


# Diisononyl Phthalate (DINP) Comments on the Transparency and Utility of Mechanistic Information

Nancy B. Beck, PhD, DABT October 29, 2014 EPA October Bimonthly Meeting





#### Presentation of DINP Mechanistic Information

- In March 2014, EPA provided preliminary evidence tables for mechanistic information for the HBCD IRIS assessment.
- ACC and others noted that this was a positive step but not fully sufficient.
  - EPA did not provide study design information (doses, concentrations or exposure durations), or assay results.
- Now in August 2014, EPA has taken a step backwards, removed any evidence tables providing mechanistic information and is asking if what they have done is useful.
  - EPA also asks how mechanistic information can be used and makes no note of the discussions or comments from the March 2014 meeting.

### Importance of Mechanistic Information

Mechanistic/MOA information must not come second; it must be part of problem formulation.

### **Importance of Extracting the Relevant Information**

- Detailed information, not just summary information is necessary.
  - See ACC comments to OEHHA 2014 (submitted to docket)

**Table 1. Basic Study Information for Reproductive Toxicity (Inhalation Exposure)** 

| Study<br>Reference | Species/Strain      | Age     | Sex    | Animals per<br>Exposure Group | Exposure Concentration (ppb) | Exposure Length/Frequency |
|--------------------|---------------------|---------|--------|-------------------------------|------------------------------|---------------------------|
| Author, Year       | Rat, Wistar         | 6 weeks | Female | 6                             | 0, 0.1, 1, 10                | 4 h/d; 30 d               |
| Author, Year       | Rat, Sprague Dawley | 4 weeks | Male   | 8                             | 0, 5, 10, 20                 | 4 h/d; 5 d/wk; 8 wk       |
| Author, Year       | Mouse, CD-1         | 8 weeks | Male   | 10                            | 0, 0.025, 0.25, 2.5, 25      | 8 h/d; 5d/wk; 8 wk        |

**Table 5 Study Outcomes for Reproductive Toxicity** 

| Ctudy              |       | _          |          |        | Outcomes Ass | essed (Examp | oles Below) |        |           |           |        |
|--------------------|-------|------------|----------|--------|--------------|--------------|-------------|--------|-----------|-----------|--------|
| Study<br>Reference | Sperm | Sperm      | Sperm    | Testis | Testis       | Estrous      | Ovary       | Uterus | Ovary     | Uterus    | Others |
| Reference          | Count | Morphology | Motility | Weight | Histology    | Cyclicity    | Weight      | Weight | Histology | Histology | Others |
| Author, Year       | Χ     | X          | Χ        | Χ      | Χ            |              |             |        |           |           |        |
| Author, Year       |       |            |          |        |              | Х            |             |        |           |           |        |
| Author, Year       | •     |            |          | •      |              |              | Χ           | Х      | X         |           | ·      |

**Table 7 Study Quality** 

| Study<br>Reference | Sample Size<br>Calculation | Study Reliability<br>(Klimisch Code)                          | Randomized Allocation to<br>Experimental Groups | Blinded Outcome<br>Assessment | Presence of<br>Attrition Bias | Statistical Methods |
|--------------------|----------------------------|---------------------------------------------------------------|-------------------------------------------------|-------------------------------|-------------------------------|---------------------|
| Author, Year       | Not performed              | 2 – Reliable with<br>restriction<br>(non-guideline study)     | Not stated                                      | Yes                           | Unknown                       | Appropriate         |
| Author, Year       | Sufficient study power     | 1 – Reliable without<br>restriction<br>(OECD guideline study) | Yes                                             | Yes                           | Not likely                    | Appropriate         |

### **Importance of Extracting the Relevant Information (2)**

- Detailed information, not just summary information is necessary.
  - See ACC comments to OEHHA 2014 (submitted to docket)

Table 8 Study Results by Outcome for Reproductive Toxicity (Sperm Count Example)

| Study<br>Reference | Species/Strain | Dose<br>(mg/kg-d) | Sperm Count<br>(× 10 <sup>7</sup> per g epididymal weight) | <i>P</i> Value |
|--------------------|----------------|-------------------|------------------------------------------------------------|----------------|
| Author, Year       | Rat, F344      | 0                 | 2.2                                                        | -              |
|                    |                | 5                 | 2.3                                                        | 0.8            |
| Author, Year       | Mouse, CD-1    | 0                 | 1.9                                                        | -              |
|                    |                | 0.1               | 1.8                                                        | 0.1            |
|                    | _              | 1                 | 1.8                                                        | 0.1            |
|                    | _              | 10                | 1.5                                                        | 0.03           |

• Approach can easily be adopted for mechanistic information

## **Importance of Extracting the Relevant Information (3)**

- Detailed information, not just summary information is necessary.
  - See M.E. Kushman et al. / Regulatory Toxicology and Pharmacology 67 (2013) 266–277.

Table 3

Example entries into the evidence table for the "peroxisome proliferation" mechanism of action in rodents.

| Study design and reference                                | ign and reference Endpoint and assay Results (% change from control) |            |                |            |             |      |         |
|-----------------------------------------------------------|----------------------------------------------------------------------|------------|----------------|------------|-------------|------|---------|
| In Vivo Chronic Cancer Bio assays<br>(David et al., 1999) | Palmitoyl-CoA Oxidase (nmol/min/mg prot), M                          |            | mg/l           | cg/day     | DEHP b      |      |         |
| Rats (F344), M and F <sup>a</sup>                         |                                                                      |            | 0              | 50         | 200         | 875  | Recover |
| Chronic (78 wks, and 78 wks followed by 26 wks of         |                                                                      | 1 week     | ō              | nd         | nd          | 255  | nd      |
| recovery)                                                 |                                                                      | 2 weeks    | 0              | nd         | nd          | 556  | nd      |
| N= 6                                                      |                                                                      | 13 weeks   | 0              | nd         | nd          | 390" | nd      |
|                                                           |                                                                      | 104 weeks  | 0              | -29        | 71          | 257  | -24     |
| In Vivo Acute and Subchronic Studies                      |                                                                      |            |                |            |             |      |         |
| (Hinton et al., 1986)                                     | Palmitoyl-CoA Oxidase (nmol/min/mg prot), M                          | mg/kg DEH  | P              |            |             |      |         |
| Rats (Wistar), M and F                                    |                                                                      | 0          | 50             | 200        | 1000        |      |         |
| 24h                                                       |                                                                      | 0          | 50<br>62°      | 200<br>57° | 1000<br>468 |      |         |
| N= 3-4                                                    | Catalase (nmol/min/mg prot), M                                       | mg/kg DEHP |                |            |             |      |         |
|                                                           |                                                                      | 0          | 50             | 200        | 1000        |      |         |
|                                                           |                                                                      | 0          | <u>50</u><br>0 | 200<br>9   | 1000<br>22° |      |         |
| In Vitro Bioassays with Primary Hepatocytes               |                                                                      |            |                |            |             |      |         |
| (Goll et al., 1999)                                       | Acyl-CoA oxidase activity (nmol/min/mg prot)                         | mM DEHP    |                |            |             |      |         |
| 1° hepatocytes from male Sprague-Dawley Rats              |                                                                      | 0          | 0.1            | 0.25       | 0.5         |      |         |
|                                                           |                                                                      | 0          | 10             | 6          |             |      |         |
| 72 h                                                      | Carnitine acetyltransferase activity (nmol/min/mg                    | mM DEHP    |                |            |             |      |         |
| N= 3                                                      | prot)                                                                | 0          | 0.1            | 0.25       | 0.5         |      |         |
|                                                           |                                                                      | 0          | 10             | 6          | 3           |      |         |

Results for females are not shown.

b Converted to mg/kg/day from ppm (1 mg/kg = 20 ppm).

Statistically significant results (p < 0.05).</li>

#### **Key Events (KE) and MOA**

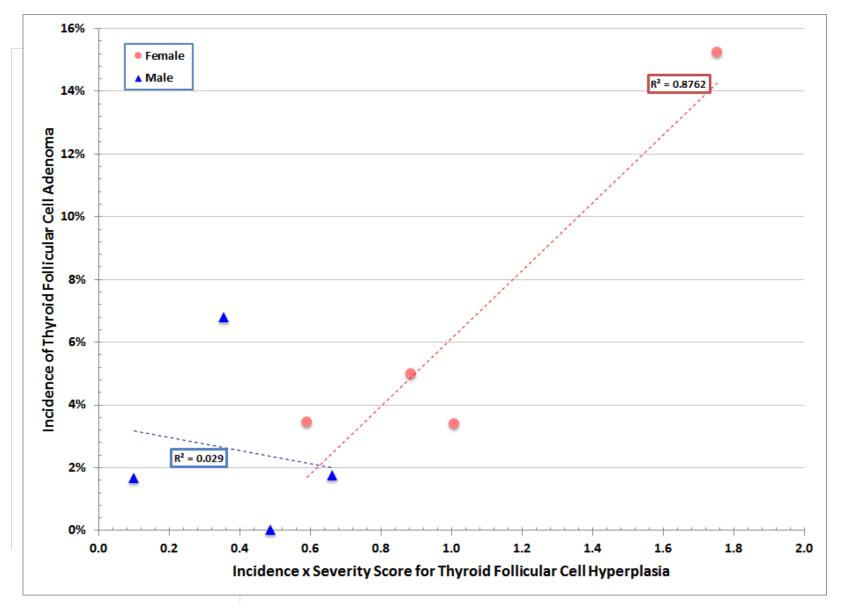
Table 4. Strawmen of PPARα mode of action key events.

| Proposed mode of action of rodent liver tumors of PPARα activators |                                                       |                                                                            |                                                                                                                                                               |  |  |  |  |
|--------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                    | Strawman 1: taken from Corton (2010)                  | Strawman 2                                                                 | Strawman 3: (taken from Klaunig et al., 2003)                                                                                                                 |  |  |  |  |
| KE #1<br>KE #2                                                     | PPARα activation<br>Increases in oxidative stress     | PPARα activation<br>Altered expression of genes involved<br>in cell growth | PPARα activation a. Expression of peroxisomal genes b. PPARα mediated expression of cell cycle, growth and apoptosis c. Non-peroxisomal lipid gene expression |  |  |  |  |
| KE #3                                                              | NF-κB activation                                      | Increased cell proliferation/decreased<br>apoptosis                        | Increase in cell proliferation                                                                                                                                |  |  |  |  |
| KE #4                                                              | Increased cell proliferation/decreased<br>apoptosis   | Selective clonal expansion of preneo-<br>plastic foci cells                | Clonal expansion of preneoplastic foci                                                                                                                        |  |  |  |  |
| KE #5<br>KE #6                                                     | Increases in preneoplastic foci cells<br>Liver tumors | Liver tumors                                                               | Liver tumors                                                                                                                                                  |  |  |  |  |

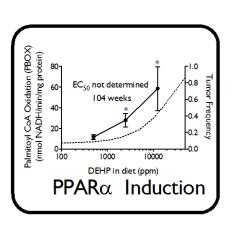
"Overall, the panel concluded that significant quantitative differences in PPAR $\alpha$  activator-induced effects related to liver cancer formation exist between rodents and humans. On the basis of these quantitative differences, most of the workgroup felt that the rodent MOA is "not relevant to humans" with the remaining members concluding that the MOA is "unlikely to be relevant to humans."

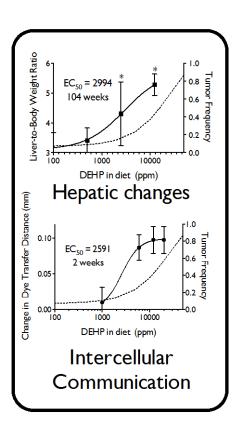

Table 5. Occurrence of key events in the mode of action after exposure to PPARα agonists in rats.

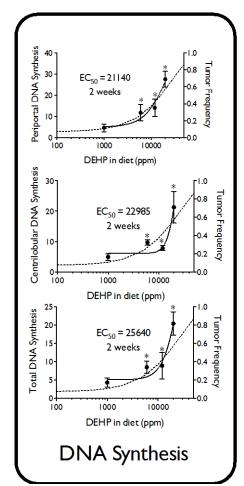
|                                              | Key events                           |                                                          |                                             |                                               |                                              |                                                       |                                    |                                    |                                    |
|----------------------------------------------|--------------------------------------|----------------------------------------------------------|---------------------------------------------|-----------------------------------------------|----------------------------------------------|-------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|
|                                              | KE#1                                 |                                                          | KE #3                                       |                                               | KE#4                                         |                                                       |                                    |                                    |                                    |
|                                              | PPARα<br>activation                  |                                                          | Perturbation of cell<br>growth and survival |                                               | Clonal<br>expansion of<br>preneoplastic foci | Modulating factors                                    |                                    |                                    | Apical end point                   |
| Chemical                                     |                                      | Increases<br>in transient<br>acute cell<br>proliferation | Decreases<br>in acute<br>apoptosis          | Increases in<br>chronic cell<br>proliferation | preneoplastic toer                           | Oxidative<br>stress                                   | NF-κB activation                   | Alterations<br>in gap<br>junctions | Hepatic<br>tumors                  |
| WY-14,643                                    | +1                                   | +2                                                       | +3                                          | +4                                            | +5                                           | + <sup>7</sup><br>_8                                  | +9                                 | +53                                | +6                                 |
| DEHP                                         | +10                                  | +11                                                      | +12                                         | +/-13                                         |                                              | + <sup>14</sup>                                       |                                    | +50                                | +14                                |
| Clofibrate                                   | +16                                  | +17                                                      |                                             | +18                                           |                                              | + <sup>20</sup>                                       |                                    |                                    | +19                                |
| Nafenopin                                    | +22                                  | +6                                                       | +23                                         | + <sup>24</sup><br>+/- <sup>6</sup>           | +25                                          | + <sup>27</sup> <sub>28</sub>                         | _29                                | +52                                | +26                                |
| Ciprofibrate<br>Methyl clofenapate           | +22                                  | + <sup>30</sup><br>+ <sup>36</sup>                       | +37                                         | + <sup>31</sup><br>+ <sup>38</sup>            | +32                                          | + <sup>34</sup><br>+ <sup>39</sup><br>- <sup>40</sup> | +35                                |                                    | + <sup>33</sup><br>+ <sup>39</sup> |
| Gemfibrozil (CI-718)<br>Di-n-butyl phthalate | + <sup>22</sup><br>- <sup>10</sup>   | +57                                                      |                                             |                                               | _41                                          | + <sup>42</sup><br>+ <sup>44</sup>                    | + <sup>43</sup><br>+ <sup>43</sup> |                                    | +/-41                              |
| Trichloroacetate<br>Perfluorooctanoate       | +/- <sup>55</sup><br>+ <sup>56</sup> | +46                                                      |                                             |                                               |                                              | +48<br>-49                                            |                                    | + <sup>54</sup><br>+ <sup>51</sup> | _45<br>+ <sup>47</sup>             |

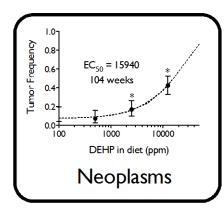

Comments: In the table, (+) indicates that the chemical was found to lead to the event; (-) indicates that the chemical was found not to lead to the event; (+/-) indicates mixed results. PPARα activation was measured using transactivation assays. NF-κB activation refers to binding of NF-κB (p65:p50 heterodimer) to the NF-κB response element in electrophoretic mobility shift assays. Acute cell proliferation was measured in the livers of treated mice, usually with seven days or less of exposure. Apoptosis was mostly measured in primary hepatocytes, given the low background in intact livers. However, three studies have measured apoptosis in rodent livers after exposure to a PPARα agonist (Bursch et al., 1984; James et al., 1998a; Youssef et al., 2003). Chronic cell proliferation was measured in the livers of rats exposed to PPARα agonists, usually for more than three weeks. References:

- 1. Corton & Lapinskas, 2005; Gottlicher et al., 1992
- Wada et al., 1992; Marsman et al., 1988, 1992; Lake et al., 1993
- 3. Youssef et al., 2003
- 4. Wada et al., 1992; Marsman et al., 1988, 1992; Lake et al., 1993
- 5. Marsman & Popp, 1994; Rose et al., 1999b
- 6. Lake et al., 1993


### **Dose Range Array**





# Correlation of Key Events (KE) with Adverse Outcomes




### Comparison and Ordering of Dose-Response of Key Events









#### WHO/IPCS Framework, MOA and Bradford Hill

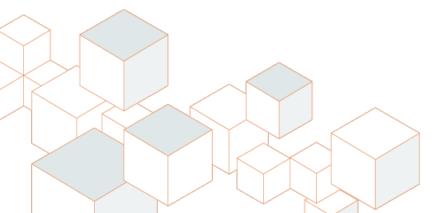
#### Concordance Table with Dose-Response

| Key event / adverse outcome                                    | Qualitative species concordance                | Evidence base                                                 | Quantitative species concordance                                                                                                                                                   | Quantitative<br>dose–<br>response                                   |
|----------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Metabolism by cytochrome P450 2E1                              | Relevant enzyme in kidney and liver of humans  | Considerable in animals; limited but relevant to humans       | Physiologically based pharmacokinetic model incorporating metabolic rates, enzyme affinities and distribution based on <i>in vitro</i> human data supported by <i>in vivo</i> data | 443 449 304 305 306 307 307 308 308 308 308 308 308 308 308 308 308 |
| Sustained cell damage and repair (cytotoxicity, proliferation) | Liver and kidney<br>target organs in<br>humans | Considerable in animals; possible in humans, but limited data | No data                                                                                                                                                                            | 000 AARDOCIS                                                        |
| Liver and kidney tumors                                        | Possible in humans                             | Considerable in animals; highly plausible in humans           | No data                                                                                                                                                                            | COAA Admirts  100 100 100 100 100 100 100 100 100 1                 |

<sup>•</sup> Meek, Boobis, Cote, Dellarco, Fotakis, Munn, Seed, Vickers. New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis *J. Appl. Toxicol*. 2014; 34: 1–18

#### WHO/IPCS Framework, MOA and Bradford Hill

|        | Dose–Response and Temporality          |                |                 |                |  |  |  |  |  |  |
|--------|----------------------------------------|----------------|-----------------|----------------|--|--|--|--|--|--|
|        | Temporal                               |                |                 |                |  |  |  |  |  |  |
|        | >                                      | >              |                 |                |  |  |  |  |  |  |
| М      | Dose<br>(mg/kg body<br>weight per day) | Key event 1    | Key event 2     | Key event 3    |  |  |  |  |  |  |
|        | 0.2<br>(2 ppm)                         | +<br>4 weeks   | +<br>52 weeks   |                |  |  |  |  |  |  |
|        | 1<br>(10 ppm)                          | ++<br>4 weeks  | ++<br>52 weeks  | +<br>107 weeks |  |  |  |  |  |  |
|        | 4<br>(40 ppm)                          | +++<br>4 weeks | +++<br>13 weeks | ++<br>52 weeks |  |  |  |  |  |  |
| Dose–R | esponse                                |                | +=              | severity       |  |  |  |  |  |  |


- Meek, Boobis, Cote, Dellarco, Fotakis, Munn, Seed, Vickers. New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis *J. Appl. Toxicol*. 2014; 34: 1–18.
- Meek, Palermo, Bachman, North, Lewis. Mode of action human relevance (species concordance) framework: Evolution of Bradford Hill considerations and comparative analysis of weight of the evidence. *J. Appl. Toxicol.* 2014; 34: 1–18. online Feb 2014, DOI: 10.1002/jat.2984.

### **Improving Presentation and Use of Mechanistic Information**

- EPA must extract sufficient mechanistic information from studies.
  - Simply counting the number of studies that provide data on each mechanistic category is not helpful.
- Multiple approaches for presenting this information already exist (see citations provided in slides).
- Early consideration of hypothesis based key events in the MOA/AOP during problem formulation will facilitate incorporation of data from different sources and provide a framework for organization which can be linked at different levels of biological organization.
- Mechanistic/MOA information must not come second; it must be part of problem formulation.



### Questions and Discussion

