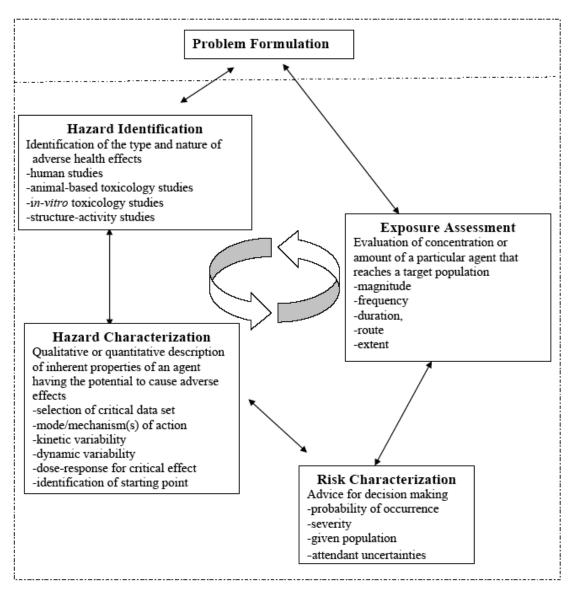
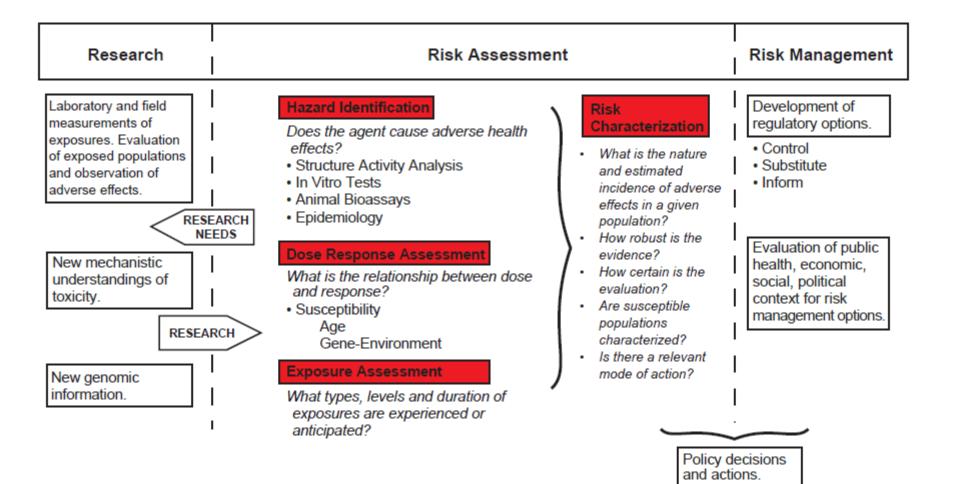
Toxicological Considerations in Interpreting Epigenetic Data

Elaine M. Faustman, Ph.D. DABT Professor and Director Institute for Risk Analysis and Risk Communication

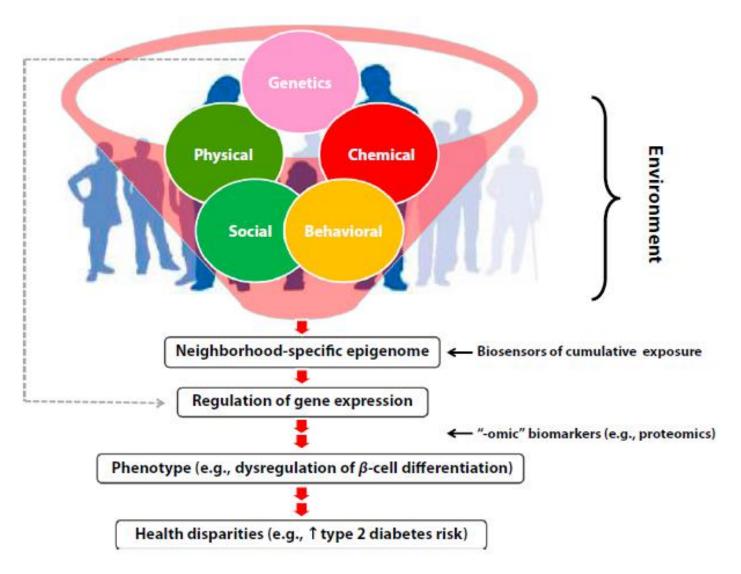

Department of Environmental and Occupational Health Sciences



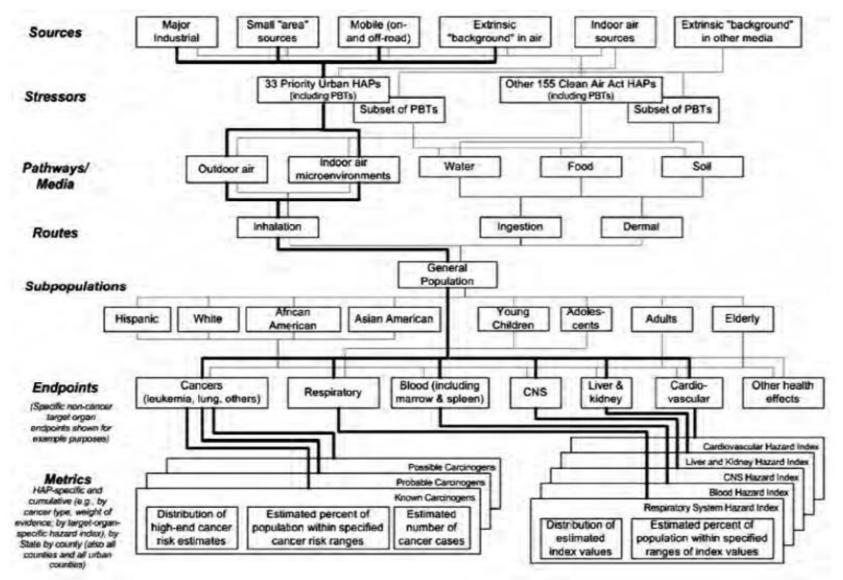
SCHOOL OF PUBLIC HEALTH

UNIVERSITY of WASHINGTON

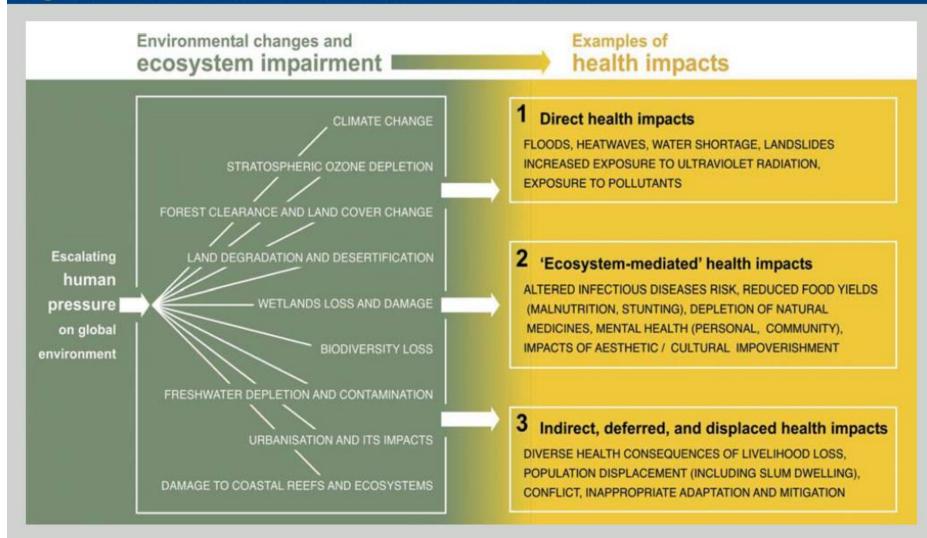
Risk Assessment



METHODS TO IDENTIFY TOXICITY

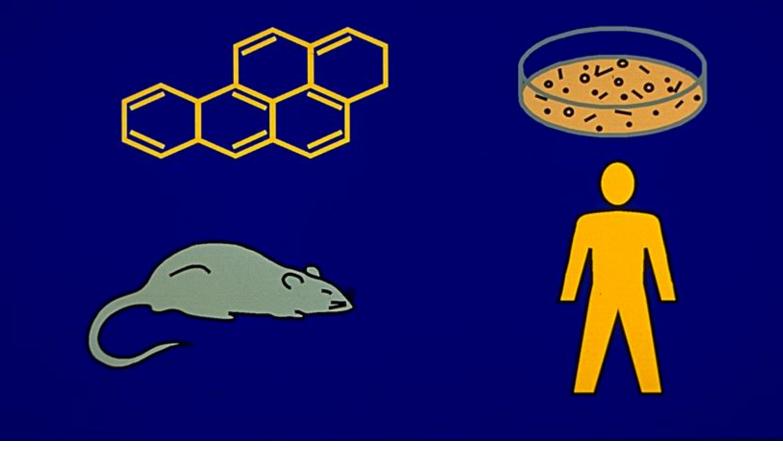

Faustman et al, 2010

Epigenome: Biosensor of Cumulative Exposure to Chemical and Nonchemical Stressors Related to Environmental Justice



K. Olden et al, American Journal of Public Health | October 2014, Vol 104, No. 10

Broadening the scope of a risk assessment


Figure SDM1. HARMFUL EFFECTS OF ECOSYSTEM CHANGE ON HUMAN HEALTH

This figure describes the causal pathway from escalating human pressures on the environment through to ecosystem changes resulting in diverse health consequences. Not all ecosystem changes are included. Some changes can have positive effects (e.g. food production).

Source: World Health Organization. (2005). Ecosystems and Human Well-Being: Health Synthesis.

METHODS TO IDENTIFY TOXICITY

Faustman et al, 2010

Challenges and Opportunities for using epigenetic information and approaches for understanding mechanisms of toxicity and dose-response

- Intra- and cross-species extrapolation
- Facilitate use of model systems
- Characterize low dose and early temporal response
- Facilitate in vitro to in vivo extrapolation
- Extrapolation across levels of biological complexity
- Identify actual pathways of disease

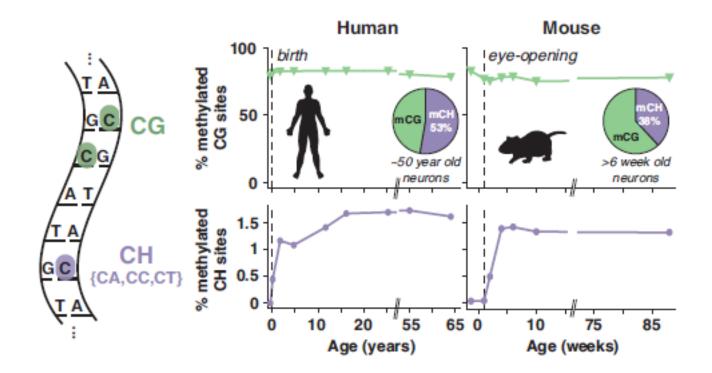
Example Environmental Factors Known to Impact Epigenomic Profiles; Includes Chemical and Non-Chemical Stressors

- Tobacco Smoke
- Infectious pathogens (H. pylori)
- Particulate matter
- Diesel exhaust particles
- Air pollutants
- Dust mites
- Fungi/mold

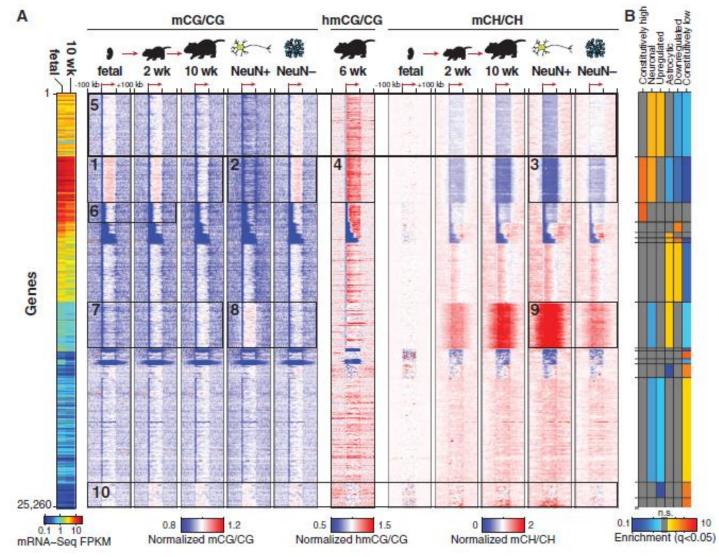
- Polycyclic aromatic hydrocarbons (PAH)
- Heavy metals (As, Cd, Pb, Ni, Mg)
- Pesticides (OPs, vinclozolin)
- Endocrine disruptors
- Hormones (DES)
- Plasticizers (BPA, phthalates)
- Phytoestrogens

- Changes in stress
- Changes in cortisol
- Changes in neighborhood

- Famine
- Racial disparities
- Glucocorticoid homeostasis


Factors Affecting Differences in Susceptibility

- Age
- Sex
- Strain
- Enzyme Induction
- Genetic
- Predisposition
- Hormonal Status


- Nutritional Status
- Disease
- Circadian Variation
- Stress

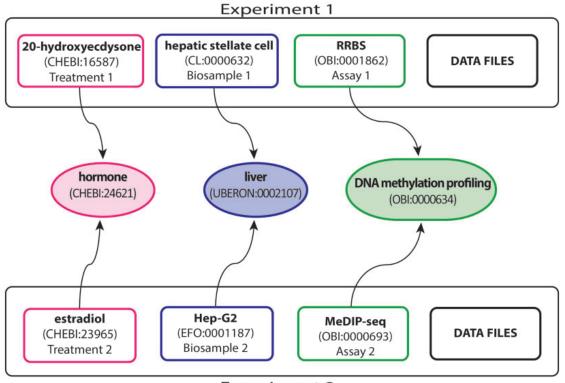
Global Epigenomic Reconfiguration During Mammalian Brain Development

Ryan Lister,* Eran A. Mukamel, Joseph R. Nery, Mark Urich, Clare A. Puddifoot, Nicholas D. Johnson, Jacinta Lucero, Yun Huang, Andrew J. Dwork, Matthew D. Schultz, Miao Yu, Julian Tonti-Filippini, Holger Heyn, Shijun Hu, Joseph C. Wu, Anjana Rao, Manel Esteller, Chuan He, Fatemeh G. Haghighi, Terrence J. Sejnowski, M. Margarita Behrens,* Joseph R. Ecker* The DNA methylation landscape of human and mouse neurons is dynamically reconfigured through development

Cell type—specific and developmental differences in mC between mouse neurons and glia

Lister R et al, 2013. Science. 341(64146): 1237905.

Ontology application and use at the ENCODE DCC


Venkat S. Malladi¹, Drew T. Erickson¹, Nikhil R. Podduturi¹, Laurence D. Rowe¹, Esther T. Chan¹, Jean M. Davidson¹, Benjamin C. Hitz¹, Marcus Ho¹, Brian T. Lee², Stuart Miyasato¹, Gregory R. Roe¹, Matt Simison¹, Cricket A. Sloan¹, J. Seth Strattan¹, Forrest Tanaka¹, W. James Kent², J. Michael Cherry¹ and Eurie L. Hong^{1,*}

¹Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA and ²Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA

Citation details: Malladi,V.S., Erickson,D.T., Podduturi,N.R., et al. Ontology application and use at the ENCODE DCC. Database (2015) Vol. 2015: article ID bav010; doi:10.1093/database/bav010

Received 16 November 2014; Revised 13 January 2015; Accepted 19 January 2015

Experimental metadata annotated with appropriate ontology terms

Experiment 2

Can we make a difference?

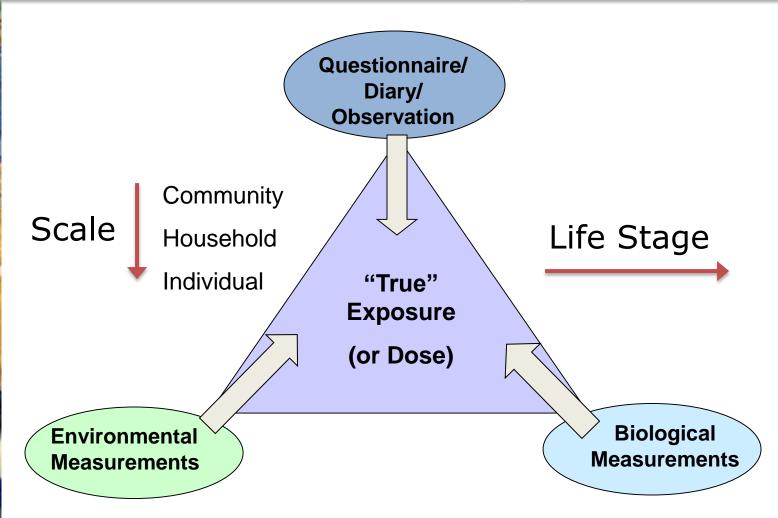
"Environment" Broadly Defined in Longitudinal Studies

• **Physical** environment:

- housing, neighborhoods and communities, climate, radiation...
- Chemical exposures:
 - air, water, soil, food, dust, industrial products, pharmaceuticals...

• **Biological** environment:

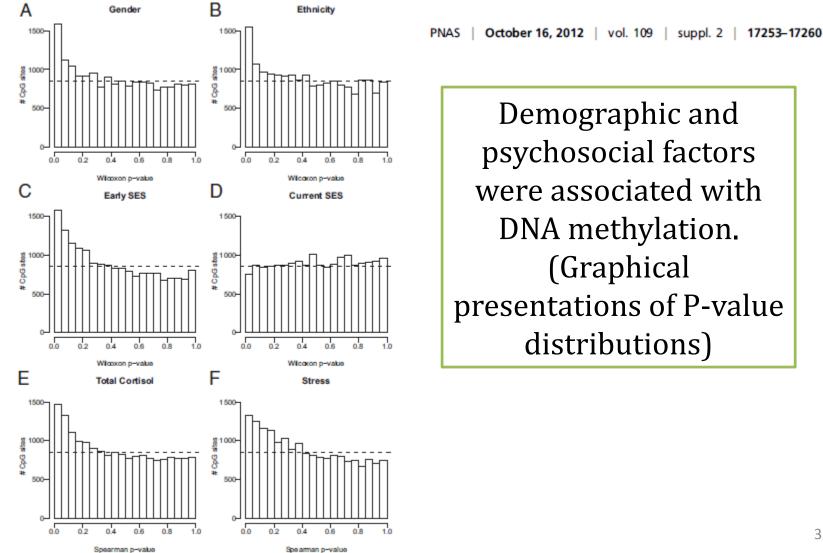
womb, infection, nutrition; inflammatory and metabolic response...


• Genetics:

 influence of genetics on disease; relationships between genes and the environment

• Psychosocial:

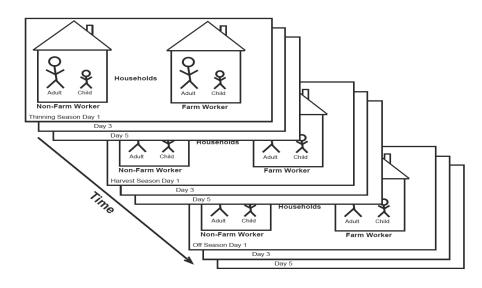
influence of family, socio-economics, community, culture, stress...


Combined Approaches Developed for Children's Exposure Assessment—Resource s from NCS EHM workgroups

NCS 2010

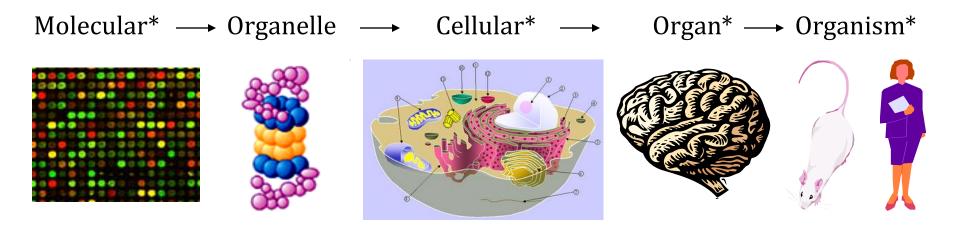
Factors underlying variable DNA methylation in a human community cohort

Lucia L. Lam^a, Eldon Emberly^b, Hunter B. Fraser^c, Sarah M. Neumann^a, Edith Chen^d, Gregory E. Miller^{d,1},



Study Population

Children's Health Center Cohort:


Yakima Valley, Washington

Farmworker and Non-Farmworker households Adults and Children in each household Sampled during spray seasons and non-spray season

Cross-Platform Evaluation Needed for Risk Assessment

Child Health Research Center (CHC) has been investigating epigenomic changes at multiple biological levels of assessment. * indicates where measurements are made

Integrating Genetic and Toxicogenomic Information for Determining Underlying Susceptibility to Developmental Disorders

Joshua F. Robinson,^{1,3} Jesse A. Port,^{1,3} Xiaozhong Yu,^{1,3} and Elaine M. Faustman^{1,2,3,4,5*} ¹Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington ²Center for Ecogenetics and Environmental Health, Seattle, Washington ³Institute for Risk Analysis and Risk Communication, Seattle, Washington ⁴Center on Human Development and Disability, Seattle, Washington ⁵Center for Child Environmental Health Risks Research, Seattle, Washington

Birth Defects Research (Part A) 88:920-930 (2010)

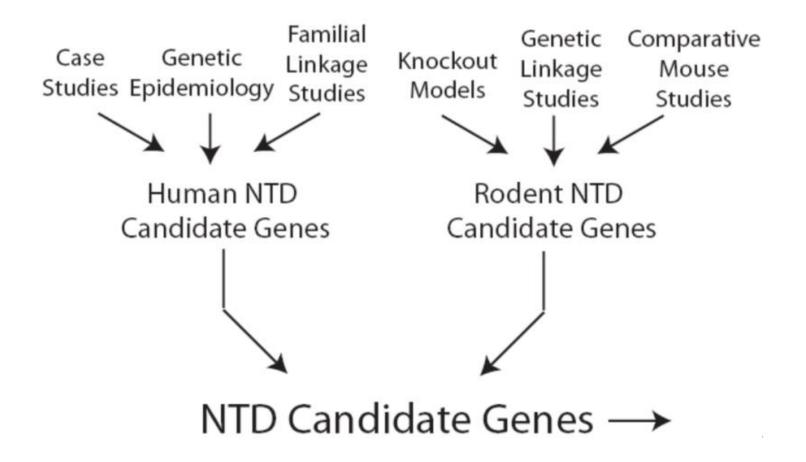
Neural Tube Defects (NTDs)

Definition

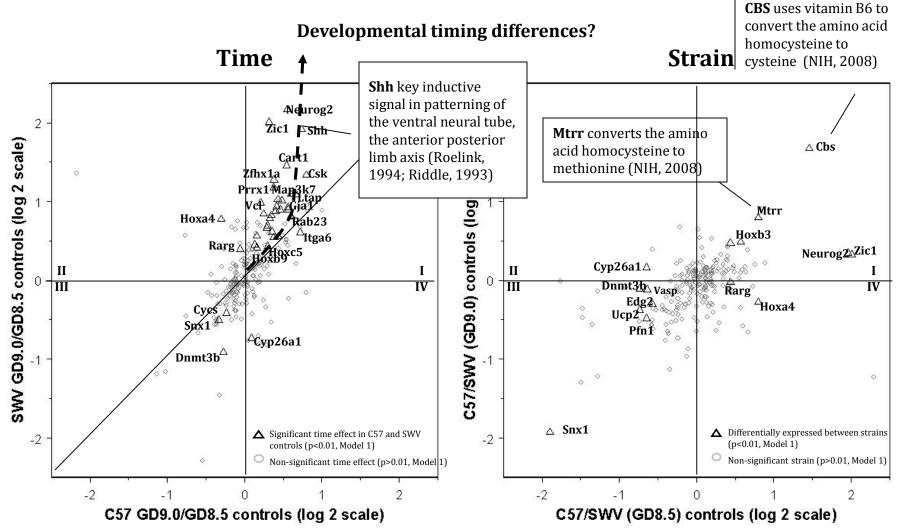
NTDs represent a group of defects where the neural tube fails to develop properly

The second most common human birth defect

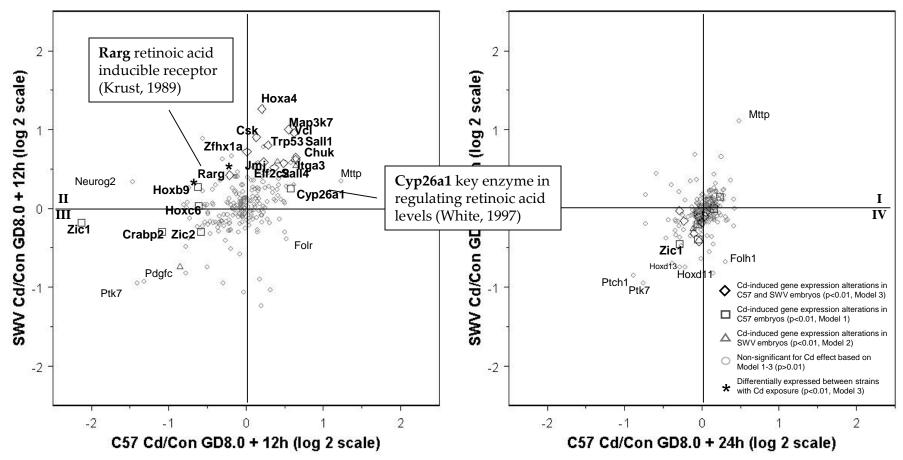
Spina Bifida Anencephaly (Exencephaly, mouse) Encephalocele



Consequences range in severity developmental delays physical limitations behavioral problems facial abnormalities early death


Health care cost: ~\$1.4 million per case of spina bifida (Detrait *et al.,* 2005)

60-70% of birth defects have unknown origin (March of Dimes, 2006) 24


Genetics

NTD candidate genes display strain and time dependent differences in expression in C57 and SWV embryos

Cd-induced gene expression alterations in NTD candidate genes in C57 and SWV embryos

Why is social stress relevant to children's environmental health?

- Both physical toxicants and social stress exposure during development can have life-long impacts
- Social stress can be an effect modifier of physical toxicant exposure and disease pathway
- Social stress and environmental toxicants often have overlapping exposure profiles, potentially impacting low income and minority populations most heavily

Integrating Measures of Nonchemical Stress Exposure in the UW's Children's Health Center and the National Children's Study

Marissa Smith

William Griffith, Melinda Vredevoogd, Eric Vigoren, Shirley Beresford, Carly Strecker, Beti Thompson and Elaine Faustman Institute for Risk Analysis and Risk Communication

University of Washington

Stress Study Sampling Framework

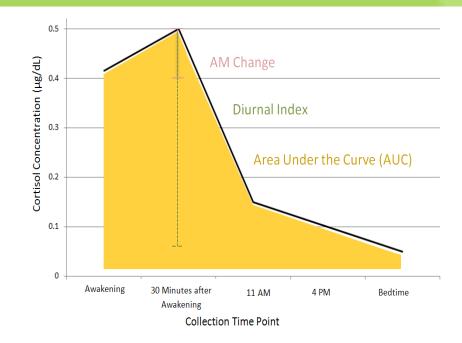
For CHC Mothers we have:

- Two blood samples
- Twenty saliva samples
- Two stress questionnaires
- Four urine samples
- Two hair samples representing at least three months growth

Stress Questionnaires

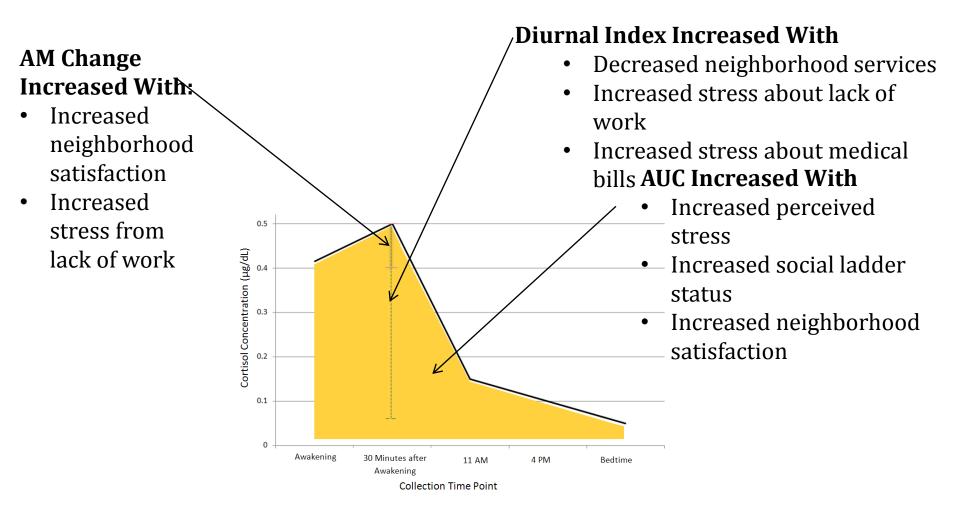
- Neighborhood Satisfaction (11 questions)
- Social Ladder
- Health Status
- Cohen's 10-item Perceived Stress Scale (PSS-10) (Cohen S, 1983)
- Culturally-appropriate stress scale that was developed for assessing stress among Mexican immigrant farmworkers (Snipes 2007)

Think of this ladder as representing where people stand in their communities.


People define community in different ways; please define it in whatever way is most meaningful to you. At the **top** of the ladder are the people who have the highest standing in their community. At the **bottom** are the people who have the lowest standing in their community.

Where would you place yourself on this ladder?

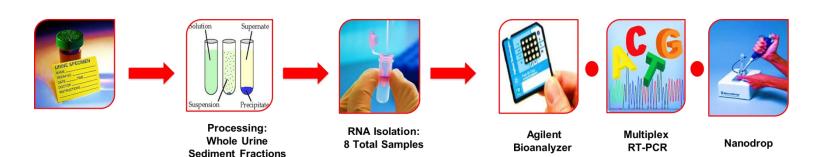
Please place a large "X" on the rung where you think you stand at this time in your life, relative to other people in your community.



Saliva Cortisol Metrics

Term	Definition
Area Under the Curve (AUC)	Measure of total daily response calculated as the area under the daily curve normalized for hours awake
AM Change	Difference between the first (wake) and second (30 minutes post wake) time points of the day
Diurnal Index	Difference between highest morning time point (time 1 or 2) and bedtime level

Relating Biomarkers and Questionnaires from the CHC



Urinary microRNA Profiles as Potential Biomarkers of Pesticide Exposure

Brittany A. Weldon^{1,2}, Sara E. Pacheco^{1,2}, Kirk Van Ness^{1,2}, Tomomi Workman^{1,2}, Beti Thompson³, and Elaine M. Faustman^{1,2}

¹Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA ²Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, ³Fred Hutchinson Cancer Research Center, Seattle, WA

Optimization Methods

Figure 2. Experimental Workflow. Urine was thawed and processed prior to RNA extraction. The RNA was used for Nanodrop Spectrophotometer and Agilent Bioanalyzer analyses and multiplex RT-PCR reactions using the TaqMan MicroRNA Cards.

Optimization Results

Table 1: Optimization Nanodrop Sample Characteristics					
Sample ID	Group	Fraction	Concentration (ng/ul)	260/280, 260/230	
1W	Fresh	Whole Urine	97.79	1.92, 1.14	
1S	Fresh	Sediment	163.90	1.94, 1.60	
2W	Field	Whole Urine	45.53	1.82, 1.17	
25	Field	Sediment	101.49	1.77, 1.06	
3W	Field	Whole Urine	12.36	1.64, 1.09	
35	Field	Sediment	22.62	1.65, 0.67	
4W	Field	Whole Urine	7.93	1.37, 0.22	
4S	Field	Sediment	8.64	1.08, 0.27	
Note: A 260/280 and 260/230 of 2 is considered optimal.					

Multiplex RT-PCR Results:

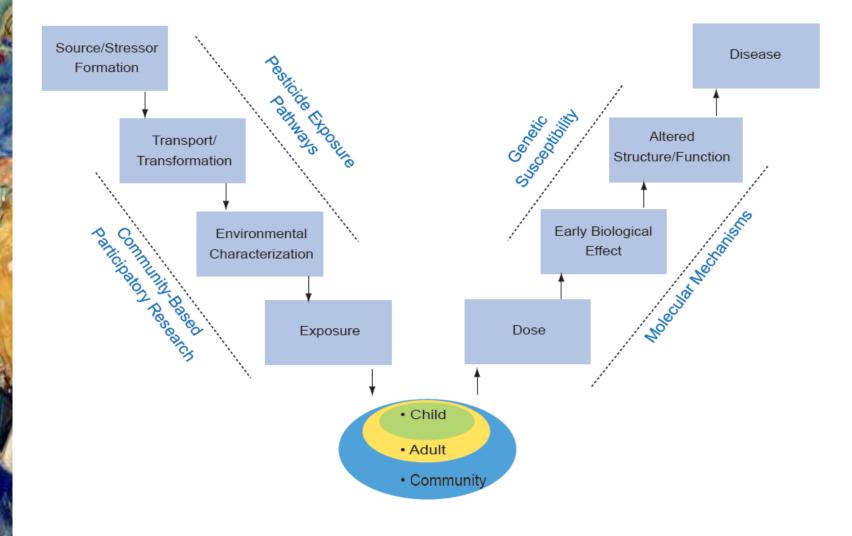
Table 2: The Number of miRNAs shared among Urine Samples.				
Samples	Whole Urine	Sediment		
All 4 Samples	32 miRNAs	39 miRNAs		
Top 3 Samples (1-3)	116 miRNAs	47 miRNAs		
Fresh Samples Only	12 miRNAs	23 miRNAs		
None	145 miRNAs	141 miRNAs		

Table 3: Top 3 miRNAs in Both Whole Urine and Sediment Samples
miR-223
miR-203
miR-222

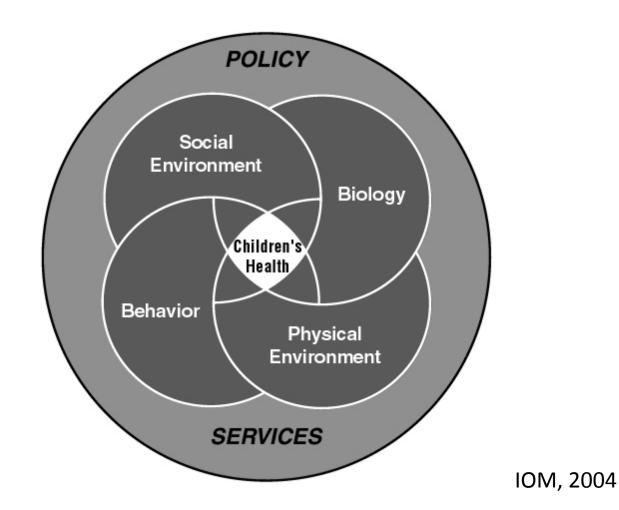
Hierarchical clustering analysis of top 10 urinary microRNAs shows clustering of four miRNAs (miR320, miR203, miR24, &miR30c) in adult farmworkers during spray season.

Results

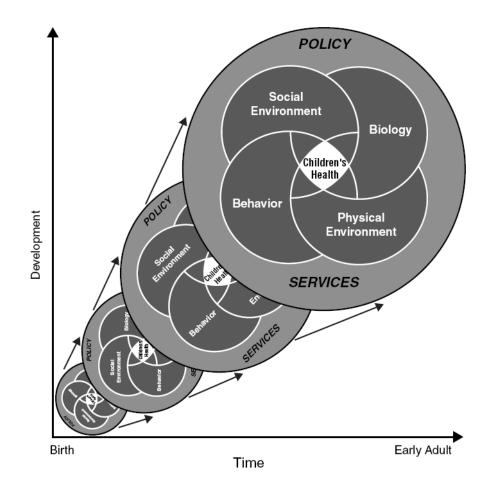
Optimized methods applied to 108 urine samples from the CHC study cohort


MicroRNA Observations

- MicroRNAs can be successfully extracted from archived CHC urine samples from adult and child farmworkers and non-farmworkers.
- Of 380 microRNAs investigated, 297 (78%) were detectable in at least one sample in urine.
- 7 miRNAs were found present in at least 50% of the samples, and 1 miRNA (miR-223) was present in 97% of the samples.
- MicroRNAs observed match commonly observed mircoRNAs in urine.
- Households (parent and child combined) expressed fewer miRNAs in their urine during thinning than during non-spray (mean, 31 [range, 3-169] vs. 57 [6-197]). This difference was more drastic in adults (mean, 25 [range, 3-130] vs. 74 [6-169]) than children (mean, 38 [6-169] vs. 40 [9-173]) when analyzed separately.


Conclusions

- Principal Components and hierarchical clustering analyses indicate significant differences in microRNA profiles between farmworker and non farmworker groups.
- Further investigation of microRNA profiles and associated post transcriptional regulatory targets will inform potential endpoints of OP exposure.
- These results provide valuable insight on the utility of archived field samples for the future development of urinary biomarkers.


Environmental Public Health Continuum

Multiple, Interacting Influences Affect Children's health including Chemical and Non Chemical Stressors

Life Course Based Model of Children's Health and its Influences:

Source: Children's Health, Nation's Health, IOM report, 2004

Epigenomic Factors that Effect our Risk Assessment Approaches

- Epigenomic changes are known to be affected by both chemical and non-chemical stressors
- Epigenomic changes occur after exposure to many chemicals, not related by structure
- Epigenomic or stress changes can be inherited and affect multiple generations.
- Epigenomic changes after chemical and non-chemical stressors can affect the same pathways.
- There are many different types of epigenomic pathways that can be changed by stressor exposure and these occur differentially across time (lifestage) in various biological tissues and can be species, organic and organism specific.
- There are known genetic polymorphisms that affect epigenomic responses

Information on Epigenomics Informs Multiple Aspects of Risk Assessment

Problem formulation

Determination of risk assessment context and scope

Definition of scope provides context for risk assessment and leads to the identification of relevant life stages,

systems, or processes of interest for the risk assessment

Determination of relevant exposure pathways/scenarios will provide context for identifying relevant developmental life stages

Determination of chemical-specific factors will also provide context for the identification of potential life stages for evaluation, as it will identify potential toxicological processes of interest and hence identify developmental systems for potential evaluation

Identification of cross-species relevancy of potential responses

Analysis

Identification of uniquely susceptible dynamic processes

Identification of developmental milestones and/or end points for testing/assessment

Identification of functional consequences of processes if altered

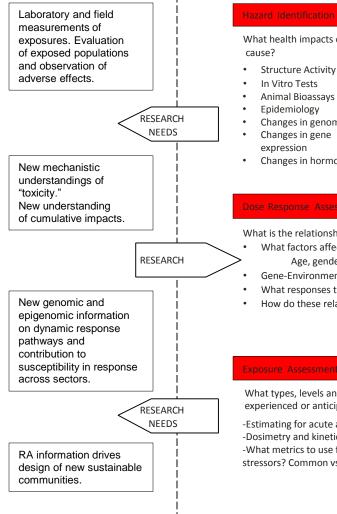
Illustrate the interrelatedness of dynamic developmental processes and thus identify impacts that could occur at

later life stages and within other organ systems

Identification of immediate or delayed responses

Risk characterization

Define dose-response relationships, especially dose, time, and response relationships


al stressors

Characterize potential magnitude of effect, reversibility, repair, functional reserve, etc., of dynamic developmental processes

Research

Problem Formulation

What are the combined effects of chemical and non-chemical stresses on health?

What health impacts do chemical and nonchemical stresses

- Structure Activity Analysis
 - Changes in function and resilience

response

- Changes in acute and ٠ chronic disease
- Changes in genome Changes in gene
- Changes in hormone

What is the relationship between dose and response?

- What factors affect susceptibility?
- Age, gender, built environment
- Gene-Environment-Time
- What responses to model?
- How do these relationships change across age, time?

What types, levels and duration of exposures are experienced or anticipated?

-Estimating for acute and chronic scenarios across sectors -Dosimetry and kinetics

-What metrics to use for chemical and nonchemical stressors? Common vs. unique measures?

What is the nature and estimated incidence of adverse effects in a given population?

- What is context for . evaluation? Background risk factors
- ٠ How robust is the evidence?
- ٠ How certain is the evaluation?
- Are susceptible ٠ populations characterized?
- ٠ Is there a relevant integrative mode of action? Is mode of action synergistic or additive?

Development of regulatory options.

- Control •
- Substitute •
- Inform
- Modify social and built environments
- Build resilience within our models of wellbeing

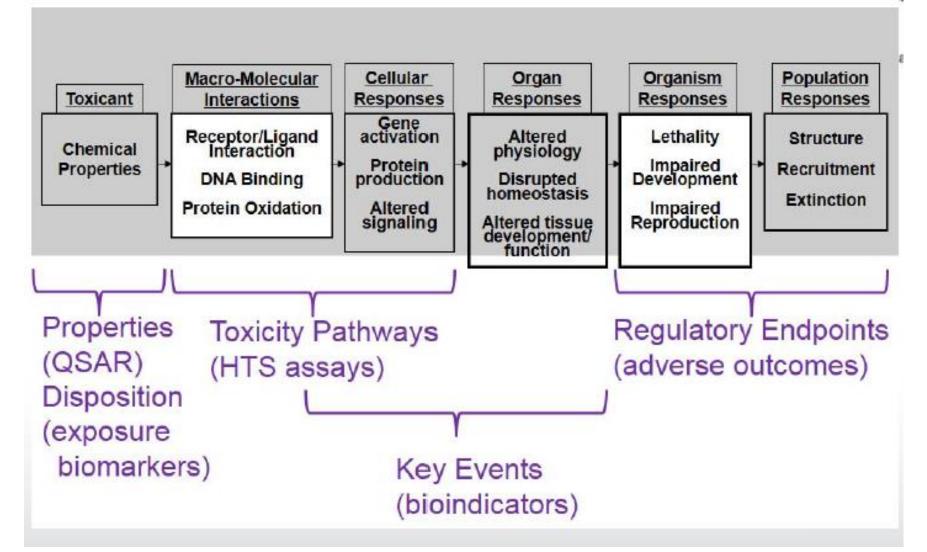
Evaluation of public health, economic, social, political context for risk management options.

Policy decisions and actions.

Challenges and Opportunities for using epigenetic information and approaches for understanding mechanisms of toxicity and dose-response

- Intra- and cross-species extrapolation
- Facilitate use of model systems
- Characterize low dose and early temporal response
- Facilitate in vitro to in vivo extrapolation
- Extrapolation across levels of biological complexity
- Identify actual pathways of disease

Risk Management and Policy Considerations


Genomics and the EPA: Interim Policy

- Encourages and supports continued genomic research.
- Limited use of genomics while the Agency gains experience in assessing quality, accuracy and reproducibility and relevance of the data.
- Genomics data alone are currently insufficient as a basis for risk assessment and management decisions.
- May be used in a "weight-of-evidence" approach.
- Policy outlined at: ww.epa.gov/osp/spc/genomics.htm

Table 1 US EPA development of science policy for the use of genomics data in regulatory and risk assessment applications									
Year	Publication	Purpose	URL						
2002	Interim Policy on Genomics	Defined EPA's initial approach to using genomics information in risk assessment and decision making.	html://www.epa.gov/osa/spc/genomics.htm						
2004	Potential Implications of Genomics for Regulatory and Risk Assessment Applications at EPA	Identified impact genomics likely to have on (i) prioritization of contaminants and contaminated sites, (ii) monitoring, (iii) reporting provisions and (iv) risk assessment.	html://www.epa.gov/osa/genomics.htm						
External review pending	Interim Guidance for Microarray- Based Assays: Regulatory and Risk Assessment Applications at EPA	Describes (i) microarray data submission review to the agency, (ii) quality assessment pending parameters, (iii) data manage- ment, analysis and evaluation and (iv) training needs for risk assessors and decision makers.	html://www.epa.gov/osa/index.htm						

- Microarray data has already been received by an EPA Office of Pesticide Programs
- A pesticide registrant cited a published genomics article (Genter, Burman et al, 2002) as part of a mode-of-action data package submission for product registration

AOP and biomarkers serve to link elements and describe disease pathogenesis

Acknowledgements

Funding: Thank you to the FDA (1U01FD004242-01), CHC Center NIEHS (5 P01 ES009601) and EPA (RD-83170901) and a new EPA Predictive Toxicology Center Grant NIEHS Environmental Pathology/Toxicology Training Grant (ES07032) **Challenges and Opportunities**

for using systems biology information and approaches for understanding mechanisms of toxicity and dose-response

- Intra- and cross-species extrapolation
- Facilitate use of model systems
- Characterize low dose and early temporal response
- Facilitate in vitro to in vivo extrapolation
- Extrapolation across levels of biological complexity
- Identify actual pathways of disease

Gene Ontology: Tool for the unification of biology. The Gene Ontology Consortium

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G.

Nat Genet. 2000 May;25(1):25-9.

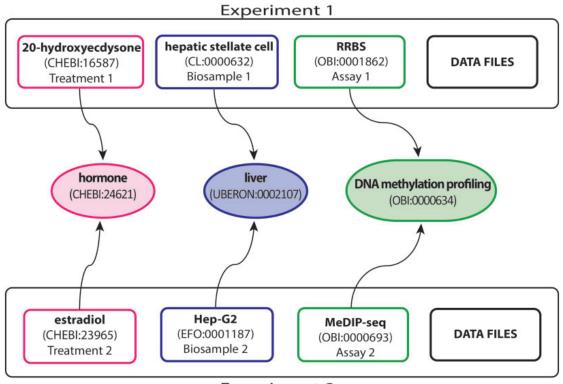
Gene Ontology Hierarchy: Based on the AmiGO, the GO Consortium's annotation and ontology toolkit

Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, AmiGO Hub, Web Presence Working Group. AmiGO: online access to ontology and annotation data.

Bioinformatics. Jan 2009;25(2):288-9

http://www.geneontology.org/

Ontology application and use at the ENCODE DCC


Venkat S. Malladi¹, Drew T. Erickson¹, Nikhil R. Podduturi¹, Laurence D. Rowe¹, Esther T. Chan¹, Jean M. Davidson¹, Benjamin C. Hitz¹, Marcus Ho¹, Brian T. Lee², Stuart Miyasato¹, Gregory R. Roe¹, Matt Simison¹, Cricket A. Sloan¹, J. Seth Strattan¹, Forrest Tanaka¹, W. James Kent², J. Michael Cherry¹ and Eurie L. Hong^{1,*}

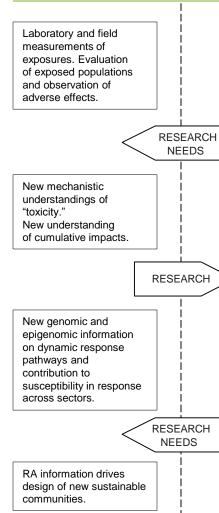
¹Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA and ²Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA

Citation details: Malladi,V.S., Erickson,D.T., Podduturi,N.R., et al. Ontology application and use at the ENCODE DCC. Database (2015) Vol. 2015: article ID bav010; doi:10.1093/database/bav010

Received 16 November 2014; Revised 13 January 2015; Accepted 19 January 2015

Experimental metadata annotated with appropriate ontology terms

Experiment 2


Search at the ENCODE portal (https://www.encodeproject.org/). In this example, a free text search is done for 'breast'

CODE Data → Methods •			Q Sign
Assay		Showing 25 of 33	View All
ChIP-seq	18		
RNA-seq RRBS RNA profiling by array assay DNase-seq	5 2 2 2	RRBS of breast (Homo sapiens, adult 21 year) Lab: Richard Myers, HAIB Project: ENCODE	Experiment ENCSR000DEQ released
+ See more		CAGE of mammary epithelial cell (Homo sapiens, adult 23 year)	Experiment
Experiment status		Lab: Piero Carninci, RIKEN	ENCSROODCKJ
released	33	Project: ENCODE	released
Organism			
Homo sapiens	32	DNase-seq of mammary epithelial cell (Homo sapiens)	Experiment
Mus musculus 1		Lab: Gregory Crawford, Duke Project: ENCODE	ENCSR000EJW released
Biosample type			
primary cell	30	DNA methylation profiling by array assay of breast (Homo sapiens, adult 21 year)	Experiment
tissue	3	Lab: Richard Myers, HAIB Project: ENCODE	ENCSR000BWE released
Organ			
mammary gland	31	ChIP-seq of mammary epithelial cell (Homo sapiens)	Experiment

Research

Problem Formulation

What are the combined effects of chemical and non-chemical stresses on health?

What health impacts do chemical and nonchemical stresses cause?

- Structure Activity Analysis
- In Vitro Tests Animal Bioassavs
- Epidemiology
- Changes in genome •
- Changes in hormone response Changes in function and ٠ resilience
- · Changes in acute and chronic disease
- Changes in gene expression

What is the relationship between dose and response?

- What factors affect susceptibility? Age, gender, built environment
- Gene-Environment-Time What responses to model?
- How do these relationships change across age, time?

What types, levels and duration of exposures are experienced or anticipated?

-Estimating for acute and chronic scenarios across sectors

-Dosimetry and kinetics

-What metrics to use for chemical and nonchemical stressors? Common vs. unique measures?

What is the nature and estimated incidence of adverse effects in a given

- population? . What is context for evaluation? Background risk factors
- How robust is the . evidence?
- . How certain is the evaluation?
- Are susceptible . populations characterized?
- Is there a relevant integrative mode of action? Is mode of action synergistic or additive?

Development of regulatory options.

- Control
- Substitute .
- Inform
- Modify social and ٠ built environments
- Build resilience within our models of wellbeing

Evaluation of public health, economic, social, political context for risk management options.

Policy decisions and actions.

Factors to consider for Hazard Identification

- For Epigenetic changes how strong is the database supporting QSAR like approaches for both chemical and non-chemical stressors?
- 2. For Epigenetic changes how strong is the database that our assessment of impacts will be the same across assessment tools–for example across in vitro systems (primary and established cell lines), organ specific cell lines, life stage of cell lines?
- 3. For in vivo assessment using animal models, how much do we know about species variability?
- 4. For epidemiological studies do we know the consistency of epigenetic responses? Especially for biomarkers we would use to assess prior to impacts versus organ specific info that might be obtained from cancer specimens? What would be the best epigenetic endpoints for RA versus in the clinic or for mechanistic studies?

Integrating Genetic and Toxicogenomic Information for Determining Underlying Susceptibility to Developmental Disorders

Joshua F. Robinson,^{1,3} Jesse A. Port,^{1,3} Xiaozhong Yu,^{1,3} and Elaine M. Faustman^{1,2,3,4,5*} ¹Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington ²Center for Ecogenetics and Environmental Health, Seattle, Washington ³Institute for Risk Analysis and Risk Communication, Seattle, Washington ⁴Center on Human Development and Disability, Seattle, Washington ⁵Center for Child Environmental Health Risks Research, Seattle, Washington

Birth Defects Research (Part A) 88:920-930 (2010)

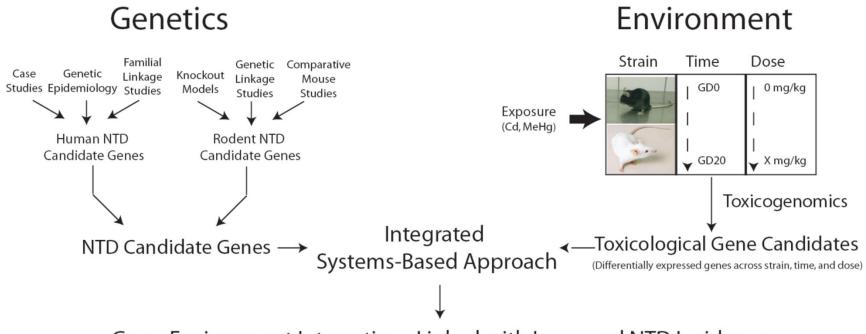
Neural Tube Defects (NTDs)


Definition

NTDs represent a group of defects where the neural tube fails to develop properly

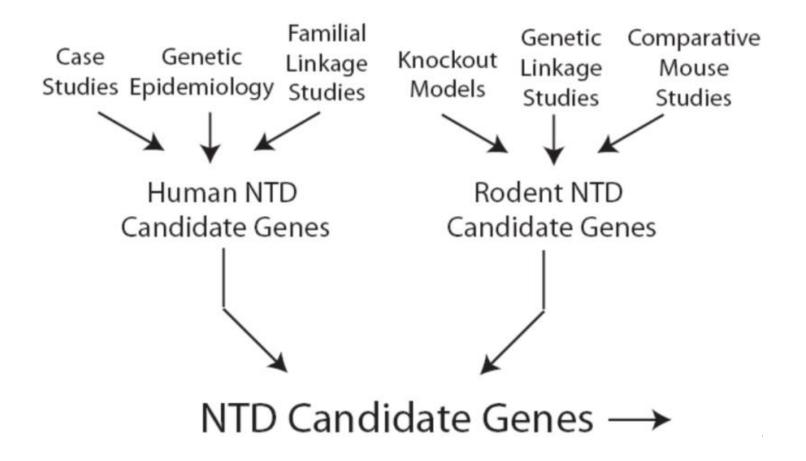
The second most common human birth defect

Spina Bifida Anencephaly (Exencephaly, mouse) Encephalocele


Consequences range in severity developmental delays physical limitations behavioral problems facial abnormalities early death

Health care cost: ~\$1.4 million per case of spina bifida (Detrait *et al.,* 2005)

60-70% of birth defects have unknown origin (March of Dimes, 2006) 62


Integrating Genetic and Toxicogenomic Information for Determining Underlying Susceptibility to Developmental Disorders

The Integration of Gene-Disease Databases and Environmental Toxicogenomic Studies

Gene-Environment Interactions Linked with Increased NTD Incidence

Genetics

Differential Sensitivity to Environmental Teratogens between the C57 and SWV during neurulation

	SWV	C57		
Hyperthermia	++	-	Exencephaly	Finnell <i>et al</i> . 1986
Phenobarbital	+/-	-	Malformations (including NTDs)	Finnell <i>et al</i> . 1986
Valproic Acid	++++	-	Malformations (including NTDs)	Naurse <i>et al</i> . 1988
Arsenite	-	+	Exencephaly	Machado <i>et al</i> . 1999
Cadmium	+	++++	Exencephaly (GD 7-9) Limb Malformations (>GD9)	Hovland <i>et al</i> . 1999

+ = 20% difference in sensitivity based on study results at specific timepoints (GD7-10)

SWV

-

C57BL/6

Human and mouse NTD genetic studies

American Journal of Medical Genetics Part C (Semin. Med. Genet.) 135C:9-23 (2005)

ARTICLE

Candidate Gene Analysis in Human Neural Tube Defects

ABEE L. BOYLES, PRESTON HAMMOCK, AND MARCY C. SPEER*

Biochemical and developmental pathways, mouse models, and positional evidence have provided numerous candidate genes for the study of human neural tube defects. In a survey of 80 studies on 38 candidate genes, few found significant results in human populations through case-control or family-based association studies. While the folate pathway has been explored extensively, only the *MTHFR* 677C > T polymorphism was significant, and only in an Irish population. Developmental pathways such as the Wnt signaling pathway and *Hox* genes have also been explored without positive results. More than 90 mouse candidates have been identified through spontaneous and knockout mutations, but only the T locus (mouse *Brachyury* gene) showed association in an initial study that was not confirmed on follow-up. Positional candidates have been derived from cytogenetic evidence, but preliminary genomic screens have limited power due to small sample sizes. Future studies would

Extensive literature review of over 80 human NTD studies

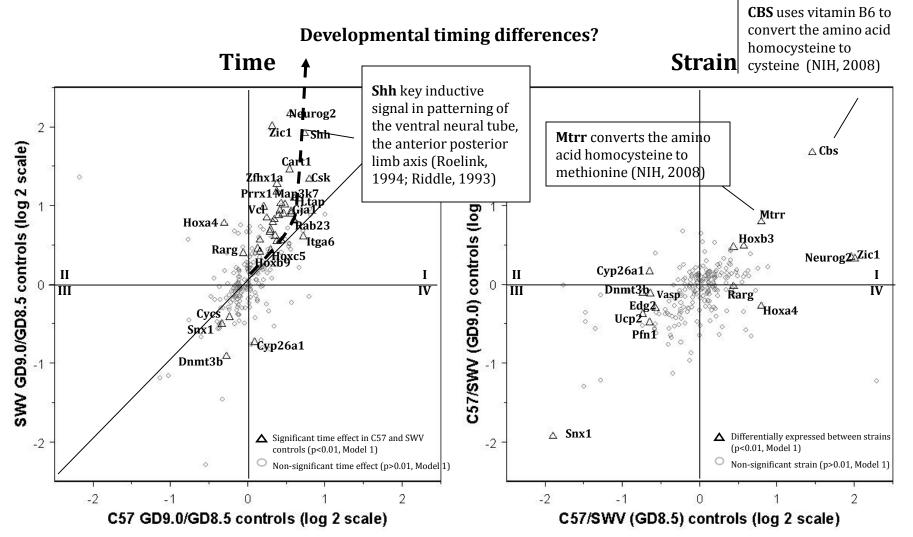
Few associations identified between gene candidates and NTD risk

REVIEW ARTICLE

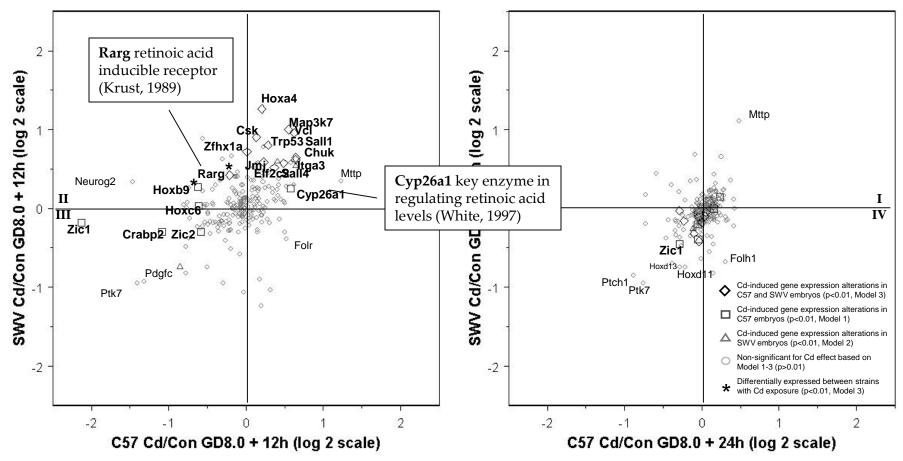
Mouse Mutants With Neural Tube Closure Defects and Their Role in Understanding Human Neural Tube Defects

Muriel J. Harris* and Diana M. Juriloff

Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada


Received 15 September 2006; Revised 20 October 2006; Accepted 20 October 2006

BACKGROUND: The number of mouse mutants and strains with neural tube closure defects (NTDs) now exceeds 190, including 155 involving known genes, 33 with unidentified genes, and eight "multifactorial" strains. **METHODS:** The emerging patterns of mouse NTDs are considered in relation to the unknown genetics of the common human NTDs an encephaly and spina bifida aperta. **RESULTS:** Of the 150 mouse mutants

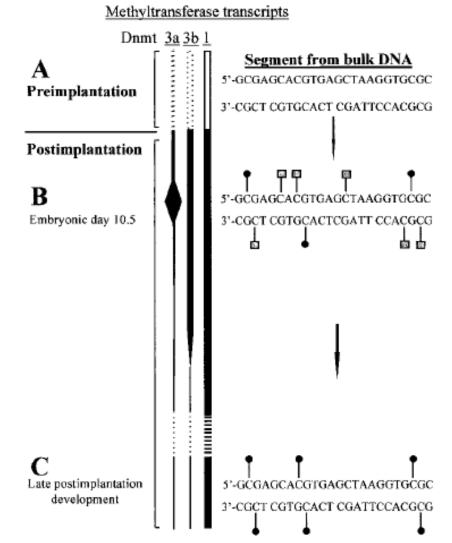

Extensive literature review

Over 200+ mouse mutants identified to be linked with NTD incidence

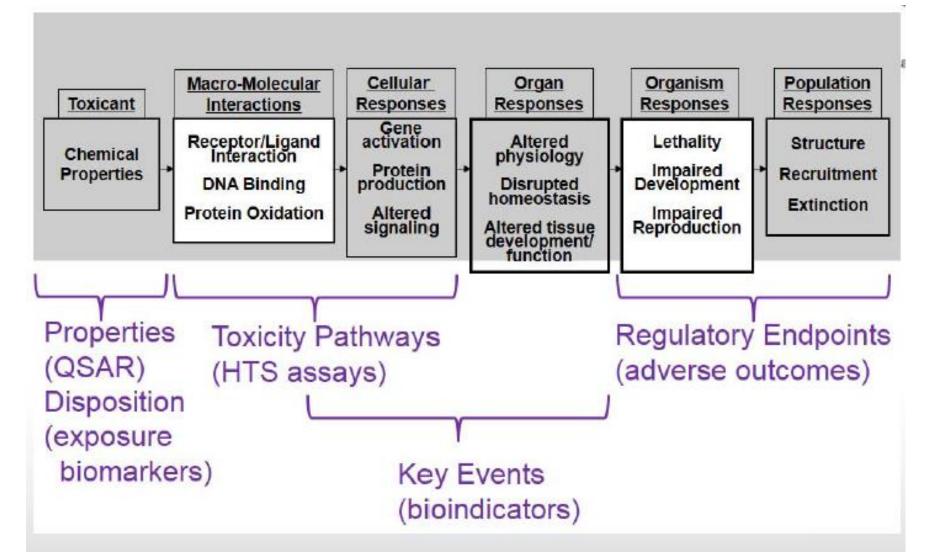
NTD candidate genes display strain and time dependent differences in expression in C57 and SWV embryos

Cd-induced gene expression alterations in NTD candidate genes in C57 and SWV embryos

Overall Conclusions


- Differential gene expression response within CNS development and environmental stress pathways correlates with increased sensitivity to metal-induced NTDs
- Increased Cd accumulation contributes to observed differing sensitivities between resistant (C57) and sensitive (SWV) strains
- Metals may commonly (cell cycle, development, transcription) and uniquely (methylation, one-carbon metabolism) disrupt processes associated with NTD development
- Using a toxicogenomic approach and available independent genetic mouse model data, we have identified a potential mechanism to screen for potential gene-environmental interactions that may identify susceptible populations

Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a


Bernard H. Ramsahoye*[†], Detlev Biniszkiewicz[‡], Frank Lyko[‡], Victoria Clark[§], Adrian P. Bird[§], and Rudolf Jaenisch[‡]

*Department of Hematology, Western General Hospital, EH4 2XU Edinburgh, United Kingdom; ⁴Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142; and [§]University of Edinburgh, Institute of Cell and Molecular Biology, Darwin Building, Kings Buildings, Mayfield Road, EH9 3JR Edinburgh, United Kingdom

Model for the reestablishment of DNA methylation after implantation

AOP and biomarkers serve to link elements and describe disease pathogenesis

Urinary microRNA Profiles as Potential Biomarkers of Pesticide Exposure

Brittany A. Weldon^{1,2}, Sara E. Pacheco^{1,2}, Kirk Van Ness^{1,2}, Tomomi Workman^{1,2}, Beti Thompson³, and Elaine M. Faustman^{1,2}

¹Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA ²Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, ³Fred Hutchinson Cancer Research Center, Seattle, WA

Objectives

Optimization Objectives:

Isolate miRNA from both whole urine and urine sediments

> Determine the quantity and quality of urinary RNA using Nanodrop spectrophotometer

>Analyze RNA profiles from whole urine and urine sediments using Agilent Bioanalyzer

Identify specific miRNAs in the samples using TaqMan[®] microRNA RT-PCR analysis (384 miRNAs probed)

Experimental Objectives:

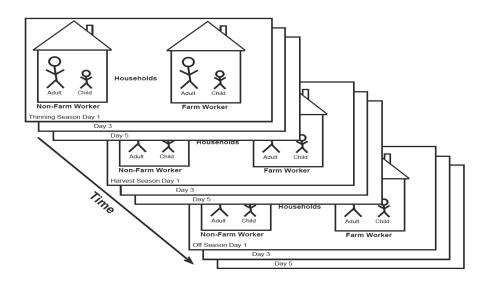
Apply optimized methods to Children's Health Center (CHC) sub cohort (n=108)

Investigate differential miRNA expression levels between:

Farmworker/Non Farmworker

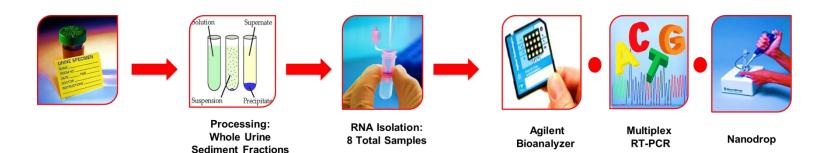
Adult/Child

Spray season/ Non spray season


Determine whether urinary miRNA expression will reflect anticipated exposure status of farmworker and non-farmworker families and could thus serve as a biomarker of exposure.

Study Population

Children's Health Center Cohort:


Yakima Valley, Washington

Farmworker and Non-Farmworker households Adults and Children in each household Sampled during spray seasons and non-spray season

Optimization Methods

Figure 2. Experimental Workflow. Urine was thawed and processed prior to RNA extraction. The RNA was used for Nanodrop Spectrophotometer and Agilent Bioanalyzer analyses and multiplex RT-PCR reactions using the TaqMan MicroRNA Cards.

Optimization Results

Table 1: C	e 1: Optimization Nanodrop Sample Characteristics			
Sample ID	Group	Fraction	Concentration (ng/ul)	260/280, 260/230
1W	Fresh	Whole Urine	97.79	1.92, 1.14
1S	Fresh	Sediment	163.90	1.94, 1.60
2W	Field	Whole Urine	45.53	1.82, 1.17
25	Field	Sediment	101.49	1.77, 1.06
3W	Field	Whole Urine	12.36	1.64, 1.09
35	Field	Sediment	22.62	1.65, 0.67
4W	Field	Whole Urine	7.93	1.37, 0.22
4S	Field	Sediment	8.64	1.08, 0.27
Note: A 260/28	0 and 260/2	230 of 2 is conside	red optimal.	

Multiplex RT-PCR Results:

Table 2: The Number o Urine	of miRNAs sh Samples.	ared among
Samples	Whole Urine	Sediment
All 4 Samples	32 miRNAs	39 miRNAs
Top 3 Samples (1-3)	116 miRNAs	47 miRNAs
Fresh Samples Only	12 miRNAs	23 miRNAs
None	145 miRNAs	141 miRNAs

Table 3: Top 3 miRNAs in Both Whole Urine and Sediment Samples		
miR-223		
miR-203		
miR-222		

Results

Optimized methods applied to 108 urine samples from the CHC study cohort

MicroRNA Observations

- MicroRNAs can be successfully extracted from archived CHC urine samples from adult and child farmworkers and non-farmworkers.
- ➢Of 380 microRNAs investigated, 297 (78%) were detectable in at least one sample in urine.
- 7 miRNAs were found present in at least 50% of the samples, and 1 miRNA (miR-223) was present in 97% of the samples.
- MicroRNAs observed match commonly observed mircoRNAs in urine.
- Households (parent and child combined) expressed fewer miRNAs in their urine during thinning than during non-spray (mean, 31 [range, 3-169] vs. 57 [6-197]). This difference was more drastic in adults (mean, 25 [range, 3-130] vs. 74 [6-169]) than children (mean, 38 [6-169] vs. 40 [9-173]) when analyzed separately.

Hierarchical clustering analysis of top 10 urinary microRNAs shows clustering of four miRNAs (miR320, miR203, miR24, &miR30c) in adult farmworkers during spray season.

miRNA	Selected cellular processes and tissue sources
mi R-24-1	Cell proliferation, DNA repair and apoptosis
miR-30c-1	Tumor suppression, innate immunity, highly expressed in heart cells
miR-203a	Specifically expressed in keratinocytes and promotes epidermal differentiation
mi R-320a	Regulates PTEN-controlled tumor-suppressive axis

Selected cellular processes associated with farmworker associated microRNAs.

Conclusions

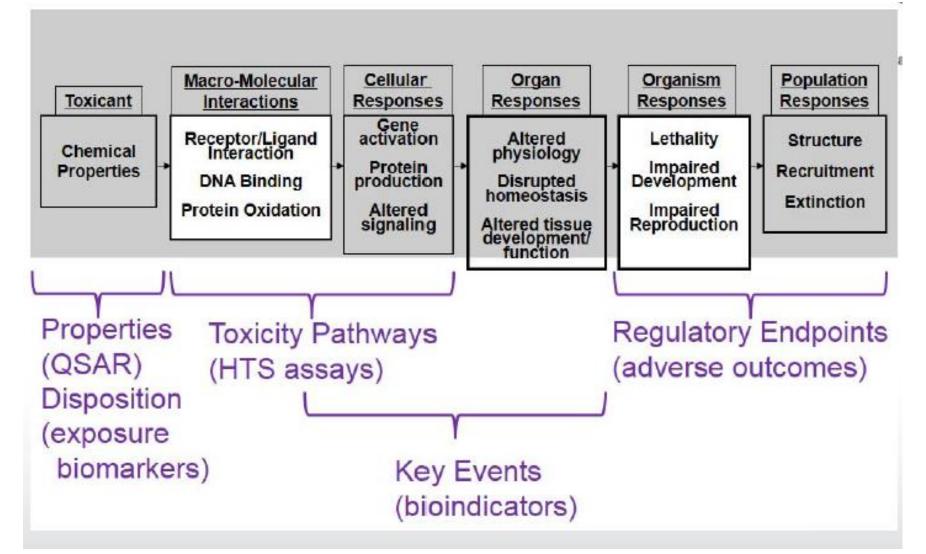
- Principal Components and hierarchical clustering analyses indicate significant differences in microRNA profiles between farmworker and non farmworker groups.
- Further investigation of microRNA profiles and associated post transcriptional regulatory targets will inform potential endpoints of OP exposure.
- These results provide valuable insight on the utility of archived field samples for the future development of urinary biomarkers.

Risk Management and Policy Considerations

Genomics and the EPA: Interim Policy

- Encourages and supports continued genomic research.
- Limited use of genomics while the Agency gains experience in assessing quality, accuracy and reproducibility and relevance of the data.
- Genomics data alone are currently insufficient as a basis for risk assessment and management decisions.
- May be used in a "weight-of-evidence" approach.
- Policy outlined at: ww.epa.gov/osp/spc/genomics.htm

Environmental Protection Agency


- Potential Implications of Genomics for Regulatory and Risk Assessment Applications at EPA (2004)
- "Genomics data alone are currently insufficient as a basis for risk assessment and management decisions."
- "Genomics data may be useful in a weight of evidence approach for human and ecological health risk assessments and can be used in concert with all the other information the EPA considers for a particular assessment or decision."

Dix et al., 2006

Table 1 US	EPA development of science pol	icy for the use of genomics data in regulatory and risl	k assessment applications
Year	Publication	Purpose	URL
2002	Interim Policy on Genomics	Defined EPA's initial approach to using genomics information in risk assessment and decision making.	html://www.epa.gov/osa/spc/genomics.htm
2004	Potential Implications of Genomics for Regulatory and Risk Assessment Applications at EPA	Identified impact genomics likely to have on (i) prioritization of contaminants and contaminated sites, (ii) monitoring, (iii) reporting provisions and (iv) risk assessment.	html://www.epa.gov/osa/genomics.htm
External review pending	Interim Guidance for Microarray- Based Assays: Regulatory and Risk Assessment Applications at EPA	Describes (i) microarray data submission review to the agency, (ii) quality assessment pending parameters, (iii) data manage- ment, analysis and evaluation and (iv) training needs for risk assessors and decision makers.	html://www.epa.gov/osa/index.htm

- Microarray data has already been received by an EPA Office of Pesticide Programs
- A pesticide registrant cited a published genomics article (Genter, Burman et al, 2002) as part of a modeof-action data package submission for product registration

AOP and biomarkers serve to link elements and describe disease pathogenesis

Potential Implications of Genomics for Regulatory and Risk Assessment Applications at EPA (2004)

Identified four areas likely to be influenced by genomics:

- 1. Prioritization of contaminants and contaminated sites
 - Testing to more fully identify hazard and predictions based on testing
 - HPV program –can help group chemicals and ID hazardous ones
- 2. Environmental monitoring
 - Chemical and physical analyses of air, water, soil and sediment
 - Toxicity testing
 - Analysis of tissue residues
 - Ecological community structure analysis
 - Microbial and pathogenic analysis

Potential Implications of Genomics for Regulatory and Risk Assessment Applications at EPA (2004) – CONT.

- 3. Reporting provisions
 - To have an effect on reporting provisions, linkage of genomic changes to adverse effects or response pathways must be established and addressed
- 4. Risk assessment
 - Establishing mode-of-action
 - Comparative genomics might aid in interpreting human relevance of animal toxicity

Paper: Interim Guidance for Microarray-Based Assays: Regulatory and Risk Assessment Applications at EPA

- Currently in development
- In context of current possible applications by EPA and the academic and industrial community, guidance will address:
 - Genomics data submission
 - Quality assurance
 - Analysis
 - Management
 - Future actions needed to incorporate genomics more fully into EPA's risk assessments and regulatory decision making

Paper: Interim Guidance for Microarray-Based Assays: Regulatory and Risk Assessment Applications at EPA

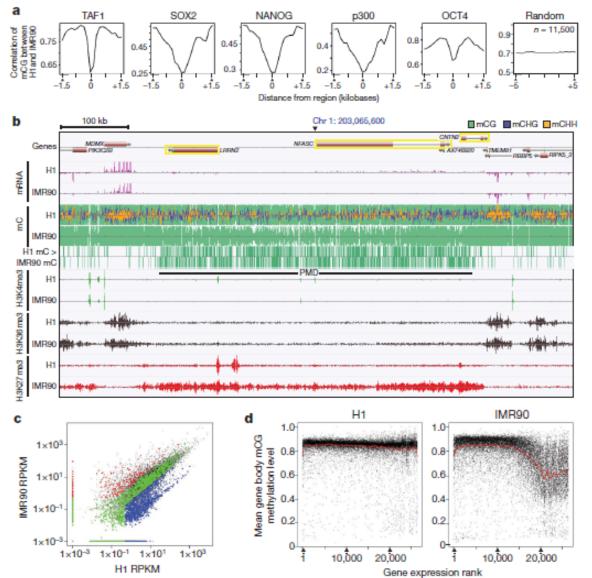
- Purpose is to provide information regarding submission of microarray data to EPA and provide guidance for reviewers
- Will not prescribe specific methods to be used in microarray experiments beyond compliance with MIAME
- Will propose a "data evaluation template" as a tool for extraction and organization of data from genomic studies
- Emphasis on importance of data management

EPA's recommendations for followup activities

- Further development of genomic training materials and modules
- Continued collaboration of EPA with other federal agencies and stakeholders in tool development
- Application of this guidance to a series of case studies
- Updating of guidance as needed

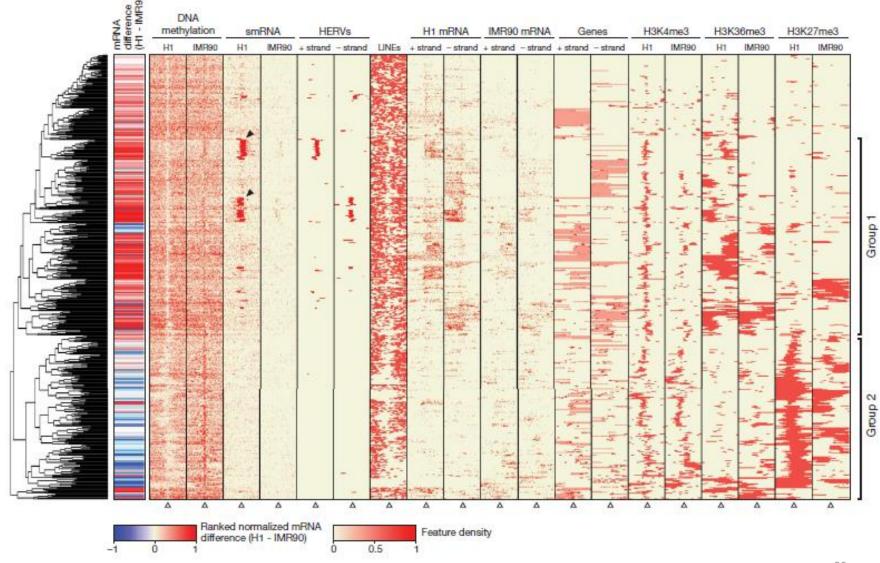
Gene Expression and Mode of Action

- Toxicants/drugs can impact expression of genes
 - Alterations to normal function of cellular pathways leads to toxicity
- "Fingerprints" of expression reflect commonalities within mode of action:
 - e.g. classification through clustering (NIEHS 'toxchip')
- Gene expression changes are a sensitive way to evaluate response
 - Potential biomarkers of exposure/disease
 - Drug discovery
- Classification of chemicals with common MOA


Challenges and Limitations

- Assays must be reliable, rapid, accurate.
- Need to recognize that gene expression is not equal to functional or protein changes.
- Need to distinguish between normal gene response and toxic response....are these methods predictive of toxicity?
- Standardization needed for genotype information and database construction; sharing across agencies and research groups.
- Privacy, discrimination, stigma and psychological stress issues.
- Ethical, social and legal issues require active involvement of stakeholders.
- "omics" is a powerful tool but should be considered on conjunction with traditional risk assessment practices.

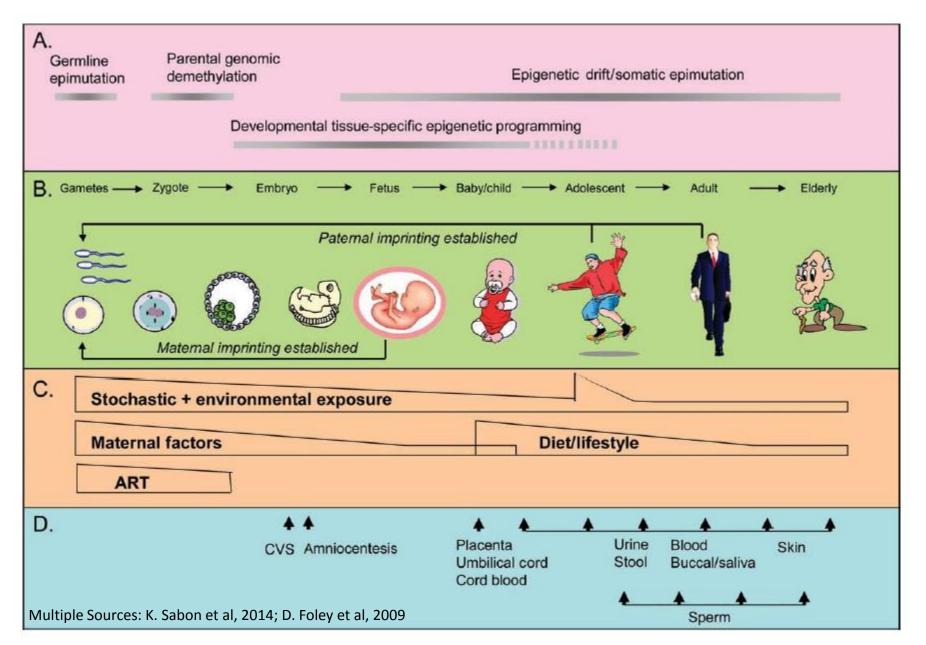
Human DNA methylomes at base resolution show widespread epigenomic differences


Ryan Lister¹*, Mattia Pelizzola¹*, Robert H. Dowen¹, R. David Hawkins², Gary Hon², Julian Tonti-Filippini⁴, Joseph R. Nery¹, Leonard Lee², Zhen Ye², Que-Minh Ngo², Lee Edsall², Jessica Antosiewicz-Bourget^{5,6}, Ron Stewart^{5,6}, Victor Ruotti^{5,6}, A. Harvey Millar⁴, James A. Thomson^{5,6,7,8}, Bing Ren^{2,3} & Joseph R. Ecker¹

Cell-type variation in DNA methylation

Lister R et al, 2009. Nature. 462(7271): 315-322.

Clustering of genomic, epigenetic and transcriptional features at differentially methylated regions



Lister R et al, 2009. Nature. 462(7271): 315-322.

Risks and Susceptibility $\Rightarrow \int G x E x T \leftarrow$ Well Being and Sustainability

GEAS=Genomic and Epigenomic Association Studies EWAS=Environmental Wide Association Studies TSEAS=Temporal Social Ecology Association Studies

Life Course Considerations for Epigenetics

Acknowledgments

Child Health Center

Elaine Faustman Marissa Smith William Griffith Tomomi Workman Sungwoo Hong Carly Strecker

NCS Pacific Northwest

<u>Center</u>

Melinda Vredevoogd Eric Vigoren Shirley Beresford

FHCRC

Beti Thompson Elizabeth Carosso

This research was supported by the **National** Institute of Child Health and Human **Development**, National Institutes of Health, **Department of Health and Human Services** (Contract No. HHSN267200700023C), the National Institute Of Environmental Health Sciences (5R25ES021646 and 5P01 ES009601) and the USEPA (RD83451401 and RD832733). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Environmental Health Sciences, the National Institutes of Health, or the USEPA.

SCHOOL OF PUBLIC HEALTH UNIVERSITY of WASHINGTON

Center for Child Environmental Health Risks Research Department of Environmental Health, University of Washington

Underlying Genetic Variation

- Epigenetic methylation of genomic CpG islands has genetic, developmental timing and environmental exposure components that control the state of methylation observed.
- Repeatability of measures of DNA methylation in the same individual in a longitudinal sense are necessary to define the variance of the CpG islands and to be able to distinguish genetic versus environmental cues that affect the methylation state.
- As an example of the influence of underlying genetic variation was seen in the Brisbane Systems Genomics Study family cohort. This cohort was queried to determine the genetic versus environmental impacts on DNAm. The genetic contribution to methylation state of the CpG probes was highly variable and was dependent on degree of heritability.
- The effect size of such highly heritable cis-acting SNPs explained 50 to 85% of the variation in methylation at these sites.

Contributions to Variability—Genetics versus Environmental Influences

 As example of the environmental and genetic variability of 37 smoking methylation responsive CpGs was queried in the Lothian Birth Cohort of 1936. Significant association to single nucleotide variation was observed in 12/37 (32%) as a modifier of the methylation state that was comparable to the ~10% effect size of smoking. (Shah et al 2014).

Conclusions on variability

- This paper provides an excellent example of how to examine variability in DNAm and demonstrates the importance of the incorporation of both genetic and environment in longitudinal study design and provides a path for going forward in our analysis of CHC cohorts. We feel that the estimates of genetic contribution and controlling for SNP variation contributed significantly to the ability of this analysis to identify example environmental impacts such as smoking and even to begin to identify different types of smoking exposures across the cohorts (for example, never smoking, versus smoking but quit, versus continued smoking.
- We have cited both general as well as CHC specific examples to support this type of analyses and to make suggestions to move forward our epigenetic analyses.

Exome sequencing identifies somatic mutations of DNA methyltransferase gene *DNMT3A* in acute monocytic leukemia

Xiao-Jing Yan^{1,2,4}, Jie Xu^{1,4}, Zhao-Hui Gu^{3,4}, Chun-Ming Pan^{1,4}, Gang Lu^{1,4}, Yang Shen¹, Jing-Yi Shi¹, Yong-Mei Zhu¹, Lin Tang¹, Xiao-Wei Zhang¹, Wen-Xue Liang¹, Jian-Qing Mi¹, Huai-Dong Song¹, Ke-Qin Li¹, Zhu Chen^{1,3} & Sai-Juan Chen^{1,3}

A framework for the use of genomics data at the EPA

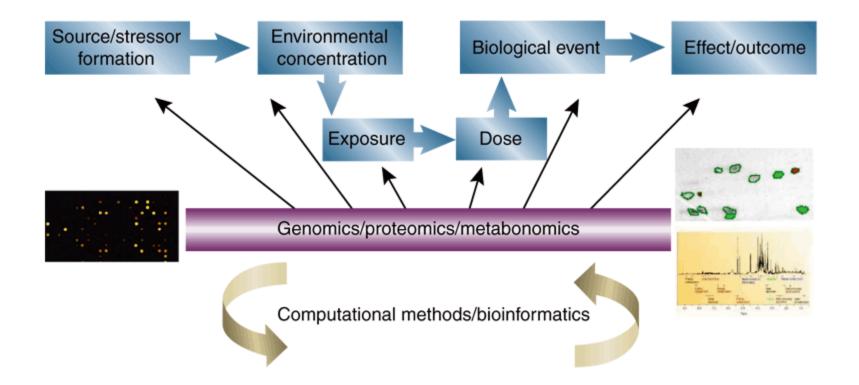
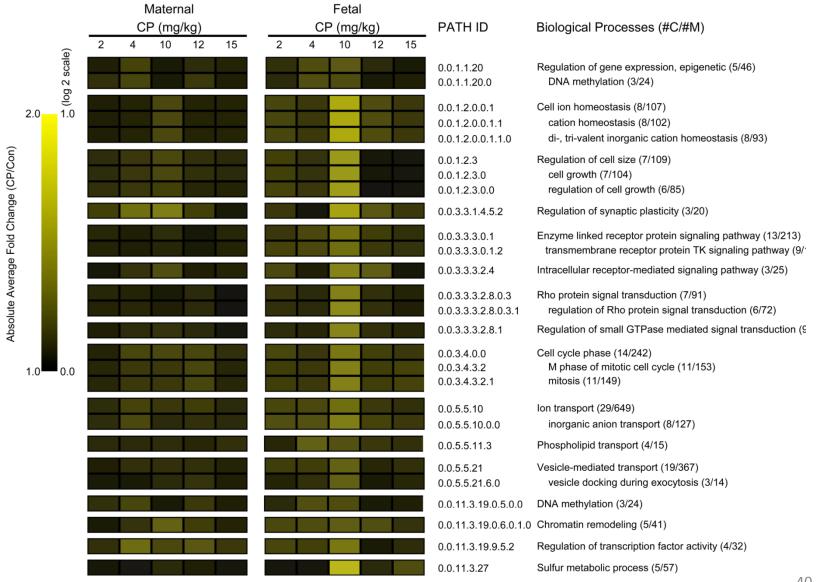
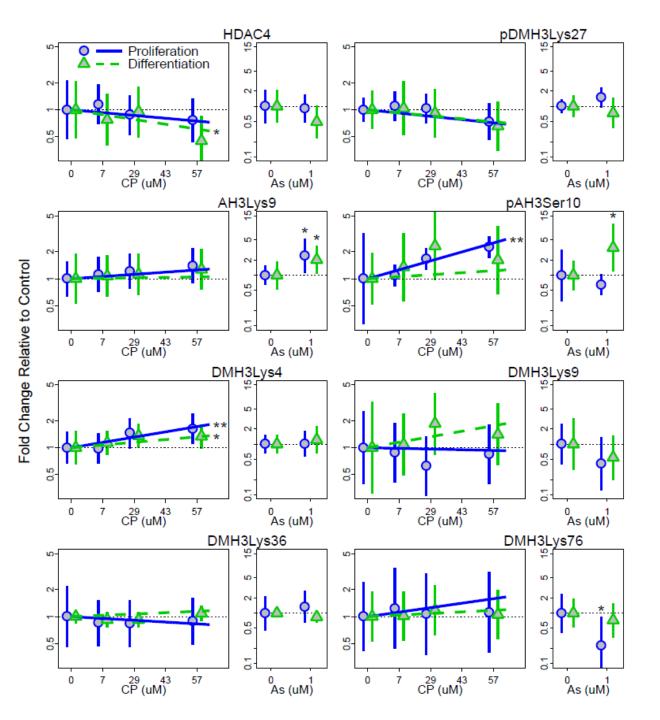



Figure 1. Genomics, proteomics and metabonomics/metabolomics can provide useful weight-ofevidence data along the source-to-outcome continuum when appropriate bioinformatic and computational methods are applied toward integrating molecular, chemical and toxicological information.


The source-to-outcome continuum captures the entire paradigm from the source of environmental contaminants and stressors, through to exposure, effects and ultimate outcomes on human health and ecological populations.

Risk = Hazard x Exposure

Toxicogenomics profiling in maternal and fetal rodent brains following gestational exposure to chlorpyrifos reveals epigenomic changes

Moreira et al. 2010

Epigenomic Changes in Human Embryonic Stem Cells: Histone Changes Following CP and As exposure are dependent upon proliferation versus differentiation status

Search at the ENCODE portal (https://www.encodeproject.org/). In this example, a free text search is done for 'breast'

CODE Data → Methods •			Q Sign
Assay		Showing 25 of 33	View All
ChIP-seq	18		
RNA-seq RRBS RNA profiling by array assay DNase-seq	5 2 2 2	RRBS of breast (Homo sapiens, adult 21 year) Lab: Richard Myers, HAIB Project: ENCODE	Experiment ENCSR000DEQ released
+ 000	morem	CAGE of mammary epithelial cell (Homo sapiens, adult 23 year)	Experiment
Experiment status		Lab: Piero Carninci, RIKEN	ENCSROODCKJ
released	33	Project: ENCODE	released
Organism			
Homo sapiens	32	DNase-seq of mammary epithelial cell (Homo sapiens)	Experiment
Mus musculus	1	Lab: Gregory Crawford, Duke Project: ENCODE	ENCSR000EJW released
Biosample type			
primary cell	30	DNA methylation profiling by array assay of breast (Homo sapiens, adult 21 year)	Experiment
tissue	3	Lab: Richard Myers, HAIB Project: ENCODE	ENCSR000BWE released
Organ			
mammary gland	31	ChIP-seq of mammary epithelial cell (Homo sapiens)	Experiment

Outline

• Add text