

Approach to Systematic Review for the IRIS Toxicological Review of Inorganic Arsenic

Janice S. Lee, PhD Assessment manager U.S. EPA

Outline for Today's Presentations

- Background
- Approach to Systematic Review
- Adverse Outcome Pathways
- Hazard Identification
- Toxicokinetics
- Dose-Response Methods

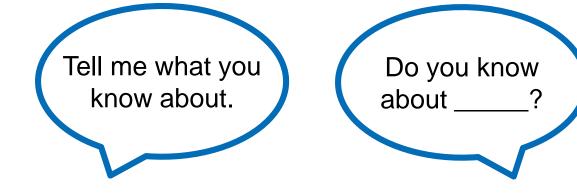
Literature Identification

Databases Searched PubMed Web of Science Toxline

Results 40,000+ references

- Initial literature search completed January 2013
 - Monthly updates using same search terms and databases

Comprehensive Literature Search


Removed Duplicates, not Peer-Reviewed

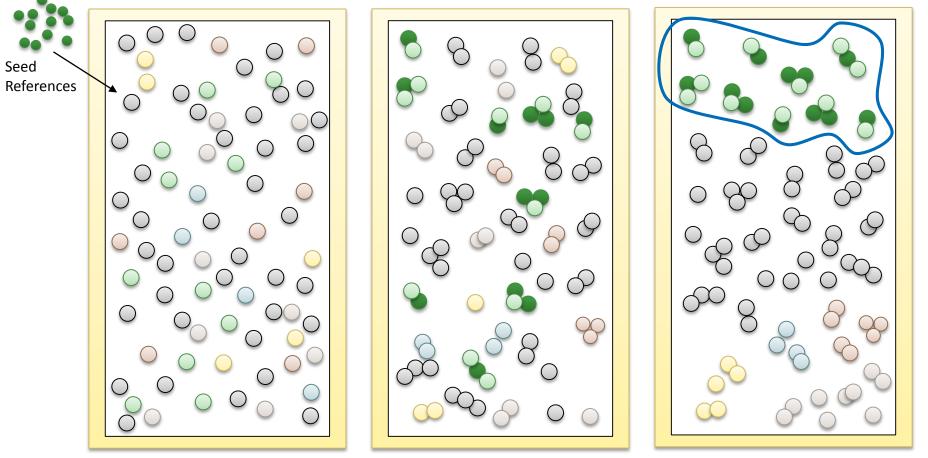
Initial Literature Search ~ 43,000 Articles

~ 27,000 Articles to Screen

Two Approaches for Finding Relevant References

Clustering

Mathematical algorithms applied to create groups of similar references based on text similarities; type of natural language processing


 Does not depend on pre-existing knowledge of references, just natural divisions User-specified list of terms and topics applied to identify groups of similar references

Key Word Search

 Depends on user's knowledge of all potential topics of interest

Use Clustering to Identify Health Effects Literature

Add seed references to literature search results

Cluster references based on text similarities in titles and abstracts

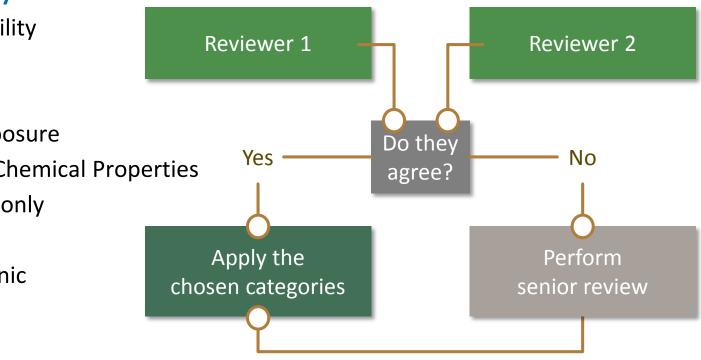
Further review all clusters containing at least one seed reference

Hazard Identification Clustering Results

Removed Duplicates, not Peer-Reviewed

Used Natural Language Processing to Identify for Hazard Identification Initial Literature Search ~ 43,000 Articles

~ 27,000 Articles to Screen


~ 7,000 Articles to Screen

Screening to Determine Relevance

Review title and abstract of each article

- Epidemiology
- Toxicology
- Susceptibility
- MOA
- **PBPK/TK**
- Acute Exposure
- Physical/Chemical Properties
- Exposure only
- Ecology
- Non-Arsenic
- Review
- Other

Systematic Literature Search

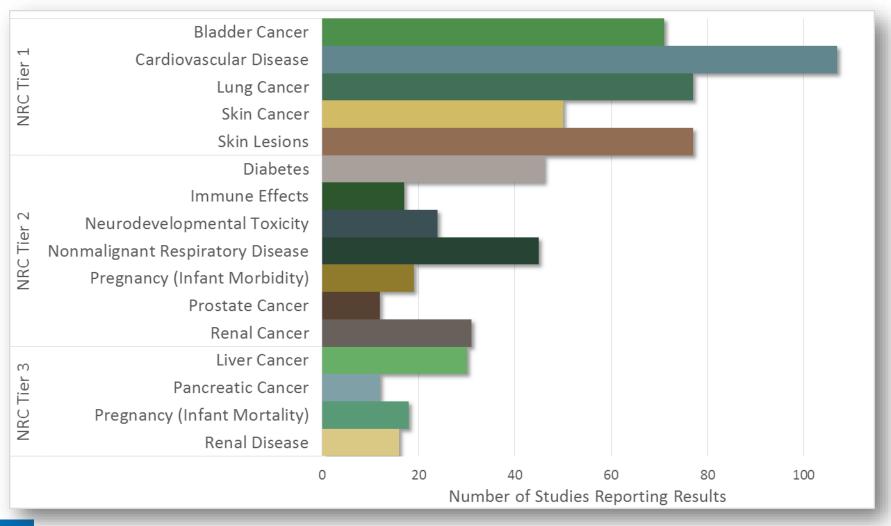
Remove Duplicates, not Peer-Reviewed

Use Natural Language Processing to Identify for Hazard Identification

Conduct Title and Abstract Screening by 2 Individuals

Conduct Full Text Review to Determine Relevancy for Hazard Identification Initial Literature Search ~ 43,000 Articles

~ 27,000 Articles to Screen


~ 7,000 Articles to Screen

~ 600 Epi ~ 100 Tox

> 474 Epi 102 Tox

Full-Text Screening Results by Health Effect

Why Evaluate Risk of Bias?

- NRC recommended:
 - Evaluate risk of bias (ROB) using established methods
 - Bias "systematic error, or deviation from the truth, in results or inferences"
- Allows us to characterize strengths and weaknesses of individual studies transparently, systematically, and consistently
 - Not a checklist
 - Not inclusion/exclusion criteria
 - Informs hazard identification and dose-response analyses
- Many approaches exist for evaluating ROB with general focus on 6 domains:
 - Selection

– Attrition

Confounding

Detection

– Performance

- Reporting Bias

Evaluation of Potential Risk of Bias

- Used approach from the Office of Health Assessment and Translation (OHAT) at National Institute of Environmental Health Sciences (NIEHS)
- For arsenic, developed risk of bias evaluation protocol:
 - Questions under 6 domains
 - Implemented with 2 independent reviewers
 - Rationales and ratings determined for individual questions
 - No overall score or rating assigned to a study
- Risk of bias is useful for selecting studies for dose-response

Elements of the ROB Protocol

- Six domains or types of bias:
 - Selection Attrition
 - Confounding
 Detection
 - Performance
 Reporting Bias
- One or more **questions** per domain
 - Some questions not applicable to epi or tox studies
 - 4 possible ratings for each question
- Considerations for each rating specific to study design
 - Further informed by arsenic-specific clarifications added to OHAT protocol

+

Implementation of the ROB Protocol

- Each question answered with rating AND written rationale
- ++ **Definitely low risk of bias** direct evidence of low risk of bias practices
 - **Probably low risk of bias** indirect evidence OR deviations would not appreciably bias results, including consideration of direction and magnitude of bias
 - **Probably high risk of bias** indirect evidence of high risk of bias practices OR insufficient information provided about relevant risk of bias practices
 - **Definitely high risk of bias** direct evidence of high risk of bias practices

Example of Risk of Bias Question,

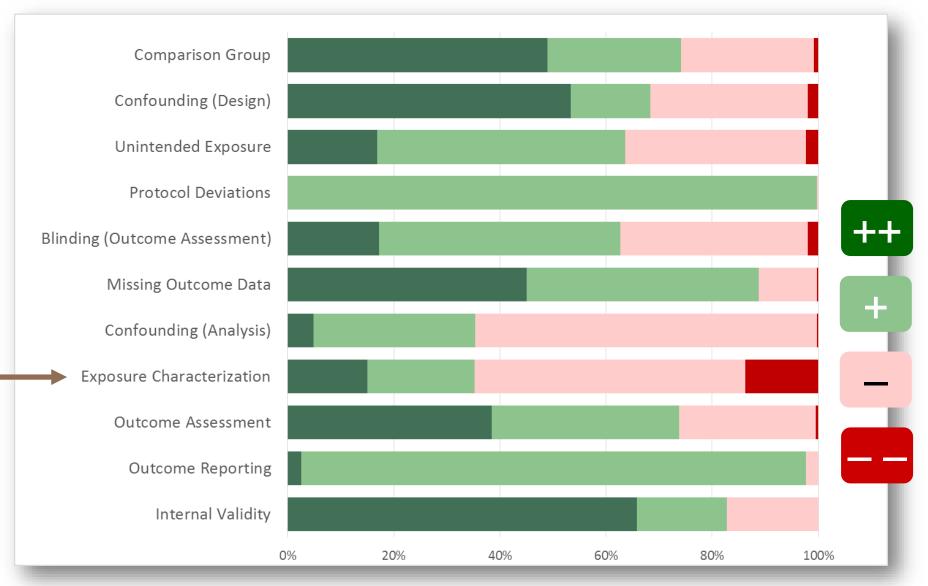
Considerations, and As-Specific Clarifications*

DOMAIN: DETECTION

Question: Can we be confident in the outcome assessment?

Considerations: (for cohort studies)

++ Direct evidence of well-established methods such as objectively measured with diagnostic methods, measured by trained interviewers, obtained from registries


As-Specific Clarifications: Cancer cases histologically confirmed; selfreported data validated with medical records

 Indirect evidence of well-established methods or acceptable methods such as proxy reporting of outcomes, mining of data collected for other purposes

As-Specific Clarifications: Death certificates used but not certified by nosologist; or information on accuracy, validity, and completeness of death certificates not described

Risk of Bias Results for 474 Epi Studies

Observations Following Risk of Bias Evaluations

- Perfect set of questions does not exist: Does not eliminate need for expert judgement
- Refinements needed: Environmental health community needs to develop questions tailored to environmental exposure and epidemiology studies
- Increased quality: Two independent reviewers provide confidence in conclusions
- Increased consistency: All studies evaluated based on same considerations
- Increased transparency: Rationales documented
- Increased time: Average ~3 hours per study (1.5 hours per reviewer)

Data Extraction for Summary Evidence Tables

- Extracted data from all studies into evidence tables
- Use risk of bias, evidence tables, fulltext publications, and expert judgement to develop hazard identification sections

Reference and study design	Exposure measures	Results			
Bates et al. (2004)	Exposure Surrogate: drinking water	Outcome: bladder cancer			
Study Type: case-	Exposure Description: average arsenic water concentration estimated for 6-40 years prior to interview based on samples collected from wells near individual's current and past residences	arsenic concentration (excluding proxy wells) (quartiles), ug/L			
control Location: Argentina (Cordoba Province)		Exp. Level	N	adjOR	<u>(CI)</u>
		0-50	87	1	n/a
		51-100	8	1.11	0.3, 3.7
Population: residents in region with high	Population-Level Exposure: 164 ug/L mean	101-200	13	0.81	0.3, 2.0
		>200	3	0.28	0.1, 1.4
arsenic water concentrations		Stat Method: multivariate conditional logistic regression			
n cases: 114 n control: 114		arsenic concentration, including proxy wells, all subjects (quartiles), ug/L			
		Exp. Level	n	adjOR	<u>(CI)</u>
		0-1.0	34	1	n/a
		1.1-17	21	0.35	0.10, 0.90
		18-80	32	0.9	0.30, 2.30
		>80	27	0.46	0.20, 1.30
		Stat Method: conditional logistic regression			
		consumption of well water over past 61-70 years, smokers only, ug/L			
		Exp. Level	<u>N</u>	<u>adjOR</u>	<u>(CI)</u>
		No	37	1	n/a
		Yes	30	2.54	1.0, 6.4
		Stat Method: multivariate unconditional logistic regression (adjusted for highest daily number of cigarettes ever smoked)			

Literature Search Approach for MOA/AOPs

- Purpose: Find information to support MOA/AOP analyses
- Used clustering with seed references from previous assessments
- Identified data related to key events with key words

Literature Search Approach for Susceptibility

- Purpose: Find information on susceptible populations and factors
- Used Key Word Search approach for these topic areas
 - Polymorphisms
 - Lifestages
 - Smoking
 - Alcohol consumption
 - Sex
- Microbiome

- Pre-existing disease
- Co-exposure
- Nutrition
- Socioeconomic factors
- MOA

Summary: Systematic review

- Broad literature search followed by categorization and screening for relevance
 - Epidemiologic and toxicologic health effects data
 - Susceptibility data
 - Mechanistic information to evaluate adverse outcome pathways
- Risk of bias evaluation of epidemiology and toxicology studies
- Extraction of study characteristics and results compiled into database

Acknowledgments

- Ila Cote, Jeff Gift, Glinda Cooper, Ellen Kirrane, Tom Luben, Ryan Jones, Vince Cogliano, members of NCEA
 Epidemiology Workgroup, members of NCEA Systematic
 Review Workgroup, and others at U.S. EPA
- Audrey Turley, Robyn Blain, Sorina Eftim, Cara Henning, Michelle Cawley, Bryan Luukinen, Susan Goldhaber, Pam Ross, Courtney Skuce, Dave Burch, and others at ICF International
- Andy Rooney and Kris Thayer at NIEHS

Supplemental Information

Risk of Bias Domains and Questions for Epidemiology Studies

- Selection Bias
 - Were the comparison groups appropriate?
- Confounding
 - Did the study design or analysis account for important confounding and modifying variables?
 - Did researchers adjust or control for other exposures that are anticipated to bias results?
- Performance
 - Did researchers adhere to the protocol?
- Attrition
 - Were outcome data complete without attrition or exclusion from analysis?

Risk of Bias Domains and Questions for Epidemiology Studies (cont.)

- Detection
 - Were the outcome assessors blinded to study group or exposure level?
 - Were confounding variables assessed consistently across groups using valid and reliable measures?
 - Can we be confident in the exposure characterization?
 - Can we be confident in the outcome assessment?
- Selective Reporting
 - Were all measured outcomes reported?
- Other
 - Were there no other potential threats to internal validity (e.g., statistical methods were appropriate)?