

EPA/635/R-13/140 Preliminary Materials www.epa.gov/iris

Preliminary Materials for the Integrated Risk Information System (IRIS) Toxicological Review of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)

[CASRN 121-82-4]

July 2013

NOTICE

This document is comprised of **preliminary materials**, consisting of a literature search strategy, evidence tables, and exposure-response arrays. This information is distributed solely for the purpose of pre-dissemination review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. It is being circulated for review of its technical accuracy and science policy implications.

National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC

DISCLAIMER

This document is comprised of preliminary materials for review purposes only. This information is distributed solely for the purpose of pre-dissemination review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

CONTENTS

PR	EFACE	v
1.	DRAFT LITERATURE SEARCH STRATEGY	1-1
	1.1. Literature Search and Screening Strategy for RDX	1-1
	1.2. List of References Based on Search Strategy for RDX	1-15
	1.2.1. Primary Sources of Health Effects Data	1-15
	1.2.2. Not Primary Source of Health Effects Data, but Kept as Additional Resources	1-18
	1.2.3. Kept for Possible Further Review	1-33
2.	PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS	2-1
	2.1. Data Extraction: Preparation of Preliminary Evidence Tables and Exposure-Response Arrays	2-1
	2.2. Neurological Effects Evidence Tables and Array	2-3
	2.3. Mortality Evidence Table and Array	2-8
	2.4. Reproductive and Developmental Effects Evidence Tables and Array	2-13
	2.5. Liver Effects Evidence Tables and Array	2-21
	2.6. Kidney Effects Evidence Tables and Array	2-29
	2.7. Carcinogenicity Evidence Tables	2-35
	2.8. Other Systemic Effects Evidence Tables	2-37
	2.9. Genotoxic Effects	2-51

TABLES

Table 1-1.	Overview of database search strategy for RDX	1-4
Table 1-2.	Summary of detailed search strategies for RDX (Pubmed, Toxline, Toxcenter, TSCATS)	1-6
Table 1-3.	Summary of detailed search strategies for RDX (DTIC)	. 1-10
Table 1-4.	Processes used to augment the search of core databases for RDX	. 1-12
Table 1-5.	Summary disposition of DTIC database citations	. 1-13
Table 2-1.	Evidence pertaining to neurological effects in humans following exposure to RDX	2-3
Table 2-2.	Evidence pertaining to neurological effects in animals following oral exposure to RDX	2-4
Table 2-3.	Evidence pertaining to mortality following oral exposure to RDX	2-8
Table 2-4.	Evidence pertaining to reproductive and developmental effects in animals following	
	oral exposure to RDX	. 2-13
Table 2-5.	Evidence pertaining to male reproductive effects in animals following oral exposure	
	to RDX	. 2-17
	Evidence pertaining to liver effects of RDX in humans	
Table 2-8.	Evidence pertaining to renal effects of RDX in humans	. 2-29
Table 2-9.	Evidence pertaining to renal effects in animals following oral exposure to RDX	. 2-29
Table 2-10	. Liver tumors observed in chronic animal bioassays following oral exposure to RDX	. 2-35
Table 2-11	. Lung tumors observed in chronic animal bioassays following oral exposure to RDX	. 2-36
Table 2-12	. Evidence pertaining to other systemic effects (hematological) of RDX in humans	. 2-37
Table 2-13	. Evidence pertaining to other systemic effects in animals following oral exposure to	
	RDX	. 2-38
	. Summary of in vitro studies of RDX genotoxicity	
Table 2-15	. Summary of in vivo studies of RDX genotoxicity	. 2-53
Table 2-16	. Summary of in vitro and in vivo studies of RDX metabolite genotoxicity	. 2-54

FIGURES

Figure 1-1.	Literature search approach for RDX.	1-5
Figure 2-1.	Exposure-response array of neurological effects following oral exposure to RDX	2-7
Figure 2-2.	Exposure-response array of mortality following oral exposure to RDX	2-12
Figure 2-3.	Exposure-response array of reproductive and developmental effects following oral	
	exposure to RDX	2-16
Figure 2-4.	Exposure-response array of male reproductive effects following oral exposure to	
	RDX	2-20
Figure 2-5.	Exposure-response array of liver effects following oral exposure to RDX	2-28
Figure 2-6.	Exposure-response array of renal effects following oral exposure to RDX	2-34

PREFACE 2

1

3	This document presents the draft literature search strategy, preliminary evidence tables,
4	and preliminary exposure-response arrays for hexahydro-1,3,5-trinitro-1,3,5-triazine (henceforth
5	referred to as RDX) prepared under the auspices of EPA's Integrated Risk Information System
6	(IRIS) Program. This material is being released for public viewing and comment prior to a public
7	meeting, providing an opportunity for the IRIS Program to engage in early discussions with
8	stakeholders and the public on data that may be used to identify adverse health effects and
9	characterize exposure-response relationships.
10	The draft literature search strategy, preliminary evidence tables, and preliminary exposure-
11	response arrays are responsive to the National Research Council (NRC) 2011 report Review of the
12	Environmental Protection Agency's Draft IRIS Assessment of Formaldehyde. The literature search
13	strategy, which describes the processes for identifying scientific literature, screening studies for
14	consideration, and selecting studies for inclusion in evidence tables, is responsive to NRC
15	recommendations regarding systematic review of the scientific literature. In addition, NRC
16	recommendations for standardized presentation of key study data are addressed in the preliminary
17	evidence tables and preliminary exposure-response arrays.
18	EPA welcomes all comments on the draft literature search strategy, preliminary evidence
19	tables, and preliminary exposure-response arrays, such as remarks on the following:
20	 the clarity and transparency of the materials;
21	 the approach for identifying pertinent studies;
22	• the selection of studies for data extraction to preliminary evidence tables and exposure-
23	response arrays;
24	• any methodological considerations that could affect the interpretation of or confidence
25	in study results; and
26	 any additional studies published or nearing publication that may provide data for the
27	evaluation of human health hazard or dose-response relationships.
28	The preliminary evidence tables and exposure-response arrays should be regarded solely as
29	representing the data on each endpoint that have been identified as a result of the draft literature
30	search strategy. They do not reflect any conclusions as to hazard identification or dose-response
31	assessment. After obtaining public input and conducting additional study evaluation and data
32	integration, EPA will revise these materials to support the hazard identification and dose-response
33	assessment in a draft Toxicological Review.
34	

v

1. DRAFT LITERATURE SEARCH STRATEGY

1 **1.1. Literature Search and Screening Strategy for RDX**

2 The overall literature search approach is shown in Table 1-1 and the results are 3 summarized graphically in Figure 1-1. The literature search for RDX was conducted in five online 4 scientific databases in February 2013. For four of these databases (Pubmed, Toxline, Toxcenter, 5 and TSCATS) the detailed search strategy is provided in Table 1-2. Given the military applications 6 of RDX, the Defense Technical Information Center (DTIC) database was searched. Because of 7 limitations in the classification and distribution of materials in DTIC, a separate search strategy was 8 applied, which is described in Table 1-3. The computerized database searches were augmented by 9 review of online regulatory sources as well as "forward" and "backward" Web of Science searches of 10 2 recent reviews (Table 1-4). A special strategy was applied to searches of the DTIC online database. A total of 858 11 12 citations were identified, including 504 where the full-text document had unlimited distribution, 13 304 classified as "distribution limited to U.S. Government agencies only," and 50 classified as 14 "distribution limited to Department of Defense only." Of the 858 citations, 8 citations with 15 unlimited distribution and 10 citations with limited distribution were selected for further review. 16 Those 8 citations with unlimited distribution (that were not duplicated in other databases) were 17 uploaded to the Health and Environmental Research Online (HERO) website¹ (http://hero.epa.gov). 18 The 10 limited-distribution citations were evaluated for relevance to the assessment (i.e., with a 19 focus on whether they provided additional primary health effects data) to determine whether EPA 20 should seek authorization for public distribution and upload to HERO. A review of the abstract or 21 full-text of the documents associated with the citation resulted in the following determinations: 22 4 of the 10 citations could be excluded from further consideration because the reports 23 were not specific to RDX, or addressed environmental properties (e.g., leaching); 24 • 3 of the citations were determined not to provide additional primary health effects data 25 because they either described a study plan for, or reported data from, experiments that 26 were subsequently published (Williams et al., 2011; Hathaway and Buck, 1977) and had 27 already been identified by the literature search strategy;

1 citation was identified as actually having unlimited distribution (duplicate record in DTIC database), and was added to the HERO database (Lish et al., 1984);

¹ HERO is a database of scientific studies and other references used to develop EPA's risk assessments aimed at understanding the health and environmental effects of pollutants and chemicals. It is developed and managed in EPA's Office of Research and Development (ORD) by the National Center for Environmental Assessment (NCEA). The database includes more than 300,000 scientific articles from the peer-reviewed literature. New studies are added continuously to HERO.

- 1 • 1 citation was identified as relevant and provided animal inhalation data, but was not 2 brought forward for further review because of study quality considerations. These 3 study quality considerations included lack of a control group, small numbers of animals, 4 incomplete information on dosage or exposure levels, and inadequate reporting; 5 1 citation did not have an abstract or full text available outside of the Department of 6 Defense. Based on the title, this report appeared to deal specifically with the 7 manufacture and chemical/explosive properties of RDX. Given the available 8 information, it was determined that it was unlikely the report would provide primary
- 9 10

11 The rationales for exclusion of the other 841 references that were not selected for further 12 consideration are summarized in Table 1-5.

health effects data that warranted further review.

13 After electronically eliminating duplicates from the citations retrieved through these 14 databases, 906 citations were identified. Additionally, 18 citations were obtained using additional 15 search strategies described in Table 1-4. The resulting 924 citations were screened using the title. 16 abstract, and in limited instances, full text for pertinence to examining the health effects of RDX 17 exposure. A total of 652 references were identified as not being pertinent and were excluded from 18 further consideration (see Figure 1-1 for the exclusion categories). A total of 47 references were 19 identified as potential primary sources of health effects data and were considered for data 20 extraction to evidence tables and exposure-response arrays (see Section 1.2.1). A total of 210 21 references were considered pertinent, but not as primary sources of health effects data (e.g., 22 adsorption/distribution/metabolism/excretion [ADME] studies), and were kept as additional 23 resources for development of the Toxicological Review (see Section 1.2.2). If a reference did not 24 provide enough material to evaluate pertinence (e.g., no abstract), it was reserved for further 25 possible review; 15 such studies were identified for RDX (see Section 1.2.3). EPA welcomes 26 comments on studies identified for possible further review that may inform their utility to the 27 development of the Toxicological Review. 28 As illustrated in Figure 1-1, studies were identified and "tagged" in HERO based on 29 information provided in the title and/or abstract; in some cases this information was supplemented 30 by further review of the full text of the corresponding document. Based on this review, studies 31 were distributed in different groups that reflect the primary content of the citation. It should be 32 noted that studies were not given multiple tags, and the inclusion of a citation in a given category 33 (or tag) does not preclude its use in one or more other categories. For example, Woody et al. 34 (1986) is a case report that describes accidental ingestion of RDX by a child. In Figure 1-1 it is

- 35 included in the human studies category of primary health effects data. This case report also
- provides pharmacokinetic data and could be a pertinent source of information on the toxicokinetics 36
- 37 of RDX. In this instance, however, Woody et al. (1986) is not assigned a second tag for
- 38 toxicokinetics. For the purposes of this preliminary description of the literature search process, the

This document is a draft for review purposes only and does not constitute Agency policy. 1-2

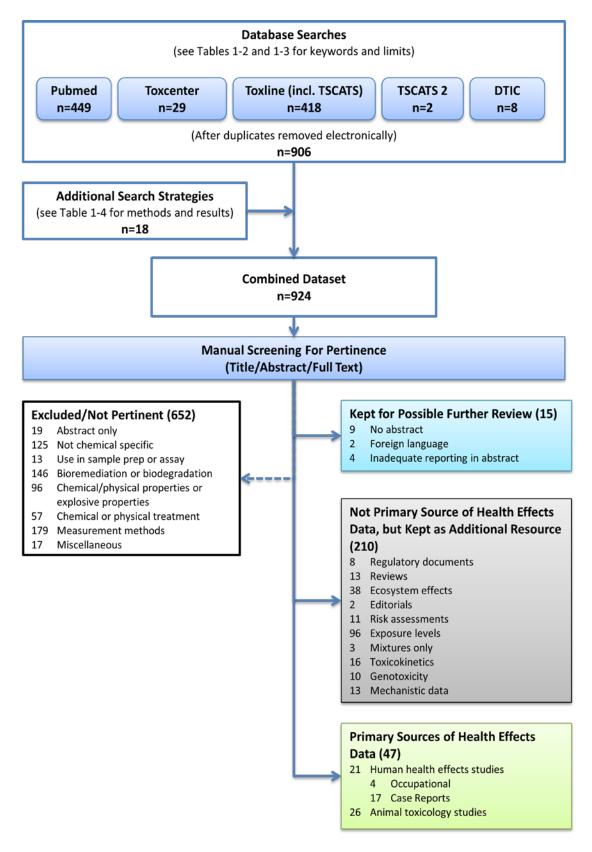

- 1 strategy of only using one tag per reference is utilized to allow the public and stakeholders to more
- 2 easily distinguish between citations that would be excluded from further review and those that may
- 3 be utilized in the development of the assessment.
- 4

Table 1-1. Overview of database search strategy for RE	DX
--	----

Database	Keywords
Database Pubmed Toxline TSCATS1 WOS Toxcenter DTIC	KeywordsChemical CASRN: 121-82-4Synonyms: Cyclonite OR RDX OR Cyclotrimethylenetrinitramine OR"cyclotrimethylene trinitramine" OR "Hexahydro-1,3,5-trinitro-1,3,5-triazine"OR "Hexahydro-1,3,5-trinitro-s-triazine" OR Hexogen OR "1,3,5-trinitro-1,3,5-triazine" OR "1,3,5-Triaza-1,3,5-trinitrocyclohexane" OR "1,3,5-Trinitro-1,3,5-triazcyclohexane" OR "1,3,5-trinitrohexahydro-1,3,5-triazine" OR"Esaidro-1,3,5-trinitro-1,3,5-trinitroperhydro-1,3,5-triazine" OR"Esaidro-1,3,5-trinitro-1,3,5-triazina" OR "Hexahydro-1,3,5-trinitro-1,3,5-triazin" OR "Perhydro-1,3,5-trinitro-1,3,5-triazine" ORCyclotrimethylenenitramine OR Trimethylenetrinitramine ORtrinitramine" OR Trimethyleentrinitramine OR "Trinitrocyclotrimethylenetriamine" OR Trinitrotrimethylenetriamine OR "CX 84A" OR Cyklonit ORGeksogen OR Heksogen OR Hexogeen OR Hexolite OR "KHP 281" OR "PBX (af)108" OR "PBXW 108(E)" OR "Pbx(AF) 108"Synonym and CASRN search for all databases; Toxcenter, Pubmed, and WOSlimited using toxicity-related keywordsToxicity-related terms (see Table 1-2 for specific keywords)Toxicity (including duration, effects to children and occupational exposure);development; reproduction; teratogenicity; exposure routes;
	pharmacokinetics; toxicokinetics; metabolism; body fluids; endocrinology; carcinogenicity; genotoxicity; antagonists; inhibitors
ChemID	Searched by CASRN
TSCATS 2 & 8e submissions	

2

1

Figure 1-1. Literature search approach for RDX.

Table 1-2. Summary of detailed search strategies for RDX (Pubmed, Toxline, 1 2 Toxcenter, TSCATS)

Database	Set #	Terms	Hits
PubMed Date limit: 1/1/2012 – 2/2013	1A1	(Cyclonite[tw] OR RDX[tw] OR Cyclotrimethylenetrinitramine[tw] OR "cyclotrimethylene trinitramine"[tw] OR "Hexahydro-1,3,5-trinitro-1,3,5- triazine"[tw] OR "Hexahydro-1,3,5-trinitro-s-triazine"[tw] OR Hexogen[tw] OR "1,3,5-trinitro-1,3,5-triazine"[tw] OR "1,3,5-Triaza-1,3,5- trinitrocyclohexane"[tw] OR "1,3,5-Trinitro-1,3,5-triazacyclohexane"[tw] OR "1,3,5-Trinitrohexahydro-1,3,5-triazine"[tw] OR "1,3,5- Trinitrohexahydro-s-triazine"[tw] OR "1,3,5-Trinitroperhydro-1,3,5- triazine"[tw] OR "Esaidro-1,3,5-trinitro-1,3,5-triazina"[tw] OR "Hexahydro-1,3,5-trinitro-1,3,5-triazin"[tw] OR "Perhydro-1,3,5-trinitro- 1,3,5-triazine"[tw] OR Cyclotrimethylenenitramine[tw] OR Trimethylenetrinitramine[tw] OR "Trinitrocyclotrimethylene triamine"[tw] OR Trinitrotrimethylenetriamine[tw] OR "CX 84A"[tw] OR Cyklonit[tw] OR "KHP 281"[tw] OR "PBX (af) 108"[tw] OR "PBXW 108(E)"[tw] OR "Pbx(AF) 108"[tw]) AND (("2012/01/01"[Date - MeSH] : "3000"[Date - MeSH]) OR ("2012/01/01"[Date - Create] : "3000"[Date - Create]]))	112
PubMed Date limit: 1950's- 4/2012	1A2	((((121-82-4) OR (Cyclonite[tw] OR Cyclotrimethylenetrinitramine[tw] OR "cyclotrimethylene trinitramine"[tw] OR "Hexahydro-1,3,5-trinitro-1,3,5- triazine"[tw] OR "Hexahydro-1,3,5-trinitro-s-triazine"[tw] OR Hexogen[tw] OR "1,3,5-trinitro-1,3,5-triazine"[tw] OR "1,3,5-triaza-1,3,5- trinitrocyclohexane"[tw] OR "1,3,5-trinitro-1,3,5-triazacyclohexane"[tw] OR "1,3,5-Trinitrohexahydro-1,3,5-triazine"[tw] OR "1,3,5- Trinitrohexahydro-s-triazine"[tw] OR "1,3,5-triazina"[tw] OR "Hexahydro-1,3,5-trinitro-1,3,5-triazina"[tw] OR "Hexahydro-1,3,5-trinitro-1,3,5-triazin"[tw] OR "Perhydro-1,3,5-trinitro- 1,3,5-triazine"[tw] OR Cyclotrimethylenenitramine[tw] OR Trimethylenetrinitramine[tw] OR "Trinitrocyclotrimethylene trinime"[tw] OR Trimethylenetrinitramine[tw] OR "Trinitrocyclotrimethylene triamine"[tw] OR Geksogen[tw] OR Heksogen[tw] OR Hexogeen[tw] OR Hexolite[tw] OR "KHP 281"[tw] OR "PBX (af) 108"[tw] OR "PBXW 108(E)"[tw] OR "Pbx(AF) 108"[tw]) OR (rdx[tw])) NOT medline[sb]) OR ((121-82-4) OR (Cyclonite[tw] OR "Hexahydro-1,3,5-trinitro-1,3,5-trinitro-1,3,5- triazine"[tw] OR "Hexahydro-1,3,5-trinitro-1,3,5-trinitro-1,3,5- triazine"[tw] OR "Hexahydro-1,3,5-trinitro-1,3,5-trinitro-1,3,5- triazine"[tw] OR "Hexahydro-1,3,5-trinitro-1,3,5-trinitro-1,3,5- triazine"[tw] OR "Hexahydro-1,3,5-trinitro-1,3,5-trinitro-1,3,5- trinitrocyclohexane"[tw] OR "1,3,5-Trinitro-1,3,5-trinizacyclohexane"[tw] OR "1,3,5-Trinitro-1,3,5-triazine"[tw] OR "1,3,5-Trinitro-1,3,5- triazine"[tw] OR "Esaidro-1,3,5-trinitro-1,3,5-triazacyclohexane"[tw] OR "1,3,5-trinitro-1,3,5-trinitro-1,3,5-triazina"[tw] OR "Hexahydro-1,3,5-trinitro-1,3,5-trinitro-1,3,5-triazina"[tw] OR "Hexahydro-1,3,5-trinitro-1,3,5-triazina"[tw] OR "Hexahydro-1,3,5-trinitro-1,3,5-triazina"[tw] OR "Trinethylenetrinitramine[tw] OR "Trinethylene trinitramine"[tw] OR Trinethylenetrinitramine[tw] OR "Trinethylene trinitramine"[tw] OR Trimethylenetrinitramine[tw] OR "Trinethylene trinitramine"[tw] OR	337

Database	Set #	Terms	Hits
		Geksogen[tw] OR Heksogen[tw] OR Hexogeen[tw] OR Hexolite[tw] OR	
		"KHP 281"[tw] OR "PBX (af) 108"[tw] OR "PBXW 108(E)"[tw] OR "Pbx(AF)	
		108"[tw]) OR (rdx[tw])) AND (to[sh] OR po[sh] OR ae[sh] OR pk[sh] OR	
		(me[sh] AND (humans[mh] OR animals[mh])) OR ci[sh] OR bl[sh] OR cf[sh]	
		OR ur[sh] OR ((pharmacokinetics[mh] OR metabolism[mh]) AND	
		(humans[mh] OR mammals[mh])) OR "dose-response relationship,	
		drug"[mh] OR risk[mh] OR "toxicity tests"[mh] OR noxae[mh] OR	
		cancer[sb] OR "endocrine system"[mh] OR "endocrine disruptors"[mh] OR	
		"Hormones, Hormone Substitutes, and Hormone Antagonists"[mh] OR	
		triazines/ai OR ("Inhalation Exposure"[Mesh] OR "Maternal	
		Exposure"[Mesh] OR "Maximum Allowable Concentration"[Mesh] OR	
		"Occupational Exposure"[Mesh] OR "Paternal Exposure"[Mesh] OR	
		"Environmental Exposure" [Mesh:noexp])))) NOT (((((121-82-4) OR	
		(Cyclonite[tw] OR Cyclotrimethylenetrinitramine[tw] OR "cyclotrimethylene trinitramine"[tw] OR "Hexahydro-1,3,5-trinitro-1,3,5-	
		triazine"[tw] OR "Hexahydro-1,3,5-trinitro-s-triazine"[tw] OR Hexagen[tw]	
		OR "1,3,5-trinitro-1,3,5-triazine"[tw] OR "1,3,5-Triaza-1,3,5-	
		trinitrocyclohexane"[tw] OR "1,3,5-Trinitro-1,3,5-triazacyclohexane"[tw]	
		OR "1,3,5-Trinitrohexahydro-1,3,5-triazine"[tw] OR "1,3,5-	
		Trinitrohexahydro-s-triazine"[tw] OR "1,3,5-Trinitroperhydro-1,3,5-	
		triazine"[tw] OR "Esaidro-1,3,5-trinitro-1,3,5-triazina"[tw] OR	
		"Hexahydro-1,3,5-trinitro-1,3,5-triazin"[tw] OR "Perhydro-1,3,5-trinitro-	
		1,3,5-triazine"[tw] OR Cyclotrimethylenenitramine[tw] OR	
		Trimethylenetrinitramine[tw] OR "Trimethylene trinitramine"[tw] OR	
		Trimethyleentrinitramine[tw] OR "Trinitrocyclotrimethylene triamine"[tw]	
		OR Trinitrotrimethylenetriamine[tw] OR "CX 84A"[tw] OR Cyklonit[tw] OR	
		Geksogen[tw] OR Heksogen[tw] OR Hexogeen[tw] OR Hexolite[tw] OR	
		"KHP 281"[tw] OR "PBX (af) 108"[tw] OR "PBXW 108(E)"[tw] OR "Pbx(AF)	
		108"[tw]) OR (rdx[tw])) NOT medline[sb]) OR (((121-82-4) OR	
		(Cyclonite[tw] OR Cyclotrimethylenetrinitramine[tw] OR	
		"cyclotrimethylene trinitramine"[tw] OR "Hexahydro-1,3,5-trinitro-1,3,5-	
		triazine"[tw] OR "Hexahydro-1,3,5-trinitro-s-triazine"[tw] OR Hexogen[tw]	
		OR "1,3,5-trinitro-1,3,5-triazine"[tw] OR "1,3,5-Triaza-1,3,5-	
		trinitrocyclohexane"[tw] OR "1,3,5-Trinitro-1,3,5-triazacyclohexane"[tw]	
		OR "1,3,5-Trinitrohexahydro-1,3,5-triazine"[tw] OR "1,3,5- Trinitrohexahydro-s-triazine"[tw] OR "1,3,5-Trinitroperhydro-1,3,5-	
		triazine"[tw] OR "Esaidro-1,3,5-trinitro-1,3,5-triazina"[tw] OR	
		"Hexahydro-1,3,5-trinitro-1,3,5-triazin"[tw] OR "Perhydro-1,3,5-trinitro-	
		1,3,5-triazine"[tw] OR Cyclotrimethylenenitramine[tw] OR	
		Trimethylenetrinitramine[tw] OR "Trimethylene trinitramine"[tw] OR	
		Trimethyleentrinitramine[tw] OR "Trinitrocyclotrimethylene triamine"[tw]	
		OR Trinitrotrimethylenetriamine[tw] OR "CX 84A"[tw] OR Cyklonit[tw] OR	
		Geksogen[tw] OR Heksogen[tw] OR Hexogeen[tw] OR Hexolite[tw] OR	
		"KHP 281"[tw] OR "PBX (af) 108"[tw] OR "PBXW 108(E)"[tw] OR "Pbx(AF)	
		108"[tw]) OR (rdx[tw])) AND (to[sh] OR po[sh] OR ae[sh] OR pk[sh] OR	
		(me[sh] AND (humans[mh] OR animals[mh])) OR ci[sh] OR bl[sh] OR cf[sh]	
		OR ur[sh] OR ((pharmacokinetics[mh] OR metabolism[mh]) AND	
		(humans[mh] OR mammals[mh])) OR "dose-response relationship,	
		drug"[mh] OR risk[mh] OR "toxicity tests"[mh] OR noxae[mh] OR	
		cancer[sb] OR "endocrine system"[mh] OR "endocrine disruptors"[mh] OR	
		"Hormones, Hormone Substitutes, and Hormone Antagonists"[mh] OR	

Database	Set #	Terms	Hits
		triazines/ai OR ("Inhalation Exposure"[Mesh] OR "Maternal Exposure"[Mesh] OR "Maximum Allowable Concentration"[Mesh] OR "Occupational Exposure"[Mesh] OR "Paternal Exposure"[Mesh] OR "Environmental Exposure"[Mesh:noexp])))) AND (invertebrates OR aquatic organisms OR fish OR fishes OR amphibians OR earthworm*))	
Toxline Date limit 2011-2013	181	@OR+("Cyclonite"+"RDX"+"Cyclotrimethylenetrinitramine"+"cyclotrimeth ylene trinitramine"+"Hexahydro-1,3,5-trinitro-1,3,5- triazine"+"Hexahydro-1,3,5-trinitro-s-triazine"+"Hexogen"+"1,3,5-trinitro- 1,3,5-triazine"+"1,3,5-Triaza-1,3,5-trinitrocyclohexane"+"1,3,5-Trinitro- 1,3,5-triazacyclohexane"+"1,3,5-Trinitrohexahydro-1,3,5-triazine"+"1,3,5- Trinitrohexahydro-s-triazine"+@term+@rn+121-82- 4)+@AND+@range+yr+2011+2013+@NOT+@org+pubmed+pubdart+crisp +tscats	5
	182	<pre>@OR+("1,3,5-Trinitroperhydro-1,3,5-triazine"+"Esaidro-1,3,5-trinitro- 1,3,5-triazina"+"Hexahydro-1,3,5-trinitro-1,3,5-triazin"+"Perhydro-1,3,5- trinitro-1,3,5- triazine"+"Cyclotrimethylenenitramine"+"Trimethylenetrinitramine"+"Tri methylene trinitramine"+"Trimethyleentrinitramine"+"Trinitrocyclotrimethylene triamine"+"Trinitrotrimethylenetriamine"+"CX 84A"+"Cyklonit"+"Geksogen"+"Heksogen"+"Hexogeen"+"Hexolite"+"KHP 281")+@AND+@range+yr+2011+2013+@NOT+@org+pubmed+pubdart+c risp+tscats</pre>	0
Toxline Date limit: 1907 – 4/2012	1B3	casrn or synonyms -removed invertebrates, aquatic organisms, amphibians, earthworms	507
TSCATS	1C1	@term+@rn+121-82-4+@AND+@org+tscats	4
Toxcenter Date limit: 1/1/2012 – 2/2013	1D1	((121-82-4 NOT (patent/dt OR tscats/fs)) OR (Cyclonite OR RDX OR Cyclotrimethylenetrinitramine OR "cyclotrimethylene trinitramine" OR "Hexahydro-1,3,5-trinitro-1,3,5-triazine" OR "Hexahydro-1,3,5-trinitro-s- triazine" OR Hexogen OR "1,3,5-trinitro-1,3,5-triazine" OR "1,3,5-Trinitrocyclohexane" OR "1,3,5-trinitro-1,3,5-triazacyclohexane" OR "1,3,5-Trinitrohexahydro-1,3,5-triazine" OR "1,3,5-Trinitrohexahydro-s- triazine" OR "1,3,5-Trinitroperhydro-1,3,5-triazine" OR "Esaidro-1,3,5- trinitro-1,3,5-triazina" OR "Hexahydro-1,3,5-trinitro-1,3,5-triazin" OR "Perhydro-1,3,5-trinitro-1,3,5-triazine" OR Cyclotrimethylenenitramine OR Trimethylenetrinitramine OR "Trimethylene trinitramine" OR Trinitrotrimethylenetrinitramine OR "CX 84A" OR Cyklonit OR Geksogen OR Heksogen OR Hexogeen OR Hexolite OR "KHP 281" OR "PBX (af) 108" OR "PBXW 108(E)" OR "Pbx(AF) 108") AND (py>2012 OR ed>20120101) AND (chronic OR immunotox? OR neurotox? OR toxicokin? OR biomarker? OR neurolog? OR pharmacokin? OR subchronic OR pbpk OR epidemiology/st,ct, it) OR acute OR subacute OR Id50# OR Ic50# OR (toxicity OR adverse OR poisoning)/st,ct,it OR inhal? OR pulmon? OR nasal? OR lung? OR respir? OR occupation? OR workplace? OR worker? OR oral OR orally OR ingest? OR gavage? OR diet OR diets OR dietary OR	26

Database	Set #	Terms	Hits
		drinking(w)water OR (maximum and concentration? and (allowable OR permissible)) OR (abort? OR abnormalit? OR embryo? OR cleft? OR fetus? OR foetus? OR fetal? OR foetal? OR fertil? OR malform? OR ovum OR ova OR ovary OR placenta? OR pregnan? OR prenatal OR perinatal? OR postnatal? OR reproduc? OR steril? OR teratogen? OR sperm OR spermato? OR development OR developmental? OR zygote? OR child OR children OR adolescen? OR infant OR wean? OR offspring OR age(w)factor? OR dermal? OR dermis OR skin OR epiderm? OR cutaneous? OR carcinog? OR cocarcinog? OR cancer? OR precancer? OR neoplas? OR tumor? OR tumour? OR oncogen? OR lymphoma? OR carcinom? OR genetox? OR genotox? OR mutagen? OR genetic(w)toxic? OR nephrotox? OR hepatotox? OR endocrin? OR estrogen? OR androgen? OR hormon? OR rat OR rats OR mouse OR mice OR muridae OR dog OR goats OR sheep OR monkey? OR macaque? OR marmoset? OR primate? OR mammal? OR ferret? OR gerbil? OR rodent? OR lagomorpha OR boxine OR cancine OR cat OR cats OR feline OR pigeon? OR cocupation? OR worker? OR epidem?) AND (biosis/fs AND 4-?/cc) Duplicates were removed; Biosis subfile results were date limited to avoid	
	150	extensive overlap with Toxline	227
Toxcenter Date limit: 1907 – 4/2012	1D2	((121-82-4 NOT (patent/dt OR tscats/fs)) OR (Cyclonite OR RDX OR Cyclotrimethylenetrinitramine OR "cyclotrimethylene trinitramine" OR "Hexahydro-1,3,5-trinitro-1,3,5-triazine" OR "Hexahydro-1,3,5-trinitro-s- triazine" OR Hexogen OR "1,3,5-trinitro-1,3,5-triazine" OR "1,3,5-Trinitrohexahydro-1,3,5-triazine" OR "1,3,5-trinitrohexahydro-s- triazine" OR "1,3,5-trinitroperhydro-1,3,5-triazine" OR "1,3,5-trinitrohexahydro-s- triazine" OR "1,3,5-trinitro-1,3,5-trinitro-1,3,5-triazin" OR "Perhydro-1,3,5-trinitro-1,3,5-trinitro-1,3,5-triazin" OR "Perhydro-1,3,5-trinitro-1,3,5-tr	337

Database	Set #	Terms	Hits
		OR spermatu? OR spermi? OR spermo? OR neonat? OR newborn OR development OR developmental? OR zygote? OR child OR children OR adolescen? OR infant OR wean? OR offspring OR age(w)factor? OR dermal? OR dermis OR skin OR epiderm? OR cutaneous? OR carcinog? OR cocarcinog? OR cancer? OR precancer? OR neoplas? OR tumor? OR tumour? OR oncogen? OR lymphoma? OR carcinom? OR genetox? OR genotox? OR mutagen? OR genetic(w)toxic? OR nephrotox? OR hepatotox? OR endocrin? OR estrogen? OR androgen? OR hormon? OR rat OR rats OR mouse OR mice OR muridae OR dog OR dogs OR rabbit? OR hamster? OR pig OR pigs OR swine OR porcine OR goat OR goats OR sheep OR monkey? OR macaque? OR marmoset? OR primate? OR mammal? OR ferret? OR gerbil? OR rodent? OR lagomorpha OR baboon? OR bovine OR canine OR cat OR cats OR feline OR pigeon? OR occupation? OR worker? OR epidem?) AND (biosis/fs AND py>1999 AND (caplus/fs AND 4-?/cc) Duplicates were removed; Biosis subfile results were date limited to avoid extensive overlap with Toxline	
Merged Reference Set	1	Including additional strategies and DTIC (after duplicate removal)	924

1

2	
_	
_	

Table 1-3. Summary of detailed search strategies for RDX (DTIC)

Database	Set #	Terms	Hits
DTIC	2A1	key:((toxicity OR phramacokinetics OR toxicology OR pharmacology OR poisoning OR toxic hazards OR radiation hazards OR radiation effects OR	504 (8 selected and
Search date:		toxic diseases OR toxic agents OR lethal agents OR antidotes OR death OR "signs and symptoms" OR cancer OR carinogens OR physiology OR	added to HERO)
2/11/2013		biochemistry OR body weight OR anatomy OR body fluids OR metabolism OR immunology OR mutagens OR teratogenic compounds OR mutations OR antimetabolites) NOT (aquatic animals OR Invertebrates OR venomous animals OR wildlife OR biodegradation)) and ("121-82-4" OR Cyclonite OR RDX OR Cyclotrimethylenetrinitramine OR "cyclotrimethylene trinitramine" OR "Hexahydro-1,3,5-trinitro-1,3,5-triazine" OR "Hexahydro- 1,3,5-trinitro-s-triazine" OR Hexogen OR Cyclotrimethylenenitramine OR Trimethylenetrinitramine OR "Trimethylene trinitramine" OR Trimethylenetrinitramine OR "Trinitrocyclotrimethylene triamine" OR Trinitrotrimethylenetriamine OR Hexolite) and distco:(A) Report Date: All dates	
	2A2	Searched for: distco:(govt) and key:((toxicity OR phramacokinetics OR toxicology OR pharmacology OR poisoning OR toxic hazards OR radiation hazards OR radiation effects OR toxic diseases OR toxic agents OR lethal agents OR antidotes OR death OR "signs and symptoms" OR cancer OR carinogens OR physiology OR biochemistry OR body weight OR anatomy OR body fluids OR metabolism OR immunology OR mutagens OR teratogenic compounds OR mutations OR antimetabolites) NOT (aquatic animals OR Invertebrates OR venomous animals OR wildlife OR biodegradation)) and ("121-82-4" OR Cyclonite OR RDX OR	304 (7 selected for further consideration)

Database	Set #	Terms	Hits
		Cyclotrimethylenetrinitramine OR "cyclotrimethylene trinitramine" OR "Hexahydro-1,3,5-trinitro-1,3,5-triazine" OR "Hexahydro-1,3,5-trinitro-s- triazine" OR Hexogen OR Cyclotrimethylenenitramine OR Trimethylenetrinitramine OR "Trimethylene trinitramine" OR Trimethyleentrinitramine OR "Trinitrocyclotrimethylene triamine" OR Trinitrotrimethylenetriamine OR Hexolite) Report Date: All dates	
	2A3	Searched for: distco:(dod) and key:((toxicity OR phramacokinetics OR toxicology OR pharmacology OR poisoning OR toxic hazards OR radiation hazards OR radiation effects OR toxic diseases OR toxic agents OR lethal agents OR antidotes OR death OR "signs and symptoms" OR cancer OR carinogens OR physiology OR biochemistry OR body weight OR anatomy OR body fluids OR metabolism OR immunology OR mutagens OR teratogenic compounds OR mutations OR antimetabolites) NOT (aquatic animals OR Invertebrates OR venomous animals OR wildlife OR biodegradation)) and ("121-82-4" OR Cyclonite OR RDX OR Cyclotrimethylenetrinitramine OR "cyclotrimethylene trinitramine" OR "Hexahydro-1,3,5-trinitro-1,3,5-triazine" OR "Hexahydro-1,3,5-trinitro-s- triazine" OR Hexogen OR Cyclotrimethylene trinitramine OR Trimethylenetrinitramine OR "Trinitrocyclotrimethylene triamine" OR Trimethylenetrinitramine OR Hexolite) Report Date: All dates	50 (3 selected for further consideration)
Merged	2		858 (8 added to HERO; see text)

1

Table 1-4. Processes used to augment the search of core databases for RDX

System Used	Selected Key Reference(s) or Sources	Date	Additional References Identified
Web of Science, forward search	Sweeney, LM; Gut, CP, Jr.; Gargas, ML; Reddy, G; Williams, LR; Johnson, MS. (2012). Assessing the non-cancer risk for RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) using physiologically based pharmacokinetic (PBPK) modeling. 62: 107-114. 1 search result	3/2013	0 citations added
	Sweeney, LM; Okolica, MR; Gut, CP, Jr; Gargas, ML. (2012). Cancer mode of action, weight of evidence, and proposed cancer reference value for hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX). Regul Toxicol Pharmacol 64: 205-224 0 search results	3/2013	0 citations added
Web of Science, backward search	Sweeney, LM; Gut, CP, Jr.; Gargas, ML; Reddy, G; Williams, LR; Johnson, MS. (2012). Assessing the non-cancer risk for RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) using physiologically based pharmacokinetic (PBPK) modeling. 62: 107-114. 35 cited papers	3/2013	0 citations added
	Sweeney, LM; Okolica, MR; Gut, CP, Jr; Gargas, ML. (2012). Cancer mode of action, weight of evidence, and proposed cancer reference value for hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX). Regul Toxicol Pharmacol 64: 205-224 69 cited papers	3/2013	3 citations added
Background Check	Combination of CASRN and synonyms searched on the following websites: ATSDR http://www.atsdr.cdc.gov/substances/index.asp (Note: the reference list for the ATSDR toxicological profile for RDX was compared to the search results and relevant references were added) CalEPA (Office of Environmental Health Hazard Assessment) (http://www.oehha.ca.gov/risk.html) eChemPortal (http://www.echemportal.org/echemportal/participant/page .action?pageID=9) EPA Acute Exposure Guideline Levels (http://www.epa.gov/oppt/aegl/pubs/chemlist.htm) EPA – IRISTrack/New Assessments and Reviews (http://cfpub.epa.gov/ncea/iristrac/) to find dates (http://www.epa.gov/ncea/iris/index.html) to find data EPA NSCEP (http://www.epa.gov/ncepihom/) EPA Science Inventory (http://cfpub.epa.gov/si/) Federal Docket www.regulations.gov Health Canada First Priority List Assessments	4/11/2012	15 citations added

This document is a draft for review purposes only and does not constitute Agency policy.1-12DRAFT—DO NOT CITE OR QUOTE

(http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/psl1-		
lsp1/index-eng.php)		
Health Canada Second Priority List Assessments		
(http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/psl2-		
lsp2/index-eng.php)		
IARC		
(http://monographs.iarc.fr/htdig/search.html)		
IPCS INCHEM		
(http://www.inchem.org/)		
NAS		
via NAP (<u>http://www.nap.edu/</u>)		
NCI		
(http://www.cancer.gov)		
NCTR		
(http://www.fda.gov/AboutFDA/CentersOffices/OC/OfficeofS		
cientificandMedicalPrograms/NCTR/default.htm)		
National Institute for Environmental Health Sciences (NIEHS)		
http://www.niehs.nih.gov/		
NIOSHTIC 2		
(http://www2a.cdc.gov/nioshtic-2/)		
NTP - RoC, status, results, and management reports		
(http://ntpsearch.niehs.nih.gov/query.html)		
WHO assessments – CICADS, EHC		
(http://www.who.int/ipcs/assessment/en/)		

1 2

3

Table 1-5. Summary disposition of DTIC database citations

Criteria	Percent of Citations
Exclusion - Not chemical-specific	~50%
Exclusion - Bioremediation or biodegradation	5%
Exclusion - Chemical/physical properties of explosive properties	<5%
Exclusion - Physical or chemical treatment	<5%
 Exclusion - Miscellaneous, including: Superfund RODs for which the abstract did not specify whether RDX was a contaminant of concern Meeting minutes and conference proceedings for which only general categories of topics were included in the DTIC record DTIC records containing only a title containing inadequate information with which to classify the citation 	~35%
Exclusion Total	98% (841 total)
Additional Resource – Regulatory documents	<5%
Additional Resource – Reviews	<5%
Additional Resource – Ecosystem effects	<5%
Additional Resource – Risk assessments	<5%
Additional Resource – Exposure levels	<5%

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Additional Resource – Measurement methods	<5%
Additional Resource – Mixture only	<5%
Additional Resource – Toxicokinetics	<5%
Possible Further Review – No abstract	<5%
Possible Further Review – inadequate reporting in abstract	<5%
Inclusion Total	~2% (17 total)
TOTAL NUMBER OF DTICS CITATIONS (including 10 limited distribution for further review)	858

1

1	1.2. I	List of References Based on Search Strategy for RDX
2		Citations for excluded references are not listed here, but can be found on the Health and
3	Enviro	nmental Research Online (HERO) Web site (http://hero.epa.gov/RDX).
4	121	Primary Sources of Health Effects Data
	112111	
5	c	Data from citations in bold are displayed in tabular or graphical form in Section 2. See
6		2.1 for a description of the process of selecting these studies for evidence tables and
7	exposu	re-response arrays.
8		
9		<u>Human Health Effects</u> (21 citations)
10	1.	ATSDR. (1996). Symptom and disease prevalence with biomarkers health study Cornhusker
11		Army Ammunition Plant Hall County, Nebraska. Atlanta, GA. Div. of Health Studies.
12	2.	Barsotti, M., & Crotti, G. (1949). [Attacchi epileptici come manifestazione di intossicazione
13		professionale da trimetilen-trinitroamina (T4)]. <i>La Medicina del Lavoro, 40</i> (4), 107-112.
14	3.	Davies, J. O. J., Roberts, D. M., Hittarage, A., & Buckley, N. A. (2007). Oral C-4 plastic explosive
15		in humans - A case series. <i>Clinical Toxicology</i> , <i>45</i> (5), 454-457. doi:
16	4	10.1080/15563650601118044 Goldberg, D. J., Green, S. T., Nathwani, D., McMenamin, J., Hamlet, N., & Kennedy, D. H.
17 18	4.	(1992). RDX intoxication causing seizures and a widespread petechial rash mimicking
10		meningococcaemia. Journal of the Royal Society of Medicine, 85(3), 181.
20	5.	Harrell-Bruder, B., & Hutchins, K. L. (1995). Seizures caused by ingestion of composition C-
21	5.	4. Annals of Emergency Medicine, 26(6), 746-748.
22	6.	Hathaway, J. A., & Buck, C. R. (1977). Absence of health hazards associated with RDX
23	01	manufacture and use. Journal of Occupational and Environmental Medicine, 19(4),
24		269-272.
25	7.	Hett, D., & Fichtner, K. (2002). A plastic explosive by mouth. <i>Journal of the Royal Society of</i>
26		<i>Medicine, 95</i> (5), 251-252. doi: 10.1258/jrsm.95.5.251
27	8.	Hollander, A., & Colbach, E. (1969). Composition C-4 induced seizures: A report of five cases.
28		<i>Military Medicine, 134</i> (13), 1529-1530.
29	9.	Kaplan, A. S., Berghout, C. F., & Peczenik, A. (1965). Human intoxication from RDX. Archives
30		of Environmental Health, 10, 877-883.
31	10.	Kasuske, L., Schofer, J. M., & Hasegawa, K. (2009). Two marines with generalized seizure
32		activity. Journal of Emergency Nursing, 35(6), 542-543. doi: 10.1016/j.jen.2008.05.001
33	11.	Ketel, W. B., & Hughes, J. R. (1972). Toxic encephalopathy with seizures secondary to
34		ingestion of composition C-4. A clinical and electroencephalographic study. <i>Neurology</i> ,
35	10	<i>22</i> (8), 871-876.
36	12.	Knepshield, J. H., & Stone, W. J. (Eds.). (1972). <i>Toxic effects following ingestion of C-4 plastic</i>
37 20	10	explosive. Springfield, IL: Charles C. Thomas.
38 20	13.	Küçükardali, Y., Acar, H. V., Özkan, S., Nalbant, S., Yazgan, Y., Atasoyu, E. M., Danaci, M.
39 40		(2003). Accidental oral poisoning caused by RDX (cyclonite): A report of 5 cases. <i>Journal of Intensive Care Medicine, 18</i> (1), 42-46. doi: 10.1177/0885066602239123
40 41	11	Ma, B., & Li, H. (1992). Neurobehavioral effects of hexogen. <i>Gongye Weisheng yu</i>
41 	14.	ma, b., & Li, 11. (1792). Neurovenavioral effects of flexogen. Gongye weisneng yu

1		Zhiyebin / Industrial health and occupational diseases, 19(1), 20-23.
2	15.	Merrill, S. L. (1968). Ingestion of an explosive material, composition C-4: A report of two
3		cases. U.S. Army Vietnam Medical Bulletin, 8, 5-11.
4	16.	Stone, W., Paletta, T., Heiman, E., Bruce, J. I., & Knepshield, J. H. (1969). Toxic effects
5		following ingestion of C-4 plastic explosive. <i>Archives of Internal Medicine</i> , 124(6), 726-730.
6	17.	Testud, F., Glancaude, J. M., Imperatori, J., Le Meur, B., & Descotes, J. (1996). Acute poisoning
7		from occupational exposure to hexogen, a novel nitrate explosive. <i>Medicina y Seguridad del</i>
8		Trabajo(171), 119-127.
9	18.	Testud, F., Glanclaude, J., Imperatori, J., Le Meur, B., & Descotes, J. (1996). [Acute hexogen
10		poisoning after occupational exposure, report of 2 cases]. Archives des Maladies
11		Professionnelles de Medecine du Travail et de Securite Sociale, 57(5), 342-346.
12	19.	Testud, F., Glanclaude, J. M., & Descotes, J. (1996). Acute hexogen poisoning after
13		occupational exposure. <i>Journal of Toxicology - Clinical Toxicology, 34</i> (1), 109-111. doi:
14		10.3109/15563659609020244
15	20	. West, R. R., & Stafford, D. A. (1997). Occupational exposures and haematological
16		abnormalities among ordnance factory workers: A case control study. <i>Leukemia</i>
17		Research, 21(7), 675-680.
18	21.	Woody, R. C., Kearns, G. L., Brewster, M. A., Turley, C. P., Sharp, G. B., & Lake, R. S. (1986). The
19		neurotoxicity of cyclotrimethylenetrinitramine (RDX) in a child: A clinical and
20		pharmacokinetic evaluation. <i>Clinical Toxicology, 24</i> (4), 305-319. doi:
21		10.3109/15563658608992595
22		<u>Animal Health Effects</u> (26 citations)
23	1.	Angerhofer, R., Davis, G., & Balezewski, L. (1986). Teratological assessment of
24		Trinitro-RDX in rats. Aberdeen Proving Ground: U.S. Army Environmental Hygiene
25		Agency.
26	2.	Brown, D. (1975). The acute and chronic biochemical and behavioral effects of
27		cyclotrimethylenetrinitramine. Baltimore, MD: Maryland University Baltimore School of
28		Pharmacy.
29	3.	Burdette, L., Cook, L., & Dyer, R. (1988). Convulsant properties of
30		cyclotrimethylenetrinitramine (RDX): Spontaneous, audiogenic, and amygdaloid kindled
31		seizure activity. <i>Toxicology and Applied Pharmacology</i> , 92(3), 436-444. doi: 10.1016/0041-
32		008x(88)90183-4
33	4.	Cholakis, J., Wong, L., Van Goethem, D., Minor, J., & Short, R. (1980). Mammalian
34		toxicological evaluation of RDX (pp. 1-158). Kansas City, MO: Midwest Research
35		Institute.
36	5.	Crouse, L. C. B., Michie, M. W., Major, M., Johnson, M. S., Lee, R. B., & Paulus, H. I.
37		(2006). Subchronic oral toxicity of RDX in rats. Aberdeen Proving Ground, MD: U.S.
38		Army Center for Health Promotion and Preventive Medicine.
39	6.	Dilley, J. V., Tyson, C. A., & Newell, G. W. (1979). Mammalian toxicological evaluation of TNT
40		wastewaters. Volume II: Acute and subacute mammalian toxicity of TNT and the LAP
41		mixture. Menlo Park, CA: SRI International.
42	7.	Furedi-Machacek, M., Levine, B., & Lish, P. (1984). Determination of the chronic mammalian
43		toxicological effects of RDX. Acute dermal toxicity test of hexehydro-1,3,5-trinitro-1,3,5-

1	_	triazine (RDX) in rabbits. Chicago, IL: IIT Research Institute.
2	8.	Hart, E. (1974). Subacute toxicity of RDX and TNT in dogs. Final report. Kensington,
3		MD: Litton Bionetics, Inc.
4	9.	Hart, E. (1976). Two-year chronic toxicity study in rats. Kensington, MD: Litton
5		Bionetics, Inc.
6	10.	. Haskell, L. (1942). Initial submission: Toxicity of RDX (cyclotrimethylenetrinitramine) with
7		cover letter dated 101592. Wilmington, DE: DuPont Chemical Company.
8	11.	. Jaligama, S., Kale, V. M., Wilbanks, M. S., Perkins, E. J., & Meyer, S. A. (2013). Delayed
9		myelosuppression with acute exposure to hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and
10		environmental degradation product hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX)
11		in rats. <i>Toxicology and Applied Pharmacology, 266</i> (3), 443-451. doi:
12		10.1016/j.taap.2012.11.022
13	12	. Levine, B., Furedi, E., Gordon, D., Burns, J., & Lish, P. (1981). Thirteen week oral (diet)
14		toxicity study of trinitrotoluene (TNT), hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine
15		(RDX) and TNT/RDX mixtures in the Fischer 344 rat. Final report. Chicago, IL: IIT
16		Research Institute.
17	13	. Levine, B., Furedi, E., Sagartz, J., Rac, V., & Lish, P. (1984). Determination of the
18		chronic mammalian toxicological effects of RDX: Twenty-four month chronic
19		toxicity/carcinogenicity study of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in the
20		B6C3F1 hybrid mouse. Phase VI final report. Volume 3. Chicago, IL: IIT Research
21		Institute.
22	14	. Levine, B. S., Furedi, E. M., Gordon, D. E., Barkley, J. J., & Lish, P. M. (1990). Toxic
23		interactions of the munitions compounds TNT and RDX in F344 rats. <i>Fundamental</i>
24		and Applied Toxicology, 15(2), 373-380. doi: 10.1016/0272-0590(90)90062-0
25	15	. Levine, B. S., Furedi, E. M., Gordon, D. E., Burns, J. M., & Lish, P. M. (1981). Thirteen
26		week toxicity study of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in Fischer 344
27		rats. Toxicology Letters, 8(4-5), 241-245. doi: 10.1016/0378-4274(81)90108-9
28	16	. Levine, B. S., Lish, P. M., Furedi, E. M., Rac, V. S., & Sagartz, J. M. (1983). Determination
29		of the chronic mammalian toxicological effects of RDX (twenty-four month chronic
30		toxicity/carcinogenicity study of hexahydro-1,3,5-trinitro-1,3,5-triazine [RDX] in the
31		Fischer 344 rat Phase V: Final report. Chicago, IL: IIT Research Institute.
32	17	. Lish, P. M., Levine, B. S., Furedi-Machacek, E. M., Sagartz, E. M., & Rac, V. S. (1984).
33		Determination of the chronic mammalian toxicological effects of RDX: twenty-four
34		month chronic toxicity/carcinogenicity study of hexahydro-1,3,5-trinitro-1,3,5-
35		triazine (RDX) in the B6C3F1 hybrid mouse (pp. 367). Fort Detrick, Frederick, MD: US
36		Army Research and Development Command.
37	18	. MacPhail, R., Walker, Q., & Cook, L. (1985). Neurotoxicology of
38		cyclotrimethylenetrinitramine (RDX). Final report. Research Triangle Park, NC: U.S.
39		Environmental Protection Agency, Health Effects Research Laboratory,
40		Neurotoxicology Division.
41	19	. Martin, D., & Hart, E. (1974). Subacute toxicity of RDX and TNT in monkeys (pp. 1-
42		216). Kensington, MD: Litton Bionetics, Inc.
43	20	. McNamara, B. P., Averill, H. P., Owens, E. J., Callahan, J. F., Fairchild, D. G., Cinchta, H. P.,
. –	20.	· · · · · · · · · · · · · · · · · · ·

1 2 3 4 5 6	21	Biskup, D. K. (1974). The toxicology of cyclotrimethylenetrinitramine (RDX) and cyclotetramethylenetetranitramine (HMX) solutions in dimethylsulfoxide (DMSO), cyclohexanone, and acetone. Aberdeen Proving Ground, MD: Edgewood Arsenal. . Parker, G. (2001). Attachment 1: Pathology Working Group- Chairperson's report: Reevaluation: Twenty-four month chronic toxicity/carcinogenicity study of hexahydro-1,3,5-trinitro-1,3.5-triazine (RDX) in the B6C3F1 hybrid mouse. Research
7		Triangle Park, NC: National Institute of Environmental Health Sciences.
8 9	22	. Parker, G. A., Reddy, G., & Major, M. A. (2006). Reevaluation of a twenty-four-month chronic toxicity/carcinogenicity study of hexahydro-1,3,5-trinitro-1,3,5-triazine
9 10		(RDX) in the B6C3F1 hybrid mouse. <i>International Journal of Toxicology, 25</i> (5), 373-
10		378. doi: 10.1080/10915810600846245
12	23	. Stork, C., Kos, S., Langden, B., & Cantor, R. (2000). Acute canine C-4 explosive ingestion
13	_0	resulting in prolonged status epilepticus.
14	24	Thompson, C. A. (1983). Twenty-four month chronic toxicity/carcinogenicity study of
15		hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in the Fischer 344 rat. Twenty-four
16		month interim report. Necropsy observations. Chicago, IL: IIT Research Institute.
17	25	. Von Oettingen, W., Donahue, D., Yagoda, H., Monaco, A., & Harris, M. (1949). Toxicity
18		and potential dangers of cyclotrimethylenetrinitramine (RDX). Journal of Industrial
19		Hygiene and Toxicology, 31(1), 21-31.
20	26	. Williams, L., & Bannon, D. (2009). Mechanism of RDX-induced seizures in rats. Aberdeen
21		Proving Ground, MD: U.S. Army Center for Health Promotion and Preventive Medicine,
22		Directorate of Toxicology, Health Effects Desearch Drogram
		Directorate of Toxicology, Health Effects Research Program.
23	1.2.2.	Not Primary Source of Health Effects Data, but Kept as Additional Resources
	1.2.2.	
23		Not Primary Source of Health Effects Data, but Kept as Additional Resources
23 24		Not Primary Source of Health Effects Data, but Kept as Additional Resources <u>Regulatory Documents</u> (8 citations)
23 24 25		Not Primary Source of Health Effects Data, but Kept as Additional Resources <u>Regulatory Documents</u> (8 citations) . Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site
23 24 25 26	1.	Not Primary Source of Health Effects Data, but Kept as Additional Resources <u>Regulatory Documents</u> (8 citations) . Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site analytical methods. (1996). Idaho Falls; Department of Energy, Washington, DC.: Technical Information Center Oak Ridge Tennessee. ACGIH. (2001). Documentation of the Threshold Limit Values and Biological Exposure Indices
23 24 25 26 27 28 29	1.	Not Primary Source of Health Effects Data, but Kept as Additional Resources <u>Regulatory Documents</u> (8 citations) . Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site analytical methods. (1996). Idaho Falls; Department of Energy, Washington, DC.: Technical Information Center Oak Ridge Tennessee. ACGIH. (2001). Documentation of the Threshold Limit Values and Biological Exposure Indices - Cyclonite (2nd ed.). Cincinnati, OH.
23 24 25 26 27 28 29 30	1.	Not Primary Source of Health Effects Data, but Kept as Additional Resources <u>Regulatory Documents</u> (8 citations) . Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site analytical methods. (1996). Idaho Falls; Department of Energy, Washington, DC.: Technical Information Center Oak Ridge Tennessee. ACGIH. (2001). Documentation of the Threshold Limit Values and Biological Exposure Indices - Cyclonite (2nd ed.). Cincinnati, OH. Anonymous. (1997). Protect Your Family. Reduce Contamination at Home (Vol. U, pp. 97-
23 24 25 26 27 28 29 30 31	1. <i>2.</i> 3.	Not Primary Source of Health Effects Data, but Kept as Additional Resources <u>Regulatory Documents</u> (8 citations) . Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site analytical methods. (1996). Idaho Falls; Department of Energy, Washington, DC.: Technical Information Center Oak Ridge Tennessee. ACGIH. (2001). Documentation of the Threshold Limit Values and Biological Exposure Indices - Cyclonite (2nd ed.). Cincinnati, OH. Anonymous. (1997). Protect Your Family. Reduce Contamination at Home (Vol. U, pp. 97- 125): Anonymous.
23 24 25 26 27 28 29 30 31 32	1. <i>2.</i> 3.	 Not Primary Source of Health Effects Data, but Kept as Additional Resources <u>Regulatory Documents</u> (8 citations) . Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site analytical methods. (1996). Idaho Falls; Department of Energy, Washington, DC.: Technical Information Center Oak Ridge Tennessee. ACGIH. (2001). Documentation of the Threshold Limit Values and Biological Exposure Indices - Cyclonite (2nd ed.). Cincinnati, OH. Anonymous. (1997). Protect Your Family. Reduce Contamination at Home (Vol. U, pp. 97-125): Anonymous. ATSDR. (1995). Toxicological Profile for RDX. Atlanta, GA: U.S. Department of Health and
23 24 25 26 27 28 29 30 31 32 33	1. <i>2.</i> 3. 4.	 Not Primary Source of Health Effects Data, but Kept as Additional Resources <u>Regulatory Documents</u> (8 citations) . Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site analytical methods. (1996). Idaho Falls; Department of Energy, Washington, DC.: Technical Information Center Oak Ridge Tennessee. ACGIH. (2001). Documentation of the Threshold Limit Values and Biological Exposure Indices - Cyclonite (2nd ed.). Cincinnati, OH. Anonymous. (1997). Protect Your Family. Reduce Contamination at Home (Vol. U, pp. 97-125): Anonymous. ATSDR. (1995). Toxicological Profile for RDX. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
23 24 25 26 27 28 29 30 31 32 33 34	1. <i>2.</i> 3.	Not Primary Source of Health Effects Data, but Kept as Additional Resources <u>Regulatory Documents</u> (8 citations) . Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site analytical methods. (1996). Idaho Falls; Department of Energy, Washington, DC.: Technical Information Center Oak Ridge Tennessee. ACGIH. (2001). Documentation of the Threshold Limit Values and Biological Exposure Indices - Cyclonite (2nd ed.). Cincinnati, OH. Anonymous. (1997). Protect Your Family. Reduce Contamination at Home (Vol. U, pp. 97- 125): Anonymous. ATSDR. (1995). Toxicological Profile for RDX. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. ATSDR. (2012). Toxicological Profile for RDX (Update) (Vol. GRA and I). Research Triangle
23 24 25 26 27 28 29 30 31 32 33 34 35	1. <i>2.</i> 3. 4.	 Not Primary Source of Health Effects Data, but Kept as Additional Resources Regulatory Documents (8 citations) . Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site analytical methods. (1996). Idaho Falls; Department of Energy, Washington, DC.: Technical Information Center Oak Ridge Tennessee. ACGIH. (2001). Documentation of the Threshold Limit Values and Biological Exposure Indices Cyclonite (2nd ed.). Cincinnati, OH. Anonymous. (1997). Protect Your Family. Reduce Contamination at Home (Vol. U, pp. 97-125): Anonymous. ATSDR. (1995). Toxicological Profile for RDX. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. ATSDR. (2012). Toxicological Profile for RDX (Update) (Vol. GRA and I). Research Triangle Park, NC.; Agency for Toxic Substances and Disease Registry, Atlanta, GA: U.S. Department of
23 24 25 26 27 28 29 30 31 32 33 34 35 36	1. <i>2.</i> 3. 4. 5.	 Not Primary Source of Health Effects Data, but Kept as Additional Resources Regulatory Documents (8 citations) . Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site analytical methods. (1996). Idaho Falls; Department of Energy, Washington, DC.: Technical Information Center Oak Ridge Tennessee. ACGIH. (2001). Documentation of the Threshold Limit Values and Biological Exposure Indices - Cyclonite (2nd ed.). Cincinnati, OH. Anonymous. (1997). Protect Your Family. Reduce Contamination at Home (Vol. U, pp. 97-125): Anonymous. ATSDR. (1995). Toxicological Profile for RDX. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. ATSDR. (2012). Toxicological Profile for RDX (Update) (Vol. GRA and I). Research Triangle Park, NC.; Agency for Toxic Substances and Disease Registry, Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	1. <i>2.</i> 3. 4.	 Not Primary Source of Health Effects Data, but Kept as Additional Resources <u>Regulatory Documents</u> (8 citations) . Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site analytical methods. (1996). Idaho Falls; Department of Energy, Washington, DC.: Technical Information Center Oak Ridge Tennessee. ACGIH. (2001). Documentation of the Threshold Limit Values and Biological Exposure Indices Cyclonite (2nd ed.). Cincinnati, OH. Anonymous. (1997). Protect Your Family. Reduce Contamination at Home (Vol. U, pp. 97-125): Anonymous. ATSDR. (1995). Toxicological Profile for RDX. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. ATSDR. (2012). Toxicological Profile for RDX (Update) (Vol. GRA and I). Research Triangle Park, NC.; Agency for Toxic Substances and Disease Registry, Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. McLellan, W. L., Hartley, W. R., & Brower, M. E. (1988). Health advisory for hexahydro-1,3,5-
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	1. <i>2.</i> 3. 4. 5.	 Not Primary Source of Health Effects Data, but Kept as Additional Resources Regulatory Documents (8 citations) . Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site analytical methods. (1996). Idaho Falls; Department of Energy, Washington, DC.: Technical Information Center Oak Ridge Tennessee. ACGIH. (2001). Documentation of the Threshold Limit Values and Biological Exposure Indices Cyclonite (2nd ed.). Cincinnati, OH. Anonymous. (1997). Protect Your Family. Reduce Contamination at Home (Vol. U, pp. 97-125): Anonymous. ATSDR. (1995). Toxicological Profile for RDX. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. ATSDR. (2012). Toxicological Profile for RDX (Update) (Vol. GRA and I). Research Triangle Park, NC.; Agency for Toxic Substances and Disease Registry, Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. McLellan, W. L., Hartley, W. R., & Brower, M. E. (1988). Health advisory for hexahydro-1,3,5-triazine (RDX). Washington, DC: U.S. Environmental Protection Agency; Office
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	 1. 2. 3. 4. 5. 6. 	 Not Primary Source of Health Effects Data, but Kept as Additional Resources Regulatory Documents (8 citations) . Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site analytical methods. (1996). Idaho Falls; Department of Energy, Washington, DC.: Technical Information Center Oak Ridge Tennessee. ACGIH. (2001). Documentation of the Threshold Limit Values and Biological Exposure Indices Cyclonite (2nd ed.). Cincinnati, OH. Anonymous. (1997). Protect Your Family. Reduce Contamination at Home (Vol. U, pp. 97-125): Anonymous. ATSDR. (1995). Toxicological Profile for RDX. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. ATSDR. (2012). Toxicological Profile for RDX (Update) (Vol. GRA and I). Research Triangle Park, NC.; Agency for Toxic Substances and Disease Registry, Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. McLellan, W. L., Hartley, W. R., & Brower, M. E. (1988). Health advisory for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Washington, DC: U.S. Environmental Protection Agency; Office of Drinking Water; Criteria and Standards Division.
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	1. <i>2.</i> 3. 4. 5.	 Not Primary Source of Health Effects Data, but Kept as Additional Resources <u>Regulatory Documents</u> (8 citations) . Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site analytical methods. (1996). Idaho Falls; Department of Energy, Washington, DC.: Technical Information Center Oak Ridge Tennessee. ACGIH. (2001). Documentation of the Threshold Limit Values and Biological Exposure Indices - Cyclonite (2nd ed.). Cincinnati, OH. Anonymous. (1997). Protect Your Family. Reduce Contamination at Home (Vol. U, pp. 97-125): Anonymous. ATSDR. (1995). Toxicological Profile for RDX. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. ATSDR. (2012). Toxicological Profile for RDX (Update) (Vol. GRA and I). Research Triangle Park, NC.; Agency for Toxic Substances and Disease Registry, Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. McLellan, W. L., Hartley, W. R., & Brower, M. E. (1988). Health advisory for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Washington, DC: U.S. Environmental Protection Agency; Office of Drinking Water; Criteria and Standards Division. NIOSH. (1995). Occupational safety and health guidelines for chemical hazards. Supplement
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	 1. 2. 3. 4. 5. 6. 	 Not Primary Source of Health Effects Data, but Kept as Additional Resources Regulatory Documents (8 citations) . Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site analytical methods. (1996). Idaho Falls; Department of Energy, Washington, DC.: Technical Information Center Oak Ridge Tennessee. ACGIH. (2001). Documentation of the Threshold Limit Values and Biological Exposure Indices Cyclonite (2nd ed.). Cincinnati, OH. Anonymous. (1997). Protect Your Family. Reduce Contamination at Home (Vol. U, pp. 97-125): Anonymous. ATSDR. (1995). Toxicological Profile for RDX. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. ATSDR. (2012). Toxicological Profile for RDX (Update) (Vol. GRA and I). Research Triangle Park, NC.; Agency for Toxic Substances and Disease Registry, Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. McLellan, W. L., Hartley, W. R., & Brower, M. E. (1988). Health advisory for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Washington, DC: U.S. Environmental Protection Agency; Office of Drinking Water; Criteria and Standards Division.

1 2		nitro compounds]. <i>Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 48</i> (11), 1289-1295. doi: 10.1007/s00103-005-1157-8
3		<u>Reviews</u> (13 citations)
4	1.	Dacre, J. C. (1994). Hazard evaluation of Army compounds in the environment. [Review].
5		Drug Metabolism Reviews, 26(4), 649-662. doi: 10.3109/03602539408998320
6	2.	Davis, R. A. (Ed.). (1993). Aliphatic nitro nitrate and nitrite compounds (Vol. IIA): John Wiley
7		and Sons, Inc.
8	3.	Elamin, B. K., Callegari, E., Gramantieri, L., Sabbioni, S., & Negrini, M. (2011). MicroRNA
9		response to environmental mutagens in liver. [Review]. <i>Mutation Research</i> , 717(1-2), 67-76.
10		doi: 10.1016/j.mrfmmm.2011.03.015
11	4.	Hoek, B. (2004). Military explosives and health: Organic energetic compound syndrome?
12		[Review]. <i>Medicine, Conflict and Survival, 20</i> (4), 326-333. doi:
13	-	10.1080/1362369042000285955
14 15	5. 6.	Inouye, L., Lachance, B., & Gong, P. (2009). Genotoxicity of explosives. pp. 177-209. Juhasz, A. L., & Naidu, R. (2007). Explosives: fate, dynamics, and ecological impact in
15 16	0.	terrestrial and marine environments. [Review]. <i>Reviews of Environmental Contamination</i>
10		and Toxicology, 191, 163-215.
18	7.	
19	,,	military explosives on human health and the environment. [Review]. <i>Reviews on</i>
20		Environmental Health, 26(2), 101-110.
21	8.	
22		<i>triazine (RDX)</i> . Boca Raton, FL: Lewis Publishers.
23	9.	Meyer, R., Homburg, A., & Köhler, J. (2002). <i>Explosives - Cyclonite</i> . Weinheim: Wiley-VCH.
24	10	. Murnyak, G., Vandenberg, J., Yaroschak, P. J., Williams, L., Prabhakaran, K., & Hinz, J. (2011).
25		Emerging contaminants: Presentations at the 2009 Toxicology and Risk Assessment
26		Conference. [Review]. Toxicology and Applied Pharmacology, 254(2), 167-169. doi:
27		10.1016/j.taap.2010.10.021
28	11	. Nikolic, S., Medic-Saric, M., Rendic, S., & Trinajstic, N. (1994). Toxic effects and a structure
29		property study of organic explosives, propellants, and related compounds. [Review]. Drug
30		Metabolism Reviews, 26(4), 717-738. doi: 10.3109/03602539408998324
31	12	. Schneider, N. R. (1979). Bibliography on toxicology of cyclotrimethylenetrinitramine (RDX).
32		Veterinary and Human Toxicology, 21(6), 449-450.
33	13	. Sullivan, J. B., Jr. (Ed.). (1992). <i>Cryogenics, oxidizers, reducing agents, and explosives</i> (Vol.
34		Clinical Principles of Environmental Health): Williams & Wilkins.
35		<u>Ecosystem Effects (</u> 38 citations)
36	1.	. Evaluation of the metabolic fate of munitions material (TNT & RDX) in plant systems and
37		initial assessment of material interaction with plant genetic material. Validation of the
38		metabolic fate of munitions materials (TNT, RDX) in mature crops. (1995). Richland, WA;
39		Department of Energy, Washington, DC: Technical Information Center Oak Ridge Tennessee.
40	2.	. Evaluation of the metabolic fate of munitions material (TNT & RDX) in plant systems.
41		Initial assessment of plant DNA mutation spectra as a biomarker. (1995). Richland, WA;
42		Department of Energy, Washington, DC: Technical Information Center Oak Ridge Tennessee.

1 2	3.	. Evaluation of the Toxicological Effects of Explosives on Higher Plants, and the Effects on Soil After Demining with Reconstructed Military Tanks. (1997). Kjeller: Foreign
3		Technology-Studsvik Energiteknik AB.
4	4.	. Ecological Soil Characterization of the Delta Creek and Washington Impact Areas, Fort
5		Greely, Alaska. (2001). Fort Collins. Center for Environmental Management of Military
6		Lands
7	5.	. SERDP CU-1129 Biological Assessment for Characterizing Contamination Risk at the
8 9		Genetic-, Individual-, and Population-Level. (2004). Vicksburg, MS. Engineer Research and Development Center
10	6.	. Toxicity of Nitro-Heterocyclic and Nitroaromatic Energetic Materials to Terrestrial Plants
11	-	in a Natural Sandy Loam Soil. (2005). Aberdeen Proving Ground, MD.
12	7.	Anderson, J. A., Cañas, J. E., Long, M. K., Zak, J. C., & Cox, S. B. (2010). Bacterial community
13		dynamics in high and low bioavailability soils following laboratory exposure to a range of
14		hexahydro-1,3,5-trinitro-1,3,5-triazine concentrations. <i>Environmental Toxicology and</i>
15		<i>Chemistry</i> , <i>29</i> (1), 38-44. doi: 10.1002/etc.9
16	8.	Army, U. S. (1993). Toxicity of Nitroguanidine, Nitroglycerin, Hexahydro-1,3,5-Trinitro-
17		1,3,5-Triazine (RDX), and 2,4,6-Trinitrotoluene (TNT) to Selected Freshwater Aquatic
18		Organisms: U.S. Army.
19	9.	Army, U. S. (1995). Evaluation of Metabolic Fate of Munitions Material (TNT and RDX) in
20		Plant Systems and Initial Assessment of DNA Mutation Spectra as a Biomarker: U.S. Army.
21	10	Army, U. S. (1995). Evaluation of the metabolic fate of munitions material (TNT & amp; RDX)
22		in plant systems and initial assessment of material interaction with plant genetic material
23		(DNA). Initial assessment of plant DNA adducts as biomarkers: U.S. Army.
24	11	. Army, U. S. (1995). Evaluation of the Metabolic Fate of Munitions Material (TNT RDX) in
25		Plant Systems and Initial Assessment of Material Interaction with Plant Genetic Material:
26		U.S. Army.
27	12	. Baker, L. M., Larsen, C. T., Sriranganathan, N., Jones, D. E., Johnson, M. S., & Gogal, R. M.
28		(2004). Effects of energetic compounds on the Northern Bobwhite quail and
29		biotransformation applications of the intestinal flora. Bulletin of Environmental
30		Contamination and Toxicology, 72(1), 1-6. doi: 10.1007/s00128-003-0233-8
31	13	. Brentner, L. B., Mukherji, S. T., Walsh, S. A., & Schnoor, J. L. (2010). Localization of
32		hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) in poplar and
33		switchgrass plants using phosphor imager autoradiography. Environmental Pollution,
34		158(2), 470-475. doi: 10.1016/j.envpol.2009.08.022
35	14	. Drzyzga, O., Gorontzy, T., Schmidt, A., & Blotevogel, K. H. (1995). Toxicity of explosives and
36		related compounds to the luminescent bacterium Vibrio fischeri NRRL-B-11177. Archives of
37		Environmental Contamination and Toxicology, 28(2). doi: 10.1007/bf00217621
38	15.	. Ekman, D. R., Wolfe, N. L., & Dean, J. F. (2005). Gene expression changes in Arabidopsis
39		thaliana seedling roots exposed to the munition hexahydro-1,3,5-trinitro-1,3,5-triazine.
40		Environmental Science and Technology, 39(16), 6313-6320.
41	16	. Fellows, R. J., Driver, C. R., Cataldo, D. A., & Harvey, S. D. (2006). Bioavailability of
42		hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the prairie vole (Microtus ochrogaster).
43		<i>Environmental Toxicology and Chemistry, 25</i> (7), 1881-1886. doi: 10.1897/05-446r1.1

1	17. Garcia-Reyero, N., Escalon, B. L., Loh, P. R., Laird, J. G., Kennedy, A. J., Berger, B., & Perkins, E.
2	J. (2012). Assessment of chemical mixtures and groundwater effects on Daphnia magna
3	transcriptomics. <i>Environmental Science and Technology</i> , 46(1), 42-50. doi:
4	10.1021/es201245b
5	18. Gogal, O. M., Jr., Johnson, M. S., Larsen, C. T., Prater, M. R., Duncan, R. B., Ward, D. L., Holladay,
6	S. D. (2003). Dietary oral exposure to l,3,5-trinitro-1,3,5-triazine in the northern bobwhite
7	(Colinus virginianus). Environmental Toxicology and Chemistry, 22(2), 381-387. doi:
8	10.1002/etc.5620220220
9	19. Gong, P., Hawari, J., Thiboutot, S., Ampleman, G., & Sunahara, G. I. (2001). Ecotoxicological
10	effects of hexahydro-1,3,5-trinitro-1,3,5-triazine on soil microbial activities. Environmental
11	<i>Toxicology and Chemistry, 20</i> (5), 947-951.
12	20. Gust, K. A., Pirooznia, M., Quinn, M. J., Johnson, M. S., Escalon, L., Indest, K. J., Perkins, E. J.
13	(2009). Neurotoxicogenomic Investigations to Assess Mechanisms of Action of the
14	Munitions Constituents RDX and 2,6-DNT in Northern Bobwhite (Colinus virginianus).
15	<i>Toxicological Sciences, 110</i> (1), 168-180. doi: 10.1093/toxsci/kfp091
16	21. Jantschi, L., & Bolboaca, S. D. (2008). A structural modelling study on marine sediments
17	toxicity. <i>Marine Drugs, 6</i> (2), 372-388. doi: 10.3390/md20080017
18	22. Johnson, M. S., Quinn, M. J., Bazar, M. A., Gust, K. A., Escalon, B. L., & Perkins, E. J. (2007).
19	Subacute toxicity of oral 2,6-dinitrotoluene and 1,3,5-trinitro-1,3,5-triazine (RDX) exposure
20	to the northern bobwhite (Colinus virginianus). Environmental Toxicology and Chemistry,
21	26(7), 1481-1487. doi: 10.1897/06-525.1
22	23. Johnson, M. S., & Salice, C. J. Toxicity of energetic compounds to wildlife species.
23	24. Juck, D., Driscoll, B. T., Charles, T. C., & Greer, C. W. (2003). Effect of experimental
24	contamination with the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine on soil bacterial
25	communities. <i>FEMS Microbiology Ecology, 43</i> (2), 255-262. doi: 10.1111/j.1574-
26	6941.2003.tb01065.x
27	25. Larson, S. L., Jones, R. P., Escalon, L., & Parker, D. (1999). Classification of explosives
28	transformation products in plant tissue. Environmental Toxicology and Chemistry, 18(6),
29	1270-1276. doi: 10.1002/etc.5620180629
30	26. McFarland, C. A., Quinn, M. J., Jr., Bazar, M. A., Talent, L. G., & Johnson, M. S. (2009). Toxic
31	effects of oral hexahydro-1,3,5-trinitro-1,3,5-triazine in the western fence lizard
32	(Sceloporus occidentalis). Environmental Toxicology and Chemistry, 28(5), 1043-1050. doi:
33	10.1897/08-419.1
34	27. Quinn, M. J., Bazar, M. A., McFarland, C. A., Perkins, E. J., Gust, K. A., & Johnson, M. S. (2009).
35	Sublethal effects of subacute exposure to RDX (1,3,5-trinitro-1,3,5-triazine) in the northern
36	bobwhite (Colinus virginianus). Environmental Toxicology and Chemistry, 28(6), 1266-1270.
37	doi: 10.1897/08-418.1
38	28. Quinn, M. J., Hanna, T. L., Shiflett, A. A., McFarland, C. A., Cook, M. E., Johnson, M. S., Perkins,
39	E. J. (2013). Interspecific effects of 4A-DNT (4-amino-2,6-dinitrotoluene) and RDX (1,3,5-
40	trinitro-1,3,5-triazine) in Japanese quail, Northern bobwhite, and Zebra finch. <i>Ecotoxicology</i> ,
41	22(2), 231-239. doi: 10.1007/s10646-012-1019-8
42	29. Smith, J. N., Espino, M. A., Liu, J., Romero, N. A., Cox, S. B., & Cobb, G. P. (2009).
43	Multigenerational effects in deer mice (Peromyscus maniculatus) exposed to hexahydro-

1		1,3,5-trinitroso-1,3,5-triazine (TNX). <i>Chemosphere, 75</i> (7), 910-914. doi:
2	20	10.1016/j.chemosphere.2009.01.010
3	30	. Smith, J. N., Liu, J., Espino, M. A., & Cobb, G. P. (2007). Age dependent acute oral toxicity of
4		hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and two anaerobic N-nitroso metabolites in
5		deer mice (Peromyscus maniculatus). <i>Chemosphere, 67</i> (11), 2267-2273. doi:
6		10.1016/j.chemosphere.2006.12.005
7	31	. Smith, J. N., Pan, X., Gentles, A., Smith, E. E., Cox, S. B., & Cobb, G. P. (2006). Reproductive
8		effects of hexahydro-1,3,5-trinitroso-1,3,5-triazine in deer mice (Peromyscus maniculatus)
9		during a controlled exposure study. <i>Environmental Toxicology and Chemistry</i> , 25(2), 446-
10		451. doi: 10.1897/05-277r.1
11	32	. Sunahara, G. I., Dodard, S., Sarrazin, M., Paquet, L., Ampleman, G., Thiboutot, S., Renoux, A. Y.
12		(1998). Development of a soil extraction procedure for ecotoxicity characterization of
13		energetic compounds. Ecotoxicology and Environmental Safety, 39(3), 185-194. doi:
14		10.1006/eesa.1997.1624
15	33	. Sunahara, G. I., Dodard, S., Sarrazin, M., Paquet, L., Hawari, J., Greer, C. W., Renoux, A. Y.
16		(1999). Ecotoxicological characterization of energetic substances using a soil extraction
17		procedure. Ecotoxicology and Environmental Safety, 43(2), 138-148. doi:
18		10.1006/eesa.1999.1763
19	34	. Sunahara, G. I., Lachance, B., Hawari, J., Greer, C. W., Guiot, S., Thiboutot, S., Renoux, A.
20		(1997). Ecotoxicity Tests to Assess Bioremediation of Soils Containing Energetic Substances
21		(Vol. Niagara Falls, pp. 20-22): Sunahara, GI; Lachance, B; Hawari, J; Greer, CW; Guiot, S;
22		Thiboutot, S; Ampleman, G; Renoux, A.
23	35	. Tanaka, S., Brentner, L. B., Merchie, K. M., Schnoor, J. L., Yoon, J. M., & Van Aken, B. (2007).
24		Analysis of gene expression in poplar trees (Populus deltoides x nigra, DN34) exposed to
25		the toxic explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). International Journal of
26		Phytoremediation, 9(1), 15-30. doi: 10.1080/15226510601139375
27	36	. Warner, C. M., Gust, K. A., Stanley, J. K., Habib, T., Wilbanks, M. S., Garcia-Reyero, N., &
28		Perkins, E. J. (2012). A systems toxicology approach to elucidate the mechanisms involved
29		in RDX species-specific sensitivity. Environmental Science and Technology, 46(14), 7790-
30		7798. doi: 10.1021/es300495c
31	37	. Williams, L. R., Wong, K., Stewart, A., Suciu, C., Gaikwad, S., Wu, N., Kalueff, A. V. (2012).
32		Behavioral and physiological effects of RDX on adult zebrafish. <i>Comparative Biochemistry</i>
33		and Physiology - Part C: Toxicology and Pharmacology, 155(1), 33-38. doi:
34		10.1016/j.cbpc.2011.02.010
35	38	. Winfield, L. E., Rodgers, J. H., & D'Surney, S. J. (2004). The responses of selected terrestrial
36		plants to short (<12 days) and long term (2, 4 and 6 weeks) hexahydro-1,3,5-trinitro-
37		1,3,5-triazine (RDX) exposure. Part I: Growth and developmental effects. <i>Ecotoxicology</i> ,
38		<i>13</i> (4), 335-347.
39		<u>Editorials</u> (2 citations)
40	1.	Bannon, D. I., Johnson, M., Williams, L., Adams, V., Perkins, E., Gust, K., & Gong, P. (2009).
41		RDX and miRNA expression in B6C3F1 Mice. [Letter]. Environmental Health Perspectives,
42		<i>117</i> (3), A98. doi: 10.1289/ehp.0800276
43	2.	Zhang, B., & Pan, X. (2009). RDX and miRNA expression: Zhang and Pan respond.

1		Environmental Health Perspectives, 117(3), A98-A99. doi: 10.1289/ehp.0800276R
2		<u>Risk Assessments</u> (11 citations)
3	1.	. Development of a Multimedia Exposure Assessment Model for Evaluating Ecological Risk
4		of Exposure to Military-Related Compounds (MRCs) at Military Sites. (1998). Vicksburg, MS.
5	2.	Battelle. (1998). Life-Cycle Inventory-Based Comparison of an RDX-Based and a TNAZ-
6		Based GBU-24 Munition. Columbus, OH.
7	3.	Daniels, J. I., & Knezovich, J. P. (1994). Human health risks from TNT, RDX, and HMX in
8		environmental media and consideration of the US Regulatory Environment. CA; Department
9		of Energy, Washington, DC: U.S. Department of Energy, Lawrence Livermore National
10		Laboratory.
11	4.	Etnier, E. L. (1989). Water quality criteria for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).
12		[Review]. Regulatory Toxicology and Pharmacology, 9(2), 147-157. doi: 10.1016/0273-
13		2300(89)90032-9
14	5.	Etnier, E. L., & Hartley, W. R. (1990). Comparison of water quality criterion and lifetime
15		health advisory for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). [Review]. <i>Regulatory</i>
16		<i>Toxicology and Pharmacology, 11</i> (2), 118-122. doi: 10.1016/0273-2300(90)90015-4
17	6.	James, R. C., Roberts, S. M., & Roberts, S. M. (1994). Evaluation of the Adequacy of the
18		Threshold Limit Value for Cyclonite. Applied Occupational and Environmental Hygiene, 9(7),
19		485-492. doi: 10.1080/1047322x.1994.10388358
20	7.	Mariussen, E. (1997). Evaluation of the health risk and the environmental effects of
21		explosives after demining with reconstructed military tanks. Kjeller: Foreign Technology-
22		Studsvik Energiteknik AB(TFSEAB).
23	8.	McKone, T. E., & Layton, D. W. (1986). Screening the potential risks of toxic substances using
24		a multimedia compartment model: estimation of human exposure. <i>Regulatory Toxicology</i>
25		and Pharmacology, 6(4), 359-380.
26	9.	Ryu, H., Han, J. K., Jung, J. W., Bae, B., & Nam, K. (2007). Human health risk assessment of
27		explosives and heavy metals at a military gunnery range. Environmental Geochemistry and
28		<i>Health, 29</i> (4), 259-269. doi: 10.1007/s10653-007-9101-5
29	10.	Sweeney, L. M., Gut, C. P., Gargas, M. L., Reddy, G., Williams, L. R., & Johnson, M. S. (2012).
30		Assessing the non-cancer risk for RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) using
31		physiologically based pharmacokinetic (PBPK) modeling. [Review]. Regulatory Toxicology
32		and Pharmacology, 62(1), 107-114. doi: 10.1016/j.yrtph.2011.12.007
33	11.	Sweeney, L. M., Okolica, M. R., Gut, C. P., Jr., & Gargas, M. L. (2012). Cancer mode of action,
34		weight of evidence, and proposed cancer reference value for hexahydro-1,3,5-trinitro-1,3,5-
35		triazine (RDX). Regulatory Toxicology and Pharmacology, 64(2), 205-224. doi:
36		10.1016/j.yrtph.2012.07.005
37		<i>Exposure Levels</i> (96 citations)
38	1.	. Evaluation of the environmental fate and behavior of munitions material (TNT, RDX) in soil
39		and plant systems: Environmental fate and behavior of RDX. Final report. (1990). Richland,
40		WA; Department of Energy, Washington, DC: Technical Information Center Oak Ridge
41		Tennessee.
42	2.	. Superfund Record of Decision (EPA Region 4): Milan Army Ammunition Plant, TN. (First

1		Remedial Action), September 1992. (1992) (pp. 74).
2	3.	. Environmental behavior and chemical fate of energetic compounds (TNT, RDX, tetryl) in
3		soil and plant systems. (1993). Richland, WA; Department of Energy, Washington, DC:
4		Technical Information Center Oak Ridge Tennessee.
5	4.	. Validation of the metabolic fate of munitions materials (TNT, RDX) in mature crops and
6		evaluation of plant DNA adducts and DNA mutation frequency as biomarkers. (1994).
7		Richland, WA; Department of Energy, Washington, DC: Technical Information Center Oak
8		Ridge Tennessee.
9	5.	. New Lower Estimate for Soils Contaminated with Secondary Explosives and the Associated
10		Implications. (1997). Arlington, VA.
11	6.	. Environmental Behavior and Fate of Explosives in Groundwater from the Milan Army
12		Ammunition Plant in Aquatic and Wetland Plants. Fate of TNT and RDX. (1998). Vicksburg,
13		MS. Environmental Lab.
14	7.	. Miljoefarliga Aemnen i Dumpad Ammunition (Compounds in Dumped and Unexploded
15		Ordnance, Possible Environmental Hazards). (1998). Umea (Sweden). Avedelningen foer
16		NBC Skydd.: Foreign Technology-Studsvik Energiteknik AB.
17	8.	. Site Characterization for Explosives Contamination at a Military Firing Range Impact Area.
18		(1998). Hanover, NH.
19	9.	. Conceptual Model and Process Descriptor Formulations for Fate and Transport of UXO.
20		(1999). Vicksburg, MS.
21	10.	. Adsorption and Transformation of Explosives in Low-Carbon Aquifer Soils. (2000).
22		Vicksburg, MS. Environmental Lab.
23	11.	. Evaluating the Use of Snow-Covered Ranges to Estimate the Explosives Residues that
24		Result From Detonation of Army Munitions. (2000). Hanover, NH. Cold Regions Research
25		and Engineering Lab.
26	12.	. Adsorption and Transformation of RDX in Low-Carbon Aquifer Soils. (2001). Washington,
27		DC.
28	13.	. Characterization of Explosives Contamination at Military Firing Ranges. (2001). Hanover,
29		NH.
30	14.	. Sampling for Explosives Residues at Fort Greely, Alaska. Reconnaissance Visit July 2000.
31		(2001). Hanover, NH. Cold Regions Research and Engineering Lab.
32	15.	. Environmental Fate and Transport Process Descriptors for Explosives. (2002). Vicksburg,
33		MS. Environmental Lab.
34	16.	. Range Characterization Studies at Donnelly Training Area, Alaska: 2001 and 2002. (2004).
35		Hanover, NH. Cold Regions Research and Engineering Lab.
36	17.	. Sampling Strategies Near a Low-Order Detonation and a Target at an Artillery Impact Area.
37		(2004). Hanover, NH. Cold Regions Research and Engineering Lab.
38	18.	. Elution of Energetic Compounds from Propellant and Composition B Residues. (2005).
39		Hanover, NH. Cold Regions Research and Engineering Lab.
40	19.	. Energetic Residues From Live-Fire Detonations of 120-mm Mortar Rounds. (2005).
41		Hanover, NH. Cold Regions Research and Engineering Lab.
42	20.	. Identity and Distribution of Residues of Energetic Compounds at Military Live-Fire
43		Training Ranges. (2005). Vicksburg, MS. Engineer Research and Development Center.

1	21 Residues from Live Fire Detonations of 155-mm Howitzer Rounds. (2005). Hanover, NH.
2	Cold Regions Research and Engineering Lab.
3	22. Molecular Structure Determines Chemical Reactivities and, Thus, Transformation
4	Pathways. (2006). Vicksburg, MS. Environmental Lab.
5	23. Photochemical Degradation of Composition B and Its Components. (2007). Vicksburg, MS.
6	Environmental Lab.
7	24. Fate of Nitroaromatic (TNT) and Nitramine (RDX and HMX) Explosives in Fractured and
8	Weathered Soils. (2008). Vicksburg, MS. Engineer Research and Development Center.
9	25. Hand Grenade Residuals (Environmental Security Technology Certification Program).
10	(2009). Vicksburg, MS. Environmental Lab.
11	26. Abdul-Karim, N., Morgan, R., Binions, R., Temple, T., & Harrison, K. (2012). The Spatial
12 13	Distribution of Postblast RDX Residue: Forensic Implications. <i>Journal of Forensic Sciences</i> .
15 14	doi: 10.1111/1556-4029.12045
14 15	27. Army, U. S. (1992). Slow Release of PCB, TNT, and RDX From Soils and Sediments: U.S. Army.
15 16	 Army, U. S. (1993). Relationship between the Leachability Characteristics of Unique Energetic Compounds and Soil Properties: U.S. Army.
10 17	29. Army, U. S. (1993). Transport and Fate of Nitroaromatic and Nitramine Explosives in Soils
17	from Open Burning/Open Detonation Operations: Milan Army Ammunition Plant (MAAP):
18 19	U.S. Army.
20	30. Army, U. S. (1994). Sorption-Desorption and Transport of TNT and RDX in Soils: U.S. Army.
20 21	31. Army, U. S. (1994). Uptake of explosives from contaminated soil by existing vegetation at
21	the Iowa Army Ammunition Plant: U.S. Army.
22	32. Army, U. S. (1996). Recent Developments in Formulating Model Descriptors for Subsurface
23	Transformation and Sorption of TNT, RDX, and HMX (Vol. 829, pp. 219-229): U.S. Army.
24 25	33. Army, U. S. (1997). Plant Uptake of Explosives from Contaminated Soil and Irrigation Water
26	at the Former Nebraska Ordnance Plant, Mead, Nebraska: U.S. Army.
27	34. Army, U. S. (1997). Review of Fate and Transport Processes of Explosives: U.S. Army.
28	35. Army, U. S. (1998). Transformation of RDX and HMX Under Controlled Eh/pH Conditions:
29	U.S. Army.
30	36. ATSDR. (1992). Health Assessment for Nebraska Army Ordnance Plant (Former), Mead,
31	Saunders County, Nebraska, Region 7. CERCLIS No. NE6211890011. Atlanta, GA.:
32	Department H.E.W. Office of Toxic Substance and Disease.
33	37. ATSDR. (1993). Health Assessment for Milan Army Ammunition Plant, Milan, Carroll and
34	Gibson Counties, Tennessee, Region 4. CERCLIS No. TN0210020582. September 30, 1993.
35	Atlanta, GA.: Department H.E.W. Office of Toxic Substance and Disease.
36	38. ATSDR. (1999). Public Health Assessment for Iowa Army Ammunition Plant, Middletown,
37	Des Moines County, Iowa, Region 7. CERCLIS No. IA7213820445. Atlanta, GA. Div. of Health
38	Assessment and Consultation: Department H.E.W. Office of Toxic Substance and Disease.
39	39. Best, E. P., Sprecher, S. L., Larson, S. L., Fredrickson, H. L., & Bader, D. F. (1999).
40	Environmental behavior of explosives in groundwater from the Milan Army Ammunition
41	Plant in aquatic and wetland plant treatments. Removal, mass balances and fate in
42	groundwater of TNT and RDX. <i>Chemosphere, 38</i> (14), 3383-3396.
43	40. Best, E. P., Sprecher, S. L., Larson, S. L., Fredrickson, H. L., & Bader, D. F. (1999).

1	Environmental behavior of explosives in groundwater from the Milan Army Ammunition
2 3	Plant in aquatic and wetland plant treatments. Uptake and fate of TNT and RDX in plants.
	Chemosphere, 39(12), 2057-2072.
4 5	41. Bhadra, R., Wayment, D. G., Williams, R. K., Barman, S. N., Stone, M. B., Hughes, J. B., & Shanks, J. V. (2001). Studies on plant-mediated fate of the explosives RDX and HMX.
6	Chemosphere, 44(5), 1259-1264.
0 7	42. Bordeleau, G., Martel, R., Lévesque, R., Ampleman, G., Thiboutot, S., & Marois, A. (2012).
8	Overestimation of nitrate and nitrite concentrations in water samples due to the presence of
9	nitroglycerin or hexahydro-1,3,5-trinitro-1,3,5-triazine. Journal of Chromatography A, 1252,
10	130-135. doi: 10.1016/j.chroma.2012.06.082
10	43. Carroll, J. W., Guinivan, T. L., Tuggle, R. M., Williams, K. E., & Lillian, D. L. (1979). Assessment
12	of hazardous air pollutants from disposal of munitions in a prototype fluidized bed
13	incinerator. American Industrial Hygiene Association Journal, 40(2), 147-158. doi:
14	10.1080/15298667991429444
15	44. Center, U. S. A. E. (1998). Pyrolysis/Gas Chromatography/Mass Spectrometry of Energetic
16	Materials. Aberdeen Proving Ground, MD.
17	45. Crowson, A., & Cawthorne, R. (2012). Quality assurance testing of an explosives trace
18	analysis laboratoryfurther improvements to include peroxide explosives. <i>Science and</i>
19	<i>Justice, 52</i> (4), 217-225. doi: 10.1016/j.scijus.2012.07.001
20	46. Crowson, A., Doyle, S. P., Todd, C. C., Watson, S., & Zolnhofer, N. (2007). Quality assurance
21	testing of an explosives trace analysis laboratoryfurther improvements. <i>Journal of Forensic</i>
22	<i>Sciences, 52</i> (4), 830-837. doi: 10.1111/j.1556-4029.2007.00464.x
23	47. Cullum, H. E., McGavigan, C., Uttley, C. Z., Stroud, M. A., & Warren, D. C. (2004). A second
24	survey of high explosives traces in public places. <i>Journal of Forensic Sciences</i> , 49(4), 684-
25	690.
26	48. Dontsova, K. M., Yost, S. L., Simunek, J., Pennington, J. C., & Williford, C. W. (2006).
27	Dissolution and transport of TNT, RDX, and composition B in saturated soil columns. <i>Journal</i>
28	of Environmental Quality, 35(6), 2043-2054. doi: 10.2134/jeq2006.0007
29	49. Douglas, T. A., Walsh, M. E., Weiss, J. C., McGrath, C. J., & Trainor, T. P. (2012). Desorption and
30	Transformation of Nitroaromatic (TNT) and Nitramine (RDX and HMX) Explosive Residues
31	on Detonated Pure Mineral Phases. Water, Air, and Soil Pollution, 223(5), 2189-2200. doi:
32	10.1007/s11270-011-1015-2
33	50. Efer, J., Wennrich, L., Lewin, U., Blasberg, L., & Engewald, W. (1996). The Influence of the
34	Matrix on the Analysis of Explosives and their Metabolites in Ground Water Around a
35	Former Ammunition Plant (Vol. 87), pp. Weinheim): Efer, J; Wennrich, L; Lewin, U; Blasberg,
36	L; Engewald, W.
37	51. Fuller, M. E., Schaefer, C. E., Andaya, C., Lazouskaya, V., Fallis, S., Wang, C., & Jin, Y. (2012).
38	Dissolution kinetics of sub-millimeter Composition B detonation residues: role of particle
39	size and particle wetting. <i>Chemosphere, 88</i> (5), 591-597. doi:
40	10.1016/j.chemosphere.2012.03.038
41	52. Harvey, S. D., Fellows, R. J., Cataldo, D. A., & Bean, R. M. (1991). Fate of the explosive
42	hexahydro-1,3,5-trinitro-1,3,5-triazine (rdx) in soil and bioaccumulation in bush bean
43	hydroponic plants. Environmental Toxicology and Chemistry, 10(7), 845-855. doi:

1		10.1002/etc.5620100701
2	53	. Hess-Ruth, A., Crouse, L., & Roszell, L. (2007). RDX pilot development neurotoxicity test in
3		rats. Aberdeen Proving Ground: U.S. Army Center for Health Promotion and Preventive
4		Medicine.
5	54	. Hildenbrand, M., & Luckner, L. (1995). Laborative Untersuchungen zur Beschreibung des
6		Migrationsverhaltens sprengstofftypischer Verbindungen in Porengrundwasserleitern. Acta
7		<i>Hydrochimica et Hydrobiologica, 23</i> (3), 111-120. doi: 10.1002/aheh.19950230304
8	55	. Hildenbrand, M., & Neumann, V. (1995). REV-reactor and soil column studies of sorption
9		and migration of explosives in Elsnig sandy aquifers (Vol. 39, pp. 131-135): Hildenbrand, M;
10		Neumann, V.
11	56	. Hoffsommer, J. C., & Rosen, J. M. (1973). Hydrolysis of explosives in sea water. Bulletin of
12		Environmental Contamination and Toxicology, 10(2), 78-79.
13	57	. Hou, Y. (1991). A preliminary study on ultraviolet photodegradation of RDX (cyclonite,
14	-	cyclotrimethylene trinitramine) (Vol. BEIJING, pp. 90-93): Hou, Y.
15	58	. Kunz, R. R., Gregory, K. E., Aernecke, M. J., Clark, M. L., Ostrinskaya, A., & Fountain, A. W.
16		(2012). Fate dynamics of environmentally exposed explosive traces. <i>Journal of Physical</i>
17	F 0	<i>Chemistry A, 116</i> (14), 3611-3624. doi: 10.1021/jp211260t
18	59	. Kwon, M. J., O'Loughlin, E. J., Antonopoulos, D. A., & Finneran, K. T. (2011). Geochemical and
19 20		microbiological processes contributing to the transformation of hexahydro-1,3,5-trinitro-
20 21		1,3,5-triazine (RDX) in contaminated aquifer material. <i>Chemosphere, 84</i> (9), 1223-1230. doi: 10.1016/j.chemosphere.2011.05.027
21	60	Larson, S. L. (1997). Fate of explosive contaminants in plants. <i>Annals of the New York</i>
22	00	Academy of Sciences, 829, 195-201.
24	61	. Lever, J. H., Taylor, S., Perovich, L., Bjella, K., & Packer, B. (2005). Dissolution of composition
25	01	B detonation residuals. <i>Environmental Science and Technology</i> , 39(22), 8803-8811.
26	62	. Lynch, J. C., Brannon, J. M., & Delfino, J. J. (2002). Dissolution rates of three high explosive
27		compounds: TNT, RDX, and HMX. <i>Chemosphere</i> , <i>47</i> (7), 725-734.
28	63	. McDiarmid, M. A., & Weaver, V. (1993). Fouling one's own nest revisited. [Review]. American
29		Journal of Industrial Medicine, 24(1), 1-9.
30	64	. McKone, T. E., & Maddalena, R. L. (2007). Plant uptake of organic pollutants from soil:
31		bioconcentration estimates based on models and experiments. [Review]. Environmental
32		<i>Toxicology and Chemistry, 26</i> (12), 2494-2504. doi: 10.1897/06-269.1
33	65	. Montgomery, M. T., Coffin, R. B., Boyd, T. J., & Osburn, C. L. (2013). Incorporation and
34		mineralization of TNT and other anthropogenic organics by natural microbial assemblages
35		from a small, tropical estuary. Environmental Pollution, 174, 257-264. doi:
36		10.1016/j.envpol.2012.11.036
37	66	. Navy, U. S. (1996). Solid-State Photodecomposition of Energetic Nitramines (RDX and HMX):
38		U.S. Navy.
39	67	. Oh, S. Y., & Chiu, P. C. (2009). Graphite- and soot-mediated reduction of 2,4-dinitrotoluene
40		and hexahydro-1,3,5-trinitro-1,3,5-triazine. <i>Environmental Science and Technology, 43</i> (18),
41		6983-6988.
42	68	. Oxley, J. C., Smith, J. L., Resende, E., Pearce, E., & Chamberlain, T. (2003). Trends in explosive
43		contamination. <i>Journal of Forensic Sciences, 48</i> (2), 334-342.

1 2	69.	Ozhan, G., Topuz, S., & Alpertunga, B. (2003). Determination of cyclonite (RDX) in human
2 3		plasma by high-performance liquid chromatography. <i>Farmaco, 58</i> (6), 445-448. doi:
5 4	70	10.1016/s0014-827x(03)00069-7 Preiss, A., Levsen, K., Humpfer, E., & Spraul, M. (1996). Application of high-field proton
4 5	70.	nuclear magnetic resonance ((1)H-NMR) spectroscopy for the analysis of explosives and
6 7		related compounds in groundwater samples - a comparison with the high-performance
8		liquid chromatography (HPLC) method. <i>Analytical and Bioanalytical Chemistry</i> , 356(7), 445-
o 9	71	451. doi: 10.1007/s0021663560445
	/1.	Raymondi, R. (1992). Explosive Washout Lagoons Soils Operable Unit Supplemental
10		Investigation Technical and Environmental Management Support of Installation Restoration
11		Technology Development Program, Umatilla Depot Activity, Hermiston. Oregon. Phase 2
12	70	(Vol. GRA and I). United States (USA): Raymondi, R.
13	12.	Rocheleau, S., Lachance, B., Kuperman, R. G., Hawari, J., Thiboutot, S., Ampleman, G., &
14 15		Sunahara, G. I. (2008). Toxicity and uptake of cyclic nitramine explosives in ryegrass Lolium perenne. <i>Environmental Pollution, 156</i> (1), 199-206. doi: 10.1016/j.envpol.2007.12.012
16	73.	Schneider, U., & Koenig, W. (1988). Contaminations by Chemical Armament Factories Risk
17		Potential of Soil and Groundwater Contaminations by Closed Down Chemical Armament
18		Industry Plants in West and East Germany (Vol. K, pp. Dordrecht): Schneider, U; Koenig, W.
19	74.	Selim, H. M., Xue, S. K., & Iskandar, I. K. (1995). Transport of 2,4,6-Trinitrotoluene and
20		Hexahydro-1,3,5-Trinitro-1,3,5-Triazine in Soils. <i>Soil Science, 160</i> (5), 328-339. doi:
21		10.1097/00010694-199511000-00002
22	75.	Serna, C. J., Bartz, P. R., Donahoe, S. B., & Arbogast, M. (1990). Remedial Investigation Report
23		for Lake City Army Ammunition Plant. Volume 1 (Vol. GRA and I): Serna, CJ; Bartz, PR;
24		Donahoe, SB; Arbogast, M.
25	76.	Simini, M., & Checkai, R. T. (1995). Yield and Biomass of Crop Plants Irrigated with TNT and
26		RDX Contaminated Water (Vol. Pittsburgh, pp. 12-16): Simini, M; Checkai, RT.
27	77.	Simini, M., & Checkai, R. T. (1996). Uptake of RDX and TNT in Crop Plants Irrigated with
28		Contaminated Water (Vol. North Central Division, pp. 27-31): Simini, M; Checkai, RT.
29	78.	Singh, J., Comfort, S. D., Hundal, L. S., & Shea, P. J. (1998). Long-term RDX sorption and fate in
30		soil. Journal of Environmental Quality, 27(3), 572-577.
31	79.	Spanggord, R. J., Gibson, B. W., Keck, R. G., & Newell, G. W. (1978). Mammalian toxicological
32		evaluation of TNT wastewaters. Vol. I, Chemistry studies. Fort Detrick, Frederick, MD: U.S.
33		Army Medical Research and Development Command.
34	80.	Taylor, S., Lever, J. H., Fadden, J., Perron, N., & Packer, B. (2009). Simulated rainfall-driven
35		dissolution of TNT, Tritonal, Comp B and Octol particles. <i>Chemosphere</i> , 75(8), 1074-1081.
36		doi: 10.1016/j.chemosphere.2009.01.031
37	81.	Thompson, P. L., Ramer, L. A., & Schnoor, J. L. (1999). Hexahydro-1,3,5-trinitro-1,3,5-triazine
38		translocation in poplar trees. <i>Environmental Toxicology and Chemistry, 18</i> (2), 279-284. doi:
39		10.1002/etc.5620180226
40	82.	U.S, EPA (1991). Superfund Record of Decision (EPA Region 10): Bangor Naval Submarine
41		Base, Site F (Operable Unit 2), Bangor, WA. (First Remedial Action), September 1991.
42		Washington, DC. Office of Emergency and Remedial Response: Office of Emergency and
43		Remedial Response.

1	83.	U.S, EPA (1991). Superfund Record of Decision (EPA Region 10): Bangor Ordnance Disposal
2		(USN Submarine Base), Bangor, WA. (First Remedial Action), December 1991. Washington,
3		DC. Office of Emergency and Remedial Response: Office of Emergency and Remedial
4		Response.
5	84.	U.S, EPA (1992). Superfund record of decision (EPA region 5): Savanna Army Depot,
6		Savanna, IL. (First remedial action), March 1992. Washington, DC.
7	85.	U.S, EPA (1992). Superfund Record of Decision (EPA Region 10): Umatilla Army Depot
8		(Lagoons), Soils Operable Unit 2, Hermiston, OR. (First Remedial Action), September 1992.
9		Washington, DC. Office of Emergency and Remedial Response: Office of Emergency and
10		Remedial Response.
11	86.	U.S, EPA (1995). Superfund Record of Decision (EPA Region 7): Cornhusker Army
12		Ammunition Plant, Operable Unit 1, Hall County, Grand Island, NE., September 29, 1994.
13		Washington, DC. Office of Emergency and Remedial Response: Office of Emergency and
14		Remedial Response.
15	87.	U.S, EPA (1998). Superfund Record of Decision (EPA Region 6): Louisiana Army
16		Ammunition Plant, Soil Source Operable Unit, Doyline, LA., March 4, 1997. Washington, DC.
17		Office of Emergency and Remedial Response: Office of Emergency and Remedial Response.
18	88.	U.S, EPA (1999). Superfund Record of Decision (EPA Region 3): Naval Weapons Station-
19		Yorktown, Operable Units 6 and 7, Yorktown, VA., March 23, 1998. Washington, DC. Office of
20		Emergency and Remedial Response: Office of Emergency and Remedial Response.
21	89.	USGS. (2003). Diffusion and Drive-Point Sampling to Detect Ordnance-Related Compounds
22		in Shallow Ground Water Beneath Snake Pond, Cape Cod, Massachusetts, 2001-02.
23		Northborough, MA. Water Resources Div: US Geological Survey.
24	90.	Walsh, M. E., Taylor, S., Hewitt, A. D., Walsh, M. R., Ramsey, C. A., & Collins, C. M. (2010). Field
25		observations of the persistence of Comp B explosives residues in a salt marsh impact area.
26		Chemosphere, 78(4), 467-473. doi: 10.1016/j.chemosphere.2009.10.021
27	91.	Wang, C., Fuller, M. E., Schaefer, C., Caplan, J. L., & Jin, Y. (2012). Dissolution of explosive
28		compounds TNT, RDX, and HMX under continuous flow conditions. Journal of Hazardous
29		Materials, 217-218, 187-193. doi: 10.1016/j.jhazmat.2012.03.012
30	92.	Wang, C., Fuller, M. E., Schaefer, C. E., Fu, D., & Jin, Y. (2012). Modeling the dissolution of
31		various types of mixed energetic residues under different flow conditions. Journal of
32		Hazardous Materials, 235-236, 138-143. doi: 10.1016/j.jhazmat.2012.07.035
33	93.	Xue, S. K., Iskandar, I. K., & Selim, H. M. (1995). Adsorption-desorption of 2, 4, 6-
34		trinitrotoluene and hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine in soils. <i>Soil Science, 160</i> (5),
35		317-327.
36	94.	Yoon, J. M., Van Aken, B., & Schnoor, J. L. (2006). Leaching of contaminated leaves following
37		uptake and phytoremediation of RDX, HMX, and TNT by poplar. International Journal of
38		Phytoremediation, 8(1), 81-94. doi: 10.1080/15226510500507128
39	95.	Yue, H., Wan, H., Chai, W. l., Wu, H. m., Kao, X. b., & Wang, Y. l. (2011). Investigation on
40		occupational hazard factors in small and middle test workplaces of explosive industry.
41		Chinese Journal of Public Health Engineering / Zhongguo wei sheng gong cheng xue, 10(2),
42		91-93.
43	96.	Zheng, W., Lichwa, J., D'Alessio, M., & Ray, C. (2009). Fate and transport of TNT, RDX, and

1 2		HMX in streambed sediments: Implications for riverbank filtration. <i>Chemosphere, 76</i> (9), 1167-1177. doi: 10.1016/j.chemosphere.2009.06.043
3		<u>Mixtures Only</u> (3 citations)
4	1.	Berthe-Corti, L., Jacobi, H., Kleihauer, S., & Witte, I. (1998). Cytotoxicity and mutagenicity of
5		a 2,4,6-trinitrotoluene (TNT) and hexogen contaminated soil in S. typhimurium and
6		mammalian cells. <i>Chemosphere, 37</i> (2), 209-218. doi: 10.1016/s0045-6535(98)00039-3
7	2.	Dilley, J., Tyson, C., Spanggord, R., Sasmore, D., Newell, G., & Dacre, J. (1982). Short-term oral
8		toxicity of a 2, 4, 6-trinltrotoluene and hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine mixture in
9		mice, rats, and dogs. <i>Journal of Toxicology and Environmental Health, Part A: Current Issues,</i>
10	n	9(4), 587-610. doi: 10.1080/15287398209530189
11 12	3.	Twerdok, L. E., Burton, D. T., Gardner, H. S., Shedd, T. R., & Wolfe, M. J. (1997). The use of nontraditional assays in an integrated environmental assessment of contaminated ground
12		water. Environmental Toxicology and Chemistry, 16(9), 1816-1820. doi:
14		10.1002/etc.5620160908
T		10.1002/ ctd.5020100 /00
15		<u>Toxicokinetics</u> (16 citations)
16	1.	Bell, S. C., Gayton-Ely, M., & Nida, C. M. (2009). Bioassays for bomb-makers: Proof of concept.
17		Analytical and Bioanalytical Chemistry, 395(2), 401-409. doi: 10.1007/s00216-009-2851-4
18	2.	Bhushan, B., Trott, S., Spain, J. C., Halasz, A., Paquet, L., & Hawari, J. (2003).
19		Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a rabbit liver
20		cytochrome P450: Insight into the mechanism of RDX biodegradation by Rhodococcus sp.
21 22		strain DN22. <i>Applied and Environmental Microbiology, 69</i> (3), 1347-1351. doi:
22	3.	10.1128/aem.69.3.1347-1351.2003 Crouse, L. C. B., Michie, M. W., Major, M. A., Leach, G. J., & Reddy, G. (2008). Oral
23 24	э.	bioavailability of cyclotrimethylenetrinitramine (RDX) from contaminated site soils in rats.
25		International Journal of Toxicology, 27(4), 317-322. doi: 10.1080/10915810802366885
26	4.	
27		hexogen in white mice. Zhonghua Laodong Weisheng Zhiyebing Zazhi, 3(6), 335-339.
28	5.	Krishnan, K., Crouse, L. C. B., Bazar, M. A., Major, M. A., & Reddy, G. (2009). Physiologically
29		based pharmacokinetic modeling of cyclotrimethylenetrinitramine in male rats. Journal of
30		<i>Applied Toxicology, 29</i> (7), 629-637. doi: 10.1002/jat.1455
31	6.	Major, M. A., Reddy, G., Berge, M. A., Patzer, S. S., Li, A. C., & Gohdes, M. (2007). Metabolite
32		profiling of [14C]hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in Yucatan miniature pigs.
33		Journal of Toxicology and Environmental Health, Part A: Current Issues, 70(14), 1191-1202.
34	_	doi: 10.1080/15287390701252717
35	7.	Mintzer, E., Kizerian, A., Grant, K., Hoppe, E. W., & Campbell, J. A. (2007). Saliva as a matrix
36 27		for the detection of RDX, and TNT and its major metabolites as biomarkers for exposure by
37 38	0	Gas Chromatography/Mass Spectrometry. NW-007.
30 39	8.	Musick, T. J., Berge, M. A., Patzer, S. S., & Tilch, K. R. (2010). Absorption, distribution, metabolism, and excretion of 14C-RDX following oral administration to minipigs. Madison,
40		WI: Covance Laboratories Inc.
41	9.	
42		Absorption, distribution, and biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine
		· · · · · · · · · · · · · · · · · · ·

1		(RDX) in B6C3F1 mice (Mus musculus). <i>Environmental Toxicology and Chemistry</i> . doi:
2		10.1002/etc.2188
3	10	. Pan, X., Zhang, B., Smith, J. N., San Francisco, M., Anderson, T. A., & Cobb, G. P. (2007). N-
4		Nitroso compounds produced in deer mouse (Peromyscus maniculatus) GI tracts following
5		hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) exposure. <i>Chemosphere</i> , <i>67</i> (6), 1164-1170.
6		doi: 10.1016/j.chemosphere.2006.10.077
7	11	. Reddy, G., Allen, N. A., & Major, M. A. (2008). Absorption of 14C-
8		cyclotrimethylenetrinitramine (RDX) from soils through excised human skin. Toxicology
9		Mechanisms and Methods, 18(7), 575-579. doi: 10.1080/15376510701703466
10	12	. Reifenrath, W. G., Kammen, H. O., Palmer, W. G., Major, M. M., & Leach, G. J. (2002).
11		Percutaneous absorption of explosives and related compounds: An empirical model of
12		bioavailability of organic nitro compounds from soil. Toxicology and Applied Pharmacology,
13		<i>182</i> (2), 160-168. doi: 10.1006/taap.2002.9436
14	13	. Reifenrath, W. G., Kammen, H. O., Reddy, G., Major, M. A., & Leach, G. J. (2008). Interaction of
15		hydration, aging, and carbon content of soil on the evaporation and skin bioavailability of
16		munition contaminants. Journal of Toxicology and Environmental Health, Part A: Current
17		<i>Issues, 71</i> (8), 486-494. doi: 10.1080/15287390801906956
18	14	. Schneider, N., Bradley, S., & Andersen, M. (1976). Metabolism of
19		[14C]cyclotrimethylenetrinitramine (RDX) in the rat. Toxicology and Applied Pharmacology,
20		<i>37</i> (1), 137. doi: 10.1016/s0041-008x(76)80011-7
21	15	. Schneider, N., Bradley, S., & Andersen, M. (1977). Toxicology of
22		cyclotrimethylenetrinitramine (RDX): Distribution and metabolism in the rat and the
23		miniature swine. <i>Toxicology and Applied Pharmacology, 39</i> (3), 531-541. doi: 10.1016/0041-
24		008x(77)90144-2
25	16	. Schneider, N., Bradley, S., & Andersen, M. (1978). The distribution and metabolism of
26		cyclotrimethylenetrinitramine (RDX) in the rat after subchronic administration. <i>Toxicology</i>
27		and Applied Pharmacology, 46(1), 163-171. doi: 10.1016/0041-008x(78)90147-3
20		
28		<u>Genotoxicity</u> (9 citations)
29	1.	Arfsten, D., Davenport, R., & Schaeffer, D. (1994). Reversion of bioluminescent bacteria
30		(Mutatox TM) to their luminescent state upon exposure to organic compounds, munitions,
31	_	and metal salts. <i>Biomedical and Environmental Sciences</i> , 7(2), 144-149.
32	2.	Cotruvo, J. A., Simmon, V. F., & Spanggord, R. J. (1977). Investigation of mutagenic effects of
33		products of ozonation reactions in water. Annals of the New York Academy of Sciences, 298(1
34		Aquatic Pollu), 124-140. doi: 10.1111/j.1749-6632.1977.tb19259.x
35	3.	George, S. E., Huggins-Clark, G., & Brooks, L. R. (2001). Use of a Salmonella microsuspension
36		bioassay to detect the mutagenicity of munitions compounds at low concentrations.
37		Mutation Research, 490(1), 45-56. doi: 10.1016/s1383-5718(00)00150-9
38	4.	Lachance, B., Robidoux, P. Y., Hawari, J., Ampleman, G., Thiboutot, S., & Sunahara, G. I.
39		(1999). Cytotoxic and genotoxic effects of energetic compounds on bacterial and
40		mammalian cells in vitro. Mutation Research, 444(1), 25-39. doi: 10.1016/s1383-
41		5718(99)00073-x
42	5.	Neuwoehner, J., Schofer, A., Erlenkaemper, B., Steinbach, K., Hund-Rinke, K., & Eisentraeger,
43		A. (2007). Toxicological characterization of 2,4,6-trinitrotoluene, its transformation

1		products, and two nitramine explosives. Environmental Toxicology and Chemistry, 26(6),
2		1090-1099. doi: 10.1897/06-471r.1
3	6.	Pan, X., San Francisco, M. J., Lee, C., Ochoa, K. M., Xu, X., Liu, J., Cobb, G. P. (2007).
4		Examination of the mutagenicity of RDX and its N-nitroso metabolites using the Salmonella
5		reverse mutation assay. Mutation Research: Genetic Toxicology and Environmental
6		<i>Mutagenesis, 629</i> (1), 64-69. doi: 10.1016/j.mrgentox.2007.01.006
7	7.	
8		assessment of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). International Journal of
9		<i>Toxicology, 24</i> (6), 427-434. doi: 10.1080/10915810500366922
10	8.	
11		metabolites formed during composting. Journal of Toxicology and Environmental Health,
12		Part A: Current Issues, 36(3), 165-175. doi: 10.1080/15287399209531632
13	9.	Whong, W. Z., Speciner, N. D., & Edwards, G. S. (1980). Mutagenic activity of tetryl, a
14		nitroaromatic explosive, in three microbial test systems. <i>Toxicology Letters</i> , 5(1), 11-17. doi:
15		10.1016/0378-4274(80)90142-3
16		<u>Mechanistic Data</u> (13 citations)
17	1.	Bannon, D. I., Dillman, J. F., Hable, M. A., Phillips, C. S., & Perkins, E. J. (2009). Global gene
18		expression in rat brain and liver after oral exposure to the explosive hexahydro-1,3,5-
19		trinitro-1,3,5-triazine (RDX). <i>Chemical Research in Toxicology, 22</i> (4), 620-625. doi:
20		10.1021/tx800444k
21	2.	,
22		(2006). Acute RDX exposure and gene expression in the rat brain. [Abstract]. <i>Toxicologist</i> ,
23		<i>90</i> (S1), 392-393.
24	3.	
25		(2010). Detection of explosives by olfactory sensory neurons. <i>Journal of Hazardous</i>
26		Materials, 175(1-3), 1096-1100. doi: 10.1016/j.jhazmat.2009.10.054
27	4.	Ehrich, M., Wu, X., Werre, S. R., Major, M. A., McCain, W. C., & Reddy, G. (2009). Calcium
28		signaling in neuronal cells exposed to the munitions compound
29		cyclotrimethylenetrinitramine (RDX). <i>International Journal of Toxicology, 28</i> (5), 425-435.
30		doi: 10.1177/1091581809340331
31	5.	Ford-Green, J., Isayev, O., Gorb, L., Perkins, E. J., & Leszczynski, J. (2012). Evaluation of
32		natural and nitramine binding energies to 3-D models of the S1S2 domains in the N-methyl-
33		D: -aspartate receptor. <i>Journal of Molecular Modeling, 18</i> (4), 1273-1284. doi:
34		10.1007/s00894-011-1152-y
35	6.	
36		(2012). BLTK1 Murine Leydig Cells: A Novel Steroidogenic Model for Evaluating the Effects
37		of Reproductive and Developmental Toxicants. <i>Toxicological Sciences</i> , 127(2), 391-402. doi:
38		10.1093/toxsci/kfs121
39	7.	
40		as integrated discrete multiple organ co-cultures (IdMOC) and as individual primary
41		cultures. Columbia, MD: In Vitro ADMET Laboratories.
42	8.	Meyer, S. A. (2006). Role of myelofibrosis in hematotoxicity of munition RDX environmental
43		degradation product MNX. 2006 Update. Monroe, LA: University of Louisiana at Monroe.
		and the second

1 2	9.	Meyer, S. A. (2007). Role of myelofibrosis in hematotoxicity of munitions RDX environmental degradation product MNX. 2007 Update. Monroe, LA: University of Louisiana
3		at Monroe.
4	10.	Perkins, E. J., Bao, W., Guan, X., Ang, C. Y., Wolfinger, R. D., Chu, T. M., Inouye, L. S. (2006).
5		Comparison of transcriptional responses in liver tissue and primary hepatocyte cell cultures
6		after exposure to hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine. <i>B M C Bioinformatics, 7</i> (Suppl 4),
7		S22. doi: 10.1186/1471-2105-7-s4-s22
8	11.	Way, M. R., & McCain, W. C. (2007). Protective effects of the calcium channel blocker,
9		Verapamil in rats exposed to RDX. Aberdeen Proving Ground, MD: U.S. Army Center for
10		Health Promotion and Preventive Medicine.
11	12.	Williams, L. R., Aroniadou-Anderjaska, V., Qashu, F., Finne, H., Pidoplichko, V., Bannon, D. I.,
12		& Braga, M. F. (2011). RDX binds to the GABA(A) receptor-convulsant site and blocks
13		GABA(A) receptor-mediated currents in the amygdala: a mechanism for RDX-induced
14		seizures. <i>Environmental Health Perspectives</i> , 119(3), 357-363. doi: 10.1289/ehp.1002588
15	13	Zhang, B., & Pan, X. (2009). RDX induces aberrant expression of microRNAs in mouse brain
16	10.	and liver. <i>Environmental Health Perspectives, 117</i> (2), 231-240. doi: 10.1289/ehp.11841
	4 9 9	
17	1.2.3.	Kept for Possible Further Review
18		<u>No abstract</u> (9 citations)
19	1.	Bruchim, Y., Saragusty, J., Weisman, A., & Sternheim, D. (2005). Cyclonite (RDX) intoxication
20		in a police working dog. <i>Veterinary Record, 157</i> (12), 354-356.
21	2.	Croft, P. E. (1983). Cyclonite poisoning in a dog. [Letter]. <i>Veterinary Record, 113</i> (20), 477.
22		doi: 10.1136/vr.113.20.477-a
23	3.	Jacobs, A. (1991). Haematological study at Ordnance Factory [Unpublished report]. Cardiff,
24		UK: University of Wales College of Medicine.
25	4.	Kale, V. M. (2007). Mechanistic studies on hepatotoxicity of chloroacetanilide herbicides and
26		hematotoxicity of munitions compound RDX and environmental degradation product MNX.
27		(Doctoral Dissertation), University of Louisiana at Monroe, Monroe, LA. Retrieved from
28		http://proquest.umi.com/pqdlink?did=1445039451&Fmt=7&clientI
29		d=79356&RQT=309&VName=PQD
30	5.	Littlewood, J. D., Watkins, S. B., & Watney, G. C. (1983). Cyclonite poisoning in a dog. [Letter].
31		<i>Veterinary Record, 113</i> (21), 503. doi: 10.1136/vr.113.21.503-a
32	6.	Miller, K. C. (1973). Toxicity and Adverse Effects of RDX: an Annotated Bibliography: Miller,
33		KC.
34	7.	Mindi, Q. W., Li, B., & Chen, R. (1995). The Mutagenicity of Several Chemicals by Vicia
35		Micronucleus Vicia-MCN Assay (Vol. ST, pp. 12-16): Mindi, QW; Li, B; Chen, R.
36	8.	Sklyanskaya, R. M., & Pozhariskii, F. I. (1944). On the question of hexogen toxicity.
37		Farmakologiya i Toksikologiya, 7(3), 43-47.
38	9.	Vogel, W. (1951). Hexogen poisoning in human beings. Zentralblatt fuer Arbeitsmedizin und
39		Arbeitsschutz, 1, 51-54.
40		<u>Foreign language</u> (2 citations)
41	1.	Dong, Y., Li, J., Xiang, S., Yang, S., Bao, Z., Fan, H., Li, Z. (1997). [Application of serum bile acid

2.	chromatography to the diagnoses of liver diseases]. <i>Hua Xi Yi Ke Da Xue Xue Bao, 28</i> (1), 69-72. Zhang, M. D. (1982). Food poisoning caused by hexogen: A report of 8 cases. <i>Zhonghua Yufang Yixue Zazhi, 16</i> (4), 229-231.
	Inadequate reporting in abstract (4 citations)
1.	. Final report on occupational health and safety at the plants of "Les Produits Chimiques
	Expro Inc." (1983) (Vol. Government of Quebec): Gouvernement du Qu¢ebec.
2.	Berry, A., Arbuckle, J., & Nicol, J. (1983). Cyclonite poisoning in a dog. Veterinary Record,
	<i>113</i> (19), 449.
3.	De Cramer, K. G., & Short, R. P. (1992). Plastic explosive poisoning in dogs. <i>Journal of the</i>
	South African Veterinary Medical Association, 63(1), 30-31.
4.	Wang, Y., Yan, C., Xia, B., & Tang, H. (2001). Study on health standard of octogen in air of
	workplaces. Gongye Weisheng yu Zhiyebin / Industrial health and occupational diseases,
	27(3), 134-136.
	1. 2. 3.

1

2. PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS

2 2.1. Data Extraction: Preparation of Preliminary Evidence Tables and 3 Exposure-Response Arrays

The 47 references identified as primary sources of health effects data were considered for
data extraction to evidence tables and exposure-response arrays. References were first collated
with respect to exposure route, exposure duration, and type of endpoint, to identify those most
pertinent for evaluating the human health effects from chronic oral or inhalation exposure to RDX.
As a result, data from 27 studies with one or more of the following characteristics were not
extracted into evidence tables or exposure-response arrays:

- The study involved human case reports, dermal exposure or intravenous/intraperitoneal exposure;
- The study only involved acute or short-term exposures (less than 30 days), and it was not conducted in the context of immune, developmental, neurological or reproductive toxicity;
- The data in the study only included endpoints related to possible mechanisms of toxicity;
- No effects were associated with exposure to RDX for the endpoints evaluated in the study, nor were RDX-related effects observed for those endpoints in any of the other available references.

18 Data from the 20 remaining references were summarized in preliminary evidence tables. 19 No studies were excluded based on study quality considerations, so as to allow for public input on 20 methodological considerations that could affect the interpretation of, or confidence in, each study's 21 results. In some instances, references are grouped together as "related" references because they 22 represent pilot (e.g., range-finding), unpublished (e.g., technical reports, some with multiple 23 volumes), and/or published (e.g., journal article) versions of the same study. The tables for 24 noncarcinogenic effects appear first and are arranged in the order from the health effect with the 25 most data to the health effect with the least data. The tables for carcinogenic effects follow, along 26 with other systemic effects, which are those with little data to determine hazard. Finally, tables 27 present data on genotoxic effects of RDX and its metabolites. Within each endpoint, the studies are 28 presented beginning with chronic studies followed by those with subchronic exposures. The 29 information in the preliminary evidence tables is displayed graphically in preliminary exposure-30 response arrays. In these arrays, a significant effect (indicated by a filled datapoint) is based on 31 statistical significance, with the exception of the arrays for mortality and neurological endpoints.

Preliminary Materials for the IRIS Toxicological Review of RDX

1	For these two endpoints, it was determined that the severity of the endpoints (seizures and death)
2	warranted identification based on biological significance. A study with a low number of animals per
3	dose group may preclude identifying a change from the control as statistically significant when the
4	incidence is low; however, given the severity of the effect, the observed effect was identified as
5	biologically significant.
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	

1 2.2. Neurological Effects Evidence Tables and Array

2 3

Table 2-1. Evidence pertaining to neurological effects in humans following exposure to RDX

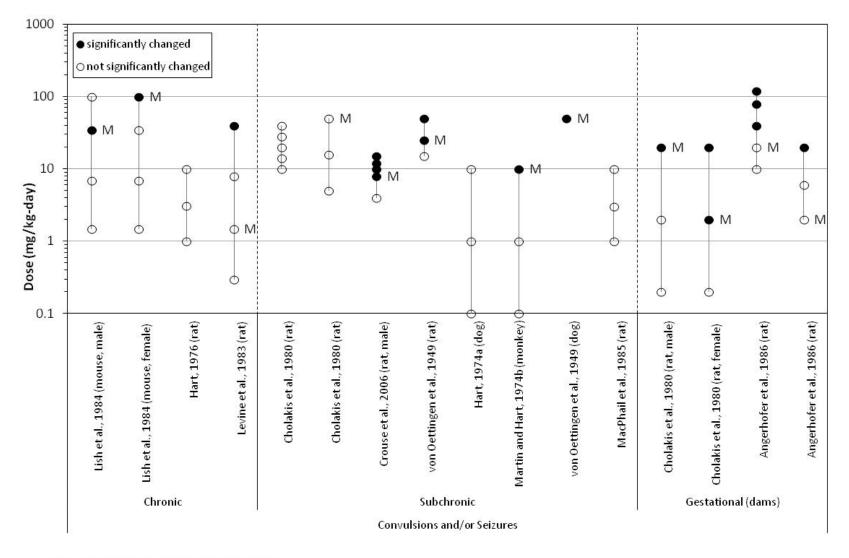
Reference a	and Study Design		Results						
<u>Ma and Li (1992)</u> (Chi		Neurobehavioral function tests, scaled scores (mean, standard deviation):							
	, 60 workers exposed to 26 males; 4 females]; 30 in	Test	Group A	Group B	Control				
• • •	females]), compared to	Memory retention*	96.9 (9.6)	91.1 (10.3)	111.3 (9.3)				
	ar age, education level,	Simple reaction time	539 (183)	578 (280)	493 (199)				
and length of employment from same plant		Choice reaction time	775 (161)	770 (193)	763 (180)				
_		Block design*	16.0 (4.3)	13.5(6.7)	18.0 (5.4)				
Exposure measures: I measurement were n	Details of exposure lot provided; exposed	Letter cancellation	1449 (331)	1484 (443)	1487 (343)				
workers were divided into two groups based on RDX concentration in the air: Concentration (mg/m ³)		*p < 0.01 (overall F-test); no statistically significant differences between Group A and Group B. Lower score indicates worse performance.							
Group A 0.407 (±	± 0.332) ± 0.556)	Memory retention subtests, scaled scores (mean, standard deviation):							
Effect measures ^a : Five	e neurobehavioral	Subtest	Group A	Group B	Control				
function tests and five		Directional memory*	17.2 (4.9)	18.1 (5.7)	23.5 (3.6)				
subtests.		Associative learning*	20.0 (4.3)	18.5 (4.6)	24.9 (5.1)				
Analysis: Variance (F-	test); unadjusted linear	Image free recall*	20.9 (4.1)	20.4 (3.3)	24.1 (3.8)				
regression, multiple reanalysis.	egression, and correlation	Recognition of nonsense pictures*	23.2 (4.9)	21.6 (4.3)	26.3 (3.6)				
		Associative recall of 20.3 (4.4) 18.5 (4.3) 26.3 (3.3) portrait characteristics*							
		*p < 0.01 (overall F-test); between Group A and Gro Lower score indicates wo Total behavioral score ne (high exposure correlated	oup B. rse performan gatively correl	nce. ated with expo					

^aSymptom data were not included in evidence table because of incomplete reporting.

4

Table 2-2. Evidence pertaining to neurological effects in animals following oral exposure to RDX

Reference and Study Design	Results
Lish et al. (1984); Levine et al. (1984) Mice, B6C3F ₁ , 85/sex/group; interim sacrifices (10/sex/group) at 6 and 12 mo 0, 1.5, 7.0, 35, or 175/100 mg/kg-d (high dose reduced to 100 mg/kg-d in wk 11 due to excessive mortality) Diet 24 mo	One male mouse in the 35 mg/kg-d dose group and one female mouse in the 175/100 mg/kg-d ^a group convulsed near the end of the study.
Hart (1976) Rats, Sprague-Dawley, 100/sex/group 0, 1.0, 3.1, or 10 mg/kg-d Diet 2 yrs	No neurological effects, as evidenced by clinical signs or changes in appearance or behavior, were reported.
Levine et al. (1983); Thompson (1983) Rats, F344, 75/sex/group; interim sacrifices (10/sex/group) at 6 and 12 mo 0, 0.3, 1.5, 8.0, or 40 mg/kg-d Diet 24 mo	Tremors, convulsions, and hyper-responsiveness to stimuli were noted at 40 mg/kg-d ^a ; no incidence data were reported.
Cholakis et al. (1980) Mice, B6C3F ₁ , 10–12/sex/group 0, 40, 60, or 80 mg/kg-d for 2 wks followed by 0, 320, 160, or 80 mg/kg-d (TWA doses of 0, 79.6, 147.8, or 256.7 mg/kg-d for males and 0, 82.4, 136.3, or 276.4 mg/kg-d for females) ^b Diet 13 wks	Hyperactivity and/or nervousness observed in 50% of the high-dose males; no signs observed in females ^a ; no incidence data were reported.
<mark>Cholakis et al. (1980)</mark> Rats, F344, 10/sex/group 0, 10, 14, 20, 28, or 40 mg/kg-d Diet 13 wks	No neurological effects, as evidenced by clinical signs or changes in appearance or behavior, were reported.


Reference and Study Design	tudy Design Results						
Cholakis et al. (1980) Rats, CD, two-generation study; F0: 22/sex/group; F1: 26/sex/group; F2: 10/sex/group F0 and F1 parental animals: 0, 5, 16, or 50 mg/kg-d Diet 13 wks	No neurolog	gical effect	ts were re	ported.			
<u>Crouse et al. (2006)</u>	Doses	0	4	8 ^a	10	12	15
Rats, F344, 10/sex/group	Convulsions	(incidence	e)				
0, 4, 8, 10, 12, or 15 mg/kg-d	М	0/10	0/10	1/10	3/10	8/10	7/10
Gavage	F	0/10	0/10	2/10	3/10	5/10	5/10
90 d	Tremors (in	cidence)					
	М	0/10	0/10	0/10	0/10	2/10	3/10
	F	0/10	0/10	0/10	0/10	0/10	1/10
Levine et al. (1981b) Rats, F344, 10/sex/group; 30/sex for control 0, 10, 30, 100, 300, or 600 mg/kg-d Diet 13 wks	≥100 mg/kg Tremors an animals rec Hyperirritat	d convulsi eiving 600	ons were mg/kg-d;	observed no incide	prior to d nce data	were repo	orted.
Rats, sex/strain not specified, 20/group 0, 15, 25, or 50 mg/kg-d Diet 3 mo	50 mg/kg-d	groups ^ª ; r	io inciden	ce data w	ere repor	ted.	
<u>Hart (1974)</u> Dogs, Beagle, 3/sex/group 0, 0.1, 1, or 10 mg/kg-d Diet 90 d	No neurolog appearance				clinical sig	gns or cha	nges in
Martin and Hart (1974)	Doses	0		0.1	1		10 ^a
Monkeys, Cynomolgus or Rhesus, 3/sex/group	CNS effects characterized as trembling, shaking, jerking, or convulsions (incidence)						
0, 0.1, 1, or 10 mg/kg-d	М	0/3		0/3	0/3		2/3
Gavage 90 d	F	0/3		0/3	0/3		2/3

This document is a preliminary draft for review purposes only and does not constitute Agency policy.2-5DRAFT—DO NOT CITE OR QUOTE

Reference and Study Design	Results
Von Oettingen et al. (1949) Dogs, breed not specified, 5 females/group (control); 7 females/group (exposed) 0 or 50 mg/kg-d Diet 6 d/wk for 6 wks	Treated dogs exhibited convulsions, excitability, ataxia, and hyperactive reflexes ^a ; no incidence data were reported.
MacPhail et al. (1985) Rats, Sprague-Dawley derived CD, 8– 10 males or females/group 0, 1, 3, or 10 mg/kg-d Gavage 30 d	No changes in motor activity, flavor aversion, scheduled-controlled response, or acoustic startle-response were reported.
<mark>Cholakis et al. (1980)</mark> Rats, F344, 24–25 females/group 0, 0.2, 2.0, or 20 mg/kg Gavage GDs 6–19	Convulsions and hyperactivity in 18/25 dams at 20 mg/kg ^a ; one female at 2.0 mg/kg-d exhibited convulsions.
Angerhofer et al. (1986) (range-finding study) Rats, Sprague-Dawley, 6 pregnant females/group 0, 10, 20, 40, 80, or 120 mg/kg-d Gavage GDs 6–15	Convulsions preceding death were observed at ≥40 mg/kg-d ^a ; no incidence data were reported.
Angerhofer et al. (1986) Rats, Sprague-Dawley, 39–51 mated females/group 0, 2, 6, or 20 mg/kg-d Gavage GDs 6–15	Convulsions and hyperactivity ^a were observed at 20 mg/kg-d; no incidence data were reported.

^aMortality was reported in some RDX-treated groups in this study; see mortality evidence tables for additional details.

^bDoses were calculated by the study authors.

M-Mortality observed at this dose and above

1

Figure 2-1. Exposure-response array of neurological effects following oral exposure to RDX

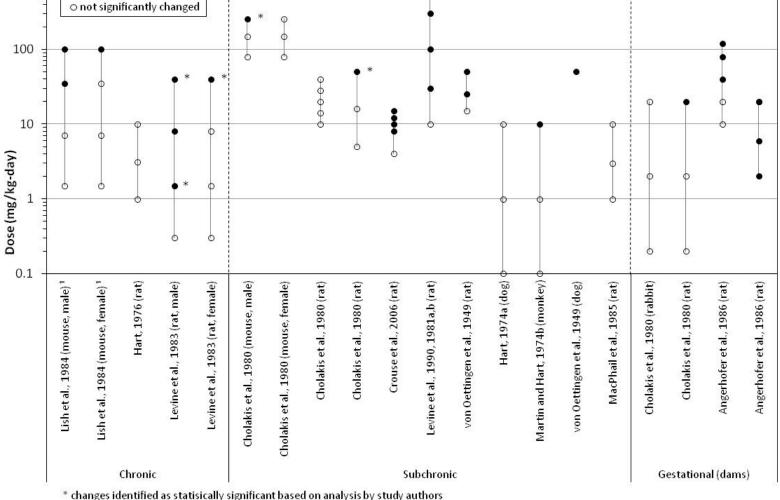
This document is a preliminary draft for review purposes only and does not constitute Agency policy.

1 2.3. Mortality Evidence Table and Array

Table 2-3. Evidence pertaining to mortality following oral exposure to RDX

Reference and Study Design				Results						
Lish et al. (1984); Levine et al. (1984)	Doses	0		1.5	7.0	Э	35	175/100		
Mice, B6C3F ₁ , 85/sex/group; interim	Mortality (incidence) ^a									
sacrifices (10/sex/group) at 6 and 12 mo	М	20/65	5 2	23/65	25/65	29	/65	41/65		
0, 1.5, 7.0, 35, or 175/100 mg/kg-d (high dose reduced to 100 mg/kg-d in wk 11	F	16/65	5 2	21/65	14/65	21	/65	42/65		
due to excessive mortality) Diet 24 mo	After the high dos controls.	se was re	duced	to 100 r	ng/kg-d,	. surviva	al was	similar to		
<u>Hart (1976)</u>	Doses	0)	1.	0	3.1		10		
Rats, Sprague-Dawley, 100/sex/group	Mortality (inciden	ce) ^b								
0, 1.0, 3.1, or 10 mg/kg-d	М	34/	94	30/	95	25/86		33/92		
Diet	F	20/	83	32/	95	29/100)	33/96		
2 yrs										
Levine et al. (1983); Thompson (1983)	Doses	0		0.3	1.5	8	.0	40		
Rats, F344, 75/sex/group; interim	Mortality (incidence) ^a									
rifices (10/sex/group) at 6 and 12 mo	М	17/55	1	9/55	30/55*	26,	/55	51/55*		
0, 0.3, 1.5, 8.0, or 40 mg/kg-d	F	12/55	1	0/55	13/55	14,	/55	27/55*		
Diet										
24 mo										
<u>Cholakis et al. (1980)</u>	Doses	0		80)	160		320		
Mice, B6C3F ₁ , 10–12/sex/group	Mortality (inciden	ce)								
0, 40, 60, or 80 mg/kg-d for 2 wks	М	0/1	.0	0/1	0	0/10		4/10*		
followed by 0, 320, 160, or 80 mg/kg-d (TWA doses of 0, 79.6, 147.8, or 256.7 mg/kg-d for males and 0, 82.4, 136.3, or 276.4 mg/kg-d for females) ^c Diet 13 wks	F	0/1	.1	0/1	2	0/10		2/12		
<u>Cholakis et al. (1980)</u>	Doses	0	10	14	2	:0	28	40		
Rats, F344, 10/sex/group	Mortality (inciden	ce)								
0, 10, 14, 20, 28, or 40 mg/kg-d	М	0/10	0/10	0/1	.0 0/	10	0/10	0/10		
Diet	F	1/10	0/10	0/1	.0 0/	10	0/10	0/10		
13 wks										

Reference and Study Design			I	Results				
Cholakis et al. (1980)	Doses	0)	5	16		50	
Rats, CD, two-generation study; F0:	Mortality in F0 adults (incidence) ^d							
22/sex/group; F1: 26/sex/group; F2:	м	0/22		0/22	0/22		2/22	
10/sex/group	F	0/2	0/22		0/22		6/22	
F0 and F1 parental animals: 0, 5, 16, or 50 mg/kg-d	M&F	0/4	14	0/44	0/4	4	8/44*	
Diet								
13 wks								
Crouse et al. (2006)	Doses	0	4	8	10	12	15	
Rats, F344, 10/sex/group	Mortality (inciden	ice)						
0, 4, 8, 10, 12, or 15 mg/kg-d	м	0/10	0/10	1/10	3/10	2/10	3/10	
Gavage	F	0/10	0/10	1/10	2/10	5/10	4/10	
90 d								
Levine et al. (1990); Levine et al. (1981a);	Doses	0	10	30	100	300	600	
Levine et al. (1981b)	Mortality (inciden	ice) ^e						
Rats, F344, 10/sex/group; 30/sex for	м	0/30	0/10	0/10	8/10	10/10	10/10	
control	F	0/30	1/10	0/10	5/10	10/10	10/10	
0, 10, 30, 100, 300, or 600 mg/kg-d Diet								
13 wks								
	Deses	0		15	25		50	
Von Oettingen et al. (1949)	Doses 0 15 25 50 Mortality (incidence)							
Rats, sex/strain not specified, 20/group				1 (20 ^f	1/20 ^f 8/20		0/20	
0, 15, 25, or 50 mg/kg-d Diet		0/20	J	1/20 ^f	8/20		8/20	
3 mo								
Hert (1074)	Doses	0		0.1	1		10	
Hart (1974) Dogs, Beagle, 3/sex/group	Mortality (incidence)							
0, 0.1, 1, or 10 mg/kg-d	M	0/3		0/3	1/3 ^g		0/3	
Diet	F	0/3		0/3	0/3		0/3	
90 d		-,-		-,-	-,-		-,-	
Martin and Hart (1974)	Doses	0		0.1	1		10	
Monkeys, Cynomolgus or Rhesus,	Mortality (inciden	ice)						
3/sex/group	м	0/3		0/3	0/3		0/3	
0, 0.1, 1, or 10 mg/kg-d	F	0/3	6	0/3	0/3		1/3 ^h	
Gavage								
90 d								


Reference and Study Design	Results								
Von Oettingen et al. (1949)	Doses		0			50			
Dogs, breed not specified,	Mortality (incid	lence)							
5 females/group (control); 7 females/group (exposed)	F		0/5			1/7			
0 or 50 mg/kg-d									
Diet									
6 d/wk for 6 wks									
MacPhail et al. (1985) Rats, Sprague-Dawley derived CD, 8– 10 males or females/group 0, 1, 3, or 10 mg/kg-d Gavage 30 d	No mortality w	as reportec	l (incid	ence data v	vere not pr	ovided).		
Cholakis et al. (1980)	Doses	0		0.2	2.0		20		
Rabbits, New Zealand white, 11–	Mortality (incid	lence)							
12 pregnant females/group 0, 0.2, 2.0, or 20 mg/kg-d	F	0/11		0/11	0/11		0/12		
Diet									
GDs 7–29									
<u>Cholakis et al. (1980)</u>	Doses	0		0.2	2.0		20		
Rats, F344, 24–25 females/group	Mortality (incid	lence)							
0, 0.2, 2.0, or 20 mg/kg-d Gavage	F	0/24		0/24	0/23		7/24 ⁱ		
GDs 6–19									
Angerhofer et al. (1986) (range-finding	Doses	0	10	20	40	80	120		
study)	Mortality (incid	lence)							
Rats, Sprague-Dawley, 6 pregnant females/group	F	0/6	0/6	0/6	6/6	6/6	6/6		
0, 10, 20, 40, 80, or 120 mg/kg-d									
Gavage									
GDs 6–15									
Angerhofer et al. (1986)	Doses	0		2	6		20		
Rats, Sprague-Dawley, 39–51 mated	Mortality (incid	lence)							
females/group	F	0/39		1/40	1/40		16/51		
0, 2, 6, or 20 mg/kg-d									
Gavage GDs 6–15									

1 *Statistically significant (p < 0.05) based on analysis by study authors.

- 1 ^aInterim sacrifices (10 animals/sex/dose) were performed at 27 and 53 weeks (Levine et al., 1983) or 26 and 2 53 weeks (Lish et al., 1984); these animals were not included in the mortality incidences.
- 3 ^bA malfunctioning heating system resulted in the premature deaths of 59 animals across groups; these animals 4 were omitted from mortality results.
- 5 6 ^cDoses were calculated by the study authors.
- ^dData for male and female rats were combined for statistical analysis.
- 7 ^eAnimals receiving 300 mg/kg-day died by week 3 of the study; animals receiving 600 mg/kg-day died by week 1 of 8 the study.
- 9 ^fThe study authors noted that the single death at 15 mg/kg-day was probably not treatment-related and noted
- 10 that a large encapsulated cyst had replaced a lobe of the lung.
- 11 ^gThe study authors stated that the animal died from bacteremia derived from a lesion unrelated to RDX treatment.
- 12 ^hThe affected animal exhibited severe neurological effects following RDX administration and was euthanized.
- 13 ⁱIncludes one rat that was accidentally killed.

Preliminary Materials for the IRIS Toxicological Review of RDX

¹ during the first 11 weeks of the study, mortality was observed at a dose of 175 mg/kg-day, the dose was lowered to 100 mg/kg-day for the

remainder of the study. See the mortality evidence table.

1000

1

Figure 2-2. Exposure-response array of mortality following oral exposure to RDX

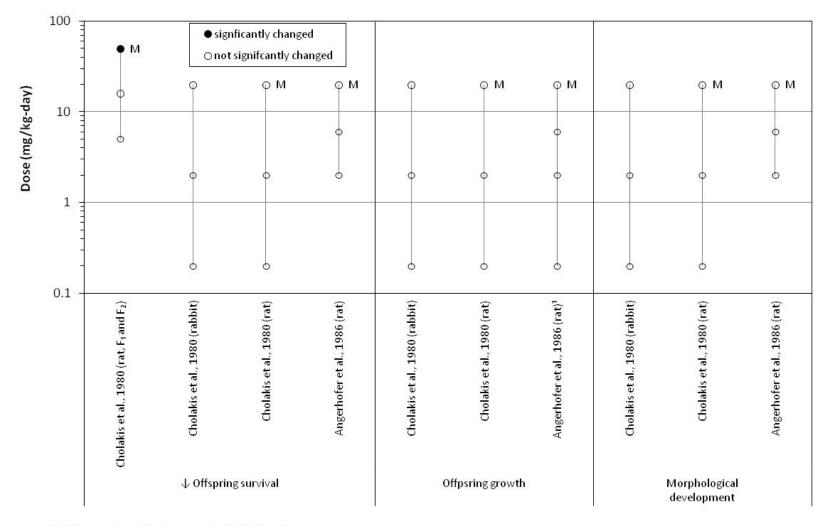
This document is a preliminary draft for review purposes only and does not constitute Agency policy.

2.4. Reproductive and Developmental Effects Evidence Tables and Array

- 2
- 3 4

Table 2-4. Evidence pertaining to reproductive and developmental effects in animals following oral exposure to RDX

Reference and Study Design			Results					
Offspring survival	-•							
Cholakis et al. (1980)	Doses	0	5	16	50			
Rats, CD, two-generation study;	Stillborn pups	(incidence)						
F0: 22/sex/group; F1: 26 sex/group;	F1	8/207	6/296	4/259	16/92*			
F2: 10 sex/group	F2	6/288	6/290	2/250	24/46*			
F0 and F1 parental animals: 0, 5, 16, or	Offspring survival at birth (percent of fetuses)							
50 mg/kg-d	F1	96%	98%	98%	83*%			
Diet	F2	98%	98%	99%	48*%			
13 wks	F0 maternal deaths occurred at 50 mg/kg-d. Only six F1 females in this group survived to serve as parental animals; none of the six died during subsequent treatment.							
Cholakis et al. (1980)	Doses	0	0.2	2	20			
Rabbits, New Zealand white, 11–	Early resorptions (mean percent per dam)							
12/group		6%	5%	4%	1%			
0, 0.2, 2.0, or 20 mg/kg-d	Late resorptions (mean percent per dam)							
Gavage		8%	5%	3%	3%			
GDs 7–29	Complete litter resorptions (number of litters)							
		0	0	0	2			
	Viable fetuses	s (mean percent p	per dam):					
		85%	82%	77%	94%			
Cholakis et al. (1980)	Doses	0	0.2	2.0	20			
Rats, F344, 24–25 females/group	Early resorption	ons (mean percer	nt per dam)					
0, 0.2, 2.0, or 20 mg/kg-d		6.0%	2.5%	4.8%	15.3%			
Gavage	Late resorptio	ons (mean percen	t per dam)					
GDs 6–19		0.5%	0.5%	0.3%	1.6%			
	Complete litte	er resorptions (nu	mber of litters)					
		0	0	0	2			
	Viable fetuses	s (mean percent p	per dam)					
		93.2%	97.6%	94.9%	81.4%			
	Significant ma	ternal mortality	(7/24 dams) oc	curred at 20 n	ng/kg-d.			


Reference and Study Design			Results						
Angerhofer et al. (1986)	Doses	0	2	6	20				
Rats, Sprague-Dawley, 39–51 mated	Resorptions (percent of total i	mplantations)						
females/group (25–29 pregnant		4.8%	6.1%	5.9%	6.4%				
dams/group)	Early resorpti	Early resorptions (percent of total implantations)							
0, 2, 6, or 20 mg/kg-d		4.8%	6.1%	5.9%	6.2%				
Gavage	Late resorptio	Late resorptions (percent of total implantations)							
GDs 6–15		0%	0%	0%	0.27%				
	Live fetuses (r	nean percent pe	r litter)						
		100%	100%	100%	100%				
	Significant ma	aternal mortality	(16/51) occurr	ed at 20 mg/k	g-d.				
Offspring growth		,	<u> </u>		5				
Cholakis et al. (1980)	Doses	0	0.2	2.0	20				
Rabbits, New Zealand white, 11–	Fetal body we	eight (percent ch	ange compared	to control)					
12/group		0%	19%	24%	15%				
0, 0.2, 2.0, or 20 mg/kg-d									
Gavage									
GDs 7–29									
Cholakis et al. (1980)	Doses	0	0.2	2.0	20				
Rats, F344, 24–25 females/group		eight (percent ch							
), 0.2, 2.0, or 20 mg/kg-d		0%	2%	3%	-7%				
Gavage	Significant ma	aternal mortality							
GDs 6–19		,	(,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Angerhofer et al. (1986)	Doses	0	2	6	20				
Rats, Sprague-Dawley, 39–51 mated	Fetal body we	eight (percent ch	• •						
females/group (25–29 pregnant dams/group)		0%	-4%	-2%	9% ^a				
), 2, 6, or 20 mg/kg-d	Fetal body ler	ngth (percent cho							
Gavage		0%	-1%	-1%	-5% ^a				
GDs 6–15	Significant ma	aternal mortality	(16/51) occurr	ed at 20 mg/k	g-d.				
Morphological development									
	Doses	0	0.2	2.0	20				
<u>Cholakis et al. (1980)</u>	Spina bifida (i		0.2	2.0	20				
Rabbits, New Zealand white, 11– 12/group	Fetuses	0/88	0/99	0/94	3/110				
), 0.2, 2.0, or 20 mg/kg-d	Litters	0/88	0/99	0/94	2/12				
Gavage		e bulges (inciden		0/11	2/12				
GDs 7–29				0/94	2/110				
	Fetuses	0/88 0/11	0/99	0/94 0/11	3/110				
	Litters	-	0/11	0/11	1/12				
	Cleft palate (i	-	1/10	2/44	2/52				
	Fetuses	0/39	1/46	2/44	2/52				
	Litters	0/11	1/11	1/11	1/12				

This document is a preliminary draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and Study Design			Results		
	Enlarged front f	ontanel (incide	ence)		
	Fetuses	0/49	5/53	2/50	8/58
	Litters	0/11	2/11	2/11	2/12
<u>Cholakis et al. (1980)</u> Rats, F344, 24–25 females/group 0, 0.2, 2.0, or 20 mg/kg-d Gavage GDs 6–19	No gross or soft treatment-relat anomalies was o Significant mate	ed increase in observed.	the incidence of	of litters with s	keletal
Angerhofer et al. (1986) Rats, Sprague-Dawley, 39–51 mated females/group (25–29 pregnant	No treatment-re observed.	elated increase	in the inciden	ce of anomalie	es was
dams/group)	Doses	0	2	6	20
0, 2, 6, or 20 mg/kg-d	Total malforma	tions (percent	of fetuses with	malformation	s)
Gavage		1%	1%	0%	2%
GDs 6–15	Significant mate	rnal mortality	(16/51) occurr	red at 20 mg/k	g-d.

*Statistically significant (p < 0.05) based on analysis by study authors.

^aStatistically significant dose-related trend ($p \le 0.05$) by Jonckheere-Terpstra test, performed for this assessment. Average fetal weights or lengths for each litter comprised the sample data for this test.

M - Maternal mortality observed at the highest dose

1

 1 Statistically significant dose-related trend (p <= 0.05) by Jonckheere-Terpstra test, performed for this assessment.

Figure 2-3. Exposure-response array of reproductive and developmental effects following oral exposure to RDX.

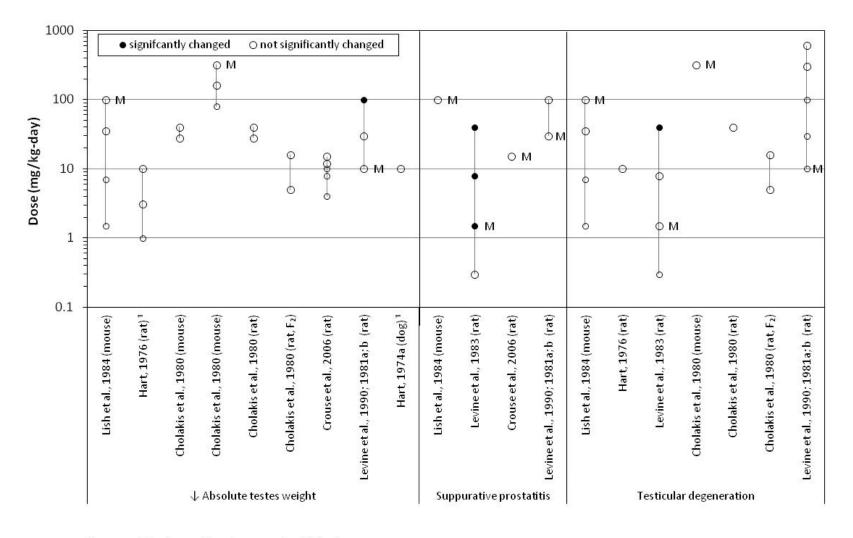
This document is a preliminary draft for review purposes only and does not constitute Agency policy.

Table 2-5. Evidence pertaining to male reproductive effects in animals following oral exposure to RDX

Reference and Study Design		Results							
Lish et al. (1984); Levine et	Doses		0	1.5	7.0	35	175/100		
<u>al. (1984</u>)	Testicular dege	eneration (incide	nce)						
Mice, B6C3F ₁ ,			0/63	2/60	2/62	6/59	3/27 ^ª		
85/sex/group; interim	Absolute testes weight; wk 105 (percent change compared to control)								
sacrifices (10/sex/group) at 6 and 12 mo			0%	-6%	0%	-2%	-6%		
0, 1.5, 7.0, 35, or	Relative testes weight; wk 105 (percent change compared to control)								
175/100 mg/kg-d (high			0%	-4%	2%	-2%	-2%		
dose reduced to 100 mg/kg-d in wk 11 due to excessive mortality) Diet 24 mo	Prostate was e effects were ol	xamined microso bserved.	opically in co	ntrol and 1	175/100 m	g/kg-d gr	oups; no		
Hart (1976)	Doses	0	1.0		3.1		10		
Rats, Sprague-Dawley,	Absolute testes (with epididymis) weight; wk 104								
100/sex/dose		0%	-2%		2%		5%		
0, 1.0, 3.1, or 10 mg/kg-d	Relative testes (with epididymis) weight; wk 104								
Diet		0%	-1%		7%		9%		
2 yrs	Testes were examined microscopically in control and 10 mg/kg-d groups; no degeneration or other treatment-related effects were observed. Prostate was not examined microscopically.								
Levine et al. (1983);	Doses	0	0.3	1.5	8.	0	40		
Thompson (1983)	Testes, germ co	ell degeneration;	12 mo ^b (incid	ence)					
Rats, F344, 75/sex/group;	SS	0/10	0/10	0/10	0/1	LO	4/10*		
interim sacrifices	SDMS	-	-	1/3	-		4/19		
(10/sex/group) at 6 and 12 mo	Testes, germ co	ell degeneration;	24 mo (incide	ence)					
0, 0.3, 1.5, 8.0, or	SS	0/38	0/36	0/25	0/2	29	0/4		
40 mg/kg-d	SDMS	0/16	0/19	0/27	0/2	26	0/27		
Diet	Prostate, supp	urative prostatiti	s; 24 mo (incid	dence)					
24 mo	SS	0/38	1/36	2/25*	4/2	9*	0/4		
	SDMS	2/16	3/19	7/27*	8/2	26	19/27*		
	Testes weights were not measured at termination due to testicular masses in nearly all males. SDMS = spontaneous death or moribund sacrifice; SS = scheduled sacrifice								

Reference and Study Design				Results							
Cholakis et al. (1980)	Doses	0	10	14	20	28	40				
Mice, B6C3F ₁ , 10–	Absolute teste	s weight (perc	ent chang	e compared	to control)						
12/sex/group		0%	-	-	-	-4%	-4%				
Experiment 1: 0, 10, 14, 20,	Relative testes	weight (perce	nt chang	e compared t	to control)						
28, or 40 mg/kg-d Diet 13 wks		0%	-	-	_	2%	-1%				
Experiment 2: 0 40 60 or	Doses	0		80	160		320				
Experiment 2: 0, 40, 60, or 80 mg/kg-d for 2 wks	Absolute testes weight (percent change compared to control)										
followed by 0, 320, 160, or		0%		4%	-4%		-8%				
80 mg/kg-d (TWA doses of	Relative testes	elative testes weight (percent change compared to control)									
0, 79.6, 147.8, or 256.7 mg/kg-d for males		0%	y	1%	-4%		-9%				
and 0, 82.4, 136.3, or 276.4 mg/kg-d for females) ^a Diet 13 wks	Testes were ex were observed		scopically	in control a	nd 320 mg/kg	-d groups;	no effects				
Cholakis et al. (1980)	Doses	0	10	14	20	28	40				
Rats, F344, 10/sex/dose	Absolute teste	s weight (perc	ent chang	e compared	to control)						
0, 10, 14, 20, 28, or		0%	_	_	-	-2%	0%				
40 mg/kg-d	Relative testes	Relative testes weight (percent change compared to control)									
Diet		0%	_	_	_	2%	9%				
13 wks	Testes were examined microscopically in control and 40 mg/kg-d groups; no effects were observed. Prostate was not weighed or examined microscopically.										
<u>Cholakis et al. (1980)</u>	In F2 offspring	of 0, 5, and 16	5 mg/kg-d	groups. No	high-dose F2	animals av	vailable.				
Rats, CD, two-generation	Doses	0		5	16		50				
study; F0: 22/sex/group;	Absolute teste	s weight (perc	ent chang	e compared	to control)						
F1: 26/sex/group; F2:		0%		3%	-31%		-				
10/sex/group F0 and F1 parental animals: 0, 5, 16, or 50 mg/kg-d Diet 13 wks	Testes were ex	amined micro	scopically	in all F2 gro	ups; no effect	s observe	d.				
<u>Crouse et al. (2006</u>)	Doses	0	4	8	10	12	15				
Rats, F344, 10/sex/group	Absolute teste	s weight (perc	ent chang	e compared	to control)						
0, 4, 8, 10, 12, or 15 mg/kg-		0%	-39	6 -5%	-4%	-4%	-8%				
d	Relative testes	weight (perce	ent chang	e compared t	to control)						
Gavage		0%	4%	5%	0%	-6%	-10*%				
90 d	Prostate, mild subacute inflammation (incidence)										
		0/10		-	-	-	1/8				

This document is a preliminary draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE


Reference and Study Design		Results								
Levine et al. (1990); Levine	Doses	0	10	30	100	300	600			
et al. (1981a); Levine et al.		ell degenerat	ion (incider	nce)						
<u>(1981b)</u>		0/10	0/10	0/10	0/10	1/9	1/10			
Rats, F344, 10/sex/group; 30/sex for control	Absolute testes	osolute testes weight (percent change compared to control)								
		0%	1%	1%	-2%	-	-			
0, 10, 30, 100, 300, or 600 mg/kg-d	Relative testes	weight (perc	ent change	compared t	to control)					
Diet		0%	4%	5%	19*%	-	-			
13 wks	Prostate was e effects were ob		roscopically	y in control,	30, and 100	mg/kg-d gro	oups; no			
Hart (1974)	Doses	0		0.1	1		10			
Dogs, Beagle, 3/sex/dose	Absolute testes (with epididymis) weight (percent change compared to control)									
0, 0.1, 1, or 10 mg/kg-d		0%		-	_		51%			
Diet 90 d	Testes and pro	state were n	ot examine	d microscop	ically.					

*Statistically significant (p < 0.05) based on analysis by study authors.

^aAlthough the study authors did not observe a statistically significant increase in the incidence of testicular degeneration, they determined that the incidences at the 35 and 175/100 mg/kg-day dose groups were "notable" when compared to concurrent (0%) and historical (1.5%) incidences.

^bTesticular atrophy was observed at 12 months, along with a statistically reduced mean testes weight (compared with controls). By 24 months, all male rats (including controls) had testicular masses; testes weights were not recorded, and an increased incidence of testicular degeneration was not observed.

1

¹increased absolute weight of testes and epididymis

1

Figure 2-4. Exposure-response array of male reproductive effects following oral exposure to RDX.

This document is a preliminary draft for review purposes only and does not constitute Agency policy.

DRAFT—DO NOT CITE OR QUOTE

1 **2.5.** Liver Effects Evidence Tables and Array

2

Table 2-6. Evidence pertaining to liver effects of RDX in humans

Reference and Study Design		Re	sults					
<u>Hathaway and Buck (1977</u>) (United	Liver function tests	s in men; mean (si	tandard deviation r	not reported)				
States)			RDX e	xposed				
Cross-sectional study, 2,022 workers, 1,491 participated (74% response rate).	Test	Referent (n = 237)	Undetected (n = 22)	>0.01 mg/m ³ (n = 45)				
Analysis group: limited to whites;	LDH	173	191	174				
69 exposed to RDX alone and 24 exposed to RDX and HMX; 338 not exposed to	Alkaline phosphatase	82	78	80				
DX, HMX, or TNT.	ALA (SGOT)	22	25	21				
Exposure measures: Exposure	AST (SGPT)	21	26	18				
determination based on job title and	Bilirubin	0.5	0.4	0.4				
ndustrial hygiene evaluation. Exposed ubjects assigned to two groups: less han the limit of detection (LOD) or	No differences were statistically significant. Similar results in women.							
$\geq 0.01 \text{ mg/m}^3$ (mean 0.28 mg/m ³).	Test	Liver function tests in men: prevalence of abnormal values Test RDX exposed						
Effect measures: Liver function tests.	(abnormal range)	Referent	Undetected	>0.01 mg/m ³				
	LDH (>250)	2/237	1/22	0/45				
Analysis: Types of statistical tests were not reported (assumed to be t-tests for comparison of means and χ^2 tests for	Alkaline phosphatase (>1.5)	34/237	1/22	6/45				
comparison of proportions).	AST (SGOT) (>35)	20/237	4/22	2/45				
	ALT (SGPT) (>35)	15/237	2/22	0/45				
	Bilirubin (>1.0)	5/237	1/22	1/45				
	No differences were statistically significant. Similar results in women.							

3

4 5

Table 2-7. Evidence pertaining to liver effects in animals following oral exposure toRDX

Reference and Study Design			Results					
Liver weight								
<u>Lish et al. (1984); Levine et al.</u> (1984)	Doses	0	1.5	7.0	35	175/100		
	Absolute liver weight at 104 wks (percent change compared to control)							
Mice, B6C3F ₁ , 85/sex/group;	М	0%	28*%	11%	12%	35*%		
interim sacrifices (10/sex/group)	F	0%	7%	7%	15%	18*%		
at 6 and 12 mo	Relative liver weight at 104 wks (percent change compared to control)							
0, 1.5, 7.0, 35, or 175/100 mg/kg- d (high dose reduced to	Μ	0%	32*%	12%	14%	46*%		
	F	0%	6%	8%	18%	45*%		

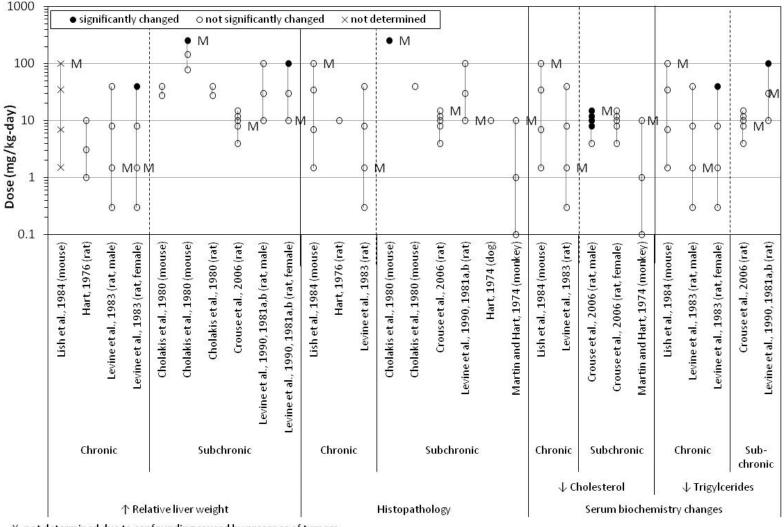
Reference and Study Design			Results							
100 mg/kg-d in wk 11 due to excessive mortality) Diet 24 mo	Note: Percent change ir all dose groups when m	-								
Hart (1976)	Doses	0		1.0		3.1	10			
Rats, Sprague-Dawley,	Absolute liver weight (percent change compared to control)									
100/sex/group 0, 1.0, 3.1, or 10 mg/kg-d	М	0%		-6%	-	6%	-6%			
	F	0%		7%	-1	L1%	1%			
Diet	Relative liver weight (pe	Relative liver weight (percent change compared to control)								
2 yrs	М	0%		-5%		2%	-3%			
	F	0%		17%		-2%				
<u>Levine et al. (1983); Thompson</u> (1983)	Doses	0	0.3	1	.5	8.0	40			
	Absolute liver weight at 105 wks (percent change compared to control)									
Rats, F344, 75/sex/group; interim	М	0%	3%	-7	%	1%	-8%			
sacrifices (10/sex/group) at 6 and	F	0%	1%	-2	1%	3%	0%			
12 mo	Relative liver weight at	105 wks (per	rcent chan	ige con	npared	to contro)			
0, 0.3, 1.5, 8.0, or 40 mg/kg-d Diet	М	0%	1%	0	%	2%	11%			
24 mo	F	0%	1%	-2	2%	6%	18*%			
Cholakis et al. (1980)	Doses	0	10	14	20	28	40			
Mice, B6C3F ₁ , 10–12/sex/group	Absolute liver weight (p	ercent chang	ge compai	red to c	ontrol)				
Experiment 1: 0, 10, 14, 20, 28, or	М	0%	_	_	_	-6%	-5%			
40 mg/kg-d	F	0%	_	_	-	-4%	-1%			
Diet	Relative liver weight (pe	ercent chang	e compare	ed to co	ontrol)					
13 wks	М	0%	-	-	-	-4%	-4%			
	F	0%	_	-	-	-6%	1%			

Reference and Study Design			Results							
Experiment 2: 0, 40, 60, or	Doses	0		80	160)	320			
80 mg/kg-d for 2 wks followed by	Absolute liver weight (p	ercent chan	ge comp	ared to	control)					
0, 320, 160, or 80 mg/kg-d (TWA	М	0%		2%	12%	6	26*%			
doses of 0, 79.6, 147.8, or 256.7 mg/kg-d for males and 0,	F	0%		4%	9%		29*%			
82.4, 136.3, or 276.4 mg/kg-d for	Relative liver weight (pe	ercent chang	де сотр	ared to c	ontrol)					
females) ^a	М	0%		0%	9%	1	25*%			
Diet	F	0%		4%	4%		22*%			
13 wks										
Cholakis et al. (1980)	Doses	0	10	14	20	28	40			
Rats, F344, 10/sex/group	Absolute liver weight (percent change compared to control)									
0, 10, 14, 20, 28, or 40 mg/kg-d	М	0%	-	-	-	-2%	-5%			
Diet	F	0%	-	-	-	6%	4%			
13 wks	Relative liver weight (pe	elative liver weight (percent change compared to control)								
	М	0%	-	-	_	2%	3%			
	F	0%	-	-	-	10%	11%			
Cholakis et al. (1980)	Doses	0		5	16		50			
Rats, CD, two-generation study;	Absolute liver weight (p	ercent chan	ge comp	ared to	control)					
F0: 22/sex/group;	М	0%		7%	-16%	6	_			
F1: 26/sex/group; F2: 10/sex/group	F	0%		0%	-14%	6	_			
F0 and F1 parental animals: 0, 5, 16, or 50 mg/kg-d Diet 13 wks										
Crouse et al. (2006)	Doses	0	4	8	10	12	15			
Rats, F344, 10/sex/group	Absolute liver weight (p	ercent chan	ge comp	ared to	control)					
0, 4, 8, 10, 12, or 15 mg/kg-d	м	0%	-6%	-9%	0%	7%	5%			
Gavage	F	0%	1%	7%	18*%	15%	28*%			
90 d	Relative liver weight (pe	ercent chang	де сотр	ared to c	ontrol)					
	М	0%	0%	-1%	2%	5%	2%			
	F	0%	1%	-2%	2%	-3%	2%			
Levine et al. (1990); Levine et al. (1981a); Levine et al. (1981b)	Data were not reported because all of the rats c					se grou	ps			
Rats, F344, 3–4 wks old;	Doses	0	10	30	100	300	600			
10/sex/group; 30/sex/group for	Absolute liver weight (p	ercent chan	ge comp	ared to	control)					
controls	М	0%	5%	-1%	-2%	-	_			
0, 10, 30, 100, 300, or 600 mg/kg-	F	0%	2%	4%	16*%	-	_			
d Diat	Relative liver weight (percent change compared to control)									
Diet 13 wks	М	0%	8%	6%	1%	-	_			
	F	0%	3%	5%	19*%	-	-			

This document is a preliminary draft for review purposes only and does not constitute Agency policy.2-23DRAFT—DO NOT CITE OR QUOTE

Reference and Study Design	Results								
<u>Hart (1974)</u>	Doses	0	0.1		1	10			
Dogs, Beagle, 3/sex/group	Absolute liver weight (µ	percent cha	nge compar	ed to contr	ol)				
0, 0.1, 1, or 10 mg/kg-d	M	0%	_		_	53%			
Diet	F	0%	-		-	3%			
90 d									
Martin and Hart (1974)	Doses	0	0.1		1	10			
Monkeys, Cynomolgus or Rhesus,	Absolute liver weight (percent change compared to control)								
3/sex/group	M+F	0%	2%	1	6%	16%			
0, 0.1, 1, or 10 mg/kg-d									
Gavage									
90 d									
Histopathological lesions		-	-	-					
<u>Lish et al. (1984); Levine et al.</u>	Histopathological lesion				nd carcinom	as were			
<u>(1984</u>)	not significantly differe	not significantly different compared to controls.							
Mice, B6C3F ₁ , 85/sex/group;									
interim sacrifices (10/sex/group) at 6 and 12 mo									
0, 1.5, 7.0, 35, or 175/100 mg/kg-									
d (high dose reduced to									
100 mg/kg-d in wk 11 due to excessive mortality)									
Diet									
24 mo									
	Listopathological avan	instion por	formed only	for contro	le and 10 m				
<u>Hart (1976)</u>	Histopathological examinates; no significant diffe					ig/kg-u			
Rats, Sprague-Dawley, 100/sex/group									
0, 1.0, 3.1, or 10 mg/kg-d									
Diet									
2 yrs									
	Dasaa	0	0.3	4 5	8.0	40			
<u>Levine et al. (1983); Thompson</u> (1983)	Doses Microgranulomas (incid		0.3	1.5	8.0	40			
Rats, F344, 3–4 wks old;	M	0/38	0/36	0/25	0/29	0/4			
75/sex/group; interim sacrifices	F								
(10/sex/group) at 6 and 12 mo	L L L L L L L L L L L L L L L L L L L	10/43	19/45	12/42	17/41	4/28			
0, 0.3, 1.5, 8.0, or 40 mg/kg-d									
Diet									
	1	1							

Reference and Study Design			l	Results			
Cholakis et al. (1980)	Doses		0	80	16	60	320
Mice, B6C3F ₁ , 10–12/sex/group	Liver microgro	anulomas;	mild (inciden	nce)			
0, 80, 60, or 40 mg/kg-d for 2 wks	М		2/10	-	-	-	1/9
followed by 0, 80, 160, or	F		2/11	_	-	-	7/11*
320 mg/kg-d (TWA doses of 0, 79.6, 147.8, or 256.7 mg/kg-d for	Increased kar	yomegaly	of hepatocyt	es			
males and 0, 82.4, 136.3, or	М		0/10	-	-	-	5/9*
276.4 mg/kg-d for females) ^a	F		-	-	-	-	-
Diet							
13 wks							
Cholakis et al. (1980)	Doses	0	10	14	20	28	40
Rats, F344, 10/sex/group	Liver granuloi	mas; mild	(incidence)				
0, 10, 14, 20, 28, or 40 mg/kg-d	М	0/10	-	-	-	_	1/10
Diet	F	-	-	-	_	_	-
13 wks	Liver portal in	flammatio	on				
	М	2/10	-	-	-	_	3/10
	F	1/10	-	-	_	_	7/10
Crouse et al. (2006) Rats, F344, 10/sex/group 0, 4, 8, 10, 12, or 15 mg/kg-d Gavage 90 d Levine et al. (1990); Levine et al. (1981a); Levine et al. (1981b) Rats, F344, 10/sex/group; 30/sex for control 0, 10, 30, 100, 300, or 600 mg/kg-d Diet 13 wks	Histopatholog with mild live basophilic cyt with RDX. Histopatholog compared to	gical exam controls.	on and one fe alteration; ne ination of live	emale rat wi ither finding er did not re	th a mode g was attri veal any s	erate-size buted to ignificant	d focus of treatment
Hart (1974) Dogs, Beagle, 3/sex/group 0, 0.1, 1, or 10 mg/kg-d Diet 90 d Martin and Hart (1974)	Histopatholog dogs; no signi An increase ir	ficant diff	erences comp unt of iron-pc	pared to cor	ntrols were	e reporte	d. oplasm was
Monkeys, Cynomolgus or Rhesus, 3/sex/group 0, 0.1, 1, or 10 mg/kg-d Gavage 90 d	reported in m considered th				-	ver, the st	tudy authors


Reference and Study Design		Results						
Serum chemistry								
Lish et al. (1984); Levine et al.	Doses	0	1.5		7.0	35	175/100	
<u>(1984</u>)	Serum choles	terol at 10	5 wks (perce	ent change	e compared	d to control,)	
Mice, B6C3F ₁ , 85/sex/group;	М	0%	11%	-	11%	5%	39%	
interim sacrifices (10/sex/group) at 6 and 12 mo	F	0%	5%	-	15%	25%	38%	
	Serum triglyco	erides at 1	05 wks (perc	cent chang	ge compare	ed to contro	ol)	
0, 1.5, 7.0, 35, or 175/100 mg/kg- d (high dose reduced to	М	0%	21%	-	20%	10%	-25%	
100 mg/kg-d in wk 11 due to excessive mortality)	F	0%	34%	2	28%	41%	28%	
Diet								
24 mo								
Levine et al. (1983); Thompson	Doses	0	0.3		1.5	8.0	40	
<u>(1983</u>)	Serum choles	terol at 10	4 wks (perce	ent change	e compared	d to control,)	
	М	0%	15%	3	38%		-6%	
sacrifices (10/sex/group) at 6 and 12 mo 0, 0.3, 1.5, 8.0, or 40 mg/kg-d	F	0%	6%		3%	-7%	-9%	
	Serum triglycerides at 104 wks (percent change compared to control)							
Diet	М	0%	14%	-	-15%		-52%	
24 mo	F	0%	18%		5%	-42%	-51*%	
	Doses	0	4	8	10	12	15	
Crouse et al. (2006) Rats, F344, 10/sex/group	Serum choles							
0, 4, 8, 10, 12, or 15 mg/kg-d	M	0%	-3%	-10*%	-16*%	-18*%	-11*%	
Gavage	F	0%	-1%	-8%	-4%	-4%	-1%	
90 d	Serum triglyco						1/0	
50 0	M	0%	1%	1%	-7%	-2%	-19%	
	F	0%	-16%	-21%	7%	-37%	18%	
Levine et al. (1990); Levine et al. (1981a); Levine et al. (1981b)	Data were no the animals d	•				groups beca	use all of	
Rats, F344, 10/sex/group; 30/sex	Doses	0	10	30	100	300	600	
for control	Serum triglyco	eride level	s (percent ch	nange con	pared to c	ontrol)		
0, 10, 30, 100, 300, or 600 mg/kg-	М	0%	-14%	-34%	-62*%	_	_	
d	F	0%	-12%	-29%	-50*%	_	-	
Diet								
13 wks								

Preliminary Materials for the IRIS Toxicological Review of RDX

Reference and Study Design	Results								
Martin and Hart (1974) Monkeys, Cynomolgus or Rhesus,	Serum bioche have no toxic	they appear to							
3/sex/group	Doses 0 0.1 1								
0, 0.1, 1, or 10 mg/kg-d	Serum cholest	Serum cholesterol (percent change compared to control)							
Gavage	М	0%	-17%	-2%	-7%				
90 d	F	0%	7%	7%	7%				

*Statistically significant (p < 0.05) based on analysis by study authors.

^aDoses were calculated by the study authors.

X-not determined due to confounding caused by presence of tumors

1

2

These studies were excluded from array because only absolute liver weight was reported: Cholakis, 1980 (2-gen rat); Hart, 1974; Martin and Hart, 1974 M - Mortality observed at this dose and above

Figure 2-5. Exposure-response array of liver effects following oral exposure to RDX.

This document is a preliminary draft for review purposes only and does not constitute Agency policy.

DRAFT—DO NOT CITE OR QUOTE

1 2.6. Kidney Effects Evidence Tables and Array

2

Table 2-8. Evidence pertaining to renal effects of RDX in humans

Reference and Study Design	Results							
Hathaway and Buck (1977)	Renal function tests in men: mean (standard deviation not reported)							
			RDX e	xposed				
os workers exposed to RBX dione and	Test	Referent (n = 237)	Undetected (n = 22)	>0.01 mg/m ³ (n = 45)				
	Blood urea nitrogen	15.5	15.6	16.4				
compared to 338 workers not exposed to	Total protein	7.2	7.2	7.3				
Exposure measures: Exposure determination based on job title and industrial hygiene evaluation; exposed subjects assigned to two groups: undetected (<lod) m<sup="" mg="" or="" ≥0.01="">3 (mean 0.28 mg/m³).</lod)>								
Effect measures: Renal function tests (blood)								
Analysis: Types of statistical tests werenot reported (assumed to be t-tests for comparison of means and χ^2 tests for comparison of proportions).								

3

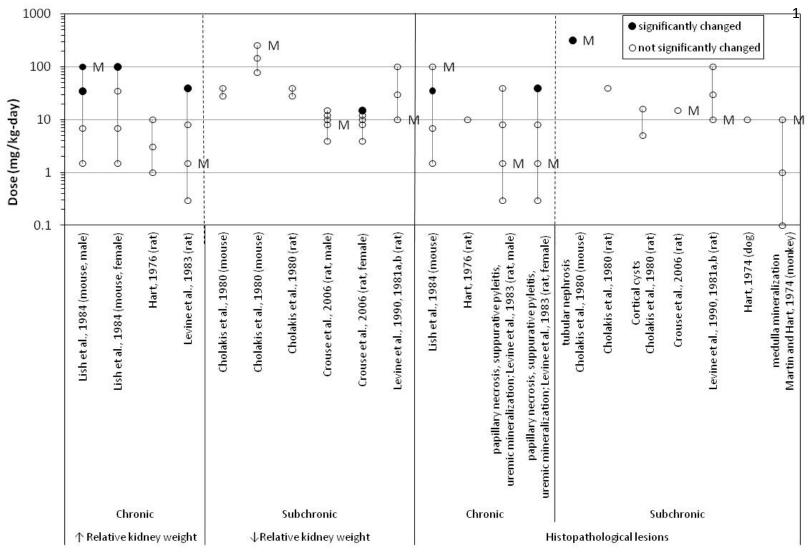
4

5

Table 2-9. Evidence pertaining to renal effects in animals following oral exposure to RDX

Reference and Study Design	Results						
Kidney weights							
Lish et al. (1984); Levine et al. (1984)	Doses	0	1.5	7.0	35	175/100	
Mice, B6C3F ₁ , 85/sex/group; interim sacrifices (10/sex/group) at 6 and 12 mo	Absolute k control)	idney weigi	ht at 104 wi	ks (percent	t change co	ompared to	
0, 1.5, 7.0, 35, or 175/100 mg/kg-d (high dose	М	0%	-1%	4%	9*%	19*%	
reduced to 100 mg/kg-d in wk 11 due to	F	0%	3%	1%	1%	-2%	
excessive mortality) Diet	Relative kie control)	dney weigh	nt at 104 wk	s (percent	change coi	mpared to	
24 mo	М	0%	3%	6%	11*%	27*%	
	F	0%	1%	1%	2%	19*%	

Reference and Study Design	Results							
Hart (1976)	Doses	0		1.0	3.1		10	
Rats, Sprague-Dawley, 100/sex/group	Absolute k	idney weig	ght (perce	ent chang	je compar	ed to co	ontrol)	
0, 1.0, 3.1, or 10 mg/kg-d	М	0%		-3%	-7%		2%	
Diet	F	0%		14%	-4%		8%	
2 yrs	Relative kie	dney weigl	ht (percei	nt change	e compare	ed to co	ntrol)	
	М	0%		-1%	-4%		4%	
	F	0%		22%	3%		18%	
Levine et al. (1983); Thompson (1983)	Doses	0	0.3	1	.5	8.0	40	
Rats, F344, 75/sex/group; interim sacrifices (10/sex/group) at 6 and 12 mo	Absolute k control)	idney weig	ght at 105	5 wks (pe	rcent char	nge com	pared to	
0, 0.3, 1.5, 8.0, or 40 mg/kg-d	М	0%	2%	-7	'%	1%	0%	
Diet	F	0%	3%	3	%	2%	2%	
24 mo	Relative kidney weight at 105 wks (percent change compared to control)							
	М	0%	1%	0	%	2%	20*%	
	F	0%	3%	6	%	5%	21*%	
Cholakis et al. (1980)	Doses	0	10	14	20	28	40	
Mice, B6C3F ₁ , 10–12/sex/group	Absolute kidney weight (percent change compared to control)							
Experiment 1: 0, 10, 14, 20, 28, or 40 mg/kg-d	М	0%	-	-	-	18%	2%	
Diet	F	0%	_	_	-	-8%	-5%	
13 wks	Relative kie	dney weigl	ht (percei	nt change	e compare	ed to co	ntrol)	
	М	0%	-	-	-	29%	0%	
	F	0%	-	-	-	-8%	-3%	
Experiment 2: 0, 40, 60, or 80 mg/kg-d for	Doses	0		80	160		320	
2 wks followed by 0, 320, 160, or 80 mg/kg-d	Absolute k	idney weig	ght (perce	ent chang	ge compar	ed to co	ontrol)	
(TWA doses of 0, 79.6, 147.8, or 256.7 mg/kg-d for males and 0, 82.4, 136.3, or 276.4 mg/kg-d	М	0%		8%	11%	1	13%	
for females) ^a	F	0%		-5%	-3%		0%	
Diet	Relative kie	dney weigl	ht (percei	nt change	e compare	ed to co	ntrol)	
13 wks	М	0%		5%	9%		10%	
	F	0%		-5%	-4%		-5%	
<u>Cholakis et al. (1980)</u>	Doses	0	10	14	20	28	40	
Rats, F344, 10/sex/group	Absolute k	idney weig	ght (perce	ent chang	ge compar	ed to co	ontrol)	
0, 10, 14, 20, 28, 40 mg/kg-d	М	0%	-	-	_	-2%	-5%	
Diet	F	0%	-	-	_	1%	0%	
13 wks	Relative kie	dney weigl	ht (percei	nt change	e compare	ed to co	ntrol)	
	М	0%	-	-		1%	5%	
	F	0%	-	-	_	6%	6%	


Reference and Study Design	Results							
Cholakis et al. (1980)	Doses	0)	5	16		50	
Rats, CD, two-generation study;	Absolute kidney weight (percent change compared to control)							
F0: 22/sex/group; F1: 26/sex/group;	М	09	%	6%	-129	6	_	
F2: 10/sex/group	F	09	%	-4%	-21*	%	-	
F0 and F1 parental animals: 0, 5, 16, 50 mg/kg-								
d								
Diet								
13 wks								
Crouse et al. (2006)	Doses	0	4	8	10	12	15	
Rats, F344, 10/sex/group	Absolute	kidney we	eight (per	cent chan	ige compai	red to co	ontrol)	
0, 4, 8, 10, 12, or 15 mg/kg-d	М	0%	-3%	-4%	-1%	3%	5%	
Gavage	F	0%	2%	5%	13*%	10%	15*%	
90 d	Relative k	idney wei	ight (perc	ent chan	ge compar	ed to co	ntrol)	
	М	0%	3%	6%	2%	1%	3%	
	F	0%	1%	-3%	-1%	-6%	-7*%	
<u>Levine et al. (1990); Levine et al. (1981a);</u> Levine et al. (1981b)					e 300 or 60 e 13-wk ne		g-d groups	
Rats, F344, 10/sex/group; 30/sex for control	Doses	0	10	30	100	300	600	
0, 10, 30, 100, 300, or 600 mg/kg-d	Absolute	kidney we	eight (per	cent chan	ige compai	red to co	ontrol)	
Diet	М	0%	1%	1%	-9%	-	_	
13 wks	F	0%	1%	3%	-1%	-	_	
	Relative k	idney wei	ight (perc	ent chan	ge compar	ed to co	ntrol)	
	М	0%	5%	7%	10%	_	_	
	F	0%	3%	5%	2%	_	_	
Hart (1974)	Numerica	l values g	iven only	for contr	ol and 10 r	ng/kg-d	groups.	
Dogs, Beagle, 3/sex/group	Doses	0)	0.1	1		10	
0, 0.1, 1, or 10 mg/kg-d	Absolute	kidney we	eight (per	cent chan	ige compai	red to co	ontrol)	
Diet	М	09	%	_	_		38%	
90 d	F	0%	%	-	-		-18%	
Martin and Hart (1974)	Doses	0)	0.1	1		10	
Monkeys, Cynomolgus or Rhesus, 3/sex/group	Absolute	kidney we	eight (per	cent chan	ige compai	red to co	ontrol)	
0, 0.1, 1, or 10 mg/kg-d	M+F	0%	%	-2%	-3%	,)	4%	
Gavage								
90 d								
Histopathological lesions								
instopathological lesions								

Reference and Study Design			Res	ults			
Lish et al. (1984); Levine et al. (1984) Mice, B6C3F ₁ , 85/sex/group; interim sacrifices (10/sex/group) at 6 and 12 mo 0, 1.5, 7.0, 35, or 175/100 mg/kg-d (high dose reduced to 100 mg/kg-d in wk 11 due to excessive mortality) Diet 24 mo	The incidence of cytoplasmic vacuolization of renal tubules was greater for RDX-treated males than the control group males after 6 mo of treatment. However, at 12 and 24 mo of treatment, this lesion was observed as frequently in control animals as animals treated with RDX.						
Hart (1976) Rats, Sprague-Dawley, 100/sex/group 0, 1.0, 3.1, or 10 mg/kg-d Diet 2 yrs	Histopathological examination of kidney did not reveal any significant differences compared to controls; lesions observed were not attributed to RDX treatment; incidence data were reported only for control and 10 mg/kg-d groups.						
Levine et al. (1983); Thompson (1983) Rats, F344, 75/sex/group; interim sacrifices	(SS) and th	ose that die	ed spontan	eously or v	sacrificed o were sacrific reported fo	ced	
(10/sex/group) at 6 and 12 mo	Doses	0	0.3	1.5	8.0	40	
0, 0.3, 1.5, 8.0, or 40 mg/kg-d	Medullary	papillary ne	ecrosis; 24 i	no (incide	nce)		
24 mo	M (SS):	0/38	0/36	0/25	0/29	0/4	
	F (SDMS):	0/17	1/19	0/27	0/26	18/27*	
	Suppurative pyelitis; 24 mo (incidence)						
	M (SS):	0/38	0/36	0/25	0/29	0/4	
	F (SDMS):	0/17	1/19	0/27	1/26	5/27*	
	Uremic mi	neralization	; 24 mo (in	cidence)			
	M (SS):	1/38	0/36	0/25	0/29	0/4	
	F (SDMS):	0/17	1/19	2/27	0/26	13/27	
Cholakis et al. (1980) Mice, B6C3F ₁ , 10–12/sex/group	Incidence o group.	data report	ed only for	controls a	nd the 320 i	mg/kg-d	
0, 80, 60, 40 mg/kg-d for 2 wks followed by 0,	Doses	0	8	0	160	320	
80, 160, or 320 mg/kg-d (TWA doses of 0, 79.6,	Tubular ne	phrosis (inc	idence)				
147.8, or 256.7 mg/kg-d for males and 0, 82.4,	М	0/10	-	-	-	4/9*	
136.3, or 276.4 mg/kg-d for females) ^a	F	0/11	-	-	-	1/11	
Diet							
13 wks <u>Cholakis et al. (1980)</u> Rats, F344, 10/sex/group 0, 10, 14, 20, 28, or 40 mg/kg-d Diet 13 wks	significant	-	compared	to contro	d not reveal ls; incidence roups.	-	

Reference and Study Design	Idy Design Results								
<u>Cholakis et al. (1980)</u> Rats, CD, two-generation study; F0:	Data were reported only for F2 generation controls and 5 and 16 mg/kg-d groups.								
22/sex/group; F1: 26/sex/group; F2:	Doses	0	5	16	50				
10/sex/group	Cortical cysts (incidence)								
F0 and F1 parental animals: 0, 5, 16, or	М	4/10	4/10	8/10	-				
50 mg/kg-d	F	3/10	4/10	8/10	-				
Diet									
13 wks									
<u>Crouse et al. (2006)</u> Rats, F344, 10/sex/group 0, 4, 8, 10, 12, or 15 mg/kg-d Gavage 90 d	significant	ological examin differences cor nly for control	mpared to cor	trols; inciden					
Levine et al. (1990); Levine et al. (1981a); Levine et al. (1981b) Rats, F344, 10/sex/group; 30/sex for control	-	ological examin differences cor		-	al any				
0, 10, 30, 100, 300, or 600 mg/kg-d									
Diet									
13 wks									
Hart (1974) Dogs, Beagle, 3/sex/group 0, 0.1, 1, or 10 mg/kg-d Diet 90 d	significant	ological examin differences cor nly for control	mpared to cor	trols; inciden	•				
Martin and Hart (1974)	Doses	0	0.1	1	10				
Monkeys, Cynomolgus or Rhesus, 3/sex/group	Medulla; n	nineralization, i	minimal to mil	ld (incidence)					
0, 0.1, 1, or 10 mg/kg-d	M+F	0/6	1/6	0/6	4/6				
Gavage									
90 d									

*Statistically significant (p < 0.05) based on analysis by study authors. ^aDoses were calculated by the study authors.

1

The following studies were excluded from array because absolute kidney weight was reported: Cholakis, 1980 (2-genrat); Hart, 1974; Martin and Hart, 1974 M- Mortality observed at this dose and above

Figure 2-6. Exposure-response array of renal effects following oral exposure to RDX.

2

This document is a preliminary draft for review purposes only and does not constitute Agency policy.

1 2.7. Carcinogenicity Evidence Tables

Table 2-10. Liver tumors observed in chronic animal bioassays following oral exposure to RDX

Reference and Study Design			Result	S					
Lish et al. (1984); Levine et al. (1984)	Doses	0	1.5	7.0	35	175/100			
Mice, B6C3F ₁ , 85/sex/group; interim	Hepatocellular ad	denomas (in	cidence)						
sacrifices (10/sex/group) at 6 and	М	8/63	6/60	1/62*	7/59	7/27			
12 mo	F	1/65	1/62	6/64	6/64	3/31 ^ª			
0, 1.5, 7.0, 35, or 175/100 mg/kg-d	Hepatocellular ca	arcinomas (ii	ncidence)						
(high dose reduced to 100 mg/kg-d in wk 11 due to excessive mortality)	М	13/63	20/60	16/62	18/59	6/27			
Diet	F	0/65	4/62	3/64	6/64	3/31 ^ª			
24 mo	Hepatocellular adenoma or carcinoma combined (incidence)								
2	М	21/63	26/60	17/62	25/59	13/27			
	F	1/65	5/62	9/64*	12/64*	6/31* ^a			
	Pathology workgroup reanalysis of liver lesion slides from female mice Parker et al., 2006; Parker, 2001) ^b								
	Doses	0	1.5	7.0	35	175			
	Hepatocellular ad	denomas (in	cidence)						
	F	1/67	3/62	2/63	8/64	2/31 ^ª			
	Hepatocellular ca	arcinomas (ir	ncidence)						
	F	0/67	1/62	3/63	2/64	2/31 ^ª			
	Hepatocellular adenoma or carcinoma combined (incidence)								
	F	1/67 ^b	4/62	5/63 ^b	10/64	4/31 ^ª			
Hart (1976) Pate Sprague Dawley	Hepatocellular ac None reported by								
Rats, Sprague-Dawley, 100/sex/group	Doses	0	1.0)	3.1	10			
0, 1.0, 3.1, or 10 mg/kg-d	Hepatocellular ca	arcinomas (ii	ncidence)						
Diet	М	1/82	_		_	1/77			
2 yrs	F	1/72	-		-	1/81			
<u>Levine et al. (1983); Thompson</u> (1983)	Hepatocellular ac None reported by		-						
Rats, F344, 75/sex/group; interim	Doses	0	0.3	1.5	8.0	40			
sacrifices (10/sex/group) at 6 and	Hepatocellular ca	arcinomas (ir	ncidence)						
12 mo	M	1/55	0/55	0/52	2/55	2/31			
	F	0/53	1/55	0/54	0/55	0/48			
Diet 24 mo	Hepatocellular ac Not determined.	denoma or c		-					

*Statistically significant difference compared to the control group (p < 0.05), identified by the authors. ^aStatistically significant trend (p < 0.05) was identified using Cochran-Armitage trend tests performed by EPA. ^bIt is not clear why the numbers of animals at risk in the control group (n = 67) and 7 mg/kg-day dose group (n = 63) differed from the numbers reported in the original study (n = 65 and 64, respectively).

4

2

Table 2-11. Lung tumors observed in chronic animal bioassays following oral exposure to RDX

Reference and Study Design			Resul	ts					
Lish et al. (1984); Levine et al.	Doses	0	1.5	7.0	35	175/100			
<u>(1984)</u>	Alveolar/bi	ronchiolar aden	omas (incidence)						
Mice, B6C3F ₁ , 85/sex/group;	М	6/63	5/60	5/62	7/59	1/27			
interim sacrifices	F	4/65	2/62	5/64	9/64	3/31 ^ª			
(10/sex/group) at 6 and 12 mo	Alveolar/bi	ronchiolar carcir	nomas (incidence	?)					
0, 1.5, 7.0, 35, or 175/100 mg/kg-d (high dose reduced to 100 mg/kg-d in	М	3/63	6/60	3/62	7/59	5/27ª			
	F	3/65	1/62	3/64	3/64	4/31			
wk 11 due to excessive	Alveolar/bi	ronchiolar aden	oma or carcinom	a combined ('incidence)				
mortality) Diet	М	9/63	11/60	8/62	14/59	6/27			
	F	7/65	3/62	8/64	12/64	7/31 ^ª			
24 mo									
<u>Hart (1976</u>)	Doses	0	1.0	3	.1	10			
Rats, Sprague-Dawley,	Alveolar/bronchiolar adenoma (incidence)								
100/sex/group	М	2/83	_	-	-	1/77			
0, 1.0, 3.1, or 10 mg/kg-d	F	0/73	_	-	-	0/82			
Diet	Alveolar/bi	ronchiolar carcir	noma (incidence)	:					
2 yrs	None repo	rted by study au	thors.						
<u>Levine et al. (1983);</u>	Doses	0	0.3	1.5	8.0	40			
<u>Thompson (1983</u>)	Alveolar/bi	ronchiolar aden	omas (incidence)						
Rats, F344, 75/sex/group;	М	1/55	0/15	1/17	0/16	1/31			
interim sacrifices	F	3/53	0/7	0/8	1/10	0/48			
(10/sex/group) at 6 and 12 mo 0, 0.3, 1.5, 8.0, or 40 mg/kg-d	Alveolar/bi	ronchiolar carcir	nomas (incidence	?)					
Diet	М	_	_	-	-	-			
24 mo	F	0/53	0/7	1/8	0/10	0/48			
	Alveolar/bi	ronchiolar aden	oma or carcinom	a combined ((incidence)				
	М	-	_	-	-	-			
	F	3/53	0/7	1/8	1/10	0/48			

^aStatistically significant trend (*p* < 0.05) was identified using Cochran-Armitage trend test performed by EPA.

1 **2.8.** Other Systemic Effects Evidence Tables

2 3

Table 2-12. Evidence pertaining to other systemic effects (hematological) of RDX in humans

Reference and Study Design		Resu	ults				
Hematological Effects							
West and Stafford (1997) (United Kingdom)	Odds ratio (95% and RDX	Cl) [number of exp	oosed cases] of b	lood disorder			
Case-control study, 32 cases with abnormal and	Low intensity, 50) hr-duration	1.7 (0.7)	,4.2) [22]			
322 controls with normal hematology test drawn from 1991 study of 404 workers at ammunitions	Medium intensit	y, 50-hr duration	1.6 (not reported) [5]				
plant; participation rate 97% of cases, 93% of controls. Analysis limited to men (29 cases, 282 controls).	High intensity, 50	0-hr duration	1.2 (0.3, 5.3) [2]				
Exposure measures: Exposure determination based on employee interviews and job title analysis; data included frequency (hours/day, days/year), duration (years), and intensity (low [1–10 ppm], moderate [10–100 ppm], and high [100–1,000 ppm], based on ventilation considerations).							
Effect measures: Hematology tests; blood disorder defined as neutropenia (2.0 x 109/I), low platelet count (<150 x 109/I), or macrocytosis (mean corpuscular volume = 99 fl or >6% macrocytes).							
Analysis: Unadjusted odds ratio.							
Hathaway and Buck (1977) (United States)	Hematology tests in men; mean (standard deviation not reported)						
Cross-sectional study, 2,022 workers,		_	RDX e	xposed			
1,491 participated (74% response rate). Analysis limited to whites; 69 exposed to RDX alone and 24 exposed to RDX and HMX; 338 not exposed to	Test	Referent (n = 237)	Undetected (n = 22)	>0.01 mg/m ³ (n = 45)			
RDX, HMX, or TNT.	Hemoglobin	15.2	14.7	15.2			
	Hematocrit	42	45.6	47			
Exposure measures: Exposure determination based on job title and industrial hygiene	Reticulocyte count	0.7	0.9	0.7			
evaluation. Exposed subjects assigned to two groups: <lod m<sup="" mg="" or="" ≥0.01="">3 (mean 0.28 mg/m³).</lod>	No differences w women.	vere statistically sig	gnificant. Simila	r results in			
Effect measures: Hematology tests.	Hematology test	s in men: prevalen	ce of abnormal	values			
	Test		RDX e	xposed			
Analysis: Types of statistical tests were not reported (assumed to be t-tests for comparison of	(abnormal range)	Referent	Undetected	>0.01 mg/m ³			
means and χ^2 tests for comparison of proportions).	Hemoglobin (<14)	15/237	3/22	4/45			

Reference and Study Design	Results						
	Hematocrit (<40)	1/237	1/22	1/45			
	Reticulocyte count (>1.5)	18/237	3/22	2/45			
	No differences w women.	No differences were statistically significant. Similar results in women.					

1

2 3

Table 2-13. Evidence pertaining to other systemic effects in animals following oral exposure to RDX

Reference and Study Design	Results									
Ocular effects										
Lish et al. (1984); Levine et	Doses	0	1.5	7.0	35	175/100				
<u>al. (1984)</u>	Cataracts; 103 v	Cataracts; 103 wks (incidence) ^a								
Mice, B6C3F ₁ ,	м	2/47	2/41	0/41	2/37	2/16				
85/sex/group; interim sacrifices (10/sex/group) at 6 and 12 mo	F	2/50	1/37	6/52	0/46	1/26				
0, 1.5, 7.0, 35, or 175/100 mg/kg-d (high dose reduced to 100 mg/kg-d in wk 11 due to excessive mortality)										
Diet										
24 mo										
Levine et al. (1983);	Doses	0	0.3	1.5	8.0	40				
<u>Thompson (1983)</u>	Cataracts; 103 w	vks (incidence)								
Rats, F344, 75/sex/group;	М	8/40	6/39	6/31	8/35	2/6				
interim sacrifices (10/sex/group) at 6 and 12 mo	F	14/44	4/48	11/44	8/43	22/30*				
0, 0.3, 1.5, 8.0, or 40 mg/kg-d										
Diet										
24 mo										
Cholakis et al. (1980)	No ocular effect									
Rats, F344, 10/sex/group	animals, and mid	croscopic exan	nination in co	ntrol and 40 m	g/kg-d animal	s).				
0, 10, 14, 20, 28, or 40 mg/kg-d										
Diet										
13 wks										

Reference and Study Design			Result	S							
<u>Crouse et al. (2006</u>) Rats, F344, 10/sex/group 0, 4, 8, 10, 12, or 15 mg/kg- d Gavage	animals within 1	No ocular effects were observed (opthalmic examinations were performed in all animals within 1 wk of sacrifice, and microscopic examination of the eye was performed in control and 15 mg/kg-d animals).									
90 d <u>Martin and Hart (1974)</u> Monkeys, Cynomolgous or Rhesus, 3/sex/group 0, 0.1, 1, or 10 mg/kg-d Gavage 90 d	No ocular effect end of exposure		d (opthalmosco	opic examin	ation was perf	ormed at the					
Cardiovascular effects	•										
<u>Lish et al. (1984); Levine et al. (1984)</u>	Doses Absolute heart v	0 veight: 104 wks	1.5 (percent chan	7.0 ae compare	35 d to control)	175/100					
Mice, B6C3F ₁ , 85/sex/group; interim sacrifices (10/sex/group) at 6 and 12 mo 0, 1.5, 7.0, 35, or 175/100 mg/kg-d (high dose reduced to 100 mg/kg-d in wk 11 due to excessive mortality) Diet 24 mo	M F <i>Relative heart-to</i> M F Body weight wa 175/100 mg/kg-	0% 0% D-body weight; 0% 0% s significantly lo	4% 1% 104 wks (perce 7% 0% ower at termina	4% 5% nt change c 5% 6%	5% 2% ompared to co 5% 4%	13*% 17*%					
Hart (1976)	Doses	0	1.0		3.1	10					
Rats, Sprague-Dawley, 100/sex/group 0, 1.0, 3.1, or 10 mg/kg-d	Myocardial fibro M F	20% 5%	-		-	5% 1%					
Diet	Endocardial dise	ase (percent in	cidence; numbe	er not repor	ted)						
2 yrs	M F	1% 0%	-		-	3% 0%					
	Absolute heart v	veight; 104 wks	(percent chan	ge compare	d to control)						
	м	0%	-6%		-2%	-5%					
	F	0%	13%		3%	15%					
	Relative heart-to	o-body weight;	104 wks (perce	nt change c	ompared to co	ntrol)					
	М	0%	-2%		4%	1%					
	F	0%	23%		13%	27%					

Reference and Study Design			F	Results							
Levine et al. (1983);	Doses	0	0.3	1.	5	8.0	40				
Thompson (1983)	Absolute heart v	veight; 104 wk	s (percent	change cor	npared to	control)					
Rats, F344, 75/sex/group;	М	0%	3%	-29	%	-2%	1%				
interim sacrifices	F	0%	-1%	0%	6	-4%	-3%				
(10/sex/group) at 6 and 12 mo	Relative heart-to	o-body weight	; 104 wks (percent cho	inge comp	ared to cont	rol)				
0, 0.3, 1.5, 8.0, or	М	0%	2%	6%	6	0%	22%				
40 mg/kg-d	F	0%	-2%	39	6	-1%	15%				
Diet											
24 mo											
Cholakis et al. (1980)	Doses	0	10	14	20	28	40				
Mice, B6C3F ₁ , 10–	Absolute heart v	veight (percen	t change c	ompared to	control)						
12/sex/group	м	0%	-	_	_	7%	7%				
Experiment 1: 0, 10, 14, 20,	F	0%	_	_	_	0%	0%				
28, or 40 mg/kg-d	Relative heart weight (percent change compared to control)										
13 wks	м	0%	_	_	_	6%	0%				
	F	0%	_	_	_	-4%	0%				
Experiment 2: 0, 40, 60, or	Ooses 0 80 160 320										
80 mg/kg-d for 2 wks followed by 0, 320, 160, or	Focal myocardial degeneration (incidence):										
	M**	0/10		_	_		5/10*				
80 mg/kg-d (TWA doses of 0, 79.6, 147.8, or	F***	0/11				2/11					
256.7 mg/kg-d for males	Absolute heart weight (percent change compared to control)										
and 0, 82.4, 136.3, or	М	0%		0%	0%		8%				
276.4 mg/kg-d for	F	0%		0%	0%		8%				
females) ^b	Relative heart-to	-body weight	(percent cl	hange com	pared to co	ontrol)					
Diet	м	0%		0%	-2%)	6%				
13 wks	F	0%		0%	-2%)	2%				
	Includes one a *Includes one					ed premature	ely.				
Cholakis et al. (1980)	Doses	0	10	14	20	28	40				
Rats, F344, 10/sex/group	Focal myocardia	l degeneratio	n (incidence	e)							
0, 10, 14, 20, 28, or	М	3/10	-	-	-	-	1/10				
40 mg/kg-d	F	2/10	_	_	-	_	6/10				
Diet	Absolute heart v	veight (percen	t change c	ompared to	control)						
13 wks	М	0%	_	_	-	0%	-8*%				
	F	0%	_	_	_	-6%	-11*%				
	Relative heart-to	b-body weight	(percent cl	hange com	pared to co	ontrol)					
	М	0%	_	-	-	3%	0%				
	F	0%	_	_	_	-3%	-8%				
	Relative heart-to	o-brain weight	(percent c	hange com	pared to c	ontrol)					

This document is a preliminary draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and Study Design			F	Results							
	М	0%	_	_	_	-4%	-10*%				
	F	0%	_	_	_	-5%	-11*%				
Cholakis et al. (1980) Rats, CD, two-generation study; F0: 22/sex/group; F1: 26/sex/group; F2: 10/sex/group	No cardiac effec randomly select Heart weight da groups.	ed F2 animals) ta were report		r F2 generati	ion controls		mg/kg-d				
F0 and F1 parental	Doses		0		5 16		50				
animals: 0, 5, 16, or	Absolute heart weight (percent change compared to control)										
50 mg/kg-d	F2 M	0%		3.2%	-6.5%		-				
Diet 13 wks	F2 F	0%		15%	-3.7%		-				
<u>Crouse et al. (2006)</u>	Doses	0	4	8	10	12	15				
Rats, F344, 10/sex/group	Cardiomyopathy	(incidence)									
	М	2/10	_	_	_	_	3/8				
	F	0/10	_	_	_	_	1/6				
Gavage	Absolute heart v	veight (percent	t change c	ompared to a	control)						
_	м	0%	-2%	-7%	-1%	1%	11%				
	F	0%	-2%	0%	8%	7%	6%				
	Relative heart-to-body weight (percent change compared to control)										
	м	0%	4%	2%	1%	-1%	8%				
	F	0%	-2%	-7%	-6%	-9%	-16*%				
Levine et al. (1990); Levine	All animals in the	e 300 and 600	mg/kg-d g	roups died p	rior to stud	y terminat	ion.				
et al. (1981a); Levine et al.	Doses	0	10	30	100	300	600				
<u>(1981b</u>)	Chronic focal my	ocarditis (incid	lence)								
Rats, F344, 10/sex/group;	M	8/30	8/10	6/10	1/10	1/10	0/10				
30/sex for control	F	8/30	3/10	1/10	1/10	1/10	1/9				
0, 10, 30, 100, 300, or 600 mg/kg-d	Absolute heart v	-									
Diet	м	0%	-2%	-10%	-15%	_	_				
13 wks	F	0%	-3%	0%	-5%	_	_				
15 WK5	Relative heart-to	body weight	(percent cl	hange comp	ared to con	trol)					
	м	0%	2%	-4%	3%	_	_				
	F	0%	-2%	0%	-3%	_	_				
Von Oettingen et al. (1949) Rats (sex/strain not specified); 20/group 0, 15, 25, or 50 mg/kg-d Diet	The study autho examination of t	•				-					
3 mo											

This document is a preliminary draft for review purposes only and does not constitute Agency policy.2-41DRAFT—DO NOT CITE OR QUOTE

Reference and Study Design			Results								
<u>Hart (1974)</u>	Doses	0	0.1		1	10					
Dogs, Beagle, 3/sex/group	Focal hyalinization	of the heart (incl	idence)								
0, 0.1, 1, or 10 mg/kg-d	м	0/3	-		-	0/3					
Diet	F	0/3	_		-	1/3					
90 d	Absolute heart we	ight (percent cha	nge compared t	to control)						
	м	0%	_		_	31%					
	F	0%	-	-		5.7%					
Martin and Hart (1974)	Doses	0	0.1		1	10					
Monkeys, Cynomolgous or	Myocarditis (incide	Myocarditis (incidence in control and 10 mg/kg-d groups)									
Rhesus, 3/sex/group	м	1/3			1/3						
0, 0.1, 1, or 10 mg/kg-d	F	0/3	-		-	0/3					
Gavage	Absolute heart weight (percent change compared to control)										
90 d	м	0%	7%		-1%	5%					
	F	0%	10%	:	12%	-12%					
Immune effects		1		·							
Lish et al. (1984); Levine et al. (1984)	No immune effects were observed with routine hematology, clinical chemistry, or histopathology evaluations.										
	Doses	0	1.5	7.0	35	175/100					
85/sex/group; interim	WBC count; 105 wks (percent change compared to control)										
sacrifices (10/sex/group) at 6 and 12 mo	м	0%	-13%	-8%	-16%	-30%					
0, 1.5, 7.0, 35, or	F	0%	12%	39*%	28%	0%					
175/100 mg/kg-d (high	Absolute spleen we	eight; 105 wks (pe	ercent change o	compared	to control)						
dose reduced to	M	0%	24%	31%	-10%	-28%					
100 mg/kg-d in wk 11 due	F	0%	4%	15%	-17%	16%					
to excessive mortality)	' Relative spleen we					1070					
Diet	-			-		210/					
24 mo	M	0%	26%	32%	-11%	-21%					
	F	0%	4%	15%	-17%	44%					
<u>Hart (1976)</u>	Doses	0	1.0		3.1	10					
Rats, Sprague-Dawley,	WBC count; 104 w	-	-								
100/sex/group	м	0%	-13%		22*%	-34*%					
), 1.0, 3.1, or 10 mg/kg-d	F	0%	5%		32*%	-12%					
Diet	Absolute spleen we		2	•							
2 yrs	м	0%	-11%		-16%	-4%					
	F	0%	58%		8%	37%					
	Relative spleen we	ight; 104wks (per	rcent change co	ompared t	o control)						
	м	0%	-11%		-14%	1%					
	F	0%	77%		19%	55%					

Reference and Study Design				Resul	ts						
<u>Levine et al. (1983);</u> Thompson (1983)		effects were ogy evaluatior		th routi	ne hema	itology	, clinical chem	nistry and			
Rats, F344, 75/sex/group;	Doses	0	0.3		1.5		8.0	40			
interim sacrifices	WBC count;	105 wks (per	cent change	compar	ed to co	ntrol)					
(10/sex/group) at 6 and	М	0%	-11%		103 ^c %	184 ^c %		15%			
12 mo	F	0%	7%		12%		354 [°] %	251 [°] %			
0, 0.3, 1.5, 8.0, or 40 mg/kg-d	Absolute spleen weight; 105 wks (percent change compared to control)										
Diet	М	0%	5%		-10%		-32%	-49%			
24 mo	F	0%	-28%		-44%		-35%	17%			
-	Relative spleen weight; 105 wks (percent change compared to control)										
	М	0%	9%		4%		-29%	-38%			
	F	0%	-34%		-45%		-36%	9%			
Cholakis et al. (1980)	Doses	0	10	14		20	28	40			
12/sex/group	Absolute spleen weight (percent change compared to control)										
	М	0%	_	_		_	18%	13%			
28, or 40 mg/kg-d	F	0%	-	-		-	-2%	-8%			
Diet	Relative spl	een weight (pe	ercent chan	ge comp	ared to a	control)				
13 wks	М	0%	_	_		_	24%	14%			
	F	0%	_	_		_	-3%	-5%			
Experiment 2: 0, 40, 60,	Doses	0		80		160)	320			
80 mg/kg-d for 2 wks	WBC count	(percent chan	ge compare	d to con	trol)						
followed by 0, 320, 160, or	М	0%		-27%		-129	%	30%			
80 mg/kg-d (TWA doses of 0, 79.6, 147.8, or	F	0%		-17%		3%		-3%			
256.7 mg/kg-d for males	Absolute sp	leen weight (p	ercent chan	ge com	pared to	contro	1)				
and 0, 82.4, 136.3, or 276.4	М	0%		17%		0%	I	-17%			
mg/kg-d for females) ^b	F	0%		-22%		0%	1	0%			
Diet	Relative spl	een weight (po	ercent chang	де сотр	ared to a	control)				
13 wks	М	0%		25%		5%	1	0%			
	F	0%		-12%		0%		-3%			

Reference and Study Design	Results										
Cholakis et al. (1980)	Doses	0	10	14	20	28	40				
Rats, F344, 10/sex/group	WBC count	t (percent ch	ange compar	ed to control))						
0, 10, 14, 20, 28, or	М	0%	_	_	_	-12%	7%				
40 mg/kg-d	F	0%	_	-	-	17%	30%				
Diet	Absolute spleen weight (percent change compared to control)										
13 wks	М	0%	_	_	_	2%	-4%				
	F	0%	_	-	-	-10%	-12*%				
	Relative spleen weight (percent change compared to control)										
	М	0%	_	_	_	5%	5%				
	F	0%	_	-	-	-8%	-8%				
Cholakis et al. (1980)	No immun	e effects wer	e observed ι	pon routine	histopatholog	gy evaluation).				
F2: 10/sex/group F0 and F1 parental animals: 0, 5, 16, or 50 mg/kg-d Diet											
13 wks											
				s or spleen hi	stology, red a	and white blo	ood cell				
13 wks <u>Crouse et al. (2006</u>) Rats, F344, 10/sex/group	population	is, or lympho	cyte populat	ions.							
<u>Crouse et al. (2006)</u>	population Doses	is, or lympho	cyte populat 4	ions. 8	10	and white blo 12	ood cell 15				
Crouse et al. (2006) Rats, F344, 10/sex/group 0, 4, 8, 10, 12, or 15 mg/kg-	population Doses WBC count	s, or lympho 0 t (percent cho	cyte populat 4	ions. 8 ed to control)	10	12	15				
<mark>Crouse et al. (2006</mark>) Rats, F344, 10/sex/group 0, 4, 8, 10, 12, or 15 mg/kg- d	population Doses	s, or lympho 0 t (percent cho 0%	cyte populat 4 ange compar -5%	ions. 8 ed to control) -12%	10) -7%	12	-3%				
Crouse et al. (2006) Rats, F344, 10/sex/group 0, 4, 8, 10, 12, or 15 mg/kg- d Gavage	population Doses <i>WBC count</i> M F	s, or lympho 0 t (percent cho 0% 0%	cyte populat 4 ange compar -5% 22%	ions. 8 ed to control) -12% 45%	10) -7% 12%	12 1% 52%	15				
Crouse et al. (2006) Rats, F344, 10/sex/group 0, 4, 8, 10, 12, or 15 mg/kg- d Gavage	population Doses WBC count M F Absolute sp	is, or lympho 0 t (percent cho 0% 0% pleen weight	cyte populat 4 ange compar -5% 22% (percent cha	ions. 8 ed to control) -12% 45% nge compare	10) -7% 12% rd to control)	12 1% 52%	15 -3% 29%				
Crouse et al. (2006) Rats, F344, 10/sex/group	population Doses <i>WBC count</i> M F	s, or lympho 0 t (percent cho 0% 0%	cyte populat 4 ange compar -5% 22%	ions. 8 ed to control) -12% 45%	10) -7% 12%	12 1% 52%	-3%				
Crouse et al. (2006) Rats, F344, 10/sex/group 0, 4, 8, 10, 12, or 15 mg/kg- d Gavage	population Doses WBC count M F Absolute sp	is, or lympho 0 t (percent cho 0% 0% pleen weight	cyte populat 4 ange compar -5% 22% (percent cha	ions. 8 ed to control) -12% 45% nge compare	10) -7% 12% rd to control)	12 1% 52%	15 -3% 29%				
Crouse et al. (2006) Rats, F344, 10/sex/group 0, 4, 8, 10, 12, or 15 mg/kg- d Gavage	population Doses WBC count M F Absolute sp M F	s, or lympho 0 t (percent cho 0% 0% oleen weight 0% 0%	cyte populat 4 ange compar -5% 22% (percent cha -3% 1%	ions. 8 ed to control) -12% 45% inge compare -6%	10) -7% 12% ed to control) 3% 23*%	12 1% 52% 1%	15 -3% 29% 5%				
Crouse et al. (2006) Rats, F344, 10/sex/group 0, 4, 8, 10, 12, or 15 mg/kg- d Gavage	population Doses WBC count M F Absolute sp M F	s, or lympho 0 t (percent cho 0% 0% oleen weight 0% 0%	cyte populat 4 ange compar -5% 22% (percent cha -3% 1%	ions. 8 ed to control, -12% 45% nge compare -6% 8%	10) -7% 12% ed to control) 3% 23*%	12 1% 52% 1%	15 -3% 29% 5%				
Crouse et al. (2006) Rats, F344, 10/sex/group 0, 4, 8, 10, 12, or 15 mg/kg- d Gavage	population Doses WBC count M F Absolute sp M F Relative sp	s, or lympho 0 t (percent cho 0% 0% bleen weight 0% 0%	cyte populat 4 ange compar -5% 22% (percent cha 1% (percent cha	ions. 8 ed to control/ -12% 45% inge compare -6% 8% inge compared	10) -7% 12% ed to control) 3% 23*% d to control)	12 1% 52% 1% 17*%	15 -3% 29% 5% 24*%				
Crouse et al. (2006) Rats, F344, 10/sex/group 0, 4, 8, 10, 12, or 15 mg/kg- d Gavage	population Doses WBC count M F Absolute sp M F Relative sp M F	s, or lympho 0 t (percent cho 0% 0% bleen weight 0% 0% leen weight 0%	cyte populat 4 ange compar -5% 22% (percent char 3% 1%	ions. 8 ed to control/ -12% 45% nge compare -6% 8% nge compare 4%	10) -7% 12% ed to control) 3% 23*% d to control) 7% 6%	12 1% 52% 1% 17*% -1% -1%	15 -3% 29% 5% 24*% 2%				
Crouse et al. (2006) Rats, F344, 10/sex/group 0, 4, 8, 10, 12, or 15 mg/kg- d Gavage	population Doses WBC count M F Absolute sp M F Relative sp M F	s, or lympho 0 t (percent cho 0% 0% bleen weight 0% 0% leen weight 0%	cyte populat 4 ange compar -5% 22% (percent char 3% 1%	ions. 8 ed to control/ -12% 45% inge compare -6% 8% inge compare 4% 0%	10) -7% 12% ed to control) 3% 23*% d to control) 7% 6%	12 1% 52% 1% 17*% -1% -1%	15 -3% 29% 5% 24*% 2%				
Crouse et al. (2006) Rats, F344, 10/sex/group 0, 4, 8, 10, 12, or 15 mg/kg- d Gavage	population Doses WBC count M F Absolute sp M F Relative sp M F Absolute th	is, or lympho 0 t (percent cho 0% 0% 0% leen weight 0% 0% 0% 0%	cyte populat 4 ange compar -5% 22% (percent char 3% 1% (percent char 3% 1% t (percent ch	ions. 8 ed to control/ -12% 45% nge compare -6% 8% nge compare 4% 0% ange compar	10 -7% 12% 2d to control) 3% 23*% d to control) 7% 6% red to control	12 1% 52% 1% 17*% -1% -1%	15 -3% 29% 5% 24*% 2% -2%				
Crouse et al. (2006) Rats, F344, 10/sex/group D, 4, 8, 10, 12, or 15 mg/kg- d Gavage	population Doses WBC count M F Absolute sp M F Relative sp M F Absolute th M F	is, or lympho 0 t (percent cho 0% 0% 0% 0% leen weight 0% 0% hymus weigh 0% 0%	cyte populat 4 ange compar -5% 22% (percent cha 3% 1% (percent cha 3% 1% t (percent ch -1% -7%	ions. 8 ed to control/ -12% 45% inge compare -6% 8% inge compare 4% 0% ange compare 3%	10 -7% 12% 2d to control) 3% 23*% d to control) 7% 6% red to control -10% 19%	12 1% 52% 1% 17*% -1% -1%) -12% 32%	15 -3% 29% 5% 24*% 2% -2% -2%				
Crouse et al. (2006) Rats, F344, 10/sex/group 0, 4, 8, 10, 12, or 15 mg/kg- d Gavage	population Doses WBC count M F Absolute sp M F Relative sp M F Absolute th M F	is, or lympho 0 t (percent cho 0% 0% 0% 0% leen weight 0% 0% hymus weigh 0% 0%	cyte populat 4 ange compar -5% 22% (percent cha 3% 1% (percent cha 3% 1% t (percent ch -1% -7%	ions. 8 ed to control/ -12% 45% nge compare -6% 8% nge compare 4% 0% ange compare 3% 12%	10 -7% 12% 2d to control) 3% 23*% d to control) 7% 6% red to control -10% 19%	12 1% 52% 1% 17*% -1% -1%) -12% 32%	15 -3% 29% 5% 24*% 2% -2% -2%				

Reference and Study Design				Results							
Levine et al. (1990); Levine et al. (1981a); Levine et al.		not reported f fore the 13-w) mg/kg dose g	roups beca	ause all of the				
<u>(1981b</u>)	Doses	0	10	30	100	300	600				
Rats, F344, 10/sex/group;	WBC count	(percent char	nge compar	ed to control,)						
30/sex for control	М	0%	4%	7%	15%	-	-				
0, 10, 30, 100, 300, or	F	0%	23*%	24*%	62*%	-	-				
600 mg/kg-d Diet	Absolute sp	leen weight (µ	percent cha	inge compare	ed to control)						
13 wks	М	0%	-11%	-16%	-34%	-	_				
13 WKS	F	0%	2%	12%	0%	_	-				
	Relative spl	een weight (p	ercent cha	nge compared	d to control)						
	М	0%	-9%	-12%	-21%	_	_				
	F	0%	2%	12%	3%	-	-				
Von Oettingen et al. (1949) Rats, sex/strain not specified, 20/group 0, 15, 25, or 50 mg/kg-d Diet 3 mo	Doses	0		15	25		50				
	WBC count (percent change compared to control)										
	М	0%		-30%	7%		-6%				
Hart (1974)	Doses	0		0.1	1		10				
Dogs, Beagle, 3/sex/group	WBC count	(percent char	nge compai	ed to control,)						
0, 0.1, 1, or 10 mg/kg-d	М	0%		5%	2%		-19%				
Diet	F	0%		-2%	24%		6%				
90 d	Absolute sp	leen weight (j	percent cha	inge compare	ed to control)						
	М	0%		_	_		123%				
	F	0%		-	-		-11%				
Martin and Hart (1974)	Doses	0		0.1	1		10				
Monkeys, Cynomolgous or	WBC count	(percent char	nge compai	ed to control,)						
Rhesus, 3/sex/group	М	0%		-32%	0%		-3%				
	F	0%		-38%	-1%		-41%				

Reference and Study Design	Results
Gastrointestinal (GI) effects	
Lish et al. (1984); Levine et al. (1984)	No GI effects were observed as clinical signs or on gross pathology or histopathology examination.
Mice, B6C3F ₁ , 85/sex/group; interim sacrifices (10/sex/group) at 6 and 12 mo	
0, 1.5, 7.0, 35, or 175/100 mg/kg-d (high dose reduced to 100 mg/kg-d in wk 11 due to excessive mortality) Diet 24 mo	
<u>Levine et al. (1983);</u> Thompson (1983)	No GI effects were observed as clinical signs or on gross pathology or histopathology examination.
Rats, F344, 75/sex/group; interim sacrifices (10/sex/group) at 6 and 12 mo	
0, 0.3, 1.5, 8.0, or 40 mg/kg-d Diet 24 mo	
Crouse et al. (2006) Rats, F344, 10/sex/group 0, 4, 8, 10, 12, or 15 mg/kg- d Gavage 90 d	No GI effects were observed on gross pathology or histopathology examination. Increased salivation and blood stains around the mouth were noted (affected doses and incidences were not reported); it is not clear whether these effects occurred in animals also experiencing convulsions.
<u>Von Oettingen et al.</u> (<u>1949</u>)	Congestion of the GI tract was observed in 50 and 100 mg/kg-d rats that also exhibited mortality (40%) and severe neurotoxicity.
Rats (sex/strain not specified); 20/group	
0, 15, 25, or 50 mg/kg-d Diet	
3 mo	

Reference and Study Design	Results								
Martin and Hart (1974) Monkeys (Cynomolgus or Rhesus); 3/sex/group 0, 0.1, 1, or 10 mg/kg-d Gavage 90 d	Vomiting was observed more frequently in the 1 and 10 mg/kg-d groups compared to the control or 0.1 mg/kg-d groups, although some episodes occurred during the intubation procedure.								
Hart (1974) Dogs, Beagle, 3/sex/group 0, 0.1, 1, or 10 mg/kg-d Diet 90 d	Some nause not reporte	-	were reported	(incidences	and affected dos	se groups were			
Hematological effects	1								
<u>Lish et al. (1984); Levine et</u>	Doses	0	1.5	7.0	35	175/100			
<u>al. (1984)</u>	RBC count;	105 wks (percer	nt change comp	ared to con	trol)				
Mice, B6C3F ₁ ,	Μ	0%	-4%	3%	-3%	14%			
85/sex/group; interim sacrifices (10/sex/group) at 6 and 12 mo	F	0%	4%	-7%	5%	3%			
	Hemoglobin; 105 wks (percent change compared to control)								
0, 1.5, 7.0, 35, or	М	0%	-6%	3%	-5%	9%			
175/100 mg/kg-d (high	F	0%	2%	-7%	3%	1%			
dose reduced to	Hematocrit; 105 wks (percent change compared to control)								
100 mg/kg-d in wk 11 due to excessive mortality)	М	0%	-4%	3%	-4%	9%			
Diet	F	0%	3%	-6%	3%	1%			
24 mo	Platelets; 105 wks (percent change compared to control)								
	М	0%	33%	9%	21%	27%			
	F	0%	-14%	-7%	1%	5%			
Hart (1976)	Doses	0	1.0		3.1	10			
Rats, Sprague-Dawley,	RBC count; 104 wks (percent change compared to control)								
100/sex/group	М	0%	3%		7%	-2%			
0, 1.0, 3.1, or 10 mg/kg-d	F	0%	-14%	,)	7%	2%			
Diet	Reticulocyte	e count; 104 wk	s (percent chan	ge compare	d to control)				
2 yrs	М	0%	250 ^c %	6	500* [°] %	850* [°] %			
	F	0%	180* ^c	%	-40%	20%			
	Hemoglobir	n; 104 wks (perc	ent change con	npared to co	ontrol)				
	М	0%	3%		4%	0%			
	F	0%	-1%		1%	-2%			
Levine et al. (1983);	Doses	0	0.3	1.5	8.0	40			
<u>Thompson (1983)</u>	Hemoglobir	n levels; 105 wk	s (percent chan	ge compare	d to control)				
Rats, F344, 75/sex/group;	М	0%	6%	6%	3%	-13%			
interim sacrifices	F	0%	-5%	1%	-9%	-14%			

Reference and Study Design	Results									
(10/sex/group) at 6 and	RBC count; 105 wks (percent change compared to control)									
12 mo	М	0%	5%	29	6	-1%	-9%			
), 0.3, 1.5, 8.0, or	F	0%	-2%	29	6	-9%	-13%			
10 mg/kg-d	Platelet count; 105 wks (percent change compared to control)									
Diet	М	0%	6%	-4	% -	10%	-7%			
24 mo	F	0%	14%	-4	%	5%	22%			
	Hematocrit,	; 105 wks (perce	ent change	compared to	control)					
	М	0%	5%	59	6	2%	-7%			
	F	0%	-5%	05	6	-8%	-12%			
Cholakis et al. (1980)	Doses	0		80	160		320			
Vice, B6C3F ₁ , 10–	RBC count (percent change	compared	to control)						
12/sex/group 0, 80, 60, or 40 mg/kg-d for	М	0%		-5%	-12*%		-2%			
	F	0%	-	10%	-1%		1%			
wks followed by 0, 80,	Reticulocytes (percent change compared to control)									
.60, or 320 mg/kg-d (TWA loses of 0, 79.6, 147.8, or	М	0%	-	36%	-13%		15%			
256.7 mg/kg-d for males and 0, 82.4, 136.3, or 276.4 mg/kg-d for	F	0%		21%	25%		-19%			
	Hematocrit (percent change compared to control)									
	М	0%		-1%	-6%		0%			
emales) ^b	F	0%		-8%	2%		1%			
Diet	Hemoglobin (percent change compared to control)									
L3 wks	М	0%		-2% -7*%			-3%			
	F	0%		-5%	4%		1%			
	Platelets (percent change compared to control)									
	M	0%		33%	28%		22%			
	F	0%		3%	9%		39%			
Cholakis et al. (1980)	Doses	0	10	14	20	28	40			
Rats, F344, 10/sex/group	RBC count (percent change	compared	to control)						
), 10, 14, 20, 28, or	M	0%	_	_	_	3%	-1%			
10 mg/kg-d	F	0%	_	_	_	-1%	-7%			
Diet	Hemoglobin (percent change compared to control)									
L3 wks	M	0%	_	_	_	2%	-1%			
	F	0%	_	_	_	-1%	-1%			
	Platelet (pe	rcent change co	ompared to	control)						
	M	0%	_	_	_	11%	16*%			
	F	0%	_	_	_	-23%	-13%			
	Reticulocyte	es (percent char	nge compar	ed to contro	<i>I)</i>					
	M	0%	_	_	_	26%	76*%			
	F	0%	_	_	_	-2%	17%			
	Hematocrit	(percent chang	e comnared	to control)						

This document is a preliminary draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and Study Design				Results						
	М	0%	-	-	-	3%	0%			
	F	0%	_	-	_	0%	-2%			
Crouse et al. (2006)	Doses	0	4	8	10	12	15			
Rats, F344, 10/sex/group	RBC count (percent change compared to control)									
), 4, 8, 10, 12, or 15 mg/kg-	M	0%	1%	-7%	-2%	-4%	-5%			
	F	0%	3%	3%	-1%	2%	-2%			
Gavage	Hemoglobir	n (percent cho	ange compo	red to control)					
90 d	M	0%	-1%	-5%	0%	-1%	-6%			
	F	0%	2%	4%	-1	4%	-4%			
	Platelet count (percent change compared to control)									
	М	0%	21%	11%	13%	-8%	34%			
	F	0%	6%	40%	47%	34%	-36%			
	Hematocrit (percent change compared to control)									
	M	0%	2%	-5%	0%	-1%	-4%			
	F	0%	3%	4%	0%	4%	-2%			
<u>evine et al. (1990); Levine</u> et al. (1981a); <u>Levine et al.</u>		not reported f fore the 13-v			mg/kg dose gr	oups beca	ause all of tl			
	Doses	0	10	30	100	300	600			
Rats, F344, 10/sex/group;	Hematocrit (percent change compared to control)									
30/sex for control	М	0%	-2%	-1%	-5%	_	_			
), 10, 30, 100, 300, or	F	0%	0%	-4%	-7%	_	-			
500 mg/kg-d	Hemoglobin (percent change compared to control)									
Diet	М	0%	-3%	-1%	-6%	_	_			
13 wks	F	0%	0%	-4%	-8*%	_	_			
	RBC count (percent chan	ge compare	ed to control)						
	M	0%	-2%	-2%	-5%	_	_			
	F	0%	-1%	-4%	-5%	_	_			
	Reticulocyte		ange comp	ared to contro						
	M	0%	-4%	10%	28%	_	_			
	F	0%	9%	73%	71%	_	_			
/on Oettingen et al.	Doses	0		15	25		50			
<u>1949</u>)		percent chan	ae compare							
Rats, sex/strain not	M+F	0%	5 .	-23%	-12%		-14%			
pecified, 20/group			ange compo	red to control			-			
), 15, 25, or 50 mg/kg-d	M+F	0%	5 1-	-25%	-7%		-11%			
Diet							-			
3 mo										
Hart (1974)	Doses	0		0.1	1		10			
Dogs, Beagle, 3/sex/group	RBC count (percent chan	ge compare	ed to control)						
- 0-, 0, 0,000, 0.000	M	0%		-3%	3%		2%			

This document is a preliminary draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and Study Design	Results								
0, 0.1, 1, or 10 mg/kg-d	F	0%	13%	7%	11%				
Diet	Reticulocyte	count (percent ch	ange compared to a	control)					
90 d	М	0%	-66%	0%	-50%				
	F	0%	-17%	-50%	0%				
	Hematocrit (percent change co	ompared to control)						
	М	0%	-4%	2%	0%				
	F	0%	6%	1%	7%				
	Hemoglobin	Hemoglobin (percent change compared to control)							
	М	0%	5%	-2%	0%				
	F	0%	8%	-2%	8%				
Martin and Hart (1974) Monkeys, Cynomolgous or	Histopathological examination revealed increased numbers of degenerate or necrotic megakaryocytes in all bone marrow sections.								
Rhesus, 3/sex/group	Doses	0	0.1	1	10				
0, 0.1, 1, or 10 mg/kg-d	RBC count (p	ercent change co	mpared to control)						
Gavage	М	0%	-3%	2%	-3%				
90 d	F	0%	0%	-1%	2%				
	Reticulocyte count (percent change compared to control)								
	М	0%	-33%	-50%	-50%				
	F	0%	-18%	-36%	45%				
	Hematocrit (percent change compared to control)								
	М	0%	-7%	-4%	-1%				
	F	0%	10%	7%	3%				
	Hemoglobin	(percent change d	compared to control)					
	М	0%	-10%	-8%	-6%				
	F	0%	6%	6%	3%				

*Statistically significantly different compared to the control, as determined by study authors (p < 0.05).

^aIncidence counts exclude individuals from which blood was obtained via the orbital sinus.

^bDoses were calculated by the study authors.

^cStandard deviations accompanying the mean response in a given dose group were high, suggesting uncertainty in the accuracy of the reported percent change compared to control.

1 2.9. Genotoxic Effects

2 Table 2-14. Summary of in vitro studies of RDX genotoxicity

			Res	ults ^b			
Endpoint	Test system	Dose/ concentration ^a	Without activation	With activation	Comments	Reference	
Genotoxicity stud	dies in prokaryotic organisms	•				•	
Reverse mutation	Salmonella. typhimurium TA1535, TA1537, TA1538, TA98, TA100	1,000 μg/plate	-	_	Metabolic activation with S9	<u>Cholakis et al.</u> <u>(1980</u>)	
Reverse mutation	S. typhimurium TA1535, TA1537, TA1538 TA100, TA98	14 μg/plate	-	-	Effect of disinfection treatments on mutagenicity tested: RDX was not mutagenic in any strain before or after disinfection treatment with chlorine or ozone	<u>Simmon et al.</u> (1977)	
Reverse mutation	S. typhimurium TA98, TA100	250 μg/plate	-	_	Study authors noted that results were consistent with literature	<u>George et al.</u> (2001)	
Reverse mutation	S. typhimurium TA98, TA100	1 mg/plate	-	_	Metabolic activation with S9	<u>Tan et al.</u> (1992)	
Reverse mutation	S. typhimurium TA98, TA100	1,090 µg/plate	-	_	High S9 activation (9%) used	<u>Pan et al.</u> (2007)	
Reverse mutation	S. typhimurium TA97a	32.7 μg/plate	_	±	High S9 activation (9%) used; study authors concluded that RDX "required intensive metabolic activation" to exhibit mutagenicity in this strain	<u>Pan et al.</u> (2007)	
Reverse mutation	Vibrio fischeri	0.004 μg/tube	±	+	Mutatox assay with metabolic activation (S9)	<u>Arfsten et al.</u> (1994)	
Reverse mutation (<i>umu</i> test)	Salmonella choleraesius subsp. chol. (prior Salmonella typhimurium) TA1535/pSK1002;	20.6 µg/mL	_	-	No observed effect concentration; tested at highest concentration where the induction rate was below 1.5 for the first time and the growth factor was below 0.5	Neuwoehner et al. (2007)	
Reverse mutation (NM2009 test)	S. choleraesius subsp. chol. NM2009, TA1535/pSK1002/pNM12	20.6 µg/mL	_	-	No observed effect concentration; tested at highest concentration where the induction rate was below 1.5 for the first time and the growth factor was below 0.5	<u>Neuwoehner et</u> al. (2007)	

This document is a preliminary draft for review purposes only and does not constitute Agency policy.

			Res	ults ^b			
Endpoint	Test system	Dose/ concentration ^a	Without With activation activation		Comments	Reference	
Induction of the <i>sfiA</i> gene (SOS chromotest)	Escherichia. coli PQ37	20.6 µg/mL	-	-	No observed effect concentration; tested at highest concentration where the induction rate was below 1.5 for the first time and the growth factor was below 0.5	<u>Neuwoehner et</u> <u>al. (2007</u>)	
Reverse mutation	S. typhimurium, TA98, TA100	24.8 μg/mL	-	_	No observed effect concentration; metabolic activation with S9	<u>Neuwoehner et</u> al. (2007)	
Reverse mutation	S. typhimurium TA98, TA100	2.6 μg/mL	-	_	No observed effect concentration; metabolic activation with S9	<u>Lachance et al.</u> (1999)	
Reverse mutation	<i>S. typhimurium</i> TA1535, TA1536, TA1537, TA1538 TA100, TA98	30.8 μg/mL	-	-	Metabolic activation with S9	<u>Cotruvo et al.</u> (1977)	
Genotoxicity stu	dies in nonmammalian eukaryotic ol	rganisms					
Recombination induction	S. cerevisiae D3	23 μg/mL	_	-	Study authors concluded that this microorganism did not appear to be useful for detecting mutagenicity in several compounds tested	<u>Simmon et al.</u> (1977)	
Recombination induction	S. cerevisiae D3	30.8 μg/mL	-	-	Metabolic activation with S9	<u>Cotruvo et al.</u> (1977)	
Genotoxicity stu	dies in mammalian cells				•	·	
Forward mutation	Chinese hamster lung fibroblasts V79 cells	40 μg/mL	-	_	Minimal cytotoxicity observed at 40 μg/mL (limit of solubility)	<u>Lachance et al.</u> (1999)	
Mutation	L5178Y mouse lymphoma cells	500 μg/mL	-	-	No or low cytotoxicity seen at these concentrations; however, precipitate was observed >250 μg/mL	<u>Reddy et al.</u> (2005)	
Unscheduled DNA synthesis; DNA repair	WI-38 cells, human diploid fibroblasts	4,000 μg/mL	-	-	Precipitates were observed at concentrations of RDX ≥40 μg/mL	<u>Dilley et al.</u> (<u>1979</u>)	

1 ^aLowest effective dose for positive results; highest dose tested for negative results.

2 b^{+} = positive; ± = equivocal or weakly positive; - = negative

1 Table 2-15. Summary of in vivo studies of RDX genotoxicity

		Dose/			
Endpoint	Test system	concentration	Results	Comments	Reference
In vivo genotoxic	ity studies in mammalian systems				
Micronucleus formation	CD-1 mouse bone marrow	, 0, 0	No significant decrease in PCE:NCE ratios; no induction of micronucleated PCE at any dose	250 mg/kg was maximum tolerated dose determined in dose range-finding study	<u>Reddy et al. (2005)</u>
Dominant lethal mutations		0, 5, 16, or 50 mg/kg-day for 15 wk	No statistically or biologically significant effects on fertility; determined to be negative for the induction of lethal mutations	Males in the high-dose group experienced lower food consumption and weight gain compared with all other groups	<u>Cholakis et al.</u> (<u>1980</u>)

2

3

This document is a preliminary draft for review purposes only and does not constitute Agency policy.

1 Table 2-16. Summary of in vitro and in vivo studies of RDX metabolite genotoxicity

		Res	ults ^b		
Test system	Dose/ concentration ^a	Without activation	With activation	Comments	Reference
	Genotoxia	city studies in	prokaryotic	organisms	
Salmonella typhimurium TA97a, TA102	22 μg/plate	-	+	Mono and trinitroso metabolites (MNX and TNX); high S9 activation (9%) used	<u>Pan et al. (2007</u>)
S. typhimurium TA1535, TA1537, TA1538, TA98, TA100	500 ug/plate	+	+	Positive only for TNX; MNX and DNX were negative	George et al. (2001
<i>S. typhimurium</i> TA1535, TA1537, TA1538, TA98, TA100	NR ^c	-	_	Mononitroso metabolite, MNX; metabolic activation with S9	Snodgrass (1984)
	Genotoxicit	y studies in n	nammalian ce	ells—in vitro	
Mouse lymphoma thymidine kinase	NR ^c	+	+	Mononitroso metabolite, MNX; metabolic activation with S9	Snodgrass (1984)
Chinese hamster ovary cells	NR ^c	-	+	Mononitroso metabolite, MNX; metabolic activation with S9	Snodgrass (1984)
Primary rat hepatocytes	NR ^c	-	F	Mononitroso metabolite, MNX; additional metabolic activation not required with S9	<u>Snodgrass (1984)</u>
·	In vivo geno	toxicity studi	es in mamma	alian systems	
Male mice dosed and mated with untreated female mice	NR ^c	-	-	Mononitroso metabolite, MNX; additional metabolic activation not required with S9	<u>Snodgrass (1984</u>)
	Salmonella typhimurium TA97a, TA102 S. typhimurium TA1535, TA1537, TA1538, TA98, TA100 S. typhimurium TA1535, TA1537, TA1538, TA98, TA100 Mouse lymphoma thymidine kinase Chinese hamster ovary cells Primary rat hepatocytes Male mice dosed and mated with	Test systemconcentrationaGenotoxiaSalmonella typhimurium TA97a, TA10222 μg/plateS. typhimurium TA1535, TA1537, TA1538, TA98, TA100500 ug/plateS. typhimurium TA1535, TA1537, TA1538, TA98, TA100NR ^c GenotoxicitMouse lymphoma thymidine kinaseChinese hamster ovary cellsNR ^c Primary rat hepatocytesNR ^c In vivo genoMale mice dosed and mated withNR ^c	Test systemDose/ concentrationaWithout activationGenotoxicity studies in Genotoxicity studies in Salmonella typhimurium TA97a, TA10222 µg/plate-S. typhimurium TA1535, TA1537, TA1538, TA98, TA100500 µg/plate+S. typhimurium TA1535, TA1537, TA1538, TA98, TA100NR ^c -Mouse lymphoma thymidine kinaseNR ^c +Chinese hamster ovary cellsNR ^c -Primary rat hepatocytesNR ^c -In vivo genotoxicity studieMale mice dosed and mated withNR ^c -	Test systemDose/ concentrationaWithout activationWith activationGenotoxicity studies in prokaryoticSalmonella typhimurium TA97a, TA10222 μg/plate-+S. typhimurium TA1535, TA1537, TA1538, TA98, TA100500 ug/plate++S. typhimurium TA1535, TA1537, TA1538, TA98, TA100NR°S. typhimurium TA1535, TA1537, 	Test systemDose/ concentrationaWith activationWith activationGenotoxicity studies in prokaryotic organismsSalmonella typhimurium TA97a, TA10222 µg/plate-+Mono and trinitroso metabolites (MNX and TNX); high S9 activation (9%) usedS. typhimurium TA1535, TA1537, TA1538, TA98, TA10020 ug/plate++Positive only for TNX; MNX and DNX were negativeS. typhimurium TA1535, TA1537, TA1538, TA98, TA100NR ^c Mononitroso metabolite, MNX; metabolic activation with S9S. typhimurium TA1535, TA1537, TA1538, TA98, TA100NR ^c Mononitroso metabolite, MNX; metabolic activation with S9Mouse lymphoma thymidine kinaseNR ^c +Mononitroso metabolite, MNX; metabolic activation with S9Chinese hamster ovary cells Primary rat hepatocytesNR ^c -+Mononitroso metabolite, MNX; metabolic activation with S9Primary rat hepatocytes Male mice dosed and mated with NR ^c -+Mononitroso metabolite, MNX; additional metabolic activation not required with S9Male mice dosed and mated with NR ^c Mononitroso metabolite, MNX; additional metabolic activation not required with S9

 b^{+} = positive; ± = equivocal or weakly positive; - = negative

4 ^cNR = not reported