

EPA IRIS Bimonthly Public Science Meeting PCBs: Effects Other Than Cancer June 17-18, 2015 Arlington, VA

Peter S. Thorne, MS, PhD

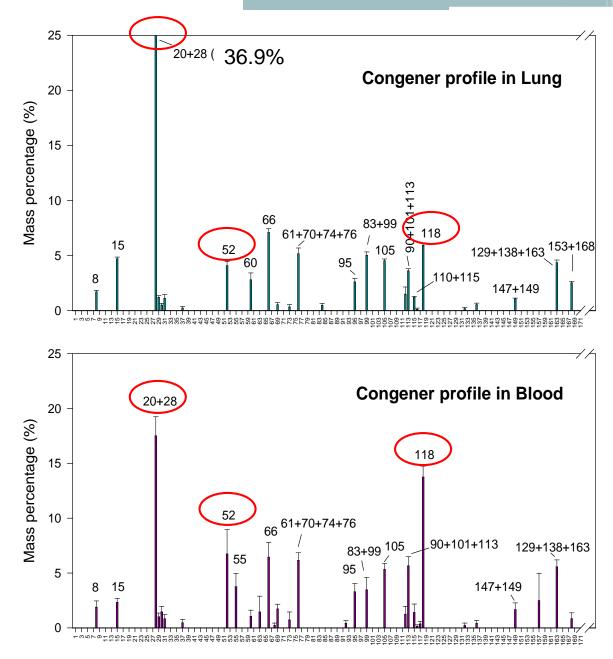
Professor and Head,

Department of Occupational and Environmental Health

Director, Environmental Health Sciences Research Center

Science Topic 3

Potential for Hazard Identification and Dose-Response Assessment for PCB Exposure via Inhalation Rat inhalation studies show rapid distribution and metabolism and toxicity of inhaled PCB mixtures


- Aroclor 1242 Acute and Subacute Inhalation study in rats
- t_{1/2}= liver: 5.6 h; lung: 8.2 h; brain: 8.5 h; blood: 9.7 h
- Lung, liver, adipose tissue levels higher than brain or blood
- 10 d exposure \rightarrow 6.6 µg/g lipid weight in lung & liver
- Minimal toxicity at 1400 μg (5.6 mg/kg)
- CAM Subchronic Inhalation Study

The University of Iowa

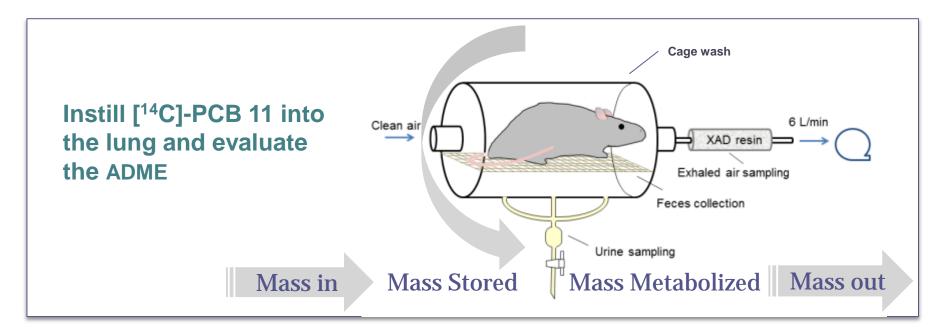
- Inhalation exposure \rightarrow body burden of mostly tri- to hexa-CBs
- Similar congener spectrum in lung, serum, liver, brain, adipose
- Accumulation of neurotoxic PCBs in brain: PCB28, 105 and 118
- CAM+ Subchronic Inhalation Study
- Toxicity at 340 ug/rat (1.4 mg/kg)

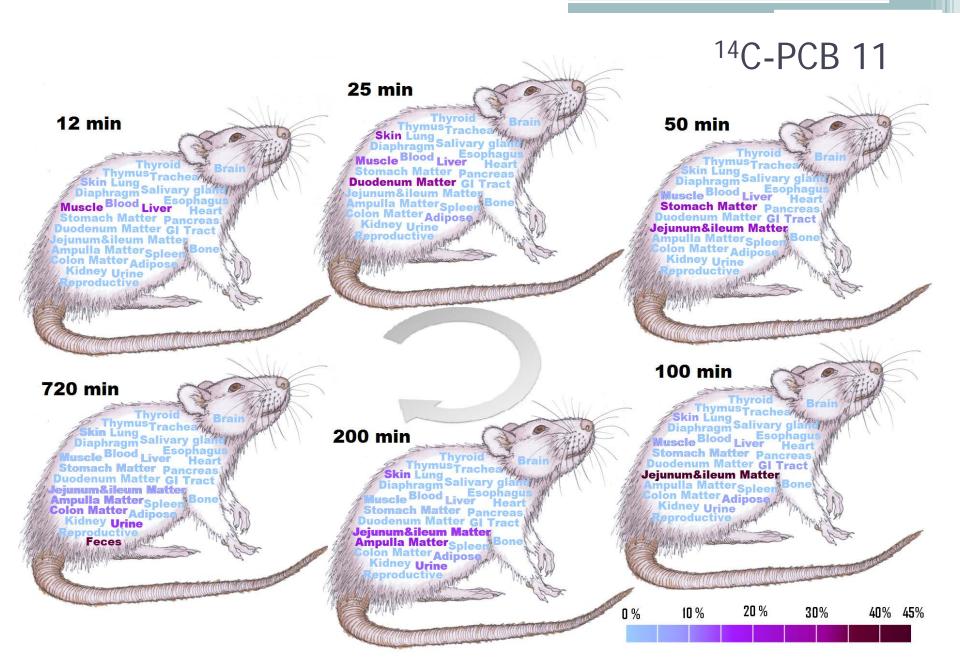
CAM Subchronic Inhalation Study

 A distinct profile of ~25 accumulated congeners in tissue

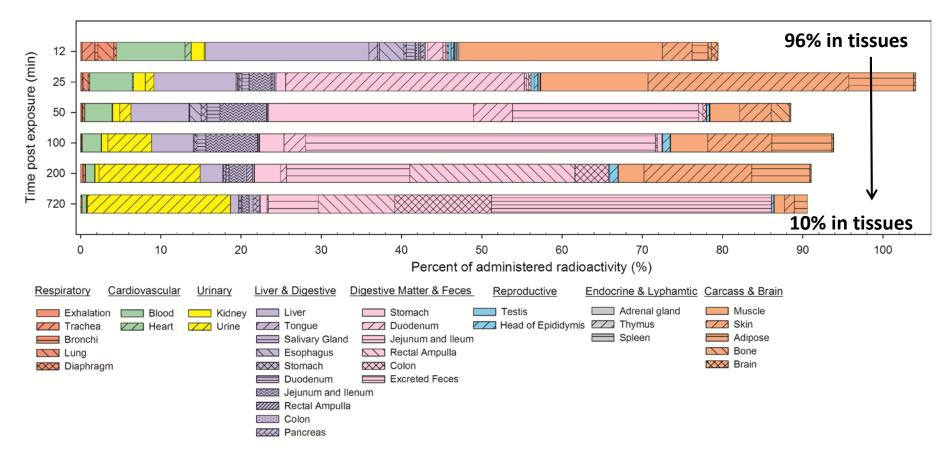
Inhalation studies of mixtures

	Animals	Vapor source	Conc. (µg/m³)	Dose (µg)	Observed effects	
1956 Treon et al.	Rats	Aroclor 1254	1500 [†]	13280 [†]	Histopathologic lesions in liver	
1999 Casey et al.	Adolescent male rats	Aroclor 1242	0.9	2.3*	Histopathological changes in the thyroid and thymus, increases in serum T3 and T4, decrease in exploratory behavior, diminished weight gain (?)	
2010 Hu et al.	Male rats	Aroclor 1242 Subacute	8200	981	Diminished weight gain	
2012 Hu et al.	Female rats	CAM Subchronic	520	100	Minimal effects, only minor change in blood GSH/GSSG (no change in T4)	
2015 Hu et al.	Female rats Whole- body & Nose-only	CAM+ Subchronic	533	339 WB	Diminished weight gain, mild change in hepatocytes, decrease in T4	
				457 NO	Diminished weight gain, mild change in hepatocytes, decrease in T4, increase in lipid peroxidation.	

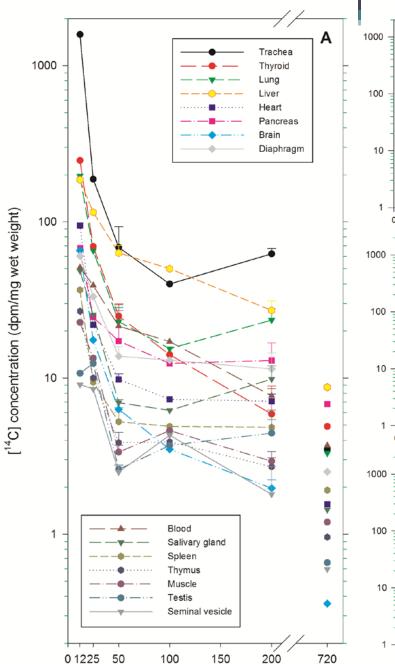

[†]Estimated by measuring HCl formation after thermal decomposition of Aroclor vapor. *Estimated using questionable respiratory parameters.


Science Topic 4

Suitability of Available Toxicokinetic Models for Reliable Route-to-Route, Interspecies, and/or Intraspecies Extrapolation Science Topic 4:



- Even though we find PCB 11 in the indoor air of every home and school, virtually nothing is known about its fate and toxicity
- Objective: To determine the fate of PCB 11 in rats



The majority of dose is excreted in hours

- Fecal elimination is the major pathway of excretion.
- Exhaled PCB 11 accounts for <0.2% of administered dose.
- Absorption of PCB in lung is complete.

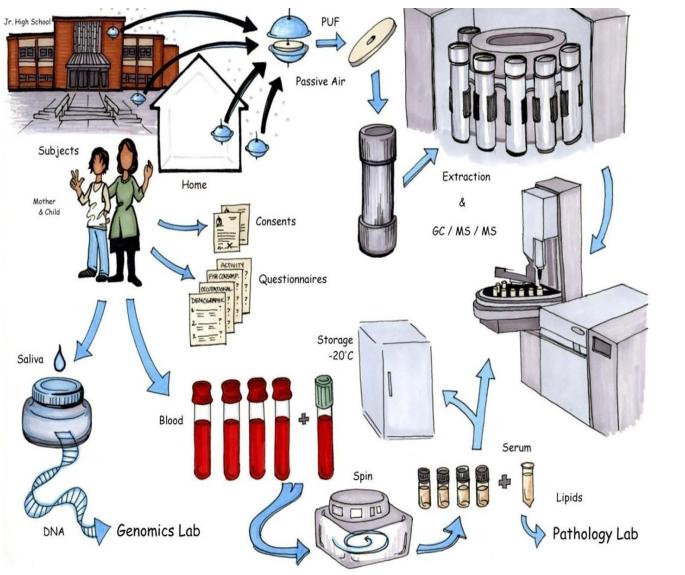
Minutes

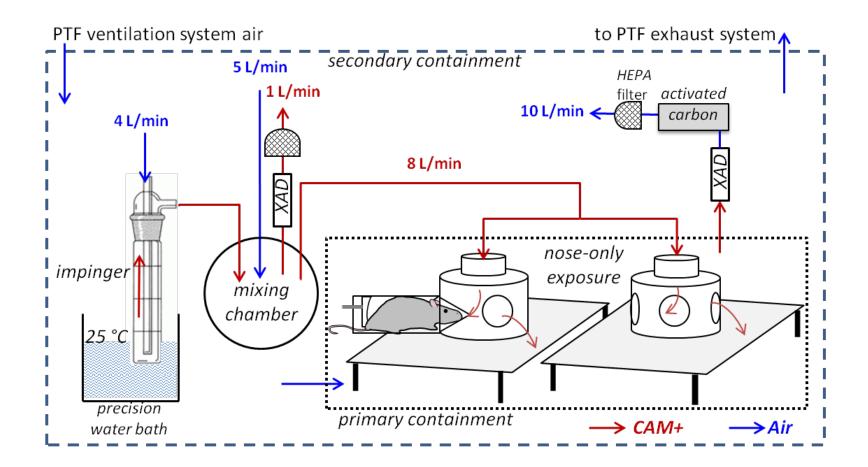
Rapid elimination from most tissues

Phase	t 1⁄2 -1	t _{1/2} -2	
Trachea	9 min	2.6 hr	
Thyroid	14 min	5.3 hr	
Lung	13 min	3.7 hr	
Liver	24 min	3.7 hr	
Heart	12 min	3.9 hr	
Pancreas	21 min	7.7 hr	
Brain	12 min	2.7 hr	
Diaphragm	18 min	3.9 hr	
Blood	33 min	4.1 hr	
Salivary gland	14min	4.3 hr	
Spleen	15 min	6.3 hr	
Thymus	14 min	4.7 hr	
Muscle	14 min	6.4 hr	
Testis	17 min	3.9 hr	
Seminal vesicles	19 min	4.1 hr	

PCB11 and ¹⁴C-PCB11 animal studies

- Complete and fast uptake of inhaled PCB
 - PCB11 is 99.8% absorbed after lung exposure.
- Rapid distribution of PCB11


- Delayed uptake in adipose tissue and other fatty tissues (skin, epididymis)
- Extremely fast elimination of PCB11 and metabolites
 - 50% of dose excreted by 12 h
 - 37% of dose in intestinal digestive matter that was about to be excreted
 - The initial elimination phase is very short ($t_{1/2}$ = 10-30 min)
 - Biomarkers may demonstrate same-day exposures
- Phase II metabolites dominate in systemic circulation
 - PCB11 and OH-PCB11s decay most rapidly to minimal levels within 25 min
 - Phase II metabolites serve as better biomarkers of PCB11 exposure


The END

Science Topic 2:

Evaluation of Epidemiological Studies for PCB Dose-Response Assessment

AESOP Study Design Generation and Exposure System for CAM+ mixture

Toxicity Assessment – AOP Biomarkers

Disrupted Enzymes

CYP1A1, 1A2, 1B1, 2A1, 2B1, 3A1

UGT1A1, GST1A1, SULT1A1, SULT2A1, SULT1E1 (liver and lungs)

Oxidative Stress & Inflammation

Lipid peroxidation and Glutathione (liver, lung, blood) Oxidative stress responsive genes (liver) Inflammatory cytokines/chemokines (serum) Hematology parameters

Neurotoxicity

Thyroid hormones: T3, T4, TSH (serum) Gross neurotoxicity (prenatal study)

Immunotoxicity

Cytokines/chemokines (serum), B cell function, CD4+/CD8+ T-cell population (thymus, spleen)

Developmental Toxicity

Implantation rate, litter size, body size, Postnatal survival Thyroid hormones: T3, T4, TSH (serum)

Genotoxicity

DNA strand breaks Chromosome breaks and loss lung, liver, kidney,

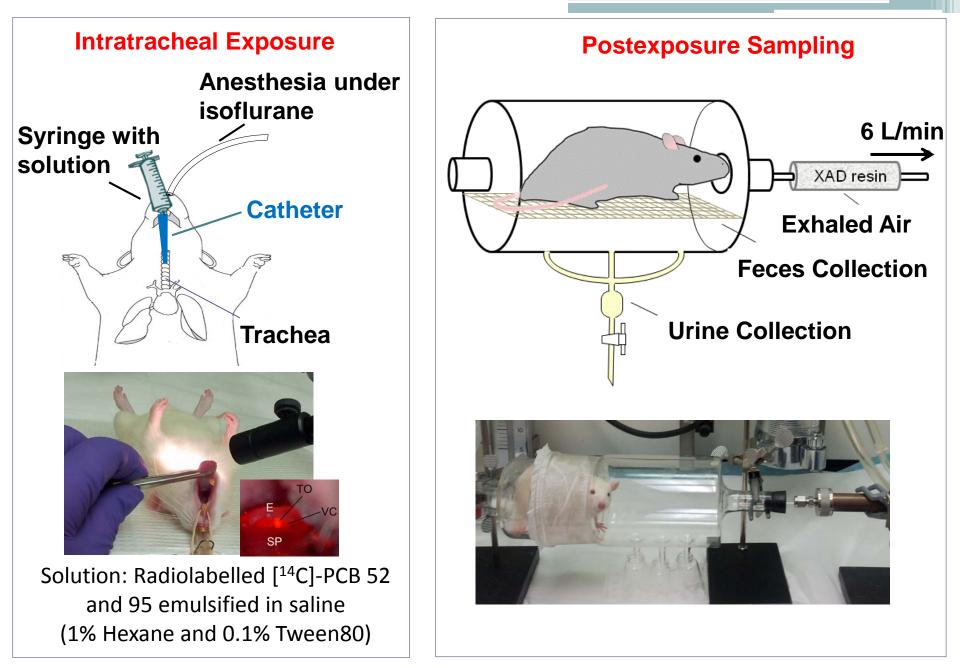
spleen, thymus, lymph nodes, adrenal glands, and ovaries/testis

Histopathology

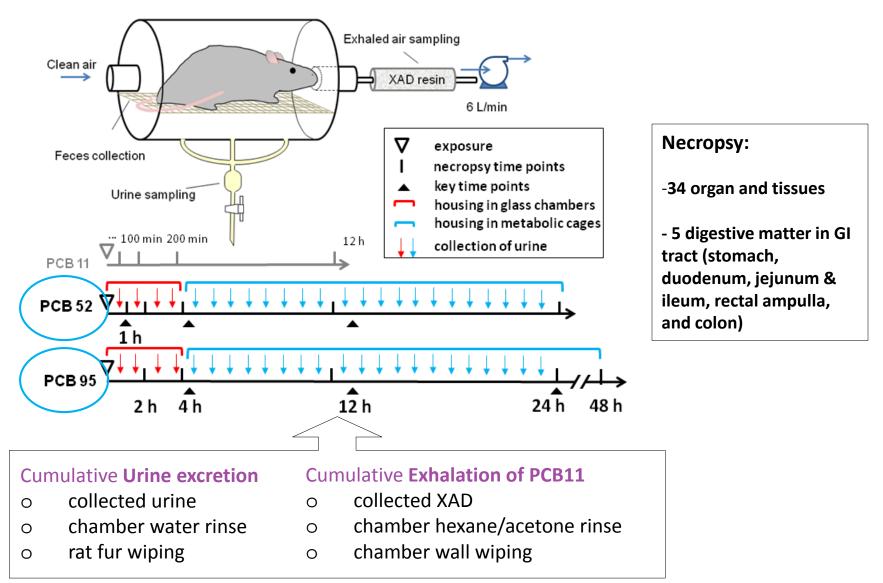
T

altered

tissue


<u>PCB 52 and PCB 95</u> were selected as representative congeners for their predominance in air and their toxicological importance.

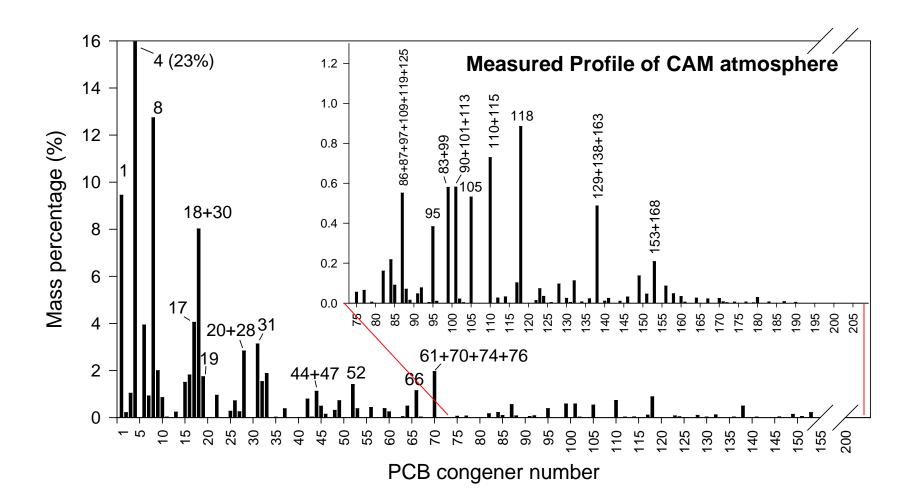
Vapor pressures of congeners representing major atmospheric PCB homologues.


PCB homologue	Di	Tri	Tetra	Penta
mass percent of ∑PCBs in Chicago air ^a	21%	29%	15%	20%
median vapor pressure ^b (Pa)	0.1527	0.0392	0.0112	0.0028
) 		
representative congener	PCB 11		PCB 52	PCB 95
vapor pressure of RC ^b (Pa)	0	.0868	0.0161	0.0053

^aValues from sampled Chicago air (Hu et al. 2010)

^bValues from equations by Falconer and Bidleman (1993)

Schematic of postexposure sampling and design of serial necropsy.


Modeling Approach

$$Exp_{PCBj} = \sum_{i=1}^{3} T_i * Q * [PCBj] [=] (\mu g \ yr^{-1})$$

Where Exp_{PCBj} is PCB exposure for the jth congener, T_i is the time spent in location *i* in hours per year; Q is the inhalation rate in m³ d⁻¹; and $[PCB]_j$ (ng m⁻³) is the measured airborne concentration of PCB*j*.

 T_i values have been obtained for three locations (home, schools, and outside) using time-activity questionnaires completed each year.

Generation: 520 μg/m³

