

EPA/635/R-16/001b Final Agency/Interagency Science Discussion Draft www.epa.gov/iris

Toxicological Review of Trimethylbenzenes

(CASRNs 25551-13-7, 95-63-6, 526-73-8, and 108-67-8)

Supplemental Information

June 2016

NOTICE

This document is a **Final Agency/Interagency Science Discussion Draft**. This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. It is being circulated for review of its technical accuracy and science policy implications.

Integrated Risk Information System National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC

DISCLAIMER

This document is a preliminary draft for review purposes only. This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement of recommendation for use.

CONTENTS

APPENDIX A.		NSE TO EXTERNAL PEER REVIEW COMMENTS PROVIDED BY THE CHEMICA IMENT ADVISORY COMMITTEE OF THE SCIENCE ADVISORY BOARD	
APPENDIX B.		H ASSESSMENTS AND REGULATORY LIMITS BY OTHER NATIONAL AND IATIONAL HEALTH AGENCIES	B-1
APPENDIX C.		MATION IN SUPPORT OF HAZARD IDENTIFICATION AND DOSE-RESPONSE SIS	C-1
	C.1.	TOXICOKINETICS	C-1
		C.1.1. Absorption	C-1
		C.1.2. Distribution	C-2
		C.1.3. Metabolism	C-3
		C.1.4. Excretion	C-7
	C.2.	PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODELS	C-7
		C.2.1. Summary of Available Physiologically Based Pharmacokinetic (PBPK) Models for 1,2,4-TMB	C-7
		C.2.2. 1,2,4-TMB PBPK Model Selection	C-14
		C.2.3. Details of Hissink et al. (2007) Model Analysis	C-15
		C.2.4. Summary of Available PBPK models for 1,3,5-TMB or 1,2,3-TME	3C-49
	C.3.	HUMAN STUDIES	C-49
	C.4.	ANIMAL TOXICOLOGY STUDIES	C-61
	C.5.	HUMAN TOXICOKINETIC STUDIES	C-187
	C.6.	ANIMAL TOXICOKINETIC STUDIES	C-201
	C.7.	ANIMAL AND HUMAN TOXICOKINETIC STUDIES	C-228
APPENDIX D.		RESPONSE MODELING FOR THE DERIVATION OF REFERENCE VALUES FOR TS OTHER THAN CANCER AND THE DERIVATION OF CANCER RISK	
	ESTIMA	ATES	
	D.1.	BENCHMARK DOSE (BMD) MODELING SUMMARY	
		D.1.1. Noncancer Endpoints	D-1
REFERENCES	FOR APP	ENDICES	R-1

TABLES

Table B-1.	Other national and international health agency assessments for trimethylbenzenes (TMBs)	B-1
Table C-1.	Measured and calculated partition coefficients for TMB isomers at 37°C	
	PBPK model parameters for 1,2,4-TMB toxicokinetics in humans using the Järnberg	
	and Johanson (1999) model structure	.C-10
Table C-3.	Comparison of rat anatomical and physiological parameters in Hissink et al. (2007) to	
	those of Brown et al. (1997)	.C-18
Table C-4.	Comparison of human anatomical and physiological parameters in Hissink et al.	
	(2007) to those of Williams and Leggett (1989) as reported by Brown et al. (1997)	.C-19
Table C-5.	Comparison of chemical-specific parameters in Hissink et al. (2007) to literature data	.C-20
Table C-6.	Parameter values for the rat and human PBPK models for 1,2,4-TMB used by EPA	.C-26
Table C-7.	Rat 1,2,4-TMB kinetic studies used in model development and testing	.C-27
Table C-8.	Model simulated and experimental measured venous blood concentrations of	
	1,2,4-TMB in male Wistar rats exposed to 1,2,4-TMB	.C-30
Table C-9.	Model simulated and experimental measured tissue concentrations of 1,2,4-TMB in	
	male Wistar rats exposed to 1,2,4-TMB	.C-32
Table C-10). Model simulated and experimental measured concentrations of 1,2,4-TMB in male	
	Sprague-Dawley rats exposed to 100 ppm (492 mg/m ³) 1,2,4-TMB (12 hours/day, for	
	3 days) at the end of exposure or 12 hours after the last exposure	.C-33
Table C-11	Model simulated and experimental measured concentrations of 1,2,4-TMB in male	
	Sprague-Dawley rats exposed to 1,2,4-TMB at the end of 12-hour exposure	.C-34
Table C-12	2. Model simulated and experimental measured concentrations of 1,2,4-TMB in male	
	Sprague-Dawley rats exposed to 1,000 ppm (4,920 mg/m ³) 1,2,4-TMB	
	(12 hours/day, for 14 days) at the end of exposure	
	 Human kinetic studies of 1,2,4-TMB used in model validation 	.C-36
Table C-14	Parameter sensitivity for venous blood 1,2,4-TMB concentration in rats exposed to	
	1,2,4-TMB via inhalation	.C-45
Table C-15	5. Parameter sensitivity for steady-state venous blood 1,2,4-TMB concentration in	
	humans exposed to 1,2,4-TMB via inhalation	.C-47
Table C-16	5. Characteristics and quantitative results for epidemiologic studies of TMB and	
	related compounds and mixtures	
	7. Characteristics and quantitative results for Adenuga et al. (2014)	
	8. Characteristics and quantitative results for Bättig et al. (1958)	
	 Characteristics and quantitative results for Carrillo et al. (2014) 	
). Characteristics and quantitative results for Clark et al. (1989)	
	. Characteristics and quantitative results for Douglas et al. (1993)	
	2. Characteristics and quantitative results for Gralewicz et al. (1997b)	
	8. Characteristics and quantitative results for Gralewicz et al. (1997a)	
	I. Characteristics and quantitative results for Gralewicz and Wiaderna (2001)	
	5. Characteristics and quantitative results for Janik-Spiechowicz et al. (1998)	
	5. Characteristics and quantitative results for Juran et al. (2014)	
	7. Characteristics and quantitative results for Koch Industries (1995b)	
	 Characteristics and quantitative results for Korsak et al. (1995) Characteristics and quantitative results for Korsak and Rydzyński (1996) 	
1 abie C-30	0. Characteristics and quantitative results for Korsak et al. (1997)	-172

Table C-31. Characteristics and quantitative results for Korsak et al. (2000a)	
Table C-32. Characteristics and quantitative results for Korsak et al. (2000b)	
Table C-33. Characteristics and quantitative results for Lammers et al. (2007)	
Table C-34. Characteristics and quantitative results for Lutz et al. (2010)	
Table C-35. Characteristics and quantitative results for Maltoni et al. (1997)	
Table C-36. Characteristics and quantitative results for Mckee et al. (1990)	
Table C-37. Characteristics and quantitative results for Mckee et al. (2010)	
Table C-38. Characteristics and quantitative results for Saillenfait et al. (2005)	
Table C-39. Characteristics and quantitative results for Schreiner et al. (1989)	
Table C-40. Characteristics and quantitative results for Tomas et al. (1999a)	
Table C-41. Characteristics and quantitative results for Tomas et al. (1999b)	
Table C-42. Characteristics and quantitative results for Tomas et al. (1999c)	
Table C-43. Characteristics and quantitative results for Wiaderna et al. (1998)	
Table C-44. Characteristics and quantitative results for Wiaderna et al. (2002)	
Table C-45. Characteristics and quantitative results for Wiglusz et al. (1975b)	
Table C-46. Characteristics and quantitative results for Wiglusz et al. (1975a)	
Table C-47. Characteristics and quantitative results for Järnberg et al. (1996)	
Table C-48. Characteristics and quantitative results for Järnberg et al. (1997a)	
Table C-49. Characteristics and quantitative results for Järnberg et al. (1997b)	
Table C-50. Characteristics and quantitative results for Järnberg et al. (1998)	
Table C-51. Characteristics and quantitative results for Jones et al. (2006)	
Table C-52. Characteristics and quantitative results for Kostrzewski et al. (1997)	
Table C-53. Characteristics and quantitative results for Dahl et al. (1988)	
Table C-54. Characteristics and quantitative results for Eide and Zahlsen (1996)	
Table C-55. Characteristics and quantitative results for Huo et al. (1989)	
Table C-56. Characteristics and quantitative results for Mikulski and Wiglusz (1975)	
Table C-57 Characteristics and quantitative results for Swiercz et al. (2002)	
Table C-58. Characteristics and quantitative results for Swiercz et al. (2003)Table C-59. Characteristics and quantitative results for Swiercz et al. (2006)	
Table C-59. Characteristics and quantitative results for Swiercz et al. (2006) Table C-60. Characteristics and quantitative results for Świercz et al. (2016)	
Table C-60. Characteristics and quantitative results for Swiercz et al. (2016) Table C-61. Characteristics and quantitative results for Tsujimoto et al. (2000)	
Table C-61. Characteristics and quantitative results for Tsujimoto et al. (2000) Table C-62. Characteristics and quantitative results for Tsujimoto et al. (2005)	C-221
Table C-63. Characteristics and quantitative results for Tsujino et al. (2003)	
Table C-64. Characteristics and quantitative results for Zahlsen et al. (1990)	
Table C-65. Characteristics and quantitative results for Zahlsen et al. (1990) Table C-65. Characteristics and quantitative results for Zahlsen et al. (1992)	
Table C-66. Characteristics and quantitative results for Meulenberg and Vijverberg (2000)	
Table D-1. Noncancer endpoints selected for dose-response modeling for 1,2,3-TMB,	
1,2,4-TMB, and 1,3,5-TMB	ר_2
Table D-2. Summary of BMD modeling results for increased latency to paw-lick in male Wistar	D-Z
rats exposed to 1,2,4-TMB by inhalation for 3 months; BMR = 1 SD change from	
control mean (constant variance) (Korsak and Rydzyński, 1996)	D-1
Table D-3. Summary of BMD modeling results for increased latency to paw-lick in male Wistar	
rats exposed to 1,2,4-TMB by inhalation for 3 months; BMR = 1 SD change from	
control mean (modeled variance) (Korsak and Rydzyński, 1996)	D-5
Table D-4. Summary of BMD modeling results for increased latency to paw-lick in male Wistar	
rats exposed to 1,2,4-TMB by inhalation for 3 months; BMR = 1 SD change from	
control mean (constant variance, high dose dropped) (Korsak and Rydzyński, 1996)	D-6

Table D-5.	Summary of BMD modeling results for increased latency to paw-lick in male Wistar
	rats exposed to 1,2,3-TMB by inhalation for 3 months; BMR = 1 SD change from
	control mean (constant variance) (Korsak and Rydzyński, 1996) D-8
Table D-6.	Summary of BMD modeling results for increased latency to paw-lick in male Wistar
	rats exposed to 1,2,3-TMB by inhalation for 3 months; BMR = 1 SD change from
	control mean (modeled variance) (Korsak and Rydzyński, 1996) D-9
Table D-7.	Summary of BMD modeling results for increased latency to paw-lick in male Wistar
	rats exposed to 1,2,3-TMB by inhalation for 3 months; BMR = 1 SD change from
	control mean (constant variance, high dose dropped) (Korsak and Rydzyński, 1996) D-10
Table D-8.	Summary of BMD modeling results for increased latency to paw-lick in male Wistar
	rats exposed to 1,2,3-TMB by inhalation for 3 months; BMR = 1 SD change from
	control mean (modeled variance, high dose dropped) (Korsak and Rydzyński, 1996) D-11
Table D-9.	Summary of BMD modeling results for decreased RBCs in male Wistar rats exposed
	to 1,2,4-TMB by inhalation for 3 months; BMR = 1 SD change from control mean
	(constant variance) (Korsak et al., 2000a) D-13
Table D-10	. Summary of BMD modeling results for decreased clotting time in female Wistar rats
	exposed to 1,2,4-TMB by inhalation for 3 months; BMR = 1 SD change from control
	mean (constant variance) (Korsak et al., 2000a) D-16
Table D-11	. Summary of BMD modeling results for decreased clotting time in female Wistar rats
	exposed to 1,2,4-TMB by inhalation for 3 months; BMR = 1 SD change from control
	mean (modeled variance) (Korsak et al., 2000a) D-17
Table D-12	. Summary of BMD modeling results for decreased clotting time in female Wistar rats
	exposed to 1,2,4-TMB by inhalation for 3 months; BMR = 1 SD change from control
	mean (constant variance, high dose dropped) (Korsak et al., 2000a) D-18
Table D-13	. Summary of BMD modeling results for decreased clotting time in female Wistar rats
	exposed to 1,2,4-TMB by inhalation for 3 months; BMR = 1 SD change from control
	mean (modeled variance, high dose dropped) (Korsak et al., 2000a) D-19
Table D-14	. Summary of BMD modeling results for decreased segmented neutrophils in male
	Wistar rats exposed to 1,2,3-TMB by inhalation for 3 months; BMR = 1 SD change
	from control mean (constant variance) (Korsak et al., 2000a) D-20
Table D-15	. Summary of BMD modeling results for decreased segmented neutrophils in female
	Wistar rats exposed to 1,2,3-TMB by inhalation for 3 months; BMR = 1 SD change
	from control mean (constant variance) (Korsak et al., 2000a) D-23
Table D-16	. Summary of BMD modeling results for increased reticulocytes in female Wistar rats
	exposed to 1,2,3-TMB by inhalation for 3 months; BMR = 1 SD change from control
	mean (constant variance) (Korsak et al., 2000a) D-26
Table D-17	. Summary of BMD modeling results for decreased fetal weight in male Sprague-
	Dawley rat pups exposed to 1,2,4-TMB by inhalation on GDs 6–20; BMR = 1 SD or
	5% change from control mean (constant variance) (Saillenfait et al., 2005) D-29
Table D-18	. Summary of BMD modeling results for decreased fetal weight in male Sprague-
	Dawley rat pups exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD
	change from control mean (constant variance) (Saillenfait et al., 2005) D-32
Table D-19	. Summary of BMD modeling results for decreased fetal weight in male Sprague-
	Dawley rat pups exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD
	change from control mean (modeled variance) (Saillenfait et al., 2005) D-33

Table D-20.	Summary of BMD modeling results for decreased fetal weight in male Sprague-
	Dawley rat pups exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD
	change from control mean (constant variance, high dose dropped) (Saillenfait et al.,
T D 04	2005)
Table D-21.	Summary of BMD modeling results for decreased fetal weight in male Sprague-
	Dawley rat pups exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD
	change from control mean (modeled variance, high dose dropped) (Saillenfait et al., 2005) D-35
Table D-22.	Summary of BMD modeling results for decreased fetal weight in female Sprague-
	Dawley rat pups exposed to 1,2,4-TMB by inhalation on GDs 6–20; BMR = 1 SD or
	5% change from control mean (constant variance) (Saillenfait et al., 2005) D-36
Table D-23.	Summary of BMD modeling results for decreased fetal weight in female Sprague-
	Dawley rat pups exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD
	change from control mean (constant variance) (Saillenfait et al., 2005) D-39
Table D-24.	Summary of BMD modeling results for decreased fetal weight in female Sprague-
	Dawley rat pups exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD
	change from control mean (modeled variance) (Saillenfait et al., 2005) D-40
Table D-25.	Summary of BMD modeling results for decreased fetal weight in female Sprague-
	Dawley rat pups exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD
	change from control mean (constant variance, high dose dropped) (Saillenfait et al.,
	2005) D-41
Table D-26.	Summary of BMD modeling results for decreased fetal weight in female Sprague-
	Dawley rat pups exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD
	change from control mean (modeled variance, high dose dropped) (Saillenfait et al.,
	2005)
Table D-27.	Summary of BMD modeling results for decreased dam weight gain in female
	Sprague-Dawley rats exposed to 1,2,4-TMB by inhalation on GDs 6–20; BMR = 1 SD
Table D 20	or 10% change from control mean (constant variance) (Saillenfait et al., 2005) D-43 Summary of BMD modeling results for decreased dam weight gain in female
Table D-26.	Sprague-Dawley rats exposed to 1,2,4-TMB by inhalation on GDs 6–20; BMR = 1 SD
	or 10% change from control mean (modeled variance) (Saillenfait et al. 2005) D-44
Tahle D-29	or 10% change from control mean (modeled variance) (Saillenfait et al., 2005) D-44 Summary of BMD modeling results for decreased dam weight gain in female
Table D-29.	Summary of BMD modeling results for decreased dam weight gain in female
Table D-29.	Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD
	Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance) (Saillenfait et al., 2005)D-47
	Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance) (Saillenfait et al., 2005) D-47 Summary of BMD modeling results for decreased dam weight gain in female
	Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance) (Saillenfait et al., 2005) D-47 Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD
Table D-30.	Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance) (Saillenfait et al., 2005) D-47 Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (modeled variance) (Saillenfait et al., 2005) D-48
Table D-30.	Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance) (Saillenfait et al., 2005) D-47 Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (modeled variance) (Saillenfait et al., 2005)
Table D-30.	Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance) (Saillenfait et al., 2005) D-47 Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (modeled variance) (Saillenfait et al., 2005) D-48 Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD
Table D-30.	Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance) (Saillenfait et al., 2005) D-47 Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (modeled variance) (Saillenfait et al., 2005) D-48 Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (modeled variance) (Saillenfait et al., 2005)
Table D-30. Table D-31.	Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance) (Saillenfait et al., 2005) D-47 Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (modeled variance) (Saillenfait et al., 2005) D-48 Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (modeled variance) (Saillenfait et al., 2005) D-48 Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance, high dose dropped) (Saillenfait et al., 2005)
Table D-30. Table D-31.	Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance) (Saillenfait et al., 2005) D-47 Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (modeled variance) (Saillenfait et al., 2005) D-48 Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (modeled variance) (Saillenfait et al., 2005)
Table D-30. Table D-31.	Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance) (Saillenfait et al., 2005) D-47 Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (modeled variance) (Saillenfait et al., 2005) D-48 Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance, high dose dropped) (Saillenfait et al., 2005)
Table D-30. Table D-31.	Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance) (Saillenfait et al., 2005)
Table D-30. Table D-31. Table D-32.	Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance) (Saillenfait et al., 2005)
Table D-30. Table D-31. Table D-32.	Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance) (Saillenfait et al., 2005)
Table D-30. Table D-31. Table D-32.	Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance) (Saillenfait et al., 2005)

Table D-34. Summary of BMD modeling results for increased monocytes in male Wistar rats	
exposed to 1,3,5-TMB by gavage for 13 weeks; BMR = 1 SD change from control	
mean (modeled variance) (Adenuga et al., 2014)	D-52

FIGURES

Figure C-1.	Metabolic scheme for 1,2,4-TMB.	C-5
Figure C-2.	Metabolic scheme for 1,2,3-TMB.	C-6
Figure C-3.	Metabolic scheme for 1,3,5-TMB.	C-6
Figure C-4.	Physiologically based toxicokinetic model for 1,2,4-TMB in humans	C-8
Figure C-5.	Schematic of human model structure for 1,2,4-TMB using the NLE-based model	
	approach	C-12
Figure C-6.	Schematic of rat and human PBPK model structure.	C-14
Figure C-7.	Simulated and measured blood concentrations of 1,2,4,-TMB in rats exposed to 600,	
	2,400, or 4,800 mg/m ³ white spirit for 8 hours	C-22
Figure C-8.	Simulated and measured brain concentrations of 1,2,4-TMB in rats exposed to 600,	
	2,400, or 4,800 mg/m ³ white spirit for 8 hours	C-23
Figure C-9.	Simulated and measured exhaled air concentrations of 1,2,4-TMB in three	
	volunteers exposed to 600 mg/m ³ white spirit for 4 hours.	C-24
Figure C-10	. Comparisons of model predictions to measured blood concentrations in rats	
	exposed to 1,2,4-TMB in white spirit (Hissink et al., 2007) (a) before and (b) after	
	numerical optimization.	C-28
Figure C-11	. Comparisons of model predictions to measured brain concentrations in rats	
	exposed to 1,2,4-TMB in white spirit (Hissink et al., 2007) using model parameters	
	optimized for fit to Hissink et al. (2007) rat blood data	C-29
Figure C-12	. Comparisons of model predictions to measured venous blood concentrations by	
	Swiercz et al. (2003) in rats repeatedly exposed to 1,2,4-TMB (a) before and (b) after	
	numerical optimization.	C-30
Figure C-13	. Comparisons of model predictions to measured rat venous blood concentrations by	
	Swiercz et al. (2002) in acutely exposed rats (a) during and (b) after exposure	C-31
Figure C-14	. Comparisons of model predictions to measured human venous blood	
	concentrations of Kostrzewski et al. (1997) in volunteers exposed to 154 mg	
	1,2,4-TMB/m ³ for 8 hours.	C-37
Figure C-15	. Comparisons of model predictions to measured human venous blood	
	concentrations in volunteers exposed to 2 or 25 ppm (~10 or 123 mg/m ³) 1,2,4-TMB	
	for 2 hours while riding a bicycle (50 W) (Järnberg et al., 1998, 1997a; Järnberg et	
	al., 1996)	C-38
Figure C-16	Comparisons of model predictions to measured (a) human venous blood and (b)	
	end of exposure exhaled air 1,2,4-TMB in volunteers exposed to 100 ppm white	c 20
5 :	spirit with 7.8% 1,2,4-TMB (38.4 mg/m ³ 1,2,4-TMB) (Hissink et al., 2007).	C-38
Figure C-17	. Time course of NSCs of moderately sensitive chemical-specific parameters	
	(response: venous blood concentration) in rats exposed to (a) 25 ppm (123 mg/m ³) or (b) 250 ppm (1 220 mg/m ³) of 1.2.4 TMP via inhelation for C hours (Surjetor et al.	
	or (b) 250 ppm (1,230 mg/m ³) of 1,2,4-TMB via inhalation for 6 hours (Swiercz et al.,	c 10
Figure C 10	2003; Swiercz et al., 2002).	C-40
rigure C-18	Effect of route of exposure and dose rate on steady-state venous blood	C 10
	concentration (t = 1,200 hours) for continuous human exposure to 1,2,4-TMB	C-49
rigure D-1.	Plot of mean response by dose for increased latency to paw-lick in male Wistar rats,	
	with fitted curve for Linear model with constant variance (Korsak and Rydzyński,	DС
	1996)	. D-0

DRAFT-DO NOT CITE OR QUOTE

Figure D-2.	Plot of mean response by dose for increased latency to paw-lick in male Wistar rats, with fitted curve for Linear model with constant variance (Korsak and Rydzyński,	
	1996) D)-11
Figure D-3.	Plot of mean response by dose for decreased RBCs in male Wistar rats, with fitted	
	curve for Exponential 2 model with constant variance (Korsak and Rydzyński, 1996) D)-14
Figure D-4.	Plot of mean response by dose for decreased segmented neutrophils in male Wistar	
	rats, with fitted curve for Exponential M2 model with constant variance (Korsak et	
	al., 2000a) D)-21
Figure D-5.	Plot of mean response by dose for decreased segmented neutrophils in female	
	Wistar rats, with fitted curve for Hill model with constant variance (Korsak et al.,	
	2000a) D)-24
Figure D-6.	Plot of mean response by dose for increased reticulocytes in female Wistar rats,	
	with fitted curve for Linear model with constant variance (Korsak et al., 2000a) D)-27
Figure D-7.	Plot of mean response by dose for decreased fetal weight in male Sprague-Dawley	
	rat pups, with fitted curve for Linear model with constant variance (Saillenfait et al.,	
	2005) D)-30
Figure D-8.	Plot of mean response by dose for decreased fetal weight in male Sprague-Dawley	
	rat pups, with fitted curve for Linear model with constant variance (Saillenfait et al.,	
	2005) D)-30
Figure D-9.	Plot of mean response by dose for decreased fetal weight in female Sprague-Dawley	
	rat pups, with fitted curve for Linear model with constant variance (Saillenfait et al.,	
	2005) D)-37
Figure D-10	 Plot of mean response by dose for decreased fetal weight in female Sprague- 	
	Dawley rat pups, with fitted curve for Linear model with constant variance	
	(Saillenfait et al., 2005) D)-37
Figure D-11	. Plot of mean response by dose for decreased dam weight gain in female Sprague-	
	Dawley rats, with fitted curve for Polynomial 3 model with modeled variance	
	(Saillenfait et al., 2005)D)-45
Figure D-12	. Plot of mean response by dose for decreased dam weight gain in female Sprague-	
-	Dawley rats, with fitted curve for Polynomial 3 model with modeled variance	
	(Saillenfait et al., 2005))-45
Figure D-13	Plot of mean response by dose for increased monocytes in male Wistar rats, with	
-	fitted curve for Exponential M4 model with modeled variance (Adenuga et al.,	
	2014) D)-53

ABBREVIATIONS

AAQC	Ambient air quality criterion
ABR	amount of 1,2,4-TMB in the brain
ADME	absorption, distribution, metabolism,
	and excretion
AEGL	Acute Exposure Guideline Level
AIC	Akaike Information Criterion
ALT	alanine aminotransferase
ANCOVA	analysis of covariance
ANOVA	analysis of variance
AP	alkaline phosphatase
AST	aspartate aminotransferase
AUC	area under the curve
BAL	bronchoalveolar lavage
BMCL	lower confidence limit on the
	benchmark concentration
BMD	benchmark dose
BMDL	lower confidence limit on the
	benchmark dose
BMDS	benchmark dose software
BMR	benchmark response
BrdU	5-bromo-2'-deoxyuridine
BUN	blood urea nitrogen
BW	body weight
CAAC	Chemical Assessment and Advisory
	Committee
CASRN	Chemical Abstracts Service Registry
	Number
CE	cloning efficiency
СНО	Chinese hamster ovary
CI	confidence interval
CMIX	average of arterial and venous blood
	concentrations
CNS	central nervous system
CV	concentration in venous blood
CVS	concentration in venous blood exiting
	slowly perfused tissues
CXEQ	concentration in exhaled breath
CYP450	cytochrome P450
DAF	dosimetric adjustment factor
df	degree of freedom
DMBA	dimethylbenzoic acid
DMHA	dimethylhippuric acid
DMSO	dimethylsulfoxide
DNA	deoxyribonucleic acid
EC ₅₀	half maximal effective concentration
EEG	electroencephalogram
EPA	U.S. Environmental Protection Agency
fMRI	functional magnetic resonance imaging
GABA	gamma-aminobutyric acid
GD	gestational day
GGT	gamma-glutamyl transpeptidase
	G G

Hb/g-A	animal blood:gas partition coefficient
Hb/g-H	human blood:gas partition coefficient
HEC	human equivalent concentration
HED	human equivalent dose
HERO	Health and Environmental Research
	Online
HFAN	High-Flash Aromatic Naphtha
HLVOC	highly lipophilic volatile organic
	chemical
HSDB	Hazardous Substances Data Bank
IL-8	interleukin-8
i.p.	intraperitoneal
IRIS	Integrated Risk Information System
JP-8	jet propulsion fuel 8
КССТ	kaolin-cephalin coagulation time
Km	Michaelis-Menten constant
LLF	log-likelihood function
LOAEL	lowest-observed-adverse-effect level
MCH	mean corpuscular hemoglobin
MCHC	mean corpuscular hemoglobin
MON	concentration
MCV	mean cell volume
MMS	methyl methanesulfate
MOE	Ministry of the Environment
NIOSH	National Institute for Occupational
NLE	Safety and Health
NLE NLM	neutral lipid equivalent National Library of Medicine
NMDA	N- methyl-D-aspartate
NOAEL	no-observed-adverse-effect level
NOEL	no-observed-effect level
NRC	National Research Council
NSC	normalized sensitivity coefficient
OSHA	Occupational Safety and Health
00111	Administration
<i>p</i> -value	probability value
PBPK	physiologically based pharmacokinetic
	(model)
PCV	packed cell volume
pg	picogram
PMR	proportional mortality ratio
PND	postnatal day
POD	point of departure
POD _{ADJ}	duration-adjusted POD
ppm	parts per million
QPC	alveolar ventilation rate
OR	odds ratio
QRTOTC	sum of fractional flows to rapidly
0.000	perfused tissues, liver, and brain
QSTOTC	sum of fractional flows to slowly
	perfused tissues

This document is a draft for review purposes only and does not constitute Agency policy.

RBC	red blood cell
RD	relative deviation
RD50	50% respiratory rate decrease
REL	recommended exposure limit
RfC	reference concentration
RfD	reference dose
ROS	reactive oxygen species
SAB	Science Advisory Board
SCE	sister chromatid exchange
SCI	Science Citation Index
SD	standard deviation
SDH	sorbitol dehydrogenase
SE	standard error
SMR	standardized mortality ratio
SOA	secondary organic aerosol
SVEP	short-latency visual evoked potential
SWD	spike-wave discharge
TLV	threshold limit value
TMB	trimethylbenzene

TOXLINE	Toxicology Literature Online
TWA	time-weighted average
UF	uncertainty factor
UFA	interspecies uncertainty factor
\mathbf{UF}_{H}	intraspecies uncertainty factor
UFs	subchronic-to-chronic uncertainty
	factor
$\rm UF_L$	LOAEL-to-NOAEL uncertainty factor
UFd	database deficiency uncertainty factor
VEP	visual evoked potential
V_{max}	½ maximal enzyme rate
VOC	volatile organic compound
W	watt
WBC	white blood cell
WOS	Web of Science

 $\begin{array}{ll} WOS & Web \mbox{ of Science} \\ \chi^2 & chi\mbox{-squared} \end{array}$

APPENDIX A. RESPONSE TO EXTERNAL PEER REVIEW COMMENTS PROVIDED BY THE CHEMICAL ASSESSMENT ADVISORY COMMITTEE OF THE SCIENCE ADVISORY BOARD

1 The *Toxicological Review of Trimethylbenzenes* (TMBs) has undergone a formal external 2 peer review by the Chemical Assessment Advisory Committee (CAAC) of the U.S. Environmental 3 Protection Agency (EPA) Science Advisory Board (SAB). An external peer-review workshop was 4 held June 14–16, 2014. The CAAC Panel was tasked with providing written answers to general 5 questions on the overall assessment and on chemical-specific questions in areas of scientific 6 controversy or uncertainty; these comments and answers were then provided to EPA in the form of 7 a Peer Review Report. The following sections present the CAAC Panel's comments on the external 8 peer review draft of the *Toxicological Review of Trimethylbenzenes*; in most cases, the CAAC Panel 9 comments were paraphrased for presentation, but in some situations, the Appendix uses direct 10 language from the CAAC. Each CAAC Panel comment is followed by an EPA response reflecting 11 consideration of the comment and revisions made to the Toxicological Review in light of that 12 comment. Given the overall nature of the CAAC comments, based on EPA policy guidance, no 13 additional review by the CAAC is warranted.

14 General Charge Questions

15 SAB Comment 1: In providing comments on the first four charge questions related to how 16 the Agency has implemented recommendations provided by the National Research Council (NRC), 17 the SAB noted that the Agency was implementing a phased approach to address the NRC 18 recommendations for several assessments that were under review. The SAB recognized that the 19 Agency was implementing the first phase of the Agency's efforts to enhance the Integrated Risk 20 Information System (IRIS) process in the TMB draft assessment and the SAB acknowledged the 21 improvement in the new format for IRIS assessments and commended the Agency for its progress 22 in addressing the NRC recommendations. The SAB noted that it used the peer review of the 23 *Toxicological Review of Trimethylbenzenes* as a case study to provide advice and comments on 24 improving IRIS toxicological assessments by further addressing the NRC recommendations. 25 Specific comments on developing the Preamble and Executive Summary for future assessments, as 26 well as the TMB assessment, were provided in the SAB's report. The SAB noted that it anticipates 27 that after several IRIS reviews are completed, the CAAC will compare the reviews to provide the 28 Agency, through the Chartered SAB, with advice and comments on the Agency's progress to 29 enhance IRIS assessments.

1 EPA Response 1: The SAB noted that it uses the review of the draft TMB assessment as a 2 case study to provide recommendations on strategies to implement the NRC's recommendations 3 regarding improvements to the IRIS document structure. Although SAB noted that these 4 recommendations are intended for future assessments, EPA has implemented some 5 recommendations, where possible, in order to facilitate the rapid improvement of IRIS products. 6 Other recommendations, such as full implementation of systematic review methods, are not 7 implemented in order to prevent undue delays in posting the final IRIS TMB assessment. In 8 comments below, it is noted that SAB acknowledges and supports this rationale for the phased 9 implementation of the NRC recommendations. 10 **General Charge Question 1:** NRC (2011) indicated that the introductory section of IRIS 11 assessments needed to be expanded to describe more fully the methods of the assessment. NRC stated 12 that they were "not recommending the addition of long descriptions of EPA guidelines to the 13 introduction, but rather clear, concise statements of criteria used to exclude, include, and advance 14 studies for derivation of [toxicity values]." Please comment on whether the new Preamble provides a 15 clear and concise description of the guidance and methods that EPA uses in developing IRIS 16 assessments. 17 SAB Comment GC.1-1: The SAB noted that "[t]o a substantial degree, the Preamble as 18 currently written provides a concise and clear description of the process that is followed, its steps, 19 the places in the process where decisions or judgments are made, the guidance that applies to 20 making those judgments (with explanation of the main considerations and available choices), and 21 the process by which the results of each step feed into the next." The SAB further noted that it 22 presumed that the Preamble "will change from one assessment to the next to reflect newly adopted 23 procedures" and recommended that the current assessment note where it has not fully 24 implemented procedures outlined in the Preamble and planned for subsequent assessments. The 25 SAB also recommended that Section 2 on the IRIS Process include further discussion, as part of the 26 problem formulation step, on issues needing to be addressed in assessments, including how these 27 issues will be addressed with the available data and how uncertainties and alternative 28 interpretations will be considered. The SAB also recommended that the EPA make clear that the 29 Preamble itself is not guidance and ensure that the Preamble refer users to the appropriate 30 guidance documents taking care to not imply that it supersedes policy existing guidance. The SAB 31 helpfully pointed out a number of instances where it might be construed that the Preamble 32 contradict current guidance. The SAB also noted that Section 5.5 could be confusing as to what 33 guidelines for assessing causality were used in the TMBs assessment and advised that discussing 34 the intent of weight-of-evidence descriptors was more advisable. 35 EPA Response GC.1-1: In the time since the SAB External Review meeting for the

- 36 Trimethylbenzenes Toxicological Review, the IRIS program has substantially revised the Preamble 37 based on a number of considerations, including: 1) experience with implementing the new
- 38 document structure and systematic review procedures after the trimethylbenzenes assessment was

1 submitted for SAB review in 2013; 2) recommendations from SAB reports on other draft

assessments (such as ammonia) and; 3) comments from EPA's program and regional offices, other
federal agencies and the Executive Office of the President, and the public.

4 The revised Preamble reflects recommendations for a shorter Preamble, and some 5 information previously in the Preamble is now discussed in the Toxicological Review (e.g., 6 literature searching, screening, and study evaluation) or in the upcoming IRIS Handbook of 7 Operating Procedures for Systematic Review being developed by the IRIS Program. The Preamble 8 begins with a new statement that it summarizes general principles and systematic review 9 procedures, and specifically states in Section 1 that the "... Preamble summarizes and does not 10 change IRIS operating procedures or EPA guidance". Consistent with SAB recommendations, new 11 text was also added to the Preface to describe where approaches in the trimethlybenzenes 12 assessment differ from those outlined in the Preamble. Additionally, Section 2 of the Preamble has 13 been rewritten to elaborate that through the Problem Formulation step of the IRIS Process, EPA 14 identifies the science questions that will be addressed in an IRIS assessment and that Problem 15 Formulation includes input from the scientific community and public. Problem formulation further 16 includes multiple systematic reviews of the literature. Section 2 in the updated Preamble also 17 delineates that protocols will be established and used by EPA to conduct its literature searches. 18 considerations for evaluating study quality, and extracting data. It is through the Problem 19 Formulation step and application of protocols that EPA will determine how to address the science 20 issues covered by the assessment and how to appropriately consider any uncertainties and 21 plausible alternative interpretations. As stated above, the Preamble now clearly states that it does 22 not change existing EPA guidance and that IRIS assessments follow existing EPA guidance 23 documents. The shortened format of the Preamble no longer includes specific citations to guidance 24 documents, but rather directs users to IRIS's guidance website. With a shorter, refocused Preamble, 25 specific instances were it seemed that the Preamble superseded existing guidance have been 26 removed. Section 5 of the revised Preamble (Integrating the Evidence of Causation for Each Health 27 Outcome) has been rewritten to report that EPA uses standardized hazard descriptors for cancer 28 endpoints and that the "objective is to promote clarity and consistency of conclusions across 29 assessments." EPA still describes briefly what level of evidence is generally required for 30 determination of the individual descriptors. The Preamble further reports that IRIS is currently 31 discussing the potential for development of a causality framework for non-cancer effects. 32 33 **General Charge Question 2:** <u>NRC (2011)</u> provided comments on ways to improve the 34 presentation of steps used to generate IRIS assessments and indicated key outcomes at each step, 35 including systematic review of evidence, hazard identification, and dose-response assessment. Please

36 comment on the new IRIS document structure and whether it will increase the ability for assessment to

- be more clear, concise and easy to follow.
 - This document is a draft for review purposes only and does not constitute Agency policy. A-3 DRAFT—DO NOT CITE OR QUOTE

1 <u>SAB Comment GC.2-1</u>: The SAB recommended that the revised structure for IRIS

2 assessments should allow for three different modes of reading the document: (1) quickly to get the

3 main qualitative and quantitative conclusions; (2) more thoroughly, but still rapidly, to get a

4 complete idea of the types of data and toxicity information that were considered, the main features

- 5 and issues involved in the interpretation of those data, and the choices that were made and their
- 6 rationale; and (3) in detail in order to find the particulars of individual study features, data, and

7 analyses. The SAB found that, in general, the structure of the TMB assessment has markedly

8 improved compared to previous IRIS assessments, and the current document structure facilitates

- 9 all three modes of recommended reading.
- 10 <u>EPA Response GC.2-1</u>: No response necessary.

11 Consistent Presentation of the Studies Considered

12 <u>SAB Comment GC.2-2</u>: The SAB recommended that each study used in the assessment

13 should be in a consistently formatted table. The table should be in an appropriate appendix and

14 present the study-specific considerations that bear on evaluation of study quality and pertinence,

15 including shortcomings and assumptions that are needed to interpret the study's outcomes.

16 Consistency of format is important within each document, but it would also be a useful goal to

achieve from one IRIS assessment to another.
 EPA Response GC.2-2: Currently, a study summa

18 <u>EPA Response GC.2-2</u>: Currently, a study summary table is included for each study cited in

19 the assessment. These tables are formatted consistently to the extent possible given the varying

20 type, amount, and detail of information provided in the individual studies. Information is provided

at the head of each table regarding additional study details important to interpretation of studyfindings.

As EPA moves forward with implementing systematic review methodology, the SAB's recommendations to include study-specific information such as evaluations of study quality and strengths and weaknesses will be more fully implemented. In the current assessment, the study summary tables provide some information that can be used to judge the overall quality of the study (including numbers of animals, dosing schemes, etc.).

- SAB Comment GC.2-3: The SAB suggested that it would be useful for each study to have a short overview section (also in its appendix listing, not repeating tabulated details) of the nature of the study, its examined endpoints, and relevant findings. The goal of the overview is to provide context for the tabulated details, so that the details need not be read in full to gain an idea of the general nature of the study and its importance to the assessment as a whole. This overview should not discuss interpretations.
- 34 <u>EPA Response GC.2-3:</u> This information is provided at the head of each study summary
 35 table included in Appendix C. Specifically, general information about what effects were observed
 36 and at what dose levels those effects occurred are provided in the "Additional study details" section
 37 in each study summary table provided in Appendix C. For example, for <u>Gralewicz and Wiaderna</u>
 38 (2001), Table C-24, it is noted in a bullet that "1,2,3-TMB-, 1,2,4-TMB-, and 1,3,5-TMB-exposed rats

showed alterations in performance in spontaneous locomotor activity, passive avoidance learning,
 and paw-lick latencies."

<u>SAB Comment GC.2-4</u>: SAB recommended that as IRIS makes enhancements to the
systematic review process, the overriding issue is transparency regarding study selection criteria.
Studies that support a hypothesized human hazard should be included, but studies that are
contrary to these hypotheses should also be included as they result in alternative, scientifically
supportable conclusions regarding human risk.

8 EPA Response GC.2-4: The revised Preamble includes discussion of criteria for study 9 selection. In the TMB assessment, studies most relevant to hazard identification and dose-response 10 analyses have been included in the main body of the text, including those data that may seem 11 inconsistent. For example, while an argument of sufficient similarity is used in the assessment to 12 support adopting reference concentrations (RfCs) derived for one isomer as the RfC for another 13 isomer when lacking sufficient-isomer specific data, instances where the toxicities or toxicokinetics 14 appear to differ between isomers are clearly discussed. Additionally, information contained in 15 appendices in the draft TMB assessment regarding the C9 fraction studies, including differences 16 between these studies and isomer-specific studies, have been included in the main body of the 17 assessment consistent with the recommendation of the SAB.

18 **Describing the Literature Search**

19 <u>SAB Comment GC.2-5</u>: SAB commented that the Literature Search Strategy section is brief 20 and focuses only on identification of pertinent studies from the literature. The SAB was concerned 21 that the general description of the process and the specific implementation for TMBs may be too 22 exclusive, missing potentially informative ancillary studies that could help in interpretation or 23 evaluation of those studies strictly observing toxicity outcomes of the TMBs alone in controlled 24 settings. SAB recommended a more inclusive literature search in which evidence from related 25 compounds are incorporated in order to provide context to evidence gleaned from the chemicals 26 under assessment (i.e., TMBs).

27 EPA Response GC.2-5: The "primary" (initial) TMB literature search has been re-tagged in 28 the Health and Environmental Research Online (HERO) database such that all of the identified 29 studies are tagged more thoroughly, including those references determined to not be relevant to 30 the assessment. For example, there are now exclusion tags that identify which studies were 31 excluded based on being published in non-relevant journals (e.g., chemical engineering journals) 32 and which studies were excluded based on title and abstract screenings. The "primary" (initial) 33 literature search has also been updated to November, 2015 and the results of this literature search 34 update are reported in a similar fashion.

A secondary, targeted literature search for information pertaining to the effects and properties of similar chemicals has been conducted, and the results of this literature search are also reported. Briefly, the literature search was limited to integrated reviews of the toxicological effects of related compounds (see SAB Comment GC.2-6 below for further details).

1 SAB Comment GC.2-6: SAB recommended that the primary literature search should be 2 comprehensive and subjected to an orderly process of systematic review, and further commented 3 that the secondary search is for literature that is useful to provide context, in terms of what might 4 be expected given the knowledge of other chemicals and of the potential pathways of toxic action. 5 SAB recommended that the secondary search need not be comprehensive and could include 6 reviews as well as original experimental studies in order to provide information that can potentially 7 fill data gaps that exist in the primary TMB literature. 8 EPA Response GC.2-6: In response to the SAB recommendation, a secondary literature 9 search was conducted to identify studies on related compounds focused primarily on review 10 articles in order to assess a large body of literature for the pertinent pieces of information that 11 could serve to fill data gaps in the primary TMB literature. The related chemicals included in this 12 targeted, secondary literature search were toluene, xylene, styrene, and ethylbenzene; specific 13 toxicity endpoints included in the secondary literature search included neurotoxicity, 14 developmental neurotoxicity, respiratory toxicity, developmental toxicity, and hematotoxicity. The 15 literature search was set up as: (at least one chemical) + (at least one toxicity endpoint) + (review 16 article). The secondary literature search resulted in approximately 70 review articles that were 17 manually screened for relevance to provide context for the TMB assessment, and to identify 18 additional relevant primary literature. The final TMB assessment includes both relevant review 19 articles and new primary literature identified through the secondary literature search. Information 20 from the secondary, targeted literature search were used to fill in gaps in the existing TMB 21 database, and to help inform decisions in setting the value of the database uncertainty factor.

22 Describing the Hazard Identification Step

23 SAB Comment GC.2-7: The SAB recommended that the individual endpoint sections of the 24 Hazard Identification section have some discussion about interpretation across studies and 25 evaluations of bearing and relevance, though further discussion of interpretation rationales and 26 consideration of alternatives would be beneficial. The SAB made this recommendation in the 27 context of the larger process of a systematic review of the literature, stating that it is the middle 28 section of systematic review—after the studies are chosen but before the interpretation of their 29 overall bearing gets considered—that does not have a clear home in the current document 30 structure. The SAB recognized that the implementation of systematic review methods have not 31 been fully implemented and recommended that the Agency further develop its approach for 32 systematic review so that the ways for abstracting data, judging study quality, documenting factors 33 bearing on interpretation and its limits, and considering the impact of related studies have discrete 34 locations in the updated IRIS document structure. 35 <u>EPA Response GC.2-7</u>: EPA agrees with the SAB's comments regarding the evolving

structure of the systematic review of the literature. It is EPA's intention that, moving forward, the
 NRC recommendations will be fully implemented in future assessments and that specific comments

1 received from SAB on current assessments will be invaluable in the implementation of those 2 recommendations.

3 In the final TMB assessment, EPA has partially addressed this SAB comment by 4 strengthening the discussion of the interpretation of studies, including the consideration of 5 alternative explanations or conflicting evidence, in the synthesis sections at the end of each organ 6 section. For example, in the write-up for the neurotoxic effects observed in animal toxicology 7 studies, full discussions of the Douglas et al. (1993) neurotoxicity study have been included. 8 Instances where the results of the Douglas et al. (1993) C9 study and individual isomer studies 9 differ in observed effects have been exhaustively discussed, and possible interpretations of those 10 differences are included in the text. This discussion of differing results and possible 11 interpretational issues across studies is also included in other health effects sections, and in 12 Sections 1.2.7 (Similarities among TMB Isomers Regarding Observed Inhalation and Oral Toxicity) 13 and 1.3.1 (Weight of Evidence for Effects Other than Cancer). 14 SAB Comment GC.2-8: The SAB noted that Preamble has a section (Section 5) on evaluation 15 of causality, which depends on the existence of such a documented review and evaluation process, 16 but that the TMB assessment has no particular place where the Preamble's named considerations— 17 strength, consistency, specificity, temporal relationship, biologic plausibility, coherence, natural 18 experiments, and analogy—are systematically considered or documented. 19 EPA Response GC.2-8: Although the Preamble lays out the precepts by which human or 20 animal evidence can be evaluated systematically for causality, a systematic causality framework has 21 not been fully implemented in this assessment. However, the evidence was more clearly 22 characterized with respect to the various considerations affecting causality determinations (e.g., 23 strength, consistency, specificity, temporal relationship, biologic plausibility, coherence, natural 24 experiments, and analogy). For example, in evaluating the evidence in the neurotoxicity database, 25 the TMB assessment notes that "[n]eurotoxicity is *strongly* and *consistently* (emphasis added) 26 associated with exposure to TMBs in multiple studies, and these associations are *coherent* in 27 human populations exposed to mixtures containing TMBs and in laboratory animals exposed to 28 individual TMB isomers." Additionally, the TMB assessment notes that "TMBs are neurotoxic 29 following inhalation or oral exposure, based on *strong* and *consistent* effects in experimental 30 animals that are *coherent* with observations in exposed humans; *biological plausibility* based 31 primarily on similarities to findings from related chemicals; evidence of effects that worsen with 32 increasing duration of exposure; delayed-onset and/or latent neurological effects in animals several 33 weeks following exposure; and observed *exposure-response relationships* in animals tested 34 immediately after exposure." The considerations that relate to evaluation of causality are also 35 applied to the other health effect domains throughout the document. 36 SAB Comment GC.2-9: The SAB recommended adding a brief summary of the main features 37 of the assessment—in this case, pharmacokinetics and metabolism—before the section on Hazard

38 Identification. The SAB noted that the aim of this section would not be to replace the fuller

1 treatment of these issues in an appendix, but rather to set the context for the interpretation of 2 studies bearing on hazard, and the main presentation of pharmacokinetic details should continue to 3 reside in an appendix. The SAB suggested that the main text's section would note such things as 4 extent of absorption, rapidity of elimination, main metabolic processes, main means of clearance 5 (and what part of that is by metabolism), indications of whether metabolic saturation or enzyme 6 induction might play a relevant role in toxicity studies, and any notable unusual differences 7 between experimental animals and humans. 8 <u>EPA Response GC.2-9</u>: Previously, all information on the toxicokinetic properties of the 9 TMB isomers was located in Appendix B of the External Peer Review draft Supplemental 10 Information document. Given CAAC's recommendation, this section has been moved to Section 11 1.1.1 of the main body of the final assessment. Section 1.1.2 was added to provide a brief overview 12 of the available physiologically based pharmacokinetic (PBPK) models for TMB isomers. 13 SAB Comment GC.2-10: The SAB noted that the current IRIS document structure in which 14 the Hazard Identification section is separated into assessments of each endpoint, with relevant data 15 for that endpoint being reviewed within the section is a great improvement over the past practice 16 of summarizing study by study. SAB was also impressed that the endpoint-by-endpoint analysis 17 permits the examination of consistency and sufficiency of data to draw hazard conclusions about 18 each effect. The SAB commented that there were possible overarching ties among endpoints that 19 would help in evaluation of the hazard characterization of each that should be discussed in an 20 appropriate place. SAB further recommended that it would be useful to include considerations that 21 might indicate a study as the critical study. 22 EPA Response GC.2-10: A short discussion of commonalities between endpoints regarding 23 possible modes of action has been added to Section 1.3.1. Discussions of important considerations 24 that might help indicate a study a potential critical study, especially extensive discussions on study 25 design and its effect on the observation of particular endpoints, have been added throughout

26 Section 1.

27 SAB Comment GC.2-11: The SAB commented that the tabulation of studies into Evidence 28 Tables is useful, noting that the inclusion of dose levels and dose-specific responses are important 29 details to provide. The SAB also noted that providing hyperlinks to the study summary tables in the 30 Supplemental Information document makes finding relevant data easier, and that the Exposure-31 Response arrays provide a valuable overview of the data.

32

EPA Response GC.2-11: No response necessary.

33 Describing the Dose-Response Steps

34 SAB Comment GC.2-12: The SAB noted that the tabulation of points of departure (PODs).

35 human equivalent concentrations (HECs), and applied uncertainty factors (UFs) is useful and allows

36 for the comparison of endpoints and the distinction between a low POD with few UFs and a high

- 37 POD and many UFs.
- 38 EPA Response GC.2-12: No response necessary.

1 SAB Comment GC.2-13: SAB noted that the inclusion of discussions of consistencies and 2 inconsistencies among data, relevance of studies for human risk evaluation, knowledge of mode of 3 action (even if it must say that little is known), and alternative interpretations of the available data 4 on potential causation for each endpoint represents an important advance in the Hazard 5 Identification sections. SAB further noted concern that these interpretation passages are too 6 concise and recommended that a consistent way be developed to document these arguments 7 without unduly distracting from the main Hazard Identification discussions. 8 <u>EPA Response GC.2-13</u>: Discussions in the interpretations of the organ-specific TMB-

9 induced toxicities have been augmented where appropriate to highlight commonalities across 10 effects. As IRIS continues to implement NRC- and SAB-recommended changes to the documents, a

11 more consistent way to present summaries and interpretations will be developed.

12 Presenting Outcomes

13 SAB Comment GC.2-14: SAB noted that the both the Hazard Identification and Dose-14 Response Analysis sections simply dive in to the first endpoint or analysis to be considered, and 15 then have separate sections on each. SAB commented that there is little overview to prepare a 16 reader for what is coming or to point to the parts that are critical versus those that are there for 17 completeness. In general, to help enable a reader to grasp the main lines of argument and only go 18 into detail when needed, the SAB recommended that both the Hazard Identification and the Dose-19 Response Analysis sections have an initial paragraph setting out the main issues that will be 20 considered and indicating which considerations (to be developed in the subsequent text) are the 21 most notable for the larger assessment process. SAB also recommended a parallel paragraph at the 22 end of each of these chapters to summarize what its contents have provided to the larger 23 assessment process. The aim of these paragraphs would be to make it possible to not only read the 24 document in more detail than provided in the Executive Summary, but also still quickly see the 25 deeper structure of the report and where to focus for more information on particular aspects. 26 EPA Response GC.2-14: An introductory paragraph has been added to the beginning of the 27 Hazard Identification section. This paragraph summarizes the broad scope and purpose of the 28 Hazard Identification section and analysis/interpretations therein, including highlighting particular 29 sections most important for the assessment conclusions (i.e., the neurotoxicity section, similarities 30 in toxicity between isomers, and the differing results observed in the C9 studies). No new 31 concluding paragraph was added to the Hazard Identification section as such a paragraph would be 32 largely duplicative of Section 1.3 (Summary and Evaluation). An introductory paragraph has also 33 been added to the Dose-Response Analysis section, briefly highlighting what types of benchmark 34 dose (BMD), PBPK, and/or default dosimetric adjustment analyses were performed and the major 35 conclusions of the dose-response section.

36 General Charge Question 3: <u>NRC (2011)</u> states that "all critical studies need to be 37 thoroughly evaluated with standardized approaches that are clearly formulated" and that 38 "strengthened, more integrative, and more transparent discussions of weight of evidence are needed."

> This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

NRC also indicated that the changes suggested would involve a multiyear process. Please comment on
 EPA's success thus far in implementing these recommendations.

3 SAB Comment GC.3-1: The SAB found that, in general, a great deal of progress has been 4 made in restructuring the document to focus the main body on documenting and explaining the 5 interpretations, choices, and analyses, and relegating the supporting information to appendices. 6 However, the SAB also noted that the process of systematic review still needs development. 7 Documentation of the process of identifying literature has progressed, but further development is 8 needed in establishing standard practices for abstracting relevant data, evaluating study quality, 9 strengths, and shortcomings, and integrating evidence across studies. In making this 10 recommendation, the SAB recognized that an important challenge facing the Agency is that 11 assessments must go ahead even as this further development proceeds and before all aspects are 12 complete. Ultimately, the SAB recommended that a good principle to follow in conducting 13 assessments during the process of revision is to consider the reasons behind the recommendations 14 for change, and to make efforts to address the issues and to explain how the chosen approaches 15 seek to reflect the NRC recommendations, although the methods may not yet be fully developed and 16 agreed upon. 17 EPA Response GC.3-1: The SAB acknowledged and agreed with EPA's phased 18 implementation of the NRC recommendations for improving the IRIS process. As such, EPA is fully 19 implementing systematic review methods (e.g., including methods to systematically judge study 20 quality and the consistent application of study exclusion/inclusion criteria) in new IRIS 21 assessments that are in the Problem Formulation or Draft Development steps. Assessments that 22 are further along in the IRIS process, such as the TMB assessment, are incorporating elements of

- 23 systematic review methods, as well as other document improvements such as streamlining the
 24 document structure and increased incorporation of tables, figures, and exposure-response arrays
- 25 for the efficient presentation of data, in order to keep the program at large on track.

General Charge Question 4: EPA solicited public comments on the draft IRIS assessment
oBof trimethylbenzenes [May 2012] and has revised the assessment to respond to the scientific issues
raised in the comments. A summary of the public comments and EPA's responses are provided in
Appendix F of the Supplemental Information to the Toxicological Review of Trimethylbenzenes. Are
there scientific issues that were raised by the public as described in Appendix F that may not have been
adequately addressed by EPA?

32 SAB Comment GC.4-1: While the SAB felt that Appendix F (External Peer Review draft)
33 addressed issues raised in public comments in a transparent manner, the panel was divided on the
34 adequacy and dispositions that were made as presented in the appendix. Most importantly, the
35 SAB panel expressed a number of opinions on the role that the C9 fraction studies should play in the
36 assessment and whether or not the possible reversibility of the critical effect of decreased pain
37 sensitivity was discussed adequately.

1 EPA Response GC.4-1: The Agency appreciates that the SAB found that Appendix F in the 2 External Peer Review draft assessment was generally responsive to public comments. Regarding 3 the adequacy and disposition of comments regarding the C9 fraction studies, in the final TMB 4 assessment, the C9 studies are covered more extensively below in EPA Responses C.1 (Synthesis of 5 Evidence)-6 and -8. The issues surrounding the possible reversibility of decreased pain sensitivity 6 are covered below in EPA Responses E.1-5 and E.4-4; briefly, it was concluded that when the entire 7 pain sensitivity database was taken into consideration (short-term TMB and subchronic TMB or C9 8 studies), the data clearly indicated that decreased pain sensitivity was not a transient effect, and 9 that exposure TMB isomers resulted in persistent alterations in an organism's ability to correctly 10 process painful stimuli.

11 Chemical-Specific Charge Questions

12 **Charge Question A.1:** The major conclusions of the assessment pertaining to the hazard 13 identification and dose-response analysis have been summarized in the Executive Summary. Please 14 comment on whether the conclusions have been clearly and sufficiently described for purposes of 15 condensing the Toxicological Review information into a concise summary.

- 16 SAB Comment A.1-1: While the SAB commented that the Executive Summary did an 17 adequate job at condensing a large amount of information presented in the TMB assessment, the 18 panel provided a number of recommendations for improving the presentation and flow of 19 information included. The SAB recommended that the Executive Summary be shortened to 20 emphasize the major conclusions of the assessment. Specifically, the panel recommended removing 21 all citations and combining the duplicative sections on "Confidence" into a single succinct section. 22 The SAB also recommended that information not be duplicated in tables and the text of the 23 Executive Summary. Finally, the SAB noted that much of Section 15 of the Executive Summary 24 seemed speculative and should not be included.
- 25 EPA Response A.1-2: All recommendations made regarding the Executive Summary have 26 been incorporated. The Executive Summary has been shortened to emphasize major conclusions of 27 the assessments: the available information in the inhalation and oral toxicity databases and the 28 derivation of the RfC and reference dose (RfD). Citations have been removed. The structure of the 29 executive summary has changed to consolidate discussions of particular issues (confidence, etc.) 30 into one section covering all isomers; this follows the restructuring of the Dose-Response Analysis 31 section in the main body of the assessment. All of the discussion regarding Susceptible Populations 32 and Lifestages has been removed from the Executive Summary other than to state "No chemical-33 specific data that would allow for the identification of populations or lifestages with increased 34 susceptibility to TMB exposure exist."

Charge Question B.1: The process for identifying and selecting pertinent studies for
 consideration in developing the assessment is detailed in the Literature Search Strategy/Study
 Selection section. Please comment on whether the literature search approach, screening, evaluation,
 and selection of studies for inclusion in the assessment are clearly described and supported. Please

This document is a draft for review purposes only and does not constitute Agency policy. A-11 DRAFT—DO NOT CITE OR QUOTE identify any additional peer-reviewed studies from the primary literature that should be considered in
 the assessment of noncancer and cancer health effects of 1,2,3-TMB, 1,2,4-TMB, and 1,3,5-TMB.

SAB Comment B.1-1: The SAB found that the search strategy was clearly articulated and that the databases and search terms were clearly defined. However, the SAB noted some concerns that the way that studies were selected for use in the assessment was not transparent. Specifically, the SAB noted that while it was clear which papers were included in the assessment, there were no means of determining which papers were excluded from the assessment and for what reasons. The SAB recommended that the EPA provide citations for all studies identified via the literature search and group them according to reasons why they were excluded from consideration.

10 EPA Response B.1-1: As noted above in EPA Response GC.2-5, EPA has provided all of the 11 identified studies in the HERO database, and has re-tagged all of the references such that all of the 12 identified studies are tagged more thoroughly, including those references determined to not be 13 relevant to the assessment. For example, there are now exclusion tags that identify which studies 14 were excluded based on being published in non-relevant journals (e.g., chemical engineering 15 journals) and which studies were excluded based on title and abstract screenings. The "primary" 16 (initial) literature search has also been updated to November 2015 and the results of this literature 17 search update are reported in a similar fashion.

SAB Comment B.1-2: The SAB further commented that in the External Peer Review Draft,
for references were excluded "based upon manual review of papers/abstracts," but these papers
were not individually identified. The SAB also commented that excluding papers because they were
not available in English is not a valid reason for exclusion. Lastly, SAB noted that reporting some
papers as being excluded based on being in vitro reports, but including other in vitro reports
elsewhere in the document, was inconsistent.

24 EPA Response B.1-2: The entire "primary" (initial) literature search has been re-tagged in 25 the HERO database. As such, all studies found via the literature search are now included in the 26 database, and users can now determine which individual studies were excluded for which reasons 27 at what step in the process (i.e., some references were excluded based on which journals they were 28 published in, and some were excluded based on manual screening of titles/abstracts based on 29 whether they were exposure studies, in nonrelevant in vitro systems [e.g., bacterial systems], etc.). 30 A number of papers were previously excluded based on being published in foreign language 31 journals; these foreign language journal articles were re-screened based on their title and/or 32 abstract. If it was judged that any non-English reference should be excluded on content or subject, 33 it was binned in the appropriate exclusion bin. If a non-English reference was judged to possibly be 34 relevant to the assessment, it was placed in the "Considered" bin and reviewed further to determine 35 whether it should be translated into English. Ultimately, no non-English references were judged to 36 be critical to the needs of the assessment and correspondingly no references were translated into 37 English. In re-tagging all of the references in the TMB database, any decision to exclude in vitro

1 2 3 4 5 6	studies has been tagged such that it is clear that the study was excluded because it was unrelated and uninformative to the purposes of the TMB assessment, not for simply being an in vitro study. <u>SAB Comment B.1-3:</u> The SAB noted that the search strategy did not mention compounds structurally related to TMB isomers, including xylenes or ethylbenzenes, and that this may have resulted in important studies being excluded from the assessment. The SAB recommended a number of human occupational studies investigating the effects of exposure to complex mixtures of	
7	volatile organic compounds (VOCs) that should be added to the assessment in order to strengthen its conclusions:	
8	its con	clusions:
9	1.	Chapter 8 on TMBs (<u>NRC, 2013</u>)
10 11	2.	Health hazards of solvents exposure among workers in paint industry (<u>El Hamid Hassan et</u> <u>al., 2013</u>)
12	3.	Xylene-induced auditory dysfunction in humans (Fuente et al., 2013)
13	4.	Hearing loss associated with xylene exposure in a laboratory worker (Fuente et al., 2012)
14	5.	Visual dysfunction in workers exposed to a mixture of organic solvents (Gong et al., 2003)
15 16	6.	Ototoxicity effects of low exposure to solvent mixture among paint manufacturing workers (Juárez-Pérez et al., 2014)
17 18	7.	Short latency visual evoked potentials (SLVEPs) in occupational exposure to organic solvents (<u>Pratt et al., 2000</u>)
19 20	8.	Auditory brainstem response in gas station attendants (<u>Quevedo et al., 2012</u>)
21		EPA Response B.1-3: The studies recommended by the SAB for inclusion have been added
22	to the TMB assessment where appropriate. However, it should be noted that these studies either	
23	involve human exposures to complex organic solvent mixtures or related alkylbenzene compounds.	
24	Therefore, while these studies provide further qualitative support that exposure to TMBs and/or	
25	related compounds as part of complex solvent mixtures result in adverse health effects, caveats	
26	regarding their interpretations still apply. Namely, it's not possible to attribute the observed effects	
27	completely to one specific component of the mixture, and there is some uncertainty that related	
28	alkylbenzenes would elicit the exact same health effects as TMBs. Other shortcomings of the human studies involved imprecision in effect estimates due to low statistical power and lack of quantitative	
29 30	exposure assessment. As discussed above in EPA Responses GC.2-5 and GC.2-6, EPA also conducted	
30 31	a targeted secondary literature search of review papers on related compounds in order to identify	
32	additional data that would potentially strengthen the conclusions of the assessment.	
33	auuuu	<u>SAB Comment B.1-4:</u> The SAB recommended that a summary table be included for each
34	human	health effect that reports study design, inclusion/exclusion criteria, results, etc. in
35	Appendix B.	

1 EPA Response B.1-4: Instead of including a summary table covering all of the human 2 studies included in the assessment, EPA replaced all of the individual human study summary tables 3 with Table C-16 that provides all of the pertinent study details requested by SAB, as well as study 4 details previously reported in the individual tables. 5 **Charge Question C.1 (Synthesis of Evidence):** A synthesis of the evidence for 6 trimethylbenzene toxicity is provided in Chapter 1, Hazard Identification. Please comment on whether 7 the available data have been clearly and appropriately synthesized for each toxicological effect. 8 Please comment on whether the weight of evidence for hazard identification has been clearly 9 described and scientifically supported. 10 SAB Comment C.1 (Synthesis of Evidence)-1: The SAB noted that the synthesis of evidence 11 for the three TMB isomers was efficiently divided up into sections corresponding to the various 12 target organs or forms of toxicity, and then by human versus animal studies and route of exposure 13 when possible. The SAB noted that the studies chosen for review were clearly described and that 14 the evidence tables and exposure-response arrays augmented the text effectively. The SAB 15 recommended that an introductory paragraph describing the section layout, including the summary 16 tables for each endpoint, would improve readability. 17 EPA Response C.1 (Synthesis of Evidence)-1: As noted above in EPA Response GC.2-14, an 18 introductory paragraph has been added to the beginning of the Hazard Identification section. This 19 paragraph briefly outlines the structure of the Hazard Identification section and what types of data 20 are presented. 21 SAB Comment C.1 (Synthesis of Evidence)-2: The SAB expressed concern that the 22 discussion of individual endpoints was flawed by questionable statistical statements or inferences. 23 Several instances in the document were provided as evidence of these flawed statistical statements. 24 For example, the TMB document notes, regarding decreased performance on the rotarod, that "This 25 impaired function [i.e., failures on the rotarod apparatus] was still evident at 2 weeks post-26 exposure and, while not statistically significant for 1,2,4-TMB, may indicate long-lasting 27 neuromuscular effects of subchronic exposures to 1,2,4-TMB and 1,2,3-TMB." The SAB 28 recommended that descriptions of results more closely adhere to the rule that statistical 29 significance provides the criterion of whether an effect has occurred. 30 EPA Response C.1 (Synthesis of Evidence)-2: It is EPA's practice that evaluation of evidence 31 should first consider biological significance to the extent possible. The purpose of this evaluation is 32 to understand the extent to which individuals could demonstrate some adverse effect in response 33 to exposure. It is important to note that at the population level, even small changes in the average 34 of a response parameter can result in an increase in the number of people in the "abnormal" or 35 "impaired" range for the particular endpoint. Thus, a relatively small difference can be considered 36 biologically significant. When biological significance is uncertain or understood less clearly (e.g., no 37 suitable normal range), statistical significance testing has been used to augment this evaluation. 38 When suitable, well-designed studies are used, a pattern of statistically significant results for an

1 effect, or related effects, across such studies generally increases the confidence that the effect is 2 associated with the exposure. It is important to note, however, that statistical significance testing, 3 while a useful tool for the systematic evaluation of data, has limitations, that, when overlooked, can 4 lead to flawed conclusions. Specifically, lack of statistical significance should not automatically be 5 interpreted as evidence of no effect. For example, if an exposure at a particular level leads to a 6 measurable effect, studies with low statistical power are unlikely to produce statistically significant 7 results. It is important to examine patterns in results across all studies that report data for the 8 same endpoint, taking into account relative exposure ranges and variability of effects. The final 9 TMB assessment has been revised such that discussions of observed health effects appropriately 10 note cases of both statistical and biological significance, taking particular care to note trends across 11 studies and isomers. Using the example above (failures on the rotarod apparatus), EPA notes that:

12

13 Significant decreases in rotarod performance were observed at 1,230 mg/m³ 14 1,2,4-TMB (40% response) and \geq 493 mg/m³ 1,2,3-TMB (50–70% response) when 15 tested immediately after exposure for 13 weeks (Korsak and Rydzyński, 1996); a 16 clear exposure duration-dependency for this effect was observed, with less robust, 17 but statistically significant, decreases in performance also reported at 1,230 mg/m³ after 4 (40 and 30% response) or 8 (60 and 40% response) weeks of exposure to 18 19 1,2,3-TMB or 1,2,4-TMB, respectively. This impaired function was still evident at 20 2 weeks post-exposure, indicating a persistence of this effect. Specifically, failures in 21 70 and 40% of animals after 13 weeks of exposure to 1,230 mg/m³ 1,2,3-TMB and 22 1,2,4-TMB, respectively (compared to 0% of animals in control groups at any time), 23 were 50 and 30% at 2 weeks post-exposure, although 30% failures at 15 weeks for 24 1,2,4-TMB was no longer significantly different from controls (note: statistical 25 comparisons did not appear to include a repeated measures component and 26 comparisons to the 13-week time-point were not performed). The observation of 27 substantial decrements in rotarod performance is interpreted as a biologically 28 relevant response in light of the lack of failures in controls and the similarities in 29 response magnitude across isomers. 30

31 It is important to note that this discussion of nonstatistically significant, but possibly 32 biologically significant, decreases in rotarod performance was included in the context of other 33 statistically significant decrements of neuromuscular performance. All discussions of biologically 34 significant, but not statistically significant, effects are included in that context. In other words, 35 when nonstatistically significant effects are included in the discussion, they are used to compare 36 results across studies and isomers in order to provide a fuller account of the pattern of TMB-37 induced toxicity. 38 SAB Comment C.1 (Synthesis of Evidence)-3: The SAB recommended that the discussion of 39 respiratory effects should be strengthened by further consideration of the relevance to humans of 40 the effects observed in the high-dose animal studies. SAB noted that while it is clear that

41 respiratory effects are observed and are a relevant endpoint in humans, the distinction between the

42 high-dose animal effects and the human effects could have been made more clearly. The SAB also

43 recommended that the limitations of the human evidence for hematological and clinical chemistry 1 effect, based on the uncertainties in exposures (mixture components, doses) also be more clearly 2 described. The SAB noted that the TMB assessment clearly communicates the inadequacy of the

3 cancer toxicity database, including the minimal genotoxicity database.

4 EPA Response C.1 (Synthesis of Evidence)-3: The discussions regarding the human 5 relevance of respiratory effects observed in high-dose animals and the limitations of the human 6 hematological evidence have been augmented in the final TMB assessment.

7 <u>SAB Comment C.1 (Synthesis of Evidence)-4:</u> The SAB noted that the summary table (page 8 1-49, Table 1-7 in the External Peer Review draft; page 1-60, Table 1-8 in the current document)

9

was very helpful in understanding the points made with regard to the toxicological similarities

- 10 across TMB isomers, and recommended that a summary table or scheme regarding toxicokinetics 11 and metabolism would also be useful.
- 12 EPA Response C.1 (Synthesis of Evidence)-4: A summary table presenting the similarities in 13 toxicokinetics (absorption, distribution, metabolism, and excretion [ADME]) has been added to 14 Section 1.1.1 (Toxicokinetics of TMB Isomers).
- 15 SAB Comment C.1 (Synthesis of Evidence)-5: The SAB noted that the synthesis section that 16 provides weight-of-evidence determinations for the noncancer and cancer effects would be a good 17 place for a separate subsection that describes the major uncertainties and gaps present in the TMB 18

toxicological database. 19 EPA Response C.1 (Synthesis of Evidence)-5: A discussion of the major gaps and 20 uncertainties in the TMB toxicological database has been added to Section 1.3.1 (Weight of

21 Evidence for Effects Other than Cancer).

22 SAB Comment C.1 (Synthesis of Evidence)-6: The SAB noted that the current synthesis 23 discussions are brief and do not weigh the value of evidence from related chemicals or from studies 24 done on the C9 fraction. The SAB further noted that structurally related alkylbenzenes such as 25 toluene, xylene, ethylbenzene, and styrene have similarities in neurotoxic effect and metabolic 26 disposition and that use of such information is clearly supported in the External Peer Review draft 27 version of the IRIS Preamble, Section 3.1 (lines 11–15) "[s]earches for information on mechanisms 28 of toxicity are inherently specialized and may include studies on other agents that act through 29 related mechanisms" and in Section 5.4, p. xxiii (lines 18–21), "Pertinent information may also 30 come from studies of metabolites or of compounds that are structurally similar or that act through 31 similar mechanisms." SAB therefore recommended that additional animal and human studies on 32 related aromatic solvents be considered in the qualitative and mechanistic interpretations of TMB 33 toxicity. A list of such studies are included in SAB Comment 3 of Charge Question B.1. SAB 34 suggested that these data be used in multiple fashions, including the determination of whether 35 effects seen in TMB-only studies are consistent across related compounds and to inform potential 36 modes of action. The SAB noted that perfect consistency is not required, but major discrepancies 37 should be noted.

1 EPA Response C.1 (Synthesis of Evidence)-6: As noted above in EPA Response B.1-3, the 2 human studies investigating the health effects of related compounds or mixtures containing those 3 substances have been added to the TMB assessment where appropriate. Additionally, a targeted 4 literature search has been conducted to identify review articles on related compounds in order to 5 assess a large body of literature for the pertinent pieces of information that could serve to fill data 6 gaps in the primary TMB literature. Information gleaned from these review articles, and from 7 additional primary literature identified through the evaluation of the review articles, has been 8 included in the TMB assessment to make informed assumptions regarding TMB isomers' potential 9 mode of action and whether it can be reasonably anticipated that TMB isomers could cause certain 10 types of toxicity when isomer-specific data are missing (e.g., developmental neurotoxicity) (see EPA 11 Responses GC.2-5 and GC.2-6). 12 SAB Comment C.1 (Synthesis of Evidence)-7: SAB noted that the data gaps for the TMB 13 database appear to be the lack of a developmental neurotoxicity study, the lack of a multi-14 generational reproduction study, and the lack of a chronic noncancer (neurotoxicity) study. The 15 SAB recommended that the EPA could potentially utilize data from these analogous alkylbenzenes 16 to inform these data gaps and inform the selection of the value for the database UF. 17 EPA Response C.1 (Synthesis of Evidence)-7: EPA agrees with the SAB regarding the major 18 limitations in the TMB toxicity database. Information obtained through the secondary literature 19 search has been used to fill in data gaps in the TMB toxicological database, especially regarding the 20 potential mode of action of TMBs and the possibility that gestational exposure to TMB isomers 21 affect neurodevelopment. Consideration of the fuller database, TMB isomer, related alkylbenzene, 22 and C9 fraction studies helped further support EPA's selection of a database uncertainty factor of 3 23 (see EPA Response E.4-5 below for complete details). 24 SAB Comment C.1 (Synthesis of Evidence)-8: SAB recommended that the discussion of the 25 existing C9 mixtures studies be brought into the main document describing their strengths and 26 weaknesses and relevance to the setting of RfDs/RfCs for individual TMB isomers, with particular 27 emphasis on whether they provide evidence to inform the aforementioned data gaps. For example, 28 regarding the developmental neurotoxicity data gap, the SAB noted that a Hungarian study 29 (Lehotzky et al., 1985) tested a C9 mixture containing TMBs (Aromatol) for developmental 30 neurotoxicity in rats. SAB reported that study had minimal reporting of results, simply stating that 31 there were no effects of Aromatol on dams or offspring at any time point in spite of the fact that the 32 high dose of Aromatol was 2,000 mg/m³, a dose that one would expect to have a neurotoxic effect in 33 dams during and after exposure, based upon results of other testing. SAB concluded that the lack of 34 any toxicity in dams or offspring, combined with the lack of reporting of any data (including 35 Aromatol treatment group neurological testing or Aromatol composition), and the fact that it was a 36 mixture and not a specific TMB, makes this study of limited utility for filling the developmental 37 neurotoxicity data gap. The SAB further noted that other issues relevant to the interpretation of the 38 C9 faction studies be discussed in the TMB assessment, including issues related to possible

differences in metabolic clearance and distribution between TMB isomers and the C9 fraction. SAB
 noted that considering this information is relevant for the evaluation of individual TMB isomers
 and would help strengthen the Agency's decisions regarding the role of the C9 fraction in the
 current assessment.

5 EPA Response C.1 (Synthesis of Evidence)-8: Information on the C9 studies has been 6 brought into the main body of the text and discussed in the relevant subsections of the Hazard 7 Identification section. Discussions regarding the utility of the C9 studies for deriving reference 8 values has also been expanded in the Dose-Response Analysis section, with a particular focus on 9 whether these studies are suitable for derivation of reference values and whether or not 10 consideration of these studies and other studies on related compounds (i.e., toluene, etc.) help 11 inform decisions related to selecting the value for the database UF for TMB isomer-specific 12 reference values. Ultimately it was determined that the C9 fraction studies were not suitable for 13 derivation of reference values. However, consideration of the related alkylbenzenes data was 14 judged to be useful for supporting EPA's selection of the database uncertainty factor (see EPA 15 Response E.4-5 below for complete details). 16 Two other industry reports regarding the toxicity of mixtures containing the isomers (IBT 17 Labs, 1992; Chevron, 1985), however, were carefully considered but not included in the 18 Toxicological Review. There were multiple rationales for the exclusion of these studies. Of note, 19 these studies were not peer-reviewed and did not investigate the toxicity of individual TMB 20 isomers. EPA generally only includes studies that are peer-reviewed, and will seek out a peer-21 review for a non-peer-reviewed reference if it appears to be critical for the needs of the assessment. 22 Neither of these references were deemed critical for the assessment. The reasons for excluding the 23 Chevron study included deficiencies in reporting the composition of the test substance, the 24 conclusion that there was no need for a 1 generation reproduction C9 fraction study when a full 25 multigenerational reproduction C9 fraction study was already included in the database (Mckee et 26 al., 1990), and that it was a dermal toxicity study. The main rationale for the exclusion of the IBT 27 Labs study was that it was a short-term inhalation study of a complex mixture containing TMB 28 isomers not likely to be critical to the needs of the assessment. As such, peer-review was not 29 sought for either of these references. Another industry report investigating the oral toxicity of 30 1,2,4-TMB was further considered for inclusion in the Toxicological Review (Borriston, 1983). In 31 this study, male F344 rats (N = 10) were exposed to high oral doses of either 0.5 or 2.0 g/kg 32 1,2,4-TMB daily for 28 days. All rats in the high-dose group and one rat in the low-dose group died 33 during exposure (no times given). Other reported effects were enlarged adrenal glands, mottled 34 and red thymuses, and congested lungs. Given the limited toxicological information provided in 35 this report (other than total mortality in the high-dose group), this report was not included in the 36 Toxicological Review.

37 Charge Question C.1 (Summary and Evaluation): Does EPA's hazard assessment of
 38 noncancer human health effects of trimethylbenzenes clearly integrate the available scientific

1 evidence (i.e., human, experimental animal, and mechanistic evidence) to support the conclusions that 2 trimethylbenzenes pose potential hazards to the nervous system, respiratory system, the developing 3 *fetus, and the circulatory system (i.e., blood)?* 4 SAB Comment C.1 (Summary and Evaluation)-1: The SAB noted that, while Section 1.3.1 5 (Weight of Evidence for Effects Other than Cancer) contains a summary description of the 6 toxicological evidence of effects of the TMBs on the nervous, respiratory, circulatory, and 7 developmental systems, the section does not adequately describe the limitations and uncertainties 8 within the database or how the results of the hazard assessment will be utilized in the subsequent 9 dose-response evaluation. The SAB recommended that Section 1.3.1 be revised to include the 10 following: (1) a short summary of the toxicokinetic similarities and differences among the three 11 isomers early in the section to provide context to the subsequent effect summaries; (2) a short 12 summary of the neurological effects database limitations and accompanying uncertainties such as 13 lack of subchronic data for some isomers, lack of chronic data for all isomers, questions of 14 reversibility, and lack of mechanistic data; (3) statement(s) regarding the confidence in the hazard 15 identification results given the limitations of the available database; and (4) inclusion of a 16 concluding paragraph(s) that states how the results of the hazard identification will be utilized in 17 the subsequent dose-response evaluation. 18 EPA Response C.1 (Summary and Evaluation)-1: All of the SAB-recommended additions to 19 Section 1.3.1 have been incorporated into the text. 20 **Charge Question C.2 (Summary and Evaluation):** Does EPA's hazard assessment of the 21 carcinogenicity of trimethylbenzenes clearly integrate the available scientific evidence to support the 22 conclusions that under EPA's Guidelines for Carcinogen Risk Assessment (U.S. EPA, 2005), there is 23 *"inadequate information to assess the carcinogenic potential" of trimethylbenzenes?* 24 SAB Comment C.2 (Summary and Evaluation)-1: The SAB agreed with the EPA's 25 determination that there was "inadequate information to assess the carcinogenic potential" of TMB 26 isomers and concluded that EPA's hazard assessment of the carcinogenicity of TMB isomers did 27 integrate all available scientific evidence. The SAB recommended that EPA incorporate data on 28 related compounds qualitatively to fill data gaps if possible. 29 EPA Response C.2 (Summary and Evaluation)-1: Information on related alkylbenzene 30 compounds has been incorporated into the cancer hazard assessment to the extent possible. 31 **Charge Question D.1:** Data characterizing the toxicokinetics of 1,2,3-TMB, 1,2,4-TMB, and 32 1,3,5-TMB following inhalation and oral exposures in humans and experimental animals support the 33 use of physiologically-based pharmacokinetic (PBPK) models for 1,2,4-TMB. For the purposes of this 34 assessment, the <u>Hissink et al. (2007)</u> model, originally describing 1,2,4-TMB toxicokinetics following 35 exposure to white spirit (a complex mixture of volatile organic compounds), was modified by EPA to 36 calculate internal dose metrics following exposure to 1,2,4-TMB alone for the derivation of an 37 inhalation RfC for 1,2,4-TMB. Additionally, the model was further modified by the addition of an oral 38 route of exposure for use in a route-to-route extrapolation for the derivation of an oral RfD for

- 1 1,2,4-TMB. Please comment on whether the selected PBPK model (<u>Hissink et al., 2007</u>) with EPA's
- 2 modifications adequately describe the toxicokinetics of 1,2,4-TMB (Appendix B [of the TMB
- 3 Assessment]). Was the PBPK modeling appropriately utilized and clearly described? Are the model
- 4 assumptions and parameters scientifically supported and clearly described? Are the uncertainties in
- 5 *the model structure adequately characterized and discussed?*
- 6 <u>SAB Comment D.1-1</u>: The SAB found that the selected model did an adequate job of
- 7 simulating the time-course of TMB in the blood of human subjects during and following acute
- 8 inhalation exposures. The SAB noted that there was excellent agreement between predicted and
- 9 measured blood TMB levels, both during and following 4-hour exposures, for the subjects of <u>Hissink</u>
- 10 <u>et al. (2007)</u> inhaling 100 ppm white spirit. The SAB noted that the model modestly, but
- 11 consistently, under-predicted blood levels in volunteers inhaling 30 ppm TMB for 8 hours
- 12 (Kostrzewski et al., 1997) and that the model also consistently under-predicted blood levels in
- persons inhaling 2 or 25 ppm TMB for 2 hours (<u>Järnberg et al., 1998</u>, <u>1997a</u>; <u>Järnberg et al., 1996</u>),
- 14 but to a larger degree. The SAB noted that these subjects exercised during exposure, which would
- 15 increase their systemic uptake of TMB.
- 16 <u>EPA Response D.1-1</u>: It should be noted that while exercise will increase systemic uptake,
- 17 as stated by the reviewers (by increasing respiration rate and cardiac output), the accompanying
- 18 increase in cardiac output would also increase TMB's distribution to the liver, which would
- 19 therefore also increase the rate of metabolic clearance. It is unclear how the respective increases in
- 20 both respiration and cardiac output, as well as distribution to the liver due to exercise would
- 21 influence the ultimate model predictions of TMB blood levels following exercise in humans.
- 22 However, given that the model did an adequate job of simulating the time-course of TMB in the
- 23 blood of human subjects, EPA determined there was no need to further investigate the "modest"
- 24 under-predictions of some of the human data.
- 25 <u>SAB Comment D.1-2</u>: The SAB concluded that, in most instances, the model over-predicted
 26 blood TMB levels in rats subjected to single exposures to white spirit (<u>Hissink et al., 2007</u>) and TMB
- 27 (Swiercz et al., 2003). The differences between predicted and empirical levels typically increased
- from 1.5-2-fold at lower inhaled concentrations to 4-6-fold at ≥ 100 ppm. The accuracy of
- 29 predictions of brain levels was similar to those for blood. The SAB found that the model reasonably
- 30 simulated blood and brain levels in rats after repeated TMB exposures, and that disparity between
- 31 simulated and empirical data also increased with increasing vapor concentration. With the
- 32 repeated exposure data of <u>Swiercz et al. (2003</u>), there were \sim 2- and 3-fold differences for the
- 25 and 50 ppm exposures, respectively. Differences in brain levels after 606 hours were somewhat
- 34 greater. SAB found that there was more disparity (4–5-fold) for blood and brain levels in the rats of
- 35 <u>Zahlsen et al. (1992)</u> inhaling 100 ppm TMB for 3 days.
- 36 <u>EPA Response D.1-2:</u> In considering these comments on the model fit to the <u>Swiercz et al.</u>
- 37 (2003) data, further attention was given to the discrepancy between the results in Table C-9 and
- the model fits in Figure C-12. The data in Figure C-12 come from Table 2 of <u>Swiercz et al. (2003)</u>

DRAFT—DO NOT CITE OR QUOTE

1 and the data in Table C-9 come from Table 4 of that paper, but the results are significantly different.

2 For example, <u>Swiercz et al. (2003)</u> Table 2 lists the 1,2,4-TMB (venous) blood concentration at

3 minutes post-exposure (end of 4th week) as 4.06 ± 0.46 mg/L, while Table 4 lists the (arterial)

4 blood concentration after "4 weeks" as 1.54 ± 0.32 mg/L. The model calibration used time-course

5 data from tail-vein sampling, such as in <u>Swiercz et al. (2003)</u> Table 2, and the internal dose being

6 used is venous concentration, so Table C-8 has been updated to provide a numerical comparison of

7 these two. At 25 and 100 ppm, the model results are within 30% of the tail-vein data, mostly within

- 8 10%, all within 1 standard deviation (SD). At 250 ppm, the discrepancy ranges from a factor of 1.5
- 9 (50% over-prediction) to 6-fold.

In the experimental methods, <u>Swiercz et al. (2003)</u> only state that the samples for Table 4 were collected "after decapitation." During the time, or range of times, between removal of animals from the exposure chamber and decapitation, and until a tissue sample is chilled, evaporative loss of TMB could occur. Therefore, the table has been revised to compare the data for model results 30–60 minutes post-exposure, rather than immediately after exposure. In contrast, <u>Zahlsen et al.</u> (1992) state that animals were removed from the exposure chamber and tissues were collected

16 within 3 minutes.

17 SAB Comment D.1-3: SAB noted that the poor model prediction for inhaled concentrations 18 ≥100 ppm in rats is acknowledged by the EPA authors. SAB further noted that EPA uses the PBPK 19 model to provide simulations for exposures outside its application domain. This is necessitated by 20 the fact that the 100 ppm dose is in the middle of the rat dose-response range used for BMD 21 modeling. SAB concluded that over-predicting rat dosimetry in this range thus has the potential to 22 influence the results of dose-response modeling and extrapolation of potency to humans. Marked 23 over-prediction of high-dose data necessitated the omission of the highest dose for BMD modeling. 24 The SAB recommended two possible options for alleviating this issue. The first option is to 25 refine the rat PBPK model to improve fits or conduct BMD modeling first using inhaled 26 concentration to identify the POD, and then using the rat and human PBPK models to determine the 27 HEC. SAB noted that refining the PBPK model may require recalibration of some type, such as the 28 addition of a first-order metabolic pathway consistent with the PBPK model of Järnberg and 29 **Johanson** (1999), or changing hepatic blood flow to 25% instead of 17% of cardiac output. 30 The second option proposed by SAB is for EPA to conduct BMD modeling of the Korsak and 31 <u>Rydzyński (1996)</u> data using air TMB concentration as the dose metric to derive the POD. 32 Subsequently, the PBPK model would be used to convert the POD to the weekly average blood 33 concentration. 34 EPA Response D.1-3: EPA has chosen to pursue the second option offered by the SAB. 35 When implementing this option, EPA ensured that the resulting lower confidence limits on the BMD 36 (BMDLs) used for HEC estimation were below the 100 ppm (492 mg/m³) threshold of model

37 validation.

<u>SAB Comment D.1-4</u>: SAB noted that they conducted a quality control/quality assurance
 review and confirmed that the model simulations presented in Appendix B of the IRIS document
 draft were accurate. SAB noted that aside from a couple of minor technical issues that were
 identified, no fundamental flaws or issues were found.

5 <u>EPA Res</u>

<u>EPA Response D.1-4:</u> No response necessary.

6 <u>SAB Comment D.1-5</u>: The SAB found that the EPA's assumptions, in modifying the <u>Hissink</u>
 7 et al. (2007) model to predict the kinetics of inhaled TMB for repeated exposure scenarios, were

- 8 reasonable and appropriate. The major caveats, however, were not identified up-front on
- 9 page B-20 (e.g., that the original model and its parameters were for TMB and white spirit, lack of
- 10 parameters for the oral route, lack of parameters for pregnancy). The SAB recommended that the
- 11 EPA expand the explanation and justification for the modifications of model parameters.
- 12 Specifically, the discussion of the input parameters (e.g., human tissue:blood partition coefficients,
- 13 cardiac output, liver blood flow) should be justified. Additionally the use of scaled-up rat V_{max}
- 14 values, when human values were available, requires further explanation. Metabolic constants could
- 15 be guestioned, as they summarily reflect the rate of TMB metabolism during mixed exposures to
- 16 white spirits, rather than exposure to TMB alone. The EPA did not attempt any re-estimation or

17 adjustment of parameters for chronic exposure (e.g., enzyme induction, dose-dependency, growth

- 18 dilution). Results of sensitivity analyses can be used to indicate whether the choice of liver blood
- 19 flow substantially impacts the model predictions and thus warrants revisiting. It was noted that
- 20 human tissue:blood partition coefficients used in modeling were twice those for rats. <u>Meulenberg</u>
- 21 <u>and Vijverberg (2000)</u> estimated human brain:blood, fat:blood, and kidney:blood partition

22 coefficients that were higher for rats than for humans. It was suggested that first-order and

23 saturable metabolism be incorporated into the model, and the model be run to explore the impact

of the change.

<u>EPA Response D.1-5:</u> As recommended by the SAB, the major caveats and concerns for the
 <u>Hissink et al. (2007)</u> model have been added to Section C.2.2. Additional points on specific items

- 27 have been added at appropriate points in Section C.2.3. A justification statement for revising model
- 28 parameters (i.e., to address the caveats and concerns identified above) was added at the beginning
- of Section C.2.3.2, with further justification provided at appropriate points in the section. A
- 30 sentence was added to the description of the human model fits, and a brief paragraph was added to
- 31 the "Summary of Optimization and Validation," to explain that because the scaled V_{max} (i.e., rat-

32 derived $V_{max}C$) and rat-derived K_m were found to adequately predict the human data, and numerical

- 33 optimization did not provide a significant improvement in the fit, the scaled V_{max} and rat K_m were
- 34 used for the human model.

35 Regarding SAB's comment related to fractional blood flow to the liver: if the fractional

- 36 blood flow to the liver was increased and no other parameters were changed, then the predictable
- 37 result is that the net rate of metabolism would increase. However, the metabolic rate constant V_{max}
- 38 was calibrated using the fractional hepatic blood flow set in model. So to fully evaluate the model

1 behavior, if hepatic blood flow were increased to 25% of cardiac output for example, there is a need 2 to first make that change and then re-calibrate the V_{max} to the available data. It seems likely that 3 doing both of these things in combination would for the most part cancel out any impact of 4 increasing hepatic blood flow alone. The chance of obtaining a significant improvement is uncertain 5 and this sensitivity analysis would entail considerable effort. As the SAB's overall conclusion was 6 that the model was adequate describing TMB blood concentrations as currently parameterized, the 7 significant, additional effort required for this type of sensitivity analysis was not undertaken. 8 Although Meulenberg and Vijverberg (2000) reported tissue: blood partition coefficients that were 9 higher in rats than in humans, the original partition coefficients (as identified by Hissink et al. 10 (2007)) used in the original model fitting were retained in the current PBPK model. 11 SAB Comment D.1-6: The SAB did not find a specific discussion of the uncertainties in the 12 model's structure. While these uncertainties may be implicitly included in the uncertainties 13 discussion, SAB recommended that they should be specifically discussed in reference to the PBPK 14 model. 15 EPA Response D.1-6: An extensive discussion of modeling uncertainties was added to 16 Section C.2.3.2. 17 SAB Comment D.1-7: One SAB Panelist noted that there is a published human PBPK model 18 (Järnberg and Johanson, 1999). The SAB acknowledged that the EPA requested the model code 19 through email and was unable to obtain the model. The SAB noted that the model is for TMB alone, 20 and suggested that using this model may have the following benefits over the Hissink et al. (2007) 21 model: (1) it avoids the complications and uncertainties of concurrent exposure to other 22 components in white spirit and necessary species-to-species extrapolations; (2) empirical human 23 kinetic data are available from the same laboratory for model parameterization and validation; and 24 (3) human neurobehavioral data are also available in the literature from other research groups. 25 The SAB noted that the results of these studies identify human no-observed-adverse-effect levels 26 (NOAELs)/lowest-observed-adverse-effect levels (LOAELs) for acute irritation and central nervous 27 system (CNS) effects by TMB and white spirit. The SAB noted that EPA policy is to use and consider 28 human data and validated human models when available. Because the EPA could not obtain the 29 <u>Järnberg and Johanson (1999)</u> model, the SAB provided recommendations to improve the use of the 30 Hissink et al. (2007) model and encouraged the EPA to, at a minimum, be more transparent in its 31 discussion of available models and model selection in this and future assessments. 32 EPA Response D.1-7: The EPA has followed its practices for using human toxicokinetic data, 33 including data from <u>Järnberg and Johanson (1999</u>) and previous studies by these authors, and of 34 using a validated human model (i.e., <u>Hissink et al. (2007</u>) in the TMB assessment. The toxicokinetic 35 data generated from the Järnberg and Johanson studies were used in the validation of the human 36 <u>Hissink et al. (2007)</u> model; these validations are extensively reported and discussed in 37 Section C.2.3.2. Discussions of the other PBPK models (Section C.2.1) were expanded, specifically 38 addressing the lack of availability of the Järnberg and Johanson (1999) model and that the EPA

1 generally prefers to use model structures that have been shown to fit both animal and human data, 2 as this consistency is considered a validation of the model structure. 3 **Charge Question D.2:** The internal dose metric selected for use in the derivation of the RfC 4 and RfD for 1,2,4-TMB was the steady-state weekly average venous blood concentration (mg/L) of 5 1,2,4-TMB for rats exposed for 6 h/day, 5 days/week. Please comment on whether the selection of this 6 dose metric is scientifically supported and clearly described. If a different dose metric is recommended 7 for deriving the RfC, please identify this metric and provide scientific support for this choice. Are the 8 uncertainties in the selected dose metric adequately characterized and discussed? 9 SAB Comment D.2-1: The SAB stated that the use of any dose metric should be guided by 10 the mode of action of the chemical being examined. For the TMBs, the SAB acknowledged that there 11 is a paucity of information on their mode of action, and that the Agency has inferred the mode of 12 action to be similar to that for chemicals such as toluene. Given the uncertainties in the mode of 13 action, the SAB found that the selection of the internal dose metric of the venous blood 14 concentration averaged over a week of exposure is reasonable. 15 EPA Response D.2-1: No response necessary. 16 SAB Comment D.2-2: SAB stated that clarification is needed on how the average weekly 17 venous concentration was determined given that the longer phase half-life of the TMB isomers 18 indicates that an exposure period longer than a week is required for blood levels to achieve a 19 steady state. In addition, the SAB noted that the experimental data for both rats and humans show 20 that steady state is not achieved with only a single week of exposure. Executing the PBPK model 21 over a 4-week period shows that the average blood levels are still continuing to rise slightly. The 22 SAB recommended that the model should be run long enough to come to a weekly steady state and 23 then the associated venous blood concentration should be used as the internal dose metric. 24 EPA Response D.2-2: This discussion has been added to the relevant section (where 25 internal metrics are described). The average weekly venous concentration was calculated by 26 simulating 3 weeks of exposure (6 hours/day, 5 days/week) and calculating the area under the 27 curve (AUC) during the 3rd week, divided by 168 hours. Extending the simulation to 4 weeks and 28 using the 4th week for the calculation changed the results by <0.02%. 29 SAB Comment D.2-3: The SAB noted that the multiple tissues of interest for derivation of an 30 RfC are primarily extrapulmonary tissues. However, the Agency has a goal to establish RfCs for 31 multiple endpoints beyond the critical effect endpoint currently being addressed. If an effect in the 32 respiratory tract is established (such as a change in bronchial alveolar lavage fluid composition) 33 and an RfC is to be determined, then the appropriate dose metric would be based on the mass 34 deposited per unit surface area of the lung rather than on the average venous blood concentration. 35 A mass per unit lung surface area dose metric enables species with significantly different lung sizes 36 than humans to be used in the derivation of the RfC.

<u>EPA Response D.2-3:</u> A dose metric of mass of TMB deposited per unit surface area of the
 lung was used in the derivation of RfC values for respiratory effects (i.e., increased inflammatory
 lung lesions) (see Section 2.1.2).

4 SAB Comment D.2-4: The SAB noted that using the PBPK model-estimated internal dose 5 metrics as the dose inputs for BMD modeling required the Agency to drop the high-dose exposures 6 from all modeling efforts because the venous blood dose metrics consistently over-predicted 7 experimental results for high exposures. This overestimation may be due, in part, to the Agency 8 using minute ventilation as the driver function for internal dose rather than decomposing minute 9 ventilation into its two components, namely tidal volume and breathing frequency. The SAB noted 10 that while the exposure level is high, which may lead to a 50% reduction in respiratory rate, 11 respiratory irritants such as the TMBs cause subtle shifts in the breathing pattern while 12 maintaining the same overall minute ventilation. Shallower breathing leads to a shift upward in the 13 respiratory tract for the site of deposition. In addition, the PBPK modeling for humans did not take 14 into account the periods of exercise that the subjects underwent, which may explain the model's 15 greater deviations from experimental results at high exposure levels. Consistent with previous 16 comments, the SAB noted that external air can be used as the dose metric and then the PBPK model 17 can be used to back-calculate the appropriate venous blood level. If the SAB's suggestions for 18 improvements in the PBPK model do not lead to a better agreement with the high-dose exposures, 19 the SAB recommended that the Agency include the external air dose metric and corresponding 20 venous blood back-calculations. 21 EPA Response D.2-4: None of the existing PBPK models specifically account for the impact 22 of varying tidal volume versus breathing frequency on regional deposition and uptake in the 23 respiratory tract. While compartmental models exist that do so (e.g., for acetaldehyde), such a 24 revision in model structure would be a very large effort and is beyond the scope of what EPA would 25 consider for this assessment. Given this decision, EPA has redone all of the BMD modeling using the 26 external air concentrations as the dose inputs and then calculated the HEC based on the BMDL 27 values, consistent with SAB recommendations in SAB Comment 3 of Charge Question D.1. 28 SAB Comment D.2-5: The SAB noted that, while uncertainties concerning model 29 parameters, potential for kinetic changes with repeated exposures, and model estimates of internal 30 dose are discussed, the uncertainties in the selected dose metric (weekly average venous blood 31 concentration) are not adequately characterized or discussed in the TMB assessment. 32 <u>EPA Response D.2-5</u>: This discussion was added to Appendix C (Section C.2.3.2). 33 **Charge Question E.1:** A 90-day inhalation toxicity study of 1,2,4-TMB in male rats (Korsak 34 and Rydzyński, 1996) was selected as the basis for the derivation of the RfC. Please comment on 35 whether the selection of this study is scientifically supported and clearly described. If a different study

36 is recommended as the basis for the RfC, please identify this study and provide scientific support for

37 this choice.

1	SAB Comment E.1-1: The SAB generally agreed with the choice of the Korsak and Rydzyński
2	(1996) study as the basis for derivation of the RfC for 1,2,4-TMB. The study utilized a 90-day
3	exposure period and, thus, the longest duration exposure study available in the literature; in
4	addition, it included multiple exposure levels. It was well-conducted and utilized adequate sample
5	sizes of rats. In addition, it was based on widely-used behavioral assays. An examination of the
6	study indicates that these behavioral studies were carefully carried out and data from control
7	animals were consistent with previously published observations. However, the SAB recommended
8	several ways in which the clarification for this choice could be strengthened (see SAB
9	Comments E.1-2–E.1-8 below for specifics).
10	EPA Response E.1-1: See EPA Responses E.1-2 through E.1-8 below for detailed responses
11	to the individual recommendations.
12	SAB Comment E.1-2: The SAB noted that the rationale for the choice of Korsak and
13	<u>Rydzyński (1996)</u> is not specifically described and recommends that the reasons for its choice over
14	other studies (e.g., the 4-week exposure studies) need to be more clearly stated.
15	EPA Response E.1-2: An increased justification for selection of the Korsak and Rydzyński
16	(1996) study was added to Section 2.1.5, including the rationale for selection of that study over the
17	other neurotoxicity studies that utilized a short-term exposure protocol (Wiaderna et al., 2002;
18	<u>Gralewicz and Wiaderna, 2001; Wiaderna et al., 1998; Gralewicz et al., 1997b</u>).
19	SAB Comment E.1-3: The SAB expressed concern that the TMB assessment, as currently
20	written, is confusing regarding the chronicity of exposure versus effects. The SAB recommended
21	that it would be helpful to modify the terminology particularly related to outcome measures,
22	perhaps as acute effects versus long-term effects/irreversible effects and retain the use of the word
23	chronic/subchronic etc. to descriptions of statements related specifically to exposure.
24	<u>EPA Response E.1-3:</u> The Hazard Identification and Dose-Response Analysis sections have
25	been edited to increase clarity with respect to language describing either the chronicity of exposure
26	or the nature of the described effects (i.e., acute or long-term/latent effects).
27	SAB Comment E.1-4: The SAB recommended that EPA separate the dose-response write-up
28	into sections that specifically elaborate on the acute effects and provide a separate section related
29	to effects observed post-exposure. The SAB also recommended that, given the commonality of the
30	trends in data across these studies, some mention of the biological significance in the absence of
31	statistical significance should be mentioned.
32	EPA Response E.1-4: The discussion of acute and post-exposure effects has been
33	reorganized in the Dose-Response Analysis section to the extent possible. A discussion of the
34	biological significance of the post-exposure data was also included in the assessment. However,
35	acute and long-term/latent/post-exposure effects have not been separated into distinct sections as
36	each type of data, when considered in tandem, informs the larger decisions made in the assessment
37	regarding the suitability of the decreased pain endpoint for derivation of the RfC. As such, EPA
38	concluded that, while more clearly delineating the types of effects was possible within a single

section, separating the effects into individual sections would possibly obscure the rationales behind
 EPA's conclusions.

3 <u>SAB Comment E.1-5:</u> The SAB recommended that the text, where applicable, could include 4 additional qualifications as to "reversibility of effects" at the 2-week post-exposure time point. This 5 assessment of reversible effects of failures on the rotarod is based on the finding of lack of 6 statistical difference between treated and control groups at 1 week post-exposure following a 7 13-week exposure period for one of two isomers. Some TMB Panel members felt that this was 8 sufficient evidence for reversibility, while other members did not feel that this provided sufficient 9 evidence. Specifically, this interpretation of a reversal relied on a reduction from 40% rotarod 10 failure during the final week of exposure compared to 35% 1 week post-exposure, as compared to 11 0% rates for controls. There was no such statistical reversal for the other isomer, and for both 12 isomers, the magnitude of the reduction post-exposure was minimal. Further, it was not clear that 13 the statistical analyses of these data incorporated a repeated measures component that would be 14 required by the experimental design. Thus, while a case was stated for a statistically significant 15 reversal, several TMB Panel members felt that it was not consistent nor did it appear to be 16 biologically meaningful. 17 EPA Response E.1-5: Additional qualifications on the determination of whether the 18 decreased pain sensitivity endpoint was reversible have been added to Sections 1.2.1, 1.3.1, and 19 2.1.5. In particular, it is noted throughout the section that all of the available evidence, especially 20 considering information from the short-term studies, strongly indicates that the pain sensitivity 21 endpoint is not immediately reversible upon termination of exposure, and that persistent changes 22

- to the nervous system occur due to TMB exposure. It should be noted that the SAB focused solely
 on decreased rotarod performance in their comment, which is not used in the RfC derivation. The
 data for decreased rotarod performance, as a measure of decreased neuromuscular function, were
 determined by EPA to not be appropriate for consideration for derivation of the RfC (Section 2.1.1)
- 26 due to the manner in which the data were reported. Failures on the rotarod were recorded as
- 27 quantal data (percent of animals "failing" on the rotarod due to latencies of up to 119 seconds)
- rather than being recorded as a continuous variable (i.e., latency to falling off rotarod apparatus).
- 29 Therefore, as the rotarod data were not considered for derivation of the RfC, extensive discussions
- 30 regarding the possible reversibility of this endpoint were not added to the assessment. However,
- 31 where possible, evidence from all effects has been discussed in the context of overall alterations of
- 32 neurological function due to TMB exposure.
- SAB Comment E.1-6: SAB recommended that the EPA re-calculate the RfC as if the study
 were subchronic (i.e., UF converts to 1 from 3) and report these subchronic RfC values as well.
 <u>EPA Response E.1-6:</u> EPA has calculated and included these subchronic RfC values in
- 36 Section 2.1.8 of the Dose-Response Analysis section.

1	SAB Comment E.1-7: SAB recommended that more specific mention of the potential
2	cumulative neurotoxicity that is suggested by the repeated measurement finding of rotarod
3	performance failures across the course of exposure be included in the document.
4	<u>EPA Response E.1-7:</u> As the rotarod data were not considered for derivation of the RfC, this
5	discussion was not added to the assessment. Data on decreased pain sensitivity were not provided
6	in the same manner as rotarod data (i.e., measures of effect provided at multiple intervening time
7	points during the period of exposure) and therefore, a discussion of the possible cumulative effects
8	regarding decreased pain sensitivity was likewise not added to the document.
9	SAB Comment E.1-8: The SAB recommended including more specific descriptions of the
10	similarity of the animal behavioral endpoints to what has been observed in humans.
11	EPA Response E.1-8: A discussion of the similarity of animal neurobehavioral endpoints to
12	the measures of neurotoxicity observed in human studies has been added to Section 2.1.5.
13	Charge Question E.2: Decreased pain sensitivity (measured as an increased latency to
14	pawlick response after a hotplate test) in male Wistar rats was concluded by EPA to be an adverse
15	effect on the nervous system and was selected as the critical effect for the derivation of the RfC. Please
16	comment on whether the selection and characterization of this critical effect is scientifically supported
17	and clearly described. If a different endpoint(s) is recommended as the critical effect(s) for deriving
18	the RfC, please identify this effect and provide scientific support for this choice.
19	<u>SAB Comment E.2-1:</u> The SAB agreed that the reduction in pain sensitivity as indicated by
20	an increased latency to paw-lick response in a hot plate test, is a valid adverse nervous system
21	effect and appropriately selected as a critical effect for the derivation of the RfC. This effect was
22	variously seen in response to short-term, 4-week, and 90-day studies. The associated U-shaped
23	dose-effect curves seen with these isomers, moreover, are highly consistent with the effects of
24	various other pharmacological agents (e.g., opioids) on this response and likely reflective of the
25	mechanisms by which these isomers act. This assay is widely used in the behavioral pharmacology
26	literature and particularly in the study of pain nociception and opioid pharmacology.
27	EPA Response E.2-1: No response necessary.
28	<u>SAB Comment E.2-2:</u> The SAB agreed that the observation of prolonged latency in the hot
29	plate test 24-hour post-footshock delivery that was observed in studies by Gralewicz and
30	colleagues (<u>Gralewicz and Wiaderna, 2001; Gralewicz et al., 1997b</u>) also constitutes an adverse
31	effect. The administration of footshock immediately after the hot plate test trial strains the
32	capabilities of the nervous system and, thus, provides a type of nervous system probe that then
33	unmasks a prolonged latency to a hot plate stimulus 24 hours later. It shows that when the nervous
34	system is maximally stressed, it cannot respond/recover in a normal timeframe.
35	<u>EPA Response E.2-2:</u> No response necessary.
36	SAB Comment E.2-3: SAB, in addition to making the recommendations above for the
37	document related to the nervous system effects, also noted that this section could benefit from
38	some additional description of the hot plate procedures, including the rationale/approach for using

1 the footshock intervention in the post-exposure behavioral assessments carried out after the 2 4-week exposures. 3 <u>EPA Response E.2-3:</u> Additional details on the hot plate procedure have been added to the 4 Hazard Identification and Dose-Response Analyses sections. Additional rationale for the inclusion 5 of the footshock challenge in the short-term studies has also been added to the assessment. 6 **Charge Question E.3:** In order to characterize the observed dose-response relationship 7 comprehensively, benchmark dose (BMD) modeling was used in conjunction with dosimetric 8 adjustments for calculating the human equivalent concentration (HEC) from a rat and human PBPK 9 model (<u>Hissink et al., 2007</u>) to identify the point of departure (POD) for derivation of the RfC. Please 10 comment on whether this approach is scientifically supported for the available data, and clearly 11 described. 12 A. Has the modeling been appropriately conducted and clearly described, based on EPA's 13 Benchmark Dose Technical Guidance U.S. EPA (2012)? 14 B. Has the choice of the benchmark response (BMR) for use in deriving the POD (i.e., a BMR 15 equal to 1 standard deviation change in the control mean for the latency to pawlick response) been 16 supported and clearly described? 17 SAB Comment E.3-1: SAB expressed concern over EPA's decision to omit the high-dose 18 group from the Korsak and Rydzyński (1996) study before BMD modeling. However, an BMD 19 analysis conducted by the SAB on the same dataset using air concentration as the dose metric 20 results in the same POD air concentration as BMD modeling based on internal dose and using the 21 low- and mid-dose groups. As a result, the SAB agreed that the overall results for the POD 22 generated by the EPA are adequate, but strongly suggested that the Agency provide a more robust 23 explanation of any analyses. The SAB also considered Appendix C-2 in the TMB Assessment 24 (External Review Draft) as inappropriate and recommended deleting it. If the EPA is so inclined, 25 they could replace it with the BMD analysis using air concentration as the dose metric. 26 EPA Response E.3-1: In SAB's analysis above, they ran one model (Exponential M4) against 27 the data as that was the model that was selected in External Peer Review draft. It is true that this 28 model returns the same POD regardless of if air concentrations or internal dose is used. However, 29 the method SAB used doesn't take into account other model fits and the model selection protocols 30 EPA uses in BMD modeling. When all available continuous models were run agains the decreased 31 pain sensitivity endpoint, the HEC generated for decreased pain sensitivity due to exposure to 1,2,4-32 TMB using the SAB-suggested modeling method (model air concentrations and then convert to HEC 33 using the PBPK model) differs slightly from the POD included in the External Peer Review Draft of 34 the TMB assessment (18.1 versus 15.8 mg/ m^3). However, SAB's larger point stands in that it is 35 appropriate to model the TMB toxicity endpoints using the external air concentrations as the dose 36 inputs and then convert the resultant BMDLs into HECs using the available PBPK model. This 37 methodology obviates the need for extensive revisions to the PBPK model code, and ensures that 38 any HECs generated from the PBPK model originate from BMDLs that fall within the model's range

1 of validation. As such, all BMD modeling has been redone according to SAB's recommendations.

- 2 EPA also agrees with the SAB regarding Appendix C-2 (External Peer Review draft); this appendix
- 3 has been removed from the document.

4 <u>SAB Comment E.3-2:</u> The SAB recommended that the EPA provide better justification for 5 applying the "one standard deviation" from the mean of the control group for the neuro-

6 toxicological endpoint than using the Agency default value. The EPA should also provide better

7 explanation of the issues associated with the homogeneity of variance across dose groups in the

8 Korsak and Rydzyński (1996) study, its implications for BMD modeling, and how the EPA

9 addressed this in their BMD modeling.

10 <u>EPA Response E.3-2:</u> A more robust justification for the selection of 1 control group SD as

11 the BMR for modeling some continuous endpoints has been added to Section 2.1.2, and a brief

12 discussion regarding the uncertainty around the BMR selection has been added to Section 2.1.6.

13 The observation of differential variance estimates across dose groups, and how this was handled

14 when performing BMD modeling, was also discussed more extensively in Section 2.12. For

15 example, the variances reported for decreased pain sensitivity were clearly non-constant, with the

16 reported variances at 492 mg/m³ being lower (1,2,4-TMB) or higher (1,2,3-TMB) compared to

17 other dose groups. This heteroscedasticity could reflect measurement error (e.g., different lab

18 technicians recording responses differently), experimental error (e.g., the hot plate apparatus may

19 not have held a constant temperature), or may reflect that the latency response may be log-

20 normally distributed rather than the assumed normal distribution. The latter possibility does not

seem to be the case as the approximation of geometric means and SDs from the reported arithmetic

22 means and SDs did not reduce the heterogeneity in reported variances. In order to account for data

23 with reported heteroscedasticity, BMD modeling was performed using variance estimates that were

24 modeled as a power function of the reported mean value.

25 **Charge Question E.4:** *Please comment on the rationale for the selection of the uncertainty*

26 factors (UFs) applied to the POD for the derivation of the RfC for 1,2,4-TMB. Are the UFs appropriate

27 based on the recommendations described in Section 4.4.5 of A Review of the Reference Dose and

28 Reference Concentration Process <u>U.S. EPA (2002)</u>, and clearly described? If changes to the selected

29 UFs are proposed, please identify and provide scientific support for the proposed changes.

30 <u>SAB Comment E.4-1:</u> The SAB agreed with the UF_A of 3 and its rationale. The default UF_A of
 31 10 can be divided into two half-log UF components of 3 each to account for species differences in

32 toxicokinetics and toxicodynamics, respectively. In developing the RfC for 1,2,4-TMB, the EPA used

33 PBPK modeling to convert estimated internal doses in rats in toxicity studies of 1,2,4-TMB to

34 corresponding applied doses in humans. PBPK modeling substantially reduces uncertainty

35 associated with extrapolating animal exposures to humans based upon toxicokinetic differences,

36 justifying elimination of one of the half-log components of the default UF_A of 10 (<u>U.S. EPA, 2002</u>).

37 Uncertainty regarding possible toxicodynamic differences among species (i.e., different sensitivity

1 to toxicity at equivalent internal doses) remains, justifying keeping the other half-log component 2 of 3.

3

EPA Response E.4-1: No response necessary.

4 SAB Comment E.4-2: The SAB agreed with the UF_{H} of 10 and its rationale, although one 5 TMB Review Panel member thought that a UF_H of 3 would be adequate. This UF is intended to 6 account for potential differences among individuals in susceptibility to toxicity. The EPA concluded 7 that no information on potential variability in human susceptibility to 1,2,4-TMB toxicity exists with 8 which to justify using a value other than the default of 10. It was noted during discussion that 9 numerous clinical studies have demonstrated that humans, including pediatric and geriatric 10 patients, differ by only about 2-fold in their susceptibility/sensitivity to inhaled lipophilic 11 anesthetics (e.g., chloroform, halothane), indicating to one Panel member that a UF_H of 3 would be 12 scientifically defensible given the neurotoxicity endpoint used to establish the POD. Other TMB 13 Panel members disagreed, stating that the mode of action of neurotoxicity of 1,2,4-TMB is unknown 14 and that the actions of general anesthetics may have little or no bearing on variability in TMB 15 susceptibility. In their opinion, the full UF_H of 10 is warranted. 16 <u>EPA Response E.4-2:</u> EPA agrees with the majority of the SAB Panel members in that, given 17 the lack of information regarding TMB's mode of action, limited information exists that could 18 predict the potential for variation in human susceptibility to TMB exposure. Therefore, the value of 19 $UF_{H} = 10$ is retained in the TMB assessment. 20 SAB Comment E.4-3: The SAB agreed with the EPA's choices for UF_1 values (i.e., a UF_1 of 21 1 for all endpoints except increased bronchoalveolar lung cells, for which a UF_L of 10 was selected). 22 However, the SAB suggested that the justification for the UF_L be strengthened. This UF is intended 23 to be used when the POD is a LOAEL rather than a NOAEL. In conducting BMD modeling, a BMD 24 equal to 1 SD change in the control mean for modeled endpoints was selected. The document 25 would be improved by adding an explanation of the reasoning for selection of 1 SD (versus 0.5 SD) 26 along with a clearer discussion of why this is expected to lead to a POD for which a UF_L of 1 is 27 appropriate. 28 <u>EPA Response E.4-3</u>: A stronger justification for selection of a BMR = 1 control SD has been 29 added to the text. The LOAEL to NOAEL UF, UF_L, of 1 was applied for endpoints modeled with the 30 EPA Benchmark Dose Software (BMDS) because the current approach is to address this factor as 31 one of the considerations in selecting a BMR for BMD modeling. In other words, when selecting a 32 BMR value, care should be taken to select a response level that constitutes a minimal, biologically 33 significant change so that the estimated BMDLs can be assumed to conceptually correspond to a

- 34 NOAEL. In the case of TMBs, BMRs were preferentially selected based on biological information on
- 35 what constitutes a biologically significant change for these effects. For example, a 5% reduction in
- 36 fetal body weight was selected as the BMR for that endpoint based on the fact that a 10% reduction
- 37 in adult body weight is considered adverse, the assumption that fetuses are a susceptible
- 38 population and thus more vulnerable to body weight changes, and the fact that decreases in fetal

1 weight in humans are associated with a number of chronic diseases such as hypertension and 2 diabetes. For endpoints for which there was no information available to make assumptions about 3 what constitutes a minimal, biologically significant response, a BMR equal to a 1 SD change in the 4 control mean was selected. In both cases, the BMR selected was assumed to return BMDL values 5 that conceptually correspond to a NOAEL, thus obviating the need for a LOAEL to NOAEL UF. 6 <u>SAB Comment E.4-4</u>: The SAB agreed with the UF_S of 3, although one TMB Panel member 7 thought that a UF_s of 10 would be more appropriate. When the data used to generate a chronic RfC 8 are from subchronic studies, a UF_s is used to address uncertainty around whether longer exposures 9 might lead to effects at lower doses. The EPA justified using less than a full default factor of 10 for 10 this UF based on evidence suggesting possible reversibility of neurotoxicity and hematotoxicity 11 endpoints. Most of the SAB Panel members were satisfied with this justification, but some 12 members of the TMB Panel disputed the evidence for reversibility of effects. In addition, several 13 TMB Panel members noted that reversibility following cessation of exposure was irrelevant since 14 the chronic RfC is applicable to lifetime exposure (i.e., there is no post-exposure period). The 15 discussion regarding reversibility of neurotoxic effects is presented in response to the RfC for 16 1,2,4-TMB (see Section 2.2.5). The TMB Review Panel discussed that some hematologic effects 17 considered by the EPA appeared to resolve when exposure ceased, but other effects did not resolve, 18 and that inflammatory pulmonary effects can lead to persistent injury. The SAB noted that factors 19 other than reversibility could contribute to selection of a UF_{5} less than 10, such as evidence from 20 PBPK modeling that 1.2.4-TMB does not accumulate in the body over time and empirical evidence 21 that the POD does not appear to decrease when results from subchronic studies are compared with 22 studies of shorter duration. One TMB Panel member thought that none of these considerations had 23 sufficient merit to justify using less than the full default UFs of 10. 24 EPA Response E.4-4: Upon reconsideration of the neurotoxicity, hematological toxicity, and

25 respiratory toxicity data contained in the TMB database, EPA agrees with members of the SAB 26 Panel recommending a UF_s of 3. Given that the adaptive responses of the nervous system appear to 27 be impaired several weeks after short-term exposure, including prolongation of decreased pain 28 sensitivity phenotypes following environmental challenge using a footshock, the concern that 29 chronic exposures may more thoroughly overwhelm adaptive responses in the nervous system, and 30 thus lead to more severe responses, remains. In addition, there is evidence that neurotoxicity 31 worsens with continued exposure, and thus, effects are expected to be more severe following 32 chronic exposure. For example, decrements in rotarod function were shown to increase in 33 magnitude as a function of exposure duration, worsening from 4 to 8 weeks of exposure, and 34 worsening further from 8 to 13 weeks of exposure (Korsak and Rydzyński, 1996). Although a 35 similar time-course is not available for reduced pain sensitivity, reduced pain sensitivity is 36 observed at approximately 5-fold lower concentrations following subchronic exposure, as 37 compared to acute exposure (see discussion in Section 1.2.1 of the Toxicological Review). However, 38 there does not seem to be an exacerbation of other neurotoxic effects at lower doses when

1 comparing subchronic exposures to short-term exposures. Further, evidence from toxicokinetic

- 2 studies indicates that blood and organ concentrations of TMBs are similar following repeated vs.
- 3 acute exposures (approximately 600 hours vs. 6 hours, respectively; see Table C-9) and the PBPK
- 4 model predicts less than a 5% increase between the first day and subsequent days of repeated
- 5 exposures. By extension, it can be reasonably assumed that TMB isomers would not accumulate to
- 6 an appreciably greater degree following a longer chronic exposure and thus may not lead to effects
- 7 at lower doses compared to shorter duration studies. Taken together, the toxicokinetic and
- 8 toxicological data support the application of a UFs of 3 for neurotoxic, hematological, and
- 9 respiratory endpoints. The text regarding the selection of the UF_S has been revised in Section 2.1.3
- 10 to reflect these conclusions, and a UF_s of 3 has been applied to all endpoints other than fetal weight.
- Additionally, as previously discussed in EPA Response E.1-5, a more extensive discussion of the
- 12 possible reversibility of the decreased pain endpoint has been added to Sections 1.2.1, 1.3.1, and
- 13 2.1.5.

14 SAB Comment E.4-5: The SAB was divided on whether the UF_D should be 3, as selected by 15 the Agency, or 10. The purpose of this UF is to account for overall deficiencies in the database of 16 studies available to assess potential toxicity. The EPA cited strengths in the database in terms of 17 availability of information on multiple organ/systems from three well-designed subchronic toxicity 18 studies in justifying not using the full default factor of 10. In retaining a half-log factor of 3, the EPA 19 noted the absence of a multi-generation reproductive/developmental toxicity study as a weakness 20 in the database, and specifically concern for the absence of a developmental neurotoxicity study for 21 1,2,4-TMB given the importance of neurotoxicity in establishing the RfC. Among those who agreed 22 with a UF_D of 3, some found the justification provided by the EPA to be satisfactory, while others 23 thought that toxicity data available for C9 mixtures should contribute to the rationale to lower the 24 value from the default of 10. Others disagreed with including C9 mixture data as relevant to the 25 database UF. Panel members who thought that the UF_{D} should be 10 cited various reasons, 26 including the absence of data in other species and the absence of a multi-generational reproductive 27 study, as well as the opinion that the absence of a developmental neurotoxicity study alone 28 warranted a full factor of 10. One TMB Panel member pointed out that analogy with toluene 29 suggests that the perinatal exposure could lead to neurodevelopmental effects at doses 10-fold 30 lower than the NOAEL for effects in adults. An additional point made by another Panel member 31 was that the RfCs for all of the isomers are being set at the same value, whereas the database is 32 severely limited for the 1,2,3- and 1,3,5-TMB isomers and the latter two compounds deserve a UF_{D} 33 of 10. Therefore, for consistency, a factor of 10 should be used for all the isomers. 34 EPA Response E.4-5: After careful consideration of the available TMB toxicity database, and 35 the database for mixtures containing TMB isomers (i.e., the C9 fraction) and information pertaining

 $36 \qquad \text{to related alkylbenzenes, EPA determined that a UF_{D} of 3 was the most appropriate value. This}\\$

- 37 decision was further supported by the restructuring of the TMB RfC derivation section into an
- 38 overarching section covering all three TMB isomers, rather than three individual RfC sections

1 covering a single isomer. In this manner, the entirety of the TMB toxicity database for all isomers 2 could be considered in total. Strengths of this database include three well-conducted subchronic 3 studies that investigated effects in multiple organ/systems in Wistar rats (nervous, respiratory, and 4 hematological systems) and a well-conducted developmental toxicity study that investigated 5 maternal and fetal toxicity in a different strain of rats (Sprague-Dawley). Consideration of 6 developmental toxicity studies investigating the effects of mixtures containing TMB isomers (Mckee 7 et al., 1990; Ungvary and Tatrai, 1985) supports the general observation of the developmental 8 toxicity of individual TMB isomers. In these studies, developmental toxicity was observed in rats, 9 mice, and rabbits, but only at doses \geq 500 mg/m³, which is higher than the lowest LOAEL for 10 neurotoxicity effects in rats (i.e., 123 mg/m^3 for decreased pain sensitivity following exposure to 11 1,2,3-TMB). Identified gaps in the TMB database include the lack of a multi-generational 12 reproductive study and the lack of a developmental neurotoxicity study. Regarding the lack of a 13 reproductive study, information from a C9 fraction study investigating reproductive and 14 developmental toxicity in rats provided suggestive evidence of reproductive toxicity (decreased 15 male fertility in the F_1 generation and a possible intergeneration effect on body weight in which 16 fetal/pup/adult body weights were decreased at lower doses in later generations compared to 17 earlier generations) (Mckee et al., 1990). However, the lowest concentration of TMB isomers that 18 elicited these results was $1,353 \text{ mg/m}^3$ (as part of the total mixture), which is much greater than 19 TMB concentrations that elicit neurotoxicity in adult animals (123 mg/m³ for 1,2,3-TMB and 492 20 mg/m^3 for 1,2,4-TMB). 21 Another gap in the TMB database is the lack of a developmental neurotoxicity study. 22 Current U.S. EPA (2002) guidance, EPA's A Review of the Reference Dose and Reference 23 Concentration Processes, recommends that the database UF take into consideration where there is 24 concern from the available toxicity database that the developing organism may be particularly 25 susceptible to effects in any organ/system. Given the observations that exposure to all three TMB 26 isomers elicits strong and consistent markers of neurotoxicity, that exposure to TMB isomers 27 results in developmental toxicity, as well as explicit information that TMB isomers can cross the 28 placenta, there exists a concern that exposure to TMB isomers may result in developmental 29 neurotoxicity. However, evidence from the toluene literature indicates that, while toluene does 30 cross the placenta and that toluene levels in the placenta, amniotic fluid, and fetal brains increased 31 with increasing exposures, concentrations in the amniotic fluid were less than those in maternal 32 tissues. Although this fails to account for potential differences in sensitivity of the developing 33 organism to induced effects, or for differences in metabolism, it does suggest that gestational 34 exposure to TMBs might result in lower exposure concentrations to the fetus, which raises

- 35 uncertainty in the TMB and related compound database regarding whether sufficient amounts of
- 36 the toxic agent crosses the placenta to elicit effects, and whether the concentrations necessary to
- 37 elicit effects are lower than those that result in neurotoxicity in the adult organism. Further, while
- 38 there is clear evidence from the human and animal literature that exposure to related

1 alkylbenzenes results in developmental neurotoxicity, much of this evidence comes from

- 2 epidemiological studies of inhalant abuse or animal studies using exposure paradigms intended to
- 3 approximate inhalant abuse patterns (i.e., high exposure concentrations and intermittent and
- 4 noncontinuous exposures). Therefore, there is some uncertainty whether the concentrations
- 5 necessary to cause developmental neurotoxicity are lower than those that result in neurotoxicity in
- 6 the adult organism.
- 7 However, evidence from perinatal exposures (during a period of postnatal brain
- 8 development that continues processes begun early in embryogenesis, including synaptogenesis and
- 9 myelination) indicates that the developing organism is at some risk of early life exposures (and
- 10 possibly prenatal exposures). These studies (<u>Win-Shwe et al., 2012; Win-Shwe and Fujimaki, 2010</u>)
- demonstrated that low-level exposures early in life (5 ppm toluene, postnatal days [PNDs] 4–12)
- 12 altered the expression of neurotransmitter receptors and increased the expression of
- 13 neuroimmune markers in the hippocampus of mice. Additionally, early postnatal exposure to
- 14 5 ppm toluene produced decrements in spatial learning compared to higher adult doses (50 ppm)
- 15 that induced the same effect. Ultimately, it is difficult to parse out exactly how the database UF
- 16 should account for this. Sensitive subpopulations, including children, are protected against the
- 17 effects of exposure to environmental toxicity through the application of the human variability UF.
- 18 However, as the processes that are perturbed in the Win-Shwe studies (<u>Win-Shwe et al., 2012</u>; <u>Win-</u>
- 19 <u>Shwe and Fujimaki, 2010</u>) begin during gestation, residual uncertainty exists concerning
- 20 developmental susceptibility to the neurotoxic effects of TMB isomers. As such, EPA determined
- 21 that a 3-fold database UF should be applied to the POD_{HEC} in order to account for the lack of a
- 22 developmental neurotoxicity study in the available toxicity database for TMB isomers.
- Charge Question F.1: A 90-day inhalation toxicity study of 1,2,3-TMB in male rats (Korsak
 and Rydzyński, 1996) was selected as the basis for the derivation of the RfC. Please comment on
 whether the selection of this study is scientifically supported and clearly described. If a different study
 is recommended as the basis for the RfC, please identify this study and provide scientific support for
 this choice.
- 28 SAB Comment F.1-1: The SAB agreed with the EPA's conclusion not to base the RfC 29 derivation for 1,2,3-TMB on isomer-specific data. The justification for this conclusion is supported 30 and clearly described. The SAB was not aware of chronic or subchronic studies that could be used 31 to support an RfC derivation for 1,2,3-TMB with neurotoxicity as the critical endpoint, similar to the 32 Korsak and Rydzyński (1996) study used to develop the 1,2,4-TMB RfC. As with 1,2,4-TMB, the SAB 33 found that the clarification of this choice, however, could be greatly improved by expanding the 34 assessment on the same points discussed for 1,2,4-TMB (see SAB Comments 2-8 under Charge 35 Question E.1). 36 EPA Response F.1-1: Contrary to SAB's statement regarding the RfC for 1,2,3-TMB, the EPA 37 did use isomer-specific data on decreased pain sensitivity observed in Korsak and Rydzyński
- 38 (1996) to derive the RfC for 1,2,3-TMB in the External Peer Review Draft for TMBs (i.e., both

This document is a draft for review purposes only and does not constitute Agency policy. A-35 DRAFT—DO NOT CITE OR QUOTE

1 1,2,4-TMB and 1,2,3-TMB isomer-specific data were available in this study). This analysis is 2 retained in the current assessment. In the revised TMB assessment, the RfC derivation sections for 3 all isomers have been combined into a unified section. Therefore, in responding to SAB 4 Comments 2–8 under Charge Question E.1 (and most other comments made under Charge 5 Questions F and G), the recommendations made under this comment have been achieved in 6 reorganizing the overall section (see EPA Responses E.1-2 through E.1-8). 7 **Charge Question F.2:** Decreased pain sensitivity (measured as an increased latency to 8 pawlick response after a hotplate test) in male Wistar rats was concluded by EPA to be an adverse 9 effect on the nervous system and was selected as the critical effect for the derivation of the RfC. Please 10 comment on whether the selection and characterization of this critical effect is scientifically supported 11 and clearly described. If a different endpoint(s) is recommended as the critical effect(s) for deriving 12 the RfC, please identify this effect and provide scientific support for this choice. 13 SAB Comment F.2-1: The SAB agreed that reduction in pain sensitivity as indicated by an 14 increased latency to paw-lick response in a hot plate test was a valid adverse nervous system effect 15 and was appropriately selected as a critical effect for RfC derivation of 1,2,3-TMB. The SAB noted 16 that the Agency appropriately uses the same rationale to derive the RfC for 1,2,4-TMB, and as such, 17 the comments provided under Charge Question E.2 pertain to the derivation of the RfC for 18 1,2,3-TMB. 19 EPA Response F.2-1: In the revised TMB assessment, the RfC derivation sections for all 20 isomers have been combined into a unified section. Therefore, in responding to the comments 21 under Charge Question E.2, the recommendations made under this comment have been achieved in 22 reorganizing the overall section (see responses to Charge Question E.2). 23 **Charge Question F.3:** In order to characterize the observed dose-response relationship 24 comprehensively, benchmark dose (BMD) modeling was used in conjunction with default dosimetric 25 adjustments (U.S. EPA, 1994b) for calculating the human equivalent concentration (HEC) to identify 26 the point of departure (POD) for derivation of the RfC. Please comment on whether this approach is 27 scientifically supported for the available data, and clearly described. 28 A. Has the modeling been appropriately conducted and clearly described, based on EPA's 29 Benchmark Dose Technical Guidance U.S. EPA (2012)? 30 B. Has the choice of the benchmark response (BMR) for use in deriving the POD (i.e., a BMR 31 equal to a 1 standard deviation change in the control mean for the latency to pawlick response) been 32 supported and clearly described? 33 SAB Comment F.3-1: The SAB response to this charge question deals with the same issues 34 as charge question for 1,2,4-TMB and did not identify any issues specific to 1,2,3-TMB; see Charge 35 Question E.3 for specific comments. 36 EPA Response F.3-1: See EPA Response E.3-2 for details regarding providing a more robust 37 justification for use of 1 SD change as the BMR for BMD modeling purposes. SAB Comment 1 to

1 Charge Question E.3 does not pertain to 1,2,3-TMB, as the available PBPK model was not used 2 generate HEC values for 1,2,3-TMB; default dosimetric methods were employed. 3 **Charge Question F.4:** *Please comment on the rationale for the selection of the uncertainty* 4 factors (UFs) applied to the POD for the derivation of the RfC for 1,2,3-TMB. Are the UFs appropriate 5 based on the recommendations described in Section 4.4.5 of A Review of the Reference Dose and 6 Reference Concentration Process U.S. EPA (2002), and clearly described? If changes to the selected UFs 7 are proposed, please identify and provide scientific support for the proposed changes. 8 SAB Comment F.4-1: The SAB noted that the UF values selected by the EPA for 1,2,3-TMB 9 are identical to those selected for 1,2,4-TMB, and that the justifications are the same. Thus, all 10 recommendations made by SAB under Charge Question E.4 pertain to the derivation of the RfC for 11 1,2,3-TMB as well. 12 EPA Response F.4-1: As all of the individual RfC sections for each isomer have been 13 combined into a unified RfC section; please refer to EPA Responses E.4-1 through E.4-5 for full 14 details on EPA's response. 15 **Charge Question G.1:** One developmental toxicity study (Saillenfait et al., 2005) following 16 inhalation exposure to 1,3,5-TMB was identified in the literature and was considered as a potential 17 principal study for the derivation of the RfC for 1,3,5-TMB. However, the candidate RfC derived for 18 1,3,5-TMB based on this study (and the critical effect of decreased maternal weight gain) was 20-fold 19 higher than the RfC derived for 1,2,4-TMB (based on decreased pain sensitivity). Given the available 20 toxicological database for 1,2,4-TMB and 1,3,5-TMB, there are several important similarities in the 21 two isomers' neurotoxicity that support an RfC for 1,3,5-TMB that is not substantially different than 22 the RfC derived for 1,2,4-TMB. Additionally, the available toxicokinetic database for the two chemicals 23 indicates that internal dose metrics would be comparable. Thus, EPA concluded that deriving such 24 disparate RfCs for these two isomers was not scientifically supported. Rather, EPA concluded that 25 given the similarities in toxicokinetics and toxicity between the two isomers, there was sufficient 26 evidence to support adopting the RfC for 1,2,4-TMB as the RfC for 1,3,5-TMB. 27 Please comment on EPA's conclusion to not base the RfC derivation for 1,3,5-TMB on isomer-28 specific data. Is the scientific justification for not deriving an RfC based on the available data for 29 *1,3,5-TMB supported and has been clearly described?* 30 SAB Comment G.1-1: The SAB agreed with the EPA conclusion not to base the RfC 31 derivation for 1,3,5-TMB on isomer-specific data. The justification for this conclusion is supported 32 and clearly described. The SAB was not aware of chronic or subchronic studies that could be used 33 to support an RfC derivation for 1,3,5-TMB with neurotoxicity as the critical endpoint, similar to the 34 Korsak and Rydzyński (1996) study used to develop the 1,2,4-TMB RfC. The candidate inhalation 35 values for 1,3,5-TMB, based on maternal and fetal toxicity from the study of Saillenfait et al. (2005), 36 are presented by EPA, but were not chosen as the overall RfC. Although the SAB took issue with the 37 PODs selected by EPA in their analysis of the <u>Saillenfait et al. (2005)</u> study, as discussed below in 38 SAB Comments G.1-2 and G.1-3, it nevertheless agreed with the decision not to use this study to

A-37

derive the overall RfC for 1,3,5-TMB. The SAB concurred with EPA that the best approach under the
 circumstances is to adopt the RfC for 1,2,4-TMB, based on decreased pain sensitivity, as the overall
 RfC for 1,3,5-TMB.

4 EPA Response G.1-1: As detailed above, EPA has significantly restructured the RfC 5 derivation section for the three TMB isomers. Whereas before, a single RfC section was provided 6 for each individual TMB isomer, the revised draft includes a unified RfC derivation section that 7 covers all three TMB isomers. EPA restructured the RfC section in this way to reduce the difficulty 8 of reading three separate RfC sections, and to make more apparent the scientific decisions that 9 were reached in deriving RfCs for the individual TMBs. In the old RfC section structure, a final RfC 10 value was selected in each RfC section for the individual RfC isomers. This led to the situation 11 where the "final" RfC for 1,3,5-TMB, based on isomer-specific data on decreased maternal weight 12 gain, was 20-fold higher than the "final" RfC for 1,2,4-TMB (based on decreased pain sensitivity). In 13 this situation, EPA made the justification that the toxicokinetic and toxicological databases for 1,2,4-14 TMB and 1,3,5-TMB did not support such disparate RfCs for the two isomers. Thus, EPA provided a 15 justification for adopting the RfC for 1,2,4-TMB as the RfC for 1,3,5-TMB. However, the structure for 16 the new RfC section in the revised draft is streamlined such that all of the RfCs for the TMB isomers 17 are presented together, and then one final RfC value is selected that applies to all three isomers. 18 SAB Comment G.1-2: SAB noted that EPA incorrectly identified the appropriate effects for 19 maternal toxicity and the NOAEL values for decreased maternal weight gain in the External Peer 20 Review Draft TMB assessment. Saillenfait et al. (2005) selected 100 ppm (492 mg/m³) for the 21 maternal NOAEL for 1,3,5-TMB with 300 ppm (1,476 mg/m³) as the maternal LOAEL based on 22 decreased maternal weight gain and food intake. In the External Peer Review Draft TMB 23 Assessment, the EPA set the maternal NOAEL at 300 ppm (1,476 mg/m³) and the maternal LOAEL 24 at 600 ppm (2,952 mg/m³) based on decreased corrected body weight gain and higher exposure 25 levels than <u>Saillenfait et al. (2005</u>). The SAB found that this is not a correct interpretation of a 26 maternal NOAEL for the <u>Saillenfait et al. (2005)</u> paper. Decreased corrected body weight gain was 27 measured only at one time point (C-section) 1 day after cessation of exposure. Statistically 28 significant decreased maternal weights were observed at gestational days (GDs) 13–21 when the 29 fetuses would be contributing far less to the mother's weight and at GDs 6–21 (entire treatment 30 period). Reduced maternal body weights correspond exactly with the statistically significant 31 decreased food consumption values recorded at GDs 6–13, 13–21, and 6–21 (entire treatment 32 period). The SAB recommended that EPA use decreased maternal body weight gain data from 33 GDs 6-13 and 6-21 as the basis of the maternal endpoint POD and RfC rather than corrected 34 maternal weight gain data. If BMD modeling is unsuccessful, the SAB recommended that EPA use 35 the maternal NOAEL of 492 mg/m³ as the POD. 36 EPA Response G.1-2: EPA agrees with the SAB comments and has revised the RfC

derivations for 1,3,5-TMB. In the revised draft, EPA selected decreased maternal weight gain from

1 GDs 6–21 as the basis for the maternal endpoint, and used a NOAEL of 497 mg/m³ (measured 2 concentration) as the basis for derivation of the RfC. 3 SAB Comment G.1-3: SAB found that EPA incorrectly identified 2,974 mg/m³ as the NOAEL 4 for decreased male fetal weight. Saillenfait et al. (2005) identified the developmental NOAEL in the 5 study as 300 ppm (1,476 mg/m³) and the developmental LOAEL as 600 ppm (2,952 mg/m³) based 6 on decreased mean male fetal body weights. The SAB recommended using the NOAEL of 7 1,476 mg/m³ as the POD for derivation of a developmental endpoint RfC. The SAB also suggested 8 that EPA consider increasing the UF_{D} from 3 to 10, to address the lack of neurodevelopmental 9 testing, in the derivation of the developmental RfC. The SAB noted that this approach may not fully 10 address neurological effects that serve as the basis for the other isomers. However, the revised 11 developmental endpoint RfC calculation will be based on a more appropriate POD and improve the 12 justification for using the extrapolation from the lower neurological-based RfC from 1,2,4-TMB. 13 EPA Response G.1-3: EPA used the correct NOAEL of 1,471 mg/m³ (measured 14 concentration) as the basis for derivation of the RfC for decreased male fetal weight. As stated 15 above (see EPA Response E.4-5 for details), EPA revised the RfC section for TMB isomers to cover 16 all three isomers simultaneously rather than have three separate RfC sections for each individual 17 isomer. This allows the whole TMB toxicity database to be considered holistically. As such, EPA 18 determined that a UF_D of 3 was appropriate to account for the lack of a developmental neurotoxicity 19 study in the TMB toxicity database. 20 SAB Comment G.1-4: In addition to the above analysis and considerations, the SAB noted 21 the following minor errors in the description of the 1,3,5-TMB inhalation data: (1) in Table 2-12, 22 the female fetal body weight average for the 100 ppm (492 mg/m³) group should be 5.47 ± 0.21 and 23 not 5.74 ± 0.21 (it is correct in other tables of the document); (2) the level of significance for 24 decreased maternal body weight gain for the 600 ppm (2,952 mg/m³) group should have two (**) 25 and not one (*) asterisk to indicate p < 0.01; and (3) the table also states with a footnote (b) that 26 numbers of live fetuses were not explicitly reported. However, <u>Saillenfait et al. (2005)</u> did report 27 them in Table 3 of their manuscript. The total numbers of fetuses were 297, 314, 282, 217, and 236, 28 for the control and exposure groups, respectively, and should be included in Tables 2-2 and 2-12 of 29 the draft TMB Review document. 30 EPA Response G.1-4: The minor errors in Tables 2-2 and 2-12 have been corrected; the 31 correct information is now presented in Table 2-3 in the unified RfC section. 32 **Charge Question G.2:** Please comment on whether EPA's approach to developing the RfC for 33 *1,3,5-TMB is scientifically supported for the available data and clearly described.* 34 SAB Comment G.2-1: The SAB acknowledged that the Agency's approach to developing the 35 overall RfC (based on neurological effects) for 1,3,5-TMB based on a structurally and toxicologically 36 related isomer is scientifically appropriate. However, the SAB recommended that the Agency 37 strengthen the justification for using this approach for 1,3,5-TMB by: (1) following the 38 recommendations provided above regarding recalculating the maternal- and developmental-based

RfCs from <u>Saillenfait et al. (2005</u>); and (2) discussing the differences as well as similarities in
 physical and toxicological parameters (i.e., Henry's Law constant and toxicokinetics) for 1,3,5-TMB
 as compared with the other isomers.

4 EPA Response G.2-1: As noted above (EPA Responses F.2-1 and G.1-1), EPA has completely 5 restructured the RfC section for the TMB assessment. This restructuring has, in a large part, 6 removed the necessity to set RfCs for one isomer as that for other data-poor isomers. In the new 7 structure, RfCs are derived for each isomer-endpoint combination, and then a single, overarching 8 RfC is selected for TMBs as a whole (this is detailed in Section 2.1.5 in the assessment). However, 9 following SAB's recommendations above, EPA has: (1) recalculated all of the maternal- and 10 developmental-based RfCs for 1,3,5-TMB; and (2) discussed the similarities and differences 11 between the physical and toxicokinetic properties for the individual isomers (see Section 1.1.1) 12 **Charge Question H.1:** The oral database for 1,2,4-TMB was considered inadequate for 13 derivation of an RfD. However, available evidence demonstrates similar qualitative profiles of 14 metabolism and patterns of parent compound distribution across exposure routes (i.e., oral and 15 inhalation). Furthermore, there is no evidence that would suggest the toxicity profiles would differ to 16 a substantial degree between oral and inhalation exposures. Therefore, route-to-route extrapolation, 17 from inhalation to oral, using the modified <u>Hissink et al. (2007)</u> PBPK model was used to derive a 18 chronic oral RfD for 1,2,4-TMB. In order to perform the route-to-route extrapolation, an oral 19 component was added to the model, assuming a constant infusion rate into the liver. Specifically, in 20 the absence of isomer-specific information, an assumption was made that 100% of the ingested 21 1,2,4-TMB would be absorbed by constant infusion of the oral dose into the liver compartment. The 22 contribution of first-pass metabolism was also evaluated. Please comment on whether EPA's 23 conclusion that the oral database for 1,2,4-TMB is inadequate for derivation of an RfD is scientifically 24 supported and clearly described. Please comment on whether oral data are available to support the 25 derivation of an RfD for 1,2,4-TMB. If so, please identify these data. 26 SAB Comment H.1-1: The SAB agreed that the primary toxicological endpoints for

1,2,4-TMB (neurotoxicity, hematotoxicity) can be extrapolated across dose routes from the
inhalation data with the assistance of PBPK modeling. There is ample precedent with IRIS
assessments to use this approach to derive a reference value for a chemical with missing data by a
particular dose route.

31

<u>EPA Response H.1-1:</u> No response necessary.

SAB Comment H.1-2: The SAB noted that they were not aware of adequate repeat-dose
studies for 1,2,4-TMB via the oral dose route. The available acute exposure studies offer limited
support in developing an RfD. The SAB recognized that this represents a data gap and that one
potential way to fill this data gap is to use oral data for a closely related TMB isomer such as the
subchronic gavage toxicology data available for 1,3,5-TMB (Adenuga et al., 2014; Koch Industries,
1995b). The SAB disagreed with EPA's decision to not use the Koch Industries (1995b)/Adenuga et
al. (2014) study for derivation of an RfD due to the lack of neurotoxicity data. The SAB

1 recommended that the EPA derive RfD(s) for endpoints observed in the oral 1,3,5-TMB study, such 2 as liver and kidney weight changes. The SAB commented that this would be consistent with EPA's 3 goal to derive RfD values for multiple endpoints (such as what was done with the RfC). The SAB 4 then stated that these RfDs could then be considered for extrapolation to other TMB isomers. The 5 SAB commented that the EPA should consider the appropriateness of applying a database UF to the 6 oral POD to compensate for the data gap of not having an oral neurotoxicity endpoint in the current 7 approach. Finally, the SAB noted that by comparing the RfD(s) generated from the oral studies and 8 from the extrapolation from the RfC through using route-to-route extrapolation, the EPA can 9 provide a clear explanation for why the use of the PBPK route-to-route-based RfD for 1,2,4-TMB 10 may be preferable to application of a database UF to an oral POD. 11 EPA Response H.1-2: Upon further consideration of the Adenuga et al. (2014) study, EPA 12 agreed with SAB that it was suitable for derivation of a candidate oral value for increased 13 monocytes. This is a hematological effect that is consistent with effects seen following inhalation 14 exposures to 1,2,4-TMB and 1,2,3-TMB. A full discussion of the appropriateness of this endpoint for 15 derivation of an RfD has been included in Section 2.2.1. However, the EPA further determined that 16 the changes in kidney and liver weight would not support RfD derivations, as no accompanying 17 histopathological changes were noted in these organs following examination. Given that organ 18 weight changes occurring in the absence of histopathological lesions or other evidence of clear 19 adversity may be compensatory or adaptive changes, the liver and kidney weight changes observed 20 in subchronic inhalation studies for 1,2,4-TMB and 1,2,3-TMB were similarly discounted; no RfD 21 values were derived for these endpoints. To support the decision to not consider the organ weight 22 changes as suitable for reference value derivations text was added in multiple places in the 23 assessment. First, Section 1.2.5 (General Toxicity) was added to the Hazard Identification section to 24 discuss the observation of organ weight changes. Secondly, Sections 2.1.1 and 2.2.1 in the Dose-25 Response Analysis section more thoroughly covered the Agency's rationale behind the 26 determination that these endpoints were not suitable for reference value derivations. 27 After consideration of the oral TMB toxicity data, and by extension the inhalation database 28 as well, EPA determined that the application of a 3-fold database UF was suitable to account for the 29 lack of an oral neurotoxicity or developmental neurotoxicity study. EPA's rationale for this decision 30 regarding the lack of developmental neurotoxicity study is the same as was used for the derivation 31 of the RfC for TMB isomers (see EPA Response E.4-5 for details). EPA determined that there was no 32 need to increase the UF_D to 10-fold to account for the lack of an oral neurotoxicity study as the 33 derived RfCs for neurotoxicity and hematotoxicity endpoints were equal, indicating that RfDs

- 34 calculated for these endpoints might also be assumed to be equivalent. However, in order to fully
- 35 explore this possibility, EPA used the available PBPK model to perform a route-to-route
- 36 extrapolation on the decreased pain sensitivity endpoint for 1,2,4-TMB. In doing so, EPA
- 37 subsequently derived an RfD of 1×10^{-2} mg/kg-day for decreased pain sensitivity, equal to the RfD
- derived for decreased monocytes. As with the RfC derivations, this result indicates that some

endpoints in the hematological system are equivalently as sensitive to exposure to TMB isomers as
endpoints in the nervous system. This determination is further supported by the derivation of an
RfD of 1 × 10⁻² mg/kg-day for 1,2,4-TMB based on decreased clotting time via a route-to-route
extrapolation. Ultimately, EPA decided to select the RfD based on the route-to-route extrapolation
of the decreased pain sensitivity endpoint given the confidence in the PBPK model extrapolations
and that neurotoxicity endpoints are the most consistently observed effects in the TMB toxicity
database.

- 8 SAB Comment H.1-3: The SAB noted that there were limitations in the Koch Industries 9 study (primarily that it didn't involve neurotoxicity endpoints) and that use of the study would 10 involve an extrapolation across congeners. Presented with those limitations, the SAB determined 11 that the Koch Industries study does not provide a superior alternative to the PBPK approach for 12 dose route extrapolation that the EPA implemented. As discussed in SAB Comment 1 of Charge 13 Question H.1, the SAB noted that the Koch Industries study may provide a means to derive RfDs for 14 several additional endpoints (e.g., liver, kidney) for 1,3,5-TMB. The SAB recommended that EPA 15 consider such additional RfDs and whether they are potentially useful for 1,2,4-TMB based upon
- 16 extrapolation across congeners.
- 17 EPA Response H.1-3: EPA agrees that the Adenuga et al. (2014) study does not provide a 18 clearly superior alternative to the route-to-route extrapolation that has been used to derive the RfD 19 for TMB isomers. However (as discussed above in EPA Response H.1-1), the EPA derived an RfD 20 from data on increased monocytes reported in <u>Adenuga et al. (2014)</u>, and has compared this 21 isomer-route-specific RfD to the RfD derived from the route-to-route extrapolation. As thoroughly 22 discussed in Section 2.2.3, use of the monocyte data results in an RfD of 1×10^{-2} mg/kg-day, 23 compared to an RfD of 1×10^{-2} mg/kg-day for decreased pain sensitivity when using the route-to-24 route approach. Ultimately, the EPA chose the RfD based on the route-to-route extrapolation given 25 the increased confidence in using the validated PBPK model to conduct the route-to-route 26 extrapolation and numerous lines of evidence indicating the similarities in the toxicological and 27 toxicokinetic properties of the TMB isomers. 28 **Charge Question H.2:** A route-to-route extrapolation from inhalation to oral exposure using
- the modified <u>Hissink et al. (2007)</u> PBPK model has been used to derive an oral RfD for 1,2,4-TMB.
 Please comment on whether the PBPK modeling been appropriately utilized and clearly described. Are
- 31 the model assumptions and parameters scientifically supported and clearly described? Are the
- 32 uncertainties in the model structure adequately characterized and discussed? Please comment on
- 33 whether this approach is scientifically supported and clearly described in the document.
- SAB Comment H.2-1: The SAB noted that the EPA adapted the modified Hissink et al.
 (2007) model for dose route extrapolation of internal dose by adding an oral delivery component
 (continuous gastric infusion, instantaneous and complete absorption). The Hissink et al. (2007)
 inhalation human model is a reasonable starting point as it simulated the available human
 toxicokinetic data fairly well. The SAB concluded that, while the incorporation of the oral dose

1 route is simplistic, it is acceptable for the current purposes in that the dose metric used for dose-

- 2 response modeling (parent compound average weekly venous concentration) is not sensitive to
- 3 peaks and valleys of a more normal oral intake pattern. A constant infusion averages out the
- 4 exposure over the course of the day, thus creating an average venous concentration that is
- 5 compatible with the dose metric without further calculation. Overall, the SAB determined that the
- 6 modified <u>Hissink et al. (2007)</u> model adapted for the oral route is likely to adequately predict
- 7 human oral exposures and be useful for dose-response modeling and the derivation of the RfD.
- 8 <u>EPA Response H.2-1:</u> Although the SAB concluded that an assumption of constant infusion
 9 was acceptable, albeit simplistic, for the route-to-route extrapolation, EPA, upon further
- 10 consideration of the data, implemented a more realistic pattern of human oral exposure. In this
- 11 new scenario, ingestion was simulated as an idealized pattern of six events, each lasting
- 12 30 minutes. Twenty-five percent of the total daily dose was assumed to be ingested at each of three
- 13 events beginning at 7 am, 12 pm (noon), and 6 pm (total of 75%). Ten percent of the daily dose was
- 14 assumed to be ingested at events beginning at 10 am and 3 pm (total of 20%). The final 5% was
- assumed to be ingested in an event beginning at 10 pm.
- 16 **Charge Question H.3:** Please comment on the rationale for the selection of the uncertainty
- 17 factors (UFs) applied to the POD for the derivation of the RfD for 1,2,4-TMB. Are the UFs appropriate
- 18 based on the recommendations described in Section 4.4.5 of A Review of the Reference Dose and
- 19 Reference Concentration Processes, and clearly described? If changes to the selected UFs are proposed,
- 20 please identify and provide scientific support for the proposed changes.
- 21 SAB Comment H.3-1: The SAB agreed with the UFs selected in the development of the oral 22 RfD for 1,2,4-TMB. As discussed in the SAB Comment 1 of Charge Ouestion H.2, the oral RfD for 23 1,2,4-TMB was derived by incorporating an oral intake component into the PBPK model for 24 1,2,4-TMB to obtain a human equivalent oral dose POD and then used the same UFs for the oral RfD 25 as were used in the development of the inhalation RfC. Given that the oral RfD was based upon the 26 same endpoint and derived from the same study as the RfC, the SAB agreed that it is logical to use 27 the same UFs. Thus, the comments and recommendations regarding UFs for the RfC derivations 28 (Charge Questions E.4 and F.4) are applicable to this charge question as well.
- 29 <u>EPA Response H.3-1:</u> No response necessary.
- <u>SAB Comment H.3-2:</u> The SAB discussed whether there is additional uncertainty associated
 with incorporation of the oral intake component in the PBPK model, and specifically regarding
 assumptions made with that component regarding oral absorption of 1,2,4-TMB and first-pass
 metabolism. Unlike modeling of internal concentrations from inhalation exposure that can be
- 34 verified with existing experimental data, there are no data with which to assess model predictions
- 35 of internal doses following oral 1,2,4-TMB exposures. The SAB ultimately did not consider this
- 36 additional uncertainty sufficient to increase the composite UF for the oral RfD, largely because the
- 37 nature of the uncertainty (possible lower absorption by the oral route) would add extra health

1 protection. The SAB recommended that the potential uncertainties associated with oral 2 bioavailability of 1,2,4-TMB be discussed more clearly in the document. 3 EPA Response H.3-2: A discussion of the uncertainty surrounding the assumption of 100% 4 bioavailability of ingested TMB isomers has been added to Section 2.2.4. 5 **Charge Question I.1:** The oral database for 1,2,3-TMB was considered to be inadequate for 6 derivation of an RfD. Based on the similarities in chemical properties, toxicokinetics, and toxicity 7 profiles between the 1,2,4-TMB and 1,2,3-TMB isomers, EPA concluded that there was sufficient 8 evidence to support adopting the 1,2,4-TMB RfD as the RfD for 1,2,3-TMB. Please comment on whether 9 EPA's conclusion that the oral database for 1,2,3-TMB is inadequate for derivation of an RfD is 10 scientifically supported and clearly described. Please comment on whether oral data are available to 11 support the derivation of an RfD for 1,2,3-TMB. If so, please identify these data. Please comment on 12 whether EPA's approach to developing the RfD for 1,2,3-TMB is scientifically supported and clearly 13 described. 14 SAB Comment I.1-1: The SAB was not aware of adequate repeat-dose studies for 1,2,3-TMB 15 via the oral dose route. The available acute exposure studies offer limited support in developing an 16 RfD. The SAB agreed that the primary toxicological endpoints used for 1,2,4-TMB (neurotoxicity, 17 hematotoxicity) and extrapolated across dose routes from the inhalation data with the assistance of 18 PBPK modeling are appropriate for 1,2,3-TMB. There is ample precedent within the IRIS system for 19 this approach to derive a reference value for a chemical with missing data by a particular dose 20 route. The SAB noted that the Agency appropriately uses the same rationale to derive the RfD for 21 1.2.4-TMB. 22 EPA Response I.1-1: It should be noted that, as with the RfC section, the individual isomer 23 RfD sections have been combined into a unified RfD section for all of the isomers. As such, given 24 SAB comments on both the 1,2,4-TMB and 1,3,5-TMB RfD sections, the unified RfD section covers 25 extensive discussion and quantitation of RfDs based on increased monocytes (1,3,5-TMB oral-26 specific data) and decreased pain sensitivity (1,2,4-TMB route-to-route extrapolation), including 27 the ultimate adoption of the route-to-route-derived RfD as the RfD for TMBs. Thus, while an 28 explicit discussion of adoption of 1,2,4-TMB's RfD as the RfD for 1,2,3-TMB no longer is included in 29 the document, the discussion regarding the ultimate adoption of 1,2,4-TMB's RfD as the RfD for all 30 isomers still covers the issues identified by SAB above. 31 **Charge Question J.1:** The oral database for 1,3,5-TMB was considered to be inadequate for 32 derivation of an RfD. EPA concluded that given the similarities in the chemical properties, 33 toxicokinetics, and toxicity profiles between the two isomers, there was sufficient evidence to support 34 adopting the RfD for 1,2,4-TMB as the RfD for 1,3,5-TMB. Please comment on whether EPA's 35 conclusion that the oral database for 1,3,5-TMB is inadequate for derivation of an RfD is scientifically 36 supported and clearly described. Please comment on whether oral data are available to support the 37 derivation of an RfD for 1,3,5-TMB. If so, please identify these data.

1	SAB Comment J.1-1: The SAB agreed with the EPA's approach to extrapolating the RfD of
2	1,2,4-TMB to 1,3,5-TMB. However, the SAB was aware of an isomer-specific study (Koch Industries,
3	<u>1995b</u>) and the recently released data on 1,3,5-TMB (<u>Adenuga et al., 2014</u>) provided by public
4	commenters.
5	EPA Response J.1-1: EPA incorporated data from Adenuga et al. (2014) in the RfD
6	derivation section as outlined below.
7	SAB Comment J.1-2: The SAB commented that the Koch Industries (1995b) study was the
8	only isomer-specific and route-specific study available in the peer-reviewed literature for oral
9	exposure to 1,3,5-TMB when the TMB assessment was drafted in 2013. Although EPA's rationale
10	for not using this study for RfD derivation is clearly described (i.e., it did not assess the potential for
11	neurological effects and "presented limited toxicological information"), the SAB disagreed and
12	considered the <u>Koch Industries (1995b)</u> study suitable for development of one or more candidate
13	oral values for 1,3,5-TMB.
14	<u>EPA Response J.1-2:</u> The <u>Koch Industries (1995b)</u> / <u>Adenuga et al. (2014)</u> study has been
15	used in the current draft to derive an RfD based on increased monocytes.
16	SAB Comment J.1-3: The SAB found that the Koch Industries study of 1,3,5-TMB toxicity
17	after subchronic (90-day) gavage treatment was consistent with good laboratory practices and
18	requirements and, when submitted for an EPA Office of Water test rule, was peer-reviewed by three
19	senior scientists (<u>Versar, 2013</u>). Although the study does not include neurological endpoints, it
20	does provide information on toxicity to other organs such as liver and kidney. The SAB concluded
21	that this study is suitable for providing candidate oral values for one or more endpoints in the same
22	way that, for example, candidate values based upon a variety of endpoints were developed and
23	presented for 1,2,4-TMB (see Table 2-4 of the draft TMB Toxicological Review).
24	<u>EPA Response J.1-3:</u> As noted above, the <u>Koch Industries (1995b)</u> / <u>Adenuga et al. (2014)</u>
25	study has been used to derive an RfD for increased monocytes in the current draft. One note of
26	clarification, the Koch Industries study was not peer-reviewed when submitted for an EPA Office of
27	Water test rule, but was peer-reviewed in order to include it in the IRIS Toxicological Review of
28	Trimethylbenzenes.
29	<u>SAB Comment J.1-4:</u> The SAB noted that, given the importance of neurotoxicity as a critical
30	endpoint for inhalation exposure to TMB isomers, there should be confidence that any value
31	selected as the RfD for 1,3-5-TMB is adequately protective of this type of effect. In order to produce
32	an RfD protective of neurotoxicity using PODs from the Koch Industries study, a large UF $_{ m D}$ (e.g., 10)
33	could be used to account for the absence of isomer- and route-specific neurotoxicity data. However,
34	the SAB concluded that there is stronger scientific support for use of a PBPK-extrapolated RfD for
35	1,2,4-TMB based on a neurotoxic endpoint as the overall RfD for 1,3,5-TMB. Thus, while the SAB
36	recommended use of the Koch Industries data and <u>Adenuga et al. (2014)</u> to develop candidate oral
37	values for comparison purposes, it agrees with the overall RfD for 1,3,5-TMB as proposed by EPA.
38	<u>EPA Response J.1-4:</u> No response necessary.

1 **Charge Question K.1:** The draft Toxicological Review of Trimethylbenzenes did not conduct 2 a quantitative cancer assessment for any isomer due to the lack of available studies. Please comment 3 on whether data are available to support the derivation of a quantitative cancer risk estimate. 4 SAB Comment K.1-1: The SAB found that the evidence for carcinogenicity of TMBs is 5 limited and that this fact was well presented by the EPA in the draft toxicological review. 6 EPA Response K.1-1: No response necessary. 7 SAB Comment K.1-2: The SAB agreed with the Agency that TMBs do not appear to be 8 genotoxic when assessed in a standard battery of genotoxicity assays. The one exception was 9 1,2,3-TMB in the Ames assay in the absence of S9. The SAB concluded that the significance of the 10 finding was uncertain because it was not clear what mechanism could lead to such a response. 11 EPA Response K.1-2: No response necessary. 12 SAB Comment K.1-3: The SAB was not aware of any human studies on carcinogenicity of 13 TMBs, but noted that a number of biomarker studies and their association with cancer of various 14 sites have been published. These biomarker studies should be reviewed and included. Some 15 examples are: (1) solid-phase microextraction, mass spectrometry, and metabolomic approaches 16 for detection of potential urinary cancer biomarkers—a powerful strategy for breast cancer 17 diagnosis (Silva et al., 2012); (2) investigation of urinary volatile organic metabolites as potential 18 cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass 19 spectrometry (<u>Silva et al., 2011</u>); and (3) cellular responses after exposure of lung cell cultures to 20 secondary organic aerosol particles (Gaschen et al., 2010). 21 EPA Response K.1-3: Information gleaned from studies on biomarkers of exposure and 22 their association with cancers at various sites in humans has been added the Carcinogenicity 23 section (Section 1.2.6) of the Hazard Identification section where applicable. 24 SAB Comment K.1-4: Based upon the deficiencies of the Maltoni et al. (1997) study, the lack 25 of bioassays with 1,2,3-TMB and 1,3,5-TMB, and the lack of human studies, the SAB agreed that the 26 EPA could not conduct a quantitative cancer assessment for any isomer due to the lack of 27 appropriate studies. 28 <u>EPA Response K.1-4:</u> No response necessary. 29 **Additional SAB Recommendations**

30 1. Candidate Reference Values

SAB Comment AR.1-1: The SAB noted that Section 7.6 of the Preamble (External Peer Review draft version) describes how IRIS assessments derive candidate values for each suitable data set and effect that is credibly associated with an agent. These results are arrayed, using common dose metrics, to show where effects occur across a range of exposures using guidance on methods to derive RfCs and RfDs. The assessment process develops an organ- or system-specific reference value for each organ or system affected by the agent and selects an overall RfD and an overall RfC for the agent to represent lifetime human exposure levels where effects are not 1 anticipated to occur. Providing these organ/system-specific reference values, IRIS assessments

- 2 may facilitate subsequent risk assessments that consider the combined effect of multiple agents
- 3 acting at a common site or through common mechanisms.
- 4

<u>EPA Response AR.1-1:</u> No response necessary.

5 SAB Comment AR.1-2: The SAB encountered an issue where further clarification by EPA is 6 strongly encouraged. Interest by the EPA in developing PODs and RfCs/RfDs for multiple endpoints 7 in new IRIS profiles is noted. As shown in this toxicological review, one of the uses of RfCs/RfDs for 8 various endpoints is as candidates for selection as the overall toxicity value. The overall toxicity 9 value is one that is intended to be protective of toxicity of all types, and this is taken into 10 consideration when selecting the UF_{D} . Another use of these RfCs/RfDs is to better understand the 11 effects of combined chemical exposures. Risks from combined or cumulative exposures to 12 chemicals is generally of greatest concern when the chemicals affect the same targets organs. While 13 an overall RfC or RfD is based upon one effect chosen as the critical effect, that chemical may 14 produce other types of toxicity at doses that are only marginally higher than the selected overall 15 toxicity value. To illustrate the problem, consider the situation in which individuals are exposed to 16 three chemicals, each with an RfC based upon a different endpoint, but all have the potential to 17 affect the liver. For the risk assessor, the combined effect of the three chemicals on the liver may be 18 greater concern than the effects of the individual chemicals on other organ/systems. In order to 19 evaluate the risk of liver injury from combined exposure, the risk assessor needs a liver RfC for each 20 compound. Conceivably, this information could come from RfCs for the chemicals, if available for 21 the liver, but there is a difference in the way that an RfC for this use would be developed versus an 22 RfC suitable for selection as the overall RfC. The difference is in the way that the UF_D is selected— 23 on one hand to ensure that the RfC is protective against all forms of toxicity and on the other that it 24 is reliably protective of toxicity to a specific target organ. Conceivably, the UF_D values selected for 25 those two purposes, and the resulting RfC/RfD values, could be quite different. The SAB was 26 unaware of any discussion of this issue by EPA or clear description of how organ/system-specific 27 RfC/RfD values are to be developed and used. As the IRIS process moves forward, it will be 28 important to provide much greater clarity on this subject. 29 EPA Response AR.1-2: EPA agrees that as the IRIS Program moves forward, the process by

30 which organ/system-specific RfCs/RfDs are derived must be clearly defined and presented 31 transparently to the public. In the current assessment, however, the RfCs/RfDs were derived via 32 the application of a composite UF that took into account database uncertainties ($UF_D = 3$ for lack of 33 developmental neurotoxicity information). Calculation of RfCs/RfDs associated with systems that 34 are likely not affected by the lack of additional developmental neurotoxicity information could use a 35 composite UF = 100 (UF_A = 3, UF_H = 10, UF_S = 3, UF_L = 1, UF_D = 1 [hematological, respiratory, or 36 maternal endpoint]) or UF = 30 (UF_A = 3, UF_H = 10, UF_S = 1, UF_L = 1, UF_D = 1 [developmental 37 endpoints]).

1 2. Sensitive Lifestages and Vulnerable Populations

2 SAB Comment AR.2-1: The draft TMB assessment provided only one paragraph on this 3 subject. While the SAB found that it correctly identified various types of immaturity (metabolism, 4 renal clearance) as potentially leading to greater vulnerability in early life, the Panel felt that this 5 section could provide a better outline of the kinds of information needed to understand the 6 potential vulnerabilities in early life, including key aspects of TMB mode of action and key 7 developmental features.

8

<u>EPA Response AR.2-1</u>: This section was expanded according to the specific comments that SAB provided below.

9 10 SAB Comment AR.2-2: Regarding mode of action, the SAB noted that it is important to 11 know: (1) whether it is the parent compound or metabolites (or both) that contribute to toxic 12 effect; (2) which metabolic systems are responsible for removing the parent compound and 13 creating important metabolites; and (3) the role of distributional phenomena (e.g., uptake into 14 brain; partitioning into fat) and other clearance mechanisms in determining chemical fate and 15 access to target sites. Based upon the available mode-of-action information, the developmental 16 factors that may influence toxicokinetics can be discussed in this section. For TMBs, the draft 17 document assumes that the parent compound is responsible for toxicity with modeling assuming 18 that a saturable Phase I oxidative cytochrome P450 (CYP450) process is responsible for decreasing 19 parent compound levels in venous blood. This section should state whether it is known which 20 CYP450(s) are responsible for TMB saturable metabolism, as different CYP450s have different 21 developmental patterns. Analogy may be drawn with other alkylbenzenes that do have 22 toxicokinetic modeling data in early life such as toluene. Toluene has already been referred to in 23 the mode-of-action section of the document; it is also neurotoxic and its mode of action is based 24 upon parent compound, with the level getting to the brain determined by saturable CYP450 25 metabolism. If the EPA determines these parallels to provide a useful analogy, then early life 26 modeling papers for toluene by <u>Pelekis et al. (2001)</u> and <u>Nong et al. (2006)</u> may be useful for 27 describing the degree of toxicokinetic uncertainty presented by early lifestage exposure to TMBs. 28 EPA Response AR.2-2: A more detailed discussion of what is known regarding the mode of 29 action for TMB isomers and whether information exists on what CYP450 isozyme is responsible for 30 metabolizing parent compound has been added to Section 1.3.3 (Susceptible Populations and 31 Lifestages). Information from early-life modeling on toluene was also incorporated into the 32 discussion to support the conclusion that early life may be a susceptible lifestage for the neurotoxic 33 effects of TMB exposure. 34 SAB Comment AR.2-3: The SAB concluded that some discussion was warranted concerning 35 what is known about early life vulnerability to aromatic solvent neurotoxicity. Several studies are 36 available suggesting a vulnerable window of brain development in mice to the neurotoxic effects of

37 toluene (Win-Shwe et al., 2012; Win-Shwe et al., 2010). The SAB recommended that the EPA

38 evaluate this evidence relative to other developmental neurotoxicity studies that may be available

This document is a draft for review purposes only and does not constitute Agency policy. A-48

for toluene and other related alkylbenzenes to determine whether this data gap represents a large
 uncertainty.

<u>EPA Response AR.2-3:</u> A discussion of the possible developmental neurotoxicity of toluene
 as a surrogate for TMB was added to Section 1.3.3 (Susceptible Populations and Lifestages) to
 support the decision that early life is a window of susceptibility for the neurotoxic effects of TMB
 exposure.

6 expos

7 <u>SAB Comment AR.2-4:</u> The SAB noted that this section should conclude with a statement as

8 to whether any specific data exist for TMBs that would show the extent of early life vulnerability

9 based upon toxicokinetic and toxicodynamics considerations and the degree to which such data for

- 10 related alkylbenzenes help to fill these data gaps.
- 11 <u>EPA Response AR.2-4:</u> A concluding statement was added to this section.

12 3. Developing Subchronic RfCs and RfDs

13 SAB Comment AR.3-1: The SAB noted that the EPA and other environmental regulatory 14 agencies are frequently required to address the risks associated with exposures lasting less than a 15 lifetime. Because the toxic endpoint(s) of concern for a given chemical, as well as threshold doses 16 or concentrations for toxicity, can change with exposure duration, the toxicity value used in risk 17 assessment should be matched to the extent possible to the length of exposure associated with the 18 scenario of interest. Recognizing the need for toxicity values for less-than-lifetime exposures, the 19 EPA Risk Assessment Forum recommended that the Agency develop such values and incorporate 20 them into the IRIS database (U.S. EPA, 2002).

21 <u>EPA Response AR.3-1:</u> No response necessary.

22 SAB Comment AR.3-2: In the case of the TMBs, the SAB noted that the principal studies 23 used to create the proposed RfCs and RfDs are all subchronic in duration, and the analysis needed 24 to support a robust set of subchronic toxicity values has, in effect, already been done for these 25 chemicals. The SAB acknowledged that the derivation of subchronic RfCs and RfDs may not always 26 be appropriate. However, the toxic endpoints and dose-response relationships for the TMBs in the 27 draft report are clearly relevant for subchronic exposure, and the same PODs and the same UFs— 28 except UF_s, which is used to generate a chronic toxicity value from subchronic study data—would 29 apply to the development of a set of subchronic RfCs and RfDs.

30

<u>EPA Response AR.3-2:</u> No response necessary.

SAB Comment AR.3-3: Given the potential usefulness of these toxicity values for risk assessment, the importance of having the values available on IRIS, and the very small amount of additional work required to add them to the TMB assessment, the SAB suggested that the EPA consider including subchronic RfCs and RfDs for 1,2,4-TMB, 1,2,3-TMB, and 1,3,5-TMB. These values would be calculated using the same inputs as for the chronic toxicity values, but omitting the UFs. The SAB anticipated that incorporation of these values would require minimal edits to existing tables and text.

- 1 <u>EPA Response AR.3-3:</u> EPA has provided a set of subchronic RfCs and RfDs (both the
- 2 candidate and final values) for the TMB isomers in Sections 2.1.8 and 2.2.6 (respectively).

APPENDIX B. HEALTH ASSESSMENTS AND REGULATORY LIMITS BY OTHER NATIONAL AND INTERNATIONAL HEALTH AGENCIES

1 2

Table B-1. Other national and international health agency assessments fortrimethylbenzenes (TMBs)

Agency	Toxicity value
National Institute for Occupational Safety and Health (<u>NIOSH, 1992</u> , <u>1988</u>)	Recommended Exposure Limit (REL) for TMBs: 25 ppm (123 mg/m ³) time- weighted average (TWA) for up to a 10-hr workday and a 40-hr work week, based on the risk of skin irritation, central nervous system (CNS) depression, and respiratory failure (<u>Battig et al., 1956</u>)
	Acute Exposure Guideline Level (AEGL)-1 (nondisabling): – 180 ppm (890 mg/m ³) to 45 ppm (220 mg/m ³) (10 min to 8 hrs, respectively) (<u>Korsak and Rydzyński, 1996</u>) AEGL-2 (disabling): – 460 ppm (2,300 mg/m ³) to 150 ppm (740 mg/m ³) (10 min to 8 hrs, respectively) (<u>Gage, 1970</u>)

APPENDIX C. INFORMATION IN SUPPORT OF HAZARD IDENTIFICATION AND DOSE-RESPONSE **ANALYSIS**

C.1. TOXICOKINETICS

1 There has been a significant amount of research conducted on the toxicokinetics of 2 1,2,4-trimethylbenzene (TMB), 1,2,3-TMB, and 1,3,5-TMB in experimental animals and humans. In 3 vivo studies have been conducted to evaluate the adsorption, distribution, metabolism, and 4 excretion (ADME) of all isomers following exposure via multiple routes of exposure in rats (Swiercz 5 et al., 2006; Tsujimoto et al., 2005; Swiercz et al., 2003; Swiercz et al., 2002; Tsujino et al., 2002; 6 Tsujimoto et al., 2000; Eide and Zahlsen, 1996; Zahlsen et al., 1990; Huo et al., 1989; Dahl et al., 7 1988; Mikulski and Wiglusz, 1975) and volunteers (Świercz et al., 2016; Janasik et al., 2008; Jones et 8 al., 2006; Järnberg et al., 1997a; Järnberg et al., 1997b; Kostrzewski et al., 1997; Järnberg et al., 9 1996; Kostrewski and Wiaderna-Brycht, 1995; Fukaya et al., 1994; Ichiba et al., 1992). The 10 following sections provide a summary of the toxicokinetic properties for all three isomers. For 11 complete details regarding the toxicokinetics of TMB isomers in humans and animals, see

12 Tables C-47–C-66 in Appendices C.6–C.8.

C.1.1. Absorption

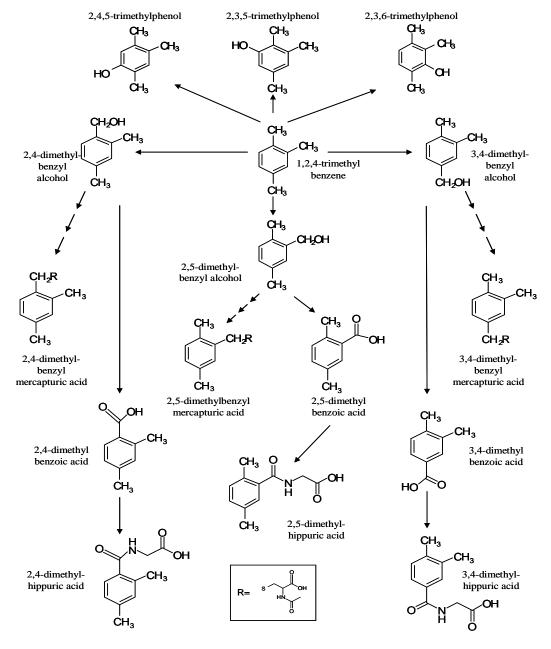
- 13 Both humans and rats readily absorb 1,2,4-TMB, 1,2,3-TMB, and 1,3,5-TMB into the
- 14 bloodstream following exposure via inhalation. Humans (N = 9-10, Caucasian males) exposed to
- 15 25 ppm (123 mg/m³) 1,2,4-TMB or 1,3,5-TMB for 2 hours exhibited similar maximum capillary
- 16 blood concentrations (6.5 \pm 0.88 and 6.2 \pm 1.6 μ M, respectively [digitized data]), whereas
- 17 absorption for 1,2,3-TMB was observed to be higher $(7.3 \pm 1.0 \,\mu\text{M} \text{ [digitized data]})$ (]ärnberg et al.,
- 18 1998, 1997a; Järnberg et al., 1996). Kostrzewski et al. (1997) observed equivalent maximal
- 19 capillary blood concentrations in humans (N = 5) exposed to 30.5 ppm (150 mg/m³) 1,2,4-TMB or
- 20 1,3,5-TMB for 8 hours (8.15 \pm 1.4 and 6.3 \pm 1.0 μ M, respectively). In the same study, volunteers
- 21 exposed to 100 mg/m³ (20.3 ppm) 1,2,3-TMB had capillary blood concentrations of $4.3 \pm 1.1 \,\mu$ M. In
- 22 humans (N = 4, 2 male, 2 female) exposed to 25 ppm (123 mg/m^3) 1,3,5-TMB for 4 hours, venous
- 23 blood concentrations were markedly lower (0.85 μ M, no standard devation [SD] reported), but this
- 24 may be related to measurement of 1,3,5-TMB in the venous blood (Jones et al., 2006). 1,3,5-TMB
- 25 has a higher blood: fat partition coefficient (230) than 1,2,4-TMB (173) or 1,2,3-TMB (164)
- 26 (Järnberg and Johanson, 1999) and therefore, much of the 1,3,5-TMB absorbed into capillary blood
- 27 may preferentially distribute to adipose tissue before entering into the venous blood supply.

1 Measurements of respiratory uptake of 1,2,4-TMB, 1,2,3-TMB, or 1,3,5-TMB are similar in humans 2 (N = 10, Caucasian males) (60 ± 3 , 48 ± 3 , and $55 \pm 2\%$, respectively). 3 In rats, rapid absorption into the bloodstream was observed in many studies following 4 single exposures to 1,2,4-TMB, with maximal blood concentrations of 537 ± 100 , 221 (no SD 5 reported), and $64.6 \pm 13.6 \,\mu\text{M}$ observed after exposures to 1,000 ppm (4,920 mg/m³) for 12 hours, 6 450 ppm (2,214 mg/m³) for 12 hours, and 250 ppm (1,230 mg/m³) for 6 hours (Swiercz et al., 7 2003; Eide and Zahlsen, 1996; Zahlsen et al., 1990). Zahlsen et al. (1990) observed a decrease in 8 blood concentrations of 1,2,4-TMB following repeated exposures, which they attribute to induction 9 of metabolizing enzymes; a similar decrease in 1,2,4-TMB blood concentrations following repeated 10 exposures was not observed in Swiercz et al. (2003). Using a four-compartment toxicokinetic 11 model, <u>Yoshida (2010)</u> estimated that a rat exposed to 50 µg/m³ 1,2,4-TMB for 2 hours would 12 absorb 6.6 μ g/kg body weight (no SD reported). Using this same model, the authors estimated that 13 humans exposed to 24 µg/m³ 1,2,4-TMB for 2 hours would absorb 0.45 µg/kg body weight (no SD 14 reported). 1,2,4-TMB, 1,2,3-TMB, and 1,3,5-TMB have also been observed to be absorbed and 15 distributed via blood circulation following oral and dermal exposures in rats (Tsujino et al., 2002; 16 Huo et al., 1989). Lastly, calculated blood:air partition coefficients for 1,2,4-TMB, 1,2,3-TMB, and 17 1,3,5-TMB (59.1 [56.9–61.3], 66.5 [63.7–69.3], and 43.0 [40.8–45.2], respectively) were similar in 18 humans (N = 10, 5 male, 5 female), indicating that the two isomers would partition similarly into the blood (Järnberg and Johanson, 1995). Additionally, the blood:air partition coefficients between 19 20 humans and rats were very similar for all three isomers: 1,2,4-TMB (59.1 versus 57.7), 1,2,3-TMB 21 (66.5 versus 62.6), and 1,3,5-TMB (43.0 versus 55.7) (Meulenberg and Vijverberg, 2000). This 22 further indicates that patterns of absorption would be similar across species.

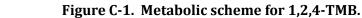
C.1.2. Distribution

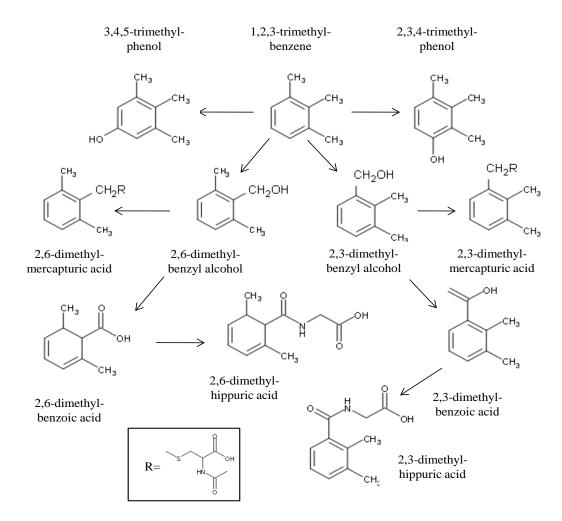
23 No information exists regarding the distribution of any isomer in adult humans. However, 24 experimentally calculated tissue-specific partition coefficients were similar for all three isomers 25 across a number of organ/systems (fat, brain, liver, muscle, and kidney) (Meulenberg and 26 Vijverberg, 2000). This strongly indicates that 1,2,4-TMB, 1,2,3-TMB, and 1,3,5-TMB can be 27 expected to partition similarly into these various organ/systems. TMBs (unspecified isomer) have 28 also been detected in cord blood, and can therefore be expected to partition into the fetal 29 compartment (Cooper et al., 2001; Dowty et al., 1976). In rats, 1,2,4-TMB was observed to 30 distribute widely to all examined organ/systems following oral exposure, with the highest 31 concentrations found in the stomach (509 ± 313 μ g/g) and adipose tissue (200 ± 64 μ g/g) (Huo et 32 al., 1989). Following inhalation exposures, 1,2,4-TMB, 1,2,3-TMB, and 1,3,5-TMB were observed to 33 distribute to all tissues examined, with tissue-specific concentrations dependent on the external 34 exposure concentration (Świercz et al., 2016; Swiercz et al., 2006; Swiercz et al., 2003; Eide and 35 Zahlsen, 1996). 1,2,4-TMB distributed to the adipose tissue to a much higher degree than to the 36 brain, liver, or kidneys (Eide and Zahlsen, 1996). Venous blood concentrations of 1,2,4-TMB, 37 1,2,3-TMB, and 1,3,5-TMB and liver concentrations of 1,2,4-TMB were observed to be significantly

> This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE


- 1 lower in repeatedly exposed animals versus animals exposed only once to higher concentrations
- 2 (Świercz et al., 2016; Swiercz et al., 2006; Swiercz et al., 2003; Swiercz et al., 2002). Kidney
- 3 concentrations of 1,3,5-TMB were observed to be lower in repeatedly exposed animals versus
- 4 animals exposed once, but only at the lowest exposure concentration. However, kidney
- 5 concentrations of 1,2,3-TMB were observed to be higher in repeatedly exposed animals versus
- 6 those exposed only once at low and medium doses, but not high doses (<u>Świercz et al., 2016</u>). The
- 7 authors suggest that lower tissue concentrations of TMB isomers observed in repeatedly-exposed
- 8 animals is mostly likely due to induction of metabolizing enzymes at higher exposure
- 9 concentrations. This hypothesis is supported by the observation of cytochrome P450 (CYP450)
- 10 enzyme induction in the livers, kidneys, and lungs of rats exposed to 1,200 mg/kg-day 1,3,5-TMB
- 11 for 3 days (<u>Pyykko, 1980</u>).
- 12 1,2,4-TMB was also observed to distribute to individual brain structures, with the
- 13 brainstem and hippocampus having the highest concentrations following exposure (<u>Swiercz et al.</u>,
- 14 <u>2003</u>). <u>Zahlsen et al. (1990</u>) also observed decreasing blood, brain, and adipose tissue
- 15 concentrations following repeated exposures versus single-day exposures in rats exposed to
- 16 1,000 ppm (4,920 mg/m³). The only studies to investigate distribution following dermal exposure
- 17 utilized kerosene as the test agent. In one study, 1,2,4-TMB preferentially distributed to the
- 18 kidneys (<u>Tsujino et al., 2002</u>). Concentrations in the blood, brain, liver, and adipose tissue were
- 19 similar to one another, but 1,2,4-TMB concentrations only increased in a dose-dependent manner in
- 20 adipose tissue, and continued to accumulate in that tissue following the termination of exposure.
- 21 Similar results were reported for 1,2,3-TMB and 1,3,5-TMB, but specific data were not presented.
- 22 Other studies simply reported that 1,2,4-TMB was detected in blood following dermal exposure to
- 23 kerosene (<u>Kimura et al., 1991</u>; <u>Kimura et al., 1988</u>).

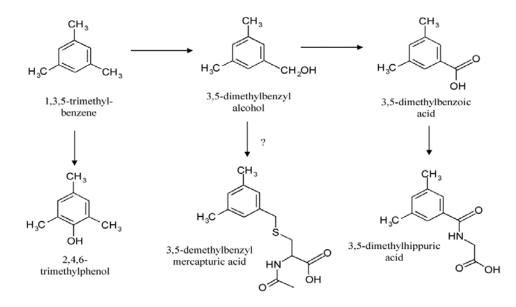
C.1.3. Metabolism


24 The metabolic profiles for each isomer were qualitatively similar between humans and rats, 25 although in some cases, quantitative differences were reported. In humans (N = 10, Caucasian 26 males), all three isomers are observed to be metabolized to benzoic and hippuric acids. 27 Approximately 22% of inhaled 1.2.4-TMB was collected as hippuric acid metabolites in urine 28 24 hours after 2-hour exposures to 25 ppm (123 mg/m³) 1,2,4-TMB (<u>Järnberg et al., 1997b</u>). 29 3,4-Dimethylhippuric acid (DMHA) comprised 82% of the DMHAs collected after exposure to 30 1,2,4-TMB, indicating that steric factors are important in the oxidation and/or glycine conjugation 31 of 1,2,4-TMB in humans. Approximately 11% of inhaled 1,2,3-TMB was collected as hippuric acid 32 metabolites (Järnberg et al., 1997b). As with 1,2,4-TMB, steric influences seem to play an important 33 role in the preferential selection of which metabolites are formed: 2,3-DMHA comprised 82% of all 34 hippuric acid metabolites collected. Urinary hippuric acid metabolites for 1,3,5-TMB following the 35 same exposure protocol accounted for only 3% of inhaled dose. The lower levels of hippuric acids 36 recovered in urine following exposure to 1,3,5-TMB may be a result of differing pK_a values. The 37 DMHA metabolite of 1,3,5-TMB has the highest pK_a value of any DMHA metabolite, indicating that it


1 ionizes to a lesser degree in urine. This may lead to increased reabsorption in the kidney tubules, 2 consequently lowering the total amount of DMHA metabolite excreted within 24 hours (Järnberg et 3 al., 1997b). Greater amounts of urinary benzoic and hippuric acid metabolites (73%) were 4 observed in humans (N = 5) following exposure to higher amounts of 1,3,5-TMB (up to 30.5 ppm) 5 for 8 hours (Kostrzewski et al., 1997; Kostrewski and Wiaderna-Brycht, 1995). Following 6 occupational exposure to 1,2,4-TMB or 1,3,5-TMB, urinary benzoic acid and hippuric acid 7 metabolites in workers (N = 6-12) were highly correlated with TMB isomer air concentrations 8 (Jones et al., 2006; Fukaya et al., 1994; Ichiba et al., 1992). 9 Following oral exposures in animals, the quantitative metabolic profiles of the three 10 isomers appears to differ. Mikulski and Wiglusz (1975) observed that 73% of the administered 11 dose of 1,3,5-TMB was recovered as glycine (i.e., hippuric acid, $59.1 \pm 5.2\%$), glucuronide 12 (4.9 ± 1.0) , or sulfate $(9.2 \pm 0.8\%)$ conjugates in the urine of rats within 48 hours after exposure. However, the total amount of metabolites recovered following exposure to 1,2,3-TMB and 13 14 1,2,4-TMB was much less (33.0 and \sim 37%, respectively). The major terminal metabolites for 15 1,2,4-TMB and 1,3,5-TMB are DMHAs $(23.9 \pm 2.3 \text{ and } 59.1 \pm 5.2\% \text{ total dose, respectively})$. DMHA 16 metabolites represent a smaller fraction $(10.1 \pm 1.2 \%)$ of the metabolites produced following 17 1,2,3-TMB exposure. When an estimate of the total amount of metabolite was calculated, 18 differences between isomers remained, but were in closer agreement: 93.7% (1,3,5-TMB), 62.6% 19 (1,2,4-TMB), and 56.6% (1,2,3-TMB) (no SD reported). It is important to note that Mikulski and 20 Wiglusz (1975) did not measure other TMB metabolites, such as mercapturic acid conjugates, 21 trimethylphenols (TMPs), or dimethylbenzoic acids (DMBAs). Huo et al. (1989) reported that the 22 total amount of metabolites (phenols, benzyl alcohols, benzoic acids, and hippuric acids) recovered 23 with 24 hours following exposure to 1,2,4-TMB was $86.4 \pm 23\%$ of the administered dose 24 (~100 g/kg). 25 Similar profiles in metabolism were observed in rabbits: DMBAs and DMHAs were observed 26 following oral exposure of rabbits to either 1,2,4-TMB or 1,3,5-TMB (Laham and Potvin, 1989; Cerf 27 et al., 1980). Specifically for 1,3,5-TMB, 68.5% of the administered oral dose was recovered as the 28 DMHA metabolite, with only 9% recovered as the DMBA metabolite. Additionally, a minor 29 metabolite not observed in rats, 5-methylisophthalic acid, was observed following exposure of 30 rabbits (Laham and Potvin, 1989). Additional terminal metabolites for the three isomers include: 31 mercapturic acids (~14-19% total dose), phenols (~12% total dose), and glucuronides and 32 sulphuric acid conjugates (4-9% total dose) for 1,2,4-TMB; mercapturic acids ($\sim 5\%$ total dose), 33 phenols (<1-8% total dose), and glucuronides and sulphuric acid conjugates (8-15% total dose) for 34 1,2,3-TMB; and phenols (~4–8% total dose) and glucuronides and sulphuric acid conjugates 35 (~59% total dose) for 1,3,5-TMB (Tsujimoto et al., 2005; Tsujimoto et al., 2000, 1999; Huo et al., 36 1989; Wiglusz, 1979; Mikulski and Wiglusz, 1975). 37 Phenolic metabolites were also observed in rabbits following oral exposures to 1,2,4-TMB 38 or 1,3,5-TMB, although the amounts recovered were quite small (0.05–0.4 % of total dose) (Bakke

- 1 <u>and Scheline, 1970</u>). As observed in humans, the influence of steric factors appeared to play a
- 2 dominant role in determining the relative proportion of metabolites arising from oxidation of
- 3 benzylic carbons: the less sterically hindered 3,4-DMHA comprised 79.5% of the collected hippuric
- 4 acid metabolites (<u>Huo et al., 1989</u>). Steric factors appear to be minimal regarding oxidation of the
- 5 aromatic ring itself: the most hindered phenol metabolites of 1,2,4-TMB and 1,2,3-TMB were either
- 6 formed in equal or greater proportions compared to less sterically hindered metabolites (<u>Tsujimoto</u>
- 7 <u>et al., 2005</u>; <u>Huo et al., 1989</u>). The proposed metabolic schemes for 1,2,4-TMB, 1,2,3-TMB, and
- 8 1,3,5-TMB are shown in Figures C-1, C-2, and C-3, respectively.

9 10



1

2

Figure C-2. Metabolic scheme for 1,2,3-TMB.

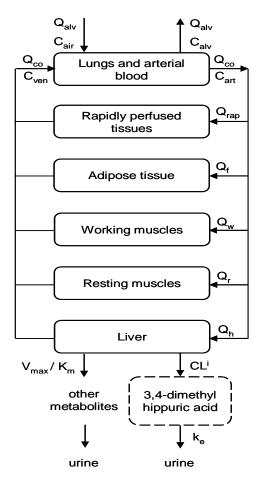
3 4

This document is a draft for review purposes only and does not constitute Agency policy. C-6 DRAFT—DO NOT CITE OR QUOTE

C.1.4. Excretion

1	In humans (N = 10, Caucasian males) at low doses (25 ppm [123 mg/m ³]), half-lives of
2	elimination from the blood of all TMB isomers were split into four distinct phases, with the half-
3	lives of the first three phases being similar across isomers: 1,2,4-TMB (1.3 \pm 0.8 minutes,
4	21 ± 5 minutes, 3.6 ± 1.1 hours), 1,2,3-TMB (1.5 ± 0.9 minutes, 24 ± 9 minutes, 4.7 ± 1.6 hours), and
5	1,3,5-TMB (1.7 ± 0.8 minutes, 27 ± 5 minutes, 4.9 ± 1.4 hours) (<u>Järnberg et al., 1996</u>). 1,3,5-TMB
6	had a higher total blood clearance value compared with 1,2,4-TMB or 1,2,3-TMB (0.97 \pm 0.06 versus
7	0.68 ± 0.13 or 0.63 ± 0.13 L/hour/kg, respectively). The half-life of elimination for 1,3,5-TMB in the
8	last and longest phase is much greater than those for 1,2,4-TMB or 1,2,3-TMB (120 \pm 41 versus
9	87 ± 27 and 78 ± 22 hours, respectively). Urinary excretion of unchanged parent compound was
10	extremely low (<0.002%) in humans (N = $6-10$, male) for all three isomers (<u>Janasik et al., 2008</u> ;
11	Järnberg et al., 1997b). The half-life of elimination of hippuric acid metabolites from the urine was
12	also greater for 1,3,5-TMB, compared to 1,2,4-TMB or 1,2,3-TMB (16 versus 3.8–5.8 and
13	4.8–8.1 hours, respectively) (<u>Järnberg et al., 1997b</u>).
14	Differences in the values of terminal half-lives may be related to interindividual variation in
15	a small sample population (N = $8-10$) and difficulty measuring slow elimination phases. All three
16	isomers were eliminated via exhalation: 20–37% of the absorbed dose of 1,2,4-TMB, 1,2,3-TMB, or
17	1,3,5-TMB was eliminated via exhalation during exposure to 123 mg/m ³ (25 ppm) for 2 hours
18	(Järnberg et al., 1996) and elimination of 1,3,5-TMB via breath was biphasic with an initial half-life
19	of 60 minutes, and a terminal half-life of 600 minutes (Jones et al., 2006). Following exposure of
20	rats to 25 ppm (123 mg/m³) 1,2,4-TMB, 1,2,3-TMB, or 1,3,5-TMB for 6 hours, the terminal half-life
21	of elimination of 1,3,5-TMB from the blood (2.7 hours) was shorter than that for 1,2,4-TMB
22	(3.6 hours) or 1,2,3-TMB (3.1 hours) (<u>Świercz et al., 2016;</u> <u>Swiercz et al., 2006</u> ; <u>Swiercz et al., 2002</u>).
23	As dose increased, the half-lives for elimination from blood following single exposures to 1,2,4-TMB
24	(17.3 hours) became much longer than those for 1,3,5-TMB (4.1 hours) or 1,2,3-TMB (5.3 hours).
25	Following repeated-dose experiments (4 weeks), the terminal half-lives of elimination of TMB
26	isomers in venous blood were similar for 1,2,4-TMB and 1,2,3-TMB (9.9 and 8.0 hours,
27	respectively), but larger than that of 1,3,5-TMB (4.6) (<u>Świercz et al., 2016;</u> <u>Swiercz et al., 2006</u> ;
20	Surjorg et al. 2002, Surjorg et al. 2002)

28 <u>Swiercz et al., 2003; Swiercz et al., 2002</u>).


C.2. PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODELS

C.2.1. Summary of Available Physiologically Based Pharmacokinetic (PBPK) Models for 1,2,4-TMB

29 Järnberg and Johanson (1999)

- 30 <u>Järnberg and Johanson (1999)</u> described a PBPK model for inhalation of 1,2,4-TMB in
- 31 humans. The model is composed of six compartments (lungs, adipose, working muscles, resting
- 32 muscles, liver, and rapidly perfused tissues) for the parent compound and one (volume of

- 1 distribution) for the metabolite, 3,4-DMHA (see Figure C-4). The lung compartment includes lung
- 2 tissue and arterial blood. Excretion of parent compound is assumed to occur solely by ventilation.
- 3 As 1,2,4-TMB has a pronounced affinity to adipose tissue, a separate compartment for fat is
- 4 incorporated into the model. Remaining non-metabolizing compartments are rapidly perfused
- 5 tissues, comprising the brain, kidneys, muscles, and skin.
- 6

7

8 9	C = concentration of 1,2,4-TMB; C_{air} = concentration in ambient air; C_{art} = concentration in arterial blood; C_{ven} = concentration in venous blood; Q_{alv} = alveolar ventilation; Q_{co} = cardiac output; Q_i = blood flow to
10 11 12 13 14	compartment i (where i = rap = rapidly perfused tissues; f = adipose tissue; w = working muscles, r = resting muscles, h = liver); V_{max} = maximum rate of metabolism, pathway I; K_m = Michaelis-Menten constant for metabolic pathway I; CL^i = intrinsic hepatic clearance of metabolic pathway II; k_e = excretion rate constant of 3,4-DMHA.

15 Source: <u>Järnberg and Johanson (1999)</u>.

Figure C-4. Physiologically based toxicokinetic model for 1,2,4-TMB in humans.

- 1 Because previous experimental data were gathered during exercise (Järnberg et al., 1997a;
- 2 Järnberg et al., 1996), the muscle compartment was divided into two equally large compartments,
- 3 resting and working muscles. Two elimination pathways (a saturable Michaelis-Menten pathway
- 4 for all metabolites other than 2,4-DMHA [pathway I] and a first-order pathway [pathway II] for
- 5 formation of 3,4-DMHA) from the hepatic compartment were included. Metabolism was assumed
- 6 to occur only in the liver compartment. Tissue:blood partition coefficients of 1,2,4-TMB were
- 7 calculated from experimentally determined blood:air, water:air, and olive oil:air partition
- 8 coefficients (Järnberg and Johanson, 1995) (Table C-1).

9 Table C-1. Measured and calculated partition coefficients for TMB isomers at 10 37°C

		Calculated values		
Substance	P _{saline:air} N = 42	<i>P</i> _{oil:air} N = 25	Human <i>P</i> _{blood:air} N = 39	Human P _{blood:air} b
1,3,5-TMB	1.23 (1.11–1.35)	9,880 (9,620–10,140)	43.0 (40.8–45.2)	60.3
1,2,4-TMB	1.61 (1.47–1.75)	10,200 (9,900–10,400)	59.1 (56.9–61.3)	62.2
1,2,3-TMB	2.73 (2.54–2.92)	10,900 (10,500–11,300)	66.5 (63.7–69.3)	67.5

11

12 ^aMean values and 95% confidence interval (CI).

13 ^bCalculated as $(0.79 \times P_{\text{saline:air}}) + (0.006 \times P_{\text{oil:air}})$, where 0.79 is the relative content of saline in blood and 0.006 is 14 the relative content of fat in blood (Fiserova-Bergerova, 1983).

15 16 Source: Järnberg and Johanson (1995).

17

18 The model was used to investigate how various factors (work load, exposure level, 19 fluctuating exposure) influence potential biomarkers of exposure (end-of-shift and prior-to-shift 20 concentrations of parent compound in blood and 3,4-DMHA in urine). Biomarker levels estimated 21 at end-of-shift remained fairly constant during the week, whereas biomarker levels prior-to-shift 22 gradually increase throughout the week. This indicates that end-of-shift values represent the same 23 day's exposures, whereas prior-to-shift values reflect cumulative exposure during the entire work 24 week. Increased work load increased uptake of 1,2,4-TMB. For example, a work load of 150 W over 25 an exposure period of 8 hours increased the level of 1,2,4-TMB in the blood more than 2-fold, 26 compared to levels of 1,2,4-TMB in the blood after an 8-hour exposure at rest. Simulated 8-hour 27 exposures at air levels of 0-100 ppm (0-492 mg/m³) shows that overall metabolism is saturable, 28 and that the metabolic pathway yielding 3,4-dimethylbenzene becomes more important as 29 exposure concentrations increase. 30 Previously performed experimental human exposures to 1,2,4-TMB were used to estimate

- 31 the metabolic parameters and alveolar ventilation (Jarnberg et al., 1997a; Jarnberg et al., 1996).
- 32 Individual simulated arterial blood concentrations and exhalation rates of 1,2,4-TMB, as well as the

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

- 1 urinary excretion rate of 3,4-DMHA, were simultaneously adjusted to the experimentally obtained
- 2 values by varying the alveolar ventilation at rest. One individual's compound-specific and
- 3 physiological parameters were then used for subsequent model predictions (Table C-2).
- 4 5

Table C-2. PBPK model parameters for 1,2,4-TMB toxicokinetics in humans using the <u>Järnberg and Johanson (1999)</u> model structure

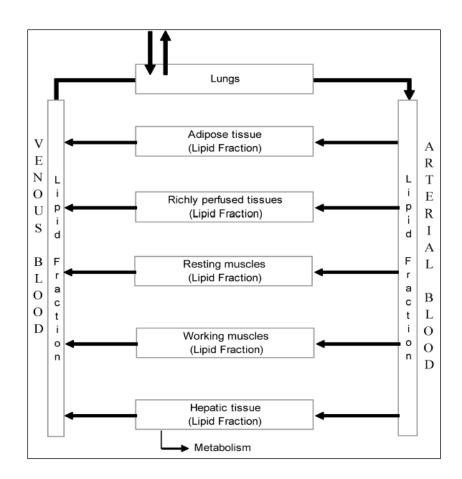
Parameters	Rest	Both ^a	50 W
Body height (m)		1.78	
Body weight (kg)		75.5	
V _{max} (μmol/min)		3.49	
K _m (μM)		4.35	
CL ⁱ (L/min)		0.149	
Elimination rate constant (min ⁻¹)		0.0079	
Alveolar ventilation (L/min)	9.05		20.2
Compartment volumes (L)	·	•	
Lungs and arterial blood		1.37	
Liver		1.51	
Fat		25.0	
Brain and kidneys		1.49	
Working muscles		16.6	
Resting muscles		16.6	
Blood flows (L/min)			
Cardiac output	5.17		9.16
Liver	1.67		
Fat	0.55		
Brain and kidneys	1.86		
Working muscles	0.55		
Resting muscles	0.55		
Partition coefficients			
Blood:air		59	
Fat:blood		125	
Liver:blood		5	
Rapidly perfused tissues:blood		5	
Muscle:blood		5	

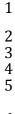
⁶ 7 8 9

^aParameters used for both working and resting conditions.

Source: <u>Järnberg and Johanson (1999)</u>.

1 While based on the published results, the Järnberg and Johanson (1999) model appears to 2 provide a good description of 1,2,4-TMB kinetics in humans, the model code could not be obtained 3 from the authors. Based on previous experience with other PBPK models, the U.S. Environmental 4 Protection Agency (EPA) has determined that attempting to reproduce (and thereby validate) a 5 model based only on the published description is nearly impossible. Therefore, because the model 6 code is not available, this model is not considered further in the Integrated Risk Information System 7 (IRIS) TMB Assessment.


8 **Emond and Krishnan (2006)**


9 The Emond and Krishnan (2006) model was not developed specifically for 1,2,4-TMB, but 10 rather to test a modeling concept. The PBPK model developed was to test the hypothesis that a 11 model could be developed for highly lipophilic volatile organic chemicals (HLVOCs) using the 12 neutral lipid-equivalent (NLE) content of tissues and blood as the basis. This NLE-based modeling 13 approach was tested by simulating uptake and distribution kinetics in humans for several 14 chemicals including α -pinene, d-limonene, and 1.2.4-TMB. The focus of this model review is the use 15 of the model for the prediction of 1,2,4-TMB kinetics and distribution. 16 This model consisted of five compartments (see Figure C-5) with systemic circulation, 17 where the tissue volumes corresponded to the volumes of the neutral lipids (i.e., their NLEs), rather 18 than actual tissue volume as more commonly found. NLE is the sum of the neutral (nonpolar) lipids 19

- and 30% of the tissue phospholipid (fraction of phospholipids with solubility similar to neutral
- 20 lipids) content. The model describes inhalation of 1,2,4-TMB using a lumped lung/arterial blood
- 21 compartment. Clearance of 1,2,4-TMB is described in the model with exhalation, but more
- 22 significantly through first-order hepatic metabolism. First-order metabolism is appropriate in the 23 low-dose region (<100 ppm [<492 mg/m³]), where metabolism is not expected to be saturated.

24 In the study description, the mixed lung/arterial blood compartment is not a standard 25 structure for the lung/blood/air interface. The concentration in lung tissue is assumed equal to 26 alveolar blood, and the exhaled air concentration is equal to the lung/blood concentration divided 27 by the blood:air partition coefficient. This approach is appropriate, and appears to be accurately 28 represented mathematically by the authors.

29 Physiological parameters appear to be within ranges normally reported. The calculation of 30 the NLE fraction is clearly explained and values used in the calculations are clear and transparent. 31 Other model parameters (e.g., alveolar ventilation, cardiac output, blood flows, and volumes of 32 compartments) were taken from Järnberg and Johanson (1999) and converted to the approximate 33 NLE. Hepatic clearance rates were taken from literature on in vivo human clearance calculations 34 and then expressed in terms of NLE. The NLE-based model was able to adequately predict human 35 blood concentrations of 1,2,4-TMB following inhalation of 2 or 25 ppm (9.8 or 123 mg/m^3) for 36 2 hours without alteration to model parameters obtained from literature.

Note: Arrows represent blood flows, gas exchange, and metabolism as indicated.

Source: Emond and Krishnan (2006).

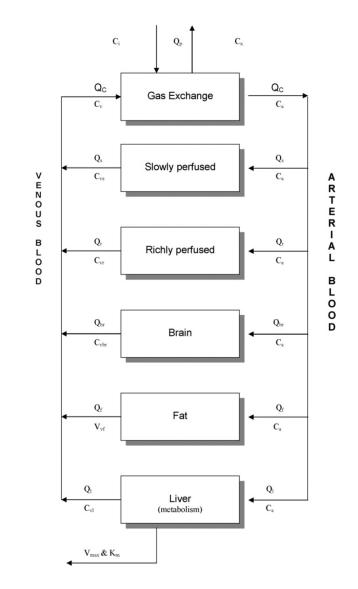
Figure C-5. Schematic of human model structure for 1,2,4-TMB using the NLEbased model approach.

8 The PBPK model developed by <u>Emond and Krishnan (2006)</u> is used to test the hypothesis 9 that a model could be developed for HLVOCs using the NLE content of tissues and blood as the 10 basis. To test this NLE-based approach, the uptake and distribution kinetics in humans for several 11 chemicals, including 1,2,4-TMB, were simulated. The model appeared to accurately reflect 12 experimental data; however, a rodent model is needed for this assessment for animal-to-human 13 extrapolation, and no known rodent NLE model for 1,2,4-TMB is available. The EPA generally 14 prefers to use a consistent model structure for both experimental animals and humans when 15 conducting animal-to-human extrapolation, since this consistency is considered a validation of the model structure. Therefore, use of the Emond and Krishnan (2006) model for human predictions 16 17 alone was considered less preferable than use of a model that has been developed for, and shown to 18 describe, dosimetry in both rats and humans.

1 <u>Hissink et al. (2007)</u>

2 This model was developed to characterize internal exposure following white spirit 3 inhalation. Since white spirit is a complex mixture of hydrocarbons, including straight and 4 branched paraffins, two marker compounds were used including 1,2,4-TMB and *n*-decane. The rat 5 models were developed to predict the levels of 1,2,4-TMB and *n*-decane in blood and brain, and the 6 rat model was then scaled allometrically to obtain estimates for human blood following inhalation. 7 Toxicokinetic data on blood and brain concentrations in rats of two marker compounds, 1,2,4-TMB 8 and n-decane, together with in vitro partition coefficients, were used to develop the model. The 9 models were used to estimate an air concentration that would produce human brain concentrations 10 similar to those in rats at the no-observed-effect-level (NOEL) for central nervous system (CNS) 11 effects.

This is a conventional five-compartment PBPK model for 1,2,4-TMB similar to previously
published models for inhaled solvents. The five compartments are: liver, fat, slowly perfused
tissues, rapidly perfused tissues, and brain (Figure C-6).


All compartments are described as well mixed/perfusion limited. A lung compartment is used to describe gas exchange. The liver was the primary metabolizing organ where 1,2,4-TMB metabolism was described as saturable using Michaelis-Menten kinetics. Since the brain is the target organ for CNS effects due to exposure to hydrocarbon solvents, it was included as a separate compartment. For the rat, the authors reported that K_m and V_{max} values were obtained by fitting predicted elimination time courses to observed blood concentration profiles at three different exposure levels (obtained from the rat exposure portion of the study). For the human model, rat

 V_{max} data were scaled to human body weight (BW^{0.74}) and K_m values were used unchanged.

The model appears to effectively predict blood concentrations in rats and humans and in the brains of rats following inhalation of white spirit. Changes to the rat model parameters to fit the human data were as expected. The model is simple and includes tissues of interest for potential dose metrics.

27 In rats, the model-predicted blood and brain concentrations of 1,2,4-TMB were in 28 concordance with the experimentally derived concentrations. In humans, experimental blood 29 concentrations of 1,2,4-TMB were well predicted by the model, but the predicted rate of decrease in 30 air concentration between 4 and 12 hours was lower compared to measured values. The authors 31 did not provide information on how model predictions compared to data from animals or humans 32 exposed to pure 1,2,4-TMB. Based on good model fits of experimental data in both rats and 33 humans, the model was valid for the purpose of interspecies extrapolation of blood and brain 34 concentrations of 1,2,4-TMB as a component of white spirit. Moreover, the fact that the model was 35 demonstrated to adequately fit or predict both rat and human data with a single model structure is 36 considered a degree of validation of the model structure that does not exist for the other published 37 models described above.

Supplemental Information-Trimethylbenzenes

1

2 3

4 5 Boxes represent tissue compartments, while solid arrows represent blood flows, gas exchange, and metabolism as indicated.

Source: Hissink et al. (2007).

Figure C-6. Schematic of rat and human PBPK model structure.

7

6

C.2.2. 1,2,4-TMB PBPK Model Selection

All available 1,2,4-TMB PBPK models were evaluated for potential use in this assessment.

8 Of the three deterministic PBPK models available for 1,2,4-TMB (<u>Hissink et al., 2007; Emond and</u>

9 <u>Krishnan, 2006; Järnberg and Johanson, 1999</u>), the <u>Hissink et al. (2007)</u> model was chosen to utilize

- 10 in this assessment because it was the only published 1,2,4-TMB model that included
- 11 parameterization for both rats and humans, for which the model code was available, and for which
- 12 the model adequately predicted experimental data in the dose range of concern. The <u>Hissink et al.</u>

1	(2007) model was thoroughly evaluated, including a detailed computer code analysis (details						
2	follow in Section C.2.3).						
3	While the <u>Hissink et al. (2007)</u> model had the noted advantages, it did have the following						
4	4 shortcomings and sources of uncertainty that EPA needed to address:						
5	1) the model was developed and calibrated only for inhalation exposure;						
6 7	 the rat model used a different value for the maximum metabolic capacity, V_{max}, for each exposure level, which makes extrapolation or interpolation of the model problematic; 						
8	3) the model describes a typical adult and is not parameterized for pregnancy;						
9 10	4) some physiological parameter values were not consistent with published sources, in particular, values more commonly used today; and						
11 12 13	5) data used to calibrate the model were from inhalation exposure to white spirits, a complex mixture, and the model does not include all of the resulting potential interactions.						
14	In particular, the metabolic parameters calibrated against white-spirit data could reflect						
15	metabolic interactions from the mixture, and not accurately predict dosimetry for exposure to						
16	1,2,4-TMB alone. For this reason, model predictions were compared to additional pharmacokinetic						
17	data, a single value of V_{max} was identified and used for consistency across the dose range, and some						
18	other model parameters were revised to better match those data, or make better use of existing						
19	biochemical and physiological data. The changes made and specific justifications are detailed in the						
20	following sections, including more minor issues not mentioned here.						

20 following sections, including more minor issues not mentioned here.

C.2.3. Details of <u>Hissink et al. (2007)</u> Model Analysis

C.2.3.1. Review and Verification of the <u>Hissink et al. (2007)</u> 1,2,4-TMB PBPK Model

21	Verification	of accuracy	of the	model	code
----	--------------	-------------	--------	-------	------

22 In general, the model code and the description of the model in <u>Hissink et al. (2007)</u> were in 23 agreement. The one significant discrepancy was that the model code contained an element that 24 changed the metabolism rate (V_{max}) during exposure in a manner that was not documented in the 25 paper. This additional piece of model code, when used in 8-hour rat simulations with a body weight 26 of 0.2095 kg, resulted in V_{max} holding at 1.17 from the beginning of exposure to t = 1 hour, then 27 increasing linearly to 1.87 by the end of the exposure and to 2.67 by the end of the post-exposure 28 monitoring period (t = 16 hours, 8 hours after the end of exposure). The published rat simulations, 29 however, did not appear to be entirely consistent with the inclusion of these V_{max} adjustments, 30 raising questions as to whether the code that was verified was the code that was actually used in 31 the final analyses done for the published simulations. Further, this type of time-dependence is not 32 based on a predictable or verifiable factor (e.g., dose-dependent metabolic induction); hence, it is

1 inconsistent with the intention to extrapolate the model to bioassay conditions. The impact of this

2 deviation from the published V_{max} value is described below with regard to the verification of the

3 <u>Hissink et al. (2007)</u> model.

4 Other minor issues were identified by examining the code and comparing it to the model 5 documentation in <u>Hissink et al. (2007</u>). The code contained some elements that were not necessary 6 (e.g., intravenous dosing, repeated exposure, interruptions in daily exposure), but since these do 7 not hinder proper functioning of the model, these elements were not removed or modified. The 8 mass balance equation omitted one term, the amount of 1,2,4-TMB in the brain (ABR); this term has 9 been added. The coding for the blood flow was not set up so as to ensure flow/mass balance. That 10 is, values of sum of fractional flows to rapidly perfused tissues, liver, and brain (QRTOTC) and sum 11 of fractional flows to slowly perfused tissues (QSTOTC) were selected such that their sum equals 12 one, but if one value were to be changed, the model code would not automatically compensate by 13 changing the other. Therefore, the code was modified so that QSTOTC = 1 - QRTOTC, to facilitate 14 future sensitivity analyses. 15 Human exhaled breath concentrations were compared to CXEQ (= CV/PB based on the 16 model code and consistent with the description of the experiment), which would be equivalent to 17 the end-exhaled alveolar air after breath holding, but the method used to calculate CXEQ was not 18 noted in Hissink et al. (2007). This is important because there can be different definitions of 19 exhaled breath depending on the measurement technique. For example, mixed exhaled breath is 20 typically calculated as 70% alveolar air and 30% "inhaled" concentration, due the mixing of air 21 exiting the alveolar region with air that has only entered the pulmonary dead space. 22 Comparisons between the computer .m files and published descriptions (Hissink et al., 23 2007) indicated minor discrepancies and uncertainties in exposure concentrations and body 24 weight. Exposure concentrations in the simulations were set at the nominal exposure levels, rather 25 than analytically determined levels. The maximum deviation between the nominal level and 26 analytically determined levels occurred in the rat high exposure group, with a nominal exposure of 27 4,800 mg/m³ white spirit (7.8% [38.4 mg/m³] 1,2,4-TMB) and mean analytical concentrations 28 ranging from 4,440 to 4,769 mg/m³—as much as 9.2% lower. Rat body weights at time of exposure 29 were reported as 242–296 g (Hissink et al., 2007), but the .m files used values of 210.01, 204.88, 30 and 209.88 g in the low-, mid-, and high-exposure groups, respectively. Volunteer body weights 31 reportedly ranged from 69 to 82 kg, and the text states that the fitted V_{max} and K_m were obtained for 32 a 70-kg male (<u>Hissink et al., 2007</u>), but a body weight of 74.9 kg was used in the .m file. No changes 33 to these parameters were made in the model code, based on the assumption that additional data 34 were available to the model authors. 35 Measured human blood concentrations were compared to the average of arterial and

- 36 venous blood concentrations (CMIX), while the protocol states that blood was taken from the
- 37 cubital vein, so a more appropriate measure may have been venous blood exiting the slowly
- 38 perfused tissues compartment (CVS). This choice of dose metric is unlikely to have contributed

This document is a draft for review purposes only and does not constitute Agency policy. C-16 DRAFT—DO NOT CITE OR QUOTE

- 1 significantly to any errors in parameterizing the model (i.e., estimating best-fit metabolism
- 2 parameters) because the difference between the two values is generally small. Revised model code
- 3 and modeling results are provided on EPA's Health Effects Research Online (HERO) database (U.S.
- 4 <u>EPA, 2016a</u>).

5 Verification of model parameter plausibility

6 Anatomical and physiological parameters

7 The anatomical physiological parameters used by <u>Hissink et al. (2007)</u> were taken from <u>U.S.</u> 8 EPA (1988), but the more current convention is to use the parameters in Brown et al. (1997). 9 Comparisons of the rat anatomical and physiological parameters in these sources are found in 10 Table C-3. Many disagreements in values were identified, particularly with respect to the blood 11 flows. In interpreting the blood flow percentages, it should be noted that the percentages 12 enumerated by Brown et al. (1997) do not sum to 100%, which is both a physiological requirement 13 and a computational requirement to ensure that conservation of mass holds for the model. 14 Perfusion rates of various depots of fat may differ, so the single value or fractional blood flow to fat 15 given by Brown et al. (1997) of 7% may be deemed sufficiently uncertain that the Hissink et al. 16 (2007) value of 9% is considered acceptable. Brown et al. (1997) report substantially higher blood 17 flow percentages to slowly perfused tissues (skin: 5.8% and muscle: 27.8%, for a total of 33.6%) 18 than the value of 15% used by <u>Hissink et al. (2007)</u>. The difference cannot be due to a smaller set of 19 tissues being "lumped" into this compartment, because Hissink et al. (2007) assigned a larger 20 volume fraction of tissue to this compartment. Hissink et al. (2007) also assigned a higher 21 percentage of blood flow to the liver than indicated by Brown et al. (1997). Because no sensitivity 22 analyses were conducted by the authors, it is unclear what impact these discrepancies may have 23 had on the predicted 1,2,4-TMB kinetics and visual optimization of metabolism parameters. 24 Comparisons of the human anatomical and physiological parameters in <u>Hissink et al. (2007)</u> 25 and Brown et al. (1997) are found in Table C-4. In general, the agreement was better for humans 26 than it was for rats. Brown et al. (1997) proposed a higher default body fat percentage than was 27 used by <u>Hissink et al. (2007)</u>, but <u>Hissink et al. (2007)</u> used values derived from measurements of 28 the volunteers participating in the study. Because these volunteers had relatively low percentages 29 of body fat, it is appropriate that the volume of slowly perfused tissue (including muscle) should be 30 increased to compensate.

1 2

Table C-3. Comparison of rat anatomical and physiological parameters in Hissink et al. (2007) to those of Brown et al. (1997)

		Range from Brown	
Parameter	Hissink et al. (2007) ^a	et al. (1997)	Values in agreement?
Alveolar ventilation rate (L/hr/kg ^{0.7})	20	12-54 ^b	Yes
Total cardiac output (L/hr/kg ^{0.7})	20	9.6-15	No
Blood flow (% cardiac output)			
Liver (total)	25	13.1-22.1	No
Fat	9	7	Acceptable ^c
Brain	1.2	1.5-2.6	No
Rapidly perfused (total) Adrenals	49.8	15.3–27.4 0.2–0.3	No
Heart		4.5-5.1	
Kidneys		9.5-19	
Lung		1.1-3	
Slowly perfused (total)	15	33.6	No
Muscle		27.8	
Skin		5.8	
Total	100	70.5-92.7	
Tissue volume (% body weight)			
Liver	4	2.14-5.16	Yes
Fat	7	3.3-20.4	Yes
Brain	0.72	0.38-0.83	Yes
Rapidly perfused	4.28	3.702-6.11	Yes
Adrenals		0.01-0.31	
Stomach		0.4-0.6	
Small intestine		0.99-1.93	
Large intestine		0.8-0.89	
Heart		0.27-0.4	
Kidneys		0.49-0.91	
Lungs		0.37-0.61	
Pancreas		0.24-0.39	
Spleen		0.13-0.34	
Thyroid		0.002-0.009	
Slowly perfused	75	51.16-69.1	Acceptablec
Muscle		35.36-45.5	
Skin		15.8-23.6	
Total	91		

^aValues from U.S. EPA (1988).

^bAssuming a standard 250-g rat.

^c<u>Hissink et al. (2007)</u> value outside of literature range, but acceptable (see discussion in text).

1 2 3

Table C-4. Comparison of human anatomical and physiological parameters in<u>Hissink et al. (2007)</u> to those of <u>Williams and Leggett (1989)</u> as reported byBrown et al. (1997)

Parameter	<u>Hissink et al. (2007)</u> ^a	Range from <u>Brown et</u> <u>al. (1997)</u>	Values in agreement?
Alveolar ventilation rate (L/hr/kg ^{0.7})	20	15	Acceptable
Total cardiac output (L/hr/kg ^{0.7})	20	16	Acceptable
Blood flow (% cardiac output)			
Liver (total)	26	11-34.2	Yes
Fat	5	3.7-11.8	Yes
Brain	14	8.6-20.4	Yes
Rapidly perfused (total)	30	19.9-35.9	Yes
Adrenals		0.3	
Heart		3-8	
Kidneys		12.2-22.9	
Lung		2.5	
Thyroid		1.9-2.2	
Slowly perfused (total)	25	9–50.8	Yes
Muscle		5.7-42.2	
Skin		3.3-8.6	
Total	100	52.2-153.1	
Tissue volume (% body weight)			
Liver	2.6	2.57	Yes
Fat	14.6	21.42	Acceptable (measured) ^a
Brain	2	2	Yes
Rapidly perfused	3	3.77	Acceptable
Adrenals		0.02	
Stomach		0.21	
Small intestine		0.91	
Large intestine		0.53	
Heart		0.47	
Kidneys		0.44	
Lungs		0.76	
Pancreas		0.14	
Spleen		0.26	
Thyroid		0.03	
Slowly perfused	66.4	43.71	Acceptable
Muscle		40	
Skin		3.71	
Total	88.6	73.47	

4 5 6

8

^aThe <u>Hissink et al. (2007)</u> value differs from <u>Brown et al. (1997)</u>, but is acceptable (see discussion in text).

7 Chemical-specific parameters

The chemical-specific model parameters, partition coefficients, and metabolic parameters

9 are summarized in Table C-5.

1	Table C-5. Comparison of chemical-specific parameters in <u>Hissink et al.</u>
2	(2007) to literature data

		Hissink et al. (2007)	Liter	ature	Values in	
Parameter	Parameter Value		Value	Technique	agreement?	
		Partition coefficien	its			
Saline:air	3	In vitro	1.47–1.75 ^a	In vitro	Acceptable	
Olive oil:air	13,200	In vitro	9,900-10,400ª	In vitro	Acceptable	
Blood:air, human	85	In vitro	59.6-61.3ª	In vitro	Acceptable	
Blood:air, rat	148	In vitro	-			
Rapidly perfused:blood	y perfused:blood 2.53 Calculated		-			
Slowly perfused:blood	1.21	Calculated	-			
Fat:blood	62.7	Calculated	63 ^b	In vivo	Yes	
Brain:blood	2.53	Calculated	2 ^b	In vivo	Acceptable	
Liver:blood	2.53	Calculated	-			
		Metabolism				
V _{max} C, rat (mg/hr/kg ^{0.7})	3.5	Visual optimization	-			
V _{max} C, human (mg/hr/kg ^{0.7})			1.2 - 21 ^c	Optimization	Yes	
K _m , rat (mg/L)	0.25	Visual optimization	-			
K _m , human (mg/L)	0.25	Assumed equal to rat	0.42-4.0 ^c	Optimization	No	
V _{max} C/K _m , human (L/hr/kg ^{0.7})	14	Assumed equal to rat	2.6–15 ^c	Optimization	Yes	

³ 4 5 6 7

^aJärnberg and Johanson (1995). ^bZahlsen et al. (1990).

^cJärnberg and Johanson (1999).

8 Source: <u>Hissink et al. (2007).</u> 9

10

Where data were available, the agreement is generally acceptable. While the rat-derived $K_{\mbox{\scriptsize m}}$

11 is less than the lower 95% confidence interval (CI) value for the human K_m , the human $V_{max}C/K_m$

12 ratio is in acceptable agreement with the published range. When considering sufficiently low

13 exposure concentrations, the performance of the <u>Hissink et al. (2007)</u> human model metabolism

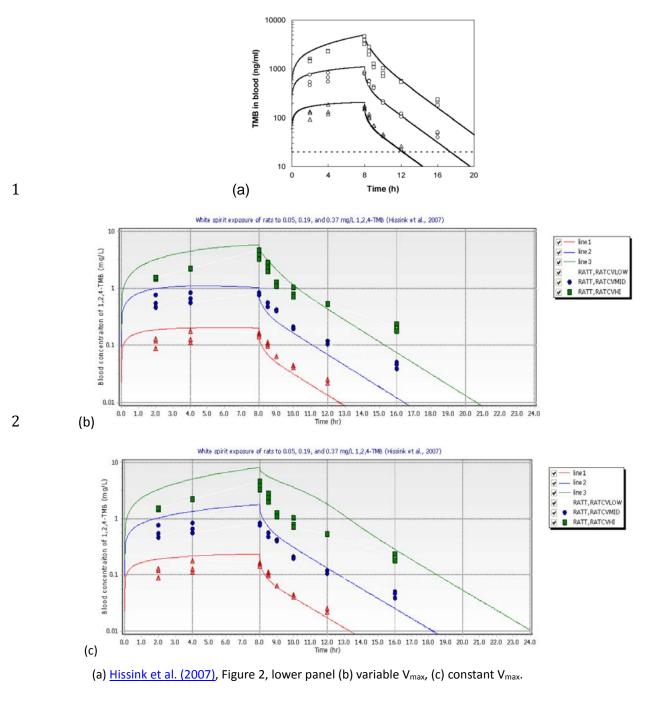
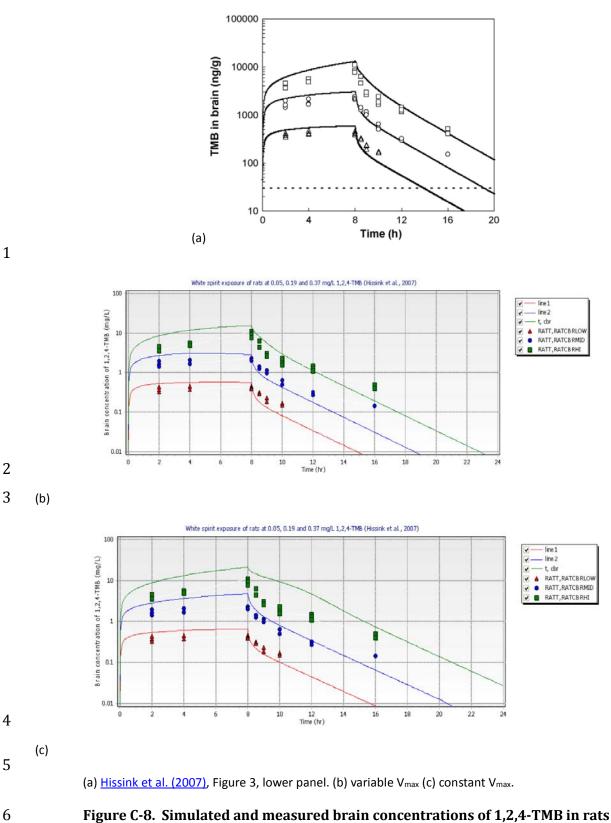
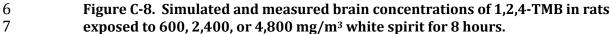
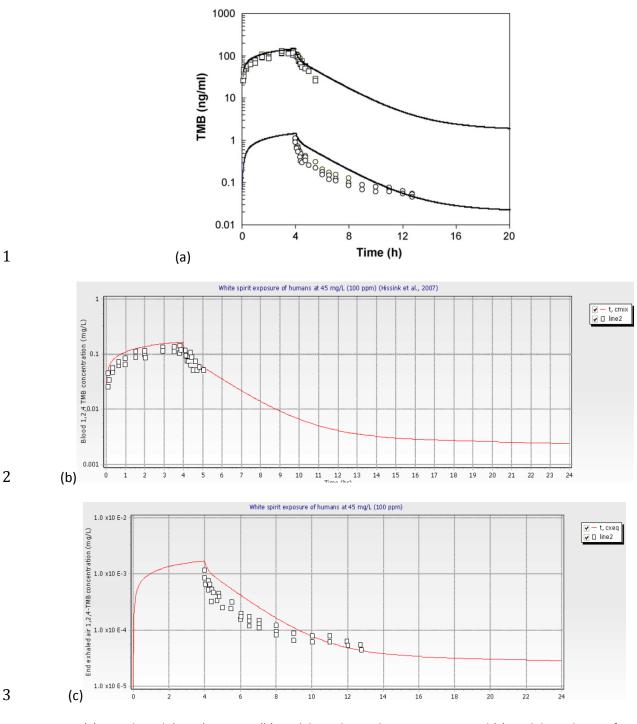
14 parameters would be consistent with the <u>Järnberg and Johanson (1999</u>) value.

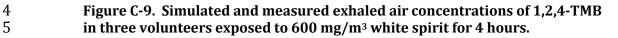
Verification that the model can reproduce all figures and tables in the publication by <u>Hissink</u> <u>et al. (2007)</u>

- 17 The experimental data in <u>Hissink et al. (2007)</u> were estimated by use of Plot Digitizer
- 18 (version 2.4.1) to convert the symbols on the relevant figures into numerical estimates. The model

Supplemental Information—Trimethylbenzenes

- 1 code provided (adapted for acslX), with a variable value for V_{max}, does not appear to perfectly
- 2 reproduce the rat simulations in <u>Hissink et al. (2007)</u> (Figures C-7a and b and C-8a and b) (please
- 3 note that the <u>Hissink et al. (2007)</u> figures have been "stretched" to produce approximately the same
- 4 x-axis scale found in the acsIX figures). It appears to yield end-of exposure blood and brain
- 5 concentrations that are about the same as in the <u>Hissink et al. (2007)</u> simulations, but the post-
- 6 exposure clearance appears faster in EPA's calculations (see, for example, the 16-hour time points
- for the high exposures). When the simulations were run with V_{max} constant (Figures C-7c and C-8c),
- 8 as documented in <u>Hissink et al. (2007</u>), the rat simulations yield higher blood and tissue
- 9 concentrations than depicted in <u>Hissink et al. (2007)</u>, most notably at the high exposure
- 10 concentration. Similar results were obtained for the rat brain concentrations (Figure C-8). The
- 11 human simulations of blood and exhaled air appear to be faithfully reproduced by the model
- 12 (Figure C-9). The predicted brain concentration for humans exposed to 600 mg/m³ white spirit
- 13 (45 mg/m³ 1,2,4-TMB) for 4 hours was reported as 721 ng/g (0.721 mg/L) in <u>Hissink et al. (2007</u>),
- 14 whereas the current simulation predicts a concentration of 0.818 mg/L.


Figure C-7. Simulated and measured blood concentrations of 1,2,4,-TMB in
rats exposed to 600, 2,400, or 4,800 mg/m³ white spirit for 8 hours.

(a) <u>Hissink et al. (2007)</u>, Figure 4 (b) model simulation during exposure, and (c) model simulation after exposure.

C.2.3.2. PBPK Model Optimization and Validation

Because of the various issues described above for the <u>Hissink et al. (2007)</u> model, including
 inconsistency of physiological parameters, non-mechanistic dose-dependence in metabolic
 parameters, and the inability to exactly reproduce the model simulation figures in <u>Hissink et al.</u>
 (2007), model parameters were revised as described below. The EPA attempted to minimize the
 number of parameters that were changed, focusing on those which were most discrepant from
 other published literature or to which model predictions were most sensitive.

7 Methods and Background

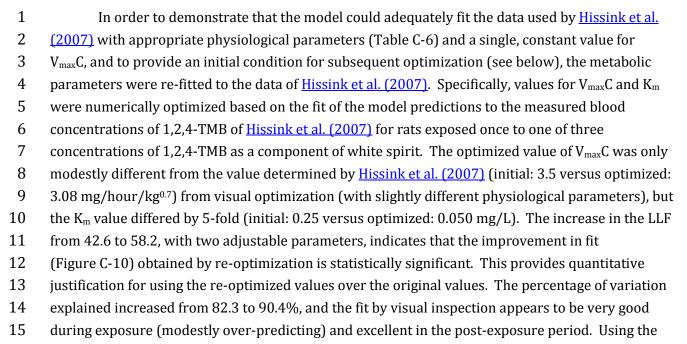
- 8 For all optimizations, the Nelder-Mead algorithm was used to maximize the log-likelihood
- 9 function (LLF). A constant heteroscedasticity value of 2 (i.e., relative error model) was assumed.
- 10 Statistical significance of an increase in the LLF was evaluated for 95% confidence per <u>Collins et al.</u>
- 11 (1999). All kinetic studies were conducted with adult animals or adult volunteers. In many cases,
- 12 blood and tissue concentration data in a numerical form were available from the literature (<u>Swiercz</u>
- 13 <u>et al., 2003; Swiercz et al., 2002; Kostrzewski et al., 1997; Eide and Zahlsen, 1996; Zahlsen et al.,</u>
- 14 <u>1992</u>; <u>Dahl et al., 1988</u>). The 1,2,4-TMB blood, brain, and exhaled breath concentration data in
- 15 <u>Hissink et al. (2007)</u> were published in graphical format and a colleague of Dr. Hissink also
- 16 provided these in numerical form to EPA for use in this analysis.
- 17 Average estimates of the blood concentrations of 1,2,4-TMB (average and SD) in humans
- 18 exposed only to 1,2,4-TMB as presented in graphs (see <u>Järnberg et al., 1998</u>, <u>1997a</u>; <u>Järnberg et al.</u>,
- 19 <u>1996</u>) were used in this evaluation. Estimates of the blood and tissue 1,2,4-TMB concentrations in
- 20 rats presented in graphs in <u>Zahlsen et al. (1990)</u> were also used in this evaluation. Prior to model
- 21 optimization, physiological parameters were modified from those in <u>Hissink et al. (2007)</u> to better
- reflect a more recent literature compilation (<u>Brown et al., 1997</u>) than the references cited by
- 23 <u>Hissink et al. (2007)</u> (Table C-6). Where possible, study-specific body weights and measured
- 24 concentrations (rather than nominal concentrations) have been used, as detailed in the .m files (<u>U.S.</u>
- 25 EPA, 2016a). For the Zahlsen et al. (1990) 14-day study, body weights for exposures after the first
- 26 exposure were estimated based on European growth curves for male Sprague-Dawley rats (linear
- 27 regression of weights for weeks 6–9) (<u>Harlan Laboratories, 2012</u>).

1 Table C-6. Parameter values for the rat and human PBPK models for 2 1,2,4-TMB used by EPA

Parameter	Rat	Human (at rest)
Body weight (kg)	0.230-0.390ª	70
Alveolar ventilation rate (L/hr/kg ^{0.70})	14	15
Total cardiac output (L/hr/kg ^{0.70})	14	16
Blood flow (% of total cardiac output)		
Liver	17.6	17.5
Fat	9	8.5
Brain	2.0	11.4
Rapidly perfused	37.8	37.7
Slowly perfused	33.6	24.9
Volume (% of body weight)		
Liver	4	2.6
Fat	7	21.42
Brain	0.57	2
Rapidly perfused	4.43	3
Slowly perfused	75	59.58
Partition coefficients (dimensionless)		
Blood: air	148	85
Rapidly perfused: blood	2.53	4.4
Slowly perfused: blood	1.21	2.11
Fat: blood	62.7	109
Brain: blood	2.53	4.4
Liver: blood	2.53	4.4
Liver metabolism		
V _{max} C (mg/hr/kg ^{0.70})	4	.17
Km (mg/L)	0.	.322

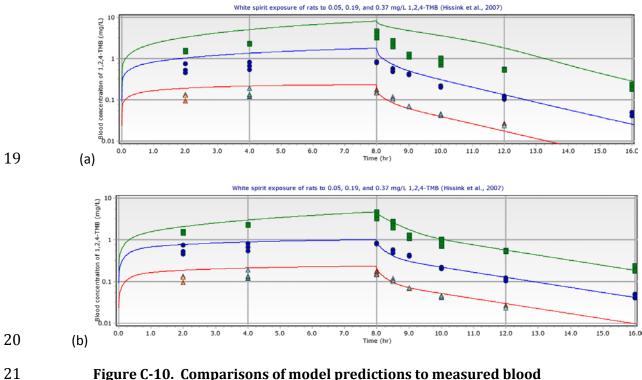
^aStudy-specific.

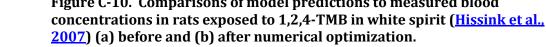
1 Rat Model Optimization

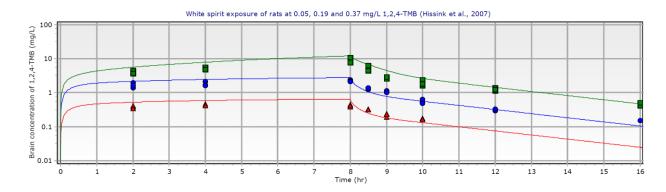

2

- The rat studies considered in model optimization and model testing (validation) are
- 3 summarized in Table C-7.

4 Table C-7. Rat 1,2,4-TMB kinetic studies used in model development and 5 testing


Reference	Strain	Sex	Nominal concentration	Exposure regimen	1,2,4-TMB measurement	Use in model evaluation	Form of comparison
<u>Hissink et</u> al. (2007)	WAG/RijC R/BR (Wistar	Male	102, 410, 820 ppm white spirit (7.8%	8 hrs	Mixed blood time course	Optimization (1,2,4-TMB in mixture)	Figure C-10
	derived)		1,2,4-TMB [39.1, 157.3, 314.7 mg/m ³])		Brain time course	Testing	Figure C-11
<u>Swiercz et</u> al. (2003)	Wistar	Male	25, 100, 250 ppm (123, 492, 1,230 mg/m³)	6 hrs/d, 5 d/wk 4 wks	Venous blood time course	Optimization (1,2,4-TMB only)	Figure C-12
					Arterial blood, liver, brain	Testing	Tables C-8 and C-9
				6 hrs	Arterial blood, liver, brain	Testing	Tables C-8 and C-9
<u>Swiercz et</u> <u>al. (2002)</u>	Wistar	Male	25, 100, 250 ppm (123, 492, 1,230 mg/m ³)	6 hrs	Venous blood time course	Testing	Figure C-13
<u>Zahlsen et</u> <u>al. (1990)</u>	Sprague- Dawley	Male	1,000 ppm (4,920 mg/m ³)	12 hrs/d 14 d	Blood, brain, perirenal fat on d 1, 3, 7, 10, and 14	Testing	Table C-12
<u>Zahlsen et</u> <u>al. (1992)</u>	Sprague- Dawley	Male	100 ppm 492 mg/m ³)	12 hrs/d 3 d	Blood, brain, liver, kidney, and perirenal fat at end of exposures and after 12-hr recovery	Testing	Table C-10
<u>Eide and</u> <u>Zahlsen</u> (1996)	Sprague- Dawley	Male	75, 150, 300, 450 ppm (369, 738, 1,476, 2,214 mg/m ³)	12 hrs	Blood, brain, liver, kidney, and perirenal fat	Testing	Table C-11
<u>Dahl et al.</u> (1988)	F344/N	Male	100 ppm (492 mg/m ³)	80 min	Inhalation uptake	Testing	Text


Supplemental Information-Trimethylbenzenes


- 16 optimized kinetic parameters, the rat brain concentrations of 1,2,4-TMB were also well-predicted
- 17 (Figure C-11).
- 18

22

Supplemental Information—Trimethylbenzenes

1 2

3

4

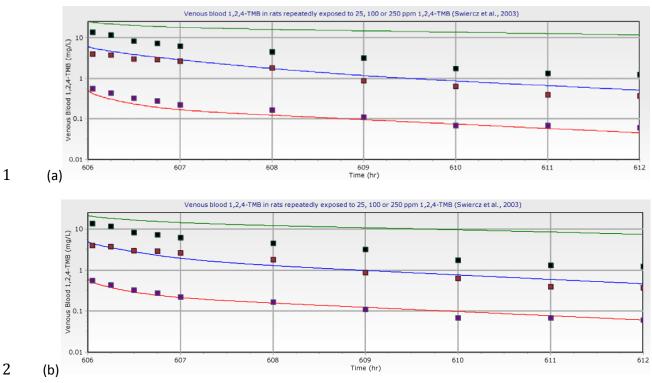

5

Figure C-11. Comparisons of model predictions to measured brain concentrations in rats exposed to 1,2,4-TMB in white spirit (<u>Hissink et al.</u>, <u>2007</u>) using model parameters optimized for fit to <u>Hissink et al. (2007</u>) rat blood data.

6 Because the model will be applied by estimating 1,2,4-TMB blood levels in rats under 7 bioassay conditions, it is particularly important that it accurately describe those levels after 8 repeated exposures. Pharmacokinetic parameters can change after repeated exposures, for 9 example by metabolic induction. For 1,2,4-TMB, repeated exposure data are available from Swiercz 10 et al. (2003). Therefore, the V_{max}C and K_m values derived from optimization to the Hissink et al. 11 (2007) rat data were used as the starting values for optimizing fit to the venous blood data of 12 Swiercz et al. (2003), in which exposure was to 1,2,4-TMB (only) repeatedly for 4 weeks. Venous 13 blood samples were collected from the tail vein. The best fit parameters of $V_{max}C = 4.17$ mg/hour/kg^{0.7} and K_m= 0.322 mg/L produced an increase in the LLF from -28.1 to -15.6, a 14 15 statistically significant improvement, which increased the variation explained from 47.9 to 68.1% 16 (Figure C-12, Table C-8). Model simulations matched the observations at 25 and 100 ppm 17 excellently, while predictions were 1.5–6-fold greater than the 250 ppm data (Table C-8). The 18 change in the LLF provides justification for using these revised metabolic parameters for simulating 19 repeated exposure studies versus the original values. The deviation between the model and 20 experimental data is primarily exhibited on the high concentration data set. When this set is not 21 considered, the percent variation explained the remaining two sets is 94.5%. Optimization to the 22 low and middle concentrations alone (omitting the high concentration) does not substantially 23 change the parameters or increase the LLF (simulations not shown). Optimization using the high 24 concentration alone yields V_{max}C and K_m estimates of 7.91 mg/hour/kg^{0.7} and 0.11 mg/L,

25 respectively, with 96.7% of variation explained (simulations not shown).

6

7

Figure C-12. Comparisons of model predictions to measured venous blood concentrations by <u>Swiercz et al. (2003)</u> in rats repeatedly exposed to 1,2,4-TMB (a) before and (b) after numerical optimization.

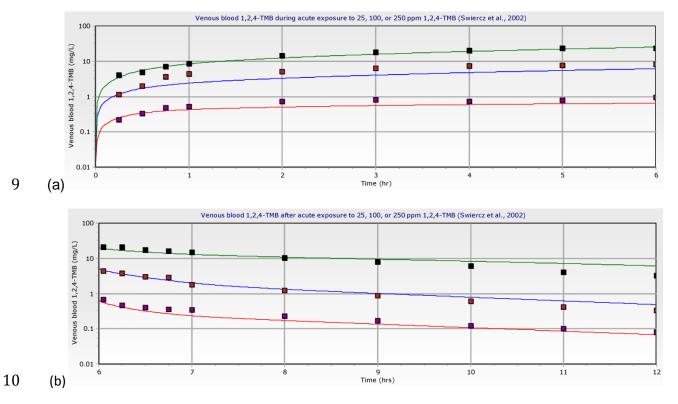
Table C-8. Model simulated and experimental measured venous bloodconcentrations of 1,2,4-TMB in male Wistar rats exposed to 1,2,4-TMB

		Time					
Ехро	osure concentration	3 min	30 min	1 hr	3 hrs	6 hrs	
25 ppm	Experiment (mg/L) ^a	0.56 ± 0.18	0.33 ± 0.03	0.22 ± 0.02	0.11 ± 0.04	0.06 ± 0.02	
	Model (mg/L)	0.51	0.29	0.22	0.12	0.06	
	Ratio (model/experiment)	0.9	0.9	1.0	1.1	1.0	
100 ppm	Experiment (mg/L) ^a	4.06 ± 0.46	3.02 ± 1.43	2.62 ± 0.82	0.88 ± 0.24	0.37 ± 0.14	
	Model (mg/L)	4.47	2.80	1.95	0.98	0.47	
	Ratio (model/experiment)	1.1	0.9	0.7	1.1	1.3	
250 ppm	Experiment (mg/L) ^a	13.77 ± 3.34	8.28 ± 2.07	6.27 ± 1.72	3.17 ± 0.76	1.25 ± 0.22	
	Model (mg/L)	20.44	16.61	14.43	10.80	7.41	
	Ratio (model/experiment)	1.5	2.0	2.3	3.4	5.9	

8 9

^aData from <u>Swiercz et al. (2003)</u>, Table 2.

1 Rat Model Validation


The parameters derived from the Swiercz et al. (2003) venous blood optimizations were

3 used to simulate other studies in which rats and humans (see below) were exposed to 1,2,4-TMB

4 alone (without co-exposures). The fit to the <u>Swiercz et al. (2002)</u> venous blood data (Figure C-13)

- 5 was very good. In fact, the fit to the acute, high-exposure blood concentrations was superior to the
- 6 fit to the repeated, high-exposure data (Figure C-12b). This may reflect adaptation (induction of
- 7 metabolism) resulting from repeated, high concentration exposures.
- 8

2

11Figure C-13. Comparisons of model predictions to measured rat venous blood12concentrations by Swiercz et al. (2002) in acutely exposed rats (a) during and13(b) after exposure.

14 Besides the venous blood data to which the model was fit (Figure C-12, Table C-8), Swiercz 15 et al. (2003) also measured arterial blood and tissue concentrations in animals sacrificed at the end 16 of the 4-week study (Table 4 in that paper). However, model predictions did not match those post-17 sacrifice data very accurately (Table C-9), which is surprising considering that the venous blood 18 data from the same study were used for optimization. The discrepancies between seemingly 19 contemporaneous venous and arterial blood measurements were noted by the authors of the 20 original study and may be due to collection delays (i.e., tail vein for venous blood, decapitation for 21 arterial samples). Volatilization can also occur from tissue samples until they are significantly

22 cooled from body temperature, and likewise, metabolism can continue in the liver. Since the

- 1 venous blood data (Table C-8) had specific times post-exposure identified, but the timing of the
- 2 arterial blood and tissue data was not stated by <u>Swiercz et al. (2003)</u>, model simulations were
- 3 conducted assuming a 0.5–1 hour delay between the end of exposure and sample collection, and are
- 4 compared to the data in Table C-9. Under these assumptions, most model simulations were within
- 5 a factor of 2 or 3 of the data, with the largest discrepancy being 5-fold. Differences in PBPK model
- 6 predictions for single vs. repeated exposures in Table C-9 are primarily due to differences in actual
- 7 exposure levels used in those predictions.
- 8 9

Table C-9. Model simulated and experimental measured tissue concentrations of 1,2,4-TMB in male Wistar rats exposed to 1,2,4-TMB

	Exposure concentration	Model (mg/L)	Experiment (mg/L) ^a	Model: experiment ratio
	•	(IIIg/L)	(1118/ L)	experiment ratio
Repeated exposu	re (Model t = 606.5–607 hr)		1	-
Arterial blood	25 ppm (123 mg/m ³)	0.30-0.22	0.33 ± 0.11	0.9–0.7
	100 ppm (492 mg/m ³)	2.8-2.0	1.54 ± 0.32	1.8-1.3
	250 ppm (1,230 mg/m ³)	17.6-15.4	7.52 ± 2.11	2.3-2.0
Brain	25 ppm (123 mg/m ³)	0.81-0.59	0.45 ± 0.05	1.8-1.3
	100 ppm (492 mg/m ³)	8.1-5.7	2.82 ± 0.40	2.9–2.0
	250 ppm (1,230 mg/m ³)	44.1-38.2	18.6 ± 4.3	2.4-2.1
Liver	25 ppm (123 mg/m ³)	0.14-0.10	0.45 ± 0.15	0.3-0.2
	100 ppm (492 mg/m ³)	4.3-2.3	3.00 ± 0.49	1.4-0.8
	250 ppm (1,230 mg/m ³)	39.5-33.8	22.5 ± 4.1	1.8-1.5
Acute exposure (Model t = 6.5–7 hr)			
Arterial blood	25 ppm (123 mg/m ³)	0.25-0.19	0.31 ± 0.12	0.8-0.6
	100 ppm (492 mg/m ³)	4.4-3.2	1.24 ± 0.41	3.5-2.6
	250 ppm (1,230 mg/m ³)	14.0-12.0	7.76 ± 1.64	1.8-1.5
Brain	25 ppm (123 mg/m ³)	0.91-0.66	0.49 ± 0.06	1.9–1.3
	100 ppm (492 mg/m ³)	12.5-9.3	2.92 ± 0.73	4.3-3.2
	250 ppm (1,230 mg/m ³)	46.1-40.0	18.3 ± 1.9	2.5-2.2
Liver	25 ppm (123 mg/m ³)	0.16-0.11	0.44 ± 0.01	0.35-0.2
	100 ppm (492 mg/m ³)	8.3-5.3	7.13 ± 1.31	1.2-0.7
	250 ppm (1,230 mg/m ³)	41.5-35.5	28.2 ± 5.3	1.5-1.3

¹⁰ 11

^aData from Swiercz et al. (2003), Table 4.

12 13

Zahlsen and co-workers (Eide and Zahlsen, 1996; Zahlsen et al., 1992; Zahlsen et al., 1990)

14 conducted studies in which male Sprague-Dawley rats were exposed to 1,2,4-TMB by inhalation for

> This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Supplemental Information—Trimethylbenzenes

- 1 12 hours/day. For the studies conducted at concentrations similar to those in the <u>Swiercz et al.</u>
- 2 (2002) and Swiercz et al. (2003) studies, the model error was similar to that of the arterial blood
- 3 and tissue measurements in the <u>Swiercz et al. (2002) and Swiercz et al. (2003)</u> studies (geometric
- 4 mean error of 3.3 for <u>Zahlsen et al. (1990)</u>, and 2.9 for <u>Eide and Zahlsen (1996)</u> (Tables C-10 and
- 5 C-11). Since <u>Zahlsen et al. (1992</u>) specifically stated that animals were sacrificed and tissues were
- 6 collected within 3 minutes of removal from the exposure chamber, the model results in Tables C-10
- 7 and C-11 do not assume any delay.
- 8 9

11

9 I 10 I

Table C-10. Model simulated and experimental measured concentrations of 1,2,4-TMB in male Sprague-Dawley rats exposed to 100 ppm (492 mg/m³) 1,2,4-TMB (12 hours/day, for 3 days) at the end of exposure or 12 hours after the last exposure

	Day	Model (mg/L)	Experiment (mg/L) ^a	Model: experiment ratio
Venous blood	1	8.52	1.70	5.0
	2	8.71	1.51	5.8
	3	8.72	2.05	4.2
	Recovery ^b	1.08	0.024	7.6
Brain	1	22.6	4.57	4.9
	2	23.1	4.19	5.5
	3	23.1	4.38	5.3
	Recovery ^b	0.46	Nondetect	Not calculated
Liver	1	18.2	4.92	3.7
	2	18.7	3.66	5.1
	3	18.7	4.25	4.4
	Recovery ^b	0.077	0.072	1.1
Kidney (compared to	1	22.6	13.7	1.7
rapidly perfused)	2	23.1	17.0	1.4
	3	23.1	12.4	1.9
	Recovery ^b	0.46	0.24	1.9
Fat	1	491	210	2.3
	2	503	165	3.1
	3	504	128	3.9
	Recovery ^b	29.1	14.4	2.0

12 13

3 ^aData from <u>Zahlsen et al. (1992)</u>.

14 ^bRecovery period is designated as 12 hours after the last exposure.

1 2 3 Table C-11. Model simulated and experimental measured concentrations of 1,2,4-TMB in male Sprague-Dawley rats exposed to 1,2,4-TMB at the end of 12-hour exposure

	Exposure concentration	Model (mg/L)	Experiment (mg/L)ª	Model: experiment ratio
Venous blood	75 ppm (369 mg/m ³)	4.21	1.69	2.5
	150 ppm (738 mg/m ³)	17.8	6.9	2.6
	300 ppm (1,476 mg/m ³)	48.3	13.9	3.5
	450 ppm (2,252 mg/m ³)	78.6	26.6	3.0
Brain	75 ppm (369 mg/m ³)	11.5	2.83	4.1
	150 ppm (738 mg/m ³)	46.6	11.7	4.0
	300 ppm (1,476 mg/m ³)	125	26.5	4.7
	450 ppm (2,252 mg/m ³)	203	48.0	4.2
Liver	75 ppm (369 mg/m ³)	7.39	6.41	1.2
	150 ppm (738 mg/m ³)	42.2	14.8	2.9
	300 ppm (1,476 mg/m ³)	120	30.8	3.9
	450 ppm (2,252 mg/m ³)	198	56.2	3.5
Kidney (compared	75 ppm (369 mg/m ³)	11.5	6.41	1.8
to rapidly perfused)	150 ppm (738 mg/m ³)	46.6	20.2	2.3
penuseu)	300 ppm (1,476 mg/m ³)	125	33.9	3.7
	450 ppm (2,252 mg/m ³)	203	59.1	3.4
Fat	75 ppm (369 mg/m ³)	255	61.9	4.1
	150 ppm (738 mg/m ³)	987	457	2.2
	300 ppm (1,476 mg/m ³)	2,636	1,552	1.7
	450 ppm (2,252 mg/m ³)	4,276	2,312	1.8

10

11

^aData from <u>Eide and Zahlsen (1996)</u>.

There was essentially no difference in the measured venous blood concentration of 1,2,4-TMB in the <u>Zahlsen et al. (1992)</u> study at 100 ppm (492 mg/m³) and at 75 ppm (369 mg/m³) in the <u>Eide and Zahlsen (1996)</u> study (1.70 and 1.69 mg/L, respectively), so there is evidently some inter-study variability or subtle differences in how the studies were conducted, perhaps in the rapidity of sample collection. The Zahlsen et al. (1990) study, which used a higher nominal

12 concentration of 1,000 ppm (4,920 mg/m³), exhibited greater deviation between predicted and

13 measured blood and tissue 1,2,4-TMB concentrations (Table C-12), which generally increased with

14 a greater number of exposure days and then plateaued (geometric mean errors of 2.7, 8.4, 12.6,

15 13.9, and 12.1 on exposure days 1, 3, 7, 10, and 14, respectively). 1,2,4-TMB is also a known

- 1 respiratory irritant, with an RD₅₀ of 519–578 ppm in mice (Korsak et al., 1997), so it is possible that
- 2 the 1,000 ppm exposure elicited some sort of avoidance behavior in the rats.

Table C-12. Model simulated and experimental measured concentrations of 1,2,4-TMB in male Sprague-Dawley rats exposed to 1,000 ppm (4,920 mg/m³) 1,2,4-TMB (12 hours/day, for 14 days) at the end of exposure

	Day	Model (mg/L)	Experiment (mg/L)ª	Model: experiment ratio
Venous blood	1	181	63.5	2.8
	3	293	43.1	6.8
	7	372	33.4	11.1
	10	395	34.0	11.6
	14	399	35.2	11.3
Brain	1	465	120	3.9
	3	747	64.9	11.5
	7	946	63.5	14.9
	10	1,005	62.1	16.2
	14	1,014	71.5	14.2
Fat	1	9,919	5,860	1.7
	3	17,328	2,282	7.6
	7	22,323	1,835	12.2
	10	23,763	1,677	14.2
	14	23,961	2,169	11.0

6 7 8

^aData from <u>Zahlsen et al. (1990)</u>.

Dahl et al. (1988) exposed male F344 rats to 1,2,4-TMB at 100 ppm (492 mg/m³) for
80 minutes and monitored the total uptake. Under the conditions of the experiment, it was
determined that the average rat took up 3.28 (trial 1) or 3.89 (trial 2) mg 1,2,4-TMB. In a model
simulation, the predicted uptake was 3.61 mg. The geometric mean model error for the two trials
was 1.2.

14 Human Model Validation

15 Kinetic parameters derived from optimal fit for rat venous blood data (described above)

16 were tested for the applicability to human kinetics by comparison to studies in which humans were

17 exposed to 1,2,4-TMB alone or 1,2,4-TMB in co-exposures with white spirit (Table C-13). The key

18 data set for validation in humans was deemed to be <u>Kostrzewski et al. (1997)</u> because these

volunteers were exposed to 1,2,4-TMB alone (no co-exposure, as in <u>Hissink et al. (2007</u>) under

³ 4 5

- 1 sedentary conditions (i.e., level of effort was not elevated, as in the studies by Järnberg and
- 2 colleagues (<u>Järnberg et al., 1998</u>, <u>1997a</u>; <u>Järnberg et al., 1996</u>).

	\mathbf{a}	
	~	
1	J	

Table C-13. Human kinetic studies of 1,2,4-TMB used in model validation

Reference	Ethnicity	Sex	Nominal concentration	Exposure regimen	1,2,4-TMB measurements	Use in model evaluation	Form of comparison
<u>Kostrzewski</u> <u>et al. (1997)</u> ^a	Not stated; conducted in Poland	Sex not stated; assumed male	30 ppm (147.6 mg/m ³)	8 hrs	Venous blood time course	Testing	Figure C-14
Järnberg et al. (1997a); Järnberg and Johanson (1999); Järnberg et al. (1998); Järnberg et al. (1996) ^b	Caucasian; conducted in Sweden	Male	2 and 25 ppm (~10 and 123 mg/m ³)	2 hrs at 50 W (bicycle)	Venous blood and exhaled air time course	Testing (blood data only)	Figure C-15
Hissink et al. (2007) ^c	Not stated; spoke Dutch as "native language"	Male	100 ppm white spirit with 7.8% 1,2,4-TMB (~38.3 mg/m ³ 1,2,4-TMB)	6 hr	Venous blood and end exhaled air time course	Testing	Figure C-16

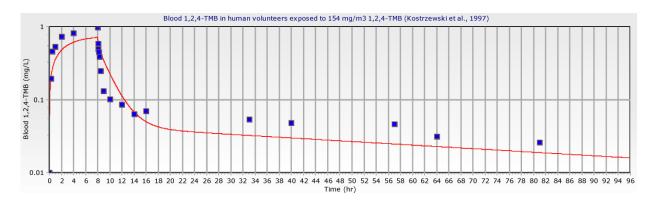
^aFive volunteers, ages 24–37 years, with no known occupational exposure to 1,2,4-TMB. Height of 1.70–1.86 m and body weight of 70–97 kg. The average of the high and low values for age, height, and weight plus assumed gender (male) were used to calculate central tendency estimate of 22.44% for volume of body fat (VFC), per Deurenberg et al. (1991). Alveolar ventilation rate (QPC) estimated from the midpoint of the range for total 9 ventilation (0.56-1 m³/hour), average of high and low body weights, BW^{0.74} scaling, and an assumption that 10 alveolar ventilation was 2/3 of total ventilation.

11 ^bTen volunteers, average age 35 (range 26–48) years, with no known occupational exposure to solvents; volunteers 12 were instructed to avoid contact with organic solvents and to refrain from taking drugs or drinking alcoholic 13 beverages for 2 days before exposure. Average body weight was 76.5 kg. QPC estimated from the mean value

14 for total ventilation rate during exposure, average body weights, BW^{0.74} scaling, and an assumption that alveolar

15 ventilation was 2/3 of total ventilation. Digitized blood data (group averages) extracted from figures.

- 17 measurement); alcohol consumption 10–15 drinks/week (all subjects), one smoker (four cigarettes per day).
- 18 19


```
Using the V_{max}C and K_m derived from the Swiercz et al. (2003) rat repeated-exposure data,
```

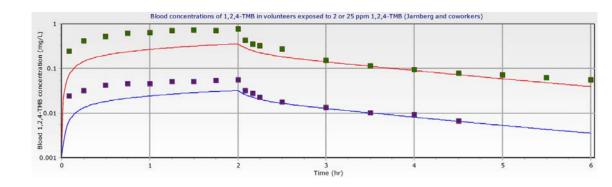
20 the simulated blood concentration underestimated those measured during exposure of volunteers

- 21 by Kostrzewski et al. (1997), then over-predicted blood concentrations up to 7 hours post-
- 22 exposure, and under-predicted subsequent measured blood concentrations (Figure C-14). Of
- 23 21 blood measurements, only two differed from the simulated value by more than a factor of

¹⁶ ^cThree volunteers, ages 23–26 years, body weight was 69–82 kg, mean body fat of 14.6% (skin caliper

- 1 2 (maximum: 2.6), with a geometric mean deviation of 1.5-fold between the simulated and
- $2 \qquad \text{measured values. The percent variation explained was 69.74\%. When K_m was held constant and K_m was he$
- $3 V_{max}C$ was optimized (final value: $3.39 \text{ mg/hour/kg}^{0.7}$), the improvement in fit was minimal
- 4 (72.14% of variation explained), and not statistically significant, so the rat-derived values were
- 5 considered acceptable and subsequently used for the human model (see the section regarding rat
- 6 model optimization).
- 7

8 9


10

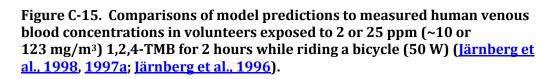

11

Figure C-14. Comparisons of model predictions to measured human venous blood concentrations of <u>Kostrzewski et al. (1997)</u> in volunteers exposed to 154 mg 1,2,4-TMB/m³ for 8 hours.

12

13 For comparisons between the data in the studies by Järnberg and colleagues (Järnberg and 14 Johanson, 1999; Järnberg et al., 1998, 1997a; Järnberg et al., 1996) and the model, simulations were 15 conducted with alveolar ventilation rate (QPC; calculated as described in footnote to Table C-13) at 16 the elevated (working) level throughout the simulation, but with no other adjustments made for 17 exercise conditions. The model consistently under-predicted the measured venous blood 18 concentrations of 1,2,4-TMB (Figure C-15). At 25 ppm (123 mg/m³), blood concentrations were 19 under-predicted by a factor of 2.1–3.5 during exposure and by a factor of 1.04–1.5-fold in the post-20 exposure period, for a geometric mean discrepancy of 1.7 for this concentration. At 2 ppm 21 $(\sim 10 \text{ mg/m}^3)$, blood concentrations were under-predicted by factors of 1.7-2.7 during exposure 22 and 1.01–1.2 in the post-exposure period, for a geometric mean discrepancy of 1.6 for this 23 concentration.

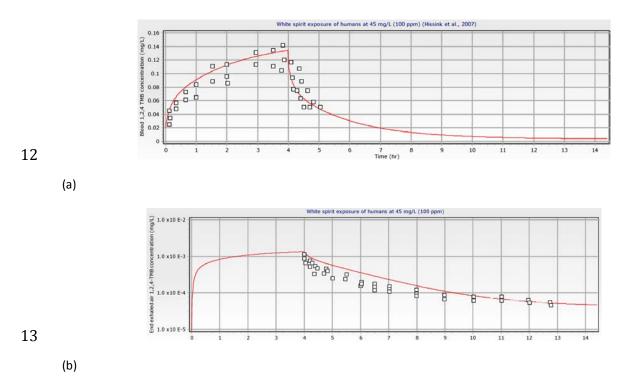
6 Comparisons of model predictions and experimental data were also made for the human 7 study described in Hissink et al. (2007) in which volunteers inhaled 100 ppm white spirit with

7.8% 1,2,4-TMB (38.4 mg/m³ 1,2,4-TMB) for 4 hours (Figure C-16). The agreement between

9 simulated and measured concentrations of 1,2,4-TMB in blood during exposure was excellent. The

10 agreement between the modeled and measured 1,2,4-TMB in end-exhaled air during the post-

11 exposure period was very good.


1

2

3

4

5

14Figure C-16. Comparisons of model predictions to measured (a) human15venous blood and (b) end of exposure exhaled air 1,2,4-TMB in volunteers16exposed to 100 ppm white spirit with 7.8% 1,2,4-TMB (38.4 mg/m³171,2,4-TMB) (Hissink et al., 2007).

1 Summary of Optimization and Validation

2 Numerical optimization of the fit to the rat data in Hissink et al. (2007) produced a similar 3 V_{max}C, but smaller K_m, than the values determined by <u>Hissink et al. (2007)</u> using visual optimization. 4 Changes made to values of physiological parameters may have contributed to the differences in 5 optimized values. Because the rats in the Hissink et al. (2007) study were co-exposed to other 6 components of white spirit, the potential for these other components to alter the kinetics of 7 1,2,4-TMB was noted as a possible concern for predicting the kinetics of 1,2,4-TMB in test animals 8 with no co-exposures. Another concern was the potential for kinetic changes with repeated 9 exposure. As the Swiercz et al. (2003) rat kinetic study involved repeated exposure to 1,2,4-TMB 10 without potentially confounding co-exposures, and provides post-exposure venous blood time-11 course data, it appears to be the most suitable for describing kinetics relevant to chronic reference 12 concentration (RfC) and reference dose (RfD) development. The V_{max}C and K_m values from the 13 numerical optimization to the Hissink et al. (2007) rat data were used as starting values for 14 optimization of the fit to the <u>Swiercz et al. (2003)</u> venous blood data. The improvement in fit for the 15 low and middle concentrations (25 and 100 ppm [123 and 492 mg/m³]) was apparent from careful 16 visual inspection and was statistically significant, and these values were used in subsequent 17 validation simulations. 18 In general, the model simulations of venous blood concentrations in exposed Wistar rats, 19 uptake by F344 rats, and venous blood and exhaled breath of volunteers were acceptable. The 20 measured Wistar rat arterial blood and tissue concentrations were consistently over-predicted by 21 the model, suggesting collection delays in the studies. The model also consistently over-predicted 22 the measured Sprague-Dawley rat tissue and blood concentrations, including the "recovery" 23 (12 hours post-exposure) samples, which should not be subject to collection delays. Many of the 24 "validation" comparisons were made at exposure concentrations (250 ppm [1,230 mg/m³] or 25 greater) for which the optimized model did not provide accurate venous blood concentrations. It cannot be determined with the available data whether the 2–3-fold differences between the model 26 27 and Sprague-Dawley rat blood concentrations at lower concentrations (75 and 150 ppm [369 and 28 738 mg/m³]) are due to methodological differences (e.g., in sample collections and analysis) or true 29 strain differences.

Using the V_{max}C and K_m values obtained by fitting the PBPK model to the <u>Swiercz et al.</u>
(2003) rat data and appropriate human physiological parameters (Table C-6), model predictions of
the human pharmacokinetic data were found to be adequate, and were not significantly improved
by numerical re-optimization. Therefore, the V_{max}C and K_m from the rat were used for the human
model (i.e., allometric scaling).

Overall, it was concluded that the optimized model produces acceptable simulations of
 venous blood 1,2,4-TMB for chronic exposure to ≤100 ppm (492 mg/m³) for rats or ≤30 ppm
 (147.6 mg/m³) for humans 1,2,4-TMB by inhalation. If rat exposures of interest exceed 100 ppm
 (492 mg/m³), consideration should be given to reassessing model validation at high concentrations

This document is a draft for review purposes only and does not constitute Agency policy. C-39 DRAFT—DO NOT CITE OR QUOTE 1 using $V_{max}C$ and K_m parameters optimized for repeated, high concentration exposures (e.g.,

2 250 ppm (1,230 mg/m³) from <u>Swiercz et al. (2003)</u>).

3 Uncertainties in Model Structure

4 All PBPK models are a simplification of physical reality, and a full discussion of the resulting 5 uncertainties is beyond the scope of this review. For example, this model uses the typical 6 assumption of perfusion-limited transport between circulating blood and tissues, but a more 7 realistic representation that also requires more data and parameters is diffusion-limited transport. 8 If model predictions systematically over-predicted the rate of change of 1,2,4-TMB in blood, then 9 diffusion-limited transport could have been evaluated as a more accurate model structure, but 10 given the overall agreement in model predictions and measured kinetics, such an evaluation was 11 not considered a valuable use of existing resources.

A simplification in the model structure used in <u>Hissink et al. (2007)</u> versus that of <u>Järnberg</u> and Johanson (1999) is that <u>Järnberg and Johanson (1999)</u> included working versus resting muscle compartments, which effectively allowed a higher fraction of cardiac output to go to the muscle compartment under working conditions versus resting. When simulating the corresponding human exposure data (<u>Järnberg et al., 1998, 1997a</u>; <u>Järnberg et al., 1996</u>), the <u>Hissink et al. (2007)</u> model

- 17 was adjusted for the working conditions by increasing cardiac output, but that adjustment would
- 18 increase blood flow to all tissues proportionally, including hepatic blood flow, which then can
- 19 increase the predicted rate of metabolism (<u>more so than Järnberg and Johanson, 1999</u>). This
- simpler approach offers an explanation of why the blood-levels are under-predicted in Figure C-15
- 21 by ~2–3 fold. This difference suggests a comparable uncertainty in the model for predicting blood
- 22 levels during working conditions, but the model matched the post-exposure data in Figure C-15
- 23 quite well, within a factor of 1.5 beyond the first couple of time-points. Hence, while the model
- 24 might be improved by adding a working muscle compartment and appropriate work-level
- 25 parameterization, the impact for predictions of 30 working hours in a 168-hour week are expected
- to be less than a factor of 1.5. (Assuming an error of 2.5-fold for 30/168 hours, the average error is
- 27 2.5*30/168 = 0.45-fold.)

Another place where systematic differences between model predictions and data suggest model structure errors is that the model over-predicted the 250 ppm rat venous blood data of

30 Swiercz et al. (2003) after 4 weeks of exposure, although it did fit the 25 and 100 ppm data

- 31 (Figure C-12, panel (b)), and it fit the acute-exposure data <u>Swiercz et al. (2002)</u> at all three
- 32 concentrations (Figure C-13). The over-prediction of 1,000 ppm, 14-day rat data (<u>Table C-12</u>;
- 33 <u>Zahlsen et al., 1990</u>) was significantly greater than the over-prediction of 75–450 ppm acute-
- 34 exposure data. One possible explanation for the dose-dependence of the errors is that a first-order
- 35 (or high-K_m) metabolic pathway was operative only significantly at higher exposure levels.
- 36 However, in that regard, one would have expected optimization of the single K_m in the existing
- 37 model to have identified an intermediate value that better-predicted the 250 ppm 4-week data from
- 38 <u>Swiercz et al. (2003)</u>. Identifying more complex metabolic schemes is difficult using only parent-

1 concentration in vivo data. The hypothesis of multiple metabolic pathways with differing dose-2 dependence would best be evaluated by careful in vitro metabolic studies, but the possibility is 3 certainly suggested given the multiple routes of metabolism shown in Figure C-1. 4 A second structural possibility suggested by these discrepancies between rat model 5 predictions and data (which is not exclusive of multiple pathway kinetics discussed in the 6 preceding paragraph) is metabolic induction, which would be both time-dependent (i.e., would not 7 occur, or occur to a lesser extent, with acute exposures) and concentration-dependent. The results 8 in Table C-12, where measured blood and tissue levels decline and hence model:data ratios 9 increase with exposure days, are particularly suggestive of this possibility. However there was not 10 a clear time-dependent change in the 3-day study of Zahlsen et al. (1992) (Table C-10), at 100 ppm. 11 So this hypothetical mechanism may not be relevant at exposures near the point of departure 12 (POD) (benchmark dose [BMD] levels). In any case, verification of this hypothesis would require a 13 combination of in vivo and in vitro studies, where liver samples are collected from rats after 14 different exposure levels and durations, and evaluated for metabolic capacity. 15 A third possible explanation for the discrepancies is that, given 1,2,4-TMBs irritancy 16 (Korsak et al., 1997), rats exposed in open cages may be reducing their activity level or otherwise 17 finding ways to reduce their exposure. For example, by huddling or tucking their noses into their 18 fur, the rats could be re-breathing a portion of expired air, which would then have a lower 19 1,2,4-TMB concentration than in the rest of the exposure chamber. Testing of this hypothesis could 20 be performed by observation of rat behavior in open exposure chambers as a function of exposure 21 level and duration, and comparison of results to nose-only exposures, in conjunction with 22 plethysmography to determine any changes in respiration rates. 23 In summary, based on comparisons of model predictions to various data sets, it appears that 24 the most significant structural uncertainty for the human PBPK model is the lack of realism in 25 predicting physiological changes due to work/physical activity, but the overall impact of this 26 uncertainty is less than a factor of 1.5. Discrepancies between the rat model and reported data 27 suggest two model structure uncertainties (the presence of multiple metabolic pathways with 28 significantly different concentration-dependence, and metabolic induction) and one possibility 29 related to exposure levels or specification (avoidance behavior, which is not a part of the model 30 itself). In the range of application, these uncertainties in the rat model for estimating venous blood 31 levels represent a factor of 2-3-fold, though the lack of fit of the model to the data becomes more 32 severe at higher exposure levels.

33 Uncertainties Due to Choice of Dose Metric

The use of the average, parent-chemical venous blood concentration as the internal dose for
 predicting systemic effects of 1,2,4-TMB is based on the following assumptions/general
 expectations:

37

1) the parent chemical, and not a metabolite, is the causative agent for systemic effects;

1 2) average concentration (equivalent to the area under the curve [AUC] calculated over 2 comparable total time in rats and humans) is a good predictor of risk; 3 3) the ratio of 1.2.4-TMB's concentration in the target tissue to the venous blood is approximately the same in humans as in rats; and 4 5 4) while target-tissue concentrations are generally expected to be better predictors than 6 blood concentration, this expectation is counter-balanced by the lack of target-tissue 7 dosimetry in humans, leading to greater uncertainty in human target tissue estimates. 8 As discussed in the mode-of-action section, little is known about the mechanisms of action 9 for 1,2,4-TMB, in particular whether the parent or a metabolite is responsible for the hematological 10 or neurological effects. One might assume that if a metabolite is causative, then the concentration 11 of the metabolite would vary in proportion to the parent. However, if two individuals have similar 12 exposures, and thus absorb 1.2.4-TMB at a similar rate, but metabolism to the toxic compound is 13 twice as fast in the second individual, then the venous concentration of 1,2,4-TMB in that individual 14 would be lower than the first (because it's being metabolized faster), but the rate of toxic 15 metabolite production is higher. Likewise, the blood:air concentration ratio of 1,24-TMB in humans 16 might be lower than in rats, but the concentration of the toxic metabolite in humans could be 17 higher. But for this lack of proportionality to occur, the scaling of the metabolic conversion of 18 1,2,4-TMB to the toxic metabolite, between rats and humans, would have to be significantly 19 different from the scaling for the rate at which the toxic metabolite is cleared from the body. Such a 20 difference can occur, but the general expectation is that metabolism and other physiological 21 processes that affect clearance (including blood-flow) scale allometrically, as BW^{0.75}. In fact, for 22 1,2,4-TMB, the metabolism in humans was found to be fairly consistent with this scaling. Therefore, 23 a lack in proportionality of a subsequent (toxic) metabolite would only occur if the clearance of that 24 metabolite does NOT scale allometrically. In summary, it is possible that misidentification of the 25 toxic metabolite could result in a very large error in the predicted human risk, but the fact that most 26 metabolic and clearance processes scale similarly (allometrically) makes this possibility unlikely. 27 Quantifying the resulting uncertainty is beyond the scope of this assessment. 28 The use of average concentration, or AUC, calculated over a similar time-frame (1 week) in 29 rats and humans reflects the assumption that the observed hematological and neurological effects 30 result from an accumulation of cellular or tissue damage, that the damage accumulates in 31 proportion to 1,2,4-TMB concentration, and that clearance or repair of the damage is relatively slow 32 (i.e., requires weeks or longer). Testing of this hypothesis would require a set of experiments 33 where exposure level and duration were varied independently (i.e., $C \times t$ experiments), and damage 34 was assessed at multiple recovery times. Such data are mostly not available for 1,2,4-TMB. 35 However, the hematological effects are likely the result of cytotoxicity, which is expected to 36 increase with both concentration and duration. So the uncertainty for using average concentration 37 for this endpoint is considered low.

Supplemental Information-Trimethylbenzenes

1 Since the dose-dependent delayed recovery from a sensory challenge (footshock/paw-lick 2 experiments) show a persistent effect, 50+ days after exposure ended, that effect is also assumed to 3 result from cumulative damage, rather than a single day's exposure. Whether the same effect level 4 would have been seen after a single week's exposure, or if chronic exposure might have resulted in 5 a more severe effect at a given exposure level, is simply not known. The uncertainty in using 6 subchronic exposure data to set a reference level is mitigated by application of the subchronic-to-7 chronic uncertainty factor (UF). The use of the weekly average (blood) concentration is still 8 appropriate, even if the effect only takes 1-2 weeks to develop, since the damage is still likely to 9 accumulate within that time-frame according to the number of hours/week of exposure. For a 10 presumed continuous (24×7) inhalation exposure to the general human population, use of weekly 11 average concentration results in a more appropriate reference level than use of peak concentration. 12 If the effect is not cumulative for exposure beyond several hours (i.e., can be better predicted from 13 peak concentration), then use of the weekly average would over-predict human risk by a factor of 14 5-6 (~168 hours/30 hours). 15 The use of venous blood versus tissue concentrations creates some uncertainty, but this 16 uncertainty is counterbalanced by uncertainties in the exact tissues where effects occur and the 17 partitioning of 1,2,4-TMB into those tissues. The tissue:blood partition coefficients of Hissink et al. 18 (2007) are obtained by combining a correlation for tissue:air partition coefficients, developed 19 previously using data for a single representative tissue from a single species, against oil:air and 20 saline:air partition coefficients (which have been measured for 1,2,4-TMB), with values for the 21 blood:air partition coefficient measured separately with rat and human blood. So there is 22 considerable uncertainty in the use of these partition coefficients for human versus rat bone 23 marrow, for example (assuming that this is the site for hematological effects), given that species-24 and chemical-specific values for bone marrow are not available. The measured blood:air partition 25 coefficients for 1,2,4-TMB indicate that its affinity for human blood is 1.74 times lower than for rat 26 blood, so if the typical assumption was made that the affinity for other tissues does not vary across 27 species, then use of tissue versus venous blood concentration would result in an approximately 28 1.7-fold increase in the estimated human risk. However, such use would also increase the level of 29 uncertainty because there are no human tissue data to validate those model predictions, and 30 because the site of action is uncertain. For example, it's not known if the neurological effects occur 31 primarily due to effects in the brain or to effects on peripheral nerves, and, if the latter, whether the 32 partition coefficient for "brain" versus "slowly perfused" tissue (which differ \sim 2-fold) should be 33 used. As with other aspects of uncertainty, a full quantitation of the uncertainty resulting from the 34 use of venous blood versus tissue concentrations is beyond the scope of this assessment. But the 35 identifiable uncertainty is less than a factor of 2. The direction of this uncertainty is the opposite of 36 that from using average versus peak concentration for continuous human exposures.

C.2.3.3. Sensitivity Analysis of Rat Model Predictions

1 The primary objective of the sensitivity analysis was to evaluate the ability of the available 2 data to unambiguously determine the values of both $V_{max}C$ and K_m (i.e., parameter identifiability). 3 Toward this end, sensitivity analyses were conducted using acslX. Because the selected key data set 4 was the venous blood concentrations in the Swiercz et al. (2003) study, simulations were 5 conducted to see how small changes in parameters changed the estimated venous blood 6 concentrations under the conditions of this study, simulating the first 12 hours (6 hours of 7 exposure, 6 hours post-exposure), conditions that are essentially identical to those in Swiercz et al. 8 (2002). The evaluations were limited to the lowest (25 ppm [123 mg/m³]) and highest (250 ppm 9 $[1,230 \text{ mg/m}^3]$ exposure concentrations. It should be noted that after the optimization 10 (Figure C-13b), the agreement between the model and the experimental data at the lower exposure 11 concentration was superior to the agreement at the high concentration, so the low concentration 12 sensitivity analysis results are somewhat more meaningful than the high concentration results. The 13 results are calculated as normalized sensitivity coefficients (NSC) (i.e., percent change in 14 output/percent change in input, calculated using the central difference method). 15 The interpretation of the sensitivity analysis outputs focused on the times during which 16 blood concentrations were measured, so the sensitivity analyses for the first 15 minutes of 17 exposure were not considered relevant. Parameters are grouped (Table C-14) as relatively 18 insensitive (maximum|NSC| < 0.2 for 0.25 hours < t < 12 hours), moderately sensitive 19 (0.2 < maximum|NSC| < 1.0), or highly sensitive (maximum|NSC| > 1.0). 20 $V_{max}C/K_m$ was identifiable from the data (as opposed to $V_{max}C$ and K_m each being 21 identifiable); one would expect that the NSC for these parameters would always be opposite in sign, 22 and equal in magnitude, which is not the case. It was concluded that K_m and $V_{max}C$ are distinctly 23 identifiable using the Swiercz et al. (2003) and Swiercz et al. (2002) data. 24 While the focus of this sensitivity analysis was to evaluate the identifiability of chemical-25 specific parameters from the available data, additional insights can be obtained by considering the 26 other "sensitive" parameters. Predicted blood concentrations were sensitive to the value of QPC 27 (ventilation rate). If high concentrations produce a sedative effect, decreases in ventilation could 28 contribute to the model's greater over-prediction of the experimentally measured values at high 29 concentrations (e.g., as high as 1,000 ppm [4,920 mg/m³], in Zahlsen et al. (1990)). The accuracy of 30 the predicted net uptake in the Dahl et al. (1988) study indicates that, at 100 ppm (492 mg/m³), the 31 model value of QPC is likely appropriate, since net uptake in this relatively short experiment 32 (80 minutes) is highly sensitive to the breathing rate (simulations not shown). The fractional 33 volumes of the fat and slowly perfused tissue compartments are also moderately important 34 parameters (with time courses similar to those of the corresponding partition coefficients shown in 35 Figure C-17). The volume of the fat compartment in particular is known to vary with age and strain 36 (Brown et al., 1997), so using the same value for all studies might have an impact on the predicted 37 kinetics.

1	
2	

Table C-14. Parameter sensitivity for venous blood 1,2,4-TMB concentration in rats exposed to 1,2,4-TMB via inhalation

Parameter	Insensitive (maximum NSC < 0.2)	Moderately sensitive (0.2 < maximum NSC < 1.0)	Highly sensitive (maximum NSC > 1.0)
BW		L, H	
CONC			L, H
QPC			L, H
V _{max} C		L, H	
Km	Н	L	
РВ	L	Н	
PF		L, H	
PS		L, H	
PR	L, H		
PL	L, H		
PBR	L, H		
VFC		L, H	
VSTOTC		L, H	
VRTOTC	L, H		
VLC	L, H		
VBRC	L, H		
QCC		Н	L
QFC		L, H	
QRTOTC		L, H	
QLC	Н		L
QBRC	L, H		

³ 4 5 6 7 8 9 10

BW = body weight; CONC = concentration of 1,2,4-TMB in the air; V_{max} = Michaelis-Menten maximum rate of

L = low exposure concentration (25 ppm [123 mg/m³]); H = high exposure concentration (250 ppm [1,230 mg/m³]).

 $V_{\text{metabolism}}$; $V_{\text{max}}C$ = Michaelis-Menten constant: concentration where V_{max} is half-maximal (V_{max}); PB = blood:air

8 partition coefficient; PF = fat:blood partition coefficient; PS = slowly perfused:blood partition coefficient;
9 provide partition coefficient; PL = liver:blood partition coefficient; PBP = brain:blood partition

9 PR = rapidly perfused:blood partition coefficient; PL = liver:blood partition coefficient; PBR = brain:blood partition 0 acefficient: VEC = velowers of fat: VETOTC = velowers of should perfused the velocity of the vel

coefficient; VFC = volume of fat; VSTOTC = volume of slowly perfused tissues; VRTOTC = volume of rapidly
 perfused tissues; VLC = volume of liver; VBRC = volume of brain; QCC = cardiac output; QFC = blood flow to fat;

12 QRTOTC = blood flow to slowly perfused tissues; QLC = blood flow to liver; QBRC = blood flow to brain.

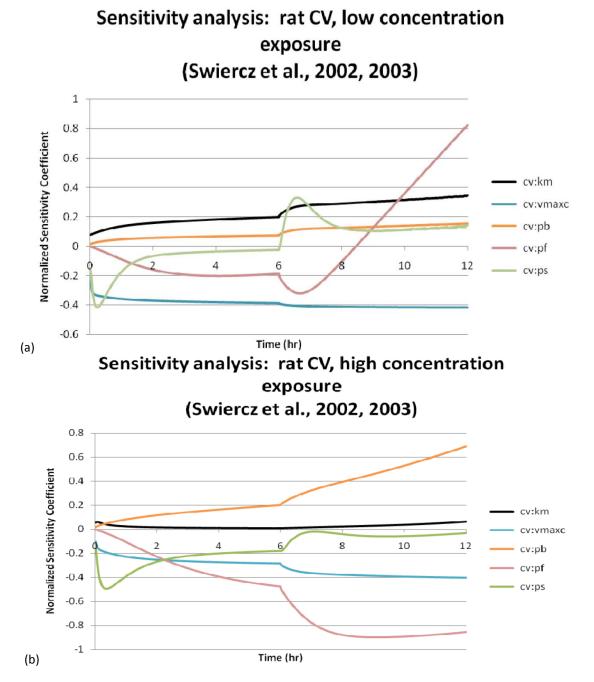


Figure C-17. Time course of NSCs of moderately sensitive chemical-specific parameters (response: venous blood concentration) in rats exposed to (a) 25 ppm (123 mg/m³) or (b) 250 ppm (1,230 mg/m³) of 1,2,4-TMB via inhalation for 6 hours (<u>Swiercz et al., 2003; Swiercz et al., 2002</u>).

C.2.3.4. Sensitivity Analysis of Human Model Predictions

1

2

3

4

A sensitivity analysis for human model predictions to all parameters was conducted for
continuous inhalation exposures, and results are shown in Table C-15. The results are presented as
NSCs (i.e., percent change in output/percent change in input, calculated using the central difference

This document is a draft for review purposes only and does not constitute Agency policy. C-46 DRAFT—DO NOT CITE OR QUOTE

- 1 method; NSC). Similar to analyses performed for the rat, parameters are noted as relatively
- 2 insensitive (|NSC| < 0.2), moderately sensitive (0.2 < |NSC| < 1.0), or highly sensitive (|NSC| > 1.0).
- 3 To bracket the range of human equivalent concentrations (HECs), inhalation sensitivities were
- 4 evaluated at 10 and 150 ppm (49.2 and 738 mg/m³) concentration. The resulting coefficients
- 5 (Table C-15) are not surprising. The two fitted metabolic parameters, V_{max}C and K_m, both influence
- 6 model predictions. The $V_{max}C$ sensitivity is higher at 150 ppm (738 mg/m³) ([0.8873]) than at
- 7 10 ppm (49.2 mg/m³) (|0.238|) due to the slight metabolic saturation.

Table C-15. Parameter sensitivity for steady-state venous blood 1,2,4-TMB concentration in humans exposed to 1,2,4-TMB via inhalation

Parameter	Insensitive (maximum NSC < 0.2)	Moderately sensitive (0.2 < maximum NSC < 1.0)	Highly sensitive (maximum NSC > 1.0)
BW	L, H		
CONC		L	н
QPC		L, H	
V _{max} C		L, H	
Km	L, H		
РВ	L, H		
PF	L, H		
PS	L, H		
PR	L, H		
PL	L, H		
PBR	L, H		
VFC	L, H		
VSTOTC	L, H		
VRTOTC	L, H		
VLC	L, H		
VBRC		L, H	
QCC	L, H		
QFC	L, H		
QRTOTC		L, H	
QLC	L, H		

¹⁰ 11 12

L = low exposure concentration (10 ppm [49.2mg/m³]), H = high exposure concentration (150 ppm [738 mg/m³]).

13 Body weight (BW), concentration of 1,2,4-TMB in the air (CONC), alveolar ventilation rate (QPC), Michaelis-Menten

14 maximum rate of metabolism (V_{max}C), Michaelis-Menten constant: concentration where V_{max} is half-maximal

15 (V_{max}), blood:air partition coefficient (PB), fat:blood partition coefficient (PF), slowly perfused:blood partition

16 coefficient (PS), rapidly perfused:blood partition coefficient (PR), liver:blood partition coefficient (PL), brain:blood

17 partition coefficient (PBR), volume of fat (VFC), volume of slowly perfused tissues (VSTOTC), volume of rapidly

18 perfused tissues (VRTOTC), volume of liver (VLC), volume of brain (VBRC), cardiac output (QCC), blood flow to fat 19

(QFC), blood flow to slowly perfused tissues (QRTOTC), blood flow to liver (QLC), blood flow to brain (QBRC)

C.2.3.5. Modification of the <u>Hissink et al. (2007)</u> model to include oral route of exposure

2 For derivation of an oral RfD, the updated 1,2,4-TMB PBPK model based on Hissink et al. 3 (2007) was further modified by adding code for continuous oral ingestion. It was assumed that 4 100% of the ingested 1,2,4-TMB is absorbed by constant infusion of the oral dose into the liver 5 compartment. There were no oral data available to calibrate the model for oral absorption, and no 6 data were available evaluate the model predictions following oral ingestion either. Thus, although 7 the assumption that 100% of the dose would enter the liver is a common assumption, it does 8 represent an area of uncertainty in the route-to-route extrapolation used to derive oral reference 9 values. To more accurately approximate patterns of human oral ingestion, ingestion was simulated 10 as an idealized pattern of six events, each lasting 30 minutes. Twenty-five percent of the total daily 11 dose was assumed to be ingested at each of three events beginning at 7 am, 12 pm (noon), and 6 pm 12 (total of 75%). Ten percent of the daily dose was assumed to be ingested at events beginning at 13 10 am and 3 pm (total of 20%). The final 5% was assumed to be ingested in an event beginning at 14 10 pm. After the daily blood concentration profile achieved a repeating pattern, or periodicity, the 15 weekly average blood concentration was then used to determine the human equivalent dose (HED). 16 The contribution of the first-pass metabolism in the liver for oral dosing was evaluated by 17 simulating steady-state venous blood levels (at the end of 50 days of continuous exposure) for a 18 standard human at rest (70 kg) for a range of concentrations and doses. For ease of visual 19 comparison (Figure C-18), concentrations were converted to daily doses based on the amount of 20 1,2,4-TMB inhaled, as computed by the model. (An inhaled concentration of 0.001 mg/L [0.20 ppm 21 (0.98 mg/m³)] is equivalent to an inhaled dose of 0.12 mg/kg-day.) At both very low and very high 22 daily doses by inhalation or oral dosing, steady-state CV is essentially linear with respect to the 23 daily dose, but with different CV/dose ratios and a transition zone between 1 and 100 mg/kg-day. 24 At low daily doses, equivalent inhalation doses result in steady-state blood concentrations 4-fold 25 higher than an equivalent oral dose due to the hepatic first-pass effect. The first-pass effect 26 becomes insignificant with respect to steady-state venous blood concentrations for daily doses in 27 excess of $\sim 50 \text{ mg/kg-day}$.

Figure C-18. Effect of route of exposure and dose rate on steady-state venous blood concentration (t = 1,200 hours) for continuous human exposure to 1,2,4-TMB.

C.2.3.6. Conclusions

5 Several changes were made to the model for use in this assessment: (1) updated 6 physiological parameters were implemented (Brown et al., 1997); (2) hepatic metabolism was 7 revised to omit variation over time and new V_{max}C and K_m values were estimated through numerical 8 optimization; and (3) an oral dosing component was added to the model as constant infusion into 9 the liver compartment. The values were optimized to <u>Hissink et al. (2007)</u> data and resulted in a V_{max}C of 4.17 mg/hour/kg^{0.7} and K_m of 0.322 mg/L. In addition, the model was tested for its ability 10 11 to predict published rat data resulting from exposure to 1,2,4-TMB alone (Swiercz et al., 2003; 12 Swiercz et al., 2002; Eide and Zahlsen, 1996; Zahlsen et al., 1992; Zahlsen et al., 1990; Dahl et al., 13 1988). Using the optimized values, the model adequately predicted the data and lower 14 concentrations. Human data (Hissink et al., 2007; Järnberg and Johanson, 1999; Järnberg et al., 15 1998, 1997a; Kostrzewski et al., 1997; Järnberg et al., 1996) were also utilized to validate model 16 predictions.

C.2.4. Summary of Available PBPK models for 1,3,5-TMB or 1,2,3-TMB

- 17 There are currently no available PBPK models for rodents or humans for either 1,3,5-TMB18 or 1,2,3-TMB.
- 19

C.3. HUMAN STUDIES

20 21

Table C-16 provides study details for epidemiology studies.

Table C-16. Characteristics and quantitative results for epidemiologic studies of TMB and related compounds and mixtures

1

Study citation	Study design/study population	Outcome measured	Exposure assessment	Results
Respiratory,	/irritative effects			
Battig et al. (1956), as reviewed by <u>Bättig et</u> al. (1958)	Cross-sectional. Exposed: 27 TMB- exposed workers who worked primarily in the painting shop of a transportation plant. Controls: 10 unskilled workers from the same plant that were not exposed to TMB vapors.	Various respiratory and hematological endpoints were assessed via worker interviews and clinical assessments.	Exposure level: 10–60 ppm (49.2–295 mg/m ³) in working rooms. Exposure duration: approximately 10 yrs. Compounds exposed to: Fleet-X DV-9, a solvent containing 1,2,4-TMB and 1,3,5-TMB (50 and 30%, respectively). Fleet X DV-9 also potentially contained 1,2,3-TMB and numerous methylethyl benzenes.	No statistical analyses were reported. Increased self-reports of vertigo, headaches, and drowsiness during work. Increased presence of chronic asthmatic bronchitis, anemia, and altered blood clotting characteristics (e.g., increased clotting time and tendency to hemorrhage). Increased vitamin C deficiency was observed in controls, but the authors attribute this to nutritional deficiencies in this population.
Billionnet et al. (2011)	Cross-sectional survey in a national population- based sample of residences in France. Final sample consisted of 567 residences and 1,612 individuals.	Asthma and rhinitis, determined via standardized self- administered questionnaire. Diagnosis of asthma or rhinitis not confirmed by physician.	Pollutants measured for 1 wk in the bedroom of the home. Exposure level: For 1,2,4-TMB, exposure varied from undetectable to 111.7 µg/m ³ , with median concentration 4.0 µg/m ³ .	 Median tests were used for continuous endpoints, χ² test for categorical variables. Pollutant correlations tested by Spearman's rank correlation coefficient. Generalized estimating equation approach was used to adjust for correlations between individuals within same dwelling. Global VOC score was created to address exposure to multiple pollutants. All models were adjusted for age, sex, and smoking status.

Study citation	Study design/study population	Outcome measured	Exposure assessment	Results
				OR for association of asthma to 1,2,4-TMB statistically significantly increased (OR = 2.1). OR of the 95^{th} percentile compared to 75^{th} percentile = 3.13 (95% CI: 1.6–6.12).
<u>Norseth et</u> <u>al. (1991)</u>	Cross-sectional study of road repair and construction workers in Norway exposed to asphalt. First group: 79 workers. Second group: 254 workers with 247 controls.	A number of neurological and irritative symptoms were recorded by standard questionnaire on last day.	Exposure to 14 groups of organic compounds during 5 d was assessed in the various groups. Mean concentration of 1,2,4-TMB was 0.015 ppm (0.074 mg/m ³), with range between 0 and 0.122 (0–0.60 mg/m ³) ppm. Mean concentration of 1,3,5-TMB was 0.0014 ppm (0.0069 mg/m ³), with range between 0 and 0.011 (0–0.054 mg/m ³) ppm. Exposure duration: Not reported; measurements represent the means of 5 d of monitoring.	Exact two-sided Fisher-Irving test was used to analyze differences in symptom frequency. Mean difference between groups was calculated via two-sided Wilcoxon rank-sum test with a significance level of 5%. Spearman's correlation coefficient was used to estimate correlation between symptoms and possible confounders. Among workers reporting at least 1 d of experiencing a symptom, asphalt workers were observed to have increased incidences of abnormal fatigue, reduced appetite, laryngeal/pharyngeal irritation, eye irritation, and other unspecified symptoms, compared to non-asphalt workers (all differences reported to be statistically significant).
Neurologica	l effects			
<u>Chen et al.</u> (1999)	Retrospective mortality cohort study: included all 1,292 men who had worked at the paint	Mortality, cause of death coded according to ICD-9.	Exposure level: Specific concentrations not discussed.	Intra-cohort PMRs were calculated, as were SMRs for comparison with all Scottish males; 95% CIs were calculated assuming a Poisson distribution.
	shop of a dockyard in a Scottish dockyard for ≥12 mo from 1950 to	Questionnaire recorded self- reported symptoms	Exposure duration: at least 1 yr; range 1–41 yrs.	χ^2 test was used to assess differences in neuropsychological symptoms between painters and non-painters.

Study citation	Study design/study population	Outcome measured	Exposure assessment	Results
	1992 (followed up from 12/1/60 to 12/31/94); 205 deceased workers included in analysis.	of psychological or neurological disorders.	Compounds to which study participants were exposed: white spirit (1,2,4-TMB), xylene, TMB (unspecified),	Breslow-Cox model was used to adjust for covariates including educational level, smoking, alcohol consumption, and social conformity.
	Cross-sectional study: 953 painters not	Questionnaire also recorded information on	n-butanol, trichlorethylene, naptha, and cumene.	Log-regression model was used for case-control study. Mortality was not generally increased among painters; the only
	identified as dead as of 12/31/95 and 953 age- matched male controls.	potential confounders: educational level,		statistical significant increase was for ischemic heart disease (PMR = 132, 95% CI: 105–164)
	875 subjects returned questionnaire: 302 painters,	smoking status, and alcohol consumption.		Increased prevalence rate ratios for neuropsychological symptoms amongst painters.
	573 controls; 260 painters and 539 controls included in final analysis.			Rate ratios increased significantly with increasing number of years of exposure, even after adjustment for possible confounders: for painters with total symptom score ≥12: 2.27, 1.20–4.30 (1–4 yrs); 2.42, 1.18–4.94 (5–9 yrs); 2.89, 1.42–5.88 (10–14 yrs); and 3.41, 1.81–6.36 (15–41 yrs). No apparent decrease in symptoms was observed when investigating time since stopping painting: 3.71, 1.66–8.29 (1–10 since stopping); 3.53, 1.79–6.96 (11–18 yrs since stopping); and 2.98, 1.06–8.53 (>19 yrs since stopping).
				Multivariate-adjusted ORs showed the same relationship.
<u>Gong et al.</u> (2003)	Cross-sectional study; exposed workers (N = 251) worked in	Questionnaire recorded information	The exposure concentrations of solvents were assessed via	The Wilcoxon rank sum test was used to compare color vision and color contrast between exposed workers and controls.
	53 furniture factories in Japan. A control group (N = 147) was drawn from un-exposed workers in different	pertaining to work history and lifestyle habits, occupational/ vocational solvent	environmental sampling and biomonitoring. Exposures included toluene, xylene, styrene, ethylbenzene; urinary	Multiple regression analysis was used to assess the association between exposure and visual dysfunction outcomes, with age, alcohol, smoking, educational experience, and duration of exposure as independent variables.
	factories.	exposure, alcohol consumption,	metabolites included xylene and hippuric acid. Neither TMBs nor TMB metabolites	Color vision and color contrast were statistically significantly altered in exposed workers compared to controls (<i>p</i> -values <0.05).

Study citation	Study design/study population	Outcome measured	Exposure assessment	Results
		cigarette smoking, and medical usage. A variety of visual dysfunction tests (color vision assessment, visual contrast sensitivity, and VEP) were administered to exposed workers and controls.	were listed as explicit exposures. The total exposure index was 0.35 compared to Japanese threshold limit values, indicating low exposures.	Multiple regression revealed that color vision was significantly negatively correlated with age, and that methylhippuric acid metabolites were correlated with decreased color contrast sensitivity. Smoking was also significantly associated with increased color contrast sensitivity.
<u>Tang et al.</u> (2011)	Cross-sectional study of 133 solvent exposed workers and 78 non- exposed controls. All participants underwent a medical evaluation and screening for smoking and drug use; 27 exposed and controls were ultimately selected for fMRI study to compare pathophysiological changes in brain function.	An N-back task (identifying letters in a sequence) was performed during fMRI scans.	A cumulative lifetime exposure index was calculated for each subject who reported solvent exposure. The duration and time spent performing specific job tasks was determined via questionnaire. Representative solvent exposures were determined via field samples. Historic solvent exposures and information on protective equipment usage were used to adjust exposure estimates.	fMRI scans were analyzed via ANCOVA to compare activity levels in specific brain regions. Solvent-exposed workers were more likely to be African-American compared to controls, and had lower reading test scores and higher blood lead levels. Performance scores for the N-back task was significantly lower than controls (<i>p</i> = 0.005). After correcting for verbal IQ and lead, Caucasian exposed workers had reduced activity in the anterior cingulate cortex and dorsolateral prefrontal cortex. ANCOVA revealed significantly reduced activity in the dorsolateral prefrontal cortex and left parietal regions in exposed workers.
<u>El Hamid</u> <u>Hassan et</u> al. (2013)	Cross-sectional study of Egyptian paint factory workers. The exposed group (N = 92) included	Questionnaire recorded self- reported symptoms of psychological or	No explicit exposure analysis were conducted. Analyses were based on comparisons of exposed	X ² test was used to investigate pair-wise differences in neuro- psychological symptoms in exposed workers, compared to controls.

Study citation	Study design/study population	Outcome measured	Exposure assessment	Results
	workers exposed to organic solvents as part of their job. These solvents included mixtures of aliphatic and aromatic solvents (xylene, toluene, methyl iosbutyl and methyl ethyl ketone, mineral spirits, etc. TMB isomers not specifically mentioned). The control group (N = 95) consisted of members of the faculty of medicine at a nearby university not exposed to these solvents.	neurological disorders. Questionnaire also recorded information on potential confounders: educational level, smoking status, and alcohol consumption.	groups (determined by job type) to controls. Duration of exposure was also used in some analyses	 Highly significant differences (p < 0.001) between exposed workers and controls were noted for most psychological (short memory, problems concentrating, abnormally tired, headache), neuropsychological (painful tingling, trouble buttoning/unbuttoning), and neurological (dizziness, hand tremble, weakness in arms/legs) symptoms. 63.0% of workers demonstrated neuropsychological symptoms, compared to 2.1% of controls (p-value < 0.001, OR = 79.3; 95% CI: 18.73–688.3). Smoking (>15 versus <15 yrs), level of education (illiterate or read/write versus school education), age (40–60 versus 20–40 yrs), type of job (production versus packing), and duration of work (>15 versus <15 yrs) were all observed to be highly associated (p-values < 0.001; OR > 4.4) with increased neuropsychological symptoms. Logistic regression revealed that the strongest predictors of neuropsychological symptoms were type of job performed (production or packing) and duration of work (>15 yrs). Not clear whether any confounders were taken into account in the logistic regression analysis.
<u>Juárez-</u> Pérez et al. (2014)	Cross-sectional study of 77 solvent exposed paint factory workers in Mexico and 84 control subjects drawn from donors at a local blood bank. All exposed participants were male. Exposed workers were given a questionnaire to	Hearing assessments were conducted for each participant and hearing loss prevalence was calculated in exposed and unexposed populations.	134 workplaces at various production sites were examined; air samples from the worker's respiratory zone were collected from workers during all shifts of a single workday. Toluene, xylene, and benzene were listed as exposures, but not TMB isomers.	 Univariate analysis of quantitative variables was performed. Mean differences were analyzed via Student's t and X² tests. Robust multiple linear regression was used and were adjusted for age, environmental noise, diabetes, hypertension/hyperlipidemia, ototoxic drugs, and alcohol. 19.5% of solvent-exposed workers had hearing loss.

Study citation	Study design/study population	Outcome measured	Exposure assessment	Results
	determine demographic characteristics, hearing pathologies, chronic disease status, ototoxic medication usage, and other factors (alcohol/drug usage, motorcycle usage, etc.). Controls were questioned regarding solvent exposure.	Brainstem auditory- evoked potentials were also recorded.	Noise measurements were also collected at each worksite	Robust multiple linear regression showed that hearing loss (low, high, and all frequencies) was significantly increased in left and right ears in exposed workers, and that age and chronic pathology were also related to hearing loss; 24-39% of hearing loss variability was explained by the regression model. Exposure to environmental noise did not appear to increase hearing loss. Multiple linear regression also revealed increased latencies in brainstem auditory-evoked potentials, although the R ² values were much lower (0.2–12.4).
<u>Maule et al.</u> (2013)	Cross-sectional study of 37 male and female active duty Air Force personnel (N = 23 with occupational exposure to JP-8 exposure, N = 14 with little to no JP-8 exposure). Each	Postural sway was analyzed in all participants. Evaluations were conducted pre- and post-shift.	Breathing zone sampling was conducted on all participants; total hydrocarbons and naphthalene were reported. Pre- and post-shift urine samples were taken and analyzed for metabolites of	Multiple linear regression were used to investigate associations between JP-8 exposure and postural sway. Measures of postural sway (total angular area and mean path velocity) were used as the dependent variables in four models of stance tasks: eyes open, eyes closed, eyes open, foam support, and eyes closed, foam support. Covariates considered included age, smoking status, and body mass index.
	participant completed a questionnaire regarding demographic data, work history, and other lifestyle and/or physical characteristics.		naphthalene. TMB isomers were not explicitly noted in the study results.	The high exposure group was more likely to be male than the low exposure group ($p < 0.05$). Increased sway was noted in tests involving foam support versus no foam for both eyes open and eyes closed tasks. Regression models using total hydrocarbons, naphthalene, 1-naphthol, or 2-naphthol did not demonstrate statistically significant associations between exposure and sway. Pre-shift measures of sway were positivity associated with postshift measures. Younger age was also predictive of balance control. Although the regression models did not indicate an association between sway and exposure metrics, they explained 39–62% of variance in the outcome measurements.

Study citation	Study design/study population	Outcome measured	Exposure assessment	Results
<u>Pratt et al.</u> (2000)	Cross-sectional study of 48 male subjects with no history of neurological or ophthalmological impairment; 31 subjects were occupationally exposed to gasoline in the workplace and 17 had no occupational exposure to gasoline.	Participants were tested for pattern- reversal VEPs and SVEPs.	Exposure levels of each participant were determined using personal samplers. No participants were reported to be exposed to levels of benzene, xylenes, toluene, carbon tetrachloride, or methyl- <i>tert</i> -butyl ether above legal exposure levels (which exposure values used were not noted). TMB isomers were not explicitly noted in study.	The effect of gasoline on latencies of SVEP or VEP was assessed via ANOVA, with subject group as a factor (N = controls, L = low, laboratory exposure, A & B = high exposure groups). Latencies corresponding to retinal activity, optical nerve activity, scalp distribution with optic radiation, and cortical activity were increased when comparing gasoline-exposed workers to unexposed workers (<i>p</i> -value < 0.05).
<u>Ruijten et</u> <u>al. (1994)</u>	Cross-sectional study of 28 shipyard painting employees exposed to solvents and 25 control workers with no exposure to solvents. Participants were screened on education (higher education excluded, control only), alcohol consumption, and occupational exposure to neurotoxic substances (control group only).	Symptoms were assessed via a questionnaire concerning various neurotoxic symptoms (including mood changes, fatigue, sleep disturbances, etc.). Neuro- physiological examinations were also conducted (sensory and motor nerve conduction velocity). A psychometric examination consisting of	An individual cumulative exposure index was calculated for each participant. Environmental monitoring (all solvents) and biological monitoring (methylhippuric acid) were used to estimate exposure levels. Cumulative exposure indices were calculated for five broad categories of painting tasks. Cumulative exposure for all painters was 495 mg methylhippuric acid/g creatinine.	Differences in effects between painters and controls were investigated using ANCOVA, with age and alcohol used as confounders. The association between the cumulative exposure index and neurological effects was investigated using multiple linear regression. Mood changes, equilibrium complaints, sleep disturbances, and solvent-related complaints were increased in painters compared to controls ($p \le 0.05$). Differences in peripheral nerve function was statistically significant between painters and controls, particularly in the peroneal nerve ($p < 0.05$). Neurobehavioral test performance indicated a detrimental effect of solvent exposure on color word vigilance, symbol digit substitution, and hand-eye coordination ($p \le 0.05$).

Study citation	Study design/study population	Outcome measured	Exposure assessment	Results
		was also administered.		
Lee et al. (2005)	Cross-sectional study of workers at a shipyard in Ulstan, Korea; 180 workers included in study along with 60 randomly selected non-exposed controls. Workers were pre- screened for educational level, absence of alcohol/drug dependency, and lack of existing neurological disease.	Questionnaire was administered to pre- screen workers and to collect additional data on age and work duration. A number of tests were administered to judge neurological function: simple reaction time, symbol digit substitution, and finger tapping speed (dominant and non- dominant hand).	Data on exposure were collected from 61 workers who wore passive dosimeters on 3 work days. Workers exposed to 3.71 ± 3.95 ppm 1,2,4-TMB (geometric mean, 18.25 mg/m ³ , geometric standard deviation = 19.43), range = 0.2–57.0 ppm. Average exposure duration: 16.5 ± 9 yrs in exposed workers.	A cumulative exposure index was calculated for each worker. Student <i>t</i> -test was used to determine statistical significance of results in exposed workers compared to non-exposed workers. Multiple regression analysis was performed to ascertain and control for confounders. Exposure had a significant effect on symbol digit substitution and finger tapping speed in multiple regression analysis of all subjects. Age and education were observed to be statistically significant confounders. After adjusting for age and education, painters were observed to have statistically significantly slower symbol digit substitution and finger tapping speeds (dominant and non-dominant) compared to controls. Symbol digit substitution and finger tapping speed also statistically significantly slower in subjects when comparing workers with >20 yrs of exposure to workers with <10 yrs of exposure.
<u>Sulkowski</u> <u>et al.</u> (2002)	Cross-sectional study of Polish workers in a factory in which paints and varnishes were produced; 61 exposed workers were included in the final analysis following a questionnaire and otolayrngological examination. Subjects	Comprehensive evaluation of hearing: air and bone pure tone audiometry, impedance audiometry with tympanometry, acoustic reflex threshold, otoacoustic	Exposure was assessed via individual dosimeters and biological monitoring of blood and urine. TMB isomers were reported to be the most commonly detected contaminants in air. Blood levels of TMB isomers ranged from 0.60 to 70.14 µg/dL.	 Student's t-test was to analyze differences between groups. Linear regression was used to investigate the association of exposure to single contaminants with specific effects. 47.5% of exposed individuals and 5% of the control population exhibited symptoms of vestibular dysfunction, as indicated by decreased duration, amplitude, and slow-phase angular velocity of induced nystagmus.

Study citation	Study design/study population	Outcome measured	Exposure assessment	Results
	with middle ear damage, previous ear surgery, head injury, ototoxic drug treatment, diabetes, hypertension, neurological disease, alcohol/drug abuse, and a history of noise exposure were excluded; 40 non- exposed workers were included as controls.	emissions, and electronystagmo- graphic investigations.	Average duration of exposure: 15.8 ± 9.1 yrs.	 High frequency hearing loss, as indicated by pure tone audiometry was detected in 42% of exposed individuals versus 5% of the control population. All three TMB isomers (measured in subjects' breathing zones) were observed to be statistically significantly associated with distortion product otoacoustic emissions (<i>p</i>-values < 0.05). These associations were reported as the strongest amongst the detected contaminants.
<u>Fuente et</u> <u>al. (2013)</u>	Cross-sectional study in Santiago, Chile: 30 participants each (15 males/15 females) in the xylene-exposed and control groups. Otoscopy was performed to exclude participants with external ear damage, a questionnaire was provided to collect data on participants' history of neurological, metabolic, cardiovascular disease, otitis media, or previous excessive noise exposure. A report of one or more of the previous was used to	Comprehensive evaluation of hearing: audiological assessments, masking level difference test, pitch pattern sequence test, and dichotic digit test.	Workers were interviewed to collect self-reports of occupational xylene exposure; mean duration of exposure to xylene in the workplace was 11.8 ± 10.5 yrs. Air samples were also collected at different work stations of the xylene- exposed workers; mean air concentration was 36.5 ± 66.6 mg/m ³ . Urine samples were collected post-shift on the last day of the working week and analyzed for methylhippuric acid: mean concentration was	Student's t test, ANCOVA (with age and hearing levels as covariates), and Spearman rank correlations (for stratified analyses) were used to analyze the differences in hearing between xylene-exposed workers and controls. Xylene-exposed workers consistently had increased measures of auditory dysfunction compared to controls: worse audiometric thresholds; greater latency in the auditory brainstem response; and decreased performance in the pitch pattern sequence, dichotic digits test, and hearing in noise test (<i>p</i> -value \leq 0.01). Simple linear regression demonstrated that increasing levels of methylhippuric acid are positively correlated with binaural hearing thresholds (R ² = 0.32, <i>p</i> -value < 0.01). When stratifying participants based on cumulative exposure (low = 96.8 ± 26.36 mg*yr, medium = 434.9 ± 289.9 mg*yr, and high = 5,630.2 ± 3,150 mg*yr), the high exposure group had statistically significantly higher binaural hearing threshold compared to low and medium exposure groups (<i>p</i> -value < 0.05). There was also a statistically significant difference between the

Study citation	Study design/study population	Outcome measured	Exposure assessment	Results
	exclude participants from the study.		216.3 ± 44.2 mg per g creatinine. Cumulative exposure was calculated by multiplying methylhippuric acid concentration by duration of exposure.	low and high exposure groups regarding hearing in noise tests (<i>p</i> -value < 0.05).
Quevedo et al. (2012)	Cross-sectional study of gas station workers in Santa Maria, Brazil: 21 participants (18 males/3 females). Otoscopy was performed to identify conditions that would alter test results. Exclusion criteria for participants were: history of ear problems, abnormal auditory thresholds, age >40 yrs, exposure to noise, organic solvents, or pesticides, and use of ototoxic medications.	Threshold tonal audiometry, brainstem auditory evoked potential testing, and acoustic reflex testing.	No explicit exposure analysis was conducted. Analyses based on comparisons of exposed group (i.e., gas station workers) to the normal range of response for the various tests. Duration of exposure was also used in some analyses.	Binomial test was used to test differences in absolute latency and interpeak differences in the brainstem auditory evoked potential test. Right ear: 19 and 29% of participants had abnormal Wave I and III absolute latencies; no difference was noted for Wave V. Only the difference in Wave I latency was statistically significant ($p = 0.025$). None of the latencies in the interpeak intervals (I–III, III–V, I–V) were statistically different. Left ear: 14 and 5% of participants had altered Wave I and V latencies ($p = 0.015$ and 0.0001, respectively). Although 38% of participants had altered Wave III latencies, these alterations failed to achieve statistical significance. None of the latencies in the interpeak intervals were statistically different. Duration analysis: Among workers exposed for <3 yrs, no statistically significant differences were noted for absolute latencies in the right ear. However, the interpeak interval change for Waves III–V was statistically significant. A statistically significant alteration in the absolute latency of Wave V was observed in the left ear ($p = 0.0257$). For workers exposed between 3 and 5 yrs, no statistically significant effects were noted in either ear for absolute latencies or interpeak interval changes.

Study citation	Study design/study population	Outcome measured	Exposure assessment	Results
				For workers exposed >5 yrs, statistically significant effects were noted for the I–V interpeak difference in the right ear, the absolute latency in Wave I in the left ear, and the III–V interpeak interval in the left ear.

1 ANCOVA = analysis of covariance; ANOVA= analysis of variance; fMRI = functional magnetic resonance imaging; JP-8 = jet propulsion fuel 8; OR = odds 2

ratio; PMR = proportional mortality ratio; SMR = standardized mortality ratio; SVEP = short-latency visual evoked potential; VEP = visual evoked

potential; VOC = volatile organic compound.

C.4. ANIMAL TOXICOLOGY STUDIES

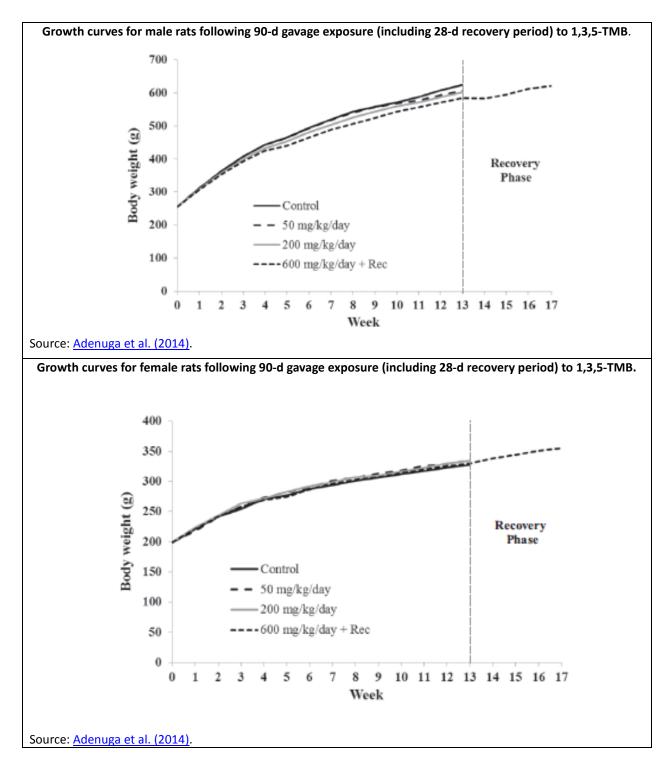

Tables C-17 through C-46 provide study details for animal toxicology studies.

Table C-17. Characteristics and quantitative results for <u>Adenuga et al. (2014)</u>

Study design								
Species	Sex	N	Exposure	route	Dose range	Exposure duration		
Sprague- Dawley rats			roup Gavage	Gavage 0 6 b 1		5 d/wk, for 90–91 d, for		
Additional stud	dy details:							
 Two to t No con Live All I but 	o deaths w reatment. statisticall npared to er and kidn histopatho typical of	ere reported, by y significant effe the vehicle cont ley weights incre logy findings at	ects on mean boc rol group. eased, but were o termination of d sions common to	ed to ha ly weigh consider osing we	ve resulted fro t were observe ed adaptive ef ere determined	m dosing errors and not related ed in any of the treated groups a		
	NOALLW		f dosing solution	s of 1.3.	5-TMB in corn	oil		
		-	Wk 1 ^a Wk 7 ^b			Wk 13 ^b		
0		Below de	v detection limit –		_	-		
10 (50 mg/kg)		ç	9.78		9.60	9.92		
40 (200 mg/kg)		3	39.04		_	-		
120 (600 mg/kg	g)	1	20.4		128.2	114.6		
-		of duplicate and of duplicate and		L and six	replicates for	10, 40, and 120 mg/mL.		
Experimental d	lesign							
	Group		Dose (mg/kg-d)			Number of rats (M & F)		
1			0 (corn oil vehicle control)			10 + 10		
2			50			10 + 10		
3		200	200			10 + 10		
4		600	600			10 + 10		
5		600	600 (28-d recovery group)			10 + 10		

3

1

		Mean clinical o	chemistry		
		I	Exposure (mg/kg-c	I)	
Observation	0 (control)	50	200	600	600 (recovery)
Males			•		
Protein (g/dL)	6.0 ± 0.38	5.9 ± 0.24	6.0 ± 0.31	6.1 ± 0.42	6.0 ± 0.25
Albumin (g/dL)	3.6 ± 0.23	3.6 ± 0.19	3.7 ± 0.19	3.8 ± 0.22	3.7 ± 0.09
Glucose (mg/dL) ^a	150.2 ± 22.80	134.6 ± 15.11	136.9 ± 15.76	$121.1 \pm 13.14^{*}$	168.4 ± 26.39
Cholesterol (mg/dL)	38.2 ± 6.83	33.1 ± 9.13	31.6 ± 9.93	45.3 ± 15.99	35.3 ± 10.10
Sodium (meq/L)	142.4 ± 1.49	142.7 ± 0.65	143.0 ± 1.40	142.4 ± 1.32	141.6 ± 1.30
Potassium (meq/L)	4.32 ± 0.397	4.51 ± 0.339	4.37 ± 0.328	4.54 ± 0.270	4.33 ± 0.240
Chloride (meq/L)	105.3 ± 2.59	105.3 ± 2.33	106.0 ± 1.72	106.2 ± 2.18	104.7 ± 0.88
Phosphorus (mg/dL)	6.5 ± 0.64	6.7 ± 0.80	7.0 ± 0.68	$7.6 \pm 0.58^{*}$	5.8 ± 0.59
Total bilirubin (mg/dL)	0.4 ± 0.12	0.4 ± 0.10	0.5 ± 0.09	0.5 ± 0.14	0.5 ± 0.09
AP (IU/I)	107 ± 28.1	112 ± 26.5	121 ± 33.7	$156 \pm 56.2^*$	77 ± 20.5
ALT (IU/I)	29 ± 6.4	30 ± 9.8	25 ± 7.0	33 ± 9.1	25 ± 4.4
AST (IU/I)	72 ± 18.9	91 ± 31.9	86 ± 25.5	85 ± 25.0	89 ± 16.7
Females					·
Protein (g/dL)	6.2 ± 0.44	6.3 ± 0.41	6.6 ± 0.69	6.5 ± 0.68	6.3 ± 0.66
Albumin (g/dL)	4.1 ± 0.29	4.3 ± 0.36	4.5 ± 0.58	4.5 ± 0.56	4.3 ± 0.51
Glucose (mg/dL)	131.8 ± 7.65	136.4 ± 11.72	140.1 ± 14.48	132.8 ± 15.91	150.7 ± 19.18
Cholesterol (mg/dL) ^b	36.2 ± 8.83	35.2 ± 6.64	38.8 ± 6.24	51.2 ± 17.84 [*]	28.7 ± 12.93
Sodium (meq/L) ^c	142.1 ± 1.10	141.6 ± 0.96	141.7 ± 2.07	$138.9 \pm 2.83^*$	140.9 ± 1.47
Potassium (meq/L)	3.94 ± 0.195	4.13 ± 0.200	4.01 ± 0.119	3.86 ± 0.292	4.06 ± 0.259
Chloride (meq/L) ^d	105.9 ± 2.32	106.2 ± 1.63	106.1 ± 1.05	103.0 ± 3.81 [*]	107.0 ± 1.68
Phosphorus (mg/dL)	6.1 ± 1.08	6.1 ± 1.27	6.4 ± 1.18	$7.5 \pm 1.24^{*}$	5.3 ± 0.80
Total bilirubin (mg/dL)	0.5 ± 0.08	0.5 ± 0.10	0.4 ± 0.08	0.5 ± 0.07	0.5 ± 0.07
AP (IU/L)	59 ± 14.8	57 ± 10.3	55 ± 14.9	78 ± 24.5	38 ± 10.1
ALT (IU/L)	21 ± 2.3	22 ± 4.0	23 ± 7.3	24 ± 4.1	27 ± 7.1
AST (IU/L)	60 ± 16.5	75 ± 18.6	62 ± 15.2	60 ± 15.0	77 ± 21.4

*p < 0.05.

^aGlucose historical control range: 97.4–155.7 mg/dL (N = 20).

^bCholesterol historical control range: 32–112 mg/dL (N = 20).

^cSodium historical control range: 141–148meq/L (N = 20).

^dChloride historical control range: 105-111 meq/L (N = 20).

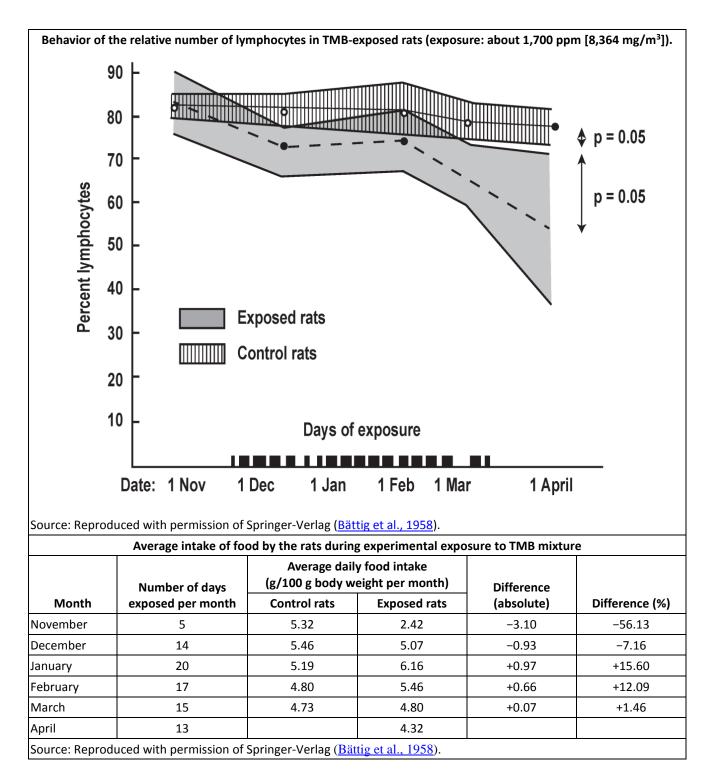
AP = alkaline phosphatase; ALT = alanine aminotransferase; AST = aspartate aminotransferase.

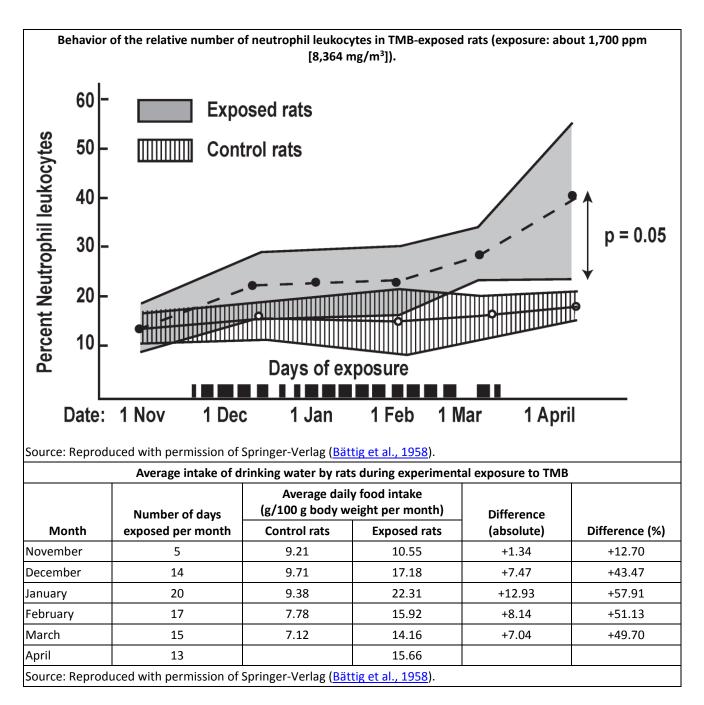
This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT—DO NOT CITE OR QUOTE

		Mean hematol	ogy		
		E	xposure (mg/kg-	(k	
Observation	0 (control)	50	200	600	600 (recovery)
Males					
WBCs (×10 ⁶ /mm ³)	9.1 ± 2.70	8.1 ± 2.50	8.1 ± 1.74	7.7 ± 1.76	7.8 ± 1.24
RBCs (×10 ⁶ /mm ³)	8.94 ± 0.375	8.50 ± 0.4,863	8.98 ± 0.565	8.72 ± 0.275	8.51 ± 0.423
Hemoglobin (g/dL)	15.6 ± 0.52	15.3 ± 0.76	15.8 ± 0.77	15.4 ± 0.53	15.4 ± 0.58
Hematocrit (%)	43.9 ± 1.65	42.2 ± 2.72	44.1 ± 2.12	43.3 ± 1.60	41.6 ± 1.99
MCV (×10 ⁻¹⁵ L)	49.1 ± 1.17	49.7 ± 1.09	49.2 ± 1.76	49.6 ± 1.66	49.0 ± 1.62
MCH (pg)	17.5 ± 0.45	18.0 ± 0.73	17.7 ± 0.85	17.7 ± 0.68	18.2 ± 0.61
MCHC (%)	35.6 ± 0.67	36.3 ± 1.07	35.9 ± 0.60	35.6 ± 0.67	37.1 ± 0.60
Platelet count (×10 ⁶ /mm ³)	1,092 ± 134.1	1,098 ± 120.8	1,041 ± 100.9	1,125 ± 145.9	1,083 ± 112.6
Females					
WBCs (×10 ⁶ /mm ³)	5.5 ± 2.05	5.6 ± 1.53	5.4 ± 1.64	5.7 ± 1.99	4.6 ± 1.55
RBCs (×10 ⁶ /mm ³)	7.88 ± 0.729	8.01 ± 0.354	7.90 ± 0.578	8.34 ± 0.548	7.70 ± 0.423
Hemoglobin (g/dL)	14.8 ± 0.88	15.0 ± 0.48	15.2 ± 0.82	15.3 ± 0.78	15.1 ± 0.57
Hematocrit (%)	41.0 ± 3.15	41.4 ± 1.91	41.9 ± 2.93	43.3 ± 2.33	39.9 ± 1.67
MCV (×10 ⁻¹⁵ L)	52.1 ± 1.65	51.7 ± 1.18	53.0 ± 1.03	52.0 ± 1.24	51.9 ± 1.33
MCH (pg)	18.9 ± 0.89	18.7 ± 0.67	19.2 ± 0.53	18.4 ± 0.68	19.6 ± 0.78
MCHC (%)	36.2 ± 0.79	36.2 ± 0.86	36.3 ± 0.83	35.4 ± 0.54	37.7 ± 0.64
Platelet count (×10 ⁶ /mm ³)	1,094 ± 153.3	1,089 ± 132.0	1,011 ± 97.2	1,053 ± 125.7	1,008 ± 105.7
WBC = white blood cell; RBC MCHC = mean corpuscular h			volume; MCH = r	nean corpuscular	hemoglobin;

Differentia	ls obtained	at ter	minal sacr	ifice in a	a 90-d gav	age study o	f 1,3,5	5-TMB with a	28-d recovery	
				Mean	absolute	WBC				
					E	xposure (m	g/kg-o	ł)		
Observati	on	0 (c	ontrol)		50	200		600	600 (recovery)	
Males						•				
Polynuclear neutr (×10 ⁶ /mm ³)	,		± 1.07	1.7	± 1.10	1.4 ± 0.3	36	1.5 ± 0.75	1.0 ± 0.29	
Lymphocytes (×1	0 ⁶ /mm³)	7.1	± 2.78	6.2	± 2.16	6.4 ± 1.5	59	6.0 ± 2.16	6.6 ± 1.23	
Monocytes (×10 ⁶ ,	/mm³)	±	0.09	±	0.09	0.3 ± 0.1	7*	0.2 ± 0.18*	• 0.2 ± 0.10	
Eosinophils (×10 ⁶	/mm³)	±	0.06	0.1	± 0.09	0.0 ± 0.0)7	0.0 ± 0.05	0.1 ± 0.07	
Females										
Polynuclear neutr (×10 ⁶ /mm ³)	rophils	0.8	± 0.48	0.7	± 0.32	0.9 ± 0.6	59	1.0 ± 0.39	0.7 ± 0.45	
Lymphocytes (×1	0 ⁶ /mm³)	4.6	± 1.93	4.7	± 1.52	4.2 ± 1.5	52	4.4 ± 2.08	3.7 ± 1.34	
Monocytes (×10 ⁶ ,	/mm³)	±	0.14	0.1	± 0.10	0.1 ± 0.08		0.2 ± 0.17	0.2 ± 0.11	
Eosinophils (×10 ⁶	/mm³)	±	0.07	0.1	± 0.07	0.1 ± 0.0)9	0.1 ± 0.09	0.0 ± 0.07	
* <i>p</i> < 0.05.						•				
Weights	obtained	at term	inal sacrif	ice in a	90-d gava	ge study of	1,3,5-	TMB with 28-	d recovery	
		Mea	n absolute	e and re	lative kid	ney and live	r weig	ghts		
					Expos	ure (mg/kg-	d)			
Observation	0 (cont	trol)	50		200		600		600 (recovery)	
Males										
Mean absolute (g	:)									
Kidney	3.92 ± 0	.326	3.95 ± 0	0.262 4.10 -		± 0.610 4		.6 ± 0.464	4.05 ± 0.491	
Liver	19.28 ±	1.843	8.91 ± 3	8.074	18.38	± 2.885	20.	90 ± 3.313	17.38 ± 2.222	
Mean relative (g)	•									
Kidney	0.65 ± 0	0.052 0.68 ± 0		± 0.052 0		0.71 ± 0.082		4 ± 0.045*	0.68 ± 0.039	
Liver	3.20 ± 0).158	3.23 ± 0).336	3.19	± 0.402	3.7	1 ± 0.288*	2.93 ± 0.274	
Females										
Mean absolute (g	;)									
Kidney	2.34 ± 0	0.314	2.23 ± 0).228	2.38	± 0.116	2.5	51 ± 0.264	2.38 ± 0.248	
Liver	9.44 ±	1.60	9.13 ±	0.77	10.05	5 ± 0.96	11	.78 ± 1.44	9.71 ± 1.41	


Mean relative (g)										
Kidney	0.76 ± 0.059	().71 ± 0	.088	0.76 ± 0.05	1 0.8	2 ± 0.0)59	C	0.71 ± 0.040
Liver	3.04 ± 0.365	2	2.90 ± 0	.330	3.19 ± 0.35	3.19 ± 0.357 3.82 ± 0.223			2.88 ± 0.207	
* <i>p</i> < 0.05.	4					k				
Gross necrops	sy observations	obta			al sacrifice in a s 10 rats/sex/gro		study	of 1,3	,5-TM	B with 28-d
		Ма	ale (mg	/kg-d)			Fem	ale (n	ng/kg-	d)
Observation	0 (vehicle controls)	50	200	600	600 (recovery rats)	0 (vehicle controls)	50	200	600	600 (recovery rats)
Mandibular lympl	h nodes								-	
Red/dark red	0	0	1	0	1	1	0	0	0	0
Enlarged	1	0	1	0	1	0	0	0	0	0
Liver										
Pale	0	0	0	1	0	0	0	0	0	0
Lung										
Enlarged	0	0	1ª	0	0	0	0	0	0	0
Thymus							•	•	•	
Focus, red	0	0	0	0	0	0	1	0	0	0
Mottled	0	0	0	1	0	0	0	0	0	0
Adrenals					•					
Small, unilateral	0	1	0	0	0	0	0	0	0	0
^a Accidental death	due to gavage	error					•	•	•	
Histopatholog	gical findings in	the k	kidney a		r obtained at te .,3,5-TMB	erminal sacr	ifice in	a 90-	d gava	ge study of
		Ма	le (mg/	′kg-d)			Fema	le (mg	;/kg/-	d)
Observation	0	5	0	200	600	0	5	0	200	600
Liver/chronic infla	ammation									
Incidence (%)	40	-	_a	-	30	50	-	-	-	50
Mean grade	0.40	-	-	_	0.30	0.50	-	-	-	0.60
Liver/necrosis										
Incidence (%)	0	<u> </u>	-	_	0	10			-	0
Mean grade	0	<u> </u>	-	_	0	0.10	-		-	0
Kidney mineraliza	ition									
Incidence (%)	0	-	-	-	0	70	-	-	-	70
Mean grade	0	-	-	_	0	0.80	-		_	0.70


This document is a draft for review purposes only and does not constitute Agency policy. C-66 DRAFT—DO NOT CITE OR QUOTE

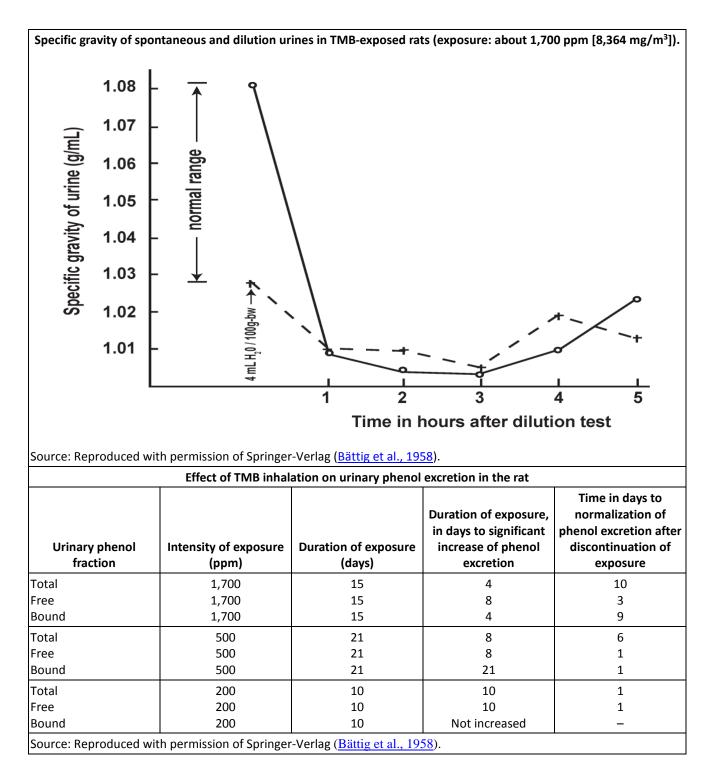

Kidney nephropath	У			<u>.</u>								
Incidence (%)	30	-	-	-	10	0)	-	-	-		0
Mean grade	0.30	-	-	-	0.10	0)	-	-	-		0
^a Dose group not ex	amined.											
Histopathological	findings in the	liver of	rats ol	otaine	d at termina	al sacrifi	ce in a	14-d ;	gavage	e study	of 1	,3,5-TMB
Male (mg/kg-d) ^a Female (mg/kg-d) ^a												
Observation	0	50	200	600	R ^b	0		50	200	600)	R ^b
Liver/chronic inflan	nmation				·							
Incidence (%)	30	20	10	20	20	60		20	10	30		20
Mean grade	0.23	0.20	0.10	0.05	0.20	0.25	5	0.20	0.10	0.13	3	0.20
Liver/necrosis												
Incidence (%)	0	0	0	10	0	0		0	0	0		0
Mean grade	0	0	0	0.15	0	0		0	0	0		0
Liver/centrilobular	hypertrophy											
Incidence (%)	0	0	0	100	0	0		0	0	30		0
Mean grade	0	0	0	1.00	0	0		0	0	0.3	C	0
^a Total of 10 rats exa ^b Recovery rat (600		•	ats sacr	ificed :	L4 d after th	ne last tr	eatme	ent).				
NOAEL LOAEL LOAEL Effect												
600 mg/kg-d (NOAELHED =Not identifiedNot applicable105 mg/kg-d)												
Comments: The hig effects were regard lowest-observed-ad	led as adaptive	respor	ises to	chemio	al exposure	e and no	t relev	ant to				

Table C-18. Characteristics and quantitative results for <u>Bättig et al. (1958)</u>
--

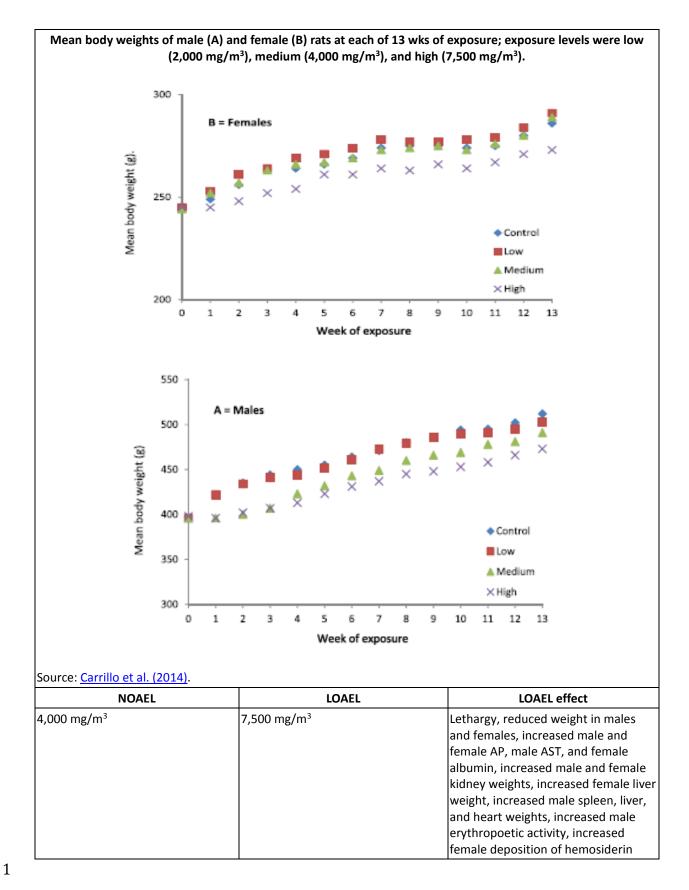
w pa • Ra • TM	lixture o		Intraperitoneal (i.p.) injection		4 mo; 8 hrs/d, 5/wks
• M w pa • Ra • TM	lixture o eight), b	ils		(0, 984, 2,460, 8,364 mg/m ³) TMB mixture	
	at behav MB mixtr udy was	ehavior, foor rs. vior was asses ure (i.e., Flee s translated fi	d intake, RBC count, an ssed qualitatively. t-X DV-99) was the sam rom German to English	tested for their effects on grow d hemoglobin concentration, a ne as assessed in the occupatio prior to receipt by EPA. : 1,700 ppm [8,364 mg/m³]) o r	nd various histological nal exposure study.
Average weight in g	34 33 32 31 30 29 28 27 26 25 24 23 22			ol rats ed rats	
			Da	tes in Treatme	nt
-	-		s of the exposed rats. The deviation from the m	Closed circles: average weights ean values plotted.	s of the control rats. Hatched

Health effect at LOAEL	NOAEL	LOAEL
Increased urinary excretion of free and total phenols	0 ppm	200 ppm (984 mg/m ³)

Comments: <u>Battig et al. (1956)</u> is published in German. However, <u>Bättig et al. (1958)</u> presents an English-translation of the results originally presented in <u>Battig et al. (1956)</u>. As such, a separate study summary table is not provided for <u>Battig et al. (1956)</u>. Four of the eight rats in the long-term inhalation experiment died and were subsequently replaced within the first 2 wks. Behavioral changes were assessed qualitatively. The substance to which rats were exposed was comprised of a mixture of all three TMB structural isomers and may have also contained methylethylbenzene structural isomers. Authors make a statement implying that dose was not consistent throughout experiment.

1	Table C-19. Characteristics and quantitative results for <u>Carrillo et al. (2014)</u>
---	--

Species		Sex	Ν	Exposure route	Dose range	Exposure duration	
Wistar rats	M & F	1	8 males and 8 females by veight/dose group	Inhalation	2,000, 4,000, or 8,000 mg/m ³ white spirit	6 hrs/d, 5 d/wk for 13 wks	
5 d/w • Rats v • All rat • Termi • Clinica norma • The N Approximate hyd	vere exp k, for a t vere dist s survive nal body al and he al physic OAEL wa rocarboi	otal of 13 wk ributed into g ed treatment. weights of h ematological o logical limits. as 4,000 mg/r n compositior	s. groups by weight b igh-exposure grou observations were n ³ . n of white spirit ov	s of 2,000, 4,000, or between 10 and 13 up animals were sign e statistically differe yer the past 40 yrs in	wks of age. nificantly below cou nt, were small, and n terms of carbon n	ntrol values. were within	
nydrocarbon con	stituents		•	ns (naphthenics iso-	alkanes, cyclo-alka	nes) and aromatics	
Hydrocarbo		I	Pre-1980		Post-1980		
constituents by number	carbon	Kuwait sam	Arabian ligh ple sample		2 EU sample 1985	EU sample 2011	
Paraffins (n + iso)			Approximat	e constituent conce	entrations in % w/v	N	
C8		≤0.5	≤0.5	≤0.5	≤0.5	-	
C9		13	13	10	12	7	
C10		33	33	24	24	20	
C11		13	12	16	15	17	
C12		2	2	3	3	3	
C13		-	-	-	-	≤0.1	
Sum P		61	60	53	54	47	
Naphthenes							
C8		≤0.5	≤0.5	≤0.5	≤0.5	≤0.1	
C9		5	5	7	8	8	
C10		8	8	11	10	14	
C11		4	4	8	7	10	
C12		1	1	2	2	2	
Sum N		18	18	28	27	34	
Aromatics					-1		
C8		1	1	1	2	≤1	
C9		11	11	9	9	8	
C10		6	6	7	6	6	
C11		2	2	3	2	3	
C12		-	-	-	-	≤1	
Sum A		20	20	20	19	18	


This document is a draft for review purposes only and does not constitute Agency policy. C-73 DRAFT—DO NOT CITE OR QUOTE

Carbon number range								
C7	≤0.1		≤0.1	-	_	-		
C8	2		2	2	3	≤0.1		
C9	29		30	23				
C10	48		48	41	40	40		
C11	18		18	26	23	31		
C12	3		3	5	4	5		
C13	≤1		≤1	≤1	≤1	≤0.1		
*Predominantly branched	d mono-aror	natics				·		
Р	hysical and	chem	ical properties of	white spirit us	ed in this study			
Property			White spi	rit	-	, C9-C14 (2–25% natics)		
Physical state at 20°C and	l 1,013 hPa	Clear odor	colorless liquid w	vith pungent	Clear colorless liqu odor	id with pungent		
Melting/freezing point (°(C)	<-15	°C		<–20 (ASTM 5950)			
Boiling range (°C)		150-2	200 (ASTM D1078	3)	110–270 (ASTM D	86)		
Relative density (g/cm ³) a	t 15°C)	0.78	(ASTM D4052)		0.70–0.87 (ISO 12185)			
Vapor pressure (kPa @ 20)°C)	0.37			0.02-0.5			
Flash point (°C)			° 170)		>23 (ASTM D56)			
Flammability (% v/v)	0.7			0.6–0.7				
Self-ignition temperature	(°C)	293 (ASTM E659)		>200			
Surface tension (mN/m)		26 (Du Novy ring)			22–28 (Wilhelmy p	late method)		
Viscosity (mm²/s)		1.1 (A	ASTM D445)		0.7–3.5			
Odor threshold (mg/m ³)		5–158 mg/m ³			5–158 mg/m ³			
	Additio	nal de	escriptors for the	white spirit tes	st sample			
Parameter				Va	lue			
Specific gravity (15.6/15.6	5°C)	0.777						
Color (Saybolt)		+30						
Aniline point (°C)		56						
Total sulfur (% w/w)		<0.0005						
Kauri-butanol value		37						
Copper corrosion		No. 1 strip						
Molecular weight (g/mol)				~	140			
	Hydrod	arboı	n constituents of	white spirit tes	t sample			
Constituent		Carbon range (at >5%)			Content (% w/w)			
Paraffins (n- + iso)		C9-C11			56.0			
Naphthenes			C9-C11			5.0		
Aromatics			C9-C10		1	9.0		
*Predominantly branched	d mono-aror	natics	•					

	-	•	ions throughout th			
Nominal concentration (mg/m³)			oncentrations			
		(mg	ʒ/m³)	ррі	m (v/v)	
8,0	00	7,500) ± 395	1,2	93 ± 68	
4,0	00	4,000) ± 119	69	0 ± 21	
2,0	00	2,00	0 ± 52	34	45 ± 9	
	Mean clinical	chemistry values a	fter 13-wk exposu	re to white spirit		
		Expos	ure concentration	(mg/m³)		
Observation	Control	2,000	4,000	7,500	SD of single observation	
Males						
Protein (g/L)	66.1	64.7	65.9	65.2	2.77	
Urea (mm/L)	8.4	8.5	8.4	8.2	0.94	
AP (IU)	76	75	79	91**	13.8	
ALT (IU)	25	29	27	30	12.0	
AST (IU)	40	41 44		46*	8.6	
Na (mm/L)	146	147 146		147	1.2	
K (mm/L)	5.5	5.7 6.1		5.9	0.73	
Cl (mm/L)	103	102 101		101	2.67	
Albumin (g/L)	36.5	36.8	35.7	37.3	2.64	
Bilirubin (mm/L)	2.83	3.06 3.28		3.06	0.76 ^a	
Glucose (mm/L)	3.26	n.d.	3.40	3.82	0.82ª	
Females						
Protein (g/L)	65.6	67.7	69.2**	68.7**	3.45	
Urea (mm/L)	10.1	9.7	9.7	9.3	1.89ª	
AP (IU)	54	58	60	71**	15.2	
ALT (IU)	22	20	23	22	6.7	
AST (IU)	43	39	42	42	12.4	
Na (mm/L)	146	146	146	146	2.0 ^C	
K (mm/L)	5.5	5.0	5.9	5.9	1.11 ^c	
Cl (mm/L)	105	106	105	105	2.0	
Albumin (g/L)	39.7	40.3	41.4	42.3*	3.03	
Bilirubin (mm/L)	3.28	3.25	3.56	3.33	0.47	
	4.05	n.d.	3.84	3.87	0.20	

Mean	hematology	values of male rat	s after 13-wk expo	sure to white spir	it					
		Exposure con	centration (mg/m ³	²)	SD of single					
Observation	Control	2,000	4,000	7,500	observation					
Hemoglobin (g/100 mL)	15.2	14.9	14.5	14.6	1.00ª					
PCV (%)	42.4	41.2*	40.6**	40.3**	1.67					
RBCs (×10 ⁶ /cmm)	8.28	7.94*	7.76**	7.70**	0.37ª					
WBCs (×10³/cmm)	4.2	4.5	5.7	5.6	1.30ª					
MCV (μ ³)	50.9	52.1*	52.4*	52.0*	1.54					
MCH (pg)	18	19*	19*	19*	0.6					
MCHC (g/100 mL)	36	36	36	36	0.5					
Prothombin time (sec)	16.0	16.0	16.0	16.2	0.62					
KCCT (sec)	21.5	21.7	20.2	20.6	2.56					
^a Cage effect. PCV = packed cell volume			ephalin coagulatio k exposure to whit							
	Exposure concentration (mg/m ³) SD of a sing									
Observation	Control	2,000	4,000	7,500	observation					
Males										
Absolute organ weights (g)									
Kidney	2.84	3.25**	3.31**	3.40**	0.335					
Liver	15.82	16.48	17.11	17.11	1.892					
Spleen	0.89	0.94	1.10*	0.97*	0.22					
Heart	1.20	1.27	1.25	1.23	0.107					
Organ weights adjusted f	or terminal bo	dy weights								
Kidney	2.74	3.20**	3.33**	3.53**	0.27					
Liver	15.12	16.17	17.25**	17.98**	1.64ª					
Spleen	0.86	0.93	1.11**	1.00**	0.21					
Heart	1.17	1.25	1.26	1.28*	1.13ª					
Females										
Absolute organ weights	•									
Kidney	1.80	1.82	1.90*	1.87*	0.130					
Liver	8.69	9.33*	9.91**	10.57**	0.775					
Spleen	0.65	0.65	0.67	0.67	0.078					
Heart	0.80	0.82	0.81	0.80	0.05					

Kidney	1.79	1.80	1.90)*	1.90*	0.12
Liver	8.67	9.16*	9.87	**	10.79**	0.65
Spleen	0.65	0.64	0.6	7	0.69	0.07
Heart	0.80	0.81	0.8	1	0.81	0.02
*p < 0.05. **p < 0.01. ^a Cage effect.			f	12		
Statistica	lly significar	it toxicological	Exposure cond	-	re to white spirit	
		Males	exposure cond	Lentration (m	Females	
Observation	2,000	4,000	7,500	2,000	4,000	7,500
Body weight gain	-	4,000	D	-	-	7,500 D
Water intake	_	_	U	_		
Clinical chemistry						· ·
AP	_ [_	I	_	_	1
AST	_	_	I	_		
Albumin	_	_			_	1
Protein	_	_	_	_	1	
Hematology						
PCV	D	D	D	_	_	_
RBC	D	D	D	_	_	_
MCV	I	I	I	_	_	I
МСН	I	I	I	_	_	_
WBC	_	_	_	_	I	I
Relative organ weights						1
Kidney	Ι	I	Ι	-	I	I
Liver	-	I	Ι	I	I	I
Spleen	-	I	Ι	_	-	-
Heart	_	-	Ι	_	-	_
Kidney						
Hyaline droplets	Ι	I	Ι	NE	-	-
Tubular basophilia	Ι	I	Ι	NE	-	-
Spleen						
Extramedulary hematopoesis	NE	Ι	Ι	NE	-	I
Hemosiderin deposition	NE	I	Ι	NE	_	I

Table C-20. Characteristics and quantitative results for <u>Clark et al. (1989)</u>

Species Sex		N	Exposure route	Dose range	Exposure duration				
Wistar rats N	И & F	50 males/group 50 females/group	Inhalation	0, 450, 900, or 1,800 mg/m ³ SHELLSOL A/ SOLVESSO 100 (1,2,4-TMB, 1,3,5-TMB, and 1,2,3-TMB)	6 hrs/d, 5 d/wk, 12 mo				
 1,3,5-TME Rats were Animals w drawn fro Two male Seven rats period du No appare statisticall Animals te considere 	exposed I 3, and 1,2, sorted int vere placed m the labo and two f s were ren e to sore h ent biologi ly significa ested at 1, d to be ph at the 1,8	cal significance of hematol nt. Mean cell hemoglobin 800 mg/m ³ had increased l ysiological adaptive respor 00 mg/m ³ appeared to be r	for 12 mo. s by sex. bers with volumes of o remove particulate two male medium period and 30 rats w ogical changes were concentration was in kidney and liver weig uses.	f at least 8 m ³ with we e and organic vapor exposure animals d vere removed durin seen in males; how ncreased in males u ghts at 6 and 12 mo	ventilation of ai impurities. ed. g the recovery vever, they wer p 2%.				
Target concentrat	tions and a	actual concentrations expr analy		means of the daily	atmosphere				
			Concentration (m	g/m³)					
		- .	Actual						
Exposure group)	Target	Mean		SD				
Control		0	0		-				
		450	470	29					
Low		900 970							
Low Medium		900	970		70				

Inhalation exp	osui	re to SH	IELLSOL /	A/SOLV	ESSO 10	0 after 12 mc) (1,3,5- ⁻	ГМВ, 1,2	,4-TMB,	1,2,3-TN	/IB) (mg/m³)	
			M	ean he	matologi	cal values of	cardiac	blood				
				Ma	ale		Female					
Observation		0 450			1,800	SD of a singl observation		450	900	1,800	SD of a single observation	
Hemoglogin (g/100 mL)		14.4	14.6	13.9	14.5	0.80	14.0	14.0	13.9	14.0	0.71	
HCT (%)		39.7	40.3	38.4	39.9	2.14	39.1	38.6	38.3	38.4	1.91	
RBCs (×10 ⁶ /cmm))	7.49	7.51	7.06	7.52	0.449	6.86	6.78	6.71	6.81	0.356	
WBCs (×10 ³ /cmm	ı)	3.3	3.2	3.6	4.2	1.07	2.3	2.1	1.9	2.3	0.61	
MCV (µm³)		53	54	55	53	1.7	57	57	57	56	1.1	
MCH (pg)		19.5	19.7	20.0	19.6	0.47	21.1	21.0	21.0	20.9	0.43	
MCHC (g/100 mL)	36.4	36.3	36.3	36.4	0.44	36.6	36.4	36.6	36.6	0.42	
Prothombin time (sec)		14.0	14.5	14.0	14.3	0.63	14.0	14.0	14.0	14.0	0.58	
KCCT (sec)		20.8	21.1	20.3	19.7	2.35	22.4	21.5	22.0	22.5	2.47	
Reticulocytes (%)		5.68	-	-	4.31	2.111	3.30	-	-	3.66	0.951	
Osmotic fragility ^a								•			•	
0% hemolysis		0.62	0.64	0.63	0.65	0.038	0.65	0.63	0.62	0.64	0.039	
50% hemolysis		0.42	0.40*	0.40*	• 0.40*	0.015	0.44	0.42	0.41	0.44	0.026	
100% hemolysis		0.29	0.26	0.27	0.26	0.027	0.30	0.28	0.29	0.30	0.030	
^a Values reported	are	% saline	e at whic	h 0, 50,	or 100%	hemolysis o	ccurred.					
Inhalation exp	osur	re to SH	IELLSOL /	A/SOLV	ESSO 10	0 after 12 mo) (1,3,5- ⁻	ГМВ, 1,2	,4-TMB,	1,2,3-TN	/IB) (mg/m³)	
		N	lean diff	erentia	I leucocy	te values of	cardiac	blood mg	g/m³			
				Male			Female					
						SD of a single					SD of a single	
Observation	0		450	900	-	observation	0	450	900	1,800	observation	
WBCs (×10³/cmm)	3.	3	3.2	3.6	4.2	1.07	2.3	2.1	1.9	2.3	0.60	
Polymorph neutrophils (%)	32	2	27	39	35	9.4	36	45	40	38	12.1	
Lymphocytes (%)	63	3	67	59	62	8.8	59	51	54	56	11.3	
Monocytes (%)	3		3	2	3	1.6	3	3	4	3	2.3	
Eosinophils (%)	3		3	1	1	1.7	2	2	2	3	1.7	
Absolute value neutrophils (×10 ³ /cmm)	1.	1	0.9	1.5	1.3	0.63	0.8	1.0	0.8	0.9	0.38	
Absolute value lymphocytes (×10³/cmm)	2.	1	2.2	2.0	2.7*	0.62	1.4	1.1	1.0	1.3	0.47	

Inhalation exposure to SHELLSOL A/SOLVESSO 100 after 12 mo (1,3,5-TMB, 1,2,4-TMB, 1,2,3-TMB) (mg/m ³)											
Mean clinical chemistry values of cardiac blood mg/m ³											
			N	Iale		Female					
Observation	0	450	900	1,800	SD of a single observation	0	450	900	1,800	SD of a single observation	
Protein (g/L)	63	64	64	64	1.9	66	69	68	66	3.7	
Urea (mm/L)	8.6	8.6	8.8	9.0	1.13	8.7	8.4	8.4	9.0	1.63	
Uric acid (mm/L)	0.14	0.11	0.11	0.13	0.068	0.11	0.11	0.08	0.09	0.049	
AP (IU)	93	82	81	82	16.7	58	55	52	48	14.2	
AST (IU)	65	57	45	60	24.1	68	58	66	78	37.8	
ALT (IU)	56	49	44	52	21.5	61	48	62	66	23.7	
Creatinine (µm/L)	68	68	73	74*	6.5	64	60	63	63	5.9	
Billrubin (µm/L)	2	2	2	1	1.4	2	2	2	2	0.6	
Na⁺ (mm/L)	146	146	146	146	0.7	146	146	147	148**	1.4	
K⁺ (mm/L)	5.5	5.9	5.5	5.5	0.71	5.9	5.4	5.4	5.6	0.99	
Cl⁻ (mm/L)	107	105	105	105	1.8	104	105	105	105	1.9	
Ca++(mm/L)	2.67	2.70	2.67	2.70	0.089	2.66	2.63	2.64	2.61	0.127	
Inorganic P (mm/L)	1.89	1.45	1.40	1.51	0.168	1.46	1.29	1.46	1.45	0.198	
Glucose (mm/L)	3.5	3.4	3.5	3.4	0.66	3.7	3.5	3.7	3.3	0.63	
Albumin (%)	64.4	60.7	63.5	61.3	3.57	55.9	56.5	53.0	51.5*	4.18	
*p < 0.05 = significant	ce of the	differe	nce bet	tween tr	eatment and co	ntrol m	neans.				

. **p < 0.01.

Inhalation exposure to SHELLSOL A/SO	LVESSO 10	00 after 12 mo (1,3,5-TMB, 1,2,4-TMB, 1,2,3-TMB) (mg/m ³)

Mean organ weights (g)											
			Ma	le		Female					
Observation	0	450	900	1,800	SD of a single observation	0	450	900	1,800	SD of a single observation	
Initial body weight	280	280	283	280	11.2	181	183	182	183	5.9	
Brain	2.29	2.27	2.28	2.29	0.065	2.05	2.04	2.02	2.08	0.059	
Heart	1.48	1.54	1.50	1.52	0.193	1.06	1.06	1.06	1.08	0.091	
Liver	21.23+	20.23+	21.62+	23.51*+	2.447	12.89	12.40	12.63	13.20	1.232	
Spleen	1.36	1.27	1.34	1.32	0.216	0.87	0.80	0.84	0.86	0.125	
Kidneys	3.99	3.78	3.97	4.38*	0.488	2.51 ⁺	2.47*	2.49+	2.49+	0.214	
Testes	3.79	3.76	3.77	3.78	0.238	-	-	-	_	-	
*Adjusted for ini	Adjusted for initial body weight.										

*p < 0.05 = Significance of the difference between treatment and control means.

		Summary	of gross nec	ropsy findings	of major organ	S		
			Male			Fema	le	
Observation	0	450	900	1,800	0	450	900	1,800
Liver								<u>.</u>
Exaggerated lobular pattern	2	6	4	3	2	1	0	2
Red or haemorrhagic areas	0	0	0	0	0	0	0	2
Enlarged	1	0	0	0	0	0	0	0
Kidneys								
Hydronephrosis	1	1	1	0	0	1	0	0
Granular surface	3	6	1	5	4	0	0	3
Enlarged	0	1	0	1	0	0	0	1
Patchy or pale areas	0	1	0	0	1	0	0	1
Cyst	0	0	0	0	1	1	2	2
Lungs								
Patchy or pale areas	3	9	5	8	3	2	9	3
Red or haemorrhagic areas	3	3	1	4	1	0	0	4
Spleen								·
Patchy or pale areas	1	0	0	0	0	0	0	0
Granular surface	0	0	0	0	1	1	0	0
Enlarged	0	0	0	1	0	0	0	0
Uterus								
Dilated	_	-	_	-	0	3	1	0
Mass	_	-	-	-	0	0	0	1
Gonads								
Cyst	0	0	0	0	4	6	5	5

Inhalatio	on of SHELLS	OL A/SOLVE	SSO 100 aft	er 6 mo (1,3	,5-TMB, 1,2	,4-TMB, 1,2,	3-TMB) mg/	′m³
		Incidence	and severi	ty of histopa	athological	esions of kid	Iney and Iun	g
Observation		Ν	/lale			Fen	nale	
	0	450	900	1,800	0	450	900	1,800
Kidney nephrosis								
Normal (grade 0)	7	8	10	5	10	10		10
Increased (grades 1–5)	3	2	0	5	0	0	0	0
Mean grade	0.4	0.4	0	0.6	0	0	0	0
Kidney mineralisa	tion		-			·		
Normal (grade 0)	10	10	10	10	1	2	1	1
Increased (grades 1–5)	0	0	0	0	9	8	9	9
Mean grade	0	0	0	0	0.8	2.1	2.3	2.4
Pulmonary macro	phage infilt	ration						
Normal (grade 0)	6	8	5	5	8	5	7	5
Increased (grades 1–5)	4	2	5	5	2	5	3	5
Mean grade	0.6	0.4	1.1	1.0	0.4	0.9	0.7	0.8
Alveolar wall thic	kening							
Normal (grade 0)	5	5	5	2	4	0	4	4
Increased (grades 1–5)	5	5	5	8	6	10	6	6
Mean grade	0.9	0.7	1.0	1.4	1.2	2.2	1.3	1.4
Values are numbe	rs of rats/gr	oup of 10 ma	ales, 10 fem	ales affecte	d at each gra	ade.		
Inhalation	of SHELLSC	DL A/SOLVESS	50 100 afte	r 12 mo (1,3	,5-TMB, 1,2	,4-TMB, 1,2,	3-TMB) (mg	/m³)
	I	ncidence and	d severity o	f histopatho	logical lesic	ons of the kid	Iney and lur	ıg
		Ma	ale	-		Fer	male	
Observation	0	450	900	1,800	0	450	900	1,800
Kidney nephrosis				-				
Normal (grade 0)	1	3	1	1	14	8	10	7
Increased (grades 1–5)	23	22	24	24	10	16	14	17
Mean grade	2.0	1.9	2.2	2.5	0.8	0.9	0.9	1.4
Kidney mineralisa	tion							
Normal (grade 0)	24	25	25	25	1	1	2	1
Increased (grades 1–5)	0	0	0	0	23	23	22	23
Mean grade	0	0	0	0	2.0	2.2	1.8	2.0

Pulmonary ma	crophage inf	Itration								
Normal (grade		9	9	11	12	12		20	15	
Increased 7 (grades 1–5)		16	16	14	12	12		4	9	
Mean grade 0.5		1.3	1.3	1.3	1.1	1.1		0.4	0.8	
Alveolar wall t	hickening						·			
Normal (grade 0) 9		7	8	6	4	5		11	7	
Increased (grades 1–5)	16	18	17	19	20	19		13	17	
Mean grade	1.3	1.6	1.5	1.6	1.9	1.8	1.8 1		1.6	
Values are num autolysed).	-		-			- ·				
Innalat	ION OF SHELL	SOL A/SOLVI	2550 100 ai	fter 12 mo (1,3,			1,2,3-11	1B) (mg	/m°)	
				Incidence of	neoplasia					
Observation			ale		-	Female				
	0	450	900	1,800	0	450	900		1,800	
Pituitary	2	0	0	0	7	7	4		3	
Spleen	0	0	0	1	0	0	0		0	
Uterus	-	-	-	-	0	0	0	0 1		
Brain	0	1 0 0 0 0 0					0			
Values are num	bers of rats/	group of 25	males, 24 fe	emales with a t	umor.					
NO	AEL		L	OAEL			LOAEL	. Effects		
0 mį	g/m³		450 mg/m ³				Male osmotic fragility, liver and kidney lesions			

Study design							
Species	Sex	N	Exposure route	Dose range	Exposure duration		
Sprague-Dawley rats	Male	20 rats/dose group	Inhalation	0, 100, 500, or 1,500 ppm High- Flash Aromatic Naphtha (HFAN)	6 hrs/d, 5 d/wk, for 90 d		
Additional study of	details:						
 1,2,3-1 Rats w Anima Expose standa Increa consid Compa No sig 	vere exposed to a mix FMB) for 6 hrs/d, 5 d/ vere randomly divided ure level measurement ards. ses in motor activity in lered to have biologic ared to the control gr ns of neurotoxicity we OAEL was 100 ppm.	wk for 90 d in 16 m ³ I into four equal wei I tissues removed fo nts were taken on ar n the 100 and 1,500 al significance. oup, the 1,500 ppm	glass and stainles ght groups of 20 a r histopathologica hourly basis and ppm group appea dose group gained	s steel chambers. nimals. l examination after accuracy confirmed r to be aberrant ar	⁻ 13 wks. d by vapor		
		Composition	of HFAN				
	Compound			Weight percent			
o-Xylene				3.20			
Cumene				2.74			
n-Propylbenzene			3.97				
4-Ethyltoluene			7.05				
3-Ethyltoluene			15.1				
2-Ethyltoluene			5.44				
1,3,5-TMB				8.37			
1,2,4-TMB				40.5			
1,2,3-TMB				6.18			
≥C10s				6.19			
Total				98.74			
	Γ	Aean chamber conc	entrations (ppm)	1			
Target co	ncentrations	Nominal concentra	ations mean (SD)	Actual concentra	ations mean (SD)		
0				-	_		
100		94 (1			(2.5)		
500		481 (432	(2.8)		
1,500		1,334	(17)	1,320	D (13)		

Table C-21. Characteristics and quantitative results for **Douglas et al. (1993)**

	Average (SD) body weights (g) of m	ale rats ^a						
	HFAN exposure level (ppm)								
Study wk	0	100	500	1,500					
)	280 (15)	283 (13)	280 (13)	281 (13)					
1	316 (18)	322 (16)	313 (15)	301 (17)*					
2	346 (23)	352 (21)	338 (18)	314 (21)**					
3	373 (27)	281 (23)	356 (19)	331 (22)**					
4	401 (32)	406 (30)	374 (20)*	347 (26)**					
5	414 (33)	424 (34)	392 (24)	361 (25)**					
5	424 (34)	441 (33)	413 (25)	367 (32)**					
7	436 (39)	455 (42)	426 (26)	383 (29)**					
3	448 (38)	469 (39)	437 (28)	390 (30)**					
9	459 (37)	484 (41)	449 (40)	401 (32)**					
10	462 (38)	484 (46)	455 (35)	410 (30)**					
11	467 (39)	491 (54)	469 (32)	412 (32)**					
12	476 (41)	504 (55)	481 (36)	418 (32)**					
13	483 (42)	508 (56)	491 (37)	425 (34)**					

^a20 animals per group.

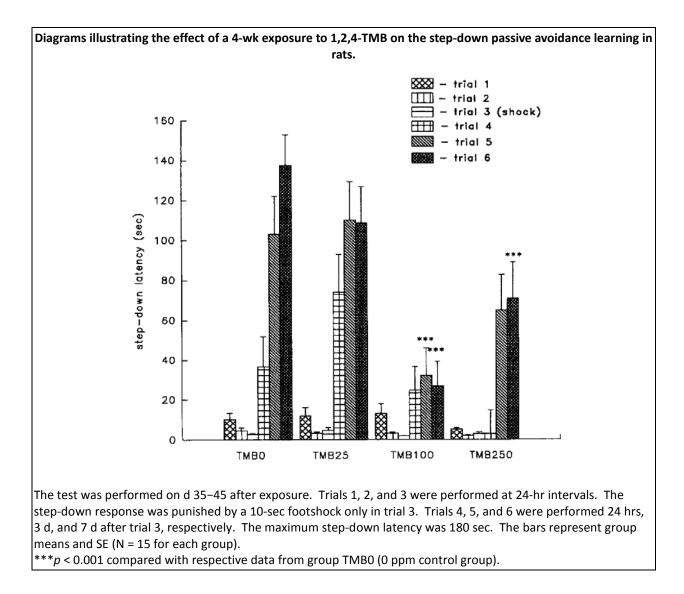
*Significantly different from control; $p \le 0.05$.

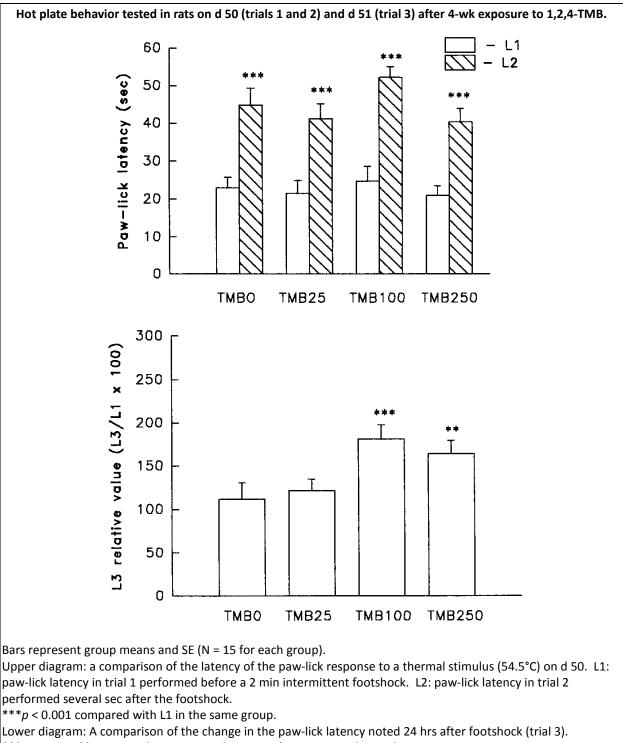
**Significantly different from control; $p \le 0.01$.

		Average r	motor activity	y counts (SD) of male ra	ts ^a		
Study wk	Time interval (min)	HFAN concentration (ppm)	Horizontal a	activity (H)	Vertical a	ctivity (V)	Total activ	vity (H + V)
5	0-10	0	1,548	(1,163)	269	(243)	1,818	(1,391)
		100	1,511	(856)	287	(279)	1,298	(1,106)
		500	1,701	(1,143)	229	(156)	1,930	(1,287)
		1,500	1,395	(699)	219	(157)	1,614	(819)
	10-20	0	882	(800)	124	(144)	1,006	(931)
		100	1,142	(569)	204	(148)*	1,346	(689)
		500	1,202	(772)	178	(156)	1,381	(915)
		1,500	862	(546)	130	(102)	992	(640)
	20-30	0	732	(664)	116	(113)	848	(766)
		100	690	(497)	138	(117)	829	(579)
		500	772	(485)	100	(98)	872	(575)
		1,500	555	(357)	72	(57)	626	(407)
9	0-10	0	1,327	(1,018)	227	(197)	1,554	(1,192)
		100	996	(811)	133	(125)	1,129	(917)
		500	1,454	(1,051)	235	(236)	1,689	(1,274)
		1,500	1,624	(1,027)	249	(195)	1,872	(1,205)

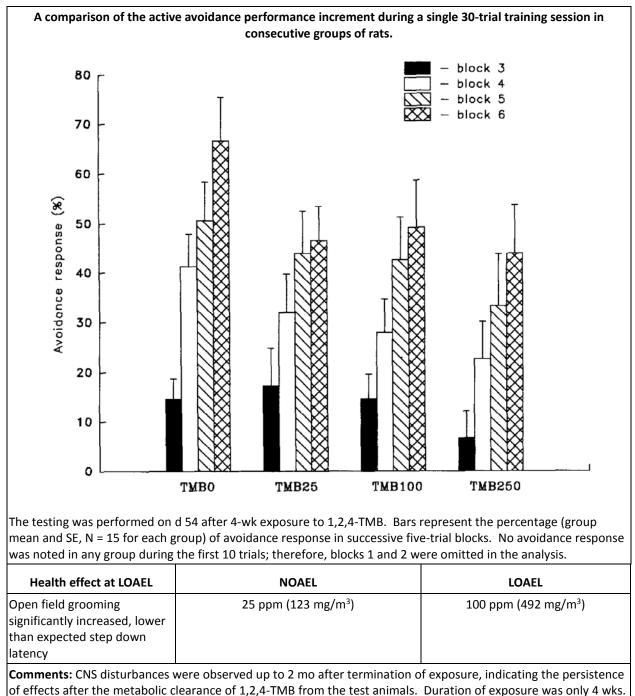
		1,500	3,338	(1,315)	553	(346)	3,891	(1,619)
	1		2,100	(_,,		(-,	(_,,
		500	3,136	(1,859)	641	(509)	3,777	(2,295)
-		100	2,605	(2,173)	519	(606)	3,152	(2,729)
13		0	2,950	(1,813)	496	(363)	3,446	(2,142)
		1,500	3,364	(1,663)	515	(376)	3,879	(2,004)
		500	2,646	(2,078)	433	(465)	3,079	(2,524)
		100	2,271	(1,843)	331	(374)	2,602	(2,191)
9		0	2,467	(1,960)	437	(436)	2,903	(2,362)
		1,500	2,812	(1,269)	421	(254)	3,233	(1,478)
		500	3,675	(1,849)	507	(329)	4,182	(2,152)
	-	100	3,343	(1,533)	629	(462)	3,972	(1,923)
5	0-30	0	3,162	(2,332)	509	(457)	3,671	(2,759)
Study wk	Time interval (min)	concentration (ppm)	Horizontal	activity (H)	Vertical a	ctivity (V)	Total activ	/ity (H + V)
	Time a line to market and	HFAN						
	1		al motor act	vity counts	(SD) of male	e rats	1	
*Significan	tly different fro	m control; $p \le 0$						
-		tween 18 and 20						
		1,500	511	(314)	77	(62)	588	(366)
		500	593	(429)	110	(109)	703	(496)
		100	552	(654)	116	(170)	667	(787)
	20-30	0	518	(500)	85	(96)	603	(586)
		1,500	945	(678)	188	(175)	1,133	(836)
		500	887	(798)	198	(198)	1,085	(966)
		100	634	(637)	165	(202)	808	(832)
	10-20	0	814	(807)	140	(173)	955	(961)
		1,500	1,882	(773)	288	(188)	2,170	(925)
		500	1,579	(950)	317	(271)	1,895	(1,193)
		100	1,356	(1,071)	260	(277)	1,616	(1,320)
13	0-10	0	1,618	(1,053)	270	(217)	1,889	(1,252)
		1,500	556	(455)	91	(108)	646	(547)
		500	463	(516)	79	(116)	542	(627)
		100	517	(584)	83	(140)	600	(719)
	20-30	0	458	(487)	85	(113)	543	(593)
		1,500	1,138	(746)*	165	(153)	1,303	(887)*
		500	647	(735)	104	(158)	752	(887)
		100	758	(653)	115	(154)	873	(783)
	10-20	0	589	(614)	105	(152)	694	(754)

		Ave	rage (SD) grip s	strength (g) of m	ale rats				
Exposure period	Limb tested	HFAN exposı (ppm)			FAN expo vel (ppm)			N expo l (ppm		-	osure level) 1,500
0	Forelimb	558	(118)	5	538	(151)	58	6	(130)	592	(161)
5	Forelimb	580	(117)	6	522	(176)	57	8	(167)	590	(157)
9	Forelimb	385	(117)	4	133	(140)	49	2	(173)	448	(124)
13	Forelimb	440	136)	4	158	(166)	49	8	(148)	457	(148)
0	Forelimb	399	(63)	4	121	(82)	39	4	(80)	424	(90)
5	Forelimb	255	(63)	2	269	(55)	25	0	(44)	248	(55)
9	Forelimb	404	(89)	4	171	(120)	39	3	(107)	401	(116)
13	Forelimb	423	(85)	4	155	(143)	41	5	(70)	429	(114)
^a 20 animals p	er group.										
		Average	(SD) aud	itory s	startle res	sponse	of male	rats			
	Paramet	er									
Exposure period (wks)	measure (msec or		oosure le om) 0		HFAN ex level (pp	-		-	oosure m) 500		exposure pm) 1,500
0	Latency	27	(4.	9)	28	(6.2)	28	(6.2)	26	(6.3)
5	Latency	23	(5.	9)	24	(6.1)	26	(6.1)	25	(3.3)
9	Latency	23	(6.	9)	23	(5.1)	26	(5.1)	25	(4.9)
13	Latency	23	(4.	1)	24	(4.6)	25	(4.6)	23	(3.6)
0	Amplitude	0.17	(0.	1)	0.16	(0.1) 0	.17	(0.1)	0.17	(0.1)
5	Amplitude	0.42	(0.	3)	0.35	(0.2) 0	.28	(0.2)	0.38	(0.3)
9	Amplitude	0.52	(0.	3)	0.35	(0.2)	* 0	° 0.27		* 0.37	(0.3)
13	Amplitude	0.47	(0.	3)	0.36	(0.3) 0	.32	(0.3)	0.44	(0.2)
^a 20 animals p *Significantly		rom control; p s	s 0.01.								
		Averag	e (SD) th	ermal	response	(sec) c	of male	rats			
Exposure period (wks)	HFAN expo	osure level (ppr 0	n) HFAN	l expo (ppm)	sure leve 100	I HF	AN expo (ppm		evel	HFAN expo (ppm)	
0	8.0	(2.7)	12	.2	(4.6)*	1	10.7	(3.4)*	9.5	(4.0)
5	12.2	(4.8)	16	.0	(7.7)	1	11.6	(4.6	5)	17.9	(12.2)
9	10.2	(3.8)	10	.2	(3.0)		9.8	(3.9))	11.1	(2.9)
13	10.9	(4.2)	11	.3	(3.9)	1	10.8	(13.	0)	12.8	(4.9)
^a 20 animals p *Significantly		rom control; p	<u> </u>								
		Average (S	D) hindf	oot spl	lay distan	ice (mr	n) of ma	ale rats			
Exposure period (wks)	-	osure level (ppr 0	n) HFAI	N expo (ppm)	sure leve) 100	el HF	AN exp (ppm	osure l n) 500	evel	HFAN expo (ppm)	
0	109	(16)	10)7	(16)		114	(10	D)	108	(14)
5	128	(20)	12	25	(22)		126	(1	5)	113	(17)
9	131	(19)	12	22	(14)		124	(19	9)	126	(14)
13	120	(23)	12	21	(19)		127	(18	8)	124	(17)
^a 20 animals p	er group.										


This document is a draft for review purposes only and does not constitute Agency policy.C-88DRAFT—DO NOT CITE OR QUOTE

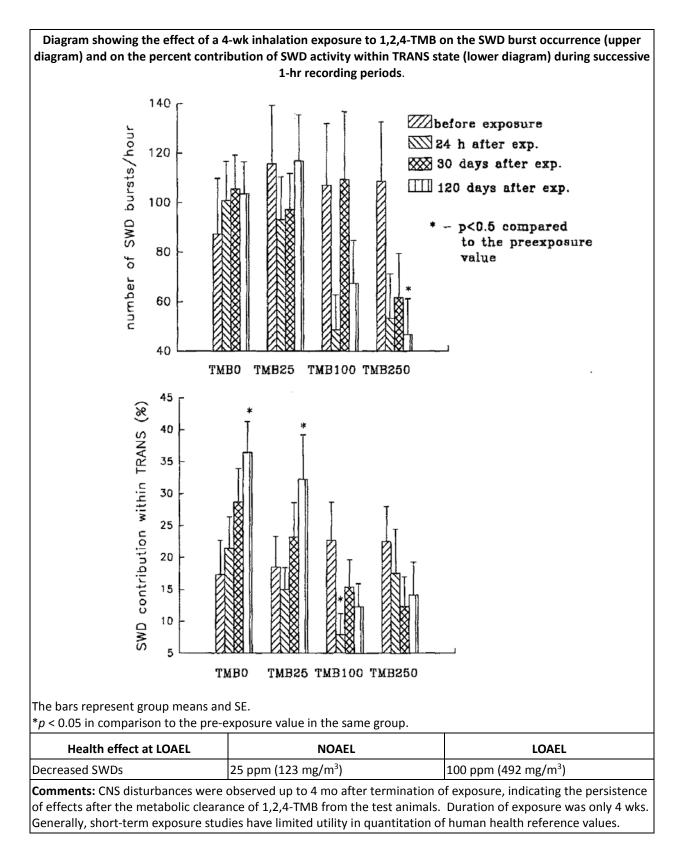

NOAEL	LOAEL	LOAEL effects
100 ppm	500 ppm	Decreased body weight
Source: <u>Douglas et al. (1993)</u> .		

1Table C-22. Characteristics and quantitative results for Gralewicz et al.2(1997b)


Species	Sex	Ν	Exposure route	Dose range	Exposure duration
Vistar rats	м	15 rats/ dose	Inhalation (6 hrs/d, 5 d/wk)	0, 25, 100, or 250 ppm (0, 123, 492, or 1,230 mg/m ³) 1,2,4-TMB	4 wks
5 • 4 • F a • 7 • 7	Animals 5 d/wk f Animals Rats wer activity, Fests we Rats disp L,230 m	were expos or 4 wks. F were rando re tested wi passive avo ere perform played decre g/m ³) expos	ood and water were p omized and assigned to th a variety of behavio idance, active two-wa ed on d 14–54 followin eased performance on sure levels.	o the experimental groups. oral tests, including radial maz y avoidance, and shock-induc ng exposure. several tests at the 100 and 2	e performance, open field ed changes in pain sensitivity 250 ppm (492 and
				no after termination of expos 1,2,4-TMB from the test anir	
	d	Number of rearings Number of rearings Number of crossings Number of crossing Number of cr	TMB0 TMB2	n field during a 5-min observa	ation period.
		2 0 7 [- тмво тмв2	5 TMB100 TMB250	
		Number of groomings 0 1 2 2 4 5 9			

This document is a draft for review purposes only and does not constitute Agency policy.C-90DRAFT—DO NOT CITE OR QUOTE

****p* < 0.001, ***p* < 0.01 when compared to TMB0 (0 ppm control group).

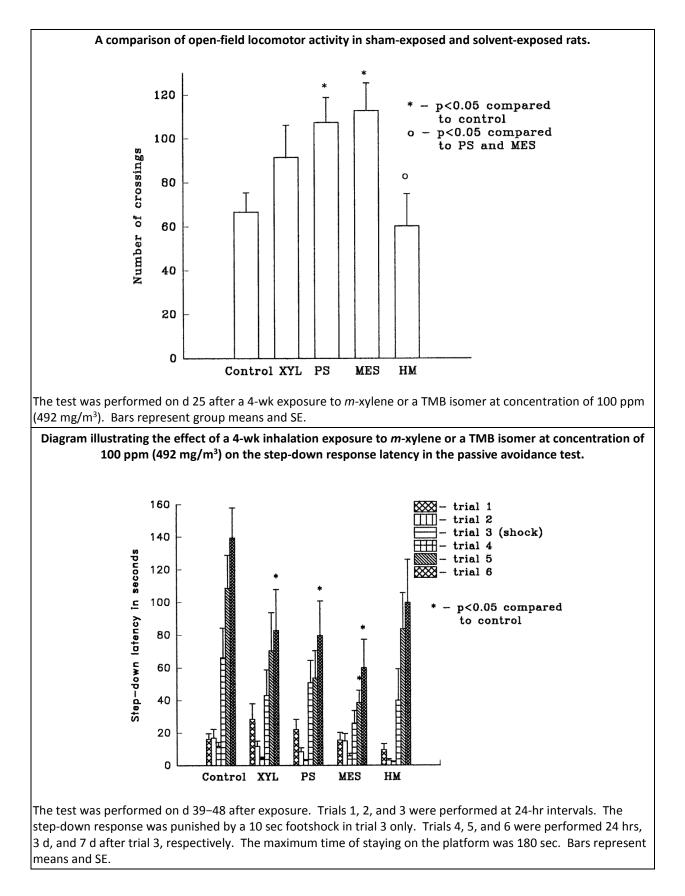


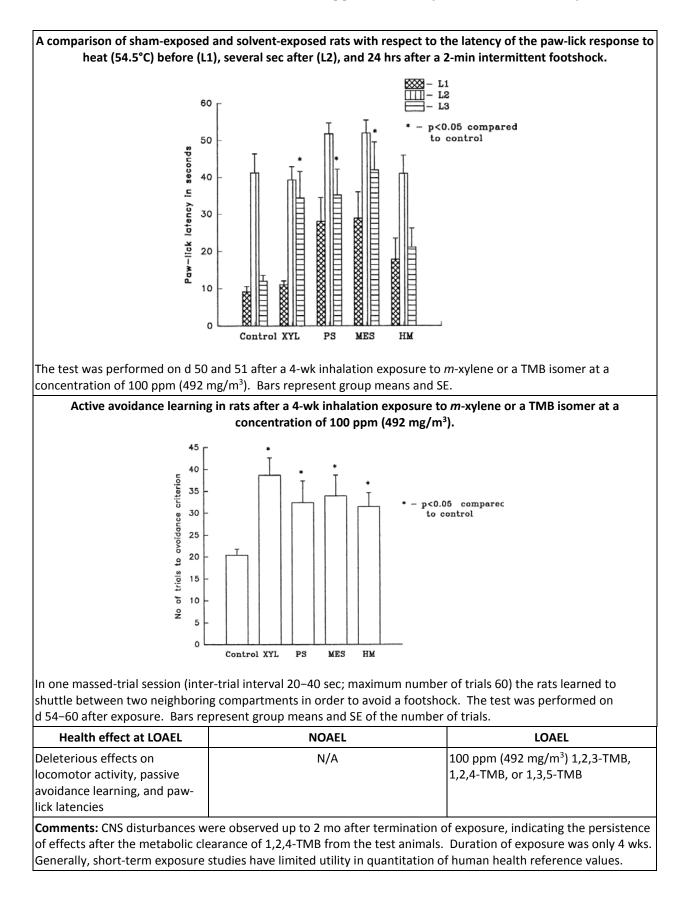
Generally, short-term exposure studies have limited utility in quantitation of human health reference values.

1Table C-23. Characteristics and quantitative results for Gralewicz et al.2(1997a)

Species	Sex	Ν	Exposure route	Dose range	Exposure duration
Wistar rats	М	9 rats/ dose	Inhalation (6 hrs/d, 5 d/wk)	0, 25, 100, or 250 ppm (0, 123, 492, or 1,230 mg/m ³) 1,2,4-TMB	4 wks
5 • A • F s • F a a	Animals 5 d/wk fo Animals Rats wer pike wa Rats exp activity. evels of	were expos or 4 wks. Fo were rando re tested to ve discharg osed to 1,2 Rats expos SWD activit	bod and water were pr mized and assigned to determine whether ex es (SWDs). 4-TMB at 100 or 250 p ed to 0 or 25 ppm (0 o cy.	the experimental groups. posure to 1,2,4-TMB altered pm (492 or 1,230 mg/m ³) di r 123 mg/m ³) 1,2,4-TMB shor	the pattern of occurrence of d not show an increase in SWD wed progressively decreasing
-		n, high aro	usal (middle diagram),	exposure to 1,2,4-TMB on th and slow-wave sleep (lowe ring successive 1-hr recordir	•
	Contribution of HA state (%) contribution of TOANS state (%)	35 30 25 20 15 10 5 0		II III III III III III III IIII IIII	-
	(0) other SMS to contraction	25 20 15 10 0	TMBO TMB25 TMF	100 ТМВ250	

This document is a draft for review purposes only and does not constitute Agency policy. C-94 DRAFT—DO NOT CITE OR QUOTE

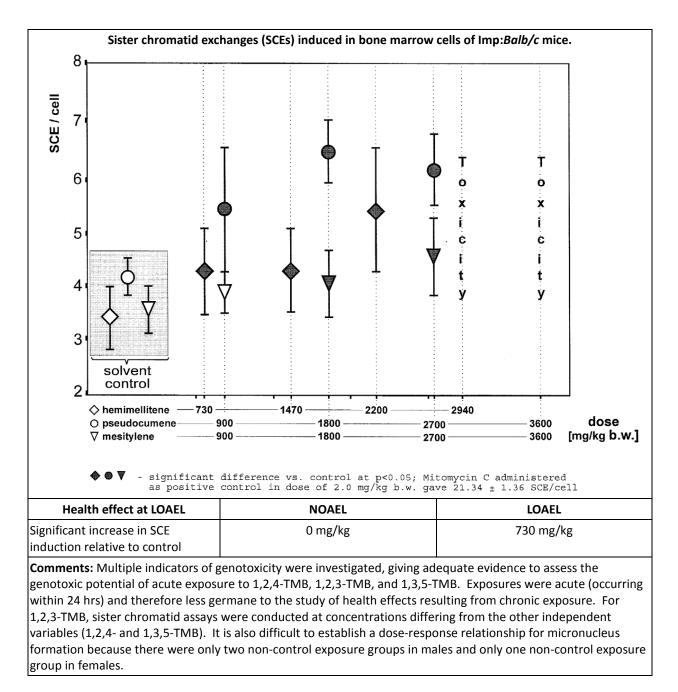

1 Table C-24. Characteristics and quantitative results for Gralewicz and 2 **Wiaderna (2001)**


Species	Sex	Ν	Exposure route	Dose range	Exposure duration
Nistar rats	М	10 or	Inhalation (6 hrs/d,	0 or 100 ppm (0 or	4 wks
		11 rats/	5 d/wk)	492 mg/m ³) 1,2,3-, 1,2,	4-,
		dose		or 1,3,5-TMB	
f • A • F a • T • 1	or 6 hrs, Animals Rats wer Inctivity, Tests we L,2,3-, 1, Docomoto	/d, 5 d/wk for were random e tested wit passive avoi re performe 2,4-, and 1,5 or activity, p	or 4 wks. Food and wa mized and assigned to h a variety of behavio dance, active two-way ed starting 2 wks post- 3,5-TMB-exposed rats assive avoidance lear	ater were provided ad lib the experimental groups ral tests, including radial y avoidance, and shock-ir exposure. showed alterations in pe ning, and paw-lick latenci	s. maze performance, open field nduced changes in pain sensitivity. erformance in spontaneous
				1,2,4-TMB from the test	
Radial maze	perfor	mance of rat	-	o <i>m</i> -xylene or a TMB iso 2 mg/m³).	mer at a concentration of 100 ppr
			1.8 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.2 1.0 0.8 0.8 0.8 0.8 0.8 0.4 0.2 0.0 Control X 5.5 5.0 - 5.0 - 5.0 - - - - - - - - - - - - -	- day 3 - day 4 - day 5	
			G 3.5 3.0 5 2.0 5 2.0 4 1.5 1.0 0.0 Control X		

ıy means and SE.

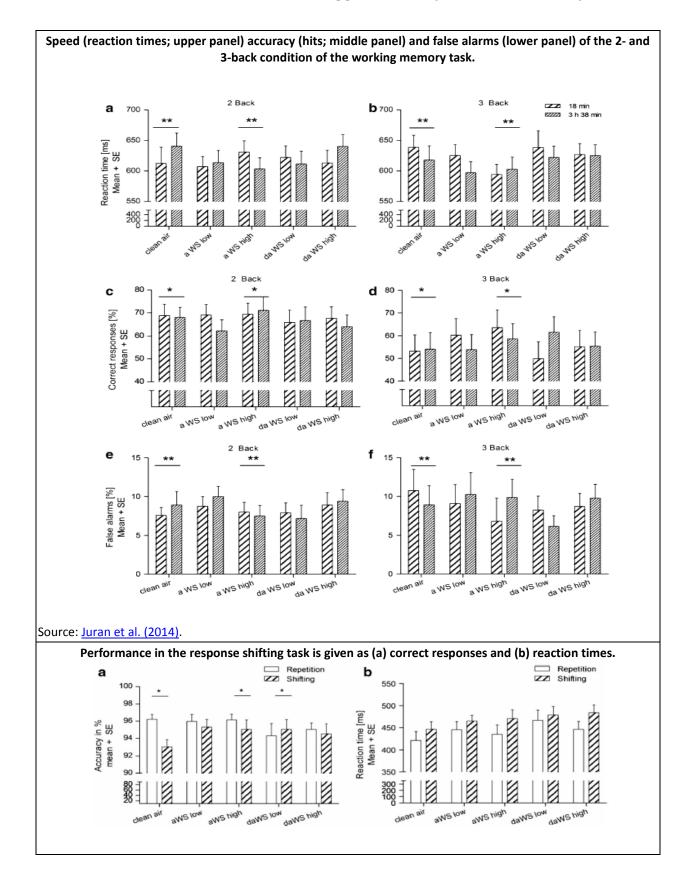
Control = sham-exposed group (N = 10); XYL = *m*-xylene-exposed group (N = 11); PS = 1,2,4-TMB exposed group (N = 11); MES = 1,2,3-TMB exposed group (N = 11); HM = hemimellitene exposed group (N = 11).

> *This document is a draft for review purposes only and does not constitute Agency policy.* DRAFT-DO NOT CITE OR QUOTE


1Table C-25. Characteristics and quantitative results for Janik-Spiechowicz et2al. (1998)

Species	Sex	Ν	Exposu	ure route	Dose	range	Expo	Exposure duration		
	M & F	4 or 5	i.p. inject		0, 1,470, 2,16			osure, or two		
,		mice/dose			2,940 mg/kg			spaced out o	-	
		group			/*** 0/ 0		24 hrs			
dditional st	udy det	• .								
• A	nimals	were given	one or two	o i.p. injectio	ons of 1,2,3-TN	ИВ.				
• A	nimals	were rando	mized and	l assigned to	the experime	ental groups.				
• N	/lost dea	aths occurr	ed within t	he first 2 d f	ollowing singl	e injections.				
• L	D ₅₀ was	determine	d to be 3,6	70 mg/kg fo	r males and 2	,700 mg/kg fo	or females.			
• N	/licronu	clei and chr	omatid exe	change assay	ys were condu	ucted on extra	acted bone m	arrow to ass	ess	
g	enotoxi	city.								
	-		-	-		-	nce to assess t	he genotoxi	С	
р	otentia	of acute e	xposure to	1,2,4-TMB,	1,2,3-TMB, ar	nd 1,3,5-TMB.				
Dose-rel	ated inc	rease in th	e number	of His+ reve	rtants for 1,2,	3-TMB in Sal	monella typh	<i>imurium</i> stra	ains.	
		lose [µl/pl	ate]	2						
TA102		+\$9								
	-S9									
		2	:0]	
-					·····					
		1	0		Ŷ					
TA100										
IATUU		5								
-	 1.55	1								
		110000								
TA98			olvent				*			
			ontrol							
							E			
-	\$									
				*						
TA97a										
12	00	1000	800	600	400	200	0	200	4	
	59				Revertants	/ nlate			+\$	
-0	99				eventante	/ plate			+,	
,							number of	revertants		
	per	plate, a	s compare	d with the	solvent co	ntrol numbe:	r)			
	Sponta	aneous rev	vertants:		9±10 (-S9);					
					23±2 (-S9); .26±4 (-S9);					
						315±32 (+S				

This document is a draft for review purposes only and does not constitute Agency policy.C-99DRAFT—DO NOT CITE OR QUOTE


				Ex	pos	ure to 1	,2,4	-TMB (μ	ιg or μL)			
Observation	0		(so	.00 lvent ntrol)		1		5	10	20	30	
TA97a (-S9)	212 ±	212 ± 7 126		5 ± 13	14	8 ± 23	15	8 ± 10	165 ± 8	141 ± 25	115 ± 3	
TA97a (+S9)	145 ±	5	141	± 12	15	52 ± 7	16	68 ± 8	176 ± 21	155 ± 20	106 ± 7	
TA98 (-S9)	24 ± 3	3	23	8 ± 3	2	4 ± 3	2	29 ± 5	41 ± 7	27 ± 8	TOX ^a	
TA98 (+S9)	31 ± 3	3	31	. ± 5	3	5 ± 4	2	28 ± 1	29 ± 4	30 ± 3	29 ± 6	
TA100 (-S9)	123 ± 3	71	125	5 ± 41	13	8 ± 15	14	8 ± 18	143 ± 9	124 ± 7	118 ± 4	
TA100 (+S9)	25 ± 4	1	21	± 10	12	6 ± 62	12	25 ± 5	112 ± 4	108 ± 3	110 ± 4	
TA102 (-S9)	258 ±	6	280) ± 12	29	0 ± 33	26	52 ± 16	273 ± 20	214 ± 8	тох	
TA102 (+S9)	294 ± 3	11	315	5 ± 14	27	9 ± 24	27	'6 ± 11	276 ± 11	236 ± 32	тох	
				Ex	pos	ure to 1	.,3,5	i-TMB (μ	ιg or μL)			
Observation	100 (solvent 0 control) 1			5		10	20	30	40			
TA97a (-S9)	127 ± 15	131 -	-	141 ±	12	149 ± 2	20	139 ± 1	-		NT ^b	
TA97a (+S9)	127 ± 15	157 ±		141 ±		149±2	-	155 ± 3		-	128 ± 11	
TA98 (-S9)	22 ± 4	22 ±		27 ±		28 ± !		25 ± 2		23 ± 5	TOX	
TA98 (+S9)	30 ± 3	32 ±		31 ±		35 ± !		31 ± 2		23±3	31 ± 1	
TA100 (-S9)	138 ± 13	143 ±		143 ±		152 ±		140 ± 2			TOX	
TA100 (+S9)	142 ± 10	138 ±		137 ±		147 ± 2		139 ± 1			115 ± 6	
TA102 (-S9)	263 ± 23	60 ±		268 ±		280 ± 3		261 ± 2		198 ± 2	NT	
TA102 (+S9)	337 ± 13	336 ±		347 ±		334 ± 3		353 ± 1		-	NT	
			E	xposur	e to	1,2,3-T	MB	(mg/kg	body weig			
Observation		0		•		1,470			2,160	2,940		
	Р	ercent	tage	of poly	chro	omatic e	erytl	hrocytes	s with micro	onuclei (± Sl)	
Males 30-hr harvest time		_			0.	17 ± 0.0	6		-	0.22	± 0.07	
Males 48-hr harvest time	0.1	8 ± 00	9		0.	17 ± 0.0	5		-	0.21	±0.10	
Males 72-hr harvest time		_			0.	17 ± 0.0	5		_	0.21	± 0.11	
Females 30-hr harvest time		_				-		0.	.22 ± 0.09		_	
Females 48-hr harvest time	0.2	0 ± 0.0)8			-		0.	.20 ± 0.08		_	
Females 72-hr harvest time		-				-		0.	.20 ± 0.14		_	
		Ra	tio o	f polyc	hro	matic to	o no	rmochro	omatic eryt	nrocytes		
Males 30-hr harvest time		_				0.82			_	0	.85	
Males 48-hr harvest time		0.81				0.45			_	0	.72	
Males 72-hr harvest time		_				0.50			_	0	.62	
Females 30-hr harvest time		_				-			0.90		-	
Females 48-hr harvest time		0.95				-			0.84		-	
Females 72-hr harvest time		-				-			0.78		-	

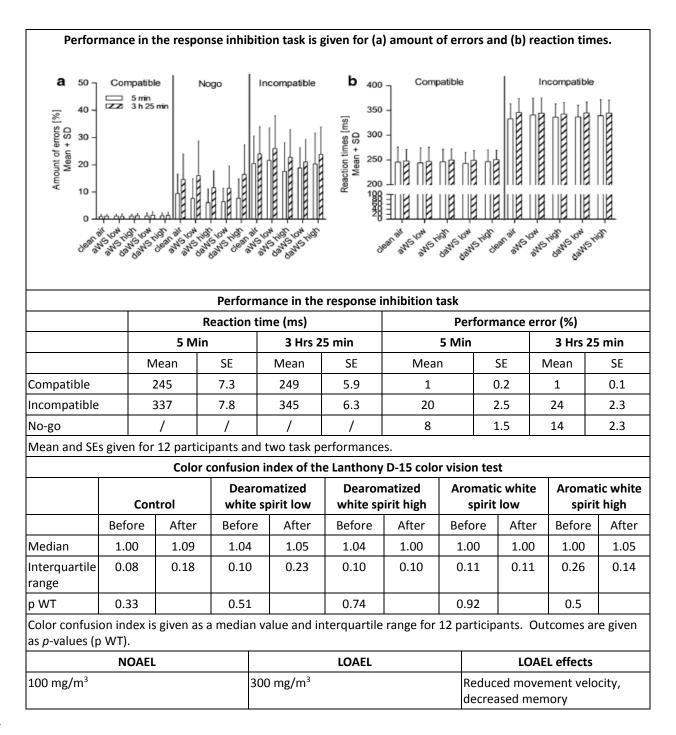

	Exposure to 1,2,4-TMB (mg/kg body weight)								
Observation	0	2,000	3,280	4,000					
	Percentage of	polychromatic eryth	rocytes with micron	uclei (± SD)					
Males 30-hr harvest time	_	0.15 ± 0.10	-	0.23 ± 0.10					
Males 48-hr harvest time	0.18 ± 0.07	0.18 ± 0.10	-	0.16 ± 0.8					
Males 72-hr harvest time	_	0.20 ± 0.08	-	0.16 ± 0.07					
Females 30-hr harvest time	_	-	0.23 ± 0.5	_					
Females 48-hr harvest time	0.23 ± 0.05	-	0.18 ± 0.05	_					
Females 72-hr harvest time	_	_	0.13 ± 0.05	_					
	olychromatic to norr	nochromatic erythro	ocytes						
Males 30-hr harvest time	_	1.18	_	1.16					
Males 48-hr harvest time	0.95	1.02	-	0.74					
Males 72-hr harvest time	_	1.02	-	0.68*					
Females 30-hr harvest time	_	_	0.98	_					
Females 48-hr harvest time	0.95	_	1.01	_					
Females 72-hr harvest time	_	_	0.85	_					
	Ехр	osure to 1,3,5-TMB (I	mg/kg body weight)						
Observation	0	1,800	2,960	3,600					
	Percentage of polychromatic erythrocytes with micronuclei (± SD)								
Males 30-hr harvest time	_	0.20 ± 0.00	-	0.24 ± 0.11					
Males 48-hr harvest time	0.21 ± 0.08	0.17 ± 0.09	-	0.17 ± 0.05					
Males 72-hr harvest time	_	0.17 ± 0.09	-	0.14 ± 0.05					
Females 30-hr harvest time	_	-	0.17 ± 0.09	_					
Females 48-hr harvest time	0.20 ± 0.08	-	0.20 ± 0.00	_					
Females 72-hr harvest time	_	-	0.22 ± 0.05	_					
	Ratio of p	olychromatic to norr	nochromatic erythro	ocytes					
Males 30-hr harvest time	_	0.62	-	0.40*					
Males 48-hr harvest time	0.61	0.56	-	0.33					
	_	0.58	-	0.42*					
Males 72-hr harvest time			0.54	_					
	_	-	0.51	—					
Males 72-hr harvest time Females 30-hr harvest time Females 48-hr harvest time	– 0.60		0.51	_					

Table C-26. Characteristics and quantitative results for Juran et al. (2	<u>2014)</u>
--	--------------

lumans	1	1	N	Exposure r	oute	Dose range	Ex	posure dur	ation
		6 rats/se group	ex/dose	Inhalation	30 ar de	00 or 00 mg/m ³ romatic or earomatized hite spirit	4 hrs fo	r 5 consecu	tive d
Additional study d	letails:					ince spirie			
inhalat • White : • Human • No sigr • Exposu Occupa • The NC	tion chamb spirit conc ns exhibite nificant eff ure concen ational Exp DAEL was 2	ber for 4 centratio ed weak fect on r ntrations posure L 100 mg/	hrs/d for 5 ons were de and inconsi esponse inf correspond imits of the m ³ .	100 or 300 m d. termined via stent neurobe hibition was o d to recomme European Co n as (a) absolu	gas chror ehavioral bserved. ndations mmissior	matography a impairment a from the Scient	t 5-min ir after 4-hr entific Col	ntervals. exposures. mmittee on	
Periorin		gnance	Lask is giver	1 dS (d) dDSUI	ite omis:	sion errors ar	iu (b) rea	ction times	•
ye of omission We of other of the other We of other of the other We of other of the other We of oth	, (2014).	Phys. Press, No.	Ŭ		Libert of A		ME LON LON NE		TOT 5 min TOT 10 min TOT 15 min TOT 20 min TOT 25 min
			Performanc	e in the divid	ed atten	r			
Time		I	Reaction tin	ne (ms)		False alarm (%)		Miss	es (%)
	_	Visual		, <i>,</i>		Audito	ry		. ,
	Mea	an	SE	Mean	SE	Mean	SE	Mean	SE
	725	5	18.7	517	22.2	2.1	0.4	4.2	1.4
i3 min	/ 2.5								

1Table C-27. Characteristics and quantitative results for Koch Industries2(1995b)

Species	Sex	N	Exposure r	oute	Dos	e range	Exp	osure duration		
Sprague- Dawley CD	M/F	20 rats/dose	Gavage		0, 50, 200, 600 mg/kg-	and d 1,3,5-TMB	90 d			
Additional s	tudy det	tails					l			
a • • • •	adverse o Hematol after a 28 No death Cumulati High-dos dose gro	clinical signs. ogy and serum ch 8-d recovery perio ns related to 1,3,5 ive weight gain do	emistry was a od (in an addit -TMB exposur ecreased by ap ed an increase ises in relative	inalyz ional re occ oprox e in al	ed after 30 (600 mg/kg- curred during imately 11% bsolute and	d, at the end o d "recovery" g g the study. in the high-d	of the expos group only). ose male gr			
			ody weight af	ter 9	0 d 1,3,5-TM	B dosing peri	od			
			Dose (mg/kg-d)							
Males			0		50	2	00	600		
Mean			624	624 607		6	02	585		
SD			48.2	48.2 62.0		4().8	66.4		
Number of r	ats		10		10	9	9	20		
Females										
Mean			327		335	3	34	330		
SD			24.8	24.8 37.6 21.2		L.2	29.3			
Number of r	ats		10		10	1	.0	20		
		Mean clinical o	hemistry para	amete	ers, termina	and recovery	/ in males			
						Dose (mg/kg	-d)			
	Param	eter ^a	0		50	200	600			
Sodium, me	an		142.4		142.7	143.0	142.4			
Sodium, SD			1.49		0.65	1.40	1.32			
Sodium, nur		ats	10	_	10	9	10	10		
Potassium, r			4.32		4.51	4.37	4.54			
Potassium, S		- f	0.397	_	0.339	0.328	0.27			
Potassium, r		of rats	10		10	9	10	10		
Chloride, me Chloride, SD			2.59		105.3 2.33	106.0 1.72	2.18			
Chloride, sD		rate	10	_	10	9	10	10		
Creatine kin			594	+	962	934	595			
Creatine kin	,	411	340.4		929.8	799.2	389.			
Creatine kin	-	ber of rats	10		10	9	10	1 3333.4		
AP, mean	,		107	\neg	112	121	156*			
AP, SD			28.1		26.5	33.7	56.2			

This document is a draft for review purposes only and does not constitute Agency policy.C-106DRAFT—DO NOT CITE OR QUOTE

AP, number of rats	10	10	9	10	10
ALT, mean	29	30	25	33	25
ALT, SD	6.4	9.8	7.0	9.1	4.4
ALT, number of rats	10	10	9	10	10
AST, mean	72	91	86	85	89
AST, SD	18.9	31.9	25.5	25.0	16.7
AST, number of rats	10	10	9	10	10
GGT, mean	3	2	2	2	1
GGT, SD	0.9	0.9	1.0	1.0	1.5
GGT, number of rats	10	10	9	10	10
BUN, mean	11.8	12.3	12.3	11.5	13.5
BUN, SD	1.45	1.87	1.22	1.30	1.53
BUN, number of rats	10	10	9	10	10
Creatinine, mean	0.42	0.43	0.42	0.47	0.48
Creatinine, SD	0.092	0.079	0.110	0.065	0.067
Creatinine, number of rats	10	10	9	10	10
Total protein, mean	6.0	5.9	6.0	6.1	6.0
Total protein, SD	0.38	0.24	0.31	0.42	0.25
Total protein, number of rats	10	10	9	10	10
Albumin, mean	3.6	3.6	3.7	3.8	3.7
Albumin, SD	0.23	0.19	0.19	0.22	0.09
Albumin, number of rats	10	10	9	10	10
Globulin, mean	2.4	2.3	2.3	2.3	2.3
Globulin, SD	0.27	0.18	0.16	0.24	0.24
Globulin, number of rats	10	10	9	10	10
Albumin/globulin ratio, mean	1.6	1.6	1.6	1.7	1.7
Albumin/globulin ratio, SD	0.19	0.17	0.11	0.15	0.17
Albumin/globulin ratio, number of rats	10	10	9	10	10
Glucose, mean	150.2	134.6	136.9	121.1*	168.4
Glucose, SD	22.80	15.11	15.76	13.14	26.39
Glucose, number of rats	10	10	9	10	10
Cholesterol, mean	38.2	33.1	31.6	45.3	35.3
Cholesterol, SD	6.83	9.13	9.93	15.99	10.10
Cholesterol, number of rats	10	10	9	10	10
Calcium, mean	10.2	10.2	10.2	10.2	9.9
Calcium, SD	0.22	0.29	0.37	0.23	0.24
Calcium, number of rats	10	10	9	10	10
Phosphorus, mean	6.5	6.7	7.0	7.6*	5.8
Phosphorus, SD	0.64	0.80	0.68	0.58	0.59
Phosphorus, number of rats	10	10	9	10	10
Total bilirubin, mean	0.4	0.4	0.5	0.5	0.5

This document is a draft for review purposes only and does not constitute Agency policy.C-107DRAFT—DO NOT CITE OR QUOTE

Total bilirubin, SD	0.12	0.10	0.09	0.14	0.09
Total bilirubin, number of rats	10	10	9	10	10
Mean clinical ch	nemistry parame	eters, terminal a	and recovery in	females	
			Dose (mg/kg-c	I)	
Parameter ^a	0	50	200	600	600 (recovery)
Sodium, mean	142.1	141.6	141.7	138.9*	140.9
Sodium, SD	1.10	0.96	2.07	2.83	1.47
Sodium, number of rats	10	10	10	10	10
Potassium, mean	3.94	4.13	4.01	3.86	4.06
Potassium, SD	0.195	0.200	0.119	0.292	0.259
Potassium, number of rats	10	10	10	10	10
Chloride, mean	105.9	106.2	106.1	103.0*	107.0
Chloride, SD	2.32	1.63	1.05	3.81	1.68
Chloride, number of rats	10	10	10	10	10
Creatine kinase, mean	404	574	381	362	532
Creatine kinase, SD	172.6	346.4	228.3	242.5	369.7
Creatine kinase, number of rats	10	10	10	10	10
AP, mean	59	57	55	78	38
AP, SD	14.8	10.3	14.9	24.5	10.1
AP, number of rats	10	10	10	10	10
ALT, mean	21	22	23	24	27
ALT, SD	2.3	4.0	7.3	4.1	7.1
ALT, number of rats	10	10	10	10	10
AST, mean	60	75	62	60	77
AST, SD	16.5	18.6	15.2	15.0	21.4
AST, number of rats	10	10	10	10	10
GGT, mean	2	3	3	3	2
GGT, SD	1.1	1.6	1.0	1.4	1.4
GGT, number of rats	10	10	10	10	10
BUN, mean	14.5	14.0	11.9	13.5	16.2
BUN, SD	1.34	2.57	1.49	4.61	2.31
BUN, number of rats	10	10	10	10	10
Creatinine, mean	0.53	0.51	0.53	0.56	0.55
Creatinine, SD	0.106	0.085	0.099	0.110	0.099
Creatinine, number of rats	10	10	10	10	10
Total protein, mean	6.2	6.3	6.6	6.5	6.3
Total protein, SD	0.44	0.41	0.69	0.68	0.66
Total protein, number of rats	10	10	10	10	10
Albumin, mean	4.1	4.3	4.5	4.5	4.3
Albumin, SD	0.29	0.36	0.58	0.56	0.51
Albumin, number of rats	10	10	10	10	10

This document is a draft for review purposes only and does not constitute Agency policy.C-108DRAFT—DO NOT CITE OR QUOTE

Globulin, mean	2.1	2.0	2.1	2.1	2.0
Globulin, SD	0.21	0.17	0.19	0.20	0.18
Globulin, number of rats	10	10	10	10	10
Albumin/globulin ratio, mean	2.0	2.1	2.1	2.1	2.1
Albumin/globulin ratio, SD	0.16	0.22	0.26	0.23	0.18
Albumin/globulin ratio, number of rats	10	10	10	10	10
Glucose, mean	131.8	136.4	140.1	132.8	150.7
Glucose, SD	7.65	11.72	14.48	15.91	19.18
Glucose, number of rats	10	10	10	10	10
Cholesterol, mean	36.2	35.2	38.8	51.2*	28.7
Cholesterol, SD	8.83	6.64	6.24	17.84	12.93
Cholesterol, number of rats	10	10	10	10	10
Calcium, mean	10.1	10.2	10.4	10.5	10.0
Calcium, SD	0.35	0.24	0.42	0.63	0.36
Calcium, number of rats	10	10	10	10	10
Phosphorus, mean	6.1	6.1	6.4	7.5	5.3
Phosphorus, SD	1.08	1.27	1.18	1.24	0.80
Phosphorus, number of rats	10	10	10	10	10
Total bilirubin, mean	0.5	0.5	0.4	0.5	0.5
Total bilirubin, SD	0.08	0.10	0.08	0.07	0.07
Total bilirubin, number of rats	10	10	10	10	10
Mean male	hematology pa	arameters tern	ninal and recove	ery	
			Dose (mg/kg-d)	
Parameter ^a	0	50	200	600	600 (recovery)
WBCs, mean	9.1	8.1	8.1	7.7	7.8
WBCs, SD	2.70	2.50	1.74	1.76	1.24
WBCs, number of rats	10	10	9	10	10
RBCs, mean	8.94	8.50	8.98	8.72	8.51
RBCs, SD	0.375	0.483	0.565	0.275	0.423
RBCs, number of rats	10	10	9	10	10
Hemoglobin, mean	15.6	15.3	15.8	15.4	15.4
Hemoglobin, SD	0.52	0.76	0.77	0.53	0.58
Hemoglobin, number of rats	10	10	9	10	10
Hematocrit, mean	43.9	42.2	44.1	43.3	41.6
Hematocrit, SD	1.65	2.72	2.12	1.60	1.99
Hematocrit, number of rats	10	10	9	10	10
MCV, mean	49.1	49.7	49.2	49.6	49.0
MCV, SD	1.17	1.09	1.76	1.66	1.62
MCV, number of rats	10	10	9	10	10
MCH, mean	17.5	18.0	17.7	17.7	18.2
MCH, SD	0.45	0.73	0.85	0.68	0.61

This document is a draft for review purposes only and does not constitute Agency policy.C-109DRAFT—DO NOT CITE OR QUOTE

MCH, number of rats	10	10	9	10	10				
MCHC, mean	35.6	36.3	35.9	35.6	37.1				
MCHC, SD	0.67	1.07	0.60	0.67	0.60				
MCHC, number of rats	10	10	9	10	10				
Platelet, mean	1,092	1,098	1,041	1,125	1,082				
Platelet, SD	134.1	120.8	100.9	145.9	112.6				
Platelet, number of rats	10	10	9	10	10				
	ale hematology								
	Dose (mg/kg-d)								
Parameter ^a	0								
WBCs, mean	5.5	5.6	5.4	5.7	4.6				
WBCs, SD	2.05	1.53	1.64	1.99	1.55				
WBCs, number of rats	10	10	10	10	10				
RBCs, mean	7.88	8.01	7.90	8.34	7.70				
RBCs, SD	0.729	0.354	0.578	0.548	0.423				
RBCs, number of rats	10	10	10	10	10				
Hemoglobin, mean	14.8	15.0	15.2	15.3	15.1				
Hemoglobin, SD	0.88	0.48	0.82	0.78	0.57				
Hemoglobin, number of rats	10	10	10	10	10				
Hematocrit, mean	41.0	41.4	41.9	43.3	39.9				
Hematocrit, SD	3.15	1.91	2.93	2.33	1.67				
Hematocrit, number of rats	10	10	10	10	10				
MCV, mean	52.1	51.7	53.0	52.0	51.9				
MCV, SD	1.65	1.18	1.03	1.24	1.33				
MCV, number of rats	10	10	10	10	10				
MCH, mean	18.9	18.7	19.2	18.4	19.6				
MCH, SD	0.89	0.86	0.83	0.54	0.64				
MCH, number of rats	10	10	10	10	10				
MCHC, mean	36.2	36.2	36.3	35.4	37.7				
MCHC, SD	0.79	0.86	0.83	0.54	0.64				
MCHC, number of rats	10	10	10	10	10				
Platelet, mean	1,094	1,089	1,011	1,053	1,008				
Platelet, SD	153.3	132.0	97.2	125.7	105.7				
Platelet, number of rats	10	10	10	10	10				
Mean male ab	solute differentia	al WBC counts	(terminal and r	ecovery)	·				
			Dose (mg/kg-	(k					
Parameter ^a	0	50	200	600	600 (recovery)				
Nucleated RBCs, mean	0	0	0	0	0				
Nucleated RBCs, SD	0	0	0.7	0	0				
Nucleated RBCs, number of rats	10	10	9	10	10				
Mature neutrophils, mean	1.8	1.7	1.4	1.5	1.0				

This document is a draft for review purposes only and does not constitute Agency policy.C-110DRAFT—DO NOT CITE OR QUOTE

Mature neutrophils, SD	1.07	1.10	0.36	0.75	0.29		
Mature neutrophils, number of rats	10	10	9	10	10		
Lymphocytes, mean	7.1	6.2	6.4	6.0	6.6		
Lymphocytes, SD	2.78	2.16	1.59	2.16	1.23		
Lymphocytes, number of rats	10	10	9	10	10		
Monocytes, mean	0.1	0.2	0.3*	0.2*	0.2		
Monocytes, SD	0.09	0.09	0.17	0.18	0.10		
Monocytes, number of rats	10	10	9	10	10		
Eosinophils, mean	0.1	0.1	0.0	0.0	0.1		
Eosinophils, SD	0.06	0.09	0.07	0.05	0.07		
Eosinophils, number of rats	10	10	9	10	10		
Basophils, mean	0	0	0	0	0		
Basophils, SD	0	0	0	0	0		
Basophils, number of rats	10	10	9	10	10		
Immature neutrophils, mean	0	0	0	0	0		
Immature neutrophils, SD	0	0	0	0	0		
Immature neutrophils, number of rats	10	10	9	10	10		
Mean female abso	olute differenti	al WBC counts	(terminal and	recovery)			
Dose (mg/kg-d)							
Parameter ^a	0	50	200	600	600 (recovery)		
Nucleated RBCs, mean	0	0	0	0	0		
Nucleated RBCs, SD	0	0	0	0	0		
Nucleated RBCs, number of rats	10	10	10	10	10		
Mature neutrophils, mean	0.8	0.7	0.9	1.0	0.7		
Mature neutrophils, SD	0.48	0.32	0.69	0.39	0.45		
Mature neutrophils, number of rats	10	10	10	10	10		
Lymphocytes, mean	4.6	4.7	4.2	4.4	3.7		
Lymphocytes, SD	1.93	1.52	1.52	2.08	1.34		
Lymphocytes, number of rats	10	10	10	10	10		
Monocytes, mean	0.1	0.1	0.1	0.2	0.2		
Monocytes, SD	0.14	0.10	0.08	0.17	0.11		
Monocytes, number of rats	10	10	10	10	10		
Eosinophils, mean	0.1	0.1	0.1	0.1	0		
Eosinophils, SD	0.07	0.07	0.09	0.09	0.07		
Eosinophils, number of rats	10	10	10	10	10		
Basophils, mean	0	0	0	0	0		
Basophils, SD	0	0	0.03	0	0		
Basophils, number of rats	10	10	10	10	10		
Immature neutrophils, mean	0	0	0	0	0		
Immature neutrophils, SD	0	0	0	0	0		
Immature neutrophils, number of rats	10	10	10	10	10		

This document is a draft for review purposes only and does not constitute Agency policy.C-111DRAFT—DO NOT CITE OR QUOTE

	Mean male abs	olute organ we	eights (g)		
			Dose (mg/kg-	d)	
Parameter	0	50	200	600	600 (recovery)
Adrenal glands, mean	0.062	0.059	0.058	0.063	0.060
Adrenal glands, SD	0.010	0.015	0.011	0.010	0.008
Adrenal glands, number of rats	10	10	9	10	10
Brain, mean	2.25	2.28	2.23	2.19	2.24
Brain, SD	0.073	0.090	0.094	0.084	0.112
Brain, number of rats	10	10	9	10	10
Kidneys, mean	3.92	3.95	4.10	4.16	4.05
Kidneys, SD	0.326	0.262	0.610	0.464	0.491
Kidneys, number of rats	10	10	9	10	10
Liver, mean	19.28	18.91	18.38	20.90	17.38
Liver, SD	1.843	3.074	2.885	3.313	2.222
Liver, number of rats	10	10	9	10	10
Lung, mean	2.19	2.19	2.20	2.06	2.04
Lung, SD	0.299	0.292	0.134	0.158	0.229
Lung, number of rats	10	10	9	10	10
Testes, mean	4.15	3.78	4.04	4.00	3.91
Testes, SD	0.290	0.595	0.336	0.250	0.612
Testes, number of rats	10	10	9	10	10
	Mean female ab	solute organ w	eights (g)	·	·
			Dose (mg/kg-	d)	
Parameter ^a	0	50	200	600	600 (recovery)
Adrenal glands, mean	0.075	0.078	0085	0.082	0.084
Adrenal glands, SD	0.007	0.012	0.013	0.015	0.015
Adrenal glands, number of rats	10	10	10	10	10
Brain, mean	2.06	2.06	2.11	2.06	2.11
Brain, SD	0.080	0.083	0.094	0.050	0.059
Brain, number of rats	10	10	10	10	10
Kidneys, mean	2.34	2.23	2.38	2.51	2.38
Kidneys, SD	0.314	0.228	0.116	0.264	0.248
Kidneys, number of rats	10	10	10	10	10
Liver, mean	9.44	9.13	10.05	11.78*	9.71
Liver, SD	1.601	0.774	0.967	1.444	1.411
Liver, number of rats	10	10	10	10	10
Lung, mean	1.63	1.73	1.66	1.60	1.63
Lung, SD	0.187	0.140	0.106	0.150	0.140
Lung, number of rats	10	10	10	10	10

Ovaries, mean	0.128	0.123	0.122	0.142	0.142		
Ovaries, SD	0.023	0.039	0.042	0.058	0.036		
Ovaries, number of rats	10	10	10	10	9		
Γ	/lean male rela	itive ^b organ wei	ghts (g)				
	Dose (mg/kg-d)						
Parameter ^a	0	50	200	600	600 (recovery)		
Fasted body weight, mean	602	584	576	562	595		
Fasted body weight, SD	46.4	60.4	40.1	52.2	81.8		
Fasted body weight, number of rats	10	10	9	10	10		
Adrenal glands, mean	0.011	0.010	0.010	0.011	0.010		
Adrenal glands, SD	0.002	0.002	0.002	0.001	0.001		
Adrenal glands, number of rats	10	10	9	10	10		
Brain, mean	0.38	0.39	0.39	0.39	0.38		
Brain, SD	0.033	0.032	0.035	0.035	0.044		
Brain, number of rats	10	10	9	10	10		
Kidneys, mean	0.65	0.68	0.71	0.74*	0.68		
Kidneys, SD	0.052	0.052	0.082	0.045	0.039		
Kidneys, number of rats	10	10	9	10	10		
Liver, mean	3.20	3.23	3.19	3.71*	2.93		
Liver, SD	0.158	0.336	0.402	0.288	0.274		
Liver, number of rats	10	10	9	10	10		
Lung, mean	0.37	0.38	0.38	0.37	0.34		
Lung, SD	0.045	0.052	0.027	0.038	0.042		
Lung, number of rats	10	10	9	10	10		
Testes, mean	0.69	0.65	0.71	0.72	0.67		
Testes, SD	0.060	0.101	0.092	0.089	0.136		
Testes, number of rats	10	10	9	10	10		
M	ean female rel	ative ^b organ we	eights (g)				
	Dose (mg/kg-d)						
Parameter ^a	0	50	200	600	600 (recovery)		
Fasted body weight, mean	309	317	316	308	336		
Fasted body weight, SD	23.4	34.8	20.0	28.2	33.9		
Fasted body weight, number of rats	10	10	10	10	10		
Adrenal glands, mean	0.025	0.025	0.027	0.027	0.025		
Adrenal glands, SD	0.003	0.005	0.005	0.004	0.005		
Adrenal glands, number of rats	10	10	10	10	10		
Brain, mean	0.67	0.66	0.67	0.68	0.63		
Brain, SD	0.067	0.075	0.047	0.065	0.059		
Brain, number of rats	10	10	10	10	10		
Kidneys, mean	0.76	0.71	0.76	0.82	0.71		
Kidneys, SD	0.059	0.088	0.051	0.059	0.040		

This document is a draft for review purposes only and does not constitute Agency policy.C-113DRAFT—DO NOT CITE OR QUOTE

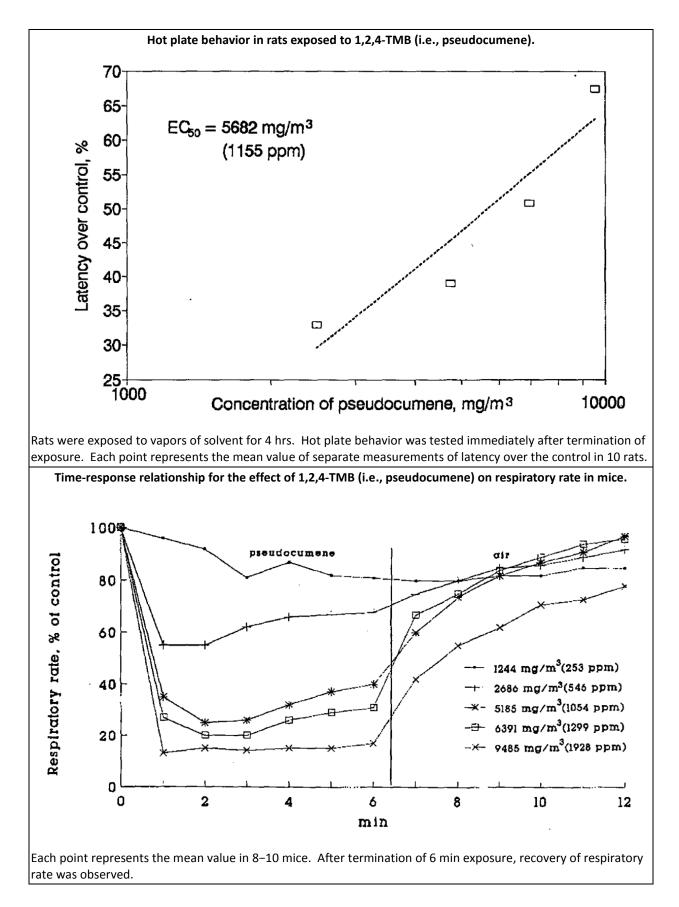
							1		1		
Kidneys, number of rats	1	10		10		10		10		10	
Liver, mean	3.04		2.90		3.19		3.82*		2.88		
Liver, SD	0.365		0.330		0.357		0.223		0.207		
Liver, number of rats	1	10		10		10		10		10	
Lung, mean	0.53		0.55		0.53		0.52		0.49		
Lung, SD	0.0	0.071		0.059		0.052		0.047		0.079	
Lung, number of rats	1	10		10		10		10		10	
Ovaries, mean	0.0	0.041		0.040		0.039		0.046		0.043	
Ovaries, SD	0.0	0.006		0.015		0.014		0.018		0.011	
Ovaries, number of rats	1	10	10		10		10		9		
Sumn	nary of g	gross ne	cropsy	observa	tions (c	ount)					
	Dose (mg/kg-d)										
		0	50 200		600		600 (recovery)				
Tissue and observation	М	F	М	F	М	F	М	F	М	F	
Number of gross lesions observed	9	8	8	8	7	9	8	10	8	10	
Mandibular lymph nodes; enlarged/red	_c	1	-	-	1	-	-	-	1	-	
Mandibular lymph nodes; enlarged	1	-	-	-	1	-	-	_	1	-	
Tibia; lesion (fracture)	-	1	-	-	-	-	-	_	-	-	
Adrenals; small, unilateral	-	-	1	-	-	-	_	-	-	_	
Testes; small, white (right)		-	1	-	-	-	_	-	-	-	
Testes; absent (left)	-	-	-	-	-	-	_	-	1	_	
Eye; opaque (left)	-	-	-	1	-	1	_	-	-	_	
Thymus; focus, red	-	-	-	1	-	-	_	-	-	-	
Thymus; mottled	-	-	-	-	-	-	1	-	_	_	
Lung enlarged	-	-	-	-	1 ^d	-	_	-	_	_	
Large intestine, cecum; focus, red	-	-	-	-	1	-	_	-	-	_	
Liver; pale	-	-	-	-	-	-	1	_	_	_	
		10.05			•				•	•	

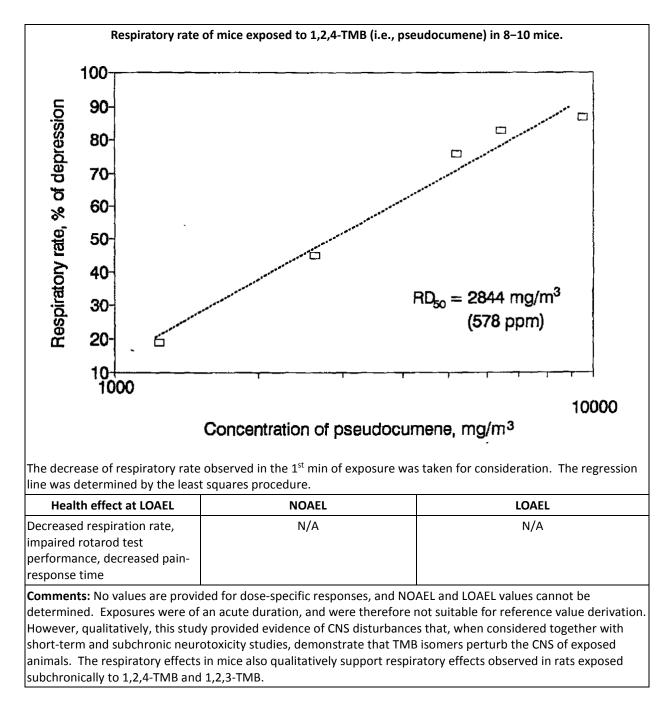
*Significantly different from vehicle control, $p \le 0.05$.

^aSUnits of measure: sodium (mE/litter serum); potassium (mE/litter serum); chloride (mE/litter serum); creatine kinase (IU/liter serum); AP (IU/liter serum); ALT (IU/liter serum); AST (IU/liter serum); GGT (IU/liter serum); BUN (mg N/dL serum); creatinine (mg/dL serum); total protein (g protein/dL serum); albumin (g/dL serum); globulin (g/dL serum); albumin/globulin ratio; glucose (mg/dL serum); cholesterol (mg/dL serum); total bilirubin (mg/dL serum); WBC (10³/mm³); RBC (10⁶/mm³); hemoglobin (g/dL blood); hematocrit (%); MCV (femoliter); MCH (picogram); MCHC (%); Platelet (10³/mm³); nucleated RBCs (number/100 WBCs); mature neutrophils (10³/mm³); lymphocytes (10³/mm³); monocytes (10³/mm³); eosinophils (10³/mm³); basophils (10³/mm³);

^bRelative organ weight = [absolute organ weight (g)/fasted body weight (g)] × 100.

^cZero incidence.

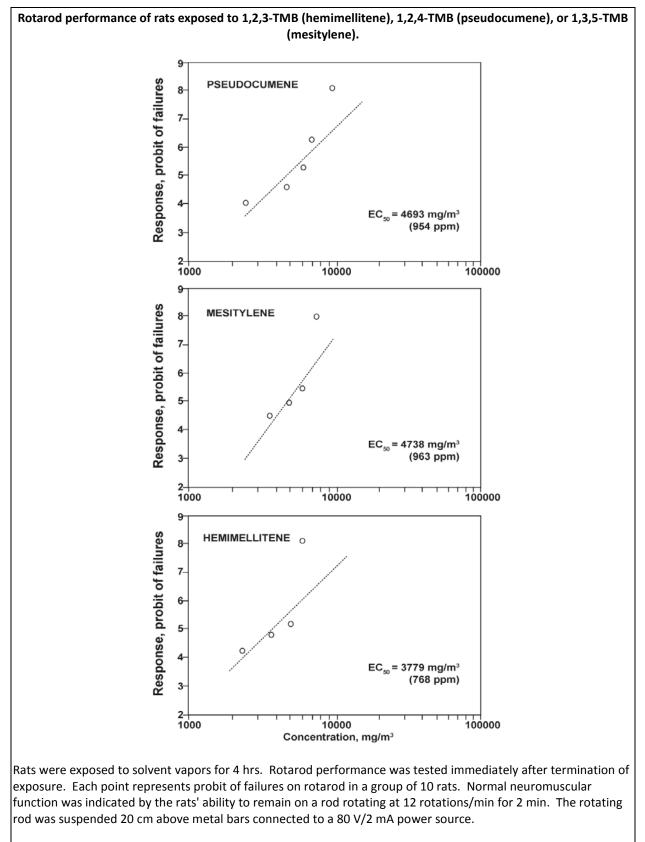

^dAnimal died due to gavage error (accidental death).


BUN = blood urea nitrogen; GGT = gamma-glutamyl transpeptidase (IU/liter serum).

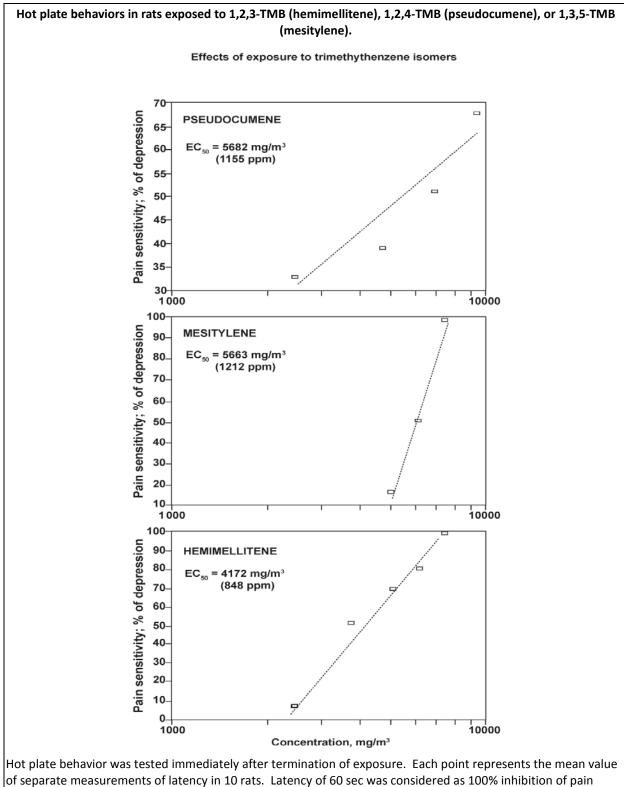
Comments: 1,3,5-TMB was the only isomer tested in this study. Effects reported in study appeared reversible in the recvery group, which was observed for 28 d following cessation of exposure.

Table C-28.	Characteristics and	l quantitative results for	Korsak et al.	(1995)

/IP:DAK Wistar Nats and Balb/C	N	8–10/dose			
		0 10/0030	Inhalation	250–2,000 ppm (1,230–9,840 mg/m ³) 1,2,4-TMB	4 hrs—neurotoxicity tests 6 min—respiratory tests
 change Mean i mesh s Animal were ti Rotaro 	ls wer es/hr. initial stainle ls wer rainec od, hot	e exposed t body weigh ess steel cag e randomiz d, and only i t plate, and	nts were 250–300 g f ges, with food and w ed and assigned to t rats that balanced fo	for rats and 23–30 g for mic ater provided ad libitum. he experimental groups. B or 2 min on 10 consecutive of re conducted to measure e	
9	Rota	arod perfor	mance of rats expos	ed to 1,2,4-TMB (i.e., pseu	documene).
Response, probit of failures				EC ₅₀ =	4693 mg/m ³ (954 ppm)
2 1000			····••••••••••••••••••••••••••••••••••	10000	
		Co	ncentration of	pseudocumene, m	a/m ³

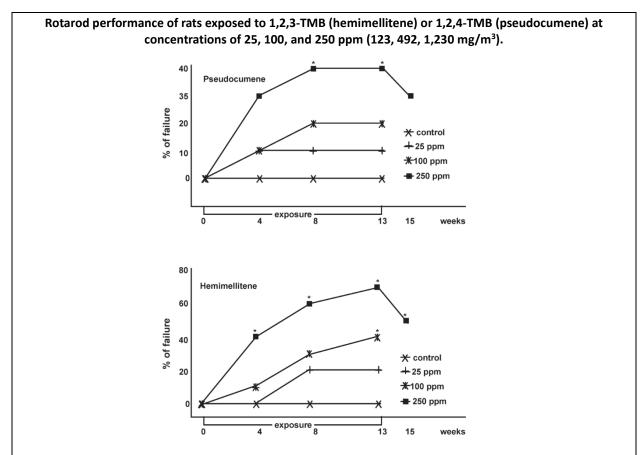

Table C-29. Characteristics and quantitative results for <u>Korsak and Rydzyński</u> (1996)

Study design								
Species	Sex	N	Exposure route	Dose range	Exposure duration			
IMP: Wistar	М	9–10/dose	Inhalation (4 hrs or	Acute exposure:	4 hrs or 3 mo			
rats		(1,2,4-TMB)	6 hrs/d, 5 d/wk, for	250–2,000 ppm				
		10-30/dose	3 mo)	1,230-9,840 mg/m ³) 1,2,3-,				
		(1,2,3-TMB)		1,2,4-, or 1,3,5-TMB				
				Subchronic exposure: 0,				
				123, 492, or 1,230 mg/m ³				


Additional study details

1

- Animals were exposed to either 1,2,3-, 1,2,4-, or 1,3,5-TMB in a dynamic inhalation chamber (1.3 m³ volume) with 16 air changes/hr.
- Mean initial body weights were 250–300 g; rats were housed in wire mesh stainless steel cages, with food and water provided ad libitum.
- Animals were randomized and assigned to the experimental groups.
- Rotarod and hot plate tests were conducted to measure effects on neuromuscular function and pain sensitivity respectively.
- Rotarod performance was tested immediately after termination of exposure.
- Normal neuromuscular function was indicated by the rats' ability to remain on a rod rotating at 12 rotations/min for 2 min.
- Hot plate behavior was tested immediately after termination of exposure.
- Latency of 60 sec was considered as 100% inhibition of pain sensitivity.
- Authors investigated the effects of exposure to 1,2,3-, 1,2,4- and 1,3,5-TMB on rotarod test performance and pain-sensing response 2 wks after the termination of exposure.



Source: Reproduced from Korsak and Rydzyński (1996).

sensitivity.

Source: Reproduced from Korsak and Rydzyński (1996).

Rats were exposed to vapors of solvents for 6 hrs/d, 5 d/wk, 3 mo. Statistical significance marked by asterisks, p < 0.005.

Source: Reproduced from Korsak and Rydzyński (1996).

	Latency of the paw-lick response, sec				
Observation	1,2,4-TMB	1,2,3-TMB			
Control	15.4 ± 5.8	9.7 ± 2.1			
25 ppm (100 mg/m³)	18.2 ± 5.7	11.8 ± 3.8*			
100 ppm (492 mg/m ³)	27.6 ± 3.2**	16.3 ± 6.3***			
250 ppm (1,230 mg/m ³)	30.1 ± 7.9**	17.3 ± 3.4**			
250 ppm (1,230 mg/m ³) 2 wks after termination of exposure	17.3 ± 3.9	11.0 ± 2.4			

*Statistically significant from controls at $p \le 0.05$.

**Statistically significant from controls at $p \le 0.01$.

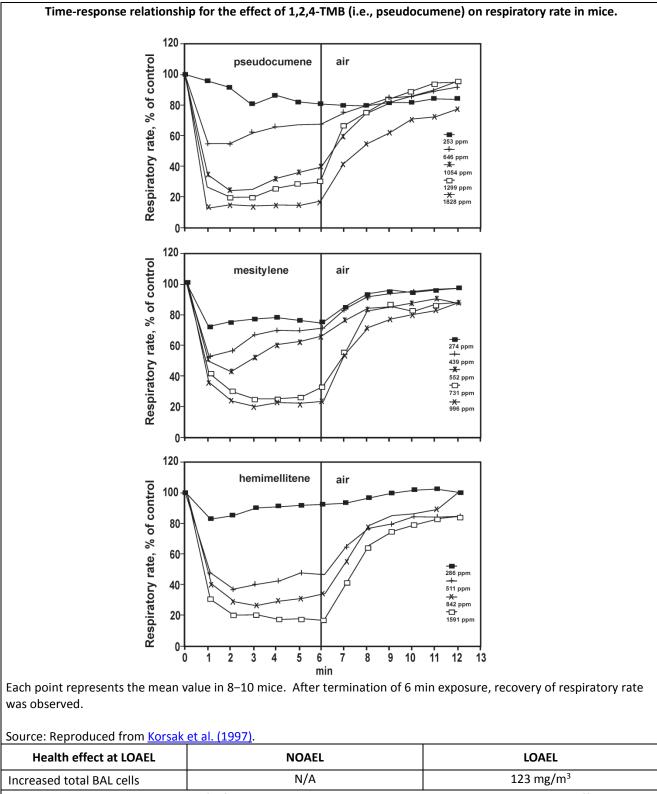
***Level of significance not reported in Table 1 from Korsak and Rydzyński (1996); however, the results of an adhoc t-test (performed by EPA) indicated significance at p < 0.01.

Health effect at LOAEL	NOAEL	LOAEL
	25 ppm (123 mg/m ³) for 1,2,4-TMB	25 ppm (123 mg/m ³) for 1,2,3-TMB 100 ppm (492 mg/m ³) for 1,2,4-TMB

Comments: Although rotarod data are useful in providing a qualitative description of neuromuscular impairment following 1,2,4-TMB or 1,2,3-TMB exposure, in comparison to effects on pain sensitivity, the data are not considered as robust regarding suitability for derivation of reference values. Namely, data are presented as dichotomized values instead of a continuous measurement of latency. The acute exposures were not suitable for reference value derivation. However, qualitatively, effects observed following acute exposures provided evidence of CNS disturbances that, when considered together with subchronic neurotoxicity tests, demonstrate that TMB isomers perturb the CNS of exposed animals. It is unclear whether the latency to paw-lick and rotarod tests were performed sequentially in the same cohort of animals.

Table C-30. Characteristics and quantitative results for Korsak et al. (1997
--

Species	Sex	Ν	Exposure route	Dose rang	e	Exposure duration		
IMP:DAK Wistar rats and Balb/C mice	М	Acute: 8/dose Subchronic: 6–7/dose	Acute: Inhalation Subchronic: Inhalation	Acute: 250–2,000 (1,230–9,840 mg/r 1,2,4-TMB, 1,2,3-T 1,3,5-TMB Subchronic: 0, 123 1,230 mg/m ³ 1,2,4	. ³) MB, or , 492, or	Acute: 6 min Subchronic: 6 hrs/d, 5 d/wk for 90 d		
C • F • F • F • 4	Animals hanges, Rats wei providec Rats wer vas colle All rats e	were expose /hr. ghed 250–30 d ad libitum. re anesthetize ected from lu exposed to 1,7	0 g and were housed ed 24 hrs after termi ng lavage.	dynamic inhalation cl d in stainless steel wi nation of exposure, a til the end of exposu	re mesh ca and bronch	nges, with t	food and water lavage (BAL) fluid	
				Exposure concer	itration (m	g/m³)		
Ob	servatio	on	0	123	123 492		1,230	
			Body weight (mean ± SD)					
Body weight (g)		411 ± 28	383 ± 25	409 :	± 56	416 ± 27		
							410 ± 27	
				BAL cell count	s (mean ±	SD)	410 2 27	
Total cells (1	0 ⁶ /cm ³)		1.93 ± 0.79	BAL cell count 5.82 ± 1.32***	s (mean ± 5.96 ± 2	-	4.45 ± 1.58*	
Total cells (1 Macrophage			1.93 ± 0.79 1.83 ± 0.03		-	2.80**	l	
Macrophage Polymorpho	s (10 ⁶ /c	:m³)		5.82 ± 1.32***	5.96 ± 2	2.80** 0.2**	4.45 ± 1.58*	
	s (10 ⁶ /c	:m ³) leucocytes	1.83 ± 0.03	5.82 ± 1.32*** 3.78 ± 0.8	5.96 ± 2 4.95 ±	2.80** 0.2** ± 0.6	4.45 ± 1.58* 3.96 ± 0.3**	
Macrophage Polymorpho (10 ⁶ /cm ³) Lymphocyte	s (10 ⁶ /c nuclear s (10 ⁶ /c	:m ³) leucocytes	1.83 ± 0.03 0.04 ± 0.02	5.82 ± 1.32*** 3.78 ± 0.8 1.54 ± 0.7	5.96 ± 2 4.95 ± 0.52 ±	2.80** 0.2** ± 0.6 = 0.4	$4.45 \pm 1.58^{*}$ $3.96 \pm 0.3^{**}$ 0.21 ± 0.3	
Macrophage Polymorpho (10 ⁶ /cm ³) Lymphocyte	s (10 ⁶ /c nuclear s (10 ⁶ /c	:m ³) leucocytes	1.83 ± 0.03 0.04 ± 0.02 0.06 ± 0.01 98.0 ± 1.7	$5.82 \pm 1.32^{***}$ 3.78 ± 0.8 1.54 ± 0.7 0.5 ± 0.2	5.96 ± 2 4.95 ± 0.52 ± 0.5 ± 95.3 ±	2.80** 0.2** ± 0.6 ± 0.4 ± 3.5	$4.45 \pm 1.58^{*}$ $3.96 \pm 0.3^{**}$ 0.21 ± 0.3 0.2 ± 0.1 95.3 ± 3.1	
Macrophage Polymorpho (10 ⁶ /cm ³) Lymphocyte Cell viability	s (10 ⁶ /c nuclear s (10 ⁶ /c (%)	m ³) leucocytes m ³)	1.83 ± 0.03 0.04 ± 0.02 0.06 ± 0.01 98.0 ± 1.7	$5.82 \pm 1.32^{***}$ 3.78 ± 0.8 1.54 ± 0.7 0.5 ± 0.2 95.5 ± 1.6	5.96 ± 2 4.95 ± 0.52 ± 0.5 ± 95.3 ±	2.80** 0.2** ± 0.6 ± 0.4 ± 3.5 ties (mear	$4.45 \pm 1.58^{*}$ $3.96 \pm 0.3^{**}$ 0.21 ± 0.3 0.2 ± 0.1 95.3 ± 3.1	
Macrophage Polymorpho (10 ⁶ /cm ³) Lymphocyte Cell viability Total proteir	s (10 ⁶ /c nuclear s (10 ⁶ /c (%)	m ³) leucocytes m ³)	1.83 ± 0.03 0.04 ± 0.02 0.06 ± 0.01 98.0 ± 1.7 BAL p	$5.82 \pm 1.32^{***}$ 3.78 ± 0.8 1.54 ± 0.7 0.5 ± 0.2 95.5 ± 1.6 rotein levels and enz	5.96 ± 3 4.95 ± 0.52 ± 0.5 ± 95.3 ±	2.80** 0.2** ± 0.6 : 0.4 ± 3.5 ties (mear 0.06*	$4.45 \pm 1.58^{*}$ $3.96 \pm 0.3^{**}$ 0.21 ± 0.3 0.2 ± 0.1 95.3 ± 3.1 $h \pm SD)$	
Macrophage Polymorpho (10 ⁶ /cm ³)	s (10 ⁶ /c nuclear s (10 ⁶ /c (%) n (mg/m ns (mg/r	m ³) leucocytes m ³) 	1.83 ± 0.03 0.04 ± 0.02 0.06 ± 0.01 98.0 ± 1.7 BAL p 0.19 ± 0.04	$5.82 \pm 1.32^{***}$ 3.78 ± 0.8 1.54 ± 0.7 0.5 ± 0.2 95.5 ± 1.6 rotein levels and enz $0.26 \pm 0.07^{*}$	5.96 ± 3 4.95 ± 0.52 ± 0.5 ± 95.3 ± yme activi 0.26 ±	2.80** 0.2** ± 0.6 ± 0.4 ± 3.5 ties (mear 0.06* ± 0.02	$4.45 \pm 1.58^{*}$ $3.96 \pm 0.3^{**}$ 0.21 ± 0.3 0.2 ± 0.1 95.3 ± 3.1 $n \pm SD$ 0.24 ± 0.08	


*Statistically significant from control at p < 0.05.

**Statistically significant from control at 0.01.

***Statistically significant from control at 0.001.

^aJonckheere's test for trend: total protein, p = 0.0577; mucroprotein, p = 0.3949; lactate dehydrogenase,

p = 0.2805; and acid phosphatase, p = 0.0164.

Comments: The observed markers of inflammation are coherent with the observed respiratory irritative effects

observed in mice exposed to 1,2,4-TMB acute (i.e., 6 min). The authors did not report at which dose groups the numbers of polymorphonuclear leucocytes and lymphocytes were significantly elevated relative to control.

Table C-31.	Characteristics and o	uantitative results for	Korsak et al.	(2000a)

Study desig	'n							
Species	Sex	N	Exposure route	Dose range	Exposure duration			
IMP: Wistar rats	M & F	10/dose	Inhalation (6 hrs/d, 5 d/wk)	0, 123, 492, or 1,230 mg/m ³	90 d			
 Additional study details Animals were exposed to 1,2,4-TMB in a dynamic inhalation chamber (1.3 m³ volume) with 16 air changes/hr. Mean initial body weights were 213 ± 20 for males and 160 ± 11 for females; rats were housed in polypropylene cages with wire-mesh covers (five animals/cage), with food and water provided ad libitum. Animals were randomized and assigned to the experimental groups. Hematological parameters were evaluated prior to exposure and 1 wk prior to termination of exposure, and for the 1,230 mg/m³ exposure group, also evaluated 2 wks after termination of exposure; blood clinical chemistry parameters were evaluated 18 hrs after termination of exposure (animals were deprived of food for 24 hrs). Necropsy was performed on all animals. Pulmonary lesions were graded using an arbitrary scale: 1 = minimal, 2 = mild, 3 = moderate, 4 = marked. 								
					ntration (mg/m ³)			
Obse	ervation	0	123 Body		192 1,230			
			Войу	_	eights (mean ± SD) Iles			
Terminal bo	ody weight (g)	368 ± 22	390 ± 26	-	0 ± 22 389 ± 29			
	gan weight (g)		000					
Lungs	0 0 (0,	1.78 ± 0.28	1.83 ± 0.25	2.93	± 0.26* 1.78 ± 0.36			
Liver		10.27 ± 1.82	11.43 ± 1.05	10.78	3 ± 1.33 10.86 ± 2.04			
Spleen		0.68 ± 0.08	0.85 ± 0.19*	0.79	± 0.09 0.72 ± 0.08			
Kidney		2.06 ± 0.13	2.24 ± 0.15	2.14	± 0.15 2.18 ± 0.16			
Adrenals		0.048 ± 0.007	0.046 ± 0.0050	054 :	± 0.011 0.047 ± 0.005			
Testes		3.72 ± 0.35	3.90 ± 0.38	4.03	± 0.27 3.87 ± 0.24			
Heart		0.90 ± 0.04	0.94 ± 0.06	0.94	± 0.08 0.96 ± 0.07			
Relative org	gan weight (g)							
Lungs		0.496 ± 0.056	0.475 ± 0.056	0.586	± 0.115 0.477 ± 0.080			
Liver		2.896 ± 0.456	2.894 ± 0.427	2.990	± 0.465 2.901 ± 0.479			
Spleen		0.189 ± 0.011	0.220 ± 0.041	0.210	± 0.018 0.200 ± 0.018			
Kidney		0.588 ± 0.029	0.585 ± 0.022	0.587	± 0.065 0.586 ± 0.040			
Adrenals		0.011 ± 0.003	0.010 ± 0.000	0.022	± 0.024 0.011 ± 0.003			
Testes		1.041 ± 0.076	1.020 ± 0.079	1.067	± 0.102 1.039 ± 0.077			
Heart		0.252 ± 0.013	0.239 ± 0.020	0.249	± 0.014 0.258 ± 0.020			

	Females						
Terminal body weight (g)	243 ± 16	243 ± 19	230) ± 14	2	29 ± 21	
Absolute organ weight (g)			•				
Lungs	1.29 ± 0.18 1.32 ± 0.12		1.25	± 0.13	1.23 ± 0.11		
Liver	6.48 ± 1.02	6.54 ± 0.69	5.81	± 0.83	6.7	72 ± 1.34	
Spleen	0.59 ± 0.08	0.61 ± 0.11	0.49	± 0.06*	0.5	52 ± 0.08	
Kidney	1.55 ± 0.12	1.50 ± 0.14	1.38	± 0.11*	1.4	14 ± 0.19	
Adrenals	0.065 ± 0.007	0.070 ± 0.008	0.066	± 0.010	0.06	61 ± 0.013	
Ovaries	0.09 ± 0.02	0.09 ± 0.01	0.09	± 0.27	0.0	09 ± 0.02	
Heart	0.66 ± 0.07	0.64 ± 0.05	0.61	± 0.07	0.6	53 ± 0.06	
Relative organ weight (g)			•				
Lungs	0.555 ± 0.058	0.581 ± 0.040	0.596	± 0.051	0.56	59 ± 0.053	
Liver	2.770 ± 0.222	2.881 ± 0.309	2.758	± 0.223	3.07	78 ± 0.434	
Spleen	0.255 ± 0.025	0.266 ± 0.031	0.237	± 0.036	0.2	4 ± 0.033	
Kidney	0.667 ± 0.030	0.661 ± 0.047	0.660	± 0.042	0.66	62 ± 0.036	
Adrenals	0.0028 ± 0.006	0.031 ± 0.006	0.032 ± 0.006		0.029 ± 0.006		
Ovaries	0.043 ± 0.008	0.043 ± 0.008 0.041 ± 0.006 0.045 ± 0.013		0.047 ± 0.009			
Heart	0.284 ± 0.023	0.283 ± 0.025	0.291	± 0.025	0.28	39 ± 0.015	
		Exp	osure concei	ntration (mg/m ³	3)		
Observation	0	123	492	1,230	1,230ª	Trend test ^b	
		Hemat	tological para	meters (mean ±	: SD)		
			Ма	les			
Hematocrit (%)	49.9 ± 1.9	50.4 ± 2.0	50.0 ± 1.9	50.6 ± 1.5	50.1 ± 1.1	0.2993	
Hemoglobin (g/dL)	15.1 ± 1.1	15.6 ± 0.9	15.4 ± 0.9	15.4 ± 0.6	16.0 ± 1.0	0.2112	
RBCs (× 10 ⁶ /mm ³)	9.98 ± 1.68	9.84 ± 1.82	8.50 ± 1.11	7.70 ± 1.38**	7.61 ± 1.6	0.0004	
WBCs (× 10³/mm³)	8.68 ± 2.89	8.92 ± 3.44	8.30 ± 1.84	15.89 ± 5.74**	7.11 ± 2.1	0.0019	
Rod neutrophil (%)	0.0 ± 0.0	0.4 ± 0.5	0.2 ± 0.4	0.9 ± 1.5	0.7 ± 0.8	0.0589	
Segmented neutrophil (%)	24.1 ± 9.2	19.7 ± 6.5	20.7 ± 7.7	18.9 ± 10.8	29.4 ± 6.4	0.0730	
Eosinophil (%)	1.2 ± 1.7	1.2 ± 1.0	0.4 ± 0.6	1.7 ± 1.4	1.5 ± 1.5	0.2950	
Lymphocyte (%)	73.5 ± 10.3	76.2 ± 7.1	76.8 ± 8.5	75.8 ± 16.0	65.4 ± 8.9	0.1297	
Monocyte (%)	1.1 ± 1.3	2.5 ± 2.1	2.3 ± 2.2	1.8 ± 2.5	2.7 ± 2.5	0.3818	
Lymphoblast (%)	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.8 ± 1.3	0.3 ± 0.9	0.1387	
Myelocyte (%)	0.0 ± 0.0	0.0 ± 0.0	0.2 ± 0.4	0.0 ± 0.0	0.0 ± 0.0	0.4046	
Erythroblase (%)	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.5000	
Reticulocyte (%)	3.1 ± 2.3	2.3 ± 1.4	2.8 ± 2.1	3.1 ± 2.5	6.4 ± 3.2	0.4900	
Platelet (× 10 ³ /mm ³)	294 ± 46	293 ± 73	359 ± 46	335 ± 80	386 ± 70	0.0741	

			Fem	ales		
Hematocrit (%)	46.0 ± 1.6	46.6 ± 2.7	47.0 ± 2.7	46.5 ± 4.1	45.8 ± 1.3	0.2336
Hemoglobin (g/dL)	14.5 ± 0.9	13.8 ± 1.3	14.4 ± 0.9	14.2 ± 0.9	14.9 ± 0.9	0.3461
RBCs (× 10 ⁶ /mm ³)	8.22 ± 1.16	7.93 ± 2.04	8.51 ± 1.13	7.71 ± 1.58	6.99 ± 1.8	0.1891
WBCs (× 10 ³ /mm ³)	7.50 ± 1.31	6.76 ± 2.95	9.55 ± 4.48	9.83 ± 3.74	7.11 ± 2.4	0.0307
Rod neutrophil (%)	1.4 ± 1.6	0.5 ± 0.7	0.4 ± 0.5	0.4 ± 0.9	0.5 ± 0.7	0.3270
Segmented neutrophil (%)	22.8 ± 6.5	15.5 ± 7.9	20.7 ± 7.5	17.4 ± 9.3	20.5 ± 9.5	0.1868
Eosinophil (%)	1.2 ± 0.6	16 ± 1.6	1.1 ± 1.7	1.2 ± 2.1	2.0 ± 1.7	0.1051
Lymphocyte (%)	73.2 ± 7.9	79.4 ± 8.4	75.5 ± 7.4	78.8 ± 11.6	74.1 ± 9.5	0.2140
Monocyte (%)	1.2 ± 1.3	2.6 ± 2.8	1.3 ± 1.7	1.5 ± 0.8	1.5 ± 1.4	0.4156
Lymphoblast (%)	0.0 ± 0.0	0.1 ± 0.3	0.5 ± 1.5	0.7 ± 1.1	0.8 ± 1.3	0.1361
Myelocyte (%)	0.0 ± 0.0	0.0 ± 0.0	0.5 ± 1.5	0.1 ± 0.3	0.1 ± 0.3	0.3189
Erythroblase (%)	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.5000
Reticulocyte (%)	3.5 ± 2.6	1.7 ± 2.0	1.8 ± 0.9	1.0 ± 0.6*	5.8 ± 3.6	0.0137
Platelet (× 10 ³ /mm ³)	306 ± 34	234 ± 50*	303 ± 48	325 ± 57	349 ± 77	0.1542
Clotting time (sec)	30 ± 10	23 ± 4	19 ± 5**	22 ± 7*	48 ± 19	0.0034
		Exp	osure concer	ntration (mg/m	³)	
Observation	0	123	492	1,23	0	Trend test ^b
		Clinical	chemistry par	ameters (mear	ו ± SD)	
			Ma	les		
AST (U/dL)	138.7 ± 20.6	141.3 ± 21.0	134.5 ± 27.0	138 ± 3	5.0	0.2223
ALT (U/dL)	51.7 ± 5.9	48.3 ± 7.8	49.7 ± 9.1	46.8 ±	5.1	0.0637
ALP (U/dL)	80.4 ± 12.0	86.2 ± 22.0	84.9 ± 21.0	90.5 ± 1	19.0	0.1518
SDH (U/dL)	6.6 ± 1.4	8.1 ± 0.8**	7.8 ± 1.0*	8.0 ± 1.	1**	0.0083
GGT (μU/mL)	0.22 ± 0.44	0.20 ± 0.42	0.20 ± 0.42	0.20 ± 0).42	0.4700
Bilirubin (mg/dL)	1.027 ± 0.193	0.974 ± 0.338	1.106 ± 0.289	0.932 ± 0).175	0.2594
Total cholesterol (mg/dL)	63.6 ± 13.0	69.1 ± 12.0	72.4 ± 14.9	70.6 ± 1	19.5	0.0920
Glucose (mg/dL)	141.9 ± 23.9	163.8 ± 29.7	157.9 ± 23.2	162.2 ±	28.9	0.0876
Total protein (g)	5.43 ± 1.00	5.47 ± 1.39	5.34 ± 1.29	5.82 ± 1	.49	0.3242
Albumin (g)	3.25 ± 0.60	3.45 ± 0.56	3.41 ± 0.83	3.53 ± ().66	0.2279
Creatinine (mg/dL)	0.506 ± 0.099	0.437 ± 0.138	0.510 ± 0.150	0.490 ± ().178	0.3982
Urea (mg/dL)	54.2 ± 8.6	48.8 ± 8.3	47.6 ± 3.4	49.0 ±	8.7	0.1145
Calcium (mg/dL)	10.4 ± 0.5	10.8 ± 0.5	10.7 ± 0.8	10.8 ±	0.7	0.2449
Phosphorus (mg/dL)	6.27 ± 0.49	6.50 ± 0.57	6.49 ± 0.61	6.46 ± ().78	0.1580
Sodium (mmol/L)	139.0 ± 1.4	1,393 ± 1.3	139.6 ± 1.4	139.0 ±	1.4	0.4950
Potassium (mmol/L)	4.87 ± 0.36	4.97 ± 0.34	4.97 ± 0.25	4.83 ± ().40	0.2907
Chloride (mmol/L)	106.6 ± 1.2	106.1 ± 1.7	106.3 ± 1.5	106.7 ±	4.2	0.4353

					Fe	males			
AST (U/dL)	139.4 ± 16.6		136.7	136.7 ± 27.1		145.5 ± 22.7	141.4 ± 15.6		0.2118
ALT (U/dL)	49.8 ± 6.3	3	51.4	51.4 ± 8.2		50.4 ± 9.0	55.1 ± 9.5		0.1844
ALP (U/dL)	41.2 ± 7.8	3	37.2	2 ± 6.8		39.8 ± 11.0	49.8 ± 15.5		0.1740
SDH (U/dL)	5.9 ± 1.5		7.3	± 1.7		7.1 ± 1.8	7.0 ± 1.6		0.0637
GGT (μU/mL)	0.20 ± 0.4	2	0.30	± 0.48		0.10 ± 0.32	0.44 ± 0.53		0.2821
Bilirubin (mg/dL)	0.745 ± 0.3	42	0.690	± 0.396	0).743 ± 0.248	0.642 ± 0.257		0.3092
Total cholesterol (mg/dL)	64.5 ± 11.	9	65.7	± 12.8		64.1 ± 10.8	62.5 ± 7.6		0.4775
Glucose (mg/dL)	118.2 ± 28	.8	138.8	3 ± 38.5		104.5 ± 23.8	129.9 ± 39.7		0.4838
Total protein (g)	6.91 ± 0.5	3	7.44	± 0.89		7.08 ± 0.35	6.94 ± 0.64		0.4036
Albumin (g)	3.42 ± 0.2	4	3.46	± 0.27		3.61 ± 0.26	3.42 ± 0.15		0.2408
Creatinine (mg/dL)	0.655 ± 0.1	35	0.553	± 0.104	0).629 ± 0.153	0.577 ± 0.133		0.1641
Urea (mg/dL)	52.7 ± 7.8		49.6	49.6 ± 6.7		52.8 ± 10.5	52.2 ± 11.8		0.4718
Calcium (mg/dL)	10.5 ± 0.6	5	10.8 ± 0.8		10.6 ± 0.5		10.8 ± 0.6		0.3011
Phosphorus (mg/dL)	4.75 ± 0.5	4	5.05 ± 0.70		5.34 ± 0.74		4.90 ± 1.01		0.4050
Sodium (mmol/L)	137.9 ± 1.	7	138.0 ± 1.8		137.8 ± 2.5		138.2 ± 2.2		0.3628
Potassium (mmol/L)	4.54 ± 0.2	2	4.39 ± 0.61		4.51 ± 0.26		4.46 ± 0.25		0.4108
Chloride (mmol/L)	104.9 ± 2.	0	105.5 ± 1.3		105.9 ± 1.6		106.4 ± 1.8		0.0601
			E	•		entration (mg group ID]	/m³)		
Observation	0 [1]		123 [2]	492 [3]		1,230 [4]	Comparison to controls ^c	Tr	end test ^b
				•	Ν	/lales			
Proliferation of peribronchial lymphatic tissue (0–4) ^d	16.0 ^e		15.6	30.6		17.4	1-3*		0.13
Formation of lympho- epithelium in bronchii (0–4)	18.1		15.6	27.9		18.2			22
Bronchitis and broncho- pneumonia (0–4)	19.0	18.3		26.1		16.5			0.49
Interstitial lymphocytic infiltration (0–3)	14.8		18.4	26.9		19.4	1–3*		0.12
Alveolar macrophages (0–3)	14.1		14.8	24.1		26.4	1-4*		0.002
Cumulative score of all individuals	13.9		15.1	29.1		21.3	1–3*		0.02

		Females							
Proliferation of peribronchial lymphatic tissue (0–4) ^k	19.4	21.7	21.2	17.5		0.36			
Formation of lympho- epithelium in bronchii (0–4)	18.3	20.1	25.1	16.1		0.48			
Bronchitis and broncho- pneumonia (0–4)	19.0	22.9	19.0	19.0		0.48			
Interstitial lymphocytic infiltration (0–3)	15.8	14.5	21.5	29.2	1-4*	0.0017			
Alveolar macrophages (0−3)	19.7	14.9	16.6	29.8	ns	0.03			
Cumulative score of all individuals	16.8	15.3	21.3	27.3	ns	0.01			

*Statistically significant from controls at p < 0.05.

**Statistically significant from controls at p < 0.01.

^aEffects measured in rats exposed to 1,230 mg/m³ 2 wks after termination of exposure.

^b*p*-value reported from Jonckheere's trend test.

^cReports the results of pair-wise statistical significance of exposure groups compared to controls (i.e., 1–3 would indicate that the 492 mg/m³ was statistically significantly different from controls).

^dGrading system (0–4, 0–3; see Additional study details above).

^eResults presented as ranges of the Kruskal-Willis test.

SDH = sorbitol dehydrogenase.

Health effect at LOAEL	NOAEL	LOAEL
Increased pulmonary lesions, decreased RBCs, and increased WBCs in males	123 mg/m ³	492 mg/m ³

Comments: The observed inflammatory lesions are coherent with observations of increased inflammatory cell populations in BAL fluid in <u>Korsak et al. (1997)</u>. The authors did not report the incidences of pulmonary lesions, but rather the results of the Kruskall-Wallis test. This makes it difficult to interpret the dose-response relationship and limits analysis of these endpoints to the NOAEL/LOAEL method for determining a POD, rather than using BMD modeling.

Study desigr	ı				
Species	Sex	Ν	Exposure route	Concentration range	Exposure duration
IMP: Wistar rats	M & F	10/dose, 20 in 1,230 mg/m ³ group	Inhalation (6 hrs/d, 5 d/wk)	0, 123, 492, or 1,230 mg/m ³ 1,2,3-TMB	90 d
Additional s	tudy de	tails			
F 	oolyprop ibitum. Animals Hematol exposure exposure animals Necropsy Pulmona	were randomiz ogical parameter and for the 1 c; blood clinica were deprived y was performer ry effects were	ith wire-mesh cove eed and assigned to ters were evaluated ,230 mg/m ³ expose l chemistry parame l of food for 24 hrs) ed on all animals. e graded using an a	g for males and 215 ± 13 g for rs (five animals/cage), with fo the experimental groups. d prior to exposure and 1 wk p ure group, also evaluated 2 wl eters were evaluated 18 hrs af b. rbitrary scale: 0 = normal stat	od and water provided ad prior to termination of k after termination of ter termination of exposure
3	s = mode	erate, 4 = mark	.ed.		
				Exposure concentration (m	ng/m³)

Table C-32. Characteristics and quantitative results for Korsak et al. (2000b)

		Exposure concer	itration (mg/m ³)	
Observation	0	123	492	1,230
		Body and organ we	eights (mean ± SD)	
		Ma	les	
Terminal body weight (g)	390 ± 35	408 ± 50	404 ± 33	413 ± 46
Absolute organ weight (g)				
Lungs	1.90 ± 0.22	1.86 ± 0.26	1.99 ± 0.37	1.88 ± 0.34
Liver	8.28 ± 0.97	8.83 ± 1.40	9.05 ± 0.99	9.54 ± 1.50
Spleen	0.71 ± 0.06	0.12 ± 0.10	0.82 ± 0.11	0.79 ± 0.20
Kidney	2.34 ± 0.27	2.29 ± 0.23	2.48 ± 0.25	2.50 ± 0.25
Adrenals	0.059 ± 0.012	0.061 ±0.016	0.061 ± 0.013	0.061 ± 0.012
Testes	3.78 ± 0.44	3.69 ± 0.24	3.71 ± 0.36	3.91 ± 0.12
Heart	1.04 ± 0.13	0.98 ± 0.11	1.08 ± 0.13	1.15 ± 0.19
Relative organ weight (g)				
Lungs	0.510 ± 0.071	0.479 ± 0.026	0.504 ± 0.082	0.468 ± 0.073
Liver	2.208 ± 0.163	2.271 ± 0.129	2.287 ± 0.115	2.414 ± 0.214*
Spleen	0.190 ± 0.019	0.187 ± 0.015	0.207 ± 0.021	0.203 ± 0.058
Kidney	0.623 ± 0.049	0.594 ± 0.029	0.629 ± 0.033	0.637 ± 0.060
Adrenals	0.016 ± 0.003	0.016 ± 0.003	0.015 ± 0.003	0.016 ± 0.003
Testes	1.014 ± 0.087	0.961 ± 0.091	0.941 ± 0.063	1.002 ± 0.106
Heart	0.277 ± 0.027	0.252 ± 0.018	0.274 ± 0.032	0.284 ± 0.026

				Femal	es			
Terminal body weight (g)	268 ± 18	3	20	62 ± 21	263 ± 14		259	± 23
Absolute organ weight (g)								
Lungs	1.62 ± 0.1	L5	1.5	5 ± 0.33	1.47 ± 0.18		1.51 ±	0.16
Liver	6.05 ± 0.4	12	5.8	5 ± 0.47	5.94 ± 0.51		6.05 ±	0.44
Spleen	0.63 ± 0.0)5	0.6	1 ± 0.10	0.57 ± 0.05*		0.56 ±	0.06*
Kidney	1.58 ± 0.1	L6	1.5	3 ± 0.12	1.54 ± 0.10		1.62 ±	0.16
Adrenals	0.080 ± 0.0	014	0.08	2 ± 0.010	0.083 ± 0.011	L	0.075 ±	0.015
Ovaries	0.12 ± 0.0)3	0.1	2 ± 0.03	0.13 ± 0.02		0.14 ±	: 0.04
Heart	0.74 ± 0.0)5	0.7	1 ± 0.50	0.75 ± 0.06		0.73 ±	: 0.08
Relative organ weight (g)		I						
Lungs	0.651 ± 0.0)53	0.63	7 ± 0.122	0.604 ± 0.049)	0.639 ±	0.076
Liver	2.434 ± 0.1	L43	2.40	0 ± 0.088	2.448 ± 0.190)	2.555 ±	0.214
Spleen	0.257 ± 0.0)27	0.24	9 ± 0.032	0.234 ± 0.19		0.237 ±	0.022
Kidney	0.639 ± 0.0	076	0.62	8 ± 0.024	0.638 ± 0.032	2	0.686 ±	0.058
Adrenals	0.032 ± 0.0	005	0.03	4 ± 0.004	0.034 ± 0.005	5	0.032 ±	0.008
Ovaries	0.051 ± 0.0	014	0.05	0 ± 0.014	0.056 ± 0.006	5	0.060 ±	0.018
Heart	0.298 ± 0.0	016	0.29	1 ± 0.012	0.309 ± 0.024	Ļ	0.307 ±	0.026
			Exp	osure concent	ration (mg/m ³)			
Observation	0	12	23	492	1,230		1,230ª	Trend test ^b
			Hemate	ological param	eters (mean ± S	SD)		
Hematocrit (%), males	46.4 ± 1.6	45.8	± 2.6	45.7 ± 1.3	45.5 ± 2.1	43	3.5 ± 26	0.1615
Hematocrit (%), females	42.7 ± 2.2	45.0	± 2.4	41.8 ± 1.6	41.5 ± 24	4:	1.7 ± 20	0.0198
Hemoglobin (g/dL), males	16.4 ± 1.0	17.6	± 1.6	17.6 ± 0.8	15.0 ± 1.2		ND	0.0688
Hemoglobin (g/dL), females	13.9 ± 0.7	15.1 ±	: 1.0*	14.6 ± 0.6	14.7 ± 0.9		ND	0.0748
RBCs (× 10 ⁶ /mm ³), males	9.49 ± 2.03	10.25	± 1.29	10.11 ± 1.27	8.05 ± 1.38*	8	.6 ± 1.5	0.0011
RBCs (× 10 ⁶ /mm ³), females	8.03 ± 1.11	8.73 ±	1.24	7.79 ± 1.57	7.27 ± 1.32	6	.6 ± 1.8	0.0185
WBCs (× 10 ³ /mm ³), males	10.09 ± 2.23	9.38 ±	3.29	7.71 ± 3.45	9.03 ± 275	6	.3 ± 4.6	0.1661
WBCs (× 10 ³ /mm ³), females	10.71 ± 4.28	9.54 ±	2.37	13.02 ± 3.07	13.01 ± 4.53	6	52 ± 2.5	0.0189
Rod neutrophil (%), males	0.8 ± 1.0	1.0 ±	: 1.1	0.4 ± 0.5	0.5 ± 0.6	5	.2 ± 3.0	0.1878
Rod neutrophil (%), females	0.4 ± 0.8	0.6 ±	0.6	1.1 ± 1.4	0.4 ± 0.8	1	.8 ± 2.2	0.4711
Segmented neutrophil (%), males	24.8 ± 4.5	25.4	± 5.8	20.7 ± 5.8	17.7 ± 8.3*	27	7.5 ± 9.2	0.0032
Segmented neutrophil (%), females	23.1 ± 6.1	19.7	± 3.4	16.4 ± 4.2*	11.9 ± 7.1**	19	9.6 ± 8.3	0.0000
Eosinophil (%), males	1.3 ± 1.4	0.8 ±	: 1.0	0.8 ± 1.1	0.6 ± 0.8	0	.6 ± 0.6	0.1439
Eosinophil (%), females	1.4 ± 1.0	0.6 ±	0.6	0.7 ± 0.8	0.8 ± 0.9	0	.7 ± 0.8	0.2778
Lymphocyte (%), males	71.2 ± 5.0	71.6	± 6.8	75.4 ± 4.7	79.3 ± 78.0**	63	.7 ± 11.3	0.0015
Lymphocyte (%), females	73.2 ± 7.9	77.5	± 4.9	80.4 ± 5.1	84.0 ± 78.0**	75	5.7 ± 9.9	0.0003
Monocyte (%), males	1.9 ± 1.6	1.3 ±	: 1.4	2.3 ± 20	1.6 ± 22	3	.1 ± 3.7	0.3014
Monocyte (%), females	2.0 ± 2.0	1.6 ±	1.6	1.1 ± 1.3	2.1 ± 1.7	1	.3 ± 1.8	0.2426

This document is a draft for review purposes only and does not constitute Agency policy. C-131

Supplemental Information—Trimethylbenzenes

Lymphoblast (%), males	0.0 ± 0.0	0	.0 ± 0.0	0.2 :	± 0.6	0.2 ± 0.6		0.0 ± 0.0	0.2911
Lymphoblast (%), females	0.0 ± 0.0	0	.0 ± 0.0	0.1 :	± 0.3	0.3 ± 0.7	7	0.0 ± 0.0	0.1403
Myelocyte (%), males	0.0 ± 0.0	0	.0 ± 0.0	0.0 :	± 0.0	0.0 ± 0.0)	0.0 ± 0.0	0.5000
Myelocyte (%), females	0.0 ± 0.0	0	.0 ± 0.0	0.0 :	± 0.0	0.5 ± 0.2	2	0.0 ± 0.0	0.3963
Erythroblast (%), males	0.0 ± 0.0	0	.0 ± 0.0	0.0 :	± 0.0	0.0 ± 0.0)	0.0 ± 0.0	0.5000
Erythroblast (%), females	0.0 ± 0.0	0	.0 ± 0.0	0.0 :	± 0.0	0.1 ± 0.3	3	0.0 ± 0.0	0.2995
Reticulocyte (%), males	2.8 ± 1.3	2	.1 ± 1.7	3.8 :	± 2.1	4.5 ± 1.8	*	6.9 ± 3.1**	0.0017
Reticulocyte (%), females	2.6 ± 0.9	4.	6 ± 2.5*	5.2 ±	.50*	4.4 ± 3.0)	6.8 ± 3.5	0.0459
Platelet (× 10 ³ /mm ³), males	262 ± 51	2	66 ± 70	257	± 81	242 ± 76	5	277 ± 80	0.1708
Platelet (× 10 ³ /mm ³), females	224 ± 68	2	90 ± 70	249	± 53	204 ± 44	ł	258 ± 45	0.0329
Clotting time (sec), males	29.7 ± 8.6	23	.0 ± 10.0	37.9	± 9.9	29.2 ± 15	.6	21.7 ± 5.4	0.4650
Clotting time (sec), females	27.2 ± 2.8	25	5.0 ± 9.4	23.8	± 9.5	25.1 ± 12	.1	25.9 ± 8.0	0.3479
			Expo	osure co	oncentr	ation (mg/	m³)		
									Trend
Observation	0		123			92		1,230	test ^b
			Clinical c	hemist		neters (me		•	1
AST (U/dL), males	107.8 ± 14.2	2	102.9 ±	15.1	103.	6 ± 14.5	1	19.6 ± 27.3	0.2223
AST (U/dL), females	96.1 ± 9.4		96.9 ±	9.9	117.	1 ± 23.9	1	.04.6 ± 15.7	0.2118
ALT (U/dL), males	41.3 ± 2.0		40.7 ±	3.1	41.	5 ± 5.5		45.5 ± 5.6	0.0637
ALT (U/dL), females	39.7 ± 3.5		39.5 ±	6.4	36.	2 ± 3.3	(1)	80.5 ± 9.9**	0.1844
ALP (U/dL), males	70.5 ± 15.2		70.6 ± 1	L1.7	66.5	5 ± 10.8		63.7 ± 15.7	0.1518
ALP (U/dL), females	21.5 ± 2.7		25.8 ±	8.4	31.3	1 ± 8.6*		30.5 ± 9.9*	0.1740
SDH (U/dL), males	1.6 ± 0.7		2.3 ± 1	l.3	2.	5 ± 0.9		2.7 ± 0.7*	0.0083
SDH (U/dL), females	1.7 ± 0.7		1.9 ± ().9	1.5	5 ± 0.7		1.8 ± 1.0	0.0637
GGT (μU/mL), males	0.77 ± 0.66		0.77 ± ().97	0.40	0 ± 0.51		0.50 ± 0.75	0.4700
GGT (μU/mL), females	0.55 ± 0.72		0.44 ± 1	L.01	0.6	5 ± 1.11		0.30 ± 0.48	0.2821
Bilirubin (mg/dL), males	0.600 ± 0.516	6	0.600 ± 0).516	0.80) ± 0.422	0	.625 ± 0.518	0.2594
Bilirubin (mg/dL), females	0.911 ± 0.348	8	1.161 ± ().469	0.930) ± 0.463	0	.976 ± 0.421	0.3092
Total cholesterol (mg/dL), males	63.1 ± 10.1		62.2 ± 1	1.6	64.5	5 ± 16.2		65.0 ± 9.1	0.0920
Total cholesterol (mg/dL), females	60.1 ± 12.2		62.4 ± 1	15.3	62.	3 ± 7.7		64.4 ± 14.1	0.4775
Glucose (mg/dL), males	95.5 ± 13.1		110.8 ±	14.7	100.	2 ± 15.2	1	14.5 ± 20.6	0.0876
Glucose (mg/dL), females	115.9 ± 8.5		121.0 ±	17.5	109	.2 ± 5.8	1	09.8 ± 10.8	0.4838
Total protein (g), males	7.84 ± 0.13		8.02 ± 0).50	7.76	5 ± 0.27		8.04 ± 0.59	0.3242
Total protein (g), females	8.24 ± 1.24		8.36 ± 1	L.14	8.6	5 ± 0.84		8.62 ± 0.96	0.4036
Albumin (g), males	3.15 ± 0.73		3.15 ± 1	L.33	3.08	3 ± 1.30		2.95 ± 1.12	0.2279
Albumin (g), females	3.22 ± 1.28		3.17 ± 1	L.03	2.58	3 ± 1.28		3.60 ± 1.17	0.2408
Creatinine (mg/dL), males	41.24 ± 8.94		41.35 ± 1			9 ± 9.30		3.61 ± 13.10	0.3982
Creatinine (mg/dL), females	62.54 ± 10.66		61.60 ±			1 ± 10.86		59.71 ± 7.51	0.1641
Urea (mg/dL), males	38.7 ± 4.5		38.1 ±			9 ± 4.1		41.7 ± 7.5	0.1145
Urea (mg/dL), females	42.0 ± 5.5	$\neg \uparrow$	43.5 ±			0 ± 4.3		39.0 ± 29	0.4718

This document is a draft for review purposes only and does not constitute Agency policy. C-132

Supplemental Information—Trimethylbenzenes

Calcium (mg/dL), males	10.6 ± 0.6	5	10.7	′ ± 0.8		10.8 ± 0.7	10.9 ± 0.5	0.2449
Calcium (mg/dL), females	11.1 ± 0.8	3	11.7	' ± 0.3		11.8 ± 0.2	11.8 ± 0.7	0.3011
Phosphorus (mg/dL), males	8.60 ± 0.9	5	8.26	± 0.60		9.19 ± 0.88	9.41 ± 0.55	0.1580
Phosphorus (mg/dL), females	6.56 ± 0.7	0	6.25	± 1.17		6.41 ± 1.02	7.18 ± 1.09	0.4050
Sodium (mmol/L), males	143.9 ± 2.	1	144.:	1 ± 1.5		143.9 ± 25	144.8 ± 24	0.4950
Sodium (mmol/L), females	144.0 ± 1.	5	143.	8 ± 1.3		142.7 ± 1.3	143.8 ± 1.4	0.3628
Potassium (mmol/L), males	4.70 ± 0.3	5	4.45	± 0.28		4.75 ± 0.37	4.97 ± 0.56	0.2907
Potassium (mmol/L), females	4.52 ± 0.4	1	4.51	± 0.43		4.28 ± 0.41	4.37 ± 0.34	0.4108
Chloride (mmol/L), males	107.3 ± 2.	3	107.	7 ± 4.3		106.8 ± 1.8	106.5 ± 1.9	0.4353
Chloride (mmol/L), females	108.1 ± 3.	2	108.	1 ± 1.5		107.1 ± 1.3	107.2 ± 23	0.0601
			E	-		entration (mg group ID]	/m³)	
Observation	0 [1]		123 [2]	492 [3]		1,230 [4]	Comparison to controls ^c	Trend test ^b
Proliferation of peribronchial lymphatic tissue (0–3) ^d , males	2.0 ^e (23.4) ^f	1.2	. (11.5)	1.8 (22.0))	2.0 (23.5)	1-2*	<i>p</i> = 0.2
Proliferation of peribronchial lymphatic tissue (0–3), females	24 (22.8)	1.3	(12.1)	1.5 (16.4	1)	L3 (22.3)	1-2**; 1-3	p = 0.2
Formation of lymphoepithelium in bronchii (0–3), males	1.5 (23.9)	0.9	(14.9)	1.0 (16.0))	1.5 (25.7)	1-3*; 1-4**	p = 0.3
Formation of lymphoepithelium in bronchii (0–3), females	1.8 (27.9)	0.7	' (11.1)	1.1 (16.9))	1.5 (23.8)		p = 0.3
Goblet cells (0–3), males	1.8 (18.6)	1.5	(14.5)	2.5 (28.5	5)	1.8 (18.2)		p = 0.18
Goblet cells (0–3), females	1.3 (11.9)	1.6	6 (16.9)	2.0 (23.1	L)	2.4 (28.4)	1-3*; 1-4**	<i>p</i> = 0.001
Interstitial lymphocytic infiltration (0–3), males	0.4 (18.0)	0.1	. (14.1)	0.4 (18.0))	1.5 (31.0)	1-4*	<i>p</i> = 0.006
Interstitial lymphocytic infiltration (0–3), females	1.2 (23.7)	0.6	5 (15.3)	0.8 (17.9))	1.1 (22.9)		<i>p</i> = 0.4
Alveolar macrophages (0−3), males	0.9 (17.9)	0.9	(17.9)	1.2 (22.6	5)	1.2 (21.7)		<i>p</i> = 0.15
Alveolar macrophages (0–3), females	1.5 (26.1)	1.1	(21.1)	0.5 (17.8	3)	0.7 (14.8)		<i>p</i> = 0.01
Bronchitis and broncho- pneumonia (0–4), males	0.5 (20.1)	0.2	(16.6)	0.8 (23.8	3)	0.7 (19.5)		<i>p</i> = 0.3
Bronchitis and broncho- pneumonia (0–4), females	0.2 (17.6)	0.4	(22.5)	0.2 (17.5	5)	0.6 (21.8)		<i>p</i> = 0.3

Cumulative score of all individual males	7.1 (19.8)	4.8 (11.2)	7.7 (24.2)	8.7 (25.8)		<i>p</i> = 0.01
Cumulative score of all individual females	8.4 (24.9)	5.7 (13.5)	6.5 (16.8)	8.2 (24.6)	1-2*	<i>p</i> = 0.4
*Statistically significant from co **Statistically significant from a Effects measured in rats expose bp-value reported from Jonckh cReports the results of pair-wis indicate that the 492 mg/m ³ v dGrading system (0-4, 0-3; see eMean.	controls at <i>p</i> sed to 1,230 r eere's trend t e statistical si vas statistical	< 0.01. ng/m ³ 2 wks a est. gnificance of ly significantly	exposure gro y different fro	ups compared		1–3 would
^f Results presented as ranges of	the Kruskal-	Willis test.				
	the Kruskal-	Willis test.			LOAEL	
fResults presented as ranges of	the Kruskal-\				LOAEL 1,230 mg/m ³	

Study design	1	<u> </u>				1		1	
Species	Sex	N		Exposure r		Dose ra	-	Expo	osure duration
WAG/RijCR/BR Wistar rats	М	8 /groι	qu	Inhalation (8 I for 3 consecu	-	0, 600, 2,400 4,800 mg/m ³	-	3 d	
						1,2,4-TMB (a			
						constituent c spirit)	of white		
Additional study									
4,800 inclu) mg/n ded te:	n ³ for 3 sts of ol	d. Sev oserva und to	eral tests were tion, spontane affect perforn	e condu ous mo nance a	cted to evalua tor activity an nd learned be	ite impact d learned havior in r	of white sp visual discri ats.	of 0, 600, 2,400, or irit on CNS. These imination. following exposure
			Func			pirit (exposur	•		
Observa	ation			0		600	2,4	400	4,800
				F	unctio	nal observatio	n battery	(mean ± SD)
Gait score ^a							_		
Before first 8-hr	exposı	ure	1	.00 ± 0.00	1.	00 ± 0.00	1.00	± 0.00	1.00 ± 0.00
After first 8-hr ex	kposur	e	1	.00 ± 0.00	1.	00 ± 0.00	1.13	± 0.13	1.25 ± 0.16
After third 8-hr e	exposu	re	1	.00 ± 0.00	1.	00 ± 0.00	1.00	± 0.00	1.00 ± 0.00
Click response ^b									
Before first 8-hr	exposı	ure	2	.13 ± 0.13	2.	63 ± 0.18	2.38	± 0.18	2.50 ± 0.19
After first 8-hr ex	kposur	e	2	.88 ± 0.13	2.	50 ± 0.19	2.75	± 0.37	2.63 ± 0.18
After third 8-hr e	exposu	re	2	.13 ± 0.13	3.2	25 ± 0.31*	2.88	± 0.23	2.75 ± 0.25
					Physi	ological para	meters (m	ean ± SD)	
Body weight (g)									
Before first 8-hr	exposı	ure	27	′0.0 ± 2.61	26	9.2 ± 2.48	273.3	± 3.52	272.8 ± 2.20
After first 8-hr ex	kposur	e	27	'9.7 ± 2.53	27	7.7 ± 3.11	278.0 ±	± 3.21**	273.8 ± 2.51***
After third 8-hr e	exposu	re	28	80.9 ± 2.68	27	8.4 ± 2.44	275.9 ±	2.83***	268.5 ± 2.67***
Body temperatu	re (°C)								
Before first 8-hr	exposi	ure	37	'.60 ± 0.34	37	.33 ± 0.39	37.49	± 0.39	37.29 ± 0.37
After first 8-hr ex	kposur	e	36	5.41 ± 0.05	36	.25 ± 0.12	36.16	± 0.11	35.95 ± 0.21
After third 8-hr e	exposu	re	36	6.60 ± 0.10	36	.44 ± 0.17	36.25	± 0.05	36.11 ± 0.09**

This document is a draft for review purposes only and does not constitute Agency policy.C-136DRAFT—DO NOT CITE OR QUOTE

Drink response latency (sec)				
Before first 8-hr exposure	0.35 ± 0.04	0.29 ± 0.03	0.36 ± 0.03	0.32 ± 0.02
After first 8-hr exposure	0.37 ± 0.04	0.31 ± 0.03	0.39 ± 0.02	0.52 ± 0.04
After second 8-hr exposure	0.36 ± 0.04	0.28 ± 0.03	0.33 ± 0.02	0.39 ± 0.04
After third 8-hr exposure	0.38 ± 0.05	0.32 ± 0.04	0.39 ± 0.02	0.43 ± 0.07
One day after third 8-hr exposure	0.36 ± 0.03	0.31 ± 0.02	0.34 ± 0.02	0.33 ± 0.04

*Statistically significant from controls at p < 0.05.

**Statistically significant from controls at p < 0.01.

***Statistically significant from controls at *p* < 0.001.

^aGait score indicates the severity of gait changes and is scored as 1 (normal) to 4 (severely abnormal).

^bClick response was scored as 0 (no reaction) to 5 (exaggerated reaction).

^cData for parameters that did not show statistically significant group differences are not shown; statistical analysis: repeated measures ANCOVA + pairwise group comparisons.

Health effect at LOAEL	NOAEL	LOAEL
N/A	N/A	N/A

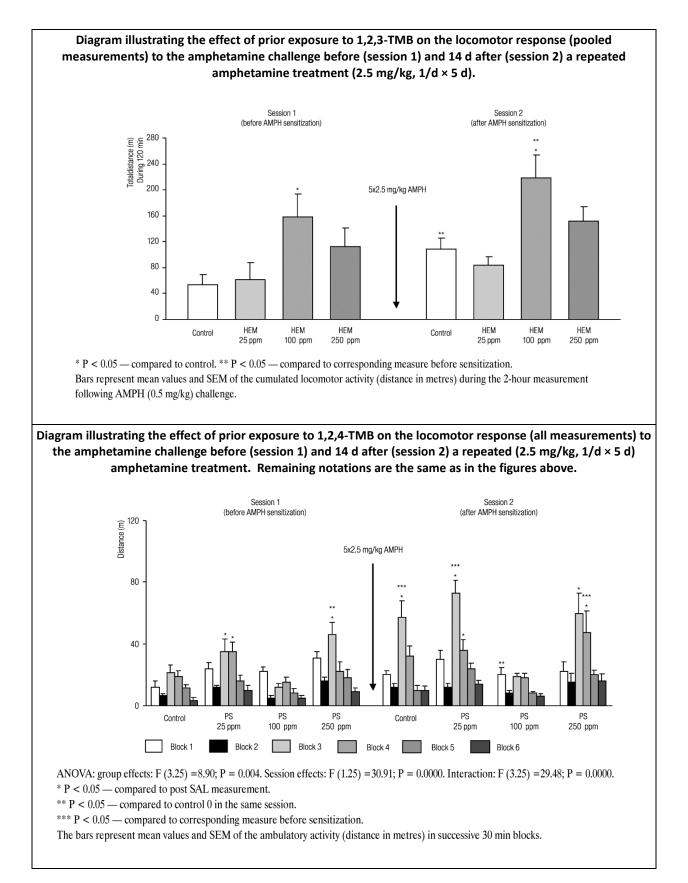
Comments: Exposure to 1,2,4-TMB was via white spirit, which is comprised of additional substances. LOAEL and NOAEL values cannot be extracted from this study because other constituents of the white spirit mixture may confound results.

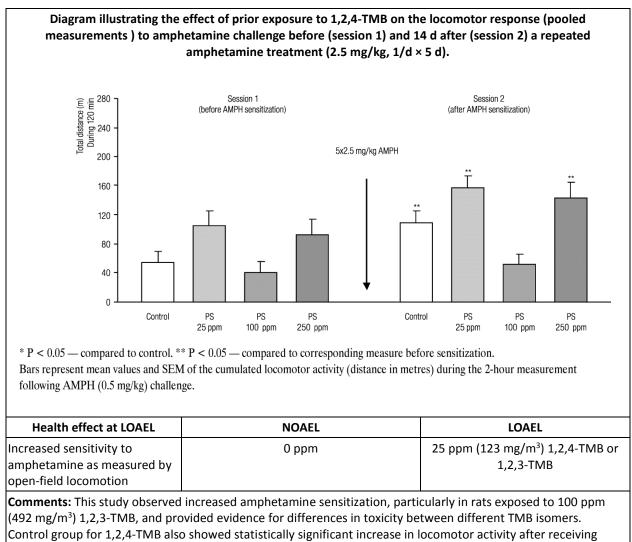
Table C-34.	Characteristics and c	uantitative results for	Lutz et al.	(2010)
-------------	-----------------------	-------------------------	-------------	--------

Species	Sex	Ν	Exposure route	Dose range	Exposure duration
Wistar rats	М	6–8 rats/ dose	Inhalation (6 hrs/d, 5 d/wk)	0, 25, 100, or 250 ppm (0, 123, 492, or 1,230 mg/m ³) 1,2,3- or 1,2,4-TMB	4 wks
• • • Diagram illu	6 hrs/d, Animals Behavior Differend displayin ustrating	5 d/wk for 4 were randor ral sensitivity ces were obs g greater an g the effect o	wks. Food and water mized and assigned to y to amphetamine was served between 1,2,3- nphetamine sensitization of prior exposure to 1, before (session 1) and	were provided ad libitum. the experimental groups. measured via test of open- and 1,2,4-TMB exposed rat on than 1,2,4-TMB exposed 2,3-TMB on the locomotor	s, with 1,2,3-TMB-exposed rate
			amprictar		
			Session 1	Seesi	nn 2
	(iii) apure state 80 - 40 - 0		Session 1 before AMPH sensitization)		

Block 1 — control (preinjection) activity, block 2 — activity after the SAL injection, blocks 3, 4, 5 and 6 — activity during successive 30 min sections after AMPH (0.5 mg/kg) injection.

ANOVA: group effects: F(3.24) = 9.80; P = 0.0002; session effects: F(1.24) = 34.22; P = 0.0000; interaction: F(3.24) = 20.64; P = 0.0000.


* P < 0.05 — compared to post SAL measurement.


1

** P < 0.05 — compared to control 0 in the same session.

*** P < 0.05 — compared to corresponding measure before sensitization.

The bars represent mean values and SEM of the ambulatory activity (distance in metres) in successive 30 min blocks in the rats exposed to hemimellitene on the locomotor response to AMPH challenge before (session 1) and 14 days after (session 2) a repeated (2.5 mg/kg, 1/day×5 days) AMPH treatment.

amphetamine treatment.

Table C-35. Characteristics and quantitative results for Maltoni et al. (1997)
--

Species	Sex	N	Exposure	route	Dose range	Exposure duration	
Sprague- Dawley rats: CRC/BT	м	50 males, 50 females per group	Stomach tub olive oil)	e (in 0 or 800 mg/kg body weight 1,2,4-TMB		4 d/wk for 104 wks	
AnSysA s	ts were imals w stematio light inc	exposed to 1, ere 7 wks old c necropsy was crease in total	at start of expo s conducted u	eriments oon anin nors was	nal death. s detected amongst mal	tion 4 d/wk. es and females, and an increas	
			-			enicity of 1,2,4-TMB	
	Obs	ervation			0 mg/kg	800 mg/kg	
						er of tumors	
				Mal			
Total benign a		gnant tumors			54.0	62.0	
Malignant tur					24.0	26.0	
Number of ma	lignant	tumors/100 ra	ats		26.0	34.0	
				Fema			
Total benign a	nd mali	gnant tumors			70.0	66.0	
Malignant tur					22.0	24.0	
Number of ma	lignant	tumors/100 ra	ats	22.0 32.0			
				Both s	exes		
Total benign a	nd mali	gnant tumors			62.0	64.0	
Malignant turr	nors				23.0	25.0	
Number of ma	lignant	tumors/100 ra	nts		24.0	33.0	
						cancers	
				Mal			
Zymbal gland				2.0		4.0	
Ear duct cance					_	2.0	
Neuroesthesic	-	liomas				2.0	
Oral cavity cancers				-	2.0		
Total head car	icers			Fema	2.0	10.0	
Zymbal gland	cancer			Feille	2.0	2.0	
Ear duct cancer			2.0	_			
		liomas				4.0	
Neuroesthesioepi-theliomas Oral cavity cancers					-		
Total head cancers				2.0			

This document is a draft for review purposes only and does not constitute Agency policy.C-141DRAFT—DO NOT CITE OR QUOTE

Supplemental Information—Trimethylbenzenes

Both sexes				
Zymbal gland cancer	2.0	3.0		
Ear duct cancer	1.0	1.0		
Neuroesthesio-epitheliomas	-	3.0		
Oral cavity cancers	1.0	1.0		
Total head cancers	4.0	8.0		
Health effect at LOAEL	NOAEL	LOAEL		
Various malignant and non-malignant cancers	N/A	800 mg/kg		

Comments: Neuroesthesioepithelioma is uncommon in Sprague-Dawley rats, although there were increases in the number of neuroesthesioepithelioma in both males and females. Only one dose level was tested (800 mg/kg), making any determination of dose-response impossible. Statistical significance of data not provided, although post-hoc statistical tests performed by EPA failed to observe any statistical increase in tumors.

Study design	l				
Species	Sex	N	Exposure route	Dose range	Exposure duration
CD-1 mice, rats	Developmental toxicity: Female	Developmental toxicity: 30 mice/dose		1,500 ppm	6 hrs/d on gestational days (GDs) 6−15 – mice F₀: M & F: 6 hrs/d,
	Reproductive toxicity: M & F	Reproductive toxicity: F ₀ : 30 rats/sex/dose F ₁ : 30 rats/sex/dose F ₂ : 40 rats/sex/dose		• • • •	10 wks; F: GDs 0–20: 6 hrs/d, 7 d/wk

Table C-30. Characteristics and quantitative results for <u>Mickee et al. (1990)</u>	Table C-36.	. Characteristics and quantitative results for Mckee et al.	<u>(1990)</u>
--	-------------	---	---------------

Mice in the developmental toxicity test were exposed to HFAN (1,3,5-TMB, 1,2,4-TMB, and 1,2,3-TMB) • 6 hrs/d between GDs 6 and 15.

Rats in the reproductive toxicity test were exposed to HFAN (1,3,5-TMB, 1,2,4-TMB, and 1,2,3-TMB), in F₀, F₁, and F₂ generations for 6 hrs/d for 10 wks.

- 1,500 ppm was an adverse effect level for both maternal and developmental toxicity.
- In the developmental study, maternal and fetal weight gain was slightly reduced at 500 ppm, while the 100 ppm group did not exhibit maternal or developmental toxicity.

In the reproductive study, the parental generation had reduced weight gain, but did not exhibit reproductive toxicity, and birth weights as well as postnatal survival were similar to control values at 1,500 ppm.

The three generation experiment demonstrated that high level exposures was toxic but had little effect on reproductive organs.

The NOAEL was 100 ppm.

Composition of HFAN					
Compound	Weight percent				
<i>o</i> -Xylene	3.20				
Cumene	2.74				
n-Propylbenzene	3.97				
4-Ethyltoluene	7.05				
3-Ethyltoluene	15.1				
2-Ethyltoluene	5.44				
1,3,5-TMB	8.37				
1,2,4-TMB	40.5				
1,2,3-TMB	6.18				
≥C10s	6.19				
Total	98.74				

	Mean ch	amber concentration	s (ppm)		
	Nominal o	concentrations	Actual cor	ncentrations	
Target concentrations	Mean	SD	Mean	SD	
Developmental toxicity stu	ıdy		-		
0	-	_	-	-	
100	102	3.5	102	2.6	
500	463	5.3	500	3.7	
1,500	1,249	16.5	1,514	22.9	
Reproductive toxicity Stud	у				
0	-	_	-	_	
100	107	2.4	103	2.1	
500	513	12.8	495	8.0	
1,500	1,483		1,480	20.5	
	Reproductive	parameters after HFA	N exposure		
Observation	0 ppm	100 ppm	500 ppm	1,500 ppm	
Number of deaths/ number females	0/30	0/30	2/30	14/32ª	
Number pregnant/ number mated	26/30	26/30	27/30	22/30 ^b	
Number of litters with viable fetuses	24	21	23	13 ^c	
Corpora lutea/dam	12.9 ± 1.8^{d}	12.6 ± 1.8	12.7 ± 2.3	13.8 ± 2.6	
Implantations/dam	11.6 ± 1.5^{d}	11.0 ± 1.9	11.3 ± 1.6	12.3 ± 1.8	
Live fetuses/litter	10.7 ± 1.8^{d}	8.7 ± 4.6*	9.3 ± 3.1	7.9 ± 4.3*	
Postimplantation loss/dam	0.9 ± 0.9^{d}	2.3 ± 4.1	2.0 ± 3.1	4.3 ± 3.7**	
Fetal body weight (grams)	1.25 ± 0.14^{d}	1.24 ± 0.08	1.16 ± 0.11*	0.82 ± 0.17**	
Fetal sex ratio, males: females	57: 41	51:49	54:46	52:48	

*p < 0.05.

. **p < 0.01.

^aIncludes two replacement dams added on GD 6.

^bTwo mice died on day 6G; pregnancy could not be determined.

^cThree litters had resorptions only.

^dMean ± SD.

	Weights of pregn	ant mice after HFAN	exposure	
		Maternal b	ody weight	
	0 ppm	100 ppm	500 ppm	1,500 ppm
GD:				
0	25 ± 2.1 (26)ª	24 ± 1.7 (24)	25 ± 2.2 (27)	25 ± 2.8 (27)
6	25 ± 2.2 (26)	25 ± 1.9 (24)	26 ± 2.3 (27)	26 ± 3.3 (21)
15	39 ± 3.3 (26)	35 ± 7.6 (24)*	36 ± 4.9 (25)*	33 ± 6.0 (13)**
18	47 ± 3.4 (22)	43 ± 9.6 (24)	44 ± 7.0 (24)	40 ± 8.7 (12)*
	Materr	nal body weight gain		
Gestational intervals:				
Days 0–6	1 ± 1.7 (26)	1 ± 1.1 (24)	1 ± 1.12 (27)	1 ± 1.2 (21)
Days 6–15	16 ± 2.2 (26)	14 ± 6.5 (24)	14 ± 4.1 (25)**	10 ± 5.0 (13)**
Days 0–18	23 ± 2.7 (23)	19 ± 8.8 (24)	19 ± 5.6 (24)*	14 ± 6.8 (12)**
	Materna	al organ weights (gm)		
Lung	0.26 ± 0.03 (25	0.27 ± 0.04 (26)	0.27 ± 0.03 (25)	0.28 ± 0.04 (16)
Liver	2.39 ± 0.34 (25)	2.35 ± 0.51 (26)	2.51 ± 0.43 (25)	2.43 ± 0.53 (16)
Kidney	0.40 ± 0.06 (25)	0.41 ± 0.06 (25)	0.42 ± 0.05 (25)	0.42 ± 0.05 (16)
* <i>p</i> < 0.05. ** <i>p</i> < 0.01. ^a Mean ± SD, number examine				
		n fetuses after HFAN	-	T
Observation	0 ppm	100 ppm	500 ppm	1,500 ppm
External examination	280 (26)	226 (21)	232 (24)	128 (13)
Visceral examination	139 (26)	112 (21	112 (24)	68 (13)
Skeletal examination	141 (26)	114 (21)	120 (24)	60 (13)
	Malfo	rmations observed	Ι	I
Ablepharia	_	1 (1)	1 (1)	-
Folded retina	7 (26)	5 (5)	4 (3)	1 (1)
Cleft palate	1 (1)	-	1 (1)	14 (7)
Mandibular micrognathia	-	-	1 (1)	-
Thoracogastroschisis	_	1 (1)	-	-
Syringomyelocele	_	-	_	1 (1)
Sternoschisis	_	1 (1)	_	-
Interrupted ossification of an arch	1 (1)	1 (1)	-	-
Vertebrae malformation (with or without an associated rib malformation)	5 (4)	3 (3)	4 (4)	2 (2)
Rib malformation	1 (1)	-	1 (1)	1 (1)
Interrupted ossification of a rib	1 (1)	_	_	-
Total fetuses (litters) with malformations	15 (10)	11 (8)	11 (8)	19 (7)

This document is a draft for review purposes only and does not constitute Agency policy.C-145DRAFT—DO NOT CITE OR QUOTE

		De	velop	mental variatior	ıs		
Tarsal flexure		_		1 (1)		-	_
Skull reduced in ossifica	tion	_		_		_	18 (6)
Accessory skull bone	ccessory skull bone –			_		4 (3)	_
Hyoid unossified		_		_		1 (1)	_
14 th Rudimentary rib(s)		25 (15)		18 (12)		18 (12)	10 (7)
More than 13 pairs of fur ribs	III	17 (9)		21 (12)		26 (9)	27 (10)
7 th cervical ribs		37 (16)		25 (15)		19 (11)	12 (7)
Sternebrae #5 and/or #6 unossified	6	_		1 (1)		3 (2)	25 (10)
Fused sternebrae		3 (3)		_		_	-
Misaligned sternebrae		7 (5)		7 (7)		6 (6)	1 (1)
Extra sternebrae		3 (3)		1 (1)		-	1 (1)
Other sternebrae unossi	ified	_		_		_	4 (3)
Total fetuses (litters) wit variations	th	78 (24)		63 (20)		67 (22)	48 (13)
		Fertility	indice	es after HFAN ex	posure		
Observation		0 ppm		100 ppm		500 ppm	1,500 ppm
		Pregnant fer	males	/number of fem	ales ma	ited	
Parental generation:							
Fo		93.3 (30)	96.7 (30)			93.3 (30)	92.6 (27)
F1		80 (30)		76.7 (30)		96.7 (30)	88.9 (27)
F2		96.7 (30)		93.3 (30)		96.7 (30)	83.3 (6)
Fer	males	delivering a live	litter/	number identifi	ed preg	nant females (S	%)
Parental generation:							
Fo		103.6 (28)		100 (29)		89.3 (28)	92.0 (25)
F1		125 (30)		104.3 (30)		96.7 (30)	87.0 (24)
F ₂		96.6 (30)		100 (30)		96.6 (30)	120 (6)
Fer	nales	delivering a live l	litter/	number of fema	les deli	vering a litter (%)
Parental generation:							
F ₀		100 (29)	100 (29)			96.1 (26)	100 (23)
F1	100 (30)			100 (24)		96.7 (30)	90.5 (21)
F ₂ 100 (28)			100 (28)		100 (28)	100 (6)	
		Fertile mal	es/nu	mber of males r	nated (%)	
Parental generation:							
F ₀		86.7 (30)		96.7 (30)		83.3 (30)	84.6 (26)
F ₁		89.7 (30)		86.7 (30)		93.3 (30)	64.3 (28)*
F ₂		93.3 (30)		83.3 (30)		80.0 (30)	100 (4)

	Cohabitatio	on time (days) required	for mating ^a	
Parental generation:	:			
Fo	2.9 ± 2.3	2.1 ± 1.6	3.8 ± 2.5	4.2 ± 2.7
F ₁	3.3 ± 2.4	2.5 ± 2.1	2.6 ± 2.2	4.5 ± 2.9
F ₂	2.3 ± 1.1	3.0 ± 2.4	3.4 ± 2.9	3.4 ± 1.3
		Litter size at birth ^b		
Parental generation:	:			
Fo	12.1 ± 3.4	12.9 ± 1.5	12.2 ± 3.1	11.3 ± 3.0
F ₁	12.4 ± 2.0	11.1 ± 2.9	11.7 ± 3.0	8.7 ± 4.3**
F ₂	12.6 ± 2.7	11.8 ± 2.3	11.4 ± 2.1	12.2 ± 1.3
	male/female cohabitatio er of live offspring deliver	ed.		
	-	al survival among litters	-	
	0 ppm	tational survival index ^a	500 ppm	1,500 ppm
Generation:	Ges	Stational Survival muex	(70)	
	95.9 (366)	97.9 (382)	94.9 (333)	92.8 (279)
F0 F1	97.4 (383)	95.4 (280)	91.6 (371)	85.1 (215)**
F1 F2	97.8 (361)	98.2 (335)	98.5 (325)	100 (73)
F2	· ,	98.2 (555) natal survival index, 4-d		100 (73)
Generation:	FUSI	latal sul vival liluex, 4-u	(78)	
F ₀	93.7 (351)	93.3 (374)	98.7 (316)	94.2 (260)
F ₁	95.4 (373)	96.3 (267)	97.6 (340)	87.4 (183)
F ₂	97.5 (353)	96.4 (329)	97.5 (320)	97.3 (73)
12		natal survival index, 21-0		57.5 (75)
Generation:	1000		x (70)	
Fo	99.1 (214)	99.6 (225)	100 (200)	95.1 (164)
F ₁	96.2 (234)	98.9 (179)	98.6 (216)	99.2 (119)
F ₂	100 (215)	99.1 (216)	99.1 (220)	97.9 (48)
**Significantly differ				57.5 (10)
0,	number of pups born (%).			
	days/total number of liv			
Pups surviving for 2	1 days/total number of li			
	-	eights of pups exposed t		4 500
	0 ppm	100 ppm	500 ppm	1,500 ppm
Conoration		Day 0 body weights		
Generation:	6.1 ± 0.5	62+05	65+06	6.1 ± 1.0
F ₀ F ₁		6.2 ± 0.5	6.5 ± 0.6	
	6.0 ± 0.5	6.1 ± 0.5	6.0 ± 0.5	5.7 ± 0.7
F ₂	6.0 ± 0.5	6.0 ± 0.4	6.1 ± 0.6	5.7 ± 0.2

		Day 4 body weights		
Generation:				
Fo	9.7 ± 0.9	9.8 ± 0.6	10.1 ± 1.0	9.2 ± 1.3
F1	9.5 ± 1.4	10.0 ± 1.2	9.9 ± 1.0	9.3 ± 1.0
F ₂	9.7 ± 1.1	10.0 ± 0.7	9.8 ± 1.0	9.2 ± 0.6
		Day 7 body weights	•	
Generation:				
Fo	13.7 ± 1.3	13.2 ± 1.1	14.0 ± 1.7	12.0 ± 1.8
F ₁	13.3 ± 1.8	13.3 ± 1.6	13.5 ± 1.4	11.7 ± 1.3
F ₂	14.0 ± 2.0	14.1 ± 1.2	13.4 ± 1.5	12.0 ± 1.0
		Day 14 body weights		
Generation:				
Fo	24.9 ± 2.7	23.2 ± 1.8	23.9 ± 2.4	19.6 ± 2.7
F ₁	24.3 ± 2.5	23.5 ± 2.8	23.7 ± 2.7	19.3 ± 1.8
F2	26.2 ± 4.0	25.6 ± 1.9	23.2 ± 2.7	20.8 ± 1.3
	Da	y 21 male body weigh	ts	
Generation:				
Fo	39.5 ± 5.1	37.2 ± 5.9	40.0 ± 4.9	29.9 ± 3.6
F1	40.9 ± 5.5	39.3 ± 5.5	39.7 ± 5.6	30.4 ± 4.2
F ₂	42.9 ±7.6	42.7 ± 3.8	38.7 ± 5.1	32.8 ± 3.0
	Day	y 21 female body weig	nts	
Generation:				
Fo	38.0 ± 5.0	35.7 ± 5.7	38.0 ± 5.0	29.4 ± 4.3
F1	39.6 ± 5.1	37.9 ± 4.8	38.6 ± 5.5	29.1 ± 4.2
F ₂	41.4 ± 6.2	41.2 ± 3.6	37.2 ± 4.8	31.8 ± 3.6
Effect of pro	olonged exposure to H	FAN on gestation and	postnatal survival (f2 g	eneration)
	0 ppm	100 ppm	500 ppm	1,500 ppm
Litter size ^a				
Total	12.4 ± 2.0 (30)	11.1 ± 2.9 (24)	11.7 ± 3.0 (30)	8.7 ± 4.3** (21)
Prolonged exposure	11.3 ± 1.8 (6)	11.0 ± 2.4 (8)	4.0 (1) ^b	4.9 ± 5* (7)
Exposure stopped on GD 20	12.7 ± 1.9 (24)	11.2 ± 3.2 (16)	12.0 ± 2.7 (29)	10.6 ± 2.2 (14)
Birth weight ^a				
Total	6.0 ± 0.5 (30)	6.1 ± 0.5 (24)	6.0 ± 0.5 (30)	5.7 ± 0.7 (21)
Prolonged exposure	6.0 ± 0.6 (6)	5.9 ± 0.4 (8)	5.4 (1) ^b	5.1 ± 0.7
Exposure stopped on GD 20	6.0 ± 0.5 (24)	6.2 ± 0.5 (16)	6.0 ± 0.5 (29)	5.9 ± 0.6 (14)
Gestation survival index				
Total	97.4 (383)	95.4 (280)	91.6 (371)	85.1**(215)
Prolonged exposure	91.9 (74)	91.7 (96)	30.8 (13)	63.0 (54)
Exposure stopped on GD 20	98.7 (309)	97.2 (184)	93.8 (358)	92.5**(161)

This document is a draft for review purposes only and does not constitute Agency policy.C-148DRAFT—DO NOT CITE OR QUOTE

Postnatal survival index,	d 4 ^c			
Total	95.4 (373)	96.3 (267)	97.6 (340)	87.4 (183)
Prolonged exposure	82.3 (68)	90.9 (88)	100 (4)	44.1 (34)
Exposure stopped on GD 20	98.4 (305)	98.9 (179)	97.6 (336)	97.3 (149)
Postnatal survival index,	d 21 ^c			
Total	99.6 (226)	99.4 (178)	99.1 (215)	99.2 (119)
Prolonged exposure	100 (34)	98.3 (61)	100 (4)	91.7 (12)
Exposure stopped on GD 20	99.5 (192)	100 (117)	99.0 (211)	100 (107)
*p < 0.05. **p < 0.01. ^a Number of live born offs ^b Statistics not conducted ^c Initial number of offsprir	because of sm	all sample size.		
NOAEI	0		10	A EL offocto

NOAEL	LOAEL	LOAEL effects	
100 ppm, fetal weight gain (F₃	500 ppm	Fetal weight gain, and maternal	
generation)		weight gain reduced	

Species	pecies Sex N		Exposure route	Dose range	Expo	Exposure duration	
Wistar rats	M	8 rats/	Inhalation	0, 125, 1,250, or	-	3 consecutive d	
Wistar rats		group		5,000 mg/m ³ 1,2,4-T		o moy a for 5 consecutive a	
/ • ٦ ١	Animals Animals Test on Motor a	were expo were rand neurobeha ctivity was	sed to 1,2,4-TMB for 8 omized and assigned t vioral effects were cor affected on the third c L,2,4-TMB were lower	o the experimental gr iducted prior to, durir day of exposure in the	oups. ng, and after exposu highest exposure g	re period.	
				Exposure concentrati	on 1,2,4-TMB (mg/	m³)	
c	Observa	tion	0	125	1,250	5,000	
			Resu	Its of functional and i	motor activity obse	rvations	
Forelimb gri	p streng	gth (g)	I				
1 d pre-exposure		1,107 ± 41.2	1,065 ± 52.3	1,223 ± 25.9	1,090 ± 47.0		
First 8-hr exposure		1,064 ± 39.9	814 ± 91.7*	1,059 ± 59.8	1,023 ± 55.7		
Third 8-hr exposure		908 ± 56.1	847 ± 64.3	956 ± 67.7	1,156 ± 68.7*		
Total distand	ce trave	led (cm)			·	·	
1 d pre-exposure		3,773 ± 120	3,598 ± 301	3,543 ± 167	3,575 ± 119		
First 8-hr exposure		2,479 ± 110	3,048 ± 257	2,125 ± 171	1,897 ± 200		
Third 8-h	r exposı	ure	2,459 ± 118	2,740 ± 226	,740 ± 226 1,967 ± 316 1,172 ± 22		
Number of r	noveme	ents					
1 d pre-exposure		1,054 ± 31	999 ± 80	990 ± 44	998 ± 32		
First 8-hr exposure		697 ± 29	848 ± 66	600 ± 48	529 ± 53		
Third 8-hr exposure		d 8-hr exposure 68		744 ± 56	541 ± 82	329 ± 61*	
Observation			Exposure concentration 1,2,4-TMB (mg/m ³)				
		0	125	1,250	5,000		
			Visual	Visual discrimination performance testing (means ± SD)			
Trials ^a							
1 d pre-ex	xposure		100 ± 0.0	100 ± 0.0	100 ± 0.0	100 ± 0.0	
First 8-hr	exposu	re	100 ± 0.0	100 ± 0.0	100 ± 0.0	99.13 ± 0.88	
Third 8-h	r exposi	ure	100 ± 0.0	100 ± 0.0	100 ± 0.0	100 ± 0.0	
1 d post-exposure		100 ± 0.0	100 ± 0.0	100 ± 0.0	100 ± 0.0		

Percentage reinforcements ob				
1 d pre-exposure	99.88 ± 0.13	99.88 ± 0.13	99.88 ± 0.13	100 ± 0.0
First 8-hr exposure	100 ± 0.0	100 ± 0.0	99.38 ± 0.63	99.74 ± 0.17
Third 8-hr exposure	99.63 ± 0.26	99.63 ± 0.26	99.63 ± 0.38	100 ± 0.0
1 d post-exposure	99.63 ± 0.26	99.88 ± 0.13	99.88 ± 0.13	100 ± 0.0
Discrimination ratio ^c				
1 d pre-exposure	0.81 ± 0.84	0.84 ± 0.03	0.83 ± 0.02	0.83 ± 0.03
First 8-hr exposure	0.86 ± 0.02	0.91 ± 0.03	0.91 ± 0.01	0.95 ± 0.01*
Third 8-hr exposure	0.89 ± 0.02	0.88 ± 0.03	0.94 ± 0.01	0.95 ± 0.02
1 d post-exposure	0.87 ± 0.03	0.89 ± 0.03	0.92 ± 0.02	0.88 ± 0.03
Percentage inter-trial intervals	responded to ^d			
1 d pre-exposure	12.88 ± 2.00	10.13 ± 1.56	10.75 ± 1.94	10.38 ± 1.84
First 8-hr exposure	12.50 ± 2.12	8.88 ± 2.03	11.50 ± 2.60	10.19 ± 1.28
Third 8-hr exposure	12.00 ± 1.65	8.88 ± 2.24	8.25 ± 1.71	5.75 ± 1.39
1 d post-exposure	10.88 ± 1.39	10.63 ± 1.81	11.25 ± 0.92	8.50 ± 1.40
Repetitive errors ^e				
1 d pre-exposure	8.25 ± 3.71	7.63 ± 1.70	10.75 ± 2.73	7.25 ± 1.75
First 8-hr exposure	2.00 ± 0.50	3.25 ± 1.47	4.63 ± 1.58	1.88 ± 0.67
Third 8-hr exposure	2.63 ± 1.70	4.75 ± 1.81	3.00 ± 0.78	1.25 ± 0.73
1 d post-exposure	4.75 ± 2.81	2.75 ± 1.35	4.63 ± 3.09	4.13 ± 1.38
Repetitive inter-trial responses	f		·	
1 d pre-exposure	3.63 ± 1.02	5.88 ± 1.33	7.25 ± 1.93	3.25 ± 1.35
First 8-hr exposure	6.13 ± 1.73	3.88 ± 1.22	5.63 ± 1.97	8.38 ± 2.50
Third 8-hr exposure	7.25 ± 1.24	3.25 ± 0.88	2.25 ± 1.52*	1.63 ± 0.98*
1 d post-exposure	6.63 ± 1.94	2.88 ± 0.83	5.13 ± 1.54	2.63 ± 0.68
Trial response latency ^g				
1 d pre-exposure	1.83 ± 0.18	2.25 ± 0.55	2.06 ± 0.40	2.28 ± 0.43
First 8-hr exposure	1.70 ± 0.18	2.38 ± 0.43	2.52 ± 0.40	3.91 ± 0.73*
Third 8-hr exposure	1.91 ± 0.23	2.69 ± 0.69 2.75 ± 0.94		1.82 ± 0.13
1 d post-exposure	1.68 ± 0.16	2.70 ± 0.60	2.18 ± 0.73	1.45 ± 0.06
SD of response latency		•	•	
1 d pre-exposure	2.16 ± 0.38	3.82 ± 1.57	3.33 ± 1.42	4.65 ± 2.23
First 8-hr exposure	2.06 ± 0.38	3.64 ± 1.32	4.19 ± 1.65	7.33 ± 3.43
Third 8-hr exposure	2.74 ± 0.71	4.03 ± 1.50	5.25 ± 3.04	2.34 ± 0.40
1 d post-exposure	1.84 ± 0.38	5.95 ± 2.40	5.88 ± 4.21	1.81 ± 0.38

Latency <2 sec ^h							
1 d pre-exposure	61.75 ± 4.55	70.13 ± 2.23	67.75 ± 66.88	66.88 ± 3.22			
First 8-hr exposure	68.50 ± 3.84	69.75 ± 3.75	65.76 ± 3.13	52.13 ± 3.96			
Third 8-hr exposure	70.38 ± 4.34	64.13 ± 4.35	74.88 ± 1.75	79.00 ± 2.32			
1 d post-exposure	69.38 ± 2.98	67.63 ± 3.20	78.13 ± 3.05	78.00 ± 2.34			
Latency >6 sec ⁱ							
1 d pre-exposure	3.38 ± 0.71	5.38 ± 1.48	4.63 ± 1.15	4.00 ± 1.05			
First 8-hr exposure	3.88 ± 0.58	5.00 ± 1.69	6.00 ± 1.34	10.63 ± 1.80*			
Third 8-hr exposure	4.25 ± 0.98	5.63 ± 2.44	5.63 ± 1.92	3.13 ± 0.61			
1 d post-exposure	2.13 ± 0.67	6.00 ± 1.68	3.38 ± 1.40	1.88 ± 0.35			
Drink response latency ^j							
1 d pre-exposure	0.29 ± 0.01	0.32 ± 0.02	0.38 ± 0.03*	0.33 ± 0.02			
First 8-hr exposure	0.26 ± 0.01	0.30 ± 0.02	0.43 ± 0.03*	0.49 ± 0.03*			
Third 8-hr exposure	0.30 ± 0.02	0.32 ± 0.03	0.37 ± 0.02	0.34 ± 0.03			
1 d post-exposure	0.27 ± 0.01	0.34 ± 0.03	0.36 ± 0.03	0.30 ± 0.02			

*Statistically significant from controls at p < 0.05.

^aTotal number of trials completed during each session, maximum = 100.

^bNumber of reinforcements obtained divided by the number of reinforcements delivered (× 100).

^cNumber of correct trial responses divided by the number of trial responses.

^dThe number of inter-trial intervals in which at least 1 response was made divided by the total number of ITI (×100).

^eThe total number of incorrect trial responses following an initial incorrect response.

^fThe total number of ITI responses following an initial ITI response.

^gThe latency (sec) to make a correct trial response.

^hThe number of responses within 2 sec.

ⁱThe number of responses taking more than 6 sec.

^jThe mean latency (sec) to obtain reinforcement.

Health effect at LOAEL	NOAEL	LOAEL
N/A	N/A	N/A

Comments: This study observed alterations in a number of parameters, including forelimb grip strength, total distance traveled, number of movements, and several visual discrimination performance tests. LOAEL and NOAEL values cannot be determined because a dose-response relationship was not apparent. Statistically significant results occurred in a low exposure group and not others, while forelimb grip was found to be significantly increased in the highest exposure group on d 3. Acute duration of exposure (exposure on 3 consecutive d). Generally, acute exposure studies have limited utility in quantitation of human health reference values.

Species Sprague- Dawley rats	Sex F + M	N 24 dams/	Exposure ro	ute		_			
-	F + M	24 dams/			Dose range		Exposure duration		
		dose	Inhalation (6 h GDs 6–20)	(0, 492, 4,428 m 100, 300 (0, 492,	 i/d 0, 100, 300, 600, 900 ppm (0, 492, 1,476, 2,952, or 4,428 mg/m³) 1,2,4-TMB; 0, 100, 300, 600, 1,200 ppm (0, 492, 1,476, 2,952, or 5,904 mg/m³) 1,3,5-TMB 				
s • A • A	Animals tarting o Animals After GD	were expos on GD 6 and were rando 20, dams v	d ending on GD 2 omized and assig vere sacrificed a	20. ned to the expe nd weighed, as) L glass/steel inha rimental groups. were their uteri ar y were observed.		for 6 hrs/d		
	Exposure concentration to 1,3					1,3,5-TMB	3,5-TMB		
Observation		n	0 ppm	100 ppm (492 mg/m ³)	300 ppm (1,476 mg/m ³)	600 ppm (2,952 mg/m ³)	1,200 ppm (5,904 mg/m ³)		
			Maternal parameters						
Number of treated			24	24	24	24	24		
-	Number of (%) pregnant at 21 (87.5) 22 euthanization		22 (91.7)	21 (87.5)	17 (70.8)	18 (75.0)			
Number of deaths			0	0	0	0	0		
Body weight (g) on d 6		6	274 ± 17 ^g	273 ± 16	274 ± 21	270 ± 17	275 ± 14		
Body weight	change	(g)							
Days 0–6			31 ± 11	31 ± 8	31 ± 7	29 ± 8	28 ± 8		
Days 6–13	3		25 ± 12	29 ± 4	23 ± 6	16 ± 8**	10 ± 7		
Days 13-21			110 ± 14	109 ± 10	95 ± 21*	80 ± 20**	63 ± 26**		
Days 6–21		135 ± 15	138 ± 11	118 ± 24*	95 ± 24**	73 ± 28**			
Corrected weight gain ^a 29 ± 14		30 ± 9	20 ± 12	7 ± 20**	-12 ± 19**				
Food consun	nption (g/d)							
Days 0–6			22 ± 2	22 ± 3	22 ± 2	22 ± 2	23 ± 2		
Days 6–13	3		22 ± 2	22 ± 2	20 ± 1*	18 ± 2**	17 ± 2**		
Days 13–2	21		26 ± 2	25 ± 2	24 ± 2*	21 ± 3**	19 ± 3**		
Days 6–21	L		24 ± 2	24 ± 2	22 ± 2*	20 ± 2**	18 ± 2**		

		Exposure	concentration to	1,3,5-TMB					
Observation	0 ppm	100 ppm (492 mg/m ³)	300 ppm (1,476 mg/m ³)	600 ppm (2,952 mg/m ³)	1,200 ppm (5,904 mg/m ³)				
		Ge	stational parame	ters					
All litters ^b	21	22	21	17	18				
Number of corpora lutea per dam	15.3 ± 1.5 ^g	15.4 ± 1.7	15.5 ± 1.7	14.9 ± 2.1	15.2 ± 1.5				
Mean number of implantation sites per litter	14.9 ± 1.5	14.9 ± 1.8	14.5 ± 3.4	13.0 ± 5.1	13.6 ± 3.7				
Mean % post-implantation loss per litter ^c	4.8 ± 4.2	3.9 ± 4.3	6.8 ± 8.5	1.6 ± 3.7	4.4 ± 6.9				
Mean % dead fetuses per litter	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0				
Mean % resorption sites per litter	4.8 ± 4.2	3.9 ± 4.3	6.3 ± 6.5	1.6 ± 3.7	4.4 ± 6.9				
Live litters ^d	21	22	21	17	18				
Mean number of live fetuses per litter	14.1 ± 1.6	14.3 ± 1.7	13.4 ± 3.4	12.8 ± 5.0	13.1 ± 3.7				
Mean % male fetuses per litter	49.3 ± 13.5	48.2 ± 16.3	52.1 ± 18.1	51.1 ± 20.9	48.5 ± 18.2				
Fetal body weight (g)									
All fetuses	5.64 ± 0.35	5.61 ± 0.24	5.43 ± 0.45	5.36 ± 0.68	4.98 ± 0.56**				
Male fetuses	5.80 ± 0.41	5.76 ± 0.27	5.50 ± 0.31	5.39 ± 0.55*	5.10 ± 0.57**				
Female fetuses	5.50 ± 0.32	5.47 ± 0.21	5.27 ± 0.47	5.18 ± 0.68	4.81 ± 0.45**				
		Exposure concentration to 1,3,5-TMB							
Observation	0 ppm	100 ppm (492mg/m ³)	300 ppm (1,476mg/m ³)	600 ppm (2,952 mg/m ³)	1,200 ppm (5,904 mg/m ³)				
		Fetal var	Fetal variations and malformations						
Total no. fetuses examined (lit	ters)								
External	297 (21)	314 (22)	282 (21)	217 (17)	236 (18)				
Visceral	149 (21)	157 (22)	141 (20)	109 (15)	118 (18)				
Skeletal	148 (21)	157 (22)	141 (21)	108 (17)	118 (18)				
Malformations									
Diaphragmatic hernia	0	1 (1)	0	1 (1)	0				
Multiple skeletal malformations ^e	1 (1)	0	0	0	0				
External variations	0	0	0	0	0				
Club foot (bilateral)	0	1 (1)	0	0	0				
Visceral variations									
Dilated renal pelvis	2 (2)	0	5 (4)	0	2 (2)				
Distended ureter	12 (9)	14 (8)	18 (8)	5 (3)	11 (6)				

Skeletal variations									
Fifth sternebrae incomplete ossification or unossified ^f	2 (2)	2 (2)	7 (4)	7 (5)	12 (7)				
Fourth sternebrae, split	0	0	0	0	1 (1)				
Cervical rib, rudimentary	2 (2)	0	5 (5)	5 (3)	2 (2)				
Fourteenth rib, supernumerary	11 (8)	9 (6)	11 (6)	15 (8)	17 (8)				
Thoracic vertebra centra, incomplete ossification	10 (5)	8 (6)	10 (7)	9 (7)	9 (7)				
		Exposure	concentration to	1,2,4-TMB					
Observation	0 ppm	100 ppm (492 mg/m ³)	300 ppm (1,476 mg/m ³)	600 ppm (2,952 mg/m ³)	900 ppm (4,428 mg/m ³)				
	Maternal parameters								
No. treated	25	24	24	24	24				
No. (%) pregnant at euthanization	24 (96.0)	22 (91.7)	22 (91.7)	22 (91.7)	24 (100)				
No. deaths	0	0	0	0	0				
Body weight (g) on d 6	271 ± 18 ^g	272 ± 21	272 ± 22	275 ± 19	269 ± 18				
Body weight change (g)			·						
Days 0–6	27 ± 8	28 ± 6	28 ± 7	28 ± 12	24 ± 8				
Days 6–13	27 ± 8	27 ± 6	26 ± 6	19 ± 8**	14 ± 12**				
Days 13-21	105 ± 28	98 ± 16	100 ± 20	97 ± 17	82 ± 14**				
Days 6–21	131 ± 33	124 ± 18	126 ± 24	116 ± 23	95 ± 19**				
Corrected weight gain ^a	29 ± 12	31 ± 14	27 ± 12	15 ± 17**	0 ± 14**				
Food consumption (g/d)									
Days 0–6	23 ± 2	23 ± 2	23 ± 2	23 ± 3	23 ± 3				
Days 6–13	21 ± 3	20 ± 2	20 ± 2	18 ± 2**	17 ± 2**				
Days 13-21	26 ± 3	25 ± 2	24 ± 2	23 ± 3**	22 ± 3**				
Days 6–21	24 ± 3	23 ± 2	22 ± 2	21 ± 3**	20 ± 2**				

		Exposure	concentration to	1,2,4-TMB	
		100 ppm	300 ppm	600 ppm	900 ppm
Observation	0 ppm	(492 mg/m ³)	(1,476 mg/m ³)	(2,952 mg/m ³)	(4,428 mg/m ³)
		Ge	stational paramet	ers	
All litters ^b	24	22	22	22	24
Number of corpora lutea per dam	15.4 ± 2.1 ^g	15.2 ± 1.3	15.2 ± 2.1	15.8 ± 1.7	15.7 ± 2.5
Mean number of implantation sites per litter	14.2 ± 3.3	13.7 ± 2.9	14.1 ± 3.2	14.9 ± 2.4	15.0 ± 2.4
Mean % post-implantation loss per litter ^c	10.0 ± 22.1	8.6 ± 8.9	5.8 ± 6.8	5.0 ± 5.7	5.4 ± 6.7
Mean % dead fetuses per litter	0.0 ± 0.0	0.3 ± 1.5	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Mean % resorption sites per litter	10.0 ± 22.1	8.3 ± 9.1	5.8 ± 6.8	5.0 ± 5.7	6.4 ± 6.7
Live litters ^d	23	22	22	22	24
Mean number of live fetuses per litter	13.9 ± 2.5	12.5 ± 3.0	13.3 ± 3.2	14.1 ± 2.3	14.3 ± 2.6
Mean % male fetuses per litter	46.6 ± 17.1	46.0 ± 14.1	49.9 ± 13.4	46.2 ± 15.4	50.4 ± 16.2
Fetal body weight (g)				•	
All fetuses	5.71 ± 0.34	5.64 ± 0.31	5.56 ± 0.47	5.40 ± 0.39*	5.60 ± 0.40**
Male fetuses	5.86 ± 0.34	5.79 ± 0.30	5.72 ± 0.49	5.55 ± 0.48*	5.20 ± 0.42**
Female fetuses	5.57 ± 0.33	5.51 ± 0.31	5.40 ± 0.45	5.28 ± 0.40*	4.92 ± 0.40**
		Exposure	concentrations to	1,2,4-TMB	
		100 ppm	300 ppm	600 ppm	900 ppm
Observation	0 ppm	(492 mg/m ³)	(1,476 mg/m ³)	(2,952 mg/m ³)	(4,428 mg/m ³)
		Fetal var	riations and malfo	rmations	
Total no. fetuses examined (litte	ers)				
External	319 (23)	275 (22)	293 (22)	310 (22)	342 (24)
Visceral	160 (23)	137 (22)	147 (22)	155 (22)	171 (24)
Skeletal	159 (23)	138 (22)	146 (22)	155 (22)	171 (24)
Malformations				•	
Diaphragmatic hernia	0	0	1 (1)	0	1 (1)
Multiple skeletal	0	0	0	1 (1)	0
malformations ^e					
External variations		1	1	1	
Club foot (bilateral)	3 (3)	0	0	0	0
Visceral variations		T	1	Γ	ſ
Dilated renal pelvis	3 (3)	3 (3)	3 (3)	3 (3)	3 (2)
Distended ureter	7 (4)	5 (3)	8 (5)	8 (5)	2 (2)

Skeletal variations					
Third sternebrae, incomplete ossification	0	1 (1)	0	0	0
Fifth sternebrae incomplete ossification or unossified ^f	1 (1)	0	4 (4)	5 (4)	6 (6)
Extra ossification site	0	1 (1)	0	0	0
Cervical rib, rudimentary	1 (1)	2 (2)	0	3 (2)	2 (2)
Fourteenth rib, supernumerary	25 (10)	13 (8)	18 (12)	21 (10)	34 (16)
Thirteenth rib, short (unilateral)	1 (1)	0	0	0	0
Thoracic vertebral centra, incomplete ossification	8 (6)	4 (4)	7 (4)	6 (6)	7 (5)

*Statistically significant from controls at p < 0.05.

**Statistically significant from controls at p < 0.01.

^aBody weight gain during GDs 6–21 minus gravid uterine weight.

^bIncludes all animals pregnant at euthanization.

^cResorptions plus dead fetuses.

^dIncludes all animals with live fetuses at euthanization.

^eRunt showing skeletal alterations including missing ribs, missing thoracic vertebrae, incomplete ossification of sternebrae and skull bones.

^fUnossified = alizarine red S negative.

^gMean ± SD.

		-								
Health effect at LOAEL	NOAEL	LOAEL								
Maternal toxicity: decrease in maternal body weight and	Maternal toxicity: 300 ppm (1,476 mg/m ³) for 1,3,5-TMB and 1,2,4-TMB	Maternal toxicity: 600 ppm (2,952 mg/m ³) for 1,3,5-TMB and 1,2,4-TMB								
food consumption										
Developmental toxicity:	Fetal toxicity: 300 ppm (1,476 mg/m ³) for	Fetal toxicity: 600 ppm (2,952 mg/m ³) for								
significant reduction in fetal	1,2,4- and 1,3,5-TMB	1,2,4- and 1,3,5-TMB								
body weight										
Comments: This study observed	d alterations in a number of maternal and fet	al parameters, including decreased								
maternal and fetal weight. Valu	maternal and fetal weight. Values reported by authors can be used to determine NOAEL and LOAEL. There was no									
investigation of pre-implantation developmental toxicity due to 1,2,4-TMB or 1,3,5-TMB exposure. 1,2,3-TMB										
maternal or developmental tox	icity was not investigated.									

Species	Sex	Ν	Exposure rou	ute Dose range	Exposure duration
Sprague-Dawley Rats	female/d group		Inhalation	150, 500, 1,500 ppm HFAN (1,2,4-TMB, 1,3,5-TMB, and 1,2,3-TMB)	6 hrs/d for 5 consecutive d
Additional study	details:				
5 d The p each o All an There cells Both o HFAN	ositive control contained 30 ra imal groups we were no increa male and femal	y inhalation to mixture I contained 10 rats total (ts total (15 M & 15 F) re exposed in 16 m ³ glas uses in SCE or chromoso es exhibited a 10% redu genic at levels up to and	5 M & 5 F), wh ss and stainless mal aberration iction in body w	ile the experimental a s steel chambers frequency in Chinese veight gain at 1,500 pp	nd negative controls hamster ovary (CHO
• men		cal and chemical prope	rties of HFAN (CAS 64742-95-6)	
		4 specifications		Composition (we	eight percent) ^a
Appearance		Clear and free of suspen matter and undissolved		(ylene	3.20
Color	1	Not darker than +25 Say	bolt Cu	mene [isopropylbenze	ene] 2.74
Aromatics, volum	ie %	90 minimum	n-F	Propylbenzene	3.97
Copper corrosion 100°C		No iridescence, discolora gray or black deposits	ation, or 4-E	Ethyltoluene	7.05
Distillation, °F			3-E	Ethyltoluene	15.1
Initial boiling p	oint	300 minimum	2-E	Ethyltoluene	5.44
10%	-	-	1,3	8,5-TMB	8.37
50%		335 maximum	1,2	2,4-TMB	40.5
90%	-	-	1,2	2,3-TMB	6.18
Dry point		335 maximum	≥C	10s	6.19
Flash Point, °F		100 minimum	Tot	tal	98.74
Kauri-butanol val	ue a	37 minimum			
Mixed aniline poi	nt, °F	50 maximum			
Odor		Characteristic, as agreed	1		
Specific gravity	().864 minimum			
60/60°F).884 maximum			

Table C-39. Characteristics and quantitative results for <u>Schreiner et al. (1989)</u>

				Mutage	nic respor	ise				
Observation	DMSO Control	Positive Control				C ₉ Aron	natics			
Dose (µL/plate)	50	А	0.0025	0.0050	0.0100	0.0250	0.0500	0.1000	0.2500	0.5000
TA1535 (–S9)	12.3 ± 2.5	1,075.0 ± 31.4 ^b	11.0±3.6	10.7±3.1	13.3±3.5	14.0±2.6	12.3±0.6	12.0±1.7	10.7±0.6	5.3±1. 2
TA1535 (+S9)	10.3 ± 1.5	209.3± 17.8 ^b	8.7 ± 0.6	8.7 ± 1.5	9.0 ± 1.7	8.7 ± 2.3	9.7 ± 4.2	6.7 ± 4.0	9.7 ± 0.6	6.3 ± 2.1
TA1538 (–S9)	11.7 ± 2.9	1,269.7 ± 51.6 ^b	13.7 ± 2.5	16.3 ± 0.6	12.7 ± 1.5	13.7 ± 7.4	13.0 ± 2.0	11.7 ± 2.1	12.7 ± 1.2	10.3 ± 1.5
TA1538 (+S9)	22.3 ± 4.7	981.0 ± 28.6 ^b	17.0 ± 2.6	17.3 ± 0.6	15.7 ± 5.1	17.3 ± 2.9	13.0 ± 2.6	17.0 ± 3.6	16.7 ± 6.4	14.7 ± 1.2
TA98 (-S9)	21.0 ± 2.6	1,088.3 ± 73.3 ^b	22.3 ± 6.1	24.0 ± 1.7	21.3 ± 6.5	23.0 ± 2.6	18.3 ± 1.5	19.0 ± 5.6	19.0 ± 4.6	11.0 ± 2.6
TA98 (+S9)	27.7 ± 8.3	1,486.0 ± 78.5 ^b	24.3 ± 4.5	30.7 ± 4.0	29.3 ± 1.5	26.3 ± 2.3	24.7 ± 0.6	26.3 ± 4.0	25.0 ± 3.5	24.7 ± 3.1
TA100 (-S9)	106.7 ± 4.9	1,053.7 ± 22.8 ^b	116.0 ± 9.6	103.7 ± 4.6	102.0 ± 10.5	107.7 ± 8.4	109.3± 14.2	106.3 ± 12.7	86.0 ± 14.4	66.3 ± 10.2
TA100 (+S9)	102.7 ± 15.0	1,761.0 ± 60.2 ^b	104.3 ± 11.9	94.7 ± 7.6	90.7 ± 4.0	111.0 ± 18.0	102.3 ± 3.8	86.0 ± 14.1	82.0± 3.5	94.0 ± 6.1
TA1537 (-S9)	10.0 ± 2.6	1,008.7 ± 21.1 ^b	7.3 ± 0.6	7.0 ± 2.0	9.0 ± 2.0	10.7 ± 3.2	9.3 ± 1.2	10.3 ± 3.2	5.3 ± 5.0	5.0 ± 2.0
TA1537 (+S9)	10.7 ± 3.8	159.3 ± 6.8 ^b	10.3 ± 2.1	9.3 ± 1.5	10.0 ± 2.0	11.3 ± 2.1	11.3 ± 0.6	12.3 ± 2.3	6.7 ± 1.5	10.7 ± 2.3
• •	ctivation (onactivati	on (-S9):	trains: 2-ant TA1538: 2-ni TA98: 2-nitro TA1534: sod TA100: sodiu TA1537: qui B times the s	itrofluorer ofluorene lium azide um azide (nacrine m	ne (10 μg/ (10 μg/pla (10 μg/pla 10 μg/plat ustard (5 μ	plate) ate) ate) te) ug/plate)				

		Exposur	e to HFA	N with	out me	tabolic a	ctivatio	on (CAS	64742-	95-6)			
			сно/но	GPRT fo	rward ı	nutatio	n suspe	nsion a	ssay				
Observation	Vehicle	controls:	Posit	ive con	trols:								
	DMSO	DMSO	BrdU	MMS	MMS		n	n	C9 aro	matics	1		
Dose µL/mL	10	10	50	15	20	0.01	0.02	0.04	0.06	0.07	0.08	0.1	0.13
Mean colony	202.7 ±	190.0 ±		83.0 ±	41.0 ±		204.7	204.3	202.7	77.3 ±	0.08	0.0 ±	0.0 ±
number ± SD	7.6	17.8	± 11.2	7.0	7.2	± 10.6	± 1.5	± 2.5	± 20.5	7.0	μL/mL		0.0
Percent vehicle control	103.2	96.8	82.1	42.3	20.9	94.2	104.3	104.0	103.2	39.4	2.9	0.0	0.0
Relative population growth (% of control)	111.0	89.0	114.1	63.5	38.3	176.6	148.6	147.5	107.5	35.2	10.7	ND ^b	ND
Total mutant colonies in 12 dishes	2	4	27 ^d	95	88	2 ^c	0 ^c	4	1 ^c	3	2	ND	ND
Absolute CE ± SD (%)	80.7 ± 6.2	77.5± 3.1	87.5 ± 4.5	66.9 ± 3.2	61.7 ± 3.6	94.2 ± 7.6	93.5 ± 4.1	86.5 ± 6.3	86.5 ± 4.8	91.0 ± 10.1	94.0 ± 3.1	ND	ND
Mutant frequency in 10 ⁻⁶ units ^a	1.0	2.2	14.0 ^e	59.2 ^e	59.4 ^e	1.1	0.0	1.9	0.6	1.4	0.9	ND	ND
^c Total number ^d Total numbe ^e Significant in BrdU = 5-bror	r of dishes crease, p no-2'-deo	s = 11. ≤ 0.01.		-		-		-					
			сно/но	SPRT fo	rward ı	nutatio	n suspe	nsion a	ssay				
	Vehicle c DM		Positi contr	-			•	C ₉ a	romatic	s			
Dose µL/mL	10	10	5 μL/r 3-M0		0.02	0.04	0.06	0.08	0.1	0.13	0.16		0.2
Mean colony number ± SD	203.7 ± 16.9	201.0 ± 12.5	201.0 ±	7.8 1	85.3 ± 3.5	205.3 ± 21.1	196.7 ± 22.0	3.3 ± 1.5	0.0 ± 0.0	0.0 ±	0.0 ± 0.0	0.0	± 0.0
Percent vehicle control	100.7	99.3	99.3		91.6	101.5	97.2	1.6	0.0	0.0	0.0		0.0
Relative population growth (% of control)	90.5	109.5	77.1		19.7	111.7	110.0	4.0	ND ^b	ND	ND		ND
Total mutant colonies in 12 dishes	2 ^c	8 ^d	245	f	6	7 ^c	8	3	ND	ND	ND		ND

Absolute CE ± SD (%)	99.7 ± 6.4	90.9 ± 7.1	84.4 ± 7.4	97.9 ± 2.9	92.4 ± 9.9	99.2 ± 9.0	98.4 ± 12.6	ND	ND	ND	ND
Mutant frequency in	0.9	4.4	161.3 ^g	2.6	3.4	3.4	1.3	ND	ND	ND	ND
10 ⁻⁶ units ^a											

^aMutant frequency = total mutant colonies/(number of dishes $\times 2 \times 10^5 \times$ absolute CE).

^bND = not determined due to excessive toxicity.

^cTotal number of dishes = 11.

^dTotal number of dishes = 10.

^e3-methylcholanthrene.

^fTotal number of dishes = 9.

^g Significant increa	ase, $p \le 0.01$.											
	SCE in CH	O cells expos	ed to HFAN	in the <u>abse</u>	ence of metal	bolic activati	ion					
			A	ssay 1								
		Controls										
Observation	Negative: none	Solvent: DMSO	Positive: MMC ^a			C ₉ aromatics						
Dose μg/mL (μL/mL)	_	11	0.005	2.00	6.67	20.00	66.70	200.00				
Total cells scored	50	50	20	50	50	50	50	-				
Number of chromosomes	1,044	1,038	420	1,037	1,038	1,044	1,038	Toxic				
Number of SCE	443	536	570	530	474	480	524	-				
SCE chromosomes	0.42	0.52	1.36	0.51	0.46	0.46	0.50	-				
SCE/cell (mean ± SE)	8.86 ± 0.36	10.72 ± 0.45	28.50 ± 1.13 ^b	10.60 ± 0.43	9.48 ± 0.51	9.60 ± 0.44	10.48 ± 0.39	-				
Cell cycle stages (%): M1	1.5	2.5	1.0	2.5	2.0	3.5	6.5	-				
M1+	12.5	39.0	22.5	36.5	48.0	30.0	57.0	-				
M2	86.0	58.5	76.5	61.0	50.0	66.5	36.5	-				
% SCE increase over solvent	-	-	163	-	-	-	-	_				
Confluence % solvent control	-	100	100	100	100	100	100	100				
			A	ssay 2								
Dose μg/mL (μL/mL)	-	11	0.005	35.0	50.1	66.7	90.1					
Total cells scored	50	50	20	50	50	50	-					
Number of chromosomes	1,038	1,047	417	1,043	1,042	1,041	Toxic					
Number of SCE	399	432	547	428	461	443	_					
SCE chromosomes	0.38	0.41	1.31	0.41	0.44	0.43	-					

This document is a draft for review purposes only and does not constitute Agency policy.C-161DRAFT—DO NOT CITE OR QUOTE

SCE/cell (mean ± SE)	7.98 ± 0.38	8.64 ± 0.50	27.35 ± 1.49 ^b	8.56 ± 0.49	9.22 ± 0.36	8.86 ± 0.44	-	
Cell cycle stages (%): M1	0.5	2.0	1.5	3.0	7.0	11.0	-	
M1+	6.0	16.0	9.5	27.0	47.5	45.0	-	
M2	93.5	82.0	89.0	70.0	45.5	44.0	-	
% SCEincrease over solvent	-	-	218	-	7	3	-	
Confluence % solvent control	-	100	100	100	100	63	6	
^a Mitomycin C. ^b Significant incre	ase versus so	lvent controls						
	SCE in CH	O cells expose	ed to HFAN	in the <u>prese</u>	<u>nce</u> of meta	bolic activat	tion	
			А	ssay 1				
		Controls						
Observation	Negative: None	Solvent: DMSO	Positive: CP ^a		(C ₉ Aromatics	5	
Dose μg/mL (μL/mL)	-	11	1.5	0.667	2.00	6.67	20.0	66.7
Total cells	50	50	20	50	50	50	50	_

			А	ssay 1				
		Controls						
Observation	Negative: None	Solvent: DMSO	Positive: CP ^a		(C ₉ Aromatics	5	
Dose μg/mL (μL/mL)	-	11	1.5	0.667	2.00	6.67	20.0	66.7
Total cells scored	50	50	20	50	50	50	50	-
Number of chromosomes	1,037	1,032	415	1,038	1,034	1,045	1,040	Toxic
Number of SCE	443	430	379	449	484	474	441	_
SCE chromosomes	0.43	0.42	0.91	0.43	0.47	0.45	0.42	-
SCE/cell (mean ± SE)	8.86 ± 0.43	8.60 ± 0.49	18.95 ± 1.20 ^b	8.98 ± 0.34	9.68 ± 0.43	9.48 ± 0.46	8.82 ± 0.45	-
Cell cycle stages (%): M1	-	1.5	0.5	-	-	1.5	-	-
M1+	18.5	15.5	24.0	20.0	16.5	19.5	18.5	_
M2	81.5	83.0	75.5	80.0	83.5	79.0	81.5	_
M2+	-	-	-	-	-	-	-	-
% SCE increase over solvent	-	-	119	4	12	9	2	-
Confluence % solvent control	-	100	100	100	100	100	100	7
			А	ssay 2				
Dose μg/mL (μL/mL)	-	11	1.5	15.0	20.0	35.0	50.1	66.7
Total cells scored	50	50	20	50	50	50	50	_
Number of chromosomes	1,048	1,046	418	1,043	1,048	1,055	1,047	Toxic
Number of SCE	417	398	457	372	444	400	420	_

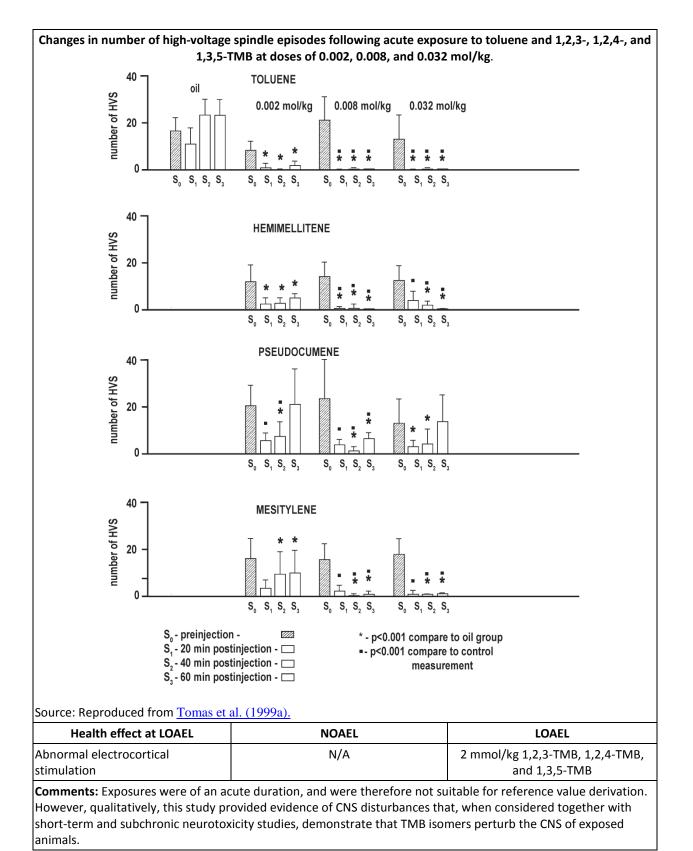
This document is a draft for review purposes only and does not constitute Agency policy.C-162DRAFT—DO NOT CITE OR QUOTE

					T			
SCE chromosomes	0.40	0.38	1.09	0.36	0.42	0.38	0.40	-
SCE/cell (mean ± SE)	8.34 ± 0.43	7.96 ± 0.	38 22.85 0.91		8.88 ± 0.44	8.00 ± 0.46	8.40 ± 0.48	-
Cell cycle stages (%): M1	_	1	0.5	0.5	0.5	1.5	0.5	-
M1+	10.5	20.0	15.0	8.0	14.0	14.5	23.0	-
M2	89.5	80.0	84.5	90.0	85.5	82.5	76.5	_
M2+	-	-	-	1.5	-	1.5	-	_
% SCEincrease over solvent	_	-	187	-	11	_	5	_
Confluence % solvent control	_	100	100	100	100	100	63	6
^a Cyclophosphami ^b Significant increa		lvent cont	rols.					
Chromo	osome aberra	ations in C	HO cells exp	posed to HFAN	in the <u>absen</u>	<u>ce</u> of metab	olic activatio	on
				Assay 1				
		Control	S					
	Negativ solve		Positive: MMC		C ₉ Aromatics			
Dose (µg/mL)			1.0	45.0			0	90.0
Cells scored	200)	25	200	200	20	D	200
Number of aberrations per cell	0.0	3	0.32	0.02	0.01	. 0.0	0	0.01
% cells with aberrations	2.5	5	24.0 ^a	2.0	0.5	0.0)	1.0
% cells with >1 aberration	0.0)	8.0ª	0.0	0.0 0.0 0.0 0.0		0.0	
				Assay 2				
Dose (µg/mL)			1.0	15.0	30.1	. 60.	1 90.2	
Cells scored	ells scored 200 25 200 200		200	0	Toxic			
Number of aberrations per cell	0.0	1	0.32	0.02	0.04	0.0	2	-
% cells with aberrations	0.5	5	24.0ª	1.0	2.0	1.5	5	_
% cells with >1 aberration	0.0)	8.0ª	0.5	0.5	0.0)	_
^a Significantly grea	ater than the	pooled ne	egative and	solvent control	s, <i>p</i> ≤ 0.01.			

Chromoso	me aberrations in	CHO cells exp	osed to HFAN	l in th	ne <u>pre</u> s	sence of m	etabolic ad	tivation	
			Assay 1						
	Contro	ls							
	Negative and solvent	Positive: CP ^a				C9 aromat	ics		
Dose (µg/mL)		50.0	25.0		37.5	50	0.0	70.0	
Cells scored	200	25	200		200	2	00	200	
Number of aberrations per cell	0.03	0.28	0.03		0.02	0.	01	0.01	
% cells with aberrations	2.5	24.0ª	3.0		2.0	1	.0	0.5	
% cells with >1 aberration	0.0	4.0	0.0		0.0	0	.0	0.0	
		1	Assay 2						
Dose (µg/mL)		50.0	20.0	40).1	60.1	80.2	100	0
Cells scored	200	25	200	20	00	14	100	Tox	ic
Number of aberrations per cell	0.03	0.28	0.01	0.	02	0.00	0.01	-	
% cells with aberrations	2.0	24.0ª	1.0	1	.5	0.0	1.0	-	
% cells with >1 aberration	0.5	4.0	0.0	0	.5	0.0	0.0	-	
^a Cyclophosphamide ^b Significantly greate	er than the pooled								
	Chromosome abe		o exposures t-exposure ir			on 5 consec	cutive d		
		Number of	-		1	errations	>1	>2	,
Exposure group	Number and sex	spreads	aberratio			netaphase	Aberratio	on Aberra	tions
Air	3 M	150	0			0	0	0	
	3 F	250	0			0	0	0	
	8 Combined	400	0			0	0	0	
150 ppm	5 M	250	0			0	0	0	
	4 F	200	0			0	0	0	
500 mm	9Combined	450	0			0	0	0	
500 ppm	5 M	250	0			0	0	0	
	5 F	237	0			0	0	0	
1 500 5555	10 Combined	487	0			0	0	0	
1,500 ppm	5 M 4 F	250 200	0			0	0	0	
	9 Combined	450	-			0			
	9 Combined	450	0			U	0	0	

		24-Hr post	-exposure interv	/al		
Air	4 M	200	0	0	0	0
	5 F	250	1	0.4	0.4	0
	9 Combined	450	1	0.2	0.2	0
150 ppm	5 M	250	0	0	0	0
	5 F	432	0	0	0	0
	10 Combined	482	0	0	0	0
500 ppm	5 M	250	0	0	0	0
	5 F	250	0	0	0	0
	10 Combined	500	0	0	0	0
1,500 ppm	5 M	250	1	0.4	0.4	0
	5 F	250	0	0	0	0
	10 Combined	500	1	0.2	0.2	0
Cyclophosphamide	4 M	203	70 ^b	34.5 ^b	16.3 ^b	10.3 ^b
	5 F	250	60 ^b	24 ^b	13.2 ^b	6.4 ^b
	9 Combined	453	130 ^b	28.7 ^b	14.6 ^b	8.2 ^b
			48-Hr exposur	e interval		
Air	2 M	100	0	0	0	0
	2 F	100	0	0	0	0
	4 Combined	200	0	0	0	0
150 ppm	2 M	100	0	0	0	0
	2 F	100	0	0	0	0
	4 Combined	200	0	0	0	0
500 ppm	3 M	150	0	0	0	0
	1 F	20	0	0	0	0
	4 Combined	200	0	0	0	0
1,500 ppm	2 M	100	0	0	0	0
	1 F	20	0	0	0	0
	3 Combined	150	0	0	0	0

(1) Animal had at least 30 readable metaphase spreads.


(2) At least three animals (of either sex) with adequate data at any time point.

^bStatistical increase.

NOAEL	LOAEL	LOAEL effects
500 ppm		Reduced body weight gain in males and females

Table C-40. Characteristics and quantitative results for <u>Tomas et al. (1999a)</u>
--

Species	Sex	Ν	Exposure route	Dose range	Exposure duration
NAG/Rij	М	6 rats/	Oral (gavage, in olive	0, 2, 8, or 32 mmol/kg	Acute
Rats		dose	oil)	body weight (240, 960, or	
				3,840 mg/kg body weight)	
				1,2,3-, 1,2,4-, and	
				1,3,5-TMB	
Additional s	tudy de	tails			
•	1,2,3-, 1,	,2,4-, and 1,3	3,5-TMB were tested fo	r their effects on electroco	ortical arousal by an
(electroca	ardiogram b	efore and after oral adr	ministration (in olive oil) of	0, 0.002, 0.008, or 0.032 mol/k
I	oody we	ight of each	isomer.		
				as determined via head sp	
• /	All three	TMB isome	rs were found to cause	a slight increase in locomo	otor activity.
Changes	in total	duration of	high-voltage spindle e	pisodes following acute ex	posure to toluene and 1,2,3-,
-				of 0.002, 0.008, and 0.032	-
		450 -	oil TOLUENE		
		(i) and			
		- 300 (sec) - 150 -	「「」」 「」」「」 「」」「」」 の.002 mo	l/kg 0.008 mol/kg 0.03	2 mol/kg
		.Ē 150 —		п.	
		∟		* * * * *	* *
			$\mathbf{S}_0 \mathbf{S}_1 \mathbf{S}_2 \mathbf{S}_3 \qquad \mathbf{S}_0 \mathbf{S}_1 \mathbf{S}_2$	S_3 S_0 S_1 S_2 S_3 S_0 S_1	S ₂ S ₃
		450 T	HEMIMELLI	TENE	
		© 200 -			
		(300 - 9 (3ec) 150 -		Д. т	
		.틐 150 -	T	İİ.	
		₀⊥	أحص	<u>т (***</u> Пл	* *
		450 -	PSEUDOCU	MENE	
		C		_ T	
		- 000 (sec) - 150 -	ла Г		
		.jiji 150 –	. *		ъ
			- مُ		<u>all</u>
		·			
		450 -	MESITYLEN	F	
		(i) 200	meon reen		
		- 000 (sec) - 150 -		. 🖬 🖬	
		. <u>Ĕ</u> 150 –	: *		
		₀⊥	الطبق		* *
		•	S ₀ - preinjection -	* - p<0.001 compare to oil gr	oup
			S ₁ - 20 min postinjection - S ₂ - 40 min postinjection -	 p<0.001 compare to contr 	
				measurement	
			S3 - 60 min postinjection - 🗔		

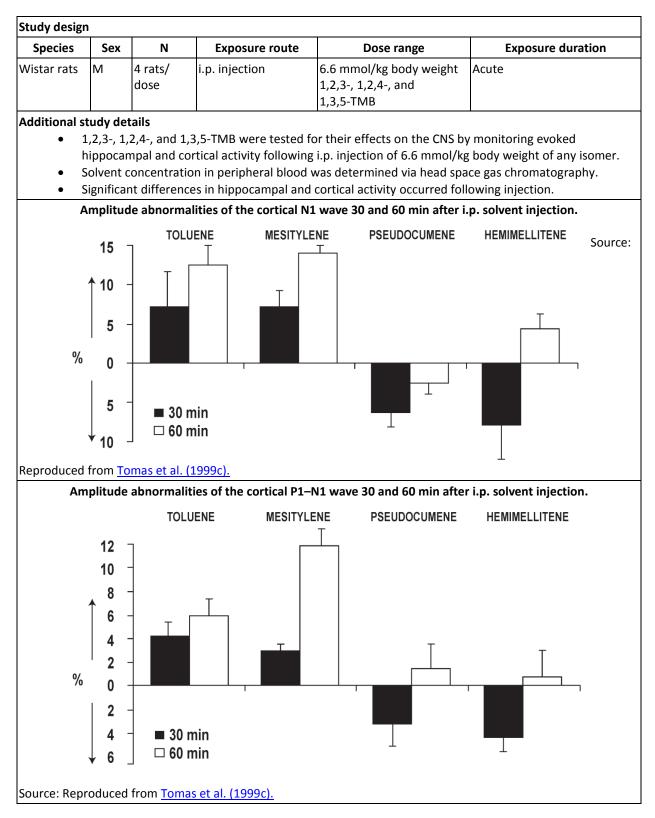
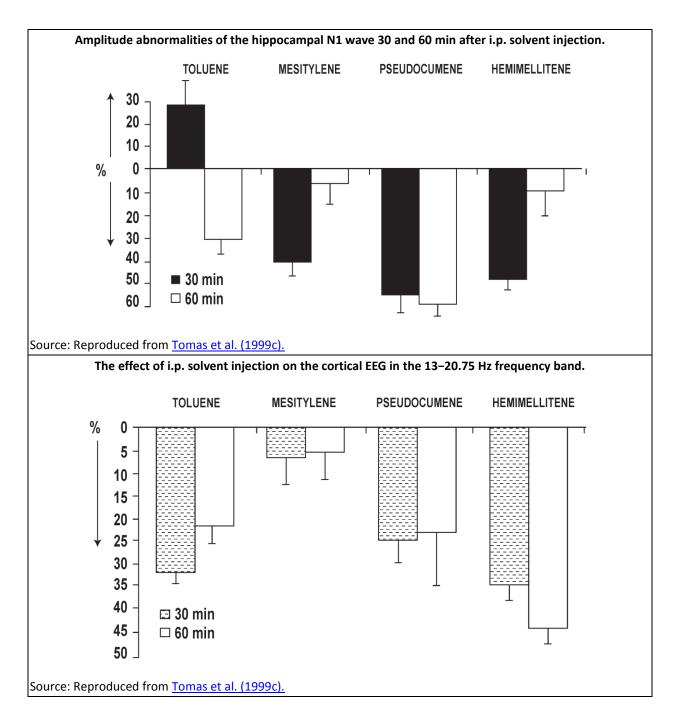

This document is a draft for review purposes only and does not constitute Agency policy. C-167 DRAFT—DO NOT CITE OR QUOTE

Table C-41.	Characteristics and quantitative results for	Tomas et al. (1999b)


Species Sex N Exp		Evenouure reute	Daga		unatio		
WAG/Rij rats	M	10 rats/dose	Exposure route Oral (in olive oil)	Dose rat 0, 8, 16, or 32 m body weight (96 or 3,850 mg/kg weight) 1,2,4-TM 1,2,3-TMB, or 1,	mol/kg Acute D, 1,920, body IB,		
Additional study d	lotaile			1,2,3-11018, 01 1,	3,5-11918		
• 1,2,3-,	1,2,4-, and				activity by an open field y weight of all isomers.		
 All three 	ee TMB iso	mers were foun	nd to cause a slight inc	rease in locomoto	or activity.		
Locomotor	activity fo	-			t doses of 0.008 mol/kរួ	<u>β</u> ,	
		0.01	16 mol/kg, and 0.032	mol/kg.			
	1000	0.008 mo	ol/kg * - p<0.	0001 compare to time p	oint 1, 2		
	activity		Ť		i i		
	log locomotor activity (%) 00		Ţ				
	log loc	injection	TI 🔺 L	T I			
	10	1			TI		
		0 1	2 3 4 Time points	\$ 5 6	7		
		0.015 mo	ol/kg * - p<0.00	01 compare to time poir	nt 1, 2, 3		
	1000 (%)/		0				
	log locomotor activity (%)	injection ↓ ∏∏ 0 1					
	1000		Time points				
		0.032 mo	ol/kg *-p≺	<0.0001 compare to time	point 1		
	ictivity ("						
	log locomotor activity (%) 00	injection I					
	10	● ₁ 開 ⊺ 0 1	2 3 4	4 5 6			
			Time points				
	c	ontrol group (oil) p	seudocumene 🔳 hemimell	itene 🎟 🛛 mesitylene t	⊐ toluene ■		
Source: Reproduce	ed from To	mas et al. (1999	eb).				
•		t at LOAEL		NOAEL	LOAEL		
Increased locomotor activity			16 mmo 16 mmo	16 mmol/kg 1,2,3-TMB 32 mmol/kg 1,2,3-TMB 16 mmol/kg 1,2,4-TMB 32 mmol/kg 1,2,4-TMB			
Increased locomotor activity							

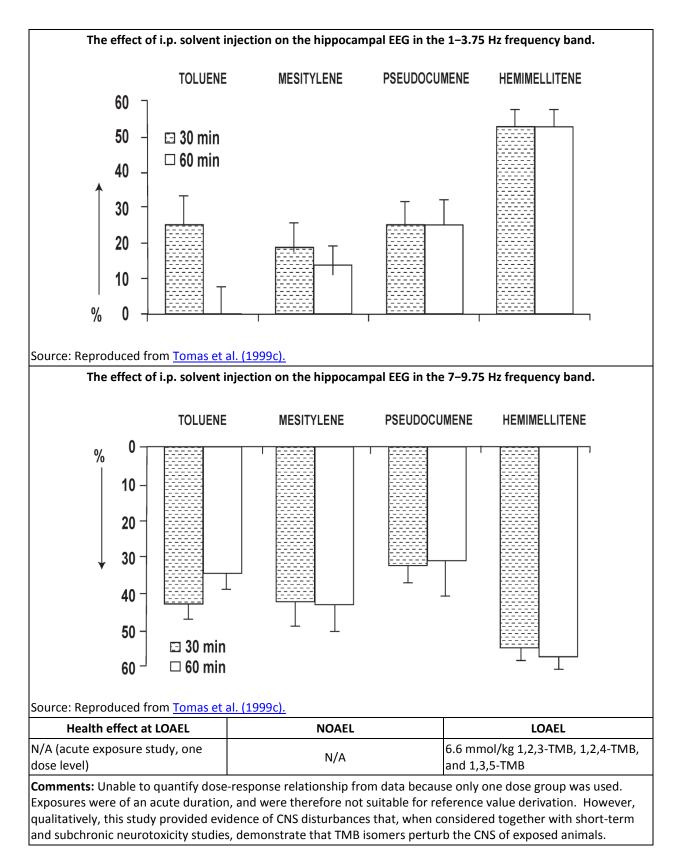
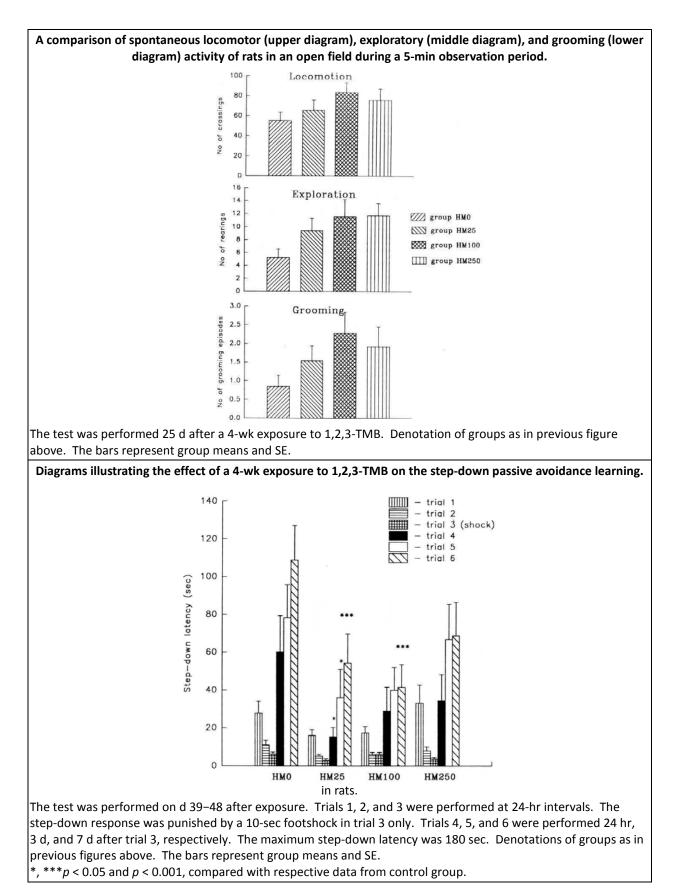
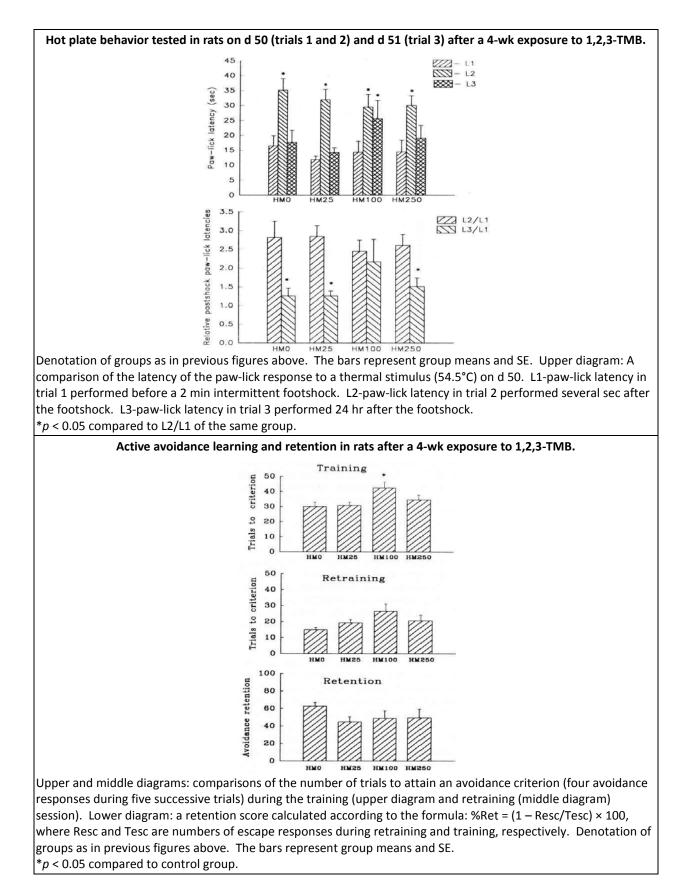

However, qualitatively, this study provided evidence of CNS disturbances that, when considered together with short-term and subchronic neurotoxicity studies, demonstrate that TMB isomers perturb the CNS of exposed animals.

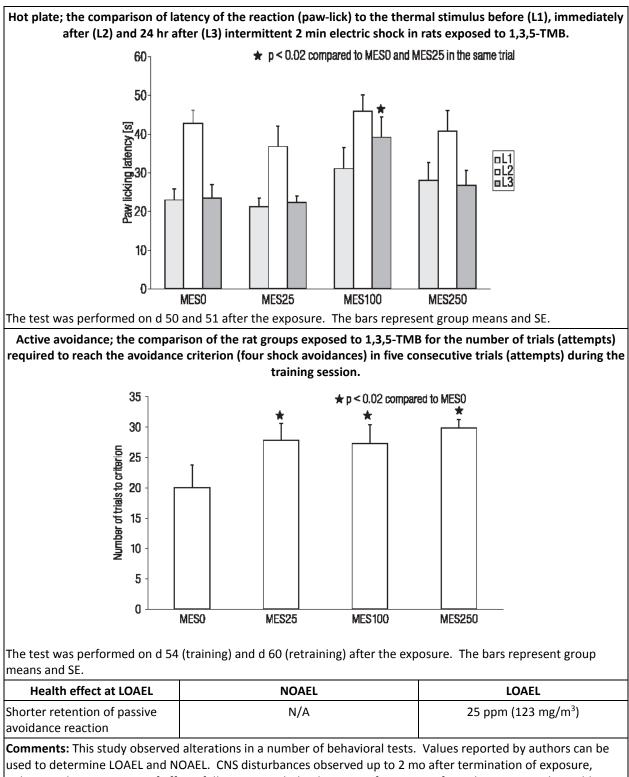
Table C-42. Characteristics and quantitative results for <u>Tomas et al. (1999c</u>)	Table C-42	. Characteristics and quantitative results for Tomas	<u>s et al. (1999c)</u>
---	------------	---	-------------------------


This document is a draft for review purposes only and does not constitute Agency policy. C-169 DRAFT—DO NOT CITE OR QUOTE



Species	Sex	Ν	Expo	osure rou	ıte	Dos	se range		Exposure duration
Wistar rats	М	13 or		ion (6 hrs		-), or 250 ppm	4 v	wks
		14 rats/	5 d/wk			, 123, 492			
		dose			1,2	230 mg/n	n ³) 1,2,3-TMB		
5 • 4 • F a • T • N	Animals 5 d/wk fo Animals Rats wer activity, j ests we Neurobe	were expos or 4 wks. Fi were rando e tested wi passive avo re perform havioral eff 0 ppm (1,2 Radial n	ood and v omized an th a varie idance, a ed on d 1 fects wer 30 mg/m	water we ad assigno ty of beh nd active 4–18 foll e observo ³).	n 1.3 m ³ re provic ed to the navioral t e two-wa owing ex ed at 25 a	dynamic ded ad lib experime rests, inclu y avoidar kposure. and 100 p	inhalation exp itum. ental groups. uding radial m nce.	aze p 492 n	1 2 2 4
		No of perseveration errors	3.0 2.5 2.0 1.5 1.0 0.5						
The test (one the time of s		• • •							anges in trial duration, i.e

*p < 0.05 compared to trial 1 in the same group.

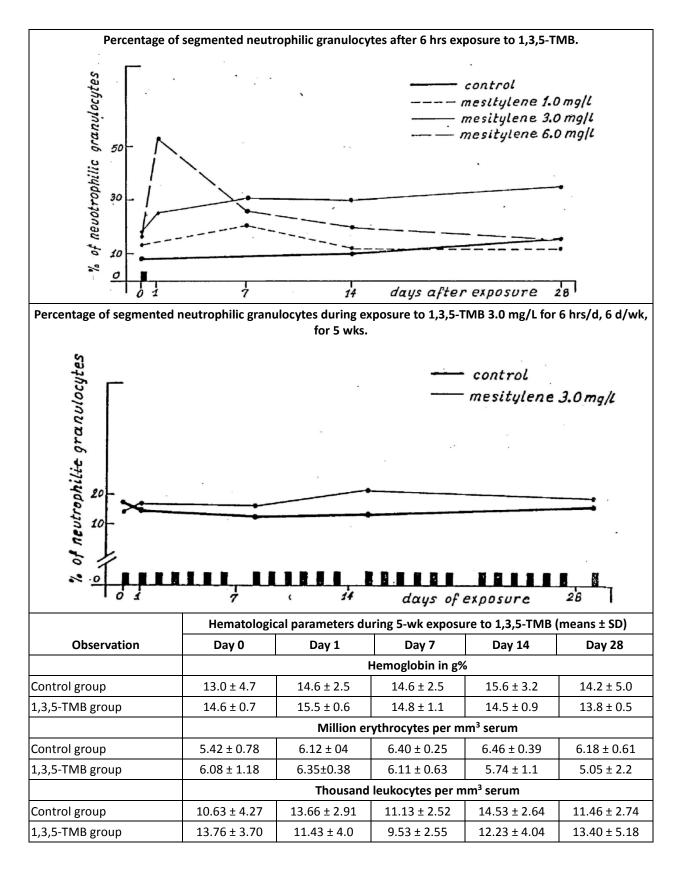


Supplemental Information—Trimethylbenzenes

Health effect at LOAEL	NOAEL	LOAEL					
Impaired learning of passive avoidance	N/A	25 ppm (123 mg/m ³)					
Comments: CNS disturbances were observed up to 2 mo after termination of exposure, indicating the persistence of effects after metabolic clearance of 1,2,3-TMB from the test animals. No effects were observed in the 250 ppm (1,230 mg/m ³) exposure group. Duration of exposure was only 4 wks. Generally, short-term exposure studies have limited utility in quantitation of human health reference values.							

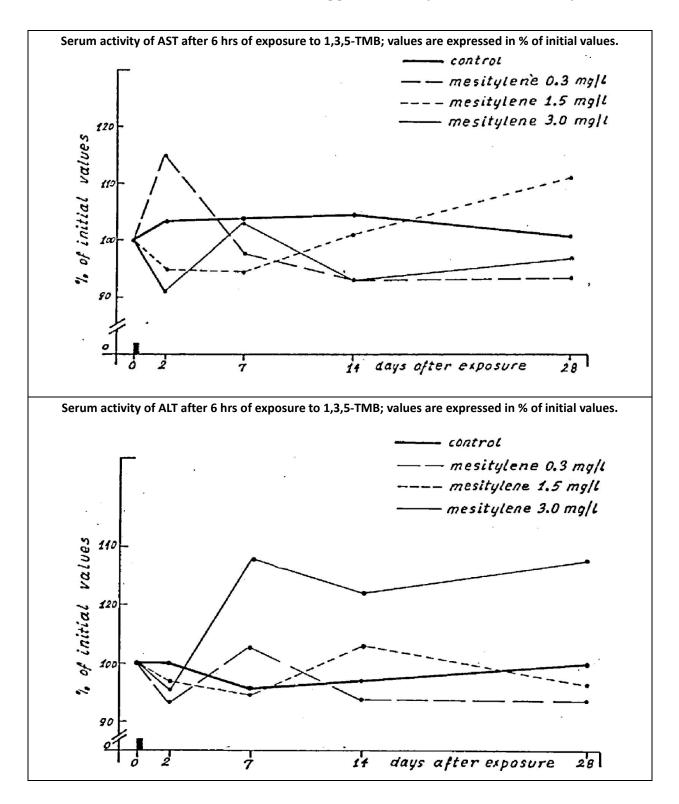
Species	Sex	Ν	Exp	osure route	Dose ra	nge	Exposure duration
OD: Wistar	MM	12 rats/	Inhalat	ion (6 hrs/d,	0 or 25, 100, or	250 ppm	4 wks
ats		dose	5 d/wk)	(0, 123, 492, or		
					1,230 mg/m ³) 1	,2,3-TMB	
dditional st	tudy de	tails					
• A	nimals	were expose	ed to 1,3	8,5-TMB in 1.3	m ³ dynamic inha	lation expos	ure chambers for 6 hrs/d,
					ovided ad libitum		
				-	the experimenta		
						-	e performance, open field
	•		-				ed changes in pain sensitivity
		•				in spontane	eous locomotor activity, activ
				ng, and paw-			
Passive	avoida	nce; the con	nparisor	n of the time o	of staying on the	platform in t	the consecutive test trials.
		D 0					
	1	ך 08					
	1	60 -					
			I		★ p < 0.001 comp	pared to MESO]
	1	40 -					
		~					
	<u>ଞ</u> ା ନ	20 -					
	Step down latency [s]	00 -			-		\star $ $ $rrat 1$
	י <u>ש</u>	00		7 1 T 1	^г тж	Ī	1 = trial 3
	Mo	80 -			T		T I I I I I I I I I I I I I I I I I I I
	ě						🔲 🖬 trial 6
	5	60 -					
		40 -					
		40			T III		
		20 -		T I I I I			
		20 - 0	100	MES25	MES100	MES23	

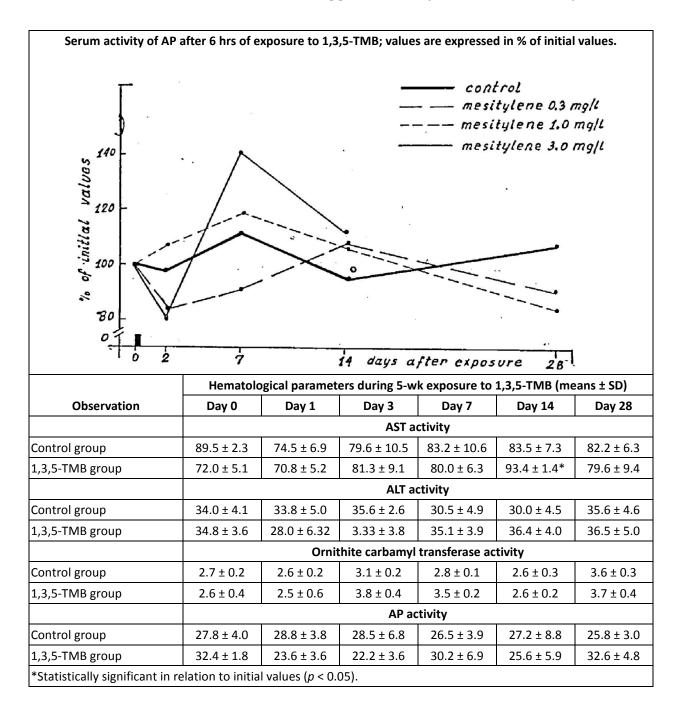
punished by an electric shock. Trials 1, 2, 3, and 4 were performed at 24-hr intervals, while trials 5 and 6 were effected 3 and 7 d after trial 3, respectively. The bars represent group means and SE.

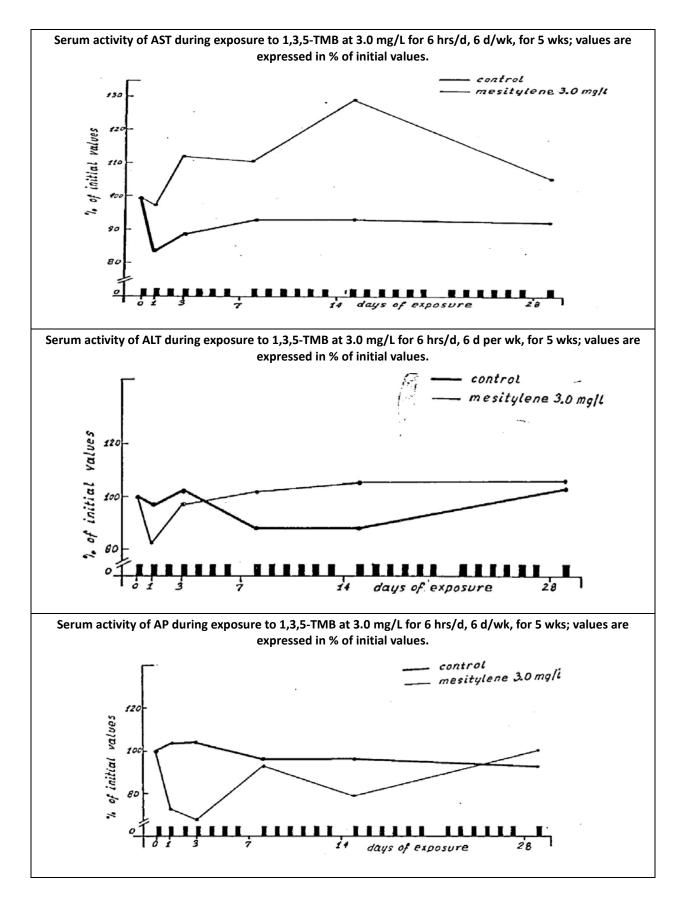


used to determine LOAEL and NOAEL. CNS disturbances observed up to 2 mo after termination of exposure, indicating the persistence of effects following metabolic clearance of 1,3,5-TMB from the test animals.Unable to quantify dose-response relationship from data because responses either equal at all exposure concentrations or elevated only at one exposure concentration. Duration of exposure only 4 wks. Generally, short-term exposure studies have limited utility in quantitation of human health reference values.

Table C-45. Characteristics and quantitative results for <u>Wiglusz et al. (1975b)</u>
--


Study design Species	Sex	N	Exposure route	Dose rang	e	Exp	osure duration		
Wistar rats M 5–8/dose		Inhalation	0, 1.5, 3.0, or 6.0 mg/L (0, 1,500, 3,000, or 6,000 mg/m ³) 1,3,5-TMB		Acute study: 6 hrs Short-term study: 6 hrs/d, 6 d/wk for 5 wks				
• f • F	Male Wis n a sepa for 5 wks Rats weig provided	star rats wer rate chronic 3. ghed 240–28 ad libitum.	re exposed in a short-1 : study, male Wistar ra 30 g and were housed collected for 3 d befo	ats were exposed to in stainless steel wi re exposure then on	3.0 mg/L : re mesh ca d 1, 7, 14	1,3,5-TMB ages, with , and 28.	for 6 hrs/d, 6 d/wk		
			1,3,5-TMB exposure	concentration (mg/ single 6-hi	-		arameters followin		
Observation			0	1.5	3	.0	6.0		
			Hemoglobin in g% (mean ± SD)						
Day 0			14.1 ± 1.3	15.2 ± 0.3	15.0	± 0.8	14.2 ± 1.1		
Day 1			-	_	14.8	± 1.0	13.9 ± 2.1		
Day 7			-	14.0 ± 0.5	13.5	± 0.5	13.5 ± 0.8		
Day 14			15.1 ± 0.8	14.6 ± 0.5	13.6	± 0.6	13.1 ± 0.4		
Day 28			14.8 ± 0.5	14.9 ± 0.7	13.6	± 0.8	14.8 ± 0.4		
			Million erythrocytes per mm ³ serum (mean ± SD)						
Day 0			4.91 ± 0.19	5.35 ± 0.09	4.96 :	± 0.15	5.51 ± 0.17		
Day 1			-	-	5.32	± 0.02	5.31 ± 0.11		
Day 7			_	5.18 ± 0.18	4.93	± 0.16	4.89 ± 0.17		
Day 14			5.37 ± 0.90	4.99 ± 0.11	5.09	± 0.10	4.77 ± 0.10		
Day 28			5.17 ± 0.18	5.26 ± 0.07	5.12	± 0.10	5.20 ± 0.27		
			Thousand leukocytes per mm ³ serum (mean ± SD)						
Day 0			11.08 ± 3.14	12.26 ± 3.50	13.01	± 3.10	8.90 ± 3.88		
Day 1			_	_	11.38	± 1.37	8.24 ± 3.88		
Day 7			_	11.70 ± 2.97	11.66	± 1.50	12.32 ± 5.01		
Day 14			8.0 ± 2.16	12.06 ± 3.33	11.70	± 1.05	10.68 ± 1.21		
Day 28			6.83 ± 1.27	11.50 ± 10.48	11.96	± 1.16	9.92 ± 2.42		


	Percent	segmented neutroph	nilic granulocytes (me	ean ± SD)				
Day 0	8.5 ± 4.1	13.5 ± 3.6	18.5 ± 2.3	16.6 ± 2.8				
Day 1	_	_	22.5 ± 5.4	53.6 ± 22.5				
Day 7	-	20.2 ± 6.04	31.3 ± 10.3	26.7 ± 12.5				
Day 14	10.6 ± 2.5	12.2 ± 5.9	30.1 ± 6.2	20.6 ± 23.7				
Day 28	15.6 ± 6.3	12.5 ± 6.4	35.0 ± 6.7	15.8 ± 3.8				
	Perce	nt bacciliform neutro	philic granulocytes (range)				
Day 0	0.6 (0-1)	1) 0.0 0.0		0.0				
Day 1	-	-	0.0	0.0				
Day 7	-	0.0	0.0	0.0				
Day 14	0.0	0.16 (0-1)	0.0	0.0				
Day 28	0.0	1 (0-2)	0.0	0.0				
	P	ercent acidophilic gra	nulocytes (mean ± S	D)				
Day 0	1.1 ± 0.7	2.6 ± 1.9	0.5 ± 0.5	1.8 ± 1.7				
Day 1	-	_	0.0	0.14 ± 0.3				
Day 7	-	1.1 ± 1.1	3.1 ± 0.5	0.0				
Day 14	2.8 ± 1.3	5.1 ± 3.2	4.8 ± 1.0	2.6 ± 2.6				
Day 28	4.1 ± 2.9	3.1 ± 1.7	6.0 ± 4.1	2.2 ± 2.8				
	Percent lymphocyte (mean ± SD)							
Day 0	88.6 ± 4.4	82.8 ± 4.13	67.8 ± 2.3	79.4 ± 4.3				
Day 1	-	_	73.3 ± 5.4	44.0 ± 21.3				
Day 7	-	77.6 ± 4.8	65.0 ± 7.9	71.2 ± 12.5				
Day 14	85.4 ± 1.5	82.0 ± 3.8	64.3 ± 5.8	75.0 ± 23.0				
Day 28	78.6 ± 8.3	81.8 ± 7.6	57.1 ± 4.1	81.2 ± 5.8				
		Percent monoc	yte (mean ± SD)	·				
Day 0	1.6 ± 0.8	1.0 ± 0.6	1.1 ± 0.9	2.2 ± 1.0				
Day 1	-	-	1.1 ± 0.4	2.3 ± 1.8				
Day 7	-	0.8 ± 1.1	0.3 ± 0.5	1.7 ± 1.9				
Day 14	0.5 ± 0.4	0.6 ± 0.5	0.3 ± 0.8	1.2 ± 0.4				
Day 28	1.6 ± 1.0	1.6 ± 1.0	1.6 ± 1.2	1.0 ± 0.8				



	% Segmented neutrophilic granulocytes							
Control group	17.1 ±	11.9	14.5 ± 8.1	12.1 ± 2.5	13.6 ± 6.3	15.6 ± 3.2		
1,3,5-TMB group	14.0	± 5.0	17.0 ± 9.4	16.6 ± 5.0	21.5 ± 7.4	18.4 ± 8.6		
		% Bacciliform neutrophilic granulocytes						
Control group	0.83	(1–2)	0.66 (1-2)	1.33 (1–3)	1.33 (1-2)	1.0 (0-1)		
1,3,5-TMB group	0.6 (1–2)	0.4 (0-1)	1 (1-2)	1.8 (2–5)	1.4 (1-2)		
			% Ac	idophilic gran	ulocytes			
Control group	1 (1-4)		2.1 (1-4)	3.3 (1-7)	1.8 (1-4)	1.6 (1-4)		
1,3,5-TMB group	1.5 (1-3)		1.0 (1-3)	0.8 (1-2)	1.0 (1-2)	0.8 (0-1)		
	% Lymphocyte							
Control group	79.6 ±	± 11.7	81.6 ± 8.6	81.8 ± 4.7	81.1 ± 5.2	80.0 ± 2.4		
1,3,5-TMB group	79.8 ± 5.5		81.0 ± 7.7	80.5 ± 6.5	74.0 ± 9.4	77.2 ± 8.4		
		% Monocyte						
Control group	1.1 (1–3)	1.0 (0-2)	1.5 (1-4)	1.0 (1-2)	1.5 (1–3)		
1,3,5-TMB group	0.6 (1–3)	0.8 (1-2)	0.8 (1-2)	1.3 (1-3)	2.7 (2-4)		
Health effect at LOAE	L	NOAEL			LOAEL			
Increase in percent segment neutrophilic granulocytes	ted	1.5 mg/L			3.0 mg/L			
Comments: Slight increases study. Authors do not report		-				•		

Species	Sex	Ν	Exposure route	Exposure route Dose range		Exposure duration			
Wistar rats M 6/dose		Inhalation	0, 0.3, 1.5, or 3.0 r 300, 1,500, or 3,000 mg/m ³⁺⁾ 1,3		Acute study: 6 hrs Short-term study: 6 hrs/d, 6 d/wk for 5 wks				
ال • f F q	Vale Wis n a sepa or 5 wks Rats weig provided	star rats we rate chroni s. ghed 240–2 ad libitum	ere exposed in a short- ic study, male Wistar r 280 g and were housed e collected for 3 d befo	ats were exposed to d in stainless steel w	3.0 mg/L 3	1,3,5-TMB	for 6 hrs/d, 6 d/wl		
			1,3,5-TMB exposure	concentration (mg/ single 6-hr expos	•		parameters followi		
Ob	servatio	on	0	0.3	1	.5	3.0		
			AST activity						
Day 0			79.0 ± 7.9	78.0 ± 7.7	75.3±7.3		81.6 ± 4.2		
Day 2		81.8 ± 6.2	90.0 ± 5.7	71.8±3.3		74.6 ± 4.5			
Day 7			82.2 ± 4.3	76.8 ± 4.2	71.2	±2.2	84.1 ± 5.6		
Day 14			82.6 ± 8.5	73.0 ± 4.2	76.3	±6.7	76.1 ± 3.9		
Day 28			79.6 ± 7.6	72.6 ± 7.2	84.2	±7.9	79.5 ± 10.6		
			ALT activity						
Day 0			34.0 ± 4.5	35.6 ± 4.1	32.6	± 4.5	29.1 ± 3.6		
Day 2			34.0 ± 4.6	308 ± 2.7	30.6 ± 8.3		26.5 ± 1.2		
Day 7			31.0 ± 3.1	37.5 ± 5.6	29.3	± 4.5	39.5 ± 3.0		
Day 14		32.0 ± 3.2	31.4 ± 2.5	34.6	± 5.3	36.3 ± 1.7			
Day 28			34.0 ± 3.8	31.3 ± 5.2 30.4		± 9.4	39.3 ± 2.7		
			AP activity						
Day 0			28.6 ± 9.6	30.9 ± 3.3	27.4	± 6.4	37.3 ± 5.6		
Day 2			27.8 ± 5.1	26.0 ± 7.2	29.7	± 2.6	30.5 ± 6.5		
			31.8 ± 5.8	28.1 ± 5.9	32.8	± 1.8	58.7 ± 8.9*		
Day 7									
Day 7 Day 14			27.0 ± 4.7	33.6 ± 2.4	28.9	± 5.2	42.1 ± 2.9		

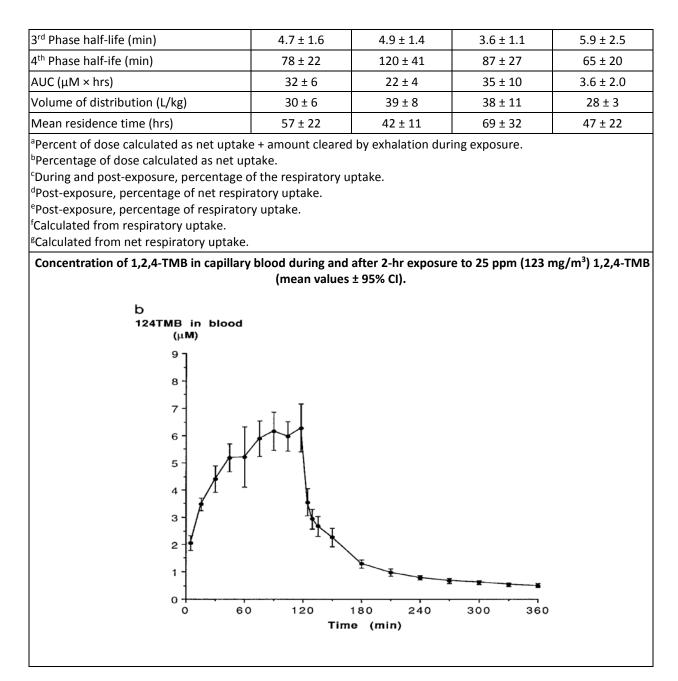
Supplemental Information—Trimethylbenzenes

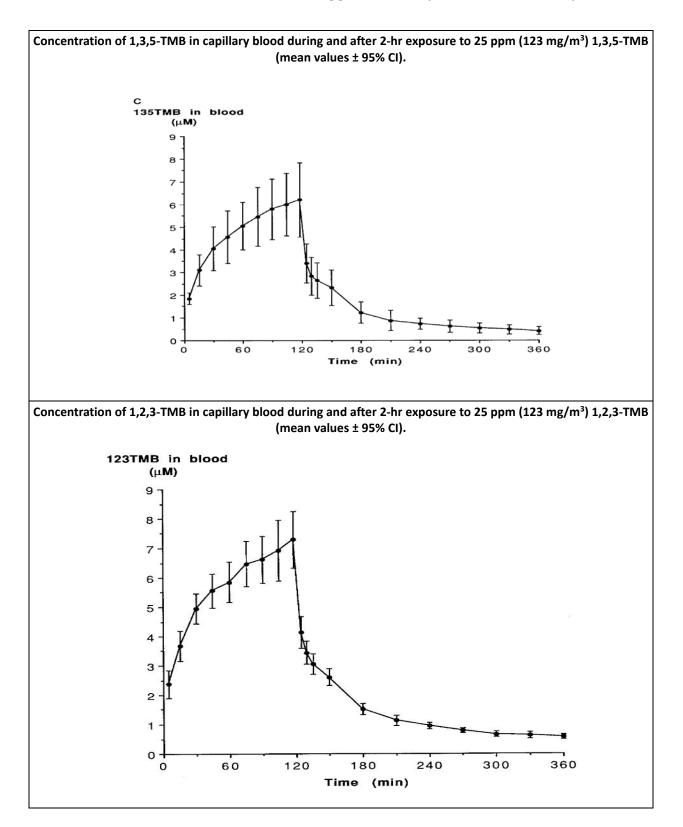
Health effect at LOAEL	NOAEL	LOAEL				
Increase in AP activity	1.5 mg/L	3.0 mg/L				
Comments: This study observed increases in AP activity on d 7 of the short-term exposure study. Only one dose						

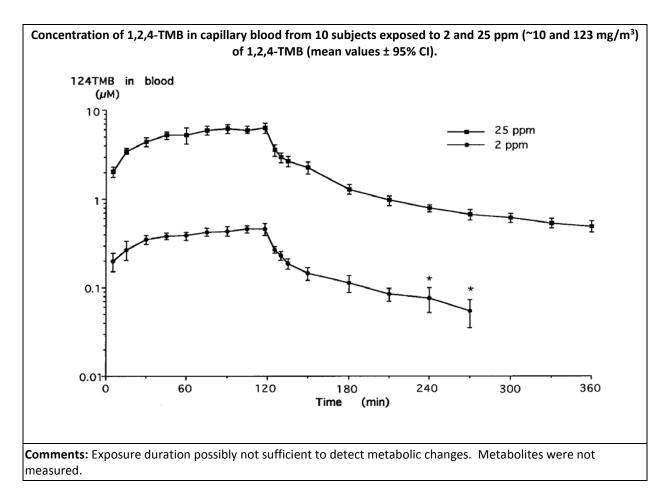
group was used in chronic study. Data were not recorded daily; significant gaps exist between sampling days.

C.5. HUMAN TOXICOKINETIC STUDIES

1


2


Tables C-47 through C-52 provide study details for human toxicokinetic studies.


Table C-47. Characteristics and quantitative results for <u>Järnberg et al. (1996)</u>

Species	Sex	Ν	Exposure route		Dose range	Exposur	re duration
Caucasian	М	9/dose	Inhalation	2 ppm a	and 25 ppm	2 hrs of exposu	re, followed by
humans				•	d 123 mg/m³)	4 hrs of observa	ation
				1,2,3-, 2	1,2,4-, or 1,3,5-TN	IB	
1,2, • Stur gen • 1,2, chru • No • Res • Exh acc	4-, or 1 4y subje erating 3-, 1,2, omatog significa ults imp alation ounted	males were ,3,5-TMB in ects were as 50 W powe 4-, and 1,3,5 raphy. ant irritation bly extensive accounted f for ≤0.002%	an inhalation cha ked to perform lig r during 2-hr expo -TMB concentrati or CNS effects we deposition in adi or 20–37% of abso	mber for ght cyclin osures. ions in e ere obse ipose tis orbed ar	r 2 hrs. ng to simulate a w xhaled air, blood, erved. sue. mount while urina	and 25 ppm (123 m ork environment, w and urine were def ry excretion of und Karolinska Institut	with participants termined via gas changed TMBs
						nalation exposure	
Respiratory a		ina armary	25 pp		25 ppm	25 ppm	2 ppm
	Exposu	re	(123 mg 1,2,3-T	/m³)	(123 mg/m ³) 1,3,5-TMB	(123 mg/m ³) 1,2,4-TMB	(~10 mg/m ³) 1,2,4-TMB
Respiratory up	take (%)	а	56 ± -	4	62 ± 3	64 ± 3	63 ± 2
Net respiratory	uptake	e (%) ^b	48 ± 1	3	55 ± 2	60 ± 3	61 ± 2
Respiratory up	ake (m	mol)ª	1.4 ± 0).1	1.6 ± 0.1	1.6 ± 0.1	0.16 ± 0.01
Net respiratory	uptake	(mmol) ^b	1.2 ± 0).1	1.4 ± 0.1	1.5 ± 0.1	0.15 ± 0.01
Respiratory exc	retion ((%) ^c	37 ±	9	25 ± 6	20 ± 3	15 ± 5
Net respiratory	excreti	on (%) ^d	28 ±	8	16 ± 4	14 ± 2	9 ± 4
Urinary excretion	on (%) ^e		0.0023 ± 0	0.0008	0.0016 ± 0.0015	0.0010 ± 0.0004	0.0005 ± 0.0002
	Kinetic	values of T	MB isomers follow	wing 2-h	r inhalation expo	sure (mean ± 95%	CI)
Kinetic parameter		25 pp (123 mg 1,2,3-T	/m³)	25 ppm (123 mg/m ³) 1,3,5-TMB	25 ppm (123 mg/m ³) 1,2,4-TMB	2 ppm (~10 mg/m ³) 1,2,4-TMB	
Total calculated blood clearance (L/hr/kg) ^f		0.63 ± 0).13	0.97 ± 0.16	0.68 ± 0.13	0.87 ± 0.37	
Total apparent clearance (L/hr		ted blood	0.54 ± 0).11	0.86 ± 0.12	0.63 ± 0.11	0.82 ± 0.32
Exhalatory bloc	od clear	ance (L/hr/k	g) ^f 0.23 ± 0	0.07	0.24 ± 0.10	0.14 ± 0.04	0.14 ± 0.10
Metabolic bloo	d cleara	ance (L/hr/k	g) ^f 0.39 ± 0).11	0.72±0.11	0.54 ± 0.10	0.74 ± 0.29
1 st Phase half-li	fe (min)	1.5 ± 0).9	1.7 ± 0.8	1.3 ± 0.8	1.4 ± 1.8
2^{nd} Phase half-life (min)							1

This document is a draft for review purposes only and does not constitute Agency policy.C-187DRAFT—DO NOT CITE OR QUOTE

1	Table C-48. Characteristics and quantitative results for <u>Järnberg et al. (1997a)</u>

Species	Sex	Ν	Exposure route	Dose range	Exposure duration
Caucasian humans	М	9	Inhalation	11 mg/m ³ 1,2,4-TMB	2 hrs
Additional stu	dy deta	ils			
• Nin	e Cauc	asian male	s were exposed to 1	1 mg/m ³ 1,2,4-TMB alone	or 11 mg/m ³ 1,2,4-TMB as a
	-		ng/m ³ white spirit.		
•					ired to cycle producing 50 W
		-	llate a work environ	ire 1,2,4-TMB levels in air.	
				y was used to measure uri	nary metabolites.
-				jects at these exposure lev	-
	-			Ethical Committee at the	Karolinska Institute and was only
-			rmed consent.		
Mean (± SD) capill	ary blood o		_	exposure to 1,2,4-TMB alone and
			1,2,4-TMB as a (component of white spirit	
1.:	2.4-TI	MB in	blood (µM)		
			(,,		
ι,	٢°			•	osure to white spirit
	4			Exp	osure to 1,2,4-TMB
				- T	
0,	8 -			T	
	1		T .		
0					
0,		T		± ⊥ _\	
	4			I\T	
		I		I de la la la la la la la la la la la la la	
0,	4 -	∕ ¥ ↓	- J	I I I N	Т
	IL	/ † /		\1	
	-1¥		-	<u>لا ا</u>	
0	2	1			
0,	- I				ľ J
	<			>	
			exposure		
0	,0 +			·····	
•	,		60	120	

Exposure	1,2,4-TMB alone	1,2,4-TMB in white spirit	<i>p</i> -value
let respiratory uptake (mmol)	0.15 ± 0.01	0.14 ± 0.02	0.5ª
UC (µM × min), 0−3 hrs	53 ± 4	86 ± 9	< 0.0001
alf-life of 3,4-DMHA (hr)	3.7 ± 0.4 ^b	3.0 ± 0.7	0.2 ^c
xcretion of 3,4-DMHA (% ^d), 0–6 hr	11 ± 2	18 ± 3	0.007 ^c
Recalculated for nine subjects from a 120 ANOVA. 5 of net respiratory uptake. Urinary excretion rate of 3,4-DMHA a exposed to 11 mg/m ³ of 1,2,4-TMB Urinary excretion rate of 3,4-DMHA (µmol/h)	gainst the midpoint time , either alone or as a cor	of urine collection in nine male	
		Ţ	
	8	12 16	20

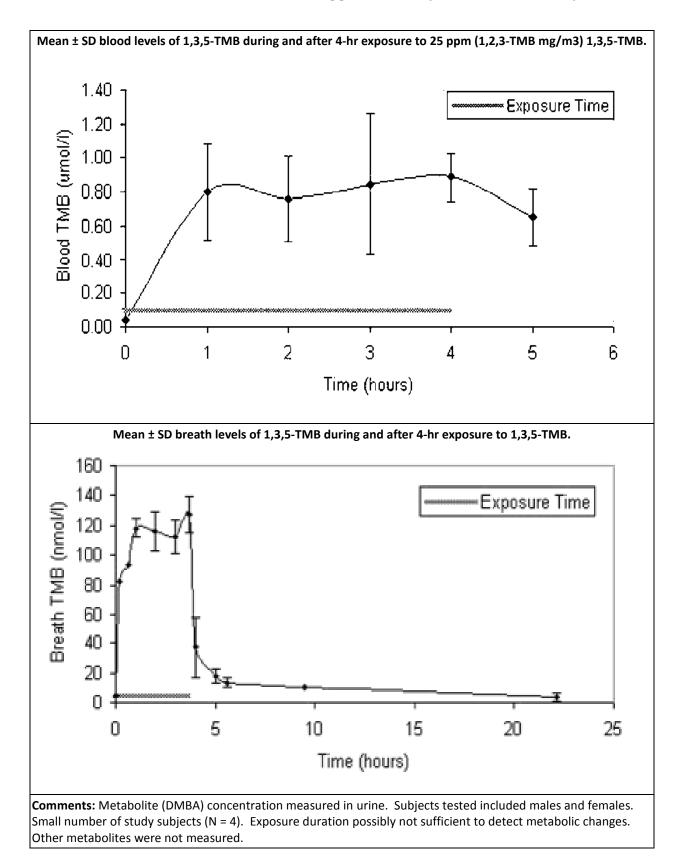
Table C-49. Characteristics and quantitative results for	r <u>lärnberg et al. (1997b</u>	ງ
--	---------------------------------	---

Species	Sex	Ν	Exposure rou	te Dose ra	ange	Exp	osure duration
Caucasian humans	М	10	Inhalation	25 ppm (123 m 1,2,3-TMB, 1,2, 1,3,5-TMB		2 hrs	
Additional stud	ly detai	ls	•				
• Stu	dy subje	ects were a	,2,4-TMB for 2 h sked to perform er during 2-hr ex	light cycling to sin	nulate a wor	k environme	ent, with participants
 Isor App fou The the 	oroximat nd to be study w informe	all DMHA r tely 22% of e excreted vas approved consent	metabolites in u f inhaled 1,2,4-T as DMHAs in uri red by the Regio of the subjects	MB, 11% of inhaled ne within 24 hrs fo nal Ethical Commit and according to th	d 1,2,3-TMB, llowing expo tee at the Ka ne 1964 Decl	, and 3% of i osure. arolinska Ins laration of H	
 Isor App fou The the 	oroximat nd to be study w informe	all DMHA r tely 22% of e excreted vas approved consent	metabolites in u f inhaled 1,2,4-T as DMHAs in uri red by the Regio of the subjects	MB, 11% of inhaled ne within 24 hrs fo nal Ethical Commit and according to th	d 1,2,3-TMB, llowing expo tee at the Ka he 1964 Decl ary DMHA is	, and 3% of i osure. arolinska Ins laration of H	titute and only with
 Isor App fou The the 	oroximat nd to be study v informe urinary	all DMHA r tely 22% or excreted vas approv ed consent excretion	metabolites in u f inhaled 1,2,4-T as DMHAs in uri red by the Regio of the subjects	MB, 11% of inhaled ne within 24 hrs fo nal Ethical Commit and according to th	d 1,2,3-TMB, llowing expo tee at the Ka ne 1964 Decl ary DMHA is Urinary r	, and 3% of i osure. arolinska Ins laration of H comer excre	inhaled 1,3,5-TMB wa titute and only with lelsinki tion (mean ± 95% CI)
 Isor App fou The the Half-times of	nd to be study v informe urinary	all DMHA r tely 22% or excreted vas approv ed consent excretion	metabolites in u f inhaled 1,2,4-T as DMHAs in uri red by the Regio of the subjects rate, recoveries	MB, 11% of inhaled ne within 24 hrs fo nal Ethical Commit and according to th , and rates of uring	d 1,2,3-TMB, llowing expo tee at the Ka ne 1964 Decl ary DMHA is Urinary ro (24	, and 3% of i osure. arolinska Ins laration of H somer excre ecovery %	inhaled 1,3,5-TMB wa ititute and only with lelsinki tion (mean ± 95% Cl) Excretion rate,
 Isor App fou The the Half-times of Exposure 1,2,3-TMB	oroximat nd to be study v informe urinary	all DMHA r tely 22% of e excreted vas approv ed consent excretion Isc	metabolites in u f inhaled 1,2,4-T as DMHAs in uri red by the Regio of the subjects rate, recoveries	MB, 11% of inhaled ne within 24 hrs fo nal Ethical Commit and according to th , and rates of uring Half-time (hrs)	d 1,2,3-TMB, llowing expo tee at the Ka he 1964 Decl ary DMHA is Urinary ro (24 9	, and 3% of i osure. arolinska Ins laration of H somer excre ecovery % hrs)	inhaled 1,3,5-TMB wa titute and only with lelsinki tion (mean ± 95% Cl) Excretion rate, μg/min, 0–24 hrs
 Isor App fou The the Half-times of Exposure 1,2,3-TMB 1,2,3-TMB	oroximat nd to be study v informe urinary	all DMHA r tely 22% or e excreted vas approved consent e excretion lsc 2,3-DMHA	metabolites in u f inhaled 1,2,4-T as DMHAs in uri red by the Regio of the subjects rate, recoveries	MB, 11% of inhaled ne within 24 hrs fo nal Ethical Commit and according to th , and rates of urina Half-time (hrs) 4.8 ± 0.8	d 1,2,3-TMB, llowing expo tee at the Ka ne 1964 Decl ary DMHA is Urinary ro (24 9 2	, and 3% of i osure. arolinska Ins laration of H comer excre ecovery % hrs) ± 3	titute and only with lelsinki tion (mean ± 95% Cl) Excretion rate, μg/min, 0–24 hrs 19 ± 3
 Isor App fou The the Half-times of Exposure 1,2,3-TMB 1,2,3-TMB 1,2,4-TMB	oroximation nd to be study v informe urinary	all DMHA r tely 22% or e excreted vas approv ed consent excretion [sc 2,3-DMHA 2,6-DMHA	metabolites in u f inhaled 1,2,4-T as DMHAs in uri red by the Regio of the subjects rate, recoveries	MB, 11% of inhaled ne within 24 hrs fo nal Ethical Commit and according to th , and rates of urina Half-time (hrs) 4.8 ± 0.8 8.1 ± 1.5	d 1,2,3-TMB, llowing expo tee at the Ka he 1964 Decl ary DMHA is Urinary ro (24 9 2 18	, and 3% of i osure. arolinska Ins laration of H somer excre ecovery % hrs) ± 3 ± 2	inhaled 1,3,5-TMB wa titute and only with telsinki tion (mean ± 95% Cl) Excretion rate, μg/min, 0–24 hrs 19 ± 3 4.2 ± 1.7
 Isor App fou The the 	oroximat nd to be study v informe urinary	all DMHA r tely 22% o e excreted vas approv ed consent excretion lsc 2,3-DMHA 2,6-DMHA 3,4-DMHA	metabolites in u f inhaled 1,2,4-T as DMHAs in uri red by the Regio of the subjects rate, recoveries	MB, 11% of inhaled ne within 24 hrs fo nal Ethical Commit and according to th , and rates of urina Half-time (hrs) 4.8 ± 0.8 8.1 ± 1.5 3.80 ± 0.4	d 1,2,3-TMB, llowing expo tee at the Ka ne 1964 Decl ary DMHA is Urinary r (24 9: 2: 18 3 ±	, and 3% of i posure. arolinska Ins laration of H comer excree ecovery % hrs) ± 3 ± 2 ± 3	inhaled 1,3,5-TMB wat titute and only with lelsinki tion (mean \pm 95% Cl) Excretion rate, µg/min, 0–24 hrs 19 \pm 3 4.2 \pm 1.7 44 \pm 6

Table C-50. Characteristics and quantitative results for <u>Järnberg et al. (1998)</u>
--

Study design Species	Sex	N	Exposure route	Dose range		Evno	sure duration
Caucasian humans	ian M 9 subjects Inhalation			2 ppm (~10 mg/m ³) 2 hrs		Exposure duration 2 hrs of exposure, followed by 6 hrs of observation	
25 • Stu • 1,2 • DN • Blo • Ro • No • Th pe	ucasian ppm (12 udy subj 2,4-TMB 4HA me bood leve bood leve boosure g significa e study rformed	males were 23 mg/m ³) 1 ects were as concentrati tabolites we ls of 1,2,4-TI group sugges ant irritation was approved after inform	,2,4-TMB in an in ked to perform li on was determine re measured with MB and its urinar sting that compor or CNS effects w ed by the Regiona ned consent.	y metabolites were for nents of white spirit of	r 2 hrs. te a work graphy. ound to b could inte of the Kard	environmen be higher in tl rfere with TN plinska Institu	t. he white spirit MB metabolism. ute and was only
		-		(95% CI)	1		Γ
	Kinetic	parameter		2 ppm (~10 mg/m ³) group		~10 mg/m ³) nite spirit	25 ppm (123 mg/m ³) alone
Actual [TMB] (ppm)			2.22 (2.13–2.31)	2.26 (2	2.20-2.32)	23.9 (22.7–25.1)
Respiratory up	take (m	mol)ª		0.16 (0.14–0.18)	0.16 (0	0.14-0.18)	1.73 (1.61–1.85)
Net respirator	y uptake	9		0.15 (0.14–0.16)	0.14 (0	0.12-0.16)	1.52 (1.37–1.67)
AUC _{blood} (µM ×	: min)			95 (54–137)	157 (1	.36–178)*	1,286 (1,131–1,441
Total blood cle	earance	(L/min)		2.09 (1.52–2.66)	1.06 (0.	89–1.23)**	1.38 (1.23–1.53)*
Metabolic blo	od cleara	ance (L/min)		1.71 (1.15–2.26)	0.79 (0	.62–0.96)*	1.06 (0.87–1.25)*
Exhalatory blo	od clear	ance (L/min)	0.39 (0.28–0.50)	0.28 (0	0.20-0.36)	0.32 (0.24–0.40)
Mean residen	ce time ((hr)		4.6 (-1.3-10.5)	4.8 (2.1-7.5)	3.8 (1.8–5.8)
Volume of distribution, steady state (L)			te (L)	293 (69–517)	271 (139–403)	294 (165–423)
Half-life in blo	od <i>,</i> TMB	s, 1 st phase (min)	3.9 (1.4–6.4)	5.9 (3.1-8.7)	6.1 (5.3–6.9)
Idem, TMB, 2 ⁿ	^d phase	(hr)		4.3 (-0.5-9.0)	4.8 (2.1-7.5)	4.0 (2.2–5.8)
Half-life in urir				ND ^c	3.0 (2.3–3.7)	3.8 (3.4–4.2)
Urinary recove		DMHA (%) ^b ,	0–6 hr	11 (9–13)	18(15–21)*	14 (12–16)
Idem (%) ^b , 0-2				ND	1	(23–31)	18 (15–21)

*p < 0.05, **p < 0.01, compared to 2 ppm (~10 mg/m³) alone by repeated measures ANOVA.


^aNet respiratory uptake + amount cleared by exhalation during exposure.

^b% of net respiratory uptake.

^cNot determined.

Comments: Multiple exposure concentrations were tested and multiple tissues were analyzed. Study of 1,2,4-TMB as a component of white spirit. Toxicokinetics of 1,2,3- and 1,3,5-TMB not studied.

Species	Sex	Ν	Exposure route	Dose range	Exposure duration
Humans	M & F	2/sex	Inhalation	25 ppm (1,2,3-TMB mg/m ³) 1,3,5-TMB	4 hrs
Additional stu	idy detai	ils	·	·	
			emales were expos	ed to 25 ppm (1,2,3-TMB mg	/m ³) 1,3,5-TMB in an inhalation
-	amber fo		tion in a dealed air .		
	romatog		tion in exhaled air,	venous blood, and urine was	determined via gas
	-		on or CNS effects w	ere observed during the inha	lation study, although one
			-	e patch soaked with liquid 1,	3,5-TMB and reported mild
			d edema where gau		arkers of TMB exposure, and th
			-	ek can result in significant ac	-
		-	-	nd Safety Executive's Researc	
Mean ± SD u	rinary to			-	rs respectively, following a sing
		4-hr	r exposure to 25 pp	m (1,2,3-TMB mg/m ³) 1,3,5-	TMB.
~ 1	60.0 т				
ine)	^{60.0}]	т			
atinine)	^{60.0}	Ī,			Exposure Time
creatinine)		ĪŢ			Exposure Time
ol creatinine)		Į			Exposure Time
(/mol creatinine)	50.0 -	A			Exposure Time
mol/mol creatinine)	50.0 -				Exposure Time
(mmol/mol creatinine)	50.0 - 40.0 -		Ļ		Exposure Time
BA (mmol/mol creatinine)	50.0 - 40.0 -		L L		Exposure Time
MBA (mmol/mol creatinine)	50.0 - 40.0 - 30.0 -				Exposure Time
e DMBA (mmol/mol creatinine)	50.0 - 40.0 - 30.0 -		↓ ↓ ↓		Exposure Time
Jrine DMBA (mmol/mol creatinine)	50.0 - 40.0 - 30.0 - 20.0 -			T	Exposure Time
DMBA (mmol/mol creatinine	50.0 - 40.0 - 30.0 - 20.0 -			- <u>I</u>	Exposure Time
Urine DMBA (mmol/mol creatinine)	50.0 - 40.0 - 30.0 - 20.0 -			- <u>I</u>	Exposure Time

1Table C-52. Characteristics and quantitative results for Kostrzewski et al.2(1997)

Study design							
Species	Sex	Ν	Exposure route	Dose	ange	Exposure o	luration
Humans	umans M & F		Inhalation Between 5 and 150 mg/m ³ 4 o 1,2,4-TMB, 1,3,5-TMB, and 1,2,3-TMB		l or 8 hrs		
15 • Exj • TM • DN	ve huma 0 mg/m posure o 1Bs wer /IBA exc	ns were expo ³ . durations we e measured i retion was fo	re either 4 or 8 h n blood and urine bund to follow an	rs. e via gas chroma open, two-com	atography. partment mod		
I	.,2,3-, 1,					, and after exposu	
Sampling tin (hrs)		Blood ncentration (μg/dm³)	-TMB SD	1,2,4 Blood concentration (μg/dm ³)	SD	1,3,5- Blood concentration (μg/dm ³)	SD
0		0	0	0	0.00	0	0.00
0.25		259	94.5	194	19.80	181	25.01
0.50		290	91.54	460	57.36	308	5.29
1		295	57.11	533	46.61	355	44.80
2		380	93.17	730	128.89	482	201.57
4		341	186.94	810	112.40	603	184.13
8		520	129.42	979	171.12	751	122.87
0.05		261	50.36	580	36.2	434	36.40
0.10		277	57.89	496	85.03	388	64.16
0.15		287	38.18	447	106.69	309	38.78
0.25		277	35.47	387	65.83	298	65.48
0.50		-	_	246	128.54	247	34.00
1		204	17.78	131	19.87	190	41.13
2		133	38.55	101	14.17	121	24.60
4		85	8.96	85	13.65	94	16.52
6		65	23.69	63	11.03	76	25.81
8		64	11.59	69	7.09	74	20.16
25		54	14.57	54	3.74	45	13.93
32		29	3.51	48	10.24	44	20.19
49		19	13.01	46	9.98	42	7.93
56		21	11.31	31	9.32	42	9.81
73		14	3.50	26	9.49	-	_

		1,2,3-TM	B exposure		
	2,3-D	MBA	2,6-DI	MBA	
Sampling time (hr)	V (mg/hr)	SD	V (mg/hr)	SD	
0	0.000	0.000	0.000	0.000	
0-2	3.518	0.852	0.099	0.097	
2–4	10.745	1.856	0.097	0.084	
4–6	16.594	5.028	0.146	0.039	
6-8	23.468	5.291	0.202	0.070	
8-10	16.874	2.353	0.160	0.004	
10-12	14.769	1.964	0.150	0.035	
12–14	11.929	2.070	0.161	0.048	
14–16	7.715	2.236	0.129	0.038	
16-23	3.976	0.782	0.110	0.042	
23-27	1.876	0.213	0.067	0.021	
27-31	1.822	0.893	0.079	0.052	
31-35	1.471	0.551	0.081	0.055	
35-39	2.292	0.998	0.143	0.032	
39–47	1.388	0.660	0.102	0.037	
47-51	1.125	0.414	0.109	0.041	
51-55	1.543	0.468	0.172	0.058	
55-59	1.505	0.683	0.139	0.050	
59-63	1.154	0.481	0.055	0.063	
63-71	0.535	0.119	0.031	0.030	
71–75	0.802	0.383	0.053	0.001	
75-79	0.999	0.712	0.059	0.030	
79-83	0.886	0.343	0.086	0.078	
83-87	0.349	0.165	0.046	0.050	
87–95	0.365	0.163	0.000	0.000	
		1,2,4-TM	B exposure		
	2,4- and 2	2,5-DMBA	3,4-DI	3,4-DMBA	
Sampling time (hr)	V (mg/hr)	SD	V (mg/hr)	SD	
0	0.000	0.000	0.000	0.000	
0–2	6.632	3.069	19.949	5.489	
2–4	12.931	4.315	22.731	4.536	
4–6	21.148	7.067	26.906	6.525	
6-8	29.263	9.240	35.346	11.017	
8-10	16.616	11.451	12.082	10.205	
10-12	15.619	2.935	6.198	2.325	
12-14	17.328	2.218	6.029	2.135	
14–16	13.832	2.176	4.415	1.372	

This document is a draft for review purposes only and does not constitute Agency policy.C-198DRAFT—DO NOT CITE OR QUOTE

Г ^т		-		1		
16–23	7.023	2.565	2.520	1.043		
23–27	4.052	0.674	1.870	0.525		
27–31	2.570	0.760	2.005	0.460		
31–35	2.209	0.666	1.523	0.610		
35–39	1.211	1.075	1.247	0.895		
39–47	1.262 0.256		0.957	0.099		
47–51	1.174 0.459		0.953	0.623		
51-55	0.370	0.228	0.659	0.231		
55-59	0.928	0.327	0.936	0.515		
59–63	1.591	1.162	1.286	0.391		
63-71	0.948	0.276	0.869	0.141		
71–75	1.122	0.049	0.851	0.246		
75–79	0.748	0.441	0.422	0.231		
79–83	1.082	0.733	0.744	0.328		
83-87	-	-	-	-		
87–95	-	-	-	-		
		1,3,5-TM	B exposure			
		3,5-	DMBA			
Sampling time (hr)	<i>V</i> (n	ng/hr)	S	D		
0	0.	000	0.0	000		
0-2	3.	538	0.833			
2–4	8.	854	2.955			
4–6	12	.334	3.905			
6-8	19	.204	6.092			
8-10	19	.413	6.329			
10-12	23	.535	7.606			
12-14	22	.460	3.254			
14-16	16	.941	4.350			
16-23	10	.790	3.:	3.116		
23–27	6.	908	2.691			
27-31	6.	558	3.657			
31-35	3.	983	2.3	367		
35-39	3.	946	2.0	073		
39–47	3.	110	0.8	338		
47-51	3.	244	1.140			
51-55	2.	343	1.3	355		
55–59	3.	669	1.8	382		
59–63		436		303		
63-71		600				
			1.305			
71–75	1.	025	0.639 0.825			

This document is a draft for review purposes only and does not constitute Agency policy.C-199DRAFT—DO NOT CITE OR QUOTE

Supplemental Information—Trimethylbenzenes

79–83	0.750	0.645						
83–87								
87–95								
Comments: Metabolites (DMBAs) measured in urine. Toxicokinetics studied over a range of exposures. Exposure duration possibly not sufficient to detect other metabolic changes. Only one study subject per exposure group.								

C.6. ANIMAL TOXICOKINETIC STUDIES

1

2

Tables C-53 through C-65 provide study details for animal toxicokinetic studies.

Table C-53. Characteristics and quantitative results for <u>Dahl et al. (1988)</u>

Species	Sex	N	Exposure route	Dose range	Exposure duration
F344 rats	М	2 rats	Inhalation	1–5,000 ppm 1,2,4-TMB	80 min/d for 5 consecutive d
• \\ t • 1 • 2 • 2 • 2	Male F34 of the ex Japors w the nose The amo the nose Concentr 5,000 pp 1,2,4-TM	14 rats weig periment. vere pumpe -only expos unt of abso -only tube a rations were m respectiv IB uptake in	d into exposure cham ure tube. rbed hydrocarbon vaj is measured by gas ch e increased each day. ely.	nber at flow rate of 400 mL/m por was calculated from the f promatography every min du Day 1–5 concentrations wer d to be 11.5 ± 2 nmol/kg/min	e 1, 10, 100, 1,000, and

This document is a draft for review purposes only and does not constitute Agency policy. C-201 DRAFT—DO NOT CITE OR QUOTE

1Table C-54. Characteristics and quantitative results for Eide and Zahlsen2(1996)

N Exposure /dose Inhalation /e-Dawley rats were exposure. inhalation) 1,2,4-TMB in an inhater were given ad libiting prior to exposure. inhater were given ad libiting prior to exposure. concentration tissue phy. Daily mean contents. inhater contents. as found in higher contents. inhater contents.	0, 75, 1 (0, 369, 2,214 m valation chambe itum except du e concentration centrations did	er for 12 hrs. Fing exposure, and a s were determined not vary by more the blood than <i>n</i> -nonar	12-hr exposure chamber n (0, 369, 738, 1, animal weight ra via head space g han ±5.3% from ne and trimethyl	,476, or nged between gas nominal lcyclohexane.
e-Dawley rats were ex) 1,2,4-TMB in an inh- ter were given ad libi- g prior to exposure. concentration tissue phy. Daily mean con- ns. as found in higher con-	(0, 369, 2,214 m xposed to 75, 1 alation chambe itum except du e concentration centrations did ncentrations in	738, 1,476, or 1g/m ³) 1,2,4-TMB 50, 300, or 450 ppn or for 12 hrs. ring exposure, and a s were determined not vary by more the blood than <i>n</i> -nonar	chamber n (0, 369, 738, 1, animal weight ra via head space g han ±5.3% from ne and trimethyl	,476, or nged between gas nominal lcyclohexane.
) 1,2,4-TMB in an inh- ter were given ad libi g prior to exposure. concentration tissue phy. Daily mean con- ns. as found in higher con-	alation chambe itum except du concentration centrations did ncentrations in	er for 12 hrs. Fing exposure, and a s were determined not vary by more the blood than <i>n</i> -nonar	animal weight ra via head space g han ±5.3% from ne and trimethyl	nged between gas nominal lcyclohexane.
) 1,2,4-TMB in an inh- ter were given ad libi g prior to exposure. concentration tissue phy. Daily mean con- ns. as found in higher con-	alation chambe itum except du concentration centrations did ncentrations in	er for 12 hrs. Fing exposure, and a s were determined not vary by more the blood than <i>n</i> -nonar	animal weight ra via head space g han ±5.3% from ne and trimethyl	nged between gas nominal lcyclohexane.
,2,4-TMB concentrat	tions following			
	1010 1010 10116	12-hr 1,2,4-TMB inl	halation exposu	re
Blood (μmol/kg) Bra	ain (µmol/kg)	Liver (µmol/kg)	Kidneys (µmol/kg)	Fat (µmol/kg)
14.1	23.6	53.4	53.4	516
57.5	97.5	123.1	168.5	3,806
115.5	220.9	256.3	282.4	12,930
221.3	400.2 468.6		492.5 19,270	
	14.1 57.5 115.5 221.3	14.1 23.6 57.5 97.5 115.5 220.9 221.3 400.2	14.1 23.6 53.4 57.5 97.5 123.1 115.5 220.9 256.3 221.3 400.2 468.6	14.1 23.6 53.4 53.4 57.5 97.5 123.1 168.5 115.5 220.9 256.3 282.4

elimination. No data on metabolites of 1,2,4-TMB.

Table C-55. Characteristics and quantitative results for <u>Huo et al. (1</u>	<u>1989)</u>
---	--------------

Study design Species Sex		N	Exposure rou		rango	Exposure duration		
Wistar rats	M	3 rats/dose	Oral, in olive oi	l 0.08 mmol/k	0.8 mmol/kg, 0.49 μCi/kg		nd 24 hrs	
Additional s	l tudv det	ails		_,_,				
 S T F C 1 a C 	Single do Tissues w continuo Percent 1 concentr L,2,4-TM adipose t Dver 99% Three mo	ses of ¹⁴ C labe vere analyzed usly for 24 hrs L,2,4-TMB dist ation of meta B was distribu issue. 6 of radio-labe ost common n	at 3-, 6-, 12-, ar s in the metabol ributed to indiv bolites analyzed ited widely thro eled material wa netabolites wer	idual tissues det I via gas chromat ughout the body as recovered from e 3,4-DMHA (30.1	nts for the tiss ermined via lic ography. v, though parti n urine within 2%), 2,4-DMB	quid scintilla icularly high 24 hrs. A (12.7%), a	ation counter; levels were found in and 2,5-DMBA (11.7%)	
	Tissue		-	retion following issue and urine (
Tissue/	'Urine		hrs	6 hrs	-	hrs	24 hrs	
Liver		2.76	± 0.39	2.69 ± 0.60	1.54	± 0.38	0.13 ± 0.04	
Kidney		0.56	± 0.11	0.52 ± 0.12	0.14	± 0.10	0.06 ± 0.05	
Lung		0.10	± 0.03	0.06 ± 0.03	0.03	± 0.03	0.01 ± 0.01	
Heart		0.03	± 0.01	0.01		_	_	
Testis		0.09	± 0.04	0.12 ± 0.03	0.04	± 0.04	-	
Spleen		0.03	± 0.02	0.03 ± 0.01	0.01	± 0.01	_	
Brain		0.08	± 0.04	0.03 ± 0.02	0.03	± 0.03	-	
Stomach		2.39	± 1.47	1.33 ± 0.98	0.09	± 0.06	0.04 ± 0.03	
Intestine		2.96	± 1.82	3.33 ± 1.31	1.39	± 1.03	0.25 ± 0.35	
Serum		0.67	± 0.14	0.57 ± 0.09	0.26	± 0.15	0.12 ± 0.21	
Muscle		2.38	± 0.23	1.88 ± 1.63	0.64	± 0.10	-	
Skin		3.99	± 1.51	2.29 ± 0.98	0.16	± 0.25	-	
Adipose tissu	ue	28.05	± 9.28	26.31 ± 18.18	5.31 ± 18.18 4.97 :		0.67 ± 0.15	
Urine		15.0	± 1.1	32.6 ± 7.9	32.6 ± 7.9 50.7		99.8 ± 4.1	
		Concentr	ation (µg/g) rad	lioactive materia	al in tissue (m	ean ± SD)		
Tissue		3	hrs	6 hrs	6 hrs 12		24 hrs	
Liver	ver		± 9	81 ± 20	45	± 12	5 ± 2	
Kidney	ney		± 16	60 ± 13	17	± 12	7 ± 6	
Lung		17	± 9	12 ± 6	4	± 4	2 ± 4	
Heart		8	± 2	2 ± 1		_	-	
Testis		8	± 4	11 ± 2	3	± 4	-	
Spleen		11	± 5	13 ± 5	5	± 5	_	
Brain		11	± 5	6 ± 2	4	± 4	-	
Stomach		509	± 313	263 ± 218	18	± 11	10 ± 7	

This document is a draft for review purposes only and does not constitute Agency policy.C-203DRAFT—DO NOT CITE OR QUOTE

Intestine	35 ± 2		47 ± 17		21 ± 15			4 ± 6		
Serum	17 ±	3	15 ± 1		6 ± 3			3 ± 6		
Muscle	6 ± 1	L	5 ± 4		1 ±	0		_		
Skin	20 ±	7	12 ± 4		1 ±	1		_		
Adipose tissue	200 ±	64	193 ± 125		33 ±	8		5 ± 1		
Urinary	ary metabolites of 1,2,4-TMB 24 hrs after single oral dose in rats (values						ues ± SD)		
	%Dose (0.08 mmol/k	g) in urine		%Dose (0.8 mmol/kg) in urine					
	Free	Conjugated	Total	F	ree	Conju	igated	То	tal	
Metabolite	all rats	all rats	all rats	Rat 1	Rat 2	Rat 1	Rat 2	Rat 1	Rat 2	
2,3,5- and 2,4,5-TMP	2.6 ± 1.2	5.1 ± 1.4	7.7 ± 2.2	2.5	1.5	4.3	2.0	6.7	3.5	
2,3,6-TMP	-	3.9 ± 0.7	4.0 ± 0.6	0.1	0.4	2.1	1.5	2.1	1.8	
Total phenols	2.7 ± 1.1	9.0 ± 2.0	11.8 ± 2.9	2.6	1.9	6.3	3.5	8.8	5.3	
2,4-Dimethylbenzoic alcohol	0.1 ± 0.1	12.5 ± 2.6	12.7 ± 2.6	0.1	0.4	11.5	7.2	11.6	7.6	
2,5-Dimethylbenzoic alcohol	0.1 ± 0.0	11.6 ± 2.7	11.7 ± 2.7	0.1	0.2	8.7	8.7	8.8	8.9	
3,4-Dimethylbenzoic alcohol	-	1.9 ± 0.9	1.9 ± 0.8	-	0.1	0.9	0.8	0.9	0.9	
Total alcohols	0.2 ± 0.1	26.0 ± 5.5	26.3 ± 5.4	0.1	0.7	21.1	16.8	21.2	17.5	
2,4-DMBA	0.8 ± 0.1	5.2 ± 2.0	6.0 ± 2.0	0.8	2.5	6.8	1.5	7.6	4.0	
2,5-DMBA	0.5 ± 0.0	3.1 ± 1.3	3.6 ± 1.3	0.3	1.2	3.5	2.1	3.9	2.3	
3,4-DMBA	0.2 ± 0.1	0.7 ± 0.2	0.8 ± 0.2	0.1	0.2	0.5	0.2	0.5	0.4	
Total benzoic acids	1.5 ± 0.1	8.9 ± 3.4	10.4 ± 3.3	1.2	3.9	10.8	3.8	11.9	6.7	
2,4-DMHA	5.0 ± 1.9	2.0 ± 1.0	7.0 ± 2.6	3.3	2.7	4.8	1.2	8.1	3.7	
2,5-DMAH	0.5 ± 0.2	0.3 ± 0.3	0.8 ± 0.3	0.2	0.1	0.5	0.1	0.7	0.2	
3,4-DMHA	27.3 ± 8.4	3.3 ± 1.2	30.2 ± 9.4	23.1	17.9	15.6	7.1	38.7	25.0	
Total hippuric acids	32.7 ± 10.5	5.6 ± 2.3	37.9 ± 12.1	26.6	20.8	20.9	8.4	47.5	28.9	
Total metabolites	37.1 ± 11.4	49.5 ± 13.0	86.4 ± 23.0	30.4	27.2	59.1	32.4	89.5	58.4	
TMP = trimethylphenol		1	I	1	1	1	1	1	1	
Comments: Many tissu	es examined f	for radioactive	e and metaboli	te conte	ent. Mult	iple met	abolites	measure	ed.	

Comments: Many tissues examined for radioactive and metabolite content. Multiple metabolites measured. Small numbers of rats per dose group, particularly for the 0.8 mmol/kg group (N = 2). Time points only extend to 24 hrs.

1Table C-56. Characteristics and quantitative results for Mikulski and Wiglusz2(1975)

		Ν	Exposure ro	oute Dose	range	Exposure duration			
		9 rats/dos	e Unspecified	1.2 g/kg body 1,2,3-, 1,2,4-, 1,3,5-TMB		S			
b • Ir • Ir (1	ats weig ody wei n one ex n a secou 1,3,5-TN	hing betwe ght. periment, ι nd experime 1B), pseudo	rine was collected ent, metabolites w cumene (1,2,4-TM	vere with treated wi every 4 hrs over a po ere collected from ra 3), or hemimellitene e metabolism of TMB	eriod of 3 d. ts were treated wi (1,2,3-TMB).	1,3,5-TMB at 1.2 g/kg th mesitylene			
.				uronic, and sulphuri		of TMBs			
		-	% of dose (mean ± SD)						
Not	treated	G	lycine conjugates	Glucuronides	Organic sulphat	es Total			
1,3,5-TMB			59.1 ± 5.2	4.9 ± 1.0	9.2 ± 0.8	73.2			
1,2,4-TMB			23.9 ± 2.3	4.0 ± 0.5	9.0 ± 2.1	36.9			
			10.1 ± 1.2	7.9 ± 1.3	15.0 ± 3.5	33.0			
, ,			Treated	with phenobarbital	·	·			
1,2,3-TMB				with priciosalsita					
, ,			35.1 ± 3.4	9.8 ± 1.3	8.1 ± 1.4	53.0			
1,2,3-TMB				•		53.0 60.2			

Species	Sex	Ν	Exposure route	C	ose range	E	xposure duration	
Imp:DAK Wistar rats	М	4/dose	Inhalation	25, 100, or 250 ppm (123, 6 hrs 492, or 1,230 mg/m ³) 1,2,4-TMB				
1,2 • 1,2 • Blo	o males 2,4-TMB 2,4-TMB 2,4-TMB pod sam	and two f in an inha concentra ples were	emales were exposi lation chamber for (ation was determine taken from the tail TMB elimination wa	6 hrs. d via gas c vein at var	chromatography. ious time points u	p to 6 hrs	after start of exposure	
• 111			ntrations of 1,2,4-T			-		
Biologi	cal mate		1,2,4-TMB no concentrati	minal	1,2,4-TMB ac concentration	ctual	Rat body weight (g)	
Blood during 6	-hr exp	osure	25 ppm (123 mg/r	n³)	25 ± 2		200 ± 10	
			100 ppm (492 mg/m ³)		109 ± 10		228 ± 10	
			250 ppm (1,230 mg/m ³)		262 ± 21		190 ± 12	
Blood after 6-hr exposure		25 ppm (123 mg/r	n³)	26 ± 3		349 ± 6		
		100 ppm (492 mg/	/m³)	101 ± 3		333 ± 18		
		250 ppm (1,230 m	g/m³)	238 ± 9		336 ± 5		
Urine after 6-h	nr expos	ure	25 ppm (123 mg/m ³)		27 ± 3		355 ± 10	
			100 ppm (492 mg/m ³)		98 ± 3		338 ± 10	
			250 ppm (1,230 mg/m ³)		240 ± 7		330 ± 12	
	Blo	od 1,2,4-T	MB concentration c	luring 6-hı	r inhalation exposi	ure (mear	n ± SD)	
				:	1,2,4-TMB concent	tration	1	
Time			25 ppm (123 mg/m	g³)	100 ppm (492 mg/mg³)		250 ppm 1,230 mg/mg ³)	
15 (min)		0.22 ± 0.0	7	1.12 ± 0.80		4.02 ± 0.85		
30		0.33 ± 0.08		1.99 ± 1.09		4.87 ± 1.61		
45		0.49 ± 0.16		3.56 ± 0.49		6.97 ± 1.22		
1 (hrs)		0.53 ± 0.14		4.29 ± 0.60		8.67 ± 0.54		
2			0.73 ± 0.16		5.10 ± 0.34		14.5 ± 2.6	
3			0.80 ± 0.17		6.22 ± 0.70		17.8 ± 1.6	
4			0.72 ± 0.1	5	7.40 ± 1.0	5	20.0 ± 0.5	
5			0.79 ± 0.2	2	7.72 ± 1.48		23.3 ± 2.6	
6			0.94 ± 0.16		8.32 ± 1.34		23.6 ± 1.8	

	1,2,4-TMB concentration					
Time	25 ppm (123 mg/mg ³)	100 ppm (492 mg/mg ³)	250 ppm 1,230 mg/mg ³)			
3 (min)	0.68 ± 0.09	4.44 ± 1.54	20.9 ± 4.03			
15	0.47 ± 0.04	3.72 ± 0.96	20.7 ± 5.13			
30	0.40 ± 0.05	2.98 ± 0.88	17.1 ± 4.71			
45	0.36 ± 0.04	2.89 ± 0.86	15.9 ± 5.74			
1 (hrs)	0.34 ± 0.03	1.79 ± 0.49	14.9 ± 3.77			
2	0.23 ± 0.04	1.25 ± 0.33	10.2 ± 3.04			
3	0.17 ± 0.04	0.88 ± 0.29	8.05 ± 2.25			
4	0.12 ± 0.02	0.61 ± 0.20	6.13 ± 1.64			
5	0.10 ± 0.02	0.41 ± 0.14	3.98 ± 0.43			
6	0.08 ± 0.02	0.33 ± 0.06	3.20 ± 0.52			
DMBA urin	e concentrations after 6-hr ex	posure to 1,2,4-TMB (mean	± SD)			
1,2,4-TMB	2,5-DMBA (mg/L)	2,4-DMBA (mg/L)	3,4-DMBA (mg/L)			
25 ppm (123 mg/m ³)	23.6 ± 8.6	37.6 ± 12.9	79.9 ± 33.3			
100 ppm (492 mg/m ³)	54.0 ± 5.4	130.9 ± 22.1	200.8 ± 25.8			
250 ppm (1,230 mg/m ³)	109.4 ± 71.1	308.8 ± 220.1	571.8 ± 381.6			

Table C-58. Characteristics and quantitative results for <u>Swiercz et al. (2003)</u>

Species Sex		N	N Exposure route		Dose range		Exposure duration	
Wistar rats M 4/do		4/dose	e Inhalation 2		.00, or 250 ppm (123,	6 hrs	or 4 wks	
					or 1,230 mg/m ³)			
				1,2,4	I-TMB			
Additional st	-		vere exposed to either 2	25 10	0.0 = 250 ppm (122.4)	07 or	$(1.220 mg/m^3)$	
			.2,4-TMB) in an inhalati					
-							1,2,4-TMB content via gas	
		ography.	6 I. 6 II					
			n was found to follow a tures, the brainstem wa	-				
• •			ons of 1,2,4-TMB in inh		_			
		icentiatio	JIS 01 1,2,4-1101B III IIII	alatio	1,2,4-TMB actual	-		
			1,2,4-TMB nominal		concentration in inha			
Biologic	al mater	ial co	concentration in inhaled air				Rat body weight (g)	
Arterial bloo			5 ppm (123 mg/m³)		21 ± 2		219 ± 13	
structure from rats after		fter 10	100 ppm (492 mg/m ³)		116 ± 5		180 ± 28	
6 hrs		25	50 ppm (1,230 mg/m ³)		215 ± 15		220 ± 24	
Arterial bloo			5 ppm (123 mg/m ³)		24 ± 3		327 ± 21	
structure fro	m rats a	fter 10	00 ppm (492 mg/m ³)		99 ± 7		295 ± 31	
4 wks		25	50 ppm (1,230 mg/m ³)		249 ± 19		268 ± 21	
Liver, lung, a			5 ppm (123 mg/m ³)		28 ± 1		227 ± 15	
homogenate	after 6	hrs 10	00 ppm (492 mg/m ³)		123 ± 9		246 ± 11	
		25	50 ppm (1,230 mg/m ³)		256 ± 7		228 ± 12	
Liver, lung, a			5 ppm (123 mg/m³)		25 ± 2		310 ± 10	
homogenate	after 4	wks 10	00 ppm (492 mg/m ³)		103 ± 8		328 ± 23	
		25) ppm (1,230 mg/m ³)		249 ± 13		320 ± 20	
Venous bloo			5 ppm (123 mg/m ³)		24 ± 3		321 ± 6	
following 4-v	vk expos	sure 10	00 ppm (492 mg/m ³)		99 ± 7		300 ± 22	
		25	250 ppm (1,230 mg/m ³)		249 ± 19		373 ± 48	
		Venous b	lood 1,2,4-TMB concer				•	
				± SD				
Time			25 ppm		100 ppm		250 ppm	
			(123 mg/mg ³)		(492 mg/mg ³)		1,230 mg/mg ³)	
3 (min)			0.56 ± 0.18	-+	4.06 ± 0.46		13.77 ± 3.34	
15			0.43 ± 0.10		3.73 ± 1.21		11.82 ± 3.05	
30			0.33 ± 0.03	-+	3.02 ± 1.43		8.28 ± 2.07	
45 1 (ha)			0.28 ± 0.05	-+	2.86 ± 0.89		7.21 ± 1.84	
1 (hr)			0.22 ± 0.02		2.62 ± 0.82		6.27 ± 1.72	
2			0.17 ± 0.06		1.83 ± 0.17		4.50 ± 1.04	
3			0.11 ± 0.04		0.88 ± 0.24		3.17 ± 0.76	

This document is a draft for review purposes only and does not constitute Agency policy.C-208DRAFT—DO NOT CITE OR QUOTE

1	r				
4	0.07 ± 0.04	0.64 ± 0.21	1.73 ± 0.37		
5	0.07 ± 0.01	0.39 ± 0.11	1.30 ± 0.22		
6	0.06 ± 0.02	0.37 ± 0.14	1.25 ± 0.22		
Liver, lung, and brain homoge	enates and arterial blood 1,	,2,4-TMB concentrations fol	lowing inhalation exposu		
	(mean	± SD)	1		
	25 ppm	250 ppm			
Exposure	(123 mg/mg ³)	(492 mg/mg ³)	1,230 mg/mg ³)		
Blood 6 hrs (mg/L)	0.31 ± 0.12	1.24 ± 0.41	7.76 ± 1.64		
Blood 4 wks (mg/L)	0.33 ± 0.11	1.54 ± 0.32	7.52 ± 2.11		
Brain 6 hrs (mg/kg)	0.49 ± 0.06	2.92 ± 0.73	18.34 ± 1.92		
Brain 4 wks (mg/kg)	0.45 ± 0.05	2.82 ± 0.40	18.63 ± 4.27		
Liver 6 hrs (mg/kg)	0.44 ± 0.01	7.13 ± 1.31	28.18 ± 5.34		
Liver 4 wks (mg/kg)	0.45 ± 0.15	3.00 ± 0.49*	22.47 ± 4.10		
Lung 6 hrs (mg/kg)	0.43 ± 0.11	4.14 ± 0.54	18.90 ± 3.72		
Lung 4 wks (mg/kg)	0.47 ± 0.20	3.74 ± 0.82	22.47 ± 4.10		
1,2,4-TMB in	various brain structures fo	llowing 1,2,4-TMB inhalatio	n exposure		
	1,2,4-TN	1B concentration (mg/kg), n	nean ± SD		
	25 ppm	100 ppm	250 ppm		
Brain structure (time)	(123 mg/mg ³)	(492 mg/mg ³)	1,230 mg/mg ³)		
Brain stem (6 hrs)	0.54 ± 0.11	3.38 ± 0.84	26.91 ± 5.33		
Temporal cortex (6 hrs)	0.31 ± 0.06*	2.30 ± 0.71	13.54 ± 2.33*		
Hippocampus (6 hrs)	0.28 ± 0.09*	1.89 ± 0.29*	12.99 ± 2.18*		
Cerebellum (6 hrs)	0.32 ± 0.09*	$1.99 \pm 0.40^*$	12.91 ± 2.05*		
Brain stem (4 wks)	0.38 ± 0.23	2.33 ± 1.24	21.95 ± 3.81		
Temporal cortex (4 wks)	0.25 ± 0.07	2.03 ± 0.66	15.71 ± 3.54		
Hippocampus (4 wks)	0.41 ± 0.27	3.03 ± 0.48	12.44 ± 2.63*		
Cerebellum (4 wks)	0.33 ± 0.05	3.20 ± 0.40	10.85 ± 2.47*		
*p < 0.05 in comparison to bra	instem.				
Commontes Adinasa tissua wa	a not avamined for 1.2.4 Th	AP contant Matabalita con	contration was not		

Comments: Adipose tissue was not examined for 1,2,4-TMB content. Metabolite concentration was not measured. No control group.

Table C-59. Characteristics and g	uantitative results for <u>Swiercz et al. (2006)</u>

Species	Sex	N	Exposure route		Dose range		Exposure duration	
IMP:WIST Wistar rats	М	5/dose	492		5, 100, or 250 ppm (123, 6 hrs 92, or 1,230 mg/m ³) 3,5-TMB		rs or 4 wks	
(1, • Ra ga • 1,:	ale Wista ,3,5-TME its were s chroma 3,5-TMB 92 mg/m	ar rats we b) in an inh sacrificed atography was found 1 ³) and 250	nalation chamber for following exposure p d in the lungs in grea 0 ppm (1,230 mg/m ³	eithe period ter qu).	er 6 hrs or 4 wks. d and tissues were anal uantities following repe	yzed f eated (
	Air cond	entration	s of 1,3,5-TMB in inl	nalati	on chamber and body		t (mean ± SD)	
Biologica	l materia	al con	1,3,5-TMB nominal centration in inhale		1,3,5-TMB actual concentration in inha air (ppm)		Rat body weight (g)	
Liver, lung, an			Control		0		246 ± 9	
homogenates after 6-hr		nr 25 µ	opm (123 mg/m ³)		25 ± 2		254 ± 11	
exposure		100	ppm (492 mg/m ³)		97 ± 14		242 ± 14	
		250	ppm (1,230 mg/m ³)		254 ± 20		249 ± 7	
Liver, lung, and kidney		Cor	trol		0		331 ± 17	
exposure	^{wk} 25 j	opm (123 mg/m ³)		23 ± 2		311 ± 26		
	100	100 ppm (492 mg/m ³)		101 ± 8		320 ± 38		
		250	250 ppm (1,230 mg/m ³)		233 ± 16		328 ± 21	
Blood collecte	ed after 6	i-hr Cor	Control		0		251 ± 7	
exposure		25	25 ppm (123 mg/m ³)		24 ± 2		250 ± 5	
		100	100 ppm (492 mg/m ³)		101 ± 7		239 ± 7	
		250	50 ppm (1,230 mg/m ³)		240 ± 22		249 ± 10	
Blood collecte	d after 4	l-wk Cor	trol		0		310 ± 9	
exposure		25	opm (123 mg/m ³)		23 ± 2		307 ± 15	
		100	ppm (492 mg/m ³)		101 ± 8		310 ± 33	
		250	50 ppm (1,230 mg/m ³)		233 ± 16		309 ± 19	
Urine collecte	d after 6	-hr Cor	Control		0		280 ± 9	
exposure		25	opm (123 mg/m ³)		25 ± 2		278 ± 10	
		100	ppm (492 mg/m ³)		102 ± 10		335 ± 15	
		250	ppm (1,230 mg/m ³)		238 ± 27		273 ± 18	
Urine collecte	d after 4	-wk Cor	trol		0		310 ± 10	
exposure		25 j	opm (123 mg/m ³)		25 ± 2		295 ± 15	
		100	ppm (492 mg/m ³)		102 ± 10		331 ± 19	
			250 ppm (1,230 mg/m ³)		238 ± 27		320 ± 28	

Concentrations	of 1,3,5-TMB in va	arious tissu	es after ex	posure to 1,3,5-TN	MB (m	ean ± SD)	
1,3,5-TMB exposure duration and target concentration	Liver (µg/g tissue)	Lung (µg	;/g tissue)			Blood (μg/g tissue)	
6 Hrs—25 ppm (123 mg/m ³)	0.30 ± 0.07	± 0.07 0.31 ±		4.49 ± 1.93		0.31 ± 0.12	
6 Hrs—100 ppm (492 mg/m³)	3.09 ± 0.50	3.09 ± 0.50 2.87		13.32 ± 2.58	3	3.06 ± 0.65	
6 Hrs—250 ppm (1,230 mg/m ³)	17.00 ± 6.08	17.36	± 5.56	31.80 ± 9.44	ŀ	13.36 ± 1.54	
4 Wks—25 ppm (123 mg/m ³)	0.22 ± 0.01	0.42	± 0.12	1.73 ± 0.30*		0.31 ± 0.08	
4 Wks—100 ppm (492 mg/m³)	3.01 ± 0.58	1.99	± 0.75	15.61 ± 2.14	ŀ	2.30 ± 0.52	
4 Wks—250 ppm (1,230 mg/m ³)	12.98 ± 4.16	11.20	± 3.61	35.97 ± 8.53	}	7.55 ± 1.43**	
Concentrations	of 3,5-DMBA in va	arious tissu	es after ex	posure to 1,3,5-TN	MB (m	ean ± SD)	
1,3,5-TMB exposure duration and target concentration (ppm)	Liver (µg/g tissue)			Kidney (µg/g tissue)		Urine (mg/18 hrs)	
6 Hrs—25 ppm (123 mg/m ³)	12.62 ± 1.62	2.87 ± 0.55		8.77 ± 0.99		0.52 ± 0.03	
6 Hrs—100 ppm (492 mg/m³)	26.05 ± 2.77	5.50	± 0.55	27.01 ± 9.86		3.66 ± 0.57	
6 Hrs—250 ppm (1,230 mg/m³)	36.92 ± 1.61	13.39	± 1.90	60.91 ± 19.78		10.99 ± 3.90	
4 Wks—25 ppm (123 mg/m ³)	6.52 ± 0.67**	3.69	± 1.21	11.06 ± 4.33		0.83 ± 0.15*	
4 Wks—100 ppm (492 mg/m ³)	21.67 ± 3.14**	8.90 ±	0.98**	31.03 ± 18.56		4.36 ± 0.86	
4 Wks—250 ppm (1,230 mg/m ³)	53.07 ± 5.41**	19.79 :	± 2.70**	82.10 ± 14.48		11.92 ± 3.05	
Venous blood	1,3,5-TMB concen	tration fol	lowing 6-hr	1,3,5-TMB inhala	ntion e	xposure	
			1,3,5-	TMB (μg/mL)			
Time	25 ppn (123 mg/r			00 ppm 2 mg/mg³)		250 ppm 1,230 mg/mg ³)	
3 (min)	0.31 ± 0.	12	3.06 ± 0.65		13.36 ± 1.54		
15	0.26 ± 0.	0.26 ± 0.13		51 ± 0.17		13.05 ± 1.61	
30	0.15 ± 0.	0.15 ± 0.04		2.35 ± 0.57		12.06 ± 1.23	
45	0.10 ± 0.	03	1.41 ± 0.27			10.53 ± 1.71	
1 (hrs)	0.06 ± 0.	02	1.3	35 ± 0.30	8.85 ± 0.90		
2	0.04 ± 0.	02	1.3	34 ± 0.39		6.14 ± 0.53	
3	ND***	<	0.7	79 ± 0.30		4.54 ± 0.67	
4	ND		0.5	0.57 ± 0.14		3.49 ± 1.16	

This document is a draft for review purposes only and does not constitute Agency policy.C-211DRAFT—DO NOT CITE OR QUOTE

5	ND	0.38 ± 0.14	2.31 ± 0.67			
õ	ND	0.20 ± 0.04	0.76 ± 0.06			
Venous bloo	d 1,3,5-TMB concentration foll	owing 4-wk 1,3,5-TMB inhal	ation exposure			
1,3,5-TMB (μg/mL)						
Time	25 ppm (123 mg/mg ³)	100 ppm (492 mg/mg³)	250 ppm 1,230 mg/mg ³)			
3 (min)	0.31 ± 0.08	2.30 ± 0.52	7.55 ± 1.43			
15	0.26 ± 0.03	1.83 ± 0.47	6.51 ± 1.50			
30	0.19 ± 0.02	1.57 ± 0.39	4.56 ± 0.98			
45	0.17 ± 0.03	1.41 ± 0.13	3.65 ± 0.62			
1 (hrs)	0.12 ± 0.03	1.33 ± 0.15	3.69 ± 1.25			
2	0.05 ± 0.01	0.95 ± 0.22	3.14 ± 0.64			
3	ND	0.72 ± 0.17	2.28 ± 0.19			
1	ND	0.41 ± 0.11	1.74 ± 0.17			
5	ND	0.39 ± 0.05	1.23 ± 0.34			
5	ND	0.29 ± 0.13	1.14 ± 0.20			
* <i>p</i> < 0.05 in comparison to	o brainstem.					
Comments: Kinetics of 1,3	,5-TMB elimination are reporte	ed and discussed in detail. Ex	tensive analysis of			

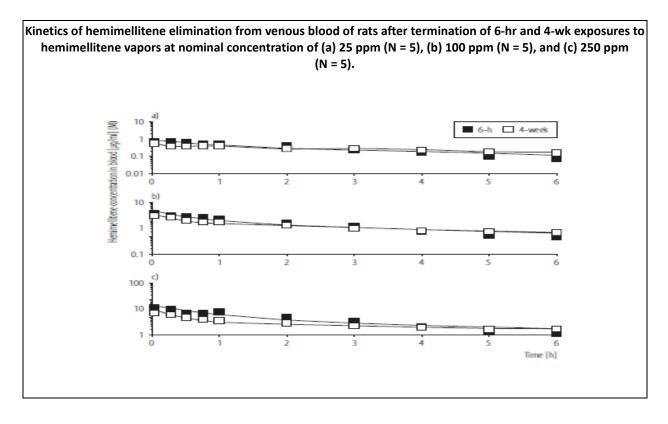
3,5-DMBA. Adipose tissue was not examined for 1,3,5-TMB content.

Species	Sex	N	Exposure Route		Dose Range	Exposure Duration		
Wistar rats	Male	5 rats /dose group	Inhalation	(0-1,230		5 hrs (single exposure) or 4 wks (6 hrs/d, 5 d/wk)		
(6 h • Rat: • All r • The exp • Hig • Sigr	s were expo rs/d, 5 d/w s were rand rats survive re weren't osure comp hest levels hificantly lo er repeated	/k). domized into grou ed inhalation expo any statistically s pared with contro of hemimellitene wer concentratio inhalation expos	ups of five anin osure of hemin ignificant char ols. were found in ns of hemimel	nals with b nellitene. ges found kidneys a litene wer point to r	body weights betwee in tissue masses or h fter single and repea re detected in the blo reduced hemimellite	body mass during 4-wk		
		Body r Hemimellitene	1	d air conc	entrations			
conce		target concentration in inhaled air [ppm]	Hemimellitene		Animals treated [N	Body weight [g] (mea I] ± SD)		
Liver, lung, and	kidney hor	mogenates	·					
6-Hr exposure		Control	0		5	226 ± 4		
		25	25 ±	5	5	207 ± 5		
		100	105 ±	10	5	215 ± 20		
		250	242 ±	10	5	205 ± 5		
4-Wk exposure		Control	0		5	309 ± 26		
		25	25 ±	2	5	280 ± 17		
		100	97 ±	7	5	323 ± 28		
		250	246 ±	16	5	310 ± 13		
Blood								
6-Hr exposure		Control	0		5	210 ± 7		
		25	28 ±	2	5	223 ± 10		
		100	110 :	± 9	5	214 ± 11		
		250	234 ±	26	5	208 ± 5		
4-Wk exposure		Control	0		5	311 ± 10		
		25	24 ±	3	5	333 ± 23		
		100	104 :	± 6	5	321 ± 22		
		250	243 ± 13		5	292 ± 20		

Urine							
6-Hr exposure	Control	0	5	250 ± 9			
	25	21 ± 1	5	243 ± 10			
	100	99 ± 3	5	251 ± 15			
	250	225 ± 13	5	238 ± 14			
4-Wk exposure	Control	0	5	310 ± 10			
	25	25± 2	5	305 ± 15			
	100	97 ± 7	5	317 ± 22			
	250	246 ± 16	5	284 ± 23			
	Absolute and re	elative weight of liver,	lung, and kidney				
		Hemimell	itene target concentra	ation in inhaled air (ppm)			
			6-Hr expos	sure			
Observation	Control 0	Control 0 25		250			
Absolute organ weight (mean ± SD)						
Liver	9.48 ± 0.63	9.48 ± 0.63 9.25 ± 0.46		13.15 ± 1.12			
Lung	1.31 ± 0.13	1.17 ± 0.30	1.34 ± 0.29	1.21 ± 0.20			
Kidney	1.83 ± 0.19	1.93 ± 0.15	1.82 ± 0.11	1.87 ± 0.16			
Relative organ weight (g	/100 g body weight; ı	mean ± SD)	-				
Liver	4.50 ± 0.41	4.47 ± 0.26	4.27 ± 0.72	4.57 ± 0.35			
Lung	0.62 ± 0.08	0.57 ± 0.14	0.63 ± 0.17	0.59 ± 0.09			
Kidney	0.87 ± 0.10	0.93 ± 0.07	0.85 ± 0.04	0.91 ± 0.08			
			4-Hr expos	sure			
Absolute organ weight (mean ± SD)						
Liver	12.63 ± 1.02	11.61 ± 1.62	13.37 ± 2.37	13.15 ± 1.12			
Lung	1.47 ± 0.24	1.63 ± 0.32	1.54 ± 0.33	1.43 ± 0.33			
Kidney	2.28 ± 0.19	2.07 ± 0.08	2.51 ± 0.32	2.49 ± 0.17			
Relative organ weight (g	/100 g body weight; ı	mean ± SD)	-				
Liver	4.09 ± 0.27	4.14 ± 0.50	4.11 ± 0.42	4.24 ± 0.31			
Lung	0.47 ± 0.06	0.58 ± 0.10	0.48 ± 0.09	0.46 ± 0.09			
Kidney	0.74 ± 0.08	0.74 ± 0.01	0.77 ± 0.04	0.80 ± 0.05			
Concentratio	on of hemimellitene i	in liver, lung, and kidn	ey homogenates and	venous blood			
		6-H	lr exposure				
	He	Hemimellitene target concentration in inhaled air (ppm)					
		25	100	250			
Hemimellitene concentr	ation (mean ± SD):						
Liver (µg/g tissue)	1.6	56 ±0.48	4.20 ± 0.85	20.75 ± 3.30			
Lung (µg/g tissue)	0.6	62 ± 0.08	2.57 ± 0.40	18.73 ± 2.81			
Kidney (μg/g tissue)	2.8	31 ± 0.40	7.78 ± 3.17	31.16 ± 3.84			
Blood (µg/mL)	0.7	'6 ± 0.09	3.82 ± 0.94	10.73 ± 1.30			

			4-	Hr exposure	
Hemimellitene coi	ncentrati	on (mean ± SD):		· ·	
Liver (µg/g tissue)			8 ± 0.28	2.68 ± 0.76*	11.30 ± 3.42**
Lung (µg/g tissue)		0.83	± 0.11**	2.17 ± 0.24	17.28 ± 6.02
Kidney (µg/g tissu	e)	4.55	± 0.32***	10.07 ± 0.67	29.99 ± 8.00
Blood (µg/mL)		0.58	± 0.08**	3.14 ± 0.61	6.87 ± 1.05***
** <i>p</i> < 0.01; signific *** <i>p</i> < 0.001; sign	cantly diff ificantly o	erent from the sing ferent from the sin different from the s	gle exposure. single exposure.		
Statistics	of hemi	mellitene concentr	ation in liver, lung, k	idney homogenates a	nd venous blood
	-		_	<i>p</i> -value	
Statistics		Liver	Lung	Kidney	Blood
Main effects				Γ	
Exposure		< 0.001	n.s	n.s.	<0.001
Concentration			<0.001	<0.001	<0.001
Interaction effects	5				
Exposure × conc.			n.s.	n.s.	<0.001
Simple effects					
Concentration wit exposure			<0.001	<0.001	<0.001
Concentration within 6-hr exposure		n.s	<0.001	<0.010	<0.050
		Venous blo	od hemimellitene c	oncentrations	
		Hemimelliten	e concentration (µg/	mL) (mean ± SD)	
Time		25 ppm		100 ppm	250 ppm
			6-Hr ex	posure	·
0(3)		0.76 ± 0.0)9	3.82 ± 0.94	10.73 ± 1.30
0 (15)		0.75 ± 0.0)8	3.21 ± 0.91	9.56 ± 1.40
0 (30)		0.67 ± 0.1	4	2.83 ± 0.35	7.09 ± 1.70
0 (45)		0.52 ± 0.1	4	2.76 ± 0.47	6.73 ± 1.16
1 (0)		0.50 ± 0.0)3	2.29 ± 0.34	7.71 ± 0.58
2 (0)		0.45 ± 0.1	15	1.63 ± 0.16	5.10 ± 0.62
3 (0)		0.26 ± 0.0)6	1.32 ± 0.23	3.50 ± 0.71
4 (0)		0.18 ± 0.0)8	0.87 ± 0.03	3.13 ± 0.45
5 (0)		0.12 ± 0.1	0	0.55 ± 0.10	1.51 ± 0.39
6 (0)		0.07 ± 0.0)5	0.48 ± 0.14	1.25 ± 0.30
			4-Wk ex	cposure	I
0 (3)		0.58 ± 0.09		3.14 ± 0.70	6.87 ± 1.05
0 (15)		0.40 ± 0.0)7	2.77 ± 0.50	6.04 ± 0.80
0 (30)		0.42 ± 0.1	0	2.03 ± 0.15	4.56 ± 0.73
0 (45)		0.43 ± 0.1	0	1.78 ± 0.18	4.02 ± 0.91
1 (0)		0.43 ± 0.1	3	1.80 ± 0.24	3.45 ± 0.74

This document is a draft for review purposes only and does not constitute Agency policy.C-215DRAFT—DO NOT CITE OR QUOTE


$.04 \pm 0.32$ $.43 \pm 0.37$ $.04 \pm 0.67$ $.66 \pm 0.36$ $.56 \pm 0.37$ 0 + 4.00e ^{-0.13t} 70
$.04 \pm 0.67$ $.66 \pm 0.36$ $.56 \pm 0.37$ 0 + 4.00e ^{-0.13t} 70
66 ± 0.36 56 ± 0.37 $+ 4.00e^{-0.13t}$ 70 $+ 3.00e^{-0.09t}$ 9
56 ± 0.37 b + 4.00e ^{-0.13t} 70 b c c c c c c c c
b + 4.00e ^{-0.13t} 70
+ 4.00e ^{-0.13t} 70 0) + 3.00e ^{-0.09t}
+ 4.00e ^{-0.13t} 70 0) + 3.00e ^{-0.09t}
+ 4.00e ^{-0.13t} 70 0) + 3.00e ^{-0.09t}
70 0) + 3.00e ^{-0.09t} 09
0) + 3.00e ^{-0.09t})9
0) + 3.00e ^{-0.09t} 09
0) + 3.00e ^{-0.09t} 09
+ 3.00e ^{-0.09t}
)9
)9
8)
250
5 ± 3.62
± 0.56
9 ± 6.55
3 ± 4.33
± 0.44
3 ± 2.31
ellitene
ney
001
001
001
± 22 3 ± 23 e n 0 0

This document is a draft for review purposes only and does not constitute Agency policy.C-216DRAFT—DO NOT CITE OR QUOTE

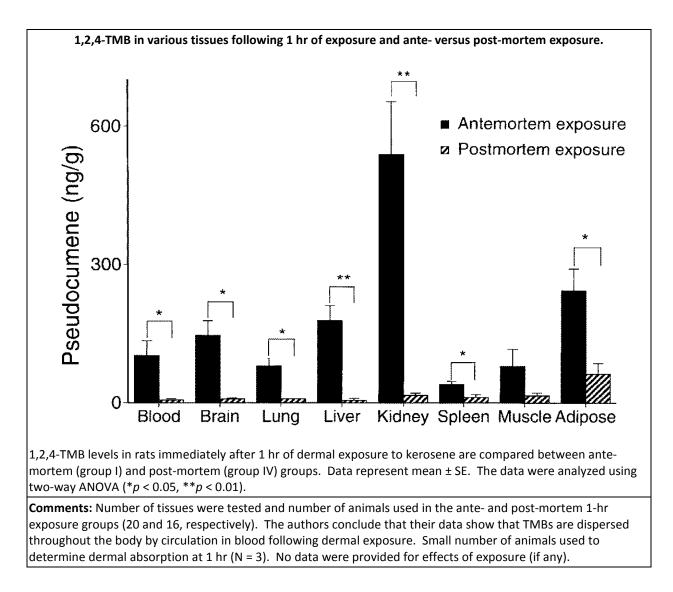
Conc. w/L 6-hr exposure		<0.001	-		<0.001		
Conc. w/L 4-hr exposure		n.s.	-		n.s.		
Exposure w/L concentratio	n						
25 ppm		n.s.	-		n.s.		
100 ppm		n.s.	-		<0.050		
250 ppm		<0.050	-		n.s.		
	Urina	ary excretion after expos	ure to hemim	ellitene			
			6-Hr expos	ure			
		Hemimellitene tar	get concentrat	tion in inhaled air	(ppm)		
		25	100	250			
Urine (mg/18 hrs) (mean ±	SD):						
2,6-DMBA		n.d.		0.17 ± 0.03	0.59 ± 0.26		
2,3-DMBA		0.07 ± 0.01		0.58 ± 0.06	2.19 ± 0.66		
			4-Wk expos	ure	·		
Urine (mg/18 hrs) (mean ±	SD):						
2,6-DMBA		n.d.		0.39 ± 0.13	0.58 ± 0.14		
2,3-DMBA		0.11 ± 0.005	1.60 ± 0.40		2.79 ± 0.76		
S	tatistics o	f urinary excretion of DN	1BA isomers a	fter exposure			
			<i>p</i> -v	value			
Statistics		2,6-DMBA		2,3-DMBA			
Main effects				-			
Exposure		n.s.		<0.005			
Concentration		<0.001		<0.001			
Interaction effects				1			
Exposure by concentration		n.s.		n.s.			
Simple effects							
Conc. w/L 6-hr exposure		<0.050		<0.050			
Conc. w/L 4-hr exposure		n.s.	n.s.		<0.001		
Exposure w/L concentratio	n			1			
25 ppm	25 ppm			n.s.			
100 ppm		n.s.		n.s.			
250 ppm		n.s.		n.s.			
n.s. = not significantly signi	ficant						

Changes of TMB is	somers in tiss	ues and b	lood of ra	ats after 6-	hr versus	4-wk exp	oosure to i	somers of	тмв	
		Changes of TMB isomers concentration (%)								
		25 ppm			100 ppm		250 ppm			
	Lung	Blood	Liver	Lung	Blood	Liver	Lung	Blood	Liver	
TMB isomer:										
Pseudocumene	9个	6个	2个	10↓	24个	58↓	19个	3↓	20↓	
Mesitylene	35个	0	27↓	31↓	25↓	3↓	35↓	43↓	24↓	
Hemimellitene	34个个	24↓	29↓	29个	18↓	36↓	4↓	36↓	46↓	
Toxicokinetics of TM	B isomers eliı	mination	from vend	ous blood	after 6-hr	or 4-wk	exposure t	o isomers	of TMB	
			Т	oxicokinet	ics of TM	B Isomers	5			
	2	5 ppm		1	.00 ppm			250 ppm		
	6-Hr	4-'	Wk	6-Hr	4	-Wk	6-Hr		4-Wk	
Pseudocumene	•		L				•	•		
AUC _{0-> 6h} [mgh/L]	1.25	0.	92	7.02	8	3.14	53.74		23.33	
Half-life [h(min)]	·									
Phase I	0 (10)	0	(9)	0 (28)	0	(32)	0 (57))	1 (8)	
Phase II	3 (51)	2 (53)	5 (20)	5	(47)	17 (20)	9 (54)	
Mesitylene	•									
AUC _{0->6h} [mgXh/L]	0.33	0.	40	5.72	4	1.84	32.46	;	15.67	
Half-life [h(min)]										
Phase I	0 (12)	0 (23)	0 (11)	() (8)	0 (16))	0 (10)	
Phase II	2 (40)	2 (23)	3 (9)	(9) 4 (37)		4 (5)		4 (37)	
Hemimellitene										
AUC _{0->6h} [mgXh/L]	1.89	1.	75	8.53	-	7.66	23.70		16.09	
Half-life [h(min)]										
Phase I	0 (14)	0	(2)	0 (19)	() (8)	0 (32)		0 (13)	
Phase II	3 (4)	5 (52)	3 (42)	4	(34)	5 (20)		7 (58)	

	Changes of TMB isomers concentration (%)											
		25 r	opm		100 ppm				250 ppm			
	Lung	Liver	Kidney	Urine	Lung	Liver	Kidney	Urine	Lung	Liver	Kidney	Urine
DMBA isom			-					l			2	
Pseudocum	ene (%)											
2,5-DMBA	n.d	n.d.	49↓↓	62↓↓	37↓	34↓	34个	46↓↓	20↓	17↓	50个	10个
2,4-DMBA	21↓	15↓	61↓↓	6↓	26↓	10↓	19个	33↓↓	22↓	13↓	39个	13↓
3,4-DMBA	42↓	47↓↓	44↓↓	34↓	39↓↓	43↓↓	151个	33↓↓	25↓	43↓↓	148个	20个
Mesitylene	(%)											
3,5-DMBA	29个	48↓↓	26个	60个个	62个个	$17 \downarrow \downarrow$	15个	19个	48个个	44个个	35个	8个
Hemimellite	ene (%)	•		•	•				•			
2,6-DMBA	n.d.	n.d	n.d.	n.d.	n.d.	n.d.	n.d.	129个个	n.d.	n.d.	n.d.	2↓
2,3-DMBA	n.d.	11个	24个	57个个	n.d.	35↓↓	53↓↓	176个个	13↓	35↓↓	35↓↓	27个
↑ = insignif	icant ind	crease; 个	·↑ = sign	ificant in	crease;	↓ = insig	nificant c	decrease;	$\psi \psi = s$	ignifican	t decreas	e
	V) [6] wight [6] [7]	50 00 50 50 50 00 00 00 0	[-		pm -0	- 25ppm	-4-1	~ V	* 250	Oppm 28	_	

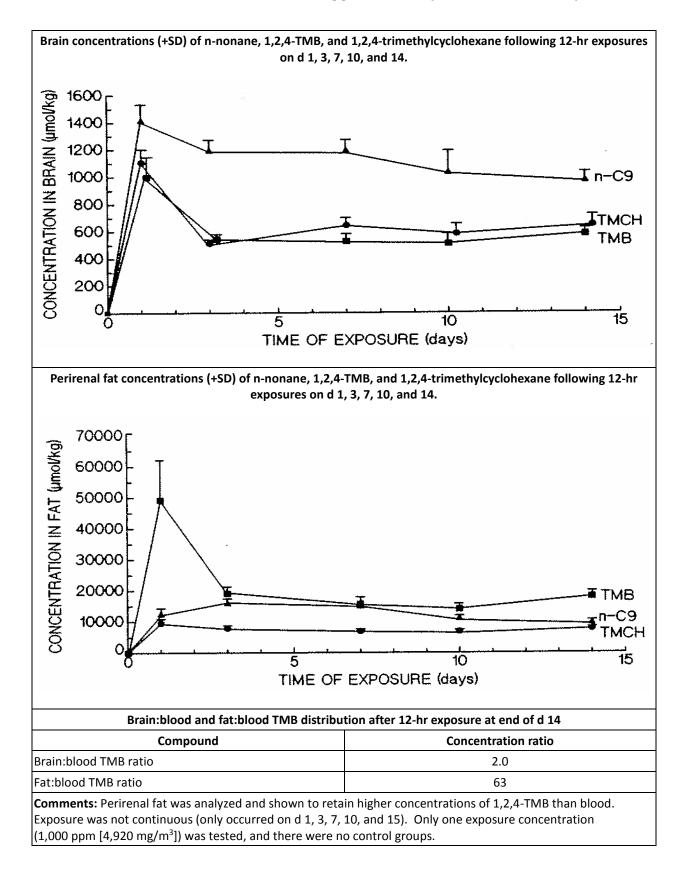
1Table C-61. Characteristics and quantitative results for Tsujimoto et al.2(2000)

Study design					
Species	Sex	N	Exposure route	Dose range	Exposure duration
Slc Wistar rats	Μ	4/dose	i.p. in corn oil	0, 0.3, 1, and 3 mmol/kg body weight 1,2,4-TMB	2 d
● Ur ● Hi	oups of ine sam	four male W	d for 2 d.), 0.3, 1, or 3 mmol/kg body ed to quantify amount of dir	weight 1,2,4-TMB. methylbenzyl mercapturic aci
	Urin	ary excretior	of dimethylbenzyl m	ercapturic acid in 1,2,4-TM	B treated rats
				% of dose ± SD	
Dose (m	mol/kg	;)	0–24 hr	24–48 hr	Total
0	.3		14.0 ± 1.2	ND	14.0 ± 1.2
1	.0		19.4 ± 1.8	ND	19.4 ± 1.8
3	.0		16.7 ± 6.2	2.5 ± 1.6	19.2 ± 4.8
	ng expo	-		methylbenzyl mercapturic a c speciation data for 2,4-, 2	acid excretion between 24 and ,5-, or 3,4-dimethylbenzyl


1Table C-62. Characteristics and quantitative results for Tsujimoto et al.2(2005)

Species	Sex	N	Exposure	Exposure route		Dose range	Exposur	e duration	
Wistar rats	М	4/dose	i.p. in corn c	i.p. in corn oil		0, 0.3, 1, and 3 mmol/kg body weight given 1,2,3- or 1,3,5- TMB			
Additional	study o	details							
•	body v	weight.		-		L,3,5-TMB i.p. in Ps via gas chrom			
		-				tabolites in 1,2,3			
Dose			2,3,4-TMP				3,4,5-TMP		
(mmol/k	ol/kg) 0–24 hr		24–48 hr To		otal	0–24 hr	24–48 hr	Total	
0.3		5.90 ± 2.62	0.46 ± 0.34	6.36 ± 2.92		ND	ND	ND	
1.0		7.93 ± 5.00	0.35 ± 0.16	8.28 ± 4.85		≤0.24	ND	≤0.24	
3.0		6.20 ± 3.45	0.57 ± 0.34	6.77 ± 3.60		≤0.19	≤0.04	≤0.19	
ND = not d	etected	ł.							
	Uriı	nary excretion	(% of dose ± SD) of phe	enolic me	tabolites in 1,3,5	-TMB-treated ra	ts	
				2,4,	6-TMP				
Dose (mmol/kg)		0–24 hr	0–24 hr		24–48 hr		Total		
	0.3		7.04 ± 1.24		0.53 ± 0.29		7.5	7.57 ± 0.99	
	1.0		4.39 ± 0.61	4.39 ± 0.61		0.51 ± 0.12		4.90 ± 0.64	
	3.0		3.32 ± 0.58		0.82 ± 0.34		4.1	4.14 ± 0.67	

This study does not include data for 1,2,4-TMB and phenolic metabolites. Variation between rats (high SD) within exposure groups.


Table C-63. Characteristics and quantitative results for Tsujino et al. (200
--

Species	Sex		Ν	Exposure route	Dose range	Exposure duration
Wistar rats	М	3 for Exp	eriment 1; 36 for	Dermal (via	1 mL kerosene	0, 1, 3, or 6 hrs
		Experime	ent 3 (shown below)	saturated cotton)		
Additional s	-					
		-		lly exposed to keroser		sealed piece of cotto
				drocarbon dermal abs	•	
		•		divided into four grou her before or after de		y exposure duration,
	•		· · ·	an aliphatic hydrocark		ly detected in traces
			tem exposure.			
	-	•	•	post-mortem exposur	e suggest that TM	B must circulate in
			distributed to organs			
	1 -H	r exposur	e and ratio of TMBs to	o internal standard (o	-xylene d10) (meai	n ± SD)
			Post-mortem sam	ples spiked with	Post-mortem sam	ples following derma
Tissue source			kerosene (posi	itive control)	ex	posure
Blood			3.6 ±	1.6	0.4	4 ± 0.4
Brain			3.6 ±	1.6	0.14	± 0.05*
Lung			1.2 ± (0.5*	0.09	9 ± 0.03
Liver			1.1 ±	0.5	0.3 :	± 0.09**
Spleen			0.7 ±	0.3	0.1	± 0.04
Kidney			1.0 ±	0.4	0.5	± 0.1**
Muscle			1.2 ± (0.5*	0.09	9 ± 0.02
Adipose			0.9 ± 0	0.3*	0.15	5 ± 0.07
Overall			1.4 ± 0.	3***	0.21	± 0.05*
* <i>p</i> ≤ 0.05.		1				
* [*] <i>p</i> ≤ 0.01.						
$***p \le 0.001$						

Table C-64. Characteristics and quantitative results for <u>Zahlsen et al. (1990)</u>

Spaciac	Sex	N	Exposure route	Doco rongo	Exposure duration
Species Sprague- Dawley rats	M	24	Inhalation	Dose range 1,000 ppm (4,920 mg/m ³) 1,2,4-TMB	12-hr exposures on d 1, 3, 7, 10, and 14
12 k • Foo 150 • Hyd con • Mul exp 1,2,	e Sprag nrs on o d and v g and rocarb centrat tiple e osures, 4-TMB	gue-Dawle d 1, 3, 7, 10 water were 200 g prior on concen tions did no xposures to , possibly d), and 14. e given ad libitum ex- to exposure on d 1 tration in blood was ot vary by more tha o 1,2,4-TMB resulte lue to the induction	scept during exposure, and a s determined via head space n ±10% from nominal conce d in decreases in blood conc of metabolic enzymes that	³) 1,2,4-TMB in an inhalation for animal weight ranged between gas chromatography. Daily mea ntrations. centrations following subsequent play a role in the metabolism of
CONCENTRATION IN BLOOD (Jmol/l)			I	ŢŢ_	a TMB

Table C-65. Characteristics and qua	ntitative results for <u>Zahlsen et al. (1992)</u>
-------------------------------------	--

Species	Sex	N	Exposure route	Dose range	Exposure duration			
Sprague- Dawley rats	м	4/time point	Inhalation	100 ppm 1,2,4-TMB	12 hrs/d for 3 d			
Additional st	udy det	ails						
• F	ood and	l water we	re given ad libitum, ex	cept during exposure.				
		-	-	l were between 40 and 50				
			-	each exposure chamber co	ontained four cages; 16 rats were			
-		-	nning of exposure. four rats were sacrific	ed and their tissues analyz	zed for 1,2,4-TMB presence.			
					ous time points (mean ± SD)			
Obser	vation		_,_,	100 ppm C9 exposure	· · ·			
Blood day 1				14.2 ± 0.7	b P			
Blood day 2				12.6 ± 0.9				
Blood day 3				17.1 ± 2.2				
Blood rec ^a				0.2 ± 0.1				
Brain day 1			38.1 ± 1.5					
Brain day 2			34.9 ± 3.9					
Brain day 3				36.5 ± 2.2				
Brain rec				ND				
Liver day 1				41.0 ± 4.5				
Liver day 2				30.5 ± 3.4				
Liver day 3				35.4 ± 2.4				
Liver rec ^a				0.6 ± 0.1				
Kidney day 1				113.8 ± 26.5				
Kidney day 2				142.0 ± 35.2				
Kidney day 3			103.6 ± 18.8					
Kidney rec ^a			2.0 ± 0.3					
Fat day 1			1,741 ± 329					
Fat day 2	2 1,375 ± 88							
Fat day 3	y 3 1,070 ± 93							
Fat rec ^a			120 ± 52					

Comments: Data were collected immediately following exposure and 12 hrs following exposure, providing insight into metabolic clearance and excretion. Study duration was short term (5 d), making it difficult to determine if tissue concentration changes following chronic exposure.

2

C.7. ANIMAL AND HUMAN TOXICOKINETIC STUDIES

Table C-66 provides study details for an animal and human toxicokinetic study.

3

Table C-66. Characteristics and quantitative results for <u>Meulenberg and</u> <u>Vijverberg (2000)</u>

Species	Sex	N	Exposure route	Dose range	Exposure duration
Rat and Human	F & M	Varies	N/A	Not given	Not given
• [Authors (1,2,3-, 1,	examined 2,4-, and 1	L,3,5-TMB were among	or many VOCs from multip g the VOCs considered for r , liver, muscle, and kidney v	
			Partition co	oefficients for 1,2,3-, 1,2,4-	and 1,3,5-TMB
Observa	ation		1,2,3-TMB	1,2,4-TMB	1,3,5-TMB
			Reported and pred	licted partition coefficient	s For oil, saline, and air
P _{oil:air}			10,900ª	10,200ª	9,880ª
Psaline:air	air 2.73ª		2.73ª	1.61ª	1.23ª
			Reported and pre	dicted P _{tissue:air} values for v	various human tissues
Blood		66.5ª	59.1ª	43ª	
Fat		4,879 ^b	4,566	4,423	
Brain		220	206	199	
Liver		306		286	277
Muscle			155	144	140
Kidney			122	114	110
			Reported and p	predicted P _{tissue:air} values fo	r various rat tissues
Blood			62.6	55.7	55.7
Fat			6,484	6,068	5,878
Brain			591	552	535
Liver			288	269	260
Muscle			111	104	100
Kidney			1,064	995	963
-			by <u>Järnberg and Johans</u> Meulenberg and Vijver		

fat, brain, liver, muscle, and kidney tissue in both humans and rats. Reported values based on single trial.

APPENDIX D. DOSE-RESPONSE MODELING FOR THE DERIVATION OF REFERENCE VALUES FOR EFFECTS OTHER THAN CANCER AND THE DERIVATION OF CANCER RISK ESTIMATES

D.1. BENCHMARK DOSE (BMD) MODELING SUMMARY

1 This appendix provides technical detail on dose-response evaluation and determination of 2 points of departure (PODs) for relevant neurological, hematological, and developmental toxicity 3 endpoints in the trimethylbenzene (TMB) database. The endpoints were modeled using the U.S. 4 Environmental Protection Agency (EPA) Benchmark Dose Software (BMDS, version 2.6.0.1). 5 Sections D.1.1.1 and D.1.1.2 (noncancer) describe the common practices used in evaluating the 6 model fit and selecting the appropriate model for determining the POD, as outlined in the 7 *Benchmark Dose Technical Guidance Document* (U.S. EPA, 2012). In some cases, it may be 8 appropriate to use alternative methods, based on statistical judgement; exceptions are noted as 9 necessary in the summary of the modeling results.

D.1.1. Noncancer Endpoints

10 D.1.1.1. Evaluation of Model Fit

11 For each continuous endpoint (see Table D-1), BMDS continuous models were fitted to the 12 data using the maximum likelihood method. Model fit was assessed by a series of tests as follows. 13 For each model, first the homogeneity of the variances was tested using a likelihood ratio test 14 (BMDS Test 2). If Test 2 was not rejected ($\chi^2 p$ -value ≥ 0.10), the model was fitted to the data 15 assuming constant variance. If Test 2 was rejected ($\chi^2 p$ -value < 0.10), the variance was modeled as 16 a power function of the mean, and the variance model was tested for adequacy of fit using a 17 likelihood ratio test (BMDS Test 3). For fitting models using either constant variance or modeled 18 variance, models for the mean response were tested for adequacy of fit using a likelihood ratio test 19 (BMDS Test 4, with $\chi^2 p$ -value < 0.10 indicating inadequate fit). Other factors were also used to 20 assess the model fit, such as scaled residuals, visual fit, and adequacy of fit in the low-dose region 21 and in the vicinity of the benchmark response (BMR).

22 D.1.1.2. Model Selection

For each endpoint, the BMDL estimate (95% lower confidence limit on the BMD, as
estimated by the profile likelihood method) and Akaike Information Criterion (AIC) value were

- 1 used to select a best-fit model from among the models exhibiting adequate fit. If the BMDL
- 2 estimates were "sufficiently close," (i.e., differed by at most 3-fold), the model selected was the one
- 3 that yielded the lowest AIC value. If the BMDL estimates were not sufficiently close, the lowest
- 4 BMDL was selected as the POD.
- 5 6

Table D-1. Noncancer endpoints selected for dose-response modeling for 1,2,3-TMB, 1,2,4-TMB, and 1,3,5-TMB

Species (strain)/sex endpoint	Internal doses, e	external exp	oosure con	centrations	s, and effec	t data
Korsak and Rydzyński (1996)						
1,2,4-TMB						
Rat (Wistar)/male	Concentration (mg/m ³)	0	123		492	1,230
CNS: paw-lick (seconds)	Number of animals Mean ± SD	9 15.4 ± 5.8	10 18.2 ± 5	5.7 27.	9 6 ± 3.2	10 30.1 ± 7.9
1,2,3-TMB						
Rat (Wistar)/male	Concentration (mg/m ³)	0	123		492	1,230
CNS: paw-lick (seconds)	Number of animals Mean ± SD	30 9.7 ± 2.1	20 11.8 ± 3	3.8 16.	10 3 ± 6.3	10 17.3 ± 3.4
Korsak et al. (2000a)-1,2,4-	ГМВ					
Rat (Wistar)/male	Concentration (mg/m ³)	0	129		492	1,207
Decreased RBC (10 ⁶ /cm ³)	Number of animals Mean ± SD	10 9.98 ± 1.6	10 9.84 ± 1	82 8.50	10 0 ± 1.11 7	10 7.70 + 1.38
Rat (Wistar)/female	Internal dose (mg/L)	0	0.133	5 0.	8899	5.5189
Clotting time (seconds)	Number of animals Mean ± SD	10 30 ± 10	10 23 ± 4	4 1	10 9 ± 5	10 22 ± 7
Korsak et al. (2000b)-1,2,3-	ТМВ					
Rat (Wistar)/male	Concentration (mg/m ³)	0	128		523	1,269
Decreased segmented neutrophils (%)	Number of animals Mean ± SD	10 24.8 ± 4.5	10 25.4 ± 5	10 25.4 ± 5.8 20.7		10 17.7 ± 8.3
Increased reticulocytes (%)	Number of animals Mean ± SD	10 2.8 ± 1.3	10 2.1 ± 1	10 2.1 ± 1.7 3.8		10 4.5 ± 1.8
Rat (Wistar)/female	Concentration (mg/m ³)	0	128		523	1,269
Decreased segmented neutrophils (%)	Number of animals Mean ± SD	10 23.1 ± 6.1	10 19.7 ± 3	3.4 16.	10 4 ± 4.2	10 11.9 ± 7.1
Saillenfait et al. (2005)	·			·	·	
1,2,4-TMB						
Rat (Sprague-Dawley), F1 pups and dams	Concentration (mg/m ³)	0	492	1,471	2,913	4,408
Male fetal weight (g)	Number of liters Mean ± SDª	23 5.86 ± 0.34	22 5.79 ± 0.30	22 5.72 ± 0.49	22 5.55 ± 0.48	24 5.20 ± 0.42
Female fetal weight (g)	Number of liters Mean ± SD ^a	23 5.57 ± 0.33	22 5.51 ± 0.31	22 5.40 ± 0.45	22 5.28 ± 0.40	24 4.92 ± 0.40

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Species (strain)/sex endpoint	Internal doses, external exposure concentrations, and effect data							
Maternal weight gain (g)	Number of dams	24	22	22	22	24		
	Mean ± SD	131 ± 33	124 ± 18	126 ± 24	116 ± 23	95 ± 19		
1,3,5-TMB		1	1	1	1	1		
F1 rat pups and dams (Sprague-Dawley)	Concentration (mg/m ³)	0	497	1,471	2,974	5,874		
Male fetal weight (g)	Number of litters	21	22	21	17	18		
	Mean ± SDª	5.80 ± 0.41	5.76 ± 0.27	5.50 ± 0.31	5.39 ± 0.55	5.10 ± 0.57		
Female fetal weight (g)	Number of litters	21	22	21	17	18		
	Mean ± SDª	5.50 ± 0.32	5.47 ± 0.21	5.27 ± 0.47	5.18 ± 0.68	4.81 ± 0.45		
Maternal weight gain (g)	Number of dams	21	22	21	17	18		
	Mean ± SD	135 ± 15	138 ± 11	118 ± 24	95 ± 24	73 ± 28		

^a SD reported for fetal weights represent variability among reported litter means, not among fetuses. In any subsequent BMD analyses of these endpoints, the BMDs and BMDLs estimated using 1 SD as the compariative BMR corresponding to the SD among litter means.

CNS = central nervous system; RBC = red blood cell; SD = standard deviation

For all endpoints, BMD modeling was conducted using the reported external exposure
concentrations as the dose inputs, except when actual concentrations were not provided. In these
cases, the target concentrations were used. In cases where the poor model fit to the mean or
variance was evident due mainly to poor fit in the high dose, the high dose was dropped and the
truncated dataset was re-modeled. Comprehensive modeling results for all endpoints are provided
an EDA's Health Effects Because Orling (UEDO) database (U.S. EDA, 201(b))

11 on EPA's Health Effects Research Online (HERO) database (<u>U.S. EPA, 2016b</u>).

12 **D.1.1.3.** *Modeling Results*

13 Tables D-2 to D-34 and Figures D-1 to D-13 summarize the modeling results for the 14 noncancer endpoints modeled. The following continuous model parameter restrictions were 15 applied, unless otherwise noted: (1) polynomial model β coefficients were restricted with respect 16 to the appropriate direction of effect (i.e., ≥ 0 for responses that increase with dose, and ≤ 0 for 17 responses that decrease with dose); and (2) Hill, power, and exponential power parameters were 18 restricted to be ≥ 1 . A 1 SD change in the control mean was used as the BMR for all endpoints except 19 decreased fetal weight, for which a 5% RD BMR was used. However, as recommended by EPA's 20 Benchmark Dose Technical Guidance (U.S. EPA, 2012), a BMR equal to a 1 SD change in the control 21 mean was presented for decreased fetal weight to facilitate comparisons across assessments. 22

Table D-2. Summary of BMD modeling results for increased latency to pawlick in male Wistar rats exposed to 1,2,4-TMB by inhalation for 3 months;

BMR = 1 SD change from control mean (constant variance) (<u>Korsak and</u> Rydzyński, 1996)

	Goodness of fit		BMD _{1SD}		
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection
Exponential (M2) Exponential (M3) ^b	0.0115	184.29	674	531	No model selected as Test 2 p -value was <0.10. Therefore, as
Exponential (M4)	0.376	178.14	161	84.0	suggested in the <i>Benchmark Dose</i> <i>Technical Guidance</i> (U.S. EPA,
Exponential (M5)	N/A ^c	179.36	211	92.5	2012), the data were remodeled
Hill	N/A ^c	179.36	195	90.2	using a non-homogenous variance model (see Table D-3).
Power ^d Polynomial 3 ^{°e} Polynomial 2 ^{°f} Linear	0.0293	182.42	535	396	

5

1

2

3

4

⁶ ^aConstant variance case presented (BMDS Test 2 *p*-value = 0.0765, BMDS Test 3 *p*-value = 0.0765); no model was selected as a best-fitting model.

^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the
 Exponential (M2) model.

10 °No available degrees of freedom to calculate a goodness-of-fit value.

^dFor the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

*For the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in
 this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates

14 were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

15 ^fFor the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in

Table D-3. Summary of BMD modeling results for increased latency to paw-

lick in male Wistar rats exposed to 1,2,4-TMB by inhalation for 3 months; BMR = 1 SD change from control mean (modeled variance) (<u>Korsak and</u>

<u>Rydzyński, 1996</u>

	Goodne	ess of fit	BMD _{1SD}		
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection
Exponential (M2) Exponential (M3) ^b	0.0172	185.21	572	400	No model selected as Test 3 <i>p</i> -value was <0.1. The data were
Exponential (M4)	0.406	179.78	154	78.4	remodeled after dropping the high dose (see Table D-4)
Exponential (M5)	N/A ^c	181.09	202	85.6	
Hill	N/A ^c	181.09	189	82.9	
Power ^d Polynomial 3 ^{°e} Polynomial 2 ^{°f}	0.0500	183.08	425	274	
Linear ^g	0.0500	183.08	425	274	

5 6 7

8

9

^aModeled variance case presented (BMDS Test 2 *p*-value = 0.0765, BMDS Test 3 *p*-value = 0.0371); no model was selected as a best-fitting model.

^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

 $10\,$ $\,$ ^cNo available degrees of freedom to calculate a goodness-of-fit value.

^dThe Power model may appear equivalent to the Linear model; however, differences exist in digits not displayed in the table.

^eFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in
 this row reduced to the Polynomial 2° model.

¹⁵ ^fThe Polynomial 2° model may appear equivalent to the Linear model; however, differences exist in digits not
 displayed in the table.

17 ^gThe Linear model may appear equivalent to the Power model; however, differences exist in digits not displayed in

18 the table. This also applies to the Polynomial 3° model. This also applies to the Polynomial 2° model.

Table D-4. Summary of BMD modeling results for increased latency to paw-

lick in male Wistar rats exposed to 1,2,4-TMB by inhalation for 3 months;

BMR = 1 SD change from control mean (constant variance, high dose dropped) (Korsak and Rydzyński, 1996)

	Goodness of fit		BMD _{1SD}		
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection
Exponential (M2) Exponential (M3) ^b	0.854	121.80	231	181	Of the models that provided an adequate fit, the linear model
Exponential (M4)	N/A ^c	123.79	192	84.7	was selected, based on lowest AIC (BMDLS differed by <3-fold)
Power	N/A ^c	123.77	204	141	
Polynomial 2°	N/A ^c	123.77	206	141	
Linear	0.899	121.79	192	141	

5 6 7

8

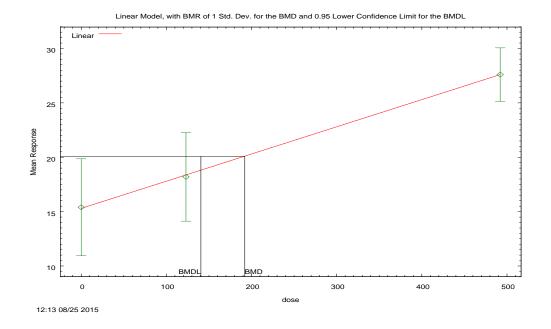
9

1

2

3

4


^aConstant variance case presented (BMDS Test 2 *p*-value = 0.169), selected model in bold; scaled residuals for

selected model for doses 0, 123, and 492 were 0.08, --0.1, and 0.03, respectively.

^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

10 °No available degrees of freedom to calculate a goodness-of-fit value.

11

12

13 14

BMR = 1 SD change from control mean; dose shown in mg/m³ 1,2,4-TMB.

Figure D-1. Plot of mean response by dose for increased latency to paw-lick in male Wistar rats, with fitted curve for Linear model with constant variance (Korsak and Rydzyński, 1996).

1	
2	Polynomial Model (Version: 2.20; Date: 10/22/2014)
3	The form of the response function is: Y[dose] = beta_0 + beta_1*dose
4	A constant variance model is fit
5	
6	Benchmark Dose Computation
7	BMR = 1 Estimated SD from the control mean
8	BMD = 192.088

9 BMDL at the 95% confidence level = 140.537

10

11 **Parameter Estimates**

Variable	Estimate	Default initial parameter values
alpha	22.9935	25.738
rho	N/A	0
beta_0	15.277	15.2846
beta_1	0.0249633	0.0249531

12

13 Table of Data and Estimated Values of Interest

Dose	Ν	Observed mean	Estimated mean	Observed SD	Estimated SD	Scaled residuals
0	9	15.4	15.3	5.8	4.8	0.0769
123	10	18.2	18.3	5.7	4.8	-0.0973
492	9	27.6	27.6	3.2	4.8	0.0256

14

15 Likelihoods of Interest

Model	Log(likelihood)	Number of parameters	AIC
A1	-57.884957	4	123.769915
A2	-56.10689	6	124.213781
A3	-57.884957	4	123.769915
Fitted	-57.89298	3	121.785961
R	-68.599682	2	141.199364

16

17 **Tests of Interest**

Test	-2*log(likelihood ratio)	Test df	<i>p</i> -value	
Test 1	24.9856	4	<0.0001	
Test 2	3.55613	2	0.169	
Test 3	3.55613	2	0.169	
Test 4	0.0160462	1	0.8992	

Table D-5. Summary of BMD modeling results for increased latency to pawlick in male Wistar rats exposed to 1,2,3-TMB by inhalation for 3 months;

BMR = 1 SD change from control mean (constant variance) (<u>Korsak and</u> Rydzyński, 1996)

	Goodne	ess of fit	BMD _{1SD}		
Model ^a	<i>p</i> -value	AIC			Basis for model selection
Exponential (M2) Exponential (M3) ^b	0.00570	262.21	701	566	No model selected as Test 2 <i>p</i> -value was <0.10. Therefore, as
Exponential (M4)	0.546	254.24	192	107	suggested in the <i>Benchmark Dose</i> <i>Technical Guidance</i> (U.S. EPA,
Exponential (M5)	N/A ^c	255.87	201	111	2012), the data were remodeled
Hill	N/A ^c	255.87	186	110	using a non-homogenous variance model (see Table D-6).
Power ^d Polynomial 3 ^{°e} Polynomial 2 ^{°f} Linear	0.0173	259.99	578	443	

5

1

2

3

4

⁶ ^aConstant variance case presented (BMDS Test 2 *p*-value = 1.15×10^{-4} , BMDS Test 3 *p*-value = 1.15×10^{-4}); no model was selected as a best-fitting model.

^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the
 Exponential (M2) model.

10 °No available degrees of freedom to calculate a goodness-of-fit value.

^dFor the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^eFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in
 this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates

14 were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

15 ^fFor the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in

Table D-6. Summary of BMD modeling results for increased latency to paw-

lick in male Wistar rats exposed to 1,2,3-TMB by inhalation for 3 months; BMR = 1 SD change from control mean (modeled variance) (Korsak and

Rvdzvński, 1996)

	Goodness of fit		BMD _{1SD}			
Model ^a	<i>p</i> -value			-	Basis for model selection	
Exponential (M2) Exponential (M3) ^b	<0.0001	259.53	497	329	No model selected as Test 3 <i>p</i> -value was <0.1. The data were	
Exponential (M4)	0.301	241.42	86.2	46.7	remodeled after dropping the high dose (see Table D-7)	
Exponential (M5)	N/A ^c	242.59	113	52.0		
Hill	N/A ^c	242.59	120	Error ^d		
Power ^e Polynomial 3 ^{°f} Polynomial 2 ^{°g} Linear	3.25 × 10 ⁻⁴	254.41	320	196		

5

1

2

3

4

6 7 ^aModeled variance case presented (BMDS Test 2 *p*-value = 1.15×10^{-4} , BMDS Test 3 *p*-value = 0.0708); no model was selected as a best-fitting model.

8 ^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the 9 Exponential (M2) model.

10 ^cNo available degrees of freedom to calculate a goodness-of-fit value.

11 ^dBMD or BMDL computation failed for this model.

12 ^eFor the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

13 ^fFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in 14 this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates

15 were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

16 ^gFor the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in 17

Table D-7. Summary of BMD modeling results for increased latency to paw-

lick in male Wistar rats exposed to 1,2,3-TMB by inhalation for 3 months;

BMR = 1 SD change from control mean (constant variance, high dose dropped) (Korsak and Rydzyński, 1996)

	Goodne	ess of fit	BMD _{1SD}		
Model ^a	<i>p</i> -value	AIC	(mg/m^3)	(mg/m ³)	Basis for model selection
Exponential (M2) Exponential (M3) ^b	0.445	218.88	301	237	No model selected as Test 2 <i>p</i> -value was <0.10. Therefore, as
Exponential (M4)	N/A ^c	220.30	223	112	suggested in the <i>Benchmark Dose</i> <i>Technical Guidance</i> (U.S. EPA,
Exponential (M5) Hill Polynomial 3°	Error	Error	Error ^e	Error ^e	2012), the data were remodeled using a non-homogenous variance model (see Table D-8).
Power ^f Polynomial 2 ^{°g} Linear	0.645	218.51	266	196	

5 6 7

1

2

3

4

^aConstant variance case presented (BMDS Test 2 *p*-value = <0.0001, BMDS Test 3 *p*-value = <0.0001); no model was selected as a best-fitting model.

^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the
 Exponential (M2) model.

10 °No available degrees of freedom to calculate a goodness-of-fit value.

^dBMD or BMDL computation failed for this model.

12 ^eBMD or BMDL computation failed for this model

13 ^fFor the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

14 ^gFor the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in

Table D-8. Summary of BMD modeling results for increased latency to paw-

lick in male Wistar rats exposed to 1,2,3-TMB by inhalation for 3 months;

BMR = 1 SD change from control mean (modeled variance, high dose dropped) (Korsak and Rydzyński, 1996)

	Goodne	Goodness of fit BMD _{1SD}		BMDL _{1SD}		
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection	
Exponential (M2) Exponential (M3) ^b	0.0745	203.27	192	132	Of the models that provided an adequate fit, the linear model	
Exponential (M4)	N/A ^c	202.08	105	52.6	was selected, based on lowest	
Power ^d Polynomial 2 ^{°e} Linear	0.202	201.71	152	97.2	_ AIC (BMDLS differed by <3-fold)	

5 6

7

1

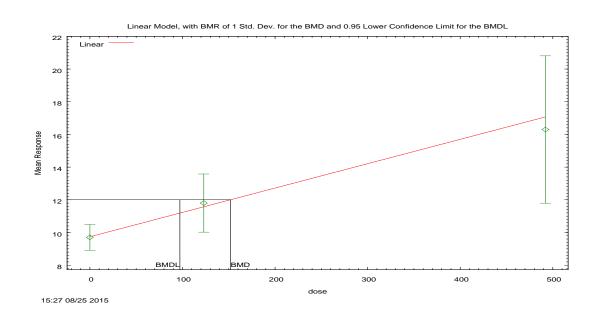
2

3

4

^aModeled variance case presented (BMDS Test 2 *p*-value = <0.0001, BMDS Test 3 *p*-value = 0.5008), selected model in bold; scaled residuals for selected model for doses 0, 123, and 492 were -0.1, 0.32, and -0.35, respectively.

8 ^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the


9 Exponential (M2) model.

10 ^cNo available degrees of freedom to calculate a goodness-of-fit value.

^dFor the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

12 ^eFor the Polynomial 2^e model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in

- 13 this row reduced to the Linear model.
- 14

15

16 17

BMR = 1 SD change from control mean; dose shown in mg/m³ 1,2,3-TMB.

Figure D-2. Plot of mean response by dose for increased latency to paw-lick in male Wistar rats, with fitted curve for Linear model with constant variance (Korsak and Rydzyński, 1996).

- 1 **Polynomial Model** (Version: 2.20; Date: 10/22/2014)
- 2 The form of the response function is: Y[dose] = beta_0 + beta_1*dose
- 3 A modeled variance is fit

Benchmark Dose Computation

- 6 BMR = 1 Estimated SD from the control mean
- 7 BMD = 152.065
- 8 BMDL at the 95% confidence level = 97.1911
- 9

10 Parameter Estimates

Variable	Estimate	Default initial parameter values	
lalpha	-7.3421	2.58956	
rho	3.94293	0	
beta_0	9.74214	9.90769	
beta_1	0.0148851	0.0131332	

11

12 Table of Data and Estimated Values of Interest

Dose	Ν	Observed mean	Estimated mean	Observed SD	Estimated SD	Scaled residuals			
0	30	9.7	9.74	2.1	2.26	-0.102			
123	20	11.8	11.6	3.8	3.18	0.319			
492	10	16.3	17.1	6.3	6.84	-0.354			

13

14 Likelihoods of Interest

Model	Log(likelihood)	og(likelihood) Number of parameters		
A1	-106.147893	4	220.295786	
A2	-95.815379	6	203.630758	
A3	-96.041973	5	202.083946	
Fitted	-96.857406	4	201.714812	
R	-116.95626	2	237.91252	

15

16 **Tests of Interest**

Test	-2*log(likelihood ratio)	Test df	<i>p</i> -value				
Test 1	42.2818	4	<0.0001				
Test 2	20.665	2	<0.0001				
Test 3	0.453187	1	0.5008				
Test 4	1.63087	1	0.2016				

Table D-9. Summary of BMD modeling results for decreased RBCs in male Wistar rats exposed to 1,2,4-TMB by inhalation for 3 months; BMR = 1 SD change from control mean (constant variance) (Korsak et al., 2000a)

	Goodness of fit		odness of fit BMD _{1SD}			
Modelª	<i>p</i> -value	AIC	(mg/m ³)	BMDL _{1SD} (mg/m ³)	Basis for model selection	
Exponential (M2) Exponential (M3) ^b	0.611	76.397	695	452	Of the models that provided an adequate fit, the Exponential 2	
Exponential (M4)	0.530	77.805	477	178	model was selected, based on lowest AIC (BMDLS differed by	
Exponential (M5)	N/A ^c	79.411	482	191	<3-fold)	
Hill	N/A ^c	79.411	480	Error ^d		
Power ^e Linear ^f	0.540	76.642	752	516	-	
Polynomial 3 ^g Polynomial 2 ^h	0.540	76.642	752	516		

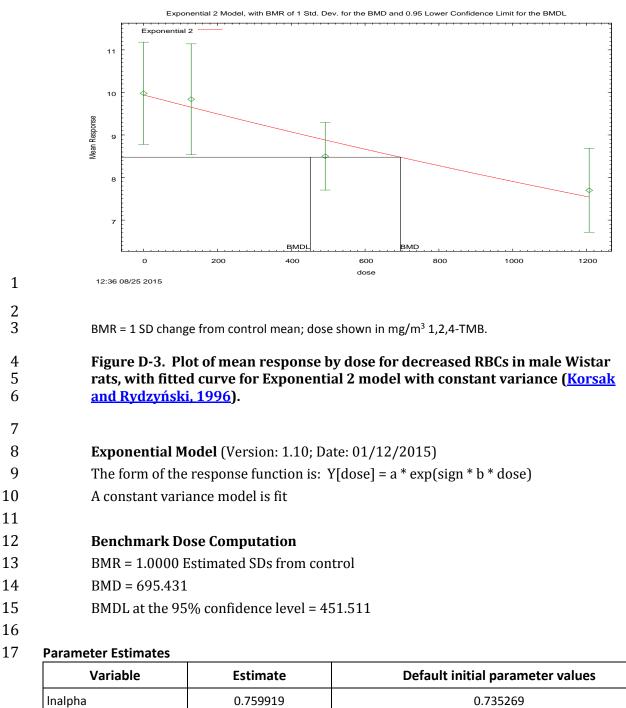
⁴ 5 6 7

^aConstant variance case presented (BMDS Test 2 *p*-value = 0.433), selected model in bold; scaled residuals for selected model for doses 0, 129, 492, and 1,207 were 0.08, 0.41, -0.83, and 0.34, respectively.

^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the
 Exponential (M2) model.

9 °No available degrees of freedom to calculate a goodness-of-fit value.

 $10~~^{\rm d}{\rm BMD}$ or BMDL computation failed for this model.


11 ^eFor the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

¹² ^fThe Linear model may appear equivalent to the Polynomial 3° model; however, differences exist in digits not
 displayed in the table. This also applies to the Polynomial 2° model.

^gFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in
 this row reduced to the Polynomial 2° model.

16 ^hThe Polynomial 2° model may appear equivalent to the Power model; however, differences exist in digits not

17 displayed in the table. This also applies to the Linear model.

Variable	LStillate	Derault finitial parameter values
Inalpha	0.759919	0.735269
rho	N/A	0
а	9.94081	8.08952
b	0.000228786	0.000222126
с	N/A	0
d	N/A	1

Dose	Ν	Observed mean	Estimated mean	Observed SD	Estimated SD	Scaled residuals
0	10	9.98	9.94	1.68	1.46	0.08476
129	10	9.84	9.65	1.82	1.46	0.4072
492	10	8.5	8.88	1.11	1.46	-0.8273
1,207	10	7.7	7.54	1.38	1.46	0.3414

1 Table of Data and Estimated Values of Interest

2

3 Likelihoods of Interest

Model	Log(likelihood)	Number of parameters	AIC
A1	-34.70537	5	79.41075
A2	-33.33353	8	82.66706
A3	-34.70537	5	79.41075
R	-41.88886	2	87.7771
2	-35.19837	3	76.39674

4

5 Tests of Interest

Test	-2*log(likelihood ratio)	Test df	<i>p</i> -value
Test 1	17.11	6	0.008885
Test 2	2.744	3	0.4329
Test 3	2.744	3	0.4329
Test 4	0.986	2	0.6108

Table D-10. Summary of BMD modeling results for decreased clotting time in female Wistar rats exposed to 1,2,4-TMB by inhalation for 3 months; BMR = 1 SD change from control mean (constant variance) (Korsak et al., 2000a)

	Goodness of fit					
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection	
Exponential (M2) Exponential (M3) ^b	0.0102	205.39	1,466	691	No model selected as Test 2 ρ -value was <0.10. Therefore, as	
Exponential (M4)	0.300	199.29	111	0.531	suggested in the <i>Benchmark Dose</i> <i>Technical Guidance</i> (U.S. EPA,	
Exponential (M5)	N/A ^c	201.25	122	0.532	2012), the data were remodeled using a non-homogenous variance model (see Table D-11).	
Hill	N/A ^c	201.25	127	Error ^d		
Power ^e Polynomial 3 ^{°f} Polynomial 2 ^{°g} Linear	0.00852	205.74	1,585	835		

4

^aConstant variance case presented (BMDS Test 2 *p*-value = 0.0229, BMDS Test 3 *p*-value = 0.0229); no model was selected as a best-fitting model.

5 6 7

^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the 8 Exponential (M2) model.

9 ^cNo available degrees of freedom to calculate a goodness-of-fit value.

10 ^dBMD or BMDL computation failed for this model.

11 ^eFor the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

12 ^fFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in

13 this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates 14 were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

15 ^gFor the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in

Table D-11. Summary of BMD modeling results for decreased clotting time infemale Wistar rats exposed to 1,2,4-TMB by inhalation for 3 months; BMR = 1SD change from control mean (modeled variance) (Korsak et al., 2000a)

	Goodne	ess of fit	BMD _{1SD}			
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection	
Exponential (M2) ^b	5.75 × 10 ⁻⁴	206.81	1,962	721	No model was selected as the only possibly fitting models	
Exponential (M3) ^c	5.75 × 10 ⁻⁴	206.81	1,962	721	(Exponential models 4 and 5 and the Hill model) returned implausibly low BMDL values.	
Exponential (M4)	0.0922	196.72	299	0.680	The data were remodeled after dropping the high dose (see Table D-12)	
Exponential (M5)	N/A ^d	198.72	201	0.590		
Hill	N/A ^d	198.72	164	2.56 × 10⁻ ⁶	-	
Power ^e	4.95 × 10 ⁻⁴	207.11	2,046	875		
Polynomial 3 ^f Polynomial 2 ^g Linear ^h	4.95 × 10 ⁻⁴	207.11	2,046	875		

4 5 6

7 8 ^aModeled variance case presented (BMDS Test 2 *p*-value = 0.0229, BMDS Test 3 *p*-value = 0.200); no model was selected as a best-fitting model.

^bThe Exponential (M2) model may appear equivalent to the Exponential (M3) model; however, differences exist in digits not displayed in the table.

9 ^cThe Exponential (M3) model may appear equivalent to the Exponential (M2) model; however, differences exist in
 10 digits not displayed in the table.

11 ^dNo available degrees of freedom to calculate a goodness-of-fit value.

^eThe Power model may appear equivalent to the Polynomial 3° model; however, differences exist in digits not
 displayed in the table. This also applies to the Polynomial 2° model. This also applies to the Linear model.

14 ^fFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in

15 this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates

were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^gFor the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in
 this row reduced to the Linear model.

¹⁹ ^hThe Linear model may appear equivalent to the Power model; however, differences exist in digits not displayed in

20 the table.

Table D-12. Summary of BMD modeling results for decreased clotting time in female Wistar rats exposed to 1,2,4-TMB by inhalation for 3 months; BMR = 1 SD change from control mean (constant variance, high dose dropped) (Korsak et al., 2000a)

	Goodne	ess of fit	BMD _{1SD}		
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection
Exponential (M2) Exponential (M3) ^b	0.167	150.26	294	171	No model selected as Test 2 <i>p</i> -value was <0.10. Therefore, as
Exponential (M4)	N/A ^c	150.34	114	0.484	suggested in the <i>Benchmark Dose</i> <i>Technical Guidance</i> (U.S. EPA,
Exponential (M5) Hill Polynomial 3°	Error	Error	Error ^d	Error ^d	2012), the data were remodeled using a non-homogenous variance model (see Table D-13).
Power ^e Linear ^f	0.123	150.73	340	222	
Polynomial 2 ^g	0.123	150.73	340	222	

5

⁶ ^aConstant variance case presented (BMDS Test 2 *p*-value = 0.00849, BMDS Test 3 *p*-value = 0.00849); no model was selected as a best-fitting model.

^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the
 Exponential (M2) model.

10 °No available degrees of freedom to calculate a goodness-of-fit value.

^dBMD or BMDL computation failed for this model.

12 ^eFor the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

¹³ ^fThe Linear model may appear equivalent to the Polynomial 2° model; however, differences exist in digits not
 displayed in the table.

15 ^gThe Polynomial 2° model may appear equivalent to the Power model; however, differences exist in digits not

16 displayed in the table. This also applies to the Linear model.

Table D-13. Summary of BMD modeling results for decreased clotting time in female Wistar rats exposed to 1,2,4-TMB by inhalation for 3 months; BMR = 1 SD change from control mean (modeled variance, high dose dropped) (<u>Korsak et al., 2000a</u>)

	Goodne	ness of fit BMD _{1SD}				
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection	
Exponential (M2)	0.0276	148.13	413	227	No model was selected as Test 3	
Exponential (M3)	N/A ^b	154.45	495	165	<i>p</i> -value was <0.10. Therefore, this endpoint cannot be modeled	
Exponential (M4)	N/A ^b	145.28	149	0.431	in BMDS and the NOAEL/LOAEL	
Power ^c Linear ^d	0.0197	148.72	447	275	approach is recommended.	
Polynomial 2°e	0.0197	148.72	447	275		

5 6 7

1

2

3

4

^aModeled variance case presented (BMDS Test 2 *p*-value = 0.00849, BMDS Test 3 *p*-value = 0.116); no model was selected as a best-fitting model.

8 ^bNo available degrees of freedom to calculate a goodness-of-fit value.

9 ^cFor the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^dThe Linear model may appear equivalent to the Polynomial 2° model; however, differences exist in digits not
 displayed in the table.

12 eThe Polynomial 2° model may appear equivalent to the Power model; however, differences exist in digits not

13 displayed in the table. This also applies to the Linear model.

Table D-14. Summary of BMD modeling results for decreased segmented neutrophils in male Wistar rats exposed to 1,2,3-TMB by inhalation for 3 months; BMR = 1 SD change from control mean (constant variance) (Korsak

3 4

1 2

> et al., 2000a) Goodness of fit BMD_{1SD} BMDL_{1SD} **Model**^a (mg/m^3) (mg/m^3) p-value AIC Basis for model selection Exponential (M2) 0.716 916 535 Of the models that provided an 189.11 Exponential (M3)^b adequate fit, the Exponential M2 model was selected, based on Exponential (M4) 191.01 0.448 815 262 lowest AIC (BMDLS differed by <3-fold) Exponential (M5) N/A^c 192.49 548 138 Error^d Hill 564 N/A^c 192.49 Power^e 979 0.671 189.23 633 Polynomial 3°^f Polynomial 2°g

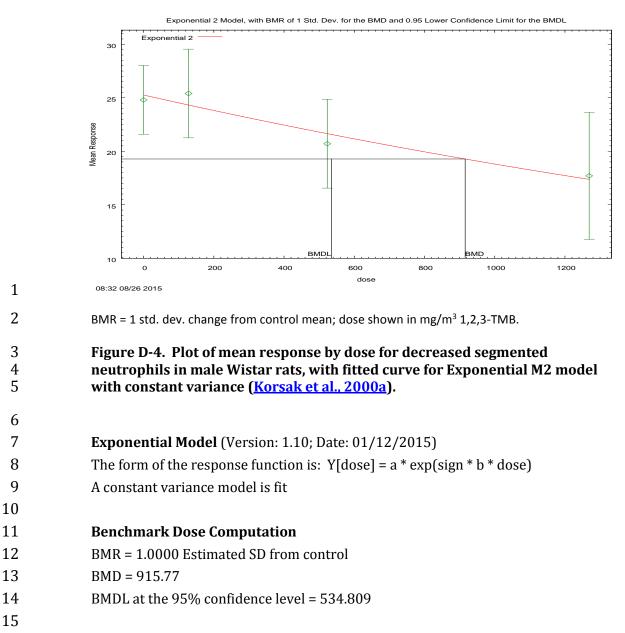
5

Linear

6 7 ^aConstant variance case presented (BMDS Test 2 p-value = 0.269), selected model in bold; scaled residuals for selected model for doses 0, 128, 523, and 1,269 were -0.24, 0.57, -0.5, and 0.18, respectively.

8 ^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the 9 Exponential (M2) model.

10 ^cNo available degrees of freedom to calculate a goodness-of-fit value.


11 ^dBMD or BMDL computation failed for this model.

12 ^eFor the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

13 ^fFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in 14 this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates

15 were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

16 ^gFor the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in 17

16 **Parameter Estimates**

Variable	Estimate	Default initial parameter values
Inalpha	3.57763	3.56089
rho	N/A	0
a	25.2579	19.0843
b	0.000295164	0.00028845
C	N/A 0	
d	N/A	1

Dose	Ν	Observed mean	Estimated mean	Observed SD	Estimated SD	Scaled residuals
0	10	24.8	25.26	4.5	5.98	-0.242
128	10	25.4	24.32	5.8	5.98	0.5701
523	10	20.7	21.64	5.8	5.98	-0.4994
1,269	10	17.7	17.37	8.3	5.98	0.176

1 Table of Data and Estimated Values of Interest

2

3 Likelihoods of Interest

Model	Log(likelihood)	Number of parameters	AIC
A1	-91.2178	5	192.4356
A2	-89.25328	8	194.5066
A3	-91.2178	5	192.4356
R	-96.16301	2	196.326
2	-91.55261	3	189.1052

4

5 Tests of Interest

Test	-2*log(likelihood ratio)	Test df	<i>p</i> -value
Test 1	13.82	6	0.03172
Test 2	3.929	3	0.2692
Test 3	3.929	3	0.2692
Test 4	0.6696	2	0.7155

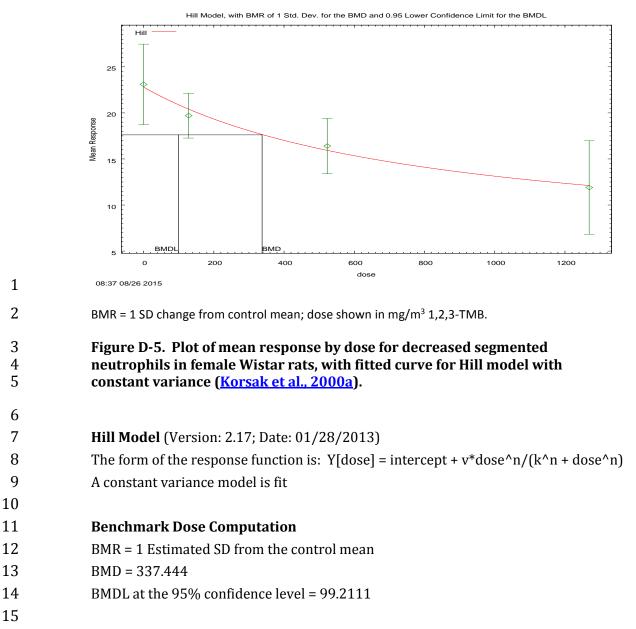
Table D-15. Summary of BMD modeling results for decreased segmented neutrophils in female Wistar rats exposed to 1,2,3-TMB by inhalation for 3 months; BMR = 1 SD change from control mean (constant variance) (<u>Korsak</u> <u>et al., 2000a</u>)

	Goodness of fit		Goodness of fit BMD _{15D} E			
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection	
Exponential (M2) Exponential (M3) ^b	0.640	177.65	517	335	Of the models that provided an adequate fit, the Hill model was	
Exponential (M4) Exponential (M5) ^c	0.521	179.17	365	134	selected, based on lowest BMDL (BMDLS differed by >3-fold)	
Hill	0.569	179.08	337	99.2		
Polynomial 3 ^{°d}	0.453	178.34	646	465	-	
Polynomial 2 ^{°e} Linear ^f	0.453	178.34	646	465		

5 6

⁶ Constant variance case presented (BMDS Test 2 *p*-value = 0.0925), selected model in bold; scaled residuals for
 ⁷ selected model for doses 0, 128, 523, and 1,269 were 0.21, -0.41, 0.31, and -0.11, respectively.

^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the
 Exponential (M2) model.


^cFor the Exponential (M5) model, the estimate of d was 1 (boundary). The models in this row reduced to the
 Exponential (M4) model.

^dThe Polynomial 3° model may appear equivalent to the Polynomial 2° model; however, differences exist in digits
 not displayed in the table. This also applies to the Linear model.

^eFor the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in
 this row reduced to the Linear model.

16 ^fThe Linear model may appear equivalent to the Polynomial 3° model; however, differences exist in digits not

17 displayed in the table.

16 **Parameter Estimates**

Variable	Estimate	Default initial parameter values
alpha	26.4982	29.205
rho	N/A	0
intercept	22.76	23.1
v	-17.5026	-11.2
n	1	1.05772
k	809.904	391.333

Dose	Ν	Observed mean	Estimated mean	Observed SD	Estimated SD	Scaled residuals
0	10	23.1	22.8	6.1	5.15	0.209
128	10	19.7	20.4	3.4	5.15	-0.412
523	10	16.4	15.9	4.2	5.15	0.312
1,269	10	11.9	12.1	7.1	5.15	-0.108

1 Table of Data and Estimated Values of Interest

2

3 Likelihoods of Interest

Model	Log(likelihood)	Number of parameters	AIC		
A1	-85.379588	5	180.759176		
A2	-82.165225	8	180.33045		
A3	-85.379588	5	180.759176		
Fitted	-85.541569	4	179.083138		
R	-95.409822	2	194.819645		

4

5 Tests of Interest

Test	-2*log(likelihood ratio)	Test df	<i>p</i> -value
Test 1	26.4892	6	0.0001804
Test 2	6.42873	3	0.09252
Test 3	6.42873	3	0.09252
Test 4	0.323961	1	0.5692

Table D-16. Summary of BMD modeling results for increased reticulocytes in female Wistar rats exposed to 1,2,3-TMB by inhalation for 3 months; BMR = 1 SD change from control mean (constant variance) (Korsak et al., 2000a)

	Goodne	ess of fit				
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection	
Exponential (M2) Exponential (M3) ^b	0.273	89.084	1,112	807	Of the models that provided an adequate fit, the Linear model	
Exponential (M4)	0.140	90.670	900	308	was selected, based on lowest AIC (BMDLS differed by <3-fold)	
Exponential (M5)	N/A ^c	91.370	540	141		
Hill	N/A ^c	91.370	554	Error ^d		
Power ^e Polynomial 3 ^{of} Polynomial 2 ^{og} Linear	0.311	88.829	1,025	653		

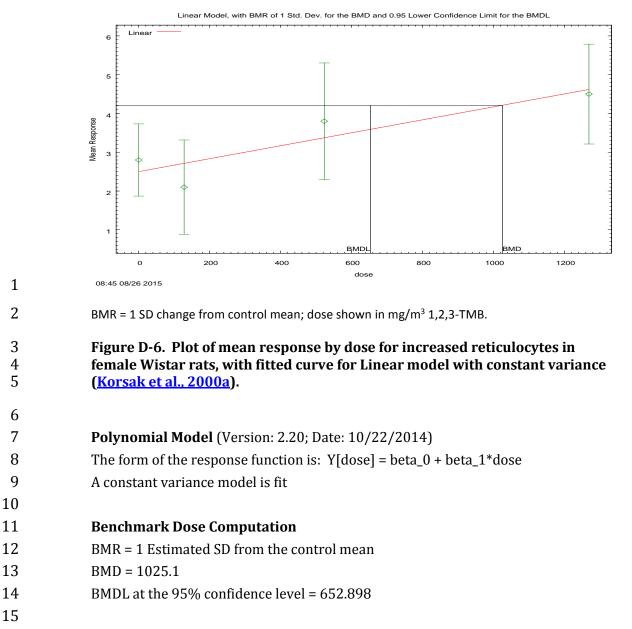
4

^aConstant variance case presented (BMDS Test 2 p-value = 0.522), selected model in bold; scaled residuals for

selected model for doses 0, 128, 523, and 1,269 were 0.56, -1.14, 0.79, and -0.21, respectively.

5 6 7 ^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the 8 Exponential (M2) model.

9 ^cNo available degrees of freedom to calculate a goodness-of-fit value.


10 ^dBMD or BMDL computation failed for this model.

11 ^eFor the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

12 ^fFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in

13 this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates 14 were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

15 ^gFor the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in

16 **Parameter Estimates**

Variable	Estimate	Default initial parameter values
alpha	2.91747	3.0575
rho	N/A	0
beta_0	2.50021	2.50021
beta_1	0.00166623	0.00166623

Dose	Ν	Observed mean	Estimated mean	Observed SD	Estimated SD	Scaled residuals
0	10	2.8	2.5	1.3	1.71	0.555
128	10	2.1	2.71	1.7	1.71	-1.14
523	10	3.8	3.37	2.1	1.71	0.793
1,269	10	4.5	4.61	1.8	1.71	-0.212

1 Table of Data and Estimated Values of Interest

2

\mathbf{r}
۲
0

Likelihoods	of	Interest

Model	Log(likelihood)	Number of parameters	AIC
A1	-40.244741	5	90.489483
A2	-39.119955	8	94.23991
A3	-40.244741	5	90.489483
Fitted	-41.414322	3	88.828645
R	-45.600613	2	95.201226

4

5 Tests of Interest

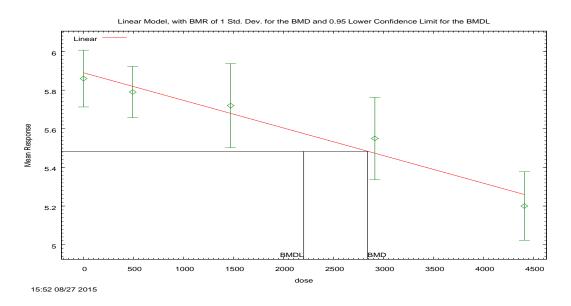
Test	-2*log(likelihood ratio)	Test df	<i>p</i> -value
Test 1	12.9613	6	0.04365
Test 2	2.24957	3	0.5223
Test 3	2.24957	3	0.5223
Test 4	2.33916	2	0.3105

Table D-17. Summary of BMD modeling results for decreased fetal weight in male Sprague-Dawley rat pups exposed to 1,2,4-TMB by inhalation on GDs 6–20; BMR = 1 SD or 5% change from control mean (constant variance) (<u>Saillenfait et al., 2005</u>)

	Goodne	ess of fit	BMD	BMDL	
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection
BMR = 1 SD change	from contro	ol mean			·
Exponential (M2)	0.571	-84.273	2,803	2,140	Of the models that provided an
Exponential (M3)	0.833	-83.913	3,440	2,349	adequate fit, the Linear model was selected, based on lowest
Exponential (M4)	0.571	-84.273	2,803	2,052	AIC (BMDLS differed by <3-fold)
Exponential (M5)	0.546	-81.913	3,440	2,349	
Hill	0.559	-81.936	3,441	2,367	
Power	0.843	-83.937	3,441	2,368	
Polynomial 3°	0.952	-84.180	3,444	2,408	
Polynomial 2°	0.883	-84.029	3,399	2,383	
Linear	0.622	-84.509	2,839	2,202	
BMR = 5% change fi	om control	mean			
Exponential (M2)	0.571	-84.273	2,009	1,577	Of the models that provided an
Exponential (M3)	0.833	-83.913	2,861	1,716	adequate fit, the Linear model was selected, based on lowest AIC
Exponential (M4)	0.571	-84.273	2,009	1,428	(BMDLS differed by <3-fold)
Exponential (M5)	0.546	-81.913	2,861	1,716	
Hill	0.559	-81.936	2,858	1,750	
Power	0.843	-83.937	2,857	1,751	
Polynomial 3°	0.952	-84.180	2,841	1,777	
Polynomial 2°	0.883	-84.029	2,799	1,761	
Linear	0.622	-84.509	2,057	1,640	

5 6 7

1


2

3

4

^aConstant variance case presented (BMDS Test 2 *p*-value = 0.101), selected model in bold; scaled residuals for

selected model for doses 0, 492, 1,471, 2,913, and 4,408 were -0.34, -0.32, 0.49, 0.91, and -0.69, respectively.

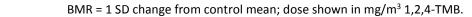
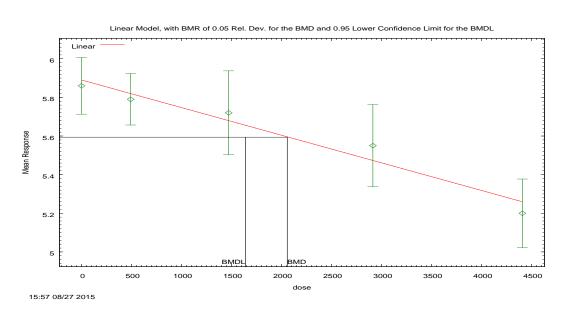


Figure D-7. Plot of mean response by dose for decreased fetal weight in male Sprague-Dawley rat pups, with fitted curve for Linear model with constant variance (<u>Saillenfait et al., 2005</u>).


1

2

3

4

5

7 8

BMR = 5% change from control mean; dose shown in mg/m³ 1,2,4-TMB.

9 Figure D-8. Plot of mean response by dose for decreased fetal weight in male 10 Sprague-Dawley rat pups, with fitted curve for Linear model with constant 11 variance (Saillenfait et al., 2005).

- 1 **Polynomial Model** (Version: 2.20; Date: 10/22/2014)
- 2 The form of the response function is: Y[dose] = beta_0 + beta_1*dose
- A constant variance model is fit
- 4
- 5 Benchmark Dose Computation
- 6 BMR = 5% Relative deviation
- 7 BMD = 2057.05
- 8 BMDL at the 95% confidence level = 1640.07
- 9

10 Parameter Estimates

Variable	Estimate	Default initial parameter values
alpha	0.165139	0.170101
rho	N/A	0
beta_0	5.88846	5.88821
beta_1	-0.000143129	-0.000142292

11

12 Table of Data and Estimated Values of Interest

Dose	Ν	Observed mean	Estimated mean	Observed SD	Estimated SD	Scaled residuals	
0	23	5.86	5.89	0.34	0.41	-0.336	
492	22	5.79	5.82	0.3	0.41	-0.324	
1,471	22	5.72	5.68	0.49	0.41	0.486	
2,913	22	5.55	5.47	0.48	0.41	0.906	
4,408	24	5.2	5.26	0.42	0.41	-0.694	

13

14 Likelihoods of Interest

Model	Log(likelihood)	Number of parameters	AIC	
A1	46.139026	6	-80.278052	
A2	50.018128	10	-80.036256	
A3	46.139026	6	-80.278052	
Fitted	45.254542	3	-84.509084	
R	28.974008	2	-53.948016	

15

16 Tests of Interest

Test	-2*log(likelihood ratio)	Test df	<i>p</i> -value	
Test 1	42.0882	8	<0.0001	
Test 2	7.7582	4	0.1008	
Test 3	7.7582	4	0.1008	
Test 4	1.76897	3	0.6217	

- 18
- 19

Table D-18. Summary of BMD modeling results for decreased fetal weight in male Sprague-Dawley rat pups exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance) (<u>Saillenfait et al., 2005</u>)

	Goodness of fit		BMD _{1SD}			
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection	
Exponential (M2) Exponential (M3) ^b	0.693	-66.941	3,397	2,560	No model selected as Test 2 <i>p</i> -value was <0.10. Therefore, as	
Exponential (M4)	0.698	-65.678	2,605	1,341	suggested in the <i>Benchmark Dose</i> <i>Technical Guidance</i> (U.S. EPA,	
Exponential (M5)	0.397	-63.679	2,603	1,341	2012), the data were remodeled using a non-homogenous variance model (see Table D-19).	
Hill	0.409	-63.716	2,572	1,275		
Power ^c Polynomial 3 ^{°d} Polynomial 2 ^{°e} Linear	0.650	-66.753	3,513	2,695		

5

1

2

3

4

^aConstant variance case presented (BMDS Test 2 *p*-value = 0.00237, BMDS Test 3 *p*-value = 0.00237); no model was selected as a best-fitting model.

^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the
 Exponential (M2) model.

10 ^cFor the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^dFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in

this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^eFor the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in

Table D-19. Summary of BMD modeling results for decreased fetal weight in male Sprague-Dawley rat pups exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (modeled variance) (<u>Saillenfait et al., 2005</u>)

	Goodness of fit		BMD _{1SD}	BMDL _{1SD}		
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection	
Exponential (M2) Exponential (M3) ^b	0.521	-73.291	2,523	1,779	No model selected as Test 3 <i>p</i> -value was <0.1. The data were	
Exponential (M4)	0.430	-71.859	2,042	1,125	remodeled after dropping the high dose (see Table D-20)	
Exponential (M5)	0.388	-70.799	2,045	1,238		
Hill	0.458	-70.996	1,984	1,235		
Power ^c Polynomial 3 ^{°d} Polynomial 2 ^{°e} Linear	0.479	-73.067	2,636	1,890		

5

1

2

3

4

⁶ ^aModeled variance case presented (BMDS Test 2 *p*-value = 0.00237, BMDS Test 3 *p*-value = 0.0603); no model was selected as a best-fitting model.

^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the
 Exponential (M2) model.

10 ^cFor the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^dFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in

this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^eFor the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in

Table D-20. Summary of BMD modeling results for decreased fetal weight in male Sprague-Dawley rat pups exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance, high dose dropped) (<u>Saillenfait et al., 2005</u>)

	Goodness of fit		s of fit BMD _{1SD}		
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection
Exponential (M2) Exponential (M3) ^b	0.557	-68.864	2,536	1,720	No model selected as Test 2 p -value was <0.10. Therefore, as
Exponential (M4)	0.395	-67.312	2,232	971	suggested in the Benchmark Dose Technical Guidance (U.S. EPA,
Exponential (M5)	N/A ^c	-66.037	1,961	530	2012), the data were remodeled
Hill	N/A ^c	-66.037	2,182	551	using a non-homogenous variance model (see Table D-21).
Power ^d Polynomial 3 ^{°e} Polynomial 2 ^{°f} Linear	0.539	-68.798	2,563	1,768	

5

1

2

3

4

^aConstant variance case presented (BMDS Test 2 *p*-value = 0.00872, BMDS Test 3 *p*-value = 0.00872); no model was selected as a best-fitting model.

^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the
 Exponential (M2) model.

10 °No available degrees of freedom to calculate a goodness-of-fit value.

^dFor the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^eFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in
 this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates

14 were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

15 ^fFor the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in

Table D-21. Summary of BMD modeling results for decreased fetal weight in male Sprague-Dawley rat pups exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (modeled variance, high dose dropped) (Saillenfait et al., 2005)

	Goodness of fit		BMD _{1SD}		
Modelª	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection
Exponential (M2)	0.454	-70.868	2,049	1,327	No model was selected as Test 3
Exponential (M3)	0.272	-69.242	2,226	1,364	<i>p</i> -value was <0.10. Therefore, this endpoint cannot be modeled
Exponential (M4)	0.454	-70.868	2,049	1,130	in BMDS and the NOAEL/LOAEL
Exponential (M5)	N/A ^b	-68.255	1,549	1,204	approach is recommended.
Hill	N/A ^b	-68.255	1,568	1,156	-
Power	0.266	-69.213	2,236	1,390	
Polynomial 3° ^c Polynomial 2°	0.233	-69.024	2,218	1,372	
Linear	0.462	-70.905	2,067	1,360	

5 6 7

1

2

3

4

^aModeled variance case presented (BMDS Test 2 *p*-value = 0.00872, BMDS Test 3 *p*-value = 0.0269); no model was selected as a best-fitting model.

8 ^bNo available degrees of freedom to calculate a goodness-of-fit value.

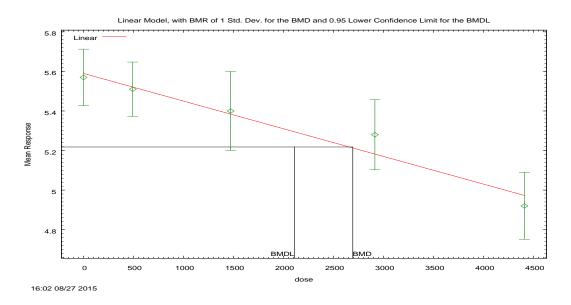
9 ^cFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model.

Table D-22. Summary of BMD modeling results for decreased fetal weight in female Sprague-Dawley rat pups exposed to 1,2,4-TMB by inhalation on GDs 6–20; BMR = 1 SD or 5% change from control mean (constant variance) (<u>Saillenfait et al., 2005</u>)

	Goodness of fit		Goodness of fit BMD BM	BMDL	
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection
BMR = 1 SD change	from contro	ol mean			
Exponential (M2)	0.506	-101.65	2,651	2,045	Of the models that provided an
Exponential (M3)	0.654	-101.14	3,313	2,212	adequate fit, the Linear model was selected, based on lowest
Exponential (M4)	0.506	-101.65	2,651	1,948	AIC (BMDLS differed by <3-fold)
Exponential (M5)	0.357	-99.136	3,313	2,212	
Hill	0.370	-99.180	3,312	2,241	
Power	0.669	-101.18	3,312	2,242	
Polynomial 3°	0.832	-101.62	3,322	2,307	
Polynomial 2°	0.725	-101.34	3,259	2,264	
Linear	0.555	-101.90	2,692	2,109	
BMR = 5% change fr	om control	mean		·	
Exponential (M2)	0.506	-101.65	1,951	1,549	Of the models that provided an
Exponential (M3)	0.654	-101.14	2,779	1,663	adequate fit, the Linear model was selected, based on lowest AIC
Exponential (M4)	0.506	-101.65	1,951	1,398	(BMDLS differed by <3-fold)
Exponential (M5)	0.357	-99.136	2,779	1,663	
Hill	0.370	-99.180	2,774	1,702	
Power	0.669	-101.18	2,773	1,704	
Polynomial 3°	0.832	-101.62	2,765	1,747	-
Polynomial 2°	0.725	-101.34	2,703	1,719	
Linear	0.555	-101.90	2,001	1,613	

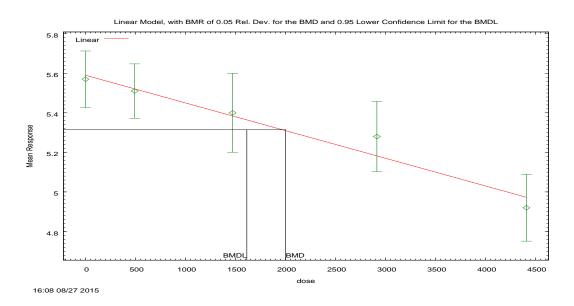
5 6 7

1


2

3

4


^aConstant variance case presented (BMDS Test 2 *p*-value = 0.394), selected model in bold; scaled residuals for

selected model for doses 0, 492, 1,471, 2,913, and 4,408 were -0.31, -0.19, 0.14, 1.16, and -0.76, respectively.

Figure D-9. Plot of mean response by dose for decreased fetal weight in female Sprague-Dawley rat pups, with fitted curve for Linear model with constant variance (<u>Saillenfait et al., 2005</u>).

8

9

1

3

4 5

BMR = 5% change from control mean; dose shown in mg/m³ 1,2,4-TMB.

Figure D-10. Plot of mean response by dose for decreased fetal weight in female Sprague-Dawley rat pups, with fitted curve for Linear model with constant variance (<u>Saillenfait et al., 2005</u>).

10

This document is a draft for review purposes only and does not constitute Agency policy. D-37 DRAFT—DO NOT CITE OR QUOTE

- 1 **Polynomial Model** (Version: 2.20; Date: 10/22/2014)
- 2 The form of the response function is: Y[dose] = beta_0 + beta_1*dose
- 3 A constant variance model is fit

4 5

Benchmark Dose Computation

- 6 BMR = 5% Relative deviation
- 7 BMD = 2001.36
- 8 BMDL at the 95% confidence level = 1612.89
- 9

10 Parameter Estimates

Variable	Estimate	Default initial parameter values		
alpha	0.141584	0.14543		
rho	N/A	0		
beta_0	5.59423	5.59388		
beta_1	-0.000139761	-0.000138886		

11

12 Table of Data and Estimated Values of Interest

Dose	Ν	Observed mean	Estimated mean	Observed SD	Estimated SD	Scaled residuals
0	23	5.57	5.59	0.33	0.38	-0.309
492	22	5.51	5.53	0.31	0.38	-0.193
1,471	22	5.4	5.39	0.45	0.38	0.142
2,913	22	5.28	5.19	0.4	0.38	1.16
4,408	24	4.92	4.98	0.4	0.38	-0.757

13

14 Likelihoods of Interest

Model	Log(likelihood)	Number of parameters	AIC
A1	54.992554	6	-97.985109
A2	57.03888	10	-94.07776
A3	54.992554	6	-97.985109
Fitted	53.949538	3	-101.899075
R	36.10487	2	-68.20974

15

16 Tests of Interest

Test	-2*log(likelihood ratio)	Test df	<i>p</i> -value
Test 1	41.868	8	<0.0001
Test 2	4.09265	4	0.3936
Test 3	4.09265	4	0.3936
Test 4	2.08603	3	0.5547

17

Table D-23. Summary of BMD modeling results for decreased fetal weight in female Sprague-Dawley rat pups exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance) (<u>Saillenfait et al., 2005</u>)

	Goodness of fit		BMD _{1SD}		
Model ^a	<i>p</i> -value	AIC	(mg/m^3)	(mg/m ³)	Basis for model selection
Exponential (M2) Exponential (M3) ^b	0.911	-61.962	3,582	2,669	No model selected as Test 2 <i>p</i> -value was <0.10. Therefore, as
Exponential (M4) ^c	0.766	-59.962	3,573	1,916	suggested in the <i>Benchmark Dose</i> Technical Guidance (U.S. EPA,
Exponential (M5) ^d	0.766	-59.962	3,573	1,916	2012), the data were remodeled
Hill	0.766	-59.963	3,570	1,866	using a non-homogenous variance model (see Table D-24).
Power ^e Polynomial 3 ^{°f} Polynomial 2 ^{°g} Linear	0.909	-61.950	3,677	2,794	

5

1

2

3

4

⁶ ^aConstant variance case presented (BMDS Test 2 *p*-value = <0.0001, BMDS Test 3 *p*-value = <0.0001); no model was selected as a best-fitting model.

^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the
 Exponential (M2) model.

10 CThe Exponential (M4) model may appear equivalent to the Exponential (M5) model; however, differences exist in
 digits not displayed in the table.

^dThe Exponential (M5) model may appear equivalent to the Exponential (M4) model; however, differences exist in
 digits not displayed in the table.

¹⁴ ^eFor the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

¹⁵ ^fFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in

16 this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates

17 were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

18 ^gFor the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in

Table D-24. Summary of BMD modeling results for decreased fetal weight in female Sprague-Dawley rat pups exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (modeled variance) (<u>Saillenfait et al., 2005</u>)

	Goodness of fit		BMD _{1SD}		
Modelª	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection
Exponential (M2) Exponential (M3) ^b	0.0193	-67.537	2,693	1,828	No model selected as Test 3 p -value was <0.1. The data were
Exponential (M4)	0.0510	-69.499	1,482	798	remodeled after dropping the high dose (see Table D-25)
Exponential (M5)	0.533	-73.064	1,469	1,070	
Hill	0.782	-75.064	1,469	1,023	
Power	0.0155	-67.061	2,841	1,970	
Polynomial 3° ^c Polynomial 2° ^d Linear	0.0148	-67.061	2,841	1,970	

9

1

2

3

4

^aModeled variance case presented (BMDS Test 2 *p*-value = <0.0001, BMDS Test 3 *p*-value = 0.0130); no model was selected as a best-fitting model.

^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^cFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in
 this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates
 were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

13 ^dFor the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in

Table D-25. Summary of BMD modeling results for decreased fetal weight in female Sprague-Dawley rat pups exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance, high dose dropped) (Saillenfait et al., 2005)

	Goodness of fit		BMD _{1SD}		
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection
Exponential (M2) Exponential (M3) ^b	0.769	-50.212	3,703	2,222	No model selected as Test 2 p -value was <0.10. Therefore, as
Exponential (M4)	0.565	-48.406	4,626	1,518	suggested in the Benchmark Dose Technical Guidance (<u>U.S. EPA,</u>
Exponential (M5)	N/A ^c	-46.738	Error ^d	0	2012), the data were remodeled
Hill	N/A ^c	-46.738	Error ^d	Error ^d	using a non-homogenous variance model (see Table D-26).
Power ^e Polynomial 3 ^{of} Polynomial 2 ^{og} Linear	0.759	-50.187	3,688	2,258	

5

1

2

3

4

6 7 ^aConstant variance case presented (BMDS Test 2 *p*-value = <0.0001, BMDS Test 3 *p*-value = <0.0001); no model was selected as a best-fitting model.

8 ^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the 9 Exponential (M2) model.

10 ^cNo available degrees of freedom to calculate a goodness-of-fit value.

11 ^dBMD or BMDL computation failed for this model.

12 ^eFor the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

13 ^fFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in 14 this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates

15 were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

16 ^gFor the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in 17

Table D-26. Summary of BMD modeling results for decreased fetal weight in female Sprague-Dawley rat pups exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (modeled variance, high dose dropped) (<u>Saillenfait et al., 2005</u>)

	Goodness of fit		BMD _{1SD}		
Modelª	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection
Exponential (M2)	0.310	-68.515	2,083	1,198	No model was selected as Test 3
Exponential (M3)	0.159	-66.872	2,156	1,237	<i>p</i> -value was <0.10. Therefore, this endpoint cannot be modeled
Exponential (M4)	0.310	-68.515	2,083	1,104	in BMDS and the NOAEL/LOAEL
Exponential (M5)	N/A ^b	-68.570	1,527	1,210	approach is recommended.
Hill	N/A ^b	-68.570	1,555	Error ^c	
Power	0.153	-66.809	2,171	1,255	
Polynomial 3 ^{°d} Polynomial 2°	0.0181	-66.546	2,122	1,227	
Linear	0.0608	-68.532	2,093	1,226	

5 6 7

1

2

3

4

^aModeled variance case presented (BMDS Test 2 *p*-value = <0.0001, BMDS Test 3 *p*-value = 0.0609); no model was selected as a best-fitting model.

8 ^bNo available degrees of freedom to calculate a goodness-of-fit value.

9 ^cBMD or BMDL computation failed for this model.

10 ^dFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in

11 this row reduced to the Polynomial 2° model.

Table D-27. Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,2,4-TMB by inhalation on GDs 6–20; BMR = 1 SD or 10% change from control mean (constant variance) (<u>Saillenfait et al., 2005</u>)

	Goodness of fit		BMD	BMDL	
Model ^a	<i>p</i> -value	AIC	(mg/m³)	(mg/m ³)	Basis for model selection
BMR = 1 SD change	from contro	l mean			·
Exponential (M2)	0.221	844.93	3,204	2,312	No model selected as Test 2
Exponential (M3)	0.613	843.50	3,839	2,967	<i>p</i> -value was <0.10. Therefore, as suggested in the <i>Benchmark Dose</i>
Exponential (M4)	0.221	844.93	3,204	2,299	Technical Guidance (U.S. EPA,
Exponential (M5)	0.322	845.50	3,839	2,967	2012), the data were remodeled using a non-homogenous
Hill	0.324	845.49	3,850	2,943	variance model (see Table D-28).
Power	0.615	843.49	3,851	2,940	
Polynomial 3°	0.664	843.34	3,813	2,924	
Polynomial 2°	0.771	841.65	3,734	3,266	
Linear	0.292	844.25	3,231	2,444	
BMR = 10% change	from contro	l mean			
Exponential (M2)	0.221	844.93	1,683	1,273	No model selected as Test 2
Exponential (M3)	0.613	843.50	2,994	1,791	<i>p</i> -value was <0.10. Therefore, as suggested in the <i>Benchmark Dose</i>
Exponential (M4)	0.221	844.93	1,683	1,185	Technical Guidance (U.S. EPA,
Exponential (M5)	0.322	845.50	2,994	1,791	2012), the data were remodeled using a non-homogenous
Hill	0.324	845.49	2,991	1,736	variance model (see Table D-28).
Power	0.615	843.49	2,990	1,729	
Polynomial 3°	0.664	843.34	2,906	1,714	
Polynomial 2°	0.771	841.65	2,753	2,451	1
Linear	0.292	844.25	1,781	1,406	

1

2

3

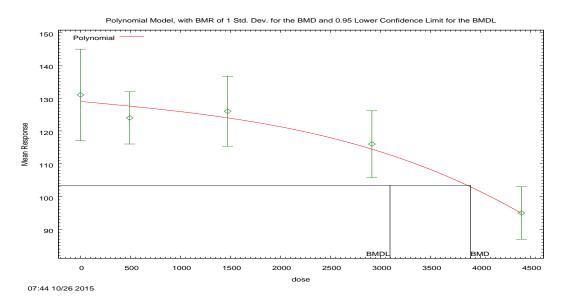
4

^aConstant variance case presented (BMDS Test 2 *p*-value = 0.0215, BMDS Test 3 *p*-value = 0.0215); no model was selected as a best-fitting model.

Table D-28. Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,2,4-TMB by inhalation on GDs 6–20; BMR = 1 SD or 10% change from control mean (modeled variance) (<u>Saillenfait et al., 2005</u>)

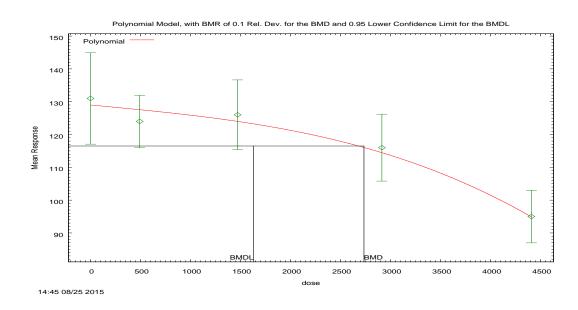
	Goodne	ess of fit	BMD	BMDL	
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection
BMR = 1 SD change f	rom contro	l mean			·
Exponential (M2)	0.0996	843.22	3,458	2,516	Of the models that provided an
Exponential (M3) Exponential (M5) ^b	0.218	842.00	3,935	3,116	adequate fit, the Polynomial 3 model was selected, based on lowest AIC (BMDLS differed by
Exponential (M4)	0.0996	843.22	3,458	2,515	<3-fold)
Hill	0.0827	843.97	3,941	Error ^c	
Power	0.222	841.97	3,941	3,078	
Polynomial 3°	0.274	841.55	3,899	3,094	
Polynomial 2°	0.219	842.00	3,851	3,025	
Linear	0.144	842.38	3,474	2,649	
BMR = 10% change fi	rom contro	l mean			
Exponential (M2)	0.0996	843.22	1,581	1,232	Of the models that provided an
Exponential (M3) Exponential (M5) ^b	0.218	842.00	2,910	1,664	adequate fit, the Polynomial 3 model was selected, based on lowest AIC (BMDLS differed by
Exponential (M4)	0.0996	843.22	1,581	1,152	<3-fold)
Hill	0.0827	843.97	2,891	1,799	
Power	0.222	841.97	2,889	1,573	
Polynomial 3°	0.274	841.55	2,734	1,631	
Polynomial 2°	0.219	842.00	2,655	1,567	
Linear	0.144	842.38	1,694	1,380	

1


2

3 4

^aModeled variance case presented (BMDS Test 2 *p*-value = 0.0215), selected model in bold; scaled residuals for selected model for doses 0, 492, 1,471, 2,913, and 4,408 were 0.29, -0.73, 0.29, 0.22, and -0.09, respectively.
 ^bFor the Exponential (M5) model, the estimate of c was 0 (boundary). The models in this row reduced to the


Second the exponential (MS) model, the estimate of c was 0 (boun
 Exponential (M3) model.

10 ^cBMD or BMDL computation failed for this model.

2 BMR = 1 SD change from control mean; dose shown in mg/m^3 1,2,4-TMB.

Figure D-11. Plot of mean response by dose for decreased dam weight gain in female Sprague-Dawley rats, with fitted curve for Polynomial 3 model with modeled variance (<u>Saillenfait et al., 2005</u>).

1

3

4

5

BMR = 10% change from control mean; dose shown in mg/m³ 1,2,4-TMB.

Figure D-12. Plot of mean response by dose for decreased dam weight gain in female Sprague-Dawley rats, with fitted curve for Polynomial 3 model with modeled variance (Saillenfait et al., 2005).

- 1 **Polynomial Model** (Version: 2.20; Date: 10/22/2014)
- 2 The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...
- 3 A modeled variance is fit

4 5

Benchmark Dose Computation

- 6 BMR = 1 Estimated SD from the control mean
- 7 BMD = 3898.99
- 8 BMDL at the 95% confidence level = 3094.13
- 9

10 Parameter Estimates

Variable	Estimate	Default initial parameter values
lalpha	-4.72235	6.36522
rho	2.31145	0
beta_0	129.446	129.55
beta_1	-0.00285669	-0.00648229
beta_2	-1.02802×10^{-17}	0
beta_3	-0.0000000251312	-0.00000000702052

11

12 **Table of Data and Estimated Values of Interest**

Dose	Ν	Observed mean	Estimated mean	Observed SD	Estimated SD	Scaled residuals
0	24	131	129	33	26	0.292
492	22	124	128	18	25.7	-0.732
1,471	22	126	124	24	24.9	0.293
2,913	22	116	115	23	22.7	0.225
4,408	24	95	95.3	19	18.3	-0.0881

13

14 Likelihoods of Interest

Model	Log(likelihood)	Number of parameters	AIC
A1	-417.261306	6	846.522613
A2	-411.512361	10	843.024723
A3	-414.479759	7	842.959518
Fitted	-415.773389	5	841.546778
R	-432.234922	2	868.469844

15

16 Tests of Interest

Test	-2*log(likelihood ratio)	Test df	<i>p</i> -value
Test 1	41.4451	8	<0.0001
Test 2	11.4979	4	0.0215
Test 3	5.9348	3	0.1148
Test 4	2.58726	2	0.2743

This document is a draft for review purposes only and does not constitute Agency policy. D-46 DRAFT—DO NOT CITE OR QUOTE Table D-29. Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance) (<u>Saillenfait et al., 2005</u>)

	Goodne	ess of fit	BMD _{1SD}		
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection
Exponential (M2)	0.276	705.72	1,414	1,142	No model selected as Test 2
Exponential (M3)	0.153	707.61	1,520	1,147	<i>p</i> -value was <0.10. Therefore, as suggested in the <i>Benchmark Dose</i>
Exponential (M4)	0.149	707.66	1,349	930	Technical Guidance (<u>U.S. EPA,</u>
Exponential (M5)	0.281	707.01	1,634	1,126	<u>2012</u>), the data were remodeled using a non-homogenous
Hill	0.341	706.76	1,611	1,131	variance model (see Table D-30).
Power ^b Polynomial 3° ^c Polynomial 2° ^d Linear	0.128	707.53	1,825	1,537	

9

1

2

3

4

^aConstant variance case presented (BMDS Test 2 *p*-value = 2.83×10^{-4} , BMDS Test 3 *p*-value = 2.83×10^{-4}); no model was selected as a best-fitting model.

^bFor the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model. ^cFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in

this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates

11 were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

12 ^dFor the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in

13 this row reduced to the Linear model.

.

Table D-30. Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (modeled variance) (Saillenfait et al., 2005)

	Goodne	ess of fit	BMD _{1SD}		
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection
Exponential (M2)	0.0503	697.91	1,058	816	No model selected as Test 3
Exponential (M3)	0.0234	699.62	1,180	827	<i>p</i> -value was <0.1. The data were remodeled after dropping the
Exponential (M4)	0.0209	699.84	1,011	690	high dose (see Table D-31)
Exponential (M5)	0.0675	697.45	1,266	891	
Hill	0.114	696.61	1,248	Error ^b	
Power Polynomial 3° ^c Polynomial 2°	0.0200	699.94	1,359	1,075	
Linear	0.0200	699.94	1,359	Error ^b	

5 6 7

1 2

3

4

^aModeled variance case presented (BMDS Test 2 *p*-value = 2.83×10^{-4} , BMDS Test 3 *p*-value = 0.0575); no model was selected as a best-fitting model.

^bBMD or BMDL computation failed for this model.

^cFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model.

8 9 10 -20; BMR = 1 SD change from control mean (mod enfait et al., 2005) Goodness of fit BMD_{1SD} BMDL_{1SD} p-value AIC (mg/m³) (mg/m³) Table D-31. Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (constant variance, high dose dropped) (Saillenfait et al., 2005)

	Goodness of fit		Goodness of fit		BMD _{1SD}		
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection		
Exponential (M2)	0.120	564.09	1,187	910	No model selected as Test 2		
Exponential (M3)	0.177	563.66	1,571	1,063	<i>p</i> -value was <0.10. Therefore, as suggested in the <i>Benchmark Dose</i>		
Exponential (M4)	0.120	564.09	1,187	881	Technical Guidance (<u>U.S. EPA,</u>		
Exponential (M5)	N/A ^b	564.12	1,471	1,132	<u>2012</u>), the data were remodeled using a non-homogenous		
Hill	N/A ^b	564.12	1,471	1,118	variance model (see Table D-32).		
Power	0.149	563.92	1,596	1,088			
Polynomial 3° ^c Polynomial 2°	0.112	564.36	1,595	1,064			
Linear	0.188	563.18	1,288	1,028			

5 6 7

1

2

3 4

> ^aConstant variance case presented (BMDS Test 2 *p*-value = 0.00105, BMDS Test 3 *p*-value = 0.00105); no model was selected as a best-fitting model.

8 ^bNo available degrees of freedom to calculate a goodness-of-fit value.

9 ^cFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in

10 this row reduced to the Polynomial 2° model. Table D-32. Summary of BMD modeling results for decreased dam weight gain in female Sprague-Dawley rats exposed to 1,3,5-TMB by inhalation on GDs 6–20; BMR = 1 SD change from control mean (modeled variance, high dose dropped) (<u>Saillenfait et al., 2005</u>)

	Goodness of fit		Goodness of fit		BMD _{1SD}		
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection		
Exponential (M2)	0.0128	559.00	978	717	Although Test 3 <i>p</i> -value was		
Exponential (M3)	0.0127	558.50	1,275	853	approximately 0.10, indicating appropriate fit of the variance		
Exponential (M4)	0.0128	559.00	978	698	model, no model was selected as		
Exponential (M5)	N/A ^b	555.51	1,410	966	Test 4 <i>p</i> -value was <0.10. Therefore, this endpoint cannot		
Hill	0.269	553.51	1,397	Error ^c	be modeled in BMDS and the		
Power	0.00946	559.02	1,297	858	NOAEL/LOAEL approach is recommended.		
Polynomial 3 ^{°d} Polynomial 2°	0.00618	559.78	1,256	820			
Linear	0.0181	558.31	1,053	798			

5 6 7

1

2

3

4

^aModeled variance case presented (BMDS Test 2 *p*-value = 0.00105, BMDS Test 3 *p*-value = 0.0996); no model was selected as a best-fitting model.

8 ^bNo available degrees of freedom to calculate a goodness-of-fit value.

9 ^cBMD or BMDL computation failed for this model.

10 ^dFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in

11 this row reduced to the Polynomial 2° model.

1 2 3 Table D-33. Summary of BMD modeling results for increased monocytes in male Wistar rats exposed to 1,3,5-TMB by gavage for 13 weeks; BMR = 1 SD change from control mean (constant variance) (<u>Adenuga et al., 2014</u>)

	Goodness of fit		BMD _{1SD}		
Model ^a	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection
Exponential (M2) ^b	0.00910	-106.57	1,600	640	No model selected as Test 2
Exponential (M3) ^c	0.00910	-106.57	1,600	640	<i>p</i> -value was <0.10. Therefore, as suggested in the <i>Benchmark Dose</i>
Exponential (M4)	0.0917	-111.12	99.3	0.410	Technical Guidance (<u>U.S. EPA,</u>
Exponential (M5)	N/A ^d	-109.20	71.7	0.329	2012), the data were remodeled using a non-homogenous
Hill	N/A ^d	-109.20	58.0	6.86 × 10⁻7	variance model (see Table D-32).
Power ^e	0.00969	-106.69	1,645	582	
Polynomial 3° ^f Polynomial 2° ^g Linear ^h	0.00969	-106.69	1,645	582	

9

10

^aConstant variance case presented (BMDS Test 2 *p*-value = 0.0402, BMDS Test 3 *p*-value = 0.0402); no model was selected as a best-fitting model.

^bThe Exponential (M2) model may appear equivalent to the Exponential (M3) model; however, differences exist in digits not displayed in the table.

^cThe Exponential (M3) model may appear equivalent to the Exponential (M2) model; however, differences exist in digits not displayed in the table.

11 ^dNo available degrees of freedom to calculate a goodness-of-fit value.

^eThe Power model may appear equivalent to the Polynomial 3° model; however, differences exist in digits not
 displayed in the table. This also applies to the Polynomial 2° model. This also applies to the Linear model.

14 ^fFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in

15 this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates 16 were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

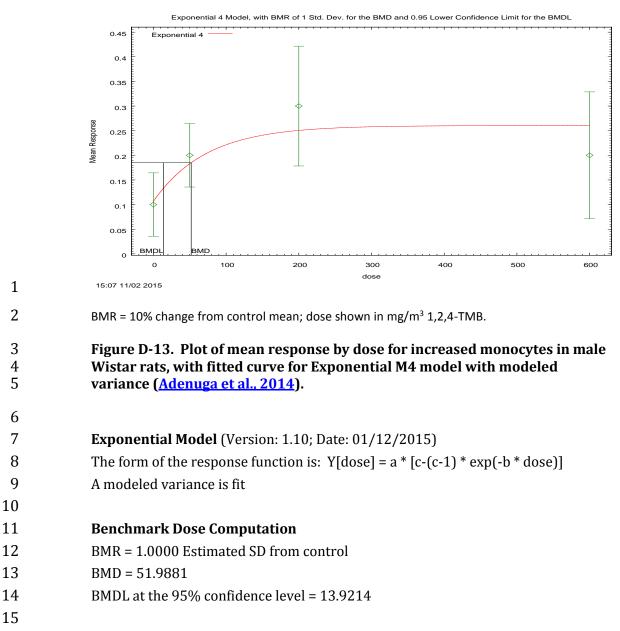
17 ^gFor the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in
 18 this row reduced to the Linear model.

^hThe Linear model may appear equivalent to the Power model; however, differences exist in digits not displayed in
 the table.

1 2 3 Table D-34. Summary of BMD modeling results for increased monocytes in male Wistar rats exposed to 1,3,5-TMB by gavage for 13 weeks; BMR = 1 SD change from control mean (modeled variance) (<u>Adenuga et al., 2014</u>)

	Goodness of fit				
Modelª	<i>p</i> -value	AIC	(mg/m ³)	(mg/m ³)	Basis for model selection
Exponential (M2) Exponential (M3) ^b	0.00313	-107.32	772	334	Of the models that provided an adequate fit, the Exponential M4
Exponential (M4)	0.231	-115.41	52.0	13.9	model was selected as the only appropriately fitting model.
Exponential (M5)	N/A ^c	-113.92	56.1	17.3	, , , , , , , , , , , , , , , , , , ,
Hill	N/A ^c	-113.92	51.8	33.9	
Power	<0.0001	-62.935	60,000	5.87×10^{-12}	
Polynomial 3 ^{°d} Polynomial 2 ^{°e} Linear	0.00553	-108.45	453	161	

⁴ 5 6 7


^aModeled variance case presented (BMDS Test 2 *p*-value = 0.0402); selected model in bold; scaled residuals for selected model for doses 0, 50, 200, and 600 were −0.27, 0.44, 0.98, and −1.15, respectively.

^bFor the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the
 Exponential (M2) model.

9 °No available degrees of freedom to calculate a goodness-of-fit value.

^dFor the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in
 this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates
 were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

13 ^eFor the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in

16 **Parameter Estimates**

Variable	Estimate	Default initial parameter values
Inalpha	-1.3469	-2.24702
rho	1.67291	1.1326
a	0.106615	0.095
b	0.0137132	0.00238203
с	2.44253	3.31579
d	N/A	1

Dose	Ν	Observed mean	Estimated mean	Observed SD	Estimated SD	Scaled residuals
0	10	0.1	0.11	0.09	0.08	-0.2668
50	10	0.2	0.18	0.09	0.12	0.4381
200	10	0.3	0.25	0.17	0.16	0.977
600	10	0.2	0.26	0.18	0.17	-1.154

1 Table of Data and Estimated Values of Interest

2

3 Likelihoods of Interest

Model	Log(likelihood)	Number of parameters	AIC
A1	60.98264	5	-111.9653
A2	65.13368	8	-114.2674
A3	63.4237	6	-114.8474
R	55.94043	2	-107.8809
4	62.70505	5	-115.4101

4

5 Tests of Interest

Test	-2*log(likelihood ratio)	Test df	<i>p</i> -value
Test 1	18.39	6	0.005336
Test 2	8.302	3	0.04016
Test 3	3.42	2	0.1809
Test 6a	1.437	1	0.2306

REFERENCES FOR APPENDICES¹

1 2 3 Adenuga, D; Carrillo, JC; Mckee, RH. (2014). The sub-chronic oral toxicity of 1,3,5-trimethylbenzene 4 in Sprague-Dawley rats. Regul Toxicol Pharmacol 69: 143-153. 5 http://dx.doi.org/10.1016/j.yrtph.2014.03.006 6 Bakke, OM; Scheline, RR. (1970). Hydroxylation of aromatic hydrocarbons in the rat. Toxicol Appl 7 Pharmacol 16: 691-700. http://dx.doi.org/10.1016/0041-008X(70)90074-8 8 Bättig, K; Grandjean, E; Rossi, L; Rickenbacher, J. (1958). Toxicologische untersuchungen uber 9 trimethylbenzol. Archiv fuer Gewerbepathologie und Gewerbehygiene 16: 555-566. 10 Battig, K; Grandjean, E; Turrian, V. (1956). [Health damage after continuous exposure to trimethyl 11 benzene in a painting workshop]. Soz Praventivmed 1: 389-403. 12 http://dx.doi.org/10.1007/BF02031676 13 Billionnet, C; Gay, E; Kirchner, S; Leynaert, B; Annesi-Maesano, I. (2011). Quantitative assessments 14 of indoor air pollution and respiratory health in a population-based sample of French 15 dwellings. Environ Res 111: 425-434. http://dx.doi.org/10.1016/j.envres.2011.02.008 16 Borriston (Borriston Laboratories). (1983). Four-week oral nephrotoxicity screening study in male 17 F344 rats. (1706). Temple Hills, MD. 18 https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=OTS00004600 19 Brown, RP; Delp, MD; Lindstedt, SL; Rhomberg, LR; Beliles, RP. (1997). Physiological parameter 20 values for physiologically based pharmacokinetic models [Review]. Toxicol Ind Health 13: 21 407-484. http://dx.doi.org/10.1177/074823379701300401 22 Carrillo, JC; Adenuga, MD; Mckee, RH. (2014). The sub-chronic toxicity of regular White Spirit in 23 rats. Regul Toxicol Pharmacol 70: 222-230. http://dx.doi.org/10.1016/j.yrtph.2014.07.007 24 Cerf, J; Potvin, M; Laham, S. (1980). Acidic metabolites of pseudocumene in rabbit urine. Arch 25 Toxicol 45: 93-100. 26 Chen, R; Dick, F; Seaton, A. (1999). Health effects of solvent exposure among dockyard painters: 27 Mortality and neuropsychological symptoms. Occup Environ Med 56: 383-387. 28 http://dx.doi.org/10.1136/oem.56.6.383 29 Chevron (Chevron Chemical Company). (1985). One generation reproduction study of PED 5450 in 30 rats with cover letter. (OTS0206739). Washington, DC: U.S. EPA. 31 Clark, DG; Butterworth, ST; Martin, JG; Roderick, HR; Bird, MG. (1989). Inhalation toxicity of high 32 flash aromatic naphtha. Toxicol Ind Health 5: 415-428. 33 Collins, AS; Sumner, SCI; Borghoff, SI; Medinsky, MA. (1999). A physiological model for tert-amyl 34 methyl ether and tert-amyl alcohol: Hypothesis testing of model structures. Toxicol Sci 49: 35 15-28. 36 Cooper, SP; Burau, K; Sweeney, A; Robison, T; Smith, MA; Symanski, E; Colt, JS; Laseter, J; Zahm, SH. 37 (2001). Prenatal exposure to pesticides: a feasibility study among migrant and seasonal 38 farmworkers. Am J Ind Med 40: 578-585.

¹Multiple references published in the same year by the same author(s) have been assigned a letter (e.g., 1986a, 1986b) in Volume 1 of the Toxicological Review, based on which publication's title comes first alphabetically.

1	Dahl, AR; Damon, EG; Mauderly, JL; Rothenberg, SJ; Seiler, FA; Mcclellan, RO. (1988). Uptake of 19
2	hydrocarbon vapors inhaled by F344 rats. Fundam Appl Toxicol 10: 262-269.
3	http://dx.doi.org/10.1016/0272-0590(88)90310-7
4	Deurenberg, P; Weststrate, JA; Seidell, JC. (1991). Body mass index as a measure of body fatness:
5	age- and sex-specific prediction formulas. Br J Nutr 65: 105-114.
6	Douglas, JF; Mckee, RH; Cagen, SZ; Schmitt, SL; Beatty, PW; Swanson, MS; Schreiner, CA; Ulrich, CE;
7	<u>Cockrell, BY.</u> (1993). A neurotoxicity assessment of high flash aromatic naphtha. Toxicol Ind
8	Health 9: 1047-1058.
9	Dowty, BJ; Laseter, JL; Storer, J. (1976). The transplacental migration and accumulation in blood of
10	volatile organic constituents. Pediatr Res 10: 696-701.
11	http://dx.doi.org/10.1203/00006450-197607000-00013
12	Eide, I; Zahlsen, K. (1996). Inhalation experiments with mixtures of hydrocarbons. Experimental
13	design, statistics and interpretation of kinetics and possible interactions. Arch Toxicol 70:
14	397-404. <u>http://dx.doi.org/10.1007/s002040050291</u>
15	El Hamid Hassan, AA; El Moez Elnagar, SA; El Tayeb, IM; El Halim Bolbol, SA. (2013). Health hazards
16	of solvents exposure among workers in paint industry. OJSST 3: 87-95.
17	http://dx.doi.org/10.4236/ojsst.2013.34011
18	Emond, C; Krishnan, K. (2006). A physiological pharmacokinetic model based on tissue lipid content
19	for simulating inhalation pharmacokinetics of highly lipophilic volatile organic chemicals.
20	Toxicol Mech Meth 16: 395-403. <u>http://dx.doi.org/10.1080/15376510600860474</u>
21	Fiserova-Bergerova, V. (1983). Gases and their solubility: A review of fundamentals. In Modeling of
22	Inhalation Exposure to Vapors: Uptake, Distribution, and Elimination. Boca Raton, FL: CRC
23	Press.
24	Fuente, A; McPherson, B; Cardemil, F. (2013). Xylene-induced auditory dysfunction in humans. Ear
25	Hear 34: 651-660. http://dx.doi.org/10.1097/AUD.0b013e31828d27d7
26	Fuente, A: McPherson, B: Hood, LJ. (2012). Hearing loss associated with xylene exposure in a
27	laboratory worker. J Am Acad Audiol 23: 824-830. <u>http://dx.doi.org/10.3766/jaaa.23.10.7</u>
28	Fukaya, Y; Saito, I; Matsumoto, T; Takeuchi, Y; Tokudome, S. (1994). Determination of 3,4-
29	dimethylhippuric acid as a biological monitoring index for trimethylbenzene exposure in
30	transfer printing workers. Int Arch Occup Environ Health 65: 295-297.
31	http://dx.doi.org/10.1007/BF00405692
32	Gage, JC. (1970). The subacute inhalation toxicity of 109 industrial chemicals. Br J Ind Med 27: 1-18.
33 34	<u>http://dx.doi.org/10.1136/oem.27.1.1</u> Gaschen, A; Lang, D; Kalberer, M; Savi, M; Geiser, T; Gazdhar, A; Lehr, CM; Bur, M; Dommen, J;
34 35	
35 36	<u>Baltensperger, U; Geiser, M.</u> (2010). Cellular responses after exposure of lung cell cultures to secondary organic aerosol particles. Environ Sci Technol 44: 1424-1430.
30 37	http://dx.doi.org/10.1021/es902261m
38	<u>Gong, Y; Kishi, R; Kasai, S; Katakura, Y; Fujiwara, K; Umemura, T; Kondo, T; Sato, T; Sata, F;</u>
39	<u>Tsukishima, E; Tozaki, S; Kawai, T; Miyama, Y.</u> (2003). Visual dysfunction in workers
40	exposed to a mixture of organic solvents. Neurotoxicology 24: 703-710.
41	http://dx.doi.org/10.1016/S0161-813X(03)00034-2
42	Gralewicz, S: Wiaderna, D. (2001). Behavioral effects following subacute inhalation exposure to m-
43	xylene or trimethylbenzene in the rat: A comparative study. Neurotoxicology 22: 79-89.
44	http://dx.doi.org/10.1016/S0161-813X(00)00003-6
45	<u>Gralewicz, S; Wiaderna, D; Tomas, T.</u> (1997a). Retardation of the age-related increase in
46	spontaneous cortical spike-wave discharges (SWD) in rats after a 28-day inhalation
47	exposure to an industrial solvent, pseudocumene (1,2,4-trimethylbenzene). Int J Occup Med
48	Environ Health 10: 213-222.
-	

1	Gralewicz, S; Wiaderna, D; Tomas, T; Rydzyński, K. (1997b). Behavioral changes following 4-week
2	inhalation exposure to pseudocumene (1,2,4-trimethylbenzene) in the rat. Neurotoxicol
3	Teratol 19: 327-333. http://dx.doi.org/10.1016/S0892-0362(97)00001-9
4	Harlan Laboratories. (2012). Sprague Dawley: Outbred Rat. Available online at
5	http://www.harlan.com/products and services/research models and services/research
6	models_by_product_type/outbred_rats/sprague_dawley_sd (accessed June 4, 2012).
7	Hissink, AM; Krüse, J; Kulig, BM; Verwei, M; Muijser, H; Salmon, F; Leenheers, LH; Owen, DE;
8	Lammers, JH; Freidig, AP; Mckee, RH. (2007). Model studies for evaluating the
9	neurobehavioral effects of complex hydrocarbon solvents III. PBPK modeling of white spirit
10	constituents as a tool for integrating animal and human test data. Neurotoxicology 28: 751-
11	760. <u>http://dx.doi.org/10.1016/j.neuro.2007.03.005</u>
12	Huo, JZ; Aldous, S; Campbell, K; Davies, N. (1989). Distribution and metabolism of 1,2,4-
13	trimethylbenzene (pseudocumene) in the rat. Xenobiotica 19: 161-170.
14	http://dx.doi.org/10.3109/00498258909034688
15	IBT Labs (Industrial Bio-Test Laboratories, Inc.). (1992). Four-week subacute aerosol inhalation
16	toxicity study with MCS-1809 in albino rats. (88920007305; OTS0545631). St. Louis, MO:
17	Monsanto Company.
18	Ichiba, M; Hama, H; Yukitake, S; Kubota, M; Kawasaki, S; Tomokuni, K. (1992). Urinary excretion of
19	3,4-dimethylhippuric acid in workers exposed to 1,2,4-trimethylbenzene. Int Arch Occup
20	Environ Health 64: 325-327. <u>http://dx.doi.org/10.1007/BF00379541</u>
21	Janasik, B; Jakubowski, M; Jałowiecki, P. (2008). Excretion of unchanged volatile organic
22	compounds (toluene, ethylbenzene, xylene and mesitylene) in urine as result of
23	experimental human volunteer exposure. Int Arch Occup Environ Health 81: 443-449.
24 25	http://dx.doi.org/10.1007/s00420-007-0233-9
25	Janik-Spiechowicz, E; Wyszyńska, K; Dziubałtowska, E. (1998). Genotoxicity evaluation of
26	trimethylbenzenes. Mutat Res Genet Toxicol Environ Mutagen 412: 299-305.
27	http://dx.doi.org/10.1016/S1383-5718(97)00202-7 Järnberg, J; Johanson, G. (1995). Liquid/air partition coefficients of the trimethylbenzenes. Toxicol
28 29	Ind Health 11: 81-88. http://dx.doi.org/10.1177/074823379501100107
30	<u>Järnberg, J; Johanson, G.</u> (1999). Physiologically based modeling of 1,2,4-trimethylbenzene
31	inhalation toxicokinetics. Toxicol Appl Pharmacol 155: 203-214.
32	http://dx.doi.org/10.1006/taap.1998.8596
33	<u>Järnberg, J; Johanson, G; Löf, A.</u> (1996). Toxicokinetics of inhaled trimethylbenzenes in man. Toxicol
34	Appl Pharmacol 140: 281-288. <u>http://dx.doi.org/10.1006/taap.1996.0223</u>
35	<u>Järnberg, J; Johanson, G; Löf, A; Stahlbom, B.</u> (1997a). Inhalation toxicokinetics of 1,2,4-
36	trimethylbenzene in volunteers: Comparison between exposure to white spirit and 1,2,4-
37	trimethylbenzene alone. Sci Total Environ 199: 65-71. http://dx.doi.org/10.1016/S0048-
38	9697(97)05482-X
39	Järnberg, J; Johanson, G; Löf, A; Stahlbom, B. (1998). Toxicokinetics of 1,2,4-trimethylbenzene in
40	humans exposed to vapours of white spirit: Comparison with exposure to 1,2,4-
41	trimethylbenzene alone. Arch Toxicol 72: 483-491.
42	http://dx.doi.org/10.1007/s002040050532
43	<u>Järnberg, J; Stahlbon, B; Johanson, G; Löf, A.</u> (1997b). Urinary excretion of dimethylhippuric acids in
44	humans after exposure to trimethylbenzenes. Int Arch Occup Environ Health 69: 491-497.
45	http://dx.doi.org/10.1007/s004200050179
46	Jones, K; Meldrum, M; Baird, E; Cottrell, S; Kaur, P; Plant, N; Dyne, D; Cocker, J. (2006). Biological
47	monitoring for trimethylbenzene exposure: A human volunteer study and a practical
48	example in the workplace. Ann Occup Hyg 50: 593-598.
49	http://dx.doi.org/10.1093/annhyg/mel016

1	<u>Juárez-Pérez, CA; Torres-Valenzuela, A; Haro-García, LC; Borja-Aburto, VH; Aguilar-Madrid, G.</u>
2	(2014). Ototoxicity effects of low exposure to solvent mixture among paint manufacturing
3	workers. Int J Audiol 53: 370-376. <u>http://dx.doi.org/10.3109/14992027.2014.888597</u>
4	Juran, SA; Johanson, G; Ernstgård, L; Iregren, A; van Thriel, C. (2014). Neurobehavioral performance
5	in volunteers after inhalation of white spirits with high and low aromatic content. Arch
6	Toxicol 88: 1127-1140. <u>http://dx.doi.org/10.1007/s00204-014-1236-4</u>
7	Kimura, K; Nagata, T; Hara, K; Kageura, M. (1988). Gasoline and kerosene components in blooda
8	forensic analysis. Hum Toxicol 7: 299-305.
9	http://dx.doi.org/10.1177/096032718800700401
10	Kimura, K; Nagata, T; Kudo, K; Imamura, T; Hara, K. (1991). Determination of kerosene and light oil
11	components in blood. Biological Mass Spectrometry 20: 493-497.
12	http://dx.doi.org/10.1002/bms.1200200810
13	Koch Industries (Koch Industries, Incorporated). (1995a). 14-day oral gavage toxicity study of
14	1,3,5-trimethylbenzene in rats with a recovery group, with cover letter dated $2/7/95$.
15	(44616). Wichita, KS.
16	https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=0TS0558836
17	Koch Industries (Koch Industries, Incorporated). (1995b). 90-day oral gavage toxicity study of
18	1,3,5-trimethylbenzene in rats with a recovery group. (44618). Wichita, KS: Koch Industries,
19	Inc.
20	Korsak, Z; Rydzyński, K. (1996). Neurotoxic effects of acute and subchronic inhalation exposure to
21	trimethylbenzene isomers (pseudocumene, mesitylene, hemimellitene) in rats. Int J Occup
22	Med Environ Health 9: 341-349.
23	Korsak, Z; Rydzyński, K; Jajte, J. (1997). Respiratory irritative effects of trimethylbenzenes: An
24	experimental animal study. Int J Occup Med Environ Health 10: 303-311.
25	Korsak, Z; Stetkiewicz, J; Majcherek, W; Stetkiewicz, I; Jajte, J; Rydzyński, K. (2000a). Sub-chronic
26	inhalation toxicity of 1,2,4-trimethylbenzene (pseudocumene) in rats. Int J Occup Med
27	Environ Health 13: 155-164.
28	Korsak, Z; Stetkiewicz, J; Majcherek, W; Stetkiewicz, I; Jajte, J; Rydzyński, K. (2000b). Subchronic
29 30	inhalation toxicity of 1,2,3-trimethylbenzene (hemimellitene) in rats. Int J Occup Med Environ Health 13: 223-232.
30 31	Korsak, Z: Swiercz, R: Rydzyński, K. (1995). Toxic effects of acute inhalation exposure to 1,2,4-
32	trimethylbenzene (pseudocumene) in experimental animals. Int J Occup Med Environ
33	Health 8: 331-337.
34	Kostrewski, P: Wiaderna-Brycht, A. (1995). Kinetics of elimination of mesitylene and 3,5-
35	dimethylbenzoic acid after experimental human exposure. Toxicol Lett 77: 259-264.
36	http://dx.doi.org/10.1016/0378-4274(95)03305-X
37	Kostrzewski, P; Wiaderna-Brycht, A; Czerski, B. (1997). Biological monitoring of experimental
38	human exposure to trimethylbenzene. Sci Total Environ 199: 73-81.
39	http://dx.doi.org/10.1016/S0048-9697(97)05504-6
40	Laham, S; Potvin, M. (1989). Identification and determination of mesitylene acidic metabolites in
41	rabbit urine. Toxicol Environ Chem 24: 57-69.
42	http://dx.doi.org/10.1080/02772248909357477
43	Lammers, JH; Emmen, HH; Muijser, H; Hoogendijk, EM; McKee, RH; Owen, DE; Kulig, BM. (2007).
44	Model studies for evaluating the neurobehavioral effects of complex hydrocarbon solvents
45	II. Neurobehavioral effects of white spirit in rat and human. Neurotoxicology 28: 736-750.
46	http://dx.doi.org/10.1016/j.neuro.2007.03.003
47	Lee, CR; Jeong, KS; Kim, Y; Yoo, CI; Lee, JH; Choi, YH. (2005). Neurobehavioral changes of shipyard
48	painters exposed to mixed organic solvents. Ind Health 43: 320-326.
49	Lehotzky, K; Szeberenyi, JM; Gy, U; Kiss, A. (1985). Behavioural effects of prenatal exposure to
50	carbon disulphide and to aromatol in rats. Arch Toxicol Suppl 8: 442-446.

1	Lutz, P; Gralewicz, S; Wiaderna, D; Swiercz, R; Grzelińska, Z; Majcherek, W. (2010). Contrasting
2	effects of 4-week inhalation exposure to pseudocumene or hemimellitene on sensitivity to
3	amphetamine and propensity to amphetamine sensitization in the rat. Int J Occup Med
4 5	Environ Health 23: 85-94. http://dx.doi.org/10.2478/v10001-010-0005-8
5	Maltoni, C; Ciliberti, A; Pinto, C; Soffritti, M; Belpoggi, F; Menarini, L. (1997). Results of long-term
6	experimental carcinogenicity studies of the effects of gasoline, correlated fuels, and major
7	gasoline aromatics on rats. Ann N Y Acad Sci 837: 15-52. http://dx.doi.org/10.1111/j.1749-
8	<u>6632.1997.tb56863.x</u>
9	Maule, AL; Heaton, KJ; Rodrigues, E; Smith, KW; Mcclean, MD; Proctor, SP. (2013). Postural sway
10	and exposure to jet propulsion fuel 8 among US Air Force personnel. J Occup Environ Med
11	55: 446-453. http://dx.doi.org/10.1097/JOM.0b013e31827db94b
12	Mckee, RH; Lammers, IH; Muijser, H; Owen, DE; Kulig, BM. (2010). Neurobehavioral effects of acute
13	exposure to aromatic hydrocarbons. Int J Toxicol 29: 277-290.
14	http://dx.doi.org/10.1177/1091581810365089
15	Mckee, RH; Wong, ZA; Schmitt, S; Beatty, P; Swanson, M; Schreiner, CA; Schardein, JL. (1990). The
16	reproductive and developmental toxicity of High Flash Aromatic Naphtha. Toxicol Ind
17	Health 6: 441-460.
18	Meulenberg, C; Vijverberg, H. (2000). Empirical relations predicting human and rat tissue: Air
19	partition coefficients of volatile organic compounds. Toxicol Appl Pharmacol 165: 206-216.
20	http://dx.doi.org/10.1006/taap.2000.8929
21	Mikulski, PI; Wiglusz, R. (1975). The comparative metabolism of mesitylene, pseudocumene, and
22	hemimellitene in rats. Toxicol Appl Pharmacol 31: 21-31. http://dx.doi.org/10.1016/0041-
23	<u>008X(75)90048-4</u>
24	MOE (Ontario Ministry of the Environment). (2006). Rationale for the development of Ontario air
25	standards for trimethylbenzenes: 1,2,3-Trimethylbenzene. Ontario, Canada.
26	NIOSH (National Institute for Occupational Safety and Health). (1988). Testimony of the National
27	Institute for Occupational Safety and Health on the Occupational Safety and Health
28	Administration's proposed rule on air contaminants, 29 CFR Part 1910, OSHA Docket No.
29	H020. Presented at the OSHA informal public hearing, August 1, 1988. NIOSH policy
30	statements. Cincinnati, OH.
31	NIOSH (National Institute for Occupational Safety and Health). (1992). NIOSH recommendations for
32	occupational safety and health: Compendium of policy documents and statements. (92-100).
33	Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service,
34	Centers for Disease Control, National Institute for Occupational Safety and Health.
35	http://www.cdc.gov/Niosh/92-100.html
36	Nong, A; Mccarver, DG; Hines, RN; Krishnan, K. (2006). Modeling interchild differences in
37	pharmacokinetics on the basis of subject-specific data on physiology and hepatic CYP2E1
38	levels: a case study with toluene. Toxicol Appl Pharmacol 214: 78-87.
39	http://dx.doi.org/10.1016/j.taap.2005.12.001
40	Norseth, T; Waage, J; Dale, I. (1991). Acute effects and exposure to organic compounds in road
41	maintenance workers exposed to asphalt. Am J Ind Med 20: 737-744.
42	http://dx.doi.org/10.1002/ajim.4700200604
43	NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft
44	IRIS assessment of formaldehyde (pp. 194). Washington, DC: National Academies Press.
45	http://www.nap.edu/catalog/13142.html
46	NRC (National Research Council). (2013). Acute exposure guideline levels for selected airborne
47	chemicals. Washington, DC: National Academies Press.
48	http://www.nap.edu/catalog/15852/acute-exposure-guideline-levels-for-selected-
49	airborne-chemicals-volume-13

1	Pelekis, M; Gephart, LA; Lerman, SE. (2001). Physiological-model-based derivation of the adult and
2	child pharmacokinetic intraspecies uncertainty factors for volatile organic compounds.
3	Regul Toxicol Pharmacol 33: 12-20. <u>http://dx.doi.org/10.1006/rtph.2000.1436</u>
4	Pratt, H; Karim, N; Bleich, N; Mittelman, N. (2000). Short latency visual evoked potentials in
5	occupational exposure to organic solvents. Neurophysiol Clin 30: 306-312.
6	http://dx.doi.org/10.1016/S0987-7053(00)00230-6
7	<u>Pyykko, K.</u> (1980). Effects of methylbenzenes on microsomal enzymes in rat liver, kidney and lung.
8	Biochim Biophys Acta 633: 1-9. <u>http://dx.doi.org/10.1016/0304-4165(80)90032-X</u>
9	Quevedo, L; Tochetto, T; Siqueira, MA; Machado, MS. (2012). Auditory brainstem response in gas
10	station attendants. Braz J Otorhinolaryngol 78: 63-68. <u>http://dx.doi.org/10.5935/1808-</u>
11	8694.20120035
12	Ruijten, MWM, M; Hooisma, J; Brons, JT; Habets, CEP; Emmen, HH; Muijser, H. (1994).
13	Neurobehavioral effects of long-term exposure to xylene and mixed organic solvents in
14	shipyard spray painters. Neurotoxicology 15: 613-620.
15	Saillenfait, AM; Gallissot, F; Sabate, JP; Morel, G. (2005). Developmental toxicity of two
16	trimethylbenzene isomers, mesitylene and pseudocumene, in rats following inhalation
17	exposure. Food Chem Toxicol 43: 1055-1063. <u>http://dx.doi.org/10.1016/j.fct.2005.02.008</u>
18	Schreiner, CA; Edwards, DA; Mckee, RH; Swanson, M; Wong, ZA; Schmitt, S; Beatty, P. (1989). The
19	mutagenic potential of high flash aromatic naphtha. Cell Biol Toxicol 5: 169-188.
20	Silva, CL; Passos, M; Camara, JS. (2011). Investigation of urinary volatile organic metabolites as
21	potential cancer biomarkers by solid-phase microextraction in combination with gas
22 23	chromatography-mass spectrometry. Br J Cancer 105: 1894-1904.
23 24	<u>http://dx.doi.org/10.1038/bjc.2011.437</u> <u>Silva, CL; Passos, M; Câmara, JS.</u> (2012). Solid phase microextraction, mass spectrometry and
24 25	metabolomic approaches for detection of potential urinary cancer biomarkersa powerful
26	strategy for breast cancer diagnosis. Talanta 89: 360-368.
27	http://dx.doi.org/10.1016/j.talanta.2011.12.041
28	Sulkowski, WJ; Kowalska, S; Matyja, W; Guzek, W; Wesolowski, W; Szymczak, W; Kostrzewski, P.
29	(2002). Effects of occupational exposure to a mixture of solvents on the inner ear: A field
30	study. Int J Occup Med Environ Health 15: 247-256.
31	Świercz, R; Majcherek, W; Wasowicz, W. (2016). Hemimellitene (1,2,3-trimethylbenzene) in the
32	liver, lung, kidney, and blood, and dimethylbenzoic acid isomers in the liver, lung, kidney
33	and urine of rats after single and repeated inhalation exposure to hemimellitene. Int J Occup
34	Med Environ Health 29: 113-128. <u>http://dx.doi.org/10.13075/ijomeh.1896.00599</u>
35	Swiercz, R; Rydzyński, K; Wasowicz, W; Majcherek, W; Wesolowski, W. (2002). Toxicokinetics and
36	metabolism of pseudocumene (1,2,4-trimethylbenzene) after inhalation exposure in rats.
37	Int J Occup Med Environ Health 15: 37-42.
38	Swiercz, R; Wasowicz, W; Majcherek, W. (2006). Mesitylene (1,3,5-trimethylbenzene) in the liver,
39	lung, kidney, and blood and 3,5-dimethylbenzoic acid in the liver, lung, kidney and urine of
40	rats after single and repeated inhalation exposure to mesitylene. Pol J Environ Stud 15: 485-
41	492.
42	Swiercz, R; Wiaderna, D; Wasowicz, W; Rydzyński, K. (2003). Pseudocumene in brain, liver, lung
43	and blood of rats after single and repeated inhalation exposure. Int J Occup Med Environ
44	Health 16: 61-66.
45	Tang, CY; Carpenter, DM; Eaves, EL; Ng, J; Ganeshalingam, N; Weisel, C; Qian, H; Lange, G; Fiedler,
46	NL. (2011). Occupational solvent exposure and brain function: an fMRI study. Environ
47	Health Perspect 119: 908-913. <u>http://dx.doi.org/10.1289/ehp.1002529</u>
48	Tomas, T; Lutz, P; Wiaderna, D. (1999a). Changes in electrocortical arousal following acute
49	trimethylbenzene administration in rats. Int J Occup Med Environ Health 12: 67-78.

1	Tomas, T; Swiercz, R; Wiaderna, D; Gralewicz, S. (1999b). Effects of acute exposure to aromatic
2	hydrocarbons C 9 on locomotor activity in rats. Trimethylbenzene isomers. Int J Occup Med
3	Environ Health 12: 331-343.
4	Tomas, T; Wiaderna, D; Swiercz, R. (1999c). Neurotoxicity assessment of selected organic solvents
5	based on spontaneous and evoked cortical and hippocampal activity in rats. Int J Occup Med
6	Environ Health 12: 73-84.
7	<u>Tsujimoto, Y; Noda, T; Shimizu, M; Moriwaki, H; Tanaka, M.</u> (1999). Identification of the
8	dimethylbenzyl mercapturic acid in urine of rats treated with 1,2,3-trimethylbenzene.
9	Chemosphere 39: 725-730.
10	Tsujimoto, Y; Noda, T; Shimizu, M; Moriwaki, H; Tanaka, M. (2000). Identification of the
11	dimethylbenzyl mercapturic acid in urine of rats administered with 1,2,4-trimethylbenzene.
12	Chemosphere 40: 893-896. <u>http://dx.doi.org/10.1016/S0045-6535(99)00467-1</u>
13	<u>Tsujimoto, Y; Warashina, M; Nam, VD; Noda, T; Shimizu, M; Yamaguchi, Y; Moriwaki, H; Morimoto,</u>
14	<u>T; Kakiuchi, K; Maeda, Y; Tanaka, M.</u> (2005). Determination of urinary phenolic metabolites
15	from rats treated with 1,2,3-and 1,3,5-trimethylbenzenes. J Occup Health 47: 337-339.
16	<u>Tsujino, Y; Hieda, Y; Kimura, K; Eto, H; Yakabe, T; Takayama, K; Dekio, S.</u> (2002). Distribution of
17	kerosene components in rats following dermal exposure. Int J Legal Med 116: 207-211.
18	http://dx.doi.org/10.1007/s00414-001-0282-7
19	U.S. EPA (U.S. Environmental Protection Agency). (1988). Reference physiological parameters in
20	pharmacokinetic modeling [EPA Report]. (EPA/600/6-88/004). Washington, DC: U.S.
21	Environmental Proctection Agency.
22	https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=PB88196019
23	U.S. EPA (U.S. Environmental Protection Agency). (1994a). Chemical summary for 1,2,4-
24	trimethylbenzene [EPA Report]. (EPA/749/F-94/022A). Washington, DC.
25	http://www.epa.gov/chemfact/s_trimet.txt
26	<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (1994b). Methods for derivation of inhalation
27 28	reference concentrations (RfCs) and application of inhalation dosimetry [EPA Report]. (EPA/600/8-90/066F). Washington, DC: U.S. Environmental Protection Agency, Office of
20 29	Research and Development, Office of Health and Environmental Assessment, Environmental
30	Criteria and Assessment Office.
31	http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=71993
32	<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2002). A review of the reference dose and
33	reference concentration processes. (EPA/630/P-02/002F). Washington, DC: U.S.
34	Environmental Protection Agency, Risk Assessment Forum.
35	http://www.epa.gov/osa/review-reference-dose-and-reference-concentration-processes
36	<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2005). Guidelines for carcinogen risk assessment
37	[EPA Report]. (EPA/630/P-03/001F). Washington, DC: U.S. Environmental Protection
38	Agency, Risk Assessment Forum. <u>http://www2.epa.gov/osa/guidelines-carcinogen-risk-</u>
39	assessment
40	U.S. EPA (U.S. Environmental Protection Agency). (2007). Acute exposure guideline levels (AEGLs)
41	for 1,3,5-trimethylbenzene (CAS reg. no. 108-67-8), 1,2,4-trimethylbenzene (CAS reg. no.
42	95-63-6), 1,2,3-trimethylbenzene (CAS reg. no. 526-73-8) [EPA Report]. Washington, DC.
43	http://www.epa.gov/opptintr/aegl/pubs/123 %20124 %20135 trimethylbenzenes %20i
44	nterim 11 2007.v1.pdf
45	U.S. EPA (U.S. Environmental Protection Agency). (2012). Benchmark dose technical guidance.
46	(EPA/100/R-12/001). Washington, DC: U.S. Environmental Protection Agency, Risk
47	Assessment Forum. <u>http://www.epa.gov/raf/publications/benchmarkdose.htm</u>
48	U.S. EPA (U.S. Environmental Protection Agency). (2016a). PBPK data files for TMB (updated
49	February 2016) [PBPK]. Research Triangle Park, NC.

1	U.S. EPA (U.S. Environmental Protection Agency). (2016b). Results of the BMD analyses for 1,2,4-
2 3	TMB, 1,2,3-TMB, and 1,3,5-TMB [BMDS]. Research Triangle Park, NC.
	<u>Ungvary, G: Tatrai, E.</u> (1985). On the embryotoxic effects of benzene and its alkyl derivatives in mice, rats and rabbits. Arch Toxicol 8: 425-430.
4 5	<u>Versar</u> (Versar Inc.). (2013). Peer review report: External peer review of the 1995 Koch Industries
6	study report: 90-day oral gavage toxicity study of 1,3,5-trimethylbenzene in rats with a
7	recovery group. (EP-C-12-045). Springfiled, VA: Versar, Inc.
8	http://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=517403
9	<u>Wiaderna, D; Gralewicz, S; Tomas, T.</u> (1998). Behavioral changes following a four-week inhalation
10	exposure to hemimellitene (1,2,3-trimethylbenzene) in rats. Int J Occup Med Environ Health
10	11: 319-334.
12	Wiaderna, D; Gralewicz, S; Tomas, T. (2002). Assessment of long-term neurotoxic effects of
13	exposure to mesitylene (1,3,5-trimethylbenzene) based on the analysis of selected
14	behavioral responses. Int J Occup Med Environ Health 15: 385-392.
15	<u>Wiglusz, R.</u> (1979). The effect of 1, 3, 5-trimethylbenzene inhalation exposure on the glucuronic
16	acid pathway and activity of some xenobiotic-metabolizing enzymes. Bull Inst Marit Trop
17	Med Gdynia 30: 189-196.
18	Wiglusz, R; Delag, G; Mikulski, P. (1975a). Serum enzymes activity of mesitylene vapour treated
19	rats. Bull Inst Marit Trop Med Gdynia 26: 303-313.
20	Wiglusz, R; Kienitz, M; Delag, G; Galuszko, E; Mikulski, P. (1975b). Peripheral blood of mesitylene
21	vapour treated rats. Bull Inst Marit Trop Med Gdynia 26: 315-321.
22	Williams, LR; Leggett, RW. (1989). Reference values for resting blood flow to organs of man
23	[Review]. Clinical Physics and Physiological Measurement 10: 187-217.
24	http://dx.doi.org/10.1088/0143-0815/10/3/001
25	Win-Shwe, TT; Fujimaki, H. (2010). Neurotoxicity of toluene [Review]. Toxicol Lett 198: 93-99.
26	<u>http://dx.doi.org/10.1016/j.toxlet.2010.06.022</u>
27	<u>Win-Shwe, TT; Kunugita, N; Yoshida, Y; Nakajima, D; Tsukahara, S; Fujimaki, H.</u> (2012). Differential
28	mRNA expression of neuroimmune markers in the hippocampus of infant mice following
29	toluene exposure during brain developmental period. J Appl Toxicol 32: 126-134.
30	<u>http://dx.doi.org/10.1002/jat.1643</u>
31	<u>Win-Shwe, TT; Yoshida, Y; Kunugita, N; Tsukahara, S; Fujimaki, H.</u> (2010). Does early life toluene
32	exposure alter the expression of NMDA receptor subunits and signal transduction pathway
33	in infant mouse hippocampus? Neurotoxicology 31: 647-653.
34	http://dx.doi.org/10.1016/j.neuro.2010.08.006
35	<u>Yoshida, T.</u> (2010). Estimation of absorption of aromatic hydrocarbons diffusing from interior
36	materials in automobile cabins by inhalation toxicokinetic analysis in rats. J Appl Toxicol 30:
37	525-535. <u>http://dx.doi.org/10.1002/jat.1522</u>
38	Zahlsen, K; Eide, I; Nilsen, AM; Nilsen, OG. (1992). Inhalation kinetics of C6 to C10 aliphatic,
39	aromatic and naphthenic hydrocarbons in rat after repeated exposures. Pharmacol Toxicol
40	71: 144-149. <u>http://dx.doi.org/10.1111/j.1600-0773.1992.tb00534.x</u>
41	Zahlsen, K; Nilsen, AM; Eide, I; Nilsen, OG. (1990). Accumulation and distribution of aliphatic (n-
42	nonane), aromatic (1,2,4-trimethylbenzene) and naphthenic (1,2,4-trimethylcyclohexane)
43	hydrocarbons in the rat after repeated inhalation. Pharmacol Toxicol 67: 436-440.
44 45	http://dx.doi.org/10.1111/j.1600-0773.1990.tb00859.x
7.1	