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Pitch I: 
Biological pathway is the key to success 
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Both “bottom-up” and “top-down” analyses may involve high throughput (high-
dimensional) data, and it is an analytic challenge to overcome in order to minimize 
false discovery.



Integrative Analysis of Metabolomics and Epigenetic 

Data in Environmental Health Research

• Prenatal, early postnatal, and concurrent exposures influence 
children’s growth and development

• Epigenetic perturbations 
– Biomarker of persistent changes from prenatal exposures and/or 

the cumulative impact of continued exposures

– Stable yet potentially modifiable (via pharmacological, dietary, and 
perhaps lifestyle changes) 

– Mechanistic link between exposures and outcomes

• Metabolite profiles
– Biomarker of phenotypic changes and possible risk for future 

chronic disease 

– Mechanistic link between exposures, epigenetics, and outcomes 

• Cumulative Risk Assessment 
– Children are exposed to multiple environmental agents throughout 

development

– Understanding relationships between exposures, the epigenome, 
metabolome, and growth will enable better understanding of the 
cumulative impact of common exposures on life-long health



Pitch II: 
Epigenetic change/effect is hard to measure

Numerical (stochastic) change or 
biological (genetic) change? 

Time (Calendar or biology)  

• Design of time points for data collection 
• Quality control during data collection 
• Data pre-processing and pre-treatment 
• Types of changes to extract from cleaned data
• Bring biology in and focus on target genes or not
• Others…



250 Subjects from ELEMENT Longitudinal Cohort Study

• Early Life Exposure in Mexico to ENvironmental Toxicants 
(ELEMENT)

• 4 longitudinal cohorts: 1994, 1997, 2000, 2005

• Low-to-moderate income populations in Mexico City

• Lead exposure is measured in prenatal and concurrent 

Follow-up of 1,100

mother-child pairs

1994-1997 Cohort 1 x x x x x x x x

1997-2000 Cohort 2PL x x x x x x x x x x x

Cohort 2BI x x x x x x x x x

2001-2005 Cohort 3 x x x x x x x x x x x

2007-2011 Cohort 4 x x x x x x x x
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Birth 1 3 6 12 24 … … (age)

years

Prenatal Child follow-up 
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Metabolites may be affected by  Prenatal and 

Concurrent Exposures

To identify metabolites out of 10K features affected by exposures 

TIME                 

Exposure Exposure

Metabolites

T1

Conception

T2

Birth

T3

Peripuberty

(8-14 yrs)

T4

Adulthood



Some Hypothesized Relationships between 

Exposures, Epigenetics, Metabolites, & Outcomes

TIME                 

Exposure

Epigenetics

Growth & Development Metabolites

Epigenetics

Exposure

Risk for 

Disease

(e.g., metabolic 

syndrome, 

diabetes)

T1

Conception

T2

Birth

T3

Peripuberty

(8-14 yrs)

T4

Adulthood

Epigenetic changes may occur from the early life exposure that can propagate through 
development, and influence metabolite levels in peri-puberty. 



DNA Methylation on Candidate Genes

• Methylation quantified in blood leukocyte DNA from peri-
puberty of the ELEMENT cohort (n=250)

• Candidate genes/regions selected
– LINE-1

• Representative of global repetitive element methylation
• Hypermethylation of repetitive elements necessary to suppress 

retrotransposition and maintain genomic stability 

– IGF2 and H19
• Reciprocally imprinted genes important for in utero growth
• IGF2 promotes growth, H19 inhibits growth

– HSD11B2
• Protects against the growth-inhibitor, cortisol, during in utero 

development

• Methylation at these regions associated with in utero 
exposures 



Methylation Levels at the Candidate Genes

-Pyrosequencing used for 

LINE-1, HSD11B2, H19

-Sequenom EpiTYPER

used for IGF2

-Data adjusted for 

experimental batch

-Wide intra-region variability 

across CpG sites with the 

exception of H19



Metabolomics: Select Candidate Metabolomics Features 



High-dimensional Feature Screening 

• Random Batch Effects Model:

Metabolite =β +β Pbprenatal
i 0 1 +β2sex+β age+β c

4Pb oncurrent
3 +bi+ϵi

i=1,2,…,8 denotes the i-th batch

Prenatal Pb = maternal patella bone Pb

Concurrent Pb = blood Pb

• Screening Test: H0: β1=0  (or H0: β4=0)

• High-dimensional Problem: ~10,000 features are screened simultaneously 

• Significance level: q value (FDR adjusted p-value) 0.05

• Three metabolomics features are detected via the screening on H0: 
β1=0



Three Candidates Detected in Network 
of Known Metabolite Features 



Statistical Models for Integrative Analysis of 
Concurrent Measures 

In Sex-Stratified Analyses:

(1)  metabolitei = β0 + β1 age + β2methylation + β3Pbprenatal+ bi + εi

(2) metabolitei = β + β age + β methylation + β Pbprenatal
0 1 2 3 + β4Pbconcurrent+ bi + εi

Metabolites tested: C9.H2.N.P.S2, X5.oxoproline, xylose

Methylation: percent methylation at one of the following:

1) 4 individual CpG sites in LINE-1

2) 5 individual CpG sites in HSD11B2

3) Average of all sites in H19

4) 5 CpG units in IGF2 (some units are the average of 2 sites)
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DNA Methylation as a 

Predictor of Metabolites 

among Girls

p<0.1 associations:

IGF2 CpGs 5&6 and 

↑C9.H2.N.P.S2

LINE-1 CpG 3 and 

↓Xylose

HSD11B2 CpG 2 

and ↑Xylose

HSD11B2 CpG 4 

and ↓Xylose



*

DNA Methylation as a 

Predictor of Metabolites 

among Boys

p<0.1 association:

IGF2 CpG 1&2 and 

↑Xylose



Does Epigenetic Drift Play a Role?
Epigenetic changes from the early life exposure propagate through 

development, and influence metabolites in peri-puberty

TIME                 

Exposure

Epigenetics

Growth & Development

Drift (∆ = T3 – T2)

Metabolites

Epigenetics

Exposure

Risk for 

Disease

(e.g., metabolic 

syndrome, 

diabetes)

T1
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T2

Birth

T3

Peripuberty

(8-14 yrs)
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Adulthood



DNA Methylation Drift in the ELEMENT Cohort (n=78)

-H19

methylation 

mean and 

variance 

significantly 

decreased 

with time. 

-IGF2

methylation 

significantly 

increased with 

time.



Incorporating Epigenetic Drift

(Drift #1) metabolitei = β0 + β1 age + β2∆methylation + β3Pbprenatal + bi + εi

(Drift #2) metabolitei = β0 + β1 age + β2∆methylation + β3∆variability 

+ β4Pbprenatal + bi + εi

Metabolites tested: C9.H2.N.P.S2, X5.oxoproline, xylose

∆ methylation: (methylationj at t3 – mean methylation at t3) - (methylationj at t2 – mean methylation at t2)

∆ variability: (methylationj at t3 – mean methylation at t3)^2 - (methylationj at t2 – mean methylation at t2)^2

t2= birth (cord blood leukocyte DNA)

t3 = peri-pubery (blood leukocyte DNA)



Association of Methylation Drift on Metabolites

• Methylation Drift: 

Among those that passed  statistical test of a 
significant mean change between two times, 
methylation changes of IGF2#1 &2 and IFG2#7 are 
associated with xylose. 

• Methylation Variability Drift:  

Among those that passed statistical test of a 
significant variance change between two times, the 
change of variability of IGF2 5&6 is associated with 
xylose. 



Concluding Remarks
• Integrative analysis involves high-dimensional data, in 

which most of them are noise.  To reduce false 
discoveries, good data is of most importance.  

• Statistical design of cohort studies remains a difficult 
problem, in particular there are many confounding 
factors involved in such studies. 

• Multiple steps are required in data processing and data 
analysis, which incurs accumulation of human errors 
along the process, and any findings must be put for 
validation. 

• It remains unknown whether or not, if so and how, to 
combine site-specific methylations or combine 
metabolite features. 



Future Directions
• Apply structural equation model for high-dimensional 

mediators to assess mediation effect of biomarkers. 

• Utilize data mining techniques to identify biomarkers 
sensitive to past exposures and predictive to 
outcomes related to exposures.

• Derive epigenetic or metabolomics change as markers 
of cumulative exposures or cumulating risk for disease 
development.  

• Analyze genome-wide methylation (being collected by 
the 450K platform through the P01 Admin 
Supplement) and full metabolomics data to find new 
biomarkers or mechanistic pathways. 
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