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ABSTRACT 


Climate change will affect stream ecosystems directly, indirectly, and through interactions with 

other stressors. Biological responses to these changes include altered community composition, 

interactions and functions. Effects will vary regionally and present heretofore unaccounted 

influences on biomonitoring, which water-quality agencies use to assess the status and health of 

ecosystems as required by the Clean Water Act. Biomonitoring, which uses biological indicators 

and metrics to assess ecosystem condition, are anchored in comparisons to regionally established 

reference benchmarks of ecological condition. Climate change will affect responses and 

interpretation of these indicators and metrics at both reference and non-reference sites, and 

therefore has the potential to confound the diagnosis of ecological condition. This report 

analyzes four regionally-distributed state biomonitoring data sets to inform on how biological 

indicators respond to the effects of climate change, what climate-specific indicators may be 

available to detect effects, how well current sampling detects climate-driven changes, and how 

program designs can continue to detect impairment. Results can be used to identify methods that 

assist with detecting climate-related effects and highlight steps that can be taken to ensure that 

programs continue to meet resource protection goals. 

Preferred citation: 
U.S. Environmental Protection Agency (U.S. EPA). (2011) Implications of climate change for bioassessment 
programs and approaches to account for effects. Global Change Research Program, National Center for 
Environmental Assessment, Washington, DC; EPA/600/R-11/036A.  Available from the National Technical 
Information Service, Springfield, VA, and online at http://www.epa.gov/ncea. 
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PREFACE 


This report was prepared by Tetra Tech, Inc. and the Global Change Research Program 

(GRCP) in the National Center for Environmental Assessment of the Office of Research and 

Development at the U.S. Environmental Protection Agency (U.S. EPA). It is intended for 

managers and scientists working on biological indicators, bioassessment, and biocriteria, 

particularly in the EPA’s Office of Water and Regions, and also at state agencies. The results 

presented in this report are based on data primarily from four states, Maine, North Carolina, 

Ohio, and Utah. The main findings of interest to manager and policymakers, the supporting 

evidence, and management responses are presented in a separate summary at the beginning of 

this report. The remainder of the report provides more detail to substantiate each of the findings. 

Descriptions of specific analysis methods, underlying data, and supporting analyses are in the 

appendices to this report. 
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EXECUTIVE SUMMARY 

Bioassessment is used for resource management to determine the ecological 

consequences of environmental stressors. All states utilize some form of bioassessment as part of 

their implementation of the Clean Water Act. This assessment identifies the components of state 

and tribal bioassessment programs that may be affected by climate change. The study 

investigates the potential to identify biological response signals to climate change within existing 

bioassessment data sets; analyzes how biological responses can be categorized and interpreted; 

and assesses how they may influence decision-making processes. This study focused on benthic 

macroinvertebrates, important indicators used in bioassessments of wadeable rivers and streams. 

The ultimate goals of the report are to provide a foundation for understanding the potential 

climatic vulnerability of bioassessment indicators and advancing the development of specific 

strategies to ensure the effectiveness of monitoring and management plans under changing 

conditions. 

We selected four regionally distributed state bioassessment data sets from Maine, North 

Carolina, Ohio, and Utah for this analysis. Bioassessment data were analyzed to determine the 

relative sensitivity of benthic community characteristics and traits to historical trends in 

temperature, precipitation, and other environmental drivers. The analysis allowed community 

characteristics and traits to be classified as either sensitive or insensitive to climate change 

effects. 

Bioassessment programs rely on reference sites, often the most natural or pristine sites 

available, to help provide a basis for comparison with impaired sites. However, climate change 

will impact all sites in a region. Consequently, it will be necessary to understand the potential 

impacts of climate change for the use of reference sites in bioassessments. We examined the 

vulnerability of reference conditions to changes in climate and interactions between climate 

change and other landscape-level stressors, especially land use. 

This study describes biological responses to changes in temperature, precipitation, and 

flow that will, in the long term, affect the metrics and indices used to define ecological status. 

Not all regions are equally threatened or responsive because of large-scale variability in climate 

and other environmental factors. We found that climatically vulnerable components of 

bioassessment programs include: 

 Assessment design (e.g., multi-metric indices (MMIs), selection of reference sites, 

determination of reference condition) 

 Implementation (e.g., data collection and analysis) 

 Environmental management (e.g., determination of impairment and water quality 

standards) 
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Ecological traits are useful tools for these analyses since traits are not location specific, 

unlike some species. This facilitates comparisons among the state data sets used. This study 

mainly focuses on traits related to temperature and hydrologic sensitivities. Effective 

bioassessment designs rely on MMIs and predictive models to detect impairment. The 

effectiveness of widely-used MMIs and predictive models may be undermined by changing 

climatic conditions through the ecological trait of temperature sensitivity. Taxa with cold water-

and warm water-preferences are used in many MMIs and predictive models. The climate 

responsiveness of these traits groups varies between states and ecoregions; however, they are 

generally found to be highly sensitive to changing temperature conditions. Consequently, MMIs 

and predictive models, which rely heavily on these sensitive taxa are likely to be vulnerable to 

climate change. In many cases, it may be feasible to develop new MMIs and modify variables in 

predictive models to partition sensitive taxa and reduce the potential for changing conditions to 

confound efforts to detect impairment.   

Another widespread and related finding is the moderate but significant relationship 

between temperature sensitivity and sensitivity to organic pollution. These findings show that 

metrics selected because the composite taxa are considered to be generally sensitive or because 

they respond to conventional pollutants also have demonstrable sensitivities to climate-related 

changes in temperature and flow conditions. These results reinforce the need to partition taxa 

with climate-sensitive traits from MMIs and to account for these responses in predictive models. 

The implementation of bioassessment programs often involves flexible sampling systems, 

such as rotating basin designs. These systems ensure statistically adequate sampling over five-

year periods, at the expense of continuous monitoring of specific locations. This type of 

probabilistic sampling creates challenges for reference-based comparisons to assess condition, 

detect impairment, and identify causes of impairment under changing climatic conditions. While 

rotating, probabilistic systems sample numerous reference locations across a state, detection of 

climate change requires evaluation of trends at least at a few specific locations over time. 

Consequently, states may have many reference locations, but lack enough stable, long-term 

stations needed to detect climate-driven changes in biotic condition. 

Climate change can cause other problems for reference-based bioassessment systems. We 

note that climate change can drive changes in community composition that vary by location, 

potentially further compounded by non-climatic landscape stressors. The result is variation in 

responses between locations that can confound efforts to establish statistically significant 

relationships or detect impairment. For example, our results show that high-flow metrics (e.g., 

flashiness, high pulse-count duration, one-day maximum flow) tend to reflect urbanization, 

swamping climate change effects; whereas low flow metrics (e.g., short-duration minimum 

flows, low pulse count) respond to climate change effects more so than to land use.  

Responses to low-flow parameters were also documented using long-term water 

temperature trends at USGS gaging stations. Most of the long-term stations in our study showed 
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slightly to distinctly increasing trends in benthic inferred temperatures over time, though not all 

trends were significant. Inferred-temperature responses are evidence of climate change-related 

increases in temperature, in that they reflect a progressive shift over time in composition of 

temperature preferences integrated across the entire benthic community. The response over time 

of any one taxon with a particular temperature preference (e.g., a cold-preference taxon) may or 

may not be significant despite the expectation, but it is significant if the community as a whole is 

reflecting an overall progressive shift in temperature preferences. This response was slightly 

greater at higher elevation locations. Results from these analyses corroborate the results from the 

landscape analyses that low flow parameters have better performance than high flow/pulse event 

parameters in detecting climate change trends.  

A synthesis of all results leads to several recommendations for bioassessment programs 

in terms of modifying assessment design, implementation, and environmental management. With 

respect to metrics and indices, it will be useful to partition climatically vulnerable indicators into 

new metrics that account for temperature preferences of the component taxa. Analyzing 

bioassessment data according to temperature preferences will facilitate tracking climate change-

related taxa losses and replacements. This traits-based approach for detecting and tracking 

climate change effects is promising, given that there were few specific species that showed 

consistent climate-related trends across multiple sites and states analyzed. 

Although data limitations prevent explicit differentiation between inter-annual, cyclical, 

and long-term directional climate effects, the net response of benthic community metrics to 

climate-sensitive variables (i.e., water temperature, hydrologic patterns) provides useful 

information. The responses can be used to (1) define the direction and nature of effects expected 

due to climate change; (2) identify the most sensitive indicators to climate change; and (3) 

understand implications to MMIs or predictive models and their application by managers to 

characterize condition of stream resources for decision making. 

The limited long-term data also illustrate that annual monitoring at least at some fixed 

reference locations is needed to account for climate change effects. The ability to detect a real 

trend is affected by signal-to-noise ratio and by the amount of data available to account for this 

variation. Evidence from this study of the high among-site variability within ecoregions suggests 

a trade-off in sampling effort between sampling many stations using a probability-based design 

to understand regional variations and sampling selected locations more frequently to document 

long-term trends. A mixture of targeted reference sites that can be maintained over the long-term 

along with probabilistic sampling may be more appropriate for monitoring the effects of climate 

change. This more comprehensive monitoring design will increase the robustness of water 

program assessments to the confounding effects of climate change.  

Long-term monitoring also requires that these reference locations are as protected as 

possible from other stressors and landscape influences. Our analyses show that reference 

conditions may be more vulnerable than impaired sites to climate-change effects, a result that 
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undermines the current methods of condition assessment. Two approaches that can assist with 

condition assessments in the context of climate change are to: 1) implement the Biological 

Condition Gradient (BCG) framework, within which changes in condition of both high quality 

and impaired locations can be more rigorously defined and tracked; and 2) promote protection of 

high quality stream reaches that define reference conditions. Protection should focus on 

minimization, mitigation, and/or buffering from non-point source runoff, erosion, and hydrologic 

changes. 

Documenting existing land use conditions surrounding established reference locations is 

also important to establish a baseline for tracking future changes. Urbanization surrounding 

reference stations will interfere with the ability to detect climate change and separate climate 

responses from conventional stressors; this can interfere with managing aquatic resources, setting 

permit limits, and meeting Clean Water Act requirements. Our results show that hydrologic 

monitoring, especially using low-flow parameters, can assist with distinguishing changes due to 

urbanization versus climate.  

Reference sites that remain unprotected from stressors or land use changes are vulnerable 

to deterioration due to conventional stressors as well as climate change. The deterioration of 

reference conditions and climate impacts on biological indicators, metrics, and indices together 

will affect the determination of stream reach impairment. Unless metrics are modified so that 

climate effects can be tracked, thresholds for defining impairment are re-evaluated, and actions 

to document and protect reference station conditions are taken, it is likely that in vulnerable 

watersheds there may be fewer listings of impaired stream reaches and progressive under-

protection of water resources. 

Actions that are associated with the listing of a stream reach as impaired, including 

stressor identification and development of TMDLs, are also affected by climate changes. Stressor 

identification should include biological responses to climate change effects. Climate-related 

changes to flow may also need to be integrated into loading calculations and limits for new or 

revised TMDLs. 

Water quality standards that are resilient to changes in climate-related variables will 

remain protective and should be identified. Climate change can be expected to alter some 

designated uses and their attainability, especially in vulnerable streams or regions. Refinement of 

aquatic life uses can be applied to guard against lowering of water quality protective standards. 

The results from the analyses conducted as part of this assessment show that climate 

change will affect many of the activities in bioassessment programs. Our results also identify 

methods that can assist with detecting these effects and controlling for them analytically. 

Implementing these recommendations will allow programs to continue to meet their resource 

protection and restoration goals in the context of climate change. 
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SUMMARY FOR MANAGERS AND POLICYMAKERS
 

Climate change is an important consideration for bioassessment programs because it can 

affect almost all activities associated with these programs (Fig. SMP-1). This report uses data 

from four pilot study states, Maine, North Carolina, Ohio, and Utah, to examine the implications 

of climate change on these activities. This summary is intended for managers and policymakers 

working with bioassessment data and results, who are making decisions about resource 

impairment, designated uses, water quality standards, use attainability, and total maximum daily 

loads (TMDLs). This summary highlights the ten most important findings of the underlying 

report: 

 Multi-metric indices are vulnerable to climate change 

 Predictive models used in bioassessment may be less vulnerable to climate change 

 Detection of climate change effects requires a specifically designed climate change 
monitoring network 


 Reference stations are vulnerable from changes in community composition 


 Vulnerability varies by location
 

 Reference sites need protection from other stressors 


 Collecting abiotic data is also necessary
 

 Reference station degradation diminishes the ability to detect impairment 


 Climate change may make TMDL development more difficult 


 Climate change may alter designated uses and their attainability 


Following each finding is a brief description of the evidence to support each finding and 

discussion of potential responses that can assist managers and policymakers in adapting 

bioassessment programs to climate-change effects. The findings in this summary and the body of 

the report are organized according to the steps shown in Fig. SMP-1. 
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Figure SMP-1. Climate change can affect many bioassessment program activities from the initial 
assessment design, to collecting and analyzing data, and to developing responses to assessment 
outcomes. 

Findings influencing assessment design 

1. Multi-metric indices are vulnerable to climate change 

Finding: Climate change affects specific biological metrics used in multi-metric indices (MMIs). 

This is important because MMIs are used by many states as a basis for comparing between high 

quality and potentially impaired sites and to assign site ratings. 

Evidence: In the four states analyzed, though not at all stations or in all regions within each 

state, cold water-preference taxa decreased in richness and/or abundance with increasing 

temperatures, and in some areas, warm water taxa increased. Some responses are fairly 

widespread, including total taxa richness; Ephemeroptera, Plecoptera, and 

Ephemeroptera/Plecoptera/ Trichoptera (EPT) richness; and richness of cold or warm sensitive 

taxa. Changes in these metrics alter MMIs through shifts in the proportion of cold to warm 

water-preference taxa. Further evidence for this finding is presented for each state analyzed. 
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Maine: Maine’s longest-term reference location is at a relatively low elevation and has a 

higher proportion of warm-preference taxa, including warm-preference EPT taxa. Therefore, an 

increase in EPT taxa with increasing temperatures could improve overall station rating, unlike in 

Utah and North Carolina (described below). This is because one metric, Ephemeroptera 

abundance, does not have a linear relationship with station class (see Section 3.1). In Maine there 

is an additional consideration associated with the use of a group of “Class A indicator taxa” as 

one of the ways of separating Class A from B condition ratings. Maine’s Class A indicator taxa 

are fairly evenly divided between cold and warm-water-preference taxa. Therefore, application 

of this metric with increasing temperature could confound results, because some of the Class A 

indicators could decline with increasing temperatures, while others could increase. 

North Carolina: In North Carolina, EPT taxa richness is one of two indices used for 

bioassessment, along with the Hilsenhoff Biotic Index (HBI). Both indices contain cold water-

preference taxa. Though the loss of all cold water-preference EPT taxa due to increasing 

temperatures is highly unlikely, this scenario would lead to a reduction of reference station 

condition equivalent to one full category (e.g., from excellent to good). The HBI in North 

Carolina is vulnerable to the loss of cold-preference taxa and gain in warm water-preference 

taxa. This is due to the relationship between temperature preference and sensitivity to organic 

pollution (Section 3.2). Since a high proportion of cold water-preference taxa have low pollution 

tolerance ratings, the loss of cold water-preference taxa at reference stations due to climate 

change also increases the HBI index value for that station, making its assessed condition appear 

degraded. 

Ohio: The Ohio MMI and the determination of the final station rating are also vulnerable 

to climate change because of the positive association between temperature sensitivity and 

pollution tolerance. Percent of tolerant taxa is one of the metrics used in the Ohio MMI. There 

are also several EPT metrics in the Ohio MMI, including EPT taxa richness, Ephemeroptera and 

Trichoptera richness, and relative abundance of Ephemeroptera and Trichoptera taxa. These 

metrics contribute to the vulnerability of the Ohio MMI through the relative contribution of cold-

preference taxa within these groups (Section 3.3). 

Utah: Fairly predictable losses in EPT taxa richness (especially cold water-preference 

taxa) with increasing temperatures are found in both higher and lower elevation ecoregions at 

reference stations in Utah. Up to a 25% loss of EPT taxa could occur with current scenarios of 

temperature increases by 2050 (Section 3.4). A lower EPT richness metric value will cause an 
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overall decrease in the MMI, reducing the condition status of that station. Because the relative 

composition of cold water-preference taxa among EPT taxa, as well as in the total community, is 

associated with elevation, higher elevation regions with a greater proportion of cold-preference 

taxa may have a greater vulnerability to this effect.  

Adaptation response: The liability of using existing metrics is due to the inability to separate 

temperature responses from other conventional pollution responses. Vulnerable and influential 

metrics, such as EPT richness, the HBI, other metrics related to EPT taxa, should be separated 

into new metrics that account for temperature preferences (e.g., a ‘cold-EPT richness’ metric, 

etc). This would allow climate-related taxa losses or taxa replacements to be tracked. For 

example, a ratio of cold-EPT-richness to warm-EPT-richness would provide a benchmark for 

changes related to climate variables compared to conventional stressors. The ability to compare 

cold metrics to warm or total metrics between reference and non-reference locations will help 

support detection of climate change responses. 

Adding a climate-tolerant metric can also assist in separating climate change and 

conventional stressor responses. In this study, responses of Odonata, Coleoptera, and Hemiptera 

(OCH) taxa were examined based on their reported tolerance to summer conditions, higher 

temperatures, and lower flows (Bonada et al. 2007). OCH taxa showed positive trends over time, 

with increasing temperatures, and/or with lower precipitation in some locations (Section 3 and 

Appendix I); this supports their use as a climate-tolerant metric.  

Current limitations to developing climate-sensitive or climate-tolerant metrics are due to 

a lack of information on temperature preferences for some taxa and hydrologic data necessary to 

determine flow-related preferences. This study used biomonitoring data to develop temperature 

preference and tolerance information for many taxa common to Maine, Utah and North Carolina 

(see Stamp et al., 2010, USEPA, 2011). However, this type of analysis is needed nationwide. In 

addition, much of the extant temperature preference information is at the generic operational 

taxonomic unit (OTU) level, rather than the species-level. Hydrologic data was also examined, 

but these variables were even more limited and could not be developed into flow-related 

preference information for taxa. 

2. Predictive models used in bioassessment may be less vulnerable to climate change 
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Finding: Some predictive models (e.g., River InVertebrate Prediction and Classification System 

(RIVPACS)) used by states may be more resilient to climate change than MMIs because they 

incorporate long-term (e.g., 30-year) averages of environmental predictor variables, including 

climate parameters, and also because this baseline is recalibrated to a more recent timeframe. 

Most RIVPACS models are currently not designed to consider changes in climate, but they could 

be. Predictive modeling could be used to associate ranges of biological responses with the 

natural range of variation for various climate parameters, and perhaps then differentiate this from 

long-term changes. A limitation of modeling is that it assumes freedom of movement, when in 

reality, dispersal barriers exist. 

Evidence: The greatest vulnerability in applying the RIVPACS model in Utah for decision 

making lies in the measured “observed” communities, since they change as a result of shifts in 

cold- (and warm-) preference taxa; this drives differences in the observed/expected (O/E) 

quantity used in the model. The model predictor variables themselves appear relatively robust to 

near-term climate changes in temperature, especially if long-term averaging periods for predictor 

variables are used (see Section 3.4). Thus the predictive modeling approach can track changes 

without detecting the trend in expected (“reference”) communities. However, changes in climate-

related parameters used as predictor variables will alter model precision in assigning the 

probability of occurrence of a taxon in a class. Without model recalibration, this could alter the 

expectation for inclusion of taxa in a community, and may therefore create larger differences 

between observed and expected communities. 

Adaptation response: Periodic model recalibration may address this vulnerability. Recalibration 

allows shifts in the expected community to be incorporated in O/E calculations. Wider use of the 

predictive model approach may be a good adaptation for state biomonitoring programs to climate 

change influences on data interpretation. However, as ‘expected’ assemblages become more 

‘tolerant,’ assemblages may be less likely to show responses to other stressors (i.e. nutrients). 

This may reduce differences between expected communities (i.e., the reference baseline) and 

observed communities exposed to anthropogenic stressors.  

3. Detection of climate change effects requires a specifically designed climate change 

monitoring network 

Finding: Detection of climate change requires evaluation of changes at some specific locations 

or strata over time; despite the relatively large number of reference stations, there are very few 
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with long-term data, thus limiting the power of current monitoring schemes to detect effects due 

to climate change. 

Evidence: Inherent biomonitoring program characteristics tend to limit regular, long-term 

sampling at reference locations. These include random sampling within a stream reach or 

watershed that tends to maximize spatial sources of variation; infrequent sampling (e.g., once 

every 5 years) in a rotating basin design; lack of replication (one sample per location per year); 

and lack of measurements of covariates (Section 4.1). An additional consideration is the high 

vulnerability of existing reference locations to impairment from encroaching land uses (Finding 

6). These considerations illustrate the value of designing a monitoring scheme to account for 

climate change within the biomonitoring framework. 

Adaptation response: Climatic changes, as well as aquatic ecosystem vulnerability to climate 

change, vary regionally. Some of the variability is related to elevation, topography, and geology. 

Such conditions often cross state and tribal boundaries. Establishment of climate-specific 

networks, their monitoring, and subsequent data analysis may require collaboration among states 

with regard to technical considerations (e.g., site selection, sampling methods) and funding. 

Regional or national support may be important to facilitate this process. 

An initial climate-specific monitoring network could focus on climatically vulnerable 

locations. Sites should be sampled at least annually. Less frequent data collection would extend 

the time needed to detect climate change responses, because of interannual and cyclic climate 

variability. Monitoring should occur at some fixed locations, rather than only using a probability-

based sampling approach. It is valid to identify fixed but representative reference locations 

within a target stratum (e.g., ecoregion/watershed /vulnerability zone) for detection of trends and 

evaluation of biological responses to climate change.   

To separate climate change effects from other stressors both should be measured over 

time; thus, climate-specific monitoring should be established along part of the stressor gradient 

and be anchored in reference conditions (Finding 4). This allows temporal trends at reference 

sites to be compared to temporal trends at impaired sites as a mechanism for differentiating 

between climate effects and conventional stressors. Sampling the stressor gradient would 

potentially allow different levels of stressor effects to be compared and synergistic effects to be 

considered. A less resource-intensive alternative would be to establish long-term sentinel sites 

only at high-quality reference locations. 
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Many different groups are considering, or have already started, monitoring for climate 

change effects. Collaboration across groups avoids duplication, saves resources, and encourages 

consistency in data collection and use of a common database. Consistency among monitoring 

networks will enhance the ability to detect climate-related changes. 

4. Reference stations are vulnerable from changes in community composition 

Finding: Climate change increases the vulnerability of reference (high quality) stations through 

shifts in biological communities that lead to degraded states. 

Evidence: This study documents climate change effects that can degrade reference station status 

to be more similar to non-reference stations, at least in some regions more vulnerable to climate 

change effects (e.g., high elevation sites, head-water or low order streams) (Section 4.2). In 

addition, at non-reference stations, effects of climate change may be additive with other 

stressors, or interactions between climate change and other stressors may augment or ameliorate 

responses (Figure SMP-2). 

Comparison of long-term trends between reference and impaired sites can assist in 

separating climate change effects from other stressor effects. This implies the need for long-term 

monitoring at more than just high quality sites (see Finding 3). In the absence of climate change-

specific monitoring data, long-term trend analysis to characterize climate change effects should 

be conducted on data from reference locations to minimize confounding effects (Sections 4 and 

5). This is important, because impacts from land use, nutrient runoff, and other sources are often 

not measured and cannot be easily controlled in analyses.  
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Figure SMP-2. Conceptual model showing relationship between climate change trends and 
reference and stressed sites with an overlay of temporal variation on the trend (black line). 
“MDC” = minimally disturbed condition; “LDC” = least disturbed condition. 

Adaptation response: Reference station condition should be documented using a consistent 

framework such as the Biological Condition Gradient (BCG), which captures a more subtle 

range of biological conditions with regulatory significance, compared to an “impaired/not 

impaired” decision approach. Changing conditions can then be judged against a common 

framework. The BCG delineates a meaningful and scaled framework within which the degree of 

degradation attributable to climate change can be characterized (Figure SMP-3). A predictive 

modeling approach is another framework that can be used to judge a gradient of changes in 

condition against a reference baseline in a manner that could support differentiating climate 

change effects from other stressor effects. The modeling approach of classifying regions based 

on major predictive variables, and using those predictor variables to define expectations for taxa 

occurrences within a class (region) uses a wide spatial distribution of reference samples to define 

the range of ‘natural’ variability in each predictor variable. This is essentially doing a space for 

time substitution, to the extent that the spatial range of variation can be used to characterize the 

expected range of temporal variation. Predictive modeling could be used to associate ranges of 

biological responses with the natural range of variation for various climate parameters, and 

perhaps then be used to differentiate this from long-term changes. 
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5. Vulnerability varies by location 

Finding: Elevation seems to determine the relative vulnerability of community metrics and 

MMIs to climate change effects; the magnitude of this response varies regionally. Other 

contributing factors appear to be stream order (size) and watershed size. 

Evidence: Trends in biota are more distinct in Utah at more locations than Maine or North 

Carolina. This is likely related to regional differences in climate change scenarios. For example, 

projections for temperature increases are lower for the southeast, including North Carolina, than 

they are for the other three states1. Temperatures in the southwest (Utah) are expected to increase 

slightly more than for the northeast (Maine) and central states (Ohio), although the differences in 

projected temperature among those three areas are very small. Other factors may contribute to 

observed regional differences in biological trends and apparent vulnerability, such as differences 

in groundwater contribution to flow, stream order, or watershed size. There also are some 

artifacts of the available biomonitoring data sets, such as the lack of long-term reference 

locations in the northeast highlands ecoregion in Maine, where higher elevations and greater 

proportion of cold-preference taxa in the community might have shown stronger trends and 

provided a better comparison to the Utah results. 

1 See NCAR website: http://rcpm.ucar.edu 
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Figure SMP-3. Reference station drift (degradation of assessed site condition) over time at 
Blue Ridge Mountain ecoregion stations as cold-preference taxa are lost over time due to 
climate change. 

Adaptation response: If detection of climate change effects becomes a goal, then sampling at 

sites more sensitive to these effects becomes important. Elevation may be the first criteria to 

identify these sites. The importance of other criteria, such as groundwater contributions and 

riparian conditions, still needs to be assessed. 

Sites that are more sensitive to climate change can also be used to identify sensitive 

indicators and test hypotheses on the relationships among habitat, abiotic variables and species 

traits. These indicators, along with cold water-preference indices (Finding 1), can be used in a 

monitoring network (Finding 3) to document changes in reference condition (Finding 4). 

Findings influencing assessment design and implementation 

6. Reference sites need protection from other stressors 

Finding: Encroachments of landscape-scale anthropogenic influences, in particular increasing 

urban/suburban development, on reference sites over time threaten reference conditions. This 
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threatens both the documentation of climate change-associated biological trends and spatial 

comparisons to reference conditions for impairment detection. 

Evidence: Our analyses of reference sites (Section 5) show that existing vulnerabilities to land-

use effects are much greater and more widely distributed than previously conceived or 

quantified. Urbanization may affect 20-25% of reference stations currently. By 2100 

urbanization could cause measurable degradation at almost 50% of reference stations. This level 

of land use encroachment would imperil the foundation of the reference condition approach. 

Adaptation response: The high vulnerability of reference locations to land-use effects, along 

with the importance of identifying and separating climate-change effects, emphasizes the need to 

characterize reference conditions and document current status. Two aspects of reference stations 

must be considered. One is the selection and siting of reference stations and the other is their 

protection. Candidate reference stations should be screened using land-use data. Land-use 

distribution by major category should be documented for all stations. Criteria related to the 

maximum extent of developed and agricultural land uses should be created and applied to define 

reference conditions; however, the criteria may need to be state or region specific and 

accommodate existing realities of extent of development. Criteria should recognize that 

“unaffected” reference locations may not exist. If current land-use data show low urban and 

agricultural uses, it is a reasonable assumption that associated impacts, including urban-

associated hydrologic impacts and agriculture-associated nutrient loadings, are minimal. In 

addition, temporal changes in land-use characteristics surrounding a reference site become 

important information for judging degradation of condition that is separate from climate change.  

Concepts for protection of reference stations are primarily related to land-use changes 

and must involve social, political, and economic components in addition to technical 

considerations. In general, an appropriate scale for protecting reference sites is within a 

watershed management scheme. Implementing protection actions such as zoning regulations, 

incentives for limiting development in riparian areas or near headwater streams, or other 

strategies to directly protect high-quality stream reaches from land-use encroachment is 

inherently difficult. Identification of the most vulnerable and important sets of reference sites 

within a state could be an initial strategy to better target protective actions.  

7. Collecting abiotic data is necessary 
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Finding: Abiotic data, such as air and water temperatures, precipitation, flow, and water 

chemistry, along with habitat characteristics, need to be collected frequently and over time at 

biotic sampling locations. 

Evidence: Establishing a relationship between climate change and biotic responses is contingent 

upon understanding the relationship between climate variables and hydrologic variables like 

water temperature and flow. Long-term, continuous data were not available for all reference 

stations (Section 5 and Appendix A). This makes it more difficult, sometimes impossible, to 

establish relationships between observed changes in climate and the benthic community. 

Adaptation response: Data loggers should be used at all reference stations, especially at sites 

within a climate-change monitoring network. Water temperature and flow are the minimum 

variables that should be collected; additional data about water chemistry and habitat 

characteristics would be useful, although these data may be collected with biological samples. 

Findings influencing environmental management 

8. Reference station degradation diminishes the ability to detect impairment 

Finding: Changes in biological metrics are sufficient to downgrade reference station condition. 

Degradation of reference station condition is essentially causing references stations to become 

more similar to non-reference stations and diminishes the ability to detect impairment due to 

conventional stressors. 

Evidence: Climate change does not discriminate between reference and non-reference stations. 

This diminishes the effectiveness of reference comparisons to determine impairment. This study 

documents changes in biological indicators, which are reasonably attributable to climate change 

effects. Sections 2 and 3 document changes in cold- and warm-preference taxa at reference 

stations due to climate-change-related trends in temperature and precipitation; these trends result 

in changes in MMIs (Finding 1). Unless metrics are modified so that climate effects can be 

tracked, and thresholds for defining impairment re-evaluated, degraded reference conditions will 

cause fewer stream reaches to be defined as impaired. This will lead to less corrective action and 

greater long-term degradation of stream conditions. 

Adaptation response: Maintaining the ability to detect impairment will require modifications of 

biological metrics (Finding 1), re-evaluation of impairment thresholds, and reference station 

classification and protection (Findings 4 and 6). These actions, along with a monitoring network 
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(Finding 3), will improve tracking effects of climate change and comparing effects between 

reference and non-reference locations to differentiate climate change from other stressors and 

detect conventional stressor impairment.  

9. Climate change may make TMDL development more difficult 

Finding: Climate change scenarios show greater variability in runoff and flow, which may result 

in greater uncertainty in loadings expected from non-point sources. Critical low flows also drive 

TMDLs, and these may become more uncertain and more difficult to predict. 

Evidence: Changes in biological metrics are sufficient to downgrade reference station condition 

(Section 4). This degradation causes reference sites to become more similar to impaired sites, 

thereby diminishing the ability to detect impairment. Therefore, unless climate change effects are 

tracked using modified metrics, degradation of reference sites will cause fewer stream reaches to 

be defined as impaired, at least in the most vulnerable watersheds (Section 6.1). 

Adaptation response: In addition to modifying metrics, watershed-specific modeling to predict 

how flow dynamics change with climate is needed to provide support for estimating future 

changes in low flows, and to modify loading calculations and limitations accordingly. 

10. Climate change may alter designated uses and their attainability 

Finding: Climate change can be expected to alter some uses and their attainability, especially in 

vulnerable streams or regions. Biological responses to climate change will likely impact water 

quality standards and biocriteria through shifts in baseline conditions. 

Evidence: Climate change will affect biological communities at reference locations, thereby 

altering the characterization of expected levels of ecological integrity. Some cold water streams 

could take on cool water characteristics, with declining abundances or richness of sensitive cold 

water taxa and possible increases in warm-water taxa. Regulated parameters such as temperature, 

dissolved oxygen, and ammonia, may also be sensitive to climate change effects, and their values 

may need to be adjusted relative to revised designated uses. 

This study illustrates several avenues through which climate change is affecting stream 

communities in ways that have implications for biocriteria programs. Section 2 discusses how 

trait groups, taxonomic groups, and to some extent, individual taxa appear to be responding over 
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time to climate drivers in ways that are predicable and consistent with expectations relative to 

climate change. Section 3 discusses implications of these changes to various MMIs and 

predictive models (Findings 1 and 2). The cascading effects of climate change-related trends in 

temperature and precipitation on watershed conditions, water quality, and aquatic biological 

communities, will lead to shifting, most often degrading, baseline conditions (Finding 4). 

Decreases in mean abundances or species richness of cold-preference or other sensitive taxa and 

trait groups, increases in warm-preference or other tolerant taxa and groups, and also increases in 

variability of these indicators drive reference sites to greater similarity with non-reference areas, 

as well as greater difficulty in establishing statistical differentiation (USEPA, 2008). As a result, 

reference-based standards will be liable to progressive under-protection (Section 6.2). 

Adaptation response: There are numerous criteria, both biological and chemical, that are 

addressed in water quality standards and which may be affected by climate change (Table SMP

1). Biocriteria are of particular interest, as they tie closely to the indices and thresholds used to 

determine condition and impairment. The climate-related causes of drifting (degrading) baseline 

conditions cannot be directly controlled, but can be assessed. The concepts that support this 

include clear documentation of reference conditions, tracking of changes in reference conditions 

over time (Finding 4), and protection of reference conditions from other stressors, particularly 

land-use changes (Finding 6). This may include monitoring a network of sites designed to detect 

climate-change effects (Finding 3).  

For watersheds that are particularly vulnerable to climate-change effects, including those 

characterized by particularly vulnerable trait groups, more refined aquatic life uses should be 

considered. Refinement of aquatic life uses can be applied to guard against lowering of water 

quality-protective standards. More refined aquatic uses could create more narrowly defined 

categories, which could accommodate potentially “irreversible” changes, but with sufficient 

scope to maintain protection and support anti-degradation from regulated causes. 

Further efforts to address climate change impacts to standards require examination of 

which water quality standards are resilient to climate change effects and therefore remain 

protective, and identification of susceptible standards that may need adjustment. Climate change 

effects that contribute to degradation of water quality and biological resource condition bring 

into question how anti-degradation policies can be managed considering the additional 

influences of climate change. High quality water bodies may be most vulnerable to climate 

change degradation, making application of anti-degradation policies in vulnerable water bodies 
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important. Management approaches and special considerations for implementation of anti-

degradation policies may need attention. In addition, the application of use attainability analyses 

(UAA) on vulnerable water bodies may be pertinent for characterizing climate impacts. 

Table SMP-1. Variables addressed in criteria and pathways through which 
they may be affected by climate change (from Hamilton et al. 2010) 

Criteria Climate change impacts 
Pathogens Increased heavy precipitation and warming water temperatures may require 

the evaluation of potential pathogen viability, growth, and migration.   
Sediments Changing runoff patterns and more intense precipitation events will alter 

sediment transport by potentially increasing erosion and runoff.  
Temperature Warming water temperatures from warming air temperatures may directly 

threaten the thermal tolerances of temperature-sensitive aquatic life and 
result in the emergence of harmful algal blooms (HABs), invasion of exotic 
species, and habitat alteration. 

Nutrients Warming temperatures may enhance the deleterious effects of nutrients by 
decreasing oxygen levels (hypoxia) through eutrophication, intensified 
stratification, and extended growing seasons. 

Chemical Some pollutants (e.g., ammonia) are made more toxic by higher 
temperatures. 

Biological Climate changes such as temperature increases may impact species 
distribution and population abundance, especially of sensitive and cold-
water species in favor of warm-tolerant species including invasive species. 
This could have cascading effects throughout the ecosystem. 

Flow Changing flow patterns from altered precipitation regimes is projected to 
increase erosion, sediment and nutrient loads, pathogen transport, and stress 
infrastructure. Depending on region it is also projected to change flood 
patterns and/or drought and associated habitat disturbance. 

Salinity Sea level rise will inundate natural and manmade systems resulting in 
alteration and/or loss of coastal and estuarine wetland, decreased storm 
buffering capacity, greater shoreline erosion, and loss of habitat of high 
value aquatic resources such as coral reefs and barrier islands. Salt water 
intrusion may also affect groundwater. 

pH Ocean pH levels have risen from increased atmospheric CO2, resulting in 
deleterious effects on calcium formation of marine organisms and 
dependent communities and may also reverse calcification of coral 
skeletons. 
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1. CLIMATE CHANGE AND BIOASSESSMENTS 

In the US, the Clean Water Act (CWA) of 1972 identified the restoration and 

maintenance of physical, chemical and biological integrity as a long-term goal (Barbour et al., 

2000). Biological assessment has been recognized around the world as a valuable and necessary 

tool for resource managers to determine biological integrity (Norris and Barbour, 2009). 

Research on biological assessment approaches is ongoing, including studies on the development 

and evaluation of the most effective bioindicators, metrics, indices, and models (Bressler et al., 

2009; Johnson and Hering, 2009; Stevenson et al., 2008; Stepenuck et al., 2008; Stribling et al., 

2008; Hawkins, 2006; Clarke and Murphy, 2006; Fellows et al., 2006; Hering et al., 2004; Dale 

and Beyeler, 2001; Johnson et al., 2006; Sandin and Johnson, 2000); consideration of the best 

assemblage groups or system attributes to monitor (Resh, 2008; Bonada et al., 2006; Hering et 

al., 2006); regional classification within which to structure monitoring (Archaimbault et al., 

2005; Moog et al., 2004; Hawkins and Norris, 2000); and establishment of reference conditions 

(Verdonschot, 2006; Stoddard et al., 2006; Walin et al., 2003; Bailey et al., 1998; Reynoldson et 

al., 1997). Overall, incorporation of biological assessment methods to preserve ecological 

integrity of waterways has proved to be far more effective than sampling only chemical 

parameters (Karr, 2006). Because the structure and function of aquatic assemblages reflect all 

sources of environmental disturbance to which they are exposed over time, assessment of 

biological communities can provide information that may not be revealed by measurement of 

concentrations of chemical pollutants or toxicity tests (Barbour et al., 1999; Rosenberg and Resh, 

1993; Resh and Rosenberg, 1984). Biological assessment, coupled with multi-metric or other 

predictive modeling analyses, is the strongest approach for diagnosing diminished ecological 

integrity, and minimizing or preventing degradation of river systems (Karr and Chu, 2000). 

The effectiveness of biological assessment to more reliably detect impairment of 

ecological integrity than chemical sampling has been demonstrated in state programs over the 

years (Yoder and Rankin, 1998). When biological assessment was incorporated into Ohio’s 

CWA assessment scheme, almost half of stream segments statewide that met the standards of 

their designated uses based on chemical sampling were found to be impaired based on 

assessment of biological indicators (Yoder and Rankin, 1998). In contrast, only a few (<3% of) 

stream segments that had acceptable biological condition had chemical exceedances (Yoder and 

Rankin, 1998). 
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Stream benthic invertebrates are the most common assemblage used for biomonitoring 

(USEPA, 2002a), although fish and algal assemblages also are frequently applied in the United 

States (Resh, 2008). In this study, benthic communities are the primary focus of analysis using 

state biomonitoring data sets. Their integrative characteristics make benthic assemblages 

effective monitoring tools if all major sources of stress are accounted for in order to reliably 

attribute observed responses to particular sources.   

The main goal of this study is to determine what components of bioassessment programs 

are threatened by climate change, a stressor that is currently not considered. Related objectives 

are to investigate whether biological response signals to climate change are discernable within 

existing bioassessment data sets, how responses can be categorized and interpreted, and how 

they influence the decision-making process. There is substantial evidence that climate change is 

affecting the environment (IPCC 2007), including aquatic ecosystems, and therefore reasons to 

account for climate change within the context of bioassessment programs.  

A growing number of studies document climate change responses in freshwater 

ecosystems. Increased prevalence and/or distribution of warm water (thermophilic) taxa, and 

changes in species richness have been found in fish communities (Daufresne and Boet, 2007; 

Buisson et al., 2008; Hiddink and Hofstede, 2008). Long-term responses of benthic invertebrate 

communities have included changes in stability and persistence, changes in community 

composition, increases or decreases in prevalence of taxa groups based on thermophily and 

rheophily, species replacements and range shifts, and changes in resilience of community states 

(Chessman, 2009; Collier, 2008; Burgmer et al., 2007; Beche and Resh, 2007; Woodward et al., 

2002; Daufresne et al., 2007; Durance and Ormerod, 2007; Mouthon and Daufresne, 2006; 

Daufresne et al., 2003). Climate change effects on stream benthos can be seen as long-term, 

progressive changes that overlay other natural sources of variability, including other climate 

drivers. As an example, patterns of stream benthic community persistence in England were found 

to be related to fluctuations in the North Atlantic Oscillation (NAO), as well as to directional 

climate change (Bradley and Ormerod, 2001). The magnitude of changes associated with 

directional climate change are often subtle compared to other large-scale spatial (e.g., land use) 

and temporal (e.g., the NAO) influences (Chessman, 2009; Sandin, 2009; Collier, 2008; Bradley 

and Ormerod, 2001).  

Climate change effects may be small and long term from certain perspectives, but they 

are pervasive. This study documents biological responses to changes in temperature, 

precipitation, and flow that will, in the long term, affect the metrics and indices used to define 
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ecological status. Not all regions are equally threatened or responsive, because of regional 

variability in climate combined with spatial variability in vulnerability2 and resilience of the 

affected aquatic ecosystems. Many factors can influence susceptibility to changing water 

temperature or hydrologic regime from climate change, such as elevation (Chessman, 2009; Diaz 

et al., 2008; Cereghino et al., 2003), stream order (Cereghino et al., 2003; Minshall et al., 1985), 

degree of ground water influence, or factors that affect water depth and flow rate, such as water 

withdrawals (Chessman, 2009; Poff et al., 2006a; Poff 1997). 

The components of bioassessment programs that may be affected by climate change 

include assessment design, implementation, and environmental management (Figure 1-1). 

Awareness that climate change can have widespread effects on biological communities 

introduces additional uncertainty into a system that requires interpretable patterns of biological 

indicator responses to “conventional” stressors. This has the potential to cast doubt on all claims 

of stressor-response relationships that are being evaluated within a regulatory context. It also 

highlights that the biomonitoring tools applied must be appropriately tailored to the types of 

stressors expected. With increasing knowledge of the types of climate change effects that are 

appearing to different degrees in regions around the country, and of the categories of organisms 

that are showing the most predictable responses, it becomes important to adjust assessment tools 

to changing biota to enable a clearer interpretation of stressor identification and causal analysis. 

This study investigates the potential effects of climate change on indicator organisms and 

consequences for benthic communities. The results will provide insights on how climate change 

may hinder the ability of state and tribal bioassessment and biocriteria programs to meet their 

goals of: 1) detecting impairment within reasonable temporal and spatial frames, 2) identifying 

probable causes of impairment, and 3) meeting a variety of resource management objectives. The 

ultimate goal of this study is to further the development of strategies for adapting monitoring and 

management plans to accommodate these expected environmental changes. 

2 Vulnerability is generally defined as a combination of exposure (e.g., the expected climate changes in temperature 
and precipitation); sensitivity or the degree of responses to the exposures; and resilience or ability of the 
communities (or habitats) to adapt and cope with the exposures and responses (see also Poff et al. 2010). We refer to 
the vulnerability of the habitat (features of the natural landscape), as well as the vulnerability of the biotic 
communities. Vulnerability can be thought about on at different scales, e.g. the biological assemblage as a whole, 
individual species, particular sites, stream types, etc. 
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Figure 1-1. Climate change can affect many bioassessment program activities from the 

initial assessment design, to collecting and analyzing data, and to developing responses to 

assessment outcomes.
 

Using four regionally distributed state bioassessment data sets from Maine, North 

Carolina, Ohio, and Utah, historical trends are examined in relation to temperature, precipitation, 

and other environmental drivers. Community and traits analyses are used to identify potential 

indicators, both sensitive and insensitive (robust) to climate change effects. Examination of 

climate-sensitive traits is used to facilitate transfer of analysis results to other places. These 

results are supplemented with additional analyses focusing on the vulnerability of reference 

conditions, and the interactions between climate change and other landscape-level stressors, 

especially land use. This study builds on the results of a preliminary analysis (EPA 2008) and 

feedback from a workshop convened in 2009 with state and tribal scientists and resource 

managers, academic and agency experts, and decision makers to explore the following issues: the 

effects of climate change on endpoints of concern; methods for integrating climate change into 

existing state and tribal water quality programs; and ways to create opportunities for adaptation.  
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Study findings are summarized in the beginning of this report in the Summary for 


Managers and Policymakers (SMP). The body of the report expands on the analyses that support 


these findings. Section 2 describes analyses using ecological traits and Section 3 applies these 


results to indices and predictive models used in state and tribal water programs. Section 4 


examines reference station vulnerabilities and discusses design considerations for a monitoring 


network to detect climate-change effects. Section 5 describes additional characteristics of 
 

biomonitoring programs that are relevant to discerning climate-change effects. Finally, Section 6 


analyzes implications to environmental management, including development of total maximum 


daily loads (TMDLs) and water quality standards. Detailed results of all analyses are compiled in 


appendices. 
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2. ANALYSIS OF ECOLOGICAL TRAITS TO DETECT CLIMATE 
CHANGE EFFECTS 

The underlying objective of conducting detailed analyses of several state bioassessment 

data sets is to understand how assessments of biological condition may be affected due to climate 

change. Several specific research questions contribute to this objective: 

 Are there biological responses, illustrated in temporal patterns or relationships with 

climate variables, already discernable in long-term biomonitoring data? 

 What biological indicators, e.g., trait or taxonomic groups, are sensitive or robust to 

climate change effects? 

 Are there spatial patterns or associations that help elucidate climate vulnerabilities that 

may be important to bioassessment programs? 

 What modifications to metric analyses might help separate and track climate change 

effects? 

As more research is conducted and more trait information becomes available, it is likely 

that more traits-based metrics will become good candidates for detecting responses to climate 

change. In the United States, the value of traits-based versus taxa-based approaches is becoming 

more widely recognized (Olden et al., 2008; Beche and Resh, 2007; Poff et al., 2006b). In 

Europe, traits–based approaches are currently being used in researching climate-related trends on 

aquatic ecosystems (Bonada et al., 2007b). There are many values to traits-based approaches. 

Categorization by traits rather than species (or other taxonomic level) reduces variation across 

geographic areas, making traits better suited for regional analyses. Traits can be less susceptible 

to taxonomic ambiguities or inconsistencies (Moulton et al. 2000) in long-term datasets. Traits 

also can be used to detect changes in functional community characteristics (e.g., Bonada et al. 

2006, 2007, Beche and Resh 2007) and provide a consistent framework for assessing community 

responses to gradients across local and regional scales (Vieira et al. 2006). Finally, use of trait 

categories allows for aggregation of data into fewer categories, which can simplify analyses. 

2.1. BACKGROUND ANALYSES 

In order to begin answering these questions, several foundational analyses were needed to 

establish the magnitude and direction of climate change trends in specific locations. The analyses 

of long-term air temperature, precipitation, water temperature, and flow records assist in 
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partitioning bioassessment data into relevant groupings. These analyses also set up an 

expectation for the strength of the biological responses that may be discerned in the available 

data. For example, long-term air temperature increases are evident from PRISM3 annual air 

temperatures; these show gradual, but significant increases from 1974 to 2006 in three of the 

states analyzed, Utah, Maine, and North Carolina (Appendix A). Air temperatures differed 

between ecoregions in each state, but the rates of increase in air temperature over time were 

similar across ecoregions. No significant long-term trends in annual precipitation could be 

defined using PRISM data. 

Long-term water temperature trends are also evident from USGS gaging station records. 

The rate of water temperature increases averaged 0.76 oC per 10-year period, but varied around 

the country, partly in relation to stream size. It should be noted that the North Carolina stream 

analyzed had a higher water temperature increase than the Utah stream, even though climate 

change-related temperature projections are slightly greater for Utah4 (Appendix A), suggesting 

that differences in stream size have a greater effect in this case. 

Extensive and iterative analyses were conducted using the large bioassessment data sets 

from multiple states (see Appendix B for details on data preparation). These data also informed 

the selection of long-term stations (Appendix C). Most of the long-term stations or station groups 

within ecoregions of all states that were tested showed slightly to distinctly increasing trends in 

benthic inferred temperatures over time, though not all the trends were statistically significant 

(Appendix A). Inferred temperature responses are evidence of climate change increases in 

temperature, with slightly greater responses at higher elevation locations. The benthic inferred 

temperature trends in Utah were statistically significant, equivalent to a rate of increase of 

approximately 3 oC in 25 years. Using benthic invertebrate occurrence and abundance coupled 

with temperature preferences is a reliable means of estimating water temperature at the time of 

collection, and conversely, provides evidence of benthic community changes over time related to 

long-term changes in temperature. 

3 PRISM Climate Group, Oregon State University, http://www.prismclimate.org. 
  Documentation: http://prism.oregonstate.edu/docs/index.phtml 
4 See NCAR website: http://rcpm.ucar.edu 
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An initial set of analyses was done to assure temporal consistency of the bioassessment data 

(Appendix B), as well as to evaluate reference station5 conditions for possible contributions of 

other stressors (especially from land use; Appendix J). Table 2-1 summarizes the overall analysis 

approach, organized by question being addressed and analysis type. These analyses support the 

discussion of results presented in this chapter on the usefulness of ecological traits to track 

biological responses to climate change. They are also the foundation for assessing implications 

of climate change to multi-metric indices (MMIs) and predictive models used by state and tribal 

bioassessment programs, summarized in Section 3. Details about the analysis methods are 

presented in Appendix D. 

2.2. TRENDS IN ECOLOGICAL TRAIT GROUPS  

The reason for evaluating traits is that it comes closer to a mechanistic understanding of 

interactions and provides a pathway toward describing the functional implications of climate

change effects on aquatic communities. The ecological traits of temperature and hydrologic 

preferences or sensitivities (e.g., Poff et al. 2006) provide the most direct link to climate impacts. 

Other traits such as feeding types, habit, or morphology are also important, but defining 

expectations for responses to the effects of climate change is more challenging. For example, 

responses of some feeding types to climate change may be indirect through effects on food 

resources (phytoplankton, periphyton, allochthonous organic matter) (e.g., Hargrave et al., 2009; 

Monters-Hugo et al., 2009; Moline et al., 2004; Tuchman et al., 2002). This study evaluated 

many traits and trait suites for relationships to climate change effects, though not all potentially 

relevant and fruitful analyses were possible due to limitations of the available biomonitoring 

data. In addition to trait groups, analyses also focused on various taxonomic metrics and indices 

commonly incorporated in biomonitoring programs. 

5 We selected reference sites based on guidance from the respective state agencies. Selection criteria vary across 
states. In Utah, reference criteria are based on a combination of a reference scoring sheet (multiple lines of scoring 
(i.e., habitat, land use, chemistry) and independent ranking of sites from field crew/scientists.  In North Carolina, 
land use land cover in the upstream catchment area is an important selection criterion. In Maine, for purposes of our 
analyses, we categorized Class A sites (these classifications are based on biology) as reference. Class A sites are not 
necessarily designated as reference sites by Maine DEP. Maine DEP is in the process of developing strict reference 
criteria; considerations will include factors such as land use land cover and proximity to NPDES discharges. 
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202 Table 2-1. Summary of analysis approach, by analysis type, main methods, and overlying questions. 

Analysis 
Type 

Relationship of 
(or patterns in): 

Relationship to: Method Highlights Questions Addressed 

Correlations Biological 
indicators, 
Taxa; 
Taxa groups; 
Trait groups; 
Indices; 
Index components; 
Predictive model 
parameters. 

Time (year) 
Climate variables (temperature, 
precipitation) 

Pearson product moment; calculated 
using Statistica software (Version 8.0, 
Copyright StatSoft, Inc., 1984-2007); 
considered significant if p < 0.05. 

Are there biological 
responses, illustrated in 
temporal patterns or 
relationships with climate 
variables, already 
discernable in long-term 
biomonitoring data? 

ANOVA Biological 
indicators, 
Taxa; 
Taxa groups; 
Trait groups 
(including cold and 
warm water 
temperature 
indicator taxa); 
Indices; 
Index components; 
Predictive model 
parameters. 

Hot/cold/normal years; and wet/dry/normal 
years: defined these using extremes in 
climate variables among existing data as 
proxies for future climate conditions. 
Partitioned data at long-term reference 
stations in each state into years characterized 
by hotter (>75th percentile of the 
temperature distribution during years of 
biological collections), colder (<25th 
percentile of temperature), and normal (25th 
to 75th percentile) average annual air 
temperatures. Using similar thresholds, years 
were partitioned based on average annual 
precipitation into wetter, drier, and normal 

One-way ANOVA; calculated using 
Statistica software (Version 8.0, 
Copyright StatSoft, Inc., 1984-2007); 
differences considered significant if: F 
statistics p < 0.05, and Tukey honest 
significant difference (HSD) test for 
unequal sample size (N) 
(Spjotvoll/Stoline)  p < 0.05. 

Same as above. 
Are certain metrics more 
likely to be affected by 
climate change than 
others? 

years. 
ANOVA Trait groups (esp. 

cold and warm 
water temperature 
indicator taxa) 

Elevation categories; 
Ecoregions. Size (Strahler order or 
watershed area). 

Same as above Are there spatial patterns 
or associations that 
determine climate 
vulnerabilities important 
to bioassessment 
programs? 

ANOVA Maine station 
classification 

Station classes Same as above How do model input 
metric values differ among 
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descriminant 
model metrics 

the different station 
classifications? 
How much do metric 
values have to change for 
a sample to change 
classification? 
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204 Table 2-1. continued. 

Analysis 
Type 

Relationship of (or 
patterns in): 

Relationship to: Methods Highlights Questions Addressed 

NMDS Taxa composition of 
benthic communities 
collected each year at 
long-term reference 
stations, by state. 

Hot/cold/normal years; 
Several temperature 
and precipitation 
variables (annual 
mean, departure from 
mean). 

Non-parametric multidimensional scaling; 
performed using PCOrd: McCune, B. and M. J. 
Mefford. 1999. PC-ORD. Multivariate Analysis 
of Ecological Data. Version 4.41 MjM Software, 
Gleneden Beach, Oregon, U.S.A.); using a 
Sorensen distance measure. 

Do changes in community 
composition over time reflect 
patterns consistent with climate 
change effects? 
Are taxa associated with 
observed changes 
sensitive/robust, as expected, to 
those climate change effects? 

Weighted All major taxa, by temperature (and/or Weighted average modeling or related What are the temperature 
average (WA) state. precipitation, flow approaches (e.g., maximum likelihood estimates, (and/or precipitation, flow when 
modeling when available) general linear modeling) to estimate the optima 

and range of temperatures of occurrence for each 
taxon from each state that had a sufficient 
distribution and number of observations to 
support the analysis (Yuan 2006); performed in R 
code. 

available) preferences and 
tolerances of taxa collected in 
each state? 

Benthic Taxon temperature Time (long-term Use WA model results of temperature optima for Do benthic communities reflect 
inferred preferences, occurrence trends), temperature each taxon, and taxon occurrence and abundance water temperatures at the time of 
temperature and abundances by station, to do a weighted-average estimate of collection? 
modeling temperature [optimum temperature for each taxon 

at a station, times the abundance of that taxon, 
summed over all taxa, and divided by the sum of 
taxa abundances]. 

Do long-term changes in 
inferred temperatures provide 
evidence of benthic community 
changes over time related to 
temperature? 

Re-running of Model input Climate changes in Done in R, using Utah DEQ model code, and Are O/E predictive model 
Utah parameters; temperature, revising modify climate-related input parameters. predictor variables and O, E, and 
RIVPACS Model outputs. precipitation, other O/E predictions sensitive to 
model climate variables. climate change alterations in 

temperature, precipitation, and 
other pertinent variables? 
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Evaluation of climate change effects is a fundamentally temporal question. Trend 

analysis is used to investigate long-term patterns in temperature, precipitation, flow, other habitat 

variables, and in biologic response variables. Results are used as evidence of whether global 

changes are contributing to the trends, and for considering other possible contributions. This type 

of post-facto analysis of historic data sets is widely used to determine whether climate change 

effects are already discernable in ecosystem responses (e.g., Daufresne et al., 2003; Durance and 

Ormerod, 2007; Burgmer et al., 2007; Murphy et al., 2007). Long-term stream benthic data from 

state biomonitoring programs are used in this study to look for temporal trends in various benthic 

community characteristics as evidence of existing biological responses to climate change. 

Limitations in the extent of statistically significant trends within the historic biological data are, 

in part, related to characteristics of the existing biomonitoring data sets, and should be 

understood in the context of the requirements and limitations of typical biomonitoring programs. 

This will inform on how biomonitoring and biocriteria programs are likely to be affected in the 

future. 

Grouping macroinvertebrates based on temperature preferences and tolerances is 

expected to (1) have a greater chance of detecting temperature-related climate-change effects if 

they exist, (2) be interpretable with regard to causal relationships, (3) offer predictive ability and 

transferability to other regions, and (4) serve as a basis for developing adaptive responses 

(Verbeck et al., 2008a, 2008b; Poff et al., 2006b; Lamouroux et al., 2004). We developed 

temperature indicator metrics by designating cold and warm-water-preference taxa derived from 

weighted average or maximum likelihood modeling (methods in Appendix D), case studies, 

literature reviews and best professional judgment of regional workgroups6. Hydrologic indicator 

metrics were based on literature (e.g., the North Carolina perennial taxa list, Bonada et al., 

2007a) and trait information (i.e., rheophily, drought resistance) related to flow permanence and 

current preference. Among the hydrologic indicator metrics were various ‘scenario’ metrics 

(drier-vulnerable, drier-robust, wetter-vulnerable, wetter-robust). These scenario metrics capture 

combinations of traits expected to impart an adaptive advantage (or not) under projected climate 

change conditions. After developing a list of traits believed to be favorable for each future 

climate change scenario, taxa that possessed the most number of those traits states were 

6 See Appendix Attachments E2, F2, and G1, Temperature Indicator descriptions for each state, for more detailed 
descriptions of the process followed to develop the temperature indicator taxa lists. 

December 23, 2010 2-7 External Review Draft 



 

 

 

 

 

 

 

                                                 
  

 
  

  
  

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

considered potentially ‘robust’ and those that had the fewest favorable trait states and the most 

number of unfavorable trait states were considered potentially ‘vulnerable.’ In addition, several 

scenario metrics were created that take both temperature and hydrologic regime into 

consideration (warmer drier vulnerable, warmer drier robust, warmer wetter vulnerable, warmer 

wetter robust). 

2.2.1. Ecological Trait Groups and Climate Patterns 

In Utah, results of ANOVA on ecological trait and scenario metrics varied by site. Two 

long-term reference stations, 4927250 (Weber) in the Wasatch Uinta Mountains and 4951200 

(Virgin) in the Colorado Plateau, showed relatively strong temperature patterns, while two other 

long-term reference sites, 5940440 (Beaver) in the Wasatch Uinta Mountains, and 4936750 

(Duchesne) in the Colorado Plateau, showed no patterns (Figure 2-1). At Stations 4927250 

(Weber) and 4951200 (Virgin), hottest-year (see Table 2-1 and Appendix D for definition of hot 

and cold year definitions and proxy analysis approach) samples had significantly fewer cold

water-preference taxa than coldest-year samples7 (Table 2-2). The greatest differences generally 

occurred between hottest- and coldest-year samples, while normal-year samples were variable. 

Warm-water-preference taxa showed even fewer responses, increasing during hottest 

years only at Colorado Plateau station 4951200 (Virgin) of the four reference stations tested 

(Figure 2-2). Neither cold- nor warm-water-preference taxa responded differently among wettest, 

driest and normal years (see Table 2-1 and Appendix D for definition of wet and dry year 

definitions and proxy analysis approach, and Appendix F for additional details of Utah analysis 

results). 

7 In data preparation and analyses, the attempt was to identify and limit potential confounding factors as much as 
possible. However, factors other than (or in addition to) climate-related factors (such as changes in water chemistry, 
which were documented to show significant yearly trends at some of the sites) also potentially influenced 
assemblage composition. It should be emphasized that results for such confounding factors were generally site-
specific, and it is uncertain whether similar patterns are occurring at other sites (see also Section 3.4). 
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Table 2-2. Mean (±1 SD) richness and % individuals with cold- or warm-thermal 
preferences in coldest (group 1), normal (group 2), and hottest (group 3) years at 
long-term biological monitoring sites in Utah (UT), Maine (ME), and North Carolina 
(NC). Year groups were based on Parameter-elevation Regressions on Independent 
Slopes Model (PRISM) mean annual air temperature values at each site. One-way 
analysis of variance (ANOVA) was done to evaluate differences in mean thermal
preference metric values. Groups with the same superscripts within a site are not 
significantly different (p < 0.05). NA = not applicable (warm-water-preference taxa 
absent). 

Cold Warm 

Site Group Richness % individuals Richness % individuals 

UT 4927250 
(Weber) 

1 

2 

3 

4.9 ± 1.1A 

3.4 ± 1.1A 

1.0 ± 0.7B 

6.5 ± 5.3A 

6.7 ± 7.3A 

1.0 ± 1.1A 

2.3 ± 0.8A 

1.1 ± 0.7A 

1.0 ± 1.2A 

0.6 ± 0.5A 

0.4 ± 0.3A 

0.3 ± 0.4A 

UT 4951200 
(Virgin) 

1 

2 

3 

4.5 ± 2.4A 

5.3 ± 1.2A 

0.8 ± 0.1B 

15.7 ± 10.9AB 

23.4 ± 15.6A 

0.2 ± 0.2B 

1.5 ± 0.6A 

1.5 ± 0.8A 

3.8 ± 1.3B 

7.7 ± 6.7A 

18.1 ± 15.3A 

27.8 ± 19.4A 

UT 4936750 
(Duchesne) 

1 

2 

3 

6.3 ± 1.5A 

6.3 ± 1.0A 

5.7 ± 2.9A 

24.3 ± 4.1A 

14.9 ± 6.8A 

17.7 ± 8.5A 

0.3 ± 0.6A 

0.7 ± 0.8A 

0.7 ± 1.2A 

0.03 ± 0.1A 

0.1 ± 0.2A 

0.1 ± 0.2A 

UT 5940440 
(Beaver) 

1 

2 

3 

4.0 ± 2.6A 

3.3 ± 0.6A 

3.3 ± 1.2A 

12.1 ± 6.2A 

10.0 ± 9.2A 

8.4 ± 5.9A 

NA 

NA 

NA 

NA 

NA 

NA 

ME 56817 
(Sheepscot) 

1 

2 

3 

0.5 ± 0.5A 

0.5 ± 0.8A 

1.1 ± 0.5A 

0.6 ± 0.6A 

0.7 ± 1.7A 

1.0 ± 0.8A 

6.4 ± 2.4A 

8.0 ± 1.4A 

8.5 ± 2.7A 

15.6 ± 7.4A 

21.2 ± 11.5A 

19.6 ± 10.7A 

ME 57011 1 0.7 ± 0.3A 0.4 ± 0.2A 7.2 ± 1.5A 16.1 ± 7.3A 

(W.Br. 
Sheepscot) 

2 

3 

1.5 ± 0.5A 

1.0 ± 0.7A 

6.3 ± 5.4A 

1.7 ± 0.3A 

7.3 ± 2.8A 

7.8 ± 0.8A 

48.4 ± 9.6B 

39.5 ± 15.4AB 

ME 57065 
(Duck) 

1 

2 

3 

2.4 ± 1.2A 

1.7 ± 0.3A 

1.6 ± 0.7A 

7.8 ± 6.4A 

5.3 ± 5.9A 

5.0 ± 3.3A 

6.3 ± 0.6A 

6.8 ± 1.5A 

4.8 ± 1.3A 

44.0 ± 22.5A 

32.8 ± 10.8A 

46.6 ± 17.6A 

NC 0109 
(New) 

1 

2 

3 

4.3 ± 1.5A 

5.4 ± 1.7A 

4.0 ± 1.7A 

2.3 ± 0.7A 

3.6 ± 2.9A 

2.2 ± 1.0A 

8.3 ± 0.6A 

7.4 ± 1.7A 

7.3 ± 2.3A 

7.7 ± 2.5A 

7.6 ± 2.5A 

7.0 ± 1.3A 

267 
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Figure 2-1. Distributions of cold-water-preference taxa richness values in coldest-, normal-, 
and hottest-year samples at Utah sites 4927250 (Weber) (A), 4951200 (Virgin) (B), 4936750 
(Duchesne) (C), and 5940440 (Beaver) (D). Year groupings are based on PRISM mean 
annual air temperatures from each site during time periods for which biological data were 
available. Average temperatures in hottest-year samples were 1.1 to 2.7˚C higher than 
coldest year samples. Mean metric values for cold-water-preference taxa were significantly 
higher in coldest-year samples than in hottest-year samples at sites 4927250 and 4951200. 
Data used in these analyses were limited to autumn (September–November) kick-method 
samples. 
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Figure 2-2. Distributions of warm-water-preference richness values in coldest-, normal-, 
and hottest-year samples at Utah sites 4927250 (Weber) (A), 4951200 (Virgin) (B), 4936750 
(Duchesne) (C), and 5940440 (Beaver) (D). Year groupings are based on Parameter
elevation Regressions on Independent Slopes Model (PRISM) mean annual air 
temperatures from each site during time periods for which biological data were available. 
Average temperatures in hottest-year samples were 1.1 to 2.7˚C higher than coldest year 
samples. Mean metric values for warm-water-preference taxa were significantly higher in 
hottest year samples than in coldest year samples at site 4951200. No warm-water
preference taxa were present at site 5940440. Data used in these analyses were limited to 
autumn (September–November) kick-method samples 

In contrast to Utah, in Maine there was greater response to wet/dry years than to 

temperature differences. Cold-water-preference taxa, which were present in low numbers at the 

sites evaluated, were slightly more abundant and diverse during wet years at the longest-term 

reference station (Sheepscot) in the Laurentian Hills and Plains, though warm-water-preference 

taxa showed no response to a range of annual precipitation (Figure 2-3); the response of cold

water-preference taxa was not found at the few other reference stations that could be tested 

(Appendix E). Warm-water-preference taxa were generally more abundant and diverse during 

hottest and normal years at this Maine location (Sheepscot) (Figure 2-4). There also was a 

significant increase over time in richness and abundance of warm-water taxa at Station 56817 

(Sheepscot) (Figure 2-5). This appears consistent with climate change expectations, given the 

predominance of warm-water-preference taxa at this station, plus increasing temperatures over 
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time. However, neither abundance nor richness of warm-water-preference taxa was directly 

correlated with temperature at this station. In addition, the temporal trend was not spatially 

consistent. For example, the warm-water-preference taxa metrics did not increase at another 

Laurentian Hills and Plains reference location (site 57011 – W.Br. Sheepscot) (Appendix E). 

Figure 2-3. Distributions of thermal preference metric values in driest-, normal-, and 
wettest-year samples at Maine site 56817 (Sheepscot). Plot (A) shows % cold-water
preference individuals, (B) number of cold-water-preference taxa, (C) % warm-water
preference individuals, and (D) number of warm-water-preference taxa. Year groupings 
are based on PRISM mean annual precipitation from each site during time periods for 
which biological data were available. Data used in these analyses were limited to summer 
(July–September) rock-basket samples. 
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Figure 2-4. Distributions of thermal preference metric values in coldest-, normal-, and 
hottest-year samples at Maine site 56817 (Sheepscot). Plot (A) shows % cold-water
preference individuals, (B) number of cold-water-preference taxa, (C) % warm-water
preference individuals, and (D) number of warm-water-preference taxa. Year groupings 
are based on PRISM mean annual air temperatures during time periods for which 
biological data were available. Data used in these analyses were limited to summer (July– 
September) rock-basket samples.  
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Figure 2-5. Trends in the thermal preference metrics and PRISM climatic variables over 
time at Maine site 56817 (Sheepscot). Plot (A) shows number of cold-water-preference taxa, 
(B) % cold-water-preference individuals, (C) number of warm-water-preference taxa, and 
(D) % warm-water-preference individuals. Data used in these analyses were limited to 
summer (July–September) rock-basket samples. In the plots, PRISM mean annual 
precipitation values were adjusted to fit the scale by subtracting 30 from the original 
values. 

2.2.2. Ecological Trait Groups – Spatial Patterns, Elevation, and Size 

We found differences in the distributions of thermal preference taxa between ecoregions, 

largely related to elevation differences, in all states tested. In Utah, distributions of the cold

water-preference taxa were significantly higher in the Wasatch Uinta ecoregion and at higher 

elevation sites (Figures 2-6 and 2-7). Sites in the Colorado Plateau ecoregion and at lower 

elevations had significantly more warm-water-preference taxa, but numbers of warm-water

preference taxa were low at the Utah reference sites8. The prevalence and distribution of cold-

8 The relatively low number of taxa on the Utah warm-water-preference list was partially a consequence of the need 
to use a family-level OTU for Chironomidae because of inconsistencies in the long-term data set that arose from a 
change in taxonomic laboratories. 

December 23, 2010 2-14 External Review Draft 



 

 

 

 

 
 

345 

346 

347 

348 

349 

350 

351 

352 

353 

354 

355 

and warm-water-preference taxa also varied predictably with stream order (Figure 2-8). First and 

second order streams in Utah had slightly greater relative abundance and richness of cold-water

preference taxa, and fewer warm-preference taxa, compared to 3rd or higher order streams. These 

results suggest that effects are likely to vary spatially within states, potentially reflecting spatial 

differences in vulnerabilities. Biotic assemblages in the Wasatch and Uinta Mountains and at 

higher elevations may be more vulnerable to increasing temperatures that are predicted to occur. 

On the other hand, many of the higher elevation stations evaluated in Utah were also mid-order 

streams, and may not contain the greatest proportion of cold-preference taxa, but may represent 

transitional areas to higher elevation headwater reaches that may be vulnerable if they harbor 

taxa near thermal thresholds. 
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Figure 2-6. Distributions of thermal preference metric values in Utah reference samples in 
the Wasatch and Uinta Mountains and Colorado Plateaus ecoregions. Plot (A) shows 
number of cold-water-preference taxa, (B) number of warm-water-preference taxa, (C) % 
cold-water-preference individuals, and (D) % warm-water-preference individuals. Data 
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used in these analyses were limited to autumn (September–November) kick-method 
samples. The sample size (n) of the Wasatch and Uinta Mountains data set was 74 and 
n=44 for the Colorado Plateaus. 

 

Figure 2-7. Distributions of thermal preference metric values in Utah reference samples in 
two elevation groups (< 2000 m and > 2000 m). Plot (A) shows number of cold-water
preference taxa, (B) number of warm-water-preference taxa, (C) % cold-water-preference 
individuals, and (D) % warm-water-preference individuals. Data used in these analyses 
were limited to autumn (September–November) kick-method samples. The sample size (n) 
of the <2000 m data set is 74 and n=55 for the >2000 m data set. 
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Figure 2-8. Distributions of thermal preference metric values in Utah reference samples 
grouped by Strahler order. Plot (A) shows number of cold-water-preference taxa, (B) 
number of warm-water-preference taxa, (C) % cold-water-preference individuals, and (D) 
% warm-water-preference individuals. Data used in these analyses were limited to autumn 
(September–November) kick-method samples. Sample size for 1st order samples is 11, 2nd 

order =29, 3rd order = 22, 4th order = 41, ≥ 5th order = 21. 

In Maine, the Northeastern Highlands sites had the highest mean number of cold-water

preference taxa, followed closely by the Northeastern Coastal Zone sites (Figure 2-9). Overall, 

the number of cold-water taxa in all the Maine ecoregions evaluated was low (1 to 2 taxa). The 

mean number of warm-water-preference taxa at sites in the Laurentian Plains and Hills was 

significantly higher than at sites in other ecoregions, while the Northeastern Highlands sites had 

the lowest mean number of warm-water-preference taxa. These observed ecoregional differences 

appear to be driven by elevation: there are more cold-water-preference taxa at higher elevation (> 

150 m) sites and more warm-water-preference taxa at lower elevation (< 150 m) sites (Figure 2
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10). Although it was originally assumed that the high (northern) latitude of Maine also would 

influence composition by cold water taxa, apparently elevation is a more influential factor. 
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Figure 2-9. Distributions of thermal-preference-metric values in Maine Class A and AA 
samples in the Laurentian Plains and Hills, Northeastern Coastal Zone and Northeastern 
Highlands ecoregions. Plot (A) shows number of cold-water-preference taxa, (B) number of 
warm-water-preference taxa, (C) % cold-water-preference individuals, and (D) % warm
water-preference individuals. Data used in these analyses were limited to June-October 
rock-basket samples, and each replicate was treated as an individual sample. The sample 
size (n) of the Laurentian Plains and Hills data set was 747, n=41 for the Northeastern 
Coastal Zone and n=433 for the Northeastern Highlands. 

As observed in Utah, first and second order streams in Maine had slightly greater relative 

abundances and richness of cold-water-preference taxa, while 4th and higher order streams had 

more warm-water-preference taxa (Figure 2-11). Third order streams appeared transitional in 

temperature preference composition. Based on the distribution of cold-water-preference taxa, it 

might be expected that biotic assemblages at Northeastern Highland and other higher elevation 
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locations, especially in lower order streams, will be more vulnerable to increasing temperatures. 

Unfortunately, none of the reference sites located in the Northeastern Highlands have enough 

long-term data to support trend analyses. The three reference sites that had enough data to 

analyze were located in the Laurentian Plains and Hills and Northeast Coastal Zone ecoregions 

and were dominated by warmer-water-preference taxa. 
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Figure 2-10. Distributions of thermal preference metric values in Maine Class A and AA 
samples in the two elevation groups (< 150 m and > 150 m). Plot (A) shows number of cold
water-preference taxa, (B) number of warm-water-preference taxa, (C) % cold-water
preference individuals, and (D) % warm-water-preference individuals. Data used in these 
analyses were limited to June-October rock-basket samples, and each replicate was treated 
as an individual sample. The sample size (n) of the <150 m data set is 817 and n=404 for the 
>150 m data set. 
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Figure 2-11. Distributions of thermal preference metric values in Maine Class A and AA 
samples grouped by Strahler order. Plot (A) shows number of cold-water-preference taxa, 
(B) number of warm-water-preference taxa, (C) % cold-water-preference individuals, and 
(D) % warm-water-preference individuals. Data used in these analyses were limited to 
June-October rock-basket samples, and each replicate was treated as an individual sample. 
Sample size of 1st order samples is 230, 2nd order =149, 3rd order = 273, 4th order = 284, 5th 

order = 95, 6th order = 32. 

In North Carolina, ecoregions also vary in the predominance of cold- and warm-water

preference taxa. The richness of cold-water-preference taxa is, on average, higher in the 

Mountain ecoregion than in the other two ecoregions (Figure 2-12). The distribution of warm

water-preference taxa is significantly different between all three ecoregions, with the highest 

abundance occurring in the Coastal ecoregion and the lowest number occurring in the Mountain 

ecoregion. This distributional pattern is reinforced by the finding that significantly more cold

water taxa occur at higher elevation sites than at lower elevations (Figure 2-13). Conversely, 

median richness and abundance of warm-water taxa is greater at lower elevation sites. 

Distribution of cold-and warm-water-preference taxa was also related to watershed size. The 
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smaller watersheds in North Carolina (<35 mi2) had a greater proportion of cold-water

preference taxa (based on both abundance and richness), while larger watersheds (>100 mi2) had 

a greater proportion of warm-water-preference taxa (Figure 2-14). Based on the results from the 

cold- and warm-water taxa distribution analysis, it is likely that biotic assemblages at Mountain 

and higher elevation sites, and in smaller watersheds, will be more vulnerable to increasing 

temperatures than others because greater numbers of cold-water taxa inhabit these sites. 

However, in North Carolina, few trends over time were found for cold- or warm-water

preference taxa. This may be attributable to the more limited time series of data available from 

North Carolina, as well as to the use of categorical rather than abundance data (though this 

would not affect evaluation of richness trends). 
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Figure 2-12.  Distributions of thermal preference metric values in North Carolina reference 
samples in the Coastal, Mountain and Piedmont ecoregions. Plot (A) shows number of cold
water-preference taxa, (B) number of warm-water-preference taxa, (C) % cold-water
preference individuals, and (D) % warm-water-preference individuals. Data used in these 
analyses were limited to June–September standard qualitative samples. The sample size (n) 
of the Coastal data set is 20, n=61 for the Mountain ecoregion and n=21 for the Piedmont 
data set. 

December 23, 2010 2-21 External Review Draft 



 

 

 

 

 

 

459 

460 

461 
462 
463 
464 
465 
466 

467 

Figure 2-13. Distributions of thermal preference metric values in North Carolina reference 
samples in two elevation groups (< 500 m and > 500 m). Plot (A) shows number of cold
water-preference taxa, (B) number of warm-water-preference taxa, (C) % cold-water
preference individuals, and (D) % warm-water-preference individuals. Data used in these 
analyses were limited to June–September standard qualitative samples. The sample size (n) 
of the <500 m data set is 49 and n=50 for the >500 m data set. 
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Figure 2-14. Distributions of thermal preference metric values in North Carolina reference samples 
grouped by watershed area. Plot (A) shows number of cold-water-preference taxa, (B) number of 
warm-water-preference taxa, (C) % cold-water-preference individuals, and (D) % warm-water
preference individuals. Data used in these analyses were limited to June–September standard 
qualitative samples. The sample size for the < 35 sq mi group is 17, 35 to 100 sq mi =15 and > 35 sq 
mi = 24. 

2.2.3. Potential biological indicators of climate-related hydrologic changes 

This section focuses on analyses of paired hydrologic-biological datasets in Utah, Maine 

and North Carolina. In the Utah analyses, weighted averaging was used to calculate taxa optima 

and tolerance values for selected Indicators of Hydrologic Alteration (IHA) (Richter et al., 1996) 

parameters derived from USGS flow data (Appendix K) and year. Data from 43 biological 

sampling sites (=159 fall samples) and their associated USGS gages were used in the analyses. 

Results showed that several low flow parameters performed well compared to high flow/pulse 

event parameters. Indicator values for the IHA 3-day minima flow values show potential for 

detecting climate change effects. Results for taxa that had more than 20 occurrences in the 

dataset (which is statistically an adequate sample size) show that Leuctridae (rolled wing 
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stoneflies), Asellidae (isopod crustaceans referred to as sowbugs) and Zapada (a stonefly in the 

family Nemouridae) had the lowest 3-day minima optimum values (0.056 cfs or less), while 

Hyalella (an amphipod crustacean) and Helicopsyche had the highest (0.11 cfs). Leuctridae and 

Zapada had relatively low tolerance ranges, while Hyalella and Helicopysche (a caddisfly) had 

large tolerance ranges. These results suggest that the stoneflies Leuctridae and Zapada (in the 

family Nemouridae) are better adapted, perhaps partly due to their smaller sizes, to lower flow 

conditions than other organisms that appeared in the Utah data set.  

When taxonomic trends were examined using NMDS and CCA, both analyses indicated 

that year had the strongest influence on taxonomic composition. The IHA parameters that were 

used in the analysis had a weaker effect, although the high pulse and 3-day minima parameters 

also explained a fair amount of variation. Results of the CCA are shown in Figure 2-15. The plot 

shows which taxa were most closely associated with year, high pulse and 3-day minima values. 

Correlation analyses were also performed on the seven sites in Utah that had the most number of 

years of biological and hydrological data, which were analyzed individually. Results showed that 

there were no taxa or metrics that were consistently associated with the IHA parameters across 

all sites (Leuctridae was not present at any of the sites, and at the one site where Zapada was 

present, it was not significantly correlated with the IHA parameters). The same was true for the 

flashiness index. Therefore, no taxa or metrics emerged as good candidates for ‘disturbance 

indicator’ metrics related to hydrology in Utah. Disturbance is of particular interest because 

hydrologic regimes are expected to change (i.e. duration and/or frequency of high and/or low 

flow events) as a result of climate change, so taxa that are better able to adapt to the changing 

conditions are generally believed to have a greater chance for success. 

NMDS ordinations were also performed on the North Carolina data (440 samples, 

selected based on matches between biological sampling locations and USGS gaging stations, for 

all available sampling dates). Results from one of the analyses are shown in Figure 2-16. In the 

plot, samples are grouped by level 3 ecoregion. NMDS results show that baseflow index, which 

is a parameter that represents low flow influence, had the strongest correlation with 

macroinvertebrate species composition, though this strong relationship may be mostly due to 

ecoregional distribution of taxa. A number of covariates, such as elevation, temperature, and 

other factors may co-affect the observed pattern. The second factor that related to taxonomic 

composition was number of reversals, which is a measurement of flashiness. The flashiness 

December 23, 2010 2-24 External Review Draft 



 

 

 

0 

519 

52
521 

522 

523 

524 


 
 

 

517 

518 

index (RBI) had weaker correlation with the species axes. Other factors that showed correlations 

were low pulse and high pulse parameters (Table 2-3). 

 
Figure 2-15. CCA plot of a selected subset of the Utah biological-hydrological data. 
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Table 2-3. Selected results from the Pearson and Kendall Correlations with 
Ordination Axes (N= 440). Only those variables that had strong correlations are 
included in this table. Correlations with r or tau values greater than 0.3 are in bold 
print. Note: significance values are not available for these analyses because the 
correlations associated with the ordinations are not meant for testing hypotheses. 

Axis: 1 2 3 

r  r-sq  tau  r  r-sq  tau  r  r-sq  tau  

January -0.029 0.001 -0.074 -0.037 0.001 0.1 0.364 0.132 0.312 
February -0.039 0.002 -0.07 -0.059 0.003 0.073 0.361 0.13 0.33 
March -0.061 0.004 -0.086 -0.052 0.003 0.094 0.368 0.135 0.327 
April -0.097 0.009 -0.118 -0.045 0.002 0.129 0.322 0.104 0.285 
X1daymin -0.373 0.139 -0.282 0.105 0.011 0.254 0.177 0.031 0.088 
X3daymin -0.375 0.14 -0.283 0.095 0.009 0.241 0.197 0.039 0.101 
X7daymin -0.327 0.107 -0.281 0.061 0.004 0.235 0.228 0.052 0.111 
X1daymax -0.086 0.007 -0.09 -0.042 0.002 0.041 0.363 0.132 0.338 
X3daymax -0.064 0.004 -0.049 -0.055 0.003 0.026 0.375 0.141 0.368 
X7daymax -0.044 0.002 -0.037 -0.06 0.004 0.024 0.4 0.16 0.375 
X30daymax -0.047 0.002 -0.057 -0.061 0.004 0.037 0.395 0.156 0.37 
X90daymax -0.062 0.004 -0.069 -0.054 0.003 0.062 0.387 0.15 0.359 
Baseflow -0.51 0.26 -0.382 0.416 0.173 -0.317 0.365 0.134 -0.245 
LopulseL 0.364 0.133 0.229 -0.037 -0.001 0.017 0.153 0.024 0.078 
Hipulse -0.328 0.108 -0.212 -0.042 0.002 -0.028 0.125 0.016 -0.101 
HipulseL 0.442 0.196 0.242 -0.098 -0.01 0.073 0.3 0.09 0.23 
Riserate -0.076 0.006 -0.144 -0.047 0.002 0.11 0.284 0.081 0.303 
Fallrate 0.048 0.002 0.151 0.059 -0.004 -0.081 0.24 0.058 -0.332 
Reversals -0.512 0.262 -0.358 0.039 0.002 0.011 -0.044 0.002 -0.083 
High1peak -0.062 0.004 -0.074 -0.032 0.001 0.072 0.443 0.196 0.358 
High1dur 0.362 0.131 0.227 -0.066 -0.004 0.068 0.205 0.042 0.232 
High1freq -0.302 0.091 -0.18 -0.046 0.002 -0.014 -0.086 0.007 -0.079 
High1rise -0.162 0.026 -0.138 -0.035 0.001 0.071 0.383 0.147 0.323 
High1fall 0.069 0.005 0.116 0.062 0.004 -0.038 -0.338 0.114 -0.359 
RBI -0.046 0.002 0.017 -0.391 -0.153 -0.211 0.001 0 -0.025 535 
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Similar analyses were attempted in Maine, but there were not enough USGS gages 

associated with biological sampling sites to estimate flow variable optima using weighted 

averaging. Instead, correlation analyses were performed on data from Station 56817 (Sheepscot) 

(22 samples). Some taxa and some metrics were significantly correlated with some IHA 

parameters. For example, Hydropsyche (spotted sedge caddisfly), Promoresia (an elmid beetle) 

and Rhyacophila (green sedge caddisfly) were significantly and positively correlated with 1- and 

3-day minima flow values. However, it is difficult to draw conclusions about consistency of 

patterns statewide based on data from one site, and also because unambiguous causal 
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relationships between the biological and hydrologic data cannot be established based on 

correlation analyses. 

2.3. TEMPORAL TRENDS IN TAXA AND COMMONLY USED METRICS  

Although different states use different methods for assessing sites, there are certain 

metrics, such as those related to EPT taxa, which are commonly used in state multi-metric 

indices (MMIs). To provide regional relevance and a common basis for regional comparisons, 

analyses were performed that examined associations between these commonly-used metrics and 

climate-related variables. ANOVAs were used to determine differences in biological metrics 

among hottest, coldest, wettest, driest, and normal years (Table 2-1) for reference sites that had 

adequate long-term data. Correlation analyses were used to evaluate associations between 

biological variables, annual air temperature and precipitation, variables related to inter-annual 

climate variability, and these variables with lagged year effects.  

NMDS were used to show in ordination space how samples collected over years at long

term stations varied in species composition over time. Reference locations with sufficient long

term data to perform ordinations included two Utah reference sites (Station 4927250 - Weber and 

Station 4951200 - Virgin) and one Maine reference site (Station 56817 - Sheepscot). The 

ordinations were used to evaluate differences in taxonomic composition among samples 

collected during hottest, coldest, wettest, driest and normal years. Other environmental variables 

were used to group the data while looking for trends, including temperature and precipitation 

categories, PRISM9 mean annual air temperature and precipitation from the year the sample was 

collected, PRISM mean annual air temperature and precipitation from the year prior to sample 

collection (to look for lagged effects), and absolute difference between the PRISM mean annual 

air temperature value and PRISM mean annual precipitation value from the year of the sample 

collection and the year prior (to look for effects of climate variability). In addition, several IHA 

parameters were included in the ordination of the Maine data: average of median monthly flows 

from sample collection months (July-September), Richards-Baker Flashiness Index (which uses 

flow data to quantify the frequency and rapidity of short-term changes in stream flow) (Baker et 

al., 2004), and 1- and 3-day minimum and maximum flows. Presence/absence data from fall 

9 PRISM data downloaded from http://www.prism.oregonstate.edu/. 
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samples in Utah and summer/fall samples in Maine were used to analyze changes in the 

biological assemblage. 

2.3.1. Trends and Patterns– Utah and Western States 

In Utah, the NMDS ordinations tend to corroborate ANOVA findings regarding benthic 

responses among years partitioned by climate parameters. At the two long-term Utah reference 

stations tested, ‘hottest year’ samples formed distinct clusters from the ‘coldest’ and ‘normal’ 

year samples (Figures 2-17 and 2-18). 
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Figure 2-17. NMDS plot (Axis 1-2) for Utah Station 4927250 (Weber). Cat_Temp refers to 
the temperature categories, which are: 1=coldest years; 2=normal years; 3=hottest years. 
Samples are labeled by collection year. tmean14=PRISM mean annual air temperature 
from the year the sample was collected, PrevYr_t= PRISM mean annual air temperature 
from the year prior to sample collection, and ppt14_ab= absolute difference between the 
PRISM mean annual precipitation value from the year of the sample collection and the 
year prior. 
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Figure 2-18. NMDS plot (Axis 1-2) for Utah Station 4951200. Cat_Temp refers to the 
temperature categories, which are: 1=cold years; 2=normal years; 3=hot years. Samples 
are labeled by collection year. tmean14=PRISM mean annual air temperature from the 
year the sample was collected, PrevYr_t= PRISM mean annual air temperature from the 
year prior to sample collection, ppt14_ab= absolute difference between the PRISM mean 
annual precipitation value from the year of the sample collection and the year prior, and 
PrevYr_p= PRISM mean annual precipitation from the year prior to sample collection. 

Figure 2-19 shows which taxa are the strongest drivers along Axes 1-2 at Station 

4927250 (Weber). Pteronarcys, Chloroperlidae and Ephemerella have the strongest positive 

correlations with Axis 2, and Optioservus, Lepidostoma and Hyallela have the strongest negative 

correlations with Axis 2. The three taxa positively associated with Axis 2 tend toward cold

water-preference - Chloroperlidae and Pteronarcys are absent from the ‘hottest year’ samples 

and Ephemerella is present in all the ‘coldest year’ and ‘normal year’ samples and is only present 

in one ‘hottest year’ sample. Some additional taxa that occurred during multiple years and were 

not found in ‘hottest year’ samples include Rhithrogena, Nematoda, and Tubificidae. Warm

water-preference taxa that are present in at least 4 of the 5 ‘hottest year’ samples include 

Optioservus, Lepidostoma and Hyallela, though they also are present in ‘coldest year’ and/or 

‘normal year’ samples. 
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 613 
614 Figure 2-19. NMDS plot (Axis 1-2) for Utah Station 4927250 (Weber) that shows which 

taxa are most highly correlated with each axis.  

 

Figure 2-20 shows which taxa are the strongest drivers along Axes 1-2 at Station 

4951200 (Virgin).  Ephemerella, Nematoda and Heptagenia have the strongest negative 

correlations with Axis 1, and appear to tend toward a cold-water-preference. Nematoda is absent  

from the ‘hottest year’ samples, and Ephemerella and Heptagenia are present in all ‘coldest year’ 

samples, 6 of the 7 ‘normal year’ samples and only 1 of the ‘hottest year’ samples. 

Forcipomyia/Probezzia, Microcylloepus, Caloparyphus and Chimarra have the strongest 

positive correlations with Axis 1, and appear to be warm tolerant. These taxa are present in at 

least 2 of the 4 ‘hottest year’ samples and are absent from the ‘coldest year’ and/or ‘normal year’ 

samples. 
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Figure 2-20. NMDS plot (Axis 1-2) for Utah Station 4951200 (Virgin) that shows which 
taxa are most highly correlated with each axis. 

Only five of the metrics tested were significantly different between hottest, coldest, 

wettest, driest, and normal year samples at more than one site. At Stations 4927250 (Weber) and 

4951200 (Virgin) in Utah, the hottest year samples had significantly fewer total taxa, EPT taxa 

and cold-water-preference taxa than the coldest year samples (Figures 2-21 and 2-22, and Figure 

2-1). Figure 2-23 illustrates the relationship between EPT richness and PRISM mean annual air 

temperature at Utah sites 4927250 (Weber) and 4951200 (Virgin). If a linear regression is used 

to infer the relationship at site 4927250 (which is located in the Wasatch and Uinta Mountains), 

approximately 3 EPT taxa are lost for every 1oC increase in (air) temperature. If the same is done 

for site 4951200, which is a lower elevation site located in the Colorado Plateaus ecoregion, the 

inferred loss rate is ~1.5 EPT taxa for every 1oC increase in (air) temperature. If one were to take 

this a step further, the median number of EPT taxa at site 4927250 (Weber) is ~13 to 14 taxa. 

Based on a projected temperature increase of 2°C over the next 40 y (i.e., by 205010), an average 

of 6 taxa could be lost (>40% of total EPT richness). There is no particular reason to assume that 

the actual rate of taxa losses will be linear over time, especially considering year-to-year and 

10 Based on data from the National Center for Atmospheric Research website: http://rcpm.ucar.edu. 
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decadal-scale climate variations (see Section 2). However, if these types of trends were to occur, 


they would likely affect MMIs. 
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Figure 2-21. Distributions of total taxa richness values in coldest-, normal-, and hottest
year samples at Utah sites 4927250 (Weber) (A) and 4951200 (Virgin) (B). Year groupings 
are based on PRISM mean annual air temperatures from each site during time periods for 
which biological data were available. Average temperatures in hottest-year samples were 
1.1 to 2.7˚C higher than coldest year samples. At both sites, mean total taxa metric values 
were significantly higher in coldest year samples than in hottest year samples. Data used in 
these analyses were limited to autumn (September–November) kick-method samples. 
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Figure 2-22. Distributions of EPT richness values in coldest-, normal-, and hottest-year 
samples at Utah sites 4927250 (Weber) (A) and 4951200 (Virgin) (B). Year groupings are 
based on PRISM mean annual air temperatures from each site during time periods for 
which biological data were available. Average temperatures in hottest-year samples were 
1.1 to 2.7˚C higher than coldest year samples. At both sites, mean EPT richness metric 
values were significantly higher in coldest and normal year samples than in hottest year 
samples. Data used in these analyses were limited to autumn (September–November) kick
method samples. 

December 23, 2010 2-34 External Review Draft 



 

 

 

 

 

 

 

672 

673 
674 
675 

676 

677 

678 

679 

680 

681 

682 

Figure 2-23. Relationship between EPT taxa richness and PRISM mean annual air 
temperature (°C) at (A) Utah site 4927250 (Weber) (r=0.57, p=0.01) and (B) site 4951200 
(Virgin) (r=0.79, p<0.01). The dotted lines represent 95th confidence intervals. 

2.3.2. Trends and Patterns– Maine and New England States 

There were few consistent patterns in Maine that clearly relate trait or taxonomic metrics 

to climate condition variables. Unlike Utah, the NMDS ordination at Maine’s longest term 

Station 56817 (Sheepscot) (in the Laurentian Hills and Plains) showed no distinct clusters 

reflecting hottest, coldest, wettest, driest, and/or normal year groups (Figure 2-24).  
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Figure 2-24. NMDS plot (Axis 3-2). Cat_Temp refers to the temperature categories, which 
are: 1=coldest years; 2=normal years; 3=hottest years. Samples are labeled by collection 
year. Absolute difference between the PRISM mean annual precipitation from the 
sampling year and the previous year (AbsD_P) is the most strongly correlated 
environmental variable with Axes 2 and 3.  

Species composition did not change in a consistent way among hottest, coldest, wettest, 

driest, and/or normal year groups. Several of the taxa that were drivers of interannual patterns in 

community composition (Ablabesmyia (a midge), Tricorythodes (a mayfly), and Pseudocloeon 

(blue-winged olive mayflies) occurred most often during “normal” precipitation years, 

suggesting potential importance of hydrologic conditions in affecting community patterns in 

Maine. Overall, taxa could not be consistently categorized as having singular temperature or 

precipitation preferences. The lack of strong association between ecological trait groups and 

community patterns of responses, in combination with the lack of regional consistency in 
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ecological trait group trends, makes it difficult to recommend a particular group of ‘climate 

change indicators’ as being regionally important.  

At Station 56817 (Sheepscot), precipitation and flow appear to have a greater influence 

on the biotic assemblage than temperature. Five of the Maine bioclassification model input 

metrics were significantly correlated with flow category (Appendix E). The mean richness and 

abundance of cold-water-preference taxa were slightly higher during the wettest years (Figure 2

3). On average, more Class A indicator taxa were present during wetter years (Figure 2-25), as 

were EPT taxa relative to Diptera taxa (Figure 2-26). These patterns are consistent with 

expectation if the wettest years provide a more thermally stable and hospitable environment for 

the more sensitive cold-water-preference, Class A, and EPT taxa. The relative abundance of 

collector-gatherers was higher during higher flow years (Appendix E), though this may reflect a 

relationship between higher flows and the distribution of more fine and course particulate 

organic matter for food. In contrast, Diptera richness and Tanypodinae abundance decreased 

during higher flow years (Figure 2-26). These taxonomic groups include many environmentally 

tolerant taxa, which may do well during more stressful low flow years (higher relative abundance 

and richness), and decrease during wet years relative to the increase in sensitive taxa. 
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Figure 2-25. Distributions of Class A indicator taxa metric values in driest-, normal-, and 
wettest-year samples at Maine site 56817 (Sheepscot). Year groupings are based on PRISM 
mean annual precipitation from each site during time periods for which biological data 
were available. Data used in these analyses were limited to summer (July–September) rock
basket samples. 

While Station 56817 in the Laurentian Hills and Plains showed faunal responses to 

precipitation, responses related to temperature were more evident in ANOVA analyses 

conducted on data from Station 57011, (W.Br. Sheepscot), also in the Laurentian Plains and Hills 

(Appendix E Table E3-2). This reflects the importance of site-specific variability in Maine. At 

Station 57011, a range of metrics, including percent abundance of collector-filterers, Hilsenhoff 

Biotic Index (HBI) scores, Shannon-Wiener diversity index scores, and percent abundance of 

Odonata (dragon/damsel flies), Coleoptera (beetles), and Hemiptera (true bugs) (OCH) taxa, 

showed significant differences between samples grouped by hottest, coldest and  normal years. 

Some responses were logically consistent with climate change expectations (i.e. the mean 

percent of warm-water-preference individuals was lower in the coldest year samples). Others 

were not, perhaps because they were driven more by non-climatic factors, such as nutrient 

enrichment, or may reflect indirect mechanisms (e.g., flow or temperature effects on food 

resource availability, which then affects certain feeding groups), which cannot be directly 

assessed using the biomonitoring data sets. Since we do not yet fully understand the mechanisms 

behind these responses, interpreting these relationships and establishing expectations in the 

context of climate change is complex. 
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Figure 2-26. Distributions of EPT and Dipteran-related metric values in lowest-, normal-, 
and highest-flow year samples at Maine site 56817 (Sheepscot). Plot (A) shows relative 
Diptera richness, (B) Tanypodinae abundance, (C) EPT generic richness relative to EPT 
plus Diptera, and (D) EPT generic richness/Diptera richness. Year groupings are based on 
IHA median monthly flows averaged across July-September. Data used in these analyses 
were limited to summer (July–September) rock-basket samples. 

2.3.3. Trends and Patterns – North Carolina and Southeastern States 

Not many relationships were discerned between various biological metrics and annual air 

temperature variables based on North Carolina biomonitoring data; results are mostly site

specific. For example, cold-water-preference taxa were negatively correlated with temperature, 

as would be expected in response to climate change, but only at one Piedmont station (Appendix 

G). Only four trait group metrics showed significant correlations with air temperature at more 

than one of the tested reference locations. The percent of climbers (life habit trait category; see 

Stamp et al., 2010; Poff et al., 2006 for a description) was negatively correlated with mean 

annual air temperature from the year prior to sampling at two Blue Ridge sites. The percent of 
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predators (feeding type trait category) was positively correlated with mean annual air 

temperature at one Blue Ridge site and negatively correlated with it at a Piedmont site. 

Appendices G and I shows the range of significant trends found, most only occurring at single 

reference sites. 

More metrics were significantly correlated with annual precipitation variables than with 

temperature variables; however, inter-site variability is still strong, even within an ecoregion. 

Biological metrics that were related to precipitation at more than one site include the Hilsenhoff 

Biotic Index (HBI; negatively correlated with mean annual precipitation at two Blue Ridge 

sites); the percentage of climbers (negatively correlated with precipitation at one Blue Ridge and 

one Piedmont site); the percentage of shredders (negatively correlated with the previous year’s 

precipitation at one Blue Ridge and one Piedmont site); and the percentage of burrowers 

(negatively correlated with the precipitation difference (sampling year – previous year) at one 

Blue Ridge site and positively correlated at one Piedmont site). Most of these relationships to 

precipitation are consistent with functional expectations. For instance, lower HBI scores during 

wetter years are consistent with the observed tendency for cold-water-preference taxa to have 

lower HBI tolerance values and to be more abundant during wetter years. The climbing habit 

may be disadvantaged during wetter years (e.g., more easily dislodged). On the other hand, the 

relationship of invertebrates that burrow to precipitation cannot be interpreted based on the 

limited information available and in any case exhibits contrasting responses among sites. Among 

trait groups selected for their expected hydrologic relationships, the abundance of perennial taxa 

was greater when precipitation was higher, and the richness of intermittent taxa was lower when 

precipitation was greater, both as would be expected (Appendix G). Furthermore, both the 

abundance and richness of cold-water-preference taxa increased as precipitation increased, which 

is consistent with the generally inverse relationship between precipitation and temperature. 

However, all these correlations were only significant at one Blue Ridge station. In addition, 

abundance of drought-tolerant taxa increased with increasing precipitation at that same station. 

This may not be entirely counter to expectation, in that taxa that can tolerate drought may still do 

better in more favorable conditions. However, it calls into question the value and sensitivity of 

the trait group designation for distinguishing precipitation trends related to climate change.  

This notable spatial inconsistency in trends may result from high variability in site

specific habitat or other environmental conditions (e.g., in factors not specifically accounted for 
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using biomonitoring data, such as groundwater contribution, riparian cover, substrate conditions, 

etc.), and from the relatively limited (short duration) data that are currently available for North 

Carolina. Variability between sites even within an ecoregion may also indicate variations in 

factors that affect vulnerability to climate change. Elevation and its effect on the relative 

contribution of cold-water-preference taxa to the community have been shown in other states to 

help define vulnerability to climate-change effects. In the North Carolina Blue Ridge, the higher 

elevations were associated with more cold-water taxa on average, but some Blue Ridge 

locations, such as the long-term reference Station NC0109 (New River) tended to have more 

warm-water-preference taxa. The reasons for this are not clear and warrant further consideration. 

The strength of the relatively short (mostly one decade or less at any one station) duration of the 

available data is too limited in the face of the magnitude of both spatial and temporal variation to 

discern the more subtle long-term trends and relationships needed to define any existing climate

change responses, and also to define the most effective climate-change indicators.  

2.4. CONFOUNDING SOURCES OF TEMPORAL VARIATION 

The ability to detect trends in a rigorous manner is affected by the amount and sources of 

variation contained in the data, and the ability to control or account for the variation. Interannual 

variation is expected to be larger in magnitude than incremental climate change responses (at 

least with respect to near-term linear projections based on historic data), and seasonal variation is 

often larger than that.  

2.4.1. Seasonal variation 

In a biomonitoring framework, seasonal variation is typically accounted for by limiting 

sampling to a single season or index period. This is the case for the four states (Maine, Utah, 

North Carolina, and Ohio) evaluated here, although not all focus on the same index period. In 

addition, over the two or more decades of data examined, the range of months during which 

sampling was actually conducted within any one state was found to vary over a wider range of 

seasons than expected based on current definitions of index period for each state. For example, 

Utah’s defined index period is late summer to fall; however, sampling dates actually ranged from 

March through November (see Appendix F). Incorporation of the full range of available data 

over years would have introduced substantial variation in taxon occurrences and abundances due 
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primarily to seasonal variation. This predictable increase in variation would further obscure other 

trends or patterns. The approach to minimizing seasonal variation was to subset data by season 

and for most analyses focus only on the predominant index period sampled in each state. For 

example for Utah data, sampling months were limited to August through November. Specifics on 

sampling months included for each set of trend, correlation, community, and weighted average 

modeling analyses conducted can be found in corresponding appendices (mainly see Appendices 

E through I, and K). It should be noted that in many cases, this approach reduced the amount of 

data available for long-term trend analyses. That is, elimination of “outlying” seasons frequently 

eliminated one or more years of data at some locations. While deemed an important procedure to 

account for predictable sources of variation, there is a practical impact of reducing the number of 

data points for trend analysis, and thus reducing the power to detect trends.  

The selection of an index period will also be affected by climate change. Projected 

climate changes are likely to impact seasonal patterns through changes in flow conditions as well 

as in temperature regimes. These will influence a variety of biological processes, including rates 

of development, timing of emergence, and other components of reproduction (Seebens et al., 

2009; Harper and Pecarsky, 2006; Poff et al., 2002; Vannote and Sweeney, 1980). This may have 

several ramifications to biomonitoring designs. If samples are collected at a fixed time during the 

year, then in the future sampling may yield lower abundances of some species, different species 

composition, or different relative abundances. This impacts temporal comparisons. Also, spatial 

comparisons may now be based on communities of more limited seasonal diversity. More 

extreme or extended summer low flows may, over the long term, become an impediment to 

sampling for states that use summer or fall index periods. This may be a particular concern in 

perennial streams vulnerable to a shift to intermittent conditions in the future. Biological 

responses to reductions in flow can represent legitimate responses to climate change. However, 

the eventual inability to sample during a late-season index period in some stream locations must 

be considered and planned for. Though highly unlikely due to resource limitations, sampling 

more than once per year, including once during the spring/high flow index period, could provide 

valuable information on components of the benthic community that emerge early in summer. 

2.4.2. Interannual and multi-decadal climatic variation 
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Biological data also reflect responses to interannual variations (e.g., year-to-year 

variations in temperature, precipitation regime, etc); and to multi-year to multi-decadal “cyclic” 

climate variations, such as the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation 

(PDO), or the El Niño Southern Oscillation (ENSO) that drive differences in water temperature 

and hydrologic regimes in a manner similar to the mechanisms linking to long-term climate 

change responses. The NAO, for example, affects mainly winter weather conditions on decadal 

time scales (Hurrell, 1995). A rigorous approach, were it supported by available data, could 

examine what components of observable temporal variation in biological responses are 

attributable to long-term directional climate change, and then apply general linear modeling or 

another comparable approach to partition the variation within the observed biological responses 

between interannual or cyclic and long-term directional climatic sources. However, most state 

biomonitoring data sets, even the most critically developed (sensu Yoder and Barbour, 2009) and 

long term, such as those analyzed in these pilot studies, are limited in duration and frequency of 

sampling. These data are not able to support linear modeling, especially of several separate 

variables, because the average scope of available data is typically 20 years or less, with 10 to 

fewer than 20 annual data points over that time span. In addition, it often is the case that needed 

covariates, including flow variables, continuous temperatures, and water chemistry parameters 

such as nutrients, etc. are not available concurrently with the biological collections. 

An alternative approach used here was to test for significant correlations between indices 

of known cyclic climatic variation (e.g., the NAO, PDO, and ENSO) with biological metrics, 

focusing on those that also showed long-term temporal responses, or correlations with 

temperature or precipitation. Details of results can be found in Appendices E through G, and I. In 

general, responses varied by state and region, as well as by taxon and trait group. Analyses were 

limited to representative reference stations with long-term data sets. In North Carolina, there 

were no strong correlations of major trait groups, especially cold- or warm-water-preference 

taxa, with annual or winter NAO indices. This is very likely a reflection of the shorter data sets 

available in North Carolina among reference stations in the Blue Ridge and Piedmont 

ecoregions. 

In Maine, only one reference station, 56817 (Sheepscot) in the Laurentian Hills and 

Plains, was of sufficient length (23 years) to consider NAO effects. A few interesting 

relationships appear, though none are significant. None of the major climate variables, 
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precipitation, air temperature, or water temperature are substantially related to either the mean 

annual or the winter (DJFM) NAO index (Figure 2-27).  

With regard to benthic community characteristics, clustering of years at Station 56817 

(Sheepscot) based on the Bray-Curtis (Sorensen) similarity index show some evidence of a 

temporal pattern (Figure 2-28), with the first four sampling years in cluster 1, and more of the 

early sampling years (e.g., 1984-1992 inclusive) within clusters 1 and 2. Later years of sampling 

occur more frequently in clusters 3 and 4. This suggests changes in community composition over 

time that reflect progressive changes in similarity. However, there are several “misplaced” years, 

e.g., 2004 and 2006 are in cluster 2, more similar to the mid- to late 1990’s sampling years. One 

of these, 2006, is a year with a low NAO index. But 2004 is an “average” NAO index year, and 

overall, there is no pattern associating the distribution of years among clusters with the NAO 

index (Figure 2-28). 
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Figure 2-27. Relationships between North Atlantic Oscillation (NAO) indices and PRISM 
climatic variables at Maine site 56817 (Sheepscot). Plot (A) shows NAO winter index 
(December-January-February-March (DJFM)) vs. PRISM mean annual temperature (°C) 
(r=-0.15, p=0.51) and (B) shows PRISM mean annual precipitation (inches) vs. NAO 
annual index (r=0.03, p=0.90). 

There is a modest relationship between benthic assemblages at Maine Station 56817 

(Sheepscot) and NAO patterns when stability or persistence of the community is tested, based on 

degree of change in community similarity among years. The community was more stable, that is 

more similar between years, based on Euclidean distances during negative NAO phases, and 

more variable during positive phases (Figure 2-29). This is consistent with findings in Wales, 

where benthic community persistence was related to both long-term climate effects and cyclic 

effects of the NAO (Bradley and Ormerod, 2001). Persistence reflected environmental 

variability, with high persistence during negative NAO phases (cold, dry winters in northern 
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Europe) and low persistence (high variability) during positive NAO phases (milder, wetter 

winters). In New England, positive winter indices are associated with more winter storms, while 

negative winter indices are associated with fewer storms and drier winter conditions (New 

England Regional Assessment Group, 2001). Apparently the greater environmental variability 

introduced through more frequent winter storms to stream temperatures, flow conditions, and 

water quality translate to more variable benthic assemblages. This suggests that the NAO may be 

an important, climate-related influence on interannual patterns in benthic community responses, 

even though in most of the correlations of NAO index with community, trait group, or taxonomic 

group parameters were relatively weak.  
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Figure 2-28. Cluster analysis using Bray-Curtis (Sorensen) similarity index, based on 
benthic invertebrate composition using genus-level OTUs, at Maine station 56817 
(Sheepscot). 

The PDO, which influences western and southwestern regions, is generally considered to 

be a much longer term, multi-decadal phenomenon (Brown and Comrie, 2004; Mantua et al., 

1997), while ENSO is found to vary in the range of multiple years to a decade or more. In Utah, 

there were some intriguing relationships found at individual long-term reference stations 

between trait groups (e.g., warm-water-preference taxa, perennial taxa, etc. - see earlier sections 

of this chapter and Appendix I) and either the ENSO or PDO annual or monthly indices (see 

Appendix I). However, none of these were consistent spatially; therefore, no particular trait or 
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taxonomic group is a strong indicator of PDO or ENSO responses. The complexity of the 

patterns compared to the relatively short (20 years or fewer) data sets suggests the importance of 

further investigation and long-term monitoring, including further study on the relative 

contributions of each index. 

Figure 2-29.  Correlation between Euclidean distance calculated as a difference between 
successive sampling years, as a measure of similarity between benthic assemblages, and the 
NAO annual index. In this case, Euclidean distance is plotted against the NAO index for 
the first year (e.g., 1984-85 comparison against 1984 NAO index), creating a 1-year lag. 

While it is important to consider NAO, PDO, and/or ENSO when evaluating 

biomonitoring (or any other) data sets for climate change effects, there are still some practical 

limitations, particularly in the biomonitoring application. Fundamentally, the analyses require 

data spanning multiple (2-3) multi-decadal cycles to be able to model the cycle-associated 

responses and extract the residual long-term trend on a rigorous basis. The Maine Station 56817 

(Sheepscot) data series spanned 23 years, and this is long compared to most existing available 

biomonitoring data. It also is likely that variations in the effects of the NAO interact with long

term climate change effects, potentially damping increasing temperatures in negative years and 

augmenting them in positive years (Durance and Ormerod, 2007). This is important, because the 

composite of climate effects may underestimate long-term climate impacts during some periods, 

or overestimate them during others. It would take proportionately more (longer-term) data to 

separate these and confidently define the long-term climate change component.  
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2.4.3. Interpretation of directional climate change effects 

Since the nature of most bioassessment data limit the ability to separate the magnitude of 

observed trends among interannual, cyclical, and long-term directional climate effects, the results 

obtained in this study cannot be interpreted as entirely attributable to directional climate change. 

However, the net response of benthic or other aquatic community metrics to climate sensitive 

variables, including water temperature and hydrologic patterns, can reasonably and effectively be 

used to address the primary questions of this study. The direction and nature of the observed 

climate responses can be applied to characterize the types of responses that can be expected due 

to climate change, to identify the most sensitive indicators to climate change, and to understand 

implications to multimetric indices or predictive models and their application by managers to 

characterize condition of stream resources for decision making. These effects may be viewed in 

some respects as maximum estimates of probable effects, since multiple components of climate 

change could be included, though at times, the resulting estimates may also be undervalued. 

2.5. OTHER SOURCES OF POTENTIAL SPATIAL CONFOUNDING 

There are other potential sources of spatial confounding of temporal trends, which were 

tested in this study. Land use and land cover within a 1 km buffer of the individual reference 

sites indicated that anthropogenic influences were higher than desired (>5% urban or >10% 

agricultural) at most sites. The urban land uses surrounding these sites generally consisted of 

low-intensity and open-space development, and the agricultural land uses were mostly 

pasture/hay, with occasional cultivated crops. We further explored these relationships by using 

correlation analyses to determine whether any available chemistry and habitat variables were 

significantly correlated with biological metrics. Data availability limited this pursuit. For 

example, Utah only had chemistry data. At the two Utah long-term reference stations that 

showed strong temperature-related trends (Stations 4927250 - Weber and 4951200 - Virgin), 

some of the temperature preference metrics were significantly correlated with water chemistry 

variables. Many of the correlations were driven by outliers, but a few of the water chemistry 

variables, notably chloride, may have influenced trends in the biological assemblage (Figure 2

30; Appendix I). Chloride could be an indirect indicator of human development, as increases are 

sometimes associated with increasing road development and/or increasing application of road 

December 23, 2010 2-48 External Review Draft 



 

 

 

 

 

 

986 

987 

988 

salt over time (NRC, 1991). However, chloride concentrations may also vary naturally with 

drought conditions. 
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Figure 2-30. Trends in selected metrics, PRISM climatic variables and chloride 
concentrations over time at Utah site 4927250 (Weber). Plot (A) shows number of total 
taxa, (B) number of EPT taxa, and (C) number of cold-water-preference taxa. Data used in 
these analyses were limited to autumn (September–November) kick-method samples. 
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In Maine, limited chemistry and habitat information were available (mainly in situ water 

quality measurements and visual substrate estimates). At site 56187 (Sheepscot), yearly trends in 

the biological data were likely influenced by nonpoint-source pollution (pers.comm. Maine 

DEP), but we lack the long-term chemistry data necessary to confirm this possibility.  Some of 

the habitat variables at site 56817 also showed trends over time. Percent boulders and % gravel 

were significantly correlated with some of the biological variables. However, based on 

conversations with Maine DEP, it appears that this ‘trend’ actually reflects observer bias, and it 

is not considered a real change over time in substrate characteristics. A similar example occurred 

in North Carolina, where visual substrate estimates for one site showed a fairly dramatic yearly 

trend. Scientists at NCDENR believe this also to be observer bias. More problematically, there 

were some fairly dramatic trends in canopy cover and water chemistry found at some North 

Carolina sites, which turned out to be due to data entry errors. This seems a minor but important 

cautionary note, as the “false” trend in canopy cover seemed feasible (increasing cover over time 

would be possible if there were an earlier instance of logging), and a (non-significant) trend of 

decreasing water temperature over time appeared to be logically consistent with increasing 

canopy cover. In the end, this very “appealing” discovery was false. 

2.6. COMPARISON OF REGIONAL TRENDS, VULNERABILITIES, AND 
INDICATORS 
Trends over time and in association with climate variables have been found within the 

state bioassessment data sets and in particular with ecological or life history trait groups (Section 

2.2) (Gallardo et al., 2009; Beche and Resh, 2007; Bonada et al., 2007b). Unfortunately, there 

are numerous examples within this study in which observed trends were significant in some 

places but not in others. Spatial consistency can be used as evidence that a particular trend or 

relationship is important. But even with the extensive biomonitoring data sets analyzed in this 

study, it was rare to have more than one or two reference sites within a region with sufficient 

data to conduct satisfactory long-term trends analyses. The focus on reference stations is needed 

to minimize contributions of effects from sources other than climate change (potential 

confounding factors such as urban or agricultural land use, see Appendix C for land use and 

other criteria used for reference station screening). We used an alternative approach of grouping 

reference stations within an ecoregion (Appendix C) to increase spatial coverage for trend 
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analyses. However, this was marginally successful, and there was still high inter-site variability 

in factors that affect community comparability (e.g., elevation, stream size, general 

geography/topography). As a result, variation among sites was almost always greater than the 

magnitude of any long-term temporal trends. Some component of spatial variability between 

sites may reflect real spatial variation in degree of vulnerability to climate change effects. 

Regional variation in trends for ecological trait groups defined by temperature 

preferences also reflects the lack of spatial consistency in results. The number of warm-water

preference taxa increased significantly over time at lower elevation locations in both Maine (site 

56187 – Sheepscot, site 57011 – W. Br. Sheepscot) and Utah (site 4951200 – Virgin), but not in 

North Carolina, and not at all stations (Table 2-4). The increasing temporal trend in warm-water

preference taxa was corroborated by correlation with temperature in Utah, but not in Maine 

(Table 2-5). At the longest-term station in Maine (56817) cold-water taxa also increased, but this 

is generally counter to climate change expectations. Though significant (see Table 2-2), the 

number of taxa was so low as to make the apparent trend largely meaningless. Cold-water

preference taxa decreased over time at one of the higher elevation sites in Utah (site 4927250 – 

Weber), and was also negatively correlated with temperature, as would be expected for a trait 

group responding to climate change increases in temperature. Comparable associations with 

temperature were not found in Maine or North Carolina. For these two states, cold-water

preference taxa were instead more often related to precipitation (Table 2-6). 
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Table 2-4. Results of Pearson product moment correlation analyses done to examine associations between year and a selected 
group of metrics at long-term biological monitoring sites in Utah (UT), Maine (ME), and North Carolina (NC). Significant 
relationships at p < 0.05 are shown in bold with shading; at p<0.1 in bold. NA=not available (we did not calculate the Shannon
Wiener diversity index for North Carolina samples because the abundance data were categorical). 

Utah Maine NC 

Biological Metric 
vs. YEAR 

4927250 4951200 4936750 5940440 56817 57011 57065 NC0109 

r p r p r p r p r p r p r p r p 

Cold water taxa 
richness -0.71 0.00 -0.62 0.02 -0.38 0.23 -0.64 0.07 0.49 0.02 0.04 0.90 0.54 0.13 0.55 0.08 

Cold water taxa 
relative abundance -0.72 0.00 -0.63 0.02 -0.15 0.64 -0.12 0.76 0.47 0.03 -0.67 0.02 0.45 0.23 0.57 0.07 

Warm water taxa 
richness 

-0.21 0.42 0.85 0.00 0.38 0.22 NA NA 0.78 0.00 0.65 0.02 0.58 0.10 -0.58 0.06 

Warm water taxa 
relative abundance 

-0.21 0.42 0.41 0.15 0.42 0.17 NA NA 0.55 0.01 -0.59 0.04 -0.36 0.34 -0.04 0.90 

Total taxa richness -0.29 0.26 -0.28 0.34 0.08 0.81 -0.54 0.14 0.75 0.00 0.81 0.00 0.56 0.11 -0.67 0.02 

EPT taxa richness -0.59 0.01 -0.49 0.08 -0.21 0.52 -0.65 0.06 0.75 0.00 0.76 0.00 0.51 0.16 0.30 0.36 

EPT relative 
abundance 

0.06 0.81 0.06 0.85 -0.26 0.42 0.44 0.23 0.06 0.80 -0.52 0.08 -0.36 0.34 0.74 0.01 

Ephemeroptera 
taxa richness -0.57 0.02 -0.60 0.02 -0.04 0.89 -0.57 0.11 0.58 0.01 0.63 0.03 0.37 0.33 0.22 0.52 

Plecoptera taxa 
richness -0.76 0.00 -0.53 0.05 -0.29 0.36 -0.71 0.03 -0.16 0.47 0.05 0.88 0.44 0.23 0.45 0.16 

Shannon Wiener 
diversity index 

0.13 0.62 -0.43 0.12 -0.08 0.81 -0.25 0.52 0.64 0.00 0.12 0.72 0.43 0.25 NA NA 

OCH taxa richness 0.61 0.01 0.46 0.10 0.83 0.00 0.28 0.47 0.43 0.04 0.43 0.16 0.28 0.47 0.10 0.78 

OCH taxa relative 
abundance 0.66 0.00 0.40 0.15 0.32 0.31 -0.59 0.10 0.28 0.20 -0.52 0.09 0.37 0.33 0.14 0.68 

HBI -0.19 0.47 0.28 0.34 0.32 0.31 -0.46 0.21 -0.13 0.54 0.75 0.01 0.18 0.65 -0.63 0.04 
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Table 2-5. Results of Pearson product moment correlation analyses done to examine associations between Parameter
elevation Regressions on Independent Slopes Model (PRISM) mean annual air temperatures and a selected group of metrics at 
long-term biological monitoring sites in Utah (UT), Maine (ME), and North Carolina (NC). Significant relationships at p < 
0.05 are shown in bold with shading; at p<0.1 in bold. NA=not available (we did not calculate the Shannon-Wiener diversity 
index for North Carolina samples because the abundance data were categorical). 

Biological Metric 
vs. TEMP 

4927250 4951200 4936750 5940440 56817 57011 57065 NC0109 

r p r p r p r p r p r p r p r p 

Cold water taxa 
richness -0.63 0.01 -0.73 0.00 -0.08 0.82 -0.14 0.73 0.31 0.15 0.02 0.95 -0.58 0.10 -0.38 0.25 

Cold water taxa 
relative abundance 

-0.30 0.24 -0.56 0.04 -0.20 0.53 -0.29 0.46 0.15 0.50 -0.16 0.62 -0.27 0.48 -0.32 0.34 

Warm water taxa 
richness -0.44 0.08 0.76 0.00 -0.03 0.93 NA NA 0.21 0.34 0.27 0.39 -0.73 0.02 -0.18 0.59 

Warm water taxa 
relative abundance 

-0.35 0.17 0.62 0.02 0.01 0.98 NA NA 0.13 0.55 0.37 0.23 0.05 0.90 0.00 1.00 

Total taxa richness -0.48 0.05 -0.68 0.01 -0.08 0.81 -0.20 0.60 0.29 0.18 0.10 0.76 -0.52 0.15 0.04 0.91 

EPT taxa richness -0.57 0.02 -0.79 0.00 -0.09 0.77 -0.43 0.25 0.17 0.44 0.25 0.43 -0.64 0.06 0.00 0.99 

EPT relative 
abundance 

0.03 0.91 0.29 0.32 0.04 0.90 0.07 0.86 0.08 0.71 0.64 0.03 -0.07 0.87 -0.09 0.80 

Ephemeroptera 
taxa richness -0.59 0.01 -0.81 0.00 -0.26 0.41 -0.22 0.56 0.19 0.39 0.51 0.09 -0.62 0.08 -0.18 0.60 

Plecoptera taxa 
richness -0.45 0.07 -0.65 0.01 0.17 0.61 -0.72 0.03 0.09 0.70 -0.06 0.85 -0.56 0.12 0.12 0.73 

Shannon Wiener 
diversity index 

-0.13 0.62 -0.67 0.01 -0.12 0.71 -0.29 0.46 0.45 0.38 0.45 0.14 -0.59 0.09 NA NA 

OCH taxa richness 0.11 0.68 0.12 0.68 0.27 0.40 0.59 0.09 0.13 0.54 0.35 0.26 -0.10 0.80 0.14 0.68 

OCH taxa relative 
abundance 0.44 0.07 0.27 0.36 -0.11 0.74 -0.01 0.98 0.01 0.98 -0.09 0.79 -0.33 0.38 0.30 0.37 

HBI -0.32 0.21 0.04 0.89 0.09 0.77 0.09 0.82 -0.07 0.76 -0.21 0.51 0.13 0.75 0.13 0.71 
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Table 2-6. Results of Pearson product moment correlation analyses done to examine associations between Parameter-elevation 
Regressions on Independent Slopes Model (PRISM) mean annual precipitation and a selected group of metrics at long-term 
biological monitoring sites in Utah (UT), Maine (ME), and North Carolina (NC). Significant relationships at p < 0.05 are 
shown in bold with shading; at p<0.1 in bold. NA=not available (we did not calculate the Shannon-Wiener diversity index for 
North Carolina samples because the abundance data were categorical). 

Utah Maine NC 

Biological Metric 
vs. PRECIP 

4927250 4951200 4936750 5940440 56817 57011 57065 NC0109 

r p r p r p r p r p r p r p r p 

Cold water taxa 
richness 

-0.11 0.68 0.44 0.12 0.42 0.17 0.01 0.98 0.44 0.04 0.18 0.59 -0.51 0.16 0.85 0.00 

Cold water taxa 
relative abundance 

0.08 0.75 0.23 0.42 0.30 0.35 0.54 0.14 0.58 0.00 0.03 0.93 -0.02 0.97 0.63 0.04 

Warm water taxa 
richness 

-0.05 0.84 -0.18 0.53 0.21 0.50 NA NA 0.07 0.75 -0.04 0.91 -0.13 0.73 -0.65 0.03 

Warm water taxa 
relative abundance 

-0.14 0.60 -0.34 0.23 0.33 0.29 NA NA 0.04 0.85 -0.10 0.76 -0.44 0.23 -0.57 0.07 

Total taxa richness -0.15 0.56 0.57 0.04 0.43 0.16 -0.07 0.85 0.28 0.21 0.15 0.63 -0.28 0.47 -0.64 0.04 

EPT taxa richness -0.25 0.34 0.68 0.01 0.45 0.14 0.17 0.66 0.20 0.37 0.24 0.45 -0.12 0.76 0.36 0.28 

EPT relative 
abundance 

-0.29 0.27 0.07 0.82 0.32 0.30 0.32 0.40 0.01 0.97 -0.05 0.88 0.17 0.66 0.82 0.00 

Ephemeroptera 
taxa richness 

-0.20 0.45 0.58 0.03 0.34 0.28 0.02 0.97 0.35 0.11 0.45 0.14 -0.09 0.83 0.24 0.47 

Plecoptera taxa 
richness 

-0.34 0.18 0.40 0.16 0.22 0.49 0.29 0.45 0.18 0.43 -0.19 0.56 -0.32 0.41 0.62 0.04 

Shannon Wiener 
diversity index -0.49 0.05 0.10 0.74 0.49 0.10 -0.14 0.72 0.25 0.27 0.09 0.79 0.01 0.97 NA NA 

OCH taxa richness 0.46 0.06 0.27 0.35 0.15 0.64 -0.30 0.44 0.28 0.20 0.07 0.82 -0.44 0.24 -0.06 0.86 

OCH taxa relative 
abundance 

-0.04 0.89 -0.29 0.32 0.25 0.43 -0.28 0.47 0.25 0.24 0.29 0.36 -0.33 0.39 -0.22 0.52 

HBI 0.16 0.53 0.11 0.71 -0.55 0.06 -0.37 0.32 -0.22 0.31 0.25 0.43 -0.27 0.49 -0.86 0.00 

106
106

3 
4 






December 23, 2010 2-54 External Review Draft 



 

 

 

1065 

1066 

1067 

1068 

1069 

1070 

1071 

1072 

1073 

1074 

1075 

1076 

1077 

1078 

1079 

1080 

1081 

1082 

1083 

1084 

1085 

1086 

1087 

1088 

1089 

1090 

1091 

1092 

1093 

1094 

1095 

As presented above, the distributions of cold-water-preference taxa (richness and relative 

abundance) were significantly associated with elevation, stream size (order) and watershed size, 

such that more cold-water-preference taxa were present at higher elevations and in smaller 

streams and watersheds, and warm-water-preference taxa were more common at lower 

elevations, and in larger streams and watersheds (Table 2-7, figures in Section 2.2.2). Though 

not consistently demonstrated in all states, some higher elevation ecoregions with a greater 

predominance of cold-water-preference taxa exhibited greater responsiveness (e.g., more 

significant trends) to changes in climate variables (Appendix A). The sizes of streams sampled in 

those ecoregions probably interacted with elevation differences. For example, in most of the 

states, low-order streams tended to be under-sampled. Mid-order streams even at relatively 

higher elevations might have fewer cold-water-preference taxa than lower order streams would. 

Nevertheless, higher elevation regions, as well as areas subsetted by stream and watershed size, 

should be evaluated for vulnerability to climate changes in temperature and hydrologic 

conditions. This factor should be accounted for in assessing climate change monitoring priorities. 

The hydrologic indicator metrics generally failed to show significant trends for a number 

of reasons. The metrics as developed might not be effective at detecting shifts in hydrologic 

regimes and may need to be further refined. Limited knowledge about life history, mobility, 

morphology, and temperature preference and tolerance information is currently one of the major 

limitations of traits-based metrics; more information could improve metric performance. It also 

is possible that the metrics are effective and are simply documenting that there are no consistent 

patterns yet. Precipitation tends to be highly variable and can be difficult to predict or model 

(e.g., Brown and Comrie, 2004; 2002). Analyses conducted on Piedmont sites in North Carolina 

as an adjunct to this study (Appendix J) indicate that natural stream communities appear to be 

resilient within the range of natural hydrologic variability. Because of this resilience, effects 

from hydrologic changes associated with climate change may not be seen unless these changes 

are large. This may happen as the magnitude of effects increases. Analyses were conducted on 

reference site data with natural flow regimes; it is possible that the metrics may be effective, but 

that shifts in hydrology over the short periods of record have not followed consistent patterns.  

Results of this study, as well as other research (Webb et al., 2009; Dewson et al., 2007; 

Suren and Jowett, 2006; Lind et al., 2006; Poff, 2002; Extence et al., 1999; Stanley et al., 1994) 

have demonstrated the importance of hydrologic changes on biological responses, and it will be 
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worthwhile to consider both “scenario-based” and hydrologic metrics further in the future. These 

classes of indicators may be most valuable in regions, such as North Carolina, where associations 

with precipitation are already strong, and where other evidence suggests the dominance of 

hydrologic drivers (NCDENR, 2005). Hydrologic metrics are also likely to be valuable in 

regions with strong future vulnerability to hydrologic impacts due to the combination of climate 

change predictions for temperature and precipitation, such as in the arid west and southwest. 

Analyses testing for relevant biological responses to climate patterns often lacked spatial 

consistency both within and across states. Several biological metrics, evaluated for differences 

between years partitioned based on temperature (hottest/coldest/normal years) or precipitation 

(wettest/driest/normal years) regime showed patterns in one or another state (see the above 

subsections of this chapter), but only a few showed statistically significant patterns at sites in 

more than one state, and none showed common patterns among all states. Overall, more metrics 

were significantly associated with temperature-related variables than with precipitation variables 

(Appendix I). While long-term increasing trends in temperature already can be demonstrated for 

many regions (see Section 2.1 and Appendix A), this is seldom the case for precipitation or flow

related variables (Appendix I). Long-term data for flow (e.g., IHA) variables tend to be scarcer; 

and climate change projections for precipitation are small in magnitude and variable for many 

regions. Nevertheless, the importance of ongoing changes in precipitation effects on flow regime 

should not be discounted. 

Other biological metrics that were sometimes responsive to climate variables include 

functional feeding groups (e.g., predators, collector-filterers) or life history habits (e.g., 

swimmers, climbers) (Appendix I). Feeding, life habit, and other functional trait groups are often 

included as metrics in state MMIs. It is thus recommended that, on a case by case basis, the 

vulnerability of this class of metrics be evaluated through trend and correlation analysis, as well 

as through assessment of composition by temperature sensitive taxa. 
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Table 2-7. Summary of differences in elevation, PRISM mean annual air temperature and precipitation and mean number 
and percent of cold and warm-water-preference taxa across and within major ecoregions in each state. Only full-scale samples 
were used to derive the numbers for North Carolina. Samples were not limited to particular seasons in Utah and North 
Carolina. Mean % individuals of cold and warm water in the North Carolina Coastal ecoregion were not calculated (our 
analyses were concentrated in the Mountain and Piedmont ecoregions). 

State Ecoregion 
# 

Samples 
Elevation

 (m) 

Air
temperature 

(°C)  

Richness Relative Abundance

Warm 
Cold water  

water  
Cold 

Warm water 
water  

Northeastern Coastal Zone 576 29.3 8.3 1.7 ± 1.9 3.3 ± 2.8 5.4 ± 9.9 17.0 ± 20.6 

Maine Laurentian Plains &Hills 2830 65.2 6.5 1.1 ± 1.4 4.7 ± 3.3 2.8 ± 6.6 22.4 ± 22.0 

Northeastern Highlands 857 210.4 5.8 1.7 ± 2.0 3.2 ± 2.7 7.1 ± 11.8 15.1 ± 17.5 

Mojave Basin & Range  13  736.6  16.8  2.8 ± 2.4  1.3 ± 0.9  6.6 ± 8.9  5.5 ± 8.7 

Central Basin & Range  177  1411.7  10.0  1.4 ±  2.0  2.4 ± 1.4  2.1 ± 7.0  10.8 ± 16.5 

Colorado Plateaus  205  1729.4  9.1  3.8 ± 2.8  1.2 ± 1.2  9.8 ± 11.5  6.1 ± 11.6 

Utah Northern Basin & Range 6  1769.7  8.6  4.7 ± 1.0  1.2 ± 0.8  3.2 ± 2.9  12 ± 20.1 

Wyoming Basin  27  2002.0  5.7  6.1 ± 4.0  1.3 ± 0.9  13.2 ± 13.2  1.1 ± 2.4 

Wasatch & Uinta Mountains 644 2131.1 5.4 5.5 ± 4.0 1.0 ± 1.3 13.1 ± 15.4 3.8 ± 11.0 

Southern Rockies 7  2535.2  6.3  9.1 ± 0.7 0 ± 0  30.6 ± 14.6 0 ± 0 

Middle Atlantic Coastal Plain  173  4.7  16.7  0.1 ±  0.2  4.7 ± 5.1  0.1 ± 0.4  12.3 ± 6.4 

North Southeastern Plains 317 34.1 16.3 0.1 ± 0.4 8.8 ± 3.4 0.1 ± 0.4 12.1 ± 5.1 
Carolina Piedmont  1106  183.5  15.0  1.5 ± 2.0  5.2 ± 3.1  1.8 ± 2.7  6.7 ± 4.7 

Blue Ridge  631  714.5  12.1  8.0 ± 4.5  2.8 ± 2.4  11.4 ± 7.9  3.1 ± 3.7 
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The Shannon-Wiener diversity index is another metric that is often included in MMIs, 

which showed an inverse relationship with temperature at one Utah station (site 4951200 – 

Virgin) (Table 2-5). Both the value and the drawback of using overall community diversity as a 

metric of condition is that it is a composite response of all community components. This study 

shows that, in at least some regions, overall community diversity is reduced in hotter years due to 

suppression of cold-water-preference taxa (Table 2-5). This response is mediated by the relative 

composition of cold and warm taxa, which is also associated with elevation and stream size. 

Potential modification of this metric to help track climate change effects will have to be site or 

region specific, and should initially focus on the relative contribution of cold and warm-water

preference taxa within the community. 

The abundance or richness of OCH taxa are more rarely incorporated as an MMI metric. 

It functions as a contrasting metric to EPT taxa, due to the generally high environmental 

tolerances of these taxa and expectation that they do better in the summer and in drier, more 

intermittent conditions (Bonada et al., 2007a). The potential robustness of OCH taxa to climate 

change effects was considered important. In fact, the abundance of OCH taxa was higher during 

hot years in some locations, though the trends were not statistically significant (Table 2-4, 

Appendix I). Still, this may be a valuable indicator to consider in the future. 

Climate change “scenarios” (e.g., warmer and drier conditions) were used to combine 

temperature preference traits with other ecological (e.g., hydrologic preferences) and life history 

traits in an attempt to improve both the detection of responses to climate variables, and impart 

greater ability to explain the responses and use this information to develop more effective 

indicators. Overall, temperature-preference metrics by themselves were more responsive to 

climate change variables in more regions tested than were these composite scenario metrics. 

Only one of the scenario metrics, percent drier-vulnerable taxa, showed significant patterns at 

more than one site (Appendix I). Further consideration of this “climate scenario” trait suite 

approach may still be fruitful in the future. The limitation is that selection for multiple traits 

tends to reduce the number of member taxa, and therefore limits the amount of data for trend 

analyses. 
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3. IMPLICATIONS TO MULTIMETRIC INDICES, PREDICTIVE 
MODELS, AND IMPAIRMENT/LISTING DECISIONS 

For states and tribes to assess stream condition, the extensive biological monitoring data 

collected on macroinvertebrate, fish, and/or other stream and river communities must be distilled 

to a format that accurately and reasonably reflects condition. That is, the result must be a good 

“indicator” or “index” and must be readily compared between reference and affected conditions. 

The main categories of such computational approaches are multi-metric indices (MMIs) and 

predictive models. 

MMIs are generally structured as a composite of biological metrics selected to capture 

ecologically important community structural or functional characteristics and have been applied 

to fish and benthic macroinvertebrate communities (Norris and Barbour, 2009; Bohmer et al., 

2004; Sandin and Johnson, 2000; Barbour et al, 1995; Yoder and Rankin, 1995; DeShonn, 1995; 

Karr, 1991). Component metrics are selected based on their responsiveness to the environmental 

impacts most often evaluated. Sites are assessed by comparing the test location MMI to that 

calculated for applicable reference locations, grounded in the assumption that degradation in the 

MMI reflects aquatic community responses to pertinent environmental stressors. 

There is much variation among states and tribes in the particular components included in 

MMIs or predictive models, because, as a rule, they are calibrated to the state, or more often, to 

regions within a state to account for predictable (natural) variability (Barbour and Gerritsen, 

2006). Added to this index variability is the regional variability in both climate change 

projections and associated biological responses. These sources of variability make 

generalizations about the implications of climate change for bioassessment indices challenging. 

However, there are some commonalities among states, such as the categories of metrics used, 

which we use to investigate vulnerabilities of these approaches to climate change. 

Predictive models use regional reference conditions to develop relationships between 

environmental predictor variables and macroinvertabrate taxon occurrence from which 

predictions for an “expected” (E) community are based. A commonly applied model for 

macroinvertebrate communities is the River InVertebrate Prediction And Classification System 

(RIVPACS) (Wright, 2000). An important assumption is that the predictor variables are 

minimally affected by human disturbance and are relatively invariant over ecologically-relevant 

time (Utah State University, 2009; Tetra Tech, 2008; Hawkins et al., 2000; Wright, 2000; Wright 
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et al., 1984). The E community is then compared to various “observed” (O) communities at non

reference locations. A basis for comparison is that any differences between O and E communities 

reflect biological responses to the range of environmental pollutants or alterations that are 

intended to be evaluated. This is similar to the MMI approach. 

Among the four states evaluated in this study, three of them, Maine, North Carolina, and 

Ohio, use some form of MMI. Utah uses a predictive model, RIVPACS, for assessing wadeable 

streams. These states are representative of major regions of the US, encompassing large-scale 

variations in climate, climate change projections, geography, topography, geology, and 

hydrology. State-specific analysis results also inform a regional view of climate change 

implications to commonly used MMIs and predictive models. 

3.1. MAINE AND THE NORTHEAST 

Maine uses 4 linear discriminant models that incorporate 30 input metrics to assign sites 

to one of four classes (A, B, C, and NA, where A represents the best conditions, and NA is Non

Attainment), applying the same criteria to all sites. Vulnerabilities of the component metrics to 

climate change can be evaluated, but it is difficult to extend the results to impacts on station 

classifications, because the discriminant model inherently looks at multiple variables 

simultaneously. There are no firm thresholds or individual metric values at which a sample 

changes classification levels. Analyses of the differences in each component metric among rating 

classes (summarized in Appendix E) provide the basis for comparing climate-related sensitivities 

of these metrics. Overall, stations with the following characteristics received better ratings: 

 High generic richness 
 High richness and abundance of EPT taxa 
 High Shannon-Wiener diversity index values 
 Low HBI scores 
 Low Chironomidae abundances 
 Low relative Diptera richness 
 Low relative Oligochaeta abundance 
 Greater presence of Class A indicator taxa 
 Greater scraper relative abundance 

A variety of analyses were used to characterize possible vulnerabilities of Maine’s 

discriminant model approach (see Appendix E for details). For instance, ANOVA was used to 
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evaluate whether certain model components were more important than others in distinguishing 

between different classes. Temperature preferences and tolerances of Class A indicator taxa were 

examined, as were Biological Condition Gradient (BCG) assignments and tolerance values of 

cold- and warm-water-preference taxa.  

Climate change effects are likely to influence a number of Maine’s discriminant model 

input metrics. Eight of these are metrics related to EPT taxa, which are also used by other 

northeastern states. In Maine, the vulnerabilities of EPT taxa are largely related to the ecological 

trait of temperature preference. Twenty nine (29) of the Maine cold-water-preference taxa are 

EPT taxa (Table 3-1). There are also 18 EPT taxa on the warm-water-preference list (Table 3-2).  

Table 3-1. Number of Maine cold-water taxa in each order with EPT taxa in italics. 

Order Total
Plecoptera 16
Trichoptera 10
Diptera 7
Ephemeroptera 3 
Coleoptera 2
Odonata 2
Megaloptera 1

 
 

 

 


 

 



 


Table 3-2. Number of Maine warm-water taxa in each order with EPT taxa in italics. 


 
 
 
 

 

 

 

 

 

 




 


Order Total
Diptera 10
Ephemeroptera 9
Trichoptera 6
Basommatophora 4
Plecoptera 3
Arhynchobdellida 1
Coleoptera 1
Decapoda 1
Haplotaxida 1
Hoplonemertea 1
Hydroida 1
Mesogastropoda 1
Odonata 1

 

 

 


 

More of the ephmeropteran (mayfly) taxa are warm-water- than cold-water-preference 

taxa. Two of the model input metrics used by Maine are specifically related to ephemeropterans 
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(metrics for both absolute and relative abundance). On average, higher values for the 

Ephemeroptera abundance metric occur at Class B sites (Figure 3-1A), while the highest relative 

abundances occur at Class A sites (Figure 3-2A). Thus, increases in warm-water 

ephemeropterans as temperature increases with climate change can affect station classification. 

For example,former Class C sites could become Class B sites due to the addition of these taxa, 

while the same trend of increasing Ephemeroptera abundance might degrade former Class A 

sites to Class B. If the relative abundance of ephemeropterans increases as their absolute 

abundance increases (which would, of course, depend on the relative responses of other taxa as 

well), then station classification of any condition class might increase. Increasing abundance of 

warm water ephemeropterans at Maine’s longest term reference station (56817 - Sheepscot in the 

Laurentian Hills and Plains) over the 22-year sampling period has already resulted in a difference 

in these ephemeropteran metrics comparable to the average difference between these metrics at 

Class A and B sites (Figures 3-1 and 3-2). For example, ephemeropteran abundance (Figure 3

1B) increased from just under 100 per sample in the first 5-years to close to 200 per sample (but 

with high variability) in the last 5 years. This range approximates the mean difference between 

Class A and B stations, or between Class B and C stations (Figure 3-1A). 
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Figure 3-1. Ephemeroptera abundance in Maine. . Plot (A) shows distributions of 
Ephemeroptera abundance metric values across classifications (A, B, C, NA) and (B) shows 
trends in Ephemeroptera abundance and PRISM climatic variables over time at Maine site 
56817 (Sheepscot). Data used in these analyses were limited to summer (July–September) 
rock-basket samples. 
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Figure 3-2. Relative Ephemeroptera abundance metric values in Maine.. Plot (A) shows 
distributions of relative Ephemeroptera abundance metric values across classifications (A, 
B, C, NA) and (B) shows trends in relative Ephemeroptera abundance and PRISM climatic 
variables over time at Maine site 56817 (Sheepscot). Data used in these analyses were 
limited to summer (July–September) rock-basket samples. 

The Maine classification procedure also uses EPT taxa richness as a metric (as well as 

EPT richness divided by Diptera richness), which is also used in the MMIs of other states. At site 

56817 (Sheepscot), EPT richness has increased over time, as has the number of warm-water EPT 

taxa (Figure 3-3a). When the first five years of data are compared to the last, results show that 

the number of EPT taxa has increased by approximately 6 taxa over time. This difference is 

much greater than the average difference in EPT taxa richness between Class A and B stations, 
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which is approximately 2-3 taxa (Figure 3-3b). Based on this, station quality and ranking could 

improve due to warming temperatures that are projected to occur with climate change. 

Figure 3-3. EPT generic richness metric values in Maine. Plot (A) shows distributions of 
EPT generic richness metric values across classifications (A, B, C, NA) and (B) shows 
trends in EPT generic richness and PRISM climatic variables over time at Maine site 56817 
(Sheepscot). Data used in these analyses were limited to summer (July–September) rock
basket samples. 

There are many more plecopteran (stonefly) taxa on the cold- than warm-water

preference list. Three of Maine’s discriminant model input metrics involve plecopterans: 

Plecoptera abundance, Perlidae abundance and relative Plecoptera richness. For each metric, 

highest abundances or richness values occur at Class A sites, and ratings decrease as plecopteran 

abundance or richness values decrease. Although cold-water taxa like plecopterans should be 
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sensitive to climate change effects, the Maine data did not reveal any trends. One explanation is 

that the longest-term reference station is a low elevation site where the benthic community is 

predominantly warm water tolerant. Also, PRISM mean annual air temperature trends at this site 

were small and variable over time, which suggests that water temperatures may not have 

exceeded the thermal tolerance limits of the cold-water-preference taxa at this site. For reference 

locations grouped in the Northeast Highlands, where cold-water taxa composed a much greater 

proportion of the community, the duration of data records was too limited to define significant 

trends. 

Two other model input metrics are related to trichopterans: Hydropsyche abundance and 

Cheumatopsyche abundance. These trichopteran metrics are not currently viewed as particularly 

responsive to changes in temperature, because neither taxon is on the cold- or warm-water

preference lists. These taxa are likely to be more resilient to climate change effects. However, 

model metrics related to dipterans (true flies) may be vulnerable, as there are a large number of 

dipterans on both the cold- and warm-water-preference lists. Seven of the cold-water taxa are 

dipterans from the family Chironomidae (non-biting midges), and ten of the warm-water taxa are 

dipterans (Tables 3-1 and 3-2). Although several dipteran genera are cold-preference taxa, in the 

current Maine classification model a greater abundance or richness of dipterans tend to cause a 

station to receive a lower rating. As the cold- and warm-water-preference components of the 

dipterans are expected to respond differently to climate changes, the effects on outcomes of the 

Maine model are likely to be variable and somewhat unpredictable. Depending on whether there 

is any replacement of cold-water with warm-water dipteran taxa, increasing temperatures may 

not change the associated metric values much. 

The HBI is also a component of the Maine discriminant model, and is also used in other 

northeastern states. Most of the Maine cold-water-preference taxa have low (≤ 3) HBI tolerance 

values (to organic pollution) (Figure 3-4). Exceptions include two chironomids, Larsia and 

Natarsia. There is a mix of tolerance values among the Maine warm-water taxa (Figure 3-4). 

This results in a significant but weak correlation between temperature optima values and 

pollution tolerance (r=0.29, p=001). The HBI metric is therefore also vulnerable to increases in 

water temperature; any responses that involve decreases in cold-water taxa with low HBI 

tolerance values or replacement by warm-water taxa with higher tolerance values could cause an 

increase in the HBI metric. Since higher HBI values impart a more impaired station rating, there 
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would be a concomitant decrease in the station rating. Given the mixed relationship in Maine 

between warm-water-preference taxa and HBI tolerances, there should be regional (spatial) 

variability in HBI vulnerability, related to spatial differences in community composition of 

warm-water-preference taxa. 

Figure 3-4. Relationship between Maine cold and warm-water-preference taxa and Maine 
enrichment tolerance scores. Taxa with enrichment tolerance scores of 0-3 were 
categorized as Intolerant, those with scores of 4-6 were Intermediate and those with scores 
of 7-10 were Tolerant.  

Additional vulnerabilities of station quality classification are illustrated in aspects of the 

BCG (Gerritsen and Craig, 2008) as applied in New England (USEPA, 2007), even though the 

BCG is not a component of the Maine discriminant model classification scheme, or of the MMIs 

applied in other northeastern states. The BCG provides a more refined and explicit approach for 

defining and classifying condition, and includes five BCG attribute levels in New England: 

2=highly sensitive taxa, 3=intermediate sensitive taxa, 4=taxa of intermediate tolerance, 

5=tolerant taxa, 6=non-native or intentionally introduced taxa. Stations with communities 

composed of more sensitive taxa (2 or 3) generally receive better BCG-level assignments, while 

stations that have more tolerant taxa (5 or 6) are more likely to be classified in lower BCG levels. 

Twenty of the Maine cold-water-preference taxa are considered to be sensitive taxa (2 or 3), and 

two are considered to be tolerant (5) (Appendix E). Ten of the warm-water-preference taxa are 

considered to be tolerant (5 or 6) and 7 are considered to be sensitive (2 or 3) (Appendix E). If 

sensitive cold-water taxa are replaced by warm-water taxa that have higher BCG attribute 
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assignments, then samples may receive lower tier assignments as temperatures increase. This can 

alter the assessment and rating of condition of a location based on biological composition over 

time. 

Maine defines seven “Class A indicator taxa” to separate Class A and B sites. This study 

defines two of the seven taxa, Eurylophella and Glossosoma, as cold-water-preference taxa, and 

three, Paragnetina, Serratella and Leucrocuta, as warm-water-preference taxa (Table 3-3). 

Brachycentrus was initially classified as a warm-water-preference taxon. However, variation in 

temperature preferences among species within this genus cause this designation to be dropped, 

even though weighted average modeling (Stamp et al., 2010; USEPA, 2011) shows that 

Brachycentrus tends to occur more at warmer sites. The fairly even split between temperature 

preferences among Maine’s Class A indicator taxa suggests that increasing temperatures may 

have contradictory effects on components of this metric, and lead to variable results.  

Table 3-3. Temperature trait information for Class A Indicator taxa. Temperature optima 
(°C) and tolerance values are based on instantaneous water-temperature measurements 
and occurrences of organisms. The values were derived from weighted average modeling, 
using the guidelines of Yuan (2006). The rankings (Temp Rank_Opt = optima ranking; 
Temp Rank_Tol=tolerance ranking) range from 1 to 7 and are based on percentiles within 
each data set. 

Class A 
Indicator 
Taxa 

Temp 
Indicator 

Temp 
Optima 

Temp 
Tol 

Temp 
Rank_Opt 

Temp 
Rank_Tol 

Comments 

Eurylophella cold 17.4 3.2 2 4 
Glossosoma cold 18.7 4.8 3 7 

Psilotreta 18.8 3.0 3 4 

Occurred at one of 
the warm water 
case study sites, 
otherwise would 
have been on the 
cold water list. 

Paragnetina warm 20.7 3.6 5 6 
Serratella warm 20.8 3.8 5 6 
Leucrocuta warm 21.2 3.3 6 5 

Brachycentrus 21.5 3.4 6 5 

VT gave this a 'no' 
for warm-water
preference taxa due 
to variation among 
species within this 
genus 
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At Station 56817 (Sheepscot), the Class A indicator taxa metric was significantly 

correlated with several precipitation metrics and was higher in wet years compared to dry or 

normal years (see Section 2 and Appendix E), showing that potential future changes in 

precipitation may influence the Maine Class A Indicator metric at this and comparable locations. 

As shown with respect to temperature-driven responses, the projection for slight increases in 

precipitation in the northeast raises the possibility that Class A indicator taxa may fare better in 

the future and contribute to better station ratings due to climate change, independent of any 

actual change in environmental quality. Projected changes in precipitation are small, and 

seasonal patterns of precipitation (e.g., projected increases during winter and spring with 

possible decreases in summer) must be considered in concert with the season during which 

biomonitoring occurs. Therefore, the magnitude of vulnerability of this metric to changes in 

precipitation, and through this metric to station ratings, is probably small in the short term. 

3.2. NORTH CAROLINA AND THE SOUTHEAST 

North Carolina classifies sites as Excellent (5), Good (4), Good/Fair (3), Fair (2) or Poor 

(1) using EPT richness and the North Carolina Biotic Index (NCBI). Different scoring criteria 

are used for each major ecoregion (Mountain, Piedmont, Coastal). Details of each of these two 

indices and how they are combined for final scoring can be found in Appendix G. 

Several analytical approaches contribute information to the potential vulnerabilities of the 

North Carolina MMI (the EPT richness metric and the NCBI) and bioclassification procedures. 

In one scenario we removed all cold-water-preference taxa from three reference Mountain sites 

(on average the Mountain sites have more cold-water taxa, see Appendix G). NCBI, EPT 

richness and bioclassification scores were recalculated to evaluate effects on site scores. In a 

second scenario we replaced taxa that typically inhabit Mountain sites with assemblages more 

typical of the Piedmont ecoregion. This was accomplished by applying Mountain scoring criteria 

to data from two Piedmont reference sites and evaluating by how much the scores changed (see 

Appendix C3 for site descriptions). 

We also explored relationships between temperature preference taxa, pollution tolerance 

values, the biotic index, and climate-related variables. Applicable correlation analyses include:  

1. temperature optima values vs. tolerance values;  
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2. temperature indicator metrics at selected Mountain and Piedmont reference sites 
(percent cold- and warm-water-preference individuals and number of cold- and 
warm-water-preference taxa) vs. BI scores; and  

3. BI values vs. PRISM mean annual air temperature and precipitation.  

The correlation analyses were performed on datasets that used genus-level tolerance 

values. Tolerance values can vary within some genera, and therefore these BI scores may vary 

somewhat from NCBI scores (though they are generally close).  

We performed additional analyses relevant to other southeastern states that may not use 

EPT taxa richness or the NCBI. Metrics commonly used in other southeastern states include total 

taxa, EPT taxa, Ephemeroptera taxa, Plecoptera taxa, Trichoptera taxa, HBI, an assortment of 

functional feeding group and habit metrics, and percent dominant taxon. Other metrics evaluated 

include: metrics reflecting temperature preferences/ tolerances (developed using maximum 

likelihood modeling on the NC dataset); trait metrics that reflect sensitivity to changes in 

hydrologic regime; and metrics that incorporate combinations of traits that are most likely to be 

favorable or unfavorable if changes to climate occur as projected by NCAR models (warmer 

with a very slight increase in precipitation in North Carolina). Appendix G and Stamp et al. 

(2010) contain the full list of metrics evaluated, of cold- and warm-water-preference taxa, and 

calculated temperature-tolerance values.  

3.2.1. Vulnerability of the North Carolina Bioclassification - Simulation of taxa 
replacement 

Many predictions and observations of biological trends in response to climate change 

include shifts in ranges of sensitive taxa, often involving movements north and/or higher in 

elevation, such that northerly or higher elevation communities tend to become more similar to 

lower elevation or more southerly neighbors (e.g., Bonada et al., 2007b). Replacing higher 

elevation, more cold-sensitive North Carolina Mountain communities with lower elevation, more 

warm-tolerant Piedmont taxa, is a reasonable approximation of this type of biological response. 

This sets a boundary on the range of vulnerability of North Carolina’s bioclassification indices. 

The first scenario tests whether the Mountain biotic index as currently formulated will still 

accurately classify Mountain benthic communities that in the future may become increasingly 

like Piedmont benthos in composition. The results, however, show that at the most extreme (i.e. 
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at the point of complete community replacement) classifications would decrease by one level 

(Figure 3-5). 

Figure 3-5. Site-condition classification scores at three reference Mountain sites (Station 
NC0109 (New), Station NC0207 (Nantahala) and Station NC0209 (Cataloochee)) and two 
reference Piedmont sites (Station NC0075 (Little River) and Station NC0248 (Barnes 
Creek)) averaged across three 10-year periods. The black bars represent average scores at 
Mountain sites when Mountain criteria are applied; the white bars represent average 
scores at Piedmont sites when Piedmont criteria are applied; the gray bars represent 
average scores at Piedmont sites when Mountain criteria are applied. 

This second scenario is an upper bound of index vulnerability. It is unlikely that complete 

community replacement will occur, and certainly not in the near term. Current biological trends 

in the NC data are fairly weak and/or spatially inconsistent (see Section 2 and Appendix G). 

This, in part, reflects the relative paucity of long-term data adequate to define climate-related 

trends given high natural variability. Still, some sensitive taxa (e.g., EPT taxa) and trait groups 

(e.g., cold-sensitive taxa) do exhibit trends in North Carolina, especially in response to 

precipitation and in the Mountain region. Therefore, the nature of this vulnerability is valid, 

although the actual magnitude of vulnerability is probably modest, especially in the near term. 

Table 3-4. Final bioclassification scores at 3 reference Mountain sites (NC0109 - New 
River, NC0209- Cataloochee and NC0207/2554 - Nantahala) before and after all cold
water-preference taxa are dropped from the sites 

Site Year Before After Difference 
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# cold-water
preference Taxa 

Final 
Score 

# cold-water
preference Taxa 

Final 
Score 

Final 
Scores 

NC0109 1983 6 5 0 4 - 1 
NC0109 1984 5 5 0 4 - 1 
NC0109 1985 4 4 0 4 0 
NC0109 1986 3 4 0 4 0 
NC0109 1987 4 4 0 4 0 
NC0109 1988 3 4 0 4 0 
NC0109 1989 6 4 0 4 0 
NC0109 1990 4 4 0 4 0 
NC0109 1993 4 5 0 4 - 1 
NC0109 1998 5 4 0 4 0 
NC0109 2003 7 5 0 5 0 

Site Year Before After Difference 
# cold-water

preference Taxa 
Final 
Score 

# cold-water
preference Taxa 

Final 
Score 

Final 
Scores 

NC0209 1984 18 5 0 4 - 1 
NC0209 1986 19 5 0 4 - 1 
NC0209 1989 20 5 0 5 0 
NC0209 1990 19 5 0 4 - 1 
NC0209 1991 21 5 0 4 - 1 
NC0209 1992 18 5 0 4 - 1 
NC0209 1997 23 5 0 5 0 

Site Year Before After Difference 
# cold-water

preference Taxa 
Final 
Score 

# cold-water
preference Taxa 

Final 
Score 

Final 
Scores 

NC0207 1984 14 5 0 4 - 1 
NC0207 1986 15 5 0 4 - 1 
NC0207 1988 17 5 0 5 0 
NC0207 1990 17 5 0 5 0 
NC0207 1991 20 5 0 5 0 
NC0207 1994 19 5 0 4 - 1 
NC0207 1999 17 5 0 4 - 1 
NC2554 2004 19 5 0 4 - 1 

325 

326 

327 

328 

329 

330 

A similar response of the bioclassification results is observed if the cold-water-preference 

taxa are eliminated from the biotic assemblages at three references sites in the Mountain 

ecoregion. The maximum drop in station classification score is one bioclassification level (from 

Excellent to Good); this occurred for 3 of the 11 years at Site NC0109, 5 of the 7 years at Site 

NC0209, and 5 of the 8 years at Site NC0207/NC2554 (Table 3-4).  
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3.2.2. EPT Taxa Richness Metric 

EPT richness is one of the two components of the North Carolina bioclassification 

scheme. EPT metrics also are used in other southeastern states. EPT metrics appear to be 

particularly vulnerable because they include many cold-water taxa. In North Carolina, 20 of the 

31 cold-water-preference taxa (genus-level OTUs) are EPT taxa (Table 3-5). There are 

substantially fewer (5) EPT taxa on the warm-water-preference list (Table 3-6). Within the EPT 

genera on the cold-water-preference list, there are 53 species that could potentially be counted 

towards the EPT richness metric used in the bioclassification of sites in North Carolina, while 

only 5 species could be potentially counted from the warm-water-preference list.  

Losses of cold-water-preference taxa and/or replacement by warmer water taxa in 

response to increasing temperatures may include loss of EPT taxa, potentially lowering 

bioclassification scores. At high quality sites, a loss of 3 (Coastal sites) or 4 (Mountain or 

Piedmont sites) EPT species would lower the EPT richness score by a full level, from a 5 

(Excellent) to a 4 (Good) (see Appendix G). A greater loss, of 10 EPT taxa at Mountain sites, 8 

taxa at Piedmont sites, or 7 at Coastal sites, would be needed to decrease scores by one level at 

sites of lesser condition (currently rated Good (4) or lower). 

Table 3-5. Number of North Carolina cold-water-preference taxa in each order. EPT 
orders are italicized 

Order
Diptera 

 Total
10

Plecoptera 8 

Ephemeroptera 6 

Trichoptera 6 

Coleoptera 1 
Odonata 1

The greatest effect of removing cold-water-preference EPT taxa from benthic 

assemblages was observed for three Mountain ecoregion reference stations, because cold-water

preference taxa comprise the greatest percentage of the benthic communities at higher elevations. 

In these cases, removal of cold-water taxa resulted in the loss of 9 to 14 EPT taxa, and decreases 

in EPT richness scores ranging from 0.4 to 1.2 (see Table 3-7 and Appendix G). The third Blue 
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Ridge reference site (NC0109) has fewer cold-water taxa in the assemblage, and the removal of 

cold-water taxa resulted in a loss of 4 species, and a decrease in EPT richness score of 0.6.  

Table 3-6. Number of North Carolina warm-water-preference taxa in each order. EPT 
orders are italicized 

Order Total
Odonata 7
Diptera 5
Trichoptera 4
Coleoptera 2
Rhynchobdellida 2 

Arhynchobdellida 1 

Basommatophora 1 

Decapoda 1
Ephemeroptera 1 
Hemiptera 1
Isopoda 1
Unionoida 1

 

 

Table 3-7. EPT species richness values (EPT_S) and scores at 3 reference 
Mountain sites (NC0109 - New River, NC0209- Cataloochee and 
NC0207/2554 - Nantahala) before and after all cold-water-preference taxa 
are dropped from the sites 

Site Year Before After Difference 
EPT_S EPT_S 

Score 
EPT_S EPT_S 

Score 
EPT_S EPT_S 

Score 
NC0109 1983 50 5 47 5 - 3 0 
NC0109 1984 45 5 42 4.6 - 3 -0.4 
NC0109 1985 45 5 44 5 - 1 0 
NC0109 1986 43 4.6 41 4.4 - 2 -0.2 
NC0109 1987 41 4.4 38 4 - 3 -0.4 
NC0109 1988 42 4.6 40 4.4 - 2 -0.2 
NC0109 1989 43 4.6 39 4 - 4 -0.6 
NC0109 1990 49 5 46 5 - 3 0 
NC0109 1993 47 5 46 5 - 1 0 
NC0109 1998 37 4 34 4 - 3 0 
NC0109 2003 51 5 47 5 - 4 0 

Site Year Before After Difference 
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EPT_S EPT_S 
Score 

EPT_S EPT_S 
Score 

EPT_S EPT_S 
Score 

NC0209 
NC0209 
NC0209 
NC0209 
NC0209 
NC0209 
NC0209 

1984 
1986 
1989 
1990 
1991 
1992 
1997 

42 4.6 
47 5 
53 5 
51 5 
48 5 
42 4.6 
50 5 

32 3.6 
35 4 
42 4.6 
39 4 
34 4 
31 3.4 
37 4 

- 10 1 
- 12 1 
- 11 0.4 
- 12 1 
- 14 1 
- 11 1.2 
- 13 1 

Site Year Before After Difference 
EPT_S EPT_S 

Score 
EPT_S EPT_S 

Score 
EPT_S EPT_S 

Score 
NC0207 
NC0207 
NC0207 
NC0207 
NC0207 
NC0207 
NC0207 
NC2554 

1984 
1986 
1988 
1990 
1991 
1994 
1999 
2004 

45 5 
48 5 
49 5 
53 5 
54 5 
48 5 
49 5 
49 5 

36 4 
40 4.4 
38 4 
43 4.6 
41 4.4 
36 4 
39 4 
37 4 

- 9 1 
- 8 0.6 
- 11 1 
- 10 0.4 
- 13 0.6 
- 12 1 
- 10 1 
- 12 1 

368 
369 
370 

371 

372 

373 

374 

375 

376 

377 

378 

379 

380 

381 

382 

383 

3.2.3. The North Carolina Biotic Index (NCBI) 

The second component of the North Carolina bioclassification scheme is the NCBI. This 

is North Carolina’s version of the HBI, which is commonly used in site assessments in other 

states. The HBI documents the contribution of pollution tolerant taxa to the composition of the 

community (Hillsenhoff, 1987). Taxa are assigned pollution tolerance values ranging from 1 

(most sensitive) to 10 (most tolerant). The higher the HBI, the more strongly the community is 

dominated by taxa tolerant of organic pollution, and the more impaired the site is considered.  

Vulnerability of the NCBI (and HBI) is largely due to the high association of cold-water 

taxa with low tolerance to organic pollution (Figure 3-6). Taxa that show preferences for lower 

temperatures tend to have lower tolerance values and those that tend to occur more in warmer 

water habitats tend to have higher tolerance values. Most (22 of the 30) of the North Carolina 

cold-water-preference taxa for which the tolerance value is known have low tolerance values (< 

3) (Figure 3-6). Only one of the cold-water-preference taxa (the chironomid Diamesa) has a 

tolerance value > 7. In contrast, most of the warm-water taxa have higher tolerance values. 
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Twelve of the warm-water-preference taxa that have been assigned tolerance values have 

tolerance values > 7. Only one of the warm-water taxa, Chimarra, has a tolerance value < 3. 

Based on this information alone, it is likely that a loss of cold water taxa and an increase in 

warmer water taxa would result in higher BI scores, which would contribute to lower 

bioclassification scores. An increase in BI scores of 0.1 can lower the classification of an 

Excellent site a full level from 5 to 4. At lower quality sites (those rated Good (4) or lower), it 

would take a greater increase in BI scores (by at least 0.6) to lower bioclassification levels a full 

level (i.e. go from a classification of 4 to 3, 3 to 2, or 2 to 1).  
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Figure 3-6. Relationship between North Carolina cold- and warm-water-preference taxa 
and North Carolina enrichment tolerance scores. Taxa with enrichment tolerance scores of 
0-3 were categorized as Intolerant, those with scores of 4-6 were Intermediate and those 
with scores of 7-10 were Tolerant.  

 

Again, three Mountain ecoregion reference sites with the greatest percentage composition 

of cold-water taxa were most vulnerable in terms of NCBI scores. In these cases, removal of 

cold-water taxa resulted in an increase in BI values ranging from 0.45 to 0.86 and decreases in 

NCBI scores ranging from 0 to 1 (Table 3-8 and Appendix G). At the Blue Ridge reference site 

(NC0109) with fewer cold-water-preference taxa, the loss of cold-preference taxa resulted in a 

maximum increase in NCBI value of 0.24, maximum decrease in NCBI score of 0.2.  
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Table 3-8. NCBI values and scores at 3 reference Mountain 
sites (NC0109 - New River, NC0209- Cataloochee and 
NC0207/2554 - Nantahala) before and after all cold-water
preference taxa are dropped from the sites 

Site Year Before After Difference 
BI BI Score BI BI Score BI BI Score 

NC0109 
NC0109 
NC0109 
NC0109 
NC0109 
NC0109 
NC0109 
NC0109 
NC0109 
NC0109 
NC0109 

1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1993 
1998 
2003 

4.60 4 
4.33 4 
5.48 3 
5.43 3 
4.87 3.6 
5.37 3 
4.21 4 
4.87 3.6 
4.70 4 
4.40 4 
3.61 5 

4.67 4 
4.44 4 
5.51 3 
5.55 3 
4.93 3.4 
5.46 3 
4.28 4 
4.91 3.4 
4.74 4 
4.49 4 
3.85 5 

+ 0.07 0 
+ 0.11 0 
+ 0.03 0 
+ 0.12 0 
+ 0.06 -0.2 
+ 0.09 0 
+ 0.07 0 
+ 0.04 -0.2 
+ 0.04 0 
+ 0.09 0 
+ 0.24 0 

Site Year Before After Difference 
BI BI Score BI BI Score BI BI Score 

NC0209 
NC0209 
NC0209 
NC0209 
NC0209 
NC0209 
NC0209 

1984 
1986 
1989 
1990 
1991 
1992 
1997 

3.32 5 
3.46 5 
2.98 5 
3.12 5 
2.67 5 
3.00 5 
2.69 5 

3.90 5 
4.29 4 
3.68 5 
3.88 5 
3.51 5 
3.86 5 
3.29 5 

+ 0.58 0 
+ 0.83 -1 
+ 0.70 0 
+ 0.76 0 
+ 0.84 0 
+ 0.86 0 
+ 0.60 0 

Site Year Before After Difference 
BI BI Score BI BI Score BI BI Score 

NC0207 
NC0207 
NC0207 
NC0207 
NC0207 
NC0207 
NC0207 
NC2554 

1984 
1986 
1988 
1990 
1991 
1994 
1999 
2004 

3.77 5 
3.61 5 
3.41 5 
3.00 5 
2.39 5 
2.60 5 
3.38 5 
3.19 5 

4.43 4 
4.15 4 
3.89 5 
3.47 5 
3.04 5 
3.13 5 
3.83 5 
3.79 5 

+ 0.66 -1 
+ 0.54 -1 
+ 0.48 0 
+ 0.47 0 
+ 0.65 0 
+ 0.53 0 
+ 0.45 0 
+ 0.60 0 

410 
411 

412 

413 

Further evidence of the potential vulnerability of the NCBI to climate change effects is 

that relative abundance of cold-water-preference taxa was significantly negatively correlated 

with NCBI values at all 3 Mountain sites (NC0109 r2=0.46, p=.021; NC0207 r2=0.66, p=.007; 
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NC0209 r2=.85, p=.004) (Table 3-9 and Appendix G). The abundances of cold-water-preference 

taxa were lower at sites that had higher NCBI scores. At one of the Mountain sites, the warm

water metrics also were positively correlated with NCBI values. Replacement of colder water 

preference taxa with warmer preference taxa would likely contribute to a site receiving a higher 

NCBI score and therefore a poorer rating; this will most likely affect sites in the Mountain 

ecoregion. 

Table 3-9. Correlations of benthic taxa grouped by temperature traits with 
BI at North Carolina Mountain and Piedmont reference stations. Significant 
correlations in bold text. 

Temperature Metric 
Mountain Piedmont 

NC0109 NC0207 NC0209 
NC007 

5 
NC024 

8 

Cold-water-preference taxa – 
relative abundance 

-0.68 
N=11 

p=.021 

-0.81 
N=9 

p=.007 

-0.92 
N=7 

p=.004 

-0.25 -0.11 
N=7 N=7 

p=.587 p=.821 

Warm-water-preference taxa – 
relative abundance 

0.66 
N=11 

p=.026 

0.12 
N=9 

p=.766 

0.63 
N=7 

p=.127 

-0.16 0.19 
N=7 N=7 

p=.726 p=.679 

Cold-water-preference Taxa - 
richness 

-0.81 
N=11 

p=.003 

-0.46 
N=9 

p=.208 

-0.57 
N=7 

p=.182 

-0.37 0.17 
N=7 N=7 

p=.416 p=.708 

Warm-water-preference Taxa - 
richness 

0.77 
N=11 

p=.006 

0.17 
N=9 

p=.664 

0.65 
N=7 

p=.116 

-0.01 -0.51 
N=7 N=7 

p=.991 p=.239 
424 

425 

426 

427 

428 

429 

430 

431 

432 

433 

434 

3.3. OHIO AND THE MIDWEST 

Ohio also uses MMIs, the Index of Biotic Integrity (IBI) for fish communities, and the 

Invertebrate Community Index (ICI) for macroinvertebrates. Evaluations are separated by stream 

size categories and by level 3 ecoregions. Evaluations for Ohio were integrated with analyses of 

reference location re-sampling conducted to determine whether biological reference condition 

has changed since 1980 and as a foundation for the recalibration of Ohio biocriteria (Rankin 

2008). The examination of trends in biological condition at reference sites and the exploration of 

potential causes was an essential component of this effort. Although climate change effects may 

be a contributing component to observed trends, there is evidence that other environmental 

changes may be responsible.  
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Based on approximately 30 years of watershed assessments in Ohio, there have been a 

variety of environmental changes identified that are associated with shifts in biological condition 

at assemblage and taxon levels (Rankin, 2008; Yoder et al., 2005). Environmental factors that 

have been identified as main contributors to these changes include reduction in point source 

loadings; changes in land uses (e.g., increased urbanization); altered pollutant loadings from 

agricultural lands (e.g., reductions in sediments and nutrients in response to increased 

conservation tillage); loss of habitat quality due to agricultural drainage practices and 

suburbanization; and localized improvement in habitat quality due to stream restoration. These 

environmental changes make it difficult to detect responses to climate-related changes in 

temperature and/or hydrology. The lack of readily available long-term data for temperature, flow 

and biology needed to define and separate such effects compounds the problem. 

To examine long-term trends, the Ohio IBI and ICI were recalculated based on data from 

early and late sampling cycles, with an average of 14-16 years between data sets (Appendix H). 

This analysis corrected for any changes in taxonomic resolution over time. Values of the ICIs 

and IBIs for the most recent time period for each stream size and ecoregion category were almost 

always higher than or similar to the original values (i.e., the direction of change was either 

positive or neutral). This shows a strong pattern of environmental improvement reflected in the 

condition of biological communities. Although the overall pattern is compelling, none of the 

MMI differences are outside the range of natural variation for each index (Appendix H).  

These effects, shown in changes over time in the Ohio MMIs, reflect, in some part, 

reductions in pollutant loadings and habitat degradation (Rankin, 2008). They could incorporate 

a climate change signal that is confounded or swamped by these apparent responses to improved 

environmental management. Given the probable confounding factors, two possibilities exist. One 

is that the actual improvement in environmental condition do to better management practices is 

greater than that reflected in the magnitude of MMI improvement. The implied suppression of 

the MMI response could result from climate change-related reductions in cold-water-preference 

taxa that are also pollution sensitive, and/or from increases in warm-water taxa that are pollution 

tolerant. This possibility would have the effect of reducing the MMI, leading to an underestimate 

of the magnitude of improvement. Other scenarios also are possible. For example, climate

related changes in precipitation and flow could have increased cold-sensitive taxa, as has been 

observed in other states (Section 2). Cold-sensitive taxa are often pollution sensitive (earlier 
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sections of this Chapter); their increases would appear as an improvement in the MMI, leading to 

an over-estimate of improvements attributable to management practices. Some preliminary 

evidence of range extensions of flow-sensitive taxa into headwater streams in Ohio is presented 

in Appendix H. Thus it is possible that climate change has augmented, or contributed to the 

apparent improvements in environmental quality reflected in ICI and IBI improvements. 

The direction of climate-related changes in BI scores could be positive or negative. The 

expectation for the more likely direction is, in part, informed by apparent relationships between 

temperature and/or hydrologic sensitivities of the Ohio fish and macroinvertebrate taxa and their 

associated pollution tolerance values. Figures 3-7 and 3-8 show a general concordance between 

these two taxon traits. With regard to macroinvertebrate temperature preferences, Figure 3-7 

(upper and lower left graphs) shows that for both stream sizes plotted, many, though not all, of 

the pollution tolerant taxa (shown with red dots) have higher temperature preferences. The 

lowest temperature preferences are exhibited by taxa with “moderately intolerant” to “intolerant” 

(i.e., sensitive) pollution designations. These figures also show substantial variation. A few 

pollution-tolerant taxa exhibit relatively low temperature preferences, and there is a broad span 

of temperature preferences exhibited by taxa with moderate pollution sensitivity. A slightly 

clearer association is seen for hydrologic preferences and pollution tolerance, especially for fish 

(Figure 3-8). In this case, fish with the greatest pollution tolerance could tolerate lower flows, 

while the most pollution-sensitive fish had preference for higher flows.  

In Ohio and other central states, climate change projections are for warmer temperatures 

and slight increases in precipitation (Appendix H). There is an associated expectation for 

increasing stream temperatures, although the expectation for changes in flow are more uncertain, 

being affected by both increasing precipitation, which may increase flows, and increasing 

temperatures, which can also increase evapotranspiration and contribute to decreasing flows at 

least seasonally. Community composition also will contribute to determining how climate 

change effects on component taxa will be reflected in the MMIs. For example, in the 

macroinvertebrate community, the balance in composition between cold- and warm-water

preference taxa will influence net response, as has been illustrated for other states. Results 

suggest that because of the general concordance between temperature and/or hydrologic 

sensitivity and pollution-tolerance sensitivity, it is plausible to expect the loss of sensitive taxa 

due to climate change (Appendix H). This may occur through replacements by or increases in 
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occurrence and abundance of more tolerant taxa, with an associated apparent increase in the 

calculated pollution tolerance of the community. Decreasing ICI or IBI scores would make 

station conditions look more impaired, due only to climate change, or would mask detection of a 

portion of environmental improvement.  

Because most, if not all, of Ohio’s reference stations are considered “best available” 

(sensu Stoddard et al., 2006), conditions at reference locations in Ohio are changing, and mostly 

improving, in response to management and pollution control efforts. The detection of 

improvement is occurring in spite of potential climate change impacts. The ability to partition 

these responses is hampered by the lack of reference locations unaffected by pollution or land 

alterations. In addition, most stations are sampled on a regionally rotating basis, so that even over 

two or more decades of sampling, many locations have relatively few data points to support 

definition of trends. Without “natural” reference sites as an anchor, the definition of a gradient of 

site conditions using the BCG (Davies and Jackson, 2006) would provide a basis for selecting 

and sampling stations along a gradient of effects, which serve as an alternative approach for 

separating climate change from more conventional pollution responses. 

Stressor identification and related processes contribute to elucidating causes of 

impairment through analysis of MMI and component responses. These same techniques are 

useful to identify sources of improvement in environmental condition. This does not by itself 

offer a mechanism for partitioning climate change responses from other causes, but would be 

valuable in tandem with gradient sampling along a BCG to support such an effort. 
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Figure 3-7. Plots of macroinvertebrate taxa maximum temperature Weighted Stressor 
Values (WSVs) vs mean maximum values for taxa for headwater streams (upper left) and 
wadeable streams (lower left), and box and whisker plots of maximum temperature by 
Ohio EPA macroinvertebrate tolerance values (derived for the ICI) for headwater streams 
(upper right) and wadeable streams (lower right). Data for taxa represent data from 
artificial substrates where at least 5 samples were represented for each stream size 
category. 
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Figure 3-8. Scatter plots of taxa/species Hydro-QHEI  (Qualitative Habitat Evaluation 
Index (QHEI) based only on hydrologic variables) WSVs vs mean Hydro-QHEI values for 
macroinvertebrate taxa for headwater streams (upper left) and wadeable streams (lower 
left), and box and whiskers plots of macroinvertebrates (upper right) and fish (lower right) 
WSVs for Hydro-QHEI for these waters. Data from Ohio EPA. 

3.4. UTAH AND THE SOUTHWEST 

Utah rates its sites with a RIVPACS model, in which data from reference sites are used to 

establish expected (E) macroinvertebrate assemblages and to which observed (O) assemblages at 

sites are compared (Appendix F). The ratio of these values (O/E) can be interpreted as a measure 

of taxonomic completeness. Values of O/E near 1 (one) suggest that the site is comparable to 

reference, whereas values that vary substantially from 1 suggest that the site is degraded (Yuan, 

2006a). 
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3.4.1. Approach 

Utah DEQ developed two different RIVPACS models: one for fall samples and the other 

for all seasons. They currently use the fall model for bioassessments, consistent with a focus on 

fall as their primary sampling period. The model has 15 predictor variables, 7 of which are 

related to climate (e.g., temperature, precipitation, freeze dates). Two fundamentally different 

approaches were used to evaluate possible vulnerabilities of RIVPACS assessments to climate 

change responses. One approach manipulates climate-related predictor variables within the 

model, within ranges informed by the magnitude of climate change projections for the southwest 

in temperature and precipitation. Half of the predictor variables included in the Utah fall 

RIVPACS model are climate related, showing that some climate factors expected to change in 

the future are important in controlling stream macroinvertebrate community composition across 

regions in Utah. Alteration of these variables at existing reference locations is intended to 

illustrate the range of model responses that might be expected over time due only to climate 

change, and thus be a measure of vulnerability of model-based decisions. A related analysis 

involved running the Utah fall RIVPACS model using only the climate-related predictor 

variables, assuming this would maximize their influence on definition of the expected 

community and thus, if possible, isolate components of the community most sensitive to climate 

variables. Details of the model runs are summarized in Appendix F. 

The other analysis used extremes in existing data as proxies for future climate conditions, 

by partitioning data at long-term reference stations into years characterized by hottest ( >75th 

percentile of the long-term temperature distribution), coldest (<25th percentile of temperature), 

and normal (25th to 75th percentile) average annual temperatures. Using similar thresholds, years 

were partitioned based on average annual precipitation into wettest, driest, and normal years 

(Appendix D). Examination of RIVPACS model responses between year groups was used as an 

indication of the direction and magnitude of responses in the RIVPACS O/E outcomes that might 

result from climate change. An assumption is that these temperature and precipitation differences 

drive responses in benthic communities that are reasonable proxies for the types of community 

changes that can be expected over the long term with climate change. 
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3.4.2. RIVPACS Responses – Utah Decision Vulnerabilities 

Comparison of RIVPACS model outputs among hotter, colder and normal years provides 

evidence of potential vulnerabilities to climate change. Figure 3-9 shows results from two 

reference sites in the Colorado Plateaus ecoregion (site 4951200 (Virgin) and site 4936750 

(Duchesne)) where mean O/E values from hottest year samples were significantly higher than 

mean O/E scores from coldest and normal year samples. These differences are in the range of 

differences relevant to the Utah DEQ decision matrix for determining whether a test location 

should be characterized as not supporting beneficial uses (i.e., classified as impaired). In this 

matrix, an O/E score <0.74 represents the first threshold of impairment, with another at O/E 

<0.54 (Appendix Attachment F6). The magnitude of average annual temperature differences 

between the “hottest” and ”coldest” year samples is about 2 oC, comparable to long-term climate 

change projections for temperature increases in the Utah region by about 205011. Therefore, this 

result is directly relevant to impairment decisions that Utah may make in the future, because it 

will introduce a range of variation among reference locations similar to the impairment decision 

threshold, and thus may be more difficult to determine impairment as temperatures increase.  

One peculiarity is that the median O/E scores at sites 4951200 (Virgin) and 4936750 

(Duchesne)) are significantly higher (closer to 1) in hottest year samples. This means that the 

observed community in hottest years is closer to the expected community. A similar pattern 

occurred at site 4929750 (Weber) but this result was not statistically significant. These patterns 

might be partially explained by the fact that Utah DEQ calibrated their RIVPACS model based 

on data collected from 1999-2005, which happens to be a period during which some of the 

hottest and driest conditions occurred, in some cases in consecutive years (Appendix Section 

F5). Although it is possible that other confounding factors might have also contributed to O/E 

trends at these sites, results suggest that climatic variables likely influenced these changes in 

community composition.  

11 See NCAR website: http://rcpm.ucar.edu 
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Figure 3-9. Distributions of observed/expected (O/E) values in coldest-, normal-, and 
hottest-year samples at Utah sites 4936750 (Duchesne) (A) and 4951200 (Virgin) (B). Year 
groupings are based on Parameter-elevation Regressions on Independent Slopes Model 
(PRISM) mean annual air temperatures from each site during time periods for which 
biological data were available. Average temperatures in hottest-year samples were 1.1 to 
2.7˚C higher than coldest year samples. At both sites, O/E values were significantly higher 
in hottest year samples than in coldest and normal year samples. Data used in these 
analyses were limited to autumn (September–November) kick-method samples. 

In addition to the O/E trend analysis, we also performed several exploratory analyses in 

which we manipulated the climate-related predictor variables that are used in the Utah fall 
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RIVPACS models. When climate-related predictor variables were altered, there was very little 

effect on O/E values (Figure 3-10). This occurred in both the original model (with probability of 

capture (Pc) set at 0.5, as used by Utah DEQ) and the model re-run with Pc <0.1 which allowed 

for inclusion of rare taxa. The greatest change in O/E occurred in the scenario in which all 

climate-related predictor variables were altered by the greatest amounts (‘scenario 5 in Figure 3

11) (for more information on model manipulations, see Appendix F). This amounted to a change 

in O/E of 0.03, which is within the range of natural variability (Appendix F). There also was 

little effect on O/E values when ‘unrealistic’ changes were made to climate-related variables to 

investigate possible thresholds (i.e. doubling temperature, halving precipitation variables), with 

O/E values never varying by more than one standard deviation (Appendix E).   
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Figure 3-10. Exploration of how observed (O), expected (E) and observed/expected (O/E) 
values from the Utah Fall RIVPACS model may change as climate-related predictor 
variables change. Plot (A) shows changes in O and E and (B) shows changes in O/E at two 
different probabilities of capture (Pc) (0.1 and 0.5) under 5 different scenarios: 1=baseline; 
2=temperature predictor variable values + 2, precipitation predictor variable values – 0.05; 
3=temperature predictor variable values + 4, precipitation predictor variable values – 0.1; 
4= temperature predictor variable values + 1, precipitation predictor variable values – 1, 
day of last freeze - 1, day of first freeze + 1; 5= temperature predictor variable values + 2, 
precipitation predictor variable values – 2, day of last freeze - 2, day of first freeze + 2.  

There are a number of possible reasons why the alterations to the climate-related 

predictor variables resulted in small changes to O/E values. One is the fact that the analyses were 

based on reference site data. Reference sites are typically more stable than test sites. Another 

potentially important factor was that we disregarded elevation in the model manipulations. It 

would be worthwhile to explore how manipulations to the elevation-related predictor variables 

affect O/E values, especially since elevation and temperature are linked. Other potential factors 

relate to model development. The fall Utah RIVPACS model is comprised of 15 predictor 

variables. Recent analyses suggest that models with fewer predictor variables may have better 

performance (pers. Comm. Chuck Hawkins). Also, the Utah model is unique in that it uses a 

Random Forest model (Breiman and Cutler 2009) instead of discriminant analysis to predict site 

group membership. It is possible that using the random forest may make the RIVPACS model 

more robust to CC effects. 

These results illustrate several important points in considering how RIVPACS models 

may be affected by future climate change effects. One is the importance of the calibration data 

used in model development. Ideally models are calibrated using data that encompass a full range 

of natural variability. Unfortunately, these types of long-term data sets are rare. However, it is 

something to consider and strive for as biomonitoring programs gather more data and recalibrate 

their models over time. Another important consideration has to do with the assumption that 

climate-related predictor variables, which are typically based on long-term (30-year) averages, 

are relatively invariant over ecologically-relevant time. If climate change is going to be an 

important factor in years to come, it would be interesting to develop a second RIVPACS model 

that includes predictor variables based on current climate (not just the historic benchmark 

climate) and to compare O/E values across these models over time. In theory, this would allow 

for partitioning of climate change effects over time. 

December 23, 2010 3-30 External Review Draft 



 

 

 

 

 

653 
654 

655 

656 

657 

658 

659 

660 

661 

662 

663 

664 

665 

666 

667 

668 

669 

670 

671 

672 

673 

674 

675 

676 

677 

678 

679 

680 

681 

682 

683 

3.5 CONCLUSIONS ACROSS PILOT STUDY STATES 

There are a variety of regional differences in biological responses evident from this study. 

More and stronger trends and responses were found in Utah, largely related to temperature 

changes. Fewer significant trends were found in North Carolina and more were related to 

precipitation (see also Section 2). There is much spatial variation in these patterns, in part due to 

ecoregional, geographic, and climatological variations, and in part attributable to limitations of 

the available data. The results point to several conclusions. One is the importance of categorizing 

taxa based on ecological traits, especially temperature sensitivities, in order to evaluate responses 

to climate change variables and to estimate future vulnerabilities to climate change. It is a 

relatively consistent finding that biological metrics and indices used by states and tribes are 

either composites of cold-water and warm-water-preference taxa, or are dominated by one or the 

other. This composition defines the nature of responses, and therefore, the vulnerability of the 

metric or index to climate change effects. The richness of cold-water-preference taxa is a metric 

that was fairly consistently responsive, especially at higher elevations, because high-elevation 

communities tend to have more cold-water-preference taxa. Metrics using cold-water-preference 

taxa will help identify climate change ‘sensitive’ or vulnerable areas. Such information would 

assist in detecting climate change effects and in identifying sites to monitor these changes.  

Another widespread and related finding is the moderate but significant relationship 

between temperature sensitivity and sensitivity to organic pollution. Metrics selected because the 

composite taxa were considered to be generally sensitive, such as EPT taxa, or generally tolerant, 

such as Diptera taxa, or to represent responses to conventional pollutants (e.g., organic pollution 

as in the HBI), also have demonstrable sensitivities to climate-related changes in temperature and 

flow conditions. We have shown these sensitivities to be related, at least in part, to the 

predominance of cold- (and/or warm-) water preference taxa at a location. Assemblage 

composition by cold and warm-water-preference taxa may be related to ecoregion, latitude, 

watershed size, and/or stream order, and is also clearly affected by elevation. This association 

between temperature and pollution sensitivities will affect how indices are interpreted with 

regard to the conventional stressors for which the indices were originally developed. 

From more limited evidence it also appears that the ability to categorize taxa according to 

flow preferences and requirements could be useful. However, there are generally fewer data 
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available for this analysis. We augmented the approach of grouping taxa by traits responsive to 

one climate variable (temperature) through consideration of a suite of traits. This was useful in 

some cases, though it produced fewer significant results. This was probably due to the fact that 

fewer taxa were included when categorized by a suite of several traits, resulting in more limited 

and/or more variable data and smaller sample sizes with which to test responses. Still, this is 

potentially a useful approach to apply as more data become available.  

3.6 RECOMMENDATIONS FOR MODIFYING METRICS  

In general, biological metrics (indicators) are selected for their diagnostic value 

(Verdonschot and Moog 2006). However, the effects of global climate changes in temperature 

and precipitation on biological metrics have, until now, been largely untested, because climate 

change was not considered a “stressor of concern” until recently (Hamilton et al., 2010a). Given 

our demonstrations of the vulnerabilities of traditional metrics to climate change, and associated 

impacts to the classification of station conditions, it is important that state and tribal 

biomonitoring programs consider adopting modified metrics with the purpose of tracking 

climate-associated changes in MMI outputs (Hamilton et al. 2010a). This will support making 

inferences about cause, helping differentiate climate change from other stressors as part of a 

weight of evidence evaluation. It will allow resource managers to more effectively make 

management and regulatory decisions on the basis of biomonitoring results in the face of climate 

change impacts (Hamilton et al. 2010b).  

Our initial focus here is on the relative contribution of cold- and warm-water-preference 

ecological trait groups to the composition of traditional metrics. Our general recommendation is 

that the cold- and warm-preference components of traditional metrics be documented and tracked 

separately. A recommended approach for incorporating modified metrics into a biomonitoring 

data analysis regime is to continue calculating the traditional metric (e.g., EPT richness, HBI), 

while adding new cold- and warm-water-preference metrics. Proportional changes in cold- and 

warm-water-preference taxa would provide a basis for estimating how much of the difference in 

the total (traditional) metric can be accounted for by changes in temperature trait groups. This 

then becomes evidence for comparing potential climate change effects to those of other stressors 

in a weight of evidence assessment. Comparisons could be made over time, among locations, 

and/or groups of sites (both reference and non-reference). An option for tracking climate-related 
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changes is to put traditional and modified metrics on the same plot and compare their trends over 

time (i.e. Figure 3-13). Another option that requires further testing is to track the ratio of the 

cold- or warm-modified metric to the original (total) metric. For example, separate tracking of 

cold-to-total EPT and warm-to-total EPT richness metrics was able to account for trends in total 

EPT richness over time in circumstances where changes in total EPT richness were caused by 

losses of cold-water-preference taxa, and where changes include both losses of cold-water

preference taxa plus gains of warm-water-preference taxa (i.e., taxon replacements) (Hamilton et 

al. 2010a). 

We examined evidence in this study for the value of adopting temperature-modified 

metrics for diversity and total taxa richness metrics; for EPT-related metrics; and for pollution 

tolerance metrics, such as the HBI or related indices. However, the principle of partitioning 

metrics to separate component taxa based on cold or warm-water-preferences should be 

considered for other biological metrics (Hamilton et al. 2010a). These could include trait metrics 

related to functional feeding groups (e.g., predators, collector-filterers) or life history habits (e.g., 

swimmers, climbers). Such metric modification should be considered on a state or region

specific basis, in particular for climate-vulnerable regions (e.g., high elevations, low order 

streams, small watersheds). In addition, an OCH taxa metric may be valuable to track taxa that 

are robust to warmer conditions and/or more intermittent flows. This may be especially valuable 

in regions at lower elevations, where temperature increases may be large, and/or where summer 

flow conditions are likely to be especially vulnerable to climate change effects. 

We cannot yet make strong suggestions for metrics related to hydrologic sensitivity, in 

part because the lack of flow data corresponding to biological collections has limited ability to 

calculate flow metric preferences by taxon (see Appendix K). However, hydrology-related trait 

characterizations can be based on known life history traits coupled with regional observations 

and literature information, as with the intermittent taxa metric used in North Carolina. A metric 

that accounts for tolerance to intermittent flows, requirement for perennial flows, or some similar 

hydrologic-preference metric, may become valuable as changes in flow conditions are more 

evident. Such a metric would have to be calibrated by region. 

Calculation of modified metrics for incorporation into biomonitoring data evaluation will 

require designation of cold-and warm-water-preference ecological trait groups. Cold-and warm

water-preference taxa lists must be developed on a state- or region-specific basis, which is a 
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substantial undertaking. The efforts initiated in this study, including the process of applying 

weighted average or maximum likelihood modeling in concert with literature information and 

best professional judgment to estimate temperature preferences by taxon from biomonitoring 

data, and the development of a traits database that documents the temperature preferences and 

tolerance results calculated for the 3 states analyzed in this study (see Stamp et al., 2010; 

USEPA, 2011) can be used as a starting point for future state efforts. 

 

Figure 3-13. Method for tracking changes in cold- and warm-water-preference taxa and 
commonly used metrics (in this case, total number of taxa at Maine site 56817 (Sheepscot) 
over time. 
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4. REFERENCE STATION VULNERABILITIES 

While partitioning indices and revising predictive models are important steps in assuring 

that the bioassessment design will continue to meet program needs under changing climatic 

conditions, several other program elements also need to be considered. The use of reference 

stations and comparison to reference conditions are central to bioassessment. Therefore, this 

study also examined potential vulnerabilities of the sampling design, the process to determine 

reference condition, and the location of reference sites. 

4.1. VULNERABILITIES IN THE REFERENCE STATION SAMPLING DESIGN 

State and tribal bioassessment programs establish reference stations across their 

jurisdictions for reference-based comparisons to assess condition, detect impairment, and 

identify causes. The main objectives of these programs focus on spatial comparisons, and 

program design elements reflect this. Assessment designs generally include random sampling 

within a stream reach or watershed, or a combination of random plus some targeted sampling. 

Random sampling tends to maximize spatial sources of variation. Rotating basin sampling 

designs are often used, which typically include sampling once every 5 years. Collections are 

usually of one sample per location per year, with measurements of few covariates.  

In contrast to the original spatial objectives of biomonitoring designs, detection of 

climate change requires evaluation of trends over time, whether at a specific location or for a 

defined area or stratum. There are some commonly observed limitations of many existing 

biomonitoring programs with regard to assessment of trends. Despite the relatively large number 

of reference stations in the biomonitoring data sets analyzed, there are very few with long-term 

data, and typically few if any replication of long-term reference sites within a particular region 

(Table 4-1). In addition, samples are not collected from the same sites every year (Table 4-1), so 

many data sets have discontinuities, which make analyzing and detecting trends difficult. This 

limits the adequacy of many biomonitoring programs for detecting climate change effects. 

Continued accounting for climate change effects is desirable within the framework of state and 

tribal biomonitoring programs, to increase the robustness of their program assessments to the 

confounding effects of climate change. Modifying existing sampling design, potentially 
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including establishing a sentinel monitoring network specifically to detect climate change effects 

would contribute to this objective. 

Table 4-1. Time periods for which biological data were available at the long
term monitoring sites in Utah (UT), Maine (ME), and North Carolina (NC). 
Data used in these analyses were limited to autumn (September–November) 
kick-method samples in the Utah data set, summer (July–September) rock
basket samples in the Maine data set, and summer (July–August) standard 
qualitative samples in the North Carolina data set. 

Number of 
Station ID Water body years of data Years 

analyzed 

1985–1995, 1998, 2000, 2001, 
UT 4927250 Weber 17 2003–2005 

1985–1993, 1996, 2000–2002, 
UT 4951200 Virgin 14 2004 
UT 4936750 Duchesne 12 1985–1993, 1995, 2000, 2001 
UT 5940440 Beaver 9 1996–1998, 2000–2005 
ME 56817 Sheepscot 22 1985–2006 
ME 57011 W. Br. Sheepscot 12 1995–2006 
ME 57065 Duck 9 1997–2005 
NC 0109 New 11 1983–1990, 1993, 1998, 2003 

4.2. VULNERABILITIES IN ASSESSING REFERENCE CONDITION 

Reference station comparisons are central to bioassessment. Both in the United States 

(Clean Water Act) and in Europe (Water Framework Directive) the determination of ecological 

status and integrity is based on a comparative approach (“reference based comparisons”) 

requiring reference locations that can be used to set expectations for “natural” conditions and 

associated variability (Barbour and Gerritsen, 2006; Stoddard et al., 2006; Verdonschot, 2006; 

Nijboer et al., 2004; Walin et al. 2003). Impairment in the regulatory context is representative of 

an unacceptable level of departure from this “expected condition” defined based on selected 

reference stations. The vulnerabilities of reference locations to climate change, as well as to 

ongoing changes in land use, is a significant issue that will impact the continued viability of 

bioassessment approaches as currently applied.  

Under ideal circumstances, reference conditions are found in locations unaffected by 

human influences and thus represent natural, undisturbed conditions. At such sites, only natural 
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determinants of environmental conditions should influence biological communities. In the 

absence of other stressors, long-term patterns in climate-related variables and associated 

biological responses could be attributed to climate change (with the caveat that multi-decadal 

climatic cycles also influence these communities). But “pristine” reference sites are seldom 

available. It is more often the case that reference stations represent “best available” or 

“minimally disturbed” conditions (Stoddard et al., 2006; Baily et al., 2004). Human influences of 

agriculture and development are both widespread and long term in their effects (Allan, 2004; 

Paul and Meyers, 2001), and many states have determined that they have no pristine or 

unaffected reference conditions existing (see, for instance, Snook et al., 2007; Appendix H). 

There also is variation among states in how reference stations are defined and selected. Some 

states apply land use criteria, or at least document land use conditions, for selection of reference 

stations. However, in many cases the selection of reference conditions are determined post facto 

using biological sampling results, or are based on best professional judgment. In these cases, the 

distribution of urban and agricultural land uses, or other factors affecting condition, can be less 

than ideal, and often are not documented.  

4.2.1. Reference Stations Used in this Study 

We focused analyses in this study on reference stations to minimize the potential 

influence of confounding factors. Given the variability in approaches for reference station 

selection, and in the information documented within each bioassessment data base, a set of 

criteria was established for selecting appropriate reference locations for analyses in this study. 

Land use distribution was the primary consideration, based on the assumption that there is a 

reasonable correspondence between extent and intensity of urban and agricultural land uses 

surrounding a station and the level of non-point as well as point source influences on the stream 

(e.g., Paul and Meyer, 2001; Arnold and Gibbons, 1996). Other factors considered in selecting 

reference stations for analysis were the length of the data set, the presence of dams upstream of 

the station, the occurrence of sewage treatment plant discharges, and consistent application of 

appropriate sampling methods (see Appendix C).  

Land use composition among major categories such as urban, agricultural, forest, 

wetland, and barren, were obtained for a defined buffer area (1-km radius) around each sampling 

site using a Geographic Information System (GIS) (see Appendix C). Stations for all states were 
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initially screened at 1%, 2%, and 5% urban, and 5% and 10% agricultural land use levels. Final 

levels applied were 5% urban/10% agricultural in Maine and North Carolina, and 2% urban/10% 

agricultural in Utah. These values were selected in part based on practical considerations, 

specifically the need to not eliminate all stations with data that could be used for long-term 

analyses. These criteria are more conservative than those used in several southeastern states. 

Georgia, Alabama, and South Carolina apply land use criteria for selecting reference stations of 

<15% urban/<20% agricultural for high gradient streams, and <15% urban/<30% agricultural in 

low gradient streams (Barbour and Gerritsen, 2006). It will take additional analysis to determine 

on a more objective level whether these criteria are adequate to minimize confounding of climate 

change effects. 

It is reasonable and sometimes necessary to use less than “natural” conditions as a 

baseline for spatial comparisons. For example, accessibility of a site for frequent (e.g., annual) 

long-term sampling can be an important practical consideration. For example, the longest term 

reference station in Maine, 56817 (Sheepscot) is generally (though not always) categorized as an 

“A” station by MDEQ, but is surrounded by about 16% urban and 23% agricultural land uses 

(see Appendix C for characteristics of reference stations used in analyses for each state). Though 

higher than would be considered ideal for “unconfounded” analyses, the level of urban land use 

was stable over time (at about 16%), although forested conditions decreased from 84% to 57%, 

while the agricultural land use increased 0% to 23%. At Maine’s Station 57065, there was an 

increase from 0% to 16% urban land use, but a decrease from 4% to 0% agricultural land use. At 

Maine’s Station 57011, urban land use increased from about 4% to 9%, and agricultural use from 

0% to 18.5% with the changes coming from both forested and wetland uses. It is possible that 

such land use changes may have contributed to trends observed at these sites (Appendices C and 

E). It is recommended for all sampling stations, but especially for reference stations, that 

quantification of land-use categories be documented. This will support tracking changes in land 

uses over time (although land-use data are often only available at infrequent intervals), which 

will aid in separating this from degradation due to climate change effects (and other stressors). 

To supplement the spatial coverage of trend analyses from the limited number of 

individual long-term reference stations available in each state, we grouped other reference 

stations to form long-term data sets that could support climate change analyses. The intent was to 

subset regions based on major factors considered important in driving natural, and therefore 
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predictable, variation in aquatic habitat characteristics. Typical factors include climate zone, 

elevation, geology, and topography and are often considered well represented if areas follow 

level 3 ecoregions. We therefore tested groupings within level 3 ecoregions and at a more refined 

stage of level 4 ecoregions. We also defined regions for station groupings by physiographic 

province in some cases. We screened candidate stations within each defined area according to 

land use, absence of dams, and as having at least two or more years of data. We combined data 

from all stations within a group for trend analyses. Ordinations and correlation analyses for 

station groups in each state showed that samples within each station (different annual 

collections) tended to cluster more closely than stations within the group. Site differences were 

often greater than climate-related trends, and drove observed temporal trends if some sites in a 

group were sampled early in the period and some later.  

Within-group variation is an important result to consider, because in the biomonitoring 

context, reference conditions are often established not based on a single reference station, but on 

a population of reference locations that together reflect the range of natural variability for a 

region (Barbour and Gerritsen, 2006). Combining reference stations across major physiographic, 

geomorphic or climatological regions inflates the range of measured variation in biological 

parameters from predictable, natural sources (Barbour and Gerritsen, 2006). It is thus important 

to account for predictable, natural sources of variation. This will affect how many reference 

stations within a defined area must be sampled, how frequently they must be sampled, and the 

sampling duration needed to have the power detect climate change response trends. In the current 

study, groups of reference stations analyzed were typically not of sufficient duration to define 

statistically significant trends within the context of natural spatial and interannual variation. On 

the other hand, transfer of results on trends and other biological responses defined from 

individual long-term reference sites to the corresponding regions or states may be problematic, in 

that without sufficient spatial replication it is difficult to know whether the observed trends are 

representative of the region as a whole. 

4.2.1. Climate Change Vulnerabilities of Reference Stations 

Climate change influences reference station vulnerability through changes in biological 

communities at these stations. This study documents climate changes that have the potential of 

degrading reference station biological status in a manner that will make existing reference 
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stations more similar to non-reference stations, at least in some vulnerable regions (e.g., high 

elevation sites, head-water or low order streams). In addition, at non-reference stations, effects of 

climate change may be additive with other stressors, or interactions between climate change and 

other stressors may augment or ameliorate responses (Figure 4-1).  
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Figure 4-1. Conceptual model showing relationship between climate change trends and 
reference and stressed sites with an overlay of temporal variation on the trend (black line). 
“MDC” = minimally disturbed condition; “LDC” = least disturbed condition. 

With regard to documenting reference station condition and establishing a framework 

within which changes in condition can be judged, BCG (Davies and Jackson, 2006) captures a 

more subtle range of biological conditions that have regulatory significance and value compared 

to an “impaired/not impaired” decision approach. The associated levels provide a uniform 

framework within which the degree of degradation attributable to climate change can be 

characterized. The BCG also provides a more meaningful basis for characterizing existing 

reference conditions. The more numerous, subtle and well defined levels captured in the BCG 

delineate a meaningful and scaled framework within which the degree of degradation attributable 

to climate change can be characterized. Figure 4-2 shows that as cold-water-preference taxa are 

lost from North Carolina biomonitoring stations, the percentage of stations that are characterized 
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as excellent or good decreases. This climate change degradation of reference conditions will 

impact the stability of reference baselines and associated comparisons upon which management 

and regulatory decisions are base. A BCG would allow reference stations to be more accurately 

characterized, would support evaluation of reference station condition or drift over time, and 

would similarly support characterization of non-reference station changes over time (Figure 4-2). 

This affects the interpretation of the scope of response of reference communities to both climate 

change and conventional stressors and the interpretation of vulnerability of existing reference 

conditions to climate change. 
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Figure 4-2. Reference station drift (degradation of assessed site condition) over time at 
Blue Ridge Mountain ecoregion stations as cold-preference taxa are lost over time due to 
climate change. 

4.3. SYNERGISTIC EFFECTS BETWEEN CLIMATE CHANGE AND LAND USE 

Though slightly different in geographic scale, both climate and land-use change can be 

considered large-scale impacts (Hamilton et al. 2010b). Global climate change drivers are well 

described (IPCC, 2007). Land-use change is generally considered a landscape-scale stressor, but 
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is driven by global population growth (Nakićenović et al., 2000). Land-use changes, such as 

urban/suburban land development, have encroached on and impaired reference stations across 

the US. However, documentation of such problems has been sparse and likely has been handled 

on a local, case-by-case basis. 

The successful use of biomonitoring data for evaluating pollution impairment in the 

context of climate change is in part related to understanding synergistic effects between climate 

change and conventional stressors, and how they can be separated. These synergistic effects can 

impact approaches used for attributing causes through the stressor identification process (see 

USEPA, 2000). Synergistic effects between climate change and other stressors are increasingly 

documented (Clement et al., 2008; Collier, 2008; Kaushal et al., 2008).  

We examined the relative responses to climate change compared to land-use change 

(urbanization) through analyses of existing biomonitoring data (Appendix J). Hydrologic 

response variables play important roles in defining habitat conditions and structuring aquatic 

communities (e.g., Poff et al., 1997) and are responsive to both climate change and urbanization. 

Results show differences in the types of hydrologic variables (IHA, sensu Richter et al., 1996) 

that are likely to be most responsive to either climate change or urbanization effects. High flow 

metrics, such as flashiness, high-pulse-count duration, one-day maximum flow, and others, tend 

to strongly reflect urbanization, swamping inputs from climate change effects. In comparison, 

several low-flow metrics, such as 1-, 3- and 7-day minimum flows and low-pulse count, show 

responses to climate change effects more so than to land use (Appendix J). Where future climate 

change effects are small compared to land use, expectations are for more frequent, shorter, 

higher flows in urban-affected streams. Where future climate change effects are large compared 

to land-use effects, expectations are for more frequent, longer, lower flows. Accordingly, low

flow parameters should be selected as sensitive climate change indicators, and low-flow effects 

on biota are correspondingly expected to be most influential. 

We further evaluated the relative effects of climate change and urbanization on stream 

condition through benthic invertebrate responses, using the sampling results from the Piedmont 

regions of Maryland and North Carolina as a test case. EPT taxa were evaluated as the 

responding biological metric (see Section 2). EPT taxa respond to both high flow metrics 

(flashiness) and to low flow metrics. For example, extreme increases in frequency of low-flow 

pulses (>20/y) are associated with EPT taxa loss, though low-pulse count did not differ much 
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between the natural and urban streams in this analysis (Appendix J). There was a strong 

association of decreasing richness of EPT taxa with increasing flashiness (Figure 4-3, Appendix 

J), as well as confirmation of the greater flashiness of urban streams. 

 
 

 

 

All Streams
50 

45 

40 

35 

30 

25 

20 

15 

10

E
P

T
 T

axa 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

5  Natural
 Agriculture

0  Urban
 Other 

Stable Flashiness Flashy 

Figure 4-3. Relationship between richness of EPT taxa and flashiness (Baker’s index) of 
the stream for stream types in the North Carolina Piedmont. 

There is an apparent threshold response below minimum flows of about 15% in natural 

streams, where richness of EPT taxa is lower and less variable compared to higher flows, 

(Appendix J). In this component of the study, urban conditions were compared with natural 

stream conditions, and flow minima were more extreme in the urban streams. These results 

suggest that natural streams are more resilient to hydrologic changes within the range of recent 

past climate. Large changes in minimum or low flows may take much longer to become 

biologically meaningful, and in the shorter term, temperature effects may be more important. 

4.4. FUTURE VULNERABILITIES OF REFERENCE STATIONS TO LAND USE 

References stations are vulnerable to human-induced changes to the surrounding 

landscape. We evaluated current and future vulnerabilities of existing reference stations to 

urban/suburban development for three study states (Maine, Utah, and North Carolina), as well as 
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for Florida as a case study (Appendix J) representing a high level of population growth. Data on 

current and future land uses comes from the Integrated Climate and Land Use Scenarios 

(ICLUS) project (Bierwagen et al. 2010). Future land-use scenarios are consistent with IPCC 

Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines 

used in global climate models (USEPA, 2009a; Nakicenovic and Swart, 2000). The ICLUS 

scenarios consider different levels of population growth, with different assumptions about 

development patterns (USEPA, 2009a). The two most extreme scenarios are: A2, which has high 

population growth rates and business-as-usual development patterns; and B1, which has low 

population growth rates and compact development patterns. We used a total of 248 reference 

sites compiled from Maine, Utah, and North Carolina to examine their vulnerability to current 

and future land use. The number and distribution of reference stations for these states are 

discussed in earlier sections of this report and in Appendices E, F, and G. Florida DEP has about 

308 sampling locations, with 58 reference sites designated as “exceptional” (Figure 4-4). 

1008 
1009 

1010 
1011 

1012 

Figure 4-4. Florida’s biomonitoring sampling stations, including “exceptional” reference 
locations (light green dots), show in relation to current land use. 
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Urbanization affects stream conditions through alterations in hydrology and 

geomorphology, with typically increased loading of nutrients, metals, pesticides, and other 

contaminants; these effects are associated with increases in impervious surface (Paul and Meyer, 

2001). For the Florida case study, results of a broad spatial analysis in New England states of the 

relationship between human population density and Ephemeroptera (mayfly) taxon richness were 

used to estimate the degree of urbanization representing a threshold of impairment (Figure 4-5) 

(Snook et al., 2007). At low population densities, up to approximately 50 persons (~25 houses) 

per square mile, there are few detectable biological responses. From 50-500 people (25-250 

houses) per square mile corresponds to a degradation gradient, and above 500 people (250 

houses) per square mile, New England streams are degraded. Therefore, a threshold of housing 

density >25 houses per square mile was selected to indicate potential degradation. Using the land 

use composition within a 1-km (0.62-mi) radius buffer around each reference station, 

vulnerability was defined as >20% of the buffer with a land use at or above the threshold of 

housing density. 

For the analysis conducted for Maine, Utah, and North Carolina, urban and suburban 

(>0.6 units/acre, or about 384 per square mile) was used. However, a threshold of 10% of 

development within a 1-km buffer was used to reflect expectations for impacts to the biological 

communities from urbanization (Schueler 1994, Booth and Jackson 1997, Wang et al. 2001). 

These differences in thresholds may account for some of the differences in results between the 

evaluation of the 3 study state reference stations and the Florida case study. Given the low 

threshold of development used and the high population growth rates for Florida, we take the 

Florida results to represent a worst-case scenario. 

This analysis was done for several ICLUS scenarios to bracket a range of future 

projections, including the base case that approximates the current condition; the A2 scenario, that 

essentially represents a high estimate of population growth and development expansion; and the 

B1 scenario that represents a minimized estimate of population growth and compact 

development (USEPA, 2009a). 
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Figure 4-5. Relationship between human population density (i.e., degree of urban 
development) and Ephemeroptera (mayfly) taxon richness among six New England states 
(from Snook et al., 2007). 

Among the 58 “exceptional”-grade reference stations in Florida under year 2000 

conditions, 19% of the stations can be classified as vulnerable to land-use impacts (Table 4-2). 

That is, nearly 1/5 of Florida reference stations may already exhibit impacts from urbanization. 

Within the next two decades, more than one third of existing reference stations will be 

vulnerable, and by 2100, nearly half of current reference stations may be impacted by 

urbanization under the base case and A2 scenario. This level of vulnerability is significant. 

Figures 4-6 and 4-7 illustrate the distribution of this reference station land use vulnerability for 

the current base case, and for future (2100) projections of the base case, A2 and B1 scenarios. 

The spatial distribution of this vulnerability is broad. In Florida, most sampling stations are in the 

northern half of the state. Future projections of urbanization generally follow current patterns of 

development, with particularly dense future development projected for the northern half of the 

Florida peninsula (Figures 4-6 and 4-7). Sampling stations in these areas become vulnerable to 

future development, especially in the high population growth (A2) scenario (Figure 4-3, left 

panel), compared to the cluster of reference stations in northwestern Florida. The only reference 
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locations that appear to be protected from future land development are those largely surrounded 

by water, and/or those within government-owned or protected lands that cannot be developed. In 

Florida this represents about 17% of existing reference locations. 

Table 4-2. Percent of existing Florida reference stations (N=58, classified as “exceptional”), 
that have >20% developed land use (with 25 houses per square mile (9.65 houses per 
square kilometer) or more, categories 5-12 in the ICLUS data set) within a 1-km buffer 
surrounding the station, for current and decadal time periods through 2100. 

Scenario 
Year BC A2 B1 
2000 19.0% 19.0% 19.0% 
2010 36.2% 34.5% 36.2% 
2020 36.2% 36.2% 36.2% 
2030 37.9% 37.9% 36.2% 
2040 41.4% 39.7% 36.2% 
2050 44.8% 44.8% 36.2% 
2060 44.8% 44.8% 36.2% 
2070 44.8% 44.8% 36.2% 
2080 44.8% 44.8% 36.2% 
2090 44.8% 44.8% 36.2% 
2100 44.8% 48.3% 36.2% 

The results for Maine, North Carolina, and Utah show a somewhat lesser degree of 

vulnerability. Under current (2000) conditions, 22% reference locations in these three states have 

greater than 10% urban/suburban densities within a 1-km2 neighborhood (Table 4-3). Under the 

worst case (A2) scenario, future housing development increased that to 34% by 2100. The 

maximum amount of suburban and urban development within the 1-km2 neighborhood in 2000 

was 58%; this increased to 99% by 2050. The average amount of development increased from 

22% in 2000 to 28% in 2050 and 34% in 2100 using A2 scenario, while it leveled off at 26% 

using a lower population growth and higher development density scenario (B1) (Table 4-3). The 

results for Utah are difficult to interpret, and the projections not very meaningful, as the number 

of reference sites falling within the 10% development threshold as calculated for a 1-km2 

neighborhood was very small.  

Table 4-3. Percent urban and suburban development within a 1 km2 area surrounding 
reference sites, for all sites and for sites at or above the impact threshold of 10%. Number 
of sites is shown in parentheses. Scenario A2 has high population growth and business-as-
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usual development pattern; scenario B1 has low population growth and compact 
development pattern (USEPA 2009). 

Area 2000 A2 
2050 

A2 
2100 

B1 
2050 

B1 
2100 

Mean of 
reference sites 
(≥10% threshold) 

Combined 22% 
(35) 

28% 
(37) 

34% 
(45) 

26% 
(37) 

26% 
(37) 

Maine 23% 
(26) 

24% 
(26) 

30% 
(32) 

23% 
(26) 

23% 
(26) 

North 
Carolina 

20% 
(9) 

27% 
(9) 

40% 
(10) 

24% 
(9) 

24% 
(9) 

Utah 0% (0) 87% 
(2) 

64% 
(3) 

77% 
(2) 

77% 
(2) 

The specific patterns of reference station distribution and vulnerability to land 

development will vary among states, although there are widely applicable lessons from these 

results. The high level of current vulnerability to urbanization (about 20% in all states tested 

except Utah) highlights the difficulties in siting reference locations in many areas and the 

probability of encountering substantial existing urban influences, which impact baseline 

(reference) conditions. This evidence suggests that protection of reference stations is of 

substantial importance. Options for protection may differ regionally and include zoning changes, 

limitations to development within buffer zones of selected stream reaches, incorporation into 

land protection programs (USEPA, 2009b), or other sociological, economic, and/or political 

solutions. If alternatives for protecting reference locations are limited or costly, it may be that 

reference stations in already protected areas, such as national parks, other government lands, or 

in otherwise inaccessible areas may represent the only “protected” references. This is likely to 

leave many watersheds and regional ecotypes without good reference conditions for comparison. 

In Florida, this would reduce the ratio of reference sites to total sampling sites from 19% to 3%. 

If reference sites are too scarce, they will be unrepresentative. 
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Figure 4-6. Distribution of Florida reference stations (N=58, classified as “exceptional”), 
plus categories of developed land use from ICLUS. Red squares highlight current reference 
stations that in the future with scenario-associated land use change projected to 2100, will 
have >20% developed land use (with 25 houses per square mile or more, categories 5-12 in 
the ICLUS data set) within a 1-km buffer surrounding the station. Left panel is current 
(2000) land use distribution; right panel is the base case scenario in 2100. 

The need to protect reference locations is an important issue for the future of 

bioassessment. If reference stations become urbanized, the ability to detect climate change, and 

separate climate responses from conventional stressors in order to continue to manage resources, 

set permit limits, and meet CWA requires, may be hampered. It may become important to 

consider and promote more broad-based alternatives than just local or state-specific protections, 

such as regional cooperation in the establishment and monitoring of long-term fixed “sentinel” 

locations. The shifting baseline of reference condition demonstrates that both communication 

and understanding are immensely improved by measuring biological condition in comparison to 

pristine, undisturbed condition instead of to present-day reference. 
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Figure 4-7. Distribution of Florida reference stations (N=58, classified as “exceptional”), 
plus categories of developed land use from ICLUS. Red squares highlight current reference 
stations that in the future with scenario-associated land use change projected to 2100, will 
have >20% developed land use (with 25 houses per square mile or more, categories 5-12 in 
the ICLUS data set) within a 1-km buffer surrounding the station. Left panel is the A2 
scenario in 2100; right panel is the B1 scenario in 2100. See Figure 4-3 for the current 
(2000) condition for comparison. 

4.5. SENTINEL MONITORING NETWORK 

Results of this study have demonstrated the importance of accounting for climate change 

effects in order to maintain sound bioassessment decision making. The next step is to consider 

possibilities for augmenting existing programs to address this need. Section 5 discusses many of 

the typical characteristics of biomonitoring program and their inherent limitations with regard to 

detecting trends that might be associated with climate change. Approaches to address some of 

those limitations are discussed here.  

A monitoring network designed to detect climate-related changes needs to account for 

regional variations in climate, geology (including soils), topography, elevation, latitude, 

vegetation, etc. Such conditions often cross state and tribal boundaries. Therefore, this kind of 

monitoring network may require collaboration among states and tribes with regard to technical 

considerations (e.g., site selection, sampling methods) and funding. Regional and national 

support may be important to facilitate this process. 

Thorough coverage across ecoregions and other environmental variants would require a 

large network of sites. A modest initial effort for sentinel site monitoring could focus on highly 

vulnerable areas and watershed types. Since not all watersheds or community types would be 

represented by such selective establishment of a sentinel site monitoring network, the 

classification of conditions and transferability of bioassessment results will be integral for 

extrapolation to other areas (e.g., Allan et al., 1997; Gerritsen et al., 2000; Wu and Li, 2006).  

In order to separate climate change effects from other stressors, both reference and some 

portion of impaired sites should be measured over time; thus, sentinel sites should be established 

along the BCG and be anchored in reference conditions. This would support an analysis 

approach in which temporal trends at reference sites could be compared to temporal trends at 

impaired sites, in order to differentiate between climate effects and conventional stressors. 
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Different levels of stressor effects could also be compared and synergistic effects considered. It 

is possible that in a monitoring context, as opposed to a controlled study, synergisms between 

climate change and conventional stressor responses could not be fully partitioned. Inference 

using literature studies, especially through use of CADDIS and the stressor identification process 

(Suter et al., 2002; USEPA, 2000) would contribute to data interpretation in a weight of evidence 

approach. The efficacy of conducting long-term sampling along the BCG should be considered 

through interactions with state and tribal biomonitoring managers, consideration of avenues of 

funding support, and finally, through practical evaluation of existing opportunities for 

establishing such a sentinel site monitoring network in representative and vulnerable regions. 

If a sentinel site monitoring network along the BCG is infeasible, a less resource

intensive alternative would be to establish long-term sentinel sites only at high-quality reference 

locations. Lack of trend data from non-reference sentinel locations would present some 

limitations to separating climate change from other stressors responses. Selection of such 

locations would face some of the same difficulties as any reference selection effort conducted by 

individual states. However, the larger spatial scale and regional perspective necessary for 

implementation would offer opportunities to search for and select least-affected locations from a 

larger area and share results across jurisdictional boundaries.  

While typical bioassessment approaches include sampling watersheds on a rotating, often 

5-year basis, biomonitoring at sentinel sites should be considered on a regular, repeating basis, 

annually if possible. With less frequent data, temporal variations from interannual and cyclic 

climatic sources would greatly extend the time frame needed to describe climate change 

responses. 

Another component of sentinel site monitoring for climate change is the recommendation 

for continued monitoring at targeted locations, even if initial site selection is probability-based, 

rather than application of a probability-based sampling approach in which all sites are reselected 

each year. Probability sampling has important strengths in capturing the (often large) range of 

variability within a defined stratum, such as low-order stream reaches (Barbour and Gerritsen, 

2006; Hughes et al., 2000); it also provides valuable data about the status of our nation’s waters 

at any given time (Hughes et al., 2000; Paulsen et al., 1998). This is important for defining the 

range of condition within the stratum at any one time, but it requires replication (multiple 
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reference sites) within the stratum. There is also a high likelihood of never sampling the same 

location again. We found high among-site variability within ecoregions despite expectation that 

partitioning by ecoregion should control major predictable sources of variation. This maximizes 

the effects of “natural” site (spatial) variability on detection of temporal trends, and greatly 

extends the time it will take to discern climate change effects. This suggests a trade-off between 

gaining knowledge about regional status and knowledge about long-term trends. There is a valid 

consideration of whether detection of climate change patterns at a fixed location has meaning if 

it does not incorporate the real range of conditions that defines the stratum. However, replication 

of targeted locations within a region or stratum accounts for natural spatial variability. 

Combining some fixed with random sites in a pre-determined sampling pattern may be the most 

likely design that accomplishes both trend detection and representation (Urquhart et al. 1998). 

Many different groups are considering, or have already started, monitoring for climate 

change effects. If possible, collaboration among at least some groups, particularly among 

bordering states, would have many potential benefits. Some duplication of effort could be 

avoided, results could be integrated in a more meaningful way, and resources could potentially 

be saved. Collaboration would foster consistency across groups in types of data collected, as well 

as potential use of a common database. Efforts to discuss and establish a sentinel monitoring 

network might facilitate collaboration among existing efforts. A common vision of sampling and 

agreement on types of data that could be incorporated into a common database related to a 

potential climate change monitoring network could have a better chance of success. 
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5. CHARACTERISTICS OF EXISTING BIOASSESSMENT PROGRAMS 
RELEVANT TO DISCERNING CLIMATE CHANGE TRENDS  

There are some inherent qualities of biomonitoring data that limit the ability to define 

long-term trends. Limitations on the long-term trend analysis approach should be understood in 

the context of the nature of the data being analyzed, and the types of information needed about 

climate change responses in order to assess how state and tribal biomonitoring and biocriteria 

programs are likely to be affected in the future. 

5.1 SUFFICIENCY AND LIMITATIONS OF DATA TO DEFINE AND PARTITION 
LONG-TERM TRENDS 

One significant limitation is the small number of long-term monitoring sites available to 

support temporal analyses. As discussed in Section 2, the small number and limited distribution 

of long-term reference stations reduces the ability (1) to confirm regional trends, (2) assert the 

strength of any trends discerned, and (3) to compare biological responses between regions. 

Essentially, the very low number of stations with sufficient long-term data limits replication for 

testing climate change effects. 

The small number of long-term stations is largely a product of the focus of most state and 

tribal biological monitoring programs. Objectives of these programs typically include assessing 

the status, health, and integrity of aquatic ecosystems in response to Clean Water Act (CWA) 

requirements (Barbour et al., 2000). The basis for such assessments is the comparison of test 

locations to reference locations to detect community differences concurrently. Temporal patterns 

seldom figure into these spatial comparisons. Figures 5-1 to 5-3, show the spatial distribution of 

biomonitoring locations in Maine, North Carolina, and Utah, and illustrate that spatial coverage 

using all sampling sites can be relatively extensive. Total spatial coverage of stations represents 

the composite of the stations periodically re-sampled across major watersheds to assess condition 

of state-wide aquatic resources and list impaired stream reaches, plus occasional additional 

spatial efforts that may arise for evaluation of a particular discharge or other local impact. 
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Figure 5-1. Maine biomonitoring stations, with data durations by reference and non
reference locations. 
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Figure 5-2. North Carolina biomonitoring stations, with data durations by reference and 
non-reference locations. 
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Figure 5-3. Utah biomonitoring stations, with reference condition and non-reference 
locations. 

Despite the large number of stations, very few are sampled in more than one or a few 

years over the entire period of record. For example, Maine has at least 742 stations, but only 66 
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classified as reference locations (<10%) (Table 5-1). Only two of these have been sampled for 

more than a decade (Table 5-1), and only one of these for more than two decades. North 

Carolina’s biomonitoring program has been operating for two decades; still, only one reference 

station exists with more than 10 years of data (Table 5-1). The small number of reference 

locations with long-term data is a surprising but important finding that likely applies to many 

other biomonitoring data sets. 

Table 5-1. Average distribution of reference and total stations by state, 
categorized by duration of sampling. 

Years 
Sampled 

Maine North Carolina Utah Average 

Ref Total Ref Total Ref Total Ref Total % Ref 

1 to 4 57 696 89 2530 61 482 207 3708 5.6 

5 to 9 7 40 13 223 1 41 21 304 6.9 

≥ 10 2 6 3 33 4 26 9 65 13.8 

Total 66 742 105 2786 66 549 237 4077 5.8 

Another limiting factor for long-term analyses is that data for trend analysis must be 

selected from reference data sets to minimize contributions from conventional stressors (see 

Section 4). Only qualified reference locations should be used. In addition, climate change 

responses differ among regions (see Section 3). Partitioning by ecoregion often means there are 

few (or no) individual long-term stations available for analyses. 

A related factor is the actual length of the “long-term” data record. Reference locations in 

this study yielded some valuable results, but also many non-significant patterns. This suggests 

that the duration and data density from these stations borders on data sufficiency. As examples, 

the longest-term reference station in North Carolina, NC0109, had 11 years of data over a 21

year time span (1983-2003); the longest-term reference station in Maine had 23 years of data 

over a 23-year time span (1984-2006); and three long-term reference stations in Utah had 19 

years of data over a 21-year span (1985-2005, station 4927250 - Weber), 15 years of data over a 

20-year span (1985-2004, station 4951200 - Virgin), and 14 years of data over an 18-year span 

(1985-2002, station 4936750 - Duchesne). The sufficiency of data duration in combination with 

number of stations sampled and frequency of sampling is being further explored in subsequent 

work. 
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Data durations of about 15-20 years also appear in the literature as an apparent minimum. 

For example, analyzing an 18-year data set from a large number of streams in the UK, Durance 

and Ormerod (2008) found significantly increasing temperature trends and significant 

correlations of some invertebrate variables with temperature, although they concluded that water 

quality improvements confounded interpretation of results. Chessman (2009) found significant 

climate change trends in benthic invertebrate taxomonic families and trait groups within a 13

year data record in New South Wales, Australia. Daufresne et al. (2003) defined aquatic 

community trends in the Rhone River based on data durations of 20 (macroinvertebrates) to 21 

(fish) years. Although Daufresne et al. (2003) found several meaningful community patterns and 

showed statistically significant trends in temperature, trends related to flow parameters were 

generally not found to be significant based on the same duration of data. Two possibilities are 1) 

in the Rhone River there were no temporal trends in flow and/or no relationships between flow 

and invertebrate or fish communities; or 2) given the typically high variability of hydrologic 

variables, the 20 to 21-year duration of data was not sufficient to detect any trends. Murphy et al. 

(2007) examined relationships between climate variables and benthic invertebrate responses in 

England based on about 20 years of data, indicating that while multi-decadal data sets required to 

define climate-driven trends were rarely available for rivers, potential responses of biota to 

climate forcing can be estimated based on relationships between climate variables and biological 

indicators using past data. Even with a long-term data set, Durance and Ormerod (2008) 

discounted stream benthic assemblage changes that were correlated with long-term (18 years) 

temperature increases at sites in southern England because some of the faunal changes included 

taxa with traits (e.g., preferences for high flows, high dissolved oxygen) that were contrary to 

expected responses to climate-driven increases in stream temperatures. The existence of trends, 

by themselves, is insufficient to assert climate change impacts, but must be interpreted based on 

consistency with expectations for biological responses to climate change. 

One observation that stands out regarding the Maine, North Carolina, and Utah reference 

locations is that most of these have more frequent annual sampling than would be the case if they 

were only sampled on a “rotating basin” basis. Utah adopted a rotating basin sampling scheme as 

well as a probability-based station selection approach within the last decade (Utah DEQ, 2006). 

However, they maintain regular annual sampling at a small number of fixed locations with long-
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term historic records. Whether by formal decision or historic happenstance, some other states 

also have regularly sampled stations outside of rotating and/or probabilistic designs.  

5.2. OTHER BIOMONITORING METHODS CONSIDERATIONS  

Each of the states analyzed in this study use different collection methods. Utah collects a 

quantitative sample from riffle habitats during a September/October index period using the 

Environmental Monitoring and Assessment Program (EMAP) kick method (note: prior to 2006, 

samples were collected using the Hess method) (Utah DEQ, 2006). Maine uses artificial 

substrates (rock bags or baskets) to collect quantitative samples during late summer, low flow 

periods (July 1 to September 30) (Maine DEP, 2002). North Carolina uses several different 

collection methods, but for this study we focused on the standard qualitative, or ‘full-scale’, 

method. It is comprised of 2 kicks, 3 sweeps, 1 leaf pack sample, 2 fine mesh rock and/or log 

wash samples, 1 sand sample and visual collections (NCDENR, 2006). Abundance data is 

recorded as rare=1 (1-2 specimens), common=3 (3-9 specimens) or abundant (≥10 specimens). 

Ohio uses a modified Hester-Dendy multiplate artificial substrate sampler that is placed in

stream to colonize for six weeks between mid-June and late September (DeShonn, 1995). 

Some methods are likely to be more effective than others for certain applications (e.g., 

Flotemersch et al., 2006). Artificial substrates specifically placed to remain wetted for the entire 

colonization period may be less sensitive to shifts in hydrology. In Maine, rock baskets are 

placed in run habitats that will have sufficient water for the entire deployment period. If there are 

drought-like conditions that cause a loss of edge habitat, the rock baskets are less likely to reveal 

the potential loss of edge taxa. Even protocols that sample only riffles may be less likely to 

collect edge-specialized fauna. However, the multiple habitat protocol used in North Carolina is 

more likely to detect such shifts. 

It is difficult to define which sampling protocol is best suited for detecting climate change 

effects. Use of artificial substrates were favored for pollution detection on the premise that 

application of a uniform substrate eliminates the substrate variation among stations as a variable 

that would confound detection of community responses to a pollution discharge or other 

disturbance (e.g., Barbour et al., 1999; Cairns, 1982). At least in some regions, long-term 

changes in climate variables are expected to contribute to responses that can include drought or 

flood-related changes in flows and associated changes in nutrient loadings, sediment loadings, 

December 23, 2010 5-7 External Review Draft 



 

 

  

 

1335 

1336 

1337 

1338 

1339 

1340 

1341 

1342 

1343 

1344 

1345 

1346 

1347 

1348 

1349 

1350 

1351 

1352 

1353 

1354 

1355 

1356 

1357 

1358 

1359 

1360 

1361 

1362 

1363 

1364 

1365 

habitat availability, and other inter-related factors. Given these considerations, the ability to 

examine the full spectrum of naturally occurring biological community components may be 

advantageous. In-stream, multi-habitat sampling may be more likely to provide realistic 

estimates of abundance or richness of particular indicator taxa. On the other hand, there is a 

significant disadvantage to changes in sampling methods, due to the disruption it causes in 

temporal patterns that might otherwise be observed. Because of this, any consideration of 

changing sampling methods should at least be accompanied by a period of time in which both 

methods are applied simultaneously in order to develop translation models. It should be noted 

that such translational models may not always be effective or overcome inherent sampling 

biases. For example, if rock baskets almost never effectively collect edge taxa, then no factor can 

be defined that would translate multiple years of near-zero results into meaningful estimates of 

abundance. 

Because of considerations such as these that bear on the consistency of results, states 

have a vested interest in continued use of their own methods to assure that new data are 

meaningful to their program. Additional sampling might be considered in representative and/or 

especially vulnerable regions as an adjunct to standard biomonitoring methods. For instance, in 

streams with a high likelihood of transitioning from perennial to intermittent status, collection of 

samples from edge habitats could be considered.   

Another potential hindrance to effective detection of climate change trends is relatively 

low sampling effort and the lack of replication in station sampling. In most biomonitoring 

programs the concept of collection of replicate samples is relinquished in favor of collecting 

single composite samples. The composites can be either of multiple artificial substrates (e.g., in 

Ohio, 5 Hester-Dendy samples per station are composited and processed as a single unit 

(DeShon 1995)); or a single sample unit can be a composite of collections made in multiple 

representative habitats (NCDENR, 2006). In general, increasing the number of samples collected 

and composited for a site has been found to decrease variance among ‘replicate’ (similar) sites 

and increase the precision of characterizing the assemblage at the site (Cao et al., 2003; Diamond 

et al., 1996). Multi-habitat sampling, applied in many biomonitoring programs (e.g., Utah, North 

Carolina) is considered to yield representative, and therefore precise, samples (Barbour et al., 

2006; Hering, 2004). Though replication is considered necessary to determine the precision of 

the sampling method (Barbour et al., 2000), it is often only accomplished on about 10% of 
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collections (e.g., Stribling et al., 2008; Barbour et al., 2006; Flotemersch et al., 2006). However, 

with regard to understanding the significance and implications of climate change temporal 

trends, knowledge of spatial variation within a station (or stream reach), and between similar 

sites within a watershed or ecoregion, may be valuable. 

There are some environmental variables that are, or can be, measured along with 

biological samples to aid in interpretation of results. For example, a detailed assessment of 

substrate and related habitat condition, as is used in EMAP (Lazorchak et al., 1998), is valuable 

in differentiating habitat disturbance from other stressors. If and when biomonitoring programs 

consider climate change as an additional stressor, it becomes valuable to have good information 

on water temperatures and flows from biological collection sites. Existing sampling protocols 

usually include concurrent point measurements of temperature, and sometimes also of pH, 

dissolved oxygen, and conductivity, as these values are relatively easy to obtain with portable 

sondes. However, the analyses conducted in this study illustrate that point measurements of 

temperature are not a good measure of the stream conditions to which an aquatic community is 

exposed. They tend to include a large amount of variation from time of day as well as date 

during the seasonal index period when that measurement happened to be taken.  

In this study, the lack of long-term, site specific temperature and flow data impaired the 

ability to conduct weighted average modeling (or use of related approaches) to determine 

temperature or flow parameter preferences for many taxa. It also made it difficult to conduct 

simple trend and correlation analyses (see Sections 2 and 3). It would be beneficial to consider 

deploying in situ equipment to obtain continuous water temperature and flow measurements at as 

many climate change monitoring sites as possible. Though such equipment is widely available 

and much less expensive than it used to be, the sometimes severe resource limitations 

experienced by states and tribes may limit the extent to which this recommendation can be 

applied. Priorities could be set based on regional assessments of relative vulnerability to climate 

change. For example, a limited number of deployments could be done at reference locations in 

higher elevations, and/or in lower order streams. Such deployments also could be coordinated 

with implementation of monitoring at sentinel sites (Section 4). There is also high value in 

continued operation of USGS long-term flow and temperature gages. 
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6. CLIMATE CHANGE IMPLICATIONS FOR ENVIRONMENTAL 
MANAGEMENT 

6.1 IMPAIRMENT LISTINGS AND TMDLS 

6.1.1. Overview of impacts on impairment listings and TMDL development  

One of the central objectives of state programs for establishing a reference condition 

baseline and conducting ongoing biomonitoring at reference and non-reference locations is to 

detect locations, or stream reaches, that are sufficiently different from the established baseline to 

be considered impaired. The approach and specific criteria used to make impairment decisions 

are established by states and tribes, and vary among regions to reflect the appropriate range of 

natural variability (Barbour and Gerritsen, 2006). But the assumptions inherent in the almost 

universally applied reference comparison approach include that the stressors likely to impair 

streams and rivers within a region are accounted for within the sampling and analysis scheme 

applied, and that if a real impairment exists, it can be detected with a reasonable level of 

confidence. The concept that all stressors must be accounted for presents an unusual problem 

with regard to climate change effects, because climate change effects are “global”, so reference 

stations are equally at risk. This threatens the reference comparison paradigm. 

Results of this study reveal changes in biological indicators and within specific ecological 

traits groups that are reasonably attributable to climate change effects and are likely to interfere 

with impairment determinations. Sections 2 and 3 document changes in cold- and warm-water

preference taxa at reference stations due to climate-change-related trends in temperature and 

precipitation. These trends result in corresponding changes in biological metrics used by states, 

such as EPT taxa richness or abundance in the HBI index. The observed and projected changes 

in biological metrics are sufficient to downgrade reference station condition (Section 4). 

Degradation of reference station condition is essentially causing references stations to become 

more similar to non-reference stations, and diminishes the ability to detect impairment (Section 

4). Previous analyses presented preliminary evidence for this (USEPA, 2008). These findings 

imply that unless metrics are modified so that climate effects can be tracked and thresholds for 

defining impairment re-evaluated, degraded reference conditions will cause fewer stream reaches 

to be defined as impaired, at least in the most climate-vulnerable watersheds. This will lead to 

less corrective action and greater long-term degradation of stream conditions (see also Hamilton 

et al. 2010b). 
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When a stream segment is found to be impaired, total maximum daily loads (TMDLs) of 

pollutants are developed by states, and the cause(s) of the impairment are identified through the 

stressor identification process (USEPA, 2000; Suter et al., 2002). In permitting (e.g., the National 

Pollutant Discharge Elimination System (NPDES)), discharge limits must be set considering any 

existing TMDLs. Beyond the possibility of under-protection with fewer impairment listings and 

fewer requirements for TMDLs, there may be other direct climate change implications to TMDL 

development. Climate change scenarios show greater variability in runoff and flow, which may 

result in greater uncertainty in loadings expected from non-point sources. Critical low flows also 

drive TMDLs, and these may become uncertain and more difficult to predict. The identification 

of culpable stressors is also complicated by the effects of climate change on biological 

indicators. 

6.1.2. Approaches to evaluate impairment listings and TMDL development in the context 
of climate change 

The main approaches pertinent to preserving the ability to detect impairment concern 

climate change-related modifications of biological metrics, associated re-evaluation of 

impairment thresholds, and reference station classification and protection. These actions are 

directed at improving the ability to track effects of climate variables, compare these between 

reference and non-reference locations, and thus increase the information brought to bear on 

differentiating climate change from other stressors and detecting conventional stressor 

impairment. The stressor identification process, tailored to include detailed climate change 

information, would facilitate partitioning biological responses between climate change and other 

stressors. The paradigm for conventional stressor identification is based on spatial 

(reference/non-reference) comparisons, combined with weight-of-evidence evaluation of 

potential causes, augmented by research and other literature-based knowledge of major cause

effect expectations (Suter et al., 2002; USEPA, 2000). The need to partition climate change 

effects could add a relatively extensive time component to this framework if the process were to 

rely primarily on site-specific, long-term field data. However, it is impractical and undesirable 

from a decision-maker’s point of view to obtain this degree of detailed, long-term sampling for 

every case of impairment assessment. From a practical perspective, it also is likely to be outside 

of the level of resources available to most states or tribes for routine bioassessment sampling. An 
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alternative approach includes monitoring a more limited network of sentinel sites (Section 4.5). 

Documentation of trends for monitoring data, other aspects of weight-of-evidence evaluation of 

potential causes, and an expanded knowledge data base on biological responses to climate 

change could be included in an expanded stressor identification process.   

With regard to other vulnerabilities in the TMDL development process, there is a need 

for watershed-specific modeling to predict how flow dynamics change with climate, to provide 

support for estimating future changes in low flows, and to modify loading calculations and 

limitations accordingly. 

6.2. WATER QUALITY STANDARDS AND BIOCRITERIA 

6.2.1. Overview of impacts on the development of water quality standards and biocriteria 

Biological responses to climate change will likely impact water quality standards and 

biocriteria through shifts in baseline conditions. This study illustrates several avenues through 

which climate change is affecting stream communities in ways that have implications for 

biocriteria programs. Details are presented in Section 2, which discusses how trait groups, 

taxonomic groups, and to some extent, individual taxa appear to be responding over time to 

climate drivers, responding in ways that are predicable, and responding in ways that are 

consistent with expectations relative to climate change. Section 3 discusses implications of these 

changes to various MMIs and predictive models. The cascading effects of climate change-related 

trends in temperature and precipitation on watershed conditions, water quality, and aquatic 

biological communities, will lead to shifting, most often degrading, baseline conditions. 

Decreases in mean abundances and/or species richness of cold-preference or other sensitive taxa 

and trait groups, increases in warm-preference or other tolerant taxa and groups, and also 

increases in variability of these indicators drive reference sites to greater similarity with non

reference areas, as well as greater difficulty in establishing statistical differentiation (USEPA, 

2008). As a result, reference-based standards will be liable to progressive under-protection. 

By itself, climate change can be expected to alter some uses and their attainability, 

especially in vulnerable streams or regions. For example, some cold-water streams could take on 

cool-water characteristics, with declining abundances and/or richness of sensitive cold-water 

taxa, possible increases in warm-water taxa, and other changes potentially related to altered 
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hydrologic patterns. Regulated parameters such as temperature, dissolved oxygen, and ammonia, 

may also be sensitive to climate change effects, and their values may need to be adjusted relative 

to revised designated uses. 

6.2.2. Approaches to modify the development of water quality standards and biocriteria in 
the context of climate change 

There are numerous criteria, both biological and chemical, that are addressed in water 

quality standards, and which may be affected by climate change (Table 6-1). Biocriteria are of 

particular interest, as they tie closely to the indices and thresholds used to determine condition 

and impairment. The climate-related causes of drifting (degrading) baseline conditions cannot be 

directly controlled, but can be assessed, at least to the degree resources allow. The concepts that 

support this include clear documentation of reference conditions, tracking of changes in 

reference conditions over time, and to the extent possible, protection of reference conditions 

from other encroaching impacts, particularly land-use changes (Section 4). This may be extended 

to include repetitive regional monitoring of sentinel sites, carefully chosen to represent the best 

conditions of the most vulnerable regional watersheds (Section 4). Further efforts to address 

climate change impacts to standards would require examination of which water quality standards 

are resilient to climate change impacts and will remain protective, and identification of 

susceptible standards that may need adjustment.  

For watersheds that are found to be particularly vulnerable to climate change effects, 

including those that are characterized by particularly vulnerable trait groups, more refined 

aquatic life uses should be considered for application. Refinement of aquatic life uses can be 

applied to guard against lowering of water quality protective standards. Uses are designated for a 

stream segment based on conditions at similar reference stream segments, using information on 

habitat characteristic and associated biological communities, and potentially also consideration 

of economics and human-related conditions. Criteria are set to protect designated uses, and often 

differ between use levels. Application of refined aquatic uses could provide a greater number of 

more narrowly defined categories, which could accommodate potentially “irreversible” changes 

(e.g., increased temperatures driven by long-term climate change), but with sufficient scope to 

maintain protection, and also support anti-degradation from regulated causes. 
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Table 6-1. Variables addressed in criteria and pathways through which they 
may be affected by climate change (from Hamilton et al. 2009) 

Criteria Climate change impacts 
Pathogens Increased heavy precipitation and warming water temperatures may require the 

evaluation of potential pathogen viability, growth, and migration.   
Sediments Changing runoff patterns and more intense precipitation events will alter 

sediment transport by potentially increasing erosion and runoff.  
Temperature Warming water temperatures from warming air temperatures may directly 

threaten the thermal tolerances of temperature-sensitive aquatic life and result 
in the emergence of harmful algal blooms (HABs), invasion of exotic species, 
and habitat alteration. 

Nutrients Warming temperatures may enhance the deleterious effects of nutrients by 
decreasing oxygen levels through eutrophication (hypoxia), intensified 
stratification, and extended growing seasons. 

Chemical Some pollutants (e.g., ammonia) are made more toxic by higher temperatures, 
and also by pH, which may change as a result of climate change. 

Biological Climate changes such as temperature increases may impact species distribution 
and population abundance, especially of sensitive and cold-water species in 
favor of warm-tolerant species including invasive species. This could have 
cascading effects throughout the ecosystem. 

Flow Changing flow patterns from altered precipitation regimes is projected to 
increase erosion, sediment and nutrient loads, pathogen transport, and stress 
infrastructure. Depending on region it is also projected to change flood 
patterns and/or drought and associated habitat disturbance. 

Salinity Sea level rise will inundate natural and manmade systems resulting in 
alteration and/or loss of coastal and estuarine wetland, decreased storm 
buffering capacity, greater shoreline erosion, and loss of habitat of high value 
aquatic resources such as coral reefs and barrier islands. Salt water intrusion 
may also affect groundwater. 

pH Ocean pH levels have risen from increased atmospheric CO2, resulting in 
deleterious effects on calcium formation of marine organisms and dependent 
communities and may also reverse calcification of coral skeletons. 

Climate change effects that contribute to degradation of water quality and biological 

resource condition bring into question how antidegradation policies can be managed considering 

the additional influences of climate change. High quality water bodies may be most vulnerable to 

climate change degradation, making application of antidegradation policies in vulnerable water 

bodies important. Management approaches and special considerations for implementation of 

antidegradation policies may need attention. In addition, the application of use attainability 

analyses (UAA) on vulnerable water bodies may be pertinent for characterizing climate change 

effects. 
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7. CONCLUSIONS 

Climate change will affect many of the components of bioassessment programs, 

including assessment design, implementation, and environmental management. Implementing 

the recommendations derived from the results in this study can improve the resilience of 

bioassessment programs and ensure that management goals can be met under changing climatic 

conditions. These steps can help manage the risks associated with not meeting goals, even 

though the magnitude and timing of climate change effects on aquatic resources is uncertain. 

There are four main sets of recommendations from this study specific to adaptations of 

biomonitoring programs: 

1.	 Multi-metric indices should be revised to reflect the sensitivity of taxa and trait groups to 

climate change effects; predictive models should also reflect these changes in indicators 

and periodically revise the expected community composition used in the analysis. At 

present, the most accessible information relates to temperature sensitivities and 

preferences; however, sensitivities to changing hydrologic conditions should be pursued 

in the future. 

2.	 A monitoring network to detect climate change effects should be set up, at least for the 

most climate-vulnerable regions. This network will need to be more comprehensive 

spatially and sampled more frequently than current bioassessment sites. Detecting climate 

change at these monitoring sites requires that they are protected from other stressors. 

3.	 Abiotic data needs to be collected more frequently and at more sites; a monitoring 

network to detect climate change effects should incorporate abiotic data collection as 

well, including water temperature and flow. The value of better water temperature and 

flow data is great, and consideration should be given to deploying in situ temperature and 

flow meters. 

4.	 TMDLs and water quality standards should be examined to ensure that these remain 

protective of aquatic life uses under changing climatic conditions. 
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We have some additional recommendations for further study and collaboration that 

would enhance our ability to track climate change effects and separate these from other stressor 

responses in the context of biomonitoring: 

1.	 The use of thermal-preference metrics for detecting climate-related trends should be 

further explored. Monitoring of thermal-preference metrics will increase the probability 

of detecting community responses to warming trends and reduce the likelihood that they 

will be obscured by taxonomic variability. 

2.	 The listing lists of cold- and warm-water-preference taxa developed in this study should 

be refined and extended to more states and regions. Refinements can be made by using 

continuous water-temperature data instead of instantaneous water-temperature data, by 

calculating propensity scores to help improve the robustness of the analyses (Yuan 2010), 

and by using species-level OTUs for genera in which differences in which species-level 

thermal preferences are known to occur. 

3.	 Continue to further our knowledge of traits and how they relate to climate change. More 

information is needed about which traits are most important in the context of climate 

change, the influence of each trait on an organism’s ability to adapt, and which 

combinations of traits are most adaptive to particular environmental conditions (Stamp et 

al. 2010). A key component of furthering the traits-based framework will be expansion 

and unification of existing trait databases (Statzner and Beche, 2010). 
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APPENDIX A 
___________________ 

Basic Evidence for Climate Change Effects: 

Long-term Trends in Annual Air Temperature, 

Precipitation, and Water temperatures 

There is reasonable evidence of climate change effects on both terrestrial and aquatic 

biological assemblages at various levels, including changes in ecosystem process, community 

composition, phenology of populations, number of reproductive cycles, evolutionary adaptations, 

and genetic selection (e.g., Parmesan and Galbraith, 2004; Root et al., 2003; Poff et al., 2002; 

Walther et al., 2002). More recently, there are also documented responses in freshwater 

ecosystems (Chessman, 2009; Buisson et al., 2008, Hiddink and Hofstede, 2008; Collier, 2008; 

Durance and Ormerod, 2007; Daufresne and Boet, 2007).  

Stream water temperature regimes will be altered by air temperature increases and 

modified by other influences (Cassie et al., 2006; Mohseni et al., 2003; Daufresne et al., 2003; 

Hawkins et al., 1997). Temperature regimes determine the distribution and abundance of aquatic 

species through temperature tolerances and evolutionary adaptations, along with competitive 

interactions, effects on food supply, and other factors (e.g., Matthews, 1998; Hawkins et al., 

1997; Vannote and Sweeney, 1980; Sweeney and Vannote, 1978). Changes in prevailing 

temperature regime, as well as climate change-associated increases in variability of temperature, 

may have various biological effects.   

Evidence for climate change effects can be pursued within both abiotic (e.g., temperature, 

precipitation, flow) and biotic components of the environment (Figure A-1). Examples from each 

category (climate change projections, stream changes, ecological responses) were examined for 

existing evidence of climate change effects. 
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Figure A-1. Mechanisms linking climate changes with streams.  

 

A.1 Trends and Variability in Annual Air Temperature and Precipitation using PRISM  

 One way to detect whether climatic changes have occurred in a region that could have 

implications for aquatic organisms is to examine air temperatures. There is a general 

correspondence between air and stream temperatures, though the magnitude and seasonal 

patterns of changes in stream water temperatures are likely to vary regionally, due to factors 

including water source influences, watershed characteristics, and season (Caissie, 2006; 

Daufresne et al., 2003). Stephan and Preudhomme (1993) estimated a linear relationship (factor 

of 0.86 in ºC) between weekly average water and air temperatures for eleven streams in the 

Mississippi River Basin; and a similar linear relationship has been applied by others (e.g., Eaton 

and Scheller, 1996). However, Mohseni et al. (2003) suggest the relationship between air and 

water temperatures is better explained by an S-curve, such that at higher air temperatures, stream  

temperature increases level off due to evaporative cooling. 

Below are plots of Parameter-elevation Regressions on Independent Slopes Model 

(PRISM) (PRISM Climate Group, Oregon State University, Corvallis, Oregon; 

http://www.prismclimate.org, data ) mean annual air temperature values1 at biological sampling 

sites in each of the three states examined (Maine, Utah, and North Carolina). PRISM uses a 
                                                            
1  maximum and minimum air temperature values were averaged to derive what we refer to as 
mean annual air temperature.  

http:http://www.prismclimate.org
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digital elevation model and point measurements of climate data to generate estimates of annual, 

monthly, and event-based climatic elements.  

Annual air temperatures in these states have increased gradually from 1974 and 2006. 

Stations in Utah showed the strongest trend and experienced the greatest increase in air 

temperature (about 2 oC, r2=0.42) (Figure A-1b), with Maine and North Carolina showing 

weaker trends (about 1 oC, r2=0.15 and r2=0.11, respectively) (Figure A-2a and A-2c). Absolute 

air temperatures within each state differed by ecoregion, but the change in air temperatures (e.g., 

the increasing trends) were similar across ecoregions. Maine had the greatest difference, where 

the Northeastern Highlands ecoregion had a stronger upward trend than the other two ecoregions 

(r2=0.23 versus r2=0.12 and 0.13) (Figure A-2a). This ecoregion is at a higher elevation than the 

other two as well. 

Plots of annual precipitation patterns from PRISM data are also displayed below. Trends 

in those patterns were highly variable and were not significantly correlated with year in any of 

the states (r2 values ranging from 0.004 to .01; see figure A-3). The amount of annual 

precipitation across ecoregions within a state often varied quite a bit. For instance, the mountain 

ecoregions in both Utah and North Carolina had higher annual precipitation than the plateau or 

coastal regions (true also for Maine, but to a lesser extent) (Figure A-4). However, mean annual 

precipitation values in all ecoregions were highly variable over the 30 years analyzed (Figure A

5). 

From 1974 to 2006, fluctuations between years in temperature and precipitation have also 

been highly variable. However, in Utah, the differences between consecutive years (i.e., current 

year minus previous year) in both air temperature and precipitation have declined. Precipitation 

showed a stronger trend in this than temperature (r2=0.12 temperature, r2=0.28 precipitation) 

(Figures A-6b and A-7b). Unlike Utah, the trends in inter-annual climate variability in Maine and 

North Carolina showed almost no trend for both annual air temperature and precipitation. 
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Figure A-2. Plots of PRISM mean annual air temperature (°C) values (averaged across all 

stations) for Maine (a), Utah (b) and North Carolina (c).  
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Figure A-3. Plots of PRISM mean annual air temperature (°C) values (averaged across 
each major ecoregion) for Maine (a), Utah (b) and North Carolina (c). 
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  Figure A-4. Plots of PRISM mean annual precipitation (inches) values (averaged across all 

stations) for Maine (a), Utah (b)_and North Carolina (c).  
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Figure A-5. Plots of PRISM mean annual precipitation (inches) values (averaged across 
each major ecoregion) for Maine (a), Utah (b) and North Carolina (c). 
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Figure A-6. Trends in Climate Variability - PRISM Annual Air Temperature. Values 
represent the absolute difference between average PRISM mean annual temperature 
values (current year - previous year) for all stations in Maine (a), Utah (b) and North 
Carolina (c). 



 

 

 

 

 

 

 
 

 

 

 

105 

106 

107 

108 
109 
110 
111 
112 

Figure A-7. Trends in Climate Variability - PRISM Annual Precipitation. Values 
represent the absolute difference between average PRISM mean annual precipitation 
values (current year - previous year) for all stations in Maine (a), Utah (b) and North 
Carolina (c). 
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A.2. Long-term water temperature trends at USGS gage stations 

Data from USGS gages with long-term water temperature records (30 years) were 

compiled. Initially a screening process, outlined in Figure A-8, was applied to minimize the 

likelihood of confounding effects (e.g., sewage treatment plant discharges, heavy urban/suburban 

development, effects of dam releases), or temporal discontinuities from methods or data quality 

issues. However, screening criteria had to be relaxed in certain regions because stations were not 

meeting all the criteria. To expand stream site coverage nationwide, sites that did not meet all of 

these criteria had to be added to the list (i.e. Colorado River sites were used even though they are 

higher order and have dams, but this was the best data available for this region). Data were 

downloaded from the USGS real-time water data website: http://waterdata.usgs.gov/nwis/rt. 

About 25 stations were evaluated for trends. Plots of seasonal means, minimum, and maximum 

temperatures were developed to partition seasonal variation when checking for long-term 

patterns. Summer temperatures generally showed greater trends, and were used to evaluate rates 

of temperature change per 10-year period at 23 of the stations (Table A-1).    

USGS stations with long term (~30 years) temperature data (~138 stations) 

Screen by data quality 
data calculated as mean/max/min rather than instantaneous reading, other 

temperature in fahrenheit (not mixed with celsius) 
no abrupt changes (e.g., flagging uncorrected gage relocations, etc) 

Screen for nationwide geographic distribution 

Screen by land use and 
no treatment plants <5 mile 

no upstream Dam
stream order (<=5) 

low urban land uses 

Final stream sites evaluated 

Figure A-8. Flow chart showing the screening process that was followed when determining 
which USGS stations to use in the water temperature trend analyses.  

http://waterdata.usgs.gov/nwis/rt


Table A-1. Summary of results from water temperature trend analyses at 23 USGS stations that met the screening criteria. 
Rates of temperature (oC) change per 10-year period were evaluated at 23 of the stations.    

Site # Stream Name   Stream 
Order 

NPDES Land Use State TempΔ/ 
10year  



 R2  

 2423130 Cahaba River 3 no  FOR/AG (URB) AL  0.73  0.024 

 10339400 Martis Creek 3 no  FOR CA   0.28  0.02 

 7086000 Cache Creek 2 no  FOR CO   1.48  0.151 

 9169500 Dolores River 5 no     CO   0.93  0.05 

 2266300 Reedy Creek  3 no  URB  FL  0.3  0.081 

 5474000 Skunk River  6 no  FOR IA  0.25  0.006 

 13340600   Beaver Creek 4 no     ID  0.4  0.032 

 3354000 White River 5 no  AG  IN  0.32  0.017 

 1600000 North Branch Potomac River  5 no     MD  0.5  0.013 

 1021050 Saint Croix River  6 no  URB/FOR ME  0.39  0.02 

 12363000 Flathead River 6 no  AG (URB) MT  1.36  0.17 

 2077200 Hyco Creek  3 no FOR  NC   0.7  0.192 

6338490 Missouri River 1 no  GRASSLAND ND  5.09 0.508 

5056000 Sheyenne River  4 no  GRASSLAND ND  0.41 0.013 

5058700 Sheyenne River  1 no  GRASSLAND ND  0.43 0.018 

 1466500 McDonalds Branch 1 no  FOR NJ   0.33  0.03 



     

        

     

    

     

     

  

1428500 Delaware River  6 no FOR NY 0.42 0.019 

14138870 Fir Creek 2 no OR 0.38 0.059 

14372300 Rogue River 6 no FOR OR 0.16 0.011 

2160700 Enoree River 5 no FOR (urb) SC 0.5 0.04 

8123800 Beals Creek 5 no Shrub TX 0.46 0.018 

8181500 Medina River 5 no AG TX 0.7 0.095 

408000000 Middle Branch Embarrass River  3 no AG WI 0.96 0.03 
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Stations in Utah, Maine and North Carolina were of particular interest because biological 

data from these states were analyzed for climate change effects. Summer temperatures have 

increased gradually at stations in each of these three states (Figures A-9 to A-11). Hyco Creek in 

North Carolina has shown the greatest increase in daily maximum temperature (from about 23 to 

25°C over about a 40 year period, r2=0.192). This may be influenced by stream size, as Hyco 

Creek is a 3rd order stream, while the St. Croix in Maine and the Colorado in Utah are 6th order 

or higher. 

Figure A-9. Summary of daily maximum temperature trends for July and August data 
from USGS Gage 9180500 on the Colorado River near Cisco, Utah. 
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Figure A-10. Summary of daily maximum temperature trend for summer data from USGS 
Gage 1021050 on the St. Croix River at Milltown, Maine. 

August 14, 2009 4‐2 Internal Review Draft 

Around the country, temperature responses are quite variable, though long-term  

increasing water temperature trends are observable in many rivers and streams (Table A-1). 

Rates of temperature change per 10-year period for 23 stations in 18 different states range from  

5.09 degrees in 10 years in a 1st order reach of the Missouri River, North Dakota (r2 = 0.5), to 

0.25 degrees in 10 years in a 6th order reach of the Skunk River, Iowa (r2 = 0.006). Results varied 

across stations. The average rate of increase per 10-year period was 0.76 degrees. Similar 

increases in stream and river water temperatures over recent decades have been documented 

across the US (Kaushal et al. 2010) and in Europe (e.g., Webb and Nobilis (2007). 
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Figure A-11. Summary of daily maximum temperature trend for summer data from USGS
 
Gage 2077200 on Hyco Creek, North Carolina.
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A.3 Benthic Macroinvertebrate Inferred Temperature 

Annual water temperature values for selected sites were inferred based on relative 

abundance and temperature optima data for macroinvertebrate taxa that occurred at each site. 

The temperature optima values used in these calculations were derived from weighted averaging 

or maximum likelihood modeling on appropriate subsets of the state biomonitoring data 

(Appendix D). The “benthic inferred temperature” for a station is then calculated as another 

weighted average, taking model results of temperature optima for each taxon occurring at a 

station, multiplied by the abundance of that taxon, with those products summed over all taxa at 

the station, and divided by the sum of taxa abundances. Questions that were addressed using this 

approach include whether benthic communities reflect water temperatures at the time of 

collection; and whether long-term changes in inferred temperatures provide evidence of benthic 

community changes over time related to temperature. 

Most of the long-term stations within ecoregions that were tested showed slight to 

distinct increasing trends in benthic inferred temperatures over time, though not all the trends 

were significant. In Maine, inferred temperatures for Station 56817, a long-term but low 

elevation station in the Laurentian Hill and Plains ecoregion, showed a gradual upward trend 

since 1984 (Figure A-12). A steeper upward trend was evident at the selected Maine East Coast 

region reference sites, which included some higher elevation locations (Northeast Highlands 

ecoregion) (Figure A-13). There is no real pattern for the group of relatively low elevation sites 

in the Maine Central Interior biophysical region (Figure A-14). The greater inferred temperature 

responses are evidence of climate change increases in temperature, with greater apparent 

responsiveness in higher elevation locations. This is consistent with findings of greater climate 

change effects at higher elevation areas based on other biologic metrics (Section 2). 

The plot of inferred temperatures for multiple stations across all three ecoregions in 

North Carolina (excluding the coastal plain) showed a gradual temperature increase since 1994 

(Figure A-15), though the trend with year was not significant. The benthic inferred temperature 

trend at three reference stations in Utah (sampled in October-November) showed a gradual, but 

statistically significant, increase (Figure A-16). The rate of increase is equivalent to 

approximately 3o C in 25 years. In the plots in which multiple sites were grouped together, site-

specific differences were often evident. In all of these cases, the close relationship between the 

August 14, 2009 4‐4 Internal Review Draft 



             

 

 

benthic inferred temperatures and the field-measured water temperatures shows that the approach 

of using benthic invertebrate occurrence and abundance coupled with temperature preferences is 

a reliable means of estimating water temperature at the time of collection. More importantly, it 

provides evidence of benthic community changes over time related to long-term changes in 

temperature. 

 

Figure A-12. Benthic macroinvertebrate inferred temperature trend for Maine Site 56817.  
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Figure A-13. Benthic macroinvertebrate inferred temperature trend for selected reference 
sites in the Maine East Coast region. 
 
 

 

 

Figure A-14. Benthic macroinvertebrate inferred temperature trend for selected sites in 
the Maine Central Interior biophysical region. Note that Station 57040 has a statutory class 
of AA but its use in this analysis is questionable because of its proximity to a Superfund 
site.  
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Figure A-15. Temperature inference model for multiple full-scale samples in North 
Carolina.  

 
Figure A-16. Benthic macroinvertebrate inferred temperature trend for selected reference 
sites in Utah. Only samples collected in October and November were used in these 
calculations. 
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APPENDIX B 
___________________ 
Data preparation and management 

The purpose of this appendix is to provide detailed information on how the state databases were 
selected, what collection and assessment methods are used by each of the states, and how the 
data for each of the states were prepared for analysis.  

B1. Selection of the 4 state databases: Maine, North Carolina, Ohio and Utah 
B2. State collection methods 
B3. Database Preparation 
B4. Discussion 
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B1. Selection of the Four State Databases: Maine, North Carolina, Ohio and Utah 

Four state benthic macroinvertebrate and/or fish databases were selected for the regional 

climate change pilot studies. Overall criteria for selection of existing state data sets were to 

include representatives of a distribution of regions around the country that would reflect different 

climatic, geographic, and ecological zones, as well as different ranges of future climate change 

projections. We considered state programs that have been well-established for the longest times 

and would have long-term data bases with consistent methods and strong quality control (QC). 

Additional rationale for the final selections include: 

Maine. Maine has a benthic macroinvertebrate dataset that is long-term with consistent 

methods, and with repeat sampling at some locations (i.e. one site has over 20 years of data). It is 

in an area with regional climate change modeling and is expected to show sensitive responses to 

climate change given its northerly location. 

North Carolina. North Carolina captures the unique expectations for climate responses 

in the southeastern region. The North Carolina invertebrate data set is long-term, with consistent 

methods and good quality control (QC).  

Utah. Both the Utah and New Mexico datasets were strongly considered for analyses in 

the western/southwestern region of the country. Utah was selected because it had more long-term 

repeat sampling (up to 19 years of data over a 21 year time span) and had a better distribution of 

sampling locations. A shortcoming of the Utah data was that (unlike the New Mexico data) most 

of the historic data set (i.e., older than about the last 8 years) had only recently been entered into 

an electronic format from hard-copy data sheets and had not been QC’d or previously analyzed 

as a unified long-term data set.  

Ohio. Both the Ohio and Wisconsin datasets were strongly considered for analyses in the 

Midwestern region of the country because they both have long-term fish data in addition to 

benthic invertebrate data. Wisconsin is expected to show shifts between cold- and cool- or warm

water fauna. However, it was not clear that collection and reporting methods for the Wisconsin 

fish data were standardized. Because Ohio has a long-term fisheries dataset with standard 

methods, and had long-term benthic data as well that was already being analyzed for long-term 

trends, it was selected. 
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B2. State Collection Methods 

Each of the four states uses different benthic macroinvertebrate collection methods. Utah 

collects a quantitative sample from riffle habitats during a September/October index period using 

the EMAP kick method (note: prior to 2006, samples were collected using the Hess method). 

Maine uses artificial substrates (rock bags or baskets) to collect quantitative samples during late 

summer, low flow periods (July 1 to September 30). North Carolina uses several different 

collection methods and collects samples throughout the year, but for this study the focus was on 

summer (June through September) samples collected using the standard qualitative (‘full-scale’) 

method, which is comprised of 2 kicks, 3 sweeps, 1 leaf pack sample, 2 fine mesh rock and/or 

log wash samples, 1 sand sample and visual collections. Ohio collects quantitative 

macroinvertebrate samples using a modified multiple-plate Hester Dendy artificial substrate 

sampler. A routine sample consists of a composite of five samplers that are colonized for a 6 

week period that normally falls between June 15 and September 30. In addition to the artificial 

substrate, a qualitative sample is taken from all available natural habitats within the reach. When 

sampling for fish, Ohio uses pulsed direct current electrofishing techniques. Depending on 

stream size, crews either use headwater, wading or boat site protocols. 

B3. Database Preparation 

Biomonitoring data from Maine, North Carolina, Utah and Ohio were compiled into 

Ecological Data Application System (EDAS) databases, which are custom database applications 

that are used with MS Access. The data from Maine were taken from Maine’s existing 

Oracle/Access database (EGAD). North Carolina data were provided in various formats (MS 

Excel and MS Access). Data for Utah were obtained from STORET. For Ohio, data were 

originally obtained from STORET; however, interactions with Ohio EPA revealed that data 

generation, data base development and management, as well as ongoing analyses for Ohio are 

conducted by Ed Rankin and Chris Yoder of Midwest Biodiversity Institute (MBI). Therefore, 

the additional data manipulation and analyses needed for this study were conducted by MBI 

under subcontract to Tetra Tech. 
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B3.1 Data screening 


Data were screened to minimize chances of detecting false trends. Preliminary iterative 


data summary and screening procedures included: 


1. Tabulating numbers of samples by station (e.g., station name, station ID number, and/or 

sample ID number) and date. Results were examined for consistent number of samples by 

station/date and for breaks in sample collection at stations across years. Problems 

discovered through this approach included changes over time in collection and/or 

reporting of replicates; and errors or changes in station naming that resulted in data for 

the same location appearing under different station names.  It also helped identify 

locations with long-term data records. 

2. Tabulating total abundance and total number of taxa by station and collection date. 

Results were examined for discontinuities in magnitude or trends in values between 

stations and across dates. Problems discovered through this approach included changes in 

reporting of abundances (e.g., from number per sample to number per square meter; 

whether replicates were averaged, summed, or reported separately); and changes or errors 

in whether sub-sampling was applied during sample analysis and how it was accounted 

for in the data. 

3. Tabulating taxa (at the lowest levels reported) by collection date. For these, either taxa 

abundance or occurrence was tabulated, and these were either averaged over all stations 

within the state, or within each ecoregion and/or other appropriate subset (e.g., river basin 

or watershed). For this purpose, the tabulations of taxa were placed in phylogenetic order, 

and some higher-level phylogenetic structure (e.g., order and family names, or others as 

needed) was included for reference. Results were examined for many types of patterns, 

including: 

a. changes in taxonomic naming over time (e.g., changes in genus or higher level 

names, changes in placement within families). This not only revealed changes in 

systematics over time, but also caught changes in taxonomists and/or labs used to 

analyze samples. 
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b. changes in level of attribution over time (e.g., increasing use of species names in 

recent years where individuals were typically left at the genus or family level in 

earlier samples); 

c. changes in other types of naming conventions (e.g., changes in level of placement 

for taxa such as water mites). 

Problems identified through these procedures included extensive changes in taxonomic 

knowledge and systematics over the decades of sample analysis. For illustration, one 

example is changes in the mayfly genus Ephemerella, including changes in the inclusion 

of various species of Ephemerella between Ephemerella and Drunella. In addition, we 

found many instances of changes in the higher-level groups under which various taxa 

would be reported, so that in the data base the same genus (or species, or family) would 

appear in more than one place. The effect of this was that these would act like separate 

taxa when a taxa ID name or number was invoked for trend analysis.  Many associated 

corrections were applied to the phylogenetic structuring and naming conventions in the 

data bases. In many cases, changes in taxonomic naming of genera and/or species, or 

greater prevalence of species identifications in recent years, required standards to be set 

for summing species back to the genus level (or similar procedures at other levels), or 

for combining two or more genera that cannot always be reliably separated. This type of 

correction falls into the category of developing ‘Operational Taxonomic Units” (OTUs), 

and is discussed in more detail below. 

4. Tabulations of station descriptive data, to identify reference locations and any data 

documented in support of reference station status. 

5. Tabulations of ‘ancillary’ environmental data, such as temperature, water chemistry, 

substrate characteristics, habitat characteristics, by station over time. These results were 

compared for concordance with biological data. 

6. Data also were screened for changes in sampling methods over time and/or between 

stations. 

We used Non-metric Multidimensional Scaling (NMDS) to evaluated whether the 

database ‘fixes’, and in particular the taxonomic corrections and application of OTU rules, were 
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effective in minimizing changes over time due to taxonomic identification procedures rather than 

actual community changes. NMDS is an ordination that takes the taxa in the samples and shows 

in ordination space how closely related the samples and stations are based on their species 

composition. Grouping variables (i.e. year, month, collection method, taxonomy lab, ecoregion, 

watershed, etc.) can be overlaid to look for trends. The NMDS ordinations were performed only 

on reference sites in order to eliminate differences due to other disturbances. The NMDS 

ordinations were run before and after generating genus level OTUs. Patterns were examined for 

distinct shifts that might indicate changes in taxonomists or labs during the sampling period of 

record, as well as ineffective OTU procedures (see results below). 

B3.2 Development of operational taxonomic units (OTUs) 

The intent of OTUs is to exclude ambiguous taxa from analyses (e.g., Cuffney et al., 

2007) and include only distinct/unique taxa. Since a complete and correct master taxa list is 

required before OTUs can be established, the master taxa lists in each of the databases were first 

verified through several iterative procedures (see above). Next, three levels of OTUs were 

established:  lowest taxonomic unit (generally species), genus and family. Rules were developed 

based on a general procedure of Remove Parent / Merge Children (RPMC) (retain the Child taxa 

(finer level of detail) and remove the Parent taxon or merge the Child taxa into the Parent taxon). 

According to Cuffney et al. (2007), this appears to be the most robust method for retaining taxa 

richness and abundance information for further analysis. All decisions were data set dependant. 

Rules were created on the dataset as a whole and then applied to individual samples prior to 

analysis. The last step in the process was to manually review the list of OTU designations and 

make final corrections where necessary.  

B3.2 Utah 

Data for Utah were obtained from STORET and compiled. The process was less efficient 

than originally hoped, in that data had to be gathered in sections by data type and pieced back 

together. This was largely due to limitations placed on data downloads from the STORET 

website. Jeff Ostermiller from the Utah Department of Environmental Quality (UT DEQ) was 

the contact person for data interactions. 
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Through examination of results in the Utah data base, it was determined that genus-level 

OTUs were most appropriate for the long-term analyses. One of the more noteworthy OTU 

‘fixes’ that had to be made was that all midges had to be grouped to the family level 

(Chironomidae), as subfamily and/or genus level identifications only occurred in later years in 

the Utah data. As another example, changes also had to be made to OTU assignments for 

Ephemerella and Drunella. 

To check for trends in the Utah dataset, pre- and post-OTU NMDS analyses were 

performed using the following grouping variables:  taxonomy lab (pre- and post-1989), level 3 

ecoregion, reference status, and HUC04 hydrologic basins. Trends related to latitude and 

longitude were also evaluated in reference status plots. An obvious trend appeared in the pre

OTU plot that used taxonomy lab as the grouping variable (Figure B3-1a). This was due to the 

change in taxonomy lab that occurred in 1989. The OTU sufficiently corrected for this change, 

as can be seen in the post-OTU taxonomy lab plot (Figure B3-1b). Results from the other 

NMDS ordinations can be found in Figures B3-2–B3-6. 

Another issue that arose with the Utah data was that there was some uncertainty as to the 

consistency of how abundance data was recorded over the years. These questions related to 

whether the recorded abundances were corrected for subsampling in the laboratory, area 

sampled, and/or replication. These questions could not be fully resolved based on institutional 

knowledge of Utah DEQ scientists or from extant database metadata or other documentation. 

Because of this uncertainty, relative abundances were used in analyses. We also found that 

although Utah reports using a late-summer to fall index period for sample collection, the Utah 

database includes samples collected throughout the year. For most analyses, only fall samples 

were used to minimize variation associated with seasonal differences in taxonomic composition. 

B3.4 Maine 

Data for Maine were obtained from Maine’s Oracle/Access database (EGAD) as output 

in an Access database, and compiled. Susanne Meidel from the Maine Department of 

Environmental Protection (ME DEP) was the contact person for data interactions.  

As for Utah, it was determined based on evaluation of the Maine data that genus-level 

OTUs were appropriate for the long-term analyses. To check for trends at the genus-level OTU 
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in the Maine dataset, NMDS analyses were performed using reference status, level 3 ecoregion, 

year (in 5, 10 and 20-year increments) and taxonomy lab as grouping variables. Trends related to 

latitude and longitude were also evaluated in the reference status plots. Unlike the Utah data, 

there were no defined breakpoints (Figures B3-7–B3-14). Rather there were small breaks in the 

data in 1990-91 and 1999, along with a subtle shift towards finer taxonomic resolution from the 

early 1980's to the present (as one would assume due to improved taxonomic keys, etc.). The 

improved resolution is evident in plots that show the average number of species and genus-level 

identifications per year (Figure B3-15). 

The break in the data that was detected in 1990-91 resulted from an increase in species

level identifications that were recorded for a number of different Orders. This was particularly 

evident for the order Trombidiformes (water mites). Water mites were identified to the suborder 

level (Prostigmata) prior to 1991, but from 1991 onwards, there were 28 different identifications 

associated with the water mites, with some to the species-level. This was accounted for by an 

OTU correction in which all taxa from the Order Trombidiformes were grouped into the 

suborder Prostigmata. An increase in taxonomic resolution for Chironomidae also tracks with the 

1990-91 break in the data (Figure B3-16). We considered grouping all Chironomidae to the 

family-level, but decided that this would result in the loss of too much information, and that the 

trends were not consistent enough to warrant the change. The second more subtle break in the 

data occurs in 1999. This is likely due to variability among the taxonomic labs, since four new 

labs started doing taxonomic identifications for Maine in 1999.  

The genus-level OTU procedures resolved most of these observed differences, as can be 

seen in the post-OTU NMDS plots. Other possible refinements were problematic, because of the 

multitude of taxonomy labs that were used over the years. In the 26 year period over which data 

were collected, sixteen different taxonomy labs did identifications (Table B3-1) (NOTE – this 

list is revised from that which appears in the Maine database, based on personal communication 

with Leon Tsomides of Maine DEP). Seven of the labs did 10 or fewer samples, while 4 did 100 

or more samples. Once sample size is factored in, there is not a clear difference in the 

distribution of total taxa among labs (Figure B3-17). The NMDS plots that use taxonomy lab as 

the grouping variable also failed to reveal any clear or consistent patterns. 
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Another issue that arose with the Maine data involved differences in collection methods. 

Maine DEP typically collects samples using rock baskets and rock cones that are deployed for 

about a month. During some years, Maine DEP experimented with different collection methods 

(i.e. qualitative methods). To minimize variability due to collection method, we only used rock 

basket and rock cone samples in their analyses. Another factor that was taken into account when 

doing the analyses was temporal differences.  The majority of samples were collected during the 

summer and fall. However, some samples were collected in the winter and spring. Seasonal 

variability was accounted for by limiting its analyses to samples that were collected from June 

through November. Differences in subsampling were also investigated (mainly for effects on 

richness metrics; abundances had already been adjusted for subsampling). In the Maine DEP 

database, subsampling information is recorded in a field titled ‘Dilution factor’ (a value of 1 

means that the entire sample was analyzed, a value of 2 means half the sample was analyzed, a 

value of 4 means that a quarter of the sample was analyzed, etc.). This field had limited worth 

because many entries were blank. However, for analyses in which long-term trends in generic 

richness were investigated at specific sites, subsampling information was noted when available. 

Due to the inconsistency in whether subsampling information was included for samples in the 

data base, no corrections to taxa richness information were actually applied. 

Abundance information appeared to be recorded in a consistent manner in the Maine 

data. Maine DEP typically deploys three rock baskets or cones per site. Each rock basket is 

considered to be a replicate. For purposes of the analyses, the replicates from each site were 

grouped into a single ‘BenSamp’ and subsampling of the data was done to 200 organisms (± 

20%) [160 - 240]. Relative abundances of the taxa were calculated for all the BenSamps.  

B3.5 North Carolina 

Data for North Carolina were compiled from into a database from the raw data provided 

by Trish MacPherson from North Carolina Department of Water Quality (NCDWQ). We found 

that North Carolina records data by water body name, location description, latitude and 

longitude, and date, but does not assign unique Station IDs to its sampling sites. We therefore 

had difficulty determining whether some stations represented the same or different sites. Some 

samples have similar water body names but with slightly different spellings (for example, 
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‘Creek’ might be spelled out in one sample record and abbreviated as ‘Cr’ in another). Samples 

with similar water body names and location descriptions might have had slightly different 

latitudes and longitudes. Some sites had the same water body name but slightly different location 

descriptions. To address this issue, we created unique identifiers for sites (Station IDs) based on 

matching a combination of water body name, location, and latitude-longitude, for the individual 

stations that were analyzed for long-term trends. 

As with the other states, evaluation of the North Carolina data confirmed that genus-level 

OTUs were appropriate for the long-term analyses. To check for trends at the genus-level OTU 

in the North Carolina dataset, NMDS analyses were performed using collection method, 

reference status, level 3 ecoregion, and year (in 5-year increments) as grouping variables. 

Because the same people in the North Carolina biomonitoring program have done all the 

taxonomic identifications for the last 25-30 years, we felt it was unnecessary to include 

taxonomy lab as a grouping variable. Any inconsistencies in taxonomic identifications over the 

years are most likely due to changes in taxonomic keys. 

An obvious trend occurred in the NMDS plot that used collection method as the grouping 

variable (Figure B3-18). Samples that were collected using different collection methods 

generally formed different groups. EPT samples in particular formed a very distinct group. 

Another noticeable pattern in the data occurred in 1998, when there was a spike in the total 

number of taxa identified, despite fact that the number of stations sampled in 1998 was only 

slightly higher than in previous years (Figure B3-19a). Many of these taxa only occur in the 

database during 1998. Upon further investigation, we found that a large number of estuarine sites 

were sampled in 1998. Many of these sites were not sampled prior to 1998 and have not been 

sampled since. By limiting the samples to full-scale method only, these trends were eliminated 

(Figure B3-19b). Based on these results, only full-scale collection method samples were used in 

analyses. This resulted in the loss of 4 years of data (1978-1981) and reduced the overall number 

of taxa in the database, but was a necessary and effective step in minimizing the chances of 

detecting false trends in the biological data (Figure B3-20). 

The NMDS plots that used reference status as the grouping variable did not show a clear 

or consistent pattern (Figure B3-21), but plots with samples grouped by level 3 ecoregion did 

(Figure B3-22). Samples generally grouped together by ecoregion (both pre- and post-OTU). 
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We account for this by performing most analyses, as appropriate, on subsets of data specific to 

particular ecoregions (an exception is the maximum likelihood temperature optima and tolerance 

calculations, for which sample size was an issue and having a wide range of temperatures is 

needed and appropriate). Temporal differences also had to be accounted. NCDWQ collects 

samples throughout the year. Some taxa, such as the winter stoneflies, are strongly seasonal. To 

minimize such predictable variation associated with seasonal differences in taxonomic 

composition, the datasets used in most of the analyses were limited to samples collected from 

June through November. 

Abundance information appeared to be recorded in a consistent manner in the North 

Carolina data. NCDWQ records its abundance data as categorical variables, 1=rare (1-2 

specimens), 3=common (3-9 specimens), and 10=abundant (10 or more specimens), which limits 

the type of analyses that can be performed. Data were converted to presence-absence and/or 

relative abundance (calculated using the categorical variables (1, 3 and 10)) when performing 

analyses. 

B3.6 Ohio 

As mentioned above in Section B.3, data manipulation and analyses needed for this study 

were conducted by MBI under subcontract to Tetra Tech. This included taxonomic comparisons, 

OTU development, and analyses such as NMDS applied to assess the effectiveness of these data 

management efforts (see Appendix H, especially H.3). 

B4 Discussion 

Preparing the data for the analyses was a very time consuming yet necessary step. It is 

essential that proper quality assurance procedures are followed to ensure the validity of the 

analyses. For this project in particular, the detection of false trends in the long-term data was a 

major concern.  

Factors that were shown to contribute to changes that had to be accounted for prior to 

trend analysis include collection method (Maine and North Carolina), sample collection dates 

(all three databases), and taxonomic labs (Utah). Although one cannot entirely eliminate these 
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issues, by selecting appropriate subsets of data and establishing appropriate OTUs, chances of 


detecting false trends in the biological data can be minimized. 
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Figure B3-1a.  Pre-OTU (genus) NMDS plot when lab is used as the grouping variable. 
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Figure B3-1b.  Post-OTU (genus) NMDS plot when lab is used as the grouping variable. 
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Figure B3-2a.  Pre-OTU (genus) NMDS plot when level 3 ecoregion is used as the grouping 
variable. 
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Figure B3-2b.  Post-OTU (genus) NMDS plot when level 3 ecoregion is used as the grouping 
variable. 
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Figure B3-3a.  Pre-OTU (genus) NMDS plot when reference status is used as the grouping 
variable. 
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Figure B3-3b.  Post-OTU (genus) NMDS plot when reference status is used as the grouping 
variable. 
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Figure B3-4a.  Pre-OTU (genus) NMDS plot when HUC04 is used as the grouping variable. 
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Figure B3-4b.  Post-OTU (genus) NMDS plot when HUC04 is used as the grouping 
variable. 
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Figure B3-5a.  Pre-OTU (genus) NMDS plot when reference status is used as the grouping 
variable. Trends related to latitude are also evaluated. 
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Figure B3-5b. Post-OTU (genus) NMDS plot when reference status is used as the grouping 
variable. Trends related to latitude are also evaluated. 
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Figure B3-6a. Pre-OTU (genus) NMDS plot when reference status is used as the grouping 
variable. Trends related to longitude are also evaluated. 
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Figure B3-6b. Post-OTU (genus) NMDS plot when reference status is used as the grouping 
variable. Trends related to longitude are also evaluated. 
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Figure B3-7a. Pre-OTU (genus) NMDS plot using sample years (5-year increments) as the 
grouping variable. 
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Figure B3-7b. Post-OTU (genus) NMDS plot using sample years (5-year increments) as the 
grouping variable. 
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Figure B3-8a.  Pre-OTU (genus) NMDS plot using sample years (10-year increments) as the 
grouping variable.  
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Figure B3-8b. Post-OTU (genus) NMDS plot using sample years (10-year increments) as 
the grouping variable. 
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Figure B3-9a. Pre-OTU (genus) NMDS plot using sample years (20-year increments) as the 
grouping variable.  

Maine (post-OTU) 

Year Group (20) 

NA 
1970-1989 
1990-2006

A
xi

s 
2 

Axis 1  

Figure B3-9b.  Post-OTU (genus) NMDS plot using sample years (20-year increments) as 
the grouping variable.  
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Figure B3-10a. Pre-OTU (genus) NMDS plot when reference status is used as the grouping 
variable.  
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Figure B3-10b. Post-OTU (genus) NMDS plot when reference status is used as the 
grouping variable. 
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Figure B3-11a. Pre-OTU (genus) NMDS plot when level 3 ecoregion is used as the 
grouping variable. 
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Figure B3-11b. Post-OTU (genus) NMDS plot when level 3 ecoregion is used as the 
grouping variable. 
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Figure B3-12a. Pre-OTU (genus) NMDS plot when reference status is used as the grouping 
variable. Trends related to latitude are also evaluated. 
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Figure B3-12b. Post-OTU (genus) NMDS plot when reference status is used as the 
grouping variable. Trends related to latitude are also evaluated. 
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Figure B3-13a. Pre-OTU (genus) NMDS plot when reference status is used as the grouping 
variable. Trends related to longitude are also evaluated. 
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Figure B3-13b. Post-OTU (genus) NMDS plot when reference status is used as the 
grouping variable. Trends related to longitude are also evaluated. 
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Figure B3-14a. Pre-OTU (genus) NMDS plot for Maine data when lab is used as the 
grouping variable. 
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Figure B3-14b. Post-OTU (genus) NMDS plot for Maine data when lab is used as the 
grouping variable. 
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Figure B3-15a. Average number of species-level identifications per replicate sample per 
year in the Maine database (using original data (not adjusted for OTUs). 
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Figure B3-15b. Average number of genus-level identifications per replicate sample per 
year in the Maine database (using original data (not adjusted for OTUs). 

B2‐25
 



 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

407 

408 

409 

410 

411 

412 

413 

414 

415 

416 

Figure B3-16a. Average number of species-level identifications per replicate sample per 
year for selected families in the Maine database (using original data (not adjusted for 
OTUs). 

Figure B3-16b. Average number of genus-level identifications per replicate sample per 
year for selected families in the Maine database (using original data (not adjusted for 
OTUs). 
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Table B3-1.   Per communication with Leon Tsomides Maine DEP some 
adjustments were made   

Figure B3-17. Distribution of the total number of taxa (average per replicate) among 
laboratories. 

Lab   Year_Min  Year_Max #Samp LabNum

BILLIE BESSIE 1996 1996 2 1 
DAVID COURTEMANCH 1983 1983 5 2 

 B.A.R ENVIRONM 1994 1994 6 3 
 WOODWARD CLYDE 1981 1981 6 4 

unknown 1995 1995 7 5
BBL SCIENCES 2004 2004 9 6 

 CF RABENI 1974 1974  10 7 
 QST ENVIRONMENTAL 1994 1996 20 8 

(BOWATER) 

CHRIS PINNUTO 2000 2000  22 9 
NORMANDEAU 1989 1999  45 10
SUSAN DAVIES 1981 1989 74 11 
NEW BRUNSWICK 1999 2001 84 12 
IDAHO ECOANALYSTS 1999 2005 100 13 
TERRY MINGO 1983 1987 254 14 
LOTIC 1988 2006 743 15
MICHAEL WINNELL 1983 2006 2509 16 
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Figure B3-18. Preliminary NMDS plot (genus-level OTU) using collection method as the 
grouping variable. 
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Figure B3-19a. North Carolina (genus-level OTU or GTU) data using all collection 
methods. "Num Taxa” refers to the total number of taxa recorded in a particular year; 
"Taxa First" refers to the number of taxa that appear in the database for the first time in a 
particular year; "Taxa Last" refers to the number of taxa that appear in the database for 
the last time in a particular year; "Num Stations" refers to the number of stations sampled 
in a particular year. 

Figure B3-19b.  North Carolina (genus-level OTU or GTU) using data from only the Full-
scale collection method. "Num Taxa” refers to the total number of taxa recorded in a 
particular year; "Taxa First" refers to the number of taxa that appear in the database for 
the first time in a particular year; "Taxa Last" refers to the number of taxa that appear in 
the database for the last time in a particular year; "Num Stations" refers to the number of 
stations sampled in a particular year. 
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Figure B3-20a. Pre-OTU (genus) NMDS plot for North Carolina data when year (5-year 
increments) is used as the grouping variable and only full-scale collection method data is 
used. 
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Figure B3-20b. Post-OTU (genus) NMDS plot for North Carolina data when year (5-year 
increments) is used as the grouping variable and only full-scale collection method data is 
used. 
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Figure B3-21a.  Pre-OTU (genus) NMDS plot for North Carolina data using reference 
status as the grouping variable and only full-scale collection method data is used. 
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Figure B3-21b.  Post-OTU (genus) NMDS plot for North Carolina data using reference 
status as the grouping variable and only full-scale collection method data is used. 
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Figure B3-22a.  Pre-OTU (genus) NMDS plot for North Carolina data using level 3 
ecoregion as the grouping variable and only full-scale collection method data is used.  
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Figure B3-22b.  Post-OTU (genus) NMDS plot for North Carolina data using level 3 
ecoregion as the grouping variable and only full-scale collection method data is used.  
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APPENDIX C 
___________________ 
Site selections and site groupings 

The purpose of this appendix is to provide comprehensive and detailed information on individual 
biological sampling sites and groups of sites that were selected for long-term trend analyses in 
Maine, Utah and North Carolina. 

C1. Maine 
C2. Utah 
C3. North Carolina 
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C1. MAINE 

C1.1 Individual Station Selection 

In this study we refer to Class A and AA stations (as determined by Maine DEP, based on 

biological attainment) as reference stations1. Reference sites with the longest-term biological 

data were identified for analysis of long-term trends. There were two reference stations in Maine 

that had 10 or more years of data (Table C1-1). These 2 stations plus the reference station with 

the next longest data record (9 years) were included in the individual station analyses. Locations 

of all the reference stations are shown in Figure C1-1 and locations of the 3 individual stations 

that were closely examined are shown in Figure C1-2. Brief descriptions of the 3 stations are 

given below and are summarized in Table C1-2. Additional information (i.e. aerial photos) is 

available upon request. 

Table C1-1. Summary of how many years of data were available for the 
different classes of Maine stations 

# Years Reference Stations B & C Not Attaining 
Sampled  (A & AA)  Stations  (NA) 

10-19 2 4 0 
5-9   10  30 0 
2-4   94  183 0 
1  116  302 1 

1 Class A sites are not necessarily designated as reference sites by Maine DEP (Maine DEP is in 
the process of developing strict reference criteria; considerations are not based on biology and 
include land use land cover and proximity to NPDES discharges).  
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Figure C1-1. Distributions of reference (Class A & AA) sites in Maine among the different 
level 3 ecoregions (the Maine/New Brunswick Plains and Hills was formerly called the 
Laurentian Plains and Hills). The number of years of data available for each station is also 
shown. 

StationID 56817 (Latitude 44.22319, Longitude -69.59334). The station is located on the 

Sheepscot River, Maine DEP Station 74, in the town of Whitefield. It is in the Laurentian Plains 

and Hills (which has recently been updated to Maine/New Brunswick Plains and Hills) level 3 

ecoregion and Central Interior Biophysical Region at an elevation of 104 feet. This station is 

located on a 4th Strahler order reach and has a drainage area of 145 square miles. It is classified 

as ‘AA’ but (per communication with Maine DEP) has been influenced by non-point source 

pollution and has occasionally received ‘B’ ratings. The station has been monitored on an annual 

basis since 1984. Long-term USGS gage flow data are available for this station. 

StationID 57011 (Latitude 44.36791, Longitude -69.53129). The station is located on the 

West Branch Sheepscot River, Maine DEP Station 268, in the town of China. It is in the 

Laurentian Plains and Hills level 3 ecoregion and Central Interior Biophysical Region at an 

elevation of 230 feet. This station is located on a 3rd Strahler order reach and appears (based on 
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aerial photographs and land use land cover information) to be influenced by human activities. 

Twelve years of continuous data (1995-2006) are available for this station. 

StationID 57065 (Latitude 44.3934, Longitude -68.23461). This station is located on 

Duck Brook, Maine DEP Station 322, in the town of Bar Harbor. It is in the Laurentian Plains 

and Hills level 3 ecoregion and East Coastal Region Biophysical Region at an elevation of 179 

feet. This station is located on a 1st Strahler order reach and has 9 years of continuous data (1997 

to 2005). Forest is the dominant surrounding land use. 

Figure C1-2. Locations of the 3 reference sites in 
Maine that have the longest term biological data. 
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Table C1-2. Station information for the 3 Maine reference sites with the longest-term biological data. # years of 
data refers to June-September samples only. Eco_L3 is level 3 ecoregion. Reference status (Class A & AA) was 
designated by Maine DEP. % land use refers to the area within a 1 km buffer of the station (NLCD 2001). 

Station 

56817 

WaterbodyName 

SHEEPSCOT 
RIVER - ME 
STATION 74 

# Yrs 
of 

Data 

23 

Eco_L3

LAURENTIAN 
PLAINS AND 

HILLS 

 Biophysical 

CENTRAL 
INTERIOR 

Order 

4

Elev_ft 

 103.8 

Ref 
Status 

AA 

%URB 

16.4 

%AGR 

23 

%BAR 

0 

%FOR

56.8 

 %WET 

3.8 

57011 

WEST BRANCH 
SHEEPSCOT 
RIVER - ME 
STATION 268 

12 
LAURENTIAN 
PLAINS AND 

HILLS 

CENTRAL 
INTERIOR 

3 229.9 AA 9.1 18.5 0 68.3 4 

57065 
DUCK BROOK -
ME STATION 322 

9 
LAURENTIAN 
PLAINS AND 

HILLS 

EAST 
COASTAL 
REGION 

1 179.1 AA 15.9 0 0 75 8.9 
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C3.2 Site Group Selection 

Due to the limited number of individual sites with long-term data, sites were grouped 

together to obtain more long-term biological datasets to analyze. Our initial approach to identify 

appropriate station groupings involved cluster analyses to determine which reference stations had 

similar assemblages and could be grouped together. In one dendrogram, stations were coded by 

biophysical region (Figure C1-3) and in another, by level 3 ecoregion (Figure C1-4). Results 

show fairly strong site-specific differences among assemblages, which does not support grouping 

them for trend analyses. The stations that showed the greatest similarities were more closely 

examined, but did not have enough continuous data among them to make analyses worthwhile.  

 

Maine Reference Stations
 

Distance (Objective Function)
 
8.7E-03 3.3E+00 6.6E+00 9.9E+00 1.3E+01 

Information Remaining (%) 
100 75 50 25 0 

56758 
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57483 1 2 3 4 5 6 7 9 10
57479 
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56935
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57040 
56760 
56862 
56864 
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56861 
57237 
56901 
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56818 
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57139 
56875 
57329 
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56988 
56882 
56934 
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56905 
57063 
57295
 
57297
 
57064
 
57066
 
57105
 
57423 
57515 
57103 
57553
 
57104
 
57368 
57562 
57262
 
57267
 

Figure C1-3. Dendrogram of Maine reference stations color-coded by biophysical region. 
Biophysical region 1=Aroostook Hills, 2=Mixed, 3=Central Interior, 4=Central Mountains, 
5=East Coastal Region, 6=Eastern Interior, 7=Eastern Lowlands, 8=Southwest Interior, 
9=Western Foothills, 10=Western Mountains. 
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Figure C1-4. Dendrogram of Maine reference stations color-coded by level 3 ecoregion. 
Level 3 Code 58=Northeastern Highlands, 59=Northeast Coastal Zone and 82=Laurentian 
Plains and Hills. 

In addition to the cluster analysis, other site grouping options were explored. None of 

these analyses proved any more successful in forming site groupings. Information on these other 

options is available upon request. 
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C2 UTAH
 

C2.1 Individual Station Selection
 

Reference stations (as designated by Utah DWQ2) with the longest-term biological data 

were identified and analyzed for long-term trends. There were four stations in Utah that had 10 

or more years of data (Table C2-1). Locations of these stations are shown in Figure C2-1. Brief 

descriptions of the 4 sites are given below and are summarized in Table C2-2. Additional 

information (i.e. aerial photos) is available upon request.   

Table C2-1. Summary of how many years the reference and unclassified 
stations in Utah had been sampled 

# Years  Reference Unclassified 
Sampled  Stations Stations 

10-19 4 3 
5-9 4 29  
2-4 7 178
1  54 300

StationID 4927250 (Latitude 40.7529444, Longitude -111.3735833). This station is 

located on the Weber River about 0.5 miles above Rockport Reservoir in Summit County. It is in 

the Wasatch Uinta Mountains/Mountain Valleys ecoregion at an elevation of 6059 feet. This 

station has 19 years of data, ranging from 1985 to 2005. Samples were taken in the spring, 

summer and fall. When limited to only fall samples, 17 years of data are available. Based on 

aerial photographs, this station appears to be influenced by human activities.  

StationID 5940440 (Latitude 38.28, Longitude -112.5671111). This station is located on 

the Beaver River above a USGS gage in Beaver County. It is in the Wasatch Uinta 

Mountains/Semiarid Foothills ecoregion at an elevation of 6249 feet. This station has 11 years of 

data, ranging from 1994-2005.  It has a mix of spring and fall samples. When limited to only fall 

samples, 9 years of data are available. Examination of aerial photographs reveals that is located 

near a road (Hwy 153), but there does not appear to be any other obvious confounding factors.    

2 reference criteria are based on a combination of a reference scoring sheet (multiple lines of 
scoring, i.e., habitat, land use, chemistry) and independent ranking of sites from field 
crew/scientists. 
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StationID 4951200 (Latitude 37.2848333, Longitude -112.9480833). This station is 

located on the Virgin River below Zion Narrows in Washington County. It is in the Colorado 

Plateaus/ Escarpments ecoregion at an elevation of 4492 feet. This station has 15 years of data, 

ranging from 1985-2004. It is in close proximity to Zion National Park. The aerial photographs 

that were examined did not provide much information because they were of poor quality. 

StationID 4936750 (Latitude 40.4613889, Longitude -110.83). This station is located in 

Duchesne County. It is in the Colorado Plateaus/Semiarid Benchlands and Canyonlands 

ecoregion at an elevation of 6967 feet. This station has 14 years of data, ranging from 1985-2002. 

When limited to only fall samples, 12 years of data are available. Examination of aerial 

photographs shows that the station is surrounded by roads, is located in a valley, and that there is 

agricultural land in the upstream catchment area.  

Figure C2-1. Locations of the 4 reference sites in 
Utah that have the longest term biological data. 
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Table C2-2. Station information for the 4 Utah reference sites with the longest-term biological data. # years of data refers to 
fall samples only. Eco_L3 is level 3 ecoregion and Eco_L4 is level 4 ecoregion. Reference status was designated by Utah DWQ. 
% land use refers to the area within a 1 km buffer of the station (NLCD 2001). 

StationID # Years 
of Data 

Eco_L3 Eco_L4 UT Watershed Group Elev_ft Ref 
Status 

%URB %AGR %BAR %FOR 

4951200 15 
Colorado 
Plateaus 

Escarpments Sevier/Virgin/Beaver 4492 REF 3.4 0.5 28.8 67.2 

Wasatch and 
5940440 9 Uinta 

Mountains 
Semiarid Foothills Sevier/Virgin/Beaver 6249.3 REF 3.9 0 0 96.1 

Wasatch and 
4927250 17 Uinta 

Mountains 
Mountain Valleys Bear/Weber 6058.5 REF 4.5 21.1 0 67.1 

4936750 12 
Colorado 
Plateaus 

Semiarid 
Benchlands and 

Canyonlands 
Uinta Basin 6967 REF 4.8 10.3 1.1 83.7 

132
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C2.2 Site Group Selection 

Due to the limited number of individual sites with long-term data, sites were grouped 

together to obtain more long-term biological datasets to analyze. Efforts were focused in the 

Wasatch Uinta Mountains and Colorado Plateaus ecoregions, where most of the stations are 

located. One limitation of the reference stations that were used in the individual station analyses 

was that % urban and % agricultural land uses within a 1 km buffer of the stations was higher 

than desired. Because of this, different reference criteria were used to screen for stations to 

include in the site groups. Initially stations in the Wasatch and Uinta Mountains that had <1% 

urban and <10% agricultural land uses were selected, but not enough stations met this criteria, so 

the criteria was changed to <2% urban and <10% agricultural land use. This resulted in a site 

group consisting of 150 sites with data from 1983-2005. Jeff Ostermiller of Utah DWQ 

recommended that groups be further refined because there is a lot of variation among sites within 

the level 3 ecoregions (particularly between mountain and valley sites). When the 150 sites were 

divided into level 4 ecoregions, two of the resulting site groups had enough stations to work 

with: Mid-elevation Uinta Mountains (39 sites) and Semiarid Foothills (62 sites). These datasets 

were further refined so that they only contained stations with 2 or more years of data. Efforts 

were also made to limit the number of basins or watershed groups within which stations were 

located, because NMDS ordinations of the preliminary data showed that stations tended to 

cluster together based on basin/watershed group. The Mid-elevation Uinta Mountains site group 

was limited to sites within the Ashley-Brush and Duchesne basins and the Semiarid Foothills 

group excluded sites in the Colorado Watershed Group. 

A similar process was followed when selecting stations within the Colorado Plateaus 

level 3 ecoregion. Stations that had <2% urban and <10% agricultural land use within the 1 km 

buffer area were selected. The resulting group consisted of 60 stations. The best option was to 

divide the groups into level 4 ecoregions, the Semiarid Benchlands and Canyonlands, with 21 

stations. Because of the small sample size, all stations were included in the group regardless of 

basin or number of years of data. 

Locations of the stations in each of the 3 site groups are shown in Figure C2-2. Site 

information for the stations in the 3 site groups is summarized in Table C2-3, and the lists of 
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stations comprising each site group and the years for which data were available for each station 

are shown in Tables C2-4, -5 and -6. 

A number of different analyses were performed on the site group datasets. Preliminary 

ordinations showed that stations generally clustered together by watershed/basin groups. 

Attempts were made to reduce the differences among stations but results still need to be 

interpreted with caution because site specific differences were still evident in the ordinations that 

were performed on the revised datasets, as well as in results from the correlation analyses. In 

some instances, trends were detected but they were due to the presence/absence of certain taxa at 

certain sites that were sampled during certain years, rather than due to differences associated 

with changes in climatic variables. Selected results from the NMDS ordinations are shown in 

Figures C2-3, -4 and -5. More results from these ordinations and also from the correlation 

analyses are available upon request.   
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176 Figure C2-2. Locations of stations in the 3 Utah site groups. 
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Table C2-3. Summary of site information for the 3 Utah site groups. WU_SF refers to the Semiarid Foothills 
site group, WU_ME refers to the Mid-elevation Uinta Mountains site group and CP refers to the Colorado 
Plateaus Semiarid Benchlands and Canyonlands site group. % land use refers to the area within a 1 km buffer 
of the station (NLCD 2001). 

SiteGroup 
# 

Sites 
# Yrs of 

Data 
Samples 

Used 
Eco_L3 Eco_L4 Elev_ft %URB %AGR %BAR %FOR %WET 

WU_SF 8 20 
June-

November 

Wasatch 
and Uinta 
Mountains 

Semiarid 
Foothills 

5164 to 
8048 

0 to 1.7 0 to 0.1 0 to 2.7 
97 to 
100 

0 to 2 

WU_ME 9 12 
June-

November 

Wasatch 
and Uinta 
Mountains 

Mid-elevation 
Uinta 

Mountains 

7200 to 
9776 

0 to 1.9 0 0 to 5 
86 to 
100 

0 to 3.9 

CP 16 14 
June-

November 
Colorado 
Plateaus 

Semiarid 
Benchlands 

and 
Canyonlands 

4126 to 
7479 

0 to 1.1 0 to 8.9 0 to 33 
62 to 
99.9 

0 to 5.6 
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184 Table C2-4. Semi-arid Foothill stations and the years during which they were sampled 

Year 
StationID 

4936660 4926370 5988610 4954450 4954230 4995710 4995820 4954440 

1983 x 

1984 

1985 

1986 

1987 x x x 

1988 x x x 

1989 x x x x x 

1990 x x x 

1991 x 

1992 x x 

1993 x x 

1994 x 

1995 x 

1996 x 

1997 x x 

1998 x x 

1999 x 

2000 x 

2001 x 

2002 x 

2003 x 

2004 x 

2005 x x 
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187 Table C2-5. Mid-elevation stations and the years during which they were sampled 

Year 

StationID 

Ashley-Brush Duchesne 

5987290 5987000 5987350 5987230 4936840 5987530 5987610 5987700 5987870 

1983 x 

1984 

1985 

1986 

1987 x x x x 

1988 x x x x 

1989 x x x x x 

1990 x x x 

1991 x x x x 

1992 x x 

1993 x x 

1994 

1995 

1996 x x x 

1997 x x x x 

1998 

1999 

2000 

2001 

2002 x 

2003 x 

2004 

2005 
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Table C2-6. Colorado Plateaus stations and the years during which they were sampled 

Year 

StationID 

Colorado Sevier/Virgin/Beaver Uinta Basin 

4930340 4954196 4954460 4955820 4956400 4958032 4958730 4958755 4954220 4954090 4954110 4954140 4954180 5987860 5987880 4936200 

1977 x x 

1983 

1984 x x 

1985 x x 

1986 x x 

1987 x x x x x 

1988 x x x x x 

1989 x x x x 

1990 x 

1992 x 

1994 x 

1996 

1997 x x x x 

1998 x x 

2002 

2003 x 

2004 x 

2005 x x 
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Figure C2-3. Plots of Utah Semi-arid Foothills Site Group NMDS ordinations based on 

taxonomic composition and selected trait metrics.  


 

Figure C2-4. Plots of Utah Mid-Elevation Site Group NMDS ordinations based on 

taxonomic composition and selected trait metrics.
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Figure C2-5. Plots of Colorado Plateaus Site Group NMDS ordinations based on 
taxonomic composition and selected trait metrics. 
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C3. NORTH CAROLINA 

C3.1 Individual Station Selection 

Reference stations3 (as designated by NCDENR) with the longest-term biological data 

were identified and analyzed for long-term trends. There was one reference station (sampled 

using the standard qualitative/full-scale collection method) in North Carolina that had 10 or more 

years of data (Table C3-1). This station plus four other reference stations were included in the 

individual station analyses. Locations of these reference stations are shown in Figure C3-1. 

Brief descriptions of the five stations are given below and are summarized in Table C3-2. 

Additional information (i.e. aerial photos) is available upon request.   

Table C3-1. Summary of how many years of data were available for the 
reference and unclassified biological sampling stations in North Carolina. 
These numbers apply only to stations that were sampled using the standard 
qualitative (full-scale) collection method. 

# Years  Reference Unclassified 
 Sampled Stations Stations 

 10 + 1 8 
 5 to 9 2  146 
 3 to 4 4  182 

2 8  237 
1  12  933 

StationID NC0109 (Latitude 36.5522, Longitude -81.1833). This station is located on 

the New River at SR 1345 in Alleghany County. It is in the Blue Ridge EPA level 3 ecoregion 

and Mountain NCDENR ecoregion. This station has the most number of years of biological data 

(11 years: 1983-1990, 1993, 1998 & 2003). Land use/land cover within the 1 km buffer is 44% 

forest, 44% agricultural (of this, 99.6% is pasture hay) and 3% urban.  

StationID NC0207 (Latitude 35.126944, Longitude -83.61916). This station is located 

on the Nantahala River at FSR 437 in Macon County. It is in the Blue Ridge EPA level 3 

ecoregion and Mountain NCDENR ecoregion. This station has 9 years of biological data: 1984, 

3 Land use/land cover in the upstream catchment area was a major consideration in reference site 
selection. These sites were recommended by Trish MacPherson (formerly NCDENR). 
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238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

1986, 1988, 1990, 1991, 1993, 1994, 1999 & 2004. Land use/land cover within the 1 km buffer 

is 96% forest and 2.6% urban. Much of the upstream watershed is located in the Nantahala 

National Forest. A USGS gage is located at this site (USGS 03504000). 

StationID NC0209 (Latitude 35.66722, Longitude -83.07277). This station is located on 

Cataloochee Creek at SR 1395 in Haywood County. It is in the Blue Ridge EPA level 3 

ecoregion and Mountain NCDENR ecoregion. This station has 8 years of biological data: 1984, 

1986, 1989, 1990, 1991, 1992, 1997 & 2002. It is located in the Great Smokey Mountains 

National Park. Land use/land cover within the 1 km buffer is 97% forest and 3% urban. Based on 

aerial photography, the urban land use is comprised of a campground, a park road and some park 

buildings. A USGS gage is located at this site (USGS 03460000). 

StationID NC0075 (Latitude 35.38638, Longitude -79.8322). This station is located on 

Little River at SR 1340 in Montgomery County. It is in the Piedmont ecoregion. This station has 

8 years of data: 1983, 1985, 1988, 1989, 1995, 1996, 2001 & 2006. Land use/land cover within 

the 1 km buffer is 1% urban, 19% shrub and grassland, and 80% forest. A USGS gage is located 

at this site (USGS 02128000). 

StationID NC0248 (Latitude 35.43861, Longitude -80.00055). This station is located on 

Barnes Creek at SR 1303 in Montgomery County. It is in the Piedmont ecoregion. This station 

has 7 years of data: 1984, 1985, 1987, 1989, 1996, 2001 & 2006. Land use/land cover within the 

1 km buffer it is 0.6% urban,5 % agricultural and 88% forest. There is a nearby road. This site is 

located in the Uwharrie National Forest, but there are more agricultural lands in this watershed 

than at some of the other sites. Trish MacPherson identified it as an interesting site because there 

are a few mountain taxa still hanging on in the Uwharrie Mountains, but these are old, eroded 

mountains that don't look anything like the western mountains and are actually in the middle of 

the Piedmont. She believes this could be an area where cold-water taxa such as Epeorus might 

disappear first as temperatures rise.  Trish considers this a "relict population" site that is fairly 

undisturbed. 
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Figure C3-1. Locations of the 5 reference sites in North Carolina that were examined for 
long-term trends. 
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Table C3-2. Station information for the 5 North Carolina reference sites with the longest-term biological data. # 
years of data refers to standard qualitative/full-scale collection method samples only. Eco_L3 is level 3 EPA 
ecoregion and Eco_L4 is level 4 EPA ecoregion. Reference status was designated by NCDENR. % land use 
refers to the area within a 1 km buffer of the station (MLRC 2001). 

StationID WaterbodyName # Yrs of 
Full Scale 

Data 

Eco_L3 Eco4_Name Elev_ft %URB %AGR %BAR %FOR %WET Sample 
Months 

Used 

NC0109 NEW R - SR 1345 11 Blue Ridge 
New River 

Plateau 2341.3 3.3 44* 0 44.1 0.2 
July & 
Aug 

NC0207 
NANTAHALA R 

- FS RD 437 
9 Blue Ridge 

Southern 
Crystaline 
Ridges and 
Mountains 

6162.4 2.6 0.4 0 96 0 
July, 

Aug and 
Nov 

NC0209 
CATALOOCHEE 

CR - SR 1395 
7 Blue Ridge 

Southern 
Metasedimentary 

Mountains 
2483.3 3 0 0 97 0 

July & 
Aug 

NC0248 
BARNES CR -

SR 1303 

NC0075 
LITTLE R - SR 

1340** 
*99.6% pasture/hay 
*18.7% shrub and grasslands 

7 

7 

Piedmont 

Piedmont 

Carolina Slate 
Belt 

Carolina Slate 
Belt

350.1 

 489.8 

0.6

1.4 

 5.4

0.1 

 0.2 

0 

87.5 

79.7 

1 

0.1 

May, 
July, 
Aug, 

Sept and 
Oct 
July, 

Aug and 
Nov 
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C3.2 Site Group Selection 

Due to the limited number of individual sites with long-term data, we also tried 

performing an analysis in the Blue Ridge ecoregion in which sites were grouped together to 

obtain more long-term biological datasets.  The dataset that was used for this analysis was 

derived from reference sites (as designated by NCDENR) that were: 1. sampled from June-

September; and 2. sampled using the standard qualitative/full-scale collection method.  The 15 

sites that comprised the dataset are listed in Table C3-3  Locations of these sites are shown in 

Figure C3-2 The years during which each of the sites was sampled are listed in Table C3-4. 

Eighteen years of (non-continuous) data are available from 1983 through 2006. A genus-level 

OTU was used to derive the taxa list, and relative abundance was used. The raw data from which 

the relative abundances were calculated is categorical (1=rare (1-2 specimens), 3=common (3-9 

species) and 10=abundant (10 or more species). When multiple sites were sampled in a year, the 

mean value was calculated so that there was only one value for each trait or taxa per year (i.e. in 

1983, Sites NC0107 and NC0109 were sampled. The one value that was used for 1983 was the 

average value from those two sites).  

Two main types of analyses were performed. One involved looking for trends among 

individual taxa and the other involved searching for trends among traits. First, correlation 

analyses were performed to see whether any taxa or traits were significantly correlated with year. 

Next, correlation analyses were performed to see whether any taxa or traits were significantly 

correlated with PRISM air temperature or precipitation data. To briefly summarize the results, 41 

taxa (19 EPT, 22 non-EPT) were significantly correlated with year, 27 (13 EPT, 14 non-EPT) 

were significantly correlated with at least one of the PRISM air temperature variables (minimum, 

maximum or mean) and 19 (4 EPT, 15 non-EPT) were significantly correlated with PRISM 

annual precipitation. Thirteen of the % individual trait metrics were significantly correlated with 

year and 6 were significantly correlated with a PRISM variable. Seventeen of the taxa richness (# 

of taxa) variables were significantly correlated with year and 8 were significantly correlated with 

a PRISM variable. Plots and summary tables of the significant correlations are available upon 

request. Results from this analysis are not included or used anywhere else in this report. 
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Table C3-3. List of Blue Ridge reference stations (as designated by NCDENR) 
StationID # Years 

Sampled 
WaterbodyName Location Lat_Dec Long_Dec 

NC0107 7 N FK NEW R NC 16 36.50389 -81.39028 

NC0109 11 NEW R SR 1345 36.55222 -81.18333 

NC0200 7 MILLS R SR 1337 35.39861 -82.59500 

NC0366 3 N FK MILLS R SR 1341 35.39667 -82.62472 

NC0806 2 THREE TOP CR SR 1100 36.42806 -81.62389 

NC0812 3 LITTLE R SR 1128 36.46778 -81.13333 

NC1006 1 W FK FRENCH BROAD R OFF NC 281 35.18583 -82.95889 

NC1285 2 CROOKED CR SR 1135 35.60556 -82.11694 

NC1289 1 S HOMINY CR NC 151 35.53444 -82.69222 

NC1438 2 S FK MILLS R SR 1340 35.37583 -82.61500 

NC1540 1 MILL CR SR 1400 35.63667 -82.21861 

NC1573 3 BOONE FK SR 1561 36.12306 -81.77000 

NC1591 1 BEECH CR US 321 36.26111 -81.89667 

NC1827 1 MACKEY CR BE US 70 35.66972 -82.11417 

NC2757 1 E FK PIGEON R US 276 35.41056 -82.81000 

Table C3-4. Years during which the Blue Ridge reference stations were sampled 
Year # of Sites 

Sampled 
Sites 

1983 2 NC0107 NC0109 
1984 2 NC0109 NC0200 
1985 3 NC0107 NC0109 NC0366 
1986 2 NC0109 NC0200 
1987 2 NC0107 NC0109 
1988 2 NC0109 NC0200 
1989 2 NC0107 NC0109 
1990 3 NC0109 NC0200 NC1006 
1992 1 NC0200 
1993 6 NC0107 NC0109 NC0366 NC0806 NC0812 NC1438 
1994 3 NC1540 NC1573 NC1591 
1997 3 NC0200 NC1285 NC1289 
1998 4 NC0107 NC0109 NC0806 NC0812 
1999 1 NC1573 
2002 5 NC0200 NC0366 NC1285 NC1438 NC1827 
2003 3 NC0107 NC0109 NC0812 
2004 1 NC1573 
2006 1 NC2757 
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Figure C3-2. Locations of Blue Ridge reference sites that were used in this analysis. 
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APPENDIX D 
___________________ 
Data Analyses Methods 
The intent of this appendix is to present more comprehensive descriptions of the analytical 
approaches and methods applied to evaluate the selected state biomonitoring data sets. Each 
major question or approach is presented separately, with common methods described first, and 
then any state-specific variations. 
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D1. GENERATION OF TEMPERATURE-PREFERENCE AND TOLERANCE DATA 

Temperature is an environmental parameter of particular interest in this project. We 

therefore attempted to gather as much existing relevant temperature-preference and tolerance 

information as possible and to use analyses of the state data sets to generate temperature 

preference and tolerance information for as many taxa, defined by generic-level operational 

taxonomic units (OTUs), as possible. The specific sources and types of existing temperature-

preference and tolerance information gathered in this study and their application in categorizing 

temperature traits of OTUs are described in U.S. EPA (2011). 

We used weighted average modeling or related approaches (e.g., maximum likelihood 

estimates, general linear modeling) to estimate the optima values and ranges of occurrence 

(tolerances) for temperature, and in some cases flow parameters, for each OTU from each state 

that had a sufficient distribution and number of observations to support the analysis. The 

methods described in Yuan (2006) were applied to derive temperature and flow optima and 

tolerance values.  

Weighted averaging is a simple, robust approach for estimating the central tendencies of 

different taxa, or in our case, temperature optima and tolerance values (ter Braak and Looman, 

1986). The basic approach is a straightforward weighted average--the temperature at each site in 

a state at which the species is observed, multiplied by the relative abundance of the species at 

that site, with the sum over all sites of the weighted temperatures divided by the sum of the 

abundances of that species from all sites. This mean temperature is taken as the preferred 

temperature for the taxon, and the breadth of the distribution (size of the standard deviation or 

other measure of spread) represents an estimate of the tolerance or sensitivity of the taxon. The 

approached is illustrated in Table D-1 and Figure D-1. 
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Table D-1. Example to illustrate the derivation of a weighted average model 

temperature optimum (weighted mean) estimate 

Species A Temperature preference 
StationID Relative 

Abundance 
(RA) 

Observed 
Temperature 

(Temp) 

RA * 
Temp 

A 0.10 22 2.20 
B 0.02 33 0.66 
C 0.02 12 0.24 
D 0.04 14 0.56 

SUM 0.18 3.66 

Weighted Average = 3.66 ÷ 0.18 = 20.3333 40
 

41
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Figure D-1. Illustration of weighted average temperature distribution, where the 

weighted average mean (u) is taken as the temperature optimum (preference) for the taxon, 

and the magnitude of standard deviation (sd) is taken as an estimate of the temperature 

sensitivity or tolerance. 

When using weighted averages, a wide distribution of samples across the environmental 

gradient results in a more robust estimate of temperatures of occurrence, and therefore, of 
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inferred preference. For a given state data set, weighted average tolerance values for each OTU 

are computed using the same set of environmental data; therefore, any bias arising from an 

uneven distribution of data will be the same for all OTU, and their relative placement along the 

temperature gradient will generally be preserved.  

The generalized linear model is also used to estimate taxon-environment relationships for 

each combination of taxon and environmental variable. In addition to providing a means of 

computing tolerance values, regression estimates of the taxon-environment relationship quantify 

the strength of the association between a given environmental gradient and changes in the 

occurrence probability or abundance of a taxon. In the case of presence/absence data, the 

response variable is modeled as a binomial distribution; in the case of abundance data, a negative 

binomial distribution is often assumed (maximum likelihood estimates). 

In our analyses, weighted average calculations were used for the states that had absolute 

(non-categorical) abundance data by taxon (Maine, Utah and Ohio). If only presence/absence 

(categorical or qualitative abundance) data were available, a generalized linear model was used 

(North Carolina). Calculations were made separately for each state. Since use of the widest range 

of temperature variation available is desired in this type of analysis, all stations within each state 

across all ecoregions were retained in each state analysis. However, data were subset to account 

for seasonal variation (when needed), as well as for variation associated with different sampling 

methods. For example, in Utah, only samples collected during the fall index period were used. In 

North Carolina, only samples collected by the full collection method were analyzed. 

Several statistical models were run (using R and C2 software), and model performance 

was compared for possible improvement of the weighted average model, weighted average 

partial least square regression (WA-PLSR), and maximum likelihood (ML). The WA-PLSR 

model result was difficult to interpret and only slightly improved the WA model. The ML model 

had similar performance to the WA model; therefore the WA model was used when sample sizes 

were sufficiently large (>500 samples). Only taxa occurring at more than 9 sites were included in 

the WA analyses. Low sample size affects the regression model and biases the optima and 

breadth values for rare taxa, especially under extreme conditions.  

Based on the derived optima and tolerance values for each OTU analyzed for each state, 

we defined optima and tolerance rankings to support relative comparisons among taxa and 
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regions. For example, relative rankings of taxa as cold or warm preference can be compared 

between Utah, where most samples were collected in the fall, and Maine, where most were 

collected in the summer, which might otherwise result in differences in absolute temperature 

values. It also allowed comparison of the Utah results from this study to be compared to results 

from other western datasets, which were generally based on summer samples and therefore had 

noticeable differences in ranges of absolute temperatures used as thresholds for designating cold- 

and warm-preference taxa (Herbst and Silldorff, 2007; Brandt, 2001). Comparison to these 

results was used to support final designation of taxa membership in cold-preference and warm-

preference groups (U.S. EPA 2011). 

Ranks were defined separately for temperature optima and tolerances using a scoring 

system. Both the temperature optima for all taxa in a state and the standard deviations were 

divided into the following percentiles: 0.1, 0.25, 0.4, 0.6, 0.75, 0.9, 1. Taxa associated with the 

lowest temperature optima and those with the smallest standard deviations (narrowest tolerance 

ranges), i.e., those in the lowest 10th percentile, received scores of 1. Those in the next percentile 

category (>0.1 up to the 25th percentile) received a score of 2, and so on, up to the highest 

temperature optima and widest tolerance ranges (the 90th percentile or greater) which received a 

score of 7 (Figure D2-2). Lower ranks for temperature optima reflect preference for colder water, 

and higher ranks reflect preference for warmer water. It was a relatively arbitrary judgment to 

include taxa with optima rankings of 1, 2 or 3 as cold water taxa and those with rankings of 5, 6 

or 7 as warm water taxa. Similarly, standard deviation ranks of 1, 2 or 3 were considered 

sensitive (e.g., stenothermal), while ranks of 5, 6, or 7 were considered tolerant (eurythermal). 

Percentile Optimum Breadth Rank
 
0 4.57029 2.02959 1
 

0.1 6.847701 2.770389 2 } Cold/Stenotherms 
0.25 7.722833 3.317888 3 
0.4 8.411832 3.600784 4 
0.6 9.188384 3.812142 5 

0.75 9.689138 3.997378 6 }Warm/Eurytherms 
0.9	 10.5325 4.442977 7 
1 15.7144 5.06721 
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Figure D2-2. Example taken from Utah analysis results to illustrate development of 

ranking for temperature (or other environmental parameter) preference and tolerance 

rankings from weighted average or GLM temperature distribution results. 

D2. EVALUATION OF BIOLOGICAL RESPONSES TO CLIMATE VARIABLES 

D2.1 Characterization of Years as Proxy for Future Climate Conditions 

To evaluate responses of a variety of biological metrics, trait and taxonomic groups, as 

well as indices and predictive-model results to differing climatic conditions that could be 

expected, we used extremes in climate variables among existing data as proxies for future 

climate conditions. We partitioned data at long-term reference stations in each state into years 

characterized by hotter (>75th percentile of the temperature distribution during years of 

biological collections), colder (<25th percentile of temperature), and normal (25th to 75th 

percentile) average annual air temperatures. Using similar thresholds, years were partitioned 

based on average annual precipitation into wetter, drier, and normal years. When flow data were 

available, a similar partitioning of high and low flow years was applied. An assumption is that 

these temperature, precipitation, and flow differences drive responses in benthic communities 

that are reasonable proxies for the types of community changes that can be expected over the 

long term with climate change. Another assumption is that PRISM air temperature is a 

reasonable surrogate for water temperature, and PRISM precipitation for flow (see Appendix A, 

Section A.1 for substantiation and references). Table D2-1 summarizes how these categories 

were grouped and designated for ANOVAs at long-term references stations among the three 

states analyzed. 

Table D2-1. Descriptions of the temperature, precipitation, and flow (IHA parameters) 
categories that were used in ANOVA analyses for long-term reference stations in all states. 
Note that flow was only available for the Maine long-term station 56817. 
Variable Description 
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Temperature categories: 1=coldest years (defined as years when the 

Cat1_Temp  
PRISM mean annual air temperature was < 25th percentile of the 
overall temperature values); 2=normal years (25th-75th percentile), 
3=hottest years (>75th percentile). 

 Precipitation categories: 1=driest years (defined as years when the 

Cat1_Precip 
PRISM mean annual precipitation was < 25th percentile of the overall 
precipitation values) 2=normal precip year (25th-75th percentile), 
3=wettest years (>75th percentile). 

Temperature categories: 1=coldest years & normal years (defined as 

Cat2_Temp  
years when the PRISM mean annual air temperature was ≤ 75th 
percentile of the overall temperature values); 2=hottest years (>75th 
percentile).  

 Precipitation categories: 1=driest years (defined as years when the 

Cat2_Precip 
PRISM mean annual precipitation was < 25th percentile of the overall 
precipitation values); 2=normal years and wettest years (≥ 25th 
percentile).  

IHA median monthly flows averaged across July-September: 1=years 
Cat_Flow with the lowest flow (<25th percentile; 2=years with normal flow (25th-

75th percentile), 3=years with the highest flow (>75th percentile).  
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D2.2 Reference Stations and Seasonal Data used in Analyses 

For Maine, the various ANOVA and correlation analyses described in Section D2.3 were 

conducted at stations 56817, 57011, and 57065 (see Appendix C1 for details). These 3 sites, all 

located in the Laurentian Plains and Hills ecoregion, are reference sites (rated as Class AA by the 

Maine DEQ) that have the longest-term biological data. Only rock basket samples that were 

collected from June-November were used in the analysis.  

For Utah, the various ANOVA and correlation analyses were conducted at stations 

4927250 and 5940440 in the Wasatch and Uinta Mountains and at stations 4951200 and 4936750 

in the Colorado Plateau (see Appendix C2 for details). These represent reference locations with 

the longest-term biological data records available. Many of the analyses also were performed on 

reference stations grouped into three site groups: the Wasatch and Uinta Semi-arid Foothills, the 

Wasatch and Uinta Mid-elevation Mountains, and the Colorado Plateau. Only samples collected 

during the fall season were used in analyses.  

For North Carolina, analyses were conducted at five reference sites--Stations NC0109, 

NC0207, NC0209, NC0075 and NC0248; although only one, NC0109, had relatively long-term 
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data (>10 years) (see Appendix C3 for details). Two site groups were used--the Blue Ridge and 

Piedmont EPA level 3 ecoregions, which are very similar to the NCDENR Mountain and 

Piedmont ecoregions. All samples in the NC database that were collected using the standard 

qualitative method during the summer index period (June-September) were used in this analysis. 

D2.3 ANOVA 

One-way ANOVA tests were used to evaluate whether significant differences exist 

among various mean metric values from samples collected at the selected long-term reference 

sites for each state during hot, cold, wet, dry, and normal years. Numerous biological metrics 

were tested for all states (Table D2-2). The O/E metric was also tested in Utah. The ecological 

trait groups of cold-water and warm-water-preference taxa were tested for differences among 

hot, cold, wet, dry and normal years. If the p-levels from the Tukey honest significant difference 

(HSD) test for unequal sample size (N) (Spjotvoll/Stoline) were less than 0.05, the differences in 

metric values among the different temperature and precipitation groups were considered to be 

significant. 

We examined the distributions of cold- and warm-water-temperature indicator taxa to try 

to identify areas that are more likely to be ‘vulnerable’ to the effects of climate change, in 

particular the increase in temperature. One-way ANOVAs were used to determine whether 

significant differences exist between the number of cold- and warm-water taxa between 

ecoregions and between elevations. All samples in each state data base were used in these 

(spatial) analyses. Ecoregions included for each state were: 

 Maine—Laurentian Plains and Hills, Northeastern Highlands and Northeast Coastal 

Zone. 

 Utah—Wasatch and Uinta Mountains and Colorado Plateaus level 3 ecoregions. 

 North Carolina— Mountain, Piedmont and Coastal ecoregions. 

Specific elevation categories varied among states: 

 Maine—sites < 150 m and > 150 m.    

 Utah-- sites < 2000 m and > 2000 m. 

 North Carolina—sites < 500 m and > 500 m. 
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D2.3.1 Maine ANOVAs  

The analyses using Maine’s data used ANOVA to explore the relative importance of the 

various input metrics used in the linear discriminant models for classification of station condition 

and to relate these to any effects on the metrics due to climate change. These analyses also 

examined (1) how model input values differ among the different station classifications; (2) how 

much metric values have to change for a sample to change classification, e.g. from Class A to 

Class B (or B to C, etc.); (3) whether certain metrics are more important than others in 

contributing to classification changes; and (4) whether certain metrics are more likely to be 

affected by climate change than others, and if so, how they are affected, and how this affects 

overall classification. Understanding these aspects of the data is difficult, because Maine’s 

classification models look at multiple variables simultaneously, and because there are no firm 

thresholds or metric values at which a sample goes from being a Class A to Class B, etc.  

Instead, ANOVA was used on all the samples in the Maine database to see how mean 

metric values differed among the different classes. At Station 56817, which has the longest-term 

biological data and is considered by Maine DEP to be a reference site, 9 of the 22 annual 

samples collected from 1985 to 2006 were classified as Class B, while all the others were Class 

A. We used one-way ANOVA to determine which model input metrics had significantly 

different mean values between the Class A and Class B samples. 

To determine which of Maine’s station classification discriminant model metrics are 

affected by climate-related variables (temperature, precipitation and flow), one-way ANOVA 

tests were used to evaluate whether significant differences exist between mean model input 

metric values from samples collected during hot, cold, wet, dry, low flow, high flow, and normal 

years. 

Because Maine’s linear discriminant models are not used in other northeastern states, we 

performed ANOVAs on metrics that are commonly used to assess streams in northeastern states 

and determine if significant differences occurred between hot, cold, wet, dry, and normal years. 

Among the most commonly-used metrics are total taxa, EPT taxa, Ephemeroptera taxa, 

Plecoptera taxa, Trichoptera taxa, Hilsenhoff Biotic Index (HBI), an assortment of functional 

feeding group and habit metrics, percent dominant taxon and the Shannon Wiener diversity 

index. In addition, a variety of other biological metrics were evaluated, as listed in Table D2-2. 
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It should be noted that richness values are affected by the operational taxonomic unit (OTU) that 

is used in the analysis. A mostly genus-level OTU was used in this analysis because this 

taxonomic level was found to be most appropriate for the long-term Maine dataset.  

Table D2-2. List of biological metrics that were evaluated in Maine, Utah, and North 
Carolina. 
Metric Descriptions 

Total taxa # of Total taxa 
Ephemeroptera taxa # of Ephemeroptera taxa 
Trichoptera taxa # of Trichoptera taxa 
Plecoptera taxa # of Plecoptera taxa 
EPT Taxa # of Ephemeroptera, Plecoptera and Trichoptera taxa 
Percent Plecoptera Percent individuals in the Order Plecoptera 

Percent EPT Percent individuals - Ephemeroptera, Plecoptera and Trichoptera  

HBI Hilsenhoff Biotic Index (calculated using New Mexico tolerance values) 

Clinger Taxa Habit - number of clinger taxa 
Swimmer Taxa Habit - number of swimmer taxa 
Burrower Taxa Habit - number of burrower taxa 
Climber Taxa Habit - number of climber taxa 
Sprawler Taxa Habit - number of sprawler taxa 
Percent Clinger Habit - percent clinger individuals 
Percent Swimmer Habit - percent swimmer individuals 
Percent Burrower Habit - percent burrower individuals 
Percent Climber Habit - percent climber individuals 
Percent Sprawler Habit - percent sprawler individuals 
Collector-gatherer Taxa Functional Feeding group - number of collector-gatherer taxa 
Collector-filterer Taxa Functional Feeding group - number of collector-filterer taxa 

Shredder Taxa Functional Feeding group - number of shredder taxa 

Herbivore/Scraper Taxa Functional Feeding group - number of herbivore/scraper taxa 

Predator Taxa Functional Feeding group - number of predator taxa 

Percent Collector-gatherer Functional Feeding group - percent collector-gatherer individuals 

Percent Collector-filterer Functional Feeding group - percent  collector-filterer individuals 

Percent Shredder Functional Feeding group - percent shredder individuals 

Percent Herbivore/Scraper Functional Feeding group - percent herbivore/scraper individuals 

Percent Predator Functional Feeding group - percent predator individuals 
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Shannon Wiener DI 
% Dominant01 taxa  

  Shannon Wiener Diversity Index (log2) 
Percent dominant taxon individuals  

Temp_CoreColdPct Thermal Preference and Tolerance -Percent cold water individuals 

 Temp_CoreWarmPct  Thermal Preference and Tolerance -Percent warm water individuals  

Temp_CoreCold_Tax  Thermal Preference and Tolerance -Number of cold water taxa 

Temp_CoreWarm_Tax   Thermal Preference and Tolerance -Number of warm water taxa  

PerennialPct  
Percent perennial stream individuals (these taxa require water for their 
entire life cycle). 

IntermitPct  
Percent intermittent stream individuals (these taxa are found in perennial 
streams but tend to be more dominant in numbers in intermittent 
conditions). 

 Drought_Pct 
Percent individuals that possess at least one of the following traits: ability  
to survive desiccation, adult ability to exit, respiration plastron/spiracle  

Drier_WinPct 
Percent individuals that possess the most number of traits states that are 
predicted or have been shown to be most favorable in a drier climate 
scenario 

Drier_LoserPct 
Percent individuals that have the fewest favorable trait states and the  
most number of unfavorable trit states in a drier climate scenario  

WarmDrier_LoserPct  
Percent individuals that have the fewest favorable trait states and the  
most number of unfavorable trait states in a warmer drier climate 

 scenario 

OCH_Pct  Percent individuals - Odonata, Coleoptera and Hemiptera 
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Table D2-2. Continued 
Metric

PerennialTax 

IntermitTax 

 Descriptions 

Number of perennial stream taxa (these taxa require water for their entire 
life cycle)  

Number of intermittent stream taxa (these taxa are found in perennial 
streams but tend to be more dominant in numbers in intermittent 
conditions). 

DroughtTax 
Number of taxa that possess at least one of the following traits: ability to 
survive desiccation, adult ability to exit, respiration plastron/spiracle  

WarmDrier_LoserTax 
Number of taxa that have the fewest favorable trait states and the most 
number of unfavorable trait states in a warmer drier climate scenario 

Drier_LoserTax 
Number of taxa that have the fewest favorable trait states and the most 
number of unfavorable trait states in a drier climate scenario 

OCHTax Number of Odonata, Coleoptera and Hemiptera taxa 

D2.3.2 Utah ANOVAs 

Biological metrics that are commonly used to assess streams in southwestern states were 

selected for this analysis, for example from Idaho, New Mexico, Colorado, Nevada, Wyoming, 

Montana and Arizona. The list of metrics that were evaluated is shown in Table D2-2 (O/E was 

also analyzed). Richness values are affected by the OTU that is used in the analysis. A mostly 

genus-level OTU was used in this analysis because this taxonomic level was found to be most 

appropriate for the long-term Utah dataset. Some taxa, such as Chironomidae, were grouped to 

family level and higher.  

O/E scores were evaluated to provide information on the sensitivity of O/E scores to 

changes in annual temperature and precipitation. Scores used in the ANOVAs were calculated 

for Stations 4927250, 4951200, 4936750 and 5940440 using the fall Utah RIVPACS model. 

These calculations involved changing O and keeping predictor variables, which are long-term 

averages, constant. The OTUs used by the Utah DEQ in model construction were retained, so 

that taxa lists would be consistent across years. Because the model was developed using a subset 

of more recent data (about 5 years worth), it may not perform as well on older datasets. 
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Therefore, these OTUs may not be as appropriate for the longer-term datasets that were analyzed 

in this exercise.  

D2.3.3 North Carolina ANOVAs  

In Maine and Utah we were able to perform one-way ANOVA tests to evaluate whether 

significant differences exist between mean metric values from samples collected at selected sites 

during hot, cold, wet, dry, and normal years. For the North Carolina dataset, we only had 

sufficient data to conduct this type of analysis on site NC0109 (11 yrs data).  Correlation 

analyses were also used to evaluate relationships between the selected metric values and mean 

annual air temperature and precipitation variables at NC0109 as well as at the other sites (see 

Section D2.4). 

D2.4 Correlation Analyses 

Correlation analyses were performed in all states to test the relationships between the 

biological metrics listed in Table D2-2 and year to test for temporal trends; or annual average air 

temperature or precipitation to examine basic relationships to climate variables. In Utah 

correlation analyses were also performed to explore relationships between O/E values and 

climatic variables for each site and sampling year. 

In North Carolina, to further explore the relationship between temperature indicator taxa, 

tolerance values, the NCBI and climate-related variables, three different correlation analyses 

were performed: 1. correlation analysis of temperature optima values vs. tolerance values; 2. 

correlation analysis of temperature-indicator metrics at selected Mountain and Piedmont 

reference sites (percent cold- and warm-water-indicator individuals and number of cold- and 

warm-water-indicator taxa) vs. NCBI scores; and 3. correlation analysis of BI values and PRISM 

mean annual air temperature and PRISM mean annual precipitation. The correlation analyses 

were performed on datasets that used genus-level tolerance values. Tolerance values can vary 

within some genera, and therefore, these NCBI scores may vary somewhat from NCDENR BI 

scores (but they are generally close).  

Because not all southeastern states use EPT taxa richness and the NCBI to rate biological 

sampling sites, we performed additional analyses on metrics listed in Table D2-2. Richness 
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values are affected by the OTU that is used in the analysis. A mostly genus-level OTU was used 

in this analysis because this taxonomic level was found to be most appropriate for the long-term 

NC dataset. 

D2.5 NMDS Ordinations 

Non-metric Multidimensional Scaling (NMDS) ordinations were performed on data from 

selected reference stations with sufficient long-term data: 

 Maine--Station 56817; 

 Utah-- Stations 4927250 and 4951200; 

 North Carolina—Insufficient data . 

NMDS is an ordination that takes the taxa in the samples and shows in ordination space 

how closely related the samples are based on their species composition. NMDS was performed 

using PCOrd (McCune & Mefford, 1999), a Sorensen distance measure, and a maximum of 3 

axes. Annual samples were categorized based on hot/cold/normal, and wet/dry/normal years to 

assess patterns. We also used the environmental variables described in Table D2-3 to group the 

data while looking for trends. 
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Table D2-3. Summary of the environmental variables that were used to group data and 
look for trends in the NMDS 
Variable Description 

Temperature categories: 1=coldest years (defined as years when the 
PRISM mean annual air temperature was < 25th percentile of the 

Cat_Temp 
overall temperature values); 2=normal years (25th-75th percentile), 
3=hottest years (>75th percentile). 

Precipitation categories: 1=driest years (defined as years when the 
PRISM mean annual precipitation was < 25th percentile of the 

Cat_Precip 
overall precipitation values) 2=normal precip year (25th-75th 
percentile), 3=wettest years (>75th percentile). 

tmean14 PRISM mean annual air temperature 
ppt14 PRISM mean annual precipitation 

PRISM mean annual air temperature from the previous year (lag 
PrevYr_tmean14 

effects)
 
PRISM mean annual precipitation from the previous year (lag 


PrevYr_ppt14 
effects_
 
Absolute difference between the PRISM mean annual air 


tmean14_absdifc 
temperature from the sampling year and the previous year 

Absolute difference between the PRISM mean annual precipitation 
ppt14_absdifc 

from the sampling year and the previous year 

In addition, for Maine: 

IHA - Average of median flow values from July, August and 
MonthMed 

September 

Flash R-B Flashiness Index 
1d_min IHA - 1 day minimum flow 
3d_min IHA - d day minimum flow 
1d_max IHA - 1 day maximum flow 
3d_max IHA - 3 day maximum flow 

D3 EFFECTS OF TEMPERATURE-SENSITIVITY TRAITS GROUP COMPOSITION 

ON VARIOUS STATE METRICS AND INDICES 

D3.1 How cold- and warm-water-indicator taxa may affect EPT metrics, HBIs and BCG 

tier assignments and how these effects may vary across different ecoregions in Maine 

Because annual air temperature is predicted to increase as a result of climate change, 

temperature-preference and tolerance traits are of particular interest. We examined how changes 
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in species composition resulting from replacement of cold-water-indicator taxa may affect state 

assessment methods. Specifically, we examined potential effects on EPT metrics and the HBI 

because these are commonly used in assessments in many states. In addition, in Maine, we 

evaluated Biological Condition Gradient (BCG) attribute levels that were assigned to the 

temperature indicator taxa during The New England Wadeable Stream Survey (NEWS) (US 

EPA 2007); Class A indicator taxa temperature preferences and tolerances; and the distribution 

of the temperature indicator across the different level 3 ecoregions to see whether some 

ecoregions are more likely to be more vulnerable to climate change effects than others. 

D3.2 How cold- and warm-water-indicator taxa may affect indices in North Carolina 

We evaluated relationships between temperature indicator taxa and EPT taxa richness, 

the NCBI and final bioclassification scores. This involved looking at the number of temperature-

indicator taxa that are EPT taxa and the tolerance values of the temperature-indicator taxa. In 

addition, we evaluated two different scenarios: 1. a ‘worst case’ scenario in which all the cold-

water-temperature-indicator taxa at selected Mountain reference sites were dropped; 2. a scenario 

in which Mountain criteria were applied to biotic assemblages at selected reference Piedmont 

sites (this simulated a scenario in which taxa that are typically found in Mountain sites are 

replaced by taxa that typically inhabit Piedmont sites). For both scenarios, we evaluated how this 

affected the EPT richness, NCBI and final bioclassification scores.  
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APPENDIX E 
___________________ 
Detailed Results for Maine 
The intent of this appendix is to provide more comprehensive and detailed information on the 
large number of analyses that were performed on the Maine data. Some of the analyses that are 
covered in this appendix are also referenced (generally in less detail) in the main body of the 
report. When this occurred, attempts were made to reduce any overlap or duplication in the 
reporting of results. 

E1. Overview of Maine’s Linear Discriminant Model 
E2. Maine Ecoregion Descriptions 
E3. Results 
Attachment E1 – Results of the ANOVA analysis in which mean model 

input metric values were compared across Class A, B, C and NA 
samples  

Attachment E2 – Temperature Indicator Taxa - Maine 
Attachment E3 – Tolerance values and BCG attribute levels of Maine’s 

temperature indicator taxa 
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E1 OVERVIEW OF MAINE’S LINEAR DISCRIMINANT MODEL 

Information in this section was provided by Maine DEP (see Davies, SP; Tsomides, L. 

2002. Methods for Biological Sampling and Analysis of Maine’s Rivers and Streams. DEP 

LW0387-B2002. Prepared for the State of Maine Department of Environmental Protection. 

http://www.maine.gov/dep/blwq/docmonitoring/biomonitoring/materials/finlmeth1.pdf). 

Maine DEP rates sites using aquatic life decision models. These are four statistical 

models that use 30 variables of the macroinvertebrate community to determine the strength of 

association of a sample community to Maine’s water quality classes. The first stage model acts 

as a screen and gives the strength of association of the sample to each of the different water 

quality classes. This model provides four initial probabilities that a given site attains one of three 

classes (A, B, or C) or is in nonattainment (NA) of the minimum criteria for any class. 

Association values are computed for each classification using one four-way model and three 

two-way models. These probabilities have a possible range from 0.0 to 1.0 and are used, after 

transformation, as variables in each of the three subsequent second stage or final decision 

models. Each of the four linear discriminant models uses different variables, providing 

independent estimates of class membership. The same criterion is applied to all sites. A flow 

chart depicting decision criteria is shown in Figure E1-1. The protocol is outlined in the Maine 

DEP methods manual (Davies and Tsomides 2002). 
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Figure E1-1. Flow chart that outlines the process that Maine DEP uses for determining 
attainment class using association values from its 4 linear discriminant models (chart by 
Thomas J. Danielson, taken from ME DEP 2002 monitoring manual). 

The variables used in the first stage model are variables important to the evaluation of all 

classes. Of the nine variables used in the first modeling stage, 5 measure abundance, 2 measure 

richness, and 2 variables are biotic indices involving tolerance to pollution and abundance. The 

first stage model uses the following nine variables: total abundance, generic richness, Plecoptera 

E‐3 



 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

and Ephemeroptera abundance, Shannon-Wiener Generic Diversity Index, Hilsenhoff Biotic 

Index (HBI), Relative Abundance Chironomidae, Relative Richness Diptera and Hydropsyche 

Abundance. A list of all the model input metrics can be seen in Table E1-1. 

The final decision models (the three, two-way models- C or Better Model, B or Better 

Model, or A Model.) are designed to distinguish between a given class and any higher classes as 

one group and any lower classes as another group (e.g. Classes A+B+C vs NA; Classes A+B vs 

Class C+NA; Class A vs Classes B+C+NA). The equations for the final decision models use the 

predictor variables relevant to the class being tested.  The process of determining attainment 

class using association values is outlined in Appendix F of the ME DEP methods manual (Davies 

and Tsomides 2002). Application of the three second-stage models or two-group tests is 

hierarchical. 
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Table E1-1. Metrics that are used in Maine's Linear Discriminant Models 
# Metric Model 

1 Total Abundance First Stage Model 
2 Generic Richness First Stage Model 
3 Plecoptera Abundance First Stage Model 
4 Ephemeroptera Abundance First Stage Model 
5 Shannon-Wiener Generic Diversity First Stage Model 
6 Hilsenhoff Biotic Index First Stage Model 
7 Relative Abundance Chironomidae First Stage Model 
8 Relative Richness Diptera First Stage Model 
9 Hydropsyche Abundance First Stage Model 

10 Probability (A+B+C) from First Stage Model 
11 Cheumatopsyche Abundance C or Better Model 
12 EPT Generic Richness Divided by Diptera Generic Richness C or Better Model 
12 Relative Abundance Oligochaeta C or Better Model 

13 Perlidae Abundance B or Better Model 
14 Tanypodinae Abundance B or Better Model 
15 Chironomini Abundance B or Better Model 
16 Relative Abundance Ephemeroptera B or Better Model 
17 EPT Generic Richness B or Better Model 

18 
Summed Abundance’s of: Dicrotendipes (warm), Micropsectra, 
Parachironomus and Helobdella 

B or Better Model 

19 Relative Generic Richness Plecoptera  A Model 

20 
Summed Abundances of: Cheumatopsyche, Cricotopus, Tanytarsus and 
Ablabesmyia 

A Model 

21 Summed Abundances of: Acroneuria, Maccaffertium and Stenonema A Model 
22  EP Generic Richness/14 A Model 
23 Class A Indicator Taxa/7 A Model 
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E2 MAINE ECOREGION DESCRIPTIONS 

Northeastern Highlands. This is a relatively sparsely populated region located in the 

western part of Maine. It is characterized by hills and mountains, a mostly forested land cover, 

nutrient-poor frigid and cryic soils (mostly Spodosols), and numerous high-gradient streams and 

glacial lakes. Typical forest types include northern hardwoods (maple-beech-birch), northern 

hardwoods/spruce, and northeastern spruce-fir forests. Recreation, tourism, and forestry are 

primary land uses (Hellyer draft Ecoregion descriptions 2007). On average, biological sampling 

sites in this ecoregion are located at higher elevations (average of 829 feet) and have lower urban 

and agricultural land use within 1 km of the sites (averages of 12% and 7%, respectively). 

Unfortunately, sites that met our selection criteria (<5% urban and <10% agricultural land use 

within a 1 km buffer) lacked long-term data (note: the most number of years of data at 

Northeastern Highland sites was 9 years, and these sites were classified as ‘C’). At one of the 

selected sites, there were 3 years of data. The remaining selected sites only had 1 or 2 years of 

data, and this data had mostly been collected from 2000 onwards. When we attempted to search 

for long-term trends in a limited dataset comprised of a group of Northeastern Highland sites, 

there was not enough data to effectively work with and the site groups did not work well (see 

Appendix C). If trends were observed, they appeared to be due to site-specific differences rather 

than climate-related changes.  

Northeastern Coastal Zone. This region is located in the southeastern corner of Maine. 

This ecoregion contains much greater concentrations of human population than the Northeastern 

Highlands (including the city of Portland). Current land use mainly consists of forests, 

woodlands, and urban and suburban development, with only some minor areas of pasture and 

cropland. Forests are mostly white, red, and jack pine and oak-hickory, and the soils are 

generally Inceptisols and Entisols (Hellyer draft Ecoregion descriptions 2007). Sites in this 

ecoregion are located at lower elevations (average of 97 ft) and have higher urban land use 

within 1 km of the sites (average of 44%). Only one site in this ecoregion met our selection 

criteria and it only had 2 years of data, so no attempts were made to perform trend analyses on 

Northeastern Coastal Zone sites. 
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Laurentian Plains and Hills (or Maine/New Brunswick Plains and Hills). This is a 

mostly forested region located in the eastern part of Maine. It has dense concentrations of 

continental glacial lakes, is less rugged than the Northeastern Highlands, and is considerably less 

populated than the Northeastern Coastal Zone. Vegetation is mostly spruce-fir with some patches 

of maple, beech, and birch. The majority of biological sampling sites are located in this 

ecoregion. The average elevation of sites is 214 ft and average land use is 23% urban and 13% 

agricultural.  

E3 RESULTS 

E3.1 ANOVA – Comparison of mean model input metric values among the different 

classifications using all the samples in the Maine database 

Detailed results of the ANOVA can be found in Attachment E1. There were significant 

differences between mean model input metric values among many of the classes. The amounts 

that the mean metric values changed between the different classes varied and are therefore 

difficult to summarize. Also, looking at each metric individually has limited value because the 

linear discriminant models look at multiple variables simultaneously. Results from the Station 

56817 analyses were used to identify which of the 24 metrics were most likely to be influenced 

by climate-related changes. Those results are summarized below. 

E3.2 ANOVA – Comparison of mean model input metric values between Class A and 

Class B samples at Station 56817 

Comparison of Class A versus Class B samples at Station 56817 showed that the only 

model input metric that had a significantly different mean value between the Class A and Class B 

samples was the Hilsenhoff Biotic Index (HBI). Mean HBI values were significantly higher in 

the Class B samples (Figure E3-1). Because the HBI model input metric was not significantly 

related to climatic variables (as shown in the correlation analyses with PRISM mean annual air 

temperature and precipitation and by the ANOVA analyses comparing mean values across 

hot/cold/wet/dry/normal years), it is likely that non-climatic factors, such as non-point source 

pollution, contributed to the change in classification.  
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Figure E3-1. Box and whisker plots for the HBI model input metric at Maine Station 
56817 for samples that received different classifications (Class A versus Class B). 

E3.3 ANOVA - Station 56817- hot/cold/wet/dry/normal years 

There were differences in some of the model input metric values from samples collected 

at Station 56817 during hot, cold, wet, dry, low-flow, high-flow and normal years, but none of 

them were significant when tested with the Tukey honest significant difference (HSD) test for 

unequal sample size (N) (Spjotvoll/Stoline). There were, however, significant correlations 

between six of the metrics and precipitation or flow variables (Table E3-1). 

The Class A indicator taxa metric (which equals the number of Class A indicator taxa 

divided by 7) was significantly correlated with both mean annual precipitation (ppt14) and the 

categorical precipitation variable (1=dry years; 2=normal years; 3=wet years). Class A indicator 

taxa include: Brachycentrus (Trichoptera:  Brachycentridae), Serratella (Ephemeroptera:  

Ephemerellidae), Leucrocuta (Ephemeroptera:  Heptageniidae), Glossosoma (Trichoptera:  

Glossosomatidae), Paragnetina (Plecoptera: Perlidae), Eurylophella (Ephemeroptera:  

Ephemerellidae), and Psilotreta (Trichoptera: Odontoceridae). At Station 56817, on average, 

more Class A indicator taxa were present during wetter years (Figure 2-25 in main report). The 

relative abundance of collector-gatherers was higher during higher flow years (Figure E3-2) 

E‐8 



 

 

 

  

 

 

 

145 
146 
147 

 

     

    

     

 

         

       

         

 

       

     

       

         

       

         

       

     

       

 

         

       

         
  148 

Table E3-1. Summary of results of the correlation analysis using data from Station 56817. 
Only the significant correlations are shown 

Climate-related Variables 

Model Input Metric Cat1_Precip ppt14 Cat_Flow Avg Median Flow 

I30-PRESENCE OF A 
INDICATOR TAXA 

r=.4686

N=22 

p=.028

 r=.5407 

N=22 

p=.009 

I08-RELATIVE DIPTERA 
RICHNESS 

r=-.4316 

N=22 

p=.045 

I12-EPT GENERIC 
RICHNESS DIVIDED BY 
DIPTERA RICHNESS 

r=.4350

N=22 

p=.043

 r=.6214 

N=22 

p=.002 

I16-TANYPODINAE 
ABUNDANCE 

r=-.5049 

N=22 

p=.017 

I31-EPT GENERIC 
RICHNESS RELATIVE TO 
EPT PLUS DIP 

r=.4505

N=22 

p=.035

 r=.5831 

N=22 

p=.004 

I33-COLLECTOR
GATHERERS RELATIVE 
ABUNDANCE 

r=.4346 

N=22 

p=.043 
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Figure E3-2. Box and whisker plot for the Collector-gatherers relative abundance metric. 

Samples were grouped by the following flow categories (Station 56817): 1=low flow years, 

2= normal years, 3=high flow years.
 

E3.4 NMDS ordination - Station 56817 - hot/cold/wet/dry/normal years 


Results from the NMDS ordination show that samples from Station 56817 do not form 

distinct clusters when grouped by hot/cold/wet/dry/normal years, so species composition did not 

change in a consistent way when the climate-related variables changed (Figure 2-24 in main 

body of report and E3-3). The plots that are shown are for the 2nd and 3rd axes because these axes 

explained the greatest amount of variance (Axis 3 in particular). The environmental variable that 

is most highly correlated with Axis 3 is the absolute difference between the PRISM mean annual 

precipitation from the sampling year and the previous year (r=-0.377). This variable is also the 

most highly correlated variable with Axis 2. The 2 minimum flow IHA parameters (1-day and 3

day minimum flow) have the next strongest correlations with Axis 3 (r=0.35 for both). There is 

an outlying sample in the plots. In 2005, mean annual precipitation was much higher than normal 

(and was much higher than the previous year) but minimum annual flows and median flows 

during the sampling months were relatively low (a lot of the rain occurred in October). 

E‐10 



 

 

 

 

 
 

 

 
 

 

 

 

 
 

 

 

169 

170 
171 
172 
173 
174 
175 
176 
177 

178 

Figure E3-3. NMDS plot (Axis 3-2). Cat_Prec refers to the precipitation categories, which 
are: 1=dry years; 2=normal years; 3=wet years. Samples are labeled by collection year. 
Absolute difference between the PRISM mean annual precipitation from the sampling year 
and the previous year (AbsD_P) is the most strongly correlated environmental variable 
with Axes 2 & 3. 

Figure E3-4 shows which taxa are the strongest drivers along the 2nd and 3rd axes. 

Tricorythodes, Oecetis and Ablabesmyia have the strongest negative correlations with Axis 3, 
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and Pseudocloeon has the strongest positive correlation with Axis 3. Closer examination of these 

taxa plotted in ordination space shows that none of them occur exclusively in a particular 

temperature or precipitation category, although Ablabesmyia, Tricorythodes and Pseudocloeon 

did occur more often in samples collected during normal precipitation years (Figure E3-5). 

Figure E3-4. NMDS plot (Axis 3-2) that shows which taxa are most highly correlated with 
each axis. 
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Figure E3-5. NMDS plots of the taxa that have the strongest correlations with Axis 3 
(Tricorythodes, Oecetis, Ablabesmyia and Pseudocloeon). Cat_Precip refers to the 
precipitation categories, which are: 1=dry years; 2=normal years; 3=wet years. 
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E3.5 ANOVA - commonly used metrics in northeastern states - hot/cold/wet/dry/normal 

years at 3 Maine reference stations with the most years of biological data (Station 56817, 

57011 and 57065). 

Metrics that had at least one significant difference when one-way analysis of variance 

was done to evaluate differences in samples grouped by coldest, normal, and hottest or driest, 

normal and wettest years are shown in Tables E3-2 and E3-3. These tables do not include results 

for thermal preference metrics, which are shown in Table 2-2 of the main report. Additional 

results are available upon request. 

Table E3-2. These metrics had at least one significant difference when one-way analysis of 
variance was done to evaluate differences in samples grouped by coldest, normal, and 
hottest years. Year groups were based on Parameter-elevation Regressions on Independent 
Slopes Model (PRISM) mean annual air temperature values at each site. Groups with the 
same superscripts are not significantly different (p < 0.05).  

Site Metric Coldest Normal Hottest 

56817 
(Sheepscot) 

% Swimmer individuals 5.2 ± 3.6A 5.7 ± 2.4AB 10.6 ± 5.0B 

% EPT individuals 23.3 ± 9.4A 58 ± 6.8B 63.6 ± 18.7B 

Hilsenshoff Biotic Index 5.4 ± .01A 3.9 ± .07B 4.5 ± .04A 

% Collector-filterer individuals 68.2 ± 11.7A 16.6 ± 6.0B 28.2 ± 27.0AB 

57011    Shannon-Wiener diversity index 2.6 ± 0.6A 3.7 ± 0.4B 3.5 ± 0.4AB 

(W.Br. 
Sheepscot) 

% Most dominant individuals 59.7 ± 12.3A 23.9 ± 6.23B 32.1 ± 3.8B 

% Perennial individuals 19.9 ± 3.6A 57.1 ± 17.5B 64.8 ± 16.7B 

% Intermittent individuals 67.4 ± 9.3A 22.0 ± 7.2B 24.4 ± 16.9B 

% Drier vulnerable individuals 10.5 ± 2.6A 29.9 ± 10.3AB 39.2 ± 10.3B 

% OCH individuals 4.6 ± 2.4A 17.2 ± 6.2B 8.4 ± 2.6AB 

Table E3-3. These metrics had at least one significant difference when one-way analysis of 
variance was done to evaluate differences in samples grouped by driest, normal, and 
wettest years. Year groups were based on Parameter-elevation Regressions on Independent 
Slopes Model (PRISM) mean annual precipitation values at each site. Groups with the 
same superscripts are not significantly different (p < 0.05).  

Site Metric Driest Normal Wettest 

56817 % Warmer-drier vulnerable individuals 0.43 ± 0.6AB 0.04 ± 0.1A 1.3 ± 1.3B 

(Sheepscot) # Warmer-drier vulnerable taxa 0.32 ± 0.4AB 0.05 ± 0.1A 0.7 ± 0.4B 

57065 
(Duck) 

% Climber individuals 8.2 ± 0.9AB 10.7 ± 3.4A 3.9 ± 2.2B 
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E3.6 How cold- and warm-water-indicator taxa may affect EPT metrics and HBIs, how 

they relate to BCG tier assignments and Class A indicator taxa and how changes in 

temperature indicator taxa may vary across different ecoregions in Maine 

Attachment E3 contains tables with lists of the temperature-indicator taxa, temperature 

optima and tolerance values that were calculated from the weighted average modeling, the 

tolerance values assigned by Maine DEP (which are used to calculate the HBI) and BCG 

attribute levels assigned to each taxa during the New England Wadeable Streams (NEWS) 

project (US EPA, 2007). 

E3.7 Distribution of cold and warm-water temperature indicator taxa  

Additional results are reported below (Tables E3-6, E3-7, E3-8, E3-9, E3-10 and E3

11). 

Tables E3-10 and E3-11 summarize distribution and abundance information for the 

Maine temperature-indicator taxa at the 3 sites (Stations 56817, 57011 and 57065) and 2 site 

groups that were analyzed for long-term trends. Boyeria and Eurylophella appear to be two of the 

strongest cold-water indicators because they occurred at all or most of the sites and generally had 

higher mean relative abundances than the other taxa. Nigronia, Pagastia, and Leuctra also 

occurred at most of the sites. Overall, the cold-water taxa are not well-represented at the 3 

individual stations, but have a greater presence among the site groups, especially the 

Northeastern Highlands. The warm-water-indicator taxa show a different pattern. They are well

represented at the individual sites and are poorly represented in the site groups, especially among 

the Laurentian Plains and Hills site group. Stenonema and Stenelmis appear to be two of the 

strongest warm-water indicators because they occur at all the sites and site groups and are 

present in higher numbers than the other taxa. Acroneuria, Ceraclea, Hydra, Neureclipsis, 

Nilotanypus and Oecetis are present at 4 of the 5 sites/site groups, and Leucrocuta also occurs in 

relatively high abundances. 
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Table E3-10. Summary of distribution and abundance information for the cold-

water temperature indicator taxa at the 3 sites (Stations 56817, 57011 and 57065) and 2 site 

groups (Laur = Laurentian Plains and Hills, NEHigh = Northeastern Highlands). #Sites 

refers to the number of sites or site groups at which the taxa occurs. A=absent. P=present 

(highlighted in grey). Relative abundance codes: L=low (<0.01), M=medium (0.01-0.1), 

H=high (>0.1) (M or H are in bold type). Guide to interpretation: P-1L = present, occurred 

during1 year, low relative abundance (RA), P-11M = present, occurred during 11 years, 

medium RA, etc. 

FinalID #Sites ME56817 ME57011 ME57065 Laur NEHigh 

Ameletus 1 A A A A P-4L 

Apatania 1 A A A A P-2L 

Boyeria 5 P-11L P-11M P-9M P-8M P-3M 

Capnia 0 A A A A A 

Diplectrona 2 A A P-1L A P-1L 

Epeorus 2 P-10L A A A P-4M 

Eurylophella 4 A P-1L P-9M P-7M P-7M 

Glossosoma 3 P-1L A A P-4L P-2L 

Heterotrissocladius 2 A A P-1L A P-3L 

Hydatophylax 3 A P-1L A P-2L P-1L 

Lanthus 1 A A A A P-1L 

Larsia 1 A A A A P-3M 

Table E3-10. Continued 
FinalID #Sites ME56817 ME57011 ME57065 Laur NEHigh 

Leuctra 4 A P-4L P-1L P-5L P-6M 

Limnephilus 1 A A A P-4M A 

Macropelopia 1 A A A A P-2L 

Malirekus 0 A A A A A 

Micrasema 2 P-9L A A A P-1L 

Natarsia 1 A A A A P-1L 

Nemoura 0 A A A A A 

Nigronia 4 P-1L P-6L P-5L P-1L A 

Oligostomis 2 A A A P-6M P-2L 

Oulimnius 2 A A A P-2L P-4L 

Pagastia 4 P-1L P-1L A P-6M P-5M 

Palaeagapetus 0 A A A A A 

Paracapnia 2 A P-1L A P-5L A 

Paranemoura 0 A A A A A 

Parapsyche 1 A A A A P-3L 

Peltoperla 1 A A A A P-1L 
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Perlodidae 3 P-2L A A P-4M P-7M 

Prodiamesa 0 A A A A A 

Prostoia 0 A A A A A 

Pseudodiamesa 1 A A A A P-1L 

Psychoglypha 2 A A A P-4L P-1L 

Pteronarcys 1 A A A A P-6M 

Rhithrogena 1 A A A A P-2M 

Sweltsa 3 A A P-1L P-4L P-6M 

Taenionema 0 A A A A A 

Tallaperla 1 A A A A P-4M 

Utacapnia 0 A A A A A 

Utaperla 0 A A A A A 

Zapada 0 A A A A A 
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Table E3-11.  Summary of distribution and abundance information for the warm-water 
temperature indicator taxa at the 3 sites (Stations 56817, 57011 and 57065) and 2 site 
groups (Laur = Laurentian Plains and Hills, NEHigh = Northeastern Highlands). #Sites 
refers to the number of sites or site groups at which the taxa occurs. A=absent. P=present 
(highlighted in grey). Relative abundance codes: L=low (<0.01), M=medium (0.01-0.1), 
H=high (>0.1) (M or H are in bold type). Guide to interpretation: P-1L = present, occurred 
during1 year, low relative abundance (RA), P-11M = present, occurred during 11 years, 
medium RA, etc. 

FinalID  #Sites ME56817 ME57011 ME57065 Laur NEHigh 

Acroneuria  
Amnicola 
Argia
Attaneuria 
Caenis 
Cardiocladius 
Ceraclea 
Chaetogaster 
Dicrotendipes
Erpobdella 
Ferrissia
Helicopsyche 
Helisoma
Hemerodromia
Hydra
Hydroptila 
Isonychia 
Labrundinia 
Leucrocuta
Macrostemum 
Neureclipsis 
Nilotanypus 
Oecetis 
Orconectes 
Parachironomus 
Paragnetina
Pentaneura
Physa 
Physella 
Plauditus 
Prostoma
Psectrocladius
Pseudocloeon
Rheopelopia
Serratella 
Stenacron 
Stenelmis 
Stenonema
Tribelos 
Tricorythodes 

4 
 3 
  3 

1 
1 
1 
4 
3 

  3 
1 
  2 

3 
 1 

  3 
  4 

3 
2 
 2 

 3 
2 
4 
4 
4 
1 
0 

  2 
 2 

2 
2 
3 

 2 
 3 

  1 
  3 

3 
2 
5 

 5 
1 
2 

P-23M 
 P-12L 

 P-7L 
P-3L 

A 
P-1L 

 P-5L 
P-1L

 P-2L 
A 

 P-5L 
 P-7L 

A 
 P-6L 
 P-1L 

P-14M 
P-22M 

 P-2L 
P-19M 
P-16M 
P-22M 

 P-5L 
 P-8L 

P-1L 
A 

 P-2L 
 P-13L 

A 
P-8L

 P-6L 
 P-1L 

P-1L
P-7L 

 P-8L 
P-15M 

A 
P-19M 
P-23M 

A 
 P-6L 

P-12M 
 P-2L 
 P-6L 

A 
P-3L 

A 
 P-3L 

 A 
 P-2L 

A 
P-2L 
P-8M 

A 
P-11M 

 P-1L 
P-3L
P-3L 
P-2L 

P-11M 
P-3L 

 P-2L 
 P-2L 

P-9M 
A 
A 

P-1L 
P-1L 

A 
 A 

P-1L 
P-1L 

 A 
A 

 P-5L 
P-2L 

 P-1L 
P-10M 
P-12M 

A 
P-11M 

P-9M 
P-5L 
P-1L 

A 
A 
A 

P-2L
 P-2L 

P-2L 
A 
A 
A 

P-2L 
P-3L 

 P-3L 
 A 

A 
A 

P-6M 
A 

P-1L
P-1L
P-8M 

A 
A 
A 
A 

P-4M 
P-5M 

A 
A 

P-8M 
A 

P-1L 
A 

P-9M 
 P-1L 

P-9M 
A 
A 

A 
A 
A 
A 
A 
A 

 A 
P-1L

A 
A 
A 
A 
A 
A 

P-2L
P-1L

A 
A 
A 
A 

 A 
 A 

A 
A 
A 
A 
A 

P-3L
A 
A 
A 

P-1L
A 
A 
A 
A 

P-6M 
P-7M 
P-1L

A 

P-3M 
A 
A 
A 
A 
A 

 P-1L 
 A 

A 
 P-1L 

A 
 P-1L 

A 
A 

 A 
 A 

A 
A 
A 
A 

 P-2L 
 P-2L 
 P-3L 

A 
A 
A 
A 

 A 
A 

 P-1L 
A 

 A 
A 
A 

P-1M 
A 

 P-4L 
P-6M 

 A 
A 
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E3.8 Summary 

 In general, samples with the following characteristics received better ratings (=higher 

classifications): 

o High generic richness 

o High richness and abundance of EPT taxa 

o High Shannon-Wiener diversity index values 

o Low HBI scores 

o Low Chironomidae abundances 

o Low relative Diptera richness 

o Low relative Oligochaeta abundance 

o Greater presence of Class A indicator taxa 

o Greater scraper relative abundance 

 Results from the NMDS ordination show that samples from Station 56817 do not form 
distinct clusters when grouped by hot/cold/wet/dry/normal years, so species composition 
did not change in a consistent way when the climate-related variables changed. None of 
the taxa that were the strongest drivers in the analysis occurred exclusively in a particular 
temperature or precipitation category. 

 Although there were significant differences among certain metrics at certain sites, the 
only ‘consistent’ pattern (=one that occurred at more than one site) was that the 
percentage of swimmers was higher during the warmer years at 2 sites. The other 
differences appeared to be site-specific. 

 At Station 56817, precipitation appeared to have a greater influence on the biotic 
assemblage than temperature. At Station 57011, temperature had a greater influence on 
metric values than precipitation. 

 At Station 56817, the mean richness and abundance of cold-water taxa was higher during 
the wet years, as were the richness and abundance of taxa that are predicted to be more 
vulnerable in a warmer drier climate scenario. 

 At Station 57011, samples collected during cold years had higher percent dominant taxon 
individuals, higher percent collector-filterer individuals, higher HBI scores, lower 
Shannon-Wiener diversity index scores, higher intermittent taxa individuals, lower EPT 
percent individuals, lower percent perennial taxa individuals, lower percent 
Odonata/Coleoptera/Hemiptera individuals, lower percent warm-water individuals and 
lower percent ‘drier vulnerable individuals. 

 Only one metric at Station 57065 had significant differences among the temperature and 
precipitation categories. At that site, the number of collector-filterer taxa was higher in 
samples collected during the normal/wet years, but this should be interpreted with caution 
due to a low sample size. 
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 Many of the cold-water-indicator taxa in Maine are EPT taxa: 16 of the cold-water taxa 
are Plecopterans, 10 are Trichopterans and 3 are Ephemeropterans. There are also a 
relatively high number of EPT taxa on the warm-water indicator list: 9 of the warm-water 
taxa are Ephemeropterans, 6 are Trichopterans and 3 are Plecopterans. 

 Eight of Maine’s model input metrics are related in some way to EPT taxa. Two of the 
model input metrics are specifically related to Ephemeropterans: Ephemeroptera 
Abundance and Relative Abundance Ephemeroptera. Three model input metrics are 
specifically related to Plecopterans: Plecoptera abundance, Perlidae abundance and 
relative Plecoptera richness. Two of the model input metrics are specifically related to 
Trichopterans: Hydropsyche abundance and Cheumatopsyche abundance. 

 Seven of the cold-water taxa are Dipterans from the family Chironomidae, and ten of the 
warm-water taxa are Dipterans. Several model input metrics are specifically related to 
Dipterans. 

 All but two of the tolerance values of the cold-water indicator taxa are low (≤ 3). Nine of 
the warm-water taxa have tolerance values ≥ 7, but it should be noted that 10 of the 
warm-water taxa have low tolerance values (≤ 3), so there is a mix. 

 Tolerance values had a weak but significant correlation (r=0.29, p=001) with temperature 
optima values. 

 When BCG attributes of temperature indicator taxa are examined, twenty of the cold
water taxa are considered to be sensitive taxa (2 or 3) and two of the taxa are considered 
to be tolerant (5). 

 Two of the Class A indicator taxa, Eurylophella and Glossosoma, are on the cold-water 
list and three, Paragnetina, Serratella and Leucrocuta, are on the warm-water list. 
Brachycentrus was initially on the warm-water list but was removed due to variation in 
temperature preferences among species within this genus. 

 At Station 56817, on average, more Class A indicator taxa were present during wetter 
years 

 The Northeastern Highlands sites have the highest mean number of cold-water indicator 
taxa (followed closely by the Northeastern Coastal Zone sites). It should be noted that the 
number of cold-water taxa in all the ecoregions is low (values generally range from 1 to 2 
taxa). The mean number of warm-water indicator taxa at sites in the Laurentian Plains 
and Hills is significantly higher than at sites in the other ecoregions, while the 
Northeastern Highlands sites have the lowest mean number of warm-water indicator taxa. 

 On average, there are more cold-water indicator taxa at higher elevation (≥ 500 ft) sites 
and more warm-water indicator taxa at lower elevation (< 500 ft) sites. 

 At Station 56817, 5 model metrics were significantly correlated with flow category. The 
general pattern was that Dipteran Richness and Tanypodinae abundance decreased during 
higher flow years, while the EPT:Diptera ratio metrics increased. The relative abundance 
of collector-gatherers was higher during higher flow years. 

 Bottom lines: it is tough to predict effects on Maine’s classification models because they 
look at multiple variables simultaneously. There are no firm thresholds. We did the best 
we could with what we had, but predictions at this point are only speculative. 

 Unfortunately we lack long-term data for Northeastern Highlands sites, which seems to 
be the area where we would have been most likely to see a trend or detect a climate
related shift in the biology.  
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Attachment E1 
___________________ 
Results of the ANOVA analysis in which mean model 
input metric values were compared across the different 
classifications 

This attachment contains a table and box plots that summarize mean model input metric values 
for Class A, B, C and NA samples. 
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Table E1-1. Results of the one-way ANOVA that was performed on all the samples in the Maine database to see how mean 
metric values varied among the different classes. Mean metric values, sample sizes (N) and standard deviations (Std. Dev.) are 
shown. P-levels from the Tukey honest significant difference (HSD) test for unequal sample size (N) (Spjotvoll/Stoline) are 
shown if they are significant (<0.5). Note: I35-PIERCERS RELATIVE ABUNDANCE and I38-PARASITES RELATIVE 
ABUNDANCE had low sample sizes and were therefore excluded from this analysis. 

CLASS 
Significance level  (Tukey p-level) 

A B C NA 

Metric N Mean 
Std. 
Dev. N Mean 

Std. 
Dev. N Mean 

Std. 
Dev. N Mean 

Std. 
Dev. 

A
B 

A
C 

A
NA B-C B-NA 

C
NA 

I01-TOTAL 
ABUNDANCE 577 460.5 548.8 448 909.8 948 353 1132.1 1800.2 227 598.8 1128.7 0 0 0.04 0.02 0 
I02-GENERIC 
RICHNESS 577 42.9 14.4 448 42.4 13.2 353 36.3 13.3 227 28.1 11.9 0 0 0 0 0 
I03-PLECOPTERA 
ABUNDANCE 577 21.1 38.7 445 11.5 15.6 170 6.3 11.4 19 5.6 15.7 0 0 
I04
EPHEMEROPTERA 
ABUNDANCE 576 99.5 132.9 448 144.8 163.9 353 90.7 155.7 142 10 31.7 0 0 0 0 0 
I05-SHANNON
WEINER GENERIC 
DIVERSITY 577 3.8 0.7 448 3.4 0.7 353 3.2 0.8 227 2.7 0.9 0 0 0 0 0 0 
I06-HILSENHOFF 
BIOTIC INDEX 577 3.7 0.8 448 4.7 0.7 353 5.3 1 227 5.8 1.2 0 0 0 0 0 0 
I07-RELATIVE 
CHIRONOMIDAE 
ABUNDANCE 574 0.2 0.2 448 0.3 0.2 353 0.3 0.2 222 0.3 0.3 0 0 0 0.02 
I08-RELATIVE 
DIPTERA RICHNESS 576 0.4 0.1 448 0.4 0.1 353 0.4 0.1 224 0.4 0.2 0 0 0.01 0 
I09-HYDROPSYCHE 
ABUNDANCE 472 103 154.4 395 216.4 301.1 263 343 600.2 138 134.8 618.6 0 0 0 0 
I11
CHEUMATOPSYCHE 
ABUNDANCE 362 22.4 48.5 383 98.8 283.8 264 175.5 433.4 124 118.2 371.7 0 0 0.01 
I12-EPT GENERIC 
RICHNESS DIVIDED 
BY DIPTERA 
RICHNESS 576 1.5 1 448 1.3 0.6 353 1 0.6 224 0.8 0.9 0 0 0 0 0 0.02 
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Table E1-1. Continued 
CLASS 

Significance level  (Tukey p-level) 
A B C NA 

Metric N Mean 
Std. 
Dev. N Mean 

Std. 
Dev. N Mean 

Std. 
Dev. N Mean 

Std. 
Dev. A-B 

A
C 

A
NA B-C 

B
NA 

C
NA 

I13-RELATIVE 
OLIGOCHAETA 
ABUNDANCE 277 0 0 221 0 0.1 218 0 0.1 168 0.1 0.2 0 0 0 
I15-PERLIDAE 
ABUNDANCE 401 10.2 8.9 376 9.7 12.3 104 6.2 11 10 5.5 9.7 0.04 
I16-TANYPODINAE 
ABUNDANCE 465 8.2 14.7 405 15.2 25 316 25.4 48.5 190 21.3 43 0.01 0 0 0 
I17-CHIRONOMINI 
ABUNDANCE 511 27.7 70.7 432 52.3 122.9 331 109.5 323.9 187 68 192.2 0 0 
I18-RELATIVE 
EPHEMEROPTERA 
ABUNDANCE 576 0.3 0.2 448 0.2 0.2 353 0.1 0.2 142 0 0.1 0 0 0 0 0 0 
I19-EPT GENERIC 
RICHNESS 577 19.3 5.7 448 17.3 4.6 353 11.5 4 216 5.9 3.3 0 0 0 0 0 0 
I21-SUMMED 
ABUNDANCE OF 
DICROTENDIPES, 
MICROPSECTRA, 
PARACHIRONO 302 9.5 22 231 17.2 88.8 231 36.6 132 149 55.3 193 0.05 0 0.02 
I23-RELATIVE 
PLECOPTERA 
RICHNESS 577 0.1 0.1 445 0.1 0 170 0 0 19 0.1 0 0 0 
I25-SUMMED 
ABUNDANCE OF 
CHEUMATOPSYCHE, 
CRICOTOPUS, 
TANYTARSUS A 518 28.1 60.7 446 121.1 275.8 347 183.5 403.3 213 96.7 305.2 0 0 0.04 0.01 0.01 
I26-SUMMED 
ABUNDANCE OF 
ACRONEURIA, 
STENONEMA AND 
MACCAFFERTIUM 463 32 37.1 417 51.7 59.2 262 37.6 64.7 60 6.4 19.9 0 0.03 0.01 0 0.01 
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Table E1-1. Continued 
CLASS 

Significance level  (Tukey p-level) 
A B C NA 

Metric N Mean 
Std. 
Dev. N Mean 

Std. 
Dev. N Mean 

Std. 
Dev. N Mean 

Std. 
Dev. A-B 

A
C 

A
NA B-C 

B
NA 

C
NA 

I28-EP GENERIC 
RICHNESS 
DIVIDED BY 14 577 0.8 0.3 448 0.6 0.2 353 0.4 0.2 149 0.2 0.1 0 0 0 0 0 0 
I30-PRESENCE OF 
A INDICATOR 
TAXA 522 0.4 0.2 348 0.2 0.1 152 0.2 0.1 43 0.2 0.1 0 0 0 0.04 
I31-EPT GENERIC 
REICHNESS 
RELATIVE TO 
EPT PLUS 
DIPTERA 576 0.6 0.1 448 0.5 0.1 353 0.5 0.1 214 0.4 0.2 0 0 0 0 0 0 
I32-COLLECTOR
FILTERERS 
RELATIVE 
ABUNDANCE 577 0.4 0.2 448 0.5 0.3 353 0.4 0.3 214 0.3 0.3 0 0.01 0.04 0 0 0 
I33-COLLECTOR
GATHERERS 
RELATIVE 
ABUNDANCE 577 0.2 0.1 448 0.2 0.1 352 0.2 0.2 218 0.2 0.2 0 0 0 
I34-PREDATORS 
RELATIVE 
ABUNDANCE 577 0.1 0.1 447 0.1 0.1 351 0.1 0.1 223 0.1 0.2 0 0.01 
I36-SHREDDERS 
RELATIVE 
ABUNDANCE 567 0.1 0.1 433 0.1 0.1 336 0.1 0.1 200 0.2 0.2 0.03 0 0 0 
I37-SCRAPERS 
RELATIVE 
ABUNDANCE 565 0.1 0.1 444 0.1 0.1 344 0.1 0.1 194 0.1 0.2 
I39-ETO GENERIC 
RICHNESS 577 17.5 6.1 448 17.1 5 353 12.6 4.5 222 7 3.5 0 0 0 0 0 
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The next 32 graphs are categorical box and whisker plots for the Maine model input 

metrics. They show the mean metric values for Class A, B, C and NA samples that are currently 

in the Maine database. These plots were examined to gain more insight into the following 

questions: how do model input metric values differ among the different classifications? Do 

certain metrics appear to be more important than others in contributing to classification changes? 
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Attachment E2 
__________________ 
Maine Temperature-Indicator Taxa 
 
This attachment contains tables with lists of the Maine temperature-indicator taxa and describes 

the process that we followed to develop these lists. 
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MAINE TEMPERATURE-INDICATOR TAXA 

Sources. The Maine cold- and warm-water taxa lists were developed using several 

different sources: 1. weighted average calculations based on a subset of the Maine 

biomonitoring database (using site average temperature values (July, August, and September) 

from 616 sites); 2. the thermal preference trait from the Poff et al. (2006) traits matrix; 3. the 

thermal-preference trait from the USGS traits database (Vieira et al., 2006); 4. the thermal

preference trait from the compilation of EPA Environmental Requirements and Pollution 

Tolerance series from the late 1970’s (Beck et al., 1977; Harris et al., 1978; Hubbard et al., 1978; 

Surdick et al., 1978); and 5. best professional judgment of the New England Climate Change 

traits feedback group1. 

Designation as cold-water taxa. Taxa were placed on the Maine cold-water taxa list if 

they met the following criteria: 1. They received a rank temperature optima value of 1 or 2 or 3 

(the rank optima value is based on percentiles of the dataset; for these taxa, the weighted average 

optima value was less than the 0.4 percentile value of the dataset it was derived from); or 2. the 

thermal preference in the Poff et al. 2006 traits matrix was ‘cold_cool’; or 3. The thermal 

preference in the USGS traits database (Vieira et al., 2006) was ‘cold stenothermal’ or ‘cold-cool 

eurythermal’ (temperature preference of less than 15°C); or 4. The thermal preferences in the 

EPA Environmental Requirements and Pollution Tolerance series were ‘oligothermal’ or 

‘stenothermal’ or ‘metathermal’ (temperature preference of less than 15°C); or 5. If anyone in 

the New England Climate Change feedback group felt a taxa should be added to this list. 

Designation as warm-water taxa. Taxa were placed on the Maine warm-water taxa list 

if they met the following criteria: 1. They received a rank temperature optima value of 5 or 6 or 7 

(the rank optima value is based on percentiles of the dataset; for these taxa, the weighted average 

optima value was greater than the 0.6 percentile value of the dataset it was derived from); or 2. 

the thermal preference in the Poff et al. 2006 traits matrix was ‘warm’;  or 3. The thermal 

preference in the USGS traits database (Vieira et al., 2006) was ‘hot euthermal’ or ‘warm 

eurythermal’ (temperature preference of greater than 15°C); or 4. The thermal preferences in the 

1 New England Climate Change group: Maine DEP (Leon Tsomides, Tom Danielson, Dave Courtemanche, Susan 
Davies), Vermont DEC (Doug Burnham, Steve Fiske, Jim Kellogg, Rich Langdon), New Hampshire (Dave Neils – 
NH DES, Don Chandler- UNH), Mike Winnell (professional taxonomist who works on a lot of Maine samples). 
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EPA Environmental Requirements and Pollution Tolerance series were ‘euthermal’ or 

‘eurythermal’ or ‘mesothermal’ (temperature preference of greater than 15°C); or 5. If anyone in 

the New England Climate Change feedback group felt a taxa should be added to this list. 

Limitations. These lists were developed using the best information available, but it 

should be noted that the available information is limited. The weighted average calculations are 

based on instantaneous water temperature measurements that were taken at the time of the 

sampling event. Ideally, continuous water temperature data should be used, since this provides 

more information about the thermal regime, especially during times of greatest thermal stress 

(i.e. summer baseflow conditions). However, these data are generally unavailable. The weighted 

average calculations also have limitations. One of the main concerns is that the analysis does not 

take into account the confounding factors (‘noise’) that are not related to temperature. However, 

the theory is that with a sufficient amount of data, the noise essentially cancels itself out. Another 

limitation is that the operational taxonomic unit that was most appropriate for this analysis is at 

the genus-level (in some instances, family-level was most appropriate). Within certain genera in 

particular, the thermal preference among species varies, so the assigned thermal preference may 

not be appropriate for all species within a genera. Attempts were made to note these genera (see 

‘species-variation’ column in the worksheets). 

We want to reiterate that when we developed these lists, we did the best we could with 

the data that was available. These lists should be viewed as a first step, not a final product.  It 

would be very helpful if future research included a combination of short- and long-term field and 

experimental studies designed to better evaluate climate change effects on freshwater 

ecosystems.  

Initial Results. Initially there were 106 taxa on the cold-water list and 82 taxa on the 

warm-water list.  These lists were based on weighted average calculations and literature. These 

lists were further refined through the evaluation of additional evidence.  This evidence included 

analyses of other datasets, case studies, and best professional judgment.  Taxa with the greatest 

amount of evidence were designated as temperature-indicator taxa. More detailed information 

about the steps that were used to develop the temperature indicator taxa lists is summarized 

below: 

Considerations 
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A.  Results from weighted average or maximum likelihood thermal optima and tolerance 


calculations were a major consideration. Results from the following eight analyses were used:  


 California (taken from 'Herbst_CABW.2007_Sierra.climate.change.ppt')
 

  Idaho (taken from 'Temperature Preferences and Tolerances for 137 Common 

Idaho Macroinvertebrate Taxa. Darren Brandt. Idaho DEQ. November 2001.')
 

 Maine (based on site average temperature values (July- September) from 616 

sites in the Maine biomonitoring database)
 

 North Carolina (based on maximum likelihood calculations for the North 

Carolina biomonitoring database, full-scale collection method only) 


 Ohio (Ed Rankin, these are PRELIMINARY, and are based on average mean 

temperature values) 


 Oregon (Shannon Hubler (2007), based on the Oregon DEQ database) 


 Utah (based on 572 fall samples from the Utah biomonitoring database) 


 Yuan 2006 (Estimation and Application of Macroinvertebrate Tolerance 

Values. Report No. EPA/600/P-04/116F, based on Western EMAP data). 


A scoring system was developed to summarize results from the eight different analyses.  


It takes into account thermal preference, thermal tolerance and sample size.  Scores were 


assigned (for each of the eight analyses) as follows:   


COLD-WATER TAXA 

 2=cold stenotherm (rank optima of 1 or 2 or 3 and rank tolerance of 1 or 2 or 
3), adequate sample size (20 or more counts) 

 1=cold preference (rank optima of 1 or 2 or 3), adequate sample size (20 or 
more counts) 

 1=cold stenotherm (rank optima of 1 or 2 or 3 and rank tolerance of 1 or 2 or 
3), low sample size (less than 20 counts) 

 0.5=cold preference (rank optima of 1 or 2 or 3), low sample size (less than 20 
counts) 

WARM-WATER TAXA 

 2=warm eurythermal (rank optima of 5 or 6 or 7 and rank tolerance of 5 or 6 
or 7), adequate sample size (20 or more counts) 
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 1=warm preference (rank optima of 5 or 6 or 7), adequate sample size (20 or 
more counts) 

 1= warm eurythermal (rank optima of 5 or 6 or 7 and rank tolerance of 5 or 6 
or 7), low sample size (less than 20 counts) 

 0.5=warm preference (rank optima of 5 or 6 or 7), low sample size (less than 
20 counts) 

In addition to the weighted average and maximum likelihood results, information on 

thermal preferences was also derived from literature.  The taxon received a score of 1 if it was 

cited as a cold- or warm-water taxon in at least one of the following sources:  Poff et al. 2006 

traits matrix; or USGS traits database (Vieira et al., 2006); or EPA Environmental Requirements 

and Pollution Tolerance series from the late 1970’s (Beck et al., 1977; Harris et al., 1978; 

Hubbard et al., 1978; Surdick et al., 1978).  If the weighted-average results showed the taxon to 

have a preference for cold- or warm-water but the literature showed conflicting results (i.e. based 

on the weighted-average results, the taxon was a cold-water taxa, but the literature showed it to 

be a warm-water taxa), then the taxon was not included on the temperature indicator list. 

After scores were assigned as described above, they were summed so that each taxon 

received a total score.  The higher the total score, the more evidence there was in the eight 

analyses and the literature that supported the designation of the taxon as a temperature indicator 

taxon. 

B. Several ‘case studies’ were performed to see whether the cold- or warm-water taxa 

occurred at sites in Maine and Vermont that had the warmest or coldest summer water 

temperatures.  The following case studies were performed:  

a. Cold-Water Case Study #1. Vermont provided us with taxa lists from two sites that 

they regard as cold-water habitat. They are located below a dam that does profundal 

releases, and the water temperature remains around 8°C year round.  The dam is a 

confounding factor (although a study by the VT DEC indicates minor impacts on the 

macroinvertebrate community from the whitewater releases), but temperature is 

regarded as a major factor influencing community composition at these sites.   

b. Cold-Water Case Study #2. Taxa lists from the following 3 sites in Maine: Station 

57514 (Cold Brook (Dead River) – Maine DEP Station 772), Station 57513 (Cold 

Brook (Dead River) – Maine DEP Station 771) and Station 57512 (Cold Brook (Dead 
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River) – Maine DEP Station 770). These sites were selected for the following 

reasons: 1. Water temperature readings at these 3 sites were among the lowest in the 

database, ranging from 7.8 to 13.9°C (these were July-Sept readings); based on the 

surrounding land use land cover (1km buffer), these sites appear to have few 

confounding factors (0-1% urban, 0% agricultural).  Wetlands may influence the 

biota at these sites, especially Station 57512 (23% wetland), but temperature is 

believed to be a factor influencing community composition at these sites. 

c. Warm-Water Case Study #1. Taxa lists from two sites in Maine with the warmest 

average water temperatures:  Station 56834 (Mattanawcook Stream – Maine DEP 

Station 91, below Lincoln Pulp and Paper (cooling water), which had an average 

summer water temperature of 31°C; and Site 57055 (Birch Stream (Bangor) – Maine 

DEP Station 312), which had an average summer water temperature of 30°C.  These 

are not reference sites. Within the 1 km buffer, Station 56834 is 24% urban and 

Station 57055 is 60% urban. 

d. Warm-Water Case Study #2. Taxa lists from 5 sites in Maine with the warmest 

average water temperatures that were <5% urban and <10% agricultural within a 1 

km buffer.  Average water temperatures ranged from 26-27°C.  Sites included: 

Station 57560 (West Seboeis Stream – Maine DEP Station 818), Station 56871 

(Penobscot River - Maine DEP Station 128), Station 56953 (Dead River - Maine DEP 

Station 210), Station 57228 (Pollard Brook - Maine DEP Station 485) and Station 

56952 (Dead River - Maine DEP Station 209). 

C.  In addition to the case studies, best professional judgment from the New England 

Climate Change group was taken into account.   

Development of the Temperature Indicator Cold-Water Taxa List.  Taxa were placed on the 

cold-water list if the following criteria were met: 

1. The taxon was NOT present at the warm-water case study sites. 

2. The taxon was present at one or more of the cold-water case study sites and/or the New 

England Climate Change feedback group believed that it should be on the list. 
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Development of the Temperature Indicator Warm-Water List.  Taxa were placed on the 

warm-water list if the following criteria were met: 

1. The taxon was NOT present at the cold-water case study sites. 

2. The taxon was present at one or more of the warm-water case study sites and/or the New 

England Climate Change feedback group believed that it should be on the list. 

Temperature Indicator Lists.  The cold-water taxa list was comprised of 41 taxa and the warm

water taxa list was comprised of 40 taxa. Temperature indicator taxa lists can be found in Tables 

E2-1 and E2-2. 

Important Notes – variation within genera. Some noteworthy genera were left off the 

Maine warm-water taxa list. These included Brachycentrus, Hydropsyche, and Ceratopsyche.  

Genera left off the Maine cold-water list included Eukiefferiella and Rhyacophila. The reason 

they were not included is because there is variation in temperature preferences among species 

within these genera, and this was noted by the New England Climate Change feedback group or 

in the literature (Vermont DEC suggested a list of species to include on the lists – see Tables E2

6 and E2-7). 

It is also worth noting the absence of two other genera from the cold-water list – Antocha 

and Dicranota. In the weighted average and maximum likelihood analyses, these two taxa were 

often listed as cold-water taxa.   However, in the case studies, it became apparent that these 

genera were widespread and occurred at sites at which cold and warm temperatures had been 

recorded. 

Dispersal Ability.  If temperature is a major factor influencing community composition, 

then taxa that are able to adapt to warming temperatures or that are able to disperse to more 

favorable habitats (generally believed to be upstream or to higher elevations) have a better 

chance of surviving.  Five mobility traits were examined for the taxa on the Maine temperature 

indicator lists: dispersal (adult), adult flying strength, occurrence in drift, maximum crawling rate 

and swimming ability.  More information on these traits can be found in Table E2-3. 

Dispersal (adult) and adult flying strength received the greatest amount of consideration.  

Because movement is most likely to be upstream, taxa that are strong fliers are likely to have a 

better chance of success. It will be difficult for taxa that disperse via occurrence in drift to 
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migrate upstream, and taxa that disperse via crawling or swimming are likely to have difficulty 

moving the distances required to find more favorable habitats.   

Two of the 41 taxa on the Maine temperature indicator cold-water taxa list (for which w 

had trait information), Boyeria and Pteronarcys, are considered to have high dispersal ability and 

strong adult flying strength. Another taxon, Lanthus, is categorized as having strong flying 

ability but low adult dispersal ability.  Eleven of the 40 taxa on the warm-water list are 

categorized as having high adult dispersal ability.  Four of these taxa are considered to be strong 

fliers. 

Abundance and Distribution. In addition to dispersal ability, abundance and 

distribution are also important considerations. Those taxa that are widespread and common are 

likely to have greater genetic diversity and greater chance of adapting than rare taxa that only 

occur in isolated, localized populations (Sweeney et al. 1992). Moreover, the more abundant taxa 

are more likely to affect the state biomonitoring assessments. Abundance and distribution 

information for the temperature indicator taxa can be found in Tables E2-1 and E2-2. 

The most abundant cold-water-temperature-indicator taxa are Leuctra (Plecopteran), 

Epeorus (Ephemeropteran), Eurylophella (Ephemeropteran), Perlodidae (Plecopteran) and 

Boyeria (Odonata). These taxa comprise only 0.3 to 0.4% of the total individuals in the Maine 

database. Thirty-one of the cold-water taxa have overall abundances of less than 0.1%.  

Stenonema and Neureclipsis are the most abundant warm-water taxa, with overall abundances of 

5.2 and 2.6%, respectively. Nine of the warm-water taxa have overall abundances of less than 

0.1%. Of the cold-water taxa, Boyeria occurs at the largest percentage of sites (38%), followed 

by a Plecopteran, Perlodidae, which occurs at 25% of the sites. Thirty-one of the taxa occur at 

less than 10% of the sites. Among the warm-water taxa, Stenonema occurs at the highest 

percentage of sites (63%), followed by Acroneuria (39%) and Neureclipsis (38%). Eight of the 

warm-water taxa occur at less than 10% of the sites. 

Additional information – Cold-Water Taxa. Sixteen of the cold-water taxa are 

Plecopterans, ten are Trichopterans, seven are Dipterans, and three are Ephemeropterans. The 

rest are Coleopterans, Odonates and Megalopterans. The families with the most number of taxa 

on the cold-water list are Chironomidae and Nemouridae (Table E2-4). It should be noted that 
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two of the taxa on the cold-water list, Malirekus and Taenionema, do not occur in the Maine 

database. They were added per best professional judgment of the Vermont DEC. 

Additional information – Warm-Water Taxa. Ten of the warm-water taxa are 

Dipterans, nine are Ephemeropterans and six are Trichopterans.  The families with the most 

number of taxa on the warm-water list are Chironomidae and Perlidae (Table E2-5). 
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Table E2-1. List of Maine cold-water temperature indicator taxa.  Distribution and abundance information is also included.  
Sum_Individuals=the total number of individuals from that taxon in the Maine database; Pct_Abund=percent of total 
individuals in the database comprised of that taxon; Num_Stations=number of stations in the database that the taxon occurred 
at; Pct_Stations=percent of stations in the database at which the taxon occurred 
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Type Order Family FinalID Sum_Individs Pct_Abund Num_Stations Pct_Stations 

cold Ephemeroptera Ameletidae Ameletus  63  0.01  26  3.06
 
cold Trichoptera Apataniidae Apatania  48  0.01  23  2.71
 
cold Odonata Aeshnidae  Boyeria  1761  0.3  321  37.81
 
cold Plecoptera Capniidae Capnia  71  0.01 5  0.59
 
cold Trichoptera Hydropsychidae Diplectrona  1137  0.19  47  5.54
 
cold Ephemeroptera Heptageniidae Epeorus  2132 0.36 172 20.26

cold Ephemeroptera Ephemerellidae Eurylophella 1785 0.3 170 20.02 

cold Trichoptera Glossosomatidae  Glossosoma  945 0.16 119 14.02

cold Diptera Chironomidae Heterotrissocladius  447  0.08  73  8.6
 
cold Trichoptera Limnephilidae Hydatophylax 114 0.02 49 5.77
cold Odonata Gomphidae Lanthus  36  0.01  11  1.3
 
cold Diptera Chironomidae Larsia  269  0.05  58  6.83
 
cold Plecoptera Leuctridae Leuctra  2407  0.4  142  16.73
 
cold Trichoptera Limnephilidae Limnephilus 889 0.15 62 7.3
cold Diptera Chironomidae Macropelopia  322  0.05  43  5.06
 
cold Plecoptera Perlodidae Malirekus 0 0 0 0 

cold Trichoptera Brachycentridae Micrasema  405 0.07 87 10.25

cold Diptera Chironomidae Natarsia  430  0.07  65  7.66
 
cold Plecoptera Nemouridae Nemoura  17 0 4  0.47
 
cold Megaloptera Corydalidae  Nigronia  713 0.12 170 20.02

cold Trichoptera Phryganeidae Oligostomis  485 0.08 87 10.25

cold Coleoptera Elmidae Oulimnius  237  0.04  37  4.36
 
cold Diptera Chironomidae Pagastia  420 0.07 96 11.31

cold Trichoptera Hydroptilidae  Palaeagapetus 1 0 1 0.12 

cold Plecoptera Capniidae Paracapnia  52  0.01  17 2 
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Table E2-1. Continued 
Type Order Family FinalID Sum_Individs Pct_Abund Num_Stations Pct_Stations 

cold Plecoptera Nemouridae Paranemoura 3 0 3 0.35 
cold Trichoptera Hydropsychidae Parapsyche 398 0.07 27 3.18 
cold Plecoptera Peltoperlidae Peltoperla 9 0 4 0.47 
cold Plecoptera Perlodidae Perlodidae 1775 0.3 212 24.97 
cold Diptera Chironomidae Prodiamesa 392 0.07 28 3.3 
cold Plecoptera Nemouridae Prostoia 6 0 1 0.12 
cold Diptera Chironomidae Pseudodiamesa 139 0.02 12 1.41 
cold Trichoptera Limnephilidae Psychoglypha 329 0.06 37 4.36 
cold Plecoptera Pteronarcyidae Pteronarcys 248 0.04 80 9.42 
cold Ephemeroptera Heptageniidae Rhithrogena 193 0.03 23 2.71 
cold Plecoptera Chloroperlidae Sweltsa 640 0.11 66 7.77 
cold Plecoptera Taeniopterygidae Taenionema 0 0 0 0 
cold Plecoptera Peltoperlidae Tallaperla 126 0.02 12 1.41 
cold Plecoptera Capniidae Utacapnia 71 0.01 3 0.35 
cold Plecoptera Chloroperlidae Utaperla 2 0 2 0.24 
cold Plecoptera Nemouridae Zapada 2 0 1 0.12 

E2‐10
 



 

 

 644 

 

 

 

 

 

640 
641 
642 
643 

Table E2-2. List of Maine warm-water temperature indicator taxa.  Distribution and abundance information is also included.  
Sum_Individuals=the total number of individuals from that taxon in the Maine database; Pct_Abund=percent of total 
individuals in the database comprised of that taxon; Num_Stations=number of stations in the database that the taxon occurred 
at; Pct_Stations=percent of stations in the database at which the taxon occurred 
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Type Order Family FinalID Sum_Individs Pct_Abund Num_Stations Pct_Stations 

warm Plecoptera Perlidae Acroneuria  4857  0.82  331  38.99 
warm Mesogastropoda  Hydrobiidae Amnicola  4589  0.77  160  18.85 
warm Odonata Coenagrionidae Argia  869  0.15  137  16.14 
warm Plecoptera   Perlidae Attaneuria  172  0.03  36  4.24 
warm Ephemeroptera Caenidae Caenis  1783  0.3  169  19.91 
warm Diptera Chironomidae Cardiocladius  200  0.03  52  6.12 
warm Trichoptera Leptoceridae Ceraclea  876  0.15  152  17.9 
warm Haplotaxida Naididae Chaetogaster  342  0.06  70  8.24 
warm Diptera Chironomidae Dicrotendipes  1978  0.33  169  19.91 
warm Arhynchobdellida  Erpobdellidae Erpobdella 265 0.04 65 7.66 
warm Basommatophora  Ancylidae Ferrissia  594  0.1  102  12.01 
warm Trichoptera Helicopsychidae Helicopsyche  2563  0.43  104  12.25 
warm Basommatophora Planorbidae Helisoma  716  0.12  66  7.77 
warm Diptera Empididae Hemerodromia  1764  0.3  260  30.62 
warm  Hydroida Hydridae  Hydra  483  0.08  113  13.31 
warm Trichoptera Hydroptilidae  Hydroptila 1799 0.3 189 22.26 
warm Ephemeroptera Isonychiidae Isonychia  5413  0.91  225  26.5 
warm Diptera Chironomidae  Labrundinia  618  0.1  137  16.14 
warm Ephemeroptera Heptageniidae Leucrocuta  3320  0.56  208  24.5 
warm Trichoptera Hydropsychidae Macrostemum  4557  0.77  168  19.79 
warm Trichoptera Polycentropodidae Neureclipsis  15523  2.61  320  37.69 
warm Diptera Chironomidae  Nilotanypus  413  0.07  133  15.67 
warm Trichoptera Leptoceridae  Oecetis 3390 0.57 306 36.04 
warm Decapoda Cambaridae Orconectes  381  0.06  99  11.66 

 



 

 

 

    
      

    
    
    

     
    

     
   

    
    
    
    
    

646 Table E2-2. Continued 
Type Order Family FinalID Sum_Individs Pct_Abund Num_Stations Pct_Stations 

warm Diptera Chironomidae Parachironomus 946 0.16 83 9.78 
warm Plecoptera Perlidae Paragnetina 625 0.11 103 12.13 
warm Diptera Chironomidae Pentaneura 881 0.15 139 16.37 
warm Basommatophora Physidae Physa 1373 0.23 115 13.55 
warm Basommatophora Physidae Physella 1681 0.28 155 18.26 
warm Ephemeroptera Baetidae Plauditus 1285 0.22 125 14.72 
warm Hoplonemertea Tetrastemmatidae Prostoma 267 0.04 61 7.18 
warm Diptera Chironomidae Psectrocladius 1693 0.28 161 18.96 
warm Ephemeroptera Baetidae Pseudocloeon 1147 0.19 113 13.31 
warm Diptera Chironomidae Rheopelopia 729 0.12 144 16.96 
warm Ephemeroptera Ephemerellidae Serratella 2534 0.43 191 22.5 
warm Ephemeroptera Heptageniidae Stenacron 6503 1.09 196 23.09 
warm Coleoptera Elmidae Stenelmis 2638 0.44 280 32.98 
warm Ephemeroptera Heptagenidae Stenonema 30768 5.18 536 63.13 
warm Diptera Chironomidae Tribelos 1781 0.3 78 9.19 
warm Ephemeroptera Leptohyphidae Tricorythodes 2655 0.45 205 24.15 
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Table E2-3. Mobility traits that were evaluated. The source of most of this information was 
the Poff et al. 2006 traits matrix. Some also came from the USGS traits database (Vieira et 
al. 2006) 
Mobility Trait Trait States 

Dispersal (adult) 

Adult flying strength 

Occurrence in drift 

Maximum crawling rate 
Swimming ability 

low (<1 km flight before laying eggs), high (>1 km flight before 
laying eggs)  
weak (e.g. cannot fly into light breeze), strong 
rare (catastrophic only), common (typically observed), abundant 
(dominant in drift samples) 
very low (<10 cm/h), low (<100 cm/h), high (>100 cm/h) 
none, weak, strong 

Table E2-4. Number of cold-water taxa in each family 

Family 

Chironomidae 

Total 

7 
Nemouridae 4 
Capniidae 3 
Limnephilidae 3 
Chloroperlidae 2 
Elmidae 2 
Hydropsychidae 2 
Peltoperlidae 2 
Perlodidae 2 
Aeshnidae 1 
Ameletidae 1 
Apataniidae 1 
Brachycentridae 1 
Corydalidae 1 
Ephemerellidae 1 

Glossosomatidae 1 
Gomphidae 1 
Heptageniidae 1 
Hydroptilidae 1 
Leuctridae 1 
Phryganeidae 1 
Pteronarcyidae 1 

Taeniopterygidae 1 
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654 Table E2-5. Number of warm-water taxa in each family 
Family Total 

Chironomidae 9 
Perlidae 3 
Physidae 2 
Leptoceridae 2 
Heptageniidae 2 
Baetidae 2 
Tetrastemmatidae 1 
Polycentropodidae 1 
Planorbidae 1 
Naididae 1 
Leptohyphidae 1 
Isonychiidae 1 
Hydroptilidae 1 
Hydropsychidae 1 

Hydrobiidae 1 

Hydridae 1 
Heptagenidae 1 
Helicopsychidae 1 
Erpobdellidae 1 
Ephemerellidae 1 
Empididae 1 
Elmidae 1 

Coenagrionidae 1 
Cambaridae 1 
Caenidae 1 

Ancylidae 1 
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    Table E2-6. Potential cold-water species (per recommendation by Vermont DEC) 
Order Genus Species 

Diptera Polypedilum  aviceps 
Diptera Neostempellina reissi 
Diptera Tvetenia  bavarica 
Ephemeroptera  Rhithrogena sp 
Ephemeroptera  Ameletus sp 
Trichoptera  Arctopsyche sp 
Trichoptera  Arctopsyche ladogensis 

Trichoptera Rhyacophila carolina 
Trichoptera Rhyacophila torva 
Trichoptera Rhyacophila nigrita 
Trichoptera Rhyacophila invaria 
Trichoptera Rhyacophila acutiloba 
Plecoptera Peltoperla sp 
Plecoptera   Tallaperla sp 
Plecoptera Taenionema  sp 
Decapoda Cambarus  Cambarus bartoni 
Trichoptera  Palaeagapetus sp 
Diptera   Eukiefferella  brevicalar, brehmi, and tirolensis 
Coleoptera Oulimnius latiusculus 
Coleoptera Promoresia tardella 

 

  

 
Table E2-7.  Potential warm-water species (per recommendation by Vermont DEC) 
Order 

Diptera

Genus 

 Eukiefferella  

Species 

claripennis  

Diptera Polypedilum flavum 

Diptera Tvetenia discoloripes 

Trichoptera Leucotrichia sp 

Trichoptera Rhyacophila mainensis 

Trichoptera Rhyacophila manistee 

Trichoptera Rhyacophila minora 

Plecoptera Neoperla sp 

Plecoptera Taeniopteryx sp 
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Attachment E3 
___________________ 
Tolerance values and BCG attribute levels of 

the cold and warm-water temperature indicator 
taxa 

This attachment contains tables with lists of the temperature indicator taxa, temperature optima 
and tolerance values that were calculated from the weighted average modeling, the tolerance 
values assigned by Maine DEP (which are used to calculate the HBI) and BCG attribute levels 
assigned to each taxa during the New England Wadeable Streams (NEWS) project (US EPA 
2007). These tables were used to examine whether temperature indicator taxa were considered to 
be sensitive or tolerant taxa. 
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Table E4-1. Cold-water temperature indicator taxa. Temp_Opt is the temperature optima (°C) and Temp_Tol is the 
temperature tolerance calculated during the weighted average modeling. TolVal_ME is the tolerance value that was assigned 
by Maine DEP and that is used in the calculation of the HBI. BCG_NEWS is the BCG attribute level assigned to each taxa 
during the New England Wadeable Streams project and BCG_Cat is the category associated with the BCG_NEWS attribute 
levels (2=highly sensitive taxa, 3=intermediate sensitive taxa, 4=taxa of intermediate tolerance, 5=tolerant taxa). 
Order Family FinalID Temp_Opt Temp_Tol TolVal_ME BCG_NEWS 

Coleoptera Elmidae Oulimnius 3 

Diptera Chironomidae Heterotrissocladius 16.3 2.8 0 3 

Diptera Chironomidae Larsia 17.5 3.6 6 4 

Diptera Chironomidae Macropelopia 15.5 1.9 5 

Diptera Chironomidae Natarsia 16.6 2.5 8 5 

Diptera Chironomidae Pagastia 17.1 3.7 1 4 

Diptera Chironomidae Prodiamesa 15.6 2 3 2 

Diptera Chironomidae Pseudodiamesa 

Ephemeroptera Ameletidae Ameletus 0 2 

Ephemeroptera Heptageniidae Epeorus 19.9 4.9 0 2 

Ephemeroptera Ephemerellidae Eurylophella 17.4 3.2 3 3 

Ephemeroptera Heptageniidae Rhithrogena 0 2 

Megaloptera Corydalidae Nigronia 20.4 2.8 0 3 

Odonata Aeshnidae Boyeria 20.4 2.9 2 4 

Odonata Gomphidae Lanthus 3 

Plecoptera Capniidae Capnia 1 

Plecoptera Leuctridae Leuctra 16.3 3 0 2 

Plecoptera Nemouridae Nemoura 1 

Plecoptera Capniidae Paracapnia 1 3 

Plecoptera Nemouridae Paranemoura 

Plecoptera Peltoperlidae Peltoperla 

Plecoptera Perlodidae Perlodidae 17.3 4.4 3 
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Table E4-1. Continued 
Order Family FinalID Temp_Opt Temp_Tol TolVal_ME BCG_NEWS 

Plecoptera Nemouridae Prostoia 

Plecoptera Pteronarcyidae Pteronarcys 19.1 3.9 0 2 

Plecoptera Chloroperlidae Sweltsa 14.9 3.5 3 

Plecoptera Peltoperlidae Tallaperla 2 

Plecoptera Capniidae Utacapnia 

Plecoptera Chloroperlidae Utaperla 

Plecoptera Nemouridae Zapada 

Trichoptera Apataniidae Apatania 3 

Trichoptera Hydropsychidae Diplectrona 16.8 2.5 0 4 

Trichoptera Glossosomatidae Glossosoma 18.7 4.8 0 3 

Trichoptera Limnephilidae Hydatophylax 17.7 3.2 2 3 

Trichoptera Limnephilidae Limnephilus 17.4 2.5 3 

Trichoptera Brachycentridae Micrasema 18.6 5.3 2 3 

Trichoptera Phryganeidae Oligostomis 16.6 2.8 2 2 

Trichoptera Hydroptilidae Palaeagapetus 

Trichoptera Hydropsychidae Parapsyche 12.9 2.2 0 

Trichoptera Limnephilidae Psychoglypha 15.3 1.7 0 
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Table E4-2. Warm-water temperature indicator taxa. Temp_Opt is the temperature optima (°C) and Temp_Tol is the 
temperature tolerance calculated during the weighted average modeling. TolVal_ME is the tolerance value that was assigned 
by Maine DEP and that is used in the calculation of the HBI. BCG_NEWS is the BCG attribute level assigned to each taxa 
during the New England Wadeable Streams project and BCG_Cat is the category associated with the BCG_NEWS attribute 
levels (2=highly sensitive taxa, 3=intermediate sensitive taxa, 4=taxa of intermediate tolerance, 5=tolerant taxa, 6=non native 
or intentionally introduced taxa). 

Order Family FinalID Temp_Opt Temp_Tol TolVal_ME BCG_NEWS 

Arhynchobdellida Erpobdellidae Erpobdella 20.7 3.2 6 

Basommatophora Ancylidae Ferrissia 21.8 2.9 4 

Basommatophora Planorbidae Helisoma 21 2.7 5 

Basommatophora Physidae Physa 21.6 3.3 4 

Basommatophora Physidae Physella 20.5 3.3 4 

Coleoptera Elmidae Stenelmis 21.6 2.5 5 4 

Decapoda Cambaridae Orconectes 22.4 2.6 5 

Diptera Chironomidae Cardiocladius 21.8 2.4 5 6 

Diptera Chironomidae Dicrotendipes 21.2 3.3 8 6 

Diptera Empididae Hemerodromia 20.8 3.1 3 5 

Diptera Chironomidae Labrundinia 21.5 3.2 7 5 

Diptera Chironomidae Nilotanypus 22.2 2.2 6 4 

Diptera Chironomidae Parachironomus 21.7 2.2 10 5 

Diptera Chironomidae Pentaneura 22.4 2.8 6 4 

Diptera Chironomidae Psectrocladius 21.6 3.3 8 4 

Diptera Chironomidae Rheopelopia 20.8 3.1 

Diptera Chironomidae Tribelos 20.4 2.7 5 4 

Ephemeroptera Caenidae Caenis 21.4 3.5 7 4 

Ephemeroptera Isonychiidae Isonychia 22 2.8 2 3 

Ephemeroptera Heptageniidae Leucrocuta 21.2 3.3 1 3 

Ephemeroptera Baetidae Plauditus 21.2 2.8 3 

Ephemeroptera Baetidae Pseudocloeon 21.4 3.2 4 4 
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Table E4-2. Continued 
Order Family FinalID Temp_Opt Temp_Tol TolVal_ME BCG_NEWS 

Ephemeroptera Ephemerellidae Serratella 20.8 3.8 2 3 

Ephemeroptera Heptageniidae Stenacron 21.6 2.8 7 4 

Ephemeroptera Heptagenidae Stenonema 21 3.1 4 4 

Ephemeroptera Leptohyphidae Tricorythodes 22.1 2.1 4 4 

Haplotaxida Naididae Chaetogaster 20.5 1.9 5 

Hoplonemertea Tetrastemmatidae Prostoma 23.1 2.4 4 

Hydroida Hydridae Hydra 20.5 3.5 

Mesogastropoda Hydrobiidae Amnicola 22.7 2.4 5 

Odonata Coenagrionidae Argia 22.7 3 7 4 

Plecoptera Perlidae Acroneuria 21.6 2.9 0 3 

Plecoptera Perlidae Attaneuria 1 

Plecoptera Perlidae Paragnetina 20.7 3.6 1 3 

Trichoptera Leptoceridae Ceraclea 21.2 3 3 2 

Trichoptera Helicopsychidae Helicopsyche 22 2.3 3 4 

Trichoptera Hydroptilidae Hydroptila 20.4 4.2 6 4 

Trichoptera Hydropsychidae Macrostemum 22.7 2 3 4 

Trichoptera Polycentropodidae Neureclipsis 22.1 2.7 7 4 

Trichoptera Leptoceridae Oecetis 21.5 2.7 8 4 
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APPENDIX F 
___________________ 
Detailed Results for Utah 
The intent of this appendix is to provide more comprehensive and detailed information on the 
large number of analyses that were performed on the Utah data. Some of the analyses that are 
covered in this appendix are also referenced in the main body of the report. When this occurred, 
attempts were made to reduce any overlap or duplication in the reporting of results. 

F1. Overview of RIVPACS model 
F2. Methods – RIVPACS model manipulation analyses 
F3. Results – RIVPACS model manipulation analyses 
F4. Methods – Trends associated with climate-related variables 
F5. Results – Trends associated with climate-related variables 
Attachment F1. Extreme alterations of Utah fall RIVPACS model climate

related predictor variable values 
Attachment F2. Temperature-Indicator Taxa – Utah 
Attachment F3. Utah Station 4927250 
Attachment F4. Utah Station 4951200 
Attachment F5. Utah Station 4936750 
Attachment F6. Utah Station 5940440 
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F1. OVERVIEW OF THE UTAH RIVPACS MODEL 

A number of states use a predictive bioassessment approach called River InVertebrate 

Prediction And Classification System (RIVPACS) to assess stream condition (Wright, 2000). In 

the RIVPACS model, data from reference sites are used to establish expected (E) 

macroinvertebrate assemblages, and the observed (O) assemblages at sites are compared to these 

expected assemblages. The ratio of these values (O/E) can be interpreted as a measure of 

taxonomic completeness. Values of O/E that are near 1 at a test site suggest that the site is 

comparable to reference sites, whereas values that differ substantially from 1 suggest that the site 

is degraded (Yuan, 2006a). 

Utah recently started using a RIVPACS model (fall samples) to rate its sites (Ostermiller, 

unpublished presentation titled ‘Development of a biological assessment framework’). Sites are 

scored based on the ratio of O to E assemblages (expected assemblages are established based on 

reference site data). Differences in site characteristics are taken into account when sites are 

scored. Flow charts depicting the criteria and decision-making process that go into rating sites 

are shown in Figures F1-1 and F1-2. 
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Figure F1-1. Summary of the decision-making process and criteria that go into rating sites 
using the Utah fall RIVPACS model. 

F‐3 



 

 

 
 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

45 
46 
47 
48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

Figure F12-2. Summary of the decision criteria that is used for the Utah fall 

RIVPACS model when results of chemical and biological assessments differ. 

RIVPACS models are built using predictor variables that are minimally affected by 

human disturbance and that are considered to be relatively invariant over ecologically relevant 

time (Tetra Tech, 2008; Wright et al., 1984; Hawkins et al., 2000; Wright, 2000; Utah State 

University, 2009). Variables that are typically used include those related to geographic position 

(i.e. latitude, longitude, elevation), watershed area, climate, and surficial geology (Utah State 

University, 2009). If alterable variables were used (i.e., nutrient concentrations, conductivity, 

forest cover), it would be difficult to discriminate the natural gradient from that caused by human 

activity, and confident prediction of an expected community in the absence of human disturbance 

for a test site would be impossible (Tetra Tech, 2008).  
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The development of RIVPACS models requires several steps: 1) group reference sites 

into clusters with similar biological assemblages; 2) examine how natural factors vary within the 

clusters of reference sites; 3) for each test site, use natural factors to predict the clusters in which 

the site would most likely be grouped; 4) the expected biological composition of the test site is 

predicted to be the same as that observed in the reference cluster (this is expressed as the capture 

probability for each taxon); and 5) compare the observed taxa list to the expected taxa list, as 

expressed by the O/E ratio (Yuan, 2006b). To elaborate further on the expected taxa list, it is 

conceptually a weighted average of taxa frequencies found across all reference sites, where the 

weights are the probability a site is in a particular group of reference sites; average taxa 

frequencies from reference sites that are physically very similar to a test site are weighted most 

(Tetra Tech, 2009). The expected taxa list can be set to different thresholds (e.g., to exclude rare 

taxa, the threshold can be set to 50%). 

Utah DEQ uses a RIVPACS model for assessing wadeable streams. During model 

development, the random forests method was used to select predictor variables that best 

discriminated among the site groups (Breiman and Cutler, 2009) (NOTE:  this is oftentimes 

accomplished using a discriminant model). A major benefit of using the random forests method 

is that the calculations are done in a way that prevents the model from being overfit. Another 

valuable feature is that it gives estimates of what variables are important in the classification, 

both overall and within each site group (Breiman and Cutler, 2009). 

For this assessment, we explored how climate-related shifts in macroinvertebrate 

assemblages may affect Utah’s predictive bioassessment approach. RIVPACS analyses were run 

using a number of different scenarios in which climate-related predictor variables were altered. 

Questions we examined include: How does site class (membership probability) shift with 

changes to the climate influenced variables? Are the climate-related predictor variables being 

changed "enough" to cause any shift in the site class (membership probability) and thus a change 

in E? Do the climate predictive variables have enough predictive power to change the O/E score? 

Which of the climate predictor variables are most important, both overall and among site groups? 

F2. RIVPACS MODEL MANIPULATION ANALYSES 
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The fall model (and not the ‘all seasons’ model) was evaluated in this analysis, because 

the fall model is the one that Utah DEQ currently uses to assess wadeable stream sites. Jeff 

Ostermiller of Utah DEQ provided the R Code and data input files for the model; it is available 

upon request. The data input files contained information on the 88 reference sites that were used 

in the construction of the fall model. The files contain data on taxa, predictor variables and site 

groups (these are available upon request). Table F2-1 contains a list of the predictor variables 

that are used in the model. 

RUN 1. This approach examined model performance under different climate change 

scenarios. Associated questions were: how much do O, E and O/E values change in each of the 

different scenarios? Is the change in O/E greater than the natural variability among reference 

scores (which equals 0.13=1 Standard Deviation)? Which of the climate-related predictor 

variables were most important overall? Which predictor variables were most important in each of 

the different site groups? We included several different approaches for this analysis. In the first 

approach, we changed combinations of climate predictor variables while keeping the observed 

(O) values constant (i.e., we kept the biology, which was based on about 5 years of reference 

data, the same) and the probability of capture (Pc) limit at > 0.5 (this is the Pc value that Utah 

uses when running the model). 

We used the NCAR1 projections for the southwestern US for 2050 and 2090 as guidance 

for how much to alter the climate- predictor variables. We also ran two scenarios in which the 

freeze date and the temperature and precipitation variables (i.e., all the climate-related predictor 

variables) were altered simultaneously. Since we did not have information on how much freeze 

dates are likely to change, we used best professional judgment and long-term averages of freeze 

dates (minimum, average, maximum) from reporting stations that were closest to the 4 sites to 

estimate the numbers. There were 5 different ‘alteration scenarios’ that were used in the 

analyses. These are summarized in Table F2-2. Compared to annual climatic variations, the 

alteration increments may seem small, but they are realistic for purposes of this analysis because 

1 Regional Climate-Change Projections from Multi-Model Ensembles (RCPM) data and analysis were provided by 
the Institute for the Study of Society and Environment (ISSE) at the National Center for Atmospheric Research 
(NCAR), based on model data from the World Climate Research Programme's Coupled Model Intercomparison 
Project phase 3 (WCRP CMIP3) multi-model dataset. More information about the RCPM analysis can be found at 
http://rcpm.ucar.edu. © 2006 University Corporation for Atmospheric Research. All Rights Reserved." 
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the predictor variables that are used in the RIVPACS models are long-term averages (i.e. 1971

2000). 

RUN 2. One limitation of the approach described above is that by only including taxa 

that have Pc >.5, we may be missing an important piece of the climate change picture, which is: 

what is happening to the rare taxa that are at the edges of their ranges? Are their distributions 

shifting, but the model is not detecting these changes because the Pc is set to > 0.5? To address 

this question, we re-ran the approach described above with the Pc set to > 0.1 to evaluate how 

things changed. 

RUN 3. Another question of interest was how well the RIVPACS model would perform 

with only climate-related predictor variables. How much variation would climate variables alone 

explain? Which of the 7 climate-related predictor variables are the key drivers? To examine this, 

we ran the random forests method (Breiman and Cutler, 2009) with only the climate-related 

predictor variables and evaluated performance by calculating SD and RMSE of the reference site 

O/E scores. 

Table F2-1. Predictor variables that are used in the fall model. Climate-related variables 
are in red italicized print 
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 Predictor Variables Description 

MINWD.WS Watershed average of the annual minimum of the predicted mean monthly  
 number of days with measurable precipitation (days) derived from PRISM 

data. Each watershed grid cell calculated as MIN[Xi], where Xi = the 
 predicted minimum mean number of days with me  

BDH.AVE Watershed mean high values of soil bulk density of soils types within the basin 
(grams per cubic centimeter) from State Soil Geographic (STATSGO) 
Database.  

G.PH.STD  Predicted physical activity based on lithology from state geology maps and 
estimated physical weathering rates based on known rock hardness. Ordinal 
ranking from low activity (1, granitic, gneiss, limestone) to high activity (5, 
siltstone, shale). 

AWCH.AVE  Watershed mean high values of available water capacity of soils (fraction) 
from State Soil Geographic (STATSGO) Database. 

GPT.VOLC Dummy Variable indicating dominant geology (1=yes; 2=N0) 
ELEV.MAX    Maximum watershed elevation (meters) from National Elevation Dataset  

 



 

 

   
 

 
 

 

 

 

 

 

  

  
 

Table F2-1. Continued 
Predictor Variables	 Description 

FST32AVE 	 Watershed average of the mean day of year (1-365) of the first freeze derived 
from the PRISM data. 

MEANP.PT 	 Annual mean of the predicted mean monthly precipitation (mm) derived from 
the PRISM datas for the sampling site.  Calculated as sum Xi/12, where Xi = 
the predicted mean precipitation for month i (1-12) derived from 29 years of 
record (1961-1990). 

SQ.KM 	 Watershed area in square kilometers. 
TMEAN.WS 	 Watershed average of the annual mean of the predicted mean monthly air 

temperature (tenths of degree Celsius) derived from PRISM data.  Each 
watershed grid cell calculated as sum Xi/12, where Xi = the predicted mean air 
temperature for month i (1-12) deriv 

MINP.PT 	 Annual minimum of predicted mean monthly precipitation (mm) derived from 
the PRISM data for the sampling site.  Calculated as MIN[Xi], where Xi = the 
predicted minimum mean precipitatioin for month i (1-12) derived from 29 
years of record (1961-1990). 

ELEV.WS 	 Mean watershed elevation (meters) from National Elevation Dataset. 

SLOPE.GIS  	 Average slope calculated from GIS 
LST32AVE 	 Watershed average of the mean day of year (1-365) of the last freeze derived 

from the PRISM data. 

TMEANNET	 Stream network average of the annual mean of the predicted mean monthly air 
temperature (tenths of degree Celsius) derived from PRISM data.  Each stream 
network grid cell calculated as sum Xi/12, where Xi = the predicted mean air 
temperature for month i  
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Table F2-2. Descriptions of how the climate-related predictor variables were altered in each of the 5 runs of the RIVPACS 
model 
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Scenario Category Altered Predictor variables	 Rationale 

1 Baseline None - used original values 	 Obtain baseline values 

TMEAN.WS + 2 & TMEAN.NET + 2 & NCAR annual temperature and 
2 

Temperature & MEANP.PT - .05 	 precipitation predictions (2050) 

3 
Precipitation 	 TMEAN.WS + 4 & TMEAN.NET + 4 & NCAR annual temperature and 

MEANP.PT - .1 precipitation predictions (2090) 

LST32AVE-1, MINP.PT-1, MEANP.PT-1, 
4 TMEAN.NET+1, TMEAN.WS+1, FST32AVE+1, Best professional judgment 

MINWD.WS-1 
All 

LST32AVE-2, MINP.PT-2, MEANP.PT-2, 
5 TMEAN.NET+2, TMEAN.WS+2, FST32AVE+2, Best professional judgment 

MINWD.WS-1 

http:MEANP.PT
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F3. RESULTS - RIVPACS MODEL MANIPULATION ANALYSES 

RUN 1. Overall, both mean O and mean E decreased in each of the scenarios, with E 

decreasing by a greater amount than O (Tables F3-1 and F3-2). The greatest changes in O and E 

values (-0.70 and -1.12, respectively) occurred in Scenario ‘All 2.’ O/E scores increased by very 

small amounts in each scenario. The maximum change in the O/E score occurred in Scenario 

‘All 2’ but this was only an increase of 0.03 from the baseline O/E score. The output of results 

from all sites is available upon request.  

NOTE: We also ran some ‘extreme’ scenarios (i.e. doubling temperature, dividing 

precipitation values by two, changing freeze dates by 30 days, etc.) to satisfy our curiosity about 

how much alteration it would take in order to result in a substantial change to O/E scores. Even 

with these extremes, the O/E scores never varied by more than one standard deviation (0.13) and 

were therefore still within the realm of natural variability. Results are shown in Attachment F1. 

The overall importance of the 15 predictor variables used in the Utah fall RIVPACS 

model was also evaluated. Table F3-3 and Figure F3-1 list the variables in order of highest 

overall variable importance to lowest (this is measured by Mean Decrease Accuracy, see 

Breiman and Cutler (2009) for more information). By importance, we are referring to how 

important the variable is in predicting the class correctly. The 5 most important overall variables 

are annual minimum of predicted mean monthly precipitation (MINP.PT), average slope 

calculated from GIS (SLOPE.GIS), watershed average of the mean day of year of the last freeze 

(LST32AVE), mean watershed elevation (ELEV.WS) and stream network average of the annual 

mean of the predicted mean monthly air temperature (TMEANNET). Six of the top ten most 

important variables are climate-related. 

In addition to evaluating the overall dataset, results within the 8 different site groups were 

examined. O and E values did vary among the site groups (Table F3-4). For example, Site 

Group 4 had higher O and E values than the other groups and Site Group 6 had lower values. 

However, O/E scores were very similar across all site groups and if O/E scores changed, they 

only changed by small amounts. Differences from baseline O/E scores ranged from 0 to 0.10, 

with the greatest changes generally occurring in the ‘All 1’ and ‘All 2’ Scenarios (Table F3-5). 

Mean O/E scores in Site Group 4 changed the most, but were still within the range of natural 
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variation (=1 StDev, 0.13). The 6 most important predictor variables in Site Group 4 are climate

related, which may be part of the reason for the bigger change (Table F3-6). However, this is not 

clear because the 3 most important predictor variables in Site Group 8 were climate-related, and 

Site Group 8 O/E values were the same as the baseline values in each scenario. The small sample 

size (5 sites) may be a contributing factor.   

Table F3-1. Mean O, E and O/E values for each scenario 

Scenario O E O/E Altered predictor variables 

Baseline 14.40 13.70 1.05 used original values 

Temp/Precip 1 14.36 13.56 1.06 
TMEAN.WS + 2 & TMEAN.NET + 2 & 
MEANP.PT - .05 

Temp/Precip 2 14.33 13.49 1.06 
TMEAN.WS + 4 & TMEAN.NET + 4 & 
MEANP.PT - .1 

All 1 13.83 12.80 1.07 
LST32AVE-1, MINP.PT-1, MEANP.PT-1, 
TMEAN.NET+1, TMEAN.WS+1, 
FST32AVE+1, MINWD.WS-1 

All 2 13.69 12.59 1.08 
LST32AVE-2, MINP.PT-2, MEANP.PT-2, 
TMEAN.NET+2, TMEAN.WS+2, 
FST32AVE+2, MINWD.WS-1 

Table F3-2. Mean difference between baseline O, E and O/E values and mean O, E and 
O/E values for each scenario 

Mean Difference from 
Baseline Values 

Scenario O E O/E Altered predictor variables 

Temp/Precip 1 -0.03 -0.15 0.01 
TMEAN.WS + 2 & TMEAN.NET + 2 & 
MEANP.PT - .05 

Temp/Precip 2 -0.07 -0.21 0.01 
TMEAN.WS + 4 & TMEAN.NET + 4 & 
MEANP.PT - .1 

All 1 -0.57 -0.91 0.03 
LST32AVE-1, MINP.PT-1, MEANP.PT-1, 
TMEAN.NET+1, TMEAN.WS+1, FST32AVE+1, 
MINWD.WS-1 

All 2 -0.70 -1.12 0.03 
LST32AVE-2, MINP.PT-2, MEANP.PT-2, 
TMEAN.NET+2, TMEAN.WS+2, FST32AVE+2, 
MINWD.WS-1 
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Figure F3-1. Plot summarizing importance of the predictor variables (more important 
variables have higher Mean Decrease Accuracy and Mean Decrease Gini scores). The 
following R code command was used to obtain this table: 
varImpPlot(fall.random.forest.G10L2). 
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Table F3-3. Predictor variables are listed in order of highest overall variable importance to lowest (as measured by Mean 
Decrease Accuracy). The importance of the predictor variables varies among site groups. The values under each site group 
give the importance of the variable for predicting that class correctly. The Mean Decrease Gini calculation is performed by 
adding up the Gini decreases for each individual variable over all trees in the forest. This gives a fast variable importance that 
is often very consistent with the permutation importance measure. The following R code command was used to obtain this 
table: importance(fall.random.forest.G10L2). 

Site Group 

Predictor 
Variable 

1 2 3 4 5 6 7 8 
Mean 

Decrease 
Accuracy 

Mean 
Decrease 

Gini 

MINP.PT 4.9 2.5 5.7 31.5 11.0 8.0 22.0 28.2 9.62 6.04 
SLOPE.GIS 2.3 0.1 8.9 14.3 20.6 19.1 23.2 8.8 9.39 6.55 
LST32AVE 8.9 11.7 2.1 33.6 3.7 4.8 18.0 27.9 9.28 5.95 
ELEV.WS 6.3 8.7 6.7 16.1 10.1 4.7 27.7 29.1 9.24 5.99 
TMEANNET 5.1 5.8 2.2 25.1 6.4 5.5 22.7 33.3 9.18 5.86 
MEANP.PT 1.1 9.9 2.9 21.3 14.3 21.8 14.9 26.5 9.08 5.82 
TMEAN.WS 4.0 7.4 2.7 21.8 7.4 1.2 22.7 33.1 8.75 5.50 
FST32AVE 7.9 9.9 1.7 13.6 0.6 3.0 28.6 33.0 8.39 4.90 
MINWD.WS 3.6 0.2 -0.9 25.9 4.7 0.5 24.2 23.8 7.89 4.36 
SQ.KM 5.6 -2.7 6.2 9.6 11.5 18.6 16.1 21.5 7.60 5.30 
ELEV.MAX 4.9 7.8 -1.4 18.3 7.9 7.9 4.4 25.2 7.34 4.65 
G.PH.STD 1.5 -0.5 9.0 11.4 10.8 5.8 3.2 -1.8 5.68 4.30 
BDH.AVE 2.3 13.3 -0.4 7.7 -2.0 3.9 5.3 21.0 4.62 3.57 
GPT.VOLC 10.8 5.0 -3.4 4.9 -3.1 7.5 5.7 4.8 3.67 1.01 
AWCH.AVE -2.4 16.0 0.1 5.2 3.2 8.8 -3.7 8.0 3.43 4.12 
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Table F3-4. For each scenario and each site group, O, E and O/E values were calculated. N=number of sites in the dataset that 
are assigned each site group. See Tables F3-1 or F3-2 for descriptions on how variables were altered in the Temp/Precip 1, 
Temp/Precip 2, All 1 and All 2 scenarios. 

Baseline Temp/ Precip 1 Temp/Precip 2 All 1  All 2  

Site 
Group  

N O E O/E O E O/E O E O/E O E O/E O E O/E 

1 16 15.1 14.2 1.1 15.2 14.2 1.1 15.1 14.1 1.1 14.5 13.2 1.1 14.5 13.0 1.1 

2 10 15.9 14.8 1.1 16.0 14.8 1.1 16.0 14.7 1.1 15.2 13.7 1.1 15.1 13.5 1.1 

3 16 17.2 16.3 1.1 16.9 15.9 1.1 16.9 15.9 1.1 16.4 14.9 1.1 15.8 14.4 1.1 

4 7 24.3 23.2 1.0 24.1 22.7 1.1 24.1 22.4 1.1 22.6 20.0 1.1 22.6 19.7 1.1 

5 19 12.0 11.7 1.0 12.0 11.5 1.0 12.1 11.6 1.0 11.6 11.3 1.0 11.6 11.3 1.0 

6 9 8.3 8.1 1.0 8.3 8.1 1.0 8.0 7.9 1.0 8.0 7.8 1.0 7.8 7.7 1.0 

7 6 10.2 9.7 1.1 10.2 9.6 1.1 10.2 9.6 1.1 10.5 9.8 1.1 10.5 9.7 1.1 

8 5 11.4 11.0 1.0 11.4 11.1 1.0 11.4 11.1 1.0 11.4 11.1 1.0 11.4 11.1 1.0 

Table F3-5. For each scenario and each site group, differences between mean O/E values and mean baseline O/E values were 
calculated. N=number of sites in the dataset that are assigned each site group. See Tables F3-1 or F3-2 for descriptions on how 
variables were altered in the Temp/Precip 1, Temp/Precip 2, All 1 and All 2 scenarios. 

F‐14 

       Mean Difference from Baseline O/E 

Site 
Group 

N Baseline 
Temp/ Temp/

All 1 All 2
Precip 1 Precip 2 

1  16  1.06 0.01   0.01  0.03  0.05 
2  10  1.07 0.01   0.02  0.03  0.05 
3  16  1.06 0.01   0.01  0.04  0.04 
4 7  1.05 0.02   0.03  0.08  0.10 
5  19  1.03 0.01   0.01  0.00  0.00 
6 9  1.03 0.00   -0.03  0.00  -0.02 
7 6  1.05 0.00   0.00  0.02  0.03 
8 5  1.03 0.00   0.00  0.00  0.00 
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Table F3-6. Predictor variables are listed in order of highest variable importance to lowest within each site group (this refers 
to the importance of the variable for predicting class correctly). These results are derived from the Baseline scenario. Variable 
importance was also evaluated for the other scenarios, but it was determined that results (at least for the 5 most important 
variables in each site group) either did not change or varied only slightly and are therefore not reported. 
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Site Group 
Overall 

1 2 3 4 5 6 7 8 

GPT.VOLC AWCH.AVE G.PH.STD LST32AVE SLOPE.GIS MEANP.PT FST32AVE TMEANNET MINP.PT 

LST32AVE BDH.AVE SLOPE.GIS MINP.PT MEANP.PT SLOPE.GIS ELEV.WS TMEAN.WS SLOPE.GIS 

FST32AVE LST32AVE ELEV.WS MINWD.WS SQ.KM SQ.KM MINWD.WS FST32AVE LST32AVE 

ELEV.WS MEANP.PT SQ.KM TMEANNET MINP.PT AWCH.AVE SLOPE.GIS ELEV.WS ELEV.WS 

SQ.KM FST32AVE MINP.PT TMEAN.WS G.PH.STD MINP.PT TMEAN.WS MINP.PT TMEANNET 

TMEANNET ELEV.WS MEANP.PT MEANP.PT ELEV.WS ELEV.MAX TMEANNET LST32AVE MEANP.PT 

ELEV.MAX ELEV.MAX TMEAN.WS ELEV.MAX ELEV.MAX GPT.VOLC MINP.PT MEANP.PT TMEAN.WS 

MINP.PT TMEAN.WS TMEANNET ELEV.WS TMEAN.WS G.PH.STD LST32AVE ELEV.MAX FST32AVE 

TMEAN.WS TMEANNET LST32AVE SLOPE.GIS TMEANNET TMEANNET SQ.KM MINWD.WS MINWD.WS 

MINWD.WS GPT.VOLC FST32AVE FST32AVE MINWD.WS LST32AVE MEANP.PT SQ.KM SQ.KM 

SLOPE.GIS MINP.PT AWCH.AVE G.PH.STD LST32AVE ELEV.WS GPT.VOLC BDH.AVE ELEV.MAX 


BDH.AVE MINWD.WS BDH.AVE SQ.KM AWCH.AVE BDH.AVE BDH.AVE SLOPE.GIS G.PH.STD
 

G.PH.STD SLOPE.GIS MINWD.WS BDH.AVE FST32AVE FST32AVE ELEV.MAX AWCH.AVE BDH.AVE
 

MEANP.PT G.PH.STD ELEV.MAX AWCH.AVE BDH.AVE TMEAN.WS G.PH.STD GPT.VOLC GPT.VOLC
 

AWCH.AVE SQ.KM GPT.VOLC GPT.VOLC GPT.VOLC MINWD.WS AWCH.AVE G.PH.STD AWCH.AVE 


http:MINWD.WS
http:TMEAN.WS
http:MEANP.PT
http:MINWD.WS
http:MINWD.WS
http:MEANP.PT
http:MINWD.WS
http:MINWD.WS
http:MINWD.WS
http:MINWD.WS
http:TMEAN.WS
http:TMEAN.WS
http:TMEAN.WS
http:TMEAN.WS
http:MEANP.PT
http:TMEAN.WS
http:MEANP.PT
http:MEANP.PT
http:MEANP.PT
http:TMEAN.WS
http:TMEAN.WS
http:MEANP.PT
http:MINWD.WS
http:MINWD.WS
http:TMEAN.WS
http:MEANP.PT
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RUN 2. Normally the Utah fall RIVPACS model is run with the probability of capture 

(Pc) limit set at > 0.5. To evaluate model performance when rare taxa are included (i.e. taxa that 

occur at the edges of their ranges and are likely to be more sensitive than others to climate 

change), the model was run with the Pc set to > 0.1. This model did not perform as well. The 

standard deviation of O/E scores for the Pc > 0.1 run was 0.18 versus 0.13 for the Pc > 0.5 run 

(Table F3-7). The mean O/E score for the Pc > 0.1 run was slightly lower (a difference of 0.02). 

When the two sets of O/E values are fitted with a linear regression line, the r2 value = 0.51 

(Figure F3-2). 

When mean O, E and O/E values are further compared among the Pc > 0.1 and Pc > 0.5 

datasets, as expected, the mean O and mean E values in the Pc > 0.1 dataset are higher (by about 

10 taxa) than those in the Pc > 0.5 but differences in mean O/E values are very small, ranging 

from 0.02 to 0.03 (Tables F3-8 and F3-9). The alteration of the climate-related predictor 

variables had little if any effect on mean O and mean E values in the Pc > 0.1 dataset, as well as 

on O/E values. Only the ‘All1’ and ‘All 2’ scenarios resulted in changes to the O/E values, and 

they only increased by 0.02. A comparison of mean differences from baseline values shows that 

the alteration of predictor variables generally caused a greater change in mean O, E and O/E 

values in the Pc > 0.5 dataset. Mean E values changed the most in both datasets; the maximum 

change in mean E values was -1.12 in the Pc > 0.5 dataset, whereas in the Pc > 0.1 dataset, the 

maximum change was -0.55. This occurred in the ‘All 2’ Scenario. 

Table F3-7. Comparison of the mean O/E scores and standard deviations that were 
derived from the original Pc > 0.5 model versus the Pc > 0.1 model 

F‐16 

Model Mean O/E St Dev 

Pc > 0.1   1.03  0.18
 

Pc > 0.5  1.05  0.13
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Figure F3-2.  Plot of O/E scores when the probability of capture (Pc) limit is set at > 0.5 
versus O/E scores when the probability of capture (Pc) limit is set at > 0.1.  
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Table F3-8. Mean O, E and O/E values for each scenario for both the Pc > 0.1 and Pc > 0.5 runs 
Pc > 0.1 Pc > 0.5 

Scenario O E O/E O E O/E Altered predictor variables 

Baseline 23.4 22.7 1.03 14.4 13.7 1.05 used original values 

Temp/Precip 1 23.4 22.7 1.03 14.4 13.6 1.06 TMEAN.WS + 2 & TMEAN.NET + 2 & MEANP.PT - .05 

Temp/Precip 2 23.4 22.6 1.03 14.3 13.5 1.06 TMEAN.WS + 4 & TMEAN.NET + 4 & MEANP.PT - .1 

All 1 23.4 22.3 1.05 13.8 12.8 1.07 
LST32AVE-1, MINP.PT-1, MEANP.PT-1, 
TMEAN.NET+1, TMEAN.WS+1, FST32AVE+1, 
MINWD.WS-1 

All 2 23.4 22.2 1.05 13.7 12.6 1.08 
LST32AVE-2, MINP.PT-2, MEANP.PT-2, 
TMEAN.NET+2, TMEAN.WS+2, FST32AVE+2, 
MINWD.WS-1 

Table F3-9. Mean differences between baseline O, E and O/E values and mean O, E and O/E values for each scenario for both 
the Pc > 0.1 and Pc > 0.5 runs 

Mean Differences from Baseline Values 

Pc > 0.1 Pc > 0.5 

Scenario O E O/E O E O/E Altered predictor variables 

Temp/Precip 1 0.01 -0.03 0.00 -0.03 -0.15 0.01 TMEAN.WS + 2 & TMEAN.NET + 2 & MEANP.PT - .05 

Temp/Precip 2 0.02 -0.09 0.00 -0.07 -0.21 0.01 TMEAN.WS + 4 & TMEAN.NET + 4 & MEANP.PT - .1 

All 1 0.06 -0.45 0.02 -0.57 -0.91 0.03 
LST32AVE-1, MINP.PT-1, MEANP.PT-1, 
TMEAN.NET+1, TMEAN.WS+1, FST32AVE+1, 
MINWD.WS-1 

All 2 -0.03 -0.55 0.02 -0.70 -1.12 0.03 
LST32AVE-2, MINP.PT-2, MEANP.PT-2, 
TMEAN.NET+2, TMEAN.WS+2, FST32AVE+2, 
MINWD.WS-1 
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RUN 3. The performance of the RIVPACS model with only the climate-related predictor 

variables was evaluated and compared to original model results. Model performance was 

evaluated by looking at the standard deviations of the reference site O/E scores. When limited to 

climate-related predictor variables only, the model performs well. The standard deviation of the 

O/E scores using the original model is 0.13 versus 0.14 with the climate-related variables only 

model (Table F3-10). Also, when the two sets of O/E values are plotted against one another, 

there is a tight fit (r2 = 0.91) (Figure F3-3). The most important predictor variables are annual 

minimum of predicted mean monthly precipitation (MINP.PT) and watershed average of the 

mean day of year of the last freeze (LST32AVE) (Table F3-11). 

Table F3-10. Comparison of the mean O/E scores and standard deviations that were 
derived from the original model versus the model with only the climate-related variables  

F‐19 

Model Mean O/E St Dev 

Original  1.05  0.13 
Climate-related Only  1.05  0.14 
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Figure F3-3. Plot of O/E scores from the original model versus O/E scores from the 
climate-related predictor variables only model. 
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Table F3-11. Predictor variables are listed in order of highest overall variable importance to lowest (as measured by Mean 
Decrease Accuracy). The importance of the predictor variables varies among site groups. The values under each site group 
give the importance of the variable for predicting that class correctly. The Mean Decrease Gini calculation is performed by 
adding up the Gini decreases for each individual variable over all trees in the forest. This gives a fast variable importance that 
is often very consistent with the permutation importance measure. The following R code command was used to obtain this 
table: importance(fall.random.forest.G10L2). 

Site Group 

Predictor 
Variable 

1 2 3 4 5 6 7 8 
Mean 

Decrease 
Accuracy 

Mean 
Decrease 

Gini 

MINP.PT 8.17 2.34 6.69 36.10 18.63 14.73 32.57 35.95 12.31 11.53 
LST32AVE 12.88 15.40 0.94 50.80 6.89 3.03 18.58 32.54 12.07 11.89 
TMEANNET 6.32 8.75 2.83 27.01 7.52 0.84 24.11 42.99 10.43 10.37 
MEANP.PT -2.79 9.85 2.45 25.92 18.09 26.67 14.86 33.50 10.30 11.54 
TMEAN.WS 5.68 8.18 3.27 20.70 11.82 -2.56 24.17 41.54 10.24 9.96 
FST32AVE 9.68 11.30 6.41 11.07 -2.89 -3.85 39.83 44.08 10.22 10.74 
MINWD.WS 5.09 -2.36 0.78 27.29 4.33 10.02 31.69 28.09 9.22 7.89 

F‐21 



 

 

 
 

 

 

 
 

 

 

 

SUMMARY OF RIVPACS MODEL MANIPULATION RESULTS  


	 Overall, altering the climate-related predictor variables had very little effect on O/E 
values. The greatest change occurred in the ‘All 2’ scenario but this only amounted to a 
change of 0.03, which is within the realm of natural variability (-0.13, 1 st dev) (see main 
report section 3.4.2 for discussion on possible reasons for the small change).  

	 There was also little effect on O/E values when ‘unrealistic’ changes were made to 
climate-related variables (i.e. doubling temperature, halving precipitation variables). O/E 
values never varied by more than one standard deviation (see main report section 3.4.2 
for discussion on possible reasons for the small change).  

	 In the Utah fall RIVPACS model, the (overall) most important climate-related variables 
are annual minimum of predicted mean monthly precipitation (MINP.PT), watershed 
average of the mean day of year of the last freeze (LST32AVE) and stream network 
average of the annual mean of the predicted mean monthly air temperature 
(TMEANNET). Six of the top ten most important variables are climate-related. 

	 When O/E values were evaluated within the 8 different site groups, scores were very 
similar across all site groups and if O/E scores changed, they only changed by small 
amounts. Mean O/E scores in Site Group 4 changed the most, but were still within the 
range of natural variation. The 6 most important predictor variables in Site Group 4 are 
climate-related, which may be part of the reason for the bigger change within this site 
group. 

	 When the probability of capture (Pc) limit was changed from Pc > 0.5 to > 0.1, the Utah 
fall RIVPACS model did not perform as well (st dev of 0.18 versus 0.13). The alteration 
of the climate-related predictor variables had little if any effect on O/E values. (in fact, 
alteration of climate-related variables generally had less of an effect in the Pc < 0.1 run). 
Only the ‘All1’ and ‘All 2’ Scenarios resulted in changes to the O/E values, and they only 
increased by 0.02. 

	 When run with climate-related predictor variables only, the Utah RIVPACS model 
performed very well. The standard deviation of the O/E scores using the original model is 
0.13 versus 0.14 with the climate-related variables only model. When the two sets of O/E 
values are plotted against one another, there is a tight fit (r2 = 0.91). 

	 See Section 3 of the report for discussion of possible explanations on why the RIVPACS 
model appears to be insensitive to climate change effect, at least based on results from 
our analyses. To briefly summarize, the long-term averages of the climate predictor 
variables in the model capture major spatial differences between the regions (classes), 
which at this point are probably bigger than long-term climate change difference are. 
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F4. UTAH ECOREGION DESCRIPTIONS
 

Wasatch and Uinta Mountains. This ecoregion is composed of a core area of high, 

precipitous mountains with narrow crests and valleys flanked in some areas by dissected plateaus 

and open high mountains. The elevational banding pattern of vegetation is similar to that of the 

Southern Rockies except that aspen, chaparral, and juniper-pinyon and oak are more common at 

middle elevations. This characteristic, along with a far lesser extent of lodgepole pine and greater 

use of the region for grazing livestock in the summer months, distinguish the Wasatch and Uinta 

Mountains ecoregion from the more northerly Middle Rockies (US EPA 2002). 

Colorado Plateaus. Rugged tableland topography is typical of the Colorado Plateau 

ecoregion. Precipitous side-walls mark abrupt changes in local relief, often from 300 to 600 

meters. The region is more elevated than the Wyoming Basin to the north and therefore contains 

a far greater extent of pinyon-juniper woodlands. However, the region also has large low lying 

areas containing saltbrush-greasewood (typical of hotter drier areas), which are generally not 

found in the higher Arizona/New Mexico Plateau to the south where grasslands are common (US 

EPA 2002). 
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Tables F4-1 and F4-2 summarize distribution and abundance information for the Utah 

temperature indicator taxa at the 4 sites (Stations 4927250, 4951200, 4936750 and 5940440) and 

3 site groups that were analyzed for long-term trends. Ephemerella seems to be the strongest 

indicator because it occurred at all the sites and generally had higher mean relative abundances 

than the other taxa. Chelifera, Chloroperlidae, Cinygmula, Lepidostoma and Rhitrogena also 

occurred at all the sites, although generally in lower abundances. Overall, the cold-water taxa are 

well-represented at most of the sites and site groups. Station 5940440 has the least number of 

cold-water taxa, but nevertheless has moderate abundances of Chloroperlidae and Rhitrogena. 

Leptohyphidae appears to be the strongest indicator among the warm-water taxa2 because it 

occurred at 5 sites and generally had higher mean relative abundances than the other taxa. The 

next strongest warm-water indicators appear to be Oecetis and Cheumatopsyche, which are 

present at 6 sites but occurred in lower abundances. 

Table F4-1. Summary of distribution and abundance information for the cold-water 
temperature indicator taxa at the 4 sites (Stations 4927250, 4951200, 4936750 and 5940440) 
and 3 site groups (WU_SF=Wasatch and Uinta Semi-arid Foothills, WU_ ME= Wasatch 
and Uinta Mid-elevation Mountains, CP=Colorado Plateaus). #Sites refers to the number 
of sites or site groups at which the taxa occurs. A=absent. P=present (highlighted in grey). 
Relative abundance codes: L=low (<0.01), M=medium (0.01-0.1), H=high (>0.1) (M or H 
are in bold type). Guide to interpretation: P-1L = present, occurred during 1 year, low 
relative abundance (RA), P-11M = present, occurred during 11 years, medium RA, etc. 
FinalID  #Sites 4927250 4936750 4951200 5940440 WU_SF  WU_ME  CP 

Ameletus  5  A  P-1L P-1L A  P-3L  P-9L  P-3L 

 Anagapetus 0 A A A A A A A 

Apatania  3  A P-11M P-2L A A P-2L A 

Bezzia 6  P-2L  P-2L P-4L A  P-11L  P-6L  P-5L 

Bibiocephala 1 A A A A A P-2L A 

Capniidae 6 P-1L A  P-1L  P-2L  P-9L P-10M  P-5L 

Chelifera 7  P-6L  P-6L  P-2L  P-1L P-11M  P-8L  P-3L 

Chloroperlidae 7  P-6L  P-10L  P-1L P-9M P-19M P-12M  P-7L 

Cinygma  1  A  A P-2L A A A A 

2 There are noticeably fewer warm-water indicator taxa in Utah (when compared to cold-water taxa and 
also when compared to warm-water indicator taxa lists in Maine and North Carolina). The most likely 
explanation appears to be the fact that our OTU caused Chironomidae to be grouped to the family-level 
(Number of warm-water taxa that are in the Chironomidae family in Maine=9 and in North Carolina=5). 
There may be several other contributing factors as well. 
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Cinygmula 7 P-2L P-4L P-5L P-1L P-14M P-10M P-8M 

Cultus 6 P-5L P-1L A P-1L P-8L P-6L P-3L 

Dicranota 5 A P-1L P-3L A P-11L P-5L P-5L 

Ecclisomyia 0 A A A A A A A 

Ephemerella 7 P-13M P-10M P-11M P-2L P-16M P-10M P-6M 

Glutops 1 A P-1L A A A A A 

Heterlimnius 0 A A A A A A A 

Ironodes 0 A A A A A A A 

Kogotus 1 A A A A P-1L A A 

Lepidostoma 7 P-8L P-8M P-2L P-6L P-11L P-8M P-4M 

Leuctridae 3 A A A A P-7L P-6L P-2L 

Megarcys 2 A A A A P-1L P-2L A 

Nematoda 6 P-7L P-9M P-8M A P-13M P-9L P-7L 

Neothremma 4 A P-2L A A P-4L P-8M P-3L 

Oligophlebodes 3 A P-1M A A A P-5M P-2L 

Oreogeton 2 A A A A P-2L P-1L A 
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Table F4-1. Continued 

FinalID  #Sites 4927250 4936750 4951200 5940440 WU_SF  WU_ME  CP 

Parapsyche 2 A A A A  P-1L P-2L A 

Pericoma 6  P-1L  P-1L P-3L A P-15M  P-6L  P-3L 

 Rhabdomastix 0 A A A A A A A 

Rhithrogena   7  P-5L P-6M  P-2L P-9M P-13M  P-8L  P-6L 

Taenionema 5 P-1L A P-5M A  P-3L  P-3L  P-2L 

 Visoka 0 A A A A A A A 

Wiedemannia 3 A A  P-1L  P-1L P-1L A A 

Yoraperla 0 A A A A A A A 

Table F4-2. Summary of distribution and abundance information for the warm-water 
temperature indicator taxa at the 4 sites (Stations 4927250, 4951200, 4936750 and 5940440) 
and 3 site groups (WU_SF=Wasatch and Uinta Semi-arid Foothills, WU_ ME= Wasatch 
and Uinta Mid-elevation Mountains, CP=Colorado Plateaus). #Sites refers to the number 
of sites or site groups at which the taxa occurs. A=absent. P=present (highlighted in grey). 
Relative abundance codes: L=low (<0.01), M=medium (0.01-0.1), H=high (>0.1) (M or H 
are in bold type). Guide to interpretation: P-1L = present, occurred during1 year, low 
relative abundance (RA), P-11M = present, occurred during 11 years, medium RA, etc. 
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FinalID #Sites 4927250 4936750 4951200 5940440 WU_SF  WU_ME  CP 

Ambrysus

Asellidae 

Caenis 

Calineuria 

Caloparyphus

Cheumatopsyche

Coenagrionidae 

Leptohyphidae 

Maruina 

Microcylloepus 

Nectopsyche 

Ochrotrichia 

Oecetis 

Ordobrevia 

 Psephenus 

Tinodes
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F5. NMDS Ordination and ANOVA analyses 

Results from the NMDS ordinations show that hottest year samples at Stations 4927250 

(Weber) and 4951200 (Virgin) form distinct clusters when grouped by hot/cold/normal years, 

and coldest and normal samples are generally mixed together (Figures 2-17 and 2-18, 

respectively, in main body of report). The following environmental variables were most strongly 

correlated with Axes 1 and 2, which are the axes that explained the most variance: PRISM mean 

annual air temperature from the year the biological sample was collected; PRISM mean annual 

air temperature from the previous year; absolute difference between collection year and previous 

year PRISM mean annual precipitation. It should be noted that the hottest years occurred 

sequentially (2000-2005). When grouped by precipitation category, samples at Stations 4927250 

(Weber) and 4951200 (Virgin) do not form distinct clusters (Figures F5-1 and F5-2, 

respectively). 
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Figure F5-1. NMDS plot (Axis 1-2). Cat_Prec refers to the precipitation categories, which are: 

1=dry years; 2=normal years; 3=wet years. Samples are labeled by collection year. 
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Figure F5-2. NMDS plot (Axis 1-2). Cat_Prec refers to the precipitation categories, which are: 
1=dry years; 2=normal years; 3=wet years. Samples are labeled by collection year. 

In addition, for the NMDS ordinations on coldest/normal/hottest year samples, we 

evaluated which taxa were most strongly correlated with each axis. As shown in Figure 2-19 in 

the main report, at Station 4927250 (Weber), Pteronarcys, Chloroperlidae and Ephemerella have 

the strongest positive correlations with Axis 2, and Optioservus, Lepidostoma and Hyallela have 

the strongest negative correlations with Axis 2. Closer examination of those taxa plotted in 

ordination space shows that Chloroperlidae and Pteronarcys are absent from the hottest year 

samples and Ephemerella is present in all the coldest and normal year samples and in only one 

hottest year sample. Some additional taxa that occurred during multiple years that were not 

found in hottest year samples include Rhithrogena, Nematoda, and Tubificidae. NMDS plots of 

Optioservus, Lepidostoma and Hyallela show these taxa to be present in at least 4 of the 5 hottest 

year samples. These taxa are also present in coldest and normal year samples. These plots and 

associated information are available upon request.   
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As shown in Figure 2-20 in the main report, at Station 4951200 (Virgin), Ephemerella, 

Nematoda and Heptagenia have the strongest negative correlations with Axis 1, and 

Forcipomyia/Probezzia, Microcylloepus, Caloparyphus and Chimarra have the strongest positive 

correlations with Axis 1. Closer examination of those taxa plotted in ordination space shows that 

Nematoda is absent from the hottest year samples. Ephemerella and Heptagenia are present in all 

coldest year samples, 6 of the 7 normal year samples and only 1 of the hottest year samples. 

Forcipomyia/Probezzia, Microcylloepus, Caloparyphus and Chimarra are present in at least 2 of 

the 4 hottest year samples. These taxa are not present in coldest and/or normal year samples. 

These plots and associated information are available upon request.   

One-way ANOVA analyses were performed to evaluate differences in mean values of 

commonly-used, ecological trait and scenario metrics when samples were grouped by coldest, 

normal, and hottest or driest, normal and wettest years. Results varied by site. Two stations 

(4927250 (Weber - Wasatch Uinta) and 4951200 (Virgin - Colorado Plateau)) showed relatively 

strong temperature patterns, while one site (5940440 - Beaver) showed no patterns at all. The 

greatest differences generally occurred between hottest and coldest year samples, while coldest 

and normal year samples tended to be similar. Metrics that had at least one significant difference 

between coldest, normal, and hottest or driest, normal and wettest years are shown in Tables F5-

1 and F5-2. These tables do not include results for thermal-preference metrics, which are shown 

in Table 2-2 of the main report. Additional results are available upon request.   

Table F5-1. These metrics had at least one significant difference when one-way analysis of 
variance was done to evaluate differences in samples grouped by coldest, normal, and hottest 
years. Year groups were based on Parameter-elevation Regressions on Independent Slopes 
Model (PRISM) mean annual air temperature values at each site. Groups with the same 
superscripts are not significantly different (p < 0.05).  

Station Metric Coldest Normal Hottest 

4927250 
(Weber) 

# Ephemeroptera taxa 7.1 ± 1.2A 4.9 ± 2.1AB 2.6 ± 0.9B 

# EPT taxa 17.4 ± 2.1A 13.6  ± 4.9AB 8.8 ± 2.2B 

% Collector-filterer individuals 13.4 ± 7.6A 32.1  ± 15.4AB 40.1  ± 17.3B 

% Collector-gatherer individuals 69.9 ± 16.9A 50.9  ± 23.6AB 33.5  ± 19.7B 

# Collector-gatherer taxa 8.2 ± 0.8A 6.3 ± 2.3AB 4.0 ± 1.4B 

# Predator taxa 7.3 ± 1.6A 5.9 ± 2AB 3.8 ± 1.3B 

# Clinger taxa 17.8 ± 1.3A 14 ± 4.8AB 9 ± 1.2B 
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# Plecoptera taxa 3.2 ± 0.8A 3.1 ± 1.5AB 0.8 ± 0.4B 

# Total taxa 27.5 ± 3.5A 21.5 ± 7.8AB 17.2 ± 3.3B 

# Warmer-drier vulnerable taxa 4.0 ± 1.2A 2.7 ± 1.1AB 1.0 ± 0.7B 

# Drier vulnerable taxa 12.6 ± 0.9A 9.0 ± 2.9AB 5.4 ± 1.8B 

4951200 
(Virgin) 

# Ephemeroptera taxa 6.8 ± 2.2A 4.8 ±  0.8AB 2.5 ± 0.6B 

# EPT taxa 12.3 ± 3.9A 9.5 ±  2.6AB 5.3 ± 1.5B 

# Herbivore taxa 5.3 ± 1.5A 4.2 ±  1.6A 1.5 ± 0.6B 

# Burrower taxa 1 ± 0AB 1.5 ±  0.5A 0.3 ± 0.5B 

% Swimmer individuals 13.2 ± 3.7A 14.8 ±  8.4A 33 ± 10.9B 

Shannon-Wiener diversity index 2.8 ± 0.4AB 2.9 ±  0.2A 2.2 ± 0.4B 

# Total taxa 22.8 ± 6.6A 19.8 ±  3.2AB 14.5 ± 1.9B 

% Drought-resistant individuals 45.8 ± 17.9A 40 ±  20.3AB 13.1 ± 4.4B 

# Perennial taxa 10.3 ± 2.2A 7.7 ±  2.2AB 6 ± 0.8B 

Table F5-2. These metrics had at least one significant difference when one-way analysis of 
variance was done to evaluate differences in samples grouped by driest, normal, and 
wettest years. Year groups were based on Parameter-elevation Regressions on Independent 
Slopes Model (PRISM) mean annual precipitation values at each site. Groups with the 
same superscripts are not significantly different (p < 0.05).  
Station Metric Driest Normal Wettest 
4927250 
(Weber) 

# Intermittent taxa 1.4 ± 0.5A 1.7 ± 0.5AB 2.6 ± 0.9B 

4951200 
(Virgin) 

% Collector-gatherer individuals 47.9 ± 9.6A 73.0 ± 15.7B 75.9 ± 0.3B 

Mean O/E values at the two Colorado Plateau stations (4951200-Virgin and 4936750

Duchesne) were significantly different between hot year and cold/normal year samples (see 

Section 3 of the report). O/E values at the 2 Wasatch Uinta reference sites were not significantly 

different when grouped by temperature categories, but O/E values at Station 4927250 (Weber) 

were higher during hot years. These results suggest that climate change effects on O/E values 

will vary spatially and may result in classifications improving. There are no significant 

differences in mean O/E values at any of the sites when the data are grouped into precipitation 

categories. 
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Results of the correlation analyses show that O/E scores are only significantly correlated 

with one or two of the climatic variables at 2 of the sites. The significant correlations occur at 

Stations 4951200 (Virgin) and 5940440 (Beaver) (Table F5-9). At site 4951200 (Virgin), O/E 

values are positively correlated with two of the PRISM mean annual air temperature variables 

(sample year and prior year). At Site 5940440 (Beaver), O/E values are negatively correlated 

with the prior year mean annual precipitation variable. 

It should be noted that there are other potential confounding factors that may be 

influencing trends in O/E values at the sites. For example, at Station 4951200 (Virgin), pH is 

significantly correlated with O/E values (r=0.77, p=.03) (pH ranges from 7.95 to 8.5 at this site). 

Therefore results should be interpreted with caution. See Section 2 of the report for more 

information on potential confounding factors. 

NOTE: Additional NMDS and/or ANOVA results for each station (4927250, 4951200, 4936750 

and 5940440) are available upon request. 

Table F5-9. Results of the correlation analyses between O/E values and climatic variables. 

R and p-level values that are significantly correlated are in red bold print.
 

Station 

Climatic Variables 
4927250 
(N=17) 

4936750 
(N=12) 

4951200 
(N=14) 

5940440 
(N=9) 

PRISM mean annual air temperature 

PRISM mean annual precipitation 

Previous year PRISM mean annual air 
temperature 

Previous year PRISM mean annual 
precipitation 

-0.17

p=.517

0.18

p=.496

0.10

p=.714

0.08

p=.768

 0.35 

p=.265 

0.00 

p=.998 

0.49 

p=.103 

0.12 

p=.720 

0.70 

p=.006 

-0.14 

p=.628 

0.72 

p=.004 

0.02 

p=.940 

0.27 

p=.486 

-0.23 

p=.551 

-0.25 

p=.518 

-0.79 

p=.012 

Absolute difference between the 
PRISM mean annual air temperature 
from the sampling year and the 
previous year 

-0.02 

p=.936

-0.38 

p=.225 

-0.26 

p=.361 

0.28 

p=.472 

Absolute difference between the 
PRISM mean annual precipitation from 
the sampling year and the previous year 

0.16

p=.550

 -0.03 

p=.918 

0.27 

p=.348 

0.00 

p=.997 
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F6. TREND PLOTS 

Trends in two commonly-used metrics (# of total taxa and # of EPT taxa) were plotted over time 
at the 4 Utah stations. Figures F6-1 through F6-8 show how trends in these metrics related to 
trends in PRISM mean annual air temperature and PRISM mean annual precipitation over time. 
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Figure F6-1. Trends in number of total taxa, PRISM mean annual air temperature and 
precipitation at Station 4927250 (Weber). 
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Figure F6-2. Trends in number of EPT taxa, PRISM mean annual air temperature and 
precipitation at Station 4927250 (Weber). 

Utah Station 4951200 

0 

5 

10 

15 

20 

25 

30 

35 

1985 1986 1987 1988 1989 1990 1991 1992 1993 1996 2000 2001 2002 2004 

PRISM mean annual air 
temperature (°C) 

PRISM mean annual 
precipitation (inches) 

TotalTax 

Figure F6-3. Trends in number of total taxa, PRISM mean annual air temperature and 
precipitation at Station 4951200 (Virgin). 
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Figure F6-4. Trends in number of EPT taxa, PRISM mean annual air temperature and 
precipitation at Station 4951200 (Virgin). 
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Figure F6-5. Trends in number of total taxa, PRISM mean annual air temperature and 
precipitation at Station 4936750 (Duchesne).
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Figure F6-6. Trends in number of EPT taxa, PRISM mean annual air temperature and 
precipitation at Station 4936750 (Duchesne).
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Figure F6-7. Trends in number of total taxa, PRISM mean annual air temperature and 
precipitation at Station 5940440 (Beaver). 
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Figure F6-8. Trends in number of EPT taxa, PRISM mean annual air temperature and 
precipitation at Station 5940440 (Beaver). 

SUMMARY OF RESULTS 

 Site-specific: two sites (4927250 and 4951200) showed stronger patterns than the others 
when data were grouped into temperature categories.  One site, 5940440, showed no 
patterns at all.  

 Temperature appears to be a more important influence than precipitation: more 
significant differences occurred when samples were grouped by temperature categories 
vs. precipitation categories. 

 When patterns occurred, the greatest differences were between hot- vs. cold-year 
samples: in the ANOVA analyses, the greatest number of significant differences occurred 
between hot and cold year samples. In the NMDS ordination, hot-year samples formed 
distinct clusters from the other samples when data from sites 4927250 and 4951200 were 
grouped by temperature categories. 

 Not much difference between cold and normal year samples: In the ANOVA analyses, no 
significant differences occurred between cold and normal year samples, and in the 
ordinations, cold and normal year samples were generally mixed together. 
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 The metrics that had the most number of significant differences between hot-year and 
cold- or normal-year samples are total taxa, Ephemeroptera taxa, Plecoptera taxa, EPT 
taxa, cold-water taxa and herbivore/scraper taxa. 

 Not many metrics had significant differences when grouped by precipitation categories: 
only 3 metrics were significantly different when grouped by precipitation categories, and 
these occurred at single sites. The 3 metrics are: % collector-gatherer, % 
herbivore/scraper and # of intermittent taxa. 

 The temperature metric that performed ‘best’ is # of cold-water taxa. The other 
temperature metrics (except for % warm-water individuals) performed fairly well at the 2 
sites where patterns occurred (meaning mean values were significantly different between 
hot and cold and/or normal year samples at least at one site). 

 Are certain taxa consistently driving trends? The ordinations showed that Ephemerella, 
which was considered to be a cold-water taxon in these analyses, was a key player at both 
sites 4927250 and 4951200. Nematoda, also considered a cold-water taxon, was present 
at these two sites. Other taxa (i.e. warm-water taxa) were important at one site but not the 
other (i.e. Forcipomyia/Probezzia, Microcylloepus, Caloparyphus and Chimarra) 

 ‘Hydrologic’ metrics (i.e. perennial, intermittent, drier scenario, etc.) did not show any 
significant associations with the climate-related variables. 

 Results from the ANOVA analyses on the data from the 4 sites show that there are 
significant differences in O/E values between hot year and cold/normal year samples at 2 
of the 4 sites (4951200 and 4936750). At both sites, mean O/E scores from the hot year 
samples are significantly higher than mean O/E scores from cold and normal year 
samples. 

 Results from the correlation analyses on the data from the 4 sites show that O/E scores 
are only significantly correlated with one or two of the climatic variables at 2 of the sites. 
Patterns are not consistent between the 2 sites. 

 See Section 6 of the report for information on potential confounding factors that may 
have influenced trends at these sites. 
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Attachment F1 
___________________ 

‘Extreme’ alterations of Utah fall RIVPACS 

model climate-related predictor variable values 

As referenced on page F-7 in this Appendix, we also ran some ‘extreme’ scenarios (i.e. doubling 
temperature, dividing precipitation values by two, changing freeze dates by 30 days, etc.) to 
further explore how much the climate-related predictor variables would have to change in order 
to result in substantial changes to O/E scores. The tables in this attachment show which 
scenarios were run and what the results were. 
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Table F1-1. Descriptions of how the climate-related predictor variables were altered in the ‘extreme alteration’ RIVPACS 
analyses 
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Run# Category Altered Predictor variables Rationale 

1 Baseline None - used original values get baseline values and QC 
NCAR annual temperature predictions 

2 TMEAN.WS + 2 & TMEAN.NET + 2 (2050) 
NCAR annual temperature predictions 

3 TMEAN.WS + 4 & TMEAN.NET + 4 (2090) 

4 TMEAN.WS + 10 & TMEAN.NET + 10 curiosity 

5 Temperature TMEAN.WS + 20 & TMEAN.NET + 20 curiosity 

6 

7 

8 

9 

10

11 

12 Precipitation 

MEANP.PT - .05 

MEANP.PT - .1 

MEANP.PT - Minimum PRISM ppt14 

MEANP.PT/2 

 MINP.PT/2 

MEANP.PT/2 & MINP.PT/2 

MINWD.WS/2 

NCAR annual precipitation predictions
 
(2050) 

NCAR annual precipitation predictions
 
(2090) 

based on PRISM ppt14 minimum values 

(1975-2006) 


curiosity 


curiosity
 

curiosity 


curiosity 

NCAR annual temperature and 

13 TMEAN.WS + 2 & TMEAN.NET + 2 & MEANP.PT - .05 precipitation predictions (2050) 
Temperature & NCAR annual temperature and 

14 Precipitation TMEAN.WS + 4 & TMEAN.NET + 4 & MEANP.PT - .1 precipitation predictions (2090) 

15 

16 

17 

18 

19

20

21 

22

Freeze Date 

LST32AVE - 2 best professional judgment 

LST32AVE - 5 best professional judgment 

FST32AVE + 5 best professional judgment 

LST32AVE - 5 & FST32AVE + 5 best professional judgment 

 LST32AVE - 10 curiosity 

 FST32AVE + 10 curiosity 

LST32AVE - 10 & FST32AVE + 10 curiosity 

 LST32AVE - 15 curiosity 

http:MEANP.PT
http:MEANP.PT
http:MEANP.PT
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Table F1-1. Continued. 
Run# Category Altered Predictor variables Rationale 

23 

24 

25 

Freeze Date 

Combine All 

LST32AVE - 15 & FST32AVE + 15 
LST32AVE-1, MINP.PT-1, MEANP.PT-1, TMEAN.NET+1, 
TMEAN.WS+1, FST32AVE+1, MINWD.WS-1 
LST32AVE-2, MINP.PT-2, MEANP.PT-2, TMEAN.NET+2, 
TMEAN.WS+2, FST32AVE+2, MINWD.WS-1 

curiosity 

best professional judgment 

best professional judgment 
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Table F1-2. Results for the scenarios in which temperature predictor variables were 
altered 

Baseline (original) 
TMEAN.WS + 2 & 
TMEAN.NET + 2 

GROUP SITE SAMPLE O E O.E O E O.E 
Dif'ce 
O.E 

1 

7 

1 

6 

5940440 

4951200 

4936750 

4927250 

127636 

120184 

118524 

127718 

14 15.09 0.93 

10 9.58 1.04 

15 14.04 1.07 

8 8.74 0.92 

14 14.92 0.94 

10 9.56 1.05 

15 14 1.07 

8 8.74 0.92 

0.01 

0 

0 

0 

Baseline (original) 
TMEAN.WS + 4 & 
TMEAN.NET + 4 

GROUP SITE SAMPLE O E O.E O E O.E 
Dif'ce 
O.E 

1 

7 

1 

6 

5940440 

4951200 

4936750 

4927250 

127636 

120184 

118524 

127718 

14 15.09 0.93 

10 9.58 1.04 

15 14.04 1.07 

8 8.74 0.92 

14 14.8 0.95 

10 9.6 1.04 

15 14 1.07 

7 8.25 0.85 

0.02 

0 

0 

-0.07 

Baseline (original) 
TMEAN.WS + 10 & 
TMEAN.NET + 10 

GROUP SITE SAMPLE O E O.E O E O.E 
Dif'ce 
O.E 

1 

7 

1 

6 

5940440 

4951200 

4936750 

4927250 

127636 

120184 

118524 

127718 

14 15.09 0.93 

10 9.58 1.04 

15 14.04 1.07 

8 8.74 0.92 

14 14.65 0.96 

10 9.61 1.04 

15 13.89 1.08 

7 8.24 0.85 

0.03 

0 

0.01 

-0.07 

Baseline (original) 
TMEAN.WS + 20 & 
TMEAN.NET + 20 

GROUP SITE SAMPLE O E O.E O E O.E 
Dif'ce 
O.E 

1 

7 

1 

6 

5940440 

4951200 

4936750 

4927250 

127636 

120184 

118524 

127718 

14 15.09 0.93 

10 9.58 1.04 

15 14.04 1.07 

8 8.74 0.92 

13 14.08 0.92 

10 9.63 1.04 

15 13.44 1.12 

7 8.24 0.85 

0 

-0.01 

0.05 

-0.07 

F1‐4
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Table F1-3. Results for the scenarios in which precipitation predictor variables were 
altered 

Baseline (original) MEANP.PT - .05 

GROUP SITE SAMPLE O E O.E O E O.E 
Dif'ce 
O.E 

1 

7 

1 

6 

5940440 

4951200 

4936750 

4927250 

127636 

120184 

118524 

127718 

14 15.09 0.93 

10 9.58 1.04 

15 14.04 1.07 

8 8.74 0.92 

14 15.1 0.93 

10 9.59 1.04 

15 14 1.07 

8 8.75 0.91 

0 

0 

0 

0 

Baseline (original) MEANP.PT - .1 

GROUP SITE SAMPLE O E O.E O E O.E 
Dif'ce 
O.E 

1 

7 

1 

6 

5940440 

4951200 

4936750 

4927250 

127636 

120184 

118524 

127718 

14 15.09 0.93 

10 9.58 1.04 

15 14.04 1.07 

8 8.74 0.92 

14 15.08 0.93 

10 9.58 1.04 

15 14.01 1.07 

8 8.74 0.92 

0 

0 

0 

0 

Baseline (original) 
MEANP.PT - Min 

ppt14 PRISM 

GROUP SITE SAMPLE O E O.E O E O.E 
Dif'ce 
O.E 

1 

7 

1 

6 

5940440 

4951200 

4936750 

4927250 

127636 

120184 

118524 

127718 

14 15.09 0.93 

10 9.58 1.04 

15 14.04 1.07 

8 8.74 0.92 

14 14.78 0.95 

10 9.51 1.05 

15 13.79 1.09 

8 8.71 0.92 

0.02 

0.01 

0.02 

0 

Baseline (original) MEANP.PT/2 

GROUP SITE SAMPLE O E O.E O E O.E 
Dif'ce 
O.E 

1 

7 

1 

6 

5940440 

4951200 

4936750 

4927250 

127636 

120184 

118524 

127718 

14 15.09 0.93 

10 9.58 1.04 

15 14.04 1.07 

8 8.74 0.92 

14 14.79 0.95 

10 9.43 1.06 

15 13.8 1.09 

8 8.68 0.92 

0.02 

0.02 

0.02 

0.01 

Baseline (original) MINP.PT/2 

GROUP SITE SAMPLE O E O.E O E O.E 
Dif'ce 
O.E 

1 

7 

1 

6 

5940440 

4951200 

4936750 

4927250 

127636 

120184 

118524 

127718 

14 15.09 0.93 

10 9.58 1.04 

15 14.04 1.07 

8 8.74 0.92 

13 13.92 0.93 

10 9.46 1.06 

15 13.58 1.1 

8 8.69 0.92 

0.01 

0.01 

0.04 

0.01 

F1‐5 
 



 

 

Table F1-3. Continued 

      

Baseline (original) MEANP.PT/2 & 
 MINP.PT/2   

GROUP SITE  SAMPLE O E  O.E O E  O.E 
Dif'ce 

 O.E 

1 5940440 127636  14 15.09  0.93  13 13.69  0.95  0.02 

7 4951200 120184  10  9.58  1.04  10  9.33  1.07  0.03 

1 4936750 118524  15 14.04  1.07  15 13.38  1.12  0.05 

6 4927250 127718 8  8.74  0.92 8  8.16  0.98  0.07 

                    

      Baseline (original) MINWD.WS/2   

GROUP SITE  SAMPLE O E  O.E O E  O.E 
Dif'ce 

 O.E 

1 5940440 127636  14 15.09  0.93 13  13.81  0.94 0.01  

7 4951200 120184  10  9.58 1.04   10  9.53  1.05 0.01  

1 4936750 118524  15 14.04  1.07 15  13.47  1.11 0.05  

6 4927250 127718 8  8.74 0.92  7  7.63  0.92 0 

 
 
Table F1-4.   Results for the scenarios in which both temperature and precipitation 
predictor variables were altered  

F1‐6 

 

 

 

 

 

 

 

24 

25 
26 
27 
28 

29 
 

      Baseline (original) 
TMEAN.WS + 2 & 

TMEAN.NET + 2 & 
MEANP.PT - .05 

  

 GROUP SITE  SAMPLE O E  O.E O E  O.E 
Dif'ce 

 O.E 

1 5940440 127636  14 15.09  0.93  14 14.93  0.94  0.01 

7 4951200 120184  10  9.58  1.04  10  9.56  1.05 0 

1 4936750 118524  15 14.04  1.07  15 14.01  1.07 0 

6 4927250 127718 8  8.74  0.92 7  8.24  0.85 -0.07 

                    

      Baseline (original) 
TMEAN.WS + 4 & 

TMEAN.NET + 4 & 
MEANP.PT - .1 

  

 GROUP SITE  SAMPLE O E  O.E O E  O.E 
Dif'ce 

 O.E 

1 5940440 127636  14 15.09  0.93  14 14.83  0.94  0.02 

7 4951200 120184  10  9.58  1.04  10  9.58  1.04 0 

1 4936750 118524  15 14.04  1.07  15 14.02  1.07 0 

6 4927250 127718 8  8.74  0.92 7  8.26  0.85 -0.07 

 



 

 

 Table F1-5. Results for the scenarios in which freeze date predictor variables were altered 
  

GROUP

1 

  

 SITE 

5940440 

  Ba

 SAMPLE O 

127636  14 

seline (ori

E 

15.09 

ginal) 

 O.E O 

 0.93  14 

LST32AVE - 2 

E 

15.05 

  

Dif'ce 
 O.E 

 O.E 

 0.93 0 

7 4951200 120184  10  9.58  1.04  10  9.58 1.04  0 

1 4936750 118524  15 14.04  1.07  15 14.01  1.07 0 

6 

  

  

GROUP

1 

4927250 

  

  

 SITE 

5940440 

127718 8  8.74  0.92 7  8.25  0.85 -0.07 

                

  Baseline (original) LST32AVE - 5   

Dif'ce 
 SAMPLE O E  O.E O E  O.E 

 O.E 

127636  14 15.09  0.93  14 14.733  0.95  0.02 

7 4951200 120184  10  9.58  1.04  10 9.5648  1.05 0 

1 4936750 118524  15 14.04  1.07  15 13.999  1.07 0 

6 

  

  

GROUP

1 

4927250 

  

  

 SITE 

5940440 

127718 8  8.74  0.92 7 8.2433  0.85 -0.07 

                

  Baseline (original) FST32AVE + 5   

Dif'ce 
 SAMPLE O E  O.E O E  O.E 

 O.E 

127636  14 15.09  0.93  15 15.374  0.98  0.05 

7 4951200 120184  10  9.58  1.04  10 9.5875  1.04 0 

1 4936750 118524  15 14.04  1.07  15 14.028  1.07 0 

6 

  

  

GROUP

1 

4927250 

  

  

 SITE 

5940440 

127718 8  8.74  0.92 8 8.7184  0.92 0 

                

LST32AVE - 5 & 
  Baseline (original)   

 FST32AVE + 5 

Dif'ce 
 SAMPLE O E  O.E O E  O.E 

 O.E 

127636  14 15.09  0.93  13 14.128  0.92 -0.01 

7 4951200 120184  10  9.58  1.04  10 9.5647  1.05 0 

1 4936750 118524  15 14.04  1.07  15 13.992  1.07 0 

6 

  

  

GROUP

1 

4927250 

  

  

 SITE 

5940440 

127718 8  8.74  0.92 7 8.224  0.85 -0.06 

                

  Baseline (original)  LST32AVE - 10   

Dif'ce 
 SAMPLE O E  O.E O E  O.E 

 O.E 

127636  14 15.09  0.93  13 14.02  0.93 0 

7 4951200 120184  10  9.58  1.04  10  9.56  1.05 0 

1 4936750 118524  15 14.04  1.07  15 13.7  1.09  0.03 

6 

 
4927250 127718 8  8.74  0.92 7  8.23  0.85 -0.07 
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Table F1-5. Continued 
Baseline (original) FST32AVE + 10 

GROUP SITE SAMPLE O E O.E O E O.E 
Dif'ce 
O.E 

1 

7 

1 

6 

5940440 

4951200 

4936750 

4927250 

127636 

120184 

118524 

127718 

14 15.09 0.93 

10 9.58 1.04 

15 14.04 1.07 

8 8.74 0.92 

14 14.713 0.95 

10 9.6097 1.04 

15 13.797 1.09 

7 8.1843 0.86 

0.02 

0 

0.02 

-0.06 

Baseline (original) 
LST32AVE - 10 & 
FST32AVE + 10 

GROUP SITE SAMPLE O E O.E O E O.E 
Dif'ce 
O.E 

1 

7 

1 

6 

5940440 

4951200 

4936750 

4927250 

127636 

120184 

118524 

127718 

14 15.09 0.93 

10 9.58 1.04 

15 14.04 1.07 

8 8.74 0.92 

13 13.743 0.95 

10 9.6115 1.04 

15 13.532 1.11 

7 8.1706 0.86 

0.02 

0 

0.04 

-0.06 

Baseline (original) LST32AVE - 15 

GROUP SITE SAMPLE O E O.E O E O.E 
Dif'ce 
O.E 

1 

7 

1 

6 

5940440 

4951200 

4936750 

4927250 

127636 

120184 

118524 

127718 

14 15.09 0.93 

10 9.58 1.04 

15 14.04 1.07 

8 8.74 0.92 

13 13.945 0.93 

10 9.5818 1.04 

15 13.454 1.11 

7 8.2214 0.85 

0 

0 

0.05 

-0.06 

Baseline (original) 
LST32AVE - 15 & 
FST32AVE + 15 

GROUP SITE SAMPLE O E O.E O E O.E 
Dif'ce 
O.E 

1 

7 

1 

6 

5940440 

4951200 

4936750 

4927250 

127636 

120184 

118524 

127718 

14 15.09 0.93 

10 9.58 1.04 

15 14.04 1.07 

8 8.74 0.92 

13 13.415 0.97 

10 9.6052 1.04 

14 12.787 1.09 

7 8.1713 0.86 

0.04 

0 

0.03 

-0.06 

F1‐8
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Table F1-6. Results for scenarios in which combinations of all climate-related predictor 
variables were altered simultaneously 

Baseline (original) Changed by 1 

GROUP SITE SAMPLE O E O.E O E O.E 
Dif'ce 
O.E 

1 

7 

1 

6 

5940440 

4951200 

4936750 

4927250 

127636 

120184 

118524 

127718 

14 15.09 0.93 

10 9.58 1.04 

15 14.04 1.07 

8 8.74 0.92 

13 

10 

15 

8 

14.04 0.93 

9.51 1.05 

14.03 1.07 

8.71 0.92 

0 

0.01 

0 

0 

Baseline (original) Changed by 2 

GROUP SITE SAMPLE O E O.E O E O.E 
Dif'ce 
O.E 

1 

7 

1 

6 

5940440 

4951200 

4936750 

4927250 

127636 

120184 

118524 

127718 

14 15.09 0.93 

10 9.58 1.04 

15 14.04 1.07 

8 8.74 0.92 

13 

10 

15 

7 

13.81 0.94

9.49 1.05 

14.03 1.07 

8.23 0.85 

 0.01 

0.01 

0 

-0.06 

F1‐9
 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

1
 

2 

3
 

4
 

5
 

6
 

7
 

8 
9 

Attachment F2 
__________________ 

Utah Temperature-Indicator Taxa 

This attachment contains tables with lists of the Utah temperature-indicator taxa and describes 

the process that we followed to develop these lists. 
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F2. UTAH TEMPERATURE-INDICATOR TAXA 

Sources. The Utah cold- and warm-water taxa lists were developed using several 

different sources: 1. weighted-average calculations based on a subset of the Utah biomonitoring 

database (using fall samples (sample size=572)); 2. the thermal-preference trait from the Poff et 

al. 2006 traits matrix; 3. the thermal-preference trait from the USGS traits database (Vieira et al., 

2006); 4. the thermal-preference trait from the compilation of EPA Environmental Requirements 

and Pollution Tolerance series from the late 1970’s (Beck et al., 1977; Harris et al., 1978; 

Hubbard et al., 1978; Surdick et al., 1978); and 5. best professional judgment of the Utah 

Climate Change feedback group3. 

Many of the same general criteria that were used to designate cold- and warm-water 

indicator taxa in Maine were also used in Utah (see Attachment F2).  Also, see Attachment F2 

for general limitations of the weighted averaging, as well as for information on general 

considerations that were taken into account. 

Initial Results. Initially there were 76 taxa on the cold-water list and 53 taxa on the 

warm-water list.  These lists were based on weighted-average calculations and literature. These 

lists were further refined through the evaluation of additional evidence.  This evidence included 

analyses of other datasets, case studies, and best professional judgment.  Taxa with the greatest 

amount of evidence were designated as temperature indicator taxa. More detailed information 

about the steps that were used to develop the temperature indicator taxa lists is summarized 

below: 

Considerations (unique to Utah) 

In addition to Considerations A and C in Attachment E2, a subset of the scores that 

included only the western states (California, Oregon, Idaho, Utah, Yuan Western EMAP) was 

also taken into account when developing the lists. The reasoning behind this is that the data from 

these states is more similar and therefore more comparable to Utah than data from Ohio, North 

Carolina and Maine. Therefore it was given more weight in the consideration process. Taxa that 

3 Utah Climate Change group: Utah DWQ (Jeff Ostermiller), Utah State University Bug Lab (Mark Vinson), Eric 
Dinger (formerly of the USU Bug Lab), David Herbst (California Sierra Nevada), Wyoming (Eric Hargett), Pyramid 
Lake Paiute Tribe (Dan Mosely), and Shann Stringer (formerly New Mexico). 
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37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

received higher scores had more evidence supporting their inclusion on the temperature indicator 

taxa list. Cold- and warm-water taxa lists from these western states were also evaluated for 

conflicting evidence. If a taxon showed a preference for cold- or warm-water in Utah but was 

shown to have the opposite preference in the California, Oregon, Idaho, or Yuan Western EMAP 

analyses (i.e. cold-water taxon in Utah was listed as a warm-water taxon in Oregon), it was not 

included on the temperature indicator list. 

Several ‘case studies’ were performed to see whether the cold- or warm-water taxa 

occurred at sites in Utah that had the warmest- or coldest-water temperatures (June-September). 

The following case studies were performed:  

Cold-water Case Study #1. Taxa lists from 4 sites in the Wasatch and Uinta Mountains 

level 3 ecoregion that had the coldest average water temperatures (using June-September 

samples) and that had <2% urban and <10% agricultural land use/land cover within a 1 km 

buffer were evaluated. Sites include: Station 4938910 (avg temp 5.75°C, 0% urban, 0% 

agricultural), Station 4936700 (avg temp 9.1°C, 0.74% urban, 0% agricultural), Station 4935970 

(avg temp 9.5°C, 0% urban, 0% agricultural), and Station 4995830 (avg temp 9.6°C, 0% urban, 

0% agricultural). 

Cold-water Case Study #2. Taxa lists from 4 sites in the Colorado Plateaus level 3 

ecoregion that had the coldest average water temperatures (using June-September samples) and 

that had <2% urban and <10% agricultural land use/land cover within a 1 km buffer were 

evaluated. Sites include: Station 4937720 (avg temp 10.9°C, 0.17% urban, 1.4% agricultural), 

Station 4936200 (avg temp 12.5°C, 0.11% urban, 0% agricultural), Station 4954140 (avg temp 

14.1°C, 0% urban, 0% agricultural), and Station 4956480 (avg temp 14.2°C, 0% urban, 0% 

agricultural). 

Warm-water Case Study #1. Taxa lists from two sites in the Colorado Plateaus level 3 

ecoregion that had the warmest average water temperatures (using June-September samples) and 

that had <2% urban and <10% agricultural land use/land cover within a 1 km buffer were 

evaluated. Sites include: Station 4933120 (avg temp 32°C, 1.6% urban, 3.4% agricultural) and 

Station 4950790 (avg temp 26.2°C, 0% urban, 0% agricultural). 

Development of the Temperature Indicator Cold-water Taxa List.  Taxa were placed 

on the cold-water list if the following criteria were met: 
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1. The taxon was NOT present at the warm-water case study site. 

2. The taxon (and no species within the genera) was NOT on the warm-water 

lists derived from the California, Oregon, Idaho, and Yuan Western EMAP datasets. 

3. The Utah Climate Change feedback group did not specify that they did not 

think the taxon should be on the list (based on best professional judgment). 

4. The taxon had to be on the cold-water taxa list in at least two of the 

western datasets, or if it was only listed in one dataset, it also had to be present at one or 

more of the cold-water case study sites. 

Development of the Temperature-Indicator Warm-Water List.  Taxa were placed on 

the warm-water list if the following criteria were met: 

1. The taxon was NOT present at the cold-water case study sites. 

2. The taxon (and no species within the genera) was NOT on the cold-water 

lists derived from the California, Oregon, Idaho, and Yuan Western EMAP datasets. 

3. The Utah Climate Change feedback group did not specify that they did not 

think the taxon should be on the list (based on best professional judgment). 

4. The taxon had to be on the warm-water taxa list in at least two of the 

western datasets, or if it was only listed in one dataset, it also had to be present at the 

warm-water case study sites.  

Temperature-Indicator Lists.  The cold-water taxa list was comprised of 33 taxa and 

the warm-water taxa list was comprised of 16 taxa. Temperature indicator taxa lists can be found 

in Tables F2-1 and F2-2. 

Important Notes – variation within genera. Some noteworthy genera were left off the 

Utah cold-water taxa list.  These include Zapada, Epeorus, Drunella, Brachycentrus and 

Rhyacophila. The reason they were not included is because there is variation in temperature 

preferences among species within these genera.  For example, Zapada cinctipes is on the warm

water taxa lists in the Oregon and Idaho datasets, but the other species within this genus are 

listed as cold-water taxa.  Epeorus albertae is on the warm-water list in the Oregon dataset, but 

other species within this genus are generally listed as cold-water taxa.  Drunella grandis is listed 

as a warm-water taxa (barely – it received a rank optima score of 5) in the Oregon and Idaho 

datasets, but other species within this genus are generally listed as cold-water taxa.  Within the 
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family Rhyacophilidae, there are a few taxa that are listed as warm-water taxa and several that 

are listed as cold-water taxa. There is similar variation within the genus Brachycentrus.   

Dispersal Ability.  If temperature is a major factor influencing community composition, 

then taxa that are able to adapt to warming temperatures and/or that are able to disperse to more 

favorable habitats (generally believed to be upstream or to higher elevations) have a better 

chance of surviving.  Five mobility traits were examined for the taxa on the Utah temperature 

indicator lists: dispersal (adult), adult flying strength, occurrence in drift, maximum crawling rate 

and swimming ability.  More information on these traits can be found in Table F2-3. 

Dispersal (adult) and adult flying strength received the greatest amount of consideration.  

Because movement is most likely to be upstream, taxa that are strong fliers are likely to have a 

better chance of success. It will be difficult for taxa that disperse via occurrence in drift to 

migrate upstream, and taxa that disperse via crawling or swimming are likely to have difficulty 

moving the distances required to find more favorable habitats.   

All of the taxa on the Utah temperature indicator cold-water taxa list (that we had trait 

information for) are considered to have low dispersal ability and weak adult flying strength.  Six 

of the taxa on the temperature indicator warm-water taxa list (that we had trait information for) 

are considered to have high dispersal ability (Cheumatopsyche, Microcylloepus, Ochrotrichia, 

Oecetis, Calineuria and Nectopsyche). Two of these are categorized as strong fliers 

(Cheumatopsyche and Calineuria). 

Abundance and Distribution. In addition to dispersal ability, abundance and 

distribution are also important considerations.  Those taxa that are widespread and common are 

likely to have greater genetic diversity and greater chance of adapting than rare taxa that only 

occur in isolated, localized populations (Sweeney et al., 1992).   Moreover, the more abundant 

taxa are more likely to affect the state biomonitoring assessments.   

Abundance and distribution information for the temperature-indicator taxa can be found 

in Tables F2-1 and F2-2. The most abundant cold-water-temperature-indicator taxa are two 

Ephemeropterans, Ephemerella and Cinygmula, which comprise 1.85 and 1.03 percent of the 

total individuals, respectively.  Twenty of the cold-water taxa have overall abundances of less 

than 0.1%. Asellidae and Leptohyphidae are the most abundant warm-water taxa, with overall 

abundances of 3.12 and 1.42%. Eleven of the warm-water taxa have overall abundances of less 
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than 0.1%. Of the cold-water taxa, Chloroperlidae occurs at the highest percentage of sites 

(49%), followed by two Ephemeropterans (Ephemerella and Cinygmula), which occur at 44 and 

46% of the sites, respectively. Fifteen of the cold-water taxa occur at less than 10% of the sites.  

Among the warm-water taxa, Leptohyphidae occurs at the highest percentage of sites (31%), 

followed by Coenagrionidae (18%) and Cheumatopsyche (17%).  Eleven of the warm-water taxa 

occur at less than 10% of the sites. 

Additional information – Cold-water Taxa.  Ten of the cold-water taxa are 

Plecopterans, eight are Dipterans, seven are Trichopterans and six are Ephemeropterans (Table 

F2-4a). The families with the most number of taxa on the cold-water list are Heptageniidae, 

Empididae and Perlodidae (Table F2-4b). 

Additional information – Warm-water Taxa.  Five of the warm-water taxa are 

Trichopterans, three are Coleopterans, and two are Dipterans and Ephemeropterans (Table F2-

5a). The families with the most number of taxa on the warm-water list are Elmidae and 

Leptoceridae (Table F2-5b). 
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Table F2-1. List of Utah cold-water temperature indicator taxa.  Distribution and abundance information is also included.  Sum_Individuals=the 
total number of individuals from that taxon in the Utah database; Pct_Abund=percent of total individuals in the database comprised of that 
taxon; Num_Stations=number of stations in the database that the taxon occurred at; Pct_Stations=percent of stations in the database at which the 
taxon occurred. 
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Type Order Family FinalID Sum_Individs Pct_Abund Num_Stations 
 137 

Pct_Stations
21.57cold Ephemeroptera Ameletidae Ameletus 13157.6   0.03 

cold Trichoptera Glossosomatidae Anagapetus  42 0 2  0.31 
cold Trichoptera Apataniidae Apatania  20154.3  0.04  39  6.14 
cold Diptera Ceratopogonidae Bezzia 109267.1 0.23 232 36.54
cold Diptera Blephariceridae Bibiocephala  2257 0  15  2.36 
cold Plecoptera Capniidae Capniidae  113578.8  0.24  228  35.91 
cold Diptera Empididae Chelifera  94014.1 0.2 261 41.1
cold Plecoptera  Chloroperlidae  Chloroperlidae  203579.9  0.44  309  48.66 
cold Ephemeroptera Heptageniidae Cinygma  606.2 0 6  0.94 
cold Ephemeroptera Heptageniidae Cinygmula  479866.5  1.03  278  43.78 
cold Plecoptera Perlodidae Cultus  20419.7  0.04  97  15.28 
cold Diptera Tipulidae Dicranota  35439.2  0.08  220  34.65 
cold Trichoptera Limnephilidae Ecclisomyia 1262.8 0 14 2.2 
cold Ephemeroptera Ephemerellidae Ephemerella 859335.8 1.85 292 45.98
cold Plecoptera Pelecorhynchidae Glutops  91 0 4  0.63 
cold Coleoptera Elmidae Heterlimnius  16463  0.04  50  7.87 
cold Ephemeroptera Heptageniidae  Ironodes  551.6 0 6  0.94 
cold Plecoptera Perlodidae  Kogotus  1288.7 0  14  2.2 
cold Trichoptera Lepidostomatidae  Lepidostoma  353679.8  0.76  240  37.8 
cold Plecoptera Leuctridae Leuctridae  21176.5  0.05  106  16.69 
cold Plecoptera Perlodidae  Megarcys  7129.9  0.02  65  10.24 
cold Dorylaimida Dorylaimidae Nematoda  141425.3  0.3  249  39.21 
cold Trichoptera Uenoidae Neothremma  129853.8  0.28  100  15.75 
cold Trichoptera Uenoidae Oligophlebodes  147256.9  0.32  101  15.91 
cold Diptera Empididae Oreogeton   228.5 0  13  2.05 
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Table F2-1. Continued 
Type Order Family FinalID Sum_Individs Pct_Abund Num_Stations Pct_Stations 

cold Trichoptera Hydropsychidae Parapsyche  3552.5  0.01  40  6.3 
cold Diptera Psychodidae  Pericoma  145582.7  0.31  210  33.07 
cold Diptera Tipulidae Rhabdomastix 8 0 1  0.16 
cold Ephemeroptera Heptageniidae  Rhithrogena  198501.8  0.43  243  38.27 
cold Plecoptera Taeniopterygidae Taenionema   79949.8  0.17  87  13.7 
cold Plecoptera Nemouridae Visoka  50 0 1  0.16 
cold Diptera Empididae Wiedemannia  458 0  13  2.05 
cold Plecoptera Peltoperlidae Yoraperla  72.7 0 5  0.79 

 

 

Table F2-2. List of Utah warm-water temperature indicator taxa.  Distribution and abundance information is also included.  Sum_Individuals=the 
total number of individuals from that taxon in the Utah database; Pct_Abund=percent of total individuals in the database comprised of that taxon; 
Num_Stations=number of stations in the database that the taxon occurred at; Pct_Stations=percent of stations in the database at which the taxon 
occurred. 
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Type Order Family FinalID Sum_Individs Pct_Abund Num_Stations Pct_Stations 
warm Hemiptera Naucoridae Ambrysus  25879.7  0.06  39  6.14 
warm  Isopoda Asellidae Asellidae 1450840.4 3.12 81 12.76 
warm Ephemeroptera Caenidae Caenis  567 0  11  1.73 
warm Plecoptera Perlidae Calineuria  245 0 9  1.42 
warm Diptera Stratiomyidae  Caloparyphus  9652  0.02  26  4.09 
warm Trichoptera Hydropsychidae Cheumatopsyche 172233.9   0.37  105  16.54 
warm Odonata Coenagrionidae Coenagrionidae  45144.1  0.1  117  18.43 
warm Ephemeroptera Leptohyphidae Leptohyphidae  659670.3  1.42  197  31.02 
warm Diptera Psychodidae Maruina  1140.2 0  16  2.52 
warm Coleoptera Elmidae Microcylloepus  114016  0.24  50  7.87 
warm Trichoptera Leptoceridae Nectopsyche  8434.7  0.02  35  5.51 
warm Trichoptera Hydroptilidae Ochrotrichia 6768.2 0.01 29 4.57 
warm Trichoptera Leptoceridae Oecetis  28993.3 0.06 90 14.17 
warm Coleoptera Elmidae Ordobrevia  360 0 5  0.79 
warm Coleoptera Psephenidae Psephenus  65.8 0 4  0.63 
warm Trichoptera Psychomyiidae Tinodes  12774.6  0.03  34  5.35 



 

 

 

 

 

Table F2-3. Mobility traits that were evaluated.  The source of most of this information 
was the Poff et al. 2006 traits matrix.  Some also came from the USGS traits database 
(Vieira et al., 2006). 
Mobility Trait Trait States 

Dispersal (adult) 

Adult flying strength 

Occurrence in drift 

Maximum crawling rate 
Swimming ability 

low (<1 km flight before laying eggs), high (>1 km flight before 
laying eggs)  
weak (e.g. cannot fly into light breeze), strong 
rare (catastrophic only), common (typically observed), abundant 
(dominant in drift samples) 
very low (<10 cm/h), low (<100 cm/h), high (>100 cm/h) 
none, weak, strong 

Table F2-4a. Number of cold-water taxa in each order  
Order Total

Plecoptera 10
Diptera 8
Trichoptera 7
Ephemeroptera 6 
Coleoptera 1
Dorylaimida 1

 

 
 
 

 
 

Table F2-4b. Number of cold-water taxa in each family 

Family Total

Heptageniidae 4 

Empididae 3 

Perlodidae 3 

Tipulidae 2
Uenoidae 2
Ameletidae 1 

Apataniidae 1 

Blephariceridae 1 

Capniidae 1 
Ceratopogonidae 1 

Chloroperlidae 1 

Dorylaimidae 1 

Elmidae 1
Ephemerellidae 1 

Glossosomatidae 1 

Hydropsychidae 1 

Lepidostomatidae 1 

Leuctridae 1 

Limnephilidae 1 
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Table F2-4b. Continued 

Family Total 

Nemouridae 1 

Pelecorhynchidae  

Peltoperlidae 1 

Psychodidae 1 

Taeniopterygidae 1 


1
 
 

 

 


Table F2-5a. Number of warm-water taxa in each order 
Order 

Trichoptera 

Total 

5 

Coleoptera 3 

Diptera 2 

Ephemeroptera 2 

Hemiptera 1 

Isopoda 1 

Odonata 1 

Plecoptera 1 
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Table F2-5b. Number of warm-water taxa in each family 
Family Total 

Elmidae 2 

Leptoceridae 2 

Asellidae 1 

Caenidae 1 

Coenagrionidae 1 

Hydropsychidae 1 

Hydroptilidae 1 

Leptohyphidae 1 

Naucoridae 1 

Perlidae 1 

Psephenidae 1 

Psychodidae 1 

Psychomyiidae 1 

Stratiomyidae 1 
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APPENDIX G 
___________________ 
Detailed Results North Carolina 

The intent of this appendix is to provide more comprehensive and detailed information on the 
large number of analyses that were performed on the North Carolina data. Some of the analyses 
that are covered in this appendix are also referenced in the main body of the APM report. When 
this occurred, attempts were made to reduce any overlap or duplication in the reporting of 
results. 

G1. Overview 
G2. North Carolina Ecoregion Descriptions 
G3. Results 
Attachment G1. Temperature Indicator Taxa – North Carolina 
Attachment G2. Tolerance values of the cold and warm-water temperature 
indicator taxa 
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G1. Overview 

North Carolina’s Biological Assessment Unit rates sites as Excellent (5), Good (4), 

Good/Fair (3), Fair (2) or Poor (1). Historically bioclassifications had been assigned based on 

EPT richness alone or in combination with total taxa richness. However, interpretations were 

sometimes troublesome because criteria often needed to be adjusted to account for differences in 

factors like collection method, stream size, seasonal changes and ecoregion, so the North 

Carolina Biotic Index (NCBI) was developed as an independent method of rating water quality. 

The NCBI uses tolerance values that are derived from the NC database. The NCBI is a summary 

measure of the tolerance values of organisms found in the sample relative to their abundance (see 

NC Standard Operating Procedures (SOP) 2006 for more details). NCBI scores, which range 

from 0 (best) to 10 (worst), are calculated for samples collected using the standard qualitative 

(full-scale) or EPT collection methods.  

For most sites, equal weight is given to both the NCBI value and EPT taxa richness when 

assigning bioclassifications. Exceptions are outlined in the NC SOP (2006) and include such 

things as pristine high altitude mountain streams, swamp streams, and Coastal B streams (see NC 

SOP 2006 for more details). Under normal circumstances NCBI and EPT taxa richness measures 

are averaged together. A rounding approach is used when the two scores differ by one 

bioclassification and produce a final score midway between two ratings (1.5, 2.5, 3.5 or 4.5). In 

this situation EPT abundance is taken into account when deciding whether to round up or round 

down. Abundance of organisms is recorded as rare=1 (1-2 specimens), common=3 (3-9 

specimens) or abundant (≥10 specimens). Scoring criteria are outlined in Figure G-1 (see NC 

SOP 2006 for more details). Figure G-1 also shows that bioclassification criteria have been 

developed for three major ecoregions (as defined by NCDENR): Mountain (MT), Piedmont (P) 

and Coastal Plain (CA). 

G‐2 



 

 

 

 

 
 
 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

45 

46 
47 
48 
49 
50 
51 
52 
53 
54 

55 

56 

57 

58 

59 

60 

Figure G-1. These tables are used to determine the scores for EPT taxa richness values and 
NCBI values for all standard qualitative samples after seasonal corrections are made. EPT 
N refers to EPT abundance (NC SOP 2006). 

G2 North Carolina Ecoregion Description 

The major ecoregions defined by NCDENR differ slightly from EPA Level 3 ecoregions. 

Sites in the NCDENR Mountain ecoregion generally fall within the Blue Ridge EPA Level 3 

ecoregion, which runs along the western portion of the state. Sites in the NCDENR Piedmont 

ecoregion are generally in the Piedmont EPA Level 3 ecoregion, which runs through the central 

portion of North Carolina. The NCDENR Coastal ecoregion generally overlaps with the 

Southeastern Plains and Middle Atlantic Coastal Plain EPA Level 3 ecoregions, which are 

located in the eastern portion of the state.  
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The major ecoregions are quite different. Terrain in the Mountain ecoregion ranges from 

narrow ridges to hilly plateaus to more massive mountainous areas with high peaks. Elevations 

generally range from 305-1524 meters, with Mount Mitchell, the highest point in North Carolina, 

and highest in the U.S. east of the Mississippi River, reaching 2037 meters. There is a high 

diversity of flora and fauna with high gradient, cool, clear streams with rocks and boulders. 

Forest-related land uses occur along with some small areas of pasture, apple orchards, and 

Christmas tree farms. Low-density recreational activities in forested settings have also become a 

typical land-use. (Griffith et al., 2002) 

The Piedmont ecoregion is a transitional area between the mostly mountainous ecological 

regions of the Appalachians and the relatively flat coastal plain. Several major land cover 

transformations have occurred in the Piedmont over the past 200 years, from forest to farm, back 

to forest, and now in many areas, spreading urban- and suburbanization. Once largely cultivated 

with crops such as cotton, corn, tobacco and wheat, most of the Piedmont soils were moderately 

to severely eroded (Trimble, 1974). Much of this region is now in planted pine or has reverted to 

successional pine and hardwood woodlands with some pasture in the land cover mosaic (Griffith, 

et al. 2002). 

The Coastal ecoregion consists of low elevation, flat plains, with many swamps, marshes, 

and estuaries. Pine plantations for pulpwood and lumber are typical with some areas of cropland. 

In some areas there is a mix of cropland, pasture, woodland, and forest. Over the past three 

centuries, naval stores or pine tar production, logging, open range cattle and feral hog grazing, 

agriculture, and fire suppression removed almost all of the longleaf pine forests. Streams in this 

area are relatively low-gradient and sandy-bottomed (Griffith et al., 2002). 

More biological sampling sites are located in the Mountain and Piedmont ecoregions 

(1185 and 1007, respectively) than in the Coastal ecoregion (365). As expected, average 

elevations of the Mountain sites are much higher than the other sites (637 meters in the 

mountains vs. 155 meters in the Piedmont and 37 meters in the Coastal Plain).  

G3 Results 

G3.1 Distributions of temperature-indicator taxa 
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Results are summarized in Section 2 of the report. We used PRISM mean annual 

precipitation as a surrogate for flow at sites that did not have USGS gages. In the Figure G-2 

example, PRISM mean annual precipitation tracked fairly well with mean monthly July-August 

discharge (which corresponded to the collection period for benthic samples that we examined in 

our analyses) 

Figure G-2. Relationship between PRISM mean annual precipitation and mean monthly 
discharge over time at NC0207 (Nantahala River). 

It was difficult to examine the relationship between flow and biology at most individual 

sites due to lack of flow data or discontinuities in the biological data at sites with USGS flow 

gages (Figure G-3). However, data from NC0109 (New River) showed significant relationships 

between PRISM mean annual precipitation and several biological metrics (Figures G-4 and G

5). This included thermal-preference richness metrics (# cold-water taxa  r=0.85, p<0.01; # 

warm-water taxa r= -0.65, p=0.03). 
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Figure G-3. Relationship between mean monthly discharge and % EPT individuals over 
time at NC0207 (Nantahala River). 

Figure G-4. Relationship between PRISM mean annual air temperature, PRISM mean 
annual precipitation and thermal preference richness metrics at site NC0109 (New River). 
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Figure G-5. Relationship between PRISM mean annual air temperature, PRISM mean 
annual precipitation and % EPT individuals at site NC0109 (New River). 

Tables G-1 and G-2 summarize distribution and abundance information for the North 

Carolina cold- and warm-water-preference taxa at the 5 sites (Stations NC0109 - New, NC0207 - 

Nantahala, NC0209 - Cataloochee, NC0075 - Little and NC0248 - Barnes) that were analyzed 

for long-term trends. At these stations, the most prevalent cold-water-preference taxa were 

Antocha and Promoresia which occurred at all the sites and in low to moderate abundances. 

Acentrella, Atherix, Dolophilodes, Epeorus, and Eukiefferiella occurred at 6 of the sites and 

therefore also appear to be stronger indicators. Procladius, Placobdella and Stenochironomus  

were the most prevalent warm-water-preference taxa. They occurred at 5 sites and generally had 

higher mean relative abundances than the other taxa. Chimarra and Macromia also appear to 

occur in higher abundances than most of the other warm-water-preference taxa. 
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Table G-1. Summary of distribution and abundance information for the cold-water
preference taxaat the 5 sites (Stations NC0109, NC0207, NC0209, NC0075 and NC0248). 
#Sites refers to the number of sites at which the taxa occurs. A=absent. P=present 
(highlighted in grey). Relative abundance codes: L=low (<0.01), M=medium (0.01-0.1), 
H=high (>0.1) (M or H are in bold type). Guide to interpretation: P-1L = present, occurred 
during1 year, low relative abundance (RA), P-11M = present, occurred during 11 years, 
medium RA, etc. 

FinalID #Sites NC0109 NC0207 NC0209 NC0075 NC0248 

Acentrella 6 P-3L A P-1L P-1L P-5M 

Agapetus 3 A P-3L P-1L A A 

Amphinemura 2 A P-2L A A A 

Antocha 7 P-3L P-8M P-7M P-3L P-3L 

Apatania 3 A P-1L P-1L A A 

Arctopsyche 3 A P-6M P-6M A A 

Atherix 6 A P-7L P-7M P-5M P-6M 

Cardiocladius 5 P-5L A P-3L A P-1L 

Cinygmula 0 A A A A A 

Clioperla 3 A A A P-1L P-1L 

Cultus 4 A P-2L P-1L A P-1L 

Diamesa 3 A P-1L P-2L A A 

Dicranota 3 A P-9M P-7M A A 

Diploperla 3 A P-1L A A A 

Dolophilodes 6 P-2L P-9M P-7M A P-2L 

Drunella 4 P-8L P-8M P-7M A A 

Epeorus 6 P-6L P-9M P-7M A P-6M 

Eukiefferiella 6 P-3L P-6L P-7M P-2L A 

Glossosoma 4 P-3L P-8M P-7M A A 

Heleniella 2 A P-1L A A A 

Isoperla 5 A P-6M P-7M A P-2L 

Lanthus 5 A P-9M P-7M A P-1L 

Malirekus 3 A P-4L P-6M A A 

Nixe 3 A P-1L P-5L A A 

Pagastia 4 P-1L P-6M P-4L A A 

Parapsyche 2 A A P-1L A A 

Potthastia 4 A P-2L P-1L A P-1L 

Promoresia 7 P-10M P-6L P-7M P-1L P-3L 

Rheopelopia 3 A P-2L P-2L A A 

Rhithrogena 5 P-3L P-4L P-7M A A 

Tallaperla 5 P-5L P-9M P-7M A A 

Zapada 0 A A A A A 
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Table G-2. Summary of distribution and abundance information for the warm-water-
preference taxa at the 5 sites (Stations NC0109, NC0207, NC0209, NC0075 and NC0248). 
#Sites refers to the number of sites at which the taxa occurs. A=absent. P=present 
(highlighted in grey). Relative abundance codes: L=low (<0.01), M=medium (0.01-0.1), 
H=high (>0.1) (M or H are in bold type). Guide to interpretation: P-1L = present, occurred 
during1 year, low relative abundance (RA), P-11M = present, occurred during 11 years, 
medium RA, etc. 

FinalID  #Sites NC0109 NC0207 NC0948 NC0075 NC0248 

Belostoma 0 A A A A A 

Berosus 1 P-1L A A A A 

Caecidotea 3 A A P-1L P-4L A 

Chimarra 4 P-11M A A P-6M P-7M 

Elliptio 2 P-2L A A A A 

Epicordulia 0 A A A A A 

ERPOBDELLA/ 
MOOREOBDELLA 5 P-4L A P-1L P-1L P-2L 

Helobdella 4 P-2L A A P-2L P-1L 

Helocordulia 3 A A A P-3L P-1L 

Hetaerina 1 P-3L A A A A 

Ischnura 0 A A A A A 

Lioporeus 1 A A A P-1L A 

Macromia 5 P-7L A A P-7M P-6M 

Macrostemum 2 P-6L A A P-1L A 

Neureclipsis 2 P-7L A A A A 

Neurocordulia 4 P-1L A A P-5L P-2L 

Nilothauma 4 A P-1L A A P-2L 

Palaemonetes 1 A A A A A 

Parachironomus 0 A A A A A 

Pentaneura 1 P-1L A A A A 

Phylocentropus 5 A A A P-1L P-1L 

Physella 4 P-8M A A P-3L P-4L 

Placobdella 6 P-2L P-1L P-1L P-2L P-1L 

Procladius 7 P-10M P-2L P-2L P-2L P-2L 

Stenochironomus 6 P-8M P-1L P-2L P-4L P-3L 

Tetragoneuria 1 A A A P-1L A 

Tricorythodes  2 P-11M A A A A 

G3,2 How cold- and warm-water indicator taxa may affect EPT taxa richness, the NCBI 
and final bioclassification levels 
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Attachment G2 contains tables with lists of the temperature indicator taxa, temperature 

optima values that were calculated from the maximum likelihood modeling, and the tolerance 

values assigned by NCDENR that are used to calculate the NCBI. It should be noted that the 

tolerance values are assigned at the species level by NCDENR. Because the maximum likelihood 

modeling was done at the genus-level, some of the tolerance values had to be averaged across 

species to get one value for each genus. The number of species within each genus that have been 

assigned tolerance values along with minimum and maximum tolerance values of species within 

each genus are also included in these tables. There is a fair amount of variation within some 

genera. 

Results of the analyses that were performed to examine potential climate change effects 

on the EPT taxa richness metric are discussed in Section 2 of the report. Potential effects on the 

NCBI are discussed in Section 3 of the report (see also Attachment G2). One set of results that 

was not included in the report, but that are shown here, is from the correlation analysis of BI 

values and PRISM mean annual precipitation variables. Results show BI values1 and PRISM 

mean annual precipitation variables to be significantly correlated at 3 of the sites (Figure G-6). 

1 For this particular analysis, we used the original BI values that were provided to us by NCDENR- this is 
important to note because, as mentioned earlier, NCDENR calculates the BI values based on species, 
while Tetra Tech calculated it based on genus-level OTUs. 
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Figure G-6. BI values and PRISM mean annual precipitation variables were significantly 
correlated at 3 of the reference sites that were used in the correlation analyses: a) NC0109 - 
New, b) NC 0207 - Nantahala and c) NC0248 - Barnes. BI values are original values provided 
to us by NCDENR. 
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Two of the sites are Mountain sites and one is a Piedmont site. At the 2 Mountain sites, 

NC0207 (Nantahala) and NC0109 (New), the variables are significantly negatively correlated 

(r2=0.51 and r2=0.79, respectively), while at the Piedmont site, NC0248 (Barnes), the variables 

are positively correlated (r2=0.81). This suggests that there are site-specific differences as well as 

differences among major ecoregions. 

Results of the analysis simulating the effects of the loss of cold-water taxa on 

bioclassification scores for 3 Mountain reference sites are discussed in Section 3 of the report, as 

are results of the analysis in which Mountain criteria were applied to biotic assemblages at 

selected reference Piedmont sites. 

G3,3 Correlation analyses - commonly used metrics and climate-related variables 

Metrics that are significantly correlated with the PRISM air temperature variables are 

summarized in Table G-3. There are not many strong or consistent relationships between the 

commonly used metrics and the temperature variables. Results appear to be mostly site-specific. 

Only two metrics were significantly correlated with a temperature variable at more than one site: 

the % climbers metric was negatively correlated with previous year PRISM mean annual air 

temperature at 2 Blue Ridge sites; and the % predators metric was positively correlated with 

PRISM mean annual air temperature at a Blue Ridge site and negatively correlated with it at a 

Piedmont site. The 2 Piedmont sites have the most number (5) of metric values significantly 

correlated with mean annual average air temperature (from the sampling year). Station NC0207 

(Nantahala) has the most number (5) of significantly correlated metrics with the temperature 

difference (sampling year – previous year) variable.  

Results of the correlation analyses using the PRISM mean annual precipitation variables 

are summarized in Table G-4. More metrics were significantly correlated with precipitation 

variables than with temperature variables. But as with the temperature variables, there are not 

many strong or consistent relationships and results appear to be mostly site-specific. Four metrics 

were significantly correlated with a precipitation variable at more than one site: the Hilsenhoff 

Biotic Index (HBI) (which used NC tolerance values, averaged at the genus-level) was 

negatively correlated with PRISM mean annual precipitation at 2 Blue Ridge sites; the % climber 

metric was negatively correlated with mean annual precipitation at 1 Blue Ridge and 1 Piedmont 

site; the % shredder metric was negatively correlated with previous year mean annual 
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precipitation at 1 Blue Ridge and 1 Piedmont site; and the % burrower metric was negatively 

correlated with the precipitation difference (sampling year – previous year) variable at 1 Blue 

Ridge site and positively correlated at 1 Piedmont site. Station NC0109 has the most number 

(16) of metric values significantly correlated with PRISM mean annual precipitation values. 

Station NC0207 (Nantahala) has the most number (10) of significantly correlated metrics with 

the precipitation difference (sampling year – previous year) variable. Closer examination of the 

data shows that mean annual precipitation values increased by 30 inches from 1993-1994, which 

likely affected the biota. 

Table G-3. Metric values that are significantly correlated with the selected temperature 
variables are shown. + means positively correlated; - means negatively correlated. Values 
are in bold print if they are significant at more than one site. 

PRISM 
mean 

annual 
average air 
temperature 
(tmean14) 

Metric 
Blue Ridge Piedmont 

NC0109 
(New) 

NC0207 
(Nantahala) 

NC0209 
(Cataloochee) 

NC0075 
(Little) 

NC0248 
(Barnes) 

% Burrowers -
# Predator Taxa -
% Predators + -
# Cold-water 
Indicator Taxa -

% Drier Losers -

Previous 
year 

PRISM 
mean 

annual 
average air 
temperature 

Metric 
Blue Ridge Piedmont 

NC0109 NC0207 NC0209 NC0075 NC0248 

# Trichoptera Taxa + 
# Climber Taxa -
% Swimmers + 
% Climbers - -
% Sprawlers -
% Collector-gatherers -
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Table G-3. Continued 

Absolute 
difference 
between 

PRISM mean 
annual average 
air temperature 

from the 
sampling year 

and the 
previous year 

Metric 
Blue Ridge Piedmont 

NC0109 NC0207 NC0209 NC0075 NC0248 

# Total Taxa + 
# Plecoptera Taxa + 
# Swimmer Taxa + 
# Climber Taxa  + 
% Clingers -
# Predator Taxa + 
% Shredders -
% Cold-water 
Indicators + 

# OCH Taxa + 
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Table G-4. Metric values that are significantly correlated with the selected precipitation 
variables are shown. + means positively correlated; - means negatively correlated. Values 
are in bold italicized print if they are significant at more than one site. 

PRISM 
mean 

annual 
precipitatio 
n (ppt14) 

Metric 

Blue Ridge Piedmont 

NC010 
9 (New) 

NC0207 
(Nantahala 

) 

NC0209 
(Cataloochee 

) 

NC0075 
(Little) 

NC0248 
(Barnes) 

# Total Taxa -
# Ephemeroptera Taxa -
# Plecoptera Taxa + 
% Plecoptera + 
% EPT + 
HBI - -
# Climber -
% Clingers + 
% Climbers - -
# Herbivore Taxa -
# Predator Taxa -
% Predators -
% Cold-water Indicators + 
# Cold-water Indicator Taxa + 
# Warm-water Indicator Taxa -
% Perennial + 
% Drought Resistant + 
# of Intermittent Taxa -

Previous 
year PRISM 

mean 
annual 

precipitatio 
n 

Metric 
Blue Ridge Piedmont 

NC010 
9 

NC0207 NC0209 NC0075 NC0248 

# EPT Taxa + 
% Plecoptera + 
# Burrower Taxa -
# Collector-gatherer taxa + 
% Shredders - -
% Drier Losers + 
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% Warm Drier Losers + 
# OCH Taxa -

G‐16 



 

 

  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

227 

228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 

   

        

        

        

        

        

        

      

        

        

        

        

        

         

        

        

        

        

 
 

 
 

 

 

 
 

Table G-4. Continued 

Absolute 
difference 
between 
PRISM 
mean 

annual 
precipitaton 

from the 
sampling 
year and 

the 
previous 

year 

Metric 
Blue Ridge Piedmont 

NC0109 NC0207 NC0209 NC0075 NC0248 

# Total Taxa -
# Plecoptera Taxa -
# EPT Taxa + 
# Swimmer Taxa -
# Burrower Tax -
# Sprawler Taxa -
% Burrowers - + 
# Collector-gatherer taxa -
# Predator Taxa -
% Collector-filterer + 
% Shredders + 
% Herbivores -
% Predators + 
% Perennial + 
% Intermittent + 
# Perennial Taxa -
# Intermittent Taxa -

G3.4 Summary 

 The mean number of cold-water -preferencetaxa at sites in the Mountain ecoregion is 
significantly higher than the mean number of cold-water-preference taxa at sites in the 
other two ecoregions. The mean number of warm-water-preference taxa is significantly 
different between all 3 ecoregions with the highest number occurring in the Coastal 
ecoregion and the lowest number occurring in the Mountain ecoregion. 

 Significantly more cold-water-preference taxa are present at higher elevation sites than at 
lower elevation sites. There is a significantly higher number of warm-water-preference 
taxa at lower elevation sites. 

 Many of the cold-water-preference taxa in North Carolina are EPT taxa: 8 of the cold
water-preference taxa are Plecopterans, 6 are Trichopterans and 6 are Ephemeropterans. 
There are substantially fewer EPT taxa on the warm-water-preference list: 1 warm-water
preference taxais an Ephemeroptera, 4 are Trichopterans and none are Plecopterans. 
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 Within the EPT genera on the cold-water-preference list, there are 53 species that could 
potentially be counted towards the EPT richness metric that is used in the 
bioclassification of sites in NC, while there are only 5 species that could be potentially 
counted from the warm-water-preference list (therefore changes to the cold-water
preference taxa are likely to have a greater effect on EPT richness scores). 

 EPT Richness: a loss of 3 (Coastal sites) or 4 (Mountain or Piedmont sites) EPT species 
can lower the EPT richness score at a high quality site a full level, from a 5 (Excellent) to 
a 4 (Good). To drop the EPT richness bioclassification by a full level at sites of lesser 
quality, it would take a loss of 10 taxa at Mountain sites, 8 taxa at Piedmont sites and 7 
taxa at Coastal sites.  

 NCBI: an increase in BI scores of 0.1 can lower the BI score at a high quality site a full 
level, from a 5 (Excellent) to a 4 (Good). To drop the NCBI bioclassification by a full 
level at sites of lesser quality, NCBI scores would have to increase by at least 0.6 (it 
varies by ecoregion and bioclassification level).  

 When cold-water-preference taxa were eliminated from the biotic assemblages at 3 
references sites in the Mountain ecoregion, the effects on EPT richness scores, NCBI 
scores and overall bioclassification levels were relatively small and site-dependent: 

o  At Station NC0109, which had fewer cold-water-preference taxa than the other 2 
sites, the loss of cold-water-preference taxa resulted in little if any change to EPT 
richness ratings (maximum loss of 4 species, maximum decrease in EPT_S score 
of 0.6), little if any change to BI values and scores (maximum increase in BI 
value of 0.24, maximum decrease in BI score of 0.2) and the maximum drop in 
overall score was 1 bioclassification level (from Excellent to Good), and this 
occurred 3 out of 11 years 

o At Stations NC0209 and NC0207/2554, removal of cold-water-preference taxa 
resulted in the loss of 9 to 14 EPT species decreases in EPT_S scores ranging 
from 0.4 to 1.2, an increase in BI values ranging from 0.45 to 0.86 and decreases 
in BI scores ranging from 0 to 1, and the maximum drop in score was one 
bioclassification level (from Excellent to Good), which occurred 5 out of 7 years 
at Site NC0209 and 5 out of 8 years at Site NC0207/NC2554. 

 Effects at the other 2 sites were more noticeable because they have many more cold
water-preference taxa. Removal of cold-water-preference taxa resulted in the loss of 9 to 
14 EPT species decreases in EPT_S scores ranging from 0.4 to 1.2. 

 22 of the 30 cold-water-preference taxa that have been assigned tolerance values have 
low tolerance values (< 3). Tolerance values for most of the warm-water-preference taxa 
are higher. Twelve of the warm-water-preference taxa that have been assigned tolerance 
values have tolerance values > 7. 

 Temperature optima values are significantly and positively correlated with tolerance 
values (r=0.53, p=00), indicating that taxa that show preferences for lower temperatures 
tend to have lower tolerance values and those that tend to occur more in warmer water 
habitats tend to have higher tolerance values. 

 Results from correlation analyses using thermal preference metrics and BI values suggest 
that replacement of colder water taxa with warmer water taxa would likely contribute to a 
site receiving a higher BI score and therefore a poorer rating, and that this is most likely 
to affect sites in the Mountain ecoregion. 
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 BI values (which were provided to us by NCDENR) and PRISM mean annual 
precipitation variables were significantly correlated at 3 of the sites. At the 2 Mountain 
sites, the variables are negatively correlated (r2=0.51 and r2=0.79, respectively), while at 
the Piedmont site, the variables are positively correlated. 

 When Mountain bioclassification criteria was applied to the biotic assemblages at the 2 
Piedmont sites to simulate how ratings may change if taxa that typically inhabit Mountain 
sites are replaced by assemblages that are more typical of the Piedmont ecoregion, 
bioclassifications consistently dropped by 1 level. 

 There are not many strong or consistent relationships between the commonly used 
metrics and the temperature variables. Results appear to be mostly site-specific. 

 Two metrics were significantly correlated with a temperature variable at more than one 
site: the % climbers metric was negatively correlated with previous year PRISM mean 
annual air temperature at 2 Blue Ridge sites; and the % predators metric was positively 
correlated with PRISM mean annual air temperature at a Blue Ridge site and negatively 
correlated with it at a Piedmont site. 

 More metrics were significantly correlated with precipitation variables than with 
temperature variables. But as with the temperature variables, there are not many strong or 
consistent relationships and results appear to be mostly site-specific. 

 Four metrics were significantly correlated with a precipitation variable at more than one 
site: the HBI (which used NC tolerance values, averaged at the genus-level) was 
negatively correlated with PRISM mean annual precipitation at 2 Blue Ridge sites; the % 
climber metric was negatively correlated with mean annual precipitation at 1 Blue Ridge 
and 1 Piedmont site; the % shredder metric was negatively correlated with previous year 
mean annual precipitation at 1 Blue Ridge and 1 Piedmont site; and the % burrower 
metric was negatively correlated with the precipitation difference (sampling year – 
previous year) variable at 1 Blue Ridge site and positively correlated at 1 Piedmont site. 
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Attachment G1 
__________________ 
North Carolina Temperature Indicator Taxa 


This attachment contains tables with lists of the North Carolina temperature-indicator taxa and 
describes the process that we followed to develop these lists. 
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ATTACHMENT G1.  NORTH CAROLINA TEMPERATURE-INDICATOR TAXA 

Sources. The North Carolina cold- and warm-water taxa lists were developed using 

several different sources: 1. maximum likelihood calculations based on a subset of the North 

Carolina biomonitoring database (using full-scale collection method data); 2. the thermal

preference trait from the Poff et al. (2006) traits matrix; 3. the thermal-preference trait from the 

USGS traits database (Vieira et al., 2006); 4. the thermal preference trait from the compilation of 

EPA Environmental Requirements and Pollution Tolerance series from the late 1970’s (Beck et 

al., 1977; Harris et al., 1978; Hubbard et al., 1978, Surdick et al., 1978); 5. best professional 

judgment of the Southeast Climate Change traits feedback group2. 

The same general criteria and guidelines that were used to designate cold- and warm

water indicator taxa in Maine were also used in North Carolina (see Attachment D2). Also, see 

Attachment D2 for general limitations of the analyses. 

Initial Results. Initially there were 126 taxa on the cold-water list and 112 taxa on the 

warm-water list. These lists were based on maximum likelihood calculations and literature. 

These lists were further refined through the evaluation of additional evidence. This evidence 

included analyses of other datasets, case studies, and best professional judgment. Taxa with the 

greatest amount of evidence were designated as temperature indicator taxa. More detailed 

information about the steps that were used to develop the temperature indicator taxa lists is 

summarized below: 

Considerations (unique to North Carolina) 

Several ‘case studies’ were performed to see whether the cold- or warm-water taxa 

occurred at sites in North Carolina that had the warmest or coldest summer water temperatures. 

The following case studies were performed:  

a. Cold-water Case Study #1. Taxa lists from two Blue Ridge reference sites(NC1560
BEAR CR and NC1561-HAZEL CR) that have full-scale collection method data, 
have <5% urban and <10% agricultural land use within a 1 km buffer, and have the 
coldest recorded summer water temperatures (13-14° C in July). Note: there were a 
number of sites with temperature readings of 0°C; these readings seemed 
questionable so they were not used. 

2 North Carolina DWQ (Trish MacPherson),  South Carolina (Jim Glover) and Tennessee (Debbie Arnwine) 
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b. Cold-water Case Study #2. The taxa list from the Piedmont site (NC0634-TOWN 
FORK CR) that has full-scale collection method data and has the coldest recorded 
Piedmont summer water temperature (9° C in August). This site has 4.3% urban and 
11% agricultural land uses within a 1 km buffer. 

c. Cold-water Case Study #3. Taxa lists from three Piedmont reference sites  
(NC0248-BARNES CR, NC0713-CATAWBA R, NC1607-MARLOWE CR) that 
have full-scale collection method data, have <5% urban and <10% agricultural land 
uses within a 1 km buffer, and have the coldest recorded summer water temperatures 
(16-17° C in August and September). 

d. Warm-water Case Study #1. Taxa lists from the two warmest reference sites in the 
state (NC1466-CAPE FEAR R and NC1467-CAPE FEAR R) that have full-scale 
collection method data, have <5% urban and <10% agricultural land uses within a 1 
km buffer, and have the warmest recorded summer water temperatures (30-32° C in 
July). 

e. Warm-water Case Study #2. Taxa lists from the two Piedmont reference sites 
(NC0219-TAR R and NC0573-DEEP R) that have full-scale collection method data, 
have <5% urban and <10% agricultural land uses within a 1 km buffer, and have the 
warmest recorded summer water temperatures (28-29° C in July). 

f. Warm-water Case Study #3. Taxa list from the warmest Blue Ridge reference 
site(NC1285-CROOKED CR) that has full-scale collection method data, has <5% 
urban and <10% agricultural land uses within a 1 km buffer, and has the warmest 
recorded summer water temperature (24° C in July). 

Development of the Temperature-Indicator Cold-Water Taxa List. Taxa were placed 

on the cold-water list if the following criteria were met: 

1. The taxon received a ‘yes’ per best professional judgment AND has been recorded at one 
or more of the cold-water case study sites AND has NOT been recorded at either of the 
two warm-water case study sites. 

2. The taxon received a ‘yes’ per best professional judgment AND received a Total Score of 
5 or more. 

3. The taxon received a ‘no comment’ per best professional judgment AND has been 
recorded at two or more of the cold-water case study sites AND no species variation was 
noted. 
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Development of the Temperature-Indicator Warm-Water List. Taxa were placed on 

the warm-water list if the following criteria were met: 

1. The taxon received a ‘yes’ per best professional judgment AND has been recorded at one 
or more of the warm-water case study sites AND has NOT been recorded at either of the 
two cold-water case study sites. 

2. The taxon received a ‘yes’ per best professional judgment AND received a Total Score of 
5 or more. 

3. The taxon received a ‘no comment’ per best professional judgment AND has been 
recorded at two or more of the warm-water case study sites AND no species variation 
was noted. 

4. The taxon received a ‘no comment’ per best professional judgment AND received a Total 
Score of 5 or more AND has been recorded at one or more warm-water case study sites 
AND NOT at any of the cold-water case study sites AND no species variation was noted. 

Temperature Indicator Lists. The cold-water taxa list was comprised of 32 taxa and the 

warm-water taxa list was comprised of 27 taxa. Tables G1-1 and G1-2 show the temperature 

indicator taxa lists. 

Important Notes – variation within genera. Some noteworthy genera were left off the 

North Carolina cold-water taxa list. These included Ephemerella, Neophylax, Rhyacophila, 

Goera, Eurylophella and Paragnetina. The reason they were not included is because there is 

variation in temperature preferences among species within these genera, and this was noted by 

the Southeast Climate Change feedback group. Genera that were left off the warm-water list due 

to species variation included Hydropsyche, Oecetis and Polypedilum. 

Dispersal Ability. If temperature is a major factor influencing community composition, 

then taxa that are able to adapt to warming temperatures and/or that are able to disperse to more 

favorable habitats (generally believed to be upstream or to higher elevations) have a better 

chance of surviving. Five mobility traits were examined for the taxa on the North Carolina 

temperature indicator lists: dispersal (adult), adult flying strength, occurrence in drift, maximum 

crawling rate and swimming ability. Table G1-3 lists more information on these traits. 

Dispersal (adult) and adult flying strength received the greatest amount of consideration. 

Because movement is most likely to be upstream, taxa that are strong fliers are likely to have a 

better chance of success. It will be difficult for taxa that disperse via occurrence in drift to 

G1‐3
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

migrate upstream, and taxa that disperse via crawling or swimming are likely to have difficulty 

moving the distances required to find more favorable habitats.  

One of the 32 taxa on the North Carolina temperature indicator cold-water taxa list (that 

we had trait information for), Clioperla, is categorized as having ‘high’ dispersal ability. Another 

taxon, Lanthus, is categorized as having strong flying ability but low adult dispersal ability. Nine 

of the 27 taxa on the warm-water list are categorized as having high adult dispersal ability. Six of 

these taxa are considered to be strong fliers. 

Abundance and Distribution. In addition to dispersal ability, abundance and 

distribution are also important considerations. Those taxa that are widespread and common are 

likely to have greater genetic diversity and greater chance of adapting than rare taxa that only 

occur in isolated, localized populations (Sweeney et al., 1992). Moreover, the more abundant 

taxa are more likely to affect the state biomonitoring assessments. Abundance and distribution 

information for the temperature indicator taxa can be found in Tables G1-1 and G1-2. It should 

be noted once again that the abundance data in the North Carolina dataset is categorical (1=rare 

(1-2 specimens), 3=common (3-9 species) and 10=abundant (10 or more species).   

The most abundant cold-water temperature indicator taxa are Epeorus (Ephemeropteran), 

Antocha (Dipteran), Isoperla (Plecopteran) and Tallaperla (Plecopteran). These taxa comprise 

only 0.4 to 0.6% of the total individuals in the North Carolina database. Seventeen of the cold

water taxa have overall abundances of less than 0.1%. Physella (Basommatophora), Chimarra 

(Trichopteran) and Macromia (Odonata) are the most abundant warm-water taxa, with overall 

abundances ranging from 0.6 to 0.8%. Twelve of the warm-water taxa have overall abundances 

of less than 0.1%. Of the cold-water taxa, Antocha occurs at the largest percentage of sites 

(25%), followed by a Chironomidae, Eukiefferiella, and a Plecopteran, Isoperla, which occur at 

18-19% of the sites. Eighteen of the cold-water taxa occur at less than 10% of the sites. Among 

the warm-water taxa, Physella occurs at the highest percentage of sites (30%), followed by 

Macromia (29%) and Stenochironomus (27%). Nineteen of the warm-water taxa occur at less 

than 10% of the sites. 
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Additional information – Cold-water Taxa.  

Ten of the cold-water taxa are Dipterans, eight are Plecopterans, six are Ephemeropteran 

and six are Trichopterans. The rest are Coleopterans and Odonates. The families with the most 

number of taxa on the cold-water list are Chironomidae, Perlodidae and Heptageniidae (Table 

G1-4). 

Additional information – Warm-water Taxa.  

Seven of the warm-water taxa are Odonates, five are Dipterans and four are 

Trichopterans. The families with the most number of taxa on the warm-water list are 

Chironomidae and Corduliidae (Table G1-5). 
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Table G1-1. List of North Carolina cold-water temperature indicator taxa. Distribution and abundance information is also included. 
Sum_Individuals=the total number of individuals from that taxon in the North Carolina database; Pct_Abund=percent of total 
individuals in the database comprised of that taxon; Num_Stations=number of stations in the database that the taxon occurred at; 
Pct_Stations=percent of stations in the database at which the taxon occurred. 
Type Order Family FinalID Sum_Individs Pct_Abund Num_Stations Pct_Stations 

cold Ephemeroptera Baetidae Acentrella  2745  0.33  427  15.19 
cold Trichoptera Glossosomatidae Agapetus  247  0.03  53  1.89 
cold Plecoptera Nemouridae Amphinemura  1210  0.14  281  10 
cold Diptera Tipulidae Antocha  5103  0.61  711  25.29 
cold Trichoptera Apataniidae Apatania  339  0.04  47  1.67 
cold Trichoptera Hydropsychidae  Arctopsyche  222  0.03  40  1.42 
cold Diptera Athericidae Atherix  1236  0.15  240  8.54 
cold Diptera Chironomidae Cardiocladius  2300  0.27  376  13.38 
cold Ephemeroptera Heptagenidae Cinygmula  247  0.03  40  1.42 
cold Plecoptera Perlodidae Clioperla  574  0.07  155  5.51 
cold Plecoptera PERLODIDAE Cultus  296  0.04  70  2.49 
cold Diptera Chironomidae Diamesa  734  0.09  185  6.58 
cold Diptera Tipulidae Dicranota  1384  0.16  284  10.1 
cold Plecoptera Perlodidae Diploperla  393  0.05  122  4.34 
cold Trichoptera Philopotamidae Dolophilodes  2905  0.35  316  11.24 
cold Ephemeroptera EPHEMERELLIDAE Drunella  2846  0.34  218  7.76 
cold Ephemeroptera Heptageniidae Epeorus  5226  0.62  403  14.34 
cold Diptera CHIRONOMIDAE Eukiefferiella  2974  0.35  533  18.96 
cold Trichoptera Glossosomatidae  Glossosoma  1755  0.21  309  10.99 
cold Diptera Chironomidae Heleniella  95  0.01  50  1.78 
cold Plecoptera PERLODIDAE Isoperla  4556  0.54  498  17.72 
cold Odonata Gomphidae Lanthus  1174  0.14  300  10.67 
cold Plecoptera Perlodidae Malirekus  753  0.09  132  4.7 
cold Ephemeroptera HEPTAGENIIDAE Nixe  64  0.01  16  0.57 
cold Diptera Chironomidae Pagastia  751  0.09  157  5.59 



 




 

 

  

  Table G1-1. Continued 
Type Order Family FinalID Sum_Individs Pct_Abund Num_Stations Pct_Stations 

cold Trichoptera Hydropsychidae Parapsyche  280  0.03  52  1.85 
cold Diptera CHIRONOMIDAE Potthastia  757  0.09  292  10.39 
cold Coleoptera Elmidae Promoresia  3020  0.36  332  11.81 
cold Diptera Chironomidae Rheopelopia  135  0.02  64  2.28 
cold Ephemeroptera Heptageniidae  Rhithrogena  725  0.09  152  5.41 
cold Plecoptera Peltoperlidae Tallaperla  3337  0.4  377  13.41 
cold Plecoptera NEMOURIDAE Zapada 3 0 3  0.11 
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Table G1-2. List of North Carolina warm-water temperature indicator taxa. Distribution and abundance information is also included. 
Sum_Individuals=the total number of individuals from that taxon in the North Carolina database; Pct_Abund=percent of total 

individuals in the database comprised of that taxon; Num_Stations=number of stations in the database that the taxon occurred at; 

Pct_Stations=percent of stations in the database at which the taxon occurred. 


Type Order Family FinalID Sum_Individs Pct_Abund Num_Stations Pct_Stations

warm Hemiptera Belostomatidae Belostoma  173  0.02  99  3.52 
warm Coleoptera Hydrophilidae Berosus  1843  0.22  277  9.85 

 warm  Isopoda  ASELLIDAE Caecidotea 3203 0.38 544 19.35
warm Trichoptera Philopotamidae Chimarra  5178 0.62 554 19.71
warm  Unionoida UNIONIDAE Elliptio 1556 0.18 189 6.72
warm Odonata Corduliidae Epicordulia 178 0.02 78 2.77

warm Arhynchobdellida ERPOBDELLIDAE 
ERPOBDELLA/  
MOOREOBDELLA 

760   0.09  210 7.47

warm Rhynchobdellida Glossiphoniidae Helobdella 835 0.1 225 8 
warm Odonata Corduliidae Helocordulia 188 0.02 95 3.38
warm Odonata Calopterygidae Hetaerina  854  0.1  153 5.44
warm Odonata Coenagrionidae Ischnura  318  0.04  101  3.59 
warm Coleoptera Dytiscidae  Lioporeus  182  0.02  83  2.95 



 

 

  Table G1-2. Continued 
Type Order Family FinalID Sum_Individs Pct_Abund Num_Stations Pct_Stations 

warm 
warm 
warm 
warm 
warm 
warm 
warm 
warm 
warm 
warm 
warm 
warm 
warm 
warm 
warm 

Odonata 
Trichoptera 
Trichoptera 
Odonata 
Diptera 
Decapoda 
Diptera 
Diptera 
Trichoptera 
Basommatophora 
Rhynchobdellida 
Diptera 
Diptera 
Odonata 
Ephemeroptera 

Corduliidae 
Hydropsychidae 
Polycentropodidae 
Corduliidae 
Chironomidae 
Palaemonidae 
Chironomidae 
Chironomidae 
Dipseudopsidae 
Physidae 
Glossiphoniidae 
Chironomidae 
Chironomidae 
CORDULIIDAE 
Leptohyphidae 

Macromia 
Macrostemum 
Neureclipsis 
Neurocordulia
Nilothauma 
Palaemonetes 

 Parachironomus 
Pentaneura 1511 

Phylocentropus 
Physella 
Placobdella 
Procladius 
Stenochironomus 
Tetragoneuria 
Tricorythodes 

5064 
 1753 
 2092 

 180 
 2262 
 395 
 771 
 576 
 6677 

677 
 3460 
 3419 
 687 
 4939 

0.6 
 0.21 
 0.25 

0.18 
 0.02 
 0.27 
 0.05 
 0.09 
 0.07 
 0.79 

0.08 
 0.41 
 0.41 
 0.08 
 0.59 

813 
 134 
 241 

278 
 124 
 271 
 128 
 154 
 201 
 853 

339 
 706 
 750 
 202 
 363 

28.92 
 4.77 
 8.57 

9.89 
 4.41 
 9.64 
 4.55 
 5.48 
 7.15 
 30.35 

12.06
 25.12 
 26.68 
 7.19 
 12.91 

150 

 

G1‐8
 



 

 

 
 

 

Table G1-3.   Mobility traits that were evaluated. The source of most of this information was the 
Poff et al. 2006 traits matrix. Some also came from  the USGS traits database (Vieira et al., 2006).  

Mobility Trait Trait States 

Dispersal (adult) 

Adult flying strength 

Occurrence in drift 

Maximum crawling rate 
Swimming ability 

low (<1 km flight before laying eggs), high (>1 km flight before 
laying eggs)  
weak (e.g. cannot fly into light breeze), strong 
rare (catastrophic only), common (typically observed), abundant 
(dominant in drift samples) 
very low (<10 cm/h), low (<100 cm/h), high (>100 cm/h) 
none, weak, strong 

 

Table G1-4. Number of cold-water taxa in each family  

Family Total 

Chironomidae 7 
Perlodidae 5 
Heptageniidae 4 
Glossosomatidae 2 
Hydropsychidae 2 
Nemouridae 2 
Tipulidae 2 
Apataniidae 1 
Athericidae 1 
Baetidae 1 
Elmidae 1 
Ephemerellidae 1 
Gomphidae 1 
Peltoperlidae 1 
Philopotamidae 1 
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Table G1-5. Number of warm-water taxa in each family 

Family Total 

Chironomidae 5 

CORDULIIDAE 5 

Glossiphoniidae 2 

Asellidae 1 

Belostomatidae 1 

Calopterygidae 1 

Coenagrionidae 1 

Dipseudopsidae 1 

Dytiscidae 1 

ERPOBDELLIDAE 1 

Hydrophilidae 1 

Hydropsychidae 1 

Leptohyphidae 1 

Palaemonidae 1 

Philopotamidae 1 

Physidae 1 

Polycentropodidae 1 

Unionidae 1 
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Attachment G2 
___________________ 

Tolerance values of the North Carolina 
temperature-indicator taxa 

This attachment contains tables with lists of the temperature-indicator taxa, temperature optima 
and tolerance values that were calculated from the maximum likelihood modeling, and the 
tolerance values assigned by North Carolina DWQ (which are used to calculate the NCBI). 
These tables were used to examine whether temperature-indicator taxa were considered to be 
sensitive or tolerant taxa. 
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ATTACHMENT G2  TOLERANCE VALUES OF THE NORTH CAROLINA TEMPERATURE INDICATOR TAXA 

Table G2-1. Cold-water temperature indicator taxa. Temp_Opt is the temperature optima (°C) calculated during the maximum likelihood 
modeling (temperature tolerance could not be calculated for this dataset). Avg_TolVal was calculated by taking the average of the 
tolerance values assigned to species within the genera. The number of species within each genus that have been assigned tolerance values 
(NumSpecies) along with minimum (Min_TolVal) and maximum tolerance values (Max_TolVal) of species within each genus are also 
included. 

Order Family Genus Temp_Opt NumSpecies Avg_TolVal Min_TolVal Max_TolVal 

Coleoptera Elmidae Promoresia 10.6 3 1.5 0 2.4 

Diptera Athericidae Atherix 9 2 2.1 2.1 2.1 

Diptera Chironomidae Cardiocladius 13.2 1 5.9 5.9 5.9 

Diptera Chironomidae Diamesa 15.8 1 8.1 8.1 8.1 

Diptera CHIRONOMIDAE Eukiefferiella 9 6 3.4 2.2 5.6 

Diptera Chironomidae Heleniella 13 1 0 0 0 

Diptera Chironomidae Pagastia 15.3 1 1.8 1.8 1.8 

Diptera CHIRONOMIDAE Potthastia 15.2 3 5 2 6.5 

Diptera Chironomidae Rheopelopia 9 

Diptera Tipulidae Antocha 15.7 1 4.3 4.3 4.3 

Diptera Tipulidae Dicranota 9 1 0 0 0 

Ephemeroptera Baetidae Acentrella 16.9 4 4.3 3.6 5.5 

Ephemeroptera EPHEMERELLIDAE Drunella 9 8 0.2 0 1 

Ephemeroptera Heptagenidae Cinygmula 1 0 0 0 

Ephemeroptera Heptageniidae Epeorus 9 4 1.3 1 1.8 

Ephemeroptera HEPTAGENIIDAE Nixe 9 3 0.7 0 1 

Ephemeroptera Heptageniidae Rhithrogena 14.6 5 0.3 0.3 0.3 

Odonata Gomphidae Lanthus 9 3 1.8 1.8 1.8 

Plecoptera Nemouridae Amphinemura 9 1 3.3 3.3 3.3 

Plecoptera NEMOURIDAE Zapada 

Plecoptera Peltoperlidae Tallaperla 9 1 1.2 1.2 1.2 

Plecoptera Perlodidae Clioperla 1 4.7 4.7 4.7 
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Table G2-1. Continued 

Order Family Genus Temp_Opt NumSpecies Avg_TolVal Min_TolVal Max_TolVal 

Plecoptera PERLODIDAE Cultus 1 1.6 1.6 1.6 

Plecoptera Perlodidae Diploperla 2 2.1 1.4 2.7 

Plecoptera PERLODIDAE Isoperla 9 12 1.7 0 5.4 

Plecoptera Perlodidae Malirekus 1 1.2 1.2 1.2 

Trichoptera Apataniidae Apatania 1 0.6 0.6 0.6 

Trichoptera Glossosomatidae Agapetus 1 0 0 0 

Trichoptera Glossosomatidae Glossosoma 9 1 1.6 1.6 1.6 

Trichoptera Hydropsychidae Arctopsyche 1 0 0 0 

Trichoptera Hydropsychidae Parapsyche 13.1 1 0 0 0 

Trichoptera Philopotamidae Dolophilodes 9 1 0.8 0.8 0.8 

Table G2-2. Warm-water temperature indicator taxa. Temp_Opt is the temperature optima (°C) calculated during the maximum 
likelihood modeling (temperature tolerance could not be calculated for this dataset). Avg_TolVal was calculated by taking the average of 
the tolerance values assigned to species within the genera. The number of species within each genus that have been assigned tolerance 
values (NumSpecies) along with minimum (Min_TolVal) and maximum tolerance values (Max_TolVal) of species within each genus are 
also included. 

Order Family FinalID Temp_Opt NumSpecies Avg_TolVal Min_TolVal Max_TolVal 

Arhynchobdellida ERPOBDELLIDAE 
ERPOBDELLA/ 
MOOREOBDELLA 

29.4 1 8.3 8.3 8.3 

Basommatophora Physidae Physella 32 1 8.8 8.8 8.8 

Coleoptera Dytiscidae Lioporeus 32 2 3 3 3 

Coleoptera Hydrophilidae Berosus 32 1 8.4 8.4 8.4 

Decapoda Palaemonidae Palaemonetes 31.5 2 7.1 7.1 7.1 

Diptera Chironomidae Nilothauma 32 1 5 5 5 

Diptera Chironomidae Parachironomus 32 4 8.5 6.5 9.6 

Diptera Chironomidae Pentaneura 32 1 4.7 4.7 4.7 

Diptera Chironomidae Procladius 32 1 9.1 9.1 9.1 
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Table G2-2. Continued 

Order Family FinalID Temp_Opt NumSpecies Avg_TolVal Min_TolVal Max_TolVal 

Diptera Chironomidae Stenochironomus 32 1 6.5 6.5 6.5 

Ephemeroptera Leptohyphidae Tricorythodes 32 1 5.1 5.1 5.1 

Hemiptera Belostomatidae Belostoma 29.5 1 9.8 9.8 9.8 

Isopoda ASELLIDAE Caecidotea 26.1 1 9.1 9.1 9.1 

Odonata Calopterygidae Hetaerina 28.1 1 5.6 5.6 5.6 

Odonata Coenagrionidae Ischnura 32 1 9.5 9.5 9.5 

Odonata Corduliidae Epicordulia 28.4 2 5.6 5.6 5.6 

Odonata Corduliidae Helocordulia 27.8 2 4.9 4.8 4.9 

Odonata Corduliidae Macromia 32 2 6.2 6.2 6.2 

Odonata Corduliidae Neurocordulia 32 4 3.5 1.8 5.2 

Odonata CORDULIIDAE Tetragoneuria 32 2 8.6 8.5 8.6 

Rhynchobdellida Glossiphoniidae Helobdella 28.9 3 9.1 8.6 9.5 

Rhynchobdellida Glossiphoniidae Placobdella 27 3 8.9 8.7 9 

Trichoptera Dipseudopsidae Phylocentropus 32 1 6.2 6.2 6.2 

Trichoptera Hydropsychidae Macrostemum 32 1 3.5 3.5 3.5 

Trichoptera Philopotamidae Chimarra 32 1 2.8 2.8 2.8 

Trichoptera Polycentropodidae Neureclipsis 32 2 4.2 4.2 4.2 

Unionoida UNIONIDAE Elliptio 32 3 4.2 2.4 5.1 
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APPENDIX H 
___________________ 
Temporal Change in Regional Reference 
Condition as a Potential Indicator of Global 

Climate Change: Analysis of the Ohio Regional 
Reference Condition Database (1980-2006) 


Analyses on Ohio data conducted by 

Edward T. Rankin, Senior Research Associate, Voinovich Center for Leadership and Public Affairs, The 

Ridges, Building 22, Ohio University, Athens, OH 45701 

and 

Chris O. Yoder, Research Director, Center for Applied Bioassessment and Biocriteria, Midwest 

Biodiversity Institute, P.O. Box 21541, Columbus, OH  43221 

The intent of this appendix is to provide more comprehensive and detailed information on the 
analyses that were performed on the Ohio data. Some of the analyses that are covered in this 
appendix are also referenced in the main body of the report. When this occurred, attempts were 
made to reduce any overlap or duplication in the reporting of results. 

H1. Overview of Ohio Indices and Associated Assessment Approach 
H2. Ohio EPA Regional Reference Database – Background  
H3. Data Analyses 
H4. Results 
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H1 Overview of Ohio Indices and Associated Assessment Approach 

The State of Ohio Environmental Protection Agency (Ohio EPA) calculates an 

Invertebrate Community Index (ICI) to evaluate biological condition based on the benthic 

macroinvertebrate assemblage and an Index of Biotic Integrity (IBI) used to evaluate fish 

assemblages at wading sites, boat sites and headwaters stream sites. The metrics that go into the 

ICI and IBI are shown in Figures H1-1 and H1-2 (State of Ohio Environmental Protection 

Agency, Environmental Assessment Section, Division of Water Quality, Planning and 

Assessment. 1989 (last updated 2008). Biological Criteria for the Protection of Aquatic Life: 

Volume III: Standardized Biological Field Sampling and Laboratory Methods for Assessing Fish 

and Macroinvertebrate Communities. 

http://www.epa.state.oh.us/dsw/bioassess/BioCriteriaProtAqLife.html). 

Figure H1-1. Macroinvertebrate community metrics and criteria for calculating the 
Invertebrate Community Index (ICI) and ICI scores for evaluating biological condition in 

H‐2 

http://www.epa.state.oh.us/dsw/bioassess/BioCriteriaProtAqLife.html
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Ohio. Taken from Table 5-1 in Ohio EPA’s ‘Standardized Biological Field Sampling and 
Laboratory Methods for Assessing Fish and Macroinvertebrate Communities’ (1989). 

Figure H1-2. Index of Biotic Integrity metrics used to evaluate wading sites, boat sites and 
headwaters stream sites in Ohio. Original metrics from Karr (1981) are given first with 
substitute metrics following. Taken from Table 4-1 in Ohio EPA’s ‘Standardized Biological 
Field Sampling and Laboratory Methods for Assessing Fish and Macroinvertebrate 
Communities’ (1989). 

H2 OHIO EPA REGIONAL REFERENCE DATABASE – BACKGROUND 

Ohio was one of the early states to systematically use biological assemblage data to 

determine aquatic life use designations and assess the condition of those uses dating back to the 
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late 1970s. Ohio implemented standardized sampling methods for biological assessments early 

on (late 1970s) hence their data represent a nearly thirty year span of standardized biological data 

for two assemblage groups. From the late 1970s to 2006 the Ohio fish assemblage database 

represents >10,000 unique sites and >24,000 unique sampling events; macroinvertebrate 

assemblage data were also collected at most of these same sites. Qualitative Habitat Evaluation 

Index (QHEI) data has also been included at the fish sites (Ohio EPA 2006; Rankin 1995, 1989). 

While the QHEI is visually based, recent analyses have shown it to be as precise as a quantitative 

habitat assessment tool to which it was compared (Miltner et al., 2009; Rankin, in preparation). 

The purpose of analyses presented here is to analyze any changes in the reference dataset that 

could represent signal or lack of signal related to the effects of global climate change. 

In the 1980s and with assistance from the U.S. EPA, Office of Research and 

Development, Ohio EPA began a focused sampling of least impacted reference sites in order to 

determine the efficacy of level III ecoregions (Omernik, 1987) as a way to account for and 

stratify natural variations in biological assemblages (Yoder ,1989; Ohio EPA, 1987a; Whittier et 

al., 1987). Ohio EPA used this and other sampling data to establish a network of “least 

impacted” regional reference sites that eventually supported the derivation of numerical 

biocriteria for Ohio streams and rivers. This was also accomplished across all practically 

sampleable stream and rivers from >1 mi2 up to the largest inland rivers (~6000-8000 mi2). This 

includes both wadeable and non-wadeable. Fish assemblage indices were stratified by three 

stream- and river-size strata; headwater streams (<20 mi2), “wadeable” streams (20 -~300 mi2), 

and “boatable” (i.e., non-wadeable) rivers (>~150-200 mi2) (Yoder and Rankin, 1995). 

Macroinvertebrate assemblage indices were calibrated continuously across the entire range of 

stream and river sizes. The initial reference dataset was developed from a statewide network of 

about 300 reference sites that was sampled over a ten year period (1980-89; Table H2-1).  That 

reference site network was maintained and expanded with the initial re-sampling during 1990-99 

and a second re-sampling that will be completed at the end of 2009 (2000-09). Data on habitat 

quality (QHEI), water quality, and other physical data such as temperature were also collected 

and were based on multiple grab samples collected during “normal” seasonal flows within a 

summer-fall seasonal index period (mid-June through mid-October). 
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Table H2-1.  Summary of Ohio EPA regional reference site network including original 
sites (1980-89) and updates via first (1990-99) and second round re-sampling (2000-06) 
that were used in data analyses. 

Reference Network Size Type 
Fish: Latest (All 
Data) 

Macroinvertebrates 

Original Reference Sites: 
1980-89 (Sites/Samples) 

Headwaters 112/225 

242Wadeable 166/399 

Boatable 97/254 

New Reference Sites: 
1990-2006 (Sites/Samples) 

Headwaters 115/(149)/150 (296) 

309 (525)Wadeable 184(231)/281(539) 

Boatable 68(84)/127(278) 

H3 DATA ANALYSES 

Our primary goal is to examine the Ohio reference database for trends and the entire 

dataset for candidate indicators of climate change.  Important effects of climate change include 

changes in not only temperature, but also rainfall patterns and resulting hydrological regimes in 

Ohio streams and rivers thus we also explored the usefulness of using the QHEI as an indirect 

measure of hydrological change. 

H3.1 Trends in Ohio Reference Sites 

We conducted an initial exploration of Ohio’s reference database to determine whether 

biological reference condition has changed over time since 1980. This analysis directly 

overlapped with an Ohio EPA-sponsored effort to conduct the initial data analysis steps for the 

recalibration of the Ohio biocriteria (Rankin, 2008). Of particular importance to our analyses is 

the examination of trends in biological condition at the reference sites and exploring the potential 

causes that are associated with the observed changes. As such it is essential to understand the 

environmental changes that have also occurred that could potentially confound any signals of 

climate change-related effects. Based on nearly thirty years of intensive watershed assessments 

Ohio EPA has identified a variety of environmental changes that are associated with shifts in 

biological condition at the assemblage and species/taxa levels. Such environmental changes 
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include, 1) a reduction in point source loadings (particularly important in non-wadeable rivers 

where some reference sites are necessarily downstream of point sources), 2) changes in land uses 

(e.g., increased urbanization), 3) changing loadings of pollutants from agricultural lands (e.g., 

declining sediments and nutrients in response to increased conservation tillage), 4) habitat 

changes (e.g., loss of habitat quality from agricultural drainage practices [common], 

suburbanization [common], improved habitat quality resulting stream restoration [rare and 

localized]), and 5) potential climate change related influences from changes to the temperature 

and/or hydrological regimes. These latter changes may be the most difficult to detect due to the 

lack of readily available long-term data for temperature and flow and the indirect actions of any 

adverse impacts. It is first important to identify any methodological differences in data collection 

(environmental and biological) that could either confound or mask apparent trends.  In the Ohio 

dataset this is most likely represented by taxonomic refinements from an improving resolution in 

the identification of macroinvertebrates over the past 30 years. Thus we included some initial 

explorations and recommendations related to this factor for the Ohio data set.  We focused 

primarily on the mayflies because they are an important component of the Ohio ICI, taxonomic 

refinements are known to have occurred, and taxonomic refinements would be expected to 

influence multiple metrics (total taxa, mayfly taxa, qualitative EPT taxa, etc.). 

H3.2 Taxonomic Analyses 

We used the entire Ohio database to identify “earliest” and “latest” years for all taxa in 

order to extract a list of possible taxa that could affect ICI scoring via taxonomic refinement 

(splitting or lumping of taxa). We focused on the mayfly taxa at reference sites and identified 

taxa and sites that occurred in the original reference sites, but not the new sites and vice versa. 

Table H2-1 lists all mayfly taxa collected at the Ohio reference sites that appeared earlier and 

then “disappeared” (“earlier”) or those that “appeared” later, mostly at re-sampled reference sites 

(“later”). We then conferred with senior Ohio EPA taxonomists (Mike Bolton and Jack Freda, 

Ohio EPA) and determined whether any of these taxa are purely a result of taxonomic changes 

made in the intervening time. These taxa were identified (Table H3-1) and the ICI recalculated 

with the same taxon designations as for the original references sites in order to attribute any 

changes in the total taxa metric, the mayfly metric, and the qualitative EPT metric to observed 

changes in the ICI. This effort primarily consisted of “lumping” individual taxa designations of 

mayfly taxa back to “Baetis sp.” or “Pseudocloeon sp.” (Table H3-1). 
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Table H3-1. Mayfly taxa from reference sites in Ohio that abruptly appeared (Later) or 
disappeared (Earlier) in the Ohio dataset and explanation of change. Explanations were 
provided by Mike Bolton and Jack Freda of Ohio EPA. 

Taxa 
Code 

Taxon Name 
Appear 

-ence 
Explanation of Change 

11010 Acentrella sp Later Improved taxonomy allow this taxa to be distinguished 
Pseudocloeon sp. 

11014 Acentrella turbida Later Improved taxonomy allow this taxa to be distinguished 
from Pseudocloeon sp. 

11015 Acerpenna sp Later Improved taxonomy allow this taxa to be distinguished 
from Baetidae sp. 

11018 Acerpenna 
macdunnoughi 

Later Improved taxonomy allow this taxa to be distinguished 
from Baetidae sp. 

11020 Acerpenna pygmaea Later Improved taxonomy allow this taxa to be distinguished 
from Baetidae sp. 

11110 Acentrella parvula Later Improved taxonomy allow this taxa to be distinguished 
from Pseudocloeon sp. or was renamed from 
Pseudocloeon parvulum 

11115 Baetis tricaudatus Later Improved taxonomy allow this taxa to be distinguished 
from Baetidae sp. 

11118 Plauditus dubius Later Improved taxonomy allow this taxa to be distinguished 
Pseudocloeon sp. 

11119 Plauditus dubius or 
P. virilis 

Later Improved taxonomy allow this taxa to be distinguished 
Pseudocloeon sp. 

11120 Baetis flavistriga Later Improved taxonomy allow this taxa to be distinguished 
from Baetidae sp. 

11125 Pseudocloeon 
frondale 

Later Improved taxonomy allow this taxa to be distinguished 
from Baetidae sp. 

11130 Baetis intercalaris Later Improved taxonomy allow this taxa to be distinguished 
from Baetidae sp. 

11150 Pseudocloeon 
propinquum 

Later Improved taxonomy allow this taxa to be distinguished 
from Baetidae sp. 

11155 Plauditus 
punctiventris 

Later Improved taxonomy allow this taxa to be distinguished 
Pseudocloeon sp. 

11175 Plauditus virilis Later Improved taxonomy allow this taxa to be distinguished 
Pseudocloeon sp. 

11250 Centroptilum sp 
(w/o hindwing pads) 

Later Improved taxonomy allow this taxa to be distinguished 
Cloeon sp. 

11400 Centroptilum sp or 
Procloeon sp 
(formerly in Cloeon 

Earlier Improved taxonomy allow this taxa to be distinguished 
Cloeon sp. 

11430 Diphetor hageni Later Improved taxonomy allow this taxa to be distinguished 
from Baetidae sp. 

11503 Heterocloeon 
curiosum 

Later Renamed Heterocloeon (H.) sp, Heterocloeon sp. 

11600 Paracloeodes sp 1 Later Improved taxonomy allow this taxa to be distinguished 
from Paracloeodes sp 
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Table H3-1. Continued 

11625 Paracloeodes sp 3 Later Improved taxonomy allow this taxa to be distinguished 
from Paracloeodes sp 

11645 Procloeon sp Later Was earlier classified as Centroptilum sp or Cloeon sp  
11650 Procloeon sp (w/ 

hindwing pads) 
Later Was earlier classified as Cloeon sp 

11651 Procloeon sp (w/o 
hindwing pads) 

Later Was earlier classified as Centroptilum sp 

11670 Procloeon irrubrum Later Improved taxonomy allow this taxa to be distinguished 
from Cloeon sp 

11700 Acentrella sp or 
Plauditus sp 
(formerly in 
Pseudoc 

Earlier Renamed as Pseudocloeon sp 

13010 Leucrocuta hebe Earlier Renamed as Heptagenia hebe 
13030 Leucrocuta 

maculipennis 
Earlier Renamed as Heptagenia maculipennis 

14501 Leptophlebiidae Earlier Now coded as Leptophlebia sp 
14900 Leptophlebia sp Later Leptophlebia sp 
14950 Leptophlebia sp or 

Paraleptophlebia sp 
Later Small specimens lumped 

H3.3 Weighted Stressor Values (WSVs)  

Candidate fish and macroinvertebrate taxa that could serve as indicators of climate 

change (sensitive to temperature or other measures such as hydrological stressors) were 

determined from weighted stressor values (WSVs) and “Taxa Indicator Values” (TIVs) for 

temperature and habitat measures that would be correlated with hydrological alterations. The 

WSVs were generated by relating historical taxa/species from sites in Ohio to chemical and 

habitat stressors and calculating weighted average values for each taxa/stressor combination 

where the weighting is the relative abundance of the taxa/species at a site. TIV values for taxa 

were then ranked from most to least sensitive for each of the pertinent parameters and converted 

to an ordinal scale of 1-10 where 1 is the most sensitive and 10 the most tolerant following the 

methodology of Meador and Carlisle (2007). WSVs were then plotted vs. a simple means code 

by Ohio taxa/species tolerance designations to identify the indicator taxa that occur at the 

extremes of the distributions. 

H3-4 QHEI Data 

QHEI includes the habitat attributes of substrate, cover, channel, riparian, pools, riffle, 

and stream gradient (Rankin 1995, 1989). Recent analyses of the QHEI shows it to be relatively 
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precise (Miltner et al., 2009), and it has been collected by trained professionals since its 

inception by Ohio EPA. We used a subset of the metric components to create a sub-index 

(Hydro-QHEI) that extracts the habitat attributes that are responsive either directly (current speed 

components) or indirectly (stream depth measures) to alterations of the flow regime. Scoring 

calculations for the Hydro-QHEI are detailed in Table H3-2. Hydro-QHEI ranges from 0 to 25 

and includes the two QHEI subcomponents most related to hydrology, current and depth. We 

used the Hydro-QHEI and its two subcomponents to detect any trends in these components over 

time as evidence for potential effects from hydrological alterations. We also calculated WSVs for 

these components to identify taxa/species that could be sensitive to hydrological changes in 

Ohio. 

Table H3-2. Sub-components of the Ohio QHEI which were used to score a Hydro-
QHEI and current and depth sub-scores 

Current Metric Depth Metric 

QHEI Current Attribute Score QHEI Depth Attribute Score 

Very Fast Current +5 Deep Pools (Cover Metric) +4 

Fast Current +3 Pool Depths > 1m +4 

Moderate Current +2 Pool Depths 0.7 – 1.0 m +3 

Slow Current +1 Pool Depths 0.4 – 0.7 m +2 

Eddies +2 Pool Depths 0.2 – 0.4 m +1 

Very Deep Riffles +3 Pool Depths < 0.20 -1 

Moderate Depth Riffles +1 Deep Riffles +3 

Interstitial Flow -1 Moderate Riffles +2 

Intermittent Flow -3 Shallow Riffles +1 
Riffles Absent or Non
functional 

-1 

H4 RESULTS 

H3.1 Potential Trends in Ohio Reference Sites 

Some of the following analyses were conducted for Ohio EPA in an initial assessment 

towards re-calibrating Ohio EPA’s biocriteria based on data after 1988 (Rankin, 2008). Ohio’s 

original reference site data was collected between 1978 and 1988. Table H4-1 summarizes the 

ranges of years that represent the universe of original and re-sampled reference sites. For 

analyzing trends in reference sites we used the latest data available for calculating updated 
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biocriteria statistics.  On average the latest data period was 13-16 years after the mean of the 

original reference sample dates (Table H4-1). 

Table H4-1. Average and range of years represented by original reference site data and 
re-sampled (latest) data by index and stream size category pertaining to fish samples 

Index/Stream Size 
Mean Year Sampled (Range) 

Original Reference 
Sites 

Re-Sampled Sites 

ICI – All Sites 
1984 

(1980-1988) 
2000 

(1989-2007) 

IBI - Headwaters 
1984 

(1978-1988) 
2000 

(1989-2006) 

IBI - Wading 
1984 

(1979-1988) 
2000 

(1990-2006) 

IBI - Boat 
1984 

(1979-1988) 
1997 

(1990-2005) 

Table H4-1 reports the original biocriteria values and statistics, a re-calculation of those 

statistics using refined variables, and “new” biocriteria values based on the latest re-sampled 

reference sites. Because possible IBI or ICI scores based on single samples are always even 

values, calculated percentile values were rounded upwards (e.g., 41 to a 42). Discrepancies 

between the original calculations and our recalculations are highlighted in yellow. The original 

biocriteria statistics were re-calculated in the database because there are a few minor 

discrepancies related to uncertainties about the exact membership of the original reference sites 

and gradual changes made to the database since 1990 due to changing taxonomy and a more 

precise calculation of drainage area (Rankin, 2009). 

The direction of change in the biocriteria between the original and latest reference site 

data was either positive (an increase) or neutral (no change) with only three instances where the 

new biocriteria were lower. These included: 1) the ICI biocriterion for the non-acidic mine 

drainage modified use (-4 pts; possible small sample size); 2) the IBI for WWH headwater site 

type in the EOLP ecoregion (-2 pts); and, 3) the IBI for WWH headwater site type in the WAP 

ecoregion (-2 pts). None of these changes are considered to be greater than the non-significant 

departure for each index. 

H‐10 



 

 

 

 

 

 

211 
212 
213 

 

 
  

 
 

 

 
 

   

   
   

 
    

 

  
 

 
 
 

 
   

 

Table H4-2. Original Ohio biocriteria (O), recalculated biocriteria (R) using similar sites, 
and new biocriteria (N) using the latest data from re-sampling of original reference sites. 
Sites with discrepancies between original and recalculated criteria are highlighted in yellow 

Ecoregion 

Modified Warmwater Habitat (MWH) 

WWH EWH Channelized 

Non-Acidic 
Mine 

Drainage Impounded 

IBI – Headwater Site Type 

O R N O R N O R N O R N O R N 
HELP 20 20 26 28 - -

50 50 52 
IP 

24 24 26 

40 40 40 
EOLP 40 38 36 
WAP 24 24 a 44 44 42 
ECBP  40 40 44 

IBI – Wadeable Site Type 

HELP 22 22 22 32 - -

50 50 52 
IP 24 24 30 40 40 44 
EOLP 24 24 30 38 38 42 
WAP 24 24 30 24 24 32 44 44 46 
ECBP 24 24 30 40 40 40 

IBI – Boatable Site Type 

HELP 20 20 20 22 22 26 34 30 
34 

30 
34 

48 48 52
IP 24 24 24 30 28 34 38 38 47 
EOLP 24 24 24 30 28 34 40 40 46 
WAP 24 24 24 24 24 26 30 28 34 40 40 40 
ECBP 24 24 24 30 28 34 42 42 42 

MIwb – Wadeable Site Type 
HELP 5.6 5.9 6.4 7.3 - -

9.4 9.4 9.5
IP 6.2 6.4 8.1 8.1 8.1 
EOLP 6.2 6.4 7.9 7.9 8.2 
WAP 6.2 6.4 5.5 4.7 6.1 8.4 8.3 8.8 
ECBP 6.2 6.4 8.3 8.3 7.8 

MIwb – Boatable Site Type 
HELP 5.7 5.7 7.5a  5.7 5.7 7.4 8.6 - -

9.6 9.6 10.2 
IP 5.8 5.7 6.1a 6.6 7.0 7.5 8.7 8.7 9.6 
EOLP 5.8 5.7 6.1a 6.6 7.0 7.5 8.7 8.8 8.9 
WAP 5.8 5.7 6.1a 5.4 5.4 6.4 6.6 7.0 7.5 8.6 8.6 9.2 
ECBP 5.8 5.7 6.1a 6.6 7.0 7.5 8.5 8.5 9.7 
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Table H4-2. Continued 

ICI – All Site Types Combined 

HELP 22 22 24 34 34 42 

46 46 50 
IP 22 22 24 30 30 38 
EOLP 22 22 24 34 34 44 
WAP 22 22 24 30 30 26 36 36 40 
ECBP 22 22 24 36 36 42 
a – Non-acidic mining influenced modified sites for headwaters combined with wading 
sites due to small sample size. 

The direction of climate-related changes in biological index scores could be in either 

direction. However, the most plausible expectation would be for a decline due to the immediate 

loss of highly intolerant species and taxa (i.e., temperature- and flow-sensitive taxa/species) and 

a co-occurring increase in intermediate, moderately, and/or highly tolerant taxa/species. Such 

expectations are supported by our analyses that identify a general concordance between 

intolerant and sensitive species as categorized for the IBI and ICI and species sensitive to 

temperature and habitat features indicative of altered flow conditions. 

The largest positive changes in the biocriteria were in the WWH boatable fish sites (IBI 

and MIwb) and in the WWH ICI. The fish assemblage changes in large rivers are most 

attributable to reduced pollution from point sources, mostly due to municipal wastewater 

treatment plant upgrades after 1988 (Yoder et al., 2005). While it was necessary in the derivation 

of the original Ohio IBI for boatable sites to include reference sites located in effluent dominated 

rivers, the sites were positioned below known recovery points.  Nevertheless, the lessening of 

secondary impacts from nutrient enrichment by the aforementioned controls had positive effects 

on the fish assemblages at these reference sites. Taxonomic changes in fish nomenclature did not 

influence IBI scores between these time periods nor did the fish sampling technology as the 

methodology and equipment was generally stable between these time periods. 

H4.2 Influence of Taxonomic Changes on Trend Assessment in Ohio 

The question concerning the relative contribution of taxonomic changes to the 

macroinvertebrate assemblage trends in the Ohio biocriteria values at reference sites was also 

examined during this phase of the data analysis. While fish data can be influenced by factors 

such as sampling efficiency, their taxonomy has been comparatively stable during the period 

over which the Ohio reference database was developed. As for sampling methodology, methods 

used by Ohio EPA for both fish and macroinvertebrates have been stable over the period of the 

Ohio reference database. However, there have been significant changes in macroinvertebrate 
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taxonomy over this time period mostly in the form of improved discrimination within certain 

genera (e.g., Baetid mayflies) that could result in changes to the ICI “number of” metrics for 

mayflies and other taxonomic groups that are also identified to more refined taxonomic 

resolution. 

We developed a program to scan the Ohio EPA database and identify taxa that may have 

been revealed by improved taxonomy which would result in two or more taxa in lieu of a single 

taxon. This program resulted in a listing of all taxa and the first and last occurrence of each taxon 

in the Ohio EPA database. We then focused on the taxonomic changes in mayflies to examine 

the quantitative contribution of the refined taxonomy on ICI scoring for three metrics; total taxa, 

mayfly taxa, and qualitative EPT taxa.  We then recalculated the mean number of taxa for each 

metric as it now occurs in the database (“refined” taxonomy) and then again with the taxonomy 

“lumped” to match the level of taxonomy that was prevalent during the derivation of the original 

biocriteria (Table H4-2). We also recalculated the biocriteria statistics (25th percentiles by 

ecoregion for WWH; 75th percentiles statewide for EWH) based on the newly refined and 

lumped taxonomy (Table H4-3). 

The recalculation of ICIs from all sites indicated a 5.9 point increase in the mean ICI 

score between the two time periods. When mayfly taxonomy was lumped between these time 

periods the increase was 5.0 showing that taxonomic refinement in mayflies accounted for 14% 

of the increase in the mean ICI between the two reference time periods (Table H4-3). Only two 

cases showed a change in the biocriteria the HELP WWH biocriterion (38.5 compared to 42) and 

the EOLP WWH biocriterion (42 compared to 44). 

The changes in mayfly taxonomy reflect the greatest influence on ICI scoring in the Ohio 

database; other taxa would likely have a lesser impact compared to the impact on mayfly metrics 

(Jack Freda, personal communication). Future work should isolate all of the other taxonomic 

refinements that could confound trends in metrics and index scores. Comparisons of similarity of 

macroinvertebrate taxonomy in samples between European countries concluded that taxonomic 

adjustments prior to analyses of the separate data sets reduced species richness from 45 to 81% 

by country and 85% for all countries combined (Verdonschot and Nijboer, 2004). We are dealing 

with much smaller changes in the Ohio database. 
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Table H4-3. Changes in ICI and mayfly influence ICI metrics related to increasing 
taxonomic resolution over time in the Ohio EPA least impacted reference data set 

Metric 
Original Reference Sites 

New Reference Sites 
(Latest Data) 

Standard 
Taxonomy 
Mean Taxa 

(Mean Score) 

Lumped 
Taxonomy 
Mean Taxa 

(Mean Score) 

Standard 
Taxonomy 
Mean Taxa 

(Mean Score) 

Lumped 
Taxonomy 
Mean Taxa 

(Mean Score) 
Total Taxa 35.97 (4.89) 35.93 (4.89) 38.36 (5.18) 37.65 (5.04) 
Number of Mayfly Taxa 6.95 (4.20) 6.90 (4.17) 7.42 (4.59) 6.59 (4.16) 
QUAL EPT Taxa 11.29 (3.63) 11.24 (3.60) 15.16 (5.16) 14.23 (4.91) 
ICI Score 39.59 39.53 45.35 44.56 

Table H4-4.  Table of original and recalibrated Ohio biocriteria with adjustments 
made to equilibrate taxonomic advances made in the later time period. Highlighted 
cells indicate where standardizing taxonomic resolution would have resulted in altered 
criteria. 

 Warmwater Habitat Exceptional Warmwater 
Habitat 

Ecoregion 

Original 
Referen 

ce 

Latest 
Referen 

ce 

Latest 
Reference 

w/ 
Refined 

Taxonom 
y 

Original 
Referen 

ce 

Latest 
Refere 

nce 

Latest 
Referen 

ce w/ 
Refined 
Taxono 

my 
HELP 34 42 38.5 

46 50 50 
IP 30 38 38 
EOLP 34 44 42 
WAP 36 40 40 
ECBP 36 42 42 

H4.3 Weighted Stressor Values (WSVs) 

We calculated WSVs for maximum temperature and Hydro-QHEI variables separately 

for headwater streams (drainage area <20 mi.2) and wadeable streams (drainage area >20 to 300 

mi.2). These data are ordered by WSV for each parameter to provide a sequential listing of 

sensitive species/taxa that can be used to detect trends in relation to temperature or flow 

alterations. It also provides a listing of tolerant species that might increase in predominance if 

temperature were to increase or the hydrological regime became increasingly variable. 

H‐14 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

294 

295 

296 

297 

298 

299 

300 

301 

302 

303 

304 

305 

306 

307 

308 

309 

310 

311 

312 

313 

314 

315 

316 

317 

318 

319 

320 

321 

322 

323 

324 

325 

326 

327 

H4.4. Temperature 

We used the maximum temperature recorded from summer-fall grab samples collected 

during the same period within which the biological data were collected to calculate WSVs for 

headwater and wadeable streams. To visualize the distribution of these data with taxa 

sensitivities we plotted the means of these values vs. the weighted means (WSVs) color coded by 

the existing taxa tolerance rankings of Ohio EPA (Figure H4-1). Because the temperature 

indicator was derived from a small number of grab samples, the precision of these data could be 

rather low for a given site. However, when aggregated across the temporal and spatial extent of 

Ohio EPA database we expect that relationships between taxa relative abundance and maximum 

summer temperatures should be much more representative of taxa sensitivities. Figure H3 

represents plots of WSVs based on maximum temperatures (°C) from grab samples at sites with 

macroinvertebrate taxa collected from artificial substrates in headwater and wadeable streams. 

The WSVs for maximum temperature generally track with the “general” tolerance categories 

assigned by Ohio EPA for each taxon for both headwater (Figure H4-1, upper right) and 

wadeable streams (Figure H4-1, lower right). A similar pattern was observed for fish species. 

WSVs for temperature can be confounded with WSVs for other stressors, particularly habitat. 

However, the extremes of these distributions can be useful for identifying possible indicator taxa 

for future applications. 

It is interesting to note that selected Chironomidae taxa occurred at both extremes of the 

WSV for temperature. For example, Paratanytarsus n.sp 1 had the lowest WSV for temperature 

at wadeable sites and Parachironomus "hirtalatus" and Tanypus neopunctipennis had among the 

highest WSVs (Figure H4-1, lower left). Additional analysis using environmental traits could 

help in determining the rare taxa that could exhibit some sensitive traits, but which may be too 

rare by themselves to serve as useful indicators. 

H4.5 Hydro-QHEI 

We generated WSVs for Hydro-QHEI variables separately for headwater and wadeable 

streams for both fish and macroinvertebrates. We plotted several examples of the WSVs for 

these variables vs. the simple means for these same variables (Figure H4-2) in order to reveal the 

distributions of tolerant and sensitive species along this gradient as we did for temperature. Fish 

and macroinvertebrate WSVs for Hydro-QHEI and its subcomponents tracked relatively closely 

to the Ohio EPA tolerance designations for macroinvertebrate taxa and fish species (Figure H4

2). Outlier points and variability are often associated with small sample sizes for a given species 

at a given stream size. Intolerant species are frequently rarer than “sensitive” species, especially 
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are typically larger. As expected, tolerant species generally have wider sensitivity ranges. 329 
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Figure H4-1.  Plots of macroinvertebrate taxa maximum temperature WSV values 
vs. mean maximum values for taxa for headwater streams (upper left) and 
wadeable streams (lower left) and box and whisker plots of WSVs for maximum 
temperatures by Ohio EPA macroinvertebrate tolerance values (derived for the 
ICI) for headwater streams (upper right) and wadeable streams (lower right). Data 
for taxa represents data collected from artificial substrates where at least five 
samples were represented for each stream size category. 
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Figure H4-2.  Scatter plots of taxa/species Hydro-QHEI WSV values vs. mean 
Hydro-QHEI values for macroinvertebrates taxa for headwater streams (upper 
left) and for species in wadeable streams (lower left) and box and whisker plots 
of macroinvertebrate (upper right) and fish (lower right) WSVs for Hydro-
QHEI for these waters. Data from Ohio EPA. 
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Although QHEI is a visual habitat tool, recent analyses of variation from sites with multiple 

QHEI values using signal/noise ratio analyses indicate the index is precise and the 

subcomponents are moderately precise to precise (Miltner et al., 2009 Draft; Rankin et al., in 

preparation). We chose Hydro-QHEI subcomponents that are expected to change in response to 

flow alterations. For example the presence of fast current or the presence of eddies is a 

characteristic of permanent summer base flows (QHEI assessments are generally conducted 

during summer-fall low flow periods). Habitat attributes related to depth (i.e., deep pool and 

deep runs) are also associated with permanent base flows. Thus the Hydro- QHEI is expected to 

reflect a gradient of base flow stability, one of the attributes that would be expected to change 

with changes in precipitation patterns as a result of climate change.  Sensitive fish species and 

macroinvertebrate taxa were positively correlated with the Hydro-QHEI, thus it promises to be a 

useful tool for indicating hydrological changes that may be associated with climate change. 

These data are commonly collected by states throughout the Midwestern U.S. 

H4.6 Species Distribution by Stream Size 

The identification of certain intolerant fish species in headwater streams at the “sensitive” 

end of the Hydro-QHEI gradient suggests that the distribution of these species at the tails of their 

preferred stream size range may reflect the degree of base flow. Fish species such as streamline 

chub, variegate darter, river chub and stonecat madtom (all with high Hydro-QHEI WSVs) are 

generally found in larger wadeable streams and their presence in headwater streams is associated 

with high Hydro-QHEI scores that indicate more stable flow regimes. Year-to-year or long-term 

trends of these species in headwater streams could represent a response to climate-induced 

hydrologic changes. Thus we suggest that this could be an opportunity to explore whether the 

stream size “tails” of sensitivity distributions shift with hydrological change. 

The Ohio database does contain a stream-size bias because headwater streams were less 

frequently sampled in the 1980s than in the 1990s and 2000s. With the knowledge of this bias as 

a test of the ability to detect species distribution changes at the edge of their distribution we 

divided the dataset into three time periods and examined whether a suite of sensitive species 

distributions along stream size was apparent through time. We recognized that the distribution of 

sites was different between these periods and we wanted to test whether it would be evident in 

low percentiles (1st, 5th, and 25th) for species distributions across all sites in Ohio. The results of 

this initial test showed that some bias between time periods exists for species distributions where 

nearly all selected sensitive species had distributions that extended further into small streams 

during the later (1998-2008) compared to the earliest (1978-1989) sampling periods (Table H8). 
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In this table species with a + “increased” their distribution in small streams sampled in the most 

recent years (Ohio EPA, 2002). 

We then restricted this analysis to sites that had only been sampled in all three sampling 

periods so that the resulting distributions were not an artifact of stream size bias. The distribution 

of each species was then examined along a stream size gradient as measured by the same low 

percentiles (1st, 5th and 25th) (Table H4-5). There is still a possible bias in this initial analysis 

because some of these sites that were sampled across all three periods may have been sampled 

more frequently during some periods which could increase the probability of capture. However, 

as an initial exploratory analysis we were interested in whether any obvious trends were 

apparent. 

The results (Table H4-6) do not indicate evidence of the same patterns similar to what 

was evident in Table H4-5 that were attributable to the sampling frequency among small streams. 

This analysis assumes, however, that some strong long-term shifts would have occurred during 

these time periods that would affect the tails of stream size distributions more than inter-annual 

flow variation. A more sensitive analysis would control or consider year-to-year variability in 

flow or temperature within each time periods that may confound the current analysis. We suggest 

that these distributional shifts could be a fruitful path for analysis when annual variation and 

regional variation in flows, which can be extracted from USGS flow data using IHA flow 

indicators, are incorporated into the analyses. The initial analyses conducted herein establish a 

basis for more detailed analyses. 

H‐19 



 

 

 

 

 

 

 

 

390 
391 

393
 

392 

Table H4-5. Analysis of frequency of species collections by stream size as measure by 
1st, 5th and 25th percentiles of drainage area at sites with these species collected 
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Table H4-6. Analysis of frequency of species collections by stream size as measured by 
1st, 5th and 25th percentiles of drainage area at sites with these species collected 
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__________________ 
Selected subsets of results from correlation 
analyses for Maine, Utah and North Carolina  
 

The purpose of this Appendix is to show selected subsets of results from correlation analyses 
performed on data for Maine, Utah and North Carolina. Results are presented to allow for 
comparisons of trends both within and across states. Numerous traits variables and taxa were 
analyzed. The object was to identify biological variables that were significantly correlated with 
year, PRISM annual air temperature or PRISM annual precipitation (PRISM variables were 
typically the best site-specific climatic variables available). Metrics that are presented in this 
Appendix relate to temperature preferences and tolerances, EPT taxa, HBI, OCH taxa, hydrology 
and scenario metrics. Additional results are available upon request. 

 
I1. Overview 
Attachment I1. NAO/ONI/PDO 
Attachment I2. Climate Variable -Year Trends 
Attachment I3. Year & Climate Variable -Temperature Metric Trends 
Attachment I4. Year & Climate Variable -EPT Metric Trends 
Attachment I5. Year & Climate Variable -HBI Trends  
Attachment I6. Year & Climate Variable –OCH Metric Trends 
Attachment I7. Year & Climate Variable –Hydrologic Metric Trends 
Attachment I8. Year & Climate Variable –Scenario Metric Trends 
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Several approaches were used in analyzing data for long-term trends. To briefly summarize: 

• We did correlation analyses and ordinations (i.e.Non-metric Multidimensional Scaling 

(NMDS) and Canonical Correlation Analyses (CCA)) on several of different subsets of 

data from each of the states. 

• We evaluated subsets of data from individual long-term biological sampling sites and 

from groups of sites. 

• We evaluated each site and site group for confounding factors (non-climate) that may be 

influencing trends. Examples of factors that we evaluated (availability varied) included: 

habitat (i.e. width, depth, visual substrate estimates), a variety of water chemistry 

parameters, land use/land cover, and organic enrichment (using HBI calculations as 

surrogates because long-term nutrient data were generally not available). 

• We used a ‘two-pronged’ approach and evaluated both taxonomic composition (mainly 

using relative abundance) and traits metrics (percent individuals and number of taxa).   

 

Table I1-1 contains metadata for the environmental and biological variables that were included 

in the correlation analyses. The climate variables used in the analyses are PRISM mean annual 

air temperature and PRISM mean annual precipitation. Variables associated with the North 

Atlantic Oscillation (NAO), Oceanic Niño Index (ONI) and Pacific Decadal Oscillation (PDO) 

were also analyzed (see Attachment I1). The procedure was automated to run in R software (the 

R code is available upon request – it produces a correlation matrix, a table with significant 

correlations (with option to set the p-value) and plots of the significantly-correlated variables).  

 

Because there are so many results, we selected the most relevant subset of summary tables and 

plots to present in this Appendix (all the correlation matrices are available upon request). The 

summary tables include side-by-side results from Maine, Utah and North Carolina sites and site 

groups so that patterns can be compared across states and regions (see Table I-2 for a list of the 

sites and site groups). The Pearson product moment correlations were calculated using Statistica 

software (Version 8.0, Copyright StatSoft, Inc., 1984-2007).  

 

The following groups of results are presented in Attachments I2 through I8: 
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I2. Climate Variable -Year Trends;  

I3. Year & Climate Variable -Temperature Metric Trends;  

I4. Year & Climate Variable -EPT Metric Trends;  

I5. Year & Climate Variable -HBI Trends;  

I6. Year & Climate Variable –OCH Metric Trends;  

I7. Year & Climate Variable –Hydrologic Metric Trends;  

I8. Year & Climate Variable –Scenario Metric Trends; and  

 

There are a number of limitations that should be noted. Correlation analyses cannot establish 

unambiguous causal relationships between the environmental and biological variables. We tried 

to disentangle confounding factors from the climate change effects by using reference data, but 

some reference stations still are influenced by anthropogenic factors. In addition, significant 

correlations can sometimes be driven by outliers. We attempted to address this issue by 

reviewing plots of significantly-correlated variables. Another issue is that the climate variables 

used (PRISM mean annual air temperature and precipitation), while bearing relationships to in-

stream conditions, are not direct measures of actual stream thermal and hydrologic regimes at the 

biological sampling sites. Ideally we would use continuous water temperature and flow data in 

the analyses. 

 

Some limitation with the traits analyses include: 

• Experimental evidence regarding which individual traits are most important in the 

context of climate change is still lacking, so that application of trait analyses was related 

to some published literature, but still requires some ‘best professional judgment’;  

• Redundancy of information among traits has been cited as an issue (Poff et al., 2006). We 

also found a number of individual trait metrics to be correlated (r>0.8). Efforts to limit 

impacts of redundancy (Poff et al., 2006) were dataset-dependent, making broad 

generalizations about which trait metrics to exclude difficult. 

• We calculated trait metrics (% individual and number of taxa) for about 30 different traits 

(which each had 2 to 5 trait states). There were a lot of significant correlations, but 

interpretation was difficult, since few showed consistent patterns across sites and states.  
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extent possible: 

• Focus on traits for which we have the most amount of information for the most 

number of taxa (i.e. functional feeding group (FFG) and habit)  

• Focus on groups of traits rather than individual traits, to the extent support by 

available literature information on trait characteristics in various trait categories 

by taxon. We approached consideration of combinations of traits by developing 

‘scenario’ traits metrics, where scenarios represent projected future climate 

characteristics for a region (e.g., warmer and drier in Utah). Taxa were then 

grouped based on suites of traits expected to confer an advantage in surviving 

these projected future conditions. “Robust” were groups of taxa with the most 

number of favorable traits states for that scenario, while “vulnerable” were groups 

of taxa with the fewest favorable trait states and the most number of unfavorable 

trait states. 
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Table I1-1. Metadata for the environmental and biological variables that were used in the correlation analyses.101 
Category Variable Description 

 StationID self-explanatory 
 Year year sample was collected 
 JulianDate collection (Julian) date of biological sample 
 Month month sample was collected 

PRISM tmean14 PRISM mean annual air temperature (=avg of tmin and tmax) (°F) 
PRISM tmax14 PRISM mean annual maximum air temperature (=avg of tmin and tmax) (°F) 
PRISM tmin14 PRISM mean annual minimum air temperature (=avg of tmin and tmax) (°F) 
PRISM ppt14 PRISM mean annual precipitation (inches) 
PRISM tmean14_difc difference between value from year of sampling event minus value from previous year.  Calculation based 

on PRISM tmean14 data. 
PRISM tmax14_difc difference between value from year of sampling event minus value from previous year.  Calculation based 

on PRISM tmax14 data. 
PRISM tmin14_difc difference between value from year of sampling event minus value from previous year.  Calculation based 

on PRISM tmin14 data. 
PRISM ppt14_difc difference between value from year of sampling event minus value from previous year.  Calculation based 

on PRISM ppt14 data. 
PRISM tmean14_absdifc absolute difference between value from year of sampling event minus value from previous year. Calculation 

based on PRISM tmean14 data. 
PRISM tmax14_absdifc absolute difference between value from year of sampling event minus value from previous year. Calculation 

based on PRISM tmax14 data. 
PRISM tmin14_absdifc absolute difference between value from year of sampling event minus value from previous year. Calculation 

based on PRISM tmin14 data. 
PRISM ppt14_absdifc absolute difference between value from year of sampling event minus value from previous year. Calculation 

based on PRISM ppt14 data. 
Taxa Taxon relative abundance of taxon 
HBI HBI_NM Hilsenhoff Biotic Index calculated using the tolerance values in the New Mexico database (this was used in 

Utah only) 
HBI HBI Hilsenhoff Biotic Index calculated using the tolerance values from the state being analyzed 
Selected Metrics PlecopPct Percent individuals in the Order Plecoptera 
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Category Variable Description 
Selected Metrics ChiroPct Percent individuals in the Family Chironomidae 
Selected Metrics EPT_Pct Percent individuals - Ephemeroptera, Plecoptera and Trichoptera  
Selected Metrics PlecopTax Number of taxa in the Order Plecoptera 
Selected Metrics ChiroTax Number of taxa in the Family Chironomidae 
Selected Metrics EPTTax Number of Ephemeroptera, Plecoptera and Trichoptera taxa 
FFG FFG_CGPct Functional Feeding group - percent collector-gatherer individuals 
FFG FFG_CFPct Functional Feeding group - percent  collector-filterer individuals 
FFG FFG_SHPct Functional Feeding group - percent shredder individuals 
FFG FFG_HBPct Functional Feeding group - percent herbivore individuals 
FFG FFG_PRPct Functional Feeding group - percent predator individuals 
FFG FFG_CFTax Functional Feeding group - number of collector-filterer taxa 
FFG FFG_CGTax Functional Feeding group - number of collector-gatherer taxa 
FFG FFG_HBTax Functional Feeding group - number of herbivore taxa 
FFG FFG_PRTax Functional Feeding group - number of predator taxa 
FFG FFG_SHTax Functional Feeding group - number of shredder taxa 
Habit Habit_CNPct Habit - percent clinger individuals 
Habit Habit_SWPct Habit - percent swimmer individuals 
Habit Habit_BUPct Habit - percent burrower individuals 
Habit Habit_SKPct Habit - percent skater individuals 
Habit Habit_CBPct Habit - percent climber individuals 
Habit Habit_SPPct Habit - percent sprawler individuals 
Habit Habit_CBTax Habit - number of climber taxa 
Habit Habit_CNTax Habit - number of clinger taxa 
Habit Habit_SPTax Habit - number of sprawler taxa 
Habit Habit_BUTax Habit - number of burrower taxa 
Habit Habit_SWTax Habit - number of swimmer taxa 
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Category Variable Description 
Hydro PerennialPct Percent perennial stream individuals (list of perennial taxa was based on NC intermittent stream report and 

Del Rosario et al. (2000): includes taxa listed in Table 1 of NC report (except for Peltoperlidae, since those 
occurred only at the intermittent site in Del Rosario), plus gilled snails (Subclass Prosobranchia) and 
Simuliidae (Del Rosario et al. 2000).  These taxa, which require water for their entire life cycle, should be 
found a later instar larvae.  Some are indicators of perennial stream features. 

Hydro IntermitPct Percent intermittent stream individuals (list based on NC intermittent stream report: amphipods, isopods, 
small elongate Dipteran larvae (Ceratopogonidae, Blephariceridae, Chironomidae, Deuterophlebiidae, 
Psychodidae) winter stoneflies (Capniidae, Taeniopterygidae), Dytiscidae.  Unique to intermittent=Helichus 
larvae and Dasyhela (family Dolchopodidae).  Rest are also found in perennial.  They just tend to be more 
dominant in numbers in intermittent conditions (probably due to loss of predators). 

Hydro Drought_Pct Percent individuals that possess at least one of the following traits: ability to survive desiccation, adult ability 
to exit, respiration plastron/spiracle  

Hydro PerennialTax Number of perennial stream taxa (list of perennial taxa was based on NC intermittent stream report & Del 
Rosario et al. 2000 JNABS paper: includes taxa listed in Table 1 of NC report (except for Peltoperlidae, since 
those occurred only at the intermittent site in Del Rosario), plus gilled snails (Subclass Prosobranchia) and 
Simuliidae (Del Rosario et al. 2000).  These taxa, which require water for their entire life cycle, should be 
found a later instar larvae.  Some are indicators of perennial stream features. 

Hydro IntermitTax Number of intermittent stream taxa (list based on NC intermittent stream report: amphipods, isopods, small 
elongate Dipteran larvae (Ceratopogonidae, Blephariceridae, Chironomidae, Deuterophlebiidae, 
Psychodidae) winter stoneflies (Capniidae, Taeniopterygidae), Dytiscidae.  Unique to intermittent=Helichus 
larvae and Dasyhela (family Dolchopodidae).  Rest are also found in perennial.  They just tend to be more 
dominant in numbers in intermittent conditions (probably due to loss of predators). 

Hydro DroughtTax Number of taxa that possess at least one of the following traits: ability to survive desiccation, adult ability to 
exit, respiration plastron/spiracle  

Hydro OCH_Pct Percent individuals - Odonata, Coleoptera and Hemiptera 
Hydro OCHD_Pct Percent individuals - Odonata, Coleoptera, Hemiptera and Diptera 
Hydro OCHTax Number of Odonata, Coleoptera and Hemiptera taxa 
Hydro OCHDTax Number of Odonata, Coleoptera, Hemiptera and Diptera taxa 
Temp Temp_ColdPct Thermal Preference -Percent cold individuals (optima ranking of 1, 2 or 3) 
Temp Temp_ColdStenoPct Thermal Preference and Tolerance -Percent cold stenotherm individuals (optima ranking of 1, 2 or 3 and 

tolerance ranking of 1, 2 or 3) 
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Category Variable Description 
Temp Temp_InterPct Thermal Preference -Percent intermediate individuals (optima ranking of 4) 
Temp Temp_WarmEuryPct Thermal Preference and Tolerance -Percent warm eurythermal individuals (optima ranking of 5, 6 or 7 and 

tolerance ranking of  5, 6 or 7) 
Temp Temp_WarmPct Thermal Preference -Percent warm individuals (optima ranking of 5, 6 or 7) 
Temp Temp_CoreColdPct Thermal Preference and Tolerance -Percent core cold individuals (see temperature indicator writeups) 
Temp Temp_CoreWarmPct Thermal Preference and Tolerance -Percent core warm individuals (see temperature indicator writeups) 
Temp Temp_ColdTax Thermal Preference -Number of cold taxa (optima ranking of 1, 2 or 3) 
Temp Temp_ColdStenoTax Thermal Preference and Tolerance -Number of cold stenotherm taxa (optima ranking of 1, 2 or 3 and 

tolerance ranking of 1, 2 or 3) 
Temp Temp_WarmTax Thermal Preference -Number of warm taxa (optima ranking of 5, 6 or 7) 
Temp Temp_WarmEuryTax Thermal Preference and Tolerance -Number of warm eurythermal taxa (optima ranking of 5, 6 or 7 and 

tolerance ranking of  5, 6 or 7) 
Temp Temp_InterTax Thermal Preference -Number of intermediate taxa (optima ranking of 4) 
Temp Temp_CoreCold_Tax Thermal Preference and Tolerance -Number of core cold taxa (see temperature indicator writeups) 
Temp Temp_CoreWarm_Tax Thermal Preference and Tolerance -Number of core warm taxa (see temperature indicator writeups) 
Scenario Drier_WinPct Percent individuals that possess the most number of traits states that are predicted or have been shown to be 

most favorable in a drier climate scenario  
Scenario Drier_VulnerablePct Percent individuals that have the fewest favorable trait states and the most number of unfavorable trait 

states in a drier climate scenario 
Scenario WarmDrier_Vulnerable

Pct 
Percent individuals that have the fewest favorable trait states and the most number of unfavorable trait 
states in a warmer drier climate scenario 

Scenario WarmDrier_WinPct Percent individuals that possess the most number of traits states that are predicted or have been shown to be 
most favorable in a warmer drier climate scenario  

Scenario Wet_WinPct Percent individuals that possess the most number of traits states that are predicted or have been shown to be 
most favorable in a wetter climate scenario  
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Table 1.continued… 108 
Category Variable Description 
Scenario Wet_LosPct Percent individuals that have the fewest favorable trait states and the most number of unfavorable trait 

states in a wetter climate scenario 
Scenario WarmWet_LosPct Percent individuals that have the fewest favorable trait states and the most number of unfavorable trait 

states in a warmer wetter climate scenario 
Scenario WarmWet_WinPct Percent individuals that possess the most number of traits states that are predicted or have been shown to 

be most favorable in a warmer wetter climate scenario  
Scenario Drier_WinTax Number of taxa that possess the most number of traits states that are predicted or have been shown to be 

most favorable in a drier climate scenario  
Scenario Drier_VulnerableTax Number of taxa that have the fewest favorable trait states and the most number of unfavorable trait states 

in a drier climate scenario 
Scenario WarmDrier_Vulnerab

leTax 
Number of taxa that have the fewest favorable trait states and the most number of unfavorable trait states 
in a warmer drier climate scenario 

Scenario WarmDrier_WinTax Number of taxa that possess the most number of traits states that are predicted or have been shown to be 
most favorable in a warmer drier climate scenario  

Scenario Wet_WinTax Number of taxa that possess the most number of traits states that are predicted or have been shown to be 
most favorable in a wetter climate scenario  

Scenario Wet_LosTax Number of taxa that have the fewest favorable trait states and the most number of unfavorable trait states 
in a wetter climate scenario 

Scenario WarmWet_LosTax Number of taxa that have the fewest favorable trait states and the most number of unfavorable trait states 
in a warmer wetter climate scenario 

Scenario WarmWet_WinTax Number of taxa that possess the most number of traits states that are predicted or have been shown to be 
most favorable in a warmer wetter climate scenario  
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Table I1-2. Results for these sites and site groups are presented in the summary tables in 
Attachments I2-I8.  

State Site/ Site Group 

M
ai

ne
 

56817 
57011 
57065 
NE High (= Northeastern Highlands Site Group) 
Laur (= Laurentian Plains and Hills Site Group) 

U
ta

h 

4927250 
4936750 
4951200 
5940440 
WU_SF (= Wasatch Uintas Semiarid Foothills Site Group) 
WU_ME (= Wasatch Uintas Mid-elevation Mountains Site Group) 
CP (= Colorado Plateaus Site Group) 

N
or

th
 C

ar
ol

in
a NC0109 (BR) 

NC0207 (BR) 
NC0209 (BR) 
NC0075 (Pied) 
NC0248 (Pied) 
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Attachment I1 
__________________ 
NAO/ONI/PDO 
 
The purpose of this attachment is to provide background on the variables from the North Atlantic 
Oscillation (NAO), Oceanic Niño Index (ONI) and Pacific Decadal Oscillation (PDO) datasets 
that were used in the correlation analyses. Results from these analyses are available upon 
request. 
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ATTACHMENT I1. NAO/ONI/PDO 
 

Data sources: 

North Atlantic Oscillation (NAO): http://www.cgd.ucar.edu/cas/jhurrell/indices.html 

Oceanic Niño Index (ONI): 

http://www.cpc.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml and  

http://www.cdc.noaa.gov/data/climateindices/List/ 

Pacific Decadal Oscillation (PDO): http://jisao.washington.edu/pdo/PDO.latest 

 

Correlation analyses were performed on NAO, ONI, and PDO datasets to evaluate whether these 

cyclic climate indices have shown significant trends over the last 32 years, and also to examine 

whether the indices are significantly associated with trends in biological data (i.e. do year-to-year 

changes in species composition track the NAO, ONI and PDO?). We used NAO data in the 

Maine and North Carolina analyses because the NAO affects the Eastern seaboard states 

(personal communication with James Hurrell (Email: jhurrell@ucar.edu)). The ONI and PDO 

indices have greater relevance in western states and were therefore used in the Utah analyses. 

 

There are many different variables associated with the NAO, ONI and PDO datasets (e.g., 

monthly values, various averages). It was difficult to know which ones had the greatest relevance 

to our analyses, especially with the ONI and PDO datasets. This is because there is no unique or 

universally accepted way to define the spatial structure of these phenomena. More information 

seemed to be available on the NAO than the ONI and PDO. Bradley and Ormerod (2001) were 

used as guidance in selecting the following 2 NAO variables: NAO PC-Based Seasonal 

December-January-February-March (DJFM) index and the NAO PC-Based Annual index. We 

used the December-January-February-March (DJFM) seasonal index because the main "season" 

of the NAO is northern winter; this is when the atmosphere is most dynamically active (personal 

communication with James Hurrell (Email: jhurrell@ucar.edu). We chose the Principal 

Component (PC)-based time series data over the station-based indices because they were 

available for the appropriate timeframe, and they provide better representations of the full NAO 

spatial pattern than station-based indices. Station-based indices are limited because they are fixed 

in space and can therefore only adequately capture NAO variability for parts of the year. 

http://www.cgd.ucar.edu/cas/jhurrell/indices.html�
http://www.cpc.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml�
http://www.cdc.noaa.gov/data/climateindices/List/�
http://jisao.washington.edu/pdo/PDO.latest�
mailto:jhurrell@ucar.edu�
mailto:jhurrell@ucar.edu�
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Moreover, their pressures are significantly affected by small-scale and transient meteorological 

phenomena not related to the NAO and, thus, contain more noise.  

 

We were unable to find references to help guide our selection of ONI and PDO indices for the 

Utah analyses, so we included all the variables. The ONI is based on sea surface temperature 

departures from average in the Niño 3.4 region, and is a principal measure for monitoring, 

assessing, and predicting the El Niño-Southern Oscillation (ENSO). ENSO is a combination of 

atmospheric and oceanic phenomena in the tropical Pacific Ocean. It is manifested in the 

atmosphere by changes in the pressure difference between Tahiti and Darwin, Australia and in 

the ocean by warming of surface waters of the tropical Eastern Pacific Ocean. NOAA’s 

operational definitions of El Niño and La Niña are keyed to the ONI index. NOAA's Climate 

Prediction Center (CPC) considers El Niño or La Niña conditions to occur when the monthly 

Niño3.4 sea surface temperature departures meet or exceed +/-0.5°C along with consistent 

atmospheric features. These anomalies must also be forecasted to persist for 3 consecutive 

months1. The PDO is a long-lived El Niño-like pattern of Pacific climate variability. While the 

two climate oscillations have similar spatial climate fingerprints, they have very different 

behavior in time. Two main characteristics distinguish PDO from El Niño/Southern Oscillation 

(ENSO): first, 20th century PDO "events" persisted for 20-to-30 years, while typical ENSO 

events persisted for 6 to 18 months; second, the climatic fingerprints of the PDO are most visible 

in the North Pacific/North American sector, while secondary signatures exist in the tropics - the 

opposite is true for ENSO. More sources of information on the ONI and PDO are available upon 

request. 

 
 

                                                 
1 For more information, see 
http://www.cpc.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf. 
 

http://www.cpc.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf�
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Attachment I2 
__________________ 
Climate Variable -Year Trends 
 
In this Attachment, we summarize yearly trend results for PRISM mean, maximum and 
minimum annual air temperature and PRISM mean annual precipitation at Maine, Utah and 
North Carolina biological sampling sites and site groups. 
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ATTACHMENT I2. CLIMATE VARIABLE-YEAR TRENDS 

 

We examined yearly trends in PRISM mean, maximum and minimum annual air temperature and 

PRISM mean annual precipitation at Maine, Utah and North Carolina biological sampling sites 

and site groups. Results are summarized in Table I2-1. Utah had the most number of sites and 

site groups that showed significant yearly temperature trends across the most number of 

temperature variables; year is significantly correlated with mean and minimum annual air 

temperature at 6 of the 7 sites/ site groups. Three of the 4 Maine sites/site groups were 

significantly and positively correlated with mean and minimum annual air temperature, and 6 of 

the 7 North Carolina sites/site groups were significantly correlated with minimum annual air 

temperature. None of the sites/site groups had significant yearly trends in mean annual 

precipitation (which tends to be highly variable). 
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Table I2-1. Pearson product moment correlations of PRISM mean, maximum and minimum annual air temperature (tmean14, tmax14 
and tmin14) and PRISM mean annual precipitation (ppt14) versus year for individual sites and site groups in Maine, Utah and North 
Carolina. Correlations with NAO and ONI variables were also included (see Attachment I1 for more details on these variables). 
Highlighted correlations were significant (p<0.05).   

PRISM/NAO/ONI - YEAR 

State Site/ Site Group N tmean14 tmax14 tmin14 ppt14 NAO_DJFM_PC 
r p r p r p r p r N p 

M
ai

ne
 

56817 32 0.24 p=.188 0.09 p=.620 0.33 p=.065 0.04 p=.820 -0.15 N=23 p=.506 
57011 32 0.09 p=.635 -0.03 p=.888 0.17 p=.351 0.08 p=.674 -0.22 N=12 p=.502 
57065 32 0.42 p=.018 0.28 p=.123 0.46 p=.008 -0.16 p=.373 -0.23 N=9 p=.549 

NE High 32 0.52 p=.002 0.41 p=.019 0.55 p=.001 0.22 p=.236 -0.35 N=8 p=.391 
Laur 32 0.41 p=.019 0.28 p=.119 0.46 p=.009 -0.13 p=.494 -0.15 N=8 p=.731 

State Site/ Site Group N tmean14 tmax14 tmin14 ppt14 ONI_DJF 
r p r p r p r p r N p 

U
ta

h 

4927250 32 0.57 p=.001 0.60 p=.000 0.35 p=.051 -0.04 p=.824 0.18 N=17 p=.494 
4936750 32 0.48 p=.005 0.14 p=.443 0.70 p=.000 0.11 p=.540 -0.14 N=12 p=.656 
4951200 32 0.74 p=.000 0.71 p=.000 0.71 p=.000 -0.08 p=.674 -0.09 N=15 p=.736 
5940440 32 0.71 p=.000 0.55 p=.001 0.74 p=.000 -0.13 p=.483 0.22 N=9 p=.567 
WU_SF 32 0.77 p=.000 0.52 p=.002 0.83 p=.000 -0.20 p=.262 -0.25 N=20 p=.284 
WU_ME 32 0.30 p=.093 0.18 p=.321 0.36 p=.042 0.04 p=.846 -0.28 N=12 p=.383 

CP 32 0.65 p=.000 0.45 p=.009 0.75 p=.000 0.06 p=.724 0.27 N=14 p=.359 

State Site/ Site Group N tmean14 tmax14 tmin14 ppt14 NAO_DJFM_PC 
r p r p r p r p r N p 

N
or

th
 C

ar
ol

in
a NC0109 (BR) 32 0.15 p=.412 0.19 p=.302 0.07 p=.688 0.04 p=.820 0.02 N=11 p=.954 

NC0207 (BR) 32 0.73 p=.000 0.58 p=.001 0.77 p=.000 -0.12 p=.497 -0.02 N=9 p=.969 
NC0209 (BR) 32 0.68 p=.000 0.53 p=.002 0.69 p=.000 0.19 p=.292 0.09 N=32 p=.637 
NC0075 (Pied) 32 0.29 p=.107 -0.09 p=.627 0.54 p=.001 -0.17 p=.348 -0.46 N=7 p=.294 
NC0248 (Pied) 32 0.37 p=.039 0.01 p=.942 0.57 p=.001 -0.12 p=.527 -0.41 N=7 p=.365 
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Attachment I3 
__________________ 
Climate Variable -Temperature Metric Trends 
 
In this Attachment, we show results for a selected subset of temperature-sensitive metrics, which 
were examined for yearly trends and trends related to PRISM air temperature and precipitation 
variables. 
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ATTACHMENT I3.CLIMATE VARIABLE-TEMPERATURE METRIC TRENDS 

 

Results for a selected subset of temperature-sensitive metrics are shown in Tables I3-1 through 

I3-6. Overall, there were few consistent trends among the metrics (or taxa) that occurred across 

the site/site groups and across states. In addition, some of the significant correlations were found 

to be driven by outliers. Some may also have been influenced by confounding factors (see 

Section 2 of the report for more information).   

 

There are some notable regional differences. In Utah, the temperature metric trends seemed more 

evident (maybe because Utah has experienced a more noticeable temperature increase than the 

other states). This may have been because of the availability of at least some long-term reference 

data from sites/site groups in Utah at higher elevations. In Maine, the ecoregion with higher 

elevations (Northeastern Highlands) had no sites with sufficient long term data detect such 

trends.  

 

For temperature preference trait groups in each state, ‘long-list’ metrics were based on the 

original list of cold- or warm-water taxa (which were derived from weighted average and 

maximum likelihood calculations and literature – see Appendix K for more information). The 

‘short-list’ metrics were based on a subset of the ‘long-list’ taxa that are referred to (in other 

sections of this report) as temperature indicator taxa. Data from other states, case studies (i.e. 

evaluation of taxa lists at the coldest and warmest sites), and best professional judgment from the 

regional climate change working groups were taken into account when developing the 

temperature indicator lists (see Appendices E, F and G for more information on the working 

groups; and Attachments to these appendices for information on temperature indicator taxa for 

each state). The ‘short-list’ metrics were developed because it was believed that they would have 

a greater chance of showing trends. 

 

Overall, results from the ‘short-list’ and ‘long-list’ metrics were similar (Tables I3-1 to 6). We 

examined what taxa might be driving the differences at certain sites. In Utah, Ephemerella 

(designated as a cold-water taxon) was influential over trends at two of four long-term reference 

sites. There are also a few taxa that were excluded from the ‘short-list’, but showed trends 
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(although some trends were counter-intuitive trends and must be related to factors other than 

climate or discounted). Nevertheless, in Utah, these taxa are worth further consideration: 

Rhyacophilidae, Drunella, and Brachycentrus. In North Carolina, there were a few taxa on the 

warm-water list that showed counter-intuitive trends (i.e. decreased as PRISM mean annual air 

temperature increased). These were: Chimarra, Dromogomphus and Gomphus. This suggests 

what has been noted in other sections of this report: that the cold- and warm-water taxa lists and 

the derived biological temperature metrics are not final, that they do not necessarily capture all 

relevant considerations. Although not presented here, another result worth noting is that the 

‘intermediate’ taxa did not show strong or consistent trends. 
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Table I3-1. Pearson product moment correlations of temperature-sensitive richness metrics versus year for individual sites and site 
groups in Maine, Utah and North Carolina. Highlighted correlations were significant (p<0.05). The ‘long-list’ metrics were based on 
the original list of cold and warm-water taxa (which were derived from weighted average and maximum likelihood calculations and 
literature – see Appendix K for more information). The ‘short-list’ metrics were based on a subset of the ‘long-list’ taxa that are 
referred to (in other sections of this report) as temperature indicator taxa.  Data from other states, case studies (i.e. evaluation of taxa 
lists at the coldest and warmest sites), and best professional judgment from the regional climate change working groups were taken 
into account when developing the temperature indicator lists (see Attachments in Appendices E, F and G for more information on 
temperature indicator taxa for each state). The ‘short-list’ metrics were developed because it was believed that they would have a 
greater chance of showing trends.  

Temperature Richness Metrics - YEAR  

State Site/ Site Group 
# Cold-water Taxa        

(Short-list) 
# Warm-water Taxa         

(Short-list) 
# Cold-water Taxa         

(Long-list) 
# Warm-water Taxa         

(Long-list) 

r N p r N p r N p r N p 

M
ai

ne
 

56817 0.49 N=23 p=.017 0.78 N=23 p=.000 0.41 N=23 p=.049 0.73 N=23 p=.000 
57011 0.04 N=12 p=.896 0.65 N=12 p=.023 0.66 N=12 p=.019 0.77 N=12 p=.003 
57065 0.54 N=9 p=.133 0.58 N=9 p=.101 0.57 N=9 p=.111 0.56 N=9 p=.115 
Laur 0.82 N=8 p=.012 0.28 N=8 p=.494 0.43 N=8 p=.292 0.57 N=8 p=.141 
NEHigh -0.25 N=8 p=.554 -0.05 N=8 p=.900 0.26 N=8 p=.537 -0.13 N=8 p=.761 

U
ta

h 

4927250 -0.71 N=17 p=.002 -0.21 N=17 p=.416 -0.59 N=17 p=.012 0.08 N=17 p=.762 
4936750 -0.38 N=12 p=.227 0.38 N=12 p=.222 -0.32 N=12 p=.313 0.23 N=12 p=.468 
4951200 -0.60 N=15 p=.017 0.81 N=15 p=.000 -0.64 N=15 p=.009 0.60 N=15 p=.019 
5940440 -0.64 N=9 p=.065 0.00 N=9 p=1.00 -0.68 N=9 p=.043 -0.26 N=9 p=.502 
WU_SF 0.10 N=20 p=.677 0.67 N=20 p=.001 0.37 N=20 p=.113 0.30 N=20 p=.206 
WU_ME -0.27 N=12 p=.400 0.72 N=12 p=.009 -0.42 N=12 p=.169 0.52 N=12 p=.080 
CP 0.13 N=14 p=.662 0.50 N=14 p=.067 0.29 N=14 p=.321 0.61 N=14 p=.021 

N
or

th
 C

ar
ol

in
a NC0109 (BR) 0.55 N=11 p=.080 -0.58 N=11 p=.059 0.14 N=11 p=.682 -0.56 N=11 p=.074 

NC0207 (BR) 0.38 N=9 p=.316 -0.04 N=9 p=.914 -0.21 N=9 p=.593 -0.52 N=9 p=.151 
NC0209 (BR) 0.82 N=7 p=.024 -0.53 N=7 p=.219 0.27 N=7 p=.562 -0.86 N=7 p=.013 
NC0075 (P) -0.39 N=7 p=.393 0.60 N=7 p=.157 0.35 N=7 p=.441 0.45 N=7 p=.316 
NC0248 (P) 0.28 N=7 p=.542 0.14 N=7 p=.772 0.57 N=7 p=.177 -0.50 N=7 p=.253 
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Table I3-2. Pearson product moment correlations of temperature-sensitive % individual metrics versus year for individual sites and 
site groups in Maine, Utah and North Carolina. Highlighted correlations were significant (p<0.05). The ‘long-list’ metrics were based 
on the original list of cold and warm-water taxa (which were derived from weighted average and maximum likelihood calculations 
and literature – see Appendix K for more information). The ‘short-list’ metrics were based on a subset of the ‘long-list’ taxa that are 
referred to (in other sections of this report) as temperature indicator taxa.  Data from other states, case studies (i.e. evaluation of taxa 
lists at the coldest and warmest sites), and best professional judgment from the regional climate change working groups were taken 
into account when developing the temperature indicator lists (see Attachments in Appendices E, F and G for more information on 
temperature indicator taxa for each state). The ‘short-list’ metrics were developed because it was believed that they would have a 
greater chance of showing trends.  

Temperature % Individual Metrics - YEAR  

State Site/ Site Group 
% Cold-water Individs 

(Short-list) 
% Warn Water Individs   

(Short-list) 
% Cold-water Individs   

(Long-list) 
% Warm-water Individs   

(Long-list) 

r N p r N p r N p r N p 

M
ai

ne
 

56817 0.47 N=23 p=.025 0.55 N=23 p=.006 0.11 N=23 p=.612 -0.06 N=23 p=.794 
57011 -0.67 N=12 p=.017 -0.59 N=12 p=.043 0.13 N=12 p=.687 0.02 N=12 p=.947 
57065 0.45 N=9 p=.226 -0.36 N=9 p=.336 0.62 N=9 p=.076 -0.56 N=9 p=.121 
Laur -0.01 N=8 p=.990 -0.38 N=8 p=.347 -0.14 N=8 p=.745 0.23 N=8 p=.589 
NEHigh -0.45 N=8 p=.258 -0.02 N=8 p=.958 0.01 N=8 p=.986 0.05 N=8 p=.905 

U
ta

h 

4927250 -0.72 N=17 p=.001 -0.21 N=17 p=.416 0.03 N=17 p=.918 -0.27 N=17 p=.291 
4936750 -0.15 N=12 p=.635 0.42 N=12 p=.174 -0.42 N=12 p=.173 0.08 N=12 p=.801 
4951200 -0.63 N=15 p=.013 0.40 N=15 p=.140 -0.63 N=15 p=.011 0.21 N=15 p=.460 
5940440 -0.12 N=9 p=.764 0.00 N=9 p=1.00 0.27 N=9 p=.487 -0.33 N=9 p=.388 
WU_SF -0.12 N=20 p=.603 0.60 N=20 p=.005 0.58 N=20 p=.008 -0.12 N=20 p=.610 
WU_ME 0.64 N=12 p=.026 0.63 N=12 p=.028 0.30 N=12 p=.346 -0.28 N=12 p=.375 
CP -0.02 N=14 p=.951 0.48 N=14 p=.084 0.20 N=14 p=.503 0.43 N=14 p=.127 

N
or

th
 C

ar
ol

in
a NC0109 (BR) 0.57 N=11 p=.067 -0.04 N=11 p=.904 0.36 N=11 p=.273 -0.37 N=11 p=.256 

NC0207 (BR) 0.33 N=9 p=.391 0.09 N=9 p=.824 0.46 N=9 p=.212 -0.28 N=9 p=.462 
NC0209 (BR) 0.29 N=7 p=.522 -0.33 N=7 p=.469 0.48 N=7 p=.277 -0.46 N=7 p=.300 
NC0075 (P) -0.02 N=7 p=.969 -0.73 N=7 p=.060 -0.26 N=7 p=.567 0.66 N=7 p=.107 

NC0248 (P) -0.14 N=7 p=.760 -0.55 N=7 p=.202 0.19 N=7 p=.685 -0.31 N=7 p=.494 
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Table I3-3. Pearson product moment correlations of temperature-sensitive richness metrics versus PRISM mean annual air 
temperature for individual sites and site groups in Maine, Utah and North Carolina. Highlighted correlations were significant 
(p<0.05). The ‘long-list’ metrics were based on the original list of cold and warm-water taxa (which were derived from weighted 
average and maximum likelihood calculations and literature – see Appendix K for more information). The ‘short-list’ metrics were 
based on a subset of the ‘long-list’ taxa that are referred to (in other sections of this report) as temperature indicator taxa. Data from 
other states, case studies (i.e. evaluation of taxa lists at the coldest and warmest sites), and best professional judgment from the 
regional climate change working groups were taken into account when developing the temperature indicator lists (see Attachments in 
Appendices E, F and G for more information on temperature indicator taxa for each state). The ‘short-list’ metrics were developed 
because it was believed that they would have a greater chance of showing trends.  

Temperature Richness Metrics - PRISM mean annual air temperature 

State Site/ Site Group 
# Cold-water Taxa      

(Short-list) 
# Warm-water Taxa          

(Short-list) 
# Cold-water Taxa       

(Long-list) 
# Warm-water Taxa       

(Long-list) 
r N p r N p r N p r N p 

M
ai

ne
 

56817 0.31 N=23 p=.147 0.21 N=23 p=.341 0.08 N=23 p=.709 0.18 N=23 p=.423 
57011 0.02 N=12 p=.947 0.27 N=12 p=.388 -0.09 N=12 p=.772 0.18 N=12 p=.586 
57065 -0.58 N=9 p=.103 -0.73 N=9 p=.024 -0.62 N=9 p=.078 -0.53 N=9 p=.143 
Laur -0.71 N=8 p=.049 -0.18 N=8 p=.675 -0.56 N=8 p=.151 -0.56 N=8 p=.150 
NEHigh -0.50 N=8 p=.203 0.54 N=8 p=.165 -0.54 N=8 p=.169 0.48 N=8 p=.227 

U
ta

h 

4927250 -0.63 N=17 p=.007 -0.44 N=17 p=.076 -0.61 N=17 p=.009 -0.23 N=17 p=.374 
4936750 -0.08 N=12 p=.815 -0.03 N=12 p=.929 -0.04 N=12 p=.913 -0.13 N=12 p=.694 
4951200 -0.65 N=15 p=.009 0.75 N=15 p=.001 -0.72 N=15 p=.003 0.35 N=15 p=.207 
5940440 -0.14 N=9 p=.726 0.00 N=9 p=1.00 -0.32 N=9 p=.405 0.16 N=9 p=.682 
WU_SF 0.11 N=20 p=.639 0.53 N=20 p=.016 0.34 N=20 p=.147 0.01 N=20 p=.953 
WU_ME -0.66 N=12 p=.018 0.65 N=12 p=.023 -0.74 N=12 p=.006 0.23 N=12 p=.469 
CP 0.15 N=14 p=.619 0.51 N=14 p=.063 0.30 N=14 p=.302 0.37 N=14 p=.196 

N
or

th
 C

ar
ol

in
a NC0109 (BR) -0.38 N=11 p=.246 -0.18 N=11 p=.592 0.17 N=11 p=.614 -0.08 N=11 p=.825 

NC0207 (BR) 0.43 N=9 p=.245 0.27 N=9 p=.478 0.36 N=9 p=.341 -0.19 N=9 p=.626 

NC0209 (BR) 0.00 N=7 p=.993 -0.48 N=7 p=.276 0.13 N=7 p=.784 -0.23 N=7 p=.617 

NC0075 (P) -0.09 N=7 p=.841 0.56 N=7 p=.194 -0.15 N=7 p=.743 -0.08 N=7 p=.863 

NC0248 (P) -0.20 N=7 p=.667 -0.47 N=7 p=.291 0.27 N=7 p=.562 -0.92 N=7 p=.004 
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Table I3-4. Pearson product moment correlations of temperature-sensitive % individual metrics versus PRISM mean annual air 
temperature for individual sites and site groups in Maine, Utah and North Carolina. Highlighted correlations were significant 
(p<0.05). The ‘long-list’ metrics were based on the original list of cold and warm-water taxa (which were derived from weighted 
average and maximum likelihood calculations and literature – see Appendix K for more information). The ‘short-list’ metrics were 
based on a subset of the ‘long-list’ taxa that are referred to (in other sections of this report) as temperature indicator taxa.  Data from 
other states, case studies (i.e. evaluation of taxa lists at the coldest and warmest sites), and best professional judgment from the 
regional climate change working groups were taken into account when developing the temperature indicator lists (see Attachments in 
Appendices E, F and G for more information on temperature indicator taxa for each state). The ‘short-list’ metrics were developed 
because it was believed that they would have a greater chance of showing trends  

Temperature Metrics - PRISM mean annual air temperature 

State Site/ Site Group 
% Cold-water Individs 

(Short-list) 
% Warn Water Individs   

(Short-list) 
% Cold-water Individs   

(Long-list) 
% Warm-water Individs   

(Long-list) 

r N p r N p r N p r N p 

M
ai

ne
 

56817 0.15 N=23 p=.506 0.13 N=23 p=.546 -0.25 N=23 p=.258 -0.09 N=23 p=.687 
57011 -0.16 N=12 p=.617 0.37 N=12 p=.232 0.03 N=12 p=.921 -0.07 N=12 p=.834 
57065 -0.27 N=9 p=.480 0.05 N=9 p=.903 -0.23 N=9 p=.546 0.17 N=9 p=.666 
Laur 0.42 N=8 p=.295 0.38 N=8 p=.358 0.66 N=8 p=.076 -0.21 N=8 p=.612 
NEHigh 0.46 N=8 p=.250 0.20 N=8 p=.642 -0.56 N=8 p=.152 0.46 N=8 p=.252 

U
ta

h 

4927250 -0.30 N=17 p=.236 -0.35 N=17 p=.174 0.26 N=17 p=.313 -0.05 N=17 p=.848 
4936750 -0.20 N=12 p=.534 0.01 N=12 p=.981 -0.10 N=12 p=.754 0.14 N=12 p=.664 
4951200 -0.53 N=15 p=.044 0.62 N=15 p=.014 -0.54 N=15 p=.037 0.17 N=15 p=.547 
5940440 -0.29 N=9 p=.455 0.00 N=9 p=1.00 -0.37 N=9 p=.326 -0.08 N=9 p=.846 
WU_SF 0.05 N=20 p=.826 0.44 N=20 p=.050 0.70 N=20 p=.001 -0.24 N=20 p=.307 
WU_ME 0.31 N=12 p=.324 0.75 N=12 p=.005 0.02 N=12 p=.945 -0.38 N=12 p=.225 
CP 0.04 N=14 p=.898 0.65 N=14 p=.012 0.26 N=14 p=.362 0.36 N=14 p=.205 

N
or

th
 C

ar
ol

in
a NC0109 (BR) -0.32 N=11 p=.344 0.00 N=11 p=.998 -0.13 N=11 p=.697 0.10 N=11 p=.781 

NC0207 (BR) 0.17 N=9 p=.665 0.26 N=9 p=.491 0.08 N=9 p=.848 -0.24 N=9 p=.537 
NC0209 (BR) 0.07 N=7 p=.883 -0.45 N=7 p=.310 0.32 N=7 p=.491 -0.71 N=7 p=.073 
NC0075 (P) -0.10 N=7 p=.838 -0.16 N=7 p=.738 -0.05 N=7 p=.915 0.28 N=7 p=.545 
NC0248 (P) -0.10 N=7 p=.837 -0.54 N=7 p=.215 0.43 N=7 p=.331 -0.82 N=7 p=.024 
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Table I3-5. Pearson product moment correlations of temperature-sensitive richness metrics versus PRISM mean annual 
precipitation for individual sites and site groups in Maine, Utah and North Carolina. Highlighted correlations were significant 
(p<0.05). The ‘long-list’ metrics were based on the original list of cold and warm-water taxa (which were derived from weighted 
average and maximum likelihood calculations and literature – see Appendix K for more information). The ‘short-list’ metrics were 
based on a subset of the ‘long-list’ taxa that are referred to (in other sections of this report) as temperature indicator taxa.  Data from 
other states, case studies (i.e. evaluation of taxa lists at the coldest and warmest sites), and best professional judgment from the 
regional climate change working groups were taken into account when developing the temperature indicator lists (see Attachments in 
Appendices E, F and G for more information on temperature indicator taxa for each state). The ‘short-list’ metrics were developed 
because it was believed that they would have a greater chance of showing trends. 

Temperature Richness Metrics - PRISM mean annual precipitation 

State Site/ Site Group 
# Cold-water Taxa     

(Short-list) 
# Warm-water Taxa           

(Short-list) 
# Cold-water Taxa                 

(Long-list) 
# Warm-water Taxa                 

(Long-list) 

r N p r N p r N p r N p 

M
ai

ne
 

56817 0.44 N=23 p=.035 0.07 N=23 p=.751 0.32 N=23 p=.130 0.05 N=23 p=.829 
57011 0.18 N=12 p=.585 -0.04 N=12 p=.909 0.19 N=12 p=.561 0.01 N=12 p=.975 
57065 -0.51 N=9 p=.161 -0.13 N=9 p=.733 -0.12 N=9 p=.765 0.00 N=9 p=.993 
Laur -0.23 N=8 p=.581 -0.15 N=8 p=.725 0.03 N=8 p=.935 -0.16 N=8 p=.714 
NEHigh -0.19 N=8 p=.654 -0.03 N=8 p=.936 0.09 N=8 p=.832 0.14 N=8 p=.741 

U
ta

h 

4927250 -0.11 N=17 p=.678 -0.05 N=17 p=.835 -0.07 N=17 p=.794 -0.11 N=17 p=.687 
4936750 0.42 N=12 p=.169 0.21 N=12 p=.504 0.46 N=12 p=.135 0.29 N=12 p=.363 
4951200 0.21 N=15 p=.452 -0.25 N=15 p=.361 0.26 N=15 p=.353 -0.18 N=15 p=.517 
5940440 0.01 N=9 p=.975 0.00 N=9 p=1.00 0.25 N=9 p=.512 -0.14 N=9 p=.723 
WU_SF 0.06 N=20 p=.803 -0.32 N=20 p=.171 0.03 N=20 p=.890 -0.19 N=20 p=.426 
WU_ME 0.40 N=12 p=.201 -0.50 N=12 p=.097 0.18 N=12 p=.584 -0.70 N=12 p=.010 
CP 0.00 N=14 p=.996 -0.04 N=14 p=.896 0.00 N=14 p=.991 0.11 N=14 p=.703 

N
or

th
 C

ar
ol

in
a NC0109 (BR) 0.85 N=11 p=.001 -0.65 N=11 p=.029 0.63 N=11 p=.036 -0.83 N=11 p=.002 

NC0207 (BR) 0.39 N=9 p=.305 -0.29 N=9 p=.445 -0.04 N=9 p=.921 -0.78 N=9 p=.013 

NC0209 (BR) 0.31 N=7 p=.498 -0.56 N=7 p=.189 0.30 N=7 p=.518 -0.75 N=7 p=.053 

NC0075 (P) 0.34 N=7 p=.457 0.20 N=7 p=.663 0.40 N=7 p=.369 0.03 N=7 p=.942 
NC0248 (P) 0.00 N=7 p=.992 -0.43 N=7 p=.333 -0.60 N=7 p=.154 0.37 N=7 p=.408 



I-25 
 

Table I3-6. Pearson product moment correlations of temperature-sensitive % individual metrics versus PRISM mean annual 
precipitation for individual sites and site groups in Maine, Utah and North Carolina. Highlighted correlations were significant 
(p<0.05). The ‘long-list’ metrics were based on the original list of cold and warm-water taxa (which were derived from weighted 
average and maximum likelihood calculations and literature – see Appendix K for more information). The ‘short-list’ metrics were 
based on a subset of the ‘long-list’ taxa that are referred to (in other sections of this report) as temperature indicator taxa.  Data from 
other states, case studies (i.e. evaluation of taxa lists at the coldest and warmest sites), and best professional judgment from the 
regional climate change working groups were taken into account when developing the temperature indicator lists (see Attachments in 
Appendices E, F and G for more information on temperature indicator taxa for each state). The ‘short-list’ metrics were developed 
because it was believed that they would have a greater chance of showing trends. 

Temperature % Individual Metrics - PRISM mean annual precipitation 

State Site/ Site Group 
% Cold-water Individs     

(Short-list) 
% Warn Water Individs         

(Short-list) 
% Cold-water Individs        

(Long-list) 
% Warm-water Individs        

(Long-list) 
r N p r N p r N p r N p 

M
ai

ne
 

56817 0.58 N=23 p=.003 0.04 N=23 p=.852 0.27 N=23 p=.218 -0.25 N=23 p=.247 
57011 0.03 N=12 p=.932 -0.10 N=12 p=.764 -0.44 N=12 p=.154 -0.18 N=12 p=.585 
57065 -0.02 N=9 p=.968 -0.44 N=9 p=.234 0.26 N=9 p=.497 -0.39 N=9 p=.298 
Laur 0.13 N=8 p=.756 0.00 N=8 p=.996 -0.24 N=8 p=.566 -0.32 N=8 p=.446 
NEHigh 0.36 N=8 p=.381 -0.43 N=8 p=.286 0.12 N=8 p=.768 -0.08 N=8 p=.846 

U
ta

h 

4927250 0.08 N=17 p=.748 -0.14 N=17 p=.596 0.17 N=17 p=.524 0.05 N=17 p=.849 
4936750 0.30 N=12 p=.345 0.33 N=12 p=.290 0.40 N=12 p=.203 -0.54 N=12 p=.072 
4951200 0.10 N=15 p=.720 -0.34 N=15 p=.210 0.11 N=15 p=.701 0.01 N=15 p=.968 
5940440 0.54 N=9 p=.137 0.00 N=9 p=1.00 0.40 N=9 p=.291 -0.41 N=9 p=.275 
WU_SF -0.46 N=20 p=.042 -0.17 N=20 p=.485 -0.27 N=20 p=.241 0.15 N=20 p=.529 
WU_ME -0.20 N=12 p=.529 -0.24 N=12 p=.446 -0.60 N=12 p=.039 0.15 N=12 p=.635 
CP -0.09 N=14 p=.763 -0.16 N=14 p=.586 -0.09 N=14 p=.761 0.21 N=14 p=.481 

N
or

th
 C

ar
ol

in
a NC0109 (BR) 0.63 N=11 p=.038 -0.57 N=11 p=.065 0.82 N=11 p=.002 -0.83 N=11 p=.001 

NC0207 (BR) 0.71 N=9 p=.032 -0.32 N=9 p=.402 0.75 N=9 p=.020 -0.41 N=9 p=.267 
NC0209 (BR) 0.54 N=7 p=.209 -0.58 N=7 p=.168 0.55 N=7 p=.202 -0.27 N=7 p=.552 

NC0075 (P) 0.64 N=7 p=.119 0.10 N=7 p=.824 0.54 N=7 p=.214 -0.52 N=7 p=.229 
NC0248 (P) -0.29 N=7 p=.527 0.25 N=7 p=.581 -0.79 N=7 p=.035 0.56 N=7 p=.194 
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Attachment I4 
__________________ 
Climate Variable -EPT Metric Trends 
 
In this Attachment, we show results for a selected subset of EPT metrics, which were examined 
for yearly trends and trends related to PRISM air temperature and precipitation variables. 
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ATTACHMENT I4. CLIMATE VARIABLE-EPT METRIC TRENDS 

 

Results for Ephemeroptera/Plecoptera/Trichoptera (EPT) metrics (richness and percent 

individuals) are shown in Tables I4-1 through I4-3. There were a few significant associations 

between EPT metrics, year, and PRISM mean annual air temperature and annual precipitation. 

At 3 of the Maine sites, EPT richness was positively (and significantly) correlated with year. At 

3 of the Utah sites, EPT richness was negatively (and significantly) correlated with PRISM mean 

annual air temperature. Two of the North Carolina stations were significantly correlated with 

PRISM mean annual precipitation (one was positive, the other negative). Overall there was a 

lack of consistent patterns, which makes it difficult to project how EPT metrics may change as a 

result of climate change. Developing EPT metrics that are geared more specifically towards 

detecting climate change effects may be worth exploring (i.e. one that detects replacement of 

cold-water EPT taxa with warm-water EPT taxa). 

 
Table I4-1. Pearson product moment correlations of EPT richness (EPT_Tax) and % individual 
(EPT_Pct) metrics versus year for individual sites and site groups in Maine, Utah and North 
Carolina. Highlighted correlations were significant (p<0.05).   

EPT Metrics - Year 

State Site/ Site Group EPT_Pct EPT_Tax 
r N p r N p 

M
ai

ne
 

56817 0.06 N=23 p=.801 0.75 N=23 p=.000 
57011 -0.52 N=12 p=.082 0.76 N=12 p=.004 
57065 -0.36 N=9 p=.342 0.51 N=9 p=.156 
Laur 0.39 N=8 p=.337 0.71 N=8 p=.050 
NEHigh -0.67 N=8 p=.067 -0.60 N=8 p=.117 

U
ta

h 

4927250 0.06 N=17 p=.812 -0.59 N=17 p=.014 
4936750 -0.26 N=12 p=.416 -0.21 N=12 p=.520 
4951200 0.00 N=15 p=.992 -0.49 N=15 p=.066 
5940440 0.44 N=9 p=.232 -0.65 N=9 p=.058 
WU_SF 0.14 N=20 p=.570 0.42 N=20 p=.068 
WU_ME -0.57 N=12 p=.052 -0.34 N=12 p=.273 
CP -0.49 N=14 p=.077 0.30 N=14 p=.303 

N
or

th
 C

ar
ol

in
a NC0109 (BR) 0.74 N=11 p=.010 0.30 N=11 p=.364 

NC0207 (BR) 0.27 N=9 p=.485 -0.18 N=9 p=.651 
NC0209 (BR) 0.60 N=7 p=.157 0.16 N=7 p=.724 
NC0075 (P) -0.60 N=7 p=.153 0.15 N=7 p=.747 
NC0248 (P) 0.36 N=7 p=.434 0.54 N=7 p=.210 
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Table I4-2. Pearson product moment correlations of EPT richness (EPT_Tax) and % individual 
(EPT_Pct) metrics versus PRISM mean annual air temperature for individual sites and site 
groups in Maine, Utah and North Carolina. Highlighted correlations were significant (p<0.05).   

EPT Metrics - PRISM mean annual air temperature 

State Site/ Site Group EPT_Pct EPT_Tax 
r N p r N p 

M
ai

ne
 

56817 0.08 N=23 p=.714 0.17 N=23 p=.444 
57011 0.64 N=12 p=.025 0.25 N=12 p=.428 
57065 -0.07 N=9 p=.868 -0.64 N=9 p=.062 
Laur 0.16 N=8 p=.698 -0.50 N=8 p=.211 
NEHigh 0.58 N=8 p=.135 0.29 N=8 p=.493 

U
ta

h 

4927250 0.03 N=17 p=.912 -0.57 N=17 p=.017 
4936750 0.04 N=12 p=.899 -0.09 N=12 p=.772 
4951200 0.27 N=15 p=.335 -0.73 N=15 p=.002 
5940440 0.07 N=9 p=.864 -0.43 N=9 p=.248 
WU_SF 0.18 N=20 p=.449 0.31 N=20 p=.186 
WU_ME -0.27 N=12 p=.396 -0.77 N=12 p=.004 
CP -0.43 N=14 p=.125 0.37 N=14 p=.187 

N
or

th
 C

ar
ol

in
a NC0109 (BR) -0.09 N=11 p=.796 0.00 N=11 p=.988 

NC0207 (BR) -0.22 N=9 p=.574 0.35 N=9 p=.359 
NC0209 (BR) 0.03 N=7 p=.943 0.39 N=7 p=.381 
NC0075 (P) 0.14 N=7 p=.764 -0.15 N=7 p=.754 

NC0248 (P) 0.24 N=7 p=.610 0.41 N=7 p=.365 
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Table I4-3. Pearson product moment correlations of EPT richness (EPT_Tax) and % individual 
(EPT_Pct) metrics versus PRISM mean annual precipitation for individual sites and site groups 
in Maine, Utah and North Carolina. Highlighted correlations were significant (p<0.05).   

EPT Metrics - PRISM mean annual precipitation 

State Site/ Site Group EPT_Pct EPT_Tax 
r N p r N p 

M
ai

ne
 

56817 0.01 N=23 p=.973 0.20 N=23 p=.365 
57011 -0.05 N=12 p=.884 0.24 N=12 p=.449 
57065 0.17 N=9 p=.662 -0.12 N=9 p=.756 
Laur -0.45 N=8 p=.262 -0.34 N=8 p=.411 
NEHigh 0.06 N=8 p=.895 0.34 N=8 p=.416 

U
ta

h 

4927250 -0.29 N=17 p=.265 -0.245 N=17 p=.343 
4936750 0.32 N=12 p=.303 0.4497 N=12 p=.142 
4951200 -0.18 N=15 p=.527 0.4483 N=15 p=.094 
5940440 0.32 N=9 p=.396 0.1728 N=9 p=.657 
WU_SF -0.03 N=20 p=.909 -0.0528 N=20 p=.825 
WU_ME 0.43 N=12 p=.164 -0.2622 N=12 p=.410 
CP -0.19 N=14 p=.521 -0.1404 N=14 p=.632 

N
or

th
 C

ar
ol

in
a NC0109 (BR) 0.82 N=11 p=.002 0.36 N=11 p=.275 

NC0207 (BR) 0.44 N=9 p=.234 0.26 N=9 p=.502 
NC0209 (BR) 0.59 N=7 p=.162 0.54 N=7 p=.213 

NC0075 (P) 0.15 N=7 p=.743 0.39 N=7 p=.382 

NC0248 (P) -0.70 N=7 p=.081 -0.80 N=7 p=.033 
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Attachment I5 
__________________ 
Climate Variable -HBI Trends 
 
In this Attachment, we show results for the HBI metric, which we examined for yearly trends 
and trends related to PRISM air temperature and precipitation variables. 
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ATTACHMENT I5. CLIMATE VARIABLE-HBI TRENDS 

 

Results for the Hilsenhoff Biotic Index (HBI) are shown in Tables I5-1through I5-3. We 

evaluated long-term HBI trends because HBIs are used as part of water quality assessments in 

many states (including Maine and North Carolina, analyzed in this study). It was also valuable 

because we lacked long-term nutrient data for most sites, and the HBI provided us with some 

insight as to whether or not a site had been influenced by organic enrichment.  

 

There were a few significant associations between HBI values, year, PRISM mean annual air 

temperature, and PRISM annual precipitation. At Maine Station 57011, HBI values were 

positively (and significantly) correlated with year, which suggests that long-term trends at this 

site may have been influenced by organic enrichment (higher HBI scores suggest greater organic 

enrichment). One site in Utah and 1 site in North Carolina were negatively (and significantly) 

correlated with year. HBI values at one of the Utah site groups (Wasatch Uinta Semiarid 

Foothills) was negatively (and significantly) correlated with PRISM mean annual air 

temperature. Two of the Blue Ridge North Carolina sites had strong negative correlations 

between HBI values and PRISM mean annual precipitation. Overall there was a lack of 

consistent patterns, which makes it difficult to project how HBI values may change as a result of 

climate change. 

 

It should be noted that the tolerance values that were used in the HBI calculations for Maine and 

North Carolina sites/site groups were derived from their respective state datasets. Utah HBIs 

were calculated using tolerance values from the New Mexico traits database because we did not 

have access to state-specific ones at the time of the analyses. 
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Table I5-1. Pearson product moment correlations of HBI versus year for individual sites and site 
groups in Maine, Utah and North Carolina. Highlighted correlations were significant (p<0.05).   

HBI - Year 
State Site/ Site Group r N p 

M
ai

ne
 

56817 -0.13 N=23 p=.544 
57011 0.75 N=12 p=.005 
57065 0.00 N=9 p=.992 
Laur -0.03 N=8 p=.951 
NEHigh 0.37 N=8 p=.363 

U
ta

h 
4927250 -0.19 N=17 p=.466 
4936750 0.32 N=12 p=.313 
4951200 0.27 N=15 p=.329 
5940440 -0.46 N=9 p=.213 
WU_SF -0.64 N=20 p=.002 
WU_ME -0.32 N=12 p=.312 
CP -0.06 N=14 p=.841 

N
or

th
 C

ar
ol

in
a NC0109 (BR) -0.63 N=11 p=.038 

NC0207 (BR) -0.34 N=9 p=.374 
NC0209 (BR) -0.50 N=7 p=.251 
NC0075 (P) 0.23 N=7 p=.614 

NC0248 (P) -0.17 N=7 p=.710 
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Table I5-2. Pearson product moment correlations of HBI versus PRISM mean annual air 
temperature for individual sites and site groups in Maine, Utah and North Carolina. Highlighted 
correlations were significant (p<0.05).   

HBI - PRISM mean annual air temperature 
State Site/ Site Group r N p 

M
ai

ne
 

56817 -0.07 N=23 p=.760 
57011 -0.21 N=12 p=.512 
57065 0.12 N=9 p=.761 
Laur -0.44 N=8 p=.275 
NEHigh -0.15 N=8 p=.725 

U
ta

h 

4927250 -0.32 N=17 p=.208 
4936750 0.09 N=12 p=.773 
4951200 0.00 N=15 p=.993 
5940440 0.09 N=9 p=.816 
WU_SF -0.69 N=20 p=.001 
WU_ME -0.38 N=12 p=.227 
CP -0.26 N=14 p=.376 

N
or

th
 C

ar
ol

in
a NC0109 (BR) 0.13 N=11 p=.705 

NC0207 (BR) -0.07 N=9 p=.855 
NC0209 (BR) -0.12 N=7 p=.790 
NC0075 (P) -0.56 N=7 p=.193 

NC0248 (P) 0.13 N=7 p=.789 
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Table I5-3. Pearson product moment correlations of HBI versus PRISM mean annual 
precipitation for individual sites and site groups in Maine, Utah and North Carolina. Highlighted 
correlations were significant (p<0.05).   

HBI - PRISM mean annual precipitation 

State Site/ Site 
Group r N p 

M
ai

ne
 

56817 -0.22 N=23 p=.309 
57011 0.25 N=12 p=.434 
57065 -0.51 N=9 p=.165 
Laur 0.42 N=8 p=.299 
NEHigh -0.47 N=8 p=.235 

U
ta

h 

4927250 0.16 N=17 p=.533 
4936750 -0.55 N=12 p=.064 
4951200 0.32 N=15 p=.246 
5940440 -0.37 N=9 p=.322 
WU_SF 0.18 N=20 p=.442 
WU_ME 0.68 N=12 p=.016 
CP 0.38 N=14 p=.176 

N
or

th
 C

ar
ol

in
a NC0109 (BR) -0.86 N=11 p=.001 

NC0207 (BR) -0.72 N=9 p=.030 
NC0209 (BR) -0.57 N=7 p=.179 
NC0075 (P) -0.14 N=7 p=.770 

NC0248 (P) 0.60 N=7 p=.154 
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Attachment I6 
__________________ 
Climate Variable –OCH Metric Trends 
 
In this Attachment, we show results for a selected subset of OCH metrics, which were examined 
for yearly trends and trends related to PRISM air temperature and precipitation variables. 
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ATTACHMENT I6. CLIMATE VARIABLE-OCH METRIC TRENDS 

 

Results for Odonata/Coleoptera/Hemiptera (OCH) trait metrics (richness and percent 

individuals) are shown in Tables I6-1 through I6-3. OCH metrics may be useful as ‘hydrologic 

indicator’ metrics because these Orders are generally expected to do better during drier, more 

intermittent conditions (Bonada et al. 2007a). Results in Maine, North Carolina and Utah show 

that there were 4 significant correlations between OCH metrics and PRISM mean annual air 

temperature, and all of them were positive and all occurred at site groups (Maine Laurentian 

Plains and Hills site group and all 3 Utah site groups). None of the OCH metrics were 

significantly correlated with PRISM mean annual precipitation. Most of the significant 

correlations were with year and occurred at the Utah sites and site groups. None of the OCH 

metrics at the North Carolina sites/site groups showed significant trends. 

 

It should be noted that the lack of consistent patterns may be due in part to sampling methods. 

There are probably not many state biomonitoring programs that target Hemipterans for capture 

or that record data on them consistently. Collection methods are likely also a factor in the capture 

of Odonata. There tends to be greater Odonate abundance and diversity in edge habitats, and 

many state biomonitoring programs target riffle habitats only.  

 



I-37 
 

Table I6-1. Pearson product moment correlations of OCH (Odonata/Coleoptera/Hemiptera) 
richness (OCH_Tax) and % individual metrics (OCH_Pct) versus year for individual sites and 
site groups in Maine, Utah and North Carolina. Highlighted correlations were significant 
(p<0.05).   

OCH Metrics - Year 

State Site/ Site Group OCH_Pct OCH_Tax 
r N p r N p 

M
ai

ne
 

56817 0.28 N=23 p=.204 0.43 N=23 p=.038 
57011 -0.52 N=12 p=.087 0.43 N=12 p=.162 
57065 0.37 N=9 p=.329 0.28 N=9 p=.468 
Laur -0.80 N=8 p=.016 -0.16 N=8 p=.709 
NEHigh 0.06 N=8 p=.895 0.34 N=8 p=.416 

U
ta

h 

4927250 0.66 N=17 p=.004 0.61 N=17 p=.010 
4936750 0.32 N=12 p=.313 0.83 N=12 p=.001 
4951200 0.38 N=15 p=.160 0.45 N=15 p=.091 
5940440 -0.59 N=9 p=.097 0.28 N=9 p=.471 
WU_SF 0.30 N=20 p=.201 0.80 N=20 p=.000 
WU_ME 0.75 N=12 p=.005 0.88 N=12 p=.000 
CP 0.84 N=14 p=.000 0.66 N=14 p=.010 

N
or

th
 C

ar
ol

in
a NC0109 (BR) 0.14 N=11 p=.676 0.10 N=11 p=.775 

NC0207 (BR) -0.59 N=9 p=.091 -0.25 N=9 p=.509 
NC0209 (BR) -0.07 N=7 p=.875 0.06 N=7 p=.902 
NC0075 (P) 0.69 N=7 p=.083 0.48 N=7 p=.272 

NC0248 (P) -0.27 N=7 p=.560 -0.40 N=7 p=.375 
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Table I6-2. Pearson product moment correlations of OCH (Odonata/Coleoptera/Hemiptera) 
richness (OCH_Tax) and % individual metrics (OCH_Pct) versus PRISM mean annual air 
temperature for individual sites and site groups in Maine, Utah and North Carolina. Highlighted 
correlations were significant (p<0.05).   

OCH Metrics - PRISM mean annual air temperature 

State Site/ Site Group OCH_Pct OCH_Tax 
r N p r N p 

M
ai

ne
 

56817 0.01 N=23 p=.977 0.13 N=23 p=.541 
57011 -0.09 N=12 p=.787 0.35 N=12 p=.259 
57065 -0.33 N=9 p=.379 -0.10 N=9 p=.802 
Laur 0.89 N=8 p=.003 0.55 N=8 p=.160 
NEHigh 0.17 N=8 p=.679 0.38 N=8 p=.349 

U
ta

h 

4927250 0.44 N=17 p=.074 0.11 N=17 p=.684 
4936750 -0.11 N=12 p=.741 0.27 N=12 p=.395 
4951200 0.27 N=15 p=.328 0.13 N=15 p=.656 
5940440 -0.01 N=9 p=.981 0.59 N=9 p=.092 
WU_SF -0.06 N=20 p=.812 0.64 N=20 p=.003 
WU_ME 0.51 N=12 p=.087 0.58 N=12 p=.047 
CP 0.71 N=14 p=.005 0.35 N=14 p=.219 

N
or

th
 C

ar
ol

in
a NC0109 (BR) 0.30 N=11 p=.369 0.14 N=11 p=.679 

NC0207 (BR) 0.05 N=9 p=.891 -0.03 N=9 p=.942 
NC0209 (BR) 0.28 N=7 p=.543 -0.11 N=7 p=.818 

NC0075 (P) 0.18 N=7 p=.696 0.16 N=7 p=.728 

NC0248 (P) 0.09 N=7 p=.855 -0.42 N=7 p=.344 
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Table I6-3. Pearson product moment correlations of OCH (Odonata/Coleoptera/Hemiptera) 
richness (OCH_Tax) and % individual metrics (OCH_Pct) versus PRISM mean annual 
precipitation for individual sites and site groups in Maine, Utah and North Carolina. No 
correlations were significant (p<0.05).   

OCH Metrics - PRISM mean annual precipitation 

State Site/ Site Group OCH_Pct OCH_Tax 
r N p r N p 

M
ai

ne
 

56817 0.25 N=23 p=.244 0.28 N=23 p=.198 
57011 0.29 N=12 p=.359 0.07 N=12 p=.819 
57065 -0.33 N=9 p=.390 -0.44 N=9 p=.237 
Laur 0.17 N=8 p=.692 -0.31 N=8 p=.455 
NEHigh -0.29 N=8 p=.493 -0.25 N=8 p=.546 

U
ta

h 

4927250 -0.04 N=17 p=.886 0.46 N=17 p=.063 
4936750 0.25 N=12 p=.430 0.15 N=12 p=.640 
4951200 -0.33 N=15 p=.230 0.23 N=15 p=.415 
5940440 -0.28 N=9 p=.470 -0.30 N=9 p=.440 
WU_SF 0.23 N=20 p=.328 -0.23 N=20 p=.336 
WU_ME -0.45 N=12 p=.143 -0.27 N=12 p=.392 
CP 0.08 N=14 p=.783 0.28 N=14 p=.328 

N
or

th
 C

ar
ol

in
a NC0109 (BR) -0.22 N=11 p=.520 -0.06 N=11 p=.861 

NC0207 (BR) -0.23 N=9 p=.551 -0.50 N=9 p=.169 
NC0209 (BR) -0.48 N=7 p=.274 0.52 N=7 p=.236 

NC0075 (P) -0.24 N=7 p=.597 0.09 N=7 p=.853 

NC0248 (P) 0.26 N=7 p=.572 -0.13 N=7 p=.783 
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Attachment I7 
__________________ 
Climate Variable –‘Hydrologic’ Metric Trends 
 
In this Attachment, we show results for a selected subset of hydrologic metrics, which were 
examined for yearly trends and trends related to PRISM air temperature and precipitation 
variables. 
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ATTACHMENT I7. CLIMATE VARIABLE-HYDROLOGIC METRIC TRENDS 

 

The perennial and intermittent ‘hydrologic indicator’ metrics are based on literature (NCDWQ, 

2005; Del Rosario and Resh, 2000). If these taxa, which require water for their entire life cycle, 

are found at a site in a later instar larval stage, they are considered indicators of perennial stream 

features. The list of intermittent taxa was based on interpretation of NCDWQ (2005) and 

includes amphipods, isopods, small elongate Dipteran larvae (Ceratopogonidae, Blephariceridae, 

Chironomidae, Deuterophlebiidae, Psychodidae) winter stoneflies (Capniidae, 

Taeniopterygidae), Dytiscidae, Helichus larvae and Dasyhela (family Dolchopodidae). These 

taxa tend to be more dominant in numbers in intermittent conditions (probably due in part to loss 

of predators), but are (aside from Helichus larvae and Dasyhela) also found in perennial streams. 

 

Results for the perennial and intermittent metrics (richness and percent individuals) are shown in 

Tables I7-1 through I7-3. There were a few significant associations between these metrics, year, 

PRISM mean annual air temperature, and PRISM mean annual precipitation in each of the states. 

All of the significant correlations with PRISM mean annual air temperature occurred at the Utah 

sites/site groups: at 3 sites/site groups, the perennial richness metric was negatively correlated 

with annual air temperature, and at one of the site groups (Wasatch Uinta Semiarid Foothills), 

the intermittent richness metrics was positively correlated with annual air temperature. The 

intermittent metrics were significantly correlated with PRISM mean annual precipitation at 4 

sites/site groups (3 in Utah, 1 in North Carolina), while % perennial individuals was positively 

correlated with annual precipitation at 1 of the North Carolina sites (Station NC0109). In terms 

of yearly trends, all 4 metrics were significantly correlated with year at Maine Station 57011. 

The metrics also showed various yearly trends (more with richness metrics than with % 

individuals) at 3 sites/site groups in Utah and 1 site in North Carolina (Station NC0109). 
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Table I7-1. Pearson product moment correlations of ‘hydrologic’ richness (_Tax) and % individual (_Pct) metrics versus year for 
individual sites and site groups in Maine, Utah and North Carolina. Highlighted correlations were significant (p<0.05).  The perennial  
taxa require water for their entire life cycle and the intermittent taxa tend to be more dominant in numbers in intermittent conditions. 
Perennial and intermittent taxa lists were derived from NCDWQ 2005 and Del Rosario et al. 2000. 

Perennial/Intermittent Metrics - YEAR 

State Site/ Site Group Perennial_Pct Intermit_Pct Perennial_Tax Intermit_Tax 
r N p r N p r N p r N p 

M
ai

ne
 

56817 0.16 N=23 p=.466 -0.22 N=23 p=.323 0.75 N=23 p=.000 0.62 N=23 p=.001 
57011 -0.68 N=12 p=.016 0.58 N=12 p=.046 0.66 N=12 p=.020 0.71 N=12 p=.010 
57065 -0.38 N=9 p=.314 0.06 N=9 p=.877 0.53 N=9 p=.146 0.26 N=9 p=.493 
Laur -0.09 N=8 p=.841 0.18 N=8 p=.677 0.70 N=8 p=.054 0.16 N=8 p=.706 
NEHigh -0.56 N=8 p=.145 0.46 N=8 p=.252 -0.69 N=8 p=.058 0.46 N=8 p=.248 

U
ta

h 

4927250 0.18 N=17 p=.499 -0.39 N=17 p=.119 -0.26 N=17 p=.319 0.41 N=17 p=.105 
4936750 0.26 N=12 p=.411 0.07 N=12 p=.833 0.11 N=12 p=.734 0.48 N=12 p=.115 
4951200 -0.11 N=15 p=.688 -0.30 N=15 p=.277 -0.43 N=15 p=.114 0.15 N=15 p=.601 
5940440 0.31 N=9 p=.424 -0.42 N=9 p=.255 -0.55 N=9 p=.123 -0.73 N=9 p=.027 
WU_SF -0.04 N=20 p=.860 -0.39 N=20 p=.094 0.48 N=20 p=.033 0.69 N=20 p=.001 
WU_ME 0.34 N=12 p=.281 -0.29 N=12 p=.362 -0.21 N=12 p=.508 0.58 N=12 p=.050 
CP 0.03 N=14 p=.922 0.08 N=14 p=.778 0.46 N=14 p=.098 0.67 N=14 p=.009 

N
or

th
 C

ar
ol

in
a NC0109 (BR) 0.68 N=11 p=.023 -0.70 N=11 p=.016 -0.01 N=11 p=.968 -0.78 N=11 p=.005 

NC0207 (BR) 0.39 N=9 p=.296 -0.35 N=9 p=.349 -0.47 N=9 p=.199 -0.44 N=9 p=.238 
NC0209 (BR) 0.60 N=7 p=.157 -0.70 N=7 p=.083 0.46 N=7 p=.300 -0.29 N=7 p=.527 
NC0075 (P) -0.48 N=7 p=.279 0.34 N=7 p=.462 -0.10 N=7 p=.830 0.06 N=7 p=.893 

NC0248 (P) -0.07 N=7 p=.886 0.49 N=7 p=.261 -0.34 N=7 p=.450 0.58 N=7 p=.175 
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Table I7-2. Pearson product moment correlations of ‘hydrologic’ richness (_Tax) and % individual (_Pct) metrics versus PRISM 
mean annual air temperature for individual sites and site groups in Maine, Utah and North Carolina. Highlighted correlations were 
significant (p<0.05).  The perennial  taxa require water for their entire life cycle and the intermittent taxa tend to be more dominant in 
numbers in intermittent conditions. Perennial and intermittent taxa lists were derived from NCDWQ 2005 and Del Rosario et al. 2000. 

Perennial/Intermittent Metrics - PRISM mean annual air temperature 

State Site/ Site Group Perennial_Pct Intermit_Pct Perennial_Tax Intermit_Tax 
r N p r N p r N p r N p 

M
ai

ne
 

56817 0.08 N=23 p=.726 -0.11 N=23 p=.604 0.11 N=23 p=.620 0.36 N=23 p=.087 
57011 0.52 N=12 p=.084 -0.52 N=12 p=.082 0.45 N=12 p=.143 -0.09 N=12 p=.774 
57065 -0.11 N=9 p=.768 0.23 N=9 p=.547 -0.54 N=9 p=.135 -0.27 N=9 p=.479 
Laur 0.61 N=8 p=.106 -0.69 N=8 p=.056 -0.28 N=8 p=.498 -0.58 N=8 p=.134 
NEHigh 0.61 N=8 p=.108 -0.57 N=8 p=.139 0.32 N=8 p=.437 -0.47 N=8 p=.240 

U
ta

h 

4927250 -0.09 N=17 p=.741 -0.20 N=17 p=.430 -0.52 N=17 p=.034 0.09 N=17 p=.721 
4936750 -0.12 N=12 p=.709 0.13 N=12 p=.695 -0.05 N=12 p=.869 0.14 N=12 p=.668 
4951200 -0.12 N=15 p=.666 -0.42 N=15 p=.121 -0.68 N=15 p=.005 -0.13 N=15 p=.656 
5940440 0.20 N=9 p=.600 -0.10 N=9 p=.799 -0.21 N=9 p=.591 -0.39 N=9 p=.304 
WU_SF -0.28 N=20 p=.235 -0.29 N=20 p=.217 0.35 N=20 p=.129 0.51 N=20 p=.023 
WU_ME 0.34 N=12 p=.275 -0.29 N=12 p=.353 -0.68 N=12 p=.014 0.23 N=12 p=.467 
CP -0.36 N=14 p=.211 0.22 N=14 p=.456 0.29 N=14 p=.312 0.12 N=14 p=.684 

N
or

th
 C

ar
ol

in
a NC0109 (BR) 0.07 N=11 p=.845 -0.21 N=11 p=.543 0.24 N=11 p=.473 -0.08 N=11 p=.809 

NC0207 (BR) -0.07 N=9 p=.862 0.14 N=9 p=.724 0.05 N=9 p=.892 0.24 N=9 p=.534 
NC0209 (BR) 0.29 N=7 p=.522 -0.25 N=7 p=.593 0.41 N=7 p=.360 -0.30 N=7 p=.511 

NC0075 (P) 0.08 N=7 p=.869 -0.26 N=7 p=.566 -0.11 N=7 p=.819 -0.19 N=7 p=.687 

NC0248 (P) -0.07 N=7 p=.887 0.30 N=7 p=.518 -0.27 N=7 p=.565 0.21 N=7 p=.656 
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Table I7-3. Pearson product moment correlations of ‘hydrologic’ richness (_Tax) and % individual (_Pct) metrics versus PRISM 
mean annual precipitation for individual sites and site groups in Maine, Utah and North Carolina. Highlighted correlations were 
significant (p<0.05).  The perennial  taxa require water for their entire life cycle and the intermittent taxa tend to be more dominant in 
numbers in intermittent conditions. Perennial and intermittent taxa lists were derived from NCDWQ 2005 and Del Rosario et al. 2000. 

Perennial/Intermittent Metrics - PRISM mean annual precipitation 

State Site/ Site Group Perennial_Pct Intermit_Pct Perennial_Tax Intermit_Tax 
r N p r N p r N p r N p 

M
ai

ne
 

56817 0.02 N=23 p=.939 -0.01 N=23 p=.950 0.22 N=23 p=.324 -0.01 N=23 p=.978 
57011 0.21 N=12 p=.506 -0.03 N=12 p=.918 0.41 N=12 p=.188 0.13 N=12 p=.696 
57065 0.05 N=9 p=.891 -0.17 N=9 p=.654 -0.38 N=9 p=.317 -0.30 N=9 p=.440 
Laur -0.36 N=8 p=.382 0.22 N=8 p=.597 -0.42 N=8 p=.305 0.07 N=8 p=.874 
NEHigh 0.06 N=8 p=.886 -0.26 N=8 p=.530 0.06 N=8 p=.893 -0.09 N=8 p=.831 

U
ta

h 

4927250 -0.32 N=17 p=.204 0.33 N=17 p=.198 -0.11 N=17 p=.679 0.59 N=17 p=.013 
4936750 0.34 N=12 p=.281 -0.53 N=12 p=.075 0.37 N=12 p=.234 0.43 N=12 p=.167 
4951200 0.06 N=15 p=.845 0.63 N=15 p=.012 0.30 N=15 p=.272 0.15 N=15 p=.590 
5940440 0.22 N=9 p=.562 -0.34 N=9 p=.366 0.16 N=9 p=.687 0.19 N=9 p=.616 
WU_SF 0.35 N=20 p=.134 0.12 N=20 p=.609 0.04 N=20 p=.856 -0.08 N=20 p=.748 
WU_ME -0.14 N=12 p=.654 0.39 N=12 p=.206 -0.34 N=12 p=.278 -0.07 N=12 p=.819 
CP 0.09 N=14 p=.753 0.03 N=14 p=.918 0.08 N=14 p=.784 0.54 N=14 p=.045 

N
or

th
 C

ar
ol

in
a NC0109 (BR) 0.66 N=11 p=.026 -0.39 N=11 p=.242 0.03 N=11 p=.941 -0.76 N=11 p=.006 

NC0207 (BR) 0.35 N=9 p=.354 -0.48 N=9 p=.187 -0.13 N=9 p=.746 -0.44 N=9 p=.237 
NC0209 (BR) 0.31 N=7 p=.495 -0.44 N=7 p=.326 0.60 N=7 p=.159 -0.36 N=7 p=.431 
NC0075 (P) -0.31 N=7 p=.495 0.29 N=7 p=.529 0.34 N=7 p=.451 0.50 N=7 p=.252 

NC0248 (P) -0.30 N=7 p=.510 -0.02 N=7 p=.974 -0.29 N=7 p=.524 -0.05 N=7 p=.907 
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Attachment I8 
__________________ 
Climate Variable –Scenario Metric Trends 
 
In this Attachment, we show results for a selected subset of ‘scenario’ metrics, which were 
examined for yearly trends and trends related to PRISM air temperature and precipitation 
variables. 
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ATTACHMENT I8. CLIMATE VARIABLE-SCENARIO METRIC TRENDS 

 

In addition to looking at individual trait metrics, we also developed metrics that were based on 

combinations of traits. The first step was to select traits and trait states likely to be “functionally” 

linked to the projected changes in temperature and precipitation associated with climate change. 

We used the available information (some literature, some best professional judgment) to develop 

composite lists of favorable and unfavorable traits and trait states under two different generalized 

scenarios (thus we termed these metrics ‘scenario’ metrics):  1. conditions become drier and 

warmer (i.e. interrupted flows, more pool-like conditions, maybe some perennial streams become 

intermittent, conditions become more unpredictable and organisms experience more 

disturbances); and 2.conditions become warmer and wetter (i.e. more frequent and severe flood 

events, more winter rains (instead of snow), more high flows, conditions become more 

unpredictable and organisms experience more disturbances). Lists of the traits and trait states that 

were deemed favorable and unfavorable are shown in Tables I8-1 (drier-warmer scenario) and 

I8-2 (wetter-warmer scenario). Taxa that possessed the most number of favorable traits states 

formed the basis of the ‘robust’ metrics. Those that had the most number of unfavorable trait 

states formed the basis of the ‘vulnerable’ metrics.  

 

There are too many results to show and easily summarize, but all are available upon request. 

Results for the warmer-drier-vulnerable, drier-vulnerable and drier-robust scenario metrics 

(richness and % individuals) are shown in Tables I8-3 through I8-8. The drier scenario metrics 

were chosen because it seems likely that drier conditions will impact the biota more than wetter 

conditions. There was at least one significant association between at least one of these metrics, 

year and PRISM mean annual air temperature and annual precipitation in each of the states. As 

expected, the drier-vulnerable/warmer-drier-vulnerable metrics tended to follow similar patterns. 

Drier-vulnerable richness metrics were significantly and negatively correlated with PRISM 

mean annual air temperature at Maine Station 57065 and at 3 Utah sites/site groups. The drier-

robust richness metric was negatively correlated with annual air temperature at the Utah 

Colorado Plateau site group. The drier-vulnerable % individuals metrics did not show consistent 

patterns across sites within or across states (i.e. warmer-drier-vulnerable was negatively 

correlated with annual air temperature at Maine Laurentian Plains and Hills site group and 
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positively correlated at the Utah Wasatch Uinta Mid-elevation Mountain site group). Only a few 

of the metrics were significantly correlated with PRISM mean annual precipitation and these 

metrics sometimes showed unexpected patterns (i.e. % drier-vulnerable individuals was 

negatively correlated with mean annual precipitation with a Utah site group). Both the richness 

and % individual metrics showed some significant but mixed yearly trends in each state, with the 

most number of significant correlations occurring in Utah and the least number in North 

Carolina.  

 

There are limitations associated with the scenario metrics: 

• These metrics are essentially exploratory. It was difficult to know which groups of traits 

to use in the metrics (see Appendix K for more information on traits and trait selections), 

and these results should be viewed as a first step that motivates additional investigation. 

As more information becomes available about which combinations of traits and trait 

states are most strongly linked to climate change effects, these metrics should be further 

refined. More experimental data would be very helpful.   

• Some traits are likely more important than others and should probably be weighted 

differently. However, we had insufficient information on which to base such decisions at 

this time. 

• The different scenarios are not mutually exclusive (i.e., there could be both wetter (more 

flood events) and drier (drought or more frequent and severe low flow events) conditions 

occurring in the same year in some regions. 

• Climate models consistently project that temperatures will increase but there is more 

uncertainty regarding the potential changes to hydrologic regimes. It is tough to make 

generalizations about favorable/unfavorable trait states because the characteristics of the 

hydrologic events can vary so much (severity, timing, duration and frequency).  

• Intuitively, it would seem that taxa that are best suited to surviving unpredictable 

conditions/more frequent disturbance will fare better (i.e. can reproduce quickly, develop 

quickly, small size). More experimental data on which taxa do best under disturbance 

conditions also would be very helpful.   
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Table I8-1. SCENARIO: Drier Warmer, Drier Warmer Conditions (more pool-like, maybe some 
perennials go intermittent, unpredictable, more disturbance) 

Traits Favorable Unfavorable 
Life history     
Voltinism bi_multi semi (<1 generation/yr 

Development     
Synchronization of emergence     
Adult life span     
Adult ability to exit present absent 
Ability to survive desiccation present absent 
Mobility      
Dispersal (adult) high low 
Adult flying strength strong weak 
Occurrence in drift rare abundant 
Maximum crawling rate     
Swimming ability strong none 
Morphology     
Attachment     
Armoring good none 
Shape not_stream   
Respiration plastron_spir tegument 
Size at maturity small   
Resource acquisition/preference     
Rheophily depo eros 
Habit (primary) SK, SW   
Functional feeding group (primary) CG CF, SH 
Temperature Indicator warm cold 
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Table I8-2. SCENARIO: Wetter Warmer , More frequent and severe flood events, more winter 
rains (vs. snow) (more high flows, unpredictable, more disturbance) 

Traits Favorable Unfavorable 
Life history     
Voltinism bi_multi semi 
Development     
Synchronization of emergence     
Adult life span     
Adult ability to exit present absent 
Ability to survive desiccation     
Mobility      
Dispersal (adult) high low 
Adult flying strength     
Occurrence in drift abundant   
Maximum crawling rate high very low 
Swimming ability     
Morphology     
Attachment     
Armoring     
Shape stream not_stream 
Respiration     
Size at maturity small large 
Resource acquisition/preference     
Rheophily eros depo 
Habit (primary)   SK, SW 
Functional feeding group (primary) CF, SH CG 
Temperature Indicator warm cold 
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Table I8-3. Pearson product moment correlations of drier scenario richness metrics versus year 
for individual sites and site groups in Maine, Utah and North Carolina. Highlighted correlations 
were significant (p<0.05).   

Drier Scenario Richness Metrics - YEAR 

State Site/ Site Group WarmDrier_VulnerableTax Drier_VulnerableTax Drier_WinTax 
r N p r N p r N p 

M
ai

ne
 

56817 0.42 N=23 p=.047 0.71 N=23 p=.000 0.10 N=23 p=.659 
57011 0.29 N=12 p=.352 0.60 N=12 p=.040 0.25 N=12 p=.443 
57065 0.38 N=9 p=.313 0.43 N=9 p=.253 -0.19 N=9 p=.618 
Laur 0.39 N=8 p=.345 0.58 N=8 p=.135 -0.78 N=8 p=.021 
NEHigh -0.37 N=8 p=.373 -0.33 N=8 p=.422 0.24 N=8 p=.574 

U
ta

h 

4927250 -0.64 N=17 p=.006 -0.57 N=17 p=.018 0.66 N=17 p=.004 
4936750 -0.08 N=12 p=.815 -0.01 N=12 p=.964 0.00 N=12 p=1.00 
4951200 -0.62 N=15 p=.014 -0.35 N=15 p=.205 -0.05 N=15 p=.858 
5940440 -0.51 N=9 p=.163 -0.58 N=9 p=.104 -0.47 N=9 p=.197 
WU_SF 0.39 N=20 p=.087 0.42 N=20 p=.062 0.35 N=20 p=.128 
WU_ME -0.50 N=12 p=.098 -0.45 N=12 p=.147 0.23 N=12 p=.468 
CP 0.15 N=14 p=.607 0.26 N=14 p=.367 -0.13 N=14 p=.665 

N
or

th
 C

ar
ol

in
a NC0109 (BR) -0.16 N=11 p=.637 -0.19 N=11 p=.573 0.34 N=11 p=.313 

NC0207 (BR) -0.21 N=9 p=.579 -0.94 N=9 p=.000 0.00 N=9 p=1.00 
NC0209 (BR) 0.12 N=7 p=.799 -0.26 N=7 p=.567 0.00 N=7 p=1.00 
NC0075 (P) -0.09 N=7 p=.854 -0.08 N=7 p=.871 0.41 N=7 p=.356 

NC0248 (P) -0.32 N=7 p=.481 -0.65 N=7 p=.116 -0.06 N=7 p=.901 
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Table I8-4. Pearson product moment correlations of drier scenario % individual metrics versus 
year for individual sites and site groups in Maine, Utah and North Carolina. Highlighted 
correlations were significant (p<0.05).   

% Drier Scenario Metrics - YEAR 

State Site/ Site Group Drier_WinPct Drier_VulnerablePct WarmDrier_VulnerablePct 
r N p r N p r N p 

M
ai

ne
 

56817 0.16 N=23 p=.476 0.19 N=23 p=.389 0.49 N=23 p=.018 
57011 0.19 N=12 p=.561 -0.53 N=12 p=.078 -0.35 N=12 p=.270 
57065 -0.22 N=9 p=.566 -0.17 N=9 p=.659 0.36 N=9 p=.336 
Laur -0.51 N=8 p=.199 0.62 N=8 p=.101 0.82 N=8 p=.012 
NEHigh -0.04 N=8 p=.930 -0.54 N=8 p=.167 -0.20 N=8 p=.635 

U
ta

h 

4927250 0.60 N=17 p=.011 0.09 N=17 p=.719 -0.72 N=17 p=.001 
4936750 0.00 N=12 p=1.00 -0.46 N=12 p=.137 0.01 N=12 p=.985 
4951200 0.07 N=15 p=.793 -0.17 N=15 p=.534 -0.58 N=15 p=.023 
5940440 -0.06 N=9 p=.879 0.30 N=9 p=.426 -0.10 N=9 p=.790 
WU_SF 0.34 N=20 p=.143 0.15 N=20 p=.533 -0.16 N=20 p=.488 
WU_ME 0.23 N=12 p=.468 0.45 N=12 p=.145 0.79 N=12 p=.002 
CP -0.35 N=14 p=.220 -0.16 N=14 p=.583 -0.02 N=14 p=.957 

N
or

th
 C

ar
ol

in
a NC0109 (BR) 0.33 N=11 p=.317 0.77 N=11 p=.005 0.65 N=11 p=.030 

NC0207 (BR) 0.00 N=9 p=1.00 0.04 N=9 p=.921 0.20 N=9 p=.605 
NC0209 (BR) 0.00 N=7 p=1.00 0.31 N=7 p=.493 0.26 N=7 p=.568 
NC0075 (P) 0.09 N=7 p=.853 -0.54 N=7 p=.208 0.13 N=7 p=.783 

NC0248 (P) -0.22 N=7 p=.635 -0.60 N=7 p=.153 -0.09 N=7 p=.845 
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Table I8-5. Pearson product moment correlations of drier scenario richness metrics versus 
PRISM mean annual air temperature for individual sites and site groups in Maine, Utah and 
North Carolina. Highlighted correlations were significant (p<0.05).   

Drier Scenario Richness Metrics - PRISM mean annual air temperature 

State Site/ Site Group WarmDrier_VulnerableTax Drier_VulnerableTax Drier_WinTax 
r N p r N p r N p 

M
ai

ne
 

56817 0.30 N=23 p=.159 0.13 N=23 p=.547 0.21 N=23 p=.329 
57011 -0.01 N=12 p=.975 0.29 N=12 p=.354 -0.11 N=12 p=.738 
57065 -0.71 N=9 p=.033 -0.73 N=9 p=.026 0.02 N=9 p=.962 
Laur -0.70 N=8 p=.054 -0.48 N=8 p=.231 0.70 N=8 p=.051 
NEHigh -0.06 N=8 p=.883 0.09 N=8 p=.826 -0.64 N=8 p=.090 

U
ta

h 

4927250 -0.56 N=17 p=.019 -0.66 N=17 p=.004 0.16 N=17 p=.537 
4936750 0.01 N=12 p=.973 -0.08 N=12 p=.810 0.00 N=12 p=1.00 
4951200 -0.62 N=15 p=.013 -0.61 N=15 p=.016 -0.32 N=15 p=.239 
5940440 0.09 N=9 p=.820 -0.08 N=9 p=.833 0.09 N=9 p=.828 
WU_SF 0.43 N=20 p=.058 0.38 N=20 p=.095 0.12 N=20 p=.626 
WU_ME -0.40 N=12 p=.198 -0.60 N=12 p=.040 0.18 N=12 p=.580 
CP 0.14 N=14 p=.624 0.27 N=14 p=.359 -0.57 N=14 p=.032 

N
or

th
 C

ar
ol

in
a NC0109 (BR) -0.23 N=11 p=.501 -0.06 N=11 p=.853 0.26 N=11 p=.449 

NC0207 (BR) -0.41 N=9 p=.279 -0.47 N=9 p=.205 0.00 N=9 p=1.00 
NC0209 (BR) 0.30 N=7 p=.519 -0.27 N=7 p=.560 0.00 N=7 p=1.00 

NC0075 (P) -0.24 N=7 p=.601 0.15 N=7 p=.750 -0.44 N=7 p=.323 

NC0248 (P) -0.02 N=7 p=.975 -0.29 N=7 p=.522 -0.71 N=7 p=.072 
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Table I8-6. Pearson product moment correlations of drier scenario % individual metrics versus 
PRISM mean annual air temperature for individual sites and site groups in Maine, Utah and 
North Carolina. Highlighted correlations were significant (p<0.05).    

% Drier Scenario Metrics - PRISM mean annual air temperature 

State Site/ Site Group Drier_WinPct Drier_VulnerablePct WarmDrier_VulnerablePct 
r N p r N p r N p 

M
ai

ne
 

56817 0.17 N=23 p=.425 0.18 N=23 p=.407 0.17 N=23 p=.428 
57011 -0.05 N=12 p=.876 0.64 N=12 p=.026 -0.14 N=12 p=.661 
57065 0.29 N=9 p=.447 -0.29 N=9 p=.442 -0.37 N=9 p=.329 
Laur 0.68 N=8 p=.062 -0.12 N=8 p=.781 -0.71 N=8 p=.050 
NEHigh -0.13 N=8 p=.755 0.30 N=8 p=.472 0.16 N=8 p=.707 

U
ta

h 

4927250 0.52 N=17 p=.032 0.31 N=17 p=.231 -0.30 N=17 p=.243 
4936750 0.00 N=12 p=1.00 -0.06 N=12 p=.862 -0.29 N=12 p=.357 
4951200 -0.06 N=15 p=.819 -0.17 N=15 p=.538 -0.48 N=15 p=.071 
5940440 0.38 N=9 p=.311 -0.38 N=9 p=.314 -0.27 N=9 p=.481 
WU_SF 0.19 N=20 p=.433 0.11 N=20 p=.647 0.03 N=20 p=.914 
WU_ME 0.18 N=12 p=.580 0.27 N=12 p=.394 0.58 N=12 p=.048 
CP -0.68 N=14 p=.007 -0.37 N=14 p=.189 0.04 N=14 p=.891 

N
or

th
 C

ar
ol

in
a NC0109 (BR) 0.01 N=11 p=.984 0.04 N=11 p=.910 -0.24 N=11 p=.476 

NC0207 (BR) 0.00 N=9 p=1.00 -0.40 N=9 p=.284 0.03 N=9 p=.936 
NC0209 (BR) 0.00 N=7 p=1.00 0.20 N=7 p=.675 0.44 N=7 p=.325 

NC0075 (P) -0.51 N=7 p=.244 0.17 N=7 p=.719 -0.13 N=7 p=.786 

NC0248 (P) -0.49 N=7 p=.262 -0.75 N=7 p=.052 0.28 N=7 p=.549 
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Table I8-7. Pearson product moment correlations of drier scenario richness metrics versus 
PRISM mean annual precipitation for individual sites and site groups in Maine, Utah and North 
Carolina. Highlighted correlations were significant (p<0.05).   

Drier Scenario Richness Metrics - PRISM mean annual precipitation 

State Site/ Site Group WarmDrier_VulnerableTax Drier_VulnerableTax Drier_WinTax 
r N p r N p r N p 

M
ai

ne
 

56817 0.45 N=23 p=.032 0.27 N=23 p=.217 -0.04 N=23 p=.865 
57011 0.07 N=12 p=.833 0.49 N=12 p=.105 0.37 N=12 p=.237 
57065 -0.51 N=9 p=.160 -0.49 N=9 p=.181 -0.08 N=9 p=.848 
Laur -0.52 N=8 p=.183 -0.42 N=8 p=.298 -0.08 N=8 p=.853 
NEHigh 0.09 N=8 p=.832 0.27 N=8 p=.513 -0.49 N=8 p=.217 

U
ta

h 

4927250 -0.19 N=17 p=.474 -0.12 N=17 p=.656 0.42 N=17 p=.090 
4936750 0.60 N=12 p=.037 0.31 N=12 p=.334 0.00 N=12 p=1.00 
4951200 0.24 N=15 p=.392 0.24 N=15 p=.384 0.47 N=15 p=.078 
5940440 -0.11 N=9 p=.785 0.22 N=9 p=.578 -0.04 N=9 p=.928 
WU_SF -0.12 N=20 p=.622 0.03 N=20 p=.885 0.10 N=20 p=.676 
WU_ME 0.16 N=12 p=.631 -0.18 N=12 p=.569 0.31 N=12 p=.331 
CP -0.01 N=14 p=.972 -0.03 N=14 p=.910 0.45 N=14 p=.103 

N
or

th
 C

ar
ol

in
a NC0109 (BR) 0.24 N=11 p=.477 -0.53 N=11 p=.091 -0.33 N=11 p=.324 

NC0207 (BR) 0.04 N=9 p=.920 -0.22 N=9 p=.577 0.00 N=9 p=1.00 
NC0209 (BR) 0.10 N=7 p=.838 -0.02 N=7 p=.963 0.00 N=7 p=1.00 
NC0075 (P) 0.01 N=7 p=.977 0.18 N=7 p=.692 0.19 N=7 p=.690 

NC0248 (P) 0.07 N=7 p=.876 0.23 N=7 p=.618 0.15 N=7 p=.744 
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Table I8-8. Pearson product moment correlations of drier scenario % individual metrics versus 
PRISM mean annual precipitation for individual sites and site groups in Maine, Utah and North 
Carolina. Highlighted correlations were significant (p<0.05).  The Blue Ridge Drier_WinPct 
entry was NA (=not available) because of a low sample size/lack of drier-robust individuals in 
this site group. 

% Drier Scenario Metrics - PRISM mean annual precipitation 

State Site/ Site Group 
Drier_WinPct Drier_VulnerablePct WarmDrier_VulnerablePct 

r N p r N p r N p 

M
ai

ne
 

56817 -0.03 N=23 p=.877 0.06 N=23 p=.780 0.59 N=23 p=.003 
57011 0.48 N=12 p=.115 0.31 N=12 p=.322 -0.21 N=12 p=.517 
57065 0.05 N=9 p=.904 -0.01 N=9 p=.979 -0.06 N=9 p=.869 
Laur 0.09 N=8 p=.832 0.16 N=8 p=.703 -0.35 N=8 p=.390 
NEHigh -0.63 N=8 p=.095 -0.01 N=8 p=.987 0.39 N=8 p=.338 

U
ta

h 

4927250 0.33 N=17 p=.199 0.23 N=17 p=.372 0.08 N=17 p=.763 
4936750 0.00 N=12 p=1.00 0.52 N=12 p=.082 0.23 N=12 p=.465 
4951200 0.42 N=15 p=.119 -0.46 N=15 p=.085 0.13 N=15 p=.634 
5940440 -0.28 N=9 p=.463 0.28 N=9 p=.460 0.53 N=9 p=.141 
WU_SF 0.04 N=20 p=.853 -0.03 N=20 p=.909 -0.27 N=20 p=.242 
WU_ME 0.31 N=12 p=.331 -0.62 N=12 p=.030 -0.19 N=12 p=.563 
CP 0.26 N=14 p=.379 0.13 N=14 p=.657 -0.09 N=14 p=.747 

N
or

th
 C

ar
ol

in
a NC0109 (BR) -0.11 N=11 p=.748 0.16 N=11 p=.639 0.57 N=11 p=.067 

NC0207 (BR) 0.00 N=9 p=1.00 0.10 N=9 p=.806 -0.20 N=9 p=.614 
NC0209 (BR) 0.00 N=7 p=1.00 0.55 N=7 p=.196 0.45 N=7 p=.310 
NC0075 (P) 0.23 N=7 p=.624 -0.22 N=7 p=.636 0.47 N=7 p=.283 

NC0248 (P) 0.16 N=7 p=.727 0.40 N=7 p=.368 -0.32 N=7 p=.479 
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APPENDIX J 

Case Studies 
Part of this project involved doing 3 case studies. One was a case study on the combined effects 
of climate change and urbanization on stream condition in the North Carolina Piedmont 
physiographic region. In the second study, we compared hydrologic response to fluctuating 
climate with land use effects in the Mid-Atlantic region. In the third, data from Florida reference 
sites were analyzed to assess the vulnerability of reference condition and biological monitoring 
to climate change and increasing population densities. This Appendix contains summaries of 
each of the case studies. 

J1. Combined effects of climate change and urbanization on stream 

condition (North Carolina Piedmont physiographic region) 

J2. Another face of the changing climate: comparing hydrologic response to 

fluctuating climate with land use effects (Mid-Atlantic region) 

J3. Shifting Baselines of Perception: Vulnerability of Reference Condition to 

Climate and Land Use Change (Florida Reference Sites) 
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J1. Combined Effects of Climate Change and Urbanization on Stream Condition  

Data from the North Carolina Piedmont physiographic region were used in this case 

study. Locations of the sampling sites are shown in Figure J1-1. The study area has undergone 

rapid population growth and urbanization since 1945, which has contributed to flashier streams 

and altered habitat. Data preparation for the study involved developing operational taxonomic 

units (OTUs), calculating taxa richness-based metrics, calculating Indicator of Hydrologic 

Alteration (IHA) parameters (Richter et al., 1996) and Baker’s Flashiness Index (Baker et al., 

2004) for 67 biological sampling sites that were associated with USGS gage stations, and 

dividing the sites into natural, urban, agricultural and other land-use categories based on quick 

examination of the watersheds in Google Earth.  

The main objective of this study was to assess the response of macroinvertebrates in 

urban and non-urban streams to hydrologic changes. We used number of EPT taxa as the 

principal response metric and flashiness (sum of daily flow changes divided by total flow), low 

pulse count (number of events per year where flow is below the 25th percentile ) and 1-day 

minimum flow as the hydrologic indicators. Flashiness is predicted to increase with urbanization 

but not with climate change, while low pulse count and 1-day minimum flow are predicted to 

increase with climate change. 

Results showed that the number of EPT taxa was strongly associated with flashiness. As 

expected, the urban streams were flashier than the non-urban streams (Figures J1-2 through J1-

4). The flashiest urban streams had poorer condition than the moderately flashy urban streams 

(Figure J1-4). In the plots it appears that there may be a possible threshold at 0.5 (sites that had 

flashiness values of less the 0.5 generally showed no relationship, while sites with flashiness 

values greater than 0.5 generally showed strong relationships). 

Natural and urban streams did not differ greatly in low pulse count, although the Smith 

River is an important exception. This site is dominated by natural land cover but has extremely 

high low pulse counts (28-44 per year) because it is regulated by a peaking hydropower dam. 

Overall results show that there was not a strong relationship between low pulse count and 

number of EPT taxa (Figures J1-5 through J1-7). Low pulse count was most strongly associated 

with EPT taxa loss when there was an extreme increase in frequency of low pulses (>20 per 

year), which occurred at the Smith River site as mentioned above. 
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The urban streams had lower 1-day minimum flows than natural streams (Figures J1-8 

through J1-10). However, within the urban sites, there was no association between number of 

EPT taxa and minimum flow. In the plots, it appears that there may be a possible threshold at 

15%, but this is confounded by the association of minimum flows with flashiness. 

There were several conclusions that were drawn from this study, and also several 

questions that remained unanswered.  We are aware the flow regime is a causal link that changes 

habitat, but we are uncertain as to whether or not it is a direct stressor. In this study, 

intermediate-term changes in flow were not associated with taxa change within streams, but this 

analysis had low power. The biological responses that were seen indicate that natural stream 

communities are highly resilient within the range of natural hydrologic variability. Because of 

this resilience, we may be unlikely to see effects from hydrologic changes associated with 

climate change unless these changes are truly extreme, such as those that occurred in the 

regulated river in this study, or occur in concert with rising temperatures that cross biological 

thresholds. Future climatic changes are likely to be beyond the variability observed in the recent 

past. Therefore, historic patterns are likely not as extreme as projected variability, and this makes 

it difficult to predict future impacts. A powerpoint presentation of this case study is available 

upon request. 

Figure J1-1. Locations of the North Carolina Piedmont stream sites that were used in the case 
study. 
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Figure J1-2. Number of EPT taxa is negatively associated with flashiness.  

Figure J1-3. Association between number of EPT taxa and flashiness at sites dominated by 
natural land cover. 
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Figure J1-4. Association between number of EPT taxa and flashiness at sites dominated by 
urban land cover. 

Figure J1-5. Association between number of EPT taxa and low pulse count at all streams. 
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Figure J1-6. Association between number of EPT taxa and low pulse count at sites dominated 
by natural land cover. 

Figure J1-7. Association between number of EPT taxa and low pulse count at sites dominated 
by urban land cover. 
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Figure J1-8. Association between number of EPT taxa and 1-day minimum flow at all streams. 

Figure J1-9. Association between number of EPT taxa and 1-day minimum flow at sites 
dominated by natural land cover. 

J-7 



 
 

 
 

 
 

 

Figure J1-10. Association between number of EPT taxa and 1-day minimum flow at sites 
dominated by urban land cover. 

J2. Comparing Hydrologic Respone to Fluctuating Climate with Land-Use Effects  

Flow data from USGS gages in the Baltimore-Washington D.C. area (Mid-Atlantic 

region) were used in this case study. The main question that was addressed was how hydrologic 

response to climatic change in the Mid-Atlantic would compare with land-use impacts. Data 

preparation involved gathering historical flow and precipitation data for urban and forested sites, 

calculating Baker’s Flashiness Index (Baker et al., 2004) and IHA parameters  for these sites, and 

identifying which historical years of data had conditions that most resembled those that are 

projected to occur in the future. Data were analyzed using ANOVA analyses.  

Results are summarized in Figures J2-1 and J2-2. They show that for high flow metrics, 

climate effects were small relative to land use change, while for low flow metrics, climate 

change effects were large relative to land use. Plots of the ANOVA results for some of the IHA 

parameters are also included. Figure J2-3 provides guidance on how to interpret these plots, 

Figures J2-4 through J2-7 show results for high flow IHA parameters and Figures J2-8 through 

J2-13 show results for low flow IHA parameters. Overall conclusions were that climate will 

affect stream flow. This will be happening over an ongoing dramatic change in land use, and the 
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effects of climate change will be felt to differing degrees relative to land use change. A 

powerpoint presentation of this case study is available upon request. 

Figure J2-1. Summary of ANOVA results for high flow IHA metrics. 

Figure J2-2. Summary of ANOVA results for low flow IHA metrics. 
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Figure J2-3. Aid for interpreting the ANOVA plots.  

Figure J2-4. ANOVA results for flashiness at forested and urban sites. 
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Figure J2-5. ANOVA results for high pulse count at forested and urban sites. 

Figure J2-6. ANOVA results for high pulse duration at forested and urban sites. 
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Figure J2-7. ANOVA results for 1-day maximum flow at forested and urban sites. 

Figure J2-8. ANOVA results for low pulse count at forested and urban sites. 
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Figure J2-9. ANOVA results for low pulse duration at forested and urban sites. 

Figure J2-10. ANOVA results for 1-day minimum flow at forested and urban sites. 
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Figure J2-11. ANOVA results for 7-day minimum flow at forested and urban sites. 

Figure J2-12. ANOVA results for extreme low flow frequency at forested and urban sites. 
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Figure J2-13. ANOVA results for extreme low flow duration at forested and urban sites. 

J3. Shifting Baselines of Perception: Vulnerability of Reference Condition to Climate and 

Land Use Change 

The vulnerability of reference locations to climate change and the need to protect 

reference locations is recognized as an important issue for the future of bioassessment. Our 

concept of the natural condition of streams is based on these reference locations, yet we also 

recognize that they have been subject to industrial anthropogenic influences and disturbance for 

up to 2 centuries. While reference sites may often be located in remote and less developed 

regions, they are nevertheless vulnerable to human development and urbanization. 

We examined actual and potential reference sites for aquatic biological monitoring, and 

examined both their regional vulnerability to future climate changes, as well as vulnerability to 

land-use changes. Where possible, we also examined the degree of change from pre-European 

settlement in North America to current reference condition. Florida was chosen for this case 

study because its historical pollution has been less than in other eastern states, but its current-era 

growth and urbanization has been extraordinary.   
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In this study we examined 54 Florida reference sites under future growth scenarios: A1 

(IPCC) (rapid global economic growth and lower population growth), A2 (IPCC) (slower 

economic growth and higher population growth) and Base (closest to current conditions) 

(Nakicenovic and Swart, 2000; USEPA, 2009a). Projections for population growth under each 

scenario are shown in Figure J3-1. To assess vulnerability, land use within a 1 km buffer around 

each reference site was calculated, land use for each decade was projected from the A2 and Base 

Case scenario outputs, and the fraction of buffer in categories of increasing housing density 

were estimated.  

The link between population density and biota has been previously examined in New 

England, as shown in Figure J3-2. Results showed that effects begin but are not universal or 

severe when densities reach 50 people per square mile (25 houses). A degradation gradient 

becomes evident at densities of 50-500 people per square mile (25-250 houses). Once densities 

exceed 500 people per square mile (>250 houses), streams in New England are generally 

degraded. 

Results of the housing density and fraction suburban projections for sites in Florida are 

shown in Figures J3-3 through J3-5. Based on the New England results, the average site 

(statewide) in Florida will approach the ‘complete degradation’ point by 2100. The average 

reference site will exceed the ‘effects threshold’ around 2020 but will not reach the ‘complete 

degradation’ point. Seventeen percent of the reference sites appear to be protected in that they 

are surrounded by government land or water and approximately 25% of the reference sites 

appear to be completely unprotected from development. A PowerPoint presentation of this case 

study is available upon request. 
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Figure J3-1. Projections of future population growth under the 3 scenarios: A1, A2 and Base. 

Figure J3-2. The link between population density and biota in New England. 
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Figure J3-3. A2 and Base Case projections for mean housing density per square mile at all 
Florida sites. 

Figure J3-4. A2 and Base Case projections for mean housing density per square mile at Florida 
reference sites. 
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J3-5. A2 and Base Case projections for fraction suburban land use at Florida reference sites. 
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1 APPENDIX K  
2 ___________________ 
3 Explorations of relationships be tween 

hydrological and biological data  
 

The intent of this appendix is to provide more comprehensive and detailed information on the  
analyses  that were performed on the Utah and North Carolina  hydrological data. Some  of the  
analyses  that are  covered in this  appendix are also referenced in the main body of the report. 
When this occurred, attempts were made to reduce any overlap or duplication in the  reporting of  
results.  

 
K1. Overview   
K2. Utah Analyses  
K3.  North Carolina Analyses  
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16 K1 Overview  

Changes in hydrology are projected to occur  as a result of climate change. In this study, 

we attempted to  gain a better understanding of the link between hydrology and biology by 

creating and analyzing datasets comprised of paired hydrological  and biological data. To derive  

these datasets, we used the following criteria to  match USGS gages with biological sampling  

sites:  

•  If a biological sampling site fell within 500-meters of the gage, the gage was retained and  
matched with  the biological sampling site  (this was done using ArcGIS). 

•  Stream gages were excluded if they  were not on  the same stream reach as the biological  
sampling site, or if tributaries  entered between the gage and site  

•  All available data from the following time period was downloaded: 1940-01-01 to 2007
12-31 

 
Hydrologic data  for the matched stations were downloaded from the USGS  real-time  

flow data  website:  http://waterdata.usgs.gov/nwis/rt. Indicators of Hydrologic Alteration (IHA)  

software (version 7.0.4.0)  was then used to calculate a suite of  IHA parameters  for each  site.  The  

Richards-Baker Flashiness Index (RBI)  (Baker et al., 2004)  was also analyzed (the R code that  

was used to  calculate the RBI is available upon request). The  RBI uses flow data to quantify the  

frequency and rapidity of short-term  changes in stream flow.  The IHA and RBI  data was then  

matched with the biological data from the site. These merged datasets were then used  in  our  

analyses. Descriptions of the analyses that were performed on the Utah and North Carolina  

datasets are described in  Sections L2 and L31. Only the  subset of  IHA parameters that  were 

believed to have greatest relevance  to this study was used in our analyses. A list of these  

parameters is shown in  Table K1-1.  
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1  Similar  types o f  analyses  were attempted  in  Maine,  but there were not  enough  USGS  gages as sociated  with  
biological  sampling  sites  to make  weighted average  and ordination analyses  worthwhile.  
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   Table K1-1.  Summary of IHA parameters used in biological analyses 
   Annual IHA parameters  Description    Conversion (to standardize) 

 monthly    median discharge (cfs)        divided by median value for entire period of gage data  

 1-day min      annual minima, 1-day mean (cfs)        divided value for each year by mean annual flow  

 3-day min       annual minima, 3-day means (cfs)         divided value for each year by mean annual flow  

  1-day max     annual maxima, 1-day mean (cfs)        divided value for each year by mean annual flow  

  3-day max      annual maxima, 3-day means (cfs)        divided value for each year by mean annual flow  

 Date min      Julian date of each annual 1-day minimum  none 

Date max      Julian date of each annual 1-day maximum  none 

   Lo pulse #         Number of low pulses within each water year  none 

   Lo pulse L    Median duration of low pulses (days)  none 

   Hi pulse #        Number of high pulses within each water year  none 

   Hi pulse L     Median duration of high pulses (days)  none 

    Environmental Flow Components (EFC)   

 Xlow1 peak  minimum ('peak'        ) flow (cfs) during extreme low flow event (within 
 each year)  

       divided value for each year by mean annual flow  

 Xlow1 dur       duration of extreme low flow event (days)  none 

 Xlow1 time   Julian date of peak flow    none 

  Xlow1 freq        frequency of extreme low flows during water year  none 

 1 
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High1 peak 
maximum ('peak') flow (cfs) during extreme high flow 
each year) 

event (within 
divided value for each year by mean annual flow  

High1 dur duration of extreme high flow event (days) none 

High1 time Julian date of peak flow  none 

High1 freq frequency of extreme high flows during water year none 

Baseflow index 7-day minimum flow/mean flow for year none 

Number of reversals: Number of hydrological reversals none 

Definitions-   

high flow events All flows above the 75th percentile of all flows are classified as high flow events 

low flow events All flows less than or equal to the 50th percentile of all  flows are classified as low flow events 

extreme low flow 10th percentile of all low flows  

 
 

2 
3 
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Hydrographs were also generated for selected reference sites in Maine (see Attachment 

K1), Utah (see Attachment K2) and North Carolina (see Attachment K3). The R code that was 

used to create these plots is available upon request. The hydrographs were used in the initial 

phases of our analyses to gain a better understanding of the natural flow regimes in each of the 3 

states. In addition, they can provide information on how strong the groundwater influence is at a 

site. During discussions at the 2008 Workshop on Bioindicators and Climate Change in Crystal 

City, VA,2 the importance of learning more about groundwater influence came up on several 

occasions, so we attempted to gather groundwater data and incorporate it into our analyses. 

Unfortunately we could not find the type of data that we needed. However, we were able to find 

a number of valuable resources (i.e., NCDENR, 2004, NCDWQ, 2005, NCDENR, 2005, 

Borwick et al., 2006, Douglas, 2006). Another potential lead, which was suggested to us by 

Maine DEP, was to use water temperature data. If summer low flow temperatures were less than 

20°C, there were generally believed to be at least some groundwater influence.  

 
K2.  Utah 
 

A number of different analyses were run on a subset of Utah IHA-biological data that 

was derived from 43 biological sampling sites (locations of these stations are shown in Figure 

K2-1). The dataset was somewhat limited by sample size and by the fact that some sites had 

many more years of data than others (i.e. one site had 19 years of data, others had 1 year of data). 

One analysis involved examining taxonomical trends using Canonical Correspondence Analysis 

(CCA) and Nonmetric Multidimensional Scaling (NMDS). In another analysis, a subset of data 

that only had sites with multiple years of data was evaluated. A third analysis involved 

calculating weighted average (WA) indicator values for the parameters that showed the strongest 

influence on taxonomic composition. For the final analysis, correlation analyses were performed 

on data from the 7 Utah stations that had the most number of years of biological-hydrological 

data. 

                                                            
2 A report on the workshop is available online at: oaspub.epa.gov/eims/eimscomm.getfile?p_download_id=486153. 
Additional information on the workshop can be found at: http://www.epa.gov/ncea/workshop/.  
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Results of the CCA are shown in Section 2 of the main report. Additional CCA results 

(species trends) are shown in Figure K2-2. Results of the NMDS analyses are shown in Figure 

K2-3. Both analyses indicated that year had the strongest influence on taxonomic composition. 

However, when only data from sites with multiple years of data were used, year showed a 

weaker effect in the NMDS analysis. Results from the WA model are shown in Tables K2-1 and 

K2-2. Of all the models tested, most low-flow parameters performed better than high-flow 

parameters. The WA model for year had very strong performance (r2=0.6). The next best 

parameter was the IHA parameter for annual minima, 3-day means. Optima and tolerance results 

for taxa that had more than 20 occurrences in the dataset (which is generally regarded as an 

adequate sample size) show that Leuctridae, Asellidae and Zapada had the lowest values, while 

Hyalella and Helicopsyche had the highest. Leuctridae and Zapada had relatively low tolerance 

ranges, while Hyalella and Helicopysche had large tolerance ranges. These results suggest that 

Leuctridae and Zapada are better adapted (perhaps partly due to their smaller sizes) to lower flow 

conditions than other taxa.  

There are too many results from the correlation analyses to show in this report, but results 

are available upon request. There were a number of significant correlations, but none of the taxa, 

trait metrics or IHA parameters showed consistent patterns across the 7 sites, which makes the 

results very difficult to summarize. Site information for the sites is summarized in Table K2-3.  
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Figure K2-1.  Locations of the 43 Utah biological sampling stations (red triangles) and 
associated USGS stream gages (yellow circles). Stations that are highlighted in blue are 
classified as reference sites by Utah DWQ. The numbers next to the sites are the number of 
years of data that were available for each station. 
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Figure K2-2.  Species trends along year. These were derived from the CCA analysis. 
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Figure K2-3.  Taxonomical trends in the Utah dataset were examined using Nonmetric 
Multidimensional Scaling (NMDS). Year had the strongest influence on taxonomical 
composition. However, when NMDS ordinations were run on a selected subset of data that 
only contained data from sites with multiple years of samples, the year trend was not as 
strong. 
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Table K2-1.  Weighted average indicator values for year, which had very strong 
performance (r2=0.6). Sorted by optimum values. Ranks are on a scale of 1 to 7 and 
based on the following percentiles: 0, 0.1, 0.25, 0.4, 0.6, 0.75, 0.9 and 1. 

are 

YEAR 
Taxa Optimum Tolerance Rank_Opt Rank_Tol Count 
Traverella 
Taenionema 
Cultus 
Leuctridae 
Zapada 
Planaria 
Apatania 
Serratella 
Nematoda 
Hesperoperla 
Ostracoda 
Cinygmula 
Copepoda 
Pelecypoda 
Capniidae 
Ameletus 
Mayatrichia/Neotrichia 
Alisotrichia/Leucotricia 
Heptagenia 
Neotrichia 
Micrasema 
Glossosoma 
Podmosta 
Dicranota 
Cheumatopsyche 
Agapetus/Culoptila/Protoptila 
Ephemerella 
Epeorus 
Dytiscidae 
Euparyphus 
Skwala 
Neothremma 
Leucotrichia 
Paraleptophlebia 
Pericoma 
Simuliidae 
Chloroperlidae 

1989.4 
1989.5 
1989.8 
1990.1 
1990.2 
1990.9 
1991.3 
1991.4 
1991.5 
1991.7 
1991.7 
1991.8 
1991.9 
1992.0 
1992.0 
1992.1 
1992.2 
1992.2 
1992.2 
1992.2 
1992.3 
1992.4 
1992.6 
1992.6 
1992.7 
1992.7 
1992.7 
1992.9 
1993.0 
1993.1 
1993.2 
1993.3 
1993.4 
1993.5 
1993.6 
1993.6 
1993.6 

3.59 
4.38 
3.66 
4.50 
4.55 
3.11 
3.71 
4.70 
3.44 
5.08 
4.20 
4.62 
3.46 
3.02 
5.28 
6.25 
1.89 
2.66 
2.67 
2.04 
5.61 
4.13 
3.78 
5.57 
5.20 
3.15 
4.53 
4.99 
6.80 
2.43 
5.27 
7.28 
1.99 
5.07 
5.41 
5.13 
5.82 

1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 

2 
3 
2 
4 
4 
2 
2 
4 
2 
5 
3 
4 
2 
2 
5 
7 
1 
2 
2 
1 
6 
3 
3 
6 
5 
2 
4 
4 
7 
1 
5 
7 
1 
4 
6 
5 
7 

10 
29 
20 
24 
35 
90 
20 
11 

125 
33 
96 
90 
35 
44 
38 
26 
16 
32 
58 
12 
55 
60 
10 
32 
55 
12 

149 
92 
10 
12 
31 
19 
23 
96 
47 

234 
105 

63 
64 
65 
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Table K2-1.  Continued 
Taxa Optimum Tolerance Rank_Opt Rank_Tol Count 
Leptohyphidae 
Drunella 
Hemerodromia 
Atherix 
Baetidae 
Bezzia 
Pteronarcella 
Isoperla 
Isogenoides 
Hydroptila 
Physa 
Antocha 
Acarina 
Oligophlebodes 
Tubificidae 
Hydropsyche 
Planorbidae 
Lymnaea 
Chironomidae 
Rhyacophilidae 
Rhithrogena 
Petrophila 
Chelifera 
Oecetis 
Hirudinea 
Arctopsyche 
Hexatoma 
Brachycentrus 
Asellidae 
Hyalella 
Lepidostoma 
Ambrysus 
Helicopsyche 
Gammarus 
Claassenia 
Hesperophylax 
Coenagrionidae 
Bibiocephala 
Optioservus 
Zaitzevia 

1993.7 
1993.8 
1993.8 
1993.9 
1994.0 
1994.0 
1994.0 
1994.0 
1994.1 
1994.1 
1994.1 
1994.2 
1994.3 
1994.3 
1994.4 
1994.5 
1994.5 
1994.5 
1994.5 
1994.5 
1994.5 
1994.6 
1994.6 
1994.7 
1994.7 
1994.8 
1995.2 
1995.3 
1995.4 
1995.4 
1995.7 
1995.8 
1995.9 
1995.9 
1996.0 
1996.1 
1996.1 
1996.3 
1996.5 
1996.6 

4.89 
5.61 
3.84 
5.85 
5.27 
2.66 
5.73 
4.87 
5.74 
4.49 
5.00 
5.27 
5.47 
4.80 
2.16 
5.38 
4.04 
3.85 
5.63 
5.41 
5.69 
4.04 
3.62 
4.72 
5.14 
5.22 
5.18 
5.39 
4.84 
4.39 
4.68 
3.80 
4.33 
6.89 
6.40 
6.31 
5.52 
5.31 
4.45 
4.46 

4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
7 
7 
7 

4 
6 
3 
7 
5 
2 
6 
4 
6 
4 
4 
5 
6 
4 
1 
5 
3 
3 
6 
6 
6 
3 
2 
4 
5 
5 
5 
6 
4 
3 
4 
3 
3 
7 
7 
7 
6 
5 
4 
4 

133 
119 
103 
81 

277 
53 
91 

105 
19 
97 
54 

126 
268 
35 

107 
232 
37 
15 

291 
98 

127 
36 
98 
45 
75 
99 
88 

145 
45 
62 
88 
17 
68 
15 
12 
12 
36 
17 
148 
97 

66 
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Table K2-1.  Continued 
Taxa Optimum Tolerance Rank_Opt Rank_Tol Count 
Pteronarcys 1996.7 5.75 7 7 27 
Tipula 1998.1 3.80 7 3 31 
Physella 2000.5 1.55 7 1 13 
Forcipomyia/Probezzia 2001.4 1.80 7 1 20 
Microcylloepus 2001.6 2.32 7 1 10 
Pisidium 2002.3 1.40 7 1 16 
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Table K2-2.  Weighted average indicator values for annual minima, 3-day means, which 
had relatively strong performance 

3-DAY ANNUAL MINIMA 
Taxa Optimum Tolerance Rank_Opt Rank_Tol Count 
Pisidium 0.030 0.04 1 2 16 
Ambrysus 0.041 0.05 1 3 17 
Mayatrichia/Neotrichia 0.045 0.03 1 2 16 
Neotrichia 0.046 0.04 1 2 12 
Leuctridae 0.049 0.03 1 1 24 
Asellidae 0.050 0.06 1 4 45 
Lymnaea 0.056 0.04 1 3 15 
Zapada 0.057 0.04 1 3 35 
Neothremma 0.059 0.04 1 3 19 
Physella 0.060 0.06 2 5 13 
Skwala 0.061 0.02 2 1 31 
Petrophila 0.062 0.05 2 4 36 
Coenagrionidae 0.064 0.07 2 6 36 
Bibiocephala 0.065 0.01 2 1 17 
Cultus 0.066 0.04 2 3 20 
Serratella 0.067 0.04 2 2 11 
Dytiscidae 0.068 0.04 2 2 10 
Pelecypoda 0.069 0.06 2 5 44 
Hesperoperla 0.069 0.05 2 4 33 
Epeorus 0.070 0.04 2 2 92 
Physa 0.071 0.06 2 5 54 
Claassenia 0.072 0.03 3 1 12 
Podmosta 0.072 0.03 3 1 10 
Tipula 0.072 0.05 3 4 31 
Capniidae 0.073 0.05 3 4 38 
Apatania 0.073 0.02 3 1 20 
Oecetis 0.073 0.04 3 2 45 

 



K-13 

 

Table K2-2.  Continued 
Taxa Optimum Tolerance Rank_Opt Rank_Tol Count 
Baetidae 
Heptagenia 
Pteronarcella 
Ephemerella 
Chloroperlidae 
Hemerodromia 
Antocha 
Ostracoda 
Lepidostoma 
Paraleptophlebia 
Arctopsyche 
Rhithrogena 
Simuliidae 
Chelifera 
Isoperla 
Cheumatopsyche 
Rhyacophilidae 
Cinygmula 
Optioservus 
Glossosoma 
Acarina 
Zaitzevia 
Planaria 
Leptohyphidae 
Ameletus 
Hydroptila 
Nematoda 
Hexatoma 
Hydropsyche 
Taenionema 
Copepoda 
Microcylloepus 
Leucotrichia 
Chironomidae 
Euparyphus 
Isogenoides 
Drunella 
Dicranota 
Tubificidae 
Pteronarcys 

0.073 
0.075 
0.076 
0.076 
0.076 
0.076 
0.077 
0.077 
0.077 
0.078 
0.078 
0.078 
0.079 
0.079 
0.080 
0.080 
0.080 
0.080 
0.080 
0.081 
0.081 
0.081 
0.082 
0.082 
0.082 
0.082 
0.082 
0.082 
0.083 
0.083 
0.084 
0.085 
0.085 
0.085 
0.086 
0.086 
0.087 
0.089 
0.090 
0.090 

0.06 
0.05 
0.04 
0.05 
0.04 
0.07 
0.05 
0.06 
0.05 
0.04 
0.05 
0.04 
0.06 
0.06 
0.04 
0.07 
0.05 
0.05 
0.06 
0.05 
0.06 
0.05 
0.07 
0.07 
0.05 
0.06 
0.06 
0.03 
0.06 
0.04 
0.07 
0.04 
0.06 
0.07 
0.10 
0.04 
0.05 
0.05 
0.06 
0.03 

3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 

6 
4 
2 
4 
2 
6 
3 
5 
4 
2 
3 
3 
5 
5 
3 
6 
4 
3 
5 
4 
5 
4 
7 
6 
4 
6 
6 
2 
5 
3 
6 
3 
5 
6 
7 
2 
4 
4 
5 
1 

277 
58 
91 

149 
105 
103 
126 
96 
88 
96 
99 

127 
234 
98 

105 
55 
98 
90 
148 
60 

268 
97 
90 

133 
26 
97 

125 
88 

232 
29 
35 
10 
23 

291 
12 
19 

119 
32 

107 
27 

73 
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Table K2-2.  Continued 
Taxa Optimum Tolerance Rank_Opt Rank_Tol Count 
Atherix 
Planorbidae 
Alisotrichia/Leucotricia 
Micrasema 
Brachycentrus 
Hirudinea 
Oligophlebodes 
Forcipomyia/Probezzia 
Agapetus/Culoptila/Protoptila 
Pericoma 
Bezzia 
Helicopsyche 
Hyalella 
Traverella 
Hesperophylax 
Gammarus 

0.091 
0.091 
0.091 
0.092 
0.093 
0.094 
0.094 
0.094 
0.097 
0.100 
0.103 
0.110 
0.111 
0.116 
0.159 
0.170 

0.05 
0.08 
0.06 
0.05 
0.06 
0.09 
0.05 
0.08 
0.03 
0.07 
0.08 
0.08 
0.09 
0.03 
0.08 
0.07 

6 
6 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
7 
7 
7 
7 

4 
7 
6 
4 
5 
7 
4 
7 
1 
6 
7 
7 
7 
1 
7 
6 

81 
37 
32 
55 

145 
75 
35 
20 
12 
47 
53 
68 
62 
10 
12 
15 
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Table K2-3.  Data that was used in the Utah correlation analyses was gathered from these biological sampling stations/USGS 
gages. %URB = % urban, %AGR=% agricultural and %FOR=% forested land use within a 1 km buffer of the sites. 
BioStationID  USGS # Yrs of Elev_ft Eco_L3 Eco_L4 Ref Status %URB %AGR %FOR 

gage data 
Wasatch and Uinta 4926350 10131000 14 5573.3 Mountain Valleys TRASH 32.5 27.9 30.2 Mountains 

4934100 9302000 12 4762.6 Colorado Plateaus Uinta Basin Floor UNKNOWN 3.9 18.4 24 
4937900 9261000 14 4766.1 Colorado Plateaus Uinta Basin Floor SO-SO 0 20.3 65.1 

Wasatch and Uinta 4954380 9330000 19 6940.5 Semiarid Foothills TRASH 6.9 30.3 56 Mountains 
Central Basin and Moist Wasatch Front 4996690 10163000 17 4521.3 TRASH 73.2 15.8 5.3 Range Footslopes 
Wasatch and Uinta Mid-elevation Uinta 4998400 10154200 18 6971.4 SO-SO 5.7 0.7 93.6 Mountains Mountains 
Wasatch and Uinta 5940440 10234500 11 6249.3 Semiarid Foothills REF 3.9 0 96.1 Mountains 

 

76 
77 

78 



K-16 

 

K3.  North Carolina 
 

A number of different analyses were run on a subset of North Carolina IHA-biological 

data.  

One analysis involved examining taxonomical trends using NMDS. One set of results is 

shown in Section 2 of the report. Additional results are shown in Figures K3-1 through K3-3.  

They show that baseflow index (a parameter representing low-flow influence) had the strongest 

correlation with macroinvertebrate species composition, though this relationship may be mostly 

due to ecoregional distributions of taxa. A number of covariates, such as elevation, temperature, 

and other factors may co-affect the observed pattern. The second IHA parameter that related to 

taxonomical compositions was number of reversals, which is a measurement of flashiness. The 

RBI had weaker correlation with species axes. Other factors that showed correlations were low 

pulse and high pulse parameters. Selected results from the Pearson and Kendall Correlations with 

Ordination Axes are shown in Table K1-1. 

IHA parameter inference models. According to the NMDS ordination, the most important 

parameters associated with species compositions are baseflow index, number of reversals, and 

RBI (which is much weaker compared to the previous two). Inference models were developed 

for these three parameters using both R and C2 (Table K3-1).  

Additional analyses were performed on this dataset to generate species response curves 

for baseflow index (Attachment K4), number of reversals (Attachment K5) and RBI (Attachment 

KL6). These were derived from a generalized linear model (GLM) output (Yuan 2006). The y-

axis shows the probability of capture for a single taxon, and the gradient of environmental 

variables is represented on the x-axis. The curve is the GLM fitting into the dataset.  
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Table K3-1.  According to the NMDS ordination, the most important parameters 
associated with species compositions are baseflow index, number of reversals, and RBI 
(which is much weaker compared to the previous two).  Inference models were developed 
for these three parameters using both R and C2. The final reported indicator values were 
based on R results.  

 R2 RMSE 

 Baseflow 
index 

Number of 
reversal 

RBI Baseflow 
index 

Number of 
reversal 

RBI 

C2 0.556 0.413 0.437 0.149 0.135 0.227 

Bootstrap 0.492 0.245 0.369 0.154 0.141 0.219 
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Figure K3-1.  NMDS of macroinvertebrate taxonomical composition and its relationship 
with the baseflow index. Samples are grouped by level 3 ecoregion. Only samples collected 
using the standard qualitative/full-scale method were used in this analysis.   
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Figure K3-2.  NMDS of macroinvertebrate taxonomical composition and its relationship 
with the number of reversals index. Samples are grouped by level 3 ecoregion. Only 
samples collected using the standard qualitative/full-scale method were used in this 
analysis.   
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Figure K3-3.  NMDS of macroinvertebrate taxonomical composition and its relationship 
with the Richards-Baker Flashiness Index (R-B Flashiness Index). Samples are grouped by 
level 3 ecoregion. Only samples collected using the standard qualitative/full-scale method 
were used in this analysis. 
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