

Temporality Best Practices: Case Study with N-Methylpyrrolidone

Gary Ginsberg Connecticut Dept of Public Health

NMP Furniture Stripping Case Study

- USEPA OPPTS Action Plan RA NMP and DCM
 - NMP assessment completed March 2015
 - <u>http://www.epa.gov/sites/production/files/2015-</u> <u>11/documents/nmp_ra_3_23_15_final.pdf</u>

) EPA	United States Environmental Protection Agency	EPA Document# 740-R1-5002 March 2015 Office of Chemical Safety and Pollution Prevention
TSCA	A Work Plan Chemical Risk	Assessment
	N-Methylpyrrolidor	ne:
	Paint Stripper Use	
	CASRN: 872-50-4	
	March 2015	

NMP RA Highlights

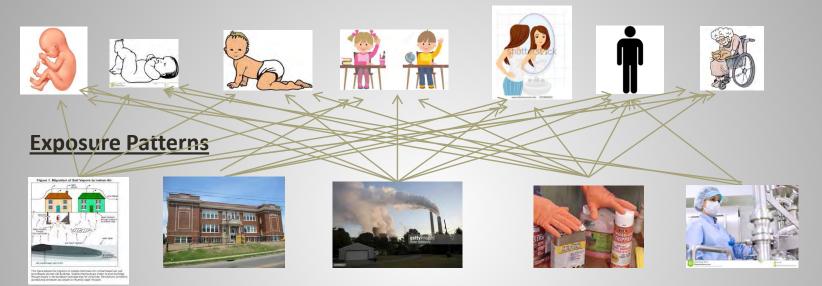
- MOE approach to evaluate acute & chronic risk
 Different toxicity endpoint picked from same studies
- Adult exposure and risk (developmental)
 - Applicator and bystander exposures
 - Worker and DYIer (Consumer) exposures
- Multiple pathway exposure
 - Inhalation + Dermal
 - PBPK model to combine pathways
 - Relate human internal dose to rodent internal dose

Vulnerable Life Stages and Unique Exposure Patterns Present a Temporal Challenge to Risk Assessment

Life Stages

Exposure Patterns

Tox Testing


LD ₅₀	Repeat Dose	Repeat Dose	Repeat Dose	Long Term	Chronic
Adult	Adult	Prenatal	Postnatal	Reproduction	Adult

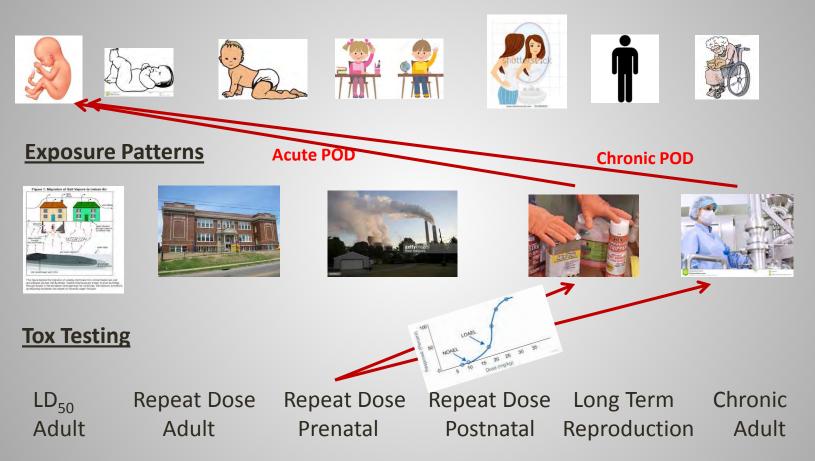
Risk Assessment

How do we apply tox/epi to exposure scenarios and critical windows of vulnerability

Vulnerable Life Stages and Unique Exposure Patterns Present a Temporal Challenge to Risk Assessment

Life Stages

Tox Testing


LD ₅₀	Repeat Dose	Repeat Dose	Repeat Dose	Long Term	Chronic
Adult	Adult	Prenatal	Postnatal	Reproduction	Adult

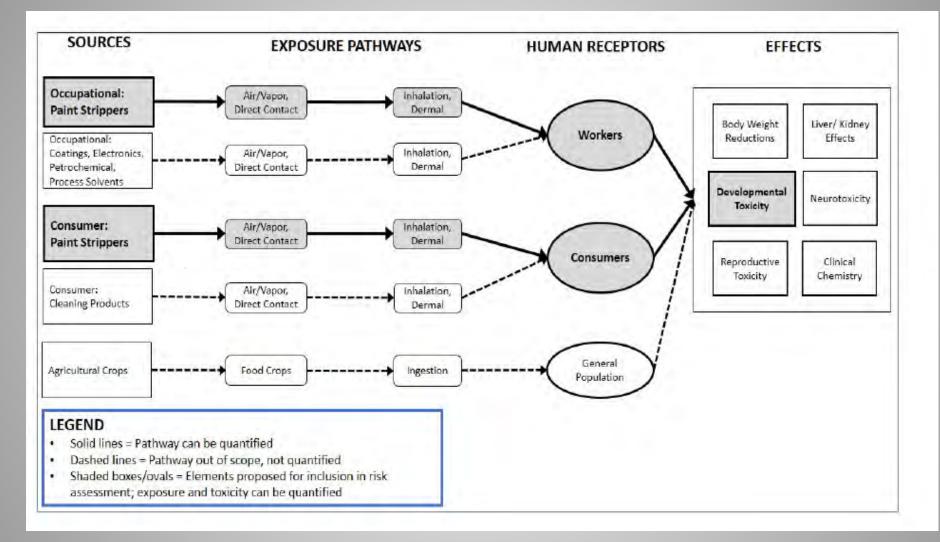
Risk Assessment

How do we apply tox/epi to exposure scenarios and critical windows of vulnerability

Vulnerable Life Stages and Unique Exposure Patterns Present a Temporal Challenge to Risk Assessment

Life Stages

Risk Assessment

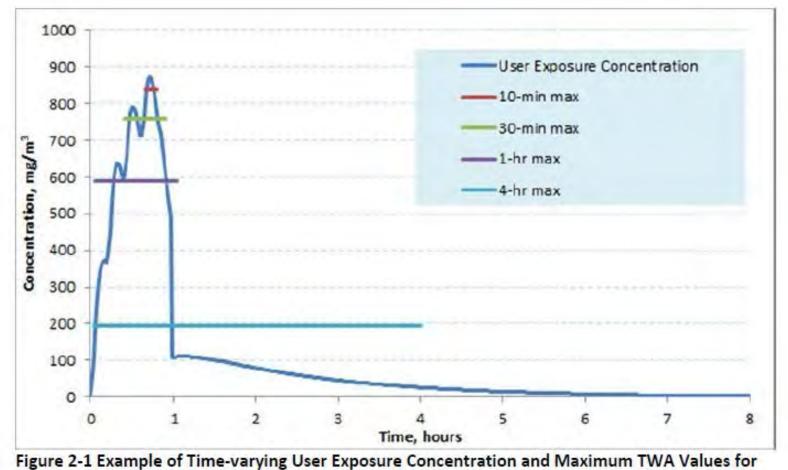

How do we apply tox/epi to exposure scenarios and critical windows of vulnerability

Potential Acute Tox Endpoints

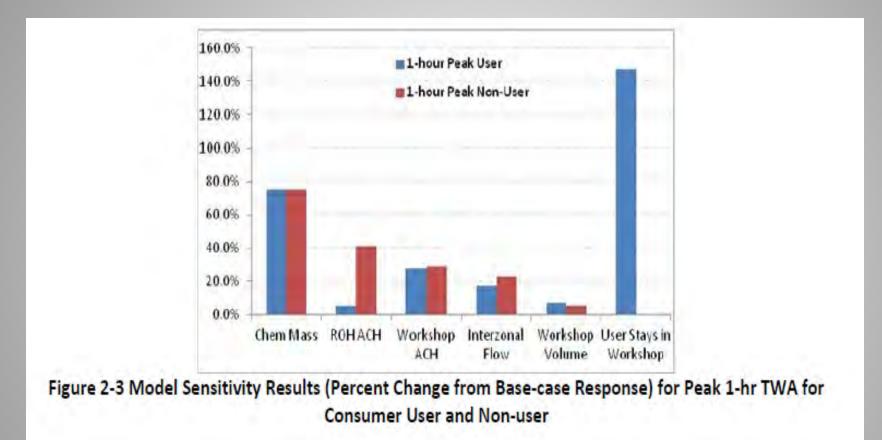
- Acute tox testing LD₅₀ studies
 - Oral: 3605 7725 mg/kg/d
 - $\text{Inh LC}_{50} > 5100 \text{ mg/m3}$
- Neurotoxicity testing
 - Inhalation/gestation high dose, limited testing
 - 3 month dietary study foot splay at high doses
 - Not progressive between 4 and 12 weeks
- Developmental testing
 - Inhalation, oral, dermal studies available
 - Consistent findings of fetal and maternal effects

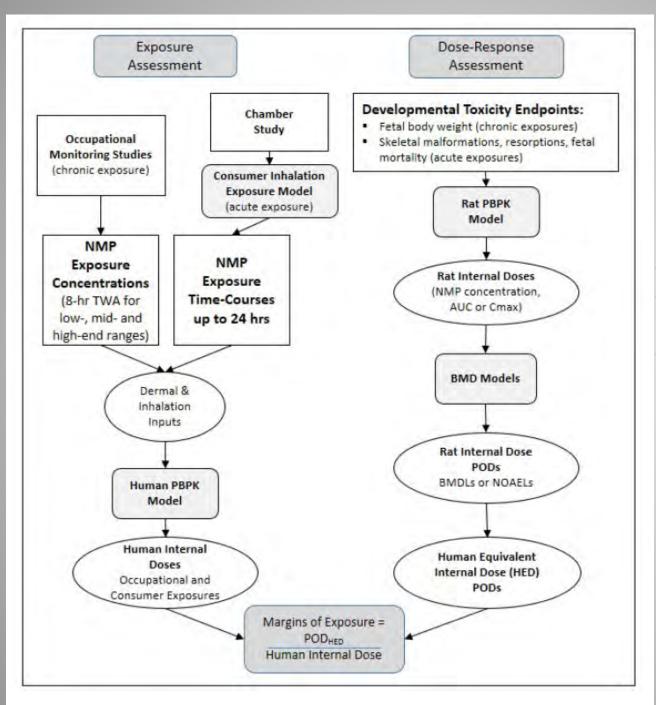
<u>Developmental endpts chosen for both acute and chronic</u>

NMP Analysis Plan, March 2015


NMP Exposures

- Worker exposure Acute and Chronic
 - 3 different stripping scenarios L,M,H
 - 3 different graffitti cleaning scenarios L,M,H
 - Concentrations from NMP occupational literature
 - Dermal penetration modeled
 - PBPK modeling to estimate Cmax and AUC to relate to tox endpoints
 - Subscenarios for different levels of protection
 - Gloves, respirators


NMP Exposures


- Consumer Acute
- Inhalation + Dermal
- 1994 Chamber study of NMP in stripping application
- MCCEM model used to estimate air concs in different zones of house
 - Workshop
 - Bathroom
 - Bystander rest of house
- Scenarios cover various exposure patterns
 Application / Wait / Scrape / Repeat
- Model sensitivity analysis to establish scenarios

MCCEM Results for Consumer/Applicator Air Concentrations

Selected Averaging Times

Rat and Human PBPK models used to estimate Cmax and AUCs

- Pregnant women
- First order metab, exhalation
- Dermal uptake dependent upon NMP conc in product

NMP Hazard Assessment

- Acute POD based upon one developmental endpoint
 - fetal resorptions/mortality
- Chronic POD based upon a different developmental endpoint
 - decreased fetal body weight
- Both endpoints from the same group of studies
- Logic:
 - Resorptions/mortality may occur from one dose during gestation
 - Body wt effect more likely to require repeat dosing

Analysis of Developmental Test Results for Establishing Acute RfD

- RIVM Dutch Public Health Agency
 - (Van Raaij et al. 2003)
 - Desire to derive acute RfDs
 - LD₅₀s not suitable
 - How useful are developmental studies?
 - Haber's Law a possibility: C x T=K or C^x x T=K CalOEHHA for some endpts
 - Consider devel studies for candidate endpoints
 - Certain malformations only require one day of dosing during critical window

RIVM – Van Raijj 2003

- Compared fetotoxicity endpoints for single dose vs multi-dose developmental studies
 - 20 chemicals in database
 - 10-15 chemicals for most endpoints
 - Ratio of NOAEL from 1x to LOAEL for multi-dose
 - Ratio < 1 overlapping dose response, single dose as potent as multi – useful endpt for acute RA
 - Ratio >> 1 single dose less potent

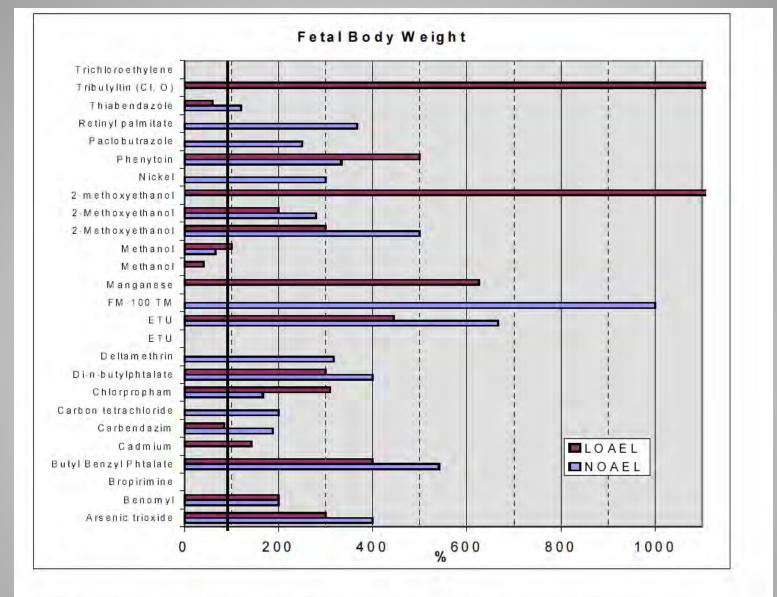


Figure 5. Single dose and repeated dose comparison for fetal body weight. Results represent the NOAEL_{single} and LOAEL_{single} values expressed as percentage of the corresponding NOAEL and LOAEL values from repeated dose experiments. The solid line marks the 100% (i.e. no difference)

Table 4. NLR results for fetal body weight.

Substance	NLR-value
Carbendazim, Methanol, Thiabendazole	NLR < 1
Benomyl, Cadmium, Chlorpropham, 2-ME (oral-mice).	$1 \leq NLR < 2$
Arsenic trioxide, BBP, DBP, ETU (oral- hamster), 2-ME (oral-rat), Phenytoin,	$2 \leq NLR < 3$
FM-100, 2-ME (derm-rat)	$NLR \ge 3$

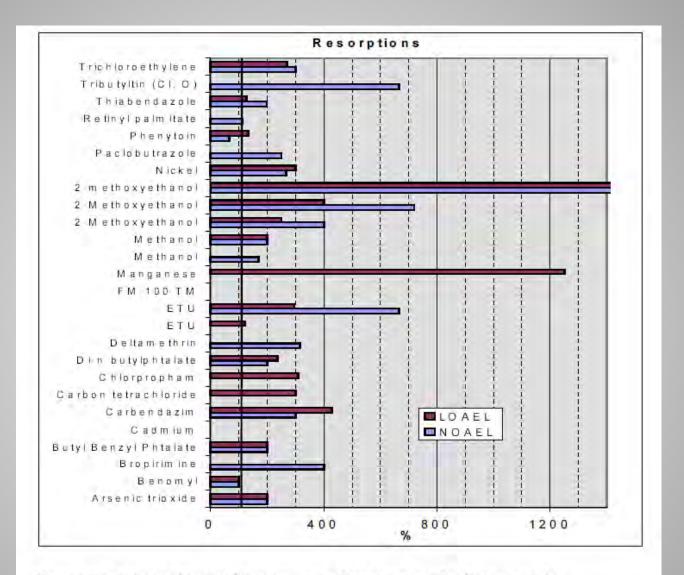


Figure 4. Single dose and repeated dose comparison for resorptions. Results represent the $NOAEL_{single}$ and $LOAEL_{single}$ values expressed as percentage of the corresponding NOAEL and LOAEL values from repeated dose experiments. The solid line marks the 100% (i.e. no difference)

Table 3. NLR results for resorptions

Substance	NLR-value
Benomyl, phenytoin	NLR < 1
Arsenic trioxide, BBP, Carbendazim, Chlorpropham, DBP, Methanol (oral-rat), Methanol (inhal-mice), Thiabendazole	$1 \le NLR \le 2$
Bropirimine, ETU (oral-hamster), 2-ME (oral-rat), Nickel, Trichloroethylene	$2 \le NLR < 3$
2-ME (oral-mice), 2-ME (derm-rat),	$NLR \ge 3$

Summary of Van Raiij 2003 RIVM Report

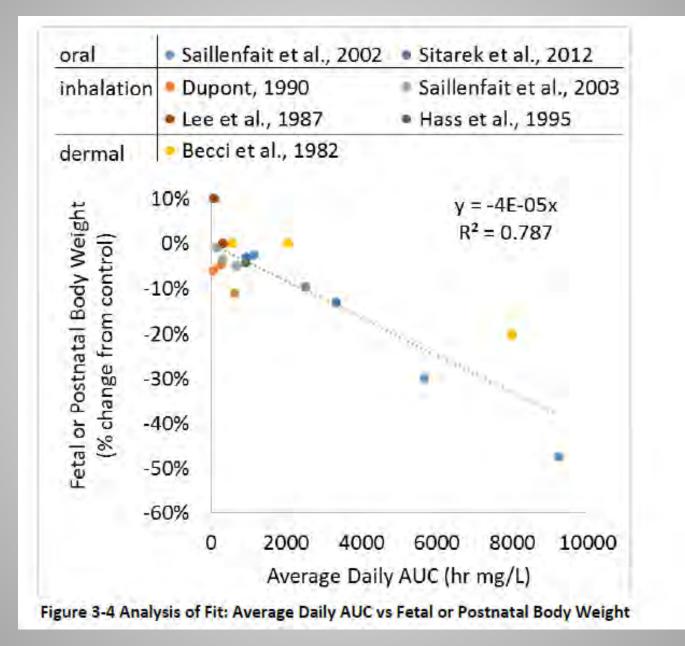
Endpoint	NLR <2	Recommend for Acute RA?
Maternal Toxicity	4/15	No
Fetal Weight	7/15	No
Malformations/ Variants	8/15	Yes
Specific Malforms Hydronephrosis Cleft palate	2/3 4/5	Yes Yes
Resorptions	10/17	Yes

Conclusion: use of a guidelines (repeat dose) developmental NOAEL to estimate acute (single day) NOAEL is conservative but reasonable approach in some cases

Other Acute Guidelines

- ATSDR acute MRLs 1-14 day basis
 - Developmental endpoints used
- California OEHHA acute RELs 1 hr basis
 - Developmental endpoints used
 - Older approach acute REL from devel dose/response
 - » time frame for REL matches the hrs/day of exposure
 - E.g., a gestation study of 4 hrs/day x 13 days
 - Derive a 4 hr REL a single day may have produced the effect
 - Since 2008 all acute RELs are 1 hr basis
 - » no time adjustment even 1 hr of exposure might produce the effect

Other Possible Acute Endpoints


- Solecki et al. 2005, Acute RfDs for Pesticides
 - Hematotox: metHb, hemolytic anemia
 - Immunotox, if conceivable from one exposure
 - Acute neurotox, including acetylcholinesterase inhibition
 - Liver/kidney tox
 - If seen in single dose or early in repeat studies
 - Endocrine effects
 - If seen in single dose or early in repeat studies

NMP Developmental Data for Acute and Chronic Endpoint Selection

Table 3-3 NMP Studies with Evidence for Developmental Toxicity

	Study	Fetal Weight GD 20 - PND 1	Pup Weight PND 4	Pup Weight PND 21	Fetal Mortality (multiple metricsª)	Pup Mortality PND 4	Pup Mortality PND 21	Incomplete Ossification	Skeletal Malformations
17	Sitarek et al., 2012	<u>.</u>	4	\downarrow	1	1	1	NA	NA
ORAL STUDIES	Sitarek et al., 2008	NA	NA	NA	1.1.2	Ŷ	1.	NA	NA
	NMP Producers Group, 1999a		4	*	1	1	1		_
STU	NMP Producers Group, 1999b		¥	\downarrow	1	1	1		
	Saillenfait et al., 2002	4	NA	NA	1	NA	NA	1	1
	Exxon, 1992	↓							
	Saillenfait et al., 2003	4	NA	NA	24	NA	NA	(
NOL	Hass et al.,1995	4	NA	NA	↑	NA	NA	1	
STUDIES	Hass et al., 1994	4	4	*		1948 I	1.49	NA	NA
HN S	DuPont, 1990	4	4	*	1₽		e e	1	1
2	Lee et al., 1987		NA		1.1.	NA			
DERMAL	Becci et al., 1982	¥	NA	NA	Ť	NA	NA	Ť	1
	 May be based Statistically signal NA = Not Asses 	gnificant increase f	ost-implantation for p = 0.1		at birth or decreased	live pups at birth	din e		

NMP Dose Response Analysis for Chronic Endpoint

NMP Dose Response Analysis for Acute Exposure

Table 3-4 Summary of Derivation of the PODs for Fetal Resorptions and Fetal Mortality Following Acute Exposure to NMP

Endpoint and			BMR	BMD Internal dose	BMDL Internal dose	POD	
reference (exposure duration/route)	Dose Metric	Model*				Internal dose	Equivalent administered dose (route)*
Resorptions	_				_		
Saillenfait et al. 2002 and 2003	C _{max} (mg/L)	Hill	1% RD	429	216	216	218 mg/kg bw/day (oral)
(GD 6-20, oral and inhalation)	AUC (hr mg/L)	Power	1% RD	3343	2128	2128	217 mg/kg bw/day (oral)
Becci et al., 1982 (GD 6-15, dermal)		NOAEL = 2	662	237 mg/kg bw/day (dermal) 612 mg/kg bw/day (oral) ^b			
Fetal Mortality							
Sitarek et al., 2012 (GD1-PND1, oral)	C _{max} (mg/L)	No model selected ^e	1% RD	N/A	N/A	N/A	264 mg/kg bw/day (oral)
(ODI THUDI, OTAI)	NOAEL = 450 mg/kg bw/day					265	(oral)

NMP Acute RA - Consumer

- Fetal Resorption Endpoint
- Exposure Cmax for consumer scenarios
- MOE = Cmax Resorption/Cmax Consumer
 - Assumes that resorption risk is reflected by peak exposure on any of the dosing days
 - Intensity of exposure rather than total exposure
 - Does not say that one hour of peak exposure can cause resorptions
 - MOEs judge whether 1 day exposure a devel risk
 - MOE < 30 did not occur in any scenario
 - MOE of approx 30 occurred in bathtub refinishing scenario

NMP Chronic RA - Worker

- Fetal Body Wt Endpoint
- Exposure AUC for worker scenarios 8 hr basis
- MOE = AUC BWt Effect/AUC Worker Exp
 - Assumes that body wt risk is reflected by avg exp on a day of exposure on any of the dosing days
 - Total avg exposure assumed to relate to toxic endpoint
 - MOEs used to judge whether 1 day of exposure can be a developmental risk
 - Yes, MOE < 30 occurred in numerous (>1 hr) scenarios

NMP Acute Risk Worker

- MOE < 30 for a number of scenarios
 - Gloves makes a difference
 - NMP formulation makes a difference
 - Hours/day makes a difference
 - 4 and 8 hr scenarios had elevated risk

Temporality Uncertainties in NMP RA

- Extrapolation of developmental tox POD (Cmax) to a single day of consumer exposure
 - How well does the Cmax relate to resorptions in animal studies?
 - How likely is it that Cmax on one day of consumer use relates to resorptions?
 - Is there a basis for using other averaging times for this endpoint?
 - Oral animal studies and human exposure both have a distinct Cmax
- Extrapolation of developmental POD to chronic endpoint
 - No subchronic to chronic UF used since fetal development considered most vulnerable
 - Would chronic exposure lead to lower POD?
 - Unlikely since NMP t¹/₂ is short (2.5 hrs)

Implications of NMP RA

- Level of Concern/Urgency
 - High: Fetal death severe endpoint
 - Fetal growth an important repeat dose endpoint
 - 1% BMR used making it less likely that an effect will occur near target MOE
- Temporal Issues
 - Will momentary exceedance of Cmax be a fetal health concern?
 - Does it take an hour, a day or longer at Cmax?
 - Would AUC for pd of exposure be a reasonable dose metric for acute?
- Advice to pregnant women handling NMP
 - Protective clothing especially gloves
 - Ventilation / Use outdoors
 - Limited time handling NMP
 - Alternative stripping methods green chemistry solutions
- EPA considering regulatory options

Lessons Learned: Temporality Issues in Setting Tox Values

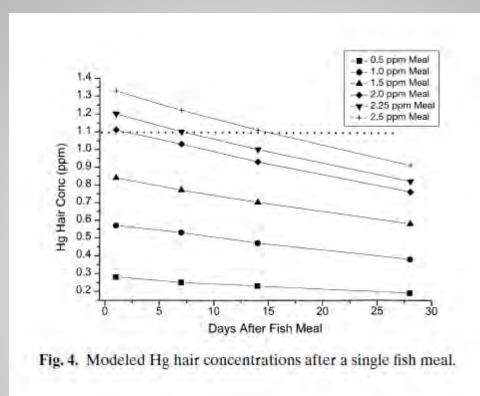
- Consider whether effects may occur after a single dose
 - Van Raaij Assessment certain developmental endpts appropriate for acute RA
 - Other endpoints
 - Narcosis, other acute CNS, irritation effects
 - These effects may or may not progress with repeat dosing
 - Solecki review for other endpoints hematotox, immunotox
 - Dose response from chronic and acute studies may not be that diff if:
 - Chemical has short t¹/₂
 - If effect rapidly reversing
 - Some endpoints are obviously non-acute
 - Cancer
 - Body weight effects
 - Long t¹/₂ chemicals
- Application of an RfD or POD
 - Might it apply to short term and chronic? If so
 - Same RfD for both acute and chronic?
 - Or different UFs from same POD?
 - Or separate tox values for acute vs chronic from one study
 - NMP example

Lessons Learned Utility of PBPK

- Temporality of exposure scenario
 - Model useful to capture differences in exposure pattern in animal tox vs human scenario
 - PBPK model useful to capture different averaging times relevant to acute vs chronic POD
 - Model sensitivity analysis can help pick exposure scenarios
 - Model may be able to determine which parameter (AUC vs Cmax) better correlates to outcome

Implications of RfD/POD that is Applicable to Short Term Exposures

- Risk assessment focuses less on TWA exposures (LADD) and more on peak exposures possible on a single day
 - Important to consider exposure assessment in more detail
 - Take a distributional approach to better understand temporal and interpersonal variability


Implications of RfD/POD that is Applicable to Short Term Exposures

- Potentially more urgent to mitigate exposure
 - Depends upon severity of endpoint and likelihood after one or few exposure periods
 - E.g. Developmental Effects
 - Critical windows of vulnerability
 - Irreversible effect if exposure during this window
 - How long is the vulnerability window?

Related Temporality Examples

- E.G. OctaBDE (-153) RfD:
 - Critical study in mice single dose on PND 10
 - Neurodevelopmental effects in adults
 - Extrapolation from single dose to chronic RfD 3x
 - Should that also be considered an acute RfD?
- E.G. Target Blood Lead (Pb)
 - How long can young children have > 5 ug/dl?
 - IEUBK model allows seasonal averaging
 - Lead/copper rule allows rolling 4 quarter average
- E.G. Mercury short term (fishing season exposure)
 - Evaluation of risk from single fish meal during pregnancy

Development of a Single Fish Meal Advisory for meHg

- TK model used to predict internal dose and hair concentration
- Compare back to hair concentration assoc/with USEPA RfD
- Fish concentration > 2 ppm Do Not Eat advice

Ginsberg and Toal, Risk Analysis, 2000

Possible Panel Questions

- 1. Do we need to review temporality issues with existing RfDs?
 - Consider application to non-chronic scenarios?
 - Type of effect, reversibility of effect, chemical t¹/₂
- 2. What are the cases we might need non-chronic RfDs?
 - Windows of exposure vulnerability
 - Windows of toxicokinetic vulnerability
 - Windows of toxicodynamic vulnerability
- 3. What types of risk assessments and regulations may need an acute focus?
 - Drinking water regs?
 - Air toxics regs?
 - Fish consumption advisories?

Possible Panel Questions

- 4. What data do we need for temporality issues with new RfDs/PODs?
 - More lifestage specific tox studies? Human vs rodent windows of vulnerability
 - Tox studies that better match human exposure scenarios?
 Focus on windows of exposure vulnerability?
 - More PBPK models?
- 5. Is there value to a temporality database?
 - Searchable by endpoints, chemicals to understand relationships between acute and chronic exposure
- 6. How do we bring these issues into epidemiology studies
 - E.G. meHg exposure characterized in different hair segments to document exposure profile during pregnancy