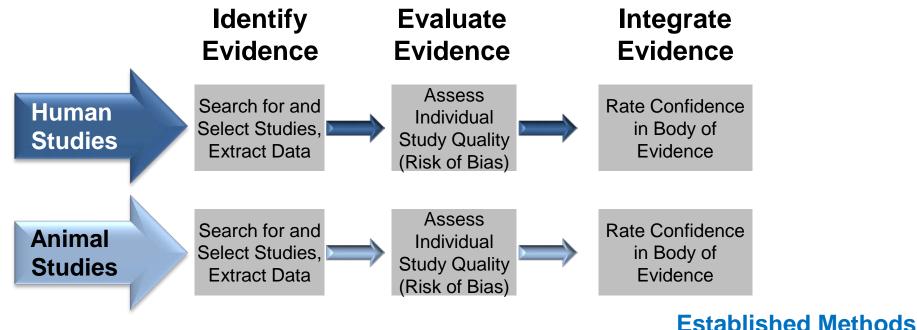
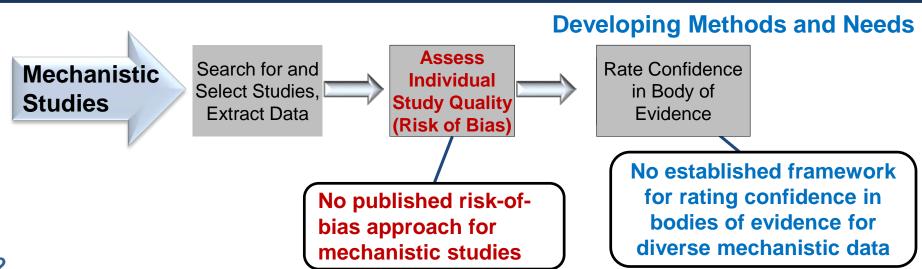


Extending a Risk-of-Bias Approach to Address In Vitro Studies

Andrew Rooney, PhD


National Toxicology Program


Office of Health Assessment and Translation

Lack of Methods for Mechanistic Studies

Assessing Risk of Bias

The feasibility of creating a checklist for the assessment of the methodological quality both of

randomised and non-randomised studies of health

Published approaches and risk of bias tools

- Established tools for randomized controlled trials
- Multiple tools for observational human studies
- Emerging tools for animal studies
- What about Mechanistic studies?

OHAT project to extend risk of bias approach to in vitro exposure studies

In Vitro vs. Mechanistic Studies

In vitro Studies Are Subset of Mechanistic Data

- Mechanistic data where does it come from?
 - Wide variety of study types not intended to identify a disease phenotype
 - Studies directed at mechanisms (cellular, biochemical and molecular)
 - Includes in vitro and in vivo exposure studies
- This project focused on studies with <u>in vitro exposure</u> regimens

A "Parallel" Approach Across Evidence Streams

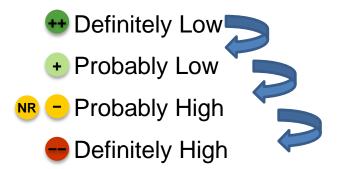
Predefined set of questions to address

Human studies

Animal toxicology studies

- Features of OHAT risk-of-bias tool
 - Study design determines which questions are applicable
 - Evaluation is endpoint specific
 - Answers equate to risk-of-bias rating for each question
 - Answers on 4-point scale

Study Design Determines Which Questions Apply


Approach to In Vitro Exposure Studies Based on Experimental Animal

Same set of questions from experimental animal applied to studies with <i>in vitro</i> exposure regimens Risk-of-Bias Questions	In Vitro Exposure	Experimental Animal	Human Controlled Exposure	Cohort	Case-Control	Cross-Sectional	Case Series
1. Was administered dose or exposure level adequately randomized?	X	X	X				
2. Was allocation to study groups adequately concealed?	X	X	X				
3. Did selection of study participants result in the appropriate comparison groups?				X	X	X	
4. Did study design or analysis account for important confounding and modifying variables?				X	X	Χ	X
5. Were experimental conditions identical across study groups?	X	X					
6. Were research personnel blinded to the study group during the study?	X	X	X				
7. Were outcome data complete without attrition or exclusion from analysis?	X	X	X	X	X	Χ	
8. Can we be confident in the exposure characterization?	X	X	X	X	X	Χ	X
9. Can we be confident in the outcome assessment (including blinding of assessors)?	X	X	X	X	X	Χ	X
10. Were all measured outcomes reported?	X	X	X	X	X	Χ	X
11. Were there no other potential threats to internal validity	X	X	X	X	X	X	X

Criteria Define How to Reach Rating Decisions

- Risk-of-bias questions cover key topics consistent with other published approaches for evaluating human and animal studies
- Specific criteria provide guidance for answering each risk-of-bias question
 - There are separate criteria for each study design
 - Criteria contain detailed guidance that defines the evidence from a study report to determine each risk-of-bias rating

 At minimum the guidance must distinguish between the 4 ratings

Methods Development Process

Extending Risk-of-Bias Approach to In Vitro Studies

- Starting point
 - Questions and criteria from experimental animal risk of bias tool used as model
- Criteria adapted to address in vitro exposure regimens
 - Multiple rounds of review and discussion with NTP expert group addressed issues such as:
 - 1) Applicability of questions
 - 2) Developing criteria and editing language for the criteria
 - 3) Where specific issues should be covered
 - 4) Were there other internal validity issues to be added/or were not addressed?

In Vitro Review Group

- Scott Auerbach
- Warren Casey
- Michael Devito
- Stephen Ferguson
- Rick Paules
- Ray Tice
- Kristine Witt

Contractors

- David Allen
- Michael Paris
- Judy Strickland

Extending Methods to In Vitro Studies

First Example Consideration in Developing Criteria

- Was administered dose or exposure level adequately randomized?
 - Helps to assure that treatment is not given selectively based on potential differences in human subjects, animals, <u>cells</u>, <u>or tissues</u>
 - Requires each human subject, animal, or cell had an equal chance of being assigned to any study group including controls

In vitro study applicability

- Applies to potential differences between cells across different groups
- If homogeneous cell suspension
 - No variation or difference between groups
 - Therefore, no need for randomization

Note: lack of variation in homogeneous cell suspension also applies to question on need for allocation concealment

Extending Methods to In Vitro Studies

2nd Example Consideration in Developing Criteria

- Were experimental conditions identical across study groups?
 - Housing or cell culture conditions and husbandry practices should be identical across control and experimental groups
 - Include use of the same vehicle in control and experimental animals or cells

In vitro study applicability

- Applies to potential differences between cells across different groups
- Identical conditions include:
 - Same media for controls and experimental culture wells
 - Same solvent (i.e., used to dissolve treatment chemicals) for control cells
 - Culture plates must be uniformly incubated and handled
 - Same medium and schedule for changes, washes
 - Same time spent out of incubator
 - Same incubator and plate conditions
 (e.g., incubator plate location effects, plate edge-effects, etc.)

Extending Methods to In Vitro Studies

"In vitro" - specific criteria across the questions

- 1) randomization no variation = no impact if homogeneous cell suspension
- 2) allocation concealment no variation = no impact if homogeneous suspension
- 3) participant selection NA
- 4) confounding NA
- 5) experimental conditions same media, solvent, incubator, plate conditions
- 6) blinding during study robotic systems eliminate need; otherwise may apply
- 7) incomplete data includes evidence of <u>well or plate loss</u> without explanation
- 8) exposure characterization purity, stability, solubility, volatility of substance
- 9) outcome assessment acceptable or well established methods and blinding unless automated/no handling between experiment and measurement
- 10) reporting covers whether all measured outcomes were reported
- 11) other project specific considerations (e.g., appropriate statistical methods)

- The OHAT risk-of-bias tool uses a parallel approach to assess individual study quality/internal validity on an outcome basis
 - Single set of questions
 - Study-design specific criteria for human and experimental animal studies
 - Method posted on OHAT Website (http://ntp.niehs.nih.gov/go/38673)
- Project extended the risk of bias approach to in vitro studies
 - Criteria adapted to address in vitro exposure regimens through multiple rounds of review and discussion with NTP expert group
 - The tool presents one potential approach for assessing internal validity

0

Acknowledgements

NTP and OHAT Staff Providing Methods Input and Review

- Abee Boyles
- John Bucher
- Katie Pelch
- Kristina Thayer

NTP Staff and Contractors in the In Vitro Risk of Bias Review Group

- David Allen
- Scott Auerbach
- Warren Casey
- Michael Devito
- Stephen Ferguson
- Michael Paris
- Rick Paules
- Judy Strickland
- Ray Tice
- Kristine Witt

Thank You