

EPA/635/R-13/302 Preliminary Materials www.epa.gov/iris

Preliminary Materials for the Integrated Risk Information System (IRIS) Toxicological Review of Dibutyl Phthalate (DBP)

[CASRN 84-74-2]

January 2015

NOTICE

This document comprises **preliminary materials**. This information is distributed solely for the purpose of pre-dissemination review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. It is being circulated for review of its technical accuracy and science policy implications.

National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC

DISCLAIMER

This document comprises preliminary materials for review purposes only. This information is distributed solely for the purpose of pre-dissemination review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

CONTENTS

PRI	EFACE	ix
1.	INTRODUCTION	1-1
	1.1. DBP IN THE ENVIRONMENT	1-1
	1.1.1. Production and Use	1-1
	1.1.2. Environmental Fate	1-1
	1.1.3. Human Exposure Pathways	1-2
	1.2. SCOPE OF THE ASSESSMENT	1-3
2.	METHODS FOR IDENTIFYING AND SELECTING STUDIES	2-1
	2.1. DRAFT LITERATURE SEARCH AND SCREENING STRATEGY	2-1
	2.2. SELECTION OF STUDIES IN EARLY STAGES OF DRAFT DEVELOPMENT	2-17
	2.2.1. General Approach	2-17
	2.2.2. Approach for Selection of Experimental Studies	2-17
	2.3. STUDY CHARACTERISTICS THAT WILL BE CONSIDERED IN THE FUTURE EVALUATION AND SYNTHESIS OF THE EPIDEMIOLOGICAL STUDIES FOR DBP	2-19
	2.3.1. Study Population	2-19
	2.3.2. Exposure Considerations	2-20
	2.3.3. Primary Outcome Measures	2-25
	2.3.3. Primary Outcome Measures2.3.4. Confounding	
		2-31
	2.3.4. Confounding	2-31 2-34
3.	 2.3.4. Confounding 2.3.5. Data Analysis 2.4. STUDY CHARACTERISTICS THAT WILL BE CONSIDERED IN THE FUTURE EVALUATION AND 	2-31 2-34 2-37
3.	 2.3.4. Confounding	2-31 2-34 2-37 3-1
3.	 2.3.4. Confounding 2.3.5. Data Analysis 2.4. STUDY CHARACTERISTICS THAT WILL BE CONSIDERED IN THE FUTURE EVALUATION AND SYNTHESIS OF THE EXPERIMENTAL STUDIES FOR DBP PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS. 	2-31 2-34 2-37 3-1 3-1
3.	 2.3.4. Confounding	2-31 2-34 3-1 3-1 3-1
3.	 2.3.4. Confounding	2-31 2-34 3-1 3-1 3-2 3-2
3.	 2.3.4. Confounding	2-31 2-34 2-37 3-1 3-1 3-2 3-2 3-8
3.	 2.3.4. Confounding	2-31 2-34 2-37 3-1 3-1 3-2 3-2 3-8 3-12
3.	 2.3.4. Confounding	2-31 2-34 3-1 3-1 3-2 3-2 3-8 3-12 3-14
3.	 2.3.4. Confounding	2-31 2-37 3-1 3-1 3-2 3-2 3-8 3-12 3-14 3-21

This document is a draft for review purposes only and does not constitute Agency policy.

3.2.7. Gynecological Conditions in Humans
3.2.8. Pregnancy-Related Outcomes
3.2.9. Immune Effects in Humans3-34
3.2.10. Thyroid Effects in Humans3-47
3.2.11. Pulmonary Function in Humans3-50
3.2.12. Neurodevelopmental Effects in Humans3-52
3.2.13. Obesity Effects in Humans3-59
3.2.14. Diabetes Effects in Humans3-65
3.2.15. Cardiovascular Effects in Humans3-69
3.2.16. Cancer Effects in Humans
3.3. EXPERIMENTAL STUDIES
3.3.1. Male Reproductive Effects
3.3.2. Female Reproductive Effects
3.3.3. Developmental Effects
3.3.4. Liver Effects
3.3.5. Kidney Effects
3.3.6. Hematopoietic Effects
3.3.7. Thyroid Effects3-174
3.3.8. Immune Effects
3.3.9. Neurological Effects
3.3.10. Other Toxicity Effects3-185
3.4. PRELIMINARY MECHANISTIC INFORMATION FOR DBP
References

4.

TABLES

	Database search strategy for DBP	
Table 2-2.	Summary of additional search strategies for DBP	2-5
Table 2-3.	Inclusion criteria used to identify animal studies of health-related endpoints,	
	supporting data, or secondary literature	
	Summary of search terms: targeted epidemiology search	
	Inclusion criteria used to identify epidemiology studies of health-related endpoints	2-13
Table 2-6.	Summary of additional search strategies for epidemiology studies of phthalate	2 1 4
Table 2.7	exposure in relation to health-related endpoints	
	Primary source epidemiological studies examining health effects of DBP	
	General and outcome-specific considerations for DBP study evaluation	2-34
Table 2-9.	Questions and relevant experimental information for the evaluation of experimental animal studies	2-38
Table 3-1.	Evidence pertaining to DBP and sexual differentiation effects in humans	
	Evidence pertaining to DBP and reproductive hormones in adult men	
	Evidence pertaining to DBP and the timing of male puberty or sex hormones in boys	
	Evidence pertaining to DBP and semen parameters or infertility in adult men or	
	couples	
	Evidence pertaining to DBP and reproductive hormones in adult women	
	Evidence pertaining to DBP and timing of female puberty or sex hormones in girls	
	Evidence pertaining to DBP and gynecological conditions in humans	
	Evidence pertaining to DBP and pregnancy outcomes in humans	
	Evidence pertaining to DBP and allergy/immune effects in humans	
	 Evidence pertaining to DBP and asthma/wheezing and hypersensitivity in humans 	
	. Evidence pertaining to DBP and thyroid effects in humans	
	. Evidence pertaining to DBP and pulmonary function in humans	
	Evidence pertaining to DBP and neurodevelopmental effects in humans	
	Evidence pertaining to DBP and obesity in humans	
	Evidence pertaining to DBP and diabetes in humans	
	Evidence pertaining to DBP and cardiovascular disease risk factors in humans	
	'. Evidence pertaining to DBP and cancer in humans	3-70
Table 3-18	 Evidence pertaining to male reproductive toxicity following oral exposure to DBP: alterations in testes weight in animals 	3_71
Table 3-19	 Evidence pertaining to male reproductive toxicity following oral exposure to DBP: 	
	alterations in accessory male reproductive organ weights in animals	3-77
Table 3-20	 Evidence pertaining to male reproductive toxicity following oral exposure to DBP: 	
	histopathological changes in animals	3-88
Table 3-21	. Evidence pertaining to male reproductive toxicity following oral exposure to DBP:	
	external and internal malformations in animals	3-95
Table 3-22	Evidence pertaining to male reproductive toxicity following oral exposure to DBP:	
	alterations in male reproductive puberty effects and indicators of reproductive	2 4 2 4
	development	3-101
Table 3-23	Evidence pertaining to male reproductive toxicity following oral exposure to DBP: alterations in testosterone concentration/ production in animals	3-107
Table 3-24	 Evidence pertaining to male reproductive toxicity following oral exposure to DBP: 	
10510 5 24	alterations in other reproductive hormones in animals	3-112
Table 3-25	. Evidence pertaining to male reproductive toxicity following oral exposure to DBP:	
	alterations in sperm and fertility measures in animals	3-114
	This document is a draft for review purposes only and does not constitute Agency policy.	
	v DRAFT—DO NOT CITE OR	QUOTE

Table 3-26.	Evidence pertaining to female reproductive toxicity following oral exposure to DBP:	
	alterations in fertility, maternal body weight and food consumption, number of	
	implantation sites and live pups per litter	3-117
Table 3-27.	Evidence pertaining to female reproductive toxicity following oral exposure to DBP:	
	alterations in reproductive organ weights, biomarkers of sexual development,	
	reproductive hormone levels, and reproductive behavior	3-132
Table 3-28.	Evidence pertaining to developmental effects following oral exposure to DBP:	
	alterations in body weight, skeletal development and external malformations	3-138
Table 3-29.	Evidence pertaining to developmental effects following oral exposure to DBP:	
	alterations in offspring sex ratio in animals	3-148
Table 3-30.	Evidence pertaining to liver effects in animals following oral exposure to DBP	3-151
Table 3-31.	Evidence pertaining to kidney effects in animals following oral exposure to DBP	3-161
Table 3-32.	Evidence pertaining to hematological effects in animals following oral exposure to	
	DBP	3-169
Table 3-33.	Evidence pertaining to thyroid effects in animals following oral exposure to DBP	3-174
Table 3-34.	Evidence pertaining to immune effects in animals following oral exposure to DBP	3-176
Table 3-35.	Evidence pertaining to neurological effects in animals following oral exposure to	
	DBP	3-179
Table 3-36.	Evidence pertaining to other toxicity effects in animals following oral exposure to	
	DBP: alterations in body weight in animals	3-185
Table 3-37.	Evidence pertaining to toxicity effects in animals following exposure to DBP	
	metabolites	3-188
Table 3-38.	Summary of mechanistic outcomes evaluated following DBP administration	3-203

FIGURES

Figure 1-1.	Chemical structure of DBP (HSDB, 2009)	1-1
Figure 2-1.	Literature search approach for DBP.	2-9
Figure 2-2.	Summary of studies of reliability of MBP measures in humans	2-23
Figure 2-3.	Urinary concentration of MnBP (Panel A) and MIBP (Panel B) in United States	
	population	2-25
Figure 2-4.	Correlation between MBP and other phthalate metabolites	2-33
Figure 3-1.	Exposure-response array of male reproductive toxicity following oral exposure to	
	DBP: alterations in testes weights	3-76
Figure 3-2.	Exposure-response array of male reproductive toxicity following oral exposure to	
	DBP: alterations in epididymis weights	3-84
Figure 3-3.	Exposure-response array of male reproductive toxicity following oral exposure to	
	DBP: alterations in prostate weights.	3-85
Figure 3-4.	Exposure-response array of male reproductive toxicity following oral exposure to	
	DBP: alterations in seminal vesicle weights	3-86
Figure 3-5.	Exposure-response array of male reproductive toxicity following oral exposure to	
	DBP: alterations in vas deference weights.	3-87
Figure 3-6.	Exposure-response array of male reproductive toxicity following oral exposure to	
	DBP: histopathological effects.	3-94
Figure 3-7.	Exposure-response array of male reproductive toxicity following oral exposure to	
	DBP: external and internal reproductive malformations in animals	3-100
Figure 3-8.	Exposure-response array of male reproductive toxicity following oral exposure to	
	DBP: effects on puberty and markers of reproductive development	3-106
	This document is a draft for review purposes only and does not constitute Agency policy.	
	vi DRAFT—DO NOT CITE C	R QUOTE

Figure 3-9.	Exposure-response array of male reproductive toxicity following oral exposure to	
	DBP: testicular or serum testosterone changes.	3-111
Figure 3-10.	Exposure-response array of male reproductive toxicity following oral exposure to	
	DBP: sperm changes and fertility measures.	3-116
Figure 3-11.	Exposure-response array of female reproductive toxicity following oral exposure to	
	DBP: fertility and pregnancy outcome, and number of implantations	3-129
Figure 3-12.	Exposure-response array of female reproductive toxicity following oral exposure to	
	DBP: alterations in maternal body weight	3-130
Figure 3-13.	Exposure-response array of female reproductive toxicity following oral exposure to	
	DBP: alterations in the number of live pups per litter	3-131
Figure 3-14.	Exposure-response array of female reproductive toxicity following oral exposure to	
	DBP: alterations in female sexual development, reproductive hormone levels in	
	animals, organ weight and reproductive behavior	3-137
Figure 3-15.	Exposure-response array of developmental effects following oral exposure to DBP:	
	alterations in offspring body weight in rats	3-145
Figure 3-16.	Exposure-response array of developmental effects following oral exposure to DBP:	
	alterations in offspring body weight in mice	3-146
Figure 3-17.	Exposure-response array of developmental effects following oral exposure to DBP:	
	external malformations, skeletal effects and body changes after pre-pubertal	
	and pubertal exposure	3-147
Figure 3-18.	Exposure-response array of developmental effects following oral exposure to DBP:	
	alterations on sex ratio changes after gestational exposure	3-150
Figure 3-19.	Exposure-response arrays of alterations in liver weight following oral exposure to	
	DBP	3-159
Figure 3-20.	Exposure-response arrays of alterations in liver histopathology and serum markers	
	following oral exposure to DBP.	
-	Exposure-response array of kidney weight following oral exposure to DBP	3-167
Figure 3-22.	Exposure-response array of kidney histopathology and serum markers of renal	
	toxicity following oral exposure to DBP	3-168
Figure 3-23.	Exposure-response array of hematological outcomes following oral exposure to	
	DBP	
	Exposure-response array of thyroid outcomes following oral exposure to DBP	3-175
Figure 3-25.	Exposure-response array of immunological outcomes following oral exposure to	
	DBP	
	Exposure-response array of neurological outcomes following oral exposure to DBP	3-184
Figure 3-27.	Exposure-response array of alterations in body weight following oral exposure to	
	DBP	3-187
Figure 3-28.	Summary of in vivo or in vitro mechanistic data by mechanistic category following	
	oral exposure to DBP.	3-204

ABBREVIATIONS

AGD	anogenital distance
aOR	adjusted odds ratio
	Behavior Assessment System for
21100 1 110	Children—Parent Rating Scales
BBP	butyl benzyl phthalate
BMI	body mass index
BP	blood pressure
BPA	bisphenol A
BRIEF	Behavior Rating Inventory of Executive
	Function
BW	body weight
CASRN	Chemical Abstracts Service Registry
	Number
CHAP	Chronic Hazard Advisory Panel
CI	confidence interval
CPSC	Consumer Product Safety Commission
DBP	dibutyl phthalate
DEP	di-ethyl phthalate
DEHP	di(2-ethylhexyl)phthalate
DHEAS	dehydroepiandrosterone
DIBP	diisobutyl phthalate
DINP	diisononyl phthalate
DnBP	dibutyl phthalate
DNA	deoxyribonucleic acid
DPP	dipentyl phthalate
DXA	dual energy x-ray absorptiometry
EPA	Environmental Protection Agency
FBG	fasting blood glucose
FDA	Food and Drug Administration
FSH	follicle stimulating hormone
GD	gestational day
HbA1c	glycosolated hemoglobin
HCG	human chorionic gonadotropin
HDL	high-density lipoprotein
HERO	Health and Environmental Research
	Online
Hgb	hemoglobin
HOMA	homeostatic model assessment
HOMA-IR	homeostatic model assessment of
	insulin resistance
HOME	Health Outcomes and Measures of the
	Environment
IgE	immunoglobulin E
ICC	intra-class correlation coefficient
IM-GSM	grey scale media of the intima media
11 (77)	complex
IMT	intima media thickness

IQR	interquartile range
IRIS	Integrated Risk Information System
Кос	partition coefficient
LDL	low-density lipoprotein
LH	luteinizing hormone
LMW	low molecular weight
LOD	level of detection
LOQ	level of quantification
MBzP	mono-benzyl phthalate
MBP	monobutyl phthalate
MCPP	mono-(3-carboxypropyl) phthalate
MDI	mental delay index
MEHP	mono-(2-ethylhexyl) phthalate
MEP	monoethyl phthalate
MHBP	mono-3-(3-carboxypropyl)phthalate
MIBP	monoisobutyl phthalate
MMP	monomethyl phthalate
MOA	mode of action
MOINP	oxo-(mono-oxoisononyl) phthalate
MRI	magnetic resonance imaging
NCEA	National Center for Environmental
	Assessment
NHANES	National Health and Nutrition
	Examination Survey
NHS	Nurses' Health Study
NRC	National Research Council
OR	odds ratio
ORD	Office of Research and Development
РАН	polycyclic aromatic hydrocarbon
РСО	polycystic ovarian morphology
PCOS	polycystic ovarian syndrome
PDI	psychomotor delay index
PND	postnatal day
PPS	preputial separation
PVC	polyvinyl chloride
RBC	red blood cell
SD	standard deviation
SE	standard error
SHBG	sex-hormone binding globulin
T3	triiodothyronine
T4	thyroxine
TSH	thyroid stimulating hormone
VO	vaginal opening
VOC	volatile organic compound
WBC	white blood cell
WHO	World Health Organization

PREFACE 2

1

3 This draft document presents preliminary materials for an assessment of dibutyl phthalate 4 (DBP) prepared by the U.S. Environmental Protection Agency's (EPA's) Integrated Risk Information 5 System (IRIS) Program. These preliminary materials include a planning and scoping summary, 6 information on the approaches used to identify pertinent literature, results of the literature search, 7 approaches for selection of studies for hazard identification, presentation of studies in evidence 8 tables and exposure-response arrays, and mechanistic information for DBP. This material is being 9 released for public review and comment prior to a public meeting, providing an opportunity for the 10 IRIS Program to engage in early discussions with stakeholders and the public on data that may be 11 used to identify adverse health effects and characterize dose-response relationships. 12 The planning and scoping summary includes information on the uses of DBP, occurrence of 13 DBP in the environment, and the rationale and scope for the development of the assessment. This 14 information is responsive to recommendations in the 2009 National Research Council (NRC) report 15 Science and Decisions: Advancing Risk Assessment (NRC, 2009) related to planning and scoping in the risk assessment process. 16 17 The preliminary materials are also responsive to the 2011 NRC report *Review of the* 18 Environmental Protection Agency's Draft IRIS Assessment of Formaldehyde (NRC, 2011). The IRIS 19 Program's implementation of the NRC recommendations is following a phased approach that is 20 consistent with the NRC's "Roadmap for Revision" as described in Chapter 7 of the formaldehyde 21 review report. The NRC stated that "the committee recognizes that the changes suggested would 22 involve a multi-year process and extensive effort by the staff of the National Center for 23 Environmental Assessment and input and review by the EPA Science Advisory Board and others." 24 Phase 1 of implementation has focused on a subset of the short-term recommendations, such as 25 editing and streamlining documents, increasing transparency and clarity, and using more tables, 26 figures, and appendices to present information and data in assessments. Phase 1 also focused on 27 assessments near the end of the development process and close to final posting. Phase 2 of implementation is focused on assessments that are in the beginning stages of assessment 28 29 development. The IRIS DBP assessment is in Phase 2 and represents a significant advancement in 30 implementing the NRC recommendations. In the development of this assessment, many of the 31 recommendations are being implemented in full, while others are being implemented in part. 32 Achieving full and robust implementation of certain recommendations will be an evolving process 33 with input and feedback from the public, stakeholders, and independent external peer review. 34 Phase 3 of implementation will incorporate the longer-term recommendations made by the NRC, 35 including the development of a standardized approach to describe the strength of evidence for

noncancer effects. 36

ix

1 In May 2014, the NRC released their report reviewing the IRIS assessment development 2 process. As part of this review, the NRC reviewed current methods for evidence-based reviews and 3 made several recommendations with respect to integrating scientific evidence for chemical hazard 4 and dose-response assessments. In their report, the NRC states that EPA should continue to 5 improve its evidence-integration process incrementally and enhance the transparency of its 6 process. The committee did not offer a preference but suggests that EPA consider which approach 7 best fits its plans for the IRIS process. The NRC recommendations will inform the IRIS Program's 8 efforts in this area going forward. This effort is included in Phase 3 of EPA's implementation plan. 9 The literature search strategy, which describes the processes for identifying scientific 10 literature, screening studies for consideration, and identifying primary sources of health effects 11 data, is responsive to NRC recommendations regarding the development of a systematic and 12 transparent approach for identifying the primary literature for analysis. The preliminary materials 13 describe EPA's approach for the selection of studies to be included in the evidence tables. It also 14 includes presentation of methodological details and results in tabular form, and describes the 15 considerations that will be used to distinguish level of quality, informativeness, and bias in the set 16 of collected studies. This evaluation will be incorporated into the synthesis of evidence for each 17 health effect. The development of these materials is in response to the NRC recommendation to 18 thoroughly evaluate critical studies with standardized approaches that are formulated and based 19 on the type of research (e.g., observational epidemiology or animal bioassays). In addition, NRC 20 recommendations for standardized presentation of key study data are addressed by the 21 development of the preliminary evidence tables and preliminary exposure-response arrays for 22 primary health effect information. 23 EPA welcomes all comments on the preliminary materials in this document, including the 24 following: 25 • the clarity and transparency of the materials; 26 • the approach for identifying pertinent studies; 27 any methodological considerations that could affect the interpretation of or confidence in 28 study results; and 29 any additional studies published or nearing publication that may provide data for the • evaluation of human health hazard or dose-response relationships. 30 31 The preliminary evidence tables and exposure-response arrays should be regarded solely as 32 representing the data on each endpoint that have been identified as a result of the draft literature search strategy. They do not reflect any conclusions as to hazard identification or dose-response 33 34 assessment. 35 After obtaining public input and conducting additional study evaluation and data 36 integration, EPA will revise these materials to support the hazard identification and dose-response 37 assessment in a draft Toxicological Review that will be made available for public comment.

2 **1. INTRODUCTION**

This introduction contains a planning and scoping summary for the Integrated Risk
Information System (IRIS) assessment of dibutyl phthalate (DBP). The planning and scoping
summary includes information on the properties, sources, and uses of DBP, occurrence and fate of
DBP in the environment, potential for human exposure, and the rationale for the development of
this assessment.

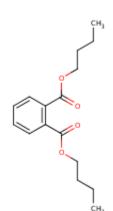
8 **1.1. DBP IN THE ENVIRONMENT**

9 1.1.1. Production and Use

10 DBP (Chemical Abstract Service Registry Number [CASRN] 84-74-2) is a plasticizer used in 11 resins and polymers such as polyvinyl chloride (PVC) as well as, nitrocellulose paints, explosives,

12 nail polish and solid rocket propellants. DBP is also used in the manufacture of printing inks,

13 adhesives, sealants, film coatings, and safety glass and as a solvent and fixative for perfumes (<u>HSDB</u>,


14 <u>2009</u>). EPA's Office of Pollution Prevention and Toxics (OPPT) reported that more than 7 million

15 pounds were imported or manufactured in the United States in 2012

16 (<u>http://www.epa.gov/oppt/cdr/index.html</u>).

17

1

- 18
- 19

Figure 1-1. Chemical structure of DBP (<u>HSDB, 2009</u>).

20

21 **1.1.2.** Environmental Fate

If released to air, DBP will exist in both the vapor and particulate phases in the atmosphere.
Vapor-phase DBP will be degraded with a half-life of about 42 days. Particulate-phase DBP will be
removed from the atmosphere by wet or dry deposition. Once in soil, DBP has low mobility with an

25 organic carbon partition coefficient (Koc) of 3.05-3.14. Biodegradation half-life in aerobic soil and

This document is a draft for review purposes only and does not constitute Agency policy.

1-1

water is estimated as 2.9 days. Anaerobic biodegradation half-life is approximately 14.4 days. If
 released into water, DBP is expected to adsorb to suspended solids and sediment. Measured

- 3 bioconcentration factors suggest that concentrations in aquatic organisms may be low due to the
- 4 ability of aquatic organisms to readily metabolize this class of compounds (HSDB, 2009). As noted
- 5 by <u>Wormuth et al. (2006)</u>, the majority of phthalates that are found in the environment come from
- 6 slow release from plastics and other phthalate-containing articles. Certain waste streams, sludges,
- 7 and contaminated sites, however, may contain higher levels of phthalates than other sites.
- 8

1.1.3. Human Exposure Pathways

9 The manner that humans are exposed to phthalates, along with the magnitude of exposures, 10 has changed over time as the quantities and uses of phthalates have changed. Human exposure to 11 phthalates occurs mainly in occupational or household settings because they are used and released 12 from products in the home environment. Environmental concentrations of phthalates are typically 13 the highest in house dust and they may be present in food due to the use of phthalates in packaging 14 and food preparation materials. For most phthalates, food ingestion is the dominant pathway of 15 exposure, with dust exposures (ingestion and dermal contact), use of personal care products, and 16 inhalation also being important in some circumstances. Infant and toddler exposures occur due to 17 teething and playing with plastic toys that contain phthalates (Wormuth et al., 2006).

- The presence of phthalates or their metabolites in a body matrix, such as blood or urine,
 provides evidence of exposure to that chemical. The predominant metabolite of DBP in humans is
 monobutyl phthalate (MBP). The prevalence and temporal trends of MBP in urine samples
 collected as part of the biennial National Health and Nutrition Examination Survey (NHANES)
 conducted between 2001 and 2010 has been reported by the Centers for Disease Control (CDC,
 2013). Concentrations were fairly stable between 2001 and 2008 (geometric mean approximately
 20 ng/ml; 95th percentile approximately 110 ng/ml), but decreased in the 2009-2010 cycle
- (geometric mean 14.6 ng/ml; 95th percentile 75.9 ng/ml) (Zota et al., 2014).
- 26 Intake exposures can be estimated on a pathway-basis by combining exposure media 27 concentrations and contact rates. Using this approach, Clark et al. (2011) determined a median 28 intake of DBP of between 1.2 and 3.4 µg/kg-day for various lifestages as defined by the authors: 29 adults (20-70 years of age), teens (12-19 years of age), children (5-11 years of age), toddlers 30 (0.5-4 years of age), and infants (0-0.5 years of age). Toddlers had the highest intake noted. 31 Ingestion of food accounted for 75% of the total exposure for all age groups except infants, with the 32 remainder primarily due to incidental ingestion of dust and a minor contribution due to inhalation 33 of indoor air. For formula-fed infants, ingestion of food accounted for approximately 46% of 34 exposure, followed by ingestion of dust and inhalation of indoor air. For breast-fed infants, 35 ingestion of dust represented approximately 62% of total exposure followed by inhalation of indoor 36 air and ingestion of food. In another assessment, Wormuth et al. (2006) found that ingestion of 37 food was the dominant exposure pathway for the adults while for teens, dermal contact, ingestion 38 of personal care products, and inhalation of air were important exposure pathways. The Consumer 39 Products Safety Commission (CPSC) developed a scenario based exposure assessment for

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT—DO NOT CITE OR QUOTE

1-2

1 phthalates in the context of a report from the Chronic Hazard Advisory Panel (<u>CHAP, 2014</u>). Their

- 2 report focused on exposures to women of child-bearing age and to children (infants, toddlers, and
- 3 older children), and included 8 phthalate esters (DEP, DBP, DiBP, BBP, DNOP, DEHP, DiNP, and
- 4 DiDP). For women of child-bearing age specific to DBP, they found that personal care products
- 5 explained 59% of exposures, with dietary exposures second at 26%. Indoor exposures, including
- 6 toys and house dust, explained 61% of exposures for infants, 48% for toddlers, and 23% for
- 7 children, with diet and personal care products explaining the remaining exposures for these
- 8 groupings of individuals.
- 9 <u>Wittassek et al. (2011)</u> reported median intakes of DBP in the range of 0.8-7.6 μg/kg-day
- 10 based on a literature survey or urinary biomonitoring data and intake estimates provided therein.
- 11 Their review included U.S. estimates generated using data from the NHANES 2001-2002. <u>Qian et al.</u>
- 12 (2014) used NHANES 2007-2008 data and found a median intake of 0.54 μg/kg-day and a 95th
- 13 percentile intake of 2.43 µg/kg-day. <u>Christensen et al. (2014)</u> combined the data from NHANES
- 14 2005-2008 and found similar results to <u>Qian et al. (2014)</u>, with a median over that time span of
- 15 0.5 μg/kg-day and a 95th percentile intake of 2.1 μg/kg-day. The CPSC (<u>CHAP, 2014</u>) found a
- 16 median and a 95th percentile intake for adults (age range 15-45) of 0.66 and 2.6 μg/kg-day based on
- 17 NHANES 2005-2006 data; corresponding figures based on urine measures in infants were 1.7
- 18 (median) and 10.4 (95th percentile) μ g/kg-day.
- 19 **1.2. SCOPE OF THE ASSESSMENT**

20 The National Research Council has recommended that, "cumulative risk assessment based 21 on common adverse outcomes is a feasible and physiologically relevant approach to the evaluation 22 of the multiplicity of human exposures and directly reflects EPA's mission to protect human 23 health" [(NRC, 2008), p11]. They envisioned facilitating the process by "defining the groups of 24 agents that should be included for a given outcome" [(NRC, 2008), p12]. In humans, the NRC cited 25 results from the NHANES that demonstrate exposure to multiple phthalates in most people [(NRC, 26 2008), p23-25]. This IRIS assessment will help to inform EPA programs and regions of the 27 potentially unique vulnerabilities of adults, especially women of reproductive age to DBP exposure 28 and enable future cumulative risk assessments that assess effects on human health outcomes that 29 might be associated with DBP and other phthalates. EPA's previous IRIS assessment of DBP 30 included an oral reference dose (RfD) and qualitative cancer assessment (classified as Group D, not 31 classifiable). Since that time, a number of experimental animal and epidemiological studies have 32 been published for DBP.

1

2 2. METHODS FOR IDENTIFYING AND SELECTING 3 STUDIES

4 2.1. DRAFT LITERATURE SEARCH AND SCREENING STRATEGY

5 A literature search for DBP was conducted in four online scientific databases [PubMed, Web 6 of Science, Toxline, and Toxic Substances Control Act Test Submissions (TSCATS2)¹] in November 7 2012. The search was updated in June 2013 and in January 2014. The identification of the 8 available literature captured in this document is complete through January 2014. A literature 9 search update was recently performed in September 2014. EPA is currently reviewing the 10 literature obtained from this update. As described below, an additional search strategy was 11 developed to identify epidemiological studies, and was most recently updated in June 2014. 12 The detailed search approach, including the search strings and number of citations 13 identified per database, is presented in Table 2-1. The search strings and search terms described 14 for DBP captured studies using the parent compound and metabolites (i.e., the active metabolite, 15 MBP). This search of online databases identified 3,090 citations (after electronically eliminating 16 duplicates). The computerized database searches were also supplemented by a manual search of 17 citations from other regulatory documents (Table 2-2); 86 citations were obtained using these 18 additional search strategies. In total, 3,176 citations were identified using online scientific 19 databases and additional search strategies.

20

Table 2-1. Database search strategy for DBP

Database (search date)	Keywords ^a
PubMed 01/2014 06/2013 11/2012	("Dibutyl phthalate"[mh]) OR ((("Dibutyl phthalate"[mh]) OR ("Dibutyl phthalate"[tw] OR "Di- n-butyl phthalate"[tw] OR "Dibutyl 1,2-benzenedicarboxylate"[tw] OR "Phthalic acid dibutyl ester"[tw] OR "1,2-Benzenedicarboxylic acid dibutyl ester"[tw] OR "1,2-Benzenedicarboxylic acid 1,2-dibutyl ester"[tw] OR "o-Benzenedicarboxylic acid dibutyl ester"[tw] OR "Benzene-o- dicarboxylic acid di-n-butyl ester"[tw] OR "Dibutyl-o-phthalate"[tw] OR "ortho-Dibutyl phthalate" OR dibutylphthalate OR "N-Butylphthalate"[tw] OR "n-Butyl phthalate"[tw] OR "di- butyl phthalate"[tw]) OR ("Celluflex DPB"[tw] OR "Elaol"[tw] OR "Ergoplast FDB"[tw] OR "Ersoplast FDA"[tw] OR "Genoplast B"[tw] OR "Hatcol DBP"[tw] OR "Hexaplas M B"[tw] OR "Kodaflex DBP"[tw] OR "Palatinol C"[tw] OR "Polycizer DBP"[tw] OR "Witcizer 300"[tw]) OR (DBP[tw] AND (phthalic acids[mh] OR phthalate[tw] OR phthalates[tw]))) AND (to[sh] OR po[sh] OR ae[sh] OR pk[sh] OR me[sh] OR ci[sh] OR bl[sh] OR cf[sh] OR ur[sh] OR "Inhalation Exposure"[Mesh] OR "Occupational Exposure"[Mesh] OR "Paternal Exposure"[Mesh] OR "Environmental Exposure"[Mesh:noexp] OR ((pharmacokinetics[mh] OR metabolism[mh])

¹ The TSCATS2 database was accessed through Toxline (U.S. National Library of Medicine). This document is a draft for review purposes only and does not constitute Agency policy.

Database (search date)	Keywords ^a
	AND (humans[mh] OR animals[mh])) OR "dose-response relationship, drug"[mh] OR risk[mh] OR "toxicity tests"[mh] OR noxae[mh] OR cancer[sb] OR "endocrine system"[mh] OR "hormones, hormone substitutes, and hormone antagonists"[mh] OR "endocrine disruptors"[mh] OR endocrine[tw] OR rat[tw] OR rats[tw] OR mouse[tw] OR mice[tw] OR "animals, laboratory"[mh])) OR ((("Dibutyl phthalate"[mh]) OR ("Dibutyl phthalate"[tw] OR "Di-n-butyl phthalate"[tw] OR "Dibutyl 1,2-benzenedicarboxylate"[tw] OR "Phthalic acid dibutyl ester"[tw] OR "1,2-Benzenedicarboxylic acid dibutyl ester"[tw] OR "1,2- Benzenedicarboxylic acid 1,2-dibutyl ester"[tw] OR "o-Benzenedicarboxylic acid dibutyl ester"[tw] OR "Benzene-o-dicarboxylic acid di-n-butyl ester"[tw] OR "Dibutyl-o-phthalate"[tw] OR "ortho-Dibutyl phthalate" OR dibutylphthalate OR "N-Butylphthalate"[tw] OR "n-Butyl phthalate"[tw] OR "Ersoplast FDA"[tw] OR "Genoplast B"[tw] OR "Hatcol DBP"[tw] OR "Hexaplas M B"[tw] OR "Kodaflex DBP"[tw] OR "Palatinol C"[tw] OR "Polycizer DBP"[tw] OR "RC Plasticizer DBP"[tw] OR "Staflex DBP"[tw] OR "Unimoll db"[tw] OR "Witcizer 300"[tw]) OR (DBP[tw] AND (phthalic acids[mh] OR phthalate[tw] OR phthalates[tw]))) AND "phthalic acids" AND /ai)
	(("Dibutyl phthalate"[mh]) OR ("Dibutyl phthalate"[tw] OR "Di-n-butyl phthalate"[tw] OR "Dibutyl 1,2-benzenedicarboxylate"[tw] OR "Phthalic acid dibutyl ester"[tw] OR "1,2- Benzenedicarboxylic acid dibutyl ester"[tw] OR "1,2-Benzenedicarboxylic acid 1,2-dibutyl ester"[tw] OR "o-Benzenedicarboxylic acid dibutyl ester"[tw] OR "Benzene-o-dicarboxylic acid di-n-butyl ester"[tw] OR "Dibutyl-o-phthalate"[tw] OR "ortho-Dibutyl phthalate" OR dibutylphthalate OR "N-Butylphthalate"[tw] OR "n-Butyl phthalate"[tw] OR "di-butyl phthalate"[tw]) OR ("Celluflex DPB"[tw] OR "Elaol"[tw] OR "Ergoplast FDB"[tw] OR "Ersoplast FDA"[tw] OR "Genoplast B"[tw] OR "Hatcol DBP"[tw] OR "Hexaplas M B"[tw] OR "Kodaflex DBP"[tw] OR "Uniflex DBP"[tw] OR "Unimoll db"[tw] OR "Witcizer 300"[tw]) OR (DBP[tw] AND (phthalic acids[mh] OR phthalate[tw] OR phthalates[tw]))) NOT medline[sb]
	(("Dibutyl phthalate"[mh]) OR ("Dibutyl phthalate"[tw] OR "Di-n-butyl phthalate"[tw] OR "Dibutyl 1,2-benzenedicarboxylate"[tw] OR "Phthalic acid dibutyl ester"[tw] OR "1,2- Benzenedicarboxylic acid dibutyl ester"[tw] OR "1,2-Benzenedicarboxylic acid 1,2-dibutyl ester"[tw] OR "o-Benzenedicarboxylic acid dibutyl ester"[tw] OR "Benzene-o-dicarboxylic acid di-n-butyl ester"[tw] OR "Dibutyl-o-phthalate"[tw] OR "ortho-Dibutyl phthalate" OR dibutylphthalate OR "N-Butylphthalate"[tw] OR "n-Butyl phthalate"[tw] OR "di-butyl phthalate"[tw]) OR ("Celluflex DPB"[tw] OR "Elaol"[tw] OR "Ergoplast FDB"[tw] OR "Ersoplast FDA"[tw] OR "Genoplast B"[tw] OR "Hatcol DBP"[tw] OR "Hexaplas M B"[tw] OR "Kodaflex DBP"[tw] OR "Palatinol C"[tw] OR "Polycizer DBP"[tw] OR "RC Plasticizer DBP"[tw] OR "Staflex DBP"[tw] OR "Uniflex DBP"[tw] OR "Unimoll db"[tw] OR "Witcizer 300"[tw]) OR (DBP[tw] AND (phthalic acids[mh] OR phthalate[tw] OR phthalates[tw]))) AND ("Computational biology"[mh] OR "Bio-Informatics"[mh] OR "Bioinformatics"[mh] OR "Computational Molecular Biology"[mh] OR "Molecular Biology, Computational"[mh] OR "Clinical Informatics"[mh] OR "Information Science, Medical"[mh] OR "Proteome"[mh] OR "Metabolomics"[mh] OR "Genome"[mh] OR "Proteomics"[mh] OR "Proteome"[mh] OR "Metabolomics"[mh] OR "Gene"[mh] OR "Genes"[mh] OR "Gene expression"[mh] OR "Transcript expression"[mh] OR "transcriptomes"[mh] OR "Phenotype"[mh] OR "Transcription"[mh] OR "Biological systems AND (monitoring OR data OR analysis)"[mh] OR "Genetic transcription"[mh] OR "Biological systems AND (monitoring OR data OR analysis)"[mh] OR "Genetic induction"[mh] OR "Reverse transcription"[mh] OR "Transcription [mh] OR "Reverse transcription"[mh] OR "Transcription [actors"[mh] OR "Biosynthesis AND (RNA OR DNA)"[mh] OR "mRNA"[mh] OR "messenger RNA"[mh] OR

Database (search date)	Keywordsª
	"transfer RNA"[mh] OR "peptide biosynthesis"[mh] OR "protein biosynthesis"[mh] OR "protein synthesis"[mh] OR "RT-PCR"[mh] OR "RTPCR"[mh] OR "Reverse Transcriptase Polymerase Chain Reaction"[mh] OR "DNA sequence"[mh] OR "Trans-activators"[mh])
Web of Science 01/2014 06/2013 11/2012	((TS=DBP AND TS=phthalat*) OR (TS="dibutyl phthalate" OR TS="di-n-butyl phthalate" OR TS="dibutyl 1,2-benzenedicarboxylate" OR TS="phthalic acid dibutyl ester" OR TS="1,2- benzenedicarboxylic acid dibutyl ester" OR TS="1,2-benzenedicarboxylic acid 1,2-dibutyl ester" OR TS="dibutyl-o-phthalate" OR TS=dibutylphthalate OR TS="n-butylphthalate" OR TS="n-butyl phthalate" OR TS="di-butyl phthalate")) AND (TS=chronic OR TS=immun* OR TS=lymph* OR TS=neurotox* OR TS=toxicokin* OR TS=pharmacokin* OR TS=biomarker* OR TS=neurolog* OR TS=subchronic OR TS=pbpk OR TS=epidemiolog* OR TS=acute OR TS=subacute OR TS=ld50)
	((TS=DBP AND TS=phthalat*) OR (TS="dibutyl phthalate" OR TS="di-n-butyl phthalate" OR TS="dibutyl 1,2-benzenedicarboxylate" OR TS="phthalic acid dibutyl ester" OR TS="1,2- benzenedicarboxylic acid dibutyl ester" OR TS="1,2-benzenedicarboxylic acid 1,2-dibutyl ester" OR TS="dibutyl-o-phthalate" OR TS=dibutylphthalate OR TS="n-butylphthalate" OR TS="n-butyl phthalate" OR TS="di-butyl phthalate")) AND (TS=lc50 OR TS=inhal* OR TS=pulmon* OR TS=nasal OR TS=lung* OR TS=respir* OR TS=occupation* OR TS=workplace OR TS=worker* OR TS=oral OR TS=orally OR TS=ingest* OR TS=gavage OR TS=diet OR TS=dietary OR TS=drinking OR TS=gastr* OR TS=intestin*)
	((TS=DBP AND TS=phthalat*) OR (TS="dibutyl phthalate" OR TS="di-n-butyl phthalate" OR TS="dibutyl 1,2-benzenedicarboxylate" OR TS="phthalic acid dibutyl ester" OR TS="1,2- benzenedicarboxylic acid dibutyl ester" OR TS="1,2-benzenedicarboxylic acid 1,2-dibutyl ester" OR TS="dibutyl-o-phthalate" OR TS=dibutylphthalate OR TS="n-butylphthalate" OR TS="n-butyl phthalate" OR TS="di-butyl phthalate")) AND (TS=gut OR TS=sensitiz* OR TS=abort* OR TS=abnormalit* OR TS=embryo* OR TS=cleft* OR TS=fetus* OR TS=foetus* OR TS=fetal* OR TS=foetal* OR TS=fertil* OR TS=malform* OR TS=ovum OR TS=ova OR TS=ovary OR TS=placenta* OR TS=pregnan*)
	((TS=DBP AND TS=phthalat*) OR (TS="dibutyl phthalate" OR TS="di-n-butyl phthalate" OR TS="dibutyl 1,2-benzenedicarboxylate" OR TS="phthalic acid dibutyl ester" OR TS="1,2- benzenedicarboxylic acid dibutyl ester" OR TS="1,2-benzenedicarboxylic acid 1,2-dibutyl ester" OR TS="dibutyl-o-phthalate" OR TS=dibutylphthalate OR TS="n-butylphthalate" OR TS="n-butyl phthalate" OR TS="di-butyl phthalate")) AND (TS=dermal* OR TS=dermis OR TS=skin OR TS=epiderm* OR TS=cutaneous OR TS=carcinog* OR TS=cocarcinog* OR TS=cancer OR TS=precancer OR TS=neoplas* OR TS=tumor* OR TS=tumour* OR TS=oncogen* OR TS=lymphoma* OR TS=carcinom* OR TS=genetox* OR TS=genotox* OR TS=androgen*)
	((TS=DBP AND TS=phthalat*) OR (TS="dibutyl phthalate" OR TS="di-n-butyl phthalate" OR TS="dibutyl 1,2-benzenedicarboxylate" OR TS="phthalic acid dibutyl ester" OR TS="1,2- benzenedicarboxylic acid dibutyl ester" OR TS="1,2-benzenedicarboxylic acid 1,2-dibutyl ester" OR TS="dibutyl-o-phthalate" OR TS=dibutylphthalate OR TS="n-butylphthalate" OR TS="n-butyl phthalate" OR TS="di-butyl phthalate")) AND (TS=hormon* OR TS=blood OR TS=serum OR TS=urine OR TS=bone OR TS=bones OR TS=skelet* OR TS=rat OR TS=rats OR TS=mouse)
	((TS=DBP AND TS=phthalat*) OR (TS="dibutyl phthalate" OR TS="di-n-butyl phthalate" OR TS="dibutyl 1,2-benzenedicarboxylate" OR TS="phthalic acid dibutyl ester" OR TS="1,2- benzenedicarboxylic acid dibutyl ester" OR TS="1,2-benzenedicarboxylic acid 1,2-dibutyl ester" OR TS="dibutyl-o-phthalate" OR TS=dibutylphthalate OR TS="n-butylphthalate" OR TS="n-butyl phthalate" OR TS="di-butyl phthalate")) AND (TS=mice OR TS=guinea OR

Database (search date)	Keywordsª
	TS=muridae OR TS=rabbit* OR TS=lagomorph* OR TS=hamster* OR TS=ferret* OR TS=gerbil* OR TS=rodent* OR TS=dog OR TS=dogs OR TS=beagle* OR TS=canine OR TS=cats OR TS=feline OR TS=pig OR TS=pigs OR TS=swine OR TS=porcine OR TS=monkey* OR TS=macaque* OR TS=baboon* OR TS=marmoset* OR TS=toxic* OR TS=adverse OR TS=poisoning)
	((TS=DBP AND TS=phthalat*) OR (TS="dibutyl phthalate" OR TS="di-n-butyl phthalate" OR TS="dibutyl 1,2-benzenedicarboxylate" OR TS="phthalic acid dibutyl ester" OR TS="1,2- benzenedicarboxylic acid dibutyl ester" OR TS="1,2-benzenedicarboxylic acid 1,2-dibutyl ester" OR TS="dibutyl-o-phthalate" OR TS=dibutylphthalate OR TS="n-butylphthalate" OR TS="n-butyl phthalate" OR TS="di-butyl phthalate")) AND (TS=prenatal OR TS=perinatal OR TS=postnatal OR TS=reproduc* OR TS=steril* OR TS=teratogen* OR TS=sperm* OR TS=neonat* OR TS=newborn* OR TS=development* OR TS=zygote* OR TS=child OR TS=children OR TS=adolescen* OR TS=infant* OR TS=wean* OR TS=offspring OR TS=age)
	((TS=DBP AND TS=phthalat*) OR (TS="dibutyl phthalate" OR TS="di-n-butyl phthalate" OR TS="dibutyl 1,2-benzenedicarboxylate" OR TS="phthalic acid dibutyl ester" OR TS="1,2- benzenedicarboxylic acid dibutyl ester" OR TS="1,2-benzenedicarboxylic acid 1,2-dibutyl ester" OR TS="dibutyl-o-phthalate" OR TS=dibutylphthalate OR TS="n-butylphthalate" OR TS="n-butyl phthalate" OR TS="di-butyl phthalate")) AND (TS="Genomics" OR TS="Proteomics" OR TS="Metabolic Profile" OR TS="Metabolome" OR TS="Metabolomics" OR TS="Microarray" OR TS="Nanoarray")
	((TS=DBP AND TS=phthalat*) OR (TS="dibutyl phthalate" OR TS="di-n-butyl phthalate" OR TS="dibutyl 1,2-benzenedicarboxylate" OR TS="phthalic acid dibutyl ester" OR TS="1,2- benzenedicarboxylic acid dibutyl ester" OR TS="1,2-benzenedicarboxylic acid 1,2-dibutyl ester" OR TS="dibutyl-o-phthalate" OR TS=dibutylphthalate OR TS="n-butylphthalate" OR TS="n-butyl phthalate" OR TS="di-butyl phthalate")) AND (TS="Gene expression" OR TS="Transcript expression" OR TS="transcriptomes" OR TS="transcriptome" OR TS="Phenotype" OR TS="Transcription" OR TS="Trans-act*" OR TS="transact*" OR TS="trans
	((TS=DBP AND TS=phthalat*) OR (TS="dibutyl phthalate" OR TS="di-n-butyl phthalate" OR TS="dibutyl 1,2-benzenedicarboxylate" OR TS="phthalic acid dibutyl ester" OR TS="1,2- benzenedicarboxylic acid dibutyl ester" OR TS="1,2-benzenedicarboxylic acid 1,2-dibutyl ester" OR TS="dibutyl-o-phthalate" OR TS=dibutylphthalate OR TS="n-butylphthalate" OR TS="n-butyl phthalate" OR TS="di-butyl phthalate")) AND (TS="Genetic transcription" OR TS="Gene transcription" OR TS="Gene Activation" OR TS="Genetic induction" OR TS="Reverse transcription" OR TS="Transcriptional activation" OR TS="Transcription factors" OR (TS="Biosynthesis" AND (TS=RNA OR TS=DNA)) OR TS="mRNA")
	((TS=DBP AND TS=phthalat*) OR (TS="dibutyl phthalate" OR TS="di-n-butyl phthalate" OR TS="dibutyl 1,2-benzenedicarboxylate" OR TS="phthalic acid dibutyl ester" OR TS="1,2- benzenedicarboxylic acid dibutyl ester" OR TS="1,2-benzenedicarboxylic acid 1,2-dibutyl ester" OR TS="dibutyl-o-phthalate" OR TS="1,2-benzenedicarboxylic acid 1,2-dibutyl ester" OR TS="dibutyl-o-phthalate" OR TS="dibutylphthalate" OR TS="n-butylphthalate" OR TS="n-butyl phthalate" OR TS="di-butyl phthalate")) AND (TS="messenger RNA" OR TS="transfer RNA" OR TS="peptide biosynthesis" OR TS="protein biosynthesis" OR TS="protein synthesis" OR TS="RT-PCR" OR TS="RTPCR" OR TS="Reverse Transcriptase Polymerase Chain Reaction" OR TS="DNA sequence")
Toxline 01/2014 06/2013 11/2012	@OR+("dibutyl+phthalate" + "di-n-butyl+phthalate" + "dibutyl+1,2-benzenedicarboxylate" + "phthalic+acid+dibutyl+ester" + "1,2-benzenedicarboxylic+acid+dibutyl+ester" + "1,2- benzenedicarboxylic+ acid+1,2-dibutyl+ester" + "o-benzenedicarboxylic + acid+dibutyl+ester" + "benzene-o-dicarboxylic+acid+di-n-butyl+ester" + "dibutyl-o-phthalate" + "ortho-dibutyl+phthalate" + dibutylphthalate + "n-butylphthalate" + "n-butyl+phthalate" +

Database (search date)	Keywords ^a	
	"di-butyl+phthalate" + "celluflex+dpb"+ "elaol" + "ergoplast+fdb" + "ersoplast+fda" + "genoplast+b" + "hatcol+dbp" + "hexaplas+m+b" + "kodaflex+dbp" + "palatinol+c"+ "polycizer+dbp"+ "rc+plasticizer+dbp" + "staflex+dbp" + "uniflex+dbp"+ "unimoll+db" + "witcizer+300"+"84 74 2"+ @term+@rn+84-74-2)+@NOT+ @org+pubmed+pubdart+crisp+tscats	
TSCATS2 via ToxLine 11/2012	@term+@rn+84-74-2+@AND+@org+tscats	
The search strings and search terms described in the table captured studies using the parent compound and the		

1

3

metabolite MBP.

2

Fable 2-2	Summary	of addition	al search	strategies	for DBP	

Approach used	Source(s)	Date performed	Number of additional citations identified
Manual search of citations from regulatory documents	Toxicological Profile: <u>ATSDR (2001)</u> "Toxicological Profile for Di-n-butyl Phthalate" Toxicity Review: <u>CPSC (2010)</u> "Toxicity Review for Di-n- butyl Phthalate"	05/2013 05/2013	31 citations added 8 citations added
Web of Science, forward search	Mahood et al. (2007) ² In utero exposure to di(n-butyl) phthalate and testicular dysgenesis: comparison of fetal and adult end points and their dose sensitivity. Environ Health Perspect. 115: 55-61. <u>Mylchreest et al. (2000)³</u> Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to Di(n-butyl) phthalate during late gestation.	05/2013 05/2013	3 citations added 29 citations added
Web of Science, backward search	Toxicol Sci. 55(1):143-51. <u>Mahood et al. (2007)</u> In utero exposure to di(n-butyl) phthalate and testicular dysgenesis: comparison of fetal and adult end points and their dose sensitivity. Environ Health Perspect. 115: 55-61.	05/2013	0 citations added
	Mylchreest et al. (2000) Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to Di(n-butyl) phthalate during late gestation. Toxicol Sci. 55(1):143-51.	05/2013	2 citations added

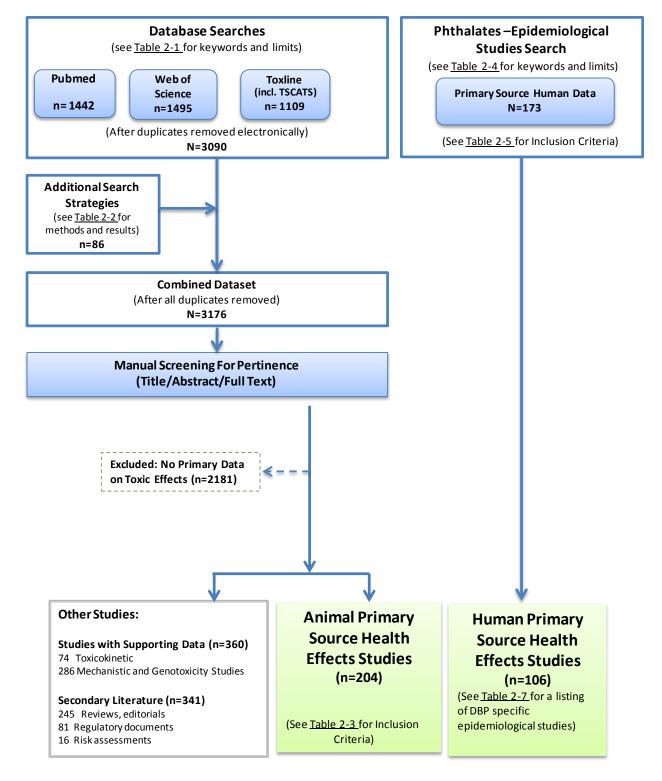
This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

² Key study identified in <u>CPSC (2010)</u>

³ Key study identified in <u>ATSDR (2001)</u>

Approach used	Source(s)	Date performed	Number of additional citations identified
References obtained during the assessment process	DBP references in previous assessment or previously added to the HERO project page	11/2014	8 citations added
Background check	Searched a combination of CASRNs and synonyms on the following databases: ACGIH (http://www.acgih.org/home.htm) ATSDR (http://www.atsdr.cdc.gov/substances/index.asp) CalEPA Office of Environmental Health Hazard Assessment (http://www.oehha.ca.gov/risk.html) OEHHA Toxicity Criteria Database (http://www.oehha.ca.gov/tcdb/index.asp) Biomonitoring California-Priority Chemicals (http://www.oehha.ca.gov/multimedia/biomon/pdf/Priori tyChemsCurrent.pdf) Biomonitoring California-Designated Chemicals (http://www.oehha.ca.gov/multimedia/biomon/pdf/Desig natedChemCurrent.pdf) Cal/Ecotox database (http://www.oehha.ca.gov/scripts/cal_ecotox/CHEMLIST.A SP) OEHHA Fact Sheets (http://www.oehha.ca.gov/public_info/facts/index.html) Non-cancer health effects Table (RELs) and Cancer Potency Factors (Appendix A and Appendix B) (http://www.oehha.ca.gov/air/hot_spots/index.html) CPSC (http://www.cehmportal.org/echemportal/participant/pa ge.action?pageID=9) Environment Canada – Search entire site if not found below: (http://www.ec.gc.ca/toxiques- toxics/Default.asp?lang=En&n=ECD35C36) Toxic Substances Managed under CEPA (http://www.ec.gc.ca/toxiques- toxics/Default.asp?lang=En&n=98E80CC6-1) Screening Assessment reports Risk Management reports Risk Management reports Risk Management reports Risk Management reports Risk Management reports Risk Management reports Final Assessments (http://www.ec.gc.ca/lcpe- cepa/default.asp?lang=En&m=09F567A7-BIEE-1FEE- 73DB-8AE6C1EB7658)	03/2013	5 citations added

Approach used	Source(s)	Date performed	Number of additional citations identified
	Draft Assessments (<u>http://www.ec.gc.ca/lcpe-</u>		
	<pre>cepa/default.asp?lang=En&xml=6892C255-5597-C162-</pre>		
	<u>95FC-4B905320F8C9</u>)		
	EPA Acute Exposure Guideline Levels		
	(http://www.epa.gov/oppt/aegl/pubs/chemlist.htm)		
	EPA – IRISTrack/New Assessments and Reviews		
	EPA NSCEP (<u>http://www.epa.gov/ncepihom/</u>)		
	EPA RfD/RfC and CRAVE meeting notes		
	EPA Science Inventory (<u>http://cfpub.epa.gov/si/</u>)		
	FDA (<u>http://www.fda.gov/</u>)		
	Federal Docket (<u>www.regulations.gov</u>)		
	Health Canada First Priority List Assessments		
	(http://www.hc-sc.gc.ca/ewh-		
	semt/pubs/contaminants/psl1-lsp1/index-eng.php)		
	Health Canada Second Priority List Assessments		
	(http://www.hc-sc.gc.ca/ewh-		
	semt/pubs/contaminants/psl2-lsp2/index-eng.php)		
	IARC (http://monographs.iarc.fr/htdig/search.html)		
	ITER (TERA database)		
	(http://iter.ctcnet.net/publicurl/pub_search_list.cfm)		
	NAP – Search Site (<u>http://www.nap.edu/</u>)		
	NRC – AEGLs via NAP search for "Acute Exposure Guideline		
	Level" and the chemical		
	NCI (<u>http://www.cancer.gov</u>)		
	NCTR		
	(http://www.fda.gov/AboutFDA/CentersOffices/OC/Office		
	ofScientificandMedicalPrograms/NCTR/default.htm)		
	National Institute for Environmental Health Sciences		
	(NIEHS) <u>http://www.niehs.nih.gov/</u>		
	NICNAS (PEC only covered by eChemPortal)		
	(http://www.nicnas.gov.au/industry/aics/search.asp)		
	NIOSH (http://www.cdc.gov/niosh/topics/)		
	NIOSHTIC 2 (http://www.cdc.gov/nioshi/copicy/		
	NTP - RoC, status, results, and management reports		
	(http://ntpsearch.niehs.nih.gov/query.html)		
	OSHA		
	(http://www.osha.gov/dts/chemicalsampling/toc/toc_che		
	msamp.html)		
	RTECS http://www.ccohs.ca/search.html		


1 2

3

These citations were screened using the title, abstract, and in some instances, full text for pertinence to examine the health effects of DBP exposure. The citations were screened using

inclusion criteria (Table 2-3) describing specific information to help identify primary source health 4

- 1 effect data and mechanistic and/or genotoxic data, as well as resources useful in preparation of the
- 2 DBP package. The process for screening the literature search is described below and is shown
- 3 graphically in Figure 2-1:
- 204 references were identified as animal studies with health effects data and were
 considered for data extraction to evidence tables and exposure-response arrays.
- 6 360 references were identified as supporting studies; of these, 74 were toxicokinetic studies
 7 and 286 were mechanistic and genotoxicity studies.
- 8 341 references were identified as secondary literature (e.g., reviews and editorials, risk
 9 assessments, regulatory documents); these references are not included in the set of primary
 10 source health effects studies but were considered as additional resources.
- 2,181 references were excluded because these studies did not include primary source data evaluating DBP in relation to any kind of toxicity or health endpoint, and did not provide either supporting information (e.g., toxicokinetic or mechanistic/genotoxicity data) or secondary literature information.
- Note that some studies were identified as belonging to multiple categories. As a result, the
 total number of studies in a given category may be less than the sum of the individual studies listed
- 17 in subcategories.
- 18

1

Note: Studies containing multiple information categories were sorted into multiple tags. For this reason, the
 subcategory numbers do not always add up to the category total.

4 Figure 2-1. Literature search approach for DBP.

5

1 2

3

4

5 6

7

8

9

10

11

12 13

14 15

16

17

18 19

20

21

22

23

24

25

26

27

28

29

30

31

Table 2-3. Inclusion criteria used to identify animal studies of health-related endpoints, supporting data, or secondary literature

Inclusion criteria^a Did the study evaluate effects of DBP or its metabolites known to be formed in humans? • • Did the study evaluate effects in a tissue (organ) or cells derived from a tissue (organ)? Did the study evaluate cellular, biochemical or molecular effects relevant to any mode of action? • or Does the study include information from other agencies, risk assessments, or reviews that would aid in • the development of a toxicological review of DBP? ^aIf the answer is "no" to any of these criteria questions, the study was placed under "No Primary Data on Toxic Effects." A total 180 foreign language studies were identified in the literature search. Fifty-four of these publications report pertinent evidence for hazard characterization and/or dose-response. These studies [(Li et al., 2013; Zhou et al., 2013; Zhang et al., 2012; Zhou et al., 2012; Chang et al., 2013; Zhou et al., 2012; Chang et al., 2013; Zhou et al., 2014; Zhou et al., 20 2010; Chen et al. (2010); Dobrzyńska et al., 2010; Hu et al., 2010; Man et al., 2010; Zhang et al., 2009a; Brucker-Davis et al., 2008a; Li et al., 2008; Lin et al., 2008a; Lin et al., 2008b; Long et al., 2008; Xu et al., 2008; Ao et al., 2007; Chang et al. (2007); Qiao et al., 2007; Wu et al., 2006; Shi et al., 2005; Wang et al., 2005; Wang et al., 2004b; Wang et al., 2004a; Zhang et al., 2004a; Zh al., 2004c; Kobayashi et al., 2003; Nakahara et al., 2003; Yu et al., 2003b; Yu et al., 2003c; Yu et al., 2003a; Eom et al., 2002; Kleinsasser et al., 2001; Yuan et al., 2001; Kleinsasser et al., 1999b; Kleinsasser et al., 1999a; Wan et al., 1998; Astapova et al., 1990; Wang and Zhang, 1989; Ikemoto et al., 1988; Timofievskaya et al., 1988; Zinchenko, 1986; Turbin et al., 1983; Kawano, 1980a, b; Timofievskaya et al., 1980; Lagente et al., 1978; Hamano et al., 1977; Shcherbak, 1977; Balynina and Berezovskaia, 1976; Antoniuk and Aldyreva, 1973; Piekacz, 1971a, b; Cagianut, 1954)] were tagged under "Kept for Further Review" in HERO but are not shown in the figure. The available foreign language studies will be considered individually for translation and inclusion in evidence tables during development of the draft assessment of the available evidence of DBP-induced health effects. Seventy-six human studies were also identified from the initial literature search using the search strings presented in Table 2-1. However, work being done concurrently on the development of other phthalate preliminary materials revealed that this set of DBP epidemiology studies was incomplete. Epidemiology studies frequently examine multiple compounds (e.g., metabolites of several different phthalates). The indexing terms and abstracts may not include a comprehensive list of all of the specific phthalates examined, resulting in the inappropriate exclusion of studies and the potential for introduction of bias in the selection process. Specifically, "negative" studies (i.e., studies that did not demonstrate an association between exposure and disease) are potentially more likely to be missed than "positive" studies. This issue did not arise in the search process for

experimental (animal toxicology) studies, for which the test compound is virtually always identified
 through search terms or key word searches of abstracts.

- Another issue encountered in the development of the search and screening process for the
 phthalate epidemiology studies relates to the duplication of efforts involved in the development of
- 5 EPA's health assessments for several individual phthalates (e.g., diisobutyl phthalate [DiBP], DBP,
- 6 butyl benzyl phthalate [BBP], di(2-ethylhexyl)phthalate [DEHP], di-ethyl phthalate [DEP],
- diisononyl phthalate [DINP], and dipentyl phthalate [DPP]). In contrast to animal toxicology
- 8 studies, most of the epidemiology studies examine more than one phthalate, resulting in
- 9 considerable overlap in the sets of studies identified using individual-phthalate search terms. Full
- 10 text screening of the same studies identified in multiple searches results is an inefficient use of
- 11 resources.
- 12 For these reasons, EPA developed a process for identifying epidemiological studies
- 13 evaluating phthalates by performing a single broad search to create a listing of epidemiological
- 14 studies of all phthalates mentioned above, from which the selection of studies examining potential
- 15 health effects of an individual phthalate could be drawn. This list records each of the phthalates
- 16 included in the study, based on information in the methods section of the paper, and the outcome(s)
- 17 examined. This literature search for epidemiological studies examining phthalates in relation to
- 18 health-related endpoints (from which the DBP studies were drawn) was conducted in PubMed,
- 19 Web of Science, and ToxNet databases in June 2013, using keywords and limits described in
- 20 Table 2-4; the search was updated in December 2013 and in June 2014. For this search, "phthalate"
- 21 (and related terms) rather than names of specific phthalates was used as the foundation of the
- search, along with terms designed specifically to identify epidemiological studies. These terms
- 23 were based on terms used in previously identified epidemiology studies of six different phthalates.
- 24

Table 2-4. Summary of search terms: targeted epidemiology search

Database, search date	Terms	Hits
June 2013 search PubMed 06/2013 No date restriction	(phthalate OR phthalates OR phthalic acid) AND (human OR case-control OR pregnancy OR cohort OR workers OR children OR survey)	Imported: 2,505 After duplicates deleted: 2,482
Web of Science 06/2013 No date restriction	(TS="phthalic acid" OR TS="phthalate" OR TS="phthalates") AND (TS="humans" OR TS="human" OR TS="case-control" OR TS="pregnancy" OR TS="cohort" OR TS="workers" OR TS="child" OR TS="children" OR TS="survey")	Imported: 1,840 After duplicates deleted: 1,836
ToxNet 06/2013 No date restriction	(phthalate OR phthalates OR phthalic acid) AND (human OR case-control OR pregnancy OR cohort OR workers OR children OR survey)	Imported: 2,505 After duplicates deleted: 2,426
Merged Reference Set	Merged dataset, with duplicates eliminated through electronic screen	4,127
	Epidemiology articles meeting inclusion criteria	127

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR QUOTE

Database, search date	Terms	Hits
December 2013	PubMed	155
search	Web of Science	249
	ToxNet	114
	Merged dataset	350
	Epidemiology articles meeting inclusion criteria	22
June 2014	PubMed	184
Search ^a	Web of Science	409
	Merged dataset	494
	Epidemiology articles meeting inclusion criteria	24
Total (through June 2014)		173

^aToxNet was not searched in June 2014 because no articles had been identified solely through this source in all the previous searches.

4 More than 4,000 citations were identified through this search. These were then screened 5 using inclusion criteria describing specific population (i.e., human), exposure measures,

6 comparison, and health effects (Table 2-5). Note that other studies obtained in the search, for

7 example mechanistic and pharmacokinetic studies, are excluded from consideration with respect to

8 the specific objective of this search (i.e., identification of epidemiology studies), but could be

9 included in other steps in the assessment. Duplicate citations of the same article were excluded,

10 and articles written in a language other than English were retained for subsequent review. Earlier

11 analyses that are updated in a subsequent paper (e.g., with a larger sample size) are not included as

12 a primary paper, but may be used as background material regarding study methods.

One hundred and seventy-three epidemiological studies examining one or more phthalates
in relation to one or more endpoints were identified by the searches conducted through June 2014

15 (127 in the initial search, 22 in the December 2013 update, and 24 in the June 2014 update;

16 Figure 2-1). Other strategies to supplement this broad search for epidemiology studies of

17 phthalates, such as review of citations noted in the background or discussion sections in the

18 identified primary source studies (i.e., a "backward search"), have been used (or are currently in

19 process) (see Table 2-6), resulting in the identification of 12 additional publications (Table 2-6), for

20 a total of 185 epidemiological studies. From this set of all of the epidemiological studies examining

any phthalate, 106 studies analyzed one or more health effects in relation to a measure of DBP

22 (Table 2-7).

1

2

3

Table 2-5. Inclusion criteria used to identify epidemiology studies of healthrelated endpoints

	Inclusion criteria
•	 Is the study population humans?
	and
•	 Is exposure to one or more phthalate (parent compound or metabolite(s)^a
	- measured in air, dust, or biological tissue?
	- based on knowledge of industrial hygiene (occupational settings)?
	- based on knowledge of specific contamination sites or accidental exposure?
	and
	 Does the study compare a health effect in higher versus lower or no exposure?
	and
	 Does the study include a measure of one or more primary health effect endpoints relating to
	- sexual differentiation measures (e.g., male genital malformations, anogenital distance, gender-related play behavior)
	 male reproductive effects (e.g., steroidal and gonadotropin hormone levels, measures of male- mediated infertility)?
	 female reproductive effects (e.g., steroidal and gonadotropin hormone levels, measures of female- mediated infertility, gynecological conditions)?
	- pregnancy outcomes (e.g., birth weight, gestation age)?
	- puberty (male and female) (e.g., timing of development, precocious puberty, gynecomastia)?
	 neurodevelopment (infants and children) (e.g., standardized tests of reflexes, behavior, and intelligence)?
	- thyroid effects (e.g., thyroid stimulating hormone and thyroid hormones, subclinical and clinical thyroic disease)?
	- immune system effects (e.g., asthma, allergies, immunoglobulin E (IgE) levels, skin prick tests)?
	- pulmonary function (e.g., standardized test of lung volume, diffusing capacity)?
	- neurological effects (adults) (e.g., peripheral neuropathy, vision or hearing or other sensory tests)?
	- liver effects (e.g., cholestasis, biomarkers of liver function)?
	- kidney effects (e.g., end stage renal disease, biomarkers of kidney function)?
	 diabetes and measures of insulin resistance?
	- obesity (and other measures of adiposity)?
	 cardiovascular disease (cause-specific incidence or mortality)?
	- cardiovascular risk factors (e.g., triglyceride and lipid levels, blood pressure or hypertension)?
	 cancer (cause-specific incidence or mortality)?
	or
•	 Does the study include a measure of one or more secondary health effect endpoints (to be considered within context of mechanistic evidence) relating to
	- oxidative stress?
	- inflammation?
	- gene expression?

3 4

1 2

Table 2-6. Summary of additional search strategies for epidemiology studiesof phthalate exposure in relation to health-related endpoints

Approach used	Date performed	Number of additional citations identified
Testing and refinement of search terms based on terms used for the identified articles within each category	June 2014	6
Review of references cited in the identified list of epidemiology studies ("backward" search)	July 2014	1
Electronic forward search through Web of Science of one to three studies within each health endpoint category (early studies within each category generally selected to maximize potential for citation in subsequent publications) ^a	July 2014	5
Inquiry of corresponding authors of primary source epidemiology articles pertaining to phthalates and selected outcomes ^b asking for missed papers or unpublished studies	November 2014	Review in process

^aThe following studies were used to conduct the forward searches: (<u>Trasande et al. (2013b</u>); <u>James-Todd et al.</u>
(2012); <u>Lind and Lind (2011)</u>; <u>Boas et al. (2010)</u>; <u>Cho et al. (2010)</u>; <u>Engel et al. (2010)</u>; <u>Lopez-Carrillo et al. (2010)</u>;
Wolff et al. (2010); <u>Adibi et al. (2009)</u>; <u>Chou et al. (2009)</u>; <u>Hatch et al. (2008)</u>; <u>Wolff et al. (2008)</u>; <u>Meeker et al.</u>

- 6 (2007); Stahlhut et al. (2007); Hauser et al. (2006); Reddy et al. (2006); Jonsson et al. (2005); Swan et al. (2005);
 7 Bornehag et al. (2004); Hoppin et al. (2004); Aschengrau et al. (1998); Heineman et al. (1992); Nielsen et al.
- 8 (1989); <u>Nielsen et al. (1985)</u>).
- 9 ^bSexual differentiation measures, male reproductive effects, male or female pubertal development, immune
- 10 (allergic conditions, asthma), neurodevelopment, diabetes, and obesity.

Table 2-7. Primary source epidemiological studies examining health effects of DBP

Outcome category	Reference ^a	DBP measure
Sexual differentiation measures	Brucker-Davis et al. (2008b)	MBP (cord blood, colostrum)
(Table 3-1)	Carran and Shaw (2012)	Father's history of DBP use in military
	<u>Choi et al. (2012)</u>	MBP (mothers and infants; urine and plasma)
	<u>Huang et al. (2009)</u>	MBP (amniotic fluid)
	<u>Lin et al. (2011a)</u>	MBP (maternal urine)
	<u>Main et al. (2006)</u>	MBP (breast milk)
	<u>Suzuki et al. (2012)</u>	MBP (maternal urine)
	<u>Swan (2008)</u>	MBP (maternal urine)
	<u>Swan et al. (2010)</u>	MBP (maternal urine)
Male reproductive (semen	Buck Louis et al. (2014)	MBP (urine)
parameters, infertility, and	Han et al. (2014)	MBP (urine)
hormones)	<u>Hauser et al. (2007)</u>	MBP (urine)
(Tables 3-2 and 3-4)	<u>Hauser et al. (2006)</u>	MBP (urine)
	Joensen et al. (2012)	MBP (urine)
	<u>Jonsson et al. (2005)</u>	MBP (urine)
	Jurewicz et al. (2013)	MBP (urine)
	<u>Kranvogl et al. (2014)</u>	MBP (urine)
	<u>Li et al. (2011)</u>	DBP (serum, serum)
	<u>Liu et al. (2012)</u>	MBP (urine)
	<u>Meeker et al. (2009a)</u>	MBP (urine)
	Mendiola et al. (2012)	MnBP + MIBP (urine)

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR QUOTE

Outcome category	Reference ^a	DBP measure
	Pan et al. (2006) Pant et al. (2014) Pant et al. (2011) Pant et al. (2008) Toshima et al. (2012) Tranfo et al. (2012) Wirth et al. (2008) Zhang et al. (2006)	MBP (urine) DBP (semen) DBP (semen) DBP (semen) MBP (urine) MBP (urine) MnBP + MIBP (urine) DBP (semen)
Male pubertal development (Table 3-3)	<u>Ferguson et al. (2014c)</u> <u>Mieritz et al. (2012)</u>	MBP (maternal and child's urine) MBP (urine)
Female pubertal development (Table 3-6)	<u>Chen et al. (2013)</u> <u>Chou et al. (2009)</u> <u>Hart et al. (2013)</u> <u>Lomenick et al. (2010)</u> <u>Yum et al. (2013)</u>	MBP (urine) MBP (urine MBP (maternal serum) MBP (urine) MBP (plasma)
Female reproductive (infertility, hormones, gynecological conditions) (Tables 3-5 and 3-7)	Buck Louis et al. (2013) Hart et al. (2013) Huang et al. (2010) Itoh et al. (2009) Reddy et al. (2006a) Reddy et al. (2006b) Sathyanarayana et al. (2014) Upson et al. (2013) Weuve et al. (2010)	MBP (urine) MBP (serum) MBP (urine) MBP (urine) DBP (plasma) DBP (plasma) MBP (urine) MBP (urine) MBP + MIBP (urine)
Pregnancy outcomes (fetal growth, preterm birth) (Table 3-8)	Brucker-Davis et al. (2010) Ferguson et al. (2014b) and Ferguson et al. (2014a) Huang et al. (2014b) Huang et al. (2009) Meeker et al. (2009b) Philippat et al. (2012) Suzuki et al. (2010) Toft et al. (2012) Weinberger et al. (2014) Wolff et al. (2008) Zhang et al. (2009b)	MBP (cord blood) MBP (maternal urine) DBP (cord blood) MBP (amniotic fluid) MBP (maternal urine) MBP (maternal urine) MBP (maternal urine) MBP (maternal urine) MBP (maternal urine) DBP (cord blood), MBP (meconium)
Immune: allergy (rhinitis, eczema) (Table 3-9)	Ait Bamai et al. (2014) Bornehag et al. (2004) Callesen et al. (2014a) Callesen et al. (2014b) Hoppin et al. (2013a) Hsu et al. (2012) Kanazawa et al. (2010) Kolarik et al. (2008) Sun et al. (2009) Wang et al. (2014)	DBP (dust) DBP (dust) MBP (urine) DBP (dust) MBP (urine) DBP (dust), MBP (urine) DBP (dust) DBP (dust) DBP (dust) MBP (maternal urine)
Immune: asthma (Table 3-10)	Ait Bamai et al. (2014) Bertelsen et al. (2013) Callesen et al. (2014a)	DBP (dust) MBP (urine) MBP (urine)

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Outcome category	Reference ^a	DBP measure
	<u>Callesen et al. (2014b)</u> <u>Hoppin et al. (2013a)</u> <u>Hsu et al. (2012)</u> <u>Kolarik et al. (2008)</u> <u>Sun et al. (2009)</u>	DBP (dust) MBP (urine) DBP (dust), MBP (urine) DBP (dust) DBP (dust)
Thyroid (Table 3-11)	Boas et al. (2010) Brucker-Davis et al. (2011) Dirtu et al. (2013) Huang et al. (2007) Meeker et al. (2007) Jung et al. (2013) Meeker and Ferguson (2011)	MBP (urine) MBP (breast milk) MBP (urine) MBP (urine) MBP (urine) DBP, MBP (plasma) MBP (urine)
Pulmonary Function (Table 3-12)	<u>Cakmak et al. (2014)</u> <u>Hoppin et al. (2004)</u> <u>Kolena et al. (2014)</u> <u>Park et al. (2013)</u>	MBP (urine) MBP (urine) MBP (urine) MBP (urine)
Neurodevelopment (Table 3-13)	Braun et al. (2014) Cho et al. (2010) Chopra et al. (2014) Engel et al. (2010) Kim et al. (2009) Kim et al. (2011) Kobrosly et al. (2014) Miodovnik et al. (2011) Park et al. (2014) Téllez-Rojo et al. (2013) Whyatt et al. (2012)	MBP (maternal urine) MBP (child's urine) MBP + MIBP (child's urine) MBP (maternal urine) MBP (child's urine) MBP (maternal urine) MBP (maternal urine) MBP (child's urine) MBP (maternal urine) MBP (maternal urine)
Obesity (Table 3-14)	Buser et al. (2014) Dirtu et al. (2013) Hart et al. (2013) Hatch et al. (2013) Hatch et al. (2013) Kasper-Sonnenberg et al. (2012) Song et al. (2014) Stahlhut et al. (2007) Svensson et al. (2011) Teitelbaum et al. (2012) Trasande et al. (2013) Wang et al. (2013)	MBP (urine) MBP (urine) MBP (maternal serum) MBP (urine) MBP (urine) MBP + MIBP (urine) MBP + MIBP (urine) MBP (urine) MBP (urine) MBP (urine)
Diabetes and insulin resistance (Table 3-15)	<u>Hong et al. (2009)</u> <u>Huang et al. (2014a)</u> <u>James-Todd et al. (2012)</u> <u>Kim et al. (2013)</u> <u>Sun et al. (2014)</u> <u>Svensson et al. (2011)</u> <u>Stahlhut et al. (2007)</u> <u>Trasande et al. (2013c)</u>	MBP (urine) MBP (urine) MBP (urine) MBP (urine) MBP + MIBP (urine) MBP (urine) MBP + MIBP (urine) MBP (urine)
Other cardiovascular disease risk factors (Table 3-16)	<u>Shiue (2014)</u> Trasande et al. (2013b)	MBP (urine) MBP (urine)

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Outcome category	Reference ^a	DBP measure
Cancer	<u>Carran and Shaw (2012)</u>	Father's history of DBP use in military
(Table 3-17)	Lopez-Carrillo et al. (2010)	MBP (urine)

1

^aThis listing is arranged alphabetically within each outcome category.

2 3

The literature for both epidemiological and animal studies will be regularly monitored for

4 the publication of new studies. The documentation and results for this supplementary search can

5 be found on the Health and Environmental Research On-line (HERO) website⁴

6 (<u>http://hero.epa.gov/DBP</u> and <u>http://hero.epa.gov/phthalates-humanstudies</u>).

7 2.2. SELECTION OF STUDIES IN EARLY STAGES OF DRAFT 8 DEVELOPMENT

9 2.2.1. General Approach

10 Evidence tables are constructed that systematically summarize the important information 11 from each study in a standardized tabular format as recommended by the NRC (2011). In general, 12 the evidence tables include all studies that could inform the overall synthesis of evidence for hazard 13 potential. At this early stage of study evaluation, the goal is to be inclusive. Exclusion of studies 14 may unnecessarily narrow subsequent analyses by eliminating information that might later prove 15 useful. Premature exclusion might also give a false sense of the consistency of results across the 16 database of studies by unknowingly reducing the diversity of study results. Evaluation of "quality" 17 is generally not used as a basis for exclusion at this stage. However, the large number (204) of available animal studies examining the same or similar outcomes (e.g. reproductive, developmental, 18 19 liver and kidney effects) necessitated development of a strategy to reduce the number of studies to 20 be practically presented in this set of evidence tables. The criteria used for this process are 21 documented in the following section (Section 2.2.2). 22 2.2.2. Approach for Selection of Experimental Studies

The DBP database consists of experimental studies using animal models and designed to
 examine repeat-dose intraperitoneal, subcutaneous or oral toxicity (including chronic, subchronic,

25 and short-term duration studies) and endpoint-specific toxicities (including reproductive and

⁴HERO is a database of scientific studies and other references used to develop EPA's risk assessments aimed at understanding the health and environmental effects of pollutants and chemicals. It is developed and managed in EPA's Office of Research and Development (ORD) by the National Center for Environmental Assessment (NCEA). The database includes more than 1,400,000 scientific articles from the peer-reviewed literature. New studies are added continuously to HERO.

Note: The HERO database will be regularly updated as additional references are identified during assessment development. Therefore, the numbers of references (by tag) displayed on the HERO webpage for DBP may not match the numbers of references identified in Figure 2-1 (current through January 2014).

developmental toxicity). Studies in which DBP was administered via the intraperitoneal or
 subcutaneous route of exposure were excluded from the DBP evidence tables because the
 intraperitoneal route of exposure is generally considered less relevant to human exposure. The
 remaining studies involved administration of DBP in the diet or via gavage administration.
 Inhalation exposure studies of chronic, or sub-chronic duration were not identified.

6 The DBP database is extensive and includes many multiple-dose experimental studies using 7 the same or similar protocols and test species, and evaluate the same or simlar endpoints. Due to 8 the size of the database of experimental studies, an approach was developed to capture the DBP-9 induced health effects reported in the scientific literature and pragmatically presented these effects 10 in evidence tables. Thus, the dose ranges employed in the available studies were used to select 11 studies for presentation in evidence tables; focusing on multi-dose studies that initiated exposure at lower levels as these studies may be more informative for human exposure. Care was taken to 12 13 select a dose-range inclusive of all major health effects and to include both positive and negative 14 data. This approach included all studies within the specified dose range regardless of the direction 15 of the measured outcome. For development of evidence tables on effects in the male reproductive 16 system, studies which initiated exposure at doses $\leq 100 \text{ mg/kg-day}$ were selected for presentation 17 in the evidence tables. This dose range was selected to capture all types of male reproductive 18 effects reported in the scientific literature on DBP. In general, single dose and multi-dose studies 19 that initiated exposure to animals at levels > 100 mg-kg-day were not included in the preliminary 20 evidence tables for the male reproductive system. For all other health outcomes, studies which 21 initiated exposure at doses $\leq 250 \text{ mg/kg-day}$ were selected for presentation in the evidence tables. 22 Studies that were not presented in the evidence tables are included in the HERO database 23 (Studies with Health Effects Data). Based upon a preliminary screening of the database, the higher 24 dose studies are generally supportive of the studies presented in the evidence tables. The findings 25 reported in the higher dose studies will be considered along with the lower dose studies and 26 incorporated as part of the evaluation and integration of evidence during assessment development. 27 To confirm that relevant, low-dose, DBP-induced health effects identified from the literature 28 search are captured in the preliminary evidence tables, EPA reviewed both the ATSDR (2001) and 29 <u>CPSC (2010)</u> assessments. In evaluating these assessments, EPA identified one additional endpoint 30 (cleft palate) reported in two studies (Ema et al., 1997; Ema et al., 1994) that had not been included

31 using the dose range approach described above. Both studies were included in the preliminary32 evidence tables.

33 Additionally, human testicular tissue xenograft studies have raised questions about the 34 human relevance of androgen-dependent male reproductive effects reported in rat studies where 35 animals were exposed to DBP or MBP during gestation (Heger et al., 2012; Mitchell et al., 2012). It 36 has been proposed that responses observed in mouse fetal testis may serve as more informative 37 model of the potential DBP-induced adverse effects to the human male reproductive system 38 (Johnson et al., 2012). Thus, in vivo mouse studies reporting effects to the male reproductive 39 system after gestational exposure to DBP were also included in the preliminary evidence tables. 40 Although these mouse studies included single dose and higher dose studies outside the dose range This document is a draft for review purposes only and does not constitute Agency policy.

2-18

DRAFT—DO NOT CITE OR QUOTE

specified for the male reproductive effects, these studies were included for purposes of comparison
 of exposure outcomes among different species.

Overall, application of the study approach described above resulted in the selection of 71
studies for presentation in evidence tables out of a total 204 studies experimental studies identified
in the literature search and tagged as Studies with Health Effects Data/Animal toxicology studies.
Study methods and results are presented in preliminary evidence tables and exposureresponse arrays (Section 3).

8 2.3. STUDY CHARACTERISTICS THAT WILL BE CONSIDERED IN THE 9 FUTURE EVALUATION AND SYNTHESIS OF THE EPIDEMIOLOGICAL 10 STUDIES FOR DBP

Several considerations will be used in EPA's evaluation of epidemiological studies of human
health effects of DBP. These considerations include aspects of the study design affecting the
internal or external validity of the results (e.g., population characteristics and representativeness,
exposure and outcome measures, confounding, data analysis), focusing on specific types of bias
(e.g., selection bias; information bias due to exposure misclassification) and other considerations
that could otherwise influence or limit the interpretation of the data. These issues are outlined in
the IRIS Preamble, and are described below, with a specific focus on data pertaining to DBP.

18 2.3.1. Study Population

Evaluation of study population characteristics (including key socio-demographic variables
and study inclusion criteria) can be used to evaluate external validity (i.e., generalizability) and to
facilitate comparison of results across different study populations. Some aspects of the selection
process may also affect the internal validity of a study, resulting in a biased effect estimate.

23 The general considerations for evaluating issues relating to the study population include 24 adequate documentation of participant recruitment, including eligibility criteria and participation 25 rates, missing data, and loss to follow-up. This information is used to evaluate internal study 26 validity related to selection bias. Different types of selection bias that may occur include the 27 healthy worker effect, differential loss to follow up, Berkson's bias (relating to selection of 28 participants in hospital-based case-control studies), and participation bias. It is important to note 29 that low participation rates, or differences in participation rates between exposed and non-exposed 30 groups or between cases and controls, is not evidence of selection bias. Rather, selection bias arises 31 from a differential pattern of participation with respect to both the exposure and the outcome, i.e., 32 patterns of participation that would result in a biased effect estimate. An example of differential 33 participation would be when people with high levels of exposure and the outcome of interest are 34 more likely to participate than people with low levels of exposure and the outcome. 35 The available DBP studies have generally examined metabolites from many different 36 phthalates within the context of research on environmental exposures. These studies rely on 37 objective exposure measures (e.g., biomonitoring data), some of which are collected prior to onset 38 of the outcomes being examined (e.g., in the prospective pregnancy cohort studies). Study

This document is a draft for review purposes only and does not constitute Agency policy.

2-19

1 participants generally do not have knowledge of the study hypothesis or their exposure to DBP and 2 thus, knowledge of exposure or exposure level is unlikely to result in differential participation with 3 respect to outcomes. These study features should minimize the potential for selection bias. 4 However, EPA will consider the possibility that a particular concern about the specific sources of

5 DBP, in conjunction with knowledge of specific health outcomes, may motivate people to

- 6 participate in a study or to continue participation throughout a follow-up period (for example,
- 7 evidence of differences in exposure levels among people who did and did not participate in a cohort
- 8 follow-up). In the absence of evidence that any of these scenarios is likely to occur in a study, EPA
- 9 will not consider selection bias as a limitation of a study.

10 2.3.2. Exposure Considerations

11 General considerations for evaluating exposure include: (1) identifying how exposure can

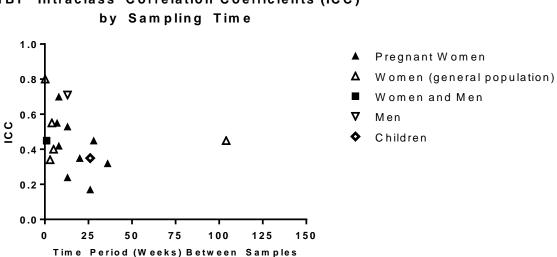
12 occur (e.g., exposure sources, routes, and media); (2) determining appropriate critical exposure

13 period(s) for the outcomes under study; (3) evaluating variability in the exposure metrics of

- 14 interest (e.g., temporal and spatial variability for environmental measures or inter-individual
- 15 variability for biomonitoring data) that can impact different types of exposure metrics (e.g.,
- 16 cumulative, average, or peak exposure); (4) determining if an appropriate analytical methodology
- 17 was employed (e.g., choice of biological matrix, sampling protocol, quantification approach);
- 18 (5) evaluating the choice of exposure surrogate evaluated (e.g., constituent chemical or
- 19 group/mixture); and (6) evaluating the classification of individuals into exposure categories. These
- 20 six considerations help determine the accuracy and precision of the exposure estimates, and the
- 21 likelihood of measurement error with respect to the exposure metrics used. Nondifferential
- 22 misclassification of exposure categories, for example, can also result from measurement error and
- 23 is expected to predominantly result in attenuated effect estimates (Blair et al., 2007).

24 Some common sources of exposure to DBP include food and food packaging and dust from 25 specific building materials, with the primary route of exposure occurring through ingestion and 26 some exposure occurring via inhalation and dermal routes (see Section 1.1.3). Thus, exposure to 27 DBP is typically from multiple sources, many of which result in repeated but episodic exposure on a 28 daily basis.

29 Urine provides an integrated measure of phthalate exposure from all sources. 30 Measurement of DBP metabolites, rather than the parent compound, is preferred because the 31 parent compound is metabolized very quickly and does not provide an accurate measure of 32 exposure. The simple monoester metabolite, MBP is the most commonly measured DBP metabolite 33 in epidemiologic studies. The monoester metabolite is considered the primary biomarker for 34 exposure to the low molecular weight phthalates such as DBP. MBP accounts for an estimated 84% 35 of the urinary excretion of DBP (Koch et al., 2012). This value is based on human data from a 36 controlled dosing study in a single volunteer (Koch et al., 2012). MBP can also be a minor 37 metabolite of butyl benzyl phthalate (BBP): MBP represented 6% of the monoester excretion in the 38 high BBP dose group (506 μ g/day), but was not seen in the low BBP dose group (253 μ g/day) in a 39 controlled-dosing study (n=8 adults per group) (Anderson et al., 2001). EPA considers the use of


2 - 20

1 MBP to be a good proxy for total DBP exposure and does not consider the potential contribution of 2 BBzP to observed concentrations to be a major limitation.

3 Although urine measures are most commonly used in epidemiological studies of phthalate 4 exposure, measures in serum, semen, and breast milk have also been used. Studies examining DBP 5 metabolites in breast milk or serum have generally reported low levels of detection (i.e., 25-50%). 6 Hogberg et al. (2008) reported that relatively few breast milk (11 out of 42) or serum (17 out of 36) 7 samples in a study in Sweden had detectable MBP concentrations. One study in Taiwan reported 8 that MBP above the limit of detection was found in 33.3% of breast milk samples from 30 women. 9 The detection rate in 30 cord blood samples in this study was 100%, but the correlation between 10 MBP measured in cord blood and maternal urine was -0.01 (Pearson correlation of log-transformed 11 levels) (Lin et al., 2011b). Among 60 men ages 18-26 years, 40.7% of serum samples and 13.3% of 12 seminal plasma samples had MBP concentrations above the limit of detection (Frederiksen et al., 13 2010). The Spearman correlation between urine and serum and between urine and seminal plasma 14 concentrations were reported to be non-significant (correlation coefficients not provided) 15 (Frederiksen et al., 2010). The lower detection rate in tissues other than urine reduces EPA's 16 confidence in DBP metabolite measures in these biological matrices. 17 Given their first-order kinetics with half-lives on the order of hours [2.6 hours for MBP in 18 (Koch et al., 2012)] urinary phthalate metabolite concentrations peak shortly after exposure. Thus, 19 for single-time exposure scenarios (rather than multi-source, multiple time exposure scenarios), 20 urine sampled during this time of peak concentration could lead to overestimates of average daily 21 intake, and conversely, measurements made after concentrations have peaked and declined could 22 lead to underestimates of intake. One study conducted among 139 pregnant women in Puerto Rico 23 included measurement of MBP and found little difference in specific gravity-adjusted 24 concentrations in samples collected in early morning, mid-morning, early afternoon, or evening 25 (Cantonwine et al., 2014). Urinary measures of DBP metabolite concentrations in epidemiological studies are generally conducted using spot urine samples (i.e., collected at time of a clinic or study 26 27 examination visit) rather than at a specified time (e.g., first morning void) or in 24-hour urine 28 samples. Although the time of sample collection described above may affect the accuracy of an 29 estimated intake for a single individual, studies of other phthalates (e.g., DEHP) have demonstrated that on a group level, spot urine samples provide a reasonable approximation of concentrations 30 31 that would have been observed using full-day urine samples (Christensen et al., 2012) and that a 32 single spot sample was reliable in ranking subjects according to tertile of MBP (Teitelbaum et al., 33 2008). Based on this information, EPA does not consider the reliance on spot urine samples for 34 exposure estimation (including ranking of individuals into different DBP categories) to be a major 35 limitation for epidemiological studies. However because of the potential for greater inaccuracy of 36 estimates in the "tails" of the distribution, EPA will include additional considerations (e.g., 37 discussion of analysis of residuals, outliers) when evaluating analyses based on use of DBP 38 metabolites as continuous measures. 39 Another potential limitation of measurement of DBP metabolites in urine is the

40 reproducibility of phthalate metabolite concentrations over time; that is, how well does a single

- 1 measure reflect the key exposure metric (average, peak) for the critical exposure window of
- 2 interest. For many short-lived chemicals, considerable temporal variability in exposure level is
- 3 expected, and thus, repeated measures in the critical exposure window are preferred over a single
- 4 measurement. Reproducibility is usually evaluated with the intraclass correlation coefficient (ICC),
- 5 a measure of the 'between-individual' variance divided by the total variance (between and within
- 6 individuals). A higher ICC indicates greater reproducibility (i.e., lower within-person variance).
- 7 There is some indication of an inverse association between ICC and length of time between
- 8 measurements taken over a period of less than one week to several months) (i.e., higher ICCs seen
- 9 with shorter time periods) (Figure 2-2). The lowest ICC (0.17) was in a study of pregnancy women
- 10 comparing samples taken in the first to third trimester (<u>Irvin et al., 2010</u>), and the highest ICC
- 11 (0.80) was in a study comparing samples taken two days apart (<u>Hoppin et al., 2002</u>). Most results
- 12 were in the moderate to high range (median ICC 0.55). One study analyzed samples taken 1 to 3
- 13 years apart among participants in the Nurses Health Study (and Nurses Health Study II), and
- 14 reported an ICC of 0.53 for all samples (<u>Townsend et al., 2013</u>). Only two of these studies focused
- 15 on men (<u>Hauser et al., 2004</u>) or children (<u>Teitelbaum et al., 2008</u>); although data are more limited in
- 16 these populations, the ICC results were similar to those seen in other populations (Figure 2-2).
- 17

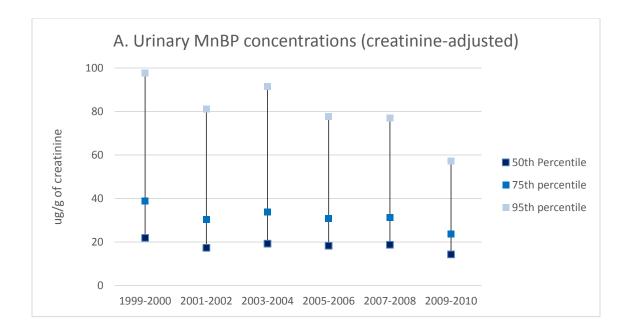
MBP Intraclass Correlation Coefficients (ICC)

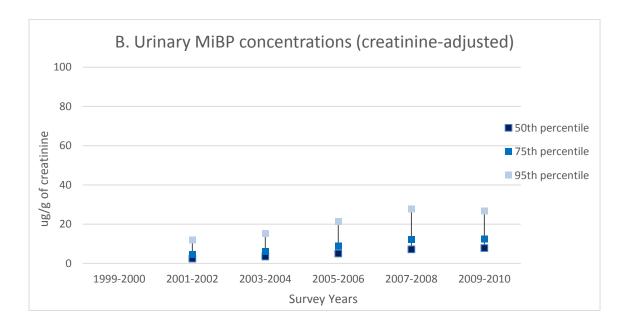
Figure 2-2. Summary of studies of reliability of MBP measures in humans. 1

2 The Intraclass Correlation Coefficient (ICC) is a measure of between- and within-person variability; a higher 3 ICC indicates greater reproducibility (i.e., lower within-person variance). Studies of pregnant women: Adibi et 4 al. (2008) [n = 28]; Braun et al. (2012) [n=137]; Cantonwine et al. (2014) [n=139]; Fisher and Eugster (2014) 5 [n = 70]; Irvin et al. (2010) [n=64]; Suzuki et al. (2009) [n=120]. Studies of general population women: Baird 6 et al. (2010) [n = 60]; Braun et al. (2012) [n=137]; Hoppin et al. (2002) [n = 46]; Peck et al. (2010) [n = 45]; 7 <u>Townsend et al. (2013)</u> [n = 45]. Studies of general population women and men: Fromme et al., 2007 [n = 50]. 8 Studies of general population men: <u>Hauser et al. (2004)</u> [n = 11]. Studies of children: <u>Teitelbaum et al. (2008)</u> 9 [n = 60].10

11 The available data highlight the value of repeated exposure measures collected during the 12 appropriate critical period for the outcome(s) under study. Based on these studies, however, EPA 13 does not consider the use of a single measurement to be a major limitation in studies in adults in 14 which the measure of exposure is closely aligned (within a few months) with the relevant 15 window(s) of exposure, if known, for the effect under study. EPA has greater uncertainty, however, 16 about measurements taken outside of the relevant time window (e.g., several years after diagnosis, 17 or the difference between first and third trimesters of pregnancy). Some studies present analyses using a combined measure based on summation of MIBP and 18 19 MBP, as a measure of both DIBP and DBP, respectively. The relative contribution of DBP to this 20 total has varied over time (as the use of DIBP has increased), and can vary between populations 21 (e.g., greater use of DIBP compared with DBP in some countries). Some studies do not specifically 22 distinguish between MBP and MIBP; NHANES did not make this distinction until the 2001-2002 23 collection cycle (Figure 2-3). EPA includes studies in the DBP evidence tables using this summed 24 exposure measure except in situations in which the concentration of MIBP is expected to be greater 25 than that of MBP (based on specific data provided from the study or from other studies conducted 26 in a similar population and time period). EPA recognizes that this combined measure introduces an

additional source of exposure misclassification, but does not consider this to be a major limitation
 affecting the interpretation of these studies.


- Other studies present analyses using a combined "low molecular weight" phthalate measure
 based on the summation of MIBP, MBP, and monoethyl phthalate (MEP) (reflecting exposure to the
 parent compounds of DIBP, DBP, and DEP, respectively). Because MBP does not represent a major
 contributor to this summation measurement, EPA has not included data from these studies in the
 DBP evidence tables.
- 8 EPA will also consider the potential for differential misclassification of biomarker measures 9 of exposure; for example, in situations in which a health outcome (e.g., diagnosis with diabetes or cancer) could lead to a behavioral change that results in a change in DBP exposure. This type of 10 scenario adds an additional challenge, and greater uncertainty, to the interpretation of the DBP 11 12 metabolites as valid measures of exposure in a relevant time window(s) with respect to disease 13 development. 14 The distribution of exposure will also be considered in evaluating individual studies and 15 when comparing results among groups of studies. One consideration is the contrast of exposure


16 levels (i.e., the difference between "high" and "low"): a study with a very narrow contrast may not

17 have sufficient variability to detect an effect that would be seen over a broader range. Another

18 consideration is the absolute level of exposure, as different effect estimates may be expected in

19 studies examining different exposure levels even if they had similar exposure contrasts.

5

6

7

Figure 2-3. Urinary concentration of MnBP (Panel A) and MIBP (Panel B) in United States population.

- 9 2.3.3. Primary Outcome Measures
- 10 The general considerations for evaluating issues relating to accuracy, reliability, and
- 11 biological relevance of outcomes include adequate length of follow-up to evaluate the outcomes of
- 12 interest, and use of appropriate ascertainment methods to classify individuals with regard to the
- 13 outcome (e.g., high sensitivity and specificity). With respect to continuous measures, such as

⁸ Data from National Health and Nutrition Examination Survey (NHANES), 1999 to 2010 (CDC, 2013).

hormone concentrations or semen parameters, EPA will consider, in addition to assessing whether
reported parameters are outside normal physiological range, evidence of smaller changes in the
distribution of a parameter that may represent an effect on a population level [e.g., as is the case for
early childhood exposure to lead and decrements in intelligence as measured by IQ (U.S. EPA,

5 <u>2013</u>)].

6 Issues relating to assessment of the specific primary health effects are discussed below and7 summarized in Table 2-8 at the end of Section 2.3.

8 Sexual Differentiation

9 Cryptorchidism and hypospadias are two disorders of the development of the male 10 reproductive system. Cryptorchidism, or undescended testes, can be present at birth (congenital 11 cryptorchidism) or can occur later during infancy and childhood (acquired cryptorchidism). 12 Surgical correction (orchiopexy) is recommended in cases of cryptorchidism that do not resolve 13 during infancy because long-term complications include impaired sperm production and increased 14 risk of testicular cancer (Virtanen et al., 2007). Retractile testes can move back and forth between 15 the scrotum and the abdomen; this condition usually resolves by puberty and is not associated with 16 reproductive or other complications. Classification criteria for cryptorchidism that involve 17 testicular positioning are commonly used in clinical research (John Radcliffe Hospital 18 Cryptorchidism Study Group, 1988; Scorer, 1964). EPA will consider the definition used and age 19 range in interpreting studies of cryptorchidism or related outcomes. 20 In animal toxicology studies, anogenital distance (AGD) is a routine marker to assess 21 endocrine disruption; this marker has only recently been adapted for use in epidemiological 22 studies. One study in adult men reported associations between decreased AGD and measures 23 relating to infertility (Eisenberg et al., 2011); most studies have used this measure in infants, 24 however, as a marker of endocrine environment during development. It is important to consider 25 general size, in addition to sex, in the evaluation of AGD, for example by incorporating birth weight

- or length (e.g., calculation of "anogenital index" by dividing anogenital distance by weight). With
- 27 regard to reproducibility of this measure, a low degree of between-observer variability was found
- using a standardized protocol and trained observers (<u>Romano-Riquera et al., 2007</u>; <u>Salazar-</u>
- 29 <u>Martinez et al., 2004</u>). Because of the importance of size and age in the interpretation of this
- 30 measure, EPA has greater confidence in studies with measures taken at birth or over a narrow age
- 31 range and lesser confidence in studies among a group spanning a larger age range.

32 Gender-related behaviors, as measured by the Pre-School Activities Inventory (Golombok 33 and Rust, 1993) or other scales, has been examined in relation to direct or indirect measures of 34 fetal testosterone levels, including studies of DBP. This outcome measure has been examined in 35 studies of relatively rare genetic conditions (e.g., congenital adrenal hyperplasia and complete 36 androgen insensitivity syndrome), as well as in studies focusing on the normal variability seen in 37 the general population [reviewed in (<u>Hines, 2006</u>)]. EPA will consider evidence pertaining to the 38 reliability and validity of the Pre-School Activities Inventory in its evaluation of studies using this 39 scale.

1 Male and Female Reproductive Outcomes

2 The DBP literature includes studies of reproductive and gonadotropin hormone levels in 3 men and studies of semen parameters that can be indicative of reduced fertility. The details of the 4 laboratory procedures, including information on the basic methods, level of detection, and 5 coefficient of variation, are important considerations for hormone assays and measures of semen 6 parameters. The World Health Organization (WHO) laboratory methods for analysis of sperm 7 counts and semen parameters [see, for example, (WHO, 1999)] are generally recognized as 8 standards in this field. EPA will consider studies that reference these methods, regardless of which 9 revision used, to be reliable measures.

Much of the focus of the research on male steroidal and gonadotropin hormones in the DBP
database concerns testosterone. One issue with respect to these measures is the estimation method
used for free testosterone. Based on the analysis by <u>Vermeulen et al. (1999</u>), EPA will consider
estimates based on total testosterone divided by immunoassay-derived sex-hormone binding
globulin (SHBG) levels to be most reliable.

15 The DBP literature also includes studies of reproductive hormones in women. In addition to 16 the general considerations regarding hormone assays noted above, timing within a menstrual cycle 17 for studies of pre- and peri-menopausal women, and timing with respect to gestational age for 18 studies of women during pregnancy, are also be an important considerations for interpretation of 19 reproductive hormone concentrations.

Another female reproductive outcome included in the DBP literature is endometriosis.
Endometriosis can be symptomless, or can lead to surgical intervention; it is often diagnosed as
part of a work-up for infertility. Variability in clinical presentation and in access and use of health
care services present considerable challenges to conducting epidemiological studies of this
condition (Holt and Weiss, 2000). Confirmation of "case" and "control" status (i.e., presence or
absence of endometriosis) by ultrasound or clinical evaluation is recommended to reduce outcome
misclassification, and representation of the source population should be carefully considered.

27 Infertility is generally defined clinically and for research purposes as the inability to 28 conceive a clinically-recognized pregnancy after 12 months of intercourse of regular frequency 29 without use of contraceptives. Fecundity or fecundability are terms for the capacity for 30 reproduction. "Time to pregnancy" (i.e., the number of cycles of unprotected intercourse before 31 conception) has been used as a measure of fecundability in studies of environmental and 32 occupational exposures (Baird et al., 1986; Baird and Wilcox, 1985). Time to pregnancy is a 33 measure of a couple's fecundability, incorporating effects that can be manifested through the male 34 or female (or both). Considerations in time to pregnancy studies include the source of data (i.e., 35 retrospective or prospective designs) and incorporation of information on "non-pregnancy

36 planners" (<u>Weinberg et al., 1994</u>).

37 Timing of Male and Female Puberty, and Conditions of Unusual Pubertal Development

 Pubertal development in humans is often assessed using timing of peak height velocity
 ("growth spurt") and secondary markers of sexual development. Secondary markers for females *This document is a draft for review purposes only and does not constitute Agency policy.*

2-27

1 include breast development (thelarche) and pubic hair development (pubarche), and age at first 2 period (menarche). Secondary markers for males include gonadal development (gonadarche) and 3 pubic hair development, and age at first sperm emission (spermarche). 4 Evaluation of breast, pubic hair, and gonadal development is frequently performed using 5 the Tanner stages (Marshall and Tanner, 1970, 1969), which places the individual in one of five 6 stages, ranging from pre-pubertal (stage 1) to adult maturation (stage 5). However, the process of 7 this staging is not straightforward, and is most reliable when performed by trained personnel 8 (rather than by the individual or a parent, for example) (Slough et al., 2013; Schlossberger et al., 9 1992; Espeland et al., 1990). Age at menarche is considered to more reliable when assessed via self-report (Koprowski et al., 2001), although reliability may decrease with increasing time since 10 menarche (<u>Cooper et al., 2006</u>). Additionally, hormone levels may sometimes be used to evaluate 11 pubertal development. Individuals may vary widely in the timing of these developmental 12 13 milestones. 14 Several clinical syndromes are known to disrupt the timing and order of markers of 15 pubertal development. Considerations in the diagnosis of either precocious or delayed puberty 16 include the diagnostic criteria used and the source of the information (e.g., whether collected from 17 medical records or from self- or parental report). For females, precocious puberty is usually 18 defined as the onset of puberty before the age of 8 years, while delayed puberty is usually defined 19 as the lack of pubertal development by the age of 13 years (Marshall and Tanner, 1969); 20 corresponding ages in males are before the age of 9 years for precocious puberty and lack of 21 pubertal development by the age of 14 years for delayed puberty (Marshall and Tanner, 1970).

- 22 Clinical evaluation would involve hormone assays to distinguish between gonadotropin dependent
- 23 ("central"), gonadotropin independent ("peripheral"), or a combination of both (<u>Traggiai and</u>
- 24 <u>Stanhope, 2003</u>) forms of these conditions.

25 Pregnancy-Related Outcomes

26 Infant birth weight and gestational age are two outcomes commonly used in reproductive 27 epidemiology studies. EPA considers analyses of the various indices for both outcomes (fetal 28 growth and gestational age) to be informative with respect to hazard identification, but will consider each separately as they address different issues. Gestational duration can be measured as 29 30 a continuous outcome or dichotomous outcome such as preterm birth. Preterm births include 31 infants delivered earlier than 37 gestational weeks, and those delivered earlier than 32 gestational 32 weeks are classified as very preterm births. Different measures of fetal growth restriction are often 33 examined in epidemiological studies. In addition to the continuous measure of birth weight, 34 another commonly used measure of fetal growth restriction is the categorical variable of low birth 35 weight (defined as <2,500 g). Small for gestational age (defined as birth weight less than the 36 10th percentile for the gestational birth weight distribution) is considered a better measure of fetal 37 growth rate as it takes into consideration gestational duration, and would be preferred over a 38 measure of birth weight in a study that includes preterm births. Birth weight and gestational

1 duration can also be examined as continuous variables, often in analysis that excludes preterm or 2 low birth weight births, so that the focus of the analysis is on variability within the "normal" range. 3 EPA considers birth weight obtained from medical records to be a reliable source as this is a 4 very accurate and precise measurement. Although more prone to measurement error than birth 5 weight measures, gestational age can be estimated from several approaches. Some of these include 6 ultrasonography, estimates based on date of last menstrual period based on maternal recall, or 7 from clinical examination based on antenatal or newborn assessments (which may include an 8 ultrasound). Menstrual dating of gestational age dependent on maternal recall of the last menstrual 9 period can be subject to considerable measurement error in some cases, so ultrasonography-based 10 estimates may be considered more accurate (Savitz et al., 2002; Taipale and Hilesmaa, 2001).

11 Immune-Related Outcomes: Allergy and Asthma

12 Skin prick testing is a standard method for assessing atopy (allergic disease) used in some 13 epidemiologic studies. Other studies use an assessment protocol based on reported history of 14 symptoms (e.g., rhinitis, hay fever) or specific types of allergies. These can be considered 15 complementary types of measures: skin prick tests provide information on a defined set of 16 potential antigens to which a person may be exposed, and symptom-based evaluations provide 17 information on experiences of individuals and the variety of exposures they encounter. Studies 18 comparing questionnaire responses with skin prick tests in children have reported relatively high 19 specificity (89-96%) and positive predictive value (69-77%) for self-reported history of pollen or 20 pet dander allergy or for answers to a combination of questions incorporating itchy eyes with nasal 21 congestion in the absence of a cold or flu (Braun-Fahrländer et al., 1997; Dotterud et al., 1995). The 22 validity was somewhat lower for a more restricted set of questions (nasal congestion in the absence 23 of a cold or flu; specificity 83%, positive predictive value 52%) (Braun-Fahrländer et al., 1997). 24 Based on these data, EPA considers allergy history based only on rhinitis symptoms to have a 25 greater likelihood of outcome misclassification compared with those based on a combination of 26 symptoms. 27 Epidemiologic studies of asthma typically use a questionnaire-based approach to define 28 asthma based on symptoms relating to wheezing episodes or shortness of breath, reported history 29 of asthma attacks, or use of asthma medication, usually for a period defined as "current" or in the 30 past year. Much of this work is based upon the American Thoracic Society questionnaire (Ferris, 31 <u>1978</u>) or subsequent instruments that built upon this work, including the International Society of 32 Arthritis and Allergies in Children Questionnaire and the European Community Respiratory Health

- 33 Survey. These questionnaire-based approaches have been found to have an adequate level of
- 34 specificity and positive predictive value for use in etiologic research (<u>Ravault and Kauffmann, 2001</u>;
- 35 <u>Pekkanen and Pearce, 1999; Burney et al., 1989; Burney and Chinn, 1987</u>). EPA considers
- 36 outcomes defined over a recent time period (e.g., symptoms in the past 12 months) to be more
- 37 relevant within the context of concurrent exposure measurements compared with outcomes
- 38 defined over a lifetime (e.g., ever had asthma).

1 *Neurodevelopment*

2 With respect to neurodevelopmental outcomes, a major consideration is the assessment 3 tool(s) used by the study investigators; details of the assessment method, or references providing 4 this information, should be provided. In addition, EPA also looks for discussion of (or reference to) 5 validation studies and the appropriateness of the tool for evaluation in the specific study population 6 (e.g., age range, language).

7 Thyroid

8 Thyroid-related endpoints examined in epidemiological studies of DBP include thyroid 9 hormones (triiodothyronine, T3, and thyroxine, T4) and thyroid stimulating hormone (TSH) (or 10 thyrotropin) produced by the pituitary.

11 As with other hormone assays, the details of the laboratory procedures, including 12 information on the basic methods, limit of detection, and coefficient of variation, are important 13 considerations for the hormone assays. Thyroid hormones are generally measured in serum, 14 although they may also be measured in dried blood spots, such as are collected from newborn 15 infants in screening for congenital hypothyroidism. A study in older age groups have also shown a 16 very high correlation (r = 0.99) between thyroid hormone levels measured in dried blood spots and 17 levels in serum (Hofman et al., 2003). 18 With respect to thyroid hormones, time of day and season of sampling are two main 19 potential sources of variability. For example, serum TSH measured shortly after midnight may be 20 as much as twice as high as the value measured in late afternoon (Brabant et al., 1991; Weeke and

21 Gundersen, 1978). The evidence with respect to seasonal variability is mixed (Plasqui et al., 2003; 22 Nicolau et al., 1992; Simoni et al., 1990; Behall et al., 1984; Postmes et al., 1974) and this effect is 23 likely to be smaller than that of time of day. The impact of these sources of variation will depend on

- 24 whether they are also related to DBP (i.e., whether DBP levels vary diurnally or seasonally). If this
- 25 is the case, failure to address these factors in the design or analysis could result in confounding of
- 26 the observed association, with the direction of this bias determined by the direction of the
- 27 association between these factors and DBP. If this is not the case, the lack of consideration of time
- 28 of day or seasonality would result in greater variability in the hormone measures, and would thus
- 29 result in more imprecise (but not biased) estimates. EPA has not found studies examining seasonal
- 30 variation in DBP levels. Based on these data, EPA has greater confidence in thyroid hormone
- 31 studies that consider time of sample collection in the analysis, but recognizes the limited nature of 32 the available data pertaining to this issue. One study conducted among 139 pregnant women in
- 33 Puerto Rico included measurement of MBP and found little difference in specific gravity-adjusted
- 34 concentrations in samples collected in early morning, mid-morning, early afternoon, or evening.

35 **Obesity**

36 Most of the studies of obesity measures in the DBP database are based on body mass index 37 (BMI, calculated as kg/m^2) or waist circumference using measurements taken as part of the data 38 collection protocol. BMI is highly correlated with body fat, and standardized cut-points have been

> This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

1 established for characterization of "normal" (BMI between 18.5 and 24.9 kg/m²), "overweight"

2 (BMI between 25.0 and 29.9 kg/m²) and "obese" (BMI \ge 30.0 kg/m²) categories. Waist

- 3 circumference is also highly correlated with body fat, and is a more direct measure of abdominal
- 4 obesity. EPA notes that use of self-reported weight (e.g., report of pre-pregnancy weight) would
- 5 not be considered to be as reliable as actual measurements.

6 Diabetes and Measure of Insulin Resistance

7 In the DBP database, diabetes has been assessed by a variety of biomarkers of glucose and 8 insulin and by self-report of diabetes diagnosis. Oral glucose tolerance testing and glycosolated 9 hemoglobin (HbA1c) are used clinically and in epidemiological research (Selvin et al., 2011). Self-10 report of prevalent diabetes can have high sensitivity and specificity in comparison to diagnosed 11 diabetes based on validated medical record data (Oksanen et al., 2010; Leikauf and Federman, 12 2009). The biomarker-based classifications, however, offer an added advantage of being able to 13 include undiagnosed disease. EPA will consider these points in assessing the reliability and validity 14 of the diabetes measures used in the studies. None of the currently available studies assessed 15 diabetes through cause of death data; sensitivity of diabetes assessed using cause of death data is 16 low, even if underlying and other contributing cause of death fields are included (Cheng et al., 17 2008).

18 Insulin resistance, a marker of diabetes risk, can be measured using the homeostatic model 19 assessment (HOMA) method, a physiologically-based structural model, using fasting glucose and 20 insulin or C-peptide concentrations. HOMA is a validated tool for the estimation of insulin 21 resistance in epidemiology studies, and requires a single measurement of fasting glucose and 22 insulin (Wallace et al., 2004). Although the mean of three samples taken at 5-minute intervals 23 results in a more precise estimate, insulin resistance estimated using a single baseline 24 measurement is well correlated with that using the mean of three measurements when used to 25 estimate a group mean. Therefore, EPA does not consider the use of a single measurement as an 26 input to the HOMA model to be a limitation.

27 Cancer

With respect to studies of cancer, EPA considers the source of the outcome data (e.g., cause of death data, hospital cancer registry data, hospital discharge data, histopathology reports) in its evaluation of the accuracy of the data. An additional issue is the validity of mortality data as a representation of cancer incidence; mortality data for cancer types with a high survival rate may underrepresent disease incidence, require additional considerations with respect to determining appropriate time windows of exposure, and may lead to biased risk estimates if survival is related to exposure.

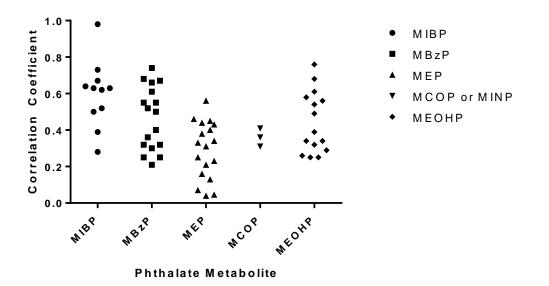
35 2.3.4. Confounding

The general considerations for evaluating issues relating to potential confounding include
consideration of which factors may be potential confounders (i.e., those which are related to both

1 the exposure and the outcome under consideration, and are not intermediaries on a causal

- 2 pathway), adequate control for these potential confounders in the study design or analysis, and
- 3 where appropriate, quantification of the potential impact of mismeasured or unmeasured
- 4 confounders. When evaluating the potential for confounding, it is the strength of the relationship
- 5 (i.e., risk estimate or correlation coefficient) between variables, rather than the value of a test of
- 6 statistical significance, that is considered. Uncontrolled confounding by factors that are positively
- 7 associated with both the exposure (e.g., DBP) and health endpoint of interest, and those that are
- 8 inversely associated with both exposure and health endpoint, will result in an upward bias of the

9 effect estimate. Confounding by factors that are positively associated with exposure and inversely


10 associated with the health endpoint (or vice versa) will result in a downward bias of the effect

11 estimate.

12 Potential Confounding by Other Phthalates

13 The correlation between MBP and other phthalates has been examined in a variety of 14 populations. In an analysis conducted by EPA of 5,109 samples from the 2003-2008 National 15 Health and Nutrition Examination Survey (NHANES) participants aged ≥ 6 years, the pairwise 16 Spearman correlation coefficient between MBP and MEP (the primary metabolite of DEP) was low 17 (0.38). A more moderate correlation was seen with the DEHP metabolites (correlations ranging 18 from 0.44 to 0.58) and with MCOP, the secondary metabolite of DINP (r = 0.44); higher correlations 19 were seen with MBzP (the primary metabolite of BBP, correlation coefficient = 0.70) and MIBP (the 20 primary metabolite of DIBP; correlation = 0.72). Similar patterns have been seen in other studies, 21 based on the review of the epidemiology studies identified in EPA's literature search (Figure 2-4). 22 The median correlation between MBP and MIBP was 0.63 (based on 11 studies), 0.50 for MB2P 23 (based on 17 studies), 0.32 for MEP (based on 18 studies), 0.36 for MCOP or MINP (metabolites of 24 DINP, based on 3 studies) and 0.39 for MEOHP (a secondary oxidative metabolite of DEHP, based on 25 15 studies). An exception is in a study based on samples collected in the Nurses Health Study (and 26 Nurses Health Study II), in which the correlation between MBP and MIBP was higher than that seen 27 in these other studies (Spearman r = 0.98) (Sun et al., 2014). Based on these data, EPA is most 28 concerned about MIBP (DIBP) and MBzP (BBP), and possibly DEHP metabolites, as potential 29 confounders, and will evaluate the potential for confounding by examining the similarity of the 30 results seen with MBP and these different metabolites. Thus, for example, lack of adjustment for 31 mono-benzyl phthalate (MBzP) would not be considered a limitation in a study in which an 32 association was seen with MBP that was not seen with MBzP; however this lack of 33 adjustment would be considered a limitation if an association of similar or higher magnitude was 34 seen for both metabolites. 35 36

37

2

Figure 2-4. Correlation between MBP and other phthalate metabolites.

Data are from studies identified in the literature search that presented quantitative analysis of the correlation
between urinary concentration of different metabolites as either Spearman correlation or Pearson correlation
of log- or ln-transformed data. Studies in pregnant women: <u>Huang et al. (2007)</u>; <u>Kobrosly et al. (2014)</u>; <u>Just et</u>
al. (2012); <u>Whyatt et al. (2012)</u>; <u>Suzuki et al. (2010)</u>. Studies in general population women: <u>Buck Louis et al.</u>
(2013); <u>Svensson et al. (2011)</u>; <u>Sun et al. (2014)</u>; <u>Itoh et al. (2009)</u>. Studies in general population men:
<u>Frederiksen et al. (2010)</u>. Studies in men, infertility setting: <u>Hauser et al. (2006</u>); <u>Jurewicz et al. (2013)</u>; <u>Liu et</u>
al. (2012). Studies in children: <u>Bertelsen et al. (2013)</u>, <u>Teitelbaum et al. (2012)</u> (separate results for boys and
girls).

11 Potential Confounding by Demographic Factors

12 Age, race/ethnicity, and sex are considered important explanatory factors for most types of 13 outcomes measured in epidemiological research. In NHANES 2009-2010 data, urinary MBP levels 14 was highest in young children (geometric means of 28.3, 15.2, and 14.3 μ g/g-creatinine, 15 respectively, in ages 6-11, 12-19 and \geq 20 years) (CDC, 2013). Concentrations were lower in males 16 compared with females (geometric means of 13.0 and $17.8 \,\mu g/g$ -creatinine, respectively, in males 17 and females). A modest degree of variability by ethnicity was also observed, with higher levels in 18 Mexican Americans (geometric mean of $17.1 \, \mu g/g$ -creatinine) compared with non-Hispanic blacks 19 or non-Hispanic whites (geometric means of 15.9 and 14.6 µg/g-creatinine, respectively). EPA will 20 consider these differences in assessing the potential influence of demographic factors on observed 21 effect estimates for DBP.

22 Potential Confounding by Other Factors

23 Some of the health effects under consideration may have strong associations with other risk

- 24 factors. For example, smoking is associated with increased risk of low birth weight and preterm
- births, and with infertility. Abstinence time is strongly related to sperm concentration measures.

In evaluating the potential for confounding by any of these factors, EPA will review evidence
 pertaining to the strength and direction of its association with DBP (or its metabolites).

3 2.3.5. Data Analysis

The general considerations for evaluating issues relating to data analysis include adequate
documentation of statistical assumptions and analytic approach (including addressing skewness of
exposure or outcome variable and shape of exposure-response), consideration of sample size and
statistical power, and use of appropriate statistical methods for the study design.

8 One other issue, specific to the DBP literature, concerns the optimal approach to addressing 9 urinary volume or dilution in the analysis of spot urine or first morning void samples. Options 10 include use of creatinine- or specific gravity-adjusted metabolite concentrations, or use of 11 unadjusted concentrations. Although use of some kind of correction factor has been advocated for 12 studies of obesity (Goodman et al., 2014), a simulation study reported that creatinine-adjusted 13 exposure measures may produce biased effect estimates for outcomes that are strongly related to 14 factors affecting creatinine levels, of which obesity is a prime example (Christensen et al., 2014). 15 EPA recognizes the lack of consensus at this time, as well as the need for continued research into 16 the potential bias introduced by different analytic approaches. Based on current understanding of 17 this issue, EPA prefers results using unadjusted concentration for outcomes strongly related to 18 creatinine levels; for other outcomes, EPA does not have a basis for preferring one type of analysis 19 over another.

20Table 2-8. General and outcome-specific considerations for DBP study21evaluation

	General considerations
Study population	 Study population and setting: geographic area, site, time period, age and sex distribution, other details as needed (may include race/ethnicity, socioeconomic status) Recruitment process; exclusion and inclusion criteria, knowledge of study hypothesis; knowledge of exposure and outcome Participation rates: total eligible; participation at each stage and for final analysis group and denominators used to make these calculations Length of follow-up, loss to follow-up Comparability: participant characteristic data by group, data on non-participants
Exposure	 Biological matrix or target tissue/organ (e.g., urine, serum, semen, breast milk) Level of detection (LOD) or level of quantitation (LOQ) Exposure distribution (e.g., central tendency, interquartile range), proportion < LOD

Analysis	 Consideration of data distribution including skewness of exposure and outcome measures Consideration of influence of "tails" in analysis based on continuous exposure measure
	 Consideration of analytic approaches exploring different shapes of exposure-response Consideration of values below LOD or LOQ Consideration of creatinine or other approach to adjust for urine volume. Presentation of effect estimates, rather than statement regarding presence or absence of statistical significance
	Outcome-specific considerations
Sexual differentiation Measures	 AGD: protocol, training procedures, standardization and inter-rater reliability Cryptorchidism: definition Gender related play behavior: reliability and validity of measurement scale
Consideration of confounding	 AGD: variability by size (e.g., birth weight), sex, age; temporal trends in DBP exposure if study spans several years and includes a wide age range Cryptorchidism, preterm birth
Relevant exposure time window(s)	 In utero for outcomes assessed in infancy; for acquired cryptorchidism, other time window(s) during childhood may also be relevant
Steroidal and gonadotropin hormones (adults; sex-specific) Measures	 Type of assay Sensitivity/detection limits, coefficient of variation; number of samples below LOD
Consideration of confounding	Age, day or phase of menstrual cycle (if cycling)
Relevant exposure time window(s)	Up to 6 months preceding hormone sample collection
Sperm parameters Measures	• Type of assay (e.g., WHO protocol)
Consideration of confounding	 Age, smoking, BMI, abstinence time (consider if these are related to exposure)
Relevant exposure time window(s)	Up to 6 months preceding semen sample collection
Infertility Measures	Definition, source of data
Consideration of confounding	• Age, smoking, alcohol use, heavy metal exposure, radiation time (consider if these are related to exposure)
Relevant exposure time window(s)	• Time preceding and during attempt to become pregnant

<i>Timing of puberty</i> Measures	 Source of data (e.g., self-report, physician assessment)
Consideration of confounding	 Age, sex, ethnicity, body size, nutritional status (consider if these are related to exposure)
Relevant exposure time window(s)	 In utero? Up to 12 months preceding transition from one stage to another stage?
Gestational age Measures	 Source of data and estimation procedure (ultrasound; last menstrual period or clinical assessment)
Consideration of confounding	 Smoking, pregnancy complications, assisted reproduction technologies (consider if these are related to exposure)
Relevant exposure time window(s)	• In utero
Birth weight Measures	• Source of data (e.g., medical records, birth certificate)
Consideration of confounding	 Gestational age, maternal age, ethnicity, nutritional intake, smoking, maternal height/BMI, (consider if these are related to exposure)
Relevant exposure time window(s)	• In utero
Immune – allergy and asthma Measures	 Number of allergens used in skin prick testing or allergen-specific IgE assay; sensitivity/specificity of specific questions used in history assessment
Consideration of confounding	Age, family history (consider if these are related to exposure)
Relevant exposure time window(s)	 For current conditions (e.g., asthma in past 12 months): up to 12 months preceding outcome assessment
Neurobehavioral Measures	 Standardized assessment tool, validation studies for specific study population (e.g., age group, geographic location)
	Blinding of assessor to exposure
Consideration of confounding	Age, sex, socioeconomic status
Relevant exposure time window(s)	In utero; early childhood

Thyroid	Assay used and evidence from validation studies, if available
Measures	• Sensitivity/detection limits, coefficient of variation; number of samples below LOD
	• Time of day and season when samples for thyroid hormone (and TSH) collected
Consideration of confounding	 Age, sex, smoking, iodine, radiation exposure (consider if these are related to exposure)
Relevant exposure time window(s)	 Varies by lifestage (i.e., infants, children, adults)
Obesity Measures	• Source of data (e.g., measured or self-reported weight and height)
Consideration of confounding	• Age, sex, ethnicity, caloric intake, physical activity (consider if these are related to exposure)
Relevant exposure time window(s)	Not established (likely to be more than one, including in utero)
Diabetes and insulin resistance Measures	 Source of data (e.g., biomarkers of insulin or glucose, medical records, self- report)
Consideration of confounding	Age, sex, ethnicity
Relevant exposure time window(s)	 Not established (likely to be more than one, including in utero)

2 3

4

2.4. STUDY CHARACTERISTICS THAT WILL BE CONSIDERED IN THE FUTURE EVALUATION AND SYNTHESIS OF THE EXPERIMENTAL STUDIES FOR DBP

Beyond the initial screening described above in Section 2.2.2, methodological aspects of a
study's design, conduct, and reporting will be considered again in the overall evaluation and
synthesis of the pertinent data that will be developed for each health effect. Some general
questions that will be considered in evaluating experimental animal studies are presented in Table
2-9. These questions are, for the most part, broadly applicable to all experimental studies.

Table 2-9. Questions and relevant experimental information for theevaluation of experimental animal studies

Methodological feature	Question(s) considered
Test animal	Based on the endpoint(s) in question, are concerns raised regarding the suitability of the species, strain, or sex of the test animals on study?
Experimental setup	Are the timing, frequency and duration of exposure, as well as animal age and experimental group allocation procedures/group size for each endpoint evaluation, appropriate for the assessed endpoint(s)?
Exposure	Are the exposure conditions and controls informative and reliable for the endpoint(s) in question, and are they sufficiently specific to the compound of interest?
Endpoint evaluation procedures	Do the procedures used to evaluate the endpoint(s) in question conform to established protocols, or are they biologically sound? Are they sensitive for examination of the outcome(s) of interest?
Outcomes, data, and reporting	Were data reported for all pre-specified endpoint(s) and study groups, or were any data excluded from presentation/analyses?

Note: "Outcome" refers to findings from an evaluation (e.g., steatosis), whereas "endpoint" refers to the
 evaluation itself (e.g., liver histopathology).

5

6 Evaluation of some specific methodological features identified in Table 2-9 such as 7 exposure, is likely to be relatively independent of outcome. Other methodological features, in 8 particular those related to experimental setup and endpoint evaluation procedures, are generally 9 outcome specific (i.e., reproductive and developmental toxicity). In general, experimental animal 10 studies will be compared against traditional assay formats (e.g., those used in guideline studies), 11 with deviations from the protocol evaluated in light of how the deviations could alter interpretation of the outcome in question. A full evaluation of all studies will be performed as part of the critical 12 13 review and synthesis of evidence for hazard identification for each of the health endpoints 14 identified in the evidence tables presented in Section 3.

2

3

4

5

3. PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS

3.1. DATA EXTRACTION FOR EPIDEMIOLOGICAL AND EXPERIMENTAL STUDIES: PREPARATION OF PRELIMINARY EVIDENCE TABLES

6 The evidence tables present data from studies related to a specific outcome or endpoint of 7 toxicity. At a minimum, the evidence tables include the relevant information for comparing key 8 study characteristics such as study design, exposure metrics, and dose-response information. 9 Evidence tables will serve as an additional method for presenting and evaluating the suitability of 10 the data to inform hazard identification for dibutyl phthalate (DBP) during the analysis of hazard 11 potential and utility of the data for dose-response evaluation. For each study selected, key 12 information on the study design, including characteristics that inform study quality, and study 13 results pertinent to evaluating the health effects from subchronic and chronic oral exposure to DBP 14 are summarized in preliminary evidence tables. 15 Epidemiological studies are presented first where each study per table is listed in reverse 16 chronological order. The specific metabolite(s) measured in a study, as reported in the study

17 methods, are noted (i.e., MnBP, MnBP + MIBP, or MBP without further specification). Animal studies

18 are then presented where each study per health endpoint is presented in order by dose. Finally,

animal studies using MBP are also presented as this is DBP's primary metabolite and is thought to

20 contribute to developmental toxicity. Inclusion of these studies may help to inform the hazard

21 identification for DBP. Most results are presented as the percent change from the control group; an

asterisk (*) indicates a result that has been calculated and reported by study authors to be

statistically significant compared to controls (p < 0.05). Unless otherwise noted in a footnote, doses

24 presented in the animal evidence tables were those reported by the study authors.

The information in the preliminary evidence tables for DBP is also displayed graphically in
 preliminary exposure-response arrays. In these arrays, a significant effect (indicated by a filled

circle) is based on statistical significance by the study authors. Due to the large number of

28 endpoints, for the purposes of practical presentation, for studies that report on multiple endpoints

29 related to the same effect, the most sensitive endpoint was selected for representation in the

30 exposure arrays. The complete list of references considered in preparation of these materials can

31 be found on the Health and Environmental Research On-line (HERO) website at

32 <u>http://hero.epa.gov/DBP</u> and <u>http://hero.epa.gov/phthalates-humanstudies</u>.

33

1 **3.2. EPIDEMIOLOGICAL STUDIES**

2 3.2.1. Sexual Differentiation Methods

3 4

Table 3-1. Evidence pertaining to DBP and sexual differentiation effects in humans

Reference and study design	Results				
Anogenital distance (AGD)					
Suzuki et al. (2012) (Japan) Population: 111 male infants from birth cohort study, time period not given	Association between MnBP and AGD measures reported as not statistically significant (quantitative results not reported).				
Outcome: AGD measured 1-3 d after birth (AGD 1 to anterior genitalia, mean 45.8 mm, 14.8 mm/kg; AGD 2 to posterior genitalia, mean 20.3 mm, 6.6 mm/kg)					
Exposure: Maternal urine samples, mean 29 wks of gestation					
MnBP in urine (ng/mL): Median 75 th percentile Unadjusted 46.6 65.3 SG-adjusted 50.8 92.9					
Analysis: Linear regression, considering gestational week, birth order, maternal age, maternal smoking during pregnancy, maternal urinary daidzein (soy isoflavone) and equol (a urinary metabolite of daidzein) concentrations and environmental tobacco smoke (smoking status of husbands of non-smoking women) as potential cofounders					
Huang et al. (2009) (Taiwan)	AGD by sex and	d concentratior	n of MBP	in amniotic	fluid
Population: 65 infants (32 girls, 33 boys) from birth cohort study		Median MBP in exposure		AGD/	AGD/
Outcome: AGD (to posterior genitalia) measured at birth; two measures per infant (mean 23 mm,	Exposure group	group (ng/mL)	AGD (mm)	weight (mm/kg)	length (x 10 ³)
7.2 mm/kg in boys; mean 16 mm, 5.4 mm/kg in girls) Exposure: Maternal urine and amniotic fluid samples,	Boys				
1 st trimester	Low (n = 16)	63.8	21.2	6.6	4.3
MBP in urine (ng/mL):	High (n = 17)	98.7	24.1	7.7	4.8
Median 90 th percentile Females 78.0 309 [*]	Girls				
Males 79.6 232.6	Low (n = 15)	67	17.6	6.2	3.7
MBP in amniotic fluid (ng/mL):	High (n = 16)	104	13.9*	4.5*	2.8*
Median 90 th percentile Females 85.5 134.6	* <i>p</i> < 0.05 comp	pared with low	exposure	e group	
Males81.3127.8Analysis: Stratified into low and high exposure groups		tween log MBP infants (n = 29)		otic fluid (ng	/mL) and
by median MBP concentration in amniotic fluid; AGD compared between the two exposure groups using	Analysis	AGD (mm)	AGD/w (mm/	-	D/length x 10 ³)

This document is a draft for review purposes only and does not constitute Agency policy.

Reference and study design		Resu	ılts	
Wilcoxon rank-sum test. Spearman correlation analysis and linear regression for association between MBP and continuous variables.	Spearman correlation coefficient	-0.31	-0.32*	-0.33*
*Report of 30.9 in the paper appears to be in error given the other values reported in the distribution	Regression R ² * <i>p</i> < 0.05	Not reported	0.143*	0.159*
	After adjustmen metabolites, lin amniotic fluid y (regression coe	ear regression ielded significa	of AGD/weight nt (p = 0.043) F	on MBP in
<u>Swan (2008)</u> (United States; Minnesota, Missouri, California)	Percent change concentration (erquartile incre	ease in MnBP
Population: 106 boys from birth cohort study (Study for Future Families), 2000-2002, mean age 12.8 mo (0-36 mo)	MnBP		-3.2 (0	0.049)
Outcome: AGD (to posterior genitalia) measured at 0-36 mo (mean 70.4 mm, 7.1 mm/kg)				
Exposure: Maternal urine sample, 3 rd trimester				
MnBP in urine (ng/mL): Median 75 th percentile unadjusted 13.5 30.9				
Analysis: Regression analysis using mixed model adjusting for age and weight percentile				
Related references: <u>Swan et al. (2005)</u> (exposure data and analysis of smaller sample size with less robust method of adjustment for variation by size)				
Cryptorchidism or testicular position, hypospadias				
Carran and Shaw (2012) (New Zealand) Population: 79 male offspring born to New Zealand	Frequency in bi cohort	irths in general	population and	d in exposed
soldiers exposed to DBP during military service in Malaya from 1948-1960		Gene popula		osed cohort
Outcome: Hypospadias or other penis defects or cryptorchidism. Assessed via questionnaire sent to the	Cryptorchidism	0.91-1	.09% 5	.1* (4/79)
veterans in 2009 (age 70-> 80 yrs), followed up with	Hypospadias	0.30-0	.33% 2	5* (2/70)
personal interview. Low response rate: of 252 veterans contacted, 85 responded, of whom 71 reported DBP exposure; 58 of these had children (n=155; 79 male, 76 female) after return to New Zealand following military service.	* <i>p</i> < 0.05 when incidence in ger			or 2005
Exposure: Exposure to DBP self-reported via questionnaire (DBP used as insect repellant and Acaricide; applied through painting of seams of clothes before military operations in jungle areas of Malaysia). Authors performed dose reconstruction experiments using DBP-treated clothing; estimated daily exposure 64 mg/kg-day.				

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

not reported.ControlscasescasesOutcome: HypospadiasExposure: DBP and MBP in urine (ng/mL) and plasma (ng/mL)Mean \pm SDMBP in urine142.38 \pm 86.51 \pm 165.01 \pm MBP in urine of controls142.38 \pm 500.45MBP in72.34 \pm 47.49 \pm 15.25 \pm MBP in plasma of controls72.34 \pm 74.2862.7343.27Analysis: Concentrations in urine and plasma of cases compared with controls (details not reported)OR (95% Cl) for cryptorchidism and MBP in milk (exposure score of 2; above median) ^a (adjusted for gestational age, birth weight, pre-pregnancy maternal BMI, maternal age, parity, paternal history of cryptorchidism, season of birth, and city of birth)Outcome: Cryptorchidism at birth and 3 mo of age, based on two concordant examinations before discharge (n = 108 cases); follow-up at 3 and 12 mo (n = 50 permanent cases). Undescended testis defined as non-palpable, inguinal, supra-scrotal, high scrotal and ectopic testis. Retractable testis excluded from cases and controls.No differences in MBP concentrations (in cord blood or colostrum) were observed in comparisons between cases and controls ($p > 0.1$; see Exposure in Reference and study design column).	Reference and study design	Results			
Population: 80 hypospadias cases, 40 cases' mothers, and 80 controls; recruited at a medical college in Seoul; demographics and time period of recruitment not reported. (ng/mL) Mothers of Hypospadias Outcome: Hypospadias (ng/mL) Mean ± SD MBP in urine 142.38 ± 86.51 ± 165.01 ± MBP in urine of controls 142.38 ± 500.45 127.09 421.41 MBP in urine of controls 142.38 ± 500.45 MBP in 72.34 ± 47.49 ± 15.25 ± MBP in plasma of controls (12.328 ± 500.45 MBP in 72.34 ± 47.49 ± 15.25 ± plasma 74.28 62.73 43.27 MBP in plasma of controls (12.008b) (France) Population: 36 cryptorchidism cases and 49 controls, 2002-2005, ≥ 34 wks gestation, born at one hospital. Controls matched by place and date of birth, birth weight, gestational age, and when possible parental origin. [MBP analysis was added later in the study, so sample size is less than total of 78 cases and 86 controls.] OR (95% Cl) for cryptorchidism, season of birth, and city of birth) At 3 mo 2.38 (0.40, 14.22) ^{an} = 34 infants (18 case and 16 controls) had MBP exposure scores of 2; n = 35 (12 case and 23 controls) had scores of 1; and n = 2 infants (1 case and 1 control) had scores of 0. and ectopic testis. Retractable testis excluded from cases and controls. No differences in MBP concentrations (in cord blood or colostrum) were observed in comparisons between cases and controls (p > 0.1; see Exposure in Ref	to New Zealand general population incidence rates in				
Note that the properties of the end of the properties of	<u>Choi et al. (2012)</u> (Korea)	Mean ± SD of DBP and MBP in urine (ng/mL) and plasma			
Exposure: DBP and MBP in urine (ng/mL) and plasma (ng/mL)142.38 \pm 36.31 \pm 16.3.01 \pm 500.45 127.09 421.41MBP in urine of controls 142.38 \pm 500.45 MBP in plasma of controls 72.34 \pm 74.28MBP in 72.34 \pm 47.49 \pm 15.25 \pm plasmaMBP in urine of controls 72.34 \pm 74.28Analysis: Concentrations in urine and plasma of cases compared with controls (details not reported)Brucker-Davis et al. (2008b) (France)Population: 36 cryptorchidism cases and 49 controls, 2002-2005, \geq 34 wks gestation, born at one hospital. Controls matched by place and date of birth, birth weight, gestational age, and when possible parental origin. [MBP analysis was added later in the study, so sample size is less than total of 78 cases and 86 controls.]OR (95% CI) for cryptorchidism and MBP in milk (exposure score of 2; above median) ^a (adjusted for gestational age, parity, paternal history of cryptorchidism, season of birth, and city of birth)Outcome: Cryptorchidism at birth and 3 mo of age, based on two concordant examinations before discharge (n = 108 cases); follow-up at 3 and 12 mo (n = 50 permanent cases). Undescended testis excluded from cases and controls.and actopic testis. Retractable testis excluded from cases and controls.MBP in cryptorchidism and 12 mo (n = 50 permanent cases). Undescended testis defined and ectopic testis. Retractable testis excluded from cases and controls.MBP concentrations (in cord blood or colostrum) were observed in comparisons between cases and controls ($p > 0.1$; see Exposure in Reference and study design column).	and 80 controls; recruited at a medical college in Seoul; demographics and time period of recruitment	Mothers of Hypospadias hypospadias			
Exposure: DBP and MBP in urine (ng/mL)Mean \pm SDSO0.45127.09421.41MBP in urine of controls142.38 \pm 500.45MBP in plasma of controls72.34 \pm 47.49 \pm 15.25 \pm MBP in plasma of controls72.34 \pm 47.49 \pm 15.25 \pm 127.09421.41MBP in urine of controls142.38 \pm 500.45MBP in plasma of controls74.2862.7343.27Analysis: Concentrations in urine and plasma of cases compared with controls (details not reported)OR (95% CI) for cryptorchidism and MBP in milk (exposure score of 2; above media) ^a (adjusted for gestational age, birth weight, gestational age, and when possible parental origin. [MBP analysis was added later in the study, so sample size is less than total of 78 cases and 86 controls.]OR (95% CI) for cryptorchidism, season of birth, 	Outcome: Hypospadias	MBP in urine 142 38 + 86 51 + 165 01 +			
Mean ± SDMBP in urine of controls142.38 ± 500.45MBP in plasma of controls72.34 ± 74.28Analysis: Concentrations in urine and plasma of cases compared with controls (details not reported)PlasmaBrucker-Davis et al. (2008b)(France)Population: 36 cryptorchidism cases and 49 controls, 2002-2005, ≥ 34 wks gestation, born at one hospital. Controls matched by place and date of birth, birth weight, gestational age, and when possible parental origin. [MBP analysis was added later in the study, so sample size is less than total of 78 cases and 86 controls.]OR (95% CI) for cryptorchidism and MBP in milk (exposure score of 2; above median) ^a (adjusted for gestational age, birth weight, pre-pregnancy maternal BMI, maternal age, parity, paternal history of cryptorchidism, season of birth, and city of birth)Outcome: Cryptorchidism at birth and 3 mo of age, based on two concordant examinations before discharge (n = 108 cases); follow-up at 3 and 12 mo (n = 50 permanent cases). Undescended testis defined as non-palpable, inguinal, supra-scrotal, high scrotal and ectopic testis. Retractable testis excluded from cases and controls.No differences in MBP concentrations (in cord blood or colostrum) were observed in comparisons between cases and controls (p > 0.1; see Exposure in Reference and study design column).		500.45 127.09 421.41			
compared with controls (details not reported)Brucker-Davis et al. (2008b) (France)Population: 36 cryptorchidism cases and 49 controls, 2002-2005, ≥ 34 wks gestation, born at one hospital. Controls matched by place and date of birth, birth weight, gestational age, and when possible parental origin. [MBP analysis was added later in the study, so sample size is less than total of 78 cases and 86 controls.]OR (95% Cl) for cryptorchidism and MBP in milk (exposure score of 2; above median) ^a (adjusted for gestational age, birth weight, pre-pregnancy maternal BMI, maternal age, parity, paternal history of cryptorchidism, season of birth, and city of birth)Outcome: Cryptorchidism at birth and 3 mo of age, based on two concordant examinations before discharge (n = 108 cases); follow-up at 3 and 12 mo (n = 50 permanent cases). Undescended testis defined as non-palpable, inguinal, supra-scrotal, high scrotal and ectopic testis. Retractable testis excluded from cases and controls.and ectopic testis. Retractable testis excluded from cases and controls.No differences in MBP concentrations (in cord blood or colostrum) were observed in comparisons between cases and controls (p > 0.1; see Exposure in Reference and study design column).	MBP in urine of controls 142.38 ± 500.45 MBP in plasma of controls 72.34 ± 74.28				
Population: 36 cryptorchidism cases and 49 controls, 2002-2005, ≥ 34 wks gestation, born at one hospital. Controls matched by place and date of birth, birth weight, gestational age, and when possible parental 					
sample size is less than total of 78 cases and 86 controls.] Outcome: Cryptorchidism at birth and 3 mo of age, based on two concordant examinations before discharge (n = 108 cases); follow-up at 3 and 12 mo (n = 50 permanent cases). Undescended testis defined as non-palpable, inguinal, supra-scrotal, high scrotal and ectopic testis. Retractable testis excluded from cases and controls. Exposure: Cord blood and colostrum samples Concentration in cord blood (ng/mL):	Population: 36 cryptorchidism cases and 49 controls, 2002-2005, \geq 34 wks gestation, born at one hospital. Controls matched by place and date of birth, birth weight, gestational age, and when possible parental	birth weight, pre-pregnancy maternal BMI, maternal age, parity, paternal history of cryptorchidism, season of birth,			
controls.]At 3 mo2.38 (0.40, 14.22)Outcome: Cryptorchidism at birth and 3 mo of age, based on two concordant examinations before discharge (n = 108 cases); follow-up at 3 and 12 mo (n = 50 permanent cases). Undescended testis defined as non-palpable, inguinal, supra-scrotal, high scrotal and ectopic testis. Retractable testis excluded from cases and controls.an a 34 infants (18 case and 16 controls) had MBP exposure scores of 2; n = 35 (12 case and 23 controls) had scores of 1; and n = 2 infants (1 case and 1 control) had scores of 0.No differences in MBP concentrations (in cord blood or colostrum) were observed in comparisons between cases and controls (p > 0.1; see Exposure in Reference and study design column).		At birth 2.13 (0.66, 6.83)			
 based on two concordant examinations before discharge (n = 108 cases); follow-up at 3 and 12 mo (n = 50 permanent cases). Undescended testis defined as non-palpable, inguinal, supra-scrotal, high scrotal and ectopic testis. Retractable testis excluded from cases and controls. Exposure: Cord blood and colostrum samples Concentration in cord blood (ng/mL): exposure scores of 2; n = 35 (12 case and 23 controls) had scores of 1; and n = 2 infants (1 case and 1 control) had scores of 0. No differences in MBP concentrations (in cord blood or colostrum) were observed in comparisons between cases and controls (p > 0.1; see Exposure in Reference and study design column). 		At 3 mo 2.38 (0.40, 14.22)			
Concentration in cord blood (ng/mL):	based on two concordant examinations before discharge (n = 108 cases); follow-up at 3 and 12 mo (n = 50 permanent cases). Undescended testis defined as non-palpable, inguinal, supra-scrotal, high scrotal and ectopic testis. Retractable testis excluded from cases and controls.	 exposure scores of 2; n = 35 (12 case and 23 controls) had scores of 1; and n = 2 infants (1 case and 1 control) had scores of 0. No differences in MBP concentrations (in cord blood or colostrum) were observed in comparisons between cases 			
MBP	•				
Controls 2.9 4.9					
Cases 2.4 3.1					
Concentration in colostrum (ng/g milk): Median 75 th percentile	Median 75 th percentile				
MBP Controls 10.6 20.3					
Controls 10.6 20.3 Cases 17.3 32.6					
Analysis: Exposure concentrations compared using Kruskal-Wallis nonparametric test; exposure scores defined as unquantifiable (0), below median (1), or above median (2) concentration in milk; categorical	Analysis: Exposure concentrations compared using Kruskal-Wallis nonparametric test; exposure scores defined as unquantifiable (0), below median (1), or above median (2) concentration in milk; categorical				
analysis by logistic regression, adjusting for variables shown in results column					

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results	
Swan (2008) California)(United States; Minnesota, Missouri, California)Population:106 boys from birth cohort study (Study for Future Families), 2000-2002, mean age 12.8 mo (0- 36 mo)Outcome:Incomplete testicular descent assessed at clinical exam (one or both testes classified in category other than normal or normal retractile) (10% prevalence)Exposure:Maternal urine sample, 3 rd trimesterMnBP in urine (ng/mL): UnadjustedMedian 13.5Median75 th percentileUnadjusted13.5Analysis:Logistic regression, adjusting for age and	MnBP reported as not associated with testicular position or penile width or length (quantitative results not reported).	
weight percentile Related references: <u>Swan et al. (2005)</u> (exposure data)		
Main et al. (2006) (Denmark, Finland)	Median MBP in breast milk (μg/L)	
Population: 62 cases, 68 controls from two pregnancy cohorts, born 1997-2001, age 3 mo	Controls Cases	
Outcome: Cryptorchidism, at birth and/or 3 mo. Undescended testis defined as non-palpable, inguinal, supra-scrotal, high scrotal and ectopic testis. Exposure: Breast milk samples collected 1-3 mo of age	9.09 10.25 (<i>p</i> > 0.40)	
MBP in breast milk (μg/L), all samples: Median (range) Denmark 4.3 (0.6-10,900) Finland 12 (2.4-123) Analysis: Mann-Whitney U-test for comparison of MBP concentrations in boys with and without cryptorchidism Related references: Boisen et al. (2004) (study design, case-control description)		

Reference and study design	Results		
Infant hormone levels			
Lin et al. (2011a) (Taiwan) Population: 155 infants (81 boys, 74 girls) from birth cohort, born 2000-2001 Outcome: Cord blood hormone levels	Pearson correlation coefficient (r) and regression coefficient (β), log-MBP (μ g/g Cr) and cord blood hormone level (regression adjusted for maternal age, BMI, smoking habit, gestational age, parity, and use of contraceptive drugs)		
Exposure: Maternal urine sample 3 rd trimester MBP in urine (percentile):	r β		
Median 75 th 95 th	Boys		
Unadjusted (ng/mL) 65.5 121 275	Free testosterone (ng/dL) -0.11 NR		
Cr-adjusted (μg/g Cr) 95.9 169 507 Analysis: Pearson correlation analysis and linear	Estradiol (pg/mL) 0.05 -0.02		
regression adjusted for variables shown in the results	Free testosterone:estradiol ratio -0.15 -0.22		
column	Girls		
	Free testosterone (ng/dL) -0.07 -0.01		
	Estradiol (pg/mL) -0.07 NR		
	Free testosterone:estradiol ratio -0.06 -0.01		
	NR = not reported All <i>p</i> -values > 0.10		
Main et al. (2006) (Denmark, Finland)	Spearman correlation coefficient (<i>p</i> -value), MBP (µg/L)		
Population: 130 male infants from two pregnancy	and serum hormone level (n = 96 boys)		
cohorts (cryptorchidism cases and controls combined	SHBG (nmol/L) 0.272 (0.01)		
for this analysis), born 1997-2001, age 3 mo Outcome: Serum steroidal and gonadotropin	Free testosterone (nmol/L) -0.220 (0.03)		
hormone levels in infants, samples collected when	Testosterone (nmol/L) -0.040 (0.71)		
breast milk samples delivered to hospital	LH (IU/L) 0.076 (0.47)		
Exposure: Breast milk samples collected 1-3 mo of age	FSH (IU/L) -0.083 (0.42)		
MBP in breast milk (μg/L), all samples: Median (range) Denmark 4.3 (0.6-10,900)	Estimated percent change (95% CI) in hormone level with 10-fold increase in MBP		
Finland 12 (2.4-123)	SHBG (nmol/L) 8% (-1 to 18%)		
Analysis: Cases and controls combined for analysis of association between metabolite concentration and hormone analysis using partial Spearman correlation	LH:free 18% (-2 to 44%) testosterone ratio		
coefficients adjusted for country of birth; linear regression, considering gestational age, weight for gestational age, parity, smoking, diabetes, and country of origin as potential covariates	Free testosterone (nmol/L) -15% (-29 to ±1%		

Reference and study design	Results		
Gender-related play			
Swan et al. (2010) (United States; Minnesota, Missouri, California, Iowa) Population: 145 children from birth cohort study (Study for Future Families), 2000-2002 and 2002-2005 (Iowa), ages 4-7 yrs; second follow-up Outcome: Gender-specific play based on Pre-School	index scores and l child's age, mothe attitude toward b education and att	cient (95% CI) for pre- log-transformed MnB er's age, mother's edu oy's play, and interac citude; negative value chavior with higher m	P (adjusted for ucation, parents' tion between indicates less
Activities Inventory (24 items completed by parent or		Boys	Girls
caregiver; subscores of male-oriented items and female-oriented items and a composite score consisting of male summation minus the female	Masculine:	-2.21 (-5.29, 0.87)	0.21 (-2.69, 3.10)
summation scores)	Composite:	-3.61	-1.07
Exposure: Maternal urine sample, 3 rd trimester		(-7.48, 0.26)	(-5.46, 3.32)
MBP in urine (ng/mL); distribution not reported for this analysis; EPA assumed similar distribution as seen in <u>Swan et al. (2005)</u>			
Unadjusted MnBP in urine (ng/mL): Median 75 th percentile Boys 12.5 28.3 Girls 18.0 32.3			
Analysis: Regression analysis using Generalized Linear Models, considering creatinine, sex and age of child, maternal age, parental education, number of same and opposite sex siblings, ethnicity, clinic location, and parental attitude as potential covariates			
Related references: Swan et al. (2005) (exposure data)			

3.2.2. Male Reproductive Effects in Humans 1

2

3

Table 3-2. Evidence pertaining to DBP and reproductive hormones in adult men

Reference and study design	Results		
Han et al. (2014) (China) Population: 232 men without reproductive or urological diseases or occupational exposure to phthalates,	Partial correlation coefficient for increase in hormone unit change in Cr-adjusted urine MBP (adjusted for age, body mass index, and smoking status)		
recruited by Chongqing Institute of Science and Technology for Population and Family Planning; mean	Testosterone (nmol/L) 0.01		
age 32 yrs (range 20-40 yrs); 2007	E ₂ (pg/mL) 0.01		
Outcome: Serum testosterone, estradiol, FSH, and LH	FSH (IU/L) 0.05		
Exposure: Urine sample, collected at same time as	LH (IU/L) 0.04		
serum sample MBP in urine:	Free androgen index (FAI) 0.01		
Median95th percentileUnadjusted (µg/L)18.72129.34Cr-adjusted (µg/g Cr)23.26157.33Analysis:Spearman correlation analysis withstandardized partial correlation analysis consideringage, BMI, smoking status and alcohol consumption aspotential cofounders	(<i>p</i> > 0.05 for all)		
Pant et al. (2014) (India) Population: 60 male partners of infertile couples; mean age 32 yrs; time period not reported Outcome: Serum testosterone	Regression coefficient (95% CI) between serum testosterone (ng/mL) and DBP in semen (μ g/mL) (adjusted for age, body mass index, tobacco and alcohol use, and diet)		
Exposure: Semen sample	-0.61 (-1.20, -0.02)		
DBP in semen (µg/mL):			
Mean ± SD			
DBP0.97 ± 0.55Analysis: Linear regression adjusting for variables shown in results column.			
Jurewicz et al. (2013) (Poland) Population: 269 men from infertility clinic with normal sperm concentration (20-300 million/mL) or slight oligozoospermia (15-20 million/mL); mean age 32 yrs;	Regression coefficient (<i>p</i> -value) for increase in hormone unit change in log-MnBP (adjusted for age, smoking, medical history [mumps, cryptorchidism, testes surgery, testes trauma], abstinence time, and urinary creatinine)		
time period not reported; MBP measured in 268 samples	Testosterone (ng/mL) 0.02 (0.95)		
Outcome: Plasma testosterone, E2, and FSH	E ₂ (pg/mL) 0.86 (0.43)		
Exposure: Urine sample, collected at same time as plasma sample	FSH (IU/L) 0.24 (0.47)		
MnBP in urine:			
Geometric mean (SD) Unadjusted (μg/L) 108.5 (1.9) Cr-adjusted (μg/g Cr) 81.9 (1.8)			
Analysis: Linear regression, adjusting for variables shown in results column			

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design	Results
Joensen et al. (2012) (Denmark) Population: 881 men from general population, assessed at military conscript exam*, 2007-2009, median age 19.1 yrs (5 th -95 th percentile: 18.4-22.0 yrs)	Percent difference (95% CI), highest compared with lowest quartile of MnBP (ng/mL) (adjusted for age, BMI, smoking, alcohol consumption, and time of blood sampling [and assay type for inhibin-B only])
Outcome: Serum steroidal and gonadotropin hormones	LH (IU/L) 9% (1-18%)
Exposure: Urine sample, collected at same time as serum sample for hormone analysis MnBP in urine (ng/mL): Median 95 th percentile Unadjusted 28 91 Analysis: Linear regression considering age, BMI, smoking, alcohol consumption, time of blood sampling, assay type, ethnicity, BMI squared, <i>in utero</i> exposure to tobacco smoke, previous or current diseases, recent fever, and recent use of medication as potential covariates *As reported by <u>Ravnborg et al. (2011)</u>	No other significant differences in hormone levels (free testosterone, estradiol, SHBG, inhibin-B, or FSH) seen (quantitative results not reported).
Mendiola et al. (2012) (United States; Minnesota, Missouri, California, Iowa) Populations: 425 fertile men with pregnant partners enrolled in birth cohort study (Study for Future Families[SFF]), 1999-2005; mean age 32 yrs; 425 men who were male partners of infertile couples seeking evaluation (Massachusetts General Hospital [MGH]; 2000-2004, mean age 36 yrs	Authors report "no associations between any hormone levels [testosterone, estradiol, SHBG, LH, inhibin-B, or FSH] and any urinary metabolites of phthalates other than DEHP" [including MBP+MIBP summation] (quantitative results not reported).
Outcome: Serum steroidal and gonadotropin hormones Exposure: Urine sample, collected at same time as	
serum sample for hormone analysis Sum of MBP and MIBP) in urine (ng/mL): Median 90 th percentile SFF: Unadjusted 24.5 65.3 MGH: Unadjusted 17.7 50.8 All: Unadjusted 18.8 58.2	
Analysis: Pearson correlation coefficients of log(10)- transformed MBP and hormone measures (bivariate analysis); linear regression considering age, age square, BMI, smoking status, ethnicity, urinary creatinine concentration (SFF models) or specific gravity (MGH models), time of sample collection, time of collection squared, and study center (SFF vs MGH) for each population separately and for the pooled population	
Related references: This is a pooled analysis of a study of fertile men (<u>Mendiola et al., 2011</u>) and men from infertile couples (<u>Meeker et al., 2009a</u>). The analysis in <u>Mendiola et al., 2011</u> was conducted for MnBP (no associations noted; quantitative results not reported).	
<u>Li et al. (2011)</u> (China)	Spearman correlation coefficient, DBP (μg/L) and serum hormone level

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results					
Population: 118 male partners seen in subfertility clinic		DBP in semen	DBP in serum			
2007-2008; mean age 30 yrs Outcome: Serum steroidal and gonadotropin hormones,	Testosterone (ng/mL)	-0.21*	-0.08			
prolactin.	Estradiol (pg/m	IL) 0.07	0.06			
Exposure: Semen and serum samples	FSH (IU/L)	-0.15	-0.05			
DBP (µg/mL): Median 75 th percentile 95 th percentile		<0.01				
Semen 0.02 0.08 0.20	LH (IU/L)		0.04			
Serum 0.05 0.07 0.32	Prolactin (ng/m	nL) 0.13	0.23*			
Analysis: Spearman correlation analysis; linear regression adjusting for variables shown in results column (samples with undetectable DBP were assigned a value of one-half the limit of detection); logistic regression for change in prolactin by exposure tertile	per unit increas	fficient (95% CI) for ch se in In-transformed D , smoking, and drinkin				
only		DBP in semen	DBP in serum			
	Testosterone (ng/mL)	-0.17 (-0.36, 0.02)	-0.07 (-0.26, 0.12)			
	Estradiol (pg/mL)	0.54 (-0.65, 1.74)	0.45 (-0.72, 1.62)			
	FSH (IU/L)	-0.06 (-0.13, 0.01)	-0.02 (-0.08, 0.05)			
	LH (IU/L)	-0.01 (-0.05, 0.04)	0.01 (-0.04, 0.05)			
	Prolactin (ng/mL)	0.03 (-0.03, 0.09)	0.06 (0.01, 0.12)			
	OR (95% CI) for	OR (95% CI) for increased serum prolactin by tertile of DBP				
		DBP in semen	DBP in serum			
	1 (<lod)< td=""><td>1.0 (Ref)</td><td>1.0 (Ref)</td></lod)<>	1.0 (Ref)	1.0 (Ref)			
	2 (0.01- 0.05 μg/L)	1.07 (0.43, 2.67)	1.10 (0.41-2.96)			
	3 (0.06- 1.40 μg/L)	2.11 (0.85, 5.24)	2.62 (1.04-6.64)			
	(trend <i>p</i>)	(0.10)	(0.04)			
Meeker et al. (2009a) (United States; Boston) Population: 425 men from subfertility clinic, 2000- 2004; mean age 36 yrs Outcome: Serum steroidal and gonadotropin hormones	Regression coefficient (95% CI) for change in hormone with interquartile range (IQR) increase in adjusted MBP concentration (adjusted for age, BMI, smoking, season and time of day sample was collected, and [for testosterone and estradiol only] SHBG)					
Exposure: Urine sample, collected at same time as serum sample	Untransformed	hormone level (0.0 =	no effect)			
MBP in urine (ng/mL) (percentile):	Testosterone	-	, 4.65 (-15.7, 6.33)			
Median 75 th percentile 95 th percentile	Estradiol (pg/		0.47 (-1.62, 0.68)			
SG-adjusted 17.7 32.7 69.9	Inhibin B (pg/	-	1.34 (-5.98, 8.66)			
Analysis: Linear regression using untransformed (testosterone, estradiol) or natural logarithm	Ln-transformed hormone level (1.0 = no effect)					
transformed (free androgen index, FSH, LH) hormone		-	-			
	Free androger	mindex	0.98 (0.94, 1.01)			

This document is a draft for review purposes only and does not constitute Agency policy.

Reference and study design					Results	5	
levels; considering age, BN				FSH (IU/L)		1.02 (0.97,	1.08)
previous infertility example, prior ability to impregnate partner, and season and time of sample collection as potential covariates				LH (IU/L)	LH (IU/L) 1.01 (0.97, 1.06)		1.06)
				SHBG (nmol/mL) 1.02 (0.98, 1.06)		1.06)	
Related references: Duty	Related references: Duty et al. (2005)			Prolactin (ng/mL)		1.00 (0.96,	1.04)
Pan et al. (2006) (China)			Mean ± SD log-transf	formed serun	n hormone lev	vels:	
Population: 74 exposed we		-	у,		Controls	Ex	posed
mean work duration 1 yr); workers, matched by age a		-		FSH (mIU/mL)	5.4 ± 1.7	5.0) ± 1.5
33.9 yrs, time period not re	-	,,,		LH (mIU/mL)	4.9 ± 1.7	4.3	8 ± 1.5
Outcome: serum steroidal	and gonado	otropin hormor	nes	Free	9.7 ± 1.4		± 1.5*
Exposure: Urine sample, co serum samples for hormon		he same time a	as	Testosterone (pg/mL)			
	MBP in urine (μg/g Cr): Median 75 th percentile 95 th percentile				20 ± 1.7	22.	4 ± 1.6
Exposed 548 Controls 114	xposed 548 1,493 8,781			Standardized partial correlation coefficients between log- serum hormone levels and log-MBP in urine (μ g/g Cr) (adjusted for age and alcohol consumption status [yes/no])			
concentrations between gr	oups; stand	lardized partia			Controls	Exposed	All
correlation coefficient for a levels and exposure, adjust				FSH (mIU/mL)	0.002	-0.180	-0.103
results column	0			LH (mIU/mL)	0.078	0.087	-0.042
				Free Testosterone (pg/mL)	0.095	-0.253*	-0.237*
				Estradiol (pg/mL)	-0.061	-0.029	0.032
				* <i>p</i> < 0.05			
Jonsson et al. (2005) (Sweden) Population: 234 men from general population, assessed at military conscription exam in 2000; ages 18-21 yrs Outcome: Serum steroidal and gonadotropin hormones				Mean difference (95% CI), highest (≥36.31 nmol/mmol Cl compared with lowest quartile of MnBP (≤12.4 nmol/mm Cr) (positive difference indicates lower value in highest exposure quartile.			nmol/mmol
Exposure: Urine sample, c	-	-	inc5	Testosterone (nM)		-0.7 (-1.2, 2.7)	
serum sample for hormone analysis			Free testosterone (T/SHBG)		0.09 (-	0.09 (-0.02, 0.2)	
MnBP in urine (percentile)		ac th	95 th	Estradiol (pM)		4.5 (-	1.6, 11)
Unadjusted (ng/mL)	Median 78		330	FSH (IU/L)		-0.5 (-	1.1, 0.2)
Adjusted (nmol/mmol Cr)	24		81	LH (IU/L)		0.2 (-	0.4, 0.6)
Analysis: Mean difference quartiles	between hi	igh and low				, , , , , , , , , , , , , , , , , , ,	

1

1 **3.2.3.** Male Pubertal Development in Humans

2 3

Table 3-3. Evidence pertaining to DBP and the timing of male puberty or sex hormones in boys

Reference and study design	Results			
Ferguson et al. (2014c) (Mexico) Population: 115 boys ages 8-14 yrs from a birth cohort (Early Life Exposure in Mexico to Environmental Toxicants, participants enrolled during first trimester	OR (95% CI) for adrenarche or puberty per interquartile increase in In-transformed MnBP (adjusted for child age, BMI z-score, and urine specific gravity)			
1994-2004); follow up initiated in 2010		Exposure basis		
Outcome: Adrenarche or puberty, based on Tanner staging by physician (pubic hair stage ≥2; genitalia stage ≥2 or testicular volume >3 mL); serum hormone level	Tanner stage or testicular volume	Maternal urine (prenatal) Child urine		
Exposure: Maternal urine sample (n = 107) from third trimester or child's urine sample (n = 113) collected at	Pubic hair (stage ≥2)	0.42 (0.14, 1.29) 1.57 (0.52, 4.75)		
time of Tanner staging and serum collection Unadjusted MnBP in urine (ng/mL):	Genitalia (stage ≥2)	0.61 (0.32, 1.16) 1.15 (0.58, 2.30)		
Median95th percentileMaternal sample57.6299Child's sample102477	Testicular volume (>3 mL)	1.01 (0.49, 2.08) 3.45 (1.26, 9.42)		
Analysis: Logistic regression for analysis of puberty onset, adjusting for variables shown in results column; linear regression for analysis of hormone levels, considering age, BMI z-score, socioeconomic status, and	Percent change (95% CI) in serum hormone level per interquartile increase in In-transformed MBP (adjusted for urine specific gravity, child age, and BMI z-score):			
maternal smoking potential covariates	Exposure basis			
	Serum hormone	Maternal urine (prenatal) Child urine		
	Testosterone	-10.4 (-33.9, 21.5) 7.13 (-22.4, 47.9)		
	Free testosterone	-16.9 (-39.4, 13.9) 9.71 (-21.9, 54.1)		
	SHBG	12.3 (1.29, 24.6) -3.41 (-13.8, 8.22)		
	DHEAS	-13.9 (-25.5, -0.48) 2.67 (-12.2, 20.1)		
	Estradiol	8.11 (-1.63, 18.8) -3.51 (-12.9, 6.82)		
	Inhibin B	-3.53 (-13.8, 7.90) 2.02 (-9.27, 14.7)		
Mieritz et al. (2012) (Denmark)	MnBP concentra	ation (ng/mL) by group		
Population: 38 boys with pubertal gynecomastia and 190 age-matched controls drawn from 555 boys from		Group 1 Group 2 Group 3 (n = 38) (n = 189) (n = 517)		
population-based cohort (COPENHAGEN Puberty Study), 2006-2008; ages 6-19 yrs	Median	44.3 41.7 45.1		
Outcome: Anthropometry, pubertal stage (pubic hair	95 th percentile	108.3 119.5 148.2		
and genital development), presence of gynecomastia, and serum testosterone	Group 1 = boys with palpable gynecomastia Group 2 = boys without palpable gynecomastia (age- matched) Group 3 = boys without palpable gynecomastia (all ages)			
Exposure: Urine sample, first morning sample				
MnBP in urine (ng/mL): Median 95 th percentile Group 3 45.14 148.2				

This document is a draft for review purposes only and does not constitute Agency policy.

Reference and study design	Results
Analysis: Two-tailed Mann-Whitney U-test for comparisons between groups; linear regression with age adjustment for association with serum testosterone;	No association between MBP concentration and timing of puberty or serum testosterone level; however authors reported that more boys in the 2 nd quartile of urinary (MBP+MIBP) had testicular volume >3 mL compared with boys in the 4 th quartile (quantitative results not reported).

1

1 3.2.4. Semen Parameters and Infertility

2

3

Table 3-4. Evidence pertaining to DBP and semen parameters or infertility in adult men or couples

Reference and study design	Results		
Sperm parameters			
Han et al. (2014) (China) Population: 232 men without reproductive or urological diseases or occupational exposure to	OR (95% CI) for semen parameter below WHO reference value, comparing Cr-adjusted urine MBP above and below the median (adjusted for age and abstinence time)		
phthalates, recruited by Chongqing Institute of Science and Technology for Population and	Sperm concentration 1.97 (0.95, 4.08) Sperm motility 1.08 (0.69, 1.69)		
Family Planning; mean age 32 yrs (range 20-40 yrs); 2007	Sperm morphology 1.53 (0.76, 3.09)		
Outcome: Semen analysis, and sperm DNA damage assessed by alkaline comet assay Exposure: Urine sample, collected at same time	Partial correlation coefficient for Cr-adjusted urine MBP and DNA damage to sperm (adjusted for age, abstinence time, and smoking status)		
as semen sample MBP in urine:	Tail % -0.00		
Median 95 th percentile	Tail length -0.03		
Unadjusted (μg/L) 18.72 129.34 Cr-adjusted (μg/g Cr) 23.26 157.33	Tail distributed moment (TDM)-0.02		
Analysis: Logistic regression, adjusting for variables shown in results column; Spearman correlation analysis with standardized partial correlation analysis considering age, BMI, abstinence time, smoking status and alcohol consumption as potential cofounders	(<i>p</i> > 0.05 for all)		
Kranvogl et al. (2014) (Slovenia)	Spearman correlation coefficient, MnBP and sperm parameters:		
Population: 136 men from couples seeking	Sperm concentration -0.006		
infertility treatment (mean age 36.2 yrs, range 24- 54 yrs), 2012	Sperm motility -0.127		
Outcome: Semen analysis	(p > 0.05 for both parameters)		
Exposure: Urine sample, collected at same time as semen sample			
MnBP in urine Median Maximum Unadjusted (μg/L) 18.3 199.8 Cr-adjusted (μg/g Cr) 14.9 104.7 Analysis: Spearman correlation			

Reference and study design	Results			
Pant et al. (2014) (India) Population: 60 male partners of infertile couples;	Regression coefficient (95% CI) between sperm parameter and DBP in semen			
mean age 32 yrs; time period not reported Outcome: Semen analysis and sperm DNA	Sperm concentration (× 10 ⁶ /mL)	-6.42 (-13.69, -0.84)		
damage assessed by comet assay Exposure: Semen sample	Sperm motility (%)	-10.05 (-20.22, -0.12)		
DBP in semen (µg/mL):	Normal morphology	-3.96 (-8.79, 0.87)		
Mean ± SD DBP 0.97 ± 0.55	Comet tail length	12.45 (-0.71, 25.6)		
Analysis: Linear regression (unadjusted)	% DNA in comet tail	4.63 (-0.21, 9.48)		
	Comet tail moment	2.40 (-1.76, 6.57)		
Jurewicz et al. (2013) (Poland) Population: 269 men from infertility clinic with normal sperm concentration (20-300 million/mL) or slight oligozoospermia (15-20 million/mL);	Regression coefficient (p-value) for o with unit change in log-MnBP (adjus history [mumps, cryptorchidism, tes abstinence time, and urinary creatin	ted for age, smoking, medical tes surgery, testes trauma],		
mean age 32 yrs; time period not reported; MBP measured in 268 samples	Log-transformed sperm concentration (million/mL)	on -0.21 (0.11)		
Outcome: Semen analysis	Sperm motility (%)	-1.55 (0.51)		
Exposure: Urine sample, collected at same time as semen sample	Abnormal sperm morphology (%)	-2.68 (0.24)		
Geometric mean (SD) Unadjusted (µg/L) 108.5 (1.9) Cr-adjusted (µg/g Cr) 81.9 (1.8) Analysis: Linear regression, adjusting for variables shown in results column				
Joensen et al. (2012) (Denmark) Population: 881 men from general population, assessed at military conscript exam*, 2007-2009, median age 19.1 yrs (5 th -95 th percentile: 18.4- 22.0 yrs) Outcome: Semen analysis Exposure: Urine sample, collected at same time as semen sample MnBP in urine (ng/mL): Median 95 th percentile Unadjusted 28 91 Analysis: Linear regression, considering age, BMI, smoking, alcohol consumption, ethnicity, BMI squared, <i>in utero</i> exposure to tobacco smoke, previous or current diseases, recent fever, recent use of medication, abstinence time, and time from ejaculation to analysis as potential covariates *As reported by <u>Ravnborg et al. (2011)</u>	Results for individual phthalate meta reported as "few significant associat count, or percentage progressively r results not reported; analyses adjust [volume, concentration, and count] analysis [progressively motile]; percent normal sperm was left unadjusted).	tions" with sperm volume, notile sperm (quantitative ted for abstinence time or time from ejaculation to		

Reference and study design	Results			
Liu et al. (2012) (China) Population: 97 men from subfertility clinic, 2009- 2010; mean age 32 yrs Outcome: Semen analysis; results dichotomized above and below WHO reference values; n = 43 with normal semen parameters Exposure: Urine sample, collected at same time as semen sample MBP in urine: Median 66 th percentile Unadjusted (ng/mL) 10.1 15.8 Cr-adjusted (µg/g Cr) 14.2 24.2 Analysis: Logistic regression, considering age, BMI, abstinence time, smoking, alcohol use, and education as potential covariates	• •) by tertile of MBI ng, and alcohol u Sperm <20 x 10 ⁶ /mL (n = 11) 1.0 (referent) 6.8 (1.0, 75.3) 12.0 (1.0, 143) (0.05)	P (adjusted for age, se) Sperm motility <50% motile (n = 34) 1.0 (referent) 0.5 (0.2, 1.4) 0.7 (0.3, 2.1) (0.56)	, BMI, abstinence Semen volume <2 mL (n = 15) 1.0 (referent) 1.0 (0.3, 4.1) 0.4 (0.1, 2.1) (0.29)
Toshima et al. (2012)(Japan)Population: 42 men visiting gynecology clinic for infertility consultation in 2010; mean age 37 yrsOutcome: Semen analysis; results also dichotomized above and below WHO reference values (semen volume of 1.5 mL, sperm concentration of 15 x 10 ⁶ /mL, and motility of 40%)Exposure: Urine sample, collected on same day as semen sampleMnBP in urine (ng/mL): Geometric mean (SD)SG-adjusted62.4 (1.82)Analysis: Urine concentrations compared between dichotomized groups using t-test; linear regression between SG-adjusted MBP and continuous outcome variables, considering age, abstinence time, BMI, smoking status, frequency of consumption of vegetables, fruits, and coffee, and presence of detectable levels of equol potential covariates	men with h value, n = 3 (less than W results not n No statistica concentrati concentrati the study an Regression per unit cha consumption Sperm conco Authors rep	oomized on sperm not reported by perm parameter nd coffee .05) pociation between lity analyzed by		

Reference and study design			ign	Results		
Pant et al. (2011) (India)				Pearson correlation coefficient (<i>p</i> -value), semen DBP (µg/mL) and		
Population: 180 male partners 50 fertile,		sperm parameter				
L30 infertile (65 oligoasthenospermic;		Oliogoasthenospermic men -0.2	25 (<0.01)			
			Asthenospermic men -0.2	20 (<0.01)		
and gynecology d	-	nt; mean ag	e 28-29 yrs;	There were no significant differences betwee	en fertile and infertile	
time period not re	-			men when other semen parameters (color, c	-	
Outcome: Semen	-			liquefaction time, pH, volume) were assessed	d (quantitative results	
Exposure: Semen	-			not reported).		
DBP in semen (µg			+h			
	Median	75 th	95 th			
Fertile Oligoastheno-	0.07 1.23	0.33 2.42	0.69 7.48			
spermic	1.25	2.42	7.40			
Astheno-	0.17	0.57	3.03			
spermic						
Analysis: Pearson	correlat	ion analysis				
<u>Pant et al. (2008)</u>	(India)			Pearson correlation coefficient between sem	en DBP and sperm	
Population: 300 n	-			parameter:		
200 infertile) seer					r	
department from			-	Sperm concentration (× 10 ⁶ /mL)	-0.20*	
mean age 29 yrs; [.] Outcome: Semen	-		nteu	Sperm motility (%)	-0.18*	
Exposure: Semen	-			Morphology (percent abnormal)	-0.01	
DBP in semen (μg	-	ean ± SE:		DNA fragmentation index (chromatin	0.18*	
	F	ertile	Infertile	integrity)		
Rural areas			10 ± 0.16	* <i>p</i> < 0.05		
Urban areas			65 ± 0.22			
Analysis: Pearson						
Wirth et al. (2008				OR (95% CI) for DBP metabolites (sum of Mr versus below median	IDP dITU IVIIDP) dDOVE	
Population: 45 m clinic, time period			•			
	-		1 age 54 yis	Low sperm		
Outcome: Semer	-			concentration Low sperm motility <20 x 10 ⁶ /mL <50% motile	Abnormal sperm morphology	
Exposure: Urine as semen sample	-					
-			Li annj	0.5 (0.1, 3.6) ^a 0.8 (0.2, 3.9) ^b	3.3 (0.7, 16.2) ^c	
MnBP in urine (ng	ledian	75 th	95 th	^a Adjusted for race (whites, nonwhites) and s		
	24.7	44.3	144.5	^b Adjusted for age, alcohol use (≤ 3 and >3 set	rvings/wk), and	
MIBP in urine (ng	/mL) (pe			specific gravity ^c Adjusted for specific gravity		
М	ledian	75 th	95 th			
	5.8	10.0	17.9	Results of tertile analysis not reported.		
Analysis: Dichoto		•				
below WHO refer						
(sum of MBP and	-					
or divided into te income (3 levels),	-					
	nd alcoh	ol use (2 lev	eis)			
smoking status, a considered as pot			-			

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design		Results				
Hauser et al. (2007) (United States; Boston) Population: 379 male partners from subfertilit clinic, 2000-2004; mean age 36 yrs	y interquarti	Regression coefficient (95% CI) for DNA damage associated with interquartile range increase in In-MBP (adjusted for age and smoking status).				
Outcome: Sperm DNA damage assessed by	Comet ext	tent (µm) Tail d	istribution (μm)	%DNA tail		
neutral comet assay Exposure: Urine sample, collected at same tim as semen sample	0.17 (-3.4	46, 3.79) -0.2	2 (-1.69, 1.23)	1.63 (0.20, 3.08)		
MBP in urine (ng/mL) (percentile): Median 75 th . 95 th SG-adjusted 18.4 32.3 72.8 Analysis: Linear regression, considering age, abstinence time, smoking status, and race as potential covariates						
Related reference: Duty et al. (2003b)						
Hauser et al. (2006) (United States; Boston) Population: 443 male partners from subfertilit clinic 2000-2004; mean age 36 yrs	y abstinence	I) by quartile of N time, and smokir ficiencies on any	ng; comparison gi	roup = 210 men		
Outcome: Semen analysis; results dichotomize above and below WHO reference values Exposure: Urine sample, collected at same time	MBP	Sperm concentration <20 x 10 ⁶ /mL	Sperm motility <50% motile	Sperm morphology <4% normal		
as serum sample for hormone analysis	1 (low)	1.0 (referent)	1.0 (referent)	1.0 (referent)		
MBP in urine (ng/mL) (percentile): Median 75 th 95 th	2	3.1 (1.2, 8.1)	1.5 (0.8, 2.6)	0.8 (0.4, 1.6)		
SG-adjusted 17.7 31.7 69.9	3	2.5 (0.9, 6.7)	1.5 (0.8, 2.6)	0.9 (0.5, 1.7)		
Analysis: Logistic regression, considering age,	4 (high)	3.3 (1.2, 8.5)	1.8 (1.1, 3.2)	0.8 (0.4, 1.6)		
race, BMI, abstinence time, and smoking as potential covariates	(trend <i>p</i>)	(0.04)	(0.04)	(0.59)		
Related references: <u>Hauser et al. (2005)</u> Duty et al. (2004)	-	MBP (ng/mL) (ad		tion parameters by noking, and		
<u>Duty et al. (2003a)</u>	MBP (ng/mL) quartile	Straight line velocity (μm/s)	Curvilinear velocity (μm/s)	Linearity (%)		
	1 (low)	1.0 (referent)	1.0 (referent)	1.0 (referent)		
	2	-0.97 (-3.68, 1.74)	-3.46 (-8.05, 1.14)	1.11 (-0.80, 3.02)		
	3	-0.11 (-2.79, 2.58)	-1.32 (-5.87, 3.24)	0.84 (-1.06, 2.73)		
	4 (high)	-0.88 (-3.57, 1.81)	-1.65 (-6.20, 2.91)	0.38 (-1.52, 2.27)		
	(trend <i>p</i>)	0.68	0.71	0.78		

Reference and study design	Results			
	MBP quartile cut points: 0.3-10.6, 10.6-17.7, 17.7 -31.7, 31.7- 14,459 ng/mL No interaction with polychlorinated biphenyls (PCBs) was identified in this study; however, an interaction was reported by			
	Hauser et al. (2005) for below reference sperm motility.			
Zhang et al. (2006)(China)Population: 52 men seen in Shanghai Institute of Planned Parenthood Research in 2002, mean age 32 yrsOutcome: Semen analysisExposure: Semen samples Mean (range)DBP (mg/L)0.16 (0.09-0.57)Analysis: Spearman correlation analysis	Spearman correlation coefficient (p-value), semen DBP (mg/L) an sperm parameter: Sperm density (× 10 ⁶ /mL) -0.26 (0.13) Sperm livability (%) -0.25 (0.15) Sperm rate of 0.29 (0.09) malformations (%) -0.26 (0.13)			
Jonsson et al. (2005) (Sweden) Population: 234 men from general population, assessed at military conscription exam in 2000; ages 18-21 yrs Outcome: Semen analysis Exposure: Urine sample, collected at same time	Mean difference (95% CI), highest (\geq 36.31 nmol/mmol Cr) compared with lowest (\leq 12.4 nmol/mmol Cr) quartile MBP (positive difference indicates lower value in highest exposure quartile)Sperm concentration (\times 10 ⁶ /mL)-7.9 (-33, 17)Sperm motility (%)2.1 (-4.0, 8.2)			
as semen sample MBP in urine (percentile): Median 75 th 95 th	Sperm damage (chromatin integrity) -2.6 (-6.2, 1.0)			
Unadjusted (ng/mL) 78 140 330 Adjusted (nmol/mmol Cr) 24 36 81 Analysis: Mean difference between high and low quartiles				
Infertility				
Buck Louis et al. (2014) (United States; Michigan and Texas) Population: 501 couples discontinuing contraception and attempting to achieve pregnancy; recruited from 16 counties using population sampling. Women's mean age 30.0 yrs, men's mean age 31.8 yrs; 2005-2009 Outcome: Time to pregnancy as assessed by	Fecundability OR (95% CI) per unit increase in log-transformed MnBP scaled by SD (adjusted for female age, difference in couples' ages, research site, and both partners' urinary creatinine, BMI, and serum cotinine; in addition, results for exposure in each partner adjusted for exposure in the other partner, and models accounted for left truncation or time off contraception)Women0.95 (0.78, 1.16)			
diaries recording intercourse and menstruation,	Men 0.87 (0.73, 1.04)			

Reference and study design		Res	ults	
home-fertility monitoring to detect ovulation, and home pregnancy tests				
Exposure: Urine samples from both partners, collected at enrollment (beginning of pregnancy attempt)				
Unadjusted MnBP in urine (ng/mL) among couples achieving pregnancy: Geometric mean (95% CI) Women 9.97 (8.96-11.09) Men 5.94 (5.30-6.67) Analysis: Fecundability ORs calculated using Cox models, adjusting for variables shown in results				
column				
Tranfo et al. (2012) (Italy)	MnBP concentration couples	on in urine (μg,	/g Cr) in fertile ar	nd infertile
Population: 56 infertile couples from assisted reproduction center, 56 fertile couples (parents		Fertile	Infertile	<i>p</i> -value
of one or more children, living in same area), time period not reported; mean age 39-40 yrs in both	Median	31.16	53.76*	<0.001
groups	95 th percentile	146.11	244.10	
Outcome: Primary or secondary infertility as assessed by WHO criteria (cause attributed to males in 8/56 couples)	Sex-stratified comp quantitative results		-	men (p = 0.008,
Exposure: Urine sample				
MnBP in urine, fertile couples: Median 95 th percentile Cr-adjusted (μg/g Cr) 31.16 146.11				
Analysis: Mann-Whitney U-test for comparison of MBP concentrations by group				
Pant et al. (2008) (India) Population: 100 fertile and 200 infertile men	DBP concentration infertile men	in semen (µg/	′mL), mean ± SE,	in fertile and
visiting obstetrics and gynecology department	Rural			
from both urban and rural areas; mean age 29 yrs; time period not reported	Fertile (n	= 40)	Infertile	e (n = 88)
Outcome: Infertility based on female partners who had not conceived after 1-yr unprotected	0.18 ± 0	0.03	1.10 :	± 0.16*
intercourse and who had no diagnosed fertility disorder	Urban			
Exposure: Semen samples	Fertile (n	= 60)	Infertile	(n = 112)
DBP in semen (μ g/mL), mean ± SE:	0.63 ± 0			± 0.22*
Fertile Infertile Rural areas 0.18 ± 0.03 1.10 ± 0.16 Urban areas 0.63 ± 0.10 1.65 ± 0.22	* <i>p</i> < 0.05 ± 0		1.05	- 0.22
Analysis: Two-way ANOVA for difference in DBP concentrations between fertile and infertile with rural/urban as additional variable				

1 3.2.5. Female Reproductive Effects in Humans

Table 3-5. Evidence pertaining to DBP and reproductive hormones in adult women

Reference and study design	Results		
Maternal hormones during pregnancy			
Sathyanarayana et al. (2014) Missouri, California) Population: 180 mothers from birth cohort (Study for Future Families), recruited during pregnancy, 1999-2002	Regression coefficient (95% CI) for change in maternal log-transformed serum hormone level with unit increase in log-transformed MnBP, stratified by sex of fetus		
Outcome: Serum hormone levels, samples collected during prenatal clinic visit Exposure: Maternal urine sample, collected during 2 nd or 3 rd trimester MnBP in urine (ng/mL): Median 75 th percentile Unadjusted 17.35 54.85 Analysis: Linear regression, log-transformed MnBP and log- transformed hormone level Hart et al. (2013) (Australia) Population: 123 mothers from birth cohort (Western Australian Pregnancy Cohort), whose mothers were recruited at 18 wks of gestation between 1989 and 1991 Outcome: Reproductive and gonadotropin hormone levels in maternal serum collected at 18 and 34-36 wks of gestation Exposure: Maternal serum samples (n = 123) collected at 18 and 34-36 wks of gestation (combined aliquot from both time periods) MnBP in serum (ng/mL): Median 90 th percentile MnBP 2.46 10.99 Analysis: Correlation between quartiles of serum MnBP and log-transformed hormone levels	Testosterone (total) Testosterone	Mothers with male fetus (n = 94) 0.15 (-0.04, 0.33) 0.13	Mothers with female fetus (n = 86) -0.20 (-0.39, -0.01) -0.21
	(free) Estradiol	(-0.07, 0.33) 0.04 (-0.10, 0.18)	(-0.42, 0.004) -0.002 (-0.18, 0.17)
	Correlation coeffic maternal serum h MnBP in maternal	ormone level and	
	Androstene- dione (nmol/L) DHEAS (µmol/L) Testosterone (pmol/L)	-0.030 -0.112 -0.022	-0.035 -0.058 -0.052
	SHBG (nmol/L) Free testosterone (pmol/L)	0.048 -0.053	-0.101 0.010
	Free testosterone index	-0.041	0.016
	p > 0.10 for all cor	relations	

4

2

3

3.2.6. Female Pubertal Development in Humans 1

2

3

Table 3-6. Evidence pertaining to DBP and timing of female puberty or sex hormones in girls

Reference and study design	Results			
Precocious puberty or thelarche				
<u>Chen et al. (2013)</u> (Taiwan)	Mean (95% CI) MBP in cases and controls			
Population:71 girls with central precocious puberty from pediatric endocrinology clinic and 29 controls from schools recruited 2006-2009; mean ages 8.1 and 6.8 yrs, respectivelyOutcome:Premature puberty based on appearance of thelarche, pubic hair or menarche before 8 yrs of age; Tanner staging and serum levels of LH releasing hormone used for additional classificationExposure:Urine sample (child's), collected at same time as clinical assessmentMBP in urine of controls: Mean (95% Cl) Unadjusted (ng/mL)Mean (95% Cl) 40.2 (9.93, 163) Cr-adjusted (µg/g Cr)Analysis:MBP concentrations in cases and controls compared with Mann-Whitney U-test	Controls Cases (p-value) Unadjusted 40.2 60.4 (0.049) (ng/mL) (9.93, 163) (6.14, 1,324) (0.195) Cr-adjusted 67.2 94.6 (0.195) (µg/g Cr) (20.5, 275) (22.3, 910) (0.195)			
Yum et al. (2013) (Korea) Population: Case control study; n = 150 precocious puberty cases and 90 healthy controls visiting pediatric endocrine clinic in 2009 Outcome: Precocious puberty defined as development of secondary sex characteristics before 8 yrs of age or menarche before 9.5 yrs of age Exposure: Plasma sample (child's) MBP and DBP in plasma (ng/mL) of controls: Mean ± SD MBP 22.80 ± 30.42 DBP 36.65 ± 41.25 Analysis: Two-sample t-test for comparisons between concentrations	DBP and MBP in plasma, mean ± SD (ng/mL) Precocious Controls puberty cases MBP 22.80 ± 30.42 29.81 ± 33.56 DBP 36.65 ± 41.25 29.00 ± 27.49 (p > 0.1)			
Lomenick et al. (2010) (United States, Ohio, Kentucky) Population: 28 girls with central precocious puberty, 28 age- and race-matched controls; all recruited from pediatric endocrinology clinic, 2005-2008; mean age 7 yrs Outcome: Central precocious puberty defined based on clinical standards (appearance of physical characteristics of puberty before 8 yrs of age, with laboratory confirmation of central origin of breast	Mean ± SE MnBP in cases and controls Central precocious Controls puberty (<i>p</i> -value) Unadjusted 47.2 ± 8.7 43.2 ± 7.3 (0.90) (ng/mL) Cr-adjusted 45.1 ± 5.9 47.4 ± 6.2 (0.88) (μg/g Cr)			

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design	Results
development); no cases had received medical treatment prior to urine sample collection Exposure: Urine sample (child's), collected at clinical evaluation MnBP in urine of controls: Mean ± SE Unadjusted (ng/mL) 47.2 ± 8.7 Cr-adjusted (µg/g Cr) 45.1 ± 5.9 Analysis: MnBP concentrations in cases and controls compared with Wilcoxon rank-sum test	
Chou et al. (2009)(Taiwan)Population: 30 girls with premature thelarche and26 girls with central precocious puberty from pediatricendocrinology clinic; 33 controls from school exams;mean ages 6.7, 8.0, and 8.2 yrs, respectively, in thegroups, time period not reportedOutcome: Premature puberty based on appearance ofany physical characteristics of puberty before 8 yrs ofageExposure: Urine sample (child's) collected at sametime as clinical assessmentMBP in urine (ng/mL), controls:Mean ± SDUnadjusted303.7 ± 176.2Analysis: One-way ANOVA comparing MBPconcentrations between groups	Unadjusted MBP in urine; mean ± SD (ng/mL) Central precocious Premature Controls puberty cases thelarche cases 303.7 ± 176.2 172.5 ± 122.6* 181.1 ± 131.9* *p = 0.001 compared to controls
Pubertal development (general population)	
Hart et al. (2013)(Australia)Population: 121 girls from birth cohort study(Western Australian Pregnancy Cohort), whose mothers were recruited at 18 wks of gestation 1989- 1991; follow-up at ages 14-16 yrsOutcome: Age at menarcheExposure: Maternal serum samples (n = 123) collected at 18 and 34-36 wks of gestation (combined aliquot from both time periods)MnBP in serum (ng/mL): MedianMedian90th percentile 10.99Analysis: Correlation between log-transformed MnBP and age at menarche or serum hormones	Authors reported no association between MnBP and age at menarche (quantitative results not reported). Authors reported no correlation between MnBP and serum SHBG, FSH, total testosterone, free androgen index, anti- Müllerian hormone, or inhibin B in adolescents (quantitative results not reported by study authors).

This document is a draft for review purposes only and does not constitute Agency policy.3-23DRAFT—DO NOT CITE OR QUOTE

1 3.2.7. Gynecological Conditions in Humans

2

3

Table 3-7. Evidence pertaining to DBP and gynecological conditions in humans

Reference and study design	Results
Endometriosis and fibroids	
Buck Louis et al. (2013) (United States, California and Utah) Population: 473 women undergoing laparoscopy or laparotomy and 127 population age- and residence-matched referents, 2007-2009; ages 18-44 yrs; confirmed cases of endometriosis matched to women without endometriosis within each cohort: operative cohort 190 cases, 238 controls; population cohort 14 cases, 127 controls Outcome: Endometriosis confirmed by surgery (operative cohort) or MRI (population cohort) Exposure: Urine sample MnBP in urine (ng/mL), unadjusted: Geometric mean Operative cohort-controls 11.01 Population cohort-controls 11.24 Analysis: Student's t-test or Wilcoxon test for continuous data; logistic regression, adjusting for age, BMI, and creatinine; sensitivity analyses conducted restricting cohort to endometriosis stages 3 and 4 diagnoses or visually and histologically confirmed endometriosis, and referent group consisting of women with postoperative diagnosis of normal pelvis	OR (95% CI) for endometriosis per unit increase in In-MnBP, by cohort (adjusted for age, BMI, and creatinine) Operative cohort 1.11 (0.86, 1.43) Population cohort 2.62 (1.14, 6.05) Adjusted OR (95% CI) for endometriosis per unit increase in In-MnBP in operative cohort (sensitivity analysis) Endometriosis stage 3 and 4 1.04 (0.71, 1.53) (n = 339) Visual/histological confirmed 0.91 (0.64, 1.31) endometriosis (n = 473) Comparison with women with 1.13 (0.84, 1.52) postoperative diagnosis normal pelvis (n = 320) Note: Concentrations were log transformed and rescaled by their SDs for analysis.
Upson et al. (2013)(United States, Washington)Population: 92 incident endometriosis cases, 195 controls frequency-matched on age, all members of a large health care system and enrolled in Women's Risk of Endometriosis Study, 1996-2001; ages 18-49 yrsOutcome: Endometriosis confirmed by surgery; for each case, reference date assigned by date of first visit for symptoms leading to diagnosis; reference dates randomly assigned to controls based on case distributionExposure: Urine sample, collected after enrollment (2001- 2002)MnBP in urine, controls: Median (interquartile range)Unadjusted (ng/mL)10.0 (4.9-23.5)Analysis: Logistic regression (quartiles of exposure), covariates considered based on directed acyclic graph; final model adjusted for variables shown in results column	OR (95% CI) for endometriosis by quartile MBP (adjusted for In-transformed urinary creatinine, age, and reference year)MnBP quartile (ng/mL)OR (95% CI)1 (\leq 4.9)1.0 (referent)2 (4.9-10.0)1.2 (0.5, 2.8)3 (10.0-23.5)1.5 (0.6, 3.9)4 (>23.5)1.3 (0.4, 3.9)(trend p)(0.96)Adjustment for education, smoking status and alcohol consumption did not alter the results; similar results in analyses based on summation of MIBP and MnBP.

Reference and study design	Results		
Huang et al. (2010) (Taiwan) Population: Case-control study, n = 28 endometriosis cases, n = 36 leiomyoma cases, n = 16 adenomyosis cases, and n = 29 controls. Mean ages ~38, 41, and 36 yrs, respectively; recruited from laparotomy patients in medical center, 2005-	OR (95% CI) for case status by MnBP above compared with below the median(for endometriosis, adjusted for GSTM1 polymorphism and BMI; for leiomyomas and adenomyosis, adjusted for GSTM1 polymorphism and age)		
2007 Outcome: Clinical diagnosis of endometriosis, leiomyoma, or adenomyosis confirmed by pathology	Endometrios 2.93 (0.92, 9.31	1.36	Adenomyosis 0.78 (0.18, 3.33)
Exposure: Urine sampleMnBP in urine, controlsMedian (range)Unadjusted (ng/mL)35.4 (5.2-247.2)Cr-adjusted (µg/g Cr)58.0 (9.8-479.0)Analysis: Logistic regression considering age, BMI, andGSTM1 polymorphism as potential covariates			
Weuve et al. (2010) (United States, NHANES) Population: 87 endometriosis cases, 151 leiomyomata cases, 1,020 controls from population-based survey (NHANES), 1999-2004; ages 20-54 yrs, mean age ~36 yrs Outcome: Self-reported diagnosis of endometriosis or	of MBP (sum (adjusted for	for gynecological co med MnBP and MIB age, race/ethnicity, nancy status and cu is)	BP) (ng/mg Cr) , age at menarche,
leiomyomata; median time since diagnosis, 9 yrs Exposure: Urine sample, collected at time of survey	MBP quartile	Endometriosis	Leiomyomata
MnBP + MIBP in urine, controls: Geometric mean (SE) Cr-adjusted (ng/mg Cr) 25.5 (1.0)	1 (low) 2	1.0 (referent) 0.75 (0.38, 1.47)	1.0 (referent) 0.66 (0.40, 1.10)
Analysis: Logistic regression, adjusting for variables shown in results column	3 4 (high)	0.96 (0.49, 1.91) 1.24 (0.65, 2.34)	0.76 (0.46, 1.28) 1.26 (0.70, 2.27)
	(trend p)	(0.3)	(0.2)
 <u>Itoh et al. (2009)</u> (Japan) Population: 57 endometriosis cases, 80 controls; all seeking evaluation for infertility Outcome: Clinical diagnosis of endometriosis (American Fertility Society stages II-IV) by laparoscopy; controls were 	compared wi menstrual re length)	netriosis by MnBP (j ith below the media gularity and average Cl) = 1.14 (0.54, 2.39	n (adjusted for e menstrual cycle
stages 0-1	Median MBP in urine by stage of endom		endometriosis
Exposure: Urine sample MnBP in urine, controls:	Endometrios stage	is Unadjusted (μg/L)	Cr-adjusted (μg/g Cr)
Median 75 th percentile Unadjusted (μg/L) 84.3 127.9	0	81.0	44.1
Cr-adjusted (µg/g Cr) 43.3 67.1	I	92.5	42.4
Analysis: Logistic regression, adjusting for variables shown	П	89.7	51.7
in the results column	ш	82.6	48.1
	IV	94.7	41.6
	(trend <i>p</i>)	(0.35)	(0.84)

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Re	ference and study design		Results			
Reddy et al. (2006	<u>a)</u> (India)	Plasma DBP, mean ± SD, μg/mL				
Population: 49 endometriosis cases, 38 gynecology patient		Control 1	Control 2	Endometriosis		
	. 21 tubal sterilization controls (group 2), ported; mean age ~27 yrs	0.08 ± 0.14	0.15 ± 0.21	$0.44 \pm 0.41^{*}$		
Outcome: Endom Fertility Society set	etriosis based on laparoscopy (American verity staging)	* $p \le 0.004$ compared with either control group DBP concentration positively correlated with				
Exposure: Plasma	sample	severity (r = 0.73).			
DBP in plasma (µg, Control group 1 Control group 2	/mL): Mean ± SD 0.08 ± 0.14 0.15 ± 0.21					
-	nple t-test for comparisons between n analysis for association with severity ed)					
Reddy et al. (2006	<mark>b)</mark> (India)	Plasma DBP, mea	an ± SD (µg/mL),	by stage of		
-	dometriosis cases, 135 tubal sterilization	endometriosis				
controls, from sub ~31 yrs	fertility clinic, 1999-2005; mean age	Controls	0.11	± 0.21		
-	etriosis based on laparoscopy (American	Stage I	0.19	± 0.17		
Fertility Society se		Stage II	0.29	± 0.23		
Exposure: Plasma	sample	Stage III	0.52	± 0.18		
DBP in plasma (µg,	-	Stage IV	1.05	± 0.44		
Controls	Mean ± SD 0.11 ± 0.21	<i>p</i> < 0.05 for diffe	rence between m	leans		
	for concentration comparisons across					
Polycystic ovarian	syndrome					
		Correlation coeff transformed Mn parameter		-		
		Uterine volume ((mL) r ≤ 0.20 (<i>p</i>	≥ 0.17)		
		Ovarian volume	(cm³) r≤0.10 (p	≥ 0.29)		
		Antral follicle cou	unt r≤0.12 (p	≥ 0.20)		
		Authors reported and polycystic ov definition (quant	d no association k varian syndrome	between MnBP using either		

Reference and study design	Results
Hart et al. (2013) (Australia)	
Population: 121 girls from birth cohort study (Western Australian Pregnancy Cohort), whose mothers were recruited at 18 wks of gestation between 1989 and 1991; follow-up at ages 14-16 yrs	
Outcome: Uterine volume, ovarian volume, and antral follicle count measured by ultrasound; polycystic ovarian morphology (PCO) defined as ≥1 ovary more than 10 cm ³ or ≥12 follicles between 2 and 9 mm in diameter; polycystic ovarian syndrome or PCOS defined either as (1) presence of at least two of: polycystic ovarian morphology, clinical or biochemical hyperandrogenism, or oligo-anovulation; or (2) oligo-anovulatory menstrual cycles with either clinical or biochemical hyperandrogenism; all clinical assessments conducted on d 2-5 of menstrual cycle	
Exposure: Maternal serum samples (n = 123) collected at 18 and 34-36 wks of gestation (combined aliquot from both time periods)	
MnBP in serum (ng/mL): Median 90 th percentile MnBP 2.46 10.99	
Analysis: Correlation between log-transformed MBP and uterine volume, ovarian volume, and antral follicle counts; MnBP concentrations in PCO or PCOS cases and controls compared calculated using t-tests or Mann-Whitney U-tests	

1 3.2.8. Pregnancy-Related Outcomes

2

Table 3-8. Evidence pertaining to DBP and pregnancy outcomes in humans

Reference and study design	Results			
Fetal growth (birth weight, birth length, head circumfere	ence)			
Population: 207 women delivering at 1 hospital in	Regression coefficient (95% CI) for change in clinical measurement at birth per unit increase in In-transformed DBP (μg/L) (adjusted for gestational age): Girls Boys			
yrs	Birth weight (g)	_		10 (-76, 97)
Outcome: Standard clinical measures at birth Exposure: Cord blood sample DBP in cord blood (µg/L):	Birth length (cm)	-0.20 (-0.5		0.26 (-0.75, 0.23)
Median 75 th percentile 95 th percentile All samples 36.21 72.03 265.40 Analysis: Linear regression, adjusting for variables shown in results column	Head circumference (mm)	-3.87 (-8.9	7, 1.23) -2	2.18 (-6.66, 2.31)
 Philippat et al. (2012) (France) Population: 72 cases with undescended testis or hypospadias, 215 matched controls from two birth cohorts (EDEN and PELAGIE), 2002-2006 Outcome: Standard clinical measurements at birth Exposure: Maternal urine sample, collected between 6 and 19 (PELAGIE) or between 24 and 30 (EDEN) wks of gestation 	Regression coefficient (95% CI) for change in birth outcom by MnBP tertile and per unit change in In-MnBP (standardized, ng/mL) (adjusted for gestational duration, maternal pre-pregnancy weight and height, maternal smoking, maternal education, parity, recruitment center, urine creatinine, and mode of delivery as potential covariate; head circumference model also adjusted for mode of delivery)			
MnBP in urine (ng/mL): Median 95 th percentile Measured 48.1 398	MnBP tertile (μg/L)	Birth weight (g)	Birth length (cm)	Head circumference (cm)
Standardized* 58.1 488	1 (<45.6)	0 (referent)	0 (referent)	0 (referent)
Analysis: Cases and controls combined for this analysis; weighted linear regression using tertiles or In-transformed urine concentrations, adjusting for variables shown in results column; analysis by tertiles for evaluation of possible non-monotonic relationship;	2 (45.6-85.5)	52 (-101, 206)	0.3 (-0.4, 0.9)	0.1 (-0.5, 0.6)
	3 (≥85.5)	-30 (-174, 114)	0.1 (-0.6, 0.7)	0.1 (-0.4, 0.7)
analyses corrected for oversampling of malformation	(trend <i>p</i>)	(0.42)	(0.91)	(0.63)
cases *Standardized for sampling conditions and gestational age at collection	ln(MnBP)	-13 (-61, 35)	0.1 (-0.2, 0.3)	0.0 (-0.2, 0.2)

Reference and study design	Results				
Brucker-Davis et al. (2010) Population: 49 healthy newborn boys from prospective	Spearman correlation coefficient (<i>p</i> -value) between I outcome and MBP in cord blood (ng/mL)				
study of cryptorchidism (Brucker-Davis et al., 2008b).	Birth weight (g)	I	0.27 (0.	085)	
[MBP analysis was added later in the study, so sample	Birth length (cn		0.29 (0.		
size is less than total of 86 participants.] Outcome: Standard clinical measurements at birth					
Exposure: Cord blood sample at birth and maternal milk sample 2-5 d postpartum Phthalate in cord blood (ng/mL): Median 75 th percentile MBP 2.9 4.9 Phthalate in milk (ng/g fat): Median 75 th percentile MBP 10.6 20.3 Analysis: Spearman correlation analysis	Head circumference (cm) 0.43 (0.005) Results of analyses (if any) of correlation between milk concentrations and birth outcomes or between DBP in o blood and birth outcomes were not reported.			en milk	
Suzuki et al. (2010) (Japan) Population: 149 infants from birth cohort, 2005-2008 Outcome: Standard clinical measurements at birth	low MW phthal outcome	lation coefficient b ate (molar concent	tration) and b	birth	
Exposure: Maternal urine sample, gestation wks 9-40	Birth outcome		MBP (mg		
$(mean \pm SD = 29 \pm 8 \text{ wks})$	Birth weight (g)		-0.10)4	
MBP in urine: Median 75 th percentile	Birth length (cn	n)	-0.09	-0.096	
Unadjusted (ng/mL) 48.1 96.5 Cr-adjusted (mg/g Cr) 52.2 91.3	Head circumference (cm) -0.082			32	
Analysis: Pearson's correlation analysis for individual metabolites and low MW phthalates (∑MMP, MEP, and MBP molar concentrations)	p > 0.05 for all o	correlations			
Huang et al. (2009) (Taiwan)		ement at birth by s	ex and conce	entration of	
Population: Birth cohort study; 65 infants (32 girls,	MBP in amnioti	c fluid			
33 boys)	_	Median MBP in			
Outcome: Standard clinical measurements at birth	Exposure group	exposure group (ng/mL)	Birth weight (g)	Birth length (cm)	
Exposure: Maternal urine and amniotic fluid	•	(116/1112)	Weight (6)	(em)	
MBP in urine (ng/mL): Median 90 th percentile	Boys				
Females 78.0 309 ^a	Low (n = 16)	63.8	3,146	49.2	
Males 79.6 232.6	High (n = 17)	98.7	3,194	50.0	
MBP in amniotic fluid (ng/mL):	Girls				
Median 90 th percentile	Low (n = 15)	67	2,810	47.3	
Females 85.5 134.6	High (n = 16)	104	3,172*	49.2*	
Males81.3127.8Analysis: Stratified into low and high exposure groups by median MBP concentration in amniotic fluid; AGD compared between the two exposure groups using Wilcoxon rank-sum test; Spearman correlation analysis for accordation between MDD and continuous variables	-	elation coefficient b nd clinical measure	between MBI		
for association between MBP and continuous variables	Birth we	ight (g)	Birth lengt	h (cm)	

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design Results					
	0.16		0.20		
Zhang et al. (2009b) (Shanghai, China) Population: 88 low birth weight infants and 113 controls from birth cohort, 2005-2006	OR for low birth weight by quartile of DBP in cord blood (mg/L) (adjusted for gestational age, smoking, socioeconomic level, pre-pregnancy BMI, and other phthalates)				
Outcome: Low birth weight defined as <2,500 g among infants born \ge 37 wks gestation; birth length		OR (95% CI) DBP – cord blood	OR (95% Cl) MBP – meconium		
Exposure: Cord blood sample DBP in cord blood (mg/L):	1 (low)	1.0 (referent)	1.0 (referent)		
Median 75 th percentile	2	0.54 (0.45, 1.47)	. ,		
Controls 1.8 2.7			1.58 (1.08, 2.46)		
Cases 2.7 3.0 MBP in meconium (mg/g):	3	2.69 (1.30, 4.74)	2.84 (1.19, 4.82)		
Controls 1.7 2.4	4 (high)	3.54 (1.54, 6.15)	4.68 (2.14, 6.85)		
Cases 2.2 3.6	(trend <i>p)</i>	(0.008)	(<0.001)		
Analysis: Spearman correlation analysis; conditional logistic regression, considering gestational age, pregnancy complications, exposure to tobacco smoke, socioeconomic level, and pre-pregnancy BMI as potential covariates	Spearman coefficient (<i>p</i> -value) by In-DBP in cord blood (mg/L) or In-MBP in meconium (adjusted for gestational age, smoking, socioeconomic level, pre-pregnancy BMI, and other phthalates)				
		DBP – cord blood	MBP – meconium		
	Birth weight	-0.23 (0.01)	-0.56 (<0.001)		
	Birth length	-0.09 (0.23)	-0.11 (0.16)		
Wolff et al. (2008) (United States, New York City) Population: 382 singleton live births without medical complications from birth cohort (Mt. Sinai Children's Environmental Health study), 1998-2002	Regression coefficient (95% CI) for change in birth outcol with unit increase in In-MnBP (ng/mL) (adjusted for race/ethnicity, infant sex, gestational age at delivery, In- creatinine, prenatal smoking, pre-pregnancy BMI, mater education, and marital status)				
Outcome: Standard clinical measurements at birth Exposure: Maternal urine sample, third trimester	Birth weight (g)		-5.5 (-45, 34)		
MnBP in urine (ng/mL):	Birth length (cm)	0	15 (-0.07 to 0.37)		
Median 75 th percentile			.05 (-0.09 to 0.20)		
Unadjusted 36 75 Analysis: Linear regression, adjusting for variables shown in results column	Head circumference (cm)0.05 (-0.09 to 0.20)Restricted to observations with creatinine ≥20 mg/dL				
Preterm birth (<37 wks) and gestational age					
Ferguson et al. (2014b); Ferguson et al. (2014a) (United States; Boston) Population: 130 cases, 352 controls from pregnancy cohort (study of predictors of pre-eclampsia, enrolled					
during first trimester, 2006-2008); controls randomly	All preterm		27 (0.99, 1.63)		
selected from among those delivering ≥37 wks of gestation; mean age 33 yrs	Spontaneous preter		49 (1.08, 2.06)		
Outcome: Preterm birth (<37 wks of gestation;		in those seen with D			
gestation estimated from first trimester ultrasound); additional analysis of subgroup with spontaneous preterm labor or preterm premature rupture of membranes ("spontaneous preterm," n = 57)	OR (95% CI) for preterm birth per unit increase i				

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design	Results
Exposure: Maternal urine sample, one to three samples collected at median 9.7, 17.9, or 26.0 wks gestation; geometric mean of all visits used in analyses MnBP in urine, SG-adjusted (μ g/L): Geometric mean 75 th percentile Controls 15.9 22.5 All cases 18.9 26.0 Analysis: Logistic regression (In-transformed metabolites), considering average specific gravity, maternal age, race/ethnicity, education level, health insurance provider, BMI at first study visit, smoking status, alcohol use, parity, use of assisted-reproductive technology, and sex of infant as potential covariates; additional analyses conducted for subgroup with preterm labor or premature rupture of membranes ("spontaneous preterm," n = 57) <u>Ferguson et al. (2014a)</u> provides the analysis based on individual sample results for each of the 4 visits	Visit 1 0.97 (0.62, 1.50) Visit 2 1.23 (0.79, 1.93) Visit 3 1.15 (0.77, 1.72) Visit 4 0.94 (0.40, 2.22)
Huang et al. (2014b)(China)Population: 207 women delivering at 1 hospital in Chongqing between 2011 and 2012; aged 18-35 and with no history of tobacco or alcohol use; mean age 28 yrsOutcome: Preterm birth (<37 wks gestation; gestational age estimated from last menstrual period)Exposure: Cord blood sample DBP in cord blood (µg/L): Median 75th percentile 95th percentile All samples 36.21 72.03 265.40Analysis: Logistic and linear regression, adjusting for variables shown in results column	OR (95% CI) for preterm delivery comparing In-DBP above and below the median (adjusted for maternal age, BMI, frequency of prenatal exam, and pregnancy history), with additional stratification by history of intravenous infusions Total sample (n = 207) 3.35 (2.05, 5.50) No intravenous infusions (n = 154) 2.38 (1.01, 5.61) Intravenous infusions (n = 53) 3.60 (1.82, 7.12) [History of intravenous infusions present in 26% of total and 55% of preterm birth group] Regression coefficient (95% CI) for change in gestational age (wks) per unit increase in In-transformed DBP (μg/L) (adjusted for maternal age, BMI, frequency of prenatal examination, history of intravenous infusions therapy, and pregnancy history): -0.55 (-0.81, -0.30)

Reference and study design	Results
 Weinberger et al. (2014) (USA, New Jersey) Population: 72 pregnant women >18 yrs old and expecting singleton birth, seen at High Risk Obstetric Clinic of Robert Wood Johnson University Hospital; time period not reported Outcome: Gestational age in medical record as determined by sonographic dating or date of implantation Exposure: Maternal urine sample, collected at last obstetric visit prior to delivery. MBP concentration in urine was not reported. Analysis: Linear regression, considering parity, race, maternal education, maternal race, parental employment, fast food consumption maternal age, and birth country as potential covariates. 	Change in gestation length in days (95% CI) with interquartile change in MBP concentration (adjusted for parity and maternal race)All infants (n = 72)-2.1 (-5.2, 1.1)Males (n = 40)-2.8 (-6.8, 1.2)Females (n = 32)-0.5 (-6.2, 5.1)Interquartile range for MBP in urine = 77.8 ng/mL $p > 0.1$ for all groups
Suzuki et al. (2010)(Japan)Population:149 infants from birth cohort, 2005-2008Outcome:Standard clinical measurements at birthExposure:Maternal urine sample, gestation wks 9-40(mean \pm SD = 29 \pm 8 wks)MnBP in urine:Median75 th percentileUnadjusted (ng/mL)48.196.591.3Analysis:Pearson's correlation analysis	Pearson's correlation coefficient between MnBP (mg/g Cr) and birth outcome Birth outcome MnBP (mg/g Cr) Gestational age -0.135 (wks) p > 0.05 for all correlations
Huang et al. (2009) (Taiwan) Population: Birth cohort study; 65 infants (32 girls, 33 boys) Outcome: Standard clinical measurements at birth Exposure: Maternal urine and amniotic fluid MBP in urine (ng/mL):	Clinical measurement at birth by sex and concentration of MBP in amniotic fluid Exposure group Median MBP in Gestational age exposure group (wks) (ng/mL) Boys
Median 90 th percentile Females 78.0 309 ^a Males 79.6 232.6	Low (n = 16) 63.8 39.1 High (n = 17) 98.7 38.9
MBP in amniotic fluid (ng/mL): Median 90 th percentile Females 85.5 134.6 Males 81.3 127.8 Analysis: Stratified into low and high exposure groups by median MBP concentration in amniotic fluid; AGD compared between the two exposure groups using	GirlsLow (n = 15)67High (n = 16)10438.7Spearman correlation coefficient between MBP in amnioticfluid (ng/mL) and clinical measurement at birth in femaleinfants (n = 29)
Wilcoxon rank-sum test; Spearman correlation analysis for association between MBP and continuous variables	Gestational age (wks) 0.18

Reference and study design	Results			
Meeker et al. (2009b) (Mexico) Population: 30 cases, 30 controls (term births) from pregnancy cohort, 2001-2003. Outcome: Preterm birth (<37 wks of gestation), determined using maternal recall of last menstrual	OR (95% CI) for preterm birth by MnBP above compared with below the median (adjusted for marital status, maternal education, and infant sex and gestational age at time of urine sample) Cr-unadjusted (µg/L) 10.7 (2.4, 47.4)			
period	SG-adjusted (µg		4.5 (1.2, 16.6)	
Exposure: Maternal urine sample, third trimesterMnBP in urine, among term births Median 75th percentileUnadjusted 33.4Variation 75th percentileUnadjusted (µg/L) 52.4SG-adjusted (µg/g Cr) 63.1Cr-adjusted (µg/g Cr) 63.1Analysis: Logistic regression, considering maternal age, pre-pregnancy BMI, parity, education, marital status, infant's sex, and gestational age at urine sample as potential covariates	Cr-adjusted (μg/	g Cr)	5.4 (1.5, 19.3)	
Wolff et al. (2008)(United States, New York City)Population:382 singleton live births without medical complications from birth cohort (Mt. Sinai Children's Environmental Health study), 1998-2002Outcome:Standard clinical measurements at birth Exposure:Exposure:Maternal urine sample, third trimesterMnBP in urine (ng/mL): Median75th percentileUnadjusted3675Analysis:Linear regression, adjusting for variables shown in results column	Regression coefficient (95% CI) for change in gestational age with unit increase in In-MnBP (ng/mL) (adjusted for race/ethnicity, infant sex, gestational age at delivery, In-creatinine, prenatal smoking, pre-pregnancy BMI, maternal education, and marital status) Gestational age (wks) 0.10 (-0.06, 0.26) Restricted to observations with creatinine ≥20 mg/dL			
Early pregnancy loss				
Toft et al. (2012) (Denmark) Population: 48 women with pregnancy loss, 80 with pregnancies ending in a live birth from cohort of couples planning first pregnancy, 1992-1994	(adjusted for ag	any pregnancy loss by e, BMI, smoking, alcoh in the other cycle) Preconception		
Outcome: Any pregnancy loss (n = 48), early	1 (low)	1.0 (referent)	1.0 (referent)	
(subclinical) embryonal loss (pregnancy identified by elevation in human chorionic gonadotropin; n = 32) or clinically-identified pregnancy loss (n = 16)	2	0.70 (0.27, 1.84)	1.12 (0.41, 3.02) 1.12 (0.43, 2.95)	
Exposure: Urine samples (one conception cycle, one preconception cycle)MBP in urine (ng/mL), among live births: Mean MaximumLive birth2261,005Analysis:Logistic regression, adjusting for variables shown in results column	3 (high)0.79 (0.32, 2.00)1.12 (0.43, 2.OR (95% CI) for types of pregnancy loss by tertile MBP (ng/mL) in the conception cycle (adjusted for age, BMI, smoking, alcohol and caffeine intake, and MBP in the preconception cycle)MBP tertileSubclinicalClinically-identi1 (low)1.0 (referent)1.0 (referent)21.25 (0.38, 4.1)0.87 (0.21, 3.5)			

This document is a draft for review purposes only and does not constitute Agency policy.

1 3.2.9. Immune Effects in Humans

2

Table 3-9. Evidence pertaining to DBP and allergy/immune effects in humans

Reference and study design		Results					
Ait Bamai et al. (2014) (Japan) ^a Population: Children (n = 122, ages <15 yrs) and adults (n = 374, ages	OR (95% CI) for allergic condition by tertile of DBP in floor dust (μ g/g dust) (adjusted for gender, age strata, smoking status, dampness index, furry pets inside the home, Der 1, and sum of other phthalates)						
≥15 yrs) living in 148 detached dwellings in which at least 25 mg of dust was collected; 2006 follow-up of	DBP tertile	Full sample Alle	Children ergic rhinitis	Adults			
2003 baseline survey Outcome: Allergic condition assessed by self-administered questionnaire (positive response to: in the past 2 yrs	1 (low) 2 3 (high)	1.0 (referent) 1.17 (0.55, 2.51) 1.00 (0.44, 2.26)	1.0 (referent) 1.34 (0.39, 4.61) 1.16 (0.34, 3.93)	1.0 (referent) 1.02 (0.5, 2.11) 0.87 (0.38, 1.99)			
have you been seen at a hospital for allergic rhinitis, allergic conjunctivitis, or atopic dermatitis?); parents	(trend <i>p</i>)						
completed questionnaires for children <6 yrs old)	1 (low) 2	1.0 (referent) 1.67 (0.56, 4.98)	1.0 (referent) 1.77 (0.33, 9.46)	1.0 (referent) 1.58 (0.53, 4.65)			
Exposure: Dust samples DBP in dust (μg/g dust) (percentile): Median 75 th Floor dust (n = 148) 19.3 51.2	3 (high) (trend <i>p</i>)	1.13 (0.37, 3.44) (0.84)	2.09 (0.45, 9.64) (0.34)	0.61 (0.16, 2.35) (0.47)			
Multisurface dust 20.6 40.8	Atopic dermatitis						
(n = 120) Analysis: Generalized linear mixed effects model, considering gender, age strata (<15, ≥15 yrs, smoking status (personal and environmental tobacco smoke), furry pets in home, signs of dampness, Der 1 [not defined by authors], other phthalates dust,		1.0 (referent) 1.47 (0.62, 3.47) 1.19 (0.46, 3.07) (0.71) ge interaction > 0.1 fo	1.64 (0.43, 6.34) 1.27 (0.33, 4.82) (0.72)	1.0 (referent) 1.32 (0.47, 3.71) 1.12 (0.35, 3.61) (0.85)			
airborne fungi, formaldehyde, total VOC, and building characteristics as potential covariates		g floor dust measure					

Reference and study design	Results					
<u>Callesen et al. (2014b)</u> Callesen et al. (2014a) (Denmark) ^a	Median DBP in dust (µg/g), by case-control status assessed by clinical examination, from <u>Callesen et al. (2014b)</u> :					
Population: 81 rhinoconjunctivitis	Cases					
cases, 88 atopic dermatitis cases, 242 healthy controls group from population-based survey (Indoor		Controls (n = 242)	Rhinoconjuncti (n = 81)	vitis Atopic dermatitis (n = 88)		
Environment and Children's Health); ages 3-5 yrs	Home	15.1	14.1	14.7		
Outcome: Clinical exam and parent	Day care	35.1	39.8	39.6		
interview; allergic rhinoconjunctivitis:	Area-weighted 21.7 22.3 23.1					
recurrence of at least two or more nasal symptoms (pruritus, runny nose, sneezing spells >20, nasal stenosis/	Similar results when based on case status defined by parent-questionnaire data (n = 56 rhinoconjunctivitis, n = 83 atopic dermatitis)					
mouth breathing) and ocular symptoms (itching, conjunctival injection, or watery secretion in both eyes) when exposed to allergens; atopic dermatitis: presence of at least 3 of 4 major features and 3 of 23 minor features; 70% of rhinoconjunctivitis	OR (95% CI) for rhinod and controls revised a clinical examination a covariates) by quartile breastfeeding <3 mo, and social class), from	fter reclassific nd eliminatior of MBP in ur smoking in th	cation of some cas n of participants w ine (ng/mL) (adjus e home, single alle	ses and controls during vith missing data on sted for sex,		
and 50% of atopic dermatitis cases were IgE positive based on 20 allergen	MnBP quartile		onjunctivitis , 216 controls) (7	Atopic dermatitis 76 cases, 216 controls)		
tests	1 (low)	1.0 (referent)	1.0 (referent)		
Exposure: DBP concentrations in dust samples from bedroom and day care	2	1.80 (0.82, 3.96)	0.71 (0.39, 1.87)		
centers (<u>Callesen et al., 2014b</u>); MnBP in urine samples from subset of						
	4 (high)	1.36 (0.64, 2.89)	0.62 (0.60, 2.39)		

Reference and study design		Results	
population (76 with rhino- conjunctivitis, 81 with atopic dermatitis, and 222 controls) (<u>Callesen</u> <u>et al., 2014a</u>) DBP in dust among controls (μg/g)			
Median Home 15.1 Day Care 35.1 Weighted* average 21.7 (*weighted by assumed hours in each environment) MnBP in urine (ng/mL) of controls: Median 95 th percentile Unadjusted 84.7 256.8 Analysis: Mann-Whitney U-test for concentration comparisons between groups; logistic regression for ORs, considering sex, breastfeeding <3 mo, antibiotic use, single allergic predisposition, visible mold, visible moisture, window condensation, cat or dog in the home, pet avoidance, changed cleaning habits, smoking in the home, and social class as potential covariates			
Wang et al. (2014) (Taiwan)	OR (95% CI) for atopic der	matitis by quartile of MBP (ug/g Cr) (adjusted for
Population: 218 children from birth cohort, born 2004-2005; follow-up at		naternal education, materna	
age 2 (n = 218) and age 5 (n = 191)	MBP quartile (µg/g Cr)	Age 2 yrs	Age 5 yrs
Outcome: Atopic dermatitis based on ISAAC (International Study of Asthma	1 (<98.0851)	1.0 (referent)	1.0 (referent)
and Allergies in Children)	2 (98.0851-158.8043)	0.71 (0.27-1.85)	0.62 (0.23-1.66)
questionnaire (three questions—itchy rash coming and going for at least 6	3 (158.8043-237.9412)	1.09 (0.44-2.73)	0.86 (0.33-2.21)
mo; if yes, itchy rash in last 12 mo;	4 (>237.9412)	0.75 (0.29-1.93)	0.80 (0.31-2.05)
ever diagnosed with atopic dermatitis by a doctor?); total serum IgE Exposure: Maternal urine sample, third trimester; urine samples in	according to log-urine pht (adjusted for gestational a	value) for log-serum total Ig halate metabolite concentr ge, maternal education, ma onmental tobacco smoke ex	ations at age 2 aternal history of
children (ages 2 and 5 yrs) Cr-adjusted MBP in urine (μg/g Cr):	All children (n = 218)	0.049 (0.71)	
Geometric mean (SE)	Boys (n = 114)	0.161 (0.46)	
At 3rd trimester 64.62 (1.06) Age 2 152.92 (1.05) Age 5 57.29 (1.05)	Girls (n = 104)	-0.033 (0.84)	
Analysis: Linear regression and logistic regression of log transformed data, considering sex, gestational age, parity, maternal age, education and occupation, diets and supplements			

This document is a draft for review purposes only and does not constitute Agency policy.3-36DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results
during pregnancy, family income, parental atopy, duration of breast feeding, tobacco smoke exposure, incense and carpets in home, and fungi on house walls as potential covariates	

Reference and study design	Results				
Hoppin et al. (2013a) ^a (United States, NHANES) Population: 2,325 participants in population-based survey (NHANES),	Prevalence and OR (95% CI) for allergy symptoms and allergic sensitizat per unit change in log-transformed urinary MnBP level (adjusted for age race/ethnicity, gender, BMI, creatinine, and cotinine) Children (n = 779)				
2005-2006; ages ≥6 yrs		0.604			
Outcome: Self-administered	Hay fever (n = 23)	3.6%	0.07 (0.03, 0.17)		
questionnaire current allergy symptoms (hay fever, allergy, itchy	Rhinitis (n = 188)	27.6%	0.83 (0.46, 1.52)		
rash, rhinitis) in past year; allergic	IgE sensitization (any)	46.1%	1.14 (0.68, 1.93)		
sensitization as measured by serum IgE	Adults (n = 1,546)				
(19 allergen specific IgEs, <u>></u> 0.35kU/L)	Hay fever (n = 88)	7.4%	1.23 (0.54, 2.79)		
Exposure: Urine sample collected same day as serum sample; data	Rhinitis (n = 498)	35.4%	1.34 (0.83, 2.17)		
reported in <u>Hoppin et al. (2013b);</u> Supplemental Material	IgE sensitization (any)	44.0%	1.14 (0.74, 1.74)		
MnBP in urine (μg/L) (percentile)Median75th95thChildren31.5657.63134.95Adults18.5836.85101.08Analysis:Logistic regression, adjustingfor variables shown in results columnand sampling weights; separateanalyses for children (ages 6-17 yrs)and adults (>17 yrs)	Authors reported that adjustme ORs.	nt for poverty incom	e ratio did not alter		
Hsu et al. (2012) ^a (Taiwan) Population: 59 cases (48 with allergic	OR (95% CI) for allergic rhinitis or eczema by quartile of exposure (adju for age, sex, presence of fever, medication use, parents' smoking statu				
rhinitis, 36 with eczema), 42 controls,	parents' allergy history, parents	' education, and mon	th of sampling)		
ages 3-9 yrs, recruited through kindergartens and day care centers,	DBP quartile, dust (µg/g dust)	Rhinitis	Eczema		
2005-2006.	1 (5.49-13.34)	1.0 (referent)	1.0 (referent)		
Outcome: Allergic rhinitis or eczema;	2 (13.35-20.23)	2.54 (0.49, 13.23)	3.92 (0.41, 37.90)		
initial case/control status determined through parent report of history; final	3 (20.24-39.80)	1.46 (0.30, 7.07)	3.99 (0.47, 33.78)		
status determined by clinical	4 (39.81-684.64)	1.68 (0.31, 9.20)	3.43 (0.34, 34.20)		
examination	(trend <i>p</i>)	>0.10	>0.10		
Exposure: Settled dust samples from child's major and minor activity rooms;	MnBP quartile, urine (µg/g Cr)	Rhinitis	Eczema		
urine samples collected at clinical	1 (17.28-36.34)	1.0 (referent)	1.0 (referent)		
examination	2 (36.35-54.43)	1.25 (0.33, 4.74)	1.94 (0.43, 8.73)		
DBP in dust Median 75 th percentile	3 (54.44-107.25)	0.63 (0.16, 2.38)	1.70 (0.38, 7.49)		
Dust (µg/g) 20.2 39.80	4 (107.26-445.56)	0.40 (0.09, 1.76)	0.43 (0.07, 2.51)		
MnBP in urine Median 75 th percentile	(trend <i>p</i>)	>0.10	>0.10		
Unadjusted (μ g/L) 57.9 103.7 Cr-adjusted (μ g/g Cr)54.4 107.3 Analysis: Logistic regression adjusting for variables shown in the results column	OR for all cases (at least one am significantly elevated in highest CI = 0.37, 10.94; trend <i>p</i> >0.10)	nong asthma, rhinitis,	or eczema) not		

Reference and study design	Results				
Kanazawa et al. (2010) (Japan) Population: 134 residents (41 dwellings), including 33 reporting at least one symptom and 101 with no	OR (95% CI) for mucosal symptoms per concentration (adjusted for age, gender at home; similar results with additional condensation)	, history of allergy, and time spent			
reported symptoms	Air (ng/m ³)	0.5 (0.1-3.6)			
Outcome: Self-reported "sick house syndrome" symptoms (fatigue; feeling	Multi-surface dust (mg/kg)	0.3 (0.1-1.0)			
heavy-headed; headache; nausea/ dizziness; difficulty concentrating; itching, burning or irritation of the eyes; irritated, stuffy, or runny nose; hoarse, dry throat; cough; dry or flushed facial skin; scaling/itching of the scalp or ears; and dry, itching or red-skinned hands)	Floor dust (mg/kg)	0.5 (0.2-1.2)			
Exposure: Air and dust sample in dwellings					
DBP in room air (ng/m ³): Median Range Total concentration 200 79.6-740 DBP in dust (mg/kg): Median Range Multi-surface 22.3 5.1-549 Floor 19.8 1.8-1,476 Analysis: Logistic regression, adjusting for variables shown in the results column					
<u>Sun et al. (2009)</u> (China)	Median concentration DBP in dust (µg/	g dust)			
Population: Cases of rhinitis (n = 225)	Case	s Control (<i>p</i> -value)			
or eczema (n = 61) and controls (n = 187 and 115 for rhinitis and eczema	Rhinitis 23.23	3 26.92 0.39			
analysis, respectively), all students of	Eczema 31.15	5 21.76 0.24			
Tianjin University who had participated in a cross-sectional study of allergic symptoms and environmental factors; 2006-2007	Mann-Whitney test; similar results for t	-test of log-transformed DBP			
Outcome: Self-reported symptoms from questionnaire: rhinitis = in past 12 mo, had a problem with sneezing, or a runny, or a blocked nose when not having a cold or the flu, or sneezing, or a runny, or a blocked nose, or itchy- watery eyes after contact with furred animals or after contact with pollen; eczema = in past 12 mo, had an itchy					

Reference and study design			Results	
rash; controls responded no to rhinitis (n=187) or eczema (n=115) questions				
Exposure: Surface dust sample in dorm rooms				
DBP in dust (µg/g): Median 75 th percentile 28.56 48.82				
Analysis: Logistic regression for OR, considering age, gender, passive smoking, smoking, pet raising, atopy, and building age as potential covariates; Mann-Whitney U-test for comparison between DBP concentrations of cases and controls; t-test for comparisons between log transformed concentrations				
Kolarik et al. (2008) (Bulgaria)	Concentration	DBP in dust (mg/	'g dust)	
Population: 102 cases, 82 controls		Median	Mean	<i>p</i> -value for Dunnett test
from population-based survey (ALLHOME study), 2004-2005; ages	Controls	9.87	12.04	
2-7 yrs	All cases	9.61	12.15	(0.58)
Outcome: Cases: positive response to	Rhinitis	8.63	10.69	(0.96)
wheezing during the last 12 mo, rhinitis during the last 12 mo, when not having a cold, or itching rash eczema in the last 12 mo; controls: negative response to all three questions and other questions on history of wheezing, asthma, allergy symptoms or diagnosis in past Exposure: Surface dust samples from children's bedrooms DBP in dust (mg/g): Geometric mean All homes 7.86 Analysis: Dust concentrations compared between case and control homes overall, and between cases with specific symptoms in the preceding 12 mo and controls, using Mann-Whitney U-test (untransformed data) and Dunnett test (log- transformed data)	Eczema	9.61	13.30	(0.89)

Reference and study design		Results	
Bornehag et al. (2004) (Sweden)	Concentration in dust (mg/g d	ust)	
Population: 198 cases, 202 controls from population-based cohort (Dampness in Buildings and Health cohort) (n = 10,852), 2001-2002; ages 2-7 yrs		Median, all homes (n = 346)	Geometric mean (95% Cl), homes with phthalate > detection limit (n = 158)
Outcome: Rhinitis, wheezing, or	Controls	0.149	0.178 (0.157, 0.201)
eczema (cases report at least two	Cases (all)	0.150	0.171 (0.152, 0.193)
incidents of rhinitis or eczema in the preceding year, and at follow-up 1.5 yrs later)	p > 0.6 in both tests.		
Exposure: Surface dust samples from children's bedrooms			
DBP in dust (mg/g): Median All homes 0.150			
Analysis: Mann-Whitney U-test for comparing concentrations in all homes; t-test for comparing log- transformed concentrations in homes with concentrations above detection limit			

^aAdditional results for this study presented in asthma table (Table 3-10).

1 2

Table 3-10. Evidence pertaining to DBP and asthma/wheezing and hypersensitivity in humans

Reference and study design		I	Results	
Ait Bamai et al. (2014) (Japan) ^a Population: Children (n = 122, ages <15 yrs) and adults (n = 374, ages ≥15 yrs) living in 148 detached dwellings in which at least	OR (95% CI) for bronchial asthma by tertile of DBP in floor dust (µg/g dust) (adjusted for gender, age strata, smoking status, dampness index, furry pets inside the home, Der 1, and sum of other phthalate dusts)			
25 mg of dust was collected; 2006 follow- up of 2003 baseline survey	DBP tertile 1 (low)	Full sample 1.0 (referent)	Children 1.0 (referent)	Adults 1.0 (referent)
Outcome: Bronchial asthma assessed by self-administered questionnaire (positive response to: in the past 2 yrs have you been seen at a hospital for bronchial asthma?); parents completed questionnaires for inhabitants <6 yrs old Exposure: Dust samples DBP in dust (μ g/g dust) (percentile): Median 75 th Floor dust (n = 148) 19.3 31.2 Multi-surface dust (n = 120) 20.6 40.8 Analysis: Generalized linear mixed effects model, considering gender, age strata (<15, ≥15 yrs), smoking status (personal and environmental tobacco smoke), furry pets in home, signs of dampness, Der 1 (not defined by authors), other phthalates dust, airborne fungi, formaldehyde, total VOC, and building characteristic as potential covariates	2 3 (high) (trend <i>p</i>) <i>p</i> -value for a Analyses usi	2.05 (0.52, 8.16) 4.54 (1.23, 16.79) (0.02) age interaction = 0.84 ng multisurface dust ose using floor dust n	1.29 (0.28, 5.85) 3.50 (0.68, 18.07) (0.13) measures also pres	3.27 (0.35, 30.26) 5.88 (0.61, 56.74) (0.13)
<u>Callesen et al. (2014b)</u> <u>Callesen et al. (2014a)</u> ^a (Denmark)	Median DBP examination	in dust (μg/g), by ca	se-control status as	sessed by clinical
Population: 72 asthma cases, 242 healthy controls group from population-based survey (Indoor Environment and Children's Health); ages 3-5 yrs; 2008 Outcome: Clinical exam and parent interview; asthma: recurrence of at least two of the three symptoms: cough, wheeze, and shortness of breath within the previous 12 mo (symptoms other than those triggered by respiratory infections); and doctor diagnosis of asthma in combination with ongoing treatment; 47% of asthma cases were IgE positive based on 20 allergen tests Exposure: DBP concentrations in dust	questionnain OR (95% CI) reclassificati and eliminat quartile of M		ma cases) a (60 cases, 216 cont d controls during cli vith missing data on adjusting for sex, bu	trols after nical examination covariates) by reastfeeding <3
samples from bedroom and day care centers; (<u>Callesen et al., 2014b</u>); MBP in	1 (low) 2			(referent) (0.31, 1.49)

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT—DO NOT CITE OR QUOTE

Reference and study design	ly design Results		
urine samples from subset of population	3	0.77 (0.35, 1.69)	
(68 with asthma and 222 controls) (<u>Callesen et al., 2014a</u>)	4 (high)	0.60 (0.26, 1.36)	
DBP in dust among controls (µg/g): Median Home 15.1 Day care 25.1 Time-weighted 21.7 (weighted by assumed time spent in each environment)			
MnBP in urine (ng/mL) of controls: Median 95 th percentile Unadjusted 84.7 256.8			
Analysis: Mann-Whitney U-test for concentration comparisons between groups; logistic regression for ORs, considering sex, breastfeeding <3 mo, antibiotic use, single allergic predisposition, visible mold, visible moisture, window condensation, cat or dog in the home, pet avoidance, changed cleaning habits, smoking in the home, and social class as potential covariates			
Bertelsen et al. (2013) (Norway) Population: 623 children from birth cohort	OR (95% CI) for current asthma by q urine specific gravity, sex, parental a	uartile of MnBP (µg/L) (adjusted for asthma, and household income)	
(Environment and Childhood Asthma	1: ≤93.6 (referent)	1 (referent)	
study), born 1992-1993; children with current asthma over-sampled (follow-up	2: >93.6-138	1.2 (0.65, 2.0)	
2001-2004); ages 10 yrs	3: >138-209	1.1 (0.62, 2.0)	
Outcome: Current asthma (parental report	4: >209	0.96 (0.51, 1.8)	
of history of asthma plus ≥1 of the following: dyspnea, chest tightness, and/or wheezing in previous 12 mo; use of asthma medications in previous 12 mo; positive exercise challenge test)	Increase in odds of current asthma p CI) = 0.85 (0.64-1.1)	oer log₁₀ IQR MBP (95%	
Exposure: First morning urine sample (child's), collected at study examination			
MnBP in urine (μg/L) (percentile): Median 75 th 95 th Unadjusted 138.0 209.0 377.2 SG-adjusted 141.0 215.2 378.9			
Analysis: Logistic regression, adjusting for variables shown in the results column			

Reference and study design	Results			
Hoppin et al. (2013a) ^a (United States, NHANES) Population: 2,325 participants in	Prevalence and OR (95% CI) for asthma symptoms per unit change in log-transformed urinary MnBP level (adjusted for age, race/ethnicity, gender, BMI, creatinine, and cotinine)			
population-based survey (NHANES), 2005-	Children (n = 779)			
2006; ages ≥6 yrs Outcome: Self-administered questionnaire	Asthma (n = 65)	8.4%	0.63 (0.20, 2.02)	
(asthma, wheeze in past year)	Wheeze (n = 80)	10.7%	0.45 (0.20, 0.98)	
Exposure: Urine sample collected same	Adults (n = 1,546)			
day as serum sample; data reported in <u>Hoppin et al. (2013b); Supplemental</u>	Asthma (n = 116)	7.4%	1.75 (0.67, 4.56)	
Material	Wheeze (n = 219)	16.6%	1.36 (0.74, 2.53)	
MnBP in urine (μg/L) (percentile)Median75th.95th.Children31.5657.63134.95Adults18.5836.85101.08Analysis:Logistic regression, adjusting for variables shown in results column and sampling weights; separate analyses for children (ages 6-17 yrs) and adults (>17 yrs)	Authors reported that adjustme ORs	ent for poverty	income ratio did not alter	
Hsu et al. (2012) ^a (Taiwan) Population: 9 cases, 42 controls, ages 3- 9 yrs, recruited through kindergartens and	OR (95% CI) for asthma by quartile of exposure (adjusted for age, sex, presence of fever, medication use, parents' smoking status, parents' allergy history, parents' education, month of sampling)			
day care centers, 2005-2006.	DBP quartile, dust (µg/g dust)		Asthma	
Outcome: Initial case/control status determined through parent report of	1 (5.49-13.34)		1.0 (referent)	
history; final status determined by clinical	2 (13.35-20.23)	2	2.83 (0.55, 14.72)	
examination. Exposure: Settled dust samples from	3 (20.24-39.80)		2.16 (0.48, 9.78)	
child's major and minor activity rooms;	4 (39.81-685)	2	2.02 (0.37, 10.94)	
urine samples collected at clinical examination	(trend <i>p</i>)		(>0.05)	
Median 75 th	MnBP quartile, urine (µg/g Cr)		Asthma	
percentile	1 (17.28-36.34)		1.0 (referent)	
DBP in dust (μg/g) 20.2 39.80 MnBP in urine:	2 (36.35-54.43)		1.25 (0.34, 4.60)	
Unadjusted (µg/L) 57.9 103.7	3 (54.44-107.25)		0.92 (0.26, 3.21)	
Cr-adjusted (μg/g Cr) 54.4 107.3	4 (107.26-445.56)		0.43 (0.11, 1.72)	
Analysis: Logistic regression adjusting for	1 (10) 120 113.30)			

Reference and study design		Results	5		
Sun et al. (2009) (China) Population: 88 cases of wheezing, 320 controls*, all students of Tianjin University who had participated in a cross-sectional study of allergic symptoms and environmental factors 2006-2007	OR for asthma comparing DBP in dust (µg/g dust) above and below median (adjusted for age, gender, smoking, atopy, and building ag reportedly did not reach statistical significance (quantitative result reported) Median concentration DBP in dust (µg/g dust)				
Outcome: Self-reported symptoms from	Cases Control p-val				
questionnaire. Asthma/wheezing = in past	Wheezing	26.		24.90	0.62
12 mo, have you had wheezing or whistling in the chest; have you had dry cough at night for more than 2 wks, apart from a cough associated with a cold or chest infection	{ _	est; similar results for t			
Exposure: Dorm room surface dust sample					
DBP in dust (μg/g): Median 75 th percentile 28.56 48.82 Analysis: Logistic regression for OR, considering age, gender, passive smoking, smoking, pet raising, atopy, and building age as potential covariates; Mann-Whitney U-test for comparison between DBP concentrations of cases and controls; t-test for comparisons between log transformed concentrations					
Kolarik et al. (2008) ^a (Bulgaria)	Concentration DE	BP in dust (mg/g dust)			
Nested case-control study; n = 102 cases, 82 controls; ages 2-7 yrs (ALLHOME cohort, n = 4,479), 2004-2005.		Median	Mean		value for nnett test
Outcome: Cases: positive response to	Controls	9.87	12.04		
wheezing during the last 12 mo, rhinitis	All cases	9.61	12.15		0.58
during the last 12 mo, when not having a cold, or itching rash eczema in the last 12 mo; controls: negative response to all three questions and other questions on history of wheezing, asthma, allergy symptoms or diagnosis in past	Wheezing	11.17	12.79		0.41
Exposure: Surface dust samples from children's bedrooms					
DBP in dust (mg/g) Geometric mean All homes 7.86					
Analysis: Dust concentrations compared between case and control homes overall, and between cases with specific symptoms in the preceding 12 mo and controls, using Mann-Whitney U-test (untransformed data) and Dunnett test (log-transformed data)					

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

	Reference and study design	Results	
^a Additional results for this study presented in allergy/immune table (Table 3-9).			

1

1 **3.2.10.** Thyroid Effects in Humans

2

Table 3-11. Evidence pertaining to DBP and thyroid effects in humans

Reference and study design	Results			
Dirtu et al. (2013) (Belgium) Population: 152 overweight or obese adults from weight loss cohort (ENDORUP) seen at weight management clinic, 43 age- and sex-matched controls from hospital staff and	Regression coefficient (<i>p</i> -value) for change in hormone level with unit change in In-MnBP (adjusted for age, weight loss, and sex, or stratified by sex) (0.0 = no effect)			
other volunteers, enrolled 2009-2012; among obese/overweight group, 65 received bariatric surgery and 87 received standard diet and lifestyle counseling; follow-up 3, 6, and 12 mo Outcome: Serum thyroid hormone levels (details of blood collection were not reported) Exposure: Urine sample (24-hr) MnBP in urine (ng/mL): Median 75 th percentile 90 th percentile Controls 37 67 88 Obese (at baseline) 38 55 89 Analysis: Linear regression, adjusting for variables shown in results column	Full sample Men Women Overweight/obese group -0.07 (0.42) -0.10 (0.52) -0.07 (0.52) Free T4 -0.09 (0.29) 0.11 (0.50) 0.10 (0.36) Referent group			
Brucker-Davis et al. (2011) (France) Population: 41 healthy newborn boys from prospective study of cryptorchidism (Brucker-Davis et al., 2008b). [MBP analysis was added later in the study, so sample size is less than total of 86 participants.] Outcome: Thyroid hormone levels in cord blood Exposure: Cord blood sample at birth and maternal milk sample 3-5 d postpartum Phthalate in cord blood (ng/mL): Median Range MBP (n = 41) 2.9 0.1-14.3 Phthalate in milk (ng/g fat): Median Range MBP (n = 39) 10.6 2.2-114 Analysis: Spearman correlation analysis Related references: Brucker-Davis et al. (2010) Brucker-Davis et al. (2008b) (same cohort).	Spearman correlation coefficient (<i>p</i> -value) between free T3 in cord blood (pmol/L) in maternal milk (ng/g fat) 0.272 (0.03) No significant association was reported between free T4 or TSH and DBP in maternal milk (data not shown). No significant associations were reported between free T3, free T4, or TSH and MBP in cord blood or maternal milk (data not shown).			

ession coefficient (95% Cl none level with unit increa sted for age, sex, race, BN inary creatinine, and In-ur hted for sampling strateg Adults T ₃ (ng/dL) 1.03 (-1.66, 3.7 ree T ₃ -0.0019	ase in In-MnBP MI, In-serum cotinine, rinary iodine, and y) Adolescents 2.42	
Adults T₃ (ng/dL) 1.03 (-1.66, 3.7	Adolescents 2.42	
	0.014 044) (-0.0059, 0.034) -0.044 5) (-0.35, 0.26) -0.021 24) (-0.047, 0.0056) -0.041	
Ln-Tg (ng/mL) -0.021 -0.087 (-0.095, 0.053)(-0.22, 0.050)Regression coefficient (p-value) for change in hormone level with unit change in In-MBP+MIBP (adjusted for sex and age) (0.0 = no effect)		
Unadjusted -0.09 (0.005) T ₃ -0.21 (0.002) -2.18 (0.24) T ₄ -0.04 (0.82) 0.00 (0.83) -0.01 (0.67)	Cr-adjusted -0.01 (0.87) 0.03 (0.79) -1.64 (0.55) -0.19 (0.48) 0.05 (0.092) 0.02 (0.34) -0.01 (0.43) ses stratified by	
_	0.00 (0.83)	

Reference and study design		Results		
Huang et al. (2007) (Taiwan)	Spearman correlation coefficient between hormone			
Population: 76 pregnant women undergoing amniocentesis due to age >35 yrs or abnormal α -fetoprotein or β -hCG test, 2005-2006	level and MBP	Unadjusted MBP (ng/mL)	Cr-adjusted MBP (µg/g Cr)	
Outcome: Serum thyroid hormone levels collected during 2 nd trimester	T₃ (ng/dL) T₄ (μg/dL)	-0.234 -0.248*	-0.212* -0.292*	
Exposure: Urine sample, collected same day as serum samples	Free T₄ (ng/dL) TSH (µIU/mL)	-0.368* 0.079	-0.191* -0.020	
MBP in urine: Median 75 th percentile 95 th percentile	*n < 0.05	0.075	-0.020	
Unadjusted (ng/mL)81.8131368Cr-adjusted (μg/g Cr)195339839Analysis:Spearman correlation analysis; linear regression, adjusting for variables shown in results column	Adjusted regression coefficient (<i>p</i> -value) for cha			
	T₄ (nmol/L)	-0.	.112 (0.003)	
	Free T ₄ (pmol/L)	-0.1	110 (<0.001)	
Meeker et al. (2007) (United States, Boston) Population: 408 male partners from subfertility clinic, 2000- 2004; mean (± SD) age 36 (± 5.3) yrs Outcome: Serum thyroid hormone levels Exposure: Urine sample, collected same day as serum	hormone level pe (ng/mL, after bac	icient (95% CI) for 6 er IQR change in SC ck-transformation f e, BMI, current smc	G-adjusted MBP from In-MBP)	
samples	Untransformed hormone levels (0.0 = no effect)			
MBP in urine (ng/mL):	Total T₃ (ng/mL)		-0.005 (-0.024, 0.012)	
Median 75 th percentile 95 th percentile	Free T₄ (ng/dL)	0.003	(-0.023, 0.028)	
SG-adjusted 17.0 30.4 65.1	Ln-transformed h	n-transformed hormone levels (1.0 = no effect)		
Analysis: Linear regression, considering age, BMI, smoking status, race, previous examination for infertility, prior impregnation of partner, timing of blood and urine samples, and time of day as potential covariates	TSH (μIU/mL) 1.02 (0.96, 1.09)			
Congenital hypothyroidism				
Jung et al. (2013) (Korea)	DBP or MnBP in	plasma (ng/mL), m	ean + SD	
Population: 39 infants with congenital hypothyroidism and their mothers, 20 unaffected infants and their mothers,		Controls	Cases	
recruited from hospital; time period not reported.	Infants	54.00 + 47.00	F4 44 - 27 F7	
Outcome: Congenital hypothyroidism	DBP	54.96 ± 17.82	51.11 ± 27.57	
Exposure: Plasma sample	MnBP	60.34 ± 28.25	56.48 ± 29.23	
Phthalate in plasma (infant controls) (ng/mL):	Mothers			
Mean ± SD DBP 54.96 ± 17.82	DBP	29.94 ± 22.07	36.30 ± 19.27	
MnBP 60.34 ± 28.25	MnBP	19.87 ± 15.16	27.38 ± 15.75	
Analysis: Not described in the publication	<i>p</i> > 0.1 for compa infants.	arison between cas	se and control	

3.2.11. Pulmonary Function in Humans 1

2

Table 3-12. Evidence pertaining to DBP and pulmonary function in humans

Reference and study design		R	esults	
Cakmak et al. (2014) Population: 3,147 participants* in population- based survey (Canadian Health Measures Survey),	Change in pulmonary function (95% CI) per interquartile range increase in Cr-adjusted urinary MnBP (adjusted for age sex, smoking, fasting, income education, and PM _{2.5})			djusted for age,
ages 6-49 yrs		FEV ₁	FVC	FEV ₁ /FVC
Outcome: Pulmonary function based on FVC and FEV ₁ (expressed as percent of values predicted based on age, height, and sex)	All participants (n = 3,071)	-0.8 (-1.4, -0.3)	-0.9 (-1.5, -0.3)	-0.1 (-0.7, 0.5)
Exposure: Urine sample collected at same time as pulmonary function testing MnBP in urine (μg/g Cr), all participants:	Children, 6- 16 yrs (n = 1,642)	-0.5 (-1.3, 0.3)	-0.9 (-1.6, -0.1)	0.9 (-0.7, 2.6)
Geometric mean (95%Cl) Cr-adjusted 30.65 (29.8-31.52) Analysis: Linear regression, generalized linear	(11 – 1,042) Adults, ≥17 yrs	-0.8 (-1.7, 0.2)	-0.6 (-1.5, 0.2)	-0.3 (-1.0, 0.4)
mixed models (weighted based on sampling weights), considering BMI, ethnicity, education, income, passive smoking, current smoking, and	(n = 1,505) Male (n = 1,555)	-1.1 (-2.0, 0.2)	-1.0 (-1.8, -0.2)	-0.2 (-0.8, 0.4)
ambient conditions on day of lung function measures (temperature, relative humidity, barometric temperature, nitrogen dioxide, ozone, and fine particulates (PM _{2.5}) as potential covariates; stratified by age (6-16, 17-49 yrs) and sex *Study reports number of participants inconsistently; Table 3 reports 3,071 participants, while the Methods section and all other data tables report 3,147 participants.	Female (n = 1,592)	-1.0 (-2.0, 0.1)	-0.9 (-1.6, -0.2)	-0.3 (-1.0, 0.4)
Kolena et al. (2014) (Slovakia) Population: 30 adult workers (20 men and 10 women) involved in driving waste trucks (men) or sorting and processing waste substances for recycling; mean age 46 yrs	measures (PE percent of pre	F percent of pre	tween pulmonary edicted value; FEV nd FVC percent o ta not shown).	$/_1$ /FVC; FEV $_1$
Outcome: Pulmonary function measured by PEF percent of predicted value; FEV ₁ /FVC; FEV ₁ percent of predicted value; and FVC percent of predicted value.				
Exposure: Urine samples collected at same time as spirometry measures				
MnBP in urine (ng/mL) (percentile): Median 75 th 95 th				
Unadjusted67.1392.84130.04Analysis:Linear regression, considering smoking history and anthropometric characteristics as potential covariates.				
Park et al. (2013) (Korea)	-		change in pulmo idjusted) (adjuste	-

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design	Results		
Population: 418 persons >60 yrs old enrolled in the Korean Elderly Environmental Panel, evaluated 2008-2009	months since prev temperature and r		
Outcome: FVC, FEV ₁ , and FEF between 25 and 75% of FVC during three medical examinations Exposure: Urine (collected at same time as three exams) MnBP in urine (μ g/L) (percentile): Median 75 th 95 th Unadjusted 38.9 65.38 162.7 Analysis: Concentrations in urine averaged across 3 samples for each individual; best of 3 pulmonary function measures used in analysis. Linear		β (SE) 0.001 (0.013) 0.007 (0.016) -0.212 (0.308) -0.025 (0.027) aplotype did not reveal a MBP (<i>p</i> > 0.1 for all subgr	
regression adjusting for variables shown in results column. Additional analysis conducted on groups stratified by genetic polymorphisms in CAT, SOD2, and MPO			
Hoppin et al. (2004) (United States, NHANES) Population: 240 participants in population-based survey (NHANES III), 1988-1994; ages 20-60 yrs Outcome: FVC, FEV1, PEF, MMEF	measure per inter	ient (SE) for change in pu quartile range increase ir ed for age, age squared,)	n MBP (31.53 ng/g
Exposure: Urine sample, collected at time of	β (SE)		
pulmonary function testing		Men	Women
Mean (SD) MBP in urine: Men Women	FVC	-131 (63)*	34 (45)
Unadjusted (ng/mL) 40 (2.9) 43 (3.9)	FEV1	-112 (51)*	42 (39)
Cr-adjusted (ng/g Cr) 30 (2.5) 45 (3.1)	PEF	-367 (181)*	-68 (111)
Analysis: Linear regression, stratified by sex and adjusted for variables shown in results column	MMEF	-139 (127)	72 (85)
	*p < 0.05		

1 3.2.12. Neurodevelopmental Effects in Humans

2

3

Table 3-13. Evidence pertaining to DBP and neurodevelopmental effects inhumans

Reference and study design	Results		
Neurobehavioral measures in school-aged children			
Chopra et al. (2014) (United States, NHANES) Population: 1,493 participants in population-based survey (NHANES), 2001-2004, ages 6-15 yrs	Geometric mean (95% CI) Cr-adjusted DBP metabolites (MIBP + MBP)in urine (μg/g Cr) by diagnosis		
Exposure: Urine sample collected same day as NHANES exam MBP in urine (μg/g Cr): Median 75 th percentile 90 th percentile Cr-adjusted 30.3 50.9 84.3 Sum DBP metabolites (MBP + MIBP) Median 75 th percentile 90 th percentile Cr-adjusted 36.3 62.0 97.8 Outcome: Attention deficit disorder or learning disorder as reported by parent Analysis: Logistic regression, considering age, sex, race, household income, low birth weight, health insurance coverage, routine source of healthcare, mental health professional use in past year, child blood lead level, maternal age at birth, and maternal smoking during pregnancy as potential covariates	Attention deficitdeficitLearningNeitherdisorderdisorderBothcondition (n =onlyonlycondition1,262)(n = 56)(n = 116)(n = 56)35.931.733.349.3(33.4, 38.6)(24.3,(27.5, 40.5)(36.4, 41.3)(al.a)66.8)(trend p = 0.28)OR (95% CI) per 10-fold increase in Cr-adjusted log- transformed DBP metabolites (MIBP + MBP) (adjusted for sex, age, race, household income, log- transformed blood lead, and maternal smoking during pregnancy)Attention deficit disorder only1.8 (0.6, 4.8) (n = 112)Learning disorder only (n = 173)1.3 (0.6, 2.9)Both conditions (n = 56)3.3 (0.9, 12.7)Authors reported no interaction between child's blood lead and phthalate concentration		
Kobrosly et al. (2014) (United States; Minnesota, Missouri, California, Iowa) Population: 153 children (n = 76 girls, n = 77 boys) from birth cohort study (Study for Future Families), born 2000-			
2005, ages 6-10 yrs in 2010 follow-up Outcome: Child Behavior Checklist completed by parent Exposure: Maternal urine sample, 3 rd trimester (mean	family stress score). Boys Girls Anxiety/depres 0.01 -0.14 sion (-0.25, 0.26) (-0.40, 0.12)		
26.6 wks) MnBP in urine (ng/mL): Geometric mean (95% Cl) Unadjusted 13.6 (11.5, 16.1) Analysis: Linear regression, considering sex, age, mother's education, urinary creatinine, family stress	Withdrawn 0.02 (-0.19, 0.23) -0.06 (-0.27, 0.15) Somatic complaints -0.07 (-0.28, 0.13) -0.13 (-0.34, 0.08) Social 0.02 -0.10		
measure, and race/ethnicity as potential covariates	problems* (-0.19, 0.24) (-0.32, 0.11) Thought -0.01 -0.03 problems (-0.23, 0.20) (-0.25, 0.19)		

This document is a draft for review purposes only and does not constitute Agency policy.

Reference and study design		Results	
	Attention	0.12	-0.01
	problems	(-0.12, 0.37)	(-0.26, 0.25)
	Rule-breaking behavior	0.14 (-0.05, 0.34)	0.02 (-0.19, 0.22)
	Aggressive	0.12	-0.07
	behavior	(-0.15, 0.39)	(-0.34, 0.21)
	Internalizing behavior	-0.01 (-0.30, 0.29)	-0.16 (-0.46, 0.14)
	Externalizing behavior	0.17 (-0.12, 0.45)	-0.02 (-0.31, 0.27)
	Total problems	0.12 (-0.29, 0.53)	-0.14 (-0.55, 0.28)
	All p-values > 0.05		
<u>Park et al. (2014)</u> (South Korea) Population: 277 children (150 males and 127 females)	Pearson correlatio anxiety score and		
aged 8-11 yrs	All children	-0.	071 (0.239)
Outcome: Anxiety as assessed by Trait Anxiety Inventory	Male	-0.	099 (0.229)
for Children (TAIC; 20 self-rating questions) administered to children	Female		030 (0.740)
Exposure: Urine sample			
MnBP in urine (μg/g Cr): Mean ± SD			
Cr-adjusted 46.6 ± 21.6			
Analysis: Pearson correlation analysis			
<u>Miodovnik et al. (2011)</u> (United States, New York City) Population: 137 children from birth cohort (Mt Sinai Children's Environmental Health study), born 1998-2002, follow-up at ages 7-9 yrs	Regression coefficient (95% CI) for change in social functioning score per unit increase in In-MnBP (µg/L) (adjusted for child race, sex, caretaker marital status, urinary creatinine)		
Outcome: Social functioning based on maternal reporting			MBP
on Social Responsiveness Scale (SRS) (5 domains)	Total SRS	1.3	7 (-0.43, 3.17)
Exposure: Maternal urine sample, 25-40 wks gestation	Cognition	1.2	4 (-0.62, 3.10)
Phthalates in urine (μg/L): Median 75 th percentile	Communication	1.8	5 (-0.08, 3.78)
MnBP 33 87	Mannerisms	1.3	0 (-0.60, 3.21)
[See Engel et al. (2008) for data pertaining to individual	Motivation	0.2	8 (-1.36, 1.92)
metabolite levels in the Mt. Sinai Children's Environmental Health cohort.]	Awareness	0.6	3 (-1.01, 2.26)
Analysis: Generalized linear regression model, considering maternal age, IQ, marital status, education, and urinary creatinine, and child's sex, race, and age as potential covariates			
Engel et al. (2010) (United States, New York City) Population: 177 children from original birth cohort studied by Engel et al. (2009) 54% boys, three follow-up exams at ages 4.5-5.5, 6-6.5, and 7-9 yrs This document is a draft for review purposes or	Regression coefficient for change in behavioral score (BASC-PRS) per unit increase in In-phthalate level (μ M/L) in boys (adjusted for race, educational level and marital status of the primary caretaker, and urinary creatinine)		

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results	5		
Outcome: Behavior assessed by maternal reporting on Behavior Rating Inventory of Executive Function (BRIEF) and Behavior Assessment System for Children—Parent	MBP LMW Clinical scales (higher score = more problem behaviors)			
Rating <i>Scales</i> (BASC-PRS) Exposure: Maternal urine sample, 25-40 wks gestation	Aggression	1.28*	1.24*	
Median 75 th percentile	Anxiety	-0.04	0.78	
MnBP 33 87 A	Attention problems	0.92	1.29*	
	Atypicality	0.83	0.95	
Health cohort.]	Conduct problems	0.92	2.40*	
Analysis: Generalized linear regression model, adjusting	Depression	0.78	1.18*	
for variables shown in results column; other variables (not	Hyperactivity/ impulsivity	1.34	1.03	
specified) were considered	Somatization	0.84	0.36	
	Withdrawal	-0.10	0.46	
	Adaptive scales (lower score = behaviors)	= more pro	blem	
	Adaptability	-0.92	-1.08*	
	Leadership	-0.54	-0.88	
	Social skills	-0.75	-1.04	
	Composite scales (higher score = more problem behaviors)			
	Externalizing problems	1.36*	1.75*	
	Internalizing problems	0.66	0.99	
	Adaptive skills	-1.18	-0.98	
	Behavioral Symptom Index	1.23	1.55*	
	Regression coefficient for chascore (BRIEF scores; higher scores; higher scores; higher score) per unit increase (μ M/L) in boys and girls (adjueducational level and marital caretaker, and urinary creating	ore = wors in In-phtha sted for rac status of th	e executive alate level ce, sex,	
		MBP	Low MW	
	Emotional control	0.79	1.33*	
	Behavioral regulation index	0.67	1.13	
	Initiate	0.77	0.81	
	Working memory	1.53*	1.03	
	Plan/organize	1.31	1.02	
	Metacognition index	1.09	1.05	
	Global executive composite score	0.98	1.23*	
	p ≤ 0.05 Study authors reported there associations between phthala		-	

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results			
	behavior among girls (quantitative results not reported).			
 <u>Kim et al. (2009)</u> (Korea) Population: 261, 3rd-5th grade children recruited from four cities in Korea, 2007; mean age = 9.7 yrs Outcome: Attention deficit—hyperactivity disorder 	Regression coefficient (<i>p</i> -value) for change in ADHD symptoms per unit increase in In-MnBP (μg/L) (adjusted for child's IQ, age, gender, parental education, and socioeconomic status).			
(ADHD) symptoms measured by teacher rating scale and continuous performance tests	ADHD Teacher rating scale:			
Exposure: Urine sample (child's) collected at same time as	Inattention -2.09 (0.19)			
assessment	Hyperactivity -0.41 (0.78)			
MnBP in urine (μg/L)	Total -2.49 (0.39)			
Mean ± SD Unadjusted 46.7 ± 21.4	Continuous performance test:			
Unadjusted 46.7 ± 21.4 Analysis: Linear regression adjusting for variables shown	Omission (inattention) 15.84 (0.03)			
in results column	Commission (impulsivity) 18.31 (0.03)			
	Reaction time -2.92 (0.61)			
	SD of Reaction time 18.12 (0.30)			
Neurobehavioral and developmental measures in infants ar	nd preschool-aged children			
Braun et al. (2014) (United States)Population: 175 children from birth cohort in Ohio (Health Outcomes and Measures of the Environment [HOME] cohort, recruited during pregnancy, 2003-2006). Follow-up at ages 4-5 yrsOutcome: Autistic behaviors based on Social Responsiveness Scale completed by mother; 65 item scale, higher score = more autistic behaviors Exposure: Maternal urine samples, 16-26 wks gestation MnBP in urine (μ g/g Cr) (percentile): Median 75 th 95 th Cr-adjusted 26 37 75Analysis: Semi-Bayesian hierarchical regression model	score per unit increase in log-transformed Cr- adjusted MnBP (adjusted for maternal demographic and perinatal factors, depressive symptoms, caregiving environment, and serum cotinine) -0.4 (-2.2, 1.4) Adjusting for 40+ other chemicals (phthalates, polychlorinated biphenyls, brominated flame retardants, and perfluronated compounds): -1.2 (-3.4, 0.9) Similar results using several other approaches to this modeling.			
Téllez-Rojo et al. (2013) (Mexico) Population: 135 children from birth cohort (Early Life Exposure in Mexico to Environmental Toxicants cohort; mothers recruited during first trimester, 1997-2003) Outcome: Mental and psychomotor development based on Bayley Scales of Infant Development-II (assessed by trained examiner, videotaped for quality control assessment) tested at 24, 30, and 36 mo of age. Exposure: Maternal urine sample, 3 rd trimester MnBP in urine (ng/mL): Geometric mean (95% Cl) SG-adjusted 85.61 (71.55, 102.42) Analysis: Linear regression for longitudinal data, stratified by sex and adjusted for variables shown in results column Related reference: Ettinger et al. (2009)				

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design		Results	
Whyatt et al. (2012) (United States, New York City) Population: 297 children from birth cohort (Columbia Center for Children's Environmental Health), born 1999- 2006; 3-yr follow-up, mean age 36 mo (range 27-42 mo) Outcome: Mental, psychomotor and behavioral development at 3 yrs based on Bayley Scales of Infant	Regression coefficient (95% CI) for change in neurodevelopment score per unit increase in maternal In-MnBP (adjusted for specific gravity, race/ethnicity, maternal marital status and prenat alcohol consumption, child's gestational age and sex, and quality of care-taking environment)		
Development-II (assessed by trained examiners) and Child		Boys (n = 140)	Girls (n = 157)
Behavior Checklist (completed by parent) Exposure: Maternal urine sample, 3rd trimester	MDI	0.30	-2.67
MnBP in urine (ng/mL)	PDI	(-1.99, 2.59) -3.08	(-4.70 <i>,</i> -0.65) -2.41
Geometric mean (95% CI) Unadjusted 38.0 (33.9, 42.6)		(-5.82, -0.33)	(-4.91, 0.08)
Analysis: Linear and logistic regression adjusting for variables shown in results column; Wald test used to detect sex differences	Adjusted OR (95% CI) for risk of mental or psychomotor delay (score ≤85) per In-unit increase in maternal In-MBP (each model adjusted for one or more of the following: specific gravity, race/ethnicity, maternal marital status and prenatal alcohol consumption, child's gestational age and sex, and quality of care-taking environment)		
		Boys (n = 140)	Girls (n = 157)
	MDI	0.68 (0.43, 1.07)	1.44 (0.84, 2.47)
	PDI	1.58 (0.95, 2.61)	1.57 (0.84, 2.94)
	Regression coefficient (95% CI) for change in neurobehavior per unit increase in maternal In- MBP (adjusted for specific gravity; ethnicity; maternal IQ, demoralization, hardship, satisfaction during pregnancy and prenatal exposure to PAH and BPA; and child's sex and age at testing)		
	,	Boys (n = 129)	
	Emotionally reactive	0.71 (0.22, 1.19)	-0.02 (-0.50, 0.45)
	Anxious/ depressed	0.17 (-0.40, 0.75)	0.41 (-0.11, 0.94)
	Somatic complaints	0.77 (0.21, 1.33)	0.43 (-0.06, 0.91)
	Withdrawn behavior	0.56 (0.09, 1.03)	0.47 (-0.03, 0.98)
	Internalizing behavior	2.21 (0.66, 3.76)	1.29 (-0.15, 2.72)
	Effect modification by gender of emotionally reactive behavior (
	OR (95% CI) for child's score in the borderline or clinical range (compared to normal) per unit increase in maternal In-MBP (adjusted for specific gravity, maternal demoralization and satisfaction		

Reference and study design		Results	
	during pregnancy, and child's sex and age at testing)		
		Borderline	Clinical
	Somatic complaints	1.32 (0.84, 2.08)	1.37 (0.73, 2.56)
	Withdrawn behavior	0.60 (0.31, 1.16)	2.23 (1.27, 3.92)
	Internalizing behavior	1.31 (0.82, 2.10)	1.44 (0.92, 2.25
 Kim et al. (2011) (Korea) Population: Prospective cohort study, n = 460 infants enrolled in Mothers and Children's Environmental Health Study from three cities in Korea, 2006-2009 Outcome: Mental and Psychomotor development at 6 mo of age based on Bayley Scales of Infant Development-II 	Regression coefficient (95% CI) for change in neurodevelopment score per unit increase in In- MnBP (μg/g Cr) (adjusted for birth weight, sex, maternal age, maternal education, family income, breastfeeding, residential area, and maternal intelligence in subgroup).		
administered by trained examiners Exposure: Maternal urine sample, third trimester		All childrei (n = 417)	0 1
MnBP in urine (μg/L): Median 75 th percentile	MDI	-0.54 (-1.18, 0.10	-0.64
Unadjusted 16.6 41.1 Analysis: Linear regression adjusting for variables shown in results column	PDI	-0.79 (-1.60, 0.03	-1.07 3) (-2.10, -0.03)
	^a Subgroup for whom maternal intelligence measures were available. Regression coefficient (95% CI) stratified by sex		
	(same adjustme	Males	Females
	Mental Delay In	(n = 211) dex -0.93 ^b	(n = 206) -0.21 (-1.17, 0.75)
	Psychomotor De Index	elay -1.25 (-2.40, -0.1	-0.42 1) (-1.63, 0.78)
		rroneous 95% Cl, I gnificant at p = 0.0	
	No significant in MDI (p = 0.30) o		n sex and MBP for
Intellectual function in infants and school-aged children			
Cho et al. (2010) (Korea) Population: 621 3 rd and 4 th grade children from five cities in Korea, 2008; mean age = 9.0 yrs Outcome: Cognitive function based on Korean Wechsler Intelligence Scale for Children administered by 23 trained	(μg/g Cr) (adjusted for age, gender, birth weig breastfeeding history, residential area, patern education socioeconomic status and matern		
examiners	Full-scale IQ Verbal IQ		0.4 (-1.4, 2.1) -0.1 (-0.8, 0.6)

This document is a draft for review purposes only and does not constitute Agency policy.

Reference and study design	Results
Exposure: Urine sample (child's)	Vocabulary -0.3 (-0.7, 0.2)
MnBP in urine (μg/L): Median 75 th percentile Unadjusted 50.5 93.5	0.1 (-0.4, 0.4)
Analysis: Linear regression adjusting for variables shown in results column	

1 Abbreviations: MDI = Mental Delay Index; PDI = Psycho-motor Delay Index

3.2.13. Obesity Effects in Humans 1

2

Table 3-14. Evidence pertaining to DBP and obesity in humans

Reference and study design		Results		
Buser et al. (2014) (United States, NHANES) Population: Participants in population-based survey (NHANES), 2007-2010, ages ≥6 yrs [sample size not reported]	OR (95% CI) in children (6-19 yrs of age) for obesity or overwei comparing highest quartile urinary MnBP (>47.54 ng/mL) with lowest quartile (≤12.05 ng/mL) (adjusted for age, race/ethnicit calorie intake, serum cotinine, urinary creatinine, and income level)			
Outcome: BMI measured at exam; divided into obese (BMI z-score ≥95 th percentile in children, BMI ≥30 in adults) and overweight (BMI z-score 85 th -95 th percentiles in children, BMI 25-29.9 in adults) Exposure: Urine sample, collected at same time as exam	All Boys Girls	Obese 1.62 (0.54, 4.93) 3.15 (0.90, 11.01) 0.55 (0.15, 2.05) dults (≥20 yrs of age) for o	Overweight 0.95 (0.51, 1.75) 1.49 (0.62, 11.01) 0.64 (0.27, 1.53) besity or overweight	
Unadjusted MnBP in urine (ng/mL) Geometric mean (SE): Ages 6-19 yrs 23.00 (0.93) Ages ≥20 yrs 15.21 (0.56)	OR (95% CI) in adults (≥20 yrs of age) for obesity or or comparing highest quartile urinary MnBP (>31.59 ng/ lowest quartile (<7.69 ng/mL) (adjusted for age, gend race/ethnicity, calorie intake, recreational activity, se cotinine, education level, smoking status, alcohol inta			
Analysis: Logistic regression, considering age, race/ethnicity, sex, urinary creatinine, poverty	diabetes)	Obese	Overweight	
as potential covariates in analyses of ages 6- 19 yrs; or age, race/ethnicity, sex, education, diabetes, alcohol consumption, cigarette	All	0.89 (0.65, 1.23)	0.91 (0.63, 1.30)	
	Men	0.75 (0.42, 1.36)	0.87 (0.50, 1.53)	
	Women	0.97 (0.54, 1.75)	0.92 (0.56, 1.51)	
Song et al. (2014) (United States)		veight change (95% CI) by		
Population: 977 Controls from nested case- control study of incident diabetes in Nurses Health Study (NHS, n = 393, mean age 65.6 yrs, followed until 2010) and Nurses Health Study II	menopausal stat alternative healt	justed for cohort origin, a tus, smoking status, physic thy eating index score, cal- d urinary creatinine levels	cal activity, alcohol use, oric intake, baseline	
(NHS II, n = 577, mean age 45.6 yrs, followed until 2009)	Sum MBP + MIB (median concen	•	ate of weight change in kg/yr (95% CI)	
Outcome: Change in body weight based on self-	1 (67)		0.0 (referent)	
reported data from biennial questionnaires; self- reported body weights in these cohorts of	2 (140)	C).19 (0.03, 0.34)	
registered nurses was highly accurate: a	3 (249)		0.21 (0.06, 0.37)	
correlation coefficient of 0.96 was observed between self-reported weight and measured weights among 184 NHS participants	4 (481) (trend <i>p</i> < 0.001	C	0.34 (0.18, 0.50)	
Exposure: Urine sample collected at beginning of follow-up period (collected 2000-2001 for NHS; 1995-2000 for NHS II)		1		
Sum MBP + MIBP in urine (nmol/L): Median by quartile Unadjusted 67, 140, 249, 481				
Analysis: Logistic regression, mixed-effect				

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design		Res	sults	
models for prospective annual weight change rate by quartile sum MBP + MIBP using product terms between concentrations and year after baseline; adjusting for variables shown in results column				
Dirtu et al. (2013) (Belgium) Population: 152 overweight or obese adults from weight loss cohort (ENDORUP) seen at	Regression coeff circumference w weight loss, and	ith unit change i	in In-MnBP (adju	isted for age,
weight management clinic, 43 age- and sex-		Full sample	Men	Women
matched controls from hospital staff and other volunteers, enrolled 2009-2012; among obese/overweight group, 65 received bariatric	Overweight/ obese group	0.12 (0.14)	0.06 (0.69)	0.10 (0.39)
surgery and 87 received standard diet and lifestyle counseling; follow-up 3, 6, and 12 mo	Referent group	-0.22 (0.16)	0.15 (0.60)	-0.14 (0.45)
Outcome: Waist circumference measured at each follow-up visit				
Exposure: Urine sample (24-hr sample) MnBP, in urine (ng/mL) Median 75 th percentile 90 th percentile Controls 37 67 88 Obese 38 55 89 (at baseline)				
Analysis: Linear regression, adjusting for variables shown in results column; treatment of repeated urinary phthalate measures was not specified				
Hart et al. (2013) (Australia)	-			cent BMI (either
Population: 121 girls from birth cohort study (Western Australian Pregnancy Cohort), whose mothers were recruited at 18 wks of gestation between 1989 and 1991; follow-up at ages 14- 16 yrs	as absolute value MnBP in matern	-	• •	•
Outcome: Offspring BMI (height and weight measured at clinic visit on d 2-5 of menstrual cycle)				
Exposure: Maternal serum samples (n = 123) collected at 18 and 34-36 wks of gestation (combined aliquot from both time periods)				
MnBP in serum (ng/mL): Median 90 th percentile Unadjusted 2.46 10.99				
Analysis: Correlation between log-transformed MBP and BMI				

Reference and study design			Res	sults	
Trasande et al. (2013a) (United States, NHANES) Population: 2,884 participants in population- based survey (NHANES), 2003-2008; 6-19 yrs old Outcome: BMI z-score, obesity (BMI z-score ≥95 th percentile), and overweight (BMI z-score	Full sample results, no association with In-LMW phthalates: O or regression coefficient (95% CI) per one unit increase in Σ LM phthalates (μ M) (adjusted for urinary creatinine, sex, poverty-income ratio, parental education, serum cotinine, age, and race/ethnicity, caloric intake, and television watching)				
 ≥35 "percentile), and over weight (bin 2 score ≥85th percentile) (measured) Exposure: Urine sample, collected at same time as BMI measurement 	Overweig	ht	OR (955 CI)	%	0.90, 1.13)
ΣLMW phthalates in urine (μM): Geometric mean Not obese 0.701	Obese		OR (955 CI)	%	0.90, 1.17)
Obese 0.855 ΣLMW phthalates = sum of MEP, MBP, and MIBP (individual metabolite concentrations not		on by ethn		ociations seen b	
reported but are available in the NHANES database) Analysis: Logistic regression for overweight and obese classification; linear regression of BMI	whites or	Hispanics	. Using same th In-MnBP a		ors as above,
z-score as continuous variable; adjusted for			∑LMW pht		MnBP
variables shown in results column		Hispani			Black
	Over- weight OR (95% CI)	0.88 (0.72, 1.0	0.97 8) (0.78, 1.	1.21 22) (1.05, 1.39	1.11) (0.93, 1.33)
	Obese OR (95% CI)	0.97 (0.83, 1.1	0.94 4) (0.69 <i>,</i> 1.	1.22 29) (1.07, 1.39	1.21) (1.00, 1.45)
	BMI z-score β (95% CI)	-0.04 (-0.15, 0.06)	0.02 (-0.08, 0.	0.09 12) (0.003, 0.18	0.08 3) (-0.02, 0.18)
Wang et al. (2013) (China)	Regressio	n coefficie	ent (95% CI) f	or change in BMI	or waist
Population: 259 primary and middle school students, 8-15 yrs old, stratified sample from six schools, selected based on sex and BMI	phthalate		d for age and	in SG-adjusted In I sex in Model 1;	
Outcome: BMI, waist circumference (measured)			Model	1	Model 2
Exposure: First morning urine sample, collected	BMI		0.028 (0.001		3 (-0.027, 0.048)
at same time as BMI measurement MnBP in urine (ng/mL): Geometric mean (SD) 47.5 (1.1	Waist circumfer	ence	0.015 (-0.007	7, 0.037) -0.00	3 (-0.031, 0.025)
Analysis: Linear regression, sampling weights applied to adjust for sampling strategy; adjusted for variables shown in the results column					

Reference and study design	Results
Kasper-Sonnenberg et al. (2012) (Germany)	Spearman correlation coefficient between ∑DBP and BMI in:
Population: 104 mothers (and children) enrolled	Children -0.191 (<i>p</i> > 0.05)
in birth cohort study, children born between 2000 and 2002, follow-up in 2007-2009; mean age 39.2 yrs (mothers), 6.8 yrs (children)	Mothers $-0.199 \ (p \le 0.05)$
Outcome: BMI based on questionnaire (mothers) and measurements (children)	
Exposure: Urine sample (first morning), collected on same day as exam	
Cr-adjusted MnBP and OH-MnBP in urine (µg/g Cr):	
Geometric mean (95% CI) Children MnBP 46.9 (40.8, 53.9) OH-MnBP 6.8 (5.6, 8.3) ∑DBP 55.4 (48.2, 63.8) Adults MnBP 27.5 (24.8, 30.5) OH-MnBP 1.7 (1.2, 2.3) ∑DBP 30.4 (27.3, 33.8) Analysis: Spearman's rank correlation analysis	
Teitelbaum et al. (2012) (United States, New York City)Population: 387 children (80 boys, 307 girls) in child development cohort (Growing Up Healthy Study), 2004-2008; Hispanic and black), 6-8 yrs at enrollmentOutcome: BMI and waist circumference measured 1 yr after enrollment; normal weight = BMI <85 th percentile (n = 2,284); overweight = BMI ≥85 th percentile (n = 578)Exposure: Urine sample, collected at enrollment Cr-adjusted phthalates in urine (µg/g Cr), median: 	Regression coefficient (95% CI) for change in body metric per unit change in In-MnBP (μg/g Cr) (adjusted for creatinine, age, sex, sedentary hours, metabolic equivalent hours, Hispanic ethnicity, caloric intake, season, and parental education level) BMI (kg/m ²) Full sample 0.19 (-0.31, 0.69) Girls 0.19 (-0.38, -0.76) Boys -0.12 (-1.34, -1.10) Waist circumference (cm) Full sample 0.54 (-0.80, 1.89) Girls 0.51 (-0.98, 20) Boys -0.16 (-3.49, 3.17)
Analysis: Linear regression, considering sex, age at baseline, sedentary hours, metabolic equivalent hours, caloric intake, race, ethnicity, season of urine collection, family income, and parent education as potential covariates; restricted to children with creatinine ≥10 mg/dL	

Reference and study design	Results				
Svensson et al. (2011) (Mexico)	Spearman correlation coefficient between anthropometric			netric	
Population: 182 women; healthy controls	measure and In-MnBP in urine (µg/g Cr)				
without diabetes from case-control study of	BMI (kg/m ²)		0.0)249	
breast cancer, 2007-2008; mean age 54 yrs	Waist circun	nference (cm)	-0.	0478	
Outcome: BMI, waist circumference, and	Waist/heigh	t ratio	-0.	0020	
waist:height ratio	(<i>p</i> > 0.05 for	all parameter	s)		
Exposure: First morning urine sample collected at time of clinical evaluation					
Cr-adjusted MnBP in urine (μg/g Cr): Geometric mean (SD) No diabetes 82.5 (2.6)					
Analysis: Spearman correlation coefficient					
Related references: Lopez-Carrillo et al. (2010)					
Hatch et al. (2008) (United States, NHANES)	Regression	coefficient (95	% CI) for char	age in body m	atric por
Population: 4,369 (2,251 males, 2,118 females) participants in population-based survey (NHANES), 1999-2002; ages 6-80 yrs Outcome: BMI, waist circumference (measured)	quartile incr creatinine, h intake, dairy TV/video an	ease in unadju neight, race/et v intake, fruit a d computer us	usted MBP (μ hnicity, socio and vegetable se, and smoki	g/L), by age (a economic stat intake, physic	ge, cus, fat cal activity,
Exposure: Urine sample, collected at time of	-	status, parity)			
obesity measurement	MBP	6-11 yrs	12-19 yrs	20-59 yrs	60-80 yrs
MBP in urine (μg/g Cr):	Quartile	β	β	β	β
Range of geometric means in different age-sex		nference, male		4.0	
groups = 15-48	1 (low)	1.0 (referent)	1.0 (referent)	1.0 (referent)	1.0 (referent)
Analysis: Linear regression, adjusting for	2	1.24	0.83	1.86	-0.65
variables shown in results column; separate	2	(-1.72,	(-2.78,	(-1.05,	-0.05 (-4.09 <i>,</i>
analyses by sex-age group (ages 6-11, 12-19, 20- 59, 60-80 yrs)		4.19)	4.43)	4.77)	2.80)
	3	-1.28	-0.70	3.67	-2.60
		(-5.74 <i>,</i> 3.18)	(-4.02 <i>,</i> 2.62)	(1.27, 6.07)	(-5.27, 0.07)
	4 (high)	1.25	-1.47	2.91	-2.60
		(-1.91, 4.40)	(-5.41 <i>,</i> 2.48)	(0.22, 5.60)	(-6.05, 0.85)
	(trend <i>p</i>)	(0.86)	(0.31)	(0.01)	(0.08)
	Waist circun	nference, fema	ales		
	1 (low)	1.0 (referent)	1.0 (referent)	1.0 (referent)	1.0 (referent)
	2	0.63	1.08	-0.61	-1.85
		(-2.39 <i>,</i> 3.64)	(-2.05, 4.22)	(-2.87, 1.65)	(-6.19 <i>,</i> 2.50)
	3	0.69	0.38	-0.06	-3.94
		(-2.74, 4.12)	(-3.46 <i>,</i> 4.23)	(-3.33, 3.21)	(-7.47, -0.41)
	4 (high)	0.37	-0.47	-2.60	-5.67
		(-2.67,	(-4.71,	(-6.15,	(-9.31,
		3.40)	3.77)	0.95)	-2.03)
	(trend <i>p</i>)	(0.84)	(0.31)	(0.24)	(0.01)

Reference and study design			Results		
	BMI, males				
	1 (low)	1.0 (referent)	1.0 (referent)	1.0 (referent)	1.0 (referent)
	2	0.77 (-0.37, 1.90)	0.09 (-1.32, 1.49)	0.66 (-0.48, 1.79)	-0.36 (-1.79, 1.07)
	3	-0.24 (-1.91, 1.42)	-0.53 (-1.77, 0.70)	1.22 (0.35, 2.09)	-1.44 (-2.61, -0.28)
	4 (high)	0.80 (-0.42, 2.03)	-0.87 (-2.54, 0.79)	0.65 (-0.39 <i>,</i> 1.69)	-1.12 (-2.49, 0.24)
	(trend <i>p</i>)	(0.56)	(0.2)	(0.11)	(0.04)
	BMI, female	s			
	1 (low)	1.0 (referent)	1.0 (referent)	1.0 (referent)	1.0 (referent)
	2	0.35 (-0.75, 1.45)	0.37 (-1.20, 1.93)	-0.68 (-1.78, 0.41)	-0.87 (-2.70, 0.96)
	3	0.43 (-0.90, 1.77)	0.17 (-1.60, 1.94)	0.04 (-1.82, 1.90)	-1.26 (-2.70, 0.18)
	4 (high)	0.07 (-1.12, 1.27)	-0.17 (-2.24, 1.90)	-1.43 (-3.37, 0.52)	-2.69 (-4.54, -0.84)
	(trend p)	(0.55)	(0.2)	(0.29)	(0.01)
Stahlhut et al. (2007) (United States, NHANES) Population: 1,451 men in population-based survey (NHANES), 1999-2002; ages >18 yrs; excluded if taking insulin, oral hypoglycemic agents, or sex hormone agonists/antagonists	(adjusted fo intake, phys	r age, age-squ ical activity lev	ared, race/et vel, smoking (e in In-MBP+M hnicity, fat int exposure base filtration rate	ake, calorie d on e, serum ALT,
Outcome: Waist circumference (measured)				В ± SE (р	value)
Exposure: Urine sample, collected at time of obesity measurement MBP and MIBP in urine (µg/g Cr): Median Cr-adjusted 21.2	Increase in v	nference (n = : vaist circumfe graphically).	-	0.79 ± 0.4 in 3 rd quartile	. ,
Analysis: Linear regression, adjusting for variables shown in results column					

3.2.14. Diabetes Effects in Humans 1

2

Table 3-15. Evidence pertaining to DBP and diabetes in humans

Reference and study design	Results					
Diabetes diagnosis						
Sun et al. (2014) (United States) Population: 971 incident diabetes cases and 970 controls from among participants in Nurses Health Study (NHS, 394 cases and 393 controls, mean age 65.6 yrs, 2000- 2008) and Nurses Health Study II (NHS II, 577 cases and 577 controls, mean age 45.6 yrs, 1996-2007)	adjusting f fasting stat hormone r BMI, smok contracept history of c	OR (95% CI), highest compared with lowest quartile metabolite(s), adjusting for matching factors including age at sample collection, race, fasting status, time of sample collection, menopausal status, use of hormone replacement therapy (NHSII only), urinary creatinine levels, BMI, smoking status, postmenopausal hormone use (NHS only), oral contraceptive (NHS II only), physical activity, alcohol use, family history of diabetes, history of hypercholesterolemia or hypertension, and alternative healthy eating index score				
Outcome: Incident type 2 diabetes assessed in biennial follow-up questionnaires. Confirmed based on: (a)	MnBP + MIBP Quartile	nmol/L	NHS OR (95% CI)	nmol/L	NHSII OR (95% CI)	
self-report of elevated fasting glucose ≥7.0 mmol/L, random plasma glucose	1	47.1	1.0 (referent)	107.0	1.0 (referent)	
≥11.1 mmol/L, or plasma glucose	2	88.7	1.26 (0.75, 2.12)	199.5	1.38 (0.81, 2.35)	
≥11.1 mmol/L and at least one symptom (excessive thirst, polyuria, weight loss, or	3	152.0	1.01 (0.59, 1.73)	300.3	1.17 (0.66, 2.10)	
hunger); (b) no symptoms but elevated	4	334.2	0.91 (0.50, 1.68)	591.5	3.16 (1.68, 5.95)	
glucose on two separate occasions; or (c) treatment with insulin or oral hypoglycemic medication	(trend <i>p</i>)		(0.51) NHSII		(0.0002)	
Exposure: Urine sample, collected at beginning of follow-up period (2000-2002 for NHS; 1996-2001 for NHSII)	MnBP Quartile	μg/L	OR (95% CI)			
MnBP + MIBP in urine (nmol/L):	1	13.9	1.0 (referent)			
Median by quartile NHS 47.1, 88.7, 152.0, 334.2	2	26.3	1.53 (0.90, 2.61)			
NHS II 107.0, 199.5, 300.3, 591.5	3	39.4	1.18 (0.67, 2.09)			
MnBP in urine (μg/L): Median by quartile	4	78.1	3.16 (1.69, 5.92)			
NHS II 13.9, 26.3, 39.4, 78.1 Analysis: Conditional logistic regression, adjusting for variables shown in results column	(trend <i>p</i>)		(0.0003)			
James-Todd et al. (2012) NHANES) Population: 215 cases, 1,235 controls from population-based survey (NHANES), 2001- 2008; women ages 20-79 yrs						
Outcome: Positive response to, "Other	MBP quart	ile				
than during pregnancy, have you ever been told by a doctor or health professional that	1 (low)			1.0 (referent)	
you have diabetes or sugar diabetes?"	2			1.29 (0.78-2.13)	
	3			1.71 (1.04-2.81)	

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design		Re	sults	
Exposure: Urine sample, collected at time of survey MnBP in urine (units not reported): Geometric mean Unadjusted 17.7 (based on larger sample of 2,350 women)	4 (high)		1.06 (0.	61-1.85)
Svensson et al. (2011) (Mexico) Population: 221 women with diabetes, 182 healthy without diabetes from case- control study of breast cancer, 2007-2008; mean age 54 yrs	OR (95% CI) per unit increase in In-MnBP (adjusted for creatinine education): 1. 10 (0.75, 1.61)			
Outcome: Self-reported diabetes Exposure: First morning urine samples MnBP in urine (μg/g creatinine): Geometric mean (SD) No diabetes 82.5 (2.6) Diabetes 82.3 (2.7) Analysis: Logistic regression, adjusted for variables shown in the results column (age and waist-height ratio not found to be potential confounders)				
Markers of insulin resistance				
Huang et al. (2014a) (United States, NHANES) Population: 3,083 participants in population-based survey (NHANES), 2001- 2008; ages 12-<80 yrs; self-reported non- diabetic, non-pregnant participants	MnBP (adjusted	for age, gender, ra	rker for diabetes by ace/ethnicity, fastin lycerides, educatic Fasting insulin referent	ng time, urinary
Outcome: Fasting blood glucose; fasting insulin; Homeostasis Model Assessment of insulin resistance (HOMA)	2	0.95 (-0.22, 2.13)	1.15 (0.52, 1.78)	0.28 (0.11, 0.44)
Exposure: Urine sample at time of clinical exam	3	1.70 (0.51, 2.89)	1.41 (0.72, 2.09)	0.28 (0.11, 0.46)
Cr-adjusted MnBP in urine (μg/g Cr): Median 75 th percentileMen13.622.3Women22.335.9Analysis: Logistic regression, adjusting for variables shown in the results column	4 (high) (trend <i>p</i>)	1.91 (0.51, 3.31) (0.0193)	1.11 (0.31, 1.92) (0.0918)	0.34 (0.15, 0.54) (0.0059)
Kim et al. (2013) (South Korea) Population: 560 adults ≥60 yrs (146 men and 414 women), mean age 70.7 yrs, 2008 to 2010	Regression coefficient (95% CI) between insulin resistance biomarker and log-transformed, creatinine-adjusted MnBP in urine (adjusting for age, sex, BMI, educational attainment, exercise, cotinine level, air pollutant and meteorological factors, and total caloric and fat intakes			
Outcome: Insulin resistance as measured by fasting serum glucose and insulin levels	Fasting serum gl	ucose	0.06 (-0.	04, 0.17)
and calculated HOMA-IR	Fasting serum insulin0.38 (-0.30, 1.		. ,	
	HOMA-IR		0.16 (-0.	09, 0.40)

Reference and study design		Results		
Exposure: Urine samples collected over 3- 5 visits	Models with fewer adju	stments also showed i	no association.	
MnBP in urine (μg/mL) (percentile): Median 75 th 95 th 56.57 97.18 201.72				
Analysis: Linear regression mixed-effect model, adjusting for variables shown in the results column.				
Trasande et al. (2013c) (United States, NHANES) Population: 760 participants in the 2003- 2008 NHANES, 12-19 yrs old	OR (95% CI) for insulin r concentration (μM), adj continuous age, race/et ratio, gender, serum cot	usted for urinary creat hnicity, caregiver educ	inine, BMI category, ation, poverty-income	
Outcome: Homeostatic model assessment	Ln-MBP	1	.55 (1.11, 2.16)	
of insulin resistance (HOMA-IR), calculated as fasting glucose (mmol/L) multiplied by	Ln-ΣLMW		.92 (0.71, 1.19)	
fasting insulin (μ U/mL divided by 22.5				
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Regression coefficient (95% CI) for increase in In-HOMA-IR per unit increase in In-urinary metabolite concentration (μ M), adjusted for urinary creatinine, BMI category, continuous age, race/ethnicity, caregiver education, poverty-income ratio, gender, serum cotinine and caloric intake.			
Σ LMW phthalates = sum of MEP, MBP, and	Ln-MBP	0	.13 (0.01, 0.26)	
MIBP Urinary concentration of MBP alone not reported.	Ln-ΣLMW	-0	.07 (-0.18, 0.04)	
Analysis: HOMA-IR assessed as continuous or categorical variable; categorical analysis used cut point of 4.39, reflecting >2 SD above the mean HOMA-IR for normal weight adolescents with normal fasting glucose in NHANES 1999-2002. Linear and logistic regression analyses, adjusting for variables shown in results column. HOMA-IR and urinary phthalate measures natural-log transformed for analysis.				
James-Todd et al. (2012) (United States, NHANES) Population: 2,092 women without history of diabetes with various measures of insulin resistance from population-based	 Among women without diabetes, difference (from first quartile) in median value (95% CI) of glucose and insulin parameters by quarti MBP (Model 1 adjusted for urine creatinine, age, race/ethnicity, education level, poverty status, fasting time, total caloric intake, to fat intake, smoking status, and physical activity; Model 2 also adju for BMI and waist circumference) 			
survey (NHANES), 2001-2008; women age 20-79 yrs				
Outcome: Among women without history	MnBP Quartile Fasting glucose (mg/dL)	Model 1	Model 2	
of diabetes, fasting blood glucose (FBG) (n = 985), homeostasis model assessment-	1 (low)	(referent)	(referent)	
estimated insulin resistance (HOMA)				
(n = 971), glycosolated hemoglobin A1c	2	-0.35 (-2.07, 1.38)	-0.62 (-2.62, 1.38)	
(n = 2,092)	3	-0.19 (-2.22, 1.83)	0.19 (-2.05, 2.43)	
	4 (high)	-0.03 (-2.35, 2.30)	-0.05 (-2.47,2.36)	

Reference and study design		Results	
Exposure: Urine sample, collected at time	Ln (HOMA)		
of survey	1 (low)	(referent)	(referent)
MnBP in urine (units not reported): Geometric mean	2	0.09 (-0.06, 0.25)	0.04 (-0.08, 0.16)
Unadjusted 17.7	3	0.09 (-0.06, 0.24)	0.11 (-0.01, 0.23)
(based on larger sample of 2,350 women) Analysis: Logistic regression, adjusting for	4 (high)	0.14 (-0.04, 0.31)	0.10 (-0.04, 0.24)
variables shown in the results column	A1c (%)		
	1 (low)	(referent)	(referent)
	2	0.01 (-0.04, 0.06)	0.00 (-0.04, 0.04)
	3	-0.02 (-0.08, 0.03)	-0.03 (-0.08, 0.02)
	4 (high)	-0.03 (-0.09, 0.02)	-0.02 (-0.07, 0.03)
Population:960 adults (446 men and514 women) not being treated with hypoglycemic agents or insulin, 2005Outcome:Insulin resistance as measured by fasting serum glucose and insulin levels and calculated HOMA-IRExposure:Urine sampleMBP in urine (ng/mL) (percentile): 	IR) and MBP in uri	g serum insulin, fasting serur ne (comparing insulin resista tile to urine MBP ≤90 th perce	nce biomarkers in urine
Stahlhut et al. (2007) (United States, NHANES) Population: 1,451 men in population- based survey (NHANES), 1999-2002; ages >18 yrs; excluded if taking insulin, oral hypoglycemic agents, or sex hormone agonists/antagonists	age-squared, race level, smoking exp	ient per unit increase in In-M /ethnicity, fat intake, calorie oosure based on cotinine, urin on rate, serum ALT, and GGT) Model 1 $\beta \pm SE$ (<i>p</i> -value)	intake, physical activity nary creatinine,
Outcome: Homeostasis model assessment-estimated insulin resistance (HOMA)	HOMA (ln) (n = 622)	0.064 ± 0.024 (0.011)	0.043 ± 0.023 (0.081)
Exposure: Urine sample, collected at time of obesity measurement MBP in urine: Median	Increases in HOM. graphically).	A began in 3 rd quintile of expo	osure (data shown
Cr-adjusted (µg/g Cr) 21.2			
Analysis: Linear regression, adjusting for variables shown in results column			

1

1 3.2.15. Cardiovascular Effects in Humans

2 3

Table 3-16. Evidence pertaining to DBP and cardiovascular disease risk factors in humans

Reference and study design	Results
Shiue (2014) (United States, NHANES) Population: 2,489 participants in population- based survey (NHANES), 2011-2012; ages ≥20 yrs	OR (95% CI) for high blood pressure per unit increase in log- transformed MnBP (adjusted for urinary creatinine, age, sex, ethnicity, BMI and sampling weights)
Outcome: High blood pressure (systolic blood pressure ≥140 mmHg and diastolic blood pressure ≥90 mmHg)	1.35 (1.13, 1.62) Mean ± SD MBP in urine (units not given) in participants with normal and high blood pressure:
Exposure: Urine sample collected at time of clinical exam MnBP in urine (units not given): Mean ± SD Normal BP 23.58 ± 87.67 High BP 25.47 ± 40.33 Analysis: Survey-weighted logistic regression,	Normal BP (n = 2,180) High BP (n = 309) p = 0.709 23.58 ± 87.67 25.47 ± 40.33 p
adjusting for variables shown in results column; t- test for comparison between concentrations	
Trasande et al. (2013b) (United States, NHANES) Population: 2,447 children in population-based survey (NHANES), 2003-2008; ages 8-19 yrs old	Changes in z-score (95% Cl) per unit increase in In-phthalates (adjusted for sex, caloric intake, television watching, poverty:income, parental education, serum cotinine, urinary
Outcome: Systolic blood pressure (SBP) and diastolic blood pressure (DBP) z-score (based on CSC norms, sex, and age); prehypertension (BP ≥90 th percentile for age/height/sex); fasting serum triglycerides (n = 906; high = ≥100 mg/dL); nonfasting high density cholesterol (HDL; n = 2,555; low = <40 mg/dL)	creatinine, BMI, race/ethnicity, and age) MnBP SBP 0.06 (0.001, 0.12) DBP 0.02 (-0.03, 0.07) Triglycerides not reported
Exposure: Urine sample, collected at time of BMI measurement Σ LMW phthalates in urine (μ M): Geometric mean BP <90 th percentile 0.817 Σ Low MWP = sum of MEP, MBP, and MIBP (individual metabolite concentrations not reported but are available in the NHANES database)	HDLnot reportedOR (95% CI) for BP \geq 90th percentile per unit increase in InphthalatesMnBPBP \geq 90th1.05 (0.82, 1.35)percentileHigh triglyceridesHigh triglyceridesnot reportedLow HDLnot reported
Analysis: Logistic regression for pre-hypertension (BP ≥90 th percentile) classification; linear regression for SBP and DBP z-score and triglycerides and HDL as continuous variable; all models adjusted for variables shown in results column	Interactions with covariates examined in supplemental analyses; stratified analyses showed a statistically significant association between ∑low MWP and SBP.

1 3.2.16. Cancer Effects in Humans

2

Table 3-17. Evidence pertaining to DBP and cancer in humans

Reference and study design		Results				
Carran and Shaw (2012) (New Zealand) Population: 76 female offspring born to New Zealand soldiers exposed to DBP during military service in Malaya from 1948-1960	Breast cancer frequency Daughters of General population Daughters of Exposed cohort 4.0% (3/76)*					
Outcome: Breast cancer. Assessed via questionnaire sent to the veterans in 2009 (age 70-> 80 yrs), followed up with personal interview. Low response rate: of 252 veterans contacted, 85 responded, of whom 71 reported DBP exposure; 58 of these had children (n=155; 79 male, 76 female) after return to New Zealand following military service.	0.48% * <i>p</i> < 0.05.	4.0% (3/76)*			
Exposure: Exposure to DBP self-reported via questionnaire (DBP used as insect repellant and Acaricide; applied through painting of seams of clothes before military operations in jungle areas of Malaysia). Authors performed dose reconstruction experiments using DBP-treated clothing; estimated daily exposure 64 mg/kg-day.						
Analysis: Incidence in daughters of exposed compared to U.S. general population incidence rate (date[s] not reported) for women age <39 yrs (New Zealand incidences not available)						
Lopez-Carrillo et al. (2010) (Mexico)	Geometric mean (95% C	Cl) MnBP in urine (µg/g Cr), by			
Population: 233 incident cases, 221 population controls matched by age and residency, ≥18 yrs of age,	menopausal status	Controls	Casas			
>1 yr in study area, 2007-2008; mean age 53 yrs; participation rates: 94.8% of cases and 99.5% of controls	Full sample (<i>p</i> < 0.05)	Controls 82.47 (72.67, 93.60)	Cases 62.98 (56.06, 70.76)			
Outcome: Histologically-confirmed breast cancer Exposure: Urine sample (for cases, urine collected on	Pre-menopause (<i>p</i> < 0.05)	81.61 (65.61, 101.51)	57.56 (47.63 <i>,</i> 69.55)			
average 2 mo after diagnosis, but before treatment) MnBP in urine, controls:	Post-menopause $(p < 0.05)$	82.91 (70.85 <i>,</i> 97.03)	66.52 (57.33, 77.18)			
Geometric mean Cr-adjusted (µg/g Cr) 82.47 Analysis: Logistic regression, adjusting for variables	(adjusted for current ag	OR (95% CI) for breast cancer, by tertile of MnBP (adjusted for current age, age at menarche, parity, menopausal status, and other phthalate metabolites)				
shown in results column	MnBP tertile (µg/g Cr)	Full s	ample			
	1 (6.21-52.55)	1.0 (re	eferent)			
	2 (52.55-113.69)	1.08 (0.	66, 1.78)			
	3 (113.70-1,746.03)	0.85 (0.	47, 1.57)			
	(trend <i>p</i>)	(0.	.51)			

1 **3.3. EXPERIMENTAL STUDIES**

2 3.3.1. Male Reproductive Effects

3 4

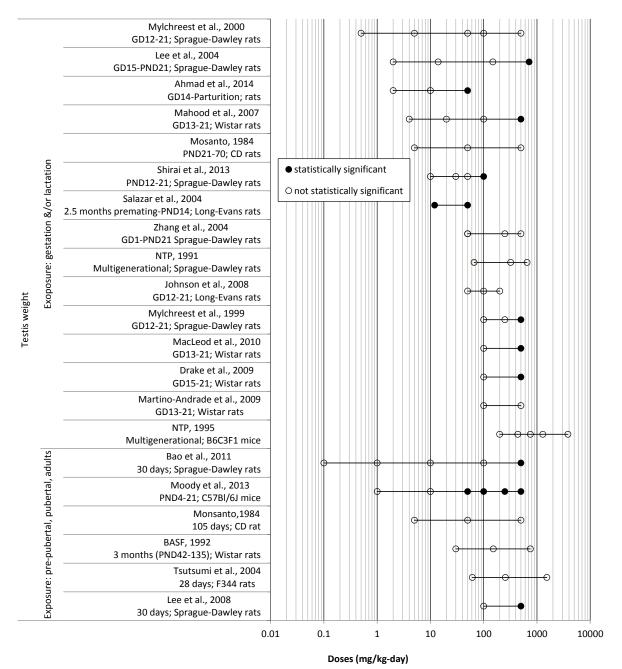
Table 3-18. Evidence pertaining to male reproductive toxicity following oral exposure to DBP: alterations in testes weight in animals

Reference and study design			Res	ults				
Changes in testis weight and volume afte	er gestational e	exposure						
Mylchreest et al. (2000)	response relat	tive to contro	ol					
Rat (Sprague-Dawley); assessed in male	Doses	0 0.5	5	50	100	500		
offspring from 11-20 litters/group 0, 0.5, 5, 50, 100, 500 mg/kg-day	Absolute righ	t testis weig	ht in adults	;				
Gavage	PND 110 (0% 2%	-0.3%	3.3%	0.2%	-7.6%		
GDs 12-21	Note: Mean to enlarged (> 3 were also exc	g) testes we	re excluded	. Malformed	l reproductiv	e organs		
<u>Lee et al. (2004)</u>	response relat	tive to contro	ol					
Rat (Sprague-Dawley); 6-8 dams/group;	Doses	0	2-3	14-29	148-291	712-1,372		
assessed in 8-10 male offspring/group (including ≥1 male/litter)	Relative testis weight							
0, 20, 200, 2,000, 10,000 ppm Diet (0,	PND 21	0%	-5%	-7%	-7%	-19*%		
2-3, 14-29, 148-291, 712-1,372) mg/kg-day Diet	PND 77	0%	1%	-3%	6%	-8%		
	PND 140	0%	-7%	-13%	0%	NA		
GD 15-PND 21	Note: Study a could not be o represent a ra periods (GDs	obtained in t inge estimat	he highest (ed by the st	dose group a tudy authors	t PNW 20. D	oses		
Ahmad et al. (2014)	response relat	tive to contro	ol					
Rat (Strain not specified); assessed in	Doses	0		2	10	50		
male offspring; sample size not reported	Absolute test	is weight						
0, 2, 10, 50 mg/kg-day	PND 75	0%	0	%	-1%	-3*%		
Gavage GD 14 to Parturition								
Mahood et al. (2007)	response relat	tive to contro	ol					
Rat (Wistar); assessed in males from 4-	Doses	0	4	20	100	500		
16 litters/group (28-98 male offspring/group)	Absolute test	is weight ^a						
0, 4, 20, 100, 500 mg/kg-day	GD 21	0%	4%	-2%	-13%	-30*%		
Gavage	Adult (PND 90)) 0%	-8%	-2%	-1%	-47*%		
GDs 13-20 or 13-21	Note: Male offspring analyzed at GD 21 were exposed from GDs 13-20; male offspring analyzed at PND 90 were exposed from GDs 13-21.							
	+							

Reference and study design	Results								
Monsanto (1984)	Doses	0		5	50	500			
Rat (CD); 20 breeding pairs/group	Absolute testi	s weight							
[females exposed only], F1: 9-10 males per group	F1, group A	0%		-6%	-4%	-2%			
0, 5, 50, 500 mg/kg-day	F1, group B	0%		3%	3%	-8%			
Diet	Relative testis weight								
F0: 14 days before mating and continued through weaning [PND 21]	F1, group A	0%		-5%	2%	0%			
F1, group A: continued basal diet to PND 70	F1, group B	0%		5%	4%	-3%			
F1, group B: Received same dose as F0 to PND 70									
<u>Shirai et al. (2013)</u>	response relat	ive to contr	ol						
Rat (Sprague-Dawley); 4 males/group,	Doses	0	10	30	50	100			
20 litters/ group 0, 10, 30, 50, 100 mg/kg-day	Relative testis weight ^a								
Gavage	PND 35	0%	0%	-3%	2%	1%			
PNDs 12-21	PND 49	0%	2%	1%	2%	3%			
	PND 63	0%	2%	0%	2%	-18*%			
	PND 98	0%	-2%	4%	0%	-31*%			
	PND 119	0%	1%	3%	2%	-38*%			
Salazar et al. (2004)	response relat	ive to contr	ol						
Rat (Long Evans); 15 dams/group;	Doses		0		12	50			
assessed in 6 male offspring/group 0, 610, 2,500 ppm Diet (0, 12,	Relative testis weight								
50 mg/kg-day) ^b	PND 1 ^b		0%	-2	1*%	-21*%			
Diet									
2.5 months before mating to PND 14									
Zhang et al. (2004b)	response relat	ive to contr	ol						
Rat (Sprague-Dawley); 14-16 dams/group; assessed in 20 male	Doses		0	50	250	500			
offspring/group	Absolute testi	s weight in	adults, r	ight testis v	veight				
0, 50, 250, 500 mg/kg-day	PND 70		0%	2%	-6%	-11%			
Gavage GD 1-PND 21									
Johnson et al. (2008)	response relat	ive to contr	ol						
Rat (Long Evans); 3-7 litters/group;	Doses	0		50	100	200			
assessed in 1-12 male pups/litter 0, 50, 100, 200 mg/kg-day	Absolute testi	s weight							
Gavage GDs 12-21	PND 21	0%		0.1%	10%	3%			
003 12-21	response relat								

Reference and study design	Results								
NTP (1991)	Doses	0	66	320	651				
Rat (Sprague Dawley); 20-40	Absolute testis	weight in adult	F1 rats						
males/generation/group 0, 66, 320, or 651 mg/kg-day Diet		0%	0%	2%	-39%				
Multigenerational study Note: study authors did not specify date of necropsy for F1 animals.									
<u>Mylchreest et al. (1999a)</u>	response relativ	e to control							
Rat (Sprague-Dawley); 9-10	Doses	0	100	250	500				
litters/group; (52-62 male offspring/group)	Absolute testis weight in adults, right testis weight								
0, 100, 250, 500 mg/kg-day Gavage GDs 12-21	3-month old	0%	2%	-1%	-14*%				
Macleod et al. (2010)	response relativ	e to control							
Rat (Wistar); ≥3 litters/group; assessed	Doses	0		100	500				
in 6-21 male offspring/group 0, 100, 500 mg/kg-day	Absolute testis	weight							
Gavage GDs 13-21	PND 25 ^b	0%		-2%	-24*%				
Drake et al. (2009)	response relativ	e to control							
Rat (Wistar); 13-15 litters/group;	Doses	0		100	500				
assessed in 32-45 male offspring/group 0, 100, 500 mg/kg-day	Absolute testis	weight in adult	s						
Gavage GDs 15-21	>12 wks ^b	0%		-5%	-28*%				
Martino-Andrade et al. (2009)	response relativ	e to control							
Rat (Wistar); 4-8 group	Doses	0		100	500				
0, 100, 500 mg/kg-day	Absolute testis	weight in adult	s						
Gavage GDs 13-21	PND 90	0%		-0.6%	2%				

Reference and study design				Res	ults				
<u>NTP (1995)</u>	response rel	ative to	control						
Mouse (B6C3F ₁); 20 females/group; 10	Doses	0	199	43	37	750	1,286	3,804	
offspring/sex/group 0, 1,250, 2,500, 5,000, 7,500, 10,000	Absolute rig	testis	weight						
ppm or 20,000 (dams [gestation/lactation]:0, 244, 488, 975, 1,463, 1,950, 3,900 mg/kg-day ^c ; pups [post-weaning]: 0, 199, 437, 750, 1,286, 3,804 mg/kg-day in males Diet Dams: GD 1-PND 28; Pups: PNDs 29-56	PND 56	0%	2%	3'	%	-1%	0%	-12%	
Dams: GD 1-PND 28; Pups: PNDs 29-56									
Changes in testis weight and volume after	er pubertal ai	nd/or ad	ult exposi	ure					
<u>Bao et al. (2011)</u>	response rel	ative to	control						
Rat (Sprague-Dawley); 5-week-old	Doses	0	0.1	1.0	1	0	100	500	
males, 20/group 0, 0.1, 1.0, 10, 100, 500 mg/kg-day	Absolute testis weight after pubertal exposure								
0, 0.1, 1.0, 10, 100, 500 mg/kg-day Gavage 30 days		0%	-3%	-2%	-4	1%	-2%	-25*%	
Moody et al. (2013)	response rel	ative to	control						
Mouse (C57BI/6J); 8-20 four day old	Doses	0	1	10	50	100	250	500	
males/group, 2-9 litters/ group 0, 1, 10, 100, 500 mg/kg-day from PNDs	Relative tes	tis weigl	nt (PND 7	7)					
4-7 or PNDs 4-21; 0, 1, 10, 50, 100, 250,	Individual	0%	7%	-4%	-	-12%	-	-23*%	
500 mg/kg-day from PNDs 4-14	Litter Mean	s 0%	3%	-11%	-	-69*%	-	-44%	
Gavage	Relative tes	tis weigł	nt (PND 1	4)					
PNDs 4-7, PNDs 4-14, or PNDs 4-21	Individual	0%		-10%	-13*%	-17*%	-34*%	-41*%	
	Litter Mean.	s 0%	-2%	-8%	-12%	-16%	-33%	-38%	
	Relative tes	tis weigł	nt in adul	ts (PND	56 after e	exposure	from PND	s 4-21)	
	Individual	0%		8%	-	5%	-	-12*%	
Monsanto (1984)	response rel	ative to	control						
Rat (CD); 20 breeding pairs/group;	Doses		0	5	5	50		500	
19-20 animals evaluated [males	Absolute te	stis weig							
exposed only] 0, 5, 50, 500 mg/kg-day Diet 105 days			0%	29	%	0%		1%	


Reference and study design		Results							
BASF (1992)	response rela	ative to control							
Rat (Wistar); 10/sex/group; assessed in	Doses	0	30	152	752				
10 males/group 0, 30, 152, 752 mg/kg-day	Absolute tes	tis weight in adu	lt rats						
Diet 3 months (PNDs 42-135)		0%	2%	-2%	5%				
Tsutsumi et al. (2004)	response relative to control								
Rat (F344); 6-week-old males, 5/group	Doses	0	61	255	1,536				
0, 61, 255, 1,536 mg/kg-day	Relative testis weight in adults								
Diet 28 days		0%	2%	3%	-9%				
	NOTE: Study authors noted that rats in the high-dose group were observed to rake the food, leading to food loss out of cage and probable overestimation of food consumption and dietary intake.								
Lee et al. (2008)	response rela	ative to control							
Rat (Sprague-Dawley); 3-week-old	Doses	0		100	500				
males, 6/group 0, 100, 500 mg/kg-day	Absolute testis weight in pre-pubertal rats								
Gavage		0%		-6%	-62*%				
30 days									

PND = postnatal day; PNW = postnatal week; NR = not reported

^aValues reported by the study authors were estimated from published graphs using "Grab It!", a Microsoft Excel based free software application used to digitize data from image files. Publisher: datatrendsoftware.com. ^bDetails on dose estimation were not provided by the study authors.

^cDoses calculated using <u>U.S. EPA (1988)</u> reference subchronic values for food intake (0.0048 kg/day) and body weight (0.0065 kg) in female B6C3F1 mice.

*Statistically increased over control as reported by study authors.

1

2

Figure 3-1. Exposure-response array of male reproductive toxicity following oral exposure to DBP: alterations in testes weights.

1 2 3

Table 3-19. Evidence pertaining to male reproductive toxicity following oral exposure to DBP: alterations in accessory male reproductive organ weights in animals

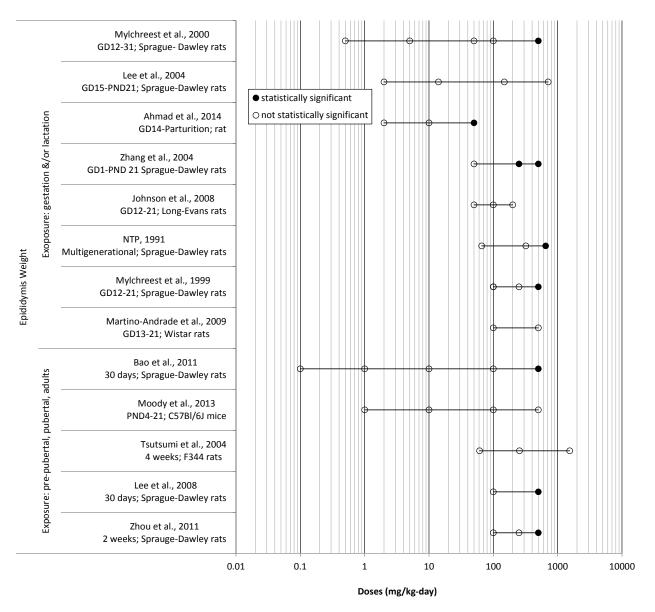
Reference and study design				Results					
Changes in epididymis weight after gesta	tional expos	ure							
Mylchreest et al. (2000)	response r	elative to co	ntrol						
Rat (Sprague-Dawley); assessed in male offspring from 11-20 litters/group	Doses	0	0.5	5	50	100	500		
0, 0.5, 5, 50, 100, 500 mg/kg-day	Absolute right epididymis weight in adults								
Gavage	PND 110	0%	1%	0.2%	3%	-1%	-13*%		
GDs 12-21	Note: Malformed reproductive organs were excluded from analysis in the 500 mg/kg-day group.								
<u>Lee et al. (2004)</u>	response r	elative to co	ntrol						
Rat (Sprague-Dawley); 6-8 dams/group;	Doses	0	2-	3 14	1-29	148-291	712-1,372		
assessed in 8-10 male offspring/group (including ≥1 male/litter)	Relative epididymides weight								
0, 20, 200, 2,000, 10,000 ppm Diet (0, 2- 3, 14-29, 148-291, 712-1,372 mg/kg-day) Diet GD 15-PND 21	PND 21	0%	-11	.% ()%	-11%	-11%		
	PND 77	0%	09	% -8	8%	-4%	-21%		
	PND 140	0%	-8	% -1	.2%	0%	NA		
	could not l represent	y authors in be obtained a range estin Ds 15-20, Pl	in the hig mated by	sh-dose gro the study a	up at PN outhors fo	D 140. Do			
Ahmad et al. (2014)	response r	elative to co	ntrol						
Rat (Strain not specified); assessed in	Doses	C)	2	:	10	50		
male offspring; sample size not reported 0, 2, 10, 50 mg/kg-day	Absolute e	pididymis v	veight						
Gavage	PND 75	09	%	-2%		4%	-12*%		
GD 14 to Parturition									
Zhang et al. (2004b)	response r	elative to co	ntrol						
Rat (Sprague-Dawley); 14-16	Doses		0	50	2	250	500		
dams/group; assessed in 20 male offspring/group	Absolute r	ight epididy	mis weig	ht in adults	5				
0, 50, 250, 500 mg/kg-day	PND 70	0	%	-0.3%	-1	6*%	-29*%		
Gavage GD 1-PND 21									

Reference and study design	Results									
Johnson et al. (2008)	response relat	ive to co	ontrol							
Rat (Long-Evans); 3-7 litters/group;	Doses		0	50	100		200			
assessed in 1-12 male pups/litter 0, 50, 100, 200 mg/kg-day	Absolute epididymis weight									
Gavage	PND 21	C	1%	-8%	-12%		-24%			
GDs 12-21										
<u>NTP (1991)</u>	response relat	ive to co	ontrol							
Rat (Sprague-Dawley); 20 breeding	Doses		0	66	320		651			
pairs/dose/generation; 40 control breeding pairs	Absolute right	Absolute right cauda epididymis weight in adults								
0, 0.1, 0.5, 1% Diet (0, 66, 320, or	~PND 88	C	1%	3	-2		-43*			
651 mg/kg-day) Multigenerational study	Absolute right	Absolute right epididymis weight in adults								
	~PND 88	C	1%	3	0		-29*			
	Note: Adult F1	Note: Adult F1 males were sampled on PND 88 \pm 10 days								
Mylchreest et al. (1999a)	response relat	response relative to control								
litters/group; (52-62 male	Doses		0	100	250		500			
	Absolute right	t epididy	/mis weigh	nt in adults	5					
0, 100, 250, 500 mg/kg-day	3-month old	C	1%	3%	-2%		-26*%			
Gavage										
GDs 12-21										
<u>Martino-Andrade et al. (2009)</u>	response relat	ive to co	ontrol							
Rat (Wistar); 4-7 litters/group;(8-17 male offspring/group)	Doses		0		100		500			
0, 100, 500 mg/kg-day	Absolute epid	idymis v	veight in a	dults						
Gavage	PND 90		0%		4%		-3%			
GDs 13-21										
Changes in epididymis weight after pube	rtal and/or adul	t exposu	re							
<u>Bao et al. (2011)</u>	response relat	ive to co	ontrol							
Rat (Sprague-Dawley); 5-week-old males	Doses	0	0.1	1.0	10	100	500			
20/group 0, 0.1, 1.0, 10, 100, 500 mg/kg-day	Absolute epid	idymis v	veight afte	er puberta	l exposure					
Gavage 30 days		0%	1%	-3%	1%	3%	-14*%			

Reference and study design	Results								
<u>Moody et al. (2013)</u>	response rela	tive to co	ntrol						
Mouse (C57BI/6J); 8-10 four day old	Doses	0	1	10		100	500		
males/group	Relative epidi	idymis w	eight in adu	ults					
0, 1, 10, 100, 500 mg/kg-day Gavage	PND 56	0%	7%	11%		6%	21%		
PNDs 4-21									
Tsutsumi et al. (2004)	response rela	tive to co	ntrol						
Rat (F344); 6-week-old males, 5/group	Doses	()	61	255		1,536		
0, 61, 255, 1,536 mg/kg-day	Relative epidi	idymis w	eight in adı	ults					
Diet		0	%	3%	3%		-10%		
4 weeks	Note: Study a to "rake" the overestimatio	food (ch	ow), leadin	g to food lo	oss out o	f cage a			
<u>Lee et al. (2008)</u>	response rela	tive to co	ntrol						
Rat (Sprague-Dawley); 3-week-old	Doses		0	1	100		500		
males, 6/group 0, 100, 500 mg/kg-day	Absolute epic	Absolute epididymis weight in pre-pubertal rats							
Gavage 30 days			0%	-	-5%		-36*%		
Zhou et al. (2011)	response rela	tive to co	ntrol						
Rat (Sprague-Dawley); 10 adult	Doses	()	100	250		500		
males/group 0, 100, 250, 500 mg/kg-day	Absolute epididymis weight in adults ^a								
Gavage 2 weeks		0	%	1%	-4%	1	-17*%		
Changes in prostate weight after gestati	ional exposure								
Mylchreest et al. (2000)	response rela	tive to co	ntrol						
Rat (Sprague-Dawley); assessed in	Doses	0	0.5	5	50	100	500		
male offspring from 11-20	Absolute pros	state wei	ght in adult	ts (PND 110))				
litters/group	Ventral	0%	-4%	-1%	-5%	-3%	-17%		
0, 0.5, 5, 50, 100, 500 mg/kg-day Gavage GDs 12-21	Dorsolateral	0%	2%	2%	1%	-4%	-17*%		
	response relat	tive to co	ntrol						
	Doses	0	2-3	14-29	14	8-291	712-1,372		
	Relative vent						,		
	PND 77	0%	33%			25%	8%		
	PND77	070	5570	42*%	4	2370	070		

Reference and study design			Results						
Lee et al. (2004) Rat (Sprague-Dawley); 6-8 dams/group; assessed in 8-10 male offspring/group (including ≥1 male/litter) 0, 20, 200, 2,000, 10,000 ppm Diet (0, 2- 3, 14-29, 148-291, 712-1,372) mg/kg-day Diet GD 15-PND 21	Note: Study authors indicated that a sufficient number of male animals could not be obtained in the high-dose group at PND 140. Doses represent a range estimated by the study authors for three different tin periods (GDs 15-20, PNDs 2-10, and PNDs 10-21).								
Ahmad et al. (2014)	response rela	tive to control							
Rat (Strain not specified); assessed in	Doses	0	2	10	50				
male offspring; sample size not reported 0, 2, 10, 50 mg/kg-day	Absolute pros	state weight in	adults						
Gavage GD 14 to Parturition	PND 75	0%	-1%	-2%	-15*%				
Zhang et al. (2004b)	response rela	response relative to control							
Rat (Sprague-Dawley); 14-16	Doses	0	50	250	500				
dams/group; assessed in 20 male offspring/group	Absolute pros	state weight in	adults						
0, 50, 250, 500 mg/kg-day Gavage GD 1-PND 21	PND 70	0%	-16%	-31*%	2%				
<u>NTP (1991)</u>	response rela	tive to control							
Rat (Sprague-Dawley); 20 breeding	Doses	0	66	320	651				
pairs/dose/generation; 40 control breeding pairs,	Absolute pros	state weight in	adults						
0, 0.1, 0.5, 1% Diet (0, 66, 320, or 651 mg/kg-day)	~PND 88	0%	-2%	-12%	-26*%				
Multigenerational study	Note: Adult F	1 males were sa	ampled on PNI	0 88 ± 10 days					
Macleod et al. (2010)	response rela	tive to control							
Rat (Wistar); \geq 3 litters/group; assessed	Doses	0		100	500				
in 6-21 male offspring/group 0, 100, 500 mg/kg-day	Absolute ven	tral prostate w	eight						
Gavage	PND 25 ^a	0%		-27*%	-20*%				
GDs 13-21									
Drake et al. (2009)	response rela	tive to control							
Rat (Wistar); 13-15/group	Doses 0 100 500								
0, 100, 500 mg/kg-day Gavage	Absolute ven	tral prostate w	eight in adults						
GDs 15-21	>12 wks ^a	0%		-18%	-36*%				
Martino-Andrade et al. (2009)	response rela	tive to control							
	Doses	0		100	500				

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE


Reference and study design	Results								
Rat (Wistar); 4-7 litters/group;(8-17	Absolute pro	ostate wei	ght in adult	S					
male offspring/group) 0, 100, 500 mg/kg-day Gavage GDs 13-21	PND 90		0%		-3%		-8%		
Mylchreest et al. (1999a)	response rela	ative to co	ntrol						
Rat (Sprague-Dawley); 9-10	Doses		0	100		250	500		
litters/group; (52-62 male offspring/group)	Absolute prostate weight in adults (3-month old)								
0, 100, 250, 500 mg/kg-day	Ventral Pros		0%	2%	-	-8%	-10%		
Gavage GDs 12-21	Dorsolateral		0%	0%		0%	-5%		
Changes in prostate weight after puberta	ıl and/or adult	exposure							
Tsutsumi et al. (2004)	response rela	ative to co	ntrol						
Rat (F344); 6-week-old males, 5/group	Doses		0	61	:	255	1,536		
0, 61, 255, 1,536 mg/kg-day	Absolute prostate weight in adults								
Diet 4 weeks	Ventral Pros	tate	0%	-6%	í	L0%	-10%		
	Dorsolateral		0%	-4%	-	12%	-19*%		
	Note: Study observed to overestimati	rake the f	ood, leading	to food l	oss out	of cage an			
Lee et al. (2008)	response rela	ative to co	ntrol		-				
Rat (Sprague-Dawley); 3-week-old	Doses		0		100		500		
males, 6/group	Absolute ventral prostate weight in pre-pubertal rats								
0, 100, 500 mg/kg-day Gavage			0%		-6%		-23*%		
30 days									
Changes in seminal vesicle weight after g	l estational exp	osure		•		·			
Mylchreest et al. (2000)	response rela	ative to co	ntrol						
Rat (Sprague-Dawley); assessed in male	Doses	0	0.5	5	50	100	500		
offspring from 11-20 litters/group 0, 0.5, 5, 50, 100, 500 mg/kg-day	Absolute ser	ninal vesi	cle weight i	n adults					
Gavage GDs 12-21	PND 110	0%	4%	4%	3%	2%	-8%		
Lee et al. (2004)	response rela	ative to co	ntrol						
Rat (Sprague-Dawley); 6-8 dams/group;	Doses	0	2-3	14-2	29	148-291	712-1,372		
assessed in 8-10 male offspring/group (including ≥1 male/litter)	Relative sem					-	,		
0, 20, 200, 2,000, 10,000 ppm Diet (0, 2-	PND 77	0%	-3%	7%	,)	-17%	-13%		
3, 14-29, 148-291, 712-1,372 mg/kg)	PND 140	0%	-10%	-139		-10%	NA		

Reference and study design	Results							
Diet GD 15-PND 21	Note: Study authors indicated that a sufficient number of male a could not be obtained in the high-dose group at PND 140. Doses represent a range estimated by the study authors for three differ periods (GDs 15-20, PNDs 2-10, and PNDs 10-21).							
<u>Ahmad et al. (2014)</u>	response relativ	ve to control						
Rat (Strain not specified); assessed in	Doses	0	2	10	50			
male offspring; sample size not reported 0, 2, 10, 50 mg/kg-day	Absolute semir	nal vesicle weig	ht in adults					
Gavage	PND 75	0%	-1%	-1%	-13*%			
GD 14 to Parturition								
<u>NTP (1991)</u>	response relativ	ve to control						
Rat (Sprague-Dawley); 20 breeding	Doses	0	66	320	651			
pairs/dose/generation; 40 control breeding pairs,	Absolute semir	nal vesicle weig	ht in adults					
0, 0.1, 0.5, 1% Diet (0, 66, 320, or	~PND 88	0%	1%	-4%	-29*%			
651 mg/kg-day) Multigenerational study	Note: Adult F1	males were sam	pled on PNE) 88 ± 10 days				
<u>Martino-Andrade et al. (2009)</u>	response relativ	ve to control						
male offspring/group) 0, 100, 500 mg/kg-day	Doses	0		100	500			
	Absolute semir	nal vesicle weig	ht in adults					
	PND 90	0%		-10%	-8%			
Macleod et al. (2010)	response relative to control							
Rat (Wistar); ≥3 litters/group; assessed in 6-21 male offspring/group	Doses	0		100	500			
0, 100, 500 mg/kg-day	Absolute semir	nal vesicle weig	ht					
Gavage GDs 13-21	PND 25 ^a	0%		-12%	-59*%			
Mylchreest et al. (1999a)	response relativ	ve to control						
Rat (Sprague-Dawley); 9-10	Doses	0	100	250	500			
litters/group; (52-62 male offspring/group)	Absolute semir	nal vesicle weig	ht in adults					
0, 100, 250, 500 mg/kg-day Gavage	3-month old	0%	0%	-1%	-21*%			
GDs 12-21								
Changes in seminal vesicle weight after p	ubertal and/or a	dult exposure						
Tsutsumi et al. (2004)	response relativ	ve to control						
Rat (F344); 6-week-old males, 5/group	Doses	0	61	255	1,536			
0, 61, 255, 1,536 mg/kg-day Diet	Absolute seminal vesicle weight in adults							
		0%	-3%	-5%	-17*%			

Reference and study design	Results									
4 weeks	Note: Study authors noted that rats in the high-dose group were observed to rake the food, leading to food loss out of cage and probable overestimation of food consumption and dietary intake.									
<u>Lee et al. (2008)</u>	response relative to control									
Rat (Sprague-Dawley); 3-week-old	Doses		0		100		500			
males, 6/group 0, 100, 500 mg/kg-day	Absolute seminal vesicle weight in pre-pubertal rats									
Gavage			0%		-8%	-	47*%			
30 days										
Changes in vas deferens weight after ges	tational exposu	re								
<u>Mylchreest et al. (2000)</u>	response relat	ive to co	ontrol							
Rat (Sprague-Dawley); assessed in male	Doses	0	0.5	5	50	100	500			
offspring from 11-20 litters/group 0, 0.5, 5, 50, 100, 500 mg/kg-day	Absolute vas deferens weight in adults									
Gavage										
GDs 12-21	PND 110	0%	2%	1%	2%	1%	-7%			
Mylchreest et al. (1999a)	response relative to control									
Rat (Sprague-Dawley); 9-10	Doses	0		100	250		500			
litters/group; (52-62 male offspring/group)	Absolute vas deferens weight in adults									
0, 100, 250, 500 mg/kg-day	3-month old 09		9% 2%		2% 13%		-8%			
Gavage										
GDs 12-21										
Changes in levator ani weight after gesta	tional exposure									
Mylchreest et al. (2000)	response relative to control									
Rat (Sprague-Dawley); assessed in male	Doses	0	0.5	5	50	100	500			
offspring from 11-20 litters/group 0, 0.5, 5, 50, 100, 500 mg/kg-day	Absolute levator ani weight in adults									
Gavage	PND 110	0%	0.2%	-3%	-5%	-5%	-24*%			
GDs 12-21										
Martino-Andrade et al. (2009)	response relative to control									
Rat (Wistar); 4-7 litters/group;(8-17	Doses		0		100		500			
male offspring/group) 0, 100, 500 mg/kg-day	Absolute leva	tor ani/	bulbocave	ernosus m	uscle weigh	t in adult	s			
Gavage	3-month old		0%		1%		-1%			
Guidge										

PND = postnatal day

^aValues reported by the study authors were estimated from published graphs using "Grab It!", a Microsoft Excel based free software application used to digitize data from image files. Publisher: datatrendsoftware.com. *Statistically increased over control as reported by study authors.

1 2 3

Figure 3-2. Exposure-response array of male reproductive toxicity following oral exposure to DBP: alterations in epididymis weights.

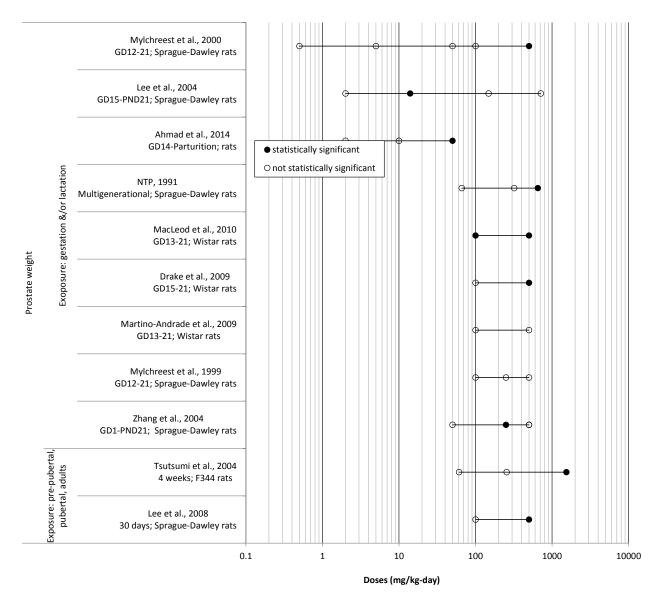
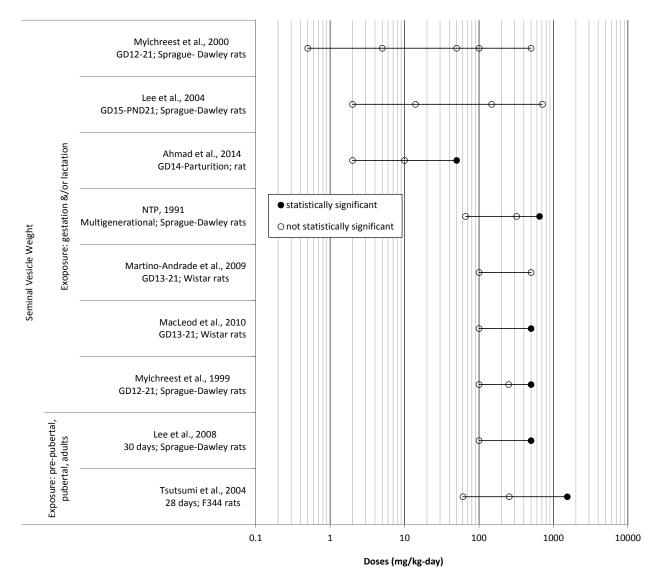
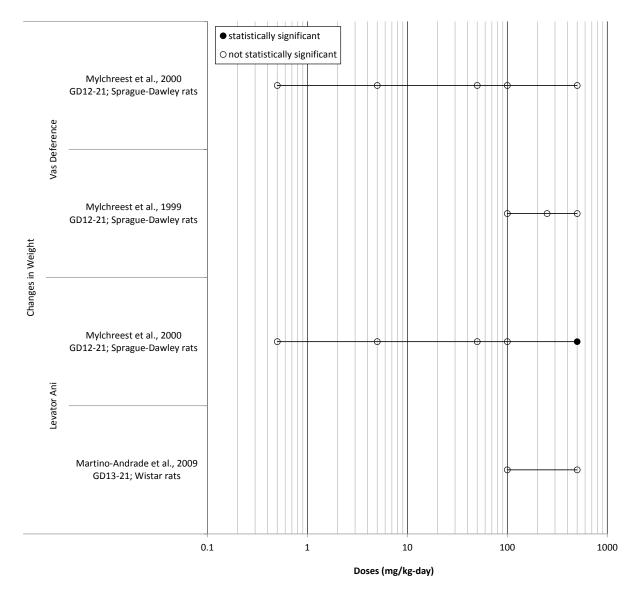



Figure 3-3. Exposure-response array of male reproductive toxicity following oral exposure to DBP: alterations in prostate weights.

1


2

1

2

Figure 3-4. Exposure-response array of male reproductive toxicity following oral exposure to DBP: alterations in seminal vesicle weights.

1 2 3

Figure 3-5. Exposure-response array of male reproductive toxicity following oral exposure to DBP: alterations in vas deference weights.

1 2

Table 3-20. Evidence pertaining to male reproductive toxicity following oralexposure to DBP: histopathological changes in animals

Reference and study design	Results										
Histopathological changes after gestat	ional exposu	re									
<u>Boekelheide et al. (2009)</u>	response re	lative to a	control								
Rat (Sprague Dawley);	Doses	0.1	1	10	30	50	100	500			
4-5 litters/treatment group;10 litters/control group	Testis volume										
0, 0.1, 1, 10, 30, 50, 100, 500 mg/kg-day	GD 21 fetusesª	-3%	-6%	-1%	-29%	-50*%	6 -51*%	-48*%			
Gavage	Number of	cells per	testis								
GDs 12-20	GD 21 fetusesª	-1%	-3%	-21%	-42*%	-46*%	6 -47*%	-51*%			
	Number of	tubular c	ross se	ctions							
	GD 21 fetusesª	-6%	-8%	-6%	-12%	-45*%	6 -39*%	-47*%			
	Number of MNGs										
	GD 21 fetusesª	-50%	0%	100%	400%	700%	ő 6,950*%	5,750*%			
Mylchreest et al. (2000) Rat (Sprague-Dawley; 11-20 litters/group; assessed in 103-140 male offspring/group	Doses	0	0.5	5	5	50	100	500			
	Seminiferous tubule degeneration in adults ^b (PND 110)										
	Incidence	0/134	1/1:	18	0/103	0/120	2/140	27/58			
0, 0.5, 5, 50, 100, 500 mg/kg-day	Percent	0%	1%	, 5	0%	0%	1%	47%			
Gavage GDs 12-21	Testicular interstitial cell hyperplasia in adults (<i>PND 110</i>) Increased number of Leydig cells with focal or irregular distribution										
	Incidence	0/134	0/1:	18	0/103	0/120	0/140	14/58			
	Percent	0%	0%	, D	0%	0%	0%	24%			
	Testicular interstitial cell adenoma in adults (PND 110)										
	Incidence	0/134	0/13	18	0/103	0/120	0/140	1/58			
	Percent	0%	0%	, D	0%	0%	0%	2%			
Lee et al. (2004)	Doses	0		2-3	14	-29	148-291	712-1,372			
Rat (Sprague-Dawley); 6-8	Decreased epididymal ductular cross sections (PND 21 pups)										
dams/group; assessed in 8-10 male offspring/group (including ≥1	Incidence	0/8		0/8	0/8		5/8*5	7/8*			
male/litter)	Percent	0%		0%	0	%	63%	88%			
0, 20, 200, 2,000, 10,000 ppm Diet (0, 2-3, 14-29, 148-291, 712-	Reduced sp	permatoc	yte dev	elopmo	ent (PND 2	21 pups)					
1,372 mg/kg-day)	Incidence	0/8		4/8*	4/	8*	8/8*	8/8*			
Diet	Percent	0%		50%	50)%	50%	50%			
GD 15-PND 21	Aggregated	foci of L	evdig o		D 21 nuns	5)					

This document is a draft for review purposes only and does not constitute Agency policy.

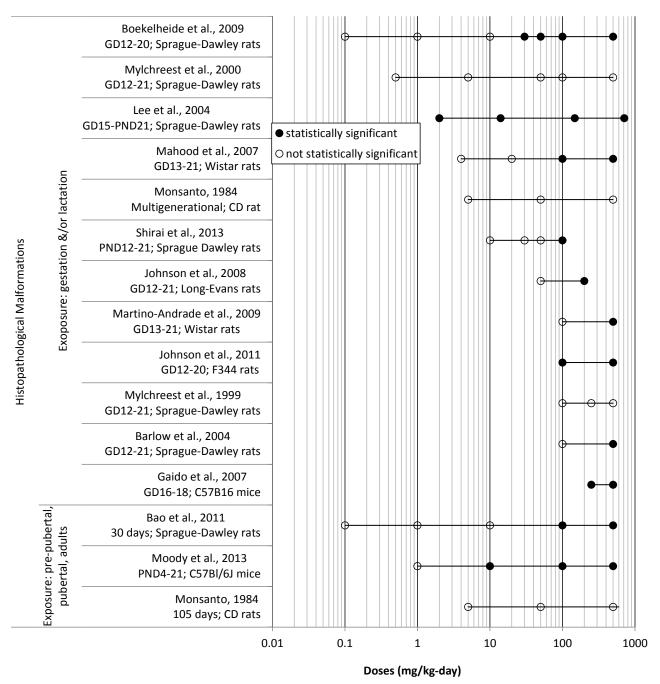
3-88

Reference and study design			Res	ults					
	Incidence	0/8	0/8	1/8	8/8*	8/8*			
	Percent	0%	0%	13%	100%	100%			
	Epididymal intraductular debris; minimal (PND 77 adults)								
	Incidence	1/8	0/8	0/8	0/8	4/10			
	Percent	13%	0%	0%	0%	40%			
	Epididymal hy	poplasia (P	ND 77 adults	;)					
	Incidence	0/8	0/8	0/8	0/8	2/10			
	Percent	0%	0%	0%	0%	20%			
	Leydig cell hyp	perplasia (Pl	ND 140 adult	ts)					
	Incidence	1/10	1/10	1/8	0/10	NA			
	Percent	10%	10%	13%	0%	NA			
	Flattening of surface epithelia in prostate ventral lobe (PND 140 adults)								
	Incidence	3/10	2/10	4/8	7/10	NA			
	Percent	30%	20%	50%	70%	NA			
	Note: Doses represent a range estimated by the study authors for three different time periods (GDs 15-20, PNDs 2-10, and PNDs 10-21).								
<u> Mahood et al. (2007)</u>	response relati	ive to contro	ol						
Rat (Wistar); assessed in male offspring from 5-9 litters/group	Doses	0	4	20	100	500			
(GD 21 endpoints) or 5-12 adult male	Number of Leydig cell clusters/testis								
offspring/group (PND 90)	GD 21 fetuses	0%	-6%	-9%	-48*%	-53*%			
), 4, 20, 100, 500 mg/kg-day Gavage	Small Leydig cell clusters/testis								
GDs 13-20 or 13-21	GD 21 fetuses ^a	0%	-6%	-3%	-15*%	-42*%			
	Medium Leydig cell clusters/testis								
	GD 21 fetuses	0%	5%	-1%	13*%	3%			
	Large Leydig c	ell clusters/	testis						
	GD 21 fetuses	0%	0%	5%	1%	38*%			
	Seminiferous cords containing MNGs								
	GD 21 fetuses	0%	-0.3%	4%	18*%	36*%			
	SCO tubules in adult rats with scrotal testes (PND 90)								
	Incidence	0/9	0/11	1/5	8/12	6/9			
	Percent F1	0%	0%	20%	67*%	67*%			
	Note: Male offspring analyzed at PND 21 were exposed from GDs 13-20; male offspring analyzed at PND 90 were exposed from GDs 13-21. Small clusters account for ≤5% of the total LC cluster area/testis, medium clusters for 5.1-14.9%, and large clusters ≥15%.								
	Doses	0	5	5	50	500			

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design	Results								
Monsanto (1984) Rat (CD); 20 breeding pairs/group	Epididymal aspermia F1, group A								
[females exposed only], F1: 9-10	Incidence	0/10	1/	10	1/10	1/9			
0, 5, 50, 500 mg/kg-day Diet	Percent	0%	10	1%	10%	11%			
	Testicular degeneration F1, group A								
continued through weaning [PND 21]	Incidence	0/10	1/	10	1/10	2/9			
F1, group A: continued basal diet to	Percent	0%	10	1%	10%	22%			
PND 70 F1, group B: Received same dose as F0 to PND 70	Epididymal asp F1, group B	ermia							
	Incidence	0/10	0/	10	0/10	3/10			
	Percent	0%	0	%	0%	30%			
	Testicular degeneration F1, group B								
	Incidence	0/10	0/	10	0/10	4/10			
	Percent	0%	0	%	0%	40%			
<u>Shirai et al. (2013)</u>	response relativ	e to control							
Rat (Sprague-Dawley); 4 males/group, 20 litters/ group	Doses	0	10	30	50	100			
0, 10, 30, 50, 100 mg/kg-day	Leydig cell number ^a								
Gavage	PND 35	0%	-2%	5%	0%	7%			
PNDs 12-21	PND 49	0%	-5%	3%	-2%	16%			
	PND 63	0%	-7%	-1%	0%	60*%			
	PND 98	0%	8%	-5%	10%	127*%			
	PND 119	0%	2%	7%	7%	195*%			
	Smooth Endoplasmic Reticulum amount ^a								
	PND 35	0%	2%	2%	-1%	3%			
	PND 49	0%	0%	2%	-1%	2%			
	PND 63	0%	-2%	-4%	-4%	-70*%			
	PND 98	0%	-3%	-4%	-5%	-85*%			
	PND 119	0%	3%	0%	3%	-100%			
Johnson et al. (2008)	response relativ	e to control							
Rat (Long-Evans); 3-7 litters/group; assessed in 1-5 males/litter	Doses	0	5	0	100	200			
0, 50, 100, 200 mg/kg-day	Seminiferous co	ord diamete	r						
Gavage	GD 21 fetuses ^a	0%	-1	%	NE	8*%			
GDs 12-21	Percent seminit	ferous cords	with MNG	is					
	GD 21 fetuses ^a	0%	2	%	NE	29*%			

Reference and study design	Results							
<u>Martino-Andrade et al. (2009)</u>	response relative	to control						
Rat (Wistar); 7-8 litters/group;	Doses	0		100	500			
assessed in 1-2 males/litter	Seminiferous cor	d diameter						
0, 100, 500 mg/kg-day Gavage	GD 21 fetuses ^a	0%		6%	28*%			
GDs 13-21	Number of MNG	5						
	GD 21 fetuses ^a	0%		10%	20*%			
Johnson et al. (2011)	response relative	to control						
Rat (F344); 5 males/group	Doses	0		100	500			
0, 100, 500 mg/kg-day	Percent seminife	rous cords with	n MNGs					
Gavage GDs 12-20	GD 20 fetuses ^a	0%		17*%	23*%			
Mylchreest et al. (1999a)	Doses	0	100	250	500			
Rat (Sprague-Dawley); 11-20	Seminiferous tub	ule degenerati	on in adults ^t	(3-months old))			
litters/group; assessed in 45-55 male offspring/group	Incidence	3/51	1/51	6/55	22/45			
0, 100, 250, 500 mg/kg-day	Percent	6%	2%	11%	49%			
Gavage GDs 12-21	Testicular interstitial cell hyperplasia in adults (3-months old) Increased number of Leydig cells with focal or irregular distribution							
	Incidence	0/51	0/51	1/55	5/45			
	Percent	0%	0%	2%	11%			
	Testicular interstitial cell adenoma in adults (3-months old)							
	Incidence	0/51	0/51	0/55	2/45			
	Percent	0%	0%	0%	4%			
	Abnormal epididymis in adults (3-months old)							
	Incidence	2/51	0/51	2/55	14/45			
	Percent	4%	0%	4%	31%			
Barlow et al. (2004)	Doses	0		100	500			
Rat (Sprague-Dawley); 8-11 litters/group (35-74 male	Testicular dysgenesis (aberrant/immature seminiferous tubules) Percent unilateral litter incidence							
offspring/group) 0, 100, 500 mg/kg-day	PND 180	0%		0%				
Gavage	PND 370	10%		0%				
GDs 12-21	PND 540	540 0%		0%				
	Percent bilateral litter incidence							
	PND 180	0%		0%	27%			
	PND 370	0%		0%	73*%			
	PND 540	0%		0%	38%			


This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results									
		Germ cell degeneration Percent unilateral litter incidence								
		llateral litt		2	500/		0/			
	PND 180		20%		50%		55%			
	PND 370		10%		22%		3*%			
	PND 540		22%		60%	6	53%			
	Percent bild	ateral litte	r incidence							
	PND 180		0%		0%	73*%				
	PND 370		10%		22%	10)0*%			
	PND 540		22%		20%	8	8*%			
		Rete testis (sperm stasis with granulomatuous inflammation and fibrosis) <i>Percent unilateral litter incidence</i>								
	PND 180		10%		30%	Ľ	55%			
	PND 370		10%		0%	8	82*%			
	PND 540		0%		20% 50*%					
	Percent bilateral litter incidence									
	PND 180		0%		0%	1	18%			
	PND 370		0%		22% 45*%					
	PND 540		0%			10% 38%				
Gaido et al. (2007)	response re	plative to c			2070					
Mouse (C57Bl6); 4-6 litters/group	Doses		0		250		500			
0, 250, 500 mg/kg-day			-		230					
Gavage	Semmero	Seminiferous cord diameter ^b								
GDs 16-18	0% 11*% 17*%									
	Number of MNGs per cord cross-section ^b									
		0% 300*%					420*%			
	Number of	nuclei pei								
Histopathological changes after pube	rtal and/or ac	lult exposu	0%		32*%	2	4*%			
	1									
<mark>Bao et al. (2011)</mark> Rat (Sprague-Dawley); 5-week-old	response re			4.0	40	400	F00			
males, 20/group	Doses	0	0.1	1.0	10	100	500			
), 0.1,1.0, 10, 100, 500 mg/kg-day	Number of		-		•	ibertal expos				
Gavage 30 days		0%	-1%	-4%	0%	-14*%	-43*%			
Moody et al. (2013)	Doses	0	1		10	100	500			
Mouse (C57Bl/6J); 4-10 four day old	Histologica	l markers	of Sertoli co	ell develo	pment (PN	D 14)				
males/group	Tubules wi	Tubules with centrally localized Sertoli cell nuclei								

Reference and study design	Results								
(0, 1, 10, 100, 500 mg/kg-day)	Proportion	9%	12%	11%	22%	24*%			
Gavage	Cross sections containing lumen								
PNDs 4-14 or PNDs 4-21	Proportion	53%	50%	47%	42%	17*%			
	Histological markers in seminiferous cords of spermatogenesis progressio (PND 14)								
	Spermatogon	ia							
	Percent	9%	8%	10%	10%	23*%			
	Preleptotene	-zygote spern	natocytes						
	Percent	20%	22%	25%	28%	38*%			
	Pachytene spermatocytes								
	Percent	13%	9%	4*%	5*%	2*%			
	Histological markers of spermatogenesis progression in adults (PND 56 after exposure from PNDs 4-21)								
	Absent pre-meiotic/meiotic germ cells								
	Incidence	20%	83%	17%	67%	83%			
	Absent postmeiotic germ cells								
	Incidence	20%	83%	83%	33%	100%			
	Absent partial spermatogenesis								
	Incidence	0%	50%	67%	100%	83%			
Monsanto (1984)	Doses	0	5		50	500			
Rat (CD); 20 breeding pairs/group 19-	Chronic prostatitis								
20 animals evaluated [males exposed only]	Incidence	3/19	0/20		2/19	3/19			
0, 5, 50, 500 mg/kg-day	Percent	16%	0%		10%	16%			
Diet	Normal appearing testis								
105 days	Incidence	19/19	20/20		19/19	19/19			
	Percent	100%	100%		100%	100%			
	Normal appearing epididymis								
	Incidence	19/19	20/20		19/19	19/19			
	Percent	100%	100%		100%	100%			

NA = Not available; NE = Not examined; MNG = multinucleated gonocyte/germ cell; SCO = Sertoli cell only ^aValues reported by the study authors were estimated from published graphs using "Grab It!", a Microsoft Excel based free software application used to digitize data from image files. Publisher: datatrendsoftware.com. ^bStudy shows seminiferous tubule degeneration in adults (3-months old) with mild (6-20% tubules affected), moderate (21-50% affected) or severe (>50% affected) degeneration

*Statistically increased over control as reported by study authors.

1

2 3

Figure 3-6. Exposure-response array of male reproductive toxicity following oral exposure to DBP: histopathological effects.

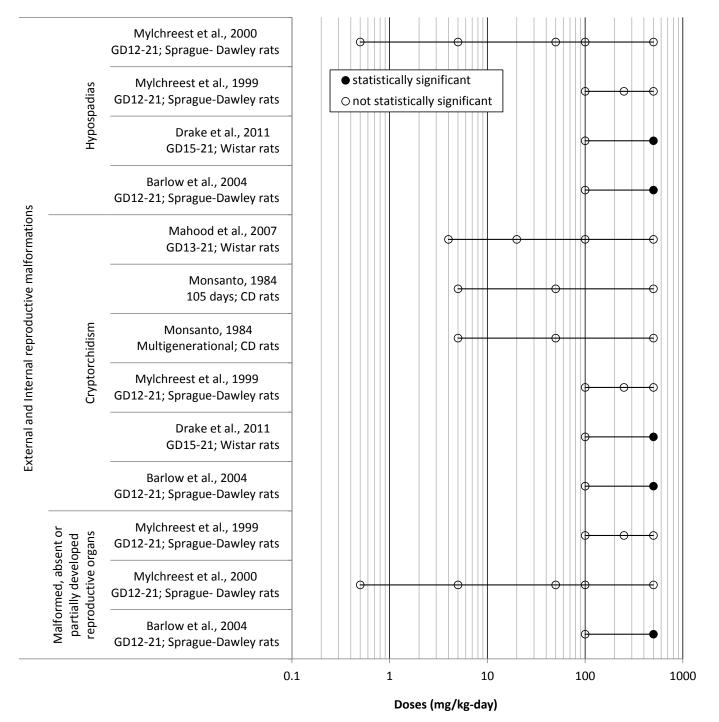
1 2

Table 3-21. Evidence pertaining to male reproductive toxicity following oralexposure to DBP: external and internal malformations in animals

Reference and study design			l	Results				
Hypospadias	-							
Mylchreest et al. (2000)	Doses	0	0.5	5	50	100	500	
Rat (Sprague-Dawley); assessed in	Hypospadias in a	dults (PN	D 110)					
male offspring from 11-20 litters/group	Litter incidence	0/20	0/20	0/19	0/20	0/20	4/11	
0, 0.5, 5, 50, 100, 500 mg/kg-day	Percent	0%	0%	0%	0%	0%	36%	
Gavage								
GDs 12-21								
Mylchreest et al. (1999a)	Doses	0		100	2	50	500	
Rat (Sprague-Dawley); assessed in male offspring from 9-10	Hypospadias in a	dults						
litters/group/group	Litter incidence	0/10		0/9	0/	10	4/9	
0, 100, 250, 500 mg/kg-day	Percent	0%		0%	0	%	44%	
Gavage								
GDs 12-21								
Drake et al. (2009)	Doses	0			100		500	
Rat (Wistar); 13-15 litters/group;	Adult (>12 weeks) male of	fspring	with Hyp	ospadias			
assessed in 32-45 male offspring/group	Percent		0%		0%		31*%	
0, 100, 500 mg/kg-day								
Gavage								
GDs 15-21								
Barlow et al. (2004)	Doses		0		100		500	
Rat (Sprague-Dawley); 8-11 litters/group (35-74 male	Hypospadias in a Percent litter incid							
offspring/group)), 100, 500 mg/kg-day	PND 180		0%		0%		27%	
Gavage	PND 370		0%		0%		64*%	
GDs 12-21	PND 540		0%		0%		50*%	
Cryptorchidism, and absent/atrophiea	testis							
Mahood et al. (2007)	Doses	0	4		20	100	500	
Rat (Wistar); assessed in male	Cryptorchidism in	adults (PND 90)					
offspring from 3-7 litters/group), 4, 20, 100, 500 mg/kg-day	Total 0	/28	0/11	(0/18	1/20	18/20	
Gavage	Percent	0%	0%		0%	5%	90%	
GDs 13-21								

This document is a draft for review purposes only and does not constitute Agency policy.3-95DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results									
Monsanto (1984)	Doses	0	5	50	500					
Rat (CD); 20 breeding pairs/group;	Moderate undes	cended testis								
129-20 animals evaluated [males exposed only]	Incidence	19/19	20/20	19/19	19/19					
0, 50, 500 mg/kg-day Diet	Percent	21%	45%	58%	53%					
105 days										
<u>Monsanto (1984)</u>	Doses	0	5	50	500					
Rat (CD); 20 breeding pairs/group [females exposed only], F1: 9-10	Incidence enlarge F1, group A	ed testis								
males per group 0, 5, 50, 500 mg/kg-day Diet	Incidence	0/9	0/10	0/10	0/10					
	Percent	0%	0%	0%	0%					
F0: 14 days before mating and continued through weaning [PND 21]	Incidence small unilateral or bilateral testis F1, group A									
F1, group A: continued basal diet to PND 70	Incidence	0/9	0/10	0/10	1/10					
F1, group B: Received same dose as F0 to PND 70	Percent	0%	0%	0%	10%					
	Incidence enlarge F1, group B	ed testis								
	Incidence	0/10	0/10	1/10	0/10					
	Percent	0%	0%	10%	0%					
	Incidence small unilateral or bilateral testis F1, group B									
	Incidence	0/10	0/10	0/10	2/10					
	Percent	0%	0%	0%	20%					
Mylchreest et al. (1999a)	Doses	0	100	250	500					
Rat (Sprague-Dawley); assessed in	Cryptorchidism ir	adults (PNDs	100-105)							
male offspring from 9-10 litters/group), 100, 250, 500 mg/kg-day	Litter incidence	0/10	0/9	1/10	3/9					
Gavage	Percent	0%	0%	10%	33%					
GDs 12-21										
Drake et al. (2009)	Doses	0		100	500					
Rat (Wistar); 13-15 litters/group; assessed in 32-45 male	Adult male offsp	ring with Crypt	orchidism (>							
offspring/group	Percent	0%		0%	53*%					
), 100, 500 mg/kg-day										
Gavage										
GDs 15-21										


Reference and study design				Results						
Barlow et al. (2004)	Doses		0		100		500			
Rat (Sprague-Dawley); 8-11 litters/group (35-74 male	Absent, atrophied, enlarged testis (unilateral) Percent litter incidence									
offspring/group) 0, 100, 500 mg/kg-day	PND 180		20%		60%		36%			
Gavage	PND 370		10%		22%	8	2*%			
GDs 12-21	PND 540	PND 540 11% 30% 75*%								
		Absent, atrophied, enlarged testis (bilateral) Percent litter incidence								
	PND 180		0%		0%	8	2*%			
	PND 370		0%		22%	1	00*%			
	PND 540	11%			10% 8		88*%			
Malformed, absent or partially develo Mylchreest et al. (2000) Rat (Sprague-Dawley); assessed in	Doses Absent/partially	0	0.5	5	50	100	500			
male offspring from 11-20	Litter incidence	0/20		0/19	0/20	0/20	9/11			
litters/group 0, 0.5, 5, 50, 100, 500 mg/kg-day	Percent	0/20	0/20	0%	0/20	0/20	82%			
Gavage	Absent ventral p					0%	82%			
GDs 12-21	Litter incidence	0/20	0/20	0/19	0/20	0/20	1/11			
	Percent	0%	0%	0%	0%	0%	9%			
	Partially develop	• • •	• • •				570			
	Litter incidence	0/20	0/20	0/19	0/20	0/20	4/11			
		•	0/20	,	-, -		•			
	Percent	0%	• / ·	0%	0%	0%	36%			
	Absent/partially	•					0/44			
	Litter incidence	0/20	0/20	0/19	0/20	0/20	9/11			
	Percent	0%	0%	0%	0%	0%	82%			

Reference and study design	Results								
Mylchreest et al. (1999a)	Doses	0	100	250	500				
Rat (Sprague-Dawley); assessed in	Absent/partially d	eveloped epid	idymis in ac	lults					
male offspring from 9-10 litters/group 0, 100, 250, 500 mg/kg-day	Litter incidence	0/10	0/9	4/10	8/9				
Gavage	Percent	0%	0%	40%	89%				
GDs 12-21	Absent prostate in	n adults							
	Litter incidence	0/10	0/9	0/10	1/9				
	Percent	0%	0%	0%	11%				
	Absent seminal ve	sicle in adults							
	Litter incidence	0/10	0/9	0/10	0/9				
	Percent	0%	0%	0%	0%				
Barlow et al. (2004)	Doses	0		100	500				
Rat (Sprague-Dawley); 8-11 litters/group (35-74 male offspring/group)	Partially develope <i>Percent litter incide</i>		unilateral)						
01.spring/group) D, 100, 500 mg/kg-day	PND 180	10%		40%	64*%				
Gavage GDs 12-21	PND 370	10%		11%	55*%				
	PND 540	11%		30%	63%				
	Partially develope	d epididymis (l	bilateral)						
	PND 180	0%		0%	82*%				
	PND 370	0%		11%	100*%				
	PND 540	11%		10%	88*%				
	Absent/small prostate								
	PND 180	0%		0%	82*%				
	PND 370	20%		22%	100*%				
	PND 540	89%		70%	100%				
	Absent/malforme	d seminal vesio	cles						
	PND 180	0%		0%	91*%				
	PND 370	0%		0%	91*%				
	PND 540	56%		70%	100%				
	Absent vas defere	ns (unilateral)							
	PND 180	0%		0%	82*%				
	PND 370	0%		0%	82*%				
	PND 540	0%		0%	50*%				
	Absent vas defere	ns (bilateral)							
	PND 180	0%		0%	45*%				
	PND 370	0%		0%	45*%				

This document is a draft for review purposes only and does not constitute Agency policy.

Reference and study design			Results		
	PND 540 0%			0%	50*%
Malformations after pubertal and/or ad	dult exposure				
Monsanto (1984)	Doses	0	5	50	500
Rat (CD); 19-20 breeding pairs/group [males exposed only]	Normal appea	ring testis			
0, 5, 50, 500 mg/kg-day	Incidence	19/19	20/20	19/19	19/19
Diet	Percent	100%	100%	100%	100%
105 days					

*Statistical significance as reported by study authors.

1

2

3 4

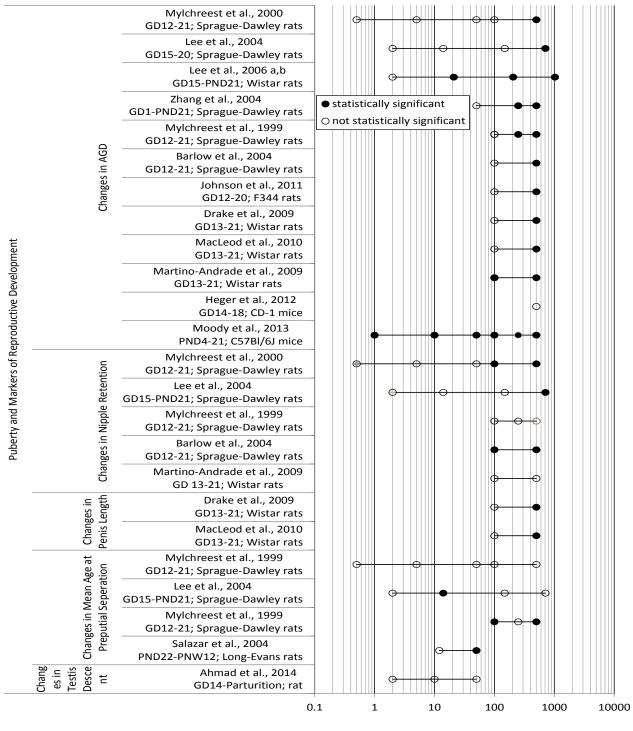
Figure 3-7. Exposure-response array of male reproductive toxicity following oral exposure to DBP: external and internal reproductive malformations in animals.

1 2 3

 Table 3-22. Evidence pertaining to male reproductive toxicity following oral
 exposure to DBP: alterations in male reproductive puberty effects and indicators of reproductive development.

Reference and study design			F	Results	5						
Changes in anogenital distance											
Mylchreest et al. (2000)	response rel	ative to con	trol								
Rat (Sprague-Dawley); 11-20 dams/	Doses	0	0.5	5	50	100	500				
group; AGD assessed in males from 11-20 litters/group	Male AGD (I	itter means	5) ^a								
0, 0.5, 5, 50, 100, 500 mg/kg-day	PND 1	0%	-0.3%	-1%	-3%	-3%	-12*%				
Gavage											
GDs 12-21											
<u>Lee et al. (2004)</u>	response rel	ative to con	trol								
Rat (Sprague-Dawley); 6-8 dams/	Doses	0	2-3		14-29	148-291	712-1,372				
group; AGD assessed in males from 6-8 litters/group	Male AGD (litter means)										
0, 20, 200, 2,000, 10,000 ppm Diet (0, 2-3, 14-29, 148-291, 712- 1,372 mg/kg-day)	PND 2	0%	5%		3%	3%	-19*%				
Diet GDs 15-20											
<u>Lee et al. (2006b)</u>	response rel	ative to con	trol								
Rat (Wistar); number of treated dams not reported; AGD assessed in 16-47	Doses	0	2		21	205	1,025				
males/group	Male AGD ^a										
0, 20, 200, 2,000, 10,000 ppm Diet (0,	PND 1	0%	-2%		-5*%	-6*%	-8*%				
2, 21, 205, 1,025 mg/kg-day) ^b Diet	Male AGD/body weight ^a										
GD 15-PND 21		0%	-1%		-3%	-4%	-3%				
Zhang et al. (2004b)	response rel	ative to con	trol								
Rat (Sprague-Dawley); 20	Doses	()	50		250	500				
dams/group; AGD assessed in 14-16 litters/group	Male AGD (I	itter means	5) ^a								
0, 50, 250, 500 mg/kg-day	PND 4	0	%	3%	-	-10*%	-24*%				
Gavage	Male AGD/b	ody weigh	t ^a								
GD 1-PND 21		0'	%	4%		-3*%	-11*%				
Mylchreest et al. (1999a)	response rel	ative to con	trol								
Rat (Sprague-Dawley); 10 dams/	Doses	()	100		250	500				
group; AGD assessed in males from 9- 10 litters/group	Male AGD (litter means) ^a										
0, 100, 250, 500 mg/kg-day Gavage GDs 12-21	PND 1	0'	%	-4%		-9*%	-24*%				

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE


Reference and study design	Results								
Barlow et al. (2004)	response relative to co	ntrol							
Rat (Sprague-Dawley); 10-11 dams/	Doses	0	100	500					
group; AGD assessed in males from 10-11 litter/group/time-point	Male AGD (litter mear	s) ^a							
0, 100, 500 mg/kg-day	PND 1	0%	-2%	-14*%					
Gavage	PND 180	0%	-2%	-9*%					
GDs 12-21	Note: Body weight was	used as a cova	riate for analysis.						
Johnson et al. (2011)	response relative to co	ntrol							
Rat (F344); 5-6 dams/group; AGD	Doses	0	100	500					
assessed in males from 5-6 litters/ group	Male AGD (litter means) ^a								
0, 100, 500 mg/kg-day	GD 20	0%	-3%	-18*%					
Gavage									
GDs 12-20									
Drake et al. (2009)	response relative to co	ntrol							
Rat (Wistar); 13-15 dams/group; 32-	Doses	0	100	500					
45 male offspring/group 0, 100, 500 mg/kg-day	Male AGD in adult offs	pring							
Gavage	>12 weeks of age ^a	0%	-7%	-17*%					
GDs 13-21									
Macleod et al. (2010)	response relative to co	ntrol							
Rat (Wistar); number of treated dams	Doses	0	100	500					
not reported; AGD assessed in 6-21 male offspring/group	Male AGD								
0, 100, 500 mg/kg-day	PND 25°	0%	-2%	-25*%					
Gavage									
GDs 13-21									
<u> Martino-Andrade et al. (2009)</u>	response relative to co	ntrol							
Rat (Wistar); 7-9 dams/group; AGD	Doses	0	100	500					
assessed in 7-9 litters/group (27-37 male fetuses/group)	Male AGD (litter mear	is)							
0, 100, 500 mg/kg-day	GD 21	0%	-9%	-12*%					
Gavage	Male AGD/body weigh	1 ^{1/3}							
GDs 13-21	GD 21	0%	-8*%	-12*%					
<u>Heger et al. (2012)</u>	response relative to co	ntrol							
Mouse (CD-1); 5 dams/group	Doses		0	500					
0, 500 mg/kg-day	Male AGD (litter mear	s) ^b							
Gavage GDs 14-18	PND 3	0	%	-2%					
14-10 Id-10	1								

Reference and study design					Result	S					
Moody et al. (2013)	response relat	ive to	contro	I							
Mouse (C57Bl/6J); 3-10 four day old	Doses 0	1	1	10	0	50	100	250	500		
males/group	AGD measure	ment	s (PND .	14)							
0, 5, 10, 50, 100, 250, 500 mg/kg-day from PNDs 4-14; 0, 1, 10, 100, 500	09	6	-12%	-13	8% -	17*%	-14*%	-13%	-29*%		
mg/kg-day from PNDs 4-14	AGD - relative	to bo	ody wei	ght							
Gavage	09		-7%	-4	% .	-12%	-5%	-13%	-22*%		
PNDs 4-14, PNDs 4-21	AGD - relative	to tr	unk len	gth							
	09		-12*%	-	*% -	15*%	-13*%	-13*%	<i>-27*%</i>		
	AGD measure	ment	s in Adı	ults (PN	ID 56 af	fter ex	posure fr				
	09	6	-17*%	-14	*%	-	-14*%	-	-18*%		
	AGD - relative	to bo	ody wei	ght							
	09	6	-21*%	-9	%	-	-7%	-	-17*%		
	AGD - relative to trunk length										
	09	6	-22*%	-14	*%	-	-14*%	-	-16*%		
Nipple retention	1						-				
Mylchreest et al. (2000)	response relat	ive to	contro	1							
Rat (Sprague-Dawley); 11-20	Doses		0	0.5	5		50	100	500		
dams/group; nipple retention assessed in males from 11-20	Presence of ni	pples	in mal	es (PNL	D 14)						
litters/group	Litter incidence	2	5/19	5/20	8/19)	10/20	16/20*	11/11*		
0, 0.5, 5, 50, 100, 500 mg/kg-day	Percent		26%	25%	42%		50%	80*%	100*%		
Gavage GDs 12-21	Note: Body weight was used as a covariate for analysis.										
Lee et al. (2004)	response relati	ive to	contro	1							
Rat (Sprague-Dawley); 6-8 litters/	Doses	0		2-3		14-29	9 14	8-291	712-1,372		
group; nipple retention assessed in males from 6-8 litters/ group (29-36	Percent of ma	le pu	ps with	nipple	retenti	on (Pl	ND 14)				
male offspring/group)		. 0%	-	4%		13%	-	15%	100*%		
0, 20, 200, 2,000, 10,000 ppm Diet (0, 2-3, 14-29, 148-291, 712- 1,372) mg/kg-day	Note: The litte	r was	the un	it of sta	atistical	compa	arison.				
Diet											
GD 15-PND 21											
Mylchreest et al. (1999a)	Doses		0		100		250		500		
Rat (Sprague-Dawley); 10 dams/	Presence of ni	pples	in mal	es PNE	0 14						
group; nipple retention assessed in males from 9-10 litters/group (54-62	Litter incidence	2	0/10		0/9		5/10)	8/9		
male offspring/group)	Percent		0%		0%		50%		89%		

Reference and study design			I	Results			
0, 100, 250, 500 mg/kg-day Gavage GDs 12-21	Note: Statistical ana	lysis w	as not pe	erformed	by study at	uthors.	
Barlow et al. (2004)	response relative to	contro	ol				
Rat (Sprague-Dawley); 10-11 dams/	Doses		0		100	!	500
group; nipple retention was assessed in males from 10-11 litters/group/ time-point	Areolae (PND 13) or Fold change relative		-	180) per	male (litter	means) ^a	
0, 100, 500 mg/kg-day	PND 13		0%		57*%	43	38*%
Gavage GDs 12-21	PND 180		0%		79%	7,4	76*%
Martino-Andrade et al. (2009)	Doses		0		100	!	500
Rat (Wistar); 4-7 dams/group; nipple retention evaluated in 4-7 litters/	Presence of nipples	in ma	les (PND	13)			
group (8-31 male offspring/group)	Litter incidence		2/7		2/7		4/4
0, 100, 500 mg/kg-day	Percent		29%		29%	1	00%
Gavage GDs 13-21							
Changes in penis length							
Drake et al. (2009)	response relative to	contro	ol				
Rat (Wistar); 13-15 dams/group; 12-	Doses		0		100	!	500
33 male offspring/group 0, 100, 500 mg/kg-day	Penis length in adul	lt offsp	oring				
Gavage	>12 weeks of age ^a		0%		-3%	-1	.5*%
GDs 13-21							
Macleod et al. (2010)	response relative to	contro	ol				
Rat (Wistar); number of treated dams	Doses		0		100	!	500
not reported; penis length assessed in 6-21 male offspring/group	Penis length ^a						
0, 100, 500 mg/kg-day	PND 25		0%		-3%	-!	9*%
Gavage							
GDs 13-21							
Changes in mean age at preputial sepa	ration (days)						
Mylchreest et al. (1999b)	response relative to	contro	ol				
Rat (Sprague-Dawley); 10 dams/	Doses	0	0.5	5	50	100	500
group 0, 100, 250, 500 mg/kg-day	Day of preputial sep	paratio	on (litter	means)			
Gavage		0%	-1%	-2%	-2%	0%	0%
GDs 12-21							

Reference and study design			R	esults						
Lee et al. (2004)	response re	elative to con	trol							
Rat (Sprague-Dawley); 6-8 dams/group	Doses	0	2-3	14-29	148-291	712-1,372				
0, 2-3, 14-29, 148-291, 712-	Day of pre	putial separa	tion							
1,372 mg/kg-day Diet		0%	-2%	-3*%	-1%	1%				
GD 15-PND 21										
Salazar et al. (2004)	response re	elative to con	trol							
Rat (Long-Evans); 15 dams/group; number of male offspring assessed	Doses		0	12		50				
was not reported	Day of preputial separation ^a									
0, 610, 2,500 ppm in diet (0, 12, 50 mg/kg-day)			0%	3%		11*%				
Diet Dams: 2.5 months pre-mating-PND 22; Pups: PND 22-PNW 12		ors. The unit		mg/kg-day wer comparison (e	•	•				
<u>Mylchreest et al. (1999a)</u>	response re	elative to con	trol							
Rat (Sprague-Dawley); 10 dams/ group; PPS assessed in males from 9-	Doses	0		100	250	500				
10 litters/group	Day of pre	putial separa	tion (litter n	neans)						
0, 100, 250, 500 mg/kg-day		0%)	5*%	4%	9*%				
Gavage GDs 12-21	Note: The l	litter was the	statistical ur	nit of comparise	on.					
Changes in Testis Descent										
Ahmad et al. (2014)	response re	elative to con	trol							
Rat (Strain not specified); assessed in	Doses	0		2	10	50				
male offspring; sample size not reported	Day of test	is descent								
0, 2, 10, 50 mg/kg-day	PND 75	0%		-0%	1%	2%				
Gavage										
GD 14 to Parturition										

^aValues reported by the study authors were estimated from published graphs using "Grab It!", a Microsoft Excel based free software application used to digitize data from image files. Publisher: datatrendsoftware.com.
^bNumbers of pregnant rats treated were not reported. In the absence of reporting of average daily intakes or body weights of the dams, respective average daily intakes were estimated using U.S. EPA RfVs for female Wistar rat body weight (0.156 kg) and food intake (0.016 kg/day) as 0, 2.1, 21, 205, and 1,025 mg/kg-day. Dose calculation for the 20 ppm group: (20 mg/kg × 0.016 kg/day)/0.156 kg = 2.1 mg/kg-day.
*Statistically different from controls (p < 0.05), as reported by study authors.

Doses (mg/kg-day)

1

2

Figure 3-8. Exposure-response array of male reproductive toxicity following oral exposure to DBP: effects on puberty and markers of reproductive development.

1 2 3

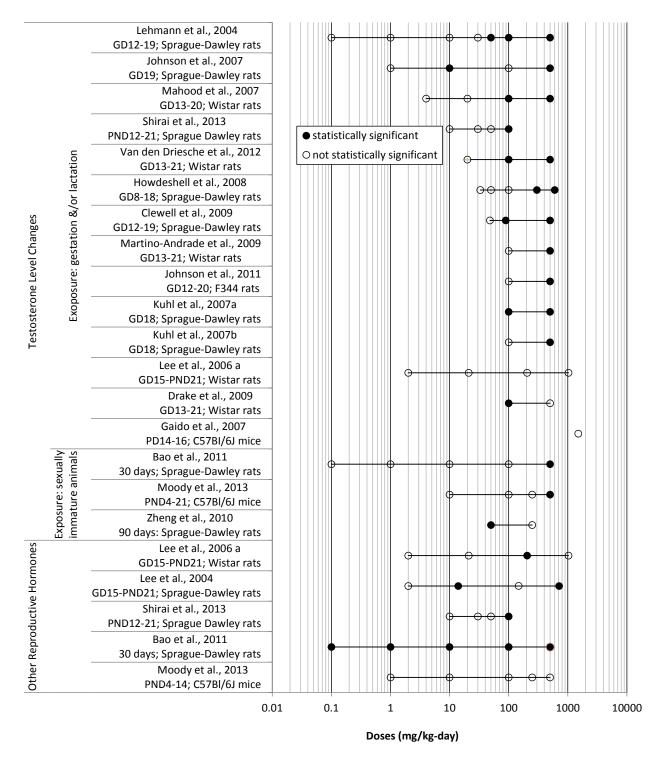
Table 3-23. Evidence pertaining to male reproductive toxicity following oral exposure to DBP: alterations in testosterone concentration/ production in animals

Reference and study design					Resu	ults					
DBP-induced effects on testosterone lev	els or proa	luction	after ges	tationd	al expos	sure					
Lehmann et al. (2004)	response	relativ	e to contr	ol							
Rat (Sprague-Dawley); 5-7	Doses	0	0.1	1	10	30	50	100	500		
dams/group; testosterone measured in 3-4 male fetuses from 1-4 litters/	Testicular	T con	centratio	n							
group	GD 19	0%	10%	0%	-2%	-26%	-61*%	-69*%	-93*%		
0, 0.1, 1, 10, 30, 50, 100, 500 mg/kg-day											
Gavage											
GDs 12-19											
Johnson et al. (2007)	response	response relative to control									
Rat (Sprague-Dawley);3-5 dams/group; testosterone measured	Doses		0	1	L	10	10	00	500		
in 2 male fetuses/litter	Testicula	Testicular T concentration ^a (GD 19)									
0, 1, 10, 100, 500 mg/kg-day	1 hour		0%	-13	3%	-33%	-1	.3	-61*%		
Gavage	3 hour		0%	61%		67*%	9		-21%		
Single exposure on GD 19 (dams sacrificed 1, 3, or 6 hours post- exposure)	6 hour		0%	11	%	-29%	-1	.4	-50%		
Lee et al. (2006b)	response	relativ	e to contr	ol							
Rat (Wistar); number of treated dams	Doses		0	2	2	21	20)5	1,025		
not reported; AGD assessed in 16-47 males/group	Serum T concentration in pups (PND 7) ^a										
0, 20, 200, 2,000, 10,000 ppm Diet: (0,	Males		0%	15	%	59%	15%		-3%		
2, 21, 205, 1,025 mg/kg-day) ^b Diet	Females		0%	-15	5%	-35%	-29	9%	-15%		
GD 15-PND 21											
<u>Mahood et al. (2007)</u>	response	relativ	e to contr	ol							
Rat (Wistar); 4-6 dams/group; testosterone measured in 4-6 litters/	Doses		0	4	ŀ	20	10	00	500		
group	Testicula	r T con	centratio	nª							
0, 4, 20, 100, 500 mg/kg-day	GD 21		0%	39	%	-2%	-1	4*	-31*%		
Gavage GDs 13-20	Note: The	litter	was the u	nit of s	tatistic	al compar	ison.				
<u>Shirai et al. (2013)</u>	response	relativ	e to contr	ol							
Rat (Sprague-Dawley); 4 males/group, 20 litters/ group	Doses		0	1	0	30	5	0	100		
0, 10, 30, 50, 100 mg/kg-day	Serum te	stoste	roneª								
, , , , , , , , , , , , , , , , , , ,	PND 35	_	0%	-2	%	-5%	-2	%	-94*%		

This document is a draft for review purposes only and does not constitute Agency policy.

3-107

Reference and study design			I	Results			
Gavage	PND 49	0%	1%		-7%	-2%	-92*%
PNDs 12-21	PND 63	0%	1%		1%	3%	-84*%
	PND 98	0%	2%	-	14%	7%	-72*%
	PND 119	0%	-14%		1%	-3%	-64*%
van Den Driesche et al. (2012)	response re	lative to cor	ntrol				
Rat (Wistar); 3 dams/group;	Doses	0		20	10	0	500
testosterone measured in 4-21 male fetuses/group	Testicular T	concentrat	ion ^a				
0, 20, 100, 500 mg/kg-day	GD 21	0%	6	-4%	-59*	*%	-86*%
Gavage							
GDs 13-21							
Howdeshell et al. (2008)	response re	lative to cor	ntrol				
Rat (Sprague-Dawley); 3-4	Doses	0	33	50	100	300	600
dams/group; testosterone measured n 3-4 litters/group (9-12 male	Testicular 1	F production	l				
fetuses/group)	GD 18	0%	-6%	-22%	-16%	-34*%	-67*%
0, 33, 50, 100, 300, 600 mg/kg-day	Note: The li	itter was the	unit of stat	tistical co	mparison.		
Gavage							
GDs 8-18							
<u>Clewell et al. (2009)</u>	response re	elative to cor	ntrol				
Rat (Sprague-Dawley); 4 dams/group/ time-point; testosterone measured in	Doses	0		48	89)	502
3-4 litters/group (fetal tissue pooled	Testicular 1	۲ concentrat	ion at 0.5 h	ours pos	t treatment	t ^a	
by litter)		0%	6	-17%	-41*	*%	-75*%
0, 48, 89, 502 mg/kg-day	Testicular 1	r concentrat	ion at 24 ho	ours post	t treatment	a	
Gavage GDs 12-19; for the testosterone		0%	6	-36%	-14	%	-81*%
measurements, dams were sacrificed	Testicular 1	Г concentrat	ion at 48 ho	ours post	t treatment	а	
at 0.5, 12, 24 and 48 hours after the		0%		NA	45*		-45%
final dose	Note: The li	itter was the	unit of stat				
Martino-Andrade et al. (2009)		lative to cor					
Rat (Wistar); 7-8 dams/group;	Doses		0		100		500
testosterone measured in 7-8 litters/		۲ concentrat			100		500
group (11-12 male fetuses/dose)), 100, 500 mg/kg-day	GD 21	- concentrat	0%		-30%		-63*%
Gavage	_	itter was the					00 /0
	INIOTO Tho li	ittor word the					


Reference and study design		F	Results							
Johnson et al. (2011)	response relative	to control								
Rat (F344); 5-6 dams/group;	Doses	0	100	500						
testosterone measured in 5-6 litters/ group (pooled samples from 2 male	Testicular T conce	entration ^a								
fetuses/litter) 0, 100, 500 mg/kg-day Gavage GDs 12-20	GD 20	0%	-26%	-91*%						
<u>Kuhl et al. (2007b)</u>	response relative	to control								
Rat (Sprague-Dawley); 10 dams/group;	Doses	0	100	500						
testosterone measured in 8 male fetuses/group	Testicular T conce	Testicular T concentration ^a								
0, 100, 500 mg/kg-day Gavage GD 18; dams were sacrificed 24 hours after the final dose	GD 19	0%	-76*%	-86*%						
<u>Kuhl et al. (2007a)</u>	response relative	to control								
Rat (Sprague-Dawley); 10 dams/group;	Doses	0	100	500						
testosterone measured in 8 male fetuses/group	Testicular T concentration ^a									
0, 100, 500 mg/kg-day		0%	-30%	-85*%						
Gavage GD 18; dams were sacrificed 24 hours after the final dose		DBP. Percent cha	vas decreased by 85% ange in the low dose g							
<u>Drake et al. (2009)</u>	response relative	to control								
Rat (Wistar); 13-15 dams/group;	Doses	0	100	500						
testosterone measured in 32-45 male offspring/group	Serum T concent	ration in adults								
0, 100, 500 mg/kg-day Gavage GDs 13-21	>12 weeks ^a	0%	69*%	23%						
<u>Gaido et al. (2007)</u>	response relative	to control								
Mouse (C57BI/6J); 5-6 litters/group	Doses		0	1,500						
0, 1,500 mg/kg-day	Testicular T conce	Testicular T concentration								
Gavage GDs 14-16	GD 17		0%	68%						

Reference and study design				Result	S						
DBP-induced effects on testosterone le	vels or produ	iction after e	xposure in s	exually	immature d	inimals					
<u>Bao et al. (2011)</u>	response r	elative to co	ntrol								
Rat (Sprague-Dawley); 5-week old	Doses	0	0.1	1	10	100	500				
males, 20/group 0, 0.1, 1, 10, 100, 500 mg/kg-day	Serum test	Serum testosterone									
Gavage		0%	8%	31%	-10%	-19%	-49*%				
30 days											
Moody et al. (2013)	response relative to control										
Mouse (C57BI/6J); 4-10 four day old males/group	Doses	0	10		100	250	500				
0, 10, 100, 250, 500 mg/kg-day	Serum testosterone										
Gavage	PND 14	0%	36%		-6%	-37%	-52*%				
PNDs 4-14											
Zheng et al. (2010)	response r	elative to co	ntrol								
Rat (Sprague-Dawley); 6 week-old	Doses		0		50		250				
males; 8/group/time-point 0, 50, 250 mg/kg-day	Decreased testicular testosterone concentration ^a										
Gavage	30 days 0% -3% -3										
30 or 90 days	90 days		0%		-20*%		-51*%				

NA = Not available

^aValues reported by the study authors were estimated from published graphs using "Grab It!", a Microsoft Excel based free software application used to digitize data from image files. Publisher: datatrendsoftware.com. ^bNumbers of pregnant rats treated were not reported. In the absence of reporting of average daily intakes or body weights of the dams, respective average daily intakes were estimated using U.S. EPA RfVs for female Wistar rat body weight (0.156 kg) and food intake (0.016 kg/day) as 0, 2.1, 21, 205, and 1,025 mg/kg-day. Dose calculation for the 20 ppm group: (20 mg/kg × 0.016 kg/day)/0.156 kg = 2.1 mg/kg-day.

*Statistically different from controls (p < 0.05), as reported by study authors.

1 2

Figure 3-9. Exposure-response array of male reproductive toxicity following oral exposure to DBP: testicular or serum testosterone changes.

1 2

Table 3-24. Evidence pertaining to male reproductive toxicity following oral exposure to DBP: alterations in other reproductive hormones in animals

Reference and study design			Res	sults						
Lee et al. (2006b)	response re	lative to conti	rol							
Rat (Wistar); number of treated dams	Doses	0	2	21	205	1,025				
not reported; AGD assessed in 16-47 males/group	Serum E ₂ co	oncentration	n pups (PND	7) ^a						
0, 20, 200, 2,000, 10,000 ppm Diet (0,	М	0%	7%	-1%	-28%	-52%				
2, 21, 205, 1,025 mg/kg-day) ^b	F	0%	3%	-11%	-69*%	-44%				
Diet GD 15-PND 21										
		lativo to cont								
<u>Lee et al. (2004)</u> Rat (Sprague-Dawley); 6-8		lative to conti		14.20	140.201	742 4 272				
dams/group; assessed in 8-10 male	Doses	0	2-3	14-29	148-291	712-1,372				
offspring/group (including ≥1 male/litter)		ollicle stimulating hormone (FSH) positive cells in anterior pituitary of pups ^a (<i>PND 21</i>)								
0, 20, 200, 2,000, 10,000 ppm Diet	М	0%	-6%	-7%	-2%	-10*%				
(0,2-3, 14-29,148-291, 712- 1,372 mg/kg-day)	F	0%	-6%	-17*%	-13*%	-7*%				
Diet GD 15-PND 21	Follicle stimulating hormone (FSH) positive cells in anterior pituitary of pups ^a (<i>PND 77</i>)									
	М	0%	11%	-7%	9%	15*%				
	F	0%	6%	3%	3%	58*%				
-	Luteinizing hormone (LH) positive cells in anterior pituitary of pups ^a (PND 21)									
	М	0%	-4%	1%	6%	23*%				
	F	0%	6%	3%	24*%	31*%				
	Luteinizing (PND 77)	hormone (LH) positive cel	ls in anterior	pituitary of	pups ^a				
	М	0%	-2%	6%	1%	1%				
	F	0%	8%	17%	25%	8%				
	Prolactin (P	RL) positive o	ells in anteri	or pituitary o	of pups ^a (PNL	21)				
	М	0%	-1%	-5%	-3%	-17*%				
	F	0%	1%	-8%	-5%	-19*%				
	Prolactin (P	RL) positive o	ells in anteri	or pituitary o	of pups ^a (PNL) 77)				
	М	0%	-6%	-7%	-2%	5%				
	F	0%	6%	-2%	-1%	4%				
	Note: Doses represent a range estimated by the study authors for three different time periods (GDs 15-20, PNDs 2-10, and PNDs 10-21).									
	response re	lative to conti	rol							
	Doses	0	10	30	50	100				

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design			Res	ults					
Shirai et al. (2013)	Serum Luteinizing hormone ^a								
Rat (Sprague-Dawley); 4 males/group,	PND 35	0%	-7%	5%	0%	-42*%			
20 litters/ group	PND 49	0%	-3%	-3%	-6%	-40*%			
0, 10, 30, 50, 100 mg/kg-day	PND 63	0%	2%	-2%	-2%	41*%			
Gavage	PND 98	0%	-5%	-2%	-3%	19*%			
PNDs 12-21	PND 119	0%	0%	1%	3%	19*%			

DBP-induced effects on the levels or production of other reproductive hormones in exposed sexually immature animals

response r	elative to	control							
Doses	0	0.1	1	10	100	500			
Serum E ₂									
	0%	54*%	37%	10%	-26%	84*%			
Serum LH									
	0%	18*%	11%	30*%	-50*%	-60*%			
Serum FSH	I								
	0%	20%	59*%	55*%	35*%	61*%			
response relative to control									
Doses	0	1	10	100	250	500			
Serum FSH	1								
PND 7	0%	7%	7%	19%	-	20%			
Serum FSH	1								
PND 14	0%	-	-6%	9%	2%	26%			
Serum Inh	ibin-alph	a							
PND 14	0%	-	-	-2%	7%	221%			
Serum Inh	Serum Inhibin-alpha/testis weight								
PND 14	0%	-	-	28%	34%	137%			
	Doses Serum E2 Serum LH Serum FSH Doses Serum FSH PND 7 Serum FSH PND 14 Serum Inh PND 14 Serum Inh	Doses 0 Serum E₂ 0% Serum LH 0% Serum FSH 0% PND 7 0% Serum FSH 0% PND 14 0% Serum Inhibin-alpha 0%	Serum E2 0% 54*% Serum LH 0% 0% 18*% Serum FSH 0% 0% 20% response relative to control 0 Doses 0 1 Serum FSH 1 Serum FSH 7% Serum FSH 7% Serum FSH 7% Serum FSH 7% Serum Inhibin-alpha 7% Serum Inhibin-alpha/testis weight 1	Doses 0 0.1 1 Serum E₂ 0% 54*% 37% Serum LH 0% 18*% 11% Serum FSH 0% 20% 59*% response relative to control 0% 20% 59*% Doses 0 1 10 Serum FSH PND 7 0% 7% 7% Serum FSH PND 7 0% 7% 7% Serum FSH PND 14 0% - -6% Serum Inhibin-alpha	Doses 0 0.1 1 10 Serum E₂ 0% 54*% 37% 10% Serum LH 0% 18*% 11% 30*% Serum FSH 0% 20% 59*% 55*% Propriation 0% 20% 59*% 55*% Serum FSH 0% 1 10 100 Serum FSH 0% 7% 7% 19% PND 7 0% 7% 9% 5 Serum FSH V V V 10% PND 14 0% - -6% 9% Serum Inhibin-alpha/testis weight V - -2%	Doses 0 0.1 1 10 100 Serum Ez 0% 54*% 37% 10% -26% Serum LH 0% 18*% 11% 30*% -50*% Serum FSH 0% 20% 59*% 55*% 35*% response relative to control 0 1 10 100 250 Serum FSH 7% 7% 19% - PND 7 0% 7% 7% 9% 2% Serum FSH 7% -6% 9% 2% Serum Inhibin-alpha PND 14 0% - -6% 9% 2% Serum Inhibin-alpha/testis weight - -2% 7%			

^aValues reported by the study authors were estimated from published graphs using "Grab It!", a Microsoft Excel based free software application used to digitize data from image files. Publisher: datatrendsoftware.com.
 ^bNumbers of pregnant rats treated were not reported. In the absence of reporting of average daily intakes or body weights of the dams, respective average daily intakes were estimated using U.S. EPA RfVs for female Wistar rat body weight (0.156 kg) and food intake (0.016 kg/day) as 0, 2.1, 21, 205, and 1,025 mg/kg-day. Dose calculation for the 20 ppm group: (20 mg/kg × 0.016 kg/day)/0.156 kg = 2.1 mg/kg-day.

*Statistically different from controls (p < 0.05), as reported by study authors.

1 2
 Table 3-25. Evidence pertaining to male reproductive toxicity following oral
 exposure to DBP: alterations in sperm and fertility measures in animals

Reference and study design			Re	sults						
Sperm measures after gestational expo	osure									
<u>Lee et al. (2004)</u>	response relativ	e to contro	I							
Rat (Sprague-Dawley); 6-8 dams/	Doses	0	2-3	14-29	148-291	712-1,372				
group; spermatocyte/germ cell development assessed in 8-10 male	Reduced sperm	atocyte de	velopment	t (PND 21)						
offspring/group/time-point	Incidence	0/8	4/8*	4/8*	8/8*	8/8*				
0, 20, 200, 2,000, 10,000 ppm Diet (0,2-3, 14-29,148-291, 712-	Percent	0%	50*%	50*%	100*%	100*%				
1,372 mg/kg-day)	Loss of germ ce	Loss of germ cell development (PND 77)								
Diet	Incidence	0/8	0/8	1/8	4/8*	9/10*				
GD 15-PND 21	Percent	0%	0%	13%	50*%	90*%				
	Loss of germ ce	oss of germ cell development (PND 140)								
	Incidence	1/10	2/10	2/8	5/10	NA				
	Percent	10%	20%	25%	50%	NA				
	Note: Doses represent a range estimated by the study authors for thre different time periods (GDs 15-20, PNDs 2-10, and PNDs 10-21).									
Zhang et al. (2004b)	response relativ	e to contro	I							
Rat (Sprague-Dawley); 14-16	Doses	0		50	250	500				
dams/group; sperm parameters assessed in 20 male offspring/group	Epididymal sperm measures (PND 70)									
0, 50, 250, 500 mg/kg-day	sperm number	0%		-5%	-29%	-46*%				
Gavage	% Motile	0%		-6%	-29*%	-37*%				
GD 1-PND 21	% Abnormal	0%		1%	4%	-1%				
	Testis sperm measures (PND 70)									
	Sperm Heads/Testis	0%		-7%	-41*%	-49*%				
	Sperm Heads/g Testis	0%		-7%	-37*%	-43*%				
Martino-Andrade et al. (2009)	response relativ	e to contro	I							
Rat (Wistar); 4-7 dams/group; sperm	Doses		0	100)	500				
parameters assessed in 4-7 litters/ group (7-12 male offspring/group)	Number of sper	matids per	testis							
0, 100, 500 mg/kg-day	PND 90		0%	-3%	, D	11%				
Gavage GDs 13-21	Note: The litter was the statistical unit of comparison									
Sperm measures after postnatal expos	ure									
<u>Bao et al. (2011)</u>	response relative to control									
	Doses (0 0	.1	1 1	0 100	500				

3-114 DRAFT—DO NOT CITE OR QUOTE

Reference and study design				Results						
Rat (Sprague-Dawley); 5-week old	Number of S	permatog	onia/semir	niferous tub	uleª					
males, 20/group		0%	-9%	-8%	-12%	-24*%	-56*%			
0, 0.1, 1, 10, 100, 500 mg/kg-day Gavage	Number of S	permatoc	ytes/semin	iferous tub	uleª					
30 days		0%	0%	0%	-4%	-22*%	-53*%			
	Number of Spermatids/seminiferous tubule ^a									
		0%	-4%	-2%	-4%	-16*%	-61*%			
Tsutsumi et al. (2004)	response rela	ative to cor	ntrol							
Rat (F344); 11-week old males,	Doses		0	61		255	1,536			
5/group 0, 61, 255, 1,536 mg/kg-day	Epididymal sperm measures									
Diet	Sperm Numb	per	0%	3%		14%	-8%			
4 weeks	Sperm Move	ment	0%	2%		-5%	-21*%			
	Abnormal Sp	erm	0%	-0.4%		-0.2%	0.8%			
Infertility										
<u>Mahood et al. (2007)</u>	response rela	ative to cor	ntrol							
Rat (Wistar); 3-7 dams/group;	Doses	0	4	20)	100	500			
infertility assessed in 8-20 male offspring/group	Male infertility (PND 90)									
0, 4, 20, 100, 500 mg/kg-day	Incidence	1/16	2/11	1/3	8	5/20	15/20*			
Gavage	Percent	6%	18%	139	%	25%	75*%			
GDs 13-21	Note: Study authors report that infertility was also significantly elevated in the 500 mg/kg-day group when the litter was used as the statistical unit of comparison ($p = 0.03$).									

NA = Not available

^aValues reported by the study authors were estimated from published graphs using "Grab It!", a Microsoft Excel based free software application used to digitize data from image files. Publisher: datatrendsoftware.com. *Statistically different from controls as reported by study authors.

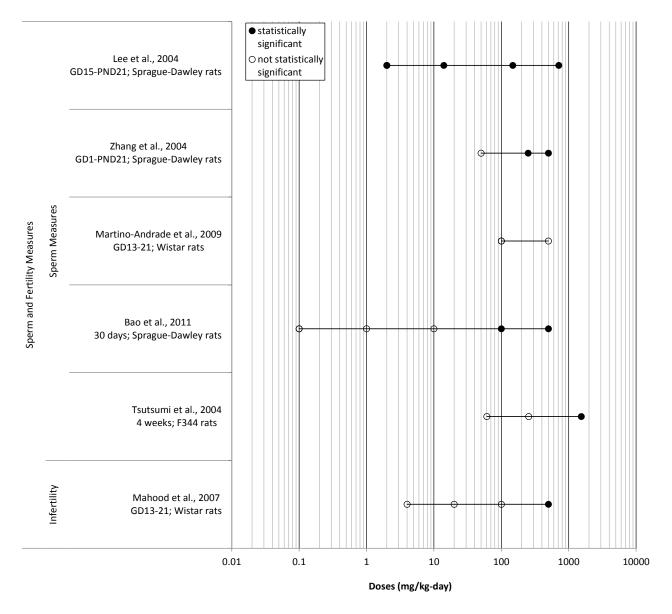


Figure 3-10. Exposure-response array of male reproductive toxicity following oral exposure to DBP: sperm changes and fertility measures.

1 3.3.2. Female Reproductive Effects

2

3

4

Table 3-26. Evidence pertaining to female reproductive toxicity following oral exposure to DBP: alterations in fertility, maternal body weight and food consumption, number of implantation sites and live pups per litter

Reference and study design				Result	S					
Fertility & Pregnancy Outcome										
Monsanto (1984)	response relativ	e to control								
Rat (CD); 20 breeding pairs/group	Doses	0		5		50	500			
18-20 animals evaluated [females exposed only]	Percent pregnai	псу								
0, 5, 50, 500 mg/kg-day Diet		65%		75%		72%	65%			
14 days before mating and continued through weaning [PND 21]										
<u>Salazar et al. (2004)</u>	response relativ	e to control								
Rat (Long Evans); 15 dams/group	Doses	Doses 0 12								
0, 12, 50 mg/kg-day ^a Diet	Percent pregna	Percent pregnancy								
2.5 months before mating-PND 14		82%			82%		58*%			
Lee et al. (2004)	response relative to control									
dams/group 0, 20, 200, 2,000, 10,000 ppm Diet (0,2-3, 14-29,148-291, 712- 1,372 mg/kg-day) Diet GD 15-PND 21	Doses	0	2-3	1	.4-29	148-291	712-1,372			
	Gestation length									
	0%1%2%0%0%Notes: Doses represent a range estimated by the study authors for three different time periods (GDs 15-20, PNDs 2-10, and PNDs 10-21).Doses presented above correspond to exposure during GDs 15-20.									
Zhang et al. (2004b)	response relative		-							
Rat (Sprague-Dawley); 14-16 dams/group	Doses	0		50		250	500			
0, 50, 250, 500 mg/kg-day	Gestation lengt	h								
Gavage GD 1-PND 21		0%		1%		1%	2%			
<u>NTP (1991)</u>	Doses	0		66		320	651			
Rat (Sprague-Dawley); 10 dams/group/generation; 40 F0 control breeding pairs, 20 F1 control	Average litters p Response relativ		I							
breeding pairs	FO	0%		4%		2%	2%			
0, 0.1, 0.5, 1% (0, 66, 320, or 651 mg/kg-day)	Mating index Percent incidence	e								
Diet	F1	100%		95%		90%	30*%			

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design			R	esults					
F0 exposure: 7-day pre-cohabitation; 112 day cohabitation; ~60 days post-	Pregnancy index Percent incidence								
cohabitation (continuous breeding)	F1	95%	85	%	85%		5*%		
F1 exposure: gestation, lactation, and post-weaning through ~PND 142 Note: study authors did not specify	Fertility index Percent incidence								
date of necropsy for F1 animals.	F1	95%	89	%	94%		17*%		
<u>NTP (1995)</u>	Doses 0	138	275	550	825	1,100	2,200		
Rat (F344/N); 24 females/dose, 48 control females	Gestation index Percent incidence	of females	s that deliv	vered one l	ive pup/sp	erm-pos	itive females		
0, 1,250, 2,500, 5,000, 7,500, 10,000, 20,000 ppm (0, 138, 275, 550, 825,	93%	79%	83%	68*%	78%	89%	21*%		
1,100, 2,200 mg/kg-day) ^b Diet	Gestation length Response relative to controls								
GD 1-PND 28	0%	-0.2%	-1%	-2*%	-1%	-1%	3*%		
<u>NTP (1984)</u>	Doses	0	1	70	390		1,400		
<u>Lamb et al. (1987)</u> Lamb et al. (1997)	Percent fertility (No. fertile/No. cohabited)×100								
Mouse (CD-1); 18-40 breeding		100%	10	0%	100%		75*%		
pairs/group	Litters per pair								
0, 0.03, 0.3, 1% Diet	Response relative								
(0, 170, 390, 1,400 mg/kg-day)		0%	3	3% -3%			-63*%		
Diet 18 weeks (1 week pre-mating, 14 weeks cohabitation, 3 weeks observation)									
<u>NTP (1995)</u>	Doses 0	244	488	975	1,463	1,950	3,900		
Mouse (B6C3F ₁); 20 females/group 0, 1,250, 2,500, 5,000, 7,500, 10,000	Gestation index <i>Percent incidence</i>	of females	s that deliv	vered one li	ive pup/sp	erm-pos	itive females		
ppm or 20,000 (0, 244, 488, 975,	55%	53%	63%	47%	61%	25%	0*%		
1,463, 1,950, 3,900 mg/kg-day) ^c Diet GD 1-PND 28	Gestation length <i>Response relative</i>	to control	s						
GD 1-FND 20	0%	1%	2*%	3*%	5*%	6*%	4%		
	Note: Only one lit	ter in the l	nigh-dose	group.					
<u>Jiang et al. (2007)</u>	response relative	to control							
Rat (Wistar); 10 dams/group	Doses ()	250	500	75	0	1,000		
0, 250, 500, 750, 1,000 mg/kg-day	Gestation length								
Gavage	0	%	2%	1%	7%	/ 0	NA		
GDs 14-18	Note: No live pups group.	s per offsp	ring repor		1,000 mg/	kg-day tr			

Reference and study design			F	Results							
<u>Gray et al. (2006)</u>	response relative	to contro	1								
Rat (Long Evans); weanling females,	Doses	0	2	50	500		750				
11-13/group 0, 250, 500, 750 mg/kg-day	Percent pregnan	t F0 femal	es deliver	ing F1a litt	ter						
Gavage; 5 days/week: PNDs 24-~PND 110		0%	-	16	-85*%	-	99*%				
7 days/week: ~PND 110 to GD 13 of F1b litter (F1a litter delivered ~PND 140)	Note: Treated females were mated to untreated males.										
<u>Ema et al. (2000)</u>	Doses 0	250	500	750	1,000	1,250	1,500				
Rat (Wistar); 13 dams/group 0, 250, 500, 750, 1,000, 1,250,		Non pregnant females Percent incidence									
1,500 mg/kg-day Gavage GDs 0-8; dams sacrificed at GD 20	0%	0%	0%	0%	0%	38*%	54*%				
	Number corpora lutea Response relative to controls										
	0%	0%	3%	3%	-1%	-1%	7%				
	Number of completely resorbed litters Percent incidence										
	0%	0%	0%	8%	8%	0%	0%				
Changes in maternal body weight gai	n and/or food con	sumption	•								
Mylchreest et al. (2000)	response relative	to contro	1								
Rat (Sprague-Dawley); 11-20	Doses	0	0.5	5	50	100	500				
dams/group 0, 0.5, 5, 50, 100, 500 mg/kg-day	Maternal body v	veight gair	ı								
Gavage	GDs 12-21	0%	-1%	1%	2%	-8%	-13%				
GDs 12-21	Maternal food c	onsumptic	n								
	GDs 8-19	0%	-2%	3%	3%	-4%	-1%				
	Maternal food c	onsumptic	on								
	GD 20-PND 20	0%	3%	7%	8%	5%	-91%				

Reference and study design				Resu	lts					
<u>Lee et al. (2004)</u>	response rela	ative to cont	rol							
Rat (Sprague-Dawley); 6-8 dams/ group	Doses	0	2-3		14-29	148-291	712-1,372			
0, 20, 200, 2,000, 10,000 ppm Diet	Maternal bo	dy weight g	ain							
(0,2-3, 14-29,148-291, 712-	GDs 15-20	0%	-18*%		-2%	-7%	-21*%			
1,372 mg/kg-day)	Maternal for	od consump	tion							
Diet GD 15-PND 21	GDs 15-19	0%	-4%		-5%	-10%	7%			
Note: Doses represent a range	Maternal for	od consump	tion							
estimated by the study authors for hree different time periods (GDs 15-	PNDs 2-10 0% 5% 1%				-0.3%	-2%				
20, PNDs 2-10, and PNDs 10-21).	Maternal for	Maternal food consumption								
	PNDs 10-21	0%	15%		9%	10%	4%			
Monsanto (1984)	response rela	ative to cont	rol							
Rat (CD); 20 breeding pairs/group	Doses	0		5		50	500			
13-17 animals evaluated [females exposed only]	Maternal bo	dy weight a	t weaning	of F1 a	nimals					
0, 5, 50, 500 mg/kg-day	GD 20	0%		-4%	-	-6*%	-7*%			
Diet	LD 21	0%		-3%		-8%	-6%			
14 days before mating and continued through weaning [PND 21]										
Galazar et al. (2004)	response rela	ative to cont	rol							
Rat (Long Evans); 15 dams/group	Doses	Doses 0			12		50			
), 12, 50 mg/kg-day ^a	Maternal body weight gain after 3 months of treatment									
Diet 2.5 months before mating to PND 14			0%		-26%		-26%			
Howdeshell et al. (2008)	response rela	ntive to cont	rol							
Rat (Sprague-Dawley); 3-4	Doses	0	33	50	100	300	600			
dams/group					100	500	000			
), 33, 50, 100, 300, 600 mg/kg-day	Maternal we	-	-		<u> </u>	<i>co/</i>	= ~ /			
Gavage	GD 18	0%	1%	1%	6%	6%	5%			
GDs 8-18	Maternal bo									
	GDs 8-18	0%	6%	-9%	6%	0.1%	-11%			
<u>Chang et al. (2004b)</u>	response rela	ative to cont	rol							
Rat (Sprague-Dawley); 14-16 Jams/group	Doses	0		50		250	500			
), 50, 250, 500 mg/kg-day	Maternal bo	dy weight g	ain							
Gavage	GDs 1-21	0%		-6%	-	-6%	-12%			
GD 1-PND 21										

Reference and study design				Re	sults					
<u>NTP (1991)</u>	response rele	ative to	control							
Rat (Sprague-Dawley); 20 breeding	Doses		0	66		320		651		
pairs/dose, 40 control breeding pairs 0, 0.1, 0.5, 1% (0, 66, 320, or	Maternal bo	dy wei	ght							
651 mg/kg-day)	First litter		0%	-3%	I	-2%		-6*%		
Diet	Second litter		0%	-4%		-3%		-8*%		
Exposure: 7 days pre-cohabitation, 112-day cohabitation, ~60 days post-	Third litter		0%	-4%		-4%		-9*%		
cohabitation (continuous breeding;	Fourth litter		0%	-4%		-5%		-12*%		
five litters)	Fifth litter		0%	-5%		-5%		-12*%		
Note: study authors did not specify date of necropsy for F1 animals.	Maternal fo	od cons	umption							
	Week 17		0%	1%		-1%		-4%		
	Note: Mater females only		-		-	-		gh-dose		
Shiota et al. (1980)	response rele	ative to	control							
Shiota and Nishimura (1982)	Doses	0	80	180	37	70	660	2,100		
Mouse (ICR); 6-21 dams/group	Maternal we	Maternal weight								
GDs 0-18	GD 18	0%	7%	-1%	0	%	2%	-24*%		
	Maternal fo	Maternal food consumption								
	GDs 0-18	0%	11%	18%	5 15	5%	11%	15%		
Mylchreest et al. (1999a)	response rele	ative to	control							
Rat (Sprague-Dawley); 10	Doses 0			100	0 250			500		
dams/group 0, 100, 250, 500 mg/kg-day	Maternal body weight gain									
Gavage GDs 12-21	GDs 0-21		0%	-8%		1%		-9%		
<u>Martino-Andrade et al. (2009)</u> Rat (Wistar); 4-8/group	response rel	ative to			40	•		250		
0, 100, 500 mg/kg-day	Doses		0		10	0		250		
Gavage	Maternal bo	dy wei				o.(224		
GDs 13-21	At GD 21		0%		-15			-32%		
Note: One group of dams was sacrificed on GD 21, and a second group was allowed to deliver.	At delivery		0%		24	%		35%		
<u>NTP (1995)</u>	response rel	ative to	control							
Mouse (B6C3F ₁); 20 females/group	Doses	0	138	275	550	825	1,100	2,200		
0, 1,250, 2,500, 5,000, 7,500, 10,000 ppm or 20,000 (0, 244, 488, 975,	Maternal bo	dy wei	ght gain							
1,463, 1,950, 3,900 mg/kg-day)	GDs 0-18	0%	-9%	3%	6%	6%	12%	-36*%		
Diet	LDs 0-28	0%	-31%	0%	-63%	-38%	88%	NA		
This document is a draft	J									

This document is a draft for review purposes only and does not constitute Agency policy. 3-121 DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results									
GD 1-PND 28	Note: There were no high-dose dams or litters at PND 1.									
Mylchreest et al. (1998)	response relative to control									
Rat (Sprague-Dawley); 10	Doses				0	250	500	750		
dams/group 0, 250, 500, 750 mg/kg-day	Materna	Maternal body weight								
Gavage	GDs 0-6	(n = 7-	10)		0%	-1%	-2%	-6%		
GD 3-PND 20 (2-day interruption at	GDs 7-13	3 (n = 6	5-10)		0%	-1%	-2%	-7%		
parturition, PNDs 1-2)	GDs 14-2	20 (n =	4-10)		0%	-0.1%	-2%	-7%		
	PNDs 1-2	7 (n = 4	1-9)		0%	2%	-4%	-6%		
	PNDs 8-2	14 (n =	4-9)		0%	1%	-4%	-5%		
	PNDs 15	-21 (n=	= 4-9)		0%	1%	-3%	-5%		
	Maternal food consumption									
	GDs 0-6	(n = 7-	10)		0%		-9%	-2%		
	GDs 7-13 (n = 6-10)				0%	3%	-2%	-1%		
	GDs 14-20 (n= 4-10)				0%		-4%	-6%		
	PNDs 1-7 (n = 4-9)				0%		-8%	-21%		
	PNDs 15	-21 (n	=4-9)		0%	32%	37%	7%		
<u>Jiang et al. (2007)</u>	response	e relati	ve to co	ntrol						
Rat (Sprague-Dawley); 10 dams/group	Doses		0	250)	500	750	1,000		
0, 250, 500, 750, 1,000 mg/kg-day	Materna	al body	v weight	gain						
Gavage	GDs 14-2	18	0%	-3%	D	-5%	-17*%	-73*%		
GDs 14-18	GDs 18-2	20	0%	-3%	,)	2%	-19*%	-88*%		
<u>Ema et al. (2000)</u>	response	e relati	ve to co	ntrol						
Rat (Wistar); 13 dams/group	Doses	0	250	500	750	1,000	1,250	1,500		
0, 250, 500, 750, 1,000, 1,250, 1,500 mg/kg-day	Materna	al body	v weight	gain						
Gavage	0-9	0%	27%	-120*%	-207*	% -253*%	-280*%	-187*%		
GDs 0-8; dams sacrificed at GD 20	9-20	0%	9%	15%	11%	-5%	-22%	-40*%		
		0%	21%	18%	11%	-7%	-39%	-21%		
	Materna	al food	consum	nption						
	0-9	0%	3%	-41*%	-56*%	6 -56*%	-55*%	-44*%		
	9-20	0%	2%	9%	9%	9%	-2%	6%		
	Note: Adjusted for uterine weight in pregnant animals.									
Gray et al. (2006) (Study 2)	response	e relati	ve to co	ntrol						
Rat (Long Evans); weanling females, 11-13/group		Dos	ses		0	250	500	750		
TT TO/ P. OAP				Mat	ernal bo	dy weight				

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design				Results					
0, 250, 500, 750 mg/kg-day	At GD 13	of F1a litte	r	0%	1%	-1%	7%		
Gavage	At deliver	y of F1b lit	ter	0%	2%	5%	-1%		
5 days/week: PNDs 24-~PND 110 7 days/week: ~PND 110 to GD 13 of F1b litter (F1a litter delivered at PND 140; F1A delivered at 170 days of age) Note: treated females mated to	Note: Body weights were only measured in FO females pregnant at nec (number not provided by study authors).								
untreated males									
Changes in number of implantation sig	tes								
Mylchreest et al. (2000)	response	relative to	control						
Rat (Sprague-Dawley); 11-20 dams/group	Doses	0	0.5	5	50	100	500		
0, 0.5, 5, 50, 100, 500 mg/kg-day	Implantat	tion sites p	er litter						
Gavage GDs 12-21		0%	-2%	-4%	1%	-4%	-12%		
Monsanto (1984)	response	relative to	control						
Rat (CD); 20 breeding pairs/group; 13-15 resulting litters [females exposed only]	Doses	Doses 0 5 50							
	Number implantation sites								
0, 5, 50, 500 mg/kg-day Diet 14 days before mating and			0%	25%	-5'	%	-2%		
continued through weaning [PND 21]									
Howdeshell et al. (2008)	response	relative to	control						
Rat (Sprague-Dawley); 4 dams/group	Doses	0	33	50	100	300	600		
0, 33, 50, 100, 300, 600 mg/kg-day Gavage	Number of implantations								
GDs 8-18		0%	-18%	-1%	-5%	-18%	4%		
<u>Shiota et al. (1980)</u>	response relative to control								
Shiota and Nishimura (1982)	Doses	0	80	180	370	660	2,100		
Mouse (ICR); 6-21 dams/group 0, 80, 180, 370, 660,	Number o	of implants	s per litter						
2,100 mg/kg-day Diet GDs 0-18		0%	18%	11%	15%	11%	12%		
<u>Mylchreest et al. (1999a)</u>	response	relative to	control						
Rat (Sprague-Dawley); 10	Doses		0	100	25	50	500		
dams/group	Implantat	tion sites p	er litter						

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design				Resul	ts				
0, 100, 250, 500 mg/kg-day Gavage GDs 12-21		(0%	0%		1%		-8%	
Mylchreest et al. (1998)	response rel	ative to co	ntrol						
Rat (Sprague-Dawley); 10 dams/group 0, 250, 500, 750 mg/kg-day	Doses		0	250		500		750	
	Implantatio	n sites per	litter						
Gavage GD 3-PND 20 (2-day interruption at parturition, PNDs 1-2)		(0%	-6%		10%		1%	
<u>Ema et al. (2000)</u>	response rel	ative to co	ntrol						
Rat (Wistar); 13 dams/group	Doses	0	250	500	750	1,000	1,250	1,500	
0, 250, 500, 750, 1,000, 1,250, 1,500 mg/kg-day	Implantatio	n sites							
Gavage	Per female	0%	-1%	0%	-7%	-10%	-41*%	-57*%	
GDs 0-8; dams sacrificed at GD 20	Per litter	0%	-1%	0%	-7%	-10%	-5%	-8%	
Changes in number of live pups per lit	ter		•		·		•		
Mylchreest et al. (2000)	response rel	ative to co	ntrol						
Rat (Sprague-Dawley); 11-20	Doses	0	0.5	5	50	:	100	500	
dams/group 0, 0.5, 5, 50, 100, 500 mg/kg-day	Live pups per litter								
Gavage GDs 12-21		0%	-4%	-7%	-1%		-6%	-14%	
Lee et al. (2004)	response rel	ative to co	ntrol						
Rat (Sprague-Dawley); 6-8/group	Doses	0	2		14	148		712	
0, 20, 200, 2,000, 10,000 ppm Diet (0,2-3, 14-29,148-291, 712-	Live pups per litter								
(a) 2 3, 14 23, 140 231, 712 1,372 mg/kg-day) Diet GD 15-PND 21 Note: Doses represent a range estimated by the study authors for three different time periods (GDs 15- 20, PNDs 2-10, and PNDs 10-21).	Note: Intake	0% e reported t	-179		3%	-7%	,	-4%	
	response rel	ative to co	ntrol						
	Doses		0	5		50		500	
	Number of	pups delive	ered						
		(0%	32%		-1%		0%	
	Live pups								
		(0%	21%		22%		-2%	

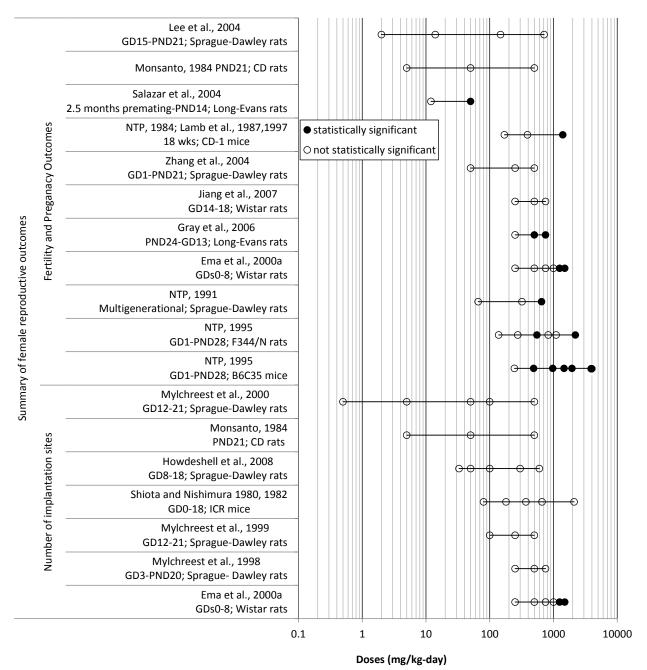
This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE 3-124

Reference and study design				Results					
Monsanto (1984)	Dead pups								
Rat (CD); 20 breeding pairs/group			0%	0%	100%		100%		
13-15 resulting litters [females exposed only]	Pup survival to PND 21								
0, 5, 50, 500 mg/kg-day Diet			100%	100%	100%		100%		
14 days before mating and continued through weaning [PND 21]									
<u>Salazar et al. (2004)</u>	Doses		0		12		50		
Rat (Long Evans); 15 dams/group 0, 12, 50 mg/kg-dayª	Litter size (Response r		of animals/lit controls	ter)					
Diet			0%		3%		-7%		
Dams: 2.5 months before mating to PND 22; Pups: Pups: PND 22-PNW 12	Pup surviva Percent inc								
			72%		60%		71%		
Howdeshell et al. (2008)	Doses	0	33	50	100	300	600		
Rat (Sprague-Dawley); 4 dams/group D, 33, 50, 100, 300, 600 mg/kg-day Gavage GDs 8-18	Percent Fetal mortality Resorptions/implantations								
		2%	3%	3%	4%	4%	10%		
	Number of live fetuses per litter Response relative to controls								
		0%	-14%	-2%	-6%	-21%	-3%		
Zhang et al. (2004b)	response re	elative to	control						
Rat (Sprague-Dawley); 14-16	Doses		0	50	250		500		
dams/group 0, 50, 250, 500 mg/kg-day	Live pups per litter								
Gavage GD 1-PND 21			0%	1%	0%		-14*%		
<u>NTP (1991)</u>	response re	elative to	control						
Rat (Sprague-Dawley); 20 breeding	Doses		0	66	320		651		
pairs/dose/generation; 40 control F0 breeding pairs, 20 control F1	Live F1 pups per litter								
breeding pairs, 20 control F1 breeding pairs	M		0%	-8%	-11*%	,	-25*%		
0, 0.1, 0.5, 1% (0, 66, 320, or	F		0%	-8%	-17*%		-9*%		
651 mg/kg-day) Diet	Combined		0%	-8*%	-15*%	,	-17*%		
F0 exposure: 7-day pre-cohabitation,	Live F2 pup	os per lit	ter						
112-day cohabitation, ~60 days post- cohabitation (continuous breeding)	M		0%	6%	-17%		-15%		
F1 exposure: gestation, lactation,	F		0%	-12%	-1%		1%		
and post-weaning through ~PND 142	Combined		0%	11%	-9%		-7%		

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results								
Note: study authors did not specify date of necropsy for F1 animals.	Note: Only one F2 litter was produced in the high-dose group.								
<u>Shiota et al. (1980)</u>	response relative to control								
<u>Shiota and Nishimura (1982)</u>	Doses	0	80		180	30	660	2,100	
Mouse (ICR); 6-21 dams/group	Resorptions and dead fetuses								
0, 80, 180, 350, 660, 2,100 mg/kg-day		5%	4%		11%	22%	11%	98*%	
Diet									
GDs 0-18									
Mylchreest et al. (1999a)	response r	elative to	o control						
Rat (Sprague-Dawley); 10 dams/group	Doses		0		100	250		500	
0, 100, 250, 500 mg/kg-day	Live pups	per litter							
Gavage GDs 12-21			0%		3%	3%		-2%	
Nikonorow et al. (1973)	response r	elative to	o control						
Rat (Wistar); 20 dams/group 0, 120, 600 mg/kg-day Gavage 3 months before mating; animals	Doses	Doses 0 120					6	600	
	Dead fetuses (GD 21)								
	Incidence		0/	'9	(0/106	0	/81	
sampled at GD 21	Percent		09	%		0%	()%	
NTP (1995)	response r	elative to	o control						
Rat (F344/N); 24 females/dose, 48	Doses	0	138	275	550	825	1,100	2,200	
control females 0, 1,250, 2,500, 5,000, 7,500, 10,000,	Live pups per litter								
20,000 ppm (0, 138, 275, 550, 825, 1,100, 2,200 mg/kg-day) ^b		0%	-10%	7%	13%	15%	10%	-93*%	
Diet									
GD 1-PND 28									
NTP (1984)	response r	elative to	o control						
<u>Lamb et al. (1987)</u>	Doses		0		170	390		1,400	
Lamb et al. (1997)	Live pups per litter								
Mouse (CD-1); 18-40 breeding pairs/group 0, 0.03, 0.3, 1% Diet			0%		3%	-3%		-63*%	
	Proportion of pups born alive								
(0, 170, 390, 1,400 mg/kg-day)		· · ·	0%		0%	-1%		-50*%	
Diet									
18 weeks (1 week pre-mating, 14 weeks cohabitation, 3 weeks observation)									

Reference and study design				Re	esults					
<u>NTP (1995)</u>	response	relative to	control							
Mouse (B6C3F1); 20 females/group	Doses	0	244	488	975	1,463	1,950	3,900		
0, 1,250, 2,500, 5,000, 7,500, 10,000	Live pups per litter									
ppm or 20,000 (0, 244, 488, 975, 1,463, 1,950, 3,900 mg/kg-day) ^c Diet		0%	5%	-1%	7%	-58*%	-94*%	-100%		
GD 1-PND 28										
Mylchreest et al. (1998)	response relative to control									
Rat (Sprague-Dawley); 10 dams/group; 4-9 litters/group 0, 250, 500, 750 mg/kg-day	Doses		0	2	250	500		750		
	Live pups	per litter								
Gavage			0%	()%	9%		-27*%		
GD 3-PND 20 (2-day interruption at parturition, PNDs 1-2)	Percent p	oups surviv	ing to w	veaning						
			0%	2	1%	-6%		-11*%		
<u>Ema et al. (2000)</u>	response	relative to	control							
Rat (Wistar); 13 dams/group	Doses	0	250	500	750	1,000	1,250	1,500		
0, 250, 500, 750, 1,000, 1,250, 1,500 mg/kg-day Gavage GDs 0-8	Live fetuses per litter									
		0%	5%	-15%	-28*%	-60*%	-59*%	-62*%		
	Resorbed and dead fetuses/litter									
		0%	-64%	143%	200%	464*%	514*%	521*%		
Jiang et al. (2007)	response	relative to	control							
Rat (Sprague-Dawley); 10	Doses	0		250	500	75	60	1,000		
dams/group 0, 250, 500, 750, 1,000 mg/kg-day	Live pups per litter									
Gavage		0%		-1%	-2%	-27	*%	-100%		
GDs 14-18										
<u>Gray et al. (2006)</u>	response	relative to	control							
Rat (Long Evans); weanling females, 11-13/group	Doses		0	2	250	500		750		
), 250, 500, 750 mg/kg-day	Total nur	nber of fet	uses pe	r F1b litter						
Gavage	GD 13		0%	-	5%	-45*%		-32*%		
5 days/week: PNDs 24-~PND 110	Live fetus	ses per F1t	litter							
7 days/week: ~PND 110 to GD 13 of F1b litter (F1a litter delivered ~PND	GD 13		0%	-	4%	-60*%		-85*%		
140) Note: treated females were mated	Live pups per F1a litter									
	PND 1		0%	-	5%	-77*%		-92*%		
to untreated males	PND 15		0%	-1	10%	-84*		-100*%		
	died befo	F1a litter ore PND 5. ded by stu	The nur	nber F0 fei			-			

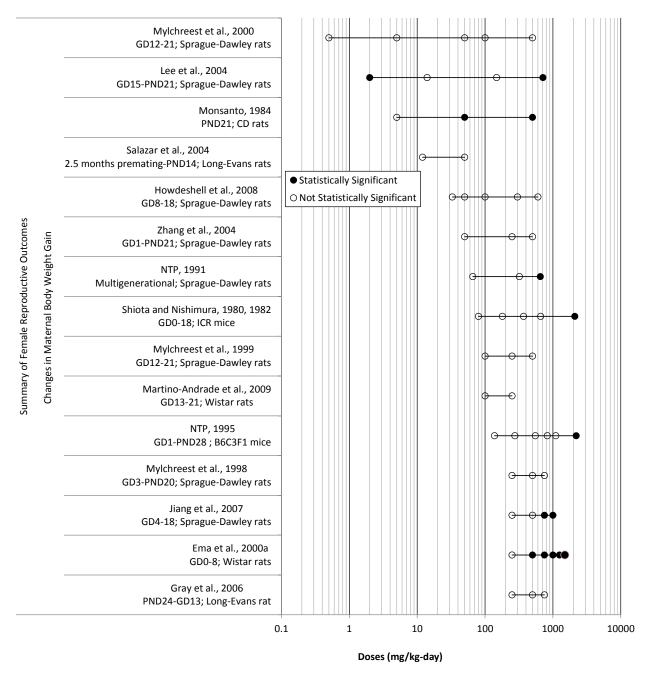

Reference and study design	Results
----------------------------	---------

^aDBP concentrations in the diet were 0, 610, 2,500 ppm in diet; details on dose estimation in mg/kg-day were not provided by the study authors.

^bDoses calculated using <u>U.S. EPA (1988)</u> reference subchronic values for food intake (0.014 kg/day) and body weight (0.124 kg) in female F344 rats.

^cDoses calculated using <u>U.S. EPA (1988)</u> reference subchronic values for food intake (0.0048 kg/day) and body weight (0.0065 kg) in female B6C3F1 mice.

*Statistically different from controls (p < 0.05), as reported by study authors.



1

2

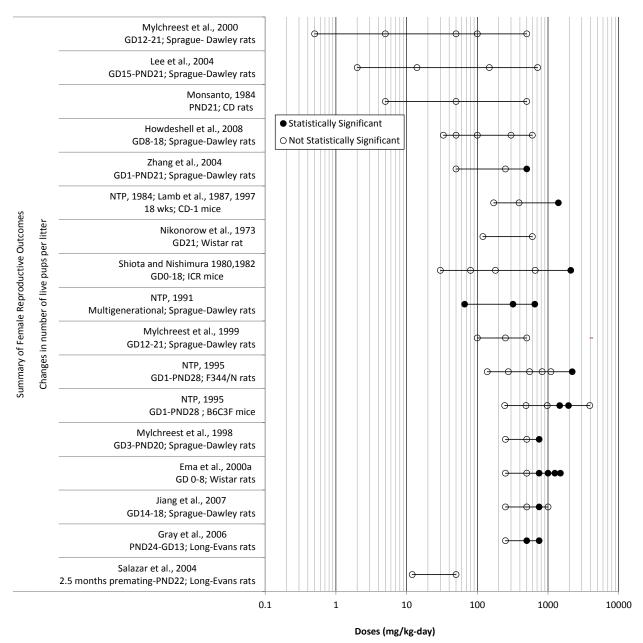

3

Figure 3-11. Exposure-response array of female reproductive toxicity following oral exposure to DBP: fertility and pregnancy outcome, and number of implantations.

1

Figure 3-12. Exposure-response array of female reproductive toxicity
following oral exposure to DBP: alterations in maternal body weight.

1

Figure 3-13. Exposure-response array of female reproductive toxicity
following oral exposure to DBP: alterations in the number of live pups per
litter.

1 2 3 Table 3-27. Evidence pertaining to female reproductive toxicity following oral exposure to DBP: alterations in reproductive organ weights, biomarkers of sexual development, reproductive hormone levels, and reproductive behavior

Reference and study design			Results		
Reproductive organ weights					
Ahmad et al. (2013)	response relative	to control			
Rat (Strain not specified); 6	Doses	0		10	100
females/group	Uterus weight ^b				
0, 10, 100 mg/kg-day	PNDs 20-23	0%		-13%	-32*%
Oral exposure - method not specified	PNDs 20-40	0%		-63*%	-65*%
PNDs 20-23, or PNDs 20-40	Ovary weight ^b				
	PNDs 20-23	0%		0%	-16%
	PNDs 20-40	0%		-24*%	-32*%
	Vagina weight ^b				
	PNDs 20-40	0%		-6%	-14%
NTP (1991)	response relative	to control			
Rat (Sprague-Dawley); 10	Doses	0	66	320	651
dams/group/generation; 40 F0 control breeding pairs, 20 F1 control	Maternal right o	vary weight in I	1 animals		
breeding pairs 0, 0.1, 0.5, 1% (0, 66, 320, or 651 mg/kg-day) Diet		0%	10%	7%	-22*%
FO: 7-day pre-cohabitation; 112 day cohabitation; ~60 days post- cohabitation (continuous breeding)					
F1: gestation, lactation, and post- weaning through ~PND 142 Note: study authors did not specify					
date of necropsy for F1 animals.		t			
<u>Nikonorow et al. (1973)</u> Rat (Wistar); 20 dams/group	response relative			120	600
0, 120, 600 mg/kg-day	Doses	0		120	600
Gavage	Placenta weight			4 - *0/	0*0/
3 months before mating; animals sampled at GD 21	GD 21	0%		-15*%	-9*%
Mylchreest et al. (1998)	response relative	to control			
Rat (Sprague-Dawley); 10	Doses	0	250	500	750
dams/group; organ weight evaluated n 4-9 dams/group	Maternal uterus	weight			
, 0					

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

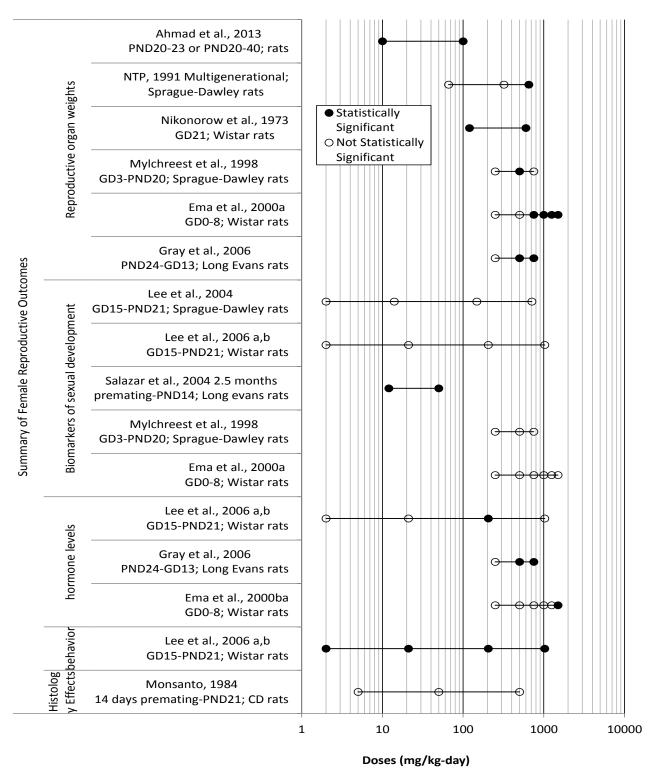
3-132

Reference and study design				Res	sults			
0, 250, 500, 750 mg/kg-day	Maternal	ovaries w	eight					
Gavage GD 3-PND 20 (2-day interruption at parturition, PNDs 1-2)	PND 21		0%	-1	1%	1%		7%
<u>Ema et al. (2000)</u>	response r	elative to	control					
Rat (Wistar); 10-13 pseudopregnant females/group	Doses	0	250	500	750	1,000	1,250	1,500
0, 250, 500, 750, 1,000, 1,250,	Uterine w	eight on c	lay 9 pse	udopregr	nancyª			
1,500 mg/kg-day		0%	-4%	-4%	-22*%	-19*%	-47*%	-52*%
Gavage	Ovarian w	eight on a	day 9 pse	eudopreg	nancy ^a			
GDs 0-8		0%	-5%	-3%	-0.4%	-5%	-10*%	-10*%
<u>Gray et al. (2006)</u>	response r	elative to	control					
Rat (Long Evans); weanling females,	Doses		C)	250	500	1	750
11-13/group 0, 250, 500, 750 mg/kg-day	Maternal	gravid ute	erine wei	ght				
Gavage	GD 13 of F	1b litter	09	%	1%	-32*9	%	-32*%
5 days/week: PNDs 24-~PND 110	Maternal	ovaries w	eight					
7 days/week: ~PND 110 to GD 13 of	GD 13 of		09	%	-3%	-6%	1	-10%
F1b litter (F1a litter delivered ~PND 140)	_				ired in F0 fe	emales nr	egnant v	vith F1h
Note: treated females were mated to untreated males	litter (num	-		-			-0	
Biomarkers of sexual development and	l function							
Lee et al. (2004)	response r	elative to	control					
Rat (Sprague-Dawley); 6-8 dams/	Doses	0		2-3	14-29	148-	291	712-1,372
group 0, 20, 200, 2,000, 10,000 ppm Diet	Female AG)D						
(0,2-3, 14-29,148-291, 712-	PND 2	0%	, D	0%	0%	0	%	0%
1,372 mg/kg-day)	Note: Inta	ke reporte	ed for GD	os 15-20.				
Diet		•						
GD 15-PND 21 Note: Doses represent a range estimated by the study authors for three different time periods (GDs 15- 20, PNDs 2-10, and PNDs 10-21).								
		1.11.						
Lee et al. (2006b) Rat (Wistar); number of treated dams	response r							
not reported, AGD assessed in 16-47	Doses	0		2	21	20)5	1,025
female offspring/group	Female AG	6D						
0, 2, 21, 205, 1,025 mg/kg-day ^b	PND 1 ^a	0%	, 5	-2%	1%	29	%	7%
Diet GD 15-PND 21	Female AG	D/body v	weight					
	PND 1 ^a	0%	, D	-1%	1%	49	%	11%

This document is a draft for review purposes only and does not constitute Agency policy.

Reference and study design				Res	ults			
<u>Salazar et al. (2004)</u>	response	relative to	control					
Rat (Long Evans); 15 dams/group	Doses			0	12	2		50
0, 12, 50 mg/kg-day ^c	Age of va	ginal ope	ningª					
Diet			0	%	4*	%	5	5*%
2.5 months before mating to PND 14	Age at fir	st estrous	а					
			0	%	49	6	5	5*%
Mylchreest et al. (1998)	response	relative to	control					
Rat (Sprague-Dawley); 10	Doses		0	25	0	500		750
dams/group; female offspring from 4- 9 litters/group were evaluated for	Age of va	ginal ope			-			
sexual maturity starting at PND 29	0	0	0%	-0.3	3%	-2%		0%
0, 250, 500, 750 mg/kg-day	Age at fir	st estrous		0.0	,,,,	2/0		0/0
Gavage			0%	29	/6	-4%		-1%
GD 3-PND 20 (2-day interruption at parturition, PNDs 1-2)	Length of	ostrus cu		27		470		170
	Length Of	estius cy	0%	10	0/	-8%		-10%
	AGD at Pl		076	10	/0	-0/0		-10%
			00/	70		70/		0.10/
			0%	79	/o	7%		0.1%
	Percent c	ornified s			0/	240/		250/
		1	26%	25		31%		25%
				of statistic	al compar	ison.		
Ema et al. (2000) Rat (Wistar); 10-13 pseudopregnant	response							
females/group	Doses	0	250	500	750	1,000	1,250	1,500
0, 250, 500, 750, 1,000, 1,250,	Number o	-	lutea on	day 9 pse	udopregna	ancy		
1,500 mg/kg-day		0%	0%	3%	3%	-1%	-1%	7%
Gavage GDs 0-8								
Changes in reproductive hormone leve	ls							
Lee et al. (2006b)	response	relative to	control					
Lee et al. (2006a)	Doses	() (2	21	20	15	1,025
Rat (Wistar); number of treated dams	Serum es			2	21	20		1,025
not reported, hormones assessed in 5-12 female offspring/group	PND 7 ^a	09	0/	3%	-11%	-69	*0/	-44%
0, 2, 21, 205, 1,025 mg/kg-day ^b					-1170	-09	/0	-4470
Diet	Serum es		-		1.00/	-	0/	609/
GD 15-PND 21	1,100h°			-14%	-18%	-5	70	69%
	Serum es		-				o (4.6554
	1,600hª			12%	-31%	-8	%	169%
	Serum FS	H at proe	strus					

Reference and study design			R	esults					
	1,100hª	0%	0%	-24%	0%	, D	-16%		
	Serum FSH	at proestrus	;						
	1,600hª	0%	79%	-5%	679	6	42%		
	Serum LH a	at proestrus							
	1,100h ^a	0%	20%	-20%	-89	6	-12%		
	Serum LH a	at proestrus							
	1,600hª	0%	88%	-16%	239	%	40%		
Gray et al. (2006) (Study 2)	response re	elative to con	trol						
Rat (Long Evans); weanling females,	Doses	0		250	500		750		
11-13/group 0, 250, 500, 750 mg/kg-day	Ex vivo ova	arian progest	erone produ	iction ^a					
Gavage		0%	/ 0	-7%	-30*%		-58*%		
5 days/week: PNDs 24-~PND 110	Serum pro	gesterone ^a							
7 days/week: ~PND 110 to GD 13 of		0%	6	-6%	-21%		-50*%		
F1b litter (F1a litter delivered ~PND 140)	Ex vivo ova	arian estradio	ol production	۱ª					
Note: treated females were mated to		0%	6	0%	388%		329%		
ntreated males	Ex vivo ova	arian testoste	erone produc	ction ^a					
		0%	/ 0	10%	15%		68%		
	Note: Reproductive hormones were only measured in F0 females pregnant with F1b litter (number not provided by study authors). Statistics were not reported by study authors for estradiol production.								
<u>Ema et al. (2000)</u>	response re	elative to con	trol						
Rat (Wistar); 10-13 pseudopregnant	Doses	0 25	50 500	750	1,000	1,250	1,500		
dams/group	Serum pro	gesterone or	n day 9 of psi	uedopregnar	ncyª				
0, 250, 500, 750, 1,000, 1,250, 1,500 mg/kg-day		0% 14	13%	10%	17%	-10%	-61*%		
Gavage	Serum esti	adiol on day	9 of psuedo	pregnancy ^a					
GDs 0-8		0% 29	9% -8%	5%	-24%	-18%	-2%		
Changes in reproductive behavior	<u> </u>			· · · · · ·					
Lee et al. (2006b)	Doses	0	2	21	20	5	1,025		
<u>Lee et al. (2006a)</u>	Lordosis qu	uotient							
Rat (Wistar); number of treated dams not reported; reproductive behavior	Percent								
evaluated in 6-12 female offspring/group	PNW 20 ^a	75%	48*%	30*%	30*	%	15*%		
0, 2, 21, 205, 1,025 mg/kg-day ^b									
Diet									
GD 15-PND 21									


Reference and study design			Results							
Histopathological effects	-									
Monsanto (1984)	Doses	0	5	50	500					
Rat (CD); 20 breeding pairs/group	Incidence ute	rus atrophy								
17-20 animals examined [females exposed only]	Incidence	7/20	4/20	7/18	7/19					
0, 5, 50, 500 mg/kg-day	Percent	35%	20%	39%	37%					
Diet	Incidence ovary cyst									
14 days before mating and continued through weaning [PND 21]	Incidence	0/20	0/20	0/17	1/19					
	Percent	0%	0%	0%	5%					
	Incidence cerv	<i>v</i> icitis								
	Incidence	0/19	1/19	1/17	1/18					
	Percent	0%	5%	6%	6%					
	Incidence cerv	/ical squamous n	noderate metap	olasia						
	Incidence	0/19	0/19	1/17	0/18					
	Percent	0%	0%	6%	0%					

^aValues reported by the study authors were estimated from published graphs using "Grab It!", a Microsoft Excel based free software application used to digitize data from image files. Publisher: datatrendsoftware.com.

^bIn the absence of reporting of average daily intakes or body weights of the dams, respective average daily intakes were estimated using U.S. EPA RfVs for female Wistar rat body weight (0.156 kg) and food intake (0.016 kg/day) as 0, 2.1, 21, 205, and 1,025 mg/kg-day.

^cDoses were 0, 610, 2,500 ppm in diet; details on dose estimation in mg/kg-day were not provided by the study authors.

*Statistically different from controls (p < 0.05), as reported by study authors.

1

2

3

Figure 3-14. Exposure-response array of female reproductive toxicity following oral exposure to DBP: alterations in female sexual development, reproductive hormone levels in animals, organ weight and reproductive behavior.

1 3.3.3. Developmental Effects

2 3 4

Table 3-28. Evidence pertaining to developmental effects following oral exposure to DBP: alterations in body weight, skeletal development and external malformations

Reference and study design				Results					
Changes in offspring body weight									
Mylchreest et al. (2000)	response rel	ative to co	ntrol						
Rat (Sprague-Dawley); 11-20	Doses	0	0.5	5	50	100	500		
dams/group 0, 0.5, 5, 50, 100, 500 mg/kg-day	Pup Weight	(M)							
Gavage	Birth	0%	0%	6%	2%	2%	-2%		
GDs 12-21	Weaning	0%	5%	12*%	8%	9%	10%		
	PND 110	0%	2%	3%	3%	1%	-2%		
	Pup Weight	(F)							
	Birth	0%	-2%	3%	-2%	2%	-3%		
	Weaning	0%	9%	18*%	12*%	13*%	17*%		
	Note: Litter	is the stati	stical unit c	of compari	son.				
Lee et al. (2004)	response rel	ative to co	ntrol						
Rat (Sprague-Dawley); 6-8/group	Doses	0	2-3	14-	29	148-291	712-1,374		
), 20, 200, 2,000, 10,000 ppm Diet: 0, 2-3, 14-29, 148-291, 712-	Pup Weight (M)								
1,372 mg/kg-day	PND 2	0%	13*%	6	%	4%	-3%		
Diet	PND 77	0%	0%	8%		3%	7%		
GD 15-PND 21	PND 140	0%	8%	13	%	5%	NA		
	Pup Weight	(F)							
	PND 2	0%	14*%	69	%	2%	-6%		
	PND 77	0%	-0.4%	79	%	1%	1%		
	PND 140	0%	2%	13	%	12%	-0.3%		
	Note: Litter indicated the the highest of the study au and PNDs 10	at a sufficio dose group ithors for t	ent number at PND 14	r of male a 0. Doses r	inimals c epresent	ould not be a range est	obtained in imated by		
<u>Lee et al. (2006b)</u>	response rel	ative to co	ntrol						
Rat (Wistar); number of treated dams not reported; bodyweight measured	Doses	0	2	2	1	205	1,025		
in 16-47 pups/sex/group	Pup Weight (M) ^b								
0, 20, 200, 2,000, 10,000 ppm Diet 0,	PND 1	0%	-4%	-4*	*%	-7*%	-16*%		
2, 21, 205, 1,025 mg/kg-day ^a	Pup Weight	(F) ^b							

Reference and study design	Results								
Diet	PND 1 (0% -0.3%	6 -3%	-7*%	-14*%				
GD 15-PND 21									
<u>Monsanto (1984)</u>	response relative	to control							
Rat (CD); 20 breeding pairs/group	Doses	0	5	50	500				
13-15 animals evaluated [females exposed only]	F1 male weight								
0, 5, 50, 500 mg/kg-day	PND 21	0%	-1%	-1%	-5%				
Diet	F1 female weight								
14 days before mating and continued	PND 21	0%	-4%	2%	-6%				
hrough weaning [PND 21]	F1 male weight								
	PND 70	0%	-3%	-8*%	-4%				
	F1 female weight								
	PND 70	0%	-4%	-4%	-5%				
Salazar et al. (2004)	response relative	to control							
Rat (Long Evans); 15 dams/group	Doses	0	12	!	50				
0, 610, 2,500 ppm (0, 12, 50 mg/kg-day)	Pup Weight (M+F)							
Diet	PND 2	0%	-10*	%	-23*%				
Dams: 2.5 months before mating to	PND 6	0%	-12*	%	-1%				
PND 22; Pups: PNDs 22-84	Pup Weight (M)								
	PND 14	0%	-5%	6	2%				
	Note: Doses were 0, 610, 2,500 ppm in diet; details on dose estimation in mg/kg-day were not provided by the study authors. The unit of statistical comparison (e.g. litter or individual pup) was not reported.								
Zhang et al. (2004b)	response relative	to control							
Rat (Sprague-Dawley); 14-16	Doses	0	50	250	500				
dams/group 0, 50, 250, 500 mg/kg-day	Pup Weight (M)								
Gavage	Birth	0%	-4%	-12*%	-13*%				
GD 1-PND 21	Pup Weight (F)								
	Birth	0%	-4%	-10*%	-18*%				
	Note: Litter is the	statistical unit	of comparison						
ohnson et al. (2008)	response relative	to control							
Rat (Long Evans); 3-7 dams/group	Doses	0	50	100	200				
0, 50, 100, 200 mg/kg-day	Pup Weight (M)								
Gavage	040.24	00/	4 5 0/	40/	100/				
GDs 12-21	PND 21	0%	-15%	-4%	-19%				

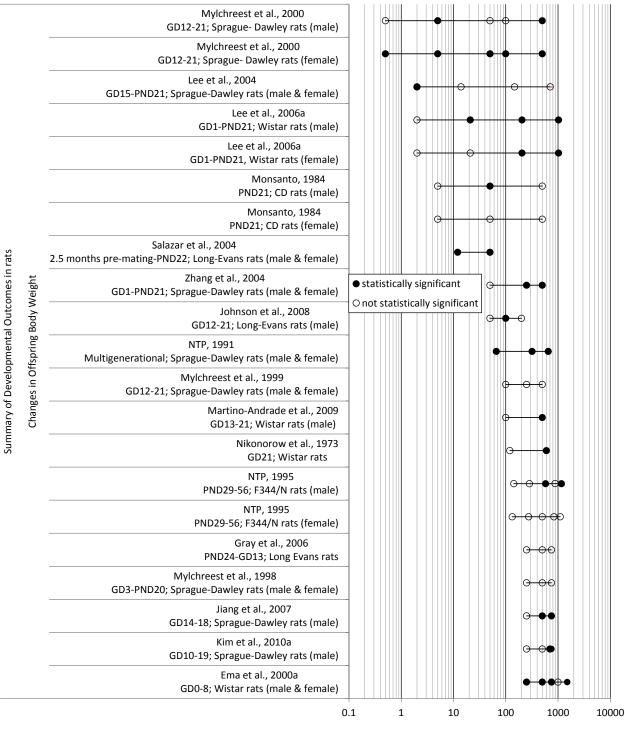
Reference and study design				Results								
<u>NTP (1991)</u>	response rel	lative to co	ontrol									
Rat (Sprague-Dawley); 20 breeding	Doses		0	66	320		651					
pairs/dose/generation; 40 F0 control breeding pairs, 20 F1 control breeding	Live F1 pup	weights a	t birth (lit	ter means, fi	irst F1 litter))						
pairs	М	0)%	1%	-5*%	1	-10*%					
0, 0.1, 0.5, 1% Diet (0, 66, 320, or 651 mg/kg-day)	F	C)%	0.2%	-3%		-9*%					
Multigenerational study	Combined	C)%	1%	-4*%	1	-10*%					
Note: study authors did not specify	Adult F1 we	eights at ~	PND 119 (individual m	eans, fifth F	1 litter)						
date of necropsy for F1 animals.	М	0)%	1%	-0.4%	,)	-8*%					
	F	C)%	-4%	-4%		-20*%					
	Combined	C)%	-1%	-2%		-13*%					
	Live F2 pup	weights a	t birth (lit	ter means)								
	M	C)%	-5*%	-5*%	1	-17%					
	F	C)%	-7*%	-7*%		-15%					
	Combined	C)%	-6*%	-6*%		-16%					
	Note: Only o	ote: Only one F2 litter was produced in the high-dose group.										
<u>Shiota et al. (1980)</u>	response relative to control											
<u>Shiota and Nishimura (1982)</u>	Doses	0	80	180	370	660	2,100					
Mouse (ICR); 6-21 dams/group	Fetal Weigh	it (M)										
0, 80, 180, 370, 660, 2,100 mg/kg-day Diet	GD 18	0%	-7%	-9%	-7%	-22*%	-20%					
GDs 0-18	Fetal Weigh	it (F)										
	GD 18	0%	-4%	-10%	-8%	-21%	-41%					
				t of comparis red to term a			o males,					
Mylchreest et al. (1999a)	response rel	lative to co	ontrol									
Rat (Sprague-Dawley); 10	Doses		0	100	250		500					
dams/group; offspring weight assessed in 9-10 litters/group	Pup Weight	(M)										
0, 100, 250, 500 mg/kg-day	PND 1	()%	0%	-11%	1	-6%					
Gavage	Pup Weight	. (F)										
GDs 12-21	PND 1	()%	-5%	-13%	1	-8%					
	Adult Weigh	ht (M)										
	PNDs 105-1.	10 ()%	-3%	-3%		-4%					
	Note: Litter	is the stat	istical unit	t of comparis	son.							
	response rel	lative to co	ontrol									
i de la constante de	1_		0		100		500					
	Doses		0		100		300					

Reference and study design										
Martino-Andrade et al. (2009)	PND 90		0%		-2%		4%			
Rat (Wistar); 4-7 dams/group; offspring body weight was assessed in 4-7 litters/group (8-17 males/group) 0, 100, 500 mg/kg-day Gavage GDs 13-21	Note: Litter i	Note: Litter is the statistical unit of comparison								
Nikonorow et al. (1973)	response rela	ative to co	ontrol							
Rat (Wistar); 20 dams/group	Doses	0		120		600				
0, 120, 600 mg/kg-day	Fetal weight									
Gavage 3 months before mating; animals sampled at GD 21	GD 21	0%		-5%		-22*%				
NTP (1995)	response rela	ative to co	ontrol							
Rat (F344/N); 24 females/dose, 48	Doses	0	138	275	550	825	1,100			
control females; 10 offspring/sex/group	F1 pup weig	ht (litter n	neans)							
0, 1,250, 2,500, 5,000, 7,500, 10,000,	Birth	0%	-3%	-5%	-7*%	-9%	-9%			
or 20,000 ppm (dams [gestation/lactation]: 0, 138, 275, 550, 825, 1,100, 2,200 mg/kg-day ^c ;	PND 28	0%	-2%	-4%	-8*%	-10%	-10%			
pups [post-weaning]: 0, 143, 284, 579, 879, 1,165 mg/kg-day in males;	Doses (M)	0	143	284	579	879	1,165			
0, 133, 275, 500, 836,	F1 weight (individual means)									
1,104 mg/kg-day in females	PND 56	0%	-1%	-3%	-7%*	-13%*	-8%*			
Diet Dams: GD 1-PND 28; Pups: PNDs 29-										
56	Doses (F)	0	133	275	500	836	1,104			
	F1 weight (ir	ndividual ı	neans)							
	PND 56	0%	0%	-2%	1%	-4%	-5%			
	Note: There	were no s	urviving h	igh-dose of	fspring.					
<u>NTP (1984)</u>	response rela	ative to co	ontrol							
<u>Lamb et al. (1987)</u>	Doses		כ	170	39	0	1,400			
Lamb et al. (1997)	Live pup wei	ight								
Mouse (CD-1); 18-40 breeding pairs/group 0, 0.03, 0.3, 1% Diet		0	%	-1%	-19	%	4%			
(0, 170, 390, 1,400 mg/kg-day) Diet										
18 weeks (1 week pre-mating, 14 weeks cohabitation, 3 weeks observation)										
	response rela	ative to co	ontrol							

This document is a draft for review purposes only and does not constitute Agency policy.

Reference and study design	Results									
NTP (1995)	Doses	0	244	488	975	1,463	1,950			
Mouse (B6C3F ₁); 20 females/group;	F1 pup weig	F1 pup weight (litter means)								
10 offspring/sex/group 0, 1,250, 2,500, 5,000, 7,500, 10,000	Birth	0%	1%	-4%	-7*%	-4%	-14*%			
opm or 20,000 (dams gestation/lactation]:0, 244, 488, 975, L,463, 1,950, 3,900 mg/kg-day ^d ; pups	PND 28	0%	7%	1%	-6*%	-3%	0%			
[post-weaning]: 0, 199, 437, 750,	Doses (M)	0	199	437	750	1,286	3,804			
1,286, 3,804 mg/kg-day in males; 0, 170, 399, 714, 1,060 mg/kg-day in	F1 weight (in	ndividual	means)							
females)	PND 56	0%	-2%	-6*%	-10*%	-12*%	-26%			
Diet										
Dams: GD 1-PND 28; Pups: PNDs 29- 56	Doses (F)	0	170	399	714	1,060				
	F1 weight (in	ndividual	means)							
	PND 56	0%	5%	-1%	-2%	-11*%				
	Note: There dose group). necropsy; no	Only 1 m	ale offspri	ing in the 10	0,000 ppm	group surv				
<u>Gray et al. (2006)</u>	response rele	response relative to control								
Rat (Long Evans); weanling females,	Doses 0			250	50	0	750			
11-13/group), 250, 500, 750 mg/kg-day	F1a pup weight									
Gavage	PND 1	()%	-3%	0%	0	-8%			
5 days/week: PNDs 24-~PND 110	PND 21	C)%	0%	6%	/ D	NA			
7 days/week: ~PND 110 to GD 13 of F1b litter (F1a litter delivered ~PND 140) Note: treated females were mated to untreated males	Note: Numbers of live F1a litters for the 0, 250, 500, and 750 mg/kg-day groups were 12, 9, 5, and 1, respectively. Only one pup was born in the single high-dose litter, and it died before PND 5. The body weight data for the F1b litter were not provided by study authors.									
Mylchreest et al. (1998)	response rele	ative to co	ontrol							
Rat (Sprague-Dawley); 10	Doses		0	250	50	0	750			
dams/group; 4-9 litters/group), 250, 500, 750 mg/kg-day	Pup Weight	(M) (litte	r means)							
Gavage	PND 1	C)%	3%	2%	/ 0	-5%			
GD 3-PND 20	PND 21	C)%	6%	-49	6	-13%			
	PND 100	C)%	-3%	-49	6	-10%			
	Pup Weight	(F) (litter	means)							
	PND 1	C)%	2%	-29	6	-7%			
	PND 21	C)%	7%	-39	6	-8%			
	1									
	PND 100	C)%	3%	-19	6	0%			

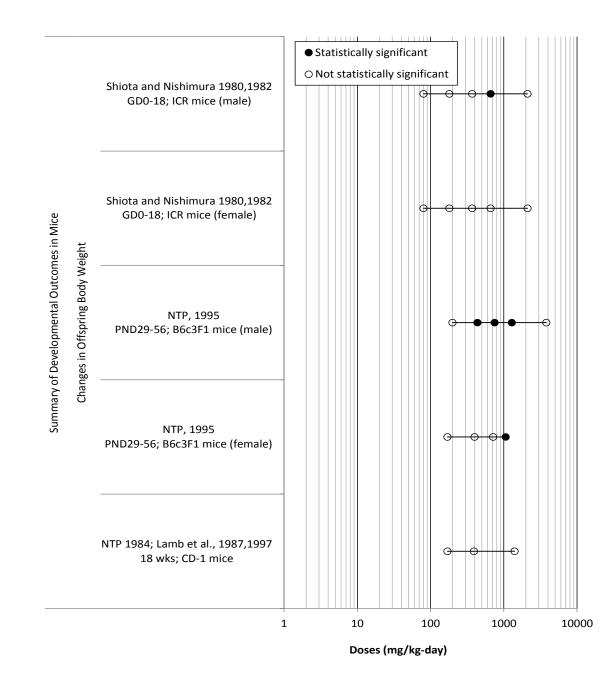
Reference and study design				F	Results					
Jiang et al. (2007)	response	relative	to contro	ol						
Rat (Sprague-Dawley); 10 dams/group	Doses		0	250	500	75	50	1,000		
0, 250, 500, 750, 1,000 mg/kg-day	Live pup v	veight (M) (litte	r means)						
Gavage	PND 1	()%	-4%	-16*%	-26	*%	NA		
GDs 14-18	Pup Weig	ht (M) (n = 21-5	7)						
	PND 70	()%	-1%	-8*%	-22	*%	NA		
	Note: No live pups were delivered in the high-dose group. Litter was the statistical unit of comparison for PND 1 pup weights.									
<u>Kim et al. (2010)</u>	response	relative	to contro	ol						
Rat (Sprague-Dawley) 4-9	Doses		0		250	500		700		
dams/group; body weight was assessed in 8 male offspring/group	Pup Weig	Pup Weight (M)								
0, 250, 500, 700 mg/kg-day	PND 31		0%		-5%	-1		-10*%		
Gavage GDs 10-19										
<u>Ema et al. (2000)</u>	response	relative	to contro	ol						
Rat (Wistar); 13 dams/group	Doses	0	250	500	750	1,000	1,250	1,500		
0, 250, 500, 750, 1,000, 1,250, or 1,500 mg/kg-day	Live fetus	weight	(M)							
Gavage	GD 20	0%	4*%	-12*%	-22*%	-32*%	-36*%	-32*%		
GDs 0-8	Live fetus weight (F)									
	GD 20	0%	2*%	-14*%	-26*%	-34*%	-37*%	-37*%		
External Malformations										
<u>Ema et al. (1994)</u>	response	relative	to contro	ol						
Rat (Wistar); 9-11 litters/group	Doses		0		750	1,000		1,500		
0, 750, 1,000, 1,500 mg/kg-day	Litter inci	dence o	f cleft pa	alate						
Gavage	GDs 7-9		-		10%	0%		-		
GDs 7-9 or 10-12 or 13-15	GDs 10-12	2	-		0%	0%		-		
	GDs 13-15	5	-		44*%	88*%		-		
	Note: Inci	dence n	ot repor	ted for c	ontrols and h	igh dose g	group.			
<u>Ema et al. (1997)</u>	percent in	cidence								
Rat (Wistar); 10-12 litters/group	Doses				0		1,500	D		
0, 1,500 mg/kg-day	Litter inci	dence o	f cleft pa	alate						
Gavage	GD 12				0%		10%	1		
GDs 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 Controls received vehicle on GDs 6-16	GD 15				0%		42*%	6		
Skeletal Development Effects	I									


Reference and study design				Results							
<u>Shiota et al. (1980)</u>	Doses	0	80	180	370	660	2,100				
Shiota and Nishimura (1982) Mouse (ICR); 6-21 dams/group		Ossified coccygia Response relative to control									
0, 80, 180, 370, 660, 2,100 mg/kg-day		0%	-46*%	-52*%	-36*%	-72*%	NA				
Diet GDs 0-18		Lumbar rib variations Percent incidence									
		13%	24%	17%	26%	37%	NA				
	Deficient s Percent inc		ossificatio	n							
		0%	6%	0%	0%	0%	NA				
	one female	e) from 2 c	itistical unit lams surviv		•		o males,				
Changes in body weight after pre-pube	rtal or pube	rtal expos	ure								
<u>Ahmad et al. (2013)</u>	response re	elative to a	control								
Rat (Strain not specified); 6	Doses		0		10		100				
females/group	Final body	weight ^b									
0, 10, 100 mg/kg-day			0%		-11%	-	14*%				
Oral exposure - method not specified PNDs 20-40											
<u>Srivastava et al. (1990a)</u>	response re	elative to a	control								
Rat (Wistar); 6/group	Doses		0	250	50	00	1,000				
0, 250, 500, 1,000 mg/kg-day	Final body	weight									
Gavage 15 days			0%	-5%	-	1	-10*%				

^aRats were exposed to DBP (>98% purity) in the diet at concentrations of 0, 20, 200, 2,000, or 10,000 ppm. Doses calculated using <u>U.S. EPA (1988)</u> reference subchronic values for food intake (0.016 kg/day) and body weight (0.156 kg) in female Wistar rats.

^bValues reported by the study authors were estimated from published graphs using "Grab It!", a Microsoft Excel based free software application used to digitize data from image files. Publisher: datatrendsoftware.com. ^cDoses calculated using <u>U.S. EPA (1988)</u> reference subchronic values for food intake (0.014 kg/day) and body weight (0.124 kg) in female F344 rats

^dDoses calculated using <u>U.S. EPA (1988)</u> reference subchronic values for food intake (0.0048 kg/day) and body weight (0.0065 kg) in female B6C3F1 mice


*Statistically different from controls (p < 0.05), as reported by study authors.

Doses (mg/kg-day)

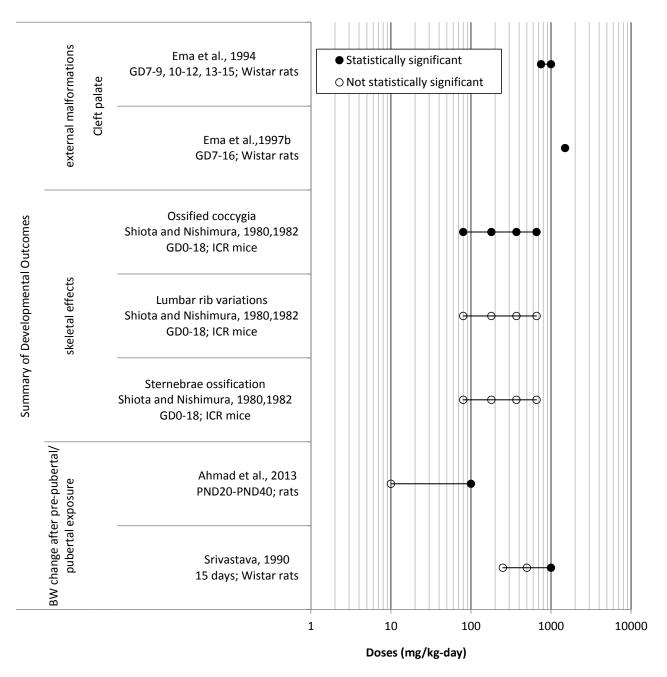

2 3

Figure 3-15. Exposure-response array of developmental effects following oral exposure to DBP: alterations in offspring body weight in rats.

2

Figure 3-16. Exposure-response array of developmental effects following oral
 exposure to DBP: alterations in offspring body weight in mice.

1 2

3

Figure 3-17. Exposure-response array of developmental effects following oral exposure to DBP: external malformations, skeletal effects and body changes after pre-pubertal and pubertal exposure.

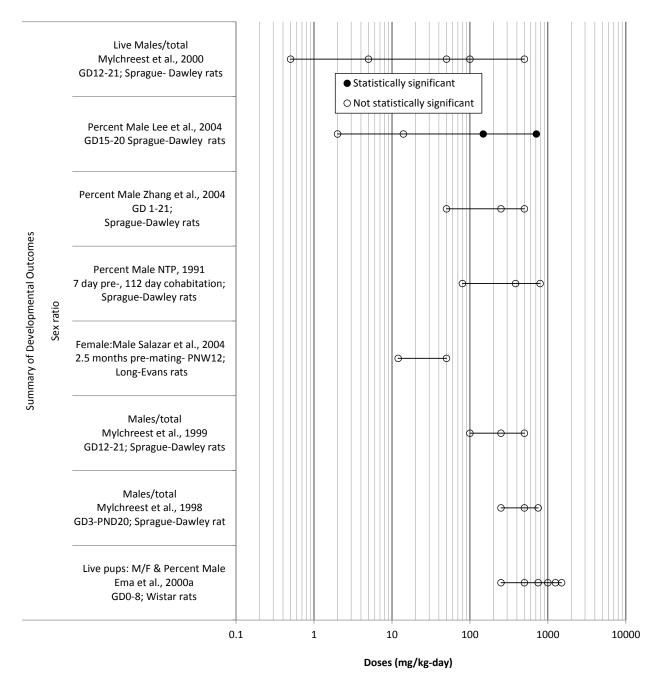

1 2

Table 3-29. Evidence pertaining to developmental effects following oralexposure to DBP: alterations in offspring sex ratio in animals

Reference and study design				Results						
Sex ratio										
Mylchreest et al. (2000)	Doses	0	0.5	5	5	50 100	500			
Rat (Sprague-Dawley); 11-20	Sex ratio									
dams/group 0, 0.5, 5, 50, 100, 500 mg/kg-day	Live	51	50	47	Z	19 59	47			
Gavage	M/total									
GDs 12-21										
Lee et al. (2004)	Doses	0		2	14	148	712			
Rat (Sprague-Dawley); 6-8/group	Sex ratio									
0, 2, 14, 148, 712 mg/kg-day Diet	Percent M	66%	5	1%	47%	44*%	25*%			
GDs 15-20										
Zhang et al. (2004b)	Doses	0		50		250	500			
Rat (Sprague-Dawley); 14-16 dams/group	Total numbers of live F1 pups									
0, 50, 250, 500 mg/kg-day	M/F	77/0	58	74/73		68/81	63/79			
Gavage	Sex ratio									
GD 1-PND 21	Percent M	539	%	50%		46%	44%			
NTP (1991)	Doses	0		80		385	794			
Rat (Sprague-Dawley); 20 breeding pairs/dose; 40 F0 control breeding	Sex ratio F1 l	litter								
pairs/dose; 40 F0 control breeding	Percent M	509	%	50%		51%	45%			
0, 0.1, 0.5, 1% Diet (0, 66, 320, or 651 mg/kg-day)										
Diet										
7-day pre-cohabitation, 112-day cohabitation, ~60 days post- cohabitation (continuous breeding)										

Reference and study design				Resu	ults			
Salazar et al. (2004)	Doses			0		12	5	0
Rat (Long Evans); 15 dams/group	Sex prevale	nce						
0, 12, 50 mg/kg-day Diet Dams: 2.5 months before mating to PND 22; Pups: PND 22-PNW 12	F:M		1	.1	(0.9	1	.1
Mylchreest et al. (1999a)	Doses		0	10	00	250		500
Rat (Sprague-Dawley); 10 dams/group; offspring weight	Sex ratio		0.5					0.5
assessed in 9-10 litters/group 0, 100, 250, 500 mg/kg-day Gavage GDs 12-21	M/total		0.5	0.	.6	0.5		0.5
Mylchreest et al. (1998)	Doses		0	25	50	500		750
Rat (Sprague-Dawley); 10 dams/group; 4-7 litters/group	Sex ratio							
0, 250, 500, 750 mg/kg-day	M/total		0.5	0.	.5	0.5		0.5
Gavage GD 3–PND 20 (2-day interruption at parturition, PNDs 1-2)								
Ema et al. (2000)	Doses	0	250	500	750	1,000	1,250	1,500
Rat (Wistar); 13 dams/group	Total numb	ers of liv	e F1 pup	S				
0, 250, 500, 750, 1,000, 1,250, or 1,500 mg/kg-day	M/F	91/86	99/87	77/74	60/67	39/33	26/19	20/11
Gavage	Sex ratio							
GDs 0-8	Percent M	51%	53%	51%	47%	54%	58%	65%

*Statistically different from controls (p < 0.05), as reported by study authors.

1

2

3

Figure 3-18. Exposure-response array of developmental effects following oral exposure to DBP: alterations on sex ratio changes after gestational exposure.

1 3.3.4. Liver Effects

2 3

Table 3-30. Evidence pertaining to liver effects in animals following oral exposure to DBP

Reference and study design			R	lesults						
Liver weight change	1									
Mylchreest et al. (2000)	response relati	ve to contro	1							
Rat (Sprague-Dawley); 11-20	Doses	0	0.5	5	50	100	500			
litters/group; assessed in 2 males/litter	Absolute liver	weight								
0, 0.5, 5, 50, 100, 500 mg/kg-day	PND 110±10	0%	-1%	3%	-2 %	-3%	-3%			
Gavage										
GDs 12-21										
<u>Lee et al. (2004)</u>	response relati	ve to contro	Ι							
Rat (Sprague-Dawley); 6-8	Doses	0	2-3	14-29	148	8-291	712-1,372			
dams/group; assessed in 8-10 offspring/sex/group	Relative liver weight (PND 21)									
0, 2-3, 14-29, 148-291, 712-	М	0%	-5%	0%		4%	29*%			
1,372 mg/kg-day	F	0%	-7%	1%	-	2%	27*%			
Diet GDs 15-PND 21	Relative liver weight (PND 77)									
Note: Doses represent a range	М	0%	-1%	-1%	(0%	-1%			
estimated by the study authors for	F	0%	-1%	9%	:	3%	-4%			
hree different time periods (GDs 15- 20, PNDs 2-10, and PNDs 10-21).	Relative liver weight (PND 140)									
, , , ,	М	0%	4%	11%		4%	NA			
	F	0%	4%	0%	:	1%	1%			
Monsanto (1984)	response relati	ve to contro	1							
Rat (CD); 20 breeding pairs/group;	Doses	0		5	50		500			
13-15 animals evaluated [females exposed only]	Absolute liver	weight								
0, 5, 50, 500 mg/kg-day		0%		-2%	-14%		5%			
Diet	Relative liver v	veight		-						
14 days before mating and continued		0%		2%	-8%		13%			
through weaning [PND 21]		070		_//	0,0		2070			
<u>Monsanto (1984)</u>	response relati	ve to contro	Ι							
Rat (CD); 20 breeding pairs/group; 19-20 animals evaluated [males	Doses	0		5	50		500			
exposed only]	Absolute liver	weight								
0, 5, 50, 500 mg/kg-day		0%		-2%	0.2%		15*%			
Diet	Relative liver v	veight								
105 days		0%		1%	3%		18*%			

Reference and study design			Results							
<u>BASF (1992)</u>	response relative	to control								
Rat (Wistar); 10 rats/sex/group	Doses	0	30	152	752					
0, 30, 152, 752 mg/kg-day	Absolute liver we	eight								
Diet	М	0%	1%	0%	14%					
3 months (PNDs 42-135)	F	0%	2%	6%	16*%					
	Relative liver wei		2,0	0,0	10 /0					
	M	0%	0%	3%,	12*%					
	F	0%		-						
71			4%	6%	19*%					
<mark>Zhang et al. (2004b)</mark> Rat (Sprague-Dawley); 14-16	response relative									
dams/group; assessed in 20 male	Doses									
offspring/group	Absolute liver we	-								
0, 50, 250, 500 mg/kg-day	PND 70	0%	-10%	5%	-9*%					
Gavage	Relative liver wei	Relative liver weight in adults								
GD 1-PND 21	PND 70	0%	-8%	9*%,	-7*%					
<u> Nylchreest et al. (1999a)</u>	response relative	to control								
Rat (Sprague-Dawley); 9-10	Doses	0	50	250	500					
litters/group (52-62 male offspring/group)	Absolute liver weight in adult offspring									
D, 100, 250, 500 mg/kg-day	PNDs 100-105	0%	-6%	-6%	-8%					
Gavage										
GDs 12-21										
NTP (1991)	response relative	to control								
Rat (Sprague-Dawley); 20	Doses	0	66	320	651					
sex/group/generation; 40 F0 control preeding pairs, 20 F1 control	Absolute liver we	eight in adult	F1 rats							
breeding pairs	М	0%	-4%	-2%	7%					
D, 0.1, 0.5, 1% (0, 66, 320, or	F	0%	-5*%	1%	-11*%					
551 mg/kg-day) Diet	Relative liver wei									
FO exposure: 7-day pre-cohabitation;	M	0%	-4%	-1%	16*%					
112 day cohabitation; ~60 days post-	F	0%	-2%	1%	2%					
cohabitation (continuous breeding)	'	070	-∠/0	τ./0	∠70					
-1 exposure: gestation, lactation, and post-weaning										
Note: study authors did not specify										
date of necropsy for F1 animals.										
	response relative to control									
	Doses	0		100	500					
	Absolute liver we	ight in nre-n	ubertal rats							

Reference and study design				Results						
Lee et al. (2008)			0%		7%	4	5*%			
Rat (Sprague-Dawley); 6 males/group	Relative live	r weight i	n pre-pube	ertal rats						
0, 100, 500 mg/kg-day										
Gavage			0%		6%	4	4*%			
30 days in pre-pubertal male rats										
<u>NTP (1995)</u>	response rela	ative to co	ontrol							
Rat (F344); up to 24 dams/treatment group and 48 control dams; assessed	Doses (M)	0	143	284	579	879	1,165			
in 10 offspring/sex/group	Liver weight	F1 rats (A	PND 56)							
0, 1,250, 2,500, 5,000, 7,500, 10,000,	Absolute	0%	8%	8%	23*%	30*%	41*%			
20,000 ppm (Gestation-lactation doses ^a : 0, 138, 275, 550, 825, 1,100,	Relative	0%	8*%	10*%	29*%	44*%	49*%			
2,200 mg/kg-day; Postweaning doses:	Doses (F)	0	133	275	500	836	1,104			
0, 143, 284, 579, 879, 1,165 mg/kg-day in males; 0, 133, 275, 500,	Liver weight F1 rats (PND 56)									
836, 1,104 mg/kg-day in females)	Absolute	0%	3%	6*%	15*%	12*%	21*%			
Diet	Relative	0%	4%	6*%	14*%	16*%	27*%			
GD 1-PND 56	Note: no pup	os survive	d postpartı	um in 20,00	0 ppm trea	tment grou	р			
<u>NTP (1995)</u>	response relative to control									
Mouse (B6C3F ₁); 10 sex/group	Doses (M)	0	163	353	812	1,601	3,689			
Males: 0, 163, 353, 812, 1,601,	Liver weight									
3,689 mg/kg-day; Females: 0, 238, 486, 971, 2,137, 4,278 mg/kg-day	Absolute	0%	-3%	4%	-2%	7%	19*%			
Diet	Relative	0%	-3%	4% 6%	7*%	16*%	38*%			
91 days										
	Doses (F)	0	238	486	971	2,137	4,278			
	Liver weight									
	Absolute	0%	8%	7%	0%	13*%	34*%			
	Relative	0%	3%	2%	8*%	19*%	52*%			
<u>NTP (1995)</u>	response rela	ative to co	ontrol							
Rat (F344); 10 sex/group	Doses (M)	0	176	359	720	1,540	2,964			
Males: 0, 176, 359, 720, 1,540, 2,964 mg/kg-day; Females: 0, 177,	Liver weight									
356, 712, 1,413, 2,943 mg/kg-day	Absolute	0%	3%	17*%	22*%	28*%	-26*%			
Diet	Relative	0%	6%	18*%	32*%	54*%	70*%			
91 days	Doses (F)	0	177	356	712	1,413	2,943			
	Liver weight									
	Absolute	0%	-2%	6%	9*%	15*%	30*%			
	Relative	0%	0%	4%	11*%	25*%	78*%			
<u>NTP (1995)</u>	response relative to control									
	Doses (M)	0	199	437	750	1,286	3,804			
	20000 (101)	0	155		, 30	1,200	3,004			

Reference and study design				Results						
Mouse (B6C3F ₁); up to 20	Liver weight	F1 rats (PN	D 56)							
dams/group; assessed in 10 offspring/sex/group	Absolute	0%	3%	0%	5%	8*%	6%			
0, 1,250, 2,500, 5,000, 7,500, 10,000,	Relative	0%	6*%	8*%	17*%	23*9	% 31%			
20,000 ppm (Gestation-lactation	Doses (F)	0	170	399	714	1,06	0 NA			
doses ^b : 0, 244, 488, 975, 1,463, 1,950, 3,900 mg/kg-day; Postweaning doses:	Liver weight	: F1 rats (PN	D 56)							
0, 199, 437, 750, 1,286, 3,804	Absolute	0%	15%	11%	15%	-5%	, 			
mg/kg-day in males; 0, 170, 399, 714, 1,060, NA mg/kg-day in females) ⁵	Relative	Relative 0% 9% 12% 17% 5% -								
Diet GD 1-PND 56	Note: no pu male and no		-			-				
Mylchreest et al. (1998)	response rel	ative to con	trol							
Rat (Sprague-Dawley); 10	Doses	0		250	50	0	750			
dams/group; assessed in 4-9 dams/group at study termination	Absolute liv	Absolute liver weight in dams								
0, 250, 500, 750 mg/kg-day	PND 21	0%	1	2%	3%	6	4%			
Gavage GD 3-PND 20										
<u>Jiang et al. (2007)</u>	response rel	ative to con	trol							
Rat (Sprague-Dawley); 10	Doses	0		250	50	0	750			
lams/group; assessed in 21-57 male	Relative live	r weight in	adult male	e offsprii	ng					
0, 250, 500, 750, 1,000 mg/kg-day	PND 70 0% -2% -13*%					*%	-28*%			
Gavage	Relative liver weight in adult male offspring with hypospadias									
GDs 14-18 Note: no offspring survived in the high dose group (1,000 mg/kg-day)	PND 70	0%			-22*%					
Murakami et al. (1986)	response rel	ative to con	trol							
Rat (Wistar); 5 males/group	Doses		0		461		4,610			
0, 461, 4,610 mg/kg-day ^c	Liver weight	:								
Diet 34 or 36 days for low and high dose	Absolute		0%		-12%		2%			
groups respectively	Relative		0%		8%		70*%			
Histopathological effects	I									
	Doses	0	2-3	14-29	148-291	7	712-1,372			
	Cell hypertr	ophy (M) (P	ND 21)							
	Incidence	0/8	0/8		0/8	0/8	8/8*			
	Percent	0%	0%		0%	0%	100*%			
	Cell hypertr	ophy (F) (PN	ID 21)							
	Incidence	0/8	0/8		0/8	0/8	8/8*			

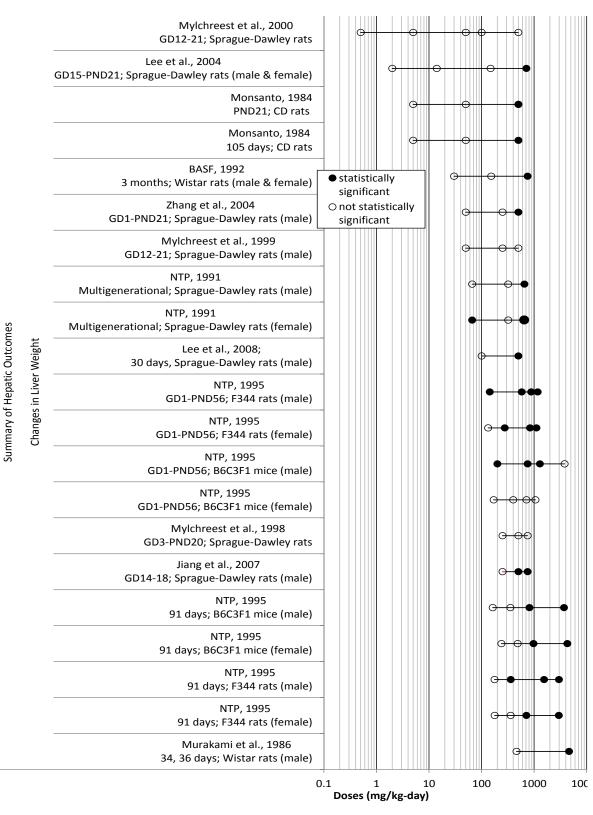
Reference and study design			Result	ts		
Lee et al. (2004) Rat (Sprague-Dawley); 6-8 dams/group; assessed in 8-10 offspring/sex/group 0, 2-3, 14-29, 148-291, 712- 1,372 mg/kg-day Diet GD 15-PND 21 Note: Doses represent a range estimated by the study authors for three different time periods (GDs 15- 20, PNDs 2-10, and PNDs 10-21).	Percent	0%	0%	0%	0%	100*%
Monsanto (1984)	Doses	0	5		50	500
Rat (CD); 20 breeding pairs/group;	Moderate live	er congestion				
19-20 animals evaluated [males	Incidence	0/19	0/20		0/19	0/19
exposed only] 0, 5, 50, 500 mg/kg-day	Percent	0%	0%		0%	0%
Diet	Moderate live	er hemorrhage	!			
105 days	Incidence	0/19	0/20		0/19	0/19
	Percent	0%	0%		0%	0%
	Mononuclear	cell infiltratio	n			
	Incidence	0/19	0/20		1/19	0/19
	Percent	0%	0%		5%	0%
Monsanto (1984)	Doses	0	5		50	500
Rat (CD); 20 breeding pairs/group;	Liver necrosis					
18-20 animals evaluated [females	Incidence	2/20	1/20		0/18	0/20
exposed only] 0, 5, 50, 500 mg/kg-day	Percent	10%	5%		0%	0%
Diet	Mild lymphoc	ytic infiltration	n			
14 days before mating and continued	Incidence	0/20	0/20		1/18	0/20
through weaning PND 21	Percent	0%	0%		6%	0%
BASF (1992)	Doses	0	30		152	752
Rat (Wistar); 10 rats/sex/group	Lipid vacuoles	5 (M)				
0, 30, 152, 752 mg/kg-day	Incidence	10/10	10/10)	10/10	4/10
Diet 3 months (PNDs 42-135)	Percent	100	100		100	40
5 months (1 195 - 175)	Granulomas (M)				
	Incidence	10/10	9/10		10/10	10/10
	Percent	100	90		100	100
	Lipid vacuoles	; (F)				

Reference and study design	Results									
	Incidence	10/10		10/10	10/10)	5/10			
	Percent	100		100	100		50			
	Granulomas (F)									
	Incidence	10/10		10/10	10/10)	9/10			
	Percent	100		100	100		90			
<u>NTP (1995)</u>	Doses (M)	0	163	353	812	1,601	3,689			
Mouse (B6C3F1); 10 sex/group	Hepatocyte cytoplasmic alterations									
Males: 0, 163, 353, 812, 1,601,	Incidence	0/10	0/10	0/10	0/10	6/10*	10/10*			
3,689 mg/kg-day; Females: 0, 238, 486, 971, 2,137, 4,278 mg/kg-day Diet	Percent	-	0%	0%	0%	60*%	100*%			
13 weeks	Doses (F)	0	238	486	971	2,137	4,278			
	Hepatocyte cytoplasmic alterations									
	Incidence	0/10	0/10	0/10	0/10	0/10	10/10*			
	Percent	-	0%	0%	0%	0%	100*%			
NTP (1995)	Doses (M)	0	176	359	720	1,540	2,964			
Rat (F344/N); 10 sex/group	Hepatocyte cyto	plasmic a	Iteratio	ns						
Males: 0, 176, 359, 720, 1,540, 2,964 mg/kg-day; Females: 0, 177,	Incidence	0/10	0/10	0/10	10/10*	10/10*	10/10*			
2,354 mg/kg ddy, remaies 6, 177, 356, 712, 1,413, 2,943 mg/kg-day Diet	Percent	0%	0%	0%	100*%	100*%	100*%			
13 weeks	Doses (F)	0	177	356	712	1,413	2,943			
	Hepatocyte cytoplasmic alterations									
	Incidence	0/10	0/10	0/10	10/10*	10/10*	10/10*			
	Percent	0%	0%	0%	100*%	100*%	100*%			
<u>NTP (1991)</u>	Doses		0		320	6	51			
Rat (Sprague-Dawley); 20	Hepatocellular d	legenerat	ion in ac	dult F1 (M)						
sex/group/generation; 40 F0 control breeding pairs, 20 F1 control	Incidence		7/10		1/10	3	/10			
breeding pairs 0, 0.1, 0.5, 1% (0, 66, 320, or 651 mg/kg-day)	Percent control		70%		10%	3	80%			
Diet F0 exposure: 7-day pre-cohabitation; 112 day cohabitation; ~60 days post- cohabitation (continuous breeding)										
F1 exposure: gestation, lactation, and post-weaning										
Note: study authors did not specify date of necropsy for F1 animals.										

Reference and study design				Results			
Liver Enzymes and serum clinical chem	istry						
<u>BASF (1992)</u>	response relative to	o cont	rol				
Rat (Wistar); 10 rats/sex/group	Doses (M)			0	30	152	752
0, 30, 152, 752 mg/kg-day	Hepatic Palmitoyl	CoA a	ctivity	0%	-5%	21%	166*%
Diet 3 months (PNDs 42-135)	Triglycerides			0%	36%	13%	-11%
	Doses (F)			0	30	152	752
	Hepatic Palmitoyl	CoA a	ctivity	0%	21%	13%	121*%
	Triglycerides			0%	20%	-8%	-45*%
<u>NTP (1995)</u>	response relative to	o cont	rol				
Rat (F344); 5 dams/group; 15 control dams	Doses C)	138	275	550	825	1,100
0, 1,250, 2,500, 5,000, 7,500, 10,000,	Hepatic Palmitoyl	CoA a	ctivity				
20,000 ppm (0, 138, 275, 550, 825,	Dams 09	%	220*%	240*%	160*%	40%	60%
1,100, 2,258 mg/kg-day) during gestation ^a	Fetuses 09	%	33%	67%	33%	33%	33%
Diet Up to 20 days during gestation							
<u>NTP (1995)</u>	response relative to	o cont	rol				
Rat (F344); 10 sex/group; (palmitoyl CoA activity assessed in 5	Doses (M)	0	176	359	720	1,540	2,964
rats/sex/group) Males: 0, 176, 359, 720, 1,540,	Hepatic Palmitoyl CoA activity	0%	6%	94*%	471*%	868*%	1,210*%
2,964 mg/kg-day	Serum ALP	0%	-2%	-5%	3%	54*%	75*%
Females: 0, 177, 356, 712, 1,413, 2,943 mg/kg-day	Serum bile acids	0%	-16%	13%	33%	141*%	291*%
Diet 13 weeks	Alanine aminotransferase	0%	0%	-12%	-6%	-20%	20%
15 WEEKS	Sorbitol dehydrogenase	0%	0%	-8%	-16%	-32*%	-24*%
	Cholesterol	0%	4%	5%	-5%	-34*%	-53*%
	Triglycerides	0%	-27*%	-28*%	-49*%	-79*%	-86*%
	Doses (F)	0	177	356	712	1,413	2,943
	Hepatic Palmitoyl CoA activity	0%	31%	69*%	156*%	1,000*%	3,144*%
	Serum ALP	0%	-1%	7%	28*%	31*%	92*%
	Serum bile acids	0%	39%	62*%	59*%	80*%	205*%
	Alanine aminotransferase	0%	-11%	-4%	-2%	2%	13*%

This document is a draft for review purposes only and does not constitute Agency policy.

Reference and study design			R	esults			
	Sorbitol dehydrogenase	0%	-7%	-4%	4%	4%	0%
	Cholesterol	0%	-1%	-2%	-8%	-25*%	-49*%
	Triglycerides	0%	6%	-1%	-35*%	-48*%	-65*%


PND = Postnatal day; NA = Not available; a sufficient number of male animals could not be obtained.

^aDoses calculated using <u>U.S. EPA (1988)</u> reference subchronic values for food intake (0.014 kg/day) and body weight (0.124 kg) in female F344 rats.

^bDoses calculated using <u>U.S. EPA (1988)</u> reference subchronic values for food intake (0.0048 kg/day) and body weight (0.0065 kg) in female B6C3F1 mice.

^c<u>Murakami et al. (1986)</u> provided information on dietary levels of DBP. Based on <u>U.S. EPA (1988)</u> default values for body weight (0.217 kg) and food consumption (0.020 kg/day).


*Statistically increased over control as reported by study authors.

Figure 3-19. Exposure-response arrays of alterations in liver weight following oral exposure to DBP.

1

2

2 3

Figure 3-20. Exposure-response arrays of alterations in liver histopathology and serum markers following oral exposure to DBP.

1 3.3.5. Kidney Effects

2

3

Table 3-31. Evidence pertaining to kidney effects in animals following oral exposure to DBP

Reference and study design			Res	ults					
Kidney weight change									
Mylchreest et al. (2000)	response relati	ive to contro	ol						
Rat (Sprague-Dawley); 11-20	Doses	0	0.5	5	50	100	500		
litters/group; assessed in 2 males/litter 0, 0.5, 5, 50, 100, 500 mg/kg-day	Absolute kidne	ey weight							
Gavage	PND 110±10	0%	1%	1%	2%	-2%	-4%		
GDs 12-21									
Lee et al. (2004)	response relati	ive to contro)						
Rat (Sprague-Dawley); 6-8 dams/group;	Doses	0	2-3	14-29	143	8-291	712-1,372		
assessed in 8-10 offspring/sex/group 0, 1.5-3.0, 14.4-28.5, 148.2-290.9,	Relative kidney weight (PND 21)								
712.3-1,371.8 mg/kg-day	M 0%		-3%	2%		4%	3%		
Diet	F	0%	-3%	5%	1	1%	2%		
GD 15-PND 21	Relative kidney weight (PND 77)								
three different time periods (GDs 15-20, PNDs 2-10, and PNDs 10-21).	М	0%	-4%	-1%	-	-3%	-12*%		
	F	0%	5%	3%		5%	-3%		
	Relative kidney weight (PND 140)								
	М	0%	0%	2%	-	-3%	NAª		
	F	0%	8%	4%		0%	-2%		
Monsanto (1984)	response relati	ive to contro)						
Rat (CD); 20 breeding pairs/group; 19-20 animals evaluated [males	Doses	0	5	5	50		500		
exposed only]	Absolute kidne	ey weight							
0, 5, 50, 500 mg/kg-day		0%	59	%	5%		10*%		
Diet	Relative kidne	y weight							
105 days		0%	8*	%	8*%		13*%		
Monsanto (1984)	response relati	ive to contro)						
Rat (CD); 20 breeding pairs/group; 13-15 animals evaluated [females	Doses	0	5	5	50		500		
exposed only]	Absolute kidno	ey weight							
0, 5, 50, 500 mg/kg-day		0%	55	%	-5%		7%		
Diet	Relative kidney weight								
14 days before mating and continued through weaning [PND 21]		0.5%	95	6%	2%		15*%		

Reference and study design			Results						
BASF (1992)	response rela	tive to control							
Rat, Wistar; 6-week-old rats; assessed	Doses	0	30	152		752			
in 10 rats/sex/group	Absolute kidr	ney weight							
0, 30, 152, 752 mg/kg-day Diet	М	0%	-8*%	-2%		7%			
3 months PNDs 42-135	F	0%	1%	6%		9*%			
	Relative kidn		273						
	M	0%	-8*%	1%		5%			
	F	0%	3%	6%		13*%			
Zhang et al. (2004b)		tive to control	570	070		15 /0			
Rat (Sprague-Dawley); 14-16	Doses		50	250		500			
dams/group; assessed in 20 male				250		500			
offspring/group	Absolute	it in adult offsp	- · · ·	40/		0*0/			
0, 50, 250, 500 mg/kg-day Gavage		0%	0%	-4%		-9*%			
GD 1-PND 21	Relative	0%	1%	-1%		-7*%			
NTP (1991)	response rela	tive to control							
Rat (Sprague-Dawley); 20 sex/group/generation; 40 F0 control breeding pairs, 20 F1 control breeding	Doses	0	66	320		651			
				320		031			
		ney weight in a		20/		20/			
0, 0.1, 0.5, 1% (0, 66, 320, or	M	0%	3%	3%		-2%			
651 mg/kg-day)	F	0%	0%	3%		-9*%			
Diet	Relative kidney weight in adult F1 rats								
F0 exposure: 7-day pre-cohabitation; 112 day cohabitation; ~60 days post-	М	0%	3%	6*%		6*%			
cohabitation (continuous breeding)	F	0%	4%	5%		5%			
F1 exposure: gestation, lactation, and									
post-weaning Note: study authors did not specify									
date of necropsy for F1 animals.									
Mylchreest et al. (1999a)	response rela	tive to control							
Rat (Sprague-Dawley); 9-10	Doses	0	100	250		500			
litters/group (52-62 male offspring/group)	Absolute kidr	ney weight in a							
0, 100, 250, 500 mg/kg-day	3 months old		-3%	-3%		-9*%			
Gavage		0/0	3/0	370		5 /0			
GDs 12-21									
	response rela	tive to control							
	Doses (F1 M)	0	143 284	579	879	1,165			
		weight (PND 5			-	,			
	Absolute	0%	6% 3%	5%	0%	5%			
	, 1000/010	070	576 570	570	070	575			

Reference and study design	Results								
<u>NTP (1995)</u>	Relative	0%	6*%	5*%	10*%	10*%	11*%		
Rat (F344); up to 24 dams/treatment									
group and 48 control dams; assessed in 10 offspring/sex/group 0, 1,250, 2,500, 5,000, 7,500, 10,000,	Doses (F1 F)	0	133	275	500	836	1,104		
	Right kidney weight (PND 56)								
20,000 ppm (Gestation-lactation doses ^b : 0, 138, 275, 550, 825, 1,100,	Absolute	0%	2%	3%	10*%	1%	1%		
2,200 mg/kg-day; Postweaning doses:	Relative	0%	3%	3%	8*%	4*%	6*%		
0, 143, 284, 579, 879, 1,165 mg/kg-day in males; 0, 133, 275, 500, 836, 1,104									
mg/kg-day in females)									
Diet	Note: no pups survived postpartum in 20,000 ppm treatment group								
GD 1-PND 56									
<u>NTP (1995)</u>	response relative	to contro	1						
Mouse (B6C3F ₁); 10 sex/group Males: 0, 163, 353, 812, 1,601, 3,689 mg/kg-day; Females: 0, 238, 486,	Doses (M)	0	163	353	812	1,601	3,689		
	Right kidney wei	ight							
971, 2,137, 4,278 mg/kg-day	Absolute	0%	2%	-1%	-3%	-5%	-15*%		
Diet	Relative	0%	1%	1%	6%	2%	-2%		
91 days									
	Doses (F)	0	238	486	971	2,137	4,278		
	Right kidney weight								
	Absolute	0%	16*%	13*%	16*%	15*%	9%		
	Relative	0%	11*%	8*%	26*%	22*%	24*%		
<u>NTP (1995)</u>	response relative								
Rat (F344); 10 sex/group	Doses (M)	0	176	359	720	1,540	2,964		
Males: 0, 176, 359, 720, 1,540, 2,964 mg/kg-day; Females: 0, 177, 356,	Right kidney weight								
712, 1,413, 2,943 mg/kg-day	Absolute	0%	1%	7%	4%	-2%	-41*%		
Diet	Relative	0%	4%	8*%	12*%	18*%	36*%		
91 days									
	Doses (F)	0	177	356	712	1,413	2,943		
	Right kidney weight								
	Absolute	0%	-2%	6%	6%	0%	-9*%		
	Relative	0%	1%	3%	9*%	10*%	24*%		
<u>NTP (1995)</u>	response relative to control								
Mouse (B6C3F1); up to 20 dams/group;	Doses (F1 M)	0	199	437	750	1,286	3,804		
assessed in 10 offspring/sex/group 0, 1,250, 2,500, 5,000, 7,500, 10,000,	Right kidney weight (PND 56)								
20,000 ppm (Gestation-lactation doses ^c : 0, 244, 488, 975, 1,463, 1,950,	Absolute	0%	0%	-5%	-12*%	-12*%	-26%		
	Relative	0%	2%	3%	-2%	0%	4%		

This document is a draft for review purposes only and does not constitute Agency policy.

Reference and study design	Results							
3,900 mg/kg-day; Postweaning doses:								
0, 199, 437, 750, 1,286, 3,804 mg/kg-day in males; 0, 170, 399,	Doses (F1 F)	0	170	399	714	1,060	NA	
714, 1,060, NA mg/kg-day in females)	Right kidney weight (PND 56)							
Diet GD 1-PND 56	Absolute	0%	17*%	15*%	13*%	7*%	-	
	Relative	0%	12*%	16*%	17*%	21*%	-	
	Note: no pups survived postpartum in 20,000 ppm treatment group. One male and no female pups survived postpartum in 10,000 ppm group							
<u> Jiang et al. (2007)</u>	response relative to control							
Rat (Sprague-Dawley); 10 dams/group; assessed in 21-57 male offspring/group 0, 250, 500, 750 mg/kg-day Gavage GDs 14-18	Doses	0		250	500		750	
	Relative right kidney weight in adult offspring (M)							
	PND 70	0%		1%	-13*%		-28*%	
	Relative left kidney weight in adult offspring (M)							
	PND 70	0%		-5%	-18*%		-33*%	
Mylchreest et al. (1998)	response relativ	e to contro	1					
Rat (Sprague-Dawley); 10 dams/group; assessed in 4-9 dams/group at study termination	Doses	0		250	500		750	
	Absolute kidney weight in dams							
0, 250, 500, 750 mg/kg-day	PND 21	0%		8%	10%		-19%	
Gavage								
GD 3-PND 20								
<u>Murakami et al. (1986)</u>	response relativ	e to contro	I					
Rat (Wistar); 5 males/group	Doses	0 461					610	
0, 461, 4,610 mg/kg-day ^d	Kidney weight							
Diet 34 or 36 days for low and high dose	Absolute	0%		-7%		-21%		
groups, respectively	Relative	0%		14%		36*%		
Kidney histopathology								
Monsanto (1984)	response relativ	e to contro	I					
Rat (CD); 20 breeding pairs/group;	Doses	0		5	50		500	
19-20 animals evaluated [males exposed only]	Mild kidney hydronephrosis							
0, 5, 50, 500 mg/kg-day	Incidence	0/19	0	/20	1/19		0/19	
Diet	Percent	0%	(0%	5%		0%	
105 days	Mild kidney mineralization							
	Incidence	0/19	0	/20	1/19		0/19	
	Percent	0%	(0%	5%		0%	
	Chronic nephropathy							
	Incidence	1/19	2	/20	2/19		0/19	

Reference and study design	Results							
	Percent	5%	10%	11%	0%			
Monsanto (1984)	response rela	tive to control						
Rat (CD); 20 breeding pairs/group;	Doses	0	5	50	500			
18-20 animals evaluated [females	Kidney microconcentration							
exposed only] 0, 5, 50, 500 mg/kg-day	Incidence	0/20	3/20	0/18	1/20			
Diet	Percent	0%	15%	0%	5%			
14 days before mating and continued through weaning [PND 21]	Mild kidney mineralization							
	Incidence	1/20	0/20	0/18	0/20			
	Percent	5%	0%	0%	0%			
	Chronic nephropathy							
	Incidence	0/20	1/20	0/18	1/20			
	Percent	0%	5%	0%	5%			
BASF (1992)		tive to control						
Rat (Wistar); 6-week-old rats; assessed	Doses	0	30	152	752			
in 10 rats/sex/group	Round cells (M)							
0, 30, 152, 752 mg/kg-day	Incidence	1/10	2/10	1/10	1/10			
Diet 3 months PNDs 42-135	Percent	10%	20%	10%	1/10			
3 Monuis PNDs 42-135		oliferation (M)	2076	1078	1076			
	Incidence		0/10	1/10	0/10			
		0/10	0/10	1/10	0/10			
	Percent	0%	0%	10%	0%			
	Intratubular							
	Incidence	0/10	0/10	0/10	0/10			
	Percent	0%	0%	0%	0%			
	Round cells (
	Incidence	0/10	0/10	0/10	0/10			
	Percent	0%	0%	0%	0%			
	Urothelial proliferation (F)							
	Incidence	0/10	1/10	0/10	0/10			
	Percent	0%	10%	0%	0%			
	Intratubular lithiasis (F)							
	Incidence	10/10	10/10	10/10	10/10			
	Percent	100%	100%	100%	100%			

Reference and study design			Res	ults					
Serum markers of renal toxicity	•								
BASF (1992)	response relative	to control							
Rat (Wistar); 6-week-old rats; assessed in 10 rats/sex/group	Doses	0	30		152		752		
0, 30, 152, 752 mg/kg-day	Serum urea								
Diet	M	0%	5%		0.2%		-4%		
3 months PNDs 42-135	F 0%		-1%		7%		9%		
	Serum creatinine								
	M	0%	6%		1%		5%		
	F (F 0% 3%		7%	8*%				
<u>NTP (1995)</u>	response relative	to control							
Rat (F344); 10 sex/group	Doses (M)	0	176	359	720	1,540	2,964		
Males: 0, 176, 359, 720, 1,540, 2,964 mg/kg-day; Females: 0, 177, 356, 712, 1,413, 2,943 mg/kg-day	Serum urea nitrogen	0%	1%	-1%	-2%	4%	9%		
Diet	Serum creatinine	0%	4%	3%	7%	4%	-6%		
13 weeks	Serum protein	0%	1%	3%	3%	-1%	-13*%		
	Serum albumin	0%	5*%	9*%	14*%	19*%	5*%		
	Doses (F)	0	177	356	712	1,413	2,943		
	Serum urea nitrogen	0%	10%	14%	10%	10%	15%		
	Serum creatinine	0%	0%	6%	7%	7%	3%		
	Serum protein	0%	-3%	-3%	-1%	-7*%	-15*%		
	Serum albumin	0%	-2%	0%	0%	0%	-4%		

PND = Postnatal day

^aNA = Not available; a sufficient number of male animals could not be obtained.

^bDoses calculated using <u>U.S. EPA (1988)</u> reference subchronic values for food intake (0.014 kg/day) and body weight (0.124 kg) in female F344 rats.

^cDoses calculated using <u>U.S. EPA (1988)</u> reference subchronic values for food intake (0.0048 kg/day) and body weight (0.0065 kg) in female B6C3F1 mice.

^d<u>Murakami et al. (1986)</u> provided information on dietary levels of DBP. Based on <u>U.S. EPA (1988)</u> default values for body weight (0.217 kg) and food consumption (0.020 kg/day).

*Statistically increased over control as reported by study authors.

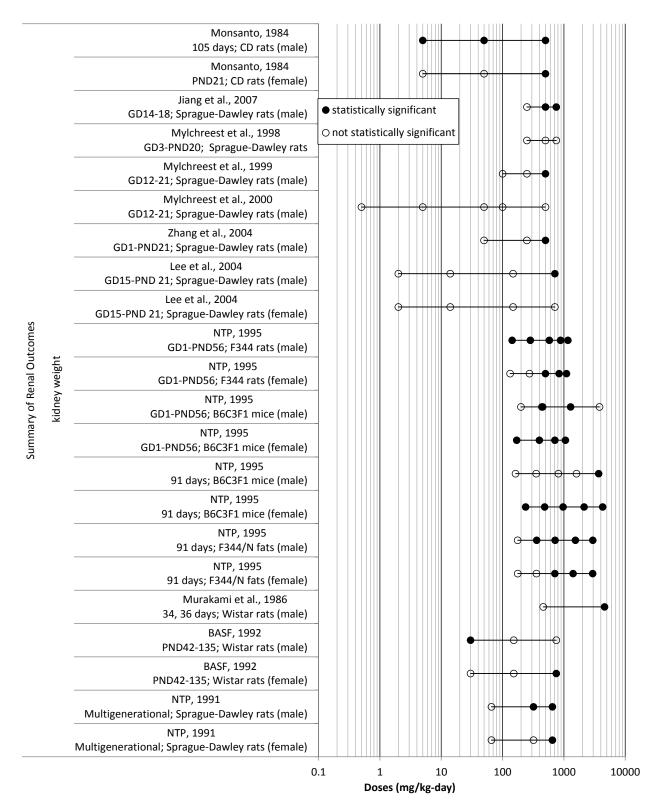


Figure 3-21. Exposure-response array of kidney weight following oral exposure to DBP.

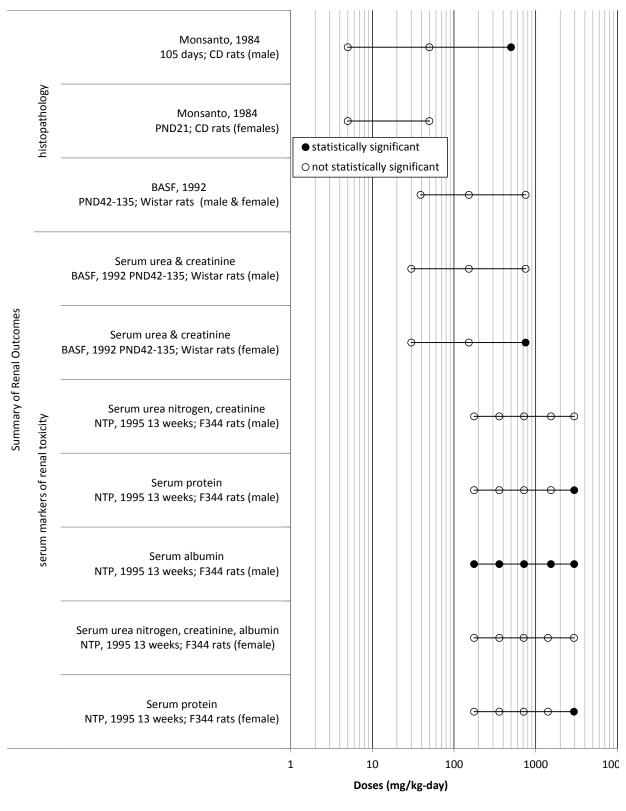


Figure 3-22. Exposure-response array of kidney histopathology and serum markers of renal toxicity following oral exposure to DBP.

4

1

2

This document is a draft for review purposes only and does not constitute Agency policy.3-168DRAFT—DO NOT CITE OR QUOTE

1 3.3.6. Hematopoietic Effects

2 3

Table 3-32. Evidence pertaining to hematological effects in animals followingoral exposure to DBP

Reference and study design	Results							
Changes in hematological parameters								
Monsanto (1984)	response relative	to control						
Rat (CD); 20 breeding pairs/group; 13	Doses	0	5	50	500			
to 20 animals evaluated; 0, 5, 50, 500 mg/kg-day	Leukocytes							
Diet	М	0%	-7%	-2%	-19*%			
Males exposed for 105 days	F	0%	-4%	0%	1%			
Females exposed 14 days before	Erythrocytes							
mating and continued through weaning [PND 21]	M	0%	1%	1%	1%			
	F	0%	3%	-1%	3%			
	Hemoglobin							
	M	0%	-1%	0%	-1%			
	F	0%	3%	-1%	2%			
	Hematocrit							
	М	0%	0%	0.2%	0%			
	F	0%	6%	1%	3%			
	Mean corpuscular volume (MCV)							
	M	0%	-2%	-2%	-2%			
	F	0%	2%	2%	0%			
	Mean corpuscula	r hemoglobin (N						
	M	0%	-1%	-1%	-2%			
	F	0%	0.4%	0.4%	-1%			
	Mean corpuscula							
	M	0%	-0.3%	0%	-1%			
	F	0%	-2%	-1%	-1%			
	Platelets							
	М	0%	3%	5%	9*%			
	F	0%	6%	6%	11%			
	Reticulocytes							
	M	0%	-24%	-17%	7%			
	F	0%	-26*%	43%	35%			
	Neutrophils				· ·			

This document is a draft for review purposes only and does not constitute Agency policy.3-169DRAFT—DO NOT CITE OR QUOTE

Reference and study design			Results							
	М	0%	0%	0%	24%					
	F	0%	-14%	-18%	0%					
	Lymphocytes									
	М	0%	-9%	-2%	17%					
	F	0%	3%	9%	5%					
BASF (1992)	response relati	ve to control								
Rat (Wistar); 10/sex/group	Doses	0	30	152	752					
D, 30, 152, 752 mg/kg-day	Erythrocyte co	Erythrocyte count (RBC) (PND 86)								
Diet 3 months (PNDs 42-135)	М	0%	1%	0%	-3%					
	F	0% 2%		-1%	-1%					
	Hemoglobin (P	ND 86)								
	М	0%	2%	0%	-2%					
	F	0% 1%		-1%	-1%					
	Hematocrit (Pl	ND 86)								
	М	0%	0% 1%		-4%					
	F	0% 1%		-1%	-1%					
	Leukocyte count (WBC) (PND 86)									
	М	0%	5%	-7%	11%					
	F	0%	20%	12%	14%					
	Mean corpusci	ular volume (MC)	I) (PND 86)							
	М	0%	0%	-1%	-1%					
	F	0%	-1%	0%	-1%					
	Mean corpusc	ular hemoglobin ((MCH) (PND 86)							
	М	0%	2%	0%	2%					
	F	0%	-1%	-1%	-1%					
	Mean corpusc	ular hemoglobin (concentration (N	MCHC) (PND 86)						
	М	0%	1%	1%	2%					
	F	0%	0%	0%	0%					
	Platelets (PND	86)								
	М	0%	4%	-4%	-3%					
	F	0%	6%	-1%	-5%					

Reference and study design	Results							
<u>NTP (1995)</u>	At study termina	tion						
Mouse (B6C3F1); 10/sex/group	Doses (M)	0	163	353	812	1,601	3,689	
Males: 0, 163, 353, 812, 1,601, 3,689 mg/kg-day; Females: 0, 238,	Hemoglobin	0%	-2%	-1%	1%	-1%	-2%	
486, 971, 2,137, 4,278 mg/kg-day	Hematocrit	0%	-2%	-1%	0.4%	-2%	-4%	
Diet	Erythrocytes	0%	-3%	-0%	1%	-1%	-2%	
91 days	Leukocytes	0%	-23%	10%	27%	-11%	-36%	
	Nucleated erythrocytes	0%	0%	0%	0%	0%	0%	
	Reticulocytes	0%	6%	0%	0%	24%	-6%	
	Mean cell volume	0%	0 %	-1%	-1%	0%	-1*%	
	Platelets	0%	2%	-1%	-8%	-4%	-4%	
	Doses (F)	0	238	486	971	2,137	4,278	
	Hemoglobin	0%	0%	-1%	-1%	-1%	-4%	
	Hematocrit	0%	-1%	-1%	-3%	-2%	-6*%	
	Erythrocytes	0%	-1%	-1%	-2%	-2%	-5%	
	Leukocytes	0%	-8%	-19%	7%	-1%	-6%	
	Nucleated erythrocytes	0%	0%	0%	0%	0%	0%	
	Reticulocytes	0%	36%	18%	27%	27%	0%	
	Mean cell volume	0%	1%	1%	-1%	0%	0%	
	Platelets	0%	-8%	-8%	-10%	-2%	-9%	
<u>NTP (1995)</u>	At study termina	tion						
Rat (F344); 10/sex/group	Doses (M)	0	176	359	720	1,540	2,964	
Males: 0, 176, 359, 720, 1,540, 2,964 mg/kg-day; Females: 0, 177,	Hemoglobin	0%	-1%	-3*%	-3*%	-5*%	-5*%	
356, 712, 1,413, 2,943 mg/kg-day	Hematocrit	0%	-1%	-3%	-3%	-7*%	-6*%	
Diet	Erythrocytes	0%	-1%	-3*%	-4*%	-10*%	-9*%	
91 days	Leukocytes	0%	21%	40%	36%	-3%	-9%	
	Nucleated erythrocytes	0%	-33%	-67%	0%	33%	333*%	
	Reticulocytes	0%	-5%	5%	-5%	5%	26%	
	Mean cell volume	0%	-0.2%	-0.2%	1*%	3*%	2*%	
	Platelets	0%	0%	11*%	14*%	14*%	12*%	
	Doses (F)	0	177	356	712	1,413	2,943	
	Hemoglobin	0%	0%	-1%	1%	0%	-3%	

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results								
	Hematocrit	0%	1%	-1%	2%	1%	-4%		
	Erythrocytes	0%	0%	-1%	2%	1%	-3%		
	Leukocytes	0%	5%	-4%	16%	16%	42*%		
	Nucleated erythrocytes	0%	200%	0%	0%	100%	450*%		
	Reticulocytes	0%	0%	7%	14%	0%	21%		
	Mean cell volume	0%	1%	1%	1%	0%	-1%		
	Platelets	0%	11%	0%	2%	0%	-1%		

*Statistically different from (p< 0.05) control as reported by study authors.

1

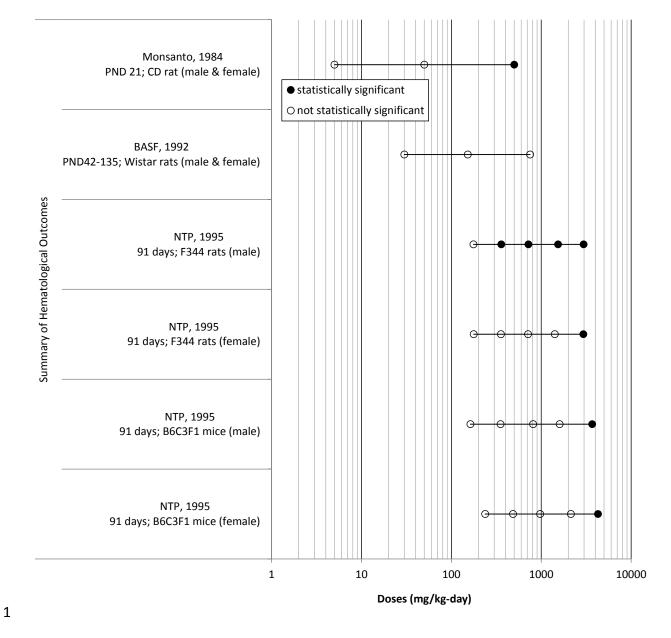


Figure 3-23. Exposure-response array of hematological outcomes following
oral exposure to DBP.

1 3.3.7. Thyroid Effects

2

3

Table 3-33. Evidence pertaining to thyroid effects in animals following oral exposure to DBP

Reference and study design			Results						
Changes in thyroid weight									
Lee et al. (2008)	response relative	to control							
Rat (Sprague-Dawley); 6 males/group	Doses	0		100	500				
0, 100, 500 mg/kg-day	Absolute thyroid	weight							
Gavage 30 days (PNDs 28-58)		0%		24%	16%				
	Relative thyroid v	veight							
		0%		23%	15%				
Levels of thyroid hormones									
BASF (1992)	response relative	esponse relative to control							
Rat (Wistar); 10/sex/group 0, 30, 152, 752 mg/kg-day Diet	Doses	0	30	152	752				
	Serum T3 levels								
3 months (PNDs 42-135)	М	0%	-7%	5%	-15*%				
	F	0%	-3%	-2%	-17*%				
	Serum T4 levels								
	М	0%	2%	3%	-3%				
	F	0%	1%	14*%	13%				
Lee et al. (2008)	response relative	to control							
Rat (Sprague-Dawley); 6 males/group	Doses	0		100	500				
0, 100, 500 mg/kg-day	Serum T3 levels ^a								
Gavage 30 days (PNDs 28-58)		0%		-7%	-8%				
	Serum T4 levels ^a								
		0%		-13%	-3%				
	Serum TSH levels	a							
		0%		-6%	0%				

^aValues reported by the study authors were estimated from published graphs using "Grab It!", a Microsoft Excel based free software application used to digitize data from image files. Publisher: datatrendsoftware.com. *Statistically different from control (p < 0.05), as reported by study authors.

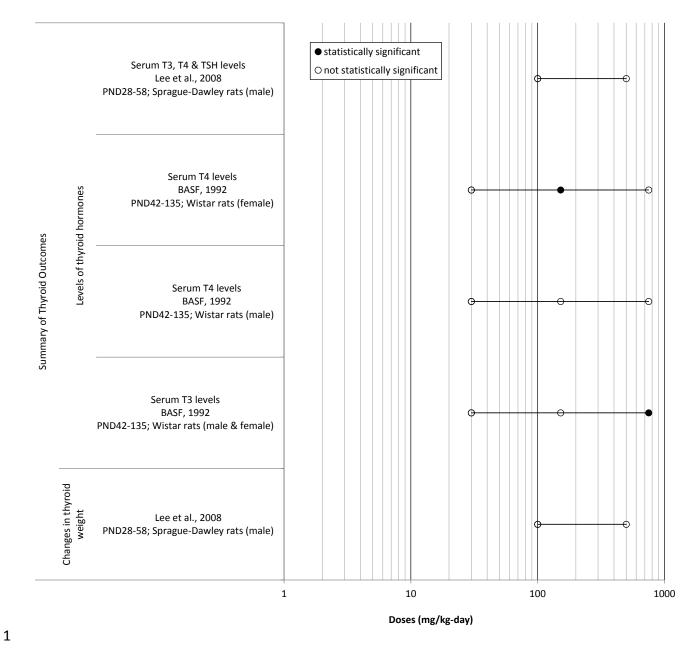


Figure 3-24. Exposure-response array of thyroid outcomes following oral exposure to DBP.

2

1 3.3.8. Immune Effects

2 3

Table 3-34. Evidence pertaining to immune effects in animals following oralexposure to DBP

Reference and study design				Results					
Changes in thymus weight	•								
<u>Salazar et al. (2004)</u>	response rel	ative to c	control						
Rat (Long Evans); 15 dams/group;	Doses (M)		0		12	12 50			
organ weights assessed in 6 male offspring/group	Thymus wei	Thymus weight in F1 rats							
0, 12, 50 mg/kg-day ^c	PND 14		0%		1%	-	10%		
Diet									
2.5 months before mating to PND 22									
<u>NTP (1995)</u>	response rel	ative to c	control						
Rat (F344); up to 24 dams/treatment group and 48 control dams; assessed	Doses (M)	0	143	284	579	879	1,165		
in 10 offspring/sex/group	Thymus wei	ght in F1	males (PN	D 56)					
0, 1,250, 2,500, 5,000, 7,500, 10,000,	Absolute	0%	5%	7%	2%	6%	4%		
1,105 mg/kg-uay in males, 0, 155, 275,	Relative	0%	6%	8%	7%	17*%	9*%		
	Doses (F)	0	133	275	500	836	1,104		
	Thymus weight in F1 females (PND 56)								
Diet	Absolute	0%	1%	-2%	2%	-3%	-1%		
GD 1-PND 56	Relative	0%	2%	-1%	0.4%	1%	4%		
	Note: no pup	os survive	ed postpart	um in 20,00	00 ppm trea	atment grou	ıp		
<u>NTP (1995)</u>	response rel	ative to c	control						
Mouse (B6C3F1); 10/sex/group	Doses (M)	0	163	353	812	1,601	3,689		
0, 163, 353, 812, 1,601,	Thymus wei	ght							
3,689 mg/kg-day in males; 0, 238, 486, 971, 2,137, 4,278 mg/kg-day in	Absolute	0%	7%	-4%	-11%	-4%	-4%		
females	Relative	0%	4%	-2%	-2%	3%	10%		
Diet									
13 weeks	Doses (F)	0	238	486	971	2,137	4,278		
	Thymus wei		200	100	371	2,207	1,270		
	Absolute	0%	5%	10%	-11%	-11%	-10%		
	Relative	0%	2%	5%	-3%	-11%	-10%		
	Relative	070	∠70	370	-270	-370	570		

Reference and study design				Results						
<u>NTP (1995)</u>	response rel	ative to a	control							
Rat (F344/N); 10/sex/group	Doses (M)	0	176	359	720	1,540	2,964			
0, 176, 359, 720, 1,540, 2,964 mg/kg-day in males; 0, 177, 356,	Thymus wei	Thymus weight								
712, 1,413, 2,943 mg/kg-day in	Absolute	0%	-3%	1%	-1%	-13*%	-48*%			
females Diet	Relative	0%	-1%	2%	6%	-5%	19*%			
13 weeks										
	Doses (F)	0	177	356	712	1,413	2,943			
	Thymus weight									
	Absolute	0%	9%	18*%	13%	8%	-7%			
	Relative	0%	12*%	14*%	15*%	17*%	27*%			
NTP (1995)	response relative to control									
Mouse (B6C3F ₁); up to 20	Doses (M)	0	199	437	750	1,286	3,804			
dams/group; assessed in 10 offspring/sex/group	Thymus weight in F1 mice (PND 56)									
0, 1,250, 2,500, 5,000, 7,500, 10,000,	Absolute	0%	6%	9%	38*%	30*%	-23%			
20,000 ppm (Gestation-lactation doses ^b : 0, 244, 488, 975, 1,463, 1,950,	Relative	0%	8%	17%	55*%	48*%	6%			
3,900 mg/kg-day; Postweaning doses:										
0, 199, 437, 750, 1,286, 3,804 mg/kg-day in males; 0, 170, 399, 714,	Doses (F)	0	170	399	714	1,060	NA			
1,060, NA mg/kg-day in females)	Thymus wei	ght in F1	mice (PND	56)						
Diet	Absolute	0%	0%	0%	0%	-9%	-			
GD 1-PND 56	Relative	0%	-6%	1%	1%	1%	-			
	Note: no pup male and no		• •		• •	-				

^aDoses calculated using <u>U.S. EPA (1988)</u> reference subchronic values for food intake (0.014 kg/day) and body weight (0.124 kg) in female F344 rats

^bDoses calculated using <u>U.S. EPA (1988)</u> reference subchronic values for food intake (0.0048 kg/day) and body weight (0.0065 kg) in female B6C3F1 mice

^cDoses were 0, 610, 2,500 ppm in diet; details on dose estimation were not provided by the study authors. *Statistically different from controls (p < 0.05), as reported by study authors.

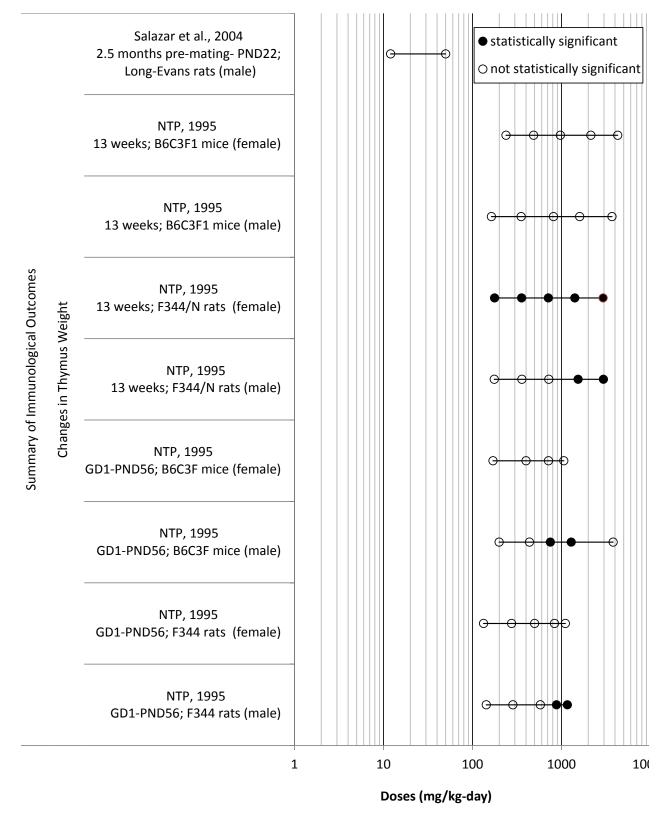


Figure 3-25. Exposure-response array of immunological outcomes following oral exposure to DBP.

4

1

2

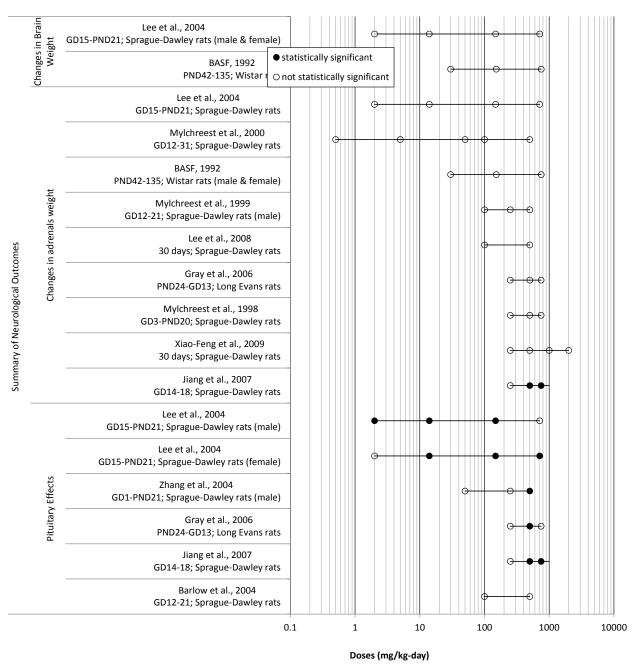
1 3.3.9. Neurological Effects

2 3

Table 3-35. Evidence pertaining to neurological effects in animals following oral exposure to DBP

Reference and study design				Results				
Changes in brain weight								
Lee et al. (2004)	response relative	to contr	ol					
Rat (Sprague-Dawley); 6-8	Doses	0	2	-3	14-29	148-2	91	712-1,372
dams/group; assessed in 8-10 offspring/sex/group	Relative brain w	eight (PN	ID 77)					
0, 2-3, 14-29, 148-291, 712-	М	0%	2	%	-6%	0%		-2%
1,372 mg/kg-day	F	0%	6	%	-3%	3%		0%
Diet GD 15-PND 21	Relative brain w	eight (PN	ID 140)					
Note: Doses represent a range	М	0%	-5	5%	-10%	-3%	,	NAª
estimated by the study authors for three different time periods (GDs 15- 20, PNDs 2-10, and PNDs 10-21).	F	0%	-2	2%	-8%	-10%	6	0%
20, PNDs 2-10, and PNDs 10-21). BASF (1992)	rosponso rolativo	to contr						
Rat (Wistar); 10/sex/group D, 30, 152, 752 mg/kg-day	<i>response relative</i> Doses			30		152		752
	Doses 0 30 152 752 Brain weight (M)							
Diet 3 months PNDs 42-135	Absolute	0	%	1%		0.1%		2%
5 1101(115 1 1103 42-155	Relative	0	%	0.5%		3%		-0.5%
	Brain weight (F)							
	Absolute	0	%	1%		2%		2%
	Relative	0	%	3%		2%		6%
Changes in adrenals weight	1							
Mylchreest et al. (2000)	response relative	to contr	ol					
Rat (Sprague-Dawley); 11-20 dams/group	Doses	0	0.5	5	50) 1	.00	500
0, 0.5, 5, 50, 100, 500 mg/kg-day	Absolute adrenals weight (PND 110)							
Gavage	F1 (M)	0%	2%	1%	-39	% -	4%	-6%
GDs 12-31	Note: The litter w effects on organ females (data no	weights	were obs	erved in	adrenal g			

Reference and study design			Resul	ts				
Lee et al. (2004)	response relat	tive to control						
Rat (Sprague-Dawley); 6-8	Doses	0	2-3	14-29	148-291	712-1,372		
dams/group; assessed in 8-10 offspring/sex/group	Relative adre	nal weight (PNL) <i>77</i>)					
0, 2-3, 14-29, 148-291, 712-	М	0%	-10%	0%	-11%	-13%		
1,372 mg/kg-day Diet	F	0%	-7%	1%	-8%	-7%		
GD 15-PND 21	Relative adre	nal weight (PNL	D 140)					
Note: Doses represent a range	М	0%	-13%	-7%	-2%	NAª		
estimated by the study authors for three different time periods (GDs 15- 20, PNDs 2-10, and PNDs 10-21).	F	0%	6%	6%	-5%	-8%		
BASF (1992)	response relat	tive to control						
Rat (Wistar); 10/sex/group	Doses	0	3	0	152	752		
0, 30, 152, 752 mg/kg-day	Adrenals weig	ght (M)						
Diet 3 months PNDs 42-135	Absolute	0%	-5	%	-0.1%	-2%		
	Relative	0%	-6	%	0%	-6%		
	Adrenals weight (F)							
	Absolute	0%	8	%	9%	7%		
	Relative	0%	11	.%	8%	11%		
Mylchreest et al. (1999a)	response relat	tive to control						
Rat (Sprague-Dawley); 10 dams/group	Doses	0	10	00	250	500		
0, 100, 250, 500 mg/kg-day	Absolute adre	enals weight (Pl	ND 100)					
Gavage	F1 (M)	0%	0	%	20%	0%		
GDs 12-21	Note: The litte	er was the statis	stical unit of	compariso	n.			
Lee et al. (2008)	response relat	tive to control						
Rat (Sprague-Dawley); 6 males/group	Doses		0	100)	500		
0, 100, 500 mg/kg-day	Absolute adre	enals weight						
Gavage 30 days			0%	-109	6	-5%		
	Relative adrenals weight							
			0%	-119	6	-6%		


Reference and study design			Resul	ts				
<u>Gray et al. (2006)</u>	response relative	to control						
Rat (Long Evans); weanling females;	Doses	0	25	50	500	750		
11-13/group 0, 250, 500, 750 mg/kg-day	Maternal adrena	ls weight						
Gavage	Absolute	0%	09	%	4%	4%		
5 days/week: PNDs 24-~PND 110								
7 days/week: ~PND 110 to GD 13 of F1b litter (F1a litter delivered ~PND 140)								
Mylchreest et al. (1998)	response relative	to control						
Rat (Sprague-Dawley); 10	Doses	0	25	50	500	750		
dams/group; adrenal weights measured in 4-9 dams/group	Absolute adrenals weight (PND 21)							
0, 250, 500, 750 mg/kg-day	F0 (F)	0%	-10)%	8%	5%		
Gavage GD 3-PND 20 (2-day interruption at parturition, PNDs 1-2)	Note: Adrenal weights in F1 male and females at ~PND 100 were "comparable to controls" (data not reported by study authors).							
<u>Xiao-Feng et al. (2009)</u>	response relative	to control						
Rat (Sprague-Dawley); 5-week old	Doses	0	250	500	1,000	2,000		
males, 8/group 0, 250, 500, 1,000, 2,000 mg/kg-day	Absolute adrena	l weight						
Gavage 30 days		0%	-11%	-6%	0%	28%		
Jiang et al. (2007)	response relative	to control						
Rat (Sprague-Dawley); 10	Doses	0	250	500	750	1,000		
dams/group; organ weights assessed in 21-57 male offspring/group	Relative adrenal	weight (F1 /	males, PND	70)				
0, 250, 500, 750, 1,000 mg/kg-day	right adrenal	0%	-2%	13*%	41*%	NA		
Gavage	left adrenal	0%	5%	17*%	43*%	NA		
GDs 14-18	Note: No live pup	os were deliv	vered in the	high-dose §	group.			

Reference and study design			Re	sults			
Pituitary effects							
Lee et al. (2004)	response relative	e to control					
Rat (Sprague-Dawley); 6-8	Doses	0	2-3	14-29	148-291	712-1,372	
dams/group; assessed in 8-10 offspring/sex/group	Relative pituitar	y weight (Pl	ND 77)				
0, 2-3, 14-29, 148-291, 712-	М	0%	16*%	19*%	22*%	11%	
1,372 mg/kg-day	F	0%	-3%	-7%	-9%	-36*%	
Diet	Relative pituitar	y weight (Pl	ND 140)				
GD 15-PND 21 Note: Doses represent a range	M	0%	0.4%	1%	3%	NA ^a	
estimated by the study authors for three different time periods (GDs 15-	F	0%	-5%	-16*%	-16*%	-23%	
20, PNDs 2-10, and PNDs 10-21).							
<u>Zhang et al. (2004b)</u>	response relative	e to control					
Rat (Sprague-Dawley); 20 dams/group; organ weights assessed	Doses	0		50	250	500	
in 20 male offspring/group	Absolute pituita	ry weight (P	ND 70)				
0, 50, 250, 500 mg/kg-day	F1 (M)	0%		-4%	-6%	10%	
Gavage	Relative pituitar	y weight (PN	ID 70)				
GD 1-PND 21	F1 (M)	0%		-3%	-2%	12*%	
Barlow et al. (2004) Rat (Sprague Dawley);10-11	Doses		0	100)	500	
	Pituitary lesions	in F1 males	(adenom	as) percent li	itter incidence	,	
dams/group; 8-11 litters/group were examined per time-point	PND 180		0%	0%	,)	0%	
0, 100, 500 mg/kg-day	PND 370		5%	3%	0%		
Gavage	PND 540		14%	319	31%		
GDs 12-21; F1 males sacrificed at PNDs 180, 370, or 540						31%	
<u>Gray et al. (2006)</u>	response relative	e to control					
Rat (Long Evans); weanling females,	Doses	0		250	500	750	
11-13/group 0, 250, 500, 750 mg/kg-day	Maternal pituita	ry weight					
Gavage	Absolute	0%		11%	17*%	-8%	
5 days/week: PNDs 24-~PND 110							
7 days/week: ~PND 110 to GD 13 of F1b litter (F1a litter delivered ~PND 140)							
	response relative	e to control					
	Doses	0	250	500	750	1,000	
	Relative pituitar	y weight (PA	ID 70)				
	F1 (M)	0%	4%	22*%	59*%	NA	
	(,	0,0	170	,0			

This document is a draft for review purposes only and does not constitute Agency policy.

Reference and study design	Results
<u>Jiang et al. (2007)</u>	Note: No live pups were delivered in the high-dose group.
Rat (Sprague-Dawley); 10 dams/group; organ weights assessed in 21-57 male offspring/group	
0, 250, 500, 750, 1,000 mg/kg-day	
Gavage	
GDs 14-18	

^aNA = Not available; a sufficient number of male animals could not be obtained. *Statistically different from controls (p < 0.05), as reported by study authors

2 3

Figure 3-26. Exposure-response array of neurological outcomes following oral exposure to DBP.

1 3.3.10. Other Toxicity Effects

2 3

Table 3-36. Evidence pertaining to other toxicity effects in animals following oral exposure to DBP: alterations in body weight in animals

Reference and study design				Results					
Changes in body weight	-								
BASF (1992)	response r	elative to	control						
Rat (Wistar); 10/sex/group	Doses		0	30	15	2	752		
0, 30, 152, 752 mg/kg-day	Body weig	Body weight at study termination							
Diet 3 months (PNDs 42-135)	М		0%	1%	-19	%	3%		
5 months (1125 12 199)	F		0%	-1%	19	6	-3%		
NTP (1991)	response r	elative to	control						
Rat (Sprague-Dawley);	Doses		0	66	32	0	651		
20/sex/treatment group; 40/sex/control group	Body weig	ht (M)							
0, 0.1, 0.5, 1% (0, 66, 320, or	Week 17		0%	-1%	-29	%	-4%		
651 mg/kg-day)	Body weig	ht (F)							
continuous breeding protocol Diet	Week 17		0%	-4%	-29	%	-11*%		
17 weeks (119 days; 7-day pre-	Body weight (M+F)								
cohabitation; 112 days cohabitation)	Week 17		0%	-2%	-29	%	-7%		
NTP (1995)	response r	elative to	control						
Mouse (B6C3F1); 10/group	Doses	0	163	353	812	1,601	3,689		
Males: 0, 163, 353, 812, 1,601, 3,689 mg/kg-day; Females: 0, 238,	Body weig	ht at nec	ropsy						
486, 971, 2,137, 4,278 mg/kg-day	М	0%	1%	-2%	-9*%	-8*%	-13*%		
Diet									
91 days	Doses	0	238	486	971	2,137	4,278		
	Body weig	ht at nec	ropsy						
	F	0%	4%	4%	-8%	-6%	-13*%		
<u>NTP (1995)</u>	response r	elative to	control						
Rat (F344); 10/group	Doses	0	176	359	720	1,540	2,964		
Males: 0, 176, 359, 720, 1,540,	Body weig	ht at nec	ropsy						
2,964 mg/kg-day; Females: 0, 177, 356, 712, 1,413, 2,943 mg/kg-day Diet	М	0%	-3%	-1%	-8*%	-17*%	-56*%		
91 days	Deses	0	177	256	710	1 /1 2	2 0 4 2		
	Doses Rody woig	0	177	356	712	1,413	2,943		
	Body weig			20/	20/	0*0/	77*0/		
	F	0%	-2%	2%	-2%	-8*%	-27*%		

Reference and study design		Results					
<u>Srivastava et al. (1990b)</u>	response rela	tive to control					
Rat (Wistar); 6/group	Doses	0	250	500	1,000		
0, 250, 500, 1,000 mg/kg-day	Final body w	eight					
Gavage		0					
15 days		0%	-9%	-19*%	-36*%		

*Statistically different from controls (p < 0.05), as reported by study.

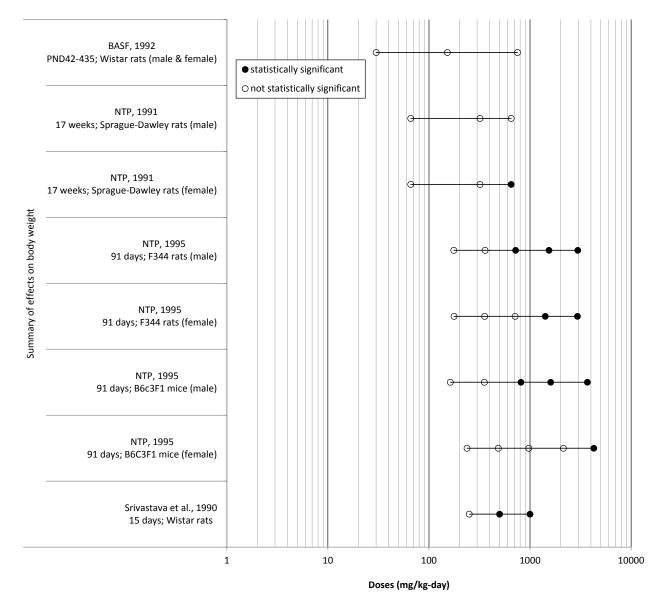


Figure 3-27. Exposure-response array of alterations in body weight following

1 2 3

oral exposure to DBP.

4

1 2

Table 3-37. Evidence pertaining to toxicity effects in animals following exposure to DBP metabolites

Reference and study design		Results	5	_	
Developmental body weight					
<u>Ema et al. (1996)</u>	Doses	0	500	625	750
MBP Rat (Wistar); P0, female (10-11/group)	Body weight of live fetuses (<i>g, litter mean ± SD</i>), female	3.77 (± 0.16)	3.46 (± 0.09)*	3.26 (± 0.17)*	3.15 (± 0.26)*
0, 500, 625, 750 mg/kg-day Gavage GDs 7-9; dams sacrificed on GD 20	Body weight of live fetuses (<i>g, litter mean ± SD</i>), male	4.05 (± 0.16)	3.74 (± 0.13)*	3.58 (± 0.17)*	3.52 (± 0.17)*
<u>Ema et al. (1996)</u>	Doses	0	500	625	750
MBP Rat (Wistar); P0, female (10-14/group) 0, 500, 625, 750 mg/kg-day	Body weight of live fetuses (<i>g, litter mean ± SD</i>), female	3.77 (± 0.16)	3.53 (± 0.35)	3.53 (± 0.26)	2.95 (± 0.53)*
Gavage GDs 10-12; dams sacrificed on GD 20	Body weight of live fetuses (<i>g, litter mean ± SD</i>), male	4.05 (± 0.16)	3.78 (± 0.3)*	3.81 (± 0.19)	3.1 (± 0.4)*
Ema et al. (1996)	Doses	0	500	625	750
MBP Rat (Wistar); P0, female (10-15/group)	Body weight of live fetuses (<i>g, litter mean ± SD</i>), female	3.77 (± 0.16)	3.77 (± 0.17)	3.68 (± 0.17)	3.5 (± 0.12)
0, 500, 625, 750 mg/kg-day Gavage GDs 13-15; dams sacrificed on GD 20	Body weight of live fetuses (<i>g, litter mean ± SD</i>), male	4.05 (± 0.16)	3.97 (± 0.18)	3.9 (± 0.26)	3.81 (± 0.04)
Ema and Miyawaki (2001a)	Doses	0	250	500	750
MBP Rat (Wistar); P0, female (16/group) 0, 250, 500, 750 mg/kg-day	Body weight of live fetuses (<i>g, litter mean ± SD</i>), female	4.44 (± 0.26)	4.45 (± 0.31)	4.31 (± 0.45)	4.03 (± 0.27*
Gastric intubation GDs 15-17	Body weight of live fetuses (<i>g, litter mean</i> ± <i>SD</i>), male	4.71 (± 0.32)	4.67 (± 0.47)	4.55 (± 0.41)	4.23 (± 0.33)*

Reference and study design	Results						
Ema and Miyawaki (2001b)	Doses	0	250	500	750	1,000	
MBP Rat (Wistar); P0, female (16/group) 0, 250, 500, 750, 1,000 mg/kg-day	Body weight of live fetuses (g, litter mean ± SD), female	3.17 (± 0.22)	3.15 (± 0.15)	2.8 (± 0.3)*	2.58 (± 0.23)*	2.32 (± 0.29)*	
Gavage GDs 0-8, with outcomes determined on GD 20	Body weight of live fetuses (g, litter mean ± SD), male	3.35 (± 0.25)	3.42 (± 0.1)	3.01 (± 0.36)*	2.71 (± 0.3)*	2.47 (± 0.29)*	
Saillenfait et al. (2003)	Doses		0	560	1,120	1,690	
MBP Rat (Sprague-Dawley); P0, female (14- 15/group) 0, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 560, 1,120, 1,690 mg/kg as	Body weight of live fetuses (g, litter mean ± SE), male and female		28).07)	5.15 (± 0.16)	5.19 (± 0.15)	5.25 (± 0.16)	
calculated by study authors) Gavage GD 10; dams sacrificed on GD 21							
Saillenfait et al. (2003)	Doses	0	280	560	1,120	1,690	
MBP Mouse (OF-1); P0, female (24- 25/group) 0, 0.9, 1.8, 3.6, 5.4 mmol/kg	Body weight of live fetuses (g, litter mean ± SE), male and female	1.19 (± 0.02)	1.16 (± 0.03)	1.23 (± 0.05)	1.14 (± 0.03)	1.04 (± 0.04)*	
(equivalent to 0, 280, 560, 1,120, and 1,690 mg/kg as calculated by study authors) Gavage							
GD 8; dams sacrificed on GD 18							
Developmental embryotoxic effects	<u> </u>	·					
<u>Ema et al. (1996)</u>	Doses	· · ·	0	500	625	750	
MBP Rat (Wistar); P0, female (10-11/group)	Adjusted maternal bo weight gain	ody		No significa	ant change		
0, 500, 625, 750 mg/kg-day Gavage	Maternal food intake pregnancy (g, mean ±		384 (± 22)	366 (± 27)	355 (± 20)*	336 (± 30)*	
GDs 7-9; dams sacrificed on GD 20	Number of litters tota resorbed	ally	0	0	1	3	
	Number of live fetuse litter (mean ± SD)	es per	12.3 (± 2.4)	12.1 (± 1.9)	10.3 (± 4.1)	5.9 (± 4.5)*	
	Percent postimplanta loss per litter (mean)	tion	13.3	18.4	27.8*	57.7*	
	Sex ratio of live fetus (male/female)	es	59/64	53/68	46/66	30/35	

Reference and study design		Result	s		
Ema et al. (1996)	Doses	0	500	625	750
MBP Rat (Wistar); P0, female (10-14/group)	Adjusted maternal body weight gain		No significa	nt change	
0, 500, 625, 750 mg/kg-day Gavage	Maternal food intake during pregnancy (g, mean ± SD)	384 (± 22)	387 (± 16)	370 (± 27)	349 (± 28)*
GDs 10-12; dams sacrificed on GD 20	Number of litters totally resorbed	0	0	0	9*
	Number of live fetuses per litter (mean ±SD)	12.3 (± 2.4)	11.2 (± 2.8)	7.5 (± 3.8)*	1.8 (± 3.3)*
	Percent postimplantation loss per litter (mean)	13.3	24.6	46.4*	86.9*
	Sex ratio of live fetuses (male/female)	59/64	58/54	40/42	15/10
Ema et al. (1996)	Doses	0	500	625	750
MBP Rat (Wistar); P0, female (10-15/group)	Adjusted maternal body weight gain		No significa	nt change	
0, 500, 625, 750 mg/kg-day Gavage	Maternal food intake during pregnancy (g, mean ± SD)	384 (± 22)	372 (± 22)	370 (± 18)	350 (± 21)*
GDs 13-15; dams sacrificed on GD 20	Number of litters totally resorbed (P0, female)	0	0	2	12*
	Number of live fetuses per litter (mean ±SD)	12.3 (± 2.4)	8.6 (± 3.5)	4.6 (± 3.4)*	0.6 (± 1.5)*
	Percent postimplantation loss per litter (mean)	13.3	34.7*	66.8*	95.5*
	Sex ratio of live fetuses (male/female)	59/64	55/40	25/26	3/6

Reference and study design		R	esults			
Ema and Miyawaki (2001a)	Doses	C)	250	500	750
MBP Rat (Wistar); P0, female (16/group) 0, 250, 500, 750 mg/kg-day	Adjusted maternal body weight gain (g, mean ± SD	2: (± 1) Note	L1)	23 (± 10) al weight exc	29 (± 4)	26 (± 9)
Gastric intubation GDs 15-17	Number of litters totally dead	C		0	0	3
	Number of resorptions an dead fetuses per litter (mean ±SD)	d 0. (± 0		1.8 (± 2.0)	4.5 (± 3.4)*	7.9 (± 5.1)*
	Percent postimplantation loss per litter (mean)	6.	5	12	30.6*	52.7*
	Number of live fetuses pe litter (mean)	r 14 (± 2		13.1 (± 2.2)	9.4 (± 2.5)*	7.1 (± 5.0)*
	Sex ratio of live fetuses (male/female)	117/	107	110/100	71/82	54/58
Ema and Miyawaki (2001b)	Doses	0	250	500	750	1,000
MBP Rat (Wistar); P0, female (16/group) 0, 250, 500, 750, 1,000 mg/kg-day	Adjusted maternal weight gain (g, mean ± SD)	33 (± 13)	38 (± 9)	31 (± 10)	37 (± 13)	25 (± 12)
Gavage GDs 0-8 with outcomes determined on	Number of live fetuses per litter (mean ±SD)	14.1 (± 1.6)	13.7 (± 2.7)	13.9 (± 2.4)	12.7 (± 2.7)	10.8 (± 3.7)*
GD 20	Number of resorptions and dead fetuses per litter (mean ±SD)	1.4 (± 1.5)	1 (± 1)	1.7 (± 1.7)	2.4 (± 2)	3.7 (± 3.1)*
	Percent postimplantation loss per litter (mean) ^c	9.1	6.4	11.3	15.9	26.3*
	Percent preimplantation loss per female (mean) ^d	5.9	8.7	9.8	19.2	20.2*
	Percent preimplantation loss per litter (mean) ^e	5.9	8.7	3.7	7.6	8.7
	Sex ratio of live fetuses (male/female)	121/104	120/99	108/100	98/80	77/74

Reference and study design		Results			
Saillenfait et al. (2001)	Doses	0	5.4	4	7.2
MBP Rat (Sprague Dawley)	Live embryos per litter, Day 12 (mean ± SEM)	14.08 (± 0.57)	12.92 (±	± 0.92)	14 (± 1.15)
0, 1.8, 3.6, 5.4, 7.2 mmol/kg at 5 ml/kg Oral	Live embryos per litter, Day 13 (mean ± SEM)	12 (± 0.93)	9.14 (±	0.67)	5.29 (± 1.52)**
Day 10 11-15 litters/group	Live embryos per litter, Day 14 (mean ± SEM)	12.57 (± 1.07)) 8.87 (±	1.78)	4.33 (± 1.31)**
Second study: 6-8 pregnant dams 0, 5.4, 7.2 mmol oral MBP given on day	Live embryos per litter, Day 18 (mean ± SEM)	12.71 (± 0.81)) 7.67 (±	1.2)*	6.67 (± 1.91)**
10	Percent non-live implants per litter, Day 12 (mean ± SEM)	4.2 (± 1.5)	9.5 (±	4.3)	4.36 (± 1.3)
	Percent non-live implants per litter, Day 13 (mean ± SEM)	7.7 (± 3)	25.5 (±	6.3)*	57.6 (± 11.9)*
	Percent non-live implants per litter, Day 14 (mean ± SEM)	10.1 (± 5.4)	35.9 (±	8.4)*	66.8 (± 10)*
	Percent non-live implants per litter, Day 18 (mean ± SEM)	2.7 (± 1.9)	37.4 (±	10.4)*	54.5 (± 12.3)*
	Non-live implants/total implants, Day 12	7/176	15/1	170	8/176
	Non-live implants/total implants, Day 13	8/92	24/8	38*	55/92*
	Non-live implants/total implants, Day 14	10/98	37/1	08*	57/83*
	Non-live implants/total implants, Day 18	3/92	36/1	05*	46/86*
Saillenfait et al. (2003)	Doses	0	560	1,120	1,690
MBP Rat (Sprague-Dawley); P0, female (14- 15/group)	Number of live fetuses per litter (mean ± SD)	13.46 (± 0.77)	13.92 (± 0.55)	13.5 (± 0.69)	12.77 (± 0.67)
0, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 560, 1,120, 1,690 mg/kg as calculated by study authors) Gavage GD 10; sacrificed on GD 21	Percent postimplantation loss per litter (mean ± SE)	2.1 (± 1.08)	4.38 (± 1.77)	1.79 (± 1.28)	6.1 (± 1.99)

Reference and study design	Results					
<u>Saillenfait et al. (2003)</u>	Doses	0	280	560	1,120	1,690
MBP Mouse (OF-1); P0, female (24- 25/group)	Number of live fetuses per litter (mean ±SE)	12.35 (± 0.88)	12.38 (± 0.71)	6.64 (± 0.91)*	2.32 (± 0.69)*	2.33 (± 0.58)*
0, 0.9, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 280, 560, 1,120, and 1,690 mg/kg as calculated by study authors)	Percent postimplantation loss per litter (mean ± SE)	9.59 (± 2.76)	11.25 (± 2.5)	40.83 (± 6.22)*	83.31 (± 5.03)*	82.42 (± 4.31)*
Gavage GD 8; dams sacrificed on GD 18	Percent resorptions per litter (mean ± SE)	9.3 (± 2.76)	10.21 (± 2.48)	40.15 (± 6.17)*	82.21 (± 4.96)*	80.66 (± 4.45)*
Developmental teratological effects		(± 2.70)	(± 2.46)	(± 0.17)*	(± 4.90)*	(± 4.45)
	[_		_			
<u>Ema et al. (1996)</u> MBP	Doses		0	500	625	750
Rat (Wistar); P0, female (10-11/group)	Number of fetuses wit external malformation		0	0	5	4
0, 500, 625, 750 mg/kg-day	external malformation	is Mair		ate and ager	nesis of the lo	
Gavage	Number of fetuses with 0 0 3					0
GDs 7-9; dams sacrificed on GD 20	internal malformations Dilation of renal pelvis and hypoplasia of					
	Number of fetuses wit	:h	1	10	10	14
	skeletal malformation	s Mair	nly fusion a	nd/or absen arche	ce of cervica s	l vertebral
<u>Ema et al. (1996)</u>	Doses		0	500	625	750
MBP Rat (Wistar); P0, female (10-14/group)	Number of fetuses wit external malformation		0	0	0	1
0, 500, 625, 750 mg/kg-day	Number of fetuses wit		0	3	1	0
Gavage GDs 10-12; dams sacrificed on GD 20	internal malformation	S	Dila	tion of the r	enal pelvis	
	Number of fetuses wit skeletal malformation		1	0	0	0
<u>Ema et al. (1996)</u>	Doses		0	500	625	750
MBP	Number of fetuses wit	:h	0	1	16	9
Rat (Wistar); P0, female (10-15/group)	external malformation	ıs		Mainly cleft	palate	
0, 500, 625, 750 mg/kg-day Gavage GDs 13-15; dams sacrificed on GD 20	Number of fetuses wit internal malformation		0	0	0	0
20 13-13, uains sachineed on an 20	Number of fetuses wit		1	6	10	5
	skeletal malformation	S	Mainly	y fusion of th	ne sternebra	e

Reference and study design	Results						
Saillenfait et al. (2001)	Doses	0	NH ₄ Cl	1.8	3.6	5.4	7.2
MBP Rat (Sprague-Dawley) 0, 1.8, 3.6, 5.4, 7.2 mmol/kg at 5 ml/kg Oral Day 10	Total embryos with defects (% embryos affected/total embryos examined)	27/8 (16)	25/10 (16.5)	26/7 (16.5)	57/12 (36.8)		146/12 (86.9)
11-15 litters/group							
<u>Saillenfait et al. (2003)</u>	Doses		0	56	50	1,120	1,690
MBP Rat (Sprague-Dawley); P0, female (14- 15/group)	Percent of malformed fetuses		0 Stat	(istical sig		0 ce not evalua	0 ted
0, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 560, 1,120, 1,690 mg/kg as calculated by study authors)							
Gavage							
GD 10; sacrificed on GD 21							
<u>Saillenfait et al. (2003)</u>	Doses		0	280	560	1,120	1,690
MBP Mouse (OF-1); P0, female (24- 25/group) 0, 0.9, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 280, 560, 1,120, and 1,690 mg/kg as calculated by study authors) Gavage GD 8; sacrificed on GD 18	Percent of malformed fetuses		0 Stat	0.4 istical sig	2 mificano	9.8 ce not evalua	34.7 ted
Female reproductive effects		·					
Ema et al. (1996)	Doses		0	50		625	750
MBP Rat (Wistar); P0, female (10-11/group) 0, 500, 625, 750 mg/kg-day Gavage GDs 7-9; dams sacrificed on GD 20	Number of implantation per litter (mean ± SD)	s 1	4.2 (± 1.1			14.2 (± 1.3)	14.5 (± 1.9)

Reference and study design		Resu	ts		
<u>Ema et al. (1996)</u>	Doses	0	500	625	750
MBP Rat (Wistar); P0, female (10-14/group) 0, 500, 625, 750 mg/kg Gavage GDs 10-12; dams sacrificed on GD 20	Number of implantations per litter (mean ± SD)	14.2 (± 1.1) 14.8 (± 0.8)	14.5 (± 1.3)	13.6 (± 2.2)
<u>Ema et al. (1996)</u>	Doses	0	500	625	750
MBP Rat (Wistar); P0, female (10-15/group) 0, 500, 625, 750 mg/kg-day Gavage GDs 13-15; dams sacrificed on GD 20	Number of implantations per litter (mean ± SD)	14.2 (± 1.1) 14.4 (± 2.4)	14.5 (± 2.3)	14.2 (± 1.7)
Ema and Miyawaki (2001a)	Doses	0	250	500	750
MBP Rat (Wistar); P0, female (16/group)	Number of corpora lutea per litter (mean ± SD)	16.8 (± 1.8) 16.1 (± 1.3)	16.1 (± 1.6)	16.1 (± 1.3)
0, 250, 500, 750 mg/kg-day Gastric intubation	Number of implantations per litter (mean ± SD)	14.9 (± 2.3) 14.9 (± 1.6)	14.1 (± 1.8)	15 (± 1.2)
GDs 15-17	Number of pregnant rats	16	16	16	16
<u>Ema and Miyawaki (2001b)</u>	Doses	0	250 500	750	1,000
MBP Rat (Wistar); P0, female (16/group)	Number of corpora lutea per litter (mean ± SD)	16.5 (± 1.2)	16 16.2 (± 1.2) (± 1)	16.4 (± 1.8)	15.9 (± 0.9)
0, 250, 500, 750, 1,000 mg/kg-day Gavage	Number of implantations per female (mean ± SD)	15.5 (± 1.3)	14.6 14.6 (± 2.5) (± 4.2	13.2) (± 5.4)	12.7 (± 5.1)*
GDs 0-8 with outcomes determined on GD 20	Number of implantations per litter (mean ± SD)	15.5 (± 1.3)	14.6 15.6 (± 2.5) (± 1.5	15.1) (± 1.8)	14.5 (± 1.3)
<u>Kai et al. (2005)</u>	Dose		0	500)
MBP Rat (Sprague Dawley); P0, female 4/group, first study; P0 female 6/control or 8/MBP second study 0, 500 mg/kg-day ^b Gavage GDs 15-18	Percent pregnant	٤	35.7	46.9)*

Reference and study design		F	Results			
Saillenfait et al. (2001)	Doses	<u>.</u>	0	5.4	Ļ	7.2
MBP Rat (Sprague Dawley)	Implantation sites per litte Day 12 (mean ± SEM)	r, 14.6	7 (± 0.48)	14.17 (:	± 0.6)	14.67 (± 1.18)
0, 1.8, 3.6, 5.4, 7.2 mmol/kg at 5 ml/kg Oral	Implantation sites per litte Day 13 (mean ± SEM)	r, 13.14	4 (± 1.16)	12.57 (±	0.97)	13.14 (± 1.65)
Day 10 11-15 litters/group	Implantation sites per litte Day 14 (mean ± SEM)	r, 14	(± 0.79)	13.5 (±	1.45)	13.83 (± 1.25)
Second study: 6-8 pregnant dams 0, 5.4, 7.2 mmol oral MBP given on day 10	Implantation sites per litte Day 18 (mean ± SEM)	r, 13.14	4 (± 0.96)	11.67 (±	0.94)	14.33 (± 0.49)
Saillenfait et al. (2003)	Doses	()	560	1,120	1,690
MBP Rat (Sprague-Dawley); P0, female (14-	Number of implantations per litter (mean ± SE)		.73 .73)	14.62 (± 0.63)	13.75 (± 0.68)	13.62 (± 0.69)
15/group)	Percent pregnant	7	9	93	86	87
0, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 560, 1,120, 1,690 mg/kg as calculated by study authors)			Statistica	I significance	e not evalu	ated
Gavage GD 10; sacrificed on GD 21						
Saillenfait et al. (2003)	Doses	0	280	560	1,120	1,690
MBP Mouse (OF-1); P0, female (24- 25/group)	Number of implantations per litter (mean ± SE)	13.45 (± 0.89)	13.71 (± 0.65		12.73 (± 0.72)	13.24 (± 0.75)
0, 0.9, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 280, 560, 1,120, 1,690 mg/kg as calculated by study authors) Gavage GD 8; sacrificed on GD 18	Percent pregnant	83 St	88 tatistical s	88 ignificance r	96 not evaluat	88 ed
Male hormones						
Kai et al. (2005)	Dose		0		5	00
MBP Rat (Sprague Dawley); PO, female 4/group, first study; PO female 6/control or 8/MBP second study 0, 500 mg/kg-day ^b Gavage	Concentration of testosterone (<i>pg/mg testis</i> <i>weight ± SE</i>), 0 day old pups from second study	S	1.45 (± 0	.46)	0.59 (:	±0.18)*
GDs 15-18						

Reference and study design	Results			
<u>Shono et al. (2000)</u>	Dose	0	300	
MBP Rat (Wistar-King A) Equivalent to 0 and 300 mg/kg-day Gavage GDs 15-18	Testosterone content of the testes (<i>pg/testis, testis mean ± SE</i>)	852 (± 80.3)	50.9 (± 3.8)*	
Male malformations			-	
<u>Gray et al. (1982)</u>	Dose	0	800	
MBP Mouse (TO); 6/group	Testes histology (Mouse), >90% tubular atrophy	-	6	
Hamster (Syrian); 7/group	Doses	0	1,600	
0, 800 mg/kg-day (Mouse) 0, 1,600 (Hamster) Oral intubation	Testes histology (Hamster), normal	-	5	
5 day treatment for mice 9 day treatment for hamster	Testes histology (Hamster), occasional tubular atrophy	-	2	
Imajima et al. (2001)	Dose	0	1,923	
MBP Rat (Wistar-King A); 2/group for control and 3/group for MBP 0, 1,923 mg/kg-day ^b Gavage GDs 15-18	Degree of transabdominal testicular migration, GD 19 (number of units from bladder neck where 100 U = distance from bladder neck to lower pole of kidney; mean ± SE)	15 (± 2.0)	56 (± 3.1)*	
<u>Oishi and Hiraga (1980)</u>	Dose	Control	1.9	
MBP Rat (Wistar - Male) 2% MBP (equivalent to 1.90 mg/kg-day as calculated by study authors)	Concentration of testosterone for testes (% of control ± SD) ^a	-	220 (± 35.9)*	
5 groups of different metabolites 1 week of treatment Diet n not identified in study	Concentration of testosterone for serum (% of control ± SD) ^a	-	87 (± 23.1)	
<u>Shono et al. (2000)</u>	Dose	0	300	
MBP Rat (Wistar-King A) Equivalent to 0 and 300 mg/kg-day Gavage GDs 7-10	Degree of transabdominal testicular migration (number of units from bladder neck where 100 U = distance from bladder neck to lower pole of kidney; mean ± SE)	9.3 (± 1.9)	12.3 (± 5.9)	

Reference and study design	Results					
<u>Shono et al. (2000)</u>	Dose	0			300	
MBP Rat (Wistar-King A) Equivalent to 0 and 300 mg/kg-day Gavage GDs 11-14	Degree of transabdominal testicular migration (number of units from bladder neck where 100 U = distance from bladder neck to lower pole of kidney; mean ± SE)	9.3 (± 1.9)		24.5 (±	24.5 (± 5.2)*	
<u>Shono et al. (2000)</u>	Dose	0		300		
MBP Rat (Wistar-King A) Equivalent to 0 and 300 mg/kg-day Gavage GDs 15-18	Degree of transabdominal testicular migration (number of units from bladder neck where 100 U = distance from bladder neck to lower pole of kidney; mean ± SE)	9.3 (± 1.9) 57.9		57.9 (±	9 (± 2.6)*	
	Epididymis: nonneoplastic lesions	Poorly developed epididymis				
	Testis: nonneoplastic lesions	No remarkable changes in the morphological features of Sertoli and Leydig cells				
Male puberty, reproductive developme	ent					
<u>Cater et al. (1977)</u>	Doses	0	400		800	
MBP Rat (Sprague Dawley); 6/group 0,400, 800 mg/kg-day Oral intubation 4 days or 6 days	Testes weight, 4 days (mean; percent of control)	100	78*		66*	
	Testes weight, 6 days (mean; percent of control)	100	64*		53*	
Ema and Miyawaki (2001a)	Doses	0	250	500	750	
MBP Rat (Wistar); P0, female (16/group) 0, 250, 500, 750 mg/kg-day Gastric intubation GDs 15-17	AGD ^a	4.1	3.7*	2.9*	2.7*	
	AGD ^a (AGD/body weight)	0.9	0.8	0.6	0.6	
	AGD ^a (AGD/cube root of body weight)	2.4	2.2	1.7	1.6	
	Number of fetuses with undescended testis (n=litters)	0	9 (6)*	61 (16)*	53 (13)*	

Reference and study design	Results			
<u>Gray et al. (1982)</u>	Dose	0	800	
MBP	Testes weight, mice (percent of control)	-	57 (± 3)*	
Mouse (TO); 6/group	Dose	0	1,600	
Hamster (Syrian); 7/group 0, 800 mg/kg-day (Mouse) 0, 1,600 (Hamster) Oral intubation 5 day treatment for mice 9 day treatment for hamster	Testes weight, hamster (percent of control)	-	93 (± 6)	
Hallmark et al. (2007)	Dose	0	500	
MBP	Leydig cell volume/testis ^a	0.6	0.9	
Marmosets; 5 pairs co-twins 0, 500 mg/kg-day oral silastic tubing syringe 14 days	Average Leydig cell size ^a	257	301	
	Total Leydig cell # per testis ^a	167	235	
Imajima et al. (1997) MBP Rat (Wistar); 3 litters 0, 0.3 g/day (0, 1,000 mg/kg-day ^b) GDs 15-18 Gavage	Dose	0	1,000	
	Degree of transabdominal testicular ascent, GD 20 (number of units from bladder neck where 100 U = distance from bladder neck to lower pole of kidney; mean ± SE)	9.3	57.9	
	Incidence of cryptorchidism, unilateral	0	14	
	Incidence of cryptorchidism, bilateral	0	8	
	Incidence of cryptorchidism, total	0	22	
<u>Kai et al. (2005)</u>	Dose	0	500	
MBP Rat (Sprague Dawley); P0, female 4/group, first study; P0 female 6/control or 8/MBP, second study	Testes weight (mean g/100 g body weight)	0.38 (± 0.03)	0.31 (± 0.09)*	
0, 500 mg/kg-day ^b				
Gavage				
GDs 15-18				

Reference and study design	Results					
<u>Kondo et al. (2006)</u>	Dose 0			1,264		
MBP Rat (Wister-King A); 10/group	Testes weight, Prepub (g/100 g body weight)	-	ts 4.11	2.52	*	
0, 1,264 mg/kg-day for 30 day rats ^b or	Dose		0	615		
0, 615 mg/kg-day for 90 day rats ^b Diet 10 days	Testes weight, Prepub (g/100 g body weight)	-	ts 4.07	4.18	3	
Mckinnell et al. (2009) MBP	Dose	0 (vehicle control)	0 (non-vehicle treated)	0 (combined control)	500	
Marmosets; First study: P0 female, 9/group 0, 500 mg/kg-day	Testes weight, 1-5 day old pups (mean in mg)	5.5	5.5 4.7		4.8	
Oral GDs 7-15	Dose	0 (control 1) ^f	0 (control 2) ^f	0 (combined control)	500	
Second study; 10 newborn marmosets (5 pairs of co-twins)	Testes weight (mean in mg)	522	516	518	605	
0, 500 mg/kg-day	Dose	0 (vehicle treated)	500		
Oral 14 days	Testes weight, 17-20 c (mean in mg)	estes weight, 17-20 days old 11.5		11		
	Germ cell proliferation testes (10^6), 1-5 days (mean ± SEM)			33.4 (± 6.8)		
		toli cell number in testes, days old (mean ± SEM) 4.10		4.6 (± 0.66)		
	Germ cell/Sertoli cell (testes (10^6), 1-5 days (mean ± SEM)			0.12 (± 0.04)		
	G cell per testis (10^6) days old (mean ± SEM	, == ==	1.6 (± 0.24)	1.4 (± 0.17)		
Oishi and Hiraga (1980)	Dose		Control	1.9		
MBP Rat (Wistar-Male) 2% MBP (equivalent to 1.90 mg/kg-day	Testicular Weight (abs (mean ± SD)	solute)	1.73 (± 0.2)	0.76 (± 0.14)*		
as calculated by study authors) 5 groups of different metabolites 1 week of treatment Diet n not identified from study						

Reference and study design	Results					
Shono and Suita (2003)	Doses	0	125	250	500	1,000
MBP Rat (Wistar-King A); P0, female (6/group) 0, 125, 250, 500, 1,000 mg/kg-day Gavage GDs 15-17; half of sacrificed on GD 20 for fetal examination; remaining offspring examined PNDs 60-70	Degree of transabdominal testicular ascent (number of units from bladder neck where 100 U = distance from bladder neck to lower pole of kidney; mean ± SD) Percent of fetuses with undescended testis	8.5 (± 1.3) 0	9.5 (± 1.4) 0	18.5 (± 1.9)* 25*	33.7 (± 2.8)' 61.1*	58.6 * (± 2.1)* 76.9*
<u>Shono et al. (2005)</u>	Dose	0		· · ·	766.2	
MBP Rat (Sprague Dawley); P0 female 10/group 0, 1% (mean intake 766.2 mg/kg-day) Diet	Degree of transabdominal testicular ascent ^a , GD 19 (number of units from bladder neck where 100 U = distance from bladder neck to lower pole of kidney; mean ± SD)		13.5 (± 2.	2)	54.9 (± 1.7)*
Shono and Taguchi (2014) MBP	Dose		0	156 (+Vitamin C and E)		164
Rat; Wistar-King A; 21/group 0, 164 mg/kg-day 156 (plus 250 mg/kg-day Vitamin C and 50 mg/kg-day Vitamin E) mg/kg-day Diet 3 days	Testes weight (mg/g rat weight)	3.0	(± 0.3)	2.8 (± 0.:	12)* 2	5 (± 0.15)*

[#]Results are presented as the raw data as reported by the study authors.

*Result is statistically significant (p < 0.05) based on analysis of data by study authors.

- = for controls, no response relevant; for other doses, no quantitative response reported; (n) = number evaluated from group; NR = not reported

^aValues reported by the study authors were estimated from published graphs using "Grab It!", a Microsoft Excel based free software application used to digitize data from image files. Publisher: <u>www.datatrendsoftware.com</u>. ^bCalculated by EPA

^cPostimplantation loss = (number of resorptions and dead fetuses/number of implantations) × 100

^dn = number of pregnant females; preimplantation loss = ((number of corpora lutea – number of implantations)/number of corpora lutea) × 100

^en = number of litters; preimplantation loss = ((number of corpora lutea – number of implantations)/number of corpora lutea) × 100

^fcontrol 1 animals are untreated adults most closely age-matched to MBP-exposed animals; control 2 animals are untreated adults showing that quantified adults are representative

1

3.4. PRELIMINARY MECHANISTIC INFORMATION FOR DBP

2 The systematic literature search for DBP also identified studies evaluating mechanisms of 3 action considered potentially relevant to effects observed following exposure to DBP. Studies were 4 included if they evaluated mechanistic events following exposure to DBP or metabolites, or 5 contained information relevant to the mechanistic understanding of DBP toxicity. Reviews or 6 analyses that do not contain original data are not included here, but may be considered in later 7 stages of assessment development.

8 The diverse array of mechanistic studies presented here includes investigations of the 9 cellular, biochemical, and molecular mechanisms underlying toxicological outcomes. For this 10 preliminary evaluation, information reported in each study was extracted into a database (in the 11 form of an Excel spreadsheet) that will facilitate future evaluation of mechanistic information. This 12 information is being made available to provide an opportunity for stakeholder input, including the 13 identification of relevant studies not captured here.

14 The information extracted from each study and included in the database, corresponds to the 15 column headings in the spreadsheet, and is as follows: link to HERO record (contained within a URL 16 that links to the study abstract in the HERO database), HERO ID, author(s), year, molecular

17 formulation, in vitro/in vivo, species, tissue, cell type, endpoint(s) (i.e., mechanistic outcomes),

18 assay, mechanistic category, and type of hazard. Most of the mechanistic data identified

19 corresponds to noncancer health endpoints including male and female reproductive toxicity,

20 developmental toxicity, immunotoxicity, and hepatotoxicity. The database file is available for

21 download and review via the <u>DBP HERO project page</u>. To access the database, click on the link at

the top of the web page and select "download" and then "ok" to view the spreadsheet in Excel. This

23 spreadsheet may also be saved to your desktop by downloading and selecting "save." The resulting

24 inventory of DBP mechanistic studies consists of 407 mechanistic outcomes from 140 in vivo

studies, as well as 461 mechanistic outcomes from 166 in vitro assays. Table 3-38 presents a

summary of the mechanistic outcomes recorded in the database from each study identified.

27 The mechanistic categories developed here are not mutually exclusive and are designed to 28 facilitate the analysis of similar studies and experimental observations in a systematic manner. 29 This process will allow the identification of mechanistic events that contribute to mode(s) of action 30 (MOAs) following DBP exposure. The mechanistic categories assigned to each mechanistic outcome 31 reported by an individual study are as follows: (1) mutation, including investigations of gene and 32 chromosomal mutation; (2) DNA damage, including indicator assays of genetic damage; (3) DNA 33 repair; (4) oxidative stress; (5) cell death and division (this captures a broad range of assays, but it 34 is useful to consider them together as observations resulting from cell cycle alterations; (6) 35 pathology, which includes morphological evaluations pertaining to the dysfunction of organs, 36 tissues, and cells; (7) epigenetic effects, which are observations of heritable changes in gene 37 function that cannot be explained by changes in the DNA sequence; (8) receptor-mediated and cell 38 signaling effects; (9) immune system effects; (10) cellular and molecular adsorption, distribution, 39 metabolism, and excretion (ADME); (11) cellular differentiation and transformation; (12) cellular

1 energetics; and (13) "other," to capture those mechanistic outcomes not easily assigned to a defined

2 category. Mechanistic outcomes in the "other" category include gene expression, proteomics and

3 metabolomics arrays, hormone production, and markers of angiogenesis. The ADME category

4 above includes studies reporting the cellular metabolism of DBP, thermodynamics of protein

5 binding, and cellular transport.

6

- 7
- 8

Table 3-38. Summary of mechanistic outcomes evaluated following DBP administration

9

	Total #	In vivo (# outcomes/# studies)					In vitro (# outcomes/# studies)						
Mechanistic category	outcomes/ # studies	Total	Human	Primate	Rat	Mouse	Hamster	Total	Human	Primate	Rat	Mouse	Hamster
Mutation	17/12	1/1	0	0	0	1/1	0	16/11	0	0	0	2/2	0
DNA damage	19/9	10/4	0	0	7/2	3/2	0	9/5	7/4	0	0	2/1	0
DNA repair													
Oxidative stress	28/14	20/10	0	0	15/9	0	4/3	8/4	0	0	0	1/1	0
Cell death and division	146/74	22/15	0	1/1	15/12	6/2	0	124/60	62/28	2/1	18/12	37/23	0
Pathology	39/35	31/28	0	1/1	26/23	4/4	0	8/7	1/1	0	4/3	2/2	1/1
Epigenetics	6/4	3/2	0	0	2/1	1/1	0	3/2	2/1	0	0	1/1	0
Receptor- mediated and cell signaling	186/93	51/33	0	0	40/28	9/5	1/1	135/66	47/28	10/5	20/15	22/14	4/3
Immune system	37/13	23/6	0	0	0	23/6	0	14/7	3/2	0	5/2	5/2	0
Cellular & molecular ADME	35/14	26/12	0	0	23/9	3/3	0	9/4	1/1	0	2/1	4/2	0
Cellular differentiation and transformation	21/13	3/3	0	1/1	0	2/2	0	18/12	6/3	0	4/2	8/7	0
Cellular energetics	27/9	0	0	0	0	0	0	27/9	1/1	0	24/7	0	0
Other	311/146	217/99	1/1	1/1	180/40	27/14	0	90/52	31/15	1/1	31/22	20/12	0
Total	872/286			407,	/140	-			-	461/	166	•	

Notes: The number in rows may not sum to "total" amounts as several studies evaluated multiple species or employed both in vivo and in vitro models. The mechanistic categories in italics and in gray shading had no DBP-specific information available. Four endpoints correspond to in-silico analysis and are not classified as in vivo or in vitro.

10

1 Information summarized in Table 3-38 and Figure 3-28, and detailed in the mechanistic 2 database can be used to ascertain the breadth and scope of available mechanistic studies. At this 3 preliminary stage, study results are not presented. Additionally, the inclusion of a study in the 4 spreadsheet does not reflect conclusions reached as to mechanistic study quality or relevance. 5 After the epidemiological and experimental studies on each health effect have been synthesized, 6 mechanistic studies will be reviewed and findings synthesized to evaluate potential MOAs which 7 can be used to inform hazard identification and dose-response assessment, specifically addressing 8 questions of human relevance, susceptibility, and dose-response relationships. 9

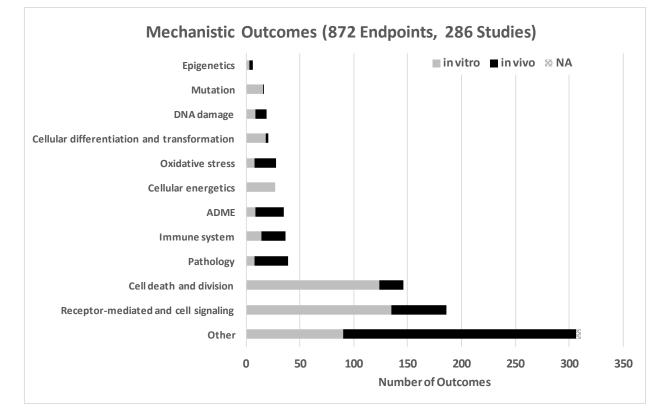


Figure 3-28. Summary of in vivo or in vitro mechanistic data by mechanistic
 category following oral exposure to DBP.

13

10

1 **4. References**

2	Adibi, JJ; Hauser, R; Williams, PL; Whyatt, RM; Calafat, AM; Nelson, H; Herrick, R; Swan, SH.
3	(2009). Maternal urinary metabolites of Di-(2-Ethylhexyl) phthalate in relation to the
4	timing of labor in a US multicenter pregnancy cohort study. Am J Epidemiol 169: 1015-
5	1024. <u>http://dx.doi.org/10.1093/aje/kwp001</u>
6	Adibi, JJ; Whyatt, RM; Williams, PL; Calafat, AM; Camann, D; Herrick, R; Nelson, H; Bhat, HK;
7	Perera, FP; Silva, MJ; Hauser, R. (2008). Characterization of phthalate exposure among
8	pregnant women assessed by repeat air and urine samples. Environ Health Perspect 116:
9	467-473. http://dx.doi.org/10.1289/ehp.10749
10	Ahmad, R; Gautam, AK; Verma, Y; Sedha, S; Kumar, S. (2014). Effects of in utero di-butyl
11	phthalate and butyl benzyl phthalate exposure on offspring development and male
12	reproduction of rat. Environ Sci Pollut Res Int 21: 3156-3165.
13	http://dx.doi.org/10.1007/s11356-013-2281-x
14	Ahmad, R; Verma, Y; Gautam, A; Kumar, S. (2013). Assessment of estrogenic potential of di-n-
15	butyl phthalate and butyl benzyl phthalate in vivo. Toxicol Ind Health.
16	http://dx.doi.org/10.1177/0748233713491803
17	Ait Bamai, Y; Shibata, E; Saito, I; Araki, A; Kanazawa, A; Morimoto, K; Nakayama, K; Tanaka,
18	M; Takigawa, T; Yoshimura, T; Chikara, H; Saijo, Y; Kishi, R. (2014). Exposure to house
19	dust phthalates in relation to asthma and allergies in both children and adults. Sci Total
20	Environ 485-486: 153-163. http://dx.doi.org/10.1016/j.scitotenv.2014.03.059
21	Anderson, WA; Castle, L; Scotter, MJ; Massey, RC; Springall, C. (2001). A biomarker approach
22	to measuring human dietary exposure to certain phthalate diesters. Food Addit Contam 18:
23	1068-1074. http://dx.doi.org/10.1080/02652030110050113
24	Antoniuk, OK; Aldyreva, MV. (1973). [Determination of the maximum permissible concentration
25	of dibutyl phthalate in the air of working premises]. Gig Tr Prof Zabol 17: 26-30.
26	Ao, H; Lin, L; Kan, HD; et al. (2007). Zhongguo Gong Gong Wei Sheng Kuo Kung Kung Wei
27	Sheng.
28	Aschengrau, A; Coogan, P; Quinn, M; Cashins, L. (1998). Occupational exposure to estrogenic
29	chemicals and the occurrence of breast cancer: An exploratory analysis. Am J Ind Med 34:
30	6-14. <u>http://dx.doi.org/10.1002/(SICI)1097-0274(199807)34:1<6::AID-</u>
31	<u>AJIM2>3.0.CO;2-X</u>
32	Astapova, SA; Kustova, ZR; Lobanova, IF; Ostroumova, NA; Savchenko, NA; Tiunova, LV;
33	Andreev, NV; Chernikova, VV. (1990). EXPERIMENTAL DATA ON THE TOXIC
34	ACTION OF DIBUTYLPHTHALATE. Gig Sanit 0.
35	ATSDR (Agency for Toxic Substances and Disease Registry). (2001). Toxicological profile for
36	di-n-butyl phthalate (Update) [ATSDR Tox Profile]. Atlanta, GA: U.S. Department of
37	Health and Human Services, Public Health Service.
38	http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=859&tid=167
39 40	Baird, DD; Saldana, TM; Nepomnaschy, PA; Hoppin, JA; Longnecker, MP; Weinberg, CR;
40 41	<u>Wilcox, AJ.</u> (2010). Within-person variability in urinary phthalate metabolite
41 42	concentrations: Measurements from specimens after long-term frozen storage. J Expo Sci Environ Epidemiol 20: 169-175. <u>http://dx.doi.org/10.1038/jes.2009.17</u>
42 43	Baird, DD; Wilcox, AJ. (1985). Cigarette smoking associated with delayed conception. JAMA
45 44	253: 2979-2983. http://dx.doi.org/10.1001/jama.1985.03350440057031
44	255. 2717-2705. <u>http://ux.u01.012/10.1001/jallia.1705.05550440057051</u>

Baird,	DD; Wilcox, AJ; Weinberg, CR. (1986). Use of time to pregnancy to study environmental
	exposures. Am J Epidemiol 124: 470-480.
<u>Balyni</u>	na, ES; Berezovskaia, IV. (1976). [Comparative evaluation of the methods of determination
	of the orientation reaction of rats in a toxicological experiment]. Farmakol Toksikol 39:
	635-638.
Bao, A	M; Man, XM; Guo, XJ; Dong, HB; Wang, FQ; Sun, H; Wang, YB; Zhou, ZM; Sha, JH.
	(2011). Effects of di-n-butyl phthalate on male rat reproduction following pubertal
	exposure. Asian J Androl 13: 702-709. http://dx.doi.org/10.1038/aja.2011.76
Barlow	v, NJ; Mcintyre, BS; Foster, PM. (2004). Male reproductive tract lesions at 6, 12, and 18
	months of age following in utero exposure to di(n-butyl) phthalate. Toxicol Pathol 32: 79-
	90. http://dx.doi.org/10.1080/01926230490265894
BASF.	(1992). Study on the oral toxicity of dibutyl phthalate in Wistar rats - administration via
	the diet over 3 months (final report) with attachments and cover letter dated 042092.
	(86920000903). Parsippany, NJ: BASF Corporation.
	https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=OTS0535640
Behall,	KM; Scholfield, DJ; Hallfrisch, JG; Kelsay, JL; Reiser, S. (1984). Seasonal variation in
	plasma glucose and hormone levels in adult men and women. Am J Clin Nutr 40: 1352-
~ .	1356.
Bertels	en, RJ; Carlsen, KC; Calafat, AM; Hoppin, JA; Håland, G; Mowinckel, P; Carlsen, KH;
	<u>Løvik, M.</u> (2013). Urinary biomarkers for phthalates associated with asthma in Norwegian bildren. Explicitly, 1205256
Dlain	children. Environ Health Perspect 121: 251-256. <u>http://dx.doi.org/10.1289/ehp.1205256</u>
Blair,	A; Stewart, P; Lubin, JH; Forastiere, F. (2007). Methodological issues regarding
	confounding and exposure misclassification in epidemiological studies of occupational avposures [Review] Am Lind Med 50: 100, 207, http://dx.doi.org/10.1002/oiim.20281
Boas N	exposures [Review]. Am J Ind Med 50: 199-207. <u>http://dx.doi.org/10.1002/ajim.20281</u> //; Frederiksen, H; Feldt-Rasmussen, U; Skakkebaek, NE; Hegedus, L; Hilsted, L; Juul, A;
<u>D0as, 1</u>	Main, KM. (2010). Childhood exposure to phthalates: Associations with thyroid function,
	insulin-like growth factor I, and growth. Environ Health Perspect 118: 1458-1464.
	http://dx.doi.org/10.1289/ehp.0901331
Boekel	heide, K; Kleymenova, E; Liu, K; Swanson, C; Gaido, KW. (2009). Dose-dependent effects
	on cell proliferation, seminiferous tubules, and male germ cells in the fetal rat testis
	following exposure to di(n-butyl) phthalate. Microsc Res Tech 72: 629-638.
	http://dx.doi.org/10.1002/jemt.20684
Boisen	, KA; Kaleva, M; Main, KM; Virtanen, HE; Haavisto, AM; Schmidt, IM; Chellakooty, M;
	Damgaard, IN; Mau, C; Reunanen, M; Skakkebaek, NE; Toppari, J. (2004). Difference in
	prevalence of congenital cryptorchidism in infants between two Nordic countries. Lancet
	363: 1264-1269. http://dx.doi.org/10.1016/S0140-6736(04)15998-9
Borneh	ag, CG; Sundell, J; Weschler, CJ; Sigsgaard, T; Lundgren, B; Hasselgren, M; Hagerhed-
	Engman, LC. (2004). The association between asthma and allergic symptoms in children
	and phthalates in house dust: a nested case-control study. Environ Health Perspect 112:
	1393-1397. http://dx.doi.org/10.1289/ehp.7187
Braban	t, G; Prank, K; Hoang-Vu, C; Hesch, RD; von Zur Mühlen, A. (1991). Hypothalamic
	regulation of pulsatile thyrotopin secretion. J Clin Endocrinol Metab 72: 145-150.
	http://dx.doi.org/10.1210/jcem-72-1-145
Braun-	Fahrländer, C; Wüthrich, B; Gassner, M; Grize, L; Sennhauser, FH; Varonier, HS; Vuille,
	JC. (1997). Validation of a rhinitis symptom questionnaire (ISAAC core questions) in a
	population of Swiss school children visiting the school health services. Pediatric Allergy
	and Immunology 8: 75-82. http://dx.doi.org/10.1111/j.1399-3038.1997.tb00147.x

1	Braun, JM; Kalkbrenner, AE; Just, AC; Yolton, K; Calafat, AM; Sjödin, A; Hauser, R; Webster,
2	GM; Chen, A; Lanphear, BP. (2014). Gestational exposure to endocrine-disrupting
3	chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old
4	children: the HOME study. Environ Health Perspect 122: 513-520.
5	http://dx.doi.org/10.1289/ehp.1307261
6	Braun, JM; Smith, KW; Williams, PL; Calafat, AM; Berry, K; Ehrlich, S; Hauser, R. (2012).
7	Variability of urinary phthalate metabolite and bisphenol A concentrations before and
8	during pregnancy. Environ Health Perspect 120: 739-745.
9	http://dx.doi.org/10.1289/ehp.1104139
10	Brucker-Davis, F; Ducot, B; Wagner-Mahler, K; Tommasi, C; Ferrari, P; Pacini, P; Boda-Buccino,
11	M; Bongain, A; Azuar, P; Fénichel, P. (2008a). [Environmental pollutants in maternal milk
12	and cryptorchidism]. Gynecol Obstet Fertil 36: 840-847.
13	http://dx.doi.org/10.1016/j.gyobfe.2008.06.024
14	Brucker-Davis, F; Ferrari, P; Boda-Buccino, M; Wagner-Mahler, K; Pacini, P; Gal, J; Azuar, P;
15	Fenichel, P. (2011). Cord blood thyroid tests in boys born with and without cryptorchidism:
16	Correlations with birth parameters and in utero xenobiotics exposure. Thyroid 21: 1133-
17	1141. http://dx.doi.org/10.1089/thy.2010.0459
18	Brucker-Davis, F; Wagner-Mahler, K; Bornebusch, L; Delattre, I; Ferrari, P; Gal, J; Boda-
19	Buccino, M; Pacini, P; Tommasi, C; Azuar, P; Bongain, A; Fénichel, P. (2010). Exposure
20	to selected endocrine disruptors and neonatal outcome of 86 healthy boys from Nice area
21	(France). Chemosphere 81: 169-176.
22	http://dx.doi.org/10.1016/j.chemosphere.2010.06.068
23	Brucker-Davis, F; Wagner-Mahler, K; Delattre, I; Ducot, B; Ferrari, P; Bongain, A; Kurzenne, JY;
~ .	
24	Mas, JC; Fenichel, P; Afea, CSG, FN. (2008b). Cryptorchidism at birth in Nice area
24 25	Mas, JC; Fénichel, P; Area, CSG, FN. (2008b). Cryptorchidism at birth in Nice area (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by
	(France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718.
25	(France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by
25 26	(France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718.
25 26 27	(France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718. http://dx.doi.org/10.1093/humrep/den186
25 26 27 28	 (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718. <u>http://dx.doi.org/10.1093/humrep/den186</u> Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW;
25 26 27 28 29	 (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718. http://dx.doi.org/10.1093/humrep/den186 Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013).
25 26 27 28 29 30	 (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718. http://dx.doi.org/10.1093/humrep/den186 Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History,
25 26 27 28 29 30 31	 (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718. http://dx.doi.org/10.1093/humrep/den186 Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162.
25 26 27 28 29 30 31 32	 (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718. http://dx.doi.org/10.1093/humrep/den186 Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026
25 26 27 28 29 30 31 32 33	 (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718. <u>http://dx.doi.org/10.1093/humrep/den186</u> Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. <u>http://dx.doi.org/10.1016/j.fertnstert.2013.03.026</u> Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014).
25 26 27 28 29 30 31 32 33 34	 (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718. http://dx.doi.org/10.1093/humrep/den186 Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026 Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of
25 26 27 28 29 30 31 32 33 34 35	 (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718. http://dx.doi.org/10.1093/humrep/den186 Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026 Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366.
25 26 27 28 29 30 31 32 33 34 35 36	 (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718. http://dx.doi.org/10.1093/humrep/den186 Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026 Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022
25 26 27 28 29 30 31 32 33 34 35 36 37	 (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718. http://dx.doi.org/10.1093/humrep/den186 Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026 Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022 Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and
25 26 27 28 29 30 31 32 33 34 35 36 37 38	 (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718. http://dx.doi.org/10.1093/humrep/den186 Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026 Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022 Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91: 79S-83S.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	 (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718. http://dx.doi.org/10.1093/humrep/den186 Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026 Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022 Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91: 79S-83S. http://dx.doi.org/10.1378/chest.91.6 Supplement.79S
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	 (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718. http://dx.doi.org/10.1093/humrep/den186 Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026 Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022 Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91: 79S-83S. http://dx.doi.org/10.1378/chest.91.6_Supplement.79S Burney, PG; Laitinen, LA; Perdrizet, S; Huckauf, H; Tattersfield, AE; Chinn, S; Poisson, N; Heeren, A; Britton, JR; Jones, T. (1989). Validity and repeatability of the IUATLD (1984) Bronchial Symptoms Questionnaire: an international comparison. Eur Respir J 2: 940-945.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	 (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718. http://dx.doi.org/10.1093/humrep/den186 Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026 Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022 Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91: 79S-83S. http://dx.doi.org/10.1378/chest.91.6 Supplement.79S Burney, PG; Laitinen, LA; Perdrizet, S; Huckauf, H; Tattersfield, AE; Chinn, S; Poisson, N; Heeren, A; Britton, JR; Jones, T. (1989). Validity and repeatability of the IUATLD (1984) Bronchial Symptoms Questionnaire: an international comparison. Eur Respir J 2: 940-945. Buser, MC; Murray, HE; Scinicariello, F. (2014). Age and sex differences in childhood and
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	 (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718. http://dx.doi.org/10.1093/humrep/den186 Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026 Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022 Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91: 79S-83S. http://dx.doi.org/10.1378/chest.91.6_Supplement.79S Burney, PG; Laitinen, LA; Perdrizet, S; Huckauf, H; Tattersfield, AE; Chinn, S; Poisson, N; Heeren, A; Britton, JR; Jones, T. (1989). Validity and repeatability of the IUATLD (1984) Bronchial Symptoms Questionnaire: an international comparison. Eur Respir J 2: 940-945.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	 (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718. http://dx.doi.org/10.1093/humrep/den186 Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026 Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022 Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91: 79S-83S. http://dx.doi.org/10.1378/chest.91.6 Supplement.79S Burney, PG; Laitinen, LA; Perdrizet, S; Huckauf, H; Tattersfield, AE; Chinn, S; Poisson, N; Heeren, A; Britton, JR; Jones, T. (1989). Validity and repeatability of the IUATLD (1984) Bronchial Symptoms Questionnaire: an international comparison. Eur Respir J 2: 940-945. Buser, MC; Murray, HE; Scinicariello, F. (2014). Age and sex differences in childhood and adulthood obesity association with phthalates: Analyses of NHANES 2007-2010. Int J Hyg Environ Health 217: 687-694. http://dx.doi.org/10.1016/j.ijheh.2014.02.005
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	 (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 23: 1708-1718. http://dx.doi.org/10.1093/humrep/den186 Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026 Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022 Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91: 79S-83S. http://dx.doi.org/10.1378/chest.91.6 Supplement.79S Burney, PG; Laitinen, LA; Perdrizet, S; Huckauf, H; Tattersfield, AE; Chinn, S; Poisson, N; Heeren, A; Britton, JR; Jones, T. (1989). Validity and repeatability of the IUATLD (1984) Bronchial Symptoms Questionnaire: an international comparison. Eur Respir J 2: 940-945. Buser, MC; Murray, HE; Scinicariello, F. (2014). Age and sex differences in childhood and adulthood obesity association with phthalates: Analyses of NHANES 2007-2010. Int J Hyg

1	Cakmak, S; Dales, RE; Hebbern, C; Saravanabhavan, G. (2014). The Association Between Urinary
2	Phthalates and Lung Function. J Occup Environ Med 56: 376-381.
3	http://dx.doi.org/10.1097/JOM.00000000000137
4	Callesen, M; Bekö, G; Weschler, CJ; Langer, S; Brive, L; Clausen, G; Toftum, J; Sigsgaard, T;
5	Høst, A; Jensen, TK. (2014a). Phthalate metabolites in urine and asthma, allergic
6	rhinoconjunctivitis and atopic dermatitis in preschool children. Int J Hyg Environ Health
7	217: 645-652. http://dx.doi.org/10.1016/j.ijheh.2013.12.001
8	Callesen, M; Bekö, G; Weschler, CJ; Sigsgaard, T; Jensen, TK; Clausen, G; Toftum, J; Norberg,
9	LA; Høst, A. (2014b). Associations between selected allergens, phthalates, nicotine,
10	polycyclic aromatic hydrocarbons, and bedroom ventilation and clinically confirmed
11	asthma, rhinoconjunctivitis, and atopic dermatitis in preschool children. Indoor Air 24:
12	136-147. <u>http://dx.doi.org/10.1111/ina.12060</u>
13	Cantonwine, DE; Cordero, JF; Rivera-González, LO; Anzalota Del Toro, LV; Ferguson, KK;
14	Mukherjee, B; Calafat, AM; Crespo, N; Jiménez-Vélez, B; Padilla, IY; Alshawabkeh, AN;
15	Meeker, JD. (2014). Urinary phthalate metabolite concentrations among pregnant women
16	in Northern Puerto Rico: Distribution, temporal variability, and predictors. Environ Int 62:
17	1-11. http://dx.doi.org/10.1016/j.envint.2013.09.014
18	Carran, M; Shaw, IC. (2012). New Zealand Malayan war veterans' exposure to dibutylphthalate is
19	associated with an increased incidence of cryptorchidism, hypospadias and breast cancer
20	in their children. N Z Med J 125: 52-63.
21	Cater, BR; Cook, MW; Gangolli, SD; Grasso, P. (1977). Studies on dibutyl phthalate-induced
22	testicular atrophy in the rat: effect on zinc metabolism. Toxicol Appl Pharmacol 41: 609-
23	618. <u>http://dx.doi.org/10.1016/S0041-008X(77)80014-8</u>
24	CDC (Centers for Disease Control and Prevention). (2013). Fourth national report on human
25	exposure to environmental chemicals, updated tables, September 2013. (CS244702-A).
26	Atlanta, GA.
27	http://www.cdc.gov/exposurereport/pdf/FourthReport_UpdatedTables_Sep2013.pdf
28	Chang, B; Ge, J; Liang, Y. (2007). [Enhancement of di-n-butyl phthalate on the estrogenic
29	activities of esters of p-hydroxybenzoic acid]. Wei Sheng Yan Jiu 36: 259-262.
30	Chang, JK; Zhang, W; Shen, BX; Wei, YF; Zhang, LF; Wang, Y; Feng, NH. (2010). [Proteomic
31	analysis of the testis and differential expression of Annexin A3 in hypospadiac rats].
32	Zhonghua Nan Ke Xue 16: 877-882.
33	CHAP (Chronic Hazard Advisory Panel on Phthalates and Phthalate Alternatives). (2014). Chronic
34	Hazard Advisory Panel on phthalates and phthalate alternatives (with appendices).
35	Bethesda, MD: U.S. Consumer Product Safety Commission, Directorate for Health
36	Sciences. http://www.cpsc.gov/en/Regulations-LawsStandards/Statutes/The-Consumer-
37	Product-Safety-Improvement-Act/Phthalates/Chronic-Hazard-Advisory-Panel-CHAP-on-
38	Phthalates/
39	Chen, CY; Chou, YY; Wu, YM; Lin, CC; Lin, SJ; Lee, CC. (2013). Phthalates may promote female
40	puberty by increasing kisspeptin activity. Hum Reprod 28: 2765-2773.
41	http://dx.doi.org/10.1093/humrep/det325
42	Chen, L; Jiang, L; Chen, HS. (2010). [Influence of dibutyl phthalate on development of
43	hippocampus nervous cells of rat's offspring]. Zhonghua Lao Dong Wei Sheng Zhi Ye
44	Bing Za Zhi 28: 530-533.
45 46	<u>Cheng, WS; Wingard, DL; Kritz-Silverstein, D; Barrett-Connor, E.</u> (2008). Sensitivity and
46	specificity of death certificates for diabetes: as good as it gets? Diabetes Care 31: 279-284.
47	http://dx.doi.org/10.2337/dc07-1327

1	Cho, SC; Bhang, SY; Hong, YC; Shin, MS; Kim, BN; Kim, JW; Yoo, HJ; Cho, IH; Kim, HW.
2	(2010). Relationship between environmental phthalate exposure and the intelligence of
3	school-age children. Environ Health Perspect 118: 1027-1032.
4	http://dx.doi.org/10.1289/ehp.0901376
5	Choi, H; Kim, J; Im, Y; Lee, S; Kim, Y. (2012). The association between some endocrine
6	disruptors and hypospadias in biological samples. J Environ Sci Health A Tox Hazard
7	Subst Environ Eng 47: 2173-2179. <u>http://dx.doi.org/10.1080/10934529.2012.680387</u>
8	Chopra, V; Harley, K; Lahiff, M; Eskenazi, B. (2014). Association between phthalates and
9	attention deficit disorder and learning disability in U.S. children, 6-15 years. Environ Res
10	128: 64-69. http://dx.doi.org/10.1016/j.envres.2013.10.004
11	Chou, YY; Huang, PC; Lee, CC; Wu, MH; Lin, SJ. (2009). Phthalate exposure in girls during early
12	puberty. J Pediatr Endocrinol Metab 22: 69-77.
13	Christensen, K; Sobus, J; Phillips, M; Blessinger, T; Lorber, M; Tan, YM. (2014). Changes in
14	epidemiologic associations with different exposure metrics: A case study of phthalate
15	exposure associations with body mass index and waist circumference. Environ Int 73: 66-
16	76. http://dx.doi.org/10.1016/j.envint.2014.07.010
17	Christensen, KL; Lorber, M; Koch, HM; Kolossa-Gehring, M; Morgan, MK. (2012). Population
18	variability of phthalate metabolites and bisphenol A concentrations in spot urine samples
19	versus 24- or 48-h collections. J Expo Sci Environ Epidemiol 22: 632-640.
20	http://dx.doi.org/10.1038/jes.2012.52
21	<u>Clark, KE; David, RM; Guinn, R; Kramarz, KW; Lampi, MA; Staples, CA.</u> (2011). Modeling
22	Human Exposure to Phthalate Esters: A Comparison of Indirect and Biomonitoring
	Estimation Methods. Hum Ecol Risk Assess 17: 923-965.
23	
24	http://dx.doi.org/10.1080/10807039.2011.588157
25	Clewell, RA; Kremer, JJ; Williams, CC; Campbell, JL; Sochaski, MA; Andersen, ME; Borghoff,
26	<u>SJ.</u> (2009). Kinetics of selected di-n-butyl phthalate metabolites and fetal testosterone
27	following repeated and single administration in pregnant rats. Toxicology 255: 80-90.
28	http://dx.doi.org/10.1016/j.tox.2008.10.010
29	Cooper, R; Blell, M; Hardy, R; Black, S; Pollard, TM; Wadsworth, ME; Pearce, MS; Kuh, D.
30	(2006). Validity of age at menarche self-reported in adulthood. J Epidemiol Community
31	Health 60: 993-997. http://dx.doi.org/10.1136/jech.2005.043182
32	CPSC (U.S. Consumer Product Safety Commission). (2010). Toxicity review for di-n-butyl
33	phthalate (Dibutyl phthalate or DBP). In Toxicity review for di-n-butyl phthalate (Dibutyl
34	phthalate or DBP). Bethesda, MD.
35	http://www.cpsc.gov/PageFiles/126528/toxicityDBP.pdf
36	Dirtu, AC; Geens, T; Dirinck, E; Malarvannan, G; Neels, H; Van Gaal, L; Jorens, PG; Covaci, A.
37	(2013). Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels
38	and estimation of the phthalates daily intake. Environ Int 59: 344353.
39	http://dx.doi.org/10.1016/j.envint.2013.06.023
40	Dobrzyńska, MM; Tyrkiel, EJ; Hernik, A; Derezińska, E; Góralczyk, K; Ludwicki, JK. (2010).
40	[The effects of di-n-butyl phthalate on the somatic cells of laboratory mice]. Rocz Panstw
	Zakl Hig 61: 13-19.
42	•
43	Dotterud, LK; Kvammen, B; Lund, E; Falk, ES. (1995). An evaluation of atopic diseases in relation
44	to immediate skin test reactions among schoolchildren in the Sor-Varanger community. J
45	Eur Acad Dermatol Venereol 5: 240-249. <u>http://dx.doi.org/10.1111/j.1468-</u>
46	<u>3083.1995.tb00112.x</u>
47	Drake, AJ; van den Driesche, S; Scott, HM; Hutchison, GR; Seckl, JR; Sharpe, RM. (2009).
48	Glucocorticoids amplify dibutyl phthalate-induced disruption of testosterone production

1	and male reproductive development. Endocrinology 150: 5055-5064.
2	http://dx.doi.org/10.1210/en.2009-0700
3	Duty, SM; Calafat, AM; Silva, MJ; Brock, JW; Ryan, L; Chen, Z; Overstreet, J; Hauser, R. (2004).
4 5	The relationship between environmental exposure to phthalates and computer-aided sperm
	analysis motion parameters. J Androl 25: 293-302.
	Duty, SM; Calafat, AM; Silva, MJ; Ryan, L; Hauser, R. (2005). Phthalate exposure and
	reproductive hormones in adult men. Hum Reprod 20: 604-610.
	http://dx.doi.org/10.1093/humrep/deh656
	Duty, SM; Silva, MJ; Barr, DB; Brock, JW; Ryan, L; Chen, Z; Herrick, RF; Christiani, DC;
	Hauser, RC. (2003a). Phthalate exposure and human semen parameters. Epidemiology 14:
	269-277. Duty, SM; Singh, NP; Silva, MJ; Barr, DB; Brock, JW; Ryan, L; Herrick, RF; Christiani, DC;
	Hauser, R. (2003b). The relationship between environmental exposures to phthalates and
	DNA damage in human sperm using the neutral comet assay. Environ Health Perspect 111:
	1164-1169. http://dx.doi.org/10.1289/ehp.5756
	Eisenberg, ML; Hsieh, MH; Walters, RC; Krasnow, R; Lipshultz, LI. (2011). The relationship
	between anogenital distance, fatherhood, and fertility in adult men. PLoS ONE 6: e18973.
	http://dx.doi.org/10.1371/journal.pone.0018973
	Ema, M; Amano, H; Ogawa, Y. (1994). Characterization of the developmental toxicity of di-n-
	butyl phthalate in rats. Toxicology 86: 163-174.
	Ema, M; Harazono, A; Miyawaki, E; Ogawa, Y. (1997). Developmental effects of di-n-butyl
	phthalate after a single administration in rats. J Appl Toxicol 17: 223-229.
	http://dx.doi.org/10.1002/(SICI)1099-1263(199707)17
	Ema, M; Kurosaka, R; Harazono, A; Amano, H; Ogawa, Y. (1996). Phase specificity of
	developmental toxicity after oral administration of mono-n-butyl phthalate in rats. Arch
	Environ Contam Toxicol 31: 170-176. http://dx.doi.org/10.1007/BF00212362
	Ema, M; Miyawaki, E. (2001a). Adverse effects on development of the reproductive system in
	male offspring of rats given monobutyl phthalate, a metabolite of dibutyl phthalate, during
	late pregnancy. Reprod Toxicol 15: 189-194. http://dx.doi.org/10.1016/S0890-
	<u>6238(01)00111-3</u>
	Ema, M; Miyawaki, E. (2001b). Effects of monobutyl phthalate on reproductive function in
	pregnant and pseudopregnant rats. Reprod Toxicol 15: 261-267.
	http://dx.doi.org/10.1016/S0890-6238(01)00131-9
	Ema, M; Miyawaki, E; Kawashima, K. (2000). Effects of dibutyl phthalate on reproductive
	function in pregnant and pseudopregnant rats. Reprod Toxicol 14: 13-19.
	http://dx.doi.org/10.1016/S0890-6238(99)00066-0
	Engel, SM; Berkowitz, GS; Calafat, AM; Zhu, C; Liao, L; Silva, MJ; Wolff, MS. (2008). Prenatal
	Phthalate Exposure is Associated with Altered Neonatal Behavior in a Multiethnic
	Pregnancy Cohort. Epidemiology 19: S181-S182.
	Engel, SM; Miodovnik, A; Canfield, RL; Zhu, C; Silva, MJ; Calafat, AM; Wolff, MS. (2010).
	Prenatal phthalate exposure is associated with childhood behavior and executive
	functioning. Environ Health Perspect 118: 565-571.
	http://dx.doi.org/10.1289/ehp.0901470
	Engel, SM; Zhu, C; Berkowitz, GS; Calafat, AM; Silva, MJ; Miodovnik, A; Wolff, MS. (2009).
	Prenatal phthalate exposure and performance on the Neonatal Behavioral Assessment
	Scale in a multiethnic birth cohort. Neurotoxicology 30: 522-528.
	http://dx.doi.org/10.1016/j.neuro.2009.04.001

1	Eom, JH; Chung, ST; Lee, JK; Park, JH; Kwon, TW; Kim, JY; Oh, HY; Kim, HS. (2002).
2	[Developmental Immunotoxicity in SD Rat Pups Exposed by Di(n-butyl Phthalate through
3	Pre and Postnatal]. J Toxicol Public Health 18: 401-409.
4	Espeland, MA; Gallagher, D; Tell, GS; Davison, LL; Platt, OS. (1990). Reliability of Tanner stage
5	assessments in a multi-center study. Am J Hum Biol 2: 503-510.
6	http://dx.doi.org/10.1002/ajhb.1310020506
7	Ettinger, AS; Lamadrid-Figueroa, H; Téllez-Rojo, MM; Mercado-García, A; Peterson, KE;
8	Schwartz, J; Hu, H; Hernández-Avila, M. (2009). Effect of calcium supplementation on
9	blood lead levels in pregnancy: A randomized placebo-controlled trial. Environ Health
10	Perspect 117: 26-31.
11	Ferguson, KK; Mcelrath, TF; Ko, YA; Mukherjee, B; Meeker, JD. (2014a). Variability in urinary
12	phthalate metabolite levels across pregnancy and sensitive windows of exposure for the
13	risk of preterm birth. Environ Int 70C: 118-124.
14	http://dx.doi.org/10.1016/j.envint.2014.05.016
15	Ferguson, KK; Mcelrath, TF; Meeker, JD. (2014b). Environmental phthalate exposure and preterm
16	birth. JAMA Pediatr 168: 61-67. http://dx.doi.org/10.1001/jamapediatrics.2013.3699
17	Ferguson, KK; Peterson, KE; Lee, JM; Mercado-García, A; Goldenberg, CB; Téllez-Rojo, MM;
18	Meeker, JD. (2014c). Prenatal and Peripubertal Phthalates and Bisphenol-A in Relation to
19	Sex Hormones and Puberty in Boys. Reprod Toxicol 47: 70-76.
20 21	http://dx.doi.org/10.1016/j.reprotox.2014.06.002 Farria P.C. (1078) Enidemiology standardization project (American Thoracia Society) Am Bay
22	Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120.
22	Fisher, MM; Eugster, EA. (2014). What is in our environment that effects puberty? Reprod Toxicol
23 24	44: 7-14. http://dx.doi.org/10.1016/j.reprotox.2013.03.012
25	Frederiksen, H; Jørgensen, N; Andersson, A. (2010). Correlations between phthalate metabolites
26	in urine, serum, and seminal plasma from young Danish men determined by isotope
27	dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol 34: 400-410.
28	Gaido, KW; Hensley, JB; Liu, D; Wallace, DG; Borghoff, S; Johnson, KJ; Hall, SJ; Boekelheide,
29	<u>K.</u> (2007). Fetal mouse phthalate exposure shows that Gonocyte multinucleation is not
30	associated with decreased testicular testosterone. Toxicol Sci 97: 491-503.
31	http://dx.doi.org/10.1093/toxsci/kfm049
32	Golombok, S; Rust, J. (1993). The measurement of gender role behaviour in pre-school children:
33	a research note. J Child Psychol Psychiatry 34: 805-811.
34	Goodman, M; Lakind, JS; Mattison, DR. (2014). Do phthalates act as obesogens in humans? A
35	systematic review of the epidemiological literature. Crit Rev Toxicol 44: 151-175.
36	http://dx.doi.org/10.3109/10408444.2013.860076
37	Gray, LE, Jr; Laskey, J; Ostby, J. (2006). Chronic di-n-butyl phthalate exposure in rats reduces
38	fertility and alters ovarian function during pregnancy in female Long Evans hooded rats.
39	Toxicol Sci 93: 189-195. <u>http://dx.doi.org/10.1093/toxsci/kfl035</u>
40	Gray, TJB; Rowland, IR; Foster, PMD; Gangolli, SD. (1982). Species differences in the testicular
41	toxicity of phthalate esters. Toxicol Lett 11: 141-147.
42	Hallmark, N; Walker, M; Mckinnell, C; Mahood, IK; Scott, H; Bayne, R; Coutts, S; Anderson,
43	RA; Greig, I; Morris, K; Sharpe, RM. (2007). Effects of monobutyl and di(n-butyl)
44 45	phthalate in vitro on steroidogenesis and Leydig cell aggregation in fetal testis explants
45 46	from the rat: comparison with effects in vivo in the fetal rat and neonatal marmoset and in vitro in the human. Environ Health Perspect 115: 390-396.
40 47	http://dx.doi.org/10.1289/ehp.9490
47	<u>mup.//dx.doi.org/10.1267/cmp.7470</u>

1	Hamano, Y; Kuwano, A; Inoue, K; Oda, Y; Yamamoto, H; Mitsuda, B; Kunita, N. (1977).
2	STUDIES ON TOXICITY OF PHTHALIC ACID ESTERS.1.TERATOGENIC
3	EFFECTS IN MICE ADMINISTERED ORALLY (pp. 29-33). (ETICBACK/5883).
4	Hamano, Y; Kuwano, A; Inoue, K; Oda, Y; Yamamoto, H; Mitsuda, B; Kunita, N.
5	Han, X; Cui, Z; Zhou, N; Ma, M; Li, L; Li, Y; Lin, H; Ao, L; Shu, W; Liu, J; Cao, J. (2014).
6	Urinary phthalate metabolites and male reproductive function parameters in Chongqing
7	general population, China. Int J Hyg Environ Health 217: 271-278.
8	http://dx.doi.org/10.1016/j.ijheh.2013.06.006
9	Hart, R; Doherty, DA; Frederiksen, H; Keelan, JA; Hickey, M; Sloboda, D; Pennell, CE;
10	Newnham, JP; Skakkebaek, NE; Main, KM. (2013). The influence of antenatal exposure
11	to phthalates on subsequent female reproductive development in adolescence: A pilot
12	study. Reproduction 147: 379-390. http://dx.doi.org/10.1530/REP-13-0331
13	Hatch, EE; Nelson, JW; Qureshi, MM; Weinberg, J; Moore, LL; Singer, M; Webster, TF. (2008).
14	Association of urinary phthalate metabolite concentrations with body mass index and waist
15	circumference: a cross-sectional study of NHANES data, 1999-2002. Environ Health 7:
16	27. http://dx.doi.org/10.1186/1476-069x-7-27
17	Hauser, R; Meeker, JD; Duty, S; Silva, MJ; Calafat, AM. (2006). Altered semen quality in relation
18	to urinary concentrations of phthalate monoester and oxidative metabolites. Epidemiology
19	17: 682-691. http://dx.doi.org/10.1097/01.ede.0000235996.89953.d7
20	Hauser, R; Meeker, JD; Park, S; Silva, MJ; Calafat, AM. (2004). Temporal variability of urinary
21	phthalate metabolite levels in men of reproductive age. Environ Health Perspect 112: 1734-
22	1740. http://dx.doi.org/10.1289/ehp.7212
23	Hauser, R; Meeker, JD; Singh, NP; Silva, MJ; Ryan, L; Duty, S; Calafat, AM. (2007). DNA
24	damage in human sperm is related to urinary levels of phthalate monoester and oxidative
25	metabolites. Hum Reprod 22: 688-695. http://dx.doi.org/10.1093/humrep/del428
26	Hauser, R; Williams, P; Altshul, L; Calafat, AM. (2005). Evidence of interaction between
27	polychlorinated biphenyls and phthalates in relation to human sperm motility. Environ
28	Health Perspect 113: 425-430. http://dx.doi.org/10.1289/ehp.7305
29	Heger, NE; Hall, SJ; Sandrof, MA; Mcdonnell, EV; Hensley, JB; Mcdowell, EN; Martin, KA;
30	Gaido, KW; Johnson, KJ; Boekelheide, K. (2012). Human Fetal Testis Xenografts Are
31	Resistant To Phthalate-Induced Endocrine Disruption. Environ Health Perspect 120: 1137-
32	1143. http://dx.doi.org/10.1289/ehp.1104711
33	Heineman, EF; Olsen, JH; Pottern, LM; Gomez, M; Raffn, E; Blair, A. (1992). Occupational risk
34	factors for multiple myeloma among Danish men. Cancer Causes Control 3: 555-568.
35	http://dx.doi.org/10.1007/BF00052753
36	Hines, M. (2006). Prenatal testosterone and gender-related behaviour [Review]. Eur J Endocrinol
37	155: S115-S121. http://dx.doi.org/10.1530/eje.1.02236
38	Hofman, LF; Foley, TP; Henry, JJ; Naylor, EW. (2003). Assays for thyroid-stimulating hormone
39	using dried blood spotted filter paper specimens to screen for hypothyroidism in older
40	children and adults. J Med Screen 10: 5-10.
41	http://dx.doi.org/10.1258/096914103321610734
42	Hogberg, J; Hanberg, A; Berglund, M; Skerfving, S; Remberger, M; Calafat, AM; Filipsson, AF;
43	Jansson, B; Johansson, N; Appelgren, M; Hakansson, H. (2008). Phthalate diesters and
44	their metabolites in human breast milk, blood or serum, and urine as biomarkers of
45	exposure in vulnerable populations. Environ Health Perspect 116: 334-339.
46	http://dx.doi.org/10.1289/ehp.10788
47	Holt, VL; Weiss, NS. (2000). Recommendations for the design of epidemiologic studies of
48	endometriosis [Review]. Epidemiology 11: 654-659.
-	

1	Hong, YC; Park, EY; Park, MS; Ko, JA; Oh, SY; Kim, H; Lee, KH; Leem, JH; Ha, EH. (2009).
2	Community level exposure to chemicals and oxidative stress in adult population. Toxicol
3	Lett 184: 139-144. http://dx.doi.org/10.1016/j.toxlet.2008.11.001
4	Hoppin, JA; Brock, JW; Davis, BJ; Baird, DD. (2002). Reproducibility of urinary phthalate
5	metabolites in first morning urine samples. Environ Health Perspect 110: 515-518.
6	Hoppin, JA; Jaramillo, R; London, SJ; Bertelsen, RJ; Salo, PM; Sandler, DP; Zeldin, DC. (2013a).
7	Phthalate exposure and allergy in the U.S. population: Results from NHANES 2005-2006.
8	Environ Health Perspect 121: 1129-1134. <u>http://dx.doi.org/10.1289/ehp.1206211</u>
9	Hoppin, JA; Jaramillo, R; London, SJ; Bertelsen, RJ; Salo, PM; Sandler, DP; Zeldin, DC. (2013b).
10	Supplemental material: Phthalate exposure and allergy in the U.S. population: Results from
11	NHANES 2005-2006 [Supplemental Data]. Environ Health Perspect 121.
12	Hoppin, JA; Ulmer, R; London, SJ. (2004). Phthalate exposure and pulmonary function. Environ
13	Health Perspect 112: 571-574.
14	Howdeshell, KL; Wilson, VS; Furr, J; Lambright, CR; Rider, CV; Blystone, CR; Hotchkiss, AK;
15	Gray, LE, Jr. (2008). A mixture of five phthalate esters inhibits fetal testicular testosterone
16	production in the Sprague-Dawley rat in a cumulative, dose-additive manner. Toxicol Sci
17	105: 153-165. <u>http://dx.doi.org/10.1093/toxsci/kfn077</u>
18	HSDB (Hazardous Substances Data Bank). (2009). Dibutyl phthalate. Bethesda, MD: National
19	Library of Medicine. <u>http://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm</u>
20	Hsu, NY; Lee, CC; Wang, JY; Li, YC; Chang, HW; Chen, CY; Bornehag, CG; Wu, PC; Sundell,
21	J; Su, HJ. (2012). Predicted risk of childhood allergy, asthma and reported symptoms using
22	measured phthalate exposure in dust and urine. Indoor Air 22: 186199.
23	http://dx.doi.org/10.1111/j.1600-0668.2011.00753.x
24 25	Hu, X; Li, W; Tian, F; Wang, Y; Song, W; Li, R; Ding, X; Jin, T. (2010). [Study on gonadal
25 26	developmental toxicity of dibutyl phthalate in male zebrafish of F1 generation]. Wei Sheng Yan Jiu 39: 231-234.
20 27	Huang, PC; Kuo, PL; Chou, YY; Lin, SJ; Lee, CC. (2009). Association between prenatal exposure
28	to phthalates and the health of newborns. Environ Int 35: 14-20.
29	http://dx.doi.org/10.1016/j.envint.2008.05.012
30	Huang, PC; Kuo, PL; Guo, YL; Liao, PC; Lee, CC. (2007). Associations between urinary phthalate
31	monoesters and thyroid hormones in pregnant women. Hum Reprod 22: 2715-2722.
32	http://dx.doi.org/10.1093/humrep/dem205
33	Huang, PC; Tsai, EM; Li, WF; Liao, PC; Chung, MC; Wang, YH; Wang, SL. (2010). Association
34	between phthalate exposure and glutathione S-transferase M1 polymorphism in
35	adenomyosis, leiomyoma and endometriosis. Hum Reprod 25: 986-994.
36	http://dx.doi.org/10.1093/humrep/deq015
37	Huang, T; Saxena, AR; Isganaitis, E; James-Todd, T. (2014a). Gender and racial/ethnic differences
38	in the associations of urinary phthalate metabolites with markers of diabetes risk: national
39	health and nutrition examination survey 2001-2008. Environ Health 13: 6.
40	http://dx.doi.org/10.1186/1476-069X-13-6
41	Huang, Y; Li, J; Garcia, JM; Lin, H; Wang, Y; Yan, P; Wang, L; Tan, Y; Luo, J; Qiu, Z; Chen,
42	JA; Shu, W. (2014b). Phthalate levels in cord blood are associated with preterm delivery
43	and fetal growth parameters in Chinese women. PLoS ONE 9: e87430.
44	http://dx.doi.org/10.1371/journal.pone.0087430
45	Ikemoto, I; Tanaka, A; Machida, T; Tanino, M; Kotera, S; Mikuruya, H; Shirai, T; Mitani, H.
46	(1988). Enzymes as markers of testicular damage induced by dibutylphthalate in the rat.
47	Jpn J Fertil Steril 33: 114-120.

1	Imajima, T; Shono, T; Kai, H; Zakaria, O; Suita, S. (2001). The biological effect of phthalate esters
2	on transabdominal migration of the testis in fetal rats in comparison with the antiandrogen
3	flutamide. Pediatric Surgery International 17: 164-166.
4	Imajima, T; Shono, T; Zakaria, O; Suita, S. (1997). Prenatal phthalate causes cryptorchidism
5	postnatally by inducing transabdominal ascent of the testis in fetal rats. J Pediatr Surg 32:
6	18-21. http://dx.doi.org/10.1016/S0022-3468(97)90083-X
7	Irvin, E; Calafat, A; Silva, M; Aguilar-Villalobos, M; Needham, L; Hall, D; Cassidy, B; Naeher,
8	L. (2010). An estimate of phthalate exposure among pregnant women living in Trujillo,
9	Peru. Chemosphere 80: 1301-1307. http://dx.doi.org/10.1016/j.chemosphere.2010.06.048
10	Itoh, H; Iwasaki, M; Hanaoka, T; Sasaki, H; Tanaka, T; Tsugane, S. (2009). Urinary phthalate
11	monoesters and endometriosis in infertile Japanese women. Sci Total Environ 408: 37-42.
12	http://dx.doi.org/10.1016/j.scitotenv.2009.09.012
13	James-Todd, T; Stahlhut, R; Meeker, JD; Powell, SG; Hauser, R; Huang, T; Rich-Edwards, J.
14	(2012). Urinary phthalate metabolite concentrations and diabetes among women in the
15	National Health and Nutrition Examination Survey (NHANES) 2001-2008. Environ
16	Health Perspect 120: 1307-1313. http://dx.doi.org/10.1289/ehp.1104717
17	Jiang, J; Ma, L; Yuan, L; Wang, X; Zhang, W. (2007). Study on developmental abnormalities in
18	hypospadiac male rats induced by maternal exposure to di-n-butyl phthalate (DBP).
19	Toxicology 232: 286-293. <u>http://dx.doi.org/10.1016/j.tox.2007.01.018</u>
20	Joensen, UN; Frederiksen, H; Jensen, MB; Lauritsen, MP; Olesen, IA; Lassen, TH; Andersson,
21	AM; Jørgensen, N. (2012). Phthalate excretion pattern and testicular function: a study of
22	881 healthy danish men. Environ Health Perspect 120: 1397-1403.
23	http://dx.doi.org/10.1289/ehp.1205113
24	John Radcliffe Hospital Cryptorchidism Study Group. (1988). Clinical diagnosis of
25	cryptorchidism. Arch Dis Child 63: 587-591.
26	Johnson, KJ; Heger, NE; Boekelheide, K. (2012). Of mice and men (and rats): phthalate-induced
27	fetal testis endocrine disruption is species-dependent [Review]. Toxicol Sci 129: 235-248.
28	http://dx.doi.org/10.1093/toxsci/kfs206
29	Johnson, KJ; Hensley, JB; Kelso, MD; Wallace, DG; Gaido, KW. (2007). Mapping gene
30	expression changes in the fetal rat testis following acute dibutyl phthalate exposure defines
31	a complex temporal cascade of responding cell types. Biol Reprod 77: 978-989.
32	http://dx.doi.org/10.1095/biolreprod.107.062950
33	Johnson, KJ; Mccahan, SM; Si, X; Campion, L; Herrmann, R; Barthold, JS. (2008). The orl rat
34	with inherited cryptorchidism has increased susceptibility to the testicular effects of in
35	utero dibutyl phthalate exposure. Toxicol Sci 105: 360-367.
36	http://dx.doi.org/10.1093/toxsci/kfn140
37	Johnson, KJ; Mcdowell, EN; Viereck, MP; Xia, JQ. (2011). Species-specific dibutyl phthalate fetal
38	testis endocrine disruption correlates with inhibition of SREBP2-dependent gene
39	expression pathways. Toxicol Sci 120: 460-474. http://dx.doi.org/10.1093/toxsci/kfr020
40	Jonsson, BAG; Richthoff, J; Rylander, L; Giwercman, A; Hagmar, L. (2005). Urinary phthalate
41	metabolites and biomarkers of reproductive function in young men. Epidemiology 16: 487-
42	493. http://dx.doi.org/10.1097/01.ede.0000164555.19041.01
43	Jung, H; Hong, Y; Lee, D; Pang, K; Kim, Y. (2013). The association between some endocrine
44	disruptors in human plasma and the occurrence of congenital hypothyroidism. Environ
45	Toxicol Pharmacol 35: 278-283. <u>http://dx.doi.org/10.1016/j.etap.2013.01.002</u>
46	Jurewicz, J; Radwan, M; Sobala, W; Ligocka, D; Radwan, P; Bochenek, M; Hawuła, W;
47	Jakubowski, L; Hanke, W. (2013). Human urinary phthalate metabolites level and main

1	semen parameters, sperm chromatin structure, sperm aneuploidy and reproductive
2	hormones. Reprod Toxicol 42: 232-241. http://dx.doi.org/10.1016/j.reprotox.2013.10.001
3	Just, AC; Whyatt, RM; Miller, RL; Rundle, AG; Chen, Q; Calafat, AM; Divjan, A; Rosa, MJ;
4	Zhang, H; Perera, FP; Goldstein, IF; Perzanowski, MS. (2012). Children's Urinary
5	Phthalate Metabolites and Fractional Exhaled Nitric Oxide in an Urban Cohort. Am J
6	Respir Crit Care Med 186: 830-837. http://dx.doi.org/10.1164/rccm.201203-0398OC
7	Kai, H; Shono, T; Tajiri, T; Suita, S. (2005). Long-term effects of intrauterine exposure to mono-
8	n-butyl phthalate on the reproductive function of postnatal rats. J Pediatr Surg 40: 429-433.
9	http://dx.doi.org/10.1016/j.jpedsurg.2004.10.009
10	Kanazawa, A; Saito, I; Araki, A; Takeda, M; Ma, M; Saijo, Y; Kishi, R. (2010). Association
11	between indoor exposure to semi-volatile organic compounds and building-related
12	symptoms among the occupants of residential dwellings. Indoor Air 20: 72-84.
13	http://dx.doi.org/10.1111/j.1600-0668.2009.00629.x
14	Kasper-Sonnenberg, M; Koch, HM; Wittsiepe, J; Wilhelm, M. (2012). Levels of phthalate
15	metabolites in urine among mother-child-pairs - Results from the Duisburg birth cohort
16	study, Germany. Int J Hyg Environ Health 215: 373-382.
17	http://dx.doi.org/10.1016/j.ijheh.2011.09.004
18	<u>Kawano, M.</u> (1980a). [Toxicological studies on phthalate esters: 1 inhalation effects of dibuty]
19	phthalate (DBP) on rats]. Nippon Eiseigaku Zasshi 35: 684-692.
20	<u>Kawano, M.</u> (1980b). [Toxicological studies on phthalate esters: 2 metabolism, accumulation and
20	excretion of phthalate esters in rats]. Nippon Eiseigaku Zasshi 35: 693-701.
22	Kim, BN; Cho, SC; Kim, Y; Shin, MS; Yoo, HJ; Kim, JW; Yang, YH; Kim, HW; Bhang, SY;
23	Hong, YC. (2009). Phthalates exposure and attention-deficit/hyperactivity disorder in
24	school-age children. Biol Psychiatry 66: 958-963.
25	http://dx.doi.org/10.1016/j.biopsych.2009.07.034
26	Kim, JH; Park, HY; Bae, S; Lim, YH; Hong, YC. (2013). Diethylhexyl Phthalates Is Associated
27	with Insulin Resistance via Oxidative Stress in the Elderly: A Panel Study. PLoS ONE 8:
28	e71392. http://dx.doi.org/10.1371/journal.pone.0071392
29	Kim, TS; Jung, KK; Kim, SS; Kang, IH; Baek, JH; Nam, HS; Hong, SK; Lee, BM; Hong, JT; Oh,
30	KW; Kim, HS; Han, SY; Kang, TS. (2010). Effects of in utero exposure to DI(n-Butyl)
31	phthalate on development of male reproductive tracts in Sprague-Dawley rats. J Toxicol
32	Environ Health A 73: 1544-1559. http://dx.doi.org/10.1080/15287394.2010.511579
33	Kim, Y; Ha, EH; Kim, EJ; Park, H; Ha, M; Kim, JH; Hong, YC; Chang, N; Kim, BN. (2011).
34	Prenatal Exposure to Phthalates and Infant Development at 6 Months: Prospective Mothers
35	and Children's Environmental Health (MOCEH) Study. Environ Health Perspect 119:
36	1495-1500. http://dx.doi.org/10.1289/ehp.1003178
37	Kleinsasser, NH; Harréus, UA; Münzenrieder, RK; Weissacher, H; Kastenbauer, ER. (1999a).
38	[Softeners in synthetic materialsare they harmful to humans? First indication of genotoxic
39	effect of phthalates] [Review]. MMW Fortschr Med 141: 46-49.
40	Kleinsasser, NH; Harréus, UA; Wallner, BC; Kastenbauer, ER. (1999b). [Mutagen sensitivity of
41	patients with laryngeal and oropharyngeal carcinoma]. Laryngorhinootologie 78: 679-684.
42	http://dx.doi.org/10.1055/s-1999-8767
43	Kleinsasser, NH; Kastenbauer, ER; Wallner, BC; Weissacher, H; Harreus, UA. (2001).
44	[Genotoxicity of phthalates. On the discussion of plasticizers in children's toys]. HNO 49:
45	378-381.
46	Kobayashi, T; Niimi, S; Kawanishi, T; Hayakawa, T. (2003). [Safety evaluation of chemicals by
47	their effect on mRNA levels of the factors participating in the decomposition of liver
	and energy on matrix levels of the radiols participating in the decomposition of five
48	extracellular matrix]. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku109-110.

1	Kobrosly, RW; Evans, S; Miodovnik, A; Barrett, ES; Thurston, SW; Calafat, AM; Swan, SH.
2	(2014). Prenatal Phthalate Exposures and Neurobehavioral Development Scores in Boys
3	and Girls at 6-10 Years of Age. Environ Health Perspect 122: 521-528.
4	http://dx.doi.org/10.1289/ehp.1307063
5	Koch, HM; Christensen, KL; Harth, V; Lorber, M; Brüning, T. (2012). Di-n-butyl phthalate
6	(DnBP) and diisobutyl phthalate (DiBP) metabolism in a human volunteer after single oral
7	doses. Arch Toxicol 86: 1829-1839. http://dx.doi.org/10.1007/s00204-012-0908-1
8	Kolarik, B; Naydenov, K; Larsson, M; Bornehag, CG; Sundell, J. (2008). The association between
9	phthalates in dust and allergic diseases among Bulgarian children. Environ Health Perspect
10	116: 98-103. http://dx.doi.org/10.1289/ehp.10498
11	Kolena, B; Petrovicova, I; Pilka, T; Pucherova, Z; Munk, M; Matula, B; Vankova, V; Petlus, P;
12	Jenisova, Z; Rozova, Z; Wimmerova, S; Trnovec, T. (2014). Phthalate exposure and
13	health-related outcomes in specific types of work environment. Int J Environ Res Public
14	Health 11: 5628-5639. http://dx.doi.org/10.3390/ijerph110605628
15	Kondo, T; Shono, T; Suita, S. (2006). Age-specific effect of phthalate ester on testicular
16	development in rats. J Pediatr Surg 41: 1290-1293.
17	http://dx.doi.org/10.1016/j.jpedsurg.2006.03.009
18	Koprowski, C; Coates, RJ; Bernstein, L. (2001). Ability of young women to recall past body size
19	and age at menarche. Obes Res 9: 478-485. http://dx.doi.org/10.1038/oby.2001.62
20	Kranvogl, R; Knez, J; Miuc, A; Vončina, E; Vončina, DB; Vlaisavljević, V. (2014). Simultaneous
21	determination of phthalates, their metabolites, alkylphenols and bisphenol A using GC-MS
22	in urine of men with fertility problems. Acta Chim Slov 61: 110-120.
23	Kuhl, AJ; Ross, SM; Gaido, KW. (2007a). CCAAT/enhancer binding protein beta, but not
24	steroidogenic factor-1, modulates the phthalate-induced Dysregulation of rat fetal testicular
25	steroidogenesis. Endocrinology 148: 5851-5864. http://dx.doi.org/10.1210/en.2007-0930
26	Kuhl, AJ; Ross, SM; Gaido, KW. (2007b). Using a comparative in vivo DNase I footprinting
27	technique to analyze changes in protein-DNA interactions following phthalate exposure. J
28	Biochem Mol Toxicol 21: 312-322. http://dx.doi.org/10.1002/jbt.20192
29	Lagente, M; de La Farge, F; Valdiguié, P. (1978). [Effect of phthalic esters on lecithin cholesterol
30	acyltransferase]. C R Acad Sci Hebd Seances Acad Sci D 287: 361-364.
31	Lamb, J; Chapin, R; Teague, J; Lawton, A; Reel, J. (1987). Reproductive effects of four phthalic
32	acid esters in the mouse. Toxicol Appl Pharmacol 88: 255-269.
33	http://dx.doi.org/10.1016/0041-008X(87)90011-1
34	Lamb, JC; Reel, J; Lawton, AD. (1997). Di-n-butyl phthalate, mice. 105: 247-248.
35	Lee, E; Kim, HJ; Im, JY; Kim, J; Park, H; Ryu, JY; Lee, J; Shim, KA; Jung, KK; Han, SY; Lee,
36	BM; Kim, SH; Kim, HS. (2008). Hypothyroidism protects di(n-butyl) phthalate-induced
37	reproductive organs damage in Sprague-Dawley male rats. J Toxicol Sci 33: 299-306.
38	http://dx.doi.org/10.2131/jts.33.299
39	Lee, HC; Ko, YG; Im, GS; Chung, HJ; Seong, HH; Chang, WK; Yamanouchi, K; Nishihara, M.
40	(2006a). Effects of phthalate/adipate esters exposure during perinatal period on
41	reproductive function after maturation in rats. Han'gug Dongmul Jawon Gwahag Hoeji 48:
42	651-662.
43	Lee, HC; Yamanouchi, K; Nishihara, M. (2006b). Effects of perinatal exposure to
44	phthalate/adipate esters on hypothalamic gene expression and sexual behavior in rats. J
45	Reprod Dev 52: 343-352.
46	Lee, KY; Shibutani, M; Takagi, H; Kato, N; Takigami, S; Uneyama, C; Hirose, M. (2004). Diverse
47	developmental toxicity of di-n-butyl phthalate in both sexes of rat offspring after maternal

1	exposure during the period from late gestation through lactation. Toxicology 203: 221-238.
2	http://dx.doi.org/10.1016/j.tox.2004.06.013
3	Lehmann, KP; Phillips, S; Sar, M; Foster, PM; Gaido, KW. (2004). Dose-dependent alterations in
4	gene expression and testosterone synthesis in the fetal testes of male rats exposed to di (n-
5	butyl) phthalate. Toxicol Sci 81: 60-68. http://dx.doi.org/10.1093/toxsci/kfh169
6	Leikauf, J; Federman, AD. (2009). Comparisons of self-reported and chart identified chronic
7	diseases in inner-city seniors. J Am Geriatr Soc 57: 1219-1225.
8	http://dx.doi.org/10.1111/j.1532-5415.2009.02313.x
9	Li, A; Tang, C; Hang, H; Cheng, X; Gao, Y; Cheng, H; Huang, Q; Luo, Y; Xue, Y; Zuo, Q; Ba,
	Y; Cui, L. (2013). [Influence of phthalates from Shaving river on children's intelligence
10	
11	and secretion of thyroid hormone]. Wei Sheng Yan Jiu 42: 236-240.
12	Li, P; Dai, X; Dan, H; Huang, X. (2008). [Determine and parallel analysis of three kinds of PAEs
13	in serum for obese children]. Wei Sheng Yan Jiu 37: 581-583.
14	Li, S; Dai, J; Zhang, L; Zhang, J; Zhang, Z; Chen, B. (2011). An association of elevated serum
15	prolactin with phthalate exposure in adult men. Biomed Environ Sci 24: 31-39.
16	http://dx.doi.org/10.3967/0895-3988.2011.01.004
17	Lin, L; Wang, S; Chang, Y; Huang, P; Cheng, J; Su, P; Liao, P. (2011a). Associations between
18	maternal phthalate exposure and cord sex hormones in human infants. Chemosphere 83:
19	1192-1199. http://dx.doi.org/10.1016/j.chemosphere.2010.12.079
20	Lin, L; Wang, Y; Ding, X; Song, W. (2008a). [Embryotoxicity of di-n-butyl phthalate to zebrafish
21	(Brchydanio rerio) embryos]. Wei Sheng Yan Jiu 37: 278-280.
22	Lin, L; Zheng, L; Gu, Y; Wang, J; Zhang, Y; Song, W. (2008b). [Levels of environmental
23	endocrine disruptors in umbilical cord blood and maternal blood of low-birth-weight
24	infants]. Zhonghua Yufang Yixue Zazhi 42: 177-180.
25	Lin, S; Ku, H; Su, P; Chen, J; Huang, P; Angerer, J; Wang, S. (2011b). Phthalate exposure in
26	pregnant women and their children in central Taiwan. Chemosphere 82: 947-955.
27	http://dx.doi.org/10.1016/j.chemosphere.2010.10.073
28	Lind, PM; Lind, L. (2011). Circulating levels of bisphenol A and phthalates are related to carotid
29	atherosclerosis in the elderly. Atherosclerosis 218: 207-213.
30	http://dx.doi.org/10.1016/j.atherosclerosis.2011.05.001
31	Liu, L; Bao, H; Liu, F; Zhang, J; Shen, H. (2012). Phthalates exposure of Chinese reproductive
32	age couples and its effect on male semen quality, a primary study. Environ Int 42: 78-83.
33	http://dx.doi.org/10.1016/j.envint.2011.04.005
34	Lomenick, JP; Calafat, AM; Melguizo Castro, MS; Mier, R; Stenger, P; Foster, MB; Wintergerst,
35	KA. (2010). Phthalate exposure and precocious puberty in females. J Pediatr 156: 221-225.
36	http://dx.doi.org/10.1016/j.jpeds.2009.09.047
37	Long, T; Tian, EP; Qin, DN; Wang, Y. (2008). [Effects of prepubertal continuous exposure to
38	dibutyl phthalate on testicular development in rats]. Zhonghua Nan Ke Xue 14: 779-785.
39	Lopez-Carrillo, L; Hernandez-Ramirez, RU; Calafat, AM; Torres-Sanchez, L; Galvan-Portillo, M;
40	Needham, LL; Ruiz-Ramos, R; Cebrian, ME. (2010). Exposure to phthalates and breast
41	cancer risk in northern Mexico. Environ Health Perspect 118: 539-544.
42	http://dx.doi.org/10.1289/ehp.0901091
43	Macleod, DJ; Sharpe, RM; Welsh, M; Fisken, M; Scott, HM; Hutchison, GR; Drake, AJ; van den
44 45	Driesche, S. (2010). Androgen action in the masculinization programming window and
45	development of male reproductive organs. Int J Androl 33: 279-287.
46	http://dx.doi.org/10.1111/j.1365-2605.2009.01005.x
47	Mahood, IK; Scott, HM; Brown, R; Hallmark, N; Walker, M; Sharpe, RM. (2007). In utero
48	exposure to di(n-butyl) phthalate and testicular dysgenesis: comparison of fetal and adult

1 end points and their dose sensitivity. Environ Health Perspect 115 Suppl 1: 55-61. 2 http://dx.doi.org/10.1289/ehp.9366 3 Main, KM; Mortensen, GK; Kaleva, MM; Boisen, KA; Damgaard, IN; Chellakooty, M; Schmidt, 4 IM; Suomi, AM; Virtanen, HE; Petersen, JH; Andersson, AM; Toppari, J; Skakkebaek, 5 NE. (2006). Human breast milk contamination with phthalates and alterations of 6 endogenous reproductive hormones in infants three months of age. Environ Health 7 Perspect 114: 270-276. http://dx.doi.org/10.1289/ehp.8075 Man, XM; Qin, H; Chen, MJ; Zhang, CX; Song, L; Wang, YB. (2010). [Effects of di-butyl 8 9 phthalate on the reproductive system of adolescent male rats]. Zhonghua Nan Ke Xue 16: 10 973-978. Marshall, WA; Tanner, JM. (1969). Variations in pattern of pubertal changes in girls. Arch Dis 11 Child 44: 291-303. 12 Marshall, WA; Tanner, JM. (1970). Variations in the pattern of pubertal changes in boys. Arch 13 14 Dis Child 45: 13-23. Martino-Andrade, A; Morais, R; Botelho, G; Muller, G; Grande, S; Carpentieri, G; Leão, G; 15 16 Dalsenter, P. (2009). Coadministration of active phthalates results in disruption of foetal testicular function in rats. Int J Androl 32: 704-712. http://dx.doi.org/10.1111/j.1365-17 18 2605.2008.00939.x Mckinnell, C; Mitchell, RT; Walker, M; Morris, K; Kelnar, CJ; Wallace, WH; Sharpe, RM. (2009). 19 Effect of fetal or neonatal exposure to monobutyl phthalate (MBP) on testicular 20 development and function in the marmoset. Hum Reprod 24: 2244-2254. 21 http://dx.doi.org/10.1093/humrep/dep200 22 Meeker, JD; Calafat, AM; Hauser, R. (2007). Di(2-ethylhexyl) phthalate metabolites may alter 23 24 thyroid hormone levels in men. Environ Health Perspect 115: 1029-1034. http://dx.doi.org/10.1289/ehp.9852 25 Meeker, JD; Calafat, AM; Hauser, R. (2009a). Urinary metabolites of di(2-ethylhexyl) phthalate 26 are associated with decreased steroid hormone levels in adult men. J Androl 30: 287-297. 27 http://dx.doi.org/10.2164/jandrol.108.006403 28 29 Meeker, JD; Ferguson, KK. (2011). Relationship between Urinary Phthalate and Bisphenol A Concentrations and Serum Thyroid Measures in U.S. Adults and Adolescents from the 30 National Health and Nutrition Examination Survey (NHANES) 2007-2008. Environ 31 32 Health Perspect 119: 1396-1402. http://dx.doi.org/10.1289/ehp.1103582 Meeker, JD; Hu, H; Cantonwine, DE; Lamadrid-Figueroa, H; Calafat, AM; Ettinger, AS; 33 Hernandez-Avila, M; Loch-Caruso, R; Tellez-Rojo, MM. (2009b). Urinary phthalate 34 metabolites in relation to preterm birth in Mexico city. Environ Health Perspect 117: 1587-35 36 1592. http://dx.doi.org/10.1289/ehp.0800522 Mendiola, J; Jørgensen, N; Andersson, AM; Calafat, AM; Silva, MJ; Redmon, JB; Sparks, A; 37 38 Drobnis, EZ; Wang, C; Liu, F; Swan, SH. (2011). Associations between urinary metabolites of di(2-ethylhexyl) phthalate and reproductive hormones in fertile men. Int J 39 Androl 34: 369378. http://dx.doi.org/10.1111/j.1365-2605.2010.01095.x 40 Mendiola, J; Meeker, JD; Jørgensen, N; Andersson, AM; Liu, F; Calafat, AM; Redmon, JB; 41 Drobnis, EZ; Sparks, AE; Wang, C; Hauser, R; Swan, SH. (2012). Urinary concentrations 42 of di(2-ethylhexyl) phthalate metabolites and serum reproductive hormones: Pooled 43 488-198. 44 analysis of fertile and infertile men. J Androl 33: 45 http://dx.doi.org/10.2164/jandrol.111.013557 Mieritz, MG; Frederiksen, H; Sørensen, K; Aksglaede, L; Mouritsen, A; Hagen, CP; Skakkebaek, 46 NE; Andersson, AM; Juul, A. (2012). Urinary phthalate excretion in 555 healthy Danish 47

1	boys with and without pubertal gynaecomastia. Int J Androl 35: 227-235.
2	http://dx.doi.org/10.1111/j.1365-2605.2012.01279.x
3	Miodovnik, A; Engel, SM; Zhu, C; Ye, X; Soorya, LV; Silva, MJ; Calafat, AM; Wolff, MS.
4	(2011). Endocrine disruptors and childhood social impairment. Neurotoxicology 32: 261-
5	267. http://dx.doi.org/10.1016/j.neuro.2010.12.009
6	Mitchell, RT; Childs, AJ; Anderson, RA; van Den Driesche, S; Saunders, PT; Mckinnell, C;
7	Wallace, WH; Kelnar, CJ; Sharpe, RM. (2012). Do phthalates affect steroidogenesis by the
8	human fetal testis? Exposure of human fetal testis xenografts to di-n-butyl phthalate. J Clin
9	Endocrinol Metab 97: E341-E348. <u>http://dx.doi.org/10.1210/jc.2011-2411</u>
10	Monsanto (Monsanto Company). (1984). Study of fertility and general reproductive performance
11	in rats with dibutyl phthalate with attached appendices, cover sheets and letter dated
12	043090. St. Louis, MO: Submitted under TSCA Section 8E. http://internal-
13	pdf://OTS0524330-3340742144/OTS0524330.pdf
14	Moody, S; Goh, H; Bielanowicz, A; Rippon, P; Loveland, KL; Itman, C. (2013). Prepubertal
15	mouse testis growth and maturation and androgen production are acutely sensitive to di-n-
16	butyl phthalate. Endocrinology 154: 3460-3475. http://dx.doi.org/10.1210/en.2012-2227
17	Murakami, K; Nishiyama, K; Higuti, T. (1986). Toxicity of dibutyl phthalate and its metabolites
18	in rats. Nippon Eiseigaku Zasshi 41: 775-780.
19	Mylchreest, E; Cattley, RC; Foster, PM. (1998). Male reproductive tract malformations in rats
20	following gestational and lactational exposure to Di(n-butyl) phthalate: an antiandrogenic
21	mechanism? Toxicol Sci 43: 47-60. http://dx.doi.org/10.1006/toxs.1998.2436
22	Mylchreest, E; Foster, PM. (2000). DBP exerts its antiandrogenic activity by indirectly interfering
23	with androgen signaling pathways [Letter]. Toxicol Appl Pharmacol 168: 174-175.
24	http://dx.doi.org/10.1006/taap.2000.9031
25	Mylchreest, E; Sar, M; Cattley, RC; Foster, PMD. (1999a). Disruption of androgen-regulated male
26	reproductive development by di(n-butyl) phthalate during late gestation in rats is different
27	from flutamide. Toxicol Appl Pharmacol 156: 81-95.
28	http://dx.doi.org/10.1006/taap.1999.8643
29	Mylchreest, E; Sar, M; Wallace, DG; Cattley, RC; Foster, PM. (1999b). Early changes in
30	morphology and androgen status in the fetal rat testis in response to di(n-butyl) phthalate.
31	Teratology 59.
32	Mylchreest, E; Wallace, DG; Cattley, RC; Foster, PM. (2000). Dose-dependent alterations in
33	androgen-regulated male reproductive development in rats exposed to Di(n-butyl)
34	phthalate during late gestation. Toxicol Sci 55: 143-151.
35	http://dx.doi.org/10.1093/toxsci/55.1.143
36	Nakahara, H; Shono, T; Suita, S. (2003). [Effects of prenatal exposure to phthalate ester on both
37	testicular descent and urogenital development in rats]. Fukuoka Igaku Zasshi 94: 331-337.
38	Nicolau, GY; Haus, E; Plîngă, L; Dumitriu, L; Lakatua, D; Popescu, M; Ungureanu, E; Sackett-
39	Lundeen, L; Petrescu, E. (1992). Chronobiology of pituitary-thyroid functions. Rom J
40	Endocrinol 30: 125-148.
41	Nielsen, J; Akesson, B; Skerfving, S. (1985). Phthalate ester exposureair levels and health of
42	workers processing polyvinylchloride. AIHA J 46: 643-647.
43	http://dx.doi.org/10.1080/15298668591395463
44	Nielsen, J; Fåhraeus, C; Bensryd, I; Akesson, B; Welinder, H; Lindén, K; Skerfving, S. (1989).
45	Small airways function in workers processing polyvinylchloride. Int Arch Occup Environ
46	Health 61: 427-430. <u>http://dx.doi.org/10.1007/BF00386474</u>

1	Nikonorow, M; Mazur, H; Piekacz, H. (1973). Effect of orally administered plasticizers and
2	polyvinyl chloride stabilizers in the rat. Toxicol Appl Pharmacol 26: 253-259.
3	http://dx.doi.org/10.1016/0041-008X(73)90259-7
4	NRC (National Research Council). (2008). Phthalates and cumulative risk assessment: The task
5	ahead. Washington, DC: National Academies Press.
6	http://www.nap.edu/catalog.php?record_id=12528
7	NRC (National Research Council). (2009). Science and decisions: Advancing risk assessment.
8	Washington, DC: National Academies Press. http://www.nap.edu/catalog/12209.html
9	NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft
10	IRIS assessment of formaldehyde. Washington, DC: National Academies Press.
11	http://www.nap.edu/catalog/13142.html
12	NTP (National Toxicology Program). (1984). Di(n-butyl) phthalate: Reproduction and fertility
13	assessment in CD-1 mice when administered in the feed (pp. 197 PP). (NTP-84-411).
14	Washington D.C.: National Toxicology Program, National Institute of Environmental
15	Health Sciences.
16	https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=PB85144798
17	NTP (National Toxicology Program). (1991). Final report on the reproductive toxicity of di-N-
18	butyl phthalate (CAS no. 84-74-2) in Sprague-Dawley rats. (T-0035C). Research Triangle
19	Park, NC.
20	https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=PB92111996
21	NTP (National Toxicology Program). (1995). NTP technical report on the toxicity studies of
22	dibutyl phthalate (CAS No. 84-74-2) administered in feed to F344/N rats and B6C3F1 mice
23	[NTP]. In Toxicity studies of dibutyl phthalate (CAS No 84-74-2) administered in feed to
24	F344/N rats and B6C3F1 mice. (NTP TOX 30). Research Triangle Park, NC.
25	http://ntp.niehs.nih.gov/ntp/htdocs/ST_rpts/tox030.pdf
26	Oishi, S; Hiraga, K. (1980). Testicular atrophy induced by phthalic acid monoesters: effects of
27	zinc and testosterone concentrations. Toxicology 15: 197-202.
28	http://dx.doi.org/10.1016/0300-483X(80)90053-0
29	Oksanen, T; Kivimäki, M; Pentti, J; Virtanen, M; Klaukka, T; Vahtera, J. (2010). Self-report as an
30	indicator of incident disease. Ann Epidemiol 20: 547-554.
31	http://dx.doi.org/10.1016/j.annepidem.2010.03.017
32	Pan, G; Hanaoka, T; Yoshimura, M; Zhang, S; Wang, P; Tsukino, H; Inoue, K; Nakazawa, H;
	<u>- I uni, Oj Humaonaj H, Hosiminaraj M, Zhang, S, Wang, I, Hound, H, Houd, H, Hamazawa, H</u>
33	<u>Tsugane, S; Takahashi, K.</u> (2006). Decreased serum free testosterone in workers exposed
33 34	
	Tsugane, S; Takahashi, K. (2006). Decreased serum free testosterone in workers exposed
34	Tsugane, S; Takahashi, K. (2006). Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-
34 35	Tsugane, S; Takahashi, K. (2006). Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect 114: 1643-1648.
34 35 36	Tsugane, S: Takahashi, K. (2006). Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect 114: 1643-1648. http://dx.doi.org/10.1289/ehp.9016
34 35 36 37	 <u>Tsugane, S; Takahashi, K.</u> (2006). Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect 114: 1643-1648. http://dx.doi.org/10.1289/ehp.9016 Pant, N; Kumar, G; Upadhyay, AD; Patel, DK; Gupta, YK; Chaturvedi, PK. (2014). Reproductive
34 35 36 37 38	 <u>Tsugane, S; Takahashi, K.</u> (2006). Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect 114: 1643-1648. <u>http://dx.doi.org/10.1289/ehp.9016</u> <u>Pant, N; Kumar, G; Upadhyay, AD; Patel, DK; Gupta, YK; Chaturvedi, PK.</u> (2014). Reproductive toxicity of lead, cadmium, and phthalate exposure in men. Environ Sci Pollut Res Int 21:
34 35 36 37 38 39	 <u>Tsugane, S; Takahashi, K.</u> (2006). Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect 114: 1643-1648. http://dx.doi.org/10.1289/ehp.9016 Pant, N; Kumar, G; Upadhyay, AD; Patel, DK; Gupta, YK; Chaturvedi, PK. (2014). Reproductive toxicity of lead, cadmium, and phthalate exposure in men. Environ Sci Pollut Res Int 21: 11066-11074. http://dx.doi.org/10.1007/s11356-014-2986-5
34 35 36 37 38 39 40	 <u>Tsugane, S; Takahashi, K.</u> (2006). Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect 114: 1643-1648. <u>http://dx.doi.org/10.1289/ehp.9016</u> <u>Pant, N; Kumar, G; Upadhyay, AD; Patel, DK; Gupta, YK; Chaturvedi, PK.</u> (2014). Reproductive toxicity of lead, cadmium, and phthalate exposure in men. Environ Sci Pollut Res Int 21: 11066-11074. <u>http://dx.doi.org/10.1007/s11356-014-2986-5</u> <u>Pant, N; Pant, A; Shukla, M; Mathur, N; Gupta, Y; Saxena, D.</u> (2011). Environmental and experimental exposure of phthalate esters: The toxicological consequence on human
34 35 36 37 38 39 40 41	 <u>Tsugane, S; Takahashi, K.</u> (2006). Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect 114: 1643-1648. http://dx.doi.org/10.1289/ehp.9016 Pant, N; Kumar, G; Upadhyay, AD; Patel, DK; Gupta, YK; Chaturvedi, PK. (2014). Reproductive toxicity of lead, cadmium, and phthalate exposure in men. Environ Sci Pollut Res Int 21: 11066-11074. http://dx.doi.org/10.1007/s11356-014-2986-5 Pant, N; Pant, A; Shukla, M; Mathur, N; Gupta, Y; Saxena, D. (2011). Environmental and experimental exposure of phthalate esters: The toxicological consequence on human sperm. Hum Exp Toxicol 30: 507-514. http://dx.doi.org/10.1177/0960327110374205
34 35 36 37 38 39 40 41 42	 <u>Tsugane, S; Takahashi, K.</u> (2006). Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect 114: 1643-1648. <u>http://dx.doi.org/10.1289/ehp.9016</u> <u>Pant, N; Kumar, G; Upadhyay, AD; Patel, DK; Gupta, YK; Chaturvedi, PK.</u> (2014). Reproductive toxicity of lead, cadmium, and phthalate exposure in men. Environ Sci Pollut Res Int 21: 11066-11074. <u>http://dx.doi.org/10.1007/s11356-014-2986-5</u> <u>Pant, N; Pant, A; Shukla, M; Mathur, N; Gupta, Y; Saxena, D.</u> (2011). Environmental and experimental exposure of phthalate esters: The toxicological consequence on human
34 35 36 37 38 39 40 41 42 43	 <u>Tsugane, S; Takahashi, K.</u> (2006). Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect 114: 1643-1648. http://dx.doi.org/10.1289/ehp.9016 Pant, N; Kumar, G; Upadhyay, AD; Patel, DK; Gupta, YK; Chaturvedi, PK. (2014). Reproductive toxicity of lead, cadmium, and phthalate exposure in men. Environ Sci Pollut Res Int 21: 11066-11074. http://dx.doi.org/10.1007/s11356-014-2986-5 Pant, N; Pant, A; Shukla, M; Mathur, N; Gupta, Y; Saxena, D. (2011). Environmental and experimental exposure of phthalate esters: The toxicological consequence on human sperm. Hum Exp Toxicol 30: 507-514. http://dx.doi.org/10.1177/0960327110374205 Pant, N; Shukla, M; Kumar Patel, D; Shukla, Y; Mathur, N; Kumar Gupta, Y; Saxena, DK. (2008).
34 35 36 37 38 39 40 41 42 43 44	 <u>Tsugane, S: Takahashi, K.</u> (2006). Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect 114: 1643-1648. http://dx.doi.org/10.1289/ehp.9016 <u>Pant, N; Kumar, G; Upadhyay, AD; Patel, DK; Gupta, YK; Chaturvedi, PK.</u> (2014). Reproductive toxicity of lead, cadmium, and phthalate exposure in men. Environ Sci Pollut Res Int 21: 11066-11074. http://dx.doi.org/10.1007/s11356-014-2986-5 Pant, N; Pant, A; Shukla, M; Mathur, N; Gupta, Y; Saxena, D. (2011). Environmental and experimental exposure of phthalate esters: The toxicological consequence on human sperm. Hum Exp Toxicol 30: 507-514. http://dx.doi.org/10.1177/0960327110374205 Pant, N; Shukla, M; Kumar Patel, D; Shukla, Y; Mathur, N; Kumar Gupta, Y; Saxena, DK. (2008). Correlation of phthalate exposures with semen quality. Toxicol Appl Pharmacol 231: 112-116. http://dx.doi.org/10.1016/j.taap.2008.04.001
 34 35 36 37 38 39 40 41 42 43 44 45 	 <u>Tsugane, S; Takahashi, K.</u> (2006). Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect 114: 1643-1648. http://dx.doi.org/10.1289/ehp.9016 Pant, N; Kumar, G; Upadhyay, AD; Patel, DK; Gupta, YK; Chaturvedi, PK. (2014). Reproductive toxicity of lead, cadmium, and phthalate exposure in men. Environ Sci Pollut Res Int 21: 11066-11074. http://dx.doi.org/10.1007/s11356-014-2986-5 Pant, N; Pant, A; Shukla, M; Mathur, N; Gupta, Y; Saxena, D. (2011). Environmental and experimental exposure of phthalate esters: The toxicological consequence on human sperm. Hum Exp Toxicol 30: 507-514. http://dx.doi.org/10.1177/0960327110374205 Pant, N; Shukla, M; Kumar Patel, D; Shukla, Y; Mathur, N; Kumar Gupta, Y; Saxena, DK. (2008). Correlation of phthalate exposures with semen quality. Toxicol Appl Pharmacol 231: 112-

1 Park, S; Cheong, JH; Cho, SC; Kim, JW; Shin, MS; Yoo, HJ; Han, DH; Kim, BN. (2014). Di-(2-2 Ethylhexyl) phthalate exposure is negatively correlated with trait anxiety in girls but not with trait anxiety in boys or anxiety-like behavior in male mice. J Child Neurol. 3 4 http://dx.doi.org/10.1177/0883073814532544 5 Peck, J; Sweeney, A; Symanski, E; Gardiner, J; Silva, M; Calafat, A; Schantz, S. (2010). Intraand inter-individual variability of urinary phthalate metabolite concentrations in Hmong 6 7 women of reproductive age. J Expo Sci Environ Epidemiol 20: 90-100. 8 http://dx.doi.org/10.1038/jes.2009.4 Pekkanen, J; Pearce, N. (1999). Defining asthma in epidemiological studies [Review]. Eur Respir 9 10 J 14: 951-957. http://dx.doi.org/10.1034/j.1399-3003.1999.14d37.x Philippat, C; Mortamais, M; Chevrier, C; Petit, C; Calafat, AM; Ye, X; Silva, MJ; Brambilla, C; 11 Pin, I; Charles, MA; Cordier, S; Slama, R. (2012). Exposure to phthalates and phenols 12 during pregnancy and offspring size at birth. Environ Health Perspect 120: 464-470. 13 http://dx.doi.org/10.1289/ehp.1103634 14 Piekacz, H. (1971a). [Effect of dibutyl phthalate and dioctyl phthalate on rat's organism 15 16 administered orally over a prolonged period. I. Use and toxic properties of dibutyl phthalate and dioctyl phthalate]. Rocz Panstw Zakl Hig 22: 55-61. 17 18 Piekacz, H. (1971b). [Influence on rat organism of dibutyl phthalate and dioctyl phthalate administered orally for a protracted time. 3. Influence on fertility and fetus development]. 19 Rocz Panstw Zakl Hig 22: 519-526. 20 Plasqui, G; Kester, AD; Westerterp, KR. (2003). Seasonal variation in sleeping metabolic rate, 21 22 thyroid activity, and leptin. Am J Physiol Endocrinol Metab 285: E338-E343. http://dx.doi.org/10.1152/ajpendo.00488.2002 23 24 Postmes, TJ; Van Hout, JC; Saat, G; Willems, P; Coenegracht, J. (1974). A radioimmunoassay study and comparison of seasonal variation in plasma triiodothyronine and thyroxine 25 concentrations in normal healthy persons. Clin Chim Acta 50: 189-195. 26 http://dx.doi.org/10.1016/0009-8981(74)90366-0 27 Qian, H; Chen, M; Kransler, KM; Zaleski, RT. (2014). Assessment of chemical coexposure 28 patterns based upon phthalate biomonitoring data within the 2007/2008 National Health 29 Nutrition Examination 30 and Survey. J Expo Sci Environ Epidemiol. http://dx.doi.org/10.1038/jes.2014.24 31 32 Qiao, L; Zheng, L; Cai, D. (2007). [Study on the di-n-butyl phthalate and di-2-ethylhexyl phthalate level of girl serum related with precocious puberty in Shanghai]. Wei Sheng Yan Jiu 36: 33 93-95. 34 Ravault, C; Kauffmann, F. (2001). Validity of the IUATLD (1986) questionnaire in the EGEA 35 study. Int J Tuberc Lung Dis 5: 191-196. 36 Ravnborg, TL; Jensen, TK; Andersson, AM; Toppari, J; Skakkebaek, NE; Jørgensen, N. (2011). 37 Prenatal and adult exposures to smoking are associated with adverse effects on 38 reproductive hormones, semen quality, final height and body mass index. Hum Reprod 26: 39 1000-1011. http://dx.doi.org/10.1093/humrep/der011 40 Reddy, BS; Rozati, R; Reddy, BV; Raman, NV. (2006a). Association of phthalate esters with 41 endometriosis in Indian women. BJOG 113: 515-520. http://dx.doi.org/10.1111/j.1471-42 0528.2006.00925.x 43 Reddy, BS; Rozati, R; Reddy, S; Kodampur, S; Reddy, P; Reddy, R. (2006b). High plasma 44 concentrations of polychlorinated biphenyls and phthalate esters in women with 45 endometriosis: A prospective case control study. Fertil Steril 85: 775-779. 46 http://dx.doi.org/10.1016/j.fertnstert.2005.08.037 47

1	Romano-Riquera, SP; Hernandez-Avila, M; Gladen, BC; Cupul-Uicab, L, eaA; Longnecker, MP.
2	(2007). Reliability and determinants of anogenital distance and penis dimensions in male
3	newborns from Chiapas, Mexico. Paediatr Perinat Epidemiol 21: 219-228.
4	Saillenfait, AM; Langonne, I; Leheup, B. (2001). Effects of mono-n-butyl phthalate on the
5	development of rat embryos: in vivo and in vitro observations. Pharmacol Toxicol 89: 104-
6	112.
7	Saillenfait, AM; Sabate, JP; Gallissot, F. (2003). Comparative embryotoxicities of butyl benzyl
8	phthalate, mono-n-butyl phthalate and mono-benzyl phthalate in mice and rats: In vivo and
9	in vitro observations. Reprod Toxicol 17: 575-583. http://dx.doi.org/10.1016/S0890-
10	6238(03)00102-3
11	Salazar-Martinez, E; Romano-Riquer, P; Yanez-Marquez, E; Longnecker, MP; Hernandez-Avila,
12	M. (2004). Anogenital distance in human male and female newborns: a descriptive, cross-
13	sectional study. Environ Health 3: 8-13. http://dx.doi.org/10.1186/1476-069x-3-8
14	Salazar, V; Castillo, C; Ariznavarreta, C; Campon, R; Tresguerres, JA. (2004). Effect of oral intake
15	of dibutyl phthalate on reproductive parameters of Long Evans rats and pre-pubertal
16	development of their offspring. Toxicology 205: 131-137.
17	http://dx.doi.org/10.1016/j.tox.2004.06.045
18	Sathyanarayana, S; Barrett, E; Butts, S; Wang, CW; Swan, SH. (2014). Phthalate exposure and
19	reproductive hormone concentrations in pregnancy. Reproduction 147: 401-409.
20	http://dx.doi.org/10.1530/REP-13-0415
21	Savitz, DA; Terry, JW; Dole, N; Thorp, JM; Siega-Riz, AM; Herring, AH. (2002). Comparison of
22	pregnancy dating by last menstrual period, ultrasound scanning, and their combination. Am
23	J Obstet Gynecol 187: 1660-1666.
24	Schlossberger, NM; Turner, RA; Irwin, CE. (1992). Validity of self-report of pubertal maturation
25	in early adolescents. J Adolesc Health 13: 109-113.
26	Scorer, CG. (1964). The descent of the testis. Arch Dis Child 39: 605-609.
27	Selvin, E; Steffes, MW; Gregg, E; Brancati, FL; Coresh, J. (2011). Performance of A1C for the
28	classification and prediction of diabetes. Diabetes Care 34: 84-89.
29	http://dx.doi.org/10.2337/dc10-1235
30	Shcherbak, BI. (1977). Long-term effects of chronic poisoning of animals with polyvinyl acetate
31	extracts. Gig Sanit99-100.
32	Shi, RL; Zhao, CX; Zhu, HB; Yang, Y; Wang, SL; Jiang, LL. (2005). [Relationship between the
33	increase of hepatic D-bifunctional protein activity and bile acid biosynthesis in rats]. Yi
34	Xue Ke Xue Yuan Xue Bao 27: 321-324.
35	Shiota, K; Chou, MJ; Nishimura, H. (1980). Embryotoxic effects of di-2-ethylhexyl phthalate
36	(DEHP) and di-n-butyl phthalate (DBP) in mice. Environ Res 22: 245-253.
37	http://dx.doi.org/10.1016/0013-9351(80)90136-X
38	Shiota, K; Nishimura, H. (1982). Teratogenicity of di(2-ethylhexyl) phthalate (DEHP) and di-n-
39	butyl phthalate (DBP) in mice. Environ Health Perspect 45: 65-70.
40	Shirai, M; Wakui, S; Wempe, MF; Mutou, T; Oyama, N; Motohashi, M; Takahashi, H; Kansaku,
41	N; Asari, M; Hano, H; Endou, H. (2013). Male Sprague-Dawley rats exposed to in utero
42	di(n-butyl) phthalate dose dependent and age-related morphological changes in Leydig cell
43	smooth endoplasmic reticulum. Toxicol Pathol 41: 984-991.
44	http://dx.doi.org/10.1177/0192623312474725
45	Shiue, I. (2014). Higher Urinary Heavy Metal, Phthalate, and Arsenic but Not Parabens
46	Concentrations in People with High Blood Pressure, U.S. NHANES, 2011-2012. Int J
47	Environ Res Public Health 11: 5989-5999. <u>http://dx.doi.org/10.3390/ijerph110605989</u>

1	Shono, T; Kai, H; Suita, S; Nawata, H. (2000). Time-specific effects of mono-n-butyl phthalate on
2	the transabdominal descent of the testis in rat fetuses. BJU Int 86: 121-125.
3	Shono, T; Shima, Y; Kondo, T; Suita, S. (2005). In utero exposure to mono-n-butyl phthalate
4	impairs insulin-like factor 3 gene expression and the transabdominal phase of testicular
5	descent in fetal rats. J Pediatr Surg 40: 1861-1864.
6	http://dx.doi.org/10.1016/j.jpedsurg.2005.08.027
7	Shono, T; Suita, S. (2003). Dose-dependent effect of phthalate ester on testicular descent in pre-
8	and post natal rats. Urol Res 31: 293-296. http://dx.doi.org/10.1007/s00240-003-0330-5
9	Shono, T; Taguchi, T. (2014). Short-time exposure to mono-n-butyl phthalate (MBP)-induced
10	oxidative stress associated with DNA damage and the atrophy of the testis in pubertal rats.
11	Environ Sci Pollut Res Int 21: 3187-3190. http://dx.doi.org/10.1007/s11356-013-2332-3
12	Simoni, M; Velardo, A; Montanini, V; Faustini Fustini, M; Seghedoni, S; Marrama, P. (1990).
13	Circannual rhythm of plasma thyrotropin in middle-aged and old euthyroid subjects. Horm
14	Res 33: 184-189.
15	Slough, JM; Hennrikus, W; Chang, Y. (2013). Reliability of Tanner staging performed by
16	orthopedic sports medicine surgeons. Med Sci Sports Exerc 45: 1229-1234.
17	http://dx.doi.org/10.1249/MSS.0b013e318285c2f7
18	Song, Y; Hauser, R; Hu, FB; Franke, AA; Liu, S; Sun, Q. (2014). Urinary concentrations of
19	bisphenol A and phthalate metabolites and weight change: a prospective investigation in
20	US women. Int J Obes (Lond). http://dx.doi.org/10.1038/ijo.2014.63
21	Srivastava, S; Singh, GB; Srivastava, SP; Seth, PK. (1990a). Testicular toxicity of di-n-butyl
22	phthalate in adult rats: effect on marker enzymes of spermatogenesis. Indian J Exp Biol 28:
23	67-70.
24	Srivastava, SP; Srivastava, S; Saxena, DK; Chandra, SV; Seth, PK. (1990b). Testicular effects of
25	di-n-butyl phthalate (DBP): Biochemical and histopathological alterations. Arch Toxicol
26	64: 148-152. http://dx.doi.org/10.1007/BF01974401
27	Stahlhut, RW; van Wijngaarden, E; Dye, TD; Cook, S; Swan, SH. (2007). Concentrations of
28	urinary phthalate metabolites are associated with increased waist circumference and insulin
29	resistance in adult U.S. males. Environ Health Perspect 115: 876-882.
30	http://dx.doi.org/10.1289/ehp.9882
31	Sun, Q; Cornelis, MC; Townsend, MK; Tobias, DK; Eliassen, AH; Franke, AA; Hauser, R; Hu,
32	FB. (2014). Association of Urinary Concentrations of Bisphenol A and Phthalate
33	Metabolites with Risk of Type 2 Diabetes: A Prospective Investigation in the Nurses'
34	Health Study (NHS) and NHSII Cohorts. Environ Health Perspect 122: 616-623.
35	http://dx.doi.org/10.1289/ehp.1307201
36	Sun, YX; Wang, ZG; Wang, DS; Zhang, YF; Sundell, J. (2009). Concentration of phthalate in
37	dorm rooms and its association with asthma and allergy. In Proceedings of the international
38	symposium on heating ventilating and air conditioning. Nanjing, China: Southeast
39	University.
40	Suzuki, Y; Niwa, M; Yoshinaga, J; Mizumoto, Y; Serizawa, S; Shiraishi, H. (2010). Prenatal
41	exposure to phthalate esters and PAHs and birth outcomes. Environ Int 36: 699-704.
42	http://dx.doi.org/10.1016/j.envint.2010.05.003
43	Suzuki, Y; Niwa, M; Yoshinaga, J; Watanabe, C; Mizumoto, Y; Serizawa, S; Shiraishi, H. (2009).
44	Exposure assessment of phthalate esters in Japanese pregnant women by using urinary
45	metabolite analysis. Environ Health Prev Med 14: 180-187.
46	http://dx.doi.org/10.1007/s12199-009-0078-9

1	Suzuki	i, Y; Yoshinaga, J; Mizumoto, Y; Serizawa, S; Shiraishi, H. (2012). Foetal exposure to
2		phthalate esters and anogenital distance in male newborns. Int J Androl 35: 236-244.
3		http://dx.doi.org/10.1111/j.1365-2605.2011.01190.x
4	Svenss	son, K; Hernández-Ramírez, RU; Burguete-García, A; Cebrián, ME; Calafat, AM;
5		Needham, LL; Claudio, L; López-Carrillo, L. (2011). Phthalate exposure associated with
6		self-reported diabetes among Mexican women. Environ Res 111: 792-796.
7		http://dx.doi.org/10.1016/j.envres.2011.05.015
8	Swan,	SH. (2008). Environmental phthalate exposure in relation to reproductive outcomes and
9		other health endpoints in humans [Review]. Environ Res 108: 177-184.
10		http://dx.doi.org/10.1016/j.envres.2008.08.007
11	Swan,	SH; Liu, F; Hines, M; Kruse, RL; Wang, C; Redmon, JB; Sparks, A; Weiss, B. (2010).
12		Prenatal phthalate exposure and reduced masculine play in boys. Int J Androl 33: 259-269.
13		http://dx.doi.org/10.1111/j.1365-2605.2009.01019.x
14	Swan,	SH; Main, KM; Liu, F; Stewart, SL; Kruse, RL; Calafat, AM; Mao, CS; Redmon, JB;
15		Ternand, CL; Sullivan, S; JLCINEHPF, T; A, P. (2005). Decrease in anogenital distance
16		among male infants with prenatal phthalate exposure. Environ Health Perspect 113: 1056-
17		1061. http://dx.doi.org/10.1289/ehp.8100
18	Taipal	e, P; Hiilesmaa, V. (2001). Predicting delivery date by ultrasound and last menstrual period
19		in early gestation. Obstet Gynecol 97: 189-194.
20	Teitelt	baum, SL; Britton, JA; Calafat, AM; Ye, X; Silva, MJ; Reidy, JA; Galvez, MP; Brenner,
21		BL; Wolff, MS. (2008). Temporal variability in urinary concentrations of phthalate
22		metabolites, phytoestrogens and phenols among minority children in the United States.
23		Environ Res 106: 257-269. http://dx.doi.org/10.1016/j.envres.2007.09.010
24	Teitelt	aum, SL; Mervish, N; Moshier, EL; Vangeepuram, N; Galvez, MP; Calafat, AM; Silva,
25		MJ; Brenner, BL; Wolff, MS. (2012). Associations between phthalate metabolite urinary
26		concentrations and body size measures in New York City children. Environ Res 112: 186-
27		193. http://dx.doi.org/10.1016/j.envres.2011.12.006
28	<u>Téllez</u>	-Rojo, MM; Cantoral, A; Cantonwine, DE; Schnaas, L; Peterson, K; Hu, H; Meeker, JD.
29		(2013). Prenatal urinary phthalate metabolites levels and neurodevelopment in children at
30		two and three years of age. Sci Total Environ 461-462: 386390.
31		http://dx.doi.org/10.1016/j.scitotenv.2013.05.021
32	Timof	evskaya, LA; Balynina, ES; Ivanova, NI. (1988). [Regular features of the toxicity and
33		accelerated standardization of o phthalic acid esters]. Gig Tr Prof Zabol 0: 52-55.
34	<u>Timof</u>	ievskaya, LA; Ivanova, NI; Balynina, ES. (1980). [Toxicology of esters of o-phthalic acid
35		and hygienic standards for them]. Gig Tr Prof Zabol 0: 28-29.
36	Toft, (G; Jönsson, BA; Lindh, CH; Jensen, TK; Hjollund, NH; Vested, A; Bonde, JP. (2012).
37		Association between Pregnancy Loss and Urinary Phthalate Levels around the Time of
38		Conception. Environ Health Perspect 120: 458-463.
39		http://dx.doi.org/10.1289/ehp.1103552
40	<u>Toshir</u>	na, H; Suzuki, Y; Imai, K; Yoshinaga, J; Shiraishi, H; Mizumoto, Y; Hatakeyama, S;
41		Onohara, C; Tokuoka, S. (2012). Endocrine disrupting chemicals in urine of Japanese male
42		partners of subfertile couples: A pilot study on exposure and semen quality. Int J Hyg
43		Environ Health 215: 502-506. http://dx.doi.org/10.1016/j.ijheh.2011.09.005
44	Towns	end, MK; Franke, AA; Li, X; Hu, FB; Eliassen, AH. (2013). Within-person reproducibility
45		of urinary bisphenol A and phthalate metabolites over a 1 to 3year period among women
46		in the Nurses' Health Studies: a prospective cohort study. Environ Health 12: 80.
47		http://dx.doi.org/10.1186/1476-069X-12-80

1	Traggiai, C; Stanhope, R. (2003). Disorders of pubertal development. 17: 41-56.
2	http://dx.doi.org/10.1053/ybeog.2003.0360
3	Tranfo, G; Caporossi, L; Paci, E; Aragona, C; Romanzi, D; De Carolis, C; De Rosa, M; Capanna,
4	S; Papaleo, B; Pera, A. (2012). Urinary phthalate monoesters concentration in couples with
5	infertility problems. Toxicol Lett 213: 15-20.
6	http://dx.doi.org/10.1016/j.toxlet.2011.11.033
7	Trasande, L; Attina, TM; Sathyanarayana, S; Spanier, AJ; Blustein, J. (2013a). Race/ethnicity-
8	specific associations of urinary phthalates with childhood body mass in a nationally
9	representative sample. Environ Health Perspect 121: 501-506.
10	http://dx.doi.org/10.1289/ehp.1205526
11	Trasande, L; Sathyanarayana, S; Spanier, AJ; Trachtman, H; Attina, TM; Urbina, EM. (2013b).
12	Urinary Phthalates Are Associated with Higher Blood Pressure in Childhood. J Pediatr
13	163: 747-753.e741. http://dx.doi.org/10.1016/j.jpeds.2013.03.072
14	Trasande, L; Spanier, AJ; Sathyanarayana, S; Attina, TM; Blustein, J. (2013c). Urinary phthalates
15	and increased insulin resistance in adolescents. Pediatrics 132: e646-e655.
16	http://dx.doi.org/10.1542/peds.2012-4022
17	Tsutsumi, T; Ichihara, T; Kawabe, M; Yoshino, H; Asamoto, M; Suzuki, S; Shirai, T. (2004).
18	Renal toxicity induced by folic acid is associated with the enhancement of male
19 20	reproductive toxicity of di(n-butyl)phthalate in rats. Reprod Toxicol 18: 35-42. http://dx.doi.org/10.1016/j.reprotox.2003.08.004
20 21	Turbin, EV; Aldyreva, MV; Milkov, LE. (1983). [Changes in various indices of the nervous system]
22	in workers exposed to phthalate plasticizers]. Gig Tr Prof Zabol 4: 46-48.
23	<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (1988). Recommendations for and
24	documentation of biological values for use in risk assessment. (EPA/600/6-87/008).
25	Cincinnati, OH: U.S. Environmental Protection Agency, National Center for
26	Environmental Assessment. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=34855
27	U.S. EPA (U.S. Environmental Protection Agency). (2013). Integrated science assessment for lead
28	[EPA Report]. (EPA/600/R-10/075F). Research Triangle Park, NC: U.S. Environmental
29	Protection Agency, National Center for Environmental Assessment.
30	http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=255721
31	Upson, K; Sathyanarayana, S; De Roos, AJ; Thompson, ML; Scholes, D; Dills, R; Holt, VL.
32	(2013). Phthalates and risk of endometriosis. Environ Res 126: 91-97.
33	http://dx.doi.org/10.1016/j.envres.2013.07.003
34	van Den Driesche, S; Walker, M; Mckinnell, C; Scott, HM; Eddie, SL; Mitchell, RT; Seckl, J. R.;
35	Drake, AJ; Smith, LB; Anderson, RA; Sharpe, RM. (2012). Proposed role for COUP-TFII
36	in regulating fetal Leydig cell steroidogenesis, perturbation of which leads to
37	masculinization disorders in rodents. PLoS ONE 7: e37064.
38	http://dx.doi.org/10.1371/journal.pone.0037064
39 40	Vermeulen, A; Verdonck, L; Kaufman, JM. (1999). A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 84: 3666-3672.
40 41	http://dx.doi.org/10.1210/jcem.84.10.6079
42	Virtanen, H; Bjerknes, R; Cortes, D; Jørgensen, N; Rajpert-De Meyts, E; Thorsson, A; Thorup, J;
43	Main, K. (2007). Cryptorchidism: classification, prevalence and long-term consequences
44	[Review]. Acta Paediatr 96: 611-616. http://dx.doi.org/10.1111/j.1651-2227.2007.00241.x
45	<u>Wallace, TM; Levy, JC; Matthews, DR.</u> (2004). Use and abuse of HOMA modeling [Review].
46	Diabetes Care 27: 1487-1495.
47	Wan, W; Xu, Y; Jiang, D. (1998). [Effects of dibutyl phthalate on the proliferation and apoptosis
48	of leukemic cells]. Hunan Yike Daxue Xuebao 23: 137-140.

1	Wang, H; Zhou, Y; Tang, C; He, Y; Wu, J; Chen, Y; Jiang, Q. (2013). Urinary phthalate
2	metabolites are associated with body mass index and waist circumference in Chinese
3	school children. PLoS ONE 8: e56800. http://dx.doi.org/10.1371/journal.pone.0056800
4	Wang, IJ; Lin, CC; Lin, YJ; Hsieh, WS; Chen, PC. (2014). Early life phthalate exposure and atopic
5	disorders in children: A prospective birth cohort study. Environ Int 62: 48-54.
6	http://dx.doi.org/10.1016/j.envint.2013.09.002
7	Wang, Y; Song, L; Chen, J; He, J; Liu, R; Zhu, Z; Wang, X. (2004a). [Effects of di-butyl phthalate
8	on sperm motility and oxidative stress in rats]. Zhonghua Nan Ke Xue 10: 253-256.
9	Wang, Y; Song, L; Zhu, Z; Chen, J; He, J; Liu, R; Wang, X. (2004b). [Effect of dibutyl phthalate
10	on the biochemical enzymes and lipid peroxidation in rat testes]. Zhonghua Nan Ke Xue
11	10: 729-733.
12	Wang, YB; Song, L; Zhu, ZP; Chen, JF; Wang, XR. (2005). [Effects of dibutyl phthalate on sertoli
	cells of rat testis]. Zhonghua Yufang Yixue Zazhi 39: 179-181.
13	
14 1	Wang, Z; Zhang, Y. (1989). [The study of toxicity of DBP to testis in rats. I. Target cell and time-
15	effect relation]. Weisheng Dulixue Zazhi 3: 25-28.
16	Weeke, J; Gundersen, HJ. (1978). Circadian and 30 minutes variations in serum TSH and thyroid
17	hormones in normal subjects. Acta Endocrinol 89: 659-672.
18	Weinberg, CR; Baird, DD; Wilcox, AJ. (1994). Sources of bias in studies of time to pregnancy.
19	Stat Med 13: 671-681.
20	Weinberger, B; Vetrano, AM; Archer, FE; Marcella, SW; Buckley, B; Wartenberg, D; Robson,
21	MG; Klim, J; Azhar, S; Cavin, S; Wang, L; Rich, DQ. (2014). Effects of maternal exposure
22	to phthalates and bisphenol A during pregnancy on gestational age. J Matern Fetal Neonatal
23	Med 27: 323-327. http://dx.doi.org/10.3109/14767058.2013.815718
24	Weuve, J; Hauser, R; Calafat, AM; Missmer, SA; Wise, LA. (2010). Association of exposure to
25	phthalates with endometriosis and uterine leiomyomata: findings from NHANES, 1999-
26	2004. Environ Health Perspect 118: 825-832. <u>http://dx.doi.org/10.1289/ehp.0901543</u>
27	WHO (World Health Organization). (1999). WHO laboratory manual for the examination of
28	human semen and sperm-cervical mucus interaction (4th ed.). Cambridge, UK: Cambridge
29	University Press.
30	Whyatt, RM; Liu, XH; Rauh, VA; Calafat, AM; Just, AC; Hoepner, L; Diaz, D; Quinn, J; Adibi,
31	J; Perera, FP; Factor-Litvak, P. (2012). Maternal Prenatal Urinary Phthalate Metabolite
32	Concentrations and Child Mental, Psychomotor, and Behavioral Development at 3 Years
33	of Age. Environ Health Perspect 120: 290-295. <u>http://dx.doi.org/10.1289/ehp.1103705</u>
34	Wirth, J; Rossano, M; Potter, R; Puscheck, E; Daly, D; Paneth, N; Krawetz, S; Protas, B; Diamond,
35	M. (2008). A pilot study associating urinary concentrations of phthalate metabolites and
36	semen quality. Sys Biol Reprod Med 54: 143-154.
37	http://dx.doi.org/10.1080/19396360802055921
38	Wittassek, M; Koch, HM; Angerer, J; Brüning, T. (2011). Assessing exposure to phthalates - the
39	human biomonitoring approach [Review]. Mol Nutr Food Res 55: 7-31.
40	http://dx.doi.org/10.1002/mnfr.201000121
41	Wolff, MS; Engel, SM; Berkowitz, GS; Ye, X; Silva, MJ; Zhu, C; Wetmur, J; Calafat, AM. (2008).
42	Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Perspect 116:
43	1092-1097. http://dx.doi.org/10.1289/ehp.11007
44	Wolff, MS; Teitelbaum, SL; Pinney, SM; Windham, G; Liao, L; Biro, F; Kushi, LH; Erdmann, C;
45	Hiatt, RA; Rybak, ME; Calafat, AM. (2010). Investigation of relationships between urinary
46	biomarkers of phytoestrogens, phthalates, and phenols and pubertal stages in girls. Environ
47	Health Perspect 118: 1039-1046. http://dx.doi.org/10.1289/ehp.0901690

1	Wormuth, M; Scheringer, M; Vollenweider, M; Hungerbuhler, K. (2006). What are the sources of
2	exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal 26: 803-
3	824. <u>http://dx.doi.org/10.1111/j.1539-6924.2006.00770</u> .
4	Wu, Q; Zhou, ZJ; Ohsako, S. (2006). [Effect of environmental contaminants on DNA
5	methyltransferase activity of mouse preimplantation embryos]. Wei Sheng Yan Jiu 35: 30-
6	32.
7	Xiao-Feng, Z; Nai-Qiang, Q; Jing, Z; Zi, L; Yang, Z. (2009). Di (n-butyl) phthalate inhibits
8	testosterone synthesis through a glucocorticoid-mediated pathway in rats. Int J Toxicol 28:
9	448-456. http://dx.doi.org/10.1177/1091581809342596
10	Xu, ZC; Shen, BX; Ma, L; Shen, H; Zhang, W. (2008). [Differential expression of ubiquitin C-
11	terminal hydrolase L-1 in the rat testis following exposure to di-n-butyl phthalate in utero].
12	Zhonghua Nan Ke Xue 14: 680-684.
13	Yu, Z; Zhang, L; Wu, D. (2003a). [Estrogenic activity of some environmental chemicals]. Wei
14	Sheng Yan Jiu 32: 10-12.
15	Yu, ZL; Zhang, LS; Wu, DS. (2003b). [Effects of environmental estrogens on apoptosis induced
16	by estrogen depletion in T47D cells]. Zhonghua Yufang Yixue Zazhi 37: 395-397.
17	Yu, ZL; Zhang, LS; Xu, PY; Wu, DS. (2003c). [The effects of three plastic additives on the
18	proliferation of MCF-7 cell]. Zhonghua Yufang Yixue Zazhi 37: 150-153.
19	Yuan, FS; Guo, SL; Qiu, ZX; Deng, SH; Huang, GH. (2001). [Effect of dibutyl phthalate on
20	demodicidosis]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 19: 160-
21	162.
22	Yum, T; Lee, S; Kim, Y. (2013). Association between precocious puberty and some endocrine
23	disruptors in human plasma. J Environ Sci Health A Tox Hazard Subst Environ Eng 48:
24	912-917. http://dx.doi.org/10.1080/10934529.2013.762734
25	Zhang, C; Zhang, M; Sun, Y; Li, J; Fang, M; Zhu, X; Liu, C. (2012). [Effect of dibutyl phthalate
26	and di-(2-ethylhexyl) phthalate on urine SOD activity and MDA content in rats]. Nan Fang
27	Yi Ke Da Xue Xue Bao 32: 160-164.
28	Zhang, XF; Zheng, J; Li, Z; Zhang, Y. (2009a). [Glucocorticoid pathway mediated the inhibition
29	of testosterone in rats exposed to dibutyl phthalate]. Zhonghua Yufang Yixue Zazhi 43:
30	710-713.
31	Zhang, Y; Chen, B; Ding, X; Jiang, X. (2004a). [Reproductive and developmental toxicity of F1
32	male rats treated with DBP in utero and during lactation]. Wei Sheng Yan Jiu 33: 9-14.
33	Zhang, Y; Jiang, X; Chen, B. (2004b). Reproductive and developmental toxicity in F1 Sprague-
34	Dawley male rats exposed to di-n-butyl phthalate in utero and during lactation and
35	determination of its NOAEL. Reprod Toxicol 18: 669-676.
36	http://dx.doi.org/10.1016/j.reprotox.2004.04.009
37	Zhang, Y; Lin, L; Cao, Y; Chen, B; Zheng, L; Ge, RS. (2009b). Phthalate levels and low birth
38	weight: a nested case-control study of Chinese newborns. J Pediatr 155: 500-504.
39	http://dx.doi.org/10.1016/j.jpeds.2009.04.007
40	Zhang, YH; Jiang, XZ; Chen, BH. (2004c). [Reversibility of adverse effects of di-n-butyl phthalate
41	on F1 generation rat testes]. Zhonghua Yufang Yixue Zazhi 38: 388-391.
42	Zhang, YH; Zheng, LX; Chen, BH. (2006). Phthalate exposure and human semen quality in
43	Shanghai: a cross-sectional study. Biomed Environ Sci 19: 205-209.
44	Zheng, S, -j; Tian, H, -j; Cao, J; Y-q, G. (2010). Exposure to di(n-butyl)phthalate and
45	benzo(a)pyrene alters IL-1ß secretion and subset expression of testicular macrophages,
46	resulting in decreased testosterone production in rats. Toxicol Appl Pharmacol 248: 28-37.
47	http://dx.doi.org/10.1016/j.taap.2010.07.008

- <u>Zhou, D; Wang, H; Zhang, J.</u> (2011). Di-n-butyl phthalate (DBP) exposure induces oxidative stress
 in epididymis of adult rats. Toxicol Ind Health 27: 65-71.
 <u>http://dx.doi.org/10.1177/0748233710381895</u>
- Zhou, QH; Chen, X; Leng, L; Zhang, JS; Tang, NJ. (2013). [Effects of dibutyl phthalate and
 monobutyl phthalate on testosterone secretion and insulin-like factor 3 expression of
 Leydig tumor cells in mice]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 31: 8387.
- 8 Zhou, YJ; Wei, JF; Zhang, LF; Wang, Y; Zhang, W. (2012). [Expression of Notch1 in the genital
 9 tubercle of male rats with hypospadias induced by Di-n-butyl phthalate]. Zhonghua Nan
 10 Ke Xue 18: 222-226.
- <u>Zinchenko, TM.</u> (1986). [Autoallergenic action of dibutyl and dioctyl phthalates]. Gig Sanit 0: 79 80.
- Zota, AR; Calafat, AM; Woodruff, TJ. (2014). Temporal trends in phthalate exposures: findings
 from the national health and nutrition examination survey, 2001-2010. Environ Health
 Perspect 122: 235-241. <u>http://dx.doi.org/10.1289/ehp.1306681</u>