

Toxicological Review of tert-Butyl Alcohol (tert-Butanol)

(CAS No. 75-65-0)

June 2017

NOTICE

This document is an **External Review Draft**. This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. It is being circulated for review of its technical accuracy and science policy implications.

Integrated Risk Information System National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC

DISCLAIMER

- 2 This document is a preliminary draft for review purposes only. This information is
- 3 distributed solely for the purpose of pre-dissemination peer review under applicable information
- 4 quality guidelines. It has not been formally disseminated by EPA. It does not represent and should
- 5 not be construed to represent any Agency determination or policy. Mention of trade names or
- 6 commercial products does not constitute endorsement or recommendation for use.

1

1

2 **CONTENTS**

3	ΑL	јтно	RS CC	DNTRIBUTORS REVIEWERS	viii	
4	PR	REFAC	:Е		x	
5	PR	PREAMBLE TO IRIS TOXICOLOGICAL REVIEWS xiv				
6	ΕX	ECUT	IVE SU	MMARY	xxii	
7	LIT	rera ⁻	TURE SI	EARCH STRATEGY STUDY SELECTION AND EVALUATION	xxvii	
8	1	HAZ	ARD ID	ENTIFICATION	1-1	
9		1.1	OVER	VIEW OF CHEMICAL PROPERTIES AND TOXICOKINETICS	1-1	
10			1.1.1	Chemical Properties	1-1	
11			1.1.2	Toxicokinetics	1-2	
12			1.1.3	Description of Toxicokinetic Models	1-3	
13			1.1.4	Chemicals Extensively Metabolized to tert-Butanol	1-3	
14		1.2	PRESE	NTATION AND SYNTHESIS OF EVIDENCE BY ORGAN/SYSTEM	1-4	
15			1.2.1	Kidney Effects	1-4	
16			1.2.2	Thyroid Effects	1-40	
17			1.2.3	Developmental Effects	1-48	
18			1.2.4	Neurodevelopmental Effects	1-55	
19			1.2.5	Reproductive Effects	1-58	
20			1.2.6	Other Toxicological Effects	1-64	
21		1.3	INTEG	RATION AND EVALUATION	1-64	
22			1.3.1	Effects Other Than Cancer	1-64	
23			1.3.2	Carcinogenicity	1-66	
24			1.3.3	Susceptible Populations and Lifestages for Cancer and Noncancer Outcomes	1-68	
25	2	DOS	E-RESP	ONSE ANALYSIS	2-1	
26		2.1	ORAL	REFERENCE DOSE FOR EFFECTS OTHER THAN CANCER	2-1	
27			2.1.1	Identification of Studies and Effects for Dose-Response Analysis	2-1	
28			2.1.2	Methods of Analysis	2-2	
29			2.1.3	Derivation of Candidate Values	2-4	
30			2.1.4	Derivation of Organ/System-Specific Reference Doses	2-8	
31			2.1.5	Selection of the Overall Reference Dose	2-8	

1		2.1.6	Confidence Statement	2-9
2		2.1.7	Previous IRIS Assessment	2-9
3	2.2	INHAL	ATION REFERENCE CONCENTRATION FOR EFFECTS OTHER THAN CANCER	2-9
4		2.2.1	Identification of Studies and Effects for Dose-Response Analysis	2-9
5		2.2.2	Methods of Analysis	2-10
6		2.2.3	Derivation of Candidate Values	2-13
7		2.2.4	Derivation of Organ/System-Specific Reference Concentrations	2-16
8		2.2.5	Selection of the Overall Reference Concentration	2-16
9		2.2.6	Confidence Statement	2-17
10		2.2.7	Previous IRIS Assessment	2-17
11		2.2.8	Uncertainties in the Derivation of the Reference Dose and Reference Concent	ration2-17
12	2.3	ORAL	SLOPE FACTOR FOR CANCER	2-18
13		2.3.1	Analysis of Carcinogenicity Data	2-18
14		2.3.2	Dose-Response Analysis—Adjustments and Extrapolations Methods	2-19
15		2.3.3	Derivation of the Oral Slope Factor	2-20
16		2.3.4	Uncertainties in the Derivation of the Oral Slope Factor	2-21
17		2.3.5	Previous IRIS Assessment: Oral Slope Factor	2-23
18	2.4	INHAL	ATION UNIT RISK FOR CANCER	2-23
19		2.4.1	Previous IRIS Assessment: Inhalation Unit Risk	2-23
20	2.5	APPLI	CATION OF AGE-DEPENDENT ADJUSTMENT FACTORS	2-24
21	REFERE	NCES.		R-1
22				

23

1 **TABLES**

2	Table ES-1. Organ/system-specific RfDs and overall RfD for <i>tert</i> -butanol	xxiv
3	Table ES-2. Organ/system-specific RfCs and overall RfC for tert-butanol	xxv
4	Table LS-1. Details of the search strategy employed for <i>tert</i> -butanol	xxxi
5	Table LS-2. Summary of additional search strategies for tert-butanol	xxxi
6	Table LS-3. Inclusion-exclusion criteria	xxxii
7	Table LS-4. Considerations for evaluation of experimental animal studies	xxxv
8	Table LS-5. Summary of experimental animal database	xxxv
9	Table 1-1. Physicochemical properties and chemical identity of <i>tert</i> -butanol	1-1
10	Table 1-2. Changes in kidney histopathology in animals following exposure to tert-butanol	1-12
11	Table 1-3. Changes in kidney tumors in animals following exposure to tert-butanol	1-15
12	Table 1-4. Comparison of nephropathy and suppurative inflammation in individual male rats	
13	from the 2-year NTP tert-butanol bioassay	1-17
14	Table 1-5. Comparison of nephropathy and suppurative inflammation in individual female rats	
15	from the 2-year NTP tert-butanol bioassay	1-17
16	Table 1-6. Comparison of nephropathy and transitional epithelial hyperplasia in individual male	
17	rats from the 2-year NTP <i>tert</i> -butanol bioassay	1-17
18	Table 1-7. Comparison of nephropathy and transitional epithelial hyperplasia in individual	
19	female rats from the 2-year NTP tert-butanol bioassay	1-18
20	Table 1-8. Comparison of CPN and renal tubule hyperplasia with kidney adenomas and	
21	carcinomas in male rats from the 2-year NTP tert-butanol bioassay	1-18
22	Table 1-9. Summary of data on the α_{2u} -globulin process in male rats exposed to <i>tert</i> -butanol	1-24
23	Table 1-10. Proposed empirical criteria for attributing renal tumors to CPN	1-35
24	Table 1-11. Evidence pertaining to thyroid effects in animals following oral exposure to tert-	
25	butanol	1-41
26	Table 1-12. Evidence pertaining to developmental effects in animals following exposure to tert-	
27	butanol	1-50
28	Table 1-13. Evidence pertaining to neurodevelopmental effects in animals following exposure to	
29	<i>tert</i> -butanol	1-57
30	Table 1-14. Evidence pertaining to reproductive effects in animals following exposure to tert-	
31	butanol	1-59
32	Table 2-1. Summary of derivations of points of departure following oral exposure for up to 2	
33	years	2-4
34	Table 2-2. Effects and corresponding derivation of candidate values	2-6
35	Table 2-3. Organ/system-specific RfDs and overall RfD for tert-butanol	2-8
36	Table 2-4. Summary of derivation of PODs following inhalation exposure	2-12
37	Table 2-5. Summary of derivation of inhalation points of departure derived from route-to-route	
38	extrapolation from oral exposures	2-13
39	Table 2-6. Effects and corresponding derivation of candidate values	2-14
40	Table 2-7. Organ-/system-specific RfCs and overall RfC for tert-butanol	2-16
41	Table 2-8. Summary of the oral slope factor derivation	2-21
42	Table 2-9. Summary of uncertainties in the derivation of the oral slope factor for tert-butanol	2-22
43		

1 **FIGURES**

2	Figure LS-1. Summary of literature search and screening process for tert-butanol.	xxix
3	Figure 1-1. Biotransformation of <i>tert</i> -butanol in rats and humans	1-3
4	Figure 1-2. Comparison of absolute kidney weight change in male and female rats across oral	
5	and inhalation exposure based on internal blood concentration.	1-10
6	Figure 1-3. Comparison of absolute kidney weight change in male and female mice following oral	
7	exposure based on administered concentration	1-10
8	Figure 1-4. Comparison of absolute kidney weight change in male and female mice following	
9	inhalation exposure based on administered concentration	1-11
10	Figure 1-5. Exposure response array for kidney effects following oral exposure to tert-butanol	1-19
11	Figure 1-6. Exposure-response array of kidney effects following inhalation exposure to tert-	
12	butanol (13-week studies, no chronic studies available).	1-20
13	Figure 1-7. Temporal pathogenesis of α_{2u} -globulin-associated nephropathy in male rats	1-23
14	Figure 1-8. Exposure-response array for effects potentially associated with α_{2u} -globulin renal	
15	tubule nephropathy and tumors in male rats after oral exposure to <i>tert</i> -butanol	1-26
16	Figure 1-9. Exposure-response array for effects potentially associated with α_{2u} -globulin renal	
17	tubule nephropathy and tumors in male rats after inhalation exposure to <i>tert</i> -	
18	butanol	1-27
19	Figure 1-10. Exposure-response array of thyroid follicular cell effects following chronic oral	
20	exposure to <i>tert</i> -butanol	1-43
21	Figure 1-11. Exposure-response array of developmental effects following oral exposure to tert-	
22	butanol	1-53
23	Figure 1-12. Exposure-response array of developmental effects following inhalation exposure to	
24	<i>tert</i> -butanol	1-54
25	Figure 1-13. Exposure-response array of reproductive effects following oral exposure to tert-	
26	butanol	1-62
27	Figure 1-14. Exposure-response array of reproductive effects following inhalation exposure to	
28	<i>tert</i> -butanol	1-63
29	Figure 2-1. Candidate values with corresponding POD and composite UF. Each bar corresponds	
30	to one data set described in Table 2-1 and Table 2-2.	
31	Figure 2-2. Candidate RfC values with corresponding POD and composite UF	2-15

32

1 **ABBREVIATIONS**

2

AIC	Akaike's information criterion
ALD	approximate lethal dosage
	•••
ALT	alanine aminotransferase
AST	aspartate aminotransferase
atm	atmosphere
ATSDR	Agency for Toxic Substances and
	Disease Registry
BMD	benchmark dose
BMDL	benchmark dose lower confidence limit
BMDS	Benchmark Dose Software
BMR	benchmark response
BW	body weight
CA	chromosomal aberration
CASRN	Chemical Abstracts Service Registry
	Number
CBI	covalent binding index
СНО	Chinese hamster ovary (cell line)
CL	confidence limit
CNS	central nervous system
CPN	chronic progressive nephropathy
CYP450	cytochrome P450
DAF	dosimetric adjustment factor
DEN	diethylnitrosamine
DMSO	dimethylsulfoxide
DNA	deoxyribonucleic acid
EPA	Environmental Protection Agency
FDA	Food and Drug Administration
FEV_1	forced expiratory volume of 1 second
GD	gestation day
GDH	glutamate dehydrogenase
GGT	γ-glutamyl transferase
GSH	glutathione
GST	glutathione-S-transferase
Hb/g-A	animal blood:gas partition coefficient
Hb/g-H	human blood:gas partition coefficient
HEC	human equivalent concentration
HED	human equivalent dose
i.p.	intraperitoneal
IRIS	Integrated Risk Information System
IVF	in vitro fertilization
LC ₅₀	median lethal concentration
LD ₅₀	median lethal dose
LOAEL	lowest-observed-adverse-effect level
MN	micronuclei

MNPCE	micronucleated polychromatic
MINFUE	erythrocyte
MTD	maximum tolerated dose
NAG	N-acetyl-β-D-glucosaminidase
NCEA	National Center for Environmental
_	Assessment
NCI	National Cancer Institute
NOAEL	no-observed-adverse-effect level
NTP	National Toxicology Program
NZW	New Zealand White (rabbit breed)
ОСТ	ornithine carbamoyl transferase
ORD	Office of Research and Development
PBPK	physiologically based pharmacokinetic
POD	point of departure
POD _[ADJ]	duration-adjusted POD
QSAR	quantitative structure-activity
τ-	relationship
RDS	replicative DNA synthesis
RfC	inhalation reference concentration
RfD	oral reference dose
RGDR	regional gas dose ratio
RNA	ribonucleic acid
SAR	structure activity relationship
SCE	sister chromatid exchange
SD	standard deviation
SDH	sorbitol dehydrogenase
SE	standard error
SGOT	glutamic oxaloacetic transaminase, also
	known as AST
SGPT	glutamic pyruvic transaminase, also
	known as ALT
SSD	systemic scleroderma
TCA	trichloroacetic acid
TCE	trichloroethylene
TWA	time-weighted average
UF	uncertainty factor
UFA	animal-to-human uncertainty factor
UFh	human variation uncertainty factor
UFL	LOAEL-to-NOAEL uncertainty factor
UFs	subchronic-to-chronic uncertainty
	factor
UFD	database deficiencies uncertainty factor
U.S.	United States

1

2

AUTHORS | CONTRIBUTORS | REVIEWERS

Assessment Team

Janice S. Lee, Ph.D. (Chemical Manager)	U.S. EPA
Keith Salazar, Ph.D.* (Co-Chemical	Office of R
Manager)	National C
	Research 7

Chris Brinkerhoff, Ph.D.

Research and Development Center for Environmental Assessment Research Triangle Park, NC *Washington, DC

Former ORISE Postdoctoral Fellow at U.S. EPA/ORD/NCEA Currently with U.S. EPA, Office of Chemical Safety and Pollution Prevention, Office of Pollution **Prevention and Toxics** Washington, DC

3

Contributors

Andrew Hotchkiss, Ph.D. Channa Keshava, Ph.D. Amanda Persad, Ph.D. Vincent Cogliano, Ph.D.* Jason Fritz, Ph.D.* Catherine Gibbons, Ph.D. * Samantha Jones, Ph.D. * Kathleen Newhouse, M.S.* Christine Cai, M.S.* Karen Hogan, M.S.* Paul Schlosser, Ph.D. Alan Sasso, Ph.D.*

U.S. EPA

Office of Research and Development National Center for Environmental Assessment **Research Triangle Park, NC** *Washington, DC

4

Production Team Maureen Johnson

Vicki Soto Dahnish Shams

U.S. EPA

Office of Research and Development National Center for Environmental Assessment Washington, DC

5

Contractor Support

Robyn Blain, Ph.D. Michelle Cawley, M.L.S., M.A.* William Mendez, Jr., Ph.D. Pam Ross, M.S.P.H. Cara Henning, Ph.D. * Tao Hong, Ph.D. Ami Gordon, M.P.H.

ICF Fairfax, VA *Research Triangle Park, NC

Ex	ecutive Direction	
	Kenneth Olden, Ph.D., Sc.D., L.H.D. (Center Director – Retired)	U.S. EPA/ORD/NCEA
	Michael Slimak, Ph.D. (Acting Center Director)	Washington, DC
	John Vandenberg, Ph.D,# (National Program Director, Human	*Cincinnati, OH
	Health Risk Assessment)	# Research Triangle Park, NC
	Lynn Flowers, Ph.D., DABT (Associate Director for Health,	
	currently with the Office of Science Policy)	
	Vincent Cogliano, Ph.D. (IRIS Program Director)	
	Gina Perovich, M.S. (IRIS Program Deputy Director)	
	Samantha Jones, Ph.D. (IRIS Associate Director for Science)	
	Weihsueh A. Chiu, Ph.D. (Branch Chief, Toxicity Pathways	
	Branch) formerly with the U.S. EPA	
	Andrew Hotchkiss, Ph.D.# (Acting Branch Chief, Toxicity	
	Pathways Branch)	
	Jason Lambert, Ph.D., DABT* (Acting Branch Chief, Biological	
	Risk Assessment Branch)	
	Ted Berner, M.S. (Assistant Center Director)	
	Karen Hogan, M.S. (former Acting Branch Chief, Toxicity	
	Effects Branch)	

2

Internal Review Team

General Toxicology Workgroup Inhalation Workgroup Neurotoxicity Workgroup Pharmacokinetics Workgroup Reproductive and Developmental Toxicology Workgroup Statistical Workgroup Toxicity Pathways Workgroup Executive Review Committee U.S. EPA Office of Research and Development National Center for Environmental Assessment Washington, DC Research Triangle Park, NC Cincinnati, OH

3

Reviewers

- 4 This assessment was provided for review to scientists in EPA's Program and Region Offices.
- 5 Comments were submitted by:
- 6 Office of the Administrator/Office of Children's Health Protection
- 7 Office of Land and Emergency Management
- 8 Region 2, New York, NY
- 9 Region 8, Denver, CO
- 10 This assessment was provided for review to other federal agencies and the Executive Office of the
- 11 President. Comments were submitted by:
- 12 Department of Health and Human Services/Agency for Toxic Substances and Disease Registry,
- 13 Department of Health and Human Services/National Institute of Environmental Health
- 14 Sciences/National Toxicology Program,
- 15 Executive Office of the President/Office of Management and Budget,
- 16 Executive Office of the President/Office of Science and Technology Policy

2 **PREFACE**

1

3 This Toxicological Review critically reviews the publicly available studies on tert-butyl 4 alcohol (tert-butanol) to identify its adverse health effects and to characterize exposure-response 5 relationships. The assessment examined all effects by oral and inhalation routes of exposure and 6 includes an oral noncancer reference dose (RfD), an inhalation noncancer reference concentration 7 (RfC), a cancer weight of evidence descriptor, and a cancer dose-response assessment. It was 8 prepared under the auspices of the U.S. Environmental Protection Agency's (EPA's) Integrated Risk 9 Information System (IRIS) program. This is the first IRIS assessment for this chemical. 10 Toxicological Reviews for *tert*-butanol and ethyl *tert*-butyl ether (ETBE) were developed 11 simultaneously because they have several overlapping scientific aspects. tert-Butanol is one of the primary metabolites of ETBE, and some of the toxicological effects of ETBE are attributed to *tert*-butanol. Therefore, data on ETBE are considered informative for the hazard identification and dose-response assessment of *tert*-butanol, and vice versa. The scientific literature for the two chemicals includes data on α_{2u} -globulin-related nephropathy; therefore, a common approach was employed to evaluate these data as they relate to the mode of action for kidney effects. A combined physiologically based pharmacokinetic (PBPK) model for tert-butanol and ETBE in rats was applied to support the dose-response assessments for these chemicals. 12 A public meeting was held in December 2013 to obtain input on preliminary materials for 13 *tert*-butanol, including draft literature searches and associated search strategies, evidence tables, 14 and exposure-response arrays prior to the development of the IRIS assessment. All public 15 comments provided were taken into consideration in developing the draft assessment. 16 A public science meeting was held on June 30, 2016 to provide the public an opportunity to 17 engage in early discussions on the draft IRIS toxicological review and the draft charge to the peer 18 review panel prior to release for external peer review. The complete set of public comments, 19 including the slides presented at the June 2016 public science meeting, is available on the docket at 20 http://www.regulations.gov (Docket ID No. <u>EPA-HQ-ORD-2013-1111</u>). 21 Organ/system-specific reference values are calculated based on kidney and thyroid toxicity 22 data. These reference values could be useful for cumulative risk assessments that consider the 23 combined effect of multiple agents acting on the same biological system. 24 This assessment was conducted in accordance with EPA guidance, which is cited and 25 summarized in the Preamble to IRIS Toxicological Reviews. The findings of this assessment and 26 related documents produced during its development are available on the IRIS website 27 (http://www.epa.gov/iris). Appendices for toxicokinetic information, PBPK modeling, genotoxicity

х

- 1 study summaries, dose-response modeling, and other information are provided as Supplemental
- 2 Information to this Toxicological Review. For additional information about this assessment or for
- 3 general questions regarding IRIS, please contact EPA's IRIS Hotline at 202-566-1676 (phone), 202-
- 4 566-1749 (fax), or <u>hotline.iris@epa.gov</u>.

5 Uses

- 6 *tert*-Butanol primarily is an anthropogenic substance that is produced in large quantities
- 7 (HSDB, 2007) from several precursors, including 1-butene, isobutylene, acetyl chloride and
- 8 dimethylzinc, and *tert*-butyl hydroperoxide. The domestic production volume of *tert*-butanol,
- 9 including imports, was approximately 4 billion pounds in 2012 (U.S. EPA, 2014).
- *tert*-Butanol has been used as a fuel oxygenate, an octane booster in unleaded gasoline, and
 a denaturant for ethanol. From 1997 to 2005, the annual *tert*-butanol volume found in gasoline
 ranged from approximately 4 million to 6 million gallons. During that time, larger quantities were
- used to make methyl *tert*-butyl ether (MTBE) and ETBE. MTBE and ETBE are fuel oxygenates that
- 14 were used in the United States prior to 2007 at levels of more than 2 billion gallons annually.
- 15 Current use levels of MTBE and ETBE in the United States are much lower, but use in Europe and
- 16 Asia remains strong.¹ Some states have banned MTBE in gasoline due to groundwater
- 17 contamination from gasoline leaks and spills.
- 18 *tert*-Butanol has been used for a variety of other purposes, including as a dehydrating agent
- 19 and solvent. As such, it is added to lacquers, paint removers, and nail enamels and polishes.
- 20 *tert*-Butanol also is used to manufacture methyl methacrylate plastics and flotation devices.
- 21 Cosmetic and food-related uses include the manufacture of flavors, and, because of its camphor-like
- aroma, it also is used to create artificial musk, fruit essences, and perfume (<u>HSDB, 2007</u>). It is used
- 23 in coatings on metal and paperboard food containers (<u>Cal/EPA, 1999</u>) and industrial cleaning
- compounds and can be used for chemical extraction in pharmaceutical applications (<u>HSDB, 2007</u>).

25 Fate and Transport

26 *Soil*

tert-Butanol is expected to be highly mobile in soil due to its low affinity for soil organic
matter. Rainwater or other water percolating through soil is expected to dissolve and transport
most *tert*-butanol present in soil, potentially leading to groundwater contamination. Based on its
vapor pressure, *tert*-butanol's volatilization from soil surfaces is expected to be an important
dissipation process (HSDB, 2007). As a tertiary alcohol, *tert*-butanol is expected to degrade more
slowly in the environment compared to primary (e.g., ethanol) or secondary (e.g., isopropanol)
alcohols. In anoxic soil conditions, the half-life of *tert*-butanol is estimated to be months

¹<u>http://www.ihs.com/products/chemical/planning/ceh/gasoline-octane-improvers.aspx.</u>

- 1 (approximately 200 days). Microbial degradation rates are increased in soils supplemented with
- 2 nitrate and sulfate nutrients (<u>HSDB, 2007</u>).

3 Water

- 4 *tert*-Butanol is expected to volatilize from water surfaces within 2 to 29 days and does not
- 5 readily adsorb to suspended solids and sediments in water (<u>HSDB, 2007</u>). Biodegradation in
- 6 aerobic water occurs over weeks to months and in anaerobic aquatic conditions, the biodegradation
- 7 rate decreases. Bioconcentration of *tert*-butanol in aquatic organisms is low (<u>HSDB, 2007</u>).

8 *Air*

tert-Butanol primarily exists as a vapor in the ambient atmosphere. Vapor-phase *tert*butanol is degraded in the atmosphere by reacting with photochemically produced hydroxyl
radicals with a half-life of 14 days (<u>HSDB, 2007</u>).

12 Occurrence in the Environment

13 The Toxics Release Inventory (TRI) Program National Analysis Report estimated that more 14 than 1 million pounds of *tert*-butanol has been released into the soil from landfills, land treatment, 15 underground injection, surface impoundments, and other land disposal sources. In 2014, the TRI 16 program also reported 1,845,773 pounds of *tert*-butanol released into the air, discharged to bodies 17 of water, disposed at the facility to land, and disposed in underground injection wells (U.S. EPA, 18 2016). Total off-site disposal or other releases of *tert*-butanol amounted to 67,060 pounds (U.S. 19 EPA, 2016). In California, air emissions of *tert*-butanol from stationary sources are estimated to be 20 at least 27,000 pounds per year, based on data reported by the state's Air Toxics Program 21 (Scorecard, 2014). 22 tert-Butanol has been identified in drinking water wells throughout the United States 23 (HSDB, 2007). California's Geotracker Database² lists 3,496 detections of tert-butanol in 24 groundwater associated with contaminated sites in that state since 2011. tert-Butanol also has been 25 detected in drinking water wells in the vicinity of landfills (U.S. EPA, 2012c). Additionally, tert-26 Butanol leaking from underground storage tanks could be a product of MTBE and ETBE, which can 27 degrade to form *tert*-butanol in soils (<u>HSDB, 2007</u>). The industrial chemical *tert*-butyl acetate also 28 can degrade to form *tert*-butanol in animals post exposure and in the environment. 29 Ambient outdoor air concentrations of *tert*-butanol vary according to proximity to urban 30 areas (HSDB, 2007).

²<u>http://geotracker.waterboards.ca.gov/</u>.

1 General Population Exposure

- 2 *tert*-Butanol exposure can occur in many different settings. Releases from underground
- 3 storage tanks could result in exposure for people who get their drinking water from wells. Due to
- 4 its high environmental mobility and resistance to biodegradation, *tert*-butanol has the potential to
- 5 contaminate and persist in groundwater and soil (<u>HSDB, 2007</u>).
- 6 Ingestion of contaminated food can be a source of *tert*-butanol exposure through its use as a
- 7 coating in metallic and paperboard food containers (<u>Cal/EPA, 1999</u>), and *tert*-butanol has been
- 8 detected in food (<u>HSDB, 2007</u>). Internal exposure to *tert*-butanol also can occur as a result of
- 9 ingestion of MTBE or ETBE, as *tert*-butanol is a metabolite of these compounds (<u>NSF International</u>,
- 10 <u>2003</u>).
- 11 Other human exposure pathways include inhalation, lactation, and, to a lesser extent,
- 12 dermal contact. Inhalation exposure can occur due to the chemical's volatility and release from
- 13 industrial processes, consumer products, and contaminated sites (HSDB, 2007). *tert*-Butanol has
- 14 been identified in mother's milk (<u>HSDB, 2007</u>). Dermal contact is a viable route of exposure through
- 15 handling consumer products containing *tert*-butanol (<u>NSF International, 2003</u>).

16 Assessments by Other National and International Health Agencies

- 17 Toxicity information on *tert*-butanol has been evaluated by the National Institute for
- 18 Occupational Safety and Health (<u>NIOSH, 2007</u>), the Occupational Safety and Health Administration
- 19 (<u>OSHA, 2006</u>), and the Food and Drug Administration (<u>FDA, 2015</u>, <u>2011</u>). The results of these
- 20 assessments are presented in Appendix A of the Supplemental Information to this Toxicological
- 21 Review. Of importance to recognize is that these earlier assessments could have been prepared for
- 22 different purposes and might use different methods. In addition, newer studies have been included
- in the IRIS assessment.

1

2

PREAMBLE TO IRIS TOXICOLOGICAL REVIEWS

Note: The Preamble summarizes the
objectives and scope of the IRIS program,
general principles and systematic review
procedures used in developing IRIS
assessments, and the overall development
process and document structure.

9 **1. Objectives and Scope of the IRIS**

10 Program

Soon after EPA was established in 1970, it was at the forefront of developing risk assessment as a science and applying it in support of actions to protect human health and the environment. EPA's IRIS program³ contributes to this endeavor by reviewing epidemiologic and experimental studies of kchemicals in the environment to identify adverse health effects and characterize exposure-response relationships. Health agencies worldwide use IRIS assessments, which are also a scientific resource for researchers and the public.

IRIS assessments cover the hazard
identification and dose-response steps of
risk assessment. Exposure assessment and
risk characterization are outside the scope of
IRIS assessments, as are political, economic,
and technical aspects of risk management. An
IRIS assessment may cover one chemical, a
group of structurally or toxicologically
related chemicals, or a chemical mixture.
Exceptions outside the scope of the IRIS

- 34 program are radionuclides, chemicals used
- 35 only as pesticides, and the "criteria air
- 36 pollutants" (particulate matter, ground-level

37 ozone, carbon monoxide, sulfur oxides,38 nitrogen oxides, and lead).

39 Enhancements to the IRIS program are 40 improving its science, transparency, and productivity. To improve the science, the IRIS 41 program is adapting and implementing 42 principles of systematic review (i.e., using 43 44 explicit methods to identify, evaluate, and 45 synthesize study findings). To increase transparency, the IRIS program discusses key 46 47 science issues with the scientific community 48 and the public as it begins an assessment. 49 External peer review, independently managed and in public, improves both 50 51 science and transparency. Increased productivity requires that assessments be 52 concise, focused on EPA's needs, and 53 54 completed without undue delay.

IRIS assessments follow EPA guidance⁴
and standardized practices of systematic
review. This Preamble summarizes and does
not change IRIS operating procedures or EPA
guidance.

60 Periodically, the IRIS program asks for 61 nomination of agents for future assessment or reassessment. Selection depends on EPA's 62 63 priorities, relevance to public health, and availability of pertinent studies. The IRIS 64 agenda⁵ 65 multivear lists upcoming assessments. The IRIS program may also 66 assess other agents in anticipation of public 67 68 health needs.

³ IRIS program website: <u>http://www.epa.gov/iris/</u>

⁴ EPA guidance documents: <u>http://www.epa.gov/iris/basic-information-about-integrated-risk-information-system#guidance/</u>

⁵ IRIS multiyear agenda: <u>https://www.epa.gov/iris/iris-agenda</u>

1 2. Planning an Assessment: Scoping, Problem Formulation, 2

3 and Protocols

4 Early attention to planning ensures that 5 IRIS assessments meet their objectives and 6 properly frame science issues.

7 *Scoping* refers to the first step of planning, where the IRIS program consults 8 9 with EPA's program and regional offices to 10 ascertain their needs. Scoping specifies the agents an assessment will address, routes 11 12 and durations of exposure, susceptible 13 populations and lifestages, and other topics of 14 interest.

15 Problem formulation refers to the 16 science issues an assessment will address and includes input from the scientific 17 18 community and the public. A preliminary **19** literature survey, beginning with secondary 20 sources (e.g., assessments by national and 21 international health agencies and 22 comprehensive review articles), identifies 23 potential health outcomes and science issues. 24 It also identifies related chemicals (e.g., 25 toxicologically active metabolites and 26 compounds that metabolize to the chemical 27 of interest).

28 Each IRIS assessment comprises multiple 29 systematic reviews for multiple health outcomes. It also evaluates hypothesized 30 mechanistic pathways and characterizes 31 32 exposure-response relationships. An 33 assessment may focus on important health 34 outcomes and analyses rather than expand 35 beyond what is necessary to meet its objectives. 36

37 *Protocols* refer to the systematic review 38 procedures planned for use in an assessment. 39 They include strategies for literature 40 searches, criteria for study inclusion or 41 exclusion, considerations for evaluating 42 study methods and quality, and approaches 43 to extracting data. Protocols may evolve as an

44 assessment progresses and new agent-

45 specific insights and issues emerge.

46 3. Identifying and Selecting 47 Pertinent Studies

48 IRIS assessments conduct systematic literature searches with criteria for inclusion 49 50 and exclusion. The objective is to retrieve the 51 pertinent primary studies (i.e., studies with 52 original data on health outcomes or their mechanisms). PECO statements (Populations, 53 Exposures, Comparisons, Outcomes) govern 54 55 the literature searches and screening criteria. "Populations" and animal species generally 56 have no restrictions. "Exposures" refers to 57 the agent and related chemicals identified 58 during scoping and problem formulation and 59 60 may consider route, duration, or timing of exposure. "Comparisons" means studies that 61 allow comparison of effects across different 62 levels of exposure. "Outcomes" may become 63 64 more specific (e.g., from "toxicity" to "developmental toxicity" to "hypospadias") 65 66 as an assessment progresses.

67 For studies of absorption, distribution, 68 metabolism, and elimination, the first 69 objective is to create an inventory of pertinent studies. Subsequent sorting and 70 analysis facilitates characterization and 71 72 quantification of these processes.

73 Studies on mechanistic events can be 74 numerous and diverse. Here, too, the 75 objective is to create an inventory of studies 76 for later sorting to support analyses of related data. The inventory also facilitates generation 77 78 and evaluation of hypothesized mechanistic 79 pathways.

- 80 The IRIS program posts initial protocols
- for literature searches on its website and 81
- 82 adds search results to EPA's HERO database.6
- Then the IRIS program takes extra steps to 83

⁶ Health and Environmental Research Online: https://hero.epa.gov/hero/

1 ensure identification of pertinent studies: by 2 encouraging the scientific community and the public to identify additional studies and 3 4 ongoing research; by searching for data 5 submitted under the Toxic Substances 6 Control Act or the Federal Insecticide, 7 Fungicide, and Rodenticide Act; and by considering late-breaking studies that would 8 9 impact the credibility of the conclusions, even 10 during the review process.⁷

Evaluating Study Methods and Quality

13 IRIS assessments evaluate study methods 14 and quality, using uniform approaches for 15 each group of similar studies. The objective is 16 that subsequent syntheses can weigh study 17 results on their merits. Key concerns are 18 potential *bias* (factors that affect the 19 magnitude or direction of an effect) and 20 *insensitivity* (factors that limit the ability of a 21 study to detect a true effect).

22 For human and animal studies, the 23 evaluation of study methods and quality 24 considers study design, exposure measures, outcome measures, data analysis, selective 25 26 reporting, and study sensitivity. For human 27 studies, this evaluation also considers **28** selection of participant and referent groups 29 and potential confounding. Emphasis is on discerning bias that could substantively 30 31 change an effect estimate, considering also the expected direction of the bias. Low 32 33 sensitivity is a bias towards the null.

34 Study-evaluation considerations are 35 specific to each study design, health effect, 36 and agent. Subject-matter experts evaluate 37 each group of studies to identify 38 characteristics that bear on the 39 informativeness of the results. For 40 carcinogenicity, neurotoxicity, reproductive 41 toxicity, and developmental toxicity, there is 42 EPA guidance for study evaluation (U.S. EPA,

43 <u>2005a</u>, <u>1998</u>, <u>1996</u>, <u>1991</u>). As subject-matter

44 experts examine a group of studies,
45 additional agent-specific knowledge or
46 methodologic concerns may emerge and a
47 second pass become necessary.

48 Assessments use evidence tables to 49 summarize the design and results of 50 pertinent studies. If tables become too 51 numerous or unwieldy, they may focus on 52 effects that are more important or studies 53 that are more informative.

The IRIS program posts initial protocols
for study evaluation on its website, then
considers public input as it completes this
step.

58 5. Integrating the Evidence of

59 Causation for Each Health

60 Outcome

61 Synthesis within lines of evidence. For each health outcome, IRIS assessments 62 63 synthesize the human evidence and the animal evidence, augmenting each with 64 65 informative subsets of mechanistic data. Each 66 synthesis considers aspects of an association that may suggest causation: consistency, 67 exposure-response relationship, strength of 68 69 association, temporal relationship, biological 70 plausibility, coherence. and "natural experiments" in humans (U.S. EPA, 1994, 71 72 §2.1.3) (U.S. EPA, 2005a, §2.5).

73 Each synthesis seeks to reconcile 74 ostensible inconsistencies between studies, 75 taking into account differences in study 76 methods and quality. This leads to a distinction between conflicting evidence 77 (unexplained positive and negative results in 78 79 similarly exposed human populations or in similar animal models) and *differing results* 80 (mixed results attributable to differences 81 82 between human populations, animal models, or exposure conditions) (U.S. EPA, 2005a, 83 84 §2.5).

⁷ IRIS "stopping rules": <u>https://www.epa.gov/sites/</u> production/files/2014-06/documents/ <u>iris_stoppingrules.pdf</u>

1 Each synthesis of human evidence 2 explores alternative explanations ſe.g., chance, bias, or confounding) and determines 3 4 whether they may satisfactorily explain the 5 results. Each synthesis of animal evidence 6 explores the potential for analogous results in 7 humans. Coherent results across multiple species increase confidence that the animal 8 results are relevant to humans. 9

10 Mechanistic data are useful to augment 11 the human or animal evidence with 12 information on precursor events, to evaluate 13 the human relevance of animal results, or to 14 identify susceptible populations and 15 lifestages. An agent may operate through 16 multiple mechanistic pathways, even if one 17 hypothesis dominates the literature (U.S. 18 EPA, 2005a, §2.4.3.3).

Integration across lines of evidence.
For each health outcome, IRIS assessments
integrate the human, animal, and mechanistic
evidence to answer the question: *What is the nature of the association between exposure to the agent and the health outcome?*For cancer, EPA includes a standardized

26 hazard descriptor in characterizing the strength of the evidence of causation. The 27 28 objective is to promote clarity and 29 consistency of conclusions across assessments (U.S. EPA, 2005a, §2.5). 30

31 Carcinogenic to humans: convincing 32 epidemiologic evidence of a causal 33 association; or strong human evidence of 34 cancer or its key precursors, extensive 35 animal evidence, identification of mode-36 of-action and its key precursors in 37 animals, and strong evidence that they 38 are anticipated in humans.

39 *Likely to be carcinogenic to humans:* evidence 40 that demonstrates a potential hazard to 41 humans. Examples include a plausible association in humans with supporting 42 43 experimental evidence, multiple positive 44 results in animals, a rare animal 45 response. or а positive study 46 strengthened by other lines of evidence.

47 Suggestive evidence of carcinogenic potential:48 evidence that raises a concern for

49 humans. Examples include a positive

50 result in the only study, or a single

51 positive result in an extensive database.

- 52 Inadequate information to assess carcinogenic
 53 potential: no other descriptors apply.
 54 Examples include little or no pertinent
 55 information, conflicting evidence, or
 56 negative results not sufficiently robust
 57 for not likely.
- 58 Not likely to be carcinogenic to humans: 59 robust evidence to conclude that there is 60 no basis for concern. Examples include no effects in well-conducted studies in both 61 62 sexes of multiple animal species, 63 extensive evidence showing that effects in animals arise through modes-of-action 64 65 that do not operate in humans, or convincing evidence that effects are not 66 67 likely by a particular exposure route or 68 below a defined dose.

69 If there is credible evidence of
70 carcinogenicity, there is an evaluation of
71 mutagenicity, because this influences the
72 approach to dose-response assessment and
73 subsequent application of adjustment factors
74 for exposures early in life (U.S. EPA, 2005a,

76 6. Selecting Studies for Derivation 77 of Toxicity Values

The purpose of toxicity values (slope
factors, unit risks, reference doses, reference
concentrations; see section 7) is to estimate
exposure levels likely to be without
appreciable risk of adverse health effects.
EPA uses these values to support its actions
to protect human health.

The health outcomes considered for
derivation of toxicity values may depend on
the hazard descriptors. For example, IRIS
assessments generally derive cancer values
for agents that are *carcinogenic* or *likely to be carcinogenic*, and sometimes for agents with
suggestive evidence (U.S. EPA, 2005a, §3).

92 Derivation of toxicity values begins with a93 new evaluation of studies, as some studies94 used qualitatively for hazard identification

^{75 §3.3.1, §3.5), (&}lt;u>U.S. EPA, 2005b</u>, §5).

1 may not be useful quantitatively for 2 exposure-response assessment. Quantitative 3 analyses require quantitative measures of 4 exposure and response. An assessment 5 weighs the merits of the human and animal studies, of various animal models, and of 6 7 different routes and durations of exposure (U.S. EPA, 1994, §2.1). Study selection is not 8 9 reducible to a formula, and each assessment 10 explains its approach.

Other biological determinants of study
quality include appropriate measures of
exposure and response, investigation of early
effects that precede overt toxicity, and
appropriate reporting of related effects (e.g.,
combining effects that comprise a syndrome,
or benign and malignant tumors in a specific
tissue).

Statistical determinants of study quality
include multiple levels of exposure (to
characterize the shape of the exposureresponse curve) and adequate exposure
range and sample sizes (to minimize
extrapolation and maximize precision) (U.S.
EPA, 2012, §2.1).

Studies of low sensitivity may be lessuseful if they fail to detect a true effect oryield toxicity values with wide confidencelimits.

30 7. Deriving Toxicity Values

General approach. EPA guidance describes a two-step approach to doseresponse assessment: analysis in the range of observation, then extrapolation to lower levels. Each toxicity value pertains to a route (e.g., oral, inhalation, dermal) and duration or timing of exposure (e.g., chronic, subchronic, gestational) (U.S. EPA, 2002, §4).

39 IRIS assessments derive a candidate
40 value from each suitable data set.
41 Consideration of candidate values yields a
42 toxicity value for each organ or system.
43 Consideration of the organ/system-specific
44 values results in the selection of an overall

45 toxicity value to cover all health outcomes.46 The organ/system-specific values are useful

40 The organ/system-specific values are useful 47 for subsequent cumulative risk assessments

47 for subsequent cumulative risk assessments 48 that consider the combined effect of multiple

49 agents acting at a common anatomical site.

50 Analysis in the range of observation. 51 Within the observed range, the preferred approach is modeling to incorporate a wide 52 range of data. Toxicokinetic modeling has 53 54 become increasingly common for its ability to 55 support target-dose estimation, cross-species adjustment, or exposure-route conversion. If 56 57 data are too limited to support toxicokinetic 58 modeling, there are standardized approaches 59 to estimate daily exposures and scale them 60 from animals to humans (U.S. EPA, 1994, §3), 61 (U.S. EPA, 2005a, §3.1), (U.S. EPA, 2011, 2006). 62

63 For human studies, an assessment may 64 develop exposure-response models that reflect the structure of the available data (U.S. 65 EPA, 2005a, §3.2.1). For animal studies, EPA 66 has developed a set of empirical ("curve-67 68 fitting") models⁸ that can fit typical data sets (U.S. EPA, 2005a, §3.2.2). Such modeling 69 70 yields a *point of departure*, defined as a dose near the lower end of the observed range. 71 72 without significant extrapolation to lower levels (e.g., the estimated dose associated 73 74 with an extra risk of 10% for animal data or 75 1% for human data, or their 95% lower confidence limits)(U.S. EPA, 2005a, §3.2.4), 76 77 (U.S. EPA, 2012, §2.2.1).

78 When justified by the scope of the 79 assessment, toxicodynamic ("biologically 80 based") modeling is possible if data are 81 sufficient to ascertain the key events of a 82 mode-of-action and to estimate their 83 parameters. Analysis of model uncertainty can determine the range of lower doses 84 where data support further use of the model 85 86 (U.S. EPA, 2005a, §3.2.2, §3.3.2).

87 For a group of agents that act at a
88 common site or through common
89 mechanisms, an assessment may derive
90 relative potency factors based on relative

DRAFT-DO NOT CITE OR QUOTE

⁸ Benchmark Dose Software:

http://www.epa.gov/bmds/

- 1 toxicity, rates of absorption or metabolism,
- 2 quantitative structure-activity relationships,
- 3 or receptor-binding characteristics (U.S. EPA,
- 4 <u>2005a</u>, §3.2.6).
- 5 Extrapolation: slope factors and unit 6 risks. An *oral slope factor* or an *inhalation* 7 *unit risk* facilitates subsequent estimation of 8 human cancer risks. Extrapolation proceeds 9 linearly (i.e., risk proportional to dose) from 10 the point of departure to the levels of interest. 11 This is appropriate for agents with direct 12 mutagenic activity. It is also the default if
- 13 there is no established mode-of-action (<u>U.S.</u>
 14 <u>EPA, 2005a</u>, §3.3.1, §3.3.3).
- Differences in susceptibility may warrant
 derivation of multiple slope factors or unit
 risks. For early-life exposure to carcinogens
 with a mutagenic mode-of-action, EPA has
 developed default *age-dependent adjustment factors* for agents without chemical-specific
 susceptibility data (<u>U.S. EPA, 2005a</u>, §3.5),
 (U.S. EPA, 2005b, §5).
- If data are sufficient to ascertain the
 mode-of-action and to conclude that it is not
 linear at low levels, extrapolation may use the
 reference-value approach (U.S. EPA, 2005a,
 §3.3.4).
- 28 Extrapolation: reference values. An 29 oral reference dose or an inhalation reference concentration is an estimate of human 30 31 exposure (including in susceptible 32 populations) likely to be without appreciable 33 risk of adverse health effects over a lifetime 34 (<u>U.S. EPA, 2002</u>, §4.2). Reference values generally cover effects other than cancer. 35 **36** They are also appropriate for carcinogens 37 with a nonlinear mode-of-action.
- 38 Calculation of reference values involves 39 dividing the point of departure by a set of uncertainty factors (each typically 1, 3, or 10, 40 41 unless there are adequate chemical-specific 42 data) to account for different sources of 43 uncertainty and variability (U.S. EPA, 2002, §4.4.5), (U.S. EPA, 2014). 44 45 Human variation: An uncertainty factor 46 covers susceptible populations and lifestages that may respond at lower 47
- 48 levels, unless the data originate from a49 susceptible study population.

- 50 *Animal-to-human extrapolation:* For 51 reference values based on animal results.
- 51 reference values based on animal results,
 52 an uncertainty factor reflects cross53 species differences, which may cause
- 54 humans to respond at lower levels.
- 55 Subchronic-to-chronic exposure: For chronic
- 56 reference values based on subchronic
- 57 studies, an uncertainty factor reflects the
- 58 likelihood that a lower level over a longer
- 59 duration may induce a similar response.
- 60 This factor may not be necessary for
- 61 reference values of shorter duration.
- 62 Adverse-effect level to no-observed-adverse-63 effect level: For reference values based on
- a lowest-observed-adverse-effect level,
 an uncertainty factor reflects a level
 judged to have no observable adverse
- 67 effects.
- 68 *Database* deficiencies: If there is concern that69 future studies may identify a more
- 70 sensitive effect, target organ, population,
- or lifestage, a *database uncertainty factor*reflects the nature of the database
- 73 deficiency.

74 8. Process for Developing and Peer75 Reviewing IRIS Assessments

- 76 The IRIS process (revised in 2009 and enhanced in 2013) involves extensive public 77 78 engagement and multiple levels of scientific review and comment. IRIS program scientists 79 consider all comments. Materials released, 80 81 comments received from outside EPA, and 82 disposition of major comments (steps 3, 4, 83 and 6 below) become part of the public 84 record.
- 85 Step 1: Draft development. As outlined in 86 section 2 of this Preamble, IRIS program 87 scientists specify the scope of an 88 assessment and formulate science issues 89 discussion with the scientific for 90 community and the public. Next, they 91 release initial protocols for the 92 systematic review procedures planned 93 for use in the assessment. IRIS program 94 scientists then develop a first draft, using 95 structured approaches to identify
- This document is a draft for review purposes only and does not constitute Agency policy.

pertinent studies, evaluate study
 methods and quality, integrate the
 evidence of causation for each health
 outcome, select studies for derivation of
 toxicity values, and derive toxicity values,

6 as outlined in Preamble sections 3–7.

7 Step 2: Agency review. Health scientists
8 across EPA review the draft assessment.

9 Step 3: Interagency science consultation.

- Other federal agencies and the Executive
 Office of the President review the draft
- 12 assessment.

13 Step 4: Public comment, followed by external peer review. The public 14 15 reviews the draft assessment. IRIS program scientists release a revised draft 16 17 for independent external peer review. 18 The peer reviewers consider whether the 19 draft assessment assembled and 20 evaluated the evidence according to EPA guidance and whether the evidence 21 22 justifies the conclusions.

23 Step 5: Revise assessment. IRIS program
24 scientists revise the assessment to
25 address the comments from the peer
26 review.

Step 27 6: Final agency review and 28 interagency science discussion. The 29 IRIS program discusses the revised 30 assessment with EPA's program and 31 regional offices and with other federal 32 agencies and the Executive Office of the 33 President.

34 Step 7: Post final assessment. The IRIS
35 program posts the completed assessment
36 a summary on its website.

General Structure of IRIS Assessments

Main text. IRIS assessments generally
comprise two major sections: (1) Hazard
Identification and (2) Dose-Response
Assessment. Section 1.1 briefly reviews
chemical properties and toxicokinetics to
describe the disposition of the agent in the
body. This section identifies related

46 chemicals and summarizes their health
47 outcomes, citing authoritative reviews. If an
48 assessment covers a chemical mixture, this
49 section discusses environmental processes
50 that alter the mixtures humans encounter
51 and compares them to mixtures studied
52 experimentally.

53 Section 1.2 includes a subsection for each major health outcome. Each subsection 54 55 discusses the respective literature searches and study considerations, as outlined in 56 Preamble sections 3 and 4, unless covered in 57 58 the front matter. Each subsection concludes 59 with evidence synthesis and integration, as 60 outlined in Preamble section 5.

61 Section 1.3 links health hazard 62 information to dose-response analyses for each health outcome. One subsection 63 identifies susceptible populations 64 and 65 lifestages, as observed in human or animal studies or inferred from mechanistic data. 66 These may warrant further analysis to 67 quantify differences in susceptibility. 68 69 Another subsection identifies biological considerations for selecting health outcomes, 70 71 studies, or data sets, as outlined in Preamble 72 section 6.

73 Section 2 includes a subsection for each
74 toxicity value. Each subsection discusses
75 study selection, methods of analysis, and
76 derivation of a toxicity value, as outlined in
77 Preamble sections 6 and 7.

Front matter. The Executive Summary
provides information historically included in
IRIS summaries on the IRIS program website.
Its structure reflects the needs and
expectations of EPA's program and regional
offices.

A section on systematic review methods
summarizes key elements of the protocols,
including methods to identify and evaluate
pertinent studies. The final protocols appear
as an appendix.

89 The Preface specifies the scope of an
90 assessment and its relation to prior
91 assessments. It discusses issues that arose
92 during assessment development and
93 emerging areas of concern.

94 This Preamble summarizes general 95 procedures for assessments begun after the

date below. The Preface identifies
 assessment-specific approaches that differ
 from these general procedures.
 August 2016

6

7 10. Preamble References

8 <u>U.S.</u> EPA. (1991). Guidelines for 9 developmental toxicity risk assessment (pp. 10 1-83). (EPA/600/FR-91/001). Washington, 11 DC: U.S. Environmental Protection Agency, 12 Risk Assessment Forum. 13 <u>http://cfpub.epa.gov/ncea/cfm/recordispla</u> 14 v.cfm?deid=23162 15 U.S. EPA. (1994). Methods for derivation of 16 inhalation reference concentrations and 17 application of inhalation dosimetry [EPA 18 Report] (pp. 1-409). (EPA/600/8-90/066F). 19 Research Triangle Park, NC: U.S. 20 Environmental Protection Agency. Office of 21 Research and Development, Office of Health **22** and Environmental Assessment, 23 Environmental Criteria and Assessment 24 Office. 25 https://cfpub.epa.gov/ncea/risk/recordispl **26** av.cfm?deid=71993&CFID=51174829&CFTO **27** KEN=25006317 28 U.S. EPA. (1996). Guidelines for reproductive 29 toxicity risk assessment (pp. 1-143). 30 (EPA/630/R-96/009). Washington, DC: U.S. 31 Environmental Protection Agency, Risk **32** Assessment Forum. 33 U.S. EPA. (1998). Guidelines for neurotoxicity 34 risk assessment. Fed Reg 63: 26926-26954. 35 U.S. EPA. (2002). A review of the reference 36 dose and reference concentration processes 37 (pp. 1-192). (EPA/630/P-02/002F). 38 Washington, DC: U.S. Environmental 39 Protection Agency, Risk Assessment Forum. 40 http://www.epa.gov/osa/review-reference-41 dose-and-reference-concentration-processes 42 U.S. EPA. (2005a). Guidelines for carcinogen 43 risk assessment [EPA Report] (pp. 1-166). 44 (EPA/630/P-03/001F). Washington, DC: U.S. 45 Environmental Protection Agency, Risk 46 Assessment Forum. 47 http://www2.epa.gov/osa/guidelines-48 carcinogen-risk-assessment

49 U.S. EPA. (2005b). Supplemental guidance for 50 assessing susceptibility from early-life 51 exposure to carcinogens (pp. 1-125). 52 (EPA/630/R-03/003F). Washington, DC: U.S. Environmental Protection Agency, Risk 53 54 Assessment Forum. 55 U.S. EPA. (2006). Approaches for the 56 application of physiologically based 57 pharmacokinetic (PBPK) models and 58 supporting data in risk assessment (Final 59 Report) [EPA] Report] (pp. 1-123). (EPA/600/R-05/043F). Washington, DC: U.S. 60 Environmental Protection Agency, Office of 61 62 Research and Development, National Center 63 for Environmental Assessment. 64 http://cfpub.epa.gov/ncea/cfm/recordispla 65 y.cfm?deid=157668 U.S. EPA. (2011). Recommended use of body 66 weight 3/4 as the default method in 67 68 derivation of the oral reference dose (pp. 1-50). (EPA/100/R11/0001). Washington, DC: 69 U.S. Environmental Protection Agency, Risk 70 71 Assessment Forum, Office of the Science 72 Advisor. https://www.epa.gov/risk/recommended-73 74 use-body-weight-34-default-methodderivation-oral-reference-dose 75 76 U.S. EPA. (2012). Benchmark dose technical guidance (pp. 1-99). (EPA/100/R-12/001). 77 78 Washington, DC: U.S. Environmental Protection Agency, Risk Assessment Forum. 79 80 U.S. EPA. (2014). Guidance for applying 81 quantitative data to develop data-derived extrapolation factors for interspecies and 82 intraspecies extrapolation. (EPA/100/R-83 14/002F). Washington, DC: Risk Assessment 84

- 85 Forum, Office of the Science Advisor.
- 86 <u>http://www.epa.gov/raf/DDEF/pdf/ddef-</u>

DRAFT-DO NOT CITE OR QUOTE

87 <u>final.pdf</u>

88

2 **EXECUTIVE SUMMARY**

1

3	Summation of Occurrence and Health Effects				
4 5 6 7 8 9 10 11 12 13 14 15 16	<i>tert</i> -Butanol does not occur naturally; it is produced by humans for multiple purposes, such as a solvent for paints, a denaturant for ethanol and several other alcohols, an agent for dehydrating, and in the manufacture of flotation agents, fruit essences, and perfumes. <i>tert</i> -Butanol also is a primary metabolite of methyl <i>tert</i> -butyl ether (MTBE) and ethyl <i>tert</i> -butyl ether (ETBE). Exposure to <i>tert</i> -butanol primarily occurs through breathing air containing <i>tert</i> -butanol vapors and consuming contaminated water or foods. Exposure can also occur through direct skin contact. Animal studies demonstrate that chronic oral exposure to <i>tert</i> -butanol is associated with kidney and thyroid effects. No chronic inhalation exposure studies have been conducted. Evidence is suggestive of carcinogenic potential for <i>tert</i> -butanol, based on thyroid tumors in male and female mice and renal tumors in male rats.				
17	Effects Other Than Cancer Observed Following Oral Exposure				
18	Kidney effects are a potential human hazard of oral exposure to <i>tert</i> -butanol. Kidney toxicity				
19	was observed in males and females in two strains of rats. Kidney weights were increased in male				
20	and female rats after 13 weeks or 15 months of treatment. Histopathological examination in male				
21	and female rats showed increased incidence or severity of nephropathy after 13 weeks of oral				
22	exposure, increases in severity of nephropathy after 2 years of oral exposure, and increased				
23	transitional epithelial hyperplasia after 2 years of oral exposure. Additionally, increased				
24	suppurative inflammation was noted in females after 2 years of oral exposure. In one strain of mice,				
25	the only kidney effect observed was an increase in kidney weight (absolute or relative) in female				
26	mice after 13 weeks, but no treatment-related histopathological lesions were reported in the				
27	kidneys of male or female mice at 13 weeks or 2 years. A mode of action (MOA) analysis determined				
28	that <i>tert</i> -butanol exposure induces a male rat-specific α_{2u} -globulin-associated nephropathy. <i>tert</i> -				
29	Butanol, however, is a weak inducer of α_{2u} -globulin nephropathy, which is not the sole process				
30	contributing to renal tubule nephropathy. Chronic progressive nephropathy (CPN) might also be				
31	involved in some noncancer effects, but the data are complicated by α_{2u} -globulin nephropathy in				
32	males. Effects attributable to α_{2u} -globulin nephropathy were not considered for kidney hazard				
33	identification. Females are not affected by α_{2u} -globulin nephropathy, so changes in kidney weights				
34	in female rats, transitional epithelial hyperplasia in female rats, suppurative inflammation in female				
35	rats, and severity and incidence of nephropathy in female rats are considered to result from <i>tert</i> -				
36	butanol exposure and are appropriate for identifying a hazard to the kidney.				

At this time, evidence of selective developmental toxicity and reproductive system toxicity
 following *tert*-butanol exposure is inadequate. Information also is inadequate to draw conclusions
 regarding neurodevelopmental toxicity, liver toxicity, and urinary bladder toxicity.

4 Oral Reference Dose (RfD) for Effects Other Than Cancer

5 Kidney toxicity, represented by increases in severity of nephropathy, was chosen as the 6 basis for the overall oral reference dose (RfD) (see Table ES-1). The kidney effects observed in the 7 chronic study by <u>NTP (1995)</u> were used to derive the RfD. The endpoint of increases in severity of 8 nephropathy was selected as the critical effect because it was observed in female rats consistently, 9 it is an indicator of kidney toxicity, and was induced in a dose-responsive manner. Dose-response 10 data were not amenable to modeling; accordingly, the point of departure was derived from the

11 lowest-observed-adverse-effect level (LOAEL) of 43 mg/kg-day (<u>U.S. EPA, 2011</u>).

12 The overall RfD was calculated by dividing the POD for increases in severity of nephropathy

13 by a composite uncertainty factor (UF) of 100 to account for the extrapolation from animals to

14 humans (3), derivation from a LOAEL (3), and for interindividual differences in human

15 susceptibility (10).

16

Table ES-1. Organ/system-specific RfDs and overall RfD for tert-butanol

Hazard	Basis	Point of departure* (mg/kg-day)	UF	Chronic RfD (mg/kg-day)	Study exposure description	Confidence
Kidney	Increases in severity of nephropathy	43.2	100	4 × 10 ⁻¹	Chronic	Medium
Overall RfD	Kidney	43.2	100	4 × 10 ⁻¹	Chronic	Medium

17

18 *Human equivalent dose (HED) PODs were calculated using body weight to the ¾ power (BW^{3/4}) scaling (U.S. EPA,

19 <u>**2011**</u>).

20 Effects Other Than Cancer Observed Following Inhalation Exposure

21 Kidney effects are a potential human hazard of inhalation exposure to *tert*-butanol.

22 Although no effects were observed in mice, kidney weights were increased in male and female rats

23 following 13 weeks of inhalation exposure. In addition, the severity of nephropathy increased in

24 male rats. No human studies are available to evaluate the effects of inhalation exposure. As

 $25 \qquad discussed \ above \ for \ oral \ effects, endpoints \ specifically \ related \ to \ \alpha_{2u} \ effects \ discussed \ above \ for \ oral \ effects, \ endpoints \ specifically \ related \ to \ \alpha_{2u} \ effects \ discussed \ above \ for \ oral \ effects \ effects \ discussed \ above \ for \ oral \ effects \ effec$

26 considered for kidney hazard identification. Changes in kidney weights and severity of nephropathy

27 in females, however, are considered a result of *tert*-butanol exposure and are appropriate for

28 identifying a hazard to the kidney.

1 Inhalation Reference Concentration (RfC) for Effects Other Than Cancer

- 2 Kidney toxicity, represented by increases in severity of nephropathy, was chosen as the
- 3 basis for the RfC (see Table ES-2). Although endpoints from a route-specific study were considered,
- 4 the availability of a physiologically based pharmacokinetic (PBPK) model for *tert*-butanol in rats
- 5 (<u>Borghoff et al., 2016</u>) allowed for more specific and sensitive equivalent inhalation PODs derived
- 6 from a route-to-route extrapolation from the PODs of the oral <u>NTP (1995)</u> study. The POD adjusted
- 7 for the human equivalent concentration (HEC) was 491 mg/m³ based on increases in severity of
- 8 nephropathy.

9 The RfC was calculated by dividing the POD by a composite UF of 100 to account for

10 toxicodynamic differences between animals and humans (3), derivation from a LOAEL (3), and

- 11 interindividual differences in human susceptibility (10).
- 12

Table ES-2. Organ/system-specific RfCs and overall RfC for *tert*-butanol

Hazard	Basis	Point of departure* (mg/m ³)	UF	Chronic RfC (mg/m ³)	Study exposure description	Confidence
Kidney	Increases in severity of nephropathy	491	100	5 × 10 ⁰	Chronic	Medium
Overall RfC	Kidney	491	100	5 × 10º	Chronic	Medium

13

14 *Continuous inhalation HEC that leads to the same average blood concentration of *tert*-butanol as drinking water

15 exposure to the rat at the BMDL.

16 Evidence of Human Carcinogenicity

17 Under EPA's cancer guidelines (<u>U.S. EPA, 2005a</u>), there is *suggestive evidence of carcinogenic*

18 *potential* for *tert*-butanol. *tert*-Butanol induced kidney tumors in male (but not female) rats and

19 thyroid tumors (primarily benign) in male and female mice following long-term administration in

20 drinking water (<u>NTP, 1995</u>). The potential for carcinogenicity applies to all routes of human

21 exposure.

1 Quantitative Estimate of Carcinogenic Risk from Oral Exposure

- 2 In accordance with EPA's guidance on α_{2u} -globulin (U.S. EPA, 1991b), rat kidney tumors are 3 unsuitable for quantitative analysis because not enough data are available to determine the relative 4 contribution of α_{2u} -globulin nephropathy and other processes to the overall kidney tumor response. 5 A quantitative estimate of carcinogenic potential from oral exposure to *tert*-butanol was based on 6 the increased incidence of thyroid follicular cell adenomas in female B6C3F₁ mice and thyroid 7 follicular cell adenomas and carcinomas in male B6C3F₁ mice (NTP, 1995). The study included
- 8 histological examinations for tumors in many different tissues, contained three exposure levels and
- 9 controls, contained adequate numbers of animals per dose group (~50/sex/group), treated animals
- 10 for up to 2 years, and included detailed reporting of methods and results.
- 11 Although *tert*-butanol was considered to have only "suggestive evidence of carcinogenic
- 12 potential," the NTP study was well conducted and suitable for quantitative analysis. Slope factors
- 13 were derived for thyroid tumors in female or male mice. The modeled *tert*-butanol POD was scaled
- 14 to HEDs according to EPA guidance by converting the BMDL₁₀ on the basis of (body weight) $^{3/4}$
- scaling (<u>U.S. EPA, 2011</u>, <u>2005a</u>). Using linear extrapolation from the BMDL₁₀, a human equivalent
- 16 oral slope factor was derived (slope factor = $0.1/BMDL_{10}$). The resulting oral slope factor is 5×10^{-4}
- 17 per mg/kg-day.

18 Quantitative Estimate of Carcinogenic Risk from Inhalation Exposure

- No chronic inhalation studies of exposure to *tert*-butanol are available. Although the mouse
 thyroid tumors served as the basis for the oral slope factor, route-to-route extrapolation is not
 possible for these thyroid effects in mice because the only PBPK model available is for rats.
- 22 Therefore, no quantitative estimate of carcinogenic risk could be determined for inhalation
- 23 exposure.

24 Susceptible Populations and Lifestages for Cancer and Noncancer Outcomes

Information is inadequate to identify any populations or lifestages that might be especiallysusceptible to *tert*-butanol.

27 Key Issues Addressed in Assessment

- 28 Whether *tert*-butanol caused α_{2u} -globulin-associated nephropathy was evaluated (<u>U.S. EPA</u>,
- 29 <u>1991a</u>). The presence of α_{2u} -globulin in the hyaline droplets was confirmed in male rats by
- $30 \qquad \alpha_{2u} \mbox{-globulin immunohistochemical staining. Linear mineralization and tubular hyperplasia were$
- 31 reported in male rats, although only in the chronic study. Other subsequent steps in the
- 32 pathological sequence, including necrosis, exfoliation, and granular casts, either were absent or
- 33 inconsistently observed across subchronic or chronic studies. None of these effects occurred in
- 34 female rats or in either sex of mice, although these endpoints were less frequently evaluated in
- 35 these models. Evidence implies that an α_{2u} -globulin MOA is operative, although it is relatively weak
- 36 in response to *tert*-butanol and is not solely responsible for the renal tubule nephropathy observed

1 in male rats. CPN also is instrumental in renal tubule nephropathy, in both male and female rats. 2 Several other effects in the kidney unrelated to α_{2u} -globulin were observed in female rats, including 3 suppurative inflammation, transitional epithelial hyperplasia, and increased kidney weights (NTP, 4 1997, 1995). These specific effects are considered the result of *tert*-butanol exposure and therefore 5 relevant to humans. 6 Concerning cancer, α_{2u} -globulin accumulation is indicated as relatively weak in response to 7 *tert*-butanol exposure and not the sole mechanism responsible for the renal tubule carcinogenicity 8 observed in male rats. CPN and other effects induced by both α_{2u} -globulin processes and *tert*-9 butanol play a role in renal tubule nephropathy, and the evidence indicates that CPN augments the 10 renal tubule tumor induction associated with *tert*-butanol exposure in male rats. Poor dose-11 response relationships between α_{2u} -globulin processes and renal tumors in male rats and a lack of 12 renal tumors in female rats despite increased CPN severity, however, suggest that other, unknown 13 processes contribute to renal tumor development. Based on this analysis of available MOA data, 14 these renal tumors are considered relevant to humans. 15 In addition, an increase in the incidence of thyroid follicular cell adenomas was observed in 16 male and female mice in a 2-year drinking water study (NTP, 1995). Thyroid follicular cell 17 hyperplasia was considered a preneoplastic effect associated with the thyroid tumors, and the 18 incidences of follicular cell hyperplasias were elevated in both male and female B6C3F₁ mice 19 following exposure. U.S. EPA (1998a) describes the procedures the Agency uses in evaluating 20 chemicals that are animal thyroid carcinogens. The available database is inadequate for concluding 21 that an antithyroid MOA is operating in mouse thyroid follicular cell tumorigenesis. No other MOAs 22 for thyroid tumors were identified, and the mouse thyroid tumors are considered relevant to 23 humans (U.S. EPA 1998a).

1

LITERATURE SEARCH STRATEGY | STUDY SELECTION AND EVALUATION

4 A literature search and screening strategy was used to identify literature characterizing the 5 health effects of *tert*-butanol. This strategy consisted of a broad search of online scientific databases 6 and other sources to identify all potentially pertinent studies. In subsequent steps, references were 7 screened to exclude papers not pertinent to an assessment of the health effects of *tert*-butanol, and 8 remaining references were sorted into categories for further evaluation. This section describes the 9 literature search and screening strategy in detail. 10 The chemical-specific search was conducted in four online scientific databases, including 11 PubMed, Web of Science, Toxline, and TSCATS through December 2016, using the keywords and 12 limits described in Table LS-1. The overall literature search approach is shown graphically in Figure 13 LS-1. Eight more citations were obtained using additional search strategies described in Table LS-2. 14 After electronically eliminating duplicates from the citations retrieved through these databases, 15 3,138 unique citations were identified. 16 The resulting 3,138 citations were screened for pertinence and separated into categories as 17 presented in Figure LS-1 using the title and either abstract or full text, or both, to examine the 18 health effects of tert-butanol exposure. The inclusion and exclusion criteria used to screen the

19 references and identify sources of health effects data are provided in Table LS-3.

• 12 references were identified as "Sources of Health Effects Data" and were considered for data extraction to evidence tables and exposure-response arrays.

• 202 references were identified as "Sources of Mechanistic and Toxicokinetic Data" and "Sources of Supporting Health Effects Data"; these included 41 studies describing physiologically based pharmacokinetic (PBPK) models and other toxicokinetic information, 73 studies providing genotoxicity and other mechanistic information, 1 human case report, 74 irrelevant exposure paradigms (including acute, dermal, eye irritation, and injection studies), 6 preliminary toxicity studies, and 7 physical dependency studies. Information from these studies was not extracted into evidence tables; however, these studies were considered as support for assessing *tert*-butanol health effects, for example, evaluation of mode of action and extrapolation of experimental animal findings to humans. Additionally, although still considered sources of health effects information, studies investigating the effects of acute and direct chemical exposures are generally less pertinent for characterizing health hazards associated with chronic oral and inhalation exposure. Therefore, information from these studies was not considered for extraction into evidence tables. Nevertheless, these studies were still evaluated as possible sources of supplementary health effects information.

• 128 references were identified as "Secondary Literature and Sources of Contextual Information" (e.g., reviews and other agency assessments); these references were retained as additional resources for development of the Toxicological Review.

• 2,796 references were identified as not being pertinent (not on topic) to an evaluation of the health effects of *tert*-butanol and were excluded from further consideration (see Figure LS-1 for exclusion categories and Table LS-3 for exclusion criteria). For example, health effect studies of gasoline and *tert*-butanol mixtures were not considered pertinent to the assessment because the separate effects of the gasoline or other chemical components could not be determined. Retrieving a large number of references that are not on topic is a consequence of applying an initial search strategy designed to cast a wide net and to minimize the possibility of missing potentially relevant health effects data.

- 1 The complete list of references and the sorting of these materials can be found on the *tert*-
- 2 butanol project page of the HERO website at
- 3 <u>https://hero.epa.gov/index.cfm/project/page/project_id/1543</u>.

4 Selection of Studies for Inclusion in Evidence Tables

- 5 To summarize the important information systematically from the primary health effects
- 6 studies in the *tert*-butanol database, evidence tables were constructed in a standardized tabular
- 7 format as recommended by <u>NRC (2011)</u>. Studies were arranged in evidence tables by effect, species,
- 8 duration, and design, and not by quality. Of the studies retained after the literature search and
- 9 screen, 12 studies were identified as "Sources of Health Effects Data" and were considered for
- 10 extraction into evidence tables for hazard identification in Chapter 1. Initial review found two
- 11 references (<u>Cirvello et al., 1995; Lindamood et al., 1992</u>) to be publications of the <u>NTP (1995)</u> data
- 12 prior to the release of the final National Toxicology Program (NTP) report. One publication
- 13 (<u>Takahashi et al., 1993</u>) in the "Supplementary Studies" category also was based on data from the
- 14 NTP report. The interim publications and the final NTP report differed. The finalized <u>NTP (1995)</u>
- 15 report was considered the more complete and accurate presentation of the data; therefore, this
- 16 report was included in evidence tables and <u>Cirvello et al. (1995)</u>, <u>Takahashi et al. (1993)</u>, and
- 17 <u>Lindamood et al. (1992)</u> were not. Data from the remaining 10 references in the "Sources of Health
- 18 Effects Data" category were extracted into evidence tables.
- Supplementary studies that contain pertinent information for the toxicological review and
 augment hazard identification conclusions, such as genotoxic and mechanistic studies, studies
- 21 describing the kinetics and disposition of *tert*-butanol absorption and metabolism, pilot studies,
- 22 and one case report, were not included in the evidence tables. Short-term and acute studies
- 23 (including an 18-day study and a 14-day study by NTP), which used oral and inhalation exposures
- 24 performed primarily in rats, did not differ qualitatively from the results of the longer studies (i.e.,
- \geq 30-day exposure studies). These were grouped as supplementary studies, however, because the
- 26 database of chronic and subchronic rodent studies was considered sufficient for evaluating chronic
- 27 health effects of *tert*-butanol exposure. Additionally, studies of effects from chronic exposure are
- 28 most pertinent to lifetime human exposure (i.e., the primary characterization provided by IRIS

- 1 assessments) and are the focus of this assessment. Such supplementary studies are discussed in the
- 2 narrative sections of Chapter 1 and are described in sections such as the "Mode of Action Analysis"
- 3 to augment the discussion or presented in appendices, if they provide additional information.

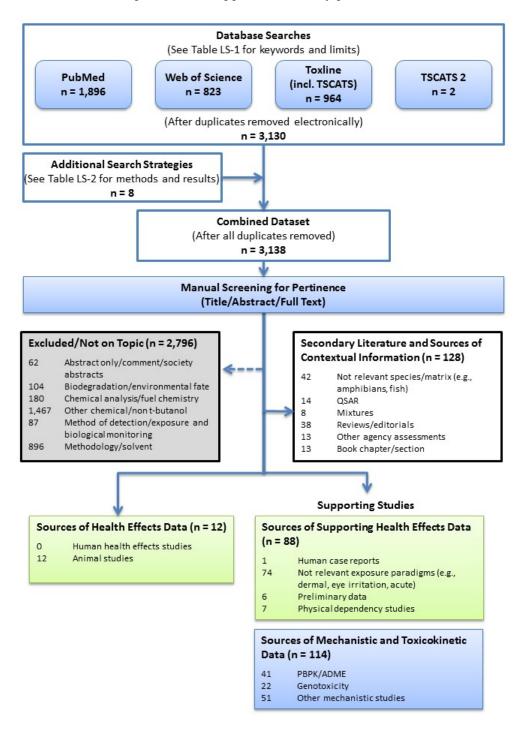


Figure LS-1. Summary of literature search and screening process for *tert*-butanol.

Database (Search date)	Keywords	Limits
PubMed (12/20/2012) (4/17/2014) (5/13/2015) (12/31/2016)	tert-butanol OR 75-65-0[rn] OR "t- butyl hydroxide" OR "2-methyl-2- propanol" OR "trimethyl carbinol" OR "t-butyl alcohol" OR tert-butanol OR "tert-butyl alcohol" OR tert-butyl alcohol[mesh]	None
Web of Science (12/20/2012) (4/17/2014) (5/13/2015) (12/31/2016)	Topic = (tert-butanol OR 75-65-0 OR "t-butyl hydroxide" OR "2-methyl-2- propanol" OR "trimethyl carbinol" OR "t-butyl alcohol" OR "tert- butanol" OR "tert-butyl alcohol")	Refined by: Research Areas = (cell biology OR respiratory system OR microscopy OR biochemistry molecular biology OR gastroenterology OR hepatology OR public environmental occupational health OR oncology OR physiology OR cardiovascular system cardiology OR toxicology OR life sciences biomedicine other topics OR hematology OR pathology OR neurosciences neurology OR developmental biology)
Toxline (includes TSCATS) (1/11/2013) (4/17/2014) (5/13/2015) (12/31/2016)	tert-butanol OR 75-65-0 [rn] OR t- butyl hydroxide OR 2-methyl-2- propanol OR trimethyl carbinol OR t- butyl alcohol OR tert-butanol OR tert-butyl alcohol OR tert-butyl alcohol	Not PubMed
TSCATS2 (1/4/2013) (4/17/2014) (5/13/2015) (12/31/2016)	75-65-0	None

Table LS-1. Details of the search strategy employed for tert-butanol

2

1

Table LS-2. Summary of additional search strategies for tert-butanol

Approach used	Source(s)	Date performed	Number of additional references identified
Manual search of citations from reviews and public comments	Review article: <u>McGregor (2010)</u> . <i>Tertiary</i> -butanol: A toxicological review. Crit Rev Toxicol 40(8): 697- 727.	1/2013	5
	Review article: <u>Chen (2005)</u> . Amended final report of the safety assessment of <i>t</i> -butyl alcohol as used in cosmetics. Int J Toxicol 24(2): 1-20.	1/2013	2
	Public comment article: <u>Borghoff et</u> <u>al. (2016</u>)	10/2016	1

Approach used	Source(s)	Date performed	Number of additional references identified
Manual search of citations from reviews conducted by other international and federal agencies	IPCS (1987a). Butanols: Four isomers: 1-butanol, 2-butanol, <i>tert</i> -butanol, isobutanol [WHO EHC]. Geneva, Switzerland: World Health Organization.	1/2013	None
	OSHA (1992). Occupational safety and health guideline for <i>tert</i> -butyl alcohol. Cincinnati, OH: Occupational Safety and Health Administration.	1/2013	None

Table LS-3. Inclusion-exclusion criteria

1

	Inclusion criteria	Exclusion criteria
Population	 Humans Standard mammalian animal models, including rat, mouse, rabbit, guinea pig, monkey, dog 	 Ecological species* Nonmammalian species*
Exposure	 Exposure is to <i>tert</i>-butanol Exposure is measured in an environmental medium (e.g., air, water, diet) Exposure via oral, inhalation, or dermal routes 	 Study population is not exposed to <i>tert</i>-butanol Exposure to a mixture only (e.g., gasoline containing <i>tert</i>-butanol) Exposure via injection (e.g., intravenous) Exposure pattern less relevant to chronic health effects (e.g., acute)
Outcome	 Study includes a measure of one or more health effect endpoints, including effects on the nervous, musculoskeletal, cardiovascular, immune, hematological, endocrine, respiratory, urinary, and gastrointestinal systems; reproduction; development; liver; kidney; eyes; skin; and cancer Physical dependency studies where withdrawal symptoms were evaluated after removal of <i>tert</i>-butanol treatment 	
Other		 Not on topic, including: Abstract only, editorial comments were not considered further because study was not potentially relevant Bioremediation, biodegradation, or environmental fate of <i>tert</i>-butanol, including evaluation of wastewater treatment technologies and methods for remediation of contaminated water and soil Chemical, physical, or fuel chemistry studies

Inclusion criteria	Exclusion criteria
	 Analytical methods for measuring/detecting/ remotely sensing <i>tert</i>-butanol Use of <i>tert</i>-butanol as a solvent or methodology for testing unrelated to <i>tert</i>-butanol Not chemical specific: Studies that do not involve testing of <i>tert</i>-butanol Foreign language studies that were not considered further because, based on title or abstract, judged not potentially relevant QSAR studies

*Studies that met this exclusion criterion were not considered a source of health effects data or supplementary health effects data/mechanistic and toxicokinetic data, but were considered as sources of contextual information.

1 Database Evaluation

2 For this draft assessment, 12 references reported on experimental animal studies that

3 comprised the primary sources of health effects data; no studies were identified that evaluated

4 humans exposed to *tert*-butanol (e.g., cohort studies, ecological studies). The animal studies were

5 evaluated using the study quality considerations outlined in the Preamble, considering aspects of

6 design, conduct, or reporting that could affect the interpretation of results, overall contribution to

7 the synthesis of evidence, and determination of hazard potential as noted in various EPA guidance

8 documents (U.S. EPA, 2005a, 1998b, 1996, 1991b). The objective was to identify the stronger, more

9 informative studies based on a uniform evaluation of quality characteristics across studies of

10 similar design. As stated in the Preamble, studies were evaluated to identify the suitability of the

11 study based on:

- Study design
- Nature of the assay and validity for its intended purpose

• Characterization of the nature and extent of impurities and contaminants of *tert*-butanol administered, if applicable

• Characterization of dose and dosing regimen (including age at exposure) and their adequacy to elicit adverse effects, including latent effects

- Sample sizes and statistical power to detect dose-related differences or trends
- Ascertainment of survival, vital signs, disease or effects, and cause of death
- Control of other variables that could influence the occurrence of effects

1 Additionally, several general considerations, presented in Table LS-4, were used in 2 evaluating the animal studies. Much of the key information for conducting this evaluation can be 3 determined based on study methods and how the study results were reported. Importantly, the 4 evaluation at this stage does not consider the direction or magnitude of any reported effects. 5 EPA considered statistical tests to evaluate whether the observations might be due to 6 chance. The standard for determining statistical significance of a response is a trend test or 7 comparison of outcomes in the exposed groups against those of concurrent controls. Studies that 8 did not report statistical testing were identified and, when appropriate, statistical tests were 9 conducted by EPA.

Information on study features related to this evaluation is reported in evidence tables and
 documented in the synthesis of evidence. Discussion of study strengths and limitations are included
 in the text, where relevant. If EPA's interpretation of a study differs from that of the study authors,

13 the draft assessment discusses the basis for the difference.

14 Experimental Animal Studies

15 The experimental animal studies, comprised entirely of studies performed in rats and mice, 16 were associated with drinking water, oral gavage, liquid diets (i.e., maltose/dextrin), and inhalation 17 exposures to *tert*-butanol. With the exception of neurodevelopmental studies, these sources were 18 conducted according to Organisation for Economic Co-operation and Development Good 19 Laboratory Practice (GLP) guidelines, presented extensive histopathological data, or clearly 20 presented their methodology; thus, these studies are considered high quality. These studies include 21 2-year bioassays using oral exposures in rats and mice; two subchronic drinking water studies in 22 rats and one in mice; an inhalation subchronic study in rats and mice; a reevaluation of the NTP 23 (1995) rat data; two oral developmental studies; two inhalation developmental studies; and a 24 single one-generation reproductive study that also evaluates other systemic effects (Table LS-5). A 25 more detailed discussion of any methodological concerns that were identified precedes each 26 endpoint evaluated in the hazard identification section. Overall, the experimental animal studies of 27 *tert*-butanol involving repeated oral or inhalation exposure were considered to be of acceptable 28 quality, and whether yielding positive, negative, or null results, were considered in assessing the

29 evidence for health effects associated with chronic exposure to *tert*-butanol.

Methodological feature	Considerations (relevant information extracted into evidence tables)	
Test animal	Suitability of the species, strain, sex, and source of the test animals	
Experimental design	Suitability of animal age/lifestage at exposure and endpoint testing; periodicity and duration of exposure (e.g., hr/day, day/week); timing of endpoint evaluations; and sample size and experimental unit (e.g., animals, dams, litters)	
Exposure	Characterization of test article source, composition, purity, and stability; suitability of the control (e.g., vehicle control); documentation of exposure techniques (e.g., route, chamber type, gavage volume); verification of exposure levels (e.g., consideration of homogeneity, stability, analytical methods)	
Endpoint evaluation	Suitability of specific methods for assessing the endpoint(s) of interest	
Results presentation	Data presentation for endpoint(s) of interest (including measures of variability) and for other relevant endpoints needed for results interpretation (e.g., maternal toxicity, decrements in body weight relative to organ weight)	

Table LS-4. Considerations for evaluation of experimental animal studies

2

1

Table LS-5. Summary of experimental animal database

Study category	Study duration, species/strain, and administration method
Chronic	2-year study in F344 rats (drinking water) <u>NTP (1995)</u> 2-year study in B6C3F ₁ mice (drinking water) <u>NTP (1995)</u>
Subchronic	 13-week study in B6C3F1 mice (drinking water) <u>NTP (1995)</u> 13-week study in F344 rats (drinking water) <u>NTP (1995)</u> 13-week study in F344 rats (inhalation) <u>NTP (1997)</u> 13-week study in B6C3F1 mice (inhalation) <u>NTP (1997)</u> 10-week study in Wistar rats (drinking water) <u>Acharya et al. (1997)</u>, <u>Acharya et al. (1995)</u>
Reproductive	One-generation reproductive toxicity study in Sprague-Dawley rats (gavage) <u>Huntingdon</u> <u>Life Sciences (2004)</u> Huntington Life Sciences (2004)
Developmental	Developmental study (GD 6–20) in Swiss Webster mice (diet) <u>Daniel and Evans (1982)</u> Developmental study (GD 6–18) in CBA/J mice (drinking water) <u>Faulkner et al. (1989)</u> Developmental study (GD 6–18) in C57BL/6J mice (drinking water) <u>Faulkner et al. (1989)</u> Developmental study (GD 1–19) in Sprague-Dawley rats (inhalation) <u>Nelson et al. (1989)</u>
Neurodevelopmental	Neurodevelopmental study (GD 6–20) in Swiss Webster mice (diet) <u>Daniel and Evans</u> (<u>1982)</u> Neurodevelopmental study (GD 1–19) in Sprague-Dawley rats (inhalation) <u>Nelson et al.</u> (<u>1991)</u>

1 **1 HAZARD IDENTIFICATION**

2 1.1 OVERVIEW OF CHEMICAL PROPERTIES AND TOXICOKINETICS

3 1.1.1 Chemical Properties

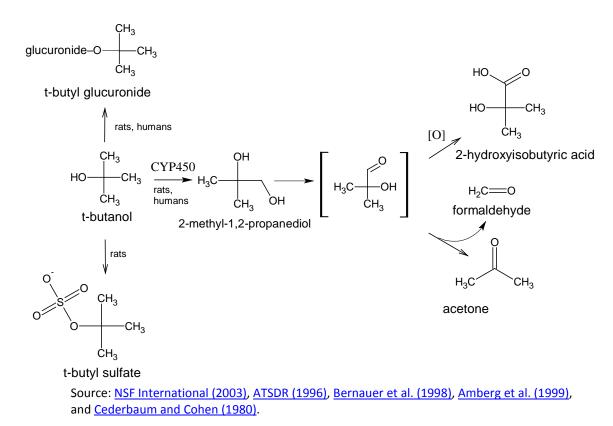
tert-Butanol is a white crystalline solid or colorless, highly flammable liquid (above 25.7°C)
with a camphor-like odor (NIOSH, 2005; IPCS, 1987a). *tert*-Butanol contains a hydroxyl chemical
functional group; is miscible with alcohol, ether, and other organic solvents; and is soluble in water
(IPCS, 1987a). Selected chemical and physical properties of *tert*-butanol are presented in Table 1-1.

8

Table 1-1. Physicochemical properties and chemical identity of tert-butanol

Characteristic	Information	Reference
Chemical name	tert-Butanol	HSDB (2007)
Synonyms/Trade names	<i>t</i> -Butyl alcohol; <i>tert</i> -Butanol; <i>tert</i> -Butyl alcohol; <i>t</i> - Butyl hydroxide; 1,1-Dimethylethanol; NCI-C55367; 2-Methyl-2-propanol; <i>tertiary</i> Butanol; Trimethyl carbinol; Trimethyl methanol; <i>t</i> -butyl alcohol; TBA	<u>HSDB (2007)</u> IPCS (1987b)
Chemical formula	C ₄ H ₁₀ O	<u>HSDB (2007)</u>
CASRN	75-65-0	HSDB (2007)
Molecular weight	74.12	HSDB (2007)
Melting point	25.7°C	HSDB (2007)
Boiling point	82.41°C	HSDB (2007)
Vapor pressure	40.7 mm Hg @ 25°C	HSDB (2007)
Density/Specific gravity	0.78581	HSDB (2007)
Flashpoint	15–23°C	ECHA (2017)
Water solubility at 25°C	1 × 10 ⁶ mg/L	HSDB (2007)
Octanol/Water Partition Coefficient (Log K _{OW})	0.317	<u>ECHA (2017)</u>
Henry's Law Constant	9.05×10^{-6} atm-m ³ /mole	HSDB (2007)
Odor threshold	219 mg/m ³	HSDB (2007)
Conversion factors	1 ppm = 3.031 mg/m ³ 1 mg/m ³ = 0.324 ppm	<u>IPCS (1987b)</u>

This document is a draft for review purposes only and does not constitute Agency policy.


1-1

Characteristic	Information	Reference
Chemical structure	Н ₃ С	<u>HSDB (2007)</u>

1 **1.1.2** Toxicokinetics

2	tert-Butanol is rapidly absorbed following exposure by oral and inhalation routes (see
3	Appendix B, Section B.1.1). Studies in experimental animals indicate that 99% of the compound was
4	absorbed after oral administration. Comparable blood levels of <i>tert</i> -butanol and its metabolites also
5	have been observed after acute oral or inhalation exposures in rats (<u>ARCO, 1983</u>). In another study
6	(Faulkner et al., 1989), blood concentrations indicated that absorption was complete at 1.5 hours
7	following oral gavage doses of <i>tert</i> -butanol in female mice.
8	<i>tert</i> -Butanol is distributed throughout the body following oral, inhalation, and i.v. exposures
9	(<u>Poet et al., 1997; Faulkner et al., 1989; ARCO, 1983</u>). Following exposure to <i>tert</i> -butanol in rats,
10	tert-butanol was found in kidney, liver, and blood, with male rats retaining more tert-butanol than
11	female rats (<u>Williams and Borghoff, 2001</u>).
12	A general metabolic scheme for <i>tert</i> -butanol, illustrating the biotransformation in rats and
13	humans, is shown in Figure 1-1 (see Appendix B.1.3).
14	Human data on the excretion of <i>tert</i> -butanol comes from studies of methyl <i>tert</i> -butyl ether
15	(MTBE) and ethyl <i>tert</i> -butyl ether (ETBE) (<u>Nihlén et al., 1998a</u> , <u>b</u>). The half-life of <i>tert</i> -butanol in
16	urine following MTBE exposure was 8.1 \pm 2.0 hours (average of the 90.1- and 757-mg/m ³ MTBE
17	doses); the half-life of <i>tert</i> -butanol in urine following ETBE exposure was 7.9 \pm 2.7 hours (average
18	of 104- and 210-mg/m ³ ETBE doses). These studies reported urinary levels of <i>tert</i> -butanol (not
19	including downstream metabolites) to be less than 1% of administered MTBE or ETBE
20	concentrations (<u>Nihlén et al., 1998a</u> , <u>b</u>). <u>Amberg et al. (2000)</u> observed a similar half-life of 9.8 ± 1.4
21	hours after human exposure to ETBE of 170 mg/m ³ . The half-life for <i>tert</i> -butanol in rat urine was
22	4.6 ± 1.4 hours at ETBE levels of 170 mg/m ³ .
23	A more detailed summary of <i>tert</i> -butanol toxicokinetics is provided in Appendix B,

24 Section B.1.

2 3

1

Figure 1-1. Biotransformation of *tert*-butanol in rats and humans.

4 1.1.3 Description of Toxicokinetic Models

No physiologically based pharmacokinetic (PBPK) models have been developed specifically
for administration of *tert*-butanol. Some models have been used to study *tert*-butanol as the
primary metabolite after oral or inhalation exposure to MTBE or ETBE in rats. The most recent
models for MTBE oral and inhalation exposure include a component for the binding of *tert*-butanol
to α_{2u}-globulin (Borghoff et al., 2010; Leavens and Borghoff, 2009). These PBPK models were
subsequently adapted for ETBE (Borghoff et al., 2016; Salazar et al., 2015). A more detailed
summary of the toxicokinetic models is provided in Appendix B, Section B.1.5.

12 1.1.4 Chemicals Extensively Metabolized to *tert*-Butanol

13 *tert*-Butanol is a metabolite of other compounds, including ETBE, MTBE, and *tert*-butyl 14 acetate. Some of the toxicological effects observed in these compounds are attributed to tert-15 butanol. There are no assessments by national or international health agencies for ETBE. Animal studies demonstrate that chronic exposure to ETBE is associated with noncancer kidney effects, 16 17 including increased kidney weights in male and female rats accompanied by increased chronic 18 progressive nephropathy (CPN), urothelial hyperplasia (in males), and increased blood 19 concentrations of total cholesterol, blood urea nitrogen, and creatinine (Saito et al., 2013; Suzuki et 20 al., 2012). In these studies, increased liver weight and centrilobular hypertrophy also were

observed in male and female rats exposed to ETBE. Liver adenomas and carcinomas were increased
in male rats following 2-year inhalation exposure (Saito et al., 2013).

- 3 In 1996, the U.S. Agency for Toxic Substances and Disease Registry's (ATSDR) *Toxicological*
- 4 *Profile for MTBE* (ATSDR, 1996) identified cancer effect levels of MTBE based on carcinogenicity
- 5 data in animals. ATSDR reported that inhalation exposure was associated with kidney cancer in rats
- 6 and liver cancer in mice. ATSDR concluded that oral exposure to MTBE might cause liver and
- 7 kidney damage and nervous system effects in rats and mice. The chronic inhalation minimal risk
- 8 level was derived based on incidence and severity of chronic progressive nephropathy in female
- 9 rats (ATSDR, 1996). In 1997, EPA's Office of Water concluded that MTBE is carcinogenic to animals
- 10 and poses a potential carcinogenic potential to humans based on an increased incidence of Leydig
- 11 cell adenomas of the testes, kidney tumors, lymphomas, and leukemia in exposed rats (U.S. EPA,
- 12 <u>1997</u>). In 1998, the International Agency for Research on Cancer (IARC) found "limited evidence" of
- 13 MTBE carcinogenicity in animals and placed MTBE in Group 3 (i.e., not classifiable as to
- 14 carcinogenicity in humans) (<u>IARC, 1999</u>). IARC reported that oral exposure in rats resulted in
- 15 testicular tumors in males and lymphomas and leukemias (combined) in females; inhalation
- 16 exposure in male rats resulted in renal tubule adenomas; and inhalation exposure in female mice
- 17 resulted in hepatocellular adenomas (<u>IARC, 1999</u>).
- 18 No assessments by national or international agencies or chronic studies for *tert*-butyl19 acetate are available.

20 **1.2 PRESENTATION AND SYNTHESIS OF EVIDENCE BY ORGAN/SYSTEM**

21 1.2.1 Kidney Effects

22 Synthesis of Effects in Kidney

23 This section reviews the studies that investigated whether subchronic or chronic exposure 24 to tert-butanol can affect kidneys in humans or animals. The database examining kidney effects 25 following tert-butanol exposure contains eight studies (from five references) performed in rats or 26 mice (Huntingdon Life Sciences, 2004; Acharya et al., 1997; NTP, 1997; Acharya et al., 1995; NTP, 27 1995) and a reevaluation of the rat data from <u>NTP (1995)</u>, published by <u>Hard et al. (2011)</u>; no 28 human data are available. Studies using short-term and acute exposures that examined kidney 29 effects are not included in the evidence tables; they are discussed in the text, however, if they 30 provide data to inform mode of action (MOA) or hazard identification. tert-Butanol exposure 31 resulted in kidney effects after both oral (drinking water) and inhalation exposure in both sexes of 32 rats (Table 1-1, Table 1-2, Figure 1-1, and Figure 1-2); studies are arranged in the evidence tables 33 first by effect, then by route, and then duration.

- 34 The design, conduct, and reporting of each study were reviewed, and each study was
- 35 considered adequate to provide information pertinent to this assessment. Interpretation of non-
- 36 neoplastic kidney endpoints in rats, however, is somewhat complicated by the common occurrence

1 of age-related, spontaneous lesions characteristic of chronic progressive nephropathy (CPN) (<u>NTP</u>,

2 2015; Hard et al., 2013; Melnick et al., 2012; U.S. EPA, 1991a);

- 3 (<u>http://ntp.niehs.nih.gov/nnl/urinary/kidney/necp/index.htm</u>). CPN is more severe in male rats
- 4 than in females and is particularly common in the Sprague-Dawley and Fischer 344 strains. Dietary
- 5 and hormonal factors play a role in modifying CPN, although the etiology is largely unknown (see
- 6 further discussion below).
- 7 *Kidney weight.* Changes in kidney weight (absolute and relative to body weight) were
- 8 observed in male and female F344 rats following exposures of 13 weeks (oral and inhalation) (<u>NTP</u>,
- 9 <u>1997</u>) and 15 months (oral) (<u>NTP, 1995</u>). <u>Huntingdon Life Sciences (2004</u>) also reported increases
- 10 in absolute and relative kidney weight in Sprague-Dawley rats administered *tert*-butanol orally for
- 11 approximately 10 weeks (tabular data presented in the Supplemental Information to this
- 12 Toxicological Review). Changes were observed in both male and female rats, which exhibited strong
- 13 dose-related increases in absolute kidney weight (Spearman's rank coefficient > 0.72) following
- either oral or inhalation exposures (Figure 1-3). Of the oral (Figure 1-4 and inhalation (Figure 1-5)
- 15 mouse studies, only inhalation exposure in female mice induced a strong dose-related increase
- 16 (Spearman's rank coefficient = 0.9) in absolute kidney weights.
- 17 Measures of relative, as opposed to absolute, organ weight are sometimes preferred
- 18 because they account for changes in body weight that might influence changes in organ weight
- 19 (<u>Bailey et al., 2004</u>), although potential impact should be evaluated. For *tert*-butanol, body weight in
- 20 exposed animals noticeably decreased at the high doses relative to controls in the oral 13-week and
- 21 2-year studies (<u>NTP, 1995</u>). In this case, the decreased body weight of the animals
- 22 disproportionately affects the relative kidney weight measures because body weights are changed
- 23 more than kidney weights, resulting in an artificial exaggeration of relative weight changes. Thus,
- 24 absolute weight was determined the more reliable measure of kidney weight change for this
- 25 assessment. Additionally, a recent analysis indicates that increased absolute, but not relative,
- 26 subchronic kidney weights are significantly correlated with chemically induced histopathological
- 27 findings in the kidney in chronic and subchronic studies (<u>Craig et al., 2014</u>). Although relative and
- 28 absolute kidney weight data are both presented in exposure-response arrays (and in evidence
- 29 tables in the Supplemental Information), the absolute measures were considered more informative
- 30 for determining *tert*-butanol hazard potential.
- 31 *Kidney histopathology.* Treatment-related histopathological changes were observed in the
- 32 kidneys of male and female F344 rats following 13-week and 2-year oral exposures (<u>NTP, 1995</u>)
- 33 and male F344 rats following a 13-week inhalation exposure (<u>NTP, 1997</u>). Similarly, male Wistar
- 34 rats exposed for approximately 10 weeks exhibited an increase in histopathological kidney lesions
- 35 (<u>Acharya et al., 1997</u>; <u>Acharya et al., 1995</u>). B6C3F₁ mice, however, did not exhibit histopathological
- 36 changes when exposed for 13 weeks and 2 years via the oral route (<u>NTP, 1995</u>) and 13 weeks via
- 37 the inhalation route (<u>NTP, 1997</u>). More specific details on the effects observed in rats, reported by
- 38 NTP (1997, 1995) and Acharya et al. (1997); (1995) are described below.

1 Nephropathy and severity of nephropathy were reported in male and female rats in the 2 13-week oral studies (<u>NTP, 1995</u>). The nephropathy was characterized as "...a spontaneous 3 background lesion...typically consist[ing] of scattered renal tubules lined by basophilic 4 regenerating tubule epithelium." (NTP, 1995). NTP (1995) noted that the increase in severity of 5 nephropathy was related to tert-butanol and "characterized by an increase in the number and size 6 of foci of regeneration." The severity of nephropathy increased, compared with controls, in the 7 13-week male rats, which exhibited nephropathy in 94% of all exposed animals and 70% of 8 controls. Conversely, lesion severity was unchanged in the females, although nephropathy 9 incidence significantly increased with *tert*-butanol exposure. In the 13-week inhalation study (NTP, 10 1997), nephropathy was present in all but two male rats, including controls. NTP (1997) 11 characterized the reported chronic nephropathy in control male rats as "1 to 3 scattered foci of 12 regenerative tubules per kidney section. Regenerative foci were characterized by tubules with 13 cytoplasmic basophilia, increased nuclear/cytoplasmic ratio, and occasionally thickened basement 14 membranes and intraluminal protein casts." In exposed groups, the severity generally increased 15 from minimal to mild with increasing dose as "evidenced by an increased number of foci." No 16 treatment-related kidney histopathology was reported in the female rats exposed through 17 inhalation (NTP, 1997). 18 In the 2-year oral study by NTP (1995), nephropathy was reported at 15 months and 2 19 vears. The NTP (1995) characterization of nephropathy following chronic exposure included 20 multiple lesions: "thickened tubule and glomerular basement membranes, basophilic foci of 21 regenerating tubule epithelium, intratubule protein casts, focal mononuclear inflammatory cell 22 aggregates within areas of interstitial fibrosis and scarring, and glomerular sclerosis." At 15 23 months, male and female rats (30/30 treated; 10/10 controls) had nephropathy, and the severity 24 scores ranged from minimal to mild. At 2 years, male and female rats (149/150 treated; 49/50 25 controls) also had nephropathy, and although the severity was moderate in the control males and 26 minimal to mild in the control females, severity increased with *tert*-butanol exposure in both sexes 27 (NTP, 1995).

28 The lesions collectively described by NTP (1997, 1995) as nephropathy and noted as 29 common spontaneous lesions in rats are consistent with CPN. The effects characterized as CPN are 30 related to age and not considered histopathological manifestations of chemically induced toxicity 31 [see U.S. EPA (1991a), p. 35 for further details and a list of the typical, observable histopathological 32 features of CPN]. CPN is a common and well-established constellation of age-related lesions in the 33 kidney of rats, for which no known counterpart in aging humans exists. CPN is not a specific 34 diagnosis per se but, rather, an aggregate term describing a spectrum of effects. Individually, these 35 lesions or processes could occur in a human kidney, and their occurrence as a group in the aged rat 36 kidney does not make each one rat-specific if a treatment effect occurs for one or more of them. In 37 addition, exacerbation of one of more of these processes likely reflects some type of cell injury, 38 which is relevant to the human kidney. These lesions, however, are frequently exacerbated by

- 1 chemical treatment (<u>NTP, 1997</u>), as evidenced by the dose-related increases in severity of the
- 2 nephropathy compared to female and male rat controls. The chemical-related changes in increased
- 3 severity of nephropathy are included in the consideration of hazard potential.
- 4 <u>NTP (1995)</u> observed other kidney lesions, described as being associated with nephropathy
 5 but diagnosed separately. Renal mineralization is defined by <u>NTP (1995)</u> as "focal mineral deposits
 6 primarily at the corticomedullary junction." This mineralization is distinct from linear
- 7 mineralization, which is considered a lesion characteristic of α_{2u} -globulin nephropathy (for further
- 8 discussion of this particular lesion, see *Mode of Action Analysis—Kidney Effects*). The mineralization
- 9 is characterized as distinct linear deposits along radiating medullary collecting ducts. An increased
- 10 incidence of linear mineralization was limited to exposed males in the 2-year oral study (<u>NTP</u>,
- 11 <u>1995</u>).
- Renal (corticomedullary) mineralization was observed in essentially all female rats at all
 reported treatment durations. A dose-related, increased incidence of mineralization was reported
- 14 in male rats at the end of the 13-week, 15-month, and 2-year oral evaluations (<u>NTP, 1995</u>). <u>NTP</u>
- 15 (1995) describes focal, medullary mineralization as being associated with CPN but notes that focal
- 16 mineralization is "usually more prominent in untreated females than in untreated males," which is
- 17 consistent with the widespread appearance of this lesion in females. Corticomedullary
- 18 mineralization (also referred to as nephrocalcinosis) in the rat is a common (especially in females)
- 19 background/incidental finding that is not generally considered to be clinically important to rats or
- 20 relevant to human health (<u>Frazier et al., 2012</u>). Thus, renal mineralization was not included in the
- 21 consideration of hazard potential.
- 22 Two other histological kidney lesions observed in male and female rats are suppurative 23 inflammation and transitional epithelial hyperplasia. These lesions were observed in the 2-year 24 oral NTP (1995) study. NTP (1995) and Frazier et al. (2012), describe these lesions as related to the 25 nephropathy (characterized above as common and spontaneous and considered CPN). Incidence of 26 suppurative inflammation in female rats was low in the control group and increased with dose, with 27 incidences \geq 24% in the two highest dose groups, compared with controls. In comparison, 20% of 28 the control males exhibited suppurative inflammation, and the changes in incidence were not dose 29 related (incidences ranging from 18 to 36%). To determine if the severity of these lesions was 30 positively associated with the severity of nephropathy, contingency tables comparing the 31 occurrence of suppurative inflammation with nephropathy in individual rats were arranged by 32 severity and analyzed with Spearman's rank correlation tests to determine strength of associations 33 for each comparison (Table 1-4 and Table 1-5). Suppurative inflammation and nephropathy were 34 moderately correlated in females (rho = 0.47) and weakly correlated in males (rho = 0.17). The data 35 indicate that CPN correlates with the induction of suppurative inflammation; however, the 36 inflammation in female rats is also treatment related. Given that CPN is also dose-dependently 37 increased in male and female rats (Salazar et al., 2015), disentangling the relative contribution of 38 CPN and *tert*-butanol in the exacerbation of suppurative inflammation is problematic.

This document is a draft for review purposes only and does not constitute Agency policy.

1-7

1 Transitional epithelial hyperplasia was observed in both male and female rats exposed 2 orally (<u>NTP, 1995</u>). In the control males, 50% of the animals exhibited transitional epithelial 3 hyperplasia and the incidence and severity increased with dose. Only the mid- and high-dose 4 females, however, exhibited dose-related increases in incidence and severity of transitional 5 epithelial hyperplasia. This lesion was not reported in the control or low-dose females. <u>NTP (1995)</u> 6 described transitional epithelial hyperplasia as increased layers of the transitional epithelial lining 7 of the renal pelvis; study authors noted no progression of this hyperplastic lesion to neoplasia. To 8 determine if the severity of the hyperplasia was positively associated with the severity of 9 nephropathy, contingency tables comparing the occurrence of transitional epithelial hyperplasia 10 with nephropathy in individual rats were arranged by severity and analyzed with Spearman's rank 11 correlation tests to determine strength of associations for each comparison (Table 1-6 and Table 12 1-7). Transitional epithelial hyperplasia and nephropathy were strongly correlated (Spearman's 13 rank coefficient = 0.66) in males and moderately correlated (Spearman's rank coefficient = 0.44) in 14 females. The transitional epithelial hyperplasia observed in male and female rats is consistent with 15 advanced CPN (Frazier et al., 2012). Similar to suppurative inflammation, transitional epithelial 16 hyperplasia is both increased by dose and correlated with nephropathy, which is also dose related. 17 Thus, disentangling the contributions of dose and nephropathy in the development of transitional 18 epithelial hyperplasia is not possible. Transitional epithelial hyperplasia should not be confused 19 with another lesion noted in the 2-year evaluation, renal tubule hyperplasia, which was considered 20 preneoplastic (for further details regarding this type of hyperplasia, see the discussion under 21 *Kidney tumors*, below). 22 Additional histopathological changes, including increased tubular degeneration, 23 degeneration of the basement membrane of the Bowman's capsule, diffused glomeruli, and 24 glomerular vacuolation were noted in a 10-week study in male Wistar rats (Acharya et al., 1997; 25 Acharya et al., 1995). A decrease in glutathione in the kidney accompanied these changes, which the 26 study authors noted as potentially indicative of oxidative damage. Acharya et al. (1997); Acharya et 27 al. (1995) used one dose and a control group and did not report incidences. The increased tubule 28 degeneration and glomerular vacuolation could be characterized as tubular atrophy and glomerular 29 hyalinization, respectively, consistent with CPN; however, without quantitative information, 30 examining the differences between the control and treated animals to determine if CPN plays a role 31 in development of these effects is not possible. Although based on the noted appearance of the 32 effects in the treated animals compared with controls, the effects likely are treatment related. 33 Serum or urinary biomarkers informative of kidney toxicity were not measured in the 34 studies discussed above. Some changes occurred in urinalysis parameters (e.g., decreased urine 35 volume and increased specific gravity), accompanied by reduced water consumption, and thus 36 might not be related to an effect of kidney function (<u>NTP, 1995</u>). 37 *Kidney tumors.* The kidney is also a target organ for cancer effects (Table 1-3, Figure 1-1). 38 Male F344 rats had an increased incidence of combined renal tubule adenomas or carcinomas in

This document is a draft for review purposes only and does not constitute Agency policy.

1-8

- 1 the 2-year oral bioassay (Hard et al., 2011; NTP, 1995). The increase in tumors from control was
- 2 similar in the low- and high-dose groups and highest in the mid-dose group. Overall, tumor
- 3 increases were statistically significant in trend testing, which accounted for mortality ($p \le 0.018$).
- 4 Mortality increased with increasing exposure (*p* = 0.001); increased mortality alone, however, does
- 5 not account for the highest tumor incidence occurring at the middle dose.
- Increases in incidence and severity of renal tubule hyperplasia also were observed in male
 rats. NTP (1995) stated that "[t]he pathogenesis of proliferative lesions of renal tubule epithelium is
- 8 generally considered to follow a progression from hyperplasia to adenoma to carcinoma (<u>Hard</u>,
- 9 <u>1986</u>)." Similarly, EPA considered the renal tubule hyperplasia to be a preneoplastic effect
- 10 associated with the renal tubule tumors. Renal tubule hyperplasia was found in one high-dose
- 11 female (<u>NTP, 1995</u>); no increase in severity was observed. This effect in females, which was not
- 12 considered toxicologically significant, is not discussed further. Two renal tubular adenocarcinomas
- 13 in male mice also were reported (<u>NTP, 1995</u>), one each in the low- and high-dose groups, but were
- 14 not considered by NTP to be "biologically noteworthy changes"; thus the tumors in mice are not
- 15 discussed further.
- 16 A Pathology Working Group, sponsored by Lyondell Chemical Company, reevaluated the
- 17 kidney changes in the NTP 2-year study to determine if additional histopathological changes could
- 18 be identified to inform the MOA for renal tubule tumor development (<u>Hard et al., 2011</u>). In all cases,
- 19 working group members were blinded to treatment groups and used guidelines published by <u>Hard</u>
- 20 and Wolf (1999) and refinements reported by (Hard and Seely, 2006); Hard and Seely (2005) and
- 21 <u>Hard (2008)</u>. The group's report and analysis by <u>Hard et al. (2011)</u> confirmed the NTP findings of
- 22 renal tubule hyperplasia and renal tubule tumors in male rats at 2 years. In particular, they
- 23 reported similar overall tumor incidences in the exposed groups. <u>Hard et al. (2011)</u>, however,
- 24 reported fewer renal tubule adenomas and carcinomas in the control group than in the original NTP
- 25 study. As a result, all treated groups had statistically significant increases in renal tubule adenomas
- and carcinomas (combined) when compared to controls. Additionally, <u>Hard et al. (2011)</u> considered
- 27 fewer tumors to be carcinomas than did the original NTP study. Results of both NTP (1995) and the
- reanalysis by <u>Hard et al. (2011)</u> are included in Table 1-3 and Figure 1-1.

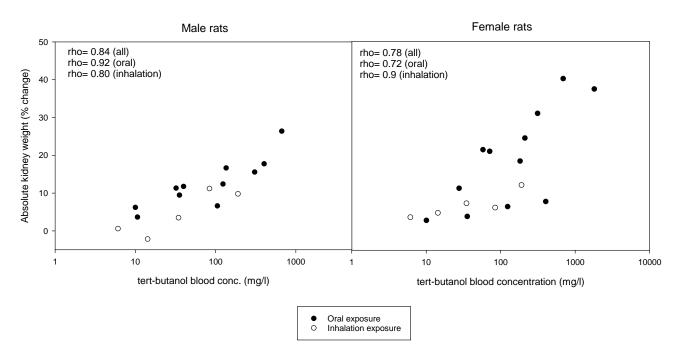
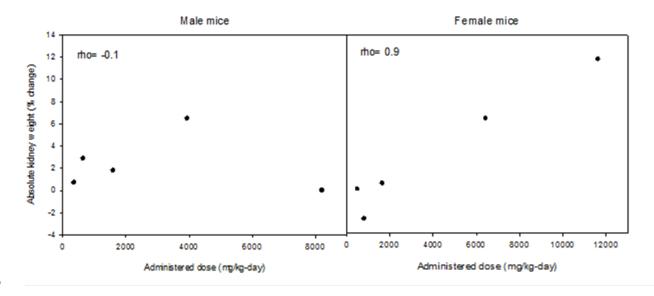



Figure 1-2. Comparison of absolute kidney weight change in male and female rats across oral and inhalation exposure based on internal blood concentration. Spearman rank correlation coefficient (rho) was calculated to evaluate the direction of a monotonic association (e.g., positive value = positive association) and the strength of association.

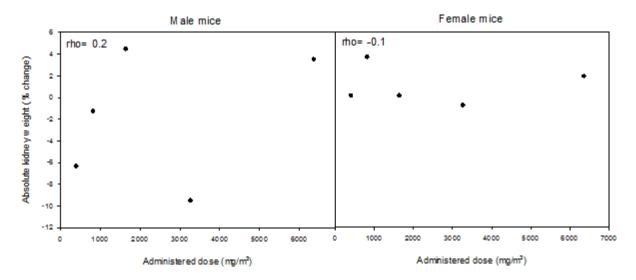
6 7

8

9

10

11


1

2

3

4 5

Figure 1-3. Comparison of absolute kidney weight change in male and female mice following oral exposure based on administered concentration. Spearman rank correlation coefficient (rho) was calculated to evaluate the direction of a monotonic association (e.g., positive value = positive association) and the strength of association.

Figure 1-4. Comparison of absolute kidney weight change in male and female
mice following inhalation exposure based on administered concentration.
Spearman rank correlation coefficient (rho) was calculated to evaluate the
direction of a monotonic association (e.g., positive value = positive
association) and the strength of association.

1 2

3 4 5

1Table 1-2. Changes in kidney histopathology in animals following exposure to2*tert*-butanol

Reference and study design			Res	ults		
Acharya et al. (1997) Acharya et al. (1995) Wistar rat; 5–6 males/treatment Drinking water (0 or 0.5%), 0 or 575 mg/kg-d 10 weeks	 ↑ tubular degeneration, degeneration of the basement membrane of the Bowman's capsule, diffused glomeruli, and glomerular vacuolation (no incidences reported) ↓ kidney glutathione (~40%)* 					
<u>NTP (1995)</u>	Incidence (se	everity):				
F344/N rat; 10/sex/treatment Drinking water (0, 2.5, 5, 10, 20,	Males			Females		
or 40 mg/mL) M: 0, 230, 490, 840, 1,520,	<u>Dose</u> (mg/kg-d)	<u>Minerali-</u> zation ^b	<u>Nephro-</u> pathy ^c	<u>Dose</u> (mg/kg-d)	<u>Minerali-</u> zation ^b	<u>Nephro-</u> pathy ^c
3,610 ^a mg/kg-d F: 0, 290, 590, 850, 1,560,	0	0/10	7/10 (1.0)	0	10/10 (1.7)	2/10 (1.0)
3,620 ^ª mg/kg-d 13 weeks	230	0/10	10/10 (1.6*)	290	10/10 (2.0)	3/10 (1.0)
	490	2/10 (1.5)	10/10 (2.6*)	590	10/10 (2.0)	5/10 (1.0)
	840	8/10*(1.4)	10/10 (2.7*)	850	10/10 (2.0)	7/10* (1.0)
	1,520	4/10*(1.0)	10/10 (2.6*)	1,560	10/10 (2.0)	8/10* (1.0)
	3,610ª	4/10*(1.0)	7/10 (1.1)	3,620ª	6/10 (1.2)	7/10* (1.0)
NTP (1995) B6C3F1 mouse; 10/sex/treatment Drinking water (0, 2.5, 5, 10, 20, or 40 mg/mL) M: 0, 350, 640, 1,590, 3,940, 8,210 ^a mg/kg-d F: 0, 500, 820, 1,660, 6,430, 11,620 ^a mg/kg-d 13 weeks		rs indicated no		-		

Reference and study design		Res	ults	
NTP (1995) F344/N rat; 60/sex/treatment	Incidence (severity): Males			
(10/sex/treatment evaluated at 15 months interim) Drinking water (0, 1.25, 2.5, 5, 10 mg/mL) M: 0, 90, 200, 420° mg/kg-d	<u>Dose</u> (mg/kg-d)	<u>Mineralization^b (interim)</u>	<u>Mineralization^b (terminal)</u>	<u>Linear</u> mineralization ^b (terminal)
M: 0, 90, 200, 420° mg/kg-d	0	1/10 (1.0)	26/50 (1.0)	0/50
F: 0, 180, 330, 650 ^a mg/kg-d 2 years	90	2/10 (1.0)	28/50 (1.1)	5/50* (1.0)
	200	5/10 (1.8)	35/50 (1.3)	24/50* (1.2)
	420 ^a	9/10* (2.3)	48/50* (2.2)	46/50* (1.7)
	<u>Dose</u> (mg/kg-d)	<u>Transitional</u> <u>epithelial</u> hyperplasia	<u>Nephropathy</u> c severity	Inflammation (suppurative) incidence
	0	25/50 (1.7)	3.0	10/50
	90	32/50 (1.7)	3.1	18/50
	200	36/50* (2.0)	3.1	12/50
	420ª	40/50* (2.1)	3.3*	9/50
	Females			
	<u>Dose</u> (mg/kg-d)	<u>Mineralization^b Interim</u>	<u>Mineralization^b Terminal</u>	Inflammation (suppurative) incidence
	0	10/10 (2.8)	49/50 (2.6)	2/50
	180	10/10 (2.9)	50/50 (2.6)	3/50
	330	10/10 (2.9)	50/50 (2.7)	13/50*
	650ª	10/10 (2.8)	50/50 (2.9)	17/50*
	<u>Dose</u> (mg/kg-d)	<u>Transitional</u> <u>epithelial</u> hyperplasia	<u>Nephropathy^c</u> severity	
	0	0/50	1.6	
	180	0/50	1.9*	
	330	3/50 (1.0)	2.3*	
	650ª	17/50*(1.4)	2.9*	

Reference and study design		Re	sults
NTP (1995) B6C3F ₁ mouse; 60/sex/treatment Drinking water (0, 5, 10, or 20 mg/mL) M: 0, 540, 1,040, or 2,070 ^a mg/kg-d F: 0, 510, 1,020, or 2,110 mg/kg-d 2 years	No treatment-relate	ed changes in kidne	y-related histopathology observed
NTP (1997) F344/N rat; 10/sex/treatment Inhalation analytical concentration: 0, 134, 272, 542, 1,080, or 2,101 ppm (0, 406, 824, 1,643, 3,273 or 6,368 mg/m ³) (dynamic whole-body chamber) 6 hr/d, 5 d/wk 13 weeks Generation method (Sonimist Ultrasonic spray nozzle nebulizer), analytical concentration and method were reported	observed	_	Average severity of chronic nephropathy 1.0 1.4 1.4 1.4 1.6 1.9 2.0 s in kidney-related histopathology Id. No results from statistical tests
NTP (1997) B6C3F ₁ mouse; 10/sex/treatment Inhalation analytical concentration: 0, 134, 272, 542, 1,080, or 2,101 ppm (0, 406, 824, 1,643, 3,273 or 6,368 mg/m ³) (dynamic whole-body chamber) 6 hr/d, 5 d/wk 13 weeks Generation method (Sonimist Ultrasonic spray nozzle nebulizer), analytical concentration and method were reported	No treatment-relate	ed changes in kidne	y-related histopathology observed

*Statistically significant $p \le 0.05$, as determined by the study authors.

^aThe high-dose group had an increase in mortality.

^bMineralization defined in <u>NTP (1995)</u> as focal mineral deposits, primarily at the corticomedullary junction. Linear

mineralization was defined as foci of distinct linear deposits along radiating medullary collecting ducts; linear

5 mineralization not observed in female rats.

- 1 ^cNephropathy defined in <u>NTP (1995)</u> as lesions, including thickened tubule and glomerular basement membranes,
- 2 basophilic foci of regenerating tubule epithelium, intratubule protein casts, focal mononuclear inflammatory cell
- 3 aggregates within areas of interstitial fibrosis and scarring, and glomerular sclerosis.
- 4 ^dNephropathy characterized in <u>NTP (1997)</u> as scattered foci of regenerative tubules (with cytoplasmic basophilia,
- increased nuclear/cytoplasmic ratio, and occasionally thickened basement membranes and intraluminal protein
 casts).
- 8 Note: Conversions from drinking water concentrations to mg/kg-d performed by study authors.
- 9 Conversion from ppm to mg/m^3 is 1 ppm = 3.031 mg/m³.

10Table 1-3. Changes in kidney tumors in animals following exposure to11*tert*-butanol

Reference and study design	Results			
NTP (1995) F344/N rat; 60/sex/treatment (10/sex/treatment evaluated at 15 months) Drinking water (0, 1.25, 2.5, 5, or 10 mg/mL) M: 0, 90, 200, or 420 ^a mg/kg-d	Male <u>Dose</u> (mg/kg-d)	Renal tubule hyperplasia (standard and extended evaluation combined)	<u>Renal tubule</u> adenoma (single)	<u>Renal tubule</u> <u>adenoma</u> (multiple)
F: 0, 180, 330, or 650° mg/kg-d	0	14/50 (2.3)	7/50	1/50
2 years	90	20/50 (2.3)	7/50	4/50
	200	17/50 (2.2)	10/50	9/50*
	420 ^a	25/50* (2.8)	10/50	3/50
	<u>Dose</u> (mg/kg-d)	<u>Renal tubule</u> <u>carcinoma</u>	<u>Renal tubule</u> <u>adenoma (single</u> <u>or multiple) or</u> <u>carcinoma</u>	
	0	0/50	8/50	
	90	2/50	13/50	
	200	1/50	19/50*	
	420 ^a	1/50	13/50	
	Female			Development
	<u>Dose</u> (mg/kg-d)	<u>Renal tubule</u> <u>hyperplasia</u>	<u>Renal tubule</u> adenoma (single)	<u>Renal tubule</u> <u>adenoma</u> (multiple)
	0	0/50	0/50	0/50
	180	0/50	0/50	0/50
	330	0/50	0/50	0/50
	650 ^a	1/50 (1.0)	0/50	0/50

Reference and study design			Results		
	<u>Dose</u> (mg/kg-d) 0	<u>Renal tu</u> <u>carcino</u> 0/50	<u>adenc</u> bule <u>or m</u> ma <u>ca</u> i	<u>al tubule</u> oma (single ultiple) or rcinoma 0/50	
	180 330	0/50 0/50		0/50 0/50	
	650 ^a	0/50		0/50	
		ard and extende mals sacrificed at	•	combined). Resul	ts do not
Hard et al. (2011) Reanalysis of the slides from male rats (all slides in controls and high-dose groups of males and females, and slides from all other males with renal tumors) in the <u>NTP (1995)</u> study (see above)	Male <u>Dose</u> (mg/kg-d) 0 90 200 420	<u>Renal tubule</u> <u>adenoma</u> <u>(single)</u> 3/50 9/50 9/50 9/50	<u>Renal tubule</u> <u>adenoma</u> (multiple) 1/50 3/50 9/50 3/50	Renal tubule carcinoma 0/50 1/50 0/50 1/50	Renal tubule adenoma (single or multiple) or carcinoma 4/50 13/50* 18/50* 12/50*
NTP (1995) B6C3F1 mouse; 60/sex/treatment Drinking water (0, 5, 10, or 20 mg/mL) M: 0, 540, 1,040, or 2,070 ^a mg/kg-d F: 0, 510, 1,020, or 2,110 mg/kg-d 2 years	one in the low-	-	the high-dose g	al tubule adenoo roups, were obse nent related.	

- 1 *Statistically significant $p \le 0.05$, as determined by the study authors.
- 2 ^aThe high-dose group had an increase in mortality.
- 3 Note: Conversions from drinking water concentrations to mg/kg-d performed by study authors.

1Table 1-4. Comparison of nephropathy and suppurative inflammation in2individual male rats from the 2-year NTP *tert*-butanol bioassay

Suppurative	Nephropathy					
inflammation	None	Minimal	Mild	Moderate	Marked	
None	2	1	55	82	51	
Minimal	0	0	3	23	16	
Mild	0	0	1	4	2	
Moderate	0	0	0	0	0	
Marked	0	0	0	0	0	

3 Spearman's rank correlation test (1-sided), p = 0.0015, $r_s = 0.17$

4

5

Table 1-5. Comparison of nephropathy and suppurative inflammation in in in individual female rats from the 2-year NTP *tert*-butanol bioassay

Suppurative	Nephropathy					
inflammation	None	Minimal	Mild	Moderate	Marked	
None	7	67	90	37	4	
Minimal	0	1	5	14	13	
Mild	0	0	0	1	1	
Moderate	0	0	0	0	0	
Marked	0	0	0	0	0	

6 Spearman's rank correlation test (1-sided), p < 0.0001, $r_s = 0.47$

Table 1-6. Comparison of nephropathy and transitional epithelial hyperplasia in individual male rats from the 2-year NTP *tert*-butanol bioassay

Transitional	Nephropathy					
epithelial hyperplasia	None	Minimal	Mild	Moderate	Marked	
None	2	1	51	52	1	
Minimal	0	0	4	26	9	
Mild	0	0	2	25	42	
Moderate	0	0	2	6	17	
Marked	0	0	0	0	0	

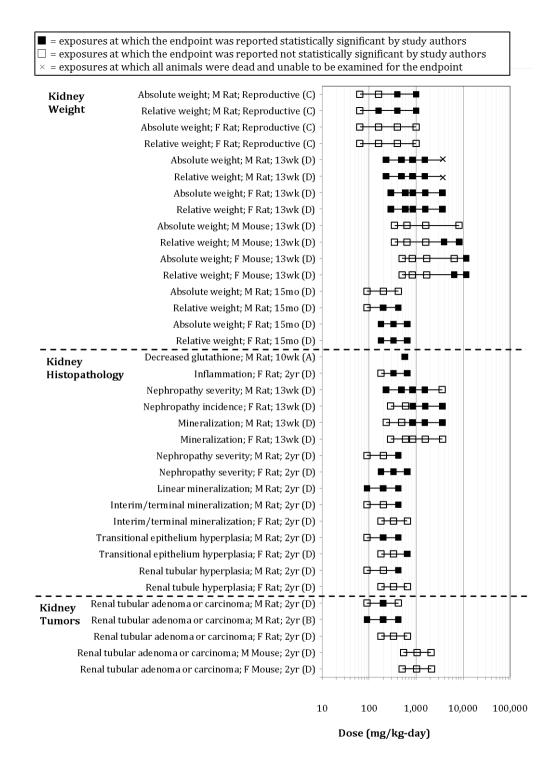
9 Spearman's rank correlation test (1-sided), p < 0.0001, $r_s = 0.66$

Table 1-7. Comparison of nephropathy and transitional epithelial hyperplasia in individual female rats from the 2-year NTP *tert*-butanol bioassay

Transitional	Nephropathy					
epithelial hyperplasia	None	Minimal	Mild	Moderate	Marked	
None	7	68	95	43	7	
Minimal	0	0	0	8	6	
Mild	0	0	0	1	5	
Moderate	0	0	0	0	0	
Marked	0	0	0	0	0	

3 Spearman's rank correlation test (1-sided), p < 0.0001, $r_s = 0.437$

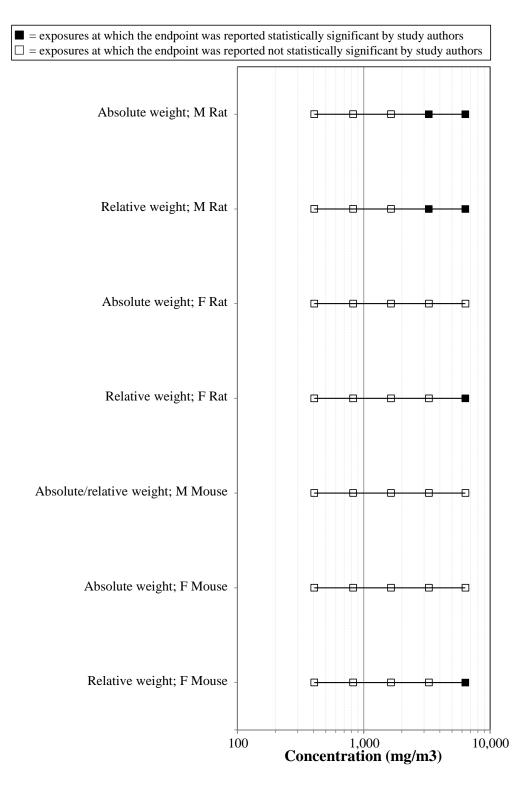
4 Table 1-8. Comparison of CPN and renal tubule hyperplasia with kidney


adenomas and carcinomas in male rats from the 2-year NTP *tert*-butanol

6 bioassay

5

CPN	Renal Tumors Absent	Renal Tumors Present	Renal tubule hyperplasia	Renal Tumors Absent	Renal Tumors Present
None	2	0	None	133	29
Minimal	1	0	Minimal	17	2
Mild	57	2	Mild	17	13
Moderate	93	16	Moderate	10	3
Marked	34	35	Marked	10	6


7 Spearman's rank correlation test (1-sided): CPN, p < 0.0001, $r_s = 0.430$; renal tubule hyperplasia, p = 0.01, $r_s = 0.161$

Sources: (A) <u>Acharya et al. (1997)</u>; (<u>1995</u>); (B) <u>Hard et al. (2011)</u>*; (C) <u>Huntingdon Life Sciences (2004)</u> (D) <u>NTP (1995)</u>; *reanalysis of <u>NTP (1995)</u>.

Figure 1-5. Exposure response array for kidney effects following oral exposure to *tert*-butanol.

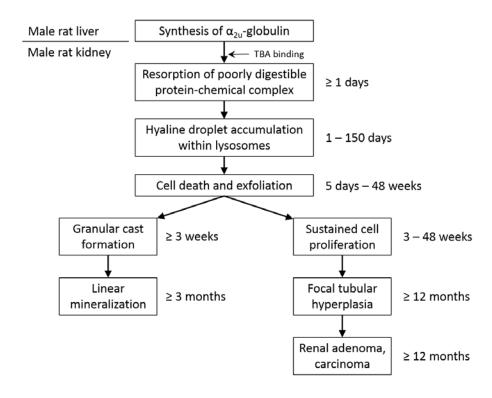
1 2

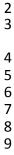
1 Source: <u>NTP (1997)</u>.

Figure 1-6. Exposure-response array of kidney effects following inhalation exposure to *tert*-butanol (13-week studies, no chronic studies available).

1 Mode of Action Analysis—Kidney Effects

2


a) <u>α_{2u}-Globulin-Associated Renal Tubule Nephropathy and Carcinogenicity</u>


One disease process to consider when interpreting kidney effects in rats is related to the 3 4 accumulation of α_{2u} -globulin protein. α_{2u} -Globulin, a member of a large superfamily of low-5 molecular-weight proteins, was first characterized in male rat urine. Such proteins have been 6 detected in various tissues and fluids of most mammals (including humans), but the particular 7 isoform of α_{2u} -globulin commonly detected in male rat urine is considered specific to that sex and 8 species. Exposure to chemicals that induce α_{2u} -globulin accumulation can initiate a sequence of 9 histopathological events leading to kidney tumorigenesis. Because α_{2u} -globulin-associated renal 10 tubule nephropathy and carcinogenicity occurring in male rats are presumed not relevant for 11 assessing human health hazards (U.S. EPA, 1991a), evaluating the data to determine if α_{2u} -globulin 12 plays a role is important. The role of α_{2u} -globulin accumulation in the development of renal tubule 13 nephropathy and carcinogenicity observed following *tert*-butanol exposure was evaluated using the 14 U.S. EPA (1991a) Risk Assessment Forum Technical panel report, *Alpha_{2u}-Globulin: Association with* 15 Chemically Induced Renal Toxicity and Neoplasia in the Male Rat. This report provides specific 16 guidance for evaluating renal tubule tumors in male rats that are related to chemical exposure for 17 the purpose of risk assessment, based on an examination of the potential involvement of 18 α_{2u} -globulin accumulation. 19 Studies in the *tert*-butanol database evaluated and reported effects on the kidney, providing 20 some evidence to evaluate this MOA. Additionally, several studies were identified that specifically 21 evaluated the role of α_{2u} -globulin in *tert*-butanol-induced renal tubule nephropathy and 22 carcinogenicity (Borghoff et al., 2001; Williams and Borghoff, 2001; Takahashi et al., 1993). Because 23 the evidence reported in these studies is specific to α_{2u} -globulin accumulation, it is presented in this 24 section; it was not included in the animal evidence tables in the previous section. 25 The hypothesized sequence of α_{2u} -globulin renal tubule nephropathy, as described by U.S. 26 EPA (1991a), is as follows. Chemicals that induce α_{2u} -globulin accumulation do so rapidly. 27 α_{2u} -Globulin accumulating in hyaline droplets is deposited in the S2 (P2) segment of the proximal 28 tubule within 24 hours of exposure. Hyaline droplets are a normal constitutive feature of the 29 mature male rat kidney; they are particularly evident in the S2 (P2) segment of the proximal tubule

30 and contain α_{2u} -globulin (U.S. EPA, 1991a). Abnormal increases in hyaline droplets have more than

- 31 one etiology and can be associated with the accumulation of different proteins. As hyaline droplet
- 32 deposition continues, single-cell necrosis occurs in the S2 (P2) segment, which leads to exfoliation
- 33 of these cells into the tubule lumen within 5 days of chemical exposure. In response to the cell loss,
- 34 cell proliferation occurs in the S2 (P2) segment after 3 weeks and continues for the duration of the
- 35 exposure. After 2 or 3 weeks of exposure, the cell debris accumulates in the S3 (P3) segment of the
- 36 proximal tubule to form granular casts. Continued chemical exposure for 3 to 12 months leads to
- 37 the formation of calcium hydroxyapatite in the papillae which results in linear mineralization. After

- 1 1 or more years of chemical exposure, these lesions can result in the induction of renal tubule
- 2 adenomas and carcinomas (Figure 1-7).
- 3 <u>U.S. EPA (1991a)</u> identified two questions that must be addressed to determine the extent
- 4 to which α_{2u} -globulin-mediated processes induce renal tubule nephropathy and carcinogenicity.
- 5 First, whether the α_{2u} -globulin process occurs in male rats and influences renal tubule tumor
- 6 development must be determined. Second, whether the renal effects in male rats exposed to *tert*-
- 7 but anol are due solely to the α_{2u} -globulin process must be determined.
- 8 <u>U.S. EPA (1991a)</u> stated the criteria for answering the first question in the affirmative are as
 9 follows:
- 10 1) hyaline droplets are larger and more numerous in treated male rats,
- 11 2) the protein in the hyaline droplets in treated male rats is α_{2u} -globulin (i.e.,
- 12 immunohistochemical evidence), and
- 3) several (but not necessarily all) additional steps in the pathological sequence appear in
 treated male rats as a function of time, dose, and progressively increasing severity consistent with
 the understanding of the underlying biology, as described above, and illustrated in Figure 1-7.
- The available data relevant to this first question are summarized in Table 1-9, Figure 1-8,and Figure 1-9, and are evaluated below.

Source: Adapted from Swenberg and Lehman-McKeeman (1999) and U.S. EPA (1991a).

Figure 1-7. Temporal pathogenesis of α_{2u} -globulin-associated nephropathy in

male rats. α_{2u} -Globulin synthesized in the livers of male rats is delivered to the kidney, where it can accumulate in hyaline droplets and be retained by epithelial cells lining the S2 (P2) segment of the proximal tubules. Renal pathogenesis following continued *tert*-butanol exposure and increasing droplet accumulation can progress stepwise from increasing epithelial cell damage, death and dysfunction 10 leading to the formation of granular casts in the corticomedullary junction, linear 11 mineralization of the renal papillae, and carcinogenesis of the renal tubular 12 epithelium.

1	Table 1-9. Summary of data on the α_{2u} -globulin process in male rats exposed
2	to <i>tert</i> -butanol

Duration	Dose	Results	Comments	Reference		
1) Hyaline droplets) Hyaline droplets are increased in size and number					
10 d (inhalation)	0, 758, 1,364, 5,304 mg/m ³	+	stat sig at 5,304 mg/m ³ ; stat sig trend	Borghoff et al. (2001)		
13 wk (inhalation)	0, 3,273, 6,368 mg/m ³	-		<u>NTP (1997)</u> ª		
13 wk (oral)	0, 230, 490, 840, 1,520, 3,610 mg/kg-d	(+)	observed in all but highest dose group	<u>NTP (1995)</u>		
2) The protein in the	hyaline droplets is α_{2u} gl	obulin				
10 d (inhalation)	0, 758, 1,364, 5,304 mg/m ³	+	stat sig at 5,304 mg/m ³ ; stat sig trend	Borghoff et al. (2001)		
12 h (elapsed time following single oral dose)	0, 500 mg/kg	+		Williams and Borghoff (2001)		
3) Several (but not r such as:	necessarily all) additional	steps in th	e pathological sequence ar	e present in male rats,		
a) Subsequent c epithelial cell		necrosis of	tubule epithelium, with exf	oliation of degenerate		
10 wk (oral)	0, 575 mg/kg-d	(+)	degeneration of renal tubules reported	<u>Acharya et al. (1997)</u>		
13 wk (oral)	0, 230, 490, 840, 1,520, 3,610 mg/kg-d	-		<u>NTP (1995)</u>		
proliferation		osis or cytot	OTE: The positive studies be coxicity; therefore, that the assumed.)	-		
10 wk (oral)	0, 575 mg/kg-d	_		<u>Acharya et al. (1997)</u>		
10 d (inhalation)	0, 758, 1,364, 5,304 mg/m ³	+	stat sig at all doses; stat sig trend	Borghoff et al. (2001)		
13 wk (oral)	0, 230, 490, 840, 1,520, 3,610 mg/kg-d	+	elevated at 840 mg/kg-d; stat sig at 1,520 mg/kg-d	<u>NTP (1995)</u>		
c) Development dilation	of intraluminal granular	casts from s	sloughed cellular debris, wit	h consequent tubule		
13 wk (oral)	0, 230, 490, 840, 1,520, 3,610 mg/kg-d	-; (+) ^b		NTP (1995); Hard et al. (2011) ^c		
2 yr (oral)	0, 90, 200, 420 mg/kg-d	-		NTP (1995); Hard et al. (2011) ^d		

Duration	Dose	Results	Comments	Reference	
d) Linear min	d) Linear mineralization of tubules in the renal papilla				
13 wk (oral)	0, 230, 490, 840, 1,520, 3,610 mg/kg-d	-		<u>NTP (1995)</u> ; <u>Hard et al.</u> <u>(2011)</u> ¢	
2 yr (oral)	0, 90, 200, 420 mg/kg-d	+; (+)	all doses stat sig	<u>NTP (1995)</u> ; <u>Hard et al.</u> (2011) ^d	
e) Foci of tub	e) Foci of tubular hyperplasia				
2 yr (oral)	0, 90, 200, 420 mg/kg-d	+	stat sig trend at all doses; stat sig at 420 mg/kg-d	<u>NTP (1995)</u>	

- 1 + = Statistically significant change reported in one or more treated groups.
- 2 (+) = Effect was reported in one or more treated groups, but statistics not reported.
- 3 -= No statistically significant change reported in any of the treated groups.
- 4 and an effects consistent with α_{2u} -globulin nephropathy.
- 5 ^bPrecursors to granular casts reported.
- 6 ^cReanalysis of hematoxylin and eosin-stained kidney sections from all male control and 1,520-mg/kg-d groups and
- 7 a representative sample of kidney sections stained with Mallory Heidenhain stain, from the 13-wk study from <u>NTP</u>
 8 (1995).
- 9 ^dReanalysis of slides for all males in the control and 420-mg/kg-d dose groups and all animals with renal tubule
- 10 tumors from 2-yr <u>NTP (1995)</u>. Protein casts reported, not granular casts.

= exposures at which the endpoint was reported statistically significant by study authors

- □ = exposures at which the endpoint was reported not statistically significant by study authors
- $\times\,$ = exposures at which all animals were dead and unable to be examined for the endpoint
- = exposures at which effect was observed but statistics not reported

↑ Hyaline droplet size/number	NTP (1995); 13 w	ık -	•	• • •	- X
ldentification of α2u- globulin in hyaline droplets	Williams and Borghoff (2001 12 hr after single dose); _			
Cytotoxicity/single-cel necrosis of tubule epit		'k -		•	
epithelial cell exfoliat		/k -	-		 ×
Tubule cell	Acharya et al. (1997); 10 w	'k -			
proliferation	NTP (1995); 13 w	/k -	_		
NTF Granular casts/tubule	TP (1995); Hard et al. (2011)*; 13 w	'k -	G		 ×
dilation	NTP (1995); Hard et al. (2011); 2 y	/r -	G	Ð	
Linear papillary mineralization	P (1995)**; Hard et al. (2011); 13 w	'k -	G -		 *
	NTP (1995); Hard et al. (2011); 2 3	/r -			
Foci of tubular hyperplasia	NTP (1995); 2 5	/r -	GG		
* Hard et al. (2011) repo granular casts" **NTP (1995) 13-wk stu mineralization but not li		10	100 Dose (mg/	1,000 (kg-day)	10,000

*<u>Hard et al. (2011)</u> reported presence of "precursor granular casts."

1 2

3

4 5 **<u>NTP (1995)</u> 13-wk study reported kidney mineralization but not linear mineralization.

Figure 1-8. Exposure-response array for effects potentially associated with α_{2u} -globulin renal tubule nephropathy and tumors in male rats after oral exposure to *tert*-butanol.

exposures at which the endpoint was reported statistically significant by study authors
 = exposures at which the endpoint was reported not statistically significant by study authors

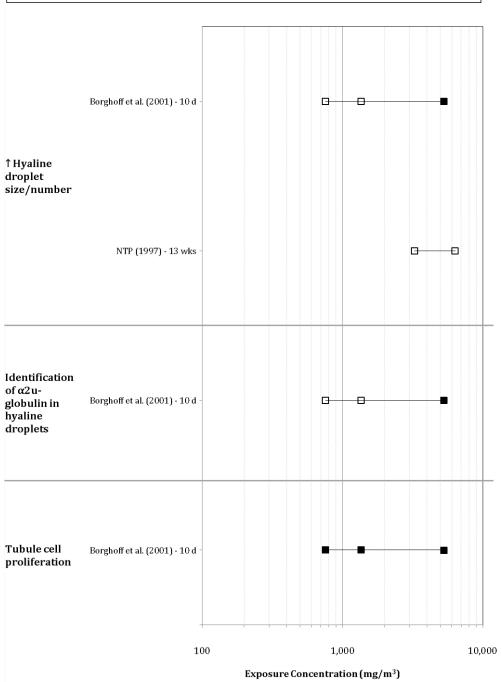


Figure 1-9. Exposure-response array for effects potentially associated with
 α_{2u}-globulin renal tubule nephropathy and tumors in male rats after
 inhalation exposure to *tert*-butanol.

1 Question One: Is the α_{2u} globulin process occurring in male rats exposed to tert-butanol?

2 (1) The first criterion to consider is whether hyaline droplets are larger and more 3 numerous in male rats. As noted above, the excessive accumulation of hyaline droplets can appear 4 quickly, within 1 or 2 days, and persist throughout chronic exposures, although the severity begins 5 to decline around 5 months (U.S. EPA, 1991a). A statistically significant positive trend in the 6 accumulation of large protein droplets with crystalloid protein structures was observed in kidneys 7 of male rats exposed to inhalation concentrations of 758, 1,364, and 5,304 mg/m³ tert-butanol for 6 8 hr/day for 10 days (Borghoff et al., 2001). These droplets were small and minimally present in 9 control male rats and were not observed in female rats. Similarly, data from the 13-week NTP oral 10 study (NTP, 1995; Takahashi et al., 1993; Lindamood et al., 1992) demonstrated an increase in the 11 accumulation of hyaline droplets. The lowest dose, 230 mg/kg-day, had minimal hyaline droplet 12 formation compared to controls, although the next three doses (490, 840, and 1,520 mg/kg-day) 13 had a higher accumulation of droplets with angular, crystalline structures that was similar in 14 incidence and severity among these dose groups. No droplets were observed in female rats or in 15 mice. 16 NTP (1997), however, found no difference between the control and treatment groups 17 stained for hyaline droplet formation in male rats exposed to 0-, 3,273-, or 6,368-mg/m³ tert-18 butanol via inhalation for 13 weeks; in fact, this study reported no other lesions that could be 19 specifically associated with α_{2u} -globulin nephropathy in male rats. These results from NTP (1997), 20 which are inconsistent with the findings of both Borghoff et al. (2001) and NTP (1995), do not 21 appear to be due to differences in dose. Comparison of the oral and inhalation studies on the basis 22 of tert-butanol blood concentration (see Supplemental Information) showed that an exposure in the 23 range of the NTP (1995) doses of 490–840 mg/kg-day for 13 weeks leads to the same average

- 24 blood concentration as inhalation exposures to 3,273–6,368 mg/m³ for 6hr/day, 5 day/week. The
- absence of similar histopathological findings in the 13-week inhalation <u>NTP (1997)</u> study compared
- to those reported in the two oral studies is not understood, but might be indicative of the strength
- 27 of *tert*-butanol to induce, consistently, α_{2u} -globulin nephropathy. The results from the two other
- studies (Borghoff et al., 2001; NTP, 1995) indicate that hyaline droplets increase in size and number
- in male rats following *tert*-butanol exposures. Therefore, the available data are sufficient to fulfill
- 30 the first criterion that hyaline droplets are increased in size and number in male rats.

31 (2) The second criterion to consider is whether the protein in the hyaline droplets in male 32 rats is α_{2u} -globulin. Accumulated hyaline droplets with an α_{2u} -globulin etiology can be confirmed by 33 using immunohistochemistry to identify the α_{2u} -globulin protein. Two short-term studies measured 34 α_{2u} -globulin immunoreactivity in the hyaline droplets of the renal proximal tubular epithelium 35 (Borghoff et al., 2001; Williams and Borghoff, 2001). Following 10 days of inhalation exposure, 36 Borghoff et al. (2001) did not observe an exposure-related increase in α_{2u} -globulin using 37 immunohistochemical staining. When using an enzyme-linked immunosorbent assay (ELISA), a

38 more sensitive method of detecting α_{2u} -globulin, however, a statistically significant positive

- 1 correlation of α_{2u} -globulin concentration with dose of *tert*-butanol (determined by correlating with
- $\label{eq:cell proliferation labeling indices} \ensuremath{\text{with accumulation of α_{2u}-globulin protein}}$
- 3 statistically significant by pairwise comparison only in the highest dose group. No positive staining
- 4 for α_{2u} -globulin was observed in exposed female rats. In a follow-up study, <u>Williams and Borghoff</u>
- 5 (2001) used a single gavage dose of 500 mg/kg [selected on the basis of results by <u>NTP (1995)</u> for
- 6 induction of hyaline droplet accumulation], and reported a statistically significantly higher renal
- 7 concentration of α_{2u} -globulin (by ELISA) in treated male rats than in controls 12 hours after
- 8 exposure. Further, equilibrium dialysis methods determined that the binding of *tert*-butanol to
- 9 α_{2u} -globulin was reversible. These data indicate the presence of α_{2u} -globulin in *tert*-butanol-treated
- 10 male rats, although requiring a more sensitive method of detection for α_{2u} -globulin than is typically
- 11 used could indicate that *tert*-butanol is not a strong inducer of α_{2u} -globulin accumulation.
- 12 Therefore, the available data are sufficient to fulfill the second criterion for α_{2u} -globulin present in
- 13 the hyaline droplets, but suggest weak induction of α_{2u} -globulin by *tert*-butanol.
- 14(3) The third criterion considered is whether several (but not necessarily all) additional15events in the histopathological sequence associated with α_{2u} -globulin nephropathy appear in male
- 16 rats in a manner consistent with the understanding of α_{2u} -globulin pathogenesis. Evidence of
- 17 cytotoxicity and single-cell necrosis of the tubule epithelium subsequent to the excessive
- 18 accumulation of hyaline droplets, with exfoliation of degenerate epithelial cells, should be
- 19 observable after 5 days of continuous exposure, peaking at 19 days [reviewed in <u>U.S. EPA (1991a)</u>].
- 20 The formation and accumulation of granular casts from the exfoliated cellular debris would follow,
- 21 causing tubule dilation at the junction of the S3 (P3) segment of the proximal tubule and the
- 22 descending thin loop of Henle, and the commencement of compensatory cell proliferation within
- the S2 (P2) segment, both occurring after 3 weeks of continuous exposure. Following chronic
- 24 exposures, this regenerative proliferation could result in focal tubular hyperplasia, and eventually
- 25 progress to renal adenoma and carcinoma (Figure 1-7).
- 26 Several of these steps were observed following *tert*-butanol exposure in male rats, most 27 notably linear papillary mineralization and foci of tubular hyperplasia, consistent with the expected 28 disease progression. Some lack of consistency and dose-related concordance, however, was evident 29 across the remaining steps in the histopathological sequence. First, the accumulation of hyaline 30 droplets and the concentrations of α_{2u} -globulin in the hyaline droplets at doses that induced 31 significant tumor formation in male rats were not significant. Next, necrosis or cytotoxicity was 32 absent, and only precursors to granular casts at stages well within the expected timeframe of 33 detectability were present. Finally, a 13-week inhalation study found no evidence of α_{2u} -globulin 34 nephropathy (NTP, 1997), despite evaluating exposure concentrations predicted to result in similar 35 blood tert-butanol levels as for the 13-week oral study (NTP, 1995), which reported increases in 36 droplet accumulation and sustained regenerative tubule cell proliferation. A detailed evaluation 37 and analysis of all the evidence relevant to this criterion follows.

1 Detailed evaluation of the available evidence supporting the third criterion

- 2 a. Single cell death and exfoliation into the renal tubules might logically be expected to 3 accompany the occurrence of CPN, but this result was inconsistently observed. Single cell 4 death or necrosis was not associated with *tert*-butanol exposure in male rat kidneys after 5 10 or 13 weeks (Acharya et al., 1997; NTP, 1995). Acharya et al. (1997) reported 6 degeneration of renal tubules, one pathological consequence of single cell necrosis, in male 7 rats exposed to *tert*-butanol in drinking water for 10 weeks. As renal tubule epithelial cell 8 death and epithelial degeneration should occur as early as 5 days post exposure and persist 9 for up to 48 weeks (Swenberg and Lehman-McKeeman, 1999; Short et al., 1989), the lack of 10 consistency in these observations could be the result of both weak induction of α_{2n} -globulin 11 and a lack of later examinations.
- 12 b. Sustained regenerative cell proliferation also might be logically expected to accompany the occurrence of CPN, but this result, too, was inconsistently observed. Acharva et al. (1997) 13 did not observe tert-butanol-induced proliferation following 10 weeks of oral exposure, but 14 15 renal tubule proliferation was observed following another chemical exposure (trichloroacetic acid) in the same study. Therefore, the inference is that tert-butanol 16 treatment did not induce regenerative tubule cell proliferation in male rats from this study. 17 Borghoff et al. (2001), however, reported a dose-related increase in epithelial cell 18 19 proliferation within the proximal tubule as measured by BrdU (bromodeoxyuridine) 20 labeling indices in all male rats exposed to *tert*-butanol via inhalation for 10 days. The study did not report cytotoxicity and combined with the early time point makes it unlikely that 21 22 the cell proliferation was compensatory. NTP (1995) also observed increased cell proliferation in the renal tubule epithelium following 13-week oral exposures in male rats 23 24 [only male rats were studied in the retrospective analysis by Takahashi et al. (1993) reported in <u>NTP (1995)</u>]. Proliferation was elevated at 840–1,520 mg/kg-day, a range 25 higher than the single 575-mg/kg-day dose that elicited epithelial degeneration (Acharya et 26 27 al., 1997) which could be consistent with a compensatory proliferative effect. NTP (1995) 28 reported, however, that no necrosis or exfoliation was observed. Altogether, proliferation 29 and necrosis or degeneration were not observed within the same study despite several 30 attempts to measure both effects. Thus, these data provide inadequate evidence to conclude 31 that the proliferation was compensatory.
- 32 c. Granular cast formation was not observed, although one study noted precursors to cast 33 formation. NTP (1995) did not observe the formation of granular casts or tubular dilation; 34 however, Hard et al. (2011) reanalyzed the 13-week oral NTP data from male rats treated 35 with 0 or 1,520 mg/kg-day and identified precursors to granular casts in 5/10 animals in 36 the treated group. The significance of these granular cast precursors, described as sporadic 37 basophilic tubules containing cellular debris, is unknown, because 13 weeks of exposure is within the expected timeframe of frank formation and accumulation of granular casts 38 39 (>3 weeks). Granular cast formation, however, might not be significantly elevated with 40 weak inducers of α_{2u} -globulin (Short et al., 1986), which is consistent with the reported difficulty in measuring α_{2u} -globulin in hyaline droplets associated with *tert*-butanol 41 42 exposure.
- 43 d. Linear mineralization of tubules within the renal papillae was consistently observed in male
 44 rats. This lesion typically appears at chronic time points, occurring after exposures of
 45 3 months up to 2 years (U.S. EPA, 1991a). Consistent with this description, 2-year oral

- exposure to *tert*-butanol induced a dose-related increase in linear mineralization, but not
 following 13-week exposure [(<u>NTP, 1995</u>); Table 1-2].
- e. Renal tubule hyperplasia was observed in the only available 2-year study. Renal tubule
 hyperplasia is the preneoplastic lesion associated with α_{2u}-globulin nephropathy in chronic
 exposures that leads to renal tubule tumors (U.S. EPA, 1991a). A dose-related increase in
 renal tubule hyperplasia was observed in male rats following 2-year oral exposures (NTP,
 1995). By comparison, renal tubule hyperplasia was observed in only one high-dose female.

8 The progression of histopathological lesions for α_{2u}-globulin nephropathy is predicated on
 9 the initial response of excessive hyaline droplet accumulation (containing α_{2u}-globulin) leading to
 10 cell necrosis and cytotoxicity, which in turn cause the accumulation of granular casts, linear
 11 mineralization, and tubular hyperplasia. Therefore, observations of temporal and dose-response
 12 concordance for these effects are informative for drawing conclusions on causation.

- 13 As mentioned above, most steps in the sequence of α_{2u} -globulin nephropathy are observed 14 at the expected time points following exposure to *tert*-butanol. Accumulation of hyaline droplets
- 15 was observed early, at 12 hours following a single bolus exposure (<u>Williams and Borghoff, 2001</u>)
- and at 10 days (<u>Borghoff et al., 2001</u>) or 13 weeks (<u>NTP, 1995</u>) following continuous exposure;
- 17 α_{2u} -globulin was identified as the protein in these droplets (<u>Borghoff et al., 2001</u>; <u>Williams and</u>
- 18 Borghoff, 2001). Lack of necrosis and exfoliation might be due to the weak induction of α_{2u} -globulin
- 19 and a lack of later examinations. Granular cast formation was not reported in any of the available
- 20 studies, which could also indicate weak α_{2u} -globulin induction. Regenerative cell proliferation,
- 21 which was not observed, is discussed in more detail below. Observations of the subsequent linear
- 22 mineralization of tubules and focal tubular hyperplasia fall within the expected timeframe of the
- 23 appearance of these lesions. Overall, no explicit inconsistencies are present in the temporal
- 24 appearance of the histopathological lesions associated with α_{2u} -globulin nephropathy; however, the
- dataset would be bolstered by measurements at additional time points to lend strength to the MOAevaluation.
- 27 Inconsistencies do occur in the dose-response among lesions associated with the
- 28 α_{2u} -globulin nephropathy progression. Hyaline droplets were induced in the proximal tubule of all
- surviving male rats in the 13-week NTP oral study (<u>NTP, 1995</u>; <u>Takahashi et al., 1993</u>; <u>Lindamood</u>
- 30 <u>et al., 1992</u>), although the incidence at the lowest dose was minimal, while the incidence at the
- 31 three higher doses was more prominent. These results are discordant with the tumor results, given
- 32 that all treated groups of male rats in the NTP 2-year oral bioassay had increased kidney tumor
- incidence, including the lowest dose of 90 mg/kg-day [according to the reanalysis by <u>Hard et al.</u>
- 34 (2011)]. This lowest dose was less than the 230 mg/kg-day in the 13-week oral study that had only
- 35 minimal hyaline droplet formation. Furthermore, although the incidence of renal tubule
- 36 hyperplasia had a dose-related increase (<u>NTP, 1995</u>), a corresponding dose-related increase in the
- 37 severity of tubular hyperplasia did not result. Severity of tubule hyperplasia was increased only at
- 38 the highest dose, which was not consistent with renal tumor incidence.

Although the histopathological sequence has data gaps, such as the lack of observable
 necrosis or cytotoxicity or granular casts at stages within the timeframe of detectability, overall, a
 sufficient number of steps (e.g., linear papillary mineralization, foci of tubular hyperplasia) were
 observed to fulfill the third criterion.

5 Summary and Conclusions for Question One:

Oral exposure to male F344 rats resulted in an increased incidence of renal tubule tumors in
a 2-year oral bioassay (Hard et al., 2011; NTP, 1995). Several histopathological observations in
exposed male rats were consistent with an α_{2u}-globulin MOA. This evidence includes the increased
size and number of hyaline droplets and the accumulated α_{2u}-globulin protein in the hyaline
droplets. Additionally, several subsequent steps in the histopathological sequence were observed.
Overall, available data are sufficient for all three required criteria, suggesting that the α_{2u}-globulin

12 process is operative. Although the evidence indicates a role for α_{2u} -globulin accumulation in the

13 etiology of kidney tumors induced by exposure to *tert*-butanol in male rats, that *tert*-butanol is a

14 weak inducer of α_{2u} -globulin is plausible, considering the available histopathological observations

15 and uncertainty regarding the temporal and dose concordance of the lesions.

16 *Question Two: Are the renal effects in male rats exposed to tert-butanol due solely to the* α_{2u} *-globulin process?*

18 If the α_{2u} -globulin process is operative, <u>U.S. EPA (1991a)</u> identifies a second question that

19 must be answered regarding whether the renal effects are solely due to the α_{2u} -globulin process, a

20 combination of the α_{2u} -globulin process and other carcinogenic processes, or primarily due to other

21 processes. <u>U.S. EPA (1991a)</u> states that additional data can help inform whether the α_{2u} -globulin

22 process is the sole contributor to renal tubule tumor development in male rats. These additional

- 23 data are considered and discussed in detail below.
- 24 (a) Hypothesis-testing of the α_{2u}-globulin sequence of effects and structure-activity
 25 relationships that might suggest the chemical belongs in a different class of suspected carcinogens: No
 26 data are available to evaluate these considerations.

(b) Biochemical information regarding binding of the chemical to the α_{2u}-globulin protein:
 Williams and Borghoff (2001) report that *tert*-butanol reversibly and noncovalently binds to
 α_{2u}-globulin in the kidneys of male rats. This provides additional support to the involvement of the
 α_{2u}-globulin process.

- 31 Presence of sustained cell replication in the S2 (P2) segment of the renal tubule at doses
- 32 used in the cancer bioassay and a dose-related increase in hyperplasia of the renal tubule:
- 33 Sustained cell division in the proximal tubule of the male rat is consistent with, although not
- 34 specific to, the α_{2u} -globulin process. Cell proliferation was observed in two studies [13-week, <u>NTP</u>
- 35 (1995) and 10-day, <u>Borghoff et al. (2001)</u>] but whether the proliferation was compensatory is
- 36 unknown, as cytotoxicity was not observed in these studies. Although the data do not support
- 37 sustained occurrence of cell division subsequent to cytotoxic cell death, renal tubule hyperplasia in

1 male rats was reported after 2 years of exposure (<u>NTP, 1995</u>). Thus, although some evidence of

- 2 sustained cell replication is available, it does not specifically support α_{2u} -globulin protein
- 3 accumulation.

4 (c) Covalent binding to DNA or other macromolecules, suggesting another process leading to 5 tumors and genotoxicity (α_{2u} -globulin-inducers are essentially nongenotoxic): One study (Yuan et al., 6 2007) observed a dose-related increase in *tert*-butanol-DNA adducts in liver, kidney, and lung of 7 mice administered a single low dose of *tert*-butanol ($\leq 1 \text{ mg/kg}$) in saline via gavage (see Appendix 8 B.3 in Supplemental Information for further details). An extremely sensitive method of detection 9 was used (accelerator mass spectrometry), but the DNA adduct species were not identified, and no 10 validation of these results has been identified in the literature. The few studies available to assess 11 the genotoxic potential of tert-butanol primarily are negative, although a few studies report DNA 12 damage induced by oxidative stress. DNA damage induced by oxidative stress is consistent with the 13 decreased levels of glutathione in male rat kidneys reported by <u>Acharya et al. (1995)</u> after 10 weeks 14 of tert-butanol exposure. This type of genetic damage would not necessarily preclude a role for 15 α_{2u} -globulin, but not enough information is available to determine whether oxidative stress could 16 initiate or promote kidney tumors in concert with α_{2u} -globulin accumulation in male rat kidneys. 17 (d) Nephrotoxicity in the male rat not associated with the α_{2u} -globulin process or CPN, 18 suggesting the possibility of other processes leading to renal tubule nephrotoxicity and 19 carcinogenicity: Nephropathy reported in the 13-week oral and inhalation and 2-year oral studies 20 was considered CPN and these effects were exacerbated by treatment with *tert*-butanol. At 13 21 weeks (NTP, 1997, 1995) and 2 years (NTP, 1995), oral and inhalation exposure increased the 22 severity of nephropathy in male rats (<u>NTP, 1995</u>). Similarly, the severity of nephropathy was 23 increased in females at 2 years, but only the incidence of nephropathy was increased in females 24 following a 13-week oral exposure (NTP, 1995). 25 Increased incidences of suppurative inflammation and kidney transitional epithelial 26 hyperplasia were observed in female rats orally exposed to *tert*-butanol for 2 years. <u>NTP (1995)</u>

and <u>Frazier et al. (2012)</u> characterized these endpoints as associated with CPN, and an analysis of

28 the individual animals indicates these endpoints are moderately correlated with CPN. At 2 years,

29 the male rats also exhibited a dose-related increase in transitional epithelial hyperplasia, and the

30 correlation of this endpoint with CPN was stronger than in female rats.

Kidney weights were increased in male and female rats in the 13-week oral and inhalation
evaluations (NTP, 1997, 1995) and 15-month oral evaluation (NTP, 1995). The dose-related
increases observed in both male and female rats suggest that the kidney weight changes are

33 increases observed in both male and female rats suggest that the kidney weight changes are 34 indicative of treatment-related molecular processes primarily unrelated to α_{2u} -globulin protein

35 accumulation. Given that CPN also was increased at these time points, however, the influence of

36 CPN on kidney weights cannot be ruled out.

37 Overall, the nephrotoxicity observed in the male rat is difficult to disentangle from CPN and 38 α_{2u} -globulin processes. The moderate correlation (Spearman's rank coefficient = 0.45) between CPN

- 1 severity and renal tumor incidence in male rats and the very weak correlation (Spearman's rank
- 2 coefficient = 0.16) between renal tubule hyperplasia and renal tumors (Table 1-8) suggests that
- $3 \qquad \alpha_{2u} \mbox{-globulin nephropathy is not solely responsible for the renal tumors. Furthermore, considering$
- 4 that the treatment-related exacerbation of CPN severity in female rats occurs without the
- $5 \qquad subsequent induction of renal tumors, this suggests that other processes besides \alpha_{2u} \mbox{-globulin} and$
- 6 CPN in males might be responsible for the renal tubule tumors.
- 7 Summary and Conclusions for Question Two:
- 8 Although the evidence suggests that *tert*-butanol induces α_{2u} -globulin nephropathy, the data
- 9 indicate that *tert*-butanol is a weak inducer of α_{2u} -globulin and that this process is not solely
- 10 responsible for the renal tubule nephropathy and carcinogenicity observed in male rats. The lack of
- 11 compensatory cell proliferation in male rats and evidence of nephrotoxicity in female rats suggest
- 12 that other processes, in addition to the α_{2u} -globulin process, are operating. Furthermore, the
- 13 accumulation of hyaline droplets and the induction of renal tubule hyperplasia were affected at
- 14 higher doses compared to those inducing renal tubule tumors. Collectively, these data suggest that
- 15 *tert*-butanol induces the α_{2u} -globulin pathway at high doses (>420 mg/kg-day), which results in
- 16 tumor formation. Other, unknown pathways, however, could be operative at lower doses
- 17 (<420 mg/kg-day), which contribute to renal tumor induction.
- 18 b) <u>Chronic Progressive Nephropathy and Renal Carcinogenicity</u>
- 19 Scientists disagree about the extent to which CPN can be characterized as a carcinogenic
- 20 MOA suitable for analysis under the EPA's cancer guidelines. Proponents of CPN as an MOA have
- 21 developed an evolving series of empirical criteria for attributing renal tubule tumors to CPN. <u>Hard</u>
- 22 and Khan (2004) proposed criteria for concluding that a chemical is associated with renal tubule
- tumors through an interaction with CPN. <u>Hard et al. (2013)</u> slightly revised and restated their
- criteria for considering exacerbation of CPN as an MOA for renal tubule tumors in rats. Table 1-10
- 25 lists these sets of proposed empirical criteria for attributing renal tubule tumors to CPN.

Table 1-10. Proposed empirical criteria for attributing renal tumors to CPN

 First and foremost, the chemical must have been shown to exacerbate CPN to very advanced stages of severity, especially end-stage kidney disease, in comparison to control rats in a 2-year carcinogenicity study. The tumors should occur in very low incidence and, for the most part, be minimal-grade lesions conforming to small adenomas or lesions borderline between atypical tubule hyperplasia (ATH) and adenoma. Such tumors should be associated only with the highest grades of CPN severity. The tumors and any precursor foci of ATH must be restricted to CPN-affected parenchyma and are usually observed only toward the end of the 2-year studies. Careful microscopic examination of renal parenchyma not involved in the CPN process should reveal no evidence of compound-induced cellular injury or other changes that would suggest alternative modes of action. 	 Genotoxic activity based on overall evaluation of in vitro and in vivo data is absent. Tumor incidence is low, usually <10%. Tumors are found toward the end of 2-year studies. Lesions are usually ATH or adenomas (carcinomas occasionally can occur). Chemical exacerbates CPN to most advanced stages, including end-stage kidney disease. ATH and tumors occur in rats with advanced CPN and in CPN-affected tissue. Cytotoxicity in CPN-unaffected tubules, in rats with lower grades of CPN, and in subchronic studies is absent. Source: Hard et al. (2013)

Hard et al. (2013) maintain that knowing the detailed etiology or underlying mechanism for CPN is unnecessary. Instead, identifying increased CPN with its associated increase in tubule cell

- 4 proliferation as the key event is adequate. Nonetheless, <u>Hard et al. (2013)</u> also postulated a
- 5 sequence of key events for renal tumorigenesis involving exacerbation of CPN:
 - Exposure to chemical (usually at high concentrations);
 - Metabolic activation (if necessary);
 - Exacerbated CPN, including increased number of rats with end-stage renal disease;
 - Increased tubule cell proliferation because more kidney is damaged due to CPN exacerbation;
 - Hyperplasia; and

1

- Adenoma (infrequently carcinoma).
- 6 In contrast to these proposed criteria and this MOA, <u>Melnick et al. (2013)</u>; <u>Melnick et al.</u>
- 7 (2012) concluded, based on an analysis of 60 NTP studies, no consistent association exists between
- 8 exacerbated CPN and the incidence of renal tubule tumors in rats. Without a consistent association

- 1 and an understanding of its key events, they maintain that determining the human relevance of
- 2 processes that might be occurring in rats is not possible. An earlier analysis of 28 NTP studies
- 3 (<u>Seely et al., 2002</u>) found a slight but statistically significant increase in CPN severity in animals
- 4 with renal tubule tumors, without determining that this relationship is causal. They suggested that
- 5 the number of tumors due to chemically exacerbated CPN would be few.
- 6 Evaluation of the MOA Proposed by <u>Hard et al. (2013)</u>
- Setting aside the question of whether CPN is (Hard et al., 2013; Hard and Khan, 2004) or is
 not (Melnick et al., 2013; Melnick et al., 2012) an MOA suitable for analysis, this section provides an
 analysis of the mechanistic data pertinent to CPN. EPA's cancer guidelines (U.S. EPA, 2005a) define
 a framework for judging whether available data support a hypothesized MOA; the analysis in this
 section follows the structure presented in the cancer guidelines.
- 12 *Description of the hypothesized MOA.* Under the EPA framework, toxicokinetic studies are
- 13 important for identifying the active agent, but toxicokinetic events per se are not key events of an
- 14 MOA. Thus, the EPA analysis of the MOA proposed by <u>Hard et al. (2013)</u> begins with
- 15 (1) exacerbated CPN, including increased number of rats with end-stage renal disease, and
- 16 proceeds via (2) increased tubule cell proliferation, (3) hyperplasia, and (4) adenoma, or
- 17 infrequently, carcinoma.
- 18 *Strength, consistency, specificity of association.* The relationship between exacerbated CPN
- and renal tumors is moderate in male rats in the <u>NTP (1995)</u> study. According to the <u>NTP (1995)</u>
- 20 analysis, the mean CPN grades (same as "severity of nephropathy" reported by NTP) presented on a
- scale 1–4 for male rats with renal tumors were 3.5, 3.6, 3.7, and 3.4 at doses 0, 1.25, 2.5, and 5
- mg/mL. The mean CPN grades for male rats without renal tumors were 2.9, 2.8, 2.8, and 3.2 for the
- same dose groups. The reanalysis of the NTP data by <u>Hard et al. (2011)</u> yielded similar numbers.
- 24 Analysis of the individual occurrence of CPN and renal tumors demonstrated a moderately positive
- correlation (Spearman's rank coefficient r_s = 0.43) (Table 1-8). The relationship between CPN and
- renal tumors, however, is neither consistent nor specific in the <u>NTP (1995)</u> study: No female rats
- 27 developed renal tumors regardless of the presence of relatively low-grade or relatively high-grade
- 28 CPN. For example, in female rats surviving more than 700 days, the mean CPN grades were 1.7 and
- 29 3.2 at doses of 0 and 10 mg/mL, respectively, but no tumors developed in either group.
- 30 *Dose-response concordance.* The dose-response relationships for CPN, renal tubule
- 31 hyperplasia, and renal tubule tumors somewhat differ. According to the <u>NTP (1995)</u> analysis, at
- doses of 0, 1.25, 2.5, and 5 mg/mL, the mean CPN grades for all male rats were 3.0, 3.1, 3.1, and 3.3;
- 33 the incidences of renal tubule hyperplasia (standard and extended evaluation combined) were
- 34 14/50, 20/50, 17/50, and 25/50; and the incidences of renal tubule adenomas or carcinomas were
- 35 8/50, 13/50, 19/50, and 13/50 (Table 1-3). The reanalysis by <u>Hard et al. (2011)</u> reported similar
- tumor incidences (4/50, 13/50, 18/50, and 12/50), except that four fewer rats in the controls and
- 37 one fewer rat in the group exposed to 2.5 mg/mL had tumors. The lower control incidence
- 38 observed in this reanalysis accentuates the differences in these dose-response relationships. For

1 example, the maximal tumor response (4/50 in controls versus 18/50 at the middle dose) does not

2 parallel the marginal change in CPN severity (i.e., group average of 3.0 to 3.1). That a marginal

- 3 increase in CPN severity would be associated with significant tumor induction seems inconsistent.
- 4 Furthermore, CPN severity is nearly as great in the female rats, yet no females developed tumors, as
- 5 noted above.
- 6 *Temporal relationship.* The severity of CPN progressed over time. According to the NTP
- 7 (1995) analysis, the mean CPN grades in the 13-week study of male rats were 1.0, 1.6, 2.6, 2.7, 2.6,
- 8 and 1.1 at doses of 0, 2.5, 5, 10, 20, and 40 mg/mL. At the 15-month interim evaluation of the 2-year
- 9 study, the mean CPN grades were 2.4, 2.8, 2.7, and 2.6 at doses of 0, 1.25, 2.5, and 5 mg/mL and, at
- 10 2 years, increased to 3.0, 3.1, 3.1, and 3.3. Similarly, the severity of neoplastic lesions increased at
- 11 the end of life. At the 15-month interim evaluation, only two rats had developed renal tubule
- 12 hyperplasia and one other had a renal tubule adenoma; at 2 years, the incidences of these two
- 13 lesions were much higher in all dose groups (see previous paragraph). These results are consistent
- 14 with CPN as an age-related disease and with hyperplasia and tumors appearing near the end of life.
- 15 Biological plausibility and coherence. In general, the relationship between exacerbated CPN
- 16 and renal tubule tumors in male rats appears plausible and coherent. Some patterns in the dose-
- 17 response relationships for CPN, hyperplasia, and tumors are discrepant. Perhaps more importantly,
- 18 the patterns also are discrepant for the relationships between CPN grades and renal tubule tumors
- 19 in female rats. In addition, the increased incidences in renal tubule tumors in all exposed male rats
- 20 exceed the 10% criterion proposed by Hard et al. (2013) (Table 1-10), even more so when making
- 21 comparisons with the lower control tumor incidence from the Hard et al. (2011) reanalysis.

22

Conclusions about the hypothesized CPN-related MOA

23 As recommended by EPA's cancer guidelines (U.S. EPA, 2005a), conclusions about the 24 hypothesized MOA can be clarified by answering three questions presented below.

25 (a) Is the hypothesized MOA sufficiently supported in the test animals? Exacerbated CPN 26 leading to renal tubule tumors in male rats late in life appears to have some support. Consistency is 27 lacking, however, between males and females and in the dose-response relationships between CPN, 28 hyperplasia, and adenomas. These inconsistencies make difficult attributing all renal tumors to 29 either CPN or to α_{2u} -globulin-related nephropathy (see previous section on α_{2u} -globulin), raising 30 the likelihood of another, yet unspecified MOA.

31 (b) Is the hypothesized MOA relevant to humans? CPN is a common and well-established 32 constellation of age-related lesions in the kidney of rats, and no counterpart to CPN in aging 33 humans is known. Scientists disagree, however, on the relevancy of the CPN MOA to humans. Hard 34 et al. (2013); Hard et al. (2009) cite several differences in pathology between rat CPN and human 35 nephropathies in their arguments that CPN-related renal tumors in rats are not relevant to humans. 36 On the other hand, <u>Melnick et al. (2013</u>); <u>Melnick et al. (2012</u>) argue that the etiology of CPN and 37 the mechanisms for its exacerbation by chemicals are unknown and fail to meet fundamental 38 principles for defining an MOA and for evaluating human relevance. This issue is unresolved.

(c) Which populations or lifestages can be particularly susceptible to the hypothesized MOA?
 That human populations or lifestages are especially susceptible to tumors induced through
 exacerbated CPN is not indicated.

In summary, the renal tubule tumors are partially attributed to CPN in male rats and not in
female rats, considering discrepant patterns in the dose-response relationships for CPN,

6 hyperplasia, and renal tubule tumors; the moderately strong correlation between CPN grades and

7 renal tubule tumors in male rats; and the lack of relationships between CPN severity and renal

8 tumors in female rats together with the lack of a generally accepted MOA for CPN.

9 This position can be reconciled with that of <u>Melnick et al. (2013)</u>; <u>Melnick et al. (2012)</u>, who

10 argued against dismissing renal tubule tumors in rats that can be related to exacerbated CPN. It also

11 can be reconciled with <u>Hard et al. (2013)</u>, who, while maintaining these tumors are not relevant to

12 humans, also allow there is no generally accepted MOA for CPN akin to that for α_{2u} -globulin-related

13 nephropathy. <u>Hard et al. (2013)</u> made this statement after reporting on the collective experience of

14 national and international health agencies worldwide with the use of CPN as an MOA. Of 21

15 substances that exacerbated CPN and caused renal tumors, most were multisite carcinogens, and

16 other tumor sites contributed to the evaluations. Only two assessments explicitly considered CPN

17 as a renal tumor mechanism. One was the assessment of ethylbenzene by the German Federal

18 Institute for Occupational Safety and Health, in which the agency concluded that the kidney tumors

19 were associated with the high, strain-specific incidence of CPN that is unknown for humans [as

20 discussed in <u>Hard et al. (2013)</u>]. The other was the IRIS assessment of tetrahydrofuran, for which

21 EPA found the evidence insufficient to conclude that the kidney tumors are mediated solely by the

22 hypothesized MOAs (U.S. EPA, 2012d). Hard et al. (2013) attributed these different conclusions to

either different data for the two chemicals or the lack of a generally accepted MOA akin to

 $\label{eq:alpha24} \textbf{24} \quad \ \alpha_{2u} \text{-globulin-related nephropathy}.$

25 Relevant to this last point, <u>IARC (1999)</u> developed a consensus statement that listed

 $26 \qquad \text{considerations for evaluating } \alpha_{2u}\text{-globulin-related nephropathy in rats, which was based on the}$

work of 22 scientists, including 3 who were co-authors of <u>Hard et al. (2013)</u> and 2 who were co-

28 authors of <u>Melnick et al. (2013)</u>; <u>Melnick et al. (2012)</u>. A similar broad-based consensus that defines

29 a sequence of key events for exacerbated CPN, distinguishes it more clearly from α_{2u} -globulin-

30 related nephropathy, and evaluates its relevance to humans would be helpful in advancing the

31 understanding of these issues.

32 Overall Conclusions on MOA for Kidney Effects

33 *tert*-Butanol increases α_{2u} -globulin deposition and hyaline droplet accumulation in male rat 34 kidneys and several of the subsequent steps in that pathological sequence. These data provide 35 sufficient evidence (albeit minimal) that the α_{2u} -globulin process is operating, although based on 36 further analysis this chemical appears to be a weak inducer of α_{2u} -globulin nephropathy and this 37 induction is not the sole contributor to renal tubule nephropathy and carcinogenicity. CPN and the 38 exacerbation of CPN (likely due to both α_{2u} -globulin and *tert*-butanol) play a role in renal tubule

- 1 nephropathy. The available evidence indicates that CPN might be involved in the induction of renal
- 2 tubule tumors in male rats, likely by providing proliferative stimulus in the form of compensatory
- 3 regeneration following toxicity to the renal tubule epithelium, although these effects were not
- 4 observed in some studies. Additionally, several endpoints in female rats indicate that renal tubule
- 5 nephrotoxicity and increased kidney weights related to *tert*-butanol exposure cannot be explained
- $6 \qquad by the \, \alpha_{2u} \mbox{-globulin process.}$

7 Integration of Kidney Effects

8 Kidney effects (increases in nephropathy, severity of nephropathy, hyaline droplets, linear 9 mineralization, suppurative inflammation, transitional epithelial hyperplasia, mineralization, and 10 kidney weight) were observed, predominantly in male and female rats across the multiple tert-11 butanol studies. The available evidence indicates that multiple processes induce the noncancer 12 kidney effects. The group of lesions generally reported as "nephropathy," is related to CPN. CPN is a 13 common and well-established constellation of age-related lesions in the kidney of rats, for which no 14 known counterpart to CPN exists in aging humans. CPN is not, inherently, a specific diagnosis, 15 however, but an aggregate term describing a spectrum of effects. The individual lesions associated 16 with CPN (tubular degeneration, glomerular sclerosis, etc.) also occur in the human kidney. Thus, 17 exacerbation of one or more of these lesions might reflect a type of injury relevant to the human 18 kidney.

- 19Additionally, two endpoints in male rats (hyaline droplets, linear mineralization) are20components of the α_{2u} -globulin process. U.S. EPA (1991a) states that if the α_{2u} -globulin process
- 21 were occurring in male rats, the renal tubule effects associated with this process in male rats would
- 22 not be relevant to humans for purposes of hazard identification. In cases such as these, the
- 23 characterization of human health hazard for noncancer kidney toxicity would rely on effects not
- $24 \qquad \text{specifically associated with the α_{2u}-globulin process in male rats.}$
- 25 Because female rats are not affected by α_{2u} -globulin nephropathy, lesions associated with 26 CPN in female rats are used for human hazard characterization. Several other noncancer endpoints 27 resulted from *tert*-butanol exposure and are appropriate for consideration of a kidney hazard, 28 specifically: suppurative inflammation in female rats, transitional epithelial hyperplasia in female 29 rats, severity of nephropathy in female rats, incidence of nephropathy in female rats, and increased 30 kidney weights in rats but not mice. Based on dose-related increases in these noncancer endpoints 31 in rats, kidney effects are a potential human hazard of *tert*-butanol exposure. The hazard and dose-32 response conclusions regarding these noncancer endpoints associated with *tert*-butanol exposure 33 are discussed further in Section 1.3.1.
- The carcinogenic effects observed following *tert*-butanol exposure include increased
 incidences of renal tubule hyperplasia (considered a preneoplastic effect) and tumors in male rats.
 EPA concluded that the three criteria were met to indicate that an α_{2u}-globulin process is operating.
 Because renal tubule tumors in male rats did not arise solely due to the α_{2u}-globulin and CPN
 processes and some of the tumors are attributable to other carcinogenic processes, such tumors

1 remain relevant for purposes of hazard identification (U.S. EPA, 1991a).⁹ The hazard and dose-

2 response conclusions regarding the renal tubule hyperplasia and tumors associated with *tert*-

3 butanol exposure are further discussed as part of the overall weight of evidence for carcinogenicity

4 in Section 1.3.2.

5 1.2.2 Thyroid Effects

6 Synthesis of Effects in Thyroid

7 The database on thyroid effects following *tert*-butanol exposure contains no human data, 8 two oral subchronic and two oral chronic studies (one of each duration in rats and in mice) (NTP, 9 1995), and two inhalation subchronic studies (one in rats and one in mice) (NTP, 1997). Studies 10 employing short-term and acute exposures that examined thyroid effects are not included in the 11 evidence table; they are discussed, however, in the text if they provide data informative of MOA or 12 hazard identification. No gross thyroid effects were reported in the 13-week evaluations of mice or 13 rats following oral or inhalation exposure (<u>NTP, 1997, 1995</u>), and therefore subchronic studies were not included in the evidence table. The two available chronic studies are arranged in the 14 15 evidence table by effect and then by species. The design, conduct, and reporting of each study were 16 reviewed, and each study was considered adequate to provide information pertinent to this 17 assessment (Figure 1-10). 18 Thyroid effects, specifically follicular cell hyperplasia and adenomas, were observed in mice 19 of both sexes after 2 years of oral exposure via drinking water (NTP, 1995). NTP (1995) noted,

- 20 "[p]roliferation of thyroid gland follicular cells is generally considered to follow a progression from
- 21 hyperplasia to adenoma and carcinoma." Both male and female mice exhibited a dose-related
- increase in the incidence of hyperplasia, and the average severity across all dose groups was
- 23 minimal to mild with scores ranging from 1.2 to 2.2 (out of 4). Increased incidence of adenomas
- also was observed in the *tert*-butanol-treated mice, with the only carcinoma observed in high-dose
- males. No treatment-related thyroid effects were reported in rats of either sex following 2 years of
 oral exposure (NTP, 1995).
- 27 The tumor response in male mice, adjusted for early mortality, showed a statistically
- significant increasing trend (Cochran-Armitage trend test, *p* = 0.041; analysis performed by EPA).
- 29 Although the response appeared nonmonotonic, with a slightly lower response at the high-dose

⁹When the α_{2u} -globulin process is occurring, <u>U.S. EPA (1991a)</u> states that one of the following conclusions will be made: (a) if renal tumors in male rats are attributable solely to the α_{2u} -globulin process, such tumors will not be used for human cancer hazard identification or for dose-response extrapolations; (b) if renal tumors in male rats are not linked to the α_{2u} globulin process, such tumors are an appropriate endpoint for human hazard identification and are considered, along with other appropriate endpoints, for quantitative risk estimation; or (c) if some renal tumors in male rats are attributable to the α_{2u} -globulin process of hazard identification, but a dose-response estimate based on such tumors in male rats should not be performed unless enough information is available to determine the relative contribution of each process to the overall renal tumor response.

- 1 level than at the mid-dose level, the increased mortality reported in the high-dose group occurred
- 2 before tumors appeared; about 40% of the high-dose males died before the first tumor (a
- 3 carcinoma) appeared in this group at week 83. By comparison, only ~10% of the control group had
- 4 died by this time, and the single tumor in the control group was observed at study termination.
- 5 Mortality in the exposed female mice was similar to controls.

6

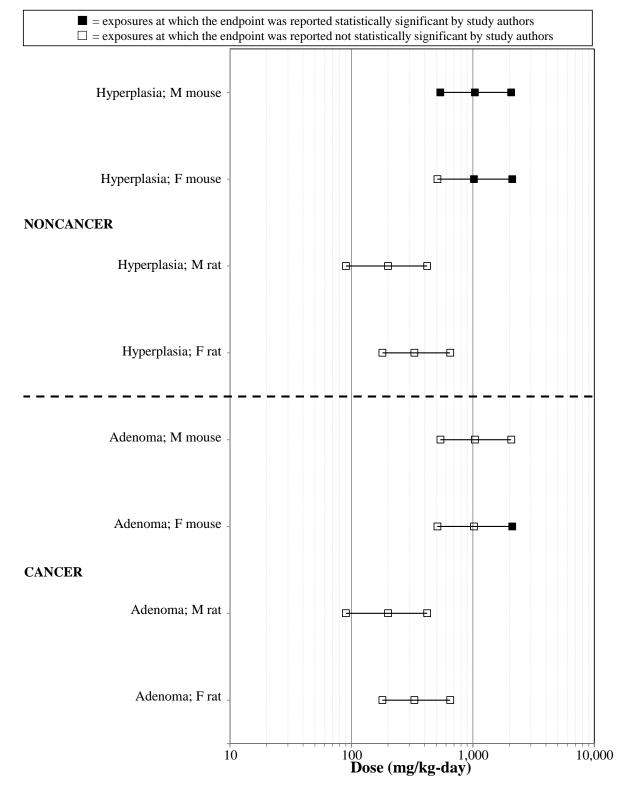
7

Table 1-11. Evidence pertaining to thyroid effects in animals following oral exposure to *tert*-butanol

Reference and study design		Resu	ults	
Follicular cell hyperplasia	•			
NTP (1995) F344/N rat; 60/sex/treatment (10/sex/treatment evaluated at 15 months) Drinking water (0, 1.25, 2.5, 5, or 10	Incidence ^b Males		Females	
	<u>Dose</u> (mg/kg-d)	Follicular cell hyperplasia	<u>Dose</u> (mg/kg-d)	<u>Follicular cell</u> <u>hyperplasia</u>
mg/mL)	0	3/50	0	0/50
M: 0, 90, 200, or 420 ^a mg/kg-d F: 0, 180, 330, or 650 ^a mg/kg-d 2 years	90	0/49	180	0/50
	200	0/50	330	0/50
	420 ^a	0/50	650ª	0/50
<u>NTP (1995)</u>	Incidence (severity)		
B6C3F ₁ mouse; 60/sex/treatment Drinking water (0, 5, 10, or 20 mg/mL)	Males		Females	
M: 0, 540, 1,040, or 2,070 ^a mg/kg-d F: 0, 510, 1,020, or 2,110 mg/kg-d	<u>Dose</u> (mg/kg-d)	<u>Follicular cell</u> <u>hyperplasia</u>	<u>Dose</u> (mg/kg-d)	<u>Follicular cell</u> <u>hyperplasia</u>
2 years	0	5/60 (1.2)	0	19/58 (1.8)
	540	18/59* (1.6)	510	28/60 (1.9)
	1,040	15/59* (1.4)	1,020	33/59* (1.7)
	2,070ª	18/57* (2.1)	2,110	47/59* (2.2)

Reference and study design	Results						
Follicular cell tumors							
NTP (1995) F344/N rat; 60/sex/treatment (10/sex/treatment evaluated at 15	Incidence ^b Dose (mg/k		<u>cular cell</u> enoma	Follicular cell carcinoma			
months) Drinking water (0, 1.25, 2.5, 5, or 10 mg/mL) M: 0, 90, 200, or 420 ^a mg/kg-d F: 0, 180, 330, or 650 ^a mg/kg-d 2 years	Male 0	2	2/50	2/50			
	90 200 420ª	()/49)/50)/50	0/49 0/50 0/50			
	Female		1/50	1/50			
	180 330	180 0/50		0/50			
	650ª	0/50		0/50			
NTP (1995) B6C3F ₁ mouse; 60/sex/treatment Drinking water (0, 5, 10, or 20 mg/mL) M: 0, 540, 1,040, or 2,070 ^a mg/kg-d F: 0, 510, 1,020, or 2,110 mg/kg-d 2 years	Incidence Dose (mg/kg-d)	dence Dose <u>Follicular cell</u> <u>Follicular cel</u>		<u>Follicular cell</u> <u>adenoma or</u> <u>carcinoma</u> <u>(mortality</u> <u>adjusted rates)^{c,d}</u>	Animals surviving to study termination		
	Male						
	0 540	1/60 0/59	0/60 0/59	1/60 (3.6%) 0/59 (0.0%)	27/60 36/60		
	1,040 2,070 ^a	4/59 1/57	0/59 1/57	4/59 (10.1%) 2/57 (8.7%)	34/60 17/60		
	Female 0 510 1,020	2/58 3/60 2/59	0/58 0/60 0/59	2/58 (5.6%) 3/60 (8.6%) 2/59 (4.9%)	36/60 35/60 41/60		
	2,110	9/59*	0/59	9/59* (19.6%)	42/60		

^aSurvival in the high-dose group significantly decreased.


^bResults do not include the animals sacrificed at 15 months.

^cMortality-adjusted rates were not calculated by study authors for follicular cell carcinoma. The mortality-adjusted rates for the incidence of adenomas are the same as the combined rates, with the exception of the male high-dose group, where the rate for adenomas alone was 5.9%.

^dCochran-Armitage trend test was applied to mortality-adjusted thyroid tumor incidences, by applying the NTP adjusted rates

to the observed numbers of tumors to estimate the effective number at risk in each group. For male mice, p = 0.041; for female mice, p = 0.028.*Statistically significant $p \le 0.05$ as determined by the study authors.

10 Note: Conversions from drinking water concentrations to mg/kg-d performed by study authors.

Source: <u>NTP (1995)</u>

1

Figure 1-10. Exposure-response array of thyroid follicular cell effects following chronic oral exposure to *tert*-butanol. (Note: Only one carcinoma was observed in male mice in the high-dose group.)

1 Mode of Action Analysis—Thyroid Effects

2 The MOA responsible for *tert*-butanol-induced thyroid effects has been the subject of little 3 study. One hypothesis is that *tert*-butanol increases liver metabolism of thyroid hormones, 4 triggering a compensatory increase in pituitary thyroid-stimulating hormone (TSH) production. 5 Such sustained increases in TSH could induce elevated thyroid follicular cell proliferation and 6 hyperplasia and lead to follicular cell adenoma and carcinoma; this enhancement of liver 7 metabolism and excretion of thyroid hormones is one of several potential antithyroid MOAs, as 8 identified in EPA's guidance on the assessment of thyroid follicular cell tumors (U.S. EPA, 1998a). 9 To determine if the thyroid follicular cell tumors result from a chemically induced 10 antithyroid MOA, U.S. EPA (1998a) requires that the available database demonstrate: (1) increases 11 in thyroid cell growth, (2) thyroid and pituitary hormone changes consistent with the antithyroid 12 MOA, (3) site(s) of the antithyroid action, (4) dose correlation among the various effects, and 13 (5) reversibility of effects in the early stages of disruption. The available evidence pertaining to 14 each of these aspects of antithyroid activity following *tert*-butanol exposure is discussed below.

15 <u>1) Increases in cell growth (required)</u>

16 U.S. EPA (1998a) considers increased absolute or relative thyroid weights, histological 17 indicators of cellular hypertrophy and hyperplasia, DNA labeling, and other measurements (e.g., 18 Ki-67 or proliferating cell nuclear antigen expression) to be indicators of increased cell growth. 19 Only a few studies (NTP, 1997, 1995) have evaluated the thyroid by routine histological 20 examination following *tert*-butanol exposure, and none investigated specific molecular endpoints. 21 None of the available long-term studies measured thyroid weight in mice, likely due to the technical 22 limitations involved, and no thyroid effects were attributed to *tert*-butanol exposure in rats treated 23 up to 2 years (NTP, 1997, 1995). The absence of treatment-related thyroid effects in rats is 24 unusual, as chemically induced thyroid tumorigenesis is observed more frequently in rats than in 25 mice (Hurley, 1998; U.S. EPA, 1998a). Although the short-term female mouse study by Blanck et al. 26 (2010) stated that thyroids were weighed, no results were reported. An increase in thyroid follicular cell hyperplasia was observed in both female and male mice 27 28 after a 2-year drinking water exposure to *tert*-butanol (NTP, 1995). The increase was dose 29 dependent in female mice with a slight increase in severity in the highest dose, while male mice 30 experienced a similar magnitude of hyperplasia induction at all doses evaluated, with increased 31 severity at the highest dose (<u>NTP, 1995</u>). Thyroid follicular cell hyperplasia was not observed in any 32 mouse study with less than 2 years of exposure: No treatment-related histological alterations in the 33 thyroid of tert-butanol-treated (2 or 20 mg/mL) female mice after 3 or 14 days of drinking water 34 exposure (Blanck et al., 2010) were reported, in male or female mice after 13 weeks of drinking 35 water exposure (<u>NTP, 1995</u>), or in male or female mice following 18-day or 13-week inhalation 36 studies (<u>NTP, 1997</u>). The observation of increased hyperplasia in male and female mice after 2 37 years of exposure is sufficient evidence to support increased thyroid cell growth.

1 <u>2) Changes in thyroid and relevant pituitary hormones (required)</u>

2 Evidence of hormonal changes, including decreases in triiodothyronine (T_3) and thyroxine 3 (T_4) and increases in TSH, are required to demonstrate a disruption in the thyroid-pituitary 4 signaling axis (U.S. EPA, 1998a). Blanck et al. (2010) evaluated serum thyroid hormones in mice 5 after 3 or 14 days of exposure to tert-butanol. No tert-butanol-related effects were observed in T₃, 6 T₄, or TSH levels after 3 days, and although both T₃ and T₄ levels were significantly decreased 7 approximately 10–20% after 14 days of treatment with *tert*-butanol, TSH levels remained 8 unaffected. Similar results were reported with the positive control (phenobarbital). The limited 9 evidence available from this single study suggests that although T₃ and T₄ levels were decreased 10 after 14 days, this perturbation likely did not exceed the range of homeostatic regulation in female 11 B6C3F₁ mice and thus was not likely to induce compensatory thyroid follicular cell proliferation. 12 Multiple lines of evidence support this observation: (1) TSH levels were unaffected, indicating that 13 the decrease in T_3 and T_4 levels was not severe enough to stimulate increased TSH secretion by the 14 pituitary in this timeframe; (2) thyroid hyperplasia was not induced in this study, or any others 15 exposing mice to similar or greater concentrations for 2.5–13 weeks, suggesting that thyroid 16 proliferation was either not induced by the hormone fluctuations or that any follicular cell 17 proliferation during this period was too slight to be detected by routine histopathological 18 examination; (3) the maximal decrease in T_3 or T_4 hormone levels induced by *tert*-butanol exposure 19 after 14 days (i.e., $\sim 20\%$) was well within the range of fluctuation in T₃ and T₄ hormone levels 20 reported to occur between the 3- and 14-day control groups [15–40%; (Blanck et al., 2010)]. 21 Although the lower T_3 and T_4 levels following *tert*-butanol were later attributed by the study 22 authors to an increase in liver metabolism (see next section), alternatively, they could be due to a 23 variety of other possible, yet uninvestigated, molecular interactions of *tert*-butanol. Such 24 interactions might include (1) inhibition of iodide transport into thyroid follicular cells, (2) thyroid 25 peroxidase inhibition, (3) thyroid follicular cell dysfunction leading to inhibition of thyroid hormone production or release, or (4) inhibition of 5'-monodeiondinase (Hurley, 1998; U.S. EPA, 26 27 1998a).

The absence of information regarding thyroid hormone levels in male mice and lack of molecular studies evaluating exposures >2 weeks in female mice are significant deficiencies in the available database. Together, although small decreases in some thyroid hormone levels have been reported in female mice, the available evidence is inadequate to determine if *tert*-butanol negatively affects the pituitary-thyroid signaling axis in female mice; furthermore, no evidence was available to evaluate this effect in male mice.

34 <u>3) Site(s) of antithyroid action (required)</u>

The thyroid and liver are two of several potential sites of antithyroid action, with the liver the most common, where increased microsomal enzyme activity could enhance thyroid hormone metabolism and removal (U.S. EPA, 1998a). Rats are thought to be more sensitive than mice to this

1 aspect of antithyroid activity (Roques et al., 2013; Qatanani et al., 2005; U.S. EPA, 1998a); however, 2 rats exposed to *tert*-butanol for 2 years exhibited no treatment-related thyroid effects, while mice 3 did. Typically, chronic induction of liver microsomal enzyme activity resulting from repeated 4 chemical exposure would manifest some manner of liver histopathology, such as hepatocellular 5 hypertrophy or hyperplasia (U.S. EPA, 1998a; NTP, 1995). In a 14-day mechanistic investigation, 6 *tert*-butanol had no effect on liver weight when compared to the control group, but centrilobular 7 hepatocellular hypertrophy was reported in 2/5 livers from high-dose mice versus 0/6 in control 8 and 0/5 in low-dose mice (Blanck et al., 2010). Relative liver weights increased in male and female 9 mice after 13 weeks of oral exposure (NTP, 1995) to higher doses than those evaluated by Blanck et 10 al. (2010), although absolute liver weight measurements in treated animals showed little change 11 from controls suggesting that the relative measures could have been related to decreases in body 12 weight rather than specific liver effects. Relative (and absolute) liver weights were increased in 13 female mice (only) after 13 weeks of inhalation exposure at the two highest concentrations (NTP, 14 1997); liver weight was not reported in mice orally exposed for 2 years (NTP, 1995). No increase in 15 mouse hepatocellular hypertrophic or hyperplastic histopathology was reported following 2.5 16 weeks to 2 years of exposure (NTP, 1997, 1995). In fact, the only liver pathology associated with 17 tert-butanol exposure in either rats or mice from these studies was an increase in fatty liver in male 18 mice in the high-dose group after 2 years of oral exposure (<u>NTP, 1995</u>). Although increased fatty 19 liver could indicate some nonspecific metabolic alteration, the absence of a similar treatment-20 related effect in livers from female mice, which were sensitive to both thyroid follicular cell 21 hyperplasia and tumor induction, suggests that it might not be related to the thyroid tumorigenesis. 22 One study evaluated liver enzyme expression and found highly dose-responsive induction 23 of a single phase I cytochrome p450 enzyme (CYP2B10) following 14 days of *tert*-butanol exposure 24 in female mice, with much smaller increases in the expression of another phase I enzyme, CYP2B9, 25 and the phase II thyroid hormone-metabolizing enzyme, sulfotransferase 1A1 [(SULT1A1; Blanck et 26 al. (2010)]. CYP2B enzyme induction is commonly used as an indication of constitutive and rostane 27 receptor (CAR) activation; CAR can induce expression of a wide range of hepatic enzymes, including 28 several CYPs along with thyroid hormone-metabolizing sulfotransferases (Roques et al., 2013). The 29 only thyroid hormone-metabolizing enzyme induced by *tert*-butanol, however, was SULT1A1, 30 which has been reported to be inducible in a CAR-independent manner in mice (Qatanani et al., 31 2005). Based on alterations in hepatic phase I and phase II enzyme activities and gene expression, 32 the above data suggest a possible role for increased thyroid hormone clearance in the liver 33 following repeated *tert*-butanol exposure; however, the expression changes in these few enzymes 34 are not supported by any liver histopathological effects in mice exposed for longer durations, so 35 whether this enzyme induction is transient, or simply insufficient to induce liver pathology after >236 weeks of exposure, is unknown. As noted above, no evidence is available to evaluate the potential 37 for intrathyroidal or any other extrahepatic effects in female mice or for any of these molecular

- 1 endpoints in male mice; therefore, the available evidence is inadequate to determine if major site(s)
- 2 of antithyroid action are affected.

3 <u>4) Dose correlation (required)</u>

4 Confidence in the disruption of the thyroid-pituitary function is enhanced when dose 5 correlation is present among the hormone levels producing various changes in thyroid 6 histopathology, including thyroid tumors (U.S. EPA, 1998a). Furthermore, if thyroid hormone levels 7 were affected by liver enzyme induction, confidence would be increased by a concordance among 8 liver effects, thyroid hormone levels, and thyroid pathology. Thyroid hormone levels were 9 evaluated only in female mice exposed to *tert*-butanol; after 2 weeks of exposure, both T₃ and T₄ 10 were decreased with both doses (2 and 20 mg/L), and TSH was unaffected at either dose (Blanck et 11 al., 2010). Liver expression of CYP2B10 was increased in a dose-responsive manner, while 12 SULT1A1 mRNA was induced by 20–30% at both doses (Blanck et al., 2010). As described above, 13 induction of liver microsomal enzyme activity would manifest some manner of liver histopathology (Maronpot et al., 2010; U.S. EPA, 1998a; NTP, 1995), and, consistent with this expected association, 14 15 centrilobular hepatocellular hypertrophy was reported in 2/5 high-dose mice exposed for 2 weeks 16 (<u>Blanck et al., 2010</u>). No liver histopathology, however, was attributed to *tert*-butanol exposure in 17 female mice exposed for 2.5 weeks to 2 years to comparable *tert*-butanol concentrations (NTP, 18 <u>1997</u>, <u>1995</u>). Although liver enzyme levels and activity were not specifically evaluated following 19 subchronic to chronic exposure, the lack of liver pathology suggests a comparable lack of enzyme 20 induction. Conversely, no histopathological alterations were reported in the thyroids of female mice 21 after 2 weeks of oral exposure at doses that elevated some liver enzyme levels (Blanck et al., 2010). 22 Following 2 years of oral exposure, both follicular cell hyperplasia and follicular cell tumor

incidence were increased in mice, despite a lack of treatment-related liver pathology (<u>NTP, 1995</u>)
(Figure 1-10). Any associations relating hormone changes to thyroid pathology or liver enzyme

25 induction are limited due to the inadequate database (described above); the available evidence

26 suggests little concordance among reports of liver, pituitary, and thyroid effects in female mice,

and no evidence was available to evaluate these associations in male mice.

28 <u>5) Reversibility (required)</u>

29 Chemicals acting via an antithyroid MOA have effects (e.g., increased TSH levels, thyroid 30 follicular cell proliferation) that are reversible after cessation of treatment (U.S. EPA, 1998a). 31 Although increased TSH levels have not been demonstrated following *tert*-butanol exposure, 32 thyroid follicular cell proliferation was observed following chronic exposure. As no studies have 33 evaluated changes in thyroid hormones or thyroid histopathology after cessation of *tert*-butanol 34 treatment, however, the available evidence is inadequate to evaluate reversibility of these effects. 35 In summary, the available database sufficiently supports only (1) increases in thyroid cell 36 growth. The existing data are inadequate to evaluate (2) thyroid and pituitary hormone changes 37 consistent with the antithyroid MOA, (3) site(s) of the antithyroid action, or (5) reversibility of

- 1 effects in the early stages of disruption. Although these inadequacies also limit the evaluation of (4)
- 2 dose correlation among the various effects, the available evidence suggests that little correlation
- 3 exists among reported thyroid, pituitary, and liver endpoints. Together, the database is inadequate
- 4 to determine if an antithyroid MOA is operating in mice. In the absence of information to indicate
- 5 otherwise, the thyroid tumors observed in mice are considered relevant to humans.

6 Integration of Thyroid Effects

- 7 The thyroid endpoints reported following chronic exposure to *tert*-butanol include
- 8 increases in follicular cell hyperplasia and tumors in male and female mice. As discussed above, due
- 9 to inadequacies in four of the five required areas (<u>U.S. EPA, 1998a</u>), the evidence is inadequate to
- 10 determine if an antithyroid MOA is operating in mice; therefore, the MOA(s) for thyroid
- 11 tumorigenesis has not been identified. EPA considers the thyroid follicular cell hyperplasia to be an
- 12 early event in the neoplastic progression of thyroid follicular cell tumors, and no other noncancer
- 13 effects on the thyroid were observed. Thus, the hazard and dose-response conclusions regarding
- 14 the thyroid follicular cell hyperplasia and tumors associated with *tert*-butanol exposure are
- 15 discussed as part of the overall weight of evidence for carcinogenicity in Section 1.3.2.

16 **1.2.3 Developmental Effects**

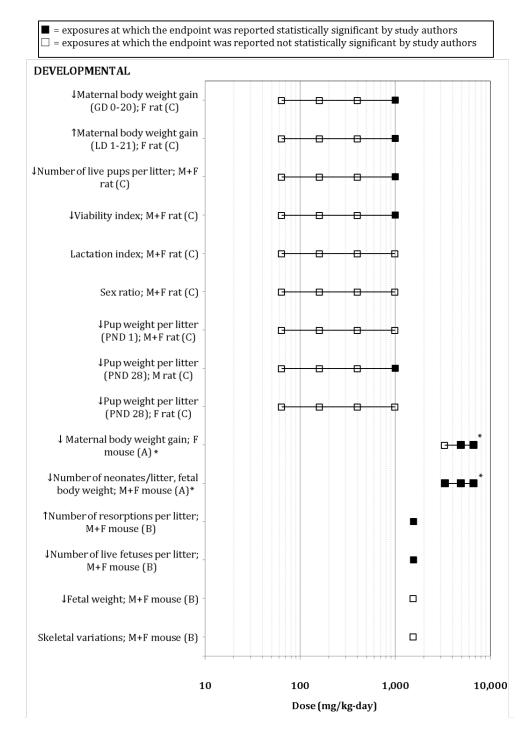
17 Synthesis of Effects Related to Development

18 Four studies evaluated developmental effects [three oral or inhalation developmental 19 studies (Faulkner et al., 1989; Nelson et al., 1989; Daniel and Evans, 1982) and a one-generation, 20 oral reproductive study (<u>Huntingdon Life Sciences, 2004</u>)] in animals exposed to *tert*-butanol via 21 liquid diet (i.e., maltose/dextrin), oral gavage, or inhalation. No developmental epidemiological 22 studies are available for *tert*-butanol. The animal studies are arranged in the evidence tables by 23 species, strain, and route of exposure. The design, conduct, and reporting of each study were 24 reviewed, and each study was considered adequate to provide information pertinent to this 25 assessment. Two studies, however, were considered less informative: Faulkner et al. (1989), 26 because it did not provide sufficient information on the dams to determine if fetal effects occurred 27 due to maternal toxicity, and Daniel and Evans (1982) due to the use of individual data instead of 28 litter means as the statistical unit of analysis. 29 Developmental effects of *tert*-butanol observed after oral exposure (liquid diets or gavage) 30 in several mouse strains and one rat strain include measures of embryo-fetal loss or viability (e.g., 31 increased number of resorptions, decreased numbers of neonates per litter) and decreased fetal 32 body weight (Huntingdon Life Sciences, 2004; Faulkner et al., 1989; Daniel and Evans, 1982). Daniel 33 and Evans (1982) observed decreases in body weight gain during post-natal days (PNDs) 2–10; 34 data suggest, however, that this effect might be due to altered maternal behavior or nutritional 35 status. In addition, a single dose study reported a small increase in the incidence of variations of the 36 skull or sternebrae in two mouse strains (Faulkner et al., 1989). Although variations in skeletal

- 1 development were noted in the study, no malformations were reported. Similar developmental
- 2 effects were observed after whole-body inhalation exposure in Sprague-Dawley rats for 7
- 3 hours/day on gestation days (GDs) 1–19 (<u>Nelson et al., 1989</u>). Fetal effects included dose-related
- 4 reductions in body weight in male and female fetuses and higher incidence of skeletal variations
- 5 when analyzed based on individual fetuses (but not on a per litter basis).
- 6 In these studies, fetal effects are generally observed at high doses that cause toxicity in the
- 7 dams as measured by clinical signs (e.g., decreased [~7–36%] body weight gain and food
- 8 consumption and reported ataxia and lethargy) (Table 1-12; Figure 1-11; Figure 1-12). As stated in
- 9 the Guidelines for Developmental Toxicity Risk Assessment (U.S. EPA, 1991b), "an integrated
- 10 evaluation must be performed considering all maternal and developmental endpoints." "[W]hen
- 11 adverse developmental effects are produced only at doses that cause minimal maternal toxicity; in
- 12 these cases, the developmental effects are still considered to represent developmental toxicity and
- 13 should not be discounted." Although, at doses of "excessive maternal toxicity...information on
- 14 developmental effects may be difficult to interpret and of limited value." In considering the
- 15 observed fetal and maternal toxicity data following *tert*-butanol exposure and the severity of the
- 16 maternal effects, the role of maternal toxicity in the developmental effects observed at the doses
- 17 used remains unclear. Specifically, discerning from the available data whether the fetal effects are
- 18 directly related to *tert*-butanol treatment or are secondary to maternal toxicity is not possible.

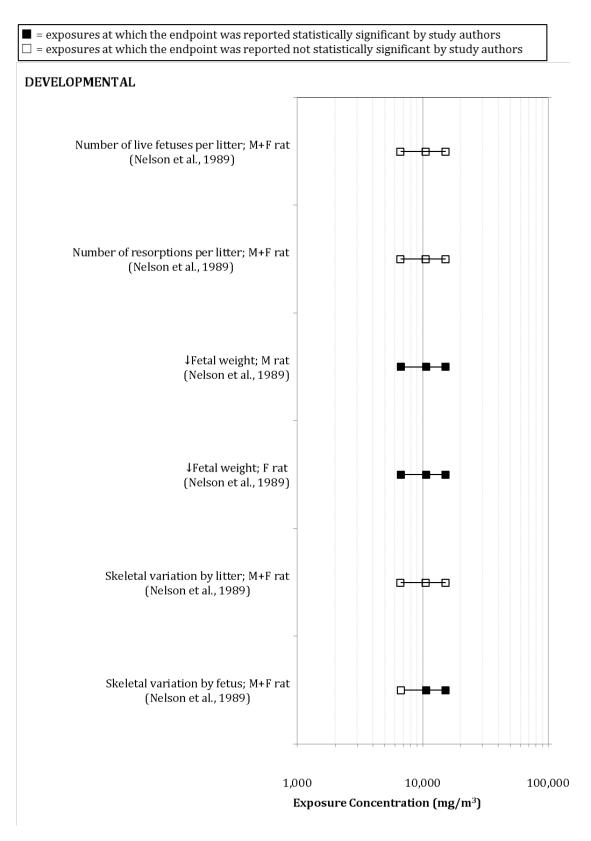
Table 1-12. Evidence pertaining to developmental effects in animals following exposure to *tert*-butanol

Reference and study design	Results							
Huntingdon Life Sciences (2004)	Response	e relative to o	control					
Sprague-Dawley rat; 12/sex/treatment	Maternal effects							
Gavage 0, 64, 160, 400, or 1,000 mg/kg-d	Percent change compared to control:							
F0 males: 9 weeks beginning 4 weeks prior to mating F0 females: 4 weeks prior to mating through PND 21	<u>Dose</u> (mg/kg- <u>d)</u>	<u>Body</u> weight gain GD <u>0–20</u>	<u>Food</u> consumption <u>GD 0–20</u>	<u>Body</u> <u>weight</u> <u>gain</u> <u>PND 1</u> –21	<u>Food</u> consumption LD 1–14		ips/litter oonse	
F1 males and females: 7 weeks (throughout gestation and lactation; 1 male and 1 female from each litter were dosed directly from PND 21–28)	0	-	-	-	-		-	
	64	-3	0	3	-2	-	-9	
	160	-4	0	-10	-6	-	11	
	400	0	4	3	0	-	-7	
	1000	-16*	0	100*	-16	-3	33*	
	lethargy)) that were u ng/kg-d but n		4 weeks of	CNS effects (e. exposure in an group.			
	<u>Dose</u> (mg/kg- <u>d)</u>	<u>Viability</u> <u>index (pup</u> <u>survival to</u> <u>PND 4)</u>	<u>Lactation</u> index (pup survival to PND 21)	<u>Sex ratio</u> (% males)	<u>Pup</u> weight/litter <u>PND 1</u> relative to control (%)	PND 28	<u>weight</u> <u>3 relative</u> <u>trol (%)</u> <u>Female</u>	
	0	96.4	100	54.4	-	-	-	
	64	98.7	100	52.3	6	2	0	
	160	98.2	100	50.9	4	0	-4	
	400	99.4	99.2	53.5	7	0	-2	
	1000	74.1*	98.8	52.1	-10	-12*	-8	


Reference and study design			Results				
Daniel and Evans (1982)	No statistical analysis was conducted on any of these data.						
Swiss Webster (Cox) mouse; 15 pregnant dams/treatment	Maternal						
Liquid diet (0, 0.5, 0.75, 1.0%, w/v)	Percent change compared to control:						
0 (isocaloric amounts of maltose/dextrin), 3,324, 4,879, 6,677 mg/kg-d GD 6–20	<u>Dose</u> (mg/kg-d)	<u>Food consu</u> (mean g/anin		<u>Body we</u> gain	eight	lumber of litters (% gnant dams)	
	0	-		-		11 (77%)	
	3,324	2		-3		12 (80%)	
	4,879	-3		-19		8 (53%)	
	6,677	-4		-20		7 (47%)	
		that lower food cons ms with pair feeding	-	-		ose groups	
	Percent chang	e compared to cont	rol:				
	Fetal bodyDoseNumber ofweight on PND(mg/kg-d)neonates/litter2						
	0	-		-			
	3,324	-1		-7			
	4,879	-29		-19			
	6,677	-49		-38			
	Number of stillborn also increased with dose (3, 6, 14, and 20, respectively), but the number of stillborn per litter was not provided. The high dose also caused a delay in eye opening and a lag in weight gain during PND 2–10 (information was provided only in text or figures)						
Faulkner et al. (1989)	Maternal resu	lts not reported.					
CBA/J mouse; 7 pregnant females in control, 12 pregnant females in	Fetal						
treated		Percent change cor	mpared to o	control:	Incidence:		
Gavage (10.5 mmoles/kg twice a day); 0 (tap water), 1,556 mg/kg-d GD 6–18	<u>Dose</u> (mg/kg-d)	Resorptions/litter	<u>Live</u> <u>fetuses/</u> <u>litter</u>	<u>Fetal</u> <u>weight</u>	<u>Sternebra</u> variations		
	0	-	-	-	4/28	1/28	
	1,556	118*	-41*	-4	7/30	3/30	
		iations: misaligned c s: moderate reduction				Il bone	
		al resorptions (10 re ated) increased (p <	-	66 implant	ts in control	s, 37/94	

Reference and study design			Results					
Faulkner et al. (1989)	Maternal resu	Ilts not reported.						
C57BL/6J mouse; 5 pregnant females in controls, 9 pregnant females treated	Fetal							
Gavage (10.5 mmoles/kg twice a	Percent change compared to control: Incidence:							
day) 0 (tap water), 1,556 mg/kg-d GD 6–18	<u>Dose</u> (mg/kg-d)	Resorptions/litter			rnebral iations	<u>Skull</u> <u>variations</u>		
	0	-	-	- 5	5/21	1/21		
	1,556	428*	-58*	-4 9	9/16	7/16		
	<u>Sternebral</u> variations: misaligned or unossified sternebrae Skull variations: moderate reduction in ossification of supraoccipital bone Number of total resorptions (4 resorptions/44 implants in controls, 38/68 implants in treated) increased ($p < 0.05$)							
Nelson et al. (1989) Sprague-Dawley rat; 15 pregnant dams/treatment	body weight g	steady gait (no statist gain (results presented ranging from 7 to 36%	d in figure only	y), dose-dep	pendent			
Inhalation analytical	Fetal Percent change compared to control (mean ± standard error):							
concentration: 0, 2,200, 3,510, 5,030 ppm (0, 6,669, 10,640, 15,248 mg/m ³), dynamic whole-	<u>Dose</u> (mg/m³)	<u>Number of live</u> <u>Resorptions</u> <u>fetuses/litter</u> <u>per litter</u>						
body chamber 7 hr/d	0	-(13 ± 2)	-(1.1 ± 1.2)				
GD 1–19	6,669	0 (13 ± 4)	9 (1.2 ± 1.1)				
	10,640	15 (15 ± 2)	-18 (0.9 ± 1.0)					
	15,248	8 (14 ± 2)	0 (1.1 ± 0.9)				
		Percent change com control:	pared to	Incidence	e:			
	<u>Dose</u> (mg/m ³)	Fetal weight (males)	<u>Fetal weigh</u> (females)	<u>Skelet</u> <u>t variatio</u> by litte	on y	<u>Skeletal</u> variation by fetus		
	0	-	-	10/15	5	18/96		
	6,669	-9*	-9*	14/17	7	35/104		
	10,640	-12*	-13*	14/14	4	53/103*		
	15,248	-32*	-31*	12/12	2	76/83*		
	number of litt	tion by litter refers to ters examined. Skeleta served in the total nur y litter.	al variation by	fetus refers	s to the i	number of		

*Statistically significant $p \le 0.05$, as determined by study authors. Conversions from diet concentrations to mg/kg-d performed by study authors. Conversion from ppm to mg/m³ is 1 ppm = 3.031 mg/m³.


Note: Percentage change compared to control = (treated value – control value) ÷ control value × 100.

This document is a draft for review purposes only and does not constitute Agency policy.

*Study authors did not conduct statistical analysis on these endpoints, but results are determined by EPA
 to be biologically significant.
 Sources: (A) Daniel and Evans (1982); (B) Faulkner et al. (1989); (C) Huntingdon Life Sciences (2004)

Figure 1-11. Exposure-response array of developmental effects following oral exposure to *tert*-butanol.

Figure 1-12. Exposure-response array of developmental effects following inhalation exposure to *tert*-butanol.

1 2

1 Mechanistic Evidence

2

No mechanistic evidence for developmental effects was identified by the literature search.

3 Integration of Developmental Effects

4 Evidence of selective developmental effects associated with *tert*-butanol exposure is 5 inadequate. Exposure to *tert*-butanol during gestation resulted in increased fetal loss, decreased 6 fetal body weight, and increases in skeletal variations in exposed offspring. Dams, however, had 7 body weight losses or gains (or both), decreased food consumption, and clinical signs of 8 intoxication at the same doses of *tert*-butanol causing fetal effects. Therefore, determining whether 9 *tert*-butanol exposure results in specific developmental toxicity or the fetal effects are due to 10 maternal toxicity is difficult, if not impossible, from the available data. Selective developmental 11 toxicity of *tert*-butanol at the higher doses examined, however, cannot be ruled out. Furthermore, 12 no adverse effects were reported in one- and two-generation reproductive/developmental studies 13 on ETBE (Gaoua, 2004a, b), providing further support for the lack of evidence supporting 14 developmental effects as possible human hazards following *tert*-butanol exposure.

15 1.2.4 Neurodevelopmental Effects

16 Synthesis of Effects Related to Neurodevelopment

17 Three studies evaluated neurodevelopmental effects (Nelson et al., 1991; Daniel and Evans, 1982)[one in male rats; one in female rats] following *tert*-butanol exposure via liquid diet 18 19 (maltose/dextrin) or inhalation. No epidemiological studies on neurodevelopment are available. 20 The animal studies evaluating neurodevelopmental effects of *tert*-butanol contain study design 21 limitations. <u>Daniel and Evans (1982)</u> had few animals per treatment group, lacked comparison of 22 treatment-related effects to controls for all endpoints investigated, and performed no long-term 23 neurodevelopmental testing. Further, animals in this study had decreased dietary intake compared 24 to ad libitum control animals. The authors addressed this issue with a pair-fed experimental design, 25 but a slight decrease in maternal dietary intake remained. This decrease was likely due to 26 difficulties in the pair feeding or increased maternal sedation Daniel and Evans (1982). The two 27 studies by <u>Nelson et al. (1991)</u> evaluated neurodevelopmental effects after either paternal or 28 maternal exposure but did not run the exposures concurrently. The studies are arranged in the 29 evidence tables by species and sex. 30 Various neurodevelopmental effects have been observed in the available studies. Effects 31 include changes in rotarod performance following oral or inhalation exposures, decreases in open 32 field behavior and cliff avoidance following oral exposure, and reduced time hanging on wire after

33 inhalation exposure during gestation (Table 1-13).

1 <u>Rotarod performance</u>

Inconsistent results were observed across studies. Although <u>Daniel and Evans (1982)</u> found
 decreased rotarod performance in mouse pups of dams orally exposed during gestation, <u>Nelson et</u>
 <u>al. (1991)</u> observed an increase in rotarod performance in rat pups of dams exposed via inhalation
 during gestation.

6 <u>Neurochemical measurements</u>

- 7 Biochemical or physiological changes in the brain of offspring exposed during gestation or
- 8 early in the postnatal period were examined in one study. In this study, <u>Nelson et al. (1991)</u>
- 9 reported statistically significant changes in neurochemical measurements in the brain in offspring
- 10 of both dams exposed via inhalation during gestation and treated adult males mated with untreated
- 11 dams. The strength of these results is compromised, however, because the two concentrations
- 12 tested (in both experiments) were not run concurrently, and only data on statistically significant
- 13 effects were reported. Therefore, comparison across doses or trend analysis for the effects is not
- 14 feasible.

15 <u>Physiological and psychomotor development</u>

- 16 Daniel and Evans (1982) cross-fostered half the mouse pups born to treated mothers with
- 17 untreated surrogate females to test the effects of maternal nutrition and behavioral factors on pup
- 18 physiological and psychomotor development. Results indicated that pups fostered to control dams
- 19 performed significantly better than those maintained with treated dams (Table 1-13)(<u>Daniel and</u>
- 20 <u>Evans, 1982</u>). Data suggest that neurodevelopmental effects were not solely due to in utero
- 21 exposure to *tert*-butanol (<u>Daniel and Evans, 1982</u>). Interpretation of these results is limited,
- 22 however, as the neurodevelopmental data were presented only in figures and could not be
- 23 compared with controls.

Table 1-13. Evidence pertaining to neurodevelopmental effects in animals following exposure to *tert*-butanol

1

2

Reference and study design	Results
Daniel and Evans (1982) Swiss Webster (Cox) mouse; 15 pregnant dams/treatment (3 or 4 dams/treatment group for neurodevelopmental endpoints) Liquid diet (0, 0.5, 0.75, or 1.0%, w/v); GD 6–20; after birth, half the pups were nursed with their treated dams and the other half were fostered by untreated dams who recently gave birth 0 (isocaloric amounts of maltose/dextrin), 3,324, 4,879, or 6,677 mg/kg-d	 a dose-dependent increase in righting reflex time, with more time needed in animals maintained with maternal dams a dose-dependent decrease in open field behavior, with less activity in pups maintained with maternal dams a dose-dependent decrease in rotarod performance with the pups from maternal dams having lower performances a dose-dependent decrease in the amount of time the pups were able to avoid a cliff, with animals maintained with their maternal dams having less avoidance time
Nelson et al. (1991) Sprague-Dawley rat; 15 pregnant dams/treatment (no. of litters born not reported) Inhalation analytical concentration: 0, 6,000, or 12,000 mg/m ³ ; dynamic whole body chamber 7 hr/d GD 1–19	Data were not presented specifically by dose nor were any tables or figures of the data provided Maternal toxicity was noted by decreased food consumption and body weight gains Results in offspring increase in rotarod performance in high-dose group (16 versus 26 revolutions/min for controls and 12,000 mg/m³ animals, respectively) decreased time held on wire in the performance ascent test in the low-dose group (16 sec versus 10 sec for controls and 1,750 mg/m³ animals, respectively) for the high-dose group, no effects were noted for ascent on a wire mesh screen, open field activity, automated motor activity, avoidance conditioning, operant conditioning for the low-dose group, no effects were observed on rotarod, open field activity, automated motor activity, avoidance conditioning, operant conditioning for the low-dose group, no effects were observed on rotarod, open field activity, automated motor activity, avoidance conditioning, operant conditioning for the low-dose group, no effects were observed on rotarod, open field activity, automated motor activity, avoidance conditioning, operant conditioning for the low-dose group, no effects were observed in the brain between control and treated offspring were observed: S3% decrease in norepinephrine in the cerebellum at 12,000 mg/m³ S3% decrease in met-enkephalin in the cereburum at 12,000 mg/m³ S1% decrease in β-endorphin in the cereburum at 12,000 mg/m³ G7% decrease in serot

Reference and study design	Results
Nelson et al. (1991) Adult male Sprague-Dawley rats (18/treatment) mated to untreated females Inhalation analytical concentration: 0, 6,000, or 12,000 mg/m ³ ; dynamic whole body chamber 7 hr/d for 6 wk	Data were not presented specifically by dose nor were any tables or figures of the data provided
	Results (generally only specified as paternally treated versus controls) in offspring indicate
	• increase in rotarod performance (16 versus 20 revolutions/min for controls and 12,000 mg/m ³ animals, respectively)
	• decreased time in open field (less time to reach the outer circle of the field, 210 sec versus 115 seconds for controls and 12,000 mg/m ³ animals, respectively)
	The following differences in neurochemical measurements in the brain between control and treated offspring were observed:
	• 39% decrease in norepinephrine in the cerebellum at 12,000 mg/m ³
	• 40% decrease in met-enkephalin in the cerebrum at 12,000 mg/m ³ and 75% decrease at 6,000 mg/m ³
	• 71% decrease in β -endorphin in the cerebellum at 12,000 mg/m ³
	• 47% decrease in serotonin in the midbrain at 6,000 mg/m ³

*Statistically significant $p \le 0.05$, as determined by study authors.

Note: Conversions from diet concentrations to mg/kg-d performed by study authors.

4 Percentage change compared to control = (treated value – control value) ÷ control value × 100.

5 Mechanistic Evidence

1 2 3

6 No mechanistic evidence for neurodevelopmental effects was identified by the literature

7 search. The available mechanistic information for *tert*-butanol is limited to three studies examining

8 muscarinic acetylcholine receptor function, and what, if any, relationship these effects might have

9 pertaining to developmental neurotoxicity effects remains unclear (<u>Bale and Lee, 2016</u>).

10 Integration of Neurodevelopmental Effects

11 Neurodevelopmental effects, including decreased brain weight, changes in brain

12 biochemistry, and changes in behavioral performances, have been observed. Each study evaluating

13 neurodevelopmental effects, however, had limitations in study design, reporting, or both. In

14 addition, results were not always consistent between studies or across dose. At this time,

15 information is inadequate to draw conclusions regarding neurodevelopmental toxicity.

16 1.2.5 Reproductive Effects

17 Synthesis of Effects Related to Reproduction

18 Several studies evaluated reproductive effects [a one-generation, oral reproductive study

19 (<u>Huntingdon Life Sciences, 2004</u>) and subchronic effects in rats and mice following oral and

20 inhalation exposure (<u>NTP, 1997, 1995</u>)] in animals exposed to *tert*-butanol via oral gavage, drinking

1 water, or inhalation for \geq 63 days. The studies are arranged in the evidence tables by sex, route of

2 exposure, duration of exposure, and species. The collection of studies evaluating reproductive

- 3 effects of *tert*-butanol is limited by the absence of two-generation reproductive oral or inhalation
- 4 studies and by lack of human studies on reproduction. The design, conduct, and reporting of each
- 5 study were reviewed, and each study was considered adequate to provide information pertinent to
- 6 this assessment.

Reproductive endpoints, such as reproductive organ weights, estrous cycle length, and

- 8 sperm effects were examined following either oral or inhalation exposure (<u>Huntingdon Life</u>
- 9 <u>Sciences, 2004; NTP, 1997, 1995</u>) (Table 1-14; Figure 1-13; Figure 1-14). In males, the only
- 10 significant effect observed was a slight decrease in sperm motility for F0 males treated with 1000
- 11 mg/kg-day *tert*-butanol (<u>Huntingdon Life Sciences, 2004</u>). No significant changes in sperm motility
- 12 were reported following oral exposure in other rat studies or via inhalation exposure in mice or
- 13 rats. In addition, the reduced motility in treated animals falls within the range of historical control
- 14 data, and, therefore, its biological significance is uncertain. In female B6C3F₁ mice, estrous cycle
- 15 length was increased 28% following oral exposure to 11,620 mg/kg-day (<u>NTP, 1995</u>). No significant
- 16 changes in estrous cycle length were observed following oral exposure in rats or inhalation
- 17 exposure in mice or rats.
- 18

7

19Table 1-14. Evidence pertaining to reproductive effects in animals following20exposure to *tert*-butanol

Reference and study design	Results
Male reproductive effects	
Huntingdon Life Sciences (2004) Sprague-Dawley rat; 12/sex/treatment Gavage 0, 64, 160, 400, or 1,000 mg/kg-d F0 males: 9 weeks beginning 4 weeks prior to mating PND 21	F0 reproductive effects Sperm motility (only control and high-dose groups examined) 0: 94% 1000: 91%* No other significant effect on weights of male reproductive organs or sperm observed
NTP (1995) F344/N rat; 10/sex/treatment Drinking water (0, 2.5, 5, 10, 20, or 40 mg/mL) M: 0, 230, 490, 840, 1,520, 3,610 ^a mg/kg-d 13 weeks	No significant effect on weights of male reproductive organs or sperm observed
NTP (1995) B6C3F ₁ mouse; 10/sex/treatment Drinking water (0, 2.5, 5, 10, 20, or 40 mg/mL) M: 0, 350, 640, 1,590, 3,940, 8,210 ^a mg/kg-d 13 weeks	No significant effect on weights of male reproductive organs or sperm observed

Reference and study design	Results
NTP (1997) F344/N rat; 10/sex/treatment Inhalation analytical concentration: 0, 134, 272, 542, 1,080, or 2,101 ppm (0, 406, 824, 1,643, 3,273 or 6,368 mg/m ³), dynamic whole body chamber 6 hr/d, 5 d/wk 13 weeks Generation method (Sonimist Ultrasonic spray nozzle nebulizer), analytical concentration and method were reported	No significant effect on weights of male reproductive organs or sperm observed Evaluations were performed only for concentrations ≥542 ppm (1,643 mg/m ³)
NTP (1997) B6C3F ₁ mouse; 10/sex/treatment Inhalation analytical concentration: 0, 134, 272, 542, 1,080, or 2,101 ppm (0, 406, 824, 1,643, 3,273 or 6,368 mg/m ³), dynamic whole body chamber 6 hr/d, 5 d/wk 13 weeks Generation method (Sonimist Ultrasonic spray nozzle nebulizer), analytical concentration and method were reported	No significant effect on weights of male reproductive organs or sperm observed Evaluations were performed only for concentrations ≥542 ppm (1,643 mg/m ³)
Female reproductive effects	
Huntingdon Life Sciences (2004) Sprague-Dawley rat; 12/sex/treatment Gavage 0, 64, 160, 400, or 1,000 mg/kg-d F0 females: 4 weeks prior to mating through PND 21	Pregnancy index 91.7% 91.7% 100% 100% 91.7%
NTP (1995) F344/N rat; 10/sex/treatment Drinking water (0, 2.5, 5, 10, 20, or 40 mg/mL) F: 0, 290, 590, 850, 1,560, 3,620 ^a mg/kg-d 13 weeks	No significant effect on female estrous cycle (0, −2, −4, 0, 8% change relative to control)
NTP (1995) B6C3F ₁ mouse; 10/sex/treatment Drinking water (0, 2.5, 5, 10, 20, or 40 mg/mL) F: 0, 500, 820, 1,660, 6,430, 11,620 ^a mg/kg-d 13 weeks	↑ length of estrous cycle <i>Response relative to control</i> : 0, 5, 5, 6, 28*%

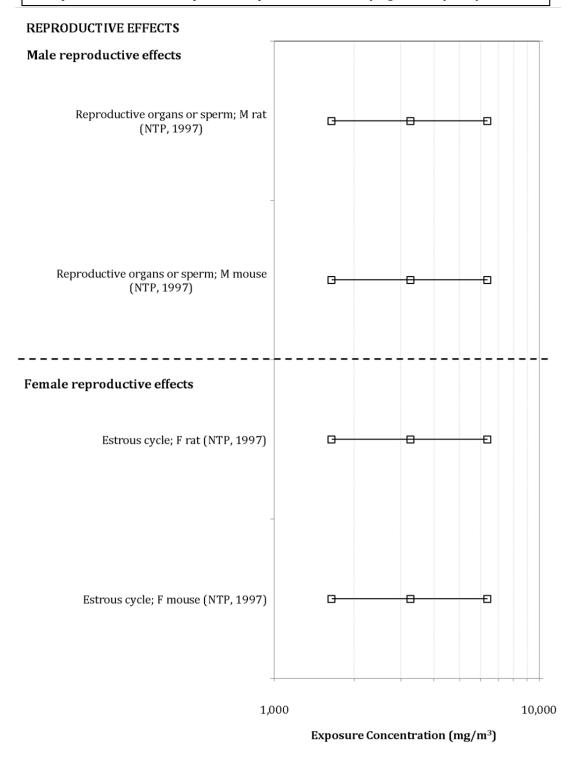
1

Reference and study design	Results
NTP (1997) F344/N rat; 10/sex/treatment Inhalation analytical concentration: 0, 134, 272, 542, 1,080, or 2,101 ppm (0, 406, 824, 1,643, 3,273 or 6,368 mg/m ³), dynamic whole body chamber 6 hr/d, 5 d/wk 13 weeks Generation method (Sonimist Ultrasonic spray nozzle nebulizer), analytical concentration and method were reported	No significant effect on female estrous cycle (0, −4, 2, 4% change relative to control) Evaluations were performed only for concentrations ≥542 ppm (1,643 mg/m ³)
NTP (1997) B6C3F ₁ mouse; 10/sex/treatment Inhalation analytical concentration: 0, 134, 272, 542, 1,080, or 2,101 ppm (0, 406, 824, 1,643, 3,273 or 6,368 mg/m ³), dynamic whole body chamber 6 hr/d, 5 d/wk 13 weeks Generation method (Sonimist Ultrasonic spray nozzle nebulizer), analytical concentration and method were reported	No significant effect on female estrous cycle (0, −3, −9, −5% change relative to control) Evaluations were only performed for concentrations ≥542 ppm (1,643 mg/m ³)

*Statistically significant $p \le 0.05$, as determined by the study authors.

Notes: Conversions from drinking water concentrations to mg/kg-d performed by study authors.

Conversion from ppm to mg/m^3 is 1 ppm = 3.031 mg/m³.


Percent change compared to control = (treated value – control value) ÷ control value × 100

= exposures at which the endpoint was reported statistically significant by study authors □ = exposures at which the endpoint was reported not statistically significant by study authors **REPRODUCTIVE EFFECTS** Male reproductive effects Reproductive organs or sperm; M Ð-Ð Ð rat(A) Reproductive organs or sperm; M 00 Ð п rat(B) Reproductive organs or sperm; M 0 0 -Ð mouse (B) Female reproductive effects Pregnancy index; F rat (A) G Ð Estrous cycle length; F rat (B) 0 00 0 Ð 1 Estrous cycle length; F mouse (B) 00 10 100 1,000 10,000 100,000 Dose (mg/kg-day)

1 Sources: (A) <u>Huntingdon Life Sciences (2004)</u>; (B) <u>NTP (1995)</u>.

Figure 1-13. Exposure-response array of reproductive effects following oral exposure to *tert*-butanol.

= exposures at which the endpoint was reported statistically significant by study authors
 = exposures at which the endpoint was reported not statistically significant by study authors

Figure 1-14. Exposure-response array of reproductive effects following inhalation exposure to *tert*-butanol.

1 2

1 Mechanistic Evidence

2

No mechanistic evidence for reproductive effects was identified by the literature search.

3 Integration of Reproductive Effects

4 At this time, information is inadequate to draw conclusions regarding reproductive toxicity. 5 The database is limited to a one-generation study (Huntingdon Life Sciences, 2004; NTP, 1995). No 6 two-generation reproductive studies are available that evaluate oral or inhalation exposure. In 7 males, the only observed effect was a slight decrease in sperm motility for F0 males in the highest 8 dose group of rats treated with tert-butanol. This effect was not observed, however, in other studies 9 with orally treated rats and mice or in rats exposed via inhalation. In females, <u>NTP (1995)</u> reported 10 an increased length of the estrous cycle in the highest dose group of orally exposed mice. This effect 11 was not observed in similarly treated rats or in mice and rats exposed via inhalation. Furthermore, 12 no adverse effects were reported in one- and two-generation reproductive/developmental studies 13 on ETBE (Gaoua, 2004a, b), providing further support for the lack of evidence supporting 14 reproductive effects as possible human hazards following *tert*-butanol exposure.

15 **1.2.6 Other Toxicological Effects**

16 Effects other than those related to kidney, thyroid, reproductive, developmental, and

17 neurodevelopmental toxicity were observed in some of the available rodent studies; these include

18 liver and urinary bladder effects. Due to a lack of consistency in the liver effects and minimal-to-

19 mild effects with a lack of progression in urinary bladder, however, inadequate information is

20 available to draw conclusions regarding liver or urinary bladder toxicity at this time.

21 Additionally, central nervous system (CNS) effects similar to those caused by ethanol

22 (animals appearing intoxicated and having withdrawal symptoms after cessation of oral or

23 inhalation exposure) were observed. Due to study quality concerns (e.g., lack of data reporting,

small number of animals per treatment group), however, adequate information to assess CNS

25 toxicity is unavailable at this time. For more information on these other toxicological effects, see

26 Appendix B.3.

27 1.3 INTEGRATION AND EVALUATION

28 1.3.1 Effects Other Than Cancer

Kidney effects were identified as a potential human hazard of *tert*-butanol exposure based
on several endpoints in female rats, including suppurative inflammation, transitional epithelial
hyperplasia, severity and incidence of nephropathy, and increased kidney weights. These effects are
similar to the kidney effects observed with ETBE exposure (e.g., CPN and urothelial hyperplasia)
and MTBE (e.g., CPN and mineralization) (ATSDR, 1996).

Several effects were observed in the kidneys of rats. Based on mechanistic evidence
 indicating that an α_{2u}-globulin-related process is operating in male rats (Hard et al., 2011; Cirvello

1 et al., 1995; NTP, 1995; Lindamood et al., 1992), any kidney effects associated with α_{2u} -globulin 2 nephropathy are not considered relevant for human hazard identification. Because α_{2u} -globulin 3 nephropathy contributes to CPN, CPN and CPN-associated lesions in male rats were not considered 4 for human hazard identification. Furthermore, mineralization in male rats was not considered 5 clinically important to rats or relevant to human health and was not considered for dose-response 6 analysis. 7 CPN played a role in the renal tubule nephropathy observed following *tert*-butanol 8 exposure in female rats. Because female rats were not affected by α_{2u} -globulin nephropathy and the 9 individual lesions associated with the spectrum of toxicities collectively described as CPN can occur 10 in the human kidney, exacerbation of one or more of these lesions might reflect a type of injury 11 relevant to the human kidney. Effects associated with such nephropathy are considered relevant for 12 human hazard identification and suitable for derivation of reference values. Overall, the female rat 13 kidney effects (suppurative inflammation, transitional epithelial hyperplasia, increased severity of 14 CPN, and increased kidney weights) are considered the result of *tert*-butanol exposure and relevant 15 to human hazard characterization. These effects therefore are suitable for consideration for dose-16 response analysis and derivation of reference values, in Section 2. 17 Evidence of developmental effects associated with *tert*-butanol exposure is inadequate. 18 Increased fetal loss, decreased fetal body weight, and increases in skeletal variations in exposed 19 offspring were observed following exposure to relatively high doses of *tert*-butanol during 20 gestation. These effects are similar to the developmental effects observed with MTBE exposure 21 (e.g., decreased fetal body weight and increases in skeletal variations) (ATSDR, 1996). Dams had 22 body weight losses or gains (or both), decreased food consumption, and clinical signs of 23 intoxication, however, at the same doses of *tert*-butanol causing fetal effects. Therefore, 24 determining whether *tert*-butanol exposure results in specific developmental toxicity or the fetal 25 effects are due to maternal toxicity is difficult, if not impossible, from the available data. 26 Nevertheless, selective developmental toxicity of *tert*-butanol at the higher doses examined cannot 27 be ruled out. 28 No mechanistic evidence is available for developmental effects of *tert*-butanol. There is 29 inadequate evidence of selective developmental toxicity, due to the uncertainty regarding whether 30 fetal effects were due to direct effects of *tert*-butanol or indirect effects of maternal toxicity and the 31 lack of consistency across some endpoints. 32 At this time, information is inadequate to draw conclusions regarding neurodevelopmental 33 effects as a human hazard of tert-butanol exposure. Although neurodevelopmental effects have 34 been observed, the studies had limitations in design or reporting, or both, and results were 35 inconsistent between studies and across dose groups, and the limited available mechanistic 36 information is unclear. Therefore, neurodevelopmental effects were not considered further for 37 dose-response analysis and derivation of reference values.

1 At this time, information is inadequate to draw conclusions regarding reproductive effects

- 2 as a human hazard of *tert*-butanol exposure. The only reproductive effect observed due to *tert*-
- 3 butanol exposure was increased length of estrous cycle (<u>NTP, 1995</u>) in the highest dose group of
- 4 orally exposed mice, and this effect was not observed in orally exposed rats or in mice and rats
- 5 exposed via inhalation. Further, the database was limited and contained only two oral exposure
- 6 studies and one subchronic inhalation study. No mechanistic or MOA information is available for
- 7 reproductive effects of *tert*-butanol. These effects were not considered further for dose-response
- 8 analysis and derivation of reference values.

9 At this time, information is inadequate to draw conclusions regarding liver or urinary

10 bladder toxicity due to lack of consistency of effects and minimal/mild effects showing a lack of

- 11 progression, respectively. No mechanistic evidence is available for these effects. The liver and
- 12 urinary bladder effects were not considered further for dose-response analysis and the derivation
- 13 of reference values.

14 1.3.2 Carcinogenicity

15 Summary of Evidence

In B6C3F₁ mice, administration of *tert*-butanol in drinking water increased the incidence of
thyroid follicular cell adenomas in females and adenomas or carcinomas (only one carcinoma
observed) in males (NTP, 1995), as discussed in Section 1.2.2. According to EPA's thyroid tumor
guidance (U.S. EPA, 1998a), chemicals that produce thyroid tumors in rodents might pose a
carcinogenic hazard to humans.

21 In F344/N rats, administration of *tert*-butanol in drinking water increased the incidence of 22 renal tubule tumors, mostly adenomas, in males; no renal tumors in females were reported (Hard et 23 al., 2011; NTP, 1995). As discussed in Section 1.2.1, some of these tumors might be associated with 24 α_{2u} -globulin nephropathy, an MOA considered specific to the male rat (U.S. EPA, 1991a). Evidence in 25 support of this hypothesized MOA includes the accumulation of hyaline droplets in renal tubule cells, the presence of α_{2u} -globulin in the hyaline droplets, and additional aspects associated with 26 27 α_{2u} -globulin nephropathy, including linear papillary mineralization and foci of tubular hyperplasia. 28 Other evidence, however, is not supportive: The accumulation of hyaline droplets was minimal; 29 concentrations of α_{2u} -globulin were low at doses that induced tumors; and no significant necrosis 30 or cytotoxicity was associated with compensatory regenerative proliferation or induction of 31 granular casts observed within a timeframe consistent with α_{2u} -globulin-mediated nephropathy. 32 Renal tumors also are associated with chronic progressive nephropathy, but the data on CPN are 33 not coherent: Dose-response relationships for CPN, renal tubule hyperplasia, and renal tubule 34 tumors differed; in addition, CPN was nearly as severe in female rats as in male rats, yet no female 35 rats developed renal tumors. Thus, some renal tumors might be attributable to α_{2u} -globulin 36 nephropathy augmented by CPN, and some to other, yet unspecified, processes. Taken together, and

- according to EPA's guidance on renal tumors in male rats (U.S. EPA, 1991a), renal tumors induced
 by *tert*-butanol are relevant for human hazard identification.
- 3 In addition, as mentioned in Section 1.1.4, *tert*-butanol is a primary metabolite of MTBE and
- 4 of ETBE, two compounds tested in rats and mice that could provide supplementary information on
- 5 the carcinogenicity of *tert*-butanol. For MTBE, the most recent cancer evaluation by a national or
- 6 international health agency is from <u>IARC (1999)</u>. IARC reported that oral gavage exposure in
- 7 Sprague-Dawley rats resulted in testicular tumors in males and lymphomas and leukemias
- 8 (combined) in females; inhalation exposure in male and female F344 rats resulted in renal tubule
- 9 adenomas in males; and inhalation exposure in male and female CD-1 mice resulted in
- 10 hepatocellular adenomas in females (<u>IARC, 1999</u>). For ETBE, a draft IRIS assessment under
- 11 development concurrently with this assessment reports that inhalation exposure in male and
- 12 female F344 rats resulted in hepatocellular tumors, primarily adenomas, in males; no significant
- 13 tumor increases were reported for 2-year studies by drinking water exposure in male and female
- 14 F344 rats or by oral gavage in male and female Sprague-Dawley rats.

15 Integration of evidence

- 16 This evidence leads to consideration of two hazard descriptors under EPA's cancer
- 17 guidelines (U.S. EPA, 2005a). The descriptor *likely to be carcinogenic to humans* is appropriate when
- 18 the evidence is "adequate to demonstrate carcinogenic potential to humans" but does not support
- 19 the descriptor *carcinogenic to humans*. One example from the cancer guidelines is "an agent that has
- 20 tested positive in animal experiments in more than one species, sex, strain, site, or exposure route,
- with or without evidence of carcinogenicity in humans." *tert*-Butanol matches the conditions of this
 example, having increased tumor incidences in two species, in both sexes, and at two sites.
- 23 Alternatively, the descriptor suggestive evidence of carcinogenic potential is appropriate 24 when the evidence raises "a concern for potential carcinogenic effects in humans" but is not 25 sufficient for a stronger conclusion. The results for *tert*-butanol raise a concern for cancer but none 26 of the effects is particularly strong. The thyroid tumors induced in male and female mice were 27 almost entirely benign. The kidney tumors resulted, in part, from an MOA that is specific to male 28 rats, while no kidney tumors occurred in female rats. In addition, while MTBE was also associated 29 with male rat kidney tumorigenesis, results between tert-butanol- and ETBE-associated 30 tumorigenesis in rats have little coherence. MTBE or ETBE effects following chronic oral exposure 31 in mice have not been investigated, however, so no evidence exists to evaluate the coherence of the 32 thyroid tumorigenesis observed following *tert*-butanol exposure in B6C3F₁ mice.
- These considerations, interpreted in light of the cancer guidelines, support the conclusion,
 suggestive evidence of carcinogenic potential for *tert*-butanol. Although increased tumor incidences
 were reported for two species, two sexes, and two sites, none of the tumor responses was strong or
 coherent with the results for ETBE, which was decisive in selecting a hazard descriptor.
- The descriptor *suggestive evidence of carcinogenic potential* applies to all routes of human
 exposure. Oral administration of *tert*-butanol to rats and mice induced tumors at sites beyond the

This document is a draft for review purposes only and does not constitute Agency policy.

1-67 DRAFT

- 1 point of initial contact, and inhalation exposure for 13 weeks resulted in absorption and
- 2 distribution of *tert*-butanol into the systemic circulation, as discussed in Section 1.2.1. According to
- 3 the cancer guidelines, this information provides sufficient basis to apply the cancer descriptor
- 4 developed from oral studies to other exposure routes.
- 5 <u>Biological considerations for dose-response analysis</u>
- 6 Regarding hazards to bring forward to Section 2 for dose-response analysis, EPA's guidance 7 on thyroid tumors and EPA's cancer guidelines (U.S. EPA, 1998a) advise that, for thyroid tumors 8 resulting from thyroid-pituitary disruption, dose-response analysis should use nonlinear 9 extrapolation, in the absence of MOA information to indicate otherwise. As discussed in Section 10 1.2.2, increases in thyroid follicular cell hyperplasia in male and female mice provide partial 11 support for thyroid-pituitary disruption. Other necessary data on *tert*-butanol, however, are not adequate or are not supportive. There is little correlation among thyroid, pituitary, and liver effects 12 13 in female mice, and no data are available to evaluate the potential for antithyroid effects in male 14 mice. Data are not adequate to conclude that thyroid hormone changes exceed the range of 15 homeostatic regulation or to evaluate effects on extrahepatic sites involved in thyroid-pituitary
- 16 disruption. Also, no data are available to evaluate reversibility of effects upon cessation of exposure.
- 17 Thus, according to EPA's thyroid tumor guidance, concluding that the thyroid tumors result from
- 18 thyroid-pituitary disruption is premature, and dose-response analysis should use linear
- 19 extrapolation. The data are well suited to dose-response analysis, coming from an NTP study that
- 20 tested multiple dose levels.
- 21 EPA's guidance on renal tumors in male rats (U.S. EPA, 1991a) advises that, unless the
- 22 relative contribution of α_{2u} -globulin nephropathy and other process can be determined, dose-
- 23 response analysis should not be performed. As discussed in Section 1.2.1, the available data do not
- allow such determination, and so an analysis of kidney tumors does not appear in Section 2.
- 25 1.3.3 Susceptible Populations and Lifestages for Cancer and Noncancer Outcomes
- No chemical-specific data that would allow for the identification of populations with
 increased susceptibility to *tert*-butanol exposure are available. In vitro studies have implicated the
- 28 liver microsomal mixed function oxidase (MFO) system, namely CYP450 (<u>Cederbaum et al., 1983</u>;
- 29 <u>Cederbaum and Cohen, 1980</u>), as playing a role in the metabolism of *tert*-butanol. One study
- 30 evaluated liver enzyme expression and found a dose-responsive induction of CYP2B10 following 14
- 31 days of *tert*-butanol exposure in female mice, with much smaller increases in the expression of
- **32** CYP2B9, and the thyroid hormone-metabolizing enzyme, sulfotransferase 1A1 [(SULT1A1; <u>Blanck</u>
- 33 <u>et al. (2010)</u>]. No studies, however, have identified the specific CYPs responsible for the
- 34 biotransformation of *tert*-butanol. Pharmacokinetic differences among the fetus, newborns,
- 35 children, and the aged might alter responses to chemicals compared to adults, resulting in
- 36 differences in health effects. In the presence of environmental chemicals, metabolic homeostasis is
- 37 maintained by the liver's ability to detoxify and eliminate xenobiotics. This process is accomplished,

- 1 in part, by the expression of xenobiotic metabolizing enzymes and transporters (XMETs), which
- 2 metabolize and transport xenobiotics and determine whether exposure will result in altered
- 3 responses. XMETs, including various CYPs, have been found to be underexpressed in the mouse
- 4 fetus and neonate (Lee et al., 2011) and decreased in older mice (Lee et al., 2011) and rats (Lee et al., 2011)
- 5 <u>al., 2008</u>). Decreased ability to detoxify and transport *tert*-butanol out of the body could result in
- 6 increased susceptibility to *tert*-butanol in the young and old.
- 7 In regard to cancer, although children are more sensitive than adults to thyroid
- 8 carcinogenesis resulting from ionizing radiation, relative differences in lifestage sensitivity to
- 9 chemically induced thyroid carcinogenesis are unknown (<u>U.S. EPA, 1998a</u>). In addition, the data on
- 10 *tert*-butanol mutagenicity are inconclusive.
- 11 Collectively, evidence on *tert*-butanol is minimal for identifying susceptible populations or12 lifestages.

1 **2 DOSE-RESPONSE ANALYSIS**

2.1 ORAL REFERENCE DOSE FOR EFFECTS OTHER THAN CANCER 2 3 The reference dose (RfD, expressed in units of mg/kg-day) is defined as an estimate (with 4 uncertainty spanning perhaps an order of magnitude) of a daily exposure to the human population 5 (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects 6 during a lifetime. The RfD can be derived from a no-observed-adverse-effect level (NOAEL), lowest-7 observed-adverse-effect level (LOAEL), or the 95% lower bound on the benchmark dose (BMDL), 8 with uncertainty factors (UF values) generally applied to reflect limitations of the data used. 9 2.1.1 Identification of Studies and Effects for Dose-Response Analysis 10 EPA identified kidney effects as a potential human hazard of *tert*-butanol exposure (see 11 Section 1.2.1). Studies within this effect category were evaluated using general study quality 12 characteristics [as discussed in Section 4 of the Preamble; see also U.S. EPA (2002)] to help inform 13 the selection of studies from which to derive toxicity values. No other hazards were identified for 14 further consideration in the derivation of reference values. 15 Human studies are preferred over animal studies when quantitative measures of exposure are reported and the reported effects are determined to be associated with exposure. No human 16 17 occupational or epidemiological studies of oral exposure to *tert*-butanol, however, are available. 18 Animal studies were evaluated to determine which studies provided (1) the most relevant 19 routes and durations of exposure, (2) multiple exposure levels to provide information about the 20 shape of the dose-response curve, and (3) power to detect effects at low exposure levels. The 21 database for *tert*-butanol includes both chronic and subchronic studies showing effects in the

22 kidney that are suitable for deriving reference values.

23 Kidney Toxicity

24 EPA identified kidney effects as a potential human hazard of *tert*-butanol-induced toxicity 25 based on findings in female rats (summarized in Section 1.3.1). Kidney toxicity was observed across 26 multiple chronic, subchronic, and short-term studies following oral and inhalation exposure. Kidney 27 effects observed after chronic exposure, such as suppurative inflammation and transitional 28 epithelial hyperplasia, could influence the ability of the kidney to filter waste. Exacerbated 29 nephropathy also would affect kidney function. Observed changes in kidney weight also could 30 indicate toxic effects in the kidney. For the oral tert-butanol database, several studies that evaluated 31 these kidney effects are available. <u>Huntingdon Life Sciences (2004)</u> conducted a reproductive study 32 in Sprague-Dawley rats that was of shorter duration, and reported changes in kidney weight but did

- 1 not examine changes in histopathology. NTP conducted a 2-year drinking water study (<u>NTP, 1995</u>)
- 2 in F344 rats that evaluated multiple doses in both males and females, and reported on all three
- 3 endpoints highlighted above. <u>NTP (1995)</u> was identified as most suitable for dose-response
- 4 assessment considering the study duration, comprehensive reporting of outcomes, and multiple
- 5 doses tested.
- 6 In the <u>NTP (1995)</u> 2-year drinking water study, female F344 rats were exposed to
- 7 approximate doses of 0, 180, 330, or 650 mg/kg-day. Reduced body weights and survival were
- 8 observed and reflected in some of the effects. Kidney effects, including changes in organ weight,
- 9 histopathology, or both, were observed in both sexes of rats after 13 weeks, 15 months, and 2 years
- 10 of treatment (<u>NTP, 1995</u>). Because the kidney effects in male rats are complicated by α_{2u} -globulin,
- 11 male kidney effects are not considered. Specific endpoints in female rats chosen for dose-response
- 12 analysis were absolute kidney weight, kidney suppurative inflammation, kidney transitional
- 13 epithelial hyperplasia, and increases in severity of nephropathy. For absolute kidney weight, data
- 14 from 15-month duration were selected as described in Section 1.2.1; for the other endpoints, data
- 15 at the longest duration of 2 years were selected.

16 2.1.2 Methods of Analysis

- 17 No biologically based dose-response models are available for *tert*-butanol. In this situation, 18 EPA evaluates a range of dose-response models thought to be consistent with underlying biological 19 processes to determine how best to empirically model the dose-response relationship in the range 20 of the observed data. The models in EPA's Benchmark Dose Software (BMDS) were applied. 21 Consistent with EPA's *Benchmark Dose Technical Guidance* (U.S. EPA, 2012b), the BMD and the 22 BMDL are estimated using a benchmark response (BMR) to represent a minimal, biologically 23 significant level of change. In the absence of information regarding the level of change considered 24 biologically significant, a BMR of 1 standard deviation from the control mean for continuous data or 25 a BMR of 10% extra risk for dichotomous data is used to estimate the BMD and BMDL and to 26 facilitate a consistent basis of comparison across endpoints, studies, and assessments. Endpoint-27 specific BMRs, where feasible, are described further below. When modeling was feasible, the 28 estimated BMDLs were used as points of departure (PODs); the PODs are summarized in Table 2-1. 29 Details including the modeling output and graphical results for the model selected for each 30 endpoint are presented in Appendix C of the Supplemental Information to this Toxicological 31 Review. When modeling was not feasible, the study NOAEL or LOAEL was used as the POD. 32 Kidney weights were analyzed as absolute weights rather than weights relative to body 33 weight. In general, both absolute and relative kidney weight data are considered appropriate 34 endpoints for analysis (Bailey et al., 2004). In the NTP (1995) 2-year drinking water study, body 35 weight in exposed animals noticeably decreased relative to controls at the 15-month interim 36 sacrifice, but this decrease in body weight disproportionately influenced the measure of relative 37 kidney weight, resulting in exaggerated kidney weight changes. Because there was greater
- 38 confidence in the absolute kidney weight measure, it was considered more appropriate for dose-*This document is a draft for review purposes only and does not constitute Agency policy.*

1 response analysis, and changes in relative kidney weights were not analyzed. A 10% relative

2 change from control was used as a BMR for absolute kidney weight, analogous to a 10% change in

- 3 body weight as an indicator of toxicity. A BMR of 10% extra risk was considered appropriate for the
- 4 quantal data on incidences of kidney suppurative inflammation and kidney transitional epithelial
- 5 hyperplasia. Dose-response modeling was not conducted on the increases in severity of
- 6 nephropathy because the data was not amenable to modeling.

7 Human equivalent doses (HEDs) for oral exposures were derived from the PODs according

8 to the hierarchy of approaches outlined in EPA's *Recommended Use of Body Weight*^{3/4} *as the Default*

- 9 *Method in Derivation of the Oral Reference Dose* (U.S. EPA, 2011). The preferred approach is
- 10 physiologically based pharmicokinetic (PBPK) modeling. Other approaches include using chemical-
- 11 specific information in the absence of a complete PBPK model. As discussed in Appendix B of the
- 12 Supplemental Information, human PBPK models for inhalation of ETBE or inhalation and dermal

13 exposure to MTBE have been published, which include *tert*-butanol submodels. A validated human

14 PBPK model for *tert*-butanol, however, is not available for extrapolating doses from animals to

15 humans. In lieu of either chemical-specific models or data to inform the derivation of human

17 toxicologically equivalent doses of orally administered agents from adult laboratory animals to

18 adult humans for the purpose of deriving an oral RfD.

Consistent with EPA guidance (U.S. EPA, 2011), the PODs estimated based on effects in adult
 animals were converted to HEDs employing a standard dosimetric adjustment factor (DAF) derived
 as follows:

22		$DAF = (BW_a^{1/4} / BW_h^{1/4}),$
23	where	
24		BW _a = animal body weight
25		BW _h = human body weight

26 Using a standard BW_a of 0.25 kg for rats and a BW_h of 70 kg for humans (<u>U.S. EPA, 1988</u>),

the resulting DAF is 0.24 for rats. Applying this DAF to the POD identified for effects in adult rats
yields a POD_{HED} as follows (see Table 2-1):

29 POD_{HED} = Laboratory animal dose (mg/kg-day) × DAF

Table 2-1 summarizes all PODs and the sequence of calculations leading to the derivation ofa human-equivalent POD for each endpoint discussed above.

Endpoint and reference	Species/ sex	Model ^a	BMR	BMD (mg/kg-d)	BMDL (mg/kg-d)	POD _{ADJ} ^b (mg/kg-d)	POD _{HED} ^c (mg/kg-d)
Kidney							
Increased absolute kidney weight at 15 months <u>NTP (1995)</u>	Rat/F	Exponential (M4) (constant variance)	10%	164	91	91	22
Kidney inflammation (suppurative) <u>NTP (1995)</u>	Rat/F	Log-probit	10%	254	200	200	48
Kidney transitional epithelial hyperplasia <u>NTP (1995)</u>	Rat/F	Multistage, 3-degree	10%	412	339	339	81.4
Increases in severity of nephropathy <u>NTP (1995)</u>	Rat/F	NA	NA	NA	NA	180 ^d	43.2

Table 2-1. Summary of derivations of points of departure following oral exposure for up to 2 years

³ ^aFor modeling details, see Appendix C in Supplemental Information.

4 ^bFor studies in which animals were not dosed daily, EPA would adjust administered doses to calculate the time-

5 weighted average daily doses prior to BMD modeling. This adjustment was not required for the <u>NTP (1995)</u> study.

6 ^cHED PODs were calculated using BW^{3/4} scaling (<u>U.S. EPA, 2011</u>).

7 ^dPOD calculated from the LOAEL (lowest dose tested had a significant increase in severity).

8 NA= not applicable

1

2

9 2.1.3 Derivation of Candidate Values

10 Consistent with EPA's A Review of the Reference Dose and Reference Concentration Processes

11 [(U.S. EPA, 2002); Section 4.4.5], also described in the Preamble, five possible areas of uncertainty

12 and variability were considered when determining the application of UF values to the PODs

13 presented in Table 2-1. An explanation follows.

14 An intraspecies uncertainty factor, UF_H, of 10 was applied to all PODs to account for

15 potential differences in toxicokinetics and toxicodynamics in the absence of information on the

16 variability of response in the human population following oral exposure to *tert*-butanol (<u>U.S. EPA</u>,

- 17 <u>2002</u>).
- 18 An interspecies uncertainty factor, UF_A , of 3 (10^{0.5} = 3.16, rounded to 3) was applied to all
- 19 PODs because BW^{3/4} scaling was used to extrapolate oral doses from laboratory animals to humans.
- 20 Although BW^{3/4} scaling addresses some aspects of cross-species extrapolation of toxicokinetic and
- 21 toxicodynamic processes, some residual uncertainty in the extrapolation remains. In the absence of

1 chemical-specific data to quantify this uncertainty, EPA's BW^{3/4} guidance (U.S. EPA, 2011) 2 recommends use of an uncertainty factor of 3. 3 A subchronic-to-chronic uncertainty factor, UF_s , of 1 was applied to all PODs because all 4 endpoints were observed following chronic exposure. 5 A LOAEL-to-NOAEL uncertainty factor, UF_L, of 1 was applied to most PODs derived because 6 the current approach is to address this factor as one of the considerations in selecting a BMR for 7 benchmark dose modeling. In this case, BMRs of a 10% relative change in absolute kidney weight, a 8 10% extra risk of kidney suppurative inflammation, and a 10% extra risk of transitional cell 9 hyperplasia were selected, assuming they represent minimal biologically significant response 10 levels. A LOAEL-to-NOAEL uncertainty factor of 3 was applied to the increases in severity of 11 nephropathy. Although a LOAEL was used to derive the POD, the severity of 1.9 was only slightly 12 higher than the control value of 1.6, indicating that the LOAEL was close to the result in controls. 13 A database uncertainty factor, UF, of 1 was applied to all PODs. The tert-butanol oral toxicity 14 database includes chronic and subchronic toxicity studies in rats and mice (Acharya et al., 1997; 15 Acharya et al., 1995; NTP, 1995) and developmental toxicity studies in rats and mice (Huntingdon 16 Life Sciences, 2004; Faulkner et al., 1989; Daniel and Evans, 1982). In the developmental studies, no 17 effects were observed at exposure levels below 1000 mg/kg-day, and effects observed at 18 ≥1000 mg/kg-day were accompanied by evidence of maternal toxicity. These exposure levels are 19 much higher than the PODs for kidney effects, suggesting any selective developmental toxicity is not 20 as sensitive an endpoint as kidney effects. No immunotoxicity or multigenerational reproductive 21 studies are available for *tert*-butanol. Studies on ETBE, which is rapidly metabolized to systemically 22 available *tert*-butanol, are informative for consideration of the gaps in the *tert*-butanol oral 23 database. The database for ETBE does not indicate immunotoxicity (Banton et al., 2011; Li et al., 24 2011), suggesting immune system effects would not be a sensitive target for *tert*-butanol. No 25 adverse effects were reported in one- and two-generation reproductive/developmental studies on 26 ETBE (Gaoua, 2004a, b), indicating that reproductive/developmental effects would not be a 27 sensitive target for tert-butanol. Additionally, a one-generation, reproductive toxicity study in rats 28 from a Toxic Substances Control Act submission (Huntingdon Life Sciences, 2004) is available for 29 *tert*-butanol. This study did not observe reproductive effects. Although the oral toxicity database for 30 *tert*-butanol has some gaps, the available data on *tert*-butanol, informed by the data on ETBE, do 31 not suggest that additional studies would lead to identification of a more sensitive endpoint or a 32 lower POD. Therefore, a database UF_D of 1 was applied. 33 Table 2-2 is a continuation of Table 2-1 and summarizes the application of UF values to each 34 POD to derive a candidate value for each data set, preliminary to the derivation of the organ-35 /system-specific RfDs. These candidate values are considered individually in selecting a 36 representative oral reference value for a specific hazard and subsequent overall RfD for tert-

- butanol. Figure 2-1 presents graphically the candidate values, UF values, and POD_{HED} values, with
- each bar corresponding to one data set described in Table 2-1 and Table 2-2.

Endpoint and reference	POD _{HED} (mg/kg-d)	POD type	UFA	UFн	UF∟	UFs	UF₀	Composite UF	Candidate value (mg/kg-d)
Kidney									
Increased absolute kidney weight; female rat at 15 months <u>NTP (1995)</u>	22	BMDL _{10%}	3	10	1	1	1	30	7 × 10 ⁻¹
Kidney inflammation (suppurative); female rat <u>NTP (1995)</u>	48	BMDL _{10%}	3	10	1	1	1	30	2 × 10 ⁰
Kidney transitional epithelial hyperplasia; female rat <u>NTP (1995)</u>	81	BMDL _{10%}	3	10	1	1	1	30	3 × 10 ⁰
Increases in severity of nephropathy; female rat <u>NTP (1995)</u>	43.2	LOAEL	3	10	3	1	1	100	4 × 10 ⁻¹

Table 2-2. Effects and corresponding derivation of candidate values

1

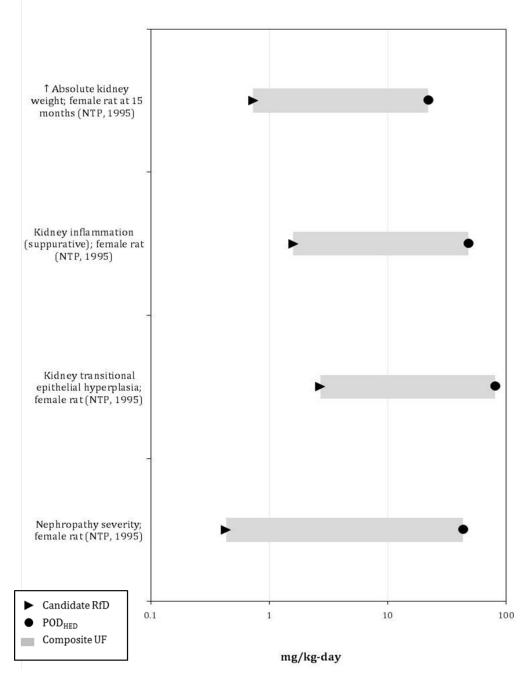


Figure 2-1. Candidate values with corresponding POD and composite UF. Each bar corresponds to one data set described in Table 2-1 and Table 2-2.

This document is a draft for review purposes only and does not constitute Agency policy.

2-7

1 2.1.4 Derivation of Organ/System-Specific Reference Doses

2 Table 2-3 distills the candidate values from Table 2-2 into a single value for each organ or 3 system. Organ- or system-specific RfDs are useful for subsequent cumulative risk assessments that 4 consider the combined effect of multiple agents acting at a common site.

5 Kidney Toxicity

6 For tert-butanol, candidate values were for several different kidney effects in female rats, 7 spanning a range from 4×10^{-1} to 3×10^{0} mg/kg-day, for an overall 7.5-fold range. To estimate an 8 exposure level below which kidney toxicity from *tert*-butanol exposure is not expected to occur, the 9 RfD for greater increases in severity of nephropathy in female rats $(4 \times 10^{-1} \text{ mg/kg-day})$ was 10 selected as the kidney-specific reference dose for *tert*-butanol. This indicator of kidney toxicity is 11 more specific and more sensitive than the relatively nonspecific endpoint of absolute kidney weight

12 changes. Confidence in this kidney-specific RfD is medium. The POD for increases in severity of

13 nephropathy is based on a LOAEL, and the candidate values are derived from a well-conducted

14 long-term study, involving a sufficient number of animals per group, including both sexes, and

15 assessing a wide range of kidney endpoints.

16

Table 2-3. Organ/system-specific RfDs and overall RfD for tert-butanol

Effect	Basis	RfD (mg/kg-day)	Study exposure description	Confidence
Kidney	Increases in severity of nephropathy <u>NTP (1995</u>)	4 × 10 ⁻¹	Chronic	Medium
Overall RfD	Kidney	4 × 10 ⁻¹	Chronic	Medium

2.1.5 Selection of the Overall Reference Dose 17

18 For tert-butanol, only kidney effects were identified as a hazard and carried forward for

19 dose-response analysis; thus only one organ-/system-specific reference dose was derived.

20 Therefore, the kidney specific RfD of $(4 \times 10^{-1} \text{ mg/kg-day})$ is the overall RfD for *tert*-butanol. This

21 value is based on greater increases in severity of nephropathy in female rats exposed to tert-

22 butanol.

23 The overall reference dose is derived to be protective of all types of effects for a given 24 duration of exposure and is intended to protect the population as a whole, including potentially 25 susceptible subgroups (U.S. EPA, 2002). Decisions concerning averaging exposures over time for 26 comparison with the RfD should consider the types of toxicological effects and specific lifestages of 27 concern. Fluctuations in exposure levels that result in elevated exposures during these lifestages 28 could lead to an appreciable risk, even if average levels over the full exposure duration were less

- 1 than or equal to the RfD. In the case of *tert*-butanol, potential exists for early lifestage susceptibility
- 2 to *tert*-butanol exposure, as discussed in Section 1.3.3.

3 2.1.6 Confidence Statement

- 4 A confidence level of high, medium, or low is assigned to the study used to derive the RfD,
- 5 the overall database, and the RfD, as described in Section 4.3.9.2 of EPA's Methods for Derivation of
- 6 Inhalation Reference Concentrations and Application of Inhalation Dosimetry (U.S. EPA, 1994).
- 7 Confidence in the principal study (NTP, 1995) is high. This study was well conducted, complied
- 8 with Food and Drug Administration (FDA) Good Laboratory Practice (GLP) regulations, involved a
- 9 sufficient number of animals per dose group (including both sexes), and assessed a wide range of
- 10 tissues and endpoints. The toxicity database for *tert*-butanol has some gaps such as a lack of human
- 11 studies and limited reproductive/development toxicity data, despite the inclusion of data on ETBE,
- 12 a parent compound of *tert*-butanol. Therefore, the confidence in the database is medium. Reflecting
- 13 high confidence in the principal study and medium confidence in the database, confidence in the
- 14 RfD is medium.

15 2.1.7 Previous IRIS Assessment

16

No previous oral assessment for *tert*-butanol is available in IRIS.

2.2 INHALATION REFERENCE CONCENTRATION FOR EFFECTS OTHER 17 THAN CANCER 18

- 19 The inhalation RfC (expressed in units of mg/m^3) is defined as an estimate (with
- 20 uncertainty spanning perhaps an order of magnitude) of a continuous inhalation exposure to the
- 21 human population (including sensitive subgroups) that is likely to be without an appreciable risk of
- 22 deleterious effects during a lifetime. It can be derived from a NOAEL, LOAEL, or the 95% lower
- 23 bound on the benchmark concentration (BMCL), with UF values generally applied to reflect
- 24 limitations of the data used.

25 2.2.1 Identification of Studies and Effects for Dose-Response Analysis

- 26
- As for oral exposure, EPA identified kidney effects as a potential human hazard of tert-27 butanol inhalation exposure (summarized in Section 1.3.1). No chronic inhalation study for tert-28 butanol is available; only one 13-week study in rats and mice is available (<u>NTP, 1997</u>). A rat PBPK 29 model was available for both oral and inhalation exposure, which was suitable for a route-to-route 30 extrapolation (Borghoff et al., 2016). As a result, rat studies from both routes of exposure were 31 considered for dose-response analysis.
- 32 The database for tert-butanol includes oral and inhalation studies and data sets that are
- 33 potentially suitable for use in deriving inhalation reference values. Specifically, effects associated
- 34 with *tert*-butanol exposure in animals include observations of organ weight and histological
- 35 changes in the kidney in chronic and subchronic studies in female rats.

1 Kidney Toxicity

EPA identified kidney effects as a potential human hazard of *tert*-butanol exposure based on
 findings of organ weight changes and histopathology primarily in male rats; however, the kidney

- 4 effects in male rats are complicated by the presence of α_{2u} -globulin. Therefore, kidney effects in
- 5 male rats are not considered. The kidney findings were observed across multiple chronic,
- 6 subchronic, and short-term studies following oral and inhalation exposure. The subchronic <u>NTP</u>
- 7 (1997) inhalation study is the only route-specific study available, and was carried forward for
- 8 further analysis. For oral studies considered for route-to-route extrapolation, see Section 2.1.1 for a
- 9 summary of considerations for selecting oral studies for dose-response analysis. Overall, the NTP
- 10 2-year drinking water study (<u>NTP, 1995</u>) was identified as the study most suitable for dose-
- 11 response assessment, given the study duration, comprehensive reporting of outcomes, use of
- 12 multiple species tested, multiple doses tested, and availability of a PBPK model for route-to-route
- 13 extrapolation. This study was discussed previously in Section 2.1.1 as part of the derivation of the
- 14 oral reference dose, so is not reviewed here again. The NTP (1997) subchronic inhalation study
- 15 shares many strengths with the 2-year drinking water study (<u>NTP, 1995</u>) and is described in more
- 16 detail below.

NTP (1997) was a well-designed subchronic study that evaluated the effect of *tert*-butanol
exposure on multiple species at multiple inhalation doses. Relative kidney weights were elevated in
females at 6,368 mg/m³. Few endpoints were available for consideration in the subchronic
inhalation study, but changes in kidney weights also were observed in the oral studies, such as the

- 21 <u>NTP (1995)</u> 2-year drinking water study.
- 22 2.2.2 Methods of Analysis

23 No biologically based dose-response models are available for *tert*-butanol. In this situation, 24 EPA evaluates a range of dose-response models considered consistent with underlying biological 25 processes to determine how best to model the dose-response relationship empirically in the range 26 of the observed data. Consistent with this approach, all models available in EPA's BMDS were evaluated. Consistent with EPA's Benchmark Dose Technical Guidance (U.S. EPA, 2012b), the 27 28 benchmark dose or concentration (BMD/C) and the 95% lower confidence limit on the BMD/C (BMD/CL) were estimated using a BMR of 10% change from the control mean for absolute kidney 29 30 weight changes (as described in Section 2.1.2). As noted in Section 2.1.2, a BMR of 10% extra risk 31 was considered appropriate for the quantal data on incidences of kidney suppurative inflammation 32 and kidney transitional epithelial hyperplasia. The estimated BMD/CLs were used as PODs. When 33 dose-response modeling was not feasible, NOAELs or LOAELs were identified and summarized in 34 Table 2-4. Further details, including the modeling output and graphical results for the best-fit 35 model for each endpoint, are found in Appendix C of the Supplemental Information.

1 PODs from Inhalation Studies

2 Because the RfC is applicable to a continuous lifetime human exposure but derived from 3 animal studies featuring intermittent exposure, EPA guidance (U.S. EPA, 1994) provides 4 mechanisms for (1) adjusting experimental exposure concentrations to a value reflecting 5 continuous exposure duration (ADI) and (2) determining a human equivalent concentration (HEC) 6 from the animal exposure data. The former employs an inverse concentration-time relationship to 7 derive a health-protective duration adjustment to time weight the intermittent exposures used in 8 the studies. The modeled benchmark concentration (BMCL) from the inhalation study (NTP, 1997) 9 was adjusted to reflect a continuous exposure by multiplying it by (6 hours per day) \div (24 hours 10 per day) and (5 days per week) ÷ (7 days per week) as follows:

11BMCLADJ=BMCL $(mg/m^3) \times (6 \div 24) \times (5 \div 7)$ 12=BMCL $(mg/m^3) \times (0.1786)$

13 The RfC methodology provides a mechanism for deriving an HEC from the duration-14 adjusted POD (BMCL_{ADI}) determined from the animal data. The approach takes into account the 15 extra-respiratory nature of the toxicological responses and accommodates species differences by 16 considering blood:air partition coefficients for *tert*-butanol in the laboratory animal (rat or mouse) 17 and humans. According to the RfC guidelines (U.S. EPA, 1994), tert-butanol is a Category 3 gas 18 because extrarespiratory effects were observed. Kaneko et al. (2000) measured a blood:gas 19 partition coefficient $[(H_{b/g})_A]$ of 531 ± 102 for *tert*-butanol in the male Wistar rat, while Borghoff et 20 <u>al. (1996)</u> measured a value of 481 ± 29 in male F344 rats. A blood: gas partition coefficient $[(H_{b/g})_H]$ 21 of 462 was reported for *tert*-butanol in humans (Nihlén et al., 1995). The calculation, (H_{b/g})_A ÷ $(H_{b/g})_{H}$, was used to calculate a blood: gas partition coefficient ratio to apply to the delivered 22 23 concentration. Because F344 rats were used in the study, the blood:gas partition coefficient for 24 F344 rats was used. Thus, the calculation was $481 \div 462 = 1.04$. Therefore, a ratio of 1.04 was used 25 to calculate the HEC. This allowed a BMCL_{HEC} to be derived as follows: 26 BMCLHEC BMCL_{ADI} (mg/m³) × (interspecies conversion) =

27	=	BMCL _{ADJ} (mg/m ³) × (481 ÷ 462)
28	=	BMCL _{ADJ} (mg/m ³) × (1.04)
29	Table 2-4 summarizes	the sequence of calculations leading to the derivation of a human-

30 equivalent POD for each inhalation data set discussed above.

Table 2-4. Summary of derivation of PODs following inhalation exposure

Endpoint and reference	Species/ Sex	Model ^a	BMR	BMC ^b (mg/m ³)	BMCL ^b (mg/m ³)	POD _{ADJ} ^b (mg/m ³)	POD _{HEC} ^c (mg/m ³)	
Kidney								
Increased absolute kidney weight <u>NTP (1997)</u>	Female F344 rats	No model selected ^d	10%			1137	1137	

2 ^aFor modeling details, see Appendix C in Supplemental Information.

^bBMCs, BMCLs, and PODs were adjusted for continuous daily exposure by multiplying by (hours exposed per day / 24 hr) × (days exposed per week / 7 days).

^cPOD_{HEC} calculated by adjusting the POD_{ADJ} by the DAF (= 1.0, rounded from 1.04) for a Category 3 gas (<u>U.S. EPA</u>,
 <u>1994</u>).

^dBMD modeling failed to calculate a BMD value successfully (see Appendix C); POD calculated from NOAEL of
 6368 mg/m³.

9 PODs from oral studies – use of PBPK model for route-to-route extrapolation

10 A PBPK model for *tert*-butanol in rats has been modified, as described in Appendix B of the

11 Supplemental Information. Using this model, route-to-route extrapolation of the oral BMDLs or

12 LOAEL to derive inhalation PODs was performed as follows. First, the internal dose in the rat at

each oral BMDL or LOAEL (assuming oral exposure by a circadian drinking water pattern) was

14 estimated using the PBPK model, to derive an "internal dose BMDL or LOAEL." Then, the inhalation

15 air concentration (assuming continuous exposure) that led to the same internal dose in the rat was

16 estimated using the PBPK model. The resulting POD then was converted to a human equivalent

17 concentration POD (POD_{HEC}) using the methodology previously described in the section, *PODs from*

18 *inhalation studies*:

1

19	POD_{HEC}	=	POD (mg/m ³) × (interspecies conversion)
20		=	POD $(mg/m^3) \times (481 \div 462)$
21		=	POD $(mg/m^3) \times (1.04)$

22 A critical decision in the route-to-route extrapolation is selection of the internal dose metric 23 that establishes "equivalent" oral and inhalation exposures. For tert-butanol-induced kidney effects, 24 the two options are the concentration of *tert*-butanol in blood and the rate of *tert*-butanol 25 metabolism. Note that using the kidney concentration of *tert*-butanol will lead to the same route-to-26 route extrapolation relationship as *tert*-butanol in blood because the distribution from blood to 27 kidney is independent of route. Data are not available that suggest that metabolites of *tert*-butanol 28 mediate its renal toxicity. Without evidence that suggests otherwise, *tert*-butanol is assumed the 29 active toxicological agent. Therefore, the concentration of *tert*-butanol in blood was selected as the 30 dose metric.

- 1 Table 2-5 summarizes the sequence of calculations leading to the derivation of a human-
- 2 equivalent inhalation POD from each oral data set discussed above.

3	Table 2-5. Summary of derivation of inhalation points of departure derived
4	from route-to-route extrapolation from oral exposures

Endpoint and reference	Species/sex	BMR	BMDL (mg/kg-d)	Internal dose ^a (mg/L)	Equivalent POD ^b (mg/m ³)	Equivalent POD _{HEC} ^c (mg/m ³)
Kidney						
Mean absolute kidney weight at 15 months <u>NTP (1995)</u>	Rat/F	10%	91	21.5	238.9	248
Kidney inflammation (suppurative) <u>NTP</u> (<u>1995)</u>	Rat/F	10%	200	61.9	523.7	545
Kidney transitional epithelial hyperplasia <u>NTP (1995)</u>	Rat/F	10%	339	127	883.9	919
	Species/sex	POD (LOAEL; mg/kg-d)		Internal dose ^a (mg/L)	Equivalent POD ^b (mg/m ³)	Equivalent POD _{HEC} ^c (mg/m ³)
Increases in severity of nephropathy <u>NTP (1995)</u>	Rat/F	180		53.6	471.8	491

³ ^aAverage rodent blood concentration of *tert*-butanol under circadian drinking water ingestion at the BMDL.

^bContinuous inhalation equivalent concentration that leads to the same average blood concentration of *tert*-butanol
 as circadian drinking water ingestion at the BMDL in the rat.

8 ^cContinuous inhalation human equivalent concentration that leads to the same average blood concentration of *tert*-

9 butanol as continuous oral exposure at the BMDL. Calculated as the rodent POD x 1.04.

10 2.2.3 Derivation of Candidate Values

11 In EPA's A Review of the Reference Dose and Reference Concentration Processes [(U.S. EPA,

12 <u>2002</u>); Section 4.4.5], also described in the Preamble, five possible areas of uncertainty and

13 variability were considered. Several PODs for the candidate inhalation values were derived using a

14 route-to-route extrapolation from the PODs estimated from the chronic oral toxicity study in rats

- 15 (<u>NTP, 1995</u>) in the derivation of the oral RfD (Section 1). With the exception of the subchronic
- 16 inhalation (<u>NTP, 1997</u>) study, the UF values selected and applied to PODs derived from the chronic
- 17 oral (<u>NTP, 1995</u>) study for route-to-route extrapolation are the same as those for the RfD for *tert*-
- 18 butanol (see Section 2.1.3). The model used to perform this route-to-route extrapolation is a well-
- 19 characterized model considered appropriate for the purposes of this assessment.
- 20 For the PODs derived from the subchronic inhalation (<u>NTP, 1997</u>) study, a UF_s of 10 was
- 21 applied to account for extrapolation from subchronic-to-chronic duration.

- 1 Table 2-6 is a continuation of Table 2-4 and Table 2-5, and summarizes the application of UF
- 2 values to each POD to derive a candidate value for each data set. The candidate values presented in
- 3 the table below are preliminary to the derivation of the organ-/system-specific reference values.
- 4 These candidate values are considered individually in the selection of a representative reference
- 5 value for inhalation for a specific hazard and subsequent overall RfC for *tert*-butanol.
- 6 Figure 2-2 presents graphically the candidate values, UF values, and POD_{HEC} values, with
- 7 each bar corresponding to one data set described in Table 2-4, Table 2-5, and Table 2-6.

8

Table 2-6. Effects and corresponding derivation of candidate values

Endpoint (sex and species) and reference	POD _{HEC} ^a (mg/m ³)	POD type	UFA	UFн	UF∟	UFs	UF₀	Composite UF	Candidate value (mg/m ³)
Kidney									
Increased absolute kidney weight at 13 weeks; female rat <u>NTP (1997)</u>	1137	NOAEL	3	10	1	10	1	300	4 × 10 ⁰
Increased absolute kidney weight at 15 months; female rat NTP (1995)	248	BMCL _{10%}	3	10	1	1	1	30	8 × 10 ⁰ *
Kidney inflammation (suppurative); female rat <u>NTP (1995)</u>	546	BMCL _{10%}	3	10	1	1	1	30	2 × 10 ¹ *
Kidney transitional epithelial hyperplasia; female rat <u>NTP (1995)</u>	920	BMCL10%	3	10	1	1	1	30	3 × 10 ¹ *
Increases in severity of nephropathy; female rat <u>NTP (1995)</u>	491	LOAEL	3	10	3	1	1	100	5 × 10 ⁰ *

9 *These candidate values are derived using route-to-route extrapolated PODs based on NTP's chronic drinking

10 water study.

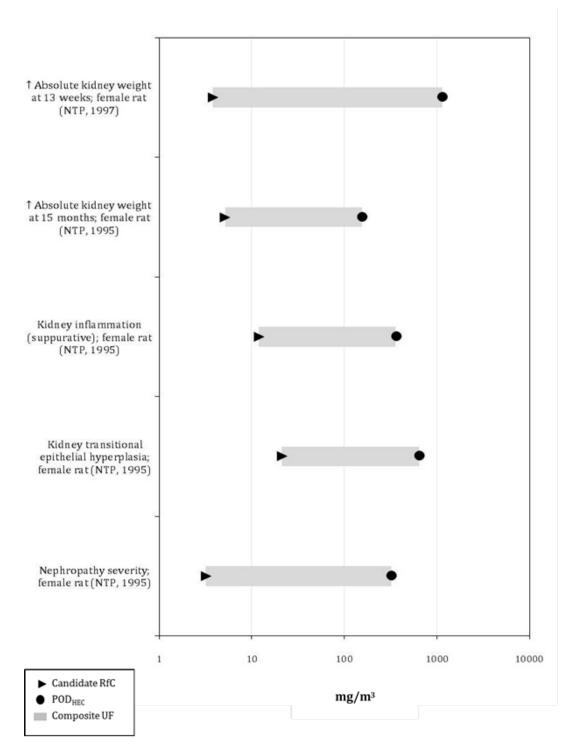


Figure 2-2. Candidate RfC values with corresponding POD and composite UF.

1 2.2.4 Derivation of Organ/System-Specific Reference Concentrations

2 Table 2-7 distills the candidate values from Table 2-6 into a single value for the kidney.
3 Organ-/system-specific reference values can be useful for subsequent cumulative risk assessments
4 that consider the combined effect of multiple agents acting at a common site.

5 Kidney Toxicity

For the derivation of candidate values, whether PODs from the subchronic inhalation study
of <u>NTP (1997)</u> would provide a better basis than the route-to-route extrapolated PODs based on the
chronic oral study of <u>NTP (1995)</u> must be considered. Candidate values were derived for increased
kidney weight observed in the subchronic inhalation study (<u>NTP, 1997)</u> and several kidney effects

- 10 observed in the chronic oral study (<u>NTP, 1995</u>) in female rat, spanning a range from $44 \times 10^{\circ}$ to
- 11 3×10^{1} mg/m³, for an overall 7-fold range. To estimate an exposure level below which kidney
- 12 toxicity from *tert*-butanol exposure is not expected to occur, the RfC for increased increases in
- 13 severity of nephropathy in female rats ($5 \times 10^{\circ} \text{ mg/m}^3$) was selected as the kidney-specific RfC for
- 14 *tert*-butanol, consistent with the selection of the kidney-specific RfD (see Section 2.1.4). This
- 15 endpoint is based on a longer (chronic) duration and a more specific and sensitive indicator of
- 16 kidney toxicity than the relatively nonspecific endpoint of kidney weight change. Confidence in this
- 17 kidney-specific RfC is medium. The POD for increases in severity of nephropathy is based on a
- 18 LOAEL, and the candidate values are derived from a well-conducted long-term study, involving a
- 19 sufficient number of animals per group, including both sexes, and assessing a wide range of kidney
- 20 endpoints, and availability of a PBPK model for route-to-route extrapolation.
- 21

Table 2-7. Organ-/system-specific RfCs and overall RfC for tert-butanol

Effect	Basis	RfC (mg/m³)*	Study exposure description	Confidence
Kidney	Increases in severity of nephropathy (<u>NTP, 1995</u>)	5×10^{0}	Chronic	Medium
Overall RfC	Kidney	5 × 10 ⁰	Chronic	Medium

22 *Derived from oral study, by route-to-route extrapolation.

23 2.2.5 Selection of the Overall Reference Concentration

24 For *tert*-butanol, kidney effects were identified as the primary hazard; thus, a single

25 organ-/system-specific RfC was derived. The kidney-specific RfC of **5** × **10**⁰ **mg/m**³ is selected as

- 26 the overall RfC, representing an estimated exposure level below which deleterious effects from
- 27 *tert*-butanol exposure are not expected to occur.
- 28 The overall RfC is derived to be protective of all types of effects for a given duration of

29 exposure and is intended to protect the population as a whole, including potentially susceptible

30 subgroups (<u>U.S. EPA, 2002</u>). Decisions concerning averaging exposures over time for comparison *This document is a draft for review purposes only and does not constitute Agency policy.*

1 with the RfC should consider the types of toxicological effects and specific lifestages of concern.

- 2 Fluctuations in exposure levels that result in elevated exposures during these lifestages could lead
- 3 to an appreciable risk, even if average levels over the full exposure duration were less than or equal
- 4 to the RfC. In the case of *tert*-butanol, the potential exists for early lifestage susceptibility to *tert*-
- 5 butanol exposure, as discussed in Section 1.3.3.

6 2.2.6 Confidence Statement

7 A confidence level of high, medium, or low is assigned to the study used to derive the RfC,

8 the overall database, and the RfC itself, as described in Section 4.3.9.2 of EPA's *Methods for*

9 Derivation of Inhalation Reference Concentrations and Application of Inhalation Dosimetry (U.S. EPA,

10 <u>1994</u>). A PBPK model was used to perform a route-to-route extrapolation to determine a POD for

11 the derivation of the RfC from the <u>NTP (1995)</u> oral study and corresponding critical effect.

12 Confidence in the principal study (<u>NTP, 1995</u>) is high. This study was well conducted, complied

13 with FDA GLP regulations, involved a sufficient number of animals per group (including both

14 sexes), and assessed a wide range of tissues and endpoints. Although the toxicity database for *tert*-

15 butanol contains some gaps, these areas are partially informed by the data on ETBE, a parent

16 compound of *tert*-butanol. Therefore, the confidence in the database is medium. Reflecting high

17 confidence in the principal study, medium confidence in the database, and minimal uncertainty

18 surrounding the application of the modified PBPK model for the purposes of a route-to-route

19 extrapolation, the overall confidence in the RfC for *tert*-butanol is medium.

20 2.2.7 Previous IRIS Assessment

21 No previous inhalation assessment for *tert*-butanol is available in IRIS.

22 2.2.8 Uncertainties in the Derivation of the Reference Dose and Reference Concentration

The following discussion identifies uncertainties associated with the RfD and RfC for *tert*-butanol. To derive the RfD, the UF approach (U.S. EPA, 2000a, 1994) was applied to a POD based on kidney toxicity in rats treated chronically. UF values were applied to the POD to account for extrapolating from an animal bioassay to human exposure, and the likely existence of a diverse human population of varying susceptibilities. These extrapolations are carried out with default approaches, given the lack of data to inform individual steps. To derive the RfC, this same approach was applied, but a PBPK model was used to extrapolate from oral to inhalation exposure.

The database for *tert*-butanol contains no human data on adverse health effects from
subchronic or chronic exposure, and the PODs were calculated from data on the effects of *tert*butanol reported by studies in rats. The database for *tert*-butanol exposure includes one lifetime
bioassay, several reproductive/developmental studies, and several subchronic oral studies.
Although the database is adequate for reference value derivation, uncertainty is associated
with the lack of a comprehensive multigeneration reproductive toxicity study. Additionally, only

- 1 subchronic and short-term inhalation studies have been conducted, and no chronic inhalation
- 2 studies are available. Developmental studies identified significant increases in fetal loss, decreases
- 3 in fetal body weight, and possible increases in skeletal variations in exposed offspring or pups.
- 4 Effects were not always consistent across exposure routes, however, and maternal toxicity was
- 5 present whenever developmental effects were observed.
- 6 The toxicokinetic and toxicodynamic differences for *tert*-butanol between the animal
- 7 species in which the POD was derived and humans are unknown. The *tert*-butanol database lacks
- 8 an adequate model that would inform potential interspecies differences (A limited data set exists
- 9 for *tert*-butanol appearing as a metabolite from ETBE exposure in humans, but none for direct
- 10 exposure to *tert*-butanol.) Generally, rats were found to appear more susceptible than mice, and
- 11 males appear more susceptible than females to *tert*-butanol toxicity. The underlying mechanistic
- 12 basis of these apparent differences, however, is not understood. Most importantly, which animal
- 13 species or sexes might be more comparable to humans is unknown.
- 14 Another uncertainty to consider relates to the MOA analysis conducted for the kidney
- 15 effects. The assessment concluded that *tert*-butanol is a weak inducer of α_{2u} -globulin, which is
- 16 operative in male kidney tumors; therefore, noncancer effects related to α_{2u} -globulin were
- 17 considered not relevant for hazard identification and, therefore, not suitable for dose response
- 18 consideration. If this conclusion was incorrect and the noncancer effects characterized in this
- 19 assessment as being related to $\alpha_{2\nu}$ -globulin were relevant to humans, the RfD and RfC values could
- 20 underestimate toxicity. The assessment also used noncancer effects related to CPN in derivation of
- 21 the reference values. If noncancer effects characterized in this assessment as being related to CPN
- 22 were not relevant to humans, the RfD value (0.4 mg/kg-day) could be slightly overestimate toxicity
- 23 compared with an alternative endpoint, increased absolute kidney weight (0.7 mg/kg-day), while
- 24 the RfC value would be similar (5 mg/m³ compared with 4 mg/m³).
- 25

2.3 ORAL SLOPE FACTOR FOR CANCER

26 The oral slope factor (OSF) is a plausible upper bound on the estimate of risk per 27 mg/kg-day of oral exposure. The OSF can be multiplied by an estimate of lifetime exposure (in 28 mg/kg-day) to estimate the lifetime cancer risk.

29

2.3.1 Analysis of Carcinogenicity Data

- 30 As noted in Section 1.3.2, there is "suggestive evidence of carcinogenic potential" for *tert*-31 butanol. The *Guidelines for Carcinogen Risk Assessment* (U.S. EPA, 2005a) state:
- 32 When there is suggestive evidence, the Agency generally would not attempt a dose-33 response assessment, as the nature of the data generally would not support one; however 34 when the evidence includes a well-conducted study, quantitative analysis may be useful for 35 some purposes, for example, providing a sense of the magnitude and uncertainty of potential risks, ranking potential hazards, or setting research priorities. 36

1 No human data relevant to an evaluation of the carcinogenicity of *tert*-butanol were 2 available. The cancer descriptor was based on the 2-year drinking water study in rats and mice by 3 (NTP, 1995), which reported renal tumors in male rats and thyroid tumors in both male and female 4 mice. This study was considered suitable for dose-response analysis. It was conducted in 5 accordance with FDA GLP regulations, and all aspects were subjected to retrospective quality 6 assurance audits. The study included histological examinations for tumors in many different 7 tissues, contained three exposure levels and controls, contained adequate numbers of animals per 8 dose group (\sim 50/sex/group), treated animals for up to 2 years, and included detailed reporting of 9 methods and results. Additionally, the renal tumors were reexamined by a Pathology Working 10 Group (Hard et al., 2011). 11 Based on a mode of action analysis, the α_{2u} -globulin process was concluded to be at least

12 partially responsible for the male rat renal tumors, in addition to other, unknown, processes.

13 Because the relative contribution of each process to tumor formation cannot be determined (<u>U.S.</u>

14 <u>EPA, 1991a</u>), the male rat renal tumors are not considered suitable for quantitative analysis.

15 Conversely, the mouse thyroid tumors are suitable for dose-response analysis and unit risk

16 estimation, as described in Section 1.3.2.

17 2.3.2 Dose-Response Analysis—Adjustments and Extrapolations Methods

18 The EPA Guidelines for Carcinogen Risk Assessment (U.S. EPA, 2005a) recommend that 19 determining the method to use for characterizing and quantify cancer risk from a chemical be 20 based on what is known about the MOA of the carcinogen and the shape of the cancer dose-21 response curve. EPA uses a two-step approach that distinguishes analysis of the observed dose-22 response data from inferences about lower doses (U.S. EPA, 2005a). Within the observed range, the 23 preferred approach is to use modeling to incorporate a wide range of data into the analysis, such as 24 through a biologically based model, if supported by substantial data. Without a biologically based 25 model, as in the case of *tert*-butanol, a standard model is used for curve fitting the data and 26 estimating a POD. EPA uses the multistage model in IRIS dose-response analyses for cancer 27 (Gehlhaus et al., 2011) because it parallels the multistage carcinogenic process and fits a broad 28 array of dose-response patterns. 29 The second step, extrapolation to lower exposures from the POD, considers what is known 30 about the modes of action for each effect. As above, a biologically based model is preferred (U.S. 31 EPA, 2005a). Otherwise, linear low-dose extrapolation is recommended if the MOA of 32 carcinogenicity is mutagenic or has not been established (U.S. EPA, 2005a). For tert-butanol, the

33 mode(s) of carcinogenic action for thyroid follicular cell tumors has not been established (see

34 Section 1.3.2). Therefore, linear low-dose extrapolation was used to estimate human carcinogenic

35 risk.

 The dose-response modeling used administered dose because a PBPK model to characterize
 internal dosimetry in mice was not available. For the analysis of male mice thyroid tumors, the
 incidence data were adjusted to account for the increased mortality in high-dose male mice, relative *This document is a draft for review purposes only and does not constitute Agency policy.*

- 1 to the other groups, that reduced the number of mice at risk for developing tumors. The Poly-3
- 2 method (Bailer and Portier, 1988) was used to estimate the number at risk of developing tumors,
- 3 by weighting the length of time each animal was on study (details in Appendix C of the
- 4 Supplemental Information). This method was not applied to the female mice data because a
- 5 difference in survival with increasing exposure was not appreciable and only one tumor, in the
- 6 high-dose group, occurred before study termination.
- 7 The data modeled and other details of the modeling are provided in Appendix C. The BMDs 8 and BMDLs recommended for each data set are summarized in Table 2-8. The modeled tert-butanol
- 9 PODs were scaled to HEDs according to EPA guidance (U.S. EPA, 2011, 2005a). In particular, the
- 10 BMDL was converted to an HED by assuming that doses in animals and humans are toxicologically
- 11 equivalent when scaled by body weight raised to the $^{3}/_{4}$ power. Standard body weights of 0.025 kg
- 12 for mice and 70 kg for humans were used (U.S. EPA, 1988). The following formula was used for the
- 13 conversion of oral BMDL to oral HED for mouse endpoints:
- 14 HED in mg/kg-day (BMDL in mg/kg-day) × (animal body weight/70)^{1/4} = 15 $(BMDL in mg/kg-day) \times 0.14$ =
- 16 PODs for estimating low-dose risk were identified at doses at the lower end of the observed 17 data, corresponding to 10% extra risk in female mice and 5% extra risk in male mice.
- 2.3.3 18

Derivation of the Oral Slope Factor

19 The PODs estimated for each tumor data set are summarized in Table 2-8. The lifetime oral 20 cancer slope factor for humans is defined as the slope of the line from the lower 95% bound on the 21 exposure at the POD to the control response (slope factor = $BMR/BMDL_{BMR} = 0.1/BMDL_{10}$). This 22 slope represents a plausible upper bound on the true population average risk. Using linear 23 extrapolation from the BMDL₁₀, human equivalent oral slope factors were derived for male and 24 female mice and are listed in Table 2-8. 25 The oral slope factor based on the incidence of thyroid follicular cell adenomas in female 26 mice was 5×10^4 per mg/kg-day. Despite high mortality in high-dose male mice, estimating slope

- 27 factors using the poly-3 method was feasible for addressing competing risks. Whether using the full 28
- data set (including the only thyroid follicular cell carcinoma observed at the highest dose) or 29 omitting the high-dose group altogether (under the assumption that mortality in this group was too
- 30 extensive to interpret the results), oral slope factors based on the incidence of thyroid follicular cell
- adenomas or carcinomas in male mice were similar when rounded to one significant digit— 5×10^{-4} 31
- 32 per mg/kg-day or 6×10^{-4} per mg/kg-day, respectively.
- 33 The recommended slope factor for lifetime oral exposure to *tert*-butanol is
- 34 5×10^{-4} per mg/kg-day, based on the thyroid follicular cell adenoma or carcinoma response in
- 35 male or female B6C3F₁ mice. This slope factor should not be used with exposures exceeding
- 36 1,400 mg/kg-day, the highest POD from the two data sets, because above this level the cancer risk

- 1 might not increase linearly with exposure. The slope of the linear extrapolation from the central
- 2 estimate BMD_{10HED} derived from the female mouse data set is $0.1/[0.14 \times (2002 \text{ mg/kg-day})] =$
- 3 4×10^{-4} per mg/kg-day.

4

Tumor	Species/sex	Selected model	BMR	BMD (mg/kg-d)	POD = BMDL (mg/kg-d)	BMDL _{HED} ^a (mg/kg-d)	Slope factor ^b (mg/kg-day) ⁻¹
Thyroid follicular cell adenoma	B6C3F ₁ mouse/Female	3° Multistage	10%	2002	1437	201	5 × 10 ⁻⁴
Thyroid follicular cell adenoma or carcinoma	B6C3F ₁ mouse/Male	All dose groups: 1° Multistage	5%°	1788	787	110	5 × 10 ⁻⁴
		High dose omitted: 2° Multistage	5% ^c	1028	644	90	6 × 10 ⁻⁴

³HED PODs were calculated using BW^{3/4} scaling (<u>U.S. EPA, 2011</u>).

^bHuman equivalent slope factor = 0.1/BMDL_{10HED}; see Appendix C of the Supplemental Information for details of
 modeling results.

^cBecause the observed responses were <10%, a BMR of 5% was used to represent the observed response range for
 low-dose extrapolation; human equivalent slope factor = 0.05/BMDL_{5HED}.

10 2.3.4 Uncertainties in the Derivation of the Oral Slope Factor

11 There is uncertainty when extrapolating data from animals to estimate potential cancer

12 risks to human populations from exposure to *tert*-butanol.

13 Table 2-9 summarizes several uncertainties that could affect the oral slope factor. There are

14 no other chronic studies to replicate these findings or that examined other animal models, no data

15 in humans to confirm a cancer response in general or the specific tumors observed in the <u>NTP</u>

16 (1995) bioassay, and no other data (e.g., MOA) to support alternative approaches for deriving the

17 oral slope factor.

Table 2-9. Summary of uncertainties in the derivation of the oral slope factor for *tert*-butanol

Consideration and impact on cancer risk value	Decision	Justification
Selection of tumor type and relevance to humans: Mouse thyroid tumors are the basis for estimating human cancer risk, as the fraction of rat kidney tumors not attributed to the male rat specific $\alpha_{2\mu}$ -globulin process could not be determined. Alternatively, quantifying rat kidney tumors could \uparrow slope factor to 1 × 10 ⁻² mg/kg-day (see Appendix C, Supplemental Information)	Thyroid tumors in female and male mice were selected <u>U.S. EPA (1998a)</u> , <u>U.S. EPA (1991a)</u>	MOA data suggested that mouse thyroid tumors were relevant to humans. Quantitation of thyroid tumors in male mice, which was impacted only slightly by high mortality in the high-dose group, supports the estimate based on female mice.
Selection of data set: No other studies are available	NTP (1995), oral (drinking water) study, was selected to derive cancer risks for humans	<u>NTP (1995)</u> , the only chronic bioassay available, was a well-conducted study. Additional bioassays might add support to the findings, facilitate determination of what fraction of kidney tumors are not attributable to the $\alpha_{2\mu}$ -globulin process, or provide results for different (possibly lower) doses, which would affect (possibly increase) the oral slope factor.
Selection of dose metric: Alternatives could ↓ or ↑ slope factor	Used administered dose	For mice, PBPK-estimated internal doses could impact the OSF value for thyroid tumors if the carcinogenic moiety is not proportional to administered dose, but no PBPK model was available, and no information is available to suggest if any metabolites elicit carcinogenic effects.
Interspecies extrapolation of dosimetry and risk: Alternatives could ↓ or ↑ slope factor (e.g., 3.5-fold ↓ [scaling by body weight] or ↑ 2-fold [scaling by BW 2/3])	Default approach of body weight ^{3/4} was used	No data to suggest an alternative approach for <i>tert</i> -butanol. Because the dose metric was not an area under the curve, BW ^{3/4} scaling was used to calculate equivalent cumulative exposures for estimating equivalent human risks. Although the true human correspondence is unknown, this overall approach is expected neither to over- or underestimate human equivalent risks.
Dose-response modeling: Alternatives could ↓ or ↑ slope factor	Used multistage dose- response model to derive a BMD and BMDL	No biologically based models for <i>tert</i> -butanol were available. The multistage model has biological support and is the model most consistently used in EPA cancer assessments.

This document is a draft for review purposes only and does not constitute Agency policy.

2-22

Consideration and impact on cancer risk value	Decision	Justification
Low-dose extrapolation: ↓ cancer risk estimate would be expected with the application of nonlinear low-dose extrapolation	Linear extrapolation of risk in low-dose region used <u>U.S. EPA (1998a)</u>	Linear low-dose extrapolation for agents without a known MOA is supported (<u>U.S.</u> <u>EPA, 2005a</u>) and recommended for rodent thyroid tumors arising from an unknown MOA (<u>U.S. EPA, 1998a</u>).
Statistical uncertainty at POD: ↓ oral slope factor 1.4-fold if BMD used as the POD rather than BMDL	BMDL (preferred approach for calculating slope factor)	Limited size of bioassay results in sampling variability; lower bound is 95% CI on administered exposure at 10% extra risk of thyroid tumors.
Sensitive subpopulations: ↑ oral slope factor to unknown extent	No sensitive populations have been identified	No chemical-specific data are available to determine the range of human toxicodynamic variability or sensitivity, including the susceptibility of children. Because determination of a mutagenic MOA is not known, an age-specific adjustment factor is not applied.

2.3.5 Previous IRIS Assessment: Oral Slope Factor 1

2

No previous cancer assessment for tert-butanol is available in IRIS.

3 2.4 INHALATION UNIT RISK FOR CANCER

4 The carcinogenicity assessment provides information on the carcinogenic hazard potential 5 of the substance in question, and quantitative estimates of risk from oral and inhalation exposure 6 can be derived. Quantitative risk estimates can be derived from the application of a low-dose 7 extrapolation procedure. If derived, the inhalation unit risk (IUR) is a plausible upper bound on the

- 8 estimate of risk per $\mu g/m^3$ air breathed.
- 9 No chronic inhalation exposure studies to *tert*-butanol are available. Lifetime oral exposure
- 10 has been associated with increased renal tubule adenomas and carcinoma in male F344 rats,
- 11 increased thyroid follicular cell adenomas in female B6C3F₁ mice, and increased thyroid follicular
- 12 cell adenomas and carcinomas in male B6C3F1 mice. Because only a rat PBPK model exists,
- 13 however, route-to-route extrapolation cannot be performed for thyroid tumors in mice at this time.
- 14 The <u>NTP (1995)</u> drinking water study in rats and mice was the only chronic bioassay available for
- 15 dose-response analysis. Still, the rat PBPK model and kidney tumors from the <u>NTP (1995)</u> drinking
- 16 water study were not used for route-to-route extrapolation because enough information to
- 17 determine the relative contribution of α_{2u} -globulin nephropathy and other processes to the overall
- 18 renal tumor response (U.S. EPA, 1991a) is not available.

19 2.4.1 Previous IRIS Assessment: Inhalation Unit Risk

- 20
- An inhalation cancer assessment for *tert*-butanol was not previously available on IRIS.

1 2.5 APPLICATION OF AGE-DEPENDENT ADJUSTMENT FACTORS

- 2 As discussed in the Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to
- 3 *Carcinogens* (U.S. EPA, 2005b), either default or chemical-specific age-dependent adjustment
- 4 factors (ADAFs) are recommended to account for early-life exposure to carcinogens that act
- 5 through a mutagenic MOA. Because chemical-specific lifestage susceptibility data for cancer are not
- 6 available, and because the MOA for *tert*-butanol carcinogenicity is not known (see Section 1.3.2),
- 7 application of ADAFs is not recommended.

REFERENCES

1 2 3 4	<u>Acharya, S; Mehta, K; Rodrigues, S; Pereira, J; Krishnan, S; Rao, CV.</u> (1995). Administration of subtoxic doses of t-butyl alcohol and trichloroacetic acid to male Wistar rats to study the interactive toxicity. Toxicol Lett. 80: 97-104. <u>http://dx.doi.org/10.1016/0378-4274(95)03340-Q</u> .
5 6 7 8	Acharya, S; Mehta, K; Rodriguez, S; Pereira, J; Krishnan, S; Rao, CV. (1997). A histopathological study of liver and kidney in male Wistar rats treated with subtoxic doses of t-butyl alcohol and trichloroacetic acid. Exp Toxicol Pathol. 49: 369-373. <u>http://dx.doi.org/10.1016/S0940-2993(97)80119-4</u> .
9 10	Amberg, A; Rosner, E; Dekant, W. (1999). Biotransformation and kinetics of excretion of methyl- tert-butyl ether in rats and humans. Toxicol Sci. 51: 1-8.
11 12 13	<u>Amberg, A; Rosner, E; Dekant, W.</u> (2000). Biotransformation and kinetics of excretion of ethyl tert- butyl ether in rats and humans. Toxicol Sci. 53: 194-201. <u>http://dx.doi.org/10.1093/toxsci/53.2.194</u> .
14 15 16	ARCO (ARCO Chemical Company). (1983). Toxicologist's report on metabolism and pharmacokinetics of radiolabeled TBA 534 tertiary butyl alcohol with cover letter dated 03/24/1994. (8EHQ86940000263). Newton Square, PA.
17 18 19	ATSDR (Agency for Toxic Substances and Disease Registry). (1996). Toxicological profile for methyl-tert-butyl ether [ATSDR Tox Profile]. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. <u>http://www.atsdr.cdc.gov/ToxProfiles/tp91.pdf</u> .
20 21	Bailer, AJ; Portier, CJ. (1988). Effects of treatment-induced mortality and tumor-induced mortality on tests for carcinogenicity in small samples. Biometrics. 44: 417-431.
22 23 24	Bailey, SA; Zidell, RH; Perry, RW. (2004). Relationships between organ weight and body/brain weight in the rat: What is the best analytical endpoint? Toxicol Pathol. 32: 448-466. http://dx.doi.org/10.1080/01926230490465874.
25 26 27	Bale, AS; Lee, JS. (2016). An overview of butanol-induced developmental neurotoxicity and the potential mechanisms related to these observed effects [Review]. Neurotoxicol Teratol. 53: 33-40. <u>http://dx.doi.org/10.1016/j.ntt.2015.11.006</u> .
28 29 30	Banton, MI; Peachee, VL; White, KL; Padgett, EL. (2011). Oral subchronic immunotoxicity study of ethyl tertiary butyl ether in the rat. J Immunotoxicol. 8: 298-304. http://dx.doi.org/10.3109/1547691X.2011.598480.
31 32 33 34 35	Bernauer, U; Amberg, A; Scheutzow, D; Dekant, W. (1998). Biotransformation of 12C- and 2-13C- labeled methyl tert-butyl ether, ethyl tert-butyl ether, and tert-butyl alcohol in rats: Identification of metabolites in urine by 13C nuclear magnetic resonance and gas chromatography/mass spectrometry. Chem Res Toxicol. 11: 651-658. <u>http://dx.doi.org/10.1021/tx970215v</u> .
36 37 38 39	 Blanck, O; Fowles, J; Schorsch, F; Pallen, C; Espinasse-Lormeau, H; Schulte-Koerne, E; Totis, M; Banton, M. (2010). Tertiary butyl alcohol in drinking water induces phase I and II liver enzymes with consequent effects on thyroid hormone homeostasis in the B6C3F1 female mouse. J Appl Toxicol. 30: 125-132. http://dx.doi.org/10.1002/jat.1478.

This document is a draft for review purposes only and does not constitute Agency policy. R-1 DRAFT—DO NOT CITE OR QUOTE

1 2 3	Borghoff, SJ; Murphy, JE; Medinsky, MA. (1996). Development of physiologically based pharmacokinetic model for methyl tertiary-butyl ether and tertiary-butanol in male Fisher- 344 rats. Fundam Appl Toxicol. 30: 264-275. <u>http://dx.doi.org/10.1006/faat.1996.0064</u> .
4 5 6 7	 Borghoff, SJ; Parkinson, H; Leavens, TL. (2010). Physiologically based pharmacokinetic rat model for methyl tertiary-butyl ether; comparison of selected dose metrics following various MTBE exposure scenarios used for toxicity and carcinogenicity evaluation. Toxicology. 275: 79-91. http://dx.doi.org/10.1016/j.tox.2010.06.003.
8 9 10	Borghoff, SJ; Prescott, JS; Janszen, DB; Wong, BA; Everitt, JI. (2001). alpha2u-Globulin nephropathy, renal cell proliferation, and dosimetry of inhaled tert-butyl alcohol in male and female F-344 rats. Toxicol Sci. 61: 176-186. <u>http://dx.doi.org/10.1093/toxsci/61.1.176</u> .
11 12 13 14	$\frac{\text{Borghoff, SJ; Ring, C; Banton, MI; Leavens, TL.}{2016}. Physiologically based pharmacokinetic model for ethyl tertiary-butyl ether and tertiary-butyl alcohol in rats: Contribution of binding to \alpha2u-globulin in male rats and high-exposure nonlinear kinetics to toxicity and cancer outcomes. J Appl Toxicol. http://dx.doi.org/10.1002/jat.3412.$
15 16 17	<u>Cal/EPA</u> (California Environmental Protection Agency). (1999). Expedited evaluation of risk assessment for tertiary butyl alcohol in drinking water. Available online at http://www.oehha.ca.gov/water/pals/tba.html (accessed
18 19 20	<u>CDC</u> (Centers for Disease Control and Prevention). (2004). The health consequences of smoking: A report of the Surgeon General. Washington, DC: U.S. Department of Health and Human Services. <u>http://www.cdc.gov/tobacco/data_statistics/sgr/2004/index.htm</u> .
21 22 23	Cederbaum, AI; Cohen, G. (1980). Oxidative demethylation of t-butyl alcohol by rat liver microsomes. Biochem Biophys Res Commun. 97: 730-736. <u>http://dx.doi.org/10.1016/0006-291X(80)90325-3</u> .
24 25 26	Cederbaum, AI; Qureshi, A; Cohen, G. (1983). Production of formaldehyde and acetone by hydroxyl- radical generating systems during the metabolism of tertiary butyl alcohol. Biochem Pharmacol. 32: 3517-3524. <u>http://dx.doi.org/10.1016/0006-2952(83)90297-6</u> .
27 28 29	<u>Chen, M.</u> (2005). Amended final report of the safety assessment of t-butyl alcohol as used in cosmetics [Review]. Int J Toxicol. 24 Suppl 2: 1-20. <u>http://dx.doi.org/10.1080/10915810590953833</u> .
30 31 32	<u>Cirvello, JD; Radovsky, A; Heath, JE; Farnell, DR; III, LC.</u> (1995). Toxicity and carcinogenicity of t- butyl alcohol in rats and mice following chronic exposure in drinking water. Toxicol Ind Health. 11: 151-165.
33 34 35	Craig, EA; Yan, Z; Zhao, QJ. (2014). The relationship between chemical-induced kidney weight increases and kidney histopathology in rats. J Appl Toxicol. 35: 729-736. http://dx.doi.org/10.1002/jat.3036.
36 37	Daniel, MA; Evans, MA. (1982). Quantitative comparison of maternal ethanol and maternal tertiary butanal diet on postnatal development. J Pharmacol Exp Ther. 222: 294-300.
38 39	<u>Faulkner, TP; Wiechart, JD; Hartman, DM; Hussain, AS.</u> (1989). The effects of prenatal tertiary butanol administration in CBA/J and C57BL/6J mice. Life Sci. 45: 1989-1995.
40 41 42	FDA (U.S. Food and Drug Administration). (2011). Indirect food additives: Adjuvants, production aids, and sanitizers. Surface lubricants used in the manufacture of metallic articles. 21 CFR 178.3910.
43	http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=178.3910. This document is a draft for review purposes only and does not constitute Agency policy. R-2 DRAFT—DO NOT CITE OR QUOTE

1 2 3	<u>FDA</u> (U.S. Food and Drug Administration). (2015). Indirect food additives: Paper and paperboard components. Defoaming agents used in coatings. 21 CFR 176.200 (pp. 1-4). <u>http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=176.200</u> .
4 5 6	Frazier, KS; Seely, JC; Hard, GC; Betton, G; Burnett, R; Nakatsuji, S; Nishikawa, A; Durchfeld-Meyer, B; Bube, A. (2012). Proliferative and nonproliferative lesions of the rat and mouse urinary system. Toxicol Pathol. 40: 14S-86S. <u>http://dx.doi.org/10.1177/0192623312438736</u> .
7 8 9	<u>Gaoua, W.</u> (2004a). Ethyl tertiary butyl ether (ETBE): Prenatal developmental toxicity study by the oral route (gavage) in rats (pp. 1-280). (CIT Study No. 24860 RSR). unpublished study for Totalfinaelf on behalf of the ETBE Producers' Consortium.
10 11 12	<u>Gaoua, W.</u> (2004b). Ethyl tertiary butyl ether (ETBE): Two-generation study (reproduction and fertility effects) by the oral route (gavage) in rats. (CIT Study No. 24859 RSR). unpublished study for Totalfinaelf on behalf of the ETBE Producers' Consortium.
13 14 15	<u>Gehlhaus, MW, III; Gift, JS; Hogan, KA; Kopylev, L; Schlosser, PM; Kadry, A, -R.</u> (2011). Approaches to cancer assessment in EPA's Integrated Risk Information System [Review]. Toxicol Appl Pharmacol. 254: 170-180. <u>http://dx.doi.org/10.1016/j.taap.2010.10.019</u> .
16 17 18	<u>Guyatt, GH; Oxman, AD; Kunz, R; Vist, GE; Falck-Ytter, Y; Schünemann, HJ.</u> (2008a). What is "quality of evidence" and why is it important to clinicians? [Review]. BMJ. 336: 995-998. <u>http://dx.doi.org/10.1136/bmj.39490.551019.BE</u> .
19 20 21	<u>Guyatt, GH; Oxman, AD; Vist, GE; Kunz, R; Falck-Ytter, Y; Alonso-Coello, P; Schünemann, HJ.</u> (2008b). GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 336: 924-926. <u>http://dx.doi.org/10.1136/bmj.39489.470347.AD</u> .
22 23	Hard, GC. (1986). Experimental models for the sequential analysis of chemically-induced renal carcinogenesis. Toxicol Pathol. 14: 112-122.
24 25 26	Hard, GC. (2008). Some aids to histological recognition of hyaline droplet nephropathy in ninety- day toxicity studies. Toxicol Pathol. 36: 1014-1017. <u>http://dx.doi.org/10.1177/0192623308327413</u> .
27 28 29 30	Hard, GC; Banton, MI; Bretzlaff, RS; Dekant, W; Fowles, J. R.; Mallett, AK; Mcgregor, DB; Roberts, KM; Sielken, RL; Valdez-Flores, C; Cohen, SM. (2013). Consideration of rat chronic progressive nephropathy in regulatory evaluations for carcinogenicity. Toxicol Sci. 132: 268-275. http://dx.doi.org/10.1093/toxsci/kfs305.
31 32 33 34	Hard, GC; Bruner, RH; Cohen, SM; Pletcher, JM; Regan, KS. (2011). Renal histopathology in toxicity and carcinogenicity studies with tert-butyl alcohol administered in drinking water to F344 rats: A pathology working group review and re-evaluation. Regul Toxicol Pharmacol. 59: 430-436. <u>http://dx.doi.org/10.1016/j.yrtph.2011.01.007</u> .
35 36 37	Hard, GC; Johnson, KJ; Cohen, SM. (2009). A comparison of rat chronic progressive nephropathy with human renal disease-implications for human risk assessment [Review]. Crit Rev Toxicol. 39: 332-346. <u>http://dx.doi.org/10.1080/10408440802368642</u> .
38 39 40	Hard, GC; Khan, KN. (2004). A contemporary overview of chronic progressive nephropathy in the laboratory rat, and its significance for human risk assessment [Review]. Toxicol Pathol. 32: 171-180. <u>http://dx.doi.org/10.1080/01926230490422574</u> .
41 42 43	Hard, GC; Seely, JC. (2005). Recommendations for the interpretation of renal tubule proliferative lesions occurring in rat kidneys with advanced chronic progressive nephropathy (CPN). Toxicol Pathol. 33: 641-649. http://dx.doi.org/10.1080/01926230500299716 . Toxicol Pathol. 33: 641-649. http://dx.doi.org/10.1080/01926230500299716 . Toxicol Pathol. 33: 641-649. http://dx.doi.org/10.1080/01926230500299716 . This document is a draft for review purposes only and does not constitute Agency policy. R-3R-3DRAFT—DO NOT CITE OR QUOTE

1 2 3	Hard, GC: Seely, JC. (2006). Histological investigation of diagnostically challenging tubule profiles in advanced chronic progressive nephropathy (CPN) in the fischer 344 RaT. Toxicol Pathol. 34: 941-948. <u>http://dx.doi.org/10.1080/01926230601083381</u> .
4 5 6	Hard, GC; Wolf, DC. (1999). Re-evaluation of the chloroform 2-year drinking water bioassy in Osborne-Mendel rats indicates that sustained renal tubule injury is associated with renal tumor development [Abstract]. Toxicologist. 48: 30.
7 8 9 10	 <u>HEW</u> (U.S. Department of Health, Education and Welfare). (1964). Smoking and health: Report of the advisory committee to the surgeon general of the public health service. Washington, DC: U.S. Department of Health, Education, and Welfare. <u>http://profiles.nlm.nih.gov/ps/retrieve/ResourceMetadata/NNBBMQ</u>.
11 12	Hill, AB. (1965). The environment and disease: Association or causation? Proc R Soc Med. 58: 295- 300.
13 14	HSDB (Hazardous Substances Data Bank). (2007). t-Butyl alcohol [Database]. Bethesda, MD: National Library of Medicine. Retrieved from <u>http://toxnet.nlm.nih.gov</u>
15 16	Huntingdon Life Sciences. (2004). Reproductive and developmental toxicity screening test in rats by oral gavage. (Study No. 03-4254). East Millstone, NJ: Lyondell Chemical Company.
17 18	Hurley, PM. (1998). Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents. Environ Health Perspect. 106: 437-445.
19 20	<u>IARC</u> (International Agency for Research on Cancer). (1999). Methyl tert-butyl ether (group 3) (pp. 339-383). Lyon, France.
21 22 23	IARC (International Agency for Research on Cancer). (2006). IARC monographs on the evaluation of carcinogenic risks to humans: Preamble. Lyon, France: World Health Organization. http://monographs.iarc.fr/ENG/Preamble/.
24 25 26	<u>IOM</u> (Institute of Medicine). (2008). Improving the presumptive disability decision-making process for veterans. In JM Samet; CC Bodurow (Eds.). Washington, DC: National Academies Press. <u>http://dx.doi.org/10.17226/11908</u> .
27 28 29 30	<u>IPCS</u> (International Programme on Chemical Safety). (1987a). Butanols: Four isomers: 1-butanol, 2- butanol, tert-butanol, isobutanol [WHO EHC]. In Environmental Health Criteria. Geneva, Switzerland: World Health Organization. <u>http://www.inchem.org/documents/ehc/ehc/ehc65.htm</u> .
31 32 33	<u>IPCS</u> (International Programme on Chemical Safety). (1987b). Tert-Butanol. In Health and Safety Guide. Geneva, Switzerland: World Health Organization. <u>http://www.inchem.org/documents/hsg/hsg/007.htm</u> .
34 35	Kaneko, T: Wang, PY: Sato, A. (2000). Partition coefficients for gasoline additives and their metabolites. J Occup Health. 42: 86-87. <u>http://dx.doi.org/10.1539/joh.42.86</u> .
36 37 38	Leavens, TL; Borghoff, SJ. (2009). Physiologically based pharmacokinetic model of methyl tertiary butyl ether and tertiary butyl alcohol dosimetry in male rats based on binding to alpha2u-globulin. Toxicol Sci. 109: 321-335. <u>http://dx.doi.org/10.1093/toxsci/kfp049</u> .
39 40 41	Lee, JS; Ward, WO; Liu, J; Ren, H; Vallanat, B; Delker, D; Corton, JC. (2011). Hepatic xenobiotic metabolizing enzyme and transporter gene expression through the life stages of the mouse. PLoS ONE. 6: e24381. <u>http://dx.doi.org/10.1371/journal.pone.0024381</u> .

This document is a draft for review purposes only and does not constitute Agency policy.R-4DRAFT—DO NOT CITE OR QUOTE

1	Lee, JS; Ward, WO; Wolf, DC; Allen, JW; Mills, C; Devito, MJ; Corton, JC. (2008). Coordinated changes
2	in xenobiotic metabolizing enzyme gene expression in aging male rats. Toxicol Sci. 106:
3	263-283. <u>http://dx.doi.org/10.1093/toxsci/kfn144</u> .
4	Li, Q: Kobayashi, M; Inagaki, H; Hirata, Y; Hirata, K; Shimizu, T; Wang, RS; Suda, M; Kawamoto, T;
5	Nakajima, T; Kawada, T. (2011). Effects of subchronic inhalation exposure to ethyl tertiary
6	butyl ether on splenocytes in mice. Int J Immunopathol Pharmacol. 24: 837-847.
7	Lindamood, C, III; Farnell, DR; Giles, HD; Prejean, JD; Collins, JJ; Takahashi, K; Maronpot, RR. (1992).
8	Subchronic toxicity studies of t-butyl alcohol in rats and mice. Fundam Appl Toxicol. 19: 91-
9	100. <u>http://dx.doi.org/10.1093/toxsci/19.1.91</u> .
10	Maronpot, RR; Yoshizawa, K; Nyska, A; Harada, T; Flake, G; Mueller, G; Singh, B; Ward, JM. (2010).
11	Hepatic enzyme induction: histopathology [Review]. Toxicol Pathol. 38: 776-795.
12	http://dx.doi.org/10.1177/0192623310373778.
13	<u>McGregor, D.</u> (2010). Tertiary-butanol: A toxicological review [Review]. Crit Rev Toxicol. 40: 697-
14	727. <u>http://dx.doi.org/10.3109/10408444.2010.494249</u> .
15	Melnick, R; Burns, K; Ward, J; Huff, J. (2012). Chemically exacerbated chronic progressive
16	nephropathy not associated with renal tubule tumor induction in rats: An evaluation based
17	on 60 carcinogenicity studies by the National Toxicology Program. Toxicol Sci. 128: 346-
18	356. <u>http://dx.doi.org/10.1093/toxsci/kfs156</u> .
19 20 21 22	Melnick, RL; Ward, JM; Huff, J. (2013). War on carcinogens: Industry disputes human relevance of chemicals causing cancer in laboratory animals based on unproven hypotheses, using kidney tumors as an example [Editorial]. Int J Occup Environ Health. 19: 255-260. http://dx.doi.org/10.1179/1077352513Z.00000000090.
23 24 25	Nelson, BK; Brightwell, WS; Khan, A; Burg, JR; Goad, PT. (1989). Lack of selective developmental toxicity of three butanol isomers administered by inhalation to rats. Fundam Appl Toxicol. 12: 469-479. <u>http://dx.doi.org/10.1093/toxsci/12.3.469</u> .
26 27 28	Nelson, BK; Brightwell, WS; Khan, A; Shaw, PB; Krieg, EF, Jr; Massari, VJ. (1991). Behavioral teratology investigation of tertiary-butanol administered by inhalation to rats. Pharmacopsychoecologia. 4: 1-7.
29 30	Nihlén, A: Löf, A: Johanson, G. (1995). Liquid/air partition coefficients of methyl and ethyl t-butyl ethers, t-amyl methyl ether, and t-butyl alcohol. J Expo Anal Environ Epidemiol. 5: 573-582.
31 32 33	Nihlén, A; Löf, A; Johanson, G. (1998a). Controlled ethyl tert-butyl ether (ETBE) exposure of male volunteers: I Toxicokenetics. Toxicol Sci. 46: 1-10. http://dx.doi.org/10.1006/toxs.1998.2516.
34	Nihlén, A; Löf, A; Johanson, G. (1998b). Experimental exposure to methyl tertiary-butyl ether: I
35	Toxicokinetics in humans. Toxicol Appl Pharmacol. 148: 274-280.
36	http://dx.doi.org/10.1006/taap.1997.8333.
37 38 39	NIOSH (National Institute for Occupational Safety and Health). (2005). NIOSH pocket guide to chemical hazards: tert-Butyl alcohol. Atlanta, GA: Centers for Disease Control and Prevention. <u>http://www.cdc.gov/niosh/npg/npgd0078.html</u> .
40 41 42	NIOSH (National Institute for Occupational Safety and Health). (2007). NIOSH pocket guide to chemical hazards. (DHHS-2005-149. CBRNIAC-CB-112149). Cincinnati, OH. <u>http://www.cdc.gov/niosh/docs/2005-149/</u> .

This document is a draft for review purposes only and does not constitute Agency policy.R-5DRAFT—DO NOT CITE OR QUOTE

1 2 3	NRC (National Research Council). (1983). Risk Assessment in the Federal Government: Managing the Process. Washington, DC: National Academy Press. http://dx.doi.org/10.1080/00139157.1983.9931232.
4 5	NRC (National Research Council). (2009). Science and decisions: Advancing risk assessment. Washington, DC: National Academy Press. <u>http://www.nap.edu/catalog/12209.html</u> .
6 7 8	NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde (pp. 194). Washington, DC: National Academies Press. <u>http://www.nap.edu/catalog/13142.html</u> .
9 10	NSF International. (2003). t-Butanol: Oral Risk Assessment Document (CAS 75-65-0). Ann Arbor, MI.
11 12 13	<u>NTP</u> (National Toxicology Program). (1995). Toxicology and carcinogenesis studies of t-butyl alcohol (CAS no 75-65-0) in F344/N rats and B6C3F1 mice (Drinking water studies) (pp. 1-305). (NTPTR436). Research Triangle Park, NC.
14 15 16 17	NTP (National Toxicology Program). (1997). NTP technical report on toxicity studies of t-butyl alcohol (CAS no 75-65-0) administered by inhalation to F344/N rats and B6C3F1 mice (pp. 1-56, A51-D59). Research Triangle Park, NC. http://ntp.niehs.nih.gov/ntp/htdocs/ST rpts/tox053.pdf.
18 19 20 21	NTP (National Toxicology Program). (2015). Handbook for conducting a literature-based health assessment using OHAT approach for systematic review and evidence integration. U.S. Dept. of Health and Human Services, National Toxicology Program. http://ntp.niehs.nih.gov/pubhealth/hat/noms/index-2.html.
22 23 24	OSHA (Occupational Safety & Health Administration). (1992). Occupational safety and health guideline for tert-butyl alcohol (pp. 7). Cincinnati, OH: National Institute for Occupational Safety and Health. <u>http://www.cdc.gov/niosh/docs/81-123/pdfs/0078.pdf</u> .
23	OSHA (Occupational Safety & Health Administration). (1992). Occupational safety and health guideline for tert-butyl alcohol (pp. 7). Cincinnati, OH: National Institute for Occupational
23 24 25 26 27 28 29	 OSHA (Occupational Safety & Health Administration). (1992). Occupational safety and health guideline for tert-butyl alcohol (pp. 7). Cincinnati, OH: National Institute for Occupational Safety and Health. <u>http://www.cdc.gov/niosh/docs/81-123/pdfs/0078.pdf</u>. OSHA (Occupational Safety & Health Administration). (2006). Table Z-1: Limits for air contaminants. Occupational safety and health standards, subpart Z, toxic and hazardous substances. (OSHA standard 1910.1000, 29 CFR). Washington, DC: U.S. Department of Labor. http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=
23 24 25 26 27 28 29 30 31 32	 OSHA (Occupational Safety & Health Administration). (1992). Occupational safety and health guideline for tert-butyl alcohol (pp. 7). Cincinnati, OH: National Institute for Occupational Safety and Health. <u>http://www.cdc.gov/niosh/docs/81-123/pdfs/0078.pdf</u>. OSHA (Occupational Safety & Health Administration). (2006). Table Z-1: Limits for air contaminants. Occupational safety and health standards, subpart Z, toxic and hazardous substances. (OSHA standard 1910.1000, 29 CFR). Washington, DC: U.S. Department of Labor. http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=9992. Poet, TS: Valentine, JL: Borghoff, SJ. (1997). Pharmacokinetics of tertiary butyl alcohol in male and female Fischer 344 rats. Toxicol Lett. 92: 179-186. http://dx.doi.org/10.1016/S0378-
23 24 25 26 27 28 29 30 31 32 33 34 35	 OSHA (Occupational Safety & Health Administration). (1992). Occupational safety and health guideline for tert-butyl alcohol (pp. 7). Cincinnati, OH: National Institute for Occupational Safety and Health. http://www.cdc.gov/niosh/docs/81-123/pdfs/0078.pdf. OSHA (Occupational Safety & Health Administration). (2006). Table Z-1: Limits for air contaminants. Occupational safety and health standards, subpart Z, toxic and hazardous substances. (OSHA standard 1910.1000, 29 CFR). Washington, DC: U.S. Department of Labor. http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=9992. Poet, TS: Valentine, JL: Borghoff, SJ. (1997). Pharmacokinetics of tertiary butyl alcohol in male and female Fischer 344 rats. Toxicol Lett. 92: 179-186. http://dx.doi.org/10.1016/S0378-4274(97)00056-8. Qatanani, M; Zhang, J; Moore, DD. (2005). Role of the constitutive androstane receptor in xenobiotic-induced thyroid hormone metabolism. Endocrinology. 146: 995-1002.

This document is a draft for review purposes only and does not constitute Agency policy.R-6DRAFT—DO NOT CITE OR QUOTE

1 2 3	Saito, A; Sasaki, T; Kasai, T; Katagiri, T; Nishizawa, T; Noguchi, T; Aiso, S; Nagano, K; Fukushima, S. (2013). Hepatotumorigenicity of ethyl tertiary-butyl ether with 2-year inhalation exposure in F344 rats. Arch Toxicol. 87: 905-914. http://dx.doi.org/10.1007/s00204-012-0997-x.
4 5 6	Salazar, KD; Brinkerhoff, CJ; Lee, JS; Chiu, WA. (2015). Development and application of a rat PBPK model to elucidate kidney and liver effects induced by ETBE and tert-butanol. Toxicol Appl Pharmacol. 288: 439-452. http://dx.doi.org/10.1016/j.taap.2015.08.015.
7 8	Scorecard. (2014). t-butanol. Available online at http://scorecard.goodguide.com/chemical-profiles/summary.tcl?edf substance id=+75-65-0 (accessed
9 10 11	Seely, JC; Haseman, JK; Nyska, A; Wolf, DC; Everitt, JI; Hailey, JR. (2002). The effect of chronic progressive nephropathy on the incidence of renal tubule cell neoplasms in control male F344 rats. Toxicol Pathol. 30: 681-686.
12 13	Short, BG; Burnett, VL; Swenberg, JA. (1986). Histopathology and cell proliferation induced by 2,2,4-trimethylpentane in the male rat kidney. Toxicol Pathol. 14: 194-203.
14 15 16	Short, BG; Burnett, VL; Swenberg, JA. (1989). Elevated proliferation of proximal tubule cells and localization of accumulated "alpha"2u-globulin in F344 rats during chronic exposure to unleaded gasoline or 2,2,4-trimethylpentane. Toxicol Appl Pharmacol. 101: 414-431.
17 18	Suzuki, M; Yamazaki, K; Kano, H; Aiso, S; Nagano, K; Fukushima, S. (2012). No carcinogenicity of ethyl tertiary-butyl ether by 2-year oral administration in rats. J Toxicol Sci. 37: 1239-1246.
19 20 21 22 23 24	Swenberg, JA; Lehman-McKeeman, LD. (1999). alpha 2-Urinary globulin-associated nephropathy as a mechanism of renal tubule cell carcinogenesis in male rats. In CC Capen; E Dybing; JM Rice; JD Wilbourn (Eds.), IARC Scientific Publications (pp. 95-118). Lyon, France: International Agency for Research on Cancer. http://apps.who.int/bookorders/anglais/detart1.jsp?sesslan=1&codlan=1&codcol=73&cod cch=147.
25 26 27	<u>Takahashi, K; Lindamood, C; Maronpot, R.</u> (1993). Retrospective study of possible alpha-2 mu- globulin nephropathy and associated cell proliferation in male Fischer 344 rats dosed with t-butyl alcohol. Environ Health Perspect. 101: 281-285.
28 29 30	U.S. EPA (U.S. Environmental Protection Agency). (1986a). Guidelines for mutagenicity risk assessment. (EPA/630/R-98/003). Washington, DC: U.S. Environmental Protection Agency, Risk Assessment Forum. <u>http://www.epa.gov/iris/backgrd.html</u> .
31 32 33 34	U.S. EPA (U.S. Environmental Protection Agency). (1986b). Guidelines for the health risk assessment of chemical mixtures (pp. 1-38). (EPA/630/R-98/002). Washington, DC: U.S. Environmental Protection Agency, Risk Assessment Forum. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=22567.
35 36 37 38	U.S. EPA (U.S. Environmental Protection Agency). (1988). Recommendations for and documentation of biological values for use in risk assessment. (EPA/600/6-87/008). Cincinnati, OH: U.S. Environmental Protection Agency, Office of Research and Development, Office of Health and Environmental Assessment. <u>http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=34855</u> .
39 40 41 42 43	U.S. EPA (U.S. Environmental Protection Agency). (1991a). Alpha-2u-globulin: Association with chemically induced renal toxicity and neoplasia in the male rat (pp. 1-136). (EPA/625/3- 91/019F). Washington, DC: U.S. Environmental Protection Agency, National Center for Environmental Assessment. <u>https://ntrl.ntis.gov/NTRL/dashboard/searchResults.xhtml?searchQuery=PB92143668</u> .
	This document is a draft for review purposes only and does not constitute Agency policy. R-7 DRAFT—DO NOT CITE OR QUOTE

- <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (1991b). Guidelines for developmental toxicity
 risk assessment. (EPA/600/FR-91/001). Washington, DC: U.S. Environmental Protection
 Agency, Risk Assessment Forum.
 <u>http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=23162</u>.
- <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (1994). Methods for derivation of inhalation
 reference concentrations (RfCs) and application of inhalation dosimetry [EPA Report].
 (EPA/600/8-90/066F). Washington, DC: U.S. Environmental Protection Agency, Office of
 Research and Development, Office of Health and Environmental Assessment, Environmental
 Criteria and Assessment Office.
- 10 http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=71993.
- U.S. EPA (U.S. Environmental Protection Agency). (1996). Guidelines for reproductive toxicity risk
 assessment. (EPA/630/R-96/009). Washington, DC: U.S. Environmental Protection Agency,
 Risk Assessment Forum. <u>http://www.epa.gov/raf/publications/guidelines-reproductive-</u>
 tox-risk-assessment.htm.
- U.S. EPA (U.S. Environmental Protection Agency). (1997). Drinking water advisory: consumer
 acceptability advice and health effects analysis on methyl tertiary-butyl ether (MTBE) [EPA
 Report].
- 18 U.S. EPA (U.S. Environmental Protection Agency). (1998a). Assessment of thyroid follicular cell
 19 tumors [EPA Report] (pp. 1-51). (EPA/630/R-97/002). Washington, DC: U.S. Environmental
 20 Protection Agency, Risk Assessment Forum.
 21 https://www.epa.gov/sites/production/files/2014-11/documents/thyroid.pdf.
- U.S. EPA (U.S. Environmental Protection Agency). (1998b). Guidelines for neurotoxicity risk
 assessment [EPA Report]. (EPA/630/R-95/001F). Washington, DC: U.S. Environmental
 Protection Agency, Risk Assessment Forum. <u>http://www.epa.gov/risk/guidelines-</u>
 <u>neurotoxicity-risk-assessment</u>.
- U.S. EPA (U.S. Environmental Protection Agency). (2000a). Science policy council handbook: Risk
 characterization (pp. 1-189). (EPA/100/B-00/002). Washington, D.C.: U.S. Environmental
 Protection Agency, Science Policy Council. <u>https://www.epa.gov/risk/risk-characterization-handbook</u>.
- 30 U.S. EPA (U.S. Environmental Protection Agency). (2000b). Supplementary guidance for conducting
 31 health risk assessment of chemical mixtures. (EPA/630/R-00/002). Washington, DC: U.S.
 32 Environmental Protection Agency, Risk Assessment Forum.
 33 http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=20533.
- 34 <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2002). A review of the reference dose and
 35 reference concentration processes. (EPA/630/P-02/002F). Washington, DC: U.S.
 36 Environmental Protection Agency, Risk Assessment Forum.
- 37 <u>http://www.epa.gov/osa/review-reference-dose-and-reference-concentration-processes.</u>
- 38 <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2005a). Guidelines for carcinogen risk
 39 assessment [EPA Report]. (EPA/630/P-03/001F). Washington, DC: U.S. Environmental
 40 Protection Agency, Risk Assessment Forum. <u>http://www2.epa.gov/osa/guidelines-</u>
 41 carcinogen-risk-assessment.
- 42 U.S. EPA (U.S. Environmental Protection Agency). (2005b). Supplemental guidance for assessing
 43 susceptibility from early-life exposure to carcinogens (pp. 1-125). (EPA/630/R-03/003F).

This document is a draft for review purposes only and does not constitute Agency policy.R-8DRAFT—DO NOT CITE OR QUOTE

1	Washington, DC: U.S. Environmental Protection Agency, Risk Assessment Forum.
2	<u>https://www3.epa.gov/airtoxics/childrens_supplement_final.pdf</u> .
3 4 5 6 7 8	 <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2006a). Approaches for the application of physiologically based pharmacokinetic (PBPK) models and supporting data in risk assessment (Final Report) [EPA Report]. (EPA/600/R-05/043F). Washington, DC: U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental assessment. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=157668.
9 10 11 12 13	 <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2006b). A framework for assessing health risk of environmental exposures to children (pp. 1-145). (EPA/600/R-05/093F). Washington, DC: U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=158363.
14	<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2009). EPA's Integrated Risk Information
15	System: Assessment development process [EPA Report]. Washington, DC.
16	<u>http://epa.gov/iris/process.htm</u> .
17	<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2010). Integrated science assessment for carbon
18	monoxide [EPA Report]. (EPA/600/R-09/019F). Research Triangle Park, NC: U.S.
19	Environmental Protection Agency, Office of Research and Development, National Center for
20	Environmental Assessment.
21	<u>http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=218686</u> .
22	<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2011). Recommended use of body weight 3/4 as
23	the default method in derivation of the oral reference dose. (EPA/100/R11/0001).
24	Washington, DC: U.S. Environmental Protection Agency, Risk Assessment Forum, Office of
25	the Science Advisor. <u>http://www.epa.gov/raf/publications/interspecies-extrapolation.htm</u> .
26 27 28 29 30	 U.S. EPA (U.S. Environmental Protection Agency). (2012a). Advances in inhalation gas dosimetry for derivation of a reference concentration (RfC) and use in risk assessment (pp. 1-140). (EPA/600/R-12/044). Washington, DC. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=244650&CFID=50524762&CFTOK EN=17139189.
31	<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2012b). Benchmark dose technical guidance.
32	(EPA/100/R-12/001). Washington, DC: U.S. Environmental Protection Agency, Risk
33	Assessment Forum. <u>https://www.epa.gov/risk/benchmark-dose-technical-guidance</u> .
34	<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2012c). Releases: Facility Report. Toxics Release
35	Inventory. Available online at <u>http://iaspub.epa.gov/triexplorer/tri_release.chemical</u>
36	(accessed
37	<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2012d). Toxicological review of tetrahydrofuran.
38	In support of summary information on the integrated risk information system (IRIS) (pp. 1-
39	207). (EPA/635/R-11/006F). Washington, DC.
40	<u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2014). Chemical Data Reporting 2012, reported
41	in the Chemical Data Access Tool. Available online at
42	<u>http://www.epa.gov/oppt/cdr/index.html</u> (accessed

This document is a draft for review purposes only and does not constitute Agency policy. R-9 DRAFT—DO NOT CITE OR QUOTE

- <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2016). TRI explorer (2014 dataset released March 2016} [Database]. Retrieved from <u>https://www.epa.gov/triexplorer</u>
- Williams, TM: Borghoff, SJ. (2001). Characterization of tert-butyl alcohol binding to "alpha"2u globulin in F-344 rats. Toxicol Sci. 62: 228-235. <u>http://dx.doi.org/10.1093/toxsci/62.2.228</u>.
- Yuan, Y; Wang, HF; Sun, HF; Du, HF; Xu, LH; Liu, YF; Ding, XF; Fu, DP; Liu, KX. (2007). Adduction of
 DNA with MTBE and TBA in mice studied by accelerator mass spectrometry. Environ
 Toxicol. 22: 630-635. http://dx.doi.org/10.1002/tox.20295.
- 8