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Potential for Incorporation of Genetic Polymorphism Data  
in Human Health Risk Assessment 

 
The toxicity of chemicals entering the body is governed by many factors with the host’s 
ability to metabolize the chemical of prime importance.  In some cases, this metabolism 
activates the chemical leading to a more toxic metabolite while in others it leads to 
detoxification and excretion.  Host metabolism of environmental chemicals can be 
affected by lifestyle, dietary and exposure factors which can induce or inhibit the 
metabolizing enzymes.  Additionally, the genetic makeup of the host can affect chemical 
metabolism as there are numerous variants (polymorphisms) that can affect the function 
of metabolizing enzymes.  This has been shown to affect the disposition of therapeutic 
drugs and environmental toxicants.  Polymorphisms can also occur in detoxification/ 
antioxidant defense genes and repair genes.  Such gene variations may affect an 
individual's ability to metabolize, detoxify and repair damage related to exposure to toxic 
chemicals and thus affect the degree of inter-individual variability in both the internal 
dose experienced for a given external dose and the risk that results even for the same 
internal dose.  
 
This project focused upon how genetic polymorphisms can contribute to the variability in 
enzyme activity in key metabolizing enzymes and defense mechanisms that occur across 
the human population.  Technically defined, polymorphisms are heritable changes in 
DNA sequence resulting in two or more alleles of a particular gene within a population:  
the prevalent (or wild- type) allele and the minority (or variant) allele.  The minimal 
frequency for a variant allele to be considered a polymorphism is 1%, with lower 
frequencies considered to be rare.  The influence of polymorphisms was first revealed in 
drug disposition studies in which the reaction of patients to drugs such as isoniazid 
(tuberculosis drug) or debrisoquine (antihypertensive) was highly variable across the 
patient population.  This variability was found to be due to polymorphism in the 
acetylation pathway for isoniazid (aceylator phenotype) or in cytochrome P-450 (CYP) 
for debrisoquine (poor metabolizer phenotype).  These cases have led to an explosion of 
examples in which the genetic basis for pharmacokinetic variability has been revealed.   
 
Since many of these polymorphic enzymes also process environmental toxicants, it is 
important to consider the implications of genetic polymorphisms on toxicology and risk 
assessment.  Such an understanding will improve the characterization of uncertainty and 
variability, an endeavor of great importance to the replacement of default uncertainty 
factors (e.g., 3.2 fold variability in pharmacokinetics across the population) with actual 
distributions that support probabilistic assessments.  However, until now the application 
of pharmacogenetics to environmental toxicology has received relatively little attention.    
 
This project evaluated the potential impact of genetic polymorphisms in 10 metabolizing 
enzymes on the variability in enzyme function across ethnically diverse populations.  
Typically there are multiple polymorphisms within a single gene.  Our analysis identified 
those polymorphisms most likely to have an impact on enzyme function and in certain 
cases used Monte Carlo analysis to simulate the population distribution of this function.  
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For other enzymes, the project assessed the feasibility of creating such distributions for 
the most influential and common polymorphisms.   
 
Table 1 provides an overview of the enzymes analyzed.  They were chosen on the basis 
of their being: (1) well characterized in terms of where polymorphisms (genotype) occur 
and how these variants affect enzyme function (phenotype); (2) involved in the toxic 
mechanism for numerous xenobiotics; (3) implicated in human susceptibility to 
environmentally-mediated disease; and (4) exemplary of a range of polymorphisms that 
can affect metabolism.  The selected systems are functionally diverse including Phase I 
metabolizing enzymes (CYP2E1; CYP2D6; and paraoxonase-1, PON1), Phase II 
conjugating enzymes (glutathione transferases, GSTs; N-acetyltransferases, NATs; UDP-
glucronyltransferase, UGTs; and sulfotransferases, SULTs), and enzymes involved in 
metabolic detoxification although in some cases their action has been associated with 
chemical activation (epoxide hydrolase, EH; NADPH quinine oxidoreductase 1, NQO1; 
aldehyde dehydrogenase 2, ALDH-2). 
 
An extensive review was performed for each enzyme to describe: 1) the enzyme’s 
measurement and function; 2) key substrates; 3) role in chemical activation or 
detoxification; 4) effect of genotype on phenotype, considering both coding region 
polymorphisms that affect enzyme structure and upstream polymorphisms that affect 
gene expression; 5) the frequency of key polymorphisms in the population; and 6) the 
molecular epidemiology evidence that these polymorphisms can modulate disease 
outcomes.  By combining these various inputs, we analyzed whether a given 
polymorphism was likely to have sufficient effect on enzyme activity and to be of 
sufficient frequency to affect the distribution of enzyme activity and thus chemical fate 
across the population.  However, it is important to note that there are many other factors 
that can affect chemical fate and internal dose and so the variability in enzyme activity 
described in the current analysis needs to be brought within the context of more 
comprehensive toxicokinetic modeling.   
 
As summarized in the table and in Ginsberg et al (2009a; 2010) most of the enzyme 
systems studied had influential polymorphisms that are sufficiently well characterized to 
develop distributions of enzyme activity.  In some cases (e.g., CYP2D6, UGTs, SULTs) 
there are multiple single nucleotide polymorphisms (SNPs) which are influential and 
must be accounted for to model inter-individual variability in enzyme activity.  In other 
cases (e.g., GSTs, ALDH2) there is a single inactivating polymorphism creating the null 
(no activity) phenotype which governs the variability in enzyme activity.  Difficulties 
arise because of the overlap in functional activity between isozymes within the same 
family of enzymes so that if one family member is highly polymorphic, the 
polymorphism may be muted as the related enzymes compensate for losses in activity 
caused by the genetic variant.  The net influence on chemical metabolism may be 
difficult to predict.  The GSTs M1, T1 and P1 are a case in point; this project modeled the 
three enzymes separately as well as in various combinations to simulate chemicals that 
are substrates specifically for only one, compared with all three, isozymes.  This example 
demonstrated that substrate specificity across isozymes is an important determinant of the 
influence of the null polymorphism in a single GST.  Two enzyme systems, CYP2E1 and 
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epoxide hydrolase, do not have sufficient evidence of genotype effect on phenotype to 
perform a polymorphism-based assessment of inter-human variability in activity.  In 
these cases, human liver bank studies assessing enzyme levels and substrate turnover can 
be used to characterize the likely in vivo variability across the population.   
 
Our major finding for enzymes that were subjected to full Monte Carlo analysis (NATs, 
GSTs, PON1, ALDH2, CYP2D6) is that inter-subject variability in enzyme activity can 
be large.  In these cases, a substantial percentage of the population (≥20%) was estimated 
to be more than a half log (3.2-fold) different from the median when comparing the 99th 
percentile to the population median activity.  The 3.2-fold differential is used as an 
evaluation benchmark because of the common assumption in non-cancer risk assessment 
that toxicokinetics contributes 3.2-fold to the overall 10-fold inter-individual variability 
uncertainty factor.  This assumption has become a convenient default which can be 
replaced on a case-specific basis by pharmacokinetic modeling that takes into account the 
types of genetic polymorphisms described in the current project.  For example, the 
percentage of individuals that are more than 10-fold different from the median can also 
be high in certain cases as shown for GSTM1 and T1 due to the common null 
polymorphisms in these enzymes.  In other cases (ALDH2, NAT2, CYP2D6) genetically 
distinct subgroups exist which are more than 10-fold different than the median activity, 
and while they are less than 10% of the population, can still be an important group to 
consider in developing population estimates of internal dose and risk.    
 
As noted above, it is important to keep in mind that the variation in function for a 
particular enzyme does not necessarily equate with population variability in internal dose 
since other pharmacokinetic factors (e.g., overlapping or compensating pathways, blood 
flow limitations) may modify the influence of the metabolism polymorphism.  Therefore, 
the current results are best used to highlight which polymorphic enzymes would most 
benefit from refined modeling analysis when evaluating the risks associated with 
substrates for those pathways.  The enzyme variability data developed in this analysis 
may be used as input distributions for such physiologically-based pharmacokinetic 
(PBPK) modeling analyses.  The population distributions presented for these enzymes are 
generally consistent with evidence from the drug metabolizing literature for bimodal 
distributions of enzyme activity in clinical pharmacokinetic studies as seen classically 
with NAT2 and CYP2D6.   
 
Of the other five enzyme systems analyzed (Table 1), four of the five were determined to 
be suitable for Monte Carlo analysis and PBPK modeling.  Of the multiple SNPs in the 
SULT superfamily of enzymes, our analysis prioritized SULT1A1*2.  Among the UGT 
enzymes the following SNPs were prioritized: UGT1A1*6, UGT1A1*7, UGT1A1*28, 
UGT1A7*3, UGT2B15*2 and the UGT2B17 null polymorphism.  Regarding NQO1, the 
null polymorphism (NQO1*2) is highly influential and prevalent and thus is important 
for follow-up analysis..  These identified SNPs have the potential to affect internal dose 
and risk and thus merit distributional analysis and variability assessment.  Our review of 
EH failed to find a consistently large enough effect of genotype on phenotype to merit 
further consideration of variability modeling based upon genotype.  
 



 4 

Overall, these analyses provide examples of how one can analyze the likelihood that a 
polymorphism will make a difference in chemical fate and show how the genetics 
information for the key polymorphisms may, in turn, be translated into metabolic 
variability distributions for input into pharmacokinetic models.  While there are many 
polymorphic enzymes worthy of consideration, the list of enzymes analyzed in the 
current set is relevant to environmental toxicology and should be immediately useful to 
risk assessors and modelers.   
 
Options for incorporating this information into human health risk assessments include:   
 

1) Establishing priorities for further analysis:  analysis of genotype influence on 
enzyme activity can help to prioritize pathways that may most contribute to 
pharmacokinetic variability for a given xenobiotic.  PBPK modeling is 
resource intensive and contains its own array of uncertainties.  Therefore, it 
should be used selectively.  The current analysis of variability in enzyme 
activity is an important first step when considering whether to describe 
variability in internal dose via PBPK modeling.  In fact, the current analysis 
provides the variability distributions needed for PBPK/Monte Carlo analyses.   

 
2) Developing a screening level pathway-specific pharmacokinetic adjustment 

factor: analysis of variability for an individual enzyme does not necessarily 
predict variability of the intact pharmacokinetic system.  However, it may be 
possible to develop a pathway-specific adjustment factor without PBPK 
modeling.  This would necessitate having the in vitro genotype/phenotype 
data (e.g., gene expression systems) supported by in vivo pharmacokinetic 
data, typically with therapeutic drug substrates, or with other types of 
biomarker data (e.g., DNA adducts).  ALDH2, NAT2, CYP2D6 datasets are 
such examples and thus may be most amenable to development of a pathway-
specific pharmacokinetic adjustment of the enzymes thus far assessed.  
However, this is a screening approach that does not represent the level of 
analysis and exploration of variability and uncertainty that is possible in 
PBPK modeling.   

 
3) PBPK modeling:  as described above, polymorphism-based changes in 

enzyme function may be incorporated into a PBPK model so that the 
influence of variability in a single pathway may be assessed in a framework 
that takes into account other pharmacokinetic factors (blood flows, organ size, 
compensating pathways).  Enzyme activity would thus be represented by a 
population distribution rather than a single point estimate rate constant.  The 
output would be a PBPK/Monte Carlo analysis that depicts the full 
distribution of internal doses and risks possible across the population.  The 
distributions developed in this project may be incorporated into such 
modeling efforts.  
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Ultimately these analyses will lead to refinement of estimates of internal dose and risk 
that capture the variability caused by genetic polymorphisms that influence xenobiotic 
metabolism and the function of detoxification and repair systems.   
 
 



 6 

Table 1 
Overview of Enzymes Evaluated for Potential Impact of  

Genetic Polymorphisms on Human Health Risk Assessment 
Enzyme Major Polymorphisms Distributional 

Analysis 
Reference/Link 

Phase I     
 CYP2D6 7 different SNPs contribute to poor 

metabolizer phenotype 
Yes Neafsey et al., 2009a, 

196808 
 CYP2E1 5 different SNPs in regulatory 

sequences may alter gene 
expression 

Not feasible Neafsey et al., 2009b, 
196814 

Phase II    
 GSTM1/T1/P1 Null polymorphisms in M1 and 

T1; 3 coding region SNPs in P1 
alter activity in substrate-
dependent manner 

Yes Ginsberg et al., 2009b, 
196816 

 NAT1/NAT2 5 different SNPs in NAT2 
contribute to slow acetylator 
phenotype 

Yes Walker et al., 2009, 194764 

  SULT  
(6 isozymes) 

SULT1A1*2 associated with 2 to 
10 fold less activity 

Feasible Ginsberg et al. 2010, 633899 
 

  UGT 4 enzymes with influential SNPs Feasible Ginsberg et al. 2010, 633899 
 

Detoxification    
 ALDH2 *2: null activity Yes Ginsberg et al., 2002, 

195866 
EPHX1 Tyr113His – small effect  

His139Arg – small effect 
Not feasible Ginsberg et al. 2010, 633899 

 
 NQO1 *2: null activity Feasible Ginsberg et al. 2010, 633899 

 
 PON1 1 coding region SNP alters activity 

in substrate-dependent manner; 2 
regulatory sequence SNPs 
decrease gene expression 

Yes Ginsberg et al., 2009c, 
196823  
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