Scientific Question 5

• Transparency and utility of mechanistic data.

Utility of mechanistic data

- Mechanistic data can be useful to:
 - Define precursor events
 - Evaluate species differences in susceptibility
- As an example consider the use of mechanistic data in the evaluation of male reproductive data

Testosterone is necessary but not sufficient

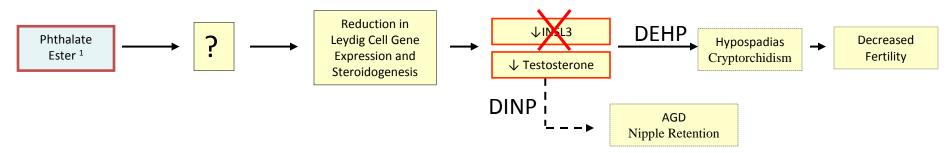
Summary of Mechanism of Action Studies									
Chemical	1	2	3	4	5	6	7	8	9
DEHP	Ļ	Ļ	\downarrow	Ļ	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
DINP	Ļ	↑	Ļ	Ļ	↑			Î	

1 = Testosterone

2 = insl3 (Insulin-like factor 3)

3 = CYP11A (Rate-limiting enzyme responsible for the conversion of cholesterol to pregnenolone)

4 = StAR = Steroidogenic Acute Regulated Protein, involved in mitochondrial cholesterol uptake


5 = LH = Lutenizing Hormone

6 = SR-B1 = Scavenger Receptor B-1, responsible for cholesterol uptake by Leydig cells

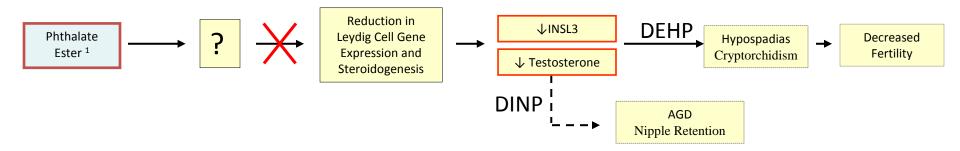
7 = PBR = Peripheral Benzodiazepene Receptor, involved in mitochondrial cholesterol uptake

8 = CYP450scc = Cytochrome P450 side chain cleavage enzyme, steroid converting enzyme

9 = SF-1 = Nuclear Receptor Steroidogenic Factor-1, regulates expression of genes involved in steroidogenesis

Evaluating species difference in Susceptibility Human fetal testis xenografts are resistant to phthalate-induced

reductions in testosterone


Human and rat fetal testis xenografts (Sharpe et al., 2012)

- Humans: No changes in testosterone production, testes weights of pathology
- Rats: Testosterone reductions, reduction in organ weights, gene expression, pathological changes ٠
- "Exposure of human fetal testes to DBP is unlikely to impair testosterone production as it does in rats"

Human, mouse, and rat fetal testis xenografts (Boekelhide et al., 2012)

- Testosterone production reduced in rat xenografts but not in humans
- human fetal testis response more like a mouse (which is resistant in vivo) than a rat •

Hypothesized MOA in Rats unlikely to be Relevant to Humans

DiNP does not cause adverse effects via endocrine-related processes.

- No effects on fertility
- No reproducible pathological changes in male reproductive organs
- In utero exposure causes testosterone reduction in rats but effects (AGD, areola retention) are reversible
 - Neonatal differences in nipple retention, AGD are reversed by sexual maturity; no toxicological consequences
 - Effects seem species specific
 - Mice less affected than rats
 - No effects in human xenografts
 - No effects in primates
- In summary, effects observed in rats related to a common process (testosterone reduction) but not relevant to humans
 - mechanistic studies assist in understanding MOA, species differences