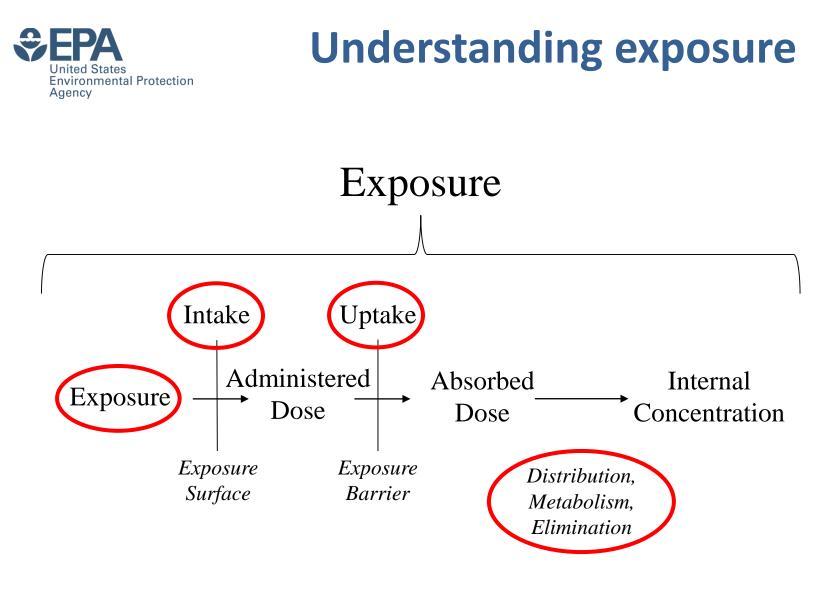


Understanding temporal variation in exposures to chemicals

Paul Price National Exposure Research Laboratory U.S. EPA, Office of Research and Development

Temporal Exposure Issues for Environmental Pollutants: Health Effects and Methodologies for Estimating Risk January 27, 2015

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA


Purpose: To present key concepts that will be expanded in later talks

- Understanding the relationship between exposure, dose, and internal dose
- 2. <u>Inter- and intra-individual variation in exposure</u>
- Temporal variation across lifestages and across short-term periods
- 4. Sources of variation in exposure and dose
- 5. Characterizing temporal variation of internal dose
- 6. Implications of exposure variation for the risk assessment process

Understanding exposure

- The risk assessment process defines risk as a function of both "hazard" and "exposure"
 - No hazard no risk
 - No exposure no risk
- Exposure, however, is a complex process
- Nomenclature we use to describe exposure is confusing
 - Exposure is used as a general term (exposure vs. hazard)
 - Exposure also defined as "a concentration of a chemical at the exposure surface over some duration of time" and is one of several metrics use in the exposure process

Exposure Surface

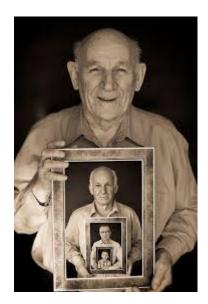
Exposure Barrier

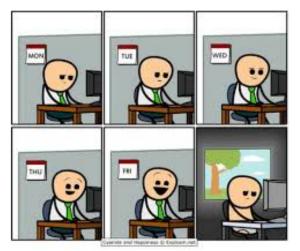
• Skin, mouth, nose

• Skin, GI track, lung

Near-field and far-field exposures

- Near field sources
 - Use of consumer products,
 - Chemicals in diet,
 - Indoor sources (heating, cooking, etc.)
- Far field sources
 - Sources that that release chemicals to air, water, or biota and that require environmental transport
- Near field sources have been shown to cause larger doses than far field sources and tend to drive total exposures for certain chemicals




Inter-individual variation in exposure and dose

- Variation in acute and chronic exposures <u>across</u> individuals
 - Interindividual variation due to differences in location, behavior, physiology, and metabolism
 - A key strategy to is to focus assessment on (sub)populations of concern
- Populations of concern can be defined by exposure potential or toxicological sensitivity

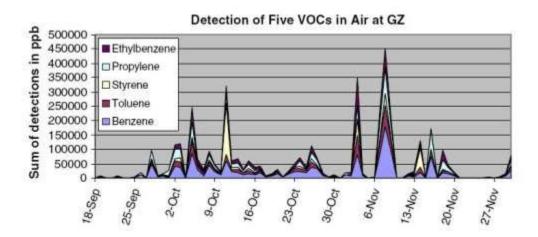
Intra-individual temporal patterns in exposure and dose

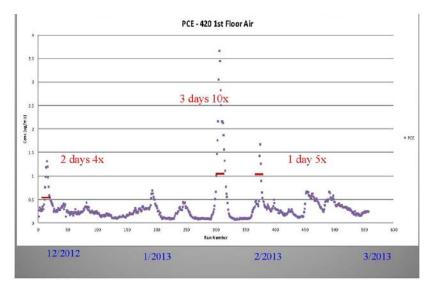
- Examines how exposures and dose change over time for a single individual.
- Two time scales for variation:
 - Periods in an individual's life (lifestages)
 - Short term variation (hour-to-hour or day-today)
- Variation across lifestages is important for
 - Identification of sensitive populations
 - Determination of life-time average daily doses
- Variation in an individuals that occur over short periods of time (day-to-day)
 - Used to determine acute and annual average daily doses for individuals in a specific lifestage

Temporal variation across lifestages

The exposure potential of various lifestages varies by source

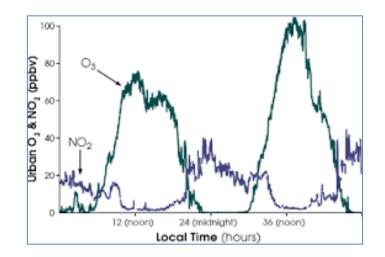
- Infants
 - Fluid intake in newborns on a body weight basis is 3-5 times higher then adults
- 1-3 year olds
 - Highest intake of food related exposures on a body weight basis (pesticides and food additives)
 - Highest rate of oral exposures to contaminants in soil, dust, or on surfaces
 - Breathing zone exposures are closer to the ground
- Adults use more types of products containing a wider range of chemicals
- Adults over 30 years of age
 - Long term exposures to local sources (longest time spent in one residence)
- Metabolism varies with age
 - Ontogeny of enzyme systems
- In general, separate exposure assessments should be performed for each relevant life stages

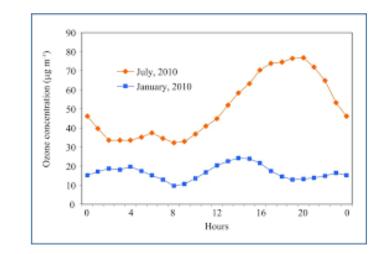



Short-term temporal variation

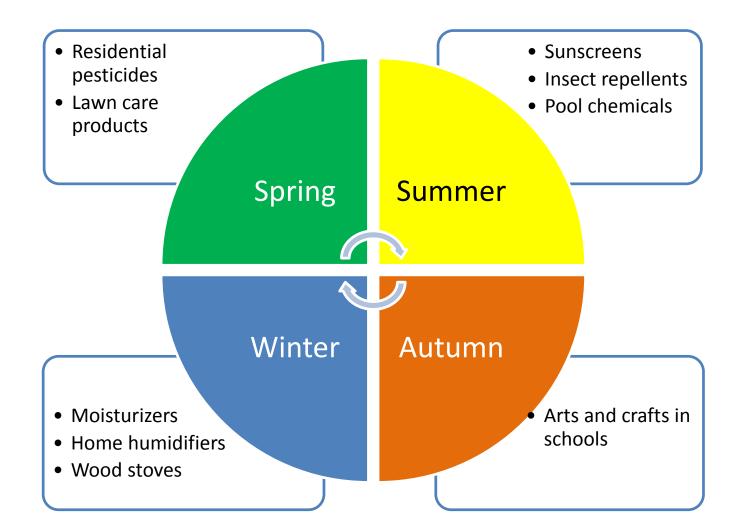
- There are multiple components to the exposure assessment process
 - The presence of the chemical at the exposure boundary;
 - The rate of intake;
 - Adsorption; and
 - Distribution, metabolism, and excretion
- All of these components can vary over short periods of time for an individual
- Short term temporal variation in dose will be driven by the combined effects of the components

Outdoor and indoor air levels vary over time





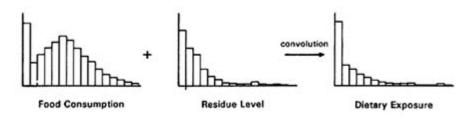
Variations can be cyclic


 Diurnal variation in air pollutants

 Seasonal variation in mean and diurnal variation

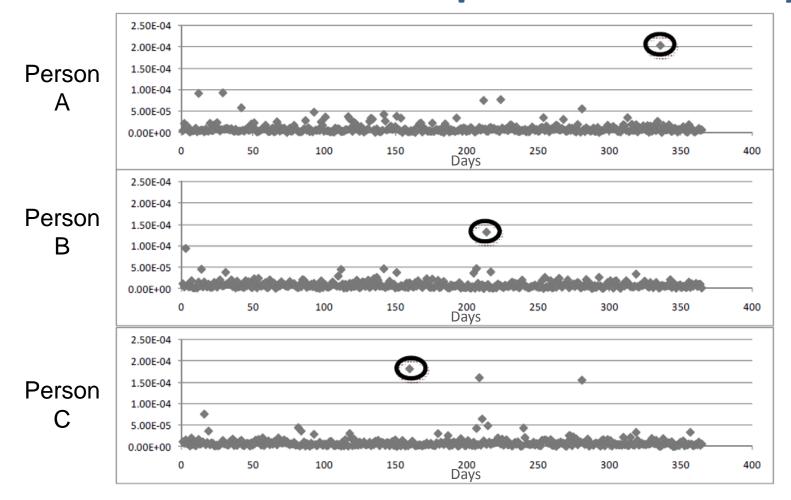
Seven day cyclical patterns of exposure related behaviors

- Week days
 - Work-related exposures
 - Transportation-related exposures
- Use of multiple product use tends to cluster on non-work days (week-end warriors)
 - Paint, spackling, and paint remover
 - Yard products
 - House cleaning products


Short-term variation in ADME

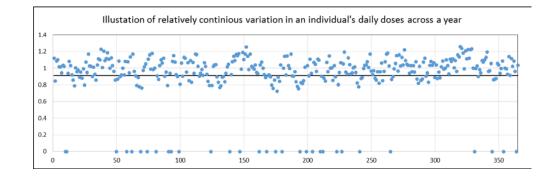
- Processes that determine absorption, distribution, and elimination are thought to be relatively stable over short periods of time (day-to-day)
 - Function of individual's physiology, and
 - Physical and chemical properties of the substance
- Metabolism, however, can vary over time
 - Circadian cycles of enzyme activity
 - Activation or deactivation enzyme systems can occur as a result of agents in diet (alcohol, grapefruit juice, etc.)

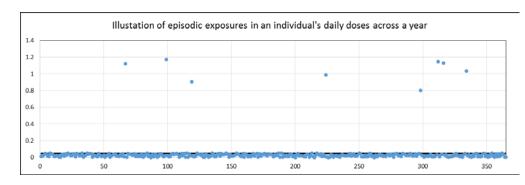
Temporal variation in dietary doses of pesticides


- To receive a large dose of a pesticide requires:
 - Consumption of large amounts of a food item
 - Large residue level in the food item

- Individuals diets change from day-to-day and residues vary from item-to-item
- The result is that longitudinal doses of pesticides for an individual tend to be skewed
 - Most doses are modest in size compared to a few high exposure events, or
 - Many days of zero exposure and a few days of non-zero exposure.

Prediction of daily dietary doses of a pesticide over a year


Juberg et al. 2011



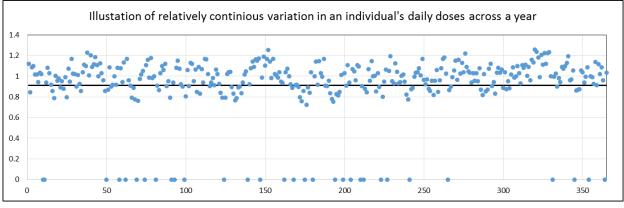
Temporal patterns of administered dose

There are two extremes in temporal variation of dose:

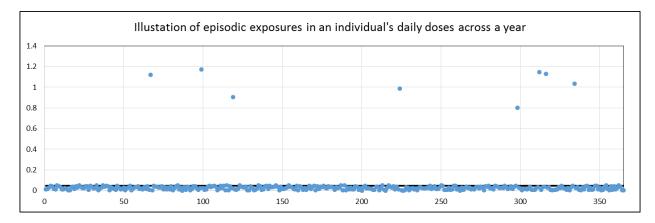
- Constant dose:
 - Exposure contaminants in drinking water derived from ground water
 - Exposure to chemicals in frequently used consumer products (toothpaste)
 - Lipophilic compounds in breast milk
- Episodic doses
 - Infrequently used consumer products
 - Fireplace cleaning products
 - Exposures with highly variable source concentrations and intake rates
 - Recreational use of rivers
 - Pesticides residues in diet

Episodic exposures and risk

- When exposures are episodic the risk assessor needs to determine if the effects from one dose will dissipate before the next dose
- This decision will be informed by:
 - Kinetic information (will the body burden return to background or *de minimis* level prior to the next exposure?)
 - Data on the reversibility of early key event in adverse outcome pathways (will the biology of the individual return to a background state)


Characterizing temporal exposure

 A useful approach is to estimate the Peak To Average PTA ratio of dose rates


PTA = Peak daily dose/ Average dose

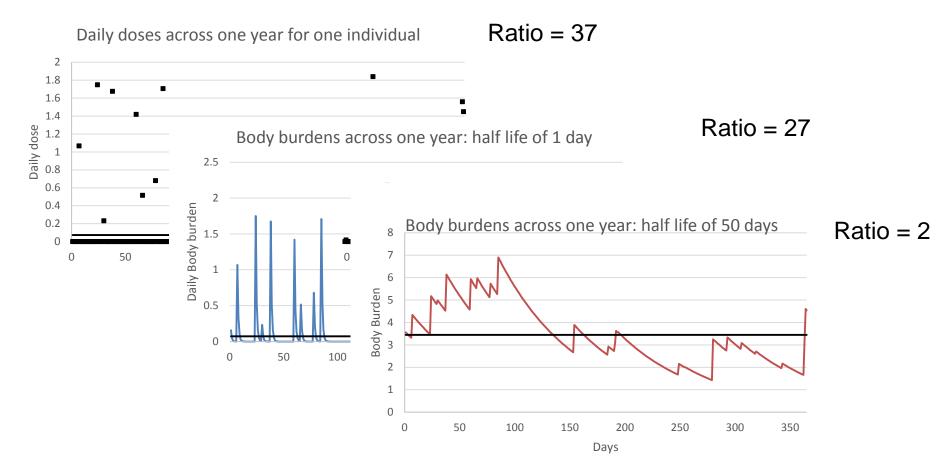
Longitudinal variation and the risk assessment process

Peak / average = 1.5

Peak / average = 20

Characterizing temporal exposure

 A useful approach is to estimate the Peak To Average PTA ratio of dose rates


PTA = Peak daily dose/Average dose

- When the ratio of peak to average dose is greater than the ratio of the acute to chronic permitted dose
 - Management of chemicals is driven by acute toxicity
- As a result:
 - Dietary pesticides are typically regulated based on acute effects
 - Drinking water exposures are regulated based on chronic effects

Temporal patterns of internal and intake doses

The impact of temporal variation decreases for chemicals with long half-lives in the body

- Exposures, doses, and internal doses vary over time
 - Sources of exposure and human behaviors both vary over time
 - Variation can be episodic or cyclical
- Variation occurs across lifestages and across days or hours
- The degree of short term variation differs with source and exposed population
 - Some are relatively continuous
 - Some are highly episodic
- For direct acting chemicals, long half lives lessen the impact of temporal variation
- Episodic exposures pose a challenge to risk assessors
 - Requiring data kinetics of the compound and the dynamics of early events in the AOPs

Acknowledgements

Annie Jarabek (HHRA) Robert Pierce (NERL)

Valerie Zartarian (NERL)

Questions?