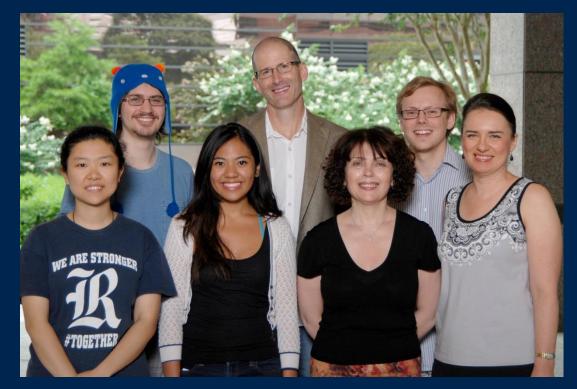


BCM[®] Baylor College of Medicine

i Texas Children's Hospital[®]

Persistent Epigenetic Effects of Dietary Imbalance

Rob Waterland, PhD

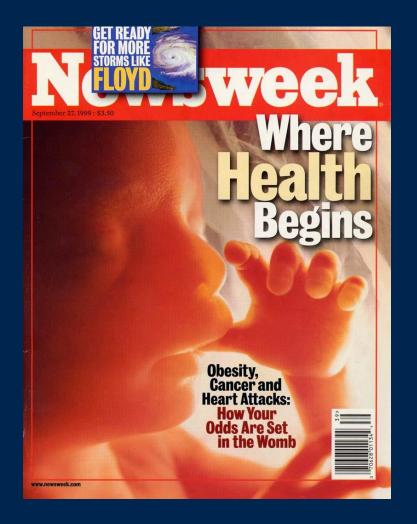


Acknowledgements

Waterland Lab Eleonora Laritsky, MS Maria Baker, PhD Jesse Eclarinal Caroline Zhu Noah Kessler Tim Van Baak

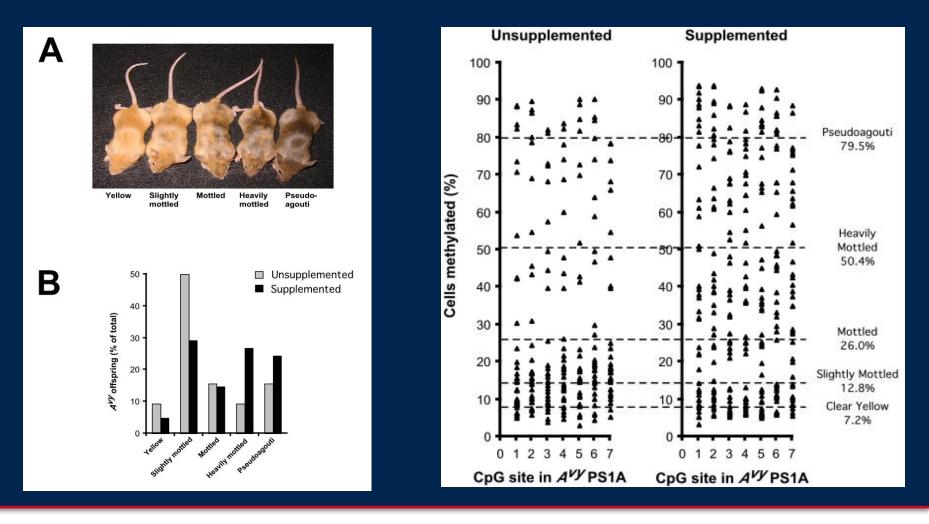
Collaborators

Lanlan Shen, MD, PhD Yongtao (Grant) Guan, PhD Cristian Coarfa, PhD Rui Chen, PhD Andrew Prentice, PhD Matt Silver, PhD Branwen Hennig, PhD Sophie Moore, PhD YongSun Lee, PhD



Funding USDA, NIH-NIDDK, UK MRC

Baylor College of Medicine


Sources of Interindividual Epigenetic Variation

Waterland & Michels Ann Rev Nutr 2007 Pediatrics

Methyl Supplementation Changes Coat Color by Increasing A^{vy} Methylation

Wolff et al 1998 FASEB J

Pediatrics

Waterland & Jirtle 2003 Mol Cell Biol

Baylor College of Medicine

Significance of Avy Study

- Demonstrated causal pathway: maternal nutrition – epigenetic change – phenotypic change
- Highlighted the potential involvement of metastable epialleles

Metastable Epiallele (ME)

"An allele at which the epigenetic state can switch and establishment is a probabilistic event. Once established, the state is mitotically inherited."

Rakyan et al Trends in Genetics 2002

Agouti viable yellow

At MEs, Maternal Environment Affects Establishment of Epigenotype

Maternal methyl supplementation increases DNA methylation

-At A^{vy} (Waterland and Jirtle 2003 Mol Cell Biol)

-At Axin^{Fu} (Waterland et al 2006 Genesis)

 Maternal bisphenol A exposure decreases DNA methylation at Cabp^{IAP}
Dolinoy et al. 2007 PNAS

Does epigenetic variation at MEs contribute to human phenotypic variation?

Characteristics of Murine Metastable Epialleles

Interindividual variation in DNA methylation that is

-Systemic (not tissue-specific)

-Stochastic (not due to genetic variation)

•Establishment of DNA methylation affected by maternal nutrition before/during pregnancy

Seasonal Variation in Rural Gambia

Seasonal Variation in Rural Gambia

Seasonal Variation in Rural Gambia

Rainy Season - Hungry

Dry Season - Harvest

Season of Conception in Rural Gambia Affects DNA Methylation at Putative Human Metastable Epialleles

Robert A. Waterland^{1,2}*, Richard Kellermayer¹, Eleonora Laritsky¹, Pura Rayco-Solon³, R. Alan Harris², Michael Travisano⁴, Wenjuan Zhang¹, Maria S. Torskaya¹, Jiexin Zhang⁵, Lanlan Shen¹, Mark J. Manary¹, Andrew M. Prentice³

Maternal nutrition at conception modulates DNA methylation of human metastable epialleles

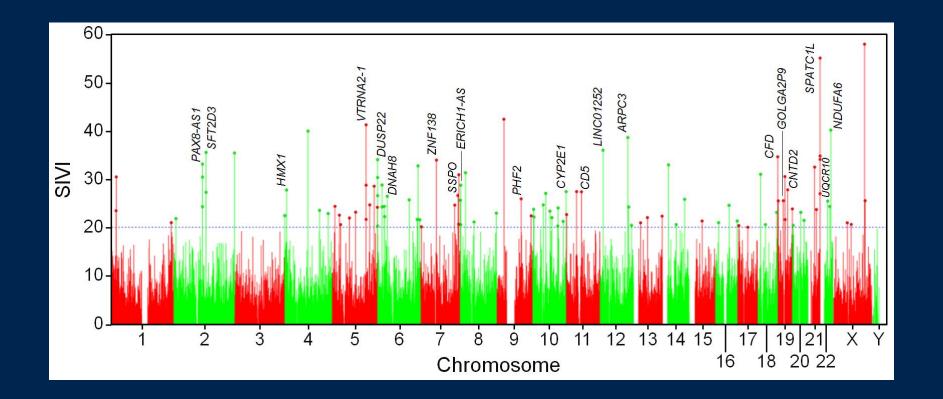
Paula Dominguez-Salas¹, Sophie E. Moore¹, Maria S. Baker², Andrew W. Bergen³, Sharon E. Cox¹, Roger A. Dyer⁴, Anthony J. Fulford¹, Yongtao Guan^{2,5}, Eleonora Laritsky², Matt J. Silver¹, Gary E. Swan⁶, Steven H. Zeisel⁷, Sheila M. Innis⁴, Robert A. Waterland^{2,5}, Andrew M. Prentice¹ & Branwen J. Hennig¹

Pediatrics

Waterland et al 2010 *PLoS Genetics* Dominguez-Salas et al 2014 *Nat Commun*

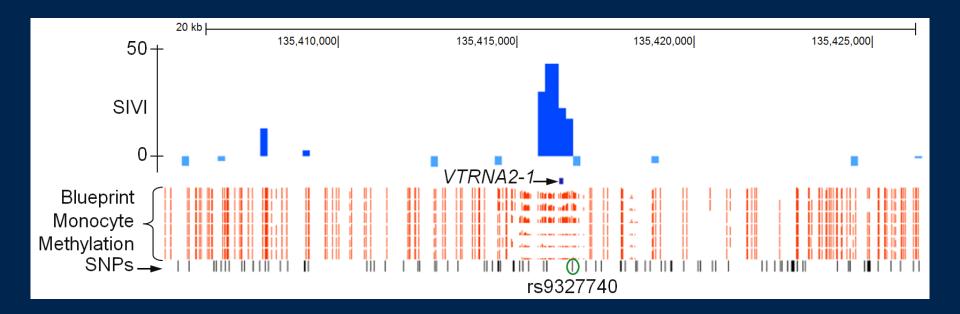
Genome-Wide Screen for Human MEs

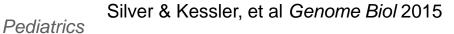
 Studied peripheral blood lymphocytes (PBL) and hair follicle (HF) from each of two Caucasian males


Genome-wide bisulfite sequencing (Bisulfite-seq)
-26x average coverage per sample

-Estimated % methylation in 6.2 million 200bp bins containing at least 2 CpG sites (85% of all CpGs)

Kunde-Ramamoorthy, et al 2014 Nucleic Acids Res


109 Top Candidate MEs Show No Evidence of Genetic Variation, and High CpG Density



Silver & Kessler, et al *Genome Biol* 2015 Pediatrics

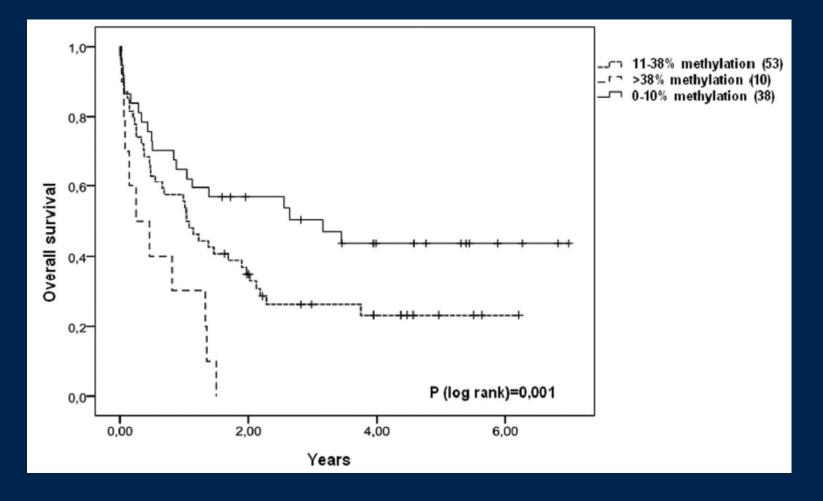
We looked for genes associated with multiple ME bins. *VTRNA2-1* was a top hit.

What is known about VTRNA2-1? (aka pre-miR-886, aka nc886)

•102-nucleotide, ubiquitously expressed, cytoplasmic RNA

•Neither a vault RNA nor a canonical pre-microRNA

Genomically imprinted


 Inhibits cell proliferation by inhibiting phosphorylation of protein-kinase – RNA inducible (PKR)

Lee et al 2011 *RNA* Paliwal et al 2013 *PLoS Genetics*

Methylation of *VTRNA2-1* Predicts Survival in Acute Myeloid Leukemia Patients

Treppendahl et al 2012 Blood

Validation of VTRNA2-1 Metastable Epiallele

• Systemic interindividual variation confirmed in postmortem liver, kidney, brain

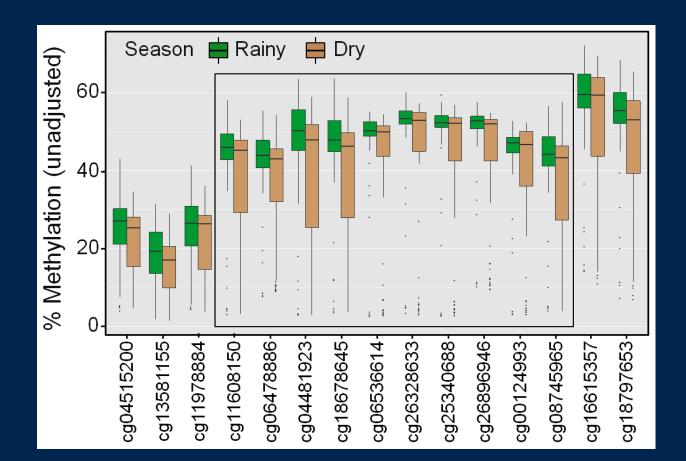
•No effects of genetic variation on DNA methylation at VTRNA2-1 (Zhang et al 2014 Hum Mol Genet)

 Effects of periconceptional nutrition confirmed in rural Gambians

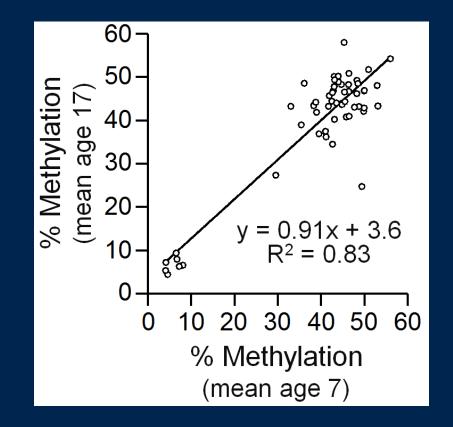
In an Independent Genome-Scale Screen (450k array) for Differentially Methylated Regions (DMRs) According to Season of Conception, *VTRNA2-1* was THE Top Hit!

chr	SoC-DMR (bp)	start	SoC-DMR (bp)	end	mean coeff	probes in SoC- DMR	probes cluster	in	p-value	p-value (fwer)	gene
5	135,415,762		135,416,613		0.61	15	15		2.0E-05	0.01	VTRNA2-1
2	113,992,762		113,993,313		0.47	8	8		5.5E-04	0.23	PAX8*
5	23,507,030		23,507,752		0.36	12	13		8.7E-04	0.35	PRDM9
6	32,729,442		32,729,847		0.14	20	36		1.6E-03	0.58	HLA-DQB2
17	17,109,570		17,110,120		0.38	8	11		1.8E-03	0.58	PLD6
6	29,648,345		29,649,024		0.27	14	18		1.8E-03	0.60	ZFP57*
6	151,646,312		151,647,133		0.30	9	9		2.8E-03	0.73	AKAP12
12	57,040,045		57,040,204		0.36	4	9		3.2E-03	0.78	ATP5B*
5	191,242		192,103		0.26	10	11		3.8E-03	0.85	LRRC14B
13	36,944,640		36,944,649		0.36	2	8		4.4E-03	0.86	SPG20

PBL DNA from 120 children studied by Illumina 450k arrays


Silver & Kessler, et al *Genome Biol* 2015

450k Data – Season of Conception Effect Spans the Entire *VTRNA2-1* Imprinted DMR

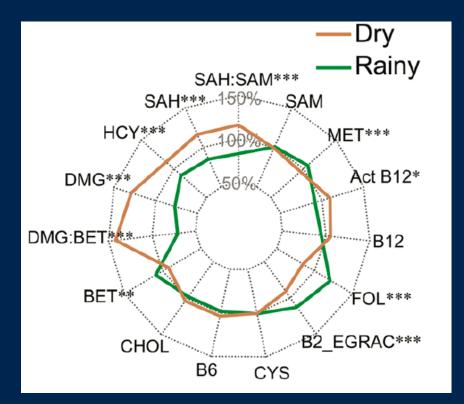


PBL DNA from 120 children studied by Illumina 450k arrays

USDA Texas Children's Hospital[®] Boylor College of Medicin

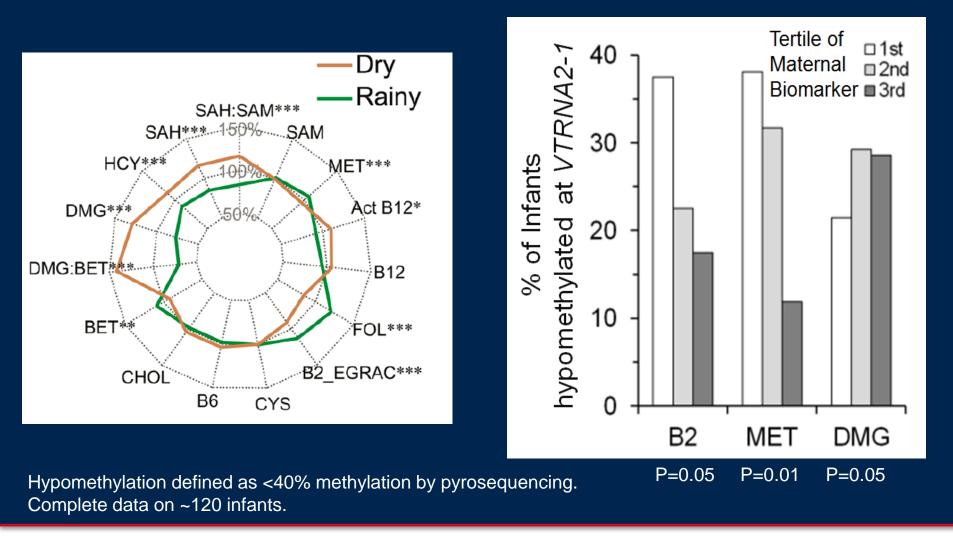
Silver & Kessler, et al Genome Biol

Individual Methylation at VTRNA2-1 is Highly Stable



VTRNA2-1 methylation in PBL by pyrosequencing; n=55 Gambian children.

Silver & Kessler, et al *Genome Biol* 2015 *Pediatrics*


Maternal Periconceptional Nutrition Predicts VTRNA2-1 Hypomethylation in Her Infant

Silver & Kessler, et al *Genome Biol* 2015 Pediatrics

Maternal Periconceptional Nutrition Predicts VTRNA2-1 Hypomethylation in Her Infant

Silver & Kessler, et al *Genome Biol* 2015 *Pediatrics*

Baylor College of Medicin-

Sources of Interindividual Epigenetic Variation

Waterland & Michels Ann Rev Nutr 2007 Pediatrics