

EPA/635/R-13/108 Preliminary Materials www.epa.gov/iris

Preliminary Materials for the Integrated Risk Information System (IRIS) Toxicological Review of Ethyl *tert*-Butyl Ether (ETBE)

[CASRN 637-92-3]

July 2013

NOTICE

This document is comprised of preliminary materials, consisting of a literature search strategy, evidence tables, and exposure-response arrays. This information is distributed solely for the purpose of pre-dissemination review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. It is being circulated for review of its technical accuracy and science policy implications.

National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC

DISCLAIMER

This document is comprised of preliminary materials for review purposes only. This information is distributed solely for the purpose of pre-dissemination review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

CONTENTS

1	PRI	EFACE	v
2	1.	DRAFT LITERATURE SEARCH STRATEGY	1-1
3		1.1. Literature Search and Screening Strategy for ETBE	1-1
4		1.2. List of References Based on Search Strategy for ETBE	1-5
5		1.2.1. Primary Sources of Health Effects Data	1-5
6		1.2.2. Not Primary Source of Health Effects Data, but Kept as Additional Resources	1-9
7		1.2.3. Kept for Possible Further Review	1-13
8	2.	PRELIMINARY EVIDENCE TABLES AND PRELIMINARY EXPOSURE-RESPONSE ARRAYS	2-1
9 10		2.1. Data Extraction: Preparation of Preliminary Evidence Tables and Preliminary Exposure- Response Arrays	2-1
11		2.2. Kidney Effects	2-3
12		2.3. Liver Effects	2-12
13		2.4. Reproductive Effects	2-20
14		2.5. Body Weight Effects	2-23
15		2.6. Other Systemic Effects	2-28
16		2.7. Carcinogenic Effects	2-35
17		2.8. Genotoxic Effects	2-38

TABLES

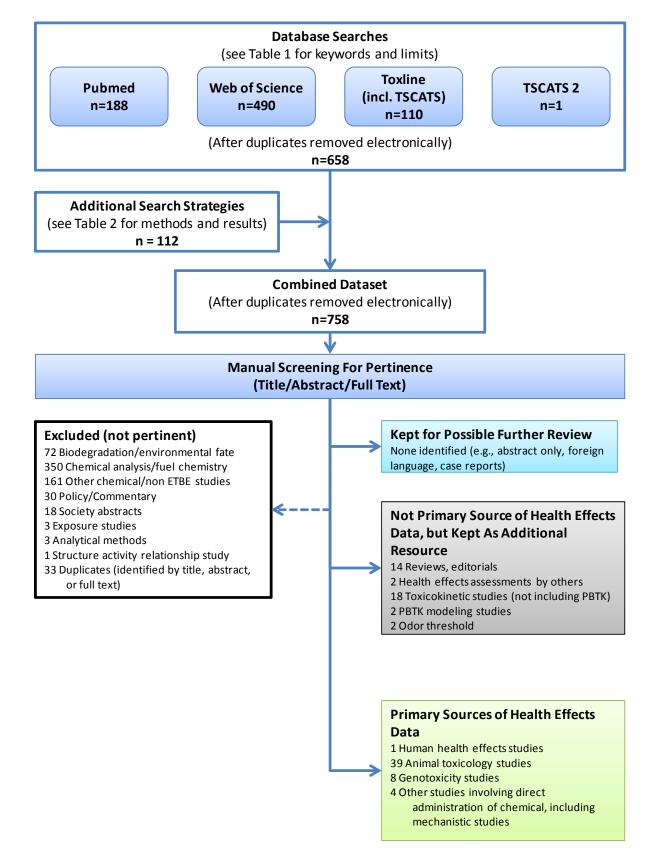
Table 1-1.	Database search strategy for ETBE	.1-3
Table 1-2.	Summary of additional search strategies for ETBE	.1-4
Table 2-1.	Evidence pertaining to kidney effects in animals following oral exposure to ETBE	.2-3
Table 2-2.	Evidence pertaining to kidney effects in animals following inhalation exposure to	
	ETBE	.2-7
Table 2-3.	Evidence pertaining to liver effects in animals following oral exposure to ETBE	2-12
Table 2-4.	Evidence pertaining to liver effects in animals following inhalation exposure to ETBE2	2-15
Table 2-5.	Evidence pertaining to reproductive effects in animals following oral exposure to	
	ЕТВЕ	2-20
Table 2-6.	Evidence pertaining to body weight effects in animals following oral exposure to ETBE2	2-23
Table 2-7.	Evidence pertaining to body weight effects in animals following inhalation exposure	
	to ETBE	2-25
Table 2-8.	Evidence pertaining to other systemic effects in animals following oral exposure to	
	ЕТВЕ	2-28
Table 2-9.	Evidence pertaining to other systemic effects in animals following inhalation	
	exposure to ETBE	2-30
Table 2-10	0. Evidence pertaining to carcinogenic effects in animals exposed to ETBE	2-35
Table 2-11	Evidence pertaining to genotoxic effects in animals exposed to ETBE	2-38
Table 2-12	2. Summary of in vitro studies of ETBE genotoxicity	2-40

FIGURES

Figure 1-1.	Literature search approach for ETBE.	1-2
Figure 2-1.	Exposure-response array of kidney effects following oral exposure to ETBE	2-10
Figure 2-2.	Exposure-response array of kidney effects following inhalation exposure to ETBE	2-11
Figure 2-3.	Exposure-response array of liver effects following oral exposure to ETBE	2-18
Figure 2-4.	Exposure-response array of liver effects following inhalation exposure to ETBE	2-19
Figure 2-5.	Exposure-response array of reproductive effects following oral exposure to ETBE	2-22
Figure 2-6.	Exposure-response array of body weight effects following oral exposure to ETBE	2-26
Figure 2-7.	Exposure-response array of body weight effects following inhalation exposure to	
	ЕТВЕ	2-27
Figure 2-8.	Exposure-response array of other systemic effects following oral exposure to ETBE	2-33
Figure 2-9.	Exposure-response array of other systemic effects following inhalation exposure to	
	ЕТВЕ	2-34
Figure 2-10	. Exposure-response array of carcinogenic effects following oral exposure to ETBE	2-36
Figure 2-11	. Exposure-response array of carcinogenic effects following inhalation exposure to	
	ЕТВЕ	2-37

2 **PREFACE**

1


3 This document presents the draft literature search strategy, preliminary evidence tables, 4 and preliminary exposure-response arrays for ethyl tert-butyl ether (henceforth referred to as 5 ETBE) prepared under the auspices of EPA's Integrated Risk Information System (IRIS) Program. 6 This material is being released for public viewing and comment prior to a public meeting, providing 7 an opportunity for the IRIS Program to engage in early discussions with stakeholders and the public 8 on data that may be used to identify adverse health effects and characterize exposure-response 9 relationships. 10 The draft literature search strategy, preliminary evidence tables, and preliminary 11 exposure-response arrays are responsive to the National Research Council (NRC) 2011 report 12 Review of the Environmental Protection Agency's Draft IRIS Assessment of Formaldehyde. The 13 literature search strategy, which describes the processes for identifying scientific literature, 14 screening studies for consideration, and selecting studies for inclusion in evidence tables, is 15 responsive to NRC recommendations regarding systematic review of the scientific literature. In 16 addition, NRC recommendations for standardized presentation of key study data are addressed in 17 the preliminary evidence tables and preliminary exposure-response arrays. 18 EPA welcomes all comments on the draft literature search strategy, preliminary evidence 19 tables, and preliminary exposure-response arrays, such as remarks on the following: 20 • the clarity and transparency of the materials; 21 the approach for identifying pertinent studies; 22 • the selection of studies for data extraction to preliminary evidence tables and 23 exposure-response arrays; 24 any methodological considerations that could affect the interpretation of or confidence in • 25 study results; and 26 any additional studies published or nearing publication that may provide data for the • 27 evaluation of human health hazard or exposure-response relationships. 28 The preliminary evidence tables and exposure-response arrays should be regarded solely as 29 representing the data on each endpoint that have been identified as a result of the draft literature 30 search strategy. They do not reflect any conclusions as to hazard identification or dose-response 31 assessment. After obtaining public input and conducting additional study evaluation and data 32 integration, EPA will revise these materials to support the hazard identification and dose-response 33 assessment in a draft Toxicological Review.

1

2 **1. DRAFT LITERATURE SEARCH STRATEGY**

3 1.1. Literature Search and Screening Strategy for ETBE

4 The overall literature search approach is shown graphically in Figure 1-1. The initial 5 chemical-specific search was conducted in four online scientific databases in January, 2013, using 6 the keywords and limits described in Table 1-1. After electronically eliminating duplicates from the 7 citations retrieved through these databases, 658 unique citations were identified. An additional 8 112 citations were obtained using additional search strategies described in Table 1-2. 9 The resulting 758 citations were screened using the title, abstract, and/or full text for 10 pertinence to examining the health effects of ETBE exposure. A total of 671 references were 11 identified as not being pertinent and were excluded from further consideration (see Figure 1-1 for 12 the exclusion categories). A total of 52 references were identified as primary sources of health 13 effects data and were considered for data extraction to evidence tables and exposure-response arrays (see Section 1.2.1). A total of 38 references were considered pertinent, but not as primary 14 15 sources of health effects data (e.g., ADME studies), and kept as additional resources for 16 development of the Toxicological Review (see Section 1.2.2). If a reference did not provide enough 17 material to evaluate pertinence (e.g., no abstract), it would be reserved for further possible review; 18 no such studies were identified for ETBE (see Section 1.2.3).

Figure 1-1. Literature search approach for ETBE.

1

Database (Search Date)	Keywords	Limits
PubMed (01/08/2013)	"ETBE" OR "Ethyl tert-butyl ether" OR "2-ethoxy-2-methyl-propane" OR "ethyl tertiary butyl ether" OR "ethyl tert-butyl oxide" OR "tert- butyl ethyl ether" OR "ethyl t- butyl ether" OR "637-92-3"	None
Web of Science (01/08/2013)	"ETBE" OR "ethyl tert-butyl ether" OR "2-ethoxy-2-methyl-propane" OR "ethyl tertiary butyl ether" OR "ethyl tert-butyl oxide" OR "tert- butyl ethyl ether" OR "ethyl t- butyl ether" OR "637-92-3"	Lemmatization on
Toxline (includes TSCATS) (01/08/2013)	"ETBE" OR "Ethyl tert-butyl ether" OR "2-Ethoxy-2-methyl-propane" OR "ethyl tertiary butyl ether" OR "ethyl tert-butyl oxide" OR "tert- butyl ethyl ether" OR "ethyl t- butyl ether" OR "637-92-3"	Not PubMed
TSCATS2 (1/08/2013)	637-92-3	01/01/2004 to 01/01/2013

Table 1-1. Database search strategy for ETBE

2 3

Approach used	Source(s)	Date performed	Number of additional citations identified
Electronic backward search through Web of Science	Review article: McGregor (2007). "Ethyl tertiary-butyl ether: a toxicological review." Critical Reviews in Toxicology 37(4): 287–312.	1/2013	68 citations
	Review article: <u>de Peyster (2010</u>). "Ethyl t-butyl ether: Review of reproductive and developmental toxicity." Birth Defects Research, Part B: Developmental and Reproductive Toxicology 89(3): 239–263.	1/2013	26 citations
Personal communication	Japanese Petroleum Energy Center.	1/2013	18 citations

Table 1-2. Summary of additional search strategies for ETBE

2 3

1 1.2. List of References Based on Search Strategy for ETBE

Citations for excluded references are not listed here, but can be found on the Health and
 Environmental Research Online (HERO) Web site (<u>http://hero.epa.gov/ETBE</u>).

4 **1.2.1.** Primary Sources of Health Effects Data

Data from citations in **bold** are displayed in Section 2. See Section 2.1 for a description of
 the process of selecting these studies for evidence tables and exposure-response arrays.

7 Human health effects studies

1) Nihlén, A; Löf, A; Johanson, G. (<u>1998b</u>) Controlled ethyl tert-butyl ether (ETBE) exposure of male volunteers II. Acute effects. Toxicol Sci 46(1):143–150.

10 Animal toxicology studies

8

- 111) Asano, Y; Ishikura, T; Kudoh, K;et al. (2011). "Prenatal developmental toxicity study of12ethyl tertiary-butyl ether in rabbits." Drug and Chemical Toxicology 34(3): 311–317.
- Banton, MI, Peachee, VL; White, KL; et al. (2011). "Oral subchronic immunotoxicity study of ethyl tertiary butyl ether in the rat." Journal of Immunotoxicology 8(4): 298–304.
- Berger, T; Horner, CM. (2003) In vivo exposure of female rats to toxicants may affect
 oocyte quality. Reprod Toxicol 17(3):273–281.
- 4) Bond, JA; Medinsky, MA; Wolf, DC; et al. (<u>1996a</u>). Ethyl tertiary butyl ether (ETBE):
 ninety-day vapor inhalation toxicity study in CD-1 mice. Chemical Industry Institute
 of Toxicology under contract to ARCO Chemical Company, Research Triangle Park,
 NC; Laboratory Project ID 95030, 1–69. Unpublished report.
- Source and Source an
- Cohen, SM; Hard, GC; Regan, KS; et al. (2011) Pathology working group review of
 selected histopathologic changes in the kidneys of rats assigned to toxicology and
 carcinogenicity studies of ethyl tertiary butyl ether (ETBE). Research Pathology
 Associates under contract to Lyondell Chemical Company, Research Triangle Park,
 NC; 1–30. Unpublished report.
- dePeyster, A; Stanard, B; Westover, C. (2009) Effect of ETBE on reproductive steroids
 in male rats and rat Leydig cell cultures. Toxicology Letters 190:74–80.
- B) Dorman, DC; Struve, MF; Wong, BA; et al. (<u>1997</u>) Neurotoxicological evaluation of ethyl
 tertiary-butyl ether following subchronic (90-day) inhalation in the Fischer 344 rat. J Appl
 Toxicol 17(4):235-242.

1 2	9) Fujii, S; Yabe, K; Furukawa, M; et al. (<u>2010</u>). "A one-generation reproductive toxicity study of ethyl tertiary butyl ether in rats." Reproductive Toxicology 30(3): 414–421.
3 4 5 6	10) Gaoua, W. (2003). Ethyl tertiary butyl ether (ETBE), CAS No. 637-92-3: Reproductive/developmental toxicity dose-range finding/probe study by the oral route (gavage) in two strains of rat. CIT under contract for TOTAL France S.A., Evreux, France. Study No. 24168 RSR. Unpublished report.
7 8 9	11)Gaoua, W. (<u>2004a</u>). Ethyl tertiary butyl ether (ETBE): prenatal developmental toxicity study by the oral route (gavage) in rats. CIT under contract to TOTAL France S.A., Evreux, France; Study No. 24860 RSR. Unpublished report.
10 11 12	12)Gaoua, W. (<u>2004b</u>). Ethyl tertiary butyl ether (ETBE): two-generation study (reproduction and fertility effects) by oral route (gavage) in rats. CIT under contract to TOTAL France S.A., Evreux, France; Study No. 24859 RSR. Unpublished report.
13 14	13)Hagiwara, A; Doi, Y; Imai, N; et al. (<u>2011</u>). "Medium-term multi-organ carcinogenesis bioassay of ethyl tertiary-butyl ether in rats." Toxicology 289(2–3): 160–166.
15 16 17 18	14) IIT Research Institute (Illinois Institute of Technology Research Institute). (<u>1989a</u>). Acute dermal toxicity study of ethyl-tert-butyl ether (ETBE) in rabbits. IIT Research Institute, Life Sciences Research under contract to Amoco Corporation, Chicago, IL; Study No. 1495. Unpublished report.
19 20 21 22	15) IIT Research Institute (Illinois Institute of Technology Research Institute). (<u>1989b</u>). Acute inhalation toxicity study of ethyl-t-butyl ether (ETBE) in rats. IIT Research Institute, Life Sciences Research under contract to Amoco Corporation, Chicago, IL; Study No. 1496. Unpublished report.
23 24 25 26	16) IIT Research Institute (Illinois Institute of Technology Research Institute). (1991). Four-week inhalation toxicity study of ethyl tert-butyl ether (ETBE) in rats. IIT Research Institute, Life Sciences Research under contract to Amoco Corporation, Chicago, IL; Study No. 1544. Unpublished report.
27 28 29	17) Japan Petroleum Energy Center (JPEC).(<u>2008a</u>). 28-day ETBE repeated dose full-body inhalation toxicity test in rats (preliminary test). Mitsubishi Chemical Safety Institute Ltd. March, 2008. Study No. B061828. Unpublished report.
30 31 32	18) Japan Petroleum Energy Center (JPEC). (<u>2008b</u>). A 90-day repeat dose toxicity study of ETBE by whole-body inhalation exposure in rats. Mitsubishi Chemical Safety Institute Ltd. March, 2008. Study No. B061829. Unpublished report.
33 34 35	19) Japan Petroleum Energy Center (JPEC). (<u>2008c</u>). A 180-day repeat dose oral toxicity study of ETBE in rats. Hita Laboratory, Chemicals Evaluation and Research Institute (CERI), Japan. March, 2008. Study No. D19-0002. Unpublished report.
36 37	20) Japan Petroleum Energy Center (JPEC).(<u>2008d</u>). Medium-term multi-organ carcinogenesis bioassay of 2-ethoxy-2-methylpropane in rat. Unpublished report.

- 21) Japan Petroleum Energy Center (JPEC). (2008e). A one-generation reproduction
 study of ETBE in rats. Safety Research Institute for Chemical Compounds. Study No.
 SR07060. Unpublished report.
- 4 22) Japan Petroleum Energy Center (JPEC). (2008h). A prenatal developmental toxicity
 5 study of ETBE in rats. Hita Laboratory, Chemicals Evaluation and Research Institute
 6 (CERI), Japan. March, 2008. Study No. E09-0006. Unpublished report.
- 23) Japan Petroleum Energy Center (JPEC). (2008i). Serum levels of triiodothyronine (T3),
 thyroxine (T4), and thyroid-stimulating hormone (TSH) in rats following 4-weeks
 administration of 2-ethoxy-2-methylpropane. DIMS Institute of Medical Science, Inc.,
 Ichinomiya, Japan. March 26, 2008. Study No. 0760. Unpublished report.
- 24) Japan Petroleum Energy Center (JPEC). (2008j). Study for effects on embryo-fetal
 development in rabbits treated orally with ETBE. Kannami Laboratory, Bozo
 Research Center Inc., 1308-125 Kuwahara-Sambonmatsu,Kannami-cho, Tagata-gun,
 Shizuoka 419-0101, Japan. January 31, 2008. Study No. R-965. Unpublished report.
- 25) Japan Petroleum Energy Center (JPEC). (2010a). Carcinogenicity test of 2-ethoxy-2 methylpropane in rats (drinking water study). Japan Industrial Safety and Health
 Association, Japan Bioassay Research Center. March 25, 2010. Study No. 0691.
 Unpublished report.
- 26) Japan Petroleum Energy Center (JPEC). (2010b). Carcinogenicity test of 2-ethoxy-2 methylpropane in rats (inhalation study). Japan Industrial Safety and Health
 Association, Japan Bioassay Research Center. March 25, 2010. Study No. 0686.
 Unpublished report.
- 23 27) Li, Q, M Kobayashi, H Inagaki, et al. (2011). "Effects of subchronic inhalation exposure
 24 to ethyl tertiary butyl ether on splenocytes in mice." International Journal of
 25 Immunopathology and Pharmacology 24(4): 837–847.
- 28) Maltoni, C; Belpoggi, F; Soffritti, M; et al. (<u>1999</u>). Comprehensive long-term
 experimental project of carcinogenicity bioassays on gasoline oxygenated additives:
 plan and first report of results from study of ethyl-tertiary-butyl-ether (ETBE). Eur J
 Oncol 4:493–508.
- 30 29) Millennium Bioresearch Research Laboratories (MB Research Laboratories, Inc.). (<u>1988a</u>).
 31 Acute dermal toxicity in rabbits/LD50 in rabbits. MB Research Laboratories, Inc. under
 32 contract to ARCO Chemical Company, Spinnerstown, PA; Laboratory Project ID MB 88-9107
 33 B. Unpublished report.
- 34 30) Millennium Bioresearch Research Laboratories (MB Research Laboratories, Inc.). (<u>1988b</u>).
 35 Eye irritation in rabbits. MB Research Laboratories, Inc. under contract to ARCO Chemical
 36 Company, Spinnerstown, PA; Laboratory Project ID MB 88-9107 D. Unpublished report.
- 31) Millennium Bioresearch Research Laboratories (MB Research Laboratories, Inc.). (<u>1988c</u>).
 Primary dermal irritation in rabbits. MB Research Laboratories, Inc. under contract to
 ARCO Chemical Company, Spinnerstown, PA; Laboratory Project ID MB 88-9107 C.
 Unpublished report.

- 32) Millennium Bioresearch Research Laboratories (MB Research Laboratories, Inc.). (<u>1988d</u>).
 Single dose oral toxicity in rats/LD50 in rats. MB Research Laboratories, Inc. under contract to ARCO Chemical Company, Spinnerstown, PA; Laboratory Project ID MB 88-9137 A.
 Unpublished report.
- 33)Medinsky, MA; Wolf, DC; Cattley, RC; et al. (<u>1999</u>). Effects of a thirteen-week
 inhalation exposure to ethyl tertiary butyl ether on Fischer-344 rats and CD-1 mice.
 Toxicol Sci 51(1):108–118.
- 34)Suzuki, M; Yamazaki, K; Kano, K; et al. (2012). "No carcinogenicity of ethyl tertiarybutyl ether by 2-year oral administration in rats." J Toxicol Sci 37(6): 1239–1246.
- 35) Utah Biomedical Testing Laboratory (UBTL Inc.). (1994). Twenty-eight (28) day dermal
 toxicity study in rats administered test article F-266. UBTL, Inc. under contract to ARCO
 Chemical Company, Salt Lake City, UT; UBTL Study No. 66894; Protocol No. ATX-92-0114,
 1-174. Unpublished report.
- 36) Weng, ZQ; Suda, M; Ohtani, K; et al. (2011). "Aldh2 knockout mice were more
 sensitive to DNA damage in leukocytes due to ethyl tertiary butyl ether exposure."
 Industrial Health 49(3): 396–399.
- 37) Weng, Z; Suda, M; Ohtani, K; et al. (2012). "Differential genotoxic effects of subchronic
 exposure to ethyl tertiary butyl ether in the livers of Aldh2 knockout and wild-type
 mice." Archives of Toxicology 86(4): 675–682.
- 38) White, KL. (2002). Immunological evaluation of gasoline ETBE vapor condensate in female
 Sprague-Dawley rats using the plaque forming cell assay. ImmunoTox, Inc. under contract
 to Huntingdon Life Sciences, Richmond, VA; Project No. ITI 901. Unpublished report.
- 39) White, RD; Daughtrey, WC; Wells, MS. (1995). Health effects of inhaled tertiary amyl methyl
 ether and ethyl tertiary butyl ether. Toxicol Lett 82–83:719–724.
- 25 *Genotoxicity studies*
- Japan Petroleum Energy Center (JPEC). (2007a). Micronucleus test of 2-ethoxy-2methylpropane (ETBE) using bone marrow of rats administered ETBE by gavage. Japan Industrial Safety and Health Association. Japan Bioassay Research Center.
 Study No. 7049. June 29, 2007. Unpublished report.
- Japan Petroleum Energy Center (JPEC). (2007b). Micronucleus test of 2-ethoxy-2methylpropane (ETBE) using bone marrow of rats administered ETBE intraperitoneally. Japan Industrial Safety and Health Association. Japan Bioassay Research Center. Study No. 7048. June 29, 2007. Unpublished report.
- 34 3) Japan Petroleum Energy Center (JPEC). (2007c). Micronucleus test of ETBE using
 bone marrow of rats of the "13-week toxicity study of 2-ethoxy-2-methylpropane in
 F344 rats (drinking water study) [preliminary carcinogenicity study]." Japan
 Industrial Safety and Health Association. Japan Bioassay Research Center. Study No.
 7046. June 29, 2007. Unpublished report.

- Japan Petroleum Energy Center (JPEC). (2007d). Micronucleus test of ETBE using
 bone marrow of rats of the "13-week toxicity study of 2-ethoxy-2-methylpropane in
 F344 rats (inhalation study) [preliminary carcinogenicity study]." Japan Industrial
 Safety and Health Association. Japan Bioassay Research Center. Study No. 7047. June
 29, 2007. Unpublished report.
- 5) Vergnes, JS. (1995). Ethyl tertiary butyl ether: in vitro chromosome aberrations assay
 in Chinese hamster ovary cells. Bushy Run Research Center, Union Carbide
 Corporation under contract to ARCO Chemical Company, Export, PA; Laboratory
 Project ID 94N1425. Unpublished report.
- 6) Vergnes, JS; Kubena, MF. (1995a). Ethyl tertiary butyl ether: bone marrow
 micronucleus test in mice. Bushy Run Research Center, Union Carbide Corporation
 under contract to ARCO Chemical Company, Export, PA; Laboratory Project ID
 94N1426. Unpublished report.
- Vergnes, JS; Kubena, MF. (<u>1995b</u>). Ethyl tertiary butyl ether: mutagenic potential in
 the CHO/HGPRT forward mutation assay. Bushy Run Research Center, Union Carbide
 Corporation under contract to ARCO Chemical Company, Export, PA; Laboratory
 Project ID 94N1424. Unpublished report.
- 18
 8) Zeiger, E; Anderson, B; Haworth, S; et al. (<u>1992</u>). Salmonella mutagenicity tests: V.
 19 Results from the testing of 311 chemicals. Environ Mol Mutagen 19(Suppl 21):2–141.

20 Other studies involving direct administration of ETBE, including mechanistic studies

- Japan Petroleum Energy Center (JPEC). (2012). Investigation of the Mechanisms of Ethyl
 tertiary-butyl ether (ETBE) carcinogenicity in the liver of F344 rats- Transmission Electron
 Microscopic Examination. Japan Industrial Safety and Health Association, Japan Bioassay
 Research Center. September 7, 2012. Study No. 12138. Unpublished report.
- 2) Martin, JV; Bilgin, NM; Iba, MM. (2002). Influence of oxygenated fuel additives and their
 metabolites on the binding of a convulsant ligand of the gamma-aminobutyric acid(A)
 (GABA(A) receptor in rat brain membrane preparations. Toxicol Lett 129(3):219–226.
- Martin, JV; Iyer, SV; McIlroy, PJ; et al. (2004). Influence of oxygenated fuel additives and their metabolites on gamma-aminobutyric acidA (GABAA) receptor function in rat brain synaptoneurosomes. Toxicol Lett 147(3):209–217.
- Yamaki, K; Yoshino, S. (2009). Inhibition of IgE-induced mast cell activation by ethyl tertiary-butyl ether, a bioethanol-derived fuel oxygenate. J Pharm Pharmacol 61:1243-1248.

34 **1.2.2.** Not Primary Source of Health Effects Data, but Kept as Additional Resources

35 *Reviews, editorials*

Ahmed, FE. (2001). Toxicology and human health effects following exposure to oxygenated
 or reformulated gasoline. Toxicol Lett 123(2-3): 89–113.

Preliminary Materials for the IRIS Toxicological Review of ETBE

- 1 2) BIBRA Working Group. (2000). Ethyl tert-butyl ether. Bibra toxicology advice & consulting. 2 Surrey, United Kingdom.
- 3 3) Burbacher, TM. (1993). Neurotoxic effects of gasoline and gasoline constituents. Environ 4 Health Perspect 101: 133–141.
 - 4) Caprino, L and Togna, G. (<u>1998</u>). Potential health effects of gasoline and its constituents: A review of current literature (1990–1997) on toxicological data. Environ Health Perspect 106(3): 115-125.
 - 5) de Peyster, A. (2010). Ethyl t-butyl ether: Review of reproductive and developmental toxicity. Birth Defects Res B Dev Reprod Toxicol 89(3): 239–263.
- 10 6) Dekant, W; Bernauer, U; Rosner, E; et al. (2001b). Toxicokinetics of ethers used as fuel 11 oxygenates. Toxicol Lett 124(1-3): 37-45.
- 12 7) Hard, GC; RH Bruner; SM Cohen; et al. (2011). Renal histopathology in toxicity and 13 carcinogenicity studies with tert-butyl alcohol administered in drinking water to F344 rats: 14 A pathology working group review and re-evaluation. Regul Toxicol Pharmacol 59(3): 15 430-436.
- 16 8) Hard, GC; Johnson, KJ; Cohen, SM; et al. (2009). A comparison of rat chronic progressive 17 nephropathy with human renal disease-implications for human risk assessment. Crit Rev 18 Toxicol 39(4): 332–346.
- 19 9) Hard, GC and Khan, KN. (2004). A contemporary overview of chronic progressive 20 nephropathy in the laboratory rat, and its significance for human risk assessment. Toxicol 21 Pathology 32(2): 171–180.
- 22 10) Johanson, G; Loef, A; Nihlén, A; et al. (1997). Toxicokinetics of ethers in humans—A 23 comparison of MTBE, ETBE, and TAME.
- 24 11) McGregor, D. (2007). Ethyl tertiary-butyl ether: a toxicological review. Crit Rev Toxicol 25 37(4): 287-312.
- 26 12) McGregor, D. (2010). "Tertiary-Butanol: A toxicological review." Crit Rev Toxicol 40(8): 27 697-727.
- 28 13) U.S. EPA. (1995a). Letter Summarizing Review of Methyl-tert Butyl Ether and Ethyl Tert-29 butyl Ether for Possible Relationship Based on Structure to Rodent Carcinogenicity, W/cvr 30 Ltr Dtd 02/13/95. Washington, DC. Office of Toxic Substances.
- 31 14) U.S. EPA. (1995b). Toxicity and health hazard summary of tert-butyl ethyl ether with cover 32 letter dated 01/10/95. Washington, DC.

33 Health effects assessments by others

5 6

7

8

9

- 34 1) American Conference of Governmental Industrial Hygienists (ACGIH). (2001).
- 35 Documentation of the threshold limit values and biological exposure indices for ethyl tert-36 butyl ether Vol:7th Ed (pp. 5). Cincinnati, OH: American Conference of Governmental 37 Industrial Hygienists.

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR OUOTE Duncan, B. (2008). "Attention: TSCA 8(e) Coordinator. RE: Ethyl tertiary butyl ether
 (CASRN: 637-92-3): Results from a Single Generation Reproduction in Rodents (Oral-Rat)
 and a Soil Biodegradation Study as part of The ETBE Utilization Study Working Group
 Testing Program and Risk Assessment."

5 Toxicokinetic studies (excluding physiologically-based toxicokinetic [PBTK] modeling studies)

- 6 1) Amberg, A; Rosner, E; and Dekant, W. (2000). Biotransformation and kinetics of excretion
 7 of ethyl tert-butyl ether in rats and humans. Toxicol Sci 53:194–201.
- 8 2) Bernauer, U; Amberg, A; Scheutzow, D; et al. (<u>1998</u>). Biotransformation of 12C- and 2-13C9 labeled methyl tert-butyl ether, ethyl tert-butyl ether, and tert-butyl alcohol in rats:
 10 identification of metabolites in urine by 13C nuclear magnetic resonance and gas
 11 chromatography/mass spectrometry. Chem Res Toxicol 11(6):651–658.
- Borghoff, SJ. (<u>1996</u>). Ethyl tertiary butyl ether (ETBE) a pilot/methods development
 pharmacokinetic study in male F344 rats and male CD-1 mice after a single nose-only
 inhalation exposure. Chemical Industry Institute of Toxicology under contract to ARCO
 Chemical Company, Research Triangle Park, NC; Laboratory Protocol Number CIIT-95025.
 Unpublished report.
- Dekant, W; Bernauer, U; Rosner, E; et al. (2001a). Biotransformation of MTBE, ETBE, and TAME after inhalation or ingestion in rats and humans. Health Eff Inst Res Rep 102:29–71.
- Hong, JY; Wang, YY; Bondoc, FY; et al. (<u>1997</u>). Rat olfactory mucosa displays a high activity
 in metabolizing methyl tert-butyl ether and other gasoline ethers. Fundam Appl Toxicol
 40(2):205-210.
- 6) Hong, JY; Wang, YY; Bondoc, FY; et al. (<u>1999a</u>). Metabolism of methyl tert-butyl ether and
 other gasoline ethers by human liver microsomes and heterologously expressed human
 cytochromes P450: identification of CYP2A6 as a major catalyst. Toxicol Appl Pharmacol
 160(1):43-48.
- 7) Hong, JY; Wang, YY; Bondoc, FY; et al. (<u>1999b</u>). Metabolism of methyl tert-butyl ether and
 other gasoline ethers in mouse liver microsomes lacking cytochrome P450 2E1. Toxicol
 Lett 105(1):83–88.
- 8) Hong, JY; Wang, YY; Mohr, SN; et al. (2001). Human cytochrome P450 isozymes in metabolism and health effects of gasoline ethers. Res Rep Health Eff Inst (102):7–27.
- Japan Petroleum Energy Center (JPEC). (2008f). Pharmacokinetic study in rats treated with
 [14C] ETBE repeatedly for 14 days. Kumamoto Laboratory, Mitsubishi Chemical Safety,
 Institute Ltd., 1285 Kurisaki-machi, Uto-shi, Kumamoto 869-0425, Japan. March, 2008.
 Study No. P070497. Unpublished report.
- 10) Japan Petroleum Energy Center (JPEC). (2008g). Pharmacokinetic study in rats treated with
 single dose of [14C] ETBE. Kumamoto Laboratory, Mitsubishi Chemical Safety, Institute
 Ltd., 1285 Kurisaki-machi, Uto-shi, Kumamoto 869-0425, Japan. March, 2008. Study No.
 P070496. Unpublished report.

- 11) Kaneko, T; Wang, PY; Sato, A. (2000). Partition coefficients for gasoline additives and their
 metabolites. J Occup Health 42(2):86–87.
- 3 12) Le Gal, A; Dreano, Y; Gervasi, PG; et al. (2001). Human cytochrome P450 2A6 is the major
 4 enzyme involved in the metabolism of three alkoxyethers used as oxyfuels. Toxicol Lett
 5 124(1-3):47-58.
- 13) Nihlén, A; Löf, A; Johanson, G. (1995). Liquid/air partition coefficients of methyl and ethyl tbutyl ethers, t-amyl methyl ether, and t-butyl alcohol. J Expo Anal Environ Epidemiol
 5(4):573-582.
- 9 14) Nihlén, A; Löf, A; Johanson, G. (<u>1998a</u>). Controlled ethyl tert-butyl ether (ETBE) exposure of
 10 male volunteers I. Toxicokinetics. Toxicol Sci 46(1):1–10.
- 11 15) Sun, JD and Beskitt, JL. (<u>1995a</u>). Ethyl tertiary butyl ether (ETBE): pharmacokinetics after
 12 single and repeated inhalation exposures in mice. Bush Run Research Center, Union
 13 Carbide Corporation under contract to ARCO Chemical Company, Export, PA; Laboratory
 14 Project ID 94N1455. Unpublished report.
- 15 16) Sun, JD and Beskitt, JL. (<u>1995b</u>). Ethyl tertiary butyl ether (ETBE): pharmacokinetics after
 single and repeated inhalation exposures in rats. Bush Run Research Center, Union Carbide
 Corporation under contract to ARCO Chemical Company, Export, PA; Laboratory Project ID
 94N1454. Unpublished report.
- 17) Turini, A; Amato, G; Longo, V; et al. (<u>1998</u>). Oxidation of methyl- and ethyl- tertiary-butyl
 ethers in rat liver microsomes: role of the cytochrome P450 isoforms. Arch Toxicol
 72(4):207-214.
- 18) Zhang, YP; Macina, OT; Rosenkranz, HS; et al. (<u>1997</u>). Prediction of the metabolism and
 toxicological profiles of gasoline oxygenates. Inhal Toxicol 9(3):237–254.
- 24 **PBTK modeling studies**
- Nihlén, A and Johanson, G. (1999). Physiologically based toxicokinetic modeling of inhaled
 ethyl tertiary-butyl ether in humans. Toxicol Sci 51(2):184–194.
- 2) Pierce, C.H. (2004). Toxicokinetics of ethyl tertiary-butyl ether (ETBE) and methyl tertiary butyl ether (MTBE) in men and women. NIOSH report.

29 **Odor threshold**

- van Wezel, A; Puijker, L; et al. (2009). "Odour and flavour thresholds of gasoline additives (MTBE, ETBE and TAME) and their occurrence in Dutch drinking water collection areas."
 Chemosphere 76(5): 672–676.
- Vetrano, KM. (<u>1993</u>). Final report to ARCO Chemical Company on the odor and taste
 threshold studies performed with methyl tertiary-butyl ether (MTBE) and ethyl tertiary butyl ether (ETBE). TRC Environmental Corporation under contract to ARCO Chemical
 Company, Windsor, CT; Project no. 13442-M31. Unpublished report.

1 **1.2.3.** Kept for Possible Further Review

2 None identified.

1

PRELIMINARY EVIDENCE TABLES AND
 PRELIMINARY EXPOSURE-RESPONSE ARRAYS

4 2.1. Data Extraction: Preparation of Preliminary Evidence Tables and 5 Preliminary Exposure-Response Arrays

6 The 52 references identified as primary sources of health effects data were considered for 7 data extraction to evidence tables and exposure-response arrays. References were first collated 8 with respect to exposure route, exposure duration, and type of endpoint, to identify those most 9 pertinent for evaluating the human health effects from chronic oral or inhalation exposure to ETBE. 10 As a result, data from 19 studies with one or more of the following characteristics were not 11 extracted into evidence tables or exposure-response arrays:

- 12 The study involved dermal exposure;
- The study only involved acute or short-term exposures (less than 90 days/13 weeks), and it
 was not conducted in the context of immunotoxicity, neurotoxicity, developmental, or
 reproductive toxicity;
- The data in the study only included endpoints related to possible mechanisms of toxicity;
 and
- The study's endpoints did not exhibit responses in any of the 52 available references.

19 Data from the 33 remaining references were prepared in preliminary evidence tables. No 20 studies were excluded based on study quality considerations, so as to allow for public input on 21 methodological considerations that could affect the interpretation of or confidence in each study's 22 results. With regard to noncancer effects, health effect endpoints that were consistently affected in 23 chronic or subchronic studies were included in the evidence tables. All data demonstrating 24 carcinogenic effects were included. Supporting data that provide mechanistic information for each 25 selected endpoint were also included. For each included endpoint, all studies reporting data on that 26 endpoint are included regardless of the reported level or statistical significance of the response. 27 Several references are grouped together as "related" references because they represent pilot (e.g., 28 range-finding), unpublished (e.g., technical report), and/or published (e.g., journal article) versions 29 of the same study. The tables for non-carcinogenic effects appear first and are arranged in the 30 order from the health effect with the most data to health effect with the least data. The evidence 31 tables for carcinogenic and genotoxic effects follow. For each endpoint, the studies are presented 32 beginning with chronic studies followed by subchronic exposures. The information in the

- 1 preliminary evidence tables is displayed graphically in preliminary exposure-response arrays. In
- 2 these preliminary arrays, the doses are labeled based only on statistical significance as determined
- 3 by the study's authors, without consideration of biological significance.

1 2.2. Kidney Effects

2 3

Table 2-1. Evidence pertaining to kidney effects in animals following oralexposure to ETBE

Reference and study design	Results						
Kidney Weight							
<u>Suzuki et al. (2012)</u>	Ab	solute kidne	y weight (<i>perce</i>	ent chang	ge compared to	control)	
Rat, F344, male and female,	М	0	28		121	542	
50 /sex/group		-	-4%		5%	18%*	
0, 625, 2,500, 10,000 ppm	F	0	46		171	560	
(0, 28, 121, 542 mg/kg-d in males;		-	3%		10%*	14%*	
0, 46, 171, 560 mg/kg-d in females) ^a	Re	lative kidney	weight (percer	nt chang	e compared to	control)	
Drinking water	Μ	0	28		121	542	
104 weeks		-	0.1%		13%*	32%*	
Related reference: JPEC (2010a)	F	0	46		171	560	
(unpublished study)		-	14%*		23%*	37%*	
<u>JPEC (2008c</u>)	Absolute kidney weight (percent change compared to control)						
Rats, Sprague Dawley	Μ	0	5	25	100	400	
Male and female, 50/sex/group		-	0.6%	6%	5%	25%*	
0, 5, 25, 100, 400 mg/kg-day	F	0	5	25	100	400	
Gavage		-	0.5%	0%	7%	10%*	
26 weeks (180 consecutive days)	Relative kidney weight (percent change compared to control)						
	Μ	0	5	25	100	400	
		-	8%	6%	12%*	21%*	
	F	0	5	25	100	400	
		-	7%	4%	11%*	15%*	
<u>Hagiwara et al. (2011)</u>	Ab	solute kidne	y weight (<i>perce</i>		ge compared to	control)	
Rats, F344, male, 12/group				19%*			
0, 1,000 mg/kg-day	Re	lative kidney	weight (percer		e compared to	control)	
Gavage				25%*			
23 weeks							
Related reference: <u>JPEC (2008d</u>)							
(unpublished study)							
<u>Gaoua (2004b)</u>			y weight (<i>perce</i>	ent chang		-	
Rats, Sprague Dawley,	Μ	0	250		500	1,000	
Male and female		-	11%*		15%*	21%*	
0, 250, 500, 1,000 mg/kg-day	F	0	250		500	1,000	
Gavage		-	-0.9%		2%	5%	
(F0 generation)			weight (percer	nt change			
18 weeks (10 weeks before mating,	Μ	0	250		500	1,000	
during a 2-week mating period,	-	-	11%*		18%*	28%*	
3-week gestation and until after	F	0	250		500	1,000	
weaning F1)		-	9%		5%	3%	

Reference and study design	n Results							
Fujii et al. (2010)	Abs	olute kidney w	eight (percent ch	ange compared t	o control)			
Rats, Sprague Dawley,	Μ	0	100	300	1,000			
male and female, 24/sex/group		-	5%	8%	18%*			
0, 100, 300, 1,000 mg/kg-day	F	0	100	300	1,000			
Gavage		-	-2%	0.0	7%*			
16 weeks (males),	Rela	ative kidney we	eight (<i>percent cha</i>	nge compared to	o control)			
17 weeks (females)	Μ	0	100	300	1,000			
		-	8%*	12%*	26%*			
Related reference: <u>JPEC (2008e</u>)	F	0	100	300	1,000			
(unpublished study)		-	-3%	-0.9%	2%			
Histopathology								
Suzuki et al. (2012)	Inci	dence of chron	ic nephropathy					
Rat, F344, male and female,	Μ	0	28	121	542			
50 /sex/group		49/50	43/50	45/50	48/50			
0, 625, 2,500, 10,000 ppm	F	0	46	171	560			
(0, 28, 121, 542 mg/kg-d in males;		41/50	37/50	37/50	39/50			
0, 46, 171, 560 mg/kg-d in females) ^a	Ave	rage severity o	of chronic nephro	oathy ^b				
Drinking water	Μ	0	28	121	542			
104 weeks		2.1	1.7	1.8	2.3			
Related reference: JPEC (2010a)	F	0	46	171	560			
(unpublished study)		1.0	0.9	1.1	1.2			
	Incidence of hyaline droplets							
	Μ	0	28	121	542			
			Not ex	amined				
	F	0	46	171	560			
			Not exa	amined				
	Incidence of atypical tubule hyperplasia							
	Μ	0	28	121	542			
		0/50	0/50	0/50	1/50			
	F	0	46	171	560			
		0/50	0/50	0/50	2/50			
	Inci	dence of papill	ary necrosis					
	Μ	0	28	121	542			
		0/50	1/50	0/50	2/50			
	F	0	46	171	560			
		0/50	1/50	1/50	2/50			
	Inci	dence of papill	ary mineralizatio					
	Μ	0	28	121	542			
		0/50	0/50	16/50*	42/50*			
	F	0	46	171	560			
		0/50	0/50	1/50	3/50			

Table 2-1. Evidence pertaining to kidney effects in animals following oral exposure to ETBE (continued)

Reference and study design	Results									
Cohen et al. (2011)	Inc	idence of chronic	c nephropa	athy						
Reanalysis of the renal sections	Μ	0		28 121		542				
from <u>Suzuki et al. (2012</u>)		49/50	Not exar	nined	Not examined	50/50				
	F	0	46		171	560				
		45/50	41/5	60	46/50	46/50				
	Ave	Average severity of chronic nephropathy								
		0	28		121	542				
		2.1	Not exar	nined	Not examined	2.7				
	F	0	46		171	560				
		1.1	1.0		1.2	1.4				
<u>JPEC (2008c</u>)	-	idence of hyaline								
Rats, Sprague Dawley	Μ	0	5	25	100	400				
Male and female, 50/sex/group		0/15	0/15	0/15	4/15*	10/15*				
0, 5, 25, 100, 400 mg/kg-day	F	0	5	25 Not exa	100	400				
Gavage		0/15	0/15							
26 weeks (180 consecutive days)	-	idence of hyaline	aropiets 5			400				
	Μ	0 Not reported	5	25 xamined	100 2/2	400 1/1				
	F	0	5	25	100	400				
	Г	0	-	Not exam		400				
	Incidence of papillary mineralization									
	M	0	5	25	100	400				
		0/15	0/15	0/15	1/15	0/15				
	F	0	5	25	100	400				
		0/15		Not exa	amined	0/15				
Urinalysis										
<u>Suzuki et al. (2012)</u>	Inc	idence of proteir	nuria							
Rat, F344, male and female,	Μ	0	28		121	542				
50 /sex/group		39/39	37/37		34/34	35/35				
0, 625, 2,500, 10,000 ppm	F	0	46		171	560				
(0, 28, 121, 542 mg/kg-d in males;		37/37	37/37		38/38	38/38				
0, 46, 171, 560 mg/kg-d in females) ^a	Average severity of proteinuria ^b									
Drinking water	Μ	0	28		121	542				
104 weeks		3.0	3.1		3.1	3.1				
Related reference: <u>JPEC (2010a</u>)	F	0	46		171	560				
(unpublished study)		2.8	3.0		3.0	3.1				

Table 2-1. Evidence pertaining to kidney effects in animals following oral exposure to ETBE (continued)

Reference and study design	Results							
<u>JPEC (2008c</u>)	Inc	Incidence of proteinuria						
Rats, Sprague Dawley	Μ	0	5	25	100	400		
Male and female, 50/sex/group		10/10	10/10	10/10	10/10	10/10		
0, 5, 25, 100, 400 mg/kg-day	F	0	5	25	100	400		
Gavage		8/10	9/10	7/10	9/10	7/10		
26 weeks (180 consecutive days) Average severity of proteinuria ^b								
	Μ	0	5	25	100	400		
		1.5	1.6	1.6	1.3	1.5		
	F	0	5	25	100	400		
		1.2	1.3	1.0	1.3	1.0		
	Inc	idence of ur	inary casts					
	Μ	0	5	25	100	400		
		0/10	Not examined	0/10				
	F	0	5	25	100	400		
		0/10	Not examined	0/10				

Table 2-1. Evidence pertaining to kidney effects in animals following oral exposure to ETBE (continued)

^aConversion performed by study authors.

^bCalculated by EPA Σ (grade x #of affected animals)/total # of animals exposed.

*Statistically significant ($p \le 0.05$) based on analysis of data conducted by study authors.

5 Percentage change compared to control = (treated value – control value) ÷ control value × 100.

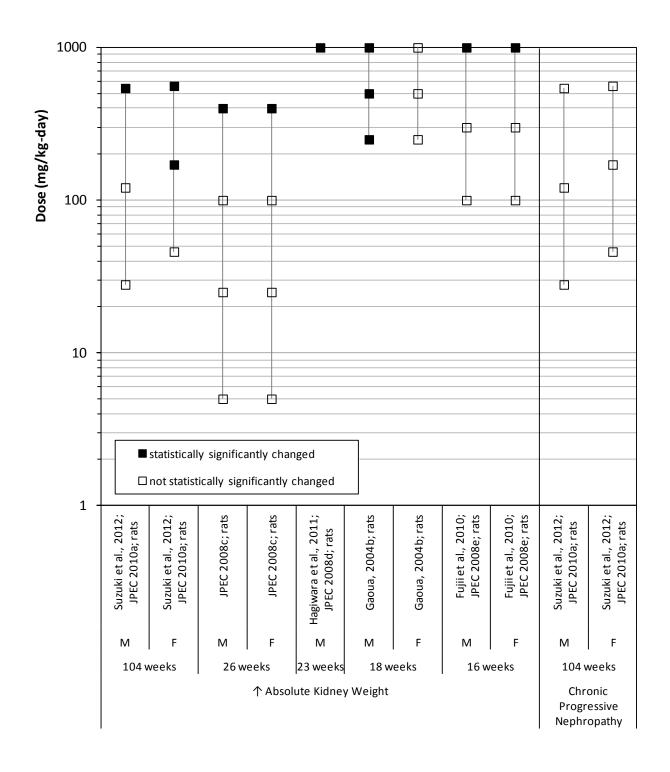
Table 2-2. Evidence pertaining to kidney effects in animals following inhalation exposure to ETBE

Reference and study design Results								
Kidney Weight								
JPEC (2010b)	Abs	olute kidne	y weight (<i>percent c</i>	hange compared	d to control)			
Rat, F344, male and female,	М	0	2,090	6,270	20,900			
50 /sex/group		-	8%*	17%*	23%*			
0, 500, 1,500, 5,000 ppm	F	0	2,090	6,270	20,900			
(0, 2,090, 6,270, 20,900 mg/m ³) ^a		-	5%	6%*	18%*			
Whole body inhalation	Rela	ative kidney	weight (percent ch	ange compared	to control)			
6 hours/day, 5 days/week	М	0	2,090	6,270	20,900			
104 weeks		-	19%*	26%*	66%*			
	F	0	2,090	6,270	20,900			
		-	11%*	16%*	51%*			
JPEC (2008b)	Abs	olute kidne	y weight (<i>percent c</i>	hange compared	d to control)			
Rats, Sprague Dawley	Μ	0 62	27 2,090	6,270	20,900			
Male and female, 10–16/sex/group		- 10	% 11%	18%*	15%* {19%}			
0, 150, 500, 1,500, 5,000 ppm	F	0 62	27 2,090	6,270	20,900			
(0, 627, 2,090, 6,270, 20,900		- 0.2	2% -0.9%	4%	7% {8%}			
mg/m ³) ^a	Rela	Relative kidney weight (percent change compared to control)						
Whole body inhalation	М	0 62	27 2,090	6,270	20,900			
6 hours/day, 5 days/week		- 10	9%	20%*	24%* {15%*}			
13 weeks	F	0 62	27 2,090	6,270	20,900			
{} = subset with 28 day recovery		- 8	% 7%	13%*	20%* {5%}			
after 13 week exposure								
Medinsky et al. (1999)	Abs	olute kidne	y weight (<i>percent c</i>	hange compared	d to control)			
Rats, F344, male and female	М	0	2,090	7,320	20,900			
10/sex/group		-	7%	10%*	19%*			
0, 500, 1,750, 5,000 ppm	F	0	2,090	7,320	20,900			
(2,090, 7,320, 20,900 mg/m ³) ^a		-	5%	12%*	21%*			
Whole body inhalation								
6 hours/day, 5 days/week								
13 weeks								
Related reference: <u>Bond et al.</u>								
(<u>1996b</u>) (unpublished study)								
<u>Medinsky et al. (1999)</u>	Abs	olute kidne	y weight (percent c	hange compare	d to control)			
Mice, CD-1, male and female	М	0	2,090	7,320	20,900			
10/sex/group,		-	9%	10%	5%			
0, 500, 1,750, 5,000 ppm	F	0	2,090	7,320	20,900			
(2,090, 7,320, 20,900 mg/m ³) ^a		-	-0.2%	6%	4%			
Whole body inhalation								
6 hours/day, 5 days/week								
13 weeks								
Related reference: <u>Bond et al.</u>								
<u>(1996a</u>) (unpublished study)								

3

1

Reference and study design				Results				
Histopathology								
<u>JPEC (2010b)</u>	Inc	idence of chro	nic nephropa	athy				
Rat, F344, male and female,	Μ	0	2,09		6,270	20,900		
50 /sex/group		49/50	50/5		49/50	50/50		
0, 500, 1,500, 5,000 ppm	F	0	2,09		6,270	20,900		
(0, 2,090, 6,270, 20,900 mg/m ³) ^a		32/50	38/5	0	41/50	40/50		
Whole body inhalation	Average severity of nephropathy							
6 hours/day, 5 days/week	Μ	0	2,09		6,270	20,900		
104 weeks		2.4	2.6		2.7	3.1*		
	F	0	2,09	0	6,270	20,900		
		0.9	1.3		1.3	1.6*		
	Inc	idence of hyal	ine droplets					
	Μ	0	2,09	0	6,270	20,900		
				Not examined	k			
	F	0	2,09	0	6,270	20,900		
				Not examined	t			
	Incidence of papilla mineralization							
	Μ	0	2,09	0	6,270	20,900		
		0/50	0/50)	1/50	6/50*		
	F	0	2,09	0	6,270	20,900		
	Not examined							
	Inc	idence of atyp						
	Μ	0	2,09	0	6,270	20,900		
		Not examined						
	F	0	2,09		6,270	20,900		
		Not examined						
<u>JPEC (2008b</u>)	-	idence of hyal		•				
Rats, Sprague Dawley	Μ	0	627	2,090	6,270	20,900		
Male and female, 10–16/sex/group		0/10	3/10	8/10*	8/10*	8/10*		
0, 150, 500, 1,500, 5,000 ppm	F	0	627	2,090	6,270	20,900		
(0, 627, 2,090, 6,270, 20,900				Not observed				
mg/m ³) ^a	-	idence of hyal	-	•				
Whole body inhalation	Μ	0	627	2,090	6,270	20,900		
6 hours/day, 5 days/week		-			rted positive fo	-		
13 weeks	F	0	627	2,090	6,270	20,900		
	<u> </u>			Not examined	2			
	-	idence of urin	1	2 000	c 270	20.000		
	Μ	0	627	2,090	6,270	20,900		
	-	0/6	0/6	0/6	0/6	0/6		
	F	0	627 0/6	2,090	6,270	20,900		
		0/6	0/6	0/6	0/6	0/6		


Table 2-2. Evidence pertaining to kidney effects in animals following inhalation exposure to ETBE (continued)

Reference and study design	Results							
Medinsky et al. (1999)	Av	Average severity of hyaline droplets						
Rats, F344, male and female	Μ	0	2,09	90	7,320	20,900		
10/sex/group		1.8	3.0)	3.2	3.8		
0, 500, 1,750, 5,000 ppm	F	0	2,09	90	7,320	20,900		
(2,090, 7,320, 20,900 mg/m ³) ^a				Not observe	ed			
Whole body inhalation	Av	Average proximal tubule proliferation						
6 hours/day, 5 days/week	Μ	0	2,09	90	7,320	20,900		
13 weeks		0.91	2.16	5*	3.4*	2.47*		
Related reference: Bond et al.	F							
<u>(1996b</u>)		0	2,09		7,320	20,900		
		0.59	1.0	2	0.97	0.87		
Urinalysis								
<u>JPEC (2010b)</u>	Inc	idence of prote						
Rat, F344, male and female,	Μ	0	2,09	90	6,270	20,900		
50 /sex/group		44/44	38/3	38	40/40	31/31		
0, 500, 1,500, 5,000 ppm	F	0	2,09	90	6,270	20,900		
(0, 2,090, 6,270, 20,900 mg/m ³) ^a		35/38	39/3	39	30/30	30/30		
Whole body inhalation	Av	erage severity	of proteinur	ria 🛛				
6 hours/day, 5 days/week	М	0	2,09	90	6,270	20,900		
104 weeks		3.7	3.5	5	3.6	3.6		
	F	0	2,09	90	6,270	20,900		
		2.8	3.1	L	3.3	3.4*		
<u>JPEC (2008b)</u>	Inc	idence of prote	einuria					
Rats, Sprague Dawley	Μ	0	627	2,090	6,270	20,900		
Male and female, 10–16/sex/group		3/6	5/6	5/6	6/6	4/6		
0, 150, 500, 1,500, 5,000 ppm	F	0	627	2,090	6,270	20,900		
(0, 627, 2,090, 6,270, 20,900		1/6	1/6	1/6	2/6	2/6		
mg/m ³) ^a	Av	erage severity	of proteinur	'ia				
Whole body inhalation	Μ	0	627	2,090	6,270	20,900		
6 hours/day, 5 days/week		0.5	1.2	1.2	1.3	1.0		
13 weeks	F	0	627	2,090	6,270	20,900		
		0.2	0.3	0.2	0.5	0.3		

Table 2-2. Evidence pertaining to kidney effects in animals following inhalation exposure to ETBE (continued)

^a4.18 mg/m³ = 1 ppm. ^{*}Statistically significant (p≤0.05) based on analysis of data conducted by study authors.

Percentage change compared to control = (treated value – control value) ÷ control value × 100.

1 2 3

Figure 2-1. Exposure-response array of kidney effects following oral exposure to ETBE.

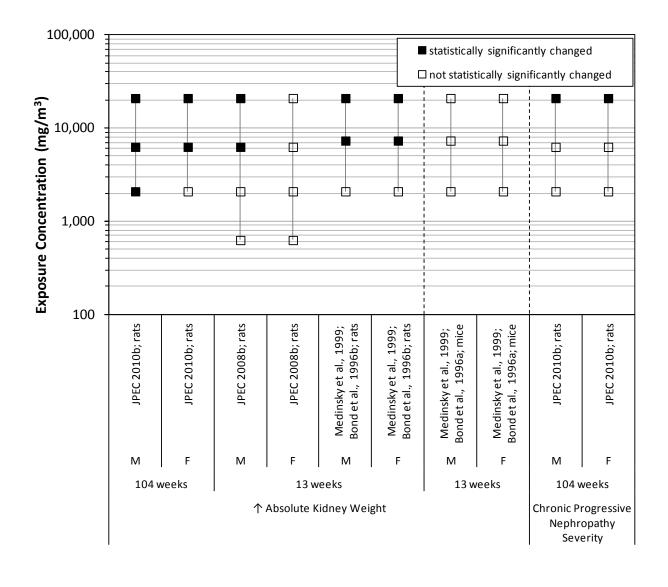


Figure 2-2. Exposure-response array of kidney effects following inhalation exposure to ETBE.

1 2.3. Liver Effects

2 3

Table 2-3. Evidence pertaining to liver effects in animals following oral exposure to ETBE

Reference and study design	Results						
Liver Weight							
<u>Suzuki et al. (2012)</u>	Ab	solute liver w	eight (percent	change co	ompared to co	ntrol)	
Rats, F344, male and female,	Μ	0	28	-	121	542	
50/sex/group		-	-11%*	k	-4%	2%	
0, 625, 2,500, 10,000 ppm	F	0	46		171	560	
(0, 28, 121, 542 mg/kg-d in males;		-	-6%		-2%	-10%	
0, 46, 171, 560 mg/kg-d in females) ^a	Re	lative liver we	eight (<i>percent</i>)	change col	mpared to con	trol)	
Drinking water	Μ	0	28		121	542	
104 weeks		-	-8%		3%*	12%*	
Related reference: JPEC (2010a)	F	0	46		171	560	
(unpublished study)		-	4%		9%	8%	
<u>JPEC (2008c</u>)	Ab	solute liver w	eight (<i>percent</i>	change co	ompared to co	ntrol)	
Rats, Sprague Dawley	Μ	0	5	25	100	400	
Male and female, 15/sex/group		-	-2%	7%	4%	19%	
0, 5, 25, 100, 400 mg/kg-day	F	0	5	25	100	400	
Gavage		-	-4%	-1%	2%	9%	
26 weeks (180 consecutive days)	Relative liver weight (percent change compared to control)						
	Μ	0	5	25	100	400	
		-	5%	7%	9%	17%*	
	F	0	5	25	100	400	
		-	1%	1%	4%	12%*	
<u>Hagiwara et al. (2011)</u>	Ab	solute liver w	eight (<i>percent</i>		ompared to co	ntrol)	
F344 Rats, male, 12/group				21%*			
Gavage 0, 1,000 mg/kg-day	Re	lative liver we	eight (<i>percent</i>)	-	mpared to con	trol)	
23 weeks				27%*			
Related reference: <u>JPEC (2008d</u>)							
(unpublished study) Gaoua (2004b)	۸h	coluto livor w	eight (percent	change co	magrad to co	atroll	
Rats, Sprague Dawley,	M			chunge co			
Male and female, 25/sex/group	IVI	0	250		500	1,000 17%*	
0, 250, 500, 1,000 mg/kg-day	F	- 0	2%		2%		
Gavage	Г	0	250 -1%		500 4%	1,000 6%	
(F0 generation)	Re	- lative liver we	eight (percent of	change co			
18 weeks (10 weeks before mating,	M		250 250	chunge coi	500	1,000	
during a 2-week mating period,	141	U	3%		500 6%	1,000 24%*	
3-week gestation and until after	F	0	250		500	1,000	
weaning F1)	'	U	10%		500 8%	4%	
wearing (1)		-	10%		0/0	470	

4

Reference and study design	Results								
Fujii et al. (2010)	Absolute liver weight (percent change compared to control)								
Rats, Sprague Dawley,	М	0	100	3(00	1,000			
male and female, 24/sex/group		-	-3%	1	%	13%*			
0, 100, 300, 1,000 mg/kg-day	F	0	100	30	00	1,000			
Gavage		-	-1%	4	%	14%*			
16 weeks (males),	Relati	Relative liver weight (percent change compared to control)							
17 weeks (females)	М	0	100	3(00	1,000			
Related reference: JPEC (2008e)		-	1%	3	%	21%*			
(unpublished study)	F	0	100	3(00	1,000			
		-	-2%	2	%	8%*			
Serum Liver Enzymes									
Suzuki et al. (2012)	AST, A	ALT, and ALF	PEnzymes in Liv	ver (% chang	e compared	l to control)			
Rat, F344, male and female,	М	0	28	12	21	542			
50 /sex/group	AST	-	-21%	-3	8%	-1%			
0, 625, 2,500, 10,000 ppm	ALT	-	-17%	2	%	-4%			
(0, 28, 121, 542 mg/kg-d in males;	ALP	-	-5%	3	%	0.3%			
0, 46, 171, 560 mg/kg-d in females) ^a Drinking Water	F	0	46	17	71	560			
104 weeks	AST	-	-19%	-1	7%	-46%*			
	ALT	-	-10%	-1	5%	-26%			
Related reference: JPEC (2010a)	ALP	-	-16%		%	-15			
(unpublished study)									
<u>JPEC (2008c)</u>	AST, A	ALT, and ALF	PEnzymes in Liv	ver (% chand	e compared	l to control)			
Rats, Sprague Dawley	M	0	5	25	100	400			
Male and female, 15/sex/group	AST	-	16%	19%	20%	23%			
0, 5, 25, 100, 400 mg/kg-day	ALT	-	10%	48%	13%	36%			
Gavage	ALP	-	2%	12%	-8%	27%			
26 weeks (180 consecutive days)	F	0	5	25	100	400			
	AST	-	10%	13%	20%	4%			
	ALT	-	11%	21%	46%	21%			
	ALP	-	6%	-21%	-18%	-19%			
Centrilobular Hypertrophy									
Suzuki et al. (2012)	Centr	ilobular hyp	ertrophy						
Rat, F344, male and female,	Not o	bserved	-						
50 /sex/group									
0, 625, 2,500, 10,000 ppm									
(0, 28, 121, 542 mg/kg-d in males;									
0, 46, 171, 560 mg/kg-d in females) ^a									
Drinking Water									
104 weeks									
Related reference: JPEC (2010a)									
(unpublished study)									

Table 2-3. Evidence pertaining to liver effects in animals following oral exposure to ETBE (continued)

Reference and study design	Results							
<u>JPEC (2008c</u>)	Incid	Incidence of centrilobular hypertrophy						
Rats, Sprague Dawley	М	0	5	25		100	400	
Male and female, 15/sex/group		0/15	0/15	0/15		0/15	6/15*	
0, 5, 25, 100, 400 mg/kg-day	F	0	5	25		100	400	
Gavage		0/15	0/15	0/15		0/15	6/15*	
26 weeks (180 consecutive days)								
<u>Gaoua (2004b)</u>	Incid	Incidence of centrilobular hypertrophy						
Rats, Sprague-Dawley,	Μ	0		250	500		1,000	
Male and female, 25/sex/group		0/25		0/25	0/25		3/25	
Gavage, (F0 generation)	F	0		250	500		1,000	
0, 250, 500, 1,000 mg/kg-day		0/25		0/25	0/25		0/25	
18 weeks (10 weeks before mating,								
during a 2-week mating period, 3-								
week gestation and until after								
weaning F1)								

Table 2-3. Evidence pertaining to liver effects in animals following oral exposure to ETBE (continued)

^aConversion performed by study authors.

*Statistically significant ($p \le 0.05$) based on analysis of data conducted by study authors.

Percentage change compared to control = (treated value – control value) ÷ control value × 100.

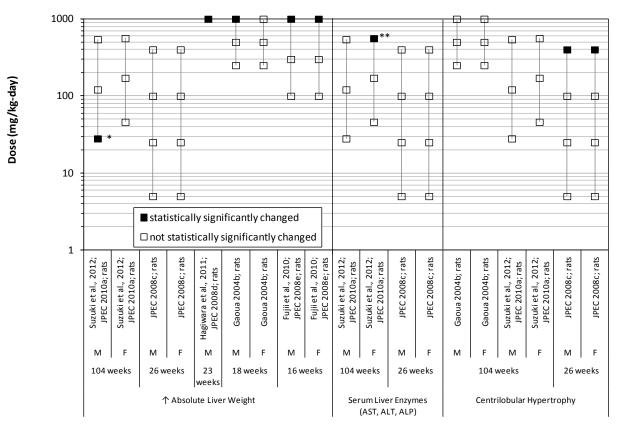
1 Table 2-4. Evidence pertaining to liver effects in animals following inhalation exposure to ETBE

Reference and study design	Results							
Liver Weight								
<u>JPEC (2010b)</u>	Ab	solute liver	weight (percent change	compared to a	control) ²		
Rat, F344, male and female,	М	0		2,090	6,270	20,900		
50 /sex/group		-		0.9%	11%*	10%		
0, 500, 1,500, 5,000 ppm	F	0		2,090	6,270	20,900		
(0, 2,090, 6,270, 20,900 mg/m ³) ^a		-		-4%	-8%	0.5%		
Whole body inhalation	Rel	Relative liver weight (<i>percent change compared to control</i>)						
6 hours/day, 5 days/week	М	0		2,090	6,270	20,900		
104 weeks		-		9%*	19%*	49%*		
	F	0		2,090	6,270	20,900		
		-		3%	1%*	30%*		
IPEC (2008b)	Ab	solute liver	· weight (percent change	compared to a	control)		
Rats, Sprague Dawley	Μ	0	627	2,090	6,270	20,900		
Male and female,								
10–16/sex/group		-	5%	6%	4%	2% {13%}		
0, 150, 500, 1,500, 5,000 ppm	F	0	627	2,090	6,270	20,900		
(0, 627, 2,090, 6,270, 20,900		-	-3%	-8%	-2%	5% {11%}		
mg/m ³) ^a	Rel	ative liver	weight (p	ercent change	compared to co	ontrol)		
Whole body inhalation	Μ	0	627	2,090	6,270	20,900		
6 hours/day, 5 days/week		-	5%	5%	6%	10% {9%*}		
13 weeks	F	0	627	2,090	6,270	20,900		
{} = subset with 28 day recovery		-	4%	-1%	6%	18%* {7%}		
after 13 week exposure								
Medinsky et al. (1999)	Abs	solute liver	weight (percent change	compared to a	control)		
Rats, F344, male and female	Μ	0		2,090	7,320	20,900		
10/sex/group		-		6%	14%*	32%*		
0, 500, 1,750, 5,000 ppm	F	0		2,090	7,320	20,900		
(2,090, 7,320, 20,900 mg/m ³) ^a		-		2%	9%	26%*		
Whole body inhalation								
6 hours/day, 5 days/week								
13 weeks								
Related reference: <u>Bond et al.</u>								
(<u>1996b</u>) (unpublished study)	A 1.							
Medinsky et al. (1999)	-		weight (percent change	•			
Mice, CD-1, male and female	Μ	0		2,090	7,320	20,900		
10/sex/group	_	-		4%	13%*	18%*		
0, 500, 1,750, 5,000 ppm	F	0		2,090	7,320	20,900		
(2,090, 7,320, 20,900 mg/m ³) ^a		-		2%	19%*	33%*		
Whole body inhalation								
6 hours/day, 5 days/week 13 weeks								
Related reference: Bond et al.								
(<u>1996a</u>) (unpublished study)								

Reference and study design	Results							
Serum Liver Enzymes								
JPEC (2010b)	AST, A	AST, ALT, and ALP Enzymes in Liver (percent change compared to						
	contro	control)						
Rats, F344, male and female,	М	0	2,090	6	,270	20,900		
50/sex/group	AST	-	29%	-	16%	-2%*		
0, 500, 1,500, 5,000 ppm	ALT	-	53%		-3%	24%		
(0, 2,090, 6,270, 20,900 mg/m3) ^a	ALP	-	0 %	-2	21%*	-5%		
Whole body inhalation	F	0	2,090	6	,270	20,900		
6 hours/day, 5 days/week	AST	-	22%	:	10%	18%*		
104 weeks	ALT	-	2%	-	-5%	4%*		
	ALP	-	12%	-	-4%	4%		
Centrilobular Hypertrophy								
JPEC (2010b)	Centril	obular hype	ertrophy					
Rats, F344, male and female,	Not ob:	served						
50/sex/group								
0, 500, 1,500, 5,000 ppm								
(0, 2,090, 6,270, 20,900 mg/m³) ^a								
Whole body inhalation								
6 hours/day, 5 days/week								
104 weeks		6						
<u>JPEC (2008b</u>)			ilobular hypert		6 2 7 0	20.000		
Rats, Sprague Dawley	м	0	627	2,090	6,270	20,900		
Male and female, 10–16/sex/group		0/10	0/10	0/10	0/10	4/10* {0/6}		
0, 150, 500, 1,500, 5,000 ppm	F	0	627	2,090	6,270	20,900		
(0, 627, 2,090, 6,270,		0/10	0/10	0/10	0/10	6/10* {0/6}		
$20,900 \text{ mg/m}^3)^a$		0/20	0, 20	0,20	0/20	0/20 (0/0)		
Whole body inhalation								
6 hours/day, 5 days/week								
13 weeks								
{} = subset with 28 day recovery								
after 13 week exposure								
Medinsky et al. (1999)		obular hype	ertrophy					
Rats, F344, male and female	Not ob	served						
10/sex/group								
0, 500, 1,750, 5,000 ppm (0, 2,090, 7,320, 20,900 mg/m ³) ^a								
Whole body inhalation								
6 hours/day, 5 days/week								
13 weeks								
Related reference: Bond et al.								
(1996b) (unpublished study)								

Table 2-4. Evidence pertaining to liver effects in animals following inhalation exposure to ETBE (continued)

Reference and study design	Results								
Medinsky et al. (1999)	Inc	Incidence of centrilobular hypertrophy							
Mice, CD-1, male and female	M 0 500 1		1,750	5,000					
10/sex/group		0/15	0/15	2/15	8/10*				
0, 500, 1,750, 5,000 ppm	F	0	500	1,750	5,000				
(0, 2,090, 7,320, 20,900 mg/m ³) ^a		0/13	2/15	1/15	9/14*				
Whole body inhalation									
6 hours/day, 5 days/week									
13 weeks									
Related reference: Bond et al.									
(1996b) (unpublished study)									
<u>Weng et al. (2012)</u>	Inc	idence of centril	obular hypertrophy	/					
C57BL/6 mice, male and female	Μ	0	2,090	7,315	20,900				
5/sex /group		1/5	0/5	0/5	5/5*				
0, 500, 1,750, 5,000 ppm	F	0	2,090	7,315	20,900				
(0, 2,090, 7,315, 20,900 mg/m³) ^a		0/5	0/5	1/5	5/5*				
Whole body inhalation									
6 hours/day, 5 days/week									
13 weeks									

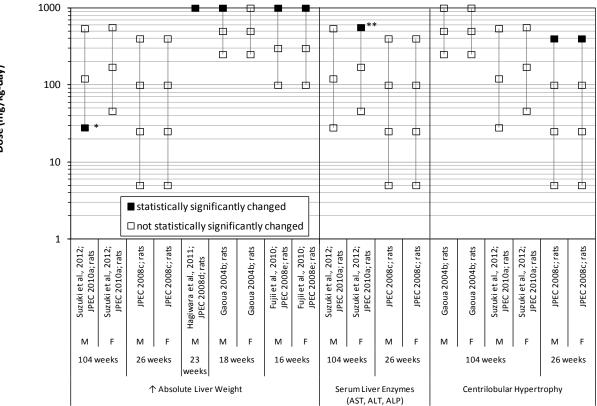

Table 2-4. Evidence pertaining to liver effects in animals following inhalation exposure to ETBE (continued)

^a4.18 mg/m³ = 1 ppm.

*Statistically significant ($p \le 0.05$) based on analysis of data conducted by study authors.

Percentage change compared to control = (treated value – control value) ÷ control value × 100.

Preliminary Materials for the IRIS Toxicological Review of ETBE


^{*} statistically significant decrease in absolute liver weight

** statistically significant decrease in AST, no statistically significantly change in ALT or ALP

Figure 2-3. Exposure-response array of liver effects following oral exposure to ETBE.

1 2

Preliminary Materials for the IRIS Toxicological Review of ETBE

^{*} statistically significant decrease in absolute liver weight

** statistically significant decrease in AST, no statistically significantly change in ALT or ALP

Figure 2-4. Exposure-response array of liver effects following inhalation exposure to ETBE.

1 2.4. Reproductive Effects

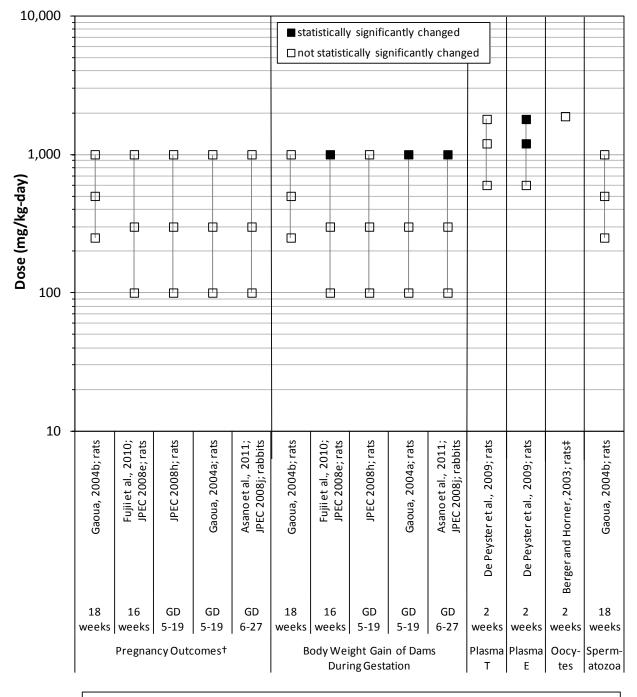
2 3

Table 2-5. Evidence pertaining to reproductive effects in animals followingoral exposure to ETBE

Reference and study design		Res	ults					
Reproductive effects								
<u>Gaoua (2004b)</u>	F0 reproductive effects (pe	ercent ch	ange comp	ared to cont	rol)			
Rat, Sprague Dawley, male and	F	0	250	500	1,000			
female, 25/sex/group	Viability index PND 4	-	-5%	-16%	0.1%			
0, 250, 500, 1,000 mg/kg-d	Lactation index	-	-3%	2%	5%			
Gavage	Body weight gain (GD0–20)	-	2%	3%	3%			
Approximately 18 wks in F0 (10 wks	Fertility index	-	-9%	-4%	9%			
before mating, 2-wk	М	0	250	500	1,000			
mating period, 3-wk gestation,	Spermatazoa	-	2%	1%	-0.5%			
until weaning F1); F1	F0 reproductive effects (in	cidence)						
generation gavaged from weaning	F	0	250	500	1,000			
until weaning of F2 offspring	Post implantation loss(%) ^a	4%	6%	5%	7%			
	Total litter loss PND 4	0/23	1/21	3/22	0/25			
	F1 reproductive effects (pe	ercent ch	ange comp	ared to cont				
	F	0	250	500	, 1,000			
	Viability index PND 4	-	-3%	-1%	-5%			
	Lactation index	-	1%	2%	2%			
	Body weight gain (GD0–20)	-	-1%	-3%	-6%			
	F1 reproductive effects (<i>incidence</i>)							
	F	0	250	500	1,000			
	Post implantation loss(%) ^b	4%	5%	3%	7%			
	Total litter loss PND 4	0/21	1/21	0/22	1/20			
<u>Fujii et al. (2010)</u>	F0 reproductive effects (pe							
Rat, Sprague Dawley, male and	M	0	100	300	1,000			
Female, 24/sex/group	Fertility index	-	14%	9%	5%			
0, 100, 300, 1,000 mg/kg-d	F	0	100	300	1,000			
Gavage	Viability index PND 4	-	-1%	2%	-10%			
16–17 week exposure to F0 rats	Lactation index ^c	-	-1%	-1%	-5%			
Related reference: JPEC (2008e)	Body weight gain (GD0–20)	-	-4%	8%	12%*			
(unpublished study)	Fertility index	-	14%	9%	5%			
	F0 reproductive effects (in	cidence)						
	F	0	100	300	1,000			
	Post implantation loss(%) ^a	7%	14%	11%	10%			
	Total litter loss PND 4	0/21	0/22	0/23	3/22			
<u>JPEC (2008h)</u>	Reproductive effects (perc							
Rat, Sprague Dawley, female	F	0	100	300	, 1,000			
21–22litters/ group	Body weight gain (GD0–20)	-	-7%	-4%	-7%			
0, 100, 300, 1,000 mg/kg-d	Reproductive effects (incid		-					
Gavage	F	0	100	300	1,000			
Gestational days 5–19	Pre-implantation loss (%) ^b	7%	9%	8%	12%			
	Post-implantation loss(%) ^a	6%	7%	4%	5%			
	F 051-1111pla11.dt10111055(%)	0/0	1 70	470	J70			

Reference and study design			Res	ults			
<u>Gaoua (2004a)</u>	Reproductive e	Reproductive effects (percent change compared to control)					
Rat, Sprague Dawley, female	F		0	100	300	1,000	
19–22 litters/ group	Body weight gair	n (GD5–20)	-	-4%	-3%	-17%*	
0, 250, 500, 1,000 mg/kg-d	Reproductive e		lence)				
Gavage	F	-	0	100	300	1,000	
Gestational days 5–19	Pre-implantation	n loss (%) ^b	15%	13%	13%	14%	
	Post-implantatio		5%	7%	7%	8%	
<u>Asano et al. (2011)</u>	Reproductive e	ffects (perc	ent chan	де сотра	red to contro	ol)	
Rabbit, New Zealand white, female	F		0	100	300	1,000	
22–24/ sex/ group	Body weight gair	n (GD0–28)	-	-13%	0%	-38%*	
0, 100, 300, 1,000 mg/kg-d	Uterine weight		-	4%	5%	-16%	
Gavage	Reproductive e	ffects (incia	lence)				
Gestational days 6–27	F		0	100	300	1,000	
Related reference: JPEC (2008j)	Pre-implantation	n loss (%) ^b	20%	15%	11%	23%	
(unpublished study)	Post-implantatio		11%	11%	7%	9%	
de Peyster et al. (2009)	Plasma hormo		ercent ch	ange com	pared to con	trol)	
Rat, F344, male	Μ	0	6	500	1,200	1,800	
12/sex/group	Testosterone	-	5	0%	26%	-34%	
0, 600, 1,200, 1,800 mg/kg-d	Estradiol	-	2	9%	106%*	105%*	
Gavage							
14 days							
Berger and Horner (2003)	Oocyte effects						
Rat, Simonson, female	F		0		1,8	87	
3–4/sex/group	Oocytes/female		30		29	9	
0.3% (estimated 1,887 mg/kg-day)	Oocyte fertilized		84%		82	%	
Drinking water							
2 weeks							
<u>Gaoua (2004b</u>)	Number of spe	rmatozoa ir	n FO (<i>Perc</i>	cent chan	ge compared	to control)	
Rat, Sprague Dawley, male and	M 0		250		500	1,000	
female,25/sex/group	-		2%		1%	-0.5%	
0, 250, 500, 1,000 mg/kg-d							
Gavage							
(F0 generation)							
18 weeks (10 weeks before mating,							
during a 2-week mating period,							
3-week gestation and until after							
weaning F1)							

Table 2-5. Evidence pertaining to reproductive effects in animals following oral exposure to ETBE (continued)


^aPost-implantation loss = (Resorptions + dead fetus/ total implantations) × 100, calculated per litter.

^bPre-implantation loss = (corpora lutea-implantations/corpora lutea) × 100, calculated per litter.

^cLactation index = (pups alive at day 21/pups at day 4) × 100; LI is the same as viability index on day 21.

5 *Statistically significant ($p \le 0.05$) based on analysis of data conducted by study authors.

6 Percentage change compared to control = (treated value – control value) ÷ control value × 100.

⁺Pregnancy outcomes include: Viability, Lactation & Fertility Indices and Pre - & Post-Implantation Loss and Total litter loss

[‡] Dose estimated from 0.3% in drinking water using drinking water rate reported by JPEC 2010a

Figure 2-5. Exposure-response array of reproductive effects following oral

2 3

exposure to ETBE.

1

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

1 **2.5. Body Weight Effects**

2 3

Table 2-6. Evidence pertaining to body weight effects in animals following oral exposure to ETBE

Reference and study design				Results		
Body Weight						
Suzuki et al. (2012)	Во	dy weight (<i>p</i>	ercent change (compared	to control)	
Rats, F344, male and female,	Μ	0	28		121	542
50/sex/group		-	-5%		-7%*	-10*%
0, 625, 2,500, 10,000 ppm	F	0	46		171	560
(0, 28, 121, 542 mg/kg-d in males;		-	-10*%		-11*%	-17*%
0, 46, 171, 560 mg/kg-d in females) ^a						
Drinking water						
104 weeks						
Related reference: <u>JPEC (2010a</u>) (unpublished study)						
<u>JPEC (2008c)</u>	Boo	ly weight (<i>pe</i>	ercent change c	ompared	to control)	
Rats, Sprague Dawley	Μ	0	5	25	100	400
Male and female, 15/sex/group		-	-6%	0%	-6%	2%
0, 5, 25, 100, 400 mg/kg-day	F	0	5	25	100	400
Gavage		-	-5%	-2%	-2%	-3%
26 weeks (180 consecutive days)						
Hagiwara et al. (2011)	Вос	ly weight (<i>pe</i>	ercent change c	ompared	to control)	
F344 Rats, male, 12/group		, 0 (-5%*	,	
Gavage 0, 1,000 mg/kg-day						
23 weeks						
Related reference: <u>JPEC (2008d</u>)						
(unpublished study)						
<u>Gaoua (2004b)</u>	Вос	ly weight (<i>pe</i>	ercent change c	ompared	to control)	
Rats, Sprague Dawley,	Μ	0	250		500	1,000
Male and female, 25/sex/group		-	-1%		-3%	-5%*
0, 250, 500, 1,000 mg/kg-day	F	0	250		500	1,000
Gavage		-	-7%		-2%	0%
(F0 generation)						
18 weeks (10 weeks before mating,						
during a 2-week mating period,						
3-week gestation and until after						
weaning F1)						

Table 2-6. Evidence pertaining to body weight effects in animals following oral exposure to ETBE (continued)

Reference and study design		Results						
<u>Fujii et al. (2010</u>)	FO	F0 generation body weight (percent change compared to control)						
Rats, Sprague Dawley,	Μ	0	100	300	1,000			
male and female, 24/sex/group		-	-4%	-4%	-7%			
0, 100, 300, 1,000 mg/kg-day	F	0	100	300	1,000			
Gavage		-	1%	1%	5%			
16 weeks (males),	F1	generation boo	dy weight (<i>percent</i>	change compare	ed to control)			
17 weeks (females)	Μ	0	100	300	1,000			
Related reference: JPEC (2008e)		-	2%	0%	1%			
(unpublished study)	F	0	100	300	1,000			
		-	-1%	-3%	-2%			

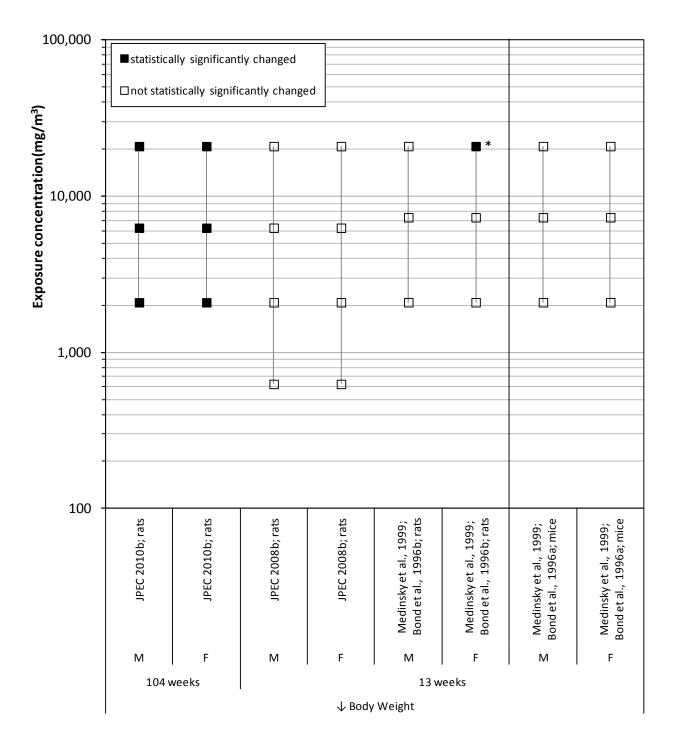
^aConversion performed by study authors.

^{*}Statistically significant ($p \le 0.05$) based on analysis of data conducted by study authors.

Percentage change compared to control = (treated value – control value) ÷ control value × 100.

1Table 2-7. Evidence pertaining to body weight effects in animals following2inhalation exposure to ETBE

Reference and study design	Results						
Body Weight							
JPEC (2010b)	Во	dy wei	ght (<i>percen</i>	t change comp	ared to control)		
Rat, F344, male and female,	Μ		0	2,090	6,270	20,900	
50 /sex/group			-	-7%*	-7%*	-26%*	
0, 500, 1,500, 5,000 ppm	F		0	2,090	6,270	20,900	
(0, 2,090, 6,270, 20,900 mg/m ³) ^a			-	-6%*	-10%*	-23%*	
Whole body inhalation							
6 hours/day, 5 days/week							
104 weeks							
<u>JPEC (2008b)</u>	-				ared to control)		
Rats, Sprague Dawley	Μ	0	627	2,090	6,270	20,900	
Male and female, 10–16/sex/group	_	-	0%	1%	-1%	-6% {3%}	
0, 150, 500, 1,500, 5,000 ppm	F	0	627	2,090	6,270	20,900	
(0, 627, 2,090, 6,270, 20,900 mg/m ³) ^a		-	-2%	-4%	-3%	-6% {3%}	
Whole body inhalation							
6 hours/day, 5 days/week							
13 weeks							
{} = subset with 28 day recovery							
after 13 week exposure							
Medinsky et al. (1999)	Bo	dy wei	ght (<i>percent</i>	t change compo	ared to control)		
Rats, F344, male and female	М		0	2,090	7,320	20,900	
10/sex/group			-	2%	5%	2%	
0, 500, 1,750, 5,000 ppm	F		0	2,090	7,320	20,900	
(2,090, 7,320, 20,900 mg/m ³) ^a			-	-3%	3%	6%*	
Whole body inhalation							
6 hours/day, 5 days/week							
13 weeks							
Related reference: <u>Bond et al.</u>							
(1996b) (unpublished study)							
<u>Medinsky et al. (1999)</u>		dy wei	ght (<i>percent</i>	t change compo	ared to control)		
Mice, CD-1, male and female	М		0	2,090	7,320	20,900	
10/sex/group			-	-1%	-1%	-3%	
0, 500, 1,750, 5,000 ppm	F		0	2,090	7,320	20,900	
(2,090, 7,320, 20,900 mg/m ³) ^a			-	-3%	-1%	2%	
Whole body inhalation							
6 hours/day, 5 days/week							
13 weeks Palated reference: Rend et al							
Related reference: <u>Bond et al.</u> (<u>1996a</u>) (unpublished study)							
(unpublished study)							


 $^{a}4.18 \text{ mg/m}^{3} = 1 \text{ ppm}.$

Statistically significant ($p \le 0.05$) based on analysis of data conducted by study authors.

Percentage change compared to control = (treated value – control value) ÷ control value × 100.

Figure 2-6. Exposure-response array of body weight effects following oral exposure to ETBE.

* statistically significant increase in body weight

Figure 2-7. Exposure-response array of body weight effects following inhalation exposure to ETBE.

2 3 4

1 **2.6.** Other Systemic Effects

2 3

Table 2-8. Evidence pertaining to other systemic effects in animals followingoral exposure to ETBE

Reference and study design				Results		
Immunological Studies						
Banton et al. (2011)	Antibody	response	(percent ch	ange compare	d to control)	
Rats, Sprague-Dawley, female,			0	250	500	1,000
10/group	IgM antibo	ody	-	-21%	42%	8%
0, 250, 500, 1,000 mg/kg-day	forming ce	ells				
Gavage						
28 consecutive days						
Spleen Weight						
<u>Suzuki et al. (2012)</u>	Absolute	spleen we	ight (<i>percei</i>	nt change com	pared to con	trol)
Rats, F344, male and female,	М	0	28	12:	1	542
50/sex/group		-	-3%	19%	%	39%
0, 625, 2,500, 10,000 ppm	F	0	46	17:	1	560
(0, 28, 121, 542 mg/kg-d in males;		-	-35%	-0.6	5%	-50%*
0, 46, 171, 560 mg/kg-d in females) ^a	Relative s	spleen wei	ght (<i>percen</i>	t change comp	ared to cont	rol)
Drinking water	М	0	28	122	1	542
104 weeks		-	2%	28%	6	55%*
Related reference: <u>JPEC (2010a</u>)	F	0	46	17:		560
(unpublished study)		-	-35%	3%		-45%
<u>Hagiwara et al. (2011)</u>	Absolute	spleen we	ight (<i>percei</i>	nt change com	pared to con	trol)
F344 Rats, male, 12/group				-5%		
Gavage 0, 1,000 mg/kg-day	Relative s	spleen wei	ght <i>(percen</i>	t change comp	ared to cont	rol)
23 weeks				0%		
Related reference: <u>JPEC (2008d</u>)						
(unpublished study)						
<u>Gaoua (2004b)</u>	Absolute	spleen we	-	nt change com	pared to con	trol)
Rats, Sprague Dawley,	М	0	250	50		1,000
Male and female, 25/sex/group		-	2%	2%		0%
0, 250, 500, 1,000 mg/kg-day	F	0	250	50		1,000
Gavage		-	-4%	-29		-3%
(F0 generation)				t change comp		
18 weeks (10 weeks before mating,	М	0	250	50		1,000
during a 2-week mating period,		-	3%	6%		6%
3-week gestation and until after	F	0	250	50		1,000
weaning F1)		-	4%	19		-6%
Banton et al. (2011)	Absolute	spleen we		nt change com		-
Rats, Sprague-Dawley, female,			0 25			1,000
10/group			39	% -15%	%	-9%
0, 250, 500, 1,000 mg/kg-day						
Gavage						
28 consecutive days						

Reference and study design	Results					
Adrenal Weight						
Suzuki et al. (2012)	Abs	olute adrenal v	veight (<i>percent cl</i>	nange compared	to control)	
Rats, F344, male and female,	М	0	28	121	542	
50/sex/group		-	5%	5%	79%	
0, 625, 2,500, 10,000 ppm	F	0	46	171	560	
(0, 28, 121, 542 mg/kg-d in males;		-	-7%*	6%	-8%*	
0, 46, 171, 560 mg/kg-d in females) ^a	Rel	ative adrenal w	eight (percent ch	ange compared t	o control)	
Drinking water	Μ	0	28	121	542	
104 weeks		-	9%	9%*	105%*	
Related reference: JPEC (2010a)	F	0	46	171	560	
(unpublished study)		-	4%	19%*	11%*	
<u>Gaoua (2004b)</u>	Abs	olute adrenal v	veight (<i>percent cl</i>	nange compared	to control)	
Rats, Sprague Dawley,	М	0	250	500	1,000	
Male and female, 25/sex/group		-	15%*	13%*	27%*	
0, 250, 500, 1,000 mg/kg-day	F	0	250	500	1,000	
Gavage		-	-3%	5%	6%	
(F0 generation)	Rel	ative adrenal w	eight (percent ch	ange compared t	o control)	
18 weeks (10 weeks before mating,	М	0	250	500	1,000	
during a 2-week mating period,		-	16%*	17%*	34%*	
3-week gestation and until after	F	0	250	500	1,000	
weaning F1)		-	6%	6%	4%	
Mortality						
Suzuki et al. (2012)	Sur	vival (<i>percent</i> d	change compared	to control)		
Rats, F344, male and female,	М	0	28	121	542	
50/sex/group		-	-3%	-11%	-11%	
0, 625, 2,500, 10,000 ppm	F	0	46	171	560	
(0, 28, 121, 542 mg/kg-d in males;		-	3%	6%	6%	
0, 46, 171, 560 mg/kg-d in females) ^a						
Drinking water						
104 weeks						
Related reference: JPEC (2010a)						
(unpublished study)						

Table 2-8. Evidence pertaining to other systemic effects in animals followingoral exposure to ETBE (continued)

^aConversion performed by study authors.

^{*}Statistically significant ($p \le 0.05$) based on analysis of data conducted by study authors.

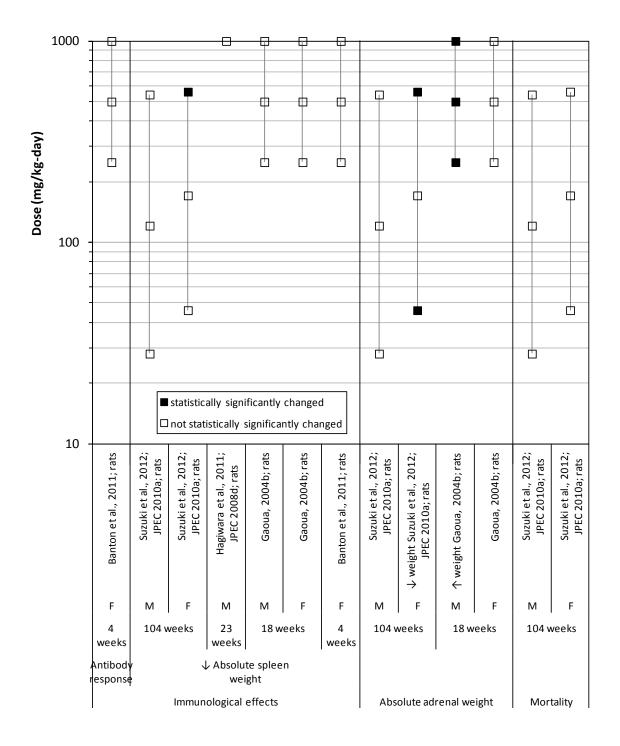
Percentage change compared to control = (treated value – control value) ÷ control value × 100.

1Table 2-9. Evidence pertaining to other systemic effects in animals following2inhalation exposure to ETBE

Reference and study design			Resu	ults				
Immunological Studies								
Li et al. (2011)	Numbe	r of CD3+, CD4	1+, and CD8+ s	splenic T cells in C	C57BL/6 (percent			
Mice, C57BL/6 and 129/SV		change compared to control)						
male, 5–6/group	6 weeks	0	, 25	100	400			
0, 500, 1,750, 5,000 ppm	CD3+	-	-14%	-13%	-24%*			
(0, 2,090, 7,315, 20,900 mg/m ³) ^a	CD4+	-	-15%	-11%	-23%			
Whole body inhalation	CD8+	-	-12%	-13%*	-23%*			
6 hours/day, 5 days/week	13 week	s 0	25	100	400			
6 or 13 weeks	CD3+	-	-9%	-17%*	-24%*			
	CD4+	-	11%	-28%*	-37%*			
	CD8+	-	-8%	-12%	20%			
Weng et al. (2011)	Leukocy	/te DNA dama	ge in Aldh2-/-	(percent change	compared to			
	control)							
Mice Aldh2-/- and wt C57BL/6	М	0	2,090	7,320	20,900			
male and female, 5/group		-	35%*	61%*	74%*			
0, 500, 1,750, 5,000 ppm	F	0	2,090	7,320	20,900			
(0, 2,090, 7,315, 20,900 mg/m ³) ^a		-	9%	34%	56%*			
Whole body inhalation								
6 hours/day, 5 days/week								
13 weeks								
Spleen Weight								
JPEC (2010b)	Absolut	e spleen weig	ht (<i>percent ch</i>	ange compared t	o control)			
Rat, F344, male and female,	М	0	28	121	542			
50 /sex/group		-	4%	32%	17%			
0, 500, 1,500, 5,000 ppm	F	0	46	171	560			
(0, 2,090, 6,270, 20,900 mg/m ³) ^a		-	5%	-39%	-43%*			
Whole body inhalation	Relative	spleen weigh	nt (<i>percent cho</i>	ange compared to	o control)			
6 hours/day, 5 days/week	М	0	28	121	542			
104 weeks		-	15%	43%*	66%*			
	F	0	46	171	560			
		-	30%	-31%	-25%			
<u>JPEC (2008b)</u>	Absolut	e spleen weig	ht (<i>percent ch</i>	ange compared t	o control)			
Rats, Sprague Dawley	M 0	627	2,090	6,270	20,900			
Male and female, 10–16/sex/group	-	-0.4%	7%	-1%	-9% {10%}			
0, 150, 500, 1,500, 5,000 ppm	F 0	627	2,090	6,270	20,900			
(0, 627, 2,090, 6,270, 20,900	-	-9%	-2%	-5%	-1% {6%}			
mg/m ³) ^a	Relative	e spleen weigł	nt (<i>percent cho</i>	ange compared to	o control)			
Whole body inhalation	M 0	627	2,090	6,270	20,900			
6 hours/day, 5 days/week	-	0%	5%	1%	-2% {6%}			
13 weeks	F 0	627	2,090	6,270	20,900			
{} = subset with 28 day recovery	-	-3%	5%	1%	12% {0%}			
after 13 week exposure								

Table 2-9. Evidence pertaining to other systemic effects in animals following inhalation exposure to ETBE(continued)

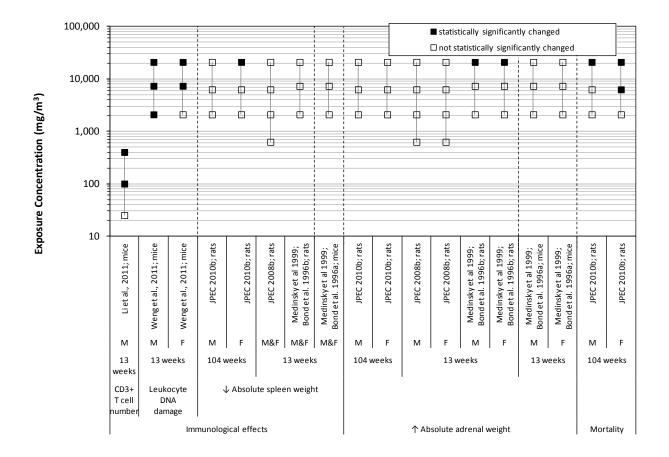
Reference and study design				Results		
Medinsky et al. (1999)	Ab	solute spleer	n weight (<i>perc</i>		e compared to	control)
Rats, F344, male and female	М	0		2,090	7,315	20,900
10/sex/group		-		6%	3%	5%
0, 500, 1,750, 5,000 ppm	F	0	2	2,090	7,315	20,900
(2,090, 7,320, 20,900 mg/m ³) ^a		-		-3%	3%	0%
Whole body inhalation						
6 hours/day, 5 days/week						
13 weeks						
Related reference: Bond et al.						
(1996b) (unpublished study)						
Medinsky et al. (1999)	Ab	solute spleer	n weight (<i>perc</i>	ent change	e compared to	control)
Mice, CD-1, male and female	М	0		2,090	7,320	20,900
10/sex/group				-5%	0%	-15%
0, 500, 1,750, 5,000 ppm	F	0		2,090	7,320	20,900
(2,090, 7,320, 20,900 mg/m ³) ^a		-		-11%	-2%	-11%
Whole body inhalation						
6 hours/day, 5 days/week						
13 weeks						
Related reference: Bond et al.						
(1996a) (unpublished study)						
Adrenal Weight						
JPEC (2010b)	Abs	solute adrena	al weight (<i>per</i>	cent chang	e compared to	control)
Rat, F344, male and female,	М	0	2,090)	6,270	20,900
50 /sex/group		-	-42%	, D	-55%	-49%
0, 500, 1,500, 5,000 ppm	F	0	2,090)	6,270	20,900
(0, 2,090, 6,270, 20,900 mg/m ³) ^a		-	-7%		-13%*	-9%
Whole body inhalation	Rel	ative adrena	l weight (<i>perc</i>	ent change	e compared to	control)
6 hours/day, 5 days/week	М	0	2,090)	6,270	20,900
104 weeks		-	-35%	, 	-52%	-33%*
	F	0	2,090)	6,270	20,900
		-	-3%		-6%	16%*
JPEC (2008b)	Abs	solute adrena	al weight (<i>per</i>	cent chang	e compared to	control)
Rats, Sprague-Dawley	М	0	627	2,090	6,270	20,894
Male and female, 10–16/sex/group		-	11%	8%	5%	10%
0, 150, 500, 1,500, 5,000 ppm	F	0	627	2,090	6,270	20,894
(0, 627, 2,090, 6,270, 20,900		-	-0.4%	-4%	2%	-4%
mg/m ³) ^a	Rel	ative adrena	l weight (<i>perc</i>	ent change	e compared to	control)
Whole body inhalation	М	0	626.8	2,089	6,270	20,894
6 hours/day, 5 days/week		-	11%	7%	7%	18%*
13 weeks	F	0	626.8	2,089	6,270	20,894
		-	6%	2%	9%	7%


Table 2-9. Evidence pertaining to other systemic effects in animals following	
inhalation exposure to ETBE(continued)	

Reference and study design	Results							
Medinsky et al. (1999)	Abso	Absolute adrenal weight (percent change compared to control)						
Rats, F344, male and female	М	0	2,090	7,315	20,900			
10/sex/group		-	11%	9%	34%*			
0, 500, 1,750, 5,000 ppm	F	0	2,090	7,315	20,900			
(2,090, 7,320, 20,900 mg/m ³) ^a		-	7%	7%	18%*			
Whole body inhalation								
6 hours/day, 5 days/week								
13 weeks								
Related reference: Bond et al.								
(1996b) (unpublished study)								
<u>Medinsky et al. (1999)</u>	Abso	lute adrenal v	veight (<i>percent cho</i>	inge compared t	to control)			
Mice, CD-1, male and female	М	0	2,090	7,315	20,900			
10/sex/group		-	0%	50%	0%			
0, 500, 1,750, 5,000 ppm	F	0	2,090	7,315	20,900			
(2,090, 7,320, 20,900 mg/m ³) ^a		-	-8%	8%	-8%			
Whole body inhalation								
6 hours/day, 5 days/week								
13 weeks								
Related reference: Bond et al.								
(1996a) (unpublished study)								
Mortality								
<u>JPEC (2010b)</u>	Survi	val rate						
Rat, F344, male and female,	М	0	2,090	6,270	20,900			
50 /sex/group		88%	76%	80%	60%*			
0, 500, 1,500, 5,000 ppm	F	0	2,090	6,270	20,900			
(0, 2,090, 6,270, 20,900 mg/m ³) ^a		76%	78%	60%*	60%*			
Whole body inhalation								
6 hours/day, 5 days/week								
104 weeks								

^a4.18 mg/m³ = 1 ppm.

Statistically significant ($p \le 0.05$) based on analysis of data conducted by study authors.


Percentage change compared to control = (treated value – control value) ÷ control value × 100.

1 2 3

Figure 2-8. Exposure-response array of other systemic effects following oral exposure to ETBE.

Preliminary Materials for the IRIS Toxicological Review of ETBE

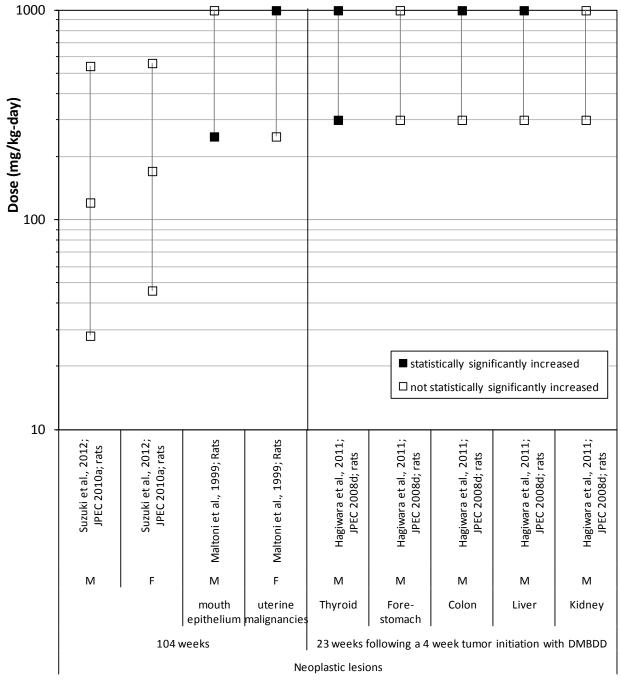
1 2 3

Figure 2-9. Exposure-response array of other systemic effects following inhalation exposure to ETBE.

2.7. Carcinogenic Effects 1

2

3


Table 2-10. Evidence pertaining to carcinogenic effects in animals exposed to ETBE

Reference and study design			Results		
Neoplastic lesions					
Suzuki et al. (2012)	Neoplasms				
Rats, F344, male and female,	No treatment r	elated effect	S		
50/sex/group					
0, 625, 2,500, 10,000 ppm					
(0, 28, 121, 542 mg/kg-d in males;					
0, 46, 171, 560 mg/kg-d in females) ^a					
Drinking water					
104 weeks					
Related reference: JPEC (2010a)					
(unpublished study)					
Maltoni et al. (1999)	Incidence of u	iterine mali	gnancies		
Rats, Sprague Dawley,	F C)	250		1,000
Male and female, 60/sex/group	2/0	60	10/60*		2/60
0, 250, 1,000 mg/kg-d	Incidence of n	nouth epith	elium tumors		
Gavage	M)	250		1,000
104 weeks	6/0	60	14/60		15/60*
<u>Hagiwara et al. (2011)</u>	Incidence of n	eoplastic le	sions		
Rats, F344, male	М	0	300		1,000
30/sex/group	Thyroid	8/30	17/30*		20/30*
0, 300, 1,000 mg/kg-d	Forestomach	0/30	4/30		3/30
Gavage	Colon	25/30	21/30		28/30*
23 weeks following a 4 week tumor	Liver	1/30	1/30		6/30*
initiation with DMBDD	Kidney	11/30	6/30		13/30
<u>JPEC (2010b)</u>	Incidence of h	epatocellul	ar adenomas ar	nd carcinoma	S
Rats, F344, male and female,	M 0		2,090	6,270	20,900
50/sex/group	0/50		2/50	1/49	10/50*
0, 500, 1,500, 5,000 ppm	F 0		2,090	6,270	20,900
(0, 2,090, 6,270, 20,900 mg/m ³) ^b	1/50		0/50	1/50	1/50
Whole body inhalation					
6 hours/day, 5 days/week					
104 weeks					
Preneoplastic lesions	ſ				
<u>JPEC (2010b</u>)	Incidence of a	cidophilic a	nd basophilic fo	oci in liver	
Rats, F344, male and female,	М	0	2,090	6,270	20,900
50/sex/group	Acidophilic	31/50	28/50	36/49	39/50*
0, 500, 1,500, 5,000 ppm	Basophilic	18/50	10/50	13/49	33/50*
(0, 2,090, 6,270, 20,900 mg/m ³) ^b	F	0	2,090	6,270	20,900
Whole body inhalation	Acidophilic	2/50	1/50	4/50	2/50
6 hours/day, 5 days/week	Basophilic	36/50	31/50	32/50	28/50
104 weeks					

^aConversion performed by study authors.

4 5 6 $^{b}4.18 \text{ mg/m}^{3} = 1 \text{ ppm}.$

^{*}Statistically significant ($p \le 0.05$) based on analysis of data conducted by study authors.

1 2 3 4

Figure 2-10. Exposure-response array of carcinogenic effects following oral exposure to ETBE.

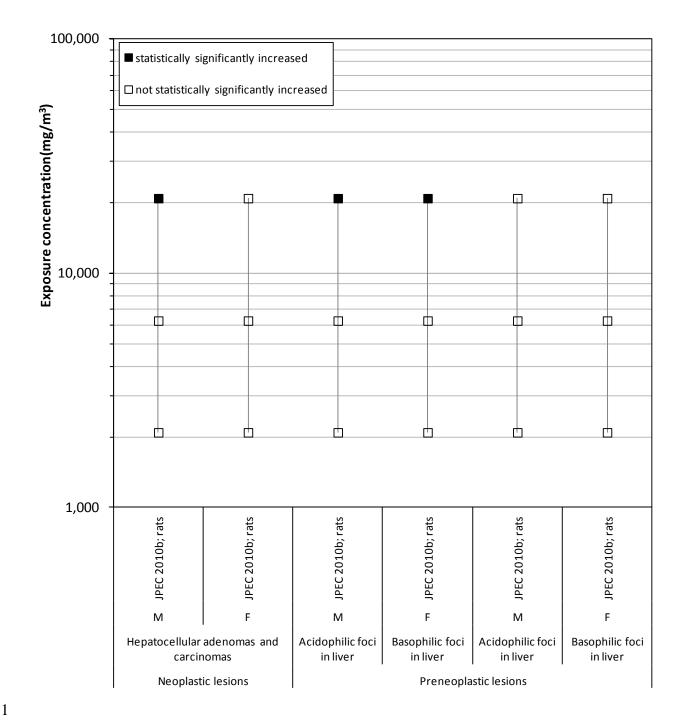


Figure 2-11. Exposure-response array of carcinogenic effects following inhalation exposure to ETBE.

1 **2.8. Genotoxic Effects**

2

3

Table 2-11. Evidence pertaining to genotoxic effects in animals exposed to ETBE

Reference and study design	Results					
Micronucleus assays						
<u>JPEC (2007c)</u>	Frec	juency of micro	nucleated polych	romatic erythroc	ytes	
Rats, F344,	М	0	101	259	, 626	
Male and female, 10/sex/group		0.2	0.2	0.1	0.2	
0, 1,600, 4,000, 10,000 ppm	F	0	120	267	629	
(0, 101, 259, 626 mg/kg-d in males;		0.1	0.2	0.1	0.1	
0, 120, 267, 629 mg/kg-d in females) ^a	Ratio of polychromatic erythrocytes / erythrocytes					
Drinking water	М	0	101	259	626	
13 weeks		24	26	25	24	
	F	0	120	267	629	
		24	25	25	24	
<u>JPEC (2007d)</u>	Frequency of micronucleated polychromatic erythrocytes					
Rats, F344	М	0	2,090	6,270	20,900	
Male and female, 10/sex/group		0.1	0.2	0.2	0.2	
0, 500, 1,500, 5,000 ppm	F	0	2,090	6,270	20,900	
(0, 2,090, 6,270, 20,900 mg/m ³) ^b		0.2	0.2	0.2	0.2	
Whole body inhalation	Ratio of polychromatic erythrocytes / erythrocytes					
6 hours/day, 5 days/week	М	0	2,090	6,270	20,900	
13 weeks		23	24	24	24	
	F	0	2,090	6,270	20,900	
		24	23	25	25	
<u>JPEC (2007a)</u>	Frequency of micronucleated polychromatic erythrocytes					
Rats, F344	М	0	500	1,000	2,000	
Male and female, 5/sex/group		0.1	0.1	0.2	0.1	
0, 500, 1,000, 2,000 mg/kg-d	F	0	500	1,000	2,000	
Gavage		0.1	0.1	0.1	0.1	
2 doses, 24 hr apart	Rati	Ratio of polychromatic erythrocytes / erythrocytes				
2 days	М	0	500	1,000	2,000	
		22	22	23	23	
	F	0	500	1,000	2,000	
		21	21	20	26	
<u>JPEC (2007b</u>)			onucleated polych			
Rats, F344	м	0	250	500	1,000	
Male and female, 5/sex/group		0.1	0.1	0.1	0.2	
0, 250, 500, 1,000 mg/kg-d	F	0	250	500	1,000	
Intraperitoneal injection		0.1	0.2	0.1	0.1	
2 doses, 24 hr apart	Rati		atic erythrocytes			
2 days	м	0	250	500	1,000	
		26	27	28	25	
	F	0	250	500	1,000	
		23	26	27	30	

Reference and study design	Results				
Micronucleus assays					
Vergnes and Kubena (1995b)	Frequency of micronucleated polychromatic erythrocytes				
Mice, CD-1	М	0	1,670	8,360	20,900
Male and female, 5/sex/group		0.2	0.2	0.2	0.2
0, 400, 2,000, 5,000 ppm	F	0	1,670	8,360	20,900
(0, 1,670, 8,360, 20,900 mg/m ³) ^b		0.2	0.1	0.1	0.2
Whole body inhalation	Mean polychromatic erythrocytes / 1,000 erythrocytes (% of cont				
6 hours/day for 5 days	М	0	1,670	8,360	20,900
		-	99%	95%	92%
	F	0	1,670	8,360	20,900
		-	100%	96%	97%

Table 2-11. Evidence pertaining to genotoxic effects in animals exposed toETBE (continued)

^aConversion performed by study authors.

 $^{b}4.18 \text{ mg/m}^{3} = 1 \text{ ppm}.$

*Statistically significant ($p \le 0.05$) based on analysis of data conducted by study authors.

Percentage change compared to control = (treated value – control value) ÷ control value × 100.

			Results ^b			
Endpoint	Test system	Dose/ concentration ^a	Without activation	With activation	Comments	Reference
Genotoxicity stud	Genotoxicity studies in prokaryotic organisms					
Reverse mutation	Salmonella typhimurium (TA97, TA98, TA100, TA1535)	10,000 μg/plate	_	_		<u>Zeiger et al.</u> (1992)
SOS repair induction	ND					
Genotoxicity stud	lies in nonmammal	ian eukaryotic or	ganisms	·	·	
Mutation	ND					
Recombination induction	ND					
Chromosomal aberration	ND					
Chromosomal malsegregation	ND					
Mitotic arrest	ND					
Genotoxicity stud	lies in mammalian o	cells—in vitro				
Mutation	Chinese hamster ovary (HGPRT)	5 mg/mL	-	-		<u>Vergnes and</u> <u>Kubena</u> (1995a)
Chromosomal aberrations	Chinese hamster ovary	5 mg/mL	-	-		<u>Vergnes</u> (1995)
Sister chromatid exchange (SCE)	ND					
DNA damage	ND					
DNA adducts	ND					
Genotoxicity studies in subcellular systems						
DNA binding	ND					

Table 2-12	. Summary of in vitro studies o	of ETBE genotoxicity
------------	---------------------------------	----------------------

^aLowest effective dose for positive results, highest dose tested for negative results. ^b+ = positive, ± = equivocal or weakly positive, – = negative, T = cytotoxicity, NA = not applicable, ND = no data.