
HBCD (CASRN 3194-55-6) Comments on the Presentation of Mechanistic Information

Nancy B. Beck, PhD, DABT April 23, 2014 EPA April Bimonthly Meeting

Presentation of HBCD Mechanistic Information

- Table B-1 provides information on model system, assays used, routes evaluated, general target tissues and systems studied, and endpoints reported.
- Table B-1 does not provide study design information (doses, concentrations or exposure durations), or assay results.
- IRIS has put a toe in the water, but could go much further to make this information more useful to inform the assessment.
 - "Early focus on patterns of effects, taking into account MOA data on toxicokinetics and dynamics, can be informative in considering appropriate approaches for extrapolations addressing interspecies differences and human variability. Thus MOA analysis can be applied throughout an assessment, informing many aspects flagged as important in NRC (2009), including but not limited to the approach for low-dose extrapolation."
 - Bette Meek et al. / *Regulatory Toxicology and Pharmacology* 66 (2013) 234–240.

Importance of Extracting the Relevant Information

- Detailed information, not just summary information is necessary.
 - See ACC comments to OEHHA 2014 (submitted to docket)

Table 1. Basic Study Information for Reproductive Toxicity (Inhalation Exposure)

Study Reference	Species/Strain	Age	Sex	Animals per Exposure Group	Exposure Concentration (ppb)	Exposure Length/Frequency
Author, Year	Rat, Wistar	6 weeks	Female	6	0, 0.1, 1, 10	4 h/d; 30 d
Author, Year	Rat, Sprague Dawley	4 weeks	Male	8	0, 5, 10, 20	4 h/d; 5 d/wk; 8 wk
Author, Year	Mouse, CD-1	8 weeks	Male	10	0, 0.025, 0.25, 2.5, 25	8 h/d; 5d/wk; 8 wk

Table 5 Study Outcomes for Reproductive Toxicity

Study	Outcomes Assessed (Examples Below)										
Study Reference	Sperm	Sperm Morphology	Sperm Motility	Testis	Testis	Estrous	Ovary	Uterus	Ovary	Uterus	Others
	Count	Morphology	wounty	Weight	Histology	Cyclicity	Weight	Weight	Histology	Histology	
Author, Year	Х	Х	Х	Х	Х						
Author, Year						х					
Author, Year							Х	Х	x		

Table 7 Study Quality

Study Reference	Sample Size Calculation	Study Reliability (Klimisch Code)	Randomized Allocation to Experimental Groups	Blinded Outcome Assessment	Presence of Attrition Bias	Statistical Methods
Author, Year	Not performed	2 – Reliable with restriction (non-guideline study)	Not stated	Yes	Unknown	Appropriate
Author, Year	Sufficient study power	1 – Reliable without restriction (OECD guideline study)	Yes	Yes	Not likely	Appropriate

Importance of Extracting the Relevant Information (2)

- Detailed information, not just summary information is necessary.
 - See ACC comments to OEHHA 2014 (submitted to docket)

Study Reference	Species/Strain	Dose (mg/kg-d)	Sperm Count (× 10 ⁷ per g epididymal weight)	P Value	
Reference		(ing/kg-u)	(* 10 per g epididymai weight)		
Author, Year	Rat, F344	0	2.2	-	
		5	2.3	0.8	
Author, Year	Mouse, CD-1	0	1.9	-	
		0.1	1.8	0.1	
		1	1.8	0.1	
		10	1.5	0.03	

 Table 8 Study Results by Outcome for Reproductive Toxicity (Sperm Count Example)

• Approach can easily be adopted for mechanistic information

Importance of Extracting the Relevant Information (3)

- Detailed information, not just summary information is necessary.
 - See M.E. Kushman et al. / *Regulatory Toxicology and Pharmacology* 67 (2013) 266–277.

Table 3

Example entries into the evidence table for the "peroxisome proliferation" mechanism of action in rodents.

Study design and reference	Endpoint and assay	Results (% c	hange	from c	ontrol)		
In Vivo Chronic Cancer Bioassays (David et al., 1999)	Palmitoyl-CoA Oxidase (nmol/min/mg prot), M		mg∄	cg/day i	DEHP •		
Rats (F344), M and F ^a Chronic (78 wks, and 78 wks followed by 26 wks of recovery)		1 week 2 weeks	0	<u>50</u> nd nd	200 nd nd	<u>875</u> 255 556	Recovery nd nd
N= 6		13 weeks 104 weeks	0	nd 29	nd 71	390° 257°	nd -24
In Vivo Acute and Subchronic Studies (Hinton et al., 1986) Rats (Wistar), M and F	Palmitoyl-CoA Oxidase (nmol/min/mg prot), M	mg/kg DEH 0	2 50	200	1000		
24 h N= 3-4	Catalase (nmol/min/mg prot), M	0 mg/kg DEH	62*	57*	468*		
In Vitro Bioassays with Primary Hepatocytes		0	<u>50</u> 0	<u>200</u> 9	1000 22		
(Goll et al., 1999) 1° hepatocytes from male Sprague–Dawley Rats	Acyl-CoA oxidase activity (nmol/min/mg prot)	<u>mM DEHP</u> 0	0.1	025	0.5		
72 h	Carnitine acetyltransferase activity (nmol/min/mg	0 mM DEHP	10	6	3		
N= 3	prot)	<u>0</u> 0	<u>0.1</u> 10°	<u>0.25</u> 6	<u>05</u> 3		

^a Results for females are not shown.

^b Converted to mg/kg/day from ppm (1 mg/kg=20 ppm).

Statistically significant results (p < 0.05).

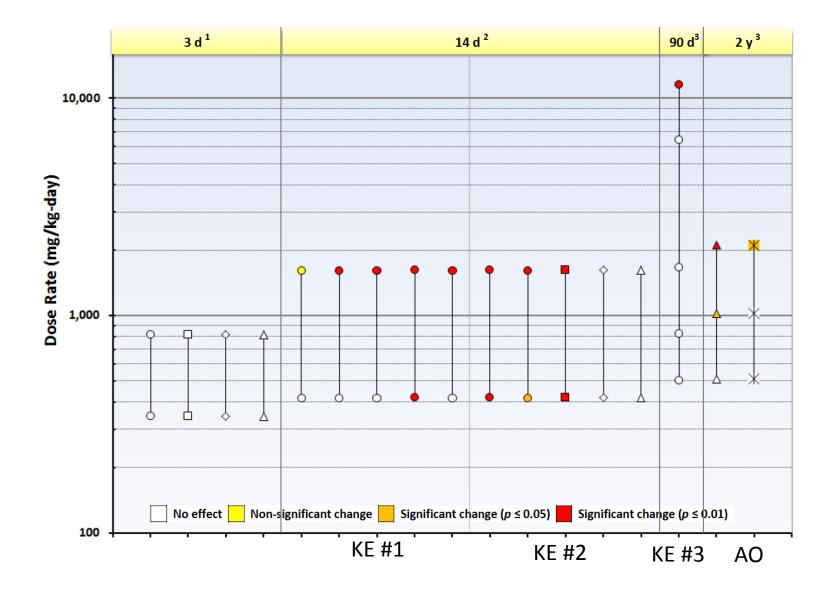
Key Events and MOA

Table 4. Strawmen of PPARa mode of action key events.

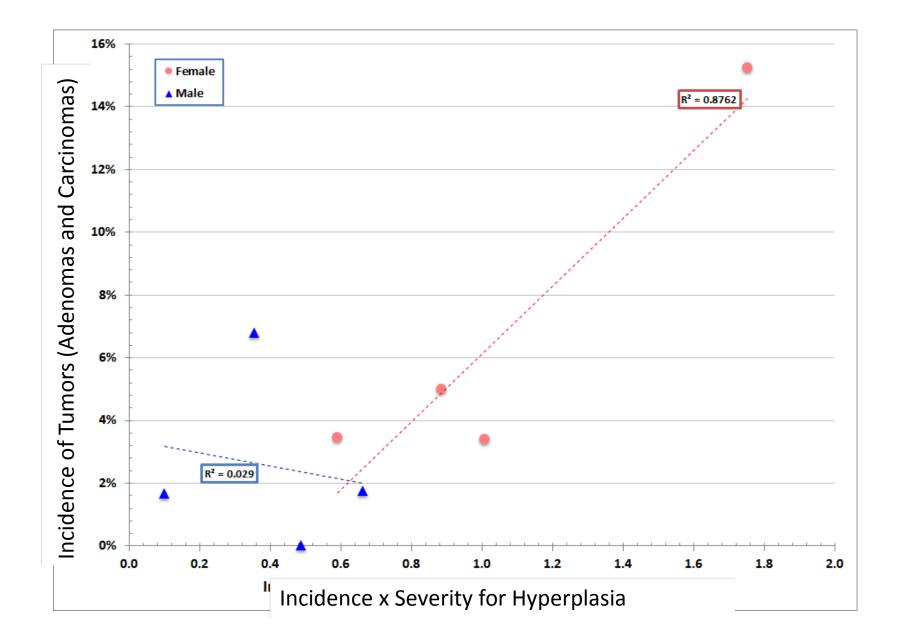
	Strawman 1: taken from Corton (2010)	Strawman 2	Strawman 3: (taken from Klaunig et al., 2003)
KE #1	PPARa activation	PPARa activation	PPARa activation
KE #2	Increases in oxidative stress	Altered expression of genes involved	 Expression of peroxisomal genes
		in cell growth	 b. PPARα mediated expression of cell cycle, growth and apoptosis c. Non-peroxisomal lipid gene expression
KE #3	NF-κB activation	Increased cell proliferation/decreased apoptosis	Increase in cell proliferation
KE #4	Increased cell proliferation/decreased apoptosis	Selective clonal expansion of preneo- plastic foci cells	Clonal expansion of preneoplastic foci
KE #5	Increases in preneoplastic foci cells	Liver tumors	Liver tumors
KE #6	Liver tumors		

From Corton et al. 2013. Crit Rev Toxicol DOI: 10.3109/10408444.2013.835784

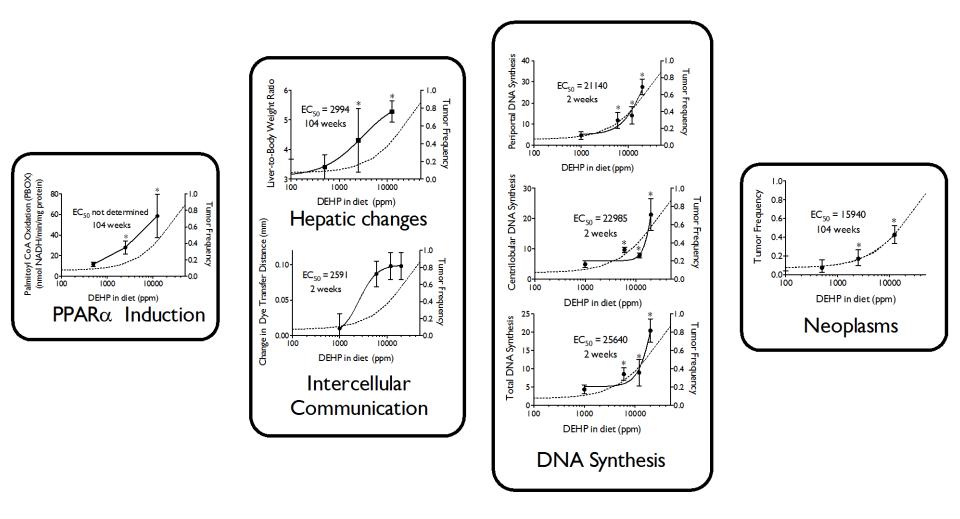
			Key eve	ents					
	KE#1		KE #3		KE#4				
	PPA Rα activation		rturbation of wth and surv		Clonal expansion of preneoplastic foci	Modulating factors		Apical end point	
Chemical		Increases in transient acute cell proliferation	Decreases in acute apoptosis	Increases in chronic cell proliferation	hemekan nu	Oxidative stress	NF-ĸB activation	Alterations in gap junctions	Hepatic tumors
WY-14,643	$+^1$	+2	+3	+4	+5	+7	+9	+53	+6
DEHP	+10	+11	+12	+/-13		+14		+50	+14
Clofibrate	+16	+17		+18		+ ²⁰ _21			+19
Nafenopin	+22	$+_{6}$	+23	+ ²⁴ +/- ⁶	+25	+27 28	_29	+52	+26
Ciprofibrate Methyl clofenapate	+22	$+^{30}_{+^{36}}$	+37	$+^{31}$ $+^{38}$	+32	$+^{34}_{-40}$	+35		$+^{33}_{+^{39}}$
Gemfibrozil (CI-718) Di-n-butyl phthalate	+ ²² _ ¹⁰	+57			_41	$+^{42}_{+44}$	$^{+43}_{+^{43}}$		+/-41
Trichloroacetate Perfluorooctanoate	+/- ⁵⁵ + ⁵⁶	+46				$^{+48}_{-49}$		+ ⁵⁴ + ⁵¹	$+^{45}+^{47}$


Table 5. Occurrence of key events in the mode of action after exposure to PPARa agonists in rats.

Comments: In the table, (+) indicates that the chemical was found to lead to the event; (-) indicates that the chemical was found not to lead to the event; (+/-) indicates mixed results. PPARα activation was measured using transactivation assays. NF-κB activation refers to binding of NF-κB (p65:p50 heterodimer) to the NF-κB response element in electrophoretic mobility shift assays. Acute cell proliferation was measured in the livers of treated mice, usually with seven days or less of exposure. Apoptosis was mostly measured in primary hepatocytes, given the low background in intact livers. However, three studies have measured apoptosis in rodent livers after exposure to a PPARα agonist (Bursch et al., 1984; James et al., 1998a; Youssef et al., 2003). Chronic cell proliferation was measured in the livers of rats exposed to PPARα agonists, usually for more than three weeks. References:


1. Corton & Lapinskas, 2005; Gottlicher et al., 1992

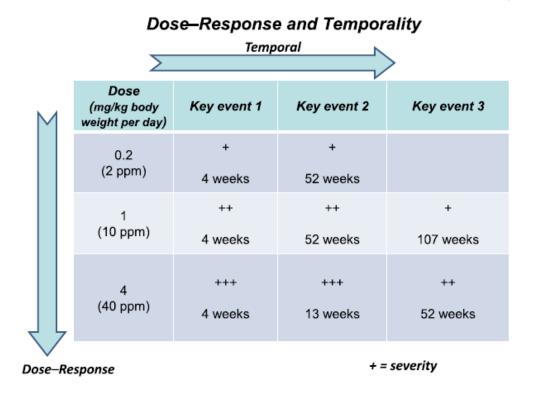
- 2. Wada et al., 1992; Marsman et al., 1988, 1992; Lake et al., 1993
- Youssef et al., 2003
- 4. Wada et al., 1992; Marsman et al., 1988, 1992; Lake et al., 1993
- 5. Marsman & Popp, 1994; Rose et al., 1999b
- Lake et al., 1993


Dose Range Array

Correlation of KE with AO

Comparison and Ordering of Dose-Response of KEs

From Corton et al. 2013. Crit Rev Toxicol DOI: 10.3109/10408444.2013.835784

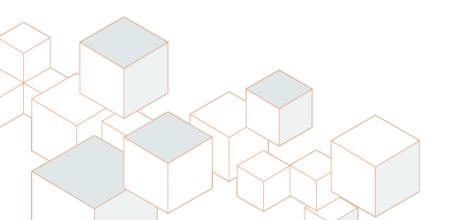

WHO/IPCS Framework, MOA and Bradford Hill

Key event / adverse outcome	Qualitative species concordance	Evidence base	Quantitative species concordance	Quantitative dose– response
Metabolism by cytochrome P450 2E1	Relevant enzyme in kidney and liver of humans	Considerable in animals; limited but relevant to humans	Physiologically based pharmacokinetic model incorporating metabolic rates, enzyme affinities and distribution based on <i>in vitro</i> human data supported by <i>in</i> <i>vivo</i> data	All Allanti and a line of the second
Sustained cell damage and repair (cytotoxicity, proliferation)	Liver and kidney target organs in humans	Considerable in animals; possible in humans, but limited data	No data	
Liver and kidney tumors	Possible in humans	Considerable in animals; highly plausible in humans	No data	

Concordance Table with Dose–Response

• Meek, Boobis, Cote, Dellarco, Fotakis, Munn, Seed, Vickers. New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis *J. Appl. Toxicol.* 2014; 34: 1–18

WHO/IPCS Framework, MOA and Bradford Hill


- Meek, Boobis, Cote, Dellarco, Fotakis, Munn, Seed, Vickers. New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis *J. Appl. Toxicol.* 2014; 34: 1–18.
- Meek, Palermo, Bachman, North, Lewis. Mode of action human relevance (species concordance) framework: Evolution of Bradford Hill considerations and comparative analysis of weight of the evidence. *J. Appl. Toxicol.* 2014; 34: 1–18. online Feb 2014, DOI: 10.1002/jat.2984.

Improving Presentation and Use of Mechanistic Information

- EPA must extract sufficient mechanistic information from studies.
- Multiple approaches for presenting this information already exist (see citations provided in slides).
- Early consideration of hypothesis based key events in the MOA/AOP during problem formulation will facilitate incorporation of data from different sources and provide a framework for organization which can be linked at different levels of biological organization.
- Mechanistic/MOA information must not come second; it must be part of problem formulation.

Questions and Discussion

