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Appendix B
Fitting Models to Percentile Data

The Exposure Factors Handbook (EFH) (U.S. EPA, 1997a) often uses percentiles to summarize

data for an exposure factor. Let x denote the random variable of interest, that is, x=daily tap water

consumption or x=daily inhalation rate. Theoretically, the 100pth percentile of a continuous distribution

with cumulative distribution function (CDF) F(x) is the value xp for which F(xp)=p. That is, the 100pth

percentile is the value xp for the variable of interest that places 100p% of the probability below xp.

A precise definition for empirical percentiles is rather involved because of finite sample size

complications. If the sample size is large enough, think of the 100pth percentile simply as the smallest

data value (xp) with at least 100p% of the sample below it. It can be estimated from the linearly

interpolated empirical distribution function (EDF) by reading over from p on the vertical axis to the

graph of the linearized EDF, then dropping straight down to the horizontal axis to obtain xp.

The EDF contains all the information in the sample. Ideally, raw data would be available, and

we could calculate and work with the EDF. However, raw data often is unavailable because the

published literature rarely provides it. Even if raw data are available, it is not practical to include all data

points for large samples in the EFH. A summary of percentiles such as those corresponding to p=0.01,

0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, and 0.99 contains much of the information in the original data and

can be used as a basis for estimation of the distribution and testing goodness-of-fit (GOF).

A variety of methods for fitting distributions to percentile data can be identified. Four are

discussed, and three of them are illustrated with a drinking water example from the EFH.

The problem of estimating distributions for exposure factors seems complicated enough by the

fact that more than a dozen families of theoretical probability distributions may be needed in a toolkit for

fitting environmental data. The most credible and widely used fitting method is maximum likelihood

(ML) estimation. Why not simply use ML estimation? Because it may not be the best method. Some

evidence of this is shown in the treatment of the tap water consumption data in Section 3.
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B.1 Four Methods of Fitting Parametric Models to Percentile Data

Serfling (1980) provides procedures for statistical inference for quantiles based on a large

sample.

We concentrate here on three methods that have better small sample properties, which basically

select an estimated distribution by attempting to make the fitted probabilities F(xp) close to the nominal

values of 0.01, 0.05, 0.10, etc. Graphically, the data are summarized as a plot of the nine points with xp

plotted on the horizontal axis and p plotted on the vertical axis. The goal is to find a theoretical model

that passes close to the nine data points. The three methods are obtained by using different notions of

closeness and are referred to as weighted least squares (WLS), minimum chi-square (MCS), and ML

approaches.

EXAMPLE: Calculation of WLS, MCS, and ML measures for the tap water consumption data of older

adults.

This example is from Table 3-7 of the EFH. The empirical quantile values xp have the property

that 100p% of the sample are below them. The values of xp and p are in columns 3 and 4 of Table B-1.

The quantile values xp in Table B-1 are those from Table 3-7 divided by 100. This rescaling improves

the performance of iterative search methods used to fit the curves.

The results in Table B-1 are from fitting a gamma distribution. The notes for Table B-1

indicate how the various columns are calculated. Column 5 contains the estimated or fitted probabilities

F(xp). The goal of fitting is to choose F to make these F(xp) values close to the target p’s. This gamma

distribution was chosen to minimize a weighted sum of squares of errors (WSE) whose individual terms

are

n*[F(xp)-p]*[F(xp)-p]/[p*(1-p)].

These terms are given in column 6 of Table B-1, labeled “Wtd Sqd Err (WSE).” For example, the WSE

term corresponding to p=0.50 is

2541*[(.5 - .4942)*(.5 - .4942)]/[(.5)*(.5)] = .345.



Research Triangle Institute Fitting Models to Percentile Data

B-3

The column total 13.57 is the minimized WSE. That is, F was chosen as the gamma distribution, which

minimizes the sum of these nine WSE terms.

By comparison with the defining formula for the Anderson-Darling (AD) statistic (Law and

Kelton, 1991), it can be seen that this WSE measure is the AD discrepancy limited to the nine available

quantiles. Intuitively, if a parametric distribution that agrees closely with the data at the available

quantiles is selected, good agreement with respect to any aspect of the distribution, such as the mean,

should be obtained.

The chi-square and log-likelihood values for this particular fitted model also are calculated on

the right-hand side of Table B-1. Unlike the WSE/AD measure, the chi-square and likelihood measures

focus on individual rather than cumulative probabilities associated with intervals. This distinction is

illustrated in the diagram below.

1% of prob 4% of prob 5% of prob
is in here is in here is in here

x01 x05 x10
______________|________________|_______________________________|___

| | |
1% of cum prob 5% of cum prob 10% of cum prob
is below here is below here is below here

Thus, column 7 of Table B-1 for nominal probability mass (labeled "Nom Prob Mass pm")

contains successive differences between the nominal cumulative probability values. Similarly, column 8

for estimated probability mass (labeled "Estd Prob Mass pm^") contains successive differences between

the gamma estimated cumulative probability values F(xp). The observed and expected numbers (O and E)

of sample points in each interval are the products of the sample sizes times these nominal and estimated

individual probabilities. That is, column 9 is the product of column 2 times column 7, and column 10 is

the product of column 2 times column 8. The chi-square values in column 11 are calculated as (O-

E)*(O-E)/O. The first chi-square value is (25.41-9.57)*(25.41-9.57)/25.41 = 9.874. The log-likelihood

values are the natural logarithms of pm^ raised to the O power, that is, O*log(pm^).

The sum of the chi-square and log-likelihood values for the fitted gamma distribution are 17.60

and -4870. To obtain the MCS and ML solutions, the gamma parameters would be selected to minimize

the chi-square or maximize the likelihood, rather than to minimize the WSE measure.
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