.; Weber, S. U.; Luu, C.; Cross, C. E.; Packer, L. (2000) Ozone potentiates vitamin E depletion by ultraviolet radiation in the murine stratum corneum. FEBS Lett. 466: 165-168.
- Valacchi, G.; Pagnin, E.; Okamoto, T.; Corbacho, A. M.; Olano, E.; Davis, P. A.; Van der Vliet, A.; Packer, L.; Cross, C. E. (2003) Induction of stress proteins and MMP-9 by 0.8 ppm of ozone in murine skin. Biochem. Biophys. Res. Commun. 305: 741-746.
- Van Bree, L.; Dormans, J. A. M. A.; Boere, A. J. F.; Rombout, P. J. A. (2001) Time study on development and repair of lung injury following ozone exposure in rats. Inhalation Toxicol. 13: 703-717.
- Van Bree, L.; Dormans, J. A. M. A.; Koren, H. S.; Devlin, R. B.; Rombout, P. J. A. (2002) Attenuation and recovery of pulmonary injury in rats following short-term, repeated daily exposure to ozone. Inhalation Toxicol. 14: 883-900.
- Vargas, M. H.; Romero, L.; Sommer, B.; Zamudio, P.; Gustin, P.; Montaño, L. M. (1998) Chronic exposure to ozone causes tolerance to airway hyperresponsiveness in guiea pigs: lack of SOD role. J. Appl. Physiol. 84: 1749-1755.
- Vesely, D. L.; Giordano, A. T.; Raska-Emery, P.; Montgomery, M. R. (1994a) Ozone increases amino- and carboxy-terminal atrial natriuretic factor prohormone peptides in lung, heart, and circulation. J. Biochem. Toxicol. 9: 107-112.
- Vesely, D. L.; Giordano, A. T.; Raska-Emery, P.; Montgomery, M. R. (1994b) Increase in atrial natriuretic factor in the lungs, heart, and circulatory system owing to ozone. Chest 105: 1551-1554.
- Vesely, D. L.; Giordano, A. T.; Raska-Emery, P.; Montgomery, M. R. (1994c) Ozone increases atrial natriuretic peptides in heart, lung and circulation of aged vs. adult animals. Gerontology (Basel) 40: 227-236.
- Vesely, K. R.; Schelegle, E. S.; Stovall, M. Y.; Harkema, J. R.; Green, J. F.; Hyde, D. M. (1999) Breathing pattern response and epithelial labeling in ozone-induced airway injury in neutrophil-depleted rats. Am. J. Respir. Cell Mol. Biol. 20: 699-709.
- Vincent, R.; Janzen, E. G.; Chen, G.; Kumarathasan, P.; Haire, D. L.; Guénette, J.; Chen, J. Z.; Bray, T. M. (1996) Spin trapping study in the lungs and liver of F344 rats after exposure to ozone. Free Radical Res. 25: 475-488.
- Vincent, R.; Bjarnason, S. G.; Adamson, I. Y. R.; Hedgecock, C.; Kumarathasan, P.; Guénette, J.; Potvin, M.; Goegan, P.; Bouthillier, L. (1997) Acute pulmonary toxicity of urban particulate matter and ozone. Am. J. Pathol. 151: 1563-1570.
- Wagner, J. G.; Hotchkiss, J. A.; Harkema, J. R. (2001a) Effects of ozone and endotoxin coexposure on rat airway epithelium: potentiation of toxicant-induced alterations. Environ. Health Perspect. 109(suppl. 4): 591-598.
- Wagner, J. G.; Van Dyken, S. J.; Hotchkiss, J. A.; Harkema, J. R. (2001b) Endotoxin enhancement of ozone-induced mucous cell metaplasia is neutrophil-dependent in rat nasal epithelium. Toxicol. Sci. 60: 338-347.
- Wagner, J. G.; Hotchkiss, J. A.; Harkema, J. R. (2002) Enhancement of nasal inflammatory and epithelial responses after ozone and allergen coexposure in brown Norway rats. Toxicol. Sci. 67: 284-294.
- Wagner, J. G.; Van Dyken, S. J.; Wierenga, J. R.; Hotchkiss, J. A.; Harkema, J. R. (2003) Ozone exposure enhances endotoxin-induced mucous cell metaplasia in rat pulmonary airways. Toxicol. Sci. 74: 437-446.
- Wang, G.; Umstead, T. M.; Phelps, D. S.; Al-Mondhiry, H.; Floros, J. (2002) The effect of ozone exposure on the ability of human surfactant protein A variants to stimulate cytokine production. Environ. Health Perspect. 110: 79-84.
- Watkinson, W. P.; Wiester, M. J.; Highfill, J. W. (1995) Ozone toxicity in the rat. I. Effect of changes in ambient temperature on extrapulmonary physiological parameters. J. Appl. Physiol. 78: 1108-1120.
- Watkinson, W. P.; Campen, M. J.; Nolan, J. P.; Costa, D. L. (2001) Cardiovascular and systemic responses to inhaled pollutants in rodents: effects of ozone and particulate matter. Environ. Health Perspect. 109(suppl. 4): 539-546.

- Watkinson, W. P.; Campen, M. J.; Wichers, L. B.; Nolan, J. P.; Costa, D. L. (2003) Cardiac and thermoregulatory responses to inhaled pollutants in healthy and compromised rodents: modulation via interaction with environmental factors. Environ. Res. 92: 35-47.
- Watt, K. C.; Plopper, C. G.; Weir, A. J.; Tarkington, B.; Buckpitt, A. R. (1998) Cytochrome P450 2E1 in rat tracheobronchial airways: response to ozone exposure. Toxicol. Appl. Pharmacol. 149: 195-202.
- Weber, S. U.; Thiele, J. J.; Cross, C. E.; Packer, L. (1999) Vitamin C, uric acid, and glutathione gradients in murine stratum corneum and their susceptibility to ozone exposure. J. Invest. Dermatol. 113: 1128-1132.
- Weber, S. U.; Jothi, S.; Thiele, J. J. (2000) High-pressure liquid chromatography analysis of ozone-induced depletion of hydrophilic and lipophilic antioxidants in murine skin. Methods Enzymol. 319: 536-546.
- Weber, S. U.; Han, N.; Packer, L. (2001) Ozone: an emerging oxidative stressor to skin. Curr. Probl. in Dermatol. 29: 52-61.
- Weller, B. L.; Crapo, J. D.; Slot, J.; Posthuma, G.; Plopper, C. G.; Pinkerton, K. E. (1997) Site- and cell-specific alteration of lung copper/zinc and manganese superoxide dismutases by chronic ozone exposure. Am. J. Respir. Cell Mol. Biol. 17: 552-560.
- Weller, B. L.; Witschi, H.; Pinkerton, K. E. (2000) Quantitation and localization of pulmonary manganese superoxide dismutase and tumor necrosis factor α following exposure to ozone and nitrogen dioxide. Toxicol. Sci. 54: 452-461.
- Wiester, M. J.; Watkinson, W. P.; Costa, D. L.; Crissman, K. M.; Richards, J. H.; Winsett, D. W.; Highfill, J. W. (1996) Ozone toxicity in the rat. III. Effect of changes in ambient temperature on pulmonary parameters. J. Appl. Physiol. 81: 1691-1700.
- Witschi, H.; Espiritu, I.; Pinkerton, K. E.; Murphy, K.; Maronpot, R. R. (1999) Ozone carcinogenesis revisited. Toxicol. Sci. 52: 162-167.
- Wu, Z.-X.; Morton, R. F.; Lee, L.-Y. (1997) Role of tachykinins in ozone-induced airway hyperresponsiveness to cigarette smoke in guinea pigs. J. Appl. Physiol. 83: 958-965.
- Yamauchi, T.; Shima, M.; Kuwaki, T.; Ando, M.; Ohmichi, M.; Fukuda, Y.; Adachi, M. (2002) Acute effects of ozone exposure on lung function in mice sensitized to ovalbumin. Toxicology (Ireland) 172: 69-78.
- Yu, M.; Pinkerton, K. E.; Witschi, H. (2002) Short-term exposure to aged and diluted sidestream cigarette smoke enhances ozone-induced lung injury in B6C3F1 mice. Toxicol. Sci. 65: 99-106.
- Zhang, L.-Y.; Levitt, R. C.; Kleeberger, S. R. (1995) Differential susceptibility to ozone-induced airways hyperreactivity in inbred strains of mice. Exp. Lung Res. 21: 503-518.
- Zhao, Q.; Simpson, L. G.; Driscoll, K. E.; Leikauf, G. D. (1998) Chemokine regulation of ozone-induced neutrophil and monocyte inflammation. Am. J. Physiol. 274: L39-L46.

ANNEX AX6. CONTROLLED HUMAN EXPOSURE STUDIES OF OZONE AND RELATED PHOTOCHEMICAL OXIDANTS

4

1

2

3

- 5
- 6

AX6.1 INTRODUCTION

7 Results of ozone (O₃) studies in laboratory animals and in vitro test systems were presented 8 in Chapter 5 and Annex 5. The extrapolation of results from animal studies is one mechanism 9 by which information on potential adverse human health effects from exposure to O_3 is obtained. 10 More direct evidence of human health effects due to O₃ exposure can be obtained through 11 controlled human exposure studies of volunteer subjects or through field and epidemiologic 12 studies of populations exposed to ambient O₃. Controlled human exposure studies, discussed in 13 this chapter, typically use fixed concentrations of O₃ under carefully regulated environmental 14 conditions and subject activity levels.

15 Most of the scientific information selected for review and evaluation in this chapter comes 16 from the literature published since 1996 which, in addition to further study of physiological 17 pulmonary responses and respiratory symptoms, has focused on mechanisms of inflammation 18 and cellular responses to injury induced by O₃ inhalation. Older studies are discussed where 19 only limited new data are available and where new and old data are conflicting. The reader is 20 referred to both the 1986 and 1996 Air Quality Criteria documents (U.S. Environmental 21 Protection Agency, 1986, 1996) for a more extensive discussion of older studies. Summary 22 tables of the relevant O₃ literature are included for each of the major subsections. 23 In summarizing the human health effects literature, changes from control are described if 24 statistically significant at a probability (p) value less than 0.05, otherwise trends are noted 25 as such.

- 26
- 27 28

3

AX6.2 PULMONARY FUNCTION EFFECTS OF OZONE EXPOSURE IN HEALTHY SUBJECTS

AX6.2.1 Introduction

4 The responses observed in young healthy nonsmoking human adults exposed to ambient O₃ 5 concentrations include decreased inspiratory capacity; mild bronchoconstriction; rapid, shallow breathing pattern during exercise; and symptoms of cough and pain on deep inspiration. 6 7 In addition, O_3 has been shown to result in airway hyperresponsiveness as demonstrated by an 8 increased physiological response to a nonspecific bronchoconstrictor, as well as airway injury 9 and inflammation assessed via bronchoalveolar lavage and biopsy. Reflex inhibition of 10 inspiration and consequent decrease in inspiratory capacity results in a decrease in forced vital 11 capacity (FVC) and total lung capacity (TLC) and, in combination with mild 12 bronchoconstruction, contributes to a decrease in the forced expiratory volume in 1 s (FEV₁). 13 Given that both FEV₁ and FVC are subject to decrease with O₃ exposures, changes in the

14 ratio (FEV $_1$ /FVC) become difficult to interpret and so are not discussed.

15 The majority of controlled human studies have investigated the effects of exposure to 16 variable O₃ concentrations in healthy subjects performing continuous exercise (CE) or intermittent exercise (IE) for variable periods of time. These studies have several important 17 18 limitations: (1) the ability to study only short-term, acute effects; (2) the inability to link short-19 term effects with long-term consequences; (3) the use of a small number of volunteers that may 20 not be representative of the general population; and (4) the statistical limitations associated with 21 the small sample size. Nonetheless, studies reviewed in the 1996 EPA criteria document 22 (U.S. Environmental Protection Agency, 1996) provided a large body of data describing the 23 effects and dose-response characteristics of O₃ as function of O₃ concentration (C), minute ventilation (\dot{V}_E), and duration or time (T) of exposure. In most of these studies, subjects were 24 25 exposed to O_3 and to filtered air (FA [reported as 0 ppm O_3]) as a control. The most salient 26 observations from these studies were: (1) healthy subjects exposed to O_3 concentrations ≥ 0.08 ppm develop significant reversible, transient decrements in pulmonary function if \dot{V}_{E} or 27 T are increased sufficiently, (2) there is a large degree of intersubject variability in physiologic 28 29 and symptomatic responses to O₃ and these responses tend to be reproducible within a given 30 individual over a several months period, and (3) subjects exposed repeated to O_3 over several

1 days develop a tolerance to successive exposures, as demonstrated by an attenuation of

2 responses, which is lost after about a week without exposure.

In this section, the effects of single O₃ exposures of 1- to 8-h in duration on pulmonary function in healthy nonsmoking subjects are examined by reviewing studies that investigate: (1) the O₃ exposure-response relationship; (2) intersubject variability, individual sensitivity, and the association between responses; and (3) mechanisms of pulmonary function responses and the relationship between tissue-level events and functional responses. Discussion will largely be limited to studies published subsequent to the 1996 EPA criteria document (U.S. Environmental Protection Agency, 1996)

10

11 AX6.2.2 Acute Ozone Exposures for Up to 2 Hours

12 At-Rest Exposures. Exposure studies investigating the effects of O₃ exposures on sedentary 13 subjects were discussed in the 1986 EPA criteria document (U.S. Environmental Protection 14 Agency, 1986). The lowest O_3 concentration at which significant reductions in FVC and FEV₁ 15 were reported was 0.5 ppm (Folinsbee et al., 1978; Horvath et al., 1979). Based on the 16 average O₃ responses in these two studies (corrected for FA responses), resting young adults 17 (n = 23, age = 22) exposed to 0.5 ppm O₃ have a ~4% reduction in FVC and a ~7% reduction FEV₁. At lower O₃ concentrations of 0.25 to 0.3 ppm, resting exposures did not significantly 18 19 affect lung function.

Exposures with Exercise. Collectively, the studies reviewed in the 1996 EPA criteria
 document (U.S. Environmental Protection Agency, 1996) demonstrated that healthy young

- adults performing moderate to heavy IE or CE of 1 to 2.5 h duration, exposed to 0.12 to
- 0.18 ppm O_3 experienced statistically significant decrements in pulmonary function and
- respiratory symptoms. As an example, 2 hr exposures to 0.12 and 0.18 ppm O_3 during heavy IE
- 25 (exercise $\dot{V}_E = 65 \text{ L/min}$) have resulted in FEV₁ decrements of $2.0 \pm 0.8\%$ (mean \pm SE; n = 40)

and $9.5 \pm 1.1\%$ (n = 89), respectively (McDonnell and Smith, 1994). Significant decrements in

- 27 pulmonary function have been reported in heavily exercising healthy adults exposed for 1 h with
- 28 CE at O_3 concentrations of 0.12 ppm (Gong et al., 1986), 0.16 ppm (Avol et al., 1984), and
- 29 0.2 ppm (Adams and Schelegle, 1983; Folinsbee et al., 1984).

30 In an attempt to describe O_3 dose-response characteristics, many investigators modeled 31 acute responses as a function of total inhaled O_3 dose (C × T × \dot{V}_E), which was found to be a

1	better predictor of response than O_3 concentration, \dot{V}_E , or T of exposure, alone. In an analysis of
2	6 studies with 1 to 2 h exposures to between 0.12 and 0.18 ppm O_3 with exercise, Folinsbee et al.
3	(1988) reported a good correlation (r = 0.81) between total inhaled O_3 dose and FEV ₁
4	decrements. For a given exposure duration, total inhaled O ₃ dose can be increased by increases
5	in C and/or $\dot{V}_{\scriptscriptstyle E}$. In exposures of fixed duration, results of several studies suggested that O_3
6	concentration was a more important predictor of response or explained more of the variability in
7	response than \dot{V}_E (Adams et al., 1981; Folinsbee et al, 1978; Hazucha, 1987). Based on a review
8	of previously published studies, Hazucha (1987) noted that relative to the FEV_1 decrement
9	occurring at a given C and \dot{V}_E , doubling C (e.g., from 0.1 to 0.2 ppm) would increase the FEV ₁
10	decrement by 400%, whereas doubling the \dot{V}_{E} (e.g., from an exercise \dot{V}_{E} of 20 to 40 L/min)
11	which would only increase the FEV_1 decrement by 190%. Thus, C appears to have a greater
12	affect than \dot{V}_{E} on FEV ₁ responses even when total inhaled O ₃ doses are equivalent.
13	New studies (i.e., not reviewed in the 1996 EPA criteria document) that provide
14	spirometric responses for up to 2 h exposures are summarized in Table AX6-1. Most of these
15	newer studies have investigated mechanisms affecting responses, inflammation, and/or effects in
16	diseased groups versus healthy adults, accordingly their findings may be summarized differently

in several sections of this chapter. Rather than being interested in responses due to O_3 versus FA exposures, many of the newer studies have tested the effects of a placebo versus treatment in modulating responses to O_3 exposure. Studies appearing in Table 1, but not discussed in this section, are discussed in other sections of this chapter as indicated within the table.

21 McDonnell et al. (1997) pooled the results of eight studies entailing 485 healthy male subjects exposed for 2 h on one occasion to one of six O₃ concentrations (0.0, 0.12, 0.18, 0.24, 22 0.30, or 0.40 ppm) at rest or one of two levels of IE (\dot{V}_E of 25 and 35 L/min/m² BSA). FEV₁ 23 was measured preexposure, after 1 h of exposure, and immediately postexposure. Decrements 24 in FEV₁ were modeled by sigmoid-shaped curve as a function of subject age, O₃ concentration, 25 \dot{V}_{E} , and T. The modeled decrements reach a plateau with increasing T and dose rate (C × \dot{V}_{E}). 26 That is, for a given O_3 concentration, exercise \dot{V}_E level, and after a certain length of exposure, 27 the FEV₁ response tends not to increase further with increasing duration of exposure. The 28 modeled FEV₁ responses increased with $C \times \dot{V}_E$ and T, decreased with subject age, but were only 29

-	zone ntration ^b	Exposure Duration and	Exposure	Number and Gender of	Subject		
ррт	$\mu g/m^3$	Activity	Conditions	Subjects	Characteristics	Observed Effect(s)	Reference
0.0 0.4	0 784	2 h IE 4 × 15 min on bicycle, $\dot{V}_E = 30$ L/min	NA	5 M, 4 F 6 M, 7 F	Healthy adults 25 ± 2 years old Mild atopic asthmatics 22 ± 0.7 years old	O_3 -induced reductions in FVC (12%, 10%) and FEV ₁ (13%, 11%) for asthmatic and healthy subjects. Significant reductions in mid-flows in both asthmatics and healthy subjects. Indomethacin pretreatment significantly decreased FVC and FEV ₁ responses to O_3 in healthy but not asthmatic subjects. See Section AX6.3.2 and Tables AX6-3 and AX6-13.	Alexis et al. (2000)
0.0 0.2	0 392	2 h IE 4 × 15 min at $\dot{V}_E = 20$ L/min/m ² BSA	20 °C 50% RH	8 M, 5 F	Healthy NS median age 23 years	Median O_3 -induced decrements of 70 mL, 190 mL, and 400 mL/s in FVC, FEV ₁ , and FEF ₂₅₋₇₅ , respectively. Spirometric responses not predicted of inflammatory responses. <i>See Sections AX6.2.5.2, AX6.5.6, and AX6.9.3 and Table AX6-12.</i>	Blomberg et al. (1999)
0.0 0.2	0 392	2 h IE $4 \times 15 \text{ min}$ at $\dot{V}_{E} = 20$ L/min/m ² BSA	20 °C 50% RH	10 M, 12 F	Healthy NS mean age 24 years	Significant O_3 -induced decrement in FEV ₁ immediately postexposure but not significantly different from baseline 2 h later. No correlation between Clara cell protein (CC16) and FEV ₁ decrement. CC16 levels, elevated by O_3 exposure, remained high at 6 h postexposure, but returned to baseline by 18 h postexposure. <i>See Table AX6-12</i>	Blomberg et al. (2003)
0.0 0.33	0 647	2 h IE 4 × 15 min on bicycle ergometer (600 kpm/min)	NA	9 M	Healthy NS 26.7 ± 7 years old	O_3 -induced reductions in FVC (7%). FRC not altered by O_3 exposure. Post FA, normal gradient in ventilation which increased from apex to the base of the lung. Post O_3 , ventilation shifted away from the lower-lung into middle and upper-lung regions. The post O_3 increase in ventilation to mid-lung region was correlated with decrease in midmaximal expiratory flow (r = 0.76, p < 0.05).	Foster et al. (1993)
0.0 0.35	0 690	2.2 h IE 2 × 30 min on treadmill $(\dot{V}_E \approx 50 \text{ L/min})$ Final 10 min rest	19-23 °C 48-55% RH	15 M	Healthy NS 25.4 ± 2 years old	Pre- to post-O ₃ , mean FVC and FEV ₁ decreased by 12 and 14%, respectively. Following O ₃ exposure, there was a pronounced slow phase evident in multibreath nitrogen washouts which, on average, represented a 24% decrease in the washout rate relative to pre-O ₃ .	Foster et al. (1997)

Table AX6-1. Controlled Exposure of Healthy Humans to Ozone for 1 to 2 Hours During Exercise^a

-	one ntration ^b	Exposure Duration and	Exposure	Number and Gender of	Culti4		
ppm	$\mu g/m^3$	Activity	Conditions	Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
$\begin{array}{c} 0.0 \\ 0.12 \\ 0.18 \\ 0.24 \\ 0.30 \\ 0.40 \end{array}$	0 235 353 471 589 784	2 h rest or IE (4 × 15 min at \dot{V}_{E} = 25 or 35 L/min/m ² BSA)	22 °C 40% RH	485 M (each subject exposed at one activity level to one O_3 concentration)	Healthy NS 18 to 36 years old mean age 24 years	Statistical analysis of 8 experimental chamber studies conducted between 1980 and 1993 by the U.S. EPA in Chapel Hill, NC. Decrement in FEV ₁ described by sigmoid- shaped curve as a function of subject age, O_3 concentration, \dot{V}_E , and time. Response decreased with age, was minimally affected by body size corrections, and was not more sensitive to O_3 concentration than \dot{V}_E . <i>Also see Section</i> <i>AX6.5</i> .	McDonnell et al. (1997)
0.4	784	2 h IE 20 min mild-mod. exercise, 10 min rest	NA	4 M, 5 F	Healthy NS 30 ± 3 years old	Subjects previously in Nightingale et al. (2000) study. Placebo-control: Immediately postexposure decrements in FVC (9%) and FEV ₁ (14%) relative to pre-exposure values. FEV ₁ decrement only 9% at 1 hr postexposure. By 3 h postexposure, recovery in FVC to 97% and FEV ₁ to 98% of preexposure values. Significant increases in 8-isoprostane at 4 h postexposure. Budesonide for 2 wk prior to exposure did not affect responses.	Montuschi et al. (2002)
0.0 0.2	392	2 h IE 4×15 min at $\dot{V}_E = 20$ L/min/m ² BSA	20 °C 50% RH	6 M, 9 F 9 M, 6 F	Healthy adults 24 years old Mild asthmatics 29 years old	O_3 -induced FEV ₁ decrement (8%, healthy adults; 3% asthmatics) and PMN increase (20.6%, healthy adults; 15.2% asthmatics). Primary goal was to investigate relationship between antioxidant defenses and O_3 responses in asthmatics and healthy adults. <i>See Tables AX6-3 and AX6-13</i> .	Mudway et al. (2001) Stenfors et al. (2002)
0.4	784	2 h IE 20 min mild-mod. exercise, 10 min rest	NA	6 M, 9 F	Healthy NS mean age ~31 years	Placebo-control: O ₃ caused significant decrements in FEV ₁ (13.5%) and FVC (10%) immediately following exposure, a small increase in Mch-reactivity, and increased PMNs and myeloperoxidase in induced sputum at 4 h postexposure. FEV ₁ at 96% and FVC at 97% preexposure values at 3 h postexposure. Budesonide for 2 wk prior to exposure did not affect spirometric responses. <i>See Section AX6.2.5 and Table AX6-13</i> .	Nightingale et al. (2000)

Table AX6-1 (cont'd). Controlled Exposure of Healthy Humans to Ozone for 1 to 2 Hours during Exercise^a

-	cone ntration ^b	Exposure	Exposure	Number and Gender of	~		
ppm	$\mu g/m^3$	Duration and Activity 2 h IE	ration and Conditions		Subject Characteristics	Observed Effect(s)	Reference
0.0 0.4	784	2 h IE 4 × 15 min at $\dot{V}_{E} = 18 \text{ L/min/m}^{2}$ BSA 2 exposures: 25% subjects exposed to air-air, 75% to O ₃ -O ₃	21 °C 40% RH	Weak responders 7 M, 13F Strong responders 21 M, 21 F	Healthy NS 20 to 59 years old	Significant O_3 -induced decrements in spirometric lung function. Young adults (<35 years) were significantly more responsive than older individuals (>35 years). Sufentanil, a narcotic analgesic, largely abolished symptom responses and improved FEV ₁ in strong responders. Naloxone, an opioid antagonist, did not affect O_3 effects in weak responders. <i>See Section AX6.2.5.1</i> .	Passannante et al. (1998)
0.0 0.4	784	2 h IE $4 \times 15 \text{ min}$ at $\dot{V}_E = 20$ L/min/m ² BSA	20 °C 40% RH	Placebo group 15 M, 1 F Antioxidant group 13 M, 2 F	Healthy NS mean age 27 years	Placebo and antioxidant groups had O_3 -induced decrements in FEV ₁ (20 and 14%) and FVC (13 and 10%), respectively. Percent neutrophils and IL-6 levels in BAL fluid obtained 1 h postexposure were not different in the two treatment groups. <i>See Table AX6-13</i> .	Samet et al. (2001) Steck-Scott et al. (2004)
0.0 0.25	490	1 h CE V _E = 30 L/min	NA Face mask exposure	32 M, 28 F	Healthy NS 22.6 \pm 0.6 years old	Mean O_3 -induced FEV ₁ decrements of 15.9% in males and 9.4% in females (gender differences not significant). FEV ₁ decrements ranged from -4 to 56%; decrements >15% in 20 subjects and >40% in 4 subjects. Uptake of O_3 greater in males than females, but uptake not correlated with spirometric responses.	Ultman et al. (2004)

Table AX6-1 (cont'd). Controlled Exposure of Healthy Humans to Ozone for 1 to 2 Hours during Exercise^a

^aSee Appendix A for abbreviations and acronyms. ^bListed from lowest to highest O₃ concentration. ^cStudies conducted in exposure chamber unless otherwise indicated.

1 minimally affected by body size corrections to \dot{V}_E . Fitted and experimental FEV₁ decrements 2 following a 2 h exposure at three nominal levels of \dot{V}_E are illustrated in Figure AX6-1 as a 3 function of O₃ concentration. Their analysis indicated that C was marginally, but not 4 significantly, more important than \dot{V}_E in predicting FEV₁ response. Additionally, the McDonnell 5 et al. (1997) analysis revealed that some prior analyses of IE protocols may have over estimated 6 the relative importance of C over \dot{V}_E in predicting FEV₁ responses by considering only the \dot{V}_E 7 during exercise and ignoring the \dot{V}_E during periods of rest.

8 9

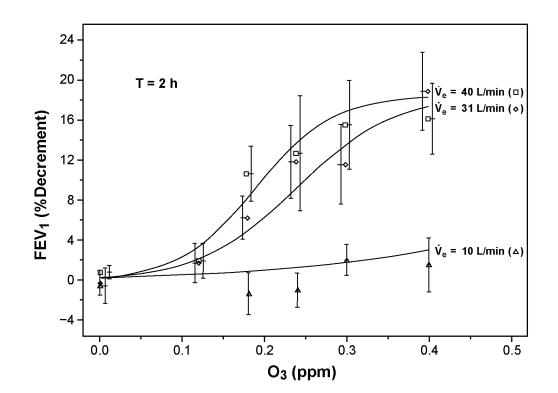


Figure AX6-1. FEV₁ decrements as a function of O₃ concentration following a 2 h exposure with incremental exercise (15 min intervals) or rest. Points are experimental data (mean \pm SE) and lines are model predictions for each activity level. Minute ventilation (\dot{V}_E) represent average across intervals of rest and exercise.

Source: McDonnell et al. (1997).

1	Ultman et al. (2004) measured O_3 uptake and pulmonary responses in 60 young heathy
2	nonsmoking adults (32 M, 28 F). A bolus technique was used to quantify the uptake of O_3 as a
3	function of the volume into the lung which the bolus penetrated. From these measurements, the
4	volumetric depth at which 50% uptake occurred was calculated. This volumetric lung depth was
5	correlated with conducting airways volume, i.e., a greater fraction of O ₃ penetrated to deeper into
6	the lungs of individuals have larger conducting airways volumes. Two weeks after the bolus
7	measurements, subjects were exposed via a face mask to FA and subsequently two weeks later to
8	0.25 ppm O ₃ for 1 h with CE at a target \dot{V}_{E} of 30 L/min. The breath-by-breath uptake of O ₃ was
9	measured. There was a small but significant reduction in the breath-by-breath uptake of O_3 from
10	90.6% on average for the first 15 minutes to 87.3% on average for the last 15 minutes of
11	exposure. The uptake fraction was significantly greater in males (91.4%) than females (87.1%),
12	which is consistent with the larger f_B and smaller V_T of the females than males. Uptake was
13	not correlated with spirometric responses. However, there was tendency for males to have
14	greater O_3 -induced FEV ₁ decrements than females, 15.9% versus 9.4%, respectively. There was
15	considerable intersubject variability in FEV_1 decrements which ranged from -4 to 56% with
16	20 subjects having decrements of >15% and 4 subjects with >40% decrements (see Section
17	AX6.4 for additional discussion regarding intersubject variability).

18 Few studies have measured the effect of ozone on ventilation distribution within the lung. 19 Foster et al. (1993) measured the effect of ozone on the vertical distribution of inspired air in the 20 lung using planar gamma scintigraphy. Nine healthy nonsmoking males (26.7 ± 7 years old) 21 were randomly exposed to FA or 0.33 ppm O₃ for 2 h with IE. After each exposure session, 22 subjects inhaled a 2- to 4-ml bolus of xenon-133 while seated in from of a gamma camera. 23 Images were acquired at the end of the first inspiration and 5-6 breaths later after the xenon had 24 equilibrated between lung regions. Using these images, the distribution of ventilation and 25 volume between upper-, middle-, and lower-lung regions was quantified. Post-O₃ relative to 26 post-FA, there were significant reductions in FVC (FA, 5.23 ± 0.5 ; O₃, 4.88 ± 0.5 liters) and 27 midmaximal expiratory flow (FA, 3.82 ± 0.8 ; O₃, 3.14 ± 0.9 liter/sec). Neither FRC nor the 28 distribution of volume (upper, 26.5%; middle, 42.5%; lower, 31%) between lung compartments 29 were affected by O₃ exposure. After the FA exposure, the distribution of ventilation per unit 30 volume increased with progression from the apex to the base of the lung, i.e., the lower lung 31 regions received the greatest ventilation. Following O₃ exposure, there was a significant

reduction in the ventilation to the lower-lung and significant increases in ventilation to the upper- and middle-lung regions relative to the FA values in 7 of the 9 subjects. The post- O_3 increase in middle-lung ventilation was correlated with the decrease in midmaximal expiratory flow (r = 0.76, p < 0.05).

Foster et al. (1997) measured the effect of ozone on ventilation distribution using a 5 6 multiple breath nitrogen washout. Fifteen healthy nonsmoking males (25.4 ± 2 years old) were randomly exposed to FA or 0.35 ppm O₃ for 2.2 h with IE. Subjects alternated between 30 min 7 periods of rest and treadmill exercise ($\dot{V}_E \approx 10 \times FVC \approx 50$ L/min). The final exercise period 8 9 was followed by 10 min rest period. Multiple breath nitrogen washout and spirometry were 10 measured pre- and immediately postexposure. At 24-h post-O₃ exposure, 12 of 15 subjects 11 returned and completed an addition multibreath nitrogen washout maneuver. Pre- to post-O₃ 12 exposure, the mean FVC and FEV₁ were significantly decreased by 12 and 14%, respectively. 13 Exposure to FA did not appreciably affect spirometry or the multibreath nitrogen washout. 14 Following O₃ exposure, the washout of nitrogen was delayed and resembled a two-compartment 15 washout, whereas pre-O₃ exposure the log-linear clearance of nitrogen as a function of expired 16 volume resembled a single-compartment washout. The clearance rate of the slow compartment 17 was approximated as the slope $(Ln[N_2])$ per expired volume) of the nitrogen washout between 18 20% and 9% nitrogen. Post-O₃, there was a pronounced slow phase evident in nitrogen washout 19 which, on average, represented a 24% decrease in the washout rate relative to pre-O₃. Data for a 20 single subject (see Figure 6-1) allowed for the size of the slow compartment to be determined. 21 For this subject, the slow compartment represented 23% of the lung. This is fairly consistent 22 with Foster et al. (1993) where ventilation to the lower-lung (31% of volume) was reduced 23 post-O₃. At 24-h post-O₃, 6 of the 12 subjects who completed an additional nitrogen washout 24 maneuver had a delayed washout relative to the pre-O₃ maneuver. This suggests a prolonged O₃ 25 effect on the small airways and ventilation distribution in some individuals.

26

27 AX6.2.3 Prolonged Ozone Exposures

Between 1988 and 1994, a number studies were completed that described the responses of subjects exposed to relatively low (0.08 to 0.16 ppm) O₃ concentrations for exposure durations of 4 to 8 h. These studies were discussed in the 1996 criteria document (U.S. Environmental Protection Agency, 1996) and only a select few are briefly discussed here. Table AX6-2 details

Ozone Conc	centration ^b	Exposure	F	Number and	6 1 · 4		
ppm	$\mu g/m^3$	Duration and Activity	Exposure Conditions	Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
Studies with 4	4 hr Exposur	es					
0.18	353	4 h IE (4 × 50 min) $\dot{V}_E = 35$ L/min	23 °C 50% RH	2 M, 2 F	Adults NS, 21 to 33 years old	FVC decreased 19% and FEV_1 decreased 29% in these four pre-screened sensitive subjects.	Adams (2000a)
0.0 0.20	0 392	4 h IE (4 × 50 min cycle ergometry or treadmill running [$\dot{V}_E = 40$ L/min])	20 °C 50% RH	FA: 11 M, 3 F O ₃ : 9 M, 3 F	Adult NS, 19 to 41 years old	Decrease in FVC, FEV ₁ , V_T , and SRaw and increase in f_B with O_3 exposure compared with FA; total cell count and LDH increased in isolated left main bronchus lavage and inflammatory cell influx occurred with O_3 exposure compared to FA exposure.	Aris et al. (1993)
0.2	392	4 h IE (4 × 50 min) $\dot{V}_E = 25 L/min/m^2$ BSA	20 °C 50% RH	42 M, 24 F	Adults NS, 18 to 50 years old	FEV_1 decreased by 18.6%; Pre-exposure methacholine responsiveness was weakly correlated with the functional response to O ₃ exposure. Symptoms were also weakly correlated with the FEV_1 response (r = -0.31 to -0.37)	Aris et al. (1995)
0.0 0.24	0 470	4 h IE (4 × 15 min) $\dot{V}_E = 20$ L/min	24 °C 40% RH	10 M 9 M	Healthy NS, 60 to 69 years COPD 59 to 71 years	Healthy: small, 3.3%, decline in FEV_1 (p = 0.03 [not reported in paper], paired-t on O ₃ versus FA pre-post FEV_1). COPD: 8% decline in FEV_1 (p = ns, O ₃ versus FA). Adjusted for exercise, ozone effects did not differ significantly between COPD patients and healthy subjects. <i>See Section AX6.5.1</i> .	Gong et al. (1997a)
Studies with	>6 hr Exposu	ires					
0.0 0.04 0.08 0.12	0 78 157 235	6.6 h IE (6 × 50min) $\dot{V}_{E} = 20 \text{ L/min/m}^{2}$ BSA	23 °C 50% RH	15 M, 15 F	Healthy NS, 22.4 ± 2.4 yrs old	FEV_1 and total symptoms at 6.6 h exposure to 0.04 ppm not significantly different from FA. FEV_1 (-6.4%) and total symptoms significant at 6.6 h exposure to 0.08 ppm. FEV_1 (-15.4%) at 6.6 h not significantly different between chamber and face mask exposure to 0.12 ppm.	Adams (2002
0.12	235	3 day-6.6h/day IE (6 × 50 min) \dot{V}_E = 17 L/min/m ² , 20 L/min/m ² BSA, and 23 L/min/m ² BSA	23 °C 50% RH	15 M, 15 F	Healthy NS, 18 to 31 years old	FEV ₁ at 6.6 h decreased significantly by 9.3%, 11.7%, and 13.9%, respectively at three different exercise \dot{V}_E rates, but were not significantly different from each other. Total symptoms at the highest \dot{V}_E protocol were significantly greater than for the lowest \dot{V}_E protocol beginning at 4.6 h. Largest subjects (2.2 m ² BSA) had significantly greater average FEV ₁ decrement for the three protocols, 18.5% compared to the smallest subjects (1.4 m ² BSA), 6.5%.	Adams (2000b)

Table AX6-2. Pulmonary Function Effects after Prolonged Exposures to Ozone^a

Ozone Concentration ^b		Exposure Duration	Eurosura	Number and Gender of	Subject		
ррт	μg/m ³	and Activity	Exposure Conditions	Subjects	Subject Characteristics	Observed Effect(s)	Reference
(a) 0.08 (b) 0.08 (mean) varied from 0.03 to 0.15	235 235 (mean)	6.6 h IE (6 × 50 min) $\dot{V}_{E} = 20 \text{ L/min/m}^{2}$ BSA	23 °C 50% RH	15 M 15 F	Healthy NS, 18 to 25 years old	(a) FEV ₁ decreased 6.2% after 6.6 h in square-wave exposures. Total symptoms significantly increased at 5.6 and 6.6 h. (b) FEV ₁ decreased 5.6 to 6.2% after 4.6 to 6.6 h, respectively, in varied exposure; total symptoms significantly increased also after 4.6 to 6.6 h. No significant difference between face mask and chamber exposures.	Adams (2003a)
(a) 0.08	157	6.6 h IE (6 × 50 min) $\dot{V}_E = 20 \text{ L/min/m}^2$ BSA	23 °C 50% RH	15 M 15 F	Healthy NS, 18 to 25 years old	Significantly greater FEV ₁ decrement (12.4%) for 2-h, 0.30 ppm exposure than for 6.6-h, 0.08 ppm exposure (3.6%).	Adams (2003b)
(b) 0.30	588	2 h IE (4 × 15 min) \dot{V}_E = 35 L/min/m ² BSA					
(a) 0.12	235	6.6 h IE (6 × 50 min)	23 °C 50% RH	6 M, 6 F	Healthy NS, 19 to 25 years	(a) FEV ₁ decreased 11% at 6.6 h in square-wave exposure. Total symptoms significant from 4.6 to 6.6 h.	Adams and Ollison (1997)
(b) 0.12 (mean) varied from 0.07 to 0.16	235 (mean)	$(a,b,c) \dot{V}_E = 20$ L/min/m ² BSA (d) $\dot{V}_E = 12$ L/min/m ² BSA			old	(b) FEV_1 decreased 13% at 6.6 h; not significantly different from square-wave exposure. Total symptoms significant from 4.6 to 6.6 h.	
(c) 0.12 (mean) varied from 0.11 to 0.13	235 (mean)					(c) FEV_1 decreased 10.3% at 6.6 h; not significantly different from square-wave exposure. Total symptoms significant from 4.6 to 6.6 h.	
(d) 0.12	235					(d) FEV ₁ decreased 3.6% at 6.6 h; significantly less than for 20 L/min/m ² BSA protocols.	

Table AX6-2 (cont'd). Pulmonary Function Effects after Prolonged Exposures to Ozone^a

^aSee Appendix A for abbreviations and acronyms. ^bListed from lowest to highest O₃ concentration. 1 newer studies of healthy subjects undergoing prolonged exposures at O₃ concentrations ranging

2 from 0.06 to 0.20 ppm. In most of these studies, statistically significant changes in pulmonary

- 3 function, symptoms, and airway responsiveness have been observed during and after exposures
- 4 to O_3 concentrations of 0.08 ppm and higher. As with studies conducted at higher O_3
- 5 concentrations for shorter periods of time, there is considerable intersubject variability in

Folinsbee et al. (1988) first reported the effects of a 6.6 h exposure to 0.12 ppm O_3 in ten 7 8 young healthy adults $(25 \pm 4 \text{ yr})$ with quasi continuous exercise that was intended to simulate a 9 full workday of heavy physical labor. Except for a 35-min lunch break after 3 h, the subjects exercised at a moderate level ($\dot{V}_E \approx 40$ L/min) for 50 min of each hour. Ignoring the lunch 10 break during which lung function did not change appreciably, approximately linear decreases 11 12 were observed in FVC, FEV₁, and FEV₂₅₋₇₅ with duration of O₃ exposure. Correcting for FA responses, decrements of 8.2, 14.9, and 26.8% in FVC, FEV₁, and FEV₂₅₋₇₅ occurred as a result 13 14 of the O₃ exposure. Using the same 6.6 h protocol, but a lower O₃ concentration of 0.08 ppm, 15 Horstman et al. (1990) and McDonnell et al. (1991) observed decrements corrected for FA (and averaged across studies) of 5, 8, and 11% in FVC, FEV₁, and FEV₂₅₋₇₅, respectively, in 60 young 16 17 adults (25 ± 5 years old). Horvath et al. (1991) observed a 4% (p = 0.03)¹ decrement in FEV₁ 18 using the forementioned protocol (i.e., 6.6 h and 0.08 ppm O_3) in 11 healthy adults (37 ± 4 yr). 19 The smaller decrement observed by Horvath et al. (1991) versus Horstman et al. (1990) and 20 McDonnell et al. (1991) is consistent with response decreasing as subject age increases (see 21 Section AX6.5.1).

22

AX6.2.3.1 Effect of Exercise Ventilation Rate on FEV₁ Response to 6.6 h Ozone Exposure

It is well known that response to O_3 exposure is a function of \dot{V}_E in studies of 2 h or less in duration (*See Section AX6.2.2*). It is reasonable to expect that response to a prolonged 6.6-h O_3 exposure is also function of \dot{V}_E , although quantitative analyses are lacking.

In an attempt to quantify this effect, Adams and Ollison (1997) exposed 12 young adults to an average O_3 concentration of 0.12 ppm for 6.6 h at varied exercise \dot{V}_E . They observed a mean FEV₁ decrements of 10 to 11% in two protocols having a mean exercise \dot{V}_E of 33 L/min

⁶ response (*see Section AX6.4*).

¹Based on two-tailed paired t-test of data in Table III of Horvath et al. (1991).

1	and a 14% decrement in a protocol with a mean exercise \dot{V}_E of 36 L/min. These FEV ₁
2	decrements were significantly greater than the average decrement of 3.6% (not significantly
3	different from FA response) observed at an exercise $\dot{V}_{\rm E}$ of only 20 L/min. In a subsequent study
4	of 30 healthy adults (Adams, 2000b), the effect of smaller exercise \dot{V}_{E} differences on pulmonary
5	function and symptoms responses to 6.6 h exposure to 0.12 ppm O_3 was examined. FEV ₁
6	decrements of 9.3, 11.7, and 13.9% were observed for the exercise \dot{V}_{E} of 30.2, 35.5, and
7	40.8 L/min, respectively. Along with the tendency for FEV_1 responses to increase with \dot{V}_{E} , total
8	symptoms severity was found to be significantly greater at the end of the highest $\dot{V}_{\scriptscriptstyle E}$ protocol
9	relative to the lowest \dot{V}_E protocol. Although the FEV ₁ responses were not significantly different
10	from each other, the power of the study to detect differences between the three $\dot{V}_{\scriptscriptstyle E}$ levels was not
11	reported and no analysis was performed using all of the data (e.g., a mixed effects model). Data
12	from the Adams and Ollison (1997) and Adams (2000b) studies are illustrated in Figure AX6-2
13	with data from three older studies. There is a paucity of data below an exercise \dot{V}_E of 30 L/min.
14	Existing data for exposure to 0.12 ppm O_3 suggest that FEV ₁ responses increase with increasing
15	exercise \dot{V}_{E} until at least 35 L/min.

17 18

AX6.2.3.2 Exercise Ventilation Rate as a Function of Body/Lung Size on FEV₁ Response to 6.6 h Ozone Exposure

Typically, with the assumption that the total inhaled O₃ dose should be proportional to the 19 lung size of each individual, exercise \dot{V}_{E} in 6.6 h exposures has been set as a multiple of body 20 surface area (BSA) (McDonnell et al., 1991) or as a product of eight times FVC (Folinsbee et al., 21 22 1988; Frank et al., 2001; Horstman et al., 1990). Utilizing previously published data, McDonnell et al. (1997) developed a statistical model analyzing the effects of O_3 concentration, \dot{V}_E , duration 23 24 of exposure, age, and body and lung size on FEV₁ response. They concluded that any effect of 25 BSA, height, or baseline FVC on percent decrement in FEV₁ in this population of 485 young 26 adults was small if it exists at all. This is consistent with Messineo and Adams (1990), who 27 examined pulmonary function responses in young adult women having small (n = 14) or large 28 (n = 14) lung sizes (mean FVC of 3.74 and 5.11 L, respectively). Subjects were exposed to 0.30 ppm O₃ for 1 h with CE ($\dot{V}_E = 47$ L/min). There was no significant difference between the 29

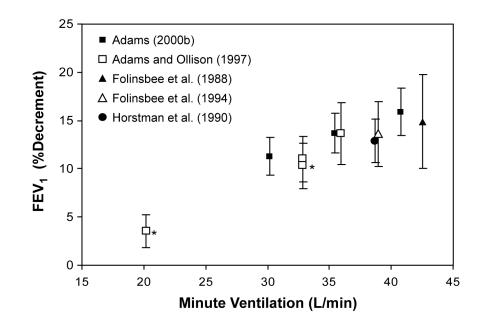
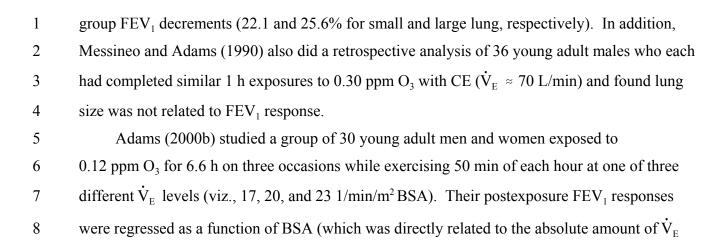



Figure AX6-2. Average FEV_1 decrements (±SE) for prolonged 6.6 h exposures to 0.12 ppm O_3 as a function of exercise \dot{V}_E . Since age affects response to O_3 exposure, selected studies had subjects with mean ages between 22 and 25 years. FEV₁ decrements were calculated as mean O_3 responses minus mean air responses. The SE bars illustrate variability in FEV₁ responses (pre minus post) on the O_3 exposure day in all cases except for Folinsbee et al. (1994), where post O_3 exposure variability is illustrated. In one case, the SE for \dot{V}_E of 33 L/Min (10.3% decrement) was taken as the SE of data from protocol with \dot{V}_E of 33 L/min (11% decrement). All studies used a constant 0.12 ppm O_3 exposure except two (*) which used 0.115 ppm O_3 for hours 1-2 and 5-6 and 0.13 ppm O_3 for hours 3-4 of exposure.

1	during exercise and, thus, primarily responsible for individual differences in total inhaled O ₃
2	dose). The slope was significantly different from zero ($p = 0.01$), meaning that the smallest
3	subjects, who had the lowest exercise \dot{V}_{E} (\approx 26 L/min), had a lower FEV ₁ decrement (-5%)
4	than the largest subjects (-17%), whose exercise \dot{V}_E was \approx 44 L/min. This relationship was not
5	a gender-based difference, as the mean female's FEV_1 decrement was -11.2%, which was not
6	significantly different from the male's -12.2% mean value. Similarly, when total symptoms
7	severity response was regressed against BSA, the slope was significantly different than zero
8	(p = 0.0001), with lower values for smaller subjects than for larger subjects. Results of this
9	study suggest that for the O_3 concentration and exposure duration used, responses are more
10	closely related to $\dot{V}_{_E}$ than $\dot{V}_{_E}$ normalized to BSA. Further, this observation is in agreement with
11	McDonnell et al. (1997), who observed no evidence that measurements of lung or body size
12	were significantly related to FEV_1 response in 2 h IE exposures. These authors state that the
13	absence of an observed relationship between FEV_1 response and BSA, height, or FVC may be
14	due to the poor correlation between these variables and airway caliber (Collins et al., 1986;
15	Martin et al., 1987). Also, the O_3 dosimetry study of Bush et al. (1996) indicated that
16	normalization of the O ₃ dose would be more appropriately applied as a function of anatomic
17	dead space.

19 20

AX6.2.3.3 Comparison of 6.6 h Ozone Exposure Pulmonary Responses to Those Observed in 2 h Intermittent Exercise Ozone Exposures

It has been shown that greater O_3 concentration (Horstman et al., 1990) and higher \dot{V}_E 21 (Adams, 2000b) each elicit greater FEV₁ response in prolonged, 6.6-h exposures, but data on the 22 relative effect of O_3 concentration, \dot{V}_E , and T in prolonged exposures are very limited and have 23 not been systematically compared to data from shorter (\leq 2-h) exposures. In a recent study 24 25 (Adams, 2003b), the group mean FEV_1 response for a 2-h IE exposure to 0.30 ppm O₃ was -12.4%, while that for a 6.6-h exposure to 0.08 ppm O₃ was -3.5%. The total inhaled O₃ dose 26 (as the simple product of $C\times T\times \dot{V}_{_E}$) was 1358 ppm $\cdot L$ for the 2-h exposure and 946 ppm $\cdot L$ for 27 the 6.6-h exposure. Thus, the FEV₁ decrement was 3.5 times greater and the total inhaled O_3 28 29 dose was 1.44 times greater for the 2-h exposure compared to the 6.6-h exposure. This difference illustrates the limitations of utilizing the concept of total O₃ dose for comparisons 30 31 between studies of vastly different exposure durations.

1 Adams (2003b) also examined whether prolonged 6.6 h exposure to a relatively low O₃ 2 concentration (0.08 ppm) and the 2-h IE exposure at a relatively high O₃ concentration (0.30 3 ppm) elicited consistent individual subject effects, i.e, were those most or least affected in one 4 exposure also similarly affected in the other? Individual subject O₃ exposure reproducibility was first examined via a regression plot of the postexposure FEV₁ response to the 6.6-h chamber 5 6 exposure as a function of postexposure FEV_1 response to the 2-h chamber exposure. The R² of 7 0.40, although statistically significant, was substantially less than that observed in a comparison 8 of individual FEV_1 response to two 2-h IE exposures by chamber and face mask, respectively $(R^2 = 0.83)$. The Spearman rank order correlation for the chamber 6.6-h and chamber 2-h 9 10 exposure comparison was also substantially less (0.49) than that obtained for the two 2-h 11 exposures (0.85). The primary reason for the greater variability in the chamber 6.6-h exposure 12 FEV₁ response as a function of that observed for the two 2-h IE exposures is very likely related 13 to the increased variability in response upon repeated exposure to O₃ concentrations lower than 14 0.18 ppm (R = 0.57, compared to a mean R of 0.82 at higher concentrations) reported by 15 McDonnell et al. (1985a). This rationale is supported by the lower R (0.60) observed by Adams (2003b) for the FEV₁ responses found in 6.6 h chamber and face mask exposures to 16 0.08 ppm O₃, compared to an R of 0.91 observed for responses found for the 2 h chamber and 17 face mask exposures to 0.30 ppm O_3 . 18

19

20

AX6.2.4 Triangular Ozone Exposures

21 To further explore the factors that determine responsiveness to O_3 , Hazucha et al. (1992) 22 designed a protocol to examine the effect of varying, rather than constant, O₃ concentrations. In this study, subjects were exposed to a constant level of 0.12 ppm O₃ for 8 h and to an O₃ level 23 24 that increased linearly from 0 to 0.24 ppm for the first 4 h and then decreased linearly from 25 0.24 to 0 over the second 4 h of the 8 h exposure (triangular concentration profile). Subjects performed moderate exercise ($\dot{V}_{E} \approx 40$ L/min) during the first 30 minutes of each hour. The total 26 inhaled O₃ dose (i.e., $C \times T \times \dot{V}_E$) for the constant versus the triangular concentration profile was 27 28 almost identical. FEV₁ responses are illustrated in Figure AX6-3. With exposure to the constant 0.12 ppm O₃, FEV₁ declined approximately 5% by the fifth hour of exposure and then remained 29 30 at that level. This observation clearly indicates a response plateau as suggested in other

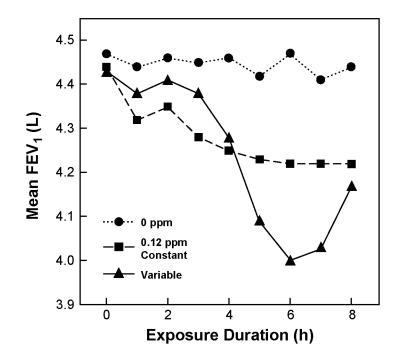


Figure AX6-3. The forced expiratory volume in 1 s (FEV₁) is shown in relation to exposure duration (hours) under three exposure conditions. Subjects exercised (minute ventilation ≈ 40 L/min) for 30 min during each hour; FEV₁ was measured at the end of the intervening rest period. Standard error of the mean for these FEV₁ averages (not shown) ranged from 120 to 150 mL.

Source: Hazucha et al. (1992).

1 prolonged exposure studies (Horstman et al., 1990; McDonnell et al., 1991). However, with the 2 triangular O₃ concentration profile after a minimal initial response over the first 3 h, Hazucha 3 et al. (1992) observed a substantial decrease in FEV_1 corresponding to the higher average O_3 concentration that reached a nadir after 6 h (-10.3%). Despite 2 h of continued exposure to a 4 5 lower O_3 concentration (0.12 to 0.00 ppm, mean = 0.06 ppm), FEV₁ improved and was only reduced by 6.3% (relative to the preexposure FEV₁) at the end of the 8-h exposure. The authors 6 concluded that total inhaled O₃ dose (C $\times \dot{V}_{E} \times T$) was not a sufficient index of O₃ exposure and 7 that, as observed by others (Adams et al., 1981; Folinsbee et al., 1978; Hazucha, 1987; Larsen 8 9 et al., 1991), O₃ concentration appears to be more important in determining exposure effects than 10 is either duration or the volume of air breathed during the exposure. However, it should be noted that the mean O₃ concentration for Hazucha et al.'s triangular exposure profile was 0.12 ppm at
4 h, 0.138 ppm at 5 h, 0.14 ppm at 6 h, and 0.133 ppm at 7 h, before falling to 0.12 ppm at 8 h.
The FEV₁ responses of the last 4 hours (Figure AX6-3) follow a closely similar pattern as the
total mean O₃ concentration over the same time period.

- It has become apparent that laboratory simulations of air-pollution risk-assessment need to 5 6 employ O₃ concentration profiles that more accurately mimic those encountered during summer daylight ambient air pollution episodes (Adams and Ollison, 1997; Lefohn and Foley, 1993; 7 8 Rombout et al., 1986). Neither square-wave O_3 exposures or the one 8-h study by Hazucha et al. 9 (1992) that utilized a triangular shaped varied O_3 exposure described above closely resembles the variable diurnal daylight O3 concentration pattern observed in many urban areas experiencing 10 11 air-pollution episodes (Lefohn and Foley, 1993). Recently, 6.6 h less abrupt triangular O₃ 12 exposure profiles at lower concentrations more typical of outdoor ambient conditions have been 13 examined (Adams 2003a; Adams and Ollison, 1997).
- 14 Using a face-mask inhalation system, Adams and Ollison (1997) observed no significant 15 differences in postexposure pulmonary function responses or symptoms between the 6.6-h, 16 0.12 ppm O_3 square-wave exposure; and those observed for a triangular O₃ profile in which 17 concentration was increased steadily from 0.068 ppm to 0.159 ppm at 3.5 h and then decreased 18 steadily to 0.097 ppm at end exposure. Further, no attenuation in FEV_1 response during the last 19 2 h was observed in either the 6.6 h square-wave or the triangular exposures. In a subsequent 20 study (Adams, 2003a), no significant difference was observed in pulmonary function responses 21 or symptoms between face-mask and chamber exposure systems either for a 6.6-h, 0.08 ppm O_3 22 square-wave profile or for the triangular O₃ exposure beginning at 0.03 ppm, increasing steadily 23 to 0.15 ppm in the fourth hour, and decreasing steadily to 0.05 ppm at 6.6 h (mean = 0.08 ppm). 24 For the chamber-exposure comparison, postexposure values for FEV₁ and symptoms were 25 not significantly different from the responses for the square-wave 0.08 ppm O₃ exposure. 26 However, analysis showed that FEV₁ response for the square-wave protocol did not become 27 statistically significant until the 6.6-h postexposure value, while that for the triangular exposure 28 protocol was significant at 4.6 h (when O₃ concentration was 0.15 ppm). Earlier significant 29 FEV₁ responses for the triangular protocol were accompanied by significant increases in 30 symptoms at 4.6 h, which continued on through the fifth and sixth hours when the mean O_3 31 concentration was 0.065 ppm. Symptoms for the square-wave 0.08 ppm exposure did not

1	become statistically significant until 5.6 h. The FEV_1 responses during the last two hours of the
2	triangular exposure by Adams (2003a) did not decrease as dramatically as in the Hazucha et al.
3	(1992) study (Figure AX6-3). The most probable reason for differences in the triangular O_3
4	profile observations of Hazucha et al. (1992) and those of Adams (2003a) is that the increase
5	and decrease in Hazucha et al.'s study (i.e., 0 to 0.24 ppm and back to 0) encompassed a much
6	greater range of O ₃ concentrations than those used by Adams (2003a), viz., 0.03 ppm to
7	0.15 ppm from 0 to 3.6 h, then decreasing to 0.05 ppm for the final hour of exposure.
8	Nonetheless, the greatest FEV_1 decrement was observed at 6 h of Hazucha et al.'s 8 h triangular
9	exposure (Figure AX6-3) corresponding to the time when total mean O ₃ concentration was
10	highest (0.14 ppm), with a very similar response at 7 h when total mean O ₃ concentration was
11	0.138 ppm.
12	Whereas FEV_1 decrements during square-wave O_3 exposures between 0.08 to 0.12 ppm
13	tend to increase with time of exposure (i.e., with steadily increasing total inhaled dose), FEV_1
14	decrements during triangular exposures (Hazucha et al., 1992; Adams, 2003a) occurred 1 to 2 h
15	after the peak O ₃ concentration and 1 h to 2 h before the maximal total O ₃ inhaled dose occurred
16	at the end of exposure. This difference, especially because O ₃ concentration profiles during
17	summer daylight air-pollution episodes rarely mimic a square-wave, implies that triangular O ₃
18	exposure profiles most frequently observed during summer daylight hours merit further

19 investigation. These two studies suggest that depending upon the profile of the exposure,

20 the triangular exposure can potentially lead to higher FEV_1 responses than the square wave 21 exposures at the overall equivalent ozone dose.

22

23 AX6.2.5 Mechanisms of Pulmonary Function Responses

Inhalation of O₃ for several hours while physically active elicits both subjective respiratory tract symptoms and acute pathophysiologic changes. The typical symptomatic response consistently reported in studies is that of tracheobronchial airway irritation. This is accompanied by decrements in lung capacities and volumes, bronchoconstriction, airway hyperresponsiveness, airway inflammation, immune system activation, and epithelial injury. The severity of symptoms and the magnitude of response depend on inhaled dose, O₃ sensitivity of an individual and the extent of tolerance resulting from previous exposures. The development of effects is time dependent during both exposure and recovery periods with considerable overlap of evolving
 and receding effects.

3 Exposure to O_3 initiates reflex responses manifested as a decline in spirometric lung 4 function parameters (\downarrow FVC, \downarrow FEV₁, \downarrow FEF₂₅₋₇₅), bronchoconstriction (\uparrow SRaw) and altered breathing pattern $(\downarrow V_T, \uparrow f_B)$, which becomes more pronounced as exposure progresses and 5 6 symptoms of throat irritation, cough, substernal soreness and pain on deep inspiration develop. 7 The spirometric lung function decline and the severity of symptoms during a variable (ramp) 8 exposure profile seem to peak a short time (about 1 to 2 h) following the highest concentration 9 of O₃ (Hazucha et al., 1992; Adams, 2003a). Exposure to a uniform O₃ concentration profile elicits the maximum spirometric response at the end of exposure (Hazucha et al., 1992; Adams, 10 11 2003a). Regardless of exposure concentration profile, as the exposure to O_3 progresses, airway 12 inflammation begins to develop and the immune response at both cellular and subcellular level is 13 activated. Airway hyperreactivity develops slower than pulmonary function effects, while 14 neutrophilic inflammation of the airways develops even more slowly and reaches the maximum 15 3 to 6 h postexposure. The cellular responses (e.g., release of immunoregulatory cytokines) 16 appear to still be active as late as 20 h postexposure (Jörres et al., 2000). Following cessation of 17 exposure, the recovery in terms of breathing pattern, pulmonary function and airway 18 hyperreactivity progresses rapidly and is almost complete within 4 to 6 hours in moderately 19 responsive individuals. Persisting small residual lung function effects are almost completely 20 resolved within 24 hours. Following a 2 h exposure to 0.4 ppm O₃ with IE, Nightingale et al. 21 (2000) observed a 13.5% decrement in FEV₁. By 3 h postexposure, however, only a 2.7% FEV₁ 22 decrement persisted. As illustrated in Figure AX6-4, a similar postexposure recovery in FVC 23 was observed. In hyperresponsive individuals, the recovery takes longer and as much as 24 48 hours to return to baseline values. More slowly developing inflammatory and cellular 25 changes persist for up to 48 hours. The time sequence, magnitude and the type of responses of 26 this complex series of events, both in terms of development and recovery, indicate that several 27 mechanisms, activated at different times of exposure, must contribute to the overall lung 28 function response (U.S. Environmental Protection Agency, 1996).

29

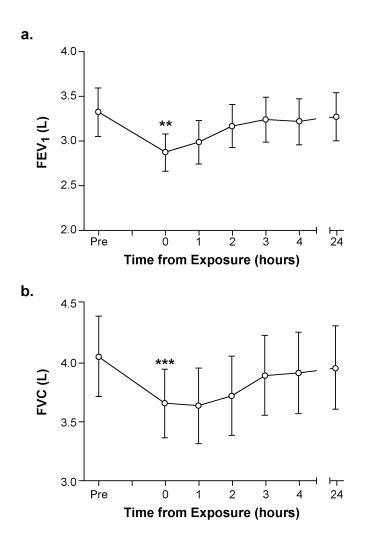


Figure AX6-4a,b.Recovery of spirometric responses following a 2 h exposure to 0.4 ppm
 O_3 with IE. Immediately postexposure, there were significant
decrements (**p < 0.001, ***p < 0.0005) in FVC (10%) and FEV1
(13.5%) compared to preexposure values. At 3 h postexposure, FVC
and FEV1 were at 96 and 97% of preexposure values, respectively.

Adapted from Nightingale et al. (2000).

1 AX6.2.5.1 Pathophysiologic Mechanisms

2 Breathing pattern changes

Human studies consistently report that inhalation of O₃ alters the breathing pattern without

- 4 significantly affecting minute ventilation. A progressive decrease in tidal volume and a
- 5 "compensatory" increase in frequency of breathing to maintain steady minute ventilation during

3

exposure suggests a direct modulation of ventilatory control. These changes parallel a response
of many animal species exposed to O₃ and other lower airway irritants (Tepper et al., 1990).
Although alteration of a breathing pattern could be to some degree voluntary, the presence of the
response in animals and the absence of perception of the pattern change by subjects, even before
appearance of the first subjective symptoms of irritation, suggests an involuntary reflex
mechanism.

7 Direct recording from single afferent vagal fibers in animals convincingly demonstrated 8 that bronchial C-fibers and rapidly adapting receptors are the primary vagal afferents responsible 9 for O₃-induced changes in ventilatory rate and depth (Coleridge et al., 1993; Hazucha and Sant'Ambrogio, 1993). In spontaneously breathing dogs, an increase in V_T/T_i (T_i decreased more 10 11 than V_{T}) was attributed to an increased inspiratory drive due to stimulation of rapidly adapting 12 receptors and bronchial C-fibers by O₃ (Schelegle et al., 1993). Folinsbee and Hazucha (2000) 13 also observed similar changes in V_T/T_i and other breath-timing parameters in humans exposed 14 to O_3 implying activation of the same mechanisms. They also reported that Pm_{01} (pressure at 15 mouth at 0.1 sec of inspiration against a transiently occluded mouthpiece which is considered an 16 index of inspiratory drive) increased during controlled hypercapnia without a change in the slope of Pm_{0.1} versus pCO₂ relation suggesting that the primary mechanism is an increased inspiratory 17 18 drive. Since no significant within-individual differences in ventilatory response to CO₂ between 19 air exposure and O₃ exposure were found, the CO₂ chemoreceptors did not modulate the 20 response. Therefore, the principal peripheral mechanism modulating changes in breathing 21 pattern appears to be direct and indirect stimulation of lung receptors and bronchial C-fibers 22 by O₃ and/or its oxidative products. The activity of these afferents, centrally integrated with 23 input from other sensory pathways, drives the ventilatory controller, which determines the depth 24 and the frequency of breathing.

The potential modulation of breathing pattern by activation of sensory afferents located in extrathoracic airways by O_3 has not yet been studied in humans. Laboratory animal studies have shown that the larynx, pharynx, and nasal mucosa are densely populated by free-ending, unmyelinated sensory afferents resembling nociceptive C-fibers (Spit et al., 1993; Sekizawa and Tsubone, 1994). They are almost certainly stimulated by O_3 and likely contribute to overall ventilatory and symptomatic responses. Nasal only exposure of rats produced O_3 -induced changes in breathing pattern that are similar to changes found in humans (Kleinman et al., 1999).

1 Symptoms and lung function changes

As already discussed, in addition to changes in ventilatory control, O₃ inhalation by 2 3 humans will also induce a variety of symptoms, reduce vital capacity (VC) and related functional 4 measures, and increase airway resistance. Hazucha et al. (1989) postulated that a reduction of VC by O₃ is due to a reflex inhibition of inspiration and not due to a voluntary reduction of 5 inspiratory effort. Recently, Schelegle et al. (2001) convincingly demonstrated that a reduction 6 7 of VC due to O₃ is indeed reflex in origin and not a result of subjective discomfort and 8 consequent premature voluntary termination of inspiration. They reported that inhalation of an 9 aerosolized topical anesthetic tetracaine substantially reduced if not abolished O₃-induced 10 symptoms that are known to be mediated in part by bronchial C-fibers. Yet, such local 11 anesthesia of the upper airway mucosa had a minor and irregular effect on pulmonary function 12 decrements and tachypnea, strongly supporting neural mediation, i.e., stimulation of both 13 bronchial and pulmonary C-fibers, and not voluntary inhibition of inspiration (due to pain) as the key mechanism. 14

15 The involvement of nociceptive bronchial C-fibers modulated by opioid receptors in 16 limiting maximal inspiration and eliciting subjective symptoms in humans was studied by 17 Passannante et al. (1998). The authors hypothesized that highly variable responses among 18 individuals might reflect the individual's inability or unwillingness to take a full inspiration. 19 Moreover, development of symptoms of pain on deep inspiration, cough and substernal soreness 20 suggested that nociceptive mechanism(s) might be involved in O₃-induced inhibition of maximal 21 inspiration. If this were so, pain suppression or inhibition by opioid receptor agonists should 22 partially or fully reverse symptoms and lung functional impairment. Subjects for this study were pre-screened with exposure to 0.42 ppm O₃ and classified either as "weak" (FEV₁ ≥95% of 23 preexposure value), "strong" (FEV₁ \leq 85% of preexposure value), or "moderate" responders. 24 Sixty two (28 M, 34 F) healthy volunteers (18 to 59 yrs old), known from the previous screening 25 26 to be "weak" (n = 20) or "strong" (n = 42) O₃-responders, participated in this double-blind 27 crossover study. Subjects underwent either two 2 h exposures to air, or two 2 h exposures to 28 0.42 ppm O₃, with 15 min IE at 17.5 l/min/m² BSA. Immediately following postexposure 29 spirometry the "weak" responders were given (in random order) either the potent opioid receptor 30 antagonist naloxone (0.15 mg/kg) or saline, while "strong" responders received (in random 31 order) either the potent, rapid-acting opioid agonist and analgesic sufentanil (0.2 μ g/kg), or

1 physiologic saline administered through an indwelling catheter. Administration of saline or 2 naloxone had no significant effect on the relatively small decrements in FEV₁ observed in 3 "weak" responders. However, as hypothesized, sufentanil rapidly reversed both the O₃-induced 4 symptomatic effects and spirometric decrements (FEV₁; p < 0.0001) in "strong" responders (Figure AX6-5). All the same, the reversal was not complete and the average post-sufentanil 5 6 FEV_1 remained significantly below (-7.3%) the preexposure value suggesting involvement of 7 non-opioid receptor modulated mechanisms as well. Uneven suppression of symptoms has 8 implied involvement of both A- δ and bronchial C-fibers. The plasma β -endorphin (a potent 9 pain suppressor) levels, though substantially elevated immediately postexposure and post-drug 10 administration, were not related to individuals' O₃ responsiveness. These observations have 11 demonstrated that nociceptive mechanisms play a key role in modulating O₃-induced inhibition 12 of inspiration. Moreover, these findings are consistent with and further support the concept that 13 the primary mechanism of O₃-induced reduction in inspiratory lung function, is an inhibition of inspiration elicited by stimulation of the C-fibers. The absence of effect of naloxone in "weak" 14 15 responders shows that the weak response is not due to excessive endorphin production in those 16 individuals. However, other neurogenic mechanisms not modulated by opioid receptors may 17 have some though limited role in inspiratory inhibition.

18 19

Airway hyperreactivity

20 In addition to limitation of maximal inspiration and its effects on other spirometric 21 endpoints, activation of airway sensory afferents also plays a role in receptor-mediated 22 bronchoconstriction and an increase in airway resistance. Despite this common mechanism, 23 post-O₃ pulmonary function changes and either early or late bronchial hyperresponsiveness 24 (BHR) to inhaled aerosolized methacholine or histamine are poorly correlated either in time or 25 magnitude. Fentanyl and indomethacin, the drugs that have been shown to attenuate O₃-induced 26 lung function decrements in humans, did not prevent induction of BHR when administered to 27 guinea pigs prior to O_3 exposure (Yeadon et al., 1992). Neither does post- O_3 BHR seem to be 28 related to airway baseline reactivity. These findings imply that the mechanisms are either not 29 related or are activated independently in time. Animal studies (with limited support from human 30 studies) have suggested that an early post-O₃ BHR is, at least in part, vagally mediated (Freed, 31 1996) and that stimulation of C-fibers can lead to increased responsiveness of bronchial smooth

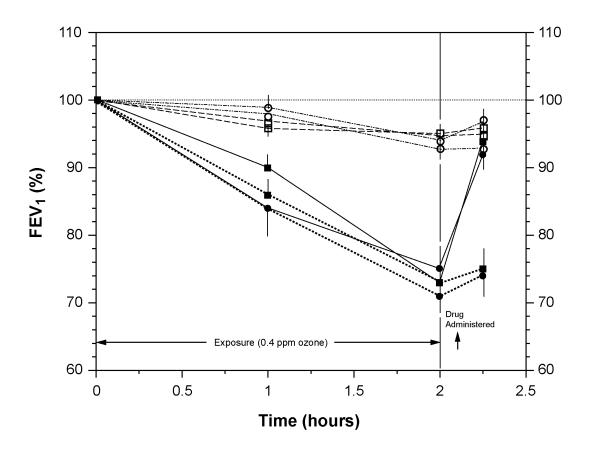


Figure AX6-5. Plot of the mean FEV_1 (% baseline) vs. time for ozone exposed cohorts. Solid lines represent data for "strong" males (n = 14; solid squares) and females (n = 15; solid circles) that received sufentanil and dotted lines represent data for the same cohorts after receiving saline. Dashed lines represent data for "weak" males (n = 5; open squares) and females (n = 10; open circles) that received naloxone and dot-dash lines represent data for the same cohorts after receiving saline. The arrow denotes the time of drug administration (~2.1 hrs). Vertical bars associated with the symbols are one-sided SEM.

Source: Adapted from Passannante et al. (1998).

muscle independently of systemic and inflammatory changes which may be even absent (Joad
et al., 1996). In vitro study of isolated human bronchi have reported that O₃-induced airway
sensitization involves changes in smooth muscle excitation-contraction coupling (Marthan,
1996). Characteristic O₃-induced inflammatory airway neutrophilia which at one time was
considered a leading BHR mechanism, has been found in a murine model to be only
coincidentally associated with BHR, i.e., there was no cause and effect relationship (Zhang et al.,

1 1995). However, this observation does not rule out involvement of other cells such as 2 eosinophils or T-helper cells in BHR modulation. There is some evidence that release of 3 inflammatory mediators by these cells can sustain BHR and bronchoconstriction. In vitro and 4 animal studies have also suggested that airway neutral endopeptidase activity can be a strong 5 modulator of BHR (Marthan et al., 1996; Yeadon et al., 1992). Late BHR observed in some 6 studies is plausibly due to a sustained damage of airway epithelium and continual release of 7 inflammatory mediators (Foster et al., 2000). Thus, O₃-induced BHR appears to be a product of 8 many mechanisms acting at different time periods and levels of the bronchial smooth muscle 9 signaling pathways. [The effects of O_3 on BHR are described in Section AX6.8.]

10

11

AX6.2.5.2 Mechanisms at a Cellular and Molecular Level

Stimulation of vagal afferents by O_3 and reactive products, the primary mechanism of lung function impairment is enhanced and sustained by what can be considered in this context to be secondary mechanisms activated at a cellular and molecular level. The complexity of these mechanisms is beyond the scope of this section and the reader is directed to Section AX6.9 of this chapter for greater details. A comprehensive review by Mudway and Kelly (2000) discusses the cellular and molecular mechanisms of O_3 -induced pulmonary response in great detail.

18

19 Neurogenic airway inflammation

20 Stimulation of bronchial C-fibers by O₃ not only inhibits maximal inspiration but, through 21 local axon reflexes, induces neurogenic inflammation. This pathophysiologic process is 22 characterized by release of tachykinins and other proinflammatory neuropeptides. Ozone 23 exposure has been shown to elevate C-fiber-associated tachykinin substance P in human 24 bronchial lavage fluid (Hazbun et al. 1993) and to deplete neuropeptides synthesized and 25 released from C-fibers in human airway epithelium rich in substance P-immunoreactive axons. 26 Substance P and other transmitters are known to induce granulocyte adhesion and subsequent 27 transposition into the airways, increase vascular permeability and plasma protein extravasation, 28 cause bronchoconstriction, and promote mucus secretion (Solway and Leff, 1991). Although the 29 initial pathways of neurogenic, antigen-induced, and generally immune-mediated inflammation 30 are not the same, they eventually converge leading to further amplification of airway 31 inflammatory processes by subsequent release of cytokines, eicosanoids, and other mediators.

1	Significantly negative correlations between O_3 -induced leukotriene (LTC ₄ /D ₄ /E ₄) production and
2	spirometric decrements (Hazucha et al., 1996), and an increased level of postexposure PGE ₂ , a
3	mediator known to stimulate bronchial C-fibers, show that these mediators play an important
4	role in attenuation of lung function due to O ₃ exposure (Mohammed et al., 1993; Hazucha et al.,
5	1996). Moreover, because the density of bronchial C-fibers is much lower in the small than
6	large airways, the reported post-O ₃ dysfunction of small airways assessed by decrement
7	in FEF ₂₅₋₇₅ (Weinman et al., 1995; Frank et al., 2001) may be due in part to inflammation.
8	Also, because of the relative slowness of inflammatory responses as compared to reflex
9	effects, O3-triggered inflammatory mechanisms are unlikely to initially contribute to progressive
10	lung function reduction. It is plausible, however, that when fully activated, they sustain and
11	possibly further aggravate already impaired lung function. Indeed, a prolonged recovery of
12	residual spirometric decrements following the initial rapid improvement after exposure
13	termination could be due to slowly resolving airway inflammation. Bronchial biopsies
14	performed 6 h postexposure have shown that O ₃ caused a significant decrease in
15	immunoreactivity to substance P in the submucosa (Krishna et al., 1997a). A strong negative
16	correlation with FEV_1 also suggests that the release of substance P may be a contributing
17	mechanism to persistent post-O ₃ bronchoconstriction (Krishna et al., 1997a). Persistent
18	spirometry changes observed for up to 48 h postexposure could plausibly be sustained by
19	the inflammatory mediators, many of which have bronchoconstrictive properties (Blomberg
20	et al., 1999).
0.1	

- 21 22
- 23

AX6.3 PULMONARY FUNCTION EFFECTS OF OZONE EXPOSURE IN SUBJECTS WITH PREEXISTING DISEASE

This section examines the effects of O₃ exposure on pulmonary function in subjects with preexisting disease by reviewing O₃ exposure studies that utilized subjects with (1) chronic obstructive pulmonary disease (COPD), (2) asthma, (3) allergic rhinitis, and (4) ischemic heart disease. Studies of subjects with preexisting disease exposed to O₃, published subsequent to or not included in the 1996 Air Quality Criteria Document (U.S. Environmental Protection Agency, 1996), are summarized in Table AX6-3. Studies examining increased airway responsiveness after O₃ exposure are discussed in Section AX6.8.

Ozone Concentration ^b ppm µg/m ³		- Exposure Duration	Exposure	Number and			
		and Activity	Condition	Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
Subjects	s with Chr	onic Obstructive Pulmo	nary or Heart Dis	ease			
0.0 0.24	0 472	4 h IE 15 min exercise 15 min rest $\dot{V}_E \approx 20$ L/min	24 °C 40% RH	9 M 10 M	COPD patients Age-matched healthy NS All subjects 59-71 years old	No significant changes in FEV ₁ , FVC, or SRaw due to ozone in COPD patients. Equivocal SaO ₂ decrement during 2^{nd} and 3^{rd} hours of ozone exposure in COPD patients. Adjusted for exercise, ozone effects did not differ significantly between COPD patients and healthy subjects.	Gong et al. (1997a) Gong and Tierney (1995
0.3	589	$\frac{3}{V_{E}}$ h IE $\dot{V}_{E} \approx 30$ L/min	22 °C 50% RH	10 M 6 M	Hypertension 42-61 years old Healthy 41-49 years old	O_3 -induced FEV ₁ decrements of 6.7 and 7.6% in healthy and hypertensive subjects, respectively. Significant O_3 -induced reductions in alveolar-arterial oxygen tension in both groups. No significant changes in cardiac enzymes or ECG telemetry.	Gong et al. (1998)
Subjects	s with Alle	rgic Rhinitis					,
0.0 0.2	0 392	1 h CE at \dot{V}_E = 25 L/min/m ² BSA	20 °C 50% RH	13 M, 1 F	Dust mite sensitized asthmatics mean age 29 ± 5 years	FEV ₁ decrement following O ₃ of 10% not significantly different from the 4% decrement following FA. Subjects received dust mite antigen challenge at 0.5 h FA and O ₃ postexposures and were lavaged 6 h post-challenge. Amount of allergen producing 15% FEV ₁ decrement was decreased by O ₃ compared to FA in 9 of 14 subjects. PMN in proximal airway lavage tended to be greater after O ₃ than FA (p = 0.06).	Chen et al. (2004)
0.125 0.250 0.125	245 490 245	3h IE (10 min rest, 15 min exercise on bicycle) $\dot{V}_E = 30$ L/min 3h IE × 4 days	27 °C 50 % RH	5 F, 6 M 6 F, 16 M	Mild bronchial asthma 20-53 years old Allergic rhinitis 19-48 years old	Mean early-phase FEV ₁ response and number of $\ge 20\%$ reductions in FEV ₁ were significantly greater after 0.25 ppm O ₃ or 4 × 0.125 ppm O ₃ . Most of the $\ge 15\%$ late-phase FEV ₁ responses occurred after 4 days of exposure to 0.125 ppm O ₃ , as well as significant inflammatory effects, as indicated by increased sputum eosinophils (asthma and allergic rhinitis) and increased sputum lymphocytes, mast cell tryptase, histamine, and LDH (asthma only).	Holz et al. (2002)
0.0 0.25	0 490	$\frac{3 \text{ h IE}}{\dot{V}_{E}} = 30 \text{ L/min}$	27 °C 54% RH	13 M, 11 F	Atopic mild asthma	O_3 -induced FEV ₁ decrements of 12.5, 14.1, and 10.2% in asthmatics, allergic rhinitics and healthy subjects,	Jörres et al. (1996)
		15 min ex/10 min rest/5 min no O_3 ;	mouthpiece exposure	6 M, 6 F	Positive allergen and IgE tests	respectively (group differences not significant). Methacholine responsiveness increased in asthmatics.	
		every 30 min.	•	5 M, 5 F	Healthy NS	<u>Allergen responsiveness</u> : increased significantly after O_3 exposure in asthmatics (≈ 2 dose shift) and a smaller shift is rhinitics. No change in healthy. Neither allergen or methacholine response correlated with lung function and were not correlated with each.	

Ozone Concentration ^b		Even course Duraction		Number or -			
ppm	$\mu g/m^3$	- Exposure Duration and Activity	Exposure Conditions	Number and Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
Subjects	with Asth	ma					
0.4	784	2h IE (15 min rest, 15 min exercise on bicycle)	NA	4 F, 5 M	Healthy $(25 \pm 2 \text{ years old})$	Significant reductions in FVC (12%, 10%) and FEV ₁ (13%, 11%) for asthmatic and healthy subjects, respectively; attenuated by indomethacin	Alexis et al (2000)
		$\dot{V}_{\rm E} = 30$ L/min		7 F, 6 M	Mild atopic asthma; beta agonists only $(22 \pm 0.7 \text{ years old})$	in healthy subjects only. Significant reductions in mid-flows which tended to be greater in asthmatics than healthy subjects. Indomethacin treatment attenuated mid-flow-reductions somewhat more in asthmatics than healthy subjects.	
0.0 0.4	0 784	2h IE 4 × 15 min on bicycle, $\dot{V}_{F} = 40$ L/min	NA	15	Healthy adults 18-40 years old	Sputum collected 24 h before and 4-6 h post- O_3 exposure. Baseline CD11b expression positively correlated with O_3 -induced PMN. Increased	Alexis et a (2004)
		v _E – 40 L/min	9	9	Mild atopic asthmatics 18-40 years old	expression of mCD14 on macrophages following O ₃ compared to FA. Asthmatic PMN response similar to healthy subjects (also see Table AX6-3). No spirometric data available.	
0.12	236	Rest	22 °C 40% RH	10 M, 5 F	atopic asthma	No effect of O_3 on airway response to grass allergen.	Ball et al. (1996)
0.0 0.2	0 392	6 h 30 min rest/30 min exercise $\dot{V}_E \approx 25$ L/min	22 °C 50% RH	5 M 5 M	Healthy NS Asthmatics, physician diagnosed, All 18-45 years	Similar spirometric responses in asthmatic and healthy. However, preexposure FEV1 and FVC were both ~0.4 L lower on O_3 -day than FA day. More PMN's in asthmatics. IL-8 and IL-6 higher in asthmatics exposed to O_3 . No relationship of spirometry and symptoms to inflammation.	Basha et al (1994)
0.4	784	3h 6x15 min cycle ergometer $\dot{V}_E \approx 32L/min$ 5 consecutive days	31 °C 35% RH	8 M , 2 F	Asthmatic NS adults beta-agonist use only 19-48 years old ATS criteria for asthma	FEV ₁ decreased 35% on first exposure day. Methacholine reactivity increased about ten-fold. <i>Also see Table AX6-7 for repeated exposure results.</i>	Gong et al (1997b)
0.0 0.12	0 235	1 h rest air-antigen O ₃ -antigen	NA	9 M, 6 F	Mild allergic asthma; 18 to 49 years of age.	No effect of O_3 on airway response to grass or ragweed allergen.	Hanania et al. (1998
0.4	784	2 h IE 15 min exercise 15 min rest $\dot{V}_E \approx 20L/min$	Head mask exposure ≈18 °C 60% RH	5 M, 1 F 6 M	Healthy adults Atopic asthmatics	FEV ₁ responses of healthy and asthmatic similar ($\approx 15\%$ decrease). Maximal FEV ₁ response to methacholine increased similarly in both groups (12 h postexposure). Larger increase in PC ₂₀ in healthy subjects. Both groups had increased PMN's in sputum no correlation of PMN's and lung function.	Hilterman et al. (199

Table AX6-3 (cont'd). Ozone Exposure in Subjects with Preexisting Disease^a

	one tration ^ь			Number and			
ppm µg/m³		Exposure Duration and Activity	Exposure Conditions	Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
Adult Sub	ojects with	Asthma (cont'd)					
0.0 0.15 0.25 0.25	0 294 490 490	3 h IE 15 min rest $(\dot{V}_E = 7 L/min)$ 15 min on bicycle $(\dot{V}_E = 26 L/min)$	27 ± 1 °C 56 ± 7 % RH	10M, 11F 5M, 10F	Healthy NS 28 ± 5 years old Mild Asthmatic 30 ± 8 years old	No significant O_3 -induced group differences in symptoms or spirometry. After 0.25 ppm O_3 , there were significant decrements in FEV ₁ and FVC that tended to be greater in the asthmatics than controls. Small but significant neutrophil increase in asthmatics following 0.15 ppm O_3 . Significant	Holz et al. (1999)
						neutrophil increases following 0.25 ppm O ₃ that did not differ between groups.	
0.0 0.16	0 314	7.6 h 25 min treadmill, 25 min cycle/10 min rest per hour. $V_E = 27-32$ L/min	18 °C 40% RH	13 M 7 M, 10 F	Healthy NS, age 19-32 years. Moderate Asthmatics, physician diagnosed, beta agonist users, age 19-32 years.	FEV_1 decreased 19% in asthmatics and only 10% in nonasthmatics. High responders had worse baseline airway status. More wheeze in asthmatics after O_3 .	Horstman et al. (1995)
0.0 0.25	0 490	3 h IE, $\dot{V}_E = 30$ L/min 15 min ex/10 min rest/5 min no O ₃ ; every 30 min	27 °C 54% RH mouthpiece exposure	13 M, 11 F 6 M, 6 F 5 M, 5 F	Atopic mild asthma Positive allergen and IgE tests Healthy NS	O_3 -induced FEV ₁ decrements of 12.5, 14.1, and 10.2% in asthmatics, allergic rhinitics and healthy subjects, respectively (group differences not significant). Methacholine responsiveness increased in asthmatics. Allergen responsiveness increased after O_3 exposure in asthmatics (=2 dose shift), a smaller shift occurred in rhinitics, no change occurred in	Jörres et al. (1996)
				0 101, 0 1		healthy subjects. Neither allergen nor methacholine responses were correlated with each other or with lung function.	
0.16	314	7.6 h 25 min treadmill, 25 min cycle/10 min rest per hour. $\dot{V}_E = 25$ L/min	22 °C 40 % RH	4 M, 5 F	Mild atopic asthma; no meds 12 h pre-exposure 20-35 years old	Significant FEV ₁ decrease of 9.1 % following O_3 exposure; marked individual variability with responses ranging from 2 % to 26 %.	Kehrl et al. (1999)
0.25 0.40	490 784	$\dot{V}_E = 25-45 \text{ L/min}$	NA	8 M, 4 F 8 M, 10 F 22 M, 16 F	Asthmatics Allergic rhinitics Healthy adults	Healthy 12.2% decrease in FEV ₁ , Rhinitics 10.1%, asthmatics 12.4%	Magnussen et al. (1994
					All <26 years old		
0.0 0.2	0 392	2 h IE 4×15 min at $V_{\rm E} = 20$	20 °C 50% RH	6 M, 9 F	Healthy adults 24 years old	O_3 -induced FEV ₁ decrement (8%, healthy adults; 3% asthmatics) and PMN increase (20.6%, healthy adults; 15.2% asthmatics). Primary goal was to investigate relationship between antioxidant	Mudway et al. (2001) Stenfors
		$L/min/m^2$ BSA		9 M, 6 F	Mild asthmatics 29 years old	defenses and O_3 responses in asthmatics and healthy adults (see Tables AX6-3 and AX6 -13).	et al. (2002

	zone ntration ^b						Reference
ррт	$\mu g/m^3$	Exposure Duration and Activity	Exposure Conditions	Number and Gender of Subjects	Subject Characteristics	Observed Effect(s)	
Adult S	ubjects wi	th Asthma (cont'd)					
0.2	396	2h IE (15 min rest, 15 min exercise on bicycle) $\dot{V}_E = 20 \text{ L/min/m}^2 \text{BSA}$	22 °C 40 % RH	5 F, 4 M	Mild atopic asthma; no meds 8 h pre-exposure 21-42 years old	Significant decrease in FEV ₁ and a trend toward decreases in mean inspiratory flow, FEF ₂₅ , and FEF ₇₅ after O ₃ exposure. No significant differences in FEF ₅₀ , FVC, TLC, Raw, or sRaw. No correlation between sputum neutrophils at 6 h postexposure and FEV ₁ immediately after exposure.	Newson et al. (2000)
0.4	784	2 h rest	21 °C 40% RH	11 M , 11 F	Asthmatics sensitive to D Farinae, physician diagnosed, 18 to 35 years	Ozone resulted in nasal inflammation (increased PMN's) and caused augmented response to nasal allergen challenge.	Peden et al. (1995)
0.16	314	7.6 h 25 min treadmill, 25 min cycle/ every hour.	18 °C 40% RH	8 M	Mild asthmatics, physician diagnosed, reactive to dust mite D. Farinae.	Increased eosinophils and PMN's after O_3 exposure more in initial (bronchial) fraction. No correlation of eosinophils and PMN's, FEV ₁ & FVC decreased 14% and 9% respectively.	Peden et al. (1997)
0.0 0.2	0 392	4h 50 min exercise, 10 min rest each hour. $\dot{V}_E \approx$ 45-50 L/min	21 °C 50% RH	12 M, 6 F	18 adult mild asthmatics mostly beta agonist users.	FVC, FEV ₁ decreased 17.6% and 25% respectively. Trend for larger increase in SRaw in asthmatics. Larger increase in PMN's and protein in asthmatics indicating more inflammation. No increase in eosinophils. Spirometry changes in asthmatics similar to healthy subjects (Aris et al., 1995; Balmes et al., 1997).	Scannell et al. (1996)

Table AX6-3 (cont'd). Ozone Exposure in Subjects with Preexisting Disease^a

^aSee Appendix A for abbreviations and acronyms. ^bGrouped by rest and exercise; within groups listed from lowest to highest O₃ concentration.

AX6.3.1 Subjects with Chronic Obstructive Pulmonary Disease

2 Five studies of O₃-induced responses in COPD patients were available for inclusion in the 3 1996 criteria document (U.S. Environmental Protection Agency, 1996). The COPD patients in these studies were exposed during light IE (4 studies) or at rest (1 study) for 1 to 2 hours to O_3 4 5 concentrations between 0.1 and 0.3 ppm. None of theses studies found significant O₃-induced changes in pulmonary function. Of the four studies examining arterial oxygen saturation, two 6 7 reported small but statistically significant O₃-induced decreases in the COPD patients. These 8 limited data suggest COPD patients experience minimal O₃-induced effects for 0.3 ppm O₃ 9 exposures less than 2 hours in duration. These findings are also consistent decreasing O₃ effects 10 with increasing age (see Section AX6.5.1). 11 More recently, Gong et al. (1997a) exposed 9 COPD patients (age range, 59 to 71 years; 12 mean age 66 ± 4 years) and 10 healthy NS (age range, 60 to 69 years; mean age 65 ± 3 years) 13 to 0.24 ppm for 4 h with interment light exercise (≈ 20 L/min). COPD patients had decreases 14 in FEV₁ following both clean air (-11%, p = 0.06) and O₃ (-19%, p < 0.01) exposures. 15 These FEV₁ decrements, presumably due to exercise, were primarily attributable to four of the patients who lost greater than 14% of their FEV_1 following both the air and O_3 exposures. 16 17 Relative to clean air, O₃ caused a statistically insignificant FEV₁ decrement of -8% in COPD 18 patients which was not statistically different from the decrement of -3% in healthy subjects. 19 Ozone-induced symptoms, sRaw, S₄O₂, and postexposure bronchial activity also exhibited little 20 or no difference between the COPD patients and the healthy subjects. 21

22

AX6.3.2 Subjects with Asthma

23 Based on studies reviewed in the 1996 criteria document (U.S. Environmental Protection 24 Agency, 1996) asthmatics appear to be at least as sensitive to acute effects of O_3 as healthy 25 nonasthmatic subjects. At rest, neither adolescent asthmatics nor healthy controls had significant 26 responses as a result of an hour exposure to $0.12 \text{ ppm } O_3$. Exposure of adult asthmatics to 27 0.25 ppm O₃ for 2 h at rest also caused no significant responses. Preexposure to between 0.10 28 and 0.25 ppm O₃ for 1 hr with light IE does not appear to exacerbate exercise-induced asthma 29 (Fernandes et al., 1994; Weymer et al., 1994). At higher exposures (0.4 ppm O₃ with heavy 30 IE for 2 h), Kreit et al. (1989) and Eschenbacher et al. (1989) demonstrated significantly

1	greater FEV_1 and $FEF_{25.75}$ decrements in asthmatics than in healthy controls. With longer
2	duration exposures to lower O_3 levels (0.12 ppm with moderate IE for 6.5 h), asthmatics have
3	also shown a tendency for greater FEV_1 decrements than healthy nonasthmatics (Linn et al.,
4	1994). Newer clinical studies (see Table AX6-3) continue to suggest that asthmatics are at least
5	as sensitive as healthy controls to O ₃ -induced responses.
6	Studies of less than 3 h duration have reported similar or tendencies for increased
7	O ₃ -induced spirometric responses up to O ₃ concentrations of 0.4 ppm. Similar group decrements
8	in FEV ₁ and FVC were reported by Hiltermann et al. (1995), who exposed 6 asthmatics and
9	6 healthy subjects to 0.4 ppm O_3 for 2 h with light IE. Alexis et al. (2000) exposed 13 mild
10	atopic asthmatics and 9 healthy subjects for 2 h to 0.4 ppm O ₃ with IE ($\dot{V}_E = 30$ L/min). Similar
11	O_3 -induced group decrements in FEV ₁ and FVC were also reported by these investigators.
12	A tendency, however, for an increased O_3 -induced reduction in mid-flows (viz., FEF ₂₅ , FEF ₅₀ ,
13	FEF_{60p} , FEF_{75}) was reported for the asthmatics relative to the healthy subjects. In a larger study,
14	Jörres et al. (1996) exposed 24 asthmatics, 12 allergic rhinitis, and 10 healthy subjects to
15	0.25 ppm O_3 for 3 h with IE. Statistically significant O_3 -induced decreases in FEV ₁ occurred in
16	all groups, but tended to be lower in healthy controls (allergic rhinitis, -14.1%; asthmatics,
17	-12.5%; healthy controls, -10.2%). Holz et al. (1999) exposed 15 asthmatics and 21 healthy
18	controls to 0.15 and 0.25 ppm O_3 for 3-h with light IE. After the 0.25 ppm O_3 exposure, there
19	were significant decrements in FEV_1 and FVC that tended to be slightly greater in the asthmatics
20	than controls. One study reported that asthmatics tended to have less of an FEV_1 response to O_3
21	than healthy controls (Mudway et al., 2001). In that study, however, the asthmatics also tended
22	to be older than the healthy subjects which could partially explain their lesser response.
23	Studies between 4 and 8 h duration, with O ₃ concentrations of 0.2 ppm or less, also suggest
24	a tendency for increased O3-induced pulmonary function responses in asthmatics relative to
25	healthy subjects. Scannell et al. (1996) exposed 18 asthmatics to 0.2 ppm O_3 for 4 h with
26	IE ($\dot{V}_E \approx 25 \text{ L/min/m}^2 \text{ BSA}$). Baseline and hourly pulmonary function measurements of FEV ₁ ,
27	FVC, and sRaw were obtained. Asthmatic responses were compared to 81 healthy subjects who
28	underwent similar experimental protocols (Aris et al., 1995; Balmes et al., 1996). Asthmatic
29	subjects experienced a significant O_3 -induced increase in sRaw, FEV ₁ and FVC. The O_3 -induced
30	increase in sRaw tended to be greater in asthmatics than the healthy subjects, whereas similar

1	group decrements in FEV ₁ and FVC were observed. Basha et al. (1994) also reported similar
2	spirometric responses between 5 asthmatic and 5 healthy subjects exposed to 0.2 ppm O_3 for 6 h
3	with IE. However, the mean preexposure FEV_1 in the asthmatics was about 430 mL less (i.e.,
4	~12% decreased) on the O_3 -day relative to the air-day. In a longer exposure duration (7.6 h)
5	study, Horstman et al. (1995) exposed 17 asthmatics and 13 healthy controls to 0.16 ppm O_3 or
6	FA with alternating periods of exercise (50 min, $\dot{V}_E \approx 30$ L/min) and rest (10 min). Both groups
7	had significant O_3 -induced decrements in FEV ₁ , FVC, and FEV ₂₅₋₇₅ . The asthmatic and healthy
8	subjects had similar O_3 -induced reductions in FVC. The FEV ₁ decrement experienced by the
9	asthmatics was significantly greater in the healthy controls (19% versus 10%, respectively).
9 10	
10	There was also tendency for a greater O_3 -induced decrease in FEF ₂₅₋₇₅ in asthmatics relative to the healthy subjects (24% versus 15% respectively)
	the healthy subjects (24% versus 15%, respectively).
12	With repeated O_3 exposures asthmatics, like healthy subjects (<i>see Section AX6.6</i>)
13	develop tolerance. Gong et al. (1997b) exposed 10 asthmatics to 0.4 ppm O_3 , 3 h per day with
14	IE ($\dot{V}_E \approx 32$ L/min), for 5 consecutive days. Symptom and spirometric responses were greatest
15	on the first (-35 % FEV_1) and second (-34 % FEV_1) exposure days, and progressively
16	diminished toward baseline levels ($-6 \% \text{ FEV}_1$) by the fifth exposure day. Similar to healthy
17	subjects, asthmatics lost their tolerance 4 and 7 days later.
18	Other published studies with similar results (e.g., McBride et al., 1994; Basha et al., 1994;
19	Peden et al., 1995, 1997; Peden, 2001a; Scannell et al., 1996; Hiltermann et al., 1997, 1999;
20	Michelson et al., 1999; Vagaggini et al., 1999; Newson et al., 2000; Holz et al., 2002) also
21	reported that asthmatics have a reproducible and somewhat exaggerated inflammatory response
22	to acute O ₃ exposure (see Section AX6.9). For instance, Scannell et al. (1996) performed lavages
23	at 18 h post-O ₃ exposure to assess inflammatory responses in asthmatics. Asthmatic responses
24	were compared to healthy subjects who underwent a similar experimental protocol (Balmes
25	et al., 1996). Ozone-induced increases in BAL neutrophils and total protein were significantly
26	greater in asthmatics than healthy subjects. There was also a trend for an ozone related increased
27	IL-8 in the asthmatics relative to healthy subjects. Inflammatory responses do not appear to be
28	correlated with lung function responses in either asthmatic or healthy subjects (Balmes et al.,
29	1996, 1997; Holz et al., 1999). This lack of correlations between inflammatory and spirometric
30	responses may be due to differences in the time kinetics of these responses (Stenfors et al.,

2002). In addition, airway responsiveness to inhaled allergens is increased by O₃ exposure in
 subjects with allergic asthma for up to 24 h (*see Section AX6.8*).

3 One of the difficulties in comparing O₃-induced spirometric responses of healthy subjects 4 versus asthmatics is the variability in responsiveness of asthmatics. Most of the asthma studies were conducted on subjects with a clinical history of mild disease. However, classification of 5 6 asthma severity is not only based on functional assessment (e.g., percent predicted FEV₁), but 7 also on clinical symptoms, signs, and medication use (Table AX6-4). Although "mild atopic 8 asthmatics" are frequently targeted as an experimental group, the criteria for classification has 9 varied considerably within and across the available published studies. Although the magnitude 10 of group mean changes in spirometry may not be significantly different between healthy and 11 asthmatic subjects, many of the studies have reported clinically significant changes in some individuals. 12

13 Alexis et al. (2000) explored the possibility that the mechanisms of O₃-induced spirometric 14 responses may differ between asthmatics and healthy subjects. Physician-diagnosed mild 15 atopic asthmatics and healthy subjects were pretreated with 75 mg/day of indomethacin (a COX inhibitor) or placebo and then exposed for 2 h to 0.4 ppm O₃ or to FA during mild 16 IE ($\dot{V}_E = 30$ L/m). The number and severity of O₃-induced symptoms were significantly 17 increased in both asthmatics and healthy subjects. These symptom responses were similar 18 19 between the subject groups and unaffected by indomethacin pretreatment. Asthmatics and 20 healthy subjects also had similar O₃-induced reductions in FVC and FEV₁. These restrictive-21 type responses, occurring due to the combined effects of bronchoconstriction and reflex 22 inhibition of inspiration (see Section AX6.2.1), were attenuated by indomethacin in the healthy 23 subjects but not the asthmatics. Thus, in healthy subjects but not asthmatics, COX metabolites 24 may contribute to O₃-induced reductions in FVC and FEV₁. As assessed by the magnitude of reductions in mid-flows (viz. FEF₂₅, FEF₅₀, FEF_{60p}, FEF₇₅), the small airways of the asthmatics 25 26 tended to be more affected than the healthy subjects. This suggests asthmatics may be more 27 sensitive to small airway effects of O₃, which is consistent with the observed increases in 28 inflammation and airway responsiveness. Indomethacin pretreatment attenuated some of 29 these O_3 -induced small airways effects (FEF₅₀ in healthy subjects, FEF_{60p} in asthmatics).

30

				Lung Function ²		Medications ³	
Classification	Step	Days with symptoms	Nights with symptoms	FEV1 or PEF % predicted oral	PEF variability (%)	Daily	Quick relief
Severe persistent	4	Continual	Frequent	≤60	>30	High-dose inhaled steroids (ICS) and long-acting inhaled β2-agonist If needed, add oral steroids	Short-acting inhaled β 2-agonist, as needed; oral steroids may be required
Moderate persistent	3	Daily	>1/week	between 60 and 80	>30	Low-to-medium-dose ICS and long-acting β2-agonist (preferred) Or Medium-dose ICS (another preferred option for children ages <5 years) Or Low-to-medium-dose ICS and either leukotriene modifier or theophylline	Short-acting inhaled β 2-agonist, as needed; oral steroids may be required
Mild persistent	2	>2/week, but <1 time/day	>2/week	≥80	20-30	Low-dose inhaled steroids (preferred) Or Cromolyn leukotriene modifier, or (except for children aged <5 years) nedocromil or sustained release theophylline to serum concentration of 5-15 μg/mL	Short-acting inhaled β 2-agonist, as needed; oral steroids may be required
Mild intermittent	1	≤2/week	<2/month	≥80	<20	No daily medicine needed	Short-acting inhaled β 2-agonist, as needed; oral steroids may be required

Table AX6-4. Classification of Asthma Severity¹

¹Sources: Centers for Disease Control (2003); National Institutes of Health (1997, 2003).

²For adults and children aged >5 years who can use a spirometer or peak flow meter.

³The medications listed here are appropriate for treating asthma at different levels of severity. The preferred treatments, dosage, and type of medication recommended vary for adults and children and are detailed in the *EPR-Update 2002* stepwise approach to therapy. The stepwise approach emphasizes that therapy should be stepped up as necessary and stepped down when possible to identify the least amount of medication required to achieve goals of therapy. The stepwise approach to care is intended to assist, not replace, the clinical decision-making required to meet individual patient needs.

AX6.3.3 Subjects with Allergic Rhinitis

2 Most O₃ exposure studies in humans with existing respiratory disease have focused on lung 3 diseases like COPD and asthma. However, chronic inflammatory disorders of the nasal airway, especially allergic rhinitis, are very common in the population. People with allergic rhinitis have 4 genetic risk factors for the development of atopy that predispose them to increased upper airway 5 6 responsiveness to specific allergens as well as nonspecific air pollutants like O₃. Studies 7 demonstrating the interaction between air pollutants and allergic processes in the human nasal 8 airways and rhinoconjunctival tissue have been reviewed by Peden (2001b) and Riediker et al. 9 (2001), respectively. Ozone exposure of subjects with allergic rhinitis has been shown to induce 10 nasal inflammation and increase airway responsiveness to nonspecific bronchoconstrictors, 11 although to a lesser degree than experienced by asthmatics.

McDonnell et al. (1987) exposed nonasthmatic adults with allergic rhinitis to 0.18 ppm O_3 . The allergic rhinitics were no more responsive to O_3 than healthy controls, based on symptoms, spirometry, or airway reactivity to histamine although they had a small but significantly greater increase in SRaw. The data on subjects with allergic rhinitis and asthmatic subjects suggest that both of these groups have a greater rise in Raw to O_3 with a relative order of airway responsiveness to O_3 being normal < allergic < asthmatic.

18 Bascom et al. (1990) studied the upper respiratory response to acute O₃ inhalation, nasal 19 challenge with antigen, and the combination of O₃ plus antigen in subjects with allergic rhinitis. 20 Exposure to O₃ caused significant increases in upper and lower airway symptoms, a mixed 21 inflammatory cell influx with a seven-fold increase in nasal lavage PMNs, a 20-fold increase in 22 eosinophils, and a 10-fold increase in mononuclear cells, as well as an apparent sloughing of 23 epithelial cells. McBride et al. (1994) also observed increased nasal PMN's after O₃ exposure in 24 atopic asthmatics. Peden et al. (1995), who studied allergic asthmatics exposed to O_3 found 25 that O₃ causes an increased response to nasal allergen challenge in addition to nasal 26 inflammatory responses. Their data suggested that allergic subjects have an increased immediate 27 response to allergen after O₃ exposure. In a follow-up study, Michelson et al. (1999) reported 28 that 0.4 ppm O₃ did not promote early-phase-response mediator release or enhance the response 29 to allergen challenge in the nasal airways of mild, asymptomatic dust mite-sensitive asthmatic 30 subjects. Ozone did, however, promote an inflammatory cell influx, which helps induce a more 31 significant late-phase response in this population.

1 Jörres et al. (1996) found that O₃ causes an increased response to bronchial allergen 2 challenge in subjects with allergic rhinitis. This study also compared responses in subjects 3 with mild allergic asthma (see Sections AX6.3.2 and AX6.8). The subjects were exposed to 4 0.25 ppm O₃ for 3 h with IE. Airway responsiveness to methacholine was determined 1 h before and after exposure; responsiveness to allergen was determined 3 h after exposure. Statistically 5 6 significant decreases in FEV₁ occurred in subjects with allergic rhinitis (13.8%) and allergic 7 asthma (10.6%), and in healthy controls (7.3%). Methacholine responsiveness was statistically 8 increased in asthmatics, but not in subjects with allergic rhinitis. Airway responsiveness to an 9 individual's historical allergen (either grass and birch pollen, house dust mite, or animal dander) 10 was significantly increased after O₃ exposure when compared to FA exposure. In subjects with 11 asthma and allergic rhinitis, a maximum percent fall in FEV₁ of 27.9 % and 7.8%, respectively, occurred 3 days after O₃ exposure when they were challenged with of the highest common dose 12 13 of allergen. The authors concluded that subjects with allergic rhinitis, but without asthma, could 14 be at risk if a high O_3 exposure is followed by a high dose of allergen.

15 Holz et al. (2002) extended the results of Jörres et al. (1996) by demonstrating that 16 repeated daily exposure to lower concentrations of O_3 (0.125 ppm for 4 days) causes an 17 increased response to bronchial allergen challenge in subjects with preexisting allergic airway 18 disease, with or without asthma. There was no major difference in the pattern of bronchial 19 allergen response between subjects with asthma or rhinitis, except for a 10-fold increase in the 20 dose of allergen required to elicit a similar response ($\geq 20\%$ decrease in FEV₁) in the asthmatic 21 subjects. Early phase responses were more consistent in subjects with rhinitis and late-phase 22 responses were more pronounced in subjects with asthma. There also was a tendency towards a 23 greater effect of O₃ in subjects with greater baseline response to specific allergens chosen on the 24 basis of skin prick test and history (viz., grass, rye, birch, or alder pollen, house dust mite, or 25 animal dander). These data suggest that the presence of allergic bronchial sensitization, but not a 26 history of asthma, is a key determinant of increased airway allergen responsiveness with O₃. 27 [A more complete discussion of airway responsiveness is found in Section AX6.8]

- 28
- 29

AX6.3.4 Subjects with Cardiovascular Disease

30 Superko et al. (1984) exposed six middle-aged males with angina-symptom-limited 31 exercise tolerance for 40 min to FA and to 0.2 and 0.3 ppm O₃ while they were exercising

1	continuously according to a protocol simulating their angina-symptom-limited exercise training
2	prescription (mean \dot{V}_E = 35 L/min). No significant pulmonary function impairment or evidence
3	of cardiovascular strain induced by O_3 inhalation was observed. Gong et al. (1998) exposed
4	hypertensive $(n = 10)$ and healthy $(n = 6)$ adult males, 41 to 78 years of age, to FA and on the
5	subsequent day to 0.3 ppm O_3 for 3 h with IE at 30 L/min. The ECG was monitored by
6	telemetry, blood pressure by cuff measurement, and a venous catheter was inserted for
7	measurement of routing blood chemistries and cardiac enzymes. Pulmonary artery and radial
8	artery catheters were placed percutaneously for additional blood sampling and for measurement
9	of hemodynamic pressures, cardiac output, and S_aO_2 . Other hemodynamic variables were
10	calculated, including cardiac index, stroke volume, pulmonary and systemic vascular resistance,
11	left and right ventricular stroke-work indices, and rate-pressure product. Spirometric volumes
12	(FVC, FEV ₁) and symptoms of breathing discomfort were measured before and after the
13	O_3 exposures. There were significant O_3 -induced FEV ₁ decrements in both subject groups that
14	did not defer between groups (hypertensive, 7.6%; healthy, 6.7%). The overall results did not
15	indicate any major acute cardiovascular effects of O_3 in either the hypertensive or normal
16	subjects. However, statistically significant O3 effects for both groups combined were increases
17	in HR, rate-pressure product, and the alveolar-to-arterial PO ₂ gradient, suggesting that impaired
18	gas exchange was being compensated for by increased myocardial work. These effects might be
19	more important in some patients with severe cardiovascular disease. [See Section AX6.10 for
20	discussion of extrapulmonary effects of O_3 exposure.]

- 21 22
- 23 24

AX6.4 INTERSUBJECT VARIABILITY AND REPRODUCIBILITY OF RESPONSE

Analysis of the factors that contribute to intersubject variability is important for the understanding of individual responses, mechanisms of response, and health risks associated with acute O_3 exposures. Bates et al. (1972) noted that variation between individuals in sensitivity and response was evident in respiratory symptoms and pulmonary function following O_3 exposure. A large degree of intersubject variability in response to O_3 has been consistently reported in the literature (Adams et al., 1981; Aris et al., 1995; Folinsbee et al., 1978; Kulle et al., 1985; McDonnell et al., 1983). Kulle et al. (1985) noted that the magnitude of variability

between individuals in FEV₁ responses increases with O₃ concentration. Similarly, McDonnell 2 et al. (1983) observed FEV₁ decrements ranging from 3 to 48% (mean 18%) in 29 young adult 3 males exposed to 0.40 ppm O₃ for 2 h during heavy IE. At a lower O₃ concentration of 4 0.18 ppm, 20 similarly exposed subjects had FEV_1 decrements ranging from 0 o 23% (mean = 6%), while those exposed to FA (n = 20) had decrements ranging from -2% to 6% 5 6 (mean = 1%) (McDonnell et al., 1983). All of the subjects in these studies were young adult 7 males. (Intersubject variability related to age and gender is discussed in Sections AX6.5.1 and AX6.5.2, respectively.) 8 9 More recently, McDonnell (1996) examined the FEV₁ response data from three 6.6 h 10 exposure studies of young adult males conducted at the EPA Health Effects Research Laboratory 11 in Chapel Hill, NC (Folinsbee et al., 1988; Horstman et al., 1990; McDonnell et al., 1991). 12 The response distributions for subjects at each of four O_3 concentrations (0.0, 0.08, 0.10, and 0.12 ppm) are illustrated in Figure AX6-6. It is apparent that the FEV₁ responses in FA are 13 14 small with most tightly grouped around zero. With increasing O₃ concentration, the mean 15 response increases as does the variability about the mean. At higher O₃ concentrations, the 16 distribution of response becomes asymmetric with a few individuals experiencing large FEV₁ 17 decrements. The response distribution in Figure AX6-6 allows estimates of the number or 18 percentage of subjects responding in excess of a certain level. With FA exposure, none of 19 87 subjects had a FEV₁ decrement in excess of 10%; however, 26%, 31%, and 46% exceeded a 20 10% decrement at 0.08, 0.10, and 0.12 ppm, respectively. FEV₁ decrements as large as 30 to 21 50% were even observed in some individuals. In 6.6-h face mask exposures of young adults 22 (half women) to 0.08 ppm O_3 , Adams (2002) found that 6 of 30 subjects (20%) had >10% 23 decrements in FEV₁. The response distributions in Figure AX6-6 underlines the wide range of 24 response to O₃ under prolonged exposure conditions and reinforces the observations by others 25 consequent to 2 h IE exposures at higher O₃ concentrations (Horvath et al., 1981; McDonnell

26 et al., 1983).

1

27 Some of the intersubject variability in response to O₃ inhalation may be due to intrasubject 28 variability, i.e., how reproducible the measured responses are in an individual between several 29 O₃ exposures. The more reproducible the subject's response, the more precisely it indicates 30 his/her intrinsic responsiveness. McDonnell et al. (1985a) examined the reproducibility of 31 individual responses to O_3 in healthy human subjects (n = 32) who underwent repeated

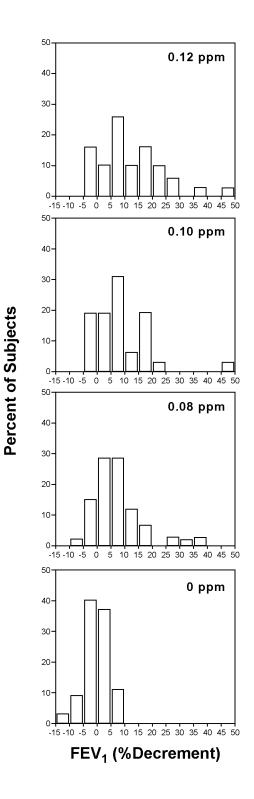


Figure AX6-6. Frequency distributions of percent decrements in FEV₁ for 6.6-h exposure to four concentrations of ozone.

Source: McDonnell (1996).

1	exposures within a period of 21 to 385 days (mean = 88 days; no median reported) at one of
2	five O ₃ concentrations ranging from 0.12 to 0.40 ppm. Reproducibility was assessed using the
3	intraclass correlation coefficient (R). The most reproducible responses studied were FVC
4	(R = 0.92) and FEV ₁ (R = 0.91). However, at the lowest concentration, 0.12 ppm, relatively
5	poor FEV ₁ reproducibility was observed ($R = 0.58$) due, in part, to a lack of specific O ₃ response
6	or a uniformly small response in the majority of subjects. McDonnell et al. (1985a) concluded
7	that for 2 h IE O_3 exposures equal to or greater than 0.18 ppm, the intersubject differences in
8	magnitude of change in FVC and FEV_1 are quite reproducible over time and likely due to
9	differences in intrinsic responsiveness of individual subjects. Hazucha et al. (2003) exposed
10	47 subjects on three occasions for 1.5 h, with moderate intensity IE, to 0.40 to 0.42 ppm O_3 .
11	Reproducibility of FEV_1 responses was related to the length of time between re-exposures,
12	with a Spearman correlation R of 0.54 obtained between responses for exposures 1 and
13	2 (median = 105 days), and an R of 0.85 between responses for exposures 2 and 3
14	(median = 7 days).
15	Identification of mechanisms of response and health risks associated with acute O_3
16	exposures are complicated by a poor association between various O_3 -induced responses.
17	For example, McDonnell et al. (1983) observed a very low correlation between changes in sRaw
18	and FVC (r = -0.16) for 135 subjects exposed to O ₃ concentrations ranging from 0.12 to
19	0.40 ppm for 2.5 h with IE. In a retrospective study of 485 male subjects (ages 18 to 36 yrs)
20	exposed for 2 h to one of six O ₃ concentrations at one of three activity levels, McDonnell et al.
21	(1999) observed significant, but low, Spearman rank order correlations between FEV_1 response
22	and symptoms of cough ($R = 0.39$), shortness of breath ($R = 0.41$), and pain on deep inspiration
23	($R = 0.30$). The authors concluded from their data that the O ₃ -induced responses are related
24	mechanistically to some degree, but that there is not a single factor which is responsible for the
25	observed individual differences in O3 responsiveness across the spectrum of symptom and lung
26	function responses. This conclusion is supported by differences in reproducibility observed by
27	McDonnell et al., (1985a). Compared to the intraclass correlation coefficient for FEV_1
28	(R = 0.91), relatively low but statistically significant R values for symptoms ranged from 0.37 to
29	0.77, with that for sRaw being 0.54. The reproducibility correlations for f_B (R = -0.20) and V_T
30	(R = -0.03) were not statistically significant.

1 The effect of this large intersubject variability on the ability to predict individual 2 responsiveness to O₃ was demonstrated by McDonnell et al. (1993). These investigators 3 analyzed the data of 290 male subjects (18 to 32 years of age) who underwent repeat 2 h IE 4 exposures to one or more O₃ concentrations ranging from 0.12 to 0.40 ppm in order to identify personal characteristics (i.e., age, height, baseline pulmonary functions, presence of allergies, 5 6 and past smoking history) that might predict individual differences in FEV₁ response. Only age contributed significantly to intersubject responsiveness (younger subjects were more 7 8 responsive), accounting for just 4% of the observed variance. Interestingly, O₃ concentration accounted for only 31% of the variance, strongly suggesting the importance of as yet undefined 9 10 individual characteristics that determine FEV₁ responsiveness to O₃. A more general form of 11 this model was developed to investigate the O₃ exposure FEV₁ response relationship (McDonnell 12 et al., 1997). These authors used data from 485 male subjects (age = 18 to 36 years) exposed 13 once for 2 h to one of six O₃ concentrations (ranging from 0.0 to 0.40 ppm) at one of 3 activity levels (rest, n = 78; moderate IE, n = 92; or heavy IE, n = 314). In addition to investigating the 14 15 influence of subject's age, the model focused on determining whether FEV₁ response was more sensitive to changes in C than to changes in \dot{V}_{E} , and whether the magnitude of responses is 16 independent of differences in lung size. It was found that the unweighted proportion of the 17 variability in individual responses explained by C, \dot{V}_{F} , T, and age was 41%, with no evidence 18 that the sensitivity of FEV₁ response to \dot{V}_E was different than changes in C, and no evidence that 19 20 magnitude of response was related to measures of body or lung size. The authors concluded that much inter-individual variability in FEV₁ response to O₃ remains unexplained. 21

22

23 24

25

AX6.5 INFLUENCE OF AGE, GENDER, ETHNIC, ENVIRONMENTAL AND OTHER FACTORS

26 AX6.5.1 Influence of Age

On the basis of results reported from epidemiologic studies, children and adolescents are considered to be at increased risk, but not necessarily more responsive, to ambient oxidants than adults. However, findings of controlled laboratory studies that have examined the acute effects of O₃ on children and adolescents do not completely support this assertion (Table AX6-5). Children experience about the same decrements in spirometric endpoints as young adults

	one tration ^b		E	Number and			
ррт	μg/m ³	Exposure Duration and Activity	Exposure Conditions	Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
0.40 0.42	784 823	2 h IE (15' ex/15' rest) $\dot{V}_E \approx 33-45$ L/min (47 subjects only) 1.5 h IE (20' ex/10' rest)	≈22 °C 40% RH treadmill	146 M 94 F	Healthy NS 18 to 60 years old	Young individuals of both gender (<35 years) significantly more responsive than older subjects. Strong responses are less common over the age of 35 years, especially in women.	Hazucha et al. (2003)
		$\dot{V}_{E} \approx 33-45 \text{ L/min}$ (All subjects)				The variability of an individual's responsiveness to repeated exposures to O_3 decreases with age.	
0.0 0.40	0 784	2 h, IE (15' ex/15' rest) $\dot{V}_E \approx 18 \text{ L/min/m}^2 \text{ BSA}$ 2 exposures: 25% of subj. exposed to air-air, 75% exposed to O ₃ -O ₃	21 °C 40% RH treadmill	28 M 34 F	Healthy NS 18 to 57 years old Healthy NS 18 to 59 years old	Significant decrements in spirometric lung function in all groups. Young males and females (<35 years) were significantly more responsive than older individuals (>35 years).	Passannante et al. (1998)
0.0 0.24	0 470	4 h, IE (15' ex/15' rest) $\dot{V}_E = 20 \text{ L/min}$	24 °C 40% RH	10 M 9 M	Healthy NS 60 to 69 years old COPD 59 to 71 years old	Healthy: small, 3.3%, decline in FEV ₁ ($p = 0.03$ [not reported in paper], paired-t on O ₃ versus FA pre-post FEV ₁). COPD: 8% decline in FEV ₁ ($p = ns, O_3$ versus FA). Adjusted for exercise, ozone effects did not differ significantly between COPD patients and healthy subjects.	Gong et al. (1997a)
$\begin{array}{c} 0.0 \\ 0.12 \\ 0.18 \\ 0.24 \\ 0.30 \\ 0.40 \end{array}$	0 235 353 471 589 784	2 h rest or IE (4 × 15 min at $\dot{V}_E = 25$ or 35 L/min/m ² BSA)	22 °C 40% RH	485 WM (each subject exposed at one activity level to one O ₃ concentration)	Healthy NS 18 to 36 years old mean age 24 years	Statistical analysis of 8 experimental chamber studies conducted between 1980 and 1993 by the U.S. EPA in Chapel Hill, NC. O ₃ -induced decrement in FEV ₁ predicted to decrease with age. FEV ₁ response of a 30 year old predicted to be 50% the response of a 20 year old. <i>Also see</i> <i>Table 6-1</i>	McDonnell et al. (1997)
0.0 0.12 0.18 0.24 0.30 0.40	0 235 353 471 589 784	2.33 h IE (4 × 15 min at $\dot{V}_E = 25$ L/min/m ² BSA)	22 °C 40% RH	371 (WM, BM, WF, BF; ~25% per group) each subject exposed to one O_3 concentration	Healthy NS 18 to 35 years old mean age 24 years	Statistical analysis of experimental data collected between 1983 and 1990 by the U.S. EPA in Chapel Hill, NC. O_3 -induced decrement in FEV ₁ predicted to decrease with age. FEV ₁ response of a 30 year old predicted to be 65% the response of a 20 year old. No effect of menstrual cycle phase on FEV ₁ response. Inconsistent effect of social economic status on FEV ₁ response.	Seal et al. (1996)

Table AX6-5. Age Differences in Pulmonary Function Responses to Ozone^a

Ozo Concent				Number and			
ppm	$\mu g/m^3$	Exposure Duration and Activity	Exposure Conditions	Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
0.18 0.24 0.30 0.40	353 470 588 784	2.33 h IE $\dot{V}_E = 20 \text{ L/min/m}^2 \text{ BSA}$	NA	48 WF, 55 BF	Healthy NS, 18 to 35 years old, black and white	Older women had smaller changes in FEV_1 than younger women. No age- related differences in SRaw or cough score.	Seal et al. (1993)
0.45	882	1 h, CE $\dot{V}_E \approx 26$ L/min 2 h, IE $\dot{V}_E \approx 26$ L/min	≈23 °C 58% RH cycle/treadmill	7 M 5 F	Healthy NS, 60 to 79 years old (all in 60s except one 79 years old)	Comparison of 1-h CE protocol and 2-h IE protocol indicated no difference between the changes in pulmonary function following the two protocols.	Drechsler- Parks et al. (1990)
0.45	882	2 h, IE (20' ex/20' rest) Male: $\dot{V}_E = 28.5$ L/min Female: $\dot{V}_E = 26.1$ L/min	23 °C 46% RH cycle/treadmill	10 M, 6 F	Healthy NS, 60 to 89 years old	Mean decrement in $\text{FEV}_1 = 5.7\%$; eight subjects had a 5% or greater difference between their response to O ₃ and FA, and the other eight had less than a 5% difference between their responses to FA and 0.45 ppm O ₃ .	Bedi et al. (1989)
0.45	882	2 h, IE (20' ex/20' rest) $\dot{V}_{E} \approx 26 \text{ L/min}$	≈24 °C 63% RH cycle	8 M 8 F	Healthy NS, 51 to 69 years old Healthy NS, 56 to 76 years old	13 subjects had decrements in FEV ₁ on three separate exposures to 0.45 ppm within 5% of their mean response to the three exposures. The other three subjects were not reproducible. Symptom reports did not correlate well with pulmonary function changes.	Bedi et al. (1988)
0.12	235	1 h IE (mouthpiece) $\dot{V}_E = 4$ to 5 × resting	22 °C 75% RH treadmill	5 M, 7 F	Healthy NS, 12 to 17 years old	No significant changes in any pulmonary function in healthy subjects.	Koenig et al. (1988)
0.20 0.30	392 588	1 h (mouthpiece) 50' rest/10' ex for first 7 males, 20' rest/10' ex for remaining subjects Male: $\dot{V}_E \approx 29$ L/min Female: $\dot{V}_E \approx 23$ L/min	≈22 °C ≥75% RH treadmill	9 M, 10 F	Healthy NS, 55 to 74 years old	No spirometic changes for either group. Females had 13% increase in R_T at 3 and 22 min after 0.30-ppm exposure.	Reisenauer et al. (1988)
0.113° + other ambient pollutants	221	1 h CE (bicycle) $\dot{V}_E \approx 22 \text{ L/min}$	32.7 °C ≈43% RH cycle	33 M, 33 F	NS for both groups, mean age = 9.4 years old	No differences in responses of boys and girls. Similar decrements ($<5\%$ on average) following both purified air and ambient air (O ₃ at 0.11 ppm) exposures.	Avol et al. (1987)

Table AX6-5 (cont'd). Age Differences in Pulmonary Function Responses to Ozone^a

Ozone Concentration ^b				Number and			
ррт	μg/m ³	Exposure Duration and Activity	Exposure Conditions	Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
0.45	882	2 h, IE (20' ex/20' rest) $\dot{V}_{E} \approx 26 \text{ L/min}$	≈23 °C 53% RH cycle	8 M, 8 F	Healthy NS, 51 to 76 years old	Mean decrement in FEV ₁ = $5.6 \pm 13\%$; range of decrements = 0 to 12%.	Drechsler- Parks et al. (1987a,b)
0.12	235	40 min (mouthpiece) IE, 10 min exercise at $\dot{V}_{\rm F}$ = 32.6 L/min	NA treadmill	3 M, 7 F	Healthy NS, 14 to 19 years old	No significant change in FEV_1 ; increased R_T with exposure to 0.18 ppm O ₃ . Some subjects responded to 5 to 10 mg/mL methacholine after	Koenig et al. (1987)
0.18	353	40 min (mouthpiece) IE, 10 min exercise at $\dot{V}_E = 41.3$ L/min		4 M, 6 F		0.18-ppm O ₃ exposure, whereas none responded to 25 mg/mL methacholine at baseline bronchochallenge.	

Table AX6-5 (cont'd). Age Differences in Pulmonary Function Responses to Ozone^a

^aSee Appendix A for abbreviations and acronyms. ^bListed from lowest to highest O₃ concentration. ^cOzone concentration is the mean of a range of ambient concentrations.

1 exposed to comparable O₃ doses (McDonnell et al., 1985b; Avol et al., 1987). In contrast to 2 young adults, however, they had no symptomatic response, which may put them at an increased 3 risk for continued exposure. Similarly, young adults (Linn et al., 1986; Avol et al., 1984) have 4 shown comparable spirometric function response when exposed to low O₃ dose under similar conditions. Among adults, however, it has been repeatedly demonstrated that older individuals 5 respond to O₃ inhalation with less intense lung function changes than younger adults. Thus, 6 children, adolescents, and young adults appear to be about equally responsive to O₃, but more 7 8 responsive than middle-aged and older adults when exposed to a comparable dose of O_3 (U.S. 9 Environmental Protection Agency, 1996).

10 Gong et al. (1997a) studied ten healthy men (60 to 69 years old) and nine COPD patients 11 (59 to 71 years old) from the Los Angeles area who were exposed to 0.24 ppm O₃ while 12 intermittently exercising every 15 min at a light load (~20 L/min) for 4 h. Healthy subjects 13 showed a small but significant O_3 -induced FEV₁ decrement of 3.3% (p = 0.03 [not reported in paper] paired-t on O₃ versus FA pre-post FEV_1)². Small but statistically nonsignificant changes 14 were also observed for respiratory symptoms, airway resistance and arterial O₂ saturation. In the 15 COPD patients, there was an 8% FEV₁ decrement due to O₃ exposure which was not 16 17 significantly different from the response in the healthy subjects. The authors have concluded 18 that typical ambient concentrations of O₃ are unlikely to induce "a clinically significant acute 19 lung dysfunction" in exposed older men. However, they also acknowledged that the "worst 20 case" scenario of O₃ exposure used in their study causes acute spirometric responses. Although Gong et al. (1997a) and others (see Table 6-5) have examined responses to O₃ 21

exposure in subjects of various ages, the exposure conditions differ between most studies so that age effects remain uncertain. Three recent studies, which analyzed large data sets $(\ge 240 \text{ subjects})$ of similarly exposed subjects, show clearly discernable changes in FEV₁ responses to O₃ as a function of age.

Seal et al. (1996) analyzed O₃-induced spirometric responses in 371 young nonsmokers
(18 to 35 years of age). The subject population was approximately 25% white males, 25% white
females, 25% black males, and 25% black females. Each subject was exposed once to 0.0, 0.12,

²Personal communication from authors, correction to Table 2 in Gong et al. (1997a), the %FEV₁ change at the end of the ozone exposure for subject ID 2195 should read 4.9 and not the published value of -4.3, the mean and standard deviation reported in the table are correct.

1	0.18, 0.24, 0.30, or 0.40 ppm ozone for 2.3 h during IE at a \dot{V}_E of 25 L/min/m ² BSA. A logistic
2	function was used to model and test the significance of age, socioeconomic status (SES), and
3	menstrual cycle phase as predictors of FEV_1 response to O_3 exposure. Menstrual cycle phase
4	was not a significant. SES was inconsistent with the greatest response observed in the medium
5	SES and the lowest response in high SES. FEV ₁ responses decreased with subject age. On
6	average, regardless of the O ₃ concentration, the response of 25, 30, and 35 year old individuals
7	are predicted to be 83, 65, and 48% (respectively) of the response in 20 year olds. For example,
8	in 20 year old exposed to 0.12 ppm ozone (2.3 h IE, $\dot{V}_E = 25 \text{ L/min/m}^2 \text{ BSA}$) a 5.4% decrement
9	in FEV_1 is predicted, whereas, a similarly exposed 35 yr old is only predicted to have a 2.6%
10	decrement. The Seal et al. (1996) model is limited to predicting FEV_1 responses immediately
11	postexposure in individuals exposed for 2.3 h during IE at a \dot{V}_E of 25 L/min/m ² BSA.
12	McDonnell et al. (1997) examined FEV_1 responses in 485 healthy white males (18 to
13	36 years of age) exposed once for 2 h to an O_3 concentration of 0.0, 0.12, 0.18, 0.24, 0.30, or
14	0.40 ppm at rest or one of two levels of IE (\dot{V}_E of 25 and 35 L/min/m ² BSA). FEV ₁ was
15	measured preexposure, after 1 h of exposure, and immediately postexposure. Decrements
16	in FEV ₁ were modeled by sigmoid-shaped curve as a function of subject age, O ₃ concentration,
17	$\dot{V}_{\scriptscriptstyle E}$, and duration of exposure. Regardless of the O_3 concentration or duration of exposure, the
18	average responses of 25, 30, and 35 year old individuals are predicted to be 69, 48, and 33%
19	(respectively) of the response in 20 year olds. The McDonnell et al. (1997) model is best suited
20	to predicting FEV_1 responses in while males exposed to O_3 for 2 h or less under IE conditions.
21	Hazucha et al. (2003) analyzed the distribution of O_3 responsiveness in subjects (146 M,
22	94 F) between 18 and 60 years of age. Subjects were exposed to 0.42 ppm O_3 for 1.5 h with IE
23	at $\dot{V}_E = 20 \text{ L/min/m}^2 \text{ BSA}$. Figure AX6-7 illustrates FEV ₁ responses to O ₃ exposure as a
24	function of subject age. Consistent with the discussion in Section 6.4, a large degree of
25	intersubject variability is evident in Figure AX6-7. Across all ages, 18% of subjects were weak
26	responders (\leq 5% FEV ₁ decrement), 39% were moderate responders, and 43% were strong
27	responders ($\geq 15\%$ FEV ₁ decrement). Younger subjects (≤ 35 years of age) were predominately
28	strong responders, whereas, older subjects (>35 years of age) were mainly weak responders.
29	In males, the FEV_1 responses of 25, 35, and 50 year olds are predicted to be 94, 83, and 50%
30	(respectively) of the average response in 20 year olds. In females, the FEV_1 responses of 25, 35,

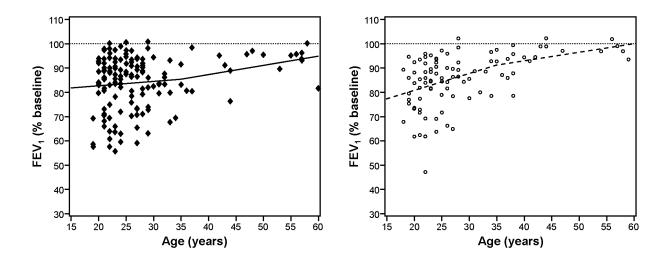


Figure AX6-7. Effect of O_3 exposure (0.42 ppm for 1.5 h with IE) on FEV₁ as a function of subject age. Left panel data for males (n = 146; 19 to 60 yrs old), right panel data for females (n = 94; 18 to 59 yrs old).

Source: Adapted from Hazucha et al. (2003).

and 50 year olds are predicted to be 82, 46, and 18% (respectively) of the average response in
 20 year olds. The Hazucha et al. (1996) model is limited to predicting FEV₁ responses

3 immediately postexposure in individuals exposed to 0.42 ppm O₃ for 1.5 h during IE at a \dot{V}_E of

4 $20 \text{ L/min/m}^2 \text{BSA}.$

5

The pathophysiologic mechanisms behind the pronounced age-dependent, gender-

6 differential rate of loss of O_3 responsiveness are unclear. Passannante et al. (1998) have

7 previously demonstrated that O_3 -induced spirometric decrements (FEV₁) in healthy young and

8 middle-aged adults are principally neural in origin, involving opioid-modulated sensory

9 bronchial C-fibers. (*The methodological details of this study are presented in Section AX6.2.3 of*

10 *this chapter.*) The peripheral afferents are most likely the primary site of action, which would be

11 compatible with a reflex action as well as a cortical mechanism. The pattern of progressive

- 12 decline, as well as the subsequent rate of recovery of spirometric lung function, suggest
- 13 involvement of both direct and indirect (possibly by $PGE_{2\alpha}$) stimulation and/or sensitization of

14 vagal sensory fibers. (For details, see Section AX6.2.3.1 of this chapter.)

The additional pulmonary function data published since the release of last O₃ criteria
 document (U.S. Environmental Protection Agency, 1996) and reviewed in this section reinforce

the conclusions reached in that document. Children and adolescents are not more responsive to O_3 than young adults when exposed under controlled laboratory conditions. However, they are more responsive than middle-aged and older individuals. Young individuals between the age of 18 and 25 years appear to be the most sensitive to O_3 . With progressing age, the sensitivity to O_3 declines and at an older age (>60 yrs) appears to be minimal except for some very responsive individuals. Endpoints other than FEV₁ may show a different age-related pattern of responsiveness.

8

9

AX6.5.2 Gender and Hormonal Influences

10 The few late 1970 and early 1980 studies specifically designed to determine symptomatic 11 and lung function responses of females to O3 were inconsistent. Some studies have concluded 12 that females might be more sensitive to O₃ than males, while others found no gender differences 13 (U.S. Environmental Protection Agency, 1996). During the subsequent decade, seven studies 14 designed to systematically explore gender-based differences in lung function following O₃ 15 exposure were completed (Table AX6-6). Protocols included mouthpiece and chamber 16 exposures, young and old individuals, normalization of ventilation to BSA or FVC, continuous 17 and intermittent exercise, control for menstrual cycle phase, and the use of equivalent effective 18 dose of O₃ during exposures. These studies have generally reported no statistically significant 19 differences in pulmonary function between males and females (Adams et al., 1987; Drechsler-20 Parks et al., 1987a; Messineo and Adams, 1990; Seal et al., 1993; Weinmann et al., 1995) 21 although in some studies females appeared to experience a slightly greater decline then males 22 (Drechsler-Parks et al., 1987a; Messineo and Adams, 1990). The comparative evaluations were 23 based on responses that included spirometry, airway resistance, nonspecific bronchial 24 responsiveness (NSBR) determinations, and changes in frequency and severity of respiratory 25 symptoms. However, depending on how the O_3 dose was calculated and normalized, the 26 findings of at least three studies may be interpreted as showing that females are more sensitive 27 to O₃ than males. The findings of the seven studies are presented in detail in Section 7.2.1.3 of the previous O₃ criteria document (U.S. Environmental Protection Agency, 1996). 28

Some support for a possible increased sensitivity of females to O₃ comes from a study of uric acid concentration in nasal lavage fluid (NLF). Housley et al. (1996) found that the NLF of females contains smaller amounts of uric acid than the NLF of males. The primary source of

Ozone Concentration ^b							
ppm	μg/m³	- Exposure Duration and Activity	Exposure Conditions ^c	Number and Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
0.0 0.25	490	1 h CE $\dot{V}_E = 30 \text{ L/min}$	NA Face mask exposure	32 M, 28 F	Healthy NS 22.6 ± 0.6 years old	Mean O_3 -induced FEV ₁ decrements of 15.9% in males and 9.4% in females (gender differences not significant). FEV ₁ decrements ranged from -4 to 56%; decrements >15% in 20 subjects and >40% in 4 subjects. Uptake of O_3 greater in males than females, but uptake not correlated with spirometric responses.	Ultman et al. (2004)
0.40	784	2 h, IE (15' ex/15' rest) $\dot{V}_{E} = 33-45 \text{ L/min}$	22 °C 40% RH	146 M 94 F	Healthy NS, 18 to 60 years old	No significant gender differences in FEV_1 among young (<35 years) and older	Hazucha et al. (2003)
0.42	823	1.5 h IE (20' ex/10' rest) $\dot{V}_{E} = 33-45 \text{ L/min}$	treadmill		,	individuals. Strong responses are less common over the age of 35 years, especially in women.	
0.0 0.35	0 686	1.25 h, IE (30' ex/15' rest/30' ex) $\dot{V}_E = 40 \text{ L/min}$	22 °C 40% RH treadmill	19 F	O_3 responders 22.1 ± 2.7 years old	FVC and FIVC changes about the same, -13%, FEV_1 -20%. Increased airway responsiveness to methacholine. Persistence of small effects on both inspired and expired spirometry past 18 h. Chemoreceptors not activated but ventilatory drive was accelerated.	Folinsbee and Hazucha (2000)
0.0 0.4	0 784	2 h, IE (15' ex/15' rest) $\dot{V}_E \approx 18 \text{ L/min/m}^2 \text{ BSA}$ 2 exposures: 25% of subj. exposed to air-air, 75% exposed to O ₃ -O ₃	21 °C 40% RH treadmill	28 M 34 F	Healthy NS, 20-59 years old	Significant decrements in spirometric lung function. No significant differences in FEV ₁ between young females and males and older females and males either in responders or nonresponders subgroups.	Passannante et al. (1998)
0 0.12 0.24 0.30 0.40	0 235 470 588 784	2.33 h IE (15' ex/15' rest) $\dot{V}_E = 20 \text{ L/min/m}^2 \text{ BSA}$ one exposure per subject	22 °C 40% RH treadmill	48 WF, 55 BF	Healthy NS, 18 to 35 years old	Significant menstrual cycle phase \times race interaction for FEV ₁ . No significant menstrual cycle phase effect when blacks and whites were analyzed separately. No significant menstrual phase effects for SRaw or cough score.	Seal et al. (1996)

Table AX6-6. Gender and Hormonal Differences in Pulmonary Function Responses to Ozone^a

Table AX6-6 (cont'd). Gender and Hormonal Differences in Pulmonary Function Responses to Ozone^a

Ozone Concentration ^b							
ppm	μg/m ³	• Exposure Duration and Activity	Exposure Conditions ^c	Number and Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
0.0 0.35	0 686	2.15 h, IE (30' ex/30' rest)	19-24 °C 48-55% RH treadmill	12 M 12 F	Healthy NS, 5 F follicular and 7 luteal phase exposure, regular menstrual cycles, 18 to 35 years old	Changes in FVC, FEV ₁ , FEF ₂₅₋₇₅ , $\dot{V}_{max50\%}$, and $\dot{V}_{max25\%}$ were similar during both the follicular and luteal phases. No significant difference between males and females.	Weinmann et al. (1995)
0.3	588	$\begin{array}{l} 1 \ h \ CE \\ \dot{V}_E \approx 50 \ L/min \end{array}$	NA	9 F	Healthy NS, regular menstrual cycles, 20 to 34 years old	FEV_1 decreased 13.1% during the mid-luteal phase and 18.1% during the follicular phase. Decrement in $FEF_{25.75}$ was significantly larger during the follicular phase than the mid-luteal phase. Changes in FVC were similar in both phases.	Fox et al. (1993)
0 0.12 0.18 0.24 0.30 0.40	0 235 353 470 588 784	2.33 h (15' ex/15' rest) $\dot{V}_E = 25 \text{ L/min/m}^2 \text{ BSA}$ (one exposure/subject)	22 °C 40% RH treadmill	30 to 33 F and 30 to 33 M in each concentration group; total of 372 individuals participated	Healthy NS, 18 to 35 years old, blacks and whites	Decrements in FEV ₁ , increases in SRaw and cough, correlated with O_3 concentration. There were no significant differences between the responses of males and females.	Seal et al. (1993)
0 0.18 0.30	0 353 588	1 h (mouthpiece), CE $\dot{V}_E \approx 47$ L/min exposures ≥4 days apart	21 to 25 °C 45 to 60% RH cycle	14 F 14 F	FVC = 5.11 ± 0.53 L, NS, 20 to 24 years old FVC = 3.74 ± 0.30 L,	Small lung group, FVC = 3.74 ± 0.30 L. Large lung group, FVC = 5.11 ± 0.53 L. Significant concentration-response effect on FVC and FEV ₁ ; lung size had no effect on	Messineo and Adams (1990)
					NS, 19 to 23 years old	percentage decrements in FVC or FEV_1 .	
0.0 0.45	0 882	2 h, IE (20' ex/20' rest) $\dot{V}_{E} = 28.5$ L/min for M $\dot{V}_{E} = 26.1$ L/min for F	23.1 °C 46.1% RH cycle/treadmill	10 M	Healthy NS, 60 to 89 years old	Mean decrement in $FEV_1 = 5.7\%$. Decrements in FVC and FEV_1 were the only pulmonary functions significantly altered by	Bedi et al. (1989)
		repeated O ₃ exposures	.,	6 F	Healthy NS, 64 to 71 years old	O ₃ exposure. No significant differences between responses of men and women.	
0 0.20 0.30	0 392 588	1 h (mouthpiece) IE (50' rest/10' ex first 7 M) (20' rest/10' ex all others) $\dot{V}_E \approx 28$ L/min for M $\dot{V}_E \approx 23$ L/min for F	≈22 °C ≥75% RH treadmill	9 M, 10 F	Healthy NS, 55 to 74 years old	No change in any spirometic measure for either group. Females had 13% increase in R_T after 0.30-ppm exposure. Gender differences not evaluated.	Reisenauer et al. (1988)

-)zone entration ^b						
ppm	$\mu g/m^3$	Exposure Duration and Activity	Exposure Conditions ^c	Number and Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
0.3	588	1 h (mouthpiece), CE $\dot{V}_{\rm F} \approx 70$ L/min for men	21 to 25 °C 45 to 60% RH	20 M	NS, 18 to 30 years old	Significant decrements in FVC, FEV_1 , and $FEF_{25,75}$ following O ₃ exposure.	Adams et al. (1987)
		$\dot{V}_{E} \approx 50 \text{ L/min for}$ women	cycle	20 F	NS, 19 to 25 years old	No significant differences between men and women for spirometry or SRaw.	
0.0	0	2 h, IE (20' rest/ 20' ex)	24 °C	8 M	Healthy NS,	Range of responses in FEV_1 :	Drechsler-
0.45	882	$\dot{V}_{E} \approx 27.9 \text{ L/min for M}$ $\dot{V}_{E} \approx 25.4 \text{ L/min for F}$ repeated O ₃ exposures	58% RH cycle		51 to 69 years old	0 to -12% (mean = -5.6%). No significant difference in responses of men	Parks et al. (1987a,b)
				8 F	Healthy NS,	and women.	
					56 to 76 years old	Tendency for women to have greater effects.	
0.48	941	2 h, IE	21 °C	10 F	Healthy NS,	Mean decrement in $FEV_1 = 22.4\%$.	Horvath
		$\dot{V}_{\rm E} \approx 25 \ {\rm L/min}$	(WBGT) cycle		19 to 36 years old	Significant decrements in all spirometric measurements. Results not significantly different from a similar study on males (Drechsler-Parks et al., 1984).	et al. (1986)

Table AX6-6 (cont'd). Gender and Hormonal Differences in Pulmonary Function Responses to Ozone^a

^a See Appendix A for abbreviations and acronyms. ^b Listed from lowest to highest O_3 concentration. ^c WBGT = 0.7 T_{wet bulb} + 0.3 T_{dry bulb or globe}.

0

uric acid is plasma; therefore, lower nasal concentrations would reflect lower plasma
 concentrations of this antioxidant. The authors have speculated that in females, both lower
 plasma and NLF levels (of uric acid) can plausibly make them more susceptible to oxidant

4 injury, since local antioxidant protection may not be as effective as with higher levels of uric
5 acid, and consequently more free O₃ can penetrate deeper into the lung.

6 Several studies also have suggested that anatomical differences in the lung size and the 7 airways between males and females, and subsequent differences in O_3 distribution and 8 absorption, may influence O₃ sensitivity and potentially differential O₃ response. The study of 9 Messinio and Adams (1990) have, however, convincingly demonstrated that the effective dose to 10 the lung, and not the lung size, determines the magnitude of (FEV_1) response. Furthermore, 11 the O_3 dosimetry experiments of Bush et al. (1996) have shown that despite gender differences in 12 longitudinal distribution of O₃, the absorption distribution in conducting airways was the same 13 for both sexes when expressed as a ratio of penetration to anatomic dead space volume. This 14 implies that gender differences, if any, are not due to differences in (normal) lung anatomy. 15 The data also have shown that routine adjustment of O_3 dose for body size and gender 16 differences would be more important if normalized to anatomic dead space rather than the usual FVC or BSA. 17

One of the secondary objectives of a study designed to examine the role of neural mechanisms involved in limiting maximal inspiration following O_3 exposure has been to determine if gender differences occur. A group of healthy males (n = 28) and females (n = 34) were exposed to 0.42 ppm O_3 for 2 h with IE. The methodological details of the study are presented in Section AX6.2.5.1 of this document. As Figure AX6-4 shows, the differences between males and females were, at any condition, measurement point, and O_3 sensitivity status only minimal and not significant (Passannante et al., 1998).

In another investigation, Folinsbee and Hazucha (2000) exposed a group of 19 O₃-responsive young females (average age of 22 years, prescreened for O₃ responsiveness by earlier exposure) to air and 0.35 ppm O₃. The randomized 75-min exposures included two 30-min exercise periods at a \dot{V}_E of 40 L/min. In addition to standard pulmonary function tests, they employed several techniques used for the first time in human air pollution studies assessment of O₃ effects. The average lung function decline from a pre-exposure value was 13% for FVC, 19.9 % for FEV₁, and 30% for FEF₂₅₋₇₅. The infrequently measured forced inspiratory

1	vital capacity (FIVC) was the same as FVC suggesting that the lung volume limiting
2	mechanisms are the same. The reduction in peak inspiratory flow (PIF) most likely reflects an
3	overall reduction in inspiratory effort associated with neurally mediated inhibition of inspiration.
4	Persistence of small inspiratory and expiratory spirometric effects, airway resistance, and airway
5	responsiveness to methacholine for up to 18 h postexposure suggests that recovery of pulmonary
6	
	function after O_3 exposure involves more than the simple removal of an irritant. Incomplete
7	repair of damaged epithelium and still unresolved airway inflammation are the likely causes of
8	the residual effects that in some individuals persisted beyond 24 h postexposure. However, by
9	42 hours no residual effects were detected. No significant changes were found in ventilatory
10	response to CO ₂ between air and O ₃ exposures, suggesting that chemoreceptors were not affected
11	by O ₃ . However, O ₃ inhalation did result in accelerated timing of breathing and a modest
12	increase in inspiratory drive. These observations are consistent with, and further supportive of,
13	the primary mechanisms of O_3 -induced reduction in inspiratory lung function, namely an
14	inhibition of inspiration elicited by stimulation of the C-fibers and other pulmonary receptors.
15	Because the measures of inspiratory and chemical drive to assess O ₃ effects were not reported in
16	any previous human study, no comparisons are possible. Because no male subjects were
17	recruited for the study, it is not possible to compare gender effects. Despite being O ₃ -responsive,
18	however, the average post- O_3 decline in expiratory lung function from preexposure (13% for
19	FVC; 19.9% for FEV ₁ ; 30% for FEF ₂₅₋₇₅) was similar to that seen in female cohorts studied by
20	other investigators under similar conditions of exposure. These were the same studies that found
21	no gender differences in O ₃ sensitivity (Adams et al., 1987; Messineo and Adams, 1990).
22	The study by Hazucha et al. (2003), discussed in the previous section, has in addition to
23	aging also examined gender differences in O_3 responsiveness. The male (n = 146) and female
24	(n = 94) cohorts were classified into young (19 to 35 year-old) and middle-aged (35 to 60 year-
25	old) groups. This classification was selected in order to facilitate comparison with data reported
26	previously by other laboratories. Using a linear regression spline model (with a break point at
27	35 years), the authors reported that the rate of loss of sensitivity is about three times as high in
28	young females as in young males ($p < 0.003$). In young females, the average estimated decline
29	in FEV ₁ response is 0.71% per year, while in young males it is 0.19% per year. Middle-aged
30	groups of both genders show about the same rate of decline (0.36 to 0.39%, respectively).
31	At 60 years of age, the model estimates about a 5% post- O_3 exposure decline in FEV ₁ for males,
U 1	

1 but only a 1.3% decline for females. These observations suggest that young females lose O_3 2 sensitivity faster than young males, but by middle age, the rate is about the same for both 3 genders. Descriptive statistics show that there were practically no differences in the mean value, 4 standard error of the mean, and coefficient of variation for % FEV₁ decrement between the group of young males (n = 125; $83.7 \pm 1.1\%$; CV = 13.5%) and young females (n = 73; $83.4 \pm 1.25\%$; 5 CV = 12.8%). A straight linear regression model of these data was illustrated in Figure AX6-7. 6 7 The slopes, significant in both males (r = 0.242; p = 0.003) and females (r = 0.488; p = 0.001), represent the decline in responsiveness of 0.29% and 0.55% per year respectively, as assessed 8 9 by FEV₁.

10 Two earlier studies of the effects of the menstrual cycle phase on O₃ responsiveness have 11 reported conflicting results (U.S. Environmental Protection Agency, 1996). Weinmann et al. 12 (1995) found no significant lung function effects related to menstrual cycle, although during the 13 luteal phase the effects were slightly more pronounced than during the follicular phase; while 14 Fox et al., (1993) reported that follicular phase enhanced O₃ responsiveness. In a more recent 15 investigation of possible modulatory effects of hormonal changes during menstrual cycle on O₃ response, young women (n = 150) 18 to 35 years old were exposed once to one of multiple O₃ 16 concentrations (0.0, 0.12, 0.18, 0.24, 0.30, 0.40 ppm) for 140 min with IE at 35 L/min/m² BSA. 17 The women's menstrual cycle phase was determined immediately prior to O_3 exposure. Post- O_3 , 18 19 no significant differences in % predicted FEV₁ changes that could be related to the menstrual 20 cycle phase were found. Admittedly, a less precise method of determining menstrual cycle 21 phase used in this study could have weakened the statistical power. Unfortunately, the direction 22 and magnitude of O₃ response as related to the menstrual cycle phases were not reported (Seal 23 et al., 1996). Considering the inconclusiveness of findings of this study and the inconsistency of 24 results between the two earlier studies, it is not possible to make any firm conclusions about the 25 influence of the menstrual cycle on responses to O_3 exposure.

Additional studies presented in this section clarify an open-ended conclusion reached in the previous O₃ criteria document (U.S. Environmental Protection Agency, 1996) regarding the influence of age on O₃ responsiveness. Healthy young males and females are about equally responsive to O₃, although the rate of loss of sensitivity is higher in females than in males. Middle-aged men and women are generally much less responsive to O₃ than younger individuals. Within this range, males appear to be slightly more responsive than females, but the rate of age-

- 2 3
- 4

AX6.5.3 Racial, Ethnic, and Socioeconomic Status Factors

however, this variability appears to be minimal.

5 In the only laboratory study designed to compare spirometric responses of whites and 6 blacks exposed to a range of O₃ concentrations (0 to 0.4 ppm), Seal et al. (1993) reported 7 inconsistent and statistically insignificant FEV₁ differences between white and black males and 8 females within various exposure levels. Perhaps, with larger cohorts the tendency for greater 9 responses of black than white males may become significant. Thus, based on this study it is still 10 unclear if race is a modifier of O₃ sensitivity, although the findings of epidemiologic studies 11 reported in the previous criteria document "can be considered suggestive of an ethnic difference" 12 (U.S. Environmental Protection Agency, 1996). However, as Gwynn and Thurston (2001) 13 pointed out, it appears that it is more the socioeconomic status (SES) and overall quality of 14 healthcare that drives PM₁₀- and O₃-related hospital admissions than an innate or acquired 15 sensitivity to pollutants.

related loss in FEV_1 is about the same. The O_3 sensitivity may vary during the menstrual cycle;

16 This assertion is somewhat supported by the study of Seal et al. (1996) who employed a 17 family history questionnaire to examine the influence of SES on the O₃ responsiveness of 18 352 healthy, 18- to 35-year-old black and white subjects. Each subject was exposed once under 19 controlled laboratory conditions to either air or 0.12, 0.18, 0.24, 0.30, 0.40 ppm O₃ for 140 min with 15 min IE at 35 L/min/m² BSA. An answer to the "Education of the father" question was 20 21 selected as a surrogate variable for SES status. No other qualifying indices of SES were used or 22 potential bial examined. Of the three SES categories, individuals in the middle SES category 23 showed greater concentration-dependent decline in % predicted FEV₁ (4-5% @ 0.4 ppm O₃) than 24 low and high SES groups. The authors did not have an "immediately clear" explanation for this 25 finding. The SES to %predicted FEV₁ relationship by gender-race group was apparently 26 examined as well; however, these results were not presented. Perhaps a more comprehensive 27 and quantitative evaluation of SES status would have identified the key factors and clarified the 28 interpretation of these findings. With such a paucity of data it is not possible to discern the 29 influence of racial or other related factors on O₃ sensitivity.

30

AX6.5.4 Influence of Physical Activity

Apart from the importance of increased minute ventilation on the inhaled dose of O_3 during increased physical activity, including work, recreational exercise, and more structured exercise like sports, no systematic effort has been made to study other potential physical factors that may modulate O_3 response. The typical physiologic response of the body to exercise is to increase both the rate and depth of breathing, as well as increase other responses such as heart rate, blood pressure, oxygen uptake, and lung diffusion capacity.

8 Physical activity increases minute ventilation in proportion to work load. At rest, and 9 during light exercise, the dominant route of breathing is through the nose. The nose not only 10 humidifies air, among other physiologic functions, but also absorbs O₃ thus decreasing the 11 overall dose. As the intensity of exercise increases, the minute ventilation increases and the 12 breathing switches from nasal to oronasal mode. There is considerable individual variation in 13 the onset of oronasal breathing, which ranges from 24 to 46 L/min (Niinimaa et al., 1980). 14 During heavy exercise, ventilation is dominated by oral breathing. Consequently, the residence 15 time of inhaled air in the nose and the airways is shorter, reducing the uptake of O_3 (Kabel et al., 16 1994). Moreover, increasing inspiratory flow and tidal volume shifts the longitudinal 17 distribution of O₃ to the peripheral airways, which are more sensitive to injury than the larger, 18 proximal airways. Ozone uptake studies of human lung showed that at simulated quiet 19 breathing, 50% of O₃ was absorbed in the upper airways, 50% in the conducting airways, and 20 none reached the small airways (Hu et al. 1994). With ventilation simulating heavy exercise 21 (60 L/min), the respective O₃ uptakes were 10% (upper airways), 65% (conducting airways), and 25% (small airways). These observations imply that equal O_3 dose (C \times T \times $\dot{V}_{_E}$) will have a 22 greater effect on pulmonary function and inflammatory responses when inhaled during heavy 23 24 physical activity than when inhaled during lighter activity. Although, Ultman et al. (2004) 25 recently reported that spirometric response are not correlated with O₃ uptake. (See Chapter 4 of 26 this document for more information on the dosimetry of O_{3} .)

Other physiologic factors activated in response to physical activity are unlikely to have as
 much impact on O₃ responsiveness as does minute ventilation; however, their potential influence
 has not been investigated.

30

3

4

5

AX6.5.5 Environmental Factors

Since the 1996 O₃ criteria document, not a single human laboratory study has examined the 2 potential influence of environmental factors such as rural versus urban environment, passive cigarette smoke exposure, and bioactive admixtures such as endotoxin on healthy individual's pulmonary function changes due to O₃ (U.S. Environmental Protection Agency, 1996).

6 Some of the unresolved issues, e.g., health effects of ETS and O₃ interaction, which need to 7 be examined in human studies were explored very recently in laboratory animal studies (see 8 *Chapter 5 for more details*). In one study on mice, preexposure of animals to sidestream 9 cigarette smoke (ETS surrogate), which elicited no immediate effects, resulted in a potentiation 10 of subsequent O₃-induced inflammatory response. This finding suggests that typical adverse 11 effects of ETS do not necessarily have to elicit an immediate response to ETS, but may in fact 12 potentiate the effects of a subsequent exposure to another pollutant like O₃ (Yu et al., 2002). The 13 key mechanism by which smoke inhalation may potentiate subsequent oxidant injury appears to 14 be damage to cell membranes and the resulting increase in epithelial permeability. Disruption of 15 this protective layer may facilitate as well as accelerate injury to subepithelial structures when 16 subsequently exposed to other pollutants (Bhalla, 2002). Although this may be a plausible 17 mechanism in nonsmokers and acute smokers exposed to ETS and other pollutants, studies 18 involving chronic smokers who most likely already have chronic airway inflammation do not 19 seems to show exaggerated response with exposure to O_3 .

20 More than 25 years ago, Hazucha et al. (1973) reported that the spirometric lung function 21 of smokers declined significantly less than that of nonsmokers when exposed to 0.37 ppm O_3 . 22 The findings of this study have been confirmed and expanded (Table AX6-7). Frampton et al. 23 (1997a) found that exposure of current smokers (n = 34) and never smokers (n = 56) to 24 0.22 ppm O₃ for 4 h with IE for 20 min of each 30 min period at 40 to 46 L/min, induced a 25 substantially smaller decline in FVC, FEV₁ and SGaw of smokers than never smokers. Smokers 26 also demonstrated a much narrower distribution of spirometric endpoints than never smokers. 27 Similarly, nonspecific airway responsiveness to methacholine was decreased in smokers. 28 However, both groups showed the consistency of response from exposure to exposure. It should 29 be noted that despite seemingly lesser response, the smokers were more symptomatic post air 30 exposure than never smokers, but the opposite was true for O₃ exposure. This would suggest 31 that underlying chronic airway inflammation present in smokers has blunted stimulation of

Ozone Concentration		Exposure		Number			
ррт	μg/m ³	Duration and Activity	Exposure Conditions	and Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
0.0 0.4	0 780	2 h IE, 15' ex/15' rest $\dot{V}_E = 20 \text{ L/min/m}^2$ BSA	20 °C 40% RH	15 M, 1 F 13 M, 2 F	Placebo group: healthy NS avg age 27 yrs. Antiox. Suppl. Gr.: Healthy NS avg age 27 yrs.	PF decrements in the supplementation group were signif. smaller for FVC ($p < 0.046$) and near significant for FEV ₁ ($p < 0.055$). The inflammatory response (BAL) showed no significant differences between the two groups either in the recovery of cellular components or the concentrations and types of inflammatory cytokines.	Samet et al. (2001)
0.0 0.12	0 235	0.75 h IE, 15' ex/15' rest $\dot{V}_E = 40-46 \text{ L/min}$	60% RH	5 M, 12 F	Asthmatics sensitive to SO ₂ 19 to 38 yrs old	No significant differences due to O_3 between placebo and antioxidant supplement cohort in either spirometric responses or bronchial hyperresponsiveness to 0.1 ppm SO ₂ .	Trenga et al. (2001)
0.0 0.22 0.22	0 431 431	4 h IE, 20' ex/10' rest $\dot{V}_E = 40-46 \text{ L/min}$	21 °C 37% RH	25 (M/F)	Healthy NS O_3 responders and nonresponders 18 to 40 yrs old	Glutathione peroxidase (GPx) activity and eGPx protein level were significantly ($p = 0.0001$) depleted in ELF for at least 18 h postexp. In BAL both endpoints were elevated (ns). No association between cell injury, PF, or GPx activity.	Avissar et al. (2000) ^b
0.0 0.12- 0.24 ^a	0 235-470ª	2.17 h IE, 10' ex/ 10' rest \dot{V}_E = 36-39 L/min	22 °C or 30 °C 45-55% RH	5 M, 4 F	Healthy NS 24 to 32 yrs old	FEV ₁ decreased (p < 0.5) by ~8% at 22 °C and ~6.5% at 30 °C. 19 h postexp decline of 2.3% still signif. (p < 0.05). SGaw signif. (p < 0.05) declined at 30 °C but not at 22 °C. The BHR assessed 19 h postexp. as PC ₅₀ sGaw methacholine signif. (p < 0.05) higher at both temperatures.	Foster et al. (2000)

Table AX6-7. Influence of Ethnic, Environmental, and Other Factors

Ozone Concentration		Exposure	_	Number	~		
ppm	μg/m ³	Duration and Activity	Exposure Conditions	and Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
0.0 0.40	0 780	2 h IE, 20' ex/ 10' rest \dot{V}_E = mild to mod.		6 M, 9 F	Healthy NS avg age 31 yrs.	Corticosteroid pretreatment had no effects on post-O ₃ decline in PF, PMN response, and sputum cell count under both the placebo and treatment conditions. Methacholine PC_{20} FEV ₁ was equally decreased in both cond. 4 h after exposure. No changes in exhaled NO and CO.	Nightingale et al. (2000)
0.0 0.22	0 431	4 h IE 20' ex/10' rest $\dot{V}_{E} = 40-46 \text{ L/min}$	21 °C 37% RH	90 M	56 never smokers 34 current smokers 18 to 40 yrs. old	Smokers are less responsive to O_3 as assessed by spirometric and plethysmographic variables. Neither age, gender, nor methacholine responsiveness were predictive of O_3 response.	Frampton et al (1997a,c) ^b
0.0 0.22 0.22	0 431 431	4 h IE, 20' ex/10' rest $\dot{V}_E = 25 \text{ L/min/m}^2$ BSA	21 °C 37% RH	10 M, 2 F 10 M, 3 F 11 M, 2 F	NS, O ₃ nonresp., avg age 25 yrs.; NS, O ₃ resp., avg age 25 yrs; smokers avg age 28 yrs	Neither O_3 responsiveness nor smoking has altered the magnitude and the time course of O_3 -induced airway inflammation. Inflammation involved all types of cells accessible by BAL. The recovery profile of these cells over time was very similar for all groups showing highest values 18 h postexposure.	Torres et al. (1997) ^b Frampton et al (1997a,c) ^b

Table AX6-7 (cont'd). Influence of Ethnic, Environmental, and Other Factors

^aRamp exposure from 0.12 ppm to 0.24 ppm and back to 0.12 ppm at the end of exposure. ^bRelated studies, sharing of some subjects .

bronchial C-fibers and other pulmonary receptors, the receptors substantially responsible for
post-O₃ lung function decrements. In addition to desensitization, the other "protective"
mechanisms active in smokers may be an increase in the mucus layer conferring not only a
mechanical protection, but also acting as an O₃ scavenger. Another plausible explanation of a
diminished responsiveness of smokers may be related to elevated levels of reduced glutathione
(GSH), an antioxidant, found in epithelial lining fluid of chronic but not acute smokers (MacNee
et al., 1996).

8 Despite some differences in a release of proinflammatory cytokines and subsequent 9 recruitment of inflammatory cells, both smokers and nonsmokers developed airway 10 inflammation following O_3 exposure. This was demonstrated by the Torres et al. (1997) study 11 that involved exposures of about equal size cohorts of otherwise healthy young smokers, 12 nonsmoker O₃ nonresponders (<5% FEV₁ post-O₃ decrement) and nonsmoker O₃ responders 13 (>15% FEV₁ post-O₃ decrement) to air and two 0.22 ppm O₃ atmospheres for 4 hours, alternating 20 min of moderate exercise (25 L/min/m² BSA) with 10 min of rest. Both O₃ exposures were 14 15 followed by nasal lavage (NL) and bronchoalveolar lavage (BAL) performed immediately post 16 one of exposures and 18 hr later following the other exposure. Neither O₃ responsiveness nor 17 smoking alters the magnitude or the time course of O_3 -induced airway inflammation. The 18 overall cell recovery was lower immediately postexposure but higher, particularly in 19 nonsmokers, 18 h post-O₃ exposure when compared to control (air) in all groups. Recovery of 20 lymphocytes, PMNs and AMs in both alveolar and bronchial lavage fluid showed the largest 21 increase in response to O_3 in all groups, with nonsmokers showing greater relative increases than 22 smokers. Of the two cytokines, IL-6 and IL-8, IL-6 was substantially and significantly 23 (p < 0.0002) elevated immediately postexposure but returned back to control 18 h later in all 24 groups; but only nonsmokers' effects were significantly higher (p < 0.024). IL-8 showed a 25 similar pattern of response but the increase in all groups, though still significant (p < 0.0001), 26 was not as high as for IL-6. Between group differences were not significant. This inflammatory 27 response involved all types of cells present in BAL fluid and the recovery profile of these cells 28 over time was very similar for all groups. In contrast to BAL, NL did not prove to be a reliable 29 marker of airway inflammation. The lack of association between lung function changes 30 (spirometry) and airway inflammation for all three groups confirms similar observations

reported from other laboratories. This divergence of mechanisms is further enhanced by an
 observation that a substantially different spirometric response between O₃ responders and
 nonresponders, the airway inflammatory response of the two groups was very similar, both in
 terms of magnitude and pattern (Torres et al., 1997).

The influence of ambient temperature on pulmonary effects induced by O₃ exposure in 5 6 humans has been studied infrequently under controlled laboratory conditions. Several 7 experimental human studies published more than 20 years ago reported additive effects of heat 8 and O₃ exposure (see U.S. Environmental Protection Agency, 1986, 1996). In the study of 9 Foster et al. (2000) 9 young (mean age 27 years) healthy subjects (4F/5M) were exposed for 10 130 min (IE 10 min (a) 36 to 39 l/min) to filtered air and to ramp profile O_3 at 22° and 30 °C, 11 45-55% RH. The order of exposures was randomized. The O₃ exposure started at 0.12 ppm, 12 reached the peak of 0.24 ppm mid-way through and subsequently declined to 0.12 ppm at the 13 end of exposure. Ozone inhalation decreased V_T and increased f_B as compared to baseline at both temperatures. At the end of exposure FEV₁ decreased significantly (p < 0.5) by ~8% at 14 15 22 °C and ~6.5% at 30 °C. One day (19 h) later, the decline of 2.3% from baseline was still 16 significant (p < 0.05). FVC decrements were smaller and significant only at 22 °C immediately 17 postexposure. SGaw significantly (p < 0.05) declined at 30 °C but not at 22 °C. A day later, 18 sGaw was elevated above the baseline for all conditions. The nonspecific bronchial 19 responsiveness (NSBR) to methacloline assessed as PC_{50} sGaw was significantly (p < 0.05) 20 higher one day following O₃ exposure at both temperatures but more so at 30 °C. Thus, these 21 findings indicate that elevated temperature has partially attenuated spirometric response but 22 enhanced airway reactivity. Numerous studies have reported an increase in NSBR immediately 23 after exposure to O₃. Whether the late NSBR reported in this study is a persistent residual effect 24 of an earlier increase in airway responsiveness, or is a true one day lag effect cannot be 25 determined from this study. Whatever the origin, however, a delayed increase in airway 26 responsiveness raises a question of potentially increased susceptibility of an individual to 27 respiratory impairment, particularly if the suggested mechanism of disrupted epithelial 28 membrane holds true.

29

AX6.5.6 Oxidant-Antioxidant Balance

2 Oxidant-antioxidant balance has been considered as one of the determinants of O₃ responsiveness. Amateur cyclists who took antioxidant supplements (vitamins C, E, and 3 β -carotene) for three months showed no decrements in spirometric lung function when cycling 4 5 on days with high O₃ levels. In contrast, matched control group of cyclists not pretreated with 6 vitamin supplements experienced an almost 2% decline in FVC and FEV₁ and >5% reduction in 7 PEF during the same activity period. Adjustment of data for confounders such as PM₁₀ and NO₂ did not change the findings. Apparently, substantially elevated levels of plasma antioxidants 8 9 may afford some protection against lung function impairment (Grievink et al., 1998, 1999).

10 Both laboratory animal and human studies have repeatedly demonstrated that antioxidant 11 compounds present the first line of defense against the oxidative stress. Thus, upregulation of 12 both enzymatic and nonenzymatic antioxidant systems is critical to airway epithelial protection 13 from exposure to oxidants such as O₃ and NO₂ (see Table AX6-7). As an extension of an earlier 14 study focused on pulmonary function changes (Frampton et al., 1997a), Avissar et al. (2000) 15 hypothesized that concentration of glutathione peroxidase (GPx), one of the antioxidants in 16 epithelial lining fluid (ELF), is related to O₃ and NO₂ responsiveness. They exposed healthy 17 young nonsmokers (n = 25), O₃-responders, and nonresponders to filtered air and twice to 0.22 ppm O₃ for 4 h (IE, 20' ex /10' rest, $@\dot{V}_{E}$ 40 to 46 L/min). In the NO₂ part of the study, 18 subjects were exposed to air and twice to NO₂ (0.6 and 1.5 ppm) for 3 h, with IE of 10 min of 19 20 each 30 min @ V_E of 40 L/min. Ozone exposure elicited a typical pulmonary function response 21 with neutrophilic airway inflammation in both responders and nonresponders. The GPx activity 22 was significantly reduced (p = 0.0001) and eGPx protein significantly depleted (p = 0.0001) in 23 epithelial lining fluid (ELF) for at least 18 h postexposure. In contrast, both GPx and eGPx were 24 slightly elevated in bronchoalveolar lavage fluid (BALF). However, neither of the two NO₂ 25 exposures had a significant effect on pulmonary function, airway neutrophilia, epithelial 26 permeability, GPx activity, or eGPx protein level in either ELF or BALF. The lack of a 27 significant response to NO_2 has been attributed to the weak oxidative properties of this gas. 28 No association has been observed between cell injury, assessed by ELF albumin, or pulmonary 29 function and GPx activity for O₃ exposure. Thus, it is unclear what role antioxidants may have 30 in modulation of O₃-induced lung function and inflammatory responses. The authors found a 31 negative association between lower baseline eGPx protein concentration in ELF and post-O₃

neutrophilia to be an important predictor of O₃-induced inflammation; however, the causal
 relationship has not been established.

3 The effects of dietary antioxidant supplementation on O₃-induced pulmonary and 4 inflammatory response of young healthy individuals has been investigated by Samet et al. (2001). Under controlled conditions, subjects received ascorbate restricted diet for three weeks. 5 6 After the first week of prescribed diet, subjects were randomly assigned into two groups, and 7 exposed to air (2 h, IE every 15 min at 20 L/min/m² BSA). Thereafter, one group received daily 8 placebo pills and the other a daily supplement of ascorbate, α -tocopherol and a vegetable juice 9 for the next two weeks. At the end of a two week period subjects were exposed to 0.4 ppm O_3 10 under otherwise similar conditions as in sham exposures. Serum concentration of antioxidants 11 determined prior to O_3 exposure showed that subjects receiving supplements had substantially higher concentrations of ascorbate, tocopherol and carotenoid in blood than the control group. 12 13 Plasma levels of glutathione and uric acid (cellular antioxidants) remained essentially the same. 14 Ozone exposure reduced spirometric lung function in both groups; however, the average 15 decrements in the supplementation group were smaller for FVC (p = 0.046) and FEV₁ 16 (p = 0.055) when compared to the placebo group. There was no significant correlation between 17 individual lung function changes and respective plasma levels of antioxidants. Individuals in 18 both groups experienced typical post-O₃ subjective symptoms of equal severity. Similarly, the 19 inflammatory response as assessed by BALF showed no significant differences between the two 20 groups either in the recovery of cellular components or the types and concentrations of 21 inflammatory cytokines. Because of the complexity of protocol, the study was not designed as a 22 cross-over type. However, it is unlikely that the fixed air-O₃ sequence of exposures influenced 23 the findings in any substantial way. Although the study did not elucidate the protective 24 mechanisms, it has demonstrated the value of dietary antioxidants in attenuating lung function 25 effects of O₃. This observation may appear to contradict the findings of Avissar's and colleagues 26 study (2000) discussed above; however, neither study found association between lung function 27 changes and glutathione levels. The lack of such association suggests that activation of 28 antioxidant protective mechanisms is seemingly independent of mechanisms eliciting lung-29 function changes and that dietary antioxidants afford protection via a different pathway than 30 tissue-dependent antioxidant enzymes. Moreover, the findings of this study have provided

additional evidence that symptomatic, functional, inflammatory, and antioxidant responses are
 operating through substantially independent mechanisms.

3 Further evidence that the levels and activity of antioxidant enzymes in ELF may not be 4 predictive or indicative of O₃-induced lung function or inflammatory effects has been provided by a study of Blomberg et al. (1999). No association was found between the respiratory tract 5 6 lining fluid redox potential level, an indicator of antioxidants balance, and either spirometric or 7 inflammatory changes induced by a moderate exposure of young individuals to O_3 (0.2 ppm/2 h, intermittent exercise at 20 L/min/m² BSA). However, O₃ exposure caused a partial depletion of 8 9 antioxidants (uric acid, GSH, EC-SOD) in nasal ELF and a compensatory increase in plasma uric 10 acid, affording at least some local protection (Mudway et al. 1999). More recently, Mudway 11 et al. (2001) investigated the effect of baseline antioxidant levels on response to a 2-h exposure 12 to 0.2 ppm O₃ in 15 asthmatic and 15 healthy subjects. In the BALF of 15 healthy subjects, 13 significant O₃-induced reductions in ascorbate and increases in glutathione disulphide and 14 EC-SOD were observed, whereas, levels were unaffected by O_3 exposure in the asthmatics. 15 In both groups, BALF levels of uric acid and α -Tocopherol were unaffected by O₃. 16 Trenga et al. (2001) studied the potential protective effects of dietary antioxidants (500 mg 17 vitamin C and 400 IU of vitamin E) on bronchial responsiveness of young to middle-aged asthmatics. Recruited subjects were prescreened by exposure to 0.5 ppm SO₂ for 10 min while 18 19 exercising on a treadmill and selected for study participation if they experienced a >8% decease 20 in FEV₁. Prior to the 1st exposure, subjects took either two supplements or two placebo pills at 21 breakfast time for 4 weeks. They continued taking respective pills for another week when the 2nd exposure took place. The 45-min exposures to air and 0.12 ppm O₃ (15 min IE, $\dot{V}_E \approx 3 \times$ 22 23 resting rate) via mouthpiece were randomized. Each exposure was followed by two 10-min 24 challenges to 0.10 and 0.25 ppm SO₂ with exercise to determine bronchial hyperresponsiveness. 25 Due to potential variability of baseline lung function between days, and the way the data have 26 been presented, it is difficult to interpret the results. All spirometric measures (FEV₁, FVC, FEF₂₅₋₇₅, and PEF) were significantly decreased from baseline at subsequent time points 27 following both the FA and O₃ exposures. Exposure to O₃ caused significant decrements in FEV₁ 28 29 and PEF. The post FA and O₃ exposure decrements in lung function were not affected by the 30 treatment regimen (placebo versus vitamin). Bronchial hyperresponsiveness to 0.1 ppm SO₂ was

also unaffected by treatment regimen. Based on the prescreening SO_2 challenge, subjects were

- ranked by their bronchial responsiveness to SO₂ as "less-severe" (8 to 16% FEV₁ decrements)
 and "more-severe" (27 to 44% FEV₁ decrements). The authors concluded O₃ exposure increases
 bronchial responsiveness to SO₂ in asthmatics and that antioxidant supplementation has a
 protective effect against this responsiveness, especially in the "more-severe" responders.
- 5

6

AX6.5.7 Genetic Factors

7 It has been repeatedly postulated that genetic factors may play an important role in 8 individual responsiveness to ozone. Recent studies (Bergamaschi et al., 2001; Corradi et al., 9 2002; Romieu et al, 2004) have indeed found that genetic polymorphisms of antioxidant 10 enzymes, namely NAD(P)H:quinone oxidoreductase (NQO1) and glutathione-S-transferase M1 11 (GSTM1), may play an important role in attenuating oxidative stress of airway epithelium. 12 Bergamaschi and colleagues (2001) studied young nonsmokers (15 F, 9 M; mean age 28.5 years) 13 who cycled for two hours on a cycling circuit in a city park on days with the average ozone 14 concentration ranging from 32 to 103 ppb. There was no control study group nor the intensity of 15 bicycling has been reported. Since spirometry was done within 30 min post-ride, it is difficult 16 to gage how much of the statistically significant (p = 0.026) mean decrement of 160 ml in FEV₁ 17 of 8/24 individuals with NQO1 wild type (NQO1wt) and GSTM1null (GSTM1null) genotypes 18 was due to ozone. Individuals with other genotype combinations including GSTM1null had a 19 mean post-ride decrement of FEV₁ of only 40 mL. The post-ride serum level of Clara cell 20 protein (CC16), a biomarker of airway permeability, has been elevated in both subgroups. Only 21 a "susceptible" subgroup carrying NQO1wt in combination with GSTM1null genotype, serum 22 concentration of CC16 showed positive correlation with ambient concentration of ozone and 23 negative correlation with FEV₁ changes. Despite some interesting observations, the study results 24 should be interpreted cautiously.

A subsequent study from the same laboratory was conducted in a more controlled environment (Corradi et al., 2002). Healthy young (mean 30.1 yrs) individuals (12 M, 10 F) underwent a single exposure to 0.1 ppm O₃ for 2 h while intermittently exercising at a moderate load on a bicycle ergometer. The study design did not incorporate sham exposure, though the authors have stated that in a separate experiment the effects of exercise on markers of inflammation in blood and EBC were negligible. The eight subjects with NQO1wt and GSTM1null genotype, the "susceptible" group, indeed showed an increase in markers of 1 inflammation (IL-6, IL-8, TBARS, LTB₄) and oxidative stress (8-isoprostane, H_2O_2) 2 immediately post and 18 hrs postexposure. The fourteen subjects with other combination of 3 genotypes showed small and inconsistent response in EBC and blood biomarkers, though PMN 4 activity in both groups was significantly increased by exposure. The DNA adduct 8-hydroxy-2'deoxyguanosine (8-OhdG), a marker of oxidative DNA damage, was elevated immediately 5 6 postexposure in both groups but only in the "susceptible" group the increase became significant. 7 The spirometric endpoints (not reported) were not affected by the exposure at any time point, 8 which contrasts the previous study. The incomplete study design calls for a careful 9 interpretation of the findings.

It is of interest to note, that human nasal mucosa biopsies of GSTM1 deficient subjects
 showed higher antioxidant enzymes activity than biopsies of GSTM1 positive individuals when
 incubated for 24 h in 120 ppb O₃ environment (Otto-Knapp et al., 2003).

13 The influence of functional polymorphism of inflammatory and other genes on O_3 14 susceptibility was studied by Yang et al. (2005). In this study 54 nonsmoking subjects 15 (11 healthy subjects, 15 mild asthmatics, 25 with rhinitis) were exposed to 250 ppb O_3 for 3 h 16 (44 subjects), 200 ppb for 4 h (4 subjects), and 400 ppb for 2 h (3 subjects). During these exposures subjects intermittently exercised (~14 L/min/m² BSA). The pooled data of the tumor 17 18 necrosis factor α (TNF- α), lymphotoxin- α (LTA), toll-like receptor 4 (TLR4), superoxide 19 dismutase (SOD2) and glutathione peroxidase (GPX1) genes appear to show only TNF- α as a 20 promising genetic factors of susceptibility. However, as the authors stated "the functional 21 significance of individual TNF-α polymorphisms remains controversial" (Yang et al., 2005).

22 More specific genotyping has shown that O₃ responsiveness and asthma risk may be related 23 to the presence of variant Ser allele for NQO1. In a field study of susceptibility to ambient O₃ in 24 Mexico City, 4- 17 yrs old asthmatic children (n = 218) were genotyped, including variant alleles 25 (David et al., 2003). The risk of asthma was related to the 1-h daily max ambient O₃ which 26 ranged from 12 to 309 ppb. Relative to Pro/Pro genotype the presence of at least one NQO1 27 Ser allele variant lowered the risk of asthma in these children (RR = 0.8). In children with 28 GSTM1null genotype combined with at least one NQO1 Ser allele variant the decreased risk of 29 as thma became statistically significant (RR = 0.4). The presence of Ser allele which renders 30 NQO1 less active, thus affecting the conjugation of quinones and formation of ROS

subsequently reducing the oxidative stress, may plausibly explain the protective effect of this
 genotypic combination.

Another field study of asthmatic children (n = 158) exposed to ambient O_3 (12-309 ppb 1-h max during the 12 week study period) has found that in children with genetic deficiency of GSTM1 the decrements in FEF₂₅₋₇₅ were related to the previous day 1-h daily max O_3 . The association was more pronounced in moderate to severe asthmatics. Children with GSTM1pos variant showed no significant decrement in lung function. Randomly administered antioxidant supplementation (vit. C 250 mg/day and vit. E 50 mg/day) attenuated post-ozone lung function response in GSTM1null children (Romieu et al., 2004).

These recent studies have shown that individual's innate susceptibility to ozone may be
linked to genetic background of an individual. Although a number of potential ozone
susceptibility genes have been identified, additional better designed and controlled studies are
needed to ascertain the link between susceptibility and polymorphism.

14 Pretreatment of healthy young subjects with inhaled corticosteroids $(2 \times 800 \ \mu g/day)$ 15 budesonide, a maximal clinical dose) for 2 weeks prior to O₃ exposure (0.4 ppm/2 h, alternating 16 20 min exercise at 50W with 10 min rest) had no apparent effect on a typical lung function 17 decline or inflammatory response to exposure. Because of the complexity of the protocol, the 18 study was not a cross-over design and no control air exposures were conducted. Both the 19 placebo and treatment conditions caused the same magnitude of changes. Similarly, nonspecific bronchial reactivity to methacholine ($PC_{20} FEV_1$) was increased about the same 4 h after 20 21 exposure. Neither absolute nor relative sputum cell counts were affected by budesonide 22 treatment and O₃ induced a typical neutrophilic response in both groups. Upregulation of 23 pro-inflammatory mediators measured in sputum was not different between the groups either. 24 The markers of inflammation and oxidative stress, exhaled NO and CO, as well as the reactive 25 product nitrite measured in exhaled breath condensate, respectively, were not significantly 26 influenced by budesonide. However, considering all these findings as a whole, budesonide 27 seemed to have a moderating, although not statistically significant, effect on O_3 -induced 28 response (Nightingale et al., 2000). Budesonide is an anti-inflammatory drug that in laboratory 29 animal studies partially suppressed neutrophilic inflammation caused by O₃ (Stevens et al., 30 1994). Because the dose of budesonide was at therapeutic maximal levels, the pharmacologic 31 action of this drug and the site of action of O_3 do not apparently coincide.

1

AX6.6 REPEATED EXPOSURES TO OZONE

2 Repeated daily exposure to O_3 in the laboratory for 4 or 5 days leads to attenuated changes 3 in pulmonary function responses and symptoms (Hackney et al., 1977a; U.S. Environmental Protection Agency, 1986, 1996). A summary of studies investigating FEV₁ responses to 4 5 repeated daily exposure for up to 5 days is given in Table AX6-8. The FEV₁ responses to 6 repeated O₃ exposure typically have shown an increased response on the second exposure day 7 (Day 2) compared to the initial (Day 1) exposure response. This is readily apparent in repeated 8 exposures to a range of concentrations from 0.4 to 0.5 ppm O_3 accompanied by moderate 9 exercise (Folinsbee et al., 1980; Horvath et al., 1981; Linn et al., 1982), and at lower 10 concentrations, 0.20 to 0.35 ppm, when accompanied by heavy exercise (Brookes et al., 1989; 11 Folinsbee and Horvath, 1986; Foxcroft and Adams, 1986; Schonfeld et al., 1989). Mechanisms 12 for enhanced pulmonary function responses on Day 2 have not been established, although 13 persistence of acute O₃-induced damage for greater than 24 h may be important (Folinsbee et al., 14 1993). An enhanced Day 2 FEV₁ response was less obvious or absent in exposures at lower 15 concentrations or those that caused relatively small group mean O₃-induced decrements. 16 For example, Bedi et al. (1988) found no enhancement of the relatively small pulmonary 17 function responses in older subjects (median age, 65 years) exposed repeatedly to O_3 . Three 18 reports (Bedi et al., 1985; Folinsbee and Horvath, 1986; Schonfeld et al., 1989) demonstrated 19 that enhanced pulmonary function responsiveness was present within 12 h, lasted for at least 20 24 h and possibly 48 h, but was absent after 72 h.

21 After 3 to 5 days of consecutive daily exposures to O₃, FEV₁ responses are markedly 22 diminished or absent. One study (Horvath et al., 1981) suggested that the rapidity of this decline 23 in FEV₁ response was related to the magnitude of the subjects' initial responses to O_3 or their "sensitivity." A summary of studies examining the effects of repeated exposures to O_3 on FEV₁ 24 25 and other pulmonary function, symptoms, and airway inflammation is given in Table AX6-9. 26 Studies examining persistence of the attenuation of pulmonary function responses following 27 4 days of repeated exposure (Horvath et al., 1981; Kulle et al., 1982; Linn et al., 1982) indicate 28 that attenuation is relatively short-lived, being partially reversed within 3 to 7 days and typically 29 abolished within 1 to 2 weeks. Repeated exposures separated by 1 week (for up to 6 weeks) 30 apparently do not induce attenuation of the pulmonary function response (Linn et al., 1982). Gong et al. (1997b) studied the effects of repeated exposure to 0.4 ppm O_3 in a group of mild 31

Ozone Concentration ^b		Exposure Duration	Number and Gender Percent Change in FEV ₁ on Consecutive						
ppm	μg/m ³	and Activity ^c	of Subjects		E	References ^d			
				First	Second	Third	Fourth	<u>Fifth</u>	
0.12	235	6.6 h, IE (40)	17 M	-12.79	-8.73	-2.54	-0.6	0.2	Folinsbee et al. (1994)
0.20	392	2 h, IE (30)	10 M	+1.4	+2.7	-1.6	_	_	Folinsbee et al. (1980)
0.20	392	2 h, IE (18 and 30)	8 M, 13 F	-3.0	-4.5	-1.1	_	_	Gliner et al. (1983)
0.20	392	2 h, IE (18 and 30)	9	-8.7	-10.1	-3.2	_		Gliner et al. (1983)
0.20	392	1 h, CE (60)	15 M	-5.02	-7.8	_	_		Brookes et al. (1989)
0.25	490	1 h, CE (63)	4 M, 2 F	-20.2	-34.8	_	_		Folinsbee and Horvath (198
			5 M, 2 F	-18.8	_	-22.3	_		
0.35	686	2 h, IE (30)	10 M	-5.3	-5.0	-2.2	_		Folinsbee et al. (1980)
0.35	686	1 h, CE (60)	8 M	-31.0	-41.0	-33.0	-25.0	_	Foxcroft and Adams (1986)
0.35	686	1 h, CE (60)	10 M	-16.1	-30.4		_	_	Schonfeld et al. (1989)
			10 M	-14.4	_	-20.6	_	_	
0.35	686	1 h, CE (60)	15 M	-15.9	-24.6	_	_		Brookes et al. (1989)
0.40	784	3 h, IE (4-5 \times resting)	13 M ^f	-9.2	-10.8	-5.3	-0.7	-1.0	Kulle et al. (1982)
0.40	784	3 h, IE (4-5 \times resting)	11 F ^f	-8.8	-12.9	-4.1	-3.0	-1.6	Kulle et al. (1982)
0.4	784	2 h, IE (65)	8 M	-18.0	-29.9	-21.1	-7.0	-4.4	Folinsbee et al. (1998)
0.4	784	3 h, IE (32)	8 M, 2 F ^h	-34.7	-31.1	-18.5	-12.0	-6.2	Gong et al. (1997b)
0.42	823	2 h, IE (30)	24 M	-21.1	-26.4	-18.0	-6.3	-2.3	Horvath et al. (1981)
0.45	882	2 h, IE (27)	1 M, 5 F	-13.3	_	-22.8	_	_	Bedi et al. (1985)
0.45	882	2 h, IE (27)	10 M, 6 F	-5.8	-5.6	-1.9	_		Bedi et al. (1989)
0.47	921	2 h, IE ($3 \times resting$)	8 M, 2 F ^g	-11.4	-22.9	-11.9	-4.3	_	Linn et al. (1982)
0.5	980	2 h, IE (30)	8 M	-8.7	-16.5	-3.5	_	_	Folinsbee et al. (1980)
0.5	980	2.5 h, IE ($2 \times resting$)	6	-2.7	-4.9	-2.4	-0.7		Hackney et al. (1977a)

Table AX6-8. Changes in Forced Expiratory Volume in One Second After Repeated Daily Exposure to Ozone^a

^aSee Appendix A for abbreviations and acronyms.

^bListed from lowest to highest O₃ concentration.

*Exposure duration and intensity of IE or CE were variable; \dot{V}_E (number in parentheses) given in liters per minute or as a multiple of resting ventilation.

^dFor a more complete discussion of these studies, see Table AX6-9 and U.S. Environmental Protection Agency (1986).

^eSubjects were especially sensitive on prior exposure to 0.42 ppm O_3 as evidenced by a decrease in FEV₁ of more than 20%. These nine subjects are a subset of the total group of 21 individuals used in this study.

^fBronchial reactivity to a methacholine challenge also was studied.

^gSeven subjects completed entire experiment.

^hSubjects had mild asthma.

Ozone Concentration ^b		Exposure	F	Number and			
ppm	μg/m ³	 Duration and Activity 	Exposure Conditions	Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
0.25	490	2 h IE, (30 min rest, 30 min exercise), $\dot{V}_E = 39$ L/min	21.4 °C 43.9% RH 4 days consecutive FA exposure; 4 days consecutive O ₃ exposure	5 M, 3 F	Healthy, NS	FVC and FEV ₁ decrements were significantly attenuated on Day 4 of O_3 exposure compared to day 1 of O_3 exposure. Significant small airway function depression accompanied by significant neutrophilia in BALF one day following the end of O_3 exposure.	Frank et al. (2001)
0.2	392	4 h IE (4 × 30 min exercise), $\dot{V}_{E} =$ 14.8 L/min/m ² BSA	1 day FA, 1 day, O ₃ ; 4 days consecutive exposure to O ₃	15 M, 8 F	Healthy, NS 21 to 35 years old	FEV ₁ decrement and symptoms significantly reduced on Day 4 of O_3 exposure compared to Day 1 of O_3 exposure. Airway inflammation of mucosa persisted on Day 4 although some inflammatory markers in BALF attenuated significantly.	Jörres et al. (2000)
0.2	392	4 h IE (4 × 30 min exercise), $\dot{V}_E =$ 25 L/min/m ² BSA	20 °C 50% RH (1 day, O_3 ; 4 days consecutive exposure to O_3	9 M, 6 F	Healthy, NS 23 to 37 years old	Significant decrease in FVC, FEV ₁ , SRaw, and symptoms on Day 4 of O_3 exposure compared to a single day of O_3 exposure. Number of PMNs, fibronectin, and IL6 in BALF were significantly decreased on Day 4 compared to a single day of O_3 exposure.	Christian et al. (1998)
0.4	784	3h/day for 5 days IE (15 min rest, 15 min exercise) $\dot{V}_E = 32$ L/min	31 °C 35% RH 5 consecutive days plus follow up @ 4 or 7 days	8 M, 2 F	Mild asthma adult	FEV_1 decreased 35% on day 1 and only 6% on day 5. Bronchial reactivity increased after day 1 and remained elevated. Adaptation of asthmatics is similar to healthy subjects but may be slower and less complete.	Gong et al. (1997b)
0.12	235	6.6 h 50 min exercise/10 min rest, 30 min lunch $\dot{V}_E = 38.8$ L/min	18 °C 40% RH five consecutive daily exposures	17 M	Healthy NS	FEV ₁ responses were maximal on first day of exposure (-13%), less on second day (-9%), absent thereafter. Symptoms only the first 2 days. Methacholine airway responsiveness was at least doubled on all exposure days, but was highest on the second day of O_3 . Airway responsiveness was still higher than air control after 5 days of O_3 exposure. Trend to lessened response, but it was not achieved after 5 days.	Folinsbee et al (1994)

Table AX6-9. Pulmonary Function Effects with Repeated Exposures to Ozone^a

Ozone Concentration ^b				Number and	~		
ppm	$\mu g/m^3$	Exposure Duration and Activity	Exposure Conditions	Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
0.4	784	2 h IE (15 min rest, 15 min exercise $\dot{V}_E \approx 60$ L/min	5 days consecutive O ₃ exposure	16 M	Healthy NS	O_3 -exposure FEV ₁ decrement was greater on day 2, 29.9%, than day 1, 18.0%, then decreased on day 3, 21.1%, day 4, 7% and day 5, 4.4%	Folinsbee et al. (1998) Devlin et al. (1997)
0.45	882	2 h IE (3 × 20 min exercise) $\dot{V}_E = 27$ L/min	23.3 °C 63% RH Exposed for 3 consecutive days, not exposed for 2 days, then exposed to 0.45 ppm again for 1 day	10 M, 6 F	Healthy NS 60 to 89 years old median 65 years old; mean FVC = 3.99 L; mean FEV ₁ = $3.01 L$; FEV ₁ /FVC range = 61 to 85%	Overall increase in symptoms, but no single symptom increased significantly. FVC decreased 111 mL and 104 mL on Days 1 and 2, respectively. FEV ₁ fell by 171 and 164 mL, and FEV ₃ fell by 185 and 172 mL. No significant changes on Days 3 and 4 or with FA. FEV ₁ changes were -5.8 , -5.6 , -1.9 , and -1.7% on the four O ₃ days.	Bedi et al. (1989)
0.20/0.20 0.35/0.20 0.35/0.35	686/392	1 h CE at 60 L/min	21 to 25 °C 40 to 60% RH (three 2-day sets of exposures)	15 M	Healthy aerobically trained NS, FVC = 4.24 to 6.98 L	Consecutive days of exposure to 0.20 ppm produced similar FEV ₁ responses on each day (-5.02, -7.80); 0.35/0.20 ppm pair caused increased response to 0.20 ppm on second day (-8.74) ; 0.35/0.35 ppm caused much increased response on Day 2 $(-15.9, -24.6)$. Symptoms were worse on the second exposure to 0.35 ppm, but not with second exposure to 0.20 ppm.	Brookes et al. (1989)
0.35	686	60 min CE $\dot{V}_{E} = 60 \text{ L/min}$	21 to 25 °C 40 to 60% RH (two exposures for each subject separated by 24, 48, 72, or 120 h)	40 M (4 groups of 10)	NS; nonallergic, non-Los Angeles residents for >6 mo; =25 years old	No differences between responses to exposures separated by 72 or 120 h. Enhanced FEV ₁ response at 24 h (-16.1% vs. -30.4%). Possible enhanced response at 48 h (-14.4% vs. -20.6%). Similar trends observed for breathing pattern and SRaw.	Schonfeld et al (1989)
0.45	882	2 h IE (3 × 20 min exercise) $\dot{V}_E = 26$ L/min	23.3 °C 62.5% RH (three exposures with a minimum 1-week interval)	8 M, 8 F	Healthy NS, 61 years old for M and 65 years old for F (FVC = 4.97 L for M and 3.11 L for F)	Spirometric changes were not reproducible from time to time after O_3 exposure $R < 0.50$). Repeat exposures to air yielded consistent responses.	Bedi et al. (1988)

	one tration ^b			Number and			
ppm	$\mu g/m^3$	Exposure Duration and Activity	Exposure Conditions	Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
0.18	353	2 h IE (heavy) $\dot{V}_E \approx 60$ to 70 L/min (35 L/min/m ² BSA)	31 °C 35% RH (screen exposures in spring 1986; second exposures in summer/fall 1986 and winter 1987 and spring 1987 for responders and nonresponders only)	59 adult Los Angeles residents 12 responsive 13 nonresponsive	Responders: 19 to 40 years old 6 atopic, 2 asthmatic, 4 normal Nonresponders: 18 to 39 years old, 13 normal	Responders had $\triangle FEV_1 = -12.4\%$ after initial screening; nonresponders had no change. Responders had nonsignificant response in late summer or early winter, but were responsive again in early spring (spring 1986, -385 mL; Autumn 1986, -17 mL; winter 1987, +16 mL; spring 1987, -347 mL). Nonresponders did not change with season. Suggests that responders responses may vary with ambient exposure, but nonresponders generally remain nonresponsive.	Linn et al. (1988) (also see Hackney et al., 1989)
0.45 (+0.30 PAN)	882	2 h IE (20 min rest, 20 min exercise) $\dot{V}_E = 27 \text{ L/min}$	22 °C 60% RH 5 days consecutive exposure to PAN + O ₃	3 M, 5 F	Healthy NS, Mean age = 24 years	FEV ₁ decreased $\approx 19\%$ with O ₃ alone, $\approx 15\%$ on Day 1 of O ₃ + PAN, $\approx 5\%$ on Day 5 of O ₃ + PAN, $\approx 7\%$ 3 days after 5 days of O ₃ + PAN, $\approx 15\%$ after 5 days of O ₃ + PAN. Similar to other repeated O ₃ exposure studies, O ₃ responses peaked after 2 days, were depressed 3 days later, and responses returned 7 days later. PAN probably had no effect on repeated to O ₃ exposure responses.	Drechsler- Parks et al. (1987b) (also see Table AX6-14)
0.35	686	≈1 h CE (see paper for details)	22 to 25 °C 35 to 50% RH (1 day FA; 1 day O ₃ ; 4 days consecutive exposure to O ₃)	8 M	Aerobically trained healthy NS (some were known O_3 sensitive), 22.4 \pm 2.2 years old	Largest FEV ₁ decrease on second of 4 days O_3 exposure (-40% mean decrease). Trend for attenuation of pulmonary function response not complete in 4 days. \dot{VO}_{2max} decreased with single acute O_3 exposure (-6%) but was not significant after 4 days of O_3 exposure (-4%). Performance time was less after acute O_3 (211 s) exposure than after FA (253 s).	Foxcroft and Adams (1986)

Table AX6-9 (cont'd). Pulmonary Function Effects with Repeated Exposures to Ozone^a

^aSee Appendix A for abbreviations and acronyms. ^bListed from lowest to highest O₃ concentration.

1

asthmatics and observed a similar pattern of responses as those seen previously in healthy

2

3

subjects. The attenuation of pulmonary responses reached after 5 days of consecutive O_3 exposure was partially lost at 4 and 7 days postexposure.

4 In addition to the significant attenuation or absence of pulmonary function responses after several consecutive daily O₃ exposures, symptoms of cough and chest discomfort usually 5 6 associated with O₃ exposure generally are substantially reduced or absent (Folinsbee et al., 1980, 7 1994; Foxcroft and Adams, 1986; Linn et al., 1982). Airway responsiveness to methacholine is 8 increased with an initial O₃ exposure (Holtzman et al., 1979; Folinsbee et al., 1988), may be 9 further increased with subsequent exposures (Folinsbee et al., 1994), and shows a tendency for 10 the increased response to diminish with repeated exposure (Dimeo et al., 1981; Kulle et al., 11 1982). The initially enhanced and then lessened response may be related to changes that occur 12 during the repair of pulmonary epithelia damaged as a consequence of O₃ exposure. 13 Inflammatory responses (Koren et al., 1989a), epithelial damage, and changes in permeability 14 (Kehrl et al., 1987) might explain a portion of these responses. By blocking pulmonary function 15 responses and symptoms with indomethacin pretreatment, Schonfeld et al. (1989) demonstrated 16 that in the absence of an initial response, pulmonary function and symptoms effects were not 17 enhanced on Day 2 by repeated exposure to 0.35 ppm O_3 . These results suggest that airway 18 inflammation and the release of cyclooxygenase products of arachidonic acid play a role in the 19 enhanced pulmonary function responses and symptoms observed upon reexposure to O₃ within 20 48 h.

21 Response to laboratory O₃ exposure as a function of the season of the year in the South 22 Coast Air Basin of Los Angeles, CA, has been examined in several studies (Avol et al., 1988; 23 Hackney et al., 1989; Linn et al., 1988). Their primary purpose was to determine whether O₃ 24 responsive subjects would remain responsive after regular ambient exposure during the "smog 25 season". The subjects were exposed to 0.18 ppm O_3 for 2 h with heavy IE on four occasions, 26 spring, fall, winter, and the following spring. The marked difference in FEV₁ response between 27 responsive and nonresponsive subjects seen initially (-12.4% versus +1%) no longer was present 28 after the summer smog season (fall test) or 3 to 5 months later (winter test). However, when the subjects were exposed to O₃ during the following spring, the responsive subjects again had 29 30 significantly larger changes in FEV₁, suggesting a seasonal variation in response.

1 Brookes et al. (1989) and Gliner et al. (1983) tested whether initial exposure to one O_3 2 concentration could alter response to subsequent exposure to a different O₃ concentration. 3 Gliner et al. (1983) showed that FEV₁ response to 0.40 ppm O₃ was not influenced by previously 4 being exposed to 0.20 ppm O₃ for 2 h on 3 consecutive days. Brookes et al. (1989) found 5 enhanced FEV₁ and symptoms upon exposure to 0.20 ppm after previous exposure to 6 0.35 ppm O₃. These observations suggest that, although preexposure to low concentrations of O₃ 7 may not influence responses to higher concentrations, preexposure to a high concentration of O_3 8 can significantly increase responses to a lower concentration on the following day. 9 Foxcroft and Adams (1986) demonstrated that decrements in exercise performance seen 10 after 1 h of exposure to 0.35 ppm O₃ with heavy CE were significantly less after 4 consecutive 11 days exposure than they were after a single acute exposure. Further, exercise performance, $\dot{V}O_{2max}$, \dot{V}_{Emax} and HR_{max} were not significantly different after 4 days of O_3 exposure compared to 12 13 those observed in a FA exposure. Despite the change in exercise performance, Foxcroft and 14 Adams (1986) did not observe a significant attenuation of FEV₁ response, although symptoms 15 were significantly reduced. However, these investigators selected known O₃-sensitive subjects 16 whose FEV₁ decrements exceeded 30% on the first 3 days of exposure. The large magnitude of 17 these responses, the trend for the responses to decrease on the third and fourth day, the decreased 18 symptoms, and the observations by Horvath et al. (1981) that O₃-sensitive subjects adapt slowly, 19 suggest that attenuation of response would have occurred if the exposure series had been 20 continued for another 1 or 2 days. These observations support the contention advanced by 21 Horvath et al. (1981) that the progression of attenuation of response is a function of initial "O₃

23 Drechsler-Parks et al. (1987b) examined the response to repeated exposures to 0.45 ppm O₃ 24 plus 0.30 ppm peroxyacetyl nitrate (PAN) in 8 healthy subjects and found similar FEV₁ 25 responses to exposures to O_3 (-19%) and to O_3 plus PAN (-15%). Thus, PAN did not increase 26 responses to O₃. Further, repeated exposure to the PAN plus O₃ mixture resulted in similar 27 changes to those seen with repeated O_3 exposure alone. The FEV₁ responses fell to less than 28 -5% after the fifth day, with the attenuation of response persisting 3 days after the repeated 29 exposures, but being absent after 7 days. These observations suggest that PAN does not 30 influence the attenuation of response to repeated O₃ exposure. If the PAN responses are 31 considered negligible, this study confirms the observation that the attenuation of O₃ responses

sensitivity."

22

with chamber exposures lasts no longer than 1 week. [More discussion on the interaction of O_3 1

2

6

with other pollutants can be found in Section AX6.11.] 3 Folinsbee et al. (1993) exposed a group of 16 healthy males to 0.4 ppm O₃ for 2 h/day on

5 consecutive days. Subjects performed heavy IE ($\dot{V}_E = 60$ to 70 L/min). Decrements in FEV₁ 4

averaged 18.0, 29.9, 21.1, 7.0, and 4.4% on the 5 exposure days. However, baseline preexposure 5

FEV₁ decreased from the first day's preexposure measurement and was depressed by an average

7 of about 5% by the third day. This study illustrates that, with high-concentration and heavy-

8 exercise exposures, pulmonary function responses may not be completely recovered within 24 h.

9 During this study, BALF also was obtained immediately after the Day 5 exposure, with results

10 reported by Devlin et al. (1997). These authors found that some inflammation and cellular

11 responses associated with acute O₃ exposure were also attenuated after 5 consecutive days of O₃

12 exposure (compared to historical data for responses after a single-day exposure), although 13 indicators of epithelial cell damage-not seen immediately after acute exposure-were present 14 in BALF after the fifth day of exposure. When reexposed again 2 weeks later, changes in BALF 15 indicated that epithelial cells appeared fully repaired (Devlin et al., 1997).

Frank et al. (2001) exposed 8 healthy young adults to 0.25 ppm O₃ for 2 h with moderate 16 IE (exercise $\dot{V}_E = 40$ L/min) on 4 consecutive days. In addition to standard pulmonary function 17 measures, isovolumetric FEF₂₅₋₇₅, \dot{V}_{max50} and \dot{V}_{max75} were grouped into a single value representing 18 small airway function (SAW $_{\rm grp}$). Exercise ventilatory pattern was also monitored each day, 19 20 while peripheral airway resistance was measured by bronchoscopy followed by lavage on Day 5. 21 The authors observed two patterns of functional response in their subjects- attenuation and 22 persistent. Values of FVC and FEV₁ showed significant attenuation by Day 4 compared to Day 23 1 values. However, SAW_{grp} and rapid shallow breathing during exercise persisted on Day 4 24 compared to Day 1, and were accompanied by significant neutrophilia in BALF 1 day following 25 the end of O_3 exposure. Frank et al. (2001) suggested that both types of functional response (i.e., 26 attenuation and persistence) are linked causally to inflammation. They contend that the 27 attenuation component is attributable at least in part to a reduction in local tissue dose during 28 repetitive exposure that is likely to result from the biochemical, mechanical, and morphological 29 changes set in motion by inflammation. They speculated that the persistent component 30 represents the inefficiencies incurred through inflammation. Whether the persistent small airway dysfunction is a forerunner of more permanent change in the event that oxidant stress is extended
 over lengthy periods of time is unknown.

	0 51
3	Early repeated multihour (6 to 8 h) exposures focused on exposures to low concentrations
4	of O ₃ between 0.08 and 0.12 ppm (Folinsbee et al., 1994; Horvath et al., 1991; Linn et al., 1994).
5	Horvath et al. (1991) exposed subjects for 2 consecutive days to 0.08 ppm using the 6.6-h
6	prolonged exposure protocol (see Table AX6-2). They observed small pre- to postexposure
7	changes in FEV ₁ (-2.5%) on the first day, but no change on the second day. Linn et al. (1994)
8	observed a 1.7% decrease in FEV ₁ in healthy subjects after 6.6 h exposure to 0.12 ppm O_3 .
9	A second consecutive day exposure to O_3 yielded even smaller (<1%) responses. In a group of
10	asthmatics exposed under similar conditions (Linn et al., 1994), the FEV_1 response on the first
11	day was -8.6% which was reduced to -6.7% on day 2, both significantly greater than those
12	observed for the nonasthmatics group. The observations of Horvath et al. (1991) and Linn et al.
13	(1994) elicited a somewhat different pattern of response (no enhancement of response after the
14	first exposure) than that seen at higher concentrations in 2 h exposures with heavy exercise
15	(Tables AX6-8 and AX6-9). However, the subjects studied by Horvath et al. (1991) were
16	exposed only to 0.08 ppm O_3 and were somewhat older (30 to 43 yrs) than the subjects studied
17	by Folinsbee et al. (1994), mean age of 25 yrs, while the nonasthmatic subjects studied by Linn
18	et al. (1994) were also older (mean = 32 yrs), had lower exercise \dot{V}_E (-20%) and were residents
19	of Los Angeles who often encountered ambient levels of O_3 at or above 0.12 ppm.
20	Folinsbee et al. (1994) exposed 17 subjects to 0.12 ppm O_3 for 6.6 h, with 50 min of
21	moderately heavy exercise ($\dot{V}_E = 39$ L/min) each hour, on 5 consecutive days. Compared with
22	FA, the percentage changes in FEV_1 over the five days were -12.8%, -8.7%, -2.5%, -0.06%,
23	and +0.18%. A parallel attenuation of symptoms was observed, but the effect of O_3 in enhancing
24	airway responsiveness (measured by increase in SRaw upon methacholine challenge) over
25	5 days was not attenuated (3.67, 4.55, 3.99, 3.24, and 3.74, compared to 2.22 in FA control).
26	Nasal lavage revealed no increases in neutrophils except on the first O_3 exposure day.
27	Christian et al. (1998) exposed 15 adults (6 females and 9 males; mean age = 29.1 yrs) to
28	4 consecutive days at 0.20 ppm O ₃ for 4 h, with 30 mm of IE (exercise $\dot{V}_E = 25 \text{ L/min/m}^2$) each
29	hour. Measures of FEV ₁ , FVC, and symptoms were all significantly reduced on Day 1, further
30	decreased on Day 2, and then attenuated to near FA control values on Day 4. The pattern of
31	SRaw response was similar, being greatest on Day 2 and no different from FA control on Day 4.

1 BAL was done on Day 5 and showed that neutrophil recruitment to the respiratory tract was 2 attenuated with repeated short-term exposures, compared to Day 1 control O₃ exposure, while 3 airway epithelial injury appeared to continue as reflected by no attenuation of IL-6, IL-8, total 4 protein, and LDH. The authors concluded that such injury might lead to airway remodeling, which has been observed in several animal studies (Brummer et al., 1977; Schwartz et al., 1976; 5 6 Tepper et al., 1989; Van Bree et al., 1989). In a similar study to that of Christian et al. (1998), Jörres et al. (2000) exposed 23 adults (8 females and 15 males; mean age = 27.9 yrs) on 7 4 consecutive days to 0.20 ppm O₃ for 4 h, with 30 min of IE (exercise $\dot{V}_E = 26$ L/min) each 8 9 hour. The authors observed that FEV₁ was significantly reduced and symptoms were 10 significantly increased on Day 1. On Day 2, FEV₁ was further decreased, while symptoms 11 remained unchanged. By Day 4, both FEV₁ and symptoms were attenuated to near FA, control 12 values. Twenty hours after the Day 4 exposure, BAL and bronchial mucosal biopsies were 13 performed. These authors found via bronchial mucosal biopsies that inflammation of the 14 bronchial mucosa persisted after repeated O₃ exposure, despite attenuation of some inflammatory 15 markers in BALF and attenuation of lung function responses and symptoms. Further, Jörres et al. (2000) observed persistent although small decrease in baseline FEV₁ measured before 16 17 exposure, thereby suggesting that there are different time scales of the functional responses 18 to O₃, which may reflect different mechanisms. The levels of protein remaining elevated after repeated exposures confirms the findings of others (Christian et al., 1998; Devlin et al., 1997), 19 20 and suggests that there is ongoing cellular damage irrespective of the attenuation of cellular 21 inflammatory responses with the airways. [Further discussion on the inflammatory responses to 22 O_3 can be found in Section AX6.9.] 23 Based on studies cited here and in the previous O₃ criteria documents (U.S. Environmental

24 Protection Agency, 1986, 1996), several conclusions can be drawn about repeated 1- to 2-h O₃ exposures. Repeated exposures to O_3 can cause an enhanced (i.e., greater) lung function 25 26 response on the second day of exposure. This enhancement appears to be dependent on the 27 interval between the exposures (24 h is associated with the greatest increase) and is absent with 28 intervals >3 days. As shown in Figure AX6-8, an enhanced response also appears to depend 29 on O₃ concentration and to some extent on the magnitude of the initial response. Small 30 responses to the first O₃ exposure are less likely to result in an enhanced response on the second day of O₃ exposure. Repeated daily exposure also results in attenuation of pulmonary function 31

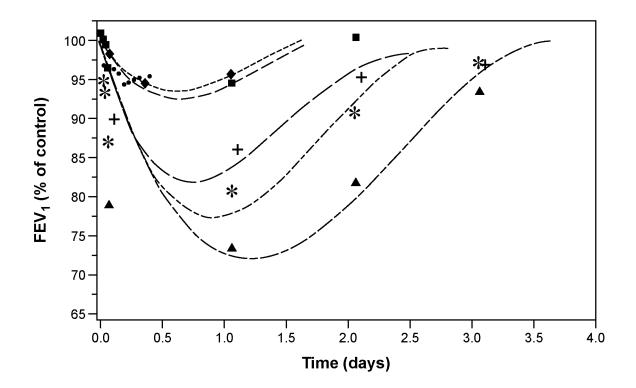


Figure AX6-8. Regression curves were fitted to day-by-day postexposure FEV₁ values obtained after repeated daily acute exposures to O₃ for 2 to 3 h with intermittent exercise at a V_E of 24 to 43 L/min (adaptation studies). Symbols represent the results from individual studies conducted at 0.2 ppm for 2 h (♠), 0.35 ppm for 2 h (■), 0.4 ppm for 2 h (♠), 0.5 ppm for 2 h (₦), and 0.54 ppm for 3 h (▲). Also shown for comparison are the FEV₁ values obtained after exposure to 0.12 ppm O₃ for 10 h (●).

Source: Modified from Hazucha (1993).

1 responses, typically after 3 to 5 days of exposure. This attenuated response persists for less than 2 1 week or as long as 2 weeks. In temporal conjunction with the pulmonary function changes, 3 symptoms induced by O₃, such as cough and chest discomfort, also are attenuated with repeated 4 exposure. Ozone-induced changes in airway responsiveness attenuate more slowly than 5 pulmonary function responses and symptoms. Attenuation of the changes in airway 6 responsiveness appear to persist longer than changes in pulmonary function, although this has 7 been studied only on a limited basis. In longer-duration (6.6 h), lower-concentration studies that 8 do not cause an enhanced second-day response, the attenuation of response to O₃ appears to

proceed more rapidly. Inflammatory markers from BALF on the day following both 2 h (Devlin
 et al., 1997) and 4 h (Christian et al., 1998; Jörres et al., 2000) repeated O₃ exposure for 4 days
 indicate that there is ongoing cellular damage irrespective of the attenuation of some cellular
 inflammatory responses of the airways, lung function responses and symptoms.

5 6

7

AX6.7 EFFECTS ON EXERCISE PERFORMANCE

8 AX6.7.1 Introduction

9 In an early epidemiologic study examining race performances in Los Angeles area high 10 school cross-country runners, Wayne et al. (1967) observed that endurance exercise performance 11 was depressed by inhalation of ambient oxidant air pollutants. The authors concluded that the 12 detrimental effects of oxidant air pollutants on race performance might have been related to the 13 associated discomfort in breathing, thus limiting the runners' motivation to perform at high 14 levels, although physiologic effects limiting O₂ availability could not be ruled out. 15 Subsequently, the effects of acute O₃ inhalation on endurance exercise performance have been 16 examined in numerous controlled laboratory studies. These studies were discussed in the 17 previous O₃ criteria document (U.S. Environmental Protection Agency, 1996) in two categories: (1) those that examined the effects of acute O_3 inhalation on maximal oxygen uptake ($\dot{V}O_{2max}$) 18 19 and (2) those that examined the effects of acute O_3 inhalation on the ability to complete 20 strenuous continuous exercise protocols of up to 1 h in duration. In this section, major 21 observations in these studies are briefly reviewed with emphasis on reexamining the primary mechanisms causing decrements in $\dot{V}O_{2max}$ and endurance exercise performance consequent 22 23 to O_3 inhalation. A summary of major studies of O_3 inhalation effects on endurance exercise 24 performance, together with observed pulmonary function and symptoms of breathing discomfort 25 responses, is given in Table AX6-10.

26

27 AX6.7.2 Effect on Maximal Oxygen Uptake

Three early studies (Folinsbee et al., 1977; Horvath et al., 1979; Savin and Adams, 1979) examining the effects of acute O_3 exposures on $\dot{V}O_{2max}$ were reviewed in an earlier O_3 criteria document (U.S. Environmental Protection Agency, 1986). Briefly, Folinsbee et al. (1977)

Ozone Concentration ^b				Number and			
ррт	$\mu g/m^3$	 Exposure Duration and Activity 	Exposure Conditions	Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
0.06-0.07 0.12-0.13	120-140 245-260	CE ($\dot{V}_E = 30$ to 120 L/min) 16 to 28 min progressive maximum exercise protocol	23 to 24.5 °C 50 to 53% RH	12 M, 12 F	Athletic	Reduced maximum performance time and increased symptoms of breathing discomfort during O ₃ exposure.	Linder et al. (1988)
0.18	353	1 h CE or competitive simulation at mean $\dot{V}_E = 94$ L/min	NA	# not given; all males	Well-trained distance runners	Maximal treadmill run time reduced from 71.7 min in FA to 66.2 min during O_3 exposure with no decease in arterial O_2 saturation.	Folinsbee et al. (1986)
0.35	686	50 min CE $\dot{V}_{E} = 60$ L/min	22 to 25 °C 35 to 50% RH	8 M	Trained nonathletes	$V_{\rm T}$ decreased, $f_{\rm B}$ increased with 50-min O_3 exposures; decrease in FVC, FEV ₁ , FEF ₂₅₋₇₅ , performance time, \dot{VO}_{2max} , \dot{V}_{Emax} , and HR _{max} from FA to 0.35-ppm O_3 exposure.	Foxcroft and Adams (1986)
0.12 0.20	235 392	$\dot{V}_{E} = 89 \text{ L/min}$	31 °C	15 M, 2 F	Highly trained competitive cyclists	Decrease in \dot{V}_{Emax} , \dot{VO}_{2max} , V_{Tmax} , workload, ride time, FVC, and FEV ₁ with 0.20 ppm O ₃ exposure, but not significant with 0.12-ppm O ₃ exposure, as compared to FA exposure.	Gong et al. (1986)
0.12 0.18 0.24	235 353 470	l h competitive simulation exposures at mean $\dot{V}_E = 87 \text{ L/min}$	23 to 26 °C 45 to 60% RH	10 M	Highly trained competitive cyclists	Decrease in exercise time of 7.7 min and 10.1 min for subjects unable to complete the competitive simulation at 0.18 and 0.24 ppm O_3 , respectively; decrease in FVC and FEV ₁ for 0.18-and 0.24-ppm O_3 exposure compared with FA exposure.	Schelegle and Adams (1986)
0.21	412	1 h CE at 75% $\dot{V}O_2max$	19 to 21 °C 60 to 70% RH	6 M, 1 F	Well-trained cyclists	Decrease in FVC, FEV ₁ , FEF _{25.75} , and MVV with 0.21 ppm O_3 compared with FA exposure.	Folinsbee et al. (1984)
0.20 0.35	392 686	l h CE or competitive simulation at mean $\dot{V}_E = 77.5$ L/min	23 to 26 °C 45 to 60% RH	10 M	Well-trained distance runners	$V_{\rm T}$ decreased and $f_{\rm B}$ increased with continuous 50-min O_3 exposures; decrease in FVC, FEV ₁ , and FEF ₂₅₋₇₅ from FA to 0.20 ppm and FA to 0.35-ppm O_3 exposure in all conditions; three subjects unable to complete continuous and competitive protocols at 0.35 ppm O_3 .	Adams and Schelegle (1983)
0.25 0.50 0.75	490 980 1,470	2 h rest	NA	8 M, 5 F		FVC decreased with 0.50- and 0.75-ppm O_3 exposure compared with FA; 4% nonsignificant decrease in mean VO_{2max} following 0.75 ppm O_3 compared with FA exposure.	Horvath et al. (1979)
0.15 0.30	294588	~30 min, progressively incremented exercise to voluntary exhaustion	23 °C 50% RH	9 M	Healthy, NS 21 to 44 years old	Exposure to 0.15 and 0.30 ppm O_3 did not decrease maximal exercise performance or \dot{VO}_{2max} compared to FA. No significant pulmonary function or symptom responses were observed, although a trend (P < .10) was evident.	Savin and Adams (1979)
0.75	1,470	2 h IE (4 × 15 min light [50 W] bicycle ergometry)	NA	13 M	4 light S, 9 NS	Decrease in FVC, FEV ₁ , ERV, IC, and FEF _{50%} after 1-h 0.75-ppm O ₃ exposure; decrease in \dot{VO}_{2max} , \dot{V}_{Tmax} , \dot{V}_{Emax} , maximal workload, and HRmax following 0.75-ppm O ₃ exposure compared with FA.	Folinsbee et al. (1977)

Table AX6-10. Ozone Effects on Exercise Performance^a

^aSee Appendix A for abbreviations and acronyms. ^bListed from lowest to highest O₃ concentration.

1	observed that \dot{VO}_{2max} was significantly decreased (10.5%) following a 2-h exposure to
2	0.75 ppm O ₃ with light (50 Watts) IE. Reduction in $\dot{V}O_{2max}$ was accompanied by a decrease in
3	maximal ventilation, maximal heart rate, and a large decrease in maximal tidal volume.
4	In addition, the 2-h IE O_3 exposure resulted in a 22.3% decrease in FEV ₁ and significant
5	symptoms of cough and chest discomfort. In contrast, Horvath et al. (1979) did not observe a
6	change in $\dot{V}O_{2max}$ or other maximal cardiopulmonary endpoints in subjects exposed for 2 h at rest
7	to either 0.50 or 0.75 ppm, although FVC was significantly decreased 10% following the latter
8	exposure. Without preliminary exposure to O ₃ , Savin and Adams (1979) examined the effects of
9	a 30-min exposure to 0.15 and 0.30 ppm O_3 while performing a progressively incremented
10	exercise test to volitional fatigue (mean = 31.5 min in FA). No significant effect on maximal
11	work time or $\dot{V}O_{2max}$ was observed compared to that observed upon FA exposure. Further, no
12	significant effect on pulmonary function, maximal heart rate, and maximal tidal volume was
13	observed, although maximal \dot{V}_{E} was significantly reduced 7% in the 0.30 ppm O ₃ exposure.
14	Results of these early studies suggest that $\dot{V}O_{2max}$ is reduced if the incremented maximal exercise
15	test is preceded by an O ₃ exposure of sufficient total inhaled dose of O ₃ to result in significant
16	pulmonary function decrements and symptoms of breathing discomfort.
17	Using trained nonathletes, Foxcroft and Adams (1986) observed significant ($p < 0.05$)
18	reductions in rapidly incremented $\dot{V}O_{2max}$ exercise performance time (-16.7%), $\dot{V}O_{2max}$ (-6.0%),
19	maximal \dot{V}_{E} (-15.0%), and maximal heart rate (-5.6%) immediately following an initial 50-min
20	exposure to 0.35 ppm O ₃ during heavy CE ($\dot{V}_E = 60$ L/min). These decrements were
21	accompanied by a significant reduction in FEV ₁ (-23%) and the occurrence of marked
22	symptoms of breathing discomfort. Similarly, Gong et al. (1986) found significant reductions in
23	rapidly incremented $\dot{V}O_{2max}$ exercise performance time (-29.7%), $\dot{V}O_{2max}$ (-16.4%), maximal \dot{V}_{E}
24	(-18.5%), and maximal workload (-7.8%) in endurance cyclists immediately following a 1-h
25	exposure to 0.20 ppm O_3 with very heavy exercise (\dot{V}_E 89 L/min), but not following exposure to
26	0.12 ppm. Gong et al. (1986) observed only a 5.6% FEV_1 decrement and mild symptoms
27	following exposure to 0.12 ppm, but a large decrement in FEV_1 (-21.6%) and substantial
28	symptoms of breathing discomfort following the 0.20 ppm exposure, which the authors
29	contended probably limited maximal performance and $\dot{V}O_{2max}$.
30	

1

AX6.7.3 Effect on Endurance Exercise Performance

2 A number of studies of well trained endurance athletes exposed to O₃ have consistently 3 observed an impairment of 1-h continuous heavy exercise performance of some individuals (Adams and Schelegle, 1983; Avol et al., 1984; Folinsbee et al., 1984; Gong et al., 1986). The 4 5 performance impairment is indicated by an inability to complete the prescribed O₃ exposures 6 (even at concentrations as low as 0.16 ppm) that subjects were able to complete in FA (Avol 7 et al., 1984). Other indications of impaired endurance exercise performance upon exposure to O_3 include a -7.7% reduced endurance treadmill running time when exposed to 0.18 ppm O₃ 8 9 (Folinsbee et al., 1986), which was accompanied by significantly decreased FEV₁ and 10 significantly elevated symptoms of breathing discomfort. Another study (Schelegle and Adams, 11 1986) observed the failure of some trained endurance athletes to complete a 1-h competitive 12 simulation protocol upon exposure to O₃ (30 min warm-up, followed immediately by 30 min at the maximal workload that each subject could just maintain in FA; mean $\dot{V}_{\rm E}$ = 120 L/min). 13 14 In this study, all subjects (n = 10) completed the FA exposure, whereas one, five, and seven 15 subjects could not complete the 0.12, 0.18, and 0.24 ppm O₃ exposures, respectively. Following 16 the 0.18 ppm and 0.24 ppm O_3 exposures, but not the 0.12 ppm exposure, FEV₁ was reduced 17 significantly and symptoms were significantly increased. Linder et al. (1988) also observed 18 small decrements in performance time (1 to 2 min) during a progressive maximal exercise test 19 (mean = 21.8 min) at O₃ concentrations of 0.065 and 0.125 ppm. These small effects were 20 accompanied by a significant increase in subjective perception of overall effort at 0.125 ppm, but 21 with no significant reduction in FEV₁ at either O₃ concentration. Collectively, reduced 22 endurance exercise performance and associated pulmonary responses are clearly related to the 23 total inhaled dose of O₃ (Adams and Schelegle, 1983; Avol et al., 1984; Schelegle and Adams, 24 1986).

Mechanisms limiting $\dot{V}O_{2max}$ and maximal exercise performance upon O₃ exposure have not been precisely identified. Schelegle and Adams (1986) observed no significant effect of O₃ on cardiorespiratory responses, and there was no indirect indication that arterial O₂ saturation was affected. The latter is consistent with the observation that measured arterial O₂ saturation at the end of a maximal endurance treadmill run was not affected by O₃ (Folinsbee et al., 1986). In studies in which O₃ inhalation resulted in a significant decrease in $\dot{V}O_{2max}$, and/or maximal exercise performance, significantly decreased FEV₁ and marked symptoms of breathing

1	discomfort were observed (Adams and Schelegle, 1983; Avol et al., 1984; Folinsbee et al., 1977,
2	1984, 1986; Foxcroft and Adams, 1986; Gong et al., 1986; Schelegle and Adams, 1986).
3	However, Gong et al. (1986) observed rather weak correlations between FEV_1 impairment and
4	physiological variable responses during maximal exercise ($R = 0.26$ to 0.44). Rather, these
5	authors concluded that substantial symptoms of breathing discomfort consequent to 1 h of
6	very heavy exercise while exposed to 0.20 ppm O ₃ , probably limited maximal performance
7	and \dot{VO}_{2max} either voluntarily or involuntarily (Gong et al., 1986). Strong support for this
8	contention is provided by the observation of significant increases in $\dot{V}O_{2max}$ (4.7%) and maximal
9	performance time (8.8%) following four consecutive days of 1 h exposure to 0.35 ppm O_3 with
10	heavy exercise ($\dot{V}_E = 60 \text{ L/min}$) compared to initial O ₃ exposure (Foxcroft and Adams, 1986).
11	These improvements, which were not significantly different from those for FA, were
12	accompanied by a significant reduction in symptoms of breathing discomfort with no significant
13	attenuation of FEV_1 and other pulmonary function responses. In this regard, Schelegle et al.
14	(1987) observed a disparate effect of indomethacin pretreatment (an inhibitor of the cyclo-
15	oxygenation of arachidonic acid to prostaglandins associated with inflammatory responses)
16	on O_3 -induced pulmonary function response (significant reduction) and an overall rating of
17	perceived exertion and symptoms of pain on deep inspiration and shortness of breath (no
18	significant effect).

- 19 20
- 21

AX6.8 EFFECTS ON AIRWAY RESPONSIVENESS

22 Increased airway responsiveness, also called airway hyperresponsiveness (AHR) or 23 bronchial hyperreactivity, indicates that the airways are more reactive to bronchoconstriction induced by a variety of stimuli (e.g., specific allergens, exercise, SO₂, cold air) than they would 24 25 be when normoreactive. In order to determine the level of airway responsiveness, airway 26 function (usually assessed by spirometry or plethysmography) is measured after the inhalation of 27 small amounts of an aerosolized specific (e.g., antigen, allergen) or nonspecific (e.g., 28 methacholine, histamine) bronchoconstrictor agent or measured stimulus (e.g., exercise, cold 29 air). The dose or concentration of the agent or stimulus is increased from a control, baseline 30 level (placebo) until a predetermined degree of airway response, such as a 20% drop in FEV₁ or 31 a 100% increase in Raw, has occurred (Cropp et al., 1980; Sterk et al., 1993). The dose or

1	concentration of the bronchoconstrictor agent that produced the increased responsiveness often is
2	referred to as the "PD ₂₀ FEV ₁ " or "PC ₂₀ FEV ₁ " (i.e., the provocative dose or concentration that
3	produced a 20% drop in FEV ₁) or the "PD ₁₀₀ SRaw" (i.e., the provocative dose that produced a
4	100% increase in SRaw). A high level of bronchial responsiveness is a hallmark of asthma.
5	The range of nonspecific bronchial responsiveness, as expressed by the PD_{20} for example, is at
6	least 1,000-fold from the most sensitive asthmatics to the least sensitive healthy subjects.
7	Unfortunately, it is difficult to compare the $PD_{20}FEV_1$ or $PD_{100}SRaw$ across studies because of
8	the many different ways of presenting dose response to bronchoconstrictor drugs, for example,
9	by mg/mL, units/mL, and molar solution; or by cumulative dose (CIU or CBU) and doubling
10	dose (DD). Further confounding comparisons by affecting the site of drug delivery, dose, and
11	ultimately bronchial responses, the size of aerosolized agents used in challenges can vary
12	between nebulizers and as a function of supply air pressure in otherwise identical systems.
13	Other typical bronchial challenge tests with nonspecific bronchoconstrictor stimuli are based
14	on exercise intensity or temperature of inhaled cold air.

15 Increases in nonspecific airway responsiveness were previously reported as an important 16 consequence of exposure to O₃ (e.g., Golden et al., 1978; Table AX6-11). König et al. (1980) 17 and Holtzman et al. (1979) found the increased airway responsiveness after O₃ exposure in 18 healthy subjects appeared to be resolved after 24 h. Because atopic subjects had similar 19 increases in responsiveness to histamine after O₃ exposure as nonatopic subjects, Holtzman et al. 20 (1979) concluded that the increased nonspecific bronchial responsiveness after O₃ exposure was 21 not related to atopy. Folinsbee and Hazucha (1989) showed increased airway responsiveness in 22 18 female subjects 1 and 18 h after exposure to 0.35 ppm O₃. Taken together, these studies suggest that O₃-induced increases in airway responsiveness usually resolve 18 to 24 h after 23 24 exposure, but may persist in some individuals for longer periods.

Gong et al. (1986) found increased nonspecific airway responsiveness in elite cyclists exercising at competitive levels with O_3 concentrations as low as 0.12 ppm. Folinsbee et al. (1988) found an approximate doubling of the mean methacholine responsiveness in a group of healthy volunteers exposed for 6.6 h to 0.12 ppm O_3 . Horstman et al. (1990) demonstrated significant decreases in the PD₁₀₀SRaw in 22 healthy subjects immediately after a 6.6-h exposure to concentrations of O_3 as low as 0.08 ppm. No relationship was found between O_3 -induced changes in airway responsiveness and changes in FVC or FEV₁ (Folinsbee et al., 1988; Aris

Ozone Concentration ^b		Francisco Dana di an	Exposure	Number and	Subject		
ppm	μg/m ³	 Exposure Duration and Activity 	Conditions	Gender of Subjects	Characteristics	Observed Effect(s)	Reference
0.125 0.250	245 490	3h IE (10 min rest, 15 min exercise on bicycle)	27 °C 50 % RH	5 F, 6 M 20-53 years old 6 F, 16 M	Mild bronchial asthma	Mean early-phase FEV ₁ response and number of $\geq 20\%$ reductions in FEV ₁ were significantly greater after 0.25 ppm O ₃ or	Holz et al. (2002)
0.125	245	$\dot{V}_{E} = 30 \text{ L/min}$ 3h IE × 4 days		19-48 years old	Allergic rhinitis	4×0.125 ppm O ₃ . Most of the $\ge 15\%$ late- phase FEV ₁ responses occurred after exposure to 4×0.125 ppm O ₃ , as well as significant inflammatory effects, as indicated by increased sputum eosinophils (asthma and allergic rhinitis) and increased sputum lymphocytes, mast cell tryptase, histamine, and LDH (asthma only).	
0.4	784	2 h IE $\dot{V}_E = 20 \text{ L/min/m}^2$ BSA	NA	6 F 1 M 19-26 years old	Stable mild asthma; no meds 8 h preexposure	Increased bronchial responsiveness to methacholine 16 h after exposure; inhaled apocynin treatment significantly reduced O_3 -induced airway responsiveness.	Peters et al. (2001)
0.12	235	45 min IE exercise, rest, exercise $\dot{V}_E = 3 \times resting$	60% RH	12 F 5 M 19-38 years old	Physician diagnosed asthma; SO ₂ -induced airway hyperreactivity	The authors concluded O_3 exposure increases bronchial responsiveness to SO_2 in asthmatics and that antioxidant supplementation has a protective effects against this responsiveness, especially in the "more-severe" responders.	Trenga et al (2001)
0.2	392	4 h IE $\dot{V}_E = 25 \text{ L/min/m}^2$ BSA	20 °C 62% RH	4F 8M 23-47 years old	Healthy nonsmokers	Increased sputum total cells, % neurtophils, IL-6, and IL-8 at 18 h after exposure; increased airway responsiveness to methacholine 2 h after postexposure FEV ₁ returned to 5% of base-line; no anti- inflammatory effect of azithromycin.	Criqui et al. (2000)
0.4	784	2 h IE 40 min/h @ 50 W	NA	15 healthy subjects ; 9 F, 6 M; 31.1 ± 2.1 years old	Healthy; nonatopic	Decreased FEV ₁ and FVC; increased bronchial reactivity to methacholine 4 h postexposure; no protection from inhaled corticosteroid, budesonide.	Nightingale et al. (2000)
0.16	314	7.6 h IE 50 min/h $\dot{V}_E \approx 25$ l/min	22°C 40% RH	5 F 4 M	Mild atopic asthma, HMD sensitive, 20-35 years old	Mean 9.1% FEV ₁ decrease 18 h after O_3 exposure; provocative dose of dust mite allergen decreased from 10.3 to 9.7 dose units.	Kehrl et al. (1999)

TABLE AX6-11. Airway Responsiveness Following Ozone Exposures^a

TABLE AX6-11 (cont'd).	Airway Responsiveness	Following Ozone Exposures ^a
	The may response encos	i one wing ozone Enposures

Ozone Concentration ^b		Emergence Description	_	Name			
ppm	$\mu g/m^3$	 Exposure Duration and Activity 	Exposure Conditions	Number and Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
0.2	392	4 h IE 40 min/h @ 50 W	NA	10 asthmatic (6 F, 4 M), 26.6 ± 2.3 years old; 10 healthy (4 F, 6 M), 27.3 ± 1.4 years old.	Mild atopic asthma; nonatopic healthy subjects; no meds 8 weeks pre-exposure	Decreased FEV ₁ in asthmatic (9.3%) and healthy (6.7%) subjects; increased sputum neutrophils in both groups (NS); no change in methacholine airway reactivity 24 h postexposure.	Nightingale et al. (1999)
0.12 Air-antigen	235	1 h rest	NA	6 F 9 M	Mild allergic asthma; 18 to 49 years if age	No effect of O3 on airway response to grass or ragweed allergen.	Hanania et al. (1998)
0.4	784	2 h IE \dot{V}_{E} = 20 L/min/m ² BSA	NA	5F 1M 18-27 years old	Stable mild asthma; no meds 8 h preexposure	Increased airway responsiveness to methacholine 16 h postexposure; no effect of proteinase inhibitor, rALP.	Hiltermann et al. (1998)
0.2	392	4 h IE 50 min/h $\dot{V}_E = 25 \text{ L/min/m}^2$ BSA	20 °C 50% RH	6 F 12 M 18-36 years old	Physician-diagnosed mild asthma; no meds prior to exposure	Decreased FEV ₁ and FVC, increased SRaw; lower respiratory Sx; increased % neutrophils, total protein, LDH, fibronectin, IL-8, GM-CSF, and MPO in BAL. Correlation between pre-exposure methacholine challenge and O ₃ -induced SRaw increase.	Balmes et al (1997); Scannell et al. (1996)
0.4	784	3 h/d for 5 days; alternating 15 min of rest and exercise at $\dot{V}_E = 32$ L/min	31 °C 35% RH	2 F 8 M 19-48 years old	Mild asthma requiring only occasional bronchodilator therapy	Significant FEV_1 and Sx response on 1st and 2nd O ₃ exposure days, then diminishing with continued exposure; tolerance partially lost 4 and 7 days postexposure; bronchial reactivity to methacholine peaked on 1st O ₃ exposure day, but remained elevated with continued exposure.	Gong et al. (1997b)
0.12	236	Rest	22 °C 40% RH	5 F 10 M	atopic asthma	No effect of O_3 on airway response to grass allergen.	Ball et al. (1996)
0.25	490	3 h IE $\dot{V}_E = 30$ L/min 15 min ex/ 10 min rest/ 5 min no O ₃ ; every 30 min.	27 °C 54% RH mouthpiece exposure	24 mild asthmatics 11 F / 13 M 12 allergic rhinitics 6 M / 6 F	atopic mild asthmatic NS	Increased allergen responsiveness afer O ₃ exposure.	Jörres et al. (1996)

Ozone Concentration ^b		 Exposure Duration 	Eurocune	Number and	S h		
ррт	$\mu g/m^3$	and Activity	Exposure Conditions	Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
0.2	392	4h IE 50 min/10 min exercise/rest each hour	22 °C 50% RH	42 M/24 F	18-50 years NS healthy	$FEV_1(-18.6\%)$, FVC (-14.6%), decreased after O ₃ . Baseline PC ₁₀₀ for methacholine was not related to changes in FVC, FEV ₁ , a weak association was seen for PC ₁₀₀ and increased SRaw.	Aris et al. (1995)
0.12	235	1 h R	Ambient T & RH for exposure; 23 °C & 50% RH for exercise challenge	8 F 7 M 19-45 years old	Mild stable asthma	No significant difference in % fall FEV_1 or V_{40p} ; no increase in bronchial responsiveness to exercise challenge.	Fernandes et al. (1994)
0.12	235	6.6 h, IE x 5 days 50 min exercise/10 min rest, 30 min lunch $\dot{V}_E = 38.8$ L/min	18 °C 40% RH	17 M $25 \pm 4 \text{ years old}$	Healthy nonsmokers	FEV_1 responses were maximal on 1st day of exposure (-13%), less on second day (-9%), absent thereafter. Sx responses only the first 2 days. Methacholine airway responsiveness was at least doubled on all exposure days, but was highest on the second day of O ₃ .	Folinsbee et al. (1994)
0.10 0.25 0.40	196 490 785	1 h light IE 2 × 15 min on treadmill $\dot{V}_E = 27$ L/min	21 °C 40% RH	9 F 12 M 19-40 years old	Stable mild asthmatics with FEV ₁ >70% and methacholine responsiveness	No significant differences in FEV ₁ or FVC were observed for 0.10 and 0.25 ppm O_3 -FA exposures or postexposure exercise challenge; 12 subjects exposed to 0.40 ppm O_3 showed significant reduction in FEV ₁ .	Weymer et al. (1994)
Air-antigen 0.12 ppm O ₃ -antigen		1 h at rest	NA	4 M, 3 F	Asthmatic, 21 to 64 years old	Increased bronchoconstrictor response to inhaled ragweed or grass after O_3 exposure compared to air.	Molfino et al. (1991)
0.08 0.10 0.12	157 196 235	6.6 h IE at ≈39 L/min	18 °C 40% RH	22 M	Healthy NS, 18 to 32 years old	33, 47, and 55% decreases in cumulative dose of methacholine required to produce a 100% increase in SRaw after exposure to O ₃ at 0.08, 0.10, and 0.12 ppm, respectively.	Horstman et al. (1990)

TABLE AX6-11 (cont'd). Airway Responsiveness Following Ozone Exposures^a

Ozone Concentration ^b		- Emocure Daniellar	_		~ • • •			
ppm	μg/m ³	 Exposure Duration and Activity 	ExposureNumber andConditionsGender of Subjects		Subject Characteristics	Observed Effect(s)	Reference	
0.12 ppm O ₃ -100 ppb SO ₂ 0.12 ppm O ₃ -0.12 ppm O ₃ Air-100 ppb SO ₂		45 min in first atmosphere and 15 min in second IE	22 °C 75% RH	8 M, 5 F	Asthmatic, 12 to 18 years old	Greater declines in FEV ₁ and $\dot{V}_{max50\%}$ and greater increase in respiratory resistance after O_3 -SO ₂ than after O_3 -O ₃ or air-SO ₂ .	Koenig et al (1990)	
0.35	686	70 min with IE at 40 L/min	NA	18 F	Healthy NS, 19 to 28 years old	PD_{100} decreased from 59 CIU after air exposure to 41 CIU and 45 CIU, 1 and 18 h after O ₃ exposure, respectively.	Folinsbee and Hazucha (1989)	
0.40	784	2 h with IE at $\dot{V}_E = 53$ to 55 L/min	22 °C 50% RH	8 M, 10 F	9 asthmatics (5 F, 4 M), 9 healthy (5 F, 4 M), 18 to 34 years old	Decreased PC _{100SRaw} from 33 mg/mL to 8.5 mg/mL in healthy subjects after O ₃ . PC _{100SRaw} fell from 0.52 mg/mL to 0.19 mg/mL in asthmatic subjects after exposure to O ₃ and from 0.48 mg/mL to 0.27 mg/mL after exposure to air.	Kreit et al. (1989)	
0.12	235	6.6 h with IE at ≈25 L/min/m ² BSA	NA	10 M	Healthy NS, 18 to 33 years old	Approximate doubling of mean methacholine responsiveness after exposure. On an individual basis, no relationship between O_3 -induced changes in airway responsiveness and FEV ₁ or FVC.	Folinsbee et al. (1988)	
0.12 0.20	235 392	1 h at $\dot{V}_E = 89$ L/min followed by 3 to 4 min at ≈ 150 L/min	31 °C 35% RH	15 M, 2 F	Elite cyclists, 19 to 30 years old	Greater than 20% increase in histamine responsiveness in one subject at 0.12 ppm O_3 and in nine subjects at 0.20 ppm O_3 .	Gong et al. (1986)	
0.40	784	3 h/day for 5 days in a row		13 M, 11 F	Healthy NS, 19 to 46 years old	Enhanced response to methacholine after first 3 days, but this response normalized by Day 5.	Kulle et al. (1982)	
0.20 392 0.40 784 0.40 784		2 h with IE at 2 × resting 2 h with IE at 2 × resting 2 h/day for 3 days	22 °C 55% RH	12 M, 7 F	Healthy NS, 21 to 32 years old	110% increase in Δ SRaw to a 10-breath histamine (1.6%) aerosol challenge after exposure to O ₃ at 0.40 ppm, but no change at 0.20 ppm. Progressive adaptation of this effect over 3-day exposure.	Dimeo et al. (1981)	

TABLE AX6-11 (cont'd). Airway Responsiveness Following Ozone Exposures^a

Ozone Concentration ^b							
ppm	μg/m ³	 Exposure Duration and Activity 	Exposure Conditions	Number and Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
0.10 0.32 1.00	196 627 1,960	2 h	NA	14	Health NS, 24 ± 2 years old	Increased airway responsiveness to methacholine immediately after exposure at the two highest concentrations of O_3 .	König et al. (1980)
0.60	1,176	2 h with IE at 2 × resting	22 °C 55% RH	11 M, 5 F	9 atopic, 7 nonatopic, NS, 21 to 35 years old	Ten-breath methacholine or histamine challenge increased SRaw $\geq 150\%$ in 16 nonasthmatics after O ₃ . On average, the atopic subjects had greater responses than the nonatopic subjects. The increased responsiveness resolved after 24 h. Atropine premedication blocked the O ₃ -induced increase in airway responsiveness.	Holtzman et al. (1979)
0.6	1,176	2 h at rest	NA	5 M, 3 F	Healthy NS, 22 to 30 years old	300% increase in histamine-induced Δ Raw 5 min after O ₃ exposure; 84 and 50% increases 24 h and 1 week after exposure (p > 0.05), respectively. Two subjects had an increased response to histamine 1 week after exposure.	Golden et al. (1978)

TABLE AX6-11 (cont'd). Airway Responsiveness Following Ozone Exposures^a

^aSee Appendix A for abbreviations and acronyms. ^bListed from lowest to highest O₃ concentration. et al., 1995), suggesting that changes in airway responsiveness and spirometric volumes occur by
 different mechanisms.

3 Dimeo et al. (1981) were the first to investigate attenuation of the O₃-induced increases in 4 nonspecific airway responsiveness after repeated O_3 exposure. Over 3 days of a 2 h/day 5 exposure to 0.40 ppm O₃, they found progressive attenuation of the increases in airway 6 responsiveness such that, after the third day of O₃ exposure, histamine airway responsiveness was no longer different from the sham exposure levels. Kulle et al. (1982) found that there was 7 8 a significantly enhanced response to methacholine after the first 3 days of exposure, but this 9 response slowly normalized by the end of the fifth day. Folinsbee et al. (1994) found a more 10 persistent effect of O₃ on airway responsiveness which was only partially attenuated after 11 5 consecutive days of O_3 exposure.

12 The occurrence and duration of increased nonspecific airway responsiveness following O₃ 13 exposure could have important clinical implications for asthmatics. Kreit et al. (1989) 14 investigated changes in airway responsiveness to methacholine that occur after O₃ exposure in mild asthmatics. They found that the baseline $PC_{100}SRaw$ declined from 0.52 to 0.19 mg/mL 15 after a 2-h exposure to 0.40 ppm O₃ as compared to a decline from 0.48 to 0.27 mg/mL after air 16 exposure; however, because of the large variability in responses of the asthmatics, the percent 17 18 decrease from baseline in mean PC₁₀₀SRaw was not statistically different between healthy and 19 asthmatic subjects (74.2 and 63.5%, respectively).

20 Two studies examined the effects of preexposure to O₃ on exacerbation of exercise-induced 21 bronchoconstriction (Fernandes et al., 1994; Weymer et al., 1994). Fernandes et al. (1994) 22 preexposed subjects with stable mild asthma and a history of >15% decline in FEV₁ after 23 exercise to 0.12 ppm O₃ for 1 h at rest followed by a 6-min exercise challenge test and found no 24 significant effect on either the magnitude or time course of exercise-induced 25 bronchoconstriction. Similarly, Weymer et al. (1994) observed that preexposure to either 0.10 or 26 0.25 ppm O₃ for 60 min while performing light IE did not enhance or produce exercise-induced 27 bronchoconstriction in otherwise healthy adult subjects with stable mild asthma. Although the 28 results suggested that preexposure to O₃ neither enhances nor produces exercise-induced asthma 29 in asthmatic subjects, the relatively low total inhaled doses of O₃ used in these studies limit the 30 ability to draw any definitive conclusions.

1	Gong et al. (1997b) found that subjects with asthma developed tolerance to repeated
2	O3 exposures in a manner similar to normal subjects; however, there were more persistent effects
3	of O ₃ on airway responsiveness, which only partially attenuated when compared to filtered air
4	controls. Volunteer subjects with mild asthma requiring no more than bronchodilator therapy
5	were exposed to filtered air or 0.4 ppm O_3 , 3 h/d for 5 consecutive days, and follow-up
6	exposures 4 and 7 days later. Symptom and FEV_1 responses were large on the 1st and 2nd
7	exposure days, and diminished progressively toward filtered air responses by the 5 th exposure
8	day. A methacholine challenge was performed when postexposure FEV_1 returned to within 10%
9	of preexposure baseline levels. The first O_3 exposure significantly decreased $PD_{20}FEV_1$ by an
10	order of magnitude and subsequent exposures resulted in smaller decreases, but they were still
11	significantly different from air control levels. Thus, the effects of consecutive O ₃ exposures on
12	bronchial reactivity differ somewhat from the effects on lung function. The same conclusion
13	was drawn by Folinsbee et al. (1994) after consecutive 5-day O ₃ exposures in healthy subjects,
14	despite a much lower bronchial reactivity both before and after O ₃ exposure.

15 A larger number of studies examined the effects of O₃ on exacerbation of antigen-induced 16 asthma. Molfino et al. (1991) were the first to report the effects of a 1-h resting exposure to 0.12 ppm O₃ on the response of subjects with mild, stable atopic asthma to a ragweed or grass 17 18 allergen inhalation challenge. Allergen challenges were performed 24 h after air and 19 O₃ exposure. Their findings suggested that allergen-specific airway responsiveness of mild 20 asthmatics is increased after O₃ exposure. However, Ball et al. (1996) and Hanania et al. (1998) 21 were unable to confirm the findings of Molfino et al. (1991) in a group of grass-sensitive mild 22 allergic asthmatics exposed to 0.12 ppm O₃ for 1 h. The differences between Hanania et al. 23 (1998) and Molfino et al. (1991), both conducted in the same laboratory, were due to better, less 24 variable control of the 1 h 0.12 ppm O₃ exposure and better study design by Hanania and 25 colleagues. In the original, Molfino et al. (1991) study, the control (air) and experimental (O_3) 26 exposures were not randomized after the second subject because of long-lasting (3 months), 27 O₃-induced potentiation of airway reactivity in that subject. For safety reasons, therefore, the air 28 exposures were performed prior to the O₃ exposures for the remaining 5 of 7 subjects being 29 evaluated. It is possible that the first antigen challenge caused the significant increase in the 30 second (post- O_3) antigen challenge.

Jörres et al. (1996) later confirmed that higher O₃ concentrations cause increased airway reactivity to specific antigens in subjects with mild allergic asthma, and to a lesser extent in subjects with allergic rhinitis, after exposure to 0.25 ppm O₃ for 3 h. The same laboratory repeated this study in separate groups of subjects with asthma and rhinitis and found similar enhancement of allergen responsiveness after O₃ exposure (Holz et al., 2002); however, the effects of a 3-h exposure to 0.25 ppm O₃ were more variable, most likely due to performing the allergen challenges 20 h after exposure, rather than the 3 h used in the first study.

8 The timing of allergen challenges in O_3 -exposed subjects with allergic asthma is important. 9 Bronchial provocation with allergen, and subsequent binding with IgE antibodies on mast cells 10 in the lungs, triggers the release of histamine and leukotrienes and a prompt early-phase 11 contraction of the smooth muscle cells of the bronchi, causing a narrowing of the lumen of the 12 bronchi and a decrease in bronchial airflow (i.e., decreased FEV₁). In many asthma patients, 13 however, the release of histamine and leukotrienes from the mast cells also attracts an 14 accumulation of inflammatory cells, especially eosinophils, followed by the production of mucus 15 and a late-phase decrease in bronchial airflow for 4 to 8 h.

16 A significant finding from the study by Holz et al. (2002) was that clinically relevant 17 decreases in FEV₁ (\geq 20%) occurred during the early-phase allergen response in subjects with 18 rhinitis after a consecutive 4-day exposure to 0.125 ppm O₃. Kehrl et al. (1999) previously 19 found an increased reactivity to house dust mite antigen in asthmatics 16 to 18 h after exposure 20 to 0.16 ppm O₃ for 7.6 hours. These important observations indicate that O₃ not only causes 21 immediate increases in airway-antigen reactivity, but that this effect may persist for at least 18 to 22 20 h. Ozone exposure, therefore, may be a clinically important co-factor in the response to 23 airborne bronchoconstrictor substances in individuals with pre-existing allergic asthma. It is 24 plausible that this phenomenon could contribute to increased symptom exacerbations and, even, 25 consequent increased physician or ER visits, and possible hospital admissions (see Chapter 7). 26 A number of human studies, especially more recent ones, have been undertaken to 27 determine various aspects of O₃-induced increases in nonspecific airway responsiveness, but 28 most studies have been conducted in laboratory animals (See the toxicology chapter, Section

5.3.4.4.). In humans, increased airway permeability (Kehrl et al., 1987; Molfino et al., 1992)
could play a role in increased airway responsiveness. Inflammatory cells and mediators also

31 could affect changes in airway responsiveness. The results of a multiphase study (Scannell

1 et al., 1996; Balmes et al., 1997) showed a correlation between preexposure methacholine 2 responsiveness in healthy subjects and increased SRaw caused by a 4 h exposure to 0.2 ppm O₃, 3 but not with O₃-induced decreases in FEV₁ and FVC. The O₃-induced increase in SRaw, in turn, 4 was correlated with O₃-induced increases in neutrophils and total protein concentration in BAL fluid. Subjects with asthma had a significantly greater inflammatory response to the same O_3 5 6 exposures, but it was not correlated with increased SRaw, and nonspecific airway provocation 7 was not measured. Therefore, it is difficult to determine from this series of studies if underlying 8 airway inflammation plays a role in increased airway responsiveness to nonspecific 9 bronchoconstrictors. The study, however, confirmed an earlier observation (e.g., Balmes et al., 10 1996) that O₃-induced changes in airway inflammation and lung volume measurements are not 11 correlated.

12 Hiltermann et al. (1998) reported that neutrophil-derived serine proteinases associated 13 with O₃-induced inflammation are not important mediators for O₃-induced nonspecific airway 14 hyperresponsiveness. Subjects with mild asthma, prescreened for O₃-induced airway 15 responsiveness to methacholine, were administered an aerosol of recombinant antileukoprotease 16 (rALP) or placebo at hourly intervals two times before and six times after exposure to filtered air or 0.4 ppm O₃ for 2 h. Methacholine challenges were performed 16 h after exposure. Treatment 17 18 with rALP had no effect on the O_3 -induced decrease in FEV₁ or PC₂₀FEV₁ in response to 19 methacholine challenge. The authors speculated that proteinase-mediated tissue injury caused 20 by O₃ may not be important in the development of airway hyperresponsiveness of asthmatics to O₃. In a subsequent study using a similar protocol (Peters et al., 2001), subjects with mild 21 22 asthma were administered an aerosol of apocynin, an inhibitor of NADPH oxidase present in 23 inflammatory cells such as eosinophils and neutrophils, or a placebo. In this study, methacholine challenge performed 16 h after O_3 exposure showed treatment-related effects on $PC_{20}FEV_1$, 24 without an effect on FEV₁. The authors concluded that apocynin could prevent O₃-induced 25 26 bronchial hyperresponsiveness in subjects with asthma, possibly by preventing superoxide 27 formation by eosinophils and neutrophils in the larger airways.

Nightingale et al. (1999) reported that exposures of healthy subjects and subjects with mild atopic asthma to a lower O_3 concentration (0.2 ppm) for 4 h caused a similar neutrophilic lung inflammation in both groups but no changes in airway responsiveness to methacholine measured 24 h after O_3 exposure in either group. There were, however, significant decreases in FEV₁ of 6.7 and 9.3% immediately after O₃ exposure in both healthy and asthmatic subjects, respectively.
In a subsequent study, a significant increase in bronchoresponsiveness to methacholine was
reported 4 h after healthy subjects were exposed to 0.4 ppm O₃ for 2 h (Nightingale et al., 2000).
In the latter study, preexposure treatment with inhaled budesonide (a corticosteroid) did not
protect against O₃-induced effects on spirometry, methacholine challenge, or sputum neutrophils.
These studies also confirm the earlier reported findings that O₃-induced increases in airway
responsiveness usually resolve by 24 h after exposure.

8 Ozone-induced airway inflammation and hyperresponsiveness were used by Criqui et al. 9 (2000) to evaluate anti-inflammatory properties of the macrolide antibiotic, azithromycin. In a 10 double-blind, cross-over study, healthy volunteers were exposed to 0.2 ppm O₃ for 4 h after 11 pretreatment with azithromycin or a placebo. Sputum induction 18 h postexposure resulted in 12 significantly increased total cells, percent neutrophils, IL-6, and IL-8 in both azithromycin- and 13 placebo-treated subjects. Significant pre- to postexposure decreases in FEV₁ and FVC also were found in both subject groups. Airway responsiveness to methacholine was not significantly 14 15 different between azithromycin-treated and placebo-treated subjects when they were challenged 2 h after postexposure FEV₁ decrements returned to within 5 % of baseline. Thus, azithromycin 16 17 did not have anti-inflammatory effects in this study.

18 The effects of dietary antioxidants on O_3 -induced bronchial responsiveness to SO_2 19 provocation were evaluated in adult asthmatic subjects by Trenga et al. (2001). This study and 20 potential interpretative problems are discussed in detail in Section AX6.5.6. Briefly, 17 adult 21 asthmatic subjects sensitive to SO₂ provocation took vitamin supplements (400 IU vitamin E and 22 500 mg vitamin C) or placebo once a day for 5 weeks. After the fourth and fifth weeks of vitamin or placebo, subjects were randomly exposed to FA and 0.12 ppm O_3 for 45 min during 23 IE ($\dot{V}_E \approx 3 \times$ resting rate) followed by two sequential 10 min exposures to 0.1 and 0.25 ppm SO₂. 24 25 Vitamin treatment was not associated with decreased bronchial responsiveness following the 0.1 ppm SO₂ challenge. However, the change in spirometric responses (FEV₁, FVC, FEF₂₅₋₇₅, 26 27 and PEF) between the 0.1 and 0.25 ppm SO₂ challenges were more severe for the placebo than 28 the vitamin treatment regimen (p = 0.009). The authors concluded O₃ exposure increases 29 bronchial responsiveness to SO₂ in asthmatics and that antioxidant supplementation has a 30 protective effect against this responsiveness.

31

1

2

AX6.9 EFFECTS ON INFLAMMATION AND HOST DEFENSE

AX6.9.1 Introduction

3 In general, inflammation can be considered as the host response to injury, and the 4 induction of inflammation can be accepted as evidence that injury has occurred. Several 5 outcomes are possible: (1) inflammation can resolve entirely; (2) continued acute inflammation 6 can evolve into a chronic inflammatory state; (3) continued inflammation can alter the structure 7 or function of other pulmonary tissue, leading to diseases such as fibrosis or emphysema; 8 (4) inflammation can alter the body's host defense response to inhaled microorganisms; and 9 (5) inflammation can alter the lung's response to other agents such as allergens or toxins. 10 At present, it is known that short-term exposure of humans to O_3 can cause acute inflammation 11 and that long-term exposure of laboratory animals results in a chronic inflammatory state (see 12 Chapter 5). However, the relationship between repetitive bouts of acute inflammation in humans 13 caused by O₃ and the development of chronic respiratory disease is unknown.

Bronchoalveolar lavage (BAL) using fiberoptic bronchoscopy has been utilized to sample cells and fluids lining the respiratory tract primarily from the alveolar region, although the use of small volume lavages or balloon catheters permits sampling of the airways. Cells and fluid can be retrieved from the nasal passages using nasal lavage (NL) and brush or scrape biopsy.

18 Several studies have analyzed BAL and NL fluid and cells from O_3 -exposed humans for 19 markers of inflammation and lung damage (see Tables AX6-12 and AX6-13). The presence of 20 neutrophils (PMNs) in the lung has long been accepted as a hallmark of inflammation and is an important indicator that O₃ causes inflammation in the lungs. It is apparent, however, that 21 22 inflammation within airway tissues may persist beyond the point that inflammatory cells are 23 found in BAL fluid. Soluble mediators of inflammation such as the cytokines (IL-6, IL-8) and arachidonic acid metabolites (e.g., PGE₂, PGF_{2a}, thromboxane, and leukotrienes [LTs] such as 24 25 LTB_4) have been measured in the BAL fluid of humans exposed to O_3 . In addition to their role in inflammation, many of these compounds have bronchoconstrictive properties and may be 26 27 involved in increased airway responsiveness following O₃ exposure.

Some recent evidence suggests that changes in small airways function may provide a sensitive indicator of O_3 exposure and effect (*see Section AX6.2.5*), despite the fact that inherent variability in their measurement by standard spirometric approaches make their assessment difficult. Observations of increased functional responsiveness of these areas relative to the more

Ozone Concentration ^b		F		Number and Gender		
ppm	$\mu g/m^3$	Exposure Duration	Activity Level (\dot{V}_E)	of Subjects	Observed Effect(s)	Reference
Upper Airv	way Studies					
0.4	784	2 h	At rest	12 mild, asymptomatic dust mite-sensitive asthmatics; 18-35 years of age	Release of early-onset mast cell-derived mediators into NL in response to allergen not enhanced following O_3 exposure. Neutrophil and eosinophil inflammatory mediators were not increased after O_3 exposure or enhanced after allergen challenge. O_3 increased eosinophil influx following allergen exposure.	Michelson et al. (1999)
0.2	392	2 h	IE (15 min/30 min); $(\dot{V}_E) \approx 20$ L/min/m ² BSA	8 M, 5 F healthy NS 20-31 years of age	No neutrophilia in NL samples by 1.5 h postexposure. Depletion of uric acid in NL fluid by 30% during h 2 of exposure with increase in plasma uric acid levels. No depletion of ascorbic acid, reduced glutathione, extracellular superoxide dismutase.	Mudway et al. (1999)
0.4	980	2 h	At rest	10 mild NS asthmatics 18-35 years old	Response to allergen increased (NS). PMN and eosinophils increased after O_3 plus allergen challenge. Ozone alone increased inflammation in the nose.	Peden et al. (1995)
0.12 0.24	235 470	1.5 h	IE (20 L/min) at 15-min intervals	5 M, 5 F, asthmatic; 4 M, 4 F, nonasthmatic; 18 to 41 years old	NL done immediately and 24 h after exposure. Increased number of PMNs at both times in asthmatic subjects exposed to 0.24 ppm O ₃ ; no change in nonasthmatic subjects. No change in lung or nasal function.	McBride et al. (1994)
0.5	980	4 h	Resting	6 M, 6 F, allergic rhinitics, $31.4 \pm 2.0 \text{ (SD)}$ years old	NL done immediately after exposure. Increased upper and lower respiratory symptoms and increased levels of PMNs, eosinophils, and albumin in NL fluid.	Bascom et al. (1990)
0.4	784	2 h	IE (70 L/min) at 15-min intervals	11 M, 18 to 35 years old	NL done immediately before, immediately after, and 22 h after exposure. Increased numbers of PMNs at both times after exposure; increased levels of tryptase, a marker of mast cell degranulation, immediately after exposure; increased levels of albumin 22 h after exposure.	Graham and Koren (1990) Koren et al. (1990)
0.5	980	4 h on 2 consecutive days	Resting	41 M (21 O ₃ -exposed, 20 air-exposed), 18 to 35 years old	NL done immediately before and after each exposure and 22 h after the second exposure. Increased levels of PMNs at all times after the first exposure, with peak values occurring immediately prior to the second exposure.	Graham et al. (1988)

Table AX6-12. Studies of Respiratory Tract Inflammatory Effects from Controlled Human Exposure to Ozone^a

Ozone Co	ncentration ^b	Exposure	Activity Level	Number and Gender of Subjects	Observed Effect(s)	Reference
ppm	$\mu g/m^3$	Duration	(\dot{V}_{E})			
Lower Air	way Studies					
0.2	392	2 h	IE (15 min/30 min); $(\dot{V}_E) \approx 20$ L/min/m ² BSA	6M, 6F healthy, nonatopic and 9 M, 6F mild asthmatic subjects, 19-48 years of age	Significantly higher baseline expression of IL-4 and IL-5 in bronchial mucosal biopsies from asthmatic vs. healthy subjects 6 h postexposure. Following O ₃ exposure, epithelial expression of IL-5, GM-CSF, ENA-78, and IL-8 increased significantly in asthmatics, as compared to healthy subjects.	Bosson et al. (2003)
0.1	196	2 h	mild IE	12 M, 10 F healthy subjects mean age ~30 years	Markers of exposure in exhaled breath condensate, including increased 8-isoprostane, TBARS and LTB-4, and a marker of ROS-DNA interaction in peripheral blood leukocytes (8-OHdG), were increased in a sub-set of subjects bearing the wild genotype for NAD(P)H:quinone oxidoreductase and the null genotype for glutathione-S-transferase M1.	Corradi et al. (2002)
0.2	392	2 h	IE (15 min/30 min); $(\dot{V}_E) \approx 20$ L/min/m ² body surface area	6M, 9F healthy subjects and 9 M, 6F mild asthmatics	No evidence seen for increased responsiveness to the inflammatory effects of O_3 in mild asthmatics versus healthy subjects at 6 h following exposure. Used neutrophil recruitment and exacerbation of pre-existing inflammation.	Stenfors et al. (2002)
0.27	529	2 h	IE (20 min/ 60 min); $(\dot{V}_E) \approx 25$ L/min/m ² BSA	12 subjects with intermittent-mild asthma exhibiting a dual response; 18-37 years of age	Exposure to O_3 24 h following allergen challenge resulted in a significant decrease in FEV1, FVC and VC and increase in symptom scores compared to air exposure. The percentage of eosinophils, but not neutrophils, in induced sputum was higher 6 h after O_3 than after air.	Vagaggini et al. (2002)
0.22	431	4 h	IE (15 min/30 min); (V _E) = 25 L/min/m ² BSA	12 nonsmoker, nonresponders; 13 nonsmoker, responders; 13 smokers; 18-40 years of age	Recovery of AM was approximately 3-fold higher in BAL from smokers versus nonsmokers. Unstimulated AM from smokers released ~2-fold greater amounts of superoxide anion than from nonsmokers at 30 min and 18 h postexposure, but release was not further enhanced by stimulation of the cells. ROS generation by AM from nonsmokers decreased following exposure at 18 h; markers of epithelial permeability increased. No relationship was found between measures of ROS production and lung function responsiveness to O_3 .	Voter et al. (2001)

Table AX6-12 (cont'd). Studies of Respiratory Tract Inflammatory Effects from Controlled Human Exposure to Ozone^a

Ozone Co	ncentration ^b			Number and Gender		
ppm	$\mu g/m^3$	- Exposure Duration			Observed Effect(s)	Reference
Lower Air	way Studies ((cont'd)				
0.2	392	2 h	IE (15 min/30 min); $(\dot{V}_E) \approx 20$ L/min/m ² BSA	8M, 5F healthy nonsmokers; 20-31 years of age	Early (1.5 h postexposure) increase in adhesion molecule expression, submucosal mast cell numbers and alterations in lining fluid redox status. No clear relationship between early markers of response and lung function deficits. 2.5-fold increase in % human leukocyte antigen (HLA)-DR+ alveolar macrophages in BAL.	Blomberg et al. (1999)
0.4	784	2 h	IE (15 min/30 min); $(\dot{V}_E) \approx 20$ L/min/m ² BSA	10M, 6F subjects with intermittent asthma; 19-35 years of age	In a cross-over study, levels of eosinophil cationic protein, IL-8 and percentage eosinophils were found to be highly correlated in induced sputum and BAL 16 h following O_3 exposure.	Hiltermann et al. (1999)
0.4	784	2 h	At rest	12 mild, asymptomatic dust mite-sensitive asthmatics; 18-35 years of age	Release of early-onset mast cell-derived mediators into NL in response to allergen not enhanced following O_3 exposure. Neutrophil and eosinophil inflammatory mediators were not increased after O_3 exposure or enhanced after allergen challenge. O_3 increased eosinophil influx following allergen exposure.	Michelson et al. (1999)
0.4	784	1 h	Continuous exercise; $(\dot{V}_E) \approx 30$ L/min/m ² BSA	4 healthy subjects	Apoptosis was observed in cells obtained by airway lavage 6 h following exposure. AM obtained by BAL showed the presence of a 4-hydroxynonenal (HNE) protein adduct and the stress proteins, 72-kD heat shock protein and ferritin. These effects were replicated by <i>in vitro</i> exposure of AM to HNE.	Hamilton et a (1998)
0.2	392	2 h		15 healthy nonsmokers	Increased numbers of CD3+, CD4+, and CD8+ T lymphocyte subsets, in addition to neutrophils, in BAL 6 h postexposure.	Blomberg et al. (1997)
0.4	784	2 h/day for 5 days, 2 h either 10 or 20 days later	IE (40 L/min) at 15-min intervals	16 M; 18 to 35 years of age	BAL done immediately after fifth day of exposure and again after exposure 10 or 20 days later. Most markers of inflammation (PMNs, IL-6, PGE ₂ , fibronectin) showed partial to complete attenuation; markers of damage (LDH, IL-8, protein, α 1-antitrypsin, elastase,) did not. Reversal of attenuation was not complete for some markers, even after 20 days.	Devlin et al. (1997)

Table AX6-12 (cont'd). Studies of Respiratory Tract Inflammatory Effects from Controlled Human Exposure to Ozone^a

Ozone Cor	ncentration ^b	F	, ,· ·, · ·				
ppm	$\mu g/m^3$	- Exposure Duration	Activity Level (\dot{V}_E)	Number and Gender of Subjects	Observed Effect(s)	Reference	
Lower Airv	way Studies ((cont'd)					
0.22	431	4 h	IE 20 min ex/19 min rest $(\dot{V}_E) \approx 39-45$ l/min	31M, 7F smokers and nonsmokers	Post- O_3 exposure FEV ₁ in 3 groups: Smokers (-13.9%); nonresponders (-1.4%) and responders (-28.5%). PMN's increased immediately and at 18 h in all groups. Eosinophils and lymphocytes increased after O_3 . IL-6 increased more in nonsmokers. No relationship of symptoms with inflammation, lung function changes not related to inflammation. Nasal lavage indicators did not predict bronchial or alveolar inflammation.	Frampton et al. (1997a) Torres et al. (1997)	
0.12	235	2 h	IE (15 min/30 min); $(\dot{V}_E) \approx 20$ L/min/m ² BSA	9M, 3F healthy nonsmokers; mean age ~28 years	Increase in the percentage of vessels expressing P-selectin in bronchial biopsies at 1.5 h postexposure. No changes in FEV ₁ , FVC, inflammatory cells or markers in BAL, or vessels expressing VCAM-1, E-selectin or ICAM-1 in biopsies.	Krishna et al. (1997b)	
0.16	314	7.6 h	IE 50 min/hr (\dot{V}_E) = 25 L/min	8 asthmatics sensitive to dust mites	Increased numbers of eosinophils in BAL after O_3 exposure.	Peden et al. (1997)	
0.2	392	4 h T = 20 °C RH = 50%	IE (50 min/60 min); (\dot{V}_E) ≈ 44 L/min	14 M, 6 F healthy NS	Ozone increased PMN, protein, IL-8, for all subjects. No relationship of inflammation with spirometric responses.	Balmes et al. (1996)	
0.4	784	2 h T = 22 °C RH = 50%	15 min rest 15 min exercise cycle ergometer $(\dot{V}_E) \approx 55$ l/min	11 healthy nonsmokers; 18-35 years	Mean FEV ₁ , change = -10% . BAL occurred at 0, 2, or 4 h postexposure. Small n limits statistical inference. Trend for PMN's to be highest at 4 h. LTC ₄ increased at all time points. No change in PGE ₂ or thromboxane.	Coffey et al. (1996)	
0.4	784	2 h 15 min, ex/15 min, rest	$(\dot{V}_E) = 66 \text{ l/min}$	8 M healthy nonsmokers	Comparison of BAL at 1 h postexposure vs. 18 h postexposure. At 1 h, PMN's, total protein, LDH, α 1-antitrypsin, fibronectin, PGE ₂ , thromboxane B ₂ , C3 _a , tissue factor, and clotting factor VII were increased. IL-6 and PGE ₂ were higher after 1 h than 18 h. Fibronectin and tissue plasminogen activator higher after 18 h. No time differences for PMN and protein.	Devlin et al. (1996) (compare with Koren et al. (1989a)	
0.2	392	4 h T = 20 °C RH = 50%	IE (50 min/60 min); (\dot{V}_E) ≈ 44 L/min	17 M, 6F mild asthmatics	Increased PMN, protein, IL-8, LDH, in BAL. Inflammatory responses were greater than a group of nonasthmatics (Balmes et al., 1996)	Scannell et al. (1996)	

Ozone Co	ncentration ^b	F	A 21 12 T 1			
ppm	$\mu g/m^3$	- Exposure Duration	Activity Level (\dot{V}_E)	Number and Gender of Subjects	Observed Effect(s)	Reference
Lower Air	way Studies	(cont'd)				
0.4	784	2 h mouthpiece exposure 20 °C 42% RH	15 min exercise 15 min rest $(\dot{V}_E) \approx 40 \text{ l/min}$	5M, 5F healthy; age ≈ 30	Sputum induction 4 h after O_3 exposure 3-fold increase in neutrophils and a decrease in macrophages after O_3 exposure. IL-6, IL-8, and myeleperoxidase increased after O_3 . Possible relationship of IL-8 and PMN levels.	Fahy et al. (1995)
0.2	392	4 h	IE (50 min/60 min); $(\dot{V}_{E}) = 40$ L/min	15 M, 13 F, 21 to 39 years old	Bronchial lavage, bronchial biopsies, and BAL done 18 h after exposure. BAL shows changes similar to other studies. Airway lavage shows increased cells, LDH, IL-8. Biopsies show increased number of PMNs.	Aris et al. (1993)
0.08 0.10	157 196	6.6 h	IE (50 min/60 min) + 35 min lunch; $(\dot{V}_E) = 40$ L/min	18 M, 18 to 35 years of age	BAL fluid 18 h after exposure to 0.1 ppm O_3 had significant increases in PMNs, protein, PGE ₂ , fibronectin, IL-6, lactate dehydrogenase, and α -1 antitrypsin compared with the same subjects exposed to FA. Similar but smaller increases in all mediators after exposure to 0.08 ppm O_3 except for protein and fibronectin. Decreased phagocytosis of yeast by alveolar macrophages was noted at both concentrations.	Devlin et al. (1990, 1991) Koren et al. (1991)
0.4	784	2 h	IE (15 min/30 min); (V _E) = 70 L/min	10 M, 18 to 35 years old	BAL fluid 1 h after exposure to 0.4 ppm O_3 had significant increases in PMNs, protein, PGE ₂ , TXB ₂ , IL-6, LDH, α -1 antitrypsin, and tissue factor compared with the same subjects exposed to FA. Decreased phagocytosis of yeast by alveolar macrophages.	Koren et al. (1991)
0.3	588	1 h (mouth-piece)	CE (60 L/min)	5 M	Significantly elevated PMNs in the BAL fluid 1, 6, and 24 h after exposure, with peak increases at 6 h.	Schelegle et al. (1991)
0.40	784	2 h	IE (15 min/30 min); (V _E) = 70 L/min	11 M, 18 to 35 years old	Macrophages removed 18 h after exposure had changes in the rate of synthesis of 123 different proteins as assayed by computerized densitometry of two-dimensional gel protein profiles.	Devlin and Koren (1990)
0.40	784	2 h	IE (15 min/30 min); $(\dot{V}_{E}) = 70$ L/min	11 M, 18 to 35 years old	BAL fluid 18 h after exposure contained increased levels of the coagulation factors, tissue factor, and factor VII. Macrophages in the BAL fluid had elevated tissue factor mRNA.	McGee et al. (1990)
0.4	784	2 h	IE (15 min/30 min); (V _E) = 70 L/min	11 M, 18 to 35 years old	BAL fluid 18 h after exposure had significant increases in PMNs, protein, albumin, IgG, PGE ₂ , plasminogen activator, elastase, complement C3a, and fibronectin.	Koren et al. (1989a,b)

Ozone Co	ncentration ^b		A ativity I and	Number and Cander			
ppm	$\mu g/m^3$	- Exposure Duration	Activity Level (\dot{V}_E)	Number and Gender of Subjects	Observed Effect(s)	Reference	
Repeated 1	Exposure Stu	dies					
0.125 0.25	245 490	3 h exposures to both O_3 concs. and to FA; 3 h on four consecutive days to 0.125; study arms separated by >4 wks	IE (15 min/30 min)	5M, 6F allergic asthmatic and 16M, 6F allergic rhinitic subjects; 19-53 years of age	All subjects underwent 4 exposure arms and were challenged with allergen 20 h following the last exposure in each. Sputum was induced 6-7 h later. In rhinitics, but not asthmatics, the incidence and magnitude of early phase FEV ₁ decrements to Ag were greater after 0.25 and 4x 0.125 ppm O ₃ . Repeated exposure caused increases in neutrophil and eosinophil numbers in both subject groups, as well as increased percentage and number of lymphocytes in the asthmatics.	Holz et al., (2002)	
0.25	490	2 h on four consecutive days; O_3 and FA exposure study arms separated by ≥ 3 wks	IE (30 min/60 min); $(\dot{V}_E) \approx 8$ times the FVC/min	5M, 3F healthy subjects; 25-31 years of age	Maximal mean reductions in FEV ₁ and FVC were observed on day 2, and became negligible by day 4. FEF ₂₅₋₇₅ , Vmax50, and Vmax75 were combined into a single value representing small airway function (SAWgrp). This variable was the only one to show persistent depression of the 24 h postexposure baseline from day 2 to day 5 measurements. Numbers of PMNs in BAL fluid on day 5 were significantly higher in subjects following O_3 , compared to air, exposures.	Frank et al. (2001)	
0.2	392	single, 4 h exposures to O ₃ and to FA; 4 h on four consecutive days to O ₃ ; study arms separated by >4 wks	IE (15 min/30 min); (Mean \dot{V}_E) = 14.8 L/min/m ² BSA	15M, 8F healthy subjects; 21-35 years of age	All subjects underwent 3 exposure arms with BAL and bronchial mucosal biopsies performed 20 h following the last exposure in each. After repeated exposure, functional and BAL cellular responses were not different from those after FA, whereas total protein, IL-6, IL-8, reduced glutathione and ortho-tyrosine remained elevated. Also at this time, macroscopic scores of inflammation and tissue neutrophils were increased in mucosal biopsies. IL-10 was detected only in BAL fluid following repeated O_3 exposure.	Jörres et al. (2000)	
0.2	392	single, 4 h exposure; 4 h exposures on four consecutive days; study arms separated by >4 wks	IE (30 min/60 min); (Mean \dot{V}_E) = 25 L/min/m ² BSA	9M, 6F healthy NS 23-37 years of age	Subjects were randomly assigned to each of the exposure regimens in a crossover design. Compared to single exposure, repeated exposure resulted in an initial progression followed by an attenuation of decrements in FEV_1 , FVC and specific airways resistance by day 4. Bronchial and BAL washings showed decreases in the numbers of PMNs and fibronectin levels and IL-6 was decreased in BAL fluid on day 4.	Christian et al (1998)	

Ozone Cor	ncentration ^b	F	A (1 1 T 1			
ppm	$\mu g/m^3$	- Exposure Duration	Activity Level (\dot{V}_E)	Number and Gender of Subjects	Observed Effect(s)	Reference
Repeated E	Exposure Sti	udies (cont'd)				
0.4	784	2 h/day for 5 days, 2 h either 10 or 20 days later	IE (60 L/min) at 15-min intervals	16 M; 18 to 35 years of age	BAL done immediately after fifth day of exposure and again after exposure 10 or 20 days later. Most markers of inflammation (PMNs, IL-6, PGE ₂ , fibronectin) showed complete attenuation; markers of damage (LDH, IL-8, protein, α 1-antitrypsin, elastase) did not. Reversal of attenuation was not complete for some markers, even after 20 days.	Devlin et al. (1997)
0.40 0.60	784	2 h	IE (83 W for women, 100 W for men) at 15-min intervals	7M, 3F 23 to 41 years of age	BAL fluid 3 h after exposure had significant increases in PMNs, PGE ₂ , TXB ₂ , and PGF _{2α} at both O ₃ concentrations.	Seltzer et al. (1986)

^a See Appendix A for abbreviations and acronyms. ^b Listed from lowest to highest O₃ concentration.

	cone ntration ^b	Exposure	Activity Level	Number and		
ppm	$\mu g/m^3$	Duration	(\dot{V}_{E})	Gender of Subjects	Observed Effect(s)	Reference
Host Defe	ense					
0.2	392	2 h	IE (15 min/30 min); $(\dot{V}_{E}) \approx 20$ L/min/m ² BSA	4M, 5F mild atopic asthmatics; 21-42 years of age	A significant decline in FEV_1 and VC immediately following exposure. A 2-fold increase in percent PMNs, with no changes in other biomarkers, was observed at 6 h postexposure. By 24 h postexposure, PMNs had decreased, but albumin, total protein, myeloperoxidase and eosinophil cationic protein had increased.	Newson et a (2000)
0.3	588	6 h/day for 5 consecutive days	IE (light treadmill)	24 M (12 O ₃ , 12 air)	Subjects inoculated with type 39 rhinovirus prior to exposure. NL was performed on the morning of Days 1 to 5, 8, 15, and 30. No difference in virus titers in NL fluid of air and O_3 -exposed subjects at any time tested. No difference in PMNs or interferon gamma in NL fluid, or in blood lymphocyte proliferative response to viral antigen.	Henderson et al. (1988)
0.2	382	2 h	IE (15 min/30 min); $(\dot{V}_E) \approx 30$ L/min	10M, 2F healthy NS mean ~28 years of age	Subjects were exposed to O_3 and FA in a cross-over design and underwent BAL 6 h postexposure. O_3 exposure induced a 3-fold increase in % PMNs and epithelial cells, and increased IL-8, Gro- α , and total protein in BAL fluid. % PMNs correlated positively with chemokine levels. Exposure also resulted in a significant decrease in the CD4+/CD8+ ratio and the % of activated CD4+ and CD8+ T cells in BAL fluid.	Krishna et al (1998)
Host Defe	ense - Muco	ous Clearance				
0.4	784	1 h	CE (40 L/min)	15 healthy NS 18 to 35 years old	Subjects inhaled radiolabeled iron oxide particles 2 h after exposure. No significant O_3 -induced effect on clearance of particles during the next 3 h or the following morning.	Gerrity et al. (1993)
0.20 0.40	392 784	2 h	IE (light treadmill)	7 M, 27.2 ± 6.0 (SD) years old	Subjects inhaled radiolabeled iron oxide particles immediately before exposure. Concentration-dependent increase in rate of particle clearance 2 h after exposure, although clearance was confined primarily to the peripheral airways at the lower O_3 concentration.	Foster et al. (1987)

-	one ntration ^b	- Exposure	Activity Level	Number and		
ppm	$\mu g/m^3$	Duration	(\dot{V}_{E})	Gender of Subjects	Observed Effect(s)	Reference
Host Defe	nse - Epitl	nelial Permeability				
0.15 0.35	294 686	130 min	IE 10 exercise/ 10 rest $(\dot{V}_{e}) \approx 8 \times FVC$	8M,1F NS	Subjects inhaled ^{99m} Tc-DTPA 19 h after exposure to O ₃ . Clearance was increased in the lung periphery. Clearance was not related to spirometry.	Foster and Stetkiewicz (1996)
0.5	784	2.25 h	IE (70 L/min) at 15-min intervals	16 M, 20 to 30 years old	Similar design and results as earlier study (Kehrl et al., 1987). For the combined studies the average rate of clearance was 60% faster in O ₃ -exposed subjects.	Kehrl et al. (1989)
0.4	784	2 h	IE (70 L/min) at 15-min intervals	8 M, 20 to 30 years old	Subjects inhaled 99m Tc-DTPA 75 min after exposure. Significantly increased clearance of 99m Tc-DTPA from the lung in O ₃ -exposed subjects. Subjects had expected changes in FVC and SRaw.	Kehrl et al. (1987)
Drug Effe	ects on Infl	ammation				
0.25	490	3 h IE 15-min intervals 4 O ₃ exposures: screening, placebo, and two treatments	27 °C 56 % RH (values from Holz et al. 1999)	14M, 4F Healthy NS ozone responders 31.4 ± 8.4 years old	On average, the screening and placebo O_3 exposures caused greater than a 9-fold increase in sputum neutrophils relative to baseline levels. Relative to placebo, the inhaled or oral corticosteroids significantly reduced neutrophil levels by 62 and 64%, respectively. Post- O_3 , spirometry not significantly different from baseline.	Holz et al. (2005)
0.4	784	2 h		23 healthy adults	Subjects were exposed to O_3 following random selection for a 2 wk daily regimen of antioxidants, including vegetable juice high in the carotenoid, lycopene, or placebo. Concentrations of lycopene in the lungs of supplemented subjects increased by 12% following treatment. Supplemented subjects showed a 20% decrease in epithelial cell DNA damage as assessed by the Comet Assay. Effects attributable to lycopene could not be separated from those of other antioxidants.	Arab et al. (2002)

-	one ntration ^b	- Exposure	Activity Level	Number and		
ppm	$\mu g/m^3$	Duration	(\dot{V}_{E})	Gender of Subjects	Observed Effect(s)	Reference
Drug Effe	ects on Infl	ammation (cont'd)				
0.0 0.4	0 784	2 h IE 20 min mild-mod. exercise, 10 min rest	4 M, 5 F	Healthy NS 30 ± 3 years old	Subjects previously in Nightingale et al. (2000) study. Placebo- control: Immediately postexposure decrements in FVC (9%) and FEV ₁ (14%) relative to pre-exposure values. FEV ₁ decrement only 9% at 1 hr postexposure. By 3 h postexposure, recovery in FVC to 97% and FEV ₁ to 98% of preexposure values. Significant increases in 8-isoprostane at 4 h postexposure. Budesonide for 2 wk prior to exposure did not affect responses.	Montuschi et al (2002)
0.2	392	2 h All exposures separated by at least 2 wks (mean ≈ 30d)	IE (15 min/30 min); $(\dot{V}_E) \approx 20$ L/min/m ² BSA	Healthy (6 M, 9 F) and mild asthmatic (9 M, 6 F) subjects	Comparison was made of responses in healthy subjects, who had higher basal ascorbate (ASC) levels and lower glutathione disulfide (GSSG) levels than those of asthmatics. 6 h after exposure, ASC levels were decreased and GSSG levels were increased in BAL fluid of normals, but not asthmatics. Despite these differences in basal antioxidant levels and response to O_3 , decrements in FEV ₁ and neutrophil influx did not differ in the two subject groups.	Mudway et al. (2001)
0.4	784	2 h	IE 15-min intervals; $\dot{V}_E \approx 20 \text{ L/min/m}^2$ BSA	Placebo group 15 M, 1 F Antioxidant group 13 M, 2 F Mean age 27 years	All subjects were exposed to FA and then entered a 2 wk regimen of placebo or 250 mg Vit C, 50IU α -tocopherol, and 12 oz veg. cocktail/day prior to O ₃ exposure. O ₃ -induced decrements in FEV ₁ and FVC were 30% and 24% less, respectively, in supplemented subjects. Percent neutrophils and IL-6 levels in BAL fluid obtained 1 h postexposure were not different in the two treatment groups.	Samet et al. (2001) Stech-Scott et al. (2004)
0.27	529	2 h All exposures separated by at least 1 wk (mean \approx 14 d)	Continuous exercise; $(\dot{V}_E) \approx 25$ L/min/m ² BSA	7 M, F subjects with mild asthma; 20-50 years of age	Subjects were randomly exposed to FA and to O_3 before and after 4 wks of treatment with 400 µg budesonide, b.i.d. Budesonide did not inhibit the decrement in FEV ₁ or increase in symptom scores, but significantly reduced the increase in % neutrophils and IL-8 in sputum induced 6 h postexposure.	Vagaggini et al (2001)
0.4	784	2 h	IE 15-min intervals \dot{V}_{E} min \approx 30 L/min	5 M, 4 F healthy 6 M, 7 F asthmatics	Subjects were pretreated for 3 days prior to exposure with indomethacin (75 mg/day) or placebo. Similar reductions in FEV ₁ and FVC were seen in both groups following placebo, whereas mid-flows showed greater decline in asthmatics than normals. Indomethacin attenuated decrements in FEV ₁ and FVC in normals, but not asthmatics. Attenuation of decrements was seen for FEF_{60p} in asthmatics and for FEF_{50} in normals.	Alexis et al. (2000)

-	zone ntration ^b	- Evnouro	A otivity I good	Number and		
ppm	$\mu g/m^3$	- Exposure Duration	Activity Level (\dot{V}_E)	Gender of Subjects	Observed Effect(s)	Reference
Drug Effe	ects on Infl	ammation (cont'd))			
0.4	784	2 h	IE (20 min/30 min); workload @ 50 watts	6 M, 9 F healthy NS mean ~31 years of age	Subjects were randomly exposed to FA and to O_3 before and after 2 wks of treatment with 800 µg budesonide, b.i.d. O_3 caused significant decrements in FEV ₁ and FVC immediately following exposure, and a small increase in Mch-reactivity and increases in neutrophils and myeloperoxidase in sputum induced at 4 h postexposure. No differences were detected between responses in the two treatment groups.	Nightingale et al. (2000)
0.0 0.4	784	2 h IE 4×15 min at $\dot{\nabla}_E = 18$ L/min/m ² BSA 2 exposures: 25% subjects exposed to air- air, 75% to O ₃ -O ₃	21 °C 40% RH	Weak responders 7 M, 13F Strong responders 21 M, 21 F Healthy NS 20 to 59 years old	Significant O_3 -induced decrements in spirometric lung function. Young adults (<35 years) were significantly more responsive than older individuals (>35 years). Sufentanil, a narcotic analgesic, largely abolished symptom responses and improved FEV ₁ in strong responders. Naloxone, an opioid antagonist, did not affect O_3 effects in weak responders. <i>See Section AX6.2.5.1</i>	Passannante et al. (1998)
0.4	784	2 h	IE (60 L/min) at 15-min intervals	10 M	Subjects given 800 mg ibuprofen or placebo 90 min before exposure. Subjects given ibuprofen had less of a decrease in FEV ₁ after O ₃ exposure. BAL fluid 1 h after exposure contained similar levels of PMNs, protein, fibronectin, LDH, α -1 antitrypsin, LTB ₄ , and C3a in both ibuprofen and placebo groups. However, subjects given ibuprofen had decreased levels of IL-6, TXB ₂ , and PGE ₂ .	Hazucha et al (1996)
0.4	784	2 h	IE (15 min/ 30 min); $(\dot{V}_{E}) = 30$ L/min/m ² BSA	13 healthy male subjects	Subjects received either placebo or 150 mg indomethacin/day four days prior to O_3 exposure. Indomethacin treatment attenuated the O_3 -induced decrease in FEV ₁ , but had no effect on the O_3 -induced increase in Mch responsiveness.	Ying et al. (1990)
0.35	686	1 h	Continuous exercise; $(\dot{V}_E) \approx 60 \text{ L/min}$	14 healthy college- age males	In a placebo- and air-controlled random design, subjects were treated with 75 mg indomethacin every 12 h for 5 days prior to exposure. Indomethacin significantly reduced O_3 -induced decrements in FEV ₁ and FVC.	Schelegle et a (1987)

	one ntration ^b	Euroquiro	Activity Level	Number and		Reference
ppm	$\mu g/m^3$	Exposure Duration	$\frac{\text{Activity Level}}{(\dot{V}_{E})}$	Gender of Subjects	Observed Effect(s)	
Supportiv	e In Vitro St	udies				
0.01 to 0.10	19.6 to 196	6 h	bronchial epithelial cells	Nonatopic, nonasthmatic and atopic, mild asthmatic bronchial biopsy samples	Exposure to 0.01-0.10 ppm O_3 significantly decreased the electrical resistance of cells from asthmatic sources, compared to nonasthmatic sources. This range of O_3 concentrations also increased the movement of ¹⁴ C-BSA across the confluent cultures of "asthmatic" cells to an extent that was greater than that in "nonasthmatic" cells.	Bayram et al. (2002)
0.1	196	24 h	Nasal mucosa	Allergic and nonallergic patients	Increased concentrations of neurokinin A and substance P in medium following O_3 exposure. Levels of release of both neuropeptides were higher from tissues derived from allergic compared to nonallergic patients.	Schierhorn et al. (2002)
0.2	392	3 h	Nasal epithelial cells and airway epithelial cell line		Synergistic effect of O_3 exposure on rhinovirus-induced release of IL-8 at 24 h through mechanisms abrogated by antioxidant pretreatment. Additive enhancement of ICAM-1 expression.	Spannhake et al. (2002)
1	1,690	4 h	Macrophage-like THP-1 cells		THP-1 cells were treated with samples of human surfactant protein A (SP-A) genetic variants (SP-A1 and SP-A2) that had been previously exposed to O_3 . O_3 -exposed variants differed in their ability to stimulate the production of TNF- α and IL-8 by these cells.	Wang et al. (2002)
0.01 to 0.10	19.6 to 196	6 h	bronchial epithelial cells	Nonatopic, nonasthmatic and atopic, mild asthmatic bronchial biopsy samples	No difference in constitutive release of IL-8, GM-CSF, sICAM-1 and RANTES from cells from nonasthmatic and asthmatic sources, except for detection of RANTES in latter cells only. Increased release of all mediators 24 h after 0.05 to 0.10 ppm O_3 in "asthmatic" cells, but only IL-8 and sICAM-1 in "nonasthmatic" cells.	Bayram et al. (2001)
0.12 0.24 0.50	235 470 980	3 h	Nasal epithelial cells		Small dose-response activation of NF- κ B coinciding with O ₃ -induced production of free radicals assessed by electron spin resonance. Increased TNF- α at two higher concentrations of O ₃ at 16 h postexposure.	Nichols et al. (2001)

	tone ntration ^b	Exposure	Activity Level	Number and		
ppm	$\mu g/m^3$	Duration	(\dot{V}_{E})	Gender of Subjects	Observed Effect(s)	Reference
Supportiv	e In Vitro St	tudies (cont'd)				
0.06 to 0.20	118 to 392	24 h	Nasal mucosa	105 surgical samples from atopic and nonatopic patients	Increased histamine release correlated with mast cell degranulation. Increased release of IL-1, IL-6, IL-8 and TNF- α following O ₃ exposure at 0.10 ppm. Release of IL-4, IL-6, IL-8 and TNF- α at this concentration was significantly greater from tissues from atopic versus nonatopic patients.	Schierhorn et al. (1999)
0.5	980	1 h	Lung fibroblast cell line with an airway epithelial cell line		BEAS-2B cells in the presence or absence of HFL-1 cells were exposed and incubated for 11 or 23 h. Steady-state mRNA levels of alpha 1 procollagens type I and II, as well as TGF β 1, were increased in O ₃ -exposed co-cultured fibroblasts compared to air controls. Data support interactions between the cell types in the presence and the absence of O ₃ -exposure.	Lang et al. (1998)
0.5	980	1 h	tracheal epithelial cells		O_3 exposure caused an increase in ROS formation and a decline in PGE ₂ production. No differences in mRNA and protein levels of prostaglandin endoperoxide G/H synthase 2 (PGHS-2) or the rate of its synthesis were detected, suggesting a direct effect of O_3 -generated oxidants on PGHS-2 activity.	Alpert et al. (1997)
0.4	784	1 h	Lung fibroblasts; airway epithelial cell line		Cells incubated with O_3 -exposed arachidonic acid (AA) were found to contain DNA single strand breaks. Pretreatment of the exposed AA solution with catalase eliminated the effect on DNA, indicating its dependence on H_2O_2 production. The effect was potentiated by the non-carbonyl component of ozonized AA.	Kozumbo et a (1996)
0.25 0.50	490 980	6 h	Human nasal epithelial cells		Increased in ICAM-1, IL-6, IL-1, and TNF expression at 0.5 ppm. No increase in IL-8 expression. No increases at 0.25 ppm.	Beck et al. (1994)
0.25 0.50 1.00	490 980 1,960	1 h	Airway epithelial cell line and alveolar macrophages		Increased secretion of IL-6, IL-8, and fibronectin by epithelial cells, even at lowest O_3 concentration. No O_3 -induced secretion of these compounds by macrophages.	Devlin et al. (1994)

Ozone Concentration ^b		Exposure	Activity Level	Number and		
ppm	$\mu g/m^3$	Duration	(\dot{V}_E)	Gender of Subjects	Observed Effect(s)	Reference
Supportive	e In Vitro St	tudies (cont'd)				
0.20 to 1.0	392 to 1960	2 h or 4 h	Airway epithelial cell line		O_3 caused a dose-related loss in cellular replicative activity at exposure levels that caused minimal cytotoxicity. DNAsingle strand breaks were not detected. These effects were different from those of H_2O_2 and, thus, not likely related to production of this oxidant within the cells.	Gabrielson et al. (1994).
0.25 0.50 1.00	490 980 1,960	1 h	Airway epithelial cell line		Concentration-dependent increased secretion of PGE_2 , TXB_2 , $PGF_{2\alpha}$, LTB_4 , and LTD_4 . More secretion basolaterally than apically.	McKinnon et al. (1993)
0.30 1.00	588 1,960	1 h	Alveolar macrophages		Concentration-dependent increases in PGE_2 production, and decreases in phagocytosis of sheep erythrocytes. No O ₃ -induced secretion of IL- 1, TNF, or IL-6.	Becker et al. (1991)

^aSee Appendix A for abbreviations and acronyms. ^bListed from lowest to highest O₃ concentration. central airways, and of persistent effects following repeated exposure, may indicate that further
 investigation of inflammatory processes in these regions is warranted.

3 Under normal circumstances, the epithelia lining the large and small airways develop tight 4 junctions and restrict the penetration of exogenous particles and macromolecules from the airway lumen into the interstitium and blood, as well as restrict the flow of plasma components 5 6 into the airway lumen. O₃ disrupts the integrity of the epithelial cell barrier in human airways, as 7 measured by markers of plasma influx such as albumin, immunoglobulin, and other proteins into 8 the airways. Markers of epithelial cell damage such as lactate dehydrogenase (LDH) also have 9 been measured in the BAL fluid of humans exposed to O_3 . Other soluble factors that have been 10 studied include those involved with fibrin deposition and degradation (Tissue Factor, Factor VII, 11 and plasminogen activator), potential markers of fibrogenesis (fibronectin, platelet derived 12 growth factor), and components of the complement cascade (C3a).

Inflammatory cells of the lung such as alveolar macrophages (AMs), monocytes, and PMNs also constitute an important component of the pulmonary host defense system. Upon activation, they are capable of generating free radicals and enzymes with microbicidal capabilities, but they also have the potential to damage nearby cells. More recently published studies since the last literature review (U.S. Environmental Protection Agency, 1996) observed changes in T lymphocyte subsets in the airways following exposure to O₃ that suggest components of the immune host defense also may be affected.

20

21

AX6.9.2 Inflammatory Responses in the Upper Respiratory Tract

22 The nasal passages constitute the primary portal for inspired air at rest and, therefore, the 23 first region of the respiratory tract to come in contact with airborne pollutants. Nikasinovic et al. 24 (2003) recently reviewed the literature of laboratory-based nasal inflammatory studies published 25 since 1985. Nasal lavage (NL) has provided a useful tool for assessing O₃-induced inflammation 26 in the nasopharynx. Nasal lavage is simple and rapid to perform, is noninvasive, and allows 27 collection of multiple sequential samples. Graham et al. (1988) reported increased levels of 28 PMNs in the NL fluid of humans exposed to 0.5 ppm O₃ at rest for 4 h on 2 consecutive days, 29 with NL performed immediately before and after each exposure, as well as 22 h after the second 30 exposure. Nasal lavage fluid contained elevated numbers of PMNs at all postexposure times 31 tested, with peak values occurring immediately prior to the second day of exposure. Bascom

1 et al. (1990) exposed subjects with allergic rhinitis to 0.5 ppm O₃ at rest for 4 h, and found 2 increases in PMNs, eosinophils, and mononuclear cells following O₃ exposure. Graham and 3 Koren (1990) compared inflammatory mediators present in both the NL and BAL fluids of 4 humans exposed to 0.4 ppm O₃ for 2 h. Increases in NL and BAL PMNs were similar (6.6- and eightfold, respectively), suggesting a qualitative correlation between inflammatory changes in 5 6 the lower airways (BAL) and the upper respiratory tract (NL), although the PMN increase in NL 7 could not quantitatively predict the PMN increase in BAL. Torres et al. (1997) compared NL 8 and BAL in smokers and nonsmokers exposed to 0.22 ppm O₃ for 4 h. In contrast to Graham 9 and Koren (1990), they did not find a relationship between numbers or percentages of 10 inflammatory cells (PMNs) in the nose and the lung, perhaps in part due to the variability 11 observed in their NL recoveries. Albumin, a marker of epithelial cell permeability, was 12 increased 18 h later, but not immediately after exposure, as seen by Bascom et al. (1990). 13 Tryptase, a constituent of mast cells, was also elevated after O₃ exposure at 0.4 ppm for 2 h 14 (Koren et al., 1990). McBride et al. (1994) reported that asthmatic subjects were more sensitive 15 than nonasthmatics to upper airway inflammation at an O_3 concentration (0.24 ppm for 1.5 h 16 with light IE) that did not affect lung or nasal function or biochemical mediators. A significant 17 increase in the number of PMNs in NL fluid was detected in the asthmatic subjects both 18 immediately and 24 h after exposure. Peden et al. (1995) also found that O₃ at a concentration of 0.4 ppm had a direct nasal inflammatory effect, and reported a priming effect on the response to 19 20 nasal allergen challenge, as well. A subsequent study in dust mite-sensitive asthmatic subjects 21 indicated that O₃ at this concentration enhanced eosinophil influx in response to allergen, but did 22 not promote early mediator release or enhance the nasal response to allergen (Michelson et al., 23 1999). Similar to observations made in the lower airways, the presence of O_3 molecular 24 "targets" in nasal lining fluid is likely to provide some level of local protection against exposure. 25 In a study of healthy subjects exposed to 0.2 ppm O₃ for 2 h, Mudway and colleagues (1999) 26 observed a significant depletion of uric acid in NL fluid at 1.5 h following exposure. 27 An increasing number of studies have taken advantage of advances in cell and tissue

An increasing number of studies have taken advantage of advances in cell and tissue culture techniques to examine the role of upper and lower airway epithelial cells and mucosa in transducing the effects of O_3 exposure. Many of these studies have provided important insight into the basis of observations made *in vivo*. One of the methods used enables the cells or tissue samples to be cultured at the air-liquid interface (ALI), allowing cells to establish apical and

1 basal polarity, and both cells and tissue samples to undergo exposure to O₃ at the apical surfaces 2 as would occur in vivo. Nichols and colleagues (2001) examined human nasal epithelial cells 3 grown at the ALI for changes in free radical production, based on electron spin resonance, and 4 activation of the NF- κ B transcription factor following exposure to O₃ at 0.12 to 0.5 ppm for 3 h. They found a dose-related activation of NF-KB within the cells that coincided with O₃-induced 5 6 free radical production and increased release of TNF- α at levels above 0.24 ppm. These data confirm the importance of this oxidant stress-associated pathway in transducing the O₃ signal 7 8 within nasal epithelial cells and suggest its role in directing the inflammatory response. In a 9 study of nasal mucosal biopsy plugs, Schierhorn et al. (1999) found that tissues exposed to O_3 at 10 a concentration of 0.1 ppm induced release of IL-4, IL-6, IL-8, and TNF- α that was significantly 11 greater from tissues from atopic patients compared to nonatopic controls. In a subsequent study, 12 this same exposure regimen caused the release of significantly greater amounts of the 13 neuropeptides, neurokinin A and substance P, from allergic patients, compared to nonallergic 14 controls, suggesting increased activation of sensory nerves by O₃ in the allergic tissues 15 (Schierhorn et al., 2002).

16

17 AX6.9.3 Inflammatory Responses in the Lower Respiratory Tract

18 Seltzer et al. (1986) were the first to demonstrate that exposure of humans to O_3 resulted in 19 inflammation in the lung. Bronchoalveolar lavage fluid (3 h postexposure) from subjects exposed to O₃ contained increased PMNs as well as increased levels of PGE₂, PGF_{2a}, and TXB₂ 20 21 compared to fluid from air-exposed subjects. Koren et al. (1989a,b) described inflammatory 22 changes 18 h after O₃ exposure. In addition to an eightfold increase in PMNs, Koren et al. 23 reported a two-fold increase in BAL fluid protein, albumin, and immunoglobulin G (IgG) levels, 24 suggestive of increased epithelial cell permeability. There was a 12-fold increase in IL-6 levels, 25 a two-fold increase in PGE_2 , and a two-fold increase in the complement component, C3a. 26 Evidence for stimulation of fibrogenic processes in the lung was shown by significant increases 27 in coagulation components, Tissue Factor and Factor VII (McGee et al., 1990), urokinase 28 plasminogen activator and fibronectin (Koren et al., 1989a). Subsequent studies by Lang et al. 29 (1998), using co-cultures of cells of the BEAS-2B bronchial epithelial line and of the HFL-1 30 lung fibroblast line, provided additional information about O₃-induced fibrogenic processes. 31 They demonstrated that steady-state mRNA levels of both alpha 1 and procollagens type I and

III in the fibroblasts were increased following O₃ exposure and that this effect was mediated by the O₃-exposed epithelial cells. This group of studies demonstrated that exposure to O₃ results in an inflammatory reaction in the lung, as evidenced by increases in PMNs and proinflammatory compounds. Furthermore, they demonstrated that cells and mediators capable of damaging pulmonary tissue are increased after O₃ exposure and provided early suggestion of the potential importance of the epithelial cell-myofibroblast "axis" in modulating fibrotic and fibrinolytic processes in the airways.

8 Isolated lavage of the mainstream bronchus using balloon catheters or BAL using small 9 volumes of saline have been used to assess O₃-induced changes in the large airways. Studies 10 collecting lavage fluid from isolated airway segments after O₃ exposure indicate increased 11 neutrophils in the airways (Aris et al., 1993; Balmes et al., 1996; Scannell et al., 1996). Other 12 evidence of airway neutrophil increase comes from studies in which the initial lavage fraction 13 ("bronchial fraction") showed increased levels of neutrophils (Schelegle et al., 1991; Peden 14 et al., 1997; Balmes et al., 1996; Torres et al., 1997). Bronchial biopsies show increased PMNs 15 in airway tissue (Aris et al., 1993) and, in sputum collected after O₃ exposure, neutrophil numbers 16 are elevated (Fahy et al., 1995).

Increased BAL protein, suggesting O3-induced changes in epithelial permeability (Koren 17 18 et al., 1989a, 1991 and Devlin et al., 1991) supports earlier work in which increased epithelial 19 permeability, as measured by increased clearance of radiolabled diethylene triamine pentaacetic acid (^{99m}Tc-DTPA) from the lungs of humans exposed to O₃, was demonstrated (Kehrl et al., 20 21 1987). In addition, Foster and Stetkiewicz (1996) have shown that increased permeability 22 persists for at least 18-20 h and the effect is greater at the lung apices than at the base. In a study 23 of mild atopic asthmatics exposed to 0.2 ppm O₃ for 2 h, Newson et al. (2000) observed a 2-fold 24 increase in the percentage of PMNs present at 6 hours postexposure, with no change in markers 25 of increased permeability as assessed by sputum induction. By 24 h, the neutrophilia was seen 26 to subside while levels of albumin, total protein, myeloperoxidase, and eosinophil cationic 27 protein increased significantly. It was concluded that the transient PMN influx induced by acute 28 exposure of these asthmatic subjects was followed by plasma extravasation and the activation of 29 both PMNs and eosinophils within the airway tissues. Such changes in permeability associated 30 with acute inflammation may provide better access of inhaled antigens, particulates, and other 31 substances to the submucosal region.

1	Devlin et al. (1991) reported an inflammatory response in subjects exposed to 0.08
2	and 0.10 ppm O_3 for 6.6 h. Increased numbers of PMNs and levels of IL-6 were found at
3	both O ₃ concentrations, suggesting that lung inflammation from O ₃ can occur as a consequence
4	of prolonged exposure to ambient levels while exercising. Interestingly, those individuals who
5	had the largest increases in inflammatory mediators in this study did not necessarily have the
6	largest decrements in pulmonary function, suggesting that separate mechanisms underlie these
7	two responses. The absence of a relationship between spirometric responses and inflammatory
8	cells and markers has been reported in several studies, including Balmes et al., 1996; Schelegle
9	et al., 1991; Torres et al., 1997; Hazucha et al., 1996; Blomberg et al., 1999. These observations
10	relate largely to disparities in the times of onset and duration following single exposures. The
11	relationship between inflammatory and residual functional responses following repeated or
12	chronic exposures may represent a somewhat different case (see Section AX6.9.4).
13	As indicated above, a variety of potent proinflammatory mediators have been reported to
14	be released into the airway lumen following O ₃ exposure. Studies of human alveolar
15	macrophages (AM) and airway epithelial cells exposed to O ₃ in vitro suggest that most mediators
16	found in the BAL fluid of O_3 -exposed humans are produced by epithelial cells. Macrophages
17	exposed to O_3 in vitro showed only small increases in PGE ₂ (Becker et al., 1991). In contrast,
18	airway epithelial cells exposed in vitro to O3 showed large concentration-dependent increases
19	in PGE ₂ , TXB ₂ , LTB ₄ , LTC ₄ , and LTD ₄ (McKinnon et al., 1993) and increases in IL-6, IL-8, and
20	fibronectin at O ₃ concentrations as low as 0.1 ppm (Devlin et al., 1994). Macrophages lavaged
21	from subjects exposed to 0.4 ppm (Koren et al., 1989a) showed changes in the rate of synthesis
22	of 123 different proteins, whereas AMs exposed to O_3 in vitro showed changes in only six
23	proteins, suggesting that macrophage function was altered by mediators released from other
24	cells. Furthermore, recent evidence suggests that the release of mediators from AMs may be
25	modulated by the products of O3-induced oxidation of airway lining fluid components, such as
26	human surfactant protein A (Wang et al., 2002).
27	Although the release of mediators has been demonstrated to occur at exposure
28	concentrations and times that are minimally cytotoxic to airway cells, potentially detrimental

29 latent effects have been demonstrated in the absence of cytotoxicity. These include the

- 30 generation of DNA single strand breaks (Kozumbo et al., 1996) and the loss of cellular
- 31 replicative activity (Gabrielson et al., 1994) in bronchial epithelial cells exposed *in vitro*, and the

1 formation of protein and DNA adducts. A highly toxic aldehyde formed during O₃-induced lipid 2 peroxidation is 4-hydroxynonenal (HNE). Healthy human subjects exposed to 0.4 ppm O_3 for 3 1 h underwent BAL 6 h later. Analysis of lavaged alveolar macrophages by Western blot 4 indicated increased levels of a 32-kDa HNE-protein adduct, as well as 72-kDa heat shock protein and ferritin, in O₃- versus air-exposed subjects (Hamilton et al., 1998). In a recent study of 5 6 healthy subjects exposed to 0.1 ppm O₃ for 2 h (Corradi et al., 2002), formation of 8-hydroxy-2'-7 deoxyguanosine (8-OHdG), a biomarker of reactive oxidant species (ROS)-DNA interaction, 8 was measured in peripheral blood lymphocytes. At 18 h postexposure, 8-OHdG was 9 significantly increased in cells compared to pre-exposure levels, presumably linked to concurrent 10 increases in chemical markers of ROS. Of interest, the increase in 8-OHdG was only significant 11 in a subgroup of subjects with the wild genotype for NAD(P)H:quinone oxidoreductase and the 12 null genotype for glutathione-S-transferase M1, suggesting that polymorphisms in redox 13 enzymes may confer "susceptibility' to O_3 in some individuals. The generation of ROS following exposure to O₃ has been shown to be associated with a wide range of responses. In a 14 15 recent study, ROS production by alveolar macrophages lavaged from subjects exposed to 16 0.22 ppm for 4 h was assessed by flow cytometry (Voter et al., 2001). Levels were found to be significantly elevated 18 h postexposure and associated with several markers of increased 17 18 permeability. An *in vitro* study of human tracheal epithelial cells exposed to O₃ indicated that 19 generation of ROS resulted in decrease in synthesis of the bronchodilatory prostaglandin, PGE₂, 20 as a result of inactivation of prostaglandin endoperoxide G/H synthase 2 (Alpert et al., 1997). 21 These and similar studies indicate that the responses to products of O₃ exposure in the airways 22 encompass a broad range of both stimulatory and inhibitory activities, many of which may be 23 modulated by susceptibility factors upstream in the exposure process, at the level of 24 compensating for the imposed oxidant stress. 25 The inflammatory responses to O₃ exposure also have been studied in asthmatic subjects

(Basha et al., 1994; Scannell et al., 1996; Peden et al., 1997). In these studied in astimiate subjects
showed significantly more neutrophils in the BAL (18 h postexposure) than similarly exposed
healthy individuals. In one of these studies (Peden et al., 1997), which included only allergic
asthmatics who tested positive for Dematophagoides farinae antigen, there was an eosinophilic
inflammation (2-fold increase), as well as neutrophilic inflammation (3-fold increase). In a
study of subjects with intermittent asthma that utilized a 2-fold higher concentration of O₃

1 (0.4 ppm) for 2 h, increases in eosinophil cationic protein, neutrophil elastase and IL-8 were 2 found to be significantly increased 16 h postexposure and comparable in induced sputum and 3 BAL fluid (Hiltermann et al, 1999). Scannell et al. (1996) also reported that IL-8 tended to be 4 higher in post-O₃ exposure BAL in asthmatics compared to nonasthmatics (36 vs. 12 pg/mL, 5 respectively) suggesting a possible mediator for the significantly increased neutrophilic 6 inflammation in asthmatics relative to healthy subjects (12 vs. 4.5%, respectively). In a recent 7 study comparing the neutrophil response to O_3 at a concentration and exposure time similar to 8 those of the latter three studies, Stenfors and colleagues (2002) were unable to detect a 9 difference in the increased neutrophil numbers between 15 mild asthmatic and 15 healthy 10 subjects by bronchial wash at the 6 h postexposure time point. These results suggest that, at least 11 with regard to neutrophil influx, differences between healthy and asthmatic individuals develop 12 gradually following exposure and may not become evident until later in the process.

13 In another study, mild asthmatics who exhibited a late phase underwent allergen challenge 14 24 hrs before a 2 h exposure to 0.27 ppm O_3 or filtered air in a cross-over design (Vagaggini 15 et al., 2002). At 6 h postexposure, eosinophil numbers in induced sputum were found to be 16 significantly greater after O₃ than after air. Studies such as these suggest that the time course of 17 eosinophil and neutrophil influx following O₃ exposure can occur to levels detectable within the 18 airway lumen by as early as 6 h. They also suggest that the previous or concurrent activation of 19 proinflammatory pathways within the airway epithelium may enhance the inflammatory effects 20 of O₃. For example, in an *in vitro* study of epithelial cells from the upper and lower respiratory 21 tract, cytokine production induced by rhinovirus infection was enhanced synergistically by 22 concurrent exposure to O₃ at 0.2 ppm for 3 h (Spannhake et al, 2002).

23 The use of bronchial mucosal biopsies has also provided important insight into the 24 modulation by O₃ of existing inflammatory processes within asthmatics. In a study of healthy 25 and allergic asthmatic subjects exposed to 0.2 ppm O₃ or filtered air for 2 h, biopsies were 26 performed 6 hr following exposure (Bosson et al., 2003). Monoclonal antibodies were used to 27 assess epithelial expression of a variety of cytokines and chemokines. At baseline (air 28 exposure), asthmatic subjects showed significantly higher expression of interleukins (IL)-4 29 and -5. Following O₃ exposure, the epithelial expression of IL-5, IL-8, granulocyte-macrophage 30 colony-stimulating factor (GM-CSF) and epithelial cell-derived neutrophil-activating peptide

2 In vitro studies of bronchial epithelial cells derived by biopsy from nonatopic, nonasthmatic 3 subjects and asthmatic subjects also demonstrated the preferential release of GM-CSF and also 4 of regulated on activation, normal T cell-expressed and -secreted (RANTES) from asthmatic cells following O₃ exposure. 5 6 The time course of the inflammatory response to O_3 in humans has not been explored fully. 7 Nevertheless, studies in which BAL was performed 1-3 h (Devlin et al., 1990; Koren et al., 1991; Seltzer et al., 1986) after exposure to 0.4 ppm O₃ demonstrated that the inflammatory 8 9 response is quickly initiated, and other studies (Koren et al., 1989a,b; Torres et al., 1997; 10 Scannell et al., 1996; Balmes et al., 1996) indicated that, even 18 h after exposure, inflammatory 11 mediators such as IL-6 and PMNs were still elevated. However, different markers show peak 12 responses at different times. Ozone-induced increases in IL-8, IL-6, and PGE₂ are greater 13 immediately after O₃ exposure, whereas BAL levels of fibronectin and plasminogen activator are 14 greater after 18 h. PMNs and some products (protein, Tissue Factor) are similarly elevated both 15 1 and 18 h after O₃ exposure (Devlin et al., 1996; Torres et al., 1997). Schelegle et al. (1991) 16 found increased PMNs in the "proximal airway" lavage at 1, 6, and 24 h after O₃ exposure, with 17 a peak response at 6 h. In a typical BAL sample, PMNs were elevated only at the later time 18 points. This is consistent with the greater increase 18 h after exposure seen by Torres et al. 19 (1997). In addition to the influx of PMNs and (in allergic asthmatics) eosinophils, lymphocyte 20 numbers in BAL were also seen to be elevated significantly at 6 h following exposure of healthy 21 subjects to 0.2 ppm O₃ for 2 h (Blomberg et al., 1997). Analysis of these cells by flow cytometry 22 indicated the increased presence of CD3+, CD4+ and CD8+ T cell subsets. This same laboratory 23 later demonstrated that within 1.5 h following exposure of healthy subjects to the same O₃ 24 regimen, expression of human leukocyte antigen (HLA)-DR on lavaged macrophages underwent 25 a significant, 2.5-fold increase (Blomberg et al., 1999). The significance of these alterations in 26 immune system components and those in IL-4 and IL-5 expression described above in the studies of Bosson et al. (2003) has not been fully explored and may suggest a role for O₃ in the 27 28 modulation of immune inflammatory processes.

78 (ENA-78) was significantly greater in asthmatic subjects, as compared to healthy subjects.

29

1

1

AX6.9.4 Adaptation of Inflammatory Responses

2 Residents of areas with high oxidant concentrations tend to have somewhat blunted 3 pulmonary function responses and symptoms to O₃ exposure (Hackney et al., 1976, 1977b, 1989; Avol et al., 1988; Linn et al., 1988). Animal studies suggest that while inflammation may be 4 5 diminished with repeated exposure, underlying damage to lung epithelial cells continues (Tepper 6 et al., 1989). Devlin et al. (1997) examined the inflammatory responces of humans repeatedly 7 exposed to 0.4 ppm O₃ for 5 consecutive days. Several indicators of inflammation (e.g., PMN influx, IL-6, PGE₂, fibronectin, macrophage phagocytosis) were attenuated after 5 days of 8 9 exposure (i.e., values were not different from FA). Several markers (LDH, IL-8, total protein, 10 epithelial cells) did not show attenuation, indicating that tissue damage probably continues to 11 occur during repeated exposure. The recovery of the inflammatory response occurred for some 12 markers after 10 days, but some responses were not normalized even after 20 days. The 13 continued presence of markers of cellular injury indicates a persistent but not necessarily 14 perceived response to O_3 .

15 Christian et al. (1998) randomly subjected heathy subjects to a single exposure and to 16 4 consecutive days of exposure to 0.2 ppm O_3 for 4 h. As reported by others, they found an 17 attenuation of FEV₁, FVC and specific airway resistance when comparing the single exposure with day 4 of the multiday exposure regimen. Similarly, both "bronchial" and "alveolar" 18 19 fractions of the BAL showed decreased numbers of PMNs and fibronectin concentration at day 20 4 versus the single exposure, and a decrease in IL-6 levels in the alveolar fraction. Following a 21 similar study design and exposure parameters, but with single day filtered air controls, Jörres 22 et al. (2000) found a decrease in FEV₁ and increases in the percentages of neutrophils and 23 lymphocytes, in concentrations of total protein, IL-6, IL-8, reduced glutathione, ortho-tyrosine 24 and urate in BAL fluid, but no changes in bronchial biopsy histology following the single 25 exposure. Twenty hours after the day 4 exposure, both functional and BAL cellular responses 26 to O₃ were abolished. However, levels of total protein, IL-6, IL-8, reduced glutathione and 27 ortho-tyrosine were still increased significantly. In addition, following the day 4 exposure, 28 visual scores for bronchitis, erythema and the numbers of neutrophils in the mucosal biopsies 29 were increased. Their results indicate that, despite reduction of some markers of inflammation 30 in BAL and measures of large airway function, inflammation within the airways persists 31 following repeated exposure to O₃.

1 In another study, Frank and colleagues (2001) exposed healthy subjects to filtered air and 2 to O_3 (0.25 ppm, 2 h) on 4 consecutive days each, with pulmonary function measurements being 3 made prior to and following each exposure. BAL was performed on day 5, 24 h following the 4 last exposure. On day 5, PMN numbers remained significantly higher in the O₃ arm compared to air control. Of particular note in this study was the observation that small airway function, 5 6 assessed by grouping values for isovolumetric FEF₂₅₋₇₅, Vmax50 and Vmax75 into a single 7 value, showed persistent reduction from day 2 through day 5. These data suggest that methods 8 to more effectively monitor function in the most peripheral airway regions, which are known to 9 be the primary sites of O₃ deposition in the lung, may provide important information regarding 10 the cumulative effects of O_3 exposure. Holz et al. (2002) made a comparison of early and late 11 responses to allergen challenge following O₃ in subjects with allergic rhinitis or allergic asthma. 12 With some variation, both early and late FEV₁ and cellular responses in the two subject groups 13 were significantly enhanced by 4 consecutive days of exposure to 0.125 ppm O₃ for 3 h.

14

15

AX6.9.5 Effect of Anti-Inflammatory and Other Mitigating Agents

16 Studies have shown that indomethacin, a non-steroidal anti-inflammatory agent (NSAID) 17 that inhibits the production of cyclooxygenase products of arachidonic acid metabolism, is 18 capable of blunting the well-documented decrements in pulmonary function observed in 19 humans exposed to O₃ (Schelegle et al., 1987; Ying et al., 1990). Indomethacin did not alter 20 the O₃-induced increase in bronchial responsiveness to methacholine (Ying et al., 1990). 21 Pretreatment of healthy subjects and asthmatics with indomethacin prior to exposure to 0.4 ppm 22 for 2 h significantly attenuated decreases in FVC and FEV₁ in normals, but not asthmatics 23 (Alexis et al., 2000). Subjects have also been given ibuprofen, another NSAID agent that blocks 24 cyclooxygenase metabolism, prior to O₃ exposure. Ibuprofen blunted decrements in lung 25 function following O₃ exposure (Hazucha et al., 1996). Subjects given ibuprofen also had 26 reduced BAL levels of the cyclooxygenase product PGE₂ and thromboxane B₂, as well as IL-6, 27 but no decreases were observed in PMNs, fibronectin, permeability, LDH activity, or 28 macrophage phagocytic function. These studies suggest that NSAIDs can blunt O₃-induced 29 decrements in FEV₁ with selective (perhaps drug-specific) affects on mediator release and other 30 markers of inflammation.

1	At least two studies have looked at the effects of the inhaled corticosteroid, budesonide, on
2	the effects of O ₃ , with differing outcome perhaps associated with the presence of preexistent
3	disease. Nightingale and colleagues (2000) exposed healthy nonsmokers to 0.4 ppm O_3 for 2 h
4	following 2 wk of treatment with budesonide (800 micrograms, twice daily) or placebo in a
5	blinded, randomized cross-over study. This relatively high O ₃ exposure resulted in significant
6	decreases in spirometric measures and increases in methacholine reactivity and neutrophils and
7	myeloperoxidase in induced sputum. No significant differences were observed in any of these
8	endpoints following budesonide treatment versus placebo. In contrast, Vagaggini et al. (2001)
9	compared the effects of treatment with budesonide (400 micrograms, twice daily) for 4 wk on
10	the responses of mild asthmatic subjects to exposure to 0.27 ppm O_3 for 2 h. Prior to exposure,
11	at the midpoint and end of exposure, and at 6 h postexposure, FEV_1 was measured and a
12	symptom questionnaire was administered; at 6 h postexposure, sputum was induced.
13	Budesonide treatment did not inhibit the decrement in FEV_1 or alter symptom score, but
14	significantly blunted the increase in percent PMNs and concentration of IL-8 in the sputum. The
15	difference in subject health status between the two studies (healthy versus mild asthmatic) may
16	suggest a basis for the differing outcomes; however, because of differences in the corticosteroid
17	dosage and O_3 exposure levels, that basis remains unclear.
18	Holz et al. (2005) investigated the mitigation of O ₃ -induced inflammatory responses in
19	subjects pretreated with single doses of inhaled fluticasone and oral prednisolone. Eighteen

subjects pretreated with single doses of inhaled fluticasone and oral prednisolone. Eighteen 19 20 healthy ozone-responders (>10% increase in sputum neutrophils from O₃ exposure) received 21 corticosteroid treatment or placebo 1-h before being exposed for 3-h with IE (15 min periods 22 rest/exercise) to 0.25 ppm O₃. Sputum was collected 3-h post-O₃ exposure. The 18 ozone-23 responders were selected from 35 screened subjects. Twelve subjects were disqualified from the 24 study (6 produced insufficient sputum and 6 had inadequate neutrophil responses to O_3), the 25 remaining 5 subjects were [presumably] qualified but did not participate. The O₃ exposure 26 caused small changes in FEV₁ ($-3.6\% \pm 6.8\%$) that were not significantly different from baseline 27 or between treatment groups (i.e., prescreening, placebo, fluticasone, and prednisolone). 28 On average, the prescreening and placebo O₃ exposures caused greater than a 9-fold increase in 29 sputum neutrophils relative to baseline levels. Relative to placebo, the inhaled or oral 30 corticosteroids significantly reduced neutrophil levels by 62 and 64%, respectively. Total protein levels were not altered by O3 or corticosteroid treatment. Authors concluded that the 31

pronounced anti-inflammatory effect of steroids in their study was due to administering the
 highest single doses shown to be safe and well tolerated. Furthermore, steroids were
 administered so that maximal plasma level would be reached at approximately the beginning of
 the O₃ exposure.

Because the O₃ exerts its actions in the respiratory tract by virtue of its strong oxidant 5 6 activity, it is reasonable to assume that molecules that can act as surrogate targets in the airways, 7 as constituents of either extracellular fluids or the intracellular milieus, could abrogate the effects 8 of O_3 . Some studies have examined the ability of dietary "antioxidant" supplements to reduce 9 the risk of exposure of the lung to oxidant exposure. In a study of healthy, nonsmoking adults, 10 Samet and colleagues (2001) restricted dietary ascorbate and randomly treated subjects for 11 2 weeks with a mixture of vitamin C, α -tocopherol and vegetable cocktail high in carrot and 12 tomato juices or placebo. Responses to 0.4 ppm O₃ for 2 h were assessed in both groups at the 13 end of treatment. O_3 -induced decrements in FEV₁ and FVC were significantly reduced in the supplemented group, whereas the inflammatory response, as assessed by percentage neutrophils 14 15 and levels of IL-6 in BAL fluid, were unaffected by antioxidant supplementation. In a study that 16 focused on supplementation with a commercial vegetable cocktail high in the carotenoid, 17 lycopene, healthy subjects were exposed for 2 h to 0.4 ppm O₃ after 2 wk of antioxidant 18 supplementation or placebo (Arab et al., 2002). These investigators observed that lung epithelial 19 cell DNA damage, as measured by the Comet Assay, decreased by 20% in supplemented 20 subjects. However, the relationships between the types and levels of antioxidants in airway 21 lining fluid and responsiveness to O_3 exposure is likely to be complex. In another study where 22 differences in ascorbate and glutathione concentrations between healthy and mild asthmatic 23 subjects were exploited, no relationship between antioxidant levels and spirometric or cellular 24 responses could be detected (Mudway et al., 2001).

25

26

AX6.9.6 Changes in Host Defense Capability Following Ozone Exposure

Concern about the effect of O_3 on human host defense capability derives from numerous animal studies demonstrating that acute exposure to as little as 0.08 ppm O_3 causes decrements in antibacterial host defenses (see Chapter 5). A study of experimental rhinovirus infection in susceptible human volunteers failed to show any effect of 5 consecutive days of O_3 exposure on the clinical evolution of, or host response to, a viral challenge (Henderson et al., 1988). Healthy 1 men were nasally inoculated with type 39 rhinovirus (10^3 TCID₅₀). There was no difference 2 between the O₃-exposed and control groups in rhinovirus titers in nasal secretions, in levels of 3 interferon gamma or PMNs in NL fluid, or in blood lymphocyte proliferative response to 4 rhinovirus antigen. However, subsequent findings that rhinovirus can attach to the intracellular 5 adhesion molecule (ICAM)-1 receptor on respiratory tract epithelial cells (Greve et al., 1989) 6 and that O₃ can up-regulate the ICAM-1 receptor on nasal epithelial cells (Beck et al., 1994) 7 suggest that more studies are needed to explore the possibility that prior O_3 exposure can 8 enhance rhinovirus binding to, and infection of, the nasal epithelium.

9 In a single study, human AM host defense capacity was measured *in vitro* in AMs removed 10 from subjects exposed to 0.08 and 0.10 ppm O_3 for 6.6 h while undergoing moderate exercise. 11 Alveolar macrophages from O₃-exposed subjects had significant decrements in complement-12 receptor-mediated phagocytosis of Candida albicans (Devlin et al., 1991). The impairment of 13 AM host defense capability could potentially result in decreased ability to phagocytose and kill 14 inhaled microorganisms in vivo. A concentration-dependent decrease in phagocytosis of AMs 15 exposed to 0.1 to 1.0 ppm O₃ in vitro has also been shown Becker et al. (1991). Although the 16 evidence is inconclusive at present, there is a concern that O₃ may render humans and animals 17 more susceptible to a subsequent bacterial challenge.

18 Only two studies (Foster et al., 1987; Gerrity et al., 1993) have investigated the effect 19 of O₃ exposure on mucociliary particle clearance in humans. Foster et al. (1987) had seven 20 healthy subjects inhale radiolabeled particles (5 µm MMAD) and then exposed these subjects to 21 FA or O₃ (0.2 and 0.4 ppm) during light IE for 2 h. Gerrity et al. (1993) exposed 15 healthy 22 subjects to FA or 0.4 ppm O₃ during CE (40 L/min) for 1 h; at 2 h post-O₃ exposure, subjects 23 then inhaled radiolabeled particles (5 µm MMAD). Subjects in both studies had similar 24 pulmonary function responses (average FVC decrease of 11 to 12%) immediately postexposure to 0.4 ppm O_3 . The Foster et al. (1987) study suggested there is a stimulatory affect of O_3 25 26 on mucociliary clearance; whereas, Gerrity et al. (1993) found that in the recovery period 27 following O₃ exposure, mucus clearance is similar to control, i.e., following a FA exposure. 28 The clearance findings in these studies are complementary not conflicting. Investigators in both 29 studies suggested that O₃-induced increases in mucociliary clearance could be mediated by 30 cholinergic receptors. Gerrity et al. (1993) further suggested that transient clearance increases

might be coincident to pulmonary function responses; this supposition based on the return of
 sRaw to baseline and the recovery of FVC to within 5% of baseline (versus an 11% decrement
 immediately postexposure) prior to clearance measurements.

4 Insofar as the airway epithelial surface provides a barrier to entry of biological, chemical 5 and particulate contaminants into the submucosal region, the maintenance of barrier integrity 6 represents a component of host defense. Many of the studies of upper and lower respiratory 7 responses to O₃ exposure previously cited above have reported increases in markers of airway 8 permeability after both acute exposures and repeated exposures. These findings suggest that O₃ 9 may increase access of airborne agents. In a study of bronchial epithelial cells obtained from 10 nonatopic and mild atopic asthmatic subjects (Bayram et al., 2002), cells were grown to 11 confluence and transferred to porous membranes. When the cultures again reached confluence, 12 they were exposed to 0.01-0.1 ppm O_3 or air and their permeability was assessed by measuring the paracellular flux of ¹⁴C-BSA. The increase in permeability 24 h following O₃ exposure was 13 14 observed to be significantly greater in cultures of cells derived from asthmatics, compared to 15 healthy subjects. Thus, the late increase in airway permeability following exposure of asthmatic subjects to O₃, of the sort described by Newson et al. (2000), may be related to an inherent 16 susceptibility of 'asthmatic' cells to the barrier-reducing effects of O₃. 17

18 As referenced in Section 6.9.3, the O_3 -induced increase in the numbers of CD8+ T 19 lymphocytes in the airways of healthy subjects reported by Blomberg et al. (1997) poses several 20 interesting questions regarding possible alterations in immune surveillance processes following 21 exposure. In a subsequent study from the same group, Krishna et al. (1998) exposed healthy 22 subjects to 0.2 ppm O₃ or filtered air for 2 h followed by BAL at 6 h. In addition to increased 23 PMNs and other typical markers of inflammation, they found a significant decrease in the 24 CD4+/CD8+ T lymphocyte ratio and in the proportion of activated CD4+ and CD8+ cells. 25 Studies relating to the effects of low-level O₃ exposure on the influx and activity of 26 immunocompetent cells in the upper and lower respiratory tracts may shed additional light on 27 modulation of this important area of host defense.

- 28
- 29

1

AX6.10 EXTRAPULMONARY EFFECTS OF OZONE

2 Ozone reacts rapidly on contact with respiratory system tissue and is not absorbed or 3 transported to extrapulmonary sites to any significant degree as such. Laboratory animal studies suggest that reaction products formed by the interaction of O₃ with respiratory system fluids or 4 5 tissues may produce effects measured outside the respiratory tract—either in the blood, as 6 changes in circulating blood lymphocytes, erythrocytes, and serum, or as changes in the structure 7 or function of other organs, such as the parathyroid gland, the heart, the liver, and the central 8 nervous system. Very little is known, however, about the mechanisms by which O_3 could cause 9 these extrapulmonary effects. (See Section 5.4 for a discussion of the systemic effects

10 *of* O₃ *observed in laboratory animals.*)

11 The results from human exposure studies discussed in the previous criteria documents 12 (U.S. Environmental Protection Agency, 1986, 1996) failed to demonstrate any consistent 13 extrapulmonary effects. Early studies on peripheral blood lymphocytes collected from human 14 volunteers did not find any significant genotoxic or functional changes at O₃ exposures of 0.4 to 15 0.6 ppm for up to 4 h/day. Limited data on human subjects indicated that 0.5 ppm O_3 exposure 16 for over 2 h caused transient changes in blood erythrocytes and sera (e.g., erythrocyte fragility 17 and enzyme activities), but the physiological significance of these studies remains questionable. 18 The conclusions drawn from these early studies raise doubt that cellular damage or altered 19 function is occurring to circulating cells at O_3 exposures under 0.5 ppm.

20 Other human exposure studies have attempted to identify specific markers of exposure 21 to O_3 in blood. For example, Schelegle et al. (1989) showed that $PGF_{2\alpha}$ was elevated after O_3 22 exposure (0.35 ppm); however, no increase in α -1 protease inhibitor was observed by Johnson 23 et al. (1986). Foster et al. (1996) found a reduction in the serum levels of the free radical 24 scavenger α -tocopherol after O₃ exposure. Vender et al. (1994) failed to find any changes in 25 indices of red blood cell antioxidant capacity (GSH, CAT) in healthy male subjects exposed to 26 0.16 ppm O₃ for 7.5 h while intermittently exercising. Liu et al. (1997, 1999) used a salicylate metabolite, 2,3, dehydroxybenzoic acid (DHBA), to indicate increased levels of hydroxyl radical 27 28 which hydroxylates salicylate to DHBA. Increased DHBA levels after exposure to 0.12 and 29 0.40 ppm suggest that O₃ increases production of hydroxyl radical. The levels of DHBA were 30 correlated with changes in spirometry.

1 Only a few experimental human studies have examined O₃ effects in other nonpulmonary 2 organ systems besides blood. Early studies on the central nervous system (Gliner et al., 1979, 3 1980) were not able to find significant effects on motor activity or behavior (vigilance and 4 psychomotor performance) from O₃ exposures at rest up to 0.75 ppm (U.S. Environmental 5 Protection Agency, 1986). Drechsler-Parks et al. (1995) monitored ECG, HR, cardiac output, 6 stroke volume, and systolic time intervals in healthy, older subjects (56 to 85 years of age) 7 exposed to 0.45 ppm O₃ using a noninvasive impedance cardiographic method. No changes 8 were found at this high O₃ concentration after 2 h of exposure while the subjects exercised 9 intermittently at 25 L/min.

10 Gong et al. (1998) monitored ECG, HR, cardiac output, blood pressure, oxygen saturation, 11 and chemistries, as well as calculating other hemodynamic variables (e.g., stroke volume, 12 vascular resistance, rate-pressure products) in both healthy (n = 6) and hypertensive (n = 10)adult males (41-78 years old). Subjects were exposed for 3 h with IE ($\dot{V}_{E} \approx 30$ L/min) to FA 13 14 and on the subsequent day to 0.3 ppm O_3 . See Section AX6.3 for more details about this study. Statistically significant O3 effects for both groups combined were increases in HR, rate-pressure 15 product, and the alveolar-to-arterial PO₂ gradient. Gong et al. (1998) suggested that by 16 17 impairing alveolar-arterial oxygen transfer, the O₃ exposure could potentially lead to adverse 18 cardiac events by decreasing oxygen supply to the myocardium. The subjects in the Gong et al. 19 (1998) study had sufficient functional reserve so as to not experience significant ECG changes or 20 myocardial ischemia and/or injury. However, Gong et al. (1998) concluded that O₃ exposure 21 could pose a cardiopulmonary risk to persons with preexisting cardiovascular disease, with or 22 without concomitant respiratory disease.

23 The mechanism for the decrease in arterial oxygen tension in the Gong et al. (1998) study 24 could be due to an O₃ induced ventilation-perfusion mismatch. It is well recognized and 25 accepted that ventilation and perfusion per unit lung volume increase with progression from the 26 apex to the base of the lung in normal upright healthy humans (Inkley and MacIntyre, 1973; 27 Kaneko et al., 1966). But, Foster et al. (1993) demonstrated that even in relatively young 28 healthy adults (26.7 \pm 7 years old), O₃ exposure can cause ventilation to shift away from the well 29 perfused basal lung (see Section AX6.2.3 for more details). This effect of O₃ on ventilation 30 distribution [and by association the small airways] may persist beyond 24-h postexposure (Foster 31 et al., 1997). Hypoxic pulmonary artery vasoconstriction acts to shift perfusion away from areas

1 of low ventilation and moderate ventilation-perfusion mismatches (Šantak et al., 1998). This 2 arterial vasoconstriction is thought to be mediated by protein kinase C, (Barman, 2001; Tsai 3 et al., 2004). A more generalized (i.e., not localized to poor ventilated areas) increase in 4 pulmonary vascular resistance in response to O₃ exposure would presumably act against the ability of the hypoxic vasoconstriction in mediating ventilation-perfusion mismatches. Acute 5 6 arterial vasoconstriction has been observed clinically in humans (15 M, 10 F; 34.9 ± 10 years 7 old) exposed for 2-h to O₃ (0.12 ppm) in tandem with fine particulate ($\approx 150 \ \mu g/m^3$) (Brook et al., 8 2002). Delaunois et al. (1998) also found that O₃ exposure increases total (arterial, capillary, and 9 venous segments) pulmonary vascular resistance in rabbits. Hence, vasoconstriction could 10 potentially be induced by mechanisms other than regional hypoxia during O_3 exposure. This 11 notion is consistent with the O₃-induced reduction in alveolar-arterial oxygen transfer observed 12 by Gong et al. (1998).

13 Effects of O₃ exposure on alveolar-arterial oxygen gradients may be more pronounced in patients with preexisting obstructive lung diseases. Relative to healthy elderly subjects, COPD 14 15 patients have increased heterogeneity in both regional ventilation and perfusion (Kronenberg 16 et al., 1973). King and Briscoe (1968) examined the distribution of ventilation and perfusion in a group of eight patients with severe COPD (mean $FEV_1/FVC = 36\%$). In these patients, 68% of 17 18 the lung by volume received 45% of the cardiac output, but only 10% of the total alveolar 19 ventilation. This distribution of ventilation and perfusion in the patients contributed to their low 20 mean SaO₂ of only 82% (inspired oxygen, 20.93%). Thus, even prior to O₃ exposure, COPD 21 patients may have reduced gas exchange and low SaO₂. Based on model predictions, increasing 22 tidal volume increases the O₃ dose to the proximal alveolar region (Overton et al., 1996). Similarly, with 90% of the alveolar ventilation supplied to only 32% of lung's volume, the well 23 24 ventilated regions of the COPD lung will be subjected to increased peripheral O₃ doses. Any 25 inflammatory or edematous responses due to O₃ delivered to the well ventilated regions of the 26 COPD lung will likely further inhibit gas exchange and reduce oxygen saturation.

In addition to reducing alveolar-arterial oxygen transfer, O₃ induced vasoconstriction could also acutely induce pulmonary hypertension. Individuals with COPD and coexisting pulmonary hypertension might be subpopulations sensitive to cardiac effects as a consequence of O₃ exposure. Acute pulmonary hypertension could potentially affect cardiac function by increasing right ventricular workloads. Oral or inhaled vasodilators are used in patients to reduce

pulmonary artery pressure to improve right ventricular function (Šantak et al., 1998). 1 2 Consequently, inducing pulmonary vasoconstriction in these patients would perhaps worsen their 3 condition, especially if their right ventricular function was already compromised. There are 4 reduced spirometric and symptom responses to O_3 exposure with age (see Section AX6.5.1). It is conceivable, therefore, that COPD patients and elderly individuals (due to their decreased 5 6 symptomatic responses to ambient O_3) might further increase their risk of adverse 7 cardiopulmonary responses by continuing their exposures beyond the point where young healthy 8 adults might experience discomfort and cease exposure.

- 9
- 10
- 11

AX6.11 OZONE MIXED WITH OTHER POLLUTANTS

Controlled laboratory studies simulating conditions of ambient exposures have failed for
 the most part to demonstrate significant adverse effects either in healthy subjects, atopic
 individuals, or in young and middle-aged asthmatics.

15

16 AX6.11.1 Ozone and Sulfur Oxides

17 The difference in solubilities and other chemical properties of O₃ and SO_x seems to limit chemical interaction and formation of related species in the mixture of these pollutants either in 18 19 liquid or gaseous phase. Laboratory studies reviewed in the previous O₃ criteria document 20 (Table AX6-14) reported, except for one study (Linn et al., 1994), no significant effects on 21 healthy individuals exposed to mixtures of O₃ and SO₂ or H₂SO₄ aerosol. In the study of Linn 22 et al. (1994), which was a repeated 6.5 h exposure protocol, O_3 alone and $O_3 + H_2SO_4$ induced 23 significant spirometric decrements in healthy adults and asthmatics, but the magnitude of effects 24 between exposure atmospheres was not significant. Asthmatic and atopic subjects showed 25 somewhat enhanced or potentiated response to mixtures or sequential exposure, respectively; 26 however, the observed effects were almost entirely attributable to O₃ (U.S. Environmental 27 Protection Agency, 1996). Thus, in both healthy and asthmatic subjects, the interactive effects 28 of O_3 and other pollutants were marginal and the response was dominated by O_3 . 29 Since 1994, the only laboratory study that examined the health effects of a mixture of O_3 30 and sulfur oxides (SO₂ and H_2 SO₄) has been that of Linn et al. (1997). In this study, the

31 investigators closely simulated ambient summer haze air pollution conditions in Uniontown, PA

Conce	Concentration ^b Number and									
ppm	$\mu g/m^3$	Pollutant	Exposure Duration and Activity	Exposure Conditions ^e	Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference		
Sulfur-C	ontaining P	ollutants								
0.0 0.1 + 0.1 +	$0 \\ 196^{b} + 262^{b} + 101^{b}$	$ \begin{array}{l} \text{Air} \\ \text{O}_3 + \\ \text{SO}_2 + \\ \text{H}_2 \text{SO}_4 \end{array} $	4 h IE 15' ex/ 15' rest V _E = 22 L/min	25 °C 50% RH	8 M, 7 F 1 M, 4 F 10 M, 11 F	Healthy Asthmatic Allergic All NS, 9 to 12 yrs. old	Spirometry, PEFR and subjective symptoms score showed no meaningful changes between any condition for a total study population. The symptoms score reported by a subset of asthmatics/allergics were positively associated with inhaled concentration of H_2SO_4 (p = 0.01).	Linn et al. (1997)		
0.2 0.3	392 564	$\begin{array}{c} O_3 \\ NO_2 \\ H_2 SO_4 \end{array}$	90 min. $\dot{V}_E \approx 32$ L/min IE 3 × 15 min	21 °C 50% RH	24 (17 M, 7 F)	Asthmatic NS, 11 to 18 years old	$H_2SO_4/O_3/NO_2$, O_3/NO_2 and clean air produced similar responses	Linn et al. (1995)		
0.12 0.30 0.05	235 564 70	O ₃ NO ₂ H ₂ SO ₄ HNO ₃	1.5 h with IE for 2 consecutive days; $\dot{V}_{E} \approx 23.2 \text{ L/min}$	22 °C 65% RH	22 completed study; 15 M, 7 F	Asthmatic NS, adolescents; NS, 12 to 19 years old	No significant pulmonary function changes following any exposure compared to response to clean air. Six additional subjects started the study, but dropped out due to uncomfortable symptoms.	Koenig et al. (1994)		
0.12	235 100	O ₃ H ₂ SO ₄	6.5 h 2 consecutive days 50 min exercise/h $\dot{V}_E = 29$ L/min	21 °C 50% RH	8 M, 7 F 13 M, 17 F	Nonasthmatic NS, 22 to 41 years old Asthmatic NS, 18 to 50 years old	Exposure to O_3 or $O_3 + H_2SO_4$ induced significant decrements in forced expiratory function. Differences between O_3 and $O_3 + H_2SO_4$ were, at best, marginally significant. O_3 is the more important pollutant for inducing respiratory effects. A few asthmatic and nonasthmatic subjects were more responsive to $O_3 + H_2SO_4$ than to O_3 alone.	Linn et al. (1994)		
0.08 0.12 0.18	157 235 353 100 100	$\begin{array}{c} O_3\\ O_3\\ O_3\\ NaCl\\ H_2SO_4 \end{array}$	3-h exposure to aerosol, followed 24 h later by a 3-h exposure to O ₃ . IE (10 min per half hour) \dot{V}_E = 4 times resting (30 to 364 min)	21 °C ≈40% RH	16 M, 14 F 10 M, 20 F	Nonasthmatic NS, 18 to 45 years old Asthmatic NS, 21 to 42 years old	No significant changes in symptoms or lung function with any aerosol/ O_3 combination in the healthy group. In asthmatics, H_2SO_4 preexposure enhanced the small decrements in FVC that occurred following exposure to 0.18 ppm O_3 . Asthmatics had no significant changes on FEV ₁ with any O_3 exposures, but symptoms were greater.	Utell et al. (1994) Frampton et al. (1995)		

Table AX6-14. Ozone Mixed with Other Pollutants^a

Concer	ntration ^b		Exposure Duration	Exposure	Number and Gender of	Subject		
ppm	$\mu g/m^3$	Pollutant	and Activity	Conditions	Subjects	Characteristics	Observed Effect(s)	Reference
Sulfur-Co	ontaining P	ollutants (con	t'd)					
0.12 0.10	235 262	O ₃ SO ₂	1 h (mouthpiece) IE $\dot{V}_E \approx 30$ L/min 45-min exposure to air or O ₃ , followed by 15-min exposure to O ₃ or SO ₂	22 °C 75% RH	8 M, 5 F	Allergic asthmatics, 12 to 18 years old, medications withheld for at least 4 h before exposures	Prior exposure to O_3 potentiated pulmonary function responses to SO_2 ; decrements in FEV ₁ were -3 , -2 , and -8% for the air/ O_3 , O_3/O_3 , and O_3/SO_2 exposures, respectively.	Koenig et al (1990)
0.25	490 1,200 to 1,600	$\begin{array}{c} O_3 \\ H_2 SO_4 \end{array}$	2 h IE $\dot{V}_{E} = 30$ to 32 L/min	35 °C 83% RH	9 M	Healthy NS, 19 to 29 years old	No significant effects of exposure to O_3 alone or combined with H_2SO_4 aerosol.	Horvath et al. (1987)
Nitrogen-	Containing	Pollutants						
0.0 0.2 0.4 0.2+0.4	0 392 752	Air O ₃ NO ₂ O ₃ +NO ₂	3 h IE 10' ex/ 20' rest $\dot{V}_E = 32 L/min$		9 M, 2 F	Atopic asthmatics 22 to 41 yrs. old	Exposure to NO ₂ alone had minimal effects on FEV ₁ . However, O ₃ alone or in combination elicited significantly greater decline in FEV ₁ in a short (3 h) exposure (higher concentrations) than a	Jenkins et al (1999)
0.1 0.2 0.1+0.2	196 376	O ₃ NO ₂ O ₃ +NO ₂	6 h IE 10' ex/ 20' rest $\dot{V}_E = 32 \text{ L/min}$ T = 25 °C RH = 50%				long (6 h) exposure where the effects were nonsignificant. Allergen challenge inhalation significantly reduced $PD_{20} FEV_1$ in all short but not the long exposures. No additive or potentiating effects have been observed.	
0.0 0.36 0.36 0.75 0.36	0 706 677 1,411 943	Air O ₃ NO ₂ NO ₂ SO ₂	2 h rest	Head only exposure	6 M, 6 F	Healthy NS 19 to 33 yrs. old	For NO ₂ and SO ₂ the absorbed fraction of O ₃ increased relative (to baseline) whereas after O ₃ exposure it decreased. The differences explained by an increased production of O ₃ -reactive substrate in ELF due to inflammation.	Rigas et al. (1997)
0.45 0.60	883 1,129	O ₃ NO ₂	2-h random exposures to FA, O ₃ , NO ₂ , and O ₃ + NO ₂ ; IE; \dot{V}_E = 26-29 L/min	23.6 °C 62% RH	6 M 2 F	Healthy, NS, 56 to 85 years old	Exercise-induced cardiac output was smaller with $O_3 + NO_2$ exposure compared to FA or O_3 alone.	Drechsler- Parks et al. (1995)

Table AX6-14 (cont'd). Ozone Mixed with Other Pollutants^a

<u>Concentration</u> ^b Number and Exposure Duration Exposure Gender of Subject								
ppm	$\mu g/m^3$	Pollutant	Exposure Duration and Activity	Exposure Conditions ^c	Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
Nitrogen-C	ontaining	Pollutants (co	ont'd)					
0.30 0.60	589 1,129	O ₃ NO ₂	2-h exposure to NO ₂ or FA, followed 3 h later by 2-h exposure to O ₃ , IE $\dot{V}_E = 20 \text{ L/min/m}^2 \text{BSA}$	21 °C 40% RH	21 F	Healthy NS, 18 to 34 years old	No significant effect of NO ₂ exposures on any measured parameter. Sequential exposure of NO ₂ followed by O ₃ induced small but significantly larger decrements in FEV ₁ and FEF ₂₅₋₇₅ than FA/O ₃ sequence. Subjects had increased airway responsiveness to methacholine after both exposures, with significantly greater responsiveness after the NO ₂ /O ₃ sequences than after the FA/O ₃ sequence.	Hazucha et al. (1994)
0.2	392 500	O ₃ HNO ₃ H ₂ O	5 h IE (50 min/h exercise) $\dot{V}_E \approx 40$ L/min 2 h HNO ₃ or H ₂ O fog or air, followed by 1-h break, followed by 3 h O ₃	20 °C 5% RH	6 M, 4 F	Healthy NS, minimum of 10% decrement in FEV ₁ after 3 h exposure to 0.20 ppm O_3 with 50 min exercise/h	Exposure to HNO_3 or H_2O fog followed by O_3 induced smaller pulmonary function decrements than air followed by O_3 .	Aris et al. (1991)
0.0 0.12 0.30	0 235 564	Air O ₃ NO ₂	1 h (mouthpiece) IE $\dot{V}_{E} = 33 \text{ L/min}$	22 °C 75% RH	5 M, 7 F	Healthy NS, 12 to 17 years old	Findings inconsistent across cohorts and atmospheres. No significant differences in FEV ₁ and R_T between asthmatics and healthy, or between atmospheres and cohorts.	Koenig et al. (1988)
0.12+0.30	504	$O_3 + NO_2$	$\dot{V}_E = 35 \text{ L/min}$ $\dot{V}_E = 35 \text{ L/min}$		9 M, 3 F	Asthmatic 13 to 18 years old		
0.30 0.60	589 1,129	O ₃ NO ₂	$ \begin{array}{l} 1 \text{ h (mouthpiece)} \\ CE \\ \dot{V}_E \approx 70 \text{ L/min for men} \\ \dot{V}_E \approx 50 \text{ L/min for women} \end{array} $		20 M, 20 F	Healthy NS, 21.4 \pm 1.5 (SD) years old for F, 22.7 \pm 3.3 (SD) years old for M	No differences between responses to O_3 and $NO_2 + O_3$ for spirometric parameters. Increase in SRaw with $NO_2 + O_3$ was significantly less than for O_3 alone.	Adams et al. (1987)
0.30 0.30	589 564 200	O_3 NO ₂ H ₂ SO ₄	2 h CE for 20 min $\dot{V} \approx 25$ L/min	28 to 29 °C 50 to 60% RH	6 M	Healthy subjects, some smokers	Possible small decrease in SG_{aw}	Kagawa (1986)
0.15 0.15	294 284 200	O_3 NO_2 H_2SO_4	2 h, 60 min total exercise $\dot{V} \approx 25$ L/min		6 M		Possible small decrease in SG_{aw}	
0.15 0.15 0.15	294 282 393 200	$\begin{array}{c} O_3 \\ NO_2 \\ SO_2 \\ H_2 SO_4 \end{array}$	2 h, 60 min total exercise $\dot{V} \approx 25$ L/min		3 M		Possible small decrease in FEV_1	

Table AX6-14 (cont'd). Ozone Mixed with Other Pollutants^a

Conce	entration ^b				Number and			
ppm	$\mu g/m^3$	Pollutant	Exposure Duration and Activity	Exposure Conditions ^c	Gender of Subjects	Subject Characteristics	Observed Effect(s)	Reference
Peroxya	cetyl Nitrate							
0.45 0.60 0.13	883 1,129 644	O ₃ NO ₂ PAN	2 h IE $\dot{V}_{E} \approx 25 \text{ L/min}$	24 °C 55 to 58% RH	8 M, 8 F 8 M, 8 F	Healthy NS; 19 to 26 years old; 51 to 76 years old	No differences between responses to O_3 alone, $O_3 + NO_2$, $O_3 + PAN$, or $O_3 + NO_2 + PAN$.	Drechsler- Parks et al. (1989)
0.45 0.30	883 1,485	O3 PAN	$\begin{array}{l} 2 \ h \\ IE \\ \dot{V}_{_E} \approx \ 27 \ L/min \end{array}$	22 °C 60% RH	3 M, 5 F	Healthy NS, mean age = 24 years	No differences between responses to exposure to O_3 alone and O_3 + PAN.	Drechsler- Parks et al. (1987b)
0.485 0.27	952 1,337	O ₃ PAN	2 h IE $\dot{V}_{E} \approx 25$ L/min	21 °C WBGT	10 F	Healthy NS, 19 to 36 years old	Exposure to the mixture of PAN + O_3 induced decrements in FVC and FEV ₁ averaging 10% greater than observed following exposure to O_3 alone.	Horvath et al. (1986)
Particle-	Containing	Pollutants						
0.0 0.12	0 235 ^b + 153 ^b	Air O ₃ + PM _{2.5}	2-2.5 h rest	22 °C 30% RH	15 M, 10 F	Healthy NS 18 to 50 yrs. old	Neither systolic nor diastolic pressure has been affected by pollutants exposure despite a significant brachial artery constriction and a reduction in arterial diameter when compared to filtered air ($p = 0.03$). Absence of flow- and nitroglycerin-mediated brachial artery dilatation.	Brook et al. (2002)

Table AX6-14 (cont'd). Ozone Mixed With Other Pollutants^a

^aSee Appendix A for abbreviations and acronyms. ^bGrouped by pollutant mixture. ^cWBGT = $0.7 T_{wet bult} + 0.3 T_{dry bulb or globe}$.

1 as well as controlled the selection of study subjects with the objective to corroborate earlier 2 reported findings of an epidemiologic study of Neas et al. (1995). The subjects were 41 children 3 (22F/19M) 9 to 12 yrs old. Of these, 26 children had history of asthma or allergy. During a 4 14-day study period, children were exposed on the 4th and 11th day for 4 hrs (IE, 15 min @ avg. \dot{V}_{E} 22 L/min) in random order to air and a mixture of 0.10 ppm O₃, 0.10 ppm SO₂ and 42 to 5 198 mg/m³ H₂SO₄ (mean conc. 101 mg/m³, 0.6 mm MMAD). The effects of controlled 6 7 exposures were assessed by spirometry. Except for exposure days, children used diaries to 8 record activity, respiratory symptoms, location, and PEFR. Thus, every exposure day was 9 bracketed by 3 days of monitoring. Spirometry, PEFR, and respiratory symptoms score showed 10 no meaningful changes between any condition for a total study population. The symptoms score 11 reported by a subset of asthmatic/allergic subjects was positively associated with the inhaled 12 concentration of H_2SO_4 (p = 0.01). However, the reported symptoms were different from the 13 ones reported in the Uniontown study (Neas et al., 1995). Although retrospective statistical 14 power calculations using these study observations for the symptoms score, PEFR, and 15 spirometric endpoints were sufficient to detect with >80% probability the same magnitude of changes as observed in Uniontown, the effects were minimal and not significant. The divergent 16 17 observations of the two studies have been explained by the presence of an unidentified 18 environmental factor in Uniontown, differences in physico-chemical properties of acid, 19 differences in time course of exposure and history of previous exposure of children to pollutants, 20 psychological and physiological factors related to chamber exposures, and by other conjectures.

21 22

AX6.11.2 Ozone and Nitrogen-Containing Pollutants

23 Nitrogen dioxide is a key component of the photooxidation cycle and formation of O_3 . Both gases are almost invariably present in ambient atmosphere. Compared to O₃, NO_x species 24 have limited solubility and moderate oxidizing capability. Both O3 and NO2 are irritants and 25 26 tissue oxidants and exert their toxic actions through many common mechanisms. The regional 27 dosimetry and the primary sites of action of O₃ and NO₂ overlap but are not the same. Since 28 these gases are relatively insoluble in water, they will likely penetrate into the peripheral airways 29 that are more sensitive to damage than better protected conducting airways. The controlled 30 studies reviewed in the previous O₃ criteria document (Table AX6-14) generally reported only 31 small pulmonary function changes after combined exposures of NO2 or nitric acid (HNO3) with

1 O_3 , regardless if the interactive effects were potentiating or additive. In two of these studies, the 2 effects reached statistical significance, but they were not coherent. Preexposure with NO₂ 3 potentiated both spirometric and nonspecific airway reactivity response following subsequent O₃ 4 exposure (Hazucha et al., 1994); however, exposure to NO₂ + O₃ mixture blunted SRaw increase 5 as compared to O₃ alone (Adams et al.,1987). As with O₃ and SO_x mixtures, the effects have 6 been dominated by O₃ (U.S. Environmental Protection Agency, 1996).

Combined exposure to O₃ and NO₂ also blunted the exercise-induced increase in cardiac 7 8 output found with FA and O₃ exposures alone (Drechsler-Parks, 1995). Eight healthy older 9 subjects (56 to 85 years of age) were exposed for 2 h to FA, 0.60 ppm NO₂, 0.45 ppm O₃, and to 10 $0.60 \text{ ppm NO}_2 + 0.45 \text{ ppm O}_3$ while alternating 20-min periods of rest and exercise. Cardiac 11 output, HR, stroke volume, and systolic time intervals were measured by noninvasive impedance 12 cardiography at the beginning of each exposure, while the subjects were at rest, and again during the last 5 min of exercise. Metabolic exercise data (\dot{V}_{E} , $\dot{V}O_{2}$, f_{B}) also were measured. There 13 were no statistically significant differences between exposures for HR, \dot{V}_{E} , $\dot{V}O_{2}$, f_{B} , stroke 14 15 volume, or systolic time intervals. Exercise increased cardiac output after all exposures; 16 however, the incremental increase over rest was significantly smaller for the combined O₃ 17 and NO₂ exposures. The authors speculated that nitrate and nitrite reaction products from the interaction of O₃ and NO₂ cross the air/blood interface in the lungs, causing peripheral 18 19 vasodilation and a subsequent drop in cardiac output. No major cardiovascular effects of O₃ 20 only exposures have been reported in human subjects (see Section AX6.10).

21 Despite suggested potentiation of O_3 response by NO₂ in healthy subjects, it is unclear 22 what response, and at what dose, either sequential or combined gas exposures will induce 23 in asthmatics. Jenkins et al. (1999) exposed 11 atopic asthmatics in random order to air, 24 0.1 ppm O₃, 0.2 ppm NO₂, and 0.1 ppm O₃ + 0.2 ppm NO₂ for 6 h (IE for 10 min @ 32 L/min 25 every 40 min). Two weeks later, 10 of these subjects were exposed for 3 h to doubled 26 concentrations of these gases (i.e., 0.2 ppm O₃, 0.4 ppm NO₂, and 0.2 ppm O₃ + 0.4 ppm NO₂) 27 employing the same exercise regimen. Immediately following each exposure, subjects were 28 challenged with allergen (D. pteronyssinus) and PD₂₀ FEV₁ was determined. Exposure to NO₂ 29 alone had minimal effects on FEV₁ or airway responsiveness. However, O₃ alone or in combination with NO₂ elicited a significantly (p < 0.05) greater decline in FEV₁ in a short (3 h) 30

1 exposure (higher concentrations) than the long (6 h) exposure, where the effects were not 2 significant. Allergen challenge inhalation significantly (p = 0.018 to 0.002) reduced PD₂₀ FEV₁ 3 in all short, but not the long, exposures. No associations were observed between pollutant 4 concentrations and physiologic endpoints. The statistical analyses of these data suggest that the combined effect $(O_3 + NO_2)$ on lung function (FVC, FEV₁) was not significantly greater than the 5 6 effect of individual gases for 6-h exposures, thus no additive or potentiating effects have been 7 observed. Shorter 3-h exposures using twice as high NO₂ concentrations, however, showed 8 significant FEV₁ decrements following exposures to atmospheres containing O₃. The analysis 9 also suggests that it is the inhaled concentration, rather than total dose, that determines lung 10 airway responsiveness to allergen.

11 The potential for interaction between O_3 and other gas mixtures was studied by Rigas et al. (1997). They used an O₃ bolus absorption technique to determine how exposures to O₃, NO₂, 12 and SO₂ will affect distribution of O₃ adsorption by airway mucosa. The selected O₃ bolus 13 14 volume was set to reach lower conducting airways. Healthy young nonsmokers (6F/6M) were 15 exposed on separate days at rest in a head dome to 0.36 ppm O₃, 0.36 ppm NO₂, 0.75 ppm NO₂ 16 and 0.75 ppm SO₂ for 2 h. The rationale for the selection of these gases was their differential 17 absorption. Because O₃ and NO₂ are much less soluble in liquid (i.e., ELF) than SO₂, they are 18 expected to penetrate deeper into the lung than SO₂ which is absorbed more quickly in the 19 epithelial lining fluid of the upper airways. The actual experimental measurements have shown 20 that during continuous NO₂ and SO₂ exposure the absorbed fraction of an O₃ bolus in lower conducting airways increased relative to baseline, whereas during continuous O₃ exposure the O₃ 21 22 bolus fraction in lower conducting airways decreased. The authors attempted to explain the 23 differences by suggesting that there may be increased production of an O₃-reactive substrate 24 in epithelial lining fluid due to airway inflammation. As interpreted by the investigators, during NO_2 and SO_2 exposures the substrate was not depleted by these gases and so could react 25 26 with the O₃ bolus, whereas during O₃ exposure the substrate was depleted, causing the fractional 27 absorption of the O₃ bolus to decrease. Greater absorption in males than females for all gases 28 was attributed to anatomical differences in the bronchial tree.

29

1

AX6.11.3 Ozone and Other Pollutant Mixtures Including Particulate Matter

2 Almost all of the studies published over the last twenty years investigating the health 3 effects of mixtures of O₃ with other air pollutants involved peroxyacetyl nitrate (PAN). These studies on healthy individuals exposed under laboratory conditions came from the Horvath 4 5 laboratory at UC Santa Barbara (Table AX6-13). In the last of this series of studies, Drechsler-Parks and colleagues (1989) found the same equivocal interaction of O₃ and PAN as in previous 6 7 studies, which is attributable to O₃ exposure alone (U.S. Environmental Protection Agency, 8 1996). Subsequently, only a couple of studies have investigated the effects of more complex air 9 pollutant mixtures on human pathophysiology under controlled conditions.

10 It is not only the interaction between air pollutants in ambient air; but, as Rigas et al. 11 (1997) has found, an uneven distribution of O₃, SO₂, and NO₂ absorption in the lower conducting 12 airways of young healthy subjects may modulate pathophysiologic response as well. Exposure 13 to SO₂ and NO₂ increased, while exposure to O₃ decreased, the absorbing capacity of the airways 14 for O_3 . The authors have suggested that SO_2 or NO_2 -inflamed airways release additional 15 substrates into the epithelial lining fluid that react with O₃, thus progressively removing O₃ from the airway lumen. This mechanism may explain findings of antagonistic response (e.g., Adams 16 17 et al., 1987; Dreschler-Parks, 1995) when the two gases are combined in an exposure 18 atmosphere.

19 The mechanisms by which inhalation exposure to other complex ambient atmospheres 20 containing particulate matter (PM) and O₃ induce cardiac events frequently reported in 21 epidemiologic studies are rarely studied in human subjects under laboratory conditions. 22 Recently, Brook et al. (2002) have reported changes in brachial artery tone and reactivity in 23 healthy nonsmokers following 2-h exposures to a mixture of 0.12 ppm O_3 and 153 μ g/m³ of 24 concentrated ambient $PM_{2.5}$, and a control atmosphere of filtered air with a trace of O_3 . 25 administered in random order. Neither systolic nor diastolic pressure was affected by pollutant 26 exposure despite a significant brachial artery constriction and a reduction in arterial diameter 27 when compared to filtered air (p = 0.03). The authors postulate that changes in arterial tone may 28 be a plausible mechanism of air pollution-induced cardiac events. However, the observations of 29 no changes in blood pressure, and an absence of flow- and nitroglycerin- mediated brachial 30 artery dilatation, cast some doubt on the plausibility of this mechanism. A number of other

1

2

proposed mechanisms advanced to establish a link between cardiac events due to pollution and changes in vasomotor tone based on the findings of this study are purely speculative.

- 3
- 4

5

AX6.12 CONTROLLED STUDIES OF AMBIENT AIR EXPOSURES

6 A large amount of informative O₃ exposure-effects data has been obtained in controlled 7 laboratory exposure studies under a variety of different experimental conditions. However, 8 laboratory simulation of the variable pollutant mixtures present in ambient air is not practical. 9 Thus, the exposure effects of one or several artificially generated pollutants (i.e., a simple 10 mixture) on pulmonary function and symptoms may not explain responses to ambient air where 11 complex pollutant mixtures exist. Epidemiologic studies, which do investigate ambient air 12 exposures, do not typically provide the level of control and monitoring necessary to adequately 13 characterize short term responses. Thus, controlled exposures to ambient air using limited 14 numbers of volunteers have been used to try and bridge the gap between laboratory and 15 community exposures.

16

17

AX6.12.1 Mobile Laboratory Studies

18 As presented in previous criteria documents (U.S. Environmental Protection Agency, 1986; 19 1996), quantitatively useful information on the effects of acute exposure to photochemical 20 oxidants on pulmonary function and symptoms responses originated from field studies using a 21 mobile laboratory. These field studies involved subjects exposed to ambient air, FA without 22 pollutants, or FA containing artificially generated concentrations of O₃ that are comparable to 23 those measured in the ambient environment. As a result, measured pulmonary responses in 24 ambient air can be directly compared to those found in more artificial or controlled conditions. 25 However, the mobile laboratory shares some of the same limitations of stationary exposure 26 laboratories (e.g., limited number of both subjects and artificially generated pollutants for 27 testing). Further, mobile laboratory ambient air studies are dependent on ambient outdoor 28 conditions which can be unpredictable, uncontrollable, and not completely characterizable. 29 As summarized in Table AX6-15, investigators in California used a mobile laboratory and 30 demonstrated that pulmonary effects of ambient air in Los Angeles residents are related to O₃

concentration and level of exercise (Avol et al., 1983, 1984, 1985a,b,c, 1987; Linn et al., 1980,

e on contra a		ation ^b Ambient						
ppm	$\mu g/m^3$	Temperature ^c (°C)	Exposure Duration	Activity Level (\dot{V}_{E})	Number of Subjects	Observed Effect(s)	Reference	
0.113 ± .033	221 ± 65	33 ± 1	1 h	CE (22 L/min)	66 healthy children, 8 to 11 years old	No significant changes in forced expiratory function and symptoms of breathing discomfort after exposure to 0.113 ppm O_3 in ambient air.	Avol et al. (1987)	
0.144 ± .043	282 ± 84	32 ± 1	1 h	CE (32 L/min)	59 healthy adolescents, 12 to 15 years old	Small significant decreases in FVC (-2.1%), FEV _{0.75} (-4.0%), FEV ₁ (-4.2%), and PEFR (-4.4%) relative to control with no recovery during a 1-h postexposure rest; no significant increases in symptoms.	Avol et al. (1985a,b)	
0.153 ± .025	300 ± 49	32 ± 2	1 h	CE (53 L/min)	50 healthy adults (competitive bicyclists)	Mild increases in symptoms scores and significant decreases in FEV ₁ (-5.3%) and FVC; mean changes in ambient air were not statistically different from those in purified air containing 0.16 ppm O ₃ .	Avol et al. (1984, 1985c	
$0.156 \pm .055$	306 ± 107	33 ± 4	1 h	CE (38 L/min)	48 healthy adults, 50 asthmatic adults	No significant changes for total symptom score or forced expiratory performance in normals or asthmatics; however, FEV_1 remained low or decreased further (-3%) 3 h after ambient air exposure in asthmatics.	Linn et al. (1983) Avol et al. (1983)	
$0.165 \pm .059$	323 ± 115	33 ± 3	1 h	CE (42 L/min)	60 "healthy" adults (7 were asthmatic)	Small significant decreases in FEV ₁ (-3.3%) and FVC with no recovery during a 1-h postexposure rest; TLC decreased and ΔN_2 increased slightly.	Linn et al. (1983) Avol et al. (1983)	
$0.174 \pm .068$	341 ± 133	33 ± 2	2 h	IE (2 times resting) at 15-min intervals	34 "healthy" adults, 30 asthmatic adults	Increased symptom scores and small significant decreases in FEV ₁ (-2.4%), FVC, PEFR, and TLC in both asthmatic and healthy subjects; however, $25/34$ healthy subjects were allergic and "atypically" reactive to polluted ambient air.	Linn et al. (1980, 1983)	

Table AX6-15. Acute Effects of Ozone in Ambient Air in Field Studies with a Mobile Laboratory^a

^aSee Appendix A for abbreviations and acronyms. ^bRanked by lowest level of O_3 in ambient air, presented as the mean \pm SD. ^cMean \pm SD.

1 1983). Avol et al. (1987) observed no significant pulmonary function or symptoms responses in 2 children (8 to 11 years) engaged in moderate continuous exercise for 1 h while breathing 3 ambient air with an O₃ concentration of 0.113 ppm. However, significant pulmonary function 4 decrements and increased symptoms of breathing discomfort were observed in healthy exercising (1 h continuous) adolescents (Avol et al., 1985a,b), athletes, (Avol et al., 1984, 1985c) 5 6 and lightly exercising asthmatic subjects (Linn et al., 1980, 1983) at O₃ concentrations averaging 7 from 0.144 to 0.174 ppm. Many of the healthy subjects with a history of allergy appeared to be 8 more responsive to O₃ than "nonallergic" subjects (Linn et al., 1980, 1983), although a 9 standardized evaluation of atopic status was not performed. Comparative studies of exercising 10 athletes (Avol et al., 1984, 1985c) with chamber exposures to oxidant-polluted ambient air 11 (mean O₃ concentration of 0.153 ppm) and purified air containing a controlled concentration of generated O₃ at 0.16 ppm showed similar pulmonary function responses and symptoms, 12 13 suggesting that acute exposures to coexisting ambient pollutants had minimal contribution to 14 these responses under the typical summer ambient conditions in Southern California. This 15 contention is similar to, but extends, the laboratory finding of no significant difference in 16 pulmonary function effects between O₃ and O₃ plus PAN exposures (Drechsler-Parks, 1987b). 17 Additional supporting evidence is provided in Section AX6.11.

- 18
- 19

AX6.12.2 Aircraft Cabin Studies

Respiratory symptoms and pulmonary function effects resulting from exposure to O_3 in commercial aircraft flying at high altitudes, and in altitude-simulation studies, have been reviewed elsewhere (U.S. Environmental Protection Agency, 1986, 1996). Flight attendants, because of their physical activities at altitude, tend to receive higher exposures. In a series of hypobaric chamber studies of nonsmoking subjects exposed to 1,829 m (6,000 ft) and O_3 at concentrations of 0.2 and 0.3 ppm for 3 or 4 h (Lategola et al., 1980a,b), increased symptoms and pulmonary function decrements occurred at 0.3 ppm but not at 0.2 ppm.

Commercial aircraft cabin O₃ levels were reported to be very low (average concentration
0.01 to 0.02 ppm) during 92 randomly selected smoking and nonsmoking flights in 1989 (Nagda
et al., 1989). None of these flights recorded O₃ concentrations exceeding the 3-h time-weighted
average (TWA) standard of 0.10 ppm promulgated by the Federal Aviation Administration
(FAA, 1980), probably due to the use of O₃-scrubbing catalytic filters (Melton, 1990). However,

in-flight O₃ exposure can still occur because catalytic filters are not necessarily in continuous use
 during flight. Other factors to consider in aircraft cabins, however, are erratic temperature
 changes, lower barometric pressure and oxygen pressure, and lower humidity, often reaching
 levels between 4 and 17% (Rayman, 2002).

5 Ozone contamination aboard high-altitude aircraft also has been an interest to the U.S. Air Force because of complaints by crew members of frequent symptoms of dryness and irritation of 6 7 the eyes, nose, and throat and an occasional cough (Hetrick et al., 2000). Despite the lack of 8 ventilation system modifications as used in commercial aircraft, the O₃ concentrations never 9 exceeded the FAA ceiling limit of 0.25 ppm and exceeded the 3-h TWA of 0.10 ppm only 7% of 10 the total monitored flight time (43 h). The authors concluded that extremely low average 11 relative humidity (12%) during flight operations was most likely responsible for the reported 12 symptoms.

13

REFERENCES

- Adams, W. C. (2000a) Feasibility study of prolonged ozone inhalation exposure via face mask. Inhalation Toxicol. 12: 299-313.
- Adams, W. C. (2000b) Ozone dose-response effects of varied equivalent minute ventilation rates. J. Exposure Anal. Environ. Epidemiol. 10: 217-226.
- Adams, W. C. (2002) Comparison of chamber and face-mask 6.6-hour exposures to ozone on pulmonary function and symptoms responses. Inhalation Toxicol. 14: 745-764.
- Adams, W. C. (2003a) Comparison of chamber and face mask 6.6-hour exposure to 0.08 ppm ozone via square-wave and triangular profiles on pulmonary responses. Inhalation Toxicol. 15: 265-281.
- Adams, W. C. (2003b) Relation of pulmonary responses induced by 6.6-h exposures to 0.08 ppm ozone and 2-h exposures to 0.30 ppm ozone via chamber and face-mask inhalation. Inhalation Toxicol. 15: 745-759.
- Adams, W. C.; Ollison, W. M. (1997) Effects of prolonged simulated ambient ozone dosing patterns on human pulmonary function and symptomatology. Presented at: 90th annual meeting of the Air & Waste Management Association; June; Toronto, Ontario, Canada. Pittsburgh, PA: Air & Waste Management Association; paper no. 97-MP9.02.
- Adams, W. C.; Schelegle, E. S. (1983) Ozone and high ventilation effects on pulmonary function and endurance performance. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 55: 805-812.
- Adams, W. C.; Savin, W. M.; Christo, A. E. (1981) Detection of ozone toxicity during continuous exercise via the effective dose concept. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 51: 415-422.
- Adams, W. C.; Brookes, K. A.; Schelegle, E. S. (1987) Effects of NO₂ alone and in combination with O₃ on young men and women. J. Appl. Physiol. 62: 1698-1704.
- Alexis, N.; Urch, B.; Tarlo, S.; Corey, P.; Pengelly, D.; O'Byrne, P.; Silverman, F. (2000) Cyclooxygenase metabolites play a different role in ozone-induced pulmonary function decline in asthmatics compared to normals. Inhalation Toxicol. 12: 1205-1224.
- Alexis, N. E.; Becker, S.; Bromberg, P. A.; Devlin, R.; Peden, D. B. (2004) Circulating CD11b expression correlates with the neutrophil response and airway mCD14 expression is enhanced following ozone exposure in humans. Clin. Immunol. 111: 126-131.
- Alpert, S. E.; Walenga, R. W.; Jaspers, I.; Qu, Q.; Chen, L. C. (1997) Ozone inactivates cyclooxygenase in human tracheal epithelial cells without altering PGHS-2 mRNA or protein. Am. J. Physiol. 272: L879-L887.
- Arab, L.; Steck-Scott, S.; Fleishauer, A. T. (2002) Lycopene and the lung. Exp. Biol. Med. 227: 894-899.
- Aris, R.; Christian, D.; Sheppard, D.; Balmes, J. R. (1991) The effects of sequential exposure to acidic fog and ozone on pulmonary function in exercising subjects. Am. Rev. Respir. Dis. 143: 85-91.
- Aris, R. M.; Christian, D.; Hearne, P. Q.; Kerr, K.; Finkbeiner, W. E.; Balmes, J. R. (1993) Ozone-induced airway inflammation in human subjects as determined by airway lavage and biopsy. Am. Rev. Respir. Dis. 148: 1363-1372.
- Aris, R. M.; Tager, I.; Christian, D.; Kelly, T.; Balmes, J. R. (1995) Methacholine responsiveness is not associated with O₃-induced decreases in FEV₁. Chest 107: 621-628.
- Avissar, N. E.; Reed, C. K.; Cox, C.; Frampton, M. W.; Finkelstein, J. N. (2000) Ozone, but not nitrogen dioxide, exposure decreases glutathione peroxidases in epithelial lining fluid of human lung. Am. J. Respir. Crit. Care Med. 162: 1342-1347.
- Avol, E. L.; Linn, W. S.; Shamoo, D. A.; Venet, T. G.; Hackney, J. D. (1983) Acute respiratory effects of Los Angeles smog in continuously exercising adults. J. Air Pollut. Control Assoc. 33: 1055-1060.
- Avol, E. L.; Linn, W. S.; Venet, T. G.; Shamoo, D. A.; Hackney, J. D. (1984) Comparative respiratory effects of ozone and ambient oxidant pollution exposure during heavy exercise. J. Air Pollut. Control Assoc. 34: 804-809.
- Avol, E. L.; Linn, W. S.; Shamoo, D. A.; Valencia, L. M.; Anzar, U. T.; Venet, T. G.; Hackney, J. D. (1985a) Respiratory effects of photochemical oxidant air pollution in exercising adolescents. Am. Rev. Respir. Dis. 132: 619-622.
- Avol, E. L.; Linn, W. S.; Shamoo, D. A.; Valencia, L. M.; Anzar, U. T.; Hackney, J. D. (1985b) Short-term health effects of ambient air pollution in adolescents. In: Lee, S. D., ed. Evaluation of the scientific basis for ozone/oxidants standards: transactions of an APCA international specialty conference; November 1984; Houston, TX. Pittsburgh, PA: Air Pollution Control Association; pp. 329-336. (APCA international specialty conference transactions: TR-4).

54

1

- Avol, E. L.; Linn, W. S.; Venet, T. G.; Shamoo, D. A.; Spier, C. E.; Hackney, J. D. (1985c) Comparative effects of laboratory generated ozone and ambient oxidant exposure in continuously exercising subjects. In: Lee, S. D., ed. Evaluation of the scientific basis for ozone/oxidants standards: proceedings of an APCA international specialty conference; November 1984; Houston, TX. Pittsburgh, PA: Air Pollution Control Association; pp. 216-225. (APCA international specialty conference transactions: TR-4).
- Avol, E. L.; Linn, W. S.; Shamoo, D. A.; Spier, C. E.; Valencia, L. M.; Venet, T. G.; Trim, S. C.; Hackney, J. D. (1987) Short-term respiratory effects of photochemical oxidant exposure in exercising children. JAPCA 37: 158-162.
- Avol, E. L.; Linn, W. S.; Shamoo, D. A.; Hackney, J. D. (1988) Seasonal ozone reactivity in Los Angeles residents. Presented at: 81st annual meeting of the Air Pollution Control Association; June; Dallas, TX. Pittsburgh, PA: Air Pollution Control Association; paper no. 88-122.6.
- Ball, B. A.; Folinsbee, L. J.; Peden, D. B.; Kehrl, H. R. (1996) Allergen bronchoprovocation of patients with mild allergic asthma after ozone exposure. J. Allergy Clin. Immunol. 98: 563-572.
- Balmes, J. R.; Chen, L. L.; Scannell, C.; Tager, I.; Christian, D.; Hearne, P. Q.; Kelly, T.; Aris, R. M. (1996) Ozone-induced decrements in FEV₁ and FVC do not correlate with measures of inflammation. Am. J. Respir. Crit. Care Med. 153: 904-909.
- Balmes, J. R.; Aris, R. M.; Chen, L. L.; Scannell, C.; Tager, I. B.; Finkbeiner, W.; Christian, D.; Kelly, T.; Hearne, P. Q.; Ferrando, R.; Welch, B. (1997) Effects of ozone on normal and potentially sensitive human subjects. part I: airway inflammation and responsiveness to ozone in normal and asthmatic subjects. Cambridge, MA: Health Effects Institute. Research report no. 78; pp 1-37, 81-99.
- Barman, S. A. (2001) Effect of protein kinase C inhibition on hypoxic pulmonary vasoconstriction. Am. J. Physiol. Lung Cell Mol. Physiol. 280: L888-L895.
- Bascom, R.; Naclerio, R. M.; Fitzgerald, T. K.; Kagey-Sobotka, A.; Proud, D. (1990) Effect of ozone inhalation on the response to nasal challenge with antigen of allergic subjects. Am. Rev. Respir. Dis. 142: 594-601.
- Basha, M. A.; Gross, K. B.; Gwizdala, C. J.; Haidar, A. H.; Popovich, J., Jr. (1994) Bronchoalveolar lavage neutrophilia in asthmatic and healthy volunteers after controlled exposure to ozone and filtered purified air. Chest 106: 1757-1765.
- Bates, D. V.; Bell, G. M.; Burnham, C. D.; Hazucha, M.; Mantha, J.; Pengelly, L. D.; Silverman, F. (1972) Short-term effects of ozone on the lung. J. Appl. Physiol. 32: 176-181.
- Bayram, H.; Sapsford, R. J.; Abdelaziz, M. M.; Khair, O. A. (2001) Effect of ozone and nitrogen dioxide on the release of proinflammatory mediators from bronchial epithelial cells of nonatopic nonasthmatic subjects and atopic asthmatic patients in vitro. J. Allergy Clin. Immunol. 107: 287-294.
- Bayram, H.; Rusznak, C.; Khair, O. A.; Sapsford, R. J.; Abdelaziz, M. M. (2002) Effect of ozone and nitrogen dioxide on the permeability of bronchial epithelial cell cultures of non-asthmatic and asthmatic subjects. Clin. Exp. Allergy 32: 1285-1292.
- Beck, N.; Koenig, J. Q.; Luchtel, D. L.; Altman, L. C.; Orsborn, M. T.; Kenney, J. S. (1994) Ozone can increase the expression of intercellular adhesion molecule-1 and the synthesis of cytokines by human nasal epithelial cells. Inhalation Toxicol. 6: 345-357.
- Becker, S.; Madden, M. C.; Newman, S. L.; Devlin, R. B.; Koren, H. S. (1991) Modulation of human alveolar macrophage properties by ozone exposure *in vitro*. Toxicol. Appl. Pharmacol. 110: 403-415.
- Bedi, J. F.; Drechsler-Parks, D. M.; Horvath, S. M. (1985) Duration of increased pulmonary function sensitivity to an initial ozone exposure. Am. Ind. Hyg. Assoc. J. 46: 731-734.
- Bedi, J. F.; Horvath, S. M.; Drechsler-Parks, D. M. (1988) Reproducibility of the pulmonary function response of older men and women to a 2-hour ozone exposure. JAPCA 38: 1016-1019.
- Bedi, J. F.; Horvath, S. M.; Drechsler-Parks, D. M. (1989) Adaptation by older individuals repeatedly exposed to 0.45 parts per million ozone for two hours. JAPCA 39: 194-199.
- Bergamaschi, E.; De Palma, G.; Mozzoni, P.; Vanni, S.; Vettori, M. V.; Broeckaert, F.; Bernard, A.; Mutti, A. (2001) Polymorphism of quinone-metabolizing enzymes and susceptibility to ozone-induced acute effects. Am. J. Respir. Crit. Care Med. 163: 1426-1431.
- Bhalla, D. K. (2002) Interactive effects of cigarette smoke and ozone in the induction of lung injury. Toxicol. Sci. 65: 1-3.
- Blomberg, A.; Helleday, R.; Pourazar, J.; Stenfors, N.; Kelly, F. J.; Frew, A. J.; Holgate, S. T.; Sandstrom, T. (1997) Early airway and peripheral blood cell responses to 0.20 ppm ozone in healthy human subjects. Eur. Respir. J. 10(suppl 25): 274S.

- Blomberg, A.; Mudway, I. S.; Nordenhall, C.; Hedenstrom, H.; Kelly, F. J.; Frew, A. J.; Holgate, S. T.; Sandstrom, T. (1999) Ozone-induced lung function decrements do not correlate with early airway inflammatory or antioxidant responses. Eur. Respir. J. 13: 1418-1428.
- Blomberg, A.; Mudway, I.; Svensson, M.; Hagenbjörk-Gustafsson, A.; Thomasson, L.; Helleday, R.; Dumont, X.; Forsberg, B.; Nordberg, G.; Bernard, A. (2003) Clara cell protein as a biomarker for ozone-induced lung injury in humans. Eur. Respir. J. 22: 883-888.
- Bosson, J.; Stenfors, N.; Bucht, A.; Helleday, R.; Pourazar, J.; Holgate, S. T.; Kelly, f. J.; Sandstrom, T.; Wilson, S.; Frew, A. J.; Blomberg, A. (2003) Ozone-induced bronchial epithelial cytokine expression differs between healthy and asthmatic subjects. Clin. Exp. Allergy 33: 777-782.
- Brook, R. D.; Brook, J. R.; Urch, B.; Vincent, R.; Rajagopalan, S.; Silverman, F. (2002) Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation 105: 1534-1536.
- Brookes, K. A.; Adams, W. C.; Schelegle, E. S. (1989) 0.35 ppm O₃ exposure induces hyperresponsiveness on 24-h reexposure to 0.20 ppm O₃. J. Appl. Physiol. 66: 2756-2762.
- Brummer, M. E. G.; Schwartz, L. W.; McQuillen, N. K. (1977) A quantitative study of lung damage by scanning electron microscopy. Inflammatory cell response to high-ambient levels of ozone. In: Johari, O.; Becker, R. P., eds. Scanning electron microscopy/1977/II biological applications of the SEM: proceedings of the workshops on advances in biomedical applications of the SEM & STEM; March-April; Chicago, IL. Chicago, IL: IIT Research Institute; pp. 513-518.
- Bush, M. L.; Asplund, P. T.; Miles, K. A.; Ben-Jebria, A.; Ultman, J. S. (1996) Longitudinal distribution of O₃ absorption in the lung: gender differences and intersubject variability. J. Appl. Physiol. 81: 1651-1657.
- Centers for Disease Control and Prevention. (2003) Key clinical activities for quality asthma care: recommendations of the National Asthma Education and Prevention Program. Morb. Mortal. Wkly. Rep. 52(RR-6): 1-8. Available: http://www.cdc.gov/mmwr/PDF/rr/rr5206.pdf (11 April 2003).
- Chen, L. L.; Tager, I. B.; Peden, D. B.; Christian, D. L.; Ferrando, R. E.; Welch, B. S.; Balmes, J. R. (2004) Effect of ozone exposure on airway responses to inhaled allergen in asthmatic subjects. Chest 125: 2328-2335.
- Christian, D. L.; Chen, L. L.; Scannell, C. H.; Ferrando, R. E.; Welch, B. S.; Balmes, J. R. (1998) Ozone-induced inflammation is attenuated with multiday exposure. Am. J. Respir. Crit. Care Med. 158: 532-537.
- Coffey, M. J.; Wheeler, C. S.; Gross, K. B.; Eschenbacher, W. L.; Sporn, P. H. S.; Peters-Golden, M. (1996) Increased 5-lipoxygenase metabolism in the lungs of human subjects exposed to ozone. Toxicology 114: 187-197.
- Coleridge, J. C. G.; Coleridge, H. M.; Schelegle, E. S.; Green, J. F. (1993) Acute inhalation of ozone stimulates bronchial C-fibers and rapidly adapting receptors in dogs. J. Appl. Physiol. 74: 2345-2352.
- Collins, D. V.; Cutillo, A. G.; Armstrong, J. D.; Crapo, R. O.; Kanner, R. E.; Tocino, I.; Renzetti, A. D., Jr. (1986) Large airway size, lung size, and maximal expiratory flow in healthy nonsmokers. Am. Res. Respir. Dis. 134: 951-955.
- Corradi, M.; Alinovi, R.; Goldoni, M.; Vettori, M.; Folesani, G.; Mozzoni, P.; Cavazzini, S.; Bergamaschi, E.; Rossi, L.; Mutti, A. (2002) Biomarkers of oxidative stress after controlled human exposure to ozone. Toxicol. Lett. 134: 219-225.
- Criqui, G. I.; Solomon, C.; Welch, B. S.; Ferrando, R. E.; Boushey, H. A.; Balmes, J. R. (2000) Effects of azithromycin on ozone-induced airway neutrophilia and cytokine release. Eur. Respir. J. 15: 856-862.
- Cropp, G. J. A.; Bernstein, I. L.; Boushey, H. A., Jr.; Hyde, R. W.; Rosenthal, R. R.; Spector, S. L.; Townley, R. G. (1980) Guidelines for bronchial inhalation challenges with pharmacologic and antigenic agents. ATS News (Spring): 11-19.
- David, G. L.; Romieu, I.; Sienra-Monge, J. J.; Collins, W. J.; Ramirez-Aguilar, M.; Del Rio-Navarro, B. E.; Reyes-Ruiz, N. I.; Morris, R. W.; Marzec, J. M.; London, S. J. (2003) Nicotinamide adenine dinucleotide (Phosphate) reduced:quinone oxidoreductase and glutathione s-transferase m1 polymorphism and childhood asthma. Am. J. Respir. Crit. Care Med. 168: 1199-1204.
- Delaunois, A.; Segura, P.; Montaño, L. M.; Vargas, M. H.; Ansay, M.; Gustin, P. (1998) Comparison of ozone-induced effects on lung mechanics and hemodynamics in the rabbit. Toxicol. Appl. Pharmacol. 150: 58-67.
- Devlin, R. B.; Koren, H. S. (1990) The use of quantitative two-dimensional gel electrophoresis to analyze changes in alveolar macrophage proteins in humans exposed to ozone. Am. J. Respir. Cell Mol. Biol. 2: 281-288.
- Devlin, R. B.; McDonnell, W. F.; Koren, H. S.; Becker, S. (1990) Prolonged exposure of humans to 0.10 and 0.08 ppm ozone results in inflammation in the lung. Presented at: 83rd annual meeting of the Air & Waste Management Association; June; Pittsburgh, PA. Pittsburgh, PA: Air & Waste Management Association; paper no. 90-150.2.

- Devlin, R. B.; McDonnell, W. F.; Mann, R.; Becker, S.; House, D. E.; Schreinemachers, D.; Koren, H. S. (1991) Exposure of humans to ambient levels of ozone for 6.6 hours causes cellular and biochemical changes in the lung. Am. J. Respir. Cell Mol. Biol. 4: 72-81.
- Devlin, R. B.; McKinnon, K. P.; Noah, T.; Becker, S.; Koren, H. S. (1994) Ozone-induced release of cytokines and fibronectin by alveolar macrophages and airway epithelial cells. Am. J. Physiol. 266: L612-L619.
- Devlin, R. B.; McDonnell, W. F.; Becker, S.; Madden, M. C.; McGee, M. P.; Perez, R.; Hatch, G.; House, D. E.; Koren, H. S. (1996) Time-dependent changes of inflammatory mediators in the lungs of humans exposed to 0.4 ppm ozone for 2 hr: a comparison of mediators found in bronchoalveolar lavage fluid 1 and 18 hr after exposure. Toxicol. Appl. Pharmacol. 138: 176-185.
- Devlin, R. B.; Folinsbee, L. J.; Biscardi, F.; Hatch, G.; Becker, S.; Madden, M. C.; Robbins, M.; Koren, H. S. (1997) Inflammation and cell damage induced by repeated exposure of humans to ozone. Inhalation Toxicol. 9: 211-235.
- Dimeo, M. J.; Glenn, M. G.; Holtzman, M. J.; Sheller, J. R.; Nadel, J. A.; Boushey, H. A. (1981) Threshold concentration of ozone causing an increase in bronchial reactivity in humans and adaptation with repeated exposures. Am. Rev. Respir. Dis. 124: 245-248.
- Drechsler-Parks, D. M. (1995) Cardiac output effects of O₃ and NO₂ exposure in healthy older adults. Toxicol. Ind. Health 11: 99-109.
- Drechsler-Parks, D. M.; Bedi, J. F.; Horvath, S. M. (1984) Interaction of peroxyacetyl nitrate and ozone on pulmonary functions. Am. Rev. Respir. Dis. 130: 1033-1037.
- Drechsler-Parks, D. M.; Bedi, J. F.; Horvath, S. M. (1987a) Pulmonary function responses of older men and women to ozone exposure. Exp. Gerontol. 22: 91-101.
- Drechsler-Parks, D. M.; Bedi, J. F.; Horvath, S. M. (1987b) Pulmonary function desensitization on repeated exposures to the combination of peroxyacetyl nitrate and ozone. JAPCA 37: 1199-1201.
- Drechsler-Parks, D. M.; Bedi, J. F.; Horvath, S. M. (1989) Pulmonary function responses of young and older adults to mixtures of O₃, NO₂ and PAN. Toxicol. Ind. Health 5: 505-517.
- Drechsler-Parks, D. M.; Horvath, S. M.; Bedi, J. F. (1990) The "effective dose" concept in older adults exposed to ozone. Exp. Gerontol. 25: 107-115.
- Eschenbacher, W. L.; Ying, R. L.; Kreit, J. W.; Gross, K. B. (1989) Ozone-induced lung function changes in normal and asthmatic subjects and the effect of indomethacin. In: Schneider, T.; Lee, S. D.; Wolters, G. J. R.; Grant, L. D., eds. Atmospheric ozone research and its policy implications: proceedings of the 3rd US-Dutch international symposium; May 1988; Nijmegen, The Netherlands. Amsterdam, The Netherlands: Elsevier Science Publishers; pp. 493-499. (Studies in environmental science 35).
- Fahy, J. V.; Wong, H. H.; Liu, J. T.; Boushey, H. A. (1995) Analysis of induced sputum after air and ozone exposures in healthy subjects. Environ. Res. 70: 77-83.
- Federal Aviation Administration. (1980) Airplane cabin ozone contamination. F. R. (January 21) 45: 3880-3883.
- Fernandes, A. L. G.; Molfino, N. A.; McClean, P. A.; Silverman, F.; Tarlo, S.; Raizenne, M.; Slutsky, A. S.; Zamel, N. (1994) The effect of pre-exposure to 0.12 ppm of ozone on exercise-induced asthma. Chest 106: 1077-1082.
- Folinsbee, L. J.; Hazucha, M. J. (1989) Persistence of ozone-induced changes in lung function and airway responsiveness. In: Schneider, T.; Lee, S. D.; Wolters, G. J. R.; Grant, L. D., eds. Atmospheric ozone research and its policy implications: proceedings of the 3rd US-Dutch international symposium; May 1988; Nijmegen, The Netherlands. Amsterdam, The Netherlands: Elsevier Science Publishers; pp. 483-492. (Studies in environmental science 35).
- Folinsbee, L. J.; Hazucha, M. J. (2000) Time course of response to ozone exposure in healthy adult females. Inhalation Toxicol. 12: 151-167.
- Folinsbee, L. J.; Horvath, S. M. (1986) Persistence of the acute effects of ozone exposure. Aviat. Space Environ. Med. 57: 1136-1143.
- Folinsbee, L. J.; Silverman, F.; Shephard, R. J. (1975) Exercise responses following ozone exposure. J. Appl. Physiol. 38: 996-1001.
- Folinsbee, L. J.; Silverman, F.; Shephard, R. J. (1977) Decrease of maximum work performance following ozone exposure. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 42: 531-536.
- Folinsbee, L. J.; Drinkwater, B. L.; Bedi, J. F.; Horvath, S. M. (1978) The influence of exercise on the pulmonary function changes due to exposure to low concentrations of ozone. In: Folinsbee, L. J.; Wagner, J. A.; Borgia, J. F.; Drinkwater, B. L.; Gliner, J. A.; Bedi, J. F., eds. Environmental stress: individual human adaptations. New York, NY: Academic Press; pp. 125-145.

- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
- Folinsbee, L. J.; Bedi, J. F.; Horvath, S. M. (1980) Respiratory responses in humans repeatedly exposed to low concentrations of ozone. Am. Rev. Respir. Dis. 121: 431-439.
- Folinsbee, L. J.; Bedi, J. F.; Horvath, S. M. (1984) Pulmonary function changes after 1 h continuous heavy exercise in 0.21 ppm ozone. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 57: 984-988.
- Folinsbee, L. J.; Horstman, D. H.; Vorona, R. D.; Prince, J. M.; Berry, M. (1986) Determinants of endurance performance during ozone inhalation. Presented at: 30th International Union of Physiological Sciences congress; July; Vancouver, BC, Canada. Proc. Int. Union Physiol. Sci. 16: 176.
- Folinsbee, L. J.; McDonnell, W. F.; Horstman, D. H. (1988) Pulmonary function and symptom responses after 6.6-hour exposure to 0.12 ppm ozone with moderate exercise. JAPCA 38: 28-35.
- Folinsbee, L. J.; Devlin, R. B.; Abdul-Salaam, S.; Koren, H. S. (1993) Repeated severe ozone exposure causes depressed baseline spirometry. Am. Rev. Respir. Dis. 147: A638.
- Folinsbee, L. J.; Horstman, D. H.; Kehrl, H. R.; Harder, S.; Abdul-Salaam, S.; Ives, P. J. (1994) Respiratory responses to repeated prolonged exposure to 0.12 ppm ozone. Am. J. Respir. Crit. Care Med. 149: 98-105.
- Folinsbee, L. J.; Devlin, R. B.; Robbins, M. K.; Biscardi, F. H.; Abdul-Salaam, S.; Koren, H. S. (1998) Repeated exposure of humans to ozone: pulmonary function and symptom responses. Research Triangle Park, NC: U.S. Environmental Protection Agency; National Center for Environmental Assessment; unpublished data.
- Foster, W. M.; Stetkiewicz, P. T. (1996) Regional clearance of solute from the respiratory epithelia: 18-20 h postexposure to ozone. J. Appl. Physiol. 81: 1143-1149.
- Foster, W. M.; Costa, D. L.; Langenback, E. G. (1987) Ozone exposure alters tracheobronchial mucociliary function in humans. J. Appl. Physiol. 63: 996-1002.
- Foster, W. M.; Silver, J. A.; Groth, M. L. (1993) Exposure to ozone alters regional function and particle dosimetry in the human lung. J. Appl. Physiol. 75: 1938-1945.
- Foster, W. M.; Wills-Karp, M.; Tankersley, C. G.; Chen, X.; Paquette, N. C. (1996) Bloodborne markers in humans during multiday exposure to ozone. J. Appl. Physiol. 81: 794-800.
- Foster, W. M.; Weinmann, G. G.; Menkes, E.; Macri, K. (1997) Acute exposure of humans to ozone impairs small airway function. Ann. Occup. Hyg. 41(suppl. 1): 659-666.
- Foster, W. M.; Brown, R. H.; Macri, K.; Mitchell, C. S. (2000) Bronchial reactivity of healthy subjects: 18-20 h postexposure to ozone. J. Appl. Physiol. 89: 1804-1810.
- Fox, S. D.; Adams, W. C.; Brookes, K. A.; Lasley, B. L. (1993) Enhanced response to ozone exposure during the follicular phase of the menstrual cycle. Environ. Health Perspect. 101: 242-244.
- Foxcroft, W. J.; Adams, W. C. (1986) Effects of ozone exposure on four consecutive days on work performance and \dot{VO}_{2max} . J. Appl. Physiol. 61: 960-966.
- Frampton, M. W.; Morrow, P. E.; Cox, C.; Levy, P. C.; Condemi, J. J.; Speers, D.; Gibb, F. R.; Utell, M. J. (1995) Sulfuric acid aerosol followed by ozone exposure in healthy and asthmatic subjects. Environ. Res. 69: 1-14.
- Frampton, M. W.; Morrow, P. E.; Torres, A.; Cox, C.; Voter, K. Z.; Utell, M. J.; Gibb, F. R.; Speers, D. M. (1997a) Ozone responsiveness in smokers and nonsmokers. Am. J. Respir. Crit. Care Med. 155: 116-121.
- Frampton, M. W.; Balmes, J. R.; Cox, C.; Krein, P. M.; Speers, D. M.; Tsai, Y.; Utell, M. J. (1997b) Effects of ozone on normal and potentially sensitive human subjects. Part III: mediators of inflammation in bronchoalveolar lavage fluid from nonsmokers, smokers, and asthmatic subjects exposed to ozone: a collaborative study. Cambridge, MA: Health Effects Institute. Research report 78; pp. 73-99, 81-99.
- Frank, R.; Liu, M. C.; Spannhake, E. W.; Mlynarek, S.; Macri, K.; Weinmann, G. G. (2001) Repetitive ozone exposure of young adults: evidence of persistent small airway dysfunction. Am. J. Respir. Crit. Care Med. 164: 1253-1260.
- Freed, A. N.; Chou, C. L.; Fuller, S. D.; Croxton, T. L. (1996) Ozone-induced vagal reflex modulates airways reactivity in rabbits. Respir. Physiol. 105: 95-102.
- Gabrielson, E. W.; Yu, X.-Y.; Spannhake, E. W. (1994) Comparison of the toxic effects of hydrogen peroxide and ozone on cultured human bronchial epithelial cells. Environ. Health Perspect. 102: 972-974.
- Gerrity, T. R.; Bennett, W. D.; Kehrl, H.; DeWitt, P. J. (1993) Mucociliary clearance of inhaled particles measured at 2 h after ozone exposure in humans. J. Appl. Physiol. 74: 2984-2989.
- Gliner, J. A.; Matsen-Twisdale, J. A.; Horvath, S. M. (1979) Auditory and visual sustained attention during ozone exposure. Aviat. Space Environ. Med. 50: 906-910.
- Gliner, J. A.; Horvath, S. M.; Sorich, R. A.; Hanley, J. (1980) Psychomotor performance during ozone exposure: spectral and discriminant function analysis of EEG. Aviat. Space Environ. Med. 51: 344-351.
- Gliner, J. A.; Horvath, S. M.; Folinsbee, L. J. (1983) Preexposure to low ozone concentrations does not diminish the pulmonary function response on exposure to higher ozone concentrations. Am. Rev. Respir. Dis. 127: 51-55.

- Golden, J. A.; Nadel, J. A.; Boushey, H. A. (1978) Bronchial hyperirritability in healthy subjects after exposure to ozone. Am. Rev. Respir. Dis. 118: 287-294.
- Gomez, F. P.; Rodriguez-Roisin, R. (2002) Global initiative for chronic obstructive lung disease (GOLD) guidelines for chronic obstructive pulmonary disease. Curr. Opin. Pulm. Med. 8: 81-86.
- Gong, H., Jr.; Tierney, D. F. (1995) Evaluation of chronic obstructive pulmonary disease patients for ozone sensitivity: validation of health advisories. Sacramento, CA.: California State Air Resources Board, Research Division; CARB-A133-123. Available from: NTIS, Springfield, VA; PB98-153620.
- Gong, H., Jr.; Bradley, P. W.; Simmons, M. S.; Tashkin, D. P. (1986) Impaired exercise performance and pulmonary function in elite cyclists during low-level ozone exposure in a hot environment. Am. Rev. Respir. Dis. 134: 726-733.
- Gong, H., Jr.; Shamoo, D. A.; Anderson, K. R.; Linn, W. S. (1997a) Responses of older men with and without chronic obstructive pulmonary disease to prolonged ozone exposure. Arch. Environ. Health 52: 18-25.
- Gong, H., Jr.; McManus, M. S.; Linn, W. S. (1997b) Attenuated response to repeated daily ozone exposures in asthmatic subjects. Arch. Environ. Health 52: 34-41.
- Gong, H., Jr.; Wong, R.; Sarma, R. J.; Linn, W. S.; Sullivan, E. D.; Shamoo, D. A.; Anderson, K. R.; Prasad, S. B. (1998) Cardiovascular effects of ozone exposure in human volunteers. Am. J. Respir. Crit. Care Med. 158: 538-546.
- Graham, D. E.; Koren, H. S. (1990) Biomarkers of inflammation in ozone-exposed humans: comparison of the nasal and bronchoalveolar lavage. Am. Rev. Respir. Dis. 142: 152-156.
- Graham, D.; Henderson, F.; House, D. (1988) Neutrophil influx measured in nasal lavages of humans exposed to ozone. Arch. Environ. Health 43: 228-233.
- Greve, J. M.; Davis, G.; Meyer, A. M.; Forte, C. P.; Yost, S. C.; Marlor, C. W.; Kamarck, M. E.; McClelland, A. (1989) The major human rhinovirus receptor is ICAM-1. Cell 56: 839-847.
- Grievink, L.; Jansen, S. M. A.; Van't Veer, P.; Brunekreef, B. (1998) Acute effects of ozone on pulmonary function of cyclists receiving antioxidant supplements. Occup. Environ. Med. 55: 13-17.
- Grievink, L.; Zijlstra, A. G.; Ke, X.; Brunekreef, B. (1999) Double-blind intervention trial on modulation of ozone effects on pulmonary function by antioxidant supplements. Am. J. Epidemiol. 149: 306-314.
- Gwynn, R. C.; Thurston, G. D. (2001) The burden of air pollution: impacts among racial minorities. Environ. Health Perspect. 109(suppl. 4): 501-506.
- Hackney, J. D.; Linn, W. S.; Buckley, R. D.; Hislop, H. J. (1976) Studies in adaptation to ambient oxidant air pollution: effects of ozone exposure in Los Angeles residents vs. new arrivals. Environ. Health Perspect. 18: 141-146.
- Hackney, J. D.; Linn, W. S.; Mohler, J. G.; Collier, C. R. (1977a) Adaptation to short-term respiratory effects of ozone in men exposed repeatedly. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 43: 82-85.
- Hackney, J. D.; Linn, W. S.; Karuza, S. K.; Buckley, R. D.; Law, D. C.; Bates, D. V.; Hazucha, M.; Pengelly, L. D.; Silverman, F. (1977b) Effects of ozone exposure in Canadians and southern Californians: evidence for adaptation? Arch. Environ. Health 32: 110-116.
- Hackney, J. D.; Linn, W. S.; Shamoo, D. A.; Avol, E. L. (1989) Responses of selected reactive and nonreactive volunteers to ozone exposure in high and low pollution seasons. In: Schneider, T.; Lee, S. D.; Wolters, G. J. R.; Grant, L. D., eds. Atmospheric ozone research and its policy implications: proceedings of the 3rd US-Dutch international symposium; May 1988; Nijmegen, The Netherlands. Amsterdam, The Netherlands: Elsevier Science Publishers; pp. 311-318. (Studies in environmental science 35).
- Hamilton, R. F.; Li, L.; Eschenbacher, W. L.; Szweda, L.; Holian, A. (1998) Potential involvement of 4-hydroxynonenal in the response of human lung cells to ozone. Am. J. Physiol. 274: L8-L16.
- Hanania, N. A.; Tarlo, S. M.; Silverman, F.; Urch, B.; Senathirajah, N.; Zamel, N.; Corey, P. (1998) Effect of exposure to low levels of ozone on the response to inhaled allergen in allergic asthmatic patients. Chest 114: 752-756.
- Hazbun, M. E.; Hamilton, R.; Holian, A.; Eschenbacher, W. L. (1993) Ozone-induced increases in substance P and 8-epi-prostaglandin F_{2α} in the airways of human subjects. Am. J. Respir. Cell Mol. Biol. 9: 568-572.
- Hazucha, M. J. (1987) Relationship between ozone exposure and pulmonary function changes. J. Appl. Physiol. 62: 1671-1680.
- Hazucha, M. J. (1993) Meta-analysis and "effective dose" revisited. In: Mohr, U., ed. Proceedings of the 3rd International Inhalation Symposium on Advances in Controlled Clinical Inhalation Studies; October, 1991. Berlin, Germany: Springer-Verlag; pp. 247-256.
- Hazucha, M. J.; Sant'Ambrogio, G. (1993) Effects of ozone on the activity of slowly (SAR) and rapidly adapting (RAR) receptors in cats. FASEB J. 7: 407A.

- Hazucha, M.; Silverman, F.; Parent, C.; Field, S.; Bates, D. V. (1973) Pulmonary function in man after short-term exposure to ozone. Arch. Environ. Health 27: 183-188.
- Hazucha, M. J.; Bates, D. V.; Bromberg, P. A. (1989) Mechanism of action of ozone on the human lung. J. Appl. Physiol. 67: 1535-1541.
- Hazucha, M. J.; Folinsbee, L. J.; Seal, E., Jr. (1992) Effects of steady-state and variable ozone concentration profiles on pulmonary function. Am. Rev. Respir. Dis. 146: 1487-1493.
- Hazucha, M. J.; Folinsbee, L. J.; Seal, E.; Bromberg, P. A. (1994) Lung function response of healthy women after sequential exposures to NO₂ and O₃. Am. J. Respir. Crit. Care Med. 150: 642-647.
- Hazucha, M. J.; Madden, M.; Pape, G.; Becker, S.; Devlin, R.; Koren, H. S.; Kehrl, H.; Bromberg, P. A. (1996) Effects of cyclo-oxygenase inhibition on ozone-induced respiratory inflammation and lung function changes. Eur. J. Appl. Physiol. Occup. Med. 73: 17-27.
- Hazucha, M. J.; Folinsbee, L. J.; Bromberg, P. A. (2003) Distribution and reproducibility of spirometric response to ozone by gender and age. J. Appl. Physiol. 95: 1917-1925.
- Henderson, F. W.; Dubovi, E. J.; Harder, S.; Seal, E., Jr.; Graham, D. (1988) Experimental rhinovirus infection in human volunteers exposed to ozone. Am. Rev. Respir. Dis. 137: 1124-1128.
- Hetrick, S. M.; Gould, W. D.; Christensen, D. E. (2000) Inflight cabin ozone aboard long duration C-5 airlift missions: a historical issue revisited. Aviat. Space Environ. Med. 71: 408-414.
- Hiltermann, T. J. N.; Stolk, J.; Hiemstra, P. S.; Fokkens, P. H. B.; Rombout, P. J. A.; Sont, J. K.; Sterk, P. J.; Dijkman, J. H. (1995) Effect of ozone exposure on maximal airway narrowing in non-asthmatic and asthmatic subjects. Clin. Sci. 89: 619-624.
- Hiltermann, T. J. N.; de Bruijne, C. R.; Stolk, J.; Zwinderman, A. H.; Spieksma, F. Th. M.; Roemer, W.; Steerenberg, P. A.; Fischer, P. H.; van Bree, L.; Hiemstra, P. S. (1997) Effects of photochemical air pollution and allergen exposure on upper respiratory tract inflammation in asthmatics. Am. J. Respir. Crit. Care Med. 156: 1765-1772.
- Hiltermann, T. J. N.; Peters, E. A.; Alberts, B.; Kwikkers, K.; Borggreven, P. A.; Hiemstra, P. S.; Dijkman, J. H.; van Bree, L. A.; Stolk, J. (1998) Ozone-induced airway hyperresponsiveness in patients with asthma: role of neutrophil-derived serine proteinases. Free Radical Biol. Med. 24: 952-958.
- Hiltermann, J. T. N.; Lapperre, T. S.; Van Bree, L.; Steerenberg, P. A.; Brahim, J. J.; Sont, J. K.; Sterk, P. J.; Hiemstra, P. S.; Stolk, J. (1999) Ozone-induced inflammation assessed in sputum and bronchial lavage fluid from asthmatics: a new noninvasive tool in epidemiologic studies on air pollution and asthma. Free Radical Biol. Med. 27: 1448-1454.
- Holtzman, M. J.; Cunningham, J. H.; Sheller, J. R.; Irsigler, G. B.; Nadel, J. A.; Boushey, H. A. (1979) Effect of ozone on bronchial reactivity in atopic and nonatopic subjects. Am. Rev. Respir. Dis. 120: 1059-1067.
- Holz, O.; Jörres, R. A.; Timm, P.; Mücke, M.; Richter, K.; Koschyk, S.; Magnussen, H. (1999) Ozone-induced airway inflammatory changes differ between individuals and are reproducible. Am. J. Respir. Crit. Care Med. 159: 776-784.
- Holz, O.; Mücke, M.; Paasch, K.; Böhme, S.; Timm, P.; Richter, K.; Magnussen, H.; Jörres, R. A. (2002) Repeated ozone exposures enhance bronchial allergen responses in subjects with rhinitis or asthma. Clin. Exp. Allergy. 32: 681-689.
- Holz, O.; Tal-Singer, R.; Kanniess, F.; Simpson, K. J.; Gibson, A.; Vessey, R. S. J.; Janicki, S.; Magnussen, H.; Jörres, R. A.; Richter, K. (2005) Validation of the human ozone challenge model as a tool for assessing anti-inflammatory drugs in early development. J. Clin. Pharmacol. 45: 498-503.
- Horstman, D. H.; Folinsbee, L. J.; Ives, P. J.; Abdul-Salaam, S.; McDonnell, W. F. (1990) Ozone concentration and pulmonary response relationships for 6.6-hour exposures with five hours of moderate exercise to 0.08, 0.10, and 0.12 ppm. Am. Rev. Respir. Dis. 142: 1158-1163.
- Horstman, D. H.; Ball, B. A.; Brown, J.; Gerrity, T.; Folinsbee, L. J. (1995) Comparison of pulmonary responses of asthmatic and nonasthmatic subjects performing light exercise while exposed to a low level of ozone. Toxicol. Ind. Health 11: 369-385.
- Horvath, S. M.; Gliner, J. A.; Matsen-Twisdale, J. A. (1979) Pulmonary function and maximum exercise responses following acute ozone exposure. Aviat. Space Environ. Med. 50: 901-905.
- Horvath, S. M.; Gliner, J. A.; Folinsbee, L. J. (1981) Adaptation to ozone: duration of effect. Am. Rev. Respir. Dis. 123: 496-499.
- Horvath, S. M.; Bedi, J. F.; Drechsler-Parks, D. M. (1986) Effects of peroxyacetyl nitrate alone and in combination with ozone in healthy young women. J. Air Pollut. Control Assoc. 36: 265-270.
- Horvath, S. M.; Folinsbee, L. J.; Bedi, J. F. (1987) Combined effect of ozone and sulfuric acid on pulmonary function in man. Am. Ind. Hyg. Assoc. J. 48: 94-98.

56

- $\begin{array}{c}
 1 \\
 2 \\
 3 \\
 4 \\
 5 \\
 6 \\
 7 \\
 8 \\
 9 \\
 10 \\
 \end{array}$ 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
- Horvath, S. M.; Bedi, J. F.; Drechsler-Parks, D. M.; Williams, R. E. (1991) Alterations in pulmonary function parameters during exposure to 80 ppb ozone for 6.6 hours in healthy middle aged individuals. In: Berglund, R. L.; Lawson, D. R.; McKee, D. J., eds. Tropospheric ozone and the environment: papers from an international conference; March 1990; Los Angeles, CA. Pittsburgh, PA: Air & Waste Management Association; pp. 59-70. (A&WMA transactions series: no. TR-19).
- Housley, D. G.; Eccles, R.; Richards, R. J. (1996) Gender difference in the concentration of the antioxidant uric acid in human nasal lavage. Acta Oto-Laryngol. 116: 751-754.
- Hu, S.-C.; Ben-Jebria, A.; Ultman, J. S. (1994) Longitudinal distribution of ozone absorption in the lung: effects of respiratory flow. J. Appl. Physiol. 77: 574-583.
- Inkley, S. R.; MacIntyre, W. J. (1973) Dynamic measurement of ventilation-perfusion with xenon-133 at resting lung volumes. Am. Rev. Respir. Dis. 107: 429-441.
- Jenkins, H. S.; Devalia, J. L.; Mister, R. L.; Bevan, A. M.; Rusznak, C.; Davies, R. J. (1999) The effect of exposure to ozone and nitrogen dioxide on the airway response of atopic asthmatics to inhaled allergen: dose- and time-dependent effects. Am. J. Respir. Crit. Care Med. 160: 33-39.
- Joad, J. P.; Kott, K. S.; Bric, J. M. (1996) The local C-fiber contribution to ozone-induced effects on the isolated guinea pig lung. Toxicol. Appl. Pharmacol. 141: 561-567.
- Johnson, D. A.; Winters, R. S.; Woolley, T.; Graham, D.; Henderson, F. W. (1986) Ozone effects on alpha-1-proteinase inhibitor in vivo: blood plasma inhibitory activity is unchanged. Exp. Lung Res. 11: 95-103.
- Jörres, R.; Nowak, D.; Magnussen, H.; Speckin, P.; Koschyk, S. (1996) The effect of ozone exposure on allergen responsiveness in subjects with asthma or rhinitis. Am. J. Respir. Crit. Care Med. 153: 56-64.
- Jörres, R. A.; Holz, O.; Zachgo, W.; Timm, P.; Koschyk, S.; Müller, B.; Grimminger, F.; Seeger, W.; Kelly, F. J.; Dunster, C.; Frischer, T.; Lubec, G.; Waschewski, M.; Niendorf, A.; Magnussen, H. (2000) The effect of repeated ozone exposures on inflammatory markers in bronchoalveolar lavage fluid and mucosal biopsies. Am. J. Respir. Crit. Care Med. 161: 1855-1861.
- Kabel, J. R.; Ben-Jebria, A.; Ultman, J. S. (1994) Longitudinal distribution of ozone absorption in the lung: comparison of nasal and oral quiet breathing. J. Appl. Physiol. 77: 2584-2592.
- Kagawa, J. (1986) Experimental studies on human health effects of aerosol and gaseous pollutants. In: Lee, S. D.; Schneider, T.; Grant, L. D.; Verkerk, P. J., eds. Aerosols: research, risk assessment and control strategies proceedings of the second U.S.-Dutch international symposium; May 1985; Williamsburg, VA. Chelsea, MI: Lewis Publishers, Inc.; pp. 683-697.
- Kaneko, K.; Milic-Emili, J.; Dolovich, M. B.; Dawson, A.; Bates, D. V. (1966) Regional distribution of ventilation and perfusion as a function of body position. J. Appl. Physiol. 21: 767-777.
- Kehrl, H. R.; Vincent, L. M.; Kowalsky, R. J.; Horstman, D. H.; O'Neil, J. J.; McCartney, W. H.; Bromberg, P. A. (1987) Ozone exposure increases respiratory epithelial permeability in humans. Am. Rev. Respir. Dis. 135: 1124-1128.
- Kehrl, H. R.; Vincent, L. M.; Kowalsky, R. J.; Horstman, D. H.; O'Neil, J. J.; McCartney, W. H.; Bromberg, P. A. (1989) Ozone-induced changes in the pulmonary clearance of ^{99m}Tc-DTPA in man. In: Schneider, T.; Lee, S. D.; Wolters, G. J. R.; Grant, L. D., eds. Atmospheric ozone research and its policy implications: proceedings of the 3rd US-Dutch international symposium; May 1988; Nijmegen, The Netherlands. Amsterdam, The Netherlands: Elsevier Science Publishers; pp. 343-351. (Studies in environmental science 35).
- Kehrl, H. R.; Peden, D. B.; Ball, B. A.; Folinsbee, L. J.; Horstman, D. H. (1999) Increased specific airway reactivity of persons with mild allergic asthma after 7.6 hours of exposure to 0.16 ppm ozone. J. Allergy. Clin. Immunol. 104: 1198-1204.
- King, T. K. C.; Briscoe, W. A. (1968) The distribution of ventilation, perfusion, lung volume and transfer factor (diffusing capacity) in patients with obstructive lung disease. Clin. Sci. 35: 153-170.
- Kleinman, M. T.; Mautz, W. J.; Bjarnason, S. (1999) Adaptive and non-adaptive responses in rats exposed to ozone, alone and in mixtures, with acidic aerosols. Inhalation Toxicol. 11: 249-264.
- Koenig, J. Q.; Covert, D. S.; Marshall, S. G.; Van Belle, G.; Pierson, W. E. (1987) The effects of ozone and nitrogen dioxide on pulmonary function in healthy and in asthmatic adolescents. Am. Rev. Respir. Dis. 136: 1152-1157.
- Koenig, J. Q.; Covert, D. S.; Smith, M. S.; Van Belle, G.; Pierson, W. E. (1988) The pulmonary effects of ozone and nitrogen dioxide alone and combined in healthy and asthmatic adolescent subjects. Toxicol. Ind. Health 4: 521-532.
- Koenig, J. Q.; Covert, D. S.; Hanley, Q. S.; Van Belle, G.; Pierson, W. E. (1990) Prior exposure to ozone potentiates subsequent response to sulfur dioxide in adolescent asthmatic subjects. Am. Rev. Respir. Dis. 141: 377-380.

- Koenig, J. Q.; Covert, D. S.; Pierson, W. E.; Hanley, Q. S.; Rebolledo, V.; Dumler, K.; McKinney, S. E. (1994)
 Oxidant and acid aerosol exposure in healthy subjects and subjects with asthma. Part I: effects of oxidants, combined with sulfuric or nitric acid, on the pulmonary function of adolescents with asthma. Cambridge, MA: Health Effects Institute; pp. 1-36; research report no. 70.
- König, G.; Römmelt, H.; Kienle, H.; Dirnagl, K.; Polke, H.; Fruhmann, G. (1980) Änderung der bronchomotorischen Reagibilität des Menschen durch Einwirkung von Ozon [Changes in the bronchial reactivity of humans caused by the influence of ozone]. Arbeitsmed. Sozialmed. Praeventivmed. 151: 261-263.
- Koren, H. S.; Devlin, R. B.; Graham, D. E.; Mann, R.; McGee, M. P.; Horstman, D. H.; Kozumbo, W. J.; Becker, S.; House, D. E.; McDonnell, W. F.; Bromberg, P. A. (1989a) Ozone-induced inflammation in the lower airways of human subjects. Am. Rev. Respir. Dis. 139: 407-415.
- Koren, H. S.; Devlin, R. B.; Graham, D. E.; Mann, R.; McDonnell, W. F. (1989b) The inflammatory response in human lung exposed to ambient levels of ozone. In: Schneider, T.; Lee, S. D.; Wolters, G. J. R.; Grant, L. D., eds. Atmospheric ozone research and its policy implications: proceedings of the 3rd US-Dutch international symposium; May 1988; Nijmegen, The Netherlands. Amsterdam, The Netherlands: Elsevier Science Publishers; pp. 745-753. (Studies in environmental science 35).
- Koren, H. S.; Hatch, G. E.; Graham, D. E. (1990) Nasal lavage as a tool in assessing acute inflammation in response to inhaled pollutants. Toxicology 60: 15-25.
- Koren, H. S.; Devlin, R. B.; Becker, S.; Perez, R.; McDonnell, W. F. (1991) Time-dependent changes of markers associated with inflammation in the lungs of humans exposed to ambient levels of ozone. Toxicol. Pathol. 19: 406-411.
- Kozumbo, W. J.; Hanley, N. M.; Agarwas, S.; Thomas, M. J.; Madden, M. C. (1996) Products of ozonized arachidonic acid potentiate the formation of DNA single strand breaks in cultured human lung cells. Environ. Mol. Mutagen. 27: 185-195.
- Kreit, J. W.; Gross, K. B.; Moore, T. B.; Lorenzen, T. J.; D'Arcy, J.; Eschenbacher, W. L. (1989) Ozone-induced changes in pulmonary function and bronchial responsiveness in asthmatics. J. Appl. Physiol. 66: 217-222.
- Krishna, M. T.; Springall, D.; Meng, Q.-H.; Withers, N.; Macleod, D.; Biscione, G.; Frew, A.; Polak, J.; Holgate, S. (1997a) Effects of ozone on epithelium and sensory nerves in the bronchial mucosa of healthy humans. Am. J. Respir. Crit. Care Med. 156: 943-950.
- Krishna, M. T.; Blomberg, A.; Biscione, G. L.; Kelly, F.; Sandström, T.; Frew, A.; Holgate, S. (1997b) Short-term ozone exposure upregulates P-selectin in normal human airways. Am. J. Respir. Crit. Care Med. 155: 1798-1803.
- Krishna, M. T.; Madden, J.; Teran, L. M.; Biscione, G. L.; Lau, L. C. K.; Withers, N. J.; Sandstrom, T.; Mudway, I.; Kelly, F. J.; Walls, A.; Frew, A. J.; Holgate, S. T. (1998) Effects of 0.2 ppm ozone on biomarkers of inflammation in bronchoalveolar lavage fluid and bronchial mucosa of healthy subjects. Eur. Respir. J. 11: 1294-1300.
- Kronenberg, R. S.; Drage, C. W.; Ponto, R. A.; Williams, L. E. (1973) The effect of age on the distribution of ventilation and perfusion in the lung. Am. Rev. Respir. Dis. 108: 576-586.
- Kulle, T. J.; Sauder, L. R.; Kerr, H. D.; Farrell, B. P.; Bermel, M. S.; Smith, D. M. (1982) Duration of pulmonary function adaptation to ozone in humans. Am. Ind. Hyg. Assoc. J. 43: 832-837.
- Kulle, T. J.; Sauder, L. R.; Hebel, J. R.; Chatham, M. D. (1985) Ozone response relationships in healthy nonsmokers. Am. Rev. Respir. Dis. 132: 36-41.
- Lang, D. S.; Jörres, R. A.; Mücke, M.; Siegfried, W.; Magnussen, H. (1998) Interactions between human bronchoepithelial cells and lung fibroblasts after ozone exposure in vitro. Toxicol. Lett. 96-97: 13-24.
- Larsen, R. I.; McDonnell, W. F.; Horstman, D. H.; Folinsbee, L. J. (1991) An air quality data analysis system for interrelating effects, standards, and needed source reductions: part 11. a lognormal model relating human lung function decrease to O₃ exposure. J. Air Waste Manage. Assoc. 41: 455-459.
- Lategola, M. T.; Melton, C. E.; Higgins, E. A. (1980) Effects of ozone on symptoms and cardiopulmonary function in a flight attendant surrogate population. Aviat. Space Environ. Med. 51: 237-246.
- Lategola, M. T.; Melton, C. E.; Higgins, E. A. (1980) Pulmonary and symptom threshold effects of ozone in airline passenger and cockpit crew surrogates. Aviat. Space Environ. Med. 51: 878-884.
- Lefohn, A. S.; Foley, J. K. (1993) Establishing relevant ozone standards to protect vegetation and human health: exposure/dose-response considerations. Air Waste 43: 106-112.
- Linder, J.; Herren, D.; Monn, C.; Wanner, H.-U. (1988) Die Wirkung von Ozon auf die körperliche Leistungsfähigkeit [The effect of ozone on physical activity]. Schweiz Z. Sportmed. 36: 5-10.

- Linn, W. S.; Buckley, R. D.; Spier, C. E.; Blessey, R. L.; Jones, M. P.; Fischer, D. A.; Hackney, J. D. (1978) Health effects of ozone exposure in asthmatics. Am. Rev. Respir. Dis. 117: 835-843.
- Linn, W. S.; Jones, M. P.; Bachmayer, E. A.; Spier, C. E.; Mazur, S. F.; Avol, E. L.; Hackney, J. D. (1980) Short-term respiratory effects of polluted ambient air: a laboratory study of volunteers in a high-oxidant community. Am. Rev. Respir. Dis. 121: 243-252.
- Linn, W. S.; Fischer, D. A.; Medway, D. A.; Anzar, U. T.; Spier, C. E.; Valencia, L. M.; Venet, T. G.; Hackney, J. D. (1982) Short-term respiratory effects of 0.12 ppm ozone exposure in volunteers with chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 125: 658-663.
- Linn, W. S.; Avol, E. L.; Hackney, J. D. (1983) Effects of ambient oxidant pollutants on humans: a movable environmental chamber study. In: Lee, S. D.; Mustafa, M. G.; Mehlman, M. A., eds. International symposium on the biomedical effects of ozone and related photochemical oxidants; March 1982; Pinehurst, NC. Princeton, NJ: Princeton Scientific Publishers, Inc.; pp. 125-137. (Advances in modern environmental toxicology: v. 5).
- Linn, W. S.; Avol, E. L.; Shamoo, D. A.; Spier, C. E.; Valencia, L. M.; Venet, T. G.; Fischer, D. A.; Hackney, J. D. (1986) A dose-response study of healthy, heavily exercising men exposed to ozone at concentrations near the ambient air quality standard. Toxicol. Ind. Health 2: 99-112.
- Linn, W. S.; Avol, E. L.; Shamoo, D. A.; Peng, R.-C.; Valencia, L. M.; Little, D. E.; Hackney, J. D. (1988) Repeated laboratory ozone exposures of volunteer Los Angeles residents: an apparent seasonal variation in response. Toxicol. Ind. Health 4: 505-520.
- Linn, W. S.; Shamoo, D. A.; Anderson, K. R.; Peng, R.-C.; Avol, E. L.; Hackney, J. D. (1994) Effects of prolonged, repeated exposure to ozone, sulfuric acid, and their combination in healthy and asthmatic volunteers. Am. J. Respir. Crit. Care Med. 150: 431-440.
- Linn, W. S.; Anderson, K. R.; Shamoo, D. A.; Edwards, S. A.; Webb, T. L.; Hackney, J. D.; Gong, H., Jr. (1995) Controlled exposures of young asthmatics to mixed oxidant gases and acid aerosol. Am. J. Respir. Crit. Care Med. 152: 885-891.
- Linn, W. S.; Gong, H., Jr.; Shamoo, D. A.; Anderson, K. R.; Avol, E. L. (1997) Chamber exposures of children to mixed ozone, sulfur dioxide, and sulfuric acid. Arch. Environ. Health 52: 179-187.
- Liu, L.; Leech, J. A.; Urch, R. B.; Silverman, F. S. (1997) *In vivo* salicylate hyroxylation: a potential biomarker for assessing acute ozone exposure and effects in humans. Am. J. Respir. Crit. Care Med. 156: 1405-1412.
- Liu, L.; Leech, J. A.; Urch, R. B.; Poon, R.; Zimmerman, B.; Kubay, J. M.; Silverman, F. S. (1999) A comparison of biomarkers of ozone exposure in human plasma, nasal lavage, and sputum. Inhalation Toxicol. 11: 657-674.
- MacNee, W.; Morrison, D.; Rahman, I.; Li, X. Y.; Donaldson, K. (1996) Cigarette smoke and ozone-induced epithelial perturbation *in vivo* and *in vitro*: the role of glutathione. Chest 109(suppl.): 39S.
- Magnussen, H.; Nowak, D.; Jörres, R. (1994) Experimentelle Schadstoffeffekte bei Gesunden und Asthmatikern [Experimental effects of air pollutants in healthy and asthmatic subjects]. Pneumologie 48: 85-88.
- Marthan, R.; Roux, E.; Savineau, J.-P. (1996) Human bronchial smooth muscle responsiveness after *in vitro* exposure to oxidizing pollutants. Cell Biol. Toxicol. 12: 245-249.
- Martin, T. R.; Castile, R. G.; Fredberg, J. J.; Wohl, M. E. B.; Mead, J. (1987) Airway size is related to sex but not lung size in normal adults. J. Appl. Physiol. 63: 2042-2047.
- McBride, D. E.; Koenig, J. Q.; Luchtel, D. L.; Williams, P. V.; Henderson, W. R., Jr. (1994) Inflammatory effects of ozone in the upper airways of subjects with asthma. Am. J. Respir. Crit. Care Med. 149: 1192-1197.
- McDonnell, W. F. (1996) Individual variability in human lung function responses to ozone exposure. Environ. Toxicol. Pharmacol. 2: 171-175.
- McDonnell, W. F.; Smith, M. V. (1994) Description of acute ozone response as a function of exposure rate and total inhaled dose. J. Appl. Physiol. 76: 2776-2784.
- McDonnell, W. F.; Horstman, D. H.; Hazucha, M. J.; Seal, E., Jr.; Haak, E. D.; Salaam, S. A.; House, D. E. (1983) Pulmonary effects of ozone exposure during exercise: dose-response characteristics. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 54: 1345-1352.
- McDonnell, W. F., III; Horstman, D. H.; Abdul-Salaam, S.; House, D. E. (1985a) Reproducibility of individual responses to ozone exposure. Am. Rev. Respir. Dis. 131: 36-40.
- McDonnell, W. F., III; Chapman, R. S.; Leigh, M. W.; Strope, G. L.; Collier, A. M. (1985b) Respiratory responses of vigorously exercising children to 0.12 ppm ozone exposure. Am. Rev. Respir. Dis. 132: 875-879.
- McDonnell, W. F.; Horstman, D. H.; Abdul-Salaam, S.; Raggio, L. J.; Green, J. A. (1987) The respiratory responses of subjects with allergic rhinitis to ozone exposure and their relationship to nonspecific airway reactivity. Toxicol. Ind. Health 3: 507-517.

- 123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
- McDonnell, W. F.; Kehrl, H. R.; Abdul-Salaam, S.; Ives, P. J.; Folinsbee, L. J.; Devlin, R. B.; O'Neil, J. J.; Horstman, D. H. (1991) Respiratory response of humans exposed to low levels of ozone for 6.6 hours. Arch. Environ. Health 46: 145-150.
- McDonnell, W. F.; Muller, K. E.; Bromberg, P. A.; Shy, C. M. (1993) Predictors of individual differences in acute response to ozone exposure. Am. Rev. Respir. Dis. 147: 818-825.
- McDonnell, W. F.; Stewart, P. W.; Andreoni, S.; Seal, E., Jr.; Kehrl, H. R.; Horstman, D. H.; Folinsbee, L. J.; Smith, M. V. (1997) Prediction of ozone-induced FEV₁ changes: effects of concentration, duration, and ventilation. Am. J. Respir. Crit. Care Med. 156: 715-722.
- McDonnell, W. F.; Stewart, P. W.; Smith, M. V.; Pan, W. K.; Pan, J. (1999) Ozone-induced respiratory symptoms: exposure-response models and association with lung function. Eur. Respir. J. 14: 845-853.
- McGee, M. P.; Devlin, R.; Saluta, G.; Koren, H. (1990) Tissue factor and factor VII messenger RNAs in human alveolar macrophages: effects of breathing ozone. Blood 75: 122-127.
- McKinnon, K. P.; Madden, M. C.; Noah, T. L.; Devlin, R. B. (1993) In vitro ozone exposure increases release of arachidonic acid products from a human bronchial epithelial cell line. Toxicol. Appl. Pharmacol. 118: 215-223.
- Melton, C. E. (1990) Airliner cabin ozone: an updated review. Washington, DC: Federal Aviation Administration, Office of Aviation Medicine; report no. DOT/FAA/AM-89/13. Available from: NTIS, Springfield, VA; AD-A219 264.
- Messineo, T. D.; Adams, W. C. (1990) Ozone inhalation effects in females varying widely in lung size: comparison with males. J. Appl. Physiol. 69: 96-103.
- Michelson, P. H.; Dailey, L.; Devlin, R. B.; Peden, D. B. (1999) Ozone effects on the immediate-phase response to allergen in the nasal airways of allergic asthmatic subjects. Otolaryngol. Head Neck Surg. 120: 225-232.
- Mohammed, S. P.; Higenbottam, T. W.; Adcock, J. J. (1993) Effects of aerosol-applied capsaicin, histamine and prostaglandin-E2 on airway sensory receptors of anaesthetized cats. J. Physiol. Lond. 46: 951-966.
- Molfino, N. A.; Wright, S. C.; Katz, I.; Tarlo, S.; Silverman, F.; McClean, P. A.; Szalai, J. P.; Raizenne, M.; Slutsky, A. S.; Zamel, N. (1991) Effect of low concentrations of ozone on inhaled allergen responses in asthmatic subjects. Lancet 338(8761): 199-203.
- Molfino, N. A.; Slutsky, A. S.; Zamel, N. (1992) The effects of air pollution on allergic bronchial responsiveness. Clin. Exp. Allergy 22: 667-672.
- Montuschi, P.; Nightingale, J. A.; Kharitonov, S. A.; Barnes, P. J. (2002) Ozone-induced increase in exhaled 8-isoprostane in healthy subjects is resistant to inhaled budesonide. Free Radical Biol. Med. 33: 1403-1408.
- Mudway, I. S.; Kelly, F. J. (2000) Ozone and the lung: a sensitive issue. Mol. Aspects. Med. 21: 1-48.
- Mudway, I. S.; Blomberg, A.; Frew, A. J.; Holgate, S. T.; Sandström, T.; Kelly, F. J. (1999) Antioxidant consumption and repletion kinetics in nasal lavage fluid following exposure of healthy human volunteers to ozone. Eur. Respir. J. 13: 1429-1438.
- Mudway, I. S.; Stenfors, N.; Blomberg, A.; Helleday, R.; Dunster, C.; Marklund, S. L.; Frew, A. J.; Sandström, T.; Kelly, F. J. (2001) Differences in basal airway antioxidant concentrations are not predictive of individual responsiveness to ozone: a comparison of healthy and mild asthmatic subjects. Free Radical Biol. Med. 31: 962-974.
- Nagda, N. L.; Fortmann, R. C.; Koontz, M. D.; Baker, S. R.; Ginevan, M. E. (1989) Airliner cabin environment: contaminant measurements, health risks, and mitigation options. Washington, DC: U.S. Department of Transportation, Office of the Secretary. Available from: NTIS, Springfield, VA; PB91-159384.
- National Institutes of Health. (1997) Guidelines for the diagnosis and management of asthma: expert panel report 2. Bethesda, MD: U.S. Department of Health and Human Services, National Heart, Lung, and Blood Institute; publication no. 97-4051. Available: http://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.pdf (11 April 2003).
- National Institutes of Health. (2003) Expert panel report: guidelines for the diagnosis and management of asthma. Update on selected topics 2002. Bethesda, MD: U.S. Department of Health and Human Services, National Heart, Lung, and Blood Institute; NIH publication no. 02-5074. Available: http://www.nhlbi.nih.gov/guidelines/asthma/asthmafullrpt.pdf [26 August, 2004].
- Neas, L. M.; Dockery, D. W.; Koutrakis, P.; Tollerud, D. J.; Speizer, F. E. (1995) The association of ambient air pollution with twice daily peak expiratory flow rate measurements in children. Am. J. Epidemiol. 141: 111-122.
- Newson, E. J.; Krishna, M. T.; Lau, L. C. K.; Howarth, P. H.; Holgate, S. T.; Frew, A. J. (2000) Effects of short-term exposure to 0.2 ppm ozone on biomarkers of inflammation in sputum, exhaled nitric oxide, and lung function in subjects with mild atopic asthma. J. Occup. Environ. Med. 42: 270-277.

- Nichols, B. G.; Woods, J. S.; Luchtel, D. L.; Corral, J.; Koenig, J. Q. (2001) Effects of ozone exposure on nuclear factor-κB activation and tumor necrosis factor-α expression in human nasal epithelial cells. Toxicol. Sci. 60: 356-362.
- Nightingale, J. A.; Rogers, D. F.; Barnes, P. J. (1999) Effect of inhaled ozone on exhaled nitric oxide, pulmonary function, and induced sputum in normal and asthmatic subjects. Thorax 54: 1061-1069.
- Nightingale, J. A.; Rogers, D. F.; Chung, K. F.; Barnes, P. J. (2000) No effect of inhaled budesonide on the response to inhaled ozone in normal subjects. Am. J. Respir. Crit. Care Med. 161: 479-486.
- Niinimaa, V.; Cole, P.; Mintz, S.; Shephard, R. J. (1980) The switching point from nasal to oronasal breathing. Respir. Physiol. 42: 61-71.
- Nikasinovic, L.; Momas, I.; Seta, N. (2003) Nasal epithelial and inflammatory response to ozone exposure: a review of laboratory-based studies published since 1985. J. Toxicol. Environ. Health B 6: 521-568.
- Otto-Knapp, R.; Jurgovsky, K.; Schierhorn, K.; Kunkel, G. (2003) Antioxidative enzymes in human nasal mucosa after exposure to ozone. Possible role of GSTM1 deficiency. Inflamm. Res. 52: 51-55.
- Passannante, A. N.; Hazucha, M. J.; Bromberg, P. A.; Seal, E.; Folinsbee, L.; Koch, G. (1998) Nociceptive mechanisms modulate ozone-induced human lung function decrements. J. Appl. Physiol. 85: 1863-1870.
- Peden, D. B. (2001a) Air pollution in asthma: effect of pollutants on airway inflammation. Ann. Allergy Asthma Immunol. 87(suppl. 3): 12-17.
- Peden, D. B. (2001b) Effect of pollutants in rhinitis. Curr. Allergy Asthma Rep. 1: 242-246.
- Peden, D. B.; Setzer, R. W., Jr.; Devlin, R. B. (1995) Ozone exposure has both a priming effect on allergen-induced responses and an intrinsic inflammatory action in the nasal airways of perennially allergic asthmatics. Am. J. Respir. Crit. Care Med. 151: 1336-1345.
- Peden, D. B.; Boehlecke, B.; Horstman, D.; Devlin, R. (1997) Prolonged acute exposure to 0.16 ppm ozone induces eosinophilic airway inflammation in asthmatic subjects with allergies. J. Allergy Clin. Immunol. 100: 802-808.
- Peters, E. A.; Hiltermann, J. T.; Stolk, J. (2001) Effect of apocynin on ozone-induced airway hyperresponsiveness to methacholine in asthmatics. Free Radical Biol. Med. 31: 1442-1447.
- Rayman, R. B. (2002) Cabin air quality: an overview. Aviat. Space Environ. Med. 73: 211-215.
- Reisenauer, C. S.; Koenig, J. Q.; McManus, M. S.; Smith, M. S.; Kusic, G.; Pierson, W. E. (1988) Pulmonary response to ozone exposures in healthy individuals aged 55 years or greater. JAPCA 38: 51-55.
- Riediker, M.; Monn, C.; Koller, T.; Stahel, W. A.; Wuthrich, B. (2001) Air pollutants enhance rhinoconjunctivitis symptoms in pollen-allergic individuals. Ann. Allergy Asthma Immunol. 87: 311-318.
- Rigas, M. L.; Ben-Jebria, A.; Ultman, J. S. (1997) Longitudinal distribution of ozone absorption in the lung: effects of nitrogen dioxide, sulfur dioxide, and ozone exposures. Arch. Environ. Health 52: 173-178.
- Rombout, P. J. A.; Dormans, J. A. M. A.; Marra, M.; Van Esch, G. J. (1986) Influence of exposure regimen on nitrogen dioxide-induced morphological changes in the rat lung. Environ. Res. 41: 466-480.
- Romieu, I.; Sienra-Monge, J. J.; Ramírez-Aguilar, M.; Moreno-Macias, H.; Reyes-Ruiz, N. I.; Estela del Rio-Navarro, B.; Hernández-Avila, M.; London, S. J. (2004) Genetic polymorphism of *GSTM1* and antioxidant supplementation influence lung function in relation to ozone exposure in asthmatic children in Mexico City. Thorax 59: 8-10.
- Samet, J. M.; Hatch, G. E.; Horstman, D.; Steck-Scott, S.; Arab, L.; Bromberg, P. A.; Levine, M.; McDonnell, W. F.; Devlin, R. B. (2001) Effect of antioxidant supplementation on ozone-induced lung injury in human subjects. Am. J. Respir. Crit. Care Med. 164: 819-825.
- Šantak, B.; Calzia, E.; Radermacher, P. (1998) Ventilation-perfusion relationships: clinical implications. Acta Anaesthesiol. Scand. 42[suppl. 112]: 18-20.
- Savin, W. M.; Adams, W. C. (1979) Effects of ozone inhalation on work performance and VO_{2max}. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 46: 309-314.
- Scannell, C.; Chen, L.; Aris, R. M.; Tager, I.; Christian, D.; Ferrando, R.; Welch, B.; Kelly, T.; Balmes, J. R. (1996) Greater ozone-induced inflammatory responses in subjects with asthma. Am. J. Respir. Crit. Care Med. 154: 24-29.
- Schelegle, E. S.; Adams, W. C. (1986) Reduced exercise time in competitive simulations consequent to low level ozone exposure. Med. Sci. Sports Exercise 18: 408-414.
- Schelegle, E. S.; Adams, W. C.; Siefkin, A. D. (1987) Indomethacin pretreatment reduces ozone-induced pulmonary function decrements in human subjects. Am. Rev. Respir. Dis. 136: 1350-1354.
- Schelegle, E. S.; Adams, W. C.; Giri, S. N.; Siefkin, A. D. (1989) Acute ozone exposure increases plasma prostaglandin F₂α in ozone-sensitive human subjects. Am. Rev. Respir. Dis. 140: 211-216.

- Schelegle, E. S.; Siefkin, A. D.; McDonald, R. J. (1991) Time course of ozone-induced neutrophilia in normal humans. Am. Rev. Respir. Dis. 143: 1353-1358.
- Schelegle, E. S.; Carl, M. L.; Coleridge, H. M.; Coleridge, J. C. G.; Green, J. F. (1993) Contribution of vagal afferents to respiratory reflexes evoked by acute inhalation of ozone in dogs. J. Appl. Physiol. 74: 2338-2344.
- Schelegle, E. S.; Eldridge, M. W.; Cross, C. E.; Walby, W. F.; Adams, W. C. (2001) Differential effects of airway anesthesia on ozone-induced pulmonary responses in human subjects. Am. J. Respir. Crit. Care Med. 163: 1121-1127.
- Schierhorn, K.; Zhang, M.; Matthias, C.; Kunkel, G. (1999) Influence of ozone and nitrogen dioxide on histamine and interleukin formation in a human nasal mucosa culture system. Am. J. Respir. Cell Mol. Biol. 20: 1013-1019.
- Schierhorn, K.; Hanf, G.; Fischer, A.; Umland, B.; Olze, H.; Kunkel, G. (2002) Ozone-induced release of neuropeptides from human nasal mucosa cells. Int. Arch. Allergy Immunol. 129: 145-151.
- Schonfeld, B. R.; Adams, W. C.; Schelegle, E. S. (1989) Duration of enhanced responsiveness upon re-exposure to ozone. Arch. Environ. Health 44: 229-236.
- Schwartz, L. W.; Dungworth, D. L.; Mustafa, M. G.; Tarkington, B. K.; Tyler, W. S. (1976) Pulmonary responses of rats to ambient levels of ozone: effects of 7-day intermittent or continuous exposure. Lab. Invest. 34: 565-578.
- Seal, E., Jr.; McDonnell, W. F.; House, D. E.; Salaam, S. A.; Dewitt, P. J.; Butler, S. O.; Green, J.; Raggio, L. (1993) The pulmonary response of white and black adults to six concentrations of ozone. Am. Rev. Respir. Dis. 147: 804-810.
- Seal, E., Jr.; McDonnell, W. F.; House, D. E. (1996) Effects of age, socioeconomic status, and menstrual cycle on pulmonary response to ozone. Arch. Environ. Health 51: 132-137.
- Sekizawa, S. I.; Tsubone, H. (1994) Nasal receptors responding to noxious chemical irritants. Respir. Physiol. 96: 37-48.
- Seltzer, J.; Bigby, B. G.; Stulbarg, M.; Holtzman, M. J.; Nadel, J. A.; Ueki, I. F.; Leikauf, G. D.; Goetzl, E. J.; Boushey, H. A. (1986) O₃-induced change in bronchial reactivity to methacholine and airway inflammation in humans. J. Appl. Physiol. 60: 1321-1326.
- Solway, J.; Leff, A. R. (1991) Sensory neuropeptides and airway function. J. Appl. Physiol. 71: 2077-2087.
- Spannhake, E. W.; Reddy, S. P. M.; Jacoby, D. B.; Yu, X.-Y.; Saatian, B.; Tian, J. (2002) Synergism between rhinovirus infection and oxidant pollutant exposure enhances airway epithelial cell cytokine production. Environ. Health Perspect. 110: 665-670.
- Spit, B. J.; Bretschneider, F.; Hendriksen, E. G. J.; Kuper, C. F. (1993) Ultrastructure of free nerve endings in respiratory and squamous epithelium on the rat nasal septum. Cell Tissue Res. 274: 329-335.
- Steck-Scott, S.; Arab, L.; Craft, N. E.; Samet, J. M. (2004) Plasma and lung macrophage responsiveness to carotenoid supplementation and ozone exposure in humans. Eur. J. Clin. Nutr. 1-9.
- Stenfors, N.; Pourazar, J.; Blomberg, A.; Krishna, M. T.; Mudway, I.; Helleday, R.; Kelly, F. J.; Frew, A. J.; Sandström, T. (2002) Effect of ozone on bronchial mucosal inflammation in asthmatic and healthy subjects. Respir. Med. 96: 352-358.
- Sterk, P. J.; Fabbri, L. M.; Quanjer, P. H.; Cockcroft, D. W.; O'Byrne, P. M.; Anderson, S. D.; Juniper, E. F.; Malo, J.-L. (1993) Airway responsiveness. Standardized challenge testing with pharmacological, physical and sensitizing stimuli in adults. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Eur. Respir. J. 6(suppl. 16): 53-83.
- Stevens, W. H. M.; Adelroth, E.; Wattie, J.; Woolley, M. J.; Ellis, R.; Dahlback, M.; O'Byrne, P. M. (1994) Effect of inhaled budesonide on ozone-induced airway hyperresponsiveness and bronchoalveolar lavage cells in dogs. J. Appl. Physiol. 77: 2578-2583.
- Superko, H. R.; Adams, W. C.; Daly, P. W. (1984) Effects of ozone inhalation during exercise in selected patients with heart disease. Am. J. Med. 77: 463-470.
- Tepper, J. S.; Costa, D. L.; Lehmann, J. R.; Weber, M. F.; Hatch, G. E. (1989) Unattenuated structural and biochemical alterations in the rat lung during functional adaptation to ozone. Am. Rev. Respir. Dis. 140: 493-501.
- Tepper, J. S.; Wiester, M. J.; Weber, M. F.; Ménache, M. G. (1990) Measurements of cardiopulmonary response in awake rats during acute exposure to near-ambient concentrations of ozone. Fundam. Appl. Toxicol. 10: 7-15.
- Torres, A.; Utell, M. J.; Morow, P. E.; Voter, K. Z.; Whitin, J. C.; Cox, C.; Looney, R. J.; Speers, D. M.; Tsai, Y.; Frampton, M. W. (1997) Airway inflammation in smokers and nonsmokers with varying responsiveness to ozone. Am. J. Respir. Crit. Care Med. 156: 728-736.
- Trenga, C. A.; Koenig, J. Q.; Williams, P. V. (2001) Dietary antioxidants and ozone-induced bronchial hyperresponsiveness in adults with asthma. Arch. Environ. Health 56: 242-249.

- Tsai, B. M.; Wang, M.; Pitcher, J. M.; Meldrum, K. K.; Meldrum, D. R. (2004) Hypoxic pulmonary vasoconstriction and pulmonary artery tissue cytokine expression are mediated by protein kinase C. Am. J. Physiol. Lung Cell Mol. Physiol. 287: L1215-L1219.
- U.S. Environmental Protection Agency. (1986) Air quality criteria for ozone and other photochemical oxidants. Research Triangle Park, NC: Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office; report nos. EPA-600/8-84-020aF-eF. 5v. Available from: NTIS, Springfield, VA; PB87-142949.
- U.S. Environmental Protection Agency. (1996) Air quality criteria for ozone and related photochemical oxidants. Research Triangle Park, NC: Office of Research and Development; report nos. EPA/600/AP-93/004aF-cF. 3v. Available from: NTIS, Springfield, VA; PB96-185582, PB96-185590, and PB96-185608. Available: www.epa.gov/ncea/ozone.htm.
- Ultman, J. S.; Ben-Jebria, A.; Arnold, S. F. (2004) Uptake distribution of ozone in human lungs: intersubject variability in physiologic response. Boston, MA: Health Effects Institute.
- Utell, M. J.; Frampton, M. W.; Morrow, P. E.; Cox, C.; Levy, P. C.; Speers, D. M.; Gibb, F. R. (1994) Oxidant and acid aerosol exposure in healthy subjects and subjects with asthma. Part II: effects of sequential sulfuric acid and ozone exposures on the pulmonary function of healthy subjects and subjects with asthma. Cambridge, MA: Health Effects Institute; pp. 37-93; research report no. 70.
- Vagaggini, B.; Carnevali, S.; Macchioni, P.; Taccola, M.; Fornai, E.; Bacci, E.; Bartoli, M. L.; Cianchetti, S.; Dente, F. L.; Di Franco, A.; Giannini, D.; Paggiaro. P. L. (1999) Airway inflammatory response to ozone in subjects with different asthma severity. Eur. Respir. J. 13: 274-280.
- Vagaggini, B.; Taccola, M.; Conti, I.; Carnevali, S.; Cianchetti, S.; Bartoli, M. L.; Bacci, E.; Dente, F. L.; Di Franco, A.; Giannini, D.; Paggiaro, P. L. (2001) Budesonide reduces neutrophilic but not functional airway response to ozone in mild asthmatics. Am. J. Respir. Crit. Care Med. 164: 2172-2176.
- Vagaggini, B.; Taccola, M.; Clanchetti, S.; Carnevali, S.; Bartoli, M. L.; Bacci, E.; Dente, F. L.; Di Franco, A.; Giannini, D.; Paggiaro, P. L. (2002) Ozone exposure increases eosinophilic airway response induced by previous allergen challenge. Am. J. Respir. Crit. Care Med. 166: 1073-1077.
- Van Bree, L.; Rombout, P. J. A.; Rietjens, I. M. C. M.; Dormans, J. A. M. A.; Marra, M. (1989) Pathobiochemical effects in rat lung related to episodic ozone exposure. In: Schneider, T.; Lee, S. D.; Wolters, G. J. R.; Grant, L. D., eds. Atmospheric ozone research and its policy implications: proceedings of the 3rd US-Dutch international symposium; May 1988; Nijmegen, The Netherlands. Amsterdam, The Netherlands: Elsevier Science Publishers; pp. 723-732. (Studies in environmental science 35).
- Vender, R. L.; Horstman, D. H.; Mangione, S. (1994) Red blood cell antioxidants in human volunteers exposed to ozone. Toxicol. Ind. Health 10: 53-58.
- Voter, K. Z.; Whitin, J. C.; Torres, A.; Morrow, P. E.; Cox, C.; Tsai, Y.; Utell, M. J.; Frampton, M. W. (2001) Ozone exposure and the production of reactive oxygen species by bronchoalveolar cells in humans. Inhalation Toxicol. 13: 465-483.
- Wang, G.; Umstead, T. M.; Phelps, D. S.; Al-Mondhiry, H.; Floros, J. (2002) The effect of ozone exposure on the ability of human surfactant protein A variants to stimulate cytokine production. Environ. Health Perspect. 110: 79-84.
- Wayne, W. S.; Wehrle, P. F.; Carroll, R. E. (1967) Oxidant air pollution and athletic performance. JAMA J. Am. Med. Assoc. 199: 151-154.
- Weinmann, G. G.; Weidenbach-Gerbase, M.; Foster, W. M.; Zacur, H.; Frank, R. (1995) Evidence for ozone-induced small-airway dysfunction: lack of menstrual-cycle and gender effects. Am. J. Respir. Crit. Care Med. 152: 988-996.
- Weymer, A. R.; Gong, H., Jr.; Lyness, A.; Linn, W. S. (1994) Pre-exposure to ozone does not enhance or produce exercise-induced asthma. Am. J. Respir. Crit. Care Med. 149: 1413-1419.
- Yang, I. A.; Holz, O.; Jörres, R. A.; Magnussen, H.; Barton, S. J.; Rodríguez, S.; Cakebread, J. A.; Holloway, J. W.; Holgate, S. T. (2005) Association of tumor necrosis factor-α polymorphisms and ozone-induced change in lung function. Am. J. Respir. Crit. Care Med. 171: 171-176.
- Yeadon, M.; Wilkinson, D.; Darley-Usmar, V.; O'Leary, V. J.; Payne, A. N. (1992) Mechanisms contributing to ozone-induced bronchial hyperreactivity in guinea-pigs. Pulm. Pharmacol. 5: 39-50.
- Ying, R. L.; Gross, K. B.; Terzo, T. S.; Eschenbacher, W. L. (1990) Indomethacin does not inhibit the ozone-induced increase in bronchial responsiveness in human subjects. Am. Rev. Respir. Dis. 142: 817-821.
- Yu, M.; Pinkerton, K. E.; Witschi, H. (2002) Short-term exposure to aged and diluted sidestream cigarette smoke enhances ozone-induced lung injury in B6C3F1 mice. Toxicol. Sci. 65: 99-106.

CHAPTER 7 ANNEX

EPIDEMIOLOGIC STUDIES OF HUMAN HEALTH EFFECTS ASSOCIATED WITH AMBIENT OZONE EXPOSURE

AX7-1. Tables of Epidemiologic Studies of Human Health Effects Associated with Ambient Ozone Exposure

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
United States					
Mortimer et al. (2002) Eight urban areas in the U.S.: St. Louis, MO; Chicago, IL; Detroit, MI; Cleveland, OH; Washington, DC; Baltimore, MD; East Harlem, NY; Bronx, NY Jun-Aug 1993	National Cooperative Inner City Asthma Study (NCICAS) cohort. This panel study examined 846 asthmatic children aged 4-9 years for O ₃ exposure effects on PEF and morning symptoms using linear mixed effects models and GEE.	 8-h avg O₃ (10 a.m6 p.m.): 48 ppb SD not provided. Range of medians across cities shown in a figure: Approximately 34 to 58 ppb. <5% of days exceeded 80 ppb. 	PM ₁₀ , NO ₂ , SO ₂	No associations were seen between single or multiday O_3 measures and any evening outcome measure. The effects of O_3 on morning outcomes increased over several days with the strongest associations seen for multiday lags. Joint modeling of O_3 with NO ₂ or SO ₂ resulted in slightly reduced estimates for each pollutant. Closed cohort. Approximately 60% of NCICAS cohort returned diary, characterizations similar to entire cohort.	8-h avg O_3 (per 15 ppb): Percent change in morning PEF: Lag 1-5: All areas: -0.59% (-1.05, -0.13) St. Louis: -0.86% (-2.10, 0.38) Chicago: -0.62% (-2.41, 1.16) Detroit: -0.75% (-2.36, 0.86) Cleveland: -0.62% (-2.23, 0.99) Washington, DC: -0.54% (-2.02 0.93) Baltimore: 0.24% (-0.95, 1.43) East Harlem: -0.73% (-1.63, 0.1 Bronx: -0.69% (-1.54, 0.15) Odds ratios: Morning symptoms: Lag 1-4: All areas: 1.16 (1.02, 1.30) St. Louis: 0.82 (0.59, 1.14) Chicago: 1.09 (0.69, 1.72) Detroit: 1.72 (1.12, 2.64) Cleveland: 1.20 (0.81, 1.79) Washington, DC: 1.11 (0.72, 1.72) Baltimore: 1.19 (0.89, 1.60) East Harlem: 1.22 (0.97, 1.53) Bronx: 1.23 (0.98, 1.54)

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
United States (cont'd)					
Mortimer et al. (2000) Eight urban areas in the U.S.: St. Louis, MO; Chicago, IL; Detroit, MI; Cleveland, OH; Washington, DC; Baltimore, MD; East Harlem, NY; Bronx, NY Jun-Aug 1993	A cohort of 846 asthmatic children aged 4-9 years examined for effects of summer O_3 exposure on PEF and morning symptoms. Two subgroups were compared: (1) low birth weight or premature and (2) normal birth weight or full-term. Analysis using GEE and linear mixed effects models. Panel study.	8-h avg O ₃ (10 a.m6 p.m.): 48 ppb SD not provided. See Mortimer et al. (2002).	None	Low birth weight and premature asthmatic children had greater declines in PEF and higher incidence of morning symptoms than normal birth weight and full-term asthmatic children.	8-h avg O ₃ (per 15 ppb): Percent change in morning PEF: Low birth weight: Lag 1-5: -1.83% (-2.65 , -1.01) Normal birth weight: Lag 1-5: -0.30% (-0.79 , 0.19) Interaction term for birth weight, p < 0.05 Odds ratios: Morning symptoms: Low birth weight: Lag 1-4: 1.42 (1.10 , 1.82) Normal birth weight: Lag 1-4: 1.09 (0.95 , 1.24) Interaction term for birth weight, p < 0.05
Avol et al. (1998) Southern California communities Spring-summer 1994	Three panels of children (age 10-12 years): (1) asthmatic (n = 53); (2) wheezy (n = 54); and (3) healthy (n = 103). Examined for symptoms, medication use, outdoor time, physical activity, and pulmonary function measures in relation to O_3 exposure, via logistic regression and GLM.	Stratified analysis of low and high 24-h avg O_3 : Fixed site O_3 : Low: <100 ppb High: >100 ppb Personal O_3 : Low: <15.6 ppb High: >32.4 ppb	None	The three groups responded similarly. Few pulmonary function or symptom associations. Asthmatic children had the most trouble breathing, the most wheezing, and the most inhaler use on high O_3 days in the spring. Ozone levels were considered too low during the period of the study. Noncompliance by subjects may have been a problem. Other analysis methods may have been more appropriate.	Multiple endpoints analyzed. Few consistent or statistically significan responses to O ₃ exposure reported.

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
United States (cont'd)					
Gilliland et al. (2001) 12 Southern California communities Jan-Jun 1996	Time-series study of 1,933 4th grade children (age 9-10 years) followed for school absences. Each absence classified as illness-related or not. Among former, classified into respiratory or gastrointestinal. Respiratory absences further classified into upper or lower. Pollution measured in central site in each town. Analysis of distributed lag effects controlling for time, day of week, and temperature in a Poisson model.	 8-h avg O₃ (10 a.m6 p.m.): Levels not reported. Figure depicts mean range of approximately 35 to 55 ppb across the 12 communities. 	PM ₁₀ , NO ₂	Ozone strongly associated with illness- related and respiratory absences. PM ₁₀ only associated with upper respiratory absences. Long distributed lag effects for O ₃ raise questions about adequacy of control for seasonal changes.	 8-h avg O₃ (per 20 ppb): Percent change in school absences: All illness: 62.9% (18.4, 124.1) Nonrespiratory illnesses: 37.3% (5.7, 78.3) Respiratory illnesses: 82.9% (3.9, 222.0) Upper respiratory: 45.1% (21.3, 73.7) Lower respiratory with wet cough: 173.9% (91.3, 292.3)
Linn et al. (1996) Three towns in California: Rubidoux, Upland, Torrance Fall-spring 1992-1993 and 1993-1994	Panel study of 269 school children (age unspecified), each followed for morning/afternoon lung function and symptoms for one week in fall, winter, and spring over 2 school years. Personal exposure monitoring in a subset. Analyzed afternoon symptoms versus same day pollution and morning symptoms versus 1-day lag pollution.	24-h avg O ₃ : Personal: 5 ppb SD 3 Central site: 23 ppb SD 12	PM _{2.5} , NO ₂	Central site O_3 correlated with personal exposures, $r = 0.61$. Ozone effects observed on lung function but only significant for FEV ₁ in one analysis. No effects on symptoms. Ozone effects were not robust to NO ₂ or PM _{2.5} . Power may have been limited by short followup within seasons (limiting both person-days and variability in exposures).	Change in lung function (per ppb): FEV ₁ next morning: -0.26 mL (SE 0.25), p = 0.30 FEV ₁ afternoon: -0.18 mL (SE 0.26), p = 0.49 FEV ₁ crossday difference: -0.58 mL (SE 0.23), p = 0.01 FVC next morning: -0.21 mL (SE 0.22), p = 0.34 FVC afternoon: -0.20 mL (SE 0.29), p = 0.48 FVC crossday difference: -0.25 mL (SE 0.25), p = 0.32

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
United States (cont'd)					
Ostro et al. (2001) Central Los Angeles and Pasadena, CA Aug-Oct 1993	Panel study of 138 African- American children aged 8- 13 years with doctor diagnosed asthma requiring medication in past year followed for daily respiratory symptoms and medication use. Lags of 0 to 3 days examined.	1-h max O ₃ : Los Angeles: 59.5 ppb SD 31.4 Pasadena: 95.8 ppb SD 49.0	PM ₁₀ , NO ₂ , pollen, mold	Correlation between PM_{10} and O_3 was $r = 0.35$. Significant O_3 effect seen for extra medication use (above normal use). No O_3 effect on symptoms in expected direction observed. Inverse association seen for cough. PM_{10} effects seen at a lag of 3 days. Time factors not explicitly controlled in analysis; may have led to confounding of O_3 effects.	1-h max O ₃ (per 40 ppb): Odds ratios: Extra medication use: Lag 1: 1.15 (1.12, 1.19) Respiratory symptoms: Shortness of breath: Lag 3: 1.01 (0.92, 1.10) Wheeze: Lag 3: 0.94 (0.88, 1.00) Cough: Lag 3: 0.93 (0.87, 0.99)
Delfino et al. (2003) Los Angeles, CA Nov 1999-Jan 2000	A panel study of 22 Hispanic children with asthma aged 10-16 years. Filled out symptom diaries in relation to pollutant levels. Analysis using GEE model.	1-h max O ₃ : 25.4 ppb SD 9.6	NO ₂ , SO ₂ , CO, volatile organic compounds, PM ₁₀	Support the view that air toxics in the pollutant mix from traffic may have adverse effects on asthma in children.	1-h max O ₃ (per 14.0 ppb): Odds ratio: Symptoms interfering with daily activities: Lag 0: 1.99 (1.06, 3.72)
Delfino et al. (1997a) Alpine, CA May-Aug1994	Panel study of 22 asthmatics aged 9-46 years followed for respiratory symptoms, morning- afternoon PEF, and β_2 agonist inhaler use. Personal O ₃ measured for 12 hours/day using passive monitors. GLM mixed model.	Ambient: 12-h avg O ₃ (8 a.m8 p.m.): 64 ppb SD 17 Personal: 12-h avg O ₃ : (8 a.m8 p.m.) 18 ppb SD 14	PM ₁₀ , pollen, fungi	No O_3 effects observed.	No quantitative results for O_3

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
United States (cont'd)					
Delfino et al. (1998a) Alpine, CA Aug-Oct 1995	A panel of 24 asthmatics aged 9-17 years followed for daily symptoms. Analysis using GEE model.	1-h max O ₃ : 90 ppb SD 18	PM ₁₀	Asthma symptoms were significantly associated with both ambient O_3 and PM_{10} in single-pollutant models. Ozone effects generally robust to PM_{10} . Current day O_3 effects strongest in asthmatics not on anti-inflammatory medication. Effects of O_3 and PM_{10} were largely independent. The largest effects for PM_{10} were seen for a 5-day distributed lag. For O_3 effects, there were no lag day effects; current day results showed the greatest effect.	1-h max O ₃ (per 58 ppb): Odds ratios: O ₃ only model: Lag 0: 1.54 (1.02, 2.33) O ₃ with PM ₁₀ model: Lag 0: 1.46 (0.93, 2.29)
Delfino et al. (2004) Alpine, CA Aug-Oct 1999, Apr-Jun 2000	Panel study of 19 asthmatic children (age 9-17 years) followed daily for 2 weeks to determine relationship between air pollutants, namely PM, and FEV ₁ . Linear mixed model used for analysis.	8-h max O ₃ : 62.8 ppb SD 15.1 IQR 22.0	PM _{2.5} , PM ₁₀ , NO ₂	Significant declines in FEV_1 associated with various PM indices (personal, indoor home, etc.), but not ambient O_3 levels.	No quantitative results for O_3 .
Delfino et al. (1996) San Diego, CA Sep-Oct 1993	Panel study of 12 well- characterized moderate asthmatics aged 9-16 years (7 males, 5 females) followed over 6 weeks for medication use and respiratory symptoms. Allergy measured at baseline with skin prick tests. Personal O ₃ measured with passive badge. Analysis with GLM mixed model.	Ambient: 1-h max O ₃ : 68 ppb SD 30 Ambient: 12-h avg O ₃ : 43 ppb SD 17 Personal: 12-h avg O ₃ : 11.6 ppb SD 11.2	PM _{2.5} , SO ₄ ²⁻ , H ⁺ , HNO ₃ , pollen, fungal spores	No effect of ambient O_3 on symptom score. Personal O_3 significant for symptoms, but effect disappeared when confounding day of week effect was controlled with weekend dummy variable. β_2 inhaler used among 7 subjects was significantly related to personal O_3 . Results of this small study suggest the value of personal exposure data in providing more accurate estimates of exposures. However, nearly 50% of personal O_3 measurements were below limits of detection, diminishing value of these data. Pollen and fine particulate (low levels) were not associated with any of the outcomes.	Change in β_2 -agonist inhaler us (per ppb personal O ₃): 0.0152 puffs/day (SE 0.0075), p = 0.04

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
United States (cont'd)					
Chen et al. (2000) Washoe County, NV 1996-1998	Time-series study of school absenteeism examined among 27,793 students (kindergarten to 6th grade) from 57 elementary schools. First-order autoregression models used to assess relationship between O ₃ and school absenteeism after adjusting for weather, day of week, month, holidays, and time trends. Ozone levels from the current day, and cumulative lags of 1-14 days, 1-21 days, and 1-28 days examined.	1-h max O ₃ : 37.45 ppb SD 13.37	PM ₁₀ , CO	Multipollutant models were examined. Ozone concentrations in the preceding 14 days were significantly associated with school absenteeism for students in grades 1 through 6, but not those in kindergarten. Both PM_{10} and CO concentrations on the concurrent day were associated with school absenteeism, but the estimate for PM_{10} was a negative value.	1-h max O ₃ (per 50 ppb): Total absence rate: O ₃ with PM ₁₀ and CO model: Lag 1-14: 3.79% (1.04, 6.55)
Newhouse et al. (2004) Tulsa, OK Sep-Oct 2000	Panel study of 24 subjects aged 9-64 years with physician diagnosis of asthma. Performed PEF twice daily (morning and afternoon), and reported daily respiratory symptoms and medication use. Forward stepwise multiple regression models and Pearson correlation analyses.	24-h avg O ₃ : 30 ppb Range 10-70	PM _{2.5} , CO, SO ₂ , pollen, fungal spores	Among ambient air pollutants, O_3 seemed to be most significant factor. Morning PEF values significantly associated with average and maximum O_3 levels on the previous day. Individual symptoms, including wheezing, headache, and fatigue, also significantly related to average and maximum daily O_3 . Multiple regression analyses produced complex models with different predictor variables for each symptom.	Pearson correlation coefficient Morning PEF: Mean O ₃ levels: Lag 1: -0.274 , p < 0.05 Maximum O ₃ levels: Lag 1: -0.289 , p < 0.05

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
United States (cont'd)					
Ross et al. (2002) East Moline, IL and nearby communities May-Oct 1994	Panel study of 59 asthmatics aged 5-49 years recruited. 19 lost to follow-up, yielding study population of 40. Assessment of PEF and respiratory symptoms. Analytical methods unclear in terms of control for time factors.	8-h max O ₃ : 41.5 ppb SD 14.2 IQR 20	PM ₁₀ , SO ₂ , NO ₂ , pollen, fungi	Saw significant associations between O_3 and both PEF declines and symptom increases. Most but not all effects remained after controlling for temperature, pollen and fungi. Ozone effect on morning PEF disappeared after adjusting for temperature. No PM ₁₀ effects observed.	 8-h max O₃ (per 20 ppb): Change in PEF (L/min): Morning: Lag 0-1: -2.29 (-4.26, -0.33) Afternoon: Lag 0: -2.58 (-4.26, -0.89) Symptom score (on scale of 0-3): Morning: Lag 1-3: 0.08 (0.03, 0.13) Afternoon: Lag 1-3: 0.08 (0.04, 0.12)
Neas et al. (1995) Uniontown, PA Summer 1990	Panel study of 83 4th and 5th grade children reported twice daily PEF and the presence of cold, cough, or wheeze. Relationship to pollutants was analyzed by an autoregressive linear regression model/GEE. The number of hours each child spent outdoors during the preceding 12-h period was evaluated.	12-h avg O ₃ : Daytime (8 a.m8 p.m.): 50.0 ppb Overnight (8 p.m8 a.m.): 24.5 ppb	SO ₂ , PM ₁₀ , H ⁺	Evening cough was associated with O_3 levels weighted by hours spent outdoors during the prior 12 hours. A decrease in PEF was associated with O_3 levels weighted by hours spent outdoors. When particle-strong acidity was added to the model, the decrement was decreased and no longer significant.	 12-h avg O₃ (per 30 ppb increment weighted by proportion of time spent outdoors during prior 12 hours): Evening PEF: -2.79 L/min (-6.7, -1.1) Odds ratio: Evening cough: 2.20 (1.02, 4.75)
Neas et al. (1999) Philadelphia, PA Jul-Sep 1993	Panel study of 156 children aged 6-11 years at two summer camps followed for twice-daily PEF. Analysis using mixed effects models adjusting for autocorrelated errors.	Daytime 12-h avg O ₃ (9 a.m-9 p.m.): SW camp: 57.5 ppb IQR 19.8 NE camp: 55.9 ppb IQR 21.9	H ⁺ , SO ₄ ²⁻ , PM _{2.5} , PM ₁₀ , PM _{10-2.5}	Some O_3 effects detected as well as PM effects. Similar O_3 -related decrements observed in both morning and afternoon PEF. Ozone effects not robust to $SO_4^{2^-}$ in two-pollutant models, whereas $SO_4^{2^-}$ effects relatively robust to O_3 .	12-h avg O ₃ (per 20 ppb): Morning and evening PEF: O ₃ only models: Lag 0: -1.38 L/min (-2.81, 0.04) Lag 1-5: -2.58 L/min (-4.81, -0.35) O ₃ with SO ₄ ²⁻ model: Lag not specified: -0.04 L/min

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
United States (cont'd)					
Gent et al. (2003) Southern New England Apr-Sep 2001	Panel study of 271 children (age <12 years) with active, doctor-diagnosed asthma followed over 183 days for respiratory symptoms. For analysis, cohort split into two groups: 130 who used maintenance medication during follow-up and 141 who did not, on assumption that medication users had more severe asthma. Logistic regression analyses performed.	1-h max O ₃ : 58.6 ppb SD 19.0 8-h max O ₃ : 51.3 ppb SD 15.5	PM _{2.5}	Correlation between 1-h max O_3 and daily $PM_{2.5}$ was 0.77 during this warm- season study. Large numbers of statistical tests performed. Significant associations between symptoms and O_3 seen only in medication users, a subgroup considered to be more sensitive. $PM_{2.5}$ significant for some symptoms, but not in two-pollutant models. Ozone effects generally robust to $PM_{2.5}$. Study limitations include limited control for meteorological factors and the post-hoc nature of the population stratification by medication use.	1-h max O_3 (per 50 ppb): Odds ratios: Regular medication users (n = 130) Chest tightness: O_3 only model: Lag 1: 1.26 (1.00, 1.48) O_3 with PM _{2.5} model: Lag 1: 1.42 (1.14, 1.78) Shortness of breath: O_3 only model: Lag 1: 1.22 (1.02, 1.45)
Korrick et al. (1998) Mount Washington, NH Summers 1991, 1992	Cross-sectional study evaluating the acute effects of ambient O_3 on pulmonary function of exercising adults. 530 hikers (age 15-64 years) monitored before and after their hike. Analysis using a general linear regression model.	O ₃ level per hour of hiking: 40 ppb SD 12 Range 21-74	PM _{2.5} , smoke, acidity	With prolonged outdoor exercise low- level exposures to O_3 were associated with significant effects on pulmonary function. Hikers with asthma had a four-fold greater responsiveness to exposure to O_3 .	Percent change in lung function (per 50 ppb O ₃): FEV ₁ : -2.6% (-4.7, -0.4) FVC: -2.2% (-3.5, -0.8)

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
United States (cont'd)					
Thurston et al. (1997) Connecticut River Valley, CT June 1991, 1992, 1993	Panel study of children (age 7-13 years) with moderate-to-severe asthma followed for medication use, lung function, and medical symptoms at a summer asthma camp for one week in 1991 ($n = 52$), 1992 ($n = 58$), and 1993 ($n = 56$). Analysis was conducted using both Poisson modeling and GLM.	1-h max O ₃ : 1991: 114.0 ppb 1992: 52.2 ppb 1993: 84.6 ppb 1991-1993: 83.6 ppb	H ⁺ , SO ₄ ²⁻	Ozone was most consistently associated with acute asthma exacerbation, chest symptoms, and lung function decrements. Pollen was poorly associated with any adverse effect. Consistent results were obtained between the aggregate and individual analyses.	1-h max O ₃ (per 83.6 ppb): Relative risks: β_2 -agonist use: 1.46, p < 0.05 Chest symptoms: 1.50, p < 0.0. Change in PEF (per ppb): -0.096 L/min, p < 0.05
Naeher et al. (1999) Vinton, VA Summers 1995, 1996	Panel study evaluated the relationship between O_3 and daily change in PEF studied in a sample of 473 nonsmoking women aged 19-43 years who recently delivered babies. PEF performed twice daily for a two-week period. Mixed linear random coefficient model.	8-h max O ₃ : 53.69 ppb Range 17.00-87.63 24-h avg O ₃ : 34.87 ppb Range 8.74-56.63	PM _{2.5} , PM ₁₀ , SO ₄ ²⁻ , H ⁺	Ozone was the only exposure related to evening PEF with 5-day cumulative lag exposure showing the greatest effect.	24-h avg O ₃ (per 30 ppb): Evening PEF: Lag 1-5: -7.65 L/min (-13.0, -2.25)

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
Canada					
Brauer et al. (1996) Fraser Valley, British Columbia, Canada Jun-Aug 1993	Panel study of 58 berry pickers aged 10-69 years had lung function measured before and after a series of outdoor work shifts (average duration = 11 hours) over 59 days. Analysis using pooled regression with subject- specific intercepts, with and without temperature control.	1-h max O ₃ : 40.3 ppb SD 15.2 Work shift O ₃ : 26.0 ppb SD 11.8	PM _{2.5} , SO ₄ ²⁻ , NO ₃ ⁻ , NH ₄ ⁺ , H ⁺	End shift FEV_1 and FVC significantly diminished in relation to O_3 levels. $PM_{2.5}$ also related to lung function declines, but O_3 remained significant in two-pollutant models. Next morning lung function remained diminished following high O_3 days. Ozone effects still evident at or below 40 ppb. There was an overall decline of lung function of roughly 10% over course of study, suggesting subchronic effect. Levels of other pollutants low during study.	Change in lung function (per pp 1-h max O ₃): Endshift lung function: FEV ₁ : -3.8 mL (SE 0.4) FVC: -5.4 mL (SE 0.6) Next morning function: FEV ₁ : -4.5 mL (SE 0.6) FVC: -5.2 mL (SE 0.7)
Brauer and Brook (1997) Fraser Valley, British Columbia, Canada Jun-Aug 1993	Additional analysis of Brauer et al., 1996 with personal exposure presented for three groups, stratified by time spent outdoors. Group 1: 25 individuals who spent most of the day indoors. Group 2: 25 individuals who spent much of the day indoors, but still spent several daylight hours outdoors. Group 3: 15 individuals who spent the entire work day outdoors.	1-h max O ₃ : Ambient: 40 ppb SD 15 Range 13-84	PM _{2.5} , SO ₄ ²⁻ , NO ₃ ⁻ , NH ₄ ⁺ , H ⁺	 Group 1: 9.0% sampling time (24-h) outdoors. Personal to ambient O₃ ratio was 0.28. Group 2: 25.8% sampling time (24-h) outdoors. Personal to ambient O₃ ratio was 0.48. Group 3: 100% sampling time (11-h work shift) outdoors. Personal to ambient O₃ ratio was 0.96. One of the first direct demonstrations that magnitude of personal exposure to O₃ is related to amount of time spent outdoors. Further showed that, on average, outdoor fixed O₃ monitors were representative of day-to-day changes in O₃ exposure experienced by the study population. 	Same outcomes as reported in Brauer et al., 1996.

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
Europe					
Scarlett et al. (1996) Surrey, England Jun-Jul 1994	Panel study examined 154 children aged 7 years in a primary school next to a major motorway for O_3 exposure effects on PEF _{0.75} , FVC, and FEV ₁ using autoregression for percent change in function.	8-h max O ₃ : 50.7 ppb SD 24.48	PM ₁₀ , NO ₂ , pollen	No significant association was seen between pulmonary function measures and O_3 levels. No pollen effects.	Change in lung function (per ppb O_3 weighted by inverse of variance): FEV _{0.75} : Lag 1: 0.01 mL (-0.12, 0.13) FVC: Lag 1: 0.07 mL (-0.09, 0.23) FEV _{0.75} /FVC: Lag 1: -0.1% (-5.1, 4.8)
Ward et al. (2002) Birmingham and Sandwell, England Jan-Mar 1997 May-Jul 1997	A panel study of 162 children (age 9 years at time of enrollment in Sept 1996). 39 of 162 children (24%) reported wheezing in the past 12 months. Examined association of ambient acid species with PEF and symptoms. Single-day lags of 0 to 3 days and a 7-day cumulative lag were investigated. Linear regression used for PEF and logistic regression used for symptoms.	24 h-avg O ₃ : Winter: Median 13.0 ppb Range 2-33 Summer: Median 22.0 ppb Range 10-41	PM ₁₀ , PM _{2.5} , SO ₂ , H ⁺ , Cl ⁻ , HCl, HNO ₃ , NH ₃ , NH ₄ ⁺ , NO ₃ ⁻ SO ₄ ²⁻	Pollutants levels were generally low, even in the summer. Significant associations were noted between respiratory health outcomes and air pollutants, but no consistent patterns were identified. The association between O ₃ and PEF was generally negative in the summer and positive in the winter. More associations between O ₃ and symptoms were observed in the winter. Ozone was associated with a significant increase in cough, shortness of breath, and wheeze during the winter. Results did not indicate that children with atopy or a history of recent wheezing were more susceptible to short-term effects of air pollutants.	24-h avg O_3 (per 21.5 ppb for winter; per 10.2 ppb for summer): Change in PEF (L/min): Morning (lag 0-6): Winter: 17.53 (6.56, 28.52) Summer: -5.66 (-11.21, -0.09) Afternoon (lag 0-6): Winter: 0.28 (-9.03, 9.79) Summer: -0.14 (-5.34, 5.04) Odds ratios: Symptoms: Cough (lag 0-6): Winter: 0.88 (0.42, 1.81) Summer: 0.95 (0.76, 1.19) Shortness of breath (lag 0-6): Winter: 2.79 (1.56, 4.95) Summer: 1.35 (0.95, 1.94) Wheeze (lag 0-6): Winter: 1.59 (0.77, 3.31) Summer: 0.88 (1.38, 0.57)

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
Europe (cont'd)					
Taggart et al. (1996) Runcorn and Widnes in NW England Jul-Sep 1993	Panel study investigated the relationship of asthmatic bronchial hyperresponsiveness and pulmonary function with summertime ambient air pollution among 38 adult nonsmoking asthmatics (age 18-70 years) using log-linear models. Analysis limited to investigation of within subject variance of the dependent variables.	1-h avg O ₃ : Maximum 61 μg/m ³ 24-h avg O ₃ : Maximum 24.5 μg/m ³	SO ₂ , NO ₂ , smoke	No association found for O_3 . Changes in bronchial hyperresponsiveness were found to correlate significantly with change in the levels of 24-h mean SO_2 , NO_2 , and smoke.	24-h avg O ₃ (per 10 μg/m ³): Percent change in bronchial hyperresponsiveness: Lag 1: 0.3% (-16.6, 20.6) Lag 2: 2.6% (-22.1, 34.9)
Desqueyroux et al. (2002a) Paris, France Nov 1995-Nov 1996	Panel study of 60 severe asthmatics (mean age 55 years) were monitored by their physicians for asthma attacks. Asthma attacks were based on medical data collected by a pulmonary physician at time of clinical examination. Analysis using GEE.	8-h avg O ₃ (10 a.m6 p.m.): Summer: 41 μg/m ³ SD 18 Winter: 11 μg/m ³ SD 10	PM ₁₀	Significant associations between PM_{10} , O_3 , and incident asthma attacks were found. Low O_3 levels raise plausibility concerns.	8-h avg O ₃ (per 10 μg/m ³): Odds ratio: Lag 2: 1.20 (1.03, 1.41)
Desqueyroux et al. (2002b) Paris, France Oct 1995-Nov 1996	Panel study of 39 adult patients with severe COPD (mean age 67 years) followed over 14 months by physicians for exacerbations. Logistic regression with GEE, examining exposure lags of 0 to 5 days.	8-h avg O ₃ (10 a.m6 p.m.): Summer: 41 μg/m ³ SD 18 Winter: 11 μg/m ³ SD 10	PM ₁₀ , SO ₂ , NO ₂	50 COPD exacerbations observed over follow-up period. 1-, 2-, and 3-day lag O_3 significantly related to exacerbations. No other pollutants significant. Low O_3 levels raise plausibility and confounding concerns.	 8-h avg O₃ (per 10 μg/m³): Odds ratio: Lag 1: 1.56 (1.05, 2.32) Effects appeared larger among smokers and those with worse gas exchange lung function.

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
Europe (cont'd)					
Just et al. (2002) Paris, France Apr-Jun 1996	Panel study of 82 medically diagnosed asthmatic children (mean age 10.9 years) followed for O ₃ exposure and PEF, asthmatic attacks, cough, supplementary use of β_2 -agonists, and symptoms of airway irritation. Analysis by GEE.	24-h avg O ₃ : 58.9 μg/m ³ SD 24.5 Range 10.0-121.0	PM ₁₀ , NO ₂	In asthmatic children, O_3 exposure was related to the occurrence of asthma attacks and additional bronchodilator use. O_3 was the only pollutant associated with changes in lung function, as shown by an increase in PEF variability and decrease in PEF.	24-h avg O ₃ (per 10 μ g/m ³): Percent change in daily PEF variability: Lag 0-2: 2.6%, p = 0.05 Odds ratio: Supplementary use of β_2 -agonist on days on which no steroids were used: Lag 0: 1.41 (1.05, 1.89)
Lagerkvist et al. (2004) Brussels, Belgium May 2002	Panel study of 57 children (mean age 10.8 years) stratified by swimming pool attendance. Pulmonary function test performed and Clara cell protein levels measured in blood before and after light exercise outdoors for two hours. Analysis using student's t-test and Pearson correlation test. For dose calculations, O ₃ levels indoors assumed to be 50% of the mean outdoor O ₃ concentration.	Daytime outdoor O ₃ : Range 77-116 µg/m ³ Exposure dose: Range 352-914 µg/m ³ ·hour	None	Ozone levels did not have any adverse effect on FEV_1 after 2 hours of outdoor exercise. In addition, no significant differences were observed between Clara cell protein levels before and after exercise. A marginally significant positive correlation between ambient O ₃ dose and Clara cell protein levels observed among the nonswimmers, indicating increased antioxidant activity following O ₃ exposure in this group. The lack of a clear relationship between Clara cell protein levels and O ₃ dose may be attributable to the short period of time between measurements and diurnal variability of the protein levels.	Pearson correlation: O_3 exposure dose and Clara cell protein levels in serum: All subjects (n = 54): r = 0.17, p = 0.21 Nonswimmers (n = 33): r = 0.34, p = 0.06 Swimmers (n = 21): r = -0.08, p = 0.74

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
Europe (cont'd)					
Schindler et al. (2001) Eight communities of Switzerland May-Sep 1991	A random sample of 3,912 adult never-smokers, aged 18 to 60 years, examined for short-term O_3 -related changes in lung function. Natural logarithms of FVC, FEV ₁ , and FEF _{25.75} were regressed against the individual predictor variables and O_3 . Spline functions were used to control potential trends. Sensitivity analyses for grass and pollens, and NO_2 and TSP involved linear time-trend variables.	8 h-avg O ₃ (10 a.m6 p.m.): 90.3 µg/m ³ Range 2.9-247.1	NO ₂ , TSP	Daily average concentrations of O_3 were associated with daily sample means of FEV ₁ and FEF ₂₅₋₇₅ in this random adult cross-sectional sample. The associations between daily O_3 levels and daily means of lung function were smaller in magnitude than the association between annual O_3 levels in the previous analyses (Ackermann and Liebrich et al., 1997). This analytic approach was designed to filter out long-term components. Sensitive analyses indicated that major confounding by uncontrolled effects of pollen, NO ₂ , and TSP was unlikely.	8-h avg O ₃ (per 10 μg/m ³): % change in lung function: FEV ₁ : -0.51% (-0.88, -0.13) FVC: -0.24% (-0.59, 0.11) FEF ₂₅₋₇₅ : -1.04% (-1.85, -0.22)
Frischer et al. (1993) Umkirch, Germany May-Oct 1991	Panel study of nasal lavage repeatedly performed on 44 school children (age 9-11 years) according to protocol published by Koren et al. (1990). Samples collected morning after "low" and "high" O ₃ days. Nasal lavage samples analyzed for polymorphonuclear leukocyte counts, albumin, tryptase, eosinophil cationic protein, and myeloperoxidase. Analysis using individual regression methods.	Stratified analysis of half hour avg O ₃ at 3 p.m.: Low: <140 µg/m ³ High: >180 µg/m ³	None	Significant higher polymorphonuclear leukocyte counts after high O ₃ days. In children without symptoms of rhinitis, significantly elevated myeloperoxydase and eosinophil cationic protein concentrations detected. Results suggest that ambient O ₃ produces an inflammatory response in the upper airways of healthy children.	Children without symptoms of rhinitis (n = 30): Myeloperoxydase: Low O ₃ : median 77.39 µg/L High O ₃ : median 138.60 µg/L p < 0.05; Wilcoxon sign rank tes Eosinophilic cationic protein: Low O ₃ : median 3.49 µg/L High O ₃ : median 5.39 µg/L p < 0.05; Wilcoxon sign rank tes

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
Europe (cont'd)					
Frischer et al. (1997) Umkirch, Germany May-Oct 1991	Panel study examined 44 school children aged 9-11 years for ratio of <i>ortho</i> - tyrosine to <i>para</i> -tyrosine in nasal lavage as a marker of hydroxyl radical attack. Nasal lavage performed according to protocol published by Koren et al. (1990). Concomitant lung function tests performed. Analysis using individual regression methods.	Stratified analysis of ½-h avg O ₃ at 3 p.m.: Low: <140 µg/m ³ High: >180 µg/m ³	None	Ambient O_3 was associated with the generation of hydroxyl radicals in the upper airways of healthy children and significant lung function decrements. However, the <i>ortho/para</i> ratio was not related to polymorphonuclear leukocyte counts. Passive smoking was not related to outcomes.	FEV ₁ (% predicted): Low: 105.4 (SD 15.6) High: 103.9 (SD 15.0) Δ : 1.5, p = 0.031 <i>Ortho/para</i> ratio: Low: 0.02 (SD 0.07) High: 0.18 (SD 0.16) Δ : 0.17, p = 0.0001
Höppe et al. (1995a,b) Munich, Germany Apr-Sep 1992-1994	Panel study of five study groups (age 12-95 years): (1) senior citizens (n = 41); (2) juvenile asthmatics (n = 43); (3) forestry workers (n = 41); (4) athletes (n = 43); and (5) clerks (n = 40) as a control group. Examined for lung function (FVC, FEV ₁ , PEF) and questions on irritated airways. Each subject tested 8 days, 4 days with elevated or high O ₃ and 4 days with low O ₃ . Analysis using Wilcoxon matched pairs signed rank test and linear regression.	 ½-h max O₃ (1 p.m4 p.m.): Seniors: High: 70 ppb Low: 31 ppb Asthmatics: High: 74 ppb Low: 34 ppb Forestry workers: High: 64 ppb Low: 32 ppb Athletes: High: 71 ppb Low: 28 ppb Clerks: High: 68 ppb Low: 15 ppb 	None	No indication that senior citizens represent a risk group in this study. Senior citizens had the lowest ventilation rate (mean 10 L/min). Athletes and clerks experienced significant decrements in lung function parameters. Well- medicated juvenile asthmatics have a trend towards large pulmonary decrements. Forestry workers were exposed to motor tool exhaust, which might be a potential promoting factor.	$\label{eq:2.1} \begin{array}{l} \frac{1}{2} -h \max O_3 \ (\text{per 100 ppb}): \\ \\ \hline \\ Change in lung function: \\ \\ \hline \\ Seniors: \\ \\ FEV_1: \ 0.034 \ L \ (SD \ 0.101) \\ \\ PEF: \ 0.006 \ L/s \ (SD \ 0.101) \\ \\ PEF: \ 0.006 \ L/s \ (SD \ 0.281) \\ \\ PEF: \ -0.210 \ L \ (SD \ 0.281) \\ \\ PEF: \ -0.712 \ L/s \ (SD \ 0.281) \\ \\ PEF: \ -0.712 \ L/s \ (SD \ 0.134)* \\ \\ \hline \\ Forestry \ workers: \\ \\ FEV_1: \ -0.140 \ L \ (SD \ 0.156) \\ \\ PEF: \ -1.154 \ L/s \ (SD \ 0.136)* \\ \\ PEF: \ -0.622 \ L/s \ (SD \ 0.140)* \\ \\ PEF: \ -0.520 \ L/s \ (SD \ 0.486)* \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
Europe (cont'd)					
Höppe et al. (2003) Munich, Germany Apr–Sep 1992-1995	Three of the same study groups examined in Höppe et al. (1995a,b) — asthmatics (n = 43), athletes (n = 43), and elderly = 41). One additional risk group, children (n = 44), was examined. Over 80% of the elderly and asthmatic groups took medications on a daily basis. Eye and airway symptoms were assessed, as were pulmonary function test. GLM analyses was conducted.	 ¹/₂-h max O₃ (1 p.m4 p.m.): Asthmatics: High: 66.9 ppb Low: 32.5 ppb Athletes: High: 65.9 ppb Low: 27.2 ppb Children: High: 70.4 ppb Low: 29.8 ppb Elderly: High: 66.1 ppb Low: 30.6 ppb 	NO2	For the group mean values there are hardly any O_3 effects detectable at the concentration level of this study; lack of power may have made it difficult to detect small O_3 effects. Analysis on an individual basis shows clearly different patterns of O_3 sensitivity. Ozone responders are defined as individuals with relevant lung function changes of at least 10% for FEV ₁ , FVC, and PEF, and 20% for sRaw. Most of the responders were found in the asthmatic and children groups. The sample size may limit quantitative extrapolation to larger populations, but may allow cautious first estimates.	 ¹/₂-h max O₃ (per 50 ppb): % change in lung function, lag O Asthmatics: FEV₁: 4.26% (-3.13, 11.66) PEF: 6.67% (-1.55, 14.89) Athletes: FEV₁: 0.01% (-0.13, 0.11) PEF: -0.13% (-0.29, 0.03) Children: FEV₁: -1.81% (-5.34, 1.73) PEF: -11.88% (-18.98, -4.78) Elderly: FEV₁: 2.10% (-4.65, 8.84) PEF: 7.29% (-2.84, 17.43) Ozone responders: Asthmatics: 21% Athletes: 5% Children: 18% Elderly: 5%
Kopp et al. (1999) Two towns in Black Forest, Germany Mar-Oct 1994	Panel study of 170 school children (median age 9.1 years) followed over 11 time points with nasal lavage sampling. Subjects were not sensitive to inhaled allergens. Nasal lavage samples analyzed for eosinophil cationic protein, albumen, and leukocytes. Analysis using GEE.	$\frac{1}{2}$ -h max O ₃ : Villingen: 64 µg/m ³ 5th %-95th % 1-140 Freudenstadt: 105 µg/m ³ 5th %-95th % 45-179	PM ₁₀ , NO ₂ , SO ₂ , TSP	Eosinophil cationic protein and leukocyte levels peaked soon after first major O_3 episode of summer, but did not show response to later, even higher, O_3 episodes. These observations are consistent with an adaptive response in terms of nasal inflammation.	Change in log eosinophil cation protein concentration (per µg/m O ₃): Early summer: 0.97 (0.03, 1.92) Late summer: -0.43 (-1.34, 0.47)

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
Europe (cont'd)					
Ulmer et al. (1997) Freudenstadt and Villingen, Germany Mar-Oct 1994	Panel study of 135 children aged 8-11 years in two towns were evaluated. Pulmonary function was associated with the highest O_3 concentration in the previous 24 hours. An initial cross-sectional analysis was followed by a longitudinal analysis using GEE with the data at four time periods (Apr, Jun, Aug, Sep).	 ½-h max O₃: Freudenstadt: Median 50.6 ppb 10th %-90th % 22.5-89.7 Villingen: Median 32.1 ppb 10th %-90th % 0.5-70.1 	None	In the cross-sectional analysis, a significant negative association between O_3 exposure and FVC was only shown at the June testing. For FEV ₁ , no significant associations were detected. In contrast, the longitudinal analysis obtained a statistically significant negative correlation between O_3 exposure, and FVC and FEV ₁ for the subpopulation living in the town with higher O_3 levels, Freudenstadt. The associations were more pronounced in males than females.	Change in lung function (per $\mu g/m^3$ l ² / ₂ -h max O ₃): FEV ₁ : Freudenstadt: -1.13 mL, p = 0.002 Villingen: -0.19 mL, p = 0.62 FVC: Freudenstadt: -1.23 mL, p = 0.002 Villingen: 0.02 mL, p = 0.96
Cuijpers et al. (1994) Maastricht, the Netherlands Nov-Dec 1990 (baseline), Aug 8-16 1991 (smog episode)	During episode, 212 children (age unspecified) randomly chosen from 535 reexamined for lung function and symptoms. Corrected baseline lung function compared by paired t-test. Difference in prevalence of respiratory symptoms examined.	Baseline: 8-h avg O ₃ : Range 2-56 µg/m ³ Smog episode: 1-h max O ₃ : Exceeded 160 µg/m ³ on 11 days	PM ₁₀ , SO ₂ , NO ₂	Small decrements in FEV_1 and FEF_{25-75} were found in the 212 children. However, significant decreases in resistance parameters also were noted. Each day a different group of 30 children were measured. The results of the lung function are contradictory in that spirometry suggest airflow obstruction while impedance measurement suggest otherwise. Respiratory symptoms impacted by low response rate of 122 of 212 children due to summer holidays. No increase was observed.	Change in lung function and impedance between baseline and smog episode: $FEV_1:$ $-0.032 L (SD 0.226), p \le 0.05$ $FEF_{25.75}:$ $-0.086 L/s (SD 0.415), p \le 0.01$ Resistence at 8 Hz: $-0.47 \text{ cmH}_2O/(L/s) (SD 1.17),$ $p \le 0.05$
Gielen et al. (1997) Amsterdam, the Netherlands Apr-Jul 1995	Panel study of 61 children aged 7-13 years from two special schools for chronically ill children, followed for twice-daily PEF, symptoms, and medication usage. 77% of cohort had doctor- diagnosed asthma.	1-h max O ₃ : 77.3 μg/m ³ SD 15.7 8-h max O ₃ : 67.0 μg/m ³ SD 14.9	PM ₁₀ , BS, pollen	Morning PEF significantly associated with 8-h max O_3 at a lag of 2 days. BS also associated with PEF. Among 14 symptom models tested, only one yielded a significant O_3 finding (for upper respiratory symptoms). PM ₁₀ and BS, but not O_3 , were related to β_2 -agonist inhaler use.	8-h max O ₃ (per 83.2 μg/m ³): Percent change in PEF: Morning: Lag 2: -1.86% (-3.58, -0.14) Afternoon: Lag 2: -1.88% (-3.94, 0.18)

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
Europe (cont'd)					
Hilterman et al. (1998) Bilthoven, the Netherlands Jul-Oct 1995	Panel study of 60 adult nonsmoking intermittent to severe asthmatics (age 18-55 years) followed over 96 days. Measured morning and afternoon PEF, respiratory symptoms, and medication use. Analysis controlled for time trends, aeroallergens, environmental tobacco smoke exposures, day of week, temperature. Lags of 0 to 2 days examined.	8-h max O ₃ : 80.1 μg/m ³ Range 6-94	PM ₁₀ , NO ₂ , SO ₂ , BS	Ozone had strongest association with symptoms of any pollutant analyzed. PEF lower with O ₃ but not statistically significant. No effect on medication use. No effect modification by steroid use or hyperresponsiveness.	8-h max O ₃ (per 100 μ g/m ³): Odds ratios: Respiratory symptoms: Shortness of breath: Lag 0: 1.18 (1.02, 1.36) Sleep disturbed by breathing: Lag 0: 1.14 (0.90, 1.45) Pain on deep inspiration: Lag 0: 1.44 (1.10, 1.88) Cough of phlegm: Lag 0: 0.94 (0.83, 1.07) Bronchodilator use: Lag 0: 1.05 (0.94, 1.19)
Hoek and Brunekreef (1995) Deurne and Enkhuizen, the Netherlands Mar-Jul 1989	The occurrence of acute respiratory symptoms investigated in children aged 7-11 years (Deurne n = 241; Enkhuizen n = 59). Symptoms included cough, shortness of breath, upper and lower respiratory symptoms, throat and eye irritation, headache and nausea. Ozone-related symptom prevalence and incidence were examined. Lags of 0 and 1 day, and mean O ₃ concentration from previous week were investigated. Analyses using 1st-order autoregressive models and logistic regression models.	1-h max O ₃ : Deurne: 57 ppb SD 20 Range 22-107 Enkhuizen: 59 ppb SD 14 Range 14-114	PM ₁₀ , NO ₂ , SO ₂	No consistent association between ambient O_3 concentrations and the prevalence or incidence of symptoms in either city. The one significant positive coefficient in Enkhuizen for prevalence of upper respiratory symptoms was not confirmed by the Deurne results. No associations of daily symptom prevalence or incidence found with any of the other copollutants examined.	1-h max O_3 (per 50 ppb): Prevalence of symptoms: Deurne: Any respiratory symptom: Lag 0: -0.06 (SE 0.04) Cough: Lag 0: -0.07 (SE 0.07) Upper respiratory symptoms: Lag 0: -0.06 (SE 0.05) Enkhuizen: Any respiratory symptom: Lag 0: 0.12 (SE 0.07) Cough: Lag 0: -0.07 (SE 0.18) Upper respiratory symptoms: Lag 0: -0.18 (SE 0.09)* *p < 0.05

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
Latin America					
Castillejos et al. (1995) SW Mexico City Aug 1990-Oct 1991	Panel study of children aged $7\frac{1}{2}$ -11 years (22 males, 18 females) tested up to 8 times for FEV ₁ and FVC, before and after exercise. Target minute ventilation was 35 L/min/m ² . Analysis using GEE models.	1-h max O ₃ : 112.3 ppb Range 0-365 5th quintile mean 229.1 ppb	PM ₁₀	The mean % decrements in lung function were significantly greater than zero only in the fifth quintile of O_3 exposure (183-365 ppb).	Percent change with exercise in 5th quintile of O ₃ exposure (183-365 ppb): FEV ₁ : -2.85% (-4.40, -1.31) FVC: -1.43% (-2.81, -0.06)
Gold et al. (1999) SW Mexico City 1991	Panel study of 40 school children aged 8-11 years in polluted community followed for twice-daily PEF and respiratory symptoms. PEF deviations in morning/afternoon from child-specific means analyzed in relation to pollution, temperature, season, and time trend. Morning symptoms analyzed by Poission regression.	24-h avg O ₃ : 52.0 ppb IQR 25	PM _{2.5} , PM ₁₀	Reported significant declines in PEF in relation to 24-h avg O_3 levels. Effects did not vary by baseline symptom history. Lags chosen to maximize effects and varied by outcome. Ozone generally robust to PM _{2.5} . Morning phlegm significantly related to 24-h avg O_3 at a 1-day lag.	24-h avg O ₃ (per 25 ppb): Percent change in PEF: Morning: Lag 1-10: -3.8% (-5.8, -1.8) Afternoon: Lag 0-9: -4.6% (-7.0, -2.1) Percent change in phlegm: Morning: Lag 1: 1.1% (1.0, 1.3)

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
Latin America (cont'd)					
Romieu et al. (1996) N Mexico City Apr-Jul 1991, Nov 1991-Feb 1992	Panel study of 71 mildly asthmatic children aged 5-13 years followed for PEF and respiratory symptoms. Lower respiratory symptoms included cough, phlegm, wheeze and/or difficulty breathing.	1-h max O ₃ : 190 ppb SD 80	PM _{2.5} , PM ₁₀ , NO ₂ , SO ₂	Ozone effects observed on both PEF and symptoms. Symptom, but not PEF, effects robust to PM_{10} in two-pollutant models. Symptoms related to O_3 included cough and difficulty breathing.	1-h max O ₃ (per 50 ppb): Change in PEF (L/min): Morning: Lag 0: -2.44 (-4.40 , -0.49) Lag 1: -0.23 (-0.41 , 1.62) Lag 2: -1.49 (-3.80 , 0.80) Afternoon: Lag 0: -0.56 (-2.70 , 1.60) Lag 1: -1.27 (-3.20 , 0.62) Lag 2: -1.92 (-4.50 , 0.66) Odds ratios: Lower respiratory symptoms: Lag 0: 1.09 (1.03 , 1.15) Lag 1: 1.10 (1.04 , 1.17) Lag 2: 1.04 (0.97 , 1.12)
Romieu et al. (1997) SW Mexico City Apr-Jul 1991, Nov 1991-Feb 1992	Same period as Romieu et al., 1996, but in different section of city. 65 mildly asthmatic children aged 5-13 years followed for twice-daily PEF, and respiratory symptoms. Up to 2 months follow-up per child. Analysis included temperature and looked at 0- to 2-day lags. No time controls. Lower respiratory symptoms included cough, phlegm, wheeze and/or difficulty breathing. Panel study.	1-h max O ₃ : 196 ppb SD 78	PM ₁₀	Ozone had significant effects on PEF and symptoms, with largest effects at lags 0 and 1 day. Symptoms related to O_3 included cough and phlegm. Ozone effects stronger than those for PM_{10} .	1-h max O ₃ (per 50 ppb): Change in PEF (L/min): Morning: Lag 0: -1.32 (-3.21 , 0.57) Lag 1: -0.39 (-2.24 , 1.47) Lag 2: -0.97 (-2.94 , 0.99) Afternoon: Lag 0: -1.81 (-3.60 , -0.01) Lag 1: -2.32 (-4.17 , -0.47) Lag 2: -0.21 (-2.44 , 2.02) Odds ratios: Lower respiratory symptoms: Lag 0: 1.11 (1.05 , 1.19) Lag 1: 1.08 (1.01 , 1.15) Lag 2: 1.07 (1.02 , 1.13)

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
Latin America (cont'd)					
Romieu et al. (1998) Mexico City Mar-May 1996 (1st phase) Jun-Aug 1996 (2nd phase)	Panel study of 47 street workers aged 18-58 years randomly selected to take a daily supplement (vitamin C, vitamin E, and beta carotene) or placebo during 1 st phase of study. Following washout period, the use of supplements and placebos was reversed during 2nd phase. Pulmonary function test performed twice a week at end of workday. Plasma concentrations of beta carotene and α -tocopherol measured. Analysis using GEE models.	1-h max O ₃ : 123 ppb SD 40 55% of days >110 ppb. Workday hourly average during workday prior to pulmonary function test: 67.3 ppb SD 24	PM ₁₀ , NO ₂	During the 1st phase, O ₃ levels were significantly associated with declines in lung function parameters. No associations were observed in the daily supplement group. A significant supplement effect was observed. Ozone- related decrements also were observed during the 2nd phase, however the associations were not significant. Supplementation with antioxidants during the 1st phase may have had a residual protective effect on the lung.	 1-h max O₃ (per 10 ppb): Placebo group: 1st phase: FEV₁: Lag 0: -17.9 mL (SE 5.4)* FVC: Lag 0: -14.8 mL (SE 7.1)* 2nd phase: FEV₁: Lag 0: -3.3 mL (SE 6.5) FVC: Lag 0: -0.27 mL (SE 7.8) No significant associations with O₃ observed when taking supplements.
Romieu et al. (2002) Mexico City Oct 1998-Apr 2000	Panel study of 158 asthmatic children aged 6-16 years randomly given a vitamin (C and E) supplement or placebo followed for 12 weeks. Peak flow was measured twice a day and spirometry was performed twice per week in the morning. Double blind study. Plasma concentration of vitamin E levels measured. Analysis using GEE models.	1-h max O ₃ : 102 ppb SD 47	PM ₁₀ , NO ₂	Ozone levels were significantly correlated with decrements in FEF ₂₅₋₇₅ in the placebo group, but not in the supplement group. When analysis was restricted to children with moderate-to- severe asthma, amplitudes of decrements were larger and significant for FEV ₁ , FEF ₂₅₋₇₅ , and PEF in the placebo group. Supplementation with antioxidants may modulate the impact of O_3 exposure on the small airways of children with moderate to severe asthma.	1-h max O_3 (per 10 ppb): Children with moderate to severe asthma: Placebo group: O_3 with PM ₁₀ and NO ₂ models: FEV ₁ : Lag 1: -4.59 mL, p = 0.04 FEF _{2.5.75} : Lag 1: -13.32 mL/s, p < 0.01 PEF: Lag 1: -15.01 mL/s, p = 0.04 No association observed in the vitamin supplement group.

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
Latin America (cont'd)					
Romieu et al. (2004) Mexico City Oct 1998-Apr 2000	Additional analysis of Romieu et al., 2002 with data on glutathion S-transferase M1 polymorphism (GSTM1 null genotype) in 158 asthmatic children. Analysis performed using GEE models, stratified by GSTM1 genotype (null versus positive) within the two treatment groups (placebo and antioxidant supplemented). Panel study.	1-h max O ₃ : 102 ppb SD 47	None	In the placebo group, O_3 exposure was significantly and inversely associated with FEF _{2.5-75} in children who had the GSTM1 null genotype, with larger effects seen in children with moderate-to-severe asthma. No significant decrements were seen in the GSTM1 positive children. These results provide preliminary evidence that asthmatic children who may be genetically impaired to handle oxidative stress are most susceptible to the effect of O_3 on small airways function.	1-h max O ₃ (per 50 ppb): FEF ₂₅₋₇₅ in children with moderate to severe asthma: Placebo group: GSTM1 null: Lag 1: -80.8 mL/s, p = 0.002 GSTM1 positive: Lag 1: -34.4 mL/s, p > 0.10 Supplement group: GSTM1 null: Lag 1: -7.3 mL/s, p > 0.10 GSTM1 positive: Lag 1: 2.0 mL/s, p > 0.10
Australia					
Jalaludin et al. (2000) Sydney, Australia Feb-Dec 1994	Panel study of three groups of children (mean age 9.6 years): (1) $n = 45$ with history of wheeze 12 months, positive histamine challenge, and doctor-diagnosed asthma; (2) $n = 60$ with history of wheeze and doctor- diagnosed asthma; (3) $n = 20$ with only history of wheeze. Examined for evening PEF and daily O ₃ using GEE model and population regression models.	Mean daytime O ₃ (6 a.m9 p.m.): 12 ppb SD 6.8 Maximum daytime O ₃ (6 a.m9 p.m.): 26 ppb SD 14.4	PM ₁₀ , NO ₂	A significant negative association was found between daily mean deviation in PEF and same-day mean daytime O ₃ concentration after adjusting for copollutants, time trend, meteorological variables, pollen count, and <i>Alternaria</i> count. The association was stronger in a subgroup of children with bronchial hyper-reactivity and doctor-diagnosed asthma. In contrast, the same-day maximum O ₃ concentration was not statistically associated.	Change in PEF (per 10 ppb mean daytime O_3): All children (n = 125): O_3 only model: -0.9178 (SE 0.4192), p = 0.03 O_3 with PM ₁₀ model: -0.9195 (SE 0.4199), p = 0.03 O_3 with PM ₁₀ and NO ₂ model: -0.8823 (SE 0.4225), p = 0.04

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
Australia (cont'd)					
Jalaludin et al. (2004) Sydney, Australia Feb-Dec 1994	Same three groups of children as studied in Jalaludin et al., 2000. Examined relationship between O_3 and evening respiratory symptoms (wheeze, dry cough, and wet cough), evening asthma medication use (inhaled β_2 -agonist and inhaled corticosteroids), and doctor visits for asthma. Analysis using GEE logistic regression models. Panel study.	Mean daytime O ₃ (6 a.m9 p.m.): 12 ppb SD 6.8 Maximum daytime O ₃ (6 a.m9 p.m.): 26 ppb SD 14.4	PM ₁₀ , NO ₂	No significant O_3 effects observed on evening symptoms, evening asthma medication use, and doctors visits. Also, no differences in the response of children in the three groups. A potential limitation is that the use of evening outcome measures rather than morning values may have obscured the effect of ambient air pollutants. Only consistent relationship was found between mean daytime PM ₁₀ concentrations and doctor visits for asthma.	Mean daytime O ₃ (per 8.3 ppb) Odds ratios: All children (n = 125): Wheeze: Lag 1: 1.00 (0.93, 1.08) Dry cough: Lag 1: 1.03 (0.96, 1.11) Wet cough: Lag 1: 0.97 (0.92, 1.03) Inhaled β_2 -agonist use: Lag 1: 1.02 (0.97, 1.07) Inhaled corticosteroid use: Lag 1: 1.02 (0.99, 1.04) Doctor visit for asthma: Lag 1: 1.05 (0.77, 1.43)
Asia					
Park et al. (2002) Seoul, Korea Mar 1996-Dec 1999	Time-series study. Poisson GAM with default convergence criteria used in analysis. Children from 1st to 6th grade at one elementary school located in high traffic area followed for school absences. Average enrollment count was 1,264. Each absence classified as illness-related or not. Single-day lags of 0 and 1 day, and a cumulative 7-day lag considered.	8-h avg O ₃ (10 a.m6 p.m.): 22.86 ppb Range 3.13-69.15	PM ₁₀ , NO ₂ , SO ₂ , CO	Ozone positively associated with illness- related absences at a lag of 0-day. For non-illness-related absences, inverse relationship with O_3 observed. PM ₁₀ and SO ₂ also associated with illness-related absences. Ozone effects were robust in two-pollutant models.	 8-h avg O₃ (per 15.94 ppb): Relative risks: All absences: 1.01 (0.99, 1.03) Illness-related absences: 1.08 (1.06, 1.11) Non-illness-related absences: 0.84 (0.80, 0.87)

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
Asia (cont'd)					
Chen et al. (1998) Six communities in Taiwan 1994-1995	4,697 school children (age unspecified) from a rural area (Taihsi), urban areas (Keelung and Sanchung), and petrochemical industrial areas (Jenwu, Linyuan, and Toufen) cross-sectionally examined for respiratory symptoms and diseases using parent- completed questionnaires. Multiple logistic regression models used to compare odds of symptoms and diseases in urban or petrochemical areas to the rural area after controlling for potential confounding factors. Cross-sectional panel study.	24-h avg O ₃ : Rural area: 52.56 ppb Urban area: Mean range 38.34-41.90 ppb Petrochemical industrial area: Mean range 52.12-60.64 ppb	SO ₂ , CO, PM ₁₀ , NO ₂	School children in urban communities, but not in petrochemical industrial areas, had significantly more respiratory symptoms and diseases compared to those living in the rural community. However, mean O_3 levels in the urban communities were lower than that of the rural community. No causal relationship could be derived between O_3 and respiratory symptoms and diseases in this cross-sectional study.	Urban areas compared to rural area Odds ratios: Respiratory symptoms: Morning cough: 1.33 (0.98, 1.80) Day or night cough: 1.67 (1.21, 2.29) Shortness of breath: 1.40 (1.04, 1.91) Wheezing or asthma: 1.68 (1.11, 2.54)
Chen et al. (1999) Three towns in Taiwan: Sanchun, Taihsi, Linyuan May 1995-Jan 1996	Valid lung function data obtained once on each of 895 children (age 8-13 years) in three towns. Examined relation between lung function and pollution concentrations on same day and over previous 1, 2, and 7 days. Multipollutant models examined. Cross-sectional panel study.	1-h max O ₃ : Range 19.7-110.3 ppb SD not provided.	SO ₂ , CO, PM ₁₀ , NO ₂	FEV ₁ and FVC significantly associated with 1-day lag O ₃ . FVC also related to NO ₂ , SO ₂ , and CO. No PM ₁₀ effects observed. Only O ₃ remained significant in multipollutant models. No PM ₁₀ effects. A significant O ₃ effect was not evident at O ₃ levels below 60 ppb.	Change in lung function: O ₃ only models: Lag 1: FEV ₁ : -0.64 mL/ppb (SE 0.34)* FVC: -0.79 mL/ppb (SE 0.32)* O ₃ with NO ₂ models: Lag 1: FEV ₁ : -0.85 mL/ppb (SE 0.34)* FVC: -0.91 mL/ppb (SE 0.37)*

Table AX7-1 (cont'd). Effects of Acute O₃ Exposure on Lung Function and Respiratory Symptoms in Field Studies

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
Asia (cont'd)					
Chan and Wu (2000) Taichung City, Taiwan Sep 2001 (Questionnaire survey) Nov-Dec 2001 (Field study)	A cohort of mail carriers (mean age 39 years) examined for effects of O ₃ exposure on PEF. Their exposure periods were between 9 a.m. and 5 p.m. every working day. PEF measurements taken twice daily. Single-day lags from 0 to 3 days examined. A two-step statistical model was used, a multiple linear regression without air pollutants followed by a linear mixed effects model to estimate pollution effects.	8-h avg O ₃ (9 a.m5 p.m.): 35.6 ppb SD 12.1 Range 7.6-65.1	PM ₁₀ , NO ₂	Significant associations observed between evening PEF and O_3 concentrations at lags of 0, 1 and 2 days. Largest effect observed at a 1-day lag. Similar O_3 effects on morning PEF also noted (data not presented). Neither PM ₁₀ nor NO ₂ showed consistent associations with PEF. Ozone results were robust to adjustment for PM ₁₀ and NO ₂ .	8-h avg O ₃ (per 10 ppb): % change in evening PEF: Lag 0: 0.54%, p < 0.05 Lag 1: 0.69%, p < 0.05 Lag 2: 0.52%, p < 0.05

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
United States					
Liao et al. (2004) Three locations in U.S.: Minneapolis, MN; Jackson, MS; Forsyth County, NC 1996-1998	Cross-sectional study of 5,431 cohort members of the Atherosclerosis Risk in Communities study, men and women aged 45-64 years at entry in 1987. Association between O_3 and cardiac autonomic control assessed using 5-minute heart rate variability indices collected over a 4-hour period. Analysis using multivariable linear regression models, adjusting for individual cardiovascular disease risk factors and meteorological factors.	8-h avg O ₃ (10 a.m6 p.m.): 41 ppb SD 16	PM ₁₀ , CO, SO ₂ , NO ₂	Significant interaction between O_3 and ethnicity in relation to high-frequency power (p < 0.05). Ambient O_3 significantly associated with high- frequency power among whites, but not blacks. No significant O_3 effect on other heart rate variability indices, including low-frequency power and SD of normal R-R intervals. More consistent relationships observed between PM ₁₀ and heart rate variability indices.	 8-h avg O₃ (per 16 ppb): Log-transformed high-frequen power: White race: Lag 1: -0.069 (SE 0.019)* Black race: Lag 1: 0.047 (SE 0.034) Log-transformed high-frequen power: Lag 1: -0.010 (SE 0.016) SD of normal R-R intervals: Lag 1: -0.336 (SE 0.290) *p < 0.05
Peters et al. (2000a) Eastern Massachusetts 1995-1997	Records of detected arrhythmias and therapeutic interventions were downloaded from defibrillators implanted in cardiac clinic patients aged 22-85 years (n = 100). Analysis was restricted to defibrillator discharges precipitated by ventricular tachycardias or fibrillation. Data were analyzed by logistic regression models using fixed effect models with individual intercepts.	24-h avg O ₃ : 18.6 ppb IQR 14.0	PM _{2.5} , PM ₁₀ , BC, CO, NO ₂ , SO ₂	No significant O ₃ effects observed for defibrillator discharge interventions. For patients with ten or more interventions, increased arrhythmias were associated significantly with PM _{2.5} , CO, and NO ₂ at various lag periods, but not O ₃ .	 24-h avg O₃ (per 32 ppb): Odds ratios: Defibrillator discharges: Patients with at least one even Lag 0: 0.96 (0.47, 1.98) Patients with at least ten event Lag 0: 1.23 (0.53, 2.87)

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
United States (cont'd)					
Peters et al. (2001) Greater Boston area, MA Jan 1995-May 1996	Case-crossover study design used to investigate association between air pollution and triggering of myocardial infarction in 772 patients (mean age 61.6 years). For each subject, one case period was matched to three control periods 24 hours apart. Conditional logistic regression used for analysis.	1-h max O ₃ : 19.8 ppb 24-h avg O ₃ : 19.9 ppb	PM _{2.5} , PM ₁₀ , PM _{10-2.5} , BC, CO, NO ₂ , SO ₂	None of the gaseous pollutants, including O ₃ , were significantly associated with the triggering of myocardial infarctions. Significant associations reported for PM _{2.5} and PM ₁₀ .	Odds ratios: Myocardial infarctions: 2-h avg O ₃ (per 45 ppb): Lag 1 hour: 1.31 (0.85, 2.03) 24-h avg O ₃ (per 30 ppb): Lag 24 hours: 0.94 (0.60, 1.49)
Park et al. (2005) Greater Boston area, MA Nov 2000-Oct 2003	Cross-sectional study examining the effect of O_3 on heart rate variability in 497 adult males (mean age 72.7 years). Subjects were monitored during a 4- minute rest period between 8 a.m. and 1 p.m. Ozone levels measured at central site 1 km from study site. Exposure averaging times of 4-hours, 24-hours, and 48-hours investigated. Modifying effects of hypertension, ischemic heart disease, diabetes, and use of cardiac/ antihypertensive medications also examined. Linear regression analyses.	24-h avg O ₃ : 23.0 ppb SD 13.0	PM _{2.5} , particle number concentration, BC, NO ₂ , SO ₂ , CO	Of the pollutants examined, only $PM_{2.5}$ and O_3 showed significant associations with heart rate variability outcomes. The 4-hour averaging period was most strongly associated with heart rate variability indices. The O_3 effect was robust in models including $PM_{2.5}$. The associations between O_3 and heart rate variability indices were stronger in subjects with hypertension (n = 335) and ischemic heart disease (n = 142). In addition, calcium-channel blockers significantly influenced the effect of O_3 on low frequency power. Major limitations of this study are the use of a short 4-minute period to monitor heart rate variability and the lack of repeated measurements for each subject.	4-h avg O ₃ (per 13 ppb): Change in low frequency power All subjects: -11.5% (-21.3, -0.4) Subjects with hypertension: -12.6% (-25.0, 1.9) Subjects without hypertension: -5.4% (-21.6, 14.1) Subjects with ischemic heart disease: -25.8% (-41.9, -5.3) Subjects without ischemic heart disease: -4.8% (-16.7, 8.8)

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
United States (cont'd)					
Gold et al. (2000; reanalysis Gold et al., 2003) Boston, MA Jun-Sep 1997	Panel study of repeated measurements of heart rate variability in subjects aged 53-87 years (n = 21, 163 observations). Twenty-five minute protocol included 5 minutes each of rest, standing, exercise outdoors, recovery, and 20 cycles of slow breathing. Ozone levels measured at central site 4.8 miles from study site. Analyses using random effects models and GAM with stringent convergence criteria.	1-h max O ₃ : 25.7 ppb IQR 23.0	PM _{2.5} , NO ₂ , SO ₂	Increased levels of O_3 were associated with reduced r-MSSD (square root of the mean of the squared differences between adjacent normal RR intervals) during the slow breathing period after exercise outdoors. The estimated O_3 effects were similar to those of $PM_{2.5}$. Results suggest that O_3 exposure may decrease vagal tone, leading to reduced heart rate variability.	1-h max O ₃ (per 23.0 ppb): Change in r-MSSD: During first rest period: O ₃ only model: -3.0 ms (SE 1.9), p = 0.12 During slow breathing period: O ₃ only model: -5.8 ms (SE 2.4), p = 0.02 O ₃ with PM _{2.5} model: -5.4 ms (SE 2.5), p = 0.03
Schwartz et al. (2005) Boston, MA 12 weeks during the summer of 1999	A panel study of 28 elderly subjects (age 61-89 years). Various HRV parameters were measured for 30 minutes once a week. Analysis using linear mixed models with log- transformed HRV measurements. To examine heterogeneity of effects, hierarchical model was used.	1-h avg O ₃ : Median 34 ppb IQR 26	BC, PM _{2.5} , CO, SO ₂ , NO ₂	HRV parameters examined included: standard deviation of normal RR intervals (SDNN), root mean squared differences between adjacent R-R intervals (r-MSSD), proportion of adjacent NN intervals differing by more than 50 ms (PNN ₅₀), and low frequency/high frequency ratio (LFHFR). Ozone was weakly associated with HRV parameters. Strongest association seen for BC, an indicator of traffic particles. The random effects model indicated that the negative effect of BC on HRV was not restricted to a few subjects. Subjects with MI experienced greater BC-related decrements in HRV parameters. Authors noted that in this study ambient O ₃ might represent a secondary particle effect and not a true O ₃ effect, and suggested that personal exposure measurements might be necessary to assess the effect of O ₃ on cardiovascular outcomes.	1-h avg O ₃ (per 26 ppb): Change in HRV parameters: SDNN: -3.1 ms (-7.0, 0.9) r-MSSD: -8.5 ms (-16.6, 0.3) PNN ₅₀ : -6.5% (-18.9, 7.8)

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
United States (cont'd)					
Dockery et al. (2005) Boston, MA	Effect of air pollution on incidence of ventricular	48-h avg O ₃ : Median 22.9 ppb	$PM_{2.5}$, BC, SO_4^{2-} , particle	No associations were observed between air pollutants and ventricular arrhythmias	48-h avg O ₃ (per 15.4 ppb):
Jul 1995-Jul 2002	arrhythmias was examined in 203 patients with	IQR 15.4	number, CO, NO ₂ , SO ₂	when all events were considered. When only examining ventricular	Odds ratios:
	implantable cardioverter			arrhythmias within 3 days of a prior	All events:
	defibrillators using time- series methods. Mean			event, positive associations were found for most pollutants except for O_3 .	1.09 (0.93, 1.29) Prior arrhythmia event < 3 days
	follow-up period was			Suggestive evidence of a concentration-	1.01 (0.76, 1.35)
	3.1 years/subject. All			response relationship between ventricular	Prior arrhythmia event > 3 days
	subjects located <40 km of			arrhythmias and increasing quintiles	1.14 (0.92, 1.40)
	air pollution monitoring			of O ₃ .	
	site. Two-day mean air				
	pollution level used in analysis. Results analyzed				
	by logistic regression using				
	GEE with random effects.				
	Modifying effects of				
	previous arrhythmia within				
	3 days also examined.				

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
United States (cont'd)					
Rich et al. (2005) Boston, MA Jul 1995-Jul 2002	Same study population as Dockery et al. (2005). Case-crossover study design used to examine association between air pollution and ventricular arrhythmias. For each case period, 3-4 control periods were selected. Various moving average concentrations of exposure considered – lags 0-2, 0-6, 0-23, and 0-47 hours. Analysis using conditional logistic regression models.	1-h avg O ₃ : Median 22.2 ppb IQR 21.7 24-h avg O ₃ : Median 22.6 ppb IQR 15.7	PM _{2.5} , BC, CO, NO ₂ , SO ₂	Associations observed for $PM_{2.5}$ and O_3 with a 24-h moving average, and for NO_2 and SO_2 with a 48-h moving average. In two-pollutant analyses, only $PM_{2.5}$ and O_3 appeared to act independently. In contrast to results from other pollutants, stratified analyses indicated that O_3 was associated with increased risk among subjects without a recent event, but not those with recent events. The odds ratio for the 24-h moving average concentration was larger than that for the same-calendar day concentration. This suggested that using calendar day concentrations might result in greater exposure misclassification which could lead to underestimation of risk. Findings of an association with 24-h moving average concentrations but not with shorter time periods could imply a cumulative effect across the previous 24 hours.	Odds ratios: 24-h moving average O_3 (per 15.9 ppb): O_3 only model: All events: 1.21 (1.00, 1.45) Prior arrhythmia event < 3 days 1.04 (0.78, 1.37) Prior arrhythmia event > 3 days 1.28 (1.05, 1.58) O_3 with PM _{2.5} model: All events: 1.18 (0.94, 1.49) 24-h calendar day O_3 (per 15.7 ppb): O_3 only model: All events: 0.96 (0.80, 1.15)
Canada					
Rich et al. (2004) Vancouver, British Columbia, Canada Feb-Dec 2000	Case-crossover study design used to investigate association between air pollution and cardiac arrhythmia in patients aged 15-85 years ($n = 34$) with implantable cardioverter defribillators. Controls periods were selected 7 days before and after each case day. Analysis using conditional logistic regression.	1-h max O ₃ : 27.5 ppb SD 9.7 IQR 13.4	PM _{2.5} , PM ₁₀ , EC, OC, SO ₄ ²⁻ , CO, NO ₂ , SO ₂	No consistent association between any of the air pollutants, including O_3 , and implantable cardioverter defribillators discharges. No significant association observed in all year data, however, significant relationship found in winter months at a 3-day lag. Overall, little evidence that air pollutants affect risk of cardiac arrhythmias, however, power was limited to study subtle effects.	No quantitative results for O ₃ .

Table AX7-2 (cont'd). Effects of Acute O₃ Exposure on Cardiovascular Outcomes in Field Studies

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
Canada (cont'd)					
Vedal et al. (2004) Vancouver, British Columbia, Canada 1997-2000	Retrospective, longitudinal panel study of 50 patients (age 12-77 years) with implantable cardioverter defribillators. Occurrence of cardiac arrhythmia was associated with air pollutants over four-year period. GEE used for analysis.	1-h max O ₃ : 28.2 ppb SD 10.2 IQR 13.8	PM ₁₀ , CO, NO ₂ , SO ₂	No consistent association between any of the air pollutants and percent change in arrhythmia. Among patients with at least 2 arrhythmia event-days per year, a significant negative relationship between O_3 and arrhythmias was observed at lag 3-day during the summer, but no associations were found during the winter. These results do not provide evidence for an O_3 effect on cardiac arrhythmias in susceptible patients.	No quantitative results for O ₃ .
Europe					
Ruidavets et al. (2005) Toulouse, France Jan 1997 - Jun 1999	MONICA Project. Examined short-term effects of pollution on acute MI using case-crossover study design. The study population included 395,744 inhabitants aged 35 to 64 years. Acute MI was examined using clinical, electrocardiograms, and enzymatic data. Four case definitions were used; there were a total of 635 cases for the most inclusive definition. Deaths were validated. Age, gender, history of ischemic heart disease, and survival status evaluated. Analyses using fixed-effects method with conditional logistic regression.	8-h max O ₃ : 74.8 μg/m ³ SD 28.1 Range 3.8-160.2	NO ₂ , SO ₂	After adjustment for temperature, relative humidity, and influenza epidemics, an association between O ₃ and acute MI was found for 0- and 1-day lags, but not for longer lags. Older age was an important risk factor. Subjects with no personal history of ischemic heart disease yielded a stronger association. Moderate levels of NO ₂ and SO ₂ were observed. NO ₂ and SO ₂ were not associated with acute MI. No PM data was reported.	8-h max O_3 (per 5 µg/m ³): Relative risk: All cases (n = 635): Lag 0: 1.05 (1.01, 1.08) Lag 1: 1.05 (1.01, 1.09) Age group: Age 35-54 years (n = 281): Lag 0: 1.04 (0.99, 1.09) Age 55-64 years (n = 283): Lag 0: 1.06 (1.01, 1.12) History of ischemic heart dise Yes (n = 127): Lag 0: 1.03 (0.96, 1.12) No (n = 437): Lag 0: 1.05 (1.01, 1.09) Age 55-64 years with no histo of ischemic heart disease (n = 225): Lag 0: 1.07 (1.01, 1.13)

Reference, Study Location and Period	Outcomes and Methods	Mean O ₃ Levels	Copollutants Considered	Findings, Interpretation	Effects
Latin America					
Holguín et al. (2003) Mexico City Feb-Apr 2000	Panel study of the association between O_3 and heart rate variability examined in 34 elderly subjects (mean age 79 years) in a nursing home. Subjects were monitored during a 5-minute rest period between 8 a.m. and 1 p.m. every other day for a 3-month period. A total of 595 observations were collected. Ambient O_3 levels obtained from central site 3 km upwind from study site. Analysis performed using GEE models adjusting for potential confounding factors including age and average heart rate.	1-h max O ₃ : 149 ppb SD 40	PM _{2.5} (indoor, outdoor, total), NO ₂ , SO ₂ , CO	Only $PM_{2.5}$ and O_3 were significantly associated with heart rate variability outcomes. A significant effect of O_3 on heart rate variability was limited to subjects with hypertension (n = 21). In two-pollutant models, the magnitude of the $PM_{2.5}$ effect decreased slightly but remained significant, whereas O_3 was no longer associated with heart rate variability indices.	1-h max O_3 (per 10 ppb): Log ₁₀ high frequency power/100,000 ms ² : All subjects: -0.010 (-0.022, 0.001) Subjects with hypertension: -0.031 (-0.051, -0.012) Subjects without hypertension: 0.002 (-0.012, 0.016) Log ₁₀ low frequency power/100,000 ms ² : All subjects: -0.010 (-0.021, 0.001) Subjects with hypertension: -0.029 (-0.046, -0.011) Subjects without hypertension: 0.001 (-0.012, 0.015)

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
United States						
Jaffe et al. (2003) Cincinnati, Cleveland, and Columbus, OH Jun-Aug 1991-1996	Daily time-series study of emergency department visits for asthma among Medicaid recipients aged 5-34 years.	8-h max O ₃ : Cincinnati: 60 ppb SD 20 Cleveland: 50 ppb SD 17 Columbus: 57 ppb SD 16	PM ₁₀ , NO ₂ , SO ₂	1, 2, 3	Poisson regression with control for city, day of week, week, year, minimum temperature, overall trend, and a dispersion parameter. No specific effort to control cycles, but regression residuals were uncorrelated, presumably due to seasonal restriction. Results shown for individual cities and overall. PM ₁₀ available only every 6th day. Positive relationships between emergency department visits for asthma and 8-h max O ₃ levels lagged 2 to 3 days. Results of borderline statistical significance. Other pollutants also related to asthma emergency department visits in single-pollutant models.	8-h max O ₃ (per 30 ppb): Cincinnati: Lag 2: 1.16 (1.00, 1.37) Cleveland: Lag 2: 1.03 (0.92, 1.16) Columbus: Lag 3: 1.16 (0.98, 1.37) Three cities: 1.09 (1.00, 1.19)
Jones et al. (1995) Baton Rouge, LA Jun-Aug 1990	Daily emergency department visits for respiratory complaints over a 3-month period in pediatric (age 0-17 years), adult (age 18-60 years), and geriatric (age >60 years) subgroups. Time-series study.	1-h max O ₃ : 69.1 ppb SD 28.7 24-h avg O ₃ : 28.2 ppb SD 11.7	Mold, pollen	Not specified.	Relatively simple statistical approach using ordinary least squares regression to model effects of O_3 by itself and of O_3 along with pollen counts, mold counts, temperature, and relative humidity. No direct control of cycles but authors reported nonsignificant autocorrelations among model residuals. Data restriction to 3-month period may have reduced any cyclic behavior. Significant associations between respiratory emergency department visits and O_3 observed for adult age group only in multiple regression models.	24-h avg O ₃ (per 20 ppb): Pediatric: 0.87 (0.65, 1.09) Adult: 1.20 (1.01, 1.39) Geriatric: 1.27 (0.93, 1.61)

Table AX7-3. Effects of O₃ on Daily Emergency Department Visits

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
United States (cont'd)						
Wilson et al. (2005) Portland, ME 1998-2000 Manchester, NY 1996-2000	Daily emergency room visits for total respiratory and asthma examined. Time- series study.	8-h max O ₃ : Portland: All available data: 43.1 ppb SD 13.5 Manchester: Summer: 42.8 ppb SD 14.6 Fall: 30.6 ppb SD 11.5	SO ₂	0	Poisson GAM with stringent convergence criteria. Positive associations for asthma in the larger city, Portland. Authors expressed the view that larger cities might be needed to conduct such studies.	8-h max O ₃ (per 30 ppb ³): Portland: Total respiratory: 0.970 (0.915, 1.029) Asthma: 1.094 (1.032, 1.160) Manchester: Total respiratory: 0.970 (0.915, 1.029) Asthma: 0.970 (0.863, 1.092)
Cassino et al. (1999) New York City Aug 1992-Dec 1995	Daily time-series study of emergency department visits in a cohort of 1,115 cohort of 1,115 adult asthmatics aged 18- 84. Stratified into 552 never-smokers, 278 light smokers, and 285 heavy smokers.	1-h max O ₃ : 37.2 ppb IQR 28 24-h avg O ₃ : 17.5 ppb IQR 14	CO, NO ₂ , SO ₂	0, 1, 2, 3	Used Poisson GAM with default convergence criteria. No warm season results presented. Significant O_3 effects seen only at lag 2 among heavy-smokers. Copollutants did not have effects. Short-term cycles and episodic variations in asthma may not have been controlled adequately with 3-month period LOESS. Multiple tests performed, and inconsistent results across smoking strata and lags raise possibility of chance findings. No PM results included.	O ₃ 24-h avg (per 14 ppb): Heavy smoker subgroup: Lag 0: 0.87 (0.75-1.02) Lag 1: 1.07 (0.93-1.24) Lag 2: 1.26 (1.10-1.44) Lag 3: 0.96 (0.83-1.10)

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
United States (cont'd)						
Weisel et al. (2002) New Jersey May-Aug 1995	Daily asthma emergency department visits for all ages. Time-series study.	1-h max O ₃ ; 5-h avg O ₃ (10 a.m3 p.m.); and 8-h avg O ₃ (2 p.m10 p.m.) analyzed. Levels not reported.	Pollen, spores	0, 1, 2, 3	No control for time, but authors report no autocorrelation, which alleviates concerns about lack of control. Significant O_3 effects reported, even after adjusting for potential confounding by pollen. All three O_3 indices gave essentially same results.	Slope estimate (visits/day/ppb): Excluding data from May when pollen levels are high: O_3 only model: Lag 0: 0.039, p = 0.049 O_3 with pollen model: Lag 0: 0.040, p = 0.014
Friedman et al. (2001) Atlanta, GA Jul-Aug 1996	Emergency department visits and hospital admissions for asthma in children aged 1-16 years. Outcomes measures during 1996 Summer Olympics were compared to a baseline period of 4 weeks before and after the Olympic Games. Time-series study.	1-h max O ₃ : Baseline: 81.3 ppb SD not given. Intervention period: 58.6 ppb SD not given.	NO ₂ , SO ₂ , CO, PM ₁₀ , mold	0, 0-1, 0-2	Analysis using Poisson GEE models addressing serial autocorrelation. An overall decrease was observed when comparing the number of visits and hospitalizations during the Olympic Games to the baseline period. However, significant associations between O ₃ and asthma events were found during the Olympic Games.	1-h max O ₃ (per 50 ppb): Pediatric emergency departments: Lag 0: 1.2 (0.99, 1.56) Lag 0-1: 1.4 (1.04, 1.79) Lag 0-2: 1.4 (1.03, 1.86)

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI
United States (cont'd)						
Metzger et al. (2004) Atlanta, GA Jan 1993-Aug 2000	Emergency department visits for total and cause- specific cardiovascular diseases by age groups 19+ years and 65+ years. Time-series study.	8-h max O ₃ : Median 53.9 ppb 10th %-90th % 13.2-44.7	NO ₂ , SO ₂ , CO, PM _{2.5} , PM ₁₀ , PM ₁₀ . $_{25}$, ultrafine PM count, SO ₄ ²⁻ , H ⁺ , EC, OC, metals, oxygenated hydrocarbons	0-2	Poisson GLM regression used for analysis. <i>A priori</i> models specified a lag of 0 to 2 days. Secondary analyses performed to assess alternative pollutant lag structures, seasonal influences, and age effects. Cardiovascular visits were significantly associated with several pollutants, including NO ₂ , CO, and PM _{2.5} , but not O ₃ .	8-h max O_3 (per 25 ppb): All ages: Total cardiovascular: 1.008 (0.987, 1.030) Dysrhythmia: 1.008 (0.967, 1.051) Congestive heart failure: 0.965 (0.918, 1.014) Ischemic heart disease: 1.019 (0.981, 1.059) Peripheral vascular and cerebrovascular disease: 1.028 (0.985, 1.073)
Peel et al. (2005) Atlanta, GA Jan 1993-Aug 2000	Emergency department visits for total and cause- specific respiratory diseases by age groups 0-1, 2-18, 19+, and 65+ years. Time- series study.	8-h max O ₃ : 55.6 ppb SD 23.8	NO ₂ , SO ₂ , CO, PM _{2.5} , PM ₁₀ , PM ₁₀ . $_{2.5}$, ultrafine PM count, SO ₄ ²⁻ , H ⁺ , EC, OC, metals, oxygenated hydrocarbons	0-2	Poisson GEE and GLM regression used for analysis. <i>A priori</i> models specified a lag of 0 to 2 days. Also performed secondary analyses estimating the overall effect of pollution over the previous two weeks. Seasonal analyses indicated stronger associations with asthma in the warm months. Quantitative results not presented for multipollutant, age-specific, and seasonal analyses.	8-h max O ₃ (per 25 ppb): All ages: Total respiratory: 1.024 (1.008, 1.039) Upper respiratory infections: 1.027 (1.009, 1.045) Asthma: 1.022 (0.996, 1.049) Pneumonia: 1.015 (0.981, 1.050) COPD: 1.029 (0.977, 1.084)

Table AX7-3 (cont'd)	Effects of O ₃ on	Daily Emergency	Department Visits
----------------------	------------------------------	-----------------	-------------------

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI
United States (cont'd)						
Tolbert et al. (2000) Atlanta, GA Jun-Aug 1993-1995	Pediatric (aged 0-16 years) asthma emergency department visits over three summers in Atlanta. A unique feature of the study was assignment of O_3 exposures to zip code centroids based on spatial interpolation from nine O_3 monitoring stations. Time-series study.	1-h max O ₃ : 68.8 ppb SD 21.1 8-h max O ₃ : 59.3 ppb SD 19.1	PM ₁₀ , NO ₂ , mold, pollen	1	A priori specification of model, including a lag of 1 day for all pollutants and meteorological variables. Secondary analysis using logistic regression of the probability of daily asthma visits, referenced to total visits (asthma and nonasthma). Significant association with O ₃ and PM ₁₀ in 1-, but not in 2-pollutant models (correlation between O ₃ and PM ₁₀ : r = 0.75). Secondary analysis indicated nonlinearity, with O ₃ effects clearly significant only for days ≥ 100 ppb versus days <50 ppb.	 8-h max O₃ (per 20 ppb): Poisson regression: O₃ only model: 1.040 (1.008, 1.074) Logistic regression: O₃ only model: 1.042 (1.017, 1.068) O₃ with PM₁₀ model: 1.024 (0.982, 1.069)
Zhu et al. (2003) Atlanta, GA Jun-Aug 1993-1995	Asthma emergency department visits in children (age 0-16 years) over three summers in Atlanta. Time-series study.	8-h max O ₃ : Levels not reported.	None	1	Used Bayseian hierarchical modeling to address model variability and spatial associations. Data were analyzed at the zip code level to account for spatially misaligned longitudinal data. A positive, but nonsignificant relationship between O_3 and emergency room visits for asthma.	8-h max O ₃ (per 20 ppb): Posterior median: 1.016 (0.984, 1.049)

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
Canada						
Delfino et al. (1997b) Montreal, Quebec,	Daily time-series ecologic study of	1-h max O ₃ :	$PM_{10}, PM_{2.5}, SO_4^{2-}, H^+$	0, 1, 2	Used ordinary least squares, with 19-day weighted moving	1993 (age >64 years):
Canada	emergency department	1992:	4)		average pre-filter to control	1-h max O ₃ (per 36.2 ppb):
Jun-Sep 1992-1993	visits for respiratory	33.2 ppb			cycles; weather also controlled.	Lag 1: 1.214 (1.084, 1.343)
	complaints within five age strata (<2, 2-18,	SD 12.6			Significant effects reported for 1 -day lag O ₃ in 1993 only for	8-h max O ₃ (per 30.7 ppb):
	19-34, 35-64,	1993:			age >64 years. This O ₃ effect	Lag 1: $1.222 (1.091, 1.354)$
	>64 years).	36.2 ppb			reported to be robust in two-	
		SD 13.8			pollutant models. Low O_3 levels raise plausibility	
		8-h max O ₃ :			concerns. Short data series,	
		1992:			multiple tests performed, and inconsistent results across	
		28.8 ppb			years and age groups raise	
		SD 11.3			possibility of chance findings.	
		1993:				
		30.7 ppb				
		SD 11.5				

Table AX7-3 (cont'd).	Effects of O ₂ on Dail	y Emergency Department Visits
	Lineers of O ₃ on Dan	y Emergency Department visits

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% Cl
Canada (cont'd)						
Delfino et al. (1998b) Montreal, Quebec, Canada Jun-Aug 1989-1990	Daily time-series ecologic study of emergency department visits for respiratory complaints across all ages and within four age strata (<2, 2-34, 35-64, >64 years).	1-h max O ₃ : 1989: 44.1 ppb SD 18.3 1990: 35.4 ppb SD 12.9 8-h max O ₃ : 1989: 37.5 ppb SD 15.5 1990: 29.9 ppb SD 11.2	Estimated PM _{2.5}	0, 1, 2	Same analytical approach used in Delfino et al., 1997. Results presented only for 1989. Significant effects reported for 1-day lag O_3 in 1989 only for age >64 years. This O_3 effect reported to be robust in 2-pollutant models.	1989 (age >64 years): 1-h max O ₃ (per 44.1 ppb): Lag 1: 1.187 (0.969, 1.281) 8-h max O ₃ (per 37.5 ppb): Lag 1: 1.218 (1.097, 1.338) No significant O ₃ effects in other age groups or for 1990
Stieb et al. (1996) Saint John, New Brunswick, Canada May-Sep 1984-1992	Daily emergency department visits for asthma in all ages, age <15 years and 15+ years. Time- series study.	1-h max O ₃ : 41.6 ppb Range 0-160 95th % 75	SO ₂ , NO ₂ , SO ₄ ²⁻ , TSP	0, 1, 2, 3	Poisson analysis with control of time based on 19-day moving average filter. Also controlled day of week and weather variables. Ozone was only pollutant consistently associated with emergency department visits for asthma, but effect appeared nonlinear, with health impacts evident only above 75 ppb O ₃ .	1-h max O ₃ >75 ppb: Lag 2: 1.33 (1.10, 1.56)

Table AX7-3	(cont'd).	Effects of O ₃	on Daily	Emergency	y Department	Visits

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
Europe						
Sunyer et al. (1997) Four European cities: Barcelona, Helsinki, London, and Paris 1986-1992	Emergency admissions for asthma in children (<15 year) and adults (15-64 years). Time-series study.	1-h max O_3 : Barcelona: Median 72 µg/m ³ Range 7-283 Helsinki: Median 27 µg/m ³ Range 1-78 London: Median 40 µg/m ³ Range 1-188 Paris: Median 36 µg/m ³ Range 1-230	BS, SO ₂ , NO ₂	0, 1, 2, 3	Poisson analysis using APHEA methodology. Significant O ₃ effects on emergency admissions for asthma observed among 15-64 year olds in Barcelona and London. Across all cities, there was no strong evidence for associations involving O ₃ .	1-h max O ₃ (per 50 μg/m ³): Weighted mean effect (best lag selected for each city): Age <15 years: 3-city pooled estimate (Barcelona data not available): 1.006 (0.976, 1.037) Age 15-64 years: 4-city pooled estimate: 1.015 (0.955, 1.078)
Atkinson et al. (1999a) London, England 1992-1994	Emergency department visits for respiratory complaints, asthma for all ages and age 0-14, 15-64, and 65+ years. Time-series study.	8-h max O ₃ : 17.5 ppb SD 11.5	NO ₂ , SO ₂ , CO, PM ₁₀	0, 1, 2, 3 0-1, 0-2, 0-3	Poisson GLM regression used for analysis. No warm season analysis attempted. PM ₁₀ positively associated.	8-h max O ₃ (per 25.7 ppb): All ages: Total respiratory: Lag 1: 1.017 (0.991, 1.043) Asthma: Lag 1: 1.027 (0.983, 1.072)
Hajat et al. (1999; 2002) London, England 1992-1994	Daily doctor consults for asthma, lower respiratory diseases, and upper respiratory diseases for age 0-14, 15-64, and ≥65 years. Time-series study.	8-h max O ₃ : All year: 17.5 ppb SD 11.5 Warm season: 22.7 ppb SD 12.2 Cold season: 12.1 ppb SD 7.6	BS, SO ₂ , NO ₂ , CO, PM ₁₀ , pollen	0-3	Used Poisson GAM with default convergence criteria. Conducted all year and seasonal analyses. Single- and two-pollutant models analyzed. Significant negative effects for O_3 . This may reflect residual confounding by seasonal factors or highly negative correlation with other pollutants	Upper respiratory diseases, age ≥ 65 years: All year: 8-h max O ₃ (per 25.7 ppb) Lag 2: -8.3% (-13.3, -3.0) Warm season: 8-h max O ₃ (per 28.5 ppb) Lag 2: -0.6% (-6.1, 5.1) Cool season: 8-h max O ₃ (per 19.8 ppb) Lag 2: -7.9% (-12.9, 2.7)

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
Europe (cont'd)						
Thompson et al. (2001) Belfast, N Ireland 1993-1995	Asthma emergency department admissions in children (age unspecified). Time-series study.	24-h avg O ₃ : Warm season: 18.7 ppb IQR 9 Cold season: 17.1 ppb IQR 12	PM ₁₀ , SO ₂ , NO ₂ , CO, benzene	0, 0-1, 0-2, 0-3	GLM with sinusoids. Pre-adjustment. Very low O_3 levels in both seasons. No O_3 effect in warm season. Significant inverse O_3 associations in full-year and cold-season models. After adjusting for benzene in model O_3 was no longer negatively associated with asthma visits.	24-h avg O_3 (per 10 ppb): All year: O_3 only model: Lag 0-1: 0.93 (0.87, 1.00) O_3 with benzene model: Lag 0-1: 1.08 (0.97, 1.21) Warm season: O_3 only model: Lag 0-1: 0.99 (0.89, 1.10) Cold season: O_3 only model: Lag 0-1: 0.89 (0.82, 0.97)
Bourcier et al. (2003) Paris, France Jan 1999-Dec 1999	Ophthalmological emergency examination; conjunctivitis and related ocular surface problems. Time- series study.	24-h avg O ₃ : 35.7 µg/m ³ Range 1-97	PM ₁₀ , SO ₂ , NO ₂	0, 1, 2, 3	Logistic Regression	Results indicate a strong relation to NO ₂ and NO. 24-h avg O ₃ (per 69 μ g/m ³): Conjunctivitis: Lag 0: 1.13 (0.90, 1.42)
Castellsague et al. (1995) Barcelona, Spain 1985-1989	Daily emergency department visits for asthma in persons aged ≥14 years. Time-series study.	1-h max O ₃ : Summer: 43 ppb IQR 22 Winter: 29 ppb IQR 16	BS, SO ₂ , NO ₂	Not specified.	Poisson regression with year and month dummy variables and extensive control for weather factors (minimum, maximum, mean temperature, relative humidity, dewpoint temperature; continuous and categorical parameterizations)	1-h max O ₃ (per 12.7 ppb): Summer: 0.991 (0.939, 1.045) Winter: 1.055 (0.998, 1.116)

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI
Europe (cont'd)						
Tobías et al. (1999) Barcelona, Spain 1986-1989	Daily asthma emergency department visits. Investigated sensitivity of results to four alternative methods for controlling asthma epidemics. Time- series study.	Levels not reported.	BS, NO ₂ , SO ₂	Not specified.	Poisson analysis using APHEA methodology. Asthma epidemics either not controlled, or controlled with one, six, or individual epidemic dummy variables.	O_3 results were sensitive to method used to control asthma epidemics, with regression coefficients ranging over 5-fold depending on the model. Only 1 of 8 models reported had a significant O_3 effect.
Tenías et al. (1998; 2002) Valencia, Spain 1994-1995	Daily emergency department visits for asthma and COPD in persons aged >14 years. Time- series study.	1-h max O ₃ : All year: 62.8 μg/m ³ Range 13.3-157.3 Warm season: 74.0 μg/m ³ Cool season: 51.4 μg/m ³	BS, NO ₂ , SO ₂ , CO	0, 1, 2, 3, 4, 5	Poisson analysis using APHEA methodology. Compared warm and cold season effects. GAM explored in sensitivity analysis. For asthma, both O_3 and NO_2 significant in single- and two-pollutant models, and O_3 effect larger in warm season. For COPD, both O_3 and CO significant in both single- and two-pollutant models and no difference in O_3 effects by season.	1-h max O ₃ (per 10 μg/m ³): Asthma: All year: Lag 1: 1.06 (1.01, 1.11) Warm season: Lag 1: 1.08 (1.02, 1.05) Cold season: Lag 1: 1.04 (0.97, 1.11) COPD: All year: Lag 5: 1.06 (1.02, 1.10)
Latin America						
Hernández-Garduño et al. (1997) Mexico City May 1992-Jan 1993	Visits to clinics for respiratory diseases in persons aged 1 month to 92 years. Time- series study.	Percent time exceeding 1-h max O ₃ of 120 ppb: 6.1-13.2% by location	SO ₂ , NO ₂ , CO	0, 1, 2, 3, 4, 5	GLM with pre-adjustment. Ozone at lags 0 and 5 days significantly associated with daily visits for all ages, age <14 years, and 15+ years. Neither O_3 nor NO_2 significant in two-pollutant model.	1-h max O ₃ (per maximum less average, value not given): Lag 0: 1.19 (SE 0.08), p < 0.05 Lag 5: 1.19 (SE 0.08), p < 0.05

August 2005

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI
Latin America (cont'd)						
Lin et al. (1999) São Paulo, Brazil May 1991-Apr 1993	Daily pediatric (age unspecified) respiratory emergency department visits. Time-series study.	1-h max O ₃ : 34 ppb SD 22	SO ₂ , CO, PM ₁₀ , NO ₂	0, 1, 0-1, 0-2, 0-3, 0-4, 0-5	Seasonal control using month dummy variables. Also controlled day of week, temperature. Both O_3 and PM_{10} associated with outcome alone and together.	1-h max O ₃ (per 5 ppb): O ₃ only model: Lag 0-4: 1.022 (1.016, 1.028 O ₃ with PM ₁₀ model: Lag 0-4: 1.015 (1.009, 1.021
Martins et al. (2002) São Paulo, Brazil May 1996-Sep 1998	Daily emergency department visits for chronic lower respiratory diseases in persons aged >64 years. Time-series study.	1-h max O ₃ : 34 ppb SD 21 IQR 21	CO, NO ₂ , SO ₂ , PM ₁₀	0-1, 0-2, 0-3, 0-4, 0-5, 0-6.	Analyzed using Poisson GAM with default convergence criteria. Only O ₃ and SO ₂ significant in single-pollutant models. Ozone effect remained significant when SO ₂ included in two-pollutant model.	1-h max O ₃ (per 18.26 ppb): Lag 0-3: 1.14 (1.04, 1.23)
Ilabaca et al. (1999) Santiago, Chile Feb 1995-Aug 1996	The association between pollutant levels and emergency visits for pneumonia and other respiratory illnesses among children. Time-series study.	O ₃ 1-h max: Warm season: $66.6 \ \mu g/m^3$ SD 25.2 Cold season: 27.6 $\ \mu g/m^3$ SD 20.2	PM ₁₀ , PM _{2.5} , SO ₂ , NO ₂	1, 2, 3, 1-7	Poisson regression analysis.	Warm season: 1-h max O ₃ (per 30 µg/m ³): Lag 2: 1.019 (1.003, 1.035) Cold season: 1-h max O ₃ (per 24 µg/m ³): Lag 2: 0.995 (0.978, 1.011)
Asia						
Hwang and Chan (2002) 50 cities in Taiwan 1998	Daily clinic visits for lower respiratory illnesses for all ages. Time-series study.	1-h max O ₃ : 54.2 ppb SD 10.2 Range 38.9-78.3	NO ₂ , SO ₂ , PM ₁₀ , CO	0, 1	Analysis using general linear regressions with moving-average residual processes and Bayesian hierarchical modeling. All pollutants except O ₃ were associated with daily clinic visits.	1-h max O ₃ (per 40 ppb): Bayesian hierarchical model: 1.003 (0.983, 1.023)

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
Asia (cont'd)						
Chew et al. (1999) Singapore Jan 1990-Dec 1994	Emergency department visits for asthma in persons aged 3-21 years. Time-series study.	1-h max O ₃ : 23 ppb SD 15	TSP, PM ₁₀ , SO ₂ , NO ₂	0, 1, 2	Simplistic but probably adequate control for time by including 1-day lagged outcome as covariate. In adjusted models that included covariates, O ₃ had no significant effect.	No quantitative results presented for O_3 .

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
United States						
Neidell (2004) California 1992-1998	Asthma hospital admissions within five age strata (0-1, 1-3, 3-6, 6-12, and 12-18 years). Time-series study.	O ₃ (index not specified): 38.9 ppb SD 17.8 Low SES: 40.1 ppb High SES: 38.3 ppb	CO, NO ₂ , PM ₁₀ ; multipollutant models	Not specified.	Statistical analysis using naturally occurring seasonal variations in pollutant concentrations within zip codes. Linear regression analyses. Consistent significant positive effects only observed for CO. Negative O_3 effect observed in all age groups. Number of smog alerts was negatively associated with asthma hospitalizations, indicating avoidance behavior on high O_3 days. Interaction term with indicator variable for low SES was positive in all age groups and statistically significant in age 3-6 years and 12-18 years, after adjusting for number of smog alerts.	Slope estimate (adjusting for number of smog alerts): O ₃ with CO, NO ₂ , and PM ₁₀ models: Age 3-6 years: -0.038 (SE 0.014) Age 6-12 years: -0.044 (SE 0.013) Age 12-18 years: -0.022 (SE 0.011) O ₃ × low SES interaction term: Age 3-6 years: 0.092 (SE 0.026) Age 6-12 years: 0.024 (SE 0.024) Age 12-18 years: 0.042 (SE 0.019)
Mann et al. (2002) South Coast air basin, CA 1988-1995	Ischemic heart disease admissions for age 40+ years. Time-series study.	8-h max O ₃ : 50.3 ppb SD 30.1 IQR 39.6	PM ₁₀ , CO, NO ₂	0, 1, 2, 3, 4, 5, 0-1, 0-2, 0-3, 0-4	Poisson GAM with cubic B-splines; co-adjustment. No significant O_3 effects observed overall or in warm season. CO and NO_2 significant in full-year analyses.	O_3 coefficients all negative, but no consistent, significant effect.

Table AX7-4. Effects of O₃ on Daily Hospital Admissions

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% C
United States (cont'd)						
Linn et al. (2000) Los Angeles, CA 1992-1995	Total respiratory and total cardiovascular admissions for age 30+ years. Time-series study.	24-h avg O ₃ : Winter: 14 ppb SD 7 Spring: 32 ppb SD 10 Summer: 36 ppb SD 8 Fall: 15 ppb SD 9	PM ₁₀ , CO, NO ₂	0	Poisson GLM; co-adjustment. Only significant O ₃ effects observed were inverse associations with total cardiac admission in full-year and winter season, suggesting residual confounding. No significant effects of O ₃ on respiratory admissions.	24-h avg O ₃ (per 10 ppb): All year: Respiratory: 1.008 (1.000, 1.016) Cardiovascular: 0.993 (0.987, 0.999)
Nauenberg and Basu (1999) Los Angeles, CA 1991-1994	Unscheduled asthma admissions for all ages. Time-series study.	24-h avg O ₃ : 19.88 ppb SD 11.13	PM ₁₀	0, 0-7	Poisson GLM with pre- adjustment. No significant effects of O ₃ . No warm season results presented.	24-h avg O ₃ (per 20 ppb): All insurance categories: Lag 0: 1.01 (0.93, 1.08)
Sheppard et al. (1999; reanalysis Sheppard, 2003) Seattle, WA 1987-1994	Asthma admissions for age <65 years. Time- series study.	8-h max O ₃ : 30.4 IQR 20	PM _{2.5} , PM ₁₀ , PM _{10-2.5} , SO ₂ , CO	1, 2, 3	Poisson GAM, reanalyzed with stringent convergence criteria; Poisson GLM. Results stratified by season. Ozone significant predictor of outcome. No two- pollutant model results reported for O_3 .	8-h max O ₃ (per 20 ppb): GLM with natural splines: Lag 2: 1.07 (1.01, 1.13)

Table AX7-4 (cont'd). Effects of O_3 on Daily Hospital Admissions

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
United States (cont'd)						
Schwartz (1996) Spokane, WA Apr-Oct, 1988-1990	Total respiratory admissions in persons aged 65+ years.	1-h max O ₃ : 79 μg/m ³ IQR 23 24-h avg O ₃ : 56 μg/m ³ IQR 17	PM ₁₀	2	Poisson GAM with default convergence criteria. Results available only for warm season. Ozone and PM ₁₀ both significant predictors of outcome. No two-pollutant models reported. Ozone effects robust to more extensive temperature specification.	1-h max O ₃ (per 50µg/m ³): Lag 2: 1.244 (1.002-1.544) 24-h avg O ₃ (per 50µg/m ³): Lag 2: 1.284 (0.926-1.778)
Koken et al. (2003) Denver, CO Jul-Aug 1993-1997	Cause-specific cardiovascular admissions for age >65 years. Cause categories include acute MI, coronary atherosclerosis, pulmonary heart disease, cardiac dysrhythmia, and congestive heart failure. Time-series study.	24-h avg O ₃ : 25.0 ppb SD 6.61 Range 5.4-40.2	PM ₁₀ , NO ₂ , SO ₂ , CO	0, 1, 2, 3, 4	Analysis using Poisson GLM. Results suggest that O_3 increases the risk of hospitalization for coronary atherosclerosis and pulmonary heart disease. No association was found for PM ₁₀ . Strong O ₃ effects observed in this seasonal study compared to other studies examining year-round data. Male gender and higher temperatures were found to be important risk factors for cardiovascular disease. No multipollutant analyses were reported.	24-h avg O ₃ (per 9.7 ppb): Acute MI: 0.824 (0.733, 0.925) Coronary atherosclerosis: 1.123 (1.040, 1.214) Pulmonary heart disease: 1.214 (1.040, 1.418)

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
United States (cont'd)						
Moolgavkar et al. (1997) Minneapolis/St. Paul, MN and Birmingham, AL 1986-1991	Total respiratory, pneumonia, and COPD admissions for age >64 years. Time-series study.	24-h avg O ₃ : Minnesota: 26.2 ppb IQR 15.3 Alabama: 25.1 ppb IQR 12.7	PM ₁₀ , SO ₂ , NO ₂	0, 1, 2, 3	Poisson GLM with co- adjustment. Both O_3 and PM_{10} significant in MN; not in AL. Ozone, but not PM_{10} , effects were robust to NO_2 and SO_2 .	24-h avg O ₃ (per 15 ppb): Minnesota: Total respiratory: Lag 1: 1.060 (1.033, 1.087) Pneumonia: Lag 1: 1.066 (1.034, 1.098) COPD: Lag 0: 1.045 (0.995, 1.067)
Schwartz et al. (1996) Cleveland, OH Apr-Oct 1988-1990	Total respiratory admissions for age 65+ years. Time-series study.	1-h max O ₃ : 56 ppb IQR 28	PM ₁₀ , SO ₂	1-2	Poisson GLM with sinusoids; co-adjustment. Results available only for warm season. Ozone and PM ₁₀ both significant predictors of outcome. No two-pollutant models reported.	1-h max O ₃ (per 100 μg/m ³): 1.09 (1.02, 1.16)
Gwynn and Thurston (2001) New York City 1988-1990	Respiratory admissions for all ages, stratified by race and insurance status. Time-series study.	24-h avg O ₃ : 22.1 ppb IQR 14.1 Maximum 80.7	H ⁺ , SO ₄ ²⁻ , PM ₁₀	1	GLM with high-pass filter. Ozone associated with respiratory admissions; effects larger for nonwhites and for those uninsured or on medicaid.	24-h avg O ₃ (per 58.6 ppb): White: 1.032 (0.987, 1.079) Non-white: 1.122 (1.074, 1.172) Uninsured: 1.138 (1.084, 1.194)
Gwynn et al. (2000) Buffalo, NY May 1988-Oct 1990	Total respiratory admissions for all ages. Time-series study.	24-h avg O ₃ : 26.2 ppb IQR 14.8	PM ₁₀ , SO ₄ ²⁻ , H+, COH, CO, NO ₂ , SO ₂	0, 1, 2, 3	Used Poisson with GAM default convergence criteria for control of temperature; moving average control for time. Ozone significant predictor of outcome. No two-pollutant models reported.	24-h avg O ₃ (per 14.8 ppb): Lag 1: 1.029 (1.013-1.045)

Table AX7-4 (cont'd). Effects of O_3 on Daily Hospital Admissions

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI
United States (cont'd)						
Weisel et al. (2002) New Jersey May-Aug 1995	Asthma admissions for all ages. Time-series study.	1-h max O ₃ ; 5-h avg O ₃ (10 a.m3 p.m.); and 8-h avg O ₃ (2 p.m10 p.m.) analyzed. Levels not reported.	Pollen, spores	0, 1, 2, 3	No control for time, but authors report no autocorrelation, which alleviates concerns about lack of control. Significant O_3 effects reported after adjusting for potential confounding by pollen.	Slope estimate (admissions/day/ppb): 5-h avg O ₃ and 8-h avg O ₃ : O ₃ only model: Lag 2: 0.099, p = 0.057 All three O ₃ indices: O ₃ with pollen model: Lag 2: 0.11, p = 0.033
Canada						
Burnett et al. (1997a) 16 Canadian cities 1981-1991	Total respiratory admissions for all ages, age <65 years and 65+ years. Time-series study.	1-h max O ₃ : All year: 31 ppb 95th % 60 Mean range across cities: 26-38 ppb 95th % 45-84 Jan-Mar: 26 ppb Apr-Jun: 40 ppb Jul-Sep: 26 ppb Oct-Dec: 21 ppb 9.6% of O ₃ data missing.	SO ₂ , NO ₂ , CO, coefficien t of haze	0, 1, 2, 0-1, 0-2, 1-2	Poisson GLM with co- adjustment. Results stratified by season. Significant O_3 effect observed in warm season only. No O_3 effects on control outcomes. Results consistent across cities.	1-h max O ₃ (per 30 ppb): All ages: Jan-Mar: Lag 1: 0.994 (0.964, 1.025) Apr-Jun: Lag 1: 1.042 (1.012, 1.073) Jul-Sep: Lag 1: 1.050 (1.026, 1.074) Oct-Dec: Lag 1: 1.028 (0.998, 1.059)

Table AX7-4 (cont'd). Effects of O₃ on Daily Hospital Admissions

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
Canada (cont'd)						
Burnett et al. (1995) 168 Hospitals in Ontario, Canada 1983-1988	Respiratory and cardiovascular admissions for all ages and within age strata. Study focused mainly on testing for sulfate effects. Time- series study.	1-h max O ₃ : 36.3 ppb	SO4 ²⁻	1	GLM with pre-adjustment of outcome variables. Results stratified by season. Authors report that O_3 associated with respiratory admission in warm season only.	No quantitative results presented for O_3 .
Burnett et al. (1997b) Toronto, Ontario, Canada Summers 1992-1994	Unscheduled respiratory and cardiovascular admissions for all ages. Time-series study.	1-h max O ₃ : 41.2 ppb IQR 22	PM _{2.5} , PM ₁₀ , H ⁺ , SO ₄ ²⁻ , SO ₂ , NO ₂ , CO, coefficient of haze	0, 1, 2, 3, 4, 2 to 5 multiday periods lagged 1 to 4 days	Poisson GLM with co- adjustment. Results stratified by season. Ozone and coefficient of haze strongest predictors of outcomes. Ozone effects on both outcomes were robust to PM. PM effects were not robust to O_3 .	12-h avg O ₃ (8 a.m8 p.m.) (per 11.5 ppb): Models adjusted for temperature and dewpoint: Respiratory : Lag 1-3: 1.064 (1.039, 1.090) Cardiovascular: Lag 2-4: 1.074 (1.035, 1.115)
Burnett et al. (1999) Toronto, Ontario, Canada 1980-1994	Cause-specific respiratory and cardiovascular admissions for all ages. Cause categories included asthma, COPD, respiratory infections, heart failure, ischemic heart disease, and cerebrovascular disease. Time-series study.	24-h avg O ₃ : 19.5 ppb IQR 19	Estimated PM _{2.5} , PM ₁₀ , PM _{10-2.5} , CO, NO ₂ , SO ₂	0, 1, 2, 0-1, 0-2, 1-2, 1-3, 2-3, 2-4	Poisson GAM with LOESS pre-filter applied to pollution and hospitalization data. Ozone effects seen for respiratory outcomes only. Ozone effect robust to PM; not vice versa. No seasonal stratification.	24-h avg O ₃ (per 19.5 ppb): Asthma: Lag 1-3: 1.063 (1.036, 1.091) COPD: Lag 2-4: 1.073 (1.038, 1.107) Respiratory infection: Lag 1-2: 1.044 (1.024, 1.065)

Table AX7-4 (cont'd). Effects of O₃ on Daily Hospital Admissions

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
Canada (cont'd)						
Burnett et al. (2001) Toronto, Ontario, Canada 1980-1994	Acute respiratory disease admissions for age <2 years. Time- series study.	1-h max O ₃ : 45.2 ppb IQR 25	Estimated PM _{2.5} , PM ₁₀ , PM _{10-2.5} , CO, NO ₂ , SO ₂	0, 1, 2, 3, 4, 5, 0-4	Poisson GAM with LOESS pre-filter applied to pollution and hospitalization data. Sensitivity analyses using co- adjustment. Results stratified by season. Ozone effects significant only in summer. Ozone effect robust to PM; not vice versa.	1-h max O ₃ (per 45.2 ppb): Summer: O ₃ only model: Lag 0-4: 1.348 (1.193, 1.524) O ₃ with PM _{2.5} model: Lag 0-4: 1.330 (1.131, 1.565)
Lin et al. (2003) Toronto, Ontario, Canada 1981-1993	Asthma admission for age 6-12 years. Case-crossover design.	1-h max O ₃ : 30 ppb IQR 20	CO, SO ₂ , NO ₂	0, 0-1, 0-2, 0-3, 0-4, 0-5, 0-6	Conditional logistic regression model analysis. No O_3 effects observed. Positive relations to CO, SO ₂ and NO ₂ observed.	1-h max O ₃ (per 20 ppb): Odds ratios: Males: Lag 0: 0.96 (0.88, 1.04) Females: Lag 0: 0.86 (0.78, 1.04)
Fung et al. (2003) Windsor, Ontario, Canada Apr 1995-Dec 2000	Cardiovascular hospital admissions for age <65 and ≥65 years. Time-series study.	1-h max O ₃ : 39.3 ppb SD 21.4 Range 1-129	NO ₂ , SO ₂ , CO, PM ₁₀ , coefficient of haze, total reduced sulfur compounds	0, 0-1, 0-2	Conducted both time-series analysis using Poisson GLM with natural splines. Strongest effect observed for SO ₂ in individuals aged \geq 65 years. No associations were found any other pollutant, including O ₃ .	1-h max O ₃ (per 29 ppb): Age <65 years: Lag 0: 0.999 (0.913, 1.093) Lag 0-2: 1.042 (0.923, 1.177) Age ≥65 years: Lag 0: 0.974 (0.924, 1.027) Lag 0-2: 1.014 (0.941, 1.092)

Table AX7-4 (cont'd). Effects of O₃ on Daily Hospital Admissions

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
Canada (cont'd)						
Luginaah et al. (2005) Windsor, Ontario, Canada Apr 1995-Dec 2000	Respiratory hospital admissions by gender for all ages and age 0-14, 15-64, and 65+ years. Time-series study.	1-h max O ₃ : 39.3 ppb SD 21.4 Range 1-129	NO ₂ , SO ₂ , CO, PM ₁₀ , coefficient of haze, total reduced sulfur compounds	0, 0-1, 0-2	Conducted both time-series analysis using Poisson GLM with natural splines and bidirectional case-crossover analysis using conditional logistic regression models. For case-crossover analysis, control periods selected two weeks before and after the case period. Results were consistent for the time-series and case-crossover analyses. Significant associations were found for all pollutants except O ₃ and total reduced sulfur compounds.	1-h max O ₃ (per 29 ppb): All ages: Time-series analysis: Males: Lag 0: 1.04 (0.92, 1.17) Females: Lag 0: 0.95 (0.82, 1.10) Case-crossover analysis: Males: Lag 0: 1.06 (0.93, 1.22) Females: Lag 0: 1.01 (0.77, 1.34)
Lin et al. (2004) Vancouver, British Columbia, Canada 1987-1998	Asthma admissions for age 6-12 years. Time- series study.	1-h max O ₃ : 28.02 ppb SD 11.54 IQR 14.81	CO, SO ₂ , NO ₂	0, 0-1, 0-2, 0-3, 0-4, 0-5, 0-6	Poisson GAM with LOESS (using default convergence criteria). Repeated analysis with natural cubic splines using 1,000 iterations with convergence criteria 10^{-15} . Results were similar for both analyses. NO ₂ exposure associated for males in low SES but not high. No association for CO and O ₃ in either SES group.	1-h max O ₃ (per 14.8 ppb): Males: Low SES: Lag 1: 0.85 (0.76, 0.94) High SES: Lag 1: 0.93 (0.83, 1.04) Females: Low SES: Lag 1: 1.11 (0.97, 1.28) High SES: Lag 1: 0.91 (0.78, 1.05)

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
Canada (cont'd)						
Yang et al. (2003) Vancouver, British Columbia, Canada Jan 1986-Dec 1998	Daily respiratory admissions in children aged <3 years and adults aged 65+ years. Bidirectional case-crossover. Conditional logistic regression.	24-h avg O ₃ : 13.41 ppb SD 66.61 IQR 9.74	CO, NO ₂ , SO ₂ , coefficient of haze	1, 2, 3, 4, 5	Used bidirectional case- crossover analysis, comparing air pollution on day of admission to levels one week prior and after. SES evaluated. O_3 was positively associated with respiratory hospital admissions among young children and the elderly.	24-h avg O ₃ (per 9.74 ppb): Odds ratios: Age <3 years: Lag 4: 1.22 (1.15, 1.30) Age 65+ years: Lag 4: 1.13 (1.09, 1.18)
Europe						
Anderson et al. (1997) Five European cities: London, Paris, Amsterdam, Rotterdam, Barcelona Study periods vary by city, ranging from 1977-1992	Emergency COPD admissions for all ages. Each city analyzed previously by individual teams. Results combined here via meta-analysis. Time-series study.	1-h max O_3 : Median range across five cities: All year: 36-77 µg/m ³ Warm season: 48-91 µg/m ³ Cool season: 20-64 µg/m ³	TSP, SO ₂ , NO ₂ , BS	0, 1, 2, 3, 4, 5	Poisson GLM using APHEA methodology. Results stratified by season. Ozone most consistent and significant predictor of admissions. Warm season effect larger.	 1-h max O₃ (per 50 μg/m³): Weighted mean effect across five cities (best lag selected for each city): All year: 1.03 (1.01, 1.05) Warm season: 1.03 (1.01, 1.05) Cool season: 1.01 (0.98, 1.05)
Atkinson et al. (2001) Eight European cities: Barcelona, Birmingham, London Milan, Netherlands, Paris, Rome, and Stockholm Study periods vary by city, ranging from early to middle 1990s	Total respiratory, asthma, and COPD admissions for all ages and age 0-14, 15-64 and 65+ years. Time-series study.	8-h max O_3 : Mean range: 26.0 μ g/m ³ (Rome) to 66.6 μ g/m ³ (Stockholm)	PM ₁₀ , NO ₂ , SO ₂ , CO	N/A	Study focused on PM_{10} effects. Copollutants included only as effect modifiers. No direct O_3 results shown. Ozone appeared to modify the PM_{10} effect on respiratory admissions for persons over age 64 years of age.	No results presented for O_3 .

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
Europe (cont'd)						
Le Tertre et al. (2002b) Eight European cities: Barcelona, Birmingham, London Milan, Netherlands, Paris, Rome, and Stockholm Study periods vary by city, ranging from early to middle 1990s	Total cardiovascular, ischemic heart disease, and stroke admissions for all ages and age 0-64 and 65+ years. Time-series study.	8-h max O ₃ : Mean range: 26.0 μg/m ³ (Rome) to 66.6 μg/m ³ (Stockholm)	PM ₁₀ , BS, NO ₂ , SO ₂ , CO	N/A	Main focus on PM_{10} and BS. Gaseous copollutants evaluated as effect modifiers. Greater PM_{10} effects seen in cities with lower annual O_3 levels. No risk estimates presented for O_3 .	No results presented for O ₃ .
Wong et al. (2002) London, England 1992-1994 Hong Kong 1995-1997	Total respiratory (>64 years), asthma (15-64 years), total cardiovascular (all ages), and ischemic heart disease (all ages) admissions. Time- series study.	8-h max O_3 : London: All year: 34.9 µg/m ³ SD 23.1 Warm season: 45.3 µg/m ³ Cool season: 24.0 µg/m ³ Hong Kong: 33.5 µg/m ³ SD 23.0 Warm season: 32.0 µg/m ³ Cool season: 35.1 µg/m ³	PM ₁₀ , NO ₂ , SO ₂	0, 1, 2, 3 0-1	Poisson GAM with default convergence criteria. Most consistent associations found with total respiratory admissions. Ozone associated with total respiratory admissions in all year and warm season analyses in both cities. Associations in cool season analyses observed only in Hong Kong. All year O ₃ effects robust to copollutants	8-h max O ₃ (per 10 μg/m ³): Total respiratory: London: All year: Lag 0-1: 1.008 (1.002, 1.014) Warm season: Lag 0-1: 1.010 (1.003, 1.017) Cool season: Lag 0-1: 1.002 (0.993, 1.012) Hong Kong: All year: Lag 0-1: 1.008 (1.003,1.013) Warm season: Lag 0-1: 1.008 (1.002, 1.014) Cool season: Lag 0-1: 1.010 (1.002, 1.017)

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI
Europe (cont'd)						
Anderson et al. (1998) London, England 1987-1992	Admissions for asthma in all ages and age 0-14, 15-64, and 65+ years. Time-series study.	8-h max O ₃ : 15.5 ppb IQR 13 1-h max O ₃ : 20.6 ppb IQR 16	SO ₂ , NO ₂ , BS, pollens	0, 1, 2, 0-1, 0-2	Poisson GLM using APHEA method; co-adjustment. Ozone significantly associated with asthma admissions in the warm season for all ages and for age 15-64 years. Warm season O_3 effect robust in 2-pollutant models. Inverse associations observed in the cool season for some age groups.	8-h max O ₃ (per 10 ppb): All ages: Warm season: Lag 1: 1.022 (1.006, 1.038) Cool season: Lag 1: 0.968 (0.946, 0.992)
Atkinson et al. (1999b) London, England 1992-1994	Total and cause- specific respiratory and cardiovascular admissions in all ages and in all ages and age 0-14, 15-64, and 65+ years. Time-series study.	8-h max O ₃ : 17.5 ppb SD 11.5	NO ₂ , SO ₂ , CO, PM ₁₀ , BS	0, 1, 2, 3, 0-1, 0-2, 0-3	Poisson GLM using APHEA methodology. No significant associations seen between O ₃ and respiratory admissions. Ozone was positively associated with total cardiovascular admissions in age 65+ years. Seasonal analyses were not conducted.	8-h max O ₃ (per 25.7 ppb): All ages: Total respiratory: Lag 1: 1.012 (0.990, 1.035) Total cardiovascular: Lag 2: 1.023 (1.002, 1.046)
Ponce de Leon et al. (1996) London, England Apr 1987-Feb 1992	Total respiratory admissions in several age strata: all ages, 0-14, 15-64, 65+ years. Time-series study.	8-h avg O ₃ (9 a.m5 p.m.): 15.6 ppb SD 12 IQR 14	BS, SO ₂ , NO ₂	0, 1, 2, 0-1, 0-2, 0-3,	Poisson GLM using APHEA co-adjustment methodology. Ozone significant predictor overall. Effect larger and more significant in warm season. Effect robust to copollutants. Effects varied by age.	All ages: All year: 8-h avg O ₃ (per 26 ppb): Lag 1: 1.029 (1.011, 1.048) Warm season: 8-h avg O ₃ (per 29 ppb): Lag 1: 1.048 (1.025, 1.073) Cool season: 8-h avg O ₃ (per 20 ppb): Lag 1: 0.996 (0.972, 1.021)

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
Europe (cont'd)						
Poloniecki et al. (1997) London, England Apr 1987-Mar 1994	Cause-specific and total circulatory admissions for all ages. Time- series study.	8-h avg O ₃ (9 a.m5 p.m.): Median 13 ppb Range 0-94	BS, NO ₂ , SO ₂ , CO	0	Poisson regression using APHEA methodology. No association was found between O_3 and circulatory diseases in all year analyses. Results from acute MI suggest potential seasonal effect.	8-h avg O ₃ (per 25 ppb): Total circulatory: All year: 0.9726 (0.9436, 1.0046) Acute MI: All year: 0.9825 (0.9534, 1.0142) Warm season: 1.0126 (0.9560, 1.0228) Cool season: 0.9680 (0.9208, 1.0202)
Prescott et al. (1998) Edinburgh, Scotland 1992-1995	Total respiratory and cardiovascular admissions for age <65 years and 65+ years. Time-series study.	24-h avg O ₃ : 14.5 ppb Range 1-37	BS, PM ₁₀ , NO ₂ , SO ₂ , CO	0, 1, 1-3	Poisson GLM, month dummy variables; co-adjustment. No O_3 or other pollution effects on respiratory admissions. Significant inverse association of O_3 with cardiac admissions in older age group. Very low O_3 concentrations.	24-h avg O ₃ (per 10 ppb): Respiratory: Age <65 years: Lag 1-3: 0.971 (0.885, 1.068) Age 65+ years: Lag 1-3: 1.009 (0.916, 1.111) Cardiovascular: Age <65 years: Lag 1-3: 1.041 (0.946, 1.144) Age 65+ years: Lag 1-3: 0.941 (0.886, 0.999)

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
Europe (cont'd)						
Schouten et al. (1996) Amsterdam and Rotterdam, the Netherlands 1977-1989	Unscheduled total respiratory, asthma, and COPD admissions in all ages. Time-series study.	8-h max O_3 : Amsterdam: Summer: 86 µg/m ³ 5th % to 95th % 28-152 Winter: 53 µg/m ³ 5th % to 95th % 3-104 Rotterdam: Summer: 81 µg/m ³ 5th % to 95th % 25-199 Winter: 45 µg/m ³ 5th % to 95th % 3-96	SO ₂ , NO ₂ , BS	0, 1, 2, 0-1, 0-2, 0-3, 0-4, 0-5	Poisson GLM using APHEA methodology; co-adjustment. No consistent O ₃ effects. Concern regarding multiple comparisons.	1-h max O ₃ (per 100 μg/m ³): Amsterdam and Rotterdam: Total respiratory, all ages: Summer: Lag 2: 1.051 (1.029, 1.073) Winter: Lag 2: 0.976 (0.951, 1.002)
Hagen et al. (2000) Drammen, Norway Nov 1994-Dec 1997	Total respiratory admissions for all ages. Time-series study.	24-h avg O ₃ : 44.48 μg/m ³ SD 18.40 IQR 26.29	PM ₁₀ , NO ₂ , SO ₂ , benzene, toluene, formaldehyde	0	Poisson GAM with partial splines; co-adjustment. Single and multipollutant models evaluated. No O ₃ effects. Ozone levels low and cycles may not have been adequately controlled.	24-h avg O ₃ (per 26.29 μg/m ³): Lag 0: 0.964 (0.899-1.033)
Oftedal et al. (2003) Drammen, Norway 1995-2000	Admissions for respiratory disease. Time-series study.	24-h avg O ₃ : 44.6 μg/m ³ SD 19.2 IQR 26.9	Benzene, formaldehyde, toluene, PM_{10} , NO_2 , SO_2	0	Benzene had the strongest association.	24-h avg O ₃ (per 26.9 μg/m ³): 0.996 (0.942, 1.053)

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
Europe (cont'd)						
Pönkä and Virtanen (1996) Helsinki, Finland 1987-1989	Asthma admissions for age 0-14 years and 15-64 years. Time- series study.	O ₃ (index not specified): 22 μg/m ³	TSP, SO ₂ , NO ₂	0, 1, 2, 3, 4, 5	Poisson GLM using APHEA methodology. Reported significant O_3 effect for age 0-14 years, but also for control (digestive disease) conditions. Ozone levels very low.	Not quantitatively useful.
Ballester et al. (2001) Valencia, Spain	Emergency total cardiovascular	8-h max O ₃ : 23 ppb	SO ₂ , NO ₂ , CO, BS	0, 1, 2, 3, 4, 5	Poisson GLM using APHEA methodology. Results	8-h max O ₃ (per 5 ppb):
1994-1996	admissions for all ages. Time-series study.	Range 5-64	0, 55		stratified by season. No O_3 effects.	Lag 2: 0.99 (0.97-1.01)
Latin America						
Gouveia and Fletcher (2000a) São Paulo, Brazil Nov 1992-Sep 1994	Total respiratory, pneumonia, and asthma admissions for age <5 years. Time-series study.	1-h max O ₃ : 63.4 µg/m ³ SD 38.1 IQR 50.3	PM ₁₀ , NO ₂ , SO ₂ , CO	0, 1, 2	Poisson GLM with co- adjustment using sine/cosine waves. Significant O_3 effects on total respiratory and pneumonia admissions. Ozone effects fairly robust to NO ₂ and PM ₁₀ .	1-h max O ₃ (per 119.6 μg/m ³): Total respiratory: Lag 0: 1.054 (1.003, 1.107) Pneumonia: Lag 0: 1.076 (1.014, 1.142) Asthma: Lag 2: 1.011 (0.899, 1.136)
Australia						
Morgan et al. (1998a) Sydney, Australia 1990-1994	Admissions for asthma (age 1-14 years, 15-64 years), COPD (age 65+ years), and heart disease (all ages, 0-64 years, 65+ years). Time-series study.	1-h max O ₃ : 25 ppb SD 13 IQR 11	B _{scatter} , NO ₂	0, 1, 2, 0-1, 0-2	Poisson with GEE. No significant effects of O ₃ in single or multipollutant models.	1-h max O ₃ (per 28 ppb): Asthma, age 1-14 years: Lag 1: 0.975 (0.932, 1.019) Asthma, age 15-64 years: Lag 0: 1.025 (0.975, 1.078) COPD, age 65+ years: Lag 0: 1.010 (0.960, 1.062) Heart disease, all ages: Lag 0: 1.012 (0.990, 1.035)

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
Australia (cont'd)						
Petroeschevsky et al. (2001) Brisbane, Australia 1987-1994	Unscheduled asthma, total respiratory and total cardiovascular admissions in several age strata: all ages, 0-4, 5-14, 15-64, 65+ years. Time-series study.	1-h max O ₃ : 25.3 ppb Range 2.5-107.3 8-h avg O ₃ (10 a.m6 p.m.): 19.0 ppb Range 1.7-64.7	B _{scatter} , SO ₂ , NO ₂	0, 1, 2, 3, 0-2, 0-4	Poisson GLM using APHEA co-adjustment methodology. Results stratified by season. Ozone significantly related to asthma and total respiratory admissions, not for cardiac admissions. Effects varied by age group. Ozone effects robust to copollutants.	 8-h avg O₃ (per 10 ppb): All ages: Total respiratory: Lag 2: 1.023 (1.003, 1.043) Asthma: Lag 0-4: 1.090 (1.042, 1.141) Total cardiovascular: Lag 3: 0.987 (0.971, 1.002)
Asia						
Lee et al. (2002) Seoul, Korea Dec 1997-Dec 1999	Asthma admissions for age <15 years. Time-series study.	1-h max O ₃ : 36.0 ppb SD 18.6 IQR 21.7	SO ₂ , NO ₂ , CO, PM ₁₀	0, 1, 2, 3, 4, 0-1, 1-2, 2-3, 3-4	Poisson GAM using default convergence criteria. Ozone associated with asthma admissions in single- and two-pollutant models.	1-h max O ₃ (per 21.7 ppb): O ₃ only model: Lag 1: 1.12 (1.07-1.16) O ₃ with PM ₁₀ model: Lag 1: 1.10 (1.05, 1.15)
Chang et al. (2005) Taipei, Taiwan 1997-2001	Total cardiovascular hospital admissions for all ages. Cool days (<20 °C) and warm days (≥20 °C) were evaluated. Case- crossover approach.	24-h avg O ₃ : 19.74 ppb IQR 10.87 Range 2.30-53.93	PM ₁₀ , SO ₂ , NO ₂ , CO	0-2	Conditional logistic regression. All cardiovascular admissions chosen because similar risks have been observed for major subcategories and combining counts provide greater power. Subtropical climate in Taipei. In the analysis of warm days only, all pollutants except SO ₂ were associated with cardiovascular admissions. Ozone effect slightly diminished in two-pollutant model adjusting for PM ₁₀ .	24-h avg O ₃ (per 10.87 ppb): Odds ratios: O ₃ only models: Warm: 1.189 (1.154, 1.225) Cool: 1.073 (1.022, 1.127) O ₃ with PM ₁₀ models: Warm: 1.066 (1.038, 1.094) Cool: 0.980 (0.924, 1.039)

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI
Asia (cont'd)						
Yang et al. (2004a) Kaohsiung, Taiwan 1997-2000	Total cardiovascular hospital admissions for all ages. Cool days (<25 °C) and warm days (≥25 °C) were evaluated. Case- crossover approach.	24-h avg O ₃ : 25.02 ppb IQR 21.20 Range 1.25-83.00	PM ₁₀ , SO ₂ , NO ₂ , CO	0-2	Conditional logistic regression. All pollutants except SO_2 associated with cardiovascular admissions on warm days. On cool days, O_3 effect was diminished. Ozone effect was robust to adjustment to copollutants. Results from tropical city may restrict generalization to other locations.	24-h avg O ₃ (per 21.20 ppb): Odds ratios: O ₃ only models: Warm: 1.351 (1.279, 1.427) Cool: 1.057 (0.962, 1.162) O ₃ with PM ₁₀ models: Warm: 1.308 (1.219, 1.404) Cool: 0.820 (0.732, 0.912)
Tsai et al. (2003a) Kaohsiung, Taiwan 1997-2000	Stroke admissions (subarachnoid hemorrhagic stroke, primary intracerebral hemorrhage, ischemic stroke, and others) for all ages. Cool days (<20 °C) and warm days (≥20 °C) were evaluated. Case- crossover approach.	24-h avg O ₃ : 25.02 ppb IQR 21.20 Range 1.25-83.00	PM ₁₀ , SO ₂ , NO ₂ , CO	0-2	Conditional logistic regression. Warm day associations were positive while cool days were generally negative with some positive associations. Ozone effect was robust to adjustment for SO ₂ and CO, but not PM ₁₀ .	24-h avg O ₃ (per 21.20 ppb): Odds ratios: O ₃ only models: Primary intracerebral hemorrhage: Warm: 1.20 (1.06, 1.35) Cool: 0.57 (0.24, 1.34) Ischemic stroke: Warm: 1.15 (1.07, 1.23) Cool: 0.88 (0.50, 1.53) O ₃ with PM ₁₀ models: Primary intracerebral hemorrhage: Warm: 0.98 (0.85, 1.14) Ischemic stroke: Warm: 0.96 (0.88, 1.05)

Reference, Study Location and Period	Outcomes and Design	Mean O ₃ Levels	Copollutants Considered	Lag Structure Examined	Method, Findings, Interpretation	Effects (Relative Risk and 95% CI)
Asia (cont'd)						
Wong et al. (1999a) Hong Kong 1994-1995	Total and cause- specific respiratory and cardiovascular admissions in several age strata: all ages, 0-4, 5-64, 65+ years. Time-series study.	8-h max O ₃ : 20.2 µg/m ³ Median 24.15 IQR 31.63	NO ₂ , SO ₂ , PM ₁₀	0, 1, 2, 3, 4, 5, 0-1, 0-2, 0-3, 0-4, 0-5	Poisson GLM using APHEA methodology. Ozone significantly associated with total and cause specific respiratory and cardiac outcomes. Ozone results robust to adjustment for high PM ₁₀ , but not high NO ₂ . Effects of O ₃ persisted in cold season.	8-h max O ₃ (per 10 μg/m ³): All ages: Total respiratory: Lag 0-3: 1.022 (1.015, 1.029) Total cardiovascular: Lag 0-5: 1.013 (1.005, 1.021)
Wong et al. (1999b) Hong Kong Jan 1995-Jun 1997	Cause-specific cardiovascular admissions for ≥65 years age. Time-series study.	8-h avg O ₃ : Warm season: 31.2 μg/m ³ Cool season: 34.8 μg/m ³	NO ₂ , SO ₂ , respirable PM	0, 1, 2, 3, 4, 5, 0-1, 0-2, 0-3, 0-4, 0-5	GLM with sinusoids; co-adjustment. Ozone significantly associated with total and cause-specific cardiovascular admissions in cool season only, when O ₃ levels are higher in Hong Kong. Details missing in brief report.	O ₃ (per 50 μg/m ³): O ₃ with NO ₂ models: Total cardiovascular: All year: Lag 0-1: 1.03 (1.00, 1.07) Warm season: Lag 0-1: 1.01 (0.95, 1.07) Cool season: Lag 0-1: 1.08 (1.02, 1.14)

Table AX7-4 (cont'd). Effects of O₃ on Daily Hospital Admissions

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Meta-analysis						
Bell et al. (2005) Various U.S. and non-U.S. cities Varying study periods	All cause; cardiovascular; respiratory; all ages; age 64+ or 65+ years.	Not relevant.	Various PM indices	0, 1, 2, or 0-1	Meta-analysis. Bayesian hierarchical model; included up to 144 estimates from 39 studies. Risk estimates obtained for yearly data versus warm season; cause- specific; PM adjustment; U.S. versus non-U.S.;various lags; and GAM versus non- GAM. Comparisons with NMMAPS estimates (Bell et al., 2004).	 24-h avg O₃ (per 10 ppb): Posterior means: All cause: All year: 0.87% (0.55, 1.18 Warm: 1.50% (0.72, 2.29) Cardiovascular: All year: 1.11% (0.68, 1.52 Warm: 2.45% (0.88, 4.10) Respiratory: All year: 0.47% (-0.51, 1.47) O₃ with PM model: All cause: All year: 0.97% (-0.03, 1.98) Meta-analysis results were consistently larger than tho from NMMAPS. In addition heterogeneity of city-specifiestimates in the meta-analysis were larger compared to NMMAPS. These findings indicate possible publication bias.

Table AX7-5. Effects of Acute O₃ Exposure on Mortality

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Meta-analysis (cont'd)						
Ito et al. (2005) Various U.S. and non-U.S. cities Varying study periods	All cause	Not relevant.	Various PM indices	Reported lags up to 3 day lags	Meta-analysis. DerSimonian-Laird approach; included up to 43 estimates from 38 studies. Risk estimates obtained for yearly data versus warm season; PM adjustment; correction for asymmetry in funnel plot; and GAM versus non-GAM.	24-h avg O ₃ (per 20 ppb): O ₃ only model: All year: 1.6% (1.1, 2.0) Warm: 3.5% (2.1, 4.9) O ₃ with PM model: All year: 1.5% (0.8, 2.2) Non-GAM-affected: All year: 1.4% (0.8, 2.0) GAM-affected: All year: 1.9% (1.0, 2.8)
					Seven U.S. cities time- series study with various sensitivity analyses.	Correction for funnel plot asymmetry: All year: 1.4% (0.9, 1.9) Seven U.S. cities analysis found that including PM in the model did not substantially reduce the O risk estimates. However, differences in the weather adjustment model could result in a two-fold differe in risk estimates.

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Meta-analysis (cont'd)						
Levy et al. (2005) Various U.S., Canadian and European cities Varying study periods	All cause	Not relevant.	PM ₁₀ , PM _{2.5} , SO ₂ , NO ₂ , CO	0, 1-2	Meta-analysis. Empirical Bayes metaregression; included up to 48 estimates from 28 studies. Risk estimates obtained by season, for copollutant adjustment, North America versus Europe; various lags; temperature adjustment; GAM versus non-GAM; annual mean O ₃ ; and total deaths. Examined relationship between O ₃ personal exposure and ambient concentrations using cooling degree days and residential central air-	1-h max O_3 (per 10 µg/m ³): O_3 only model: All year: 0.21% (0.16, 0.26) Warm: 0.43% (0.29, 0.56) Cool: -0.02 (-0.17, 0.14) Non-GAM-affected: All year: 0.23% (0.15, 0.31) GAM-affected: All year: 0.20% (0.13, 0.27) Nonlinear specification of temperature: All year: 0.20% (0.13, 0.27) Linear specification of temperature: All year: 0.06 (-0.03, 0.16) In the metaregression, air-conditioning prevalence and lag time were the strongest predictors of between-study variability

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
United States						
Bell et al. (2004) 95 U.S. communities 1987-2000	All cause; cardiopulmonary; all ages; age <65 years; age 65-74 years; age ≥75 years	24-h avg O ₃ : 26 ppb across the 95 cities. No individual city data provided.	PM ₁₀ , PM _{2.5} ; two-pollutant models	0, 1, 2, 3, 0-6	Poisson GLM; Bayesian hierarchical model. Time-series study.	24-h avg O ₃ (per 10 ppb): Posterior means: All cause, all ages: All available data: Lag 0: 0.25% (0.12, 0.39) Lag 0-6: 0.52% (0.27, 0.77) Warm season: Lag 0: 0.22% (0.08, 0.38) Lag 0-6: 0.39% (0.13, 0.65) All cause, all available data Age <65 years: Lag 0-6: 0.50% (0.10, 0.92) Age 65-74 years: Lag 0-6: 0.70% (0.28, 1.12) Age ≥75 year: Lag 0-6: 0.52% (0.18, 0.87) Cardiopulmonary, all ages:
						All available data: Lag 0-6: 0.64% (0.31, 0.98

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
United States (cont'd)						
Samet et al. (2000; reanalysis Dominici et al., 2003) 90 U.S. cities (80 U.S. cities with O ₃ data) 1987-1994	All cause; cardiopulmonary	24-h avg O ₃ : Mean range: Approximately 12 ppb (Des Moines, IA) to 36 ppb (San Bernardino, CA)	PM ₁₀ , NO ₂ , SO ₂ , CO; two-pollutant models	0, 1, 2	Poisson GAM, reanalyzed with stringent convergence criteria; Poisson GLM. Time-series study.	24-h avg O ₃ (per 10 ppb): Posterior means: All cause: All available data: Lag 1: 0.19% (0.03, 0.35) Summer: Lag 1: 0.51% (0.23, 0.78) Winter: Lag 1: -0.53% (-1.10, 0.0
Huang et al. (2005) 19 large U.S. cities Jun-Sept 1987-1994	Cardiopulmonary	24-h avg O ₃ : Mean range: Approximately 18 ppb (Oakland, CA) to 56 ppb (San Bernadino, CA) Daily range across 19 U.S. cities: 0-100 ppb	PM ₁₀ , PM _{2.5} ; two-pollutant models	0, 1, 2, 0-6	Poisson GLM; Bayesian hierarchical model. Time-series study.	24-h avg O_3 (per 10 ppb): Posterior means: Single-day lag models: O_3 only model: Lag 0: 0.73% (0.27, 1.19) O_3 with PM ₁₀ model: Lag 0: 0.74% (-0.33, 1.72) Cumulative lag models: O_3 only model: Lag 0-6: 1.25% (0.47, 2.03) Model adjusted for heat waves: Lag 0-6: 1.11% (0.38, 1.86)

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
United States (cont'd)						
Schwartz (2005) 14 U.S. cities 1986-1993	All cause	1-h max O ₃ : Median range: 35.1 ppb (Chicago, IL) to 60.0 ppb (Provo, UT)	PM ₁₀ ; two- pollutant models	0	Case-crossover analysis; conditional logical regression controlled for temperature using nonlinear regression splines and matching	1-h max O_3 (10 ppb): Analysis with temperature regression splines: All year: 0.19% (0.03, 0.35) Warm season: 0.26% (0.07, 0.44) Cold season: 0% (-0.27, 0.27) Analysis with temperature matched controls: All year: 0.23% (0.01, 0.44) Warm season: 0.37% (0.11, 0.62) Cold season: -0.13% (-0.53, 0.28)
Kinney and Özkaynak (1991) Los Angeles County, CA 1970-1979	All cause; respiratory; circulatory	1-h max total oxidants (O _x): 75 ppb SD 45	KM (particle optical reflectance), NO ₂ , SO ₂ , CO; multipollutant models	1	OLS (ordinary least squares) on high-pass filtered variables. Time-series study.	All cause: Multipollutant model: Slope estimate: 0.030 deaths/ppb (SE 0.00 p = 0.0005 Cardiovascular: O_3 only model: Slope estimate: 0.023 deaths/ppb (SE 0.00 p < 0.0001
Kinney et al. (1995) Los Angeles County, CA 1985-1990	All cause	1-h max O ₃ : 70 ppb SD 41	PM ₁₀ , NO ₂ , SO ₂ , CO; two-pollutant models	1	Linear, log-linear, and Poisson. Time-series study.	1-h max O ₃ (per 143 ppb): O ₃ only model: 2% (0, 5) O ₃ with PM ₁₀ model: 0% (-6, 6)

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
United States (cont'd)						
Ostro (1995) San Bernardino County and Riverside County, CA 1980-1986	All cause	1-h max O ₃ : 140 ppb Range 20-370	PM _{2.5}	0	Autoregressive linear; Poisson. Time-series study.	1-h max O ₃ (per 100 ppb) Warm season: 2.0% (0.0, 5.0)
Ostro (2000) Coachella Valley, CA 1989-1998	All cause; respiratory; cardiovascular	1-h max O ₃ : Palm Springs: 67 ppb Range 0-190 Indio: 62 ppb Range 0-180	PM ₁₀ , PM _{2.5} , PM _{10-2.5} , NO ₂ , CO	0	Poisson GAM with default convergence criteria. Time-series study.	1-h max O ₃ (per 40 ppb): All cause: -1% (-4, 3) Respiratory: 3% (-9, 16) Cardiovascular: -4% (-9, 1)
Fairley (1999; reanalysis Fairley, 2003) Santa Clara County, CA 1989-1996	All cause; respiratory; cardiovascular	8-h max O ₃ : 29 ppb SD 15 24-h avg O ₃ : 16 ppb SD 9 O ₃ ppb-hours >60 ppb: Levels not reported.	PM ₁₀ , PM _{2.5} , PM _{10-2.5} , SO ₄ ²⁻ , coefficient of haze, NO ₃ ⁻ , NO ₂ , SO ₂ ; two-pollutant models	0	Poisson GAM, reanalyzed with stringent convergence criteria; Poisson GLM. Time-series study.	GAM with stringent convergence criteria: All cause: $8-h \max O_3$ (per 33 ppb): 3.1% (-0.3, 6.6) O_3 ppb-hours >60 ppb (increment not reported): 3.8% (1.4, 6.3) Cardiovascular: $8-h \max O_3$ (per 33 ppb): 2.6% (-2.3, 7.8) O_3 ppb-hours >60 ppb (increment not reported): 4.3% (0.4, 8.3)

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
United States (cont'd)						
Gamble (1998) Dallas, TX 1990-1994	All cause; respiratory; cardiovascular; cancer; other	24-h avg O ₃ : All year: 22 ppb Range 0-160 Summer: 30 ppb Range 0-160 Winter: 12 ppb Range 0-75	PM ₁₀ , NO ₂ , SO ₂ , CO; two-pollutant models	1-2	Poisson GLM. Time- series study.	All year: 24-h avg O_3 (per 14.7 ppb) All cause: 2.7% (0.6, 4.8) Cardiovascular: 2.4% (-1.1, 6.0) Summer: 24-h avg O_3 (per 13.1 ppb) All cause: 3.5% (p < 0.05) Cardiovascular: 3.3% (p > 0.05) Winter: 24-h avg O_3 (per 7.7 ppb): All cause: 2.4% (p > 0.05) Cardiovascular: 1.5% (p > 0.05)
Dockery et al. (1992) St. Louis, MO and Eastern Tennessee 1985-1986	All cause	24-h avg O ₃ : St. Louis, MO: 22.5 ppb SD 18.5 Eastern Tennessee: 23.0 ppb SD 11.4	PM ₁₀ , PM _{2.5} , SO ₄ ²⁻ , H ⁺ , NO ₂ , SO ₂	1	Poisson with GEE. Time-series study.	24-h avg O ₃ (per 20 μ g/m ³) St. Louis, MO: 0.6% (t = 0.38) Eastern Tennessee: -1.3% (t = -0.37)

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
United States (cont'd)						
Ito and Thurston (1996) Cook County, IL 1985-1990	All cause; respiratory; circulatory; cancer; race/gender subcategories	1-h max O ₃ : 38.1 ppb SD 19.9	PM ₁₀ , NO ₂ , SO ₂ , CO; two-pollutant models	0-1	Poisson GLM. Time- series study.	1-h max O_3 (per 100 ppb): All cause: O_3 only model: 10% (6, 15) O_3 with PM ₁₀ model: 7% (1, 12) Circulatory (results given in graphic format): O_3 only model: 12% (6, 20)
Moolgavkar (2003) Cook County, IL and Los Angeles County, CA 1987-1995	All cause; cardiovascular	24-h avg O ₃ : Cook County: Median 18 ppb Range 0.2-67 Los Angeles County: Median 24 ppb Range 0.6-77	PM _{2.5} , PM ₁₀ , NO ₂ , SO ₂ , CO; two- pollutant models	0, 1, 2, 3, 4, 5	Poisson GAM with default convergence criteria. Time-series study.	24-h avg O_3 (per 100 ppb): All cause, all year: Cook County: Lag 0: 1.4% (t = 6.3) Los Angeles County Lag 0: 0.4% (t = 2.3) All cause, summer: Cook County: Lag 0: 2.9% (t = 7.2) Los Angeles County Lag 0: 1.0% (t = 2.8) Cardiovascular, all year: Cook County: Lag 0: 1.8% (t = 5.5) Los Angeles County Lag 0: 0.2% (t = 0.9) Cardiovascular, summer: Cook County: Lag 0: 3.3% (t = 5.6) Los Angeles County

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
United States (cont'd)						
Moolgavkar (2000) Cook County, IL; Los Angeles County, CA; and Maricopa County, AZ 1987-1995	Cardiovascular; cerebrovascular; COPD	24-h avg O ₃ : Cook County: Median 18 ppb Range 0.2-67 Los Angeles County: Median 24 ppb Range 0.6-77 Maricopa County: Median 25 ppb Range 1-50	PM _{2.5} , PM ₁₀ , NO ₂ , SO ₂ , CO; two- and three-pollutant models	0, 1, 2, 3, 4, 5	Poisson GAM with default convergence criteria. Time-series study.	 24-h avg O₃ (per 100 ppb): Cook County: Cardiovascular, all year: Lag 0: 1.51% (0.78, 2.24) COPD, all year: Lag 0: 1.53% (-0.49, 3.55) Los Angeles County and Maricopa County: O₃ results not presented. Noted as negative or small and insignificant in all year and warm season analyses.
Lippmann et al. (2000; reanalysis Ito, 2003) Detroit, MI 1985-1990 1992-1994	All cause; respiratory; circulatory; cause-specific	24-h avg O ₃ : 25 ppb Maximum 55	PM ₁₀ , PM _{2.5} , PM _{10-2.5} , SO ₄ ²⁻ , H ⁺ , NO ₂ , SO ₂ , CO; two-pollutant models	0, 1, 2, 3, 0-1, 0-2, 0-3	Poisson GAM, reanalyzed with stringent convergence criteria; Poisson GLM. Time-series study.	GAM with stringent convergence criteria: All lags and outcomes duri both study periods (n = 140 24-h avg O_3 (per 5th to 95th % increment): Median 1.6% Range - 1.8-2.6 1985-1990: 24-h avg O_3 (per 36 ppb): All cause: Lag 0: 1.08% (-1.08, 3.30) Circulatory: Lag 0: 1.84% (-1.26, 5.04) 1992-1994 24-h avg O_3 (per 28 ppb): All cause: Lag 0: 2.58% (-2.41, 7.82) Circulatory: Lag 0: 2.13% (-5.04, 9.85)

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
United States (cont'd)						
Lipfert et al. (2000a) Seven counties in Philadelphia, PA area 1991-1995	All cause; respiratory; cardiovascular; all ages; age 65+ years; age <65 years; various subregional boundaries	1-h max O ₃ : 44.76 ppb SD 25.68 24-h avg O ₃ : 23.44 ppb SD 13.86	PM ₁₀ , PM _{2.5} , PM _{10-2.5} , SO ₄ ²⁻ , NO ₃ ⁻ , other PM indices, NO ₂ , SO ₂ , CO; two-pollutant models	0-1	Linear with 19-day weighted average Shumway filters. Time-series study.	1-h max O_3 (per 45 ppb less background, not reported): All cause, all ages: O_3 only model: 3.19%, $p < 0.055O_3 with PM_{2.5} model:3.34%$, $p < 0.055Cardiovascular, all ages:O_3 only model:3.98%$, $p < 0.055O_3 with PM_{2.5} model:5.35%$, $p < 0.055$
Moolgavkar et al. (1995) Philadelphia, PA 1973-1988	All cause	24-h avg O ₃ : Spring: 25.9 ppb Range 2.9-74.0 Summer: 35.5 ppb Range 1.3-159.0 Fall: 16.2 ppb Range 0.2-63.8 Winter: 11.9 ppb Range 0.0-32.9	TSP, SO ₂ ; multipollutant models	1	Poisson; GEE and nonparametric bootstrap methods. Time-series study.	24-h avg O ₃ (per 100 ppb): O ₃ with TSP and SO ₂ model Spring: 2.0% (-6.7, 11.5) Summer: 14.9% (6.8, 23.6) Fall: -4.5% (-13.9, 5.9) Winter: 0.4% (-15.6, 19.4)

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
United States (cont'd)						
Chock et al. (2000) Pittsburgh, PA 1989-1991	All cause; age <74 years; age 75+ years	1-h max O ₃ : Levels not reported.	PM ₁₀ , NO ₂ , SO ₂ , CO; two-, five-, and six-pollutant models	0	Poisson GLM. Time- series study.	1-h max O_3 (per 40 ppb): Age <74 years: O_3 only model: -1.5% (t = -0.68) O_3 with PM ₁₀ model: -2.0% (t = -0.93) Age 75+ years: O_3 only model: -1.8% (t = -0.82) O_3 with PM ₁₀ model: -2.2% (t = -0.98)
De Leon et al. (2003) New York City 1985-1994	Circulatory and cancer with and without contributing respiratory causes	24-h avg O ₃ : 21.59 ppb 5th %-95th % 7.00-44.97	PM ₁₀ , NO ₂ , SO ₂ , CO; two-pollutant models	0 or 1	Poisson GAM with stringent convergence criteria; Poisson GLM. Time-series study.	Quantitative results not given Circulatory deaths: Larger O_3 effect estimates with contributing respiratory causes than without (RR nonsignificant). Cancer deaths: Smaller O_3 effect estimates with contributing respiratory causes than without (RR nonsignificant).

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
United States (cont'd)						
Klemm and Mason (2000); Klemm et al. (2004) Atlanta, GA Aug 1998-July 2000	All cause; respiratory; cardiovascular; cancer; other; age <65 years; age 65+ years	8-h max O ₃ : 47.03 ppb SD 24.71	PM _{2.5} , PM _{10-2.5} , EC, OC, NO ₂ , SO ₄ ²⁻ , NO ₃ ⁻ , SO ₂ , CO	0-1	Poisson GLM using quarterly, monthly, or biweekly knots for temporal smoothing. Time-series study.	All cause, age $65+$ years: Quarterly knots: Slope estimate: 0.00079 (SE 0.00099), t = 0.80 Monthly knots: Slope estimate: 0.00136 (SE 0.00111), t = 1.22
Canada						
Vedal et al. (2003) Vancouver, British Columbia, Canada 1994-1996	All cause; respiratory; cardiovascular	1-h max O ₃ : 27.3 ppb SD 10.2	PM ₁₀ , NO ₂ , SO ₂ , CO	0, 1, 2	Poisson GAM with stringent convergence criteria. Time-series study.	1-h max O ₃ (per 10.2 ppb): Summer: All cause: Lag 0: 4.0% (1.4, 6.7) Respiratory: Lag 0: 1.5% (-6.6, 9.6) Cardiovascular: Lag 0: 3.9% (-0.3, 8.0)
Villeneuve et al. (2003) Vancouver, British Columbia, Canada 1986-1999	All cause; respiratory; cardiovascular; cancer; socioeconomic status	24-h avg O ₃ : 13.4 μg/m ³ Range 0.6-38.6	PM _{2.5} , PM ₁₀ , PM _{2.5.10} , TSP, coefficient of haze, SO ₄ ²⁻ , SO ₂ , NO ₂ , CO	0, 1, 0-2	Poisson GLM with natural splines. Time- series study.	24-h avg O ₃ (per 21.3 μ g/m ³ All year: All cause: Lag 0: 1.4% (-0.9, 3.6) Respiratory: Lag 0: 1.6% (-4.5, 8.1) Cardiovascular: Lag 0: 0.7% (-2.7, 4.3) Cancer: Lag 0: 2.6% (-1.2, 6.5) No effect modification of O mortality effects by socioeconomic status.

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Canada (cont'd)						
Goldberg et al. (2003) Montreal, Quebec, Canada 1984-1993	Congestive heart failure as underlying cause of death versus those classified as having congestive heart failure one year prior to death	24-h avg O ₃ : 29.0 μg/m ³ SD 17.1	PM _{2.5} , coefficient of haze, SO ₄ ²⁻ , SO ₂ , NO ₂ , CO	0, 1, 0-2	Poisson GLM with natural splines. Time- series study.	 24-h avg O₃ (per 21.3 μg/m³ Congestive heart failure as underlying cause of death: Lag 0-2: 4.54% (-5.64, 15.81) Having congestive heart failure one year prior to death: Lag 0-2: 2.34% (-1.78, 6.6
Goldberg et al. (2001) Montreal, Quebec, Canada 1984-1993	All cause; cause- specific; all ages; age <65 years; age ≥65 years	24-h avg O ₃ : 29.0 μg/m ³ SD 17.1	PM _{2.5} , coefficient of haze, SO ₂ , NO ₂ , NO, CO	0, 1, 0-2	Poisson GAM with default convergence criteria. Time-series study.	24-h avg O ₃ (per 21.3 μ g/m ³ All cause, all year: All ages: Lag 0-2: 2.26% (1.23, 3.29) Age <65 years: Lag 0-2: 0.18% (-1.79, 2.2 Age ≥65 years: Lag 0-2: 2.84% (1.66, 4.04) Cardiovascular, all year: All ages: Lag 0-2: 3.00% (1.44, 4.59) Age <65 years: Lag 0-2: 1.33% (-2.30, 5.0 Age ≥65 years: Lag 0-2: 3.33% (1.62, 5.08)

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Europe						
Gryparis et al. (2004) 23 European cities Study periods vary by city, ranging from 1990-1997	All cause; respiratory; cardiovascular	 1-h max O₃: Median range: Summer: 44 ppb (Tel Aviv, Israel) to 117 ppb (Torino, Italy) Winter: 11 ppb (Milan, Italy) to 57 ppb (Athens, Greece) 8-h max O₃: Median range: Summer: 30 ppb (Rome, Italy) to 99 ppb (Torino, Italy) Winter: 8 ppb (Milan, Italy) to 49 ppb (Budapest, Hungary) 	PM ₁₀ , NO ₂ , SO ₂ , CO; two-pollutant models	0-1	Poisson GAM with stringent convergence criteria; Bayesian hierarchical model. Time-series study.	8-h max O_3 (per 10 µg/m ³): Weighted mean effect across 21 cities with 8-h max O_3 concentrations: Random effects model: All cause: All year: 0.03% (-0.18, 0.21) Summer: O_3 only model: 0.31% (0.17, 0.52) O_3 with PM ₁₀ model: 0.27% (0.08, 0.49) Winter: O_3 only model: 0.12% (-0.12, 0.37) O_3 with PM ₁₀ model: 0.22% (-0.08, 0.51) Respiratory: Summer: 1.13% (0.74, 0.51) Winter: 0.26% (-0.50, 0.84) Cardiovascular: Summer: 0.46% (0.22, 0.73) Winter: 0.07% (-0.28, 0.41)

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Europe (cont'd)						
Touloumi et al. (1997) Four European cities: London, Paris Barcelona, Athens Study periods vary by city, ranging from 1986-1992	All cause	1-h max O ₃ : London: 41.2 μg/m ³ SD 26.0 Paris: 46.1 μg/m ³ SD 32.9 Barcelona: 72.4 μg/m ³ SD 34.9 Athens: 93.8 μg/m ³ SD 42.8	BS, NO ₂ ; two- pollutant models	0, 1, 2, 3, 0-1, 0-2, 0-3	Poisson autoregressive. Time-series study.	 1-h max O₃ (50 μg/m³): Weighted mean effect across four cities (best lag selected for each city): Single-day lag, random effects models: O₃ only model: 2.9% (1.0, 4.9) O₃ with BS model: 2.8% (0.5, 5.0) Cumulative lag, fixed effect model: O₃ only model: 2.4% (1.2, 3.7)
Zmirou et al. (1998) Four European cities: London, Paris, Lyon, Barcelona Study periods vary by city, ranging from 1985-1992	Respiratory; cardiovascular	8-h avg O ₃ (9 a.m5 p.m.): London: Cold: 21.0 μg/m ³ Warm: 40.8 μg/m ³ Paris: Cold: 11.5 μg/m ³ Warm: 42.7 μg/m ³ Lyon: Cold: 21.0 μg/m ³ Warm: 40.8 μg/m ³ Barcelona: Cold: 51.5 μg/m ³ Warm: 89.7 μg/m ³	BS, TSP, SO ₂ , NO ₂	0, 1, 2, 3, 0-1, 0-2, 0-3	Poisson GLM. Time- series study.	 8-h avg O₃ (per 50 μg/m³): Weighted mean effect acro four cities (best lag selected for each city): Random effects models: Respiratory: 5% (2, 8) Cardiovascular: 2% (0, 3)

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Europe (cont'd)						
Anderson et al. (1996) London, England 1987-1992	All cause; respiratory; cardiovascular	1-h max O ₃ : 20.6 ppb SD 13.2 8-h avg O ₃ (9 a.m 5 p.m.): 15.5 ppb SD 10.9	BS, NO ₂ , SO ₂ ; two-pollutant models	0	Poisson GLM. Time- series study.	All year: 8-h avg O ₃ (per 26 ppb): All cause: 2.43% (1.11, 3.76) Respiratory: 6.03% (2.22, 9.99) Cardiovascular: 1.44% (-0.45, 3.36)
						Warm season: 8-h avg O ₃ (per 29 ppb): All cause: 3.48% (1.73, 5.26) Respiratory: 5.41% (0.35, 10.73) Cardiovascular: 3.55% (1.04, 6.13)
						Cool season: 8-h avg O ₃ (per 20 ppb): All cause: 0.77% (-0.88, 2.44) Respiratory: 6.20 (1.67, 10.94) Cardiovascular: -1.69% (-3.99, 0.68)
Bremner et al. (1999) London, England 1992-1994	All cause; respiratory; cardiovascular; all cancer; all others; all ages; age specific (0-64, 65+, 65-74, 75+ years)	1-h max O ₃ : 22.6 ppb SD 13.4 8-h max O ₃ : 17.5 ppb SD 11.5	BS, PM ₁₀ , NO ₂ , SO ₂ , CO; two- pollutant models	Selected best from 0, 1, 2, 3, (all cause); 0, 1, 2, 3, 0-1, 0-2, 0-3 (respiratory, cardiovascular)	Poisson GLM. Time- series study.	8-h max O ₃ (per 26 ppb): All ages: All cause: Lag 2: -0.7% (-2.3, 0.9) Respiratory: Lag 2: -3.6% (-7.7, 0.8) Cardiovascular: Lag 2: 3.5% (0.5, 6.7)

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Europe (cont'd)						
Anderson et al. (2001) West Midlands region, England 1994-1996	All cause; respiratory; cardiovascular; all ages; age 0-14 years; age 15-64 years; age 65+ years	8-h max O _x : 24.0 ppb SD 13.8	PM ₁₀ , PM _{2.5} , PM _{2.5-10} , BS, SO ₄ ²⁻ , NO ₂ , SO ₂ , CO	0-1	Poisson GAM with default convergence criteria. Time-series study.	8-h max O ₃ (per 30.8 ppb) All ages: All cause: 2.9% (-0.1, 6.0) Respiratory: 2.2% (-5.4, 10.4) Cardiovascular: 0.9% (-3.4, 5.4)
Prescott et al. (1998) Edinburgh, Scotland 1992-1995	All cause; respiratory; cardiovascular; all ages; age <65 years; age ≥65 years	24-h avg O ₃ : 14.5 ppb SD 2.3	BS, PM_{10} , NO_2 , SO_2 , CO ; two-pollutant models	0	Poisson GLM. Time- series study.	24-h avg O ₃ (per 10 ppb): All cause, all ages: -4.2% (-8.1, -0.1) Cardiovascular, age ≥65 years: 2.2% (-5.1, 10.3)
Le Tertre et al. (2002a) Le Havre, Lyon, Paris, Rouen, Strasbourg, and Toulouse, France Study periods vary by city, ranging from 1990-1995	All cause; respiratory; cardiovascular	8-h max O_3 : Le Havre: 43.4 µg/m ³ Lyon: 52.0 µg/m ³ Paris: 26.0 µg/m ³ Rouen: 57.9 µg/m ³ Strasbourg: 37.0 µg/m ³ Toulouse: 68.0 µg/m ³	BS, NO ₂ , SO ₂	0-1	Poisson GAM with default convergence criteria. Time-series study.	8-h max O ₃ (per 50 μg/m ³) Six-city pooled estimates: All cause: 2.7% (1.3, 4.1) Respiratory: 0.8% (-4.8, 6.2) Cardiovascular: 2.4% (-0.3, 5.1)

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Europe (cont'd)						
Dab et al. (1996) Paris, France 1987-1992	Respiratory	1-h max O ₃ : 43.9 μg/m ³ 5th %-99th % 6.0-147.0 8-h max O ₃ : 27.7 μg/m ³ 5th %-99th % 3-110	BS, PM ₁₃ , NO ₂ , SO ₂ , CO	0	Poisson autoregressive. Time-series study.	1-h max O ₃ (per 100 μg/m ³): 1.074 (0.934, 1.235) 8-h max O ₃ (per 100 μg/m ³): 1.040 (0.934, 1.157)
Zmirou et al. (1996) Lyon, France 1985-1990	All cause; respiratory; cardiovascular; digestive	1-h max O ₃ : 15.23 μg/m ³ Range 0-152 8-h avg O ₃ (9 a.m5 p.m.): 9.94 μg/m ³ Range 0-78.92	PM ₁₃ , SO ₂ , NO ₂	Selected best from 0, 1, 2, 3	Poisson GLM. Time- series study.	8-h avg O ₃ (per 50 μg/m ³): All cause: Lag 0: 3% (-5, 12) Respiratory: Lag 1: 1% (-8, 10) Cardiovascular: Lag 1: 0% (-11, 12)
Sartor et al. (1995) Belgium Summer 1994	All cause; age <65 years; age 65+ years	24-h avg O ₃ : Geometric mean: During heat wave (42 day period): 72.4 μ g/m ³ Range 34.5-111.5 Before heat wave (43 day period): 52.4 μ g/m ³ Range 30.7-92.0 After heat wave (39 day period): 38.6 μ g/m ³ Range 18.8-64.9	TSP, NO, NO ₂ , SO ₂	0, 1, 2	Log-linear regression. Time-series study.	No individual regression coefficient for O_3 alone; interaction with temperature suggested. 24-h avg O_3 (from 18.8 to 111.5 µg/m ³) and temperatur (from 10.0 to 27.5°C): Age <65 years: Lag 1: 16% increase in mortality (5.3% expected) Age 65+ years: Lag 1: 36.5% increase in mortality (4% expected)

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Europe (cont'd)						
Hoek et al., (2000; reanalysis Hoek, 2003) The Netherlands: entire country, four urban areas 1986-1994	All cause; COPD; pneumonia; cardiovascular	8-h avg O ₃ (12 p.m 8 p.m.): Median: 47 μg/m ³ Range 1-226	PM ₁₀ , BS, SO ₄ ²⁻ , NO ₃ ⁻ , NO ₂ , SO ₂ , CO; two-pollutant models	1, 0-6	Poisson GAM, reanalyzed with stringent convergence criteria; Poisson GLM. Time-series study.	GLM: All cause: 8-h avg O ₃ (per 150 μg/m ³ Lag 1: 4.3% (2.4, 6.2) 8-h avg O ₃ (per 120 μg/m ³ Lag 0-6: 5.9% (3.1, 8.7)
Hoek et al. (2001; reanalysis Hoek, 2003) The Netherlands 1986-1994	Total cardiovascular; myocardial infarction; arrhythmia; heart failure; cerebrovascular; thrombosis-related	8-h avg O ₃ (12 p.m 8 p.m.): Median: 47 μg/m ³ Range 1-226	PM ₁₀ , NO ₂ , SO ₂ , CO	1	Poisson GAM, reanalyzed with stringent convergence criteria; Poisson GLM. Time-series study.	8-h avg O ₃ (per 150 μg/m ³) GLM: Total cardiovascular: 6.2% (3.3, 9.2) Myocardial infarction: 4.3% (0.1, 8.6) Arrhythmia: 11.4% (-1.2, 25.5) Heart failure: 10.2% (1.2, 19.9) Cerebrovascular: 9.1% (2.9, 15.7) Thrombosis-related: 16.6% (2.8, 32.2)
Roemer and van Wijinen (2001) Amsterdam, the Netherlands 1987-1998	All cause	8-h max O ₃ : Background sites: 43 μg/m ³ Maximum 221 Traffic sites: 36 μg/m ³ Maximum 213	BS, PM ₁₀ , NO ₂ , SO ₂ , CO	1, 2, 0-6	Poisson GAM with default convergence criteria (only one smoother). Time-series study.	8-h max O_3 (per 100 µg/m ²) Total population using background sites: Lag 1: -0.3% (-4.1, 3.7) Total population using traf sites: Lag 1: 0.2% (-3.6, 4.2)

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Europe (cont'd)						
Verhoeff et al. (1996) Amsterdam, the Netherlands 1986-1992	All cause; all ages; age 65+ years	1-h max O ₃ : 43 µg/m ³ Maximum 301	PM ₁₀ , NO ₂ , SO ₂ , CO; multipollutant models	0, 1, 2	Poisson. Time-series study.	1-h max O ₃ (per 100 μg/m ³) All ages: Lag 0: 1.8% (-3.8, 7.8) Lag 1: 0.1% (-4.7, 5.1) Lag 2: 4.9% (0.1, 10.0)
Peters et al. (2000b) NE Bavaria, Germany 1982-1994 Coal basin in Czech Republic 1993-1994	All cause; respiratory; cardiovascular; cancer	24-h avg O ₃ : Czech Republic: 40.3 μg/m ³ SD 25.0 Bavaria, Germany: 38.2 μg/m ³ SD 21.9	TSP, PM ₁₀ , NO ₂ , SO ₂ , CO	0, 1, 2, 3	Poisson GLM. Time-series study.	24-h avg O ₃ (per 100 μg/m ³): Czech Republic: All cause: Lag 2: 7.8% (-1.8, 18.4) Bavaria, Germany: All cause: Lag 0: 8.2% (0.4, 16.7) Cardiovascular: Lag 0: 6.1% (-3.7, 17.0)
Pönkä et al. (1998) Helsinki, Finland 1987-1993	All cause; cardiovascular; age <65 years, age 65+ years	24-h avg O ₃ : Median 18 μg/m ³ 5th %-95th % 3-51	TSP, PM ₁₀ , NO ₂ , SO ₂	0, 1, 2, 3, 4, 5, 6, 7	Poisson GLM. Time-series study.	 24-h avg O₃ (per 20 μg/m³): All cause, age <65 years: Not significant, values not reported. Cardiovascular, age <65 years: Lag 0: -2.0% (-9.5, 6.1) Lag 1: 6.2% (-2.2, 15.5)

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Europe (cont'd)						
Saez et al. (2002) Barcelona, Spain 1991-1995 Madrid, Spain 1992-1995 Valenica, Spain 1994-1996	All cause; respiratory; cardiovascular	8-h max O_3 : Barcelona: 67.5 µg/m ³ SD 32.2 Madrid: 42.1 µg/m ³ SD 27.8 Valencia: 45.5 µg/m ³ SD 19.7	NO ₂ , PM, SO ₂ , CO; multipollutant models	0-5	Poisson GAM with default convergence criteria. Time-series study.	8-h max O ₃ (per 10 μg/m ³): Three-city pooled estimates All cause: 0.23% (-0.15, 0.61) Respiratory: 0.29% (-0.05, 0.63) Cardiovascular: 0.60% (0.08, 1.13)
Garcia-Aymerich et al. (2000) Barcelona, Spain 1985-1989	All cause; respiratory; cardiovascular; general population; patients with COPD	1-h max O ₃ : Levels not reported.	BS, NO ₂ , SO ₂ ,	Selected best single-day lag	Poisson GLM. Time-series study.	1-h max O_3 (per 50 µg/m ³): All cause: General population: Lag 5: 2.4% (0.6, 4.2) COPD patients: Lag 3: 4.0% (-4.7, 13.4) Respiratory: General population: Lag 5: 3.5% (-1.9, 9.2) COPD patients: Lag 3: 5.7% (-7.9, 21.4) Cardiovascular: General population: Lag 1: 2.9% (0.4, 5.4) COPD patients: Lag 3: 1.1% (-14.2, 19.2)
Saez et al. (1999) Barcelona, Spain 1986-1989	Asthma mortality; age 2-45 years	1-h max O ₃ : Levels not reported.	BS, NO ₂ , SO ₂ ,	0-2	Poisson with GEE. Time-series study.	Slope estimate: 0.021 (SE 0.011), p = 0.054

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Europe (cont'd)						
Sunyer et al. (1996) Barcelona, Spain 1985-1991	All cause; respiratory; cardiovascular; all ages; age 70+ years	1-h max O ₃ : Summer: 86.5 μg/m ³ Range 9.5-283.5 Winter: 55.2 μg/m ³ Range 7-189.2	BS, SO ₂ , NO ₂	Selected best single-day lag	Autoregressive Poisson. Time-series study.	1-h max O ₃ (per 100 μg/m ³): All cause, all ages: All year: Lag 0: 4.8% (1.2, 8.6) Summer: Lag 0: 5.8% (1.7, 10.1) Winter: Lag 0: 2.6% (-3.5, 9.1) Respiratory, all ages: All year: Lag 5: 7.1% (-3.8, 19.2) Summer: Lag 5: 5.0% (-7.3, 18.8) Winter: Lag 5: 14.0% (-7.6, 40.6) Cardiovascular, all ages: All year: Lag 1: 5.8% (0.9, 11.1) Summer: Lag 1: 5.8% (2.8, 15.2) Winter: Lag 1: -0.8% (-8.9, 7.9)
Sunyer and Basagana (2001) Barcelona, Spain 1990-1995	Mortality in a cohort of patients with COPD	1-h max O ₃ : Mean not reported IQR 21 μg/m ³	PM ₁₀ , NO ₂ , CO	0-2	Conditional logistic (case-crossover)	1-h max O ₃ (per 21 μg/m ³): Odds ratio: 0.979 (0.919, 1.065)

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Europe (cont'd)						
Sunyer et al. (2002) Barcelona, Spain 1986-1995	All cause, respiratory, and cardiovascular mortality in a cohort of patients with severe asthma	1-h max O ₃ : Median 69.3 μg/m ³ Range 6.6-283.0 8-h max O ₃ : Median 54.4 μg/m ³ Range 3.9-244.5	PM ₁₀ , BS, SO ₂ , NO ₂ , CO, pollen	0-2	Conditional logistic (case-crossover)	1-h max O_3 (per 48 µg/m ³): Odds ratios: Patients with only one admission: All cause: 1.096 (0.820, 1.466) Cardiovascular: 1.397 (0.854, 2.285) Patients with more than one admission: All cause: 1.688 (0.978, 2.643) Cardiovascular: 1.331 (0.529, 3.344)
						Patients admitted for both asthma and COPD: All cause: 0.946 (0.674, 1.326) Cardiovascular: 0.985 (0.521, 1.861)
Díaz et al. (1999) Madrid, Spain	All cause; respiratory;	24-h avg O ₃ : Levels not reported.	TSP, NO ₂ , SO ₂ , CO	1, 4, 10	Autoregressive linear. Time-series study.	24-h avg O_3 (per 25 µg/m ³):
1990-1992	cardiovascular	Levels not reported.	0		Time-series study.	For O_3 levels higher than 35 $\mu g/m^3$:
						All cause: Lag 4: 12% (p < 0.01)
						U-shaped (quadratic) O_3 - mortality relationship with a minimum of 35 µg/m ³ .

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Latin America						
Borja-Aburto et al. (1997) Mexico City 1990-1992	All cause; respiratory; cardiovascular; all ages; age <5 years; age >65 years	1-h max O ₃ : Median 155 ppb 8-h max O ₃ : Median 94 ppb 10-h avg O ₃ (8 a.m 6 p.m.): Median 87 ppb 24-h avg O ₃ : Median 54 ppb	TSP, SO ₂ , CO; two-pollutant models	0, 1, 2	Poisson iteratively weighted and filtered least-squares method. Time-series study.	1-h max O ₃ (per 100 ppb): All ages: O ₃ only model: All cause: Lag 0: 2.4% (1.1, 3.9) Respiratory: Lag 0: 2.3% (-1.9, 6.7) Cardiovascular: Lag 0: 3.6% (0.6, 6.6) O ₃ with TSP model: All cause: Lag 0: -1.8% (-10.0, 6.4) Respiratory: Lag 0: -1.9% (-11.0, 8.2) Cardiovascular:
Borja-Aburto et al. (1998) SW Mexico City 1993-1995	All cause; respiratory; cardiovascular; other; all ages; age >65 years	1-h max O ₃ : 163 ppb SD 57 24-h avg O ₃ : 44.0 ppb SD 15.7	PM _{2.5} , NO ₂ , SO ₂ ; two-pollutant models	0, 1, 2, 3, 4, 5, 1-2	Poisson GAM with default convergence criteria (only one smoother). Time series study.	Lag 0: 2.4 (-4.4, 9.6) 24-h avg O ₃ (per 10 ppb): All cause, all ages: Lag 1-2: 0.6% (-0.3, 1.5) All cause, age > 65 years: Lag 1-2: 0.8% (-0.4, 2.0) Respiratory, all ages: Lag 1-2: -0.7% (-3.6, 2.1) Cardiovascular, all ages: Lag 1-2: 1.8% (0.1, 3.5) Other noninjury, all ages: Lag 1-2: 0.3% (-0.9, 1.4)

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Latin America (cont'd)						
O'Neill et al. (2004) Mexico City 1996-1998	All cause; all ages; age 65+ years; SES gradient	24-h avg O ₃ : 35.3 ppb SD 11.0	PM ₁₀	0-1	Poisson GAM with stringent convergence criteria. Time-series study.	24-h avg O ₃ (per 10 ppb): All ages: 0.65% (0.02, 1.28) Age 65+ years: 1.39% (0.51, 2.28) SES gradient did not show any consistent pattern.
Téllez-Rojo et al. (2000) Mexico City 1994	Respiratory; COPD mortality; age 65+ years; within medical unit; outside of medical unit	1-h max O ₃ : 134.5 ppb SD 33.4	PM ₁₀ , NO ₂ , SO ₂	1, 2, 3, 4, 5, 1-3, 1-5, 1-7	Poisson, iteratively weighted and filtered least-squares method. Time-series study.	1-h max O ₃ (per 40 ppb): Outside medical unit: Respiratory: Lag 1-5: 14.0% (4.1, 24.9) COPD mortality: Lag 1-5: 15.6% (4.0, 28.4)
Loomis et al. (1999) Mexico City 1993-1995	Infant mortality	24-h avg O ₃ : 44.1 ppb SD 15.7	PM _{2.5} , NO ₂	0, 1, 2, 3, 4, 5, 2-3	Poisson GAM with default convergence criteria. Time-series study.	24-h avg O ₃ (per 10 ppb): O ₃ only model: 2.45% (-0.54, 5.43) O ₃ with PM _{2.5} model: 1.40% (-1.92, 4.72)
Gouveia and Fletcher (2000b) São Paulo, Brazil 1991-1993	All ages (all cause); age <5 years (all cause, respiratory, pneumonia); age 65+ years (all cause, respiratory, cardiovascular)	1-h max O ₃ : 67.9 μg/m ³ SD 42.1	PM ₁₀ , NO ₂ , SO ₂ , CO	0, 1, 2	Poisson GLM. Time- series study.	1-h max O ₃ (per 106 μg/m ³): All ages: All cause: Lag 0: 0.8% (-1.1, 2.7) Age 65+ years: All cause: Lag 2: 2.3% (0, 4.6) Respiratory: Lag 2: 5.1% (-0.6, 11.1) Cardiovascular: Lag 0: 3.1% (-0.4, 6.7)

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Latin America (cont'd)						
Pereira et al. (1998) São Paulo, Brazil 1991-1992	Intrauterine mortality	1-h max O ₃ : 67.5 μg/m ³ SD 45.0	PM ₁₀ , NO ₂ , SO ₂ , CO	0	Poisson, linear with M-estimation. Time- series study.	Slope estimate: 0.0000 (SE 0.0004)
Saldiva et al. (1994) São Paulo, Brazil 1990-1991	Respiratory; age <5 years	24-h avg O ₃ : 12.14 ppb SD 9.94	PM ₁₀ , NO ₂ , SO ₂ , CO; multipollutant models	0-2	OLS of transformed data. Time-series study.	Slope estimate: 0.01048 deaths/day/ppb (SE 0.02481), p = 0.673
Saldiva et al. (1995) São Paulo, Brazil 1990-1991	All cause; age 65+ years	1-h max O ₃ : 38.3 ppb SD 29.7 24-h avg O ₃ : 12.5 ppb SD 11.5	PM ₁₀ , NO ₂ , SO ₂ , CO; two-pollutant models	0-1	OLS; Poisson with GEE. Time-series study.	Slope estimate: 1-h max O_3 : 0.0280 deaths/day/ppb (SE 0.0213), p > 0.05 24-h avg O_3 : 0.0093 deaths/day/ppb (SE 0.0813), p > 0.05
Cifuentes et al. (2000) Santiago, Chile 1988-1966	All cause	1-h max O ₃ : Summer: 108.2 ppb IQR 48.0	PM _{2.5} , PM _{10-2.5} , CO, SO ₂ , NO ₂	0, 1, 2, 3, 4, 5, 1-2, 1-3, 1-4, 1-5	Poisson GAM with default convergence criteria; Poisson GLM. Time-series study.	1-h max O ₃ per (108.2 ppb): GLM: Summer: O ₃ only model: Lag 1-2: 0.3% (t = 0.3) Multipollutant model: Lag 1-2: -0.1% (t = -0.1)
Ostro et al. (1996) Santiago, Chile 1989-1991	All cause	1-h max O ₃ : 52.8 ppb Range 11-264	PM ₁₀ , NO ₂ , SO ₂ ; two-pollutant models	1	OLS, several other methods. Time-series study.	All year: 1-h max O ₃ (per 52.8 ppb): -3% (-4, -2) Summer: 1-h max O ₃ (per 100 ppb): 4% (0, 9)

Table AX7-5 (cont'd). Effects of Acute O₃ Exposure on Mortality

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Australia						
Morgan et al. (1998b) Sydney, Australia 1989-1993	All cause; respiratory; cardiovascular	1-h max O ₃ : 24 ppb SD 13	PM by nephelometer, NO ₂ ; multipollutant models	0	Poisson with GEE. Time-series study.	1-h max O ₃ (per 28 ppb): All cause: 2.04% (0.37, 3.73) Respiratory: -0.84% (-7.16, 5.91) Cardiovascular: 2.52% (-0.25, 5.38)
Simpson et al. (1997) Brisbane, Australia 1987-1993	All cause; respiratory; cardiovascular; all ages; age <65 years; age 65+ years	8-h avg O ₃ (10 a.m6 p.m.): All year: 18.1 ppb Range 1.7-63.4 Summer: 20.2 ppb Range 2.7-63.4 Winter: 16.1 ppb Range 1.7-56.9	PM ₁₀ , PM by nephelometer, NO ₂ , SO ₂ , CO	0	Autoregressive Poisson with GEE. Time-series study.	8-h avg O ₃ (per 10 ppb): All cause, all ages: All year: 2.4% (0.8, 4.0) Summer: 3.0% (1.0, 5.0) Winter: 1.3% (-1.4, 4.1)
Asia						
Kim et al. (2004) Seoul, Korea 1995-1999	All cause	1-h max O ₃ : All year: 35.16 ppb SD 18.31 Summer: 46.87 ppb SD 22.46 Winter: 21.26 ppb SD 6.92	PM ₁₀ , NO ₂ , SO ₂ , CO; two-pollutant models	1	Poisson GAM with stringent convergence criteria (linear model); GLM with cubic natural spline; GLM with B-mode spline (threshold model). Time-series study.	1-h max O ₃ (per 21.5 ppb): All year: Linear model: 2.6% (1.7, 3.5) Threshold model: 3.4% (2.3, 4.4) Summer: Linear model: 1.9% (0.5, 3.3) Threshold model: 3.8% (2.0, 5.7)

Table AX7-5 (cont'd). Effects of Acute O₃ Exposure on Mortality

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Asia (cont'd)						
Lee et al. (1999) Seoul and Ulsan, Korea 1991-1995	All cause	1-h max O ₃ : Seoul: 32.4 ppb 10th %-90th % 14-55 Ulsan: 26.0 ppb 10th %-90th % 16-39	TSP, SO ₂	0	Poisson with GEE. Time-series study.	1-h max O ₃ (per 50 ppb): Seoul: 1.5% (0.5, 2.5) Ulsan: 2.0% (-11.1, 17.0)
Lee and Schwartz (1999) Seoul, Korea 1991-1995	All cause	1-h max O ₃ : Seoul: 32.4 ppb 10th %-90th % 14-55	TSP, SO ₂	0	Conditional logistic regression. Case- crossover with bidirectional control sampling.	 1-h max O₃ (per 50 ppb): Two controls, plus and min one week: 1.5% (-1.2, 4.2) Four controls, plus and min two weeks: 2.3% (-0.1, 4.8)
Kwon et al. (2001) Seoul, Korea 1994-1998	Mortality in a cohort of patients with congestive heart failure	1-h max O ₃ : 31.8 ppb IQR 20.5 Range 4.3-102.8	PM ₁₀ , NO ₂ , SO ₂ , CO	0	Time-series analysis using Poisson GAM with default convergence criteria; case-crossover analysis using conditional logistic regression.	 1-h max O₃ (per 20.5 ppb): Odds ratios from case- crossover study design: General population: 1.9% (1.0, 2.9) Congestive heart failure cohort: 5.1% (-3.6, 14.7)

Table AX7-5 (cont'd). Effects of Acute O₃ Exposure on Mortality

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Asia (cont'd)						
Hong et al. (2002) Seoul, Korea 1995-1998	Acute stroke mortality	8-h avg O ₃ : 22.6 ppb SD 12.4 IQR 9.3	PM ₁₀ , NO ₂ , SO ₂ , CO	0	Poisson GAM with default convergence criteria. Time-series study.	8-h avg O ₃ (per 9.3 ppb): O ₃ only model: 2.9% (0.3, 5.5)
						$PM_{10} \le median: 5.5\%$ $PM_{10} \ge median: -2.5\%$
Tsai et al. (2003b) Kaohsiung, Taiwan 1994-2000	All cause; respiratory; cardiovascular; tropical area	24-h avg O ₃ : 23.6 ppb Range 1.2-83.0	PM ₁₀ , SO ₂ , NO ₂ , CO	0-2	Conditional logistic regression. Case- crossover analysis.	24-h avg O ₃ (per 19.2 ppb) Odds ratios: All cause: 0.994 (0.995, 1.035) Respiratory: 0.996 (0.848, 1.169) Cardiovascular: 1.005 (0.919, 1.098)
Yang et al. (2004b) Taipei, Taiwan 1994-1998	All cause; respiratory; cardiovascular; subtropical area	24-h avg O ₃ : 17.18 ppb Range 2.3-43.47	PM ₁₀ , SO ₂ , NO ₂ , CO	0-2	Conditional logistic regression. Case- crossover analysis.	24-h avg O ₃ (per 9.34 ppb) Odds ratios: All cause: 0.999 (0.972-1.026) Respiratory: 0.991 (0.897-1.094) Cardiovascular: 1.004 (0.952-1.058)

Reference, Study Location and Period	Outcome Measure	Mean O ₃ Levels	Copollutants Considered	Lag Structure Reported	Method/Design	Effect Estimates
Asia (cont'd)						
Hedley et al. (2002) Hong Kong 1985-1995 Intervention Jul 1990 (switch to low sulfur- content fuel)	All cause; cardiovascular; respiratory; neoplasms and other causes; all ages; age 15-64 years; age 65+ years	Average monthly O ₃ : Baseline: 18.5 μg/m ³ SD 7.5 1 year after intervention: 21.3 μg/m ³ SD 9.1 2-5 years after intervention: 22.1 μg/m ³ SD 10.2	SO ₂ (main pollutant of interest, 45% reduction observed 5 years after intervention), PM ₁₀ , SO ₄ ²⁻ , NO ₂	Monthly averages considered without lags	Poisson regression of monthly averages to estimate changes in the increase in deaths from warm to cool season. Annual proportional change in death rate before and after the intervention was also examined.	Declines observed in all cause (2.1%, p = 0.001), respiratory (3.9%, p = 0.001), and cardiovascular (2.0%, p = 0.020) mortality after the intervention. Analysis not specific for O_3 effects. As O_3 levels did not change before and after the intervention, O_3 likely did not play a role in the decline in observed mortality.

Table AX7-5 (cont'd). Effects of Acute O3 Exposure on Mortality

Reference, Study Location, and Period	Mean O ₃ Levels	Study Description	Results and Comments
United States			
Galizia and Kinney (1999; exposure data Kinney et al., 1998) U.S. nationwide 1995	1-h max O ₃ : 10-year mean Jun-Aug: 61.2 ppb SD 15.5 Range 13-185	Cross-sectional study of a nationwide sample of 520 young adults. Subjects were nonsmokers, aged 17-21 years, 50% males. Each subject provided one spirometric lung function measurement in the spring of their 1st year at Yale College in New Haven, CT, and completed a questionnaire addressing residential history, respiratory diseases, and activity patterns. Long-term O_3 exposure was treated as a high/low dichotomous variable, with subjects assigned to the high O_3 category if they lived for 4+ years in counties with 10-year summer mean O_3 levels greater than 80 ppb. Four lung function variables (FVC, FEV ₁ , FEF _{25.75} , FEF ₇₅) were regressed on O_3 exposure, controlling for age, height, height squared, sex, race, parental education, and maternal smoking history. Respiratory symptom histories (cough, phlegm, wheeze apart from colds, and composite index for any of the three symptoms) were logistically regressed on O_3 exposure, controlling for sex, race, parental education, and maternal smoking.	Significant decrements in FEV ₁ and FEF ₂₅₋₇₅ in relation to O ₃ exposure were observed for all subjects and for males alone, but not for females alone. Similar patterns observed for FVC and FEF ₇₅ , but not with statistical significance. Percent difference in lung function for high versus low O ₃ exposure groups: FEV ₁ : All subjects: -3.07% (-0.22 , -5.92) Females: -0.26% (3.79 , -4.31) Males: -4.71% (-0.66 , -8.76) FEF ₂₅₋₇₅ : All subjects: -8.11% (-2.32 , -13.90) Females: -1.96% (6.39 , -10.30) Males: -13.02% (-4.87 , -21.17) Wheeze and respiratory symptom index were significantly elevate for high O ₃ exposure group. Odds ratios for symptoms: Wheeze: 1.97 (1.06 , 3.66)
Goss et al. (2004) U.S. nationwide 1999-2000	1-h max O ₃ : 51.0 ppb SD 7.3	Cohort study of 11,484 cystic fibrosis patients over the age of 6 years. Exposure to O_3 , $PM_{2.5}$, PM_{10} , NO_2 , SO_2 , and CO assessed by linking Aerometric Information Retrieval System with patients' home zip code. Studied exacerbation and lung function. Mortality was also of interest, but study was underpowered to examine this outcome. Logistic regression models were used to analyze the exacerbations and multiple linear regression was used to study lung function. O_3 monitoring season and regional effects also were examined.	 Respiratory symptom index: 2.00 (1.15, 3.46) Ozone may increase the risk for pulmonary exacerbations in cystifibrosis patients. Odds ratios for two or more exacerbations (per 10 ppb increase in 1-h max O₃): O₃ only model: 1.10 (1.03, 1.17) O₃ with PM_{2.5} model: 1.08 (1.01, 1.15) PM_{2.5}, but not O₃, was significantly associated with declines in lung function in these patients.

August 2005

AX7-95

DRAFT-DO NOT QUOTE OR CITE

Reference, Study Location, and Period	Mean O ₃ Levels	Study Description	Results and Comments
United States (cont'd)			
Kinney and Lippmann (2000) Fort Sill, OK; Fort Leonard Wood, MO; Fort Dix, NJ; Fort Benning, GA; West Point, NY Apr-Sep 1990	1-h max O_3 : Mean during 5-week summer training period: Fort Benning, GA: 55.6 ppb (0 hours $O_3 > 100$ ppb) Fort Dix, NJ: 71.3 ppb (23 hours $O_3 > 100$ ppb) Fort Leonard Wood, MO: 55.4 ppb (1 hours $O_3 > 100$ ppb) Fort Sill, OK: 61.7 ppb (1 hours $O_3 > 100$ ppb)	Prospective cohort study of 72 nonsmoking students (mean age 20.25 years) at the U.S. Military Academy at West Point, NY were measured for lung function and respiratory symptoms before (Apr) and after (Aug-Sep) taking part in an intensive, largely outdoor, summer training over five weeks (Jul 11-Aug 15) at four U.S. military bases. Ozone levels in the Fort Dix, NJ area were consistently higher than at the three remaining three locations. Analysis assessed change in lung function and respiratory symptoms measured before and soon after the summer training, and examined whether adverse trends would be more pronounced in students exposed to higher O ₃ levels during summer training.	Mean FEV ₁ declined significantly over the two measurement points for all subjects combined, which may reflect combined effects of O ₃ with exposures to dust, vehicle exhaust, and environmental tobacco smoke as reported by subjects from all four locations in the post-summer questionnaire. However, a larger mean decline was seen at the higher O ₃ site, Fort Dix, than at the remaining three sites, suggesting an influence of O ₃ exposures. A larger decline was observed in subjects with post-summer measurements in the 1st two weeks after returning from training compared to those measured in the 3rd and 4th weeks, which is consistent with the lung function effects being somewhat transient. Change in lung function over the summer: FEV_1 : All locations: -44 mL (SE 21), p = 0.035 Fort Dix: -78 mL (SE 41), p = 0.07 Forts Sill, Leonard Wood, and Benning combined: -31 mL (SE 24), p = 0.21
Greer et al. (1993) California 1973-1987	Annual mean O ₃ : Levels not reported.	Prospective cohort study of 3,914 nonsmoking adults aged 25+ years at enrollment in 1977 completed questionnaires at two time points, 1977 and 1987. To be eligible, subjects had to have lived 10 or more years within 5 miles of current residence. Residential histories used to interpolate air pollution levels to zip centroids over a 20-year period (1966-1987). New asthma cases defined as answering yes to doctor diagnosed asthma at 1987 followup among those answering no at enrollment in 1977. Multiple logistic regression used to test for associations between new-onset asthma and long- term exposures to air pollution, controlling for age, education, pneumonia or bronchitis before age 16 years, and years worked with a smoker through 1987. All models stratified by gender.	There were 27 incident cases of asthma among 1,305 males and 51 incident cases among 2,272 females. In logistic regression analyses, long-term O ₃ exposures were associated with increased risk of incident asthma among males but not females. Relative risks for incident cases of asthma (per 10 ppb increase in annual mean O ₃): Males: 3.12 (1.61, 5.85) Females: 0.94 (0.65, 1.34)

Reference, Study Location, and Period	Mean O ₃ Levels	Study Description	Results and Comments
United States (cont'd)			
McDonnell et al. (1999) California 1973-1992	8-h avg O ₃ (9 a.m5 p.m): 20-year mean: 46.5 ppb SD 15.3	This prospective cohort study continued the work of Greer et al. (1993). 3,091 nonsmoking adults completed questionnaires at one additional time point, 1992. Residential histories used to interpolate air pollution levels to zip centroids over the period 1973-1992, yielding annual mean exposure estimates for O_3 , PM_{10} , SO_2 , and NO_2 . New asthma cases defined as answering yes to doctor diagnosed asthma at either 1987 or 1992. Multiple logistic regression used to test for associations between new-onset asthma and long-term exposures to air pollution, controlling for age, education, pneumonia or bronchitis before age 16, and ever smoking. All models run separately for males and females.	There were 32 incident cases of asthma among 972 males and 79 incident cases among 1,786 females. In logistic regression analyses, long-term O_3 exposures were associated with increased risk of incident asthma among males but not females. Other pollutants were neither associated with asthma incidence nor were confounders of the O_3 association in males. Relative risks for incident cases of asthma (per 27 ppb increase in annual mean 8-h avg O_3): Males: 2.09 (1.03, 4.16) Females: 0.86 (0.58, 1.26)
Peters et al. (1999a,b) 12 Southern California communities 1993-1994	 1-h max O₃: Mean range: 1986-1990: 30.2 ppb (Santa Maria) to 109.2 ppb (San Dimas) 1994: 35.5 ppb (Santa Maria) to 97.5 ppb (Lake Gregory) 	3,676 children aged 9-16 years enrolled into the 1st cohort of the Children's Health Study in 1993. Subjects provided questionnaire data on respiratory disease histories and symptoms. 3,293 subjects also underwent pulmonary function testing, of which 2,781 were used in air pollution regressions. Air pollution data for O ₃ , PM ₁₀ , PM _{2.5} , NO ₂ , and inorganic acid vapors analyzed from 1986-1990 and 1994. For cross-sectional analysis of respiratory diseases, individual pollutants were tested for associations with ever asthma, current asthma, bronchitis, cough, and wheeze after controlling for covariates. For analysis of lung function, individual pollutants and pairs of pollutants were regressed with FVC, FEV ₁ , FEF ₂₅₋₇₅ , and PEF, controlling for usual demographic and anthropometric covariates.	Acids and NO ₂ , but not O ₃ , were associated significantly with prevalence of wheeze. No associations of O ₃ with any of the respiratory diseases or symptoms. Decreased lung function was associated with multiple pollutants among females but not males. For O ₃ exposure in females, all fou lung function variables declined with increasing exposure. Associations were stronger for current (1994) exposure compared to previous (1986-1990) exposure. In males who spent more time outdoors, FVC and FEV ₁ declined significantly with higher curre exposure to O ₃ . Change in lung function (per 40 ppb 1-h max O ₃ from 1986-1990 Females: PEF: -187.2 mL/s (SE 50.1), p < 0.005 FEF ₂₅₋₇₅ : -102.2 mL/s (SE 28.8), p < 0.01 Males: PEF: 31.1 mL/s (SE 48.8), p > 0.05

Reference, Study Location, and Period	Mean O ₃ Levels	Study Description	Results and Comments
United States (cont'd)			
Gauderman et al. (2000; 2004a,b) 12 Southern California communities 1993-2001	8-h avg O ₃ (10 a.m6 p.m.): Mean range: Approximately 28 ppb (Long Beach) to 65 ppb (Lake Arrowhead)	Analysis of longitudinal lung function change in relation to long-term air pollution levels in the Children's Health Study cohort. Children from 4th (n = 1,498), 7th (n = 802), and 10th (n = 735) grade enrolled in 1993. Children enrolled in 7th and 10th grade were followed until 1997; 4th graders were followed until 2001. Baseline questionnaires completed and annual pulmonary function tests (FVC, FEV ₁ , FEF ₂₅₋₇₅ , FEF ₇₅) performed. Air pollution monitoring stations established in the 12 study communities beginning in 1994 to measure O_3 , NO_2 , PM_{10} , $PM_{2.5}$, and inorganic acid. Analysis using adjusted linear regression models.	In the 7th and 10th grade cohorts, difference in lung function growth from the least to the most polluted community was not associated with any of the air pollutants, including O_3 . Among th 4th graders, decreased lung growth was associated with exposures to PM and NO_2 , but not with O_3 .
Gauderman et al. (2002) 12 Southern California communities 1996-1999	8-h avg O ₃ (10 a.m6 p.m.): Mean range: Approximately 27 ppb (Long Beach) to 67 ppb (Lake Gregory)	Second cohort of the longitudinal cohort Children's Health Study. 2,081 4th graders (mean age 9.9 years) enrolled in 1996. Baseline questionnaires were completed and annual pulmonary function tests (FVC, FEV ₁ , FEF ₂₅₋₇₅ , FEF ₂₅₋₇₅ /FVC, PEF) were performed. 1,672 children had at least two pulmonary function test data. Air pollutants examined include O ₃ , NO ₂ , PM ₁₀ , PM _{2.5} , inorganic acid, elemental carbon, and organic carbon. Adjusted linear regression model was used.	In this cohort, a significant association between O ₃ and PEF and FVC was noted in children spending more time outdoors. Percent difference in annual increases in lung function from least to most polluted community (per 36.6 ppb increase in annual mea 8-h avg O ₃): PEF: All children: -1.21% (-2.06, -0.36) Children more outdoors: -1.62% (-2.93, -0.29) Children less outdoors: -0.87% (-2.09, 0.37)
McConnell et al. (1999) 12 Southern California communities 1993	1-h max O ₃ : Estimated annual daily mean: 65.5 ppb Range 35.5-97.5	First cohort of the Children's Health Study. Association of O_3 with prevalence of chronic lower respiratory tract symptoms among children with a history of asthma was examined in a cross-sectional study in 12 communities. Questionnaires were completed by parents of 3,676 4th, 7th, and 10th graders, of which 493 had asthma. Exposure data $(O_3 NO_2, PM_{10}, PM_{2.5}, and inorganic acid vapors)$ collected in 1994 used to estimate exposure. Analysis using logistic regression method.	Children with asthma were much more likely to have bronchitis of related symptoms than children without such history. Among the asthmatic children, significant relationship were observed betwee phlegm and all pollutants studied, with the exception of O ₃ .

Reference, Study Location, and Period	Mean O ₃ Levels	Study Description	Results and Comments
United States (cont'd)			
McConnell et al. (2003) 12 Southern California communities 1996-1999	 8-h avg O₃ (10 a.m6 p.m.): 4-year average across 12 communities: 47.2 ppb SD 11.3 Range 28.3-65.8 Range of yearly variability within the 12 communities: 5.3 ppb SD 3.2 Range 1.7-13.2 	A total of 475 children with asthma from the lst and 2nd cohorts of the Children's Health Study were recruited to examine the relationship between bronchitic symptoms and air pollutants. Analysis involved three stages using logistic mixed effects models. Within-community variability in air pollution was assessed in the first stage; individual level time-independent confounders were assessed in the second stage; and the effects of 4-year average air pollutants were examined in the third stage. Other copollutants examined include NO ₂ , PM ₁₀ , PM _{2.5} , PM _{10-2.5} , inorganic acid, organic acid, EC, and OC.	Symptoms were generally associated with the various air pollutants. Within-community effects were greater than the between-community effects. Authors note that if the larger withit community effect estimates are correct, then other cross-sectional (between-community) studies may have underestimated the true effect of air pollution on respiratory symptoms in children. These differences may be attributable to confounding by poorly measure or unmeasured risk factors that vary between communities. Ozor effect estimates were markedly reduced in two-pollutant models (odds ratios not provided). Odds ratios for bronchitic symptoms (per ppb O ₃): Within-community effects: 1.06 (1.00 -1.12) Between-community effects: 0.99 (0.98, 1.01)
McConnell et al. (2002) 12 Southern California communities 1993-1998	1-h max O_3 : Four-year mean (1994-1997): Low pollution communities (n = 6): 50.1 ppb Range 37.7-67.9 High pollution communities (n = 6): 75.4 ppb Range 69.3-87.2	Prospective cohort study of 3,535 children (age 9-16 years) without a history of asthma recruited in 1993 and 1996, and followed with annual surveys through 1998 to determine incidence of new onset asthma. Participation in sports assessed at baseline. Copollutants included PM ₁₀ , PM _{2.5} , NO ₂ , and inorganic acid vapors. Asthma incidence was examined as a function of number of sports played in high and low pollution communities, controlling for age, sex, and ethnic origin.	Asthma incidence was not higher in the high pollution communities as compared with the low pollution communities, regardless of the pollutant used to define high/low. In fact, the high O_3 communities had generally lower asthma incidence. However, in high O_3 communities, there was an increased risk of asthma in children playing three or more sports compared to thos playing no sports; no such increase was observed in the low O_3 communities. No other pollutant showed this association. These results suggest that high levels of physical activity is associated with risk of new asthma development for children living in communities with high O_3 levels. Relative risk of developing asthma in children playing three or more sports compared to those playing no sports: Low pollution communities: $0.8 (0.4, 1.6)$

Reference, Study Location, and Period	Mean O ₃ Levels	Study Description	Results and Comments
United States (cont'd)			
Avol et al. (2001) 12 Southern California communities and six western states Baseline 1994	 8-h avg O₃ (10 a.m6 p.m.): Mean range of baseline levels: 30.4 ppb for Santa 	110 children enrolled in Children's Health Study in 1993 and 1994 followed after moving to different western states. Age 10-11 years at time of enrollment). Follow-up pulmonary function testing carried out in 1998. Change in lung function over time tested in relation to change in exposures to	Negative but nonsignificant associations were found between lun function parameters and changes in O_3 . The relationship was strongest with PM_{10} . Subjects who moved to areas of lower PM_{10} showed greater increases in FEV1 compared subjects who moved to areas with higher PM_{10} .
Follow-up 1998	Maria to 70.8 ppb for Lake Gregory	PM_{10} , NO_2 , and O_3 .	Change in lung function (per 10 ppb increase in changes in annual mean 8-h avg O_3):
	Mean range of changes: 11.7 ppb increase to 27.0 ppb decrease in O_3 levels		FEV ₁ : 0.1 mL (-8.7, 8.9) FVC: -1.4 mL (-10.8, 8.0) MMEF (maximal midexpiratory flow): -3.4 mL/s (-23.6, 16.8) PEF: -8.9 mL/s (-41.6, 23.8)
Ritz and Yu (1999) Southern California 1989-1993	Data not given.	125,573 births within 2 miles of an air monitoring station were examined to determine associations between CO and low birth weight. Copollutants included only as potential confounders.	Exposure to higher levels of ambient CO during the last trimester was associated with a significantly increased risk for low birth weight. Effects of CO appeared more pronounced after adjustme for concurrent exposures to NO ₂ , PM ₁₀ , and O ₃ . Ozone effect estimates were not reported.
Ritz et al. (2000) Southern California 1989-1993	8-h avg O ₃ (9 a.m5 p.m.): Six weeks before birth: 36.9 ppb SD 19.4 Range 3.3-117 ppb	Data on 97,158 singleton births over period 1989-1993 linked to air monitoring data during different periods of pregnancy to determine associations between pollution exposures and preterm birth. Besides O_3 , pollutants of interest included PM_{10} , NO_2 , and CO. Multiple regression analysis used, controlling for maternal age, race, education, parity, and other factors.	Both PM_{10} and CO during early or late pregnancy were associated with increased risk for preterm birth. No associations observed with O_3 .

Reference, Study Location, and Period	Mean O ₃ Levels	Study Description	Results and Comments
United States (cont'd)			
Ritz et al. (2002) Southern California 1987-1993	Data not given.	The effect of air pollution on the occurrence of birth defects was examined using a case-control study design. Analyses focused on CO and O_3 . Six types of cardiac birth defects were investigated – aortic defects, defects of the atrium and atrium septum, endocardial and mitral valve defects, pulmonary artery and valve defects. A 1:10 case-control ratio was achieved for defect-specific analyses. Analyses were conducted using polytomous logistic	Concentration-response patterns were observed for O_3 concentrations during the 2nd month of gestation on aortic artery and valve defects, pulmonary artery and valve anomalies, and conotruncal defects. CO during the 2nd gestational month was found to be associated with ventricular septal defects. The result were inconclusive for NO ₂ and PM ₁₀ . Findings from this study suggest that there may a vulnerable window of development to human malformations. Odds ratios for birth defects (per 10 ppb O ₃ during 2nd month of
	regression. A two-stage hierarchical regression model was used to adjust for multiple comparisons.	Aortic defects: 1.56 (1.16, 2.09) Pulmonary valve defects: 1.34 (0.96, 1.87) Conotruncal defects: 1.36 (0.91, 2.03)	
Künzli et al. (1997); Tager et al. (1998) Los Angeles and San	8-h avg O ₃ (10 a.m6 p.m.):	A pilot cohort study of 130 freshman students (age 17-21 years) at the University of California at Berkeley measured for lung function and histories	Decreased FEF_{25-75} and FEF_{75} were associated with long-term O ₃ exposures. Results were similar whether O ₃ exposure was purely ecologic or incorporated time-activity information. FVC, FEV_1 ,
Francisco, CA; Berkeley, CA 1995	Range of lifetime mean:	of residential locations and indoor/outdoor activity patterns and levels. By design, students had previously resided in one of two metropolitan areas	and nitrogen washout were generally not associated with O_3 leve No evidence for PM_{10} or NO_2 main effects or confounding of O_3 . Similar patterns results using O_3 hours >60 ppb as exposure meth
	Los Angeles: 25-74 ppb	that differed greatly in O ₃ concentrations, San Francisco or Los Angeles. A key goal was to test whether measures of small airways function	instead of daily 8-h avg O_3 (10 a.m6 p.m.). Surprisingly, regio of residence was a major negative confounder as lung function w lower on average among students from the low O_3 city, San
	San Francisco: 16-33 ppb	 (e.g., nitrogen washout, FEF₂₅₋₇₅, FEF₇₅) were sensitive measures of long-term O₃ impacts. Lifetime exposures to O₃, PM₁₀ and NO₂ assigned by interpolation to sequence of residence locations 	Francisco, than among those who had lived in Los Angeles. Ozone exposures were significant predictors only after controllin the regional effect.
		from available monitoring stations. Multiple exposure measures were derived with varying degrees of incorporation of time-activity	Change in lung function (per 20 ppb increase in lifetime mean 8-h avg O_3):
		information, going from ecological concentration to individual time-activity weighted exposure. Performed linear regression analysis of lung function on O_3 exposures, controlling for height, ethnicity, gender, and region.	FEF ₂₅₋₇₅ : -420 mL/s (-886 , 46); 7.2% of population mean FEF ₇₅ : -334 mL/s (-657 , -11); 14% decline of population mea

Reference, Study Location, and Period	Mean O ₃ Levels	Study Description	Results and Comments
United States (cont'd)			
Sherwin et al. (2000) Los Angeles, CA and Miami, FL 1995-1997	Levels not reported.	Lungs obtained from autopsies of young residents (age 11-30 years) of Miami ($n = 20$) and Los Angeles ($n = 18$) who died suddenly from homicide, vehicular accident, or other violence. Semiquantitative measurements of centriacinar region alterations were compared between the two cities.	A greater extent ($p < 0.02$) and severity ($p < 0.02$) of centriacinar region alterations were observed in lungs of the Los Angeles residents than the Miami residents. These differences could not be attributed to smoking history. The higher O ₃ levels in Los Angeles might be responsible for the greater centriacinar region alterations, however correlations could not be performed due to the relatively small number of cases available.
Gong et al. (1998b) Glendora, CA 1977-1987	1-h max O ₃ : Annual means range (1983-1987): 109 ppb to 134 ppb	Longitudinal cohort study of 164 adults (mean age 45 years; 34% males) from a high O_3 community underwent lung function testing in 1986-1987 (T3). Subjects were recruited from a cohort of 208 nonsmoking adults who had been tested on two previous occasions: 1977-1978 (T1) and 1982-1983 (T2). Analyzed changes in lung function at three time points. Subjects were also asked to undergo controlled exposures to 0.40 ppm O_3 over 2 hours with intermittent exercise. 45 subjects agreed to participate. Investigators hypothesized that acutely responsive subjects would show more rapid declines in function over the study period.	Mean FVC and FEV ₁ showed nonsignificant increase from T2 to T3, whereas an earlier analysis of the T1 to T2 change had found a significant decline in function (Detels et al., 1987). There was evidence for 'regression to the mean,' in that subject with larger declines in function from T1 to T2 tended to have larger increases in function from T2 to T3. A consistent decline in FEV ₁ /FVC ratio was observed at all three time points ($p < 0.0001$ by ANOVA). Acute changes in lung function, determined using controlled O ₃ exposures, were not associated with chronic lung function changes
Chen et al. (2002) Washoe County, NV 1991-1999	8-h max O ₃ : 27.23 ppb SD 10.62 Range 2.76-62.44	Birth weight for 36,305 single births analyzed in relation to mean PM_{10} , O_3 , and CO levels in trimesters 1, 2, and 3.	PM_{10} was the only air pollutant associated with decreased birth weights. Ozone levels quite low throughout study.

Reference, Study Location, and Period	Mean O ₃ Levels	Study Description	Results and Comments
United States (cont'd)			
Kinney et al. (1996b) New York City 1992-1993	1-h max O ₃ : Summer (Jul-Sep 1992): 58 ppb Maximum 100 Winter (Jan-Mar 1992): 32 ppb Maximum 64 Summer (Jul-Sep 1993): 69 ppb Maximum 142	Study of 19 healthy adult joggers (age 23-38 years; 18 males) from the Governors Island U.S. Coast Guard facility in New York harbor underwent a series of two bronchoalveolar lavages, first in the summer of 1992 and then again in the winter of 1992. Because the summer of 1992 had lower than average O ₃ levels, six subjects underwent a third bronchoalveolar lavage in the summer of 1993. Study tested whether inflammatory markers in bronchoalveolar lavage fluid were elevated during the summer O ₃ season among adults who regularly exercised outdoors. Outcomes included cell differentials, release of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF- α) in bronchoalveolar lavage cells supernatants, release of reactive oxygen species by macrophages, and concentrations of protein, lactate dehydrogenase, IL-8, fibronectin, a1-antitrypsin (a1-AT), complement fragments (C3a), and prostaglandin E ₂	There was no evidence of acute inflammation in the summer of 1992 compared to the winter; i.e., neutrophil differentials, IL-8 and TNF- α showed no significant differences. However, a measure of cell damage, lactate dehydrogenase, was elevated in the summer, suggesting possible O ₃ -mediated damage to the lung epithelium with repeated exposures to O ₃ while exercising. O ₃ levels during the summer of 1992 were atypically low for New York City. Among six subjects who agreed to undergo a third bronchoalveolar lavage test in the summer of 1993, lactate dehydrogenase was again elevated compared to winter. In addition, IL-8 was elevated in the summer of 1993, suggesting acute inflammation.

Reference, Study Location, and Period	Mean O ₃ Levels	Study Description	Results and Comments
Europe			
Charpin et al. (1999) Seven towns in SE France Jan-Feb 1993	8-h max O ₃ : Range of means: 30.2-52.1 μg/m ³ 24-h avg O ₃ : Range of means: 20.1-42.1 μg/m ³	Cross-sectional cohort study of 2,073 children (age 10-11 years) from 7 towns tested for atopy based on skin prick testing (house dust mite, cat dander, grass pollen, cypress pollen, and <i>Alternaria</i>). Towns represented a range of ambient O_3 and other pollutant (NO ₂ and SO ₂) levels. Tested hypothesis that atopy is greater in towns with higher photochemical pollution levels. To be eligible, subjects must have resided in current town for at least 3 years. Authors stated that Jan to Feb pollution levels correlated with levels observed throughout the year, though no data was given to support this.	In this cross-sectional analysis, no differences in atopy levels were seen across the seven towns. Authors concluded that long-term exposures to oxidant pollution do not favor increased allergy to common allergens. The very low winter O_3 levels monitored and lack of long-term exposure data make it impossible to reach this conclusion in a definitive manner.
Ramadour et al. (2000) Seven towns in SE France Jan-Feb 1993	8-h max O ₃ : Range of means: 30.2-52.1 μg/m ³	Cross-sectional cohort study of 2,445 children (age 13-14 years) who had lived at their current residence for at least three years were recruited from schools in seven towns in SE France. This region has highest O_3 levels in France. Subjects completed ISAAC survey of asthma and respiratory symptoms. In addition to O_3 also collected data on SO ₂ and NO ₂ . Analyzed relationships between asthma and other respiratory conditions with mean air pollution levels across the seven towns using logistic regression, controlling for family history of asthma, personal history of early-life respiratory diseases, and SES. Also did simple univariate linear regressions.	In logistic regressions, no significant associations seen between O and 12-month history of wheezing, history of asthma attack, exercise induced asthma and/or dry cough in last 12 months. In simple bivariate scatterplots of respiratory outcomes versus mean O_3 levels in the seven towns, there appeared to be strong positive relationships (r = 0.71 for wheezing in last 12 months and r = 0.96 for asthma attacks). No data on slope estimates given Concerns about potential confounding across towns limits the interpretation of this study.

Reference, Study Location, and Period	Mean O ₃ Levels	Study Description	Results and Comments
Europe (cont'd)			
Ihorst et al. (2004) Nine communities in Lower Austria Apr 1994-Oct 1997	¹ / ₂ -h avg O ₃ : Quartile ranges: Summer:	Longitudinal cohort study of 2,153 children (median age 7.6 years) were studied for the effects of semi- annual and $3\frac{1}{2}$ -year mean O ₃ concentrations on FVC and FEV ₁ . As a measure of lung growth,	Higher semi-annual mean O ₃ levels were associated with diminished lung function growth during the summer, but increased lung function growth in the winter.
Six communities in Germany Feb 1996-Oct 1999	1st quartile: 22-30 ppb 2nd quartile: 30-38 ppb	the difference between two consecutive values for each child was divided by the number of days between tests. The effect of O_3 exposure on lung	Change in lung function (4th quartile compared to 1st quartile semi-annual O_3 mean):
	3rd quartile: 38-46 ppb 4th quartile: 46-54 ppb	growth was analyzed by linear regression models, after adjusting for sex, age, height at start of the time period, and passive smoking exposure.	Summer: FEV ₁ (mL/100 days): -18.5 (-27.1, -9.8) FVC (mL/100 days): -19.2 (-27.8, -10.6)
	Winter: 1st quartile: 4-12 ppb 2nd quartile: 12-20 ppb		Winter: FEV ₁ (mL/100 days): 10.9 (2.1, 19.7) FVC (mL/100 days): 16.4 (8.3, 24.6)
	3rd quartile: 20-28 ppb 4th quartile: 28-36 ppb		No associations between longer term O_3 exposure (mean summe O_3 over a 3 ¹ / ₂ -year period) and lung function growth was found.
Kopp et al. (2000) Ten communities in Austria and SW Germany Mar 1994-Nov 1995	¹ / ₂ -h avg O ₃ : Stratified by low, medium, high exposure:	Longitudinal cohort study of 797 children with a mean age of 8.2 years. Four pulmonary function tests (FVC, FEV ₁) performed on each child over two summers. Examined association between average daily lung function growth and exposure to O_3 , PM_{10} , NO_2 , and SO_2 . Analysis using linear regression models.	Lower FVC and FEV ₁ increases were observed in children expose to high ambient O_3 levels compared to those exposed to lower O levels during the summer. During the winter, children in higher areas showed a slightly greater increase in FVC and FEV ₁ than those in the low O_3 areas, which might reflect that children catch
	Low: 24-33 ppb Medium: 35-38 ppb		up in lung function deficits during the winter season.
	High: 44-52 ppb		Change in lung function for high versus low O_3 exposure groups (per ppb O_3):
			FEV ₁ : Summer of 1994: -0.303 mL/day, p = 0.007 Winter of 1994/1995: 0.158 mL/day, p = 0.006 Summer of 1995: -0.322 mL/day, p = 0.001

Reference, Study Location, and Period	Mean O ₃ Levels	Study Description	Results and Comments
Europe (cont'd)			
Frischer et al. (1999) Nine communities in Austria 1994-1996	24-h avg O ₃ : Summer: 34.8 ppb SD 8.7 Winter: 23.1 ppb SD 7.7	Longitudinal cohort study of communities from two counties chosen to represent a broad range of O_3 concentrations; a two-fold range in mean levels was observed. 1,150 children (mean age 7.8 years; 52% males) from grades 1 and 2 performed spirometry in spring and fall over three years (total of six measurements per child) to determine if seasonal exposure to O_3 would be associated with diminished lung function growth, especially over the summer seasons. Ozone levels were low during lung function testing periods. Participation rates were high. At baseline, respiratory histories were collected and subjects were tested for allergy by skin prick. Examined association between O_3 levels and change in lung function (FVC, FEV ₁ , and MEF ₅₀ [maximal expiratory flow at 50% of vital capacity]) over each season, controlling for baseline function, atopy, gender, site, environmental tobacco smoke exposure, season, and change in height. Other pollutants studied included PM ₁₀ , SO ₂ , and NO ₂ .	Seasonal mean O_3 exposures were associated with reductions in growth in all three lung function measures. Inconsistent results seen for other pollutants. Summer season lung function growth decrements per unit O_3 were larger when data restricted to childre who spent whole summer in their community. No evidence for nonlinear O_3 effect. No confounding of O_3 effect by temperature ETS, or acute respiratory illnesses. Change in lung function (per ppb O_3): FEV ₁ (mL/day): All subjects: Summer: -0.029 (SE 0.005), p < 0.001 Winter: -0.024 (SE 0.006), p < 0.001 Restricted to subjects who stayed in community: Summer: -0.034 (SE 0.009), p < 0.001 FVC (mL/day): All subjects: Summer: -0.018 (SE 0.005), p < 0.001 Winter: -0.010 (SE 0.006), p = 0.08 Restricted to subjects who stayed in community: Summer: -0.033 (SE 0.007), p < 0.001
Frischer et al. (2001) Nine communities in Austria Sep-Oct 1997	¹ / ₂ -h avg O ₃ : 30-day mean: 31.57 ppb IQR 20.61	A cross-sectional cohort study of 877 school children (mean age 11.2 years). Analyzed for urinary eosinophil protein as a marker of eosinophil activation determined from a single spot urine sample using linear regression models.	Log-transformed urinary eosinophil protein-X concentrations we found to be significantly associated with O_3 levels, after adjusting for gender, site, and atopy. Change in log urinary eosinophil protein-X (per ppb O_3): 0.007 µg/mmol creatinine (SE 0.02), $p < 0.001$

Reference, Study Location, and Period	Mean O ₃ Levels	Study Description	Results and Comments
Europe (cont'd)			
Horak et al. (2002a,b) Eight communities in Austria 1994-1997	Seasonal mean O ₃ : Summer: 31.8 ppb Range 18.7-49.3 Winter: 19.8 ppb Range 12.7-35.9	This longitudinal cohort study continued the work of Frischer et al., 1999 by including one additional year of data, 1997. The major hypothesis considered PM_{10} . For this study, 80.6% of the 975 children (mean age 8.11 years) performed all six lung function tests. A total of 860 children were included in the GEE analysis. Multipollutant analysis for PM_{10} , SO_2 , and NO_2 .	Seasonal mean O_3 showed a negative effect on lung function growth, confirming the previous shorter study. Ozone effects wer robust to inclusion of PM_{10} into the model. However, for FEV_1 in winter, the O_3 effect slightly diminished after including PM_{10} . Taking into account only children who stayed at home the whole summer period did not affect the results. Change in lung function (per ppb O_3): FEV_1 (mL/day): O_3 only models: Summer: -0.021 , $p < 0.001$ Winter: -0.020 , $p < 0.001$ O_3 with PM_{10} models: Summer: -0.020 , $p < 0.001$ Winter: -0.012 , $p = 0.04$
Palli et al. (2004) Florence, Italy 1993-1998	24-h avg O ₃ : Range of monthly means from 1993-1998: Approximately 25-125 ppb	Cohort study of 320 residents (age 35-64 years) in the metropolitan area of Florence enrolled in a study investigating the correlation between levels of DNA bulky adducts and cumulative O_3 exposure. One blood sample was collected for each subject. Various time windows of exposure were examined, ranging from 0-15 days to 0-90 days prior to the blood draw. Simple Spearman correlations between DNA adduct levels and different O_3 exposure time windows were calculated after stratifying by smoking history, area of residence, and population type (random sample or exposed workers).	Consistent relationships between O ₃ exposure and DNA adduct levels were observed only among never smokers. Correlations were highest among never smokers who resided in the urban area and were not occupationally exposed to vehicle traffic pollution. Associations were significant up to a time window of 0-60 days prior to the blood draw in the subgroup of never smokers, with strongest relationships observed between 30-45 days prior.

Reference, Study Location, and Period	Mean O ₃ Levels	Study Description	Results and Comments
Latin America			
Calderón-Garcidueñas et al. (1995) SW Mexico City Nov 1993 Manzanillo, Mexico Jan 1994	SW Mexico City (urban): 1-h avg O ₃ >120 ppb: 4.4 hours/day Maximum 307 ppb Manzanillo, Pacific port (control): No detectable air pollutants.	Cross-sectional cohort study in which nasal lavage samples collected from 38 urban (mean age 12.2 years) and 28 control (mean age 11.7 years) children. Samples analyzed for polymorphonuclear leukocyte counts, expression of human complement receptor type 3 (CD11b) on nasal polymorphonuclear leukocytes, and nasal cytologies.	Nasal cytologies revealed that children from Mexico City had abnormal nasal mucosae, including mucosal atrophy, marked decreases in the numbers of ciliated-type cells and goblet cells, and squamous metaplasia. Exposed children had significantly higher nasal polymorphonuclear leukocyte counts ($p < 0.001$) and nasal CD11 expression ($p < 0.001$) compared to controls. However, the inflammatory response did not seem to correlate with the previou day's O ₃ exposure in a dose-dependent manner, suggesting that there might be a competing inflammatory mechanism at the bronchoalveolar level. Overall, these results suggest that ambien O ₃ produces an inflammatory response in chronically exposed children.
Calderón-Garcidueñas et al. (1997) SW Mexico City Sep-Nov 1995 Manzanillo, Mexico Jan 1995	SW Mexico City (urban): 1-h avg O ₃ >120 ppb: 82 hours/month Maximum 286 ppb Manzanillo, Pacific port (control): No detectable air pollutants.	Longitudinal cohort study of 129 urban and 19 control children aged 6-12 years old with no history of smoking or environmental tobacco smoke exposure and no current medication use for atopy or asthma. Three nasal biopsies obtained at 4-week intervals and analyzed for DNA damage based on the presence of DNA fragments.	Urban children had significantly more DNA fragments than did control children ($p < 0.0001$). Percentage of damaged cells was 82.2% (SE 6.4) in urban children and 17.0% (SE 6.1) in control children. Among urban children, more upper respiratory symptoms and DNA damage was seen with increasing age. Older children spent more time outdoors and engaged in physica activities ($p < 0.001$). Urban children were exposed to a complex pollution mix, makin it difficult to attribute effects to O ₃ specifically. However, autho noted that O ₃ was the pollutant with most exceedences of air quality standard.

Reference, Study Location, and Period	Mean O ₃ Levels	Study Description	Results and Comments
Latin America (cont'd)			
Calderón-Garcidueñas et al. (1999) SW Mexico City May-June 1996 Manzanillo, Mexico May 1996	SW Mexico City (urban): 1-h avg O ₃ >80 ppb: May: 161 hours/month Maximum 232 ppb June: 98 hours/month Maximum 261 ppb Manzanillo, Pacific port (control): Mean <10 ppb	Cross-sectional cohort study of 86 urban and 12 control children aged 6-13 years old with no history of smoking or environmental tobacco smoke exposure and no use of medication for atopy or asthma. Urban children stratified into five groups by school grade level (1st through 5th). Nasal epithelial biopsies obtained from inferior nasal turbinates, and analyzed for single strand DNA breaks and for 8-OHdG (8-hydroxy-2'- deoxyguanosine), a mutagenic lesion produced by $G \rightarrow T$ mutations. These outcomes relate to possible carcinogenic effects of air pollution exposures. Multiple air pollutants monitored in SW Mexico City within 3 miles of urban subject residences.	No respiratory symptoms reported by control children; urban children reported multiple nasal and lung symptoms, including cough and chest discomfort among 46% of urban children, with higher rates for 5th versus 1st graders. 8-OHdG was approximately 3-fold higher in biopsies from urban children ($p < 0.05$), however, no differences by school grade. Single stran DNA breaks were more common in urban versus control children with an age-dependent increase in the urban children ($p < 0.05$). These results suggest that DNA damage is present in the nasal epithelial cells of children living in highly polluted SW Mexico City and may reflect enhanced risk of cancer later in life. Though O ₃ represents an important component of the pollution mix, it is not possible to attribute effects solely to O ₃ .
Calderon-Garcíduenas et al. (2001) SW Mexico City and Veracruz, Mexico 1984-1999	SW Mexico City (urban): 1-h avg O ₃ > 80 ppb: 4 hours/day Maximum 250 ppb Veracruz (control): In compliance for all air criteria pollutants.	Ultra structural nasal pathology in Mexico City children (n = 15) chronically exposed to O_3 , PM, and other pollutants was compared to nasal pathology in children from a city with low pollutant levels (n = 11). All children were clinically healthy, aged 4-15 years. Statistical analyses performed using student's t-test and Fisher's exact test.	Unremarkable mucociliary epithelium in nasal biopsies of control children. The nasal mucosa in Mexico City children were fundamentally disordered. The mucociliary defense mechanisms no longer functioned optimally. Major findings included lack of cohesion between cells, epithelial shedding, necrotic cells, PMN epithelial infiltration, and short or absent cilia.
Calderón-Garcidueñas et al. (2003) SW Mexico City and two control cities, Tuxpam and Tlaxcala, Mexico Jul 1999-Jul 2000	12-h avg O ₃ (8 a.m8 p.m.): SW Mexico City: Jan-Jun 1999: 84.3 ppb Jul-Dec 1999: 60.9 ppb Jan-Jun 2000: 76.8 ppb	174 urban and 27 control children aged 5-17years examined for respiratory damage from chronic exposure to air pollutants. Outcomes included nasal abnormalities, interstitial lung markings assessed by chest X-ray, lung function, and serum cytokines. This cohort study combined cross-sectional (radiology and hematological findings) and longitudinal (spirometry) designs. Also examined PM ₁₀ effects on respiratory damage.	Mexico City children exhibited nasal abnormalities (22%), hyperinflation (67%), interstitial markings (49%), and a mild restrictive pattern by spirometry (10%). In children with increase interstitial markings, FEF ₇₅ values were significantly declined ($r = 0.42$, $p < 0.003$). Mexico City children also had more serum IL-10 and IL-6, and less serum IL-8 than controls. No significant abnormalities were observed in the control children. These results suggest chronic lung effects of O ₃ and related copollutants at the high levels experienced in Mexico City.

Reference, Study Location, and Period	Mean O ₃ Levels	Study Description	Results and Comments
Latin America (cont'd)			
Fortoul et al. (2003) Mexico City May 1997	9-h avg O ₃ (9 a.m6 p.m.): South: 121 ppb North: 89 ppb	Cross-sectional cohort study estimated DNA strand breaks on nasal epithelial cells and leucocytes sampled from asthmatic ($n = 15$) and nonasthmatic ($n = 224$) medical students aged 18-28 years using a single-cell gel electrophoresis assay.	Greater genotoxic damage in asthmatics' nasal epithelial cells $(p < 0.05)$ may reflect their higher vulnerability for DNA damage or a decreased ability to repair it, compared with nonasthmatic subjects.
Gouveia et al. (2004) São Paulo, Brazil 1997	1-h max O ₃ : 63.0 ppb SD 33.5	Birth weight for 179,460 single births analyzed in relation to PM_{10} , SO_2 , CO , NO_2 , and O_3 levels in trimester 1, 2, and 3. GAM and logistic regression models used for analysis.	Exposures to PM_{10} and CO during 1st trimester were found to have significant negative associations with birth weight. No associations observed for the other air pollutants, including O_3
Asia			
Ha et al. (2001) Seoul, Korea 1996-1997	8-h avg O ₃ : 1st trimester: Median 22.4 ppb IQR 13.6 3rd trimester: Median 23.3 ppb IQR 16.1	Examined association between air pollution exposure during pregnancy and low birth weight among all full-term births for a two-year period. These associations were evaluated after adjusting for gestational age, maternal age, parental educational level, parity, and infant sex. Analysis using GAM with default convergence criteria.	 Exposures during the 1st and 3rd trimesters were initially examined separately. For the 1st trimester exposure estimates, positive associations with risk of low birth weight were observed for CO, NO₂, SO₂, and TSP, but not O₃. For the 3rd trimester exposure estimates, a positive association was observed for O₃, bu not the other pollutants. When exposures from both trimesters were examined simultaneously, the risk of low birth weight remained positive for CO, NO₂, SO₂, and TSP during the 1st trimester. However for O₃, the positive association with 3rd trimester exposure was diminished. These results suggest that exposures to CO, NO₂, SO₂, and TSP in the 1st trimester may be risk factors for low birth weight. Relative risk of low birth weight (per 13.6 ppb 8-h avg O₃ for 1st trimester; per 16.1 ppb 8-h avg O₃ for 3rd trimester): Stratified analyses by trimester: 1st trimester: 1.09 (1.04, 1.14) Combined analyses of both trimesters: 1st trimester: 0.96 (0.87, 1.07) 3rd trimester: 1.06 (0.94, 1.18)

Reference, Study Location, and Period	Mean O ₃ Levels	Study Description	Results and Comments
Asia (cont'd)			
Kuo et al. (2002) Central Taiwan 1996	1-h max O ₃ : Annual mean range across 7 of 8 schools: 18.6-27.3 ppb	Cross-sectional study. Respiratory questionnaire administered to 12,926 children aged 13-16 years at eight junior high schools in central Taiwan, to determine asthma prevalence. The association between asthma prevalence and air pollution exposure analyzed by simple Pearson correlations of prevalence with annual mean air pollution levels (O_3 , SO_2 , PM_{10} , and NO_2), and by multiple logistic regression. The 775 asthmatics who were identified then provided follow-up data on symptoms and exacerbations over a one-year period. Simple Pearson correlations were computed between monthly hospital admissions and air pollution levels, not controlling for covariates such as season or weather.	Asthma prevalence ranged from 5.5% to 14.5% across the 8 schools. Based on simple Pearson's correlations, mean O_3 (r = 0.51) and NO ₂ (r = 0.63) levels were correlated with variatio in asthma prevalence. However, only NO ₂ remained significant in multiple logistic regression analyses after adjusting for various potential confounding factors. Longitudinal hospital admissions results are inconclusive due to analytical limitations. Monthly correlations of hospital admissions for asthmatics yielded variable results, all of which would be confounded by temporal factors.

Reference, Location, Study Period	Mean O ₃ Levels	Study Description	Results and Comments
United States			
Pope et al. (2002) U.S. nationwide 1982-1998	1-h max O ₃ : 59.7 ppb SD 12.8 24-h avg O ₃ : 45.5 ppb SD 7.3	Prospective cohort study of approximately 500,000 members of American Cancer Society cohort enrolled in 1982 and followed through 1998 for all cause, cardiopulmonary, lung cancer, and all other cause mortality. Age at enrollment was 30+ years. Air pollution concentrations in urban area of residence at time of enrollment assessed from 1982 through 1998. Other pollutants considered include TSP, PM ₁₅ , PM ₁₀ , PM _{2.5} , PM _{15-2.5} , SO ₄ ²⁻ , SO ₂ , NO ₂ , and CO.	No significant effect of O_3 on mortality risk, though the association of Jul-Sep O_3 concentrations with all causes and cardiopulmonary mortality were positive and near significant. Residential location was known only at enrollment to study in 1982. Thus, exposure misclassification is likely to be high.
Lipfert et al. (2000b; 2003) 32 Veterans Administration hospitals nationwide in the U.S. 1976-1996	95th % O ₃ : 1960-1974: 132 ppb 1975-1981: 140 ppb 1982-1988: 94 ppb 1989-1996: 85 ppb	Cohort study of approximately 50,000 U.S. veterans (all males) diagnosed with hypertension. Mean age at recruitment was 51 years. Exposure to O ₃ during four periods (1960-1974, 1975-1981, 1982-1988, 1989- 1996) associated with mortality over three periods (1976-1981, 1982-1988, 1989-1996). Long-term exposures to TSP, PM ₁₅ , PM ₁₀ , PM ₂₅ , PM ₁₅₋₂₅ , SO ₄ ²⁻ , NO ₂ , and CO also analyzed. Used Cox proportional hazards regression, adjusting for race, smoking, age, systolic and diastolic blood pressure, body mass index, and socioeconomic factors.	Positive average concurrent responses for TSP, SO_4^{2-} , NO_2 , O_3 in individual period analyses, but only O_3 was significant for overall. Two-pollutants analyses indicat that responses to peak O_3 are robust. Relative risks (per mean 95th % O_3 less estimated background level, value not reported): Averaged over all four periods: Exposure concurrent with mortality: O_3 only model: 9.4% (SE 4.6), $p < 0.05O_3 with NO2 model:12.2%$, $p < 0.05Exposure before mortality:O_3 only model:-0.2%$ (SE 6.3) $p > 0.05Analyses were robust to the deletion of diastolic blood pressure in the models, indicating that the association between mortality and O_3 was not mediated through blood pressure.$

Table AX7-7. Effects of Chronic O₃ Exposure on Mortality and Incidence of Cancer

Reference, Location, Study Period	Mean O ₃ Levels	Study Description	Results and Comments
United States (cont'd)			
Abbey et al. (1999) Three California air basins: San Francisco, South Coast (Los Angeles and eastward), San Diego 1977-1992	24-h avg O ₃ : 26.11 ppb SD 7.65 IQR 12.0 O ₃ h/year >100 ppb: 330 h/year SD 295 IQR 551	Prospective cohort study of 6,338 nonsmoking non- Hispanic white adult members of the Adventist Health Study followed for all cause, cardiopulmonary, nonmalignant respiratory, and lung cancer mortality. Participants were aged 27-95 years at enrollment in 1977. 1,628 (989 females, 639 males) mortality events followed through 1992. All results were stratified by gender. Used Cox proportional hazards analysis, adjusting for age at enrollment, past smoking, environmental tobacco smoke exposure, alcohol use, education, occupation, and body mass index. Analyzed mortality from all natural causes, cardiopulmonary, nonmalignant respiratory, and lung cancer. Ozone results were presented for both metrics.	 Of 16 regressions involving O₃ exposures (two genders four mortality causes; two O₃ metrics), 11 were positive and one was statistically significant, for lung cancer in males for O₃ h/year >100 ppb. Relative risks for lung cancer mortality in males: 24-h avg O₃ (per 12.0 ppb): 2.10 (0.99, 4.44) O₃ h/year >100 ppb (per 551 hours/year): 4.19 (1.81, 9.69) Inconsistency across outcomes and genders raises possibility of spurious finding. The lack of cardiopulmonary effects raises plausibility concerns.
Beeson et al. (1998) Three California air basins: San Francisco, South Coast (Los Angeles and eastward), San Diego 1977-1992	Annual mean O ₃ : 26.2 ppb SD 7.7 O ₃ h/year >100 ppb: 333 h/year SD 297	Prospective cohort study of 6,338 nonsmoking non- Hispanic white adult members of the Adventist Health Study aged 27-95 years at time of enrollment. 36 (20 females, 16 males) histologically confirmed lung cancers were diagnosed through 1992. Extensive exposure assessment, with assignment of individual long-term exposures to O_3 , PM_{10} , $SO_4^{2^-}$, and SO_2 , was a unique strength of this study. All results were stratified by gender. Used Cox proportional hazards analysis, adjusting for age at enrollment, past smoking, education, and alcohol use.	Males, but not females, showed moderate association for O ₃ and incident lung cancer risk. Relative risks for lung cancer incident in males: O ₃ h/year >100 ppb (per 556 hours/year): All males: 3.56 (1.35, 9.42) Never smokers: 4.48 (1.25, 16.04) Past smokers: 2.15 (0.42, 10.89)

Table AX7-7 (cont'd). Effects of Chronic O₃ Exposure on Mortality and Incidence of Cancer

Reference, Location, Study Period	Mean O ₃ Levels	Study Description	Results and Comments
Latin America			
Pereira et al. (2005) São Paulo, Brazil Exposure period 1981-1990 Case period 1997	Mean avg of days/year when O ₃ levels exceeded air quality standards (units not provided): Lapa: 40.2 Moema: 19.6 Moóca: 67.1 Sé: 28.2	Annual records on larynx and lung cancer diseases obtained from the São Paulo Cancer Registry. The correlation between average air pollution data from 1981 to 1990 and cases of larynx and lung cancer from 1997 were assessed using Pearson correlation coefficients. Other pollutants examined included PM ₁₀ , NO ₂ , NO _x , SO ₂ , and CO.	Results from this ecologic study provide limited evaluation of the relationship between air pollution and cancer. There was a significant difference in the incidence of larynx and lung cancer among the São Paulo city districts. Of all the pollutants examined O_3 was best correlated with cases of larynx and lung cancer. Pearson correlation coefficient: Larynx cancer: 0.9929 (p = 0.007) Lung cancer: 0.7234 (p = 0.277)

Table AX7-7 (cont'd). Effects of Chronic O₃ Exposure on Mortality and Incidence of Cancer

AX7-2. Description of Summary Density Curves

1 Introduction

The summary density was used in various figures in Chapter 7. It is important that the reader not confuse a summary density with an error density which was also used in Chapter 7 figures. This section will explain the relationship between these two densities, past use of similar densities, the theory behind this density, and explain how to interpret the graph of the summary density.

In explaining the formula for the summary density and the interpretation of it, the
discussion will explain the need for it and its construction. First, the preliminaries will be
discussed. The statistically experienced reader can skip that portion except to read the 'error
density' definition.

11 The summary density has been used before (Flachaire and Nuñez, 2002). There, summary 12 density was weighted by the population size, and was used in an economic context to estimate 13 income distributions. A meta-analytic method for use in the presence of non-normal 14 distributions of effects with varying precision has been developed (Burr and Doss, 2005). This 15 was used in an analysis of effects from multiple studies concerning the association of the Platelet 16 P1A polymorphism of Glycoprotein IIIa and risk of coronary heart disease. A related density 17 estimate, the kernel density estimate, has also been used in a publication (Kochi et al., 2003) 18 referenced in a White Paper (Dockins et al., 2004) presentation to the U.S. EPA Science 19 Advisory Board – Environmental Economics Advisory Board.

20

21 **Preliminaries**

The **error density** is the curve describing the distribution of uncertainty about the mean (or posterior mean) or slope estimate. For a normal density, this is sometimes referred to as the "bell-shaped curve." With a two-sided test, the area under the curve and to the left of the noeffect value for a positive (or right of the value for negative) estimate is less than 2.5% when the effect estimate is statistically significant.

The log odds and the log relative risk estimates are usually considered to have a normal distribution when the estimate is based on a large number of observations. Many times when the health effect is a continuous variable, the estimate (or a transformation of it) is assumed to have a normal distribution. 1 The two-sided confidence limits for a health effect estimates are based on the error density 2 of the estimate. The confidence limits include 95% of the area under the error density with equal 3 portions of area outside the limits.

In displaying confidence limits for the same estimate obtained under different conditions (relative risk for different cities or studies), the **stick diagram** is often used (for an example, see Figure 7-1). The length of the line (stick) represents the confidence limit with the mean at the midpoint of this line. When the confidence limits are for relative risks or odds ratios, the mean estimates may not be at the midpoint because their distributions are skewed. The stick diagram displays the confidence limits side-by-side.

10

11 What is Summary Density?

12 The summary density is the average of the error densities at each possible value of the 13 estimate. Since each estimate is different, the summary density usually will not appear as a 14 normal density. The summary density may have many modes (bumps) or appear skewed.

15

16 Need for Summary Density

17 The summary density is used to portray the distribution of the heterogeneous effects, while 18 accounting for the differing error densities. There are other graphics used for the same purpose. 19 The stick diagram (also called Forest Plots) is a portrayal of the heterogeneity, but is not easy to 20 interpret. The stick diagram gives a distorted view because the effects with the poorest estimates 21 and consequently the least informative have the longest confidence limits; thus, they catch the 22 eye rather than the most informative effects with shorter confidence intervals. A histogram 23 could be constructed from these estimates, but it weighs each estimate equally when some are 24 more precise than others. Summary density curves can be viewed as smoothed histograms. 25 However, unlike a histogram, summary density curves account for varying standard errors of the 26 individual mean effect estimates.

Many readers interpret stick diagrams by noting the fraction of significant effects. This method has limitations, since there may be an overall significant effect detectable by metaanalysis and yet there are many insignificant effects due to low power in the individual studies. The summary density of these effects may show a mode at a value different from zero. This suggests that the insignificant effects tend to cluster around a value different from zero. The 1 2 summary density can also show two or more modes indicating disagreement between estimates, or the presence of a factor (or multiple factors) that varies between estimates.

Any summary density that does not appear to look similar to a normal density may be reflecting a distribution that is not normal. This is important because most meta-analyses assume that the heterogeneity distribution is normal.

Another method for portraying the distribution of effects having different precision is the
 radial plot developed by Galbraith (1994). This is also a good method to summarize various
 effect estimates, but may require more statistical experience to understand.

9

10 **Theory of Summary Density**

11 Statistical science has studied Kernel density estimates (Silverman, 1986) and the summary 12 density belongs to the class called the Gaussian Variable Kernel Density. Gaussian is another 13 name for the normal distribution. The summary density has a variable kernel because variances 14 of each kernel differ since the lengths of the confidence intervals of the estimates are not the 15 same. The kernel is the shape of the distribution used for each estimate. For example, other than 16 the normal density a triangular density could be used. The histogram is a kernel density 17 estimate. The kernel in this case is rectangular (a uniform density). The rectangular shape is not 18 considered a good kernel because as the number of observations increase the histogram 19 converges more slowly to the true density than do other kernels.

The summary density is presented as a graphical description of the heterogeneity. It does not converge to the true distribution of the heterogeneity. To do so in an optimal way, the variance of the error density would have to decrease depending on the number of effects being studied and the standard deviation among them.

24 Rather than the summary density only being a descriptive tool, it can be used for inference. 25 Research has yielded a formula for fixing the variance of the Gaussian kernel so that there is less 26 than a 5% chance of erroneously concluding that a sample from a normal density is multimodal 27 (has more than one bump) (Jones, 1983). Since the kernel of the summary density does not use 28 this formula, the significance of a multimodal summary density is unknown. Also, due to the 29 varying kernel of the summary density, the formula does not apply and likely calculates too 30 small a value. However, simulation could be carried out to compute the p-value for each 31 application of the summary density to data.

1 Extending the Summary Density to an Optimal Kernel Density Estimate

The Guassian kernel density estimate is an average of normal density estimates, and is
given by the equation

$$K(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{e^{-\frac{(x-\mu_i)^2/h^2}{2}}}{h\sqrt{2\pi}}$$
(AX7-1)

4

5

where x is the value (in this case a possible value of the effect) at which the density is to be

6 evaluated, u_i is the effect estimate, *n* is the number of samples (number of effects) and *h* is the

7 standard deviation of each Gaussian density. As the number of samples increases, smaller

8 values of *h* are used so that the kernel density estimate converges to the true density.

$$h_i = \hat{\sigma}_i \tag{AX7-2}$$

10

11 where $\hat{\sigma}_i$ is the estimate of the standard error of the *i*th sample (effect estimate). In this case, the

summary density is called a variable kernel density estimate since the h_i vary.

13 To extent the summary density to an optimal density consider h_i of the form:

$$h_i = \frac{kA}{n^{1/5}\sigma_g} \hat{\sigma}_i \tag{AX7-3}$$

14

15 where *k* is a constant to be determined, σ_g is the geometric mean of the estimated standard 16 errors and

$$A = \min(\hat{\sigma}, IQR / 1.34) \tag{AX7-4}$$

17

- 18 where $\hat{\sigma}$ is the standard deviation of the samples (effect estimates) and *IQR* is their interquartile
- 19 range. Both these statistics are estimates of the true sigma when the distribution of the effects is

normal. The extension of the summary density to an optimal kernel density will be referred to as
 the extension.

3 Next, the choice of the h_i for the extension will be explained. Jones (1986) has shown for 4 the (constant) kernel that when

$$h = \frac{1.25\hat{\sigma}}{n^{1/_{5}}}$$
(AX7-5)

5

6 a normally distributed sample will have a multimodal (more than one mode) kernel estimate 7 5% of the time. The choice of h_i for the extension will coincide with Jones' choice when all 8 the standard errors are equal, and the *IQR*/1.34 is smaller than the estimate of σ , and k = 2.5. 9 However, for the extension a larger k is required to achieve the same critical value (5%) as Jones 10 has achieved. This is due to the kernel being variable and prone to have more than one mode. 11 Also, A is used rather than the more common estimate of σ , since A is used with the optimal 12 kernel.

Another simpler but somewhat unsatisfactory approach is to use Jones' result directly on the effect size (the ratio of the effect estimate to its standard error). The variability of this ratio is approximately constant for effects estimated from long sampling periods.

Probably the best and yet a somewhat subjective method is to adopt aspects of Silverman's method (Silverman, 1986). A multiple of the standard deviation used with the summary density is considered. This multiple is either increased or decreased until the density becomes visually multiple modal. The effects are simulated using *A* as defined by equation AX7-3 for the standard error and the mean of the effects for the error densities.

Whether or not multimodal is present at, say the 5% level can be approximated by fixed or
 sequential sampling methods.

23

24 An Example of Calculating the Summary Density

Table AX7-8 shows the O_3 -associated excess risk estimates for cardiovascular mortality in the warm season from select studies (see Figure 7-22 for the stick diagram of these estimates).

Reference	Study Location	%Excess Risk in Mortality
Moolgavkar (2003) ^a	Los Angeles, CA	1.61 (-0.24, 3.50)
Moolgavkar (2003) ^a	Cook County, IL	6.82 (4.38, 9.32)
Lippmann et al. (2000)	Detroit Area, MI	2.84 (-2.39, 8.35)
Vedal et al. (2003)	Vancouver, British Columbia, Canada	16.37 (-1.14, 36.98)
Anderson et al. (1996)	London, England	4.46 (1.30, 7.72)
Sunyer et al. (1996)	Barcelona, Spain	6.70 (2.15, 11.50)
Simpson et al. (2001)	Brisbane, Australia	7.37 (-3.41, 19.36)

 Table AX7-8. Ozone-Associated Cardiovascular Mortality Risk Estimates

 (95% CI) per Standardized Increment

^a Indicates use of Poisson GAM with default convergence criteria.

The estimated log relative risk is considered normally distributed, so the % change is
 converted to log relative risk per standard unit (RR) by Equation AX7-6:

$$\log(RR) = \log[(\% \text{ change}/100) + 1]$$
 (AX7-6)

3

The standard error of the log(RR) is obtained by first applying the above equation to the confidence limits to get confidence limits for log(RR). Then the difference of these limits divided by 3.92 is used as the standard error of the log(RR).

7

The equation of the normal density is

 $K(x) = \sum_{i=1}^{n} \frac{e^{-\frac{(x-\mu_i)^2}{\sigma_i^2}}}{\sigma_i \sqrt{2\pi}}$ (AX7-7)

9 In the above equation, for one of the effects, the log(RR) is substituted for μ_i and the its standard 10 error is substituted for σ_i . This is done for each of the seven effect estimates. These densities are 11 calculated over a range of *x*. For the figure, *x* has been calculated every 0.0004 units of log(RR) 12 from -0.2 to 0.2. Then for each value of *x*, each of the densities is averaged, and the result is the 1 summary density. In cases where a log transformation was used, the normal density was divided 2 by e^x to convert to the lognormal density.

Figure AX7-1 shows each of the seven error densities and the summary density multiplied
by 7. In the figure, the summary density appears bimodal, but there are too few effects to
confirm this statistically. The smaller mode reflects a clustering of three error densities.

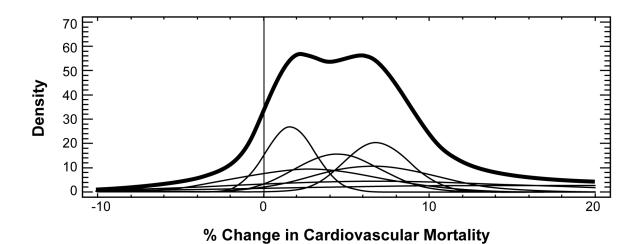


Figure AX7-1. Density curves of the O_3 -associated excess risk of cardiovascular mortality in the warm season per standardized increment (see Section 7.1.3.2). The thicker curve is the summary density curve of the seven effect estimates.

In Chapter 7, the summary density curves in Figures 7-26 and 7-27 were calculated using
 equation AX7-3 with *A* equal to the estimated standard deviation of the effects. Simulation
 indicated the all-year curve in Figure 7-26 was not significantly multimodal.

4

5

Significance of a Summary Density

6 Consider the instance when there is no significant difference between effect estimates, and 7 the pooled analysis finds the overall effect to be significantly positive. In this case, the error 8 density of the overall effect would have less than 2.5% of its area under the curve beyond the 9 value of no effect. However, the summary density of the individual error densities will generally 10 show more than 2.5% beyond the no-effect value. Results from Mortimer et al (2002) reported 11 in Chapter 7 found no significant effects of O_3 on PEF and incidence of symptoms in the individual cities, but observed a significant overall effect when the data from all cities were
combined (see Figures 7-4 and 7-7). The summary density of the error densities from the eight
cities had about 20% to 25% of the area beyond zero. Simulation under these conditions verified
that these larger percentages of the area beyond the value of no effect are common. One of the
reasons for this result is that the summary density does not treat these estimates to be derived
from random estimates of the same single true estimate.

Rather than treating the area beyond the value of no effect in a summary density as an
indication of significance, it should be treated as an indication of disagreement. For example,
there might be a mode at zero and a mode at a positive value. This could be due to some cities
being always below the threshold and other cities being always above the threshold. In this case,
there could be appreciable area below zero and yet there is a positive effect for some of the
cities. Even if this simple case were the true state of nature, the summary density might appear
normal due to wide error densities.

14

15 "Apples and Oranges" Issue

The argument that a summary analysis is comparing apples and oranges or mixing apples and oranges, is based on a variety of reasons. One of these reasons is based on the uncertainty arising when the analysis includes effects that vary on factors other than the factor of interest. The summary density may include such factors, but when the summary density is bimodal there is not an automatic conclusion this occurrence is due to only one factor. It may be spurious, due to multiple factors or an unknown factor.

Another basis for the "apples and oranges" criticism is the lack of commonality among the effects. That is, the effects may vary on a number of factors, but through some averaging process the effect of interest can be estimated, and these other factors will average out. The summary density does not average effects, but considers common location through a clustering of effects. This is a weaker assumption concerning the commonality of the effects.

27 Consider a summary density based on estimates of high precision that cluster together, and 28 one estimate of low precision that is significantly different from the rest (the confidence intervals 29 do not overlap) and is based on an older measurement method. The summary density could 30 average out the outlying value while forming a high mode based on the other effects. Such a 31 graph would lead one to ignore the results of the old measurement method. Ignoring previous results when more precise measurements become available is often practical under such
 circumstances.

3

4 Masking of Heterogeneity

5 When the variances are very large, the kernel density appears to be very similar to a normal 6 density. Thus, large error densities can mask the true pattern of heterogeneity. There may be 7 good reasons to suppose that the heterogeneity is other than normal, and the failure of the 8 summary density to show this pattern is due to wide error densities. When such masking occurs, 9 the summary density cannot reject the assumption of normality of heterogeneous effects in a 10 meta-analysis.

11 Another reason that masking may occur with the summary density is the use of the 12 standard error of the effect as the standard deviation of the effects error density. Kernel density 13 theory permits decreasing the standard deviation when more effects are available. Narrower 14 error densities should clarify the heterogeneity distribution. However, the ideal reduction in 15 variance due to increasing observation size is not large for the numbers of effects usually 16 considered. For example, ideally *h* decreases as $n^{-1/5}$ increases, which is rather slowly.

17

18 **Conclusions**

The summary density is not new. As it stands, it is a kernel density estimate without a fixed value of *h*. Others have fixed *h* either using graphics (Kochi et al., 2003) or ad hoc (Burr and Doss, 2003). Flachaire and Nuñez (2004) used a weighted average of error densities with the weights based on the population size. This and other types of weighting should be considered in the future. Also, improvements to unmask the heterogeneity distribution in a statistically justified manner should be studied.

The summary density is a simple graphical method for portraying the distribution of heterogeneous effects in the presence of effects estimated with different precision. It has graphical advantages over both the stick diagram and the histogram. The summary density can be put on a more firm statistical footing. Inference concerning the presence of modes could be made reliably if p-values were generated from simulation. The summary density is a graphicaldiagnostic tool for the normality assumption in meta-analyses. A meta-analysis method has been developed for use when the distribution of effects is not normal and the precision varies

- (Burr, 2005). There is a need to develop other improvements to unmask the heterogeneity
 distribution in a statistically justified manner.
- The summary density overcomes some issues with reliance on statistical tests. If effects were insignificant, one would expect them to cluster on either side of the no-effect value. If the summary density indicates a mode at a positive effect value, a tentative conclusion is that there is positive nonrandom effect. How one would confirm the mode is statistically significant may need to be studied, and it needs to be kept in mind that effects can include spurious components.
- 9