

EPA/635/R-14/333 Preliminary Materials www.epa.gov/iris

Preliminary Materials for the Integrated Risk Information System (IRIS) Toxicological Review of Diisobutyl Phthalate (DIBP) (CASRN No. 84-69-5)

September 2014

NOTICE

This document is comprised of **preliminary materials**. This information is distributed solely for the purpose of pre-dissemination review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. It is being circulated for review of its technical accuracy and science policy implications.

National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC

DISCLAIMER

This document is comprised of preliminary materials for review purposes only. This information is distributed solely for the purpose of pre-dissemination review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

CONTENTS

PR	EFACE	viii
1.	INTRODUCTION	1-1
	1.1. DIBP IN THE ENVIRONMENT	1-1
	1.1.1. Production and Use	1-1
	1.1.2. Environmental Fate	1-2
	1.1.3. Human Exposure Pathways	1-2
	1.2. SCOPE OF THE ASSESSMENT	1-3
2.	METHODS FOR IDENTIFYING AND SELECTING STUDIES	2-1
	2.1. DRAFT LITERATURE SEARCH AND SCREENING STRATEGY	2-1
	2.2. SELECTION OF CRITICAL STUDIES IN EARLY STAGES OF DRAFT DEVELOPMENT	.2-14
	2.2.1. General Approach	.2-14
	2.2.2. Exclusion of Studies	.2-15
	2.3. STUDY CHARACTERISTICS THAT WILL BE CONSIDERED IN THE FUTURE EVALUATION AND SYNTHESIS OF THE CRITICAL EPIDEMIOLOGICAL STUDIES FOR DIBP	2-16
	2.3.1. Study Population	. 2-16
	2.3.2. Exposure Considerations	. 2-17
	2.3.3. Primary Outcome Measures	. 2-20
	2.3.4. Confounding	.2-26
	2.3.5. Data Analysis	. 2-27
	2.4. STUDY CHARACTERISTICS THAT WILL BE CONSIDERED IN THE FUTURE EVALUATION AND SYNTHESIS OF THE CRITICAL EXPERIMENTAL STUDIES FOR DIBP	2-30
3.	PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS	3-1
	3.1. DATA EXTRACTION FOR EPIDEMIOLOGICAL AND EXPERIMENTAL STUDIES: PREPARATION OF PRELIMINARY EVIDENCE TABLES	3-1
	3.2. EPIDEMIOLOGICAL STUDIES	3-2
	3.2.1. Sexual Differentiation Measures	3-2
	3.2.2. Male Reproductive Effects in Humans	3-4
	3.2.3. Male Pubertal Development in Humans	3-7
	3.2.4. Female Pubertal Development in Humans	3-9
	3.2.5. Female Reproductive Effects in Humans	.3-12
	3.2.6. Pregnancy Outcomes in Humans	.3-15

This document is a draft for review purposes only and does not constitute Agency policy.

3.2.7. Immune Effects in Humans	3-18
3.2.8. Neurodevelopmental Effects in Humans	3-25
3.2.9. Thyroid Hormone Effects in Humans	3-30
3.2.10. Obesity and Metabolic Effects in Humans	3-31
3.3. EXPERIMENTAL STUDIES	3-44
3.3.1. Developmental Effects	3-44
3.3.2. Male Reproductive Effects	3-62
3.3.3. Female Reproductive Effects	3-73
3.3.4. Liver Effects	3-79
3.3.5. Kidney Effects	3-83
3.3.6. Hematopoietic Effects	3-87
3.3.7. Other Effects	
3.4. PRELIMINARY MECHANISTIC INFORMATION FOR DIBP	3-94
REFERENCES	4-1

4.

TABLES

Table 2-1.	Database search strategy for DIBP	2-2
Table 2-2.	Summary of additional search strategies for DIBP	2-3
	Inclusion criteria used to identify animal studies of health-related endpoints,	
	supporting data, or secondary literature	2-8
Table 2-4.	Summary of search terms: targeted epidemiology search	2-9
	Inclusion criteria used to identify epidemiology studies of health-related endpoints	
Table 2-6.	Summary of additional search strategies for epidemiology studies of phthalate	
	exposure in relation to health-related endpoints	2-12
Table 2-7.	Primary source epidemiological studies examining health effects of DIBP	2-12
Table 2-8.	General and outcome-specific considerations for DIBP study evaluation	2-28
Table 2-9.	Questions and relevant experimental information for the evaluation of experimental	
	animal studies	
Table 3-1.	Evidence pertaining to DIBP and sexual differentiation effects in humans	3-2
Table 3-2.	Evidence pertaining to DIBP and semen parameters or infertility in adult men or	
	couples	
	Evidence pertaining to DIBP and reproductive hormones in adult men	
	Evidence pertaining to DIBP and the timing of male puberty or sex hormones in boys	
	Evidence pertaining to DIBP and timing of female puberty or sex hormones in girls	
	Evidence pertaining to DIBP and reproductive hormones in adult women	
	Evidence pertaining to DIBP and gynecological conditions in humans	
	Evidence pertaining to DIBP and pregnancy outcomes in humans	
	Evidence pertaining to DIBP and allergy/immune effects in humans	
	Evidence pertaining to DIBP and asthma/wheezing and hypersensitivity in humans	
	Evidence pertaining to DIBP and neurodevelopmental effects in humans	
	Evidence pertaining to DIBP and thyroid hormones in humans	
	Evidence pertaining to DIBP and obesity in humans	
	Evidence pertaining to DIBP and diabetes/insulin resistance in humans	
	5. Evidence pertaining to DIBP and cardiovascular disease risk factors in humans	
	5. Evidence pertaining to DIBP and cancer in humans	3-43
Table 3-17	7. Evidence pertaining to developmental effects in animals following oral exposure to	
	DIBP	3-44
Table 3-18	8. Evidence pertaining to male reproductive effects in animals following oral exposure	
	to DIBP	3-62
Table 3-19	 Evidence pertaining to female reproductive effects in animals following oral 	
	exposure to DIBP	
). Evidence pertaining to hepatic effects in animals following oral exposure to DIBP	
	Evidence pertaining to renal effects in animals following oral exposure to DIBP	3-83
Table 3-22	2. Evidence pertaining to hematopoietic effects in animals following oral exposure to	a a=
Table 2.22	DIBP	3-87
iable 3-23	 Evidence pertaining to other toxicity effects in animals following oral exposure to 	2.00
Table 2.24	DIBP	3-90
Table 3-24	 Summary of mechanistic outcomes evaluated following DIBP or MIBP 	2.05
	administration	3-95

FIGURES

Figure 1-1.	Chemical structure of DIBP.	1-1
Figure 2-1.	Literature search approach for DIBP.	2-7
Figure 3-1.	Exposure-response array of effects on developmental growth and survival following	
	developmental oral exposure to DIBP	3-59
Figure 3-2.	Exposure-response array of effects on postnatal and adult body weight following	
	developmental oral exposure to DIBP	3-60
Figure 3-3.	Exposure-response array of effects on fetal morphological developmental following	
	developmental oral exposure to DIBP	3-61
Figure 3-4.	Exposure-response array of effects on male reproductive development following	
	developmental oral exposure to DIBP	3-70
Figure 3-5.	Exposure-response array of effects on fetal testosterone (T) following	
	developmental oral exposure to DIBP	3-71
Figure 3-6.	Exposure-response array of male reproductive effects following oral exposure to	
	DIBP	3-72
Figure 3-7.	Exposure-response array of female reproductive effects, maternal weight and	
	toxicity, following oral exposure to DIBP	3-77
Figure 3-8.	Exposure-response array of female reproductive effects, fertility and fetal survival,	
	following oral exposure to DIBP	3-78
Figure 3-9.	Exposure-response array of liver effects following oral exposure to DIBP	3-82
Figure 3-10.	. Exposure-response array of kidney effects following oral exposure to DIBP	3-86
Figure 3-11	. Exposure-response array of hematopoeitic effects following oral exposure to DIBP	3-89
Figure 3-12	. Exposure-response array of effects on other toxicities following oral exposure to	
	DIBP	3-93
Figure 3-13	. Summary of in vivo and in vitro mechanistic data for DIBP and MIBP by mechanistic	
	category	3-96

ABBREVIATIONS

AGD	anogenital distance
aOR	adjusted odds ratio
	Behavior Assessment System for
	Children—Parent Rating Scales
BBP	butyl benzyl phthalate
BMI	body mass index
BP	blood pressure
BPA	bisphenol A
BRIEF	Behavior Rating Inventory of Executive
	Function
BW	body weight
CASRN	Chemical Abstracts Service Registry
	Number
СНАР	Chronic Hazard Advisory Panel
CI	confidence interval
CPSC	Consumer Product Safety Commission
DBP	dibutyl phthalate
DEP	di-ethyl phthalate
DEHP	di(2-ethylhexyl)phthalate
DHEAS	dehydroepiandrosterone
DIBP	diisobutyl phthalate
DINP	diisononyl phthalate
DnBP	dibutyl phthalate
DNA	deoxyribonucleic acid
DPP	dipentyl phthalate
DXA	dual energy x-ray absorptiometry
EPA	Environmental Protection Agency
FBG	fasting blood glucose
FDA	Food and Drug Administration
FSH	follicle stimulating hormone
GD	gestational day
HbA1c	glycosolated hemoglobin
HCG	human chorionic gonadotropin
HDL	high-density lipoprotein
HERO	Health and Environmental Research
	Online
Hgb	hemoglobin
HOMA	homeostatic model assessment
HOMA-IR	homeostatic model assessment of
	insulin resistance
HOME	Health Outcomes and Measures of the
	Environment
IgE	immunoglobulin E
ICC	intra-class correlation coefficient
IM-GSM	grey scale media of the intima media
11.47	complex
IMT	intima media thickness

IQR			
IRIS	Integrated Risk Information System		
Кос	partition coefficient		
LDL	low-density lipoprotein		
LH	luteinizing hormone		
LMW	low molecular weight		
LOD	level of detection		
LOQ	level of quantification		
MBzP	mono-benzyl phthalate		
MBP	monobutyl phthalate		
MCPP	mono-(3-carboxypropyl) phthalate		
MDI	mental delay index		
MEHP	mono-(2-ethylhexyl) phthalate		
MEP	monoethyl phthalate		
MHBP	mono-3-(3-carboxypropyl)phthalate		
MIBP	monoisobutyl phthalate		
MMP	monomethyl phthalate		
MOA	mode of action		
MOINP	oxo-(mono-oxoisononyl) phthalate		
MRI	magnetic resonance imaging		
NCEA	National Center for Environmental		
	Assessment		
NHANES	National Health and Nutrition		
	Examination Survey		
NHS	Nurses' Health Study		
NRC	National Research Council		
OR	odds ratio		
ORD	Office of Research and Development		
PAH	polycyclic aromatic hydrocarbon		
РСО	polycystic ovarian morphology		
PCOS	polycystic ovarian syndrome		
PDI	psychomotor delay index		
PND	postnatal day		
PPS	preputial separation		
PVC	polyvinyl chloride		
RBC	red blood cell		
SD	standard deviation		
SE	standard error		
SHBG	sex-hormone binding globulin		
Т3	triiodothyronine		
T4	thyroxine		
TSH	thyroid stimulating hormone		
VO	vaginal opening		
VOC	volatile organic compound		
WBC	white blood cell		
WHO	World Health Organization		
	5		

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

1

PREFACE 2

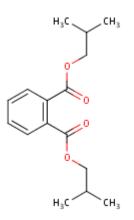
3 This draft document presents preliminary materials for an assessment of diisobutyl 4 phthalate (DIBP) prepared by the U.S. Environmental Protection Agency's (EPA's) Integrated Risk 5 Information System (IRIS) Program. These preliminary materials include a planning and scoping 6 summary, information on the approaches used to identify pertinent literature, results of the 7 literature search, approaches for selection of studies for hazard identification, presentation of 8 critical studies in evidence tables and exposure-response arrays, and mechanistic information for 9 DIBP. This material is being released for public review and comment prior to a public meeting, 10 providing an opportunity for the IRIS Program to engage in early discussions with stakeholders and 11 the public on data that may be used to identify adverse health effects and characterize dose-12 response relationships. 13 The planning and scoping summary includes information on the uses of DIBP, occurrence of 14 DIBP in the environment, and the rationale and scope for the development of the assessment. This 15 information is responsive to recommendations in the 2009 National Research Council (NRC) report 16 Science and Decisions: Advancing Risk Assessment (NRC, 2009) related to planning and scoping in 17 the risk assessment process. 18 The preliminary materials are also responsive to the 2011 NRC report *Review of the* 19 Environmental Protection Agency's Draft IRIS Assessment of Formaldehyde (NRC, 2011). The IRIS 20 Program's implementation of the NRC recommendations is following a phased approach that is 21 consistent with the NRC's "Roadmap for Revision" as described in Chapter 7 of the formaldehyde 22 review report. The NRC stated that "the committee recognizes that the changes suggested would 23 involve a multi-year process and extensive effort by the staff of the National Center for 24 Environmental Assessment and input and review by the EPA Science Advisory Board and others." 25 Phase 1 of implementation has focused on a subset of the short-term recommendations, such as 26 editing and streamlining documents, increasing transparency and clarity, and using more tables, 27 figures, and appendices to present information and data in assessments. Phase 1 also focused on 28 assessments near the end of the development process and close to final posting. Phase 2 of 29 implementation is focused on assessments that are in the beginning stages of assessment 30 development. The IRIS DIBP assessment is in Phase 2 and represents a significant advancement in 31 implementing the NRC recommendations. In the development of this assessment, many of the 32 recommendations are being implemented in full, while others are being implemented in part. 33 Achieving full and robust implementation of certain recommendations will be an evolving process with input and feedback from the public, stakeholders, and independent external peer review. 34 35 Phase 3 of implementation will incorporate the longer-term recommendations made by the NRC, 36 including the development of a standardized approach to describe the strength of evidence for 37 noncancer effects.

1 In May 2014, the NRC released their report reviewing the IRIS assessment development 2 process. As part of this review, the NRC reviewed current methods for evidence-based reviews and 3 made several recommendations with respect to integrating scientific evidence for chemical hazard 4 and dose-response assessments. In their report, the NRC states that EPA should continue to 5 improve its evidence-integration process incrementally and enhance the transparency of its 6 process. The committee did not offer a preference but suggests that EPA consider which approach 7 best fits its plans for the IRIS process. The NRC recommendations will inform the IRIS Program's 8 efforts in this area going forward. This effort is included in Phase 3 of EPA's implementation plan. 9 The literature search strategy, which describes the processes for identifying scientific 10 literature, screening studies for consideration, and identifying primary sources of health effects data, is responsive to NRC recommendations regarding the development of a systematic and 11 12 transparent approach for identifying the primary literature for analysis. The preliminary materials 13 also describe EPA's approach for the selection of critical studies to be included in the evidence 14 tables, as well as the approach for evaluating methodological features of studies that will be 15 considered in the overall evaluation and synthesis of evidence for each health effect. The 16 development of these materials is in response to the NRC recommendation to thoroughly evaluate 17 critical studies with standardized approaches that are formulated and based on the type of research 18 (e.g., observational epidemiology or animal bioassays). In addition, NRC recommendations for 19 standardized presentation of key study data are addressed by the development of the preliminary 20 evidence tables and preliminary exposure-response arrays for primary health effect information. 21 EPA welcomes all comments on the preliminary materials in this document, including the 22 following:

- 23 • the clarity and transparency of the materials;
- 24 • the approach for identifying pertinent studies;
- 25 • the selection of critical studies for data extraction to preliminary evidence tables and 26 exposure-response arrays;
- 27 • any methodological considerations that could affect the interpretation of or confidence in 28 study results; and
- 29 any additional studies published or nearing publication that may provide data for the • 30 evaluation of human health hazard or dose-response relationships.
- 31 The preliminary evidence tables and exposure-response arrays should be regarded solely as
- 32 representing the data on each endpoint that have been identified as a result of the draft literature
- 33 search strategy. They do not reflect any conclusions as to hazard identification or dose-response 34 assessment.
- 35 After obtaining public input and conducting additional study evaluation and data
- 36 integration, EPA will revise these materials to support the hazard identification and dose-response
- 37 assessment in a draft Toxicological Review that will be made available for public comment.

2 **1. INTRODUCTION**

This introduction contains a planning and scoping summary for the Integrated Risk
Information System (IRIS) assessment of diisobutyl phthalate (DIBP). The planning and scoping
summary includes information on the properties, sources, and uses of DIBP, occurrence and fate of
DIBP in the environment, potential for human exposure, and the rationale for the development of
this assessment.


8 1.1. DIBP IN THE ENVIRONMENT

9 **1.1.1. Production and Use**

10 DIBP (Figure 1-1) is used as a plasticizer (HSDB, 2013) in a wide range of materials 11 including polyvinyl chloride (PVC) formulations; paints; lacquers; varnish; paper, pulp and board 12 industry; as a softener; in viscosity adjustment; nail polish; cosmetics; lubricants; carpets; clothing 13 treatments; rubber dentistry settings; as a fuel stabilizer; as a concrete additive; explosive 14 materials; and printing inks. DIBP has also been classified by the Food and Drug Administration 15 (FDA) as an indirect food additive through its use as a component of adhesives. Because DIBP has 16 similar properties to di-n-butyl phthalate (DBP), it can be used as a substitute for DBP (HSDB, 17 <u>2013</u>). Approximately 500,000 pounds were manufactured in the United States in 2012 18 (http://www.epa.gov/oppt/cdr/index.html). In July 2014, the Consumer Product Safety Commission's (CPSC) Chronic Hazard Advisory Panel (CHAP) recommended that DIBP be 19 20 permanently banned from use in children's toys and child care articles at levels greater than 0.1% 21 (<u>CHAP, 2014</u>).

22

1

23 24

Figure 1-1. Chemical structure of DIBP (<u>HSDB, 2013</u>).

1 **1.1.2.** Environmental Fate

2 If released to air, DIBP will exist in both the vapor and particulate phases in the atmosphere. 3 Vapor-phase DIBP will be photolytically degraded with a half-life of about 1.2 days, and particulate-4 phase DIBP will be removed from the atmosphere by wet or dry deposition (HSDB, 2013). In soil, 5 DIBP is expected to have low mobility due to a moderately high organic carbon partition coefficient 6 (Koc). Biodegradation in aerobic soil and water is expected to occur over days or weeks. Anaerobic 7 biodegradation rates are expected to be slower. Volatilization from moist soil or water is expected 8 to be an important fate process for DIBP, but volatilization from dry soil is not expected. If released 9 into water, DIBP is expected to adsorb to sediments and solids, and volatilization from water 10 surfaces is expected to be an important process. An estimated bioconcentration factor of 240 11 suggests that there is a potential for the chemical to concentrate in aquatic organisms, but 12 metabolism in the organisms can reduce accumulation (HSDB, 2013). As noted by Wormuth et al. 13 (2006), the majority of phthalates that are found in the environment come from their slow releases 14 from plastics and other phthalate-containing articles. Certain waste streams, sludges, and 15 industrially contaminated sites, however, may contain higher levels of phthalates than other sites.

16 **1.1.3. Human Exposure Pathways**

17 The routes by which humans are exposed to phthalates and the magnitude of individual 18 phthalate exposures have changed over time as the quantities and uses of the various phthalates 19 have changed. Human exposure to phthalates occurs mainly in occupational or household settings 20 because they are used and released from products in the home environment. Environmental 21 concentrations of phthalates are typically the highest in house dust, and they may be present in 22 food due to the use of phthalates in packaging and food preparation materials. For most phthalates, 23 food ingestion is the dominant pathway of exposure, with dust exposures (ingestion and dermal 24 contact) and inhalation also being important in some circumstances. Infant and toddler exposures 25 occur due to teething and playing with plastic toys that contain phthalates (Wormuth et al., 2006). 26 The presence of parent phthalates or their metabolites in a body matrix, such as blood or 27 urine, provides evidence of exposure to that chemical. The predominant metabolite of DIBP in 28 humans is monoisobutyl phthalate (MIBP). Zota et al. (2014) evaluated the prevalence and 29 temporal trends of MIBP in urine samples collected as part of the National Health and Nutrition 30 Examination Survey (NHANES) conducted between 2001 and 2010. MIBP was found in 72% of the 31 samples in the 2001–2002 cycle and 96% of the samples in the 2009–2010 cycle, and increased in

32 concentration over time, starting at about 2.4 ng/mL in the 2001–2002 cycle, and rising to about 33 7.8 ng/mL in the 2009–2010 cycle.

34 Intake exposures can be estimated on a pathway-basis by combining exposure media 35 concentrations and contact rates. Using this approach, <u>Clark et al. (2011)</u> estimated median intakes 36 of DIBP for various lifestages as defined by the authors: between 0.75 and 1.0 μ g/kg-day for teens 37 (12–19 years of age) and adults (20–70 years of age), based on ingestion of food, drinking water, 38 dust/soil, and inhalation of air; and between 1.3 and 2.6 μ g/kg-day for infants (0–0.5 years of age), 39 toddlers (ages 0.5-4 years of age), and children (5-11 years of age). The exposure was found to be This document is a draft for review purposes only and does not constitute Agency policy.

1-2

DRAFT—DO NOT CITE OR QUOTE

1 dominated by food, with inhalation of indoor air also important. The intakes determined by <u>Clark</u>

- 2 <u>et al. (2011)</u> were higher than those found by <u>Wormuth et al. (2006)</u>, who determined intakes for
- 3 these age ranges at about $\leq 0.5 \,\mu$ g/kg-day. <u>Clark et al. (2011)</u> attributed this difference to use of
- 4 higher food concentrations in the estimates.
- 5 <u>Wittassek et al. (2011)</u> reported median intakes of DIBP in the range of 0.1–1.7 μg/kg-day
- 6 based on a literature survey of urinary biomonitoring data and intake estimates provided therein.
- 7 Their review included a single study in the United States of a cohort of pregnant woman that found
- 8 median intakes at 0.1 µg/kg-day. Three other studies from Germany had median intakes ranging
- 9 from 1.1 to 1.7 μg/kg-day. <u>Qian et al. (2014)</u> used NHANES 2007–2008 and found a median intake
- 10 of 0.2 μg/kg-day and a 95th percentile intake of 0.9 μg/kg-day. <u>Christensen et al. (2014b)</u> combined
- the data from NHANES 2005–2008 and found similar results to <u>Qian et al. (2014)</u>, with a median
- 12 over that time span of 0.2 μ g/kg-day and a 95th percentile intake of 0.8 μ g/kg-day.
- 13 **1.2. SCOPE OF THE ASSESSMENT**

14 The National Research Council (NRC) has recommended that, "[c]umulative risk assessment 15 based on common adverse outcomes is a feasible and physiologically relevant approach to the 16 evaluation of the multiplicity of human exposures and directly reflects EPA's mission to protect 17 human health" (NRC, 2008, p11). They envisioned facilitating the process by "defining the groups 18 of agents that should be included for a given outcome" (NRC, 2008, p12). In humans, the NRC cited 19 results from NHANES that demonstrate exposure to multiple phthalates in most people (NRC, 2008, 20 <u>p23-25</u>). A recent review of human exposure to eight phthalates estimated that indoor air 21 contributed to approximately 25% of DIBP exposure in children (CHAP, 2014, Appendix E1, p35). 22 The unique exposure scenarios and potential sensitivities of children contribute to the need for an 23 assessment of phthalate toxicity. This IRIS assessment will help to inform EPA programs and 24 regions of the potentially unique vulnerabilities of children to DIBP exposure and enable future 25 cumulative risk assessments that assess effects on human health outcomes that might be associated 26 with DIBP and other phthalates. There is currently no IRIS assessment of DIBP. 27

1

2 2. METHODS FOR IDENTIFYING AND SELECTING 3 STUDIES

4 The <u>NRC (2011)</u> recommended that the U.S. Environmental Protection Agency (EPA) 5 develop a detailed search strategy utilizing a graphical display documenting how initial search 6 findings are narrowed to the final studies that are selected for further evaluation on the basis of 7 inclusion and exclusion criteria. Following these recommendations, a literature search and 8 screening strategy was applied to identify literature related to characterizing the health effects of 9 diisobutyl phthalate (DIBP). This strategy consisted of a search of online scientific databases and 10 other sources, casting a wide net in order to identify all potentially pertinent studies. In subsequent 11 steps, references were screened to exclude papers not pertinent to an assessment of the health 12 effects of DIBP, and remaining references were sorted into categories for further evaluation. 13 Section 2.1 describes the literature search and screening strategy in detail. The NRC (2011) further 14 recommended that after studies are identified for review by utilizing a transparent search strategy. 15 the next step is to summarize the details and findings of the most pertinent studies in the evidence 16 tables. The NRC suggested that such tables should provide a link to the references, and include 17 details of the study population, methods, and key findings. This approach provides for a systematic 18 and concise presentation of the evidence. The NRC also recommended that the methods and 19 findings should then be evaluated with a standardized approach. The approach that was outlined 20 identified standard issues for the evaluation of epidemiological and experimental animal studies. 21 Section 2.2 describes the approach taken for DIBP for selecting studies to be included in the 22 preliminary evidence tables and exposure-response arrays. Section 3 presents the selected studies 23 in preliminary evidence tables and exposure-response arrays, arranged by health effect.

24

2.1. DRAFT LITERATURE SEARCH AND SCREENING STRATEGY

25 The literature search for DIBP was conducted in four online scientific databases (PubMed, 26 Web of Science, Toxline, and Toxic Substances Control Act Test Submissions (TSCATS2)) in 27 February of 2013; the search was repeated in March of 2014. This document is complete through 28 March 2014. Additional updates will be performed at regular (e.g., 6-month) intervals. The 29 detailed search approach, including the search strings and number of citations identified per 30 database, is presented in Table 2-1. The search strings and search terms described for DIBP 31 captured studies using the parent compound and metabolites (i.e., the active metabolite, 32 monoisobutyl phthalate [MIBP]). This search of online databases identified 504 citations (after 33 electronically eliminating duplicates). The computerized database searches were also 34 supplemented by a manual search of citations from other regulatory documents (Table 2-2);

- 1 343 citations were obtained using these additional search strategies. In total, 809 citations were
- 2 identified using online scientific databases and additional search strategies.
- 3

4

Г

Table 2-1. Database search strategy for DIBP

Database (search date) Keywords ^a		
PubMed 03/2014 02/2013	5" OR "diisobutyl phthalate" OR "di(i-butyl)phthalate" OR "di-iso-butyl phthalate" OR "iso	
Web of Science 03/2014TS=dibp OR (TS=mibp AND TS=phthalate) OR TS="diisobutylphthalate" OR TS="di-i phthalate" OR TS="84-69-5" OR TS="diisobutyl phthalate" OR TS="di(i-butyl)phthal 02/201302/2013TS="di-iso-butyl phthalate" OR TS="isobutyl phthalate" OR TS="phthalic acid diisob OR (TS="diisobutyl ester" AND TS=phthalate) OR TS="1,2-benzenedicarboxylic acid methylpropyl) ester" OR TS="1,2-benzenedicarboxylic acid 1,2-bis(2-methylpropyl) TS="monoisobutyl phthalate" OR TS="mono(i-butyl)phthalate" OR TS="mono-iso-b phthalate" OR TS="phthalic acid mono(2-methylpropyl) ester" OR TS="2-[(2-methylpropyl) ester" OR TS="isob hydrogen phthalate" OR TS="1,2-benzenedicarboxylic acid 1-(2-methylpropyl) ester		
ToxlineSplit into 4 separate search strings:03/2014		
02/2013	<pre>@TERM+@rn+84-69-5 @AND+mibp+phthalate @AND+"diisobutyl ester"+phthalate @OR+(dibp+"diisobutylphthalate"+"di-isobutyl+phthalate"+"di(i- butyl)phthalate"+"di-iso- butyl+phthalate"+"isobutyl+phthalate"+"phthalic+acid+diisobutyl+ester"+"1,2- benzenedicarboxylic+acid+bis(2-methylpropyl)+ester"+"1,2-benzenedicarboxylic+acid+1,2- bis(2-methylpropyl)+ester"+"monoisobutyl+phthalate"+"mono(i-butyl)phthalate"+"mono-iso- butyl+phthalate"+"phthalic+acid+monoisobutyl+ester"+"1,2- benzenedicarboxylic+acid,+mono(2-methylpropyl)+ester"+"2-[(2- methylpropxy)carbonyl]benzoic+acid"+"1,2-benzenedicarboxylic+acid,+mono(2- methylpropyl)+ester+(9CI)"+"isobutyl+hydrogen+phthalate"+"1,2- benzenedicarboxylic+acid+1-(2-methylpropyl)+ester")</pre>	
TSCATS2 03/2014	(2000-) 84-69-5	

5 6 7

^aThe search strings and search terms described above captured studies using the parent compound and the metabolite MIBP.

System used	Selected key reference(s) or sources	Date	Additional references identified
Manual search of citations from regulatory documents	<u>CPSC (2010)</u> . Toxicity Review for Diisobutyl phthalate (DIBP). Bethesda, MD: Consumer Product Safety Commission.	3/2014	9 citations added
Web of Science, forward search	Hannas et al. (2011). Dose-response assessment of fetal testosterone production and gene expression levels in rat testes following in utero exposure to diethylhexyl phthalate, diisobutyl phthalate, diisoheptyl phthalate, and diisononyl phthalate. Toxicol Sci. 123(1):206-16.	3/2014	2 citations added
	Saillenfait et al. (2008). Diisobutyl phthalate impairs the androgen-dependent reproductive development of the male rat. Reprod Toxicol. 26(2):107-15.	3/2014	1 citation added
	Ray et al. (2012). Ovarian development in Wistar rat treated prenatally with single dose diisobutyl phthalate. Bratisl Lek Listy. 113(10):577-82.	3/2014	0 citations added
	<u>Kleinsasser et al. (2001a)</u> . Genotoxicity of di-butyl- phthalate and di-iso-butyl-phthalate in human lymphocytes and mucosal cells. Teratog Carcinog Mutagen. 21(3):189-96.	3/2014	1 citation added
Web of Science, backward search	Hannas et al. (2011). Dose-response assessment of fetal testosterone production and gene expression levels in rat testes following in utero exposure to diethylhexyl phthalate, diisobutyl phthalate, diisoheptyl phthalate, and diisononyl phthalate. Toxicol Sci. 123(1):206-16.	3/2014	1 citation added
	Saillenfait et al. (2008). Diisobutyl phthalate impairs the androgen-dependent reproductive development of the male rat. Reprod Toxicol. 26(2):107-15.	3/2014	1 citation added
	Ray et al. (2012). Ovarian development in Wistar rat treated prenatally with single dose diisobutyl phthalate. Bratisl Lek Listy. 113(10):577-82.	3/2014	4 citations added
	<u>Kleinsasser et al. (2001a)</u> . Genotoxicity of di-butyl- phthalate and di-iso-butyl-phthalate in human lymphocytes and mucosal cells. Teratog Carcinog Mutagen. 21(3):189-96.	3/2014	2 citations added
Snowball search	DIBP references in previous assessment or previously added to the HERO project page	4/2014	45 citations added
Background Check	Searched a combination of CASRNs and synonyms on the following databases: ACGIH (<u>http://www.acgih.org/home.htm</u>) ATSDR (<u>http://www.atsdr.cdc.gov/substances/index.asp</u>) CalEPA Office of Environmental Health Hazard Assessment	2/2013, update 3/2014	17 citations added
	CalEPA Office of Environmental Health Hazard Assessment (<u>http://www.oehha.ca.gov/risk.html</u>)		

Table 2-2. Summary of additional search strategies for DIBP

This document is a draft for review purposes only and does not constitute Agency policy. 2-3

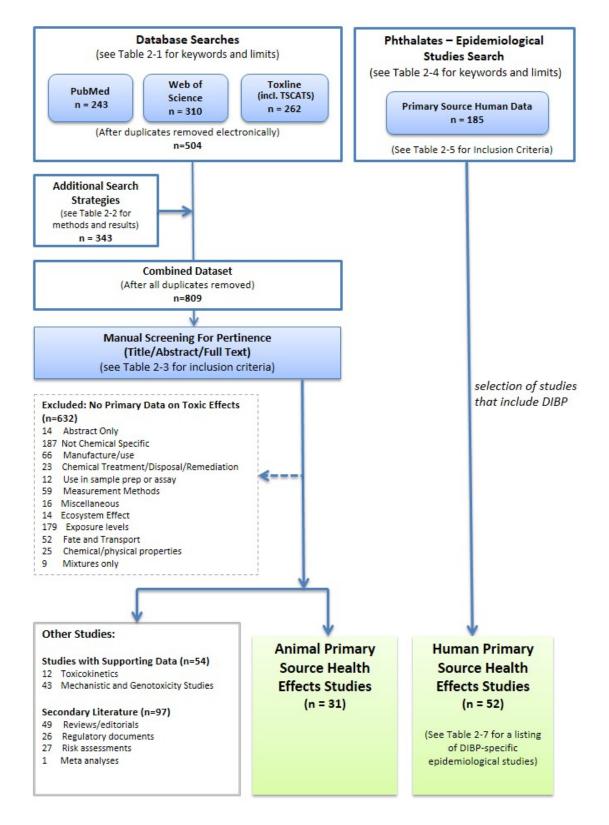
DRAFT-DO NOT CITE OR QUOTE

System used	Selected key reference(s) or sources	Date	Additional references identified
	OEHHA Toxicity Criteria Database (http://www.oehha.ca.gov/tcdb/index.asp) Biomonitoring California-Priority Chemicals (http://www.oehha.ca.gov/multimedia/biomon/pdf/Priori tyChemsCurrent.pdf) Biomonitoring California-Designated Chemicals (http://www.oehha.ca.gov/multimedia/biomon/pdf/Desig natedChemCurrent.pdf) Cal/Ecotox database (http://www.oehha.ca.gov/scripts/cal_ecotox/CHEMLIST. ASP) OEHHA Fact Sheets (http://www.oehha.ca.gov/public_info/facts/index.html) Non-cancer health effects Table (RELs) and Cancer Potency Factors (Appendix A and Appendix B)		
	(http://www.oehha.ca.gov/air/hot_spots/index.html) CPSC (http://www.cpsc.gov) eChemPortal (http://www.echemportal.org/echemportal/participant/page.a ction?pageID=9)		
	Environment Canada – Search entire site if not found below: (http://www.ec.gc.ca/default.asp?lang=En&n=ECD35C36) Toxic Substances Managed under CEPA (http://www.ec.gc.ca/toxiques- toxics/Default.asp?lang=En&n=98E80CC6-1) Screening Assessment reports Risk Management reports Final Assessments (http://www.ec.gc.ca/lcpe- cepa/default.asp?lang=En&xml=09F567A7-B1EE-1FEE-73DB- 8AE6C1EB7658) Draft Assessments (http://www.ec.gc.ca/lcpe- cepa/default.asp?lang=En&xml=6892C255-5597-C162-95FC- 4B905320F8C9)		
	EPA Acute Exposure Guideline Levels (<u>http://www.epa.gov/oppt/aegl/pubs/chemlist.htm</u>) EPA – IRISTrack/New Assessments and Reviews EPA NSCEP (<u>http://www.epa.gov/ncepihom/</u>)		
	EPA RfD/RfC and CRAVE meeting notes EPA Science Inventory (<u>http://cfpub.epa.gov/si/</u>) FDA (<u>http://www.fda.gov/</u>)		
	Federal Docket (<u>www.regulations.gov</u>) Health Canada First Priority List Assessments (<u>http://www.hc- sc.gc.ca/ewh-semt/pubs/contaminants/psl1-lsp1/index-</u> eng.php)		
	Health Canada Second Priority List Assessments (<u>http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/psl2-</u> <u>lsp2/index-eng.php</u>) IARC (<u>http://monographs.iarc.fr/htdig/search.html</u>)		

This document is a draft for review purposes only and does not constitute Agency policy.

System used	Selected key reference(s) or sources	Date	Additional references identified
System used	Selected key reference(s) or sources ITER (TERA database) (http://iter.ctcnet.net/publicurl/pub_search_list.cfm) NAP – Search Site (http://www.nap.edu/) NRC – AEGLs via NAP search for "Acute Exposure Guideline Level" and the chemical NCI (http://www.cancer.gov) National Institute for Environmental Health Sciences (NIEHS) http://www.niehs.nih.gov/ NICNAS (PEC only covered by eChemPortal) (http://www.nicnas.gov.au/industry/aics/search.asp) NIOSH (http://www.cdc.gov/niosh/topics/) NIOSHTIC 2 (http://www2a.cdc.gov/nioshtic-2/) NTP - RoC, status, results, and management reports (http://ntpsearch.niehs.nih.gov/query.html) OSHA (http://www.osha.gov/dts/chemicalsampling/toc/toc_chemsa	Date	identified
	mp.html) RTECS http://www.ccohs.ca/search.html		

1 2


These citations were screened using the title, abstract, and in limited instances, full text for 3 pertinence to examining the health effects of DIBP exposure. The citations were then screened 4 using inclusion criteria (Table 2-3) describing specific information to help identify primary source 5 health effect data and mechanistic and/or genotoxic data, as well as resources useful in preparation 6 of the DIBP package. The process for screening the literature search is described below and is 7 shown graphically in Figure 2-1:

- 8 31 references were identified as animal studies with health effects data and were 9 considered for data extraction to evidence tables and exposure-response arrays.
- 10 • 54 references were identified as supporting studies; of these, 12 were toxicokinetic studies and 43 were mechanistic and genotoxicity studies. 11
- 12 • 97 references were identified as secondary literature (e.g., reviews and editorials, risk assessments, meta analyses, and regulatory documents); these references were kept as 13 additional resources for development of the Toxicological Review. 14
- 15 • 632 references were excluded because these studies did not include primary source data evaluating DIBP in relation to any kind of toxicity or health endpoint, and did not provide 16 17 either supporting information (e.g., toxicokinetic or mechanistic/genotoxicity data) or secondary literature information (see Figure 2-1 and Table 2-3 for inclusion categories and 18 19 criteria).

Note that some studies were identified as belonging to multiple categories. As a result, the
 total number of studies in a given category may be less than the sum of the individual studies listed
 in subcategories. For example, the category "Studies with Supporting Data" included one study that
 contained information relevant to both the toxicokinetics and mechanistic and/or genotoxicity
 subcategories.

6 Among the studies identified in the DIBP literature searches, there were a number of 7 foreign language studies. Based on a review of the English titles and, when available, English 8 abstracts, two of the foreign language articles, Ma et al. (2013b) and <u>lijo (1975</u>), were tagged as 9 toxicity studies and four foreign language articles, Ma et al. (2010), Ma et al. (2013c), Kleinsasser et 10 al. (1999), and <u>Kleinsasser et al. (2001b)</u>, were tagged as mechanistic and genotoxicity studies. The other foreign language articles were excluded (tagged to Excluded: No primary data on toxic 11 12 effects). <u>Ma et al. (2013b)</u> is a report of neurotoxicological effects after DIBP exposure. With the exception of one study (University of Rochester, 1954) that assessed brain weight, the Ma et al. 13 14 (2013b) article was the only available neurotoxicological study; this article was translated into 15 English (certified translation; Ma et al., 2013a). The remaining five foreign language articles 16 (above), tagged to toxicity studies or mechanistic and genotoxicity studies, have not yet been 17 translated or considered for inclusion in either evidence or mechanistic tables. These studies will 18 be further evaluated and considered during the development of the draft assessment of the 19 available evidence of DIBP-induced health effects.

20

3

4

Note: Studies containing multiple information categories were sorted into multiple tags. For this reason, the subcategory numbers do not always add up to the category total.

Figure 2-1. Literature search approach for DIBP.

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE 1

2

3

Table 2-3. Inclusion criteria used to identify animal studies of health-related endpoints, supporting data, or secondary literature

- Did the study evaluate effects of DIBP or its metabolites known to be formed in humans? •
- Did the study evaluate effects in a tissue (organ) or cells derived from a tissue (organ)? •
- Did the study evaluate cellular, biochemical or molecular effects relevant to any mode of action? •

or

- Does the study include information from other agencies, risk assessments, or reviews that would aid in • the development of a toxicological review of DIBP?
- 4 5 6

7

^aIf the answer is "no" to any of these criteria questions, the study was placed under "No Primary Data on Toxic Effects."

8 Thirty-six human studies were also identified from the initial literature search using the 9 search strings presented in Table 2-1. However, work being done concurrently on the development 10 of other phthalate preliminary materials revealed that this set of DIBP epidemiology studies was 11 incomplete. Epidemiology studies frequently examine multiple compounds (e.g., metabolites of 12 several different phthalates). The indexing terms and abstracts may not include a comprehensive 13 list of all of the specific phthalates examined, resulting in the inappropriate exclusion of studies and 14 the potential for introduction of bias in the selection process. Specifically, "negative" studies (i.e., 15 studies that did not demonstrate an association between exposure and disease) are potentially 16 more likely to be missed than "positive" studies. This issue did not arise in the search process for 17 experimental (animal toxicology) studies, for which the test compound is virtually always identified 18 through search terms or key word searches of abstracts. 19 Another issue encountered in the development of the search and screening process for the 20 phthalate epidemiology studies relates to the duplication of efforts involved in the development of EPA's health assessments for several individual phthalates (e.g., dibutyl phthalate [DBP], DIBP, 21 22 butyl benzyl phthalate [BBP], di(2-ethylhexyl)phthalate [DEHP], di-ethyl phthalate [DEP], 23 diisononyl phthalate [DINP], and dipentyl phthalate [DPP]). In contrast to animal toxicology 24 studies, most of the epidemiology studies examine more than one phthalate, resulting in 25 considerable overlap in the sets of studies identified using individual-phthalate search terms. Full

26 text screening of the same studies identified in multiple searches results is an inefficient use of

27 resources.

28 For these reasons, EPA developed a process for identifying epidemiological studies

29 evaluating phthalates by performing a single broad search to create a listing of epidemiological

- 30 studies of all phthalates mentioned above, from which the selection of studies examining potential
- 31 health effects of an individual phthalate could be drawn. This list records each of the phthalates
- 32 included in the study, based on information in the methods section of the paper, and the outcome(s) This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE
 - 2-8

- 1 examined. This literature search for epidemiological studies examining phthalates in relation to
- 2 health-related endpoints (from which the DIBP studies were drawn) was conducted in PubMed,
- 3 Web of Science, and ToxNet databases in June 2013, using keywords and limits described in
- 4 Table 2-4; the search was updated in December 2013 and in June 2014. For this search, "phthalate"
- 5 (and related terms) rather than names of specific phthalates was used as the foundation of the
- 6 search, along with terms designed specifically to identify epidemiological studies. These terms
- 7 were based on terms used in previously identified epidemiology studies of six different phthalates.

8

Table 2-4. Summary of search terms: targeted epidemiology search

Database, search date	Terms	Hits
June 2013 search PubMed 06/2013 No date restriction	(phthalate OR phthalates OR phthalic acid) AND (human OR case-control OR pregnancy OR cohort OR workers OR children OR survey)	Imported: 2,505 After duplicates deleted: 2,482
Web of Science 06/2013 No date restriction	(TS="phthalic acid" OR TS="phthalate" OR TS="phthalates") AND (TS="humans" OR TS="human" OR TS="case-control" OR TS="pregnancy" OR TS="cohort" OR TS="workers" OR TS="child" OR TS="children" OR TS="survey")	Imported: 1,840 After duplicates deleted: 1,836
ToxNet 06/2013 No date restriction	(phthalate OR phthalates OR phthalic acid) AND (human OR case-control OR pregnancy OR cohort OR workers OR children OR survey)	Imported: 2,505 After duplicates deleted: 2,426
Merged Reference Set	Merged dataset, with duplicates eliminated through electronic screen	4,127
	Epidemiology articles meeting inclusion criteria	127
December 2013 search	PubMed Web of Science ToxNet Merged Reference Set Additional epidemiology articles meeting inclusion criteria	155 249 114 350 22
June 2014 search	PubMed Web of Science ToxNet (was not searched because no articles have been found solely through this source in all the previous searches) Merged Reference Set Additional epidemiology articles meeting inclusion criteria	184 409 0 494 24

9

1	More than 4,000 citations were identified through this search. These were then screened
2	using inclusion criteria describing specific population (i.e., human), exposure measures,
3	comparison, and health effects (Table 2-5). Note that other studies obtained in the search, for
4	example mechanistic and pharmacokinetic studies, are excluded from consideration with respect to
5	the specific objective of this search (i.e., identification of epidemiology studies), but could be
6	included in other steps in the assessment. Duplicate citations of the same article were excluded,
7	and articles written in a language other than English were retained for subsequent review. Earlier
8	analyses that are updated in a subsequent paper (e.g., with a larger sample size) are not included as
9	a primary paper, but may be used as background material regarding study methods.
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	

Table 2-5. Inclusion criteria used to identify epidemiology studies of healthrelated endpoints

	Inclusion criteria
•	Is the study population humans?
	and
•	Is exposure to one or more phthalate (parent compound or metabolite(s) ^a
	- measured in air, dust, or biological tissue?
	 based on knowledge of industrial hygiene (occupational settings)?
	- based on knowledge of specific contamination sites or accidental exposure?
	and
•	Does the study compare a health effect in higher versus lower or no exposure?
	and
	Does the study include a measure of one or more primary health effect endpoints relating to
	- sexual differentiation measures (e.g., male genital malformations, anogenital distance, gender-relate play behavior)
	 male reproductive effects (e.g., steroidal and gonadotropin hormone levels, measures of male- mediated infertility)?
	- female reproductive effects (e.g., steroidal and gonadotropin hormone levels, measures of female- mediated infertility, gynecological conditions)?
	- pregnancy outcomes (e.g., birth weight, gestation age)?
	- puberty (male and female) (e.g., timing of development, precocious puberty, gynecomastia)?
	 neurodevelopment (infants and children) (e.g., standardized tests of reflexes, behavior, and intelligence)?
	- thyroid effects (e.g., thyroid stimulating hormone and thyroid hormones, subclinical and clinical thyr disease)?
	- immune system effects (e.g., asthma, allergies, immunoglobulin E (IgE) levels, skin prick tests)?
	- pulmonary function (e.g., standardized test of lung volume, diffusing capacity)?
	- neurological effects (adults) (e.g., peripheral neuropathy, vision or hearing or other sensory tests)?
	- liver effects (e.g., cholestasis, biomarkers of liver function)?
	- kidney effects (e.g., end stage renal disease, biomarkers of kidney function)?
	- diabetes and measures of insulin resistance?
	- obesity (and other measures of adiposity)?
	- cardiovascular disease (cause-specific incidence or mortality)?
	 - cardiovascular risk factors (e.g., triglyceride and lipid levels, blood pressure or hypertension)? - cancer (cause-specific incidence or mortality)?
	or
•	Does the study include a measure of one or more secondary health effect endpoints (to be considered
	within context of mechanistic evidence) relating to
	- oxidative stress?
	- inflammation?
	- gene expression?

One hundred and seventy-three epidemiological studies examining one or more phthalates in relation to one or more endpoints were identified by the searches conducted through June 2014 *This document is a draft for review purposes only and does not constitute Agency policy.*

2-11

DRAFT-

DRAFT-DO NOT CITE OR QUOTE

7

- 1 (127 in the initial search, 22 in the December 2013 update, and 24 in the June 2014 update;
- 2 Figure 2-1). Other strategies were also used to supplement this broad search for epidemiology
- 3 studies of phthalates), resulting in the identification of 12 additional publications (Table 2-6), for a
- 4 total of 185 epidemiological studies. From this set of all of the epidemiological studies examining
- 5 any phthalate, 52 studies analyzed one or more health effects in relation to a measure of DIBP
- 6 (Table 2-7).
- 7 8

Table 2-6. Summary of additional search strategies for epidemiology studies of phthalate exposure in relation to health-related endpoints

Approach used	Date performed	Number of additional citations identified
Testing and refinement of search terms based on terms used for the identified articles within each category	June 2014	6
Review of references cited in the identified list of epidemiology studies ("backward" search)	July 2014	1
Electronic forward search through Web of Science of one to three studies within each health endpoint category (early studies within each category generally selected to maximize potential for citation in subsequent publications) ^a	July 2014	5

9

10 ^aThe following studies were used to conduct the forward searches: (Trasande et al. (2013c); James-Todd et al. 11 (2012); Lind and Lind (2011); Boas et al. (2010); Cho et al. (2010); Engel et al. (2010); Lopez-Carrillo et al. (2010); Wolff et al. (2010); Adibi et al. (2009); Chou et al. (2009); Hatch et al. (2008); Wolff et al. (2008); Meeker et al. 12 (2007); Stahlhut et al. (2007); Hauser et al. (2006); Reddy et al. (2006); Jonsson et al. (2005); Swan et al. (2005); 13 14 Bornehag et al. (2004); Hoppin et al. (2004); Aschengrau et al. (1998); Heineman et al. (1992); Nielsen et al. 15 (1989); Nielsen et al. (1985)). 16

Table 2-7. Primary source epidemiological studies examining health effects of 17 18 DIBP

Outcome category	Reference ^a	DIBP measure
Sexual differentiation measures (Table 3-1)	<u>Swan (2008)</u> <u>Swan et al. (2010)</u>	MIBP (maternal urine) MIBP (maternal urine)
Male reproductive (semen parameters, infertility, and hormones) (Tables 3-2 and 3-3)	Buck Louis et al. (2014) Joensen et al. (2012) Kranvogl et al. (2014) Mendiola et al. (2011) Wirth et al. (2008)	MIBP (urine) MIBP (urine) MIBP (urine) MIBP (urine) MIBP (urine)
Male pubertal development (Table 3-4)	<u>Mieritz et al. (2012)</u> Mouritsen et al. (2013b)	MIBP (maternal urine) MIBP (urine) Sum MIBP + MBP (urine) ^a
Female pubertal development (Table 3-5)	Frederiksen et al. (2012) Hart et al. (2013) Lomenick et al. (2010) Mouritsen et al. (2013b)	Sum MIBP + MBP (urine) ^a MIBP (maternal serum) MIBP (urine) Sum MIBP + MBP(urine) ^a

This document is a draft for review purposes only and does not constitute Agency policy.

Outcome category	Reference ^a	DIBP measure
Female reproductive (infertility, hormones, gynecological conditions) (Tables 3-6 and 3-7)	<u>Buck Louis et al. (2013)</u> <u>Hart et al. (2013)</u> <u>Sathyanarayana et al. (2014)</u> <u>Upson et al. (2013)</u>	MIBP (urine) MIBP (maternal serum) MIBP (maternal urine) MIBP (urine)
Pregnancy outcomes (fetal growth, preterm birth) (Table 3-8)	Ferguson et al. (2014c) Ferguson et al. (2014a) Huang et al. (2014b) Meeker et al. (2009) Philippat et al. (2012) Wolff et al. (2008)	MIBP (maternal urine) MIBP (maternal urine) DIBP (cord blood) MIBP (maternal urine) MIBP (maternal urine) MIBP (maternal urine)
Immune: allergy (rhinitis, eczema) (Table 3-9)	<u>Ait Bamai et al. (2014)</u> Bornehag et al. (2004) <u>Callesen et al. (2014b)</u> <u>Callesen et al. (2014a)</u> <u>Hoppin et al. (2013)</u> <u>Sun et al. (2009)</u>	DIBP (dust) DIBP (dust) MIBP (urine) DIBP (dust) MIBP (urine) DIBP (dust)
Immune: asthma (Table 3-10)	<u>Ait Bamai et al. (2014)</u> <u>Bertelsen et al. (2013)</u> <u>Callesen et al. (2014b)</u> <u>Callesen et al. (2014a)</u> <u>Hoppin et al. (2013)</u> <u>Sun et al. (2009)</u>	DIBP (dust) MIBP (urine) MIBP (urine) DIBP (dust) MIBP (urine) DIBP (dust)
Neurodevelopment (Table 3-11)	<u>Braun et al. (2014)</u> <u>Engel et al. (2010)</u> <u>Kobrosly et al. (2014)</u> <u>Téllez-Rojo et al. (2013)</u> <u>Whyatt et al. (2012)</u>	MIBP (maternal urine) MIBP (maternal urine) MIBP (maternal urine) MIBP (maternal urine) MIBP (maternal urine)
Thyroid (Table 3-12)	Dirtu et al. (2013) Meeker and Ferguson (2011)	MIBP (urine) MIBP (urine)
Obesity (Table 3-13)	Buser et al. (2014) Dirtu et al. (2013) Hart et al. (2013) Kasper-Sonnenberg et al. (2012) Lind et al. (2012b) Olsén et al. (2012) Svensson et al. (2011) Teitelbaum et al. (2012) Trasande et al. (2013a) Wang et al. (2013)	MIBP (urine) MIBP (urine) MIBP (maternal serum) Sum MIBP + OH-MIBP (urine) MIBP (serum) MIBP (serum) MIBP (urine) MIBP (urine) MIBP (urine)
Diabetes and insulin resistance (Table 3-14)	Huang et al. (2014a) James-Todd et al. (2012) Lind et al. (2012a) Olsén et al. (2012) Svensson et al. (2011) Trasande et al. (2013b)	MIBP (urine) MIBP (urine) MIBP (serum) MIBP (serum) MIBP (urine) MIBP (urine)
Other cardiovascular disease risk factors (Table 3-15)	Lind and Lind (2011) Shiue (2014) Trasande et al. (2013c)	MIBP (serum) MIBP (urine) MIBP (urine)

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Outcome category	Reference ^a	DIBP measure
	<u>Olsén et al. (2012)</u>	MIBP (serum)
Cancer (Table 3-16)	Lopez-Carrillo et al. (2010)	MIBP (urine)

1 2

^aIncluded in DIBP tables because in this population, at this time, MIBP concentrations were greater than monobutyl phthalate (MBP) concentrations.

3 4 5

The literature for both epidemiological and animal studies will be regularly monitored for

6 the publication of new studies. The documentation and results for this supplementary search can

7 be found on the Health and Environmental Research On-line (HERO) website¹

8 (http://hero.epa.gov/DIBP and http://hero.epa.gov/phthalates-humanstudies).

9 2.2. SELECTION OF CRITICAL STUDIES IN EARLY STAGES OF DRAFT 10 DEVELOPMENT

11 2.2.1. General Approach

- 12 Each study retained following the literature search and screen was evaluated for aspects of 13 design, conduct, or reporting that could affect the interpretation of results and the overall 14 contribution to the synthesis of evidence for determination of hazard potential. Much of the key 15 information for conducting this evaluation can generally be found in the study's methods section 16 and in how the study results are reported. Importantly, this evaluation does not consider study 17 results or, more specifically, the direction or magnitude of any reported effects. For example, 18 standard issues for evaluation of experimental animal data identified by the NRC and adopted in 19 this approach include consideration of the species and sex of animals studied, dosing information 20 (dose spacing, dose duration, and route of exposure), endpoints considered, and the relevance of 21 the endpoints to the human endpoints of concern. Similarly, observational epidemiologic studies in 22 this approach for evaluation should consider the following: 23 Approach used to identify the study population and the potential for selection bias.
- Approach used to identify the study population and the potential for selection bias.
- Study population characteristics and the generalizability of findings to other populations.

¹HERO is a database of scientific studies and other references used to develop EPA's risk assessments aimed at understanding the health and environmental effects of pollutants and chemicals. It is developed and managed in EPA's Office of Research and Development (ORD) by the National Center for Environmental Assessment (NCEA). The database includes more than 1,400,000 scientific articles from the peer-reviewed literature. New studies are added continuously to HERO.

Note: The HERO database will be regularly updated as additional references are identified during assessment development. Therefore, the numbers of references (by tag) displayed on the HERO webpage for DIBP may not match the numbers of references identified in Figure 2-1 (current through March 2014).

- Approach used for exposure assessment and the potential for information bias, whether differential (nonrandom) or nondifferential (random).
- Approach used for outcome identification and any potential bias.
- Appropriateness of analytic methods used.
- Potential for confounding to have influenced the findings.
- Precision of estimates of effect.

1

2

Availability of an exposure metric that is used to model the severity of adverse response
 associated with a gradient of exposures.

9 To facilitate the evaluation outlined above, evidence tables are constructed that 10 systematically summarize the important information from each study in a standardized tabular 11 format as recommended by the <u>NRC (2011)</u>. In general, the evidence tables include all studies that 12 inform the overall synthesis of evidence for hazard potential. At this early stage of study 13 evaluation, the goal is to be inclusive. Exclusion of studies may unnecessarily narrow subsequent 14 analyses by eliminating information that might later prove useful. Premature exclusion might also 15 give a false sense of the consistency of results across the database of studies by unknowingly reducing the diversity of study results. However, there may be situations in which the initial review 16 17 of the available data will lead to a decision to focus on a particular set of health effects and to

18 exclude others from further evaluation.

19 2.2.2. Exclusion of Studies

20 After the literature search was manually screened for pertinence, studies were excluded if 21 fundamental flaws were identified in their design, conduct, or reporting. The DIBP experimental 22 animal database consists of studies designed to examine repeat-dose intraperitoneal or oral toxicity 23 (including subchronic and short-term duration studies) and endpoint-specific toxicities (including 24 reproductive and developmental toxicity). Four studies administered DIBP via the intraperitoneal 25 route of exposure. These studies were excluded from the DIBP evidence tables because the 26 intraperitoneal route of exposure is generally considered less relevant to human health exposure. 27 The remaining studies involved administration of DIBP in the diet or via gavage administration. 28 Acute studies are generally less pertinent for characterizing health hazards associated with chronic 29 exposure. There was one acute study that was excluded from the evidence tables. Two BASF reports identified in the literature searches could not be obtained and thus, could not be evaluated 30 31 for inclusion in the evidence tables (BASF, 2003, 1961). For these reasons, these studies are not 32 summarized in the preliminary evidence tables. Nevertheless, with the exception of the studies that 33 could not be obtained, the studies will still be evaluated as possible sources of supporting health 34 effects information during assessment development. Experimental animal studies that were 35 sources of short-term, subchronic, or chronic health effects were evaluated for potential flaws in 36 their design, reporting, or conduct. As a result, one study, <u>Ma et al. (2013b)</u> (English translation

1 cited as Ma et al. (2013a), was removed from consideration in the assessment because of 2 incomplete description of experimental methods that leads to uncertainty in the results. Another 3 study, Eastman Kodak (1978), a one-page data summary, was excluded because it does not provide 4 detailed data reporting. 5 The remaining studies are all sources of health effects data that may be used in the 6 assessment. The 20 studies summarized in the evidence tables are considered the "critical" 7 studies from which the study methods and results are presented in preliminary evidence tables 8 and exposure-response arrays (Section 3). There were also a few cases of the same study data 9 being contained in multiple reports; in those cases, the studies are listed together in the evidence 10 tables.

STUDY CHARACTERISTICS THAT WILL BE CONSIDERED IN THE FUTURE EVALUATION AND SYNTHESIS OF THE CRITICAL EPIDEMIOLOGICAL STUDIES FOR DIBP

14 Several considerations will be used in EPA's evaluation of epidemiological studies of human 15 health effects of DIBP. These considerations include aspects of the study design affecting the 16 internal or external validity of the results (e.g., population characteristics and representativeness, exposure and outcome measures, confounding, data analysis), focusing on specific types of bias 17 18 (e.g., selection bias; information bias due to exposure misclassification) and other considerations 19 that could otherwise influence or limit the interpretation of the data. A study is externally valid if 20 the study results for the study population can be extrapolated to external target populations. An 21 internally valid study is free from different types of biases, and is a prerequisite for generalizing 22 study results beyond the study population. These issues are outlined in the IRIS Preamble, and are 23 described below.

24 2.3.1. Study Population

Evaluation of study population characteristics (including key socio-demographic variables
and study inclusion criteria) can be used to evaluate external validity (i.e., generalizability) and to
facilitate comparison of results across different study populations. Some aspects of the selection
process may also affect the interval validity of a study, resulting in a biased effect estimate.

29 The general considerations for evaluating issues relating to the study population include 30 adequate documentation of participant recruitment, including eligibility criteria and participation 31 rates, missing data, and loss to follow-up. This information is used to evaluate internal study 32 validity related to selection bias. Different types of selection bias that may occur include the 33 healthy worker effect, differential loss to follow up, Berkson's bias (relating to selection of 34 participants in hospital-based case-control studies), and participation bias. It is important to note 35 that low participation rates, or differences in participation rates between exposed and non-exposed 36 groups or between cases and controls, is not evidence of selection bias. Rather, selection bias arises 37 from a differential pattern of participation with respect to both the exposure and the outcome, i.e., 38 patterns of participation that would result in a biased effect estimate. An example of differential This document is a draft for review purposes only and does not constitute Agency policy.

2-16

DRAFT-DO NOT CITE OR QUOTE

participation would be when people with high levels of exposure and the outcome of interest are
 more likely to participate than people with low levels of exposure and the outcome.

3 The available DIBP studies have generally examined metabolites from many different 4 phthalates within the context of research on environmental exposures. Most of these studies rely 5 on objective exposure measures (e.g., biomonitoring data), some of which are collected prior to 6 onset of the outcomes being examined (e.g., in the prospective pregnancy cohort studies). Study 7 participants generally do not have knowledge of the study hypothesis or their exposure to DIBP and 8 thus, knowledge of exposure or exposure level is unlikely to result in differential participation with 9 respect to outcomes. These study features should minimize the potential for selection bias. 10 However, EPA will consider the possibility that a particular concern about the specific sources of DIBP, in conjunction with knowledge of specific health outcomes, may motivate people to 11 12 participate in a study or to continue participation throughout a follow-up period. In the absence of 13 evidence that any of these scenarios is likely to occur in a study, EPA will not consider selection bias 14 as a limitation of a study.

15 **2.3.2.** Exposure Considerations

16 General considerations for evaluating exposure include: (1) identifying how exposure can 17 occur (e.g., exposure sources, routes, and media); (2) determining appropriate critical exposure 18 period(s) for the outcomes under study; (3) evaluating variability in the exposure metrics of 19 interest (e.g., temporal and spatial variability for environmental measures or inter-individual 20 variability for biomonitoring data) that can impact different types of exposure metrics (e.g., 21 cumulative, average, or peak exposure); (4) determining if an appropriate analytical methodology was employed (e.g., choice of biological matrix, sampling protocol, quantification approach); 22 23 (5) evaluating the choice of exposure surrogate evaluated (e.g., constituent chemical or

24 group/mixture); and (6) evaluating the classification of individuals into exposure categories. These

six considerations help determine the accuracy and precision of the exposure estimates, and the

26 likelihood of measurement error with respect to the exposure metrics used. Nondifferential

27 misclassification of exposure categories, for example, can also result from measurement error and

is expected to predominantly result in attenuated effect estimates (<u>Blair et al., 2007</u>).

Some common sources of exposure to DIBP include cosmetics, food, and food packaging
 (Zota et al., 2014) with the primary route of exposure occurring through ingestion and some
 exposure occurring via inhalation and dermal routes (see Section 1.1.3). Thus, exposure to DIBP is
 typically from multiple sources, and occurs episodically on a daily basis. Exposure to DIBP may be
 increasing; a recent study of the U.S. general population found that urinary concentrations of the

34 DIBP metabolite MIBP have increased over time and were 206% higher in 2009–2010 compared to

35 2001–2002 (<u>Zota et al., 2014</u>).

36 Urine provides an integrated measure of phthalate exposure from all sources.

37 Measurement of DIBP metabolites, rather than the parent compound, is preferred because the

- 38 parent compound is metabolized very quickly and does not provide an accurate measure of
- 39 exposure. The simple monoester metabolite, monoisobutyl phthalate (MIBP) is the most commonly

This document is a draft for review purposes only and does not constitute Agency policy.

2-17

measured DIBP metabolite in epidemiologic studies. MIBP accounts for an estimated 70.3% of the
urinary excretion of DIBP; this value is based on human data from a controlled dosing study of a
single volunteer (Koch et al., 2012). EPA considers the use of MIBP to be a good proxy for total
DIBP exposure.

5 Although urine measures are most commonly used in epidemiological studies of phthalate 6 exposure, measures in serum, semen, and breast milk have also been used. Studies examining DIBP 7 metabolites in breast milk or serum have generally reported low levels of detection. One study in 8 Taiwan reported that MIBP above the limit of detection was found in 33.3% of breast milk samples 9 from 30 women. The detection rate in 30 cord blood samples in this study was 100%, but the 10 correlation between MIBP measured in cord blood and maternal urine was -0.11 (Pearson 11 correlation of log-transformed levels) (Lin et al., 2011). Hogberg et al. (2008) reported that few 12 breast milk (2 out of 42) or serum (3 out of 36) samples in a study in Sweden had detectable MIBP 13 concentrations. Another study conducted among 60 men ages 18–26 years found that 33.3% of 14 serum samples and 16.9% of seminal plasma samples had MIBP concentrations above the limit of 15 detection (<u>Frederiksen et al., 2010</u>). The Spearman correlation coefficient between urine and 16 serum concentrations was 0.39; the correlation between urine and seminal plasma concentrations 17 was not calculated because of the low detection rate for the latter samples (Frederiksen et al.,

18 <u>2010</u>). The lower detection rate in tissues other than urine reduces EPA's confidence in DIBP
 19 metabolite measures in these biological matrices.

20 Given their first-order kinetics with half-lives on the order of hours [3.9 hours for MIBP in 21 (Koch and Angerer, 2007)], urinary phthalate metabolite concentrations peak shortly after 22 exposure. Thus, for single-time exposure scenarios (rather than multi-source, multiple time 23 exposure scenarios), urine sampled during this time of peak concentration could lead to 24 overestimates of average daily intake, and conversely, measurements made after concentrations 25 have peaked and declined could lead to underestimates of intake. One study conducted among 26 139 pregnant women in Puerto Rico included measurement of MIBP found that specific gravity 27 adjusted concentrations were lower in samples collected from 9 am to noon (geometric mean 9.4) 28 compared with samples collected in early morning, early afternoon, or evening (geometric means 29 13–14) (Cantonwine et al., 2014). Urinary measures of DIBP metabolite concentrations in 30 epidemiological studies are generally conducted using spot urine samples (i.e., collected at time of a 31 clinic or study examination visit) rather than at a specified time (e.g., first morning void) or in 24-32 hour urine samples. Although the time of sample collection described above may affect the 33 accuracy of an estimated intake for a single individual, studies of other phthalates (e.g., DEHP) have 34 demonstrated that on a group level, spot urine samples provide a reasonable approximation of 35 concentrations that would have been observed using full-day urine samples (Christensen et al., 36 2012) and that a single spot sample was reliable in ranking subjects according to tertile of MIBP 37 (Teitelbaum et al., 2008). Based on this information, EPA does not consider the reliance on spot 38 urine samples for exposure estimation (including ranking of individuals into different DIBP 39 categories) to be a major limitation for epidemiological studies. However because of the potential 40 for greater inaccuracy of estimates in the "tails" of the distribution, EPA will include additional This document is a draft for review purposes only and does not constitute Agency policy.

2-18

DRAFT-DO NOT CITE OR QUOTE

1 considerations (e.g., discussion of analysis of residuals, outliers) when evaluating analyses based on 2 use of DIBP metabolites as continuous measures.

3 Another potential limitation of measurement of DIBP metabolites in urine is the 4 reproducibility of phthalate metabolite concentrations over time; that is, how well does a single 5 measure reflect the key exposure metric (average, peak) for the critical exposure window of 6 interest. For many short-lived chemicals, considerable temporal variability in exposure level is 7 expected, and thus, repeated measures in the critical exposure window are preferred over a single 8 measurement. Reproducibility is usually evaluated with the intraclass correlation coefficient (ICC), 9 a measure of the 'between-individual' variance divided by the total variance (between and within 10 individuals). A higher ICC indicates greater reproducibility (i.e., lower within-person variance). An ICC of 0.51 for MIBP was reported in a study of 25 Hmong women ages 19–51 years with samples 11 12 collected 2-4 weeks apart (<u>Peck et al., 2010</u>). In studies of reproducibility of measures during pregnancy, <u>Cantonwine et al. (2014)</u> reported ICCs of 0.35 and 0.34 (unadjusted and specific gravity 13 14 adjusted) when comparing urine samples taken at approximately 18, 22, and 26 weeks of gestation. 15 ICCs of 0.36 and 0.38, respectively, were seen before pregnancy and in early pregnancy (Braun et 16 al., 2012), and an ICC of approximately 0.5 was seen over a 6-week period in the last trimester 17 (Adibi et al., 2008). Among women participating in the Nurses' Health Study (NHS) (in 2000–2001 18 for NHS and in 1996-1999 for NHS II), the ICC for samples collected 1-3 years apart was 0.30 for all 19 samples, and was 0.29 for first-morning samples (Townsend et al., 2013). Data for children are 20 sparse, limiting the ability to examine this source of uncertainty in this population. One study 21 evaluated variability in children aged 6–10 years old over a 6-month period (Teitelbaum et al., 22 2008) and found a relatively low ICC (0.21 unadjusted, 0.28 creatinine-adjusted). The available 23 data highlight the value of repeated exposure measures collected during the appropriate critical 24 period for the outcome(s) under study. Based on these studies, however, EPA does not consider the 25 use of a single measurement to be a major limitation in studies in adults in which the measure of 26 exposure is closely aligned with the relevant window(s) of exposure, if known, for the effect under 27 study. EPA has greater uncertainty, however, about measurements taken outside of the relevant 28 time window (e.g., several years after diagnosis, or the difference between first and third trimesters 29 of pregnancy), and about measurements taken in children.

30 Some studies present analyses using a combined measure based on summation of MIBP and 31 monobutyl phthalate (MBP), as a measure of both DIBP and DBP, respectively. The relative 32 contribution of DIBP to this total has varied over time (as the use of DIBP has increased), and can 33 vary between populations (e.g., greater use of DIBP compared with DBP in some countries). EPA 34 includes studies in the DIBP evidence tables using this summed exposure measure in situations in 35 which the concentration of MIBP is greater than that of MBP, but recognizes that this measure introduces an additional source of exposure misclassification. Other studies present analyses using 36 37 a combined "low molecular weight" phthalate measure based on the summation of MIBP, MBP, and 38 monoethyl phthalate (MEP) (reflecting exposure to the parent compounds of DIBP, DBP, and DEP, 39 respectively). Because MIBP does not represent a major contributor to this summation 40 measurement, EPA has not included data from these studies in the DIBP evidence tables.

This document is a draft for review purposes only and does not constitute Agency policy.

2-19

DRAFT-DO NOT CITE OR QUOTE

EPA will also consider the potential for differential misclassification of biomarker measures of exposure; for example, in situations in which a health outcome (e.g., diagnosis with diabetes or cancer) could lead to a behavioral change that results in a change in DIBP exposure. This type of scenario adds an additional challenge to the interpretation of the DIBP metabolites as valid measures of exposure in a relevant time window(s) with respect to disease development.

6 The distribution of exposure will also be considered in evaluating individual studies and 7 when comparing results among groups of studies. One consideration is the contrast of exposure 8 levels (i.e., the difference between "high" and "low"): a study with a very narrow contrast may not 9 have sufficient variability to detect an effect that would be seen over a broader range. Another 10 consideration is the absolute level of exposure, as different effect estimates may be expected in 11 studies examining different exposure levels even if they had similar exposure contrasts.

12 2.3.3. Primary Outcome Measures

13 The general considerations for evaluating issues relating to accuracy, reliability, and 14 biological relevance of outcomes include adequate length of follow-up to evaluate the outcomes of 15 interest, and use of appropriate ascertainment methods to classify individuals with regard to the 16 outcome (e.g., high sensitivity and specificity). With respect to continuous measures, such as 17 hormone concentrations or semen parameters, EPA will consider, in addition to assessing whether 18 reported parameters are outside normal physiological range, evidence of smaller changes in the 19 distribution of a parameter that may represent an effect on a population level [e.g., as is the case for 20 early childhood exposure to lead and decrements in intelligence as measured by IQ (U.S. EPA, 21 2013)].

Issues relating to assessment of the specific primary health effects are discussed below andsummarized in Table 2-8 at the end of Section 2.3.

24 Sexual Differentiation

25 Cryptorchidism and hypospadias are two disorders of the development of the male 26 reproductive system. Cryptorchidism, or undescended testes, can be present at birth (congenital 27 cryptorchidism) or can occur later during infancy and childhood (acquired cryptorchidism). 28 Surgical correction (orchiopexy) is recommended in cases of cryptorchidism that do not resolve 29 during infancy because long-term complications include impaired sperm production and increased 30 risk of testicular cancer (Virtanen et al., 2007). Retractile testes can move back and forth between 31 the scrotum and the abdomen; this condition usually resolves by puberty and is not associated with 32 reproductive or other complications. Classification criteria for cryptorchidism that involve 33 testicular positioning are commonly used in clinical research (Iohn Radcliffe Hospital 34 Cryptorchidism Study Group, 1988; Scorer, 1964). EPA will consider the definition used and age 35 range in interpreting studies of cryptorchidism or related outcomes. 36 In animal toxicology studies, anogenital distance (AGD) is a routine marker to assess 37 endocrine disruption; this marker has only recently been adapted for use in epidemiological

38 studies. One study in adult men reported associations between decreased AGD and measures

1 relating to infertility (Eisenberg et al., 2011); most studies have used this measure in infants,

- 2 however, as a marker of endocrine environment during development. It is important to consider
- 3 general size, in addition to sex, in the evaluation of AGD, for example by incorporating birth weight
- 4 or length (e.g., calculation of "anogenital index" by dividing anogenital distance by weight). With
- regard to reproducibility of this measure, a low degree of between-observer variability was found 5
- 6 using a standardized protocol and trained observers (Romano-Riquera et al., 2007; Salazar-
- 7 <u>Martinez et al., 2004</u>). Because of the importance of size and age in the interpretation of this
- 8 measure, EPA has greater confidence in studies with measures taken at birth or over a narrow age
- 9 range and lesser confidence in studies among a group spanning a larger age range.
- 10 Gender-related behaviors, as measured by the Pre-School Activities Inventory (Golombok
- 11 and Rust, 1993) or other scales, has been examined in relation to direct or indirect measures of
- 12 fetal testosterone levels, including studies of DIBP. This outcome measure has been examined in
- 13 studies of relatively rare genetic conditions (e.g., congenital adrenal hyperplasia and complete
- 14 androgen insensitivity syndrome), as well as in studies focusing on the normal variability seen in
- 15 the general population (reviewed in Hines, 2006). EPA will consider evidence pertaining to the
- 16 reliability and validity of the Pre-School Activities Inventory in its evaluation of studies using this
- 17 scale.

18 Male and Female Reproductive Outcomes

19 The DIBP literature includes studies of reproductive and gonadotropin hormone levels in 20 men and studies of semen parameters that can be indicative of reduced fertility. The details of the laboratory procedures, including information on the basic methods, level of detection, and 21 22 coefficient of variation, are important considerations for hormone assays and measures of semen 23 parameters. The World Health Organization (WHO) laboratory methods for analysis of sperm 24 counts and semen parameters (see, for example, WHO, 1999) are generally recognized as standards 25 in this field. EPA will consider studies that reference these methods, regardless of which revision 26 used, to be reliable measures.

- 27 Much of the focus of the research on male steroidal and gonadotropin hormones in the DIBP 28 database concerns testosterone. One issue with respect to these measures is the estimation method 29 used for free testosterone. Based on the analysis by Vermeulen et al. (1999). EPA will consider 30 estimates based on total testosterone divided by immunoassay-derived sex-hormone binding
- 31 globulin (SHBG) levels to be most reliable.
- 32 The DIBP literature also includes studies of reproductive hormones in women. In addition 33 to the general considerations regarding hormone assays noted above, timing within a menstrual 34 cycle for studies of pre- and peri-menopausal women, and timing with respect to gestational age for 35 studies of women during pregnancy, are also be an important considerations for interpretation of 36 reproductive hormone concentrations.
- 37 Another female reproductive outcome included in the DIBP literature is endometriosis. 38 Endometriosis can be symptomless, or can lead to surgical intervention; it is often diagnosed as 39 part of a work-up for infertility. Variability in clinical presentation and in access and use of health

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

1 care services present considerable challenges to conducting epidemiological studies of this 2 condition (Holt and Weiss, 2000). Confirmation of "case" and "control" status (i.e., presence or 3 absence of endometriosis) by ultrasound or clinical evaluation is recommended to reduce outcome 4 misclassification, and representation of the source population should be carefully considered. 5 Infertility is generally defined clinically and for research purposes as the inability to 6 conceive a clinically-recognized pregnancy after 12 months of intercourse of regular frequency 7 without use of contraceptives. Fecundity or fecundability are terms for the capacity for 8 reproduction. "Time to pregnancy" (i.e., the number of cycles of unprotected intercourse before 9 conception) has been used as a measure of fecundability in studies of environmental and 10 occupational exposures (Baird et al., 1986; Baird and Wilcox, 1985). Time to pregnancy is a 11 measure of a couple's fecundability, incorporating effects that can be manifested through the male 12 or female (or both). Considerations in time to pregnancy studies include the source of data (i.e., 13 retrospective or prospective designs) and incorporation of information on "non-pregnancy

14 planners" (<u>Weinberg et al., 1994</u>).

15 Timing of Male and Female Puberty, and Conditions of Unusual Pubertal Development

Pubertal development in humans is often assessed using timing of peak height velocity
("growth spurt") and secondary markers of sexual development. Secondary markers for females
include breast development (thelarche) and pubic hair development (pubarche), and age at first
period (menarche). Secondary markers for males include gonadal development (gonadarche) and
pubic hair development, and age at first sperm emission (spermarche).

Evaluation of breast, pubic hair, and gonadal development is frequently performed using the Tanner stages (Marshall and Tanner, 1970, 1969), which places the individual in one of five stages, ranging from pre-pubertal (stage 1) to adult maturation (stage 5). However, the process of this staging is not straightforward, and is most reliable when performed by trained personnel (rather than by the individual or a parent, for example) (Slough et al., 2013; Schlossberger et al.,

26 <u>1992</u>; <u>Espeland et al., 1990</u>). Age at menarche is considered to more reliable when assessed via

self-report (Koprowski et al., 2001), although reliability may decrease with increasing time since
menarche (Cooper et al., 2006). Additionally, hormone levels may sometimes be used to evaluate

pubertal development. Individuals may vary widely in the timing of these developmental

30 milestones.

31 Several clinical syndromes are known to disrupt the timing and order of markers of 32 pubertal development. Considerations in the diagnosis of either precocious or delayed puberty 33 include the diagnostic criteria used and the source of the information (e.g., whether collected from 34 medical records or from self- or parental report). For females, precocious puberty is usually 35 defined as the onset of puberty before the age of 8 years, while delayed puberty is usually defined 36 as the lack of pubertal development by the age of 13 years (Marshall and Tanner, 1969); 37 corresponding ages in males are before the age of 9 years for precocious puberty and lack of 38 pubertal development by the age of 14 years for delayed puberty (Marshall and Tanner, 1970). 39 Clinical evaluation would involve hormone assays to distinguish between gonadotropin dependent

This document is a draft for review purposes only and does not constitute Agency policy.

2 - 22

1 ("central"), gonadotropin independent ("peripheral"), or a combination of both (<u>Traggiai and</u>

2 <u>Stanhope, 2003</u>) forms of these conditions.

3 Pregnancy-Related Outcomes

4 Infant birth weight and gestational age are two outcomes commonly used in reproductive 5 epidemiology studies. EPA considers analyses of the various indices for both outcomes (fetal 6 growth and gestational age) to be informative with respect to hazard identification, but will 7 consider each separately as they address different issues. Gestational duration can be measured as 8 a continuous outcome or dichotomous outcome such as preterm birth. Preterm births include 9 infants delivered earlier than 37 gestational weeks, and those delivered earlier than 32 gestational 10 weeks are classified as very preterm births. Different measures of fetal growth restriction are often 11 examined in epidemiological studies. In addition to the continuous measure of birth weight, 12 another commonly used measure of fetal growth restriction is the categorical variable of low birth 13 weight (defined as <2,500 g). Small for gestational age (defined as birth weight less than the 10th 14 percentile for the gestational birth weight distribution) is considered a better measure of fetal 15 growth rate as it takes into consideration gestational duration, and would be preferred over a 16 measure of birth weight in a study that includes preterm births. Birth weight and gestational 17 duration can also be examined as continuous variables, often in analysis that excludes preterm or 18 low birth weight births, so that the focus of the analysis is on variability within the "normal" range. 19 EPA considers birth weight obtained from medical records to be a reliable source as this is a 20 very accurate and precise measurement. Although more prone to measurement error than birth 21 weight measures, gestational age can be estimated from several approaches. Some of these include 22 ultrasonography, estimates based on date of last menstrual period based on maternal recall, or 23 from clinical examination based on antenatal or newborn assessments (which may include an 24 ultrasound). Menstrual dating of gestational age dependent on maternal recall of the last menstrual 25 period can be subject to considerable measurement error in some cases, so ultrasonography-based estimates may be considered more accurate (Savitz et al., 2002; Taipale and Hillesmaa, 2001). 26

27 Immune-Related Outcomes: Allergy and Asthma

Skin prick testing is a standard method for assessing atopy (allergic disease) used in some 28 29 epidemiologic studies. Other studies use an assessment protocol based on reported history of 30 symptoms (e.g., rhinitis, hay fever) or specific types of allergies. These can be considered 31 complementary types of measures: skin prick tests provide information on a defined set of 32 potential antigens to which a person may be exposed, and symptom-based evaluations provide 33 information on experiences of individuals and the variety of exposures they encounter. Studies 34 comparing questionnaire responses with skin prick tests in children have reported relatively high 35 specificity (89–96%) and positive predictive value (69–77%) for self-reported history of pollen or 36 pet dander allergy or for answers to a combination of questions incorporating itchy eyes with nasal 37 congestion in the absence of a cold or flu (Braun-Fahrländer et al., 1997; Dotterud et al., 1995). The 38 validity was somewhat lower for a more restricted set of questions (nasal congestion in the absence

1 of a cold or flu; specificity 83%, positive predictive value 52%) (<u>Braun-Fahrländer et al., 1997</u>).

- 2 Based on these data, EPA considers allergy history based only on rhinitis symptoms to have a
- 3 greater likelihood of outcome misclassification compared with those based on a combination of
- 4 symptoms.

5 Epidemiologic studies of asthma typically use a questionnaire-based approach to define 6 asthma based on symptoms relating to wheezing episodes or shortness of breath, reported history 7 of asthma attacks, or use of asthma medication, usually for a period defined as "current" or in the 8 past year. Much of this work is based upon the American Thoracic Society questionnaire (Ferris, 9 1978) or subsequent instruments that built upon this work, including the International Society of 10 Arthritis and Allergies in Children Questionnaire and the European Community Respiratory Health Survey. These questionnaire-based approaches have been found to have an adequate level of 11 12 specificity and positive predictive value for use in etiologic research (Ravault and Kauffmann, 2001; 13 Pekkanen and Pearce, 1999; Burney et al., 1989; Burney and Chinn, 1987). EPA considers 14 outcomes defined over a recent time period (e.g., symptoms in the past 12 months) to be more 15 relevant within the context of concurrent exposure measurements compared with outcomes 16 defined over a lifetime (e.g., ever had asthma).

17 Neurodevelopment

With respect to neurodevelopmental outcomes, a major consideration is the assessment
tool(s) used by the study investigators; details of the assessment method, or references providing
this information, should be provided. In addition, EPA also looks for discussion of (or reference to)
validation studies and the appropriateness of the tool for evaluation in the specific study population
(e.g., age range, language).

23 Thyroid

24 Thyroid-related endpoints examined in epidemiological studies of DIBP include thyroid
25 hormones (triiodothyronine, T3, and thyroxine, T4) and thyroid stimulating hormone (TSH) (or
26 thyrotropin) produced by the pituitary.

As with other hormone assays, the details of the laboratory procedures, including information on the basic methods, limit of detection, and coefficient of variation, are important considerations for the hormone assays. Thyroid hormones are generally measured in serum, although they may also be measured in dried blood spots, such as are collected from newborn infants in screening for congenital hypothyroidism. Studies in older age groups have also shown a very high correlation (r = 0.99) between thyroid hormone levels measured in dried blood spots and levels in serum (Hofman et al., 2003).

- With respect to thyroid hormones, time of day and season of sampling are two main
 potential sources of variability. For example, serum TSH measured shortly after midnight may be
- as much as twice as high as the value measured in late afternoon (<u>Brabant et al., 1991</u>; <u>Weeke and</u>
- 37 <u>Gundersen, 1978</u>). The evidence with respect to seasonal variability is mixed (<u>Plasqui et al., 2003</u>;
- 38 <u>Nicolau et al., 1992; Simoni et al., 1990; Behall et al., 1984; Postmes et al., 1974</u>) and this effect is

2 whether they are also related to DIBP (i.e., whether DIBP levels vary diurnally or seasonally). If this 3 is the case, failure to address these factors in the design or analysis could result in confounding of 4 the observed association, with the direction of this bias determined by the direction of the 5 association between these factors and DIBP. If this is not the case, the lack of consideration of time 6 of day or seasonality would result in greater variability in the hormone measures, and would thus 7 result in more imprecise (but not biased) estimates was located. EPA has not found studies 8 examining seasonal variation in DIBP levels. With respect to variability relating to time of day, as 9 noted previously, one study of 139 pregnant women in Puerto Rico reported lower concentrations 10 of specific gravity-adjusted MIBP in samples collected from 9 am to noon (geometric mean of 9.4) 11 compared with samples collected in early morning, early afternoon, or evening (geometric means of

likely to be smaller than that of time of day. The impact of these sources of variation will depend on

- 12 13–14) (<u>Cantonwine et al., 2014</u>). Based on these data, EPA has greater confidence in thyroid
- 13 hormone studies that consider time of sample collection in the analysis, but recognizes the limited
- 14 nature of the available data pertaining to this issue.

15 Obesity

1

- Most of the studies of obesity measures in the DIBP database are based on body mass index
 (BMI, calculated as kg/m²) or waist circumference using measurements taken as part of the data
- 18 collection protocol. BMI is highly correlated with body fat, and standardized cut-points have been
- 19 established for characterization of "normal" (BMI between 18.5 and 24.9 kg/m²), "overweight"
- 20 (BMI between 25.0 and 29.9 kg/m²) and "obese" (BMI \ge 30.0 kg/m²) categories. Waist
- 21 circumference is also highly correlated with body fat, and is a more direct measure of abdominal
- 22 obesity. EPA notes that use of self-reported weight (e.g., report of pre-pregnancy weight) would
- 23 not be considered to be as reliable as actual measurements.

24 Diabetes and Measure of Insulin Resistance

- 25 In the DIBP database, diabetes has been assessed by a variety of biomarkers of glucose and 26 insulin and by self-report of diabetes diagnosis. Oral glucose tolerance testing and glycosolated 27 hemoglobin (HbA1c) are used clinically and in epidemiological research (Selvin et al., 2011). Self-28 report of prevalent diabetes can have high sensitivity and specificity in comparison to diagnosed 29 diabetes based on validated medical record data (Oksanen et al., 2010; Leikauf and Federman, 30 2009). The biomarker-based classifications, however, offer an added advantage of being able to 31 include undiagnosed disease. EPA will consider these points in assessing the reliability and validity 32 of the diabetes measures used in the studies. None of the currently available studies assessed 33 diabetes through cause of death data; sensitivity of diabetes assessed using cause of death data is 34 low, even if underlying and other contributing cause of death fields are included (Cheng et al., 35 2008).
- Insulin resistance, a marker of diabetes risk, can be measured using the homeostatic model
 assessment (HOMA) method, a physiologically-based structural model, using fasting glucose and
 insulin or C-peptide concentrations. HOMA is a validated tool for the estimation of insulin

1 resistance in epidemiology studies, and requires a single measurement of fasting glucose and

2 insulin (<u>Wallace et al., 2004</u>). Although the mean of three samples taken at 5-minute intervals

3 results in a more precise estimate, insulin resistance estimated using a single baseline

4 measurement is well correlated with that using the mean of three measurements when used to

5 estimate a group mean. Therefore, EPA does not consider the use of a single measurement as an

6 input to the HOMA model to be a limitation.

7 Cancer

8 With respect to studies of cancer, EPA considers the source of the outcome data (e.g., cause 9 of death data, hospital cancer registry data, hospital discharge data, histopathology reports) in its 10 evaluation of the accuracy of the data. An additional issue is the validity of mortality data as a 11 representation of cancer incidence; mortality data for cancer types with a high survival rate may 12 underrepresent disease incidence, require additional considerations with respect to determining 13 appropriate time windows of exposure, and may lead to biased risk estimates if survival is related 14 to exposure.

15 2.3.4. Confounding

16 The general considerations for evaluating issues relating to potential confounding include 17 consideration of which factors may be potential confounders (i.e., those which are strongly related 18 to both the exposure and the outcome under consideration, and are not intermediaries on a causal 19 pathway), adequate control for these potential confounders in the study design or analysis, and 20 where appropriate, quantification of the potential impact of mismeasured or unmeasured 21 confounders. Uncontrolled confounding by factors that are positively associated with both the 22 exposure (e.g., DIBP) and health endpoint of interest, and those that are inversely associated with both exposure and health endpoint, will result in an upward bias of the effect estimate. 23 24 Confounding by factors that are positively associated with exposure and inversely associated with 25 the health endpoint (or vice versa) will result in a downward bias of the effect estimate.

26 Potential Confounding by Other Phthalates

27 Few studies have reported results of analyses evaluating the correlation between MIBP and 28 metabolites of other phthalates. In an analysis conducted by EPA of 5,109 samples from the 29 2003–2008 National Health and Nutrition Examination Survey (NHANES) participants aged ≥ 6 30 years, the pairwise Spearman correlation coefficient between MIBP and MEP (the primary 31 metabolite of DEP) was low (0.33). A more moderate correlation was seen with the DEHP 32 metabolites (correlations of approximately 0.5); higher correlations were seen with MBzP (the primary metabolite of BBP, correlation coefficient = 0.58) and MBP (the primary metabolite of DBP; 33 34 correlation = 0.72). Similar or somewhat lower correlations were seen between MIBP and other 35 phthalate metabolites in a small study (n = 45) of men seen in an infertility clinic (Wirth et al., 36 2008), in 319 pregnancy women (Whyatt et al., 2012), and in 600 reproductive age women in a 37 study of endometriosis (Buck Louis et al., 2013). EPA will evaluate the potential for confounding by

examining the similarity of the results seen with different metabolites. Thus, for example, lack of
 adjustment for mono-benzyl phthalate (MBzP) would not be considered a limitation in a study in

3 which an association was seen with MIBP that was not seen with MBzP; however this lack of

4 adjustment would be considered a limitation if an association of similar or higher magnitude was

5 seen for both of metabolites.

6 Potential Confounding by Demographic Factors

7 Age, race/ethnicity, and sex are considered important explanatory factors for most types of 8 outcomes measured in epidemiological research. In NHANES 2009–2010 data, urinary MIBP levels 9 decreased with age (geometric means of 13.2, 8.63, and 7.45 μ g/g-creatinine, respectively, in ages 10 6–11, 12–19 and \geq 20 years) (<u>CDC, 2013</u>). Concentrations were lower levels in males compared with females (geometric means of 6.99 and 9.05 μ g/g-creatinine, respectively, in males and 11 12 females), and variability by ethnicity was also observed, with lower levels in non-Hispanic whites (geometric mean of 7.12 μ g/g-creatinine) compared with non-Hispanic blacks and Mexican 13 14 Americans (geometric means of 10.1 and 9.27 μ g/g-creatinine, respectively). EPA will consider 15 these differences in assessing the potential influence of demographic factors on observed effect 16 estimates for DIBP.

17 Potential Confounding by Other Factors

Some of the health effects under consideration may have strong associations with other risk
factors. For example, smoking is associated with increased risk of low birth weight and preterm
births, and with infertility. Abstinence time is strongly related to sperm concentration measures.
In evaluating the potential for confounding by any of these factors, EPA will review evidence
pertaining to the strength and direction of its association with DIBP (or its metabolites).

23 2.3.5. Data Analysis

The general considerations for evaluating issues relating to data analysis include adequate
 documentation of statistical assumptions and analytic approach (including addressing skewness of
 exposure or outcome variable and shape of exposure-response), consideration of sample size and
 statistical power, and use of appropriate statistical methods for the study design.

28 One other issue, specific to much of the DIBP literature, concerns the optimal approach to 29 addressing urinary volume or dilution in the analysis of spot urine or first morning void samples. 30 Options include use of creatinine- or specific gravity-adjusted metabolite concentrations, or use of 31 unadjusted concentrations. Although use of some kind of correction factor has been advocated for 32 studies of obesity (Goodman et al., 2014), a simulation study reported that creatinine-adjusted 33 exposure measures may produce biased effect estimates for outcomes that are strongly related to 34 factors affecting creatinine levels, of which obesity is a prime example (Christensen et al., 2014a). 35 EPA recognizes the lack of consensus at this time, as well as the need for continued research into 36 the potential bias introduced by different analytic approaches. Based on current understanding of 37 this issue, EPA prefers results using unadjusted concentration for outcomes strongly related to

> This document is a draft for review purposes only and does not constitute Agency policy. 2-27 DRAFT—DO NOT CITE OR QUOTE

- 1 creatinine levels; for other outcomes, EPA does not have a basis for preferring one type of analysis
- 2 over another.

Table 2-8. General and outcome-specific considerations for DIBP study evaluation

General considerations				
Study population	 Study population and setting: geographic area, site, time period, age and sex distribution, other details as needed (may include race/ethnicity, socioeconomic status) Recruitment process; exclusion and inclusion criteria, knowledge of study hypothesis; knowledge of exposure and outcome Participation rates: total eligible; participation at each stage and for final analysis group and denominators used to make these calculations Length of follow-up, loss to follow-up Comparability: participant characteristic data by group, data on non-participants 			
Exposure	 Biological matrix or target tissue/organ (e.g., urine, serum, semen, breast milk) Level of detection (LOD) or level of quantitation (LOQ) Exposure distribution (e.g., central tendency, interquartile range), proportion < LOD 			
Analysis	 Consideration of data distribution including skewness of exposure and outcome measures Consideration of influence of "tails" in analysis based on continuous exposure measure Consideration of analytic approaches exploring different shapes of exposure-response Consideration of values below LOD or LOQ Consideration of creatinine or other approach to adjust for urine volume. Presentation of effect estimates, rather than statement regarding presence or absence of statistical significance 			
	Outcome-specific considerations			
Sexual differentiation Measures	 AGD: protocol, training procedures, standardization and inter-rater reliability Cryptorchidism: definition Gender related play behavior: reliability and validity of measurement scale 			
Consideration of confounding	 AGD: variability by size (e.g., birth weight), sex, age; temporal trends in DIBP exposure if study spans several years and includes a wide age range 			
	Cryptorchidism, preterm birth			
Relevant exposure time window(s)	• In utero for outcomes assessed in infancy; for acquired cryptorchidism, other time window(s) during childhood may also be relevant			

Type of assay				
 Sensitivity/detection limits, coefficient of variation; number of samples 				
below LOD				
Age, day or phase of menstrual cycle (if cycling)				
Up to 6 months preceding hormone sample collection				
• Type of assay (e.g., WHO protocol)				
 Age, smoking, BMI, abstinence time (consider if these are related to exposure) 				
Up to 6 months preceding semen sample collection				
Definition, source of data				
 Age, smoking, alcohol use, heavy metal exposure, radiation time (consider if these are related to exposure) 				
Time preceding and during attempt to become pregnant				
• Source of data (e.g., self-report, physician assessment)				
 Age, sex, ethnicity, body size, nutritional status (consider if these are related to exposure) 				
 In utero? Up to 12 months preceding transition from one stage to another stage? 				
 Source of data and estimation procedure (ultrasound; last menstrual period or clinical assessment) 				
 Smoking, pregnancy complications, assisted reproduction technologies (consider if these are related to exposure) 				
• In utero				
• Source of data (e.g., medical records, birth certificate)				
 Gestational age, maternal age, ethnicity, nutritional intake, smoking, maternal height/BMI, (consider if these are related to exposure) 				
• In utero				
 Number of allergens used in skin prick testing or allergen-specific IgE assay; sensitivity/specificity of specific questions used in history assessment 				
• Age, family history (consider if these are related to exposure)				

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

]	preceding outcome assessment
Neurobehavioral Measures	• Standardized assessment tool, validation studies for specific study population (e.g., age group, geographic location)
	Blinding of assessor to exposure
Consideration of confounding	Age, sex, socioeconomic status
Relevant exposure time window(s)	In utero; early childhood
Thyroid	Assay used and evidence from validation studies, if available
Measures	 Sensitivity/detection limits, coefficient of variation; number of samples below LOD
	 Time of day and season when samples for thyroid hormone (and TSH) collected
Consideration of confounding	• Age, sex, smoking, iodine, radiation exposure (consider if these are related to exposure)
Relevant exposure time window(s)	• Varies by lifestage (i.e., infants, children, adults)
Obesity Measures	• Source of data (e.g., measured or self-reported weight and height)
Consideration of confounding	 Age, sex, ethnicity, caloric intake, physical activity (consider if these are related to exposure)
Relevant exposure time window(s)	Not established (likely to be more than one, including in utero)
Diabetes and insulin resistance	
Measures	 Source of data (e.g., biomarkers of insulin or glucose, medical records, self- report)
Consideration of confounding	Age, sex, ethnicity
Relevant exposure time window(s)	Not established (likely to be more than one, including in utero)

1

2

3

4

2.4. STUDY CHARACTERISTICS THAT WILL BE CONSIDERED IN THE FUTURE EVALUATION AND SYNTHESIS OF THE CRITICAL EXPERIMENTAL STUDIES FOR DIBP

Beyond the initial methodological screening described above in Section 2.2.2,
methodological aspects of a study's design, conduct, and reporting will be considered again in the
overall evaluation and synthesis of the pertinent data that will be developed for each health effect.
Some general questions that will be considered in evaluating experimental animal studies are

9 presented in Table 2-9. These questions are, for the most part, broadly applicable to all

10 experimental studies.

1 2

Table 2-9. Questions and relevant experimental information for the evaluation of experimental animal studies

Methodological feature	Question(s) considered
Test animal	Based on the endpoint(s) in question, are concerns raised regarding the suitability of the species, strain, or sex of the test animals on study?
Experimental setup	Are the timing, frequency and duration of exposure, as well as animal age and experimental group allocation procedures/group size for each endpoint evaluation, appropriate for the assessed endpoint(s)?
Exposure	Are the exposure conditions and controls informative and reliable for the endpoint(s) in question, and are they sufficiently specific to the compound of interest?
Endpoint evaluation procedures	Do the procedures used to evaluate the endpoint(s) in question conform to established protocols, or are they biologically sound? Are they sensitive for examination of the outcome(s) of interest?
Outcomes, data, and reporting	Were data reported for all pre-specified endpoint(s) and study groups, or were any data excluded from presentation/analyses?

Note: "Outcome" refers to findings from an evaluation (e.g., steatosis), whereas "endpoint" refers to the evaluation itself (e.g., liver histopathology).

7 Evaluation of some specific methodological features identified in Table 2-9 such as 8 exposure, is likely to be relatively independent of outcome. Other methodological features, in 9 particular those related to experimental setup and endpoint evaluation procedures, are generally 10 outcome specific (i.e., reproductive and developmental toxicity). In general, experimental animal 11 studies will be compared against traditional assay formats (e.g., those used in guideline studies), 12 with deviations from the protocol evaluated in light of how the deviations could alter interpretation 13 of the outcome in question. A full evaluation of all critical studies will be performed as part of the 14 critical review and synthesis of evidence for hazard identification for each of the health endpoints 15 identified in the evidence tables presented in Section 3.

16

1

2

3

4

5

3. PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS

3.1. DATA EXTRACTION FOR EPIDEMIOLOGICAL AND EXPERIMENTAL STUDIES: PREPARATION OF PRELIMINARY EVIDENCE TABLES

6 The evidence tables present data from studies related to a specific outcome or endpoint of 7 toxicity. At a minimum, the evidence tables include the relevant information for comparing key 8 study characteristics such as study design, exposure metrics, and dose-response information. 9 Evidence tables will serve as an additional method for presenting and evaluating the suitability of 10 the data to inform hazard identification for DIBP during the analysis of hazard potential and utility of the data for dose-response evaluation. For each critical study selected, key information on the 11 12 study design, including characteristics that inform study quality, and study results pertinent to 13 evaluating the health effects from subchronic and chronic oral exposure to DIBP are summarized in 14 preliminary evidence tables. 15 Epidemiological studies are presented first where each study per table is listed in reverse 16 chronological order. Animal studies are then presented where each study per health endpoint is 17 presented in alphabetical order by study author, followed by species and strain. Most results are presented as the percent change from the control group; an asterisk (*) indicates a result that has 18 19 been calculated and reported by study authors to be statistically significant compared to controls 20 (p < 0.05). Unless otherwise noted in a footnote, doses presented in the animal evidence tables 21 were those reported by the study authors. 22 The information in the preliminary evidence tables is also displayed graphically in 23 preliminary exposure-response arrays. In these arrays, a significant effect (indicated by a filled 24 circle) is based on statistical significance by the study authors. The complete list of references 25 considered in preparation of these materials can be found on the Health and Environmental Research Online (HERO) website at (https://hero.epa.gov/DIBP and 26 27 http://hero.epa.gov/phthalates-humanstudies).

28

1 **3.2. EPIDEMIOLOGICAL STUDIES**

2 3.2.1. Sexual Differentiation Measures

3 4

Table 3-1. Evidence pertaining to DIBP and sexual differentiation effects in humans

Reference and study design	Results		
Anogenital distance (AGD)			
Swan (2008) (United States; Minnesota, Missouri, California) Population: 106 boys from birth cohort study (Study for Future Families), 2000–2002, mean age 12.8 mo (0–36 mo) Outcome: AGD (to posterior genitalia) measured at 0–36 mo (mean 70.4 mm, 7.1 mm/kg) Exposure: Maternal urine sample, 3 rd trimester MIBP in urine (ng/mL): Median 75 th percentile Unadjusted 2.5 5.1 Analysis: Regression analysis using mixed model adjusting for age and weight percentile Related references: Swan et al. (2005) (exposure data and analysis of smaller sample size with less robust method of adjustment for variation by size)	Percent change in AGD per interquartile increase in MIBP concentration (<i>p</i> -value) MIBP –3.5 (0.097)		
Cryptorchidism or testicular position			
Swan (2008) (United States; Minnesota, Missouri, California) Population: 106 boys from birth cohort study (Study for Future Families), 2000–2002, mean age 12.8 mo (0–36 mo) Outcome: Incomplete testicular descent assessed at clinical exam (10% prevalence) Exposure: Maternal urine sample, 3 rd trimester MIBP in urine (ng/mL): Median 75 th percentile Unadjusted 2.5 5.1 Analysis: Logistic regression, adjusting for age and weight percentile Related references: Swan et al. (2005) (exposure data)	MIBP reported as not associated with testicular position (quantitative results not reported)		

Reference and study design	Results			
Gender-related play	•			
Swan et al. (2010)(United States; Minnesota, Missouri, California, Iowa)Population:145 children from birth cohort study (Study for Future Families), 2000–2002 and 2002–2005 (Iowa), ages 4–7 yrs; second follow-up Outcome: Gender-specific play based on Pre-School Activities Inventory (24 items completed by parent or caregiver; subscores of male-oriented items and female-oriented items and a composite score consisting of male summation minus the female summation scores)Exposure:Maternal urine sample, 3 rd trimester Unadjusted MIBP in urine (ng/mL): Median 75 th percentile Boys 2.4 5.1 Girls 2.8 5.0Analysis:Regression analysis using Generalized Linear Models, considering creatinine, sex and age of child, maternal age, parental education, number of same and opposite sex siblings, ethnicity, clinic location, and parental attitude as potential covariates Related references:Swan et al. (2005)(exposure data)	Regression coefficient (95% CI) for pre-school activities index scores and log-transformed MIBP (adjusted for child's age, mother's age, mother's education, parents' attitude toward boy's play, and interaction between education and attitude; negative value indicates less masculine play behavior with higher metabolite level) Boys Girls Masculine –1.65 (–4.57, 1.28) 1.04 (–1.75, 3.82) Composite –4.53 (–8.12, –0.94) 0.38 (–3.86, 4.63)			

CI = confidence interval; MIBP = monoisobutyl phthalate

3.2.2. Male Reproductive Effects in Humans 1

2 3

Table 3-2. Evidence pertaining to DIBP and semen parameters or infertility in adult men or couples

Reference ^a and study design	Results		
Kranvogl et al. (2014) (Slovenia) Population: 136 men from couples seeking	Spearman correlation coefficient, MIBP and sperm parameters:		
infertility treatment (mean age 36.2 yrs, range 24–54 yrs), 2012	Sperm concentration -0.044		
Outcome: Semen analysis	Sperm motility -0.075		
Exposure: Urine sample, collected at same time as semen sample MIBP in urine: Median Maximum	(p > 0.05 for both parameters)		
Unadjusted (µg/L) 21.6 161.8 Cr-adjusted (µg/g Cr) 20.8 119.2 Analysis: Spearman correlation			
Joensen et al. (2012) (Denmark) Population: 881 men from general population, assessed at military conscript exam*, 2007–2009, median age 19.1 yrs (5 th –95 th percentile: 18.4–22.0 yrs) Outcome: Semen analysis Exposure: Urine sample, collected at same time as semen sample MIBP in urine (ng/mL): Median 95 th percentile Unadjusted 58 173 Analysis: Linear regression, considering age, BMI, smoking, alcohol consumption, ethnicity, BMI squared, in utero exposure to tobacco smoke, previous or current diseases, recent fever, recent use of medication, abstinence time, and time from ejaculation to analysis as potential covariates *As reported by <u>Ravnborg et al. (2011)</u>	Results for individual phthalate metabolites (including MIBP) reported as "few significant associations" with sperm volume, count, or percentage progressively motile sperm (quantitative results not reported). Sperm concentration analysis adjusted for abstinence time (volume, concentration, and count); sperm motility analysis adjusted for time from ejaculation to analysis (progressively motile); analysis of percent of morphologically normal sperm was unadjusted		
Wirth et al. (2008) (United States, Michigan) Population: 45 male partners seen in infertility clinic, time period not reported; mean age 34 yrs Outcome: Semen analysis Exposure: Urine sample, collected at same time as semen sample (all between 7 and 11 am) MIBP in urine (ng/mL) (percentile): Median 75 th percentile 95 th percentile 5.8 10.0 17.9 Analysis: Dichotomized outcomes (above and below WHO reference values), MIBP dichotomized at median; age, education (three levels), income (three levels), race, BMI (three levels), current smoking status, and alcohol use (two levels) considered as potential confounders;	The combined measure for MIBP and MBP was not associated with any sperm parameter, nor was MIBP when analyzed individually (data not shown)		

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference ^a and study design	Results		
specific gravity also included in all models			
Infertility			
Buck Louis et al. (2014)(United States; Michigan and Texas)Population:501 couples discontinuing contraception and attempting to achieve pregnancy; recruited from 16 counties using population sampling; women's mean age 30.0 yrs, men's mean age 31.8 yrs; 2005–2009Outcome:Time to pregnancy as assessed by diaries recording intercourse and menstruation, home-fertility monitoring to detect ovulation, and home pregnancy testsExposure:Urine samples from both partners, collected at enrollment (beginning of pregnancy attempt)Unadjusted MIBP in urine (ng/mL) among couples achieving pregnancy: Geometric mean (95% CI)Women5.11 (4.58–5.70) Men 3.44 (3.09–3.83)Analysis:Fecundability OR calculated using Cox models, adjusting for variables shown in results column	Fecundability OR (95% CI) for increase in log-transformed MIBP scaled by standard deviation (adjusted for female age, difference in couple's ages, research site, and both partners' urinary creatinine, BMI, and serum cotinine; in addition, results for exposure in each partner adjusted for exposure in the other partner, and models accounted for left truncation or time off contraception) Women 0.97 (0.80, 1.18) Men 0.91 (0.76, 1.09)		

1 2 3

BMI = body mass index; MBP = monobutyl phthalate; OR = odds ratio; WHO = World Health Organization

Table 3-3. Evidence pertaining to DIBP and reproductive hormones in adult
men

Reference and study design	Results
Joensen et al. (2012) (Denmark) Population: 881 men from general population, assessed at military conscript exam*, 2007–2009, median age 19.1 yrs (5 th –95 th percentile: 18.4–22.0 yrs) Outcome: Serum steroidal and gonadotropin hormones Exposure: Urine sample, collected at same time as serum sample for hormone analysis MIBP in urine (ng/mL): Median 95 th percentile Unadjusted 58 173 Analysis: Linear regression considering age, BMI, smoking, alcohol consumption, time of blood sampling, assay type, ethnicity, BMI squared, in utero exposure to tobacco smoke, previous or current diseases, recent fever, and recent use of medication as potential covariates *As reported by <u>Ravnborg et al. (2011)</u>	Results for individual phthalate metabolites (including MIBP) reported as "few significant associations" with free testosterone, estradiol, SHBG, LH, inhibin-B, or FSH (quantitative results not reported); analyses adjusted for age, BMI, smoking, alcohol consumption, and time of blood sampling (and assay type for inhibin-B only)
Mendiola et al. (2011) (United States; Minnesota, Missouri, California, Iowa, New York) Population: 425 men whose partners enrolled in birth cohort study (Study for Future Families), 1999–2005, mean age 32 yrs Outcome: Serum steroidal and gonadotropin hormones Exposure: Urine sample, collected at same time as serum sample for hormone analysis MIBP in urine (ng/mL) (distribution not reported) Analysis: Pearson correlation of log(10)-transformed MIBP and hormone measures; linear regression considering age, age square, BMI, smoking status, ethnicity, urinary creatinine concentration, time of sample collection, time of collection squared, season, educational level, center, and stressful life events)	Authors reported "little or no association with metabolites of phthalate other than DEHP" [including MIBP] with testosterone, estradiol, SHBG, LH, inhibin-B, or FSH (quantitative results not reported)

3 4 5

DEHP = diethylhexyl phthalate; FSH = follicle-stimulating hormone; LH = luteinizing hormone; MOINP = oxo-(mono-

oxoisononyl) phthalate; SD = standard deviation; SHBG = sex hormone binding globulin

1 3.2.3. Male Pubertal Development in Humans

2 3

Table 3-4. Evidence pertaining to DIBP and the timing of male puberty or sex hormones in boys

Reference and study design	Results			
Ferguson et al. (2014b) (Mexico) Population: 115 boys ages 8–14 yrs from a birth cohort (Early Life Exposure in Mexico to	OR (95% CI) for adrenarche or puberty per interquartile increase in In-transformed MIBP (adjusted for child age, BMI z-score, and urine specific gravity)			
Environmental Toxicants, participants enrolled	Exposure basis			
during first trimester 1994–2004), follow-up initiated in 2010	Tanner stage or			
Outcome: Adrenarche or puberty, based on Tanner staging by physician (pubic hair stage ≥2; genitalia	testicular volume	Maternal urine (prenatal)	Child urine	
hormone level Exposure: Maternal urine sample (n = 107) from third trimester or child's urine sample (n = 113) collected at time of Tanner staging and serum collection Unadjusted MIBP in urine (ng/mL): Median 95 th percentile Maternal sample 1.83 6.64 Child's sample 9.61 36.1	Pubic hair (stage ≥2)	0.29 (0.07, 1.30)	0.76 (0.32, 1.81)	
	Genitalia (stage ≥2)	0.71 (0.37, 1.35)	0.76 (0.39, 1.49)	
	Testicular volume (>3 mL)	1.60 (0.70, 3.65)	2.17 (0.81, 5.82)	
	Percent change (95% CI) in serum hormone level per interquartile increase in In-transformed MIBP (adjusted for urine specific gravity, child age, and BMI z-score)			
onset, adjusting for variables shown in results		Expos	ure basis	
	Serum hormone	Maternal urine (prenatal)	Child urine	
covariates	Testosterone	5.12 (-23.3, 44.0)	-26.2 (-45.6, 0.16)	
	Free testosterone	1.69 (-26.7, 41.1)	-27.9 (-47.8, -0.60)	
	SHBG	5.72 (-5.18, 17.9)	2.20 (-8.41, 14.1)	
	DHEAS	-2.02 (-15.9, 14.1)	3.02 (-11.4, 19.8)	
	Estradiol	-1.94 (-11.2, 8.23)	-12.3 (-20.2, -3.54)	
	Inhibin B	-1.98 (-12.7, 10.1)	2.73 (-8.24, 15.0)	
Mouritsen et al. (2013b) (Denmark) Population: Boys from population-based cohort	Median age (yrs) at development by ΣMIBP + MBP level (evaluation at 11 yrs)			
(COPENHAGEN Puberty Study), 2006–2010; age 11 yrs (53 boys) or 13 yrs (31 boys)		Low	High	
Outcome: Adrenarche or puberty, based on Tanner	Pubarche	12.3	11.0 (<i>p</i> < 0.05)	
staging by physician (pubarche = pubic hair stage ≥ 2	Testicular volum	e >3 mL 11.5	11.1	
and testicular volume >3 mL); serum hormone level Exposure: Urine sample, first morning sample; data reported in <u>Mouritsen et al. (2013a), Supplemental</u>	Median hormone concentration by MIBP + MBP level (evaluation at 11 yrs)			
Material		Low	High	
MIBP + MBP in urine (ng/mL) ^a : Geometric mean Maximum			<0.23	
118 676	2.02	1.61		

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT—DO NOT CITE OR QUOTE

Reference and study design		Results		
(based on larger sample of 84 boys)	Adione (nmol/L)	1.28		1.22
Analysis: Two-tailed Mann-Whitney U-test for comparisons between groups, comparing median hormone levels and pubertal stage in "high" and "low" phthalate groups (based on above or below group mean excretion)	Estradiol (pmol/L)	<18		<18
	FSH (IU/L)	1.28		1.68
	LH (IU/L)	0.28		0.27
	Median age (yrs) at dev (evaluation at 13 yrs)	elopment by	MIBP + ME	3P level
		Low		High
	Pubarche	12.5		12.1
	Testicular volume >3 m	L 11.6		11.6
	Median age (yrs) at development by MIBP + MBP level (evaluation at 13 yrs)			
		Low		High
	Testosterone (nmol/L)	5.1		7.7
	DHEAS (µmol/L)	2.61		3.64
	Adione (nmol/L)	2.96		3.85
	Estradiol (pmol/L)	19		37
	FSH (IU/L)	2.4		2.5
	LH (IU/L)	1.8		1.4
Mieritz et al. (2012) (Denmark)	MIBP concentration (ng	(ng/mL) by group		
Population: 38 boys with pubertal gynecomastia and 190 age-matched controls drawn from 555 boys from population-based cohort (COPENHAGEN		Group 1 (n = 38)	Group 2 (n = 189)	Group 3 (n = 517)
Puberty Study), 2006–2008; ages 6–19 yrs	Median	68.50	73.96	74.88
Outcome: Anthropometry, pubertal stage (pubic	95 th percentile	178.8	199.5	229.1
hair and genital development), presence of gynecomastia, and serum testosterone Exposure: Urine sample, first morning sample MIBP in urine (ng/mL): Median 95 th percentile	Group 1 = boys with palpable gynecomastia Group 2 = boys without palpable gynecomastia (age- matched) Group 3 = boys without palpable gynecomastia (all ages)			
Group 3 74.88 229.1 (boys without gynecomastia, all ages) Analysis: Two-tailed Mann-Whitney U-test for comparisons between groups; linear regression with age adjustment for association with serum testosterone; probit analysis with phthalate concentrations divided in quartiles for analysis of puberty timing	No association betweer puberty or serum testor not reported)			-

^aIn this population at this time, MIBP tended to be present at higher concentrations than MBP; EPA includes these studies in the DIBP tables, but recognizes the exposure misclassification introduced by the use of the summed concentration exposure measure.

DHEAS = dehydroepiandrosterone; EPA = Environmental Protection Agency

3.2.4. Female Pubertal Development in Humans 1

2 3

Table 3-5. Evidence pertaining to DIBP and timing of female puberty or sex hormones in girls

Reference and study design		Res	sults	
Precocious puberty and premature thelarche				
Frederiksen et al. (2012) (Denmark) Population: 24 girls with precocious puberty (n = 13 with central precocious puberty, n = 6 with early	Median (range) (ng/mL) in cases	and controls		s in urine
normal puberty, n = 5 with premature thelarche)				
rom outpatient clinic, 2008–2009 and 184* age-	Controls	puberty		(p-value)
matched controls from population-based cohort (COPENHAGEN Puberty Study), recruited from high schools 2006–2008; age 7.4–9.9 yrs Outcome: Precocious puberty, early normal puberty, or premature thelarche based on Tanner staging by physician Exposure: Urine sample (child's), first morning sample collected at clinical evaluation MIBP and MBP in urine (ng/mL) ^a , controls (analysis based on sum of these two metabolites): Median 95 th percentile MIBP 81 241 MBP 51 153 (based on larger sample of 725 controls)	147 (22–2,195	5) 94 (32	2–383)	(p < 0.01)
Analysis: Urine concentrations in cases and controls compared with Mann-Whitney U test 'Study reports number of controls inconsistently; ext reports 164 controls, while Table 4 reports 184 <u>comenick et al. (2010)</u> (United States, Ohio and Kentucky)			Central precocious	
Population: 28 girls with central precocious		Controls	puberty	(p-value)
ouberty, 28 age- and race-matched controls; all ecruited from pediatric endocrinology clinic, 2005–2008; mean age 7 yrs	Unadjusted (ng/mL)	22.6 ± 7.6	15.4 ± 2.9	(0.77)
Dutcome: Central precocious puberty defined based on clinical standards (appearance of physical characteristics of puberty before 8 yrs of age, with laboratory confirmation of central origin of breast development); no cases had received medical treatment prior to urine sample collection Exposure: Urine sample (child's), collected at clinical evaluation MIBP in urine of controls: Mean \pm SE Unadjusted (ng/mL) 22.6 \pm 7.6 Cr-adjusted (µg/g Cr) 20.2 \pm 4.9 Analysis: MIBP concentrations in cases and controls compared with Wilcoxon rank-sum test	Cr-adjusted (μg/g Cr)	20.2 ± 4.9	16.5 ± 2.1	(0.96)

Reference and study design	Res	ults		
Pubertal development (general population)				
Hart et al. (2013)(Australia)Population:121 girls from birth cohort study(Western Australian Pregnancy Cohort), whose mothers were recruited at 18 wks of gestation, 1989–1991; follow-up at ages 14–16 yrsOutcome:Age at menarcheExposure:Maternal serum samples (n = 123) collected at 18 and 34–36 wks of gestation (combined aliquot from both time periods)MIBP in serum (ng/mL): MedianMetan 90 th percentile 0.16Unadjusted1.776.16Analysis:Correlation between log-transformedMIBP and age at menarche	Authors reported no association between MIBP and age a menarche (quantitative results not reported) Authors reported no correlation between MIBP and serur SHBG, FSH, total testosterone, free androgen index, anti- Müllerian hormone, or inhibin B in adolescents (quantitative results not reported by study authors)			
Mouritsen et al. (2013b) (Denmark) Population: Girls from population-based cohort	Median age (yrs) at developm (evaluation at 10 yrs)	ent by MIBP	9 + MBP level	
(COPENHAGEN Puberty Study), 2006–2010; age 10 yrs (47 girls) and 13 yrs (33 girls) Outcome: Adrenarche or puberty, based on Tanner staging by physician (pubarche = breast stage ≥2 and pubic hair stage ≥2); serum hormone level Exposure: Urine sample, first morning sample; data reported in <u>Mouritsen et al. (2013a), Supplemental</u> <u>Material</u>		Low	High	
	Pubarche (pubic hair stage ≥2)	10.7	11.2	
	Pubarche (breast stage ≥2)	10.6	10.3	
	Median hormone concentration by MIBP + MBP level (evaluation at 10 yrs)			
MIBP + MBP in urine (ng/mL) ^a : Geometric mean Maximum		Low	High	
122 904	Testosterone (nmol/L)	<0.23	<0.23	
(based on larger sample of 84 girls)	DHEAS (µmol/L)	1.1	0.83	
Analysis: Two-tailed Mann-Whitney U-test for comparisons between groups, comparing median	Adione (nmol/L)	2.03	1.29	
hormone levels and pubertal stage in "high" and	Estradiol (pmol/L)	20	22	
"low" phthalate groups (based on above or below group mean excretion)	FSH (IU/L)	1.86	2.25	
	LH (IU/L)	0.06	0.1	
	Median age (yrs) at development by MIBP + MBP level (evaluation at 13 yrs)			
		Low	High	
	Pubarche (pubic hair stage ≥2)	10.7	11.2	
	Pubarche (breast stage ≥2)	10.7	10.5	
	Median hormone concentration by MIBP + (evaluation at 13 yrs)		+ MBP level	
		Low	High	
	Testosterone (nmol/L)	1.1	0.5 (<i>p</i> < 0.05)	
	DHEAS (μmol/L)	2.23	1.27 (<i>p</i> < 0.05)	
	Adione (nmol/L)	6.40	3.91	
This document is a draft for review nurr				

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results			
	Estradiol (pmol/L)		194	131
	FSH (IU/L)		4.9	5.8 (<i>p</i> < 0.05)
	LH (IU/L)		3.8	3.8
Frederiksen et al. (2012) (Denmark) Population: 725 healthy girls ages 5.6–19.1 yrs from COPENHAGEN Puberty Study cohort, recruited from high schools during 2006–2008	Mean age (95% CI) (yrs) at entry into breast stage 2 or pubic hair stage 2, by quartile of ∑MIBP + MBP metabolites:			-
Outcome: Stage of breast or pubic hair development based on Tanner staging by physician; Serum steroid and gonadotropin hormones	∑MIBP + MBP quartile	Breast stage 2 (n = 394)		bic hair stage not reported)
Exposure: Urine sample (child's), collected at time	1 (low)	10.12 (9.61, 10.62)	10.8	3 (10.54, 11.12)
of pubertal stage assessment Unadjusted MIBP and MBP in urine (ng/mL) ^a , all	2	9.97 (9.48, 10.46)	10.9	7 (10.67, 11.28)
725 participants:	3	9.89 (9.40, 10.37)	11.2	2 (10.93, 11.52)
Median 95 th percentile MIBP 81 241	4 (high)	9.79 (9.30, 10.30)	11.54	4*(11.21, 11.88)
MBP 51 153 Analysis: Probit analysis, results verified using Pool-	*Significantly	different from quarti	ile 1; <i>p</i> <	0.05
Adjacent-Violators algorithm	across ∑MIBP	LH, estradiol, and te + MBP metabolite ex ge distribution (quar	kposure g	groups when

^aIn this population at this time, MIBP tended to be present at higher concentrations than MBP; EPA includes these studies in the DIBP tables, but recognizes the exposure misclassification introduced by the use of the summed

concentration exposure measure.

5

1 3.2.5. Female Reproductive Effects in Humans

Table 3-6. Evidence pertaining to DIBP and reproductive hormones in adultwomen

Reference and study design		Results		
Maternal hormones during pregnancy				
Sathyanarayana et al. (2014) (United States; Minnesota, Missouri, California) Population: 180 mothers from birth cohort (Study for Future Families), recruited during pregnancy, 1999–2002 Outcome: Serum hormone levels, samples collected during prenatal clinic visit Exposure: Maternal urine sample, collected during 2 nd or 3 rd trimester	Regression coefficient (95% CI) for change in maternal log-transformed serum hormone level with unit increase in log-transformed MIBP, stratified by sex of fetus			
		Mothers with male fetus (n = 94)	Mothers with female fetus (n = 86)	
MIBP in urine (ng/mL): Median 75 th percentile	Testosterone (total)	-0.03 (-0.18, 0.13)	-0.10 (-0.28, 0.07)	
Unadjusted 2.7 4.85 Analysis: Linear regression, log-transformed MIBP and log- transformed hormone level	Testosterone (free)	-0.03 (-0.20, 0.14)	-0.11 (-0.30, 0.08)	
	Estradiol	0.003 (-0.12, 0.12)	0.03 (-0.14, 0.20)	
Hart et al. (2013) (Australia) Population: 123 mothers from birth cohort (Western Australian Pregnancy Cohort), whose mothers were	Correlation coefficient between log-transformed maternal serum hormone level and quartiles of MIBP in maternal serum			
recruited at 18 wks of gestation between 1989 and 1991 Outcome: Reproductive and gonadotropin hormone levels in maternal serum collected at 18 and 34–36 wks of gestation		At 18 wks of gestation (n = 119)	At 34–36 wks of gestation (n = 114)	
Exposure: Maternal serum samples (n = 123) collected at 18 and 34–36 wks of gestation (combined aliquot from	Androstene- dione (nmol/L)	0.023	-0.060	
both time periods) MIBP in serum (ng/mL):	DHEAS (µmol/L)	-0.042	-0.084	
Median90th percentileMIBP1.776.16	Testosterone (pmol/L)	0.003	-0.101	
Analysis: Correlation between quartiles of serum MIBP and log-transformed hormone levels	SHBG (nmol/L)	0.108	-0.020	
	Free testosterone (pmol/L)	-0.061	-0.063	
	Free testosterone index	-0.051	-0.064	
	p > 0.10 for all cor	rrelations		

4

2

3

Table 3-7. Evidence pertaining to DIBP and gynecological conditions in humans

1 2

Reference and study design	Results		
Endometriosis			
Buck Louis et al. (2013) (United States, California and Utah) Population: 473 women undergoing laparoscopy or laparotomy and 127 population age- and residence-matched	OR (95% CI) for endometriosis per unit increase in In-MIBP, by cohort (adjusted for age, BMI, and creatinine)		
referents, 2007–2009; ages 18–44 yrs; confirmed cases of endometriosis matched to women without endometriosis within each cohort: operative cohort 190 cases, 238 controls; population cohort 14 cases, 127 controls Outcome: Endometriosis confirmed by surgery (operative cohort) or MRI (population cohort) Exposure: Urine sample MIBP in urine (ng/mL), unadjusted: Geometric mean Operative cohort-controls 6.82 Population cohort-controls 7.59 Analysis: Student's t-test or Wilcoxon test for continuous data; logistic regression, adjusting for age, BMI, and	Operative cohort1.02 (0.80, 1.29)Population cohort2.22 (0.98, 5.04)Adjusted OR (95% CI) for endometriosis per unit increase in In-MIBP in operative cohort (sensitivity analysis)Endometriosis stage 3 and 40.96 (0.67, 1.38) (n = 339)Visual/histological confirmed endometriosis (n = 473)1.08 (0.77, 1.51) endometriosis (n = 473)		
data; logistic regression, adjusting for age, BMI, and creatinine; sensitivity analyses conducted restricting cohort to endometriosis stages 3 and 4 diagnoses or visually and histologically confirmed endometriosis, and referent group consisting of women with postoperative diagnosis of normal pelvis	Comparison with women with 1.09 (0.82, 1.46) postoperative diagnosis normal pelvis (n = 320) Note: Concentrations were log transformed and rescaled by their SDs for analysis		
Upson et al. (2013) (United States, Washington) Population: 92 incident endometriosis cases, 195 controls frequency-matched on age, all members of a large health care system and enrolled in Women's Risk of Endometriosis Study, 1996–2001; ages 18–49 yrs Outcome: Endometriosis confirmed by surgery; for each case, reference date assigned by date of first visit for symptoms leading to diagnosis; reference dates randomly assigned to controls based on case distribution Exposure: Urine sample, collected after enrollment	OR (95% CI) for endometriosis by quartile MIBP (adjusted for In-transformed urinary creatinine, age, and reference yr) MIBP quartile (ng/mL) OR (95% CI) 1 (≤0.7) 1.0 (referent) 2 (0.7–1.5) 0.9 (0.4, 2.0) 3 (1.5–3.1) 0.8 (0.3, 2.2) 4 (>3.1) 0.8 (0.3, 2.6)		
(2001–2002) MIBP in urine, controls: Median 75 th percentile Unadjusted (ng/mL) 1.5 3.1 Analysis: Logistic regression (quartiles of exposure), covariates considered based on directed acyclic graph; final model adjusted for variables shown in results column	(trend p-value)(0.84)Adjustment for education, smoking status and alcohol consumption did not alter the results; similar results in analyses based on summation of MIBP and MBP		
Polycystic ovarian syndrome			
Hart et al. (2013) (Australia) Population: 121 girls from birth cohort study (Western Australian Pregnancy Cohort), whose mothers were recruited at 18 wks of gestation between 1989 and 1991; follow-up at ages 14–16 yrs	Correlation coefficient (<i>p</i> -value) between log- transformed MIBP and pubertal development parameter		

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results		
	Uterine volume (mL)	r ≤ 0.20 (<i>p</i> ≥ 0.17)	
	Ovarian volume (cm ³)	r ≤ 0.10 (<i>p</i> ≥ 0.29)	
	Antral follicle count	r ≤ 0.12 ($p ≥ 0.20$)	
	Authors reported no association between MIBI and polycystic ovarian syndrome using either definition (quantitative results not reported).		

1 2 3

PCO = polycystic ovarian morphology; PCOS = polycystic ovarian syndrome

3.2.6. Pregnancy Outcomes in Humans 1

2

Table 3-8. Evidence pertaining to DIBP and pregnancy outcomes in humans

Reference and study design		Resul	lts	
Fetal growth (birth weight, birth length, head circumf	ference)			
Huang et al. (2014b) (China) Population: 207 women delivering at one hospital in Chongqing between 2011 and 2012, aged 18–35 yrs and with no history of tobacco or alcohol	Regression coeffic measurement at I DIBP (µg/L) (adjus	birth per unit i	ncrease in Ir	
use; mean age 28 yrs		Girls		Boys
Outcome: Standard clinical measures at birth	Birth weight (g)	-27 (-90,	36) –	87 (–195, 200)
Exposure: Cord blood sampleDIBP in cord blood (μ g/L)Median75 th percentile95 th percentile	Birth length (cm)	-0.06 (-0.45	, 0.33)	-0.75 (-1.35, -0.15)
All samples 16.7 26.9 114 Analysis: Linear regression, adjusting for variables shown in results column	Head circumference (mm)	-3.85 (-9.47	, 1.76) –2	.76 (–7.62, 2.11)
Philippat et al. (2012) (France) Population: 72 cases with undescended testis or hypospadias, 215 matched controls from two birth cohorts (EDEN and PELAGIE), 2002–2006 Outcome: Standard clinical measurements at birth Exposure: Maternal urine sample, collected between 6 and 19 (PELAGIE) or between 24 and 30 (EDEN) wks of gestation	cient (95% CI) f nd per unit cha /mL) (adjusted gnancy weight al education, p and mode of d rcumference r	nge in In-Mi I for gestatic and height, arity, recruit elivery as po	onal duration, maternal tment center, otential	
MIBP in urine (ng/mL): Median 95 th percentile Measured 45.9 219.0 Standardized* 64.7 365.3	MIBP tertile (µg/L)	Birth weight (g)	Birth length (cm)	Head circumference (cm)
Analysis: Cases and controls combined for this analysis; weighted linear regression using tertiles or	1 (<48.2)	0 (referent)	0 (referent)	0 (referent)
In-transformed urine concentrations, adjusting for variables shown in results column; analysis by tertiles for evaluation of possible non-monotonic	2 (48.2–97.9)	61 (-77, 200)	0.4 (-0.3, 1.1)	-0.1 (-0.6, 0.4)
relationship; analyses corrected for oversampling of malformation cases	3 (≥97.9)	-31 (-190, 129)	0.3 (-0.4, 1.0)	0.2 (-0.5, 0.9)
*Standardized for sampling conditions and gestational age at collection	(trend <i>p</i> -value)	(0.48)	(0.54)	(0.40)
	ln (MIBP)	-44 (-110, 23)	0.0 (-0.3, 0.3)	-0.1 (-0.4, 0.1)
Wolff et al. (2008) (United States, New York City) Population: 382 singleton live births without medical complications from birth cohort (Mt. Sinai Children's Environmental Health study), 1998–2002 Outcome: Standard clinical measurements at birth	with unit increase in In-MIBP (ng/mL) (adjusted for race/ethnicity, infant sex, gestational age at deliv 002 creatinine, prenatal smoking, pre-pregnancy BMI			
Exposure: Maternal urine sample, third trimester	Birth weight (g)		-1	4 (-57, 28)
MIBP in urine (ng/mL): Median 75 th percentile	Birth length (cm)			(-0.19, 0.28)
Unadjusted 6.2 12				(-0.11, 0.21)
Analysis: Linear regression, adjusting for variables shown in results column	Head circumference (cm) Restricted to observations with			
This document is a draft for review nurn				-

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results		
Preterm birth (<37 wks) and gestational age			
(Ferguson et al. (2014a); Ferguson et al. (2014c)) (United States; Boston) Population: 130 cases, 352 controls from pregnancy cohort (study of predictors of pre- eclampsia, enrolled during first trimester,	OR (95% CI) for preterm birth transformed MIBP (adjusted maternal age, race/ethnicity, insurance provider)	for average specific gravity,	
2006–2008); controls randomly selected from	All preterm	0.98 (0.72, 1.34)	
among those delivering \geq 37 wks of gestation; mean	Spontaneous preterm	1.52 (0.97, 2.38)	
age 33 yrs Outcome: Preterm birth (<37 wks of gestation; gestation estimated from first trimester ultrasound); additional analysis of subgroup with spontaneous	[Results weaker than those s Results by study visit from <u>Fe</u> term births	een with DEHP metabolites] erguson et al. (2014c), all pre-	
preterm labor or preterm premature rupture of membranes ("spontaneous preterm," n = 57)).92 (0.57, 1.47)	
Exposure: Maternal urine sample, one to three samples collected at median times of 9.7, 17.9, or 26.0 wks of gestation; geometric mean of results from visits 1–3 used in analyses.			
	Visit 2 0).88 (0.54, 1.41)	
	Visit 3 0).75 (0.50, 1.13)	
		0.66 (0.28, 1.55)	
Huang et al. (2014b) Population: 207 women delivering at one hospital in Chongqing between 2011 and 2012; aged 18–35 yrs and with no history of tobacco or alcohol use; mean age 28 yrsOutcome:Preterm birth (<37 wks of gestation; gestational age estimated from last menstrual period)Exposure:Cord blood sample DIBP in cord blood (μ g/L) Median 75 th percentile 95 th percentile All samples 16.7 26.9 114Analysis:Logistic and linear regression, adjusting for variables shown in results column	and below the median (adjus frequency of prenatal exam, additional stratification by hi Total sample (n = 207) No intravenous infusions (n = Intravenous infusions (n = 53 [History of intravenous infusi and 55% of preterm birth gro Regression coefficient (95% of age (wks) per unit increase ir (adjusted for maternal age, E	and pregnancy history), with istory of intravenous infusions 6.01 (3.24, 11.17) = 154) 4.78 (1.68, 13.57) 6.07 (2.66, 13.83) ions present in 26% of total pup] CI) for change in gestational n In-transformed DIBP (μg/L) BMI, frequency of prenatal	
	pregnancy history)	venous infusions therapy, and 1.03, –0.46)	

Reference and study design	Results
Meeker et al. (2009)(Mexico)Population: 30 cases, 30 controls (term births) from pregnancy cohort, 2001–2003.Outcome: Preterm birth (<37 wks of gestation), determined using maternal recall of last menstrual periodExposure: Maternal urine sample, third trimester MIBP in urine, among term births Median 75 th percentile Unadjusted 2.0 4.1 SG-adjusted (µg/L) 2.3 5.0 Cr-adjusted (µg/g Cr) 3.7 6.6Analysis: Logistic regression, considering maternal age, pre-pregnancy BMI, parity, education, marital status, infant's sex, and gestational age at urine sample as potential covariates	OR (95% CI) for preterm birth by MIBP above compared with below the median (adjusted for marital status, maternal education, and infant sex and gestational age at time of urine sample) Cr-unadjusted (μg/L) 3.6 (1.1, 12.2) SG-adjusted (μg/L) 2.0 (0.7, 6.0) Cr-adjusted (μg/g Cr) 1.5 (0.5, 4.5)
Wolff et al. (2008) Population: 382 singleton live births without medical complications from birth cohort (Mt. Sinai Children's Environmental Health study), 1998–2002 Outcome: Standard clinical measurements at birth Exposure: Maternal urine sample, third trimester MIBP in urine (ng/mL): Median 75 th percentile Unadjusted 6.2 12 Analysis: Linear regression, adjusting for variables shown in results column	Regression coefficient (95% CI) for change in birth outcome with unit increase in In-MIBP (ng/mL) (adjusted for race/ethnicity, infant sex, gestational age at delivery, In- creatinine, prenatal smoking, pre-pregnancy BMI, maternal education, and marital status) Gestational age (wks) 0.03 (-0.20, 0.14) Restricted to observations with creatinine ≥20 mg/dL

1 3.2.7. Immune Effects in Humans

2

Table 3-9. Evidence pertaining to DIBP and allergy/immune effects in humans

Reference and study design	Results				
Ait Bamai et al. $(2014)^a$ (Japan) Population: Children (n = 122, ages <15 yrs) and adults (n = 374, ages ≥15 yrs) living in 148 detached dwellings in which	dust)(adjus) for allergic condition ted for adjusted for go index, furry pets inside	ender, age strata, sn	noking status,	
at least 25 mg of dust was collected; 2006 follow-up of 2003 baseline survey Outcome: Allergic condition assessed by	DIBP tertile	Full sample	Children	Adults	
self-administered questionnaire (positive response to: in the past 2 yrs have you		_	gic rhinitis		
been seen at a hospital for allergic rhinitis,	1 (low)	1.0 (referent)	1.0 (referent)	1.0 (referent)	
allergic conjunctivitis, or atopic dermatitis?); parents completed	2	1.87 (0.83, 4.22)	3.54 (0.86, 14.5)	0.99 (0.47, 2.05)	
questionnaires for children <6 yrs Exposure: Dust samples	3 (high)	1.05 (0.47, 2.32)	2.30 (0.60, 8.89)	0.48 (0.22, 1.02)	
DIBP in dust (µg/g dust): Median 75 th percentile	(trend <i>p</i> -value)	(0.91)	(0.23)	(0.06)	
Floor dust (n = 148) 2.4 5.5		Allergic o	conjunctivitis		
Multi-surface dust (n = 120) 1.9 3.5 Analysis: Generalized linear mixed effects	1 (low)	1.0 (referent)	1.0 (referent)	1.0 (referent)	
model, considering gender, age strata	2	1.07 (0.38, 3.01)	1.97 (0.35, 11.1)	0.59 (0.19, 1.8)	
(<15, ≥15 yrs), smoking status (personal and environmental tobacco smoke), furry	3 (high)	1.64 (0.64, 4.18)	3.27 (0.68, 15.7)	0.82 (0.31, 2.2)	
pets in home, signs of dampness, Der 1	(trend	(0.30)	(0.14)	(0.69)	
(not defined by authors), other phthalates dust, airborne fungi, formaldehyde, total	<i>p</i> -value)				
VOC, and building characteristics as			dermatitis		
potential covariates	1 (low)	1.0 (referent)	1.0 (referent)	1.0 (referent)	
	2	5.52 (1.68, 18.1)	11.95 (1.37, 104)	2.55 (0.89, 7.31)	
	3 (high)	4.84 (1.46, 16.0)	15.0 (1.91,118)	1.56 (0.44, 5.53)	
	(trend <i>p</i> -value)	(0.01)	(0.01)	(0.49)	
	p-value for	age interaction >0.05	for all endpoints		
		ed aORs (either in the ved in analyses using	-		

Reference and study design	Results				
(Callesen et al. (2014a); Callesen et al.	Median DI	Median DIBP in dust (μ g/g), by case-control status assessed by			
(2014b)) ^a (Denmark)	clinical exa	clinical examination			
Population: 81 rhinoconjunctivitis cases,		Cases			
88 atopic dermatitis cases, 242 healthy		Cases			
controls group from population-based survey (Indoor Environment and Children's		Controls (n = 242)	Rhinoconjunctivitis (n = 81)	Atopic dermatitis (n = 88)	
Health); ages 3–5 yrs					
Outcome: Clinical exam and parent	Home	27.0	30.4	33.4	
interview; allergic rhinoconjunctivitis:	Day care	22.6	22.3	22.5	
recurrence of at least two or more nasal symptoms (pruritus, runny nose, sneezing spells >20, nasal stenosis/mouth	Area- weighted	33.1			
breathing) and ocular symptoms (itching, conjunctival injection, or watery secretion in both eyes) when exposed to allergens; atopic dermatitis: presence of at least 3 of	questionna dermatitis	ined by parent- , n = 83 atopic			
4 major features and 3 of 23 minor		m Callesen e	t al. (2014b):		
features; 70% of rhinoconjunctivitis and	Results from <u>Callesen et al. (2014b)</u> : OR (95% CI) by quartile of MIBP (urine sample), adjusting for sex,				
50% of atopic dermatitis cases were IgE			3 mo, smoking in the		
positive based on 20 allergen tests	allergic pre	edisposition	-		
Exposure: DIBP concentrations in dust		Rhinoconjuno	ctivitis At	opic dermatitis	
samples from bedroom and day care		5 cases, 222 c		ses, 216 controls)	
centers; total DIBP exposure estimated as a weighted mass fraction				· ,	
DIBP in dust among controls (μ g/g):	1	1.0 (refere	nt) 1	1.0 (referent)	
Median	2	1.18 (0.54, 2	2.55) 1.	11 (0.53, 2.34)	
Home 27.0	3	0.89 (0.39, 2	2.02) 0.	88 (0.41, 1.91)	
Day care 22.6	4	1.07 (0.52, 2	2.22) 0.	97 (0.48, 1.94)	
Area-weighted 27.2		1.07 (0.02)2		<i>(</i> , (), (), (), (), (), (), (), (), (), ()	
(weighted by assumed hrs in each					
environment)					
Analysis: Mann-Whitney U-test					
Related study: <u>Callesen et al. (2014b)</u> (same study population, with exposure					
measured in urine sample from					
participants					
MIBP in urine: median 74.2 ng/mL					
(controls)					

Reference and study design	Results			
Hoppin et al. (2013) ^a (United States, NHANES) Population: 2,325 participants in population-based survey (NHANES),	Prevalence and OR (95% CI) for allergy symptoms and allergic sensitization per unit change in log-transformed urinary MIBP leve (adjusted for age, race/ethnicity, gender, BMI, creatinine, and cotinine)			
2005–2006; ages ≥6 yrs Outcome: Self-administered	Children (n = 779)			
questionnaire current allergy symptoms	Hay fever (n = 23)	3.6%	0.12(0.04, 0.39)	
(hay fever, allergy, itchy rash, rhinitis) in	Rhinitis (n = 188)	27.6%	0.84 (0.53, 1.33)	
past yr; allergic sensitization as measured by serum IgE (19 allergen specific IgEs, ≥0.35kU/L)	IgE sensitization (any)	46.1%	0.93 (0.51, 1.70)	
Exposure: Urine sample collected same	Adults (n = 1,546)			
day as serum sample MIBP in urine (μg/L): Percentile	Hay fever (n = 88)	7.4%	0.93 (0.46, 1.87)	
Median 75 th 95 th	Rhinitis (n = 498)	35.4%	0.99 (0.76, 1.29)	
Children 8.93 16.38 45.97 Adults 5.42 10.53 28.98 Analysis: Logistic regression, adjusting for	IgE sensitization (any)	44.0%	1.32 (0.99, 1.76)	
variables shown in results column and sampling weights; separate analyses for children (ages 6–17 yrs) and adults	Authors reported that adjustment for poverty income ratio did n alter ORs.			
(>17 yrs)				
Population: Cases of rhinitis (n = 240) or eczema (n = 61) and controls (n = 204 and 119 for rhinitis and eczema analysis, respectively), all students of Tianjin University who had participated in a cross-	(quantitative results not reported)			
sectional study of allergic symptoms and environmental factors; 2006–2007		Cases	Controls	
Outcome: Self-reported symptoms from	Rhinitis	20.17	28.76*	
questionnaire: rhinitis = in past 12 mo, had a problem with sneezing, or a runny, or a	Eczema	28.68	22.56	
blocked nose when not having a cold or the flu, or sneezing, or a runny, or a blocked nose, or itchy-watery eyes after contact with furred animals or after contact with pollen; eczema = in past 12 mo, had an itchy rash; controls responded no to questions on asthma/wheeze, rhinitis, and eczema Exposure: Surface dust sample in dorm rooms DIBP in dust (μ g/g): Median 75 th percentile 20.24 34.77 Analysis: Logistic regression for OR considering age, gender, passive smoking, smoking, pet raising, atopy, and building	* <i>p</i> = 0.019 by Mann-Whi	tney test; <i>p</i> = 0.051 t	y t-test.	
age as potential covariates; Mann- Whitney U-test for comparison between DIBP concentrations of cases and controls;				

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design		R	esults
t-test for comparisons between log- transformed concentrations			
Bornehag et al. (2004) (Sweden)	Concentration	in dust (mg/g dus	st)
Population: 198 cases, 202 controls from population-based cohort (Dampness in Buildings and Health cohort); n = 10,852; 2001–2002; ages 3–8 yrs		Median, all homes (n = 346)	Geometric mean (95% CI), homes with phthalate > detection limit (n = 290)
Outcome: Eczema, wheezing, or rhinitis	Controls	0.048	0.055 (0.046, 0.065)
(Cases report at least two incidents of eczema, or wheezing or rhinitis without a	Cases (all)	0.042	0.058 (0.048, 0.070)
cold, in the preceding yr, and at follow-up 1.5 yrs later)	<i>p</i> > 0.4 in both	tests	
Exposure: Surface dust samples from children's bedrooms DIBP in dust (mg/g): Median			
All homes 0.045			
Analysis: Mann-Whitney U-test for comparing concentrations in all homes; t-test for comparing log-transformed concentrations in homes with concentrations above detection limit.			

aOR = adjusted odds ratio; IgE = immunoglobin E; NHANES = National Health and Nutrition Examination Survey;

^aAdditional results for this study presented in asthma table.

VOC = volatile organic compound

¹ 2 3 4 5 6

1 2

Table 3-10. Evidence pertaining to DIBP and asthma/wheezing and hypersensitivity in humans

Reference and study	design	Results			
Ait Bamai et al. (2014) ^a (Japan) Population: Children (n = 122, ages <15 yrs) and adults (n = 374, ages ≥15 yrs) living in 148 detached dwellings in which at least		OR (95% CI) for bronchial asthma by tertile of DIBP in floor dust (adjusted for adjusted for gender, age strata, smoking status, dampness index, furry pets inside the home, Der 1, and sum of other phthalate dusts)			
25 mg of dust was collected; 20 2003 baseline survey.			, Full sample	Children	Adults
Outcome: Bronchial asthma as	sessed by self-	1 (low)	1.0 (referent)	1.0 (referent)	1.0 (referent)
administered questionnaire (po to: in the past 2 yrs have you be hospital for bronchial asthma?);	en seen at a	2	2.25 (0.48 <i>,</i> 10.57)	4.37 (0.36, 53.6)	1.16 (0.16, 8.17)
completed questionnaires for in <6 yrs	3 (high)	5.09 (1.17, 22.15)	8.94 (0.86, 93.0)	2.90 (0.52, 16.2)	
Exposure: Dust samples from floor and other surfaces DIBP (µg/g dust):		(trend <i>p</i> -value)	(0.03)	(0.067)	(0.22)
Med	ian 75 th percentile	<i>p</i> -value for age interaction = 0.51			
Floor dust (n = 148) 2.4	4 5.5	No significantly increased aORs (either in the full sample or			
Multi-surface dust (n = 120) 1.9	9 3.5		•	ved in analyses of b	oronchial asthma
Analysis: Generalized linear mix model, considering gender, age ≥15 yrs), smoking status (persor environmental tobacco smoke), home, signs of dampness, Der 1 by authors), other phthalates du fungi, formaldehyde, total VOC, characteristics as potential cova	strata (<15, nal and furry pets in (not defined ust, airborne and building				

Reference and study design	Results			
(<u>Callesen et al. (2014a)</u> ; <u>Callesen et al.</u> (<u>2014b</u>)) ^a (Denmark)	Median DIBP in dust (μ g/g), by case-control status assessed by clinical examination			
Population: 72 asthma cases, 242 healthy		Controls (n = 242)	Asthma (n = 72)	
controls group from population-based survey				
(Indoor Environment and Children's Health);	Home	27.0	25.8	
ages 3–5 yrs Outcome: Clinical exam and parent interview;	Day care	22.6	21.5	
asthma: recurrence of at least two of the	Area-weighted	27.2	25.7	
three symptoms: cough, wheeze, and	0		-	
shortness of breath within the previous 12 mo	Similar results when ba		fined by parent-	
(symptoms other than those	questionnaire data (n =	= 110 astrima cases)		
triggered by respiratory infections); and	Results from Callesen e	et al. (2014b)·		
doctor diagnosis of asthma in combination	OR (95% CI) by quartile		e), adjusting for sex,	
with ongoing treatment; 47% of asthma cases	breastfeeding <3 mo, s			
were IgE positive based on 20 allergen tests	predisposition			
Exposure: DIBP concentrations in dust samples from bedroom and day care centers;	Bronchial asthma			
total DIBP exposure estimated as a weighted	(60 cases, 216 controls	5)		
mass fraction	1	1.	0 (referent)	
DIBP in dust among controls (µg/g):				
Median	2	0.4	9 (0.22, 1.09)	
Home 27.0	3	0.9	1 (0.41, 1.69)	
Day care 22.6	4	0.6	1 (0.27, 1.34)	
Area-weighted 27.2			, , , ,	
(weighted by assumed hrs in each				
environment)				
Analysis: Mann-Whitney U-test Related study: <u>Callesen et al. (2014b)</u> (same				
study population, with exposure measured in				
urine sample from participants				
MIBP in urine: median 74.2 ng/mL (controls)				
Bertelsen et al. (2013) (Norway)	OR (95% CI) for current	t asthma by quartile o	f MIBP (µg/L)	
Population: 623 children from birth cohort	(adjusted for urine spe	cific gravity, sex, pare	ntal asthma, and	
(Environment and Childhood Asthma study),	household income)			
born 1992–1993; children with current asthma	1: ≤31.4 (referent)		L (referent)	
over-sampled (follow-up 2001–2004); ages 10 yrs	2: >31.4-49.2	1	3 (0.74, 2.4)	
Outcome: Current asthma (parental report of				
history of asthma plus ≥1 of the following:	3: >49.2-88.4		4 (0.73, 2.5)	
dyspnea, chest tightness, and/or wheezing in	4: >88.4	1.	5 (0.80, 2.7)	
previous 12 mo; use of asthma medications in	Increase in odds of cur	rent asthma per log ₁₀	IQR MIBP	
previous 12 mo; positive exercise challenge test)	(95% CI) = 1.1 (0.87, 1.	5)		
Exposure: First morning urine sample				
(child's), collected at study examination				
MIBP in urine (µg/L) Percentile				
Median 75 th 95 th				
Unadjusted 49.2 88.4 231.0				
SG-adjusted 50.1 90.5 239.6				
Analysis: Logistic regression, adjusting for variables shown in the results column				

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design	Results				
Hoppin et al. (2013) ^a (United States, NHANES) Population: 2,325 participants in population- based survey (NHANES), 2005–2006; ages	Prevalence and OR (95% CI) for asthma symptoms per unit change in log-transformed urinary MIBP level (adjusted for age, race/ethnicity, gender, BMI, creatinine, and cotinine)				
≥6 yrs	Children (n = 779)				
Outcome: Self-administered questionnaire (asthma, wheeze in past yr)	Asthma (n = 65)	8.4%	0.92 (0.26, 3.29)		
Exposure: Urine sample collected same day as	. ,				
serum sample	Wheeze (n = 80)	10.7%	1.08 (0.49, 2.35)		
Unadjusted MIBP in urine (μg/L):	Adults (n = 1,546)				
Percentile Median 75 th 95 th	Asthma (n = 116)	7.4%	1.39 (0.77, 2.50)		
Children 8.93 16.38 45.97	Wheeze (n = 219)	16.6%	0.92 (0.57, 1.48)		
Adults5.4210.5328.98Analysis:Logistic regression, adjusting forvariables shown in results column andsampling weights; separate analyses forchildren (ages 6–17 yrs) and adults (>17 yrs)	Authors reported that adjustment for poverty income ratio did not alter ORs.				
Population: 92 cases asthma/wheezing, cases and 346 controls, all students of Tianjin University who had participated in a cross- sectional study of allergic symptoms and environmental factors; 2006–2007 Outcome: Self-reported symptoms from	below the median (adjusted to age, gender, smoking, atopy, and building age) reportedly did not reach statistical significance (quantitative results not reported) Median concentration DIBP in dust (μg/g dust)				
questionnaire; asthma/wheezing = in past		Cases	Controls		
12 mos, have you had wheezing or whistling	Wheezing	23.13	22.73		
the in the chest; have you had dry cough at night for more than 2 wks, apart from a cough associated with a cold or chest infection; controls responded no to questions on asthma/wheeze, rhinitis, and eczema Exposure: Surface dust sample in dorm rooms DIBP in dust (µg/g): Median 75 th percentile 20.24 34.77 Analysis: Logistic regression for OR, considering age, gender, passive smoking, smoking, pet raising, atopy, and building age as potential covariates; Mann-Whitney U-test (nonparametric) for comparison between DIBP concentrations of cases and controls; t-test for comparisons between log transformed concentrations	(<i>p</i> > 0.46 by Mann Wh	itney or t-test)			

^aAdditional results for this study presented in allergy/immune table.

IQR = interquartile range

1 3.2.8. Neurodevelopmental Effects in Humans

2

3

Table 3-11. Evidence pertaining to DIBP and neurodevelopmental effects inhumans

Reference and study design	Results				
Attention and executive function in school-aged children					
Missouri, California, Iowa) Population: 153 children (n = 76 girls, n = 77 boys) from birth cohort study (Study for Future Families),	Regression coefficient (95% CI) for change in raw score on child behavior checklist per unit increase in In-transformed MIBP (adjusted for sex, age, mother's education and urinary creatinine, and family stress score)				
born 2000–2005, ages 6–10 yrs in 2010 follow-up Outcome: Child Behavior Checklist (completed by		Boys	Girls		
parent) Exposure: Maternal urine sample, 3 rd trimester	Anxiety/ depression	0.11 (-0.13, 0.34)	-0.03 (-0.29, 0.22)		
(mean 26.6 wks) Unadjusted MIBP in urine (ng/mL):	Withdrawn	-0.01 (-0.21, 0.18)	-0.04 (-0.25, 0.17)		
Geometric mean (95% Cl) 2.3 (2.0, 2.8)	Somatic complaints	-0.03 (-0.23, 0.16)	-0.07 (-0.28, 0.13)		
Analysis: Linear regression, considering sex, age, mother's education, urinary creatinine, family stress	Social problems	0.18 (-0.02, 0.37)	-0.06 (-0.27, 0.16)		
mother's education, urinary creatinine, family stress measure, and race/ethnicity, as potential covariates. Related references: <u>Swan et al. (2005)</u> (exposure	Thought problems	0.15 (-0.05, 0.35)	0.07 (-0.15, 0.29)		
data)	Attention problems	0.27 (0.04, 0.50)	0.12 (-0.12, 0.36)		
	Rule-breaking behavior *	0.20 (0.01, 0.38)	-0.04 (-0.23, 0.16)		
	Aggressive behavior	0.34 (0.09, 0.59)	0.12 (-0.14, 0.39)		
	Internalizing behavior	0.09 (-0.18, 0.37)	-0.07 (-0.37, 0.22)		
	Externalizing behavior	0.32 (0.06, 0.58)	0.06 (-0.22, 0.34)		
	Total problems	0.42 (0.05, 0.80)	0.07 (-0.33, 0.47)		
	*Sex interaction <i>p</i> <i>p</i> -values > 0.05	p-value = 0.04; all othe	er interaction		

Reference and study design	Results					
Engel et al. (2010) (United States; New York City) Population: 177 children from original birth cohort studied by Engel et al. (2009), 54% boys, three follow-up exams at ages 4.5–5.5, 6–6.5, 7–9 yrs	Regression coefficient for change in behavioral score (BASC-PRS) per unit increase in In-phthalate level (μ M/L) in boys (adjusted for race, educational level and marital status of the primary caretaker, and urinary creatinine)					
Outcome: Behavior assessed by maternal reporting on BRIEF and BASC-PRS Exposure: Maternal urine sample, 25–40 wks gestation*		MIBP	Low molecular weight phthalate sum			
Median 75 th percentile	Clinical scales (higher	Clinical scales (higher score = more problem behaviors)				
MIBP (μg/L)* 2.6 12.2 Sum LMW (μM/L) 1.88 4.59	Aggression	-0.12	1.24*			
(sum of MBP, MEP, MIBP, and MMP)	Anxiety	-0.25	0.78			
Analysis: Generalized linear regression model, adjusting for variables shown in results column;	Attention problems	0.66	1.29*			
other variables (not specified) were considered Related references: Engel et al. (2009) (exposure	Atypicality	0.53	0.95			
data for n = 295 children in the cohort)	Conduct problems	0.23	2.40*			
MIBP concentrations not reported in (<u>Engel et al.,</u> <u>2010</u>); values reported here are from an earlier	Depression	0.29	1.18			
analysis of this cohort described in Engel et al.	Hyperactivity	0.85	1.03			
(2009)	Somatization	1.04	0.36			
	Withdrawal -0.01 0.46 Adaptive scales (lower score = more problem behaviors)					
			-			
	Adaptability	-1.32*	-1.08*			
	Leadership	-1.30	-0.88			
	Social skills	-0.93	-1.04			
	Composite scales (higher score = more problem behaviors)					
	Externalizing problems	0.33	1.75*			
	Internalizing problems	0.46	0.99			
	Adaptive skills	-1.17	-0.98			
	Behavioral Symptoms Index	0.47	1.55*			
	Significant sex-phthala aggression, conduct p problems, and behavio study authors.	roblems, hyper	activity, externalizing			
	Regression coefficient (BRIEF scores; higher s per unit increase in In- girls (adjusted for race status of the primary o	score = worse e -phthalate leve e, sex, educatio	xecutive functioning) Ι (μΜ/L) in boys and nal level and marital			
	Emotional control	0.09	1.33*			
	Behavioral	0.30	1.13			

Reference and study design	Results			
	regulation index			
	Initiate	0.8	33	0.81
	Working memo	ory 1.1	11	1.03
	Plan/organize	0.7	76	1.02
	Metacognition index	0.7	70	1.05
	Global executiv composite	ve 0.5	56	1.23*
	* <i>p</i> ≤ 0.05			
	Study authors reported that there were few significant associations between phthalate concentration and behavior among girls (quantitative results not reported).			
Neurobehavioral outcomes in infants and preschool-a	iged children			
Braun et al. (2014) (United States) Population: 175 children from birth cohort in Ohio (HOME cohort, recruited during pregnancy, 2003–2006); follow-up at ages 4–5 yrs Outcome: Autistic behaviors based on Social Responsiveness Scale completed by mother; 65 item scale, higher score = more autistic behaviors Exposure: Maternal urine samples, 16–26 wks of gestation MIBP in urine (µg/g Cr): Percentile Median 75 th 95 th	Regression coefficient (95% CI) for change in total score per unit increase in log-transformed Cr-adjusted MIBP (adjusted for maternal demographic and perinatal factors, depressive symptoms, caregiving environment, and serum cotinine): 0.7 (-1.4, 2.8)			sted MIBP rinatal factors,
Cr-adjusted 5.6 8.6 17 Analysis: Semi-Bayesian hierarchical regression model				
Téllez-Rojo et al. (2013) (Mexico) Population: 135 children from birth cohort (Early Life Exposure in Mexico to Environmental Toxicants cohort; mothers recruited during first trimester, 1997–2003) Outcome: Mental and psychomotor development	Regression coefficient (95% CI) for change in neurodevelopment score per unit increase in maternal In- MIBP (adjusted for birthweight, breastfeeding practices, weight-for-age, child's age, mother's age, mother's education, and laboratory)			
based on Bayley Scales of Infant Development-II (assessed by trained examiner, videotaped for		Total sample (n = 135)	Boys (n = 64)	Girls (n = 71)
quality control assessment) tested at 24, 30, and 36 mo of age	MDI	0.53 (-0.85, 1.91)	0.32 (-1.62, 2.28)	-0.12 (-1.94, 1.69)
Exposure: Maternal urine sample, 3 rd trimester MIBP in urine (ng/mL): Geometric mean (95% Cl) SG-adjusted 2.30 (1.92, 2.76) Analysis: Linear regression for longitudinal data, stratified by sex and adjusted for variables shown in results column Related reference: Ettinger et al. (2009)	PDI	0.57 (-0.67, 1.82)	0.63	0.37 (-1.67, 2.43)

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design	Results			
Whyatt et al. (2012) (United States, New York City) Population: 297 children from birth cohort (Columbia Center for Children's Environmental Health), born 1999–2006; 3-yr follow-up, mean age 36 mo (range 27–42 mo) Outcome: Mental, psychomotor and behavioral downloament at 2 we beard on Paylow Scales of	neurodevelopment score per unit increase in matern MIBP (adjusted for specific gravity, race/ethnicity,			
development at 3 yrs based on Bayley Scales of Infant Development-II (assessed by trained		Boys (n = 140)	Girls (n = 157)	
examiners) and Child Behavior Checklist (completed by parent)	MDI	0.59 (-1.40, 2.58)	-1.33 (-3.20, 0.54)	
Exposure: Maternal urine sample, 3 rd trimester MIBP in urine (ng/mL): Geometric mean	PDI	-2.21 (-4.61, 0.19)	-2.33 (-4.59, -0.08)	
Unadjusted 9.3 Analysis: Linear and logistic regression adjusting for variables shown in results column; Wald test used to detect sex differences	OR (95% CI) for risk of mental or psychomotor delay (score ≤85) per In-unit increase in maternal In-MIBP (each model adjusted for one or more of the following: specific gravity, race/ethnicity, maternal marital status and prenatal alcohol consumption, child's gestational age and sex, and quality of care-taking environment)			
		Boys (n = 140)	Girls (n = 157)	
	MDI	0.87 (0.60, 1.28)	0.98 (0.62, 1.56)	
	PDI	1.80 (1.13, 2.87)	1.98 (1.02, 3.83)	
	Regression coefficient (95% CI) for change in neurobehavior per unit increase in maternal In-MIBP (adjusted for specific gravity; ethnicity; maternal IQ, demoralization, hardship, satisfaction during pregnancy and prenatal exposure to PAH and BPA; and child's sex and age at testing)			
		Boys (n = 129)	Girls (n = 148)	
	Emotionally reactive	0.42 (-0.005, 0.85)	0.34 (-0.11, 0.78)	
	Anxious/depressed	0.12 (-0.38, 0.61)	0.16 (-0.34, 0.66)	
	Somatic complaints	0.31 (-0.18, 0.81)	0.24 (-0.22, 0.70)	
	Withdrawn behavior	0.36 (–0.05, 0.77)	0.47 (-0.007, 0.94)	
	Internalizing behavior	1.21 (-0.16, 2.56)	1.20 (-0.15, 2.55)	
	No effect modification by gender was observed (<i>p</i> -values >0.7).			
	OR (95% CI) for child's score in the borderline or clinical range (compared to normal) per unit increase in maternal In-MBP (adjusted for specific gravity, maternal			

Reference and study design	Results			
	demoralization and satisfaction during pregnancy, and child's sex and age at testing)			
	Borderline Clinical			
	Somatic complaints	1.29 (0.84, 1.99)	0.76 (0.42, 1.36)	
	Withdrawn behavior	0.81 (0.44, 1.51)	1.62 (0.97, 2.73)	
	Internalizing behavior	1.98 (1.24, 3.23)	1.41 (0.91, 2.18)	

BASC-PRS = Behavior Assessment System for Children—Parent Rating Scales; BPA = bisphenol A; BRIEF = Behavior

Rating Inventory of Executive Function; HOME = Health Outcomes and Measures of the Environment; LMW = low

molecular weight; MDI = mental delay index; MMP = monomethyl phthalate; PAH = polycyclic aromatic

5 hydrocarbon; PDI = psychomotor delay index

1 3.2.9. Thyroid Hormone Effects in Humans

2

Table 3-12. Evidence pertaining to DIBP and thyroid hormones in humans

Reference and study design		Results		
Dirtu et al. (2013) (Belgium) Population: 152 overweight or obese adults from weight loss cohort (ENDORUP) seen at weight	Regression coefficient (<i>p</i> -value) for change in hormone level with unit change in In-MIBP (adjusted for age, weight loss, and sex, or stratified by sex) (0.0 = no effect)			
management clinic, 43 age- and sex-matched controls from hospital staff and other volunteers,		l sample Men	Women	
enrolled 2009–2012; among obese/overweight	Overweight/obes	se group		
group, 65 received bariatric surgery and 87 received standard diet and lifestyle counseling;	Free T4 0.0	07 (0.41) 0.11 (0.47)	0.05 (0.66)	
follow-up 3, 6, and 12 mo	TSH -0.0	01 (0.93) 0.09 (0.58)	-0.01 (0.94)	
Outcome: Serum thyroid hormone levels (details of blood collection were not reported)	Referent group			
Exposure: Urine sample (24-hr)	Free T4 0.2	24 (0.14) 0.49 (0.12)	0.16 (0.44)	
MIBP in urine (ng/mL): Percentile Median 75 th 90 th	TSH 0.2	23 (0.16) -0.43 (0.19)	0.32 (0.10)	
Controls6593133Obese (at baseline)5889129Analysis:Linear regression, adjusting for variablesshown in results column				
Meeker and Ferguson (2011) (United States) Population: Participants in population-based survey (NHANES), 2007–2008; 1,346 ages ≥20 yrs and 329 adolescents ages 12–19 yrs	with unit increase BMI, In-serum co	cient (95% CI) for char e in In-MIBP (adjusted tinine, In-urinary creat nted for sampling strat	for age, sex, race, tinine, and In-urinary	
Outcome: Serum thyroid hormone levels		Adults	Adolescents	
Exposure: Urine sample collected same day as serum sample Cr-adjusted MIBP in urine (μg/g Cr):	Total T3 (ng/dL)	0.77 (-0.59, 2.12)	2.30 (-0.81, 0.52)	
Percentile Median 75 th 95 th Adults 6.67 11.1 24.1	Ln (Free T3) (pg/mL)	-0.0012 (-0.0074, 0.0051)	0.0083 (-0.0062, 0.023)	
Adults0.0711.124.1Adolescents8.2413.7328.78Analysis: Linear regression adjusting for variables	Total T4 (μg/mL)	0.020 (–0.075, 0.11)	-0.034 (-0.25, 0.19)	
shown in results column.	Ln (Free T4) (ng/dL)	0.0010 (-0.0094, 0.011)	-0.0001 (-0.021, 0.021)	
	Ln (TSH) (μIU/mL)	-0.013 (-0.054, 0.028)	0.003 (-0.076, 0.081)	
	Ln (Tg) (ng/mL)	-0.018 (-0.081, 0.045)	-0.047 (-0.12, 0.074)	

T3 = triiodothyronine; T4 = thyroxine; TSH = thyroid stimulating hormone

1 3.2.10. Obesity and Metabolic Effects in Humans

2

Table 3-13. Evidence pertaining to DIBP and obesity in humans

Reference and study design	Results				
Buser et al. (2014) NHANES) Population: Participants in population- based survey (NHANES), 2007–2010ages	OR (95% CI) in children (6–19 yrs of age) for obesity or overweig comparing highest quartile urinary MIBP (>20.84 ng/mL) with lo quartile (≤5.38 ng/mL) (adjusted for age, race/ethnicity, calorie intake, serum cotinine, urinary creatinine, income level)				
≥6 yrs [sample size not reported]		Obese	Overweight		
Outcome: BMI measured at exam; divided into obese (BMI z-score $\ge 95^{th}$ percentile in	All	1.82 (0.73, 4.57)	1.85 (0.78, 4.40)		
children, BMI ≥30 in adults) and	Boys	4.26 (1.32, 13.74)	2.22 (0.78, 6.28)		
overweight (BMI z-score 85 th -95 th					
percentiles in children, BMI 25–29.9 in adults).	Girls	0.57 (0.18, 1.83)	1.57 (0.58, 4.25)		
Exposure: Urine sample, collected at same time as exam Unadjusted MIBP in urine (ng/mL) Geometric mean (SE) Ages 6–19 yrs 10.43 (0.39)	comparing higl quartile (≤3.49 calorie intake,	adults (≥20 yrs of age) for o nest quartile urinary MIBP (ng/mL) (adjusted for age, g recreational activity, serum s, alcohol intake, diabetes)	>14.40 ng/mL) with lowest ender, race/ethnicity,		
Ages ≥20 yrs 6.75 (0.23)		Obese	Overweight		
Analysis: Logistic regression, considering age, race/ethnicity, sex, urinary creatinine,	All	1.40 (0.90, 2.16)	1.18 (0.79, 1.78)		
poverty income ratio, calorie intake, and	Men	0.98 (0.57, 1.67)	1.06 (0.60, 1.89)		
poverty income ratio, calorie intake, and serum cotinine as potential covariates in analyses of ages 6–19 yrs; or age, race/ethnicity, sex, education, diabetes, alcohol consumption, cigarette smoking, calorie intake, vigorous recreational activities, urinary creatinine, and serum cotinine as potential covariates in analysis of ages ≥20 yrs	Women	1.81 (0.94, 3.48)	1.25 (0.66, 2.36)		
Hart et al. (2013)(Australia)Population: 121 girls from birth cohortstudy (Western Australian PregnancyCohort), whose mothers were recruited at18 wks of gestation between 1989 and1991; follow-up at ages 14–16 yrsOutcome: Offspring BMI (height andweight measured at clinic visit on d 2–5 ofmenstrual cycle)Exposure: Maternal serum samples(n = 123) collected at 18 and 34–36 wks ofgestation (combined aliquot from bothtime periods)MIBP in serum (ng/mL):Median 90 th percentileUnadjusted1.776.16Analysis: Correlation between log-transformed MIBP and BMI	absolute value	ed no association between or as age- and gender-adju abolite in maternal serum (r 1)	sted z-score) and any		

Reference and study design	Results				
Trasande et al. (2013a) (United States, NHANES) Population: 2,884 participants in population-based survey (NHANES), 2003–2008; 6–19 yrs old	Full sample results, no association with In-LMW phthalates: OR or regression coefficient (95% CI) per one unit increase in Σ LMW phthalates (μ M) (adjusted for urinary creatinine, sex, poverty-income ratio, parental education, serum cotinine, age, and race/ethnicity, caloric intake, and television watching)				
Outcome: BMI z-score, obesity (BMI z-score ≥95 th percentile), and overweight	Overweight		95% CI)	1.01 (0.90,	
(BMI z-score ≥85 th percentile) (measured) Exposure: Urine sample, collected at same time as BMI measurement	Obese BMI z-score	·	95% CI) 95% CI)	1.02 (0.90, 0.03 (-0.03,	
time as BMI measurement ΣLMW phthalates in urine (μM): Geometric mean Not obese 0.701 Obese 0.855 ΣLMW phthalates = sum of MEP, MBP,	LMW phthal in whites or were also se	ates and each Hispanics. Th en in analyses	een, with associ of the obesity e patterns seer s for MIBP. Usi s with In-MIBP a	measures in bl η with ΣLMW p ng same adjust	acks, but not hthalates
MIBP, and MCPP Analysis: Logistic regression for		∑LMW p	ohthalates	MI	BP
overweight and obese classification; linear		Hispanic	White	Black	Black
regression of BMI z-score as continuous variable; adjusted for variables shown in results column	Over- weight OR (95% CI)	0.88 (0.72, 1.08)	0.97 (0.78, 1.22)	1.21 (1.05, 1.39)	1.16 (0.99, 1.37)
	Obese OR (95% CI)	0.97 (0.83, 1.14)	0.94 (0.69, 1.29)	1.22 (1.07, 1.39)	1.17 (0.97, 1.41)
	BMI z- score β (95% Cl)	-0.04 (-0.15 <i>,</i> 0.06)	0.02 (-0.08, 0.12)	0.09 (0.003, 0.18)	0.08 (-0.01, 0.17)
Wang et al. (2013) (China) Population: 259 primary and middle school students, 8–15 yrs old, stratified sample from six schools, selected based on sex and BMI Outcome: BMI, waist circumference	circumferen	ce per unit ind in Model 1; pl	% CI) for chang crease in SG-ad lus sum of DBP, Model 1	justed InMIBP	adjusted for P in Model
(measured)	BMI	0.027 ((0.006, 0.048)	0.020 (-0.0	05, 0.045)
Exposure: First morning urine sample, collected at same time as BMI measurement MIBP in urine (ng/mL): Geometric mean (SD) 38.9 (1.1)	Waist circumferen	•	0.005, 0.038)	0.019 (-0.0	01, 0.038)
Low molecular weight phthalate metabolites included MMP, MEP, MBP, MIBP, and MHBP Analysis: Linear regression, sampling weights applied to adjust for sampling strategy; adjusted for variables shown in					
the results column					

Reference and study design	Results				
Dirtu et al. (2013) (Belgium) Population: 152 overweight or obese adults from weight loss cohort (ENDORUP)	Regression coefficient (<i>p</i> -value) for change in waist circumference with unit change in In-MIBP (adjusted for age, weight loss, and se or stratified by sex) (0.0 = no effect)				
seen at weight management clinic, 43 age-		Full sample	Men	Women	
and sex-matched controls from hospital staff and other volunteers, enrolled 2009–2012; among obese/overweight	Overweight/ obese group	0.07 (0.40)	-0.16 (0.30) 0.03 (0.76)	
group, 65 received bariatric surgery and 87 received standard diet and lifestyle counseling; follow-up 3, 6, and 12 mo Outcome: Waist circumference measured at each follow-up visit Exposure: Urine sample (24-hr sample) MIBP, in urine (ng/mL): Percentile Median 75 th 90 th Controls 65 93 133 Obese 58 89 129 (at baseline) Analysis: Linear regression, adjusting for variables shown in results column; treatment of repeated urinary phthalate	Referent group	-0.16 (0.30)	0.07 (0.81)) –0.01 (0.98)	
measures was not specified Lind et al. (2012b) (Sweden)	Regression coefficien		-		
Population: 1,016 (507 men, 509 women), from population-based cohort (Prospective				i cholesterol and	
Investigation of Vasculature in Uppsala Seniors study), 2001–2003; age 70 yrs at enrollment	Outcome	N	1ales 95% CI)	Females β (95% CI)	
Outcome: BMI, waist circumference measured at enrollment; DXA (n = 890	BMI (kg/m ²)		3 (–0.35,).19)	0.39 (0.002, 0.79)	
participated) and MRI of abdominal region (n = 287 randomly selected) 2 yrs later Exposure: Serum sample (fasting),	Waist circumference (cm)		5 (–0.80,).75)	1.3 (0.425, 2.3)	
collected at baseline	DXA total fat (kg)	-73 (-	754, 608)	1,079 (283, 1875)	
MIBP in serum (ng/mL): Median 75 th percentile Women 13.4 24.5 Men 13.5 33.3 Analysis: Linear regression, adjusted for variables shown in results column Related reference: Olsén et al. (2012)	MRI visceral adipose tissue (cm ²)	-5.9 ((-24, 13)	14 (1.4, 26)	
reports cross-sectional analysis of BMI					

Reference and study design	Results
Teitelbaum et al. (2012) (United States, New York City)Population: 387 children (80 boys, 307 girls) in child development cohort (Growing Up Healthy Study), 2004–2008; Hispanic and black), 6–8 yrs at enrollmentOutcome: BMI and waist circumference measured 1 yr after enrollment; normal weight = BMI <85 th percentile (n = 2,284); overweight = BMI ≥85 th percentile (n = 578)Exposure: Urine sample, collected at enrollment Cr-adjusted phthalates in urine (μ g/g Cr), median: MIBP ∑LMW phthalates Boys 22.7 253.2 Girls 22.2 294.0 Low molecular weight phthalate metabolites included MEP, MBP, MIBP, and MCPP.Analysis: Linear regression, considering sex, age at baseline, sedentary hrs, metabolic equivalent hrs, caloric intake, race, ethnicity, season of urine collection, family income, and parent education as potential covariates; restricted to children with creatinine ≥10 mg/dL	Full sample results, regression coefficient (95% CI) for change in body metric per unit change in In-MIBP (μg/g Cr) (adjusted for creatinine, age, sex, sedentary hrs, metabolic equivalent hrs, Hispanic ethnicity, caloric intake, season, and parental education level) BMI (kg/m ²) -0.27 (-0.73, -0.18) Waist circumference (cm) -0.62 (-1.84, -0.61)
Olsén et al. (2012) (Sweden) Population: 1,016 (507 men, 509 women), from population-based cohort (Prospective Investigation of Vasculature in Uppsala Seniors study), 2001–2003; age 70 yrs at enrollment Outcome: BMI measured at study visit Exposure: Serum sample, collected at time of examination; results not shown Analysis: Linear regression, adjusted for the variables shown in results column	Regression coefficient for change in outcome per unit increase in In- MIBP (adjusted for sex, smoking, diabetes (except for glucose) and the other variables in the table; model for Framingham Risk Score only adjusted for sex) BMI 0.094 (-0.13, 0.32)

Reference and study design	Re	sults
Kasper-Sonnenberg et al. (2012)	Spearman correlation coefficient	between ∑DIBP and BMI in
(Germany)	Children	-0.035 (<i>p</i> > 0.05)
Population: 104 mothers (and children)		
enrolled in birth cohort study, children	Mothers	-0.137 (<i>p</i> > 0.05)
born between 2000 and 2002, follow-up in		
2007–2009; mean age 39.2 yrs (mothers),		
6.8 yrs (children)		
Outcome: BMI based on questionnaire (mothers) and measurements (children)		
Exposure: Urine sample (first morning),		
collected on same day as exam		
Cr-adjusted MIBP and OH-MIBP in urine		
$(\mu g/g Cr)$:		
Geometric mean (95% CI)		
Children		
MIBP 64.6 (55.2, 75.7)		
OH-MIBP 34.2 (28.5, 41.0)		
∑DIBP 101 (87.2, 118)		
Adults		
MIBP 37.2 (31.8, 43.5)		
OH-MIBP 17.4 (15.1, 20.0)		
∑DIBP 55.9 (48.4, 64.5)		
Analysis: Spearman's rank correlation		
analysis		
Svensson et al. (2011) (Mexico)	Spearman correlation coefficient	between anthropometric measure
Population: 182 women; healthy controls	and In-MIBP in urine (µg/g Cr)	
without diabetes from case-control study of breast cancer, 2007–2008; mean age	BMI (kg/m²)	0.0457
54 yrs	Waist circumference (cm)	0.0151
Outcome: BMI, waist circumference, and waist:height ratio	Waist/height ratio	-0.0156
Exposure: First morning urine sample	(p > 0.05 for all parameters)	
collected at time of clinical evaluation	······	
Cr-adjusted MIBP in urine (µg/g Cr):		
Geometric mean (SD)		
No diabetes 9.1 (2.3)		
Analysis: Spearman correlation coefficient		
Related references: Lopez-Carrillo et al.		
<u>(2010)</u>		

DXA = dual energy x-ray absorptiometry; MCPP = mono-(3-carboxypropyl) phthalate; MHBP = mono-

(3-hydroxybutyl)phthalate; MRI= magnetic resonance imaging; SE = standard error

Table 3-14. Evidence pertaining to DIBP and diabetes/insulin resistance in humans

Reference and study design		Results	
Diabetes diagnosis			
James-Todd et al. (2012) (United States, NHANES) Population: 215 cases, 1,235 controls from population-based survey (NHANES), 2001–2008; women age 20–79 yrs Outcome: Positive response to, "Other than during pregnancy, have you ever been told by a doctor or health professional that you have diabetes or sugar diabetes?" Exposure: Urine sample, collected at time	creatinine, age, race/ethnicity, education, poverty statusromtime, total caloric intake, total fat intake, smoking statusphysical activity; little change with additional adjustmenand waist circumference)MIBP quartile1 (low)1.0 (referent)21.04 (0.66–1.67)		
of survey MIBP in urine (units not reported):	3 4 (high)	1.69 (0.93–3.06) 1.95 (0.99–3.85)	
Geometric mean Unadjusted 3.7 (based on larger sample of 2,350 women) Analysis: Logistic regression, adjusting for variables shown in the results column			
Lind et al. (2012a) (Sweden) Population: 1,003 (501 men, 502 women), from population-based cohort (Prospective Investigation of Vasculature in Uppsala Seniors study), 2001–2003; age 70 yrs at enrollment Outcome: Diabetes (n = 88; history of diabetes or fasting glucose >7.0 mmol/L, mean duration 8.9 yrs);	serum cholesterol and tri education) OR (95% Cl) by quintile o	ease in serum In-MIBP (adjusted for sex, iglycerides, BMI, smoking, exercise, and 1.30 (1.10, 1.55) f In-MIBP (adjusted for sex, serum des, BMI, smoking, exercise, and education)	
Exposure: Serum sample (fasting), collected at time of clinical assessment	1 (low)	1.0 (referent)	
MIBP in serum (ng/mL):	2	1.19 (0.59, 2.38)	
Median 75 th percentile Women 13.4 24.5	3	0.84 (0.41, 1.76)	
Men 13.5 33.3	4	1.37 (0.7, 2.66)	
Analysis: Logistic regression for diabetes classification, adjusting for variables shown	5 (high)	2.00 (1.03, 3.99)	
in results column	(trend <i>p</i>)	(0.038)	

Reference and study design	Results				
Svensson et al. (2011)(Mexico)Population: 221 women with diabetes,182 healthy without diabetes from case- control study of breast cancer, 2007–2008; mean age 54 yrsOutcome: Self-reported diabetesExposure: First morning urine samplesMIBP in urine (µg/g creatinine): Geometric mean (SD)No diabetes9.1 (2.3)Diabetes7.9 (2.1)Analysis: Logistic regression, adjusted for variables shown in the results column (age and waist-height ratio not found to be potential confounders)	OR (95% C education)		in In-MIBP (adjustec	for creatinine and	
Markers of insulin resistance					
Huang et al. (2014a)(United States, NHANES)Population: 3,083 participants in population-based survey (NHANES), 2001–2008; ages 12–<80 yrs; self-reported 	MIBP (adju	ange (95% CI) in bio isted for age, gende total caloric intake, ng status) Fasting glucose 1.0 (referent) 1.87 (0.83, 2.92) 2.77 (1.75, 3.80) 3.69 (2.60, 4.78) (<0.0001)	er, race/ethnicity, fa	sting time, urinary	
Trasande et al. (2013b)(United States, NHANES)Population: 766 participants in the 2003–2008 NHANES, 12–19 yrs oldOutcome: HOMA, calculated as fasting glucose (mmol/L) multiplied by fasting insulin (μ U/mL divided by 22.5.Exposure: Urine sample, collected at same time as insulin resistance measurements. SLMW phthalates in urine (μ M): Median 75 th percentile Unadjusted 0.83 1.89 SLMW phthalates = sum of MEP, MBP, and MIBP Urinary concentration of MIBP alone not reported.Analysis: HOMA-IR assessed as continuous or categorical variable; categorical analysis	concentrat continuous ratio, genc Ln-MIBP Ln-ΣLMW Regression increase in urinary cre	I) for insulin resistar tion (μM), adjusted s age, race/ethnicity ler, serum cotinine, n coefficient (95% CI n-urinary metabol eatinine, BMI catego education, poverty-i t intake.	for urinary creatinir , caregiver education and caloric intake 1.57 (1. 0.92 (0.) for increase in In-H ite concentration (μ ory, continuous age, ncome ratio, gende 0.15 (0.	ne, BMI category, on, poverty-income 18, 2.09) 71, 1,19) HOMA-IR per unit IM), adjusted for race/ethnicity,	

This document is a draft for review purposes only and does not constitute Agency policy.3-37DRAFT—DO NOT CITE OR QUOTE

Reference and study design		Results				
used cut point of 4.39, reflecting >2 SD above the mean HOMA-IR for normal weight adolescents with normal fasting glucose in NHANES 1999–2002. Linear and logistic regression analyses, adjusting for variables shown in results column. HOMA- IR and urinary phthalate measures natural- log transformed for analysis.						
James-Todd et al. (2012) (United States, NHANES) Population: 2,092 women without history of diabetes with various measures of insulin resistance from population-based survey (NHANES), 2001–2008; women age	median value (95% C of MIBP (Model 1 ad education level, pove total fat intake, smok	Among women without diabetes, difference (from first quartile) in median value (95% CI) of glucose and insulin parameters by quartile of MIBP (Model 1 adjusted for urine creatinine, age, race/ethnicity, education level, poverty status, fasting time, total caloric intake, total fat intake, smoking status, and physical activity; Model 2 also adjusted for BMI and waist circumference)				
20–79 yrs Outcome: Among women without history	MIBP Quartile	Model 1	Model 2			
of diabetes, FBG (n = 985), HOMA-IR	FBG (mg/dL)					
(n = 971), glycosolated hemoglobin A1c (n = 2,092)	1 (low)	(referent)	(referent)			
Exposure: Urine sample, collected at time	2	3.08 (1.22, 4.93)	3.03 (1.05, 5.00)			
of survey MIBP in urine (units not reported):	3	3.50 (1.45, 5.54)	3.17 (1.17, 5.17)			
Geometric mean	4 (high)	5.86 (3.55, 8.17)	6.04 (3.81, 8.28)			
Unadjusted 3.7	Ln (HOMA)					
Analysis: Logistic regression, adjusting for variables shown in the results column	1 (low)	(referent)	(referent)			
	2	0.13 (-0.02, 0.28)	0.13 (0.01, 0.25)			
	3	0.08 (-0.08, 0.25)	0.10 (-0.01, 0.21)			
	4 (high)	0.22 (0.06, 0.38)	0.18 (0.06, 0.31)			
	A1c (%)					
	1 (low)	(referent)	(referent)			
	2	0.03 (-0.01, 0.08)	0.03 (-0.01, 0.08)			
	3	0.03 (-0.02, 0.09)	0.04 (0.00, 0.09)			
	4 (high)	0.01 (-0.05, 0.07)	0.01 (-0.04, 0.07)			

Reference and study design	Results
Lind et al. (2012a) (Sweden) Population: 1,003 (501 men, 502 women), from population-based cohort (Prospective Investigation of Vasculature in Uppsala Seniors study), 2001–2003; age 70 yrs at enrollment Outcome: Ratio of fasting proinsulin to insulin; HOMA Exposure: Serum sample (fasting), collected at time of clinical assessment MIBP in serum (ng/mL): Median 75 th percentile Women 13.4 24.5 Men 13.5 33.3 Analysis: Linear regression for continuous outcomes (proinsulin/insulin and HOMA- IR); adjusting for variables shown in results column Related reference: Olsén et al. (2012) presents blood glucose data for this study population; the regression coefficient per unit increase in serum In-MIBP was 0.024 (0.01, 0.04) (see Table 14)	Regression coefficient (95% CI) for insulin measures per unit increase in serum In-MIBP (adjusted for sex, serum cholesterol and triglycerides, BMI, smoking, exercise, and education) Proinsulin/insulin 0.06 (0.03, 0.089) HOMA 0.014 (-0.015, 0.043) The magnitude of the association between proinsulin/insulin and MIBP was similar to that for MEHP, but in the opposite direction of MEP and MMP (-0.05 and -0.005, respectively). The magnitude of the association between HOMA-IR and MIBP was lesser than that for MEP and MMP. The magnitude of the association between prevalent diabetes and MIBP was greater than that for MEHP, and less than that for MEP and MMP in the highest quintile.
Olsén et al. (2012) (Sweden) Population: 1,016 (507 men, 509 women), from population-based cohort (Prospective Investigation of Vasculature in Uppsala Seniors study), 2001–2003; age 70 yrs at enrollment Outcome: Fasting serum sample for glucose Exposure: Serum sample, collected at time of examination; results not shown Analysis: Linear regression, adjusted for the variables shown in results column.	Regression coefficient for change in outcome per unit increase in In- MIBP (adjusted for sex, smoking, diabetes (except for glucose), and the other variables in the table; model for Framingham Risk Score only adjusted for sex) Fasting serum glucose 0.024 (0.01, 0.04; <i>p</i> = 0.0001

FBG = fasting blood glucose; HOMA-IR = homeostatic model assessment of insulin resistance

Table 3-15. Evidence pertaining to DIBP and cardiovascular disease risk factors in humans

Reference and study design	Results				
Shiue (2014) (United States, NHANES) Population: 2,489 participants in population-based survey (NHANES), 2011–2012; ages ≥20 yrs Outcome: High blood pressure (systolic		lood pressure with incr nary creatinine, age, se 1.14 (0.92, 1.41)			
blood pressure ≥140 mmHg and diastolic blood pressure ≥90 mmHg)	Mean ± SD MIBP in ur normal and high BP	ine (units not given) in _l	participants with		
Exposure: Urine sample collected at time of clinical exam	Normal BP (n = 2,180)	:	13.13 ± 22.17		
MIBP in urine (units not given) Mean ± SD Normal BP 13.13 ± 22.17 High BP 15.71 ± 25.15 Analysis: Survey-weighted logistic regression, adjusting for variables shown in results column; t-test for comparison between concentrations	High BP (n = 309)	:	15.71 ± 25.15		
Trasande et al. (2013c) (United States, NHANES) Population: 2,447 children in population- based survey (NHANES), 2003–2008; ages	Changes in z-score (95% CI) per unit increase in In-phthalates (adjusted for sex, caloric intake, television watching, poverty:income, parental education, serum cotinine, urinary creatinine, BMI, race/ethnicity, and age)				
8–19 yrs old Outcome: Systolic BP and diastolic BP		∑LMW phthalates	MIBP		
z-score (based on height-, sex-, and age-	Systolic BP	0.03 (-0.02, 0.07)	0.03 (-0.02, 0.08)		
normalized values); prehypertension (BP	Diastolic BP	0.02 (-0.04, 0.07)	-0.02 (-0.09, 0.04)		
≥90 th percentile for age/height/sex); fasting serum triglycerides (n = 906; high =	Triglycerides	-0.22 (-4.40, 0.07)	not reported		
\geq 100 mg/dL); nonfasting high density			-		
cholesterol (HDL; n = 2,555;	HDL	0.13 (-0.60, 0.85)	not reported		
low = <40 mg/dL) Exposure: Urine sample, collected at time	OR (95% CI) for BP ≥90 phthalates) th percentile per unit ir	icrease in In-		
of BMI measurement ∑LMW phthalates in urine (μM):		∑LMW phthalates	MIBP		
Geometric mean	BP ≥90 th percentile	1.19 (0.96, 1.47)	1.00 (0.74, 1.35)		
$BP < 90^{th} percentile 0.817$ $BP \ge 90^{th} percentile 1.002$	High triglycerides	0.85 (0.71, 1.01)	not reported		
Σ LMW phthalate = sum of MEP, MBP, and	Low HDL	1.00 (0.87, 1.15)	not reported		
MIBP Analysis: Logistic regression for pre- hypertension (BP ≥90 th percentile) classification; linear regression for systolic BP and diastolic BP z-score and triglycerides and HDL as continuous variable; all models adjusted for variables shown in results column					

Reference and study design	Results				
Olsén et al. (2012) (Sweden) Population: 1,016 (507 men, 509 women), from population-based cohort (Prospective	Regression coefficient for change in outcome per unit increase in In- MIBP (adjusted for sex, smoking, diabetes and the other variables in the table; model for Framingham Risk Score only adjusted for sex)				
Investigation of Vasculature in Uppsala				(β [SE])
Seniors study), 2001–2003; age 70 yrs at enrollment	LDL			0.044 (-0.01	, 0.09)
Outcome: Blood pressure measured at	HDL			0.017 (-0.01	
study visit; fasting serum sample for LDL and HDL cholesterol, and triglycerides;	Triglycerides			-0.009 (-0.03	
Framingham risk score					-
Exposure: Serum sample, collected at time	Systolic BP			-0.05 (-1.28	
of examination; results not shown Analysis: Linear regression, adjusted for	Diastolic BP			0.35 (-0.20,	0.90)
the variables shown in results column	Framingham	risk score		0.13 (-0.05,	0.31)
Lind and Lind (2011) (Sweden) Population: 1,016 (507 men, 509 women), from population-based cohort (Prospective Investigation of Vasculature in Uppsala	blood glucose triglycerides,	by quintile of N e, systolic BP, c smoking, antil	diastolic BP, HI	DL and LDL ch	olesterol,
Seniors study), 2001–2003; age 70 yrs at	MIBP quintile	IN	1⊤	IM-	GSM
enrollment Outcome: Carotid artery intima media	quintile			Median IM-	Contraction
thickness (IMT); grey scale media of the		Median IMT	(<i>p</i> -value)	GSM	(<i>p</i> -value)
intima media complex (IM-GSM); plaque in	1 (low)	0.87	(referent)	80	Referent
carotid artery Exposure: Serum sample (fasting),	2	0.89	(0.91)	72	(0.0001)
collected at time of clinical assessment	3	0.86	(0.13)	68	(0.0001)
MIBP in serum (ng/mL): Median 75 th percentile	4	0.89	(0.91)	69	(0.0001)
13.5 29.3					
Analysis: Linear regression for continuous	5 (high)	0.85	(0.074)	102	(0.0001)
outcomes (IMT, IM-GSM) and ordinal logistic regression for number of carotid arteries with plaques (0, 1, 2), adjusted for variables shown in results column	Regression coefficient (β [<i>p</i> -value]) per unit increase in serum MIBP (adjusted for sex, BMI, fasting blood glucose, systolic BP, diastolic BP, HDL and LDL cholesterol, triglycerides, smoking, antihypertensive treatment, statin use)				
	IMT		-	-0.0045 (0.14)
	IM-GSM			5.5 (0.0001)	
	quintile of M systolic BP, d	nce of plaques IBP (adjusted f iastolic BP, HD ihypertensive 1	or sex, BMI, fa L and LDL cho	isting blood g lesterol, trigly	lucose,
	MIBP				
	quintile	Plaque pr	evalence	Plaqu	e GSM
		OR	(p-value)	Median	(<i>p</i> -value)
	1 (low)	1.0	(referent)	65	(referent)
	2	0.70	(0.059)	69	(0.37)
	3	0.74	(0.17)	59	(0.11)
	4	1.00	(0.78)	62	(0.074)

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results							
	5 (high)	0.64	(0.011)	99	(0.0001)			
	OR or regression coefficient per unit increase in serum MIBP							
	Plaque OR (95% Cl) 0.88 (0.79, 0.9 prevalence 0.88 (0.79, 0.9) 0.88 (0.79, 0.9)							
	Plaque GSM β (<i>p</i> -value) 8.0 (0.0001)							
	The regression m gender, except fe							

BP = blood pressure; HDL = high-density lipoprotein; IM-GSM = grey scale media of the intima media complex; IMT = intima media thickness; LDL = low-density lipoprotein

	1	i	
	I	l	
1			

Table 3-16. Evidence pertaining to DIBP and cancer in humans

Reference and study design		Results			
Lopez-Carrillo et al. (2010) (Mexico) Population: 233 incident cases, 221 population	Geometric mean (95 and by menopausal	5% CI) DBP in urine (µɛ status	g/g Cr), all subjects		
controls matched by age and residency, ≥18 yrs of age, >1 yr in study area, 2007–2008; mean		Controls	Cases		
age 53 yrs; participation rates: 94.8% of cases	All	8.85 (7.95, 9.84)	7.81 (6.93, 8.81)		
and 99.5% of controls Outcome: Histologically-confirmed breast	Pre-menopause	9.99 (8.42, 11.85)	8.31 (6.85, 10.09)		
cancer	Post-menopause 8.32 (7.27, 9.52) 7.53 (6.45, 8				
Exposure: Urine sample (for cases, urine collected on average 2 mo after diagnosis, but before treatment) MIBP in urine, controls: Geometric mean		ast cancer, by tertile of menarche, parity, men tabolites)			
Cr-adjusted (µg/g Cr) 8.85 Analysis: Logistic regression, adjusting for variables shown in results column	MIBP tertile (μg/g Cr)				
	1 (0.23–7.44)	1.0 (referent)			
	2 (7.45–12.07)	0.59 (0.35, 0.98)			
	3 (12.08-86.22)	0.73 (0.43, 1.24)			
	(trend <i>p</i>)	(0.365)			

1 **3.3. EXPERIMENTAL STUDIES**

2 3.3.1. Developmental Effects

3 4

Table 3-17. Evidence pertaining to developmental effects in animals following oral exposure to DIBP

Reference and study design		Result	sª				
Fetal survival	•						
See Table 3-19							
Fetal growth							
<u>BASF (2007)</u>	Fetal body weight (percent cho	ange compo	ared to c	ontrol)			
Rat (Wistar); 22–23 dams/group	Doses	0	88	3	363	942	
0, 88, 363, 942 mg/kg-day	MBW	0%	-3	%	-3%	-5%**	
Diet	F BW	0%	-3	%	-3%	-6%**	
GDs 6–20 (GD 20 c-section)							
<u>Borch et al. (2006)</u>	Fetal body weight (percent cho	ange compo	ared to a	ontrol)			
Rat (Wistar); 11–12 dams/group	Doses (M)		0		600)	
0, 600 mg/kg-day	BW (GD 19) (data presented in graph ^b)		0%		-27%	/* 0	
Gavage	BW (GD 20/21) (data presented in graph ^b)		0%		-12	%	
GDs 7–19 (GD 19 c-section) or	Doses (F)		0		600		
GDs 7–20/21 (GD 20/21 c-section); 5–6 dams/group per time point	BW (GD 19) (data presented in graph ^b)		0%		-28%	6 *	
	BW (GD 20/21) (data presented in graph ^b)		0%		129	6	
<u>Saillenfait et al. (2006)</u>	Fetal body weight (mean perce	ent change	compar	ed to con	trol)		
Rat (Sprague-Dawley); 20–22 dams/group	Doses	0	250	500	750	1,000	
0, 250, 500, 750, 1,000 mg/kg-day	M and F (all fetuses) BW	0%	0%	-7%**	-17%**	-24%**	
Gavage	M BW	0%	0%	-6%*	-17%**	-25%**	
GDs 6–20 (GD 21 c-section)	FBW	0%	-1%	-8%**	-18%**	-26%**	

Reference and study design			Results ^a			
Postnatal survival						
<u>Saillenfait et al. (2008)</u>	Pup survival (percent cha	inge com	pared to c	ontrol [li	itter means])	
Rat (Sprague-Dawley); 11–14 dams/group	Doses	0	125	250	500	625
0, 125, 250, 500, 625 mg/kg-day	percentage pup survival PNDs 1–4	0%	-1%	-1%	-1%	-7%
GDs 12–21 (dams allowed to deliver)	percentage pup survival PNDs 4–21	0%	2%	5%	3%	5%
Postnatal and adult growth						
<u>Eastman Kodak (1954)</u>	Body weight gain (percer	nt change	e compare	d to cont	trol)	
Rat (no strain designation);	Doses (M)	0	97		1,000	7,800
5 male and 5 females/group	BW gain (weaning to 4 weeks post-weaning)	0%	3%		-2%	-61%
0, 0.1, 1, 5% DIBP (0, 97, 1,000,	Doses (F)	0	110)	1,100	6,400
7,800 mg/kg-day for males; 0, 110, 1,100, 6,400 mg/kg-day for females) ^c	BW gain (weaning to 4 weeks post-weaning)	0%	-9%	6	1%	-34%
,	Body weight (percent cho	ange con	npared to a	control)		
Diet	Doses (M)	0	97		1,000	7,800
Weaning to 8 weeks post-weaning	4 weeks post-weaning BW	0%	2%		-1%	-41%
	Doses (F)	0	110	כ	1,100	6,400
	4 weeks post-weaning BW	0%	-5%	6	1%	-19%
	Body weight gain (percer	nt change	e compare	d to cont	trol)	
	Doses (M)	0	97		1,000	7,800
	BW gain (weaning to 8 weeks post-weaning)	0%	3%		-3%	-58%
	Doses (F)	0	110)	1,100	6,400
	BW gain (weaning to 8 weeks post-weaning)	0%	-11	%	0%	-34%
	Body weight (percent cho	ange con	npared to a	control)		
	Doses (M)	0	97		1,000	7,800
	8 weeks post-weaning BW	0%	2%		-3%	-44%
	Doses (F)	0	110)	1,100	6,400
	8 weeks post-weaning BW	0%	-7%	6	0%	-22%
	Note: Statistical analysis	not repo	rted in stu	dy.		

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design			Result	s ^a			
(<u>Hazleton Laboratories (1992)</u> , <u>1987); NIOSH (1983)</u>)	Body weight change (g)						
Mouse (CD-1); 50 control	Doses (F)	0	1,000	1,795	3,225	5,790	10,400
females; 10 females/treated group (6.5–9 weeks old)	BW change (days 1–8 of study)	0	0	1	0	1	1
0, 1,000, 1,795, 3,225, 5,790, 10,400 mg/kg-day	Body weight change (g)						
Gavage	Doses (F)	0	1,000	1,795	3,225	5,790	10,400
8 days	BW change (days 1–12 of study)	1	1	1	0	1	1
	Body weight change (g)						
	Doses (F)	0	1,000	1,795	3,225	5 <i>,</i> 790	10,400
	BW change (days 1–16 of study)	1	1	1	1	1	1
	Note: Statistical analysis not reported in study.						
<u>Oishi and Hiraga (1980d)</u>	Body weight and weight	: gain (p	ercent cho	ange con	npared to	o control)	
MIBP	Doses (M)		0			1,100	
Rat (Wistar) (JCL); 10 males/group	BW at 6 weeks		0%			-10%*	
0, 2% in diet (0, 1,100 mg/kg-day) ^d	BW gain (5–6 weeks ^e)		0%			-31%	
Diet	Note: Statistical analysis	was not	t performe	ed on BV	V gain.		
1 week							
<u>Oishi and Hiraga (1980a)</u>	Body weight and weight	: gain (p	ercent cho	ange con	npared to	o control)	
Mouse (JCL:ICR); 10 males/group	Doses (M)		0			2,100	
0, 2% (0, 2,100 mg/kg-day) ^d	BW at 6 weeks		0%			-13%*	
Diet	BW gain (5–6 weeks ^e)		0%			-54%	
1 week	Note: Statistical analysis	was not	t performe	ed on BV	V gain.		
<u>Saillenfait et al. (2008)</u>	Body weight (percent ch	ange co	mpared to	o control	[litter m	eans])	
Rat (Sprague-Dawley);	Doses	0	125	250) !	500	625
11–14 dams/group	M postnatal (PND 1) BW	0%	-1%	-29	6 -	-2%	-10%**
0, 125, 250, 500, 625 mg/kg-day	M postnatal (PND 21) BW	0%	-1%	-3%	6 -	-6%	-10%*
Gavage	F postnatal (PND 21) BW	0%	-3%	-5%		-3%	-10%

Reference and study design			Result	s ^a				
GDs 12–21 (dams allowed to	M BW at day of PPS	0%	-8%*	-5%	/ * 0	7%	2%	
deliver)	M adult (PNDs 77–84) BW	0%	-6%	-49	%	-7%*	-9%**	
University of Rochester (1953)	Body weight gain (percel	nt chang	ge compa	red to co	ontrol)			
Rat (Albino; no other strain	Doses (M)	0	15	140	1,400	3,000	8,900	
designation); 5 males/group	BW gain ^e (weaning to 1 month post-weaning)	0%	-22%	-19%	-22%	-27%	-51%	
	Note: Statistical analysis	was not	performe	ed on BV	V gain.			
0, 0.01, 0.1, 1, 2, 5% (0, 15, 140, 1,400, 3,000, 8,900 mg/kg-day) ^f	Body weight (percent ch	ange col	mpared to	o contro	1)			
Diet	Doses (M)	0	15	140	1,400	3,000	8,900	
Veaning to 1 month ost-weaning	1 month post-weaning BW	0%	-16%	-14%	-16%	-20%	-38%	
	Note: Statistical analysis	not repo	orted in st	udy.				
<u>University of Rochester</u> (<u>1953)</u> University of Rochester (1953)University of Rochester (1953)University of Rochester (1953)	Body weight gain (percen	nt chang	ge compa	red to co	ontrol)			
	Doses (M)	0	15	140	1,400	3,000	8,900	
	BW gain (weaning to PND 49 [~after PPS ^g])	0%	-20%	-18%	-21%	-27%	-49%	
	Note: Statistical analysis was not performed on BW gain.							
	Body weight (percent ch	ange col	mpared to	o contro	I)			
	Doses (M)	0	15	140	1,400	3,000	8,900	
	PND 49 (~after PPS ^a) BW	0%	-14%	-13%	-15%	-19%	-35%	
	Note: Statistical analysis	not repo	orted in st	udy.				
<u>University of Rochester (1954)</u>	Body weight gain (percent	nt chang	ge compa	red to co	ontrol)			
Rat (Albino; no other strain	Doses (M)	0	65		710	5	5,800	
designation); 5 males and 5 females/group	BW gain (weaning to 1 month post-weaning) ^e	0%	5%		-6%	-	-60%	
0, 0.1, 1, 5% (0, 65, 710,	Doses (F)	0	82		770	Z	1,700	
5,800 mg/kg-day for males; 0, 82, 770, 4,700 mg/kg-day for females) ^h	BW gain (weaning to 1 month post-weaning) ^e	0%	-7%		3%	-	-27%	
Diet	Note: Statistical analysis	was not	performe	ed on BV	V gain.			
Weaning to 4 months post-weaning	Body weight (percent ch	ange col	mpared to	o contro	1)			

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE 3-47

erence and study design	Results ^a						
	Doses (M)	0	65	710	5,800		
	BW at 1 month post-weaning	0%	4%	-4%	-42%		
	Doses (F)	0	82	770	4,700		
	BW at 1 month post-weaning	0%	-4%	2%	-16%		
	Note: Statistical analysis	not repor	ted in study.				
	Body weight gain (perce	nt change	compared to	o control)			
	Doses (M)	0	65	710	5,800		
	BW gain (weaning to PND 49 [~after PPS ^g]) ^e	0%	3%	-2%	-61%		
	Doses (F)	0 ^γ	82	770	4,700		
	BW gain (weaning to PND 49 [~after VO ^g] ^e	0%	-8%	3%	-33%		
	Note: Statistical analysis was not performed on BW gain.						
	Body weight (percent ch	ange com	pared to con	trol)			
	Doses (M)	0	65	710	5,800		
	BW at PND 49 (~after PPS ⁹)	0%	2%	-1%	-41%		
	Doses (F)	0	82	770	4,700		
	BW at PND 49 (~after VO ^g)	0%	-4%	1%	-18%		
	Note: Statistical analysis	not repor	ted in study.				
	Body weight gain (perce	nt change	compared to	o control)			
	Doses (M)	0	65	710	5,800		
	BW gain (weaning to 4 months post-weaning)	0%	5%	-11%	-53%		
	Doses (F)	0 ^γ	82	770	4,700		
	BW gain (weaning to 4 months post-weaning)	0%	-1%	10%	-19%		
	Note: Statistical analysis	was not p	erformed on	BW gain.			
	Body weight (percent ch	ange com	pared to con	trol)			
	Doses (M)	0	65	710	5,800		
	BW at 4 months post-weaning	0%	4%	-9%	-43%		
	Doses (F)	0	82	770	4,700		

This document is a draft for review purposes only and does not constitute Agency policy.

Reference and study design			Results ^a	I						
	BW at 4 months post-weaning	0%	-1%	-	7%	-13%				
	Note: Statistical analysis	not repo	rted in stu	dy.						
Fetal morphological development	1									
Saillenfait et al. (2006)	Malformations									
Rat (Sprague-Dawley) rats;	External malformations	(incidenc	e; number	of affecte	ed fetuses [li	tters])				
20–22 dams/group	Doses	0	250	500	750	1,000				
	total fetuses (litters) examined for external malformations	281 (22)	276 (21)	237 (21)	212 (21)	111 (18)				
), 250, 500, 750, 1,000 mg/kg-day	anasarca	0	0	0	0	1 (1)				
Gavage GDs 6–20 (GD 21 c-section)	exophthalmos (unilateral) and absence of eyelids (bilateral)	0	0	0	1 (1)	0				
	exencephaly	0	0	0	2 (2)	0				
	meningoencephalocele	0	0	0	3 (3)	3 (2)				
	microstomia	0	0	0	0	1 (1)				
	ectopia cordis	0	0	0	0	1 (1)				
	omphalocele	0	0	0	0	1 (1)				
	Combined total with ext	ernal ma	lformatio	ns (incider	nce [percent					
	Doses	0	250	500	750	1,000				
	total number (%) fetuses with external malformations	0	0	0	5 (2%)*	6 (5%)**				
	total number (%) litters with external malformations	0	0	0	4 (19%)	4 (22%)				
	mean % fetuses with external malformations/litter	0%	0%	0%	2%	4%				
	Visceral malformations (<i>incidence</i>	e; number	of affecte	d fetuses [lit	111 (18) 1 (1) 0 0 3 (2) 1 (1) 1 (1) 1 (1) 1 (1) 0 6 (5%)** 4 (22%) 4%				
	Doses	0	250	500	750	1,000				
	total fetuses (litters) examined for visceral malformations	141 (22)	138 (21)	119 (21)	106 (21)					
	anophthalmia, uni- or bilateral	0	0	0	6 (4)	4 (3)				
	aorta and/or pulmonary artery transposed	0	0	0	6 (5)	3 (3)				

This document is a draft for review purposes only and does not constitute Agency policy.

Reference and study design			Results	а		
	diaphragmatic hernia	0	2 (1)	2 (2)	2 (2)	1 (1)
	kidney and ureter, absent, uni- or bilateral	0	0	0	1 (1)	3 (3)
	kidney, small, uni- or bilateral	0	0	0	1 (1)	1 (1)
	Combined total with viso	eral ma	Iformatio	ns (incider	nce [percent])
	Doses	0	250	500	750	1,000
	total number (%) fetuses with visceral malformations	0	2 (1%)	2 (2%)	13 (12%)**	10 (18%)**
	total number (%) litters with visceral malformations	0	1 (5%)	2 (10%)	8 (38%)**	8 (44%)**
	mean % fetuses with visceral malformations/litter	0%	1%	2%	13%*	16%*
	Skeletal malformations ('incident	ce; numbe	r of affect	ed fetuses [lit	tters])
	Doses	0	250	500	750	1,000
	total number of fetuses (litters) examined for skeletal malformations	140 (22)	138 (21)	118 (21)	106 (21)	55 (18)
	mandible, small	0	0	0	0	1 (1)
	sternebrae, fused	0	0	0	7 (6)	14 (9)**
	sternebrae, fused and scrambled	0	0	0	5 (3)	12 (7)
	sternebrae, total	0	0	0	12 (7)*	26 (13)**
	cleft sternum	0	0	1 (1)	1 (1)	2 (2)
	sternebrae, checkerboard	0	0	0	2 (2)	0
	ribs, fused	0	0	0	0	2 (2)
	cervical arches, fused	0	0	0	3 (3)	3 (3)
	thoracic or lumbar vertebral arches, fused	0	0	1 (1)	2 (2)	2 (2)
	thoracic or lumbar vertebral centra, fused	0	0	1 (1)	0	4 (3)
	thoracic or lumbar centrum, hemicentric	0	0	1 (1)	4 (3)	3 (3)
	thoracic or lumbar vertebral centra, misaligned	0	0	2 (2)	3 (2)	5 (4)

Reference and study design	Results ^a						
	Combined total with ske	letal ma	lformatio	ons (incider	nce [percent])	
	Doses	0	250	500	750	1,000	
	total number (%) fetuses with skeletal malformations	0	0	4 (3%)	18 (17%)**	34 (62%)**	
	total number (%) litters with skeletal malformations	0	0	4 (19%)	11 (52%)**	15 (83%)**	
	mean % fetuses with skeletal malformations/litter	0%	0%	3%	18%**	67%**	
	Variations						
	External variations (incid	lence; nu	mber of a	offected fet	tuses [litters]		
	Doses	0	250	500	750	1,000	
	total fetuses (litters) examined for external variations	281 (22)	276 (21)	237 (21)	212 (21)	111 (18)	
	clubfoot	0	2 (1)	0	0	0	
	tail, curly	0	0	0	1 (1)	0	
	tail tip, haemorrhage	0	1 (1)	0	0	0	
	Visceral variations (incid	ence; nu	mber of a	iffected fet	uses [litters])	
	Doses	0	250	500	750	1,000	
	total fetuses (litters) examined for visceral variations	141 (22)	138 (21)	119 (21)	106 (21)	56 (18)	
	dilated cerebral ventricle, slight	0	0	0	1 (1)	0	
	dilated renal pelvis	1 (1)	0	0	2 (2)	5(4)	
	ureter (all)	3 (3)	0	2 (2)	10 (8)	12 (8)*	
	hydroureter	0	0	0	4 (4)	6 (5)	
	distended ureter	3 (3)	0	2 (2)	6 (5)	6 (4)	
	ovaries, displaced	0	0	0	5 (4)	2 (2)	
	testis, ectopic	0	0	3 (2)	30 (16)**	30 (16)**	
	degree of trans- abdominal testicular migration (mean)	2.6	3.8	13.6**	42.2**	58.1**	

Reference and study design		Results ^a					
	Skeletal variations (incid	dence; nu	mber of a	ffected fe	etuses [litters])	
	Doses	0	250	500	750	1,000	
	total fetuses (litters) examined for skeletal variations	140 (22)	138 (21)	118 (21)	106 (21)	55 (18)	
	parietals or supraoccipital, incomplete ossification	0	0	0	3 (2)	1 (1)	
	hyoid, absent or incomplete ossification	0	0	0	1 (1)	8 (7)	
	sternebrae, fused, 1 st and 2 nd only	1 (1)	0	8 (4)	29 (11)**	5 (4)	
	sternebrae, bipartite	0	1 (1)	2 (2)	7 (5)	4 (4)	
	sternebrae, incomplete ossification	0	1 (1)	5 (5)	9 (6)	6 (5)	
	ribs, cervical, rudimentary	0	0	2 (2)	12 (9)*	9 (6)	
	ribs, 14 th , any supernumerary	23 (11)	32 (14)	42 (18)	72 (20)**	52 (18)**	
	ribs, 14 th , long supernumerary	1 (1)	1 (1)	2 (2)	15 (9)*	9 (9)*	
	ribs, short or reduced ossification (unilateral)	0	0	0	1 (1)	1 (1)	
	thoracic or lumbar vertebral centra, incomplete ossification	3 (2)	8 (6)	7 (7)	18 (14)**	16 (8)*	
	vertebrae, 27 presacral	0	0	0	0	2 (2)	
	Note: A single fetus may variations.	be repre	sented m	ore than	once in the in	dividual	
<u>BASF (2007)</u> ⁱ	Malformations						
Rat (Wistar); 25 dams/group	External malformations	(incidenc	e; numbe	r of affec	ted fetuses [li	tters])	
0, 88, 363, 942 mg/kg-day	Doses	0	8	8	363	942	
Diet GDs 6–20 (GD 20 c-section)	total fetuses (litters) examined for external malformations and variations	208 (23) 197	(22)	182 (22)	211 (23)	
	malformed head	0	1 (1)	0	0	
	anophthalnia	0	1 (1)	0	0	
	Combined total with ex	ternal ma	lformatio	ons (incid	ence [percent	1)	
	Doses	0	8	8	363	942	
	fetuses	0	1 (1	L%)	0	0	

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design		R	esults ^ª					
	litters	0	1 (5%)	0	0			
	Combined total with soft tissue malformations							
	No fetuses affected at a	ny dose						
	Skeletal malformations	(incidence; r	number of aff	ected fetuses [[litters])			
	Doses	0	88	363	942			
	total fetuses (litters) examined for skeletal malformations/ variations	109 (23)	101 (22)	97 (22)	110 (23)			
	severely malformed skull bones	0	1 (1)	0	0			
	shortened scapula (cartilage present)	0	0	1 (1)	0			
	malpositioned and bipartite sternebral (unchanged cartilage)	1 (1)	1 (1)	0	0			
	branched rib	1 (1)	0	0	0			
	misshapen humerus	0	2 (2)	0	2 (2)			
	shortened humerus	0	0	2 (1)	0			
	Combined total with sk	eletal malfo	mations (inc	idence [percer	nt])			
	fetuses	1 (1%)	4 (4%)	2 (2%)	2 (2%)			
	litters	1 (4%)	4 (18%)	1 (5%)	2 (9%)			
	Variations							
	Combined total with ex	ternal variat	ions					
	No fetuses affected at a	ny dose						
	Soft tissue variations (in	ncidence; nur	nber of affect	ted fetuses [lit	ters])			
	Doses	0	88	363	942			
	total fetuses (litters) examined for external soft tissue malformations and variations	99 (23)	96 (22)	85 (22)	101 (23)			
	dilated renal pelvis	10 (7)	7 (5)	9 (8)	7 (5)			
	dilated ureter	2 (2)	2 (1)	1 (1)	1 (1)			
	Combined total with so	ft tissue vari	ations (incide	ence (percent)))			
	Doses	0	88	363	942			
	fetuses	10 (10%)	7 (7%)	9 (11%)	7 (7%)			
	litters	7 (30%)	5 (23%)	8 (36%)	5 (22%)			

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results ^a						
	Skeletal variations (incide	ence; numb	er of affected	l fetuses [litter	s])		
	Doses	0	88	363	942		
	supraoccipital hole(s)	31 (15)	23 (13)	15 (12)	38 (19)		
	incomplete ossification of basisphenoid	7 (3)	2 (2)	6 (5)	8 (4)		
	incomplete ossification of interparietal (unchanged cartilage)	24 (15)	11 (7)	22 (12)	13 (9)		
	incomplete ossification of parietal (unchanged cartilage)	16 (10)	13 (9)	22 (13)	13 (7)		
	incomplete ossification of supraoccipital (unchanged cartilage)	9 (7)	14 (11)	14 (12)	13 (6)		
	incomplete ossification of skull (unchanged cartilage)	5 (4)	2(1)	7 (4)	2 (2)		
	incomplete ossification of hyoid (cartilage present)	1 (1)	0	1 (1)	1 (1)		
	incomplete ossification of cervical arch (cartilage present)	1 (1)	0	0	0		
	incomplete ossification of thoracic centrum (unchanged cartilage)	0	3 (3)	3 (3)	0		
	dumbbell ossification of thoracic centrum (unchanged cartilage)	4 (3)	3 (3)	2 (2)	9 (7)		
	dumbbell ossification of thoracic centrum (dumbbell-shaped cartilage of centrum)	14 (9)	13 (9)	13 (13)	17 (14)		
	bipartite ossification of thoracic centrum (dumbbell-shaped cartilage of centrum)	2 (2)	2 (2)	0	1 (1)		
	supernumerary thoracic vertebra	1 (1)	2 (1)	1 (1)	3 (2)		
	unossified thoracic centrum (dumbbell- shaped cartilage of centrum)	1 (1)	0	0	0		

Reference and study design	Results ^a					
	dumbbell ossification of lumbar centrum (dumbbell-shaped cartilage of centrum)	1 (1)	0	0	0	
	incomplete ossification of lumbar arch (cartilage present)	0	0	1 (1)	0	
	misshapen sacral vertebra	1 (1)	1 (1)	1 (1)	4 (4)	
	fused sacral centrum and arch (unchanged cartilage)	3 (2)	7 (3)	5 (4)	5 (3)	
	incomplete ossification of sacral arch (cartilage present)	5 (4)	2 (2)	0	0	
	unossified sternebra (unchanged cartilage)	4 (4)	11 (7)	1 (1)	6 (4)	
	incomplete ossification of sternebra (unchanged cartilage)	42 (17)	44 (17)	44 (19)	75 (22*)	
	misshapen sternebral (unchanged cartilage)	32 (19)	26 (17)	20 (12)	28 (16)	
	unilateral ossification of sternebra (unchanged cartilage)	0	0	0	4 (4)	
	extra sternebral ossification site (unchanged cartilage)	0	0	1 (1)	0	
	bipartite ossification of sternebral (unchanged cartilage)	1 (1)	0	0	2 (2)	
	supernumerary rib (14 th) (cartilage present)	6 (5)	1 (1)	6 (6)	6 (5)	
	supernumerary rib (14 th) (cartilage not present)	50 (15)	33 (15)	40 (17)	62 (22*)	
	cervical rib (cartilage present)	0	1 (1)	0	0	
	cervical rib (cartilage not present)	5 (5)	5 (4)	5 (3)	4 (4)	
	wavy rib	6 (5)	2 (2)	10 (4)	9 (9)	
	incomplete ossification of pubis (cartilage present)	0	1 (1)	0	0	

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design		R	esults ^a					
	Combined total with skeletal variations (incidence (percent))							
	Doses	0	88	363	942			
	fetuses	101 (93%)	87 (86%)	85 (88%)	107 (97%)			
	litters	23 (100%)	22 (100%)	22 (100%)	23 (100%)			
	Unclassified observatio	ns						
	Unclassified external observations (incidence; number of affected fet [litters])							
	Doses	0	88	363	942			
	total fetuses (litters) examined for unclassified observations	208 (23)	197 (22)	182 (22)	211 (23)			
	discolored amniotic fluid	0	0	0	1 (1)			
	Combined total with ex	ternal uncla	ssified observ	vations (incide	nce [percent])			
	Doses	0	88	363	942			
	fetuses	0	0	0	1 (1%)			
	litters	0	0	0	1 (4%)			
	Combined total with ur	nclassified so	oft tissue obse	ervations				
	No fetuses affected at a	iny dose						
	Skeletal unclassified ca fetuses [litters])	rtilage obsei	vations (incia	lence; number	of affected			
	Doses	0	88	363	942			
	total fetuses (litters) examined for skeletal unclassified observations	109 (23)	101 (22)	97 (22)	110 (23)			
	notched cartilage between basiphenoid and basioccipital	2 (2)	0	0	1 (1)			
	fused cervical arch cartilage	1 (1)	0	0	0			
	dumbbell-shaped cartilage of cervical centrum	0	1 (1)	0	0			
	hole in processus coracoideus	0	1 (1)	0	0			
	bipartite processus xiphoideus	36 (14)	30 (15)	30 (15)	40 (14)			

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

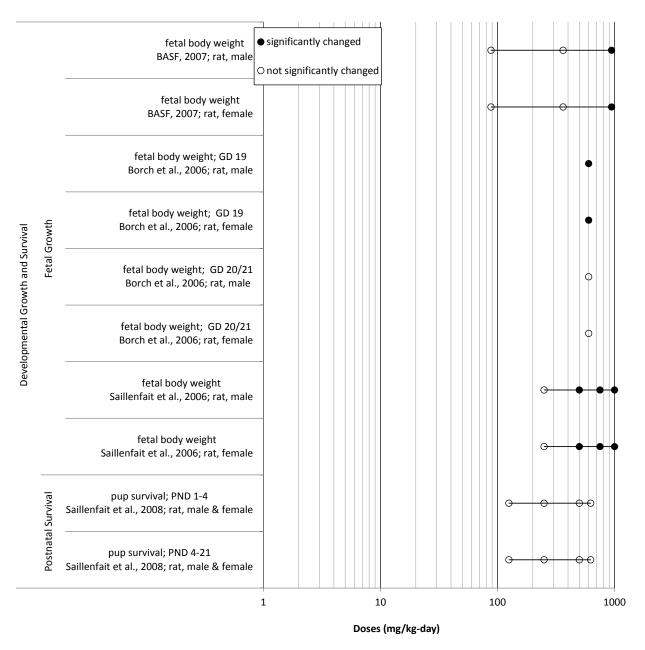
Reference and study design	Results ^a					
	notched manubrium	5 (5)	7 (5)	3 (3)	1 (1)	
	fused rib cartilage	0	0	1 (1)	0	
	branched rib cartilage	0	0	1 (1)	0	
	Combined total with ske [percent])	letal unclas	sified cartila	ge observation	is (incidence	
	Doses	0	88	363	942	
	fetuses	39 (36%)	35 (35%)	32 (33%)	41 (37%)	
	litters	16 (70%)	17 (77%)	16 (73%)	15 (65%)	
Borch et al. (2006)	AGD change in females (percent cha	inge compare	ed to control)		
Rat (Wistar); 11–12 dams/group	Doses	0 600				
0, 600 mg/kg-day	AGD at GD 19 (data shown in graph ^b)	0% 16%			6%	
Gavage	AGD at GD 20/21) (data shown in graph ^b)	a 0% 26%*				
GDs 7–19 (GD 19 c-section) or GDs 7–20/21 (GD 20/21 c-section); 5–6 dams/group per time point	AGD/cubic root of BW cl control)	hange in fer	nales (percen	nt change comp	oared to	
	Doses		0	6	00	
	at GD 19 (data shown in graph ^b)	()%	27'	%**	
	at GD 20/21 (data shown in graph ^b)	()%	27	% *	

² 3 4 5 6 7 8 9 10 11

1

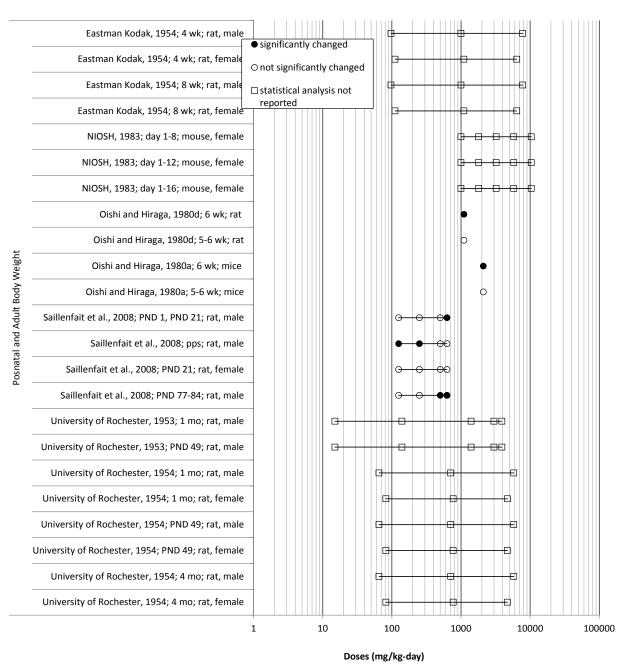
Response is % control (indicated by %) or in cases when % control was not possible to present (e.g., if control value was 0), response levels are presented. Equation used to calculate percent change compared to control:

treated value - control value × 100 control value

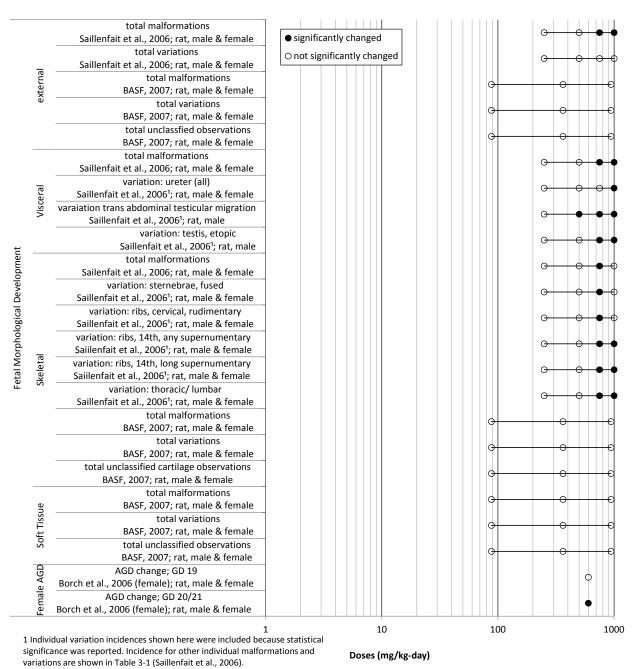

^bGrabIt Software used to estimate % control from graph.

^cDose conversions were performed using this information: For the <u>Eastman Kodak (1954)</u> study, average BWs were 183, 186, 180, and 115 g for males, and 132, 126, 133, and 110 g for females at 0, 0.1, 1.0, and 5.0%, respectively. Reference values for food consumption of 0.018 and 0.014 kg/day for male and female rats of an unspecified

- species (U.S. EPA, 1988) were used.
- ^dDose conversions were performed using this information: In <u>Oishi and Hiraga (1980d)</u>, average BWs for rats and
- 12 mice in these studies were 145 and 25 g, respectively, and the default food consumption rates of 0.008 kg/day for
- 13 male Wistar rats and 0.0025 kg/day for male B6C3F1 mice (U.S. EPA, 1988) were applied. In Oishi and Hiraga
- 14 (1980a), average BWs over the week-long studies were 132 and 24 g for rats and mice, respectively, and the
- 15 default food consumption rates of 0.008 kg/day for male Wistar rats and 0.0025 kg/day for male B6C3F₁ mice 16 were applied (U.S. EPA, 1988).
- 17 ^eChange in body weight was calculated by EPA.
- 18 [†]Dose conversions were performed using this information: For University of Rochester (1953), average BWs were
- 19 139, 124, 127, 127, 121, and 101 g at 0, 0.01, 0.1, 1.0, 2.0, and 5.0%, respectively). Reference values for food
- 20 consumption of 0.018 and 0.014 kg/day for male and female rats of an unspecified strain (U.S. EPA, 1988) were


21 used.

- 1 ⁸PND 49 was selected among the periodic weight measurement ages to present in this table because it
- 2 corresponds to the age when VO and PPS, the developmental markers of puberty, would be expected to have 3 completed in the male and female rat.
- 4 ^hDose conversions were performed by EPA using this information: For <u>University of Rochester (1954)</u>, average BWs
- 5 6 were 269, 277, 252, and 155 g for males, and 178, 170, 182, and 148 g for females at 0, 0.1, 1.0, and 5.0%,
- respectively. Reference values for food consumption of 0.018 and 0.014 kg/day for male and female rats of an 7 unspecified species (U.S. EPA, 1988) were used.
- 8 ¹Male reproductive organs were not evaluated in the BASF study. 9
- 10 * = Statistically significant difference at *p* < 0.05 from control value, as reported by study authors; ** = Statistically
- 11 significant difference at *p* < 0.01 from control value, as reported by study authors; *** = Statistically significant
- 12 difference at p < 0.001 from control value, as reported by study authors; BW = body weight; GD = gestation day;
- 13 PND = postnatal day; PPS = preputial separation; VO = vaginal opening


1

- 2 Figure 3-1. Exposure-response array of effects on developmental growth and
- 3 survival following developmental oral exposure to DIBP.

1

Figure 3-2. Exposure-response array of effects on postnatal and adult body weight
 following developmental oral exposure to DIBP.

1 2 3

Figure 3-3. Exposure-response array of effects on fetal morphological developmental following developmental oral exposure to DIBP.

1 3.3.2. Male Reproductive Effects

2 3

Table 3-18. Evidence pertaining to male reproductive effects in animalsfollowing oral exposure to DIBP

Reference and study design		Results ^a	
Morphological development (assessed ir	fetal or postnatal developme	nt or adults)	
<u>Borch et al. (2006)</u>	AGD change in fetus (perce	ent change compar	ed to control)
Rat (Wistar); 11–12 dams/group	Doses	0	600
0, 600 mg/kg-day	At GD 19 (data shown in graph ^b)	0%	-15%**
Gavage	At GD 20/21 (data shown in graph ^b)	0%	-11%**
GDs 7–19 (GD 19 section) or GDs 7–20/21 (GD 20/21 c-section); 5–6 dams/group per time point	AGD/cubic root BW change control)	e in fetus (percent	change compared to
	Doses (M)	0	600
	GD 19 (data shown in graph ^b)	0%	-5%
	GD 20/21 (data shown in graph ^b)	0%	-9%**
Histologic lesions in fetal testis			
<u>Borch et al. (2006)</u>	Testicular histological char <i>fetuses)</i>	nges (incidence; per	rcentage incidence in
Rat (Wistar); 11–12 dams/group	Doses	0	600
0, 600 mg/kg-day	Fetuses GD 19		
Gavage	clustering of small Leydig cells	2/13	9/9***
GDs 7–19 (GD 19 section) or GDs 7–20/21 (GD 20/21 c-section); 5–6 dams/group per time point; 1–3 males/litter		15%	100%***
	Sertoli cell vacuolization	0/13	1/9
		0%	11%
	central localization of gonocytes	0/13	2/9
		0%	22%
	multinucleated gonocytes	1/13	0/9
		8%	0%
	Fetuses GD 20/21		

This document is a draft for review purposes only and does not constitute Agency policy.3-62DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results ^a					
	clustering of small Leydig cells	0/10	13/15***			
		0%	87%***			
	Sertoli cell vacuolization	0/10	14/16***			
		0%	88%***			
	central localization of gonocytes	0/10	14/16***			
		0%	88%***			
	multinucleated gonocytes	1/10	10/16*			
		10%	63%*			
Fetal testicular testosterone production	- 1					
<u>Borch et al. (2006)</u>	Testicular testosterone (T control)) content (percer	ntage change compared to			
Rat (Wistar); 11–12 dams/group	Doses	0	600			
0, 600 mg/kg-day	T content (GD 19 M) (data shown in graph ^b)	0%	-70%			
Gavage	T content (GD 20/21 M) (data shown in graph ^b)	0%	-90%***			
GDs 7–19 (GD 19 c-section) or GDs 7–20/21 (GD 20/21 c-section); 5–6 dams/group per time point	Testicular testosterone (T to control)) production (pe	rcentage change compared			
	Doses	0	600			
	testicular T production ex vivo (GD 19 M) (data shown in graph ^b)	0%	-21%			
	testicular T production ex vivo (GD 20/21 M) (data shown in graph ^b)	0%	-96%***			
<u>Hannas et al. (2011)</u>	Fetal testicular testostero compared to control)	one (T) productio	n (percentage change			
Rat (Harlan Sprague-Dawley); 3 dams/group; 3 males/dam	Doses 0	100	300 600 900			
0, 100, 300, 600, 900 mg/kg-day	T production 0%	10% -5	56%** -80%** -87%**			
Gavage						
GDs 14–18						

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE 3-63

Reference and study design	Results ^a						
Hannas et al. (2012)	Fetal testicular testosterone (T) production (percentage change compared to control)						
Rat (Sprague-Dawley); 3 dams/group; 3 males/dam	Doses		0		500)	
0, 500 mg/kg-day	T production (date	7	0%		-73%	**	
Gavage	shown in graph ^b)						
GDs 14–18							
Howdeshell et al. (2008)	Fetal testicular test compared to contr		ne (T) produ	ction (perce	entage cha	nge	
Rat (Sprague-Dawley); 5–8 dams/group; 3 males/dam	Doses	0	100	300	600	900	
0, 100, 300, 600, 900 mg/kg-day	T production (litte	r 0%	-5%	-40%**	-59%**	-63%**	
Gavage	mean)						
GDs 8–18; c-section on GD 18							
Morphological development assessed in p	ostnatal developme	ent and a	dults				
<u>Saillenfait et al. (2008)</u>	Postnatal effects	(percent o	change in lit	ter mean co	ompared to	control)	
Rat (Sprague-Dawley); 11–14 dams/group	Doses	0	125	250	500	625	
0, 125, 250, 500, 625 mg/kg-day	AGD (PND 1)	0%	-4%	-11%*	-21%**	-22%**	
Gavage	age at PPS	0%	-4%*	-1%	10%**	6%*	
GDs 12–21 (dams allowed to deliver)	Postnatal effects (incidence; percentage incidence)						
	Doses	0	125	250	500	625	
	retained nipples or areolas at PNDs 12–14	0/76	0/78	8/96	47/79	56/76	
		0%	0%	8%	59%	74%	
	Note: No statistica endpoint.	al analysis	s was report	ed by the a	uthors for	this	
	Male adult effects incidence)	s at necro	opsy (PNDs 2	77–84 or 11	2–119; per	centage	
	Doses	0	125	250	500	625	
	retained nipples or areolas	0/46	0/40	4/55	24/44	29/38	
		0%	0%	7%	55%	76%	
	hypospadias	0/46	0/40	0/55	5/44	22/39	
		0%	0%	0%	11%	56%	

Reference and study design			Result	s ^a		
	exposed os penis	0/46	0/40	0/55	4/44	11/39
		0%	0%	0%	9%	28%
	cleft prepuce	0/46	0/40	0/55	0/44	10/39
		0%	0%	0%	0%	26%
	nonscrotal testis	0/46	0/40	0/55	11/44	30/39
		0%	0%	0%	25%	77%
	Note: No statistic endpoint.	al analysis	was repor	ted by the	authors for	this
Histopathologic lesions in adult testis an	d epididymis					
Saillenfait et al. (2008)	Adult effects ^c (PN	IDs 77–84;	incidence,)		
Rat (Sprague-Dawley); 11–14 dams/group	Doses	0	125	250	500	625
0, 125, 250, 500, 625 mg/kg-day	number of males (litters) examined	24 (12)	20 (10)	28 (14)	22 (11)	20 (10)
Gavage	Epididymides (nu	mber of m	ales with e	effect)		
GDs 12–21 (dams allowed to deliver)	Doses	0	125	250	500	625
	oligospermia	0	1	3	2	1
	azoospermia	0	1	3	10	18
	granulomatous inflammation	0	0	0	4	3
	Testes (number o	f males wi	th effect)			
	Doses	0	125	250	500	625
	tubular degeneration- atrophy/ hypoplasia	2	2	7	16	20
	tubular necrosis	0	0	1	3	5
	interstitial cell hyperplasia	0	0	0	1	9
	Note: No statistic endpoints.	al analysis	was repor	ted by the	authors for	these

Reference and study design				Resu	ts ^a			
Testes weight	1							
<u>Zhu et al. (2010)</u>	Testes weight at	7 day	s (perc	ent cha	nge compa	red to cont	rol)	
Rat (Sprague-Dawley)	Doses	0	100	300	500	800	1,000	
Mouse (C57BI/6N) (number of animals not specified) 0, 100, 300, 500, 800, 1,000 mg/kg-day	Rat, absolute weight (data shown in graph ^b)	0%	-3%	-10%	-22%***	-32%***	-44%***	
Gavage	Mouse,	0%	0%	10%	6%	4%	-22%**	
7 days	absolute weight(data shown in graph ^b)							
	Note: Relative we	eight	not rep	orted b	y study aut	hors.		
(Foster et al. (1982); Foster et al. (1981))	Testes weight (p	ercen	t chang	ge comp	ared to con	ntrol)		
MIBP Rat (Sprague-Dawley); 6 males/group	Doses				0	8	00	
0, 800 mg/kg-day	absolute weight				0%	-28%***		
Gavage	relative weight				0%	-27	%***	
6 days								
Oishi and Hiraga (1980c)	Testes weight (p	ercen	t chang	ge comp	ared to con	ntrol)		
Rat (JCL:Wistar); 10 males/treated group;	Doses				0	1,	200	
20 control males	absolute weight				0%	-3	7%*	
0, 2% (0, 1,200 mg/kg-day) ^d	relative weight				0%	-3	3%*	
Diet								
1 week								
Oishi and Hiraga (1980d)	Testes weight (p	ercen	t chang	ge comp	ared to con	ntrol)		
MIBP Rat (JCL:Wistar); 10 males/group	Doses				0	1,	100	
0, 2% in diet (0, 1,100 mg/kg-day) ^d	absolute weight				0%	-4	7%*	
Diet	relative weight				0%	-4	0%*	
1 week								
<u>Oishi and Hiraga (1980a)</u>	Testes weight (p	ercen	t chang	ge comp	ared to con	ntrol)		
Mouse (JCL:ICR); 10 males/group	Doses				0	2,	100	
0, 2% (0, 2,100 mg/kg-day) ^d	relative weight				0%	29	9%*	
Diet								
1 week								

Reference and study design			Resu	ılts ^a		
Oishi and Hiraga (1980b)	Testes weight	t (percent	change com	pared to co	ntrol)	
MIBP Mouse (JCL:ICR); 10 males/group	Doses			0	2,	000
0, 2% (0, 2,000 mg/kg-day) ^d	relative weigh	nt		0%	45	5%*
Diet						
1 week						
<u>Saillenfait et al. (2008)</u>	Male reprodu control)	ictive orga	an weights (µ	percent cha	nge compar	ed to
Sprague-Dawley rats; 11–14 dams/group	Doses	0	125	250	500	625
0, 125, 250, 500, 625 mg/kg-day	right testis weight	0%	1%	0%	-22%	-52%**
Gavage	right epididymal weight	0%	-2%	-6%	-22%**	-49%**
GDs 12–21 (dams allowed to deliver)	left testis weight	0%	-2%	-1%	-13%	-59%**
Assessed PNDs 77–84 (adults) after in utero exposure	left epididymal weight	0%	-4%	-8%	-16%**	-49%**
	seminal vesicles	0%	1%	-6%	-18%**	-33%**
	prostate	0%	-10%	-11%*	-16%**	-30%**
University of Rochester (1954)	Testes weight	t at 4 mon	ths (percent	change co	mpared to co	ontrol)
Rat (Albino; no other strain designation); 5 males/group	Doses		0 ^h	65	710	5,800
0, 0.1, 1, 5% (0, 65, 710,	absolute weig	ıht	0%	2%	-1%	-70%
5,800 mg/kg-day) ^e	relative weigh	nt	0%	1%	12%	-45%
Diet	Note: Statistic	cal analysis	s not reporte	ed in study.		
Weaning to 4 months post-weaning						
Seminal vesicle weight						
(Foster et al. (1982); Foster et al. (1981)	Seminal vesion	le weight	(percent cha	inge compa	red to contr	ol)
MIBP Rat (Sprague-Dawley); 6 males/group	Doses			0	8	00
0, 800 mg/kg-day	absolute weig	ıht		0%	-1	.8%
Gavage	relative weigh	nt		0%	-1	1%
6 days						

Reference and study design		Results ^a					
Prostate weight							
(Foster et al. (1982); Foster et al. (1981))	Prostate weight (percent chan	ge compared to co	ntrol)				
MIBP Rat (Sprague-Dawley); 6 males/group	Doses	0	800				
0, 800 mg/kg-day	absolute weight	0%	-13%				
Gavage	relative weight	0%	4%				
6 days							
Testosterone concentration in adults							
<u>Oishi and Hiraga (1980c)</u>	Testosterone (T) concentration	n (percent change	compared to control)				
Rat (JCL:Wistar); 10 treated males;	Doses	0	1,200				
2% (0, 1,200 mg/kg-day) ^d	serum T concentration (data shown in graph ^b)	0%	19%				
Diet 1 week	testicular T concentration (data shown in graph ^b)	0%	158%*				
	Dihydrotestosterone (DHT) concentration (percent change compared to control)						
	Doses	0	1,200				
	serum DHT concentration (data shown in graph ^b)	0%	40%				
Oishi and Hiraga (1980d)	Testosterone (T) concentration	n (percent change	compared to control)				
MIBP Rat (JCL:Wistar); 10 males/group	Doses	0	1,100				
0, 2% (0, 1,100 mg/kg-day) ^d Diet	serum T concentration (data shown in graph ^b)	0%	61%*				
1 week	testicular T concentration (data shown in graph ^b)	0%	161%*				
Oishi and Hiraga (1980a) Mouse (JCL:ICR); 10 males/group	Testicular testosterone (T) con to control)	centration (percer	nt change compared				
0, 2% (0, 2,100 mg/kg-day) ^d	Doses	0	2,100				
Diet	T concentration	0%	7%				
1 week							
<u>Oishi and Hiraga (1980b)</u>	Testicular testosterone (T) con to control)	centration (percer	nt change compared				
MIBP	Doses	0	2,000				
Mouse (JCL:ICR); 10 males/group	T concentration	0%	-83%*				
0, 2% (0, 2,000 mg/kg-day) ^d							

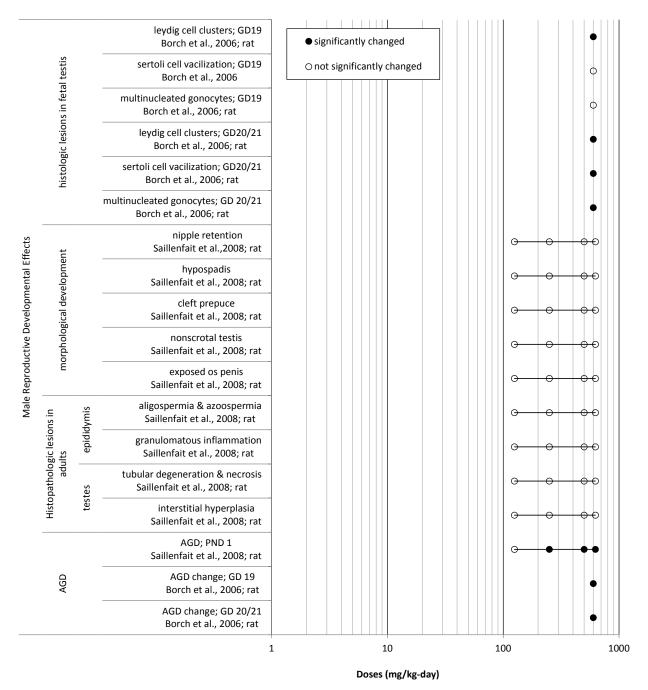
This document is a draft for review purposes only and does not constitute Agency policy.3-68DRAFT—DO NOT CITE OR QUOTE

Reference and study design		Results ^a					
Diet							
1 week							
Testes histology in adults							
(Foster et al. (1982); Foster et al. (1981))	Number of animals with atrop	hy of seminiferous tul	oules				
MIBP	Doses	0	800				
Rat (Sprague-Dawley); 6 males/group 0, 800 mg/kg-day	0% atrophic tubules	6/6	0/6				
Gavage	<50% atrophic tubules	0/6	3/6				
6 days	>50% atrophic tubules	0/6	3/6				
	The study authors noted market seminiferous tubules with decr spermatogonia (data not show	eased spermatocytes a	•				
<u>Oishi and Hiraga (1980c)</u>	The testes showed decreased s						
Rat (JCL:Wistar); 10 treated males; 20 control males	spermatogonia compared to co provided).	ntrol (quantitative res	ults not				
0, 2% (0, 1,212 mg/kg-day) ^d							
Diet							
1 week							

^aPercent change compared to control = <u>treated value – control value</u> × 100

control value

^bGrablt Software used to estimate % change from graph.

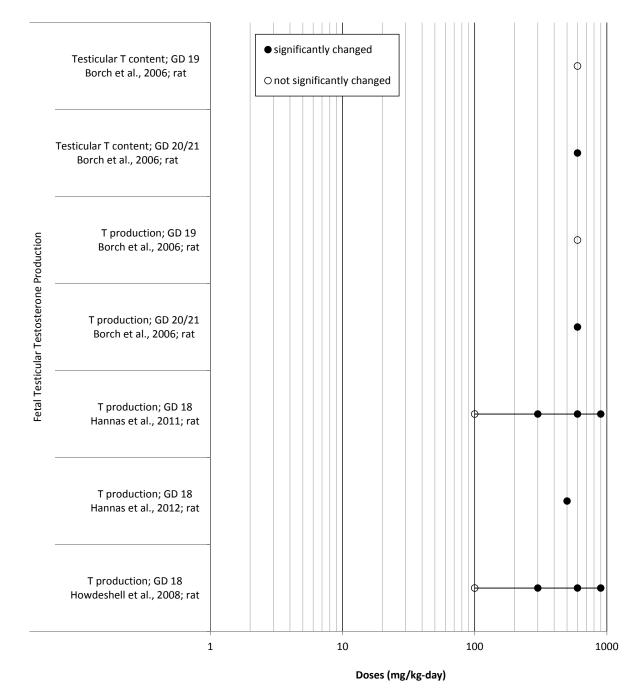

^cPNDs 112–119 males were also evaluated for these endpoints (see Saillenfait et al., 2008, Table 4).

^dDose conversions were performed by EPA using this information: (<u>Oishi and Hiraga (1980a)</u>, <u>1980c</u>)) average BWs
over the week-long studies were 132 and 24 g for rats and mice, respectively, and the default food consumption
rates of 0.008 kg/day for male weanling Wistar rats and 0.0025 kg/day for male weanling B6C3F₁ mice were
applied (<u>U.S. EPA, 1988</u>). (<u>Oishi and Hiraga (1980b</u>), <u>1980d</u>)) average BWs for rats and mice in these studies were
145 and 25 g, respectively, and the default food consumption rates of 0.008 kg/day for male weanling Wistar rats
and 0.0025 kg/day for male weanling B6C3F₁ mice (<u>U.S. EPA, 1988</u>) were applied. Note that Table 1-6 of <u>U.S. EPA</u>
(<u>1988</u>) listed the default food consumption rate for male weanling Wistar rats as 0.080 kg/day. However, it was
later determined using an equation in Table 1-3 of the document that this value was actually supposed to be
0.008 kg/day.

^eDose conversions were performed by EPA using this information: <u>University of Rochester (1954)</u> average BWs

(measured at least once weekly) of the rats were 269, 277, 252, and 155 g for males, and 178, 170, 182, and 148 g

- for females at 0, 0.1, 1.0, and 5.0%, respectively; and the default food consumption rates of 0.018 kg/day for male
- rats and 0.014 kg/day for female rats (U.S. EPA, 1988) for an unspecified strain in a sub-chronic study were
 applied.
- 20
- 21 * = Statistically significant difference at p < 0.05 from control value, as reported by study authors; ** = Statistically 22 significant difference at p < 0.01 from control value, as reported by study authors; *** = Statistically significant
- 23 difference at p < 0.001 from control value, as reported by study authors.
- 24

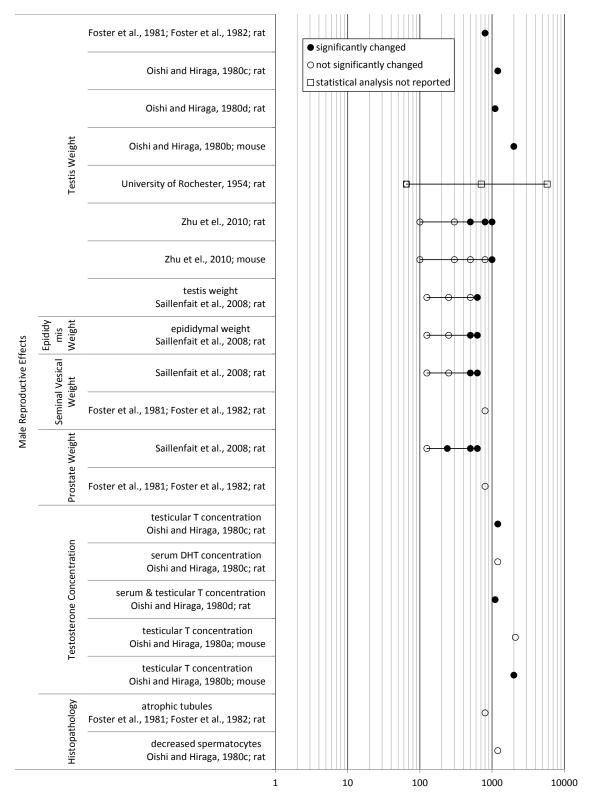


1

2

3

Figure 3-4. Exposure-response array of effects on male reproductive development following developmental oral exposure to DIBP.



1

2

3

Figure 3-5. Exposure-response array of effects on fetal testosterone (T) following developmental oral exposure to DIBP.

Doses (mg/kg-day)

1 2

3

Figure 3-6. Exposure-response array of male reproductive effects following oral exposure to DIBP.

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

1 3.3.3. Female Reproductive Effects

2

3

Table 3-19. Evidence pertaining to female reproductive effects in animals following oral exposure to DIBP

Reference and study design		Resu	lts					
Maternal weight ^a								
Howdeshell et al. (2008)	Maternal body weight (percent	change co	ompare	ed to contro	ol ^b)			
Rat (Sprague-Dawley); 5–8 dams/group	Doses	0	10	100 300 600				
0, 100, 300, 600, 900 mg/kg-day	maternal BW gain GDs 8–18	0%	9	% 4%	-42%*			
Gavage								
GDs 8–18 (GD 18 c-section)								
Borch et al. (2006)	Maternal body weight							
Rat (Wistar); 11–12 dams/group	Doses	0			600			
0, 600 mg/kg-day		_			t effect on n			
Gavage					luring pregr data not re	-		
GDs 7–19 (GD 19 c-section) or GDs 7–20/21 (GD 20/21 c-section); 5–6 dams/group per time-point				idy authors				
BASF (2007) ^c	Maternal body weight (percent	change co	ompare	ed to contro	ol ^b)			
Rat (Wistar); 22–23 dams/group	Doses	0		88	363	942		
0, 88, 363, 942 mg/kg-day	BW change GDs 6–20	0%		-3%	-6%	-11%*		
Diet	gravid uterine weight	0%		-3%	-8%	-3%		
GDs 6–20 (GD 20 c-section)	corrected BW gain GDs 6–20 ^d	0%	1	-2%	-2%	-25%*		
Saillenfait et al. (2008)	Maternal body weight (percent	change co	ompare	ed to contro	ol ^b)			
Rat (Sprague-Dawley);	Doses	0	125	250	500	625		
11–14 dams/group	BW gain GDs 12–21	0%	4%	6%	6%	-3%		
0, 125, 250, 500, 625 mg/kg-day								
Gavage								
GDs 12–21 (dams allowed to deliver)								

Reference and study design		Res	ults			
Saillenfait et al. (2006)	Maternal body weight (percent c	hange d	compar	ed to contro	ol ^b)	
Rat (Sprague-Dawley); 20–22 dams/group	Doses	0	250	500	750	1,000
0, 250, 500, 750, 1,000 mg/kg-day	BW gain GDs 6–21	0%	-1%	-14%	-14%	-39%**
Gavage	gravid uterine weight	0%	-2%	-19%*	-28%**	-61%**
GDs 6–20 (GD 21 c-section)	corrected BW gain GDs 6–21 ^e	0%	0%	0%	19%	19%
	Maternal food consumption					
	Doses	0	250	500	750	1,000
	food consumption every 4–6 days, GDs 0–21	-		tistically sig e from cont		
Maternal toxicity						
BASF (2007) ^c	Abnormalities in dams examined	at nec	ropsy			
Rat (Wistar); 25 females/group	Doses	0		88	363	942
0, 88, 363, 942 mg/kg-day	abnormalities (incidence)	0/2	5	2/25	0/25	2/25
Diet	Observed: hemorrhagic thymus, diaphragmatic hernia, and					
GDs 6–20 (GD 20 c-section)	dilated renal pelvis					
	abnormalities (percent incidence)	0%	0	8%	0%	8%
	Note: Statistical analysis was not	perforn	ned on	these data		
Fertility/fetal survival						
<u>BASF (2007)</u> ^c	Fertility (percent change compare	ed to co	ntrol ^b)			
Rat (Wistar); 25 dams/group	Doses	0		88	363	942
0, 88, 363, 942 mg/kg-day	percentage pregnant	23/2	25	22/25	22/25	23/25
Diet	Fetal survival (incidence)					
GDs 6-20 (GD 20 c-section)	Doses	0		88	363	942
Note: BW and food consumption measured every	dams with all resorptions	0/2	3	0/22	0/22	0/23
1–3 days through GD 20	Fetal survival (percent change con	mparea	l to con	trol ^b)		
	Doses	0		88	363	942
	percentage preimplantation loss/litter	0%	/ 0	-19%	25%	-30%
	percentage postimplantation loss/litter	0%	/ D	36%	105%	16%
	percentage resorptions/litter	0%	6	36%	105%	16%
	number of live fetuses/litter	0%	6	0%	-8%	2%
	number of live male fetuses/litter	0%	/ D	5%	2%	-2%

This document is a draft for review purposes only and does not constitute Agency policy.

Reference and study design		Resul	ts				
Borch et al. (2006)	Fertility (incidence)						
Rat (Wistar); 16 dams/group	Doses	0			600		
	number pregnant/dams mated	11/16			12/16		
	Fetal survival						
	Doses	0			600		
0, 600 mg/kg-day			No signif	ficant e <u>f</u>	fect on litte	r size,	
Gavage	fetal viability, or number of resorations (quantitative data not						
GDs 7–19 (GD 19 c-section) or GDs 7–20/21 (GD 20/21 c- section); 5–6 dams/group per time-point)			resorptions (quantitative data not reported by study authors)				
Howdeshell et al. (2008)	Fetal survival (n litters evaluated	for endpo	oint)				
Rat (Sprague-Dawley);	Doses	0	100	300	600	900	
5-8 dams/group	dams with whole litter loss/total dams	0/5	0/8	0/5	0/5	1/5	
0, 100, 300, 600,	number of implantations/litter	13.7 (3)	14.8 (4) 16.0 (3) 12.7 (3)	13.3 (5)	
900 mg/kg-day	number of live fetuses/litter	13.3 (3)	13.5 (4) 15.3 (3) 9.3 (3)	5.0* (3)	
Gavage	total resorptions/litter	0.2 (5)	1.0 (8)	0.4 (5	5) 2.0 (5)	7.8* (5)	
GDs 8–18 (GD 18 c-section)	percentage fetal mortality per litter	1.3% (3)	4.6% (4)	2.7% (3)		59.0%* (5)	
Saillenfait et al. (2006)	Fertility						
Rat (Sprague-Dawley); 23–24 dams/group	Doses	0	250	500	750	1,000	
0, 250, 500, 750, 1,000 mg/kg-day	number pregnant/mated dams (percent)	22/24 (91.7%)	22/24 (91.7%		-	20/24 (83.3%)	
Gavage	Fetal survival (percent incidence)						
GDs 6–20 (GD 21 c-section)	Doses	0	250	500	750	1,000	
	percentage postimplantation loss/litter	6.7%	11.0%	13.9%	28.2%**	59.6%**	
	percentage dead fetuses per litter	0%	0%	0.3%	0.7%	0.3%	
	percentage resorptions/litter	6.7%	11.0%	13.6%	27.6%**	59.3%**	
	Fetal survival (percent change con	mpared t	o contro	l ^b)			
	Doses	0	250	500	750	1,000	
	percentage live litters	0%	-5%	-5%	0%	-10%	
	number of live fetuses/litter	0%	2%	-12%	-21%*	-52%**	
	percentage male fetuses/litter	0%	-4%	-5%	0%	17%	

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results						
Saillenfait et al. (2008)	Fetal survival (percent change compared to control ^b)						
Rat (Sprague-Dawley);	Doses	0	125	250	500	625	
11–14 dams/group	gestation length	0%	1%	0%	0%	1%	
0, 125, 250, 500, 625 mg/kg-day	percentage postimplantation loss per litter	0%	41%	-35%	-31%	-13%	
Gavage	percentage pups born alive per	0%	-1%	-4%	-1%	-8%	
GDs 12–21 (dams allowed to deliver)	litter live pups/litter at PND 1	0%	5%	0%	8%	1%	

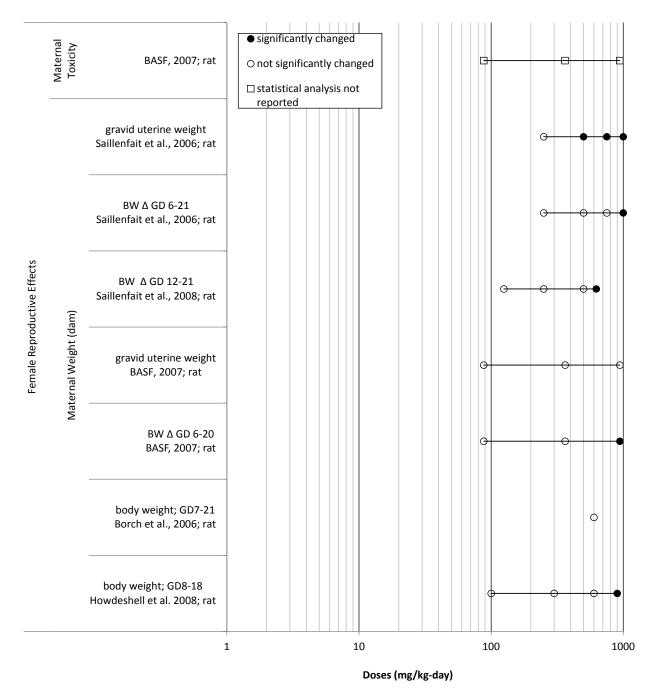
^aSome studies measured BW at multiple timepoints/lifestages and not all of these data are presented here. For the sake of comparability of data across the available studies, BW data measures presented are similar across studies and/or measures of BW change over the dosing period or greatest time period.

^bPercent change compared to control = <u>treated value – control value</u> × 100

control value

^cBASF (2007): Dams in the 952 mg/kg-day group showed significantly decreased food consumption on days 10–13 and 15–17 (<10% decreased compared to control); however, overall food consumption did not differ between

10 groups.


^dCorrected weight gain = carcass weight (GD 20 body weight – gravid uterine weight) – GD 6 body weight.

12 ^eCorrected weight gain = BW gain GDs 6-21 - gravid uterine weight. 13

14 * = Statistically significant difference at *p* < 0.05 from control value, as reported by study authors; ** = Statistically

15 significant difference at *p* < 0.01 from control value, as reported by study authors; *** = Statistically significant

16 difference at p < 0.001 from control value, as reported by study authors.

1

Figure 3-7. Exposure-response array of female reproductive effects, maternal
 weight and toxicity, following oral exposure to DIBP.

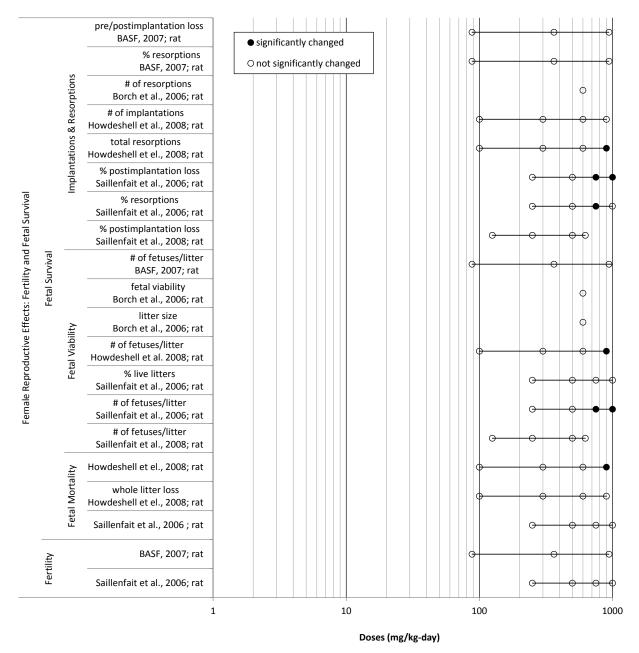


Figure 3-8. Exposure-response array of female reproductive effects, fertility and fetal survival, following oral exposure to DIBP.

1 3.3.4. Liver Effects

2

3

Table 3-20. Evidence pertaining to hepatic effects in animals following oral exposure to DIBP

Reference and study design		F	Results			
Liver weight						
Foster et al. (1982); Foster et al. (1981)	Liver weight (percer	nt change cor	mpared to cor	ntrol ^a)		
MIBP	Doses	Doses 0			800	
Rat (Sprague-Dawley); 6 males/group	relative weight		0 30%*			
0, 800 mg/kg-day						
Gavage						
4 days						
<u>Oishi and Hiraga (1980c)</u>	Liver weight (percer	nt change cor	mpared to cor	ntrol ^a)		
Rat (JCL:Wistar); 10 treated males;	Doses		0		1,200	
20 control males	absolute weight		0%		27%*	
0, 2% (0, 1,200 mg/kg-day) ^b	relative weight		0%		35%*	
Diet						
1 week						
<u>Oishi and Hiraga (1980a)</u>	Liver (with gallbladd	der) weight (percent chan	ge compar	ed to control ^a)	
Mouse (JCL:ICR); 10 males/group	Doses			0	2,100	
0, 2% (0, 2,100 mg/kg-day) ^b	relative weight			0%	45%*	
Diet						
1 week						
<u>Oishi and Hiraga (1980b)</u>	Liver weight (percer	nt change cor	mpared to cor	ntrol ^a)		
MIBP Mouse (JCL:ICR); 10 males/group	Doses			0	2,000	
0, 2% (0, 2,000 mg/kg-day) ^b	relative weight			0%	30%*	
Diet						
1 week						
University of Rochester (1954)	Liver weight (percer	nt change cor	mpared to cor	ntrol ^a)		
Rat (Albino; no other strain designation); 5 males and 5 females/dose	Doses (M)	0	65	710	5,800	
0, 0.1, 1, 5% (0, 65, 710,	absolute weight	0%	6%	11%	5%	
5,800 mg/kg-day for males; 0, 82, 770, 4,700 mg/kg-day for females) ^c	relative weight	0%	2%	22%	84%	
Diet	Doses (F)	0 ^f	82	770	4,700	
Weaning to 4 months post-weaning	absolute weight	0%	0%	16%	41%	

This document is a draft for review purposes only and does not constitute Agency policy.

3-79

DRAFT-DO NOT CITE OR QUOTE

Reference and study design	Results							
	relative weight	0%)	0%	8%		62%	
	Note: Statistical an	alysis no	t reported	d in study				
University of Rochester (1953)	Liver weight (perce	ent chang	је сотра	red to cor	ntrol ^a)			
Rat (Albino; no other strain designation); 5 males/dose	Doses	0	15	140	1,400	3,000	8,900	
0, 0.01, 0.1, 1, 2, 5% (0, 15, 140, 1,400,	absolute weight	0%	-17%	-12%	5%	15%	13%	
3,000, 8,900 mg/kg-day) ^d	relative weight	0%	-1%	5%	26%	43%	79%	
Diet	Note: Statistical an	alysis no	t reported	d in study				
Weaning to 1 month post-weaning								
Liver histopathology	-							
University of Rochester (1954)	Liver histopatholog	gy						
Rat (Albino; no other strain designation); 5 males and 5 females/dose	No treatment-relat dose group.	ed differ	ences froi	m control	were obs	served a	t any	
0, 0.1, 1, 5% (0, 65, 710, 5,800 mg/kg-day for males; 0, 82, 770, 4,700 mg/kg-day for females) ^c	Note: 4–5 animals not reported in stu	•	e group w	ere asses	sed. Stat	istical ar	nalysis	
Diet								
Weaning to 4 months post-weaning								
University of Rochester (1953)	Liver histopatholog	SY						
Rat (Albino; no other strain designation); 5 males/dose	Histopathological f treatment-related Notes: Number of	differenc	es were o	bserved.	-		1 to	
0, 0.01, 0.1, 1, 2, 5% (0, 15, 140, 1,400, 3,000, 8,900 mg/kg-day) ^d	"filled with coarse reported in study.				-			
Diet								
Weaning to 1 month post-weaning								

^aPercent change compared to control = <u>treated value – control value</u> × 100

control value

^bDose conversions were performed using this information: (<u>Oishi and Hiraga (1980a)</u>, <u>1980c</u>)) average BWs over the week-long studies were 132 and 24 g for rats and mice, respectively, and the default food consumption rates of 0.008 kg/day for male weanling Wistar rats and 0.0025 kg/day for male weanling B6C3F₁ mice were applied (<u>U.S. EPA, 1988</u>). <u>Oishi and Hiraga (1980b</u>) average BWs for rats and mice in these studies were 145 and 25 g, respectively, and the default food consumption rates of 0.008 kg/day for male weanling B6C3F₁ mice (<u>U.S. EPA, 1988</u>). <u>Oishi and Hiraga (1980b</u>) average BWs for rats and mice in these studies were 145 and 25 g, respectively, and the default food consumption rates of 0.008 kg/day for male weanling Wistar rats and 0.0025kg/day for male weanling B6C3F₁ mice (<u>U.S. EPA, 1988</u>) were applied. Note that Table 1-6 of <u>U.S. EPA</u> (<u>1988</u>) listed the default food consumption rate for male weanling Wistar rats as 0.080 kg/day. However, it was later determined using an equation in Table 1-3 of the document that this value was actually supposed to be

11 later determined using an equation in Table 1-3 (12 0.008 kg/day.

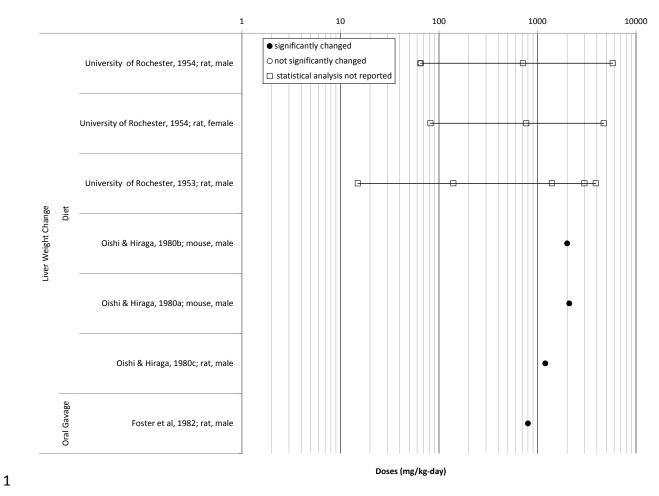
13 ^cDose conversions were performed using this information: <u>University of Rochester (1954)</u> average BWs (measured

14 at least once weekly) were 269, 277, 252, and 155 g for male rats, and 178, 170, 182, and 148 g for female rats at

0, 0.1, 1.0, and 5.0%, respectively; and the default food consumption of 0.018 for male and 0.014 kg/day for 1 2 3 female rats (U.S. EPA, 1988) of an unspecified strain in a subchronic study were applied.

^dDose conversions were performed using this information: <u>University of Rochester (1953)</u> average BWs (measured

4 weekly) of the rats were 139, 124, 127, 127, 121, and 101 g at 0, 0.01, 0.1, 1.0, 2.0, and 5.0%, respectively; and


5 6 the default food consumption of 0.018 for male rats and 0.014 kg/day for female rats (U.S. EPA, 1988) of an unspecified strain in a subchronic study were applied.

7

* = Statistically significant difference at *p* < 0.05 from control value, as reported by study authors; ** = Statistically

8 9 significant difference at p < 0.01 from control value, as reported by study authors; *** = Statistically significant

10 difference at p < 0.001 from control value, as reported by study authors.

Figure 3-9. Exposure-response array of liver effects following oral exposure to DIBP.

4

2

1 3.3.5. Kidney Effects

2

3

Table 3-21. Evidence pertaining to renal effects in animals following oral exposure to DIBP

Reference and study design		R	esults		
Kidney weight	•				
<u>Foster et al. (1982); Foster et al.</u> (<u>1981)</u>	Kidney weight (perce	ent change cor	npared to con	trol ^ª)	
MIBP	Doses		0		800
Rat (Sprague-Dawley); 6 males/group	relative weight		0	:	396%***
0, 800 mg/kg-day					
Gavage					
4 days					
<u>Oishi and Hiraga (1980c)</u>	Kidney weight (perce	ent change cor	mpared to con	trol ^ª)	
Rat (JCL:Wistar); 10 treated males;	Doses			0	1,200
20 control males	absolute weight		()%	-5%
0, 2% (0, 1,200 mg/kg-day) ^b	relative weight		()%	2%
Diet					
1 week					
<u>Oishi and Hiraga (1980b)</u>	Kidney weight (perce	ent change cor	npared to con	trol ^ª)	
MIBP Mouse (JCL:ICR); 10 males/group	Doses			0	2,000
0, 2% (0, 2,000 mg/kg-day) ^b	relative weight		()%	-5%
Diet					
1 week					
<u>Oishi and Hiraga (1980a)</u>	Kidney weight (perce	ent change cor	npared to con	trol ^ª)	
Mouse (JCL:ICR); 10 males/group	Doses			0	2,100
Diet	relative weight		()%	-10%*
0, 2% (0, 2,100 mg/kg-day) ^b					
1 week					
University of Rochester (1954)	Kidney weight (perce	ent change cor	npared to con	trol ^ª)	
Rat (Albino; no other strain designation); 5 males and 5 females/dose	Doses (M)	0	65	710	5,800
0, 0.1, 1, 5% (0, 65, 710, 5,800 mg/kg-day for males; 0, 82, 770, 4,700 mg/kg-day for females) ^c	absolute weight	0%	10%	9%	-31%
Diet	relative weight	0%	7%	20%	22%

This document is a draft for review purposes only and does not constitute Agency policy.

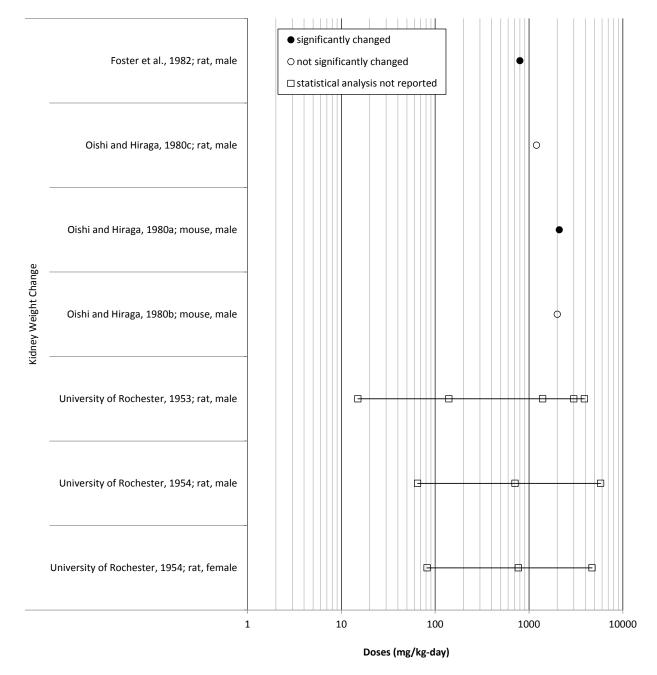
DRAFT-DO NOT CITE OR QUOTE

Reference and study design			Result	ts			
Weaning to 4 months post-weaning	Doses (F)	0		82	770		4,700
	absolute weight	0%		4%	11%		-2%
	relative weight	0%		5%	4%		13%
	Note: Statistical anal	ysis not rep	ported in	study.			
University of Rochester (1953)	Kidney weight (perce	ent change	compare	ed to cont	trol ^a)		
Rat (Albino; no other strain designation); 5 males/dose	Doses	0	15	140	1,400	3,000	8,900
0, 0.01, 0.1, 1, 2, 5% (0, 15, 142, 1,417, 2,975, 8,911 mg/kg-day) ^d	absolute weight	0%	-14%	-11%	-11%	-11%	-23%
Diet	relative weight	0%	3%	7%	7%	12%	23%
Weaning to 1 month post-weaning	Note: Statistical anal	ysis not rep	ported in	study.			
Kidney histopathology							
University of Rochester (1954)	Kidney histopatholo	gy					
Rat (Albino; no other strain designation); 5 males and 5 females/dose 0, 0.1, 1, 5% (0, 65, 710, 5,800 mg/kg-day for males; 0, 82, 770, 4,700 mg/kg-day for females) ^c Diet Weaning to 4 months post-weaning	No treatment-related compared with contr Note: 4–5 animals p limited to pyelitis, gr limited to pyelitis and	rol. er dose gro anuloma, a	oup were Ind pyelo	assessed	I. Finding	s in male	es
University of Rochester (1953)	Kidney histopatholo	gy					
<u>.</u>	No treatment-related		es were o	bserved.			
Rat (Albino; no other strain designation); 5 males/dose	Note: Number of an eosinophils and infla	imals asses	sed is un	iclear. Fir	-		d in
0, 0.01, 0.1, 1, 2, 5% (0, 15, 142, 1,417, 2,975, 8,911 mg/kg-day) ^d	study.						
Diet							
Weaning to 1 month post-weaning							

¹ 2 3 4 5 6 7 8 9

10

^aPercent change compared to control = <u>treated value – control value</u> × 100


control value

^bDose conversions were performed using this information: (<u>Oishi and Hiraga (1980a)</u>, <u>1980c</u>)) average BWs over the week-long studies were 132 and 24 g for rats and mice, respectively, and the default food consumption rates of 0.008 kg/day for male weanling Wistar rats and 0.0025 kg/day for male weanling B6C3F₁ mice were applied (<u>U.S. EPA, 1988</u>). <u>Oishi and Hiraga (1980b</u>) average BWs for rats and mice in these studies were 145 and 25 g, respectively, and the default food consumption rates of 0.008 kg/day for male weanling Wistar rats and 0.0025 kg/day for male weanling B6C3F₁ mice (<u>U.S. EPA, 1988</u>) were applied. Note that Table 1-6 of <u>U.S. EPA (1988)</u> listed the default food consumption rate for male weanling Wistar rats as 0.080 kg/day. However, it was later

- 1 determined using an equation in Table 1-3 of the document that this value was actually supposed to be 0.008 2 3 kg/day.
- ^cDose conversions were performed using this information:<u>University of Rochester (1954)</u> average BWs (measured
- 4 at least once weekly) were 269, 277, 252, and 155 g for male rats, and 178, 170, 182, and 148 g for female rats at 0, 0.1, 1.0, and 5.0%, respectively; and default food consumption of 0.018 kg/day for male rats and 0.014 kg/day

5 6 for female rats (U.S. EPA, 1988) of an unspecified strain in a subchronic study were applied.

- 7
- ^dDose conversions were performed using this information: <u>University of Rochester (1953)</u> average BWs (measured 8 weekly) were 139, 124, 127, 127, 121, and 101 g at 0, 0.01, 0.1, 1.0, 2.0, and 5.0%, respectively; and default food
- 9 consumption of 0.018 for male rats and 0.014 kg/day for female rats (U.S. EPA, 1988) of an unspecified strain in a
- 10 subchronic study were applied.
- 11 12
 - * = Statistically significant difference at p < 0.05 from control value, as reported by study authors.
- 13

1

Figure 3-10. Exposure-response array of kidney effects following oral
exposure to DIBP.

1 3.3.6. Hematopoietic Effects

2 3

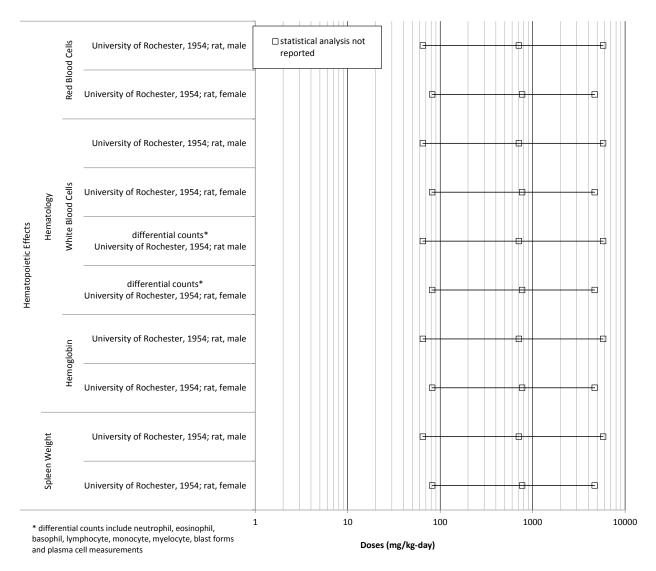
Table 3-22. Evidence pertaining to hematopoietic effects in animals followingoral exposure to DIBP

Reference and study design			Results					
Hematology	ł							
University of Rochester (1954)	Hematology at 4 months (percent change compared to control ^a)							
Rat (Albino; no other strain designation); 5 males and 5 females/dose	Doses (M)	0	65	710	5,800			
0, 0.1, 1, 5% (0, 65, 710, 5,800 mg/kg-day for males; 0, 82, 770, 4,700 mg/kg-day for females) ^b	RBCs	0%	-1%	-5%	-16%			
Diet	WBCs	0%	-37%	-15%	38%			
Weaning to 4 months post-weaning	Hgb	0%	-4%	-5%	-9%			
	Doses (F)	0	82	770	4,700			
	RBCs	0%	6%	1%	13%			
	WBCs	0%	-19%	-8%	29%			
	Hgb	0%	0%	3%	-6%			
	Note: Statistical analysis not reported in study.							
University of Rochester (1954)	Differential coun	ts at 4 months	(percent of eac	h type of WBC	C)			
Rat (Albino; no other strain designation); 5 males and 5 females/dose	Doses (M)	0	65	710	5,800			
0, 0.1, 1, 5% (0, 65, 710,	neutrophils	20%	18%	19%	17%			
5,800 mg/kg-day for males; 0, 82, 770, 4,700 mg/kg-day for females) ^b	eosinophils	1%	5%	5%	2%			
Diet	basophils	0%	0%	1%	1%			
Weaning to 4 months post-weaning	lymphocytes	79%	76%	75%	80%			
	monocytes	1%	0%	0%	0%			
	myeloids	0%	0%	0%	0%			
	blast forms	0%	0%	0%	0%			
	plasma cells	0%	0%	0%	0%			
	Doses (F)	0	82	770	4,700			
	neutrophils	15%	14%	22%	13%			
	eosinophils	2%	4%	4%	3%			
	basophils	0%	0%	0%	1%			
	lymphocytes	83%	82%	73%	84%			
	monocytes	0%	0%	0%	0%			

This document is a draft for review purposes only and does not constitute Agency policy.

3-87

DRAFT-DO NOT CITE OR QUOTE


Reference and study design		Results							
	myeloids	0%	0%	0%	0%				
	blast forms	0%	0%	0%	0%				
	Note: Statistical ana	alysis not repo	rted in study.						
Spleen weight									
University of Rochester (1954)	Spleen weight (perc	cent change co	ompared to co	ntrol ^a)					
Rat (Albino; no other strain designation); 5 males and 5 females/dose	Doses (M)	0	65	710	5,800				
0, 0.1, 1, 5% (0, 65, 710, 5,800 mg/kg-day for males; 0, 82, 770, 4,700 mg/kg-day for females) ^b	absolute weight	2%	9%	7%	-13%				
Diet	relative weight	0%	5%	17%	52%				
Weaning to 4 months post-weaning	Doses (F)	0	82	770	4,700				
	absolute weight	0%	8%	93%	-6%				
	relative weight	0%	11%	80%	9%				
	Note: Statistical ana	alysis not repo	rted in study.						

^aPercent change compared to control = <u>treated value – control value</u> × 100

control value

^bDose conversions were performed by EPA using this information: <u>University of Rochester (1954)</u> average BWs (measured at least once weekly) were 269, 277, 252, and 155 g for male rats, and 178, 170, 182, and 148 g for female rats at 0, 0.1, 1.0, and 5.0%, respectively; and the default food consumption of 0.018 kg/day for male rats and 0.014 kg/day for female rats (<u>U.S. EPA, 1988</u>) of an unspecified strain in a subchronic study were applied.

Hgb = hemoglobin; RBC = red blood cell; WBC = white blood cell

Figure 3-11. Exposure-response array of hematopoeitic effects following oral exposure to DIBP.

4

1

2

1 3.3.7. Other Effects

2 3

Table 3-23. Evidence pertaining to other toxicity effects in animals following oral exposure to DIBP

Reference and study design		I	Results					
Neurotoxicity effects								
University of Rochester (1954)	Brain weight (percer	nt change con	npared to con	trol ^a)				
Rat (Albino; no other strain designation); 5 males and 5 females/dose	Doses (M)	0	65	710	5,800			
0, 0.1, 1, 5% (0, 65, 710, 5,800 mg/kg-day for males; 0, 82, 770, 4,700 mg/kg-day for females) ^b	absolute weight	0%	1%	0%	-3%			
Diet	relative weight	0%	-2%	11%	72%			
Weaning to 4 months post-weaning	Doses (F)	0	82	770	4,700			
	absolute weight	0%	3%	1%	2%			
	relative weight	0%	4%	-6%	17%			
	Note: Statistical anal	ysis not repo	rted in study.					
Cardiac effects	·							
University of Rochester (1954)	Heart weight (percer	nt change cor	npared to con	trol ^d)				
Rat (Albino; no other strain designation); 5 males and 5 females/dose	Doses (M)	0	65	710	5,800			
0, 0.1, 1, 5% (0, 65, 710, 5,800 mg/kg-day for males; 0, 82, 770, 4,700 mg/kg-day for females) ^b	absolute weight	0%	2%	-6%	-28%			
Diet	relative weight	0%	-3%	3%	24%			
Weaning to 4 months post-weaning	Doses (F)	0	82	770	4,700			
	absolute weight	0%	10%	-4%	11%			
	relative weight	0%	10%	-11%	28%			
	Note: Statistical analysis not reported in study.							
Lung effects	·							
University of Rochester (1954)	Lung weight (percen	t change com	pared to cont	rol ^a)				
Rat (Albino; no other strain designation); 5 males and 5 females/dose	Doses (M)	0	65	710	5,800			
0, 0.1, 1, 5% (0, 65, 710, 5,800 mg/kg-day for males; 0, 82, 770, 4,700 mg/kg-day for females) ^b	absolute weight	0%	10%	4%	-30%			
Diet	relative weight	0%	5%	16%	23%			

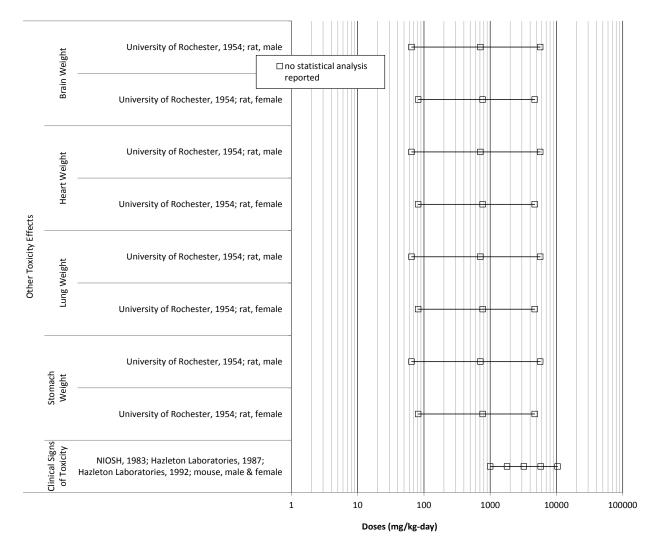
This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design			Resu	lts					
Weaning to 4 months post-weaning	Doses (F)	0	82		770		4,700		
	absolute weight	0%	6 –20%		-6%		-27%		
	relative weight	0%		-19%	-12%		-16%		
	Note: Statistical an	alysis not r	eported	in study.					
Stomach effects									
University of Rochester (1954)	Stomach weight (p	ercent cha	nge com	pared to	control ^d)				
Rat (Albino; no other strain designation); 5 males and 5 females/dose	Doses (M)	0		65	710)	5,800		
0, 0.1, 1, 5% (0, 65, 710, 5,800 mg/kg-day for males; 0, 82, 770, 4,700 mg/kg-day for females) ^b	absolute weight	0%		10%	6%		1%		
Diet	relative weight	0%		7%	18%	, 5	80%		
Weaning to 4 months post-weaning	Doses (F)	0		82	770)	4,700		
	absolute weight	0%		8%	7%		18%		
	relative weight	0%		9%			35%		
	Note: Statistical an	alysis not r	eported	in study.					
Clinical signs									
(Hazleton Laboratories (1992), 1987);	Clinical signs of toxicity (incidence / total animals)								
<u>NIOSH (1983)</u>)	Doses	0	1,000	1,795	3,225	5,790	10,400		
Mouse (CD-1); 50 control females,	languid	1/50	0/10	0/10	2/10	5/10	0/10		
10 females/treated group	prostrate	0/50	0/10	0/10	0/10	4/10	0/10		
0, 1,000, 1,795, 3,225, 5,790, 10,400 mg/kg-day	ataxia	0/50	0/10	0/10	0/10	0/10	0/10		
Gavage	hunched	0/50	0/10	0/10	0/10	0/10	0/10		
8 days	tremors	0/50	0/10	0/10	0/10	0/10	0/10		
	head tilt	0/50	0/10	0/10	0/10	0/10	0/10		
	thin	1/50	0/10	0/10	0/10	0/10	0/10		
	wheezing	0/50	0/10	0/10	0/10	0/10	0/10		
	dyspnea	0/50	0/10	0/10	0/10	0/10	0/10		
	urine stains	0/50	0/10	0/10	0/10	0/10	10/10		
	alopecia	0/50	0/10	0/10	0/10	0/10	0/10		
	rough hair coat	0/50	0/10	0/10	0/10	0/10	10/10		
	sores	0/50	0/10	0/10	0/10	0/10	0/10		
	piloerection	0/50	0/10	0/10	0/10	0/10	0/10		
	opaque eyes	N/A	0/10	0/10	0/10	1/10	0/10		

This document is a draft for review purposes only and does not constitute Agency policy.

Reference and study design	Results						
	discoloration (yellow hair)	N/A	0/10	0/10	0/10	1/10	0/10
	Note: Statistical analysis not reported in study for clinical signs data.						

^bDose conversions were performed using this information: <u>University of Rochester (1954)</u> average BWs (measured


at least once weekly) were 269, 277, 252, and 155 g for male rats, and 178, 170, 182, and 148 g for female rats at 0, 0.1, 1.0, and 5.0%, respectively; and default food consumption of 0.018 kg/day for male rats and 0.014 kg/day

control value

for female rats (U.S. EPA, 1988) of an unspecified strain in a subchronic study were applied.

^aPercent change compared to control = treated value – control value × 100

This document is a draft for review purposes only and does not constitute Agency policy. 3-92 DRAFT—DO NOT CITE OR QUOTE

1

2

3

Figure 3-12. Exposure-response array of effects on other toxicities following oral exposure to DIBP.

1 3.4. PRELIMINARY MECHANISTIC INFORMATION FOR DIBP

The systematic literature search for DIBP also identified studies evaluating mechanisms of action considered potentially relevant to effects observed following exposure to DIBP. Studies were included if they evaluated mechanistic events following exposure to DIBP or the metabolite, MIBP, or contained information relevant to the mechanistic understanding of DIBP toxicity. Reviews or analyses that do not contain original data are not included here, but may be considered in later stages of assessment development.

8 The diverse array of mechanistic studies presented here includes investigations of the 9 cellular, biochemical, and molecular mechanisms underlying toxicological outcomes. For this 10 preliminary evaluation, information reported in each study was extracted into a database (in the 11 form of an Excel spreadsheet) that will facilitate future evaluation of mechanistic information. This 12 information is being made available to provide an opportunity for stakeholder input, including the 13 identification of relevant studies not captured here.

The information extracted from each study and included in the database, corresponds to the
column headings in the spreadsheet, and is as follows: link to the HERO record (contained within a
URL that links to the study abstract in the HERO database), HERO ID, author(s), year, molecular

17 formulation, in vitro/in vivo, species, cell type, endpoint(s) (i.e., mechanistic outcomes), assay, and

18 mechanistic category. The database supports sorting capabilities, e.g., data can be organized by

19 assay. The database is available through HERO at

20 [http://hero.epa.gov/index.cfm?action=reference.details&reference_id=2508641]. To access the

21 database, click on the link at the top of the web page and select "download" and then "ok" to view

22 the spreadsheet in Excel. This spreadsheet may also be saved to your desktop by downloading and

23 selecting "save." The resulting inventory of DIBP mechanistic studies consists of 32 mechanistic

outcomes from 13 identified in vivo studies, as well as 28 mechanistic outcomes from 23 in vitro

assays. Table 3-24 presents a summary of the mechanistic outcomes recording in the database

26 from each study identified.

27 The mechanistic categories developed here are not mutually exclusive and are designed to

28 facilitate the analysis of similar studies and experimental observations in a systematic manner.

29 This process will allow the identification of mechanistic events that contribute to mode(s) of action

30 (MOAs) and/or adverse outcome pathways (AOPs) following DIBP exposure. The mechanistic

31 categories assigned to each mechanistic outcome reported by an individual study are as follows:

32 (1) mutation, including investigations of gene and chromosomal mutation; (2) DNA damage,

33 including indicator assays of genetic damage; (3) DNA repair; (4) oxidative stress; (5) cell death and

34 division (this captures a broad range of assays, but it is useful to consider them together as

35 observations resulting from cell cycle alterations; (6) pathology, which includes morphological

36 evaluations pertaining to the dysfunction of organs, tissues, and cells; (7) epigenetic effects, which

37 are observations of heritable changes in gene function that cannot be explained by changes in the

38 DNA sequence; (8) receptor-mediated and cell signaling effects; (9) immune system effects;

39 (10) cellular differentiation and transformation; (11) cellular energetics; and (12) "other," to

- 1 capture those mechanistic outcomes not easily assigned to a defined category. Mechanistic
- 2 outcomes in the "other" category include sex steroid hormone (e.g., testosterone) production and
- 3 gene expression.
- 4
- 5 6

Table 3-24. Summary of mechanistic outcomes evaluated following DIBP orMIBP administration

Mechanistic	Total # outcomes/			(# out studie	comes/ s)	In	vitro (# c	outcomes/	# stud	ies)	
category	# studies	Total	Human	Rat	Mouse	Total	Human	Primate	Rat	Mouse	
Mutation ^a	5/5	0	0	0	0	5/5	0	0	0	0	
DNA damage	6/4	0	0	0	0	6/4	6/4	0	0	0	
DNA repair											
Oxidative stress ^b	1/1	1/1	0	0	0	0	0	0	0	0	
Cell death and division	7/5	3/2	0	2/2	1/1	4/3	3/2	0	0	1/1	
Pathology	2/2	2/2	0	2/2	0	N/A		N/A			
Epigenetics											
Receptor- mediated and cell signaling ^c	14/9	8/4	1/1	7/3	0	6/5	0	1/1	0	0	
Immune system	5/3	1/1	0	1/1	0	4/2	1/1	0	2/1	1/1	
Cellular differentiation and transformation	1/1	1/1	1/1	0	0	0	0	0	0	0	
Cellular energetics	1/1	0	0	0	0	1/1	0	0	1/1	0	
Other ^d	18/11	16/10	0	14/8	2/2	2/2	0	0	2/2	0	
Total	60/35			32/13				28/23			

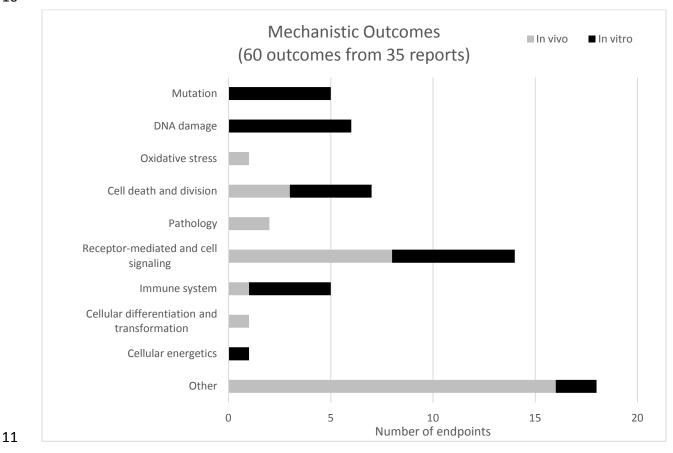
7 8

^aDatabase included five outcomes in five studies utilizing Salmonella typhimurium.

9 ^bDatabase included one outcome from one study utilizing *Caenorhabditis elegans*.

^cDatabase included two outcomes from one study utilizing cultured hamster cells, two outcomes from two studies
 utilizing yeast, and one cell-free system.

^dDatabase primarily composed of hormone (testosterone, estradiol) content or production in tissues from rats and
 mice.


14

15 Notes: The number in rows may not sum to "total" amounts as several studies evaluated multiple species or

employed both in vivo and in vitro models. The mechanistic categories in italics and in gray shading had no DIBPspecific information available.

1 Information summarized in Table 3-24 and Figure 3-13 and detailed in the mechanistic 2 database can be used to ascertain the breadth and scope of available mechanistic studies. At this 3 preliminary stage, study results are not presented. Additionally, the inclusion of a study in the 4 spreadsheet does not reflect conclusions reached as to mechanistic study quality or relevance. 5 After the epidemiological and experimental studies on each health effect have been synthesized, 6 mechanistic studies will be reviewed and findings synthesized to evaluate potential MOAs and/or 7 AOPs, which can be used to inform hazard identification and dose-response assessment, specifically 8 addressing questions of human relevance, susceptibility, and dose-response relationships. 9

10

Figure 3-13. Summary of in vivo and in vitro mechanistic data for DIBP and MIBP by mechanistic category.

1

2 **4. REFERENCES**

3	Adibi, JJ; Whyatt, RM; Williams, PL; Calafat, AM; Camann, D; Herrick, R; Nelson, H; Bhat,
4 5	<u>HK; Perera, FP; Silva, MJ; Hauser, R.</u> (2008). Characterization of phthalate exposure among pregnant women assessed by repeat air and urine samples. Environ Health
6	Perspect 116: 467-473. <u>http://dx.doi.org/10.1289/ehp.10749</u> .
7	Adibi, JJ; Hauser, R; Williams, PL; Whyatt, RM; Calafat, AM; Nelson, H; Herrick, R; Swan,
8	SH. (2009). Maternal urinary metabolites of Di-(2-Ethylhexyl) phthalate in relation to the
9	timing of labor in a US multicenter pregnancy cohort study. Am J Epidemiol 169: 1015-
10	1024. http://dx.doi.org/10.1093/aje/kwp001.
11	Ait Bamai, Y; Shibata, E; Saito, I; Araki, A; Kanazawa, A; Morimoto, K; Nakayama, K; Tanaka,
12	M; Takigawa, T; Yoshimura, T; Chikara, H; Saijo, Y; Kishi, R. (2014). Exposure to
13	house dust phthalates in relation to asthma and allergies in both children and adults. Sci
14	Total Environ 485-486: 153-163. <u>http://dx.doi.org/10.1016/j.scitotenv.2014.03.059</u> .
15	Aschengrau, A; Coogan, P; Quinn, M; Cashins, L. (1998). Occupational exposure to estrogenic
16	chemicals and the occurrence of breast cancer: An exploratory analysis. Am J Ind Med
17	34: 6-14. <u>http://dx.doi.org/10.1002/(SICI)1097-0274(199807)34:1<6::AID-</u>
18	<u>AJIM2>3.0.CO;2-X</u> .
19	Baird, DD; Wilcox, AJ. (1985). Cigarette smoking associated with delayed conception. JAMA
20	253: 2979-2983. <u>http://dx.doi.org/10.1001/jama.1985.03350440057031</u> .
21	Baird, DD; Wilcox, AJ; Weinberg, CR. (1986). Use of time to pregnancy to study environmental
22	exposures. Am J Epidemiol 124: 470-480.
23	BASF. (1961). AG: Abteilung Toxikologie, unpublished study (IX/418) [Cited in European
24	Commission, 2004, 2000].
25	BASF. (2003). Diisobutyl Phthalate: Prenatal developmental toxicity study in Wistar rats:
26 27	Administration in the diet (Volume 1 of 3). (Project number 32R0233/02018). [Germany].
27	<u>BASF.</u> (2007). Diisobutylphthalate - prenatal developmental toxicity study in Wistar rats
28 29	administration in the diet (2007 Update) [TSCA Submission] (pp. 68-155). (Document
30	Control Number: 86070000046). Submitted to the U.S. Environmental Protection Agency
31	under TSCA Section 8d.
32	http://yosemite.epa.gov/oppts/epatscat8.nsf/by+Service/82FC6103C0E2F95585257B510
33	0479E79/\$File/86070000046.pdf.
34	Behall, KM; Scholfield, DJ; Hallfrisch, JG; Kelsay, JL; Reiser, S. (1984). Seasonal variation in
35	plasma glucose and hormone levels in adult men and women. Am J Clin Nutr 40: 1352-
36	1356.
37	Bertelsen, RJ; Carlsen, KC; Calafat, AM; Hoppin, JA; Håland, G; Mowinckel, P; Carlsen, KH;
38	Løvik, M. (2013). Urinary biomarkers for phthalates associated with asthma in
39	Norwegian children. Environ Health Perspect 121: 251-256.
40	http://dx.doi.org/10.1289/ehp.1205256.
41	Blair, A; Stewart, P; Lubin, JH; Forastiere, F. (2007). Methodological issues regarding
42	confounding and exposure misclassification in epidemiological studies of occupational
43	exposures [Review]. Am J Ind Med 50: 199-207. http://dx.doi.org/10.1002/ajim.20281.

1	Boas, M; Frederiksen, H; Feldt-Rasmussen, U; Skakkebaek, NE; Hegedus, L; Hilsted, L; Juul,
2	A: Main, KM. (2010). Childhood exposure to phthalates: Associations with thyroid
3	function, insulin-like growth factor I, and growth. Environ Health Perspect 118: 1458-
4	1464. http://dx.doi.org/10.1289/ehp.0901331.
5	Borch, J; Axelstad, M; Vinggaard, AM; Dalgaard, M. (2006). Diisobutyl phthalate has
6	comparable anti-androgenic effects to di-n-butyl phthalate in fetal rat testis. Toxicol Lett
7	163: 183-190. <u>http://dx.doi.org/10.1016/j.toxlet.2005.10.020</u> .
8	Bornehag, CG; Sundell, J; Weschler, CJ; Sigsgaard, T; Lundgren, B; Hasselgren, M; Hagerhed-
o 9	Engman, LC. (2004). The association between asthma and allergic symptoms in children
10	and phthalates in house dust: a nested case-control study. Environ Health Perspect 112:
11	1393-1397. <u>http://dx.doi.org/10.1289/ehp.7187</u> .
12	Brabant, G; Prank, K; Hoang-Vu, C; Hesch, RD; von Zur Mühlen, A. (1991). Hypothalamic
13	regulation of pulsatile thyrotopin secretion. J Clin Endocrinol Metab 72: 145-150.
14	http://dx.doi.org/10.1210/jcem-72-1-145.
15	Braun-Fahrländer, C; Wüthrich, B; Gassner, M; Grize, L; Sennhauser, FH; Varonier, HS; Vuille,
16	JC. (1997). Validation of a rhinitis symptom questionnaire (ISAAC core questions) in a
17	population of Swiss school children visiting the school health services. Pediatric Allergy
18	and Immunology 8: 75-82. <u>http://dx.doi.org/10.1111/j.1399-3038.1997.tb00147.x</u> .
19	Braun, JM; Smith, KW; Williams, PL; Calafat, AM; Berry, K; Ehrlich, S; Hauser, R. (2012).
20	Variability of urinary phthalate metabolite and bisphenol A concentrations before and
20	during pregnancy. Environ Health Perspect 120: 739-745.
22	$\frac{\text{http://dx.doi.org/10.1289/ehp.1104139}}{\text{http://dx.doi.org/10.1289/ehp.1104139}}$
23	Braun, JM; Kalkbrenner, AE; Just, AC; Yolton, K; Calafat, AM; Sjödin, A; Hauser, R; Webster,
24	GM; Chen, A; Lanphear, BP. (2014). Gestational exposure to endocrine-disrupting
25	chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old
25 26	chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520.
25 26 27	chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261.
25 26 27 28	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW;
25 26 27	chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261.
25 26 27 28	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW;
25 26 27 28 29	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. <u>http://dx.doi.org/10.1289/ehp.1307261</u>. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; <u>Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K.</u> (2013).
25 26 27 28 29 30	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History,
25 26 27 28 29 30 31 32	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026.
25 26 27 28 29 30 31 32 33	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026. Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014).
25 26 27 28 29 30 31 32 33 34	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026. Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of
25 26 27 28 29 30 31 32 33 34 35	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026. Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366.
25 26 27 28 29 30 31 32 33 34 35 36	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261. <u>Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026.</u> <u>Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K.</u> (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. <u>http://dx.doi.org/10.1016/j.fertnstert.2014.01.022</u>.
25 26 27 28 29 30 31 32 33 34 35 36 37	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. <u>http://dx.doi.org/10.1289/ehp.1307261</u>. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; <u>Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K.</u> (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. <u>http://dx.doi.org/10.1016/j.fertnstert.2013.03.026</u>. Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. <u>http://dx.doi.org/10.1016/j.fertnstert.2014.01.022</u>. Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and
25 26 27 28 29 30 31 32 33 34 35 36 37 38	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026. Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022. Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91: 79S-83S.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026. Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022. Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91: 79S-83S. http://dx.doi.org/10.1378/chest.91.6_Supplement.79S.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026. Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022. Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91: 79S-83S. http://dx.doi.org/10.1378/chest.91.6_Supplement.79S. Burney, PG; Laitinen, LA; Perdrizet, S; Huckauf, H; Tattersfield, AE; Chinn, S; Poisson, N;
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026. Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022. Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91: 79S-83S. http://dx.doi.org/10.1378/chest.91.6_Supplement.79S. Burney, PG; Laitinen, LA; Perdrizet, S; Huckauf, H; Tattersfield, AE; Chinn, S; Poisson, N; Heeren, A; Britton, JR; Jones, T. (1989). Validity and repeatability of the IUATLD
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026. Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022. Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91: 79S-83S. http://dx.doi.org/10.1378/chest.91.6_Supplement.79S. Burney, PG; Laitinen, LA; Perdrizet, S; Huckauf, H; Tattersfield, AE; Chinn, S; Poisson, N; Heeren, A; Britton, JR; Jones, T. (1989). Validity and repeatability of the IUATLD (1984) Bronchial Symptoms Questionnaire: an international comparison. Eur Respir J 2:
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026. Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022. Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91: 79S-83S. http://dx.doi.org/10.1378/chest.91.6_Supplement.79S. Burney, PG; Laitinen, LA; Perdrizet, S; Huckauf, H; Tattersfield, AE; Chinn, S; Poisson, N; Heeren, A; Britton, JR; Jones, T. (1989). Validity and repeatability of the IUATLD (1984) Bronchial Symptoms Questionnaire: an international comparison. Eur Respir J 2: 940-945.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026. Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022. Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91: 79S-83S. http://dx.doi.org/10.1378/chest.91.6_Supplement.79S. Burney, PG; Laitinen, LA; Perdrizet, S; Huckauf, H; Tattersfield, AE; Chinn, S; Poisson, N; Heeren, A; Britton, JR; Jones, T. (1989). Validity and repeatability of the IUATLD (1984) Bronchial Symptoms Questionnaire: an international comparison. Eur Respir J 2: 940-945. Buser, MC; Murray, HE; Scinicariello, F. (2014). Age and sex differences in childhood and
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026. Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022. Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91: 79S-83S. http://dx.doi.org/10.1378/chest.91.6_Supplement.79S. Burney, PG; Laitinen, LA; Perdrizet, S; Huckauf, H; Tattersfield, AE; Chinn, S; Poisson, N; Heeren, A; Britton, JR; Jones, T. (1989). Validity and repeatability of the IUATLD (1984) Bronchial Symptoms Questionnaire: an international comparison. Eur Respir J 2: 940-945. Buser, MC; Murray, HE; Scinicariello, F. (2014). Age and sex differences in childhood and adulthood obesity association with phthalates: Analyses of NHANES 2007-2010. Int J
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026. Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022. Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91: 79S-83S. http://dx.doi.org/10.1378/chest.91.6_Supplement.79S. Burney, PG; Laitinen, LA; Perdrizet, S; Huckauf, H; Tattersfield, AE; Chinn, S; Poisson, N; Heeren, A; Britton, JR; Jones, T. (1989). Validity and repeatability of the IUATLD (1984) Bronchial Symptoms Questionnaire: an international comparison. Eur Respir J 2: 940-945. Buser, MC; Murray, HE; Scinicariello, F. (2014). Age and sex differences in childhood and
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect 122: 513-520. http://dx.doi.org/10.1289/ehp.1307261. Buck Louis, GM; Peterson, CM; Chen, Z; Croughan, M; Sundaram, R; Stanford, J; Varner, MW; Kennedy, A; Giudice, L; Fujimoto, VY; Sun, L; Wang, L; Guo, Y; Kannan, K. (2013). Bisphenol A and phthalates and endometriosis: The Endometriosis: Natural History, Diagnosis and Outcomes Study. Fertil Steril 100: 162-169.e162. http://dx.doi.org/10.1016/j.fertnstert.2013.03.026. Buck Louis, GM; Sundaram, R; Sweeney, AM; Schisterman, EF; Maisog, J; Kannan, K. (2014). Urinary bisphenol A, phthalates, and couple fecundity: the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril 101: 1359-1366. http://dx.doi.org/10.1016/j.fertnstert.2014.01.022. Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91: 79S-83S. http://dx.doi.org/10.1378/chest.91.6_Supplement.79S. Burney, PG; Laitinen, LA; Perdrizet, S; Huckauf, H; Tattersfield, AE; Chinn, S; Poisson, N; Heeren, A; Britton, JR; Jones, T. (1989). Validity and repeatability of the IUATLD (1984) Bronchial Symptoms Questionnaire: an international comparison. Eur Respir J 2: 940-945. Buser, MC; Murray, HE; Scinicariello, F. (2014). Age and sex differences in childhood and adulthood obesity association with phthalates: Analyses of NHANES 2007-2010. Int J

1	polycyclic aromatic hydrocarbons, and bedroom ventilation and clinically confirmed
2	asthma, rhinoconjunctivitis, and atopic dermatitis in preschool children. Indoor Air 24:
3	136-147. http://dx.doi.org/10.1111/ina.12060.
4	Callesen, M; Bekö, G; Weschler, CJ; Langer, S; Brive, L; Clausen, G; Toftum, J; Sigsgaard, T;
5	Høst, A; Jensen, TK. (2014b). Phthalate metabolites in urine and asthma, allergic
6	rhinoconjunctivitis and atopic dermatitis in preschool children. Int J Hyg Environ Health
7	217: 645-652. <u>http://dx.doi.org/10.1016/j.ijheh.2013.12.001</u> .
8	Cantonwine, DE; Cordero, JF; Rivera-González, LO; Anzalota Del Toro, LV; Ferguson, KK;
9	Mukherjee, B; Calafat, AM; Crespo, N; Jiménez-Vélez, B; Padilla, IY; Alshawabkeh,
10	AN; Meeker, JD. (2014). Urinary phthalate metabolite concentrations among pregnant
11	women in Northern Puerto Rico: Distribution, temporal variability, and predictors.
12	Environ Int 62: 1-11. <u>http://dx.doi.org/10.1016/j.envint.2013.09.014</u> .
13	<u>CDC</u> (Centers for Disease Control and Prevention). (2013). Fourth national report on human
14	exposure to environmental chemicals, updated tables, September 2013. (CS244702-A).
	Atlanta, GA.
15 16	
16	http://www.cdc.gov/exposurereport/pdf/FourthReport_UpdatedTables_Sep2013.pdf.
17	<u>CHAP</u> (Chronic Hazard Advisory Panel on Phthalates and Phthalate Alternatives). (2014).
18	Chronic Hazard Advisory Panel on phthalates and phthalate alternatives (with
19	appendices). Bethesda, MD: U.S. Consumer Product Safety Commission, Directorate for
20	Health Sciences. <u>http://www.cpsc.gov/en/Regulations-LawsStandards/Statutes/The-</u>
21	Consumer-Product-Safety-Improvement-Act/Phthalates/Chronic-Hazard-Advisory-Panel-
22	<u>CHAP-on-Phthalates/</u>
23	Cheng, WS; Wingard, DL; Kritz-Silverstein, D; Barrett-Connor, E. (2008). Sensitivity and
24	specificity of death certificates for diabetes: as good as it gets? Diabetes Care 31: 279-
25	284. <u>http://dx.doi.org/10.2337/dc07-1327</u> .
26	Cho, SC; Bhang, SY; Hong, YC; Shin, MS; Kim, BN; Kim, JW; Yoo, HJ; Cho, IH; Kim, HW.
27	(2010). Relationship between environmental phthalate exposure and the intelligence of
28	school-age children. Environ Health Perspect 118: 1027-1032.
29	http://dx.doi.org/10.1289/ehp.0901376.
30	Chou, YY; Huang, PC; Lee, CC; Wu, MH; Lin, SJ. (2009). Phthalate exposure in girls during
31	early puberty. J Pediatr Endocrinol Metab 22: 69-77.
32	Christensen, KL; Lorber, M; Koch, HM; Kolossa-Gehring, M; Morgan, MK. (2012). Population
33	variability of phthalate metabolites and bisphenol A concentrations in spot urine samples
34	versus 24- or 48-h collections. J Expo Sci Environ Epidemiol 22: 632-640.
35	http://dx.doi.org/10.1038/jes.2012.52.
36	Christensen, K; Sobus, J; Phillips, M; Blessinger, T; Lorber, M; Tan, YM. (2014a). Changes in
37	epidemiologic associations with different exposure metrics: A case study of phthalate
38	exposure associations with body mass index and waist circumference. Environ Int 73: 66-
39	76. <u>http://dx.doi.org/10.1016/j.envint.2014.07.010</u> .
40	Christensen, KL; Makris, SL; Lorber, M. (2014b). Generation of hazard indices for cumulative
41	exposure to phthalates for use in cumulative risk assessment. Regul Toxicol Pharmacol
42	69: 380-389. http://dx.doi.org/10.1016/j.yrtph.2014.04.019.
43	Clark, KE; David, RM; Guinn, R; Kramarz, KW; Lampi, MA; Staples, CA. (2011). Modeling
44	Human Exposure to Phthalate Esters: A Comparison of Indirect and Biomonitoring
45	Estimation Methods. Hum Ecol Risk Assess 17: 923-965.
46	http://dx.doi.org/10.1080/10807039.2011.588157.

Cooper.	R; Blell, M; Hardy, R; Black, S; Pollard, TM; Wadsworth, ME; Pearce, MS; Kuh, D.
	(2006). Validity of age at menarche self-reported in adulthood. J Epidemiol Community
	Health 60: 993-997. http://dx.doi.org/10.1136/jech.2005.043182.
<u>CPSC</u> ((U.S. Consumer Product Safety Commission). (2010). Toxicity Review for Diisobutyl
	phthalate (DIBP). Bethesda, MD. <u>http://www.cpsc.gov/PageFiles/125773/dibp.pdf</u> .
Dirtu, A	AC; Geens, T; Dirinck, E; Malarvannan, G; Neels, H; Van Gaal, L; Jorens, PG; Covaci,
	A. (2013). Phthalate metabolites in obese individuals undergoing weight loss: Urinary
	levels and estimation of the phthalates daily intake. Environ Int 59: 344353.
	http://dx.doi.org/10.1016/j.envint.2013.06.023.
Dotteru	d, LK; Kvammen, B; Lund, E; Falk, ES. (1995). An evaluation of atopic diseases in
:	relation to immediate skin test reactions among schoolchildren in the Sor-Varanger
	community. J Eur Acad Dermatol Venereol 5: 240-249. http://dx.doi.org/10.1111/j.1468-
	<u>3083.1995.tb00112.x</u> .
Eastman	n Kodak (Eastman Kodak Company). (1954). Screening test on the toxicity of diisobutyl
	phthalate [TSCA Submission]. (EPA/OTS Doc #878214403). Rochester, NY.
j	https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=OTS0206525.
Eastman	n Kodak (Eastman Kodak Company). (1978). Toxicity and health hazard summary
	[diisobutyl phthalate] [TSCA Submission]. (EPA/OTS Doc #878214402). Rochester,
	NY.
	https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=OTS0206525.
	erg, ML; Hsieh, MH; Walters, RC; Krasnow, R; Lipshultz, LI. (2011). The relationship
	between anogenital distance, fatherhood, and fertility in adult men. PLoS ONE 6:
	e18973. http://dx.doi.org/10.1371/journal.pone.0018973.
	SM; Zhu, C; Berkowitz, GS; Calafat, AM; Silva, MJ; Miodovnik, A; Wolff, MS. (2009).
	Prenatal phthalate exposure and performance on the Neonatal Behavioral Assessment
	Scale in a multiethnic birth cohort. Neurotoxicology 30: 522-528.
	http://dx.doi.org/10.1016/j.neuro.2009.04.001.
-	SM; Miodovnik, A; Canfield, RL; Zhu, C; Silva, MJ; Calafat, AM; Wolff, MS. (2010).
	Prenatal phthalate exposure is associated with childhood behavior and executive
	functioning. Environ Health Perspect 118: 565-571.
	http://dx.doi.org/10.1289/ehp.0901470.
	d, MA; Gallagher, D; Tell, GS; Davison, LL; Platt, OS. (1990). Reliability of Tanner
	stage assessments in a multi-center study. Am J Hum Biol 2: 503-510.
	http://dx.doi.org/10.1002/ajhb.1310020506.
	r, AS; Lamadrid-Figueroa, H; Téllez-Rojo, MM; Mercado-García, A; Peterson, KE;
	Schwartz, J; Hu, H; Hernández-Avila, M. (2009). Effect of calcium supplementation on
	blood lead levels in pregnancy: A randomized placebo-controlled trial. Environ Health
	Perspect 117: 26-31.
	on, KK; Mcelrath, TF; Meeker, JD. (2014a). Environmental phthalate exposure and
-	preterm birth. JAMA Pediatr 168: 61-67.
	http://dx.doi.org/10.1001/jamapediatrics.2013.3699.
_	on, KK; Peterson, KE; Lee, JM; Mercado-García, A; Goldenberg, CB; Téllez-Rojo, MM;
	Meeker, JD. (2014b). Prenatal and Peripubertal Phthalates and Bisphenol-A in Relation
	to Sex Hormones and Puberty in Boys. Reprod Toxicol 47: 70-76.
	http://dx.doi.org/10.1016/j.reprotox.2014.06.002
-	on, KK; Mcelrath, TF; Ko, YA; Mukherjee, B; Meeker, JD. (2014c). Variability in urinary
]	phthalate metabolite levels across pregnancy and sensitive windows of exposure for the

1		risk		preterm			Int	70C:	118-124.
2	. .			/ <u>10.1016/j.en</u>				·	
3 4	Ferris,	Respir D	· .	•••	indardization	n project (Amer	rican Ino	racic Societ	y). Am Rev
4 5	Foster	-			Cook MW	; Gangolli, SD.	(1981) 9	Studies on t	he testicular
6	<u>1 05ter</u>					arious isomers			
7				-	•	//dx.doi.org/10.		• •	
8	Foster					, LV; Gangolli			
9		-				ar atrophy by b	• •		
10						Snyder; DJ Jol	,	,	,
11					0	eactive interme			mechanisms
12 13	Fradar		0		· T T	2). New York, 2 10). Correlation			matabolitas
13 14	<u>Fieuer</u>					om young Dan		-	
15					-	ass spectrometi			• •
16	Freder		-		-	Aksglaede,	-		
17						<u>A.</u> (2012). High			
18				h delayed	1	0	nt J A	androl 35	216-226.
19				/10.1111/j.13					
20	Golon					of gender role	behaviour	' in pre-scho	ol children:
21 22	Goodr			•	•	y 34: 805-811. . Do phthalates	act as of	perogens in	humans? A
23	<u>00001</u>					al literature.		-	
24		•		/10.3109/104	0			10/110/01	
25	<u>Hanna</u>					ell, KL; Wilso	n, VS; G	<u>ray, LE.</u> (2	011). Dose-
26		-				e production and	0	-	
27			-		-	diethylhexyl	-	•	-
28		-	• •		•	l phthalate.	Toxicol	Sci 123	: 206-216.
29 30	Hanna			/ <u>10.1093/toxs</u> t_CS: Furr_1		Foster, PMD;	Grav El	Wilson	VS (2012)
31	<u>11ama</u>					d male reprodu			
32						ing relative po			
33				/10.1093/toxs			2		
34	Hart,					n, JA; Hickey			
35						<u>M.</u> (2013). The			-
36		-		-	-	oductive devel	-		ice: A pilot
37 38	Hatch	•	-			dx.doi.org/10.1 berg, J; Moore			Johntor TE
39	<u>11aten</u> ,					netabolite conc		-	
40				-	-	al study of NH		•	
41						<u>76-069x-7-27</u> .		,	
42	Hause:			· · · · · · · · · · · · · · · · · · ·		<u>Calafat, AM.</u> (2			
43				•	1	nthalate monoe			
44	TT 1 .					org/10.1097/01.			
45 46	Hazlet					rity chemicals sheet (pp. #86-	-	-	
46 47						chResults.xhtm			
т/		meps.//II		uda uda	noouru/sear	CHINGSUID.AHUI		cuty-015	0010200.

1	Hazleton Laboratories. (1992). Initial submission: screening of priority chemicals for potential
2	reproductive hazard (final report) with cover letter dated 041492 (pp. #88-920002015).
3	(88920002015). Washington, DC: U.S. Environmental Protection Agency.
4	https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=OTS0536209.
5	Heineman, EF; Olsen, JH; Pottern, LM; Gomez, M; Raffn, E; Blair, A. (1992). Occupational risk
6	factors for multiple myeloma among Danish men. Cancer Causes Control 3: 555-568.
7	http://dx.doi.org/10.1007/BF00052753.
8	Hines, M. (2006). Prenatal testosterone and gender-related behaviour [Review]. Eur J Endocrinol
9	155: S115-S121. <u>http://dx.doi.org/10.1530/eje.1.02236</u> .
10	Hofman, LF; Foley, TP; Henry, JJ; Naylor, EW. (2003). Assays for thyroid-stimulating hormone
11	using dried blood spotted filter paper specimens to screen for hypothyroidism in older
12	children and adults. J Med Screen 10: 5-10.
13	http://dx.doi.org/10.1258/096914103321610734.
14	Hogberg, J; Hanberg, A; Berglund, M; Skerfving, S; Remberger, M; Calafat, AM; Filipsson, AF;
15	Jansson, B; Johansson, N; Appelgren, M; Hakansson, H. (2008). Phthalate diesters and
16	their metabolites in human breast milk, blood or serum, and urine as biomarkers of
17	exposure in vulnerable populations. Environ Health Perspect 116: 334-339.
18	http://dx.doi.org/10.1289/ehp.10788.
19	Holt, VL; Weiss, NS. (2000). Recommendations for the design of epidemiologic studies of
20	endometriosis [Review]. Epidemiology 11: 654-659.
21	Hoppin, JA; Ulmer, R; London, SJ. (2004). Phthalate exposure and pulmonary function. Environ
22	Health Perspect 112: 571-574.
23	Hoppin, JA; Jaramillo, R; London, SJ; Bertelsen, RJ; Salo, PM; Sandler, DP; Zeldin, DC.
24	(2013). Phthalate exposure and allergy in the U.S. population: Results from NHANES
25	2005-2006. Environ Health Perspect 121: 1129-1134.
26	http://dx.doi.org/10.1289/ehp.1206211
27	Howdeshell, KL; Wilson, VS; Furr, J; Lambright, CR; Rider, CV; Blystone, CR; Hotchkiss, AK;
28	Gray, LE, Jr. (2008). A mixture of five phthalate esters inhibits fetal testicular
29	testosterone production in the Sprague-Dawley rat in a cumulative, dose-additive manner.
30	Toxicol Sci 105: 153-165. <u>http://dx.doi.org/10.1093/toxsci/kfn077</u> .
31	HSDB (Hazardous Substances Data Bank). (2013). Diisobutyl phthalate. Bethesda, MD:
32	National Library of Medicine. <u>http://toxnet.nlm.nih.gov/cgi-</u>
33 24	<u>bin/sis/search2/r?dbs+hsdb:@term+@rn+84-69-5</u> . Huang, T; Saxena, AR; Isganaitis, E; James-Todd, T. (2014a). Gender and racial/ethnic
34 35	differences in the associations of urinary phthalate metabolites with markers of diabetes
35 36	risk: national health and nutrition examination survey 2001-2008. Environ Health 13: 6.
30 37	http://dx.doi.org/10.1186/1476-069X-13-6.
38	Huang, Y; Li, J; Garcia, JM; Lin, H; Wang, Y; Yan, P; Wang, L; Tan, Y; Luo, J; Qiu, Z; Chen,
39	JA; Shu, W. (2014b). Phthalate levels in cord blood are associated with preterm delivery
40	and fetal growth parameters in Chinese women. PLoS ONE 9: e87430.
40 41	http://dx.doi.org/10.1371/journal.pone.0087430.
42	Iijo, C. (1975). [Effects of sulfathiazole, phthalylsulfathiazole and phthalic acid esters on the
43	development of chick embryos]. Showa Igakkai Zasshi 35: 187-201.
43 44	James-Todd, T; Stahlhut, R; Meeker, JD; Powell, SG; Hauser, R; Huang, T; Rich-Edwards, J.
44 45	(2012). Urinary phthalate metabolite concentrations and diabetes among women in the
45 46	National Health and Nutrition Examination Survey (NHANES) 2001-2008. Environ
40 47	Health Perspect 120: 1307-1313. <u>http://dx.doi.org/10.1289/ehp.1104717</u> .
-+/	1000000000000000000000000000000000000

1	Joensen, UN; Frederiksen, H; Jensen, MB; Lauritsen, MP; Olesen, IA; Lassen, TH; Andersson,
2	AM; Jørgensen, N. (2012). Phthalate excretion pattern and testicular function: a study of
3	881 healthy danish men. Environ Health Perspect 120: 1397-1403.
4	http://dx.doi.org/10.1289/ehp.1205113.
5	John Radcliffe Hospital Cryptorchidism Study Group. (1988). Clinical diagnosis of
6	cryptorchidism. Arch Dis Child 63: 587-591.
7	Jonsson, BAG; Richthoff, J; Rylander, L; Giwercman, A; Hagmar, L. (2005). Urinary phthalate
8	metabolites and biomarkers of reproductive function in young men. Epidemiology 16:
9	487-493. http://dx.doi.org/10.1097/01.ede.0000164555.19041.01.
10	Kasper-Sonnenberg, M; Koch, HM; Wittsiepe, J; Wilhelm, M. (2012). Levels of phthalate
11	metabolites in urine among mother-child-pairs - Results from the Duisburg birth cohort
12	study, Germany. Int J Hyg Environ Health 215: 373-382.
13	http://dx.doi.org/10.1016/j.ijheh.2011.09.004.
14	Kleinsasser, NH; Harréus, UA; Wallner, BC; Kastenbauer, ER. (1999). [Mutagen sensitivity of
15	patients with laryngeal and oropharyngeal carcinoma]. Laryngorhinootologie 78: 679-
16	684. <u>http://dx.doi.org/10.1055/s-1999-8767</u> .
17	Kleinsasser, NH; Wallner, BC; Kastenbauer, ER; Weissacher, H; Harreus, UA. (2001a).
18	Genotoxicity of di-butyl-phthalate and di-iso-butyl-phthalate in human lymphocytes and
19	mucosal cells. Teratog Carcinog Mutagen 21: 189-196.
20	http://dx.doi.org/10.1002/tcm.1007.
21	Kleinsasser, NH; Kastenbauer, ER; Wallner, BC; Weissacher, H; Harreus, UA. (2001b).
22	[Genotoxicity of phthalates. On the discussion of plasticizers in children's toys]. HNO 49:
23	378-381.
24	Kobrosly, RW; Evans, S; Miodovnik, A; Barrett, ES; Thurston, SW; Calafat, AM; Swan, SH.
25	(2014). Prenatal Phthalate Exposures and Neurobehavioral Development Scores in Boys
26	and Girls at 6-10 Years of Age. Environ Health Perspect 122: 521-528.
27	http://dx.doi.org/10.1289/ehp.1307063.
28 29	Koch, HM; Angerer, J. (2007). Di-iso-nonylphthalate (DINP) metabolites in human urine after a single oral dose of deuterium-labelled DINP. Int J Hyg Environ Health 210: 9-19.
29 30	http://dx.doi.org/10.1016/j.ijheh.2006.11.008.
31	Koch, HM; Christensen, KL; Harth, V; Lorber, M; Brüning, T. (2012). Di-n-butyl phthalate
32	(DnBP) and diisobutyl phthalate (DiBP) metabolism in a human volunteer after single
33	oral doses. Arch Toxicol 86: 1829-1839. <u>http://dx.doi.org/10.1007/s00204-012-0908-1</u> .
34	Koprowski, C; Coates, RJ; Bernstein, L. (2001). Ability of young women to recall past body size
35	and age at menarche. Obes Res 9: 478-485. http://dx.doi.org/10.1038/oby.2001.62.
36	Kranvogl, R; Knez, J; Miuc, A; Vončina, E; Vončina, DB; Vlaisavljević, V. (2014).
37	Simultaneous determination of phthalates, their metabolites, alkylphenols and bisphenol
38	A using GC-MS in urine of men with fertility problems. Acta Chim Slov 61: 110-120.
39	Leikauf, J; Federman, AD. (2009). Comparisons of self-reported and chart identified chronic
40	diseases in inner-city seniors. J Am Geriatr Soc 57: 1219-1225.
41	http://dx.doi.org/10.1111/j.1532-5415.2009.02313.x.
42	Lin, S; Ku, H; Su, P; Chen, J; Huang, P; Angerer, J; Wang, S. (2011). Phthalate exposure in
43	pregnant women and their children in central Taiwan. Chemosphere 82: 947-955.
44	http://dx.doi.org/10.1016/j.chemosphere.2010.10.073.
45	Lind, PM; Lind, L. (2011). Circulating levels of bisphenol A and phthalates are related to carotid
46	atherosclerosis in the elderly. Atherosclerosis 218: 207-213.
47	http://dx.doi.org/10.1016/j.atherosclerosis.2011.05.001.

1	Lind, PM; Zethelius, B; Lind, L. (2012a). Circulating levels of phthalate metabolites are
2	associated with prevalent diabetes in the elderly. Diabetes Care 35: 1519-1524.
3	http://dx.doi.org/10.2337/dc11-2396.
4 5	Lind, PM; Roos, V; Rönn, M; Johansson, L; Ahlström, H; Kullberg, J; Lind, L. (2012b). Serum
5	concentrations of phthalate metabolites are related to abdominal fat distribution two years
6	later in elderly women. Environ Health 11: 21. <u>http://dx.doi.org/10.1186/1476-069X-11-</u>
7	<u>21</u> . L'amariale ID: Calafat AM: Malavira Castra MS: Miar D: Stangar D: Fastar MD:
8 9	Lomenick, JP; Calafat, AM; Melguizo Castro, MS; Mier, R; Stenger, P; Foster, MB;
	Wintergerst, KA. (2010). Phthalate exposure and precocious puberty in females. J Pediatr 156: 221-225. http://dx.doi.org/10.1016/j.jpeds.2009.09.047.
10 11	Lopez-Carrillo, L; Hernandez-Ramirez, RU; Calafat, AM; Torres-Sanchez, L; Galvan-Portillo,
12	M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME. (2010). Exposure to phthalates and
13	breast cancer risk in northern Mexico. Environ Health Perspect 118: 539-544.
14	http://dx.doi.org/10.1289/ehp.0901091.
15	Ma, N; Zhang, W; Feng, Y; Xu, H. (2010). [Effect of diisobutyl phthalate on antioxidse activity
16	and DNA damage in mice]. Wei Sheng Yan Jiu 39: 549-551.
17	Ma, N; Liu, S; Gao, P; Cao, P; Xu, H. (2013a). Effect of diisobutyl phthalate on learning and
18	memory behavior and apoptosis of hippocampus cells in mice (Trans 2014).
19	[邻苯二甲酸二异丁酯对小鼠认知行为及海马神经细胞凋亡的影响]. Wei Sheng Yan
20	Jiu 42: 57-60.
21	Ma, N; Liu, S; Gao, P; Cao, P; Xu, H. (2013b). [Effect of diisobutyl phthalate on learning and
22 23	memory behavior and apoptosis of hippocampus cells in mice]. Wei Sheng Yan Jiu 42: 57-60.
24	Ma, N; Wang, X; Gao, P; Xu, H. (2013c). [Effects of DiBP on the cAMP/PKA-CREB-BDNF
25	signaling pathway of hippocampus in mice]. Wei Sheng Yan Jiu 42: 405-409.
26	Marshall, WA; Tanner, JM. (1969). Variations in pattern of pubertal changes in girls. Arch Dis
27	Child 44: 291-303.
28	Marshall, WA; Tanner, JM. (1970). Variations in the pattern of pubertal changes in boys. Arch
29	Dis Child 45: 13-23.
30	Meeker, JD; Calafat, AM; Hauser, R. (2007). Di(2-ethylhexyl) phthalate metabolites may alter
31	thyroid hormone levels in men. Environ Health Perspect 115: 1029-1034.
32	http://dx.doi.org/10.1289/ehp.9852.
33	Meeker, JD; Hu, H; Cantonwine, DE; Lamadrid-Figueroa, H; Calafat, AM; Ettinger, AS;
34	Hernandez-Avila, M; Loch-Caruso, R; Tellez-Rojo, MM. (2009). Urinary phthalate
35	metabolites in relation to preterm birth in Mexico city. Environ Health Perspect 117:
36	1587-1592. http://dx.doi.org/10.1289/ehp.0800522.
37	Meeker, JD; Ferguson, KK. (2011). Relationship between Urinary Phthalate and Bisphenol A
38	Concentrations and Serum Thyroid Measures in U.S. Adults and Adolescents from the
39	National Health and Nutrition Examination Survey (NHANES) 2007-2008. Environ
40	Health Perspect 119: 1396-1402. <u>http://dx.doi.org/10.1289/ehp.1103582</u> .
41	Mendiola, J; Jørgensen, N; Andersson, AM; Calafat, AM; Silva, MJ; Redmon, JB; Sparks, A;
42	Drobnis, EZ; Wang, C; Liu, F; Swan, SH. (2011). Associations between urinary
43	metabolites of di(2-ethylhexyl) phthalate and reproductive hormones in fertile men. Int J
44	Androl 34: 369378. <u>http://dx.doi.org/10.1111/j.1365-2605.2010.01095.x</u> .
45	Mieritz, MG; Frederiksen, H; Sørensen, K; Aksglaede, L; Mouritsen, A; Hagen, CP;
46	Skakkebaek, NE; Andersson, AM; Juul, A. (2012). Urinary phthalate excretion in 555
47	healthy Danish boys with and without pubertal gynaecomastia. Int J Androl 35: 227-235.
48	http://dx.doi.org/10.1111/j.1365-2605.2012.01279.x.
	This document is a draft for review purposes only and does not constitute Agency policy.
	4-8 DRAFT—DO NOT CITE OR QUOTE

1	Mouritsen, A; Frederiksen, H; Sørensen, K; Aksglaede, L; Hagen, C; Skakkebaek, N; Main, K;
2	Andersson, A; Juul, A. (2013a). Supplemental data: Urinary phthalates from 168 girls
3	and boys measured twice a year during a 5 year period: Associations with adrenal
4	androgen levels and puberty [Supplemental Data]. J Clin Endocrinol Metab 98.
5	Mouritsen, A; Frederiksen, H; Sørensen, K; Aksglaede, L; Hagen, C; Skakkebaek, N; Main, K;
6	Andersson, A; Juul, A. (2013b). Urinary Phthalates from 168 Girls and Boys measured
7	twice a year during a 5 Year Period: Associations with Adrenal Androgen Levels and
8	Puberty. J Clin Endocrinol Metab 98: 3755-3764. http://dx.doi.org/10.1210/jc.2013-1284.
9	Nicolau, GY; Haus, E; Plîngă, L; Dumitriu, L; Lakatua, D; Popescu, M; Ungureanu, E; Sackett-
10	Lundeen, L; Petrescu, E. (1992). Chronobiology of pituitary-thyroid functions. Rom J
11	Endocrinol 30: 125-148.
12	Nielsen, J; Akesson, B; Skerfving, S. (1985). Phthalate ester exposureair levels and health of
13	workers processing polyvinylchloride. AIHA J 46: 643-647.
14	http://dx.doi.org/10.1080/15298668591395463.
15	Nielsen, J; Fåhraeus, C; Bensryd, I; Akesson, B; Welinder, H; Lindén, K; Skerfving, S. (1989).
16	Small airways function in workers processing polyvinylchloride. Int Arch Occup Environ
17	Health 61: 427-430. http://dx.doi.org/10.1007/BF00386474.
18	NIOSH (National Institute for Occupational Safety and Health). (1983). Final Report. Screening
19	of priority chemicals for potential reproductive hazard (pp. 210-282).
20	(NIOSH/00133459). Cincinnati, OH.
21	https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=PB85220143.
22	NRC (National Research Council). (2008). Phthalates and cumulative risk assessment: The task
23	ahead. Washington, DC: National Academies Press.
24	http://www.nap.edu/catalog.php?record_id=12528.
25	NRC (National Research Council). (2009). Science and decisions: Advancing risk assessment.
26	Washington, DC: National Academies Press. http://www.nap.edu/catalog/12209.html.
26 27	Washington, DC: National Academies Press. <u>http://www.nap.edu/catalog/12209.html</u> . <u>NRC</u> (National Research Council). (2011). Review of the Environmental Protection Agency's
27	NRC (National Research Council). (2011). Review of the Environmental Protection Agency's
27 28	NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press.
27 28 29	NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. <u>http://www.nap.edu/catalog/13142.html</u> .
27 28 29 30	 NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. http://www.nap.edu/catalog/13142.html. Oishi, S; Hiraga, K. (1980a). Effect of phthalic acid esters on mouse testes. Toxicol Lett 5: 413-
27 28 29 30 31	 NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. http://www.nap.edu/catalog/13142.html. Oishi, S; Hiraga, K. (1980a). Effect of phthalic acid esters on mouse testes. Toxicol Lett 5: 413-416.
27 28 29 30 31 32	 NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. http://www.nap.edu/catalog/13142.html. Oishi, S; Hiraga, K. (1980a). Effect of phthalic acid esters on mouse testes. Toxicol Lett 5: 413-416. Oishi, S; Hiraga, K. (1980b). Effects of phthalic acid monoesters on mouse testes. Toxicol Lett
27 28 29 30 31 32 33	 NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. http://www.nap.edu/catalog/13142.html. Oishi, S; Hiraga, K. (1980a). Effect of phthalic acid esters on mouse testes. Toxicol Lett 5: 413-416. Oishi, S; Hiraga, K. (1980b). Effects of phthalic acid monoesters on mouse testes. Toxicol Lett 6: 239-242. http://dx.doi.org/10.1016/0378-4274(80)90126-5.
27 28 29 30 31 32 33 34	 NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. http://www.nap.edu/catalog/13142.html. Oishi, S; Hiraga, K. (1980a). Effect of phthalic acid esters on mouse testes. Toxicol Lett 5: 413-416. Oishi, S; Hiraga, K. (1980b). Effects of phthalic acid monoesters on mouse testes. Toxicol Lett 6: 239-242. http://dx.doi.org/10.1016/0378-4274(80)90126-5. Oishi, S; Hiraga, K. (1980c). Testicular atrophy induced by phthalic acid esters: effect on
27 28 29 30 31 32 33 34 35	 NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. <u>http://www.nap.edu/catalog/13142.html</u>. Oishi, S; Hiraga, K. (1980a). Effect of phthalic acid esters on mouse testes. Toxicol Lett 5: 413-416. Oishi, S; Hiraga, K. (1980b). Effects of phthalic acid monoesters on mouse testes. Toxicol Lett 6: 239-242. <u>http://dx.doi.org/10.1016/0378-4274(80)90126-5</u>. Oishi, S; Hiraga, K. (1980c). Testicular atrophy induced by phthalic acid esters: effect on testosterone and zinc concentrations. Toxicol Appl Pharmacol 53: 35-41.
27 28 29 30 31 32 33 34 35 36	 NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. http://www.nap.edu/catalog/13142.html. Oishi, S; Hiraga, K. (1980a). Effect of phthalic acid esters on mouse testes. Toxicol Lett 5: 413-416. Oishi, S; Hiraga, K. (1980b). Effects of phthalic acid monoesters on mouse testes. Toxicol Lett 6: 239-242. http://dx.doi.org/10.1016/0378-4274(80)90126-5. Oishi, S; Hiraga, K. (1980c). Testicular atrophy induced by phthalic acid esters: effect on testosterone and zinc concentrations. Toxicol Appl Pharmacol 53: 35-41. http://dx.doi.org/10.1016/0041-008X(80)90378-6.
27 28 29 30 31 32 33 34 35 36 37	 NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. http://www.nap.edu/catalog/13142.html. Oishi, S; Hiraga, K. (1980a). Effect of phthalic acid esters on mouse testes. Toxicol Lett 5: 413-416. Oishi, S; Hiraga, K. (1980b). Effects of phthalic acid monoesters on mouse testes. Toxicol Lett 6: 239-242. http://dx.doi.org/10.1016/0378-4274(80)90126-5. Oishi, S; Hiraga, K. (1980c). Testicular atrophy induced by phthalic acid esters: effect on testosterone and zinc concentrations. Toxicol Appl Pharmacol 53: 35-41. http://dx.doi.org/10.1016/0041-008X(80)90378-6. Oishi, S; Hiraga, K. (1980d). Testicular atrophy induced by phthalic acid monoesters: effects of
27 28 29 30 31 32 33 34 35 36 37 38	 NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. <u>http://www.nap.edu/catalog/13142.html</u>. Oishi, S; Hiraga, K. (1980a). Effect of phthalic acid esters on mouse testes. Toxicol Lett 5: 413-416. Oishi, S; Hiraga, K. (1980b). Effects of phthalic acid monoesters on mouse testes. Toxicol Lett 6: 239-242. <u>http://dx.doi.org/10.1016/0378-4274(80)90126-5</u>. Oishi, S; Hiraga, K. (1980c). Testicular atrophy induced by phthalic acid esters: effect on testosterone and zinc concentrations. Toxicol Appl Pharmacol 53: 35-41. <u>http://dx.doi.org/10.1016/0041-008X(80)90378-6</u>. Oishi, S; Hiraga, K. (1980d). Testicular atrophy induced by phthalic acid monoesters: effects of zinc and testosterone concentrations. Toxicology 15: 197-202.
27 28 29 30 31 32 33 34 35 36 37 38 39	 NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. <u>http://www.nap.edu/catalog/13142.html</u>. Oishi, S; Hiraga, K. (1980a). Effect of phthalic acid esters on mouse testes. Toxicol Lett 5: 413-416. Oishi, S; Hiraga, K. (1980b). Effects of phthalic acid monoesters on mouse testes. Toxicol Lett 6: 239-242. <u>http://dx.doi.org/10.1016/0378-4274(80)90126-5</u>. Oishi, S; Hiraga, K. (1980c). Testicular atrophy induced by phthalic acid esters: effect on testosterone and zinc concentrations. Toxicol Appl Pharmacol 53: 35-41. <u>http://dx.doi.org/10.1016/0041-008X(80)90378-6</u>. Oishi, S; Hiraga, K. (1980d). Testicular atrophy induced by phthalic acid monoesters: effects of zinc and testosterone concentrations. Toxicology 15: 197-202. <u>http://dx.doi.org/10.1016/0300-483X(80)90053-0</u>.
27 28 29 30 31 32 33 34 35 36 37 38 39 40	 NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. <u>http://www.nap.edu/catalog/13142.html</u>. Oishi, S; Hiraga, K. (1980a). Effect of phthalic acid esters on mouse testes. Toxicol Lett 5: 413-416. Oishi, S; Hiraga, K. (1980b). Effects of phthalic acid monoesters on mouse testes. Toxicol Lett 6: 239-242. <u>http://dx.doi.org/10.1016/0378-4274(80)90126-5</u>. Oishi, S; Hiraga, K. (1980c). Testicular atrophy induced by phthalic acid esters: effect on testosterone and zinc concentrations. Toxicol Appl Pharmacol 53: 35-41. <u>http://dx.doi.org/10.1016/0041-008X(80)90378-6</u>. Oishi, S; Hiraga, K. (1980d). Testicular atrophy induced by phthalic acid monoesters: effects of zinc and testosterone concentrations. Toxicology 15: 197-202. <u>http://dx.doi.org/10.1016/0300-483X(80)90053-0</u>. Oksanen, T; Kivimäki, M; Pentti, J; Virtanen, M; Klaukka, T; Vahtera, J. (2010). Self-report as
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	 NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. <u>http://www.nap.edu/catalog/13142.html</u>. Oishi, S; Hiraga, K. (1980a). Effect of phthalic acid esters on mouse testes. Toxicol Lett 5: 413-416. Oishi, S; Hiraga, K. (1980b). Effects of phthalic acid monoesters on mouse testes. Toxicol Lett 6: 239-242. <u>http://dx.doi.org/10.1016/0378-4274(80)90126-5</u>. Oishi, S; Hiraga, K. (1980c). Testicular atrophy induced by phthalic acid esters: effect on testosterone and zinc concentrations. Toxicol Appl Pharmacol 53: 35-41. <u>http://dx.doi.org/10.1016/0041-008X(80)90378-6</u>. Oishi, S; Hiraga, K. (1980d). Testicular atrophy induced by phthalic acid monoesters: effects of zinc and testosterone concentrations. Toxicology 15: 197-202. <u>http://dx.doi.org/10.1016/0300-483X(80)90053-0</u>. Oksanen, T; Kivimäki, M; Pentti, J; Virtanen, M; Klaukka, T; Vahtera, J. (2010). Self-report as an indicator of incident disease. Ann Epidemiol 20: 547-554. <u>http://dx.doi.org/10.1016/j.annepidem.2010.03.017</u>. Olsén, L; Lind, L; Lind, PM. (2012). Associations between circulating levels of bisphenol A and
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	 NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. <u>http://www.nap.edu/catalog/13142.html</u>. Oishi, S; Hiraga, K. (1980a). Effect of phthalic acid esters on mouse testes. Toxicol Lett 5: 413-416. Oishi, S: Hiraga, K. (1980b). Effects of phthalic acid monoesters on mouse testes. Toxicol Lett 6: 239-242. <u>http://dx.doi.org/10.1016/0378-4274(80)90126-5</u>. Oishi, S; Hiraga, K. (1980c). Testicular atrophy induced by phthalic acid esters: effect on testosterone and zinc concentrations. Toxicol Appl Pharmacol 53: 35-41. <u>http://dx.doi.org/10.1016/0041-008X(80)90378-6</u>. Oishi, S; Hiraga, K. (1980d). Testicular atrophy induced by phthalic acid monoesters: effects of zinc and testosterone concentrations. Toxicology 15: 197-202. <u>http://dx.doi.org/10.1016/0300-483X(80)90053-0</u>. Oksanen, T; Kivimäki, M; Pentti, J; Virtanen, M; Klaukka, T; Vahtera, J. (2010). Self-report as an indicator of incident disease. Ann Epidemiol 20: 547-554. <u>http://dx.doi.org/10.1016/j.annepidem.2010.03.017</u>. Olsén, L; Lind, L; Lind, PM. (2012). Associations between circulating levels of bisphenol A and phthalate metabolites and coronary risk in the elderly. Ecotoxicol Environ Saf 80: 179-
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	 NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. <u>http://www.nap.edu/catalog/13142.html</u>. Oishi, S; Hiraga, K. (1980a). Effect of phthalic acid esters on mouse testes. Toxicol Lett 5: 413-416. Oishi, S; Hiraga, K. (1980b). Effects of phthalic acid monoesters on mouse testes. Toxicol Lett 6: 239-242. <u>http://dx.doi.org/10.1016/0378-4274(80)90126-5</u>. Oishi, S; Hiraga, K. (1980c). Testicular atrophy induced by phthalic acid esters: effect on testosterone and zinc concentrations. Toxicol Appl Pharmacol 53: 35-41. <u>http://dx.doi.org/10.1016/0041-008X(80)90378-6</u>. Oishi, S; Hiraga, K. (1980d). Testicular atrophy induced by phthalic acid monoesters: effects of zinc and testosterone concentrations. Toxicology 15: 197-202. <u>http://dx.doi.org/10.1016/0300-483X(80)90053-0</u>. Oksanen, T; Kivimäki, M; Pentti, J; Virtanen, M; Klaukka, T; Vahtera, J. (2010). Self-report as an indicator of incident disease. Ann Epidemiol 20: 547-554. <u>http://dx.doi.org/10.1016/j.annepidem.2010.03.017</u>. Olsén, L; Lind, L; Lind, PM. (2012). Associations between circulating levels of bisphenol A and phthalate metabolites and coronary risk in the elderly. Ecotoxicol Environ Saf 80: 179-183. <u>http://dx.doi.org/10.1016/j.ecoenv.2012.02.023</u>.
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	 NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. <u>http://www.nap.edu/catalog/13142.html</u>. Oishi, S; Hiraga, K. (1980a). Effect of phthalic acid esters on mouse testes. Toxicol Lett 5: 413-416. Oishi, S: Hiraga, K. (1980b). Effects of phthalic acid monoesters on mouse testes. Toxicol Lett 6: 239-242. <u>http://dx.doi.org/10.1016/0378-4274(80)90126-5</u>. Oishi, S; Hiraga, K. (1980c). Testicular atrophy induced by phthalic acid esters: effect on testosterone and zinc concentrations. Toxicol Appl Pharmacol 53: 35-41. <u>http://dx.doi.org/10.1016/0041-008X(80)90378-6</u>. Oishi, S; Hiraga, K. (1980d). Testicular atrophy induced by phthalic acid monoesters: effects of zinc and testosterone concentrations. Toxicology 15: 197-202. <u>http://dx.doi.org/10.1016/0300-483X(80)90053-0</u>. Oksanen, T; Kivimäki, M; Pentti, J; Virtanen, M; Klaukka, T; Vahtera, J. (2010). Self-report as an indicator of incident disease. Ann Epidemiol 20: 547-554. <u>http://dx.doi.org/10.1016/j.annepidem.2010.03.017</u>. Olsén, L; Lind, L; Lind, PM. (2012). Associations between circulating levels of bisphenol A and phthalate metabolites and coronary risk in the elderly. Ecotoxicol Environ Saf 80: 179-

1 2	women of reproductive age. J Expo Sci Environ Epidemiol 20: 90-100. http://dx.doi.org/10.1038/jes.2009.4.
3 4	Pekkanen, J; Pearce, N. (1999). Defining asthma in epidemiological studies [Review]. Eur Respir J 14: 951-957. http://dx.doi.org/10.1034/j.1399-3003.1999.14d37.x.
5	Philippat, C; Mortamais, M; Chevrier, C; Petit, C; Calafat, AM; Ye, X; Silva, MJ; Brambilla, C;
6	Pin, I; Charles, MA; Cordier, S; Slama, R. (2012). Exposure to phthalates and phenols
7	during pregnancy and offspring size at birth. Environ Health Perspect 120: 464-470.
8	http://dx.doi.org/10.1289/ehp.1103634.
9	Plasqui, G; Kester, AD; Westerterp, KR. (2003). Seasonal variation in sleeping metabolic rate,
10	thyroid activity, and leptin. Am J Physiol Endocrinol Metab 285: E338-E343.
11	http://dx.doi.org/10.1152/ajpendo.00488.2002.
12	Postmes, TJ; Van Hout, JC; Saat, G; Willems, P; Coenegracht, J. (1974). A radioimmunoassay
13	study and comparison of seasonal variation in plasma triiodothyronine and thyroxine
14	concentrations in normal healthy persons. Clin Chim Acta 50: 189-195.
15	http://dx.doi.org/10.1016/0009-8981(74)90366-0.
16	Qian, H; Chen, M; Kransler, KM; Zaleski, RT. (2014). Assessment of chemical coexposure
17	patterns based upon phthalate biomonitoring data within the 2007/2008 National Health
18	and Nutrition Examination Survey. J Expo Sci Environ Epidemiol.
19	http://dx.doi.org/10.1038/jes.2014.24.
20	Ravault, C; Kauffmann, F. (2001). Validity of the IUATLD (1986) questionnaire in the EGEA
21	study. Int J Tuberc Lung Dis 5: 191-196.
22	Ravnborg, TL; Jensen, TK; Andersson, AM; Toppari, J; Skakkebaek, NE; Jørgensen, N. (2011).
23	Prenatal and adult exposures to smoking are associated with adverse effects on
24	reproductive hormones, semen quality, final height and body mass index. Hum Reprod
25	26: 1000-1011. <u>http://dx.doi.org/10.1093/humrep/der011</u> .
26	Ray, B; D' Souza, AS; Kumar, V; Pugazhandhi, B; D'Souza, MR; Nayak, D; Sushma, RK;
27	Shetty, P; Singh, H; Krishna, L; Bhat, KMR; Rao, ACK; Chakraborti, S; Kumar, N;
28 29	Saxena, A. (2012). Ovarian development in Wistar rat treated prenatally with single dose disobutyl phthalate. Bratisl Lek Listy 113: 577-582.
30	http://dx.doi.org/10.4149/BLL_2012_129.
31	Reddy, BS; Rozati, R; Reddy, BV; Raman, NV. (2006). Association of phthalate esters with
32	endometriosis in Indian women. BJOG 113: 515-520. http://dx.doi.org/10.1111/j.1471-
33	0528.2006.00925.x.
34	Romano-Riquera, SP; Hernandez-Avila, M; Gladen, BC; Cupul-Uicab, L, eaA; Longnecker, MP.
35	(2007). Reliability and determinants of anogenital distance and penis dimensions in male
36	newborns from Chiapas, Mexico. Paediatr Perinat Epidemiol 21: 219-228.
37	Saillenfait, AM; Sabate, JP; Gallissot, F. (2006). Developmental toxic effects of diisobutyl
38	phthalate, the methyl-branched analogue of di-n-butyl phthalate, administered by gavage
39	to rats. Toxicol Lett 165: 39-46. http://dx.doi.org/10.1016/j.toxlet.2006.01.013.
40	Saillenfait, AM; Sabaté, JP; Gallissot, F. (2008). Diisobutyl phthalate impairs the androgen-
41	dependent reproductive development of the male rat. Reprod Toxicol 26: 107-115.
42	http://dx.doi.org/10.1016/j.reprotox.2008.07.006.
43	Salazar-Martinez, E; Romano-Riquer, P; Yanez-Marquez, E; Longnecker, MP; Hernandez-
44	Avila, M. (2004). Anogenital distance in human male and female newborns: a
45	descriptive, cross-sectional study. Environ Health 3: 8-13.
46	http://dx.doi.org/10.1186/1476-069x-3-8.

Sathyanarayana, S; Barrett, E; Butts, S; Wang, CW; Swan, SH. (2014). Phthereproductive hormone concentrations in pregnancy. Reproduction	-
reproductive hormone concentrations in pregnancy. Reproduction	on 147: 401-409.
http://dx.doi.org/10.1530/REP-13-0415.	
Savitz, DA; Terry, JW; Dole, N; Thorp, JM; Siega-Riz, AM; Herring, AH. (
of pregnancy dating by last menstrual period, ultrasound scanning, and	l their combination.
Am J Obstet Gynecol 187: 1660-1666.	
Schlossberger, NM; Turner, RA; Irwin, CE. (1992). Validity of self-report of	pubertal maturation
in early adolescents. J Adolesc Health 13: 109-113.	
Scorer, CG. (1964). The descent of the testis. Arch Dis Child 39: 605-609.	
Selvin, E; Steffes, MW; Gregg, E; Brancati, FL; Coresh, J. (2011). Performa	
classification and prediction of diabetes. Diabetes Ca	are 34: 84-89.
http://dx.doi.org/10.2337/dc10-1235.	
Shiue, I. (2014). Higher Urinary Heavy Metal, Phthalate, and Arsenic	but Not Parabens
Concentrations in People with High Blood Pressure, U.S. NHANES	5, 2011-2012. Int J
Environ Res Public Health 11: 5989-5999. http://dx.doi.org/10.3390/ij	
Simoni, M; Velardo, A; Montanini, V; Faustini Fustini, M; Seghedoni, S; M	
Circannual rhythm of plasma thyrotropin in middle-aged and old	
Horm Res 33: 184-189.	early ford subjects.
Slough, JM; Hennrikus, W; Chang, Y. (2013). Reliability of Tanner stag	ging performed by
orthopedic sports medicine surgeons. Med Sci Sports Exerc	
	45. 1229-1234.
http://dx.doi.org/10.1249/MSS.0b013e318285c2f7.	Company traditions of
tahlhut, RW; van Wijngaarden, E; Dye, TD; Cook, S; Swan, SH. (2007).	
urinary phthalate metabolites are associated with increased waist	
insulin resistance in adult U.S. males. Environ Health Perspe	ect 115: 876-882.
http://dx.doi.org/10.1289/ehp.9882.	
Sun, YX; Wang, ZG; Wang, DS; Zhang, YF; Sundell, J. (2009). Concentration	-
dorm rooms and its association with asthma and allergy. In P	
international symposium on heating ventilating and air conditionin	g. Nanjing, China:
Southeast University.	
Svensson, K; Hernández-Ramírez, RU; Burguete-García, A; Cebrián, M	ME; Calafat, AM;
Needham, LL; Claudio, L; López-Carrillo, L. (2011). Phthalate expos	ure associated with
self-reported diabetes among Mexican women. Environ Re	
http://dx.doi.org/10.1016/j.envres.2011.05.015.	
Swan, SH; Main, KM; Liu, F; Stewart, SL; Kruse, RL; Calafat, AM; Mao	. CS: Redmon. JB:
Ternand, CL; Sullivan, S; JLCINEHPF, T; A, P. (2005). Decrease in	
among male infants with prenatal phthalate exposure. Environ He	-
1056-1061. http://dx.doi.org/10.1289/ehp.8100.	ann reispect 115.
	ative autoana and
Swan, SH. (2008). Environmental phthalate exposure in relation to reproduce	
other health endpoints in humans [Review]. Environ Res	s 108: 177-184.
http://dx.doi.org/10.1016/j.envres.2008.08.007.	
Swan, SH; Liu, F; Hines, M; Kruse, RL; Wang, C; Redmon, JB; Sparks, A	
Prenatal phthalate exposure and reduced masculine play in boys. Int	J Androl 33: 259-
269. <u>http://dx.doi.org/10.1111/j.1365-2605.2009.01019.x</u> .	
Taipale, P; Hiilesmaa, V. (2001). Predicting delivery date by ultrasound	and last menstrual
period in early gestation. Obstet Gynecol 97: 189-194.	
Teitelbaum, SL; Britton, JA; Calafat, AM; Ye, X; Silva, MJ; Reidy, JA; Ga	lvez, MP; Brenner,
BL; Wolff, MS. (2008). Temporal variability in urinary concentration	
	1

This document is a draft for review purposes only and does not constitute Agency policy.

1	metabolites, phytoestrogens and phenols among minority children in the United States.
2	Environ Res 106: 257-269. http://dx.doi.org/10.1016/j.envres.2007.09.010.
3	Teitelbaum, SL; Mervish, N; Moshier, EL; Vangeepuram, N; Galvez, MP; Calafat, AM; Silva,
4	MJ; Brenner, BL; Wolff, MS. (2012). Associations between phthalate metabolite urinary
5	concentrations and body size measures in New York City children. Environ Res 112:
6	186-193. http://dx.doi.org/10.1016/j.envres.2011.12.006.
7	Téllez-Rojo, MM; Cantoral, A; Cantonwine, DE; Schnaas, L; Peterson, K; Hu, H; Meeker, JD.
8	(2013). Prenatal urinary phthalate metabolites levels and neurodevelopment in children at
9	two and three years of age. Sci Total Environ 461-462: 386390.
10	http://dx.doi.org/10.1016/j.scitotenv.2013.05.021.
11	Townsend, MK; Franke, AA; Li, X; Hu, FB; Eliassen, AH. (2013). Within-person
12	reproducibility of urinary bisphenol A and phthalate metabolites over a 1 to 3year period
13	among women in the Nurses' Health Studies: a prospective cohort study. Environ Health
14	12: 80. http://dx.doi.org/10.1186/1476-069X-12-80.
15	Traggiai, C; Stanhope, R. (2003). Disorders of pubertal development. 17: 41-56.
16	http://dx.doi.org/10.1053/ybeog.2003.0360.
17	Trasande, L; Attina, TM; Sathyanarayana, S; Spanier, AJ; Blustein, J. (2013a). Race/ethnicity-
18	specific associations of urinary phthalates with childhood body mass in a nationally
19	representative sample. Environ Health Perspect 121: 501-506.
20	http://dx.doi.org/10.1289/ehp.1205526.
21	Trasande, L; Spanier, AJ; Sathyanarayana, S; Attina, TM; Blustein, J. (2013b). Urinary
22	phthalates and increased insulin resistance in adolescents. Pediatrics 132: e646-e655.
23	http://dx.doi.org/10.1542/peds.2012-4022.
24	Trasande, L; Sathyanarayana, S; Spanier, AJ; Trachtman, H; Attina, TM; Urbina, EM. (2013c).
25	Urinary Phthalates Are Associated with Higher Blood Pressure in Childhood. J Pediatr
26	163: 747-753.e741. <u>http://dx.doi.org/10.1016/j.jpeds.2013.03.072</u> .
27	<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (1988). Recommendations for and
28	documentation of biological values for use in risk assessment. (EPA/600/6-87/008).
29	Cincinnati, OH: U.S. Environmental Protection Agency, National Center for
30	Environmental Assessment. <u>http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=34855</u> .
31	<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2013). Integrated science assessment for
32	lead [EPA Report]. (EPA/600/R-10/075F). Research Triangle Park, NC.
33	http://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=514513.
34	University of Rochester. (1953). One month feeding tests of di-isobutyl phthalate with cover
35	letter [TSCA Submission]. (EPA/OTS Doc #878212229). UNIV OF ROCHESTER.
36	https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=OTS0205995.
37	<u>University of Rochester.</u> (1954). Preliminary acute toxicity tests and short term feeding tests of
38	rats and dogs given di-isobutyl phthalate and di-butyl phthalate [TSCA Submission].
39	(EPA/OTS Doc #878210833). UNIV OF ROCHESTER.
40	https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=OTS0205995.
41	Upson, K; Sathyanarayana, S; De Roos, AJ; Thompson, ML; Scholes, D; Dills, R; Holt, VL.
42	(2013). Phthalates and risk of endometriosis. Environ Res 126: 91-97.
43	http://dx.doi.org/10.1016/j.envres.2013.07.003.
44	Vermeulen, A; Verdonck, L; Kaufman, JM. (1999). A critical evaluation of simple methods for
44 45	the estimation of free testosterone in serum. J Clin Endocrinol Metab 84: 3666-3672.
45 46	http://dx.doi.org/10.1210/jcem.84.10.6079.
40 47	Virtanen, H; Bjerknes, R; Cortes, D; Jørgensen, N; Rajpert-De Meyts, E; Thorsson, A; Thorup,
47 48	J; Main, K. (2007). Cryptorchidism: classification, prevalence and long-term
40	$\underline{\mathbf{y}}$, $\underline{\mathbf{w}}$ and $\underline{\mathbf{x}}$. (2007). Cryptorentersing classification, prevalence and folig-term

1	consequences [Review]. Acta Paediatr 96: 611-616. http://dx.doi.org/10.1111/j.1651-
2	<u>2227.2007.00241.x.</u>
3 4	Wallace, TM; Levy, JC; Matthews, DR. (2004). Use and abuse of HOMA modeling [Review]. Diabetes Care 27: 1487-1495.
4 5	Wang, H; Zhou, Y; Tang, C; He, Y; Wu, J; Chen, Y; Jiang, Q. (2013). Urinary phthalate
6	metabolites are associated with body mass index and waist circumference in Chinese
7	school children. PLoS ONE 8: e56800. http://dx.doi.org/10.1371/journal.pone.0056800.
8	Weeke, J; Gundersen, HJ. (1978). Circadian and 30 minutes variations in serum TSH and thyroid
9	hormones in normal subjects. Acta Endocrinol 89: 659-672.
10	Weinberg, CR; Baird, DD; Wilcox, AJ. (1994). Sources of bias in studies of time to pregnancy.
11	Stat Med 13: 671-681.
12	WHO (World Health Organization). (1999). WHO laboratory manual for the examination of
13	human semen and sperm-cervical mucus interaction (4th ed.). Cambridge, UK:
14	Cambridge University Press.
15	Whyatt, RM; Liu, XH; Rauh, VA; Calafat, AM; Just, AC; Hoepner, L; Diaz, D; Quinn, J; Adibi,
16	J; Perera, FP; Factor-Litvak, P. (2012). Maternal Prenatal Urinary Phthalate Metabolite
17	Concentrations and Child Mental, Psychomotor, and Behavioral Development at 3 Years
18	of Age. Environ Health Perspect 120: 290-295. <u>http://dx.doi.org/10.1289/ehp.1103705</u> .
19	Wirth, J; Rossano, M; Potter, R; Puscheck, E; Daly, D; Paneth, N; Krawetz, S; Protas, B;
20	Diamond, M. (2008). A pilot study associating urinary concentrations of phthalate
21	metabolites and semen quality. Sys Biol Reprod Med 54: 143-154.
22	http://dx.doi.org/10.1080/19396360802055921
23	Wittassek, M; Koch, HM; Angerer, J; Brüning, T. (2011). Assessing exposure to phthalates - the
24 25	human biomonitoring approach [Review]. Mol Nutr Food Res 55: 7-31.
25 26	http://dx.doi.org/10.1002/mnfr.201000121. Wolff, MS; Engel, SM; Berkowitz, GS; Ye, X; Silva, MJ; Zhu, C; Wetmur, J; Calafat, AM.
20	(2008). Prenatal phenol and phthalate exposures and birth outcomes. Environ Health
28	Perspect 116: 1092-1097. http://dx.doi.org/10.1289/ehp.11007.
29	Wolff, MS; Teitelbaum, SL; Pinney, SM; Windham, G; Liao, L; Biro, F; Kushi, LH; Erdmann,
30	C; Hiatt, RA; Rybak, ME; Calafat, AM. (2010). Investigation of relationships between
31	urinary biomarkers of phytoestrogens, phthalates, and phenols and pubertal stages in
32	girls. Environ Health Perspect 118: 1039-1046. http://dx.doi.org/10.1289/ehp.0901690.
33	Wormuth, M; Scheringer, M; Vollenweider, M; Hungerbuhler, K. (2006). What are the sources
34	of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal 26:
35	803-824. http://dx.doi.org/10.1111/j.1539-6924.2006.00770.
36	Zhu, XB; Tay, TW; Andriana, BB; Alam, MS; Choi, EK; Tsunekawa, N; Kanai, Y; Kurohmaru,
37	M. (2010). Effects of di-iso-butyl phthalate on testes of prepubertal rats and mice.
38	Okajimas Folia Anat Jpn 86: 129-136.
39	Zota, AR; Calafat, AM; Woodruff, TJ. (2014). Temporal trends in phthalate exposures: findings
40	from the national health and nutrition examination survey, 2001-2010. Environ Health
41	Perspect 122: 235-241. <u>http://dx.doi.org/10.1289/ehp.1306681</u> .
42	