EPA/600/6-87/008 February 1988

RECOMMENDATIONS FOR AND DOCUMENTATION OF BIOLOGICAL VALUES FOR USE IN RISK ASSESSMENT

EPA Project Officer K. Blackburn

ENVIRONMENTAL CRITERIA AND ASSESSMENT OFFICE OFFICE OF HEALTH AND ENVIRONMENTAL ASSESSMENT OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OH 45268

Ħ

REPRODUCED BY
U.S. DEPARTMENT OF COMMERCE
NATIONAL TECHNICAL
INFORMATION SERVICE
SPRINGFIELD, VA 22161

DISCLAIMER

This document has been reviewed in accordance with U.S. Environmental Protection peer and administrative review policies and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

PREFACE

In the course of developing quantitative risk assessments it is frequently useful to equate exposure doses across studies and species in terms of mg of substance/kg body weight/day. In order to accomplish this for dietary or drinking water exposures, food or fluid intake as well as body weight must be known. Similarly, for inhalation exposures a first step toward estimating dose requires information concerning ventilatory volume. Unfortunately, especially in the older literature, food and fluid consumption are frequently not reported. Body weights may be given only as a single terminal value at studies end. Whole body inhalation exposures generally provide no information concerning ventilatory volumes. As a result, these values are frequently estimated for a particular species in order to facilitate dose estimates.

A need for default values for these parameters was recognized as early as 1980 when body weights and allometric relationships for food consumption, as well as ventilatory volumes were proposed for the rat and mouse (U.S. EPA, 1980). These values, while reasonable estimates, were based upon a very limited data set. Subsequently a variety of default values have been suggested, but a systematic search for and development of a comprehensive data base for this information had not been undertaken.

The goal of the present document was 1) to undertake a thorough and systematic search for biological values (both published and unpublished) including body weights, food consumption, water consumption and ventilatory volume for the species commonly used as toxicological models; 2) to utilize this data base to develop recommendations for default values for these parameters best supported by this data base; and 3) to develop the information in as much detail as possible so that strain and age-specific values could be reflected where possible.

The first draft of this project was prepared under contract No. 68-03-3228 with Syracuse Research Corporation.

TABLE OF CONTENTS

																	Page
1.	OVERVI	EW															1-1
	1.1. 1.2. 1.3. 1.4.	INTRODUCT LIFESPAN BODY WEIG INHALATIO	AND DE	VELOP GROW	MENT TH .			•		:				 •			1-1 1-4 1-6 1-10
2.	LIFESPA	AN, DEVELO	PMENT .	AND R	E PROC	DUCT	ION.										2-1
3.	GROWTH												•				3-1
	3.1.	PRIMATES												 •			3-1
		3.1.1. 3.1.2. 3.1.3.	Humans Rhesus Other	Monk	eys.										•		3-7 3-14 3-21
	3.2.	LABORATOR	Y RODE	NTS .													3-21
		3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5.	Mice. Rats. Guinea Hamste Gerbil	 Pigs rs				•			 	•		 •	:		3-21 3-60 3-94 3-101 3-117
	3.3.	OTHER LAE	BORATOR	Y MAM	MALS												3-125
		3.3.1. 3.3.2. 3.3.3.	Cats. Dogs. Rabbit											 •			3-125 3-131 3-143
	3.4.	LIVESTOCK	ζ				• •							 •			3-152
		3.4.1. 3.4.2. 3.4.3.	Cattle Chicke Pigs.	ns													3-152
	3.5.	WILDLIFE					•										3-164
4.	INHALA	TION RATES	S			•				•		•		 •		•	4-1
5.	WATER	CONSUMPTIO	ON				• •						•				5-1
6.	FOOD C	ONSUMPTION	١										•				6-1
7.	INTERR	ELATIONSH	IPS BET	WEEN	FOOD	ANI) WA	TER	CON	ISUM	PTI	ON			•		7-1
8	REFERE	NCES.															8-1

LIST OF TABLES

No.	<u>Title</u>	<u>Page</u>
1-1	Recommmended Values for Weaning, Puberty and Lifespan	1~5
1-2	Reference Body Weights	1-7
1-3	Allometric Relationships for Estimating Inhalation Rates (I in m³/day), Water Consumption (C in L/day) and Food Consumption (F in kg/day) from Data on Body Weight (kg)	1-11
1-4	Reference Inhalation Rates in m³/day	1-14
1-5	Reference Water Consumption (%/day) for Use with Reference Body Weights	1-17
1-6	Recommended Values for Food Consumption (kg/day)	1-20
2-1	Data on Lifespan, Development and Reproduction for Various Groups of Animals	2-2
2-2	Recommended Values for Weaning, Puberty and Lifespan	2-9
2-3	Proportion of Time from Weaning to Puberty Covered by 90-Day Study	2-14
3-1	Growth and Body Weight Data on Primates	3-2
3-2	Growth and Body Weight Data on Mice	3-25
3-3	Reference Values for Body Weights of Various Strains of Mice	3-52
34	Growth and Body Weight Data on Rats	3-62
3-5	Reference Values for Body Weights of Various Strains of Rats	3-91
3-6	Growth and Body Weight Data on Guinea Pigs	3-95
3-7	Growth and Body Weight Data on Hamsters	3-104
3-8	Growth and Body Weight Data on Gerbils	3-118
3-9	Growth and Body Weight Data on Cats	3-126
3-10	Growth and Body Weight Data on Dogs	3-132
3-11	Growth and Body Weight Data on Rabbits	3-144
3-12	Growth and Body Weight Data on Livestock	3-153
3-13	Growth and Body Weight Data on Wildlife	3-170

LIST OF TABLES

No.	<u>Title</u>	Page
4-1	Inhalation Data on Various Animal Groups	4-2
4-2	Allometric Relationships for Inhalation Rate in m³/day (I) to Body Weight in kg (W)	4-16
5-1	Water Consumption Data on Various Animal Groups	5-3
5-2	Species and Group Specific Allometric Relationships for Water Consumption in $2/day$ to Body Weight in kg (W)	5-14
6-1	Food Consumption Data on Various Animal Groups	6-2
6-2	Species and Group Specific Allometric Relationships for Food Consumption in kg/day (F) to Body Weight in kg (W)	6-14
7-1	Food and Water Consumption of Various Animal Groups	7 -2
7-2	Species and Group Specific Allometric Interrelationships for Food Consumption in kg/day (F), Water in & (C) and Body Weight (W) in kg	7-10

LIST OF FIGURES

No.	<u>Title</u>	Page
2-1	Plot of Relative Maximum Weight vs. Proportion of Recommended Lifespan for Male and Female Humans, Mice, Rats and Gerbils	2-11
2-2	Plot of Relative Maximum Weight vs. Proportion of Recommended Lifespan for Male and Female Humans, Mice, Rats and Gerbils Over the First 30% of Recommended Value for Lifespan	2-12
3-1	Body Weight Data on Male and Female Humans	3-8
3-2	Mean Body Weights of Human Males of Various Ages Over the Periods 1960-1962, 1971-1974 and 1976-1980	3-9
3-3	Mean Body Weights of Human Females of Various Ages Over the Periods 1960-1962, 1971-1974, 1976-1980	3-10
34	Recommended Growth Curves for Human Females	3-11
3-5	Recommended Growth Curves for Human Males	3-12
3-6	Body Weight Data on Male and Female Humans from Birth to 20 Years of Age	3-13
3-7	The Relationship of Height, Weight and Age of Human Males Over the Period 1976-1980	3-15
3-8	The Relationship of Height, Weight and Age of Human Females Over the Period 1976-1980	3-16
3-9	Body Weight Data on Male Rhesus Monkeys	3-17
3-10	Recommended Growth Curve for Male Rhesus Monkeys Extended by Assuming a Mature Body Weight of 12 kg	3-18
3-11	Body Weight Data on Female Rhesus Monkeys	3-19
3-12	Recommended Growth Curve for Female Rhesus Monkeys, Extended by Assuming a Mature Body Weight of 9 kg	3-20
3-13	Body Weight Data on Male and Female Chimpanzees	3-22
3-14	Body Weight Data on Male Marmosets	3-23
3-15	Body Weight Data on Female Marmosets	3-24
3-16	Body Weight Data on Male and Female Mice	3-50
3-17	Recommended Growth Curve for Male B6C3F1 Mice	3-56
3-18	Recommended Growth Curve for Female B6C3F1 Mice	3-57

LIST OF FIGURES (cont.)

No.	<u>Title</u>	Page
3-19	Relationship of "Subchronic" to "Chronic" Time-Weighted Average Body Weights for Mice and Rats	3-59
3-20	Relationship of Body Weight at Weaning to Recommended Subchronic Body Weight for Various Strains of Mice and Rats	3-61
3-21	Body Weight Data on Male and Female Rats	3-81
3-22	Recommended Growth Curve for Male Sprague-Dawley Rats	3-83
3-23	Recommended Growth Curve for Female Sprague-Dawley Rats	3-84
3-24	Recommended Growth Curve for Male Fischer Rats	3-85
3-25	Recommended Growth Curve for Female Fischer Rats	3-86
3-26	Recommended Growth Curve for Male Long-Evans Rats	3-88
3-27	Recommended Growth Curve for Male Wistar Rats	3-89
3-28	Body Weight Data on Guinea Pigs	3-98
3-29	Growth Data on Male Guinea Pigs	3-99
3-30	Growth Data on Female Guinea Pigs	3-100
3-31	Recommended Growth Curve for Male Guinea Pigs	3-102
3-32	Recommended Gorwth Curve for Female Guinea Pigs	3-103
3-33	Body Weight Data on Hamsters	3-109
3-34	Growth Data on Male Hamsters	3-111
3-35	Growth Data on Female Hamsters	3-112
3-36	Recommended Growth Curve for Male Hamsters	3-113
3-37	Recommended Growth Curve for Female Hamsters	3-114
3-38	Recommended Growth Curve for Male Chinese Hamsters	3-115
3-39	Recommended Growth Curve for Female Chinese Hamsters	3-116
3-40	Recommended Growth Curve for Male Mongolian Gerbils	3-123
3-41	Recommended Growth Curve for Female Mongolian Gerbils	3-124
3-42	Recommended Growth Curve for Male Cats	3-129

LIST OF FIGURES (cont.)

No.	<u>Title</u>	Page
3-43	Recommended Growth Curve for Female Cats	3-130
3-44	Growth Data on Dogs	3-139
3-45	Growth Data on Beagle Dogs	3-140
3-46	Recommended Growth Curve for Male Beagle Dogs	3-141
3-47	Recommended Growth Curve for Female Beagle Dogs	3-142
3-48	Growth Data on Rabbits	3-148
3-49	Recommended Growth Curve for Male New Zealand White Rabbits	3-150
3-50	Recommended Growth Curve for Female New Zealand White Rabbits	3-151
3-51	Growth Data on Cattle	3-160
3-52	Growth Curve on Female Hereford Cattle	3-161
3-53	Growth Curve on Cattle, Excluding Female Hereford Cattle	3-162
3-54	Growth Data on Chickens	3-163
3-55	Growth Data on Male White Leghorn Chickens	3-165
3-56	Growth Data on Female White Leghorn Chickens	3-166
3-57	Growth Data on Domestic and Miniature Pigs	3-167
3-58	Growth Data on Larger Domestic Pigs	3-168
3-59	Growth Data on Smaller Domestic Pigs	3-169
3-60	Recommended Growth Curve for Male Mink	3-174
3-61	Recommended Growth Curve for Female Mink	3~175
4-1	Linear Plot of the Relationship of Minute volume (%) to Body Weight (kg)	4-10
4-2	Log-Log Plot of the Relationship of Minute Volume (1) to Body Weight (kg)	4-11
4-3	Allometric Relationship of Minute Volume (2) to Body Weight (kg) for All Species	4-14

LIST OF FIGURES (cont.)

No.	<u>Title</u>	Page
4-4	Allometric Relationship of Minute Volume (1) to Body Weight (kg) for Humans	4-17
4~5	Allometric Relationship of Minute Volume (2) to Body Weight (kg) for Monkeys	4-18
4~6	Allometric Relationship of Minute Volume (1) to Body Weight (kg) for Individual Rhesus Monkeys	4-19
4-7	Allometric Relationship of Minute Volume (1) to Body Weight (kg) for Humans and Monkeys Combined	4-20
4-8	Allometric Relationship of Minute Volume (2) to Body Weight (kg) for Guinea Pigs	4-21
4-9	Allometric Relationship of Minute Volume (2) to Body Weight (kg) for Hamsters	4-22
4-10	Allometric Relationship of Minute Volume (2) to Body Weight (kg) for Mice	4-23
4-11	Allometric Relationship of Minute Volume (2) to Body Weight (kg) for Rats	4-24
4-12	Allometric Relationship of Minute Volume (2) to Body Weight (kg) for Cats	4-25
4-13	Allometric Relationship of Minute Volume (1) to Body Weight (kg) for Dogs	4-26
4-14	Allometric Relationship of Minute Volume (2) to Body Weight (kg) for Rabbits	4-27
5-1	Plot of Water Consumption (%/day) vs. Body Weight (kg) for All Species	5-15
5-2	Allometric Relationship of Drinking Water (%/day) to Body Weight (kg) for All Species, Except Marmots	5-16
5-3	Allometric Relationship of Drinking Water (%/day) to Body Weight (kg) for Primates	5-17
5 -4	Allometric Relationship of Drinking Water (1/day) to Body Weight (kg) for Laboratory Mammals (Gerbils, Guinea Pigs, Hamsters, Mice, Rats, Cats, Dogs and Rabbits)	5-18
5-5	Allometric Relationship of Drinking Water (%/day) to Body Weight (kg) for Dogs	. 5-19

LIST OF FIGURES (cont.) Title Page No. Allometric Relationship of Drinking Water (2/day) to Body 5-6 5-20 Plot of Food Consumption (kg/day) vs. Body Weight (kg) 6-1 6-11 Allometric Relationship of Food Consumption (kg/day) to 6-2 Body Weight (kg) for All Species, Except Marmots. 6-13 6-3 Allometric Relationship of Food Consumption (kg/day) to 6-15 Allometric Relationship of Food Consumption (kg/day) to 6-4 Body Weight (kg) for Laboratory Mammals (Gerbils, Guinea Pigs. Hamsters, Mice, Rats, Cats, Dogs and Rabbits) 6-16 Allometric Relationship of Food Consumption (kg/day) to 6-5 Body Weight (kg) for Laboratory Rodents (Gerbils, Guinea 6-17 6-6 Allometric Relationship of Food Consumption (kg/day) to 6-18 6-7 Allometric Relationship of Food Consumption (kg/day) to Body Weight (kg) for Guinea Pigs. 6-19 6-8 Allometric Relationship of Food Consumption (kg/day) to 6~20 Allometric Relationship of Food Consumption (kg/day) to 6-9 6~21 6-10 Allometric Relationship of Food Consumption (kg/day) to Body Weight (kg) for Rats. Including Pregnant and 6-22 Allometric Relationship of Food Consumption (kg/day) to 6-11 Body Weight (kg) for Rats, Excluding Pregnant and 6-23 Allometric Relationship of Food Consumption (kg/day) to 6-12 Body Weight (kg) for Cats 6-24 6-13 Allometric Relationship of Food Consumption (kg/day) to 6-25 Allometric Relationship of Food Consumption (kg/day) to 6-14 Body Weight (kg) for Chickens 6-26

	LIST OF FIGURES (cont.)	
No.	<u>Title</u>	Page
7-1	Plot of Food Consumption (kg/day) vs. Water Consumption (£) for All Species	7 -8
7-2	Allometric Relationships of Food Consumption (kg/day) to Water Consumption (g/day) for Animals on Dry Diets	7-11
7-3	Allometric Relationships of Food Consumption (kg/day) to Water Consumption (l/day) for Animals on Moist Diets	7-12
7-4	Allometric Relationships of Food Consumption (kg/day) to Water Consumption (l/day) for Laboratory Mammals (Gerbils, Guinea Pigs, Hamsters, Mice, Rats, Cats, Dogs and Rabbits) on Dry Diets	7-13
7-5	Allometric Relationships of Food Consumption (kg/day) to Water Consumption (%/day) for Laboratory Rodents (Gerbils, Guinea Pigs, Hamsters, Mice and Rats on Dry Diets	7-14
7-6	Allometric Relationships of Food Consumption (kg/day) and Water Consumption (l/day) to Body Weight for Animals on Dry Diets	7-15
7-7	Allometric Relationships of Food Consumption (kg/day) and Water Consumption (%/day) to Body Weight for Animals on Moist Diets	7-16
7-8	Plot of Food Consumption (kg/day) vs. Water Consumption (%/day) vs. Body Weight (kg) for Animals on Dry Diets	7-17
7-9	Plot of Food Consumption (kg/day) vs. Water Consumption (g/day) vs. Body Weight (kg) for Animals on Moist Diets	7-18

LIST OF ABBREVIATIONS

OVERVIEW

1.1. INTRODUCTION

This report provides recommendations for and documentation of some biological variables that are used most often in risk assessment: lifespan, body weight, inhalation rate, food consumption and water consumption. These values are used in risk assessment to adjust cancer potency factors or to convert exposure data (e.g., ppm chemical in air or water) to units of dose (mg chemical/kg body weight/day or mg chemical/day) for exposure assessment or route-to-route extrapolation. Values are presented for nonhuman animals only. For information concerning human biological values the reader is referred to U.S. EPA (1985a).

These recommended values should be used only when the study under review does not report values for the biological variables required for the risk assessment or when the values reported in the study under review are not plausible because of poor reporting or typographical error. In general, these recommended values should be used only for the kinds of adjustments or conversions discussed above and should not be used as a surrogate for "historical control" data by which the response in an animal group is assessed (e.g., decreased body weight or survival).

This report is a substantial expansion and revision of an earlier effort (U.S. EPA, 1985b) that was in turn an effort to provide further documentation of recommended values for humans, rats and mice, proposed and used by the Agency (U.S. EPA, 1980) to prepare ambient water quality criteria. When appropriate, the earlier reports are referred to for comparison. Since this report contains much information not used in the previous versions, virtually all of the recommended default values have been changed. Given the many uncertainties in risk assessment (relatively few of which are

1988A 1-1 09/08/87

Agency's risk assessments by the RFD and CRAVE committees, and the inherent variability of the data on which the new recommended values are based, there does not appear to be a compelling reason to revise the existing risk assessments solely on the basis of revised recommended values. This effort to revise the recommended values is simply an ongoing component of Agency and risk assessment community efforts to improve the scientific basis from which risk assessments are made.

Well-documented and relatively accurate biological variables are needed to provide some level of consistency among risk assessments and to increase the quality and decrease the uncertainty of dose-response assessments. Inconsistency in assumptions concerning body weight and intake rates can be a source of unnecessary and fruitless controversy. As discussed in some detail by Snyder et al. (1981) in recommending standard biological values for the ICRP Reference Man, the actual magnitude of a recommended value may be less critical than the use of a uniform value. With this uniformity, assessments made by different individuals or groups at different times may be compared more clearly, allowing disagreements to focus on important scientific judgments rather than more mundane and trivial differences in assumptions of body weight and other biological variables. By documenting these biological variables and providing a rationale for the recommended values, this report at least provides a basis for further discussion from which a consensus can be reached.

While the absolute magnitude of the recommended values may be of secondary importance in risk assessment, biological values must be reasonably accurate and reflect the available information if dose-response assessments are to be made properly. This is obvious in considering the mechanics of risk assessment, in which data from several species must often be compared to determine differences in sensitivity among species. Such comparisons are usually made on mg/kg/day estimates of dose from studies involving exposure of the test animals to the compound in air, food or drinking water. In making such comparisons, the use of an inappropriately high assumed value for air, food or water intake along with an inappropriately low assumed value for body weight would overestimate the sensitivity of the species. This error combined with the converse error on a different species could substantially confound the risk assessment to the point where the most sensitive species and most critical effect are incorrectly identified. Consequently, this report attempts to be comprehensive in the summary and critical in the analysis of the biological variables of concern so that the recommended values accurately and consistently reflect what is known.

This report contains seven chapters:

- 1. Overview
- 2. Lifespan and Development
- 3. Body Weight and Growth
- 4. Inhalation Rates
- 5. Water Consumption
- 6. Food Consumption
- 7. Relationship of Food and Water Consumption

This chapter includes a summary of the recommended values needed most often and is intended to be used as a separate document, if needed. While it contains little documentation or discussion, the other chapters contain detailed data summaries and analyses as well as some less commonly used recommended values. For instance, Chapter 3 includes recommended body weights on >30 strains of mice, none of which are commonly (but all of which have been at times) used in toxicity studies. These recommended body weights could be used, based on the relationships discussed in other

chapters, to estimate strain-specific rates for the intake of air, food and water. When such strain-specific information is available, it is noted in Chapter 1, and reference is made to the appropriate section or summary table.

1.2. LIFESPAN AND DEVELOPMENT

Table 1-1 provides recommended values for weaning, puberty and lifespan for most commonly used laboratory animals. Other developmental and reproductive data (e.g., gestation period, average litter size, breeding life) are given in Chapter 2. The recommended lifespans for mice and rats are the same as those in U.S. EPA (1980, 1985). These are not identical to actuarial life expectancies at birth or theoretical maximum lifespan potentials, which have very specific definitions in different bodies of literature. Nonetheless, the recommended values in Table 1-1 are representative of the species and consistent with the documented survival data. As noted in the footnote to Table 1-1, substantial differences have been documented in the survival rates of rats and mice, which are related to both differences in strain as well as holding conditions. Because of the many factors that can affect lifespan and survival, the recommended values for lifespan should not be used to assess the significance of survival data reported in toxicity studies unless the extent of the decrease is judged substantial, in which case, the specific recommended value is of little importance. The recommended values for weaning and puberty are reasonably well-documented. Estimates of ages at weaning and puberty could be, but have not been, made from allometric relationships. All of the recommended values summarized in Table 1-1, however, are typical and are taken from published observations.

1988A 1-4 09/03/87

TABLE 1-1

Recommended Values for Weaning, Puberty and Lifespan

Group Species	Weaning (days)	Puberty (days)	Lifespan (years)
PRIMATES			
Monkey, rhesus	130	1825	35
Baboon	NR	(5 years) NR	55
Marmoset	NR	NR	40
_ABORATORY RODENTS			
Mice	21	50	2*
Rats	21	56	2*
Guinea Pigs Hamsters	14 21	70 60	6 2.5
Gerbils	21	70	3
OTHER LABORATORY MAM	MALS		
Cats	49	240	15
Dogs, Beagles	42	240	15
Rabbits, (New Zealand)	56	195	6
OTHER ANIMALS			
Chicken	NA	NA	24
Pig	. NR	150	27
Mink	56	300	NR

^{*}Substantial strain variability

NA = Not applicable; NR = not reported

1.3. BODY WEIGHT AND GROWTH

Recommended body weights, given by species, strain and sex when possible, are given in Table 1-2. Unlike previous reports in which a single body weight was given for each animal, Table 1-2 provides four categories of body weights: weaning, "subchronic," "chronic" and mature. All weaning body weights are approximated from published growth curves. Since many toxicity studies provide information on the weight of the animals at the start of the study (usually at weaning or shortly thereafter), but may not give weights over the course of the study, the weaning weights are included to help the risk assessor determine if the reported weaning weight is typical for the strain of animal used or to identify a representative strain of the species if the strain is not specified in the study. As discussed in Chapter 2, weights at weaning have not been demonstrated to be reliable for estimating other weight values among or within species.

Mature weights are rough approximations of the animal weight as growth begins to plateau. These values are time-specific for each species and can be used to extend growth curves when needed.

The subchronic and chronic body weights are the time-weighted average (TWA) body weights for laboratory rodents and other laboratory mammals over the period from weaning to 90 days ("subchronic) and from weaning to 730 days postweaning (chronic). Subchronic and chronic are operationally defined in order to make the values applicable to standard 90-day and 2-year bioassays, respectively. These can be used not only to estimate average body weights but also, with the allometric relationships discussed below and summarized in Table 1-3, to calculate intake estimates for standard subchronic and chronic toxicity studies. The subchronic and chronic body weights for mammals are age-specific as specified in Table 1-2.

			TABLE 1-2			
	_	Referenc	Reference Body Weights (kg)	ıts (kg)		
Group	Species/Strain	Sex	Weaning	Subchronic	Chronic	Mature
Primates	monkey, rhesus	£ ⊬	1.0		10.9 8.0 (0-35 years)	12 9 (10-35 years)
	chimpanzee	Z	3.8		19.25 (0-55 years)	20 (adult)
Laboratory rodents	mice/BAF1	Σ ι⊥	0.008	0.0223	0.0261	0.035 0.030 (1 year)
	mice/86C3F1	x	0.009	0.0316 0.0246	0.0373 0.0353	0.040 0.035 (1 year)
	rats*/ Fischer 344	x u	0.031 0.030	0.180 0.124	0.380	0.40 0.25 (1 year)
	rats/Long-Evans	2 . rr	0.040	0.248	0.472	0.50 0.35 (1 year)
	rats/ Osborne-Mendel	Σι∟	0.053	0.263	0.514	0.55 0.40 (1 year)

1988A 1-7 09/03/87

	Species/Strain	Sex	Weaning	Subchronic	Chronic	Mature
Laboratory rodents (cont.)	rats/ Sprague-Dawley	Σٮ	0.057	0.267	0.523	0.60 0.35 (1 year)
	Wistar*	Σ ι	0.053	0.21 <i>7</i> 0.156	0.462 0.297	0.50 0.32 (1 year)
	guinea pigs	∑ "	0.156 0.146	0.48 0.39	0.89 0.86	1.0
	hamsters/ golden Syrian	Σu	0.041	0.097 0.095	0.134 0.145	0.15 0.16
	hamsters/Chinese and Djungarain	Σu	0.015 0.015	0.03 0.025	0.041 0.038	0.040
	gerbils/ Mongolian*	E 4.	0.017	0.048 0.040	0.084	0.10
Other laboratory mammals	cats	£ u.	0.62 0.58	1.72	3.66 2.96	4.0 3.1
	dogs/beagles*	∑ "	2.05 1.82	2.40 1.97	10.8 10.1	14 14
	rabbits/ New Zealand*	£س	1.95 2.04	2.86 3.10	3.76 3.93	4.0

1988A

1-8

08/07/87

	_	_	
	Č		
(J	
		_	
	9	יייי	

Group	Species/Strain	Sex	Weaning	Subchronic	Chronic	Mature
Other animals*	chicken*/ ⊌hite leghorn	Σ ιτ		See growth curves Figures 3-55 and 3-56	curves 5 and 3-56	>1.3 >1.6
	pig/domestic miniature	Z				200-250 70-75
	mink	Σι∟	0.50	See growth curves Figures 3-60 and 3-61	curves 3 and 3-61	1.7

See Table 3-3 for mice, Table 3-5 for rats and Chapter 3 for other *More specific values available. species. For virtually all animal species, adequate data are available to construct growth curves from which TWA body weights for other durations could be calculated. For rats, mice, dogs, hamsters, chickens and gerbils, additional data are presented in Chapter 2, from which additional strain-specific values could be derived.

1.4. INHALATION RATES

Table 1-3 summarizes allometric equations for estimating the daily intake of air, water and food, based on body weight for all species combined as well as for several individual species and animals groups. Speciesspecific equations should be used, if available, but if they are not available, equations for the most specific animal subgroup (e.g., primates or laboratory mammals) should be used. If no group equation is available, the allometric equation for all species combined should be used. rationale for this selection process is 2-fold. First, it best reflects the available data on the species or group of concern. Second, allometric relationships based on all species combined, while generally yielding high correlation coefficients and high levels of statistical significance, are not likely to be the same as true allometric relationships within a species. The reason for this is that young, growing members of a "heavier" species will consume more food and water than mature (nongrowing) members of a "lighter" species, both having the same body weight (e.g., a 10-pound dog and a 10-pound child). The significance of age specificity for allometric relationships in inhalation rates has been reviewed by Mortola (1987).

Based on the recommended body weights summarized in Table 1-2 and the appropriate allometric equations given in Table 1-3, corresponding recommended inhalation rates, water consumption rates and food consumption rates are given in Tables 1-4, 1-5 and 1-6, respectively.

1988A 1-10 09/25/87

TABLE 1-3

Allometric Relationships for Estimating Inhalation Rates (I in m³/day),
Water Consumption (C in l/day) and Food Consumption (F in kg/day)
from Data on Body Weight (kg)

Animal Group	Allometric Equation	r²	Figure No.
	INHALATION RATES	100	
All species combined	I = 0.66 W 0.7579	0.96	4-3
Monkeys	I = 0.81 W0.4862	0.72	4-5
Guinea pigs	T = 0.44 W0.5156	0.32	4-8
Hamsters	T = 0.50 W0.9017	0.86	4-9
Mice	T = 7.99 W1.0496	0.87	4-10
Rats	T = 0.80 W0.8206	0.77	4-11
Cats	T = 0.32 W0.5945	0.81	4-12
Dogs	T = 0.67 W0.7091	0.89	4-13
Rabbits	I = 0.46 W0.8307	0.88	4-14
	WATER CONSUMPTION RATE	S	
All species combined	$C = 0.11 \text{ W}_{0.7872}$	0.93	5-2
Primates	C = 0.09 W0.7945	0.95	5-3
Laboratory mammals	c = 0.70 W0./377	0.88	5-4
Chickens	C = 0.13 W 0.7555	0.74	5-6
	FOOD CONSUMPTION RATE	S	
All species combined	$F = 0.065 \text{ W}^{0.7919}$	0.95	6-2
Laboratory mammals	$F = 0.056 \text{ W} \cdot 0.6611$	0.87	6 4
Gerbils	F = 0.112 W1.0583	0.80	6-6
Guinea pigs	F = 0.041 W 0.3308	0.75	6-7
Hamsters	F = 0.082 W 0.9285	0.96	6-8
Rabbits	F = 0.041 W 0.7898	0.73	6-13
Chickens	F = 0.075 W 0.8449	0.97	6-14
BODY	WEIGHT TO FOOD OR WATER C	ONSUMPTION	
Dry diet: all species	F = 0.049 W 0.6087	(0.90)	Eq. 7-5, 7-
•	$C = 0.093 W^{0.7584}$	(0.89)	Eq. 7-6, 7-
Wet diet: all species	F _ N N5A (0.945)	(0.95)	Eq. 7-7, 7-
	C = 0.009 F1.2044	(0.91)	Eq. 7-8, 7-

TABLE 1-3 (cont.)

Animal Group	Allometric Equation	Γ2	Figure No.
	FOOD VS. WATER CONSUMPT	ION	
Dry diet: all species	$F = 0.31 C^{0.7923}$ $C = 3.59 F^{0.2041}$	(0.95)	Eq. 7-1a, 7-2 Eq. 7-1b
Wet diet: all species	F = 2.09 C0.7389 C = 0.39 F1.2447	(0.92)	Eq. 7-2a, 7-3 Eq. 7-2b
Laboratory mammals: (dry diet)	F = 0.28 c0.7613 C = 0.31 F1.2226	(0.93)	Eq. 7-3a, 7-4 Eq. 7-3b
Laboratory rodents: (dry diet)	F = 0.16 C0.6426 C = 0.25 F1.2943	(0.78)	Eq. 7-4a, 7-5 Eq. 7-4b

TABLE 1-4

Reference Inhalation Rates in m³/day

	Species/Strain	Sex	Weaning	Subchronic	Chronic	Mature
Primates mo	monkey, rhesus	5 u.	0.81		2.6	2.7
ch	chimpanzee	NS	1.5		3.4	3.5
Laboratory rodents mi	mice ^a /BAFl hybrid	Σ "	0.013 0.007	0.037	0.043 0.037	0.059
Ę	mice/B6C3F1	£ u.	0.014 0.017	0.053 0.040	0.063	0.068
ra	rats ^a /Fischer 344	£ u.	0.046 0.045	0.19 0.14	0.36	0.37
įe	mice/Long-Evans	∑ u.	0.057 0.055	0.25 0.19	0.43	0.45
į	mice/Osborne-Mendel	£ u.	0.072 0.071	0.27 0.21	0.46	0.49
ra	rat∕Sprague-Da w ley	Σ ι⊥	0.076 0.075	0.27	0.50	0.53

Group	Species/Strain	Sex	Weaning	Subchronic	Chronic	Mature
Laboratory rodents (cont.)	rat/Wistar ^a	£	0.072 0.072	0.23 0.17	0.42 0.30	0.45 0.31
	guinea pigs	∑	0.17 0.16	0.30	0.41	0.44
	hamsters/golden Syrian	Σ ι	0.028 0.026	0.061 0.060	0.082	0.090
	Chinese and Djungarain	∑	0.01 0.01	0.021 0.018	0.028	0.027
	gerbils ^b /Mongolian ^a	E 4.	0.013 0.012	0.032 0.027	0.054	0.063 0.057
Other Laboratory Mammals	cats	∑	0.24	0.44	0.69	0.73
	dogs/beagles ^a	∑	1.11 1.02	1.24 1.08	3.62 3.45	4.35
	rabbits/New Zealand ^a	Σ 4	0.80 0.83	1.10 71.1	1.38	1.46 1.49

Group	Species/Strain	Sex	Weaning	Subchronic Chronic	Chronic	Mature
Other Animals ^{a,c}	pig/domestic miniature	NS				40 17
	mink	Σ u	0.39 0.36	See growth Figures 3-	See growth curves Figures 3-60 and 3-61	0.99

aMore specific values available. See Chapter 3.

 $^{\mathrm{b}}$ Species-specific allometric relationship not available. Based on allometric equation for hamsters that are similar in body weight.

dre similes for this group are calculated from general allometric equation.

NS = Not specified

TABLE 1-5

Reference Water Consumption (1/day) for Use with Reference Body Weights

Group	Species/Strain	Sex	Weaning	Subchronic	Chronic	Mature
Primates	monkey, rhesus	Σ ⊔	0.090		0.60	0.65
	chimpanzee	NS	0.26		0.94	0.97
Laboratory rodents ^a	mice ^b /BAF1 hybrid	= -	0.0028 0.0026	0.0060	0.0068	0.0084
	mice/B6C3F1	Σ ⊥	0.0031	0.0078 0.0065	0.0088	0.0093
	rats ^b /Fischer 344	∑ '-	0.0077 0.0075	0.028 0.021	0.049	0.051
	mice/Long-Evans	Σ ∟	0.0093	0.036 0.028	0.057	0.060
	mice/Osborne-Mendel	z u.	0.011 0.01	0.037 0.031	0.061	0.064
	rat/Sprague-Dawley	≖ ਘ	0.012 0.012	0.037	0.062	0.069

Group	Species/Strain	Sex	Weaning	Subchronic	Chronic	Mature
Laboratory rodents ^C (cont.)	rat/Wistar ^b	æ ∟	0.011 0.01	0.032	0.057	0.060
	guinea pigs ^a	2 . u.	0.025	0.058 0.050	0.092	0.010
	hamsters ^a /golden Syrian	∑ ⊥	0.0095	0.018 0.018	0.023	0.025
	Chinese and Djungarain	£ ∟	0.0045	0.0075 0.0066	0.0095	0.0093
	gerbils ^a ∕Mongolian ^b	2 . u.,	0.0049	0.011 0.0093	0.016 0.015	0.018 0.017
Other laboratory mammals	cats ^c /dry diet	2 E 14.	0.065	0.14 0.13	0.25 0.21	0.27
	cats ^c /moist diet	E	0.005	0.017 0.015	0.043 0.033	0.048
	dogs ^c /beagles ^b dry diet	2 u.	1.16 0.15	0.18 0.16	0.57	0.69
	dogs ^c /beagles ^b moist diet	£ ∟	0.021 0.019	0.025 0.020	0.16 0.15	0.22
	rabbits ^a /New Zealand ^b	£ ∟.	0.16 0.17	0.22 0.23	0.27 0.27	0.28

1988A 1-17 09/02/87

Group	Species/Strain	Sex	Weaning	Subchronic	Chronic	Mature
Other Animals ^{b,c}	pig/domestic miniature	NS				7.8
	minkd	E 4.	0.064	See growth curves Figures 3-60 and 3-61	curves 0 and 3-61	0.17

^aBased on allometric equation for laboratory mammals

^bMore specific values available. See Chapter 3

 $\stackrel{-}{\sim}$ CFor cats and dogs, separate equations are given for dry and moist diets. See Table 7-2.

dfor mink, a moist diet is assumed. See Table 7-2.

NS = Not specified

TABLE 1-6

Recommended Values for Food Consumption (kg/day)

Group	Species/Strain	Sex	Weaning	Subchronic	Chronic	Mature
Primates ^a	monkey, rhesus	Σ ∟	0.065 0.065		0.43	0.46
	chimpanzee	NS	0.19		0.68	0.70
Laboratory rodents	mice ^{b.c} /BAF1 hybrid	Σ ∟	0.0023 0.0021	0.0045 0.0043	0.0050	0.0061
	mice/86C3F1	Σ ∟	0.0025 0.0028	0.0057 0.0048	0.0064	0.0067 0.0067
	rats ^{b,c} /Fischer 344	Σ ∟	0.0056 0.0055	0.018	0.030	0.031
	mice/Long-Evans	Σ ∟	0.0067	0.022 0.018	0.034 0.028	0.035 0.028
	mice/Osborne-Mendel	Σ ∟	0.0080	0.023 0.019	0.036 0.030	0.037
	rat∕Sprague-Dawley	Σ ∟	0.0084	0.023	0.036 0.027	0.040

Group	Species/Strain	Sex	Weaning	Subchronic	Chronic	Mature
Laboratory rodents (cont.)	rat/Wistar ^c	Σιμ	0.080	0.020 0.016	0.034 0.025	0.035
	guinea pigs	x u	0.022	0.032 0.030	0.039 0.039	0.041
	hamsters/golden Syrian	Σ ∟.	0.0042	0.0092 0.0092	0.013	0.014
	Chinese and Djungarain	æ	0.0017 0.0017	0.0032 0.0027	0.0042	0.0041
	gerbils/Mongolian ^c	Σ ⊥_	0.0015	0.0045 0.0037	0.0081	0.0098
Other laboratory mammals	catsd/dry diet	x	0.036 0.035	0.068 0.062	0.11 0.095	0.11 0.098
	cats ^{d/moist} diet	Σ u	0.034	0.090 0.078	0.18 0.15	0.20
	dogsd/beagles ^c dry diet	Σ ∟	0.075 0.071	0.083 0.074	0.21 0.20	0.24
	dogsd/beagles ^c moist diet	2 u.	0.11 1.82	0.025 0.10	0.16 0.48	0.22
	rabbits/New Zealand ^c	x	0.069	0.094	0.12	0.12

1988A

Group	Species/Strain	Sex	Weaning	Subchronic	Chronic	Mature
Other Animals ^c	pig/domestic miniature	NS				4.5 1.9
	mink ^e	£ u.	0.028	See growth Figures 3-(See growth curves Figures 3-60 and 3-61	0.089

aBased on general allometric equation. See Table 6-2.

bBased on allometric equation for laboratory mammals

ריי כאסר specific values available. See Chapter 3.

dfor cats and dogs, separate equations are given for dry and moist diets. See Table 7-2.

eFor mink, a moist diet is assumed. See Table 7-2.

NS = Not specified

2. LIFESPAN, DEVELOPMENT AND REPRODUCTION

Table 2-1 summarizes data on lifespan, development and reproduction for a variety of species. Recommended values for weaning, puberty and lifespan are summarized in Table 2-2. Other values of interest in risk assessment (e.g., gestation period and average litter size) could be extracted from Table 2-1. The recommended values in Table 2-2 are intended to represent those reported in the literature but are not based on a rigorous analysis. Unlike the previous version of this report (U.S. EPA, 1985b), no use is made of calculated maximum lifespan potentials (Boxenbaum, 1983; Sacher, 1959). The expanded and reasonably consistent data base makes reliance on such calculations unnecessary.

The most important use of lifespan values in risk assessment is to adjust cancer potency factors used in the Agency's risk assessments for carcinogens (U.S. EPA, 1980, 1985). The lifespan values used by the Agency are consistent with the available lifespan data. Neither 70 years for humans nor 2 years for rodents, rats and mice approaches maximum recorded values, but both values are typical and of approximately equal proportion to maximum values.

The use of recommended or typical lifespans, as well as ages at weaning and puberty, can be practical in risk assessment to determine the applicability of toxicity bioassays varying in exposure duration to potential human health effects. For instance, the "equivalency of lifespans" is an implicit assumption in many risk assessments: the exposure of an animal for the lifespan of the animal can be used without adjustment (i.e., without the application of an uncertainty factor of 10 for subchronic to chronic exposure) to assess potential human health effects over a lifespan. As illustrated in Figure 2-1, the growth curves of species for which lifespan growth data are available (humans, mice, rats and gerbils) are similar, but

1989A 2-1 09/02/87

TABLE 2-1

Data on Lifespan, Development and Reproduction for Various Groups of Animals

Reference	Washburn, 1981 Tolmasoff et al., 1980 Cutler, 1975 Cutler, 1975	Jones, 1962 Cutler, 1975 Cutler, 1975 Tolmasoff et al., 1980	Cutler, 1975 Cutler, 1975	Cutler, 1975 Cutler, 1975 Tolmasoff et al., 1980 Jones, 1962 Jones, 1962	Washburn, 1964	Tolmasoff et al., 1980 Rosen et al., 1981	Cutler, 1975	Tolmasoff et al., 1980 Tolmasoff et al., 1980	Washburn, 1981	Mashburn, 1981 Tolmasoff et al., 1980 Jones, 1962 Cutler, 1975 Cutler, 1975 Arrington, 1978 Arrington, 1978 Arrington, 1968 Arrington, 1978 Arrington, 1978 Arrington, 1978 Arrington, 1978 Templeton, 1968 Tolmasoff et al., 1980
Lifespan	35-40 42[3] [32] [32]	[>37.6] [45] [45] 55[4]	[32] [32]	[40] [40] 50[4] 10 + [33.4]	50	95[5] [100]	[22]	18[2] 28[3]	15	3540 30[3] [2.66] [29] [19] [15] [15] [15] 35[3]
Gestation Period										165-170 165 days [160-180]
Age at Puberty										1.5-2.5 years 5 years 3-4 years 6 years
Age at Weaning										12-27 weeks
Strain	P. cynocephalus P. cynocephalus P. cynocephalus	P. troglodytes P. troglodytes P. troglodytes	H. Jar H. Jar	G. gorillaG. gorillalowlandlowland	several		P. entellus	Galago craddic- L. macaca fulvus		African green CAmer squirrel M. mulatta M. mulatta rhesus rhesus rhesus rhesus rhesus rhesus rhesus rhesus
Spec 1es	baboon baboon baboon baboon	chimpanzee chimpanzee chimpanzee chimpanzee	gibbon gibbon	gorilla gorilla gorilla gorilla	great ape	human human	langur	lemur lemur	marmoset	monkey
Animal Group	Primates									

1989A

2-2

09/08/87

Animal Group	Species	Strain	Age at Weaning	Age at Puberty	Gestation Period	Llfespan	Reference
Primates (cont.)	monkey monkey monkey	rhesus rhesus SAmer squirrel squirrel	120 days	3-4 years		[19.5] [6.33] [2]7[Wahman Manuf. Co., 1973 Jones, 1962 Jones, 1962 Tolmasoff et al., 1980
	orangutan orangutan orangutan	P. pygmaeus P. pygmaeus P. pygmaeus				[50] [50] 58[4]	Cutler, 1975 Cutler, 1975 Tolmasoff et al., 1980
	primate (NOS) primate (NOS)		3-6 months 3-6 months	5 years 6 years	150-180 days	ı	Ralston Purina Co., n.d. Ralston Purina Co., n.d.
	tamarin	mustached				19[2]	Tolmasoff et al., 1980
Laboratory rodents	gerbil gerbil gerbil gerbil gerbil gerbil gerbil	Mongolian Mongolian Mongolian Mongolian	3 weeks	9-12 weeks 10-12 weeks 10-12 weeks	24-25 days 24-26 days	[2-4] [3.7] [2-4] [3.7] 3.1 2-4 2.9 2-9	Arrington, 1978 Arrington, 1972 Hafez, 1970 Rosen et al., 1981 Arrington, 1978 Arrington, 1972 Hafez, 1970 Rosen et al., 1981 Arrington et al., 1973 Templeton, 1968 Arrington et al., 1973 Templeton, 1968
	guinea pig guinea pig guinea pig guinea pig guinea pig guinea pig guinea pig guinea pig		14 days 3.5 weeks 10 days	45-70 days 10 weeks 1-5 months 30-45 days 8 weeks 3-5 months 90-150 days	60-72 days 65-72 68 days[65-71] 68 days average 65-70	مومو م	Wahman Manuf. Co., 1973 Arrington, 1978 Hafez, 1970 Porter and Lane-Petter, 1962 Templeton, 1968 USDA, 1970 Arrington, 1978 Hafez, 1970 Ralston Purina Co., n.d. Templeton, 1968 Arrington, 1972 Arrington, 1972
	hamster hamster hamster hamster hamster		3-4 weeks 21 days [21-28] days 20-24 days [21-28] days	30 days 60 84 days	15.875 days 16-17 days 16-19 days [16-17] days 15-19 days		Bond, 1945 Porter and Lane-Petter, 1962 Wahman Manuf. Co., 1973 Porter and Lane-Petter, 1962 Ralston Purina Co., n.d. Worden, 1947

Laboratory rodents hamster ham	Chinese golden golden golden golden golden golden golden golden M. <u>auratus</u> M. <u>auratus</u> Syrian Syrian Syrian	20-24 days 21 3 weeks 4-5 weeks		20-21 days 16 days	[3.16]	
hamster	Chinese golden golden golden golden golden golden golden Syrian Syrian	3 weeks 4-5 weeks	2 months	20-21 days 16 days		Raiston Purina Co., H.C. Rosen et al., 1981
hamster	golden golden golden golden golden golden M. <u>auratus</u> M. <u>auratus</u> Syrlan Syrlan Syrlan	3 weeks	2 months	16 days	[2.5]	Rosen et al., 1981 Moore, 1965
hamster	golden golden golden golden golden M. <u>auratus</u> Mr. <u>auratus</u> Syrlan Syrlan Syrlan	4-5 weeks			1.69[0.09]	•
hamster hamster hamster hamster hamster hamster hamster hamster	golden golden golden H. auratus Syrian Syrian Syrian	4-5 weeks			1,94 [2,5]	Soderwall et al., 1960 Devl et al., 1975
hamster hamster hamster hamster hamster hamster hamster	golden golden M. <u>auratus</u> M. <u>auratus</u> Syrlan Syrlan Syrlan	4-5 weeks				Deyl et al., 1975 Grindeland et al., 1957
hamster hamster hamster hamster hamster hamster	M. <u>auratus</u> M. <u>auratus</u> Syrian Syrian Syrian	4-5 weeks	Z months		[0.0]00.	Hafez, 1970
hamster hamster hamster hamster	Syrlan Syrlan Syrlan Syrlan		7-8 weeks 8-12 weeks	16 days 16 days		Bruce and Hindle, 1934 Laidlaw, 1939
hamster hamster hamster	syrian Syrian Syrian				[5-3]	Arrington, 1972
hamster	Syrian				2-3 [2-3]	lempleton, 1968 Arrington, 1972
SHOW					2-3	Templeton, 1968
		4 weeks				
mouse		21 days	35-40 days	20 days		Wahman Manuf. Co., 1973
econse Mouse			C Aeeks	13-61 udys	[1-2]	Arrington, 1978
mouse		3 weeks	35-60 days	19 days [17-21]	1	Hafez, 1970
mouse mouse		26 days 16-21 days	50-60 days	17-21 days		rarris, isou Ralston Purina Co., n.d.
mouse		21 days	35 days	19-21 days		Simmons and Brick, 1970
MOUSE		[21-28] days	[42-56] days 6-7 weeks	~21 days		Worden, 1947 Arrington, 1978
mouse			5400		[1-2]	Arrington, 1972
mouse					1.71 [2.5]	Deyl et al., 1975
asnom			50 days		[4.7] [1.1	
шопзе		16-21 days	50 days			Purina Co.,
mouse			35 days		10 041	Simmons and Brick, 1970
					[3, 13]	Rosen et al., 1981
mouse	129/3				1.38 (0.030)	1966
mouse	129/3					
mouse	A/HeJ					Russell, 1966
Mouse	A/HeJ A/Lo]				1.42 (0.025)	KUSSELL, 1900
a STICE	A/He.]					
mouse	A/3				_	
mouse	A/3				_	٠ <u>.</u>
mouse	A/3				1.40 (0.025)	Russell, 1966

1989A

Reference	Russell, 1966
Llfespan	1.38 (0.030) 1.49 (0.027) 1.39 (0.030) 0.74 (0.008) 0.75 (0.014) 1.96 (0.038) 1.97 (0.018) 1.27 (0.013) 1.33 (0.025) 1.98 (0.033) 1.99 (0.033) 1.91 (0.025) 1.92 (0.019) 1.93 (0.025) 1.94 (0.025) 1.95 (0.030) 1.96 (0.030) 1.97 (0.016) 1.98 (0.030) 1.99 (0.025) 1.99 (0.025) 1.99 (0.025) 1.99 (0.025) 1.99 (0.030) 1.91 (0.030) 1.92 (0.030) 1.93 (0.036) 1.94 (0.030) 1.95 (0.030) 1.96 (0.030) 1.97 (0.036) 1.98 (0.030) 1.99 (0.030) 1.99 (0.030) 1.90 (0.025) 1.91 (0.030) 1.92 (0.030) 1.93 (0.030) 1.94 (0.030) 1.95 (0.030) 1.96 (0.030) 1.97 (0.025) 1.98 (0.030) 1.99
Gestation Period	23 days
Age at Puberty	50 days
Age at Weaning	35 days
Strain	A/J AKDE sub] AKR/J AKR/J AKR/J AKR/J AKR/J B6AF sub] B6DE F - sub] B6DE F - sub] BALB/CJ C3H/J C57BI/6J C67L/J C67L/
Species	mouse
Animal Group	(cont.)

Reference			Morden, 194/ Solleveld et al., 1984 Holloszy and Smith, 1986 Holloszy and Smith, 1986 Holloszy and Smith, 1986 Holloszy et al., 1985 Fox, 1985
Lifespan	1.99 (0.036) 1.93 (0.038) 1.42 (0.019) 1.93 (0.030) 1.33 (0.019) 1.60 (0.022) 1.60 (0.022) 1.23 (0.025)	[2-3] [3.15] [2-3] [2.47] [3.01] 3.2[2.7-3.4] 3.0[2.7-3.3]	2.35 (50%) 1.77 (90%) 2.81 (10%) 2.83 (50%) 1.81 (90%) 1.96 (90%) 2.63 (50%) 3.06 (10%) 2.53[0.44]
Gestation Period	29-47 days 21 days	21-23 days 21 days 21-23 (21-23) days 20-22 days	27[26-28] days 24.6-25.1 days 21-22 days
Age at Puberty	60-72 days	7-9 weeks 100 days 50-60 days [50-60] days 100 days 100 days 100 days	[42-49] days
Age at Weaning	14 days 21 days		21 days
Strain	LAF-subl LAF-subl NR NR MA/MyJ MA/MyJ Notomys alexis P. eremicus P. floridanus P. leucopus P. maniculatus P. polionotus NR NR	BN/BiRij BN/BiRij CFY	Cotton F344 F344 F344 F344 F344 F344 F344 F34
Species	mouse rat	2	7 24 7 24 7 24 7 24 7 24 7 24 7 24 7 24
Animal Group	Laboratory rodents (cont.)		20, 400, 407

1989A 2-6 09/08/87

1989A

Animal Group	Species	Strain	Age at Weaning	Age at Puberty	Gestation Period	Lifespan	Reference
Laboratory rodents (cont.)	rat rat rat rat	WAG/RIJ WAG/RIJ WAG/RIJ WAG/RIJ				3.3[2.6-3.7] 3.3[2.6-3.7] 2.9[2.6-3.0] 2.9[2.6-3.0] 1.52	Hollander et al., 1984 Hollander et al., 1984 Hollander et al., 1984 Hollander et al., 1984 Deyl et al., 1975
	rat rat	Wistar Wistar BH	21 days			1.52[2.45]	Kahan and Rosen, 1984
Other laboratory animals	cat cat cat		42 days	180 days 7 months	63[52-69] 58-64	[13-17]	Wahman Manuf. Co., 1973 Arrington, 1978 Arrington, 1972
	cat cat cat		7-8 weeks	5-7 months 9 months	65 days (4 days)	[13-17]	Arrington, 1978 Hafez, 1970 Templeton, 1968 Arrington, 1978 Arrington, 1978
	cat cat cat			9-12 months		[71-81] [71-81] [71-81]	Arrington, 1978 Hafez, 1970 Templeton, 1968
	bop bop		42 days 6-8 weeks 6-8 weeks	180-240 days 9-12 months 9-12 months	63[53-71] 63 days 60-65 days		Wahman Manuf. Co., 1973 Hafez, 1970 Ralston Purina Co., n.d. Hafez 1970
	6op 6op	beagle	6-8 weeks	10-12 months 7-9 months	58-63	111 111	Raiston Purina Co., n.d. Arrington, 1978 Arrington 1972
	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	beagle beagle beagle	A 8 months	12[2]months	63[1]days	[71-81]	AIT HIGH CONTROLL STATE NAS, 1971 Templeton, 1968 Arrington, 1978
	5op 6op	beagle beagle beagle				[13-1] [13-1]	Arrington,1972 Templeton, 1968
	rabbit rabbit		42 days	120-180 days 5-6 months	30-32 days 31-32 days	16.31	Wahman Manuf. Co., 1973 Arrington, 1978 Arrington, 1972
	rabbit rabbit rabbit		8 weeks 8weeks	5-6 months 5-6 months 6-7 month	31 days 30-32 days		Hafez, 1970 Ralston Purina Co., n.d. Arrington, 1978
	rabbit rabbit			6-7 months		[6-7] [6-7]	Arrington, 1972 Arrington, 1978 Hafez, 1970
	rabbit	N. Zealand white	8 weeks 56 days	6-7 months 26 weeks			Ralston Purina Co., n.d. Altman and Ditmer, 1974

2-7

09/08/87

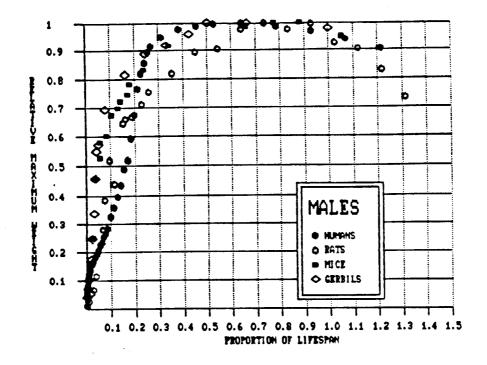
Animal Group	Species	Strain	Age at Weaning	Age at Puberty	Gestation Period	Lifespan	Reference
Other laboratory animals (cont.)	rabbit rabbit rabbit (volcano)	N. Zealand white N. Zealand white <u>R. diazi</u>			39-41 days	9	Templeton, 1968 Templeton, 1968 Matsuzaki et al., 1985
Wildlife	chinchilla chinchilla		6-8 weeks	6-8.5 months 6 months	111 days[105-115]		Hafez, 1970 Hafez, 1970
	ferret ferret ferret	domestic domestic	42 days 2 months		41.3 days 42 days	5-6 5-6	McLain et al., 1985 Worden, 1947 Moody et al., 1985 Moody et al., 1985
	hedgehog		40[38-44] days		[34-42] days		Worden, 1947
	langur	P. entellus				[22]	Cutler, 1975
	mirk mirk mirk mirk		8 weeks	10 months 10 months	51.4 days (1.31) 49.7 days(1.39) 51 days[45-70]		Aulerich et al., 1979 Aulerich et al., 1979 Hafez, 1970 Hafez, 1970
	raccoon raccoon						Fiero and Verts, 1986 Fiero and Verts, 1986
	shrew	common tree				12[2]	Tolmasoff et al., 1980
	tarsier vole vole vole vole	bornean <u>M. ochrogaster</u> orkney	[12-14] days 21 days 21 days	[21-30] days 40 days	21 days 21-23 days 21 days	[2]	Wright et al., 1986 Worden, 1947 Richmond and Conaway, 1969 Richmond and Conaway, 1969 Worden, 1947

NOS = Not otherwise specified

 $\label{eq:table 2-2}$ Recommended Values for Weaning, Puberty and Lifespan

Group/Species	Weaning	Puberty	Lifespan
	(days)	(days)	(years)
Primates			
Monkey, rhesus	130	1825 (5 years)	35
Baboon	NR	NR	55
Marmoset	NR	NR	40
Laboratory rodents			
Mice	21	50	2*
Rats	21	56	2*
Guinea pigs	14	70	6
Hamsters	21	60	2.5
Gerbils	21	70	3
Other laboratory mammals			
Cats	49	240	15
Dogs, beagles	42	240	15
Rabbits, New Zealand	56	195	6
Other animals			
Chicken	NA	NA	24
Pig	NR	150	28
Mink	56	300	NR

^{*}Substantial strain variability


NA = Not applicable; NR = not reported

not identical, when weight is expressed as the proportion of maximum weight and age is expressed as the proportion of the recommended value for the lifespan. Given the intraspecies variability in growth (Chapter 3), the general shapes of the relative growth curves are consistent, when viewed over the lifespan of the animal, and provide some support for the equivalency of lifespan assumption. The growth patterns in Figure 2-1 also suggest a more explicit definition of the recommended lifespan value, the time at which body weight begins to decline.

In the early stages of growth, some substantial differences are apparent in relative growth rates among species. These differences are well illustrated in Figure 2-2, which presents the relative growth over the first 30% of the lifespan of the animals included in Figure 2-1. A similar difference in relative growth between humans and rats was noted by Brody (1945). During very early life (<1% of lifespan), humans grow more rapidly than experimental mammals. As lifespan progresses, however, the relative growth of the smaller animals exceeds that of humans for periods between 15 and 20% After this time, the growth curves are not remarkably of lifespan. different except for the slower and nearly linear growth of rats and female mice over the period between 20 and 70% of growth models such as the Bertalanffy, Compertz and logistic equations were applied to many sets of growth data summarized in this report. While growth lifespan. For humans. rats and mice, sex-specific differences in growth are apparent; males grow more rapidly and reach a plateau sooner than females.

A large body of literature exists on growth kinetics and the interpretation of differences in growth patterns (Donhoffer, 1986; Kirkwood, 1985; Moore, 1985; Prothero, 1986; Ricker, 1979; Zullinger et al., 1984). Various growth models such as the Bertalanffy, Gompertz and logistic equations were applied to many sets of growth data summarized in this report. While growth

1989A 2-10 09/08/87

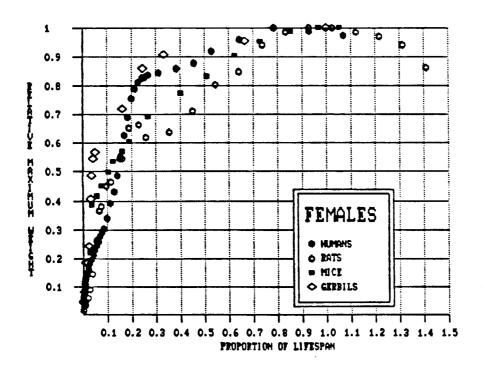
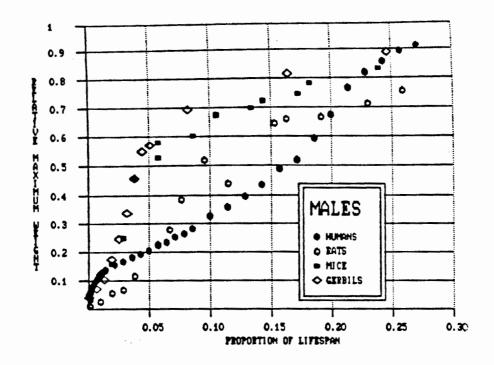



FIGURE 2-1

Plot of Relative Maximum Weight vs. Proportion of Recommended Lifespan for Male and Female Humans, Mice, Rats and Gerbils

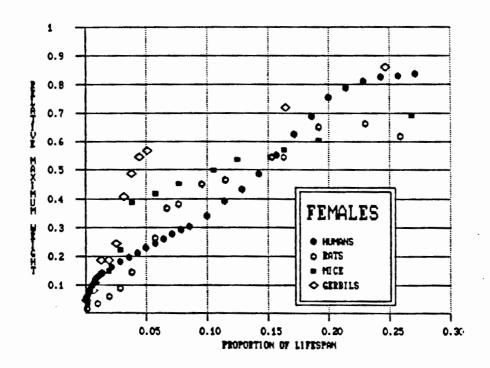


FIGURE 2-2

Plot of Relative Maximum Weight vs. Proportion of Recommended Lifespan for Male and Female Humans, Mice, Rats and Gerbils Over the First 30% of Recommended Value for Lifespan

models could be useful for providing more explicit estimates of body weight and TWA weight, a general model for growth that incorporates the decrease in body weight seen in older animals has not been proposed. Given the large amount of available information on growth in the species often used in risk assessment, models have not been used in this report to estimate body weights. If the value for the recommended lifespan is redefined as the point at which body weight begins to decline, a general growth model could be developed that would lead to better estimates of the body weight values recommended in this report.

The practical aspect of these differences in early growth rates for risk assessment is that the more rapid growth of the small animals is parallelled by more rapid sexual maturation. Consequently, in the standard 90-day subchronic study on weanling animals, mice reach puberty during the first third of the study; however, cats, dogs, rabbits and other larger animals do not reach puberty during the course of the 90-day study. Data on the proportion of time between weaning and puberty covered by a standard 90-day bloassay are summarized in Table 2-3.

While the methodological application of these relationships to risk assessment is beyond the scope of this report, the term, subchronic, is ill-defined in the literature on risk assessment. The "standard 90-day subchronic study" does not cover the same developmental periods among species commonly used in toxicity studies, and it may be inappropriate to treat such studies in the same way (i.e., same uncertainty factor). If puberty is taken as a key developmental event during growth, a species-specific definition of a subchronic study could be proposed as a study that covers the period from weaning to puberty and an equal period beyond puberty. This would correspond to a value of 2 in the third column of Table 2-3 for each species.

1989A 2-13 09/08/87

TABLE 2-3
Proportion of Time from Weaning to Puberty Covered by 90-Day Study

Group/Species	Weaning (days)	Puberty (days)	Proportion of Time to Puberty
Primates			
Monkey, Rhesus	130	1825	0.053
Laboratory rodents			
Mice Rats Guinea pigs Hamsters Gerbils	21 21 14 21 21	50 56 70 60 70	3.10 2.57 1.61 2.12 1.84
Other laboratory mammals			
Cats Dogs, beagles Rabbits, New Zealand	49 42 56	240 240 195	0.47 0.23 0.65
Other animals			
Mink	56	300	0.37

In this chapter, information on body weight and growth is presented for primates, laboratory rodents, other laboratory mammals, livestock, and wildlife. Some plots of growth data contain both large closed circles and small open circles; the latter are connected by solid lines. The large closed circles are the actual reported body weights. The small open circles are TWA body weights calculated from the start of the observation period (To) to the time specified on the graph. TWA body weights between any two time periods (T1 and T2) can be calculated by using the cumulative TWA body weights at each period (BW1 and BW2) by the following equation:

$$TWA = [(T1 \times BW1) - (T2 \times BW2)]/T1-T2$$
 (3-1)

Figures in this chapter that have titles beginning with "Recommended Growth Curve" are those from which recommended body weights have been estimated. Figures that have titles beginning with "Growth and Body Weight Data" are provided for information or comparison with the recommended growth curve. Whenever all of the available growth data are not used in recommending body weights, both kinds of figures are provided.

3.1. PRIMATES

Data on the growth and body weight of primates are summarized in Table 3-1. Growth and body weight data over the entire lifespan are available only for humans. The most complete published information on human growth is provided by Stoudt et al. (1960) on male and female Caucasians. The Stoudt et al. (1960) data are generally consistent with other published information.

TABLE 3-1 Growth and Body Weight Data on Primates

Species	Strain	Sex	Number of Animals	Age (days)	Weight (kg)	Variance	Kererence
Chimnanzooc	S.	hoth	SE	_	1.90000	2.50E-003	Lane-Peter et al., 1967
ch impanzees	2 2	hot	×	183	4 85000	3.06F-002	et al
Chimpanzees	2 2	hot h	S	365	6.55000	1.56E-002	et al.
Chimpanzees	S	both	NS	548	8.15000	3.06E-002	
Chimoanzees	SE	both	NS	730	9.60000	2.25E-002	et al., l
Chimpanzees	SE SE	both	NS	913	11.80000	2.25E-002	et al., l
Chimpanzees	SN	both	NS	1,095	13.25000	3.06E-002	et al., l
Chimpanzees	NS	both	NS	1,278	14.75000	5.06E-002	et al., l
Chimpanzees	NS	both	N.	1,460	16.60000	9.00E-002	et al., l
Chimpanzees	N.	both	SN	1,643	18.50000	6.25E-002	
Chimpanzees	SN	both	S	628,1	19.75000	1.416-001	:
Humans	Caucasian	female	many	-	3.40000	2.50E-001	et al.,
Himans	Caucasian	female	many	15	3.72000	2.50E-001	et al.,
Humans	Caucas ian	female	many	45	4.26000	2.92E -001	et al.,
Humans	Caucas ian	female	many	75	5.08000	3.48E-001	et al.,
Humans	Caucas lan	fema le	many	105	5.81000	4.62E-001	et al.,]
Humans	Caucas tan	female	many	135	6.44000	5.33E-001	et al.,]
Humans	Caucasian	female	many	165	7.08000	6.72E-001	et al., l
Humans	Caucas fan	fema le	many	195	7.71000	7.40E-001	et al.,
Humans	Caucasian	female	many	525	8.12000	8.28t-001	_
Humans	Caucasian	rema le	Many	622	8.44000	9.025-001	et d1.,
Humans	Caucas lan	remale	Many	587	9.80000	1 005000	בי פוניים
Humans	Caucasian	remale	Many	313	0 42000	0000000	בי מויי
Humans	Caucastan	fome le	# # # # # # # # # # # # # # # # # # #	365	9 53000	1 85F000	et al.;
Silbilian Silbil	Caucasian	fema le	Many	548	10.89000	1.855.0000	et al
Himans	Caucasian	fema le	Man v	730	12.25000	1.85E0000	et al.,
Himans	Caucasian	fema le	many	913	13.15000	J.85E0000	et al.,
Humans	Caucaslan	female	many	1,095	14.06000	3.28E0000	et al.,
Humans	Caucas fan	female	many	1,278	15.42000	3.28E0000	et al.,
Humans	Caucasian	female	many	1,460	16.33000	5.15E0000	et al., l
Humans	Caucaslan	female	many	1,643	17.24000	5.15E0000	et al., l
Humans	Caucaslan	female	many	1,825	18.60000	5.15E0000	et al., l
Humans	Caucasian	female	many	2,008	19.50000	5.15E0000	et al., l
Humans	Caucaslan	fema le	many	2,190	20.41000	5.15E0000	et al., l
Humans	Caucasian	female	many	2,555	22.68000	1.0160001	et al., l
Humans	Caucaslan	fema le	many	2,920	26.31000	2.49E0001	et al.,]
Humans	Caucastan	fema le	many	3,285	29.03000	2.4910001	et al
Humans	Caucasian	female	many	3,650	32.66000	4.03E0001	et al., l
Humans	Caucastan	fema le	many	4,015	37.19000	6.6650001	et al.,
Humans	Caucasian	rema le	many	4,380	42.18000	6.6650001	et di.,
Usessa	Caucacian	fema le	man v	4.745	46.2/000	6.66.0001	Stoudt et al., 1960

		5	Animals	(days)	(kg)		
	netachen	fomolo	AGE	5 110	50 B0000	7.4350001	Stoudt et al., 1960
	Caucasian	fom 10	Auc.	5 A75	53 07000	A 23F0001	ר רג וס
Humans	Caucastan	fomalo	many v	5 840	54.43000	9.08F0001	et al.
SIIII	Caucasian	fom 1 o	Auce	6 205	55 34000	7 4350001	pt al.
Humans	Caucasian	e lema le	A CE	6 570	55 79000	5 94F0001	6 6 6
Humans	Caucasian	בוווסובי	ingii k	2004	56 25000	5.94E0001	1 1 10
Humans	Caucas Ian	a lelled le	III III	0,000	00007.00	7 4250001	
Humans	Caucasian	rema le	Many	0,030	0001,00	0 085,000	בן פויי
Humans	Caucasian	rema le	many	9,855		9.085,0001	ביוקו אין
Humans	Caucasian	female	many	11,680	58.9/000	1.191.0002	et dl.,
Humans	Caucaslan	female	many	13,505	61.69000	1.29E0002	et al.,
Humans	Caucasian	female	many	16,425	64.41000	1.50E0002	et al., l
Humans	Caucasian	female	many	20,075	67.13000	1.61E0002	et al.,
Humans	Caucasian	female	many	23,725	66.23000	1.61E0002	et al.,
Humans	Caucasian	female	many	27,375	65.32000	1.50E0002	Stoudt et al., 1960
	9			3 2 5 5	00000	ŭ	11 C Bureau of the Ceneur 1985
Humans	2	remd le	Many	000,	0070/100	2 4	.s. Duledu of the cellads,
Humans	NS.	tema le	many	066,01	04.41078	2	.s. buredu of the tensus,
Humans	NS	female	many	14,600	67.13236	SN	.S. Bureau of the Census,
Humans	NS	female	many	18,250	68.03955	SN	.S. Bureau of the Census,
Humans	NS	female	many	21,900	68.03955	NS	. Bureau of the Census,
Humans	NS	female	many	25,550	66.67876	NS	U.S. Bureau of the Census, 1985
							•
Humans	Caucasian	ma le	many	-	3.45000	3.48E-001	et al.,
Humans	Caucasian	ma Je	many	15	3.86000	3,48E-001	et al.,
Humans	Caucasian	ma le	many	45	4.49000	5.33E-001	et al.,]
Humans	Caucasian	ma Je	many	75	5.49000	5.93E-001	et al., l
Humans	Caucasian	ma le	many	105	9.30000	7.40E-001	et al., l
Humans	Caucasian	male	many	135	00066.9	6.72E -001	et al., l
Humans	Caucastan	male	many	165	7.62000	8.28E-001	et al., l
Humans	Caucasian	ma Je	many	195	8.16000	9.02E-001	Stoudt et al., 1960
Humans	Caucasian	ma le	many	225	8.71000	1.08E0000	et al., l
Humans	Caucasian	male	many	255	9.16000	1.08E0000	Stoudt et al., 1960
Humans	Caucasian	male	many	285	9.48000	1.19E0000	Stoudt et al., 1960
Himans	Caucastan	ma le	Many	315	9.84000	1.28E0000	Stoudt et al., 1960
Himans	Caucastan	ma Je	Many	345	10.16000	1.28E0000	Stoudt et al., 1960
Himans	Caucastan	ma le	Man y	365	10.43000	1.85E0000	Stoudt et al., 1960
Humans	Caucastan	lla le	many	548	11.79000	1,85E0000	Stoudt et al., 1960
Himans	Caucastan	ma Je	TEG IIV	730	12.70000	1.85E0000	Stoudt et al., 1960
diman.	Caucastan	ol sm	AU PUI	913	13.61000	1.8550000	
Himans	Caucastan	ma le	mgn v	1.095	14.52000	1.85E0000	Stoudt et al., 1960
Humans	Caucastan	al em	Many	1,278	15.42000	1.85E0000	Stoudt et al., 1960
Himans	Caucastan	al em	VIEW	1,460	16.78000	5.15E0000	Stoudt et al., 1960
dimans.	Caucastan	واحاا	A U PW	1.643	17.69000	5.15E0000	
mans	Carcactan	9 6 6 8	70.50	1,825	19 05000	5 1550000	et al
HUINAIIS	rancasian	a le	inom.	0000	000000	00000000	

oher ies	II P II C	Yac	Animals	(days)	(kg)		
Humans	Caucastan	ma le	many	2,190	21.32000	7.40E0000	et al., l
Humans	Caucasian	ma Je	many	2,555	24.49000	1.01E0001	et al.,
Humans	Caucastan	ma le	many	2,920	27.22000	1.32E0001	Stoudt et al., 1960
Humans	Caucasian	ma le	many	3,285	29.94000	1.32E0001	et al., l
Humans	Caucasian	ma le	many	3,650		2.06E0001	Stoudt et al., 1960
Humans	Caucasian	ma le	many	4,015	37.19000	2.49E0001	Stoudt et al., 1960
Humans	Caucasian	ma le	many	4,380	39.46000	2.96E0001	et al., l
Humans	Caucastan	ma le	many	4,745	•	3.48E0001	Stoudt et al., 1960
Humans	Caucasian	ma le	many	5,110	51.26000	4.62E0001	Stoudt et al., 1960
Humans	Caucasian	male	many	5,475	58.06000	5.27E0001	
Humans	Caucasian	ma Je	many	5,840	62.14000	5.27E0001	Stoudt et al., 1960
Humans	Caucasian	ma Je	many	6,205	64.86000	7.43E0001	Stoudt et al., 1960
Humans	Caucasian	ma Je	many	6,570	67.59000	8.23E0001	Stoudt et al., 1960
Humans	Caucastan	ma Je	many	6,935	69.40000	9.08E0001	Stoudt et al., 1960
Himans	Caucastan	ma Je	man y	8,030	71.67000	1.09E0002	Stoudt et al., 1960
Himans	Caucastan	male	Many	9,855	73.94000	1.19E0002	þ
Humans	Caucastan	9 6	A UPW	11,680	74.84000	1.29E0002	et al
Human	Caucastan	2 6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	13,505	75.30000	1,295,0002	et al.
Human C	Caucasian		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	16 425		1 295 0002	et al
numalis	Caucasian	2 0	200	20 075	74 84000	1 2950002	[[e +a
HUMANS	Caucasian	ם מרנים	and a	22, 25	00040.47	1 195000	
HUMANS	Caucasian	md le	A III DIII	366 26	11 21000	3000 161 1	
Humans	Caucasian	ma le	ind in	010,12	0000	מממשפר נ	
Humans	Caucasian	mg ie	many	31,023	00.43000	1.1950002	orongi et di., 1980
, , ,	3	ماده	200	7 665	73 93631	7	II S Bureau of the Census 1985
	2 2	ם פרנים	inom y	000	0000 B	2 2	C. Bureau of the Centur
Humans	2 2	a e e	ind in	005.01	5274.07 50045 00	2 2	Burgan of the Century
Humans	2 2	ma le	many	000,41	7704. VO	2 2	Bureau of the
Humans	S :	a je	Á LIPILI	0,70	120+1.00	2 2	buledu of the census,
Humans	SN	ma le	many	006.12	18.92588	2	. Bureau or the Lensus,
Humans	NS	male	many	25,550	74.84351	SE	U.S. Bureau of the Census, 1985
Nimon C	2	female	50	6, 527	29, 50000	1.01F0002	Aitken et al. 1986
Tulians Iliman	2 2	fom lo	3 5	•	3 42000		•
TUINGII S	2 2	י בוווס וכ	27	0 477	22.50	5 7050002	, to
HUMAIIS	2 2	ם פונים	5 4	4	3 67000	3. / OL 0002	1949
rumans.	2 2	al em	2 V C	9 308	78 60000	9 DOF _DO2	luft at al 1983
	2 2	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.5	17 885	00000	1 2150002	White of all 1985
Humans	2 2	100	- "	(O).	3 A 3000	1.5 1.0002 NC	
Humans	2 2	2 2	3 -		3.43000	2 2	יין פון פון פון פון פון פון פון פון פון פו
Humans	2 4	2 2	• 5		3.47000	2 3	
Humans	2	2	2 6	_ ,	3.50000	2	٦ ·
Humans	NS.	N.S	22	-	3.40000	SE	Fisher et al., 1982
Marmocotc		female	œ	107	0.11500	9.00E-004	Yarbrough et al., 1984
Manage to	TO THE PARTY OF	foma lo	7	274	0.23400	5 04F_003	רב לם
Marinosers	Common	fom 3	<u>.</u>	A57	0 27300	2.54E_003	. [. + 0
Marmosets		י ביווים ו	י ר	345	00573.0	600-306.3	
a Laboure		4					

Species	Strain	Sex	Number of Animals	Age (days)	reign (kg)	עמן ומוורב	
Marmosate	COMBO	male	7	96	0.10300	3.36E-003	et al., l
Marmosets	Common	ma le	14	274	0.22000	4.76E-003	et al., l
Marmosets	COMMON	male	10	457	•	4.62E-003	et al.,]
Marmosets	COMMON	ma le	12	746	0.37500	1.44E-003	Yarbrougn et al., 1964
		fomalo	_	-	0.41800	NS	Farris, 1950
Jonkeys	rhoene	female		. 50	0.45000	NS	_
Honkeys	rnesus	female female		. ב	•	SN	Farris, 1950
Honkeys	rnesus	f cma		5 5	0.54000	SN	
Honkeys	rnesus	al Mila		2 5	0 55000	S	Farris, 1950
onkeys	rhesus	rema le		3,5		SZ	
Honkeys	rhesus	rema le		G 8	0.63000	SZ	Farris, 1950
Honkeys	rnesus	ellelle female	- 2	9 4	0.0200	3.60F-003	1981
Honkeys	rnesus		2 2	בפר	•	2 25F -002	
Monkeys	rhesus	rema le	2 2	36.5	1.00000	A 00F-002	
Monkeys	rhesus	rema le	2 2	202	2 50000	A OUE OUS	
Monkeys	rhesus	rema le		700	2 00000	A 00F 002	
Honkeys	rhesus	tema le	2 :	730	•	1 605 001	
Monkeys	rhesus	fema le	SE	•	4.20000	1,005-001	
Honkeys	rhesus	fema le	SE	1,460	00007.6	U, +UL -UU I	- 3
Honkeys	rhesus	fema le	S (- 8	0.40500	¥ 2	Magener and Catchhole.
Monkeys	rhesus	fema le	3 5	8 3	0.0000	£ 3	Magener and Catchnole
Monkeys	rhesus	fema le	2 2	2 6	0.7700	£ 3	Magener and Catchnole
Monkeys	rhesus	fema le	<u> </u>	16.	0.91500	2 2	Magener and Catchnole
Monkeys	rhesus	fema le	ς Σ	771	00000.1		Madener and Catchoole, J
Monkeys	rhesus	rema le	2 2	761	00567.1		Magener and Catchhole.
Monkeys	rhesus	fema le	2 2	791	00614.1		Wagener and Catchbole, 1
Monkeys	rhesus	female	2 2	213	1.59000	¥ 3	Wagener and Catchbole, 1
Monkeys	rhesus	fema le	2 2	243	1.08000	Ĕ	Wagener and Catchhole 1
Monkeys	rhesus	female	2 5	417	1.81500	¥ 2	Magener and Catchbole, 1
Monkeys	rhesus	fema le	2 2	304	00020 6	¥ 3	Wadener and Catchbole, 1
Monkeys	rhesus	fema le	2 5	333	000/0.7		Wagener and Catchhole
Monkeys	rhesus	fema le	g;	365	000007	¥ 3	Wadener and Catchoole.
Honkeys	rhesus	female	.	730	3.40500	Ě	Uspener and Catchhole
Monkeys	rhesus	fema le	34	650,	4.82000	ž S	Magener and Catchbole
Monkeys	rhesus	fema le	E :	1,460	00055	ž S	Usesser and Catchnole
Monkeys	rhesus	fema le	78	1,825	0.0000	¥	Mayeller and carcipore,
Monkeys	rhesus	female	52	2,190	•	Z :	Mayellel and catchpole, I
Honkeys	rhesus	female	12	2,555	8.00500	¥	
	4	مادس	28	_	0.49000	¥	Van Wagener and Catchpole, 1956
Honkeys	l nesus	2 (1	3 8	-6	0.96000	Z	and Catchpole, l
Monkeys	rnesus	יומות יי	2 2	נפנ	1 44000	×	Wagener and Catchpole. 1
Monkeys	rhesus	שוק ה ה	0 60	201	1 84000	ž	Wagener and
Monkeys	rhesus	al Pil	9 2	365	20000	<u>~</u>	Wagener and Catchpole. 1
Monkeys	rnesus	al le	07	000	00007.7		Hadanar and
		•				2	

Spectes	Strain	Sex	Number of Animals	Age (days)	Weight (kg)	Varlance	Reference
Monkeys	rhesus	male	17	730	3.45000	ž	Wagener and Catchnole
Monkeys	rhesus	ma le	15	1,095	5.72000	ž	Van Magener and Catchnole, 1956
Monkeys	rhesus	ma Je	2	1,460	7.52000	×	Wagener and Catchoole.
Monkeys	rhesus	male	6	1,825	8.71000	W.	Wagener and Catchbole,
Honkeys	rhesus	male	7	2,190	9.97000	X.	Wagener and Catchbole,
Monkeys	rhesus	ma le	•	2,555	10.97000	N.	Wagener and Catchbole,
Monkeys	rhesus	ma le	SN	9	0.48000	2.50E-003	1981
Honkeys	rhesus	ma le	SE	183	1.50000	J.00E-002	
Monkeys	rhesus	ma le	N	183	1.50000	1.00E-002	
Monkeys	rhesus	ma Je	SN	365	2.20000	4.00E-002	
Monkeys	rhesus	ma le	SN	557	3.00000	2.50F-001	
Monkeys	rhesus	ma le	SE	730	3.50000	3.60E-001	
Monkeys	rhesus	ma le	SN	1,112	5.10000	1.21E0000	
Monkeys	rhesus	ma le	SN	1,460	7.40000	1.96E0000	
Monkeys	rhesus	male	NS	1,825	9.70000	2.25E0000	

NR = Not reported; NS = not specified

For other primate species, growth data over the lifespan were not encountered. Nonetheless, relatively good early growth data are available on the rhesus monkey, chimpanzee and common marmoset. Since toxicity studies are seldom conducted over the complete lifespan of these species, the available growth data are adequate for proposing practical recommended values.

3.1.1. Humans. All of the body weight data on human males and females summarized in Table 3-1 are plotted in Figure 3-1. These data are generally consistent, although the data presented by the U.S. Bureau of the Census (1985) and Aitken et al. (1986) give somewhat greater weights than the data of Stoudt et al. (1960), for comparable ages. This difference in reported body weights may be related to a general, although slight, increase in the body weight of the U.S. population that occurred between the 1960s and 1980s. This trend is illustrated in Figures 3-2 and 3-3 for males and females, respectively, from data provided by the U.S. Bureau of the Census (1985). [In Table 3-1, only the data from 1976-1980 are presented.]

The reference values recommended by Snyder et al. (1975) are based largely on the data presented by Stoudt et al. (1960). The relationship of age to body weight for human females based on the data provided by Stoudt et al. (1960) and U.S. Bureau of the Census (1985) are plotted in Figure 3-4. Corresponding data on human males are plotted in Figure 3-5. Body weights for children are shown in Figure 3-6, which is based on the data of Stoudt et al. (1960) for males and females <20 years of age. As with many animal species, differences in body weight between males and females are not remarkable until after puberty.

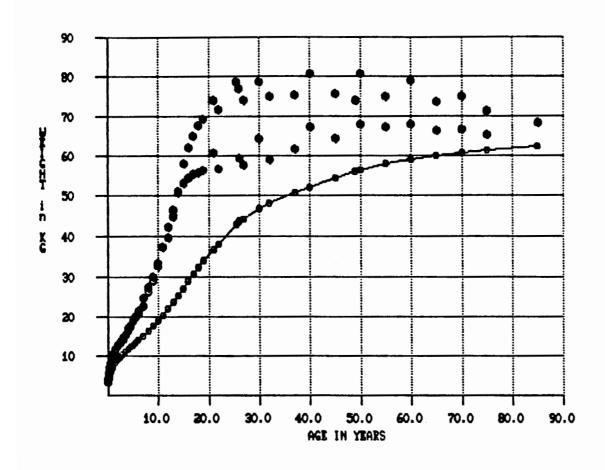
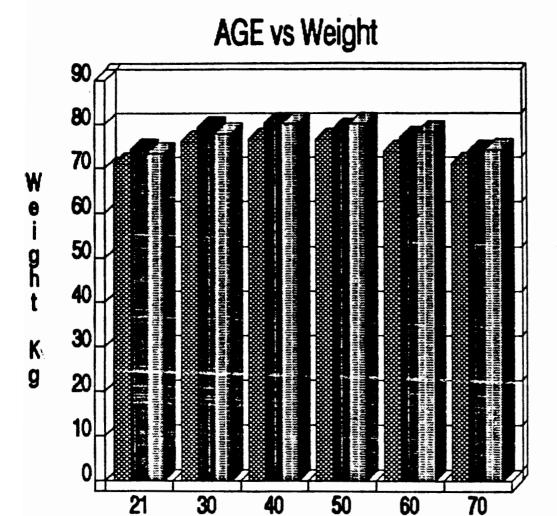



FIGURE 3-1

Body Weight Data on Male and Female Humans
[All data combined (see Table 3-1 for references)]

MEAN AGE (MEN)

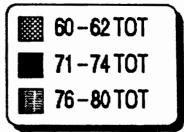
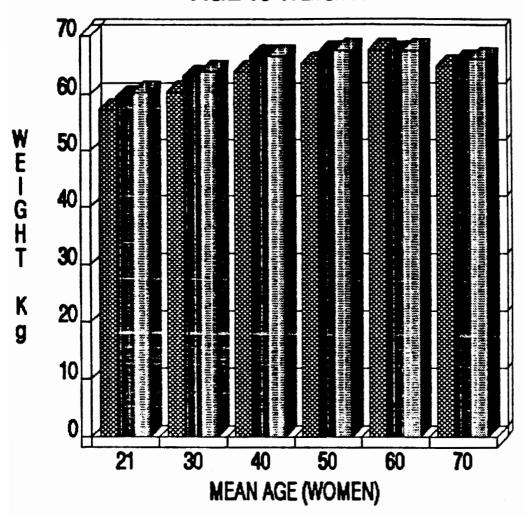



FIGURE 3-2

Mean Body Weights of Human Males of Various Ages Over the Periods 1960-1962, 1971-1974 and 1976-1980

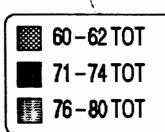


FIGURE 3-3

Mean Body Weights of Human Females of Various Ages Over the Periods 1960-1962, 1971-1974 and 1976-1980

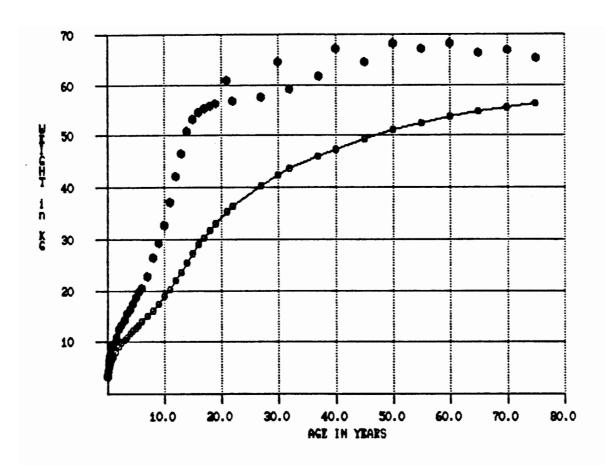


FIGURE 3-4

Recommended Growth Curves for Human Females

Sources: U.S. Bureau of the Census, 1985; Stoudt et al., 1960

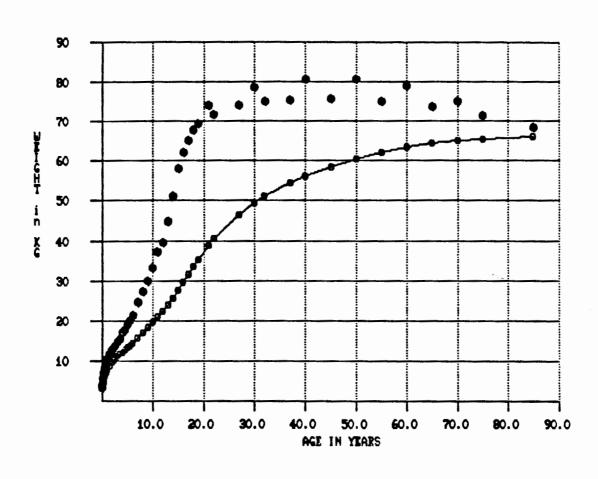


FIGURE 3-5

Recommended Growth Curves for Human Males

Sources: U.S. Bureau of the Census, 1985; Stoudt et al., 1960

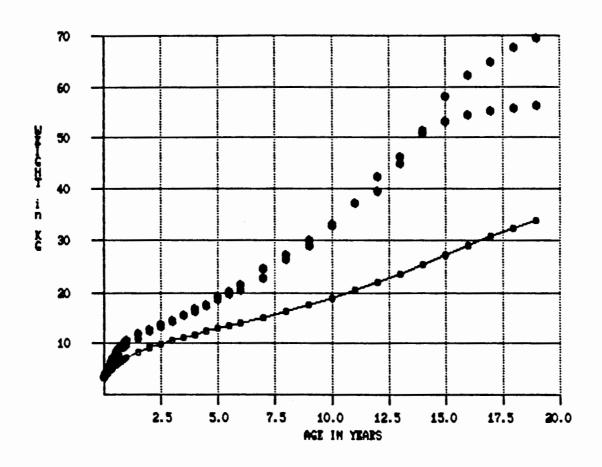


FIGURE 3-6

Body Weight Data on Male and Female Humans
From Birth to 20 Years of Age

Height is also strongly correlated with weight, and in 21- to 71-year-old adults, variations in height have a greater effect on body weight than do variations in age. This is illustrated in Figures 3-7 and 3-8 for males and females, respectively, based on the 1976-1980 data provided by the U.S. Bureau of the Census (1985).

Rhesus Monkeys. The U.S. EPA has not recommended a standard body 3.1.2. weight for monkeys. Body weights for "adult" monkeys reported in the literature are 3.5 kg (ARS/Sprague-Dawley, 1974; Hertzberg and Dourson, 1983), 4.7 kg for the rhesus monkey (Boxenbaum, 1983) and 5.0 kg (Lehman, 1959). Table 3-1 summarizes available growth data on male and female rhesus monkeys. The data on male rhesus monkeys are plotted in Figure 3-9. As illustrated in Figure 3-9, no plateau in body weight is apparent over the 7-year observation period. Taking the recommended lifespan of 35 years for the rhesus monkey and using 12 kg as an estimate of adult body weight, a lifespan TWA body weight of ~10.9 kg can be estimated, as illustrated in Figure 3-10. A similar approach can be used for the data on female rhesus monkeys as illustrated in Figures 3-11 and 3-12 from which a lifespan TWA body weight of ~8 kg can be estimated. Both of these lifespan TWA body weights are probably underestimated; thus, they are somewhat conservative when used to estimate mg/kg/day doses. Most toxicity studies available on rhesus monkeys are not standardized in terms of the age of the animals at the start of the study, and the durations of exposure generally accepted as subchronic and chronic are also not standardized. Thus, the only recommended values proposed for the rhesus monkey are lifespan TWAs of 10.9 kg for males and 8 kg for females. For calculating doses from less than lifespan toxicity studies in which body weights are not reported or incompletely reported, Figures 3-9 through 3-12 should be used to estimate body weights.

1990A 3-14 09/02/87

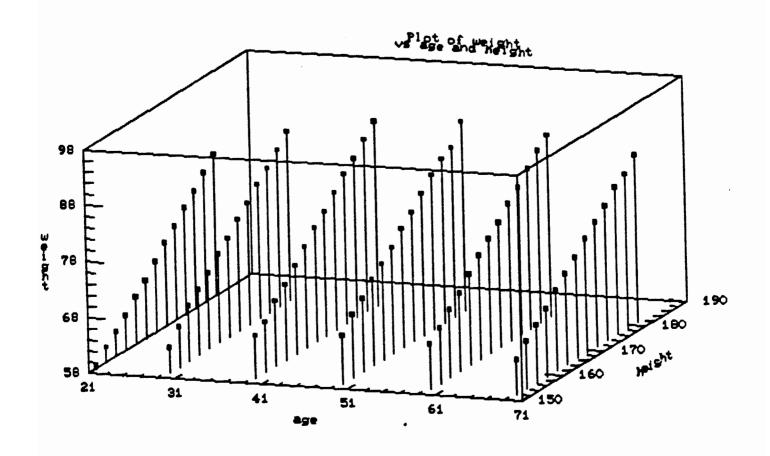


FIGURE 3-7

The Relationship of Height, Weight and Age of Human Males Over the Period 1976-1980

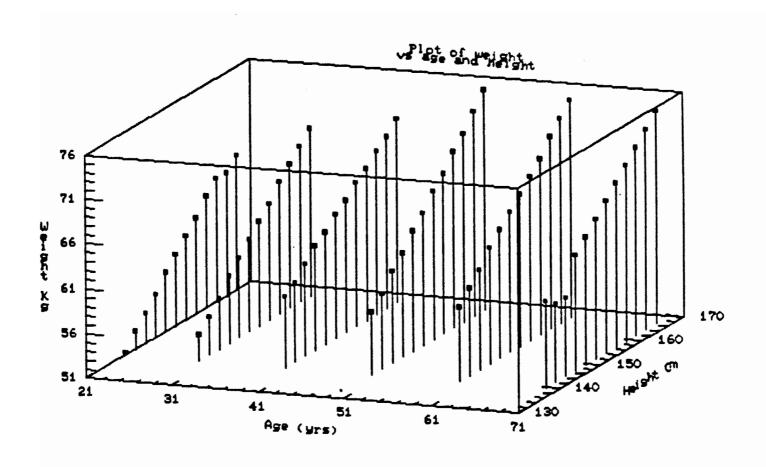


FIGURE 3-8

The Relationship of Height, Weight and Age of Human Females Over the Period 1976-1980

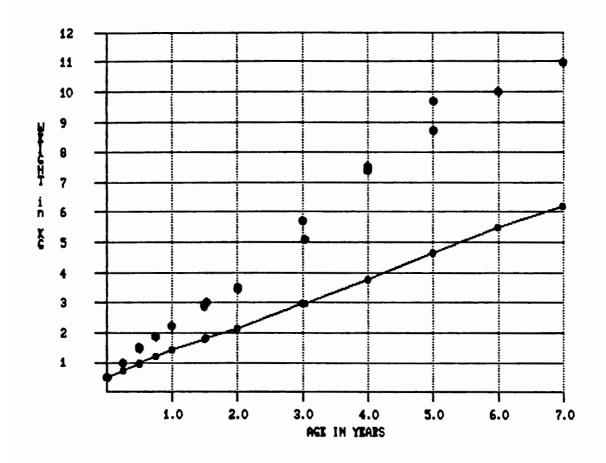


FIGURE 3-9
Body Weight Data on Male Rhesus Monkeys
Source: NAS, 1981

1990A

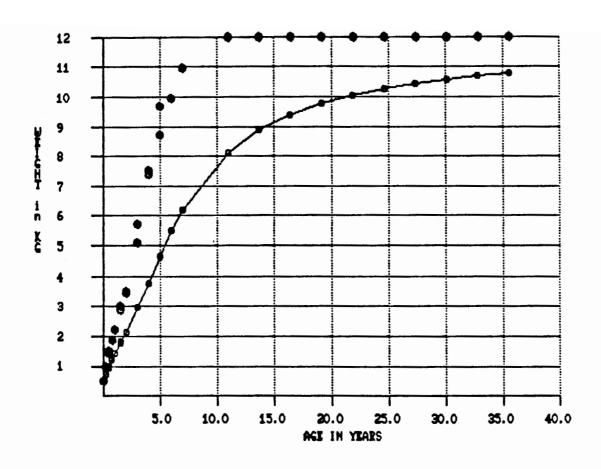


FIGURE 3-10

Recommended Growth Curve for Male Rhesus Monkeys,
Extended by Assuming a Mature Body Weight of 12 kg

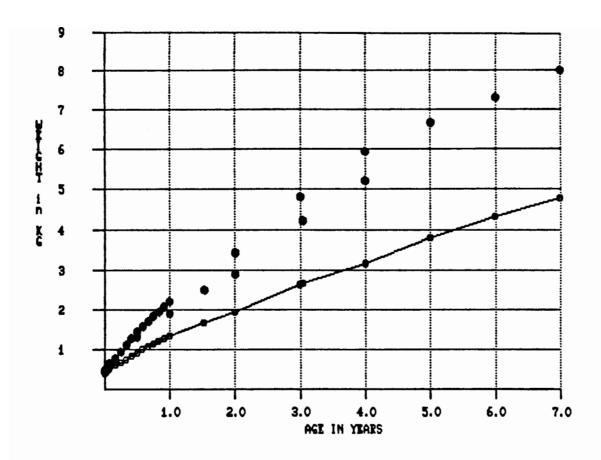


FIGURE 3-11

Body Weight Data on Female Rhesus Monkeys

Sources: NAS, 1981; Farris, 1950

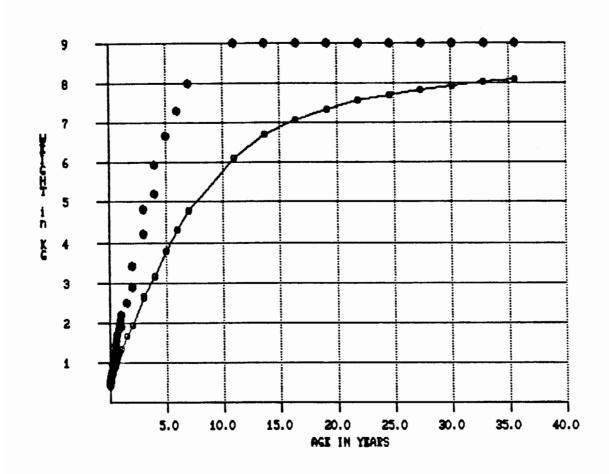


FIGURE 3-12

Recommended Growth Curve for Female Rhesus Monkeys,
Extended by Assuming a Mature Body Weight of 9 kg

3.1.3. Other Primates. Growth data are also available on chimpanzees (Lane-Peter et al., 1967) and the common marmoset (Yarbrough et al., 1984). For chimpanzees, growth data categorized by sex are not available. As illustrated in Figure 3-13, the body weight of chimpanzees at birth is ~2 kg and reaches ~20 kg after 5 years. Taking 55 years as the recommended lifespan, the lifespan TWA body weight is ~19.25 kg. For marmosets, growth data are available over only a small and early portion of the 40-year lifespan (Figures 3-14 and 3-15). Because of this limited data and because marmosets are a very uncommon test species in toxicity studies, recommended values are not derived.

3.2. LABORATORY RODENTS

3.2.1. Mice. The U.S. EPA (1980) has recommended a reference body weight of 0.03 kg for adult mice. Other reported recommended values are 0.035 kg (ARS/Sprague-Dawley, 1974), 0.023 kg (Boxenbaum, 1983) and 0.02 kg (Lehman, 1959).

Table 3-2 summarizes the extensive amount of body weight and growth data that are available on many strains of mice, including those most often used in toxicity testing. As illustrated in Figure 3-16, body weights of different strains of mice vary substantially; most reported body weights for mature mice range from 0.03-0.045 kg.

The most comprehensive published source of growth data on laboratory animals includes >50 strains of mice (Poiley, 1972). These data were taken from several animal colonies operated by academic, research and commercial organizations under the sponsorship of the National Cancer Institute. For most strains of mice, the record of growth covered a period from birth to at least 90 days postweaning. Growth data over the lifespan, however, are not presented for any of the strains of mice.

1990A 3-21 09/02/87

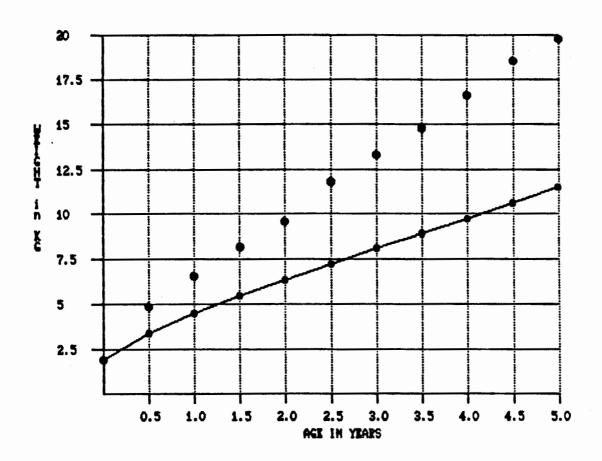


FIGURE 3-13
Body Weight Data on Male and Female Chimpanzees

Source: Lane-Peter et al., 1967

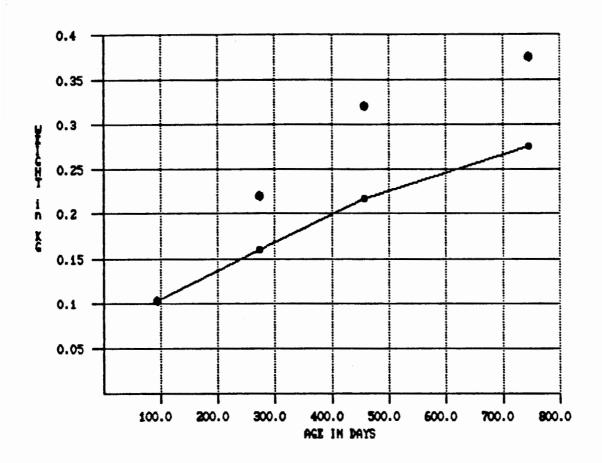


FIGURE 3-14

Body Weight Data on Male Marmosets

[Data estimated from Yarbrough et al. (1984)]

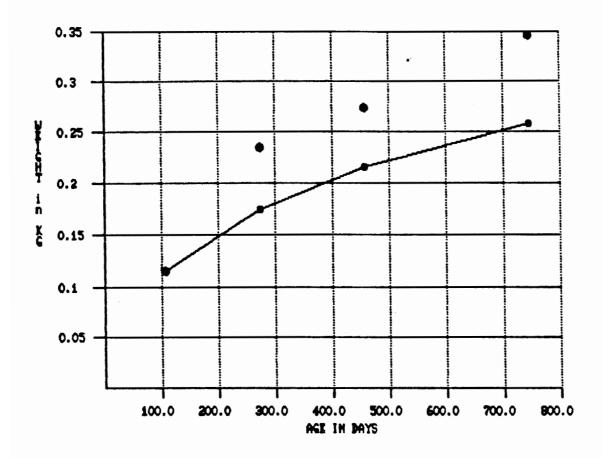


FIGURE 3-15

Body Weight Data on Female Marmosets

[Data estimated from Yarbrough et al. (1984)]

TABLE 3-2

Growth and Body Welght Data on Mice

AKDZF1 Hybr1d AKDZF1 Hybr1d AKDZF1 Hybr1d		Animais	(days)	(kg)		VELEI EILE
	female	45	ı	0.00200	1.06E-007	'
	female	45	1	0.00470	1.06E-007	
_	female	9	*	0.00580	1.60E-007	•
_	female	20	ا2	0.00850	9.51E-007	Poiley, 1972
AKD2F1 Hybr1d	female	43	88	0.01210	9.00E-008	
AKD2F1 Hybr1d	female	46	4 5	0.01770	7.66E-007	_
_	female	64	99	0.01910	7.66E-007	_
AKD2F1 Hybr1d	female	41	02	0.02290	7.66E-007	
AKD2F1 Hybr1d	female	7	₩	0.02440	1.27E-006	_
AKD2F1 Hybr1d	female	6	112	0.02630	1.89E-006	
AKD2F1 Hvbr1d	ma Je	07	_	0.00200	1.60F-007	Polley, 1972
	9[6]	9		0.00480	1 815 -007	
	9 2	7	*	0.00500	2.02F-007	
	age a	4 5	. [2	0.00950	6.40E-007	
	male	#	58	0.01340	1.23E-007	
	el em	7	2	0.02280	1.00F-006	
	ma le	=	29	0.02370	1.006-006	_
	male	45	70	0.02700	1.00E-006	_
	male	45	84	0.02850	1.89E-006	
_	male	\$	112	0.03030	1.56E-006	_
AKB/1 uCr	female	224	_	0.00140	9 00F-008	Pollev. 1972
AKR/1 vCr	female	281	1	0.00430	3.065-006	_
AKR/I vCr	female	214	=	0.00670	2.64F-006	
AKR/I VCr	female	236	: 7	0.00870	6 · 63F -006	
AKR/I vCr	female	292	. 82	0.01270	1,146-005	_
AKR/1 vCr	fema le	216	45	0.01840	1.586-005	
AKR/1 vCr	female	213	. <u></u>	0.02110	1.60F-005	
AKR/I vCr	female	901	202	0.02300	9.00E-006	
AKR/I wCr	female	187	**	0.02690	2.84E-005	
AKRZLVCr	female	111	112	0.02850	1.62E-005	
AKR/LwCr	female	182	140	0.03090	2.14E-005	
AKR/Lwcr	female	169	168	0.03600	1.14E-005	Polley, 1972
AKR/LvCr	male	526	-	0.00150	9.00E-008	Polley, 1972
AKR/LvCr	ma Je	263	1	0.00440	3.33E-006	Polley, 1972
AKR/I vCr	male	113	*	0.00100	2.98E-006	Polley, 1972
AKRZLWCF	ma Je	243	2	0.0000	6.38E-006	
AKR/I vCr	ma Je	237	28	0.01390	1.02E-005	Polley, 1972
AKR/I MCr	ma le	526	45	0.02050	1.41E-005	
AKR/I vCr	12	179	26	0.02330	1.226-005	
AVD /1 1.0°	9100	126	02	0.02480	5 64F 006	

Species	×	Animals	(days)	(kg)		
AKR/LWCr AKR/LWCr	male male	89 102	84 112	0.03030	1.54E-005 1.68E-005	Polley, 1972 Polley, 1972 Dolley, 1972
AKR/LWCr AKR/Lwcr	ma le	93 82	168	0.03740	2.68E-005	Polley, 1972
AL /NCr	female	4 3	-	0.00140	3.06E-008	
AL /NCr	female	+ 3		0.00320	4.56E-007	_
AL /NCr	female	35	* 5	0.00540	1.81E-007	Polley, 1972 Dolley 1972
AL/NCF	emale fomalo	:	- 80	0.00000	5 215 -004	
AL/NCT	female	0.C+	4 5	0.02060	1.01E-005	
AL/NCr	fema le	45	99	0.02460	1.16E-006	
AL/NCr	female	=	0,	0.02900	3.61E-006	
AL/NCr	female	32	* :	0.03030	1.00t -006	Polley, 1972
AL/NCT	remale female	\$	2071	0.03100	3.00t -006 1.82E -006	Polley, 1972
		•	-	97.00	000 133 1	1072
AL/NCT	ag le	5 €		0.00100	1.55t-008	POLIEY, 1972
AL /NCT	ag le	35	` •	0.00350	4 56F 007	
AL/MCT Al /MCT	5 E	S 55	5 [2	0.00960	2.03E-006	_
AL/NCT	ma Je	19	28	0.01580	2.64E-006	_
AL /NCr	ma Je	38	45	0.02270	6.50E-006	Polley, 1972
AL/NCr	ma !e	2.5	9 6	0.02000	300 300 1	POLICY, 1972
AL/NCT Al /NCT	- BE	. 	98	0.03100	3.065-006	_
A! /NC		2	112	0.03220	1.56E-006	_
AL/NCr	ma le	£ 3	140	0.03400	1.56£-006	
Aston	female	13	652	0.03020	2.03E-006	Richard and Trayhurn, 1985
A/HeN	ma le	€	19	0.02100	SM	
A/HeN	male	12	152	0.02970	SN	Silverstein, 1960
A/30r	female	34	-	0.00120	1.56E-008	_
A/3Cr	female	23	7	0.00570	1.81E-007	
A/3Cr	female	23	≠ 8	0.00100	. 50E	Polley, 1972
A/JCr	fema le	2 23	7 8	0.01260	7.28t-00/	Polley, 1972
A/3Cr	remale formale	2 23	£ 6	0.014/0	4.005-008	
A/ JCF	female	32	26	0.01910		_
A/3Cr	female	23	70	0.02450	7.66E-007	_
A/3Cr	fema le	22	84	0.02590	8.27E-006	Polley, 1972
A/JCr	remale	22	211	0.02930	4.00E-006	Doiley, 1972
A/JCr	remale	22	041	0.03400	1.27E-006	potter, 1972
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			: 4			

Species	Sex	Number of Animals	Age (days)	(kg)	. Var lance	Keterence
A/3Cr	male	35	_	0.00120	2.25E-008	Polley, 1972
A/3Cr	male	36	7	0.00540	2.02E-007	•
A/16r	male	56	*	0.00760	3.06E-008	
A/:15r	ma le	53	21	0.01370	1.56E-006	
A/10r	ol Se	2	28	0.01700	4.22F-007	
17.76	918	2 8	2	0.01840	2.645-006	
A/JCF	יומוב	3 2	7 7	0.000	1 005 006	
A/JCr	ad le	2 8	96	0.020.0	1 666 006	
A/JCr	al e	τ:	2 2	•	3 06 1 006	
A/JCr	ma le	₹ :	40	0.02700	3.061-006	
A/JCr	male	27	211	0.03180	3.52E-006	Polley, 1972
A/JCr	male	77	2	0.03650	2.64E-006	_
A/JCr	ma le	25	168	0.03910	3.52E-006	Polley, 1972
		31	סר	00000	3 6.16 0.06	Kutecher 1974
W/1	remale	c	8	0.02030	3.015-000	vacaciei i ana
A/3	male	15	100	0.02520	2.25E-006	Kutscher, 1974
A/LN	male	1	152	0.02410	SN	Silverstein, 1960
DACT Ushrida	fomala	9	_	0.00210	2.26F -007	Polley, 1972
	female	: 52		0.00450	8.10E-007	
	female	: :	7	0.00540	1.23E-007	
	female	£	: ~	0.00670	2.10E-006	Polley, 1972
	female	04	88	0.00850	2.40E-006	
	female	=	45	0.01580	1.56E-006	
	female	\$	26	0.01870	2.64E-006	
	female	38	0,	0.02240	1.00E -006	
	female	37	₩	0.02460	1.00E -006	
	female	45	211	0.02700	2.64E-006	Polley, 1972
	•	;		00000	200 310 1	0.41 1072
	ma le	2 7	- r	0.00220	1.01E-007	
	ma le	55		0.00.0	0.405-007	
	ma le	36	<u>*</u> ?	0.000.0	7 895 005	
	ma le	5.C	7 5	0.00.0	2 106 006	Dolley, 1972
	ale le	÷ 6	9 5	0.000	3 366 006	
	ag le	8 2	2 2	0.010.0	2 255 -006	Dolley, 1972
	al e	55	90	0.0000	3 065 006	
	male Follows	35	2 8	0.0230	3.00L-000	
	al Pili	er e	10.	01770	200-336.6	_
BAF1 Hybrid	ma le	SS.	211	0.03030	6.04E-000	
RAI R/cAnCr	female	386	_	0.00170	2.03E-007	Polley, 1972
RAI B/cAnCr	female	377	7	0.00510	5.64E-006	
RAI BACANCT	female	360	*	0.00800	5.29E-006	_
RAI B / CADC	female	440	ا2	0.01080	6.50E-006	Polley, 1972
DALD/LAUCI		2	.,			

	05A	Animals	Age (days)	Mengnt (kg)	, Adridace	Reference
BALB/cAnCr	female	480	28	0.01430	8.12E-006	
BAL B/cAnCr	female	717	45	0.01690	9.77E-006	
BALB/cAnCr	female	203	26	0.01940	1.17E-005	
BAL8/cAnCr	female	72	0/	0.02020	4.31E-006	Polley, 1972
BALB/cAnCr	female	57	8	0.02290	5.29£-006	
BALB/cAnCr	female	96	112	0.02500	1.56E-005	
BAL B/cAnCr	female	87	140	0.02480	1.09E-005	
BAL B/cAnCr	female	92	168	0.02670	1.68E-005	
BAL B/cAnCr	female	92	196	0.02740	8.70E-006	
BAL B/cAnCr	female	106	224	0.02800	1.22E-005	
BALB/cAnCr	female	107	252	0.02810	1.17E-005	
0410/0420	ofca	247	_	0.100 0	1 815 -007	Polley 1972
D/ CAIRCI	200	150		01300	4 00E 00E	001101
BALB/CANCE	el Pil	362	- =	0.000.0	9.001-0006	
BALB/CANUT	al Put	266 218	± 7	0.00820	3.300 -006	
BAL B/CANCr	e e e	614	7 6	0.01130	1.281-005	
BALB/CANCr	al e	\$2 \$	æ :	0.01540	1.791-005	
BAL B/cAnCr	ma le	300	~ :	•	6.89£-006	
BALB/cAncr	and le	53	2 5	0.02080	2.19t -005	
BAL B/cAnCr	ma le	29	2 3	•	6.13t-006	
BALB/CANCr	al e	50	* C	•	2.481-006	
BALB/cAnCr	ma le	2 3	71.	0.02/20	9.466-006	Polley, 1972
BALB/CANUT	ind in	6.5	0 2 5	•	1 725 005	
BALB/CANCF	al Pill	5 3	196	•	1.725-003	Polley, 1972
BALB/CAUCT	القالة	3 5	130	0.020.0	200-101-1	
BALB/cAntr	al Pil	- 3	*22	0.02930	9.381-006	Polley, 1972
BALB/CANUT		90	767	0.0000	1.00- 120-1	
BAL B/cAnN	male	80	152	0.02560	NS	Silverstein, 1960
BAI B /c	female	15	001	0.02010	3.615-006	Kutscher, 1974
DALO/C	female	- -	×		S 2	Oller et al., 1985
DALD/C	female	9 9	2	0.01800		, Te ta
DALD/C	female	~	S	0.01890	S	et al.
DAL D/C	fomale	œ æ	¥	0 05000) V	et al
BALB/c	female	8	S	0.02190	SN	et al.,
BAL B/c	male	15	100	0.02700	2.56E-006	Kutscher, 1974
BALB/c	male	48	¥	0.02560	NS	Oller et al., 1985
BAL B/c	male	84	NS.	0.01970	N.S	et al.,
BAL B/c	male	48	S X	0.01970	NS	et al.,
BAI B/c	male	84	NS	0.02240	SN	et al.,
BAI B/c	ma Je	48	SN	0.02420	NS	:
	•	•	9	-		

		Animals	(days)	(kg)	•	
1			•			
_	female	292	_	0.00140	6.25[-008	Polley, 1972
BDF1*B6D2F1 Hyb	female	306	_	0.00410	1.165-006	
_	female	306	=	0.00540	1.56E-006	
RDF1*R6D2F1 HVh	female	263	7	0.00770	1.16E-006	
_	Female	304	28	0.01510	4.62F-006	
	Female	125	5	0.01740	3.06F-006	
- ,		250	S C	00010	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
_	remale	0/2	2 :	0.01890	3.37E-UU0	Folley, 1972
BDF1*86D2F1 Hyb	fema le	287	6+	0.02280	1.63E-006	
BDF1*B6D2F1 Hyb	female	314	99	0.02400	2.89E-006	Polley, 1972
BDF1*B6D2F1 Hyb	ma le	291	_	0.00140	6.25E-008	Polley, 1972
BDF1*B6D2F1 HVb	ma Je	313	١.	0.00410	1.05E -006	
RDF1*B602F1 HVb	male	319	=	0.00640	1.76E-006	
_	al ell	269	7	0.00860	1.69E-006	Polley, 1972
	al em	314	. c	0.01680	5.64F-006	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200	313	35	•	2 72F -006	
_ ,	- E	250	3 5	00000	4 52E 006	_
_ ,	a .	6/2	7 .	0.02100	000-136.4	
_	ma le	582	7 ·	0.02430	2.365 -000	7011ey, 1972
80F1*8602F1 Hyb	ma Je	305	26	0.02690	5.76E-006	Polley, 1972
-J-3/ GAGG	fomala	35	-	0.00130	1.06F_007	Polley, 1972
13 / 21 C1	ol canal	62		0 00380	1 00F_006	
BRVK/SFCF	- Emaile	1 2	- =	0.00380	7 665 -007	Polley 1972
BRVK/SFCF	e le	C C	-	0.000.0	2 64E-006	
BKVK/Srtr	el Piner	67.7	- 62	0.600.0	3 805 006	
BRVR/SrCr	remale	*	97	0.01330	3.601-000	
BRVR/SrCr	female	55	24	0.01840	2.25t -006	
BRVR/SrCr	female	7	26	0.02040	6.25t-00b	Polley, 1972
:	•	ż	•	00.00	100 130 1	0,110,1012
BRVR/SrCr	ma le	\$2	- 1	0.00130	1.005-007	
BRVR/SrCr	male	54		0.00410	3.915-00/	
BRVR/SrCr	ma le	24	*	0.00810	1.161-006	
BRVR/SrCr	ma le	24	2	0.01160	1.56E-006	
BRVR/SrCr	male	24	82	0.01910	2.25E-006	Poiley, 1972
RRVR/SrCr	male	24	45	0.02190	8.27E-006	
BRVR/Sr Cr	ma Je	7 2	56	0.02590	4.00E-006	
						'
BRVS/SrCr	female	42	_	0.00240	1.816-007	_ '
BRVS/SrCr	female	67	7	0.00500	2.26E-007	_
BRVS/Sr Cr	female	48	*	0.00780	7.22E-007	_
BRVS/Sr.Cr	female	55	21	0.01050	3.90E -006	
RDVC/CrCr	Female	9	28	0.01590	3.06E -006	Polley, 1972
DDVC /C=C=	Fomalo	65	42	0.01960	1.44E-006	
D V V V V V V V V V V V V V V V V V V V	Fomale	7	عي ا	0.02190	1.76F-006	
27.21.51		2	3			
		•	70	0.02260	ייין זפן כ	Doiley 1972

Species	Sex	Number of Animals	Age (days)	(kg)	Adr Idnice	Kererence
BRVS/Sr Cr BRVS/Sr Cr BRVS/Sr Cr BRVS/Sr Cr BRVS/Sr Cr BRVS/Sr Cr BRVS/Sr Cr	male male male male male	55 55 61 61 64 64	1 7 1 1 7 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	0.00240 0.00530 0.00830 0.01120 0.01700 0.02190 0.02370 0.02370	2.03E-007 2.76E-007 9.02E-007 3.31E-007 4.95E-006 2.48E-006 2.10E-006	Potley, 1972
BSVR/Sr Cr BSVR/Sr Cr BSVR/Sr Cr BSVR/Sr Cr BSVR/Sr Cr BSVR/Sr Cr BSVR/Sr Cr BSVR/Sr Cr	female female female female female female	2.5.2.5.2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	21 21 28 42 56 70	0.00140 0.00490 0.00780 0.01080 0.01740 0.02280 0.02480	2.50E-009 2.25E-008 1.44E-006 2.25E-006 1.76E-006 5.26E-007 7.66E-007	
BSVR/SrCr BSVR/SrCr BSVR/SrCr BSVR/SrCr BSVR/SrCr BSVR/SrCr BSVR/SrCr	male male male male male	2333252	14 7 7 1 8 2 8 5 5 6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00150 0.00530 0.00550 0.01110 0.01950 0.02870 0.03080	2.50E-009 4.00E-008 1.38E-006 1.38E-006 2.50E-007 2.18E-006 1.21E-006	Polley, 1972
BSVS/SrCr BSVS/SrCr BSVS/SrCr BSVS/SrCr BSVS/SrCr BSVS/SrCr BSVS/SrCr BSVS/SrCr	female female female female female female female	233333335	1 7 4 2 2 2 4 4 5 5 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6 6	0.00130 0.00510 0.00780 0.01070 0.01760 0.01760 0.0230 0.02260	5.63E-009 3.03E-007 1.00E-006 2.25E-006 3.91E-007 2.64E-006 1.89E-006 1.76E-006	Polley, 1972
BSVS/SrCr BSVS/SrCr BSVS/SrCr BSVS/SrCr BSVS/SrCr BSVS/SrCr	male male male male	* * * * * * * * * * * * * * * * * * *	1 14 21 28 35	0.00130 0.00590 0.00940 0.01150 0.01750 0.02120	1.00E-008 2.50E-007 2.03E-006 1.56E-006 1.27E-006 1.00E-006	Polley, 1972

		S P PULLUA	(c (pn)	(Kg)		
BSVS/SrCr BSVS/SrCr BSVS/SrCr	male male male	26 25 24	49 63 71	0.02490 0.02750 0.02920	5.06E-006 5.06E-006 5.64E-006	Polley, 1972 Polley, 1972 Polley, 1972
		č	,-	00000	000 133 6	2501
BlOpd/czcr Blopd/czcr	remale female	* *	- ~	0.00200	1.501-1008	Polley, 1972
810pd/C2C1	fema le	7	n 64	0.00310	6.40E-007	_
Blood/CzCi	female	<u> </u>	, 7.	0.0040	1.76F±006	_
B10p0/czci	female	3 2	: 7	0.000.0	1 89F -006	_
Blood/CzC:	female	3 6	28	0.01450	1.96F ±006	_
Blond/C*Cr	e e ma j	;	3 %	0.510.0	2,105-006	_
R10pd/C2Ci	female	₹	24	0.01760	1.89E-006	_
Blond/CrCr	female	*	•	0.01930	2,255-006	
B10pd/CzCr	female	58	02	0.02350	4.005-006	
01024/5=67	ol cm	74	_	01,000,0	6 25F -008	Polley, 1972
10pu/czci	2 C C C	7	- c	0.300.0	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓֓	Dotley 1972
810pd/czcr	9 PE	₹.7	n e	0.00330	3.00E =007	
BIUpd/Lztr	e PE	* 2	٠, ١	0.00400	2 235 005	
810pd/czcr	ma le	82 73	= ;	0.00980	2.335-000	
Blupd/czcr	- F -		7 5	05.10.0	000-130.0	
810pd/czcr	e PE	17	97	0.01.00	3.13E=000	
0.10pu/ c.c.	5 C C C	07	3 5	00.00	1 006	
810pd/czcr	a PE	*	2 4	0.02100	2 915 006	
Blupd/Lzcr	אם העוניים מרונים	7,0	£ 5	0.02330	5.01E-006	
a lupu/ czci		t 7	2	0.020.0	3:101-000	-
B10*A/Cr	female	35	_	0.00150	2.25E-008	_
B10*A/Cr	female	46	7	0.00470	3.03E-007	_
B10*A/Cr	female	39	*	0.00780	1.00E-006	
B10*A/Cr	female	28	12	0.01040	2.33E-006	
B10*A/Cr	female	6+	88	0.01530	1.89E -006	_ ′
B10*A/Cr	female	C	45	0.01840	6.81E-007	_ '
B10*A/Cr	female	-	26	•	1.63E-006	
B10*A/Cr	female	42	70	0.02320	1.44E-006	Polley, 1972
810*A/Cr	male	32	_	0.00160	2.25E-008	Polley, 1972
B10*A/Cr	male	\$	7	0.00490	2.50E-007	
B10*A/Cr	male	38	=	0.00840	9.51E-007	٠.
B10*A/Cr	male	19	12	0.01180	3.15E-006	Ξ.
B10*A/Cr	male	48	28	0.01700	4.62E-006	Polley, 1972
B10*A/Cr	male	33	45	0.02260	3.80E -006	_
810*A/Cr	male	40	26	0.02490	3.52E-006	Polley, 1972
A10*A/Cr	ما هس	38	70	0.02620	4.41E-006	

Species	×	Animals	Age (days)	(kg)			
	3	ž	·	03100 0	4 OUE 000	CLDL vollag	
B10*A(5K)/LF	ellend ie	6.5		0.00.0	2 505 003		
BIO*A(5K)/LT	al Pilla I	•	- ;	0.0000	100-100-2	•	
B10*A(5R)/Cr	fema le	54	<u>*</u>	0.008/0	7.25 -000	- '	
B10*A(5R)/Cr	female	25	21	0.01060	4.52E-006	_	
010*A(50)/Fr	female	25	28	0.01580	J. 89E -006	Polley, 1972	
13 / CD / C	fomalo	20	72	0.01870	1 89F -006		
B10"A(3K)/LT	e le le le	• • • • • • • • • • • • • • • • • • • •	2 5	0.00	2 6 4 5 006	_	
0*A(5R)/Cr	rema le	*7	96	0.02340	000-340-7		
B10*A(5R)/Cr	Fema le	52	9	0.02480	1.00E -006		
B10*A(5R)/Cr	fema le	24	84	0.02620	2.64E -006	Polley, 1972	
	•	ż	-	03100	4 000 000	0701 voltag	
B10*A(5R)/Cr	ma le	e:	- 1	0.00190	4.001-000		
B10*A(5R)/Cr	ma le	54	- ;	0.00500	1.41E-00/		
B10*A(5R)/Cr	ma le	24	*	0.0000	2.64E-006	_	
R10*A(5R)/Cr	male	54	12	0.01130	4.52E -006	_	
R10+A(5R)/Cr	ma le	25	28	0.01630	2.64E-006	_	
B10+A/5D)/Cr	olem	24	42	0.02060	3,525-006	Polley, 1972	
13// 25/4-0	2 6 6	• • •	4 4	0.02450	2 25F-006		
B10"A(3K)/CT	ביי פון פון	+ 2	2 6	00000	1000	_	
0*A(5R)/Cr	m3 le	S	2	0.020.0	1.005 -000	2161, 1016	
B10*A(5R)/Cr	ma Je	24	*	0.03150	1.27E-006	7011ey, 1972	
						•	
B10*a(2R)/Cr	female	52	_	0.00150	4.00E-008	For 1972	
B10*a(2R)/Cr	female	28	7	0.00480	2.76E-007	_	
B10*a(2R)/Cr	female	53	=	0.00820	1.895-006	_	
)*a(2R)/Cr	female	25	2	0.01050	4.10E-006		
R10*a(2R)/Cr	female	33	58	0.01500	1.76E ~006		
B1042(20)/Cr	Female	25	42	0.01860	1.50E -006	Polley, 1972	
7/22/20/10	Fomolo		35	0.02140	6.38F -006		
17/147/P-019	formale	35	8 5	0.0530	1.275-006	Polley, 1972	
J-4(2K)/LF		5	2	0.05.300	200-113:1		
707 (807-44	-		-	טאנטט ט	3 065-008	Polley 1972	
B10*a(2K)/LF	שם וש	7.0		0000	3,005 -003		
B10*a(2R)/Cr	ma le	97		0.00490	2.30E -00/		
B10*a(2R)/Cr	ma le	53	=	0.00910	룛	- 1	
B10*a(2R)/Cr	male	25	<u>ت</u>	0.01170	5.41E-006		
R10*a(2R)/Cr	ma le	56	58	0.01620	3.42E -006		
B10 4 (20)/Fr	9 6 6	28	42	0.02200	3.15E-006	_	
13 / (47) 0.0		3 5	1 4	0.02470	2 725 -006		
B10-4(2R)/CF	- PE - FE	- 6	8 5	0.02830	3 06F 006	_	
B10*a(2K)/Cr	ag le	35	2	0.02020	3.001-000		
	,	i		03100	000 100	De11.2 1972	
B10*129(5M)/Cr	fema le	21		0.00160	9.00E -008		
)*129(5M)/Cr	fema le	53		0.00430	3.0ZE -00/		
B10*129(5M)/Cr	female	23	=	0.00820	1.10E -006	_	
1*129(5M)/Cr	female	58	12	0.01000	2.25E-006		
B10*129(5M)/Cr	female	16	28	0.01490	2.25E-006	Polley, 1972	
12/(15)(21.0	Formallo	32	7	07710 0	2 106 006	Polley, 1972	
17/(16/64)	elina le	3, 2	4 3	0 00 0	A 73E 006		
B10*129(5M)/Cr	remale	97	96	0.02140	4.731 -000		
	•				200		

Species	Sex	Number of Animals	Age (days)	(kg)	Variance	Reference
810*129/5M)/Cr	male	25	-	0.00170	4.00E-008	Polley, 1972
R10*129(5M)/Cr	ma Je	25	7	0.00460	2.76E-007	٦.
R10*129(5M)/Cr		26	=	00600.0	2.03E-006	Polley, 1972
B10 #120 (5M) /Cr	9[6]	24	7	0.01160	4.73E-006	_
12 / (15) (21) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10)	ol en	:=	8	0.01720	4.52E-006	•
12 / (HC) 621 - 010	2 6	50	2	0.02240	2 18F -006	
127(110)621-	119 c	67	7 3	0.02480	2 9AF 006	Doiley 1972
810*129(5M)/Cr 810*129(5M)/Cr	ma je	27	3 2	0.02720	4.31E-006	
B6AKF1 Hybr1d	female	20	-	0.00190	9.00E -008	Polley, 1972
	female	45	7	0.00450	2.76E -007	Ξ.
	female	07	=	0.00540	7.56E-008	_
	female	45	21	0.00770	4.90E-007	Polley, 1972
	female	7	28	0.01130	2.76E-007	_
	female	45	42	0.01540	2.64E-006	٦.
	Female	45	6	0.01710	2.25E-006	Polley, 1972
	Female	45	95	0.02010	3.06E-006	_
	ol cmoj	. Y	3 5	0 02200	1.895.006	
	- Lema 1	£ 4	8 5	0.02240	2 64F_006	_
			2 5	0.02500	3 065 006	_
	rema re	,		00070.0	5.005	_
	remale	4 3	* 0 .	0.05700	9 5	0-61-c. 1916
B6AKF1 Hybr1d	female	\$2	711	0.02910	4. UUE -UUB	F011ey, 1972
DEAVET UNDER 14	ماده	05	_	0.00190	1.225-007	Polley, 1972
	olen elen	8	. ~	0.00480		
	300	2 2	7.	0 0000		
	a P	0.0	5 2	00000	•	Doiley 1972
	mg le	00	7 5	•	•	
	ma Je	42	€ :	0.011/0	٠	For 1976
	ma le	45	45	0.01750	4.52E-006	_
	ma Je	45	\$	0.01830		_
	ma je	45	26	0.02230	3.52E-006	_
	of eE	45	2	0.02310	4.00E-006	_
	0 0	A 5	£	0.02370		Polley, 1972
	וופן שם ו שם יינים		2 -	0.030.0		
	ild le	C 4	. 3	0.02000	3 065 006	_
	ag le	43	*0	0.03020	3.001-000	2001
B6AKF1 Hybr1d	ma Je	(2	211	0.03270	2.25t~UU0	Polley, 1972
פריזניו	fomalo	3706	42	0.0	SN	Cameron et al., 1985
BECAL	fema le	3706	. <u></u>	0.0	SE	
	e care y	3072	ונו		S	Cameron et al., 1985
000371	ellend ic	3076	: 5) C	2	רק ש
BOUSEI	al Pila	3/00	16.		2 4	
B6C3F1	female	3706	5	0.0	2	er 91.
B6C3F1	female	3706	1	0.0	SZ	et al.,
BACTET	female	3706	196	0.0	N.S	Cameron et al., 1985
10000	, cmo 1	3076	294		V 2	et al
			**		,	

Species	×	Animals	Age (days)	(kg)		
		and designated for the second of the second				
B6C3F1	female	3706	371	0.0	S	et al.,
B6C3F1	female	3706	455	0.0	SW	et al., l
B6C3F1	female	3706	532	•	SZ	et al.,
B6C3F1	female	3706	623	0.0	NS	:
8663F1	female	3706	707	0.0	N.S	Cameron et al., 1985
B6C3F1	female	3706	011	0.0	NS	et al.
8663F1	female	48	N.		N.S.	et al.,
B6C3F1	female	48	SN	0.0	NS	et al
8603F1	female	84	N.		. SN	et al.,
B6C3F1	female	8	S¥	0.0	NS	et al., l
8603F1	female	84	S X		N.S.	Ŧ
R6C3F1	female	36	_	0.0	4.00E-008	Poiley, 1972
RECAFI	female	23	7	0.0	7.23E-007	
RECRE	female	45	*		1.89E-006	
RECTET	female	: 2	. ~		2.33E-006	
R6C3F1	female	; e	28	0.0	3.52E-006	
BECTET	female		42		6.38F-006	
-		5	!			
B6C3F1	male	3634	45	0.0	N.S	•
B6C3F1	male	3634	45	0.0	¥S	ا.: ا
B6C3F1	male	3634	63	0.0	NS	et al., l
B6C3F1	male	3634	11	0.0	NS	:
B6C3F1	male	3634	98	•	NS	et al., l
B6C3F1	таје	3634	105	•	NS	et al., l
B6C3F1	male	3634	126	•	NS	et al., l
B6C3F1	male	3634	133	0.0	NS	et al., l
3F1	male	3634	175	0.0	NS	et al., l
B6C3F1	male	3634	252	0.0	NS	et al., l
B6C3F1	male	3634	483	0.0	NS	et al., l
3F1	male	3634	267	0.0	NS	et al
B6C3F1	male	3634	944	0.0	NS	et al.,
B6C3F1	male	3634	011	•	S R	et al.
B6C3F1	male	48	N.		S X	et al
B6C3F1	male	48	NS		SE	et al.,
B6C3F1	male	87	SN	•	SN	et al.,
B6C3F1	male	87	N.	0.0	S X	et al., l
B6C3F1	male	48	NS	0.0	SZ	Oller et al., 1985
B6C3F1	male	53	_	0.0	3.06E -008	_
B6C3F1	male	27	7	0.0	4.22E-007	_
R6C3F1	male	38	=	0.0	9.51E-007	_
B6C3F1	male	33	2	0.0	6.76E-006	_
RECTE	عاقي	29	28	0.0	1.32E-006	
10000	2 2	3.5	42		1 635 006	
125	9	2	2	=	-	

Species	Sex	Number of Animals	Age (days)	Weight (kg)	Variance	Reference
B6KC3FF1 Hybr1d B6KC3FF1 Hybr1d B6KC3FF1 Hybr1d B6KC3FF1 Hybr1d B6KC3FF1 Hybr1d B6KC3FF1 Hybr1d	female female female female female	45 51 52 49 39	14 23 28 42 56	0.0000000000000000000000000000000000000	5.06E-008 4.90E-007 1.16E-006 1.82E-006 4.31E-006 2.18E-006 1.16E-006	Polley, 1972 Polley, 1972 Polley, 1972 Polley, 1972 Polley, 1972 Polley, 1972
B6KC3FF1 Hybr1d B6KC3FF1 Hybr1d B6KC3FF1 Hybr1d B6KC3FF1 Hybr1d B6KC3FF1 Hybr1d B6KC3FF1 Hybr1d	ଲଥାତ ଲଥାତ ଲଥାତ ଲଥାତ ଲଥାତ	2 3 3 3 4 6 2 3 3 3 4 6 2 3 3 3 3 3 4 6 2 3 3 3 3 3 3 4 6 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	- 7 = 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2	0000000	4.00E-008 2.26E-007 2.18E-006 2.72E-006 6.25E-006 3.33E-006 1.21E-006	Polley, 1972 Polley, 1972 Polley, 1972 Polley, 1972 Polley, 1972 Polley, 1972
CBA/JCr CBA/JCr CBA/JCr CBA/JCr CBA/JCr CBA/JCr CBA/JCr CBA/JCr CBA/JCr	female female female female female female female	55 53 55 47 45 52	21 21 28 49 49 63	000000000	5.066-008 2.506-007 9.026-007 4.226-007 7.666-007 1.276-006 3.526-006 1.566-006	
CBA/JCr CBA/JCr CBA/JCr CBA/JCr	female female female	4.88.88 5.58 8.38	70 77 84 112	0.000	2.64E-006 3.06E-006 5.06E-006 5.06E-006	Poiley, 1972 Poiley, 1972 Poiley, 1972 Poiley, 1972
CBA/3Cr CBA/3Cr CBA/3Cr CBA/3Cr CBA/3Cr CBA/3Cr	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 4 7 2 4 4 0 5 5 5 4 4 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 14 2 2 1 2 8 8 4 2 8 4 2 8 4 2 8 4 2 8 4 2 8 4 2 8 4 2 8 4 2 8 4 2 8 4 2 8 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	0000000	7.56E-008 1.41E-007 1.00E-006 8.56E-007 1.05E-006 1.89E-006	Polley, 1972 Polley, 1972 Polley, 1972 Polley, 1972 Polley, 1972 Polley, 1972
CBA/JCr CBA/JCr CBA/JCr CBA/JCr CBA/JCr CBA/JCr	######################################	. 4	56 63 77 77 84	0000000	3.06E-006 5.64E-006 8.27E-006 4.52E-006 9.00E-006 6.25E-006	
CBA/3 CBA/3	female male	15 15	100	0.0	2.56E-006 2.56E-006	Kutscher, 1974 Kutscher, 1974

Species	Sex	Number of Animals	Age (days)	Weight (kg)	Varlance	Reference	
CDE1 Uchafd	Fomalo	70	F	0 0	100 100 6	[
	fom 1 o	2		0.0	3.035-00/	PULLEY, 1972	
	Female	; ;			1.015-00/	POLIEY, 1972	
	female	3	: ~		1 225 007	Dolley, 1972	
	female	. r.	280	9.5	1 60F 007	_	
	female	. 4	27	9.0	3.00L=00/ 1 27F_006		
Hybr	female	. r.	: 57	2.5	1 56F_006		
Hybri	female	. *	. <u>.</u>	0.0	3.065-006	Polley 1972	
Hybri	Formalle	. ⋖			2.25E -005		
Hybr 3	fema le	4 5	20	0.0	3.525-006		
1 Hybr 1	female	45	11	0.0	4.00E-006	_	
Hybri	female	45	8	0.0	4.52E-006		
CBF1 Hybrid	female	45	112	0.0	3.06E-006	٠.	
_	, r	9	-		100 100 1	-	
	ווס ב	0+	- 1	0.0	3,03E-00/		
	a e	90 3	-;	0.0	2.26E-00/		
	age Te	0 †	± ;	0.0	2.02E-007	_	
	ma le	0+	5	0.0	3.03E-007	_	
	ma le	52	88	0.0	1.96E-006	_	
	ma le	45	45	0.0	3.52E-006	Poiley, 1972	
_	ma le	55	6	0.0	1.56E-006	_	
_ ,	ma le	45	92	0.0	2.25E-006	_	
	ag le	÷.	£ .	0.0	6.25E-006	_ '	
CBF I Hybrid	ag e	45	2 :	0.0	6.25E-006		
	ma le	S	= :	0.0	9.00E-006		
	ma Je	. 5	84	0.0	1.31E-005	Polley, 1972	
CBF1 Hybr1d	male	45	112	0.0	5.64E-006	_	
CD. CDBA. CD2 Hvb	female	201	_	0 0	6, 25F -008	Polley, 1972	
	female	204	_	0.0	2.25F ±006		
	female	205	*	0.0	2.891-005		
	female	205	: Z	0.0	5.29E-006		
	female	201	28	0.0	3.33E-006	Pofley, 1972	
	female	152	45	0.0	5.52E-006		
	female	147	99	0.0	6.89E-006	_	
CO.COBA.CD2 Hyb	male	203	-	0.0	6.25E-008	Poiley, 1972	
CD. CDBA. CD2 Hyb	male	205	7	0.0	1.56F-006		
CD2	ma le	205	*	0.0	3.80E-006		
CD.CDBA.CD2 Hyb	ma le	204	23	0.0	4.41E-006		
CD.CDBA.CD2 Hyb	ma le	202	82	0.0	7.98E-006		
CD2	ma le	152	45	0.0	2.81E-006		
CD2	male	155	26	0.0	4.73E-006		

		Animals	(days)	(kg)		
CO-1 CO-1 CO-1	male male male	91 9 01	37 56 74	0.0 0.0 0.0	SSS	Fairchild, 1972 Fairchild, 1972 Fairchild, 1972
CFW/P1Cr	female	5 †	_	0.0	9.00E-008	Polley, 1972
CFW/P1Cr	female	24	7	0.0	1.816-007	
CFW/P1Cr	female	24	*	0.0	3.31E-007	_
CFW/P1Cr	female	24	2	0.0	1.63E-006	ey.
CFW/P1Cr	female	24	28	0.0	3.52E-006	
CFW/P1Cr	female	7 2	45	0.0	3.52E-006	Polley, 1972
CFW/P1Cr	female	24	26	0.0	2.48E-006	
CFW/P1Cr	female	54	70	0.0	2.72E-006	
		7			1 415 002	
CFW/P1Cr	na le	₹ ?		0.0	1.411.00/	Polley, 1972
CFW/P1Cr	ma le	₹;	-;	0.0	1.011-007	
CFW/P1Cr	male	7 2	± ;	0.0	4.564-00/	Polley, 1972
CFW/P1Cr	male	54	21	0.0	2.40t-006	
CFW/P1Cr	male	24	88	0.0	2.40E-006	_
CFW/P1Cr	male	24	~	0.0	3.52E -006	_
CFW/P1Cr	male	54	26	0.0	3.52E-006	Pofley, 1972
CFW/P1Cr	male	24	70	0.0	3.24E -006	Polley, 1972
Charles River	ma Je	80	SN	0.0	SM	Delaey et al., 1975
Charles River	ma le	7	NS	0.0	NS	et al.,
	•	\$	ŕ		100 133 1	7
Cr1, C0-1, CR, 8R	rema le	0 4	2 5	0.0	1.66E-007	
Cr1, C0-1, CK, BK	remale	0,0	0 6		1.415-007	יין פן.יי פיין פוריי
Cr1, C0-1, CR, BR	rema le	⊋ \$	281	o. c	3.91E-00/ E 63E 007	et d
Cr1, C0-1, CK, BK	remale	0+;	017	9.0	3.035 -007	
Cr1, CD-1, CR, BR	rema le	04	087	0.0	1.001-006	
Crl, CD-1, CR, BR	female	₽ :	1 95	0.0	1.2/1 -006	et d
Cr1,CO-1,CR,8R	female	0+	024	0.0	1.561-006	פנים:
Cr1,CO-1,CR,BR	female female	2 3	490 546	0.0	3.91E-007	Chvedoff et al., 1980 Chvedoff et al., 1980
un'un' 1 - 100' 1 -		2				•
Cr1,CD-1,CR,8R	male	0‡	70	0.0	1.00£-006	et al.,
Cr1.CO-1.CR.8R	male	9	140	0.0	J. 00E -006	et al.,
Cr1, C0-1, CR, BR	male	2	182	0.0	5.63E-007	et al.,
Crl.CD-1,CR.BR	male	0	210	0.0	1.27£-006	et al.,
Crl, CO-1, CR, BR	male	Q	280	0.0	5.62E -007	et al.,
Cr1, C0-1, CR, BR	ma le	0+	364	0.0	1.56£ -006	et al.,
Cr1, CO-1, CR, BR	male	0+	450	0.0	2.64E-006	et al.,]
Cr1, CO-1, CR, BR	ma le	04	4 80	0.0	0	et al., l
מש טן ניטן ניט	m 10	4n	546	-	E SAF OOS	Chyodoff of al 1980

3-37

species	747	Animals	Age (days)	weignt (kg)	Variance	Kererence
	female	52	-	0.0	1.56E-008	_
_	female	62	7	0.0	1.81E-007	_
_	female	4 6	=	0.0	3.03E-007	Polley, 1972
Cr:GP(S).Sw1ss	female	63	21	0.0	7.66E-007	_
	female	69	28	0.0	J.89E-006	
Cr:GP(S).Swiss	female	63	45	0.0	3.06E-006	Polley, 1972
GP(S). Swiss	fema le	19	26	0.0	2.50E-007	_
_	female	61	70	0.0	5.62E-007	
S	fema le	58	**	0.0	1.27F-006	_
S	female	525	112	0.0	2.25F-006	_
0	female	67	140	2	9 1015	_
S	female	38	168	0.0	5.291-006	
Cr.(SP(S), Swiss	male	37	_	0.0	1, 56F -008	Polley 1972
	12	. 5	_	0.0	9 00F-008	_
50	91.5	*			6 91E 007	_
50	عادها	6+	: :		7 665 007	
;;	200	2	17		100-100-1	
ż	ad Je	23	æ :	0.0	3.06E-006	_ ′
5	al e	16	2	0.0	5.62t-00/	_
<u>.</u>	ma Je	- 5	26	0.0	1.27E-006	_
S	ma Je	67	2	0.0	5.62E-007	_
S	ma le	35	*	0.0	2.40E-006	_
	ma le	33	112	0.0	4.20E-006	_
	male	30	740	0.0	4.16E-005	
:GP(S).Swlss	male	35	168	0.0	6.63E-006	Poiley, 1972
Cr:MGAPS(SW)	female	105	-	0.0	6.25E-008	Polley, 1972
Cr:MGAPS(SH)	female	107	7	0.0	3.03F-007	Poiley, 1972
Cr : MGAPS (SH)	female	100	=	0.0	5.63F-007	•
Cr : MGAPS (SW)	female	66	12	0.0	1.56E-006	
Cr : MGAPS (SH)	female	106	28	0.0	3.335-006	
Cr: MGAPS(SH)	female	107	42	0.0	5.06F-006	_
Cr.: MGAPS(SW)	female	109	95	0.0	4.205-006	
Cr. MGAPS (SH.)	female	801	2 2		2.64.5-006	_
Cr. MGAPS(SH)	f ema le	101	1	0	2.14F-005	
Cr.: MGAPS(SH)	female	66	112	0.0	8.855-006	
Cr. MGAPS(SH)	female	: =	140		9 775 -006	
: MGAPS(SW)	female		168	0.0	1.22E-005	Polley, 1972
Cr:MGAPS(SW)	ma le	104	-	0.0	6.25E-008	
Cr:MGAPS(SW)	ma Je	86	7	0.0	3.02E-007	Polley, 1972
Cr:MGAPS(SW)	ma le	105	*	0.0	4.906-007	Poiley, 1972
Cr. MGAPS(SH)	ma Je	106	7	0.0	2 25F -006	
Cr.MCADC(CL)	of en	נטנ	. 8		3 525 006	
/ no lo mon no					000 775	
		, ,				

Cr:MGAPS(SW) Cr:MG	male male male male male female female	96				
Cr:MGAPS(SW) Cr:MG	male male male male male female female	96				
Cr:MGAPS(SW) Cr:MG	male male male male female female		95	0.0	9.15£-006	Polley, 1972
Cr:MGAPS(SW) Cr:MG	male male male male female female	105	02	0.0	3.15E-006	
Cr:MGAPS(SW) Cr:MGAPS(SW) Cr:MGAPS(SW) Cr:MGAPS(SW) C3HF/HeCr	male male male female female female	101	*	0.0	4.20E-006	
Cr.:MGAPS(SW) Cr.:MGAPS(SW) Cr.:MGAPS(SW) C3HF/HeCr	male male female female female	00L	112	0.0	1.10E -006	
Cr.MGAPS(SW) C3HF/HeCr	male female female female female	85	0 * 1	0.0	1.30E -005	Polley, 1972
C3HF /HeCr C3HF /HeCr C3HF /HeCr C3HF /HeCr C3HF /HeCr C3HF /HeCr C3HF /HeCr C3HF /HeCr C3HF /HeCr C3HF /HeCr	female female female female	84	168	0.0	1.31E-005	Polley, 1972
C3HF /HeC C3HF /HeC C3HF /HeC C3HF /HeC C3HF /HeC C3HF /HeC C3HF /HeC C3HF /HeC C3HF /HeC	female female female	20	_	0.0	1.56F-008	Pollev, 1972
C3HF /HeC C3HF /HeC C3HF /HeC C3HF /HeC C3HF /HeC C3HF /HeC C3HF /HeC C3HF /HeC	female female female	3 5	. ~	0	3.316-007	
C3HF /HeCr C3HF /HeCr C3HF /HeCr C3HF /HeCr C3HF /HeCr C3HF /HeCr C3HF /HeCr C3HF /HeCr	female female	. 2	· <u>=</u>	0.0	1.325-006	_
C3HF /HeCr C3HF /HeCr C3HF /HeCr C3HF /HeCr C3HF /HeCr C3HF /HeCr C3HF /HeCr	female	92	7	0.0	3.02E -007	
COHF /HEC COHF /HEC COHF /HEC COHF /HEC COHF /HEC COHF /HEC		: 52	58	0.0	2.64E-006	_
COHF/HEC COHF/HEC COHF/HEC COHF/HEC COHF/HEC	female	29	45	0.0	2.18E-006	
C3HF/HeCr C3HF/HeCr C3HF/HeCr C3HF/HeCr	female	29	26	0.0	2.03E-006	_
C3HF/HeCr C3HF/HeCr C3HF/HeCr	female	6+	70	0.0	1.50E-006	_
C3HF/HeCr C3HF/HeCr	fema le	69	8	0.0	1.89E-006	Polley, 1972
C3HF/HeCr	fema le		112	0.0	4.00E-006	Polley, 1972
	female	84	140	0.0	4.95E-006	
C3HF/HeCr	female	63	168	0.0	1.04E-005	
		5		(
C3HF /HeCr	male	20	- 1	0.0	2.25E-008	
C3HF/HeCr	ma le	<u>.</u> .	- ;	0.0	1.60£-00/	Portley, 1972
C3HF /HeCr	ma le	53	± 7	0.0	9.516-00/	_ '
C3HF/HeCr	ma le	8 3	ار و	0.0	1.691-006	polley, 1972
CSHF /HeCr	ma le	÷ 5	9.7		9.38E-006	
CSHF/HeLF	al le	6 5	2 5		3 405 006	
CSHF/HeLT	md le	÷ 4	0 C		1 385 006	
CSHF/Hetr	9 0	2 4	2 8	9.0	2 10E -006	
CONF / Necr	- E	8 F		0.0	5 . 06F -006	_
COM / HeCI	9	4	140	0.0	1.695-006	_
C3HF /HeCr	male	35	168	0.0	4.31E-006	_
C3H/B1Cr	female	35	_	0.0	6.25E-008	Poiley, 1972
C3H/B1Cr	female	35	_	0.0	6.25E-008	
C3H/B1Cr	female	ਲ	=	0.0	3.31E-007	Polley, 1972
C3H/B1Cr	female	₹ 8	12	0.0	7.23E-007	
C3H/B1Cr	female	\$	82	0.0	6.40E-007	_
C3H/B1Cr	female	56	35	0.0	1.27E-006	
C3H/B1Cr	fema le	20	45	0.0	1.27E -006	•
C3H/B1Cr	female	₽9	64	0.0	7.66E-007	
C3H/R1Cr	fema Je	61	26	0.0	9.025-007	Poiley, 1972

		Animals	(days)	(kg)	,	We let elle
C3H/B1Cr	male	53	_	0.0	6.25E-008	Polley, 1972
C3H/R1Cr	عادها	.4	7	,	2,26F-007	
CSH/RICT	ع[ح	42	=	0.0	3.60F-007	_
Cal/Bic	9 6	: 5		0	4.56F-007	_
C3H/B1Cr	ما دو		28		1 00F-006	Polley 1972
2007070	91.00	2	3 2		1,005	_
C31/01C1	110 Te	2	3 2	9.0	2 6AE 006	_
C3H/ B1C1	200	30 9	7.0		1 165 006	
C3H781C1	ma 1c	8 5	2 3	9.0	1.195-005	
347.01.07		5	8	9.	1.2.1	
C3H/HeCr	female	160	_	0.0	6.25E-008	Polley, 1972
C3H/HeCr	female	176	_	•	8.10E-007	_
C3H/HeCr	female	118	*	0.0	2.48E-006	_
C3H/HeCr	female	011	12	0.0	2.98E-006	_
C3H/HeCr	female	100	58	0.0	4.84E-006	_
C3H/HeCr	female	4 3	. 42	0.0	2.33E-006	_
C3H/HeCr	female	45	99	0.0	1.56E-006	_
C3H/HeCr	fema le	99	0/	0.0	4.31E-006	
C3H/HeCr	female	8	₩8	0.0	3.06E-006	_
C3H/HeCr	fema le	*	112	0.0	2.25E-006	_ ′
C3H/HeCr	female	= :	140	0.0	2.81E-006	
C3H/HeCr	female	32	168	0.0	2.48t-006	Polley, 1972
C3H/HeCr	4	178	_	0.0	5.06F-008	Polley, 1972
C3H/HeCr	ma le	189	_	0.0	1.38E-006	_
C3H/HeCr	male	115	±	0.0	1.56E-006	_
C3H/HeCr	ma le	103	21	0.0	4.73E-006	
C3H/HeCr	ma Je	100	8 8	0.0	6.63E-006	_ '
C3H/HeCr	ma Je	53	7	0.0	4.20E-006	
C3H/HeCr	ma re	22	ę,	0.0	5.76E-006	
C3H/HeCr	ag le	80 6	0 8	0.0	7.435-006	0.11cv 1972
C3H/HeCr	ma re	2.2	104		2 335 006	
CONTROCT		2	140	9.0	2.72F-006	_
C3H/HeCr	ma Je	₹ 🕶	168	0.0	1.05E-006	_
СЗН/Не3	female	15	100	0.0	1.00E-006	Kutscher, 1974
СЗН/НеЗ	ma le	15	100	0.0	1.00E-006	Kutscher, 1974
C57B1/10ScCr	female	35		0.0	8.56E-007	
C57B1/10ScCr	female	32	- ;	0.0	3.31E-00/	
C5781/10ScCr	fema le	2, 2	± ?	0.0	4.56E-00/	Politey, 1972
C5/81/10ScCr	tend le	2.2	7 5		2.03E-006	Polley, 1972
C57B1/10ScCr	C E C E	1.0	2	:	4	

1990A 3-40

09/02/87

Species	Sex	Number of Animals	Age (days)	Weight (kg)	Varlance	Reference
C5781/10ScCr C5781/10ScCr C5781/10ScCr C5781/10ScCr C5781/10ScCr C5781/10ScCr	female female female female female	24 22 22 23 19 21	42 56 70 84 112 140	0.0000000000000000000000000000000000000	2.72E-006 2.50E-007 4.41E-006 2.33E-006 4.62E-006 3.24E-006	Polley, 1972
C5781710SCCr C5781710SCCr C5781710SCCr C5781710SCCr C5781710SCCr C5781710SCCr C5781710SCCr C5781710SCCr C5781710SCCr C5781710SCCr		282888888888	56 1 2 1 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	000000000000000000000000000000000000000	4.90E-007 2.76E-007 3.02E-007 2.72E-006 3.42E-006 1.96E-006 7.66E-007 1.00E-006 2.89E-006 2.89E-006 4.84E-006	
C5781/6CR C5781/6CR C5781/6CR C5781/6CR C5781/6CR C5781/6CR C5781/6CR C5781/6CR C5781/6CR	female female female female female female female	423 377 375 366 428 428 342 318 180 93 96	1 21 28 28 42 56 70 112 140	0000000000000	1, 23E -007 1, 44E -006 1, 50E -006 9, 41E -005 5, 29E -006 5, 06E -006 1, 39E -005 1, 39E -005 9, 50E -006 9, 60E -006	Polley, 1972
C57B1/6CR C57B1/6CR C57B1/6CR C57B1/6CR C57B1/6CR C57B1/6CR C57B1/6CR C57B1/6CR C57B1/6CR	## # # # # # # # # # # # # # # # # # #	444 366 369 359 270 210 117 63 71 88	14 21 28 28 42 56 70 112 112 160	000000000000	1.81E-007 2.03E-006 1.63E-006 3.71E-006 1.07E-005 1.07E-005 1.04E-005 1.98E-005 1.11E-005	Polley, 1972

Spectes	Sex	Number of Animals	Age (days)	Welght (kg)	Variance	Reference
C5781/6KaCr C5781/6KaCr C5781/6KaCr C5781/6KaCr C5781/6KaCr C5781/6KaCr	female female female female female female	33 3 2 2 2 2 2 3 3 3 2 3 3 3 3 3 3 3 3	14 21 28 42 56	0.0000000000000000000000000000000000000	5.06E-008 1.10E-006 1.32E-006 2.33E-006 5.76E-006 8.12E-006	Polley, 1972 Polley, 1972 Polley, 1972 Polley, 1972 Polley, 1972 Polley, 1972
C57B1/6KaCr C57B1/6KaCr C57B1/6KaCr C57B1/6KaCr C57B1/6KaCr C57B1/6KaCr	male male male male male	2 6 5 2 2 8 8	- 7 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	0.0000000000000000000000000000000000000	4.00E-008 1.16E-006 1.56E-006 2.64E-006 1.06E-005 5.64E-006	Polley, 1972
C57B1/6	SN	15	נו	0.0	4.95E-006	Hoover-Plow and Nelson, 1985
651/Cr 651/Cr 651/Cr 651/Cr 651/Cr 651/Cr 651/Cr 651/Cr 651/Cr	female female female female female female female female		14 23 28 28 42 70 70 112	0.0000000000000000000000000000000000000	1.00E-008 7.5E-008 2.2E-007 1.05E-006 3.31E-007 4.22E-007 6.40E-007 1.63E-006 2.25E-006 2.33E-006	Polley, 1972
651/Cr 651/Cr 651/Cr 651/Cr 651/Cr 651/Cr 651/Cr 651/Cr 651/Cr 651/Cr 651/Cr 651/Cr	78.16 78.16 78.16 78.16 78.16 78.16 78.16		14 28 28 28 36 70 112 140 151	000000000000000000000000000000000000000	1.56E-008 2.25E-008 3.91E-007 5.62E-007 1.06E-007 9.02E-007 9.02E-007 1.50E-006 3.52E-006 NS	Polley, 1972 Silverstein, 1960
C57L/6J C57L/6J	female male	15 15	00 t 00 t	0.0	1.00E-006 4.84E-006	Kutscher, 1974 Kutscher, 1974

		Animals	(days)	(kg)		
DBA/2Cr	female	423	-1	0.0	2.02E-007	Polley, 1972
DBA/2Cr	fema le	804	-;	0.0	1.8ZE -UU6	
DBA/2Cr	rema le	8/4	± ;	0.0	2.04E-UU6	Polley, 1972
DBA/2Cr	rema le	214	7 8	0.0	8.12t-006	_ ,
DBA/2Cr	fema le	436	₹\$	0.0	8.56t -006	
DBA/2Cr	female	393	24	0.0	6.89E-006	_ '
DBA/2Cr	female	242	26	0.0	1.44E-005	_ ,
DBA/2Cr	female	167	0	0.0	1.22E-005	_ '
D8A/2Cr	female	149	*	0.0	8.12E-006	_ '
DBA/2Cr	fema le	83	211	0.0	1.16E -005	
DBA/2Cr	female	68	140	0.0	7.98E-006	Polley, 1972
DBA/2Cr	female	105	891	0.0	1.118-005	Folley, 1972
-30/ 100	o Com	707	-	0	1 815 -007	Polley, 1972
-52	- Ind	101			2 A9F -006	
UBA/2CF	10 le	624	` =		2 815-006	
UBA/2CI	ווים וב מונים	388	<u> </u>	9.0	7 025-006	
106A/2CF	וומן ה ה' נינו	000	5 8	9.0	1 095-005	
DDA/2CI	1 a le	240	2 6	0.0	A 41F -006	
172/Y97	ma le	165	4 4	0.0	6.635-006	
DBA/2CI		150	8 2	0.0	9.77F-006	Polley, 1972
DBA/2Cr	9 9 9	139	8	0 0	8.855-006	
DRA/2Cr	al ell	88	112	0.0	1.43£-005	
DBA /2CF	9 (2	79	071	0.0	8.27E-006	_
DBA/2Cr	male	96	168	0.0	1.44E-005	Polley, 1972
DRA/2.1N	ma je	6	152	0.0	NS	Silverstein, 1960
	2	•	!			•
0BA/23	female	15	100	0.0	2.56E-006	Kutscher, 1974
184/21	ها دی	15	100	0.0	4.416-006	Kutscher, 1974
2	}	•	•			
Deer	NS	S	S	0.0	NS	Bruce, 1950
D2AKF1 Hvbr1d	female	35	_	0.0	7.56E-008	
	fema le	9	1	0.0	6.01E-007	
	female	53	*	0.0	8.10E-007	
	fema le	25	ا2	0.0	4.90E-007	Polley, 1972
_	female	28	88	0.0	3.91E-007	
_	female	39	4 5	0.0	1.27E-006	Polley, 1972
_	female	39	26	0.0	1.00E -006	
	female	15	0/	0.0	4.52E-006	Poiley, 1972
	female	40	₩	0.0	1.56E-006	_
	fomala	47	112	0	1 895 006	

		Animais	(days)	(kg)		
D2AKF] Hvbrid	male	0*	-	0.0	9.00E-008	
	male	35	7	0.0	5.26E-007	
	male	30	±	0.0	1.27E-006	
	male	52	12	0.0	6.01E-007	
	male	56	28	0.0	3.03E-007	
	male	38	45	0.0	J.00E-006	
	male	46	26	0.0	4.00E-006	
	male	6+	70	0.0	2.64E-006	
	ma le	Q +	₩	0.0	4.52E-006	
_	ma le	#	112	0.0	3.52E-006	Polley, 1972
			;		:	
HA/1CR	ma Je	60 (69	0.0	S	Fairchild, 1972
HA/ICR	ma Je	\$	06	0.0	S Z	Fairchild, 1972
House	male	SN	NS	0.0	1.00£-004	Tolmasoff et al., 1980
1	SM	1	וי	0.0	3.71E-006	Hoover-Plow and Nelson, 1985
M10/01C.	Fomala	74	_	-	1 00F -008	Pottley 1972
MIN/DIC.	female	7		0.0	2.76F-007	Polley, 1972
10 LU 1 LU	2000	• 6			2 035 006	
MIN/PICE	al Pila I	**	: 2		2 105 -006	_
MIN/PICE	al Pilla I	**	ב פ		1 005 006	Doiley, 1972
MIHZPICE	rema le	• •	2 2		2 0.35 006	
MIN/PICE	el elle i		2 3	0.0	7 445 006	_
MIH/PICF	a lema i	•	8 6	0.0	1.44[-000	
NIH/P1Cr	r ema le	•	2	0.0	1.301-000	1011ey, 1972
N1H/P1Cr	male	24	-	0.0	2.25E-008	_
NIH/P1Cr	ma le	\$ 2	1	0.0	2.02E-007	_
MIH/PICr	male	54	±	0.0	1.21E-006	
NIH/PICr	ma le	24	2ا	0.0	6.40E-007	_
NIH/P1Cr	male	24	28	0.0	2.64E-006	Poiley, 1972
NIH/PICr	ma le	54	45	0.0	2.03E-006	_
NIH/PICr	ma Je	24	26	0.0	2.48E-006	Poiley, 1972
NIH/P1Cr	male	24	0.0	0.0	1.76E-006	_
-0.00	, Land	ž	-	5	3 565 008	Dollar 1972
7707E	ellend i	2		•	6 25F 00B	Doiley 1972
M2B/CF	el emoj	5 6	_ =		3 915-007	_
M20/CI	fomalo	8 4	: 5	2.0	6.815-007	_
M20/CI	Fomalo	? =	, e	0.0	100-301 (
17.97	eling i		2 4		375 006	_
MZB/Cr	el Pila I	-	7 7	0.0	900-377-	
MZB/Cr	i ema le	Ç (8 6	0.0	3.001 -000	
NZB/Cr	rema le	<u>.</u>	2 3	0.0	3.57E-006	
NZB/Cr	rema le	5.0	*	0.0	1.56£-006	2 5
NZB/Cr	female	5	112	0.0	J.00E-006	Polley, 1972

			(cdp)	(kg)	•		
M7R/Cr	al em	37	_	0.0	1,56F-008	Polley, 1972	
M70/C	of ce				שטט דייי ר	_	
12 /0 ZN		2	•		200-300-1		
MZ8/LF	a PE	30	<u>+</u> ;	0.0	3.035-00/	_ '	
NZB/Cr	ma le	45	77	0.0	9.51E-00/	_	
NZB/Cr	male	42	28	0.0	9.02E-007	Poiley, 1972	
NZ8/Cr	male	45	45	0.0	2.64E-006	_	
NZB/Cr	male	64	26	0.0	3.06E-006	_	
M7R/Cr	ma le	47	20	0.0	1.565-006	Ĺ	
M7B/Cr	9 6	- 17	8	0.0	1.56F-006		
NZB/Cr	male	84	112	0.0	1.27E-006	_	
NZW/Cr	female	€	_	0.0	3.06E-008	Polley, 1972	
N/M/Cr	female	64	7	0.0	1.416-007	_	
NZW/Cr	female	48	7		4.235-007	<u> </u>	
NZII/Cr	female	4	· ~	0.0	9.51F-007	Polley, 1972	
27772	fem3 le	¥	, c		2 035 -006	_	
12/M7H	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0	2 2	9 6	1 666 006	_	
17/M7K	- E	f. ¢	,		1.00-100	_	
NZW/Cr	rema le	æ ;	20	0.0	1.691 -006	_ ′	
NZW/Cr	fema le	51	2 ;	0.0	٠	- '	
NZW/Cr	female	95	₹	0.0	•	Polley, 1972	
NZW/Cr	fema le	24	211	0.0	1.695-006	Poiley, 1972	
		,			1	- 1	
NZW/Cr	male	42	_	0.0	6.25E-008	_ '	
NZW/Cr	male	42	_	0.0	6.25E-008	_	
NZW/Cr	male	9+	=	0.0	7.66E-007	Polley, 1972	
NZW/Cr	male	46	12	0.0	1.63E-006	_	
NZW/Cr	male	46	88	0.0	2.81E-006	_	
NZW/Cr	male	‡	45	0.0	6.63E-006	٦.	
NZW/Cr	male	45	26	0.0	4.00E-006	_	
NZW/Cr	male	52	07	0.0	1.56E-006	Γ.	
NZW/Cr	male	20	8	0.0	7.66E-007	_	
NZW/Cr	male	6†	211	0.0	7.66E-007	Poiley, 1972	
9	£	2	193	c	2	1971	
2		2 3	/0C	9.0	2		
0.00	al Pilla I	2 2	• • •		2 3		
2 2	e l'ese	2 3	• 64 • 64 • 64		2	LAC 1971	
2	a Leng Le	2 :	600	0.0	2 4	LEGE SAM	
SM	rema le	2	06/	0.0	Ê		
¥	al ta	×	389	0.0	S	NAS. 1971	
	9 6 6 6	. Z	395		S	NAS. 1971	
2 2	9106	2	300		. .		
2 2	ביים ביים ביים ביים	2 2	933	9.0	2 2	LAC 1971	
2		2 2	60.6	9.0	2 5 4		
SM	ma le	2	248	0.0	2		
¥S	male	SZ	933	0.0	SN	MAS, 1971	

0.0 NS Bruce, 1956 0.0 NS Lane-Peter 0.0 2.25E-006 Mortola, 195 0.0 1.56E-006 Bruce, 195 0.0 1.56E-006 Bruce, 195 0.0 1.27E-006 Polley, 195 0.0 2.48E-006 Polley, 195 0.0 2.56E-006 Polley, 195 0.0 3.06E-006 Polley, 195 0.0 3.06E-006 Polley, 195 0.0 3.06E-006 Polley, 195 0.0 3.06E-006 Polley, 195 0.0 3.56E-006 Polley, 195 0.0 3.	Species	X	Animals	(days)	(kg)		
NS	NS NS	SS	NS NS	N N S	0.0	S S S	
NS 5 3 0.0 2.256-006 NS NS NS 0.0 1.566-006 Female 45 1 0.0 1.566-006 Female 44 14 0.0 1.566-006 Female 44 14 0.0 1.566-006 Female 29 28 0.0 1.566-006 Female 29 28 0.0 4.486-006 Female 23 28 0.0 4.486-006 Female 25 56 0.0 4.486-006 Female 23 140 0.0 2.646-006 Female 23 140 0.0 2.646-006 Female 23 140 0.0 2.646-006 Female 44 21 1 0.0 2.646-006 Male 44 21 1 0.0 2.646-006 Male 44 21 1 0.0 2.646-006 Male	SS	SS	NS SN	N N S	0.0	S SN	Lane-Peter et al., 1967 Lane-Peter et al., 1967
NS	S	SN	s	3	0.0	2.25E-006	Mortola, 1984
female 45 1 0.0 1.566.008 Pobley, 10.16, 10.16, 10.16, 10.16, 10.16, 10.16, 10.16, 10.16, 11.16, 10.16, 10.16, 11.16, 10.16, 11.16, 10.16, 11.16, 10.16, 11.16, 10.16, 11.16, 10.16, 11.16, 10.16, 11.16,	SN	NS	NS	SN	0.0	1.56E-006	Bruce, 1950
female 44 7 0.0 1,216,1006 Polley, Polley, Polley, Polley, Female female 41 14 0.0 2,48f,-006 Polley, Pol	PICr	female	45	-	0.0	1.56E-008	_
Female 41 14 0.0 6.40E-000 Polley,	RI/PICr	female	‡ :	۲;	0.0	1.27E-006	
Female 29 28 0.0 5.41E-006 Policy of the policy	RI/PIC	remale female	- E	± ⊼	0.0	6.48E-006	
female 26 42 0.0 4.84f-006 Polley,	RI/PIC	female	38	. 82	0.0	5.41E-006	_
female 25 56 0.0 2.66f006 Polley, Polley	RI/PICr	female	5 6	45	0.0	4.84E-006	
Female 23 70 0.0 1.89E-006 Polley,	RI/PICr	fema le	52	26	0.0	2.64E-006	_ '
Female 23 140 0.0 4.530t-007 POTIETY Female 23 140 0.0 4.70t-006 POTIETY Inale 47 1 0.0 7.70t-006 POTIETY Inale 45 1 0.0 3.06t-006 POTIETY Inale 44 21 0.0 1.05t-006 POTIETY Inale 26 42 0.0 1.05t-006 POTIETY Inale 29 56 0.0 1.05t-006 POTIETY Inale 29 56 0.0 1.82t-006 POTIETY Inale 29 56 0.0 1.82t-006 POTIETY Inale 29 56 0.0 1.82t-006 POTIETY Inale 20 11 0.0 2.64t-006 POTIETY Inale 22 140 0.0 2.64t-006 POTIETY Inale 24 168 0.0 2.64t-006 POTIETY Ina	RI/PICr	female	23	2 3	0.0	1.89E-006	
Female 31 112 0.0 7.084-000 P011ey, 1011-000 Female 33 168 0.0 7.08E-006 P011ey, 1011-000 male 46 7 0.0 7.08E-006 P011ey, 1011-000 male 44 21 0.0 1.16E-006 P011ey, 101-00 male 29 28 0.0 1.05E-006 P011ey, 101-00 male 29 42 0.0 5.04E-006 P011ey, 101-00 male 29 56 0.0 1.27E-006 P011ey, 101-00 male 20 112 0.0 1.27E-006 P011ey, 101-00 male 20 112 0.0 1.27E-006 P011ey, 101-00 male 20 112 0.0 2.04E-006 P011ey, 101-00 male 20 112 0.0 2.04E-006 P011ey, 101ey, 101ey, 101ey, 102 female 24 10 0.0 2.0E-006 P011ey, 102 female 24 1 <	RI/PICr	rema le	2 2	# C	0.0	2.50E-00/	
Female 33 168 0.0 5.525_006 Polity male 47 1 0.0 3.066_008 Polity male 44 7 0.0 3.066_008 Polity male 44 21 0.0 3.066_006 Polity male 29 28 0.0 5.086_006 Polity male 29 56 0.0 5.086_006 Polity male 29 70 0.0 5.086_006 Polity male 20 112 0.0 5.086_006 Polity male 20 112 0.0 2.406_006 Polity male 22 140 0.0 2.406_006 Polity male 22 140 0.0 2.406_006 Polity female 69 1 0.0 5.086_008 Polity female 69 21 0.0 5.086_009 Polity female 76 28 0.0 5.086_009 Polity female 76 28 0.0 5.086_009 Polity female 76 28 0.0 5.086_006 Polity female 76 28 0.0 5.086_006 Polity female 76 28 0.0 5.086_006 Polity female 70 49 0.0 3.526_006 Polity female 70 49 0.0 3.526_006 Polity female 70 49 0.0 3.526_006 Polity Polity	RI/PICr of /olf-	remale female	- 8	2 I I		4.84E-006	
male 47 1 0.0 3.06E-006 Polley, leg, leg, leg, leg, leg, leg, leg, leg	RI/PIC	female	32	168	0.0	5.52E-006	
Maje	01 /01Cr	al sa	13	_	0.0	3.06F-008	_
male 45 14 0.0 3.06E-006 Polley, P	RI/PIC	ma Je	9	7	0.0	1,16E-006	_
male 44 21 0.0 1.05E-006 Polley, lev, lev, lev, lev, lev, lev, lev, lev	RI/PICr	male	45	±	0.0	3.06E-006	_
Male 26	RI/PICr	male	#	2ا	0.0	1.05E-006	_
Male	RI/PICr	ma le	8	58	0.0	5.64E-006	_ '
Male 23 70 0.00 1.62E-000 1.61E-000 1.61E-000 1.62E-000 1.61E-000 1.61	RI/PICr	male of fr	9 %	2 4	0.0	5.18E-006	
Marie	KI/PICF	عادة	3.2	2 5		1.2.1. 1.82F_006	
Male 20 112 0.0 2.40E-006 Polley, 1 140 0.0 2.64E-006 Polley, 1 140 0.0 2.64E-006 Polley, 1 140 0.0 3.66E-008 Polley, 1 140 0.0 3.66E-007 Polley, 1 140 0.0 3.66E-006 Polley, 1 140 0.0 0.0 3.66E-006 Polley, 1 140 0.0	PI/PIC	- FEE	S =	2	0.0	3.90E-006	_
male 22 140 0.0 2.64E-006 Polley, 1 r male 24 168 0.0 1.50E-006 Polley, 1 female 69 1 0.0 5.06E-008 Polley, 1 female 67 14 0.0 3.60E-007 Polley, 1 female 69 21 0.0 5.63E-008 Polley, 1 female 76 28 0.0 8.56E-007 Polley, 1 female 74 35 0.0 6.25E-006 Polley, 1 female 77 42 0.0 5.06E-006 Polley, 1 female 70 49 0.0 3.52E-006 Polley, 1	RI/PIC	ma Je	2	12	0.0	2.40E-006	_
r male 24 168 0.0 1.50E-006 Polley, I female 69 1 0.0 5.06E-008 Polley, I female 67 14 0.0 3.60E-007 Polley, I female 69 21 0.0 5.63E-008 Polley, I female 76 28 0.0 8.56E-007 Polley, I female 74 35 0.0 6.25E-006 Polley, I female 77 42 0.0 5.06E-006 Polley, I female 70 49 0.0 3.52E-006 Polley, I	RI/PICr	male	22	140	0.0	2.64E-006	
female 69 1 0.0 5.06E-008 Polley, 1 female 67 14 0.0 3.60E-007 Polley, 1 female 69 21 0.0 5.63E-008 Polley, 1 female 76 28 0.0 8.56E-007 Polley, 1 female 74 35 0.0 6.25E-006 Polley, 1 female 77 42 0.0 5.06E-006 Polley, 1 female 70 49 0.0 3.52E-006 Polley, 1	RI/PICr	ma le	₹	168	0.0	. 50E	
female 74 7 0.0 3.60E-007 Polley, 1 female 67 14 0.0 1.56E-008 Polley, 1 female 69 21 0.0 5.63E-007 Polley, 1 female 76 28 0.0 8.56E-007 Polley, 1 female 74 35 0.0 6.25E-006 Polley, 1 female 77 42 0.0 5.06E-006 Polley, 1 female 70 49 0.0 3.52E-006 Polley, 1	JL/ JCr	female	69	-	0.0	5.06E-008	
female 67 14 0.0 1.56E-008 Polley, 1 female 69 21 0.0 5.63E-007 Polley, 1 female 74 35 0.0 6.25E-006 Polley, 1 female 77 42 0.0 5.06E-006 Polley, 1 female 70 49 0.0 3.52E-006 Polley, 1	JL/3Cr	female	7.	7	0.0	3.60E-007	
female 69 21 0.0 5.63E-007 Polley, I female 76 28 0.0 8.56E-007 Polley, I female 74 35 0.0 6.25E-006 Polley, I female 77 42 0.0 5.06E-006 Polley, I female 70 49 0.0 3.52E-006 Polley, I	JL/JCr	female	19	*	0.0	1.56E -008	_
female 74 35 0.0 6.25E-006 Polley, 1 42 0.0 5.06E-006 Polley, 1 42 0.0 5.06E-006 Polley, 1 female 70 49 0.0 3.52E-006 Polley, 1	JL/JCr	female	69	≂ 8	0.0	5.63E-007	
female 74 35 0.0 6.25t_0Ub Polley, 1 female 77 42 0.0 5.06t_006 Polley, 1 female 70 49 0.0 3.52t_006 Polley, 1	JL/JCr	remale	9	82 2	0.0	8.56E-UU/	- ,
female 70 49 0.0 3.52E-006 Polley, 1	JL/JCr	female	* [32	0.0	6.25t-006 5.06f.006	
1011 000-1757 0:0 Ct 0/ 3181111	JL/JU	rema le	2 5	7 0	9.0	3 5 25 006	
[Select 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	JL/JLF	Tema le	0.4	£ 3	0.0	3.321-000	

Species	Sex	Number of Animals	Age (days)	Welght (kg)	Varlance	Reference
\$31/30° \$31/30° \$31/30° \$31/30° \$31/30°	female female female female	70 75 83 69 68	63 70 77 84 112	0.0000	3.06E-006 2.64E-006 3.06E-006 5.64E-006 1.27E-006	Polley, 1972 Polley, 1972 Polley, 1972 Polley, 1972 Polley, 1972
\$31/3¢ \$31/3¢ \$31/3¢ \$31/3¢ \$31/3¢ \$31/3¢ \$31/3¢ \$31/3¢ \$31/3¢ \$31/3¢ \$31/3¢	8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	73 74 79 79 77 75 76 84	14 17 28 35 49 49 77 77 84	00000000000000	3.06E-008 1.60E-007 1.41E-007 1.50E-006 1.76E-006 4.00E-006 4.00E-006 4.52E-006 2.25E-006 2.25E-006 3.06E-006 3.06E-006	Polley, 1972
SW/JCr SW/JCr SW/JCr SW/JCr SW/JCr SW/JCr SW/JCr SW/JCr SW/JCr SW/JCr SW/JCr	female female female female female female female female female	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1	0.0000000000000000000000000000000000000	5.06E-008 4.00E-008 4.90E-007 1.16E-006 1.00E-006 1.89E-006 1.56E-006 2.25E-006 3.06E-006 3.06E-006 4.00E-006	Polley, 1972
SW/JCr SW/JCr SW/JCr SW/JCr SW/JCr SW/JCr SW/JCr	म्ब म्ब म्ब म्ब म्ब १९ १९ १९ १९ १९ १९ १९ १९ १९ १९ १९ १९ १९	\$ 50 0 4 \$ 50 0 4 \$ 50 0 4 \$ 60 0 4	14 21 28 35 469 56	000000000	4.00E-008 5.06E-008 1.56E-008 1.05E-006 9.51E-007 1.00E-006 1.89E-006	Polley, 1972

Species	Sex	Number of Animals	Age (days)	Weight (kg)	Variance	Reference
SM/JCr SM/JCr SM/JCr SM/JCr SM/JCr	male male male male	55 4 4 4 5 6 4 4 6 5 1 5 6 6	63 70 77 84	0.0000	3.06E-006 4.00E-006 3.06E-006 4.00E-006	Poiley, 1972 Poiley, 1972 Poiley, 1972 Poiley, 1972 Poiley, 1972
STR/Cr STR/Cr STR/Cr STR/Cr STR/Cr STR/Cr STR/Cr	female female female female female female	2222222	1 14 21 28 28 42 56 70 84	0.0000000000000000000000000000000000000	4.00E-008 2.50E-007 5.63E-007 1.27E-006 3.52E-006 3.52E-006 4.95E-006 5.52E-006	Poiley, 1972
STR/Cr STR/Cr STR/Cr STR/Cr STR/Cr STR/Cr STR/Cr STR/Cr	Rade Rade Rade Rade Rade	55 55 55 55 55 55 55 55 55 55 55 55 55	14 21 28 28 56 70 84	0.000000000	3.06E-008 2.50E-007 3.91E-007 2.25E-006 4.00E-006 5.06E-006 6.25E-006	Polley, 1972
STR/N STR/N STR/1N STR/1N	male male female male	12 12 13 8	61 152 152 152	0.0	SS S	Silverstein, 1960 Silverstein, 1960 Silverstein, 1960 Silverstein, 1960
SWR/3 SWR/3	female male	51 51	001 001	0.0	1.96E-006 4.41E-006	Kutscher, 1974 Kutscher, 1974
Various inbred Various inbred Various inbred Various inbred Various inbred	female female female female	S S S S S	21 28 42 42 56 511	0.0000	S S S S S	NAS, 1978 NAS, 1978 NAS, 1978 NAS, 1978 NAS, 1978

		Animals	(days)	(kg)			
	maje	SN	21	0.0	S	NAS, 1978	
	ma Je	S	58	0.0	SE		
	ma Je	SE	~;	0.0	SE	NAS, 1978	
	ma le	SE	26	0.0	SE		
Various inbred	ma le	NS	211	0.0	SN	NAS. 1978	
Uhite footed	fomalo	7	201	0	7, 235, -005	Steder et al. 1980	
Willie-Tooled	foms lo	2	159		6 25E 006	. [4	
	fom 10	+ 1	181		1 695 006		
White footed	Fema le	1	268	2.0	8 28F -005	, Te	
Willie-Tooled	foma lo		304		6 895 005	. [e +a	
White-footed	female	10	411	0.0	5.18E-005	et al.,	
Lh te	female	80	70	0.0	SM	Chew and Hinegardner, 1957	
LP1 to	fema le	œ	113	0.0	SZ	and	
White	female	. æ	396	0.0	SN	and Hinegardner,	
Lh) te	male	80	70	0.0	NS	Chew and Hinegardner, 1957	
2	9,50	a	113		<i>U</i> Z		
White	male e	ာ ဆေ	396	0.0	SW	and Hinegardner,	
ZWZRE1 Hybrid	female	4 3	-	0.0	5.06£-008	Poiley, 1972	
	fema le	43	1	0.0	7.56E-008	Polley, 1972	
	female	4 3	*	0.0	1.23E-007	_	
_	female	46	12	0.0	8.10E-007	Polley, 1972	
_	female	6	28	0.0	8.10E-007	_	
_	female	4 8	4 5	0.0	1.27E-006		
_	female	84	99	0.0	1.27E-006	_	
_	fema le	Q	0/	0.0	1.56E-006		
_	fema le	67	84	0.0	3.52E-006	Polley, 1972	
_	female	45	211	0.0	3.52E-006	Poiley, 1972	
ZWZBF1 HVbr1d	male	45	_	0.0	1.22E-007		
	ma le	45	7	0.0	1.23E-007	_	
_	ma le	84	=	0.0	1.22E-007		
_	ma le	=	12	0.0	5.26E-007		
_	ma Je	45	28	0.0	7.23E-007		
_	ma Je	45	45	0.0	6.89E-006	_ '	
ZWZBF1 Hybr1d	ma Je	45	26	0.0	1.56E-006	_ '	
	ma Je	45	0/	0.0	1.00E -006	_ '	
ZWZBF1 Hybrid	ma le	7	84	0.0	7.66E-007		
	ma Je	45	112	0.0	7.66E-007	Poiley, 1972	

NS = Not specified

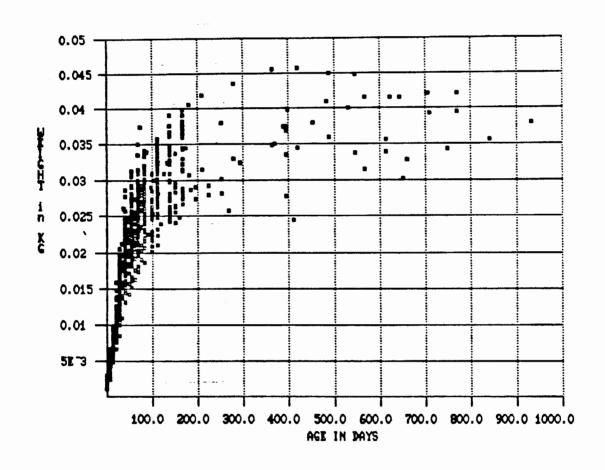


FIGURE 3-16

Body Weight Data on Male and Female Mice
(See Table 3-2 for data points and references)

For the purposes of estimating body weights over the lifespan, the most relevant data are provided by Cameron et al. (1985). This publication provides growth data on thousands of male and female B6C3Fl mice that were used as vehicle and untreated controls in bioassays for carcinogenicity. These bioassays were sponsored by the National Cancer Institute and conducted from 1971-1981. Body weight measurements were recorded from 6-110 weeks of age. The data summarized in Table 3-2 were estimated from Figures 1 and 2 in Cameron et al. (1985). Not all points from these figures are summarized in this report, but the points that are summarized adequately reflect the overall growth curve. For female mice, only the curve from the untreated animals was used, since the vehicle control female mice had a somewhat lower body weight than the untreated controls from weeks 26-110.

Most toxicity studies on mice, as well as other small laboratory rodents, are conducted over standard exposure periods. For subchronic studies, weanling mice are usually exposed for 90 days. For chronic toxicity studies, weanling mice are usually exposed for 2 years or ~730 days. Consequently, standard reference values will be recommended for both kinds of studies. For subchronic toxicity studies, the recommended body weight will be the TWA body weight from 21 days of age (the recommended age for weanling mice) to 111 days of age (90 days postweaning). This will be referred to as the recommended "subchronic" body weight. The corresponding recommended "chronic" body weight will refer to the TWA body weight from 21-751 days of age. Recommended subchronic and chronic body weights for various strains of mice are presented in Table 3-3.

The recommended chronic and subchronic body weights for B6C3F1 mice are calculated directly from a composite of the data provided by Poiley (1972) (days 1-42) and Cameron et al. (1985) (days 42-770). These data are presented in Figures 3-17 and 3-18, for male and female mice, respectively.

1990A 3-51 09/02/87

Strain Sex Weight at Birth Weight at Body Weight at Body Weight at Body Weight Subchronic TMA Body Weight Chronic TMA Body Body Weight Chronic TMA Body Body Weight Chronic TMA Body Body Body Body Body Body Body Body				1	TABLE 3-3		
rain Sex Weight at Birth Weaning Weaning Body Weight Subchronic TWA Weaning Body Weight F 0.002 0.0085 0.209 Cr F 0.0014 0.0087 0.0222 Cr F 0.0014 0.0089 0.0252 Cr F 0.0014 0.0088 0.0253 F 0.0015 0.0086 0.0254 P 0.0012 0.0126 0.0243 ybrid F 0.0021 0.0067 0.0224 ybrid F 0.0022 0.0067 0.0223 AnCr F 0.0017 0.0108 0.0223 AnCr F 0.0013 0.0113 0.0218 P 0.0019 0.0077 0.0210				Jes for Body W	leights of Various	Strains of Mice	
F 0.002 0.0085 0.209 Cr F 0.0014 0.0087 0.0246 Cr M 0.0014 0.0087 0.0252 Cr M 0.0015 0.0090 0.0252 F 0.0014 0.0088 0.0251 F 0.0015 0.0096 0.0274 F 0.0012 0.0126 0.0243 ybrid F 0.0021 0.0067 0.0224 AnCr F 0.0017 0.0108 0.0223 AnCr F 0.0017 0.0108 0.0218 F 0.0013 0.0113 0.0218 F 0.0019 0.0077 0.0210	Strain	Sex	Weight at Birth	Weight at Weaning	Subchronic TWA Body Weight	Chronic TWA Body Weight	Reference
Cr F 0.0014 0.0087 0.0222 Cr M 0.0014 0.0089 0.0252 Cr M 0.0015 0.0089 0.0251 F 0.0015 0.0086 0.0274 F 0.0015 0.0126 0.0274 ybrid F 0.0012 0.0137 0.0243 ybrid F 0.0022 0.0077 0.0223 AnCr F 0.0017 0.0108 0.0209 AnCr M 0.0013 0.0113 0.0218 F 0.0019 0.0080 0.0234	AKD2F1	Ŀ	0.002	0.0085	0.209	0.233*	Poiley, 1972
Cr H 0.0014 0.0087 0.0222 Cr M 0.0015 0.0090 0.0252 F 0.0014 0.0088 0.0251 M 0.0015 0.0096 0.0274 ybrid F 0.0012 0.0137 0.0243 ybrid F 0.0022 0.0077 0.0223 AnCr F 0.0013 0.0103 0.0218 F 0.0013 0.0113 0.0218 F 0.0019 0.0017 0.0218 M 0.0019 0.0080 0.0234	AKD2F1	Σ	0.02	0.095	0.0246	0.0308*	Poiley, 1972
Cr M 0.0015 0.0090 0.0252 F 0.0014 0.0088 0.0251 M 0.0015 0.0096 0.0274 F 0.0012 0.0126 0.0243 ybrid F 0.0021 0.0067 0.0243 ybrid F 0.0022 0.0077 0.0223 AnCr F 0.0017 0.0108 0.0218 AnCr M 0.0013 0.0113 0.0218 F 0.0019 0.0077 0.0218 F 0.0019 0.0077 0.0218	AKR/LwCr	u.	0.0014	0.0087	0.0222	0.0259*	Poiley, 1972
F 0.0014 0.0088 0.0251 M 0.0015 0.0096 0.0274 F 0.0012 0.0126 0.0224 ybrid F 0.0021 0.0067 0.0243 ybrid M 0.0022 0.0077 0.0223 AnCr F 0.0017 0.0108 0.0208 AnCr M 0.0013 0.0113 0.0218 F 0.0019 0.0080 0.0234	AKR/LwCr	Σ	0.0015	0.0000	0.0252	0.0320*	Poiley, 1972
M 0.0015 0.0024 F 0.0012 0.0126 0.0243 ybrid F 0.0021 0.0067 0.0204 ybrid F 0.0022 0.0077 0.0223 AnCr F 0.0017 0.0108 0.0200 AnCr M 0.0013 0.0113 0.0218 F 0.0019 0.0077 0.0210 F 0.0019 0.0077 0.0218	AL/NCr	Li.	0.0014	0.0088	0.0251	0.0318*	Poiley, 1972
F 0.0012 0.0126 0.0244 ybrid F 0.0021 0.0137 0.0243 ybrid F 0.0022 0.0077 0.0223 AnCr F 0.0017 0.0108 0.0203 AnCr F 0.0013 0.0113 0.0218 F 0.0019 0.0077 0.0218 F 0.0019 0.0077 0.0218	AL/NCr	£	0.0015	9600.0	0.0274	0.0364*	Poiley, 1972
ybrid F 0.0012 0.0137 0.0243 ybrid F 0.0021 0.0067 0.0223 AnCr F 0.0017 0.0108 0.0200 AnCr M 0.0013 0.0113 0.0218 F 0.0019 0.0077 0.0210 F 0.0019 0.0023	A/JCr	u_	0.0012	0.0126	0.0224	0.0263*	Poiley, 1972
ybrid F 0.0021 0.0067 0.0204 ybrid M 0.0022 0.0077 0.0223 AnCr F 0.0017 0.0108 0.0200 AnCr M 0.0013 0.0113 0.0218 F 0.0019 0.0077 0.0210 M 0.0019 0.0080 0.0234	A/JCr	Σ	0.0012	0.0137	0.0243	0.0302*	Poiley, 1972
ybrid M 0.0022 0.0077 0.0223 AnCr F 0.0017 0.0108 0.0200 AnCr M 0.0013 0.0113 0.0218 F 0.0019 0.0077 0.0210 M 0.0019 0.0080 0.0234	BAFl Hybrid	-	0.0021	0.0067	0.0204	0.0222*	Poiley, 1972
AnCr F 0.0017 0.0108 0.0200 AnCr M 0.0013 0.0113 0.0218 F 0.0019 0.0077 0.0210 M 0.0019 0.0080 0.0234	BAFl Hybrid	Σ	0.0022	0.0077	0.0223	0.0261*	Poiley, 1972
AnCr M 0.0013 0.0113 0.0218 F 0.0019 0.0077 0.0210 M 0.0019 0.0080 0.0234	BALB/cAnCr	u.	0.0017	0.0108	0.0200	0.0214*	Poiley, 1972
F 0.0019 0.0077 0.0210 M 0.0019 0.0080 0.0234	3ALB/cAnCr	Σ	0.0013	0.0113	0.0218	0.0251*	Poiley, 1972
M 0.0019 0.0080 0.0234	B6AKF1	ட	0.0019	0.0077	0.0210	0.0235*	Poiley, 1972
	36AKF1	Σ	0.0019	0.0080	0.0234	0.0283*	Poiley, 1972

1990A 3-52 09/02/87

B6C3F1 F 0.0014 0.0093 0.0246 0.0353 Polley, 1972; B6C3F1 H 0.0014 0.0103 0.0316 0.0373 Polley, 1972; CBA/3Cr F 0.0026 0.0106 0.0231 0.0277* Polley, 1972 CBA/3Cr H 0.0030 0.0113 0.0263 0.0342* Polley, 1972 CBF1 H 0.0030 0.0113 0.0263 0.0342* Polley, 1972 CBF1 H 0.0030 0.0112 0.0254 0.0354* Polley, 1972 CBF1 H 0.0030 0.0112 0.0254 Polley, 1972 CF:GP(S).Swiss F 0.0019 0.0024 0.0354* Polley, 1972 CF:GP(S).Swiss F 0.0016 0.0091 0.0270 0.0259* Polley, 1972 CF:MGAPS(SM) F 0.0016 0.0091 0.0222 0.0259* Polley, 1972 C3HF/HeCr F 0.0019 0.0106 0.0181 0.0169 Polley, 1972	Strain	Sex	Weight at Birth	Weight at Weaning	Subchronic TWA Body Weight	Chronic TWA Body Weight	Reference
F1 M 0.0014 0.0103 0.0316 0.0373 polley, cameron cameron 3Cr F 0.0026 0.0106 0.0253 0.0277* Polley, cameron 3Cr M 0.0030 0.0113 0.0263 0.0342* Polley, polley, cameron 3Cr M 0.0030 0.0112 0.0254 0.0324* Polley, polley, cameron P(S).Swiss F 0.0019 0.0107 0.0276 0.0324* Polley, polley, cameron SAPS(SW) F 0.0019 0.0091 0.0270 0.0356* Polley, cameron Hecr F 0.0018 0.0091 0.0224 0.0356* Polley, cameron Hecr F 0.0019 0.0106 0.0181 0.0356* Polley, cameron Hecr F 0.0019 0.0106 0.0246 0.0356* Polley, cameron Hecr F 0.0019 0.0121 0.0256 0.0326* Polley, cameron Hecr F 0.0015 0.0109 <t< td=""><td>B6C3F1</td><td><u>.</u></td><td>0.0014</td><td>0.0093</td><td>0.0246</td><td>0.0353</td><td>Poiley, 1972; Cameron et al., 1985</td></t<>	B6C3F1	<u>.</u>	0.0014	0.0093	0.0246	0.0353	Poiley, 1972; Cameron et al., 1985
JGr F 0.0026 0.0106 0.0231 0.0277* Poilley. JGr M 0.0030 0.0113 0.0263 0.0342* Poilley. JGr 0.0030 0.0112 0.0218 0.0354* Poilley. P(S).Swiss F 0.0030 0.0112 0.0254 Poilley. P(S).Swiss F 0.0019 0.0096 0.0270 0.0356* Poilley. SAPS(SW) F 0.0019 0.0091 0.0222 0.0356* Poilley. SAPS(SW) M 0.0018 0.0092 0.0246 0.0356* Poilley. Hecr F 0.0019 0.0106 0.0181 0.0176* Poilley. Hecr F 0.0019 0.0107 0.0267 0.0356* Poilley. Hecr F 0.0016 0.0172 0.0267 0.0356* Poilley.	B6C3F1	Σ	0.0014	0.0103	0.0316	0.0373	
JGr M 0.0030 0.0113 0.0263 0.0342* Poiley. F 0.0030 0.0105 0.0254 0.0251* Poiley. F(S).Swiss F 0.0019 0.0102 0.0254 Poiley. F(S).Swiss F 0.0019 0.0107 0.0246 0.0336* Poiley. F(S).Swiss M 0.0019 0.0107 0.0270 0.0356* Poiley. FAPS(SW) F 0.0016 0.0092 0.0222 0.0259* Poiley. HeCr F 0.0019 0.0106 0.0181 0.0186 Poiley. Hecr F 0.0019 0.0121 0.0265 Poiley. Hecr F 0.0015 0.0121 0.0265 Poiley. Hecr F 0.0015 0.0129 0.0265 Poiley. Hecr F 0.0015 0.0129 0.0265 Poiley.	CBA/JCr	ட	0.0026	0.0106	0.0231	0.0277*	Poiley, 1972
F 0.0030 0.0105 0.0251* P011ey. P(S).Swiss F 0.0030 0.0112 0.0254 P011ey. P(S).Swiss F 0.0019 0.0096 0.0246 0.0364* P011ey. SAPS(SW) F 0.0016 0.0107 0.0270 0.0356* P011ey. SAPS(SW) F 0.0016 0.0092 0.0222 0.0259* P011ey. Hecr F 0.0018 0.0106 0.0181 0.0246 P011ey. Hecr F 0.0019 0.0121 0.0265 0.0224* P011ey. Hecr F 0.0015 0.0121 0.0265 0.0326* P011ey. Hecr F 0.0015 0.0109 0.0265 0.0326* P011ey.	CBA/JCr	Σ	0.0030	0.0113	0.0263	0.0342*	Poiley, 1972
(S).Swiss H 0.0030 0.0112 0.0246 0.0304* Poilley. P(S).Swiss F 0.0019 0.0096 0.0246 0.0356* Poilley. AFS).Swiss M 0.0019 0.0107 0.0270 0.0356* Poilley. SAPS(SW) F 0.0016 0.0092 0.0222 0.0356* Poilley. HeCr F 0.0018 0.0106 0.0181 0.0181 Poilley. HeCr M 0.0020 0.0121 0.0205 0.0224* Poilley. HeCr F 0.0015 0.0109 0.0265 0.0326* Poilley. HeCr M 0.0015 0.0109 0.0265 0.0326* Poilley.	CBF1	-	0.0030	0.0105	0.0218	0.0251*	Poiley, 1972
SWiss F 0.0019 0.0096 0.0246 0.0356* Poiley. SWiss M 0.0019 0.0107 0.0270 0.0356* Poiley. SWis F 0.0016 0.0092 0.0222 0.0259* Poiley. SWis M 0.0018 0.0092 0.0246 0.0308* Poiley. F D 0.0019 0.0106 0.0181 0.0176* Poiley. F D 0.0012 0.0121 0.0255 0.0224* Poiley. F D 0.0015 0.0079 0.0255 0.0326* Poiley. M D 0.0015 0.0109 0.0267 0.0326* Poiley.	CBF1	Σ	0.0030	0.0112	0.0254	0.0324*	Poiley, 1972
SW15S M 0.0019 0.0107 0.0270 0.0356* Poilley. SW1 f 0.0016 0.0092 0.0222 0.0308* Poilley. SW1 M 0.0018 0.0092 0.0246 0.0308* Poilley. r F 0.0019 0.0106 0.0181 0.0176* Poilley. r M 0.0020 0.0121 0.0255 0.0224* Poilley. R 0.0015 0.0109 0.0267 0.0326* Poilley.	Cr:GP(S).Swiss	ı	0.0019	9600.0	0.0246	0.0308*	Poiley, 1972
(SM) F 0.0016 0.0091 0.0222 0.0259* Poiley. (SM) M 0.0018 0.0092 0.0246 0.0308* Poiley. r F 0.0019 0.0106 0.0181 0.0176* Poiley. r M 0.0020 0.0121 0.0205 0.0224* Poiley. F 0.0015 0.0079 0.0165 0.0255 0.0326* Poiley. M 0.0015 0.0109 0.0166 0.0256 Poiley.	Cr:GP(S).Swiss	Σ	0.0019	0.0107	0.0270	0.0356*	Poiley, 1972
(SM) M 0.0018 0.0092 0.0246 0.0308* Poiley. r H 0.0019 0.0106 0.0181 0.0176* Poiley. r M 0.0020 0.0121 0.0205 0.0224* Poiley. F 0.0015 0.0079 0.0255 0.0326* Poiley. M 0.0015 0.0109 0.0267 0.0350* Poiley.	Cr:MGAPS(SW)	ı	0.0016	0.0091	0.0222	0.0259*	Poiley, 1972
r F 0.0019 0.0106 0.0181 0.0176* Poiley, r M 0.0020 0.0121 0.0205 0.0224* Poiley, F 0.0015 0.0079 0.0255 0.0326* Poiley, H 0.0015 0.0109 0.0267 Poiley,	Cr:MGAPS(SW)	Σ	0.0018	0.0092	0.0246	0.0308*	Poiley, 1972
F 0.0020 0.0121 0.0205 0.0224* Poiley. F 0.0015 0.0079 0.0255 0.0326* Poiley. M 0.0015 0.0109 0.0267 Poiley.	C3HF/HeCr	ı	0.0019	0.0106	0.0181	0.0176*	Poiley, 1972
F 0.0015 0.0079 0.0255 0.0326* Poiley. M 0.0015 0.0109 0.0267 0.0350* Poiley.	C3HF/HeCr	Σ	0.0020	0.0121	0.0205	0.0224*	Poiley, 1972
M 0.0015 0.0109 0.0267 0.0350* Poiley,	C3H/HeCr	ш.	0.0015	0.0079	0.0255	0.0326*	Poiley, 1972
	СЗН/НеСг	Σ	0.0015	0.0109	0.0267	0.0350*	

1990A 3-53 09/02/87

Strain	Sex	Weight at Birth	Weight at Weaning	Subchronic TWA Body Weight	Chronic TWA Body Weight	Reference
C57B1/10ScCr	Ŀ	0.0014	0.0119	0.0233	0.0281*	Poiley, 1972
C57B1/10ScCr	Σ	0.0014	0.0122	0.0269	0.0354*	Poiley, 1972
C57B1/6Cr	ш.	0.0014	0.0082	0.0198	0.0210*	Poiley, 1972
C57B1/6Cr	Σ	0.0015	0.0094	0.0220	0.0255*	Poiley, 1972
C57L/Cr	ı.	0.0017	0.0095	0.0190	0.0194*	Poiley, 1972
C57L/Cr	Σ	0.0018	0.0103	0.0207	0.0229*	Poiley, 1972
DBA/2Cr	<u></u>	0.0014	0.0095	0.0214	0.0243*	Poiley, 1972
DBA/2Cr	Σ	0.0015	0.0097	0.0225	0.0265*	Poiley, 1972
D2AKF1	ш.	7100.0	0.0075	0.0209	0.0233*	Poiley, 1972
D2AKF1	Σ	0.0016	0.0080	0.0240	0.0295*	Poiley, 1972
NZB/Cr	<u>.</u>	0.0015	0.0103	0.0255	0.0326*	Poiley, 1972
NZB/Cr	Ŧ	0.0015	0.0113	0.0286	0.0389*	Poiley, 1972
NZW/Cr	u	0.0020	0.0109	0.0255	0.0326*	Poiley, 1972
NZW/Cr	Ŧ	0.0021	0.0115	0.0285	0.0387*	Poiley, 1972
PRI/PICr	ш.	0.0015	0.0148	0.0284	0.0385*	Polley 1972

1990A 3-54 09/02/87

	Sex	Weight at Birth	Weight at Weaning	Body Weight	unronic iwa Body Weight	Kererence
PRI/PlCr	Σ	0.0015	0.0158	0.0302	0.0421*	Poiley, 1972
SJL/JCr	u_	0.0018	0.0116	0.0206	0.0227*	Poiley, 1972
SJL/JCr	Σ	0.0017	0.0120	0.0243	0.0302*	Poiley, 1972
SM/JCr		0.0017	0.0088	0.0165	0.0143*	Poiley, 1972
SM/JCr	Σ	0.0016	0.0100	0.0182	0.0178*	Poiley, 1972
Various Inbred	ĽŁ.		0.0102	0.0220	0.0255*	NAS, 1978
Various Inbred	Σ		0.010	0.0240	0.0295*	NAS, 1978
ZWZBF1	ų.	0.0027	0.0067	0.0235	0.0285*	Poiley, 1972
ZWZBF1	Σ	0.0027	0.0078	0.0333	0.0484*	Poiley, 1972

*Recommended chronic body weights based on the equation, BWch = -0.019+2.03 BWsub, where BWch is the recommended subchronic body weight.

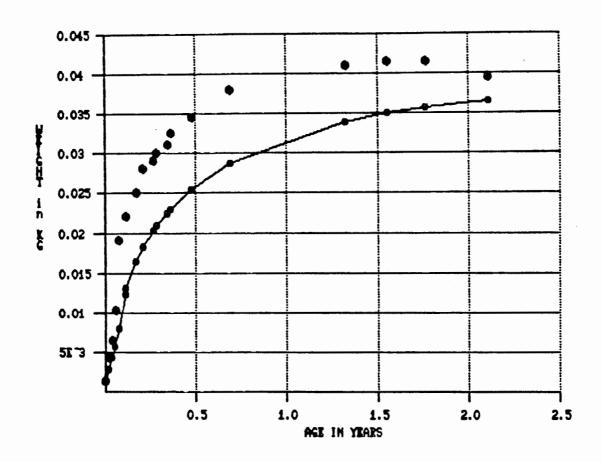


FIGURE 3-17

Recommended Growth Curve for Male B6C3F1 Mice

[Data from Poiley (1972) and Cameron et al. (1985)]

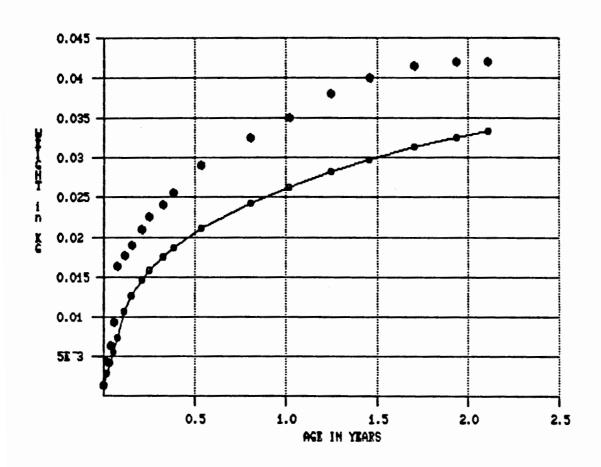


FIGURE 3-18

Recommended Growth Curve for Female B6C3Fl Mice

[Data from Poiley (1972) and Cameron et al. (1985)]

In both of these figures and in the calculation of recommended body weights, the Poiley (1972) data for B6C3F1 mice at day 42 and following are omitted. These data are omitted because body weights at day 42 in Poiley (1972) are substantially higher for both sexes than body weights at day 42 in the publication by Cameron et al. (1985). And the latter study is given preference because of the far greater numbers of animals used to estimate the body weight.

The July 1

Recommended subchronic body weights also are provided in Table 3-3 and are calculated directly from the Polley (1972) data and from composite growth data on various strains of inbred mice reported by NAS (1978). Data are not available to directly calculate recommended chronic body weights for any of these other strains of mice.

Chronic body weights could be estimated by assuming that the ratio of chronic to subchronic body weights is the same as that observed in male and female B6C3Fl mice. In the growth data on rats, summarized in Section 3.2.2., substantial variation is apparent in the ratios of recommended chronic to subchronic body weights among male and female Sprague-Dawley and Fischer rats, as well as male Wistar rats. In addition, this variation seems likely to occur among strains of mice.

As an alternative to that approach, recommended chronic body weights for mice and rats were estimated from the observed relationship between subchronic and chronic body weights for B6C3F1 mice and the strains of rats specified above. This relationship and associated summary statistics are given in Figure 3-19. From this relationship, the recommended chronic body weights are based on the equation:

$$BWch = -0.019 + 2.03BWsub$$
 (3-2)

where BWch is the recommended chronic body weight and BWsub is the recommended subchronic body weight.

1990A

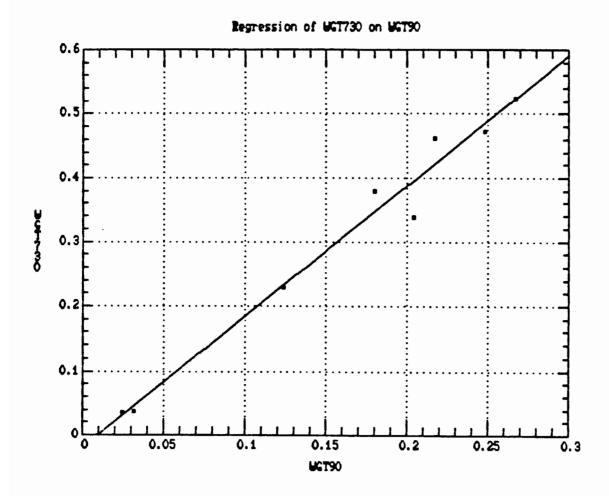


FIGURE 3-19

Relationship of "Subchronic" to "Chronic"
Time-Weighted Average Body Weights for Mice and Rats
(See text for definition and discussion of terms)

This approach assumes that the ratio of subchronic to chronic body weights will generally be the same for males and females. Male B6C3F1 mice, however, exhibit a marked plateau in growth (see Figure 3-17) not seen in female mice (see Figure 3-18). A similar pattern is seen in human males (see Figure 3-5) and females (see Figure 3-6) as well as in other species, as discussed in subsequent sections. This fact suggests that sex-specific body weight estimates may be more appropriate than the general approach given above. Given the small number of available sex-specific strain comparisons, however, a clear pattern is not apparent.

Since toxicity studies commonly give initial or weanling weights without giving final or average body weights, the relationship of weanling weight to recommended subchronic weight was examined. This relationship is illustrated in Figure 3-20 for rats and mice combined. The high correlation coefficient is due to the clustering of the rat and mouse data. Within either species, the correlation is poor. Consequently, the use of weanling weight to estimate recommended body weights is not proposed.

Recommended body weights for mice, when the strain is not specified or when recommended weights are not available on the specified strain, should be based on the recommended weights for male and female B6C3F1 mice. These weights are the best documented and are near the average for all mice strains combined.

3.2.2. Rats. The U.S. EPA (1980) has recommended a reference body weight of 0.35 kg for adult rats. Other reported reference values are 0.45 (ARS Sprague-Dawley, 1974), 0.25 (Boxenbaum, 1983) and 0.40 kg (Lehman, 1959).

As with mice, a substantial amount of information is available on the growth of rats. These data are summarized in Table 3-4 and plotted in Figure 3-21. Body weights of rats seem to vary more than those of mice.

1990A 3-60 09/02/87

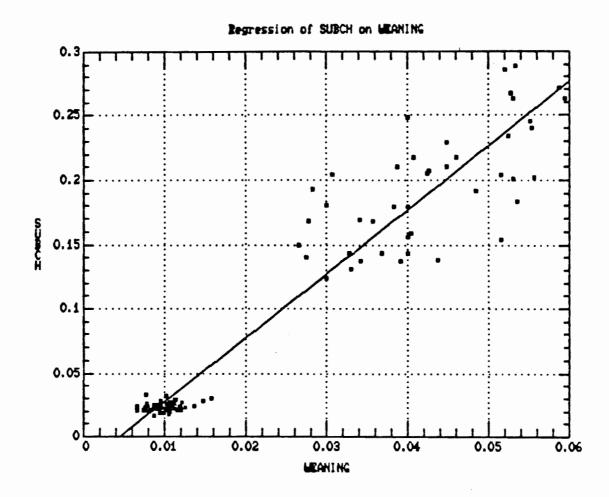


FIGURE 3-20

Relationship of Body Weight at Weaning to Recommended Subchronic Body Weight for Various Strains of Mice and Rats

TABLE 3-4 Growth and Body Welght Data on Rats

Female	Sacres	× es	No. of Animals	Age (days)	Weight (kg)	Varlance	Reference
Female	9935/Cr	female	20	J	0.00510	2.25E-008	Polley, 1972
Female 23 14 0.01399 3.616.006 Pollby Pol	9935/Cr	female	21	7	0.01030	8.56E-007	
Female 31 21 0.03300 3.900.006 Pollby Female Female 24 0.04460 1.676.004 Pollby Female Female 27 36 0.04460 Pollby Female Female 27 36 0.04300 1.346.004 Pollby	9935/Cr	female	23	=	0.01990	3.61E-006	
female 31 28 0.04460 1.62E-005 Pollby female 25 42 0.04460 1.62E-004 Pollby female 27 34 42 0.1380 1.24E-004 Pollby female 27 112 0.1380 1.37E-004 Pollby female 21 112 0.1830 1.37E-004 Pollby male 23 14 0.1330 2.98E-004 Pollby male 24 14 0.0310 1.0E-004 Pollby male 26 14 0.0310 2.98E-005 Pollby male 25 24 4 0.0180 Pollby male 26 0.1870 3.5E-006 Pollby male 27 10 0.0310 3.5E-006 Pollby male 27 10 0.1870 3.5E-006 Pollby male 27 10 0.03970 3.9E-006 Pollby	9935/Cr	female	31	12	0.03300	3.90E-006	_
Female 24 42 0.08770 1.00E.004 Pollby Pollby Pollby Pollby Female Female 27 42 0.1388 1.24E.004 Pollby	9935/Cr	female	33	28	0.04460	1.62E-005	٠.
Female 25 55 0.12490 2.28E-004 Polloy temale Female 27 11 0.16380 1.37E-004 Polloy temale Female 27 110 0.18390 1.37E-004 Polloy temale Female 21 110 0.00520 1.56E-004 Polloy temale male 24 14 0.01390 1.56E-004 Polloy temale male 24 14 0.01390 1.56E-004 Polloy temale male 26 14 0.01390 1.56E-006 Polloy temale male 25 21 0.03410 2.5EE-004 Polloy temale male 26 14 0.03410 2.5EE-006 Polloy temale male 25 24 4.2 0.03410 2.5EE-006 Polloy temale male 25 21 0.03410 2.5EE-006 Polloy temale male 25 14 0.03410 2.5EE-006 Polloy temale female	9935/Cr	female	54	45	0.08770	1.40E-004	Γ.
Female 21 70 0.13780 1.244-004 Polley Pol	935/Cr	female	25	26	0.12490	2.22E-004	ley,
Female 27 84 0.16.890 1.312-004 Polley Po	935/Cr	female	12	70	0.13780	24E	ley.
female 21 112 0.18170 1.66-004 Polley female 24 140 0.27330 2.69-004 Polley male 20 17 0.00520 1.56-006 Polley male 24 7 0.01390 1.56-006 Polley male 26 14 0.02120 4.62-006 Polley male 24 7 0.03410 3.56-006 Polley male 24 42 0.03410 3.66-006 Polley male 25 56 0.04640 7.926-005 Polley male 27 140 0.23070 4.066-006 Polley male 27 140 0.28810 1.406-004 Polley female 27 140 0.28810 1.406-004 Polley female 28 7 0.0930 3.146-006 Polley female 28 14 0.0930 3.036-006 Polley	1935/Cr	female	72	₹ 8	0.16380	1.37E-004	Polley, 1972
female 24 140 0.2330 2.68E-004 Polley name male 20 168 0.05530 1.56E-006 Polley name male 24 14 0.02530 1.56E-006 Polley name male 26 14 0.02130 1.6E-006 Polley name male 20 21 0.03410 1.6E-006 Polley name male 25 26 0.04640 2.9E-005 Polley name male 27 28 0.04640 2.9E-005 Polley name male 27 26 0.12790 1.6E-006 Polley name male 27 140 0.23070 2.9E-005 Polley name female 26 112 0.28810 1.1E-004 Polley name female 28 1 0.00530 2.9E-004 Polley name female 28 1 0.00430 2.9E-004 Polley name female 28 2 0.04630	1935/Cr	female	ار2	112	0.18120	1.76E-004	ley.
Female 21 168 0.25310 2.17-004 Polley	935/Cr	female	75	140	0.21330	.69E	ley.
Maile	935/Cr	female	5 ~	168	0.25310	2.12F-004	ey.
Maile	19.35/Cr	113 16	2	-	0.00520		lev.
Maje 26	935/6	91.5	7	1	0.01190	1,105-006	e v
Maile	935/6	of ce	. *	7	0.02120	5.2	
Marie 24	13/000	- C	2 6	: [0.02410	3 616 006	_
Maile	1935/CF	al PW	02	17	0.03410	٠	Polity, 1972
Maile	1935/Cr	ma le	32	θ2 :	0.04640	٠	_ '
Male 25 56 0.12790 1.81E = 0.04 Polley, male 23 70 0.18900 3.11E = 0.04 Polley, male 27 140 0.25870 1.40E = 0.04 Polley, male 27 140 0.25870 1.40E = 0.04 Polley, male 27 140 0.25870 1.40E = 0.04 Polley, male 28 1 0.00530 2.50E = 0.04 Polley, female 28 14 0.00530 2.50E = 0.09 Polley, female 28 21 0.00430 2.26E = 0.07 Polley, female 28 28 0.04830 2.26E = 0.07 Polley, female 28 28 0.04830 2.26E = 0.07 Polley, female 28 56 0.14330 1.86E = 0.05 Polley, female 28 36 0.14330 7.92E = 0.05 Polley, female 27 140 0.24830 5.46E = 0.05 Polley, female 27 140 0.24830 5.26E = 0.05 Polley, male 27 140 0.24830 5.26E = 0.05 Polley, male 32 14 0.00540 6.25E = 0.05 Polley, male 32 14 0.00540 6.25E = 0.07 Polley, male 32 21 0.00540 6.25E = 0.07 Polley, male 32 22 22 22 22 22 22 2	1935/Cr	male	7 2	45	0.09100	7.92t-005	_ '
Maile	1935/Cr	male	52	99	0.12790	1.81E-004	_
male 21 84 0.23070 4.00E-004 Polley, polley, male male 26 112 0.28870 1.40E-004 Polley, polley, polley, polley, polley, polley, female 27 140 0.28810 1.40E-004 Polley, poll	935/Cr	male	23	02	0.18800	3.11E-004	Ξ.
male 26 112 0.28870 1.40E-004 Polley, Polley, Polley, Polley, Polley, Polley, Polley, Female 27 140 0.28810 1.70E-004 Polley, Polley, Polley, Polley, Polley, Polley, Female 28 1 0.00930 2.50E-009 Polley, Polley, Polley, Polley, Polley, Polley, Female 28 21 0.00330 3.03E-007 Polley, Polley, Polley, Polley, Polley, Female 28 21 0.03420 1.53E-007 Polley, Poll	935/Cr	male	12	84	0.23070	4.00E-004	_
male 27 140 0.28810 1.70E-004 Polley, Polley, Polley, Polley, Female female 28 1 0.00530 2.50E-009 Polley, Polley, Polley, Polley, Polley, Female 28 21 0.00930 3.03E-007 Polley, Polley, Polley, Polley, Polley, Female 28 21 0.03420 1.63E-007 Polley, Polley, Polley, Polley, Polley, Polley, Female 28 42 0.09180 1.63E-005 Polley, Po	935/Cr	ma le	5 2	112	0.25870	1.40E~004	_
female 25 168 0.30970 2.34E-004 Polley, female 28 1 0.00530 2.50E-009 Polley, female 28 7 0.00930 3.03E-007 Polley, female 28 21 0.03420 1.63E-007 Polley, female 28 28 0.04830 2.26E-007 Polley, female 28 42 0.09180 1.63E-005 Polley, female 28 42 0.09180 1.85E-005 Polley, female 28 42 0.09180 1.85E-005 Polley, female 28 42 0.09180 1.85E-005 Polley, female 28 42 0.1430 7.9E-005 Polley, female 27 112 0.1910 5.4E-005 Polley, female 27 140 0.2090 5.8E-005 Polley, male 27 14 0.01070 5.2E-005	935/Cr	male	13	140	0.28810	1.70E-004	Polley, 1972
female 28 1 0.00530 2.50E-009 Polley, Polley, Polley, Polley, Polley, Female female 28 7 0.00930 3.03E-007 Polley, Polley, Polley, Polley, Polley, Polley, Female 28 21 0.03420 1.63E-006 Polley, Polley, Polley, Polley, Polley, Female 28 42 0.04830 2.26E-007 Polley, Polley, Polley, Polley, Polley, Polley, Female 28 42 0.04830 1.8E-005 Polley, Pol	935/Cr	male	52	168	•	2.34E-004	_
female 28 1 0.00530 2.50E-009 Polley, Poll	:	,	ć	•	0	000	
female 28 7 0.00930 3.035-007 Polley, Poll	935/Cr	remale	9.7	_	0.00530	2.50t -009	
Female 28 14 0.02180 8.10E-007 Polley, Pol	935/Cr	female	28	1	0.00930	3.03E-007	
Female 28 21 0.03420 1.63E-006 Polley, Female 28 28 0.04830 2.26E-007 Polley, Female 28 42 0.09180 1.85E-005 Polley, Female 28 56 0.12730 1.11E-004 Polley, Female 28 70 0.14390 7.92E-005 Polley, Female 27 112 0.14390 7.96E-005 Polley, Female 27 140 0.20900 5.44E-005 Polley, Female 27 140 0.20900 5.85E-005 Polley, male 32 1 0.00540 6.25E-010 Polley, male 32 7 0.01070 5.26E-007 Polley, male 32 21 0.03570 1.41E-007 Polley, male 32 22 0.04930 6.01E-007 Polley,	935/Cr	fema le	28	*	0.02180	8.10E-007	_
Female 28 28 0.04830 2.26E-007 Polley, Female 28 42 0.09180 1.85E-005 Polley, Female 28 70 0.12730 1.11E-004 Polley, Female 28 70 0.14390 7.92E-005 Polley, Female 27 112 0.16530 7.96E-005 Polley, Female 27 140 0.20900 5.85E-005 Polley, Female 27 168 0.24830 9.03E-005 Polley, male 32 7 0.01070 5.26E-010 Polley, male 32 7 0.01070 5.26E-007 Polley, male 32 14 0.02350 1.41E-007 Polley, male 32 28 0.04930 6.01E-007 Polley, polley, 6.01E-007 Polley, Polley, Polley,	935/Cr	Female	88	21	0.03420	. 63E	ley,
Female 28 42 0.09180 1.85E-005 Polley, Female 28 56 0.12730 1.11E-004 Polley, Female 28 70 0.14390 7.92E-005 Polley, Female 27 112 0.16530 7.98E-005 Polley, Female 27 140 0.20900 5.85E-005 Polley, female 27 168 0.24830 9.03E-005 Polley, male 32 1 0.00540 6.25E-010 Polley, male 32 1 0.01070 5.26E-007 Polley, male 32 14 0.02350 1.41E-007 Polley, male 32 21 0.03570 1.00F-006 Polley, male 32 22 0.04930 6.01E-007 Polley,	935/Cr	female	28	28	0.04830	. 26E	ley.
Female 28 56 0.12730 1.11E-004 Polley, Female 28 70 0.14390 7.92E-005 Polley, Female 27 112 0.19110 5.44E-005 Polley, Female 27 140 0.20900 5.85E-005 Polley, Female 27 168 0.24830 9.03E-005 Polley, male 32 1 0.00540 6.25E-010 Polley, male 32 1 0.01070 5.26E-007 Polley, male 32 14 0.02350 1.41E-007 Polley, male 32 21 0.03570 1.01E-007 Polley, male 32 22 0.04930 6.01E-007 Polley,	935/Cr	female	28	42	0.09180	1.85E-005	ley.
Female 28 70 0.14390 7.92E-005 Polley, Female 28 84 0.16530 7.98E-006 Polley, Female 27 112 0.19110 5.44E-005 Polley, Female 27 140 0.20900 5.85E-005 Polley, Raile 32 1 0.00540 6.25E-010 Polley, male 32 7 0.01070 5.26E-007 Polley, male 32 14 0.02350 1.41E-007 Polley, male 32 21 0.03570 1.01E-007 Polley, male 32 28 0.04930 6.01E-007 Polley,	935/Cr	Female	28	26	0.12730	1,11E-004	ley.
Female 28 84 0.16530 7.98E-006 Polley. Female 27 112 0.19110 5.44E-005 Polley. Female 27 140 0.20900 5.85E-005 Polley. male 32 1 0.00540 6.25E-010 Polley. male 32 7 0.01070 5.26E-010 Polley. male 32 14 0.02350 1.41E-007 Polley. male 32 21 0.03570 1.41E-007 Polley. male 32 21 0.04930 6.01E-007 Polley.	935/Cr	Fema le	28	02	0.14390	•	ley.
Female 27 112 0.19110 5.44E-005 Polley. Female 27 140 0.20900 5.85E-005 Polley. Female 27 168 0.24830 9.03E-005 Polley. male 32 1 0.00540 6.25E-010 Polley. male 32 7 0.01070 5.26E-007 Polley. male 32 14 0.02350 1.41E-007 Polley. male 32 21 0.04930 6.01E-007 Polley. male 32 28 0.04930 6.01E-007 Polley.	12.55 0.15 / Cr	Female	. «	2	0.16530	98F	e v
Female 27 140 0.20900 5.85E-005 Polley. Female 27 168 0.24830 9.03E-005 Polley. male 32 1 0.00540 6.25E-010 Polley. male 32 7 0.01070 5.26E-007 Polley. male 32 14 0.02350 1.41E-007 Polley. male 32 21 0.03570 1.10E-007 Polley. male 32 28 0.04930 6.01E-007 Polley.	935/Cr	Fena Je	3 %	112	0.19110	14	ev.
Female 27 168 0.24830 9.03E-005 Polley, male 32 7 0.01070 5.26E-010 Polley, male 32 14 0.02350 1.41E-007 Polley, male 32 21 0.03570 1.10E-007 Polley, male 32 28 0.04930 6.01E-007 Polley, poll	035/Cr	Female		140	00500	356	ه د
male 32 1 0.00540 6.25E_010 Polley, male 32 14 0.02350 1.41E_007 Polley, male 32 21 0.03570 1.10E_006 Polley, male 32 28 0.0430 6.01E_007 Polley,	0000	Fomalo		36.8	0.26330	9 035 -005	>
male 32 7 0.01070 5.26f_007 Polley, male 32 7 0.03570 1.41f_007 Polley, male 32 21 0.03570 1.016_006 Polley, male 32 28 0.04930 6.01f_007 Polley, polle	333/CI	יום מוניש	3 6		0.0.40	5:55E-555 6:25E-010	
male 32 14 0.01070 5.2012-007 F011ey, male 32 21 0.03570 1.011e 0.011ey, male 32 28 0.04930 6.011e 0.007 P011ey, male 32 28 0.04930 6.011e 0.007 P011ey, p. 12012	935/51	מן פון	3.5	- [-	טייטיט ט	֓֞֝֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֟֓֓֓֓֓֓֡֓֡֓֓֓֓֡֓֡֓֡֓֡	
male 32 14 0.02350 1.41E-00/ Polley, male 32 21 0.03570 1.10E-006 Polley, male 32 28 0.04930 6.01E-007 Polley, policy, and a second polley, a second polley, and a second polley, a second polley, and a second polley,	935/LF	al Pill	35	•	0.010.0	ָּהָבְּיִבְּיִבְּיִבְּיִבְּיִבְּיִבְּיִבְּיִ	
male 32 21 0.03570 1.10E_006 Polley, 0.04930 6.01E_007 Polley,	935/Cr	male	35	*	0.02350	1.41E-007	
male 32 28 0.04930 6.01E-007 Polley,	935/Cr	male	32	2	0.03570	1.10E-006	
10 100 1 0 00 1 0 0 0 0 0 0 0 0 0 0 0 0	935/Cr	male	32	58	0.04930	6.01E-007	Polley, 1972
. Vol. 104	27.200		22	13	טואסט ט	E DAE DOE	

AC1 9935/Cr male AC2 9935/Cr male AC2 9935/Cr male AC3 9935/Cr male AC4 BANY/Cr female AC4 BANY/Cr female AC5 AC6 Male AC6 AC6 AC6 Male AC6 AC6 AC6 Male AC7	33333333333333333333333333333333333333	26 112 112 140 141 112 112 113 1140 115		1.13E-004 4.61E-004 4.61E-004 3.75E-005 2.30E-005 8.06E-007 1.60E-007 2.26E-007 1.96E-006 2.53E-005 4.36E-006 2.53E-006 2.53E-006 2.759E-004 1.33E-004 1.33E-004 7.27E-005	Polley, 1972
	**************************************	28 12 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	0.19590 0.23380 0.23380 0.28920 0.30880 0.01800 0.01800 0.01800 0.012140 0.12140 0.2030 0.24130 0.25740	23366666666666666666666666666666666666	
		28 12 41 28 28 28 28 28 28 28 2	0.23380 0.23380 0.28710 0.28920 0.30880 0.01800 0.01800 0.01800 0.01800 0.02550 0.02930 0.24130 0.25740 0.25740	275 275 275 276 276 276 276 276 276	
	- 222	28 16 16 16 16 16 16 16 16 16 16 16 16 16	0.23380 0.26710 0.26710 0.30880 0.01800 0.01800 0.07380 0.07380 0.07380 0.17260 0.2030 0.24130 0.25740	275 275 275 275 276 276 276 276 276 276 276	
555	బ్బాబ్ కున్నికినికి కినికి	211 140 160 172 184 160 160 160 160 160 160 160 160 160 160	0.26710 0.28920 0.30880 0.01800 0.01800 0.0350 0.12140 0.17260 0.20930 0.24130 0.25740	3.75E-005 2.30E-005 8.06E-005 1.60E-007 2.26E-007 1.96E-006 2.53E-005 4.36E-006 2.06E-004 2.73E-004 1.33E-004 1.33E-004 7.27E-005	
בני	22 88888888888888888888888888888888888	040 168 17 2 184 160 160 160 160 160 160 160 160 160 160	0.28920 0.30880 0.30880 0.01800 0.03030 0.05350 0.17260 0.17260 0.2030 0.24130 0.25740	2.30f-005 8.06f-005 1.60f-007 2.26f-007 1.96f-006 2.53f-005 4.36f-005 7.29f-004 2.73f-004 1.33f-004 1.33f-004 7.27f-005	
	\$ \$	68 1	0.30880 0.00710 0.01800 0.03030 0.05350 0.07980 0.12140 0.17260 0.24130 0.25740 0.25740	8.06E-005 1.60E-007 2.26E-007 1.96E-006 2.53E-005 4.36E-006 2.05E-006 2.06E-004 1.33E-004 1.33E-004 7.27E-005	
	**********	28 28 28 28 20 56 11 12 16 16 16	0.00710 0.01800 0.03030 0.05350 0.07980 0.12140 0.17260 0.2030 0.24130 0.25740	266 266 366 296 296 296 296	
		28 28 28 28 20 112 160 160 170	0.01900 0.01800 0.0330 0.07380 0.12140 0.17260 0.24130 0.25740 0.25740	266 266 366 296 396 396 396	
		214 28 28 28 20 112 160 160 160	0.01800 0.0330 0.05350 0.07980 0.17260 0.26130 0.24130 0.25740	2966 3966 2966 2966 3966 3966 3966	
	333333333333333333333333333333333333333		0.03030 0.03550 0.07380 0.12140 0.2030 0.24130 0.25740 0.25740	336 336 336 336 336 336 336 336	
	525385855555	28 28 26 26 16 16 16 16 16	0.05350 0.05350 0.12140 0.17260 0.26130 0.25740 0.25740	23E 29E 29E 29E 29E 29E 29E 29E 29E 29E 29	
	3.E. \$2 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	28 42 70 184 168 1	0.07980 0.12140 0.17260 0.2030 0.24130 0.25740	23E	
	E \$ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	42 70 112 140 168	0.12140 0.17260 0.20330 0.24130 0.25740 0.25740	295 235 276 276 276	
	\$ \$ \$ \$ # # \$ \$ \$ \$ \$ \$	56 110 140 168	0.17260 0.20930 0.24130 0.24680 0.25740 0.25420	93E 93E 27E	
	33333333333	70 112 140 168	0.20930 0.24130 0.24680 0.25740 0.26420	73E 33E 27E	
	33333333333	84 112 140 168 1	0.24130 0.24680 0.25740 0.26420	335	
	333333333	112 140 168 1	0.24680 0.25740 0.26420	33E 27E	
	33.58.33	140 168 1	0.25740	27E	_
	28 35 35 55 55 55 55 55 55 55 55 55 55 55	168 1 7	0.26420		_
	88888			6.32E-005	Ξ.
	38888	, ,	0.00720	900	Ξ.
	38.88				_
	38.	=	0.03270	2.25E-006	Polley, 1972
	7.	12	0.05530		
	c,	28	0.08160	5.04E-005	_
	28	45	0.15800	8.88E-005	٦.
	25	26	•	•	
	35	70	0.26950	3.14E-004	٦.
	37	84	0.33200	1.89E-004	_
	43	211		1.29E-004	_
	53	1	•	1.085-004	٦.
	32	168	0.39690	7.61E-005	Polley, 1972
August 28807/Cr female	7	-	0.00590	5.26F-007	Polley, 1972
288077Cr		. ~	0.01250		Polley, 1972
28807/6	4	=	0.02700	1.045-005	
28807/0	26	: "	0.04040	2.86F-005	_
28807/Cr	3 5	58	0.06390	7.92E-005	
28807/Cr	38	45	0.11200	9.65E-005	_
28807/Cr	58	26	0.12890	2.68E-005	_
28807/Cr	24	70	0.15120	1.07E-004	_
28807/Cr	56	₩	0.16280	6.40E-005	Polley, 1972
August 28807/Cr female	28	112	0.18800	5.85E-005	Polley, 1972
28807/Cr	24	140	0.19860	3.60E -005	٦.
28807/Cr	28	168	0.20680	6.051-005	Γ.
28807/Cr		196	0.22820	5.11F-005	

Species	X ac	Animals	(days)	(kg)		
August 28807/Cr	male	35	-	0.00610	4.90E-007	Polley, 1972
	male	33	_	0.01380	4.52E-006	_
	male	35	=	0.02860	1.501-005	_ '
August 28807/Cr	male	35	ار 2	0.04260	.92E	_ '
August 28807/Cr	male	52	28	0.06770	. 69E	ley.
August 28807/Cr	male	23	45	0.13260	.19	ley.
August 28807/Cr	male	58	26	0.19150	1.30E-004	_
August 28807/Cr	male	25	0.0	0.23650	.89	_
August 28807/Cr	male	5	₹	0.26540	4.31E-004	_
August 28807/Cr	male	22	112	0.30040	2.66E-004	_
	male	23	140	0.32620	1.58E-004	_
	- E	23	168	0.34010	2.19E-004	
	male	32	196	0.36440	2.73E-005	Polley, 1972
		•	ę		2	7
	remale	.	3 3	0.02000	e i	ייים ייי
Bald	female	æ	<u>.</u>	0.22000	2	et al.,
	female	80	183	0.26000	SZ	
	female	&	365	0.28000	NS	_ :
	ma le	œ	30	0.06000	SN	Inazu et al., 1984
7.00	2126	œ	3 5	000550	. Z	ר ויין
	ma le	o a	16.	00017.0		[[[]
	FIG. 1	o e	501	00000	2 2	
	ma le	D	coc	•	Ç.	
	Fomalo	7.0	95	0.16900	3.60F-005	NAS. 1971
	female	; æ	900		2.50F-005	_
	female	A 5	300	00812.0	2 50F_005	
	Jemale 1-10	2 8	8 5	00000		
	a []	63	6 6	0.23200	3.00003	
	ma le	3.	3	•	2.50E -005	
	ma le	£	300	0.43300	2.50t-005	MAS, 1971
10.00	fomalo	-	-	0 00400	SM	Morden, 1947
	Comple			0 0000	. Z	
BIACK			ם כ	00000	2	
Black	al Pilat		י פ	0.0000	2 2	•
Black	rema le		- (0.00300	A (
Black	female	-	5	0.01100	SE	<u> </u>
Black	female	_	=	0.01200	SN	_
Black	female	_	13	0.01300	SZ	Worden, 1947
Black	female	_	15	0.01500	NS	Morden, 1947
Rlack	female	_	11	0.01700	NS	Worden, 1947
Rlack	female	_	19	0.02000	NS	Worden, 1947
Rlack	female	_	12	0.02300	SN	Worden, 1947
	fomolo	_	23	0 02600	V.	Morden, 1947
BIACK	5 cm3		3,5	0030.0	2	
Black	Tella le		3 2	0.02000	2 4	•
Black	rema le	_ ,	7	0.03000	2	Wor dell, 1947
		•				

Black Black Black Black Black Black Black Black Black Black	fcmale female female fcmale fcmale female female female male male male male		31 33 35 35 96 65 157 188 188 338 338	0.03300 0.03600 0.03700 0.17000 0.19600 0.19600	<u> </u>	Morden, Morden,	1947 1947
	female female female female female female female female male male male		33 35 126 157 188 338 338	0.03500 0.03500 0.03700 0.17000 0.19000 0.19500	2	Worden, Worden,	1947
	female female female female female female male male male		35 96 157 188 247 338 338	0.03500 0.03700 0.10800 0.17000 0.19600 0.19300	2	Worden,	194/
	female female female female female female male male male		35 65 1126 1157 1188 308 338 369	0.03700 0.10800 0.17000 0.19000 0.19600 0.19300	22222	Morden.	
	female female female female female male male male male		65 126 157 188 308 338 369	0.10800 0.17000 0.19000 0.19600 0.19300	2222		1941
	female female female female female male male male		96 126 187 247 308 338	0.17000 0.19000 0.19600 0.19300	<u> </u>	Morden,	1947
	female female female female female male male male male		126 157 188 247 338 338	0.19000 0.19600 0.19300	S S S S	Morden,	1947
	female female female female male male male male		157 188 247 308 338		SNS	Morden,	1947
	female female female female male male male		188 247 308 338 369		SN	Worden,	1947
	female female female male male male male		247 308 338 369	_		Mor den.	1947
	female female male male male male male		308 338 369	7	SZ	Worden.	1947
	Female Rale Rale Rale Rale Rale Rale		338 369	. –	SE	Morden.	1947
	######################################		369	: -	SE	Worden.	1947
	2		<u> </u>	. –	S E	Worden.	1947
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			: =	. Z	Worden.	1947
	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		- (~		2	Horden	1947
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		, u	00000	2	Toron	1947
	로 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등		. ר	00000	2 2	Lordon	1947
	773 6 773 6 773 6 773 773	-	~ 6	0.01	2 2	Horden	1947
	male male ser	-	Α;	0.01400	2 2	מסו מבוויי	1047
	male male male	- -	= ;	0.01800	2	Mor den.	1947
	male male	_	- 3		SE	Morden.	1947
	olem		15	0.02200	S	Morden.	1947
	21011	_	11	0.02300	S	Norden.	194/
	ma le	_	6	0.02500	SN	Morden.	1947
	ma le	_	12	0.02600	SN	Morden.	1947
	ma le	_	23	0.02800	S	Mor den,	1947
	male	_	52	0.0500	SN	Morden,	1947
	ma le	_	7.2	0.03100	SZ	Morden.	1947
	male	_	53	0.03300	N.	Morden.	1947
	male	_	33	0.03600	SN	Morden,	1947
	male	-	33	0.04000	SE	Morden.	1947
	male	_	65	0.12000	SN	Morden.	1947
	male	_	96	0.19000	SM	Mor den,	1947
Black	male	_	126	0.20100	SM	Morden.	1941
	male	_	157	0.20800	SM	Morden.	1947
	male		188	•	S	Morden.	1947
	male	_	216	0.2000	S	Morden.	1947
	male	_	247	•	SX	Morden,	194/
	male	-	369	0.1100	N.	Morden,	1947
		8	-	01300 0	£ 62E 007	Pollov	1972
	remaie	C (3.031 -006	Policy,	
	fema le	7	-;	0.01780	975-1006	rolley,	2/61
BN/Cr	fema le	9 2	=	0.02800	1.815-005	Polley,	- 1
BN/Cr	female	12	12	0.04370	3.16E-005	Polley.	2/61
BN/Cr	female	45	58	0.06200	5.26E-005	Polley,	_ '
BW/Cr	female	\$2	45	0.09680	5.81E-005	Polley,	1972
	fema le	34	26	0.12860	9.02E-005	Polley,	_

oher les	4	Animals	Age (days)	Welght (kg)	Varlance		Reference
BN/Cr	female	29	70	0.15210	1.32E-004	Polley.	1972
BN/Cr	female	35	₩	0.16730	6.81E-005	Polley.	1972
BN/Cr	female	52	112	0.17910	9.03E-005	Polley.	
BN/Cr	female	> *	140	0.18760	1.385-004	Polley.	
BN/Cr	fema le	*	168	0.20680	1.16E-004	Polley.	1972
BN/Cr	male	2	_	0.00620	5.63E-007	Polley.	1972
BN/Cr	male	2	_	0.01390	6.89F-006	Polley.	
BW/Cr	9 5 5 1		7	0.02400	2.14F-005	Pollev	
BILL	9 6	: :<	: 7	0.04480	3 02F -005	Pollov	1972
NA CT	عروق	3 5	. «	0.06730	1.16F_004	Polley	_
BM/Cr	عرق	2	2	0.12420	1.63F-004	Polley	_
	ع و و	38	ي ب	0 19340	1 35F -004	Polley	_
	9 6 6	2	S C	0.24740	6 89F-004	Pollov	
	מו מו	,	2 5	04/470	100-101	001101	2/61
	ה בר בת הרבת	ç	יים נינ	0.20400	5 29E 004	Dolley.	1972
5M/CI	יום ויים	2 2	200	0.505.0	2.20.70	, (a) (a)	
BN/Cr	ma le	52	2	0.32170	2.10E-004	POTIEY,	_
BN/Cr	male	52	168	0.34110	4.10E~004	Polley.	1972
RIIE FAI O/Cr	female	ž	_	0.00550	1,56F_008	Polley	1972
BILE ALOVC	foms le	35		01210	1 065 007	Pollov	_
BUT ALOVE	formal of	5 2	` *	0.01200	1.00L -001	Polloy.	
L0/01	al pilla i	66	<u>*</u>	0.0220	3.061 -000	rolley.	2/61
BULL ALOVCE	remale	£ ;	7 :	0.02780	8.41E -006	Folley,	7/61
BUFFALO/Cr	fema le	35	8 2	0.05940	6.12E-005	Polley,	19/2
BUF FALO/Cr	female	\$2	45	0.11970	8.51E-005	Polley,	1972
BUF FALO/Cr	female	58	26	0.15200	1.51E-004	Polley,	_
BUF FAL 0/Cr	female	36	0/	0.17860	2.12E-004	Polley.	_
BUFFAL O/Cr	female	39	₩	0.55690	1.54E-004	Poiley.	1972
BUF FAL O/Cr	female	38	112	0.23770	1.40E-004	Polley.	
BUFFAL O/Cr	female	32	140	0.24640	1.61E-004	Polley.	1972
BIJEFAI O/Cr	female	32	168	0.25210	1.36E-004	Polley.	1972
RIIFFAI 0/Cr	ma le	35	_	0.00640	1.56F-008	Polley.	1972
RIIF FAI 0/Cr	al ea	55	1	0.01330	9.00F-008	Polley.	1972
RIJE FAI O/Cr	age and a second	35	*	0.02620	3.61E -006	Polley.	1972
BILEFALOZE	9 2 8	35	: 5	0 04480	3 57F _005	Polley	2791
BILEFALOVCE	9 6 6	3 5	3 6	0.0430	6.89F_005	Polley	1972
BILEFALOVE	9 6 6 5 6	G 70	2	0.013940	5 08E 005	Polley	1972
10/01	1 PIII	* 0	¥ .	05.101.0	100-100-0	, (a) (a)	
BUFFALUZE	a e	22	6	0.191/0	1.545 -004	Polley.	
BUFF ALO/Cr	ma le	25	2	0.25310	1.63E -004	Polley,	- '
BUF FALO/Cr	male	\$	*	0.32890	4.30E-004	Polley.	_
BUFFALO/Cr	male	33	211	0.33380	2.21E-004	Polley,	
BUFFALO/Cr	ma Je	8	140	0.37440	3.62E-004	Polley,	1972

Species	Xex X	No. of Animals	Age (days)	Welght (kg)	Varlance	Kererence	9
Copenhagen/Cr	female	25	_	0.00570	5.62E-009	_	
Copenhagen/Cr	female	52	1	0.01290	8.56E-007	Poiley, 1972	
Copenhagen/Cr	female	52	=	•	6.81E-007	_	
Copenhagen/Cr	female	25	12	0.02660	•	_	
Copenhagen/Cr	female	52	88	0.04850	2.48E-005	_	
Copenhagen/Cr	female	25	45	0.09450	•	_	
Copenhagen/Cr	female	92	99	0.15940	8.60E-005	Polley, 1972	
Copenhagen/Cr	female	23	07	٦.	5.08E-005	_	
Copenhagen/Cr	female	82	84	•	4.94E-005	_	
Copenhagen/Cr	female	52	112	0.19980	7.48E-005	_	
Copenhagen/Cr	female	54	140	•	1.62E-004	_	
Copenhagen/Cr	female	56	168	0.23330	9.26E-005	_	
Conenhaden/Cr	male	25	_	0.00580	5.62E-009		
Conenhagen/Cr	male	32	7		1.05E -006	_	
Copenhagen/Cr	ma Je	52	14	0.02720	1.38E-006	_	
Conenhaden/Cr	ma le	52	21	0.03070	3.52E -006	Polley, 1972	
Conenhagen/Cr	ma je	25	28	0.05500	1.14E-005	Polley, 1972	
Conenhagen/Cr	al e	52	45		8,10E-005	Polley, 1972	
Copenhagen/Cr		77	95		1.70F-004		
mayen/ci	9 6 6	. x	02	•	1.40F004		
Copermagent of	9100	2 %	2 8	•	2 14F -005	_	
Copenia yen/ci		3 6	ננ	•	1 18F_004	_	
Copernagenzo	פרנה	3 5	70	•	1 365 004	_	
copelliagent ci	- F		970	•	7 016 006	_	
Copennagen/Cr	ma re	ę,	801	•	7.01E -003	-	
Cob:MU	ma le	-	365	0.62800	SN	et al.,	1985
DA: do	male	_	456	0.65600	SN	a)	1985
Cpb:WU	ma le	-	456	0.65600	SN	et al.,	1985
			,			•	
Cr:MGAPS(OM)	female	נל	_ '	0.00580	2.76E-007		
Cr:MGAPS(OM)	Fema le	21	- ;	•	1.56£ -006	- '	
Cr:MGAPS(OM)	female	21	=		1.23t -005	- 1	
Cr:MGAPS(OM)	female	21	12	0.04840	3.75£-005	_	
Cr:MGAPS(OM)	female	21	28	•	4.26E-005	Polley, 1972	
Cr:MGAPS(OM)	female	20	45	•	2.63E-005		
Cr:MGAPS(OM)	female	20	26	•	2.72E-004	_	
Cr. MGAPS(OM)	female	20	70	0.21550	5.12E -004	_	
Cr. MGAPS(OM)	female	20	84	0.25800	•	_	
Cr. MGAPS(OM)	female	20	112	•	3.95E-004	_	
Cr. MGAPS(OM)	female	20	140	0.29910	3.85E-004		
Cr. MGAPS(OM)	male	21	_	0.00610	4.22E-007		
Cr. MCADC (ON)	912		7		1.56F-006		
(HO) 2 LVBL - 12	200		7	0 03540	1 415-005		
	יומור	5 5	: :		9 00F-006	_	
CL: HOAPS OF	ביים קרוביים ביים היים היים היים היים היים היים היים	5 (- 5		3 5	De 1 10.7	
	,	-					

		Animals	(days)	(kg)			
Cr:MGAPS(OM)	male	20	42	0.14350	5.44E-005		
Cr:MGAPS(OM)	male	2	26	0.23670	5.01E-004	_	_
Cr: MGAPS(OM)	male	20	02	0.28120	4.10E-004	_	•
CI-MGAPS (DM)	male	20	₹	0.32740	4.36E-004		•
(MU) VICE LO	male	20	112	0.39280	7.16E-004		•
Cr:MGAPS(OM)	male	20	140	0.46190	1.14E-003	Polley, 1972	Α,
	,	;	•		5	-	-
:RAR(SD)	female	6	— r	0.00650	2.26t-00/		\
Cr:RAR(SD)	female		- ;	0.01600	1.091-005	Polley, 1972	.
:RAR(female	9 :	= ;	0.04080	2.03t -005		-
:RAR(fema le	:	7.	0.05560	2.03E-005		\
Cr:RAR(SD)	female	‡ :	æ :	0.09490	2.18t-004	Polley, 1972	\. •
:RAR(fema le	₹;	?	0.15340	3.425-003		
Cr:RAR(SD)	fema le	-	0. 1	0.2020	1.945 -003		
	fema le	;	2 7	0.23910	1.405-004	rolley, 1972	u -
	fema le	20	# C F	0.2400	1,085,-004		u =
:RAR(SD)	fema le	æ :	211	0.65.0	1.285-004	- ka	
:RAR(SD)	female	~	0 * 1	0.28120	1.03E-004	Dolley, 1972	
:RAR(SD)	fema le	⊋ ;	89.	0.2640	4.301-003		. ·
:RAR(SD)	remale		96	0.29180	7 50E -003	polley, 1972	u e
Cr:RAR(SD)	9 PB	.		0.0000	2 815-006	_	. ~
Cr:KAK(SU)	9 PE	9 4) [0.04300		Polley, 1972	. ~
Cr.DAD(CD)	1 E	:	: [2	0.05940		ley.]	<u>.</u>
CI.DAR(CD)	male	47	28	0.09890	13E	_	٥.
PAD (male	55	45	0.16230	3.00E-004		C :
RAR	male	8 ‡	99	0.23570	•	_	.
RAR	male	=	70	0.29270	32E	Polley, 1972	0
Cr:RAR(SD)	male	53	₹	0.35870		_ ,	.
Cr:RAR(SD)	male	4 9	211	0.38800	3.48E-004		.
Cr:RAR(SD)	male	37	140	0.43940	1.91E-004		\.
Cr:RAR(SD)	ma le	(5	168	•	1.31E-004	Polley, 1972	\. ~
Cr:RAR(SD)	ma le	.	961	0.49120	*00-3/0·2	_	4
Clecher F344	female	3167	42	0.07500	SN		•
	female	3167	26	0.10000	N.S.	e	al., 1985
	female	3167	70	0.12000	NS	t T	:
	female	3167	11	0.14500	NS	e F	_ :
	female	3167	91	0.16500	NS	e	_ :
-	female	3167	119	0.18500	SN	. ب	- <i>'</i>
-	female	3167	147	0.19000	SN	i i	- :
-	female	3167	717	0.21500	SN	٠	al., 1985
-	female	3167	315	0.22500	S	د	-
	female	3167	267	•	SN		al., 1985

Species	Sex	No. of Animals	Age (days)	Welght (kg)	Varlance	Kererence
20hor [244	o [cma]	7915	07.7	0.30500	S R	Cameron et al., 1985
rischer Fa44	f pma le	3167	170	0.30500	SN	et al.,
	fema le	50	11	0.14610	SN	Ξ:
	female	19	16	0.15790	2.02E-004	اا
<u> </u>	female	19	112	0.16670	SN	et al.,
_	female	19	191	_	SE	et al.,
-	female	19	196	_	SE SE	et al.,
_	female	19	238	0.19400	SE	et al.,
<u>.</u>	female	61 ;	280	0.20140	2 2 2	Nordto et di., 1963
٠ -	female	5 C	322	0.20090	7 33E 006	- Z
	female formale	2 %	201	0.04400		
1Scher ro44	e lend i	2 2	2 5	0.06500	SE	
scher ratt	female	S	92.	0.12300	SE	
	female	S Z	07	_	SN	
scher F	female	S	8	0.16200	NS	1978
cher F	female	529	64	0.12000	SN	et al.,
٠.	female	529	119	0.18000	NS	et al.,]
F344	female	529	189	0.20500	SN	et al.,]
Fischer F344	female	529	529	0.21000	SE	et al.,
scher F	female	529	329	0.23500	S 2	ē 7
- 1	female	529	399	0.26500	2 3	ַר קר קר הר קר
٠.	remale	626	539	000870	2 2	et al.
FISCHEL FO44	female	529	609	0.32500	S	et al.,
	female	529	679	0.33000	SN	ا. اه
	f ema le	529	749	0.33000	NS	et al.,
scher F	female	529	819	0.32500	SN	et al.,
	female	529	883	0.32000	SN	et al.
-	female	529	959	0.31000	SE	÷ 7
_	female	529	6201	0.28500	2 2	יין פון ניין ליין פון ניין
	ma le	3225	2 2 2	0.070	e se	et al.
Fischer F344	2 PE	3223	8 =	00.18000	S	et al]
Scher	مادا	3225	91	0.23000	SN	·:
cher	male	3225	211	•	SN	ا.:اھ
	male	3225	133	0.29000	SN	et al.,
<u> </u>	male	3225	140	0.31000	SN	et al., l
-	male	3225	147	•	SZ	et al.,
Fischer F344	male male	3225	712		S 2	-
<u></u>	male	3225	259	0.38000	2 2	
-	male	3225	343		Λ U	
_	male	3225	124	0.41500	2 2	Cameron et al., 1903
-	male	3225	525	0.024.0	2 2	
T 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1	-	3225	}		2	

male 32 male male male male male male male male	693 770 711 91 112 136 28 28 322 28 35 64 49 49 119 329	0.42500 0.41000 0.21840 0.24850 0.27980 0.31780 0.34280 0.36300 0.05300 0.05300 0.05300 0.25600 0.25600 0.25600 0.25600 0.25600 0.25600 0.25600 0.35500 0.36500	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Cameron et al., 1985 Cameron et al., 1985 Dorato et al., 1983 NAS, 1978 NAS, 1978 NAS, 1978 NAS, 1978 Solleveld et al., 1984
F344 F344 F344 F344 F344 F344 F344 F344	693 770 77 91 112 128 288 288 35 35 49 49 49 49 49 49 329	0.42500 0.41000 0.21840 0.21840 0.27980 0.31780 0.34280 0.34280 0.3630 0.05300 0.08000 0.16000 0.25600 0.25600 0.35500 0.35500 0.42500	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	on et al., 198 on et al., 198 to et al., 1983 1978 1978 1978 1978 1978 eveld et al., 1
F344 F344 F344 F344 F344 F344 F344 F344	770 91 112 1238 280 280 35 35 49 49 49 119 329	0.41000 0.21840 0.21840 0.24850 0.31780 0.34280 0.34280 0.34880 0.05300 0.05300 0.16000 0.16000 0.25600 0.25600 0.35500 0.35500 0.42500	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	on et al., 198 to et al., 1983 1978 1978 1978 1978 eveld et al., 1 eveld et al., 1 eveld et al., 1 eveld et al., 1
7344 F344 F344 F344 F344 F344 F344 F344	77 91 112 238 238 322 35 49 49 49 119 329	0.21840 0.24850 0.27980 0.31780 0.34280 0.36630 0.40950 0.05300 0.16000 0.21300 0.25600 0.31000 0.35500 0.42500		to et al., 1983 1978 1978 1978 1978 eveld et al., 1
1344 1344	9 / 112 161 161 161 162 164 16	0.24850 0.27980 0.31780 0.34280 0.3630 0.40950 0.08000 0.16000 0.2500 0.31000 0.3500 0.42500 0.42500		to et al., 1983 1978 1978 1978 1978 eveld et al., 1 eveld et al., 1 eveld et al., 1 eveld et al., 1
F344 F344 F344 F344 F344 F344 F344 F344	191 161 196 196 28 32 35 56 70 199 199 329	0.27850 0.27980 0.31780 0.34280 0.36630 0.40530 0.06300 0.16000 0.25600 0.25600 0.35500 0.35500 0.42500	5 X X X X X X X X X X X X X X X X X X X	to et al., 1903 to et al., 1983 1978 1978 1978 1978 eveld et al., 1 eveld et al., 1 eveld et al., 1 eveld et al., 1
F344 F344 F344 F344 F344 F344 F344 F344	112 196 196 238 28 28 35 49 119 259 329	0.27980 0.31780 0.34280 0.36630 0.38880 0.05300 0.16000 0.21300 0.25600 0.35500 0.35500 0.42500	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	to et al., 1983 1978 1978 1978 1978 eveld et al., 1 eveld et al., 1 eveld et al., 1
F344 F344 F344 F344 F344 F344 F344 F344	161 238 280 322 35 70 70 49 119 259	0.31780 0.34280 0.36530 0.38880 0.40950 0.06330 0.16000 0.21300 0.25600 0.31000 0.35500 0.42500 0.42500	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	to et al., 1983 1978 1978 1978 1978 eveld et al., 1
7344 7347 7347	196 238 322 32 35 56 70 70 119 189 329	0.34280 0.36630 0.38880 0.40950 0.05300 0.16000 0.21300 0.31000 0.35500 0.35500 0.42600 0.42600	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	to et al., 1983 to et al., 1983 to et al., 1983 to et al., 1983 1978 1978 1978 1978 eveld et al., 1 eveld et al., 1 eveld et al., 1 eveld et al., 1
F344 F344 F344 F344 F344 F344 F344 F344	238 280 280 28 28 35 36 49 49 189 259 329	0.3680 0.38880 0.4050 0.05300 0.16000 0.25600 0.3500 0.35500 0.42000 0.42000	5	to et al., 1983 to et al., 1983 1978 1978 1978 1978 1978 1978 eveld et al., 1 eveld et al., 1 eveld et al., 1 eveld et al., 1
F344 F344 F344 F344 F344 F344 F344 F344	238 280 322 35 35 70 70 119 189 259 329	0.38880 0.40950 0.05300 0.05300 0.16000 0.21300 0.25600 0.31000 0.35500 0.42500	5 N N N N N N N N N N N N N N N N N N N	to et al., 1983 to et al., 1983 to et al., 1983 1978 1978 1978 eveld et al., 1 eveld et al., 1 eveld et al., 1 eveld et al., 1
F344 F344 F344 F344 F344 F344 F344 F344	280 28 28 35 70 70 119 189 259	0.3888 0.40950 0.05300 0.08000 0.16000 0.25600 0.31000 0.3500 0.42000 0.42600	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	to et al., 1983 1978 1978 1978 1978 1978 eveld et al., 1 eveld et al., 1 eveld et al., 1 eveld et al., 1
F344 F344 F344 F344 F344 F344 F344 F344	322 28 35 56 70 10 119 189 259 329	0.40950 0.05300 0.08000 0.16000 0.21300 0.13000 0.35500 0.35500 0.42600 0.42600	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	to et al., 1983 1978 1978 1978 1978 eveld et al., 1 eveld et al., 1 eveld et al., 1 eveld et al., 1
F344 male	28 28 35 70 70 84 84 49 189 259 329		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1978 1978 1978 1978 1978 eveld et al., l eveld et al., l eveld et al., l
F344 male	35 35 56 70 70 84 49 119 189 259 329		5 X X X X X X X X X X X X X X X X X X X	1978 1978 1978 1978 eveld et al., l eveld et al., l eveld et al., l eveld et al., l
F344 male	35 70 70 84 119 189 259 329		5	1978 1978 1978 eveld et al., l eveld et al., l eveld et al., l eveld et al., l
F344 F344 F344 F344 F344 F344 F344 F344	56 70 84 84 119 189 329		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	19/8 1978 1978 1978 eveld et al., leveld et al., le
F344 male F344 m	70 84 49 119 189 259 329		88888888888	1978 1978 eveld et al., l
F344 male 5 F344 male 75 F344 male 5 F344 male 7 F344	84 49 119 189 259 329		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	lg78 eveld et al., l
344 male 1344 male 1	49 119 189 259 329			eveld et al., leveld
F344 male	49 119 259 329		X X X X X X X X	
F344 male	119 189 259 329		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	et al
F344 male F345 male F345 male F346 male F347 male F347 male F347 male F347 male F347 male	189 259 329		N N N N N	et al et al et al
344 male 1344 male 1	259 329		5 X X X X	et al.
F344 male	259 329		5	et al l
F344 male	329		S S S	et al., l et al., l
F344 male			N N S	et al., l
1344 male 1344 male 334/Cr female	399		SN	, ני ו ס
F344 male F344 male	460		2	
F344 male F344 male	601		C TA	
F344 male 5 F344 male 6 F344 male 5 F344 male 5 F344 male 6 F344 male 7 F345 m	600		S :	ייין מויי
F344 male 5 F344 male 5 F344 male 5 F344 male 5 F344 male 6 F344 male 7 F345 m	609	•	2 :	et d1.,
F344 male 5 F344 male 5 F344 male 5 F344 male 6 F344 male 7 F344 male 334/Cr female	619		SN	et al.,
F344 male 5 F344 male 6 F344 male 7 F345 m	749	0.43500	NS	Solleveld et al., 1984
F344 male 5 F344 male 5 F344 male F3	819	0.42500	SN	Solleveld et al., 1984
F344 male 5 F344 male 344 male 344 male 534 male 5 F344 male 534	000		2 3	ot a
F344 male 5 F344 male	888		2 2	ני מויי
F344 male F344 male F344 male F344 male F344 male F344 male 334/Cr female	959	0.34500	SN	0 et di., 1904
F344 male F344 male F344 male F344 male F344 male F344 male 334/Cr female	32	0.07200	1.94E-005	and Lehnert, I
F344 male F344 male F344 male F344 male F344 male F344 male	17	0.09570	1,23F-005	Tillerey and Lehnert, 1986
F344 male F344 male F344 male F344 male F344 male 334/Cr female			3 485-005	Itllerey and tehnert, 1986
F344 male F344 male F344 male F344 male 334/Cr female	2	•	1 69E 00E	and tehnert
F344 male F344 male F344 male F344 male	8C		1.001-003	and remier to
F344 male F344 male F344 male 334/Cr female	74	0.20160	2.30t -005	and Lennert, 1
F344 male F344 male 334/Cr female	86	0.27170	2.13E-004	and Lehnert, I
7344 male 334/Cr female	126	0.30450	2.10E-004	Tillerey and Lehnert, 1986
F344 male 334/Cr female	92-	01505.0	1 375-004	and lehnert
334/Cr female	133	•	1.31	
17/400	_	0.00550	3.31F-007	Polley, 1972
		•	•	_
		0.01130	1.105-000	n-11-11-11-11-11-11-11-11-11-11-11-11-11
Fischer 334/Cr female 45	*	0.02010	4.52t-00b	_
	12	0.02990	1.70E-005	_
3. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	28	0.04770	1.64F-005	
al emai	07	00000	476 004	
rema le	7 4	•	1.475 -004	2 12 1 13 12 12 12 12 12 12 12 12 12 12 12 12 12
scher 334/Cr female 58	96	0.12550	1.63E-004	POTIEY, 1972

Species	Sex Sex	Mo. of Animals	Age (days)	(kg)	אַמוּ ומוור בּ	Ker ei eilt e
-37 400	-[9	77	ę.	0.041.0	100 000	0.501
		0	2 2	0.14630	*00-1C0-7	
	al Pwa L	74	+ 0	0.15310	Z.48E-004	٠ -
	Female	99	112	0.18050	8.10E-005	_
ischer 334/Cr	female	54	0+1	0.21500	3.60E -005	_
scher 334/Cr	female	54	168	0.21890	7.66E-005	_
Fischer 334/Cr	male	75	_	0.00590	1.27E -006	Polley, 1972
	ma Je	87	7	0.01200	1.00F-006	
	male	98	=	0.02630	1.23F-005	
	9 6 6 7	2.2		0.03070	1.415-005	
	9 6	; 9	. «	0.05420	4 90F -005	_
	3 2 2	æ	2	0.10510	1,17E-004	Polley, 1972
	9 6 6 8	9	, <u>r</u>	0.181.0	1.82F-004	
	9 2 2		£	0.24450	5.64F-004	_
٠.	of EE	9	8	0 20590	1 916 -004	. –
	9 6 6	2 4	12	•	4 90E -005	Polley 1972
	2 2 2 1	3 5	9 0	0.30350	9 035 005	_
	- E	. y	891		2.89F-004	
	2	3	2	•		•
334/Cr1 Lov	female	10	16	0.14500	7.29E-004	Mauderly, 1986
334/Cr] Lov	female	2	183	0.19900	2.56E-004	Mauderly, 1986
	Female	2 2	365	0.21900	3.24F-004	
. =	of send	2 =	730	0.25500	6.25F-004	_
	male	2 5	6	0 29100	3.61F-004	
-	ol em	2 =	181	0 33600	1 235 -003	_
	9 6 6	2 5	365	0.35800	A BAE DOA	_
	ש היים מים	2 5	06.6	0.2000	7 94E 004	
_ ,	D 1 1 1	2 2	8 5	00.04.0	1,041	
	110g	2 2	קר	0.18200	7.12E-003	
_	Dotu	8 8	183	0.76700	5.18t-003	
	both	₹ 8	365	0.29300	3.5	Manderly, 1986
334/LF LOV	Doth	₹	067	0.33100	0.306-003	nduder 19. 1980
Holt man	female	=	200	0.22400	1.76F-005	Harriman, 1969b
Holtzman	female	==	200	0.22400	1.76E-005	
	!	:				•
Long-Evans	female	*	_	0.00610	5.26E-007	_
Long-E vans	female	₹.	7	0.01370	6.89E-006	
Long-Evans	female	5 4	=	0.02860	7.29E-006	Polley, 1972
Long-Evans	female	*	~	0.03830	4.62E-005	_
Long-Evans	female	*	88	0.06140	6.05E-005	Polley, 1972
Long-Evans	female	7 2	~	0.12690	8.56E-006	_
Long-Evans	female	*	26	0.16870	1.76E-004	_
ong-Evans	female	*	02	0.20050	5.43E-004	_
long-Fyans	fema le	*	8	0.23820	1.80E-004	
ond-Evans	Fema le	7	112	0.25280	3.548-004	
C. C	fom 10	76	071	0 26260	9	
TO STATE OF THE PARTY OF THE PA		•				

Species	Sex	No. of Antmals	Age (days)	Weight (kg)	Varlance	Reference	
ong-F vans	Ed le	54	182	0.41000	SN	Holloszy and Smith,	1986
long-Evans	al ell	.	304	0.45000	SN	Holloszy and Smith,	1986
Long-Fvans	male	25	335	0.47500	NS	and	1986
Long-Evans	male	24	365	0.50000	SN	Holloszy and Smith,	1986
l ong-Evans	ma Je	75	395	0.51000	NS	Holloszy and Smith,	1986
Long-Evans	male	7 5	426	0.51500	SN	and	1986
Long-Evans	male	- 55	456	0.53000	NS	Holloszy and Smith,	1986
Long-Evans	ma le	3 5	487	0.54000	NS	and	1986
Long-Evans	ma le	24	517	0.55000	SN	and	1986
Long-Evans	male	24	548	•	SN	and	1986
Long-E vans	male	24	578	0.56000	SN	and	1986
Long-Evans	male	3 5	809	0.57500	SE	and.	1986
Long-E vans	male	-	639	0.57500	SN	and	1986
Long-Evans	male	- 5	699	0.58000	SE	and	1986
Long-Evans	male	3 5	700	•	SN	and	1986
Long-Evans	ma le	3 5	730	0.59000	SN	and	9861
Long-Evans	ma le	2 5	760		SN	and	1986
Long-Evans	male	3 5	191	0.59500	SN	and	1986
Long-Evans	ma le	<u> </u>	821	0.0009	S	and	1986
Long-E vans	ma le	- 5	852	0.59000	SE	and	1980
Long-Evans	ma le	- 5	885	0.57500	S	and	9061
Long-E vans	ma le	- 5	913	0.55000	S 2	and	5 6
Long-Evans	ma le	. .	943	0.53500	2	Bug	1986
Long-Evans	ma le	. .	9/3	0.53500	2	Bug	
Long-Evans	male	- 5	1004	0.49500	S :	and	
Long-Evans	ша је	25	1034	0.52000	2	and	
Long-Evans	male	5	1065	•	SE	and	
Long-Evans	ma le	24	1095	0.48500	SE	and.	906
Long-Evans	male	- 5	1125	0.50000	SE	and	986
Long-Evans	male	24	1156	0.48000	28	_′	20
Long-Evans	male	7.	_	09900.0	6.01E-007	_ ′	
ong-Evans	ma le	54	1	0.01470	4.84E-006	_ '	
Long-E vans	ma le	5 4	*	0.03140	1.62E-005	_ '	
Long-Evans	ma le	24	2	0.04000	5.15E-005	_	
Long-Evans	male	7.	88	0.07240	5.04E-005	_	
Long-Evans	male	7 2	45	0.15190	8.02E-003	_ '	
Long-E vans	ma le	7 2	26	0.23040	4.19E-004	_ '	
Long-E vans	ma le	24	20	0.29670	4.85E-004	_ '	
Long-Evans	ma le	24	8	0.33660	2.58E-004	_ `	
Long-Evans	ma le	24	112		3.07E-004	_	
					400 101 0	CLOL	

Species	Sex	No. of Antomals	Age (days)	Neignt (kg)	Varlance	Kerence
Marshall 520/Cr	female	30	١	0.00590	6.81E-007	Polley. 1972
_	female	: *	_	0.01430	3.42E-006	3
	female	2 %	· *	0.02370	1.246-005	_
_	female	2 2	: 7	0.03280	1.216-005	Polley, 1972
_	female	7	. 8	0.05470	9.00F-006	_
	fomalo	; ,	27	טואוו ט	2 35E_005	_
	al piia i	0.7	7 Y	0.51.0	E ARE 006	
_ ,	al Pua J	e :	96 5	0.16400	3.40L-003	. לא היינים
_ ,	remale	₹ 8	2 8	0.15480	7.685-005	
_	fema le	2	*	0.16680	1.02E-004	_ ′
Marshall 520/Cr	female	\$	112	0.20980	1.435-004	_ '
Marshall 520/Cr	female	54	0*1	0.23150	2.05t -004	_
Marshall 520/Cr	female	\$	168	0.25460	1.116-004	٦.
Marshall 520/Cr	male	82	_	0.00600	5.63E-007	<u> </u>
Harshall 520/Cr	male	92	1	0.01630	4.20E-006	٦
_	al em	28	*	0.02600	1.14E-005	
_	9 5 5 6	: =		0.04070	2.50F-005	<u> </u>
- ,) [] [] [] [] [] [] [] [] [] [0.05.00	5 055 005	_
_ ,	מק וע	7.	9 5	0.00190	000-100-5	
_	ma le	ર :	> :	0.13350	4.62E-005	_
Marshall 520/Cr	male	9 2	26	0.19230	3.12t -004	_
Marshall 520/Cr	ma le	\$2	02	0.24600	2.10E-004	_
Marshall 520/Cr	ma le	24	₩	0.29560	2.88E-004	_
_	male	25	112	0.33030	4.32E-004	٦
_		77	0*1	0.36990	5.03E-004	<u> </u>
-	male	23	168	0.37880	3.76E-004	Polley, 1972
NBR/P1Cr	female	25	-	0.00580	1.00E -008	Polley, 1972
NBR/PIC.	female	25	7	0.01240	1.00E-008	٦.
NRD/PIC.	female	. 52	_	0.02360	1.23E-007	<u> </u>
NBP/PIC	female	25	ا2	0.02750	2.26E-007	٦.
NBD /DIC	female	: :	28	0.04490	1.28E-005	_
	fema le	3 %	2	0.09360	8.98F-005	_
101 / 101 407 / 101	fomile	3,5	. <u>.</u>	14960	7 705-006	Ξ.
77.10.	בובים ל	3 2	2 5	0.000	5 ADE_005	_
MBK/FICE	al ella i	C Z	2 6	0.000	3 14F 005	. –
NBK/PICF	a ema le	C 8	÷ ;	0.1/230	300 316 6	
NBR/P1Cr	f cma le	£ :	211	0.19410	2.215-005	
NBR/P1Cr	female	52	140	0.20280	2.485-005	٠,
NBR/P1Cr	female	52	168	0.22660	2.97E-005	_ '
NBR/P1Cr	male	52	_	0.00580	2.50E-009	_
NBRZPICE	male	52	7	0.01310	7.56E-008	_
NRR/PIC	male	25	*	0.02520	3.91£-007	_
NRR/PIC	ma Je	25	ا2	0.02830	1.76E-006	_
7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	عا جو	25	28	0.04620	1.54E-005	Poiley, 1972
יין ריין מפא	9 6 6 8	35	2	08101.0	5.08F-005	
MDK/ F 1C1	2 6	3,5	<u>.</u>	0 19520	6 68F -005	_
ABK/FICE	בי ב	2	2 6	0 33060	1 605 005	_
111			::-			

	oex o	No. of Animals	Age (days)	Weignt (kg)	Variance	Kererence
WBR/PICr	ma Je	25	84	0.24890	4.03E-005	Polley, 1972
NBR/P1Cr	male	52	112	0.27910	4.52E-005	
NBR/P1Cr	male	52	140	•	•	
NBR/P1Cr	male	52	168	0.31550	4.526-005	
	. olem	2	۲	0.03138	S	Rios et al., 1986a
2 0	9191	2 2	. 27	0.10157	. <u> </u>	et al
	1 2	S	63	0.18182	SE	et al
	ma le	35	9.	0.23770	8.76E-004	
S	male	33	16	0.24980	8.70E-004	
	NS	₩	=	0.02400	2.12E -003	Fisher and Mortola, 1981
	NS	9	-	0.01400	4.00E-006	
S	NS	~	2	0.00720	J.00E -008	Mortola, 1984
Oshorne-Mendel	female	24	_	0.00640	3.036-007	Polley, 1972
Osborne-Mende]	female	72	7	0.01590	4.95E-006	
Osborne-Mende 1	female	54	14	0.04960	4.95E-006	
Osborne-Mende]	female	54	21	0.05200	5.64E-006	
Osborne-Mendel	female	54	28	0.08790	6.126-005	_
Osborne-Mendel	female	5 6	45	0.13950	1.81E-005	٠,
Osborne-Mendel	female	<u>د</u> ع	26	0.18920		Polley, 1972
Osborne-Mendel	female	2 1	2 3	0.23560	2.21E-004	
Osborne-Mende]	Female	25	# C	0.25910	9.226-005	Doiley, 1972
Osborne-Mende 1	rema le	2 8	211	0.20450	400-141-7 0 30E 00E	
Osborne-Mendel	fomale	e	9 4	0.69430	6.755-005 4.225-005	
Osborne-nende)	fome le	3 5	196	0.30540	6.44F-005	
Osborne-menuel Osborne Mendel	male male	. *	3	0.00640	2.506-007	_
Osborne-Mendel	male male	*	-	0.01730	2.56E-006	
Osborne-Mendel	ma le	*	*	0.05170	2.725-006	
Osborne-Mende)	male	72	12	0.05300	6.13E-006	_
Osborne-Mende]	male	54	28	0.09430	5.81E-005	_
Osborne-Mende 1	таје	12	45	0.15360	1.416-004	
Osborne-Mende]	male	54	26	0.22970	5.05E-004	_
Osborne-Mende 1	male	52	70	0.29550	4.55E-004	_
Osborne-Mendel	таје	92	84	0.37290	2.62E-004	_
Osborne-Mende 1	шаје	28	211	0.39930	5.76E-004	_ '
Osborne-Mendel	male	%	140	•	2.18E-004	_
Osborne-Mendel	male	33	168	0.47680	1.29E-004	
	•			0.000		2001

Species	yex	No.of Animals	Age (days)	Weight (kg)	Variance	Kererence
CH/Cr	f ema l	17	1	0.00550	4.90E-007	Poiley, 1972
SHICE	female	=	_	0,01130	4.00E-006	_
SHZCF	female	8	*	0.01730	8.85E-006	
SH/Cr	female	7	12	0.04000	3.00E -005	
SHZCr	female	9≠	28	0.07200	3.08E-005	_
SH/Cr	fema le	\$	45	0.11000	1.48E-004	_
SH/Cr	female	45	99	0,13800	9.41E-005	Poiley, 1972
SH/Cr	female	51	92	0.15740	1.16E-004	_
SH/Cr	female	23	84	0.17360	1.39E-004	_
SH/Cr	female	9	211	0.18220	1.95E-004	<u> </u>
SH/Cr	male	45	_	0.00620	3.31E-007	_
SH/Cr	ma le	45	7	0.01390	6.76£-006	_
SH/Cr	таје	9	*	0.02170	1.63E-006	Polley, 1972
SH/Cr	male	+1	21	0.04240	2.89E-005	_
SH/Cr	male	38	28	0.0770	9E	_
SH/Cr	male	41	45	0.12550	1.80E-004	_
SHYCE	таје	11	26	0.18550	1.23E-004	
SHICE SHICE	male	94	0/	0.23980	2.12E-004	_
SHZCr	male	55	₩	0.26250	3.07E-004	_
SH/Cr	ma le	20	112	0.29340	3.23E-004	Polley, 1972
Paris Paris	ol cmo 3	ŭ	رد	0 04400	V.	NAC 1978
Spr dyue-bawley	foma le	2	- 80	•	2 Z	197
opi ague-pawiey	Fomalo	2	3 %	0 1000) V:	_
ayue-bawley	Fema le	2	S 25	0.18500) S	_
opi ague-nawiey	or may	2 2	8 5	0001.0	2	_
Sprague-Dawley	יום שון ביו	2 3	2	00012.0) U	NAC 1978
Sprague-Dawley	91 Pilla 1	<u> </u>	\$ 6	0.6500	2	6 +0
Sprague-Dawley		7 7	7	0.0550	2 2	בן פויי
Sprague-Dawley	e Compa	5 7	£ .	0.17300	2 3	ot 2]
Sprague-Dawley	al Pual	7 5	י י	0.5530	2 3	9 + 9
Sprague-Dawley	al Pilat	7 5	501 361	0.23000	2 3	בר מויי סלים
Sprague-uawley	emale Free	5 6	971	0.27.0	2 3	ה לם ה
Sprague-Dawley		7 2	<u>₹</u> ?	0.23000	2 3	1978
Sprague-Dawley	illa le	Ω 2	- 80	0.04000	2 2	
Sprague-Dawley	ה בין ה בין	2 2	2	0.000	2	_
Sprague-Bawley	9 PE	2 2	25.	0.12000	2 %	
Spirague=Dawley	5 C E	2 2	8 8	0 30500	2 Z	
Sprague-Dawley	ה ה הרנה	2 2	2 4	0.365.0	2 Z	_
Sprague-vawiey	ה ה ה (ה	§ 5	5 ~	0.05500	2 Z	
opi ague-pawiey	al em	3 5	. 9	0 21600	2 Z	et al
ague-pawiey	הן מנות מנית	5 5	; ;	00012.0	2	[[]
Sprague-pawiey	שום ה הרביה	5 5	, ער אַטר	0.31300	2 Z	
Sprague-udwiey	ה בין ה בין	5 6	361	0.42600	2	ָרְרָיּלְיּרָיִיּיִלְיִייִּיִּיִּיִּיִּיִּיִּיִּיִּיִּיִּיִּ
Sprague-Dawley	al Pill	5 2	07	00624.0	2 4	יייום ויי
					_	_

לאבר וכס	×	No. of Animals	Age (days)	(kg)	אַפּוּ ופוורפּ		xererence
Soraque-Dawley/MCr	fema le	26	٦	0.00630	3.03E-007	Poiley.	1972
Sprague-Dawley/MCr	female	23	1	0.01640	7.56E-006	Polley,	1972
Sprague-Dawley/MCr	female	25	±	0.05200	4.73E-006	Polley,	1972
Sprague-Dawley/MCr	female	52	2	0.05560	1.56E-006	Polley,	1972
Sprague-Davley/MCr	female	20	58	0.09530	6.81E-005	Polley,	1972
Sprague -Davley/MCr	fema le	*	45	0.15530	2.26E-005	Polley,	1972
Sprague-Dawley/MCr	female	28	26	0.19010	8.28E-005	Polley.	1972
Coragne Davlev/MCr	female	28	07	0.23670	2.57E-004	Polley.	1972
Coradio-Dacies/MC	female	20	8	0.24460	7.06E-005	Polley.	1972
Sprague Daylor/MC	Female	2 2	112		5.291-005	Polley.	1972
	fom 1 o	2 6	140	0 28030		Polley	1972
Sprague-uawiey/nci	- Leng 1	2 6	94.	•	• •	Polley	1972
Sprague-Dawley/MCF	a Cilia	0.2	901	•	3 665 005	001104	1072
Sprague-Dawley/MCr	rema le	2	961	•		101 ley,	2/61
Sprague-Dawley/MCr	male	20	_		2.50E-00/	Polley,	2/61
Sprague-Dawley/MCr	ma Je	12	7	0.01800	3.52E-006	Polley,	2/61
Sprague-Dayley/MCr	ma le	28	=	0.05300	1.00E -006	Polley,	1972
Coradio Dadlov/MCr	ma Je	56	23	0.05700	1.89E-006	Polley.	1972
o Davidor /MCr	0 0 0	23	8	0.09850	7.92F -005	Polley.	1972
Spr dyue-Dawley/ ner	100	3.5	27	•	20.5	Pollev	1972
Sprague-Dawley/Mcr	a Pil	0,0	¥ 3	0.000		Dolley	1072
Sprague-Dawley/MCr	ma le	27	00.0	•	2.04E -004	, to 1 cy,	נינו
Sprague-Dawley/MCr	ma le	*	2 ;	•	2.44E -004	Folley,	2/61
Sprague-Dawley/MCr	ma le	22	8	•	3.50E-004	Polley,	2/61
Sprague-Dawley/Mcr	male	20	112		4.70E-004	Polley,	2/61
Sprague-Dawley/MCr	ma le	20	0 * 1	•	3.19E-004	Polley,	2/61
Sprague-Dayley/MCr	ma Je	20	168	0.45110	1.11E-004	Polley,	1972
Sprague-Dawley/MCr	male	50	196	0.51570	1.25E-004	Polley,	1972
	,	ŝ	*	00000	2	to bood	יין ופאנו ני
	rema le	æ 8	? ?	•	Λ L Z		1986
	tema le	9	9	0.26500	2		1907
Sprague-Dawley Spartan	female	80	106	0.28500	SE		<u> </u>
Sprague-Dawley Spartan	female	80	136	•	SN		al., 1985
Sprague-Dawley Spartan	female	80	526	0.32500	SN	Pond et	al., 1985
	female	80	316	0.35000	NS	Pond et	al., 1985
	female	80	406	0.35000	NS	Pond et	al., 1985
	female	80	586	0.38500	SN	Pond et	al., 1985
	fom3 lo	8	766		SW	Pond et	al., 1985
	formal o	8 &	766		2		
	ema le	8 6	766	•	. Z		_
	a i pui	08	201	00014	2 2		: _
	male	90	9	0.45000	2		: :,
Sprague-Dawley Spartan	male	80	136	0.47500	SE	Pond et	<u>:</u>
Sprague-Dawley Spartan	male	80	526	0.53500	SN.	Pond et	al., 1985
	male	80	316	0.58000	NS	Pond et	al., 1985
-	al ell	80	904	0.60000	NS	Pond et	al., 1985
	9 2	2	586	0.61500	SN	Pond et	al., 1985
	, ,	8					
	•	5	377		2	1000	Joak

Species	Sex	No. of Animals	Age (days)	(kg)	Adi lance		
				00000	S A	Cate to tacing	1983
Sprague-Dawley Spartan	ma Je	9	2 :	00067.0	2 4		
Sprague-Dawley Spartan	male	90	9	0.62.0	2	3 7	
	male	6	9/	0.40000	SE	vie is di.,	
					f	-	
Sprague-Dawley 1951	Female	103	_	0.00550	4.56t-00/	Polley, 1972	
	female	001	7	0.01260	1.44E-006		
	Female	16	=	0.02250	1.46E-005	_ '	
	Fomalo	70	7	0.03510	2.03E-005	_	
-	Comp 10	סטר	28	0.04810	4.56E-005	Polley, 1972	
	al pula l	8 6	C 7	0.09250	6.01E-005		
_	remale	3 5	7 7	טנזנניט	1 725 -004		
	rema le	<u>.</u>	פה כר	03611.0	1 765-004	_	
Spradue-Dawley 1951	Female	45	2 ;	02201.0	3 06 5 004	_	
Sprague-Dawley 1951	female	69	* 0	0.1/640	3.005-004	. ה ה	
Sprague-Dawley 1951	Female	04	112	0.19850	3.916-003		
•	female	35	140	0.21610	3.02t -005		
	Female	53	168	0.23000	9.03E-005	- 1	
	ol em	פטר	_	0.00600	8.56E-007		
- 1	בינים ב	36	_	0.01300	1.895-006	Polley, 1972	
	e (- =	0 02460	1 705 -005	Polley, 1972	
	ag	5 6	<u> </u>	0.05 40	7 565-006		
	ag le	ç,	י פר	0.0370	4 06E-005	lev.	
Spraque-Dawley 1951	ma le	001	97	0.04300	200-300: 5 600 006	_	
•	ma le	001	2	0.09760	0.001-000		
Sprague-Dawley 1951	ma le	8/	2		100-100-1		
Sprague-Dawley 1951	male	99	2 ;	0.20240	מאלוני		
Spradue-Dawley 1951	ma le	28	*	0.23990	4.33E-004		
•	ma Je	Q	112	0.28750	9.751-005	- 1	
•	9	33	140	0.31820	7.885-005	_	
	ma le	7	168	0.32360	3.135-004	Polley, 1972	
	1					•	
-710/030	Female	2	_	0.00590	7.66E-007	_	
7/FICE	fom lo	: 5	7	0.01390	5.06E-006		
S5B/PICF	פונשט	- 46	7	0.02470	1.50E-005	_	
S5B/PICr	Tellid le	8 4	: :	0.03680	2.02F -005	Polley, 1972	
S58/P1Cr	remale	? .	30	0.05530	2.63F-005	_	
S5B/P1Cr	remale	.	V	0.03540	1.24F-004	ley.	
S5B/Plcr	rema le	7	34	0.03510	5 44F-005	lev. 1	
S58/P1Cr	rema le	•	ב ה	0077.0	ğ		
S5B/P1Cr	rema le	7	2 5	0.14730	1 08F_004		
S58/P1Cr	Fema le	17	•	0.101.0	2 29E 004	_	
S5B/P1Cr	female	82	711	0/602.0	100-162.2	_	
S5B/P1Cr	female	32	0+1	0.22980	*00-367.7		
S5B/P1Cr	female	8	801	0.24400	3.005 -004	•	
CSR/P1Cr	ma le	7.	_	0.00610	5.63t-00/		
CEB/DICE	ma Je	16	_	0.01610	3.061-006	<u> </u>	
27.07.07.07.07.07.07.07.07.07.07.07.07.07	وا ها	26	*	0.02500	1.50E-005	. 19	
5/FICF	2 2 2	7.0	12	0.03870	2.50E-005	Poiley, 1972	
-0767	<		-	•	***		

	\$	no. or Animals	(days)	(kg)		
CSB/DIC.	ma le	14	58	0.06010	7.23E-005	Polley, 1972
20070	9[8]	77	42	0.12240	2.85E-004	_
33877161	3 S	85	26	0.18970	2.98E-004	_
3357 FICE	0 0 0	: 5	70	0.24130	2.56E-004	_
558/PICF	10 JC	22	76	0.28560	3.02F-004	_
S58/PICr	a e	Se	נונ	07607:0	4 05F -004	_
S5B/P1Cr	ma le	₹ :	211	0.31340	4.00-301	_
S5B/P1Cr	ma Je	27	3 ∶	•		
S5B/P1Cr	ma le	25	168	0.36620	5.94E-004	FOILEY, 1372
						•
Lervat/7tm	female	15	00L	0.11500	1.44E-004	ب
Mcryot/7ta	ma Je	36	100	0.28600	6.25E-004	Alt et al., 1985
			-			
Utatas /Eurth Cr	female	2	_	0.00710	1.60E -007	Potley, 1972
	o caro y	28		0.01640	3.80E-006	_
star/Furth		200	7	•	7 565-006	
	a Pina i	0.2	<u> </u>	0.330.0	•	_
Wistar/Furth Cr	fema le	77	7 %	0.03310	3.001.006	_
Wistar/Furth Cr	female	25	8 2	0.100.0	1.505-005	
	female	19	45	•	5.331-005	
	female	5 7	26	•	•	_ ′
	Fomalo	7.7	20	0.14310	1.23E-005	
	fomale	3 5	-	0.17550	7.97E-005	Ξ.
star/rurtn	5 C C C C S	3 2	211		2.46E-001	
star/Furth	al Billar	6.] []			Potley, 1972
Star/rurtn		76	3,4	07636 0	3 735 -004	٦.
star/Furth	remale	₹ ₹	991	0.207.0	1 81F-007	
	ad le	7 5		07/00.0	2 48E 006	
	male	77	- ;	0.01/40	300-101-3	
Wistar/Furth Cr	male	£ ;	± 3	0.05450	•	
Wistar/Furth Cr	male	21	17	0.04000	בן נ קוני	
Wistar/Furth Cr	male	8 8	82 28	0.06510	9.775	
Wistar/Furth Cr	male	20	4 5	0.09120	5.13E-004	
	male	22	26	0.15660	2 3	
star/Furth	male	56	70	0.18510	1.21E -005	
	male	2	₩	0.24030	3.43E-004	
ctar/Furth	male	22	112	•	7.551-004	_ ′
	9 6 6	17	140	•	.3JE	6
	male	.[2	168	0.35960	5.39E-004	Polley, 1972
						5
Wistar/I puls Cr	female	13	-		7.66E-007	_ ,
	female	33	7	0.01810	1.89E-006	18.
	female	54	=	0.02560	4.00E-006	181
	female	95	12	0.05240	2.50E-005	_
	21 21 2	2	ξ.	0.08490	2.29E-004	_
	remale - L 3	6	27	0.00.0	6.44F-004	Polley, 1972
	remale	5 5	2 2	0.14100	1 16F 004	
	rema le	દ ક	9 5	0.542.0	7 12	_
Ulrear / Divin fr	C EV	7		0710770	Ξ.	•

Speciles	Sex	No. of Animals	Age (days)	Weight (kg)	Varlance	Reference
Utetas / oute Cr	female	39	84	0.30240	3.065-004	Polley, 1972
^ .	fom3 lo	3 5	211	0.32700	2.85F-004	Polley, 1972
	fomalo	¥	140	0.33570	2.64F-004	_
	e lema l	F 4	169	34990	1 935 -004	
	ellelle	÷ [3 -	0.04530	7 665 007	_
	a Pil	17		0.00.0	100-100-1	_
	ma le	35	- ;	0.610.0	000 - 100 /	notley, 1372
	ma le	₹.	* ?	0.02720	975.5	
Wistar/Lewis Cr	ma le	35	17	0.05330	3.451-005	
Wistar/Lewis Cr	ma Je	29	58	0.09610	1.03E-004	For ley, 1972
Wistar/Lewis Cr	male	38	45	0.18140	7.84E-004	_ ′
star/Lewis Cr	ma Je	\$	26	0.26970	5.18E-004	Polley, 1972
Wistar/Lewis Cr	ma Je	33	0,	0.31650	5.64E-004	_ '
Wistar/Levis Cr	ma le	30	₩	0.38170	4.00E-004	_
	ma Je	88	112	0.41820	4.46E-004	_
	ma Je	53	140	0.45910	7.84E-004	٦.
	ma le	₹	168	0.52640	4.52E-004	Polley, 1972
star	female	33	20	0.16800	2.50E-005	MAS, 19/1
Wistar	female	42	100	0.22900	2.501-005	_
Wistar	female	55	300	0.29900	1.60E-005	, :
Wistar	female	001	58	0.09750	1.418-005	et al.,
Wistar	female	001	26	0.14750	1.416-005	et al., l
Wistar	female	100	*	0.17000	2.50E-005	et al.,
Wistar	female	100	112	0.18000	5.62E-005	et al.,
Wistar	female	100	211	0.18000	5.62E-005	rg et al.
star	ma Je	52	9	0.15000	SX	et al., 197
Wistar	ma le	52	90	0.29500	SX	et al.,
Wistar	ma le	52	120	0.35000	S	et al., 197
Wistar	ma le	52	150	0.39500	SE	et al., 197
Wistar	ma le	52	210	0.41500	SE	et al.,
Wistar	male	52	270	0.45000	S	et al., 197
Wistar	ma le	52	330	0.48000	S	et al., 197
Wistar	ma le	25	390	0.49000	SW	et al., 197
Wistar	ma le	25	450	0.50000	SW	et al.,
Wistar	ma le	52	510	0.52000	SW	et al., 197
Wistar	ma le	22	570	0.55000	SN	et al., 197
Wistar	ma le	25	630	0.58500	SN	et al., 197
Wistar	шаје	52	069	0.59500	SN	et al., 197
Wistar	таје	25	720	0.0009	SN	et al., l
Wistar	таје	22	750	0.48000	SX	et al., l
star	таје	52	780	0.53000	SX	et al.,
Wistar	шаје	52	840	0.47000	SW	et al., l
Wistar	ma le	52	900	0.57000	SN	et al., 197
Histar	male	52	930	0.55000	NS	. 197
		•	,	00000	, , , ,	100

Species	Sex	No. of Animals	Age (days)	Weight (kg)	Varlance	צבו בו בורב
		9.	40	ט שפטר ט	2 60F_005	leana et al., 1964
Wistar	ma le	0,		00000	4 496 005	et al
Wistar	male	2	0/	0.1130	100-101-1	
Wistar	male	0.	126	0.2985.0	5.785-003	ייים חייים וייים
	alem	34	20	0.21800	2.50E-005	MAS, 1971
IB1	0100	38	100	0.36700	2.50E-005	NAS, 1971
LP1S LA	1101c	2	300	0.48500	1.60E-005	NAS, 1971
Wistar	a PIII	200	8	00022	6 255 -006	Wiberg et al., 1966
Wistar	male	201	•	000.3.0	200 163.0	7
Wistar	male	100	711	0.29500	3,021 -003	100 10 10 10 10 10 10 10 10 10 10 10 10
Histar	male	100	28	0.12500	6.255-006	
allstar	male	100	99	0.22500	5.62t-005	Wiberg et al., 1900
Voch1da/Cr	female	35	-	0.00600	4.23E-007	
Voch1da/Cr	female	35	7	0.01130	1.56E-006	_ '
Vorhida/Cr	Female	33	*	0.03400	1.375-005	
10 miles C	female	7.	ا2	0.05150	3.19E-005	
13/80111	female	: 7	58	0.06400	2.65E-005	
TOSHI I GA CI	Fomalo	28	4	0.13480	5.55E-005	•
TOSHIDA/CF	Fomale	2 %	95	0.18980	1.48E-004	
TOSHIDAZER	1 51101	25	2 5	0.25850	1.51E-004	•
Yoshida/Cr	al pilla I	. .	2 8	0 27200	2.57E-004	_
Yoshida/Cr	rema le	C a	ָבָּי בּיל	00313.0	A 175-004	•
Yosh1da/Cr	fema le	7.	211	0.30350	A 145 004	Polley 1972
Yosh1da/Cr	female	2	₹'	0.31060	2001	
Yosh1da/Cr	male	2		0.00010	3.315-007	_
Yosh1da/Cr	male	12	_	0.01240	1.50E-006	•
Vochlda/Cr	ma Je	22	*	0.03740	1.21E -005	
Vorhida/Cr	ma le	24	2	0.05870	2.02t -005	_ ,
10.50 100 100 100 100 100 100 100 100 100 1	- E	23	58	0.01990	6.16E-005	
13 / BD 1 H	olem	22	45	0.15920	9.95E-005	
TOSHIDA/CF	2 PH	23	· •	0.25570	3.42E-004	_
Yoshida/Lr	פון פון	2.	2 5	0.32070	4.09E-004	_
fosh1da/Cr	a - 0E	,		0 34130	5 51F_004	Polley, 1972
Yoshida/Cr	ag le	€ 8	6	0.34.00	4 82F_004	_
Yosh1da/Cr	ma le	97	211	0.10130	1 225 003	
W L. L. d. a. / C.	مادس	25	0	0.4/20	1.635-003	•

NS = Not specified

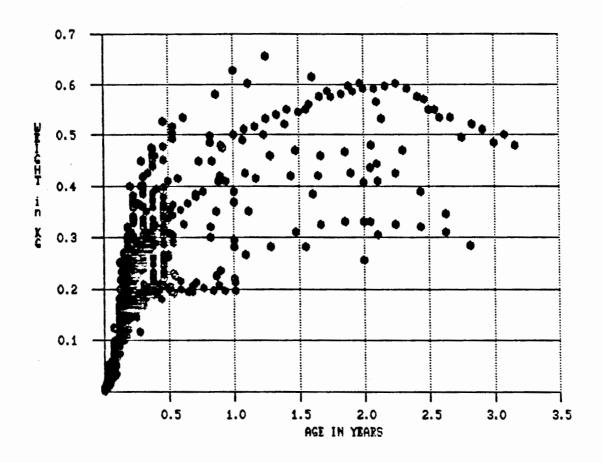
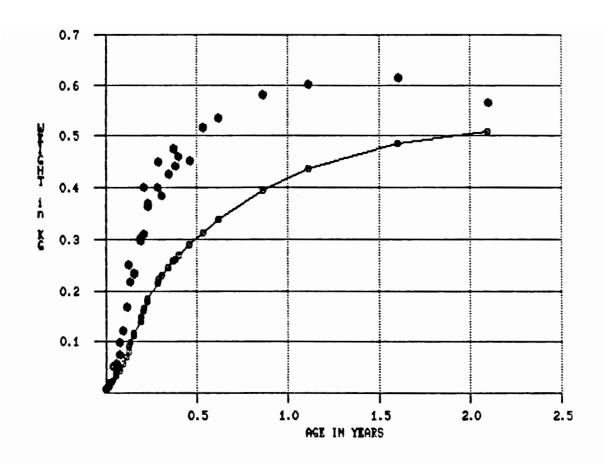


FIGURE 3-21

Body Weight Data on Male and Female Rats

(See Table 3-4 for data points and references)


This variation may be somewhat exaggerated in Figure 3-21 because most of the points between 0.5 and 1.0 year that plateau at ~0.2 kg are from Worden (1947) and represent the growth of a single female and single male black rat. Most body weights for mature rats range from ~0.3-0.6 kg.

Lifespan growth data are adequate to propose recommended values for four strains of rats which, in descending order of size, are Sprague-Dawley, Long-Evans, Wistar and Fischer.

Growth data on male and female Sprague-Dawley rats are presented in Figures 3-22 and 3-23, respectively. These figures include all of the data on Sprague-Dawley rats summarized in Table 3-4, except for the Sprague-Dawley 1951 rats, which are smaller than other Sprague-Dawley rats. As with B6C3F1 mice, male Sprague-Dawley rats evidence a definite plateau in growth at maturity and a slight decrease in body weight after 2 years of age. Females, conversely, continue to gain weight at a substantial rate throughout the observation period of ~2.1 years.

A somewhat different pattern is seen with male and female Fischer rats, as illustrated in Figures 3-24 and 3-25, respectively. These figures include all of the data on Fischer rats presented in Table 3-4. The data reported by Mauderly (1986), on relatively small numbers of animals, vary from the other sets of data, particularly for male rats at 1 year and female rats at 2 years of age. These differences, however, do not have a substantial effect on the estimates of TWA body weights.

In Fischer rats, clear peaks and subsequent decreases in body weight are apparent for both male and female rats. The peak in male rats occurs somewhat sooner (~1.5 years) than in female rats (~2 years,) and the decrease in body weight in male rats is more pronounced than in females. Given the large numbers of animals and the number of observations, it is unlikely that

 $\label{eq:FIGURE 3-22}$ Recommended Growth Curve for Male Sprague-Dawley Rats

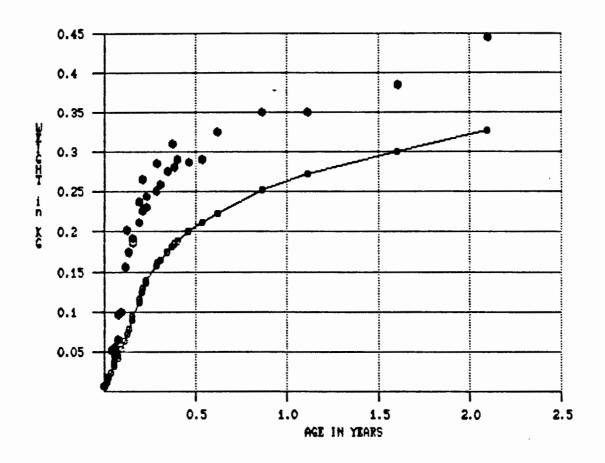


FIGURE 3-23
Recommended Growth Curve for Female Sprague-Dawley Rats

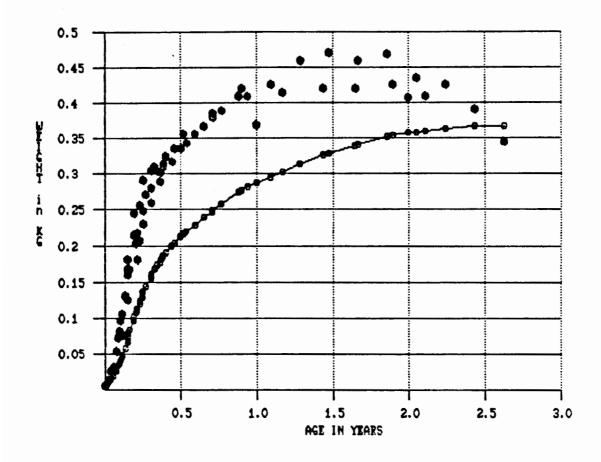


FIGURE 3-24
Recommended Growth Curve for Male Fischer Rats

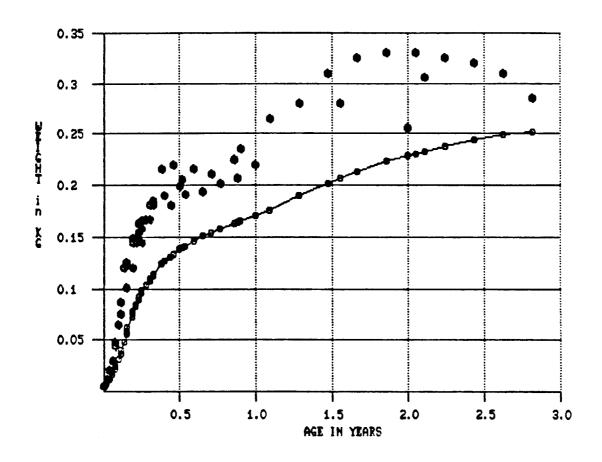
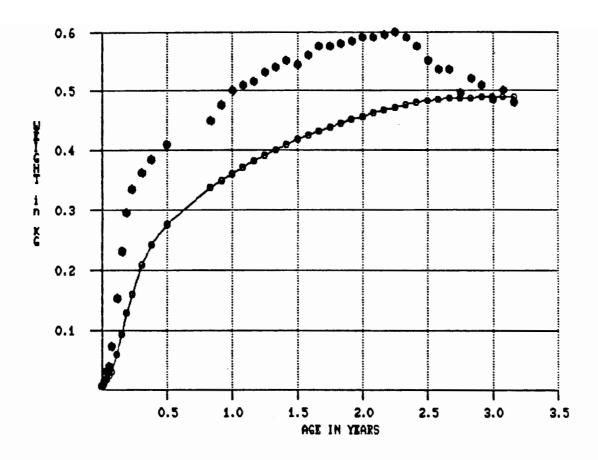
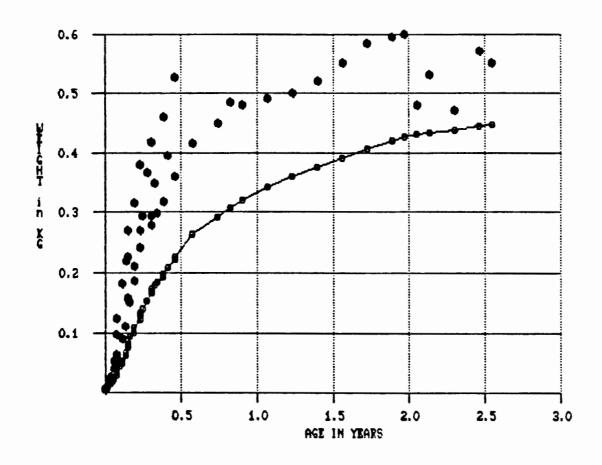


FIGURE 3-25
Recommended Growth Curve for Female Fischer Rats


these patterns are artifacts of small sample sizes. Since these points represent the mean weights of groups of animals, and individual body weight data have not been reported, it cannot be determined if these patterns and other similar patterns are associated with weight loss in older animals or increased longevity in lighter animals.

The significance of the inflection in body weight in female Fischer rats that appears to occur between 6 and 9 months is not apparent. This is similar to the inflection in human females, between the ages of 20 and 30 years (Stoudt et al., 1960).


Lifespan growth data on Long-Evans male rats are illustrated in Figure 3-26. The growth data on young (1-140 days) rats reported by Poiley (1972) and the growth data on older (182-1156 days) rats reported by Holloszy and Smith (1986) are combined in this figure and yield a smooth growth curve. Reported weights for male Long-Evans and male Sprague-Dawley rats both reach a maximum of ~0.6 kg, but Sprague-Dawley rats reach this weight more rapidly. Thus, Sprague-Dawley rats have a slightly higher TWA body weight than Long-Evans rats. Like male Fischer rats, male Long-Evans rats show a marked decline in body weight near the end of the lifespan. This decline appears later (2.1 years) in the Long-Evans rats than in the Fischer rats (1.5 years).

Growth data over the lifespan of male Wistar rats are plotted in Figure 3-27. As specified in Table 3-4, this figure combines data on different varieties of Wistar rats and unspecified varieties of Wistar rats reported in different studies. This may partially account for the greater amount of scatter than that seen in the previous figures. Nonetheless, in the growth data on young Wistar rats (days 1-168) reported by Poiley (1972), male and female Wistar/Lewis rats appear to have greater growth rates than Wistar/Furth rats. No clear peak in growth is evident in this strain. All of the

1990A 3-87 09/02/87

 $\label{eq:FIGURE 3-26} FIGURE \ 3-26$ Recommended Growth Curve for Male Long-Evans Rats

 $\label{eq:FIGURE 3-27}$ Recommended Growth Curve for Male Wistar Rats

growth data for animals >1 year are reported from a single study (Deyl et al., 1975) which is based on a small number of animals. Haas et al. (1985) reported the spontaneous occurrence of a "giant" Wistar (Cpb:WU) rat that weighed 0.656 kg at age 15 months. While somewhat large, this weight is not exceptional given the growth data in Figure 3-27.

Lifespan growth data are not available on female Long-Evans, Wistar rats or other strains of rats.

Proposed recommended values for various strains of rats are given in Table 3-5. As with mice, both subchronic and chronic recommended body weights are given that parallel the standard subchronic and chronic exposure periods for toxicity studies using rats. For the sexes and strains on which lifespan growth data are available, chronic body weights are estimated directly from the appropriate figure (see Figures 3-22 to 3-27). For strains on which a subchronic, but not a chronic, body weight can be calculated directly, the chronic body weight is estimated using Equation 3-2. [The limitations of this approach are discussed in Section 3.2.1.]

When recommended body weights are not available from Table 3-5, any available body weight data should be used to select the strain of rat most similar to the strain used in the study being considered for risk assessment. If the strain of rat is not specified or if no body weight data are provided, using the recommended values for the Fischer rat will generally yield the lowest estimate of mg/kg/day dose, based on the use of the recommended body weight and the relationship of body weight to inhalation rates, food consumption, or water consumption.

1990A 3-90 09/02/87

TABLE 3-5

Reference Values for Body Weights of Various Strains of Rats

Strain	Sex	Weight at Birth	Weight at Weaning	Subchronic TWA Body Weight	Chronic TWA Body Weight	Reference
ACP 9935/Cr ACP 9935/Cr	L E	0.0051 0.0052	0.033	0.131 0.169	0.2466*	Poiley, 1972 Poiley, 1972
AC1 9935/Cr AC1 9935/Cr	 ∑	0.0053	0.0342	0.137 0.168	0.2588* 0.3217*	Poiley, 1972 Poiley, 1972
AL BANY/Cr	<u></u>	0.0071	0.0535	0.184	0.3542*	Poiley, 1972
ALBANY 9935/Cr	Œ	0.0072	0.0553	0.240	0.4678*	Poiley, 1972
August 28807/Cr August 28807/Cr	 ∑	0.0059	0.0404	0.159	0.3034* 0.4008*	Poiley, 1972 Poiley, 1972
BN/Cr Bn/Cr	 ∑	0.0061	0.0437 0.0448	0.138 0.210	0.2608* 0.4069*	Poiley, 1972 Poiley, 1972
BUFFALO/Cr BUFFALO/Cr	·- X	0.0055	0.0278	0.168	0.3217* 0.4455*	Poiley, 1972 Poiley, 1972
Copenhagen/Cr Copenhagen/Cr	<u> æ</u>	0.0057	0.0266	0.149	0.2832* 0.3947*	Poiley, 1972 Poiley, 1972
Cr:MGAPS(OM) Cr:MGAPS(OM)	<u>u X</u>	0.0058	0.0484	0.192 0.245	0.3704* 0.4779*	Poiley, 1972 Poiley, 1972
Cr:RAR(SD) Cr:RAR(SD)	u. X	0.0065	0.0556	0.202	0.3907* 0.5144*	Poiley, 1972 Poiley, 1972

1990A

3-91

09/02/87

Strain	Sex	Weight at Birth	Weight at Weaning	Subchronic TWA Body Weight	Chronic TWA Body Weight	Reference
Fischer Fischer	L E	0.0055	0.03	0.124	0.229	Composite, see text Composite, see text
Long-Evans Long-Evans	ᄕᇎ	0.0061	0.0383	0.179 0.248	0.3440* 0.472	Poiley, 1972 Composite, see text
Marshall 520/Cr Marshall 520/Cr	ᄕᆂ	0.0059	0.0328 0.0407	0.143 0.217	0.2710* 0.4211*	Poiley, 1972 Poiley, 1972
NBR/PICr NBR/PICr	· •• E	0.0058	0.0275 0.0283	0.140 0.193	0.2649* 0.3724*	Poiley, 1972 Poiley, 1972
Osborne-Mendel Osborne-Mendel Osborne-Mendel	╙╙Σ	0.0064 0.0064 0.0064	0.0520 0.0530 0.0530	0.286 0.201 0.263	0.5611* 0.3886* 0.5144*	Poiley, 1972 Poiley, 1972 Poiley, 1972
SH/Cr SH/Cr	∟ ∑	0.0055	0.0400	0.143 0.205	0.2710* 0.3968*	Poiley, 1972 Poiley, 1972
Sprague-Dawley Sprague-Dawley	L E	0.0063 0.0067	0.0515 0.0527	0.204	0.338 0.523	Composite, see text Composite, see text
S5B/PlCr S5B/PlCr	<u>.</u> ₹	0.0059 0.0061	0.0368 0.0387	0.143 0.210	0.2710* 0.4069*	Poiley, 1972 Poiley, 1972
Wistar/Furth Cr Wistar/Furth Cr	L S	0.0071 0.0072	0.0391 0.0400	0.137 0.179	0.2588* 0.3440*	Poiley, 1972 Poiley, 1972
Wistar/Lewis Cr Wistar/Lewis Cr	L E	0.0051	0.0524 0.0533	0.234	0.4556* 0.5672*	Poiley, 1972 Poiley, 1972

Strain	Sex	Weight at Birth	Weight at Weaning	Subchronic TWA Body Weight	Chronic TWA Body Weight	Reference
Wistar Wistar	u. E	0.006	0.040	0.156 0.217	0.2974* 0.462	Composite, see text Composite, see text
Yoshida/Cr Yoshida/Cr	u. E	0.0060	0.0515	0.154	0.2933*	Poiley, 1972 Poiley, 1972
*Recommended	chronic body chronic body	/ weights bas and BWsub is	ed on the e the recommen	*Recommended chronic body weights based on the equation, BWch = -0.019+2 recommended chronic body and BWsub is the recommended subchronic body weight	0.019+2.03 BWsub, weight.	based on the equation, $BMch = -0.019+2.03$ $BMsub$, where $BWch$ is the recommended subchronic body weight.

3.2.3. Guinea Pigs. The U.S. EPA has not recommended a reference body weight for guinea pigs. Values for guinea pig body weight reported in the literature include 0.27 kg (Boxenbaum, 1983), 0.43 kg (ARS/Sprague-Dawley, 1974) and 0.75 (Lehman, 1959). Growth data for guinea pigs and some additional body weights for guinea pigs of unspecified age are summarized in Table 3-6. All weight data from Table 3-6, for which corresponding ages are specified, are plotted in Figure 3-28

The data base for guinea pigs is much less complete than that for mice or rats. Donhoffer (1986) presents data over a period close to the 6-year recommended lifespan for the guinea pig. While these reported values are consistent with the data given by Mortola (1983, 1984), neither sex nor strain are specified. In addition, the body weight data reported by Donhoffer (1986) are markedly less than sex- and strain-specific data reported by Poiley (1972), Hirsch (1973) and Navia and Lopez (1973). These data for male guinea pigs are illustrated in Figure 3-29. The lower series of smooth body weight points are those reported by Poiley (1972) for the American short-hair guinea pig. The upper series of smooth body weight points are those for the Albino short-hair (Hirsch, 1973) and Hartley (Navia and Lopez, 1973) strains. The only sex-specific data reported for female guinea pigs are that of Poiley (1972) for the American short-hair (Figure 3-30).

For proposing recommended values, it does not seem reasonable to rely on the data of Donhoffer (1986) both because the sex and strain are not specified and because the data, while plausible given the scatter previously noted with rats and mice, are not consistent with the sex- and strain-specific data plotted in Figures 3-29 and 3-30. As an alternative, subchronic body weights are derived from the available sex and strain data.

1991A 3-94 09/02/87

TABLE 3-6

Species	Sex	No. of Animals	Age (days)	Weight (kg)	Variance	Reference
1	olem	ي	01	0.2000	SN	Hirsch, 1973
Albino snort-naid Albino short bair	Ma Je	. v	20.	0.27000	SN	197
	ma Je	, v,	30	0.36000	NS	
	male	5	40	0.41500	N.S	197
-	ma le	9	20	0.48000	SN	Hirsch, 1973
	male	2	09	0.52000	S	797
	male	2	70	0.58000	SN.	HILSCH, 1973
chort hair	Female	50	_	0.07900	1.506-004	Poiley, 1972
	female	50	7	0.11060	. 50E	_
	female	20	14	0.14560	. 33E	_
	female	20	2ا	0.18010	. 52E	_
. ,	female	20	28	0.21890	.02E	_ ′
	female	20	42	0.29730	. 23E	Poiley, 1972
. ,	female	48	99	0.37420	. 98E	_ ′
	fema le	48	70	0.44950	. 53E	_
	female	48	84	0.51890	. 48E	
	female	48	211 211	0.62560	.26E	
	female	48	140	0.72010	. 65E	
Amer. short-hair	female	47	891	0.79620	7 665 003	
Amer. short-hair	Fema le	4/	96	0.03/30	7.00.	
Amer. short-hair	male	20	– 1	0.08030	. 50E	POLICY, 1972
Amer. short-hair	male	20	_	0/511.0	. / OE	
Amer. short-hair	ma le	20	14	0.15560	. 40E	
Amer. short-hair	male	20	נ2	0.20040	. 63E	
Amer. short-hair	ma le	20	58	•	. 09E	
	ma le	49	45	•		_ ′
	סרכש	949	26	0.40530	1,35E-003	Polley, 1972

Species	Sex	No. of Animals	Age (days)	Weight (kg)	Variance	Reference
Amer. short-hair Amer. short-hair Amer. short-hair Amer. short-hair Amer. short-hair	male male male male male	49 49 49 45 45	70 84 112 140 168	0.48250 0.54680 0.65690 0.76010 0.84010	7.84E-004 1.28E-003 2.40E-003 4.10E-003 2.12E-003 2.63E-003	Poiley, 1972 Poiley, 1972 Poiley, 1972 Poiley, 1972 Poiley, 1972
Duncan-Hartley Duncan-harltey Duncan-Hartley Duncan-Hartley	female female male male	45 45 15	N N N N N N N N N N N N N N N N N N N	020350 0.44250 0.20400 0.46350	2.26E-005 9.51E-005 1.60E-005 1.81E-005	Shelton, 1971 Shelton, 1971 Shelton, 1971 Shelton, 1971
Hartley Hartley Hartley Hartley	male male male male both	SN SN SOL	21 42 70 98 98	0.28000 0.45000 0.61000 0.72000	NS NS NS NS NS 9.80E-003	Navia and Lopez, 1973 Navia and Lopez, 1973 Navia and Lopez, 1973 Navia and Lopez, 1973 Mauderly et al., 1979
N N N N N N N N N N N N N N N N N N N	male male ns NS NS NS NS NS NS NS NS NS NS	6 6 73 73 35 78 78 18	NS NS NS PS 1260	0.30900 0.34000 0.37900 0.80000 0.09200 0.10200 0.11100 0.15900 0.29900 0.68000 0.69900	1.61E-004 1.35E-004 3.39E-004 NS 1.16E-004 8.64E-004 8.28E-004 1.33E-003 2.40E-003 1.94E-003 NS	Murphy and Ulrich, 1964 Murphy and Ulrich, 1964 Murphy and Ulrich, 1964 Bruce, 1950 Donhoffer, 1986

1991A

3-96

09/02/87

pecified
5
Not
11
SS

1991A 3-97 09/02/87

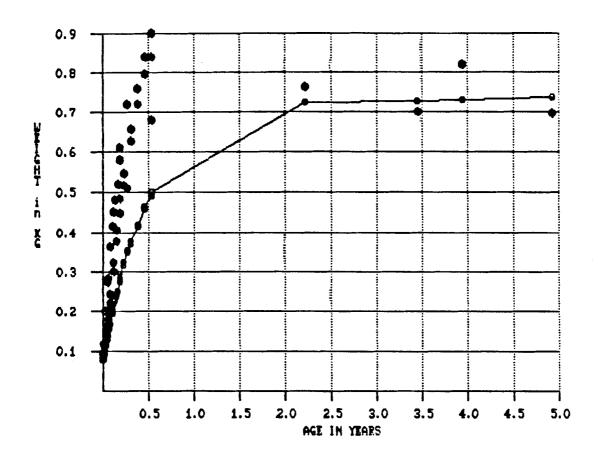


FIGURE 3-28

Body Weight Data on Guinea Pigs

(See Table 3-6 for data points and references)

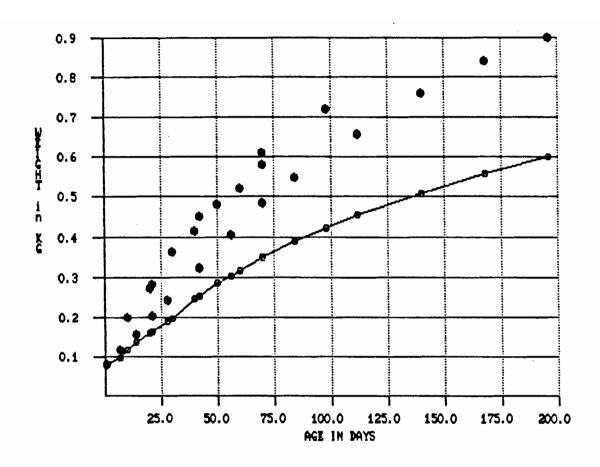


FIGURE 3-29
Growth Data on Male Guinea Pigs

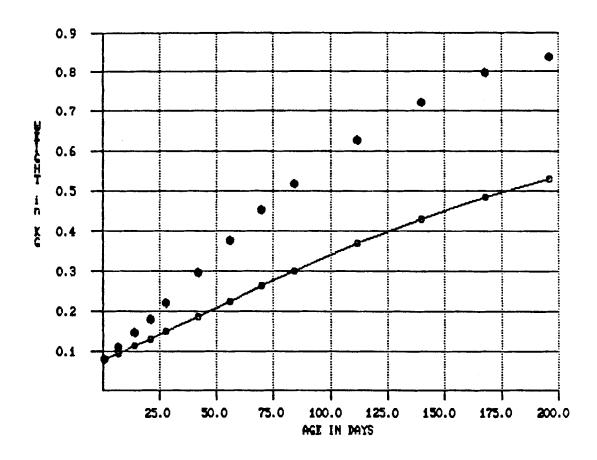


FIGURE 3-30
Growth Data on Female Guinea Pigs

For male guinea pigs (see Figure 3-29), separate subchronic body weights could be derived for the upper and lower body weight patterns discussed above. Given the paucity of the data and the uncertainty in extrapolating such estimates to chronic body weights, only a single value of 0.48 kg is proposed for all male guinea pigs. For female guinea pigs, the proposed recommended subchronic body weight is 0.39 kg. These values are based on the recommended age at weaning of 14 days for guinea pigs and the 90-day duration of a subchronic study.

The TWA body weight curves for male and female guinea pigs given in Figures 3-29 and 3-30 are extended in Figures 3-31 and 3-32, based on the assumption that body weights reach a plateau after 300 days at 1.0 kg for males and 0.9 kg for females. These figures are not extended over the full 6-year lifespan of the guinea pig because lifespan toxicity studies are rarely, if ever, conducted on this species. For providing a recommended chronic body weight, a 2-year exposure period is assumed. The recommended chronic body weights for male and females are estimated at 0.89 and 0.86 kg, respectively.

3.2.4. Hamsters. The U.S. EPA has not recommended a reference body weight for hamsters. ARS/Sprague-Dawley (1974) gives a standard body weight of 0.12 kg. Other reported body weights for adult and weanling hamsters are given in Table 3-7, along with available growth data. All growth data presented in Table 3-7 are plotted in Figure 3-33. The points in Figure 3-33 that show a markedly lower growth rate than most of the other points are for Chinese (Calland et al., 1986) and Djungarian (Heldmaier et al., 1982) hamsters. Because of the substantially lower body weights reported for these strains, separate body weight values will be recommended. Growth data are not available over the 2.5-year recommended lifespan of the hamster.

1991A 3-101 09/02/87

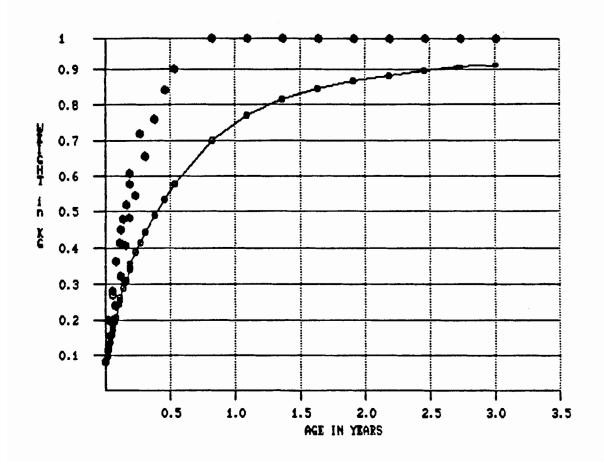


FIGURE 3-31
Recommended Growth Curve for Male Guinea Pigs

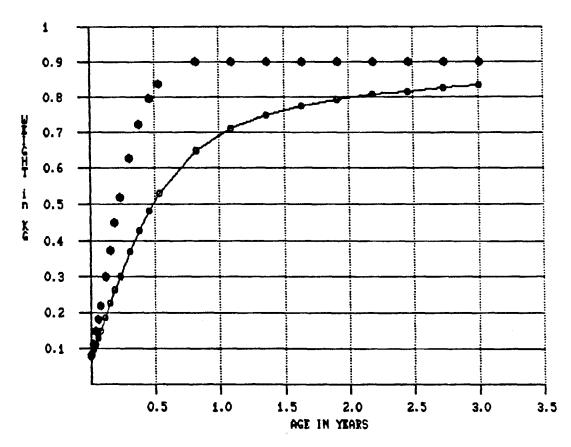


FIGURE 3-32
Recommended Growth Curve for Female Guinea Pigs

TABLE 3-7

Growth and Body Weight Data on Hamsters

	Sex	No. of Animals	Age (days)	Weight (kg)	Variance	Reference
Chinese	female	25	12	0.01500	NS	et al., l
Chinese	female	25	28	0.01900	NS	land et al., l
Chinese	female	25	35	•	NS	land et al., l
Chinese	female	25	49	•	NS	land et al., l
Chinese	female	52	63	•	NS	land et al., l
Chinese	female	52	ננ	•	NS	land et al., l
Chinese	female	25	91	•	NS	land et al., l
Chinese	female	25	112	•	NS	land et al., l
Chinese	ma Je	52	21	<u> </u>	NS	land et al., l
Chinese	male	25	28	•	NS	land et al., l
Chinese	ma Je	25	35	•	NS	lland et al., l
Chinese	ma Je	25	49	•	NS	lland et al., l
Chinese	ma Je	25	63	•	NS	land et al., l
Chinese	ma Je	25	11	۰.	NS	land et al., l
Chinese	ma Je	52	91	٥.	NS	land et al., l
Chinese	ma Je	52	96	•	SN	lland et a
Chinese	male	25	112	٠.	SN	Calland et al., 1986
(aks/HJG-1)	female	56	_	0.00300	.02E	197
Cr. PGH (SYR)	female	09	7	•	.20E	791,
Cr. RGH (SYR)	female	203	14	•	2.65E-005	Jey,
Cr : RGH(SYR)	female	120	12	•	.63E	ley, 197
:RGH(female	120	28	•	. 79	ley, 197
:RGH(female	143	42	0.09300	. 54E	ley, 197
: RGH (female	151	99	•	.21E	ley, 197
-	female	163	70	Γ.	. J6E	ley, 197
-	female	162	84	Γ.	. 36E	197
	female	101	211	•	.8JE	197
Cr:RGH(SYR)	female	94	140	Γ.	.02E	iley, 197
	6cm10	88	168		795	Poilev, 1972

1991A 3-104 09/02/87

salpade	Sex	No. of Animals	Age (days)	Weight (kg)	Variance	Reference
Cr.BGH(SVR)	ma Je	54	_	0.00290	2.50E-007	Poiley, 1972
	male	28	7	0.00690	4.95E-006	
	ma Je	204	14	0.01830	2.94E-005	Poiley, 1972
	male	160	21	0.04000	2.97E-005	_
	male	160	28	0.04870	9.41E-005	_
	male	155	42	0.08610	6.16E-005	_
	ma Je	163	99	0.09150	8.85E-006	_
	male	וזו	70	0.09940	J.46E-005	_
Cr:RGH(SYR)	male	154	84	•	6.63E-006	_
	ma Je	86	112	0.12190	2.16E-005	_
Cr:RGH(SYR)	male	7.7	140	0.13180	5.26E-005	_
:RGH(SYR)	ша]е	98	168	0.14050	1.33E-005	
Cr:RHG(SYR)	female	SN	12	0.04000		
	female	NS	28	0.04400	•	NAS, 1978
	fema le	NS	99	0.09500	•	NAS, 1978
-	female	NS	84	0.11500	•	
	female	NS	168	0.15800	•	
	male	NS	12	0.04000	•	
	male	NS	28	0.04900	9.51E-005	
	male	NS	99	0.09200	•	
Cr:RHG(SYR)	ma le	NS	84	0.10400	.25E	197
	male	NS	168	0.14100	1.22E-005	NAS, 1978
Diungarian	NS	16	16	0.02760	3.60E-007	
Djungarian	NS	14	91	0.04110	8.10E-007	•
Ela:ENG(SYR)	female	NS	20	0.03800	NS	
a:ENG(SYR)	fema le	NS	30	0.06000	NS	
Fla:ENG(SYR)	female	NS	40		NS	NAS, 1978
		•	•	00001	011	

Species	Sex	No. of Animals	Age (days)	Weight (kg)	Variance	Reference
:FNG(SYR)	female	SN	70	0.10700	NS	
FNG(Female	NS	90	0.12400	NS	
	male	NS	20		NS	
:ENG(SYR)	male	NS	30	0	NS	NAS, 1978
	male	NS	40	0.08200	NS	
	ma Je	NS	09	0.10200	NS	
ENG(male	NS	70		NS	
:ENG(SYR)	male	SN	06	0.12600	NS	NAS, 1978
Golden Svrian	female	10	35	0.07300	NS	et al., l
Svria	Female	10	49	0.08800	SN	Feron et al., 1979
	Female	10	63	0.09300	NS	Feron et al., 1979
SYF	female	10	11	0.10400	NS	Feron et al., 1979
SVF	female	10	16	0.10900	NS	eron et al., l
0	female	10	105	0.11900	NS	eron et al., l
S	Female	J0	911		NS	al., l
Syr	Female	10	133	0.12000	NS	eron et al., l
Golden Syrian	male	J0	35	•	NS	eron et al., l
Syr	male	00	49	•	NS	eron et al., l
	male	٥٢	63	٠,	NS	eron et al., l
	male	J0	1.1	「.	NS	et al., l
	male	J0	16	Γ.	NS	et al., l
	male	10	105	0.10800	NS	et al., l
	таје	10	911	0.10700	NS	et al., l
	male	10	133	0.10800	SN	Feron et al., 1979
Svri	both	9	28	0.05600	J.00E-006	and Judge,]
	both	192	35	0.0690.0		and Judge, l
Svri	both	9	42	•	1.56E-006	and Judge, 197
Syri	both	9	49	•	- 1	and Judge, 197
•	1111	C	9.9		C 6.0E 0.07	Appl and Index

1991A

3-106

09/02/87

	× e×	No. of Animals	Age (days)	Weight (kg)	Variance	Kererence
Golden	ma Je	10	adult	0.11540	1.21E-004	Holloway and Heath, 1984
Golden	hoth	22	Weaned	0.04170	1.00E-008	Arrington, 1968
Golden	both	22	weaned	0.04170	J.00E-008	Arrington, 1968
Golden	both	12	42	0.07475	3.45E-004	Banta et al., 1975
Golden	both	SN	_	0.00400	NS	Farris, 1950
Golden	both	NS	20	0.02800	NS	•
Golden	both	NS	40	0.07000	NS	
Golden	both	NS	09	0.09200	NS	
Golden	both	NS	80	0.10750	7.56E-006	is,
Golden	both	NS	100	0.12850	4.56E-005	2
Golden	both	NS	140	0.13350	1.81E-005	5,
Golden	both	NS	180	0.14650	1.81E-005	
Golden	both	NS NS	220	0.15000	2.50E-005	-
Golden	both	NS NS	260	0.15150	J.06E-005	
Golden	both	SN	300	0.15250	2.261-005	
Golden	both	NS	360	0.15450	2.76E-005	<u>5</u>
Golden	both	40	21	0.03850	5.63E-007	Granados, 1951
Golden	both	40	99	0.07550	1.41E-005	
Golden	both	40	91	0.09250	5.06E-006	
Golden	both	40	126	0.11000	6.25E-006	•
Golden	both	40	161		1.60E-005	1951
Golden	N.S	SN	adult	0.09000	N S	Lane-Peter et al., 1967
SN	SN	SN	adult		NS	1950
NS	SN	4	5	0.00643	SN	Mortola and Noworaj, 1985
Standard 1V6	female	SN	21	0.03500	SN	
	female	SN	28	0.05400	NS	NAS, 1978
	female	SN	35	0.06600	N.	
	female	SN	99	0.09700	NS	
	female	NS	70	0.10700	NS	_
	2,500	O A	Va	טטארר ט	ON	NAC 1978

	<	No. of Animals	Age (days)	(kg)	val tallee	Kererence
Standard LVG	male	NS	12	0.03500	SN	
Standard LVG	ma le	NS	28	•	SN	
	ma Je	NS	35	0.07000	NS	
	male	NS	56	0.10200	SN	Γ.
	male	NS	70	0.11000	SN	Γ.
	male	SN	84	0.12500	SN	NAS, 1978
Svrian F18	ma Je	10	40	0.06380	2.50E-005	
Syrian F1B	ma Je	10	70	0.08860	3.14E-005	٦.
Syrian F18	male	0١	100	0.10200	1.14E-004	Schlenker, 1984
Syrian[Sch:Syr]	both	10	86	0.11000	1.216-004	Mauderly et al., 1979
Svrjan	fema le	10	12	0.03800	.73E	Arrington et al., 1966
Svrian	female	10	35	0.06700	2.21E-005	et al.,]
Syrian	fema le	10	45	•	2.01E-004	et al.,]
Syrian	fema le	10	63	•	.09E	et a
	ma le	80	12	0.04100	.59	et al.,]
Syrian	ma Je	8	35	•	.95	et al., l
Syrian	male	8	42	0.07900	2.22E -004	et al.,]
Syrian	male	8	63	•	.51E	ton et al.,
Syrian	male	8	25	•	SN	s et al., 197
Syrian	male	8	30	•	SN	s et al., 197
Syrian	male	80	35	•	SN	s et al., 197
Syrian	ma le	8	40	0.08800	SN	s et al., 197
Syrian	male	8	20		SN	et al., 197
Svrian	male	8	70	Τ.	S	s et al.,
Syrian	ma le	8	90	0.12300	SN	et al., 197
Syrian	ma le	8	105	Γ.	Z	s et al.,
Syrian	male	40	109	0.12900	2.89E-004	et al., 1978
Svrian	both	10	211	0.1100	.21E	Mauderly and Tesarek, 1975

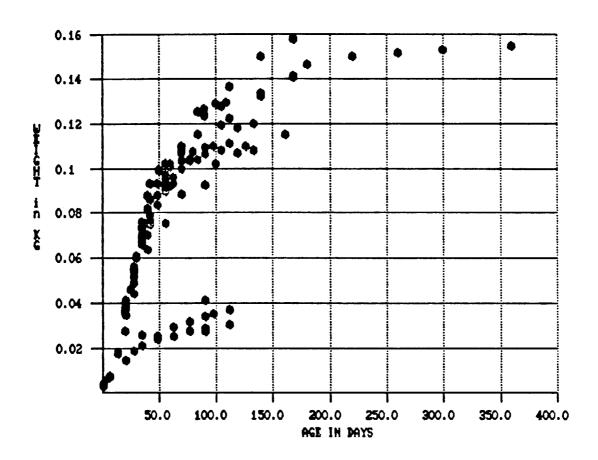


FIGURE 3-33

Body Weight Data on Hamsters

(See Table 3-7 for data points and references)

The only data on growth over an observation period of >6 months are provided in a study on the Golden hamster (Farris, 1950), in which average weights are given for both sexes combined.

Sex differences in body weight do not appear to be as pronounced in hamsters as in other species of laboratory animals. Data on the growth rate of male hamsters, excluding Chinese and Djungarian strains, are plotted in Figure 3-34. Corresponding data for female hamsters are plotted in Figure 3-35. Although some scatter is apparent in both of these figures, the data are reasonably consistent and are not clearly associated with differences in strain. Using the data presented in these figures and a recommended age at weaning of 21 days, the recommended subchronic body weights for these strains of male and female hamsters are 0.097 and 0.095 kg, respectively.

In estimating chronic body weights for these strains of hamsters, data on males and females are extended in Figures 3-36 and 3-37, respectively, using assumed mature body weights of 0.15 kg for males and 0.16 kg for females. These assumed values bracket the combined weight for 1-year-old male and female Golden hamsters of ~0.155 kg (Farris, 1950) and reflect the somewhat higher body weights reported for female hamsters ages 100-200 days, compared with males. Using these assumptions, recommended chronic body weights for these strains of hamsters are 0.134 kg for males and 0.145 kg for females.

Growth data on male and female Chinese hamsters are presented in Figures 3-38 and 3-39, respectively, and the corresponding recommended subchronic body weights are 0.03 kg for males and 0.025 kg for females. The ratio of chronic-to-subchronic body weights for Golden Syrian hamsters (1.38 for males and 1.52 for females) are used to estimate recommended chronic body weights for Chinese hamsters of 0.041 kg for males and 0.038 kg for females.

1991A 3-110 09/02/87

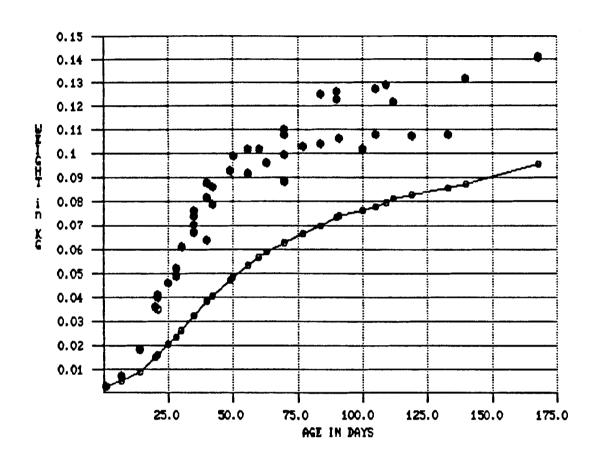


FIGURE 3-34

Growth Data on Male Hamsters (Excluding Chinese Strain)

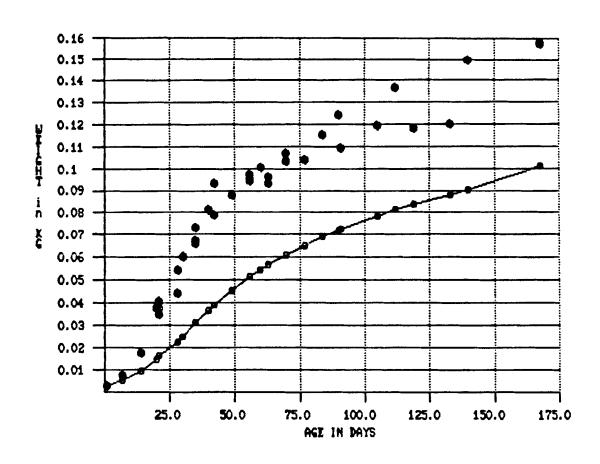


FIGURE 3-35

Growth Data on Female Hamsters (Excluding Chinese Strain)

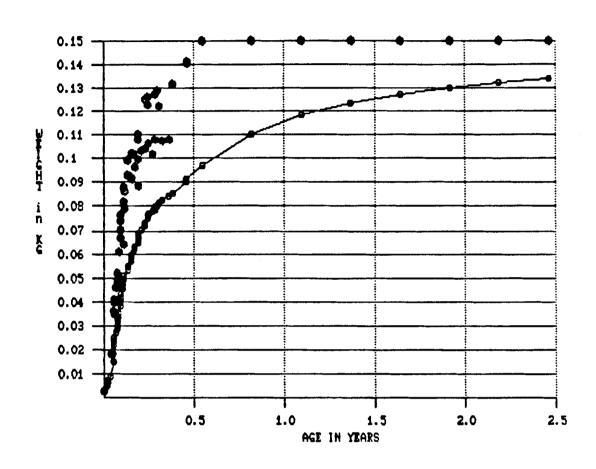


FIGURE 3-36

Recommended Growth Curve for Male Hamsters (Excluding Chinese Strain)

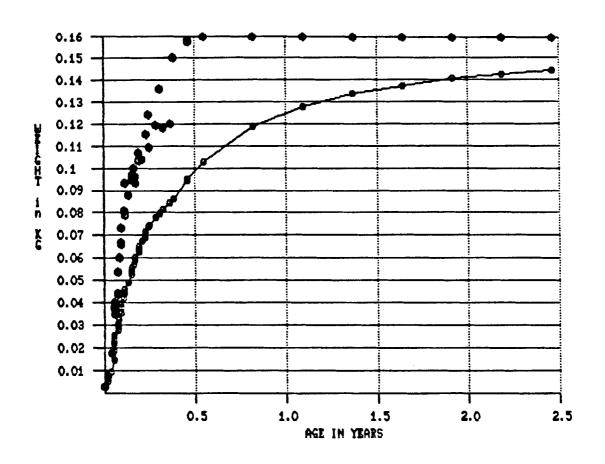


FIGURE 3-37

Recommended Growth Curve for Female Hamsters (Excluding Chinese Strain)

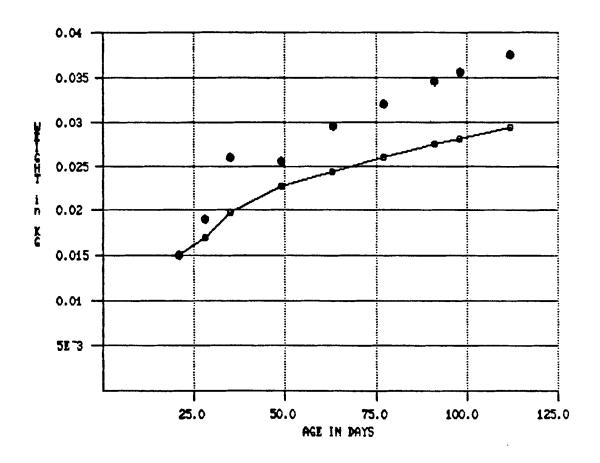


FIGURE 3-38

Recommended Growth Curve for Male Chinese Hamsters

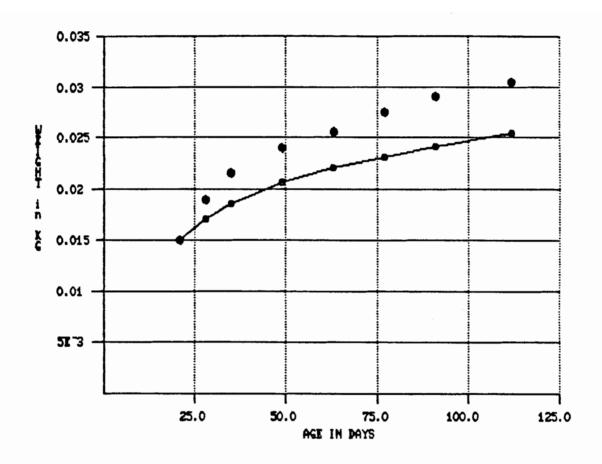


FIGURE 3-39
Recommended Growth Curve for Female Chinese Hamsters

Although growth data are not available for Djungarian hamsters, the body weights reported for 90-day-old hamsters of this strain (Heldmaier et al., 1982) are much closer to those of Chinese than Golden hamsters. Thus, the recommended values for Chinese hamsters should be applied to studies using Djungarian hamsters.

The rather substantial variation in the weights of 91-day-old Djungarian hamsters reported by Heldmaier et al. (1982) reflect seasonal differences, the heavier weight recorded in summer and the lighter weight recorded in winter. Seasonal differences in growth rates and body weights of hamsters are also discussed by Granados (1951). Information for assessing the effects of seasonal differences is not common in the toxicology or growth literature. Thus, seasonal factors are not used in recommending biological values in this report, although such differences are noted when data are available. Such differences, nonetheless, should be recognized as potential and perhaps substantial sources of error in the application of recommended values in risk assessments.

3.2.5. Gerbils. The U.S. EPA has not recommended a reference value for gerbils, and these animals were not included in an earlier report on recommended values for risk assessment (U.S. EPA, 1985). Although not commonly used in toxicological studies, gerbils are usually considered in most recent reference texts on laboratory animals (Arrington, 1978) and are being used more frequently in biomedical research.

As summarized in Table 3-8, most available data are on the Mongolian gerbil; only birth and mature weights were reported by Lane-Peter et al. (1967) for other strains. As illustrated in Figures 3-40 and 3-41 for males and females, respectively, growth data for both sexes are relatively consistent and cover the 3-year recommended lifespan. The body weights reported

1991A 3-117 09/02/87

TABLE 3-8

Growth and Body Weight Data on Gerbils

Species	Sex	No. of Animals	Age (days)	Weight (kg)	Variance	Reference
Meriones shawi Meriones shawi	S S S S	NS NS	ر adult	0.00475	3.91E-007 1.06E-003	Lane-Peter et al., 1967 Lane-Peter et al., 1967
Mondolian	Female	> uem	_	0.00400	SZ	Arrington et al., 1973
Mongolian	female	many		0.00700	SN	et al., 19
Mongolian	female		14	0.01600	SN	et al., l
Mongolian			12	0.01600	NS	et al., 19
Mongolian	female	many	28	0.02100	SN	et al., 19
Mongolian			35	•	SN	et al., 19
Mongolian	female	many	42	•	SN	et al., 19
Mongolian	female		49	0.04700	SN	et al., 19
Mongolian	female		26	•	SN	et al., 19
Mongolian			180	•	SN	et al., 19
Mongolian	female		270	•	SN	et al., 19
Mongolian	female	many	365	•	NS	et a].,]9
	female	many	730	•	SN	et al., 19
-	female		1095	0.08600	SN	et al., 19
•	female		_	•	SN	nd Chang, l
Mongolian	female	NS	12	0.01300	SN	ston and Chang, l
	female	NS	26	•		ston and Chang, l
•	female	NS	183	•	2.50E-005	ston and Chang, I
Mongolian	female	NS NS	365	•		and Chang, I
Mongolian	female	NS	639	0.09750	.89	and Chang, 1
Mongolian	female	NS	_	0.00400	NS	and Zurich,
Mongolian	female	NS	14	•	NS	Zurich,
Mongoljan	female	NS	12	0.01200	SN	and Zurich, l
Mongolian	female	NS	58	•	SN	and Zurich, l
Mondolian	female	NS	35	0.02300	SS	McManus and Zurich, 197

Species	Sex	No. of Animals	Age (days)	Weight (kg)	Variance	Reference
Mondolian	Female	SX	49	0.03300	SN	
Mongolian	female	SZ	56	0.04000	NS	and
Mongolian	Female	SN	70	0.04600	NS	.
Mongolian	female	SN	105	0.05500	NS	_
Mongolian	Female	98	_	0.00280	1.60E-009	is and Adams, 19
Mongolian	Female	85	10	0.00740	•	is and Adams, 19
Mongolian	Female	81	20	•	.84E	is and Adams, 19
Mongolian	Fema le	104	30	•	1.76E-007	is and Adams, 19
Mongolian	female	97	40	•	.02E	is and Adams, 19
Mongolian	Female	30	20	•	. 33E	is and Adams, 19
Mongolian	female	58	09	•	4.10E-007	is and Adams, 19
Mongolian	female	20	70	•	•	is and Adams, 19
Mongolian	female	38	80	•	. 48E	is and Adams, 19
Mongolian	female	49	90	•	•	is and Adams, 19
Mongolian	Female	46	100	0.05190		is and Adams, 19
Mongolian	female	38	011	•	•	is and Adams, 19
Mongolian	fema le	35	120	•	. 33E	is and Adams, 19
Mongolian	Female	36	130	•	.35E	is and Adams, 19
Mongolian	Female	35	140	•	3E	s and Adams, 19
Mongolian	Female	12	150	0.05540	.53E	d Adams, 19
Mongolian	male	many	_	•	NS	et al., 19
Mongolian	male	many	7	•	NS	ington et al., 19
Mongolian	ma le	many	14	•	NS	ington et al., 19
Mongolian	male	many	21	•	NS	ington et al., 19
Mongolian	male	many	28	•	NS	ington et al., 19
Mongolian	male	many	35	•	NS	ington et al., 19
Mongolian	male	many	42	•	NS	ington et al., 19
Mongolian	male	many	49		NS	ngton et al., 19
Mongol tan	male	many	99	•	NS	rrington et al., 19
Mondolina	alem	many	90	0.0890.0	SZ	Arrington et al., 1973

	\$	Animals	Age (days)	(kg)	Adi Talice	אפן פון כפ
Mondolian	male	many	180	0.08000	S	Arrington et al., 1973
Mongolian		many	270	0.08700	NS	et al., l
Mongolian	male	many	365	0.09000	NS	et al., 197
Mongolian	male	many	469	0.09400	NS	et al., 197
Mongolian	male	many	920	•	NS	et al., 197
Mongolian	male	many	730	0.09800	NS	et al., 197
Mongolian	male	many	1095	•	NS	et al., 197
Mongolian	male	ב	75	•	J.56E-006	֟֟֝֟֝֟֝֟֝֟֝֟֟֝֟֝֟֟֝֟֟֝ <u>֟</u>
Mongolian	ma le	00	63	0.05550	8.10E-007	Loew, 1968
Mongolian	male	10	98	0.07480	7.56E-006	
Mongolian	ma le	10	140	0.08275	•	Loew, 1968
Mongolian	ma le	10	182	0.09085	3.69E-005	
Mongolian	male	10	224	0.09580	3.03E-005	896
Mongolian	male	SN	_	0.00300	6.25E-008	and Chang,
Mongolian	ma le	SN	ر2		3.06E -006	and
Mongolian	ma le	SN	99	0.04850	3.91E -005	and Chang,
Mongolian	ma le	SN	183	0.0800.0	5.62E-005	and Chang,
Mongolian	male	SN	365	0.08500	NS	and Chang,
Mongolian	ma le	SN	645	0.11750	7.66E-005	and Chang, 19
Mongolian	ma le	SN	_	0.00400	NS	and Zurich, I
Mongolian	ma le	SN	14	0.00800	NS	and Zurich,
Mongolian	ma le	SN	21	•	NS	and Zurich,]
Mongolian	male	SN	28	•	NS	and Zurich,
Mongolian	ma le	SN	35	•	NS	and Zurich,
Mongolian	ma le	SN	49	0.04000	NS	and Zurich,
Mongolian	male	SN	99	0.04500	NS	_
Mongolian	ma le	NS	70		N	and
Mongolian	ma le	SN	84	0.05700	N.	and Zurich,
Mongolian	ma le	SN	105	0.06000	N	s and Zurich,
					000 LOV	CLOC THE THE TWO

Species	Sex	No. of Animals	Age (days)	Weight (kg)	Variance	Reference
ne i lopud	olem		10	0.00740	1.69£-008	Norris and Adams, 1972
ongorian	ma le	72	20	0.01190	5.29E-008	is and Adams,
ongolian	ma le		30	0.01870	9.00E-008	Norris and Adams, 1972
ongolian	male		40	0.02610	2.70E-007	
ongolian	male	59	20	•	3.48E-007	is and Adams,
ongolian	male	۲4	09	•	5.18E-007	is and
ongolian	ma le		70	•	8.10E-007	is and Adams,
ongolian	ma le		80	0.05090	3.28E-006	is and Adams,
ongolian	male		90	0.05810	8.28E-007	is and Adams,
ongolian	ma le		100	•	1.61E-006	s and Adams,
ongolian	ma Je		110	0.05770	2.79E-006	and Adams,
ongolian	male		120	0.06200	2.62E-006	and Adams,
ongolian	male		130	0.06000	3.76E-006	Norris and Adams, 1972
ongolian	male		140	0.06470	1.23E -006	•
ongolian	male		150	0.06170	2.37E-006	d Adams,
ongolian	both	50	NS	0.01740	1.00E -008	Ġ.
ongolian	both		215	0.06125	.64E	ī,
ongolian	both		NS	•	6.60E -005	
ongolian	NS		_	•	NS	
ongolian	NS		7	•	N S	•
ongolian	NS		14	•	N S	
ongolian	NS		12	0.01290	N S	
ongolian	NS		28	0.01860	NS	_
ongolian	SN		105	0.05880	SN	McManus, 1971
crassus	NS		_	0.00350	2.50E-007	et al.,
	NS	NS	adult	0.10500	5.06E-004	Lane-Peter et al., 1967
libycus	NS	NS	_	0.00550	5.63E-007	et al.,
1 thyour	∨ 2	SN	adult	00001.0	4.00F-004	Lane-Peter et al., 196/

1991A

3-121

09/02/87

	Species	Sex	No. of Animals	Age (days)	Weight (kg)	Variance	Reference	
E IEI	persicus persicus	NS NS	SN S	n adult	0.00500	NS 2.25E-004	Lane-Peter et al., 1967 Lane-Peter et al., 1967	7961 7961
Σİ	sacrament1	SN	NS	adult	0.20000	1.416-003	Lane-Peter et al., 1967	1967
zizi	tristrami tristrami	NS NS	SS	ا adult	0.00300	NS 5.06E-004	Lane-Peter et al., 1967 Lane-Peter et al., 1967	7961 7961
zizi	vinogradovi	NS NS	S S S	ر adult	0.00300	NS 6.25E-004	Lane-Peter et al., 1967 Lane-Peter et al., 1967	1967

NS = Not specified

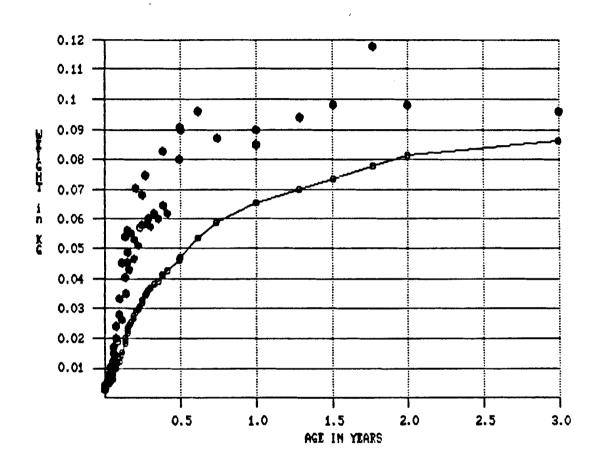


FIGURE 3-40
Recommended Growth Curve for Male Mongolian Gerbils

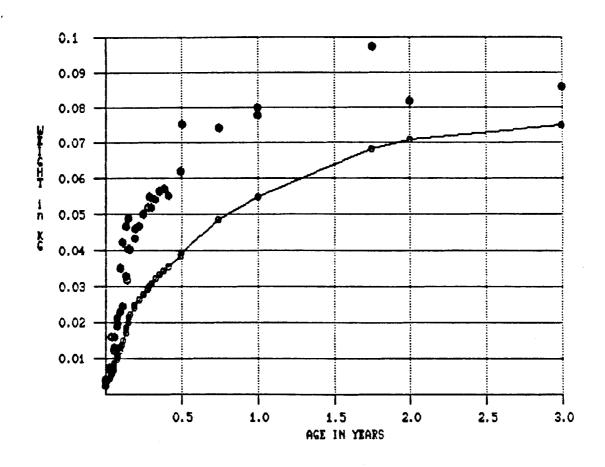


FIGURE 3-41
Recommended Growth Curve for Female Mongolian Gerbils

by Marston and Chang (1965) are somewhat higher than those reported by Arrington et al. (1973). Since these records were made at different times and probably under different holding conditions and using different diets, all of the reported weights are used in recommending body weight values.

Using the recommended age at weaning of 21 days, recommended subchronic body weights for males and females are 0.48 and 0.40 kg, respectively; the corresponding recommended chronic body weights are 0.843 and 0.728 kg, respectively.

Recommended values are not proposed for the strains of gerbils for which birth and mature body weights are reported (Lane-Peter et al., 1967), because these strains are not generally used in toxicity studies. Such values could be derived easily, if needed, using the approach taken for hamsters. The data reported by Lane-Peter et al. (1967) suggest that different strains of gerbils, like different strains of many other species, can vary markedly in body weight, and that the body weight values recommended above should be used only for the Mongolian gerbil.

3.3. OTHER LABORATORY MAMMALS

3.3.1. Cats. The U.S. EPA has not recommended a reference body weight for cats. A recommended body weight of 3.3 kg has been given by ARS/Sprague-Dawley (1974). Body weight and growth data on cats are summarized in Table 3-9. This table does not include data by Latimer and Ibsen (1932) as cited by Altman and Dittmer (1972). The more recent data are similar to these earlier data and are for greater numbers of animals. Although cats are widely used in experimental research and are among the most common domestic pets, growth data over the 15-year recommended lifespan of the cat have not been documented. This is not a serious limitation because most toxicity studies on cats are conducted over only a small portion of the lifespan of

1991A 3-125 09/02/87

TABLE 3-9

Growth and Body Weight Data on Cats

Species	Sex	No. of Animals	Age (days)	Weight (kg)	Variance	Reference
Mived	male	∞	SN	4.10000	1,0060000	Taton et al., 1984
Mived	ma Je	ာတ	S		1.21E0000	et al., l
Mixed	ma le	· •	N.		1.44E0000	et al.,
Mixed	male	01	NS	4.20000	8.10E001	et al.,
Mixed	male	9	NS	•	J.21E0000	et al., l
Mixed	male	9	N.S		J.2JE0000	et al., l
Mixed	male	12	NS NS	•	8.10E-001	et al., l
Mixed	male	12	SN SN		8.10E-001	et al., l
Mixed	male	9	S N		J.2JE0000	et al., l
Mixed	male	12	SN	•	8.10E-001	et al., l
Mixed	male	2	N.	4.60000	•	et al., l
Mixed	male	5	NS	4.60000	٠	et al., l
Mixed	male	5	S N	4.60000	J.44E0000	Taton et al., 1984
Mixed	both	S	105	1.20700	NS	Waterhouse and Carver, 1966
Mixed	both	SN	135	1.57700	NS	•
Mixed	both	NS	165	•	SN	and Carver, l
Mixed	both	NS	195	•	NS	•
Mixed	both	NS	225	2.17500	NS	and
Mixed	both	NS	270	•	NS	•
Mixed	both	NS	365	2.57400	NS NS	_
Mixed	both	SN	395	2.78100	S N	Waterhouse and Carver, 1966
SN	female	many	_	0.12500	N.S	
NS	female	many	70	0.99000	NS	
NS	fema le	many	140	2.30000	NS	
SZ	female	many	210	3.00000	SN	
SN	female	many	280	3.10000	SN	٦.
S	famale	manv.	343	3.10000	SZ	01ovson, 1986

Species	Sex	No. of Animals	Age (days)	Weight (kg)	Variance	Reference
	male	many	٦	0.12500	NS	
	male	many	70	1.12500	SN	
	male	many	140	2.85000	NS	
	male	many	210	3.80000	SN	
	male	many	280	4.20000	S	
	male	many	343	4.00000	SN	01ovson, 1986
	both	70	_	0.10500	2.64E-004	et al.,
	both	70	Z,	0.16700	1.09E -003	et al.,
	both	70	10	0.21700	1.48E-003	et al., l
	both	70	15	0.26400	1.60E -003	:
	both	70	50	0.31000	2.65E-003	et al., l
	both	70	25	0,35500	3.97E-003	et al., l
	both	70	30	0.39800	4.13E-003	et al., l
	both	70	35	0.44200	6.81E-003	:
	both	70	40	0.49000	8.24E-003	et al.,
	both	70	45	0.54300	9.36E-003	et al., l
	both	07	20	0.60400	1.48E-002	Lane-Peter et al., 1967
	NS	9	547	3.62000	3.61E-002	Gautier, 1986
	NS	9	4	0.17100	1.94E-003	Mortola, 1983
	NS	4	2	0.11880	5.04E-005	Mortola, 1984
	3 1	4	314	3 25000	5 06F 002	Cistoscates 1983

NS = Not specified

1991A

3-127

09/02/87

the cat. Thus, as with experimental rodents, subchronic and chronic recommended body weights will be based on 90 and 730 days postweaning, using the recommended age at weaning of 49 days.

Recommended growth data for male and female cats are presented in Figures 3-42 and 3-43, respectively. Both curves are based on a combination of the early (day 1-50) growth data given by Lane-Peter et al. (1967) for both sexes combined and the growth data given by Olovson (1986). Olovson (1986) provides detailed growth curves for male and female cats from birth to 49 weeks of age. Representative points are included in Figures 3-42 and 3-43. Female weight begins to plateau by 26 weeks at ~3.0 kg and increases slowly after this period. Male weight peaks after ~40 weeks at 4.2 kg and declines to ~4.0 kg by 49 weeks. These sex-specific patterns are similar to those discussed in Section 3.2. for laboratory rodents. For recommending reference values, Figure 3-42 extends the male weight, assuming that the weight remains at 4.0 kg, and Figure 3-43 extends the female weight, assuming that the

Using the growth curves from these figures, recommended subchronic body weights for males and females are 1.72 and 1.49 kg, respectively, and corresponding chronic body weights are 3.66 and 2.96 kg. The chronic weights bracket the recommended value of 3.3 kg from ARS/Sprague-Dawley (1974). Mature body weights of 4.0 and 3.1 kg are recommended for males and females, respectively.

The body weights reported by Taton et al. (1984), which are for mature male cats, are all higher (by 2.5-15%) than the recommended adult male weight used above. As with other species, substantial variations among populations of animals may be expected.

1991A 3-128 09/02/87

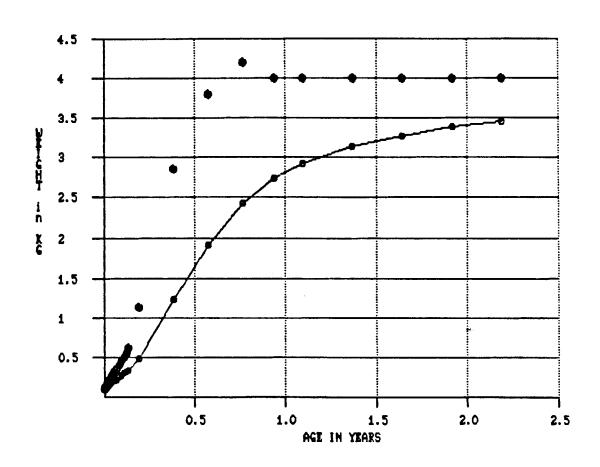


FIGURE 3-42
Recommended Growth Curve for Male Cats

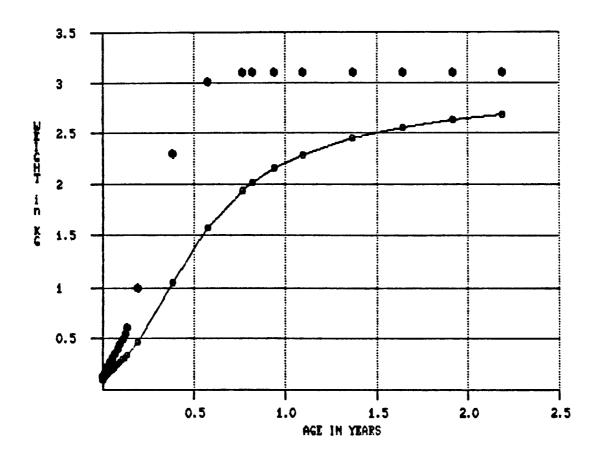


FIGURE 3-43
Recommended Growth Curve for Female Cats

3.3.2. Dogs. The U.S. EPA has not recommended a reference body weight for dogs. Values reported in the literature are 10.0 kg (Lehman, 1959), 12.7 kg (Hertzberg and Dourson, 1983), 14.0 kg (ARS/Sprague-Dawley, 1974) and 14.2 kg (Boxenbaum, 1983).

Body weight and growth data on dogs are summarized in Table 3-10 and plotted in Figure 3-44. To provide better scaling of the graph, Figure 3-44 does not include the 58 kg male mongrel dog reported by Amoroso et al. (1964). The only clear outliers, as illustrated in Figure 3-44, are German Shepards, which are much larger and grow more rapidly than other strains of dogs on which data are available. With this exception, other strains of dogs for which growth data have been reported grow at similar rates and are about the same size as beagles. Since the beagle is by far the most commonly used strain of dog in toxicity studies, this is the only strain for which body weight values will be recommended. Other strain-specific body weights could be derived, based on the data summarized in Table 3-10.

All available growth data on beagle dogs are plotted in Figure 3-45. Much of the apparent scatter, while not atypical for growth data, is eliminated by excluding data where sex is not specified or where data on both sexes are combined. With these exclusions, the only outlying data are that reported by Mauderly (1974), which give lower weights for male and female beagles than would be expected, based on the data given in other reports. Thus, the data reported by Mauderly (1974) are not used in recommending values for risk assessment.

Recommended growth curves for male and female beagle dogs are presented in Figures 3-46 and 3-47, respectively. Both of these curves are based on a combination of the data reported by Altman and Dittmer (1974), NAS (1971) and Worden et al. (1975). Although the first two of these publications are

1991A 3-131 09/02/87

TABLE 3-10 Growth and Body Weight Data on Dogs

Species	Sex	No. or Anîmals	(days)	(kg)		Kej ej ejice
Airdale	both	-	N.S.	2.60000	4.00E-002	Arnold and Elvehjem,
Airdale	both	~	SN.	00000	5.63E-001	Arnold and Elvehjem,
Atrdale	both	-	SN	10,50000	5.63E-001	and
Atrdale	both	~	N.S.	13.70000	1.82£0000	and
Airdale	both	-	NS	15.65000	2.81£0000	and
Bacon 1 1	al sm	2.1	_	0 24000	~	Altman and Dittmer, 197
pasenji	100	25		00007.0	2 7	and Dittmer
Basenji	- PE	3 5		0.49000	2 2	and Dittmer,
Basenji	ag le	2.8	≠ ;	0.73000	Ě	dnd Dittmer,
Basenji	ma le	2.5	7 8	0.93000	ž i	and Dittmer,
Basenji	ma le	53	8 .	1.12000	¥:	and
Basenji	ma le	23	35	1.29000	Z	pue
Basenji	ma le	23	45	1.51000	ZZ.	and
Basenji	male	23	6₹	1.83000	Z.	and Dittmer, l
Basenii	ma le	23	26	2.30000	Œ.	and
Basenii	ma le	23	63	2.79000	N.	Altman and Dittmer, l
Basentt	male	2	20	3.29000	N.	Altman and Dittmer, l
Bacont	male male	: 2	8	4.49000	Z	
Baconit	9 6	2 2	8	5.66000	Z Z	Altman and Dittmer.]
Raconit	9	2 2	112	6.57000	×	and
Bacontt	Foma lo	2.7	: -	00015:0	: Z	and
Basenji	fomalo	7,	. ~	0.43000	: Z	and
Baconit	fom Jo	7.	. 1	0 65000	2	and
Basell I	fomalo		7.5	0.82000	: Z	and Dittmer,
Basellji	fomale		3 6	00036:0	2	and Dittmer
Danell I	female		3,5	1 14000	2	and Dittmer
basenji Secoli	female female		6	37000	2	and Dittmer.
Basenji	foms lo	2.6	7 6	1.2000	2	and Dittmer.
Basell	female female	77	÷ ±	2 13000	2	and Dittmer
Basenji	fomale	2 [5	3 5	2 51000	2	and Dittmer.
Basell	foma lo	2.6	S 5	•	: Z	and Dittmer
Bacontt	female	77	2 2	•	Z Z	and Dittmer
Bacontt	female	7,	£	4.97000	Z Z	and Dittmer.]
Racenit	female	7.	112	5.51000	N.	and Dittmer.]
- fuscos		:	•			
Beagle	female	20	396	8.40000	1.21E0000	_
Beagle	female	20	1278	10.0000	•	_
Beagle	female	35	3375	10.9000	6.25E0000	Manderly, 1974
•	1	2	ç	מטטט נ	2	LAC 1071
Beag le	remale 63		3 5	0,000		
Beagle	remail e	2 2	8 8	00000	2 3	
Beagle	remale	2	96.	00000	2 2	
0,000	0 (100)	_				

Species	Sex	No. of Animals	Age (days)	Weight (kg)	Variance	Reference
Beagle	female	SN	180	9.50000	NS.	NAS, 1971
Beagle Beagle	female female	S S	210 240	9.80000 10.00000	S S	NAS, 1971 NAS, 1971
•	•	r	3		100	7
Beagle	fema le		S 2	10.60000	2.03E-001	Domos et al., 1981
Beagle	elemale Grand	~ ~	2 2	10.63000	1 60F -002	et al
Beagle	e Leme y		2 =		1.225-001	et 2]
Dead le	formale	- 6-	2 2	11.05000	5.06F-002	et al., l
Bearle	female	· ~	S SE	11.40000	9.00E-002	et al.,
Beagle	female	1	SIE	11.70000	25E	et al., l
Beagle	female	Ξ	NS	Ë.	1.06E-001	et al., l
Beagle	female	ָב י	SE	તં ત	1.60E-001	٠,
Beagle	female	- ;;	S 5	12.55000	7.56E-002	- [
Beagle	rema le	<u> </u>	2 2	13 45000	1 061 - 001	בן פוני פוני של ש
Beagle Reagle	female		S X	14.10000	9.00E-002	et al.,]
,						
Beagle	female	•••	02L	7.10000	SE	Worden et al., 1975
Beagle	rema le	•	9/-	9.50000	e se	בר פויי סלים
Beagle	rema le	• •	257	10.1000	2 =	בן קון בן און
Beagle	el emot	• •	346	10.5000	S	.
Bedy in	female	- ◀	004	10,8000	SE	et al.
Readle	female	•	456	10.90000	SM	et al., l
30000000000000000000000000000000000000	female	~	268	11.80000	SIE	et al., l
Beagle	female	~	089	11.80000	SN	et al., l
Beagle	female	₹	792	13.00000	S Z	Worden et al., 1975
Readle	male	20	396	10.00000	SM	Mauderly, 1974
Beagle	ma le	10	1278	12.00000	1.44E0000	Mauderly, 1974
Rearle	ma Je	SE	30	1.50000	SM	MAS, 1971
Readle	male	SN	09	3.50000	SM	
Beagle	male	SN.	06	9.00000	SE	
Beagle	male	NS	120	7.80000	SE:	MAS, 1971
Beagle	male	NS	150	9.80000	SE S	
Beagle	male	SZ	180	00000.11	S S	MAS, 1971
Beagle	ma le	SE	017	11.80000	2 2	
Beagle	male	S	240	12.50000	2	_
Beaule	ma le	•	120	7.80000	NS	e
Rearis	male	→	176	10.50000	SE	et al.,
Bearle	male	~	232	12.20000	SE	et al.,
			000	טטטטר כר	2	3505 [* Y'

Species	vex	No. of Animals	(days)	(kg)	מן וסוורב	אבובי
Beagle	male	~	344	12.40000	S	et al
Beagle	male	→	4 00	12.40000	SN	et al.,
Beagle	male	4	268	12.90000	SW	٦:
Readle	male	~	126	12.50000	SW	a).
Beagle	male	~	792	12.70000	NS	Worden et al., 1975
1						•
Beagle	both	~	180	9.40000	SN	et al.,
Beagle	both	~	173	9.60000	SW	et al.,
Beagle	both	~	362	9.90000	NS	:
Beaule	both	•	453	10.40000	NS	:
Readle	hoth	-	545	00006.6	SN	Ξ:
00000	4 5 5 4	•	6.35	00009 6	SE	Borzelleca et al., 1964
19 1e		•	126	00000.01	2	et al
Beag le	1000	•	ינט רנט	00001	2	[to
Beagle	100	• •	100	30000	2 1	[[4 4
Beag le	DOLA	•	300	00000	2	
	q	001	306	טטטטר פ	1 9650000	Manderly, 1974
bedy ie	hoth	2 5	1278	00001.11	2.2550000	
ט. בי		2		2000		
Beagle	both	12	364	00000.6	2.89E0000	Mauderly et al., 1979
•			,		;	•
Beagle	N S	SE	- ;	0.30000	SE	
Beagle	SN	S	[9	2.80000	SE	
Beagle	SN	SE	122	5.30000	6.25E-002	
Beagle	SW	SE	183	7.15000	3.06t -002	
Beagle	SN	SN.	243	8.25000	5.061-002	
Beagle	SN	S	304	9.30000	1.00E-002	
Beagle	SW	S X	365	9.80000	2.25£ -002	NAS. 1971
Beaule	SE	39	210	9.10000	1.6910000	Pickrell et al., 1971
	!					
Beaule	male	39	-	0.31000	¥	and Dittmer,
Beagle	male	39	7	0.55000	XX	and Dittmer,
Beaule	male	33	±	0.80000	N.	and Dittmer,
Readle	male	33	12	1.08000	Z.	and Dittmer, I
Beagle	male	33	28	1.30000	Z.	and Dittmer, I
Rearile	male	39	35	1.67000	X.	and Dittmer, 1
Bearin	male	39	45	2.05000	X.	and Dittmer, I
Beagle	male	39	64	2.51000	N.	and Dittmer,
Beagle	male	33	26	2.95000	X.	and Dittmer, I
Beaule	male	39	63	3.31000	XX.	and Dittmer,
Rearle	ma le	39	70	3.81000	X.	and Dittmer,]
Rearle	ma le	39	8	4.80000	X.	_
0	9 6 6 8	5	£	5.71000	Z	Altman and Dittmer, 197
al figure	2		21.	2000	2	Pue

Species	×	No.of Animals	Age (days)	(kg)	Variance	Kererence
Readle	female	31	1	0.30000	NR	Altman and Dittmer, 197
Readle	female	31	1	0.52000	æ	Altman and Dittmer, 1974
Reacte	fema le	3	=	0.77000	æ	and Olttmer,]
Bearin	female	31	2	1.02000	Z.	٦.
Beagle	female	3]	88	1.26000	*	and Dittmer,]
Bear Je	female	3]	35	1.50000	¥	Altman and Dittmer, 1974
Bearin	female	3	45	1.82000	ž	_
Reacte	female	3	64	2.24000	X.	Γ.
Bearin	female	33	26		¥	Γ.
Bearle	female	31	63	2.98000	Z.	Altman and Dittmer, 1974
Rearle	female	31	70	3.36000	¥	Altman and Dittmer, 1974
Reacte	female		8	•	~	Altman and Dittmer, 1974
Bearle	female	3	98	5.10000	¥	Altman and Oittmer, 1974
Beagle	female	31	112	5.75000	¥	Altman and Dittmer, 197
		5	-	00040	9	Alter and Ditter 167
	9 . 9 .	5 6		00017	2 2	and Dittime!,
	<u>aa e</u>	F 6	- ;	0.41000	¥ 2	dnd Dittimer,
Cocker Spaniel	ma le	<u>.</u>	- (0.029.0	¥ 4	and Dittmer,
	ma le	E :	≂;	0.8000	ž	and Dittmer, I
	ma le	E 1	97	1.04000	¥ i	
	ma le	E 1	33	00066.1	¥ C	Distant,
	99 Je	- -	2 6	00020.	K Q	and Dittmer,
	## Je	- E	6 3		£ 2	and Dittmer
	al em	- E	00	•	£ 3	and Dittmer
	al e	5 5	60 6	3.27000	£ 3	and Dittmer
	5 E	- E	2 8	•	: a	and Dittmer
	al e	5 5	5 6	93000	£ 3	and Dittmer.
	10 m	5 5	3,1	•	. Z	and Dittmer,
Cocker Spaniel	F. C.	3.	: -		×	and Dittmer,
	female	3.	_	0.41000	æ	and Dittmer, I
	female	37	=	0.62000	N.	and
	female	37	21	0.80000	X	and Dittmer, l
	female	37	88	1.04000	¥	and Dittmer, l
	female	37	35	1.35000	N.	and Dittmer, l
	female	37	~	1.74000	Z.	and Dittmer, l
	female	37	6+	2.14000	æ	and Dittmer, I
	female	37	95		Z.	and Dittmer, I
	female	37	63	2.95000	æ	and Dittmer, I
_	female	37	70	3.39000	ZZ	and Dittmer,]
	female	37	8	4.27000	~	and Dittmer, J
Cocker Spaniel	female	37	96	2.08000	~	and
		•	٠.,	0000	2	

sa sado	SCA	Animals	(days)	(kg)	anio i din	nerer ence
German Shepherd	male	22	-	0.49000	S.	Altman and Dittmer, 1974
German Shepherd	щаје	25	7	0.87000	×	Altman and Dittmer, 1974
	male	22	7	1.43000	æ	and
German Shepherd	male	22	21	2.06000	æ	Altman and Dittmer, 1974
German Shepherd	male	22	8 2	2.95000	¥	and Dittmer, 1
German Shepherd	male	22	35	3.88000	X.	and Dittmer, l
German Shepherd	male	22	42	5.00000	æ	and Dittmer, l
German Shepherd	ma le	22	64	SN	M.	and Dittmer,]
German Shepherd	male	22	26	11.50000	æ	and Dittmer, l
	male	22	63	SN	æ	and Dittmer, l
	male	25	70	16.00000	X.	and Dittmer,]
	male	25	₹	20.0000	XX	and Dittmer,]
	male	25	86	24.50000	*	and Dittmer, I
	male ,	≈:	112	28.25000	ž:	and Dittmer, I
	rema le	* ;	— r	S X	¥ 5	Altman and Ulttmer, 1974
	el puer	<u>*</u>		0,0000	¥ c	did Dittme!.
	rema le	<u>*</u>	* ?	0.83000	¥ 2	and Dittmer,
	el cena	<u>*</u>	٦, ود	00000	E 3	and Dittmer.
German Shepher a	יו פווים ו	<u>*</u>	9,7	00070.7	Ě	and Dittme!
	of end f	<u> </u>	3	3 77000	ž Z	and Dittmer
	Formalo	<u> </u>	3 9	4 52000	2	and Dittmer
-	female	: *	95	13,00000	ž	and Dittmer, 1
	female	=	63	N	¥	and Dittmer, 1
German Shepherd	female	*	70	17.00000	æ	and Dittmer, l
German Shepherd	female	=	8	20.75000	æ	and Dittmer, l
German Shepherd	female	=	98	24.00000	A.	and Dittmer, l
German Shepherd	female	*	114	27.25000	æ	Altman and Dittmer, 197
Great Dane	both	2	SN	5,78000	S	Arnold and Elvehlem, 1939
	both	~	S	, ,	S	and Elvehlem.
	both	. ~	SE		SE	and Elvehlem.
	both	~	SE	24,00000	S	and Elvehjem,
	both	~	SN	30.20000	SN	and Elvehjem,
Great Dane	both	2	SN	34.20000	SN	Arnold and Elvehjem, 1939
Great Dane	both	2	NS	39,00000	SN	and Elvehjem,
Mongrel	female	_	3650	13.50000	S	et al
Mongrel	ma le	_	1460	29.00000	SN	Amoroso et al., 1964
Mongrel	female	1	SN	15.90000	NS	Golob et al., 1977
Mongrel	female	7	N.	15.90000	N	al.
;	;	¢	4	00000	1000104	4001 1.44

Species	Sex	No. of Animals	Age (days)	We lght (kg)	Varlance	Reference
SS	SS	9 00	* -	0.49800	1.19E-002 4.62E-004	Mortola, 1983 Mortola, 1984
	-1	ĭ	-	00016 0	QN.	Altmon 1974
	male male	5 2	- ~	0.0013.0	£ 7	and Dittmer.
Shet land Sheepdog	male	. <u>.</u>	· <u>*</u>	0.58000	ž	and Dittmer.]
	- E	: 5	: ~	0.76000	¥	and Dittmer, 1
Shetidila sheepaag	- PE	5 5	38	1.04000	æ	and Dittmer, 1
	9 6 6 6	35	35	1.47000	¥	and Dittmer,]
	male ale	35	45	1.92000	¥	Ξ.
	ma Je	15	64	2.42000	¥	and Dittmer, l
	al em	15	99	2.92000	¥	_
	ma Je	25	63	3.44000	¥	and Dittmer,]
	ma le	15	0/	3.92000	ž	and Dittmer, l
	ma le	15	₩	4.96000	æ	and Dittmer, l
	ma le	15	96	5.93000	¥	and Dittmer,]
	ma Je	15	112	9.96000	¥.	and Olttmer,]
	female	±	-	0.20000	¥	and Dittmer,]
	female	*	7	0.36000	X.	and Dittmer,
	female	*	±	0.55000	¥	and Dittmer, T
Shetland Sheepdog	female	≥ :	2	0.73000	ž	and bit
	female	≠ ;	€ 3	0.97000	ž	and Dittmer,
	female	± ;	£ \$	1.2/000	¥ 9	timer,
	rema le	<u>*</u>	7.	00070.		and Dittmer
	fomale	<u> </u>	£ 5	2 44000	2	and Dittmer.
Shet land Sheepdog	female	<u> </u>	3 2		ž	and Dittmer, 1
	female	=	202	3.23000	¥	Dittmer, 1
	female	*	₩	4.04000	¥.	and Dittmer, l
	female	*	86	4.86000	¥	and Dittmer,]
	female	*	112	5.67000	¥	Altman and Dittmer, 1974
Wire Halred Fox Terrier	ma Je	12	-	0.19000	W.	_
Halred Fox	ma le	2	7	0.37000	N.	and Dittmer, l
Halred Fox	ma le	12	*	0.57000	¥	and Dittmer,]
Wire Haired Fox Terrier	male	12	12	0.77000	X :	and Dittmer, I
Wire Haired Fox Terrier	male	2	58	1.01000	≆ :	and Dittmer,
Wire Haired Fox Terrier	male	2	35	1.26000	¥	and Dittmer,
Wire Haired Fox Terrier	ma Je	ت ت	24	1.59000	¥;	and DI
Halred	ma Je	ر د	6	0.04000	ž	and Dittmer, I
Halred	ma le	7	g (00067.7	¥ i	dill bittimer,
Halred Fox	male	≂:	2 6	0.055.2	¥ \$	Dittmer, 1
Halred Fox	ma le	≂ ?	2 5	00046.7	Ě	and Dittmer,
Halred Fox	ag ie	7 8	Ė	3.73000	¥ 2	and Dittmer,
Wire Haired Fox Terrier	ma le	≂ :	96	4.45000	ž Ž	and Dittmel,

Species	Sex	No. of Animals	Age (days)	Weight (kg)	Variance	Reference	
The Haired Fox Terrier	female	23	-	0.19000	æ	Altman and Dittmer.	1974
The Hatred Fox Terrier	female	23	7	0.38000	W.	and D	1974
hort Haired Fox Terrier	fema le	23	<u>=</u>	0.56000	W.	and D	1974
The Halred Fox Terrier	female	23	12	0.74000	W.	Altman and Dittmer,	1974
The Hatred Fox Terrier	female	23	28	0.96000	A.	Altman and Dittmer,	1974
the Hatred Fox Terrier	fema le	23	35	1.20000	N.	and D	1974
the Haired Fox Terrier	female	23	45	1.48000	ar.	and D	197
The Hatred Fox Terrier	fema le	23	64	1.79000	æ	and	1974
tre Hatred Fox Terrier	fema le	23	26	2.10000	N.	and	197
tre Hatred Fox Terrier	fema le	23	63	2.37000	N.	Altman and Dittmer,	197
tre Haired Fox Terrier	fema le	23	70	2.71000	W.	and	197
The Haired Fox Terrier	fema le	23	₩	3.42000	W.	and	197
The Haired Fox Terrier	fema le	23	98	4.02000	W.	and 0	1974
Wire Haired Fox Terrier	fema le	23	112	4.59000	ž	Altman and Dittmer,	197

NS = Not specified; NR = not reported

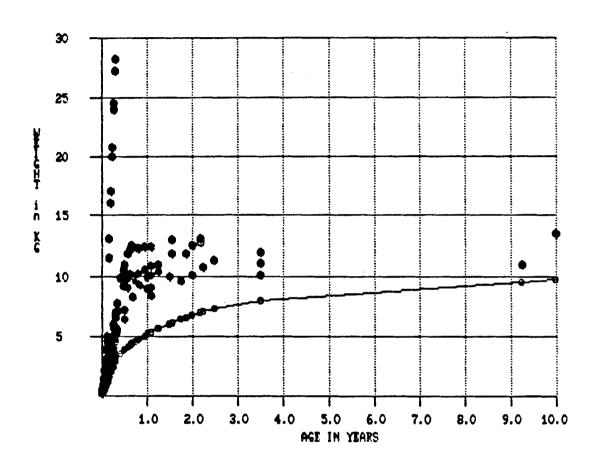


FIGURE 3-44

Growth Data on Dogs

(See Table 3-10 for data points and references)

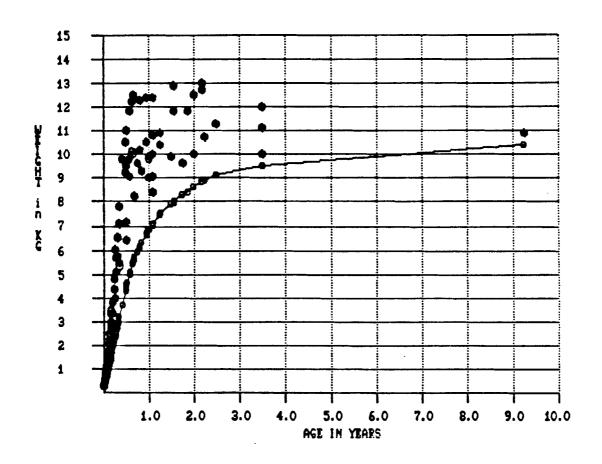


FIGURE 3-45
Growth Data on Beagle Dogs
(All data reported in Table 3-10)

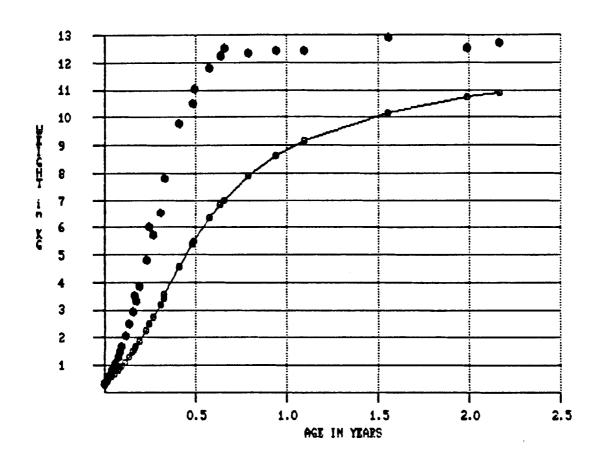
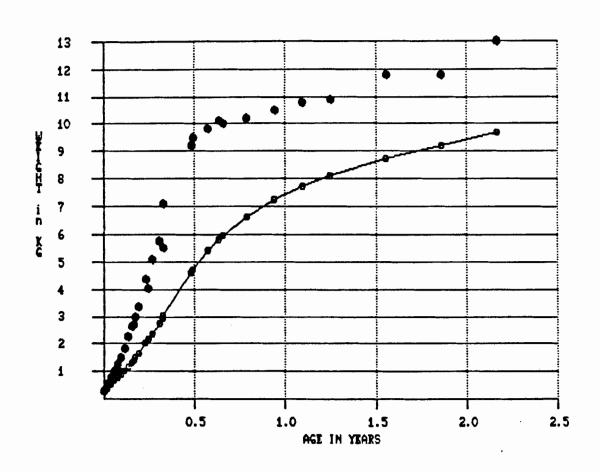



FIGURE 3-46
Recommended Growth Curve for Male Beagle Dogs

 $\label{eq:FIGURE 3-47}$ Recommended Growth Curve for Female Beagle Dogs

secondary sources, they appear to be based on different sets of data that are nonetheless remarkably consistent. As with cats and rodents, sexspecific differences in growth patterns are evident. Male beagles grow more rapidly than females, and the growth of males shows a definite plateau after ~7 months, while the growth rate of females slows, but does not plateau, at about the same time.

Growth data are not available over the 15-year recommended lifespan of the beagle. Because toxicity studies on beagles seldom encompass the lifespan, recommended subchronic and chronic body weights will be based on 90 and 730 days postweaning, as was done with cats and experimental rodents, using the recommended age for beagles at weaning of 42 days.

Using the growth curves for Figures 3-46 and 3-47, recommended subchronic body weights for male and female beagles are 2.4 and 1.97 kg, respectively, and the corresponding chronic body weights are 10.8 and 10.1 kg. For deriving recommended body weights over a greater portion of the lifespan, mature body weights of 14 kg for both male and female beagles are proposed.

3.3.3. Rabbits. The U.S. EPA has not recommended a reference body weight for rabbits. Growth and body weight data on rabbits are summarized in Table 3-11 and plotted in Figure 3-48. Other body weights reported in the literature include 3.7 kg (ARS/Sprague-Dawley, 1974), 2.0 kg (Lehman, 1959) and 2.55 kg (Boxenbaum, 1983).

Body weights for rabbits (Sanford, 1979) are somewhat lower than most other weights for rabbits of comparable ages. The weights for the 46- and 82-day-old Dutch rabbits (Arrington et al., 1974) are consistent with the growth data given by Sanford (1979), and the weights of Dutch rabbits (age not specified) (Cizek, 1961) are all well below the mature weights reported

1991A 3-143 09/02/87

TABLE 3-11

Growth and Body Weight Data on Rabbits

Strain	Sex	No.of Animals	Age (days)	Weight (kg)	Variance	Kerence
Albino+CB	NS	ιι	NS	2.80000	SN	Bruce, 1950
Callfornia	both	50	_	0.05000	SN	:
Callfornia	both	2	7	0.14000	SN	et al., l
Callfornia	both	20	=	0.22500	SN	et al., l
Callfornla	both	2	2	0.30000	SN	et al., l
Callfornia	both	20	88	0.50000	SN	et al., l
Callfornia	both	20	35	0.77000	SN.	et al., l
California	both	22	4 5	0.97500	NS	et al., l
California	both	6	~	1.10000	SN	et al., l
California	both	6	2 9	1.45000	SN	et al., l
Callfornia	both	18	2 9	1.45000	SN	et al., l
Callfornia	both	18	63	1.52500	SN	Ξ:
California	both	92	02	1,77500	SW	ھ
California	both	6	20	1.95000	SN	Gaman et al., 1970
Callfornia	both	8	11	2.00000	SW	et al
California	both	6	8	2.20000	SN	et al
					:	•
Dutch	female	۰	SZ	1.79000	SE:	٦,
Dutch	female	۰	SZ	1.89000	SE	_ `
Dutch	female	٠	SE	1.96000	S	٠,
Dutch	female	•	SE	2.07000	SN	C1zek, 1961
Dutch	female	9	SE	2.13000	SZ	C1zek, 1961
Dutch	female	2	SE	2.16500	2.835-001	_ '
Dutch	female	9	S	2.19000	SN	_ '
Dutch	female	9	S	2.28000	SZ	_
Dutch	female	9	SN		SN	_
Dutch	female	9	SN		SN	_
Dutch	female	9	SN	•	SN	_
Dutch	female	12	SN	2.57100	2.41E-001	Clzek, 1961
40	ماهي	12	Z	1 79900	7 395 -002	C1zek, 1961
	0 6 6 8	ع ي	2 2	00000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	0 (4	ع د	2 2	00016.1	2	_
District	9 6	° 2-	S	2,00200	1.735-001	_
	olem		2	000000		
District	9 6 6	ع د	2	2 16000	Z.	
		.	2 2	2 19000	2	_
	o Com	.	2 2	2 2000	2 2	_
	- P	٠.	2 2	00007.7	2 2	C1-04 1961
Dutch	= = = = = = = = = = = = = = = = = = =	۰ ء	2 2	00022.7	2 2	
Dutch	ag le	٥,	2 5	2.23000	? E	
Dutch	ma le	۰۵	2	2.23000	2 :	C1Zek, 1901
7.4.5	0	•	_	2 27000		

1991A 3-144 09/02/87

Strain	Sex	Animals	(days)	(kg)		
Dutch Dutch	both both	24	46 82	0.88100 1.40000	S S S	Arrington et al., 1974 Arrington et al., 1974
Dutch	NS	22	SM	2.10000	SN	Bruce, 1950
Himalayan	SM	16	SN	1.90000	SW	Bruce, 1950
Lop Eared	SN	10	SN	3.50000	SW	Bruce, 1950
		Ş	2	00007	1 000	
New Zealand White	remale female	2	SS	2.80000	4.00E-002	: :
Zealand	female	20	SE	3.30000	4.001-002	et al., l
Zealand	female	0 (SE	•	9.001-002	et al
New Zealand White	female	01	SM	3.80000	9.00t-002	Barbee et al., 1984
Now Zealand White	male	00	SN	3.20000	4.00E-002	:
Zealand Whit	male	20	SE	3.50000	4.00E-002	et al.,
Zealand	male	01	NS	3.60000	4.00E-002	et al.,
Zealand	male	9	NS	3.90000	9.00E-002	et al.,
	male	00	NS	2.90000	1.006 -002	Barbee et al., 1984
Mar. 2011and Uhite	d d	> 0.75	_	0.06500	~	Altman and Dittmer, 1974
Zealand Whit	both	Augu	, ,		¥	and Dittmer,]
Zealand	both	many	*	0.26000	¥	and Dittmer,]
Zealand	both	many	12	0.35700	æ	and Dittmer,]
Zea land	both	many	88	0.58300	¥:	and Dittmer,]
Zealand	both	many	35	0.91600	*	and Dittmer, I
Zealand	poth	many	245	1.25000	ž	
Zealand	both	many	5 3	00095.1	¥ 3	
New Zealand White	Dotn	many	90	1.13000	Ě	מוות מורנוווכו
New Zealand White	both	6	86	3.00000	4.00E-002	Mauderly et al., 1979
New Zealand White	both	13	7	0.10200	2.56E-006	a].,
Zealand	both	12	=	0.17800	9.00E -006	et al
Zealand	both	12	12	0.29900	2.60E-005	Spencer et al., 1985
Now Zoaland White	al em	S	99	1.95000	æ	Altman and Dittmer, 1974
Zea land	al e	S	02	2.32000	æ	and Dittmer,]
Zealand	ma le	SN	84	2.67000	N.	and Dittmer,]
	male	NS	86	2.98000	X	Altman and Dittmer, 1974
Mey Zealand White	na le	SE	112	3.13000	×	and Dittmer,
Zealand	ma le	SM	136	3.30000	ž	and Dittmer, 197
Zealand	ma le	S	150	3.45000	~ Z	Altman and Dittmer, 1974

Strain	Sex	No. of Animals	Age (days)	Weight (kg)	Variance	Reference
!	ma le	SN	164	3.53000	Z	and Dittmer.
Zealand White	male	SN	178	3.61000	ž	and Dittmer, 197
Zealand White	male	NS	192	3.73000	ž	Altman and Dittmer, 1974
Zealand White	female	SW	56	2.04000	¥.	Altman and Dittmer, 1974
	female	S	02	2.37000	æ	Altman and Dittmer, 1974
	fema le	S	84	•	æ	and
	female	S	86	•	Z.	and Dittmer, l
	female	S	312	3.26000	N.	and Oittmer, 197
	fema le	S X	136	3.49000	2	and Dittmer, 1
	fema le	ž ž	250		22	and
	female	S	164		22	and Dittmer,]
	Female	S	178	4.00000	~	and
	fema le	NS S	192		N.	and Dittmer, 197
	-	č	S	טפטטט ר	2	Tompleton 1968
Zea land	ma le	C Y	76	00000 6	2 3	
zea land	a e	67	ני	•	2 2	
Zealand	age Te	\$2	2 6	•	2 2	
Zealand	ma le	\$2	/8	•	SE 3	
Zealand	ma Je	52	[0]	•	SE	_ ′
Zealand	ma Je	52	115		SE	
Zealand	ma Je	25	129	•	S C	
Zea land	ma Je	52	143	3.41000	S .	
Zealand	ma le	52	/5/	•	2:	- ′
Zea land	ma Je	25	ונו	3.59000	SN.	lempleton, 1968
Zosland	female	13	52	2.04000	NS	Templeton, 1968
puel coz	fema le	2 5	5		SZ	
Zolland	female	2 =	52	2.41000	SZ	_
Zoaland Zoaland	Fema le	2 5	87		SZ	
חווםו משל ביטל	Fomalo		<u></u>		SW	
Zea Idillo Zea Idillo	foma lo	2 =	115	•	SZ	_
חוופו פשל	fomalo	2 5	129	3.59000	SZ	
Zea Idiilo	fomalo	2 =	143		S Z	
Zealand Zealand	fom 1 o	<u> </u>	157	•	2	
Zeellanu	formal of	2 5		•	2	
Zealand	female	<u>13</u>	186		SW	
	hoth	S	56	0.96500	SE	Sanford, 1979
	1 40 4	2	0.2	•		
	4 to 4	2 %	84	1.62000	SZ	
		2 2	5 6	00000	2	•
	both	S	21.5	2.10000	2 2	Sanroi U, 1979
	both	2	92	•	2 2	•
	both	SN	041		2	Sanroru, 1979
			• • • • • • • • • • • • • • • • • • • •	00001	•	

Strain	Sex	No. of Animals	Age (days)	Weight (kg)	Varlance	Reference
SNS SNS SNS SNS SNS SNS SNS SNS SNS SNS	SES	SN NS NS NS	42 53 63	1.00000 1.50000 2.00000	S S S S	Davidson and Spreadbury, 1975 Davidson and Spreadbury, 1975 Davidson and Spreadbury, 1975
NS	S	7	נו	0.18300	1.76E-003	Fisher and Mortola, 1981
S S S S	X X X	SSS	SSS	2.50000 2.50000 2.50000	SSS	Kennaway, 1943 Kennaway, 1943 Kennaway, 1943
NS	N.S	NS	S	2.40000	SN	Lane-Peter et al., 1967
NS SN	SS	6 4	4 2	0.10200	1.37E-000 3.20E-004	Mortola, 1983 Mortola, 1984
Several	NS	69	S	2.40000	SN	Bruce, 1950
DIIN DIIN	female female female	e e 04	S S -	1.30000 1.60000 0.03500	2.50E-003 2.50E-003 1.21E-006	Boyd, 1985 Boyd, 1985 Boyd, 1985
PLIM	male male male	2 2 55	SSC	1.55000 1.70000 0.03700	6.25E-004 2.50E-003 6.40E-007	Boyd, 1985 Boyd, 1985 Boyd, 1985

NS = Not specified; NR = not reported

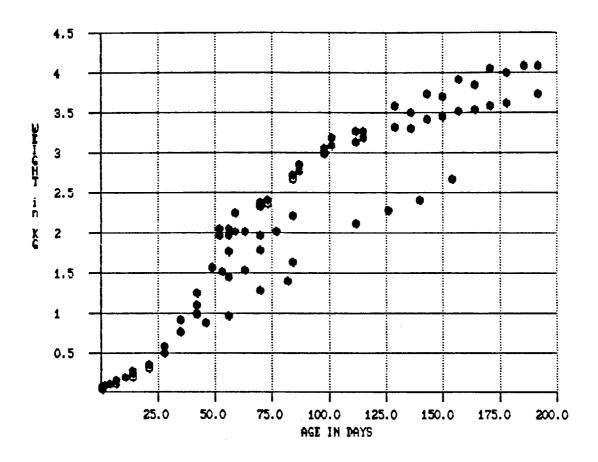
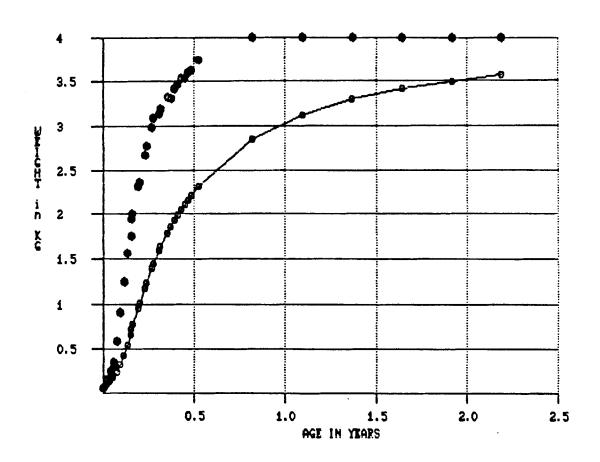


FIGURE 3-48

Growth Data on Rabbits


(See Table 3-11 for points and references)

for New Zealand White rabbits. This suggests that the growth data on New Zealand White rabbits may not be appropriate for estimating the growth of Dutch rabbits. Based on the report by Gaman et al. (1970), California rabbits appear to be somewhat lighter than New Zealand White rabbits. Since the New Zealand White rabbit is by far the most commonly used strain of rabbit in toxicity studies, recommended body weights will be proposed only for this strain.

Recommended growth curves for male and female New Zealand White rabbits are given in Figures 3-49 and 3-50, respectively. These figures both use the early growth data reported by Altman and Dittmer (1974) and Spencer et al. (1985) for males and females combined, as well as the sex-specific growth data reported by Altman and Dittmer (1974) and Templeton (1968) for older animals. The sex-specific growth data reported by Altman and Dittmer (1974) are attributed to unpublished data from Templeton (1968), are similar to the data reported directly by Templeton (1968), and may be for the same group of animals.

As with cats and dogs, growth data are not available over the reference lifespan of 6 years for rabbits. Since toxicity studies are rarely conducted over the lifespan of rabbits, subchronic and chronic body weights will be recommended for periods of 90 days and 730 days postweaning, respectively, using a recommended age at weaning of 56 days. The growth curves are extended by assuming mature adult weights of 4.0 and 4.2 kg for males and females, respectively. Using these assumptions and the growth curve given in Figure 3-49, the recommended chronic and subchronic body weights for the male New Zealand rabbit are 2.86 and 3.76 kg, respectively. The corresponding values for female New Zealand White rabbits are 3.1 and 3.93 kg, based on the same assumptions and the growth curve given in Figure 3-50.

1991A 3-149 09/02/87

 $\label{eq:FIGURE 3-49}$ Recommended Growth Curve for Male New Zealand White Rabbits

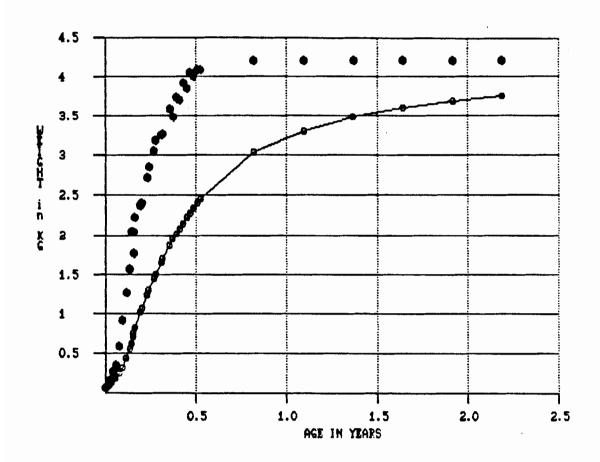


FIGURE 3-50

Recommended Growth Curve for Female New Zealand White Rabbits

3.4. LIVESTOCK

Body and growth data on livestock are summarized in Table 3-12. Body weight data on most strains of livestock are provided primarily to facilitate the demonstration of allometric relationships discussed in subsequent sections of this report. Nonetheless, information on the body weights and consumption patterns of livestock may be useful in risk assessments when an attempt is made to estimate doses in cases of accidental exposure of livestock to toxicants.

- 3.4.1. Cattle. Growth data on all strains of cattle presented in Table 3-12 are plotted in Figure 3-51. Hereford cattle are clear outliers that reach a mature body weight of ~1200 kg, and the data on this breed are presented separately in Figure 3-52. Other breeds of cattle on which data are available reach mature body weights of ~400-550 kg. Data on these strains are summarized in Figure 3-53. Because cattle are not used in toxicity studies, recommended body weights other than mature body weights are not derived.
- 3.4.2. Chickens. Growth data on all strains of chickens summarized in Table 3-12 are plotted in Figure 3-54. The variability in the body weights and growth rates of chickens appears to be greater than in most other species of animals included in this report. The smallest strains are crosses of "desi" and White Leghorn strains reported in the Indian literature (Sah et al., 1984) and an unspecified strain of broiler chicken reported in the Eastern European literature (Knizetove et al., 1985). The largest and fastest growing stain on which data are available is the Ross broiler (Prescott et al., 1985).

1991A 3-152 09/02/87

TABLE 3-12

Growth and Body Weight Data on Livestock

			Animals	(days)	(kg)		
Cattle Cattle	Guernsey, fg Guernsey, fg	female female		1460 2920	460.00000	S S S	Amoroso et al., 1964 Amoroso et al., 1964
Cattle	Jersey	female	-	730	340.00000	NS	Amoroso et al., 1964
Ca++1e	Coveral	9	A CP	112	94.00000	SE	Taylor et al., 1986
Cattle	Several	ma je	A LIPEU	140	111,00000	SE	et al.,
Cattle	Several	male	many	158	133.00000	SN	et al.
Cattle	Several	male	many	186	159.00000	SM	et al., l
Cattle	Several	male	many	224	184.00000	SN	et al., l
Cattle	Several	male	many	252	210.00000	SN	et al.,
Cattle	Several	ma le	many	276	256.00000	SI	et al.,
Cattle	Several	ma le	many	280	233.00000	SE	et al., l
Cattle	Several	ma le	many	336	278.00000	SE	et a].,
Cattle	Several	ma le	many	364	299.00000	SE	et al.,
Cattle	Several	ma le	many	392	319.00000	SE	et al.,
Cattle	Several	male	many	420	338.00000	S	et al.,
Cattle	Several	ma le	many	448	358.00000	S	et al.,
Cattle	Several	male	many	476	376.00000	SN	Taylor et al., 1986
4114	Avrchire	female	SN	300	200,00000	NS	Campbell and Lasley, 197
Cattle	Avrohite	female	SE	009	300,00000	SN	and Lasley, 1
Cattle	Avrshire	fema le	SK	006	360.00000	SN	and
Cattle	Avrshire	female	SN	1200	400.00000	SE	and Lasley, l
Cattle	Avrshire	female	NS	1500	425.00000	NS	and Lasley, 1
Cattle	Ayrshire	female	SH	1800	440.00000	SN	l and Lasley, l
Cattle	Ayrshire	female	SN.	2100	450.00000	SN	Jand
Cattle	Ayrshire	female	SN.	3600	455.00000	SE	Campbell and Lasley, 197
Cattle	Hereford	female	SN.	360	780.00000	SN	and Lasley, l
Cattle	Hereford	female	SE	720	860.00000	SE	and Lasley, J
Cattle	Hereford	female	SE	1080	960.00000	SM	and Lasley, l
Cattle	Hereford	female	SE	1440	1030.00000	SM	l and Lasley, l
Cattle	Hereford	female	SE	1800	1100.00000	SM	l and Lasley, 197
Cattle	Hereford	female	SE	2160	1140.00000	SN	and Lasley, J
Cattle	Hereford	female	SM	2520	1150.00000	SE	and Lasley, I
Cattle	Hereford	female	SM	2880	1160.00000	SK	and Lasley, I
Cattle	Hereford	female	SM	3240	1155.00000	S	and Lasley, I
Cattle	Hereford	female	SE	3600	1140.00000	SE	Campbell and Lasley, 1975

Cattle Cattle Cattle Cattle Cattle Cattle Cattle	un le te te				· ·		
Cattle Cattle Cattle Cattle Cattle Cattle Cattle	Malatata						
Cattle Cattle Cattle Cattle Cattle Cattle		Fema le	SN	300	225.00000	SE	l and Lasley, l
Cattle Cattle Cattle Cattle Cattle	Holstein	female	SE	9	355.00000	N.	_
Cattle Cattle Cattle Cattle Cattle	Holstein	fema le	SE	900	425.00000	NS	_
Cattle Cattle Cattle Cattle	Holstein	female	SN	1200	475.00000	NS	٦.
Cattle Cattle Cattle Cattle	Holstein	fema le	SN	1500	505,00000	SN	_
Cattle Cattle Cattle	Holstein	fema le	SE	1800	525.00000	SN	Campbell and Lasley, 1975
Cattle Cattle	Holstein	fema le	SE	2100	535,00000	SE	1 and Lasley
Cattle	Holstein	fema le	×	2700	540.00000	SZ	l and Lasley, l
21413	Holstein	fema le	SE	3600	550,00000	SN	and Lasley,
21117							
rattle	Jersey	fema le	SE	300	200.00000	SE	and
Cattle	Jersey	female	SE	009	280.00000	SE	l and Lasley, l
Cattle	Jersey	fema le	SE	006	340.00000	¥	l and Lasley, l
Cattle	Jersey	fema le	SN	1200	370,00000	SE	l and Lasley, l
Cattle	Jersey	fema le	SN	1500	390.00000	SE	l and Lasley, l
Cattle	Jersev	female	SN	1800	415.00000	SN	l and Lasley, l
Cattle	Jersey	female	SE	3600	420.00000	SN	Campbell and Lasley, 1975
:	\$	ş	ć	•	00000	ž	7
Cattle	SE	SE S	₹ 8	• ;	44.20000	2 2	יין פון ייין פון ייין פון פון פון פון פון פון פון פון פון פו
	SN	SE	₹8	= 5	44.43000	2 2	
	SN	SE	₹.	<u> </u>	44.11000	2 3	
	SE	SE	€ 8	C :	00007.74	2 2	
Cattle	N.	£	2	ร	00000.30	Ĉ.	• • • • • • • • • • • • • • • • • • • •
Chloken	Brofler	Female	33	120	0.45000	SN	Knizetova et al., 1985
Chicken	Broller	fema le	32	180		SE	et al.,
Chicken	Broller	fema le	32	240	1.10000	SE	et al., l
Chicken	Broller	fema le	35	360	2.15000	N	Ξ:
Chicken	Broller	female	35	480	2.95000	NS	et al., l
Chicken	Broiler	fema le	32	009	3.50000	SE	et al., l
Chlcken	Broller	fema le	32	099	3.65000	SN	et al., l
Chicken	Broiler	fema le	32	720	3.75000	SE	et al., l
Chicken	Broller	fema le	35	780	3.80000	SE	et al.,
Chicken	Broiler	female	32	840	3.80000	SN	Knizetova et al., 1985
Chicken	Broiler	el en	=	120	0.45000	NS	:
Chicken	Broller	Ed le	=	180		SN	ا. ا
Chicken	Brotler	a	=	240	1.20000	NS	Ξ:
Chicken	Broller	ma Je	=	360	2.60000	N	:
Chicken	Broller	ma Je	=	480	₹.00000	SN	Knizetova et al., 1985
Chicken	Brotler	ma Je	=	099	₹.80000	SN.	Knizetova et al., 1985
Chicken	Broller	19	=	720	5.05000	N	Knizetova et al., 1985
Chicken	Broller	ma Je	=	780	5.20000	N.	et al.,
Chicken	Brotler	9 6	=	840	5.25000	SN	Knizetova et al., 1985

Sheries	Strain	× Second	No. of Animals	Age (days)	(kg)	Agi lance	אפן פן פוורפ	
Phicken	Cornish	Female	SE		0.03200	SZ	Altman and Dittmer.	1974
rii ichen	Cornich	Fomalo	¥	_		V 2	Altman and Dittmer.	1974
L K C II	4	fom 10	2	1	0 10500	2	and	1974
Chicken		formal c	2	ב ב	00621.0	2	Due Due	197
Cnicken	COTHISH	יבוווסובי	2 2	- 5	0031.0	2 2		1074
Chicken	Cornish	remale	2 2	9 2	0.000	2 4		
Chicken	Cornish	rema le	2	£ ;	SE:	2 :		
Chicken	Cornish	Female	SZ.	42	SE	SE:	and Dit	5
Chicken	Cornish	Female	SE	6	SZ	SN	and Dit	197
Chicken	Cornish	Female	SM	26	0.63600	SE	and Di	1974
Chicken	Cornish	Female	SN	63	SN	SE	and Dit	
Chicken	Cornish	Female	SE	20	NS	SN	and Ditt	
Chicken	Cornish	Female	SE	₹	1.04500	N.	and	197
Chicken	Cornish	female	SN	96	SE	SN	and	1974
Chicken	Cornish	Female	SE	112	1.31800	NS	and	1974
Chicken	Cornish	Female	SM	126	SN	N.S	Altman and Dittmer,	197
Chicken	Cornish	Female	SN	140	1.54500	NS	Altman and Dittmer,	197
40404	datara	o [cm	7	_	0.03200	SX	Altman and Dittmer.	197
. ב		2 6 6 6	2	٠, ١	•	2	Pue	1974
Lnicken	COLUISA	יונים יונים	2 3		00000	2 3	2	1974
Chicken	Cornish	ag le	2 2	<u>*</u> ;	0.10300	2 2		10,
Chicken	Cornish	ma le	SE	7 8	0.18200	2 2		
Chicken	Cornish	ma le	2	₹	0.26800	2 :		17/4
Chicken	Cornish	ma le	SE:	£ :	SE:	2:	and	2 5
Chicken	Cornish	ma le	SE	~	SE	S	and.	2
Chicken	Cornish	ma le	SE	6	SX	S	and	1974
Chicken	Cornish	ma le	SZ	26	0.72700	S	and	5
Chicken	Cornish	ma le	SZ	63	SE	SE	and	1974
Chicken	Cornish	ma le	SE	0/	ZZ.	SE	and	2 5
Chicken	Cornish	ma Je	SH	8	1.2/200	SE:	and	17.
Chicken	Cornish	male	SN.	96	SE	SE	and	19/4
Chicken	Cornish	ma le	SW	211	1.72700	S	and	19/4
Chicken	Cornish	ma le	NS	126	SN	SE	and	1974
Chicken	Cornish	male	SN	140	2.09100	SN	Altman and Dittmer.	197
Chicken	1/1+ C+/-	hoth	135	4 2	0.55590	SN	Fox and Smyth, 1985	
Chicken	173. 6.7	hoth	135	ي د		S		
Chicken	1/14 0/0	t to	123	2		S	and Smyth.	
Chicken	1/1+ 5/5	+ of	123	. 4	0.80490	Ş	and Smyth.]	
Chicken	14/14 (4/2	to the	123	2		SZ	and	
Chicken	14/14 04/	404	2.5	2		S	and Smyth.	
Chicken	3/3 4/44	4	נכנ	2		S	and Smyth.	
. נצבוו	7/7 41/41			3	0.000	2	and Canth	
		4	-	5		<u> </u>		_

		5	Animals	(days)	(kg)		
1040	Now Userschire	female	2	_	00360 0	S N	Altman and Dittmer, 197
LENGI		formal o	2	. ~	•		and Dittmer.
Ln Icken Chloba			2 2	11	•	S	and Dittmer.
ch icken		formale	2	: 5	0.25000	<i>y</i>	and Dittmer.
Chicken			2 3	- 20	00053.0	2	and Dittmer
Chicken		remale	? Z	97. 07	•	2 2	and Dittmer
Chicken		remale	۲ ع ع	? ?	•	2 4	and Dittmer
Chicken		remale	2 2	74	•	2 2	and Dittmer
Chicken		remale	2 2	4.3	•	2 3	and Dittmer
Chicken		remale	2 2	0.5	•	2 2	and Dittmer,
Chicken		rema le	2 2	20 6	00/01	2 3	and Dittmer
Chicken		rema le	2 4	2 3	00497.1	2 3	and Dittmer,
Chicken		rema le	€ :	*	1.55100	2 4	and Dittmer,
Chicken	New Hampshire	fema le	SE	86		2 9	and Dittmer,
Chicken		fema le	SE	112	•	<u>S</u>	and Dittmer,
Chicken		female	SZ	126	2.25400	SE	and Dittmer, I
Chicken	New Hampshire	female	SN.	140	2.30900	SN	Altman and Dittmer, 197
Chicken	Now Hammehire	9.10	S	_	0.04100	SN	Γ.
Chicken		-	ž	_		SE	Altman and Dittmer, 1974
Chicken		4	×	*		SE	and Dittmer,]
Chicken		ma Je	SZ	2	0.27200	SN	and Dittmer, l
Chicken		ma le	SE	28	0.40400	SE	and Dittmer, l
Chicken		male	N.	35	0.56300	SM	and Dittmer,]
Chicken		male	NS	45	0.73500	NS	and Dittmer,]
Chicken		ma Je	NS	6†	0.93400	SE	and Dittmer, I
Chicken		ma le	SZ	26	1.15200	S E	and Dittmer, I
Chicken		ma le	SZ	63	1.32500	SE :	and Dittmer, I
Chicken	New Hampshire	ma le	SN	70	1.62800	SE	and Dittmer, I
Chicken	New Hampshire	ma le	SM	8	•	SE	and Dittmer, I
Chicken	New Hampshire	ma le	SN.	86	•	SE	and Dittmer, I
Chicken		ma le	NS	112		SN	and Dittmer, I
Chicken		male	SN	126	•	SN	and Dittmer,]
Chicken		ma le	SN	140	3.37500	S	Altman and Dittmer, 197
1	a Chanda	, i	(r	-	0 04400	S	Prescott et al., 1985
Ln Icken		ם כנים	, .	- ,-	•	<u> </u>	Pt al.
Chicken		91 PHI			0.04400	2 2	Pt al.
Cn Icken		2 C) [0.13400	2	pt al.
Chicken		al le	o c	<u>*</u>	0.334.0	2 2	pt 23
Chicken			n (- 60	טנטיין ר	2 2	, t
Chicken		al Pu	o •	07	00661.1	2	[[[]
Chicken		ag 16	~ •	c (0066.1	2	
Chicken		ma le	(74	0.0877.	2 2	ר פויי
Chicken		ma le		~	2.33400	S ()	יין קרולין. קיין היין היין היין היין היין היין היין
Chicken	Ross brotler	ma le	က	63	3.25400	SE	Prescott et al., 1965

Chicken Ross broller Chicken Ross broller Chicken Ross broller Chicken Ross broller Chicken Several Chicken White Leghor	Ross broller Ross broller Ross broller Ross broller Several Several Several Several Several Several Mhite Leghorn Mhite Leghorn Mhite Leghorn Mhite Leghorn	male male male male male female female female male male male male female	6666 44 88	91 105 119 140 161 1		SE	Prescott et al., 1985
	ooller ooller ooller ooller eghorn eghorn	male male male female female female female male male male female	2 44 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	105 119 140 161 1 28	5.46000	:	
	oller oller oller eghorn eghorn	male male female female female male male male female female	1944 233 1944 233	119 140 161 1 28 84	5.75800	SN.	:
	eghorn eghorn	male male female female female male male male female female	.c. 4488	140 161 1 28 84		SN	a]:
	eghorn eghorn eghorn	male female female female male male male female female	. 44 88	161 L 28 84	6.49000	SN	a].
	eghorn eghorn eghorn	female female female male male male male female female	44 88	28 84	•	NS	et al
	eghorn eghorn eghorn	remale female female male male male female female	1 2 8 8	28 84		900 300 4	1
	eghorn eghorn eghorn	remale female male male male male female female	\$ # #	8 8	0.02/10	4.00E-008	
	eghorn eghorn eghorn	female female male male male female female	8 B	8	0.0/510	2.30t -005	et d
	eghorn eghorn eghorn	female male male male female female	18		•	3.42t-004	et al.,
	eghorn eghorn eghorn	male male male male female female		140	0.65720	2.18E-003	Sah et al., 1984
	eghorn eghorn eghorn	male male male female female	;	•		300 100 •	
	eghorn eghorn eghorn	male male male female female	36	- ;	0.02300	4 . ZUE -UU6	et al.,
	eghorn eghorn eghorn eghorn	male male female female female	36	28	•	2.07E-005	et al.,
	eghorn eghorn eghorn eghorn	male female female female	27	3	•	1.08E-003	et al., l
	eghorn eghorn eghorn	fennale fennale fennale	9 L	140	0.74480	2.72E -004	Sah et al., 1984
	eghorn eghorn	female female	7	_	0.03600	S	Altman and Dittmer, 19
	eghorn eghorn	female	2 2	- ^-	•	2	and Dittmer
Man te	eghorn	remale	2 2	- :	•	2 2	and Distance
En te	eghorn		£:	₹ ?	•	2 2	מוות מוורווובויי
4	a choo	female	S	12	•	2	משם הוו
	Legilorii	female	SE	28	0.27200	SE	and Ulttmer, I
Chicken White L	Leghorn	female	SE	35	~.	SE	and Ultimer,
Chicken White L	Leghorn	female	SE	45	0.43600	SE	and Ulttmer,
Chicken White L	Leghorn	female	SN.	6	S.	S	and Ulttmer, I
Chicken White L	Leghorn	female	SE	26	œ.	S	and Dittmer, I
Chicken White L	Leghorn	female	SM	63	•	SN	and Dittmer, I
White	Leghorn	female	SN.	70	0.77600	SN	and Dittmer, l
White	Leghorn	female	SN.	8	0.93400	N.S.	and Dittmer, l
4	leahorn	female	SE	86	1,10700	NS	Altman and Dittmer, 197
	lechorn	formal p	S	112	1.27000	<i>S</i> ≥	Altman and Dittmer, 19
1	Loghorn	fema le	S	126	1.40200	2	
4	l eghorn	fema le	S	140	1.55100	SN	Dittmer, 1
			•	•			
Chicken White L	Leahorn	ma le	N	-	0.03600	SN	and Dittmer, 1
4	Leahorn	ma le	SN	7	0.05900	N.S	Altman and Dittmer, 1974
4	Leahorn	al em	SN	=	0.12300	N.S	Altman and Dittmer, 1974
Shite and a	Leahorn	ma je	SN	73	0.19100	N.S.	Altman and Dittmer, 1974
4	l enhorn	ا الم	SE	28	~	SN	and Dittmer, 1
1	l enhorn	ما تقا	SE	35	0.34500	NS	and Dittmer, 1
-	leathorn	ما ها	S	42	•	SN	Dittmer, 1
=======================================	l echora	عا ت	S	5	0.60300	SE	and Dittmer, 1
111111111111111111111111111111111111111	egilor ii	101	2 2	. 4	•	V	and Dittmor
White	Legnorn	a Pe	2 2	0.5	•	2 2	and Dittmer
	Leghorn	ma le	£	6	0.8/200	2 5	מוות מונוווובויי
Chicken White L	Leghorn	ma Je	SE	20	•	N.S.	and Dittmer, I
4147	Lechorn	ما دھ	SN	84	1,24300	SN	Altman and Dittmer, 1974

Species	Strain	Sex	No. of Animals	Age (days)	Weight (kg)	Varlance	Reference
Chicken Chicken Chicken Chicken	White Leghorn White Leghorn White Leghorn	male male male male	S S S S	98 112 126 140	8888	& & & & &	Altman and Dittmer, 1974 Altman and Dittmer, 1974 Altman and Dittmer, 1974 Altman and Dittmer, 1974
Chicken Chicken Chicken	White Leghorn White Leghorn White Leghorn	\$\$\$\$	₹ 4 ∞2 '	28 28 28 28 28	0.18300 0.20000 0.32000 1.53200	3.24f-004 7.29f-004 2.56f-004 9.42f-002	Buss, Buss, Buss,
Donkeys Goats	NS Several	female	- 6 ,	1095	52.50000	ns 1.41E0001	Matkins et al., 1973
Horses Horses Horses Horses	Equus caballus Equus caballus Equus caballus Equus caballus	male male male		2190 2920 4380 5475	410.00000 360.00000 510.00000 600.00000		a) a) a)
Horses Mules	≅ ≅	M.S male	<u>s</u> -	1971	481.00000	<u> </u>	NAS, 1971 Amoroso et al., 1964
,	Cross-bred Cross-bred Cross-bred Cross-bred	both both both	30 30 30	70 126 154 175	30.00000 74.00000 99.00000 118.00000	222 2	Pond et al., 1985 Pond et al., 1985 Pond et al., 1985 Pond et al., 1985
	Duroc-Jersey Duroc-Jersey Duroc-Jersey Duroc-Jersey Duroc-Jersey Duroc-Jersey	female female female female female		300 600 900 1200 1800 2400	95.00000 140.00000 165.00000 180.00000 195.00000 198.00000	& & & & & & & & & & & & & & & & & & &	Campbell and Lasley, 1975 Campbell and Lasley, 1975
	X X X X X	female female female female		140 280 420 560	2.50000 65.00000 150.00000 180.00000	2222 2222 2222 2222 2222 2222 2222 2222 2222	Conalty, 1967 Conalty, 1967 Conalty, 1967 Conalty, 1967 Conalty, 1967

09/02/87

Spectes	Strain	Sex	No. of Animals	Age (days)	Welght (kg)	Varlance	Reference
Plgs Plgs	S S S S	SN	8 25	ן •	1.18000 30.00000	1.37E-001 1.39E0002	Clement et al., 1986 Clement et al., 1986
Pigs Pigs	S S	SS	m m	2	1.04700	4.23E-003 9.42E-002	Mortola, 1983 Mortola, 1984
Pigs	Sus scrofa	female	-	183	17.00000	SW	Amoroso et al., 1964
Plgs Plgs	White cross White cross	SES	នភភ	23 28	4.85000 5.34000 5.49000	SSS	Brooks et al., 1984 Brooks et al., 1984 Brooks et al., 1984
2019 2019 2019 2019 2019 2019	White cross White cross White cross White cross White cross		នេតនគន	44588888 444888888888888888888888888888	6.1500 7.1500 7.99000 9.77000		etaletalet
Pigs Pigs	White cross	SS	:55	42	13.60000	SSS	
Sheep Sheep Sheep	SSS	SSS	SSS	grown grown Weaned	31.50000 45.00000 63.00000	5.06E0000 2.03E0001 2.03E0001	Lane-Peter et al., 1967 Lane-Peter et al., 1967 Lane-Peter et al., 1967
Sheep	Ovis aries	female	-	730	52.00000	SN	Amoroso et al., 1964

NS = Not specified

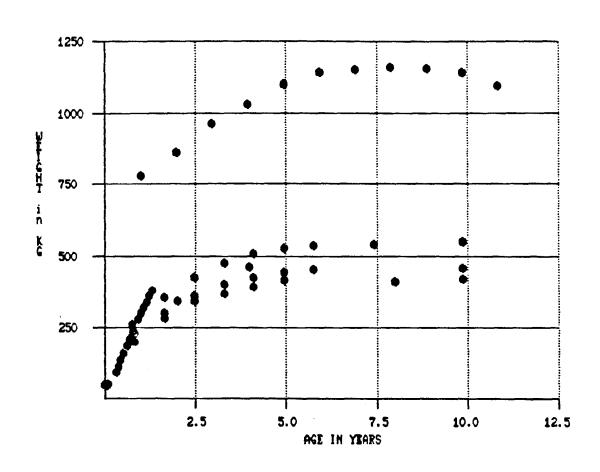


FIGURE 3-51

Growth Data on Cattle

(See Table 3-11 for points and references)

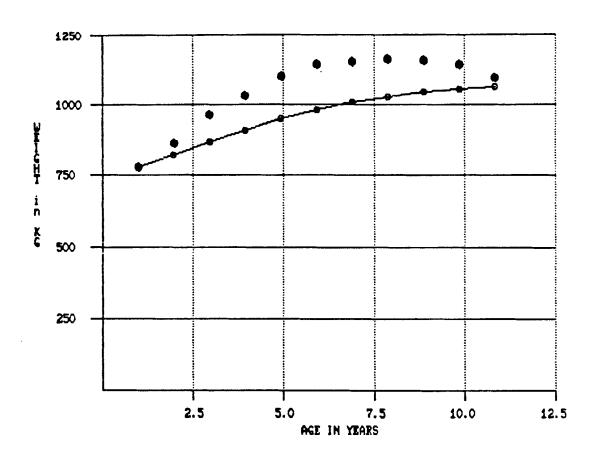


FIGURE 3-52

Growth Curve on Female Hereford Cattle

(See Table 3-12 for points and references)

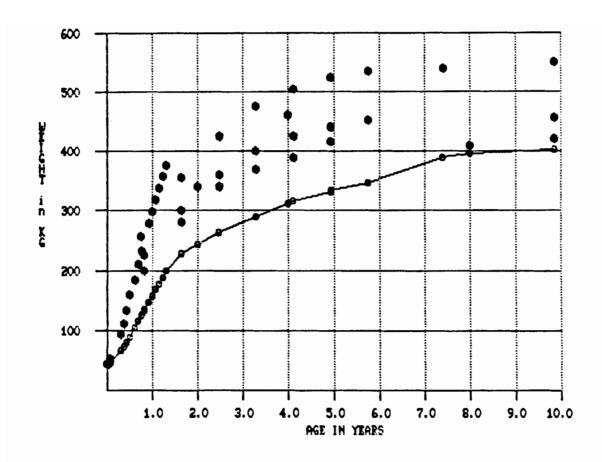


FIGURE 3-53

Growth Curve on Cattle, Excluding Female Hereford Cattle

(See Table 3-12 for points and references)

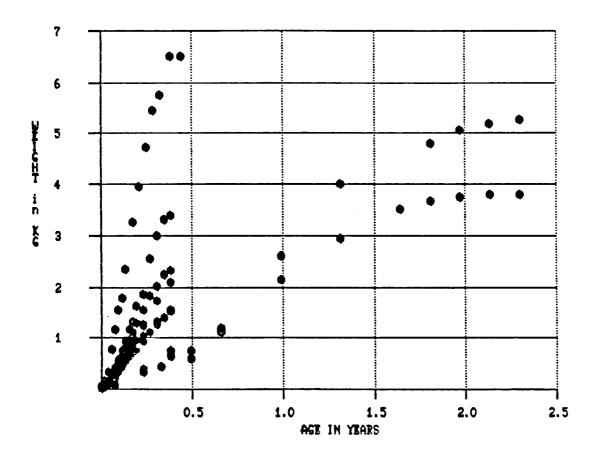


FIGURE 3-54

Growth Data on Chickens

(See Table 3-12 for points and references)

Chickens, particularly the White Leghorn, have been used as animal models for studying peripheral neurotoxins. Growth data on male and female White Leghorns are presented in Figures 3-55 and 3-56. Because bioassays using chickens are not well standardized, no attempt will be made to recommend subchronic or chronic body weights. Depending on the nature of the experiment, the data in Table 3-12 and Figures 3-55 or 3-56 could be used to estimate the most appropriate body weight.

3.4.3. Pigs. All growth data from Table 3-12 on pigs are plotted in Figure 3-57. The growth data reported by Pond et al. (1985) and Conalty (1967), plotted in Figure 3-58, are consistent with each other but show substantially more rapid growth than other reports on the domestic pig (Susdomesticus). Data from these latter reports are plotted in Figure 3-59. The data reported by Amoroso et al. (1964) are for the miniature pig, Susscrofa, and are not likely to be typical of swine used as livestock. Recommended mature body weights for livestock swine (Susdomesticus) are 200-250 kg. Based on Figures 3-58 and 3-59, other body weight estimates for swine can be derived as needed.

3.5. WILDLIFE

Growth data on wildlife are summarized in Table 3-13. As discussed by Moody et al. (1985) for ferrets and Zatzman et al. (1984) for marmots, many species of wildlife mammals show substantial (30-40%) seasonal variation in body weight. Such seasonal variations are also likely to be seen in livestock and laboratory animals, but are less well documented.

Figures 3-60 and 3-61 summarize the body weights of male and female mink from two control groups used by Aulerich et al. (1979) in a study on the toxicity of PCBs, a compound to which mink are particularly susceptible.

1991A 3-164 09/02/87

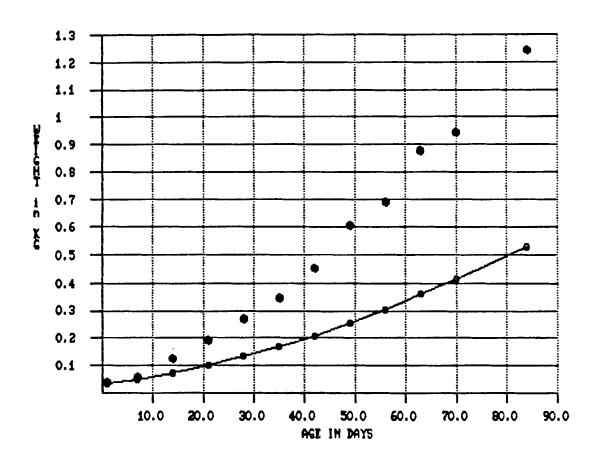


FIGURE 3-55

Growth Data on Male White Leghorn Chickens
(See Table 3-12 for points and references)

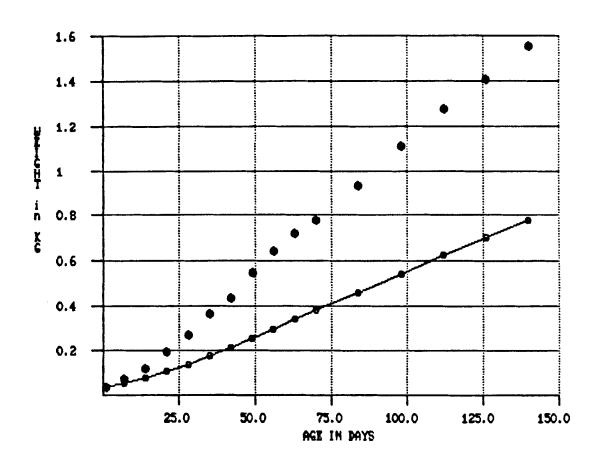


FIGURE 3-56

Growth Data on Female White Leghorn Chickens
(See Table 3-12 for points and references)

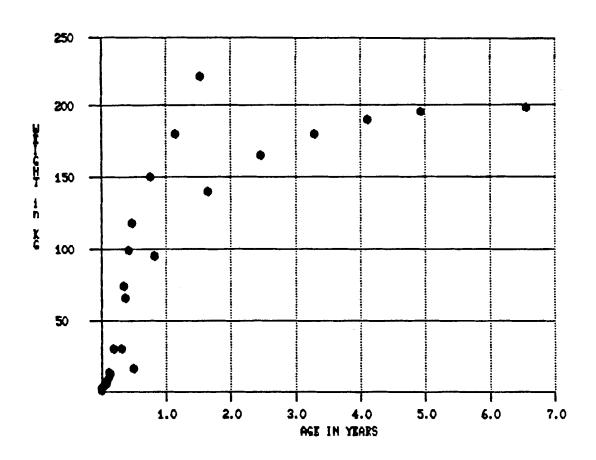


FIGURE 3-57

Growth Data on Domestic and Miniature Pigs
(See Table 3-12 for points and references)

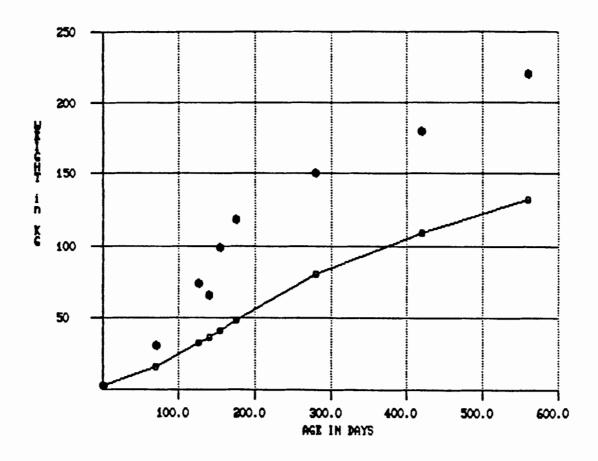


FIGURE 3-58

Growth Data on Larger Domestic Pigs

[Data from Pond et al. (1985) and Conalty (1967)]

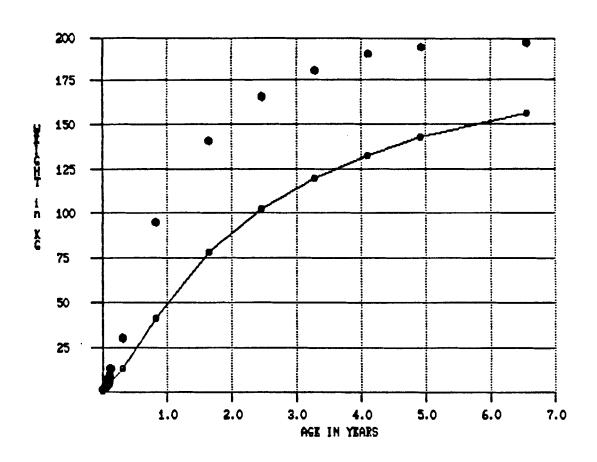


FIGURE 3-59

Growth Data on Smaller Domestic Pigs

(See Table 3-12 for points and references)

TABLE 3-13

Growth and Body Weight Data on Wildlife

Species/Strain	Sex	No. of Animals	Age (days)	Weight (kg)	Variance	Reference
Ferrets/domestic	female	SN	adult	0.67500	1.27E-002	et
Ferrets/domestic	male	NS	adult	2.02500	1.14E-001	t al., 198
Ferrets/NS	ma le	6	honud	0.71150	6.28E-003	Vinegar et al., 1985
Marmots/vellow-bellied	fema le	6	adult	3.81000	5.76E-002	atzman et al., l
Marmots/vellow-bellied	female	6	adult	3.86000	76E -	n et al., l
Marmots/vellow-bellied	ma le	6	adult	•	₩,	atzman et al., l
Marmots/yellow-bellied	ma le	6	adult	•	.92E	atzman et al., l
Marmots/yellow-bellied	ma le	6	adult	•	.03E	atzman et al., l
Marmots/yellow-bellied	ma le	6	adult	•	.48E	atzman et al., l
Marmots/vellow-bellied	ma le	6	adult	•	•	atzman et al., l
Marmots/vellow-bellied	ma le	6	adult	•	.97E	atzman et al., l
Marmots/vellow-bellied	ma le	6	adult	5.33000	•	atzman et al., l
Marmots/yellow-bellied	ma le	6	adult	٣,	3.72E-001	atzman et al., l
Marmots/yellow-bellied	male	6	adult	•	4.10E-001	atzman et al.,
Marmots/vellow-bellied	male	6	adult	•	4.62E-001	et al., l
Marmots/yellow-bellied	ma le	6	adult	5.50000	4.49E-001	/al/man et al., 1984
Mink/NS	female	24	90	0.75000	NS	ch et a
Mink/NS	female	24	90	0.76000	NS	ch et al.,
Mink/NS	fema le	24	103	0.86100	NS	ch et al.,
Mink/NS	female	24	103	•	NS	ch et al.,
Mink/NS	female	24	118	۵.	SN	ch et al.,
Mink/NS	female	24	118	•	SN	th et al.,
Mink/NS	female	24	132	•	NS	ch et al.,
Mink/NS	female	24	132	0.95500	1.11E-002	et al.,
Mink/NS	female	24	146	•		et al.,
Mint /NC	Fomslo	74	746	O GRADO	1 53F_002	

1991A 3-170 09/02/87

Species/Strain	Sex	No. of Animals	Age (days)	Weight (kg)	Variance	Reference
N/ Act	female	24	160	UU666 U	٧ <u>.</u>	Aulerich et al. 197
III VIII	י בווים ו		200	•	נטט זרז ר	מו ליום אס ווסו
MINK/NS	remale	5 4	001	•	1.5/E-002	ורוו בר קויי וא
Mink/NS	female	24	174	1.04100	S	ich et al., l
Mink/NS	female	24	174	1.06600	2.70E-002	ich et al., l
Mink/NS	female	24	188	1.03100	NS	-
Mink/NS	female	24	188	1.06500	1.25E-002	et al., l
Mink/NS	female	24	202	1.02000	NS	Aulerich et al., 197
Mink/NS	female	24	202	1.05800	1.88E-002	ich et al., l
Mink/NS	female	24	214	•	NS	ich et al., l
Mink/NS	female	24	214	1.04100	2.31E-002	ich et al., l
Mink/NS	female	24	230	0.93700	NS	Aulerich et al., 197
Mink/NS	female	24	230	0.96800	1.80E-002	:
Mink/NS	female	24	245	0.98900	NS	_ :
Mink/NS	female	24	245	1.01800	3.14E-003	et al., l
Mink/NS	female	24	261	0.92700	NS	ich et al., l
Mink/NS	female	24	261	σ,	1.15E-002	ch et al., l
Mink/NS	female	24	275	•	NS	ich et al., l
Mink/NS	female	24	275	•	1.49E-002	ich et al., l
Mink/NS	female	24	292	•	NS	ich et al., l
Mink/NS	female	24	292	0.94100	8.06E-003	ich et al.,
Mink/NS	female	24	306		SN	ich et al., l
Mink/NS	female	24	306	•	2.46E-002	ch et al., 19
Mink/NS	female	24	320	•	SN	ich et al., l
Mink/NS	female	24	320	•	2.42E-003	ich et al., 19
Mink/NS	female	24	438	0.81100	NS	., 19
Mink/NS	female	24	438	0.82100	5.89E-003	Aulerich et al., 197
Mink/NS	male	9	06	1.08300	4.39E-002	ch et al.,
Mink/NS	male	5	90	•	SN	erich et al., l
N. Juin	ma Je	9	103	1.29700	3.48E-002	Aulerich et al., 197

Species/Strain	Sex	No. of Animals	Age (days)	Weight (kg)	Variance	Reference
N July /NC	male	5	103	1.33900	SN	Aulerich et al., 1979
Mink MC	9 6 6	י ע	אנו	1 37800	SZ	et al. 197
MINK/NS	ma le	n ve	318	1.42700	5.71E-002	et al
Mink/NS	ma le	, ₁ 0	132	1.56900	NS	et al., l
Mink/NS	ma le	9	132	1.56900	2.27E-002	ich et al., 197
Mink/NS	ma le	2	146	1.59100	NS	et al., 197
Mink/NS		9	146	1.63100	3.60E-003	ch et al., 197
Mink/NS	male	9	160	1.64900	3.97E-003	ch et al., 197
Mink/NS	male	5	160	1.66900	NS	ich et al., 197
Mink/NS	male	9	174	1.65400	1.44E-003	ich et al., 19 <i>7</i>
Mink/NS	male	5	174	1.68600	NS	ich et al., 19 <i>7</i>
Mink/NS	male	9	188	1.68000	1.37E-003	ich et al.,
Mink/NS	ma le	5	188	1.71000	NS	ch et al.,
Mink/NS	male	9	202	1.76600	1.02E-003	Aulerich et al., 1979
Mink/NS	ma le	5	202	1.78100	NS	et al.,
Mink/NS	та је	9	214	1.73100	1.09E -003	ch et al.,
Mink/NS	ma Je	5	214	1.73200	NS	ch et al.,
Mink/NS	ma le	2	230	1.56400	NS	ch et al.,
Mink/NS	та је	9	230	1.61300	1.76E-003	et al.,
Mink/NS	ша је	5	245	1.59600	NS	et al.,
Mink/NS	male	9	245	1.64900	NS	ich et al.,
Mink/NS	таје	5	261	1.48300	NS	ich et al.,
Mink/NS	male	و	261	1.53500	NS	et al., 197
Mink/NS	male	5	275	1.47600	NS	et al., l
Mink/NS	male	9	275	1.55300	NS	ch et al., l
Mink/NS	ma le	5	262	٦.49600	NS	et al., l
Mink/NS	ma le	9	292	1.59100	NS	et al., l
Mink/NS	ma le	5	306	1.60700	NS	et al.,
Mink/NS	male	9	306	1.66900	NS	et al., l
	ָרָבְּיִבְּיִבְּיִבְּיִבְּיִבְּיִבְּיִבְּיִ	7	000	טעסט ר	ON.	Authorith of 107

1991A

3-172

2 2 2 1 09/02/87

Species/Strain	Sex	No. of Animals	Age (days)	Weight (kg)	Variance	Reference
Mink/NS	male	9	320	1.67200	NS	al
Mink/NS	male	9	438	1.64000	N	Aulerich et al., 1979
Mink/NS	ma le	2	438	1.69200	NS	et al.,
Mink/NS	both	NS	_	0.00930	NS	et al.,
Mink/NS	both	NS	_	0.00962	NS	et al.,
Mink/NS	both	NS	28	0.15760	NS	et al.,
Mink/NS	both	SN	28	0.16500	SN	a].,
Voles/meadow	both	28	176	0.04100	5.62E-005	•
Voles/meadow	NS	7	45	0.04500	5.62E-005	Laughlin et al., 1975
Voles/NS	NS	NS	SN.	0.04100	NS	NAS, 1978

NS = Not specified 3-173

1991A

09/02/87

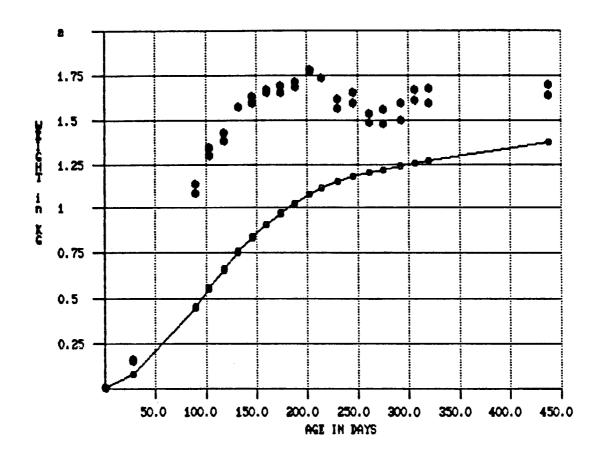


FIGURE 3-60

Recommended Growth Curve for Male Mink (See Table 3-13 for points and references)

Source: Aulerich et al., 1979

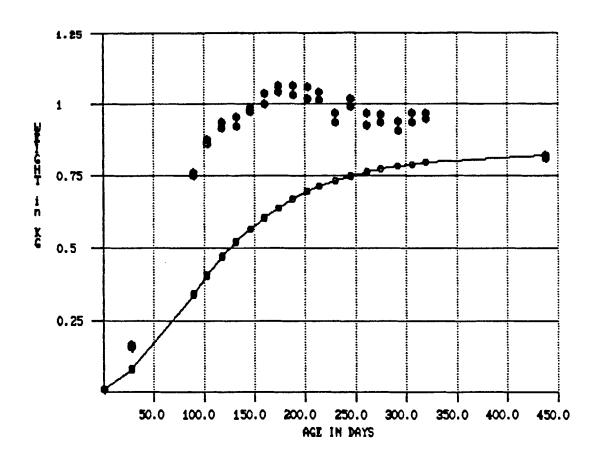


FIGURE 3-61

Recommended Growth Curve for Female Mink (See Table 3-13 for points and references)

Source: Aulerich et al., 1979

The U.S. EPA (1980) has recommended the use of a reference value of 20 m³/day for humans (10 m³ breathing volume during the workday). The inhalation rate for the ICRP Reference Man is 23 m³/day (9.6 m³ breathing volume at work during light activity). Other recommended values are 21 m³/day for an adult woman, 15 m³/day for a 10 -year-old child, 3.8 m³/day for a 1 -year-old infant and 0.8 m³/day for a newborn (Snyder et al., 1975).

Minute volumes for the reference man resting and performing light activity are 7.5 and 20 %/minute, respectively. The reference minute volume for light activity is reasonably close to the reported values for adult humans given in Table 4-1. Assuming that man rests for 8 hours and is involved in light activity for 16 hours each day, the resting minute volume can be multiplied by a factor of 2.1 to approximate a TWA minute volume over an entire day [((7.5x8hr)+(20x16hr))/24hr)/7.5=2.11]. Unless this activity factor is used on the human data, the allometric equations discussed in this section substantially underestimate human breathing volumes for adolescents and adults. Rigorous evaluation of human values is outside the scope of this text. Additional information is provided in U.S. EPA (1985a). Since the minute volumes reported in the literature for experimental mammals and other animals were made when the animals were at rest and not under conditions of normal activity, a similar activity factor could be proposed for these species. This factor is not applied to the allometric equations for nonhuman animals because in most toxicity studies the activity of the animals is restricted by confinement. The use of upper or lower bounds of the allometric equations should be considered if hyperactivity or lethargy is reported. In some instances in which the exposed dose must be estimated

Inhalation Data on Various Animal Groups

Reference	Maxwell et al., 1985 Maxwell et al., 1985 Maxwell et al., 1985 White et al., 1985 Cross, 1949 Aitken et al., 1986 Cross, 1949 Aitken et al., 1979 Haddad et al., 1979 Haddad et al., 1979 Fisher et al., 1982 Fisher et al., 1982 Fisher et al., 1982 Fisher et al., 1982 Fisher et al., 1987 Haddad et al., 1987 Fisher et al., 1987 Haddad et al., 1987 Haddad et al., 1987 Haddad et al., 1987 Hisher et al., 1987 Hisher et al., 1987 Haddad et al., 1987 Haddad et al., 1987 Hisher et al., 1987 Hisher et al., 1987 Hisher et al., 1988	Karel and Meston, 1946 Liu and DeLauter, 1977 Liu and DeLauter, 1977 Lumb, 1963 Guyton, 1947 Mauderly et al., 1979 Horike et al., 1982 Horike et al., 1982 Horike et al., 1982 Romer and Banchero, 1985 Skornik et al., 1981 Murphy and Ulrich, 1964 Murphy and Ulrich, 1964 Murphy and Ulrich, 1964 Murphy and Mich, 1964 Murphy and Mich, 1964 Murphy and Mich, 1964 Murphy and Horich, 1968
Minute Volume (1)	5.40 5.90 5.90 0.5700 0.57090 8.0 0.61240 9.80 0.690 0.690 0.690 1.3930 1.41230 1.41230 1.41230 1.41230 1.41230 1.41230 1.41230 1.41230 1.4230 1.4520 1.530 1.530 8.730	1.0140 1.120 0.860 0.860 0.8630 0.1710 0.0790 0.1710 0.2530 0.24970 0.25450 0.25450 0.25450 0.25450 0.1540 0.1560 0.1560
Weight (kg)	NS NS NS N4.0 3.420 64.150 3.670 94.550 NS 3.40 3.50 NS 3.40 NS NS 3.40 NS 3.40 NS 3.40 NS 3.40 NS 3.40 NS NS 3.40 NS NS 3.40 NS NS NS NS NS NS NS NS NS NS NS NS NS	2.630 4.050 2.680 2.680 2.680 0.32550 0.32550 0.32550 0.32550 0.32550 0.3750 0.3790 0.3790 0.3790 0.3790 0.3790 0.3790 0.3790
Age (days)	12,593 12,593 17,885 17,885 9,855 9,855 63 63 63 63 63 63 63 63 8 8 8 8 8 8 8 120 8 8 8 8 8 8 8 120 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	*****
No. of Animals	4 9 8 15 25 25 25 25 25 25 25 25 25 25 25 25 25	200 - 66 - 68 - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 5
Sex	SESSITIES SESSES SESSES SESSES SESSES SESSES SESSES	METERN MITTERFERENS NN N
Strain		rhesus rhesus rhesus rhesus Hartley Hartley, C.R. Hartley, large Hartley, small
Species	human human human human human human human human human human human human	monkey monkey monkey monkey monkey guinea pig
Group	Primates	Laboratory rodents

Group	Species	Strain	Sex	No. of Animals	Age (days)	Weight (kg)	Minute Volume (%)	Reference
Laboratory rodents (cont.)	hams ter hams ter ham ham ham ham ham ham ham ham ham ham ham ham ham ham ham ham ha	Syrian[Sch:Syr] Syrian Djungarian golden golden Syrian FIB Syrian Syrian Syrian White	E E E E E E E E E E E E E E S S S S S S	01 01 01 01 01 01 01 01 01 01 01 01 01 0	8 C S S S S S S S S S S S S S S S S S S	0.110 0.1110 0.03240 0.13240 0.11540 0.10860 0.1080 0.1080 0.1290 0.1290 0.130 0.130 0.0910	0.050 0.050 0.02240 0.04202 0.07090 0.03450 0.03450 0.02930 0.02930 0.030 0.030 0.0420 0.0330 0.0420 0.0420 0.0420 0.0420 0.0610	Mauderly et al., 1979 Mauderly and Tesarek, 1975 Schlenker, 1985 Holloway and Heath, 1984 Javaheri and Lucey, 1986 Schlenker, 1984 Schlenker, 1984 Schlenker, 1984 Schlenker, 1986 Schlenker, 1986 Chapin et al., 1978 Chapin, 1955 Chapin, 1955 Chapin, 1955 Chapin, 1955 Chapin, 1955 Lumb, 1963 Guyton, 1947
	mice mice mouse mouse mouse mouse mouse mouse	CBA Ca Lac Cb1	NN EFFEREE	5. C.	S S S S S S S S S S S S S S S S S S S	0.00250 0.020 0.02370 0.02190 0.02450 0.02660 0.03130 0.02690 0.0350 0.0350	0.00230 0.0240 0.0240 0.02190 0.02190 0.02820 0.0360 0.03430 0.04470	Mortola, 1984 Guyton, 1947 DePledge, 1985 DePledge, 1985 DePledge, 1985 DePledge, 1985 DePledge, 1985 DePledge, 1985 DePledge, 1985
	MOUSE MOUSE MOUSE MOUSE MOUSE MOUSE MOUSE MOUSE MOUSE	CBA CBA CBA CD-1 CD-1 CD-1 HA/ICR HA/ICR SwissWebLAI/COX		01 01 01 01 8 8 01 8 8 01 8	20 31 31 37 37 74 80 80 80 80	0.0080 0.0140 0.02450 0.02450 0.03130 0.03140 0.03380 0.03040	0.01450 0.0160 0.0220 0.02950 0.03799 0.05039 0.06769 0.05083	Criborn, 1969 Criborn, 1969 Criborn, 1969 Criborn, 1969 Fairchild, 1972 Fairchild, 1972 Fairchild, 1972 Fairchild, 1972 Schlenker, 1985 Lumb, 1963

Group	Spectes	Strain	Sex	No. of Animals	Age (days)	Weight (kg)	Volume (1)	Reference
20040	+62	F344/fr] lov	MAF	20	365	0.2930	0.1950	
rodents	rat		7.5	22	183	0.2670	0.2380	
(cont.)	rat	F344/Crl Lov	H&F	20	6	0.1820	0.240	Mauderly, 1980
	rat	F344/Crl Lov	3	20	730	0.3310	0.2590	Mauderly, 1900
	rat	Long-Evans	M&F	0.	86	NS S	0.215.0	- 2
	rat		<u>.</u> .	32	SES	0.2330	0.1610	
	rat		<u>.</u> .	2 9	365	0.2190	0.1340	
	rat		٠.	2 5	183	0.1990	0.1010	
	rat	F334/Cr1 Lov		2 5	18.7 08.7	0.1430	0.2540	1986
	rat	F 3347 CF 1 LOV	_ 4	2 5	S. C.	0.14610	0.14430	al., J
	ו פו זיי	F 344		6	91	0.15790	0.1470	et al.,]
	rat	F344		19	238	0.1940	٦.	et al.,
	rat	F344	.	16	191	0.180	0.15540	et al.,
	rat	F344	.	19	280	0.20140	ς.	et.
	rat	F344	<u>.</u>	19	322	0.20690	0.15840	<u>a</u> :
	rat	F344	<u>.</u>	19	112	0.16670	0.1590	٠. او
	rat	F344	Ľ	19	196	0.19080	0.16/20	Unrate et di., 1903
	rat	Sprague-Dawley	Ľ	Ξ	N.	0.2510	0.1750	Cincle
	rat		<u>.</u>	12	97	SX	0.09820	
	rat	Wistar, Charles	L .	12	99	NS 0 00 00	0.1930	
	rat	F344/Crl Lov	E :	2 ;	365	0.3680	0.5360	
	rat		E :	2 9	9.00	0.6910	0.2540	
	rat		E :	2 9	730	0.4070	0.2070	
	rat	F344/Cr Lov	c :	2 6	567	0.3300	0.16140	
	rat	440	c :	2 5	: 5	0.21840	0.18610	a].
	ו מן זיי	1 24 A	c =	2 2	280	0.38880	0.19110	et al.,
,	1 1	F344	: =	20	238	0.36630	0.1920	et al.,
	ra t	F344	=	50	322	0.40950	0.20040	بارة
	rat	F344	=	20	112	0.27980	0.20130	<u>ہ</u>
	rat	F 344	I	20	191	0.31780	0.20380	;
	rat	F344	x :	50	196	0.34280	0.21550	
	rat	Sprague-Dawley	= :	61	S	0.40	0.1450	Carnenter
	rat	Sprague-Dawley	E :	61	SE	0.40	0.1450	
	rat	Sprague-Dawley	E :	SE'	2 2	0+.07	0.1430	Johanson and Pierce, 1971
	rat	Sprague-Dawley	= :	ç,	SE	2 2	0.1340	
	rat	Sprague-Dawley	E :	٠ <u>۲</u>	2 2	2 2	0.1340	Pierce. 1
	rat	Sprague-Dawley	E :	21	2	200.00	00000	131 61 31 1978
	rat	Sprague-Dawley	E	3 0 1	SE	0.3000	0.1505	
	rat	Sprague-Dawley	E 2	ç	2 2	0.4350	0.20011	
	rat	Sprague-Dawley	E :	.	2 2	0.3050	0.5150	et al
	Lat	Christing By DV		•	2	OCOC. O	20.0	

	Species	Strain	Sex	No. of Animals	Age (days)	Weight (kg)	Volume (R)	Kererence
Laboratory	rat	Sprague-Dawley	=	16	NS	0.4250	0.2390	-
rodents	rat	Sprague-Dawley	Ŧ	80	N.	0.2840	0.27580	:
(cont.)	rat	Sprague-Dawley	Ŧ	80	SN	0.2910	0.45950	.;
	rat	Wistar	Ŧ	ᄋ	35	0.05230	0.08690	et al.,
	rat	Wistar	E	9	49	0.10980	0.11290	٠,١
	rat	Wistar	E	20	70	0.21130	0.16150	_ :
	rat	Wistar	Ŧ	9	SN	0.30	0.17220	:
	ra+	Wistar	I	10	126	0.29850	0.22490	Leong et al., 1964
	-	cotton	SZ	27	N.	0.0770	0.040	Guyton, 1947
	134	201100	Y.	S	SE	0.0770	0.040	Lumb, 1963
	ימו	C01101	2 2	35	2	0.11.0	0.0730	Guvton, 1947
	191		2 2	5 2	2 7	0.11.0	0.0740	Lumb 1963
	1 P	91.13	2 2	2 6	2 3	סיון ס	0.0760	Guyton 1947
	rat	White	2 2	35	2	0.110	0.0700	Bortola 1984
	rat		2 2	+ 4	7 7	0.0010	0.00000	1 to of 31 1983
	rat		2	84	£	0.30	0.6730	COC1 * 1 8 13 17 17 17 17 17 17 17 17 17 17 17 17 17
1	***		2	4	1.7	0.11880	0.0950	Mortola, 1984
Utner	183		2 2	- 2	2	2 450	0 3220	1963
laboratory	cat		2 2	<u> </u>	e a	2 750	0.3220	Mazzarelli et al., 1986
mamma is	cat		2 2	و و	2	2 40	0.420	Mang and Nims, 1948
	cat		2 2	<u>-</u>	2 3	2 550	0.46636	٠,
	cat		2 7	+ 4	2 7	3 250	0.77380	et al., 198
	i ai		2 2	ع د	S Z	3.250	0.7850	et al
	cat		S	• •	547	3.620	0.830	
	; ;							,
	бор	beagle	M&F	12	364	0.6	3.30	a,
	gop	beagle	M&F	00L	395.5	9.10	3.720	
	gop	beagle	Mer	50	1,277.5	 	4.060	
	dog	beagle	-	20	395.5	8.40	3.60	
	gob	beagle	.	2 2	1,277.5	0.00	3.610	Manderly, 1974
	bop	beagle	_	36	3,375	10.90	3.810	4/6
	dod	mongrel	.	-	3,650	13.50	0.60	
	dog	beagle	Ŧ	20	395.5	0	3.650	
	bop	beagle	£	9	1,277.5	12.0	4.510	4
	фор	mongrel	£	_	1,460	59.0	11.90	•
	бор	beagle	N	12	N.	9.20	1.6620	3
	pop	beagle	N	39	210	9.10	5.280	Pickrell et al. 1971
	pop	,	N	က	_	0.29720	0.24180	Mortola, 1984
	dog		SN	_	N.	16.40	4.10	
	бор		N	_	N.	28.60	5.150	Lumb, 1963
	gop		N	_	NS	19.10	5.450	
			ĭ	_	SN	30.50	6.250	1963

Group	Spectes	Strain	Sex	No. of Animals	Age (days)	Weight (kg)	Minute Volume (R)	Reference
Other laboratory mammals (cont.)	rabbit rabbit rabbit rabbit rabbit rabbit rabbit	Dutch New Zealand white New Zealand white New Zealand white	## X X X X X X	42 5 4 5 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5	88 98 88 88 7.1 88 88	2.0510 3.0 3.0 2.170 2.170 0.07930 2.020 2.070	1.6450 1.240 0.4490 0.7440 0.05540 0.80 0.80	Barrow et al., 1971 Mauderly et al., 1979 Maskrey and Nicol, 1980 Maskrey and Nicol, 1980 Mortola, 1984 Guyton, 1947 Lumb, 1963
Livestock	camel cattle cattle cattle	guernsey, fg guernsey, fg jersey, helfer	N TTT	8	NS 1,460 2,920 730	550 460 410 340	55.0 125.60 127.80 59.30	Hugh-Jones et al., 1978 Amoroso et al., 1964 Amoroso et al., 1964 Amoroso et al., 1964
	chicken chicken	leghorn	M SN	98	S S S	1.80	0.4050	Gleeson, 1986 Lastewski and Calder, 1971
	donkey goat	several	<u>. </u>	- ღ	1,825 1,095	120 52.50	12.340	Amoroso et al., 1964 Watkins et al., 1973
	horse horse horse horse horse horse	shetland type Fquus caballus shetland type shetland type Equus caballus Equus caballus Equus caballus equus caballus	ELLE E E E E E S	8 5	9,125 NS NS NS 2,190 2,920 5,475 5,475 NS	167.0 500 135.0 161.0 510 410 860 600 205.0	28.60 31.20 23.20 45.20 35.10 40.0 54.10 59.70 19.90	Mauderly, 1975 Amoroso et al., 1964 Mauderly, 1975 Mauderly, 1975 Amoroso et al., 1964 Amoroso et al., 1964 Amoroso et al., 1964 Amoroso et al., 1964 Mauderly, 1975 NAS, 1971
	mule pig pig	Sus scrofa	E TNNN SNN SNN SNN SNN SNN SNN SNN SNN SNN	L L 8 8 5 5 1	4,745 183 1.3 1	210 17.0 1.180 1.16700 30	19.50 19.10 0.46920 0.66590 7.2570	Amoroso et al., 1964 Amoroso et al., 1964 Clement et al., 1986 Mortola, 1984 Clement et al., 1986
	sheep sheep sheep	Ovis aries	TES	1 9 6	730 NS NS	52.0 36.0 38.0	28.0 5.580 7.60	Amoroso et al., 1964 Albelda et al., 1986 Abraham et al., 1981

Group	Species	Strain	Sex	No. of Animals	Age (days)	Weight (kg)	Volume (a)	Reference
Wildlife	deer	red	NS	SN	SN	83.0	9.0	Hugh-Jones et al., 1978
	ferret		Œ	6	N	0.71150	0.1570	Vinegar et al., 1985
	fox fox	Arctic Arctic	NS NS	R S	S S S	3.60 3.60	0.6850	Casey et al., 1979 Withers et al., 1979
	glraffe		SN.	N	S	400	30.0	Hugh-Jones et al., 1978
	Jemming	brownng	N.	NS	N	0.0640	0.05220	et al.
	Jemming	brown	SE	9 4	SE	0.0640	0.05220	Casey et al., 1979
	lemming lemming	varying	SS	S	S S	0.0470	0.03010	et al.
	llama		NS	NS	N	105.0	8.50	Hugh-Jones et al., 1978
	Jynx Jynx	Canada	N S N S	L SN	N S	12.930 12.930	3.740	Casey et al., 1979 Withers et al., 1979
	manatee		NS	NS	SN	250	45.0	Lumb, 1963
	marmot		NS	NS	SN	2.130	0.1740	Lumb, 1963
	muskrat		M&F	10	N	0.79450	0.3550	MacArthur, 1984
	porpoise		SN	SE	SN	170 053 55	9.70	Lumb, 1963
	s loth	Bradypus grise- Cholepus hoffm-	SSS	SES	SSS	3.10	0.4850 0.8440	
	squirrel squirrel	Arctic ground Arctic ground	S SN	NS 3	S S	0.680	0.4290	Casey et al., 1979 Withers et al., 1979
	vole	tundra tundra	SS	9 SN	SS	0.0320	0.02740	Casey et al., 1979 Withers et al., 1979
	weasel	least	SN	4	SN	0.0750	0.05350	Casey et al., 1979
	Weasel	least	S X	S	S	0.0750	0.05350	Withers et al., 1979 Withers et al., 1979
	wolver ine		2 2		2	14.10	2.9360	t al. 19

Group	Species	Strain	Sex	No. of Animals	Age (days)	Weight (kg)	Minute Volume (R)	Reference
Birds	bobwhite		M&F	5	NS	0.1990	0.1350	Boggs and Kilgore, 1983
	burrowing owl	_	M&F	2	NS	0.1660	0.1290	Boggs and Kilgore, 1983
	duck	white peking	N NS	2 Z	S N	2.50	0.9310	Jones, 1985 Lastewski and Calder, 1971
	doose		NS	S N	SN	6.80	1.50	Lasiewski and Calder, 1971
	ostr1ch		N	NS	NS	88.0	8.10	Lasiewski and Calder, 1971
	pigeon		N	NS	NS	0.3820	0.12740	Lasiewski and Calder, 1971
	quail	painted	SN	SN	S N	0.04340	0.02380	Lasiewski and Calder, 1971
0ther	lizard	monitor		4	NS	0.030	0.00140	Bickler and Anderson, 1986
	turtle	diamond-back	SN	NS	N.S	0.6850	0.0510	Lumb, 1963

NS = Not specified

from studies on inhalation exposure of free-living animals, the use of an activity correction factor may be appropriate.

The U.S. EPA (1980) has used the following equations to calculate inhalation rates (I) in units of m^3/day for mice and rats:

I (mice) =
$$0.0345[W/0.025]^{2/3}$$
 (4-1)

$$I (rats) = 0.105[W/0.133]^{2/3}$$
 (4-2)

where W is body weight in kg. The equation for rats is based on observations summarized by Altman and Dittmer (1972) and originally published by Guyton (1947), in which rats with a mean body weight of 0.1128 had a mean minute volume of 72.9 mg (0.105 m³/day). The equation for mice is similarly derived but the mouse weight is erroneously indicated to be 0.025 kg. The actual value reported by Guyton (1947) is 0.0198 kg and is reported in Altman and Dittmer (1972) as 0.02 kg. The minute volume reported by Guyton (1947) is 24.54 mg (0.0353 m³/day). Taking body weight ratios to the 2/3 power assumes that breathing rates are proportional to body surface area.

Reported minute volumes for a wide range of animals at rest are summarized in Table 4-1 and illustrated in Figures 4-1 (linear plot) and 4-2 (log-log plot). While Figure 4-2 shows a relatively clear relationship between log body weight and log minute volume, certain points are atypical and are not considered in the derivation of recommended values. Three of these points come from the study by Amoroso et al. (1964): sheep, miniature pigs, and Guernsey cattle. Most of the reported values given by Amoroso et al. (1964) are high compared with other studies. In this study, tidal volume was measured by a flow transducer attached to a mask that was sealed with jelly and made air-tight with an inflatable cuff. In addition, none of the animals were trained or subjected to such measurements prior to the published recordings. These factors may have contributed to the atypically high recorded minute volumes.

1992A 4-9 09/03/87

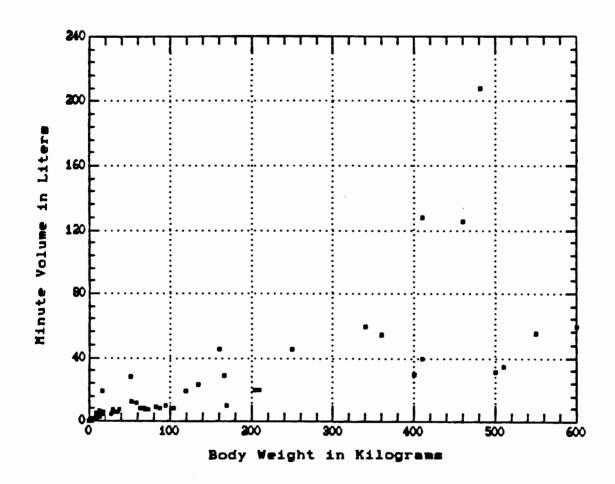


FIGURE 4-1
Linear Plot of the Relationship of Minute Volume (%) to Body Weight (kg)

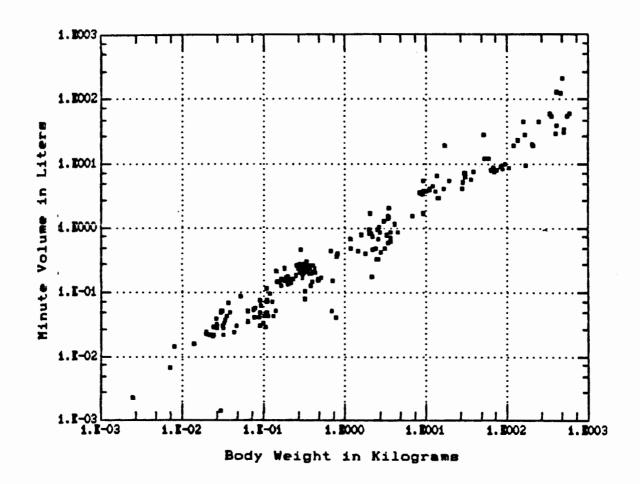


FIGURE 4-2

Log-Log Plot of the Relationship of Minute Volume (%) to Body Weight (kg)

In the study by Lai et al. (1978), one group of rats, subjected to tracheal cannulation without anesthesia, had an atypically high mean minute volume compared with three other groups in the study and compared with minute volumes of rats reported in other studies. This group of rats is not used in the recommendation of reference values.

Also excluded are reported minute volumes for the Monitor lizard (Lumb, 1963), the Diamond-back turtle (Bickler and Anderson, 1986) and the value reported for horses by NAS (1971).

The exclusion of the above points is not intended to suggest that the studies were flawed or that the values are erroneous or necessarily outliers in the statistical sense. Given the experimental difficulties in recording minute volumes, the substantial degree of scatter is to be expected. Nonetheless, the excluded points are clearly at variance with the majority of the data on the same species or other species of similar body weights. The exclusion of these points does not have a substantial effect on the statistical analyses below or on the recommendations of reference inhalation rates for risk assessment.

The work of Guyton (1947) is the best study of comparative respiratory volumes in laboratory animals and is commonly cited in the recent literature as the basis for assumed respiratory volumes. Guyton (1947) used five different methods, only one of which involved anesthesia, to measure respiratory rates of animals at rest. As noted by Guyton (1947) and confirmed by the larger data set in Figure 4-2, there is a strong positive correlation between body weight and minute volume for species, covering a substantial weight range (0.0066-600 kg). As noted by Guyton (1947) and Adolph (1949), however, this relationship does not appear to be based on the surface area proportionality. Guyton (1947) proposed a proportionality of body weight to

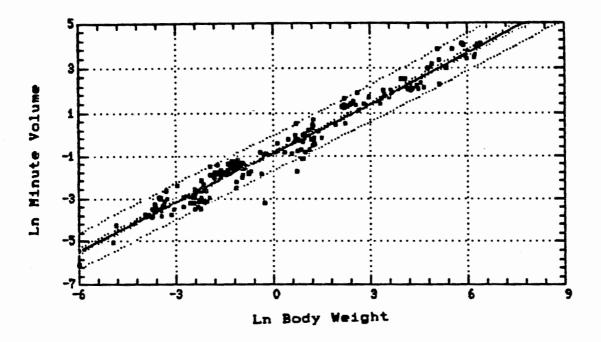
1992A 4-12 09/03/87

the 3/4 power. An analysis of the data summarized in Table 4-1, excluding only those points discussed previously, bears out this relationship remarkably well:

$$\ln MV = -0.88 + 0.7579 \ln (W)$$
 (4-3)

or

$$MV = 0.46 (W)^{0.7579} (4-4)$$


This relationship, along with summary statistics, is illustrated in Figure 4-3. Equations 4-3 and 4-4 are recommended for calculating minute volumes (MV in ℓ /minute) for body weight (W in kg) for animals at rest if more specific relationships, detailed below, are not available. Equation 4-4 can be converted to a daily inhalation volume (I) by multiplying the right side of the equation by 1.44 (60 minutes/hourx24 hours/day divided by 1000 ℓ /m³) to yield:

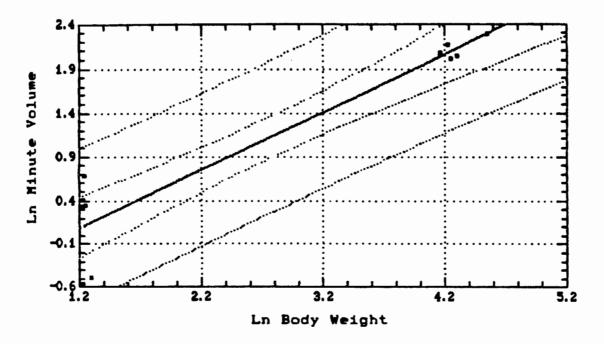
$$I = 0.66 \, (W)^{0.7579} \tag{4-5}$$

This equation is based on the breathing pattern of animals reportedly at rest. When applied to risk assessments, consideration should be given to upper or lower bound estimates of breathing rates, based on the summary statistics provided in Figure 4-3, if unusually high or low levels of activity are reported in the study under review.

No species, with the possible exceptions of the Monitor lizard and Diamond-back turtle, are clear outliers to the above relationships. Even for the apparent outliers, it is unclear if the differences in minute volumes from those of species of similar body weights are due to true species differences or experimental variability or error. Nonetheless, if species-specific information is available on the relationship of body weight

1992A 4-13 09/03/87

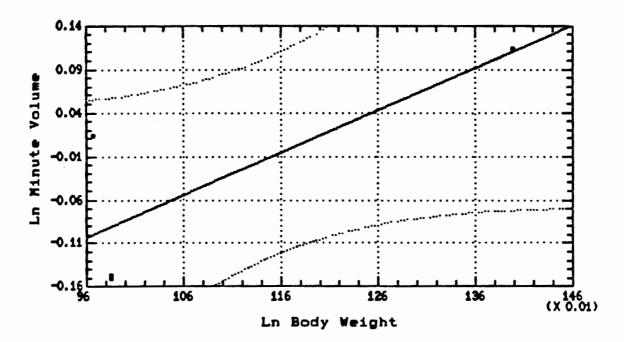
B0: -0.88283 SE: 0.0281 T: -31.417 B1: 0.75794 SE: 0.010103 T: 75.021 CORR: 0.98084 MSE: 0.17593 DF: 222


FIGURE 4-3

Allometric Relationship of Minute Volume (1) to Body Weight (kg) for All Species

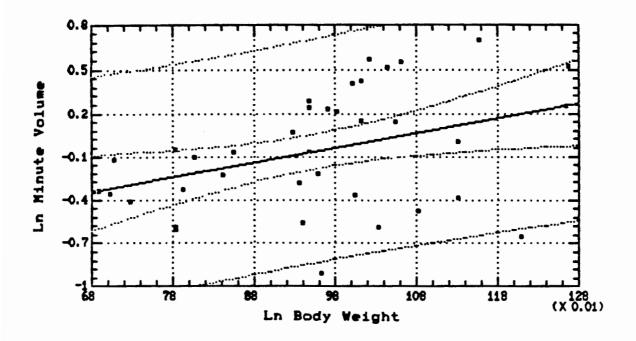
to inhalation rate, this information should be used in deriving speciesspecific recommended values. As summarized in Table 4-2 and Figures 4-4 through 4-14, species-specific allometric equations can be proposed for most species of concern in risk assessment. The high correlation coefficients noted in Table 4-2 are generally due to separate clusters of points for very young and adult animals. Most of the data on the breathing rates of newborn animals come from the work of Mortola (1983, 1984) and Mortola and Noworaj Recently, Mortola (1987) reviewed the available data on breathing in newborn mammals, including an assessment of allometric relationships. Within either group, young or adult animals, the correlation coefficients are much lower, reflecting either experimental variability or the importance of biological variables other than body weight. This intraspecies variation is particularly evident in Figure 4-6, which plots data on individual Rhesus monkeys reported by Karel and Weston (1946). The data reported by Cross (1949) appear to be atypically low, both for human infants when compared with the more recent data of Fisher et al. (1982) as for humans and monkeys combined (see Figure 4-7). The allometric relationship for guinea pigs has a very low correlation coefficient. The reasons for the poor correlation in this species are not apparent.

TABLE 4-2
Allometric Relationships for Inhalation Rate in m³/day (I) to Body Weight in kg (W)


Animal Group	Allometric Equation	r²	Figure
All species combined	$I = 0.66 \text{ W}^{0.7579}$	0.96	4-3
Monkeys	$I = 0.81 \text{ W}^{0.4862}$	0.72	4-5
Guinea pigs	$I = 0.44 \text{ W}^{0.5156}$	0.32	4-8
Hamsters	$I = 0.50 \text{ W}^{0.9017}$	0.86	4-9
Mice	I = 1.99 W1.0496	0.87	4-10
Rats	$I = 0.80 \text{ W}^{0.8206}$	0.77	4-11
Cats	$I = 0.32 \text{ W}^{0.5945}$	0.81	4-12
Dogs	$I = 0.67 \text{ W}^{0.7091}$	0.89	4-13
Rabbits	$I = 0.46 \text{ W}^{0.8307}$	0.88	4-14

B0: -0.70048 SE: 0.22409 T: -3.1258 B1: 0.65865 SE: 0.070967 T: 9.281 CDEE: 0.94656 MSE: 0.14002 DF: 10

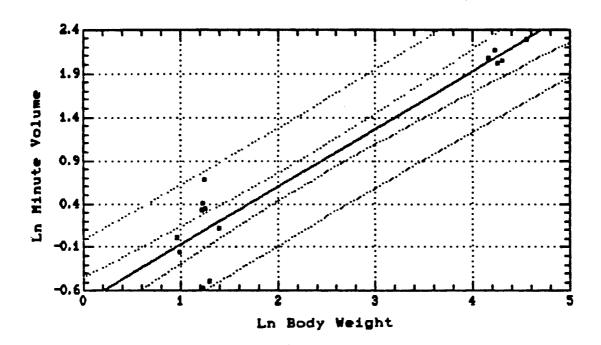
FIGURE 4-4


Allometric Relationship of Minute Volume (2) to Body Weight (kg) for Humans

BO: -0.56924 SI: 0.20599 T: -2.7634 B1: 0.48616 SI: 0.17675 T: 2.7506 CORP: 0.8462 MSI: 6.5944I-3 DF: 3

FIGURE 4-5

Allometric Relationship of Minute Volume (%) to Body Weight (kg) for Monkeys (All data in Table 4-1)



BO: -1.0573 SE: 0.39644 T: -2.6669 B1: 1.0381 SE: 0.40928 T: 2.5365 CORR: 0.38487 MSE: 0.14022 DF: 37

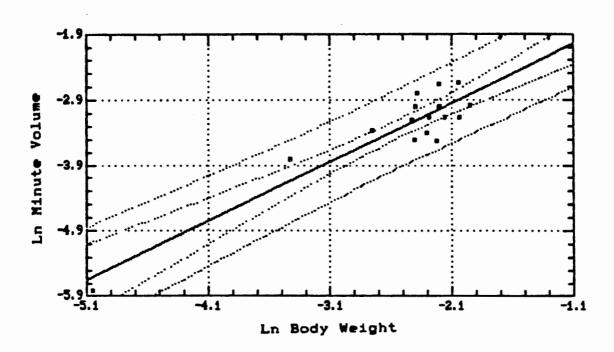
FIGURE 4-6

Allometric Relationship of Minute Volume (2) to Body Weight (kg) for Individual Rhesus Monkeys

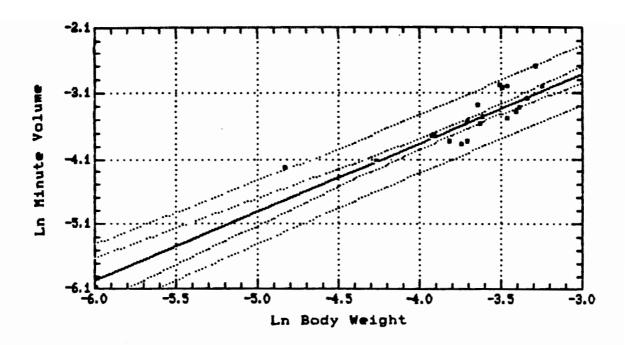

(Data from Karel and Weston, 1946, not summarized in Table 4-1)

BO: -0.74125 SE: 0.13836 T: -5.3575 B1: 0.66789 SE: 0.050731 T: 13.165 CORR: 0.95935 MSE: 0.095919 BF: 15

FIGURE 4-7


Allometric Relationship of Minute Volume (1) to Body Weight (kg) for Humans and Monkeys Combined

BO: -1.1909 SE: 0.25402 T: -4.6884 B1: 0.51559 SE: 0.21094 T: 2.4442 CORR: 0.56113 MSE: 0.15895 DF: 13


FIGURE 4-8

Allometric Relationship of Minute Volume (2) to Body Weight (kg) for Guinea Pigs

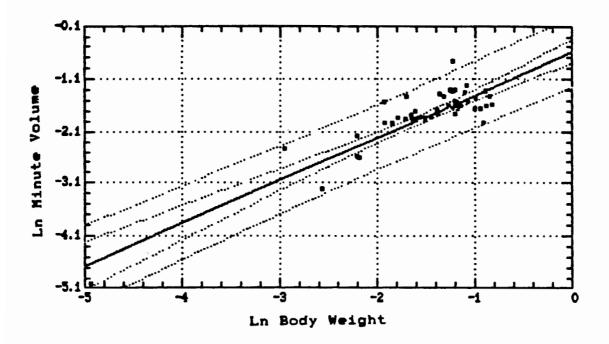

BO: -1.054 SE: 0.24428 T: -4.3147 B1: 0.90168 SE: 0.094009 T: 9.5914 CORR: 0.92726 MSE: 0.076956 BF: 15

FIGURE 4-9
Allometric Relationship of Minute Volume (1)
to Body Weight (kg) for Hamsters

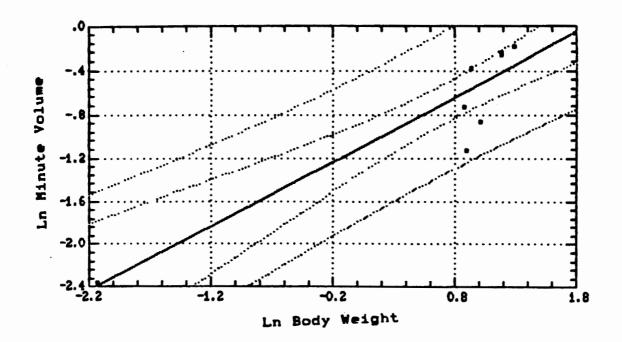
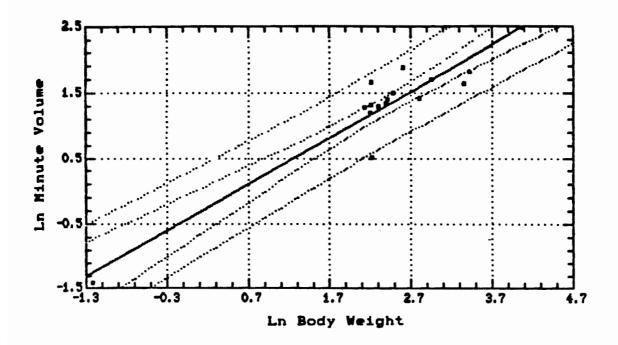

BO: 0.32599 SE: 0.2764 T: 1.1794 B1: 1.0496 SE: 0.07377 T: 14.228 CORR: 0.93324 MEE: 0.045477 DF: 30

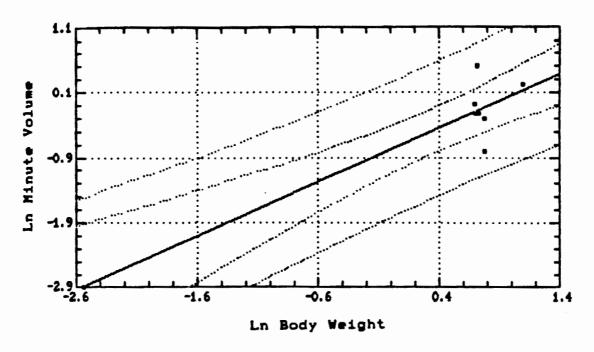
FIGURE 4-10
Allometric Relationship of Minute Volume (2) to Body Weight (kg) for Mice

BO: -0.57838 SE: 0.10607 T: -5.4531 Bi: 0.82061 SE: 0.06357 T: 12.909 CORR: 0.87704 MSE: 0.096214 BF: 50


FIGURE 4-11
Allometric Relationship of Minute Volume (2) to Body Weight (kg) for Rats

BO: -1.1287 SI: 0.10625 T: -10.623 B1: 0.59451 SI: 0.091748 T: 6.4798 CORR: 0.89869 MSI: 0.07798 BF: 10

FIGURE 4-12


Allometric Relationship of Minute Volume (2) to Body Weight (kg) for Cats

B0: -0.39103 SE: 0.17066 T: -2.2913 B1: 0.7091 SE: 0.065154 T: 10.883 CORR: 0.94212 MSE: 0.078804 DF: 15

FIGURE 4-13

Allometric Relationship of Minute Volume (2) to Body Weight (kg) for Dogs

50: -0.7827 SE: 0.14872 T: -5.2627 B1: 0.83065 SE: 0.1277 T: 6.5048 CORR: 0.93585 MSE: 0.15914 DF: 6

FIGURE 4-14

Allometric Relationship of Minute Volume (1) to Body Weight (kg) for Rabbits

5. WATER CONSUMPTION

The U.S. EPA (1980) has used a reference value of 2 %/day for water consumption of a 70 kg man. The Office of Drinking Water uses this value and a reference drinking water rate of 1 %/day for a 10 kg child. The Agency has not adopted recommended values for experimental animals.

The rate of water consumption can be affected by many factors including ambient temperature, level of activity, diet, and abnormal physiological or pathological conditions. Chew (1965) extensively reviewed the literature on water balance in mammals, and a similar review was provided by Bartholomew and Cade (1963) on land birds. More recent comprehensive reviews were not found during the preparation of this report. Classic papers on water metabolism include those by Adolph (1947) and Bailey (1923). Only a few of the many examples of factors affecting water intake are given below.

The effects of reproductive status on water intake can be substantial. For instance, pregnant or lactating cows consume about 4 times as much water as nonlactating cows (Mount and Ingram, 1971), and chickens in the egg-producing stage consume about twice the amount of water of nonproducing chickens (Howard, 1975).

Also, several examples have been reported on the effect of diet on water consumption. For guinea pigs, the amount of "greens" (usually kale or lettuce) in the diet is inversely related to water requirements. Guinea pigs receiving a green food supplement require only 50-100 mg water/day, but without the supplement, guinea pigs require 25-100 mg/day (Ediger, 1976). Dogs consuming canned food, with an average moisture content of 75%, may not require any additional water consumption (Corbin, 1976). A significant increase in the salt content of the diet can substantially increase

water consumption, as demonstrated in mink when given 1 and 2% salt-enhanced diets. No change in water consumption was seen in mink fed a 0.5% salt-enhanced diet (Erikson et al., 1984). Variations of dietary salt within normal limits does not appear to affect the water intake of humans (Luft et al., 1983).

Seasonal differences or changes in ambient temperature also can affect water intake for lions (Green et al., 1984) and for turkeys (Parker et al., 1972). Remarkable decreases in water and food consumption occur in hibernating animals before hibernation for marmots (Zatzman et al., 1984). In some cases, seasonal differences are not substantial, as with the early food and water intake of neonatal calves (Kertz et al., 1984).

In a study on chickens with hereditary diabetes insipidus, Dunson et al. (1972) reviewed information on several strains of laboratory animals, none of which are commonly used in toxicity bioassays, with hereditary polydipsia.

These and other confounding factors may be related to the generally poor intraspecies correlations of water intake and body weight discussed below. Despite the number of variables that can affect water consumption, interspecies correlations covering a wide range of body weights are generally high. Using data on several mammalian species, Adolph (1943) proposed the following relationship:

$$L = 0.01 \text{ W}^{\circ}.88$$
 (5-1)

where L is water consumption in mg/hour and W is body weight in grams. A similar relationship (Wo.9) had been noted somewhat earlier by Richter (1938).

Table 5-1 summarizes data on water consumption for several species of animals. [Many of the references cited in this table are reviews or standard texts (Arrington, 1978; Bruce, 1950; Chew, 1975; Cizek, 1961;

1993A 5-2 09/03/87

TABLE 5-1

Water Consumption Data on Various Animal Groups

Group	Spectes	Strain	Sex	No. of Animals	Age (days)	Weight (1./day)	Water	Reference
Primates	baboon	P. ursinus	NS			1.12	1.31	Che⊌, 1965
	human		Ŧ			07	2.184	Adolph and Dill, 1938
	human		£			92	2.275	Altman and Dittmer, 1968
	human		£	24	6935+	78.6	3.239	Luft et al., 1983
	monkey	rhesus	<u>.</u>			8	0.45	Templeton, 1968
	monkey monkey	rhesus rhesus	u. E			₉ 11	0.45	Arrington, 1972 Arrington, 1972
	monkey	rhesus	=			Ξ	0.45	Templeton, 1968
	monkey	SN	NS			5.45	0.39	Chew, 1965
Laboratory rodents	gerbil	Mongolian	M&F	20	215	0.06125	0.0038	Harriman, 1969a
	gerbil	Mongolian	M&F	16-20	adult	0.06125	0.00565	McManus, 1972
	gerbil	Mongolian	u .			0.075	0.004	Templeton, 1968
	gerbil		ı.			0.075	0.004	Arrington, 1972
	gerbil	Mongolian	=			0.085	0.004	Templeton, 1968
	gerbil	Mongolian	=	Ξ	70-80	0.0705	0.0055	taughlin et al., 1975
	gerbil guinea pig		=			0.085 1.025	0.004	Arrington, 1972 Arrington, 1972
		albino short-hair	= :	5	00	0.2	0.04	
	guinea pig guinea pig	albino short-hair albino short-hair	EE	ა ა	2 2	0.27 0.11	0.052	
	guinea pig	albino short-hair	= =	د د	9 9 9	0.52	0.11 711.0	Hirsch, 1973 Hirsch, 1973
		short-			20 02	0.48	0.12 0.151	
	guinea pig		E			1.2	0.09	Arrington, 1972
								The state of the s

5-3

Group	Spectes	Strain	Sex	No. of Animals	Age (days)	Weight (1./day)	Water	Reference
Laboratory	guinea pig		Š			0.1	0.08	Latt, 1976
rodents	guinea pig		SN		adult	8.0	0.084	Bruce, 1950
	guinea pig		SK		adult	0.8	0.084	Lane-Peter et al., 1967
	guinea pig guinea pig guinea pig guinea pig		\$ \$ \$ \$ \$			0.3 0.4 0.5	0.12 0.145 0.16 0.18	Latt, 1976 Latt, 1976 Latt, 1976 Latt, 1976
	guinea pig guinea pig hamster	Syrlan	L E L			1 1.2 0.0545	0.09 0.09 0.009	Templeton, 1968 Templeton, 1968 Templeton, 1968
	hamster	Syrlan	<u>.</u>			0.1175	0.01	Arrington, 1972
	hamster	Syrlan	I			0.05125	0.009	Templeton, 1968
	hamster	golden	SK		adult	60.0	0.008	Lane-Peter et al., 1967
	hamster		SN			0.025	0.005	Latt, 1976
	hamster		SN		adult	0.09	0.008	Bruce, 1950
	hamster hamster hamster		SSS			0.05 0.1 0.15	0.01 0.02 0.025	Latt, 1976 Latt, 1976 Latt, 1976
	mouse mouse mouse	A/J BALB/c CB A		51 51 51	(011-001) (011-001) (011-001)	0.0209 0.0201 0.0259	0.0047 0.0056 0.0065	Kutscher, 1974 Kutscher, 1974 Kutscher, 1974
	mouse mouse mouse	Cr1,CD-1,CR,BR Cr1,CD-1,CR,BR Cr1,CD-1,1CR,BR	<u> </u>	4 4 4 0 4	182 364 546	0.03075 0.03475 0.03375	0.0063 0.0076 0.00645	Chvedoff et al., 1980 Chvedoff et al., 1980 Chvedoff et al., 1980
	mouse	СЗН	L.	15	(100-110)	0.0228	0.0062	Kutscher, 1974
	mouse	C57B1/6Jms	u.	63		0.0252	0.00359	Suzuki et al., 1975
	mouse	C57 DBA	<u></u>	55 51	(100-110) (100-110)	0.0223	0.0062	Kutscher, 1974 Kutscher, 1974
	топѕе	STR/1N	Ŀ	13	152	0.0284	0.0068	Silverstein, 1960

Group	Species	Strain	Sex	No. of Animals	Age (days)	Weight (1./day)	Water	Reference
Laboratory	mouse	SWR	<u>.</u>	15	(100-110)	0.0217	0.011	Kutscher, 1974
rodents (cont.)	mouse mouse mouse	white white		8 8 8	(105-120) 396 70	0.0282 0.0335 0.0248	0.0096 0.0106 0.0107	Chew and Hinegardner, 1957 Chew and Hinegardner, 1957 Chew and Hinegardner, 1957
	тоизе		<u></u>			0.0265	0.0055	Arrington, 1972
	mouse	A/HeN	Ŧ	12	152	0.0297	0.0048	Silverstein, 1960
	топзе	A/3	Ŧ	15	(100-110)	0.0252	0.0049	Kutscher, 1974
	mouse	A/LN BALB/cAnN	EE	7 8	152 152	0.0241	0.0057	Silverstein, 1960 Silverstein, 1960
	mouse	BALB/c CBA	E E	15 15	(011-001) (011-001)	0.027	0.0048	Kutscher, 1974 Kutscher, 1974
	mouse	Charles River Charles River	. .	7 8	adult adult	0.0453 0.0424	0.0043	DeLacey et al., 1975 DeLacey et al., 1975
	mouse mouse mouse	Cr1,CD-1,CR,BR Cr1,CD-1,CR,BR Cr1,CD-1,CR,BR		4 4 0 4 0	182 546 364	0.0405 0.04475 0.0455	0.0065 0.00715 0.00835	Chvedoff et al., 1980 Chvedoff et al., 1980 Chvedoff et al., 1980
	топзе	СЗН	Ŧ	15	(100-110)	0.0264	0.0068	Kutscher, 1974
	mouse	C57B1/6Jms	Ŧ	09		0.0287	0.00391	Suzuki et al., 1975
	тоизе	C57L/HeN	I	13	152	0.0264	0.0046	Silverstein, 1960
	топѕе	C57	I	15	(100-110)	0.0275	0.0066	Kutscher, 1974
	mouse	DBA/2JN	I	6	152	0.0265	0.0054	Silverstein, 1960
	топѕе	DBA	=	15	(100-110)	0.0309	0.0078	Kutscher, 1974
	mouse	STR/N STR/IN	EE	12 8	152 152	0.0291	0.01	Silverstein, 1960 Silverstein, 1960
	топо	SWR	=	15	(100-110)	0.0286	0.0094	Kutscher, 1974
	mouse mouse mouse	white white white		8 8 8	396 (105-120) 70	0.0369 0.0324 0.0297	0.0106 0.0109 0.0121	Chew and Hinegardner, 1957 Chew and Hinegardner, 1957 Chew and Hinegardner, 1957

Court Cour	Group	Species	Strain	Sex	No. of Animals	Age (days)	Weight (1./day)	Water	Reference
mouse derr NS adult 0.02 0.0073 Chew, 1965 mouse deer NS adult 0.02 0.005 Chew, 1965 mouse deer NS adult 0.02 0.005 Chew, 1965 mouse deer NS adult 0.02 0.005 Chew, 1965 mouse prince NS adult 0.02 0.005 Chew, 1965 mouse prince NS adult 0.02 0.005 Chew, 1965 mouse prince NS adult 0.007 0.007 Chew, 1965 mouse prince NS adult 0.007 0.006 Chew, 1965 mouse prince NS adult 0.007 0.006 Chew, 1965 mouse prince NS adult 0.007 0.006 Chew, 1965 adult prince Chew, 1965 Chew, 1965 adult prince Prince Chew, 1965 Chew, 1965 adult prince Chew, 1965 Chew, 1	Laboratory	mouse		I			0.03	0.0055	Arrington, 1972
mouse deer NS adult 0.02 0.005 Bruce, 1950 mouse deer NS adult 0.02 0.035 Chew, 1965 mouse deer NS adult 0.0182 0.0235 Chew, 1965 mouse white-foot NS adult 0.0182 0.0015 Chew, 1965 mouse white-foot NS adult 0.0082 0.0015 Chew, 1965 mouse Nhite-foot NS adult 0.0023 0.0015 Chew, 1965 mouse NS adult 0.025 0.0015 Latt, 1976 mouse NS adult 0.025 0.005 Latt, 1976 mouse NS adult 0.025 0.005 Latt, 1976 mouse NS adult 0.025 0.006 latt, 1976 mouse NS adult 0.025 0.006 latt, 1976 rat kangaron NS A A A	rodents (cont.)	mouse	albino	SN			0.02875	0.00735	Chew, 1965
mouse deer NS adult 0.07 0.085 Lane-Peter et al., 1 mouse deer NS adult 0.0183 0.0235 Chew, 1965 mouse mouse white-foot NS wealing 0.0245 0.0015 Chew, 1965 mouse white-foot NS wealing 0.0245 0.0015 Chew, 1965 mouse white-foot NS adult 0.0245 0.0015 Chew, 1965 mouse NS adult 0.025 0.0075 Bure, 1966 mouse NS adult 0.025 0.006 Bure, 1966 mouse NS Adult 0.025 0.006 Bure, 1966 mouse NS Adult 0.025 0.006 Bure, 1966 rat kangaron NS Adult 0.025 0.006 Bure, 1966 rat kangaron NS Adult 0.025 0.006 Bure, 1966 rat kangaron NS <td></td> <td>топзе</td> <td>deer</td> <td>SN</td> <td></td> <td>adult</td> <td>0.05</td> <td>0.005</td> <td>Bruce, 1950</td>		топзе	deer	SN		adult	0.05	0.005	Bruce, 1950
mouse production of the control of the cont		тоизе	deer	SE		adult	0.05	0.005	Lane-Peter et al., 1967
December	mouse	deer	SN			0.0189	0.0235		
Maile		mouse	meadow	S S			0.0315	0.066	
Main		mouse	white-foot	S S			0.02425	0.0355	
mouse NS adult 0.025 0.006 Bruce, 1950 mouse NS adult 0.025 0.006 Latt, 1976 mouse White A A Ault 0.05 0.006 Latt, 1976 rat white A A A A A A B A A B <th< td=""><td></td><td>mouse mouse mouse</td><td></td><td>S S S</td><td></td><td>weanling</td><td>0.008 0.01 0.025</td><td>0.0025 0.003 0.005</td><td>Bruce, 1950 Latt, 1976 Latt, 1976</td></th<>		mouse mouse mouse		S S S		weanling	0.008 0.01 0.025	0.0025 0.003 0.005	Bruce, 1950 Latt, 1976 Latt, 1976
mouse NS adult 0.025 0.006 Latt, 1976 mouse NS adult 0.075 0.006 Latt, 1976 mouse white A adult 0.075 0.006 Latt, 1976 rat kangaroo NAF 4 A 0.005 Bruce, 1950 rat kangaroo NAF A A 0.005 Bruce, 1950 rat rat adult 0.26 0.028 Bruce, 1950 rat sprague-Dawley F 1 adult 0.26 0.038 Bruce, 1950 rat Sprague-Dawley M 14 (80-105) 0.286 0.035 Bruce, 1950 rat Sprague-Dawley M 10 24-52 0.05 0.0136 Belorme and Wolcik, one		mouse		SN		adult	0.025	900.0	Bruce, 1950
mouse white A adult 0.05 0.006 Latt, 1976 mouse white A adult 0.075 0.006 Latt, 1976 rat kangaroo M&F A A A A Bute, 1950 rat kangaroo M&F A A A Arrington, 1972 rat rat F 1 adult 0.26 0.038 Bruce, 1950 rat adult 0.26 0.038 Bruce, 1950 Bruce, 1950 rat adult 0.275 0.038 Bruce, 1950 rat Sprague-Dawley M 14 (80-105) 0.286 0.036 Bruce, 1950 rat Sprague-Dawley M 10 24-52 0.05 0.0136 Delorme and Wolcik, was		mouse		SN		adult	0.025	900.0	Lane-Peter et al., 1967
rat white 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 0.025 0.0058 Balley, 1923 rat frat		mouse		S S			0.05	0.006	Latt, 1976 Latt, 1976
rat kangaroo N&F 4 A 0.105 0.0058 Balley, 1923 rat F 1 adult 0.29 0.0275 Arrington, 1972 rat F 1 adult 0.26 0.038 Bruce, 1950 rat F 1 adult 0.26 0.038 Bruce, 1950 rat F 1 adult 0.26 0.038 Bruce, 1950 rat rat albino F 1 adult 0.26 0.038 Bruce, 1950 rat albino F 1 adult 0.26 0.085 Bruce, 1950 rat Sprague-Dawley F 1 adult 0.26 0.085 Bruce, 1950 rat Sprague-Dawley F 1 44-52 0.05 0.0136 Belorme and Wolcik, rat Sprague-Dawley F 10 24-52 0.05 0.0136 Delorme and Wolcik, rat sprague-Dawley F <td></td> <td>mouse</td> <td>white</td> <td></td> <td></td> <td>adult</td> <td>0.0275</td> <td>0.0065</td> <td>Bruce, 1950</td>		mouse	white			adult	0.0275	0.0065	Bruce, 1950
rat F 1 adult adult adult adult on 36 0.025 Arrington, 1972 rat rat rat rat 6.36 0.028 Bruce, 1950 rat rat rat rat 0.256 0.038 Bruce, 1950 rat rat sprague-Dawley rat rat rat sprague-Dawley rat		rat	kangaroo	M&F	4		0.105	0.0058	Bailey, 1923
F 1 adult adult adult 0.36 0.028 Bruce, 1950 Brague-Dawley M 10 24-52 0.05 0.05 Browne and Wolcik, Sprague-Dawley M 10 24-52 0.05 0.05 Browne and Wolcik, Sprague-Dawley M 10 24-52 0.05 0.05 Browne and Wolcik, Sprague-Dawley M 10 24-52 0.05 0.05 Browne and Wolcik, Sprague-Dawley M 10 24-52 0.05 Browne and Wolcik, Sprague-Dawley M 10 24-52 0.05 Browne and Wolcik, Br		rat		L			0.29	0.0275	Arrington, 1972
albino M 14 (80-105) 0.2891 0.0354 Moyer, 1966 Sprague-Dawley M 10 24-52 0.05 0.0136 Delorme and Wolcik, 0.0136 Sprague-Dawley M 10 24-52 0.05 0.0136 Delorme and Wolcik, 0.0136 Sprague-Dawley M 10 24-52 0.05 0.019 Delorme and Wolcik, 0.019 Sprague-Dawley M 10 24-52 0.05 0.0242 Delorme and Wolcik, 0.0242		rat rat rat				adult adult adult adult	0.26 0.36 0.26 0.275 0.36	0.028 0.03 0.038 0.085 0.085	
Sprague-Dawley H 10 24-52 0.05 0.0136 Delorme and Mojcik, order Sprague-Dawley H 10 24-52 0.05 0.0136 Delorme and Mojcik, order Sprague-Dawley H 10 24-52 0.05 0.019 Delorme and Mojcik, order Sprague-Dawley H 10 24-52 0.05 0.0242 Delorme and Mojcik, order		rat	albino	×	14	(80-105)	0.2891	0.0354	Moyer, 1966
Sprague-Dawley M 10 24-52 0.05 0.019 Delorme and Mojcik, Sprague-Dawley M 10 24-52 0.05 0.0242 Delorme and Mojcik, Sprague-Dawley M 10 24-52 0.05 0.0242 Delorme and Mojcik,		rat	Sprague-Dawley	I:	0;	24-52	0.05	0.0136	and Wojeik,
Sprague-Dawley M 10 24-52 0.05 0.0242 Delorme and Wojcik,		rat rat	Sprague-Dawley Sprague-Dawley Sprague-Dawley		222	24-52 24-52 24-52	0.03 0.05 0.05	0.0136 0.019 0.0242	and
		rat	Sprague-Dawley	æ	01	24-52	0.05	0.0242	and

Laboratory		11 9 116	Sex	Animals	(days)	(r/day)		
10000	rat	Sprague-Dawley	I	0L	24-52	0.05	0.0289	Delorme and Wojcik, 1982
(cont.)	rat	Sprague-Dawley	I	01	24-52	0.05	0.0289	Delorme and Wojcik, 1982
	rat rat rat	Sprague-Dawley Sprague-Dawley Sprague-Dawley		6 2 60 60	+12 180 +6	0.442 0.38 0.422	0.039 0.04 0.041	Grunberg et al., 1984 Grunberg et al., 1984 Grunberg et al., 1984
	rat		E			0.375	0.0275	Arrington, 1972
	rat	albino	SE	adult		0.3	0.024	Lane-Peter et al., 1967
	rat	cotton	S	young adult		0.13	0.023	Bruce, 1950
	rat	cotton	S X	young adult		0.13	0.023	Lane-Peter et al., 1967
	rat rat rat	D. morroensis D. panaminitinu Norway albino Norway wood	S S S S S S S S S S S S S S S S S S S			0.068 0.079 0.207 0.241 0.139	0.0148 0.016 0.027 0.02145 0.0181	Chew, 1965 Chew, 1965 Chew, 1965 Chew, 1965 Chew, 1965
	rat rat	poom	SN SN			0.05	0.01	Latt, 1976 Latt, 1976
	rat rat		S S S		adult adult	0.25	0.02	Bruce, 1950 Bruce, 1950
	rat rat		S S			0.15 0.2	0.025	Latt, 1976 Latt, 1976
	rat		SN		adult	0.225	0.031	Adolph, 1947
	rat		S N			0.25	0.035	Latt, 1976
Other	cat		<u>.</u>			င	0.3	Arrington, 1978
nammals	cat		Ŀ			က	0.3	Templeton, 1968
	cat cat cat	mixed mixed mixed		12 12 12	+7 + 4 2 +21	4 4 4 7.5.4	0.1526 0.1772 0.1822	Taton et al., 1984 Taton et al., 1984 Taton et al., 1984

The cate mixed N 10 +45 4.2 0.184 14 ton et al. 1984 14 ton et al. 19	Group	Species	Strain	Sex	No. of Animals	Age (days)	Weight (1/day)	Water	Reference
1,	2440	+	700	•	ן כּר	163	7.3	184	l Le ta
	Uther	rat cat	m) xed	E Z	5 4	104	7.5	0.1863	et al
California Marce	mamma 1c	Cat.	Dax i E	.	غ ه	+147	4.2	0.1877	et al
cát mixed N 6 +2013 4.1 0.200 13ton et al., 198 cat mixed N 6 +2013 4.5 0.205 13ton et al., 198 cat mixed N 6 +236 4.5 0.207 1aton et al., 198 cat mixed N 7 175 3 0.27 1aton et al., 198 cat mixed N A 3 0.27 1aton et al., 198 cat M N A 4.49 0.22 Chrex, 1965 cat MS A Auth 2 0.3 Arrington, 1978 dog beagle F A Augh 0.3 Arrington, 1968 dog mongrel F A Augh 0.35 Arrington, 1968 dog peagle M A Augh A A A dog peagle M A A A A A	(cont.)	cat	mixed	Œ	6	[6+	4	0.1942	et al.,
cat mixed N 6 -245 4.5 0.205 Taton et al., 198 cat mixed N 6 -245 4.5 0.207 Taton et al., 198 cat mixed N 6 -175 4.5 0.207 Taton et al., 198 cat mixed N 7 22 0.207 Taton et al., 198 cat N A 3 0.3 Arrington, 1978 cat NS A 4.49 0.3 Chee, 1965 cat NS A 4.49 0.3 Arrington, 1968 dog beagle F 7 730 + 15.9 0.35 Tampleton, 1968 dog mongrel F 7 730 + 15.9 0.35 Tampleton, 1968 dog peagle N 7 730 + 15.9 0.35 Tampleton, 1968 dog peagle N 7 730 + 15.9 0.35 Tampleton, 1968		cat	mixed	Œ	8	+119	۴.٦	0.2001	et al.,
cat mixed N 6 -244 4.5 0.2707 faton et al., 198 cat mixed N 6 +175 4.5 0.2707 faton et al., 198 cat mixed N 7 175 4.5 0.2793 faton et al., 198 cat mixed N 3 0.3 Arrington, 1978 cat NS 4.49 0.22 Chev, 1965 cat NS 4.49 0.22 Chev, 1965 cat NS 4.49 0.22 Chev, 1965 dog beagle F 7 720 + 15.9 0.32 Grew, 1965 dog mongrel F 7 720 + 15.9 0.35 Impleton, 1968 dog peagle F 7 720 + 15.9 0.35 Recever et al., 196 dog peagle N 4 7 730 + 15.9 0.35 Golde et al., 196 dog grephonds		cat	mixed	Œ	9	+203	4.3	0.206	et al.,
cat mixed M 5 +336 4.5 0.2799 laton et al., 198 cat mixed M 5 +336 4.5 0.2795 laton et al., 198 cat M A A A A A A A A A A A A A A A B A A B Chev, 1965 Chev, 1965 </td <td></td> <td>cat</td> <td>mixed</td> <td>T</td> <td>9</td> <td>+245</td> <td>4.5</td> <td>0.207</td> <td>et al.,</td>		cat	mixed	T	9	+245	4.5	0.207	et al.,
cat mixed N 6 +175 4.3 0.227 laton et al., 1938 cat N N A 4.9 0.3 Arrington, 1938 cat NS 4.9 0.32 Chew, 1965 Chew, 1965 cat NG A 4.9 0.32 Chew, 1965 dog beagle F A 700 11.5 0.3 Arrington, 1972 dog mongre F A 700 15.9 0.35 Golob et al., 196 dog mongre F A 700 15.9 0.5669 Golob et al., 196 dog mongre F A 700 15.9 0.5669 Golob et al., 190 dog peagle F A 700 15.9 0.5669 Golob et al., 190 dog peagle F A 700 15.9 0.35 Templeton, 1966 dog greyhounds NS A A 20.5 1.00		cat	mixed	I	2	+336	4.6	0.2199	et al.,
cat M 3 0.3 Arrington, 1978 cat MS 4.49 0.3 Templeton, 1968 cat MS 4.49 0.32 Chew, 1965 dog beagle F A.49 0.32 Chew, 1965 dog beagle F A.730 11.5 0.3 Arrington, 1972 dog mongrel F 7 730 15.9 0.31 Arrington, 1972 dog mongrel F 7 730 15.9 0.31 Arrington, 1972 dog beagle M 7 730 15.9 0.35 Templeton, 1968 dog beagle M 7 730 15.9 0.35 Templeton, 1968 dog peagle M 7 730 15.9 0.35 Mritagen, 1972 dog greyhounds MS 4 7 29.2 1.005 Mritagen, 1961 rabbit Dutch F 6 <		cat	mixed	E	9	+175	4.3	0.227	et al., l
cat NS 4.49 0.32 Chew, 1965 cat NS 4.49 0.32 Chew, 1965 dog Deagle F A 449 0.32 Chew, 1965 dog Deagle F A 7 730 + 11.5 0.3 Arrington, 1972 dog mongrel F 7 730 + 15.9 0.3128 Golob et al., 198 dog beagle F 7 730 + 15.9 0.3128 Golob et al., 197 dog beagle M A 7 730 + 15.9 0.33 - Arrington, 1972 dog peagle M A 7 730 + 15.9 0.35 - Golob et al., 195 dog peagle M A A A Arrington, 1972 dog greybunds MS A A 2.2 0.35 Rickeever et al., 196 rabbit Dutch F 6 +164 2.3 0.15 Cizek, 19		cat		E			3	0.3	Arrington, 1978
cat NS 4.49 0.32 Chew, 1965 cat NS adult 24 0.32 Chew, 1965 dog beagle F A A A Arrington, 1972 dog beagle F 7 730 + 15.9 0.35 Arrington, 1972 dog mongrel F 7 730 + 15.9 0.35 Templeton, 1968 dog mongrel F 7 730 + 15.9 0.35 Arrington, 1968 dog beagle M 7 730 + 15.9 0.35 Templeton, 1968 dog beagle M 7 730 + 15.9 0.35 Templeton, 1968 dog beagle M 7 730 + 15.9 0.35 Templeton, 1968 dog peagle M 4 7 730 + 15.5 0.35 Templeton, 1968 dog graphit Dutch F 6 +184 2		cat		=			က	0.3	
cat NS 4.49 0.32 Cheek, 1965 dog MS adult 24 0.8 brown et al., 196 dog beagle F 1 11.5 0.3 Arrington, 1972 dog beagle F 7 730 + 15.9 0.3569 Goldo et al., 198 dog mongrel F 7 730 + 15.9 0.3569 Goldo et al., 198 dog beagle M 7 730 + 15.9 0.3669 Goldo et al., 198 dog beagle M 7 730 + 15.9 0.3669 Goldo et al., 198 dog beagle M 7 730 + 15.9 0.3669 Goldo et al., 198 dog beagle M 7 730 + 15.9 0.3669 Goldo et al., 198 dog greyhounds NS 4 29.2 0.35 Irmpleton, 1968 rabbit Dutch F 6 +164 2.3 0.17								,	
dog beagle F adult 4 0.8 Brown et al., 198 dog beagle F 1 11.5 0.3 Arrington, 1972 dog mongrel F 7 730 + 15.9 0.5569 Golob et al., 197 dog mongrel F 7 730 + 15.9 0.5669 Golob et al., 197 dog beagle M 7 730 + 15.9 0.5669 Golob et al., 196 dog peagle M 7 730 + 15.9 0.5669 Golob et al., 196 dog greyhounds M 7 730 + 15.9 0.5669 Golob et al., 196 rabbit beagle M 7 730 + 15.9 0.5669 Golob et al., 196 dog greyhounds MS 4 7 29.2 0.35 Arrington, 1968 rabbit butch F 6 +164 2.3 0.174 Cizek, 1961 rabbit butch F 6 +164 2.29		cat cat		NS NS			4.49	0.32	
dog peagle F 7 730 + 15.5 0.3 Arrington, 1972 dog mongrel F 7 730 + 15.9 0.35 E		gob		M&F	8	adult	24	8.0	Brown et al., 1984
dog beagle F 7 730 + 15.9 14.5 0.35 Templeton, 1968 dog mongrel F 7 730 + 15.9 0.3128 Golob et al., 197 dog beagle M 7 730 + 15.9 0.569 Golob et al., 197 dog beagle M 7 730 + 15.9 0.569 Golob et al., 197 dog beagle M 7 7 730 + 15.9 0.569 Golob et al., 197 dog beagle M 7 7 7 7 7 7 dog greyhounds NS 4 2.5 1.005 McKeever et al., 196 rabbit butch F 6 +186 2.3 0.174 C1zek, 1961 rabbit butch F 6 +164 2.3 0.185 C1zek, 1961 rabbit butch F 6 +164 2.3 0.185 C1zek, 1961 rabbit butch F		бор	beagle	<u>.</u>			11.5	0.3	Arrington, 1972
dog mongrel F 7 730 + 15.9 15.9 0.33128 (Golob et al., 197) dog beagle N 7 730 + 15.9 15.5 0.3 Arrington, 1972 dog beagle N 4 29.2 1.005 McKeever et al., 1973 dog greyhounds NS 4 29.2 1.005 McKeever et al., 1961 rabbit Dutch F 6 +164 2.3 0.174 Cizek, 1961 rabbit Dutch F 6 +164 2.3 0.174 Cizek, 1961 rabbit Dutch F 6 +164 2.3 0.175 Cizek, 1961 rabbit Dutch F 6 +164 2.3 0.175 Cizek, 1961 rabbit Dutch F 6 +164 2.3 0.185 Cizek, 1961 rabbit Dutch F 6 +164 2.3 0.185 Cizek, 1961 rabbit Dutch F		бор	beagle	<u>.</u>			14.5	0.35	
dog beagle N 15.5 0.3 Arrington, 1972 dog beagle N 4 29.2 1.005 McKeever et al., 1.33 dog greyhounds NS 4 29.2 1.005 McKeever et al., 1.33 rabbit obutch F 6 +184 2.3 0.174 Cizek, 1961 rabbit obutch F 6 +164 2.3 0.175 Cizek, 1961 rabbit obutch F 6 +164 2.3 0.174 Cizek, 1961 rabbit obutch F 6 +164 2.3 0.174 Cizek, 1961 rabbit obutch F 6 +10 2.13 0.185 Cizek, 1961 rabbit obutch F 6 +13 2.29 0.185 Cizek, 1961 rabbit obutch F 6 +183 2.57 0.187 Cizek, 1961 rabbit obutch F 6 +183 2.19 0.22 Cizek, 1961 rabbit <t< td=""><td></td><td>6op 6op</td><td>mongrel</td><td>. .</td><td>1</td><td></td><td>15.9 15.9</td><td>0.33128 0.5669</td><td>al., al.,</td></t<>		6op 6op	mongrel	. .	1		15.9 15.9	0.33128 0.5669	al., al.,
dog greyhounds NS 4 29.2 1.005 Nckeever et al., 1.005 dog greyhounds NS 4 29.2 1.005 Nckeever et al., 1.005 rabbit Dutch F 6 +184 2.32 0.174 C1zek, 1961 rabbit Dutch F 6 +164 2.3 0.175 C1zek, 1961 rabbit Dutch F 6 +164 2.3 0.175 C1zek, 1961 rabbit Dutch F 6 +112 2.29 0.185 C1zek, 1961 rabbit Dutch F 6 +112 2.29 0.185 C1zek, 1961 rabbit Dutch F 6 +13 2.29 0.185 C1zek, 1961 rabbit Dutch F 6 +13 2.571 0.187 C1zek, 1961 rabbit Dutch F 6 +91 2.19 0.225 C1zek, 1961 rabbit Dutch		bop	beagle	E			15.5	0.3	Arrington, 1972
greyhounds NS 4 29.2 bits 1.005 bits McKeever et al., al., al., al., al., al., al., al.,		bop	beagle	E			15.5	0.35	
Dutch butch b		6op	greyhounds greyhounds	S S	44		29.2 28.5	1.005	et al., et al.,
Dutch F 6 +164 2.3 0.175 C1zek, Dutch F 6 +70 2.13 0.185 C1zek, Dutch F 6 +112 2.29 0.185 C1zek, Dutch F 12 2.571 0.187 C1zek, Dutch F 12 +91 2.571 0.187 C1zek, Dutch F 6 +91 2.19 0.195 C1zek, Dutch F 6 +71 1.79 0.219 C1zek, Dutch F 6 +47 1.79 0.226 C1zek, Dutch F 6 +49 0.226 C1zek, Dutch F 6 +49 0.226 C1zek,		rahhit	Dutch	<u>.</u>	9	+185	2.32	0.174	
Dutch F 6 +70 2.13 0.185 Clzek, Dutch F 6 +112 2.28 0.185 Clzek, Dutch F 12 +143 2.29 0.185 Clzek, Dutch F 12 +183 2.571 0.187 Clzek, Dutch F 6 +91 2.19 0.187 Clzek, Dutch F 6 +491 2.165 0.219 Clzek, Dutch F 6 +47 1.79 0.22 Clzek, Dutch F 6 +21 1.89 0.225 Clzek, Dutch F 6 +49 2.07 0.226 Clzek,		rabbit	Dutch	<u> </u>	9	+164	2.3	0.175	
Dutch F 6 +112 2.28 0.185 C1Zek, Dutch F 6 +143 2.29 0.185 C1Zek, Dutch F 12 +183 2.571 0.187 C1Zek, Dutch F 6 +91 2.19 0.195 C1Zek, Dutch F 6 +07 1.79 0.219 C1Zek, Dutch F 6 +21 1.89 0.225 C1Zek, Dutch F 6 +35 1.96 0.226 C1Zek, Dutch F 6 +49 2.07 0.226 C1Zek,		rabbit	Dutch	_	۰	+70	2.13	0.185	
Dutch F 12 2.57 0.187 Cizek, butch F 12 +183 2.571 0.187 Cizek, butch F 12 +0 2.165 0.219 Cizek, butch F 6 +31 1.96 0.225 Cizek, butch F 6 +35 1.96 0.225 Cizek, butch F 6 +35 1.96 0.225 Cizek, butch F 6 +35 1.96 0.225 Cizek, butch F 6 +49 2.07 0.226 Cizek,		rabbit	Dutch	 .	.	+112	2.28	0.185	
Dutch F 12 +183 2.571 0.187 C1zek, Dutch F 6 +91 2.19 0.195 C1zek, Dutch F 12 +0 2.165 0.219 C1zek, Dutch F 6 +07 1.79 0.22 C1zek, Dutch F 6 +31 1.96 0.225 C1zek, Dutch F 6 +49 2.07 0.226 C1zek,		rabbit	Dutch		15	2	2.57	0.187	٠.
Dutch F 6 +91 2.19 0.195 Clzek, Dutch F 12 +0 2.165 0.219 Clzek, Dutch F 6 +27 1.79 0.22 Clzek, Dutch F 6 +31 1.96 0.226 Clzek, Dutch F 6 +49 2.07 0.226 Clzek,		rabbit	Dutch	<u>.</u>	12	+183	2.571	0.187	•
Dutch F 12 +0 2.165 0.219 Clzek, Dutch F 6 +07 1.79 0.22 Clzek, Dutch F 6 +31 1.89 0.225 Clzek, Dutch F 6 +49 2.07 0.226 Clzek,		rabbit	Dutch	_	9	[6÷	2.19	0.195	
Dutch F 6 +21 1.89 0.225 Clzek, Dutch F 6 +49 2.07 0.226 Clzek,		rabbit	Dutch	<u>.</u>	21	0+0	2.165 1.79	0.219	
Dutch F 6 +35 1.96 0.226 Clzek, Outch F 6 +49 2.07 0.226 Clzek,		rabbit	Butch	_ 1	Φ.	- C+	1.89	0.225	
Dutch F 6 +49 2.07 0.226 Clzek,		rabbit	Dutch	. 止	و و	+35	1.96	0.226	•
		rabbit	Dutch	<u>.</u>	9	+49	2.07	0.226	

Group	Species	Strain	Sex	No. of Animals	Age (days)	Weight (1/day)	Water	Reference
Other	rabbit	New Zealand white	<u></u>			5	0.3	Templeton, 1968
mammals	rabbit		<u></u>			2	0.3	Arrington, 1972
(cout .)	rabbit	Dutch	E	12	+183	2.002	0.166	•
	rabbit	Dutch	z :	9 4	+175	2.2	0.169	Cizek, 1961
	rabbit	Dutch	. .	9	+133	2.19	0.178	
	rabbit	Dutch	E 1	9 4	0/+ 5/1	2.22	0.185	Cizek, 1961
	rabbit	Dutch	. .	9	711 1	2.23	0.19	
	rabbit	Dutch	T I	12	Q Q	1.799 31.6	0.202	Cizek, 1961 Cizek, 1961
	rabbit	Dutch	. E	9	÷51	1.95	0.224	•
	rabbit rabbit	Dutch Dutch	E E	99	+35	2.09 1.91	0.225 0.255	Cizek, 1961 Cizek, 1961
	rabbit	New Zealand white	I			4.5	0.3	Templeton, 1968
	rabbit	New Zealand white	I	10		2.168	0.369	Cizek, 1961
	rabbit	F				4.5	0.3	Arrington, 1972
	rabbit	albino + CB	NS	Ξ	adult	2.8	0.36	Bruce, 1950
	rabbit	albino & cross	NS	Ξ		2.8	0.36	Lane-Peter et al., 1967
	rabb1t	Dutch	NS	22	adult	2.1	0.319	Bruce, 1950
	rabbit	Dutch	SN	22		1.2	0.319	Lane-Peter et al., 1967
	rabbit	Himalayan	NS	91	adult	1.9	0.245	Bruce, 1950
	rabbit	Himalayan	N	91		1.9	0.245	Lane-Peter et al., 1967
	rabbit	lop eared	SN	10	adult	3.5	0.446	Bruce, 1950
	rabblt	lop eared	SN	10		3.5	0.446	Lane-Peter et al., 1967
	rabbit	several	SN	59	adult	2.4	0.328	Bruce, 1950
	rabbit		SN		adult	2.5	0.16	Kennaway, 1943
	rabbit rabbit		N S S	59	adult	2.4	0.328	Lane-Peter et al., 1967 Lane-Peter et al., 1967

F 7 36 7 36 7 36 12 33 14 21 4 28 4 28 6 6 14 28 14 28 15 84-196 20 18 20 18 20 25 20 31	Sex No. of Animals	Age (days)	Weight (1/day)	Water	Reference
cattle Zebu M&F cattle holstein F 7 36 cattle holstein F 7 38 cattle holstein F 7 3 33 cattle shorthorn F 8 32 chicken brown leghorn F 16 16 chicken white leghorn MS 4 28 chicken white leghorn MS 8 20 18 cow MH 16 leghorn MS 20 11 cow MH 16 leghorn MS 20 21 cow MH 16 leghorn MS 20 25 cow MH 16 leghorn MS 20 31 horse MS 20 31 horse MS 20 31			2.14 2.14	0.201	Chew, 1965 Chew, 1965
holstein holstein holstein holstein e holstein holstein holstein e jersey, holstein kumaunt e HO, H, TL H 12 Rumaunt e Steer horown leghorn	M&F M&F		151 151	11.935 11.935	Chew, 1965 Chew, 1965
e shorthorn e shorthorn f shorthorn f H0,H,TL H0,H,TL H Kumauni e steer Kumauni e steer Drown leghorn white leghorn white leghorn NS NS NS NS NS NS NS NS NS N			3619 3605 3330 3330	162 205 241.6 422	Atkeson and Warren, 1934 Atkeson and Warren, 1934 Atkeson and Warren, 1934 Atkeson and Warren, 1934
E Kumauni M 12 3 Steer M			427 632	17.92 32.24	Chew, 1965 Chew, 1965
E Kumaun¹ M Steer M F 16 en brown leghorn F 16 en white leghorn M 4 21 en white leghorn MS 14 21 en white leghorn NS 4 28 en white leghorn NS 4 28 en white leghorn NS 15 84-196 NS 20 18 NS 20 18 NS 20 13 NS 20 25 NS 20 31 NS 20 31 NS 20 31 NS 30 4 2 NS 4 4 2 NS 4 4 2 NS 31 4 2 NS 31 4 2 NS 31 4			313	43.1	Becker et al., 1985
en brown leghorn F 16 en white leghorn M 4 en white leghorn MS 14 21 en white leghorn NS 14 21 en white leghorn NS 15 84-196 en white leghorn NS 20 11 NS 20 13 NS 20 13 NS 20 25 NS 20 31 NS 4 4 2 NS 20 31 NS 20 31 NS 4 4 2	EE		340 391	8.9 8.53	Chew, 1965 Chew, 1965
en white leghorn M 4 en white leghorn NS 14 21 en white leghorn NS 4 28 en white leghorn NS 4 28 en white leghorn NS 15 84-196 en white leghorn NS 20 18 NS 20 11 NS 20 25 NS 20 31 NS 4 4 NS 6			1.65 1.65	0.115	Howard, 1975 Howard, 1975
en white leghorn MS 14 21 28 28 28 28 28 28 28 28 28 28 28 28 28	E		2.257	0.614	Dunson and Buss, 1968
en white leghorn NS 14 28 en white leghorn NS 8 28 en white leghorn NS 84-196 en white leghorn NS 20 18 en white leghorn NS 20 18 en NS 20 21 en NS 20 25 en NS 20 31 en NS 20	E		1.603	0.119	Dunson et al., 1972
NS 20 18 NS 20 11 NS 20 25 NS 20 31 NS 20 31 NS 20 31	8888	21 28 28 84-196	0.183 0.2 0.32 1.532	0.042 0.043 0.046 0.13	Dunson and Buss, 1968 Dunson and Buss, 1968 Dunson and Buss, 1968 Dunson and Buss, 1968
NS 20 11 NS 20 25 NS 20 31 NS 4 4 2		18	44.11	_	Kertz et al., 1984
NS 20 25 NS 20 31 Pony M 4 2 NS 6		Ξ	44.43	1.14	Kertz et al., 1984
NS 20 31 pony M 4 2 NS 6		25	47.2	1.18	Kertz et al., 1984
pony M MS		31	52.65	2.59	Kertz et al., 1984
SE			202.5	8.7	Sufit et al., 1985
P. angulatus NS	SS		611 23.6	76 2.2	Chew, 1965 Chew, 1965

				Animals	(days)	(1/day)		
							ł	
Lives tock	pig		SN	13	58	5.49	17.0	et al.,
(cont.)	pig	white cross	NS	5	58	6.15	0.74	et al.,
	pig	white cross	NS	51	35	7.15	1.09	et al., l
	pig	white cross	NS	51	35	7.99	1.31	et al., l
	plq	white cross	N.S	5	45	6.17	1.63	et al., l
	piq	white cross	N.S	15	49	13.06	2.15	et al
	pja	white cross	NS	51	42	10.6	2.16	t al., l
	plg	white cross	NS	15	45	13.6	2.58	
			3					•
	pig		S S			45.5	8.38	Chew, 1965 Chair 1966
	p1g	- C	2 2			£ 63.5		
	sneep	Lorr lead le	2			7.76	00.7 71.1	
	daaus		ê			63.3	=	_
Wildlife	camel	Dromedarius	NS			243	3.18	Chew. 1965
) - - -	deer	desert mule	SN			22.35	1.47	Ξ.
	deer	various	S			34.95	2.84	
	elephant	E. maximus	SI			3630	139	Chew, 1965
							2500.0	7
	rerret	domest 1c	- 2		11000	0.075	0.0070	ין קין. סיר קין
	rerret	domestic	E		11 npp	570.7	0.0070	-
	lion			_		149	9.0	et al,
	lion		E	_		91	١.07	een et al, l
	lion		E	-		193	3.98	et al
	+08168	baillad_wollay		σ	V [+	1 81	0.134	Zatzman et al. 1984
	1000	yellow-bellied			. 28 	3.86	0 182	le ta
	TOTAL MOLE	yellow-bellied	. =	n 0	371	5.33	0 034	[[[]
	marmot	vellow-bellied		•	+168	33.33	0.041	et al.
	marmot	vellow-bellied	×	•	+154	5.29	0.063	et al]
	marmot	vellow-bellied	E	6	+140	5.46	0.089	et al.,
	marmot	vellow-bellied	I	6	+126	5.5	0.117	et al.,
	marmot	yellow-bellied	£	6	+112	5.45	0.145	et al., l
	marmot	yellow-bellied	I	6	86+	5.39	0.187	ا. ا
	marmot	yellow-bellied	£	6	+42	4.62	0.191	et
	marmot	yellow-bellied	£	6	+26	4.76	11.0	_ :
	marmot	yellow-bellied	I	6	+84	5.19	0.228	_ :
	marmot	yellow-bellied	Ŧ	6	٠٢٥	4.95	0.231	Zatzman et al., 1984
	mink		E	4		1.613	0.175	Eriksson et al. 1984
								'
	shrew	short-talled	S S			0.0258	0.0125	
	squirrel	C. leucurus	S			0.085	0.0102	Chew, 1965
		7	_			1		

Group	Species	Strain	Sex	No. of Animals	Age (days)	Weight (1./day)	Water	Reference
Wildlife	vole	теадом	NS	7	(40-50)	0.045	0.00205	Laughlin et al., 1975
(cour.)	vole vole	red-backed tundra	S S			0.0279	0.025 0.0158	Chew, 1965 Chew, 1965
Birds	Br. mourning dov	Zenaldura mac.	SN			0.104	0.0103	Bartholomew and Cade, 1963
	Br. Budgerygah Br. finch	house	NS NS			0.03 0.0206	0.0025	Bartholomew and Cade, 1963 Bartholomew and Cade, 1963
	Br. pheasant Br. pheasant Br. pheasant Br. pheasant	game game game game	Mar Mar Mar	many many many	-20 -40 -60 -80	0.112 0.325 0.625 0.93	0.029 0.061 0.075 0.078	Wise and Connan, 1979 Wise and Connan, 1979 Wise and Connan, 1979 Wise and Connan, 1979
	Br. quall Br. sparrow	California house Savannah Savannah Savannah Song song white-throated white-throated	********			0.139 0.0173 0.0175 0.019 0.0168 0.0164 0.023 0.0265	0.0072 0.0057 0.0131 0.013 0.0035 0.0036 0.0086	Bartholomew and Cade, 1963
	Br. turkey	Drown Amerine, Nichola	2 =	80	294,329	13.4	0.605	1972

NS = Not specified

Templeton, 1968; Lane-Peter et al., 1967). Data on water intake that did not specify a body weight are excluded from this table. Statistical analyses of the data reported in Table 5-1 that are most relevant to risk assessment are given in Table 5-2 and illustrated in Figures 5-1 through 5-6.

More so than the data on minute volumes, the data on water consumption show marked intraspecies variability. The only points that are clear outliers, however, are the male marmots [just before hibernation (Zatzman et al., 1984)], which are excluded from the statistical analyses. As illustrated in Figure 5-2, a high correlation is apparent across all species in the allometric relationship of water consumption to body weight:

$$L = 0.11 \text{ W}^{0.7872} \quad r^2 = 0.93 \quad (5-2)$$

where L is water consumption and W is body weight in grams. Similar equations and high correlation coefficients are obtained by combining all data on primates (Figure 5-3: includes data on humans, baboons and monkeys), and laboratory mammals (Figure 5-4: includes data on gerbils, guinea pigs, hamsters, mice, rats, cats, dogs and rabbits). Intraspecies correlations are much lower. Only the allometric relationship for the dog, illustrated in Figure 5-5, has a reasonably high (0.87) correlation coefficient and differs remarkably from the general equation (Eq. 5-2). The studies on dogs by Brown et al. (1984), Golob et al. (1977) and McKeever et al. (1985) are well documented and reasonably consistent with the earlier values given in the secondary sources (Arrington, 1972; Templeton, 1968).

Water consumption for dogs and other species will vary greatly, depending on the moisture content of the chow. Allometric relationships to account for this dependency are given in Chapter 7.

1993A

TABLE 5-2

Species and Group Specific Allometric Relationships for Water Consumption in L/day to Body Weight in kg (W)^a

Animal Group	Allometric Equation	r²	Figure
All species combined	2 = 0.11 W ^{0.7872}	0.93	5-2
Primates	$v = 0.09 W^{0.7945}$	0.95	5-3
Laboratory mammals	$v = 0.10 \text{ W}^{0.7377}$	0.88	5-4
Laboratory rodents	$\chi^b = 0.11 W^{0.7682}$	0.68	NA
Gerbils	$x^b = 0.001W^{-0.546}$	-0.44	NA
Guinea pigs	$\chi^b = 0.11 \text{ W}0.1554$	0.09	NA
Hamsters	$\chi^{b} = 0.06 \ W^{0.6583}$	0.55	NA
Mice	$x^b = 0.04 \text{ W}^{0.4700}$	0.08	NA
Rats	$\chi^{b} = 0.06 \text{ W}^{0.4138}$	0.24	NA
Cats	$\chi a,b = 0.76 \text{ W}-0.886$	-0.36	NA
Dogs	$x^b = 0.004W^{1.6388}$	0.87	5-5
Rabbits	$\chi^b = 0.15 W^{0.5161}$	0.22	NA
Chickens	$\varrho = 0.13 \text{ W}^{0.7555}$	0.74	5-6

 $^{^{\}mathbf{a}}$ If data are available on the diet (dry or moist) use equations on Table 7-2. This is particularly important for dogs and cats.

^bNot recommended for derivng recommended values. Use equation for laboratory mammals.

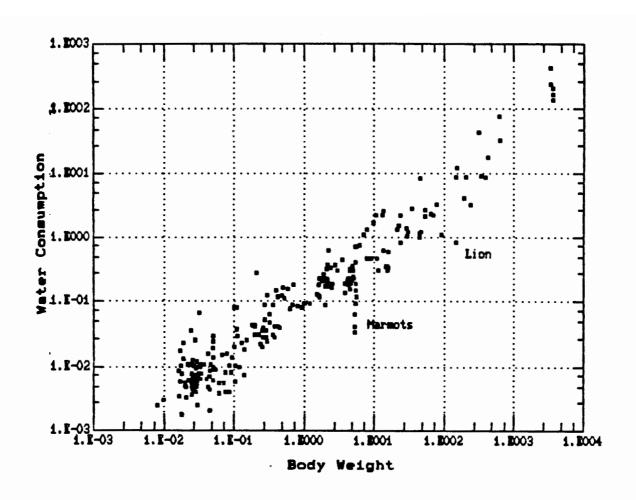
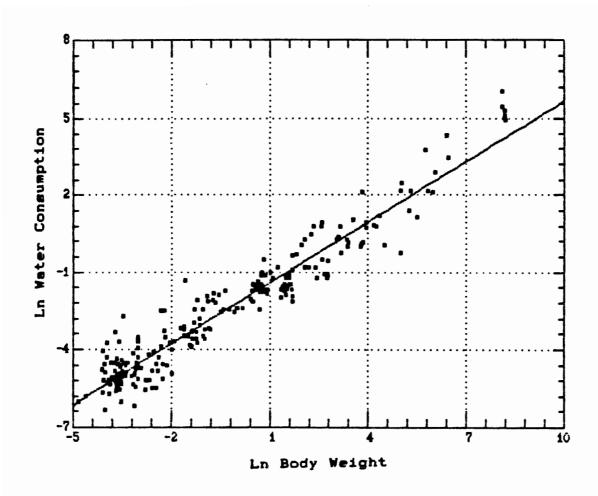
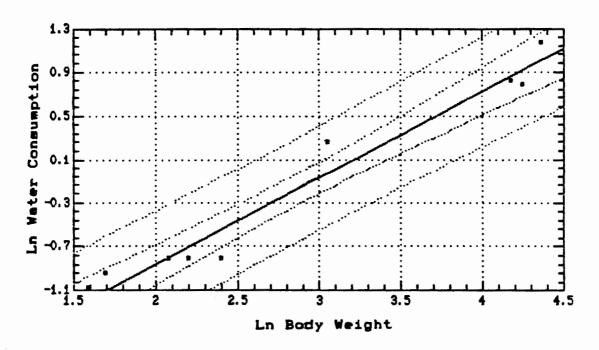
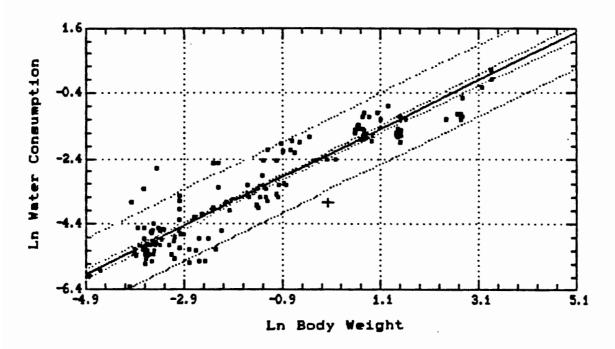


FIGURE 5-1

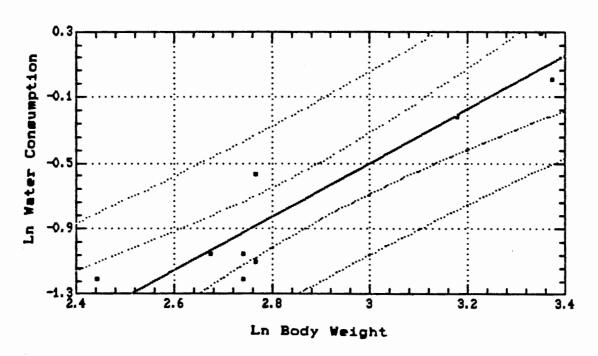
Plot of Water Consumption (1/day) vs. Body Weight (kg) for All Species (See Table 5-1 for points and references)

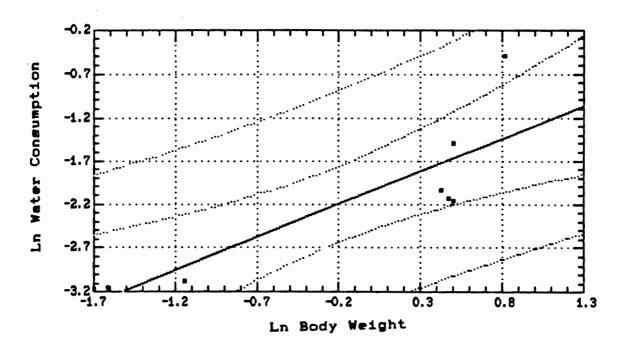

FIGURE 5-2
Allometric Relationship of Drinking Water (1/day) to
Body Weight (kg) for All Species, Except Marmots

BO: -2.4563 SE: 0.18363 T: -13.377 B1: 0.79451 SE: 0.061253 T: 12.971 CORR: 0.97704 MSE: 0.038961 DF: 8

FIGURE 5-3


Allometric Relationship of Drinking Water (1/day) to Body Weight (kg) for Primates

BO: -2.3151 SE: 0.04487 T: -51.597 B1: 0.73769 SE: 0.018525 T: 39.821 CORF: 0.94366 MSE: 0.30081 BF: 195


FIGURE 5-4

Allometric Relationship of Drinking Water (1/day) to Body Weight (kg) for Laboratory Mammals (Gerbils, Guinea Pigs, Hamsters, Mice, Rats, Cats, Dogs and Rabbits).

BO: -5.4193 SE: 0.69934 T: -7.7491 B1: 1.6388 SE: 0.24042 T: 6.8165 CORR: 0.93224 MSE: 0.049184 DF: 7

FIGURE 5-5
Allometric Relationship of Drinking Water (1/day) to Body Weight (kg) for Dogs

BO: -2.0497 SE: 0.18252 T: -11.23 B1: 0.75551 SE: 0.17874 T: 4.2268 CORR: 0.86522 MSE: 0.2545 DF: 6

FIGURE 5-6
Allometric Relationship of Drinking Water (1/day) to Body Weight (kg) for Chickens

FOOD CONSUMPTION

Clear allometric relationships have been demonstrated between metabolic rate and body weight. These have been discussed at some length in both the classic literature (Brody, 1945; Benedict, 1938) and recent publications (Davidson et al., 1986). No allometric equations relating food consumption to body weight, however, were found in the literature. The same factors that affect water consumption rates can affect food consumption (Blundell and Latham, 1979). For instance, Shirley (1984) demonstrated that pregnant or lactating Fischer rats consume about twice the amount of food per day as that consumed by other rats. Because the water content of the diet is inversely related to food consumption, as discussed above, an increase in the water content of the diet may be associated with an increase in food consumption, because food with a high water content has less caloric value than food of comparable quality with a low water content. As discussed below, this may explain an apparent anomalous relationship seen in the food consumption data on cats. Many other examples are available, which suggest that the food consumption of animals will increase as the caloric content of the food decreases (Brody, 1945).

Data on food consumption for a wide variety of animals are summarized in Table 6-1 and plotted in Figure 6-1. Some of the data points were not considered in the derivation of recommended values because they are atypical for the species or other species of similar body weights. The marmots just before hibernation, labeled in Figure 6-1, show a marked decrease in food consumption as well as the decrease in water consumption noted above. One group of cattle from a study by Kertz et al. (1984) is omitted because of an atypically low food consumption not seen in other groups of cattle from the

1994A 6-1 09/03/87

TABLE 6-1

Food Consumption Data on Various Animal Groups

Group	Species	Strain	Sex	No. of Animals	Age (days)	Weight (kg)	Food (kg/day)	Reference	
Primates	human human human		LEZ		adult adult 10 years	58 70 32	0.871 1.305 0.84	Snyder et al., 1981 Snyder et al., 1981 Snyder et al., 1981	
	monkey monkey monkey	rhesus rhesus rhesus	~ ~ E E			8655	0.20 0.20 0.20 0.20	Templeton, 1968 Arrington, 1972 Arrington, 1972 Templeton, 1968	
Laboratory rodents		Mongollan Mongollan Mongollan Mongollan Mongollan	20 M T E T E	20 16-20 20	weaning adult [215]	0.048 0.0587 0.06125 0.075 0.085 0.085	0.005 0.00524 0.00478 0.008 0.008 0.008	Arrington, 1968 McNanus, 1972 Harriman, 1969a Templeton, 1968 Templeton, 1968 Arrington, 1972	
	guinea pig guinea pig guinea pig guinea pig guinea pig	albino short-hair albino short-hair albino short-hair albino short-hair albino short-hair			2 2 3 3 1 2 2 3 2 2 3 2 3 2 3 3 3 3 3 3	0.2 0.11 0.27 0.415 0.48 0.52	0.017 0.025 0.025 0.028 0.031 0.032	Hirsch, 1973 Hirsch, 1973 Hirsch, 1973 Hirsch, 1973 Hirsch, 1973 Hirsch, 1973	
		Duncan-Hartley Duncan-Hartley Duncan-Hartley	<u> </u>	45 45 15	÷÷ ÷	0.2035 0.4425 0.204 1.025	0.0265 0.0265 0.0285 0.045	Shelton, 1971 Shelton, 1971 Shelton, 1971 Arrington, 1972	
	guinea pig guinea pig guinea pig		EE			7: -:	0.045 0.045	Arrington, 1972 Templeton, 1968 Templeton, 1968	
	hamster hamster hamster hamster hamster hamster	Golden Golden Golden Syrian Syrian Syrian	M M M M T T T T T T T T T T T T T T T T	22 22 22 00 00 00	+42 weaning weaning +0-42 +0-42 +0-42	0.07475 0.0417 0.041 0.0474 0.0633 0.0679	0.0069 0.00845 0.00845 0.0051 0.0067 0.0067	Banta et al., 1975 Arrington, 1968 Arrington, 1968 Arrington et al., 1966 Arrington et al., 1966 Arrington et al., 1966	
	hamster	Syrian	-			0.0545	110.0	Templeton, 1968	1

Group	Species	Strain	Sex	No. of Animals	Age (days)	weignt (kg)	rood (kg/day)	Kererence
Laboratory	hamster	Syrtan	<u> </u>			0.1175	0.011	Arrington, 1972
rodents	hamster	Svrjan	=	8	+0-+42	0.05785	0.0055	et al.,
	hamster	Syrtan	= :	€ (+0-+42	0.0652	0.0062	et al.,
	hamster hamster	Syrian Syrian	EE	∞ ∞	+0-+42	0.06/9	0.0067	Arrington et al., 1966 Arrington et al., 1966
	hamster	Syrian	E			0.05125	110.0	Templeton, 1968
	hams ter	Syrian	E			0.1075	110.0	Arrington, 1972
	mouse	Aston	L	13	(80-90)	0.0302	0.0045	Richard and Trayhurn, 1985
	mouse	A/3 A/3	u s	15 15	(100-110)	0.0209	0.0049	Kutscher, 1974 Kutscher, 1974
		1						
	mouse	BALB/c	ш,	4 8	10-7	0.0166	0.00309	Oller et al., 1985
	mouse	BALB/c		8 4 8	+84-91	0.0219	0.00316	et al.,
		BALB/C	- 1	8	+35-42	0.0189	0.00344	et al.,
	Mouse	BAL B/c	. 🗠	48	+14-21	0.018	0.00351	a].
	mouse	BALB/c	 .	15	(100-001)	0.0201	0.0059	Kutscher, 1974
		BAI B/c	=	48	<i>1</i> −0+	0.0197	0.00327	et al.,
	mouse	BALB/c	£	48	L-0+	0.0197	0.00327	et al.
	mouse	BALB/c	Ŧ	48	+35-42	0.0242	0.00346	Oller et al., 1985
	mouse	BALB/c	ш.	15	(011-001)	0.0201	0.0059	Kutscher, 1974
		BAI R/C	=	48	1-0+	0.0197	0.00327	Ξ:
	as nom	BALB/C	Ξ.	4	t-0+	0.0197	0.00327	et al., l
	Mouse	BALB/c	Œ	48	+35-42	0.0242	0.00346	et al.
	mouse	BALB/c	£	48	+84-91	0.0285	0.00349	et al.,
	monse	BALB/c	T :	8	+56-63	0.0256	0.0036	Uller et al., 1985 Oller et al., 1985
	monse	BAL B/c	E	4	17-41+	0.0224	6,600.0	
	mouse	BALB/c	E	15	(100-110)	0.027	0.0068	Kutscher, 1974
	monse	B6C3F1	<u></u>	48	1-0+	0.0163	0.00311	eţ
	mouse	B6C3F1	<u>.</u>	48	+56-63	0.0204	0.0034	et al.,
	monse	B6C3F1	<u></u>	48	+84-93	0.0214	0.00344	et al.,
	mouse	B6C3F1	<u>.</u>	48	+35-42	0.0195	0.00356	٠ ۲
	monse	B6C3F1	<u>.</u>	₩ .	+14-21	0.018	0.0037	
	mouse	B6C3F1	E	20	1-0-1	0.0196	0.00339	יוב אם
	mouse	B6C3F1	E 2	40	+25-45 +56-63	0.0269	0.0036	ָרָרָי ה
	asnom		:	?	•		•	

BEC3F1	Group	Species	Strain	Sex	No. of Animals	Age (days)	Weight (kg)	Food (kg/day)	Reference
Marche CBA	Laboratory rodents	mouse mouse	B6C3F1 B6C3F1	EE	48 48	+84-91 +14-21	0.0287	0.00367	et al., et al.,
Charles River	(cont.)	mouse mouse	CBA CBA	u X	15	(011-001) (011-001)	0.0259 0.031	0.0092 0.008	
Cr.1.CD-1.CR.BR F F 40 182 0.03075 0.0053 Chreadeff et al., 1980 Cr.1.CD-1.CR.BR F 40 546 0.04475 0.0053 Chreadeff et al., 1980 Cr.1.CD-1.CR.BR F 40 546 0.04475 0.0055 Chreadeff et al., 1980 Cr.1.CD-1.CR.BR F 40 546 0.04475 0.0055 Chreadeff et al., 1980 Cr.1.CD-1.CR.BR F 40 546 0.0455 0.005 Chreadeff et al., 1980 Cr.1.CD-1.CR.BR F 40 546 0.0375 0.005 Chreadeff et al., 1980 Cr.1.CD-1.CR.BR F 40 546 0.03375 0.005 Chreadeff et al., 1980 Cr.1.CD-1.CR.BR F 40 546 0.03375 0.005 Chreadeff et al., 1980 Cr.1.CD-1.CR.BR F 40 546 0.03375 0.005 Chreadeff et al., 1980 0.034 Cr.1.CD-1.CR.BR F 15 (100-110) 0.0228 0.005 Chreadeff et al., 1980 0.034 Cr.1.CD-1.CR.BR F 15 (100-110) 0.0223 0.005 Chreadeff et al., 1980 0.034 Cr.1.CD-1.CR.BR F 15 (100-110) 0.0235 0.006 Chreadeff et al., 1940 0.034 Cr.1.CD-1.CR.BR F 15 (100-110) 0.034 0.006 Chreadeff et al., 1940 0.034 Cr.1.CD-1.CR.BR F 15 (100-110) 0.0223 0.006 Chreadeff et al., 1974 0.034 Cr.1.CD-1.CR.BR F 15 (100-110) 0.0324 0.006 Chreadeff et al., 1974 0.034 Cr.2.CR.BR F 15 (100-110) 0.0224 0.006 Chreadeff et al., 1974 0.006 Chreadeff et al.		mouse mouse			7 8	adu]t adu]t	0.0453	0.0055 0.00566	et al., et al.,
C71(CD-1, CR, NR		mouse mouse	Cr1,CD-1,CR,BR Cr1,CD-1,CR,BR	w w 3	40 40 40	182 364 546	0.03075 0.03475 0.04475	0.0052 " 0.00635 0.00565	et al, l
C3H F 15 (100-110) 0.0228 0.0057 Kutscher, 1974 C57B1 N 13-16 30-71 0.0233 0.0029 Hoover-Plow and Nelson, constant in the constant in t		mouse mouse mouse	Cr1,CD-1,CR,BR Cr1,CD-1,CR,BR Cr1,CD-1,1CR,BR	EEL	6 4 4 0 0 0 0	182 364 546	0.0405 0.0455 0.03375	0.0059 0.006 0.0054	et al. l
C57B1 N 13-16 30-71 0.02335 0.0029 Hoover-Plow and Nelson, conditional co		mouse mouse	C3H C3H	·- E	15 15	(011-001) (011-001)	0.0228	0.0057 0.0062	
C57 F 15 (100-110) 0.0223 0.0064 C57 M 15 (100-110) 0.0247 0.0063 DBA F 15 (100-110) 0.0247 0.0063 DBA M 12-16 30-71 0.0309 0.0065 Striped field N 10-15 0.0206 0.0028 SMR F 15 (100-110) 0.0217 0.00346 SMR F 15 (100-110) 0.0223 0.00346 SMR F 15 (100-110) 0.0286 0.0056 White F 8 70 0.0286 0.0056 White F 8 70 0.0286 0.0066 White F 8 70 0.0247 0.0066 White F 8 70 0.0249 0.0066 White M 8 70 0.0249 0.0066 White M 8 70<		mouse	C57B1	z	13-16	30-71	0.02335	0.0029	
I N 12-16 30-71 0.01915 0.0026 striped field N 10-15 0.0206 0.00346 SMR F 15 (100-110) 0.0223 0.00346 SMR F 15 (100-110) 0.0286 0.0055 white F 8 70 0.0286 0.0065 white F 8 105-120 0.0282 0.0065 white F 8 105-120 0.0297 0.0065 white M 8 105-120 0.0297 0.0066 white M 8 105-120 0.0324 0.0066 white M 10-15 0.0289 0.00206 0.0024 yel-neck field N		mouse mouse mouse	C57 C57 DBA DBA	~ E ~ E	15 15 15 15	(100-110) (100-110) (100-110) (110-01)	0.0223 0.0275 0.0247 0.0309	0.0064 0.0072 0.0063 0.0085	
striped field N 10-15 0.0206 0.0034 Drozdz, 1968 SWR F 15 (100-110) 0.0223 0.0056 Kutscher, 1974 SWR M 15 (100-110) 0.0286 0.0056 Kutscher, 1974 white F 8 70 0.0282 0.0065 Chew and Hinegardner, 1974 white F 8 70 0.0282 0.0065 Chew and Hinegardner, 1974 white F 8 70 0.0282 0.0066 Chew and Hinegardner, 1974 white F 8 70 0.0282 0.0066 Chew and Hinegardner, 1974 white M 8 70 0.0297 0.0066 Chew and Hinegardner, 1974 white M 8 105-120 0.0359 0.0066 Chew and Hinegardner, 1974 white M 8 105-120 0.0359 0.0066 Chew and Hinegardner, 1974 white M 8 396 0.0359 0.0066 <		mouse	I	z	12-16	30-71	0.01915	0.0028	Hoover-Plow and Nelson, 1985
SWR F 15 (100-110) 0.0217 0.0056 Kutscher, 1974 White F 8 70 0.0282 0.0059 Chew and Hinegardner, 1974 White F 8 70 0.0282 0.006 Chew and Hinegardner, and Hinegardner, 0.005 White M 8 70 0.0297 0.0066 Chew and Hinegardner, 0.006 White M 8 70 0.0297 0.0066 Chew and Hinegardner, 0.006 White M 8 70 0.0297 0.0066 Chew and Hinegardner, 0.006 White M 8 105-120 0.0324 0.0065 Chew and Hinegardner, 0.006 White M 8 105-120 0.0324 0.0065 Chew and Hinegardner, 0.006 White M 8 105-120 0.0359 0.0073 Chew and Hinegardner, 0.006 Wood N 10-15 0.0259 0.0066 Chew and Hinegardner, 0.006 Wood N 10-15 0.0259 <th< td=""><td></td><td>mouse</td><td>striped field striped field</td><td>zz</td><td>10-15 10-15</td><td></td><td>0.0206</td><td>0.003 0.00346</td><td>Drozdz, 1968 Drozdz, 1968</td></th<>		mouse	striped field striped field	zz	10-15 10-15		0.0206	0.003 0.00346	Drozdz, 1968 Drozdz, 1968
white F 8 70 0.0248 0.0059 Chew and Hinegardner, and Hinegardner, 0.006 white F 8 105-120 0.0282 0.006 Chew and Hinegardner, and Hinegardner, 0.006 white M 8 105-120 0.0297 0.0065 Chew and Hinegardner, and Hinegardner, 0.006 white M 8 105-120 0.0324 0.0068 Chew and Hinegardner, 0.006 white M 8 396 0.0359 0.0073 Chew and Hinegardner, 0.006 wood N 10-15 0.0369 0.0073 Chew and Hinegardner, 0.0073 yel-neck field N 10-15 0.028 0.0073 Chew and Hinegardner, 0.0026 yel-neck field N 10-15 0.028 0.00206 Chew and Hinegardner, 0.0026 yel-neck field N 10-15 0.0279 0.00206 Drozdz, 1968 yel-neck field N 10-15 0.0279 0.0035 Drozdz, 1968		mouse	SWR	u. E	15 15	(011-001) (011-001)	0.0217	0.0056 0.0065	Kutscher, 1974 Kutscher, 1974
white F 8 396 0.0335 0.0066 Chew and Hinegardner, white M 8 70 0.0297 0.0065 Chew and Hinegardner, white M 8 105-120 0.0324 0.0068 Chew and Hinegardner, white M 8 396 0.0324 0.0073 Chew and Hinegardner, wood N 10-15 0.028 0.00206 Drozdz, 1968 yel-neck field N 10-15 0.0279 0.00212 Drozdz, 1968 yel-neck field N 10-15 0.0241 0.0035 Drozdz, 1968		mouse	white	<u></u>	æ æ	70 051_201	0.0248	0.0059	and Hinegardner,
white M 8 105-120 0.0324 0.0068 Chew and Hinegardner, white M 8 396 0.0369 0.0073 Chew and Hinegardner, wood N 10-15 0.02 0.0046 Chmiel and Harrison, I yel-neck field N 10-15 0.0219 0.00212 Drozdz, 1968 yel-neck field N 10-15 0.0279 0.0035 Drozdz, 1968 yel-neck field N 10-15 0.0241 0.0035 Drozdz, 1968		mouse	white		ထထ	396	0.0335	0.0066	and Hinegardner,
wood N 10-15 0.0288 0.0206 Chmiel and Harrison, yel-neck field N 10-15 0.0279 0.00212 0.02d2, 1968 yel-neck field N 10-15 0.0279 0.00212 0.02d2, 1968 yel-neck field N 10-15 0.0241 0.0035 0.02d2, 1968		mouse	white white	EE	ထဆ	105-120 396	0.0324	0.0068	and Hinegardner, and Hinegardner,
yel-neck field N 10-15 0.0268 0.00206 Drozdz, yel-neck field N 10-15 0.0279 0.00212 Drozdz, yel-neck field N 10-15 0.0241 0.0035 Drozdz,		mouse	poor	z			0.05	0.0046	
		mouse mouse		2 Z Z	10-15 10-15 10-15		0.0288 0.0279 0.0241	0.00206 0.00212 0.0035	

			430	Animals	(days)	(kg)	(kg/day)	
Laboratory rodents	mouse		∟ Ξ			0.0265 0.03	0.0045 0.0045	Arrington, 1972 Arrington, 1972
(cont.)	rat	albino	E	14	(80-105)	0.2891	0.0217	Moyer, K.E., 1966
	rat	Fischer 344	L.	120	98-105	0.16695	0.0149	Morrissey and Norred, 1984
	rat rat	kangar oo kangar oo	M&F	44		0.105 0.105	0.0074	Balley, 1923 Balley, 1923
	rat	king	=	75	Ę	0.094	0.00945	Peters and Harper, 1985
	rat	Long-Evans	=	54	913	0.55	0.0208	and Smith,
	rat	Long -Evans	Ŧ	54	160	0.59	0.024	and Smith,
	rat	Long-Evans	E :	54	809	0.575	0.0247	Holloszy and Smith, 1986 Holloszy and Smith 1986
	rat	Long-Evans	E E	54	304	0.45	0.0271	and Smith,
	rat	Sprague-Dawley	ı	13	(1)0	0.2568	0.0122	
	rat	Sprague-Dawley	_	13	8(p1)	0.2525	0.0164	
	rat	Sprague-Dawley	<u>.</u> .	13	21(g)	0.3418	0.01/8	Shirley, 1984
	rat	Sprague-Dawley			(b)) e(a)	0.2498	0.0188	•
	rat	Sprague-Dawley	.	13	4(p1)	0.2559	0.0189	
	rat	Sprague-Dawley	_	13	3(p1)	0.2612	0.0192	
	rat	Sprague-Dawley	. .	E :	6(pl)	0.2585	0.0194	Shirley, 1984
	rat	Sprague-Dawley		<u> </u>	(a) 6	0.2547	0.0202	•
	ביד ביד ביד ביד ביד ביד ביד ביד ביד ביד ביד ביד	Sprague-Dawley		3 2	5(p))	0.2607	0.0205	•
	rat	Sprague-Dawley	_	13	12(g)	0.2638	0.0212	
	rat	Sprague-Dawley	<u></u>	13	15(g)	0.2743	0.0215	Shirley, 1984
	rat	Sprague-Dawley			(1d)2	0.2738	0.0231	Shirley, 1904
	rat	Sprague-Dawley		2 5	2(1)	0.367	0.027	•
	rat	Sprague-Dawley		13	3(1)	0.2576	0.0342	
	rat	Sprague-Dawley	<u>.</u>	13	5(1)	0.2735	0.0431	_
	rat	Sprague-Dawley	_	13	(1)	0.2743	0.0449	_ '
	rat	Sprague-Dawley	L	13	([d)[0.2941	0.0481	
	rat	Sprague-Dawley	<u>.</u> .	<u> </u>	(1)8	0.2763	0.049	Shiriey, 1984
	rat	Sprague-Dawley		<u> </u>	(1)(1	0.2838	0.0525	
	191	Sprague-basics	. 14	<u> </u>	12(1)	0.2818	0.0619	
	rat	Sprague-Dawley	. 止	13	14(1)	0.2945	0.0663	_
	rat	Sprague-Dawley	_	13	15(1)	•	0.0702	٦.
					ווינו	2100	ננטיי	Chirley 109A

Laboratory r rodents r						(Bù)		
	rat rat rat	Sprague-Dawley Sprague-Dawley Sprague-Dawley	<u> </u>	13 13	18(1) 20(1) 21(1)	0.2896 0.2941 0.2917	0.0711 0.0855 0.0944	Shirley, 1984 Shirley, 1984 Shirley, 1984
	rat rat rat	Sprague-Bawley Sprague-Dawley Sprague-Dawley Sprague-Dawley		5000	24-52 24-52 24-52 24-52	0.05 0.05 0.05 0.05	0.008 0.012 0.0136 0.0143	Delorme and Mojcik, 1982 Delorme and Mojcik, 1982 Delorme and Mojcik, 1982 Delorme and Mojcik, 1982
	rat rat rat	Sprague-Dawley Sprague-Dawley Sprague-Dawley		& & &	~180 +6 +12	0.38 0.422 0.442	0.032 ° 0.033 0.036	Grunberg et al., 1984 Grunberg et al., 1984 Grunberg et al., 1984
_	rat		ш			0.29	0.0135	Arrington, 1972
	rat rat rat rat				adult adult adult adult	0.26 0.36 0.26 0.275 0.36	0.019 0.025 0.027 0.08 0.08	Bruce, 1950 Bruce, 1950 Bruce, 1950 Bruce, 1950
_	rat		×			0.375	0.0135	Arrington, 1972
_	rat		z		adult	0.225	0.011	Adolph, 1947
Other call aboratory call aboratory call annuals call call call call call call call c	cat cat cat cat cat	mixed mixed mixed mixed mixed mixed mixed	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		105 270 135 365 165 225 195 395	1.207 2.228 1.577 2.574 1.718 2.175 1.893	0.161 0.192 0.206 0.211 0.216 0.218 0.219	Waterhouse and Carver, 1966
	cat cat cat cat	mixed mixed mixed mixed	EEEEE	12 12 10 5 5	+7 +42 +63 +294 +336	4 4 4 4 2. E. S. O. O.	0.0549 0.0555 0.063 0.0676 0.0681	et al l et al l et al l et al l et al l
	cat cat cat	mixed mixed mixed	EEE	0 B 2	+336 +119 +1 4 7	4 4 4 5 - 5 - 5 - 5 - 5	0.0681 0.0697 0.0727	et al., l et al., l et al., l
3 0	cat cat	mixed	EE	9 15	+245 +21	4. 4.	0.0/38	et al., et al.,
	cat	mixed	££	6. 9	+91 +203	4.4	0.0742	Taton et al., 1984 Taton et al., 1984
, ,	cat	mlxed	æ	• •	+175	4.3	0.0867	et al., l

Other cat laboratory mammals cat (cont.) cat cat cat cat cat dag		M&F	8				Smalley et al., 1985	
		Ľ			0.8843	0.04275		
					3	0.175	Arrington, 1972	
cat cat cat cat		L.			3	0.175	Arrington, 1978	
cat cat cat		Ŀ			3	0.175	Templeton, 1968	
cat cat dog		E			3	0.175	Arrington, 1972	
cat dog		E			3	0.175	Arrington, 1978	
gop		E			3	0.175	Templeton, 1968	
,	beagle	ı			11.5	0.40	Arrington, 1972	
бор	beagle	ı			14.5	0.40	Templeton, 1968	
бор	beagle	E			15.5	0.40	Arrington, 1972	
bop	beagle	E			15.5	0.40	Templeton, 1968	
бор		M&F	8	adult	24	0.36	Brown et al., 1984	
bop		z	-		5.82	1.266	Cowg111, 1928	
rabbit	Dutch Dutch	M&F	24 24	(42-49) (78-85)	0.881 1.4	0.0496	Arrington et al., 1974 Arrington et al., 1974	
rabbit	Dutch	ı	9	+185	2.32	0.063		
rabbit	Dutch	L 1	۰ و	+164	2.3	0.064	Cizek, 1961	
rabbit	Dutch	<u>.</u>	ب ع	0/+	2.13	0.07	(12ek, 1961 (13ek, 1961	
rabbit	Dutch		ی ه	+143	2.28	0.073		
rabbit	Dutch	. 止	و د	[6+	2.19	0.078		
rabbit	Dutch	-	15	+183	2.57	0.0802		
rabbit	Dutch	<u>.</u>	2 <u>.</u>	•	2.5/1	0.0802	Cizek, 1961 Cizek 1961	
rabbit	Dutch	- u	21	135	601.2 1 96	0.0833		
rabbit	Dutch	_ 1	ص ت	449	2.07	0.084	_	
rabbit	Dutch	. 1	9	12+	1.89	0.088	•	
rabbit	Dutch	Ľ.	9	1+1	1.79	0.09	C1zek, 1961	
rabbit	Dutch	T :	9	+175	2.2	0.059	_ '	
rabbit	Dutch	E	٥	+133	2.19	0.063	CIZEK, 1961	

Group	Species	Strain	sex	Animals	(days)	(kg)	(kg/day)	
Other Jaboratory	rabb1t rabb1t	Dutch Dutch	EE	9 21	+154	2.23	0.063	
mammals	rabbit	Dutch	x :	•	[6+	2.23	0.069	
(cont.)	rabbit	Dutch	I 3	ی م	+112 	2.21	0.0/5	C1zek, 1961 C1zek 1961
	rabbit	Dutch	. x	Φ.	+35	2.03	0.078	_
	rabbit	Dutch	=	9	+49	2.16	0.078	
	rabbit	Dutch	I	12	우	1.799	0.0792	
	rabbit	Dutch	= :	φ,	ر ₅₊	1.95	0.084	
	rabbit	Dutch	E	٥	+	16.1	0.08/	C12eK, 1901
	rabbit	New Zealand white	_			2	0.15	Templeton, 1968
	rabbit	New Zealand white	E			4.5	0.15	Templeton, 1968
			L			u	31.0	Arrington 1972
	rabbit		- E			4.5	0.15	Arrington, 1972
	rabblt		I			4.5	0.15	Arrington, 1978
	rabbit		z		~42	_	0.115	and Spreadbury,
	rabbit		z		53	1.5	0.143	
	rabbit		z		-63	7	0.100	DAVIUSON and Spreaduury, 1975
Livestock	cattle	но,н,1∟	=	12		313	8.20	Becker et al., 1985
	cattle	Holstein	14	7		3619	131	Atkeson and Warren, 1934
	cattle	Holstein	<u>. </u>	7		3330	133.70	Warren,
	cattle	Holstein		7		3330	185	and
	cattle	Holstein	<u></u>	7		3605	29.10	Atkeson and Warren, 1934
	cattle	several	=	many	(98-126)	94	3.04	et al.,
	cattle	several	I	many	(126-154)	Ξ	4.14	et al., l
	cattle	several	I	many	(154-162)	133	5.29	et al., l
	cattle	several	I	many	(162-210)	159	6.25	et al., l
	cattle	several	Ŧ	many	(210-238)	184	6.94	et al., l
	cattle	several	= :	many	(238-266)	210	7.32	et al.,]
	cattle	several	= :	many	(266-294)	233	1.64	et al
	cattle	several	E :	many	(228-822)	957	o c	et al
	cattle	several	E 3	A DE	(355-358)	9/2	67.6	
	21116	several	: =	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(378-406)	319	8.64	et al
	cattle	several	.	A UPIL	(406-434)	338	8.86	et al
	cattle	several	=	many	(434-462)	358	6	et al.,
		coveral	=	200	1462 4901	376	V U 0	Tavlor of al 1986

Livestock cattle (cont.) cattle cat	5	Species	Strain	Sex	No. of Animals	Age (days)	Weight (kg)	Food (kg/day)	Reference
cattle chicken chic	ivestock (cont.)	cattle		22	50 20	18 25	44.11 47.2	0.14	Kertz et al., 1984 Kertz et al., 1984
cattle cattle cattle cattle cattle cattle cattle chicken chick		cattle		z	20	31	52.65	1.01	Kertz et al., 1984
cattle cattle cattle cattle chicken ch		cattle		z			12	3.825	et al.,
cattle chicken Ross broiler ch		cattle		z 2			36 A5	4.30 5.05	: :
chicken Ross broiler chicken white cross pig white cross pig white cross pig white cross pig white cross sheep sheep sheep sheep sheep		cattle		zz			55	5.40	et al
chicken Ross broiler chicken R		chicken		E	က	7	0.164	0.0157	et al.,
chicken Ross broiler pig white cross pig theep sheep		chicken		= :	က	14	0.334	0.0207	et al.,
chicken Ross broiler pig white cross pig ferret domestic		chicken		. .	m m	21	0.765	0.0/14	Prescott et al., 1965 Prescott et al., 1985
chicken Ross broiler pig white cross pig white cr		chicken		. .	ာ က	32	1.539	0.1243	et al.,
chicken Ross broiler pig white cross pig there white cross pig white cross		chicken		Œ	3	42	1.778	•	et al.,
chicken Ross broiler pig white cross		chicken		= :	က	49	2.334	0.1629	et al
chicken Ross broiler pig white cross pig theep		chicken		.	c.	63	3.254	0.2129	
chicken Ross broiler chicken Ross broiler chicken Ross broiler chicken Ross broiler pig white cross pig theep		chicken		C Z	o er	. 6	4.73		et al
chicken Ross broiler chicken Ross broiler chicken Ross broiler pig white cross pig theep		chicken		: =	က	105	5.46		et al., l
chicken Ross broiler chicken Ross broiler pig cross-bred pig white cross pig theep sheep sheep sheep sheep		chicken		E	3	9119	5.758		et al.,
chicken Ross broiler pig white cross pig theep sheep sheep sheep ferret domestic		chicken		E:	က	140	•	•	e -
pig cross-bred pig white cross sheep sheep sheep ferret domestic		chicken		T	2	191	6.5	0.3905	Frescott et al., 1903
pig white cross sheep sheep sheep sheep ferret domestic		pig	cross-bred	E	24		31.3	1.4415	Asche et al., 1986
pig white cross sheep sheep sheep sheep ferret domestic		pla	white cross	Z	15	28	5.49	0.164	et al., l
pig white cross sheep sheep sheep sheep ferret domestic ferret domestic		plg		Z	.	28	6.15	•	et al.,]
pig white cross sheep sheep sheep sheep ferret domestic ferret domestic		plg		Z	<u>.</u>	35	7.15	0.34	et a
pig white cross pig white cross pig white cross pig white cross sheep sheep sheep sheep ferret domestic ferret domestic		big	white cross	z 2	<u>.</u> .	32	96.1 77.0	0.35/	Brooks of all 1984
pig white cross plg white cross sheep sheep sheep ferret domestic ferret domestic		plg		2 2	2.2	42	10.6		et al
sheep sheep sheep sheep sheep sheep sheep ferret domestic ferret domestic		5 10		Z	. 5	42	13.6		et al., l
sheep sheep sheep ferret domestic ferret domestic		p1g		z	51	49	13.06	0.762	et al
sheep sheep ferret domestic ferret domestic		sheep		z		newly weaned	31.5	0.575	et al.,
Sneep ferret domestic ferret domestic		sheep		Z 2		growing	4 5	0.75	Lane-Peter et al., 1907 Lane-Peter et al., 1967
ferret domestic		sneep		E		Sil Mo IS	3	5.	•
	1)d]jfe	ferret ferret	domestic domestic	w E		adult adult	0.675 2.025	0.168 0.168	Moody et al., 1985 Moody et al., 1985
				,	,		f		
hyena		hyena					58	2.44 4.88	Green et al., 1904 Green et al., 1984
hyena		hyena		. Ξ	_		38	4.05	et al.,

Group	Spectes	Strain	Sex	No. of Animals	Age (days)	Weight (kg)	Food (kg/day)	Reference
Wildlife	koala		M&F			9.5	0.5105	Nagy and Martin, 1985
(cont.)	Jion		<u></u>	_		149	6.12	Green et al., 1984
] ton		I	-		193	5.06	et al.,
	lion		Ŧ	_		16	6.53	Green et al., 1984
	marmot	yellow-bellied	Lân.	6	+14	3.81	0.0799	:
	marmot	yellow-bellied	<u>.</u>	6	+28	3.86	0.1012	et al.,
	marmot	yellow-bellied	Ŧ.	6 1	+175	5.32	0.0198	et al.,
	marmot	yellow-bellied	T 2	σ.	+168	5.33	0.0329	et al.,
	marmot	yellow-bellied	E 3	a	+154 140	5.29 5.46	0.057	Zatzman et al., 1984 Zatzman et al 1984
	marmot marmot	yellow-bellled	E E	n o	+140	. v.	0.0816	et al.;
	marmot	yellow-bellied	: z	, 6 1	+112	5.45	0.0928	et al.,
	marmot	yellow-bellied	I	6	86+	5.39	0.1049	et al.,
	marmot	yellow-bellied	Ŧ	o	+42	4.62	0.1086	et al.,
	marmot	yellow-bellied	T:	o n (+ 2 6	4.76	0.1178	et al.,
	marmot	yellow-bellied	E 2	5 0	0/+	4.95 5.05	0.122	Zatzman et al., 1984 Zatzman of al. 1984
	marimot	yerrow-berried	E	'n	† 0+		0.166	מו פויי
	mink		I	₹		1.613	0.042	Eriksson et al., 1984
	nutria		æ		adult	8	1.35	Lane-Peter et al., 1967
	shrew	c ommon	2			0.008	0.0008	Chmiel and Harrison, 1981
	vole	bank	Z	10-15		0.0227	0.00192	
	vole vole	bank bank	z z	10-15 10-15		$0.0231 \\ 0.0229$	0.00226 0.0034	Drozdz, 1968 Drozdz, 1968
	vole	bank	z			0.05	0.0055	Chmiel and Harrison, 1981
	vole	bank	z	0-15		0.0224	0.00183	
	vole vole	COMMON	z z	0-15 0-15		0.0226 0.0218	0.00424 0.0025	Drozdz, 1968 Drozdz, 1968
Other	lectrol	Firestan	Z	_	-1200	0.179	0.01	Campbell and Koplin, 1986
0.1161	[A0	screech	z	-	~300	0.169	0.0086	and Koplin,
	turkey	Amerine, Nichola	I	40,40	294,329	13.4	0.372	Parker et al., 1972

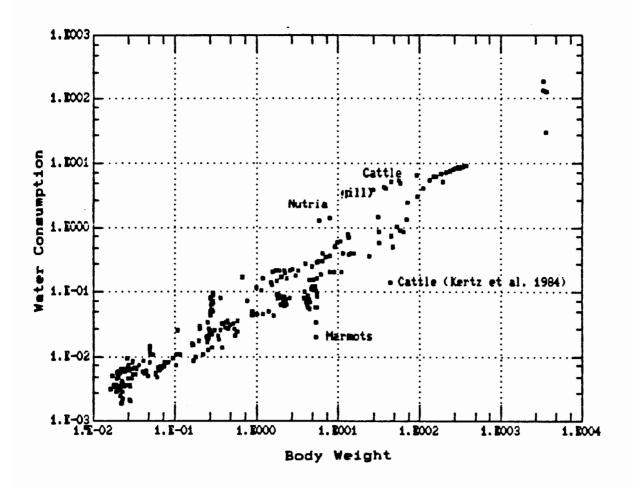
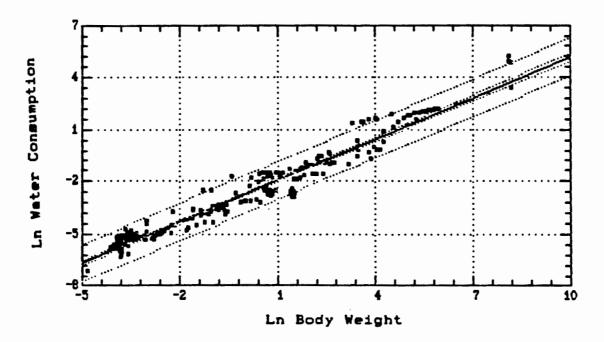


FIGURE 6-1

Plot of Food Consumption (kg/day) vs.
Body Weight (kg) for All Species

(See Table 6-1 for points and references)

study, or in cattle from other studies. The Nutria (Lane-Peter et al., 1967) and one dog studied by Cowgill (1928) also are eliminated from subsequent statistical analyses as atypical. Although not apparent in Figure 6-1, the food consumption values for hamsters, reported by Arrington (1968) and Templeton (1968), vary markedly from other reports. The only other data excluded from the analyses are data on pregnant and lactating rats reported by Shirley (1984). The effect of these exclusions can be seen by comparing Figure 6-10 with Figure 6-11.


With these exclusions, the general allometric relationship of food consumption to body weight is illustrated in Figure 6-2. This and similar relationships for subgroups of animals and species are summarized in Table 6-2 and Figures 6-3 to 6-14. The allometric equation for all species combined is as follows:

$$F = 0.065 \text{ W}^{0.7919} \quad r^2 = 0.95 \quad (6-1)$$

where W is body weight and F is daily food consumption, both in kilograms. The slope function of this equation is similar to those for both inhalation rates (0.7579) (see Eq. 4-1) and drinking rates (0.7872) (see Eq. 5-1). This similarity is most likely related to the slope function for metabolic rate estimated at 0.76 (Benedict, 1938).

The negative correlations for both dogs and cats are probably artifacts of different diets. This is clearly the case for cats for which two primary studies, Waterhouse and Carver (1966) and Taton et al. (1984), are available. In the study by Taton et al. (1984), cats received a dry diet, and in the study by Waterhouse and Carver (1966) cats received a canned, moist diet. The cats in the study by Taton et al. (1984) were larger but consumed substantially less food than the cats in the study by Waterhouse and Carver (1966), which resulted in a negative slope (see Figure 4-12). In each

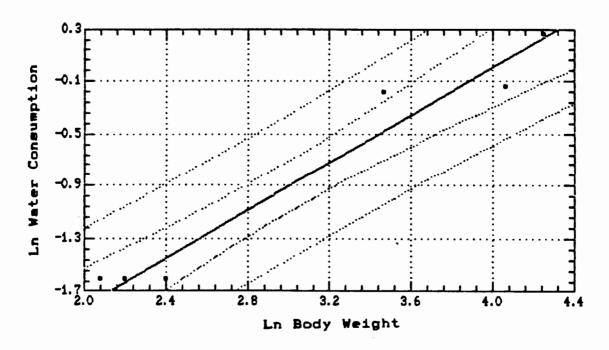
1994A 6-12 09/03/87

BO: -2.736 SE: 0.033886 T: -80.742 B1: 0.7919 SE: 0.011209 T: 70.65 CORR: 0.97512 MSE: 0.29743 DF: 258

FIGURE 6-2
Allometric Relationship of Food Consumption (kg/day) to Body Weight (kg) for All Species, Except Marmots

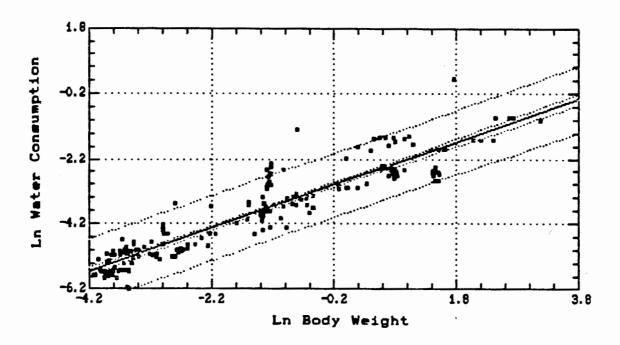
TABLE 6-2

Species and Group Specific Allometric Relationships for Food Consumption in kg/day (F) to Body Weight in kg (W)


Animal Group	Allometric Equation	r²	Figure
All species combined	$F = 0.065 \text{ W}^{0.7919}$	0.95	6-2
Primates	$F^{a} = 0.026 \text{ W}^{0.9142}$	0.95	6-3
Laboratory mammals	$F = 0.056 \text{ W}^{0.6611}$	0.87	6-4
Laboratory rodents	$F^{b} = 0.060 \text{ w}^{0.6917}$	0.82	6-5
Gerbils	F = 0.112 W1.0583	0.80	6-6
Guinea Pigs	$F = 0.041 \text{ W}^{0.3308}$	0.75	6-7
Hamsters	$F = 0.082 \text{ W}^{0.9285}$	0.96	6-8
Mice	$F^{C} = 0.064 \text{ W}^{0.7242}$	0.27	6-9
Rats	$F^{C} = 0.040 \text{ W} 0.4790$	0.40	6-11
Cats	$F^{C} = 0.215 \text{ W} - 0.581$	-0.22	6-12
Dogs	$F^{C} = 5.13 \text{ W} - 0.918$	-0.81	NA
Rabbits	$F = 0.041 \text{ W}^{0.7898}$	0.73	6-13
Chickens	$F = 0.075 \text{ W}^{0.8449}$	0.97	6-14

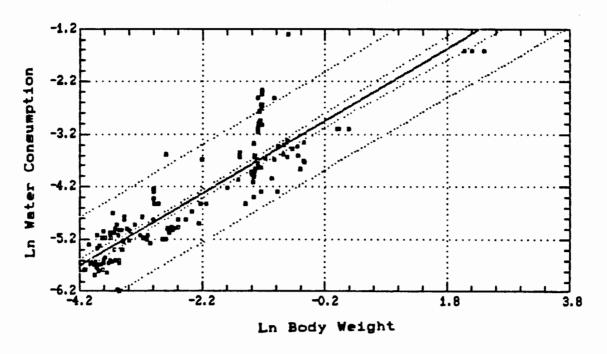
^aNot recommended for calculating values. Use equation for all species combined.

NA = Not applicable


bNot recommended for calculating values. Included for comparison only.

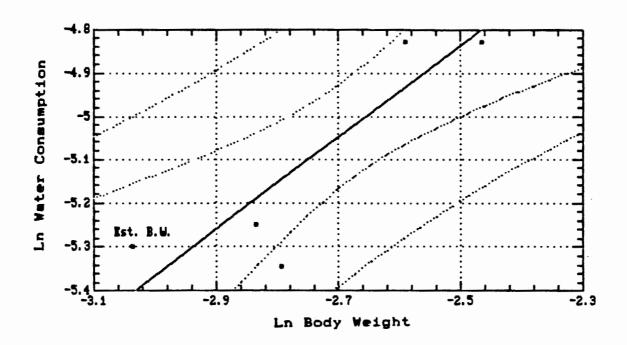
^CNot recommended for calculating values. Use equation for laboratory mammals.

BO: -3.6488 SE: 0.27537 T: -13.251 B1: 0.91415 SE: 0.088875 T: 10.286 CORR: 0.97718 MSE: 0.040392 DF: 5

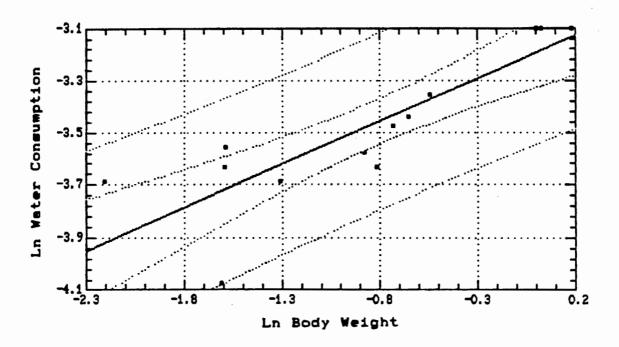

FIGURE 6-3
Allometric Relationship of Food Consumption (kg/day) to Body Weight (kg) for Primates

BO: -2.8899 SE: 0.039751 T: -72.699 B1: 0.66106 SE: 0.016814 T: 39.315 CORR: 0.9351 MSE: 0.25136 DF: 222

FIGURE 6-4


Allometric Relationship of Food Consumption (kg/day) to Body Weight (kg) for Laboratory Mammals (Gerbils, Guinea Pigs, Hamsters, Mice, Rats, Cats, Dogs and Rabbits).

B0: -2.809 SE: 0.072298 T: -38.853 B1: 0.6917 SE: 0.026617 T: 25.987 CORR: 0.90293 MSE: 0.21881 DF: 153


FIGURE 6-5

Allometric Relationship of Food Consumption (kg/day) to Body Weight (kg) for Laboratory Rodents (Gerbils, Guinea Pigs, Hamsters, Mice and Rats)

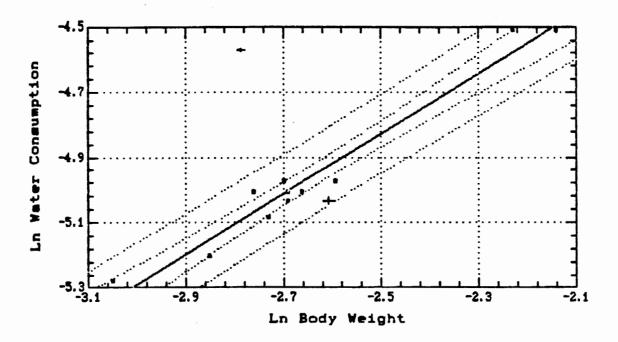

BO: -2.1909 SE: 0.63865 T: -3.4305 Bi: 1.0583 SE: 0.23747 T: 4.4566 CORR: 0.8938 MSE: 0.015361 DF: 5

FIGURE 6-6
Allometric Relationship of Food Consumption (kg/day) to Body Weight (kg) for Gerbils

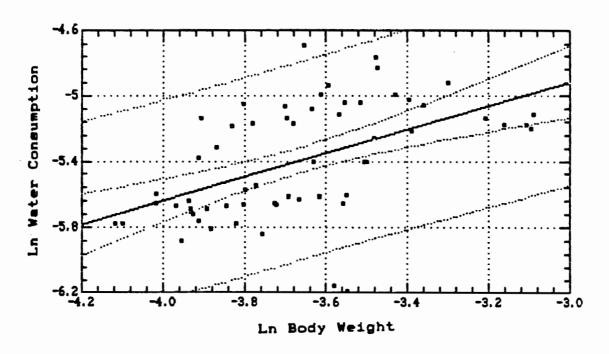

BO: -3.1929 SE: 0.060604 T: -52.685 B1: 0.33077 SE: 0.054986 T: 6.0155 CORR: 0.86658 MSE: 0.02263 DF: 12

FIGURE 6-7
Allometric Relationship of Food Consumption (kg/day) to Body Weight (kg) for Guinea Pigs

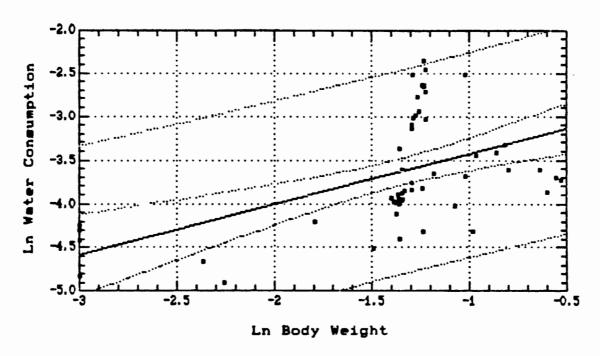
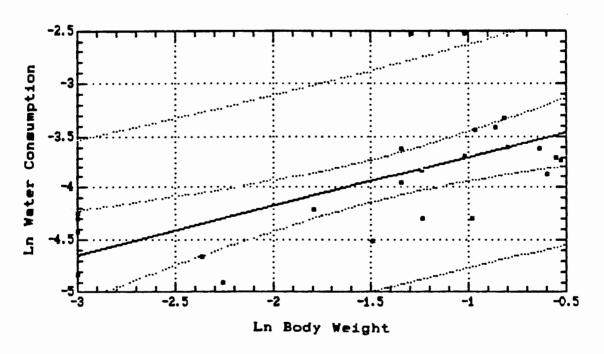

B0: -2.5069 SE: 0.16645 T: -15.061 B1: 0.9285 SE: 0.062665 T: 14.817 CORR: 0.98011 MSE: 2.5965E-3 DF: 9

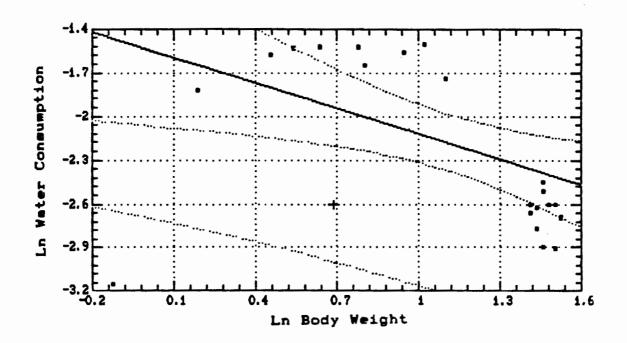
FIGURE 6-8
Allometric Relationship of Food Consumption (kg/day)
to Body Weight (kg) for Hamsters

BO: -2.7418 SE: 0.56827 T: -4.8249 B1: 0.72423 SE: 0.15466 T: 4.6828 CORE: 0.52379 MSE: 0.089148 DF: 58


FIGURE 6-9
Allometric Relationship of Food Consumption (kg/day) to Body Weight (kg) for Mice

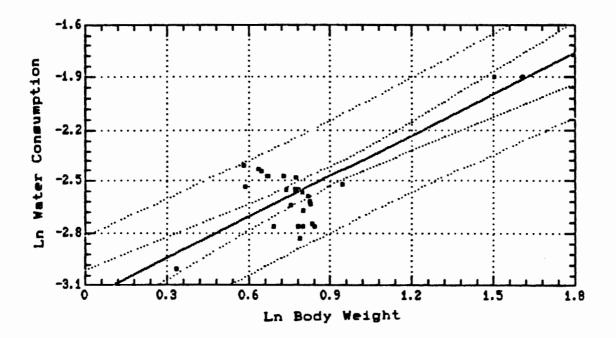
B0: -2.8561 SE: 0.20583 T: -13.876 B1: 0.57843 SE: 0.13754 T: 4.2056 CORR: 0.50022 MSE: 0.33354 DF: 53

FIGURE 6-10

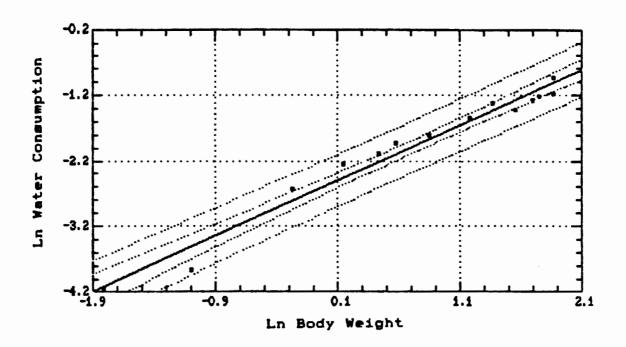

Allometric Relationship of Food Consumption (kg/day) to Body Weight (kg) for Rats, Including Pregnant and Lactating Animals

BO: -3.2218 SE: 0.20874 T: -15.434 B1: 0.47897 SE: 0.1223 T: 3.9162 CORR: 0.63249 MSE: 0.25313 DF: 23

FIGURE 6-11


Allometric Relationship of Food Consumption (kg/day) to Body Weight (kg) for Rats, Excluding Pregnant and Lactating Animals

B0: -1.5356 SE: 0.25803 T: -5.9514 B1: -0.58062 SE: 0.21704 T: -2.6751 CORR: -0.46458 MSE: 0.25019 DF: 26


FIGURE 6-12

Allometric Relationship of Food Consumption (kg/day) to Body Weight (kg) for Cats

BO: -3.1835 SE: 0.083168 T: -38.278 B1: 0.78978 SE: 0.089449 T: 8.8294 CORR: 0.85374 MSE: 0.024701 DF: 29

FIGURE 6-13
Allometric Relationship of Food Consumption (kg/day) to Body Weight (kg) for Rabbits

B0: -2.5857 SE: 0.055963 T: -46.204 B1: 0.8449 SE: 0.042365 T: 19.943 CORE: 0.98525 MSE: 0.030718 DF: 12

FIGURE 6-14
Allometric Relationship of Food Consumption (kg/day)
to Body Weight (kg) for Chickens

study, both of which were conducted on animals with a relatively small range of weights, no marked correlation is apparent between body weight and food consumption. The narrow range of weights in the available data on dogs (kinds of diets not specified) may also be a factor in the apparent negative correlation for this species.

As with the data on water consumption, the data on the food consumption of rats and mice yield a low correlation coefficient in the allometric model. The equation for mice, nonetheless, is virtually identical to that for all species combined.

The data on primates are limited and do not seem to justify a departure from the standard allometric function given in Equation 6-1.

For the reasons discussed above, the equations given in Table 6-2 for primates, mice, rats, cats and dogs are not recommended for deriving reference values. For these animals, Equation 6-1 should be used. For gerbils, guinea pigs, hamsters, rabbits and chickens, the corresponding equations given in Table 6-2 should be used. This is not to suggest that these species are likely to differ substantially from others in food consumption patterns, but simply that the species-specific equations more accurately reflect the available data on these species.

As with water consumption, consideration should be given to the water content of the diet, as detailed in Chapter 7.

The same of the sa

7. INTERRELATIONSHIPS BETWEEN FOOD AND WATER CONSUMPTION

As noted in Chapters 5 and 6, the moisture content of the diet is inversely related to the amount of water consumed because of the decreased requirement for free water when consuming diets with a high water content. Water consumption is directly related to the amount of food consumed because of the decreased caloric content of diets with a high moisture content. These relationships have not been extensively quantified, although several studies indicate the importance of this relationship in maintaining water balance (Atkeson and Warren, 1934; Green et al., 1984; Waterhouse and Carver, 1966). In addition to the interdependence of food and water consumption on dietary water, many studies have noted the positive correlation between food and water consumption at constant levels of dietary water in normal animals as well as in physiologically atypical animals (i.e., pregnant, lactating, pre-hibernating). Changes in food consumption patterns, regardless of the basis for the increase or decrease in food consumption, are generally paralleled by corresponding changes in water consumption.

Studies that reported both food consumption and water consumption data are summarized in Table 7-1, and the relationship of food consumption to water consumption is plotted in Figure 7-1. In this figure, more so than in the previous figures on food or water consumption versus body weight, the effect of dietary moisture on food and water consumption is apparent. Most of the points that are labeled and show a general shift to the left (increased food consumption relative to water consumption) are for animals on a high moisture diet. The points for dogs are taken from sources that do not specify the kind of diet used. For the other points, diets of the carnivores [mink, cats in the study by Waterhouse and Carver (1966), ferrets, and

1995**A** 7-1 09/03/87

TABLE 7-1 Food and Mater Consumption of Various Animal Groups

Group	Species	Strain	Sex	Weight (kg)	Food (kg/day)	Water (1/day)	Reference
Primates	monkey	rhesus	Ŧ	8	0.2	0.45	Templeton, 1968
	monkey monkey	rhesus rhesus	w. £	و الا	0.2	0.45 0.45	Arrington, 1972 Arrington, 1972
	monkey	rhesus	£	Ξ	0.2	0.45	Templeton, 1968
Laboratory	gerbil	Mongolian	M&F	0.06125	0.00477	0.0038	Harriman, 1969a
Sales of the sales	gerbil	Mongolian	M&F	0.06125	0.00545	0.00565	McManus, 1972
	gerbil gerbil	Mongolian Mongolian	w. E	0.075 0.085	0.008	0.004	Templeton, 1968 Templeton, 1968
	gerbil gerbil		u. 2	0.075 0.085	0.008	0.004	Arrington, 1972 Arrington, 1972
		short-h short-h short-h short-h short-h	*****	0.27 0.27 0.415 0.48	0.017 0.025 0.028 0.031	0.04 0.08 0.052 0.12 0.12	Hirsch, 1973 Hirsch, 1973 Hirsch, 1973 Hirsch, 1973 Hirsch, 1973
	guinea pig guinea pig guinea pig		- L	1.025 1.2	0.045 0.045	0.09	Arrington, 1972 Arrington, 1972 Arrington, 1972
	guinea pig guinea pig hamster	Syrlan	 £	1 1.2 0.0545	0.045 0.045 0.011	0.09 0.09 0.009	Templeton, 1968 Templeton, 1968 Templeton, 1968
	hamster	Syrlan	-	0.1175	0.011	0.01	Arrington, 1972
	hamster	Syrlan	£	0.05125	110.0	0.009	Templeton, 1968
	hamster	Syrian		0.1075	110.0	0.01	Arrington, 1972
	mouse mouse mouse mouse	A/3 A/3 BALB/c BALB/c CBA	~ E ~ £ ~ 1	0.0209 0.0252 0.0201 0.027	0.0049 0.0057 0.0059 0.0068 0.0092	0.0047 0.0049 0.0056 0.0048	
	mouse	CBA	=	0.031	0.008	0.00/1	Kutscher, 1974

1995A

7-2

08/17/87

Laboratory rodents (cont.)							
(cont.)	mouse	Charles River Charles River	==	0.0453	0.0055	0.0043	Delacey et al., 1975 Delacey et al., 1975
	mouse	Crl,CD-1,CR,BR Crl,CD-1,CR,BR	<u></u>	0.03075	0.0052	0.0063	et al., et al.,
	mouse mouse	Cr1,CO-1,CR,BR Cr1,CO-1,CR,BR	EE	0.04475 0.0405	0.00565	0.00715	et al., l et al., l
	mouse mouse	Cr1,CO-1,CR,BR Cr1,CO-1,1CR,BR	S . L.	0.0455 0.03375	0.006	0.00835	Chvedoff et al., 1980 Chvedoff et al., 1980
	mouse	C3H	- :	0.0228	0.0057	0.0062	Kutscher, 1974
	mouse	C3H C57	E 14	0.0264	0.0064	0.0062	
	mouse	C57 08A	T 4	0.0275	0.0072	0.0066	Kutscher, 1974 Kutscher, 1974
	mouse	08A	. z .	0.0309	0.0085	0.0078	
	mouse mouse	SWR SWR	- T	0.021/	0.0065	0.0094	Kutscher, 1974 Kutscher, 1974
	mouse	white	<u>u</u>	0.0248	0.0059		and
	mouse	white	.	0.0282	0.006	0.0096	and Hinegardner,
	mouse	white	- ≖	0.0335	0.0065	0.0121	thew and Hinegardner, 1957 Chew and Hinegardner, 1957
	mouse	white	EE	0.0324	0.0068	0.0109 0.0106	Chew and Hinegardner, 1957 Chew and Hinegardner, 1957
	mouse		u_ T	0.0265	0.0045	0.0055	Arrington, 1972 Arrington, 1972
	rat	albino	r	0.2891	0.0217	0.0354	Moyer, 1966
	rat	Charles River	<u>.</u>	N.S	0.05	0.0316	et al.,
	rat		<u> 3</u>	S S	0.0319	0.0244	Robinson et al., 1981
	rat	Charles River	c z	S S	0.0174	0.0269	et al
	rat		=	SN	0.0317	0.0439	et al.,
	rat	F344	L L	NS	0.0104	0.015	et al.,
	rat	F344	<u>ш</u> 2	S	0.0105	0.0151	et al.,
	rat rat	F344 F344	EE	N S N	0.0169	0.0214	Depass et al., 1903 Depass et al., 1983
	rat	kangaroo	M&F	0.105	0.0074	0.0058	Bailey, 1923

Group	Species	E PJJC	×	(kg)	(kg/day)	(£/day)	
Laboratory rodents (cont.)	rat rat rat	Sprague-Dawley Sprague-Dawley Sprague-Dawley Sprague-Dawley	EFFF	0.05 0.05 0.05 0.05	0.008 0.012 0.0136 0.0143	0.0136 0.0242 0.0289 0.019	Delorme and Wojcik, 1982 Delorme and Wojcik, 1982 Delorme and Wojcik, 1982 Delorme and Wojcik, 1982
	rat rat rat	Sprague-Dawley Sprague-Dawley Sprague-Dawley	FFF	0.38 0.422 0.442	0.032 0.033 0.036	0.04 0.041 0.039	Grunberg et al., 1984 Grunberg et al., 1984 Grunberg et al., 1984
	rat	Wistar	Ľ	S	0.0156	0.0325	Borzelleca et al., 1964
	rat		<u>.</u>	0.29	0.0135	0.0275	Arrington, 1972
	rat rat rat			0.26 0.36 0.26 0.275 0.36	0.019 0.025 0.027 0.08 0.08	0.028 0.03 0.038 0.085 0.085	Bruce, 1950 Bruce, 1950 Bruce, 1950 Bruce, 1950 Bruce, 1950
	rat rat rat		EEEEE	<u> </u>	0.0057 0.0078 0.008 0.0081 0.0082	0.0117 0.0239 0.0248 0.0282 0.0193	Granados, 1951 Granados, 1951 Granados, 1951 Granados, 1951
	rat rat		EE	NS NS	0.0097	0.0268 0.0304	Granados, 1951 Granados, 1951
	rat		=	0.375	0.0135	0.0275	Arrington, 1972
	rat		SN	0.225	0.011	0.031	Adolph, 1947
Other Jaboratory	cat	mlxed mlxed	E E 2	4 4 4 6 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.0549	0.1526 0.1772	et al
mamma 1 s	cat cat	mixed	E 22 3	4.6	0.0676	0.1863	::
	cat cat	mixed	c e	. 4 0. 4	0.0681	0.2199	et al., l
	cat	mixed	e e	4.7	0.0697 0.0727	0.2001 0.1877	Taton et al., 1984 Taton et al., 1984
	cat	mixed	: =	4.5	0.0738	0.207	et al., l
	cat	mixed	T:	4.4	0.0739	0.1822	Taton et al., 1984 Taton et al., 1984
	cat	mixed	c s c	- 6.	0.0808	0.206	et al., l
	, ,	1000	=	~ •	0.0867	722 U	Taton et al. 1984

Group	Species	Strain	x sex	(kg)	(kg/day)	(r/day)		
Other Jaboratory	cat		3.5. 7.5.	2.03 4 2.9	0.219 0.23	0.0067 0.0168	Waterhouse and Carver, Waterhouse and Carver,	. 1966 . 1966
mammals (cont.)	cat			ဗ	0.175	0.3	Arrington, 1972	
	cat		<u></u>	8	0.175	0.3	Arrington, 1978	
	cat		<u></u>	ဗ	0.175	0.3	Templeton, 1968	
	cat		Œ		0.175	0.3	Arrington, 1972	
	cat		±	3	0.175	0.3	Arrington, 1978	
	cat		æ	က	0.175	0.3	Templeton, 1968	
	6op	beagle beagle	 .	11.5 14.5	0.4	0.3 0.35	Arrington, 1972 Templeton, 1968	
	gob	beagle	£	15.5	4.0	0.3	Arrington, 1972	
	bop	beagle	æ	15.5	4.0	0.35	Templeton, 1968	
	bop		M&F	24	0.36	8.0	Brown et al., 1984	
	rabbit	Dutch	<u></u>	2.32	0.063	0.174	Cizek, 1961 Cizek, 1961	
	rabbit rabbit	Dutch		2.13	0.07	0.185		
	rabbit	Dutch	<u></u>	2.29	0.072	0.185	Cizek, 1961 Cizek, 1961	
	rabbit rabbit	Dutch		2.19	0.078	0.195	_	
	rabbit	Dutch	 .	2.571	0.0802	0.187	Cizek, 1961 Cizek 1961	
	rabbit	Dutch		2.165	0.0833	0.219		
	rabbit	Dutch	 .	1.96	0.084	0.226	Cizek, 1961 Cizek, 1961	
	rabbit	Dutch		1.89	0.088	0.225	_	
	rabbit	Dutch		1.79	0.09	0.22	_ '	
	rabbit	Dutch	x :	2.2	0.059	0.169	Cizek, 1961 Cizek, 1961	
	rabbit	Dutch	c s c	2.23	0.063	0.17	_	
	rabbit	Dutch	æ	2.002	0.0632	0.166		
	rabbit	Dutch	x:	2.23	0.069	0.19	Cizek, 1961 Cizek, 1961	
	rabbit	Dutch	r #0	2.22	0.073	0.185		
	rabbit	Dutch	x	5.09	0.078	0.225	Clzek, 1961	

Group	Spectes	Strain	Sex	Welght (kg)	Food (kg/day)	Mater (1/day)	Reference
Other laboratory mammals (cont.)	rabbit rabbit rabbit rabbit	Dutch Dutch Dutch Dutch	EEEE	2.16 1.799 1.95 1.91	0.078 0.0792 0.084 0.087	0.21 0.202 0.224 0.255	Cizek, 1961 Cizek, 1961 Cizek, 1961 Cizek, 1961
	rabbit rabbit	New Zealand white New Zealand white	w E	5 4.5	0.15 0.15	0.3	Templeton, 1968 Templeton, 1968
	rabbit rabbit		u. E	5 4.5	0.15 0.15	0.3	Arrington, 1972 Arrington, 1972
	rabbit		=	4.5	0.15	0.3	Arrington, 1978
Livestock	cattle	но,н,ть	E	3136	8.2	43.1	Becker et al., 1985
	cattle cattle cattle	holstein holstein holstein holstein		3619 3330 3330 3605	131 133.7 185 29.1	162 241.6 422 205	Atkeson and Warren, 1934 Atkeson and Warren, 1934 Atkeson and Warren, 1934 Atkeson and Warren, 1934
	cattle cattle cattle		SSS	44.11 47.2 52.65	0.14 0.5 1.01	1 1.18 2.59	Kertz et al., 1984 Kertz et al., 1984 Kertz et al., 1984
	514 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	white cross	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5.49 6.15 7.15 7.99 9.77 10.6 13.6	0.164 0.187 0.34 0.357 0.567 0.594 0.704	0.71 0.74 1.09 1.63 2.16 2.58 2.15	Brooks et al., 1984
Wildlife	ferret ferret 11on 11on	domestlc domestlc	~E ~EE	0.675 2.025 149 193	0.168 0.168 6.12 5.06 6.53	0.0875 0.0875 0.8 3.98 1.07	Moody et al., 1985 Moody et al., 1985 Green et al., 1984 Green et al., 1984 Green et al., 1984
	marmot marmot marmot marmot marmot	yellow-bellied yellow-bellied yellow-bellied yellow-bellied		3.81 3.86 5.32 5.33 5.29	0.0799 0.1012 0.0198 0.0329 0.057	0.134 0.182 0.034 0.041	nn et al nn et al nn et al nn et al

Group	Species	Strain	Sex	Weight (kg)	Food (kg/day)	Water (1/day)	Reference
Wildlife	marmot	yellow-bellied	££	5.46	0.057	0.089	::
	marmot	yellow-bellied	EX	5.45	0.0928	0.145	Zatzman et al., 1984 Zatzman et al., 1984
	marmot	yellow-bellied	: ac :	4.62	0.1086	0.191	::
	marmot marmot	yellow-bellied yellow-bellied	E Æ	4.76	0.1178	0.231	<u>:</u>
	marmot	yellow-bellied	E	6.19	0.122	0.228	:
	mink		æ	1.613	0.042	0.0063	Eriksson et al., 1984
	ajık ajık		E E	1.613 1.613	0.0465 0.0465	0.0063 0.0063	Eriksson et al., 1984 Eriksson et al., 1984
Birds	turkey	Amerine, Nichola	E	13.4	0.372	0.605	Parker et al., 1972

NS = Not specified

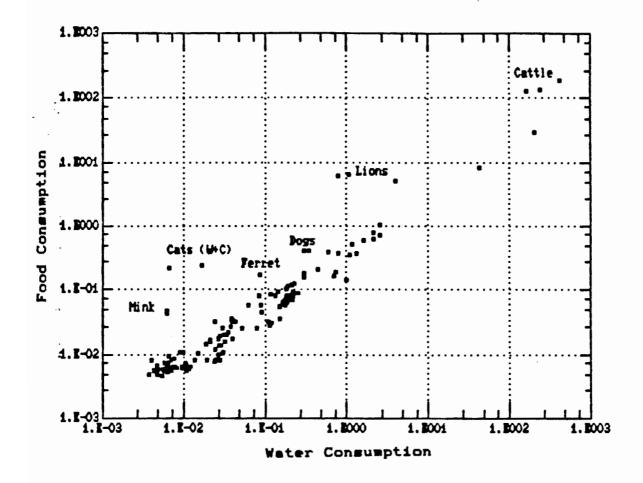
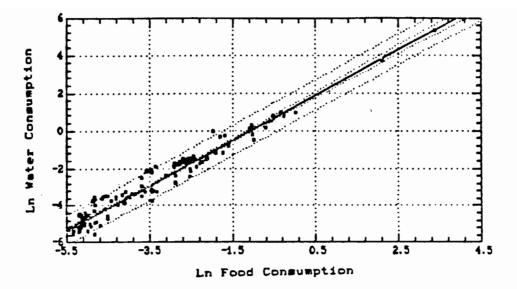


FIGURE 7-1

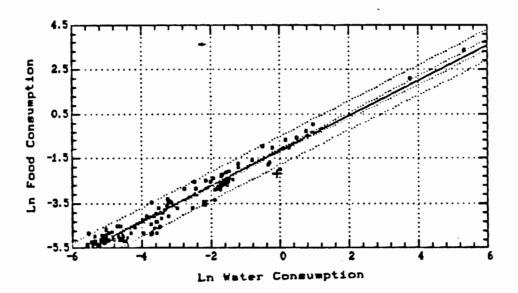
Plot of Food Consumption (kg/day) vs Water Consumption (Ω) for All Species [See Table 7-1 for points and references (Outliers are labeled. See text for discussion)].

lions] contained a high content of fresh meat. In the study on cattle, Atkeson and Warren (1934), the labeled points were from three groups of cattle that grazed on succulent vegetation. A fourth group of cattle, the data for which are plotted but not labeled in Figure 7-1, was fed a diet of dry grain. The food-to-water consumption patterns for this group are consistent with the majority of the points in Figure 7-1, which are for animals fed a dry diet, including the data on rabbits (Cizek, 1961), marmots (Zatzman et al., 1984) and cats (Taton et al., 1984).

The difference in water and food consumption patterns for animals on dry and moist diets is summarized in Table 7-2 and illustrated in Figures 7-2 to 7-9. When either food or water consumption is known for animals on a wet or dry diet, Equations 7-1 to 7-4 (Table 7-2) should be used to estimate the missing value. [The "a" and "b" designations on these equations and on the corresponding figures are provided for convenience and represent the same data plotted as food vs water ("a") or water vs. food ("b").] Equation 7-3 is recommended for rabbits, dogs and cats only if the animals were fed dry diets. Equation 7-5 (Table 7-2) should be used if moist diets were given. For rodent species, usually given dry diets, Equation 7-4 is recommended. If moist diets are specified for the rodents (as is occasionally the case with hamsters and gerbils), Equation 7-2 should be used. For all other species in which the diets are specified as or can be reasonably assumed to have been dry or moist, Equations 7-1 and 7-2, respectively, are recommended.

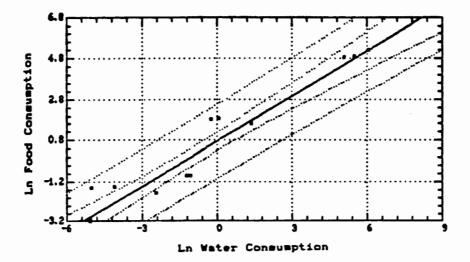

If only the body weight is known or assumed, but the type of diet is specified as, or can be reasonably assumed to have been, dry or moist, Equations 7-5 and 7-7 (see Table 7-2), respectively, are recommended for estimating food consumption and Equations 7-6 and 7-8 (see Table 7-2), respectively, are recommended for estimating water consumption.

1995A 7-9 09/03/87


TABLE 7-2

Species and Group Specific Allometric Interrelationships for Food Consumption in kg/day (F), Water in & (C) and Body Weight (W) in kg

Animal Group	Allometric Equation	Equation	Figure
	FOOD AND WATER CONSUMPTION		
Dry diet: All species	F = 0.31 c0.7923 C = 3.59 f1.2041	7-1a 7-1b	7-2
Wet diet: All species	F = 2.09 c0.7389 C = 0.39 F1.2447	7-2a 7-2b	7-3
Laboratory mammals: (dry diet)	F = 0.28 c0.7613 C = 0.31 F1.2226	7-3a 7-3b	7 -4
Laboratory rodents: (dry diet)	F = 0.16 C 0.6426 C = 0.25 F 1.2943	7-4a 7-4b	7-5
BODY W	EIGHT TO FOOD OR WATER CONS	UMPTION	
Dry diet: All species	F = 0.049 W 0.6087 C = 0.093 W 0.7584	7-5 7-6	7 -6 7 -6
Wet diet: All species	$F = 0.054 \text{ c}^{0.9451}$	7-7	7-7
	C = 0.009 Fl.2044	7-8	7-7


BO: 1.2793 SE: 0.074445 T: 17.185 B1: 1.2041 SE: 0.020635 T: 58.353 CORR: 0.97675 MSE: 0.15937 BF: 164

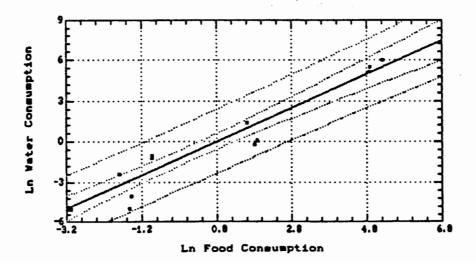
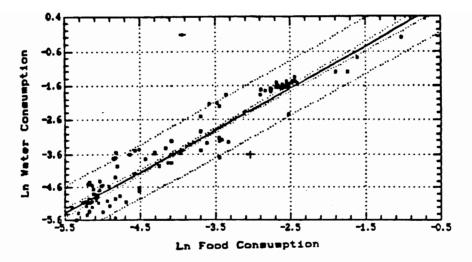

BO: -1.1644 SI: 0.044121 T: -26.391 B1: 0.79233 SI: 0.013578 T: 58.353 CORP: 0.97675 MSE: 0.10487 DF: 164

FIGURE 7-2

Allometric Relationships of Food Consumption (kg/day) to Water Consumption (1/day) for Animals on Dry Diets


B0: 0.73698 SI: 0.20874 T: 3.5306 B1: 0.73887 SI: 0.058376 T: 12.657 CORR: 0.95897 MSI: 0.6725 DF: 14

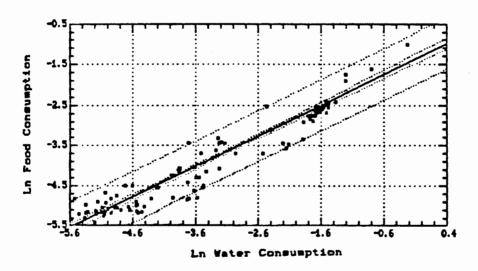
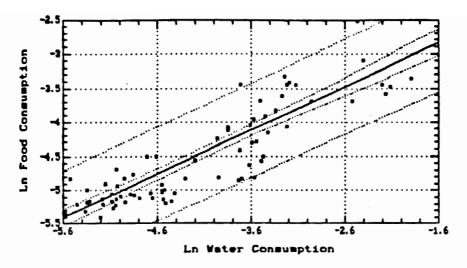

BO: -0.97133 SE: 0.26714 Ti -3.6361 Bi: 1.2447 SE: 0.098338 Ti 12.657 CORR: 0.95097 HEE: 1.1329 BF: 14

FIGURE 7-3

Allometric Relationships of Food Consumption (kg/day) to Water Consumption (l/day) for Animals on Moist Diets


BO: 1.3646 SE: 0.10913 T: 12.505 B1: 1.2226 SE: 0.028486 T: 42.918 CORR: 0.96477 HEE: 0.16266 BF: 137

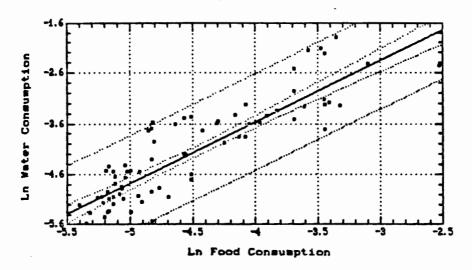
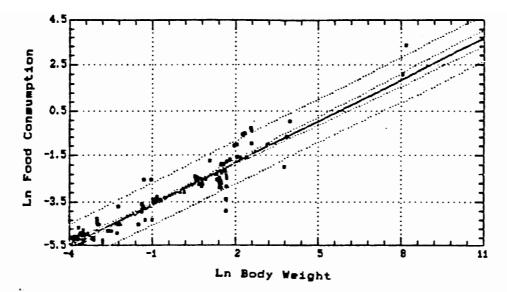

B0: -1.2907 SE: 0.061 T: -21.158 B1: 0.76132 SE: 0.017739 T: 42.918 CORE: 0.96477 MSE: 0.10192 BF: 137

FIGURE 7-4

Allometric Relationships of Food Consumption (kg/day) to Water Consumption (1/day) for Laboratory Mammals (Gerbils, Guinea Pigs, Hamsters, Mice, Rats, Cats, Dogs and Rabbits) on Dry Diets.


BO: -1.8104 SE: 0.15848 T: -11.423 Bi: 0.64256 SE: 0.03743 T: 17.167 CORR: 0.88332 MSE: 0.1188 BF: 83

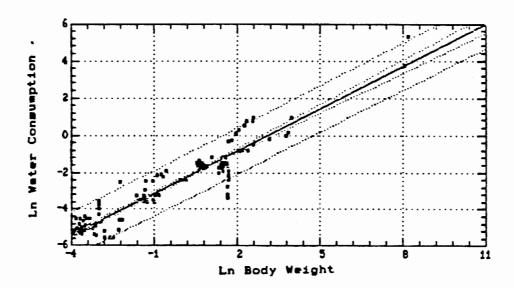
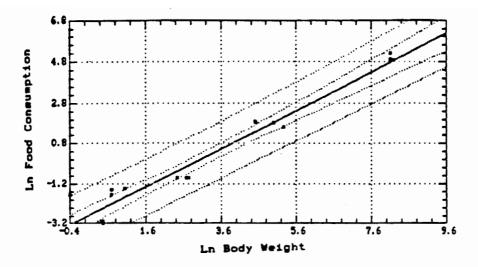

BO: 1.2942 SE: 0.31923 T: 4.054 B1: 1.2143 SE: 0.070734 T: 17.167 CORR: 0.88332 MSE: 0.2245 BF: 83

FIGURE 7-5

Allometric Relationships of Food Consumption (kg/day) to Water Consumption (l/day) for Laboratory Rodents (Gerbils, Guinea Pigs, Hamsters, Mice and Rats) on Dry Diets.


BO: -3.0208 SE: 0.039292 T: -76.88 B1: 0.6087 SE: 0.01638 T: 37.16 CORR: 0.95068 MSE: 0.22802 DF: 147

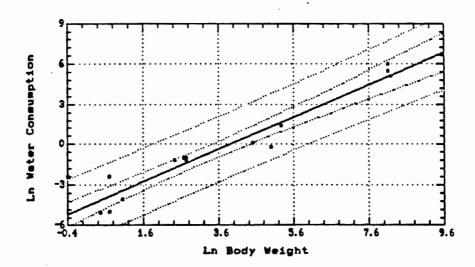

BO: -2.3784 SE: 0.051118 T: -46.529 B1: 0.75842 SE: 0.02131 T: 35.59 CORR: 0.94658 MSE: 0.38593 BF: 147

FIGURE 7-6

Allometric Relationships of Food Consumption (kg/day) and Water Consumption (2/day) to Body Weight (kg) for Animals on Dry Diets

BO: -2.9185 SE: 0.23322 T: -12.514 B1: 0.94514 SE: 0.055249 T: 17.107 CORR: 0.97532 MSE: 0.41428 DF: 15

B0: -4.7081 SE: 0.40404 T: -11.652 B1: 1.2044 SE: 0.095718 T: 12.583 CORR: 0.95575 MSE: 1.2424 BF: 15

FIGURE 7-7

Allometric Relationships of Food Consumption (kg/day) and Water Consumption (1/2) to Body Weight (kg) for Animals on Moist Diets

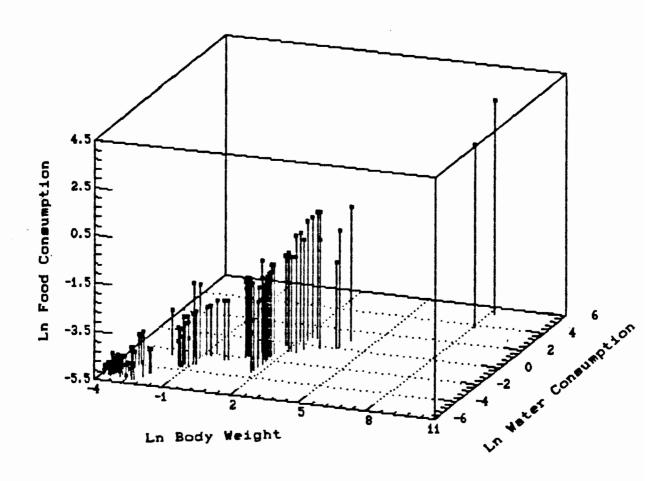


FIGURE 7-8

Plot of Food Consumption (kg/day) vs. Water Consumption (1/day) vs. Body Weight (kg) for Animals on Dry Diets

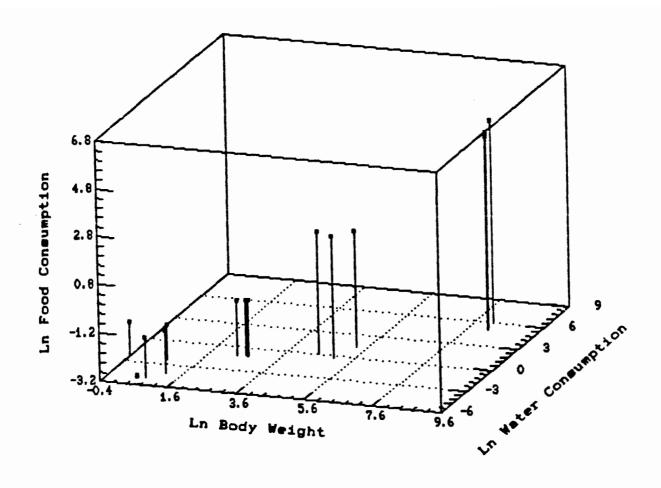


FIGURE 7-9
Plot of Food Consumption (kg/day) vs. Water Consumption (1/day) vs. Body Weight (kg) for Animals on Moist Diets

If the kind of diet is not known and a reasonable assumption cannot be made of the kind of diet, the general equations in Chapters 5 and 6 should be used.

[N.B. At the time the data base containing the information discussed in this report was developed, the significance of moisture content was not appreciated and this factor was not included as a field in the data base. A reanalysis of Chapters 5 and 6, considering the moisture content of the diet, would likely improve Equations 7-5 to 7-8 as well as the allometric equations given in Chapters 5 and 6.]

8. REFERENCES

Abraham, W.M., H. Watson, A. Schneider, M. King, L. Yerger and M.A. Sackner.

1981. Noninvasive ventilatory monitoring by respiratory inductive plethysmography in conscious sheep. J. Appl. Physiol. 15(6): 1657-1666.

Adolph, E.F. 1943. Physiological Regulations. The Jaques Cattel_Press, Lancaster, PA. 502 p.

Adolph, E.F. 1947. Urges to eat and drink in rats. Am. J. Physiol. 151: 110.

Adolph, E.F. 1949. Quantitative relations in the physiological constitutions of mammals. Science. 159: 579-585.

Adolph, E.F. and D.B. Dill. 1938. Observations on water metabolism in the desert. Am. J. Physiol. 123: 369-378.

Aitken, M.L., J.L. Franklin, D.J. Pierson and R.B. Schoene. 1986. Influence of body size and gender on control of ventilation. J. Appl. Physiol. 60(6): 1894-1899.

Albelda, S.M., J.H. Hansen-Flaschen, P.N. Lanken and A.P. Fishman. 1986. Effects of increased ventilation on lung lymph flow in anesthetized sheep. J. Appl. Physiol. 60(6): 2063-2070.

1996A 8-1 09/08/87

Alt, J.M., B. Maess and H. Hackbarth. 1985. Species and strain differences in urinary protein excretion. Renal Physiol. 8(6): 301-309.

Altman, P.L. and D.S. Dittmer. 1968. Metabolism. Federation of American Societies for Experimental Biology, Bethesda, MD. p. 547-548.

Altman, P.L. and D.S. Dittmer, Ed. 1972. Biology Data Book, 2nd ed. Vol. I-III. Federation of American Societies for Experimental Biology, Bethesda, MD. p. 195-215, 1450-1457.

Altman, P.L. and D.S. Dittmer, Ed. 1974. Growth including reproduction and morphological development. Federation of American Societies for Experimental Biology, Washington, DC.

Amdur, M.O. and J. Mead. 1958. Mechanics of respiration in unanesthetized guinea pigs. Am. J. Physiol. 192: 364-368.

Amoroso, E.C., P. Scott and K.G. Williams. 1964. The pattern of external respiration in the unanesthetized animal. Proc. Royal Soc. London. 159: 325-347.

Arnold, A. and C.A. Elvehjem. 1939. Nutritional requirements of dogs. J. Am. Vet. Med. Assoc. 95: 187.

Arrington, L.R. 1968. Nutrition of Mongolian gerbils and golden hamsters -- An evaluation of two commercially available rodent rations. Lab. Animal Dig. 4: 7-9.

1996A 8-2 09/08/87

Arrington, L.R. 1972. The laboratory animals. <u>In</u>: Introductory Laboratory Animal Science. p. 7-12.

Arrington, L.R. 1978. Introductory Laboratory Animal Science. The Breeding, Care and Management of Experimental Animals. The Interstate Printers and Publishers, Inc., Danville, IL.

Arrington, L.R., J.K. Platt and R.L. Shirley. 1966. Protein requirements of growing hamsters. Lab. Animal Sci. 16: 492.

Arrington, L.R., T.C. Beaty and K.C. Kelley. 1973. Growth longevity and reproductive life of the Mongolian gerbil. Lab. Animal Sci. 23: 262-265.

Arrington, L.R., J.K. Platt and D.E. Franke. 1974. Fat utilization by rabbits. J. Animal Sci. 38: 76-80.

ARS/Sprague-Dawley. 1974. Commonly Used Physiological Data.

Asche, G.L., J.D. Crenshaw, A.J Lewis and E.R. Peo, Jr. 1986. Effect of dry, high moisture and reconstituted normal and high-lysine corn diets and particle size on energy and nitrogen metabolism in growing swine. J. Animal Sci. 63(1): 131-138.

Atkeson, F.W. and T.R. Warren. 1934. The influence of type ration and plane of production on water consumption of dairy cows. J. Dairy Sci. 17: 265-277.

1996A 8-3 09/08/87

Aulerich, R.J., T.H. Coleman, D. Polin, et al. 1979. Toxicology study of diisopropylmethylphosphate and dicyclopentadiene in mallard ducks, bobwhite quail and mink. Prepared for U.S. Army Medical Research and Dev. Command, Fort Detrick, Frederick, MD. NTIS AD-A087257.

Bailey, V. 1923. Sources of water supply for desert animals. Sci. Monthly. 17: 66-86.

Banta, C.E., R.G. Warner and J.B. Robertson. 1975. Protein nutrition of golden hamsters. J. Nutr. 105: 38.

Barbee, S.J., J.B. Terrill, D.J. Desousa and C.C. Conaway. 1984. Sub-chronic inhalation toxicology of ethylene-glycol monoethyl ether in the rat and rabbit. Environ. Health Perspect. 57: 157-163.

Barrow, R.E. 1976. Nonrebreathing valve system for small animal respiratory measurements. J. Appl. Physiol. 40(1): 108-109.

Barrow, R.E., A.J. Vorwald and E. Domier. 1971. The measurement of small animal respiratory volumes by capacitance respirometry. Am. Ind. Hyg. Assoc. J. 32: 593-598.

Bartholomew, G. and T.J. Cade. 1963. The water economy of land birds. Auk. 80: 504-539.

Bartlett, D. and S.M. Tennet. 1970. Control of breathing in experimental anemia. Resp. Physiol. 10: 384-395.

1996A 8-4 09/08/87

Bech, C., K. Johansen and G.M.O. Maloiy. 1976. Ventilation and expired gas composition in the flamingo, <u>Phoenicopterus ruber</u>, during normal respiration and panting. Physiol. Zoology. 52: 313-326.

Becker, B.A., M.A. Bober, F.D. el-Nouty and H.D. Johnson. 1985. Prolactin and its involvement in fluid regulation in the bovine. Comp. Biochem. Physiol. 81(1): 93-98.

Benedict, F.G. 1938. Vita energetics: A study in comparative basal metabolism. Carnegie Inst. Publ. 503: 1-215.

Bernstein, S.E. 1966. Physiological characteristics. <u>In</u>: Biology_of the Laboratory Mouse, E.L. Green, Ed. McGraw-Hill Book Co., New York. p. 337-350.

Bickler, P.E. and R.A. Anderson. 1986. Ventilation, gas exchange and aerobic scope in a small monitor lizard, <u>Varnus Gilleni</u>. Physiol. Zoology. 59(1): 76-83.

Blake, C.I. and N. Banchero. 1985. Ventilation and oxygen-consumption in the guinea pig. Resp. Physiol. 61(3): 347-355.

Blundell, J.E. and C.J. Latham. 1979. Pharmacology of food and water intake. <u>In</u>: Chemical Influence on Behavior, K. Brown and S.J. Cooper, Ed. Academic Press, New York. p. 201-254.

1996A 8-5 09/08/87

Boggs, D.F. and D.L. Kilgore. 1983. Ventilatory responses of the burrowing owl and bobwhite to hypercardia and hypoxia. J. Comp. Physiol. 149: 527-533.

Borzelleca, J.F., P.S. Larson, G.R. Hennigar, E.G. Huf, E.M. Crawford and R.B. Smith. 1964. Studies on chronic oral toxicity of methmeric ethyl acrylate and methyl methacrylate. Toxicol. Appl. Pharmacol. 6: 29-36.

Bowen, S.R. and F.G. Carpenter. 1979. Morphine depression and tolerance of nerve-induced parotid secretion. Br. J. Pharmacol. 65(1): 7-13.

Bowen, S.R., F.G. Carpenter and J.G. Sowell. 1979. Ventilatory depression in naive and tolerant rats in relation to plasma morphine concentration. Br. J. Pharmacol. 64(3): 457-463.

Boxenbaum, H. 1983. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J. Pharm. Biopharm. 10(2): 201-227.

Boyd, I.L. 1985. Investment in growth by pregnant wild rabbits in relation to litter size and sex of the offspring. J. Animal Ecol. 54(1): 137-148.

Brody, S. 1945. Bioenergetics and Growth. Reinhold Publishing Co., New York. p. 67.

Brooks, P.H., S.J. Russell and J.L. Carpenter. 1984. Water intake of weaned piglets from three to seven weeks old. Vet. Rec. 115(20: 513-515.

1996A 8-6 09/08/87

Brown, F.D., R.G. Fessler, J.R. Rachlin and S. Mullan. 1984. Changes in food intake with electrical stimulation of the ventromedial hypothalamus in dogs. J. Neurosurg. 60(6): 1253-1257.

Bruce, H.M. 1950. The water requirement of laboratory animals. J. Animal Tech. Assoc. 1: 2-8.

Calland, C.J., S.R. Wightman and S.B. Neal. 1986. Establishment of a Chinese hamster breeding colony. Lab. Animal Sci. 36(2): 183-186.

Cameron, T.P., R.L. Hickman, M.R. Kornreich and R.E. Tarone. 1985. History, survival and growth patterns of B6C3Fl mice and F344 rats. Natl. Cancer Inst. Carcinogenesis Testing Program 526. 5: 526-538.

Campbell, E.G. and J.R. Koplin. 1986. Food consumption, energy, nutrient and mineral balances in a Eurasian kestrel and a screech owl. Comp. Biochem. Physiol. 83(2): 249-254.

Campbell, J.R. and J.F. Lasley. 1975. The Science of Animals That Serve Mankind. McGraw-Hill Book Co., New York.

Casey, T.M., P.C. Withers and K.K. Casey. 1979. Metabolic and respiratory responses of arctic mammals to ambient temperature during the summer. Comp. Biochem. Physiol. 64A: 331-341.

Chapin, J.L. 1955. Ventilatory response of the unrestrained and unanesthetized hamster to CO₂. Am. J. Physiol. 179: 146-148.

1996A 8-7 09/08/87

Chew, R.M. 1965. Water metabolism of mammals. <u>In</u>: Physiological Mammalogy, Vol. 2, W.V. Mayer and R.G. Vangelder, Ed. Academic Press, New York, NY. p. 43-178.

Chew, R.M. and R.T. Hinegardner. 1957. Effects of chronic insufficiency of drinking water in white mice. J. Mammal. 38: 361.

Chmiel, K.M. and R.M. Harrison. 1981. Lead content of small mammals at a roadside site in relation to the pathways of exposure (English). Sci. Total Environ. 17(2): 145-154.

Chvedoff, M., M.R. Clarke, E. Irisarri, J.M. Faccini and A.M. Munro. 1980. Effects of housing conditions on food intake, body weight and spontaneous lesions in mice. A review of literature and results of an 18-month study. Food Cosmet. Toxicol. 18: 517-522.

Cizek, L.J. 1961. Relationships between food and water ingestion in the rabbit. Am. J. Physiol. 201: 557-566.

Clement, M.G., J.P. Mortola, M. Albertini and G. Aguggini. 1986. Effects of vagotomy on respiratory mechanics in newborn and adult pigs. J. Appl. Physiol. 60(6): 1992-1999.

Conalty, M.L., Ed. 1967. Husbandry of Laboratory Animals: Proceedings of the Third International Symposium organized by the International Committee on Laboratory Animals. Academic Press, London and New York.

1996A 8-8 09/08/87

Corbin, J. 1976. Laboratory animal nutrition. <u>In</u>: Handbook of Laboratory Animals, E.C. Melby, Jr. and N.H. Altman, Ed. Science Vol. III. CRC Press, Inc., Boca Raton, FL. p. 1-21.

Cowgill, G.R. 1928. The energy factor in relation to food intake: Experiments on the dog. Am. J. Physiol. 85: 45-64.

Criborn, C.D. 1969. Recording of the respiratory process in mice without strain on the respiratory organ. Life Sci. 8: 1351-1358.

Cross, K.W. 1949. The respiratory rate and ventilation in the newborn baby. J. Physiol. 109: 459-474.

Cummings, E.G. and D.H. Heitkamp. 1981. Ventilatory sniffing in the albino rat. Physiol. Zool. 54(2): 230-236.

Cutler, R.G. 1975. Evolution of human longevity and the genetic complexity governing aging rate. Proc. Natl. Acad. Sci. 72(11): 4664-4668.

Davidson, J. and D. Spreadbury. 1975. Nutrition of the New Zealand white rabbit. Proc. Nutr. Soc. 34: 75-83.

Davidson, J.W.F., J.C. Parker and R.P. Beliles. 1986. Biological basis for extrapolation across mammalian species. Reg. Toxicol. Pharmacol. 6: 211-237.

1996A 8-9 09/09/87

DeLacey, P., C. Dent, A.C. Terry and E.H. Quinn. 1975. Food and water intake in gold thioglucose-induced obese Charles River mice. Arch. Int. Pharmacodyn. Ther. 213(1): 145-162.

Delorme, C.B. and J. Wojcik. 1982. Interaction of dietary protein with cellulose in the adaptation of caloric dilution by weaning rats. J. Nutr. 112(1): 21-28.

DePass, L.R., M.D. Woodside, R.H. Garman and S.C. Weil. 1983. Subchronic and reproductive toxicology studies on acrylic acid in the drinking water of the rat. Drug Chem. Toxicol. 6(1): 1-20.

DePledge, M.H. 1985. Respiration and lung-function in the mouse, $\underline{\text{Mus}}$ $\underline{\text{musculus}}$ (with a note on mass exponents and respiratory variables). Resp. Physiol. 60(1): 83-94.

Deyl, Z., M. Juricova and E. Stuchlikova. 1975. The effect of nutritional regimes upon collagen concentration and survival of rats. Adv. Exp. Med. Biol. 53: 359-369.

Diamond, L. and M. O'Donnell. 1977. Pulmonary mechanics in normal rats.

J. Appl. Physiol.: Resp. Environ. Exercise Physiol. 43: 942-948.

Donhoffer, S. 1986. Body size and metabolic rate: Exponent and coefficient of the allometric equation. The role of units. J. Theor. Biol. 119(2): 125-138.

1996A 8-10 09/08/87

Dorato, M.A., K.H. Carlson and D.L. Copple. 1983. Pulmonary mechanics in conscious Fischer 344 rats: Multiple evaluations using nonsurgical techniques. Toxicol. Appl. Pharmacol. 68: 344-353.

Drozdz, A. 1968. Digestibility and assimilation of natural foods in small rodents. Acta. Theriol. 13: 367-389.

Dunson, W.A. and E.G. Buss. 1968. Abnormal water balance in a mutant strain of chickens. Science. 161: 167-169.

Dunson, W.A., E.G. Buss, W.H. Sawyer and H.W. Sokol. 1972. Hereditary polydipsia and polyuria. Am. J. Physiol. 22: 1167-1176.

Durkin, P. 1984. A Methodology for Health Score Evaluation for Pollutants in the Santa Clara Valley Integrated Environmental Management Program. Prepared for American Management Systems, Inc.

Ediger, R.D. 1976. Care and management. <u>In</u>: The Biology of the Guinea Pig, J.E. Wagner and P.J. Manning, Ed. Academic Press, New York. p. 5-12.

Eriksson, L., M. Valtonen and J. Makela. 1984. Water and electrolyte balance in male mink (<u>Mustela vison</u>) on varying dietary NaCl intake. Acta. Physiol. Scand. 537: 59-64.

Fairchild, G.A. 1972. Measurement of respiratory volume for virus retention studies in mice. Appl. Microbiol. 24: 812-818.

1996A 8-11 09/08/87

Farris, E.J., Ed. 1950. The Care and Breeding of Laboratory Animals. John Wiley and Sons, Inc., New York. 515 p.

Feron, V.J., A. Kruysse and H.C. Dreefvandermeulen. 1979. Repeated exposure to furfural vapor -- 13-week study in Syrian golden hamsters. Zentralblatt fur Bakteriologie Parasitendunde Infektionskrankheiten ung Hygiene. 61(5-6): 442-451.

Fiero, B.C. and B.J. Verts. 1986. Age-specific reproduction in raccoons in Northwestern Oregon. J. Mamm. 67(1): 169-172.

Fisher, J.T. and J.P. Mortola. 1981. Statics of the respiratory system and growth: An experimental and allometric approach. Am. J. Physiol. 241: R336-R341.

Fisher, J.T., J.P. Mortola, J.B. Smith, G.S. Fox and S. Weeks. 1982. Respiration in newborns. Development of the control of breathing. Am. Rev. Respir. Disease. 125: 650-657.

Fox, B.J. 1985. A graphical method for estimating length of gestation and estrous cycle length from birth intervals in rodents. J. Mammalogy. 66(1): 168-172.

Fox, W. and J.R. Smyth. 1985. The effect of recessive white and dominant white genotypes on early growth rate. Poultry Sci. 64(3): 429-433.

1996A 8-12 09/08/87

Gaman, E., H. Fisher and A.S. Feigenbaum. 1970. An adequate purified diet for rabbits of all ages. Nutr. Rept. Internatl. 1: 35-48.

Gautier, H. 1986. Effects of chronic administration of phenobarbital in low doses on control of breathing in the cat. Respir. Physiol. 64(3): 307-316.

Glazier, D.S. 1985. Energetics of litter size in five species of <u>Peromycus</u> with generalizations for other mammals. J. Mamm. 66(4): 629-642.

Gleeson, M. 1986. Respiratory adjustments of the unanesthetized chicken. Comp. Biochem. Physiol. Part A. 81(2): 283-290.

Golob, P., W.J. O'Connor and D.J. Potts. 1977. Post-prandial drinking by dogs. Quart. J. Exp. Physiol. 62: 275-285.

Granados, H. 1951. Nutritional studies on growth and reproduction of the golden hamster. Acta. Physiol. Scand. 24(suppl. 87): 1.

Green, B., J. Anderson and T. Whateley. 1984. Water and sodium turnovers and estimated food consumption in free-living lions (<u>Panthera leo</u>) and spotted hyaenas (<u>Crocuta crocuta</u>). J. Mammal. 65(4): 593-599.

Grunberg, N.E., D.J. Bowen and D.E. Morse. 1984. Effects of nicotine on body weight and food consumption rats. Psychopharmacol. 83(1): 93-98.

1996A 8-13 09/08/87

Guyton, A.C. 1947. Measurement of the respiratory volumes of laboratory animals. Am. J. Physiol. 150: 70-77.

Haas, J.W.M., G. Van Tintelen and A.C. Beynen. 1985. A giant rat in a Wistar. Zeitschrift fur Versuchstierkunde. 27(3-4): 189.

Haddad, G.G., R.A. Epstein, M.A.F. Epstein, H.L. Leistner, P.A. Marino and R.B. Mellins. 1979. Maturation of ventilation and ventilatory pattern in normal sleeping infants. J. Appl. Physiol. 46: 998-1002.

Hafez, E.S.E, Ed. 1970. Reproduction and Breeding Techniques for Laboratory Animals. Lea and Febiger, Philadelphia, PA.

Harriman, A.E. 1969a. Food and water requirements of mongolian gerbils as determined through self-selection of diet. Am. Midl. Natl. 82: 149-156.

Harriman, A.E. 1969b. A comparative study of food and water regulation by laboratory rats and Mongolian gerbils maintained on identical self-selection of diet schedules. Am. Midl. Natl. 82: 157-161.

Heldmaier, G., S. Steinlechner and J. Rafael. 1982. Non-shivering thermogenesis and cold resistance during seasonal acclimation in the Djungarian hamster. J. Comp. Physiol. B. 149: 1-9.

Hertzberg, R.C. and M.L. Dourson. 1983. Health risk from less than lifetime toxicant exposure. Draft of Unpublished Paper.

1996A 8-14 09/09/87

Hirsh, E. 1973. Some determinants of intake and pattern of feeding in the guinea pig. Physiol. Behav. 11: 687.

Hollander, C.F., H.A. Solleveld, C. Zurcher, A.L. Nooteboom and M.J. Van Zweiten. 1984. Biological and clinical consequences of longitudinal studies in rodents: Their possibilities and limitations. An overview. Mech. Ageing Dev. 28(2-3): 249-256.

Holloszy, J.O. and E.K. Smith. 1986. Longevity of cold-exposed rats: A re-evaluation of the "rate-of-living" theory. J. Appl. Physiol. 61(5): 1656-1660.

Holloszy, J.O., E.K. Smith, M. Vining and S. Adams. 1985. Effects of voluntary exercise on longevity of rats. J. Appl. Physiol. 59(3): 826-831.

Holloway, P.A. and A.G. Heath. 1984. Ventilatory changes in the golden hamster <u>Mesocricetus auratus</u> compared with the laboratory rat <u>Rattus</u> <u>norvegicus</u> during hypercapnia and/or hypoxia. Comp. Biochem. Physiol. 77A: 267-273.

Hoover-Plow, J. and B. Nelson. 1985. Oxygen consumption in mice (I strain) after feeding. J. Nutr. 115(3): 303-310.

Horike, N.R., M.S. Morgan and R. Frank. 1982. The respiratory response of guinea pigs to aerosols. I. Histamine aerosol control study. Environ. Res. 28: 131-138.

1996A 8-15 09/08/87

Howard, B.R. 1975. Water balance of the hen during egg formation. Poult. Sci. 54(4): 1046-1053.

Hugh-Jones, P., C.E. Barter, J.M. Hime and M.M. Rusbridge. 1978. Dead space and tidal volume of the giraffe compared with some other mammals. Resp. Physiol. 35: 53-58.

Inazu, M., K. Kasai and T. Sakaguchi. 1984. Characteristics of a new hairless mutation (bald) in rats. Lab. Animal Sci. 34(6): 577-583.

Javaheri, S. and E.C. Lucey. 1986. Hypercapnic ventilatory responses in anesthetized normal hamster. Resp. Physiol. 22(2): 115-118.

Johanson, W.G. and A.K. Pierce. 1971. A noninvasive technique for measurement of airway conductance in small animals. J. Appl. Physiol. 30: 146-150.

Jones, M.L. 1962. Mammals in captivity-primate longevity. Lab. Primate Newslett. 1: 3-13.

Jones, W.T. 1985. Body size and life-history variables in heteromyids. J. Mammal. 66(1): 128-131.

Kahan, E. and M. Rosen. 1984. The influrnece of litter size and favourable conditions on mortality and weaning weights in rats. Lab. Animals. 18: 247-251.

1996A 8-16 09/08/87

Karel, L. and R.E. Weston. 1946. Respiration in Macaca mulatta (rhesus monkey). Proc. Soc. Exp. Biol. Med. 61: 291-296.

Kennaway, E.L. 1943. No title provided. Br. Med. J. i: 760. (Cited in Bruce, 1950)

Kertz, A.T., L.F. Reutzel and J.H. Mahoney. 1984. Ad libitum water intake by neonatal calves and its relationship to calf starter intake, weight gain, feces score and season. J. Dairy Sci. 67(12): 2964-2969.

Kirkwood, J.K. 1985. Patterns of growth in primates. J. Zool. 205(1): 123-136.

Knapka, J.J. and F.J. Judge. 1974. The effects of various levels of dietary fat and apple supplementation on growth of golden hamsters. Lab. Animal Sci. 24: 318.

Knizetova, H., B. Knize, H. Hakjova and J. Hyanek. 1985. The growth curves of normal and dwarf chickens of broiler type. Zivocisna Vyroba. 30(2): 175-182.

Kutscher, C.L. 1974. Strain differences in drinking in inbred mice during and libitum feeding and food deprivation. Physiol. Behav. 13: 63-70.

Lai, Y.L., Y. Tsuya and J. Hildebrande. 1978. Ventilatory responses to acute CO₂ exposure in rat. J. Appl. Physiol-Resp. Environ. Exer. Physiol. 45(4): 611-618.

1996A 8-17 09/09/87

Lane-Peter, W., A.N. Worden, B.F. Hill, J.S. Paterson and H.G. Veners. 1967. UFAW Handbook on the Care and Management of Laboratory Animals, 3rd ed. Williams and Wilkins, Co., Baltimore, MD. p. 151-152, 450, 457-461, 522, 598, 692, 697.

Lasiewski, R.C. and W.A. Calder. 1971. A preliminary allometric analysis of respiratory variables in resting birds. Respir. Physiol. 11: 152-166.

Latimer, N.D. and H.L. Ibsen. 1932. Untitled. Anat. Record. 52: 1.

Latt, R.H. 1976. Drug dosages for laboratory animals. <u>In</u>: CRC handbook of Laboratory Animal Science, Vol. III, E.C. Melby and H.M. Altman, Ed. CRC Press, Inc., Boca Raton, FL. p. 561-568.

Laughlin, M.E., P.J. Donovick and R.G. Burright. 1975. Septal lesions in meadow voles and Mongolian gerbils: Consummatory and investigatory behavior. Physiol. Behav. 15(2): 191-198.

Lee, C. and D.J. Horvath. 1969. Management of the meadow vole. Lab. Animal Sci. 19: 88-91.

Lehman, A.J. 1959. Appraisal of the Safety of Chemicals in Foods, Drugs, and Cosmetics. Association of Food to Drug Officials in the United States. (Cited in Durkin, 1984)

Leong, K.J., G.F. Dowd and H.N. McFarland. 1964. A new technique for tidal volume measurement in unanesthetized small animals. Can. J. Physiol. Pharmacol. 42: 189-198.

1996A 8-18 09/08/87

Lin, Y.C., K.K. Shida and B.L. Respicio. 1983. Hyperbaric whole-body plethysmograph for rodents. Undersea Biomed. Res. 10(2): 135-145.

Liu, C.T. and R.D. Delauter. 1977. Pulmonary functions in conscious and anesthetized rhesus macagues. Am. J. Vet. Res. 35(11): 1843-1848.

Locw, F.M. 1968. Differential growth rates in male Mongolian gerbils. Can. Vet. J. 9: 237-238.

Luft, F.C., N.S. Fineberg, R.S. Sloan and J.N. Hunt. 1983. The effect of dietary sodium and protein on urine volume and water intake. J. Lab. Clin. Med. 101(4): 605-601.

Lumb, W. 1963. Small Animal Anesthesia. Lea and Febiger, Philadelphia, PA. 420 p.

MacArthur, R.A. 1984. Microenvironment gas concentrations and tolerance to hypercapnia in the muskrat. Physiol. Zool. 57: 85-98.

Marston, J.H. and M.C. Chang. 1965. The breeding, management and reproductive physiology of the Mongolian gerbil. Lab. Animal Care. 15: 34-48.

Martin-Body, F.L. and J.D. Sinclair. 1985. Analysis of respiratory patterns in the awake and in the halothane anaesthetized rat. Resp. Physiol. 61(1): 105-114.

1996A 8-19 09/08/87

Maskrey, M. and S.C. Nicol. 1980. The respiratory frequency response to carbon dioxide inhalation in conscious rabbits. J. Physiol. 301: 49-58.

Matsuzaki, T., M. Kamiya and H. Suzuki. 1985. Gestation period of the laboratory reared volcano rabbit (<u>Romerolagus diazi</u>). Exp. Anim. 34(10: 63-66.

Mauderly, J.L. 1974. Influence of sex and age on the pulmonary function of the unanesthetized beagle dog. J. Gerontol. 29: 282-289.

Mauderly, J.L. 1975. Evaluations of the grade pony as a pulmonary function model. Am. J. Vet. Res. 35: 1025-1029.

Mauderly, J.L. 1986. Respiration of F344 rats in nose-only inhalation exposure tubes. J. Appl. Toxicol. 6(1): 25-30.

Mauderly, J.L. and J.E. Tesarek. 1975. Nonrebreathing valve for respiratory measurements in unsedated small mammals. J. Appl. Physiol. 38(2): 369-371.

Mauderly, J.L., J.E. Tesarek, L.J. Sifford and L.J. Sifford. 1979. Respiratory measurements of unsedated small laboratory mammals using nonbreathing valves. Lab. Animal Sci. 29(3): 323-329.

Maxwell, D.L., D. Cover and J.M.B. Hughes. 1985. Effect of respiratory apparatus on timing and depth of breathing in man. Resp. Physiol. 61(2): 255.

1996A 8-20 09/08/87

Mazzarelli, M., J. Jaspar, W.A. Zin, J.V. Aronda and J. Milicemils. 1986. Dose effect of caffeine on control of breathing and respiratory response to CO₂ in cats. J. Appl. Physiol. 60(1): 52-59.

McKeever, K.H., W.A. Schurg and V.A. Convertino. 1985. Exercise training-induced hypervolemia in greyhounds: Role of water intake and renal mechanisms. Am. J. Physiol. 248(4 pt 2): R422.

McManus, J.J. 1971. Early postnatal growth and the development of temperature regulation in the Mongolian gerbil. J. Mammal. 52: 782-792.

McManus, J.J. 1972. Water relations and food consumption of the Mongolian gerbil. Comp. Biochem. Physiol. 43A: 959-967.

McManus, J.J. and W.M. Zurich. 1972. Growth, pelage development and maturational molts of the Mongolian gerbil. Am. Midl. Natl. 87: 264-271.

Mead, J. 1960. Control of respiratory frequency. J. Appl. Physiol. 15: 325-336.

Moody, D., T.A. Bowman and C.M. Lang. 1985. Laboratory management of the ferret for biomedical research. Lab. Animal Sci. 35(3): 272-279.

Moore, A.J. 1985. A mathematical equation for animal growth from embryo to adult. Animal Prod. 40(3): 441-454.

1996A 8-21 09/08/87

Morrissey, R.E. and W.P. Morrow. 1984. An improved method of diet preparation for toxicological feeding experiments. Lab. Animals. 18(3): 271-274.

Morrissey, R.E. and W.P. Norred. 1984. An improved method of diet preparation for toxicological feeding experiments. Lab. Animal. 18: 271-274.

Mortola, J.P. 1983. Comparative aspects of the dynamics of breathing in newborn mammals. J. Appl. Physiol. 54: 1229-1235.

Mortola, J.P. 1984. Breathing pattern in newborns. J. Appl. Physiol. 56: 1533-1540.

Mortola, J.P. 1987. Dynamics of breathing in newborn mammals. Physiol. Rev. 37(1): 187-243.

Mortola, J.P. and A. Noworaj. 1985. Breathing pattern and growth -- Comparative aspects. J. Comp. Physiol. Biochem. Syst. Environ. Physiol. 155(2): 171-176.

Mount, L.E. and D.L. Ingram. 1971. The Pig as a Laboratory Animal. Academic Press, New York. 161 p.

Moyer, K.E. 1966. Effect of ACTH on open-field behavior, avoidance, startle, and food and water consumption. J. Genet. Psychol. 108(2): 297-230.

1996A 8-22 09/08/87

Murphy, S.D. and C.E. Ulrich. 1964. Multi-animal test system for measuring effects of irritant gases and vapors on respiratory function of guinea pigs. Am. Ind. Hyg. Assoc. J. 25: 28-36.

Nagy, K.A. and R.W. Martin. 1985. Field metabolic rate, water, flux, food consumption and time budget of <u>Koalas phascolarctos cinereus (Marsupialia: colarclidae</u>) in Victoria. Austr. J. Zool. 33(5): 655-666.

NAS (National Academy of Science). 1971. Defining the laboratory animal. Intl.Symp.Lab.Animals, 4th, Washington, DC, 1969. NAS, Washington, DC.

NAS (National Academy of Science). 1978. Nutrient Requirements of Laboratory Animals, 3rd revised ed. NAS, Washington, DC.

NAS (National Academy of Science). 1981. Effect of Environment on Nutrient Requirements of Domestic Animals. NAS, Washington, DC.

Navia, J.M. and H. Lopez. 1973. A purified gel diet for guinea pigs. Lab. Animal Sci. 23(1): 111.

Norris, M.L. and C.E. Adams. 1972. The growth of the Mongolian gerbil, Meriones unquiculatus, from birth to maturity. J. Zool. Lond. 166: 277-282.

Oller, W.L., D.L. Greenman and R. Suber. 1985. Quality changes in animal feed resulting from extended storage. Lab. Animal Sci. 35(6): 646-650.

1996A 8-23 09/08/87

Olovson, S.G. 1986. Diet and breeding performance in cats. Lab. Animals. 52(2): 221-230.

Osborne, A.D., J.R. Saunders, T.K. Sebunya, P. Willson and G.H. Green. 1985. A simple aerosol chamber for experimental reproduction of respiratory-disease in pigs and other species. Can. J. Comp. Med. 49(4): 434-435.

Parker, J.T., M.A. Boone and J.F. Knechtges. 1972. The effect of ambient temperature upon body temperature, feed consumption and water consumption, using two varieties of turkeys. Poult. Sci. 51(2): 659-664.

Peters, J.C. and A.E. Harper. 1985. Adaptation of rats to diets containing different levels of protein: Effects on food intake, plasma and brain amino acid concentrations and brain neurotransmitter metabolism. J. Nutr. 115(3): 382-98.

Pickrell, J.A., S.E. Dubin and J.C. Elliott. 1971. Normal respiratory parameters of unanesthe- tized beagle dogs. Lab. Animal Sci. 21: 677-679.

Poiley, S.M. 1972. Growth tables for 66 strains and stocks of laboratory animals. Lab. Animal Sci. 22: 759.

Pond, W.G., N.G. Mersmann and J.T. Yen. 1985. Severe feed restriction of pregnant swine and rats: Effects on post-weaning growth and body composition of progeny. J. Nutr. 115(2): 179-189.

1996A 8-24 09/08/87

Porter, G. and W. Lane-Petter, Ed. 1962. Notes for Breeders of Common Laboratory Animals. Academic Press, New York. 208 p.

Prescott, N.J., C.M. Wathes, J.K. Kirkwood and G.C. Perry. 1985. Growth, food intake and development in broiler cockerels raised to maturity. Anim. Prod. 41: 239-245.

Prothero, J. 1986. Methodological aspects of scaling in biology. J. Theor. Biology. 118(3): 259-286.

Quast, J.F., C.G. Humiston, C.E. Wade, et al. 1983. A chronic toxicity study in dogs on ingested vinylidene chloride. Toxicology Research Laboratory, Health and Environmental Sciences, Dow Chemical, Midland, MI. Fund. Appl. Toxicol. 3(1): 55-62.

Ralston Purina Co. n.d. Poster titled Lab Chows, the Control Factor.

Richard, D. and P. Trayhurn. 1985. Energetic efficiency during pregnancy in mice fed <u>ad libitum</u> or pair-fed to the normal energy intake of unmated animals. J. Nutr. 115(5): 593-600.

Richmond, M. and C.H. Conaway. 1969. Management, breeding and reproductive performance of the vole, <u>Microtus ochrogaster</u>, in a laboratory colony. Lab. Animal Care. 19: 80-87.

Richter, C.P. 1938. Factors determining voluntary ingestion of water in mammals and in individuals with maximum diabetes insipiclos. Am. J. Physiol. 122: 668-675.

1996A 8-25 09/08/87

Ricker, W.E. 1979. Growth rates and models. <u>In</u>: Fish Physiology, Vol. VIII. Academic Press, Inc., New York. p. 377-743.

Rios, J.G., M.K. Nielsen, G.E. Dickerson and J.A. DeShazer. 1986a. Selection for postweaning gain in rats. I. Correlated response in feed utilization and body composition. J. Animal Sci. 63(1): 34-45.

Rios, J.G., M.K. Nielsen and G.E. Dickerson. 1986b. Selection for post-weaning gain in rats. II. Correlated response in reproductive performance.

J. Animal Sci. 63(1): 46-53.

Robinson, K.S., R.J. Kavlock, N. Chernoff and E.L. Gray. 1981. Multi-generation study of 1,2,4-trichlorobenzene in rats. J. Toxicol. Environ. Health B. p. 489-500.

Rogers, A.E., G.H. Anderson, G.M. Lenhardt, G. Wolf and P.M. Newberne. 1974. Semisynthetic diet for long term maintenance of hamsters to study effects of dietary vitamin A. Lab. Animal Sci. 24: 495.

Romos, D.R., H.J. Palmer, K.L. Muiruri and M.R. Bennink. 1981. Influence of a low carbohydrate diet on performance of pregnant and lactating dogs.

J. Nutr. 111: 678.

Rosen, P., A.D. Woodhead and K.H. Thompson. 1981. The relationship between the Gompertz Constant and maximum potential lifespan: Its relevance to theories of aging. Exp. Geront. 16: 131.

1996A 8-26 09/08/87

Rubin, I.B., B.E. Gill, M.R. Guerin, J. Kendrick and P. Nettesheim. 1978. Correlation of respiratory parameters in hamsters with lung deposition of radiolabeled cigarette-smoke. Environ. Res. 16(3): 70-76.

Russell, E.S. 1966. Lifespan and aging patterns. <u>In</u>: Biology of the Laboratory Mouse, E.L. Green, Ed. McGraw-Hill Book Co., New York. p. 511-518.

Sacher, G.A. 1959. Relationship of lifespan to brain weight and body weight in mammals. Ciba Foundation Colloquia on Ageing. 5: 115-133.

Sah, K.M., R.O. Singh and C.M. Prasad. 1984. A comparative study on body weight in desi, white leghorn and their reciprocal crosses. Ind. J. Animal Sci. 54(12): 1180-1181.

Sanford, J.C. and F.G. Woodgate. 1979. The Domestic Rabbit, 3rd ed. John Wiley and Sons, NY.

Schlenker, E.H. 1984. An evaluation of ventilation in dystrophic syrian hamsters. J. Appl. Physiol. Environ. Exercise Physiol. 56: 914-921.

Schlenker, E.H. 1985. Ventilation and metabolism of the djungarian hamster (Phodopus-Sungorus) and the albino mouse. Comp. Biochem. Physiol. A. 82(2): 293-295.

Shelton, D.C. 1971. Feeding in guinea pig. Lab. Animal Digest. 7: 84.

1996A 8-27 09/08/87

Shirley, B. 1984. The food intake of rats during pregnancy and lactation. Lab. Animal Sci. 34(2): 169-172.

Siafakas, N.M., M. Bonora, B. Duron, H. Gautier and J. Milic-Emili. 1983.

Dose effect of pentobarbital sodium on control of breathing in cats. J.

Appl. Physiol. (United States). 55(5): 1582-1589.

Silverstein, E. 1960. Urine specific gravity and osomolality in inbred strains of mice. J. Appl. Physiol. 16: 194-196.

Simmons, M.L. and J.O. Brick. 1970. The Laboratory Mouse, Selection and Management. Prentice-Hall, Inc., Englewood Cliffs, NJ.

Skornik, W.A., R. Heimann and R.J. Jaeger. 1981. Pulmonary mechanics in guinea pigs. Repeated measurements using a non-surgical computerized method. Toxicol. Appl. Pharmacol. 59(2): 314-323.

Smalley, K.A., G.R. Rogers, J.G. Morris and L.L. Eslinger. 1985. The nitrogen requirement of the weanling kitten. Br. J. Nutr. 53(3): 501-512.

Snyder, W.S., M.T. Cook, L.R. Karhausen, I.H. Lipton, E.S. Nasset and G. Parry Howells. 1981. International Commission of Radiological Protection. No. 23: Report of the Task Group on Reference Man. Pergamon Press, NY. p. 480.

Soderwall, A.L., H.A. Kent, C.L. Turbyfill and A.L. Bittenbaker. 1960. Variation in gestation length and litter size of the golden hamster (Mesocricetus auratus). J. Gerontol. 15: 246. (Cited in NAS, 1978)

1996A 8-28 09/08/87

Solleveld, H.A., J.K. Haseman and E.E. McConnell. 1984. Natural history of body weight gain, survival and neoplasia in the F344 rat. J. Natl. Cancer Inst. 72(4): 929-940.

Spencer, S.A., P.G. Small and P. Hull. 1985. The effect of overfeeding newborn rabbits on the rate of skeletal maturation, as determined using a radiographic technique. Br. J. Nutr. 53(2): 233-240.

Stara, J.F., D.L. Dungworth, J.G. Orthoefer and W.S. Tyler. 1980. Long-term effects of air pollutants in canine species. EPA-600/8-80-014.

Steger, R.W., J.J. Peluso, H.H. Huang, et al. 1980. Effects of advancing age on the hypothalamic-pituitary-ovarian axis of the female white-footed mouse (Peromyscus leucopus). Exp. Aging Res. 6(4): 329-39. ISSN 0361-073x.

Stoudt, H.W., A. Damon and R.A. McFarland. 1960. Heights and weights of white Americans. Human Biol. 32(4): 331-341.

Strope, G.L. C.L. Cox, R.L. Pimmel and W.A. Clyde, Jr. 1980. Dynamic respiratory mechanisms in intact anesthetized hamsters. J. Appl. Physiol.: Respir. Environ. Excer. Physiol. 49: 197-203.

Sufit, E., K.A. Houpt and M. Sweeting. 1985. Physiological stimuli of thirst and drinking patterns in ponies. Equine Veterinary J. 17(1): 12-16.

Suzuki, K., K. Sudo, T. Yamamoto, T.K. Hashimoto. 1975. The carcinogenicity of N-ethoxycarbonyl-3-morpholinosydnonimine (Molsidomine) in comparison with nitroglycerine in C57B1/6JMS mice. Pharmacokinetics. 9(2): 299-242.

1996A 8-29 09/08/87

Taton, G.F., D.W. Hamar and L.D. Lewis. 1984. Evaluation of ammonium chloride as a urinary acidifier in the cat. J. Am. Vet. Med. Assoc. 184(4): 433-436.

Taylor, S.C.S., A.J. Moore and R.B. Thiessen. 1986. Voluntary food intake in relation to body weight among british breeds of cattle. Animal Prod. 42(1): 11-18.

Templeton, G.S. 1968. Domestic Rabbit Production. Interstate Printers and Publishers, Danville, IL.

Tillery, S.I. and B.E. Lehnert. 1986. Age-body weight relationships to ring growth in the F344 rat as indexed by lung weight measurements. Lab. Animals. 20(3): 189-194.

Tolmasoff, J.M., T. Ono and R.G. Cutler. 1980. Superoxide dismutase: Correlation with life-span and specific metabolic rate in primate species. Proc. Natl. Acad. Sci. USA. 77(5): 2777-2781.

U.S. Bureau of the Census. 1985. Statistical Abstract of the United States: 1985, 105th ed. Washington, DC.

U.S. EPA. 1980. Guidelines and Methodology Used in the Preparation of Health Effects Assessment Chapters of the Consent Decree Water Criteria Documents. Federal Register. 45(231): 49347-49357.

1996A 8-30 09/08/87

U.S. EPA. 1985a. Development of Statistical Distributions or Ranges of Standard Factors used in Exposure Assessments. EPA 600/8-85/010. NTIS PB85-242667.

U.S. EPA. 1985b. Reference Values for Risk Assessment. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste, Washington, DC.

Van Wagener, G. and R.H. Catchpole. 1956. No title provided. Am. J. Physicol. Anthropology. 14: 245. (Cited in Altman and Dittmer, 1972)

Vinegar, A., E.E. Sinnett, P.C. Kosch and M.L. Miller. 1985. Pulmonary physiology of the ferret and its potential as a model for inhalation toxicology. Lab. Animal Sci. 35(3): 246-250.

Wahmann Manufacturing Co. 1973. Laboratory Animal Cages and Accessories. Catalog 7304. Timonium, MD. p. 67.

Walker, B.R., E.M. Adams and N.F. Voelkel. 1985. Ventilatory responses of hamsters and rats to hypoxia and hypercapnia. J. Appl. Physiol. 59(6): 1955-1960.

Wang, S.C. and L.F. Nims. 1948. The effect of various anaesthetics and decerebration on the $\rm CO_2$ stimulating action on respiration in cats. J. Pharmacol. Exp. Ther. 92: 187-195.

1996A 8-31 09/09/87

Washburn, S.L. 1981. Longevity in primates. <u>In</u>: Aging: Biology and Behavior, J.L. McGaugh and S.B. Kiesler, Ed. Academic Press, New York. p. 11-29.

Waterhouse, H.N. and D.S. Carver. 1966. Food and water consumption of laboratory cats. <u>In</u>: Progress in Feline Practice. (Mod. Vet. Ref. Ser.)

American Veterinary Publications, Inc., Santa Barbara, CA.

Watkins, B.E., G.D. Riegle and S.R. Heisey. 1973. Respiratory responses to ACTH and dexameth- asone in unanesthetized goats. Respir. Physiol. 17: 127-133.

White, D.P., J.V. Weil and C.W. Zwillich. 1985. Metabolic rate and breathing during sleep. J. Appl. Physiol. 59(2): 384-391.

Wiberg, G.S., J.M. Airth and H.C. Grice. 1966. Methodology in long-term toxicity tests: A comparison of individual versus community housing. Food. Cosmet. Toxicol. 4: 47.

Wise, D.R. and R.M. Connan. 1979. Water consumption in growing pheasants. Vet. Rec. 104(16): 368-370.

Withers, P.C., T.M. Casey and K.K. Casey. 1979. Allometry of respiratory and haematological parameters of arctic mammals. Comp. Biochem. Physiol. 64A: 343-350.

1996A 8-32 09/08/87

Worden, A.N. 1947. The Care and Management of Laboratory Animals. Williams and Wilkins, Co., Baltimore, MD. p. 145.

Worden, A.N., K.F. Rivett, D.B. Edwards, A.E. Street and A.J. Newman. 1975. Long-term feeding study on disodium 5-ribonucleotide in dogs. Toxicology. 3(3): 341-347.

Wright, P.C., M.K. Izard and E.L. Simmons. 1986. Reproductive cycles in <u>Tarsius bancanus</u>. Am. J. Primatol. 11: 207-215.

Yarbrough, L.W., J.L. Tollett, R.D. Montrey and R.J. Beattie. 1984. Serum biochemical, hematological and body measurement data for common marmosets. Lab. Animal. Sci. 34(3): 276.

Zatzman, M.L., G.V. Thornhill, W.J. Ray and M.R. Ellersiek. 1984. Seasonal changes of food and water consumption and urine production of the marmot, Marmota flaviventris. Comp. Biochem. Physiol. 77(4): 735-743.

Zullinger, E.M., R.E. Ricklefs, K.H. Redford and G.M. Mace. 1984. Fitting sigmoidal equations to mammalian growth curves. J. Mammalogy. 65(4): 607-636.

1996A 8-33 09/08/87

9. WORKS CONSULTED

Adolph, E.F. 1983. Heat exchanges of man in the desert. Am. J. Physiol. 123: 486-499.

Agostoni, E., f.f. Thimm and W.O. Fenn. 1959. Comparative features of the mechanics of breathing. J. Appl. Physiol. 14: 679-683.

Allen, T.A. and W.S. Root. 1957. Partition of carbon monoxide and oxygen between air and whole blood of rats, dogs and men as affected by plasma pH. J. Appl. Physiol. 10: 186-190.

Allen, J.L., E.R. Recobson, J.W. Harvey and W. Boyce. 1985. Hematologic and serum chemical values for young African elephants with variations for sex and age. J. Zoo Animal Med. 16(3): 98-101.

Amdur, M.O. 1966. Respiratory absorption data and SO_2 dose-response curves. Arch. Environ. Health. 12: 729-732.

Amdur, M.A., et al. 1978. Respiratory response of guinea pigs to low levels of sulphuric acid. Environ. Res. 15: 418-423.

Amoroso, E.C. 1962. The pattern of external respiration in the unanesthetized animal. Proc. Royal Soc. Lond. Ser. B. 159: 325.

Anand, B.K. and J.R. Brobeck. 1951. Hypothalamic control of food intake in rats and cats. Yale J. Biol. Med. 24: 123-140.

1997A 9-1 08/17/87

Anand, B.K. and S. Dua. 1955. Feeding responses induced by electrical stimulation of the hypothalamus in cat. Ind. J. Med. Res. 43: 113-122.

Andersen, M.E. 1982. Recent advances in methodology and concepts for characterizing inhalation pharmacokinetic parameters in animals and man. USAF, Aerosp Med. Res. Lab., Toxicol. Branch/Wright Patterson AFB/OH/45433. Drug Metab. Reviews. 13: 799-826.

Andersen, M.E. 1981. Pharmacokinetics of inhaled gases and vapors. USAF, Aerosp. Med. Res. Lab., Toxicol. Branch/Wright Patterson AFB/OH/45433. Neurobehav. Toxicol. Teratol. 3(4): 383-389.

Andersen, M.E. 1981. A physiologically based toxicokinetic description of the metabolism of inhaled gases and vapors -- Analysis at steady-state. USAF, Aerosp. Res. Lab., Toxicol. Branch/Wright Patterson AFB/OH/45433. Toxicol. Appl. Pharmacol. 60(3): 509-526.

Andersen, M.E., M.L. Gargas, R.A. Jones and L.J. Jenkins. 1980. Determination of the kinetic constants for metabolism of inhaled toxicants <u>in vivo</u> using gas uptake measurements. USN, Med. Res. Inst. Toxicol. Detachment/Wright Patterson AFB/OH/45433. Toxicol. Appl. Pharmacol. 54(1): 100-116.

Andersson, B. 1978. Regulation of water intake. Physiol. Rev. 58: 582-603.

Anonymous. 1985a. How much energy does a pregnant woman need? Nutr. Reviews. 43(4): 110-111.

1997A 9-2 08/17/87

Anonymous. 1985b. Number of animals used in experiments in 1981 -- Results of survey. Exp. Animals. 34(3): 323-336.

Anonymous. 1985c. Body weight, health and longevity: Conclusions and recommendations of the workshop. Nutr. Reviews. 43(2): 61-63.

Anonymous. 1986. The role of the ileum in food intake regulation. Nutr. Reviews. 44(7): 228-229.

Arrington, L.R., et al. 1973. Protein requirement of growing gerbils. Lab. Animal Sci. 23: 851-854.

Arvola, A. and O.A. Forsander. 1961. Comparison between water and alcohol consumption in six animal species in free choice experiments. Nature (London). 191: 819.

Baird, D.J., et al. 1986. Life history evolution and post-reproduction mortality risk. J. Animal Ecology. 55(1): 292-302.

Baldwin, B.A. 1985. Neural and hormonal mechanisms regulating food intake. Symposium on food intake and its control by farm animals. Proc. Nutr. Soc. 44(2): 303-312.

Barbato, G.F., J.A. Cherry, P.B. Siegel and H.P. Van Krey. 1980. Repeatabilities of feed and water consumption of growing chickens. Poult. Sci. 59(8): 1951-1952.

1997A 9-3 08/17/87

Barbour, H.G. and J. Trace. 1937. Standard metabolism in the white mouse.

Am. J. Physiol. 118: 77-86.

Barnas, G.M., et al. 1985. Comparison between the pigeon and chicken with regard to respiratory and cardiovascular responses to spinal cord cooling and different ambient temperatures. J. Thermal Biology. 10(1): 51-54.

Bedford, T.C., et al. 1979. Maximum oxygen consumption of of rats and its changes with various experimental procedures. J. Appl. Physiol. 47: 1278-1283.

Bell, F.R. 1984. Aspects of ingestive behavior in cattle. J. Animal Sci. 59(5): 1369-1372.

Bell, D.J. and G.C. Bray. 1984. Effects of single and mixed-sex caging on post weaning development in the rabbit. Lab. Animals. 18(3): 267-270.

Bell, G.M., et al. 1985. Red cell population distribution in healthy dogs. Research Vet. Sci. 38(2): 221-227.

Benedict, F.G.. 1936. The physiology of the elephant. Carn. Inst. Washington Publ. No. 474. p. 302.

Benoff, F.H. and E.G. Buss. 1976. Water consumption and urine volume in polydipsic and normal White Leghorn chickens. Poult. Sci. 55(3): 1140-1142.

1997A 9-4 08/17/87

Berteau, P.E. and A.H. Biermann. 1977. Respiratory deposition and early distribution of inhaled vegetable oil aerosols in mice and rats. Toxicol. Appl. Pharmacol. 39(2): 177-183.

Berteau, P.E. and W.A. Deen. 1978. Comparison of oral and inhalation toxicities of four insecticides to mice and rats. Bull. Environ. Contam. Toxicol. 19(1): 113-120.

Bertrand, M. 1985. Environment and reproduction in laboratory rodents. Science Tech. Animal Lab. 10(1): 29-37.

Bickler, P.E. and R.A. Anderson. 1986. Ventilation, gas exchange and aerobic scope in a small monitor lizard. Physiol. Zool. 5991): 76-83.

Biewener, A.A., et al. 1985. Regulation of respiratory airflow during panting and feeding in the dog. Respir. Physiol. 61(2): 185-196.

Bisgard, G.E., et al. 1973. Ventilatory control in the Hereford calf. J. Appl. Physiol. 35: 220-226.

Blinkova, L.P., S.F. Fedyaev and T.A. Grechukha. 1975. Possibility of reduction of a seance of aerosol immunization with dry living plague vaccine. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii. 1975(8): 42-45.

Boggs, D.F., et al. 1984. Respiratory physiology of burrowing mammals and birds. Comp. Biochem. Physiol. 77A: 1-7.

1997A 9-5 08/17/87

Boisset, M., F. Girard, J. Godin and C. Boudene. 1978. Cadmium content of lung, liver and kidney in rats exposed to cadmium-oxide fumes. Int. Arch. Occup. Environ. Health. 41(1): 41-53.

Bonnod, J. 1985. The environmental components: Elements of standardization or experimental anomalies in laboratory animals. Science Tech. Animal Lab. 10(1): 7-15.

Book, S.A. 1982. Scaling toxicity from laboratory animals to people. An example with nitrogen-dioxide. J. Toxicol. Environ. Health. 9(5-6): 719-725.

Boot, R., A.B. Leussink and R.F. Vlug. 1985. Influence of housing conditions on pregnancy outcome in cynomolgus monkeys (<u>Macaca fascicularis</u>). Lab. Animals. 19(1): 42-47.

Borbely, A.A. 1979. Continuous long-term recording of sleep, motor activity, food intake and water consumption in the rat. Pharmacol. Ther. 5(1-3): 481-483.

Bouley, G., F. Arsac, A. Dubreuil, C. Boudene and K. Pekari. 1984. Natural and acquired-resistance of mice to infection by airborne <u>Lebsiella</u> <u>pneumoniae</u> after subchronic intoxication by cadmium administered orally. Sci. Total Environ. 38: 55-62.

Boxenbaum, H. and J.B. Fertig. 1984. Scaling of antipyrine intrinsic clearance of unbound drug in 15 mammalian species. Eur. J. Drug Metab. Pharmacokinet. 9(2): 177-183.

1997A 9-6 08/17/87

Boxenbaum, H. and R. Ronfeld. 1983. Interspecies pharmacokinetic scaling and the dedrick plots. Am. J. Physiol. 245: R768-R775.

Brain, J.D. 1970. The uptake of inhaled gases by the nose. Ann. Otol. Rhinol. Laryngol. 79: 529-539.

Brooks, P.M., et al. 1957. Prompt pulmonary ventilation and oxygen consumption changes in rhesus monkeys associated with whole-body gamma-irradiation. Radiat. Research. 6: 430-449.

Brown, W.T. 1979. Human mutations affecting aging -- A review. Mech. Ageing Dev. 9(3-4): 325-336.

Brown, D.R. and S.G. Holtzman. 1981. Suppression of drinking by naloxone in rats homo- and heterozygous for diabetes insipidus. Pharmacol. Biochem. Behav. 15(1): 109-114.

Byron, P.R. 1986. Some future perspectives for unit dose inhalation aerosols. Drug Devel. Ind. Pharm. 12(7): 993-1016.

Caillol, M. and L. Martinet. 1976. Effect of ambient temperature on food, nitrogen and energy intake of the field-vole, <u>Microtus arvalis</u>, under different conditions of daylight ratio and feeding. Ann. Biol. Animal Biochim. Biophys. 16: 783-790.

Calder, W.A. 1976. Aging in vertebrates. Allometric considerations of spleen size and lifespan. Fed. Proc. 35: 96.

1997A 9-7 08/17/87

Calder, W.A. 1981. Scaling of physiological process in homeothermic animals. Ann. Rev. Physiol. 43: 301-322.

Calder, W.A. 1982. The relationship of the Gompertz constant and maximum potential lifespan to body mass. Exp. Gerontol. 17(5): 383-385.

Calder, W.A. 1983. Body size, mortality and longevity. J. Theor. Biol. 102(1): 135-144.

Caldwell, E.J. and D.L. Fry. 1969. Pulmonary mechanics in the rabbit. J. Appl. Physiol. 27: 280-285.

Cannon, P.J., R. Monks and P. Murphy. 1979. Transducer--adapted. Benedict Roth spirometer for small animals. (Proceedings). Br. J. Pharmacol. 67(3): 506-507.

Canolty, N.L. and L.J. Koong. 1976. Utilization of energy for maintenance and for fat and lean gains by mice selected for rapid post weaning growth rate. J. Nutr. 106: 1202.

Cheeke, P.R. 1974b. Feed preferences of adult male Dutch rabbits. Lab. Animal Sci. 24: 601-604.

Christian, M.S. 1986. A critical review of multigeneration studies. J. Am. College Toxicol. 5(2): 161-180.

Cisar, C.F., et al. 1972. A practical method for production breeding of the Chinese hamster. Lab. Animal Sci. 22: 725-727.

1997A 9-8 08/17/87

Citterio, G. and E. Agostoni. 1986. Discontinuity between inspiratory and postinspiratory diaphragm activity in man and rabbit. Respir. Physiol. 64(3): 295-306.

Clark, D.G., S. Buch, J.E. Doe, H. Frith and D.H. Pullinger. 1979. Bronchopulmonary function -- Report of the main working party. Pharmacol. Therap. 5(1-3): 149-179.

Clarke, H.E., et al. 1977. Dietary standard for laboratory animals: Report of the laboratory animals centre diets advisory committee. Lab. Animals. 11: 1-28.

Classen, W., J.R. Martin and K. Battig. 1979. Computer-compatible system for continuous volumetric measurement of water consumption. Experientia. 35(9): 1270-1272.

Corbit, J.D. and J. Luschei. 1969. Invariance of the rats rate of drink-ing. J. Comp. Physiol. Psychol. 69: 119.

Costa, D.L. and M.O. Amdur. 1979. Respiratory response of guinea pigs to oil mists. Am. Ind. Hyg. Assoc. J. 40: 673-679.

Couri, D., C.H. Miller, Jr., R.J. Bull, J.M. Delphia and E.M. Ammar. 1982. Assessment of maternal toxicity, embryotoxicity and teratogenic potential of sodium chlorite in Sprague-Dawley rats. Environ. Health Perspect. 46: 25-29.

1997A 9-9 08/17/87

Crosfill, M.L. and J.G. Widdicombe. 1961. Physical characteristics of the chest and lungs and the work of breathing in different <u>mammalian</u> species.

J. Physiology (London). 158: 1-14.

Crossfill, M.L. and J.G. Widdicombe. 1961. Physical characteristics of the chest and lungs and the work of breathing in different <u>animal</u> species. J. Physiol. 158: 1-14.

Cutler, R.G. 1984. Urate and ascorbate: Their possible roles as antioxidants in determining longevity of mammalian species. Arch. Gerontol. Geriatr. 3(4): 321-324.

Dallas, C.E., F.W. Weir, S. Feldman, L. Putcha and J.V. Bruckner. 1983. The uptake and disposition of 1,1-dichloroethylene in rats during inhalation exposure. Toxicol. Appl. Pharmacol. 68(1): 140-151.

NO AUTHORS GIVEN? 1963. American Societies for Experimental Biology. 1969. Intro. Lab. Animal. 28: 1373-1586.

Dalton, D.C. 1963. Effect of dilution of the diet with an indigestible filler on feed intake in the mouse. Nature. 197: 909.

Daniels, H.L. 1984. Oxygen consumption in lemur-fulvus deviation from the ideal model. J. Mammalogy. 6594): 584-592.

Danziger, D.J. and P.M. Dean. 1985. The search for functional correspondences in molecular structure between two dissimilar molecules. J. Theoret. Biol. 116(2): 215-224.

1997A 9-10 08/17/87

Davis, D.E. 1976. Hibernation and circannual rhythms of food consumption in marmots and ground squirrels. Quart. Rev. Biol. 51: 477-514.

Davy, C.W., et al. 1984. Reference intervals for some clinical parameters in the marmoset. Effect of sex and age. Lab. Animals. 18(2): 135-142.

Dean, J. and D.G. Edwards. 1985a. The availability to the rat of energy from various diet ingredients. Lab. Animals. 19(4): 305-310.

Dean, J. and D.G. Edwards. 1985b. The nutritional value of rat diets of differing energy and protein. Lab. Animals. 19(4): 311-319.

Dedrick, R.L. and K.B. Bischoff. 1980. Species similarities in pharmacokinetics. Fed. Proc. 39: 54-59.

Defuedis, F.V. 1974. Differences in brain and body weights of mice caused by differential housing. Experientia. 30: 521.

Dejours, P., et al. 1970. Comparison of ventilatory and circulatory flow rates between animals in various physiological conditions. Respiration Physiol. 9: 108-117.

Dejours, P. 1975. Principles of Comparative Respiratory Physiology. Amsterdam, North Holland. p. 163-175.

Della-Fera, M.A. and C.A. Baile. 1984. Control of feed intake in sheep. J. Animal Sci. 59(5): 1362-1369.

1997A 9-11 08/17/87

Denbow, D.M. 1985. Food and water intake response of turkeys to intracerebroventricular injections of Angiotensin II. Poult. Sci. 64(10): 1996-2000.

Denbow, D.M., H.P. Van Krey, P.A. Skewes and M.P. Lacy. 1985. Food and water intake of broiler chicks as affected by intracerebroventricular injations of Cholinomimetics. Poult. Sci. 64(5): 991-994.

Dennis, B. and P.A. Shifflet. 1985. A conceptual and methodological model for studying dietary habits in the community. <u>In</u>: Ecology of Food and Nutrition, Vol. 17, Gordon and Breach Publishers, Inc., U.K. p. 253-262.

Denny, M.J.S. and T.J. Dawson. 1975. Comparative metabolism of tritiated water by macropodid marsupials. Am. J. Physiol. 28: 1794-1799.

Detlaven, K.E. and F.G. Carpenter. 1964. Interaction between ${\rm CO}_2$ and citrate ions in the medullary reticular formation. Am. J. Physiol. 207: 298-302.

Deyl, Z., M. Juricova and E. Stuchlikova. 1975. The effect of nutritional regimes upon collagen concentration and survival of rats. Adv. Exp. Med. Biol. 53: 359-369.

Diambra, O.H. and M.G. McCartney. 1985. Performance of male broilers changed from starter to finisher diets at different ages. Poult. Sci. 64(10): 1829-1833.

1997A 9-12 08/17/87

Dice, L.R. 1922. Some factors affecting the distribution of the prairie vole, forest deer mouse and prairie deer mouse. Ecology. 3: 29-47.

Drazen, J.M. 1976. Physiologic basis and interpretation of common indices of respiratory mechanical function. Environ. Health Perspect. 16: 11-16.

DrorBough, J.E. 1960. Pulmonary function in different animals. J. Appl. Physiol. 15: 1069-1072.

Dublin, L. 1985b. Ideal weights for women. Nutr. Reviews. 43(2): 52-54.

Durrer, L.J. and J.P. Hannon. 1962. Seasonal variations in caloric intake of dogs living in an artic environment. Am. J. Physiol. 202: 375.

Ebinger, P. and R. Lohmer. 1985. Relationship of brain weight and body weight in mallards and domestic ducks. Zoologischer Anzeiger. 214(5-6): 285-290.

Edwards, D.G. and J. Dean. 1985a. The responses of rats to various combinations of energy and protein. I. Diets made from purified ingredients. Lab. Animals. 19(4): 325-335.

Edwards, D.G. and J. Dean. 1985b. The responses of rats to various combinations of energy and protein. II. Diets made from natural ingredients. Lab. Animals. 19(4): 336-343.

1997A 9-13 08/17/87

Elliott, F.C. 1963. The meadow vole (<u>Microtus pennsylvanicus</u>) as a bio-assay test organism for individual forage plants. Mich. Agric. Exp. Stn. Q. Bull. 46: 58-72.

Feldman, H.A. and T.A. McMahon. 1983. The 3/4 mass exponent for energy metabolism is not a statistical artifact. Respiration Physiol. 52: 149-163.

Fiserova-Bergerova, V.J., J. Vlach and K. Singhal. 1974. Simulation of uptake, distribution and exhalation of organic solvents. Br. J. Ind. Med. 31: 45-52.

Fiserova-Bergerova, V.J., J. Vlach and J.C. Cassady. 1980. Predictable "individual differences" in uptake and excretion of gases and lipid soluble vapors: Simulation study." Br. J. Ind. Med. 37: 42-49.

Fonnesbeck, P.V., et al. 1974. Digestion of plant cell walls by animals. J. Animal Sci. 39: 182.

Forbes, J.M. 1985. Similarities and differences between intake control mechanisms in pigs, chickens and ruminants. Proc. Nutr. Soc. 44(2): 331-338.

Ford, D.J. and R.J. Ward. 1983. The effect on mice of practical diets containing different protein and energy level. Lab. Animal. 17(4): 336-339.

Foster, J.A., M. Morrison, S.J. Dean, M. Hill and H. Frenk. 1981. Naloxone suppresses food/water consumption in the deprived cat. Pharmacol. Biochem. Behav. 14(3): 419-421.

1997A 9-14 08/17/87

Fowler, V.R. 1985. The importance of voluntary feed in pigs. Proc. Nutr. Soc. 44(2): 347-354.

Fox, B.J. 1985. A graphical method for estimating length of gestation and estrous cycle length from birth intervals in rodents. J. Mammalogy. 66(10): 168-172.

Frederick, K.A. and J.G. Babish. 1985. Compendium of recent literature on the ferret. Lab. Animal Sci. 35(3): 298.

Freeman, J.T. 1975. The longevity of gerontologists. J. Am. Geriatr. 23(5): 200-206.

Fullter, T.K., et al. 1985. Hematology and serum chemistry of bobcats in Northcentral Minnesota. J. Wildlife Diseases. 21(1): 29-32.

Garner, M.G., A.F. Phippard, J.S. Horvath, G.G. Duggin and D.J. TIller.

1985. Blood volume measurement in baboons. Simultaneous estimation of red

cell volume and plasma volume. J. Med. Primatol. 14(6): 345-356.

Gautier, M. 1976. Pattern of breathing during hypoxia or hypercapnia of the awake or anaesthetized cat. Respir. Physiol. 27: 193-206.

Gautier, H. 1980. Control of the pattern of breathing. Clin. Sci. 58(5): 343-348.

1997A 9-15 08/17/87

Geddes, L.A., W.D. Voorhees, C.F. Babbs and J.A. Deford. 1985. Electroventilation. Am. J. Emerg. Med. 3(4): 337-339.

Gehr, P., D.K. Mwangi, A. Ammann, G.M.O. Maloiy, C.R. Taylor and E.R. Weibel. Design of the mammalian respiratory system. V. Scaling morphometric pulmonary diffusing capacity to body mass: Wild and domestic mammals. Respir. Physiol. 44: 61-86.

Gentle, M.J. 1985. Sensory involvement in the control of food intake in poultry. Proc. Nutr. Soc. 44(2): 313-322.

Geobel, A.M., et al. 1985. Hematological and serum chemistry values for captive suni (Neotragus moschatus zuluensis). Zoo Biol. 4(1): 13-22.

Giesel, J.T. 1979. Association between age specific mortality and fecundity rates in mammals. Exper. Gerontol. 14: 189-192.

Glazier, D.S. 1985. Energetics of litter size in five species of <u>Pero-myscus</u> with generalization for other mammals. J. Mammalogy. 66(4): 629-642.

Gohler, H., et al. 1985. Influence of body weight, age and sex on body weight gain and fat deposition in fattening lambs. Arch. Animals Breeding. 28(3): 259-264.

Gordon, C.J. and J.S. Ali. 1984. Measurement of ventilatory frequency in unrestrained rodents using microwave radiation. Respir. Physiol. 56(1): 73-79.

1997A 9-16 08/17/87

Gordon, C.W. and M.D. Long. 1984. Ventilatory frequency of mouse and hamster during microwave induced heat exposure. Respir. Physiol. 56: 81-90.

Gottlieb, S.F. and R.V. Vagodzinski. 1962. Body plethysmorgraph for respiratory measurements of unanesthetized small animals. J. Appl. Physiol. 17: 576-578.

Gould, S.J. 1966. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41: 587-640.

Gould, S.J. 1977. Our alloted lifetime. Nat. Hist. 87(1): 34-41.

Gould, S.J. 1979. One standard lifespan. New. Sci. 81: 388-389.

Grace, S.A., K.A. Munday and A.R. Noble. 1979. Sodium, potassium and water metabolism in the rabbit: The effect of sodium depletion and repletion. J. Physiol. 292: 407-420.

Greaves, J.H. and P.B. Ayres. 1985. Fuzzy: A genetic marker for warfarin resistance in the Norway rat. Lab. Animals. 19(2): 145-147.

Greence, L.W., P.G. Harms, G.T. Schelling, F.M. Byers, W.C. Ellis and D.J. Kirk. 1985. Growth and estrous activity of rats fed adequate and deficient levels of phosphorous. J. Nutr. 115: 753-758.

Greenleaf, J.E., E.G. Averkin and F. Sargent. 1966. Water consumption by man in a warm environment: A statistical analysis. J. Appl. Physiol. 21(1): 93-98.

1997A 9-17 08/17/87

Greenleaf, J.E., et al. 1983. Drinking and water balance during exercise and heat acclimation. J. Appl. Physiol. 54: 414-419.

Gutman, Y., F. Benzakein and M. Chaimovitz. 1967. Kidney factor(s) affecting water consumption in the rat. Isr. J. Med. Sci. 3(6): 910-911.

Guyton, A.C. 1947. Analysis of respiratory patterns in laboratory animals.

Am. J. Physiology. 150: 78-83.

Gwilt, D.J. and V.A. Goat. 1977. Small animal ventilation using a coaxial circuit. Br. J. Anaesthesia. 49(4): 341-343.

Hagen, K.W. 1974. Colony husbandry. <u>In</u>: The Biology of the Laboratory Rabbit, S.H. Weisbroth, R.E. Flatt and A.L. Kraus, Ed. Academic Press, New York. p. 23-47.

Hagsten, I.B. and T.W. Perry. 1976. Evaluation of dietary salt levels for swine. I. Effect on gain, water consumption and efficiency of feed conversion. J. Anim. Sci. 42(5): 1187-1190.

Hall, K.Y., K. Bergman and R.L. Walford. 1981. DNA repair, H-2 and aging in NZB and CBA mice. Tissue Antigens. 17(1): 104~110.

Halloran, B.P. 1985. Diet and vitamin-D deficiency in the rat. Nutr. Reports Inter. 31(5): 1149-1153.

1997A 9-18 08/17/87

Halse, S.A. 1984. Food intake, digestive efficiency and retention time in spur-winged geese <u>Plectropterus gambensis</u>. S. African J. Wildlife Research. 14(4): 106-110.

Hamilton, G.D. and F.H. Bronson. 1986. Food restriction and reproductive development: Male and female mice and male rats. Am. J. Physiol. 250(3): R370-R377.

Hart, R.W. and R.B. Setlow. 1974. Correlation between deoxyribonucleic acid excision repair and life span in a number of mammalian species. Proc. Natl. Acad. Science. (U.S.A.). 71: 2169-2173.

Hart, R.W., S.M. D'Ambrosio, K.J. Ng and S.P. Modak. 1979. Longevity, stability and DNA repair. Mech. Ageing Dev. 9(3-4): 203-223.

Hastings, R.H. and F.L. Powell. 1986. Physiological dead space and effective parabronchial ventilation in ducks. J. Appl. Physiol. 60(1): 85-91.

Hawkey, C.M. 1985. Analysis of hematologic findings in healthy and sick adult chimpanzees. J. Med. Primatol. 14(6): 327-344.

Hawkey, C.M.? and R.W.? Hart. 1984. Age related changes in the blood count of the scimitar-horned oryx. J. Zoo Animal Med. 15(4): 157-160.

Hayflick, L. 1984. Intracellular determinants of cell aging. Mech. Ageing Dev. 28(2-3): 177-178.

1997A 9-19 08/17/87

Heinicke, H.R., et al. 1955. Protein and amino acid requirements of the guinea pig. I. Effect of carbohydrate, protein level and amino acid supplementation. J. Nutr. 57: 483.

Heinicke, H.R., et al. 1956. Protein and amino acid requirements of the guinea pig. II. Effect of age, potassium and magnesium and type of protein. J. Nutr. 58: 269.

Hemingway, A., et al. 1956. Variation of basal respiration with age. J. Chronic Disease. 3: 301-310.

Heusner, A.A. 1982a. Energy metabolism and body size. I. Is the 0.75 mass exponent of Kleiber's equation a statistical artefact? Respir. Physiol. 48: 1-12.

Heusner, A.A. 1982b. Energy metabolism and body size. II. Dimensional analysis and energetic non-similarity. Respir. Physiol. 48: 13-25.

Hiett, D.M. 1974. Tests of ventilatory function for use in long-term animal studies. Br. J. Ind. Med. 31: 53-58.

Hiett, D.M. 1978. Experimental asbestosis: An investigation of functional and pathological disturbances. I. Methods, controls and exposure conditions. Br. J. Ind. Med. 35: 129-134.

Hill, J.R. 1959. The oxygen consumption of newborn and adult animals. Its dependence on the oxygen tension in the inspired air and on the environmental temperature. J. Physiology (London). 149: 346-373.

1997A 9-20 08/17/87

Hilleman, M.R. 1982. Vaccines for the decade of the 1980s and beyond. S. Afr. Med. J. 61(9): 691-698.

Hinds, D.S. and R.E. MacMillen. 1986. Scaling of evaporative water loss in marsupials. Physiol. Zool. 59(1): 1-9.

Hoebel, B.G. 1977. Pharmacologic control of feeding. Ann. Rev. Pharmacol. Toxicol. 17: 605-621.

Hoffman, M.P. and H.L. Self. 1972. Factors affecting water consumption by feedlot cattle. J. Anim. Sci. 35(4): 871-876.

Hollinger, M.A., O.G. Raabe, S.N. Giri, M. Freywald, S.V. Teague and B. Tarkington. 1979. Effect of the inhalation of zinc and dietary zinc on paraquat toxicity in the rat. Toxicol. Appl. Pharmacol. 49(1): 53-61.

Holt, J.P., E. Rhode and H. Kines. 1968. Ventricular volumes and body weight in mammals. Am. J. Physiol. 215: 704-715.

Holub, D. and R. Frank. 1979. A system for rapid measurement of lung function in small animals. J. Appl. Physiol: Resp. Environ. Exercise Physiol. 46: 394-398.

Hornicke, H., et al. 1984. Phase relationship of the circadian rhythms of feed intake, caccal motility and production of soft and hard faeces in domestic rabbits. Lab. Animals. 34(3): 169-172.

1997A 9-21 08/17/87

Houpt, T.R. 1984. Controls of feeding in pigs. J. Animal Sci. 59(5): 1345-1354.

Hove, E.L. and J.R. Herndon. 1975. Growth of rabbits on purified diets. J. Nutr. 63: 193-200.

Ingram, D.J. and M.J. Dauncey. 1985. Circadian rhythms in the pig. Comp. Biochem. Physiol. 82(1): 1-6.

Ithoh, T., et al. 1985. Spontaneous teratoma in a Sprague-Dawley rat. Exp. Animals. 34(2): 207-210.

Jacky, J.P. 1980. Barometric measurement of tidal volume: Effects of pattern and nasal temperature. J. Appl. Physiol. 49: 319-325.

Jakab, G.J. 1974. Effect of sequential inoculations of sendal virus and pasteurella-pneumotropica in mice. J. Am. Vet. Med. Assoc. 164(7): 723-728.

James, J., G.M. Fronik and J.M.G. Hesseling. 1985. Experiences with standardized feeding of rats with an automatic food dispensing apparatus. Lab. Animals. 19(3): 255-257.

Jansson, B. and M.A. Malahy. 1981. Cancer risk, age at diagnosis and age at death as functions of season of birth. Cancer Detect. Prev. 4(1-4): 291-294.

1997A 9-22 08/17/87

Jaros, G.G., A.C. Guyton and T.G. Coleman. 1980. The role of bone in short-term calcium homeostasis. An analog digital computer-simulation. Ann. Biomed. Engin. 8(2): 203-141.

Jefferies, D.J. and M.C. French. 1972. Lead concentrations in small mammals trapped on roads verges and field sites. Environ. Pollut. 3: 147-156.

John, A.M. and J.M. Bell. 1976. Amino acid requirements of the growing mouse. J. Nutr. 106: 1361.

Jones, D.R., et al. 1985. Ventilatory response to venous ${\rm CO}_2$ loading by gut ventilation in ducks. Can. J. Zool. 63(6): 1232-1236.

Kahan, E. and M. Rosen. 1984. The influence of litter size and favorable conditions on mortality and weaning weights in rats. Lab. Animals. 18(3): 247-251.

Kanter, G.S. 1953. Excretion and drinking after salt loading in dogs. Am. J. Physiol. 174: 87.

Kenagy, G.J. and S.C. Trombulak. 1986. Size and function of mammalian testes in relation to body size. J. Mammalogy. 67(1): 1-22.

Kendall, P.T., D.W. Holme and P.M. Smith. 1982. Methods of prediction of the digestible energy content of dog foods from gross energy value, proximate analysis and digestible nutrient content. J. Sci. Food Agric. 3: 823.

1997A 9-23 08/17/87

Keys, P.H. 1953. An efficient water system for small laboratory animals. J. Dent. Res. 32: 868-870.

Kilian, U., E. Muller, E.C. Dittmann and J. Hamacher. 1978. Methods for simultaneous recording of pharmacodynamic and toxic effects on interior sensitive receptors, respiration and cardiac circulatory system of guinea pigs. Arzneimittel-Forschung/Drug Research. 28(10): 1699-1707.

King, T.K.C. 1966. Mechanical properties of the lungs in the rat. J. Appl. Physiol. 21: 259-261.

King, J.O.L. 1975. The feeding of copper sulfate to growing rabbits. Br. Vet. J. 131: 70-75.

Kishimot, R.A. and G.T. Burger. 1977. Appearance of cellular and humoral immunity in guinea pigs after infection with coxiella-burnetii administered in small-particle aerosols. Infect. Immun. 16(2): 518-521.

Kleiber, M., et al. 1956. Metabolic rate of female rats as a function of age and body size. Am. J. Physiol. 186: 9.

Kodama, Y., S. Ishimatsu, K. Matsuno, I. Tanaka and K. Tsuchiya. 1985. Pulmonary deposition and clearance of a nickel-oxide aerosol by inhalation. Biol. Trace Element Res. 7(1): 1-9.

Koo, K.W., et al. 1976. Respiratory mechanics in normal hamsters. J. Appl. Physiol. 40: 936-942.

1997A 9-24 08/17/87

Krell, W.S. and J.R. Rodarte. 1985. Effects of acute pleural effusion on respiratory system mechanics in dogs. J. Appl. Physiol. 59(5): 1458.

Krinke, J.G., D.C. Naylor, S. Schmid, E. Frohlich and K. Schnider. 1985. The incidence of naturally occurring primary brain tumors in the laboratory rat. J. Comp. Pathol. 95(2): 175-192.

Kuhlmann, W.D. and M.R. Fedde. 1976. Upper respiratory dead space in the chicken; its fraction of the tidal volume. Comp. Biochem. Physiol. 54A: 409-411.

Lahiri, S. 1975. Blood oxygen affinity and alveolar ventilation in relation to body weight in mammals. Am. J. Physiol. 229: 529-536.

Lai, Y.L., et al. 1978. Ventilatory responses to acute CO_2 exposure in the rat. J. Appl. Physiol. 45: 611-618.

Lambert, G.A., E. Friedman, E. Buchweitz and S. Gershon. 1978. Involvement of 5-hydroxytryptamine in central control of respiration, blood-pressure and heart-rate in anesthetized rat. Neuropharmacology. 17(10): 807-813.

Lechner, A.J. 1976. Respiratory adaptations in burrowing pocket gophers from sea level and high altitude. J. Appl. Physiol. 41: 168-173.

Lechner, A.J. 1978. The scaling of maximal oxygen consumption and pulmonary dimensions in small mammals. Respir. Physiol. 34: 29-44.

1997A 9-25 08/17/87

Lechner, A.J., et al. 1986. Lung mechanics cellularity and surfactant after prenatal starvation in guinea pigs. J. Appl. Physiol. 60(5): 1610-1614.

Lee, P.S., T.L. Chan and W.E. Hering. 1983. Long-term clearance of inhaled diesel exhaust particles in rodents. J. Toxicol. Environ. Health. 12(6): 801-813.

Lees, M.H., M.R. Malinow and J.T. Parer. 1965. Cardiorespiratory function of the rhesus monkey during phencyclidine analgesia. <u>In</u>: Temas de Medicina, L.V. Decourt, Ed. Sao Paulo, Brazil Livro-Homeragem. p. 61-69. (Cited in Liu and Delawter, 1977)

Leith, D.E. 1976. Comparative mammalian respiratory mechanics. Physiologist. 19: 485-510.

Leith, D.E. 1983a. Comparative mammalian respiratory mechanics. Am. Rev. Respir. Disease. 128(2): 77.

Leith, D.E. 1983b. Mammalian tracheal dimensions -- Scaling and physiology. J. Appl. Physiol.-Respir. Environ. Exercise Physiol. 55(1): 196-200.

Leith, D. and J.R. Gillespie. 1971. Respiratory mechanics of normal horses and one with chronic obstructive lung disease. Fed. Proc. 30: 556.

Lewis, J.H., et al. 1985. Comparative hematology and coagulation: Studies on rodentia, rats. Comp. Biochem. Physiol. 82(1): 211-216.

1997A 9-26 08/17/87

Lewis, D.S., W.L. Rollwitz, H.A. Bertrand and E.J. Masoro. 1986. Use of NMR for measurement of total body water and estimation of body fat. J. Appl. Physiol. 60(3): 836-840.

Lifschitz, E., et al. 1967. Difference in water ingestion associated with sex in poultry. Poult. Sci. 46: 1021-1023.

Lindstedt, S.L. and W.A. Calder. 1976. Body size and longevity in birds. Condor. 78: 91.

Lindstedt, S.L. and W.A. Calder. 1981. Body size physiological time and longevity of homeothermic animals. Q. Rev. Biol. 56: 1.

Livingstone, S.D. and L.A. Kuehn. 1979. Similarity in the number of life span heartbeats among non-hibernating homeothermic animals. Aviat. Space Environ. Med. 50(10): 1037-1039.

Lucey, E.C., et al. 1982. Pulmonary ventilation and blood gas values in emphysematous hamsters. Am. Rev. Respir. Disease. 125: 366-369.

MacGregor, J.R. and T.I. Lidoky. 1977. An economical device for the micro-analysis of licking. Physiol. Behavior. 18: 549.

Mapleson, W.W. 1960. An electric analog for uptake and exchange of inert gases and other agents. J. Appl. Physiol. 18: 197-204.

1997A 9-27 08/17/87

Marks, H.L. 1985. Sexual dimorphism in early feed and water intake of broilers. Poult. Sci. 64(3): 425-428.

Marks, H.L. and T. Brody. 1984. Intakes of feed and water following restriction in selected and nonselected broilers. Poult. Sci. 63(12): 2307-2317.

Marshall, T.C. and Y.S. Cheng. 1983. Deposition and fate of inhaled ethylene-glycol vapor and condensation rosol in the rat. Fund. Appl. Toxicol. 3(3): 175-181.

Martin, P. 1984. The meaning of weaning. Animal Behavior. 32(P4): 1257-1258.

Mason, G.D. and D. Scott. 1974. Renal excretion of sodium and sodium tolerance in the pig. Q. J. Exp. Physiol. 59: 103-112.

Mathewson, N.S., G.M. Oosta, S.A. Oliva, S.G. Levin and S.S. Diamond. 1979. Influence of 45-Hz vertical electric fields on growth, food and water consumption and blood constituents of rats. Radiat. Res. 79(3): 468-482.

Matsuzaki, T., et al. 1985. Gestation period of the laboratory reared volcano rabbit (Romerolagus diazi). Exper. Animals. 34(1): 63.

Mautz, W.J., R.F. Phalen, T.R. McClue and C. Bufalino. 1985. A rodent treadmill for inhalation toxicological studies and respirometry. J. Appl. Physiol. 58(2): 673-679.

1997A 9-28 08/17/87

McCance, R.A., et al. 1971. The response of normal men and women to changes in their environmental temperatures and ways of life. Philos. Trans. Royal Soc. Lond. 259: 533.

McCornack, G.S., R.H. Moreno, J.C. Hogg and P.D. Peve. 1986. Lung mechanics in papain-treated rabbits. J. Appl. Physiol. 60(1): 242-246.

McCutcheon, F.H. 1951. The mammalian breathing mechanisms. J. Cell. Comp. Physiol. 37: 447-476.

McDermott, M. 1973. Interrelation between surface tension and mechanical properties of the lung: A historical review. Proc. R. Soc. Med. 66(4): 381-383.

McLain, D.E., et al. 1985. Congenital malformations and variations in reproductive performance in the ferret: Effects of maternal age, color and parity. Lab. Animal Sci. 35(3): 251-255.

McMahon, T.A. 1973. Size and shape in biology. Science. 179: 1201-1204.

McManus, J.J. 1974. Bioenergetics and water requirements of the redback vole. J. Mammal. 55: 30-44.

Mead, J. 1961. Mechanical properties of the lung. Physiol. Reviews. 41: 281-330.

1997A 9-29 08/17/87

Merry, B.J. and A.M. Holehan. 1985. <u>In vivo</u> DNA synthesis in the dietary restricted long-lived rat. Exp. Gerontol. 20(1): 15-28.

Miller, K., M. Rosenmann and P. Morrison. 1976. Oxygen-uptake and temperature regulation of young harbor seals (Phoca-vitulina richardi) in water. Comp. Biochem. Physiol. A. 54(1): 105-107.

Morgan, A., A. Black, N. Evans, A. Holmes and J.N. Pritchard. 1980. Deposition of sized glass-fibers in the respiratory-tract of the rat. Ann. Occup. Hyg. 23(4): 353-366.

Morgane, P.J. 1961. Electrophysiological studies of feeding and satiety centers in the rat. Am. J. Physiol. 201: 838-844.

Muller, D., M.L. Edwards and D.W. Smith. 1983. Changes in iron and transferrin levels and body-temperature in experimental airborne legionellosis. J. Infect. Diseases. 147(2): 302-307.

Murakami, H. 1976. Some problems on the estimation of water intake by a drinkometer. Physiol. Behavior. 17: 457.

Nachtman, R.G., C.D.R. Dunn, T.B. Driscoll and C.S. Leach. 1985. Methods for repetitive measurements of multiple hematological parameters in individual rats. Lab. Animal Sci. 35(5): 505-508.

Nagasawa, H. and K. Furukoshi. 1985. Effects of concurrent pregnancy and location on reproduction in four strains of mice. Lab. Animal Sci. 35(2): 142-145.

1997A 9-30 08/17/87

Naim, M., J.G. Brand, M.R. Kare and R.G. Carpenter. 1985. Energy intake, weight gain and fat deposition in rats fed flavored, nutritionally controlled diets in a multichoice (Cafeteria) design. J. Nutr. 115(11): 1447-1458.

Navia, J.M. and C.E. Hunt. 1976. Nutrition, nutritional diseases and nutrition research applications. <u>In</u>: The Biology of the Guinea Pig, J.E. Wagner and P.J. Manning, Ed. Academic Press, New York. p. 235-267.

Newbergh, L.H. and M.W. Johnson. 1942. TITLE? Physiol. Rev. 22: 1-18.

Northrop, J. 1917. The effect of prolongation of the period of growth on the total duration of life. J. Biol. Chem. 32: 123.

Oatley, K. 1971. Dissociation of the circadian drinking pattern from eating. Nature. 229: 494-496.

O'Neil, J.J. and J.A. Raub. 1984. Pulmonary function testing in small laboratory mammals. Environ. Health Perspect. 56: 11-12.

Packard, G.C. 1968. Oxygen consumption of microtus montanus in relation to ambient temperature. J. Mammal. 49: 215-20.

Pagels, J.F. and C.R. Blem. 1984. Prediction of body weights of small mammals from skull measurements. Acta Theriologica. 29(26-36): 367-82.

1997A 9-31 08/17/87

Palecek, F. 1969. Measurement of ventilatory mechanics in the rat. J. Appl. Physiol. 27: 149-156.

Palecek, F., et al. 1967. Emphysema in immature rats produced by trachael constriction and papain. Arch. Environ. Health. 15: 332-342.

Pan, H.P., S.E. Graddis and K.A. Cran. 1986. A glass drinking tube for small birds and mammals. Lab. Animal Sci. 36(1): 77.

Paque, C. 1976. Water consumption in Saharan nomads. A remarkably reduced and constant consumption. Nouve Presse. Med. 5(32): 2087-2090.

Pasquis, P., A. Lacaisse and P. Dejours. 1970. Maximal oxygen uptake in four species of small mammals. Respir. Physiol. 9: 298-309.

Paydarfar, D., F.L. Eldridge and J.P. Kiley. 1986. Resetting of mammalian respiratory rhythm: Existence of a phase singularity. Am. J. Physiol. Part 2. 250(4): R721-7.

Perraud, J. 1976. Levels of spontaneous malformations in the CD rat and the CD-1 mouse. Lab. Animal Sci. 26(2 pt 2): 293-300.

Peslin, R., et al. 1985. Total respiratory input and transfer impedances in humans. J. Appl. Physiol. 59(2): 492.

Peterson, A.D. and B.R. Baumgardt. 1971a. Food and energy intake of rats fed diets varying in energy concentration and density. J. Nutr. 101: 1057.

1997A 9-32 08/17/87

Peterson, A.D. and B.R. Baumgardt. 1971b. Influence of level of energy demand on the ability of rats to compensate for diet dilution. J. Nutr. 101: 1069.

Poley, W. 1973. Factors analyses of patterns of alcohol and water consumption in mice. Q. J. Stud. Alcohol (United States). 34(1): 202.

Possidente, B. and S. Birnbaum. 1979. Circadian rhythms for food and water consumption in the mouse, <u>Mus musculus</u>. Physiol. Behav. 22(4): 657-660.

Possidente, B., J.P. Hegmann, B. Elder and L. Carlson. 1980. Dissociation of circadian rhythms for food and water consumption in mice. Physiol. Behav. 25(2): 279-281.

Prentus, ?.?., et al. 1959. Hydropenia in cat and dog. Ability of the cat to meet its water requirements solely from a diet of fish or meat. Am. J. Physiol. 196: 625.

Pride, N.B. 1979. Assessment of changes in airway calibre, I. Tests of forced expiration. Br. J. Clin. Pharmacol. 8(3): 193-203.

Prothero, J.W. 1979. Maximal oxygen consumption in various animals and plants. Comp. Biochem. Physiol. 64A: 463-466.

Prothero, J. 1986. Scaling of energy metabolism in unicellular organisms: A reanalysis. Comp. Biochem. Physiol. Part A. 83(2): 243-248.

1997A 9-33 08/17/87

Pulsford, A.H., R. Heywood, A.E. Street and S.K. Majeed. 1983. Toxicity of venalot (a mixture of coumarin and troxerutin) in the baboon. Toxicol. Lett. (Netherlands). 15(2-3): 167-174.

Ralston, S.L. 1984. Controls of feeding in horses. J. Animal Sci. 59(5): 1354-1361.

Ramsey, J.C. and M.E. Anderson. 1984. A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol. Appl. Pharmacol. 73: 159-175.

Reddy, P.R.K. and P.B. Siegel. 1977. Selection for body weight at eight weeks of age. 14. Effects of the sex-linked dwarf gene. Poult. Sci. 56: 1004-1013.

Rehfeldt, C. and E. Otto. 1985. Muscule structure changes after selection for growth. Arch. Animal Breeding. 28(5): 465.

Richmond, C.R., W.M. Langham and T.T. Trujillo. 1962. Comparative metabolism of tritiated water by mammals. J. Cell. Comp. Physiol. 59: 45-53.

Ritter, R.C. 1984. The role of the rat in research on control of ingestion: A commentary and review of recent advances in understanding brain control of food intake. J. Animal Sci. 59(5): 1373.

Ritter, E., et al. 1985. Effect of litter size at birth on raising performance. Arch. Animal Breed. 28(5): 453-464.

1997A 9-34 08/17/87

Rivest, R.W. and R.J. Wurtman. 1983. Relationship between light intensity and the melatonin and drinking rhythms of rats. Neuroendocrinology (Switzerland). 37(2): 155-156.

Robinson, N.E. 1985. Respiratory adaptations to exercise. Vet. Clinic N. Am. Equine Pract. 1(3): 497-512.

Robbins, R.J. 1977. An accurate, inexpensive calibrated drinking tube. Lab. Animal Sci. 27: 1038-1039.

Rodland, K.D. and F.R. Hainsworth. 1974. Evaporative water loss and tissue dehydration of hamsters in the heat. Comp. Biochem. Physiol. 49: 331.

Roe, F.J.C. 1965. Spontaneous tumors in rats and mice. Food. Cosmet. Toxicol. 3: 707.

Rosen, P., A.D. Woodhead and K.H. Thompson. 1981. The relationship between the Gompertz constant and maximum potential lifespan. Its relevance to theories of aging. Exp. Gerontol (England). 16(20): 131-135.

Rosenmann, M. and P. Morrison. 1974. Physiological characteristics of alarm reaction in deer mouse, <u>Peromyscus-maniculatus bairdii</u>. Physiol. Zool. 47(4): 230-241.

Ross, L.G. 1930. A comparative study of daily water-intake among certain taxonomic and geographic groups within the genus <u>Peromyscus</u>. Biol. Bull. 59: 326-338.

1997A 9-35 08/17/87

Rowlands, G.J. 1984. Week-to-week variation in blood composition of dairy cows and its effect on interpretations of metabolic profile tests. Br. Vet. J. 140(6): 550-558.

Sab, K.M., et al. 1984. A comparative study of some reproduction traits and mortality in desi, white leghorn and their reciprocal crosses. Ind. J. Animal Sci. 54(12): 1188-1190.

Sacher, G.A. 1978. Longevity and aging in vertebrate evolution. Bio-science. 28: 497-501.

Sacher, G.A. and E.F. Staffeldt. 1974. Relation of gestation time to brain weight for placental mammals. Implications for the theory of vertebrate growth. Am. Natur. 108: 593-615.

Sackner, J.D., A.J. Nixon, B. Davis, N. Atkins and M.A. Sackno. 1980a. Noninvasive measurement of ventilation during exercise using a respiratory inductive plethysmograph. Am. Rev. Respir. Disease. 122: 867-871.

Sackner, J.D., A.J. Nixon, B. Davis, N. Atkins and M.A. Sacfao. 1980b. Effects of breathing through external dead space on ventilation at rest and during exercise. Am. Rev. Respir. Disease. 122: 933-940.

Sager, G. and H. Heinecke. 1985. Mathematical interpretations of the body weight gain and body length in AB/Jena mice in relation to the age and litter size. Zeitschrift fur Versuchstier Kunde. 27(3-4): 125-141.

1997A 9-36 08/17/87

Santiago, T.V., J.A. NevBauer and N.H. Edelman. 1986. Correlation between ventilation and brain blood flow during hypoxic sleep. J. Appl. Physiol. 60(1): 295-298.

Saul, R.L. and M.C. Archer. 1983. Nitrate formation in rats exposed to nitrogen-dioxide. Toxic. Appl. Pharmacol. 67(2): 284-291.

Schlenker, E.H. 1985. Ventilation and metabolism of the Djungarian hamster (<u>Phodogus sungorus</u>) and the albino mouse. Comp. Biochem. Physiol. 82(2): 293-297.

Schmidt-Nielsen, K. 1975. Scaling in biology: The consequences of size. J. Exper. Zool. 194: 287-308.

Schmidt-Nielsen, B. and R. O'Dell. 1961. Structure and concentrating mechanism in the mammalian kidney. Am. J. Physiol. 200: 1119-1124.

Schneidereit, M. 1985. Study of fetal organ growth in Wistar rats from day 17 to day 21. Lab. Animals. 19(3): 240-244.

Schoemaker, H., V.J. Nickolson, S. Kerbusch and J.C. Crabbe. 1982. Synaptosomal uptake studies on recombinant inbred mice; neurotransmitter interaction and behavioral correlates. Brain Res. 235(2): 253-264.

Schuhmann, R.E., S.K. Coles and H.E. Hoff. 1981. Physiological responses to spirometer load. Arch. Int. Physiol. Biochim. 89(5): 435-444.

1997A 9-37 08/17/87

Scott, D.W., R.W. Kirk and J. Bentinch-Smith. 1979. Some effects of short-term methylprednisolone therapy in normal cats. Cornell Vet. 69(1): 104-115.

Sebunya, T.N.K., J.R. Saunders and A.D. Osborne. 1983. Dose-response relationship of hemophilus-pleuropneumoniae aerosols in pigs. Can. J. Comp. Med. 47(1): 54-56.

Shenks, J.S. 1976. The meadow vole as an experimental animal. Lab. Animal Sci. 26: 644-669.

Sherman, A.R., L. Helyar and I. Wolinsky. 1985. Effects of dietary protein concentration on trace minerals in rat tissues at different ages. J. Nutr. 115(5): 607-614.

Sherrill, D.L. and G.D. Swanson. 1985. On the maximum likelihood estimation of respiratory response slopes. J. Appl. Physiol. 59(5): 1623-1626.

Shum, L. and W.J. Jusko. 1986. Pharmacokinetics of tritiated water in normal and dietary induced obese rats. J. Pharmacol. Methods. 16(1): 83-89.

Silverstein, E., et al. 1961. Primary polydipsia and hydronephrosis in an inbred line of mice. Am. J. Pathol. 38: 143-160.

Singh, S., M.H. Padi, H. Bullard and H. Freeman. 1985. Water intoxication in psychiatric patients. Br. J. Psychiatry. 146: 127-131.

1997A 9-38 08/17/87

Sinnett, E.E., et al. 1981. Fast integrated flow plethysmograph for small animals. J. Appl. Physiol.; Resp. Environ. Exercise Physiol. 50: 1104-1110.

Slanetz, C.A. 1943. The adequacy of improved stock diets for laboratory animals. Am. J. Vet. Res. 4: 182.

Smart, J.L. and J. Dobbing. 1977. Increased thirst and hunger in adult rats undernourished as infants: An alternative explanation. Br. J. Nutr. 37(3): 421-430.

Smith, H.W. 1965. Observations on the flora of the alimentary tract of animals and factors affecting its composition. J. Pathol. Bacteriol. 89: 95-122.

Snowdon, C.T., A. Savage and P.B. McConnell. 1985. A breeding colony of cotton-top tamarins (Saguinus oedipus). Lab. Animal Sci. 35(5): 477-480.

Solas, G.V. 1985. NO TITLE GIVEN. Lab. Animals. 19(2): 106-108.

Southon, S., G. Livesey, J.M. Gee and I.T. Johnson. 1985. Differences in intestinal protein synthesis and cellular proliferation in well nourished rats consuming convential laboratory diets. Br. J. Nutr. 53(1): 92.

Spells, K.E. 1969. Comparative studies in lung mechanics based on a survey of literature data. Respir. Physiol. 8: 37-57.

1997A 9-39 08/17/87

Stahl, W.R. 1967. Scaling of respiratory variables in mammals. J. Appl. Physiol. 22: 453-460.

Stahl, J.L. and M.L. Sunde. 1983. Water consumption the first week by egg strain chicks. Poult. Sci. 62(3): 561-562.

Stein, M., R.C. Schiavi, P. Ottenberg and C. Hamilton. 1961. The mechanical properties of the lungs in experimental asthma in the guinea pig. J. Allergy. 32: 8-16.

Su, C.M., D.E. Brash, A. Turturro and R.W. Hart. 1984. Longevity-dependent organ-specific accumulation of DNA damage in two closely related murine species. Mech. Ageing Dev. 27(2): 239-240.

Sugata, Y., S. Halbach, J. Allen and T.W. Clarkson. 1979. Tissue distribution of inhaled mercury-vapor in acatalasemic mice. J. Environ. Sci. Health. Part C-Environ. Health Sci. 13(2): 97-106.

Sullivan, K.J. and J.P. Mortola. 1986. Dynamic lung compliance in newborn and adult cats. J. Appl. Physiol. 60(3): 743-750.

Taber, A.I., E.W. Gleaves and F.B. Mather. 1985. Feeding pattern responses to changes in dietary energy or environmental temperature in the domestic fowl. Poult. Sci. 64(5): 986-990.

Takezawa, J., F.J. Miller and J.J. O'Neil. 1980. Single breath diffusing capacity and lung volumes in small laboratory animals. J. Applied Physiol. 48: 1052-1059.

1997A 9-40 08/17/87

Talan, M.I., B.T. Engel and J.R. Whitaker. 1985. A longitudinal study of tolerance to cold stress among C57B1/BJ mice. J. Gerontol. 40(1): 8-14.

Tenney, S.M. and J.E. Remmers. 1963. Comparative quantitative merphology of the mammalian lung diffusing area. Nature. 197: 54-56.

Ternouth, J.H., et al. 1985. The live-weight gain and dry-matter and water intakes of calves offered milk substitute diets at high concentrations. Animal Prod. 41(2): 161-166.

Thaler, R.C., G.W. Libal and R.C. Wahlsrom. 1986. Effect of lysine levels in pig starter diets on performance to 20 kg and on subsequent performance and carcass characteristics. J. Animal Sci. 63(1): 139.

Thiessen, R.B. 1985. Inter-age correlations of body weight, weight gain and food intake within and between breeds of cattle. Animal Prod. 40(1): 23-32.

Thiessen, R.B., et al. 1985. Multibreed comparisons of British cattle. Variation in relative growth rate, relative food intake and food conversion efficiency. Animal Prod. 41(2): 193-200.

Thonney, M.L., et al. 1976. Intraspecies relationship between fasting heat production and body weight. A reevaluation of W. 75. J. Animal Sci. 43: 691.

1997A 9-41 08/17/87

Threatte, R.M. and M.R. Quinn. 1984. Effects of dietary salt, fat and carbohydrate on fluid and salt consumption of rats. Proc. Soc. Exp. Biol. Med. 176(4): 476-484.

Torii, R., et al. 1985. Development of photoperiod-controllable clean rack for rats. Circadian rhythms of water intake and blood corticosterons levels. Exper. Animals. 34(1): 57-62.

Toya, R.E. and N.K. Clapp. 1972. Estimation of water consumption by individual mice caged in groups. Lab. Anim. Sci. 22(5): 709-711.

Travis, E.L., B. Vojnovic, E.E. Davies and D.G. Hirst. 1979. Plethysmographic method for measuring function in locally irradiated mouse lung. Br. J. Radiol. 52(613): 67-74.

Travis, E.L., J.D. Down, L. Hall, B. Vojnovic and S.J. Holmes. 1981. Factors affecting the breathing rate of mice as used for studies of radiation-damage to lungs. Br. J. Radiol. 54(637): 50-53.

Tsuchitani, M., et al. 1985. A new diabetic strain of rat. (WBN/KOB). Lab. Animals. 19(3): 200-207.

Tsuda, S., M. Iwasaki, M. Yoshida and Y. Shirasu. 1984. Inhalation chamber with size discriminator for liquid aerosols. Fund. Appl. Toxicol. 4(3): 378-387.

1997A 9-42 08/17/87

Tucker, M.J. 1984. A survey of the pathology of marmosets (<u>Callithrix</u> <u>jacchus</u>) under experiment. Lab. Animals. 18(4): 351-358.

Ughmanski, J. 1985. Differentation and frequency distribution of body weights in plants and animals. Phil. Trans. Royal Soc. London. 310(1142): 1-76.

Valenza, F.P. and E. Muchmore. 1985. The clinical chemistry of chimpanzees. 2. gamma-Glutamyl transferase levels in hepatitis studies. J. Med. Primatol. 14(6): 305-316.

Veltmann, J.R., Jr. and J.S. Sharlin. 1981. Influence of water deprivation on water consumption, growth and carcass characteristics of ducks. Poult. Sci. 60(3): 637-642.

Ventrone, R., C. Musy and C.R.E. Coggins. 1984. A method for producing forced expirograms in laboratory animals. Lab. Animals. 18(4): 379-382.

Verlangieri, A.J., et al. 1985. Normal serum biochemical, hematological and EKG parameters in anesthetized adult male macoca facicularis and macaca arctoids. Lab. Animal Sci. 35(1): 63-66.

Vinegar, A., et al. 1979. Dynamic mechanisms determine functional residual capacity in mice. J. Appl. Physiol. Respir. Environ. Exercise Physiol. 46: 867-871.

1997A 9-43 08/17/87

Vo, K.V., M.A. Boone and W.E. Johnston. 1978. Effect of three lifetime ambient temperatures on growth, feed and water consumption and various blood components in male and female leghorn chickens. Poult. Sci. 57(3): 798-803.

Voris, L., et al. 1940. Digestible nutrients of feeding staffs for the domestic rabbit. J. Agric. Res. 61: 673-684.

Waldrop, T.G., et al. 1986. Control of respiration by the hypothalamus and by feedback from contracting muscles in cats. Respir. Physiol. 64(3): 317-328.

Watson, H., J. Landa and M.A. Sackner. 1975. Automated system for measurement of mechanics of breathing. Med. Instrum. 9(1): 3-10.

Weissberg, R.M., et al. 1978. Development of a pulmonary technique to assess inhaled broncho-active agents in the conscious rhesus monkey. J. Pharmacol. Exp. Ther. 205: 246-254.

Weyers, M.H. and M. Annys. 1982. Two apparatus for detection of motility and water consumption of rodents. Physiol Behav. 29(4): 759-762.

Wiberg, G.S. and H.C. Grice. 1965. Effect of prolonged individual caging on toxicity parameters in rats. Food Cosmet. Toxicol. 3: 597.

Wiepkema, P.R., et al.. 1966. Circadian rhythms in the feeding behavior of CBA mice. Nature (London). 209: 935-936.

1997A 9-44 08/17/87

Wieser, W. 1984. A distinction must be made between to ontogeny and the phylogeny of metabolism in order to understand the mass exponent of energy metabolism. Respir. Physiol. 55: 1-9.

Willoughby, R.A. and W.N. McDonnell. 1979. Pulmonary function testing in horses. Vet. Clin North Am. 1(1): 171-196.

Wilson, A.S. and J.J. Barboriak. 1970. Lick volume determined by food schedules in rats. Psychon. Science. 20: 271.

Wolf, A.V. 1950. Osmometric analysis of thirst in man and dog. Am. J. Physiol. 161: 75.

Wolf, A.V., et al. 1959. Potability of sea water with reference to the cat. Am. J. Physiol. 196: 633.

Wolford, S.T., R.A. Schroer, F.X. Grohs, et al. 1986. Reference range data base for serum chemistry and hematology values in laboratory animals. J. Toxicol. Environ. Health. 18(2): 161-188.

Wong, K.L. and Y. Alarie. 1982. A method for repeated evaluation of pulmonary performance in unanesthetized, unrestrained guinea-pigs and its application to detect effect of sulfuric-acid mist inhalation. Toxicol. Appl. Pharmacol. 63(1): 72-90.

Worsham, R.W. 1977. NO TITLE GIVEN. Physiol. Behavior. 18: 345.

1997A 9-45 08/17/87

Wright, J., A. Yates, H. Sharma and P. Thibert. 1985. Histopathological lesions in the pancreas of the BB Wistar rat as a function of age and duration of diabetes. J. Comp. Pathology. 95(1): 7-14.

Wyrwicka, W. and C. Dobrzecka. 1960. Relationship between feeding and satiation centers of the hypothalamus. Science. 132: 805-806.

Yale, F.E. 1979. Comparative physiology. Compared to what? Am. J. Physiol. 237: Rl~R2.

Yamanaka, M. 1985. Net protein utilization of stock diets for rats and mice. Exper. Animals. 34(2): 211-214.

Yoshida, A., et al. 1958. Effect of dietary level of pat and type of carbohydrate on growth and food intake. J. Nutr. 66: 217.

Young, R.A. and E.A. Sims. 1979. The woodchuck, marmota monax a laboratory animal. Lab. Animal Sci. 29: 770-780.

Zach, R., et al. 1984. Growth curve analysis of birds: The Richards Godel and procedural problems. Can. J. Zool. 62(9-12): 2429-2435.