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Dose-Response: Methods Overview
D-R Methods Outlined in Protocol for Cancer and Non-cancer Outcomes
• Relative Risk Exposure to Background (RRB) Screening 

– Purpose – identify studies and endpoints suitable for dose-response modeling
– Approach: 

– Focused on single study, single best model to derive point of departure
– Attempted to derive RRB values for all 12 robust & moderate outcomes

• Model Averaging:
– Purpose – Evaluate low dose extrapolation model uncertainty
– Approach:

– Applied multiple models with model averaging to Chen et al. (2010a,b) Taiwan data
– Modeled data for bladder and lung cancer

• Bayesian Meta-Regression 
– Purpose – Use best possible approach for evaluation of low dose responses pooling 

information from multiple studies
– Approach: 

– Convert all exposures to common study-specific estimate of intake (µg/kg-day)
– Multiple study, hierarchical dose-response analysis using logistic model
– Investigate low-dose non-linearity with fractional logistic model
– Lifetable analyses if possible
– Best possible single study analyses if Bayesian meta-regression is not feasible
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RRB Screening of Epidemiological Exposure-Response Data

• Purpose of Screening
– Evaluate health outcome studies and datasets qualitatively and quantitatively
– Compare iAs potency across hundreds of datasets for dozens of health outcomes
– Maximize resources

• Qualitative Systematic Review of the Literature
– Risk of bias evaluations conducted to inform confidence in individual studies 
– Evidence profile tables for each hazard transparently summarizes considerations 

underlying EPA judgments regarding strength of the human evidence
– Additional review of study relevance for dose-response (next slide)

• Quantitative Screening
– Exposure-response analysis to compare potency estimates across hundreds of 

studies and datasets
– Identify health endpoints for more sophisticated analyses
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Qualitative Review of Dose-Response Feasibility

• Initial Screen:  focused on cohort and case-control studies

• Secondary Screen:  scored dataset on a number of rating criteria; datasets with 
a total score ≥ 5 were excluded

• Final Screen:  studies with inadequate or conflicting dose-response were 
excluded if issues couldn’t be resolved through communication with authors
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RRB Screening Approach

• More than 250 data sets identified as suitable for RRB modeling

• EPA’s Benchmark Dose Software was used to model data and estimate the 
exposure that would increase risk estimate by 20% (RRE20)
– Case-control studies modeled with the logistic model – under logistic regression 

model, results from case-control studies can be analyzed as if they were collected 
prospectively

– Cohort study data assumed to follow a Poisson distribution – relative risk modeled 
with continuous dose-response models (single best model selected using standard 
practices)

– RRE20 values are maximum likelihood estimates, not lower bound estimates (i.e., akin 
to BMDs, not BMDLs)

– EPA considered multiple BMRs and ultimately decided 20% increase in RR was most 
appropriate across all endpoints
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RRB Screening – Background Estimates of Exposure

• RRE20 estimates then 
divided by estimate of 
US background exposure 
to generate RRB values
– Background estimates of 

exposure drawn from 
multiple sources

– RRB values closer to 1 
possibly indicate 
clinically significant 
health effects at 
background exposure 
levels
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RRB Screening Approach and Results

• RRB value = 5.74

• Means that, for clinical fatal lung cancer datasets, the exposure level that would 
result in an RR = 1.2 is ~6-fold higher than U.S. background exposure level
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RRB Screening Conclusions 

• All endpoints other than immune and developmental neurocognitive 
effects supported RRB modeling

• All modeled health outcomes considered for further dose-response 
modeling

• Developmental neurotoxicity is identified as an important endpoint for EPA 
Program Offices; alternative modeling strategies will be pursued for this 
endpoint
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Model Averaging

• Focused on bladder and lung cancer observed in Chen et al. (2010a,b) – large 
prospective cohort study in northeast Taiwan

• Bootstrap approach (n =1,000) used to estimate iAs intake (µg/kg-day) and 
adjusted outcome (cases of cancer)

• Nine dose-response models fit to each bootstrap dataset and Bayesian 
Information Criterion used to average maximum likelihood estimates across 
models

• Constrained and unconstrained models used

• Lifetime cancer risks calculated for the general US population at a series of 
doses of 0 – 40 ug/kg-day
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Comparing Unconstrained and Constrained Models

Model Averaging: Bladder Cancer Results for NE Taiwan
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Model Averaging: Bladder Cancer Results for NE Taiwan
Comparing Unconstrained and Constrained Models
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Model Averaging: Conclusions

• Model averaging showed substantial model uncertainty when extrapolating 
from Taiwanese iAs doses to US relevant doses

• NRC (2013) recommended only “modest” low dose extrapolation (~ 1 order of 
magnitude) from the lowest exposure group of a candidate study, suggesting 
Chen et al. (2010a,b) is not appropriate for estimating US risk

• Mode of action analyses could be used to inform low-dose extrapolation in the 
absence of other dose-response modeling approaches

• However, a meta-regression method utilizing multiple low-, mid-, and high-
dose studies is considered a preferable approach and was recommended, 
where feasible, by the NRC (2013)
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Bayesian Meta-Regression:  Effective Counts

• Need a method that allows for combining as many study types as possible and 
makes use of adjusted risk and confidence limit values reported by authors

• Cohort and case-control studies typically report relative risks (RR) and odds 
ratios (OR) adjusted for confounders

• EPA implemented an approach to calculate “effective counts” - i.e., the counts 
of cases and controls that would have been observed if the covariates in all 
exposure groups were equal to those observed in the referent group

• Allows reported risk values to be modeled with logistic model as incidence data
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Bayesian Meta-Regression: Exposure Group Means 

• Exposures in epidemiologic studies often reported as a range, whereas dose-
response software requires a point estimate for modeling

• Estimating a point estimate is relatively straightforward except for high doses 
which are often reported as open-ended ranges (e.g., > 10,000 µg/L-year)

• EPA used a maximum likelihood (ML) approach to estimate group-specific 
means 
– Exposures were assumed to be log-normally distributed
– ML estimates were considered “best” estimates

• Then, to characterize exposure uncertainty, the high exposure group mean was 
maximized or minimized, subject to constraints on the log-likelihood, yielding a 
set of group means consistent with the 95% confidence bounds on the high-
group mean
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Bayesian Meta-Regression: Dose Conversions

• In order to maximize the set of studies included in EPA’s meta-regression, 
study-specific exposure metrics were converted into a single measure of iAs 
intake in units of µg/kg-day 

• Previous meta-regressions have relied mainly on studies that using drinking 
water concentration as dose metric

• However, some studies have observed stronger associations when using 
alternative exposure metrics

• For example, Baris et al. (2016) found no association for drinking water 
concentrations but a statistically significant association for average daily 
arsenic intake (µg/day) and cumulative exposure (mg)

• Baris et al. (2016) ultimately concluded that “[t]he contrast in our findings for 
cumulative arsenic intake and average arsenic concentration underscores the 
importance of incorporating water intake when estimating an individual’s total 
arsenic exposure in low to moderately exposed populations…”
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Bayesian Meta-Regression: Dose Conversions

• Urinary iAs data were converted using El-Masri and Kenyon (2008) PBPK model 

• Studies reporting exposures in µg/L, µg/L-year, ug/day, or mg were converted 
using dose conversion equations

• Cumulative measures of exposure were preferred over drinking water 
concentrations because of the incorporation of individual-specific durations of 
exposure

• However, some cumulative metrics possibly reflect short periods of high-dose 
exposure rather than more consistent average exposures

• EPA will take these aspects of exposure ascertainment into consideration when 
selecting the specific exposure metrics to use in the meta-regression
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Bayesian Meta-Regression: Dose Conversions

• For example, Baris et al. (2016) reported exposures as cumulative intake in 
units of mg; to calculate intake in units of µg/kg-day, the following equation 
was used with study- or population-specific exposure factors:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐷𝐷𝐷𝐷 + 𝑓𝑓 ×
𝐶𝐶𝐷𝐷

𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝐵𝐵𝐵𝐵
+ (1 − 𝑓𝑓) × (𝐵𝐵𝐶𝐶𝑊𝑊 × 𝐿𝐿𝐴𝐴)

Variable (units) Mean SD Justification for Value and Data Source

CI – Lifetime Cumulative Intake (mg) Estimated from lifetime cumulative intake (mg) ranges provided by authors.

𝒇𝒇 – ADWE/AAD. 1 -- Assumed to be 1 when iAs well levels were not mitigated (restricted to be <= 1 for MC analysis). 

ADWE – Assumed average duration 
of well exposure (yrs) 66 -- Assumed to be lifetime when iAs levels in wells of the area studied were not broadly mitigated and 

author CI (mg) estimates are for lifetime intake. 

AAD – Average age at diagnosis (yrs) 66 -- Estimated from reported age frequencies for cases.

LE – Low water exposure (µg/L) 1.5 4 Mean US county iAs USGS measurements (Mendez et al. 2016). 
WCR – Water consumption rate 
(ml/kg-day) 34.5 23.2 Estimated from reported rates and confidence intervals for all age groups given in EPA Exposure 

Factors Handbook. Lognormal distribution assumed for MC analysis
DI – Dietary intake (µg/kg-day) 0.65 0.33 US dietary intake estimate (Xue, 2010). Assumed to be lognormally distributed for MC analysis.

BW – Body weight (kg) 42 3.33 From EPA Exposure Factors Handbook. Assumed to be lognormally distributed with low BW of 38kg

AGE - Average age of study 
participants (yrs)

Estimated from reported age frequencies for all study participants. Assumed to be normally 
distributed for MCMC.



20

Bayesian Meta-Regression: Dose Conversions

• Factors for conversions were treated as distributions and estimates were 
generated for each subject within a dose-group

• Individual estimates of intake dose were then calculated for the MLE, low-, and 
high-exposure estimates and averaged

• Markov Chain Monte Carlo (MCMC) methods were then used to characterize 
and account for study/population-specific interindividual differences in factors 
(e.g., water consumption rates, body weights, dietary intake) that influence the 
conversion of exposure to µg/kg-day intake dose estimates
– Individual group dose estimations were repeated 1,000 times to derive a distribution 

of dose values
– The median for the MLE, 5th percentile for the “low”, and 95th percentile for the 

“high” dose values were then used in the Bayesian meta-regression
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Bayesian Meta-Regression: Logistic Modeling 

• Purpose is to combine data from multiple cohort and case-control studies

• EPA assumes the prospective likelihood is given by a logistic equation, with 
arsenic intake, 𝑋𝑋, as the explanatory variable

𝑙𝑙𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙 Pr 𝐷𝐷 = 1 𝑋𝑋 = 𝛼𝛼∗ + 𝛽𝛽(𝑋𝑋)

• Allows estimation of prospective likelihood from case-control studies (which 
are by definition retrospective) and thus inclusion with cohort studies in meta-
regression

• Logistic model flexible enough to represent nonlinear “sigmoidal” dose-
response relationships expected at a population level for toxicants with widely 
differing individual sensitivities (e.g., due to human heterogeneity and/or 
multiple iAs MOAs) (NRC, 2006, 2009, 2014).

• This type of sigmoidal shape is possible at the population level “even if the 
dose-response relationship has a clear threshold in a single rodent species or 
cell line” (NRC, 2014)
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Bayesian Meta-Regression:  Use of MOA Information

• For ubiquitous toxicants such as iAs, where multiple studies exist that reflect the 
biological diversity & low levels of exposures in U.S. populations:
– “…extrapolation below the level of observations … is less important than for 

compounds for which evidence is derived from animal bioassays or occupational (high 
dose) epidemiology” (NRC, 2009)

– “it is impossible to determine the correct functional form of the population dose-
response curve solely from mechanistic information derived from animal studies and 
in vitro systems.” (NRC, 2014)

– “the existence of individual dose-response thresholds does not necessarily imply the 
existence of a population dose-response threshold” given individual differences in the 
threshold due to environmental or genetic factors (NRC, 2006)

𝜋𝜋𝑖𝑖 = 0, if d < 𝜃𝜃𝑖𝑖
𝜋𝜋𝑖𝑖 = 1 − exp −β 𝑑𝑑 − 𝜃𝜃𝑖𝑖 ,
if d > 𝜃𝜃𝑖𝑖

Individual dose-response curve

If Θ has a logit 
distribution

Logistic population dose-
response curve
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Bayesian Meta-Regression: Logistic Modeling 

• Hierarchical model assumes study-specific 𝛽𝛽 values are normally distributed 
around mean = 𝛽𝛽_mean with standard deviation = 𝛽𝛽_sigma

• 𝛽𝛽_mean and 𝛽𝛽_sigma are both assigned priors and updated

• Hierarchical structure of analysis explicitly accounts for heterogeneity across 
studies
– A random-effects model is used, where no “true” association between iAs exposure 

and disease is assumed (i.e., fixed effects), but rather a distribution of effects is 
estimated, reflecting that individual studies can be considered to be random samples 
from the true population

– The magnitude of heterogeneity across studies can be characterized by evaluation of 
the coefficient of variation for the pooled estimate of effect
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Bayesian Meta-Regression:  Gamma Prior for Pooled Slope

• The Gamma distribution for 𝛽𝛽_mean reflects the determination that iAs is 
causally associated with bladder cancer (i.e., prior does not allow negative 
slopes)

• Prior judgment is that exposure to 1 µg/kg-day iAs (~14-fold above average 
background exposure) is highly likely to result in 1.0001 < OR < 20

• 1st and 99th percentiles of Gamma distribution set equal to ln(1.0001) and 
ln(20)

• Gamma distribution is right skewed
– it gives greatest weight to values of x 

closest to zero
– Hence, prior assumption is weaker 

association with iAs unless data are 
sufficient to override prior
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Bayesian Meta-Regression:  Modeling Results
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Bayesian Meta-Regression: Lifetable Analysis

• Lifetable analysis methods, including consideration of background exposure 
to iAs used to estimate extra risk of disease in the target population (i.e., 
general US population)
– Background rates of disease assumed to represent zero extra risk from iAs
– A mean background iAs dose of 0.071 µg/kg-day assumed:  0.05 µg/kg-day from 

dietary exposures, 0.021 µg/kg-day from drinking water, and 0 µg/kg-day from 
inhalation
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Bayesian Meta-Regression:  Sensitivity Analyses

• Multiple sensitivity analyses indicate final modeling results not overly 
sensitive to modeling decisions

• Dose conversions/intake estimates: 𝛽𝛽_mean reasonably similar between 
high, MLE, and low intake estimates (0.19, 0.2018, 0.21)

• Incorporation of background iAs inhalation component only decreased extra 
risk estimates 4%-7% 

• Leave-one-out analysis showed no 
study had undue influence on final 
results; leaving out Wu et al. (2013) 
reduced extra risk 3-fold

• Assumption of different Gamma 
priors didn’t result in large 
differences in posterior distributions
– Alternative priors with different 1st

percentiles resulted in greatest 
differences
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Bayesian Meta-Regression:  Fractional Logistic Model

• Using a fractional logistic model 
can allow for J-shaped dose-
response curves (i.e., negative 
slopes in the low dose region); 
possibly more in line with iAs 
toxicological effects and/or MOAs

• A case study using bladder cancer 
data has shown that 
monotonically increasing dose-
response curves are preferred 
over low-dose negative curves

• Even for dose-response curves 
with low-dose negative slopes, 
slopes are monotonically 
increasing above iAs background 
exposure levels
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iAs Dose-Response Methods: Summary

• EPA’s proposed approach for modeling epidemiologic data for inorganic arsenic 
improves upon previous approaches:
– Screening analysis systematically identified health endpoints with databases suitable 

for further dose-response
– Uses a multi-study meta-regression approach and thereby avoids issues relating to 

selecting a single study to base analysis on
– Combines evidence from case-control and cohort studies
– Converts disparate measures of exposure into a single metric to allow for 

incorporation of as many studies as possible
– Logistic model flexible enough to fit many dose-response curves, including threshold-

like curves
– Possibility of non-monotonic dose-responses investigated via fractional logistic model
– Extrapolates risk to population of interest – US general population



30

Acknowledgements

• Ila Cote, Jeff Gift, Tom Luben, Ellen Kirrane, Ryan Jones, Allen Davis, Ingrid 
Druwe, Kris Thayer, Andrew Kraft, Tina Bahadori, Belinda Hawkins, members of 
NCEA Statistical Workgroup, and others at U.S. EPA

• Audrey Turley, William Mendez Jr, and others at ICF International

• Bruce Allen (Bruce Allen Consulting)

• Kan Shao (Indiana University)



31

References

Baris, D; Waddell, R; Beane Freeman, LE; Schwenn, M; Colt, JS; Ayotte, JD; Ward, MH; Nuckols, J; Schned, A; Jackson, B; Clerkin, C; 
Rothman, N; Moore, LE; Taylor, A; Robinson, G; Hosain, GM; Armenti, KR; Mccoy, R; Samanic, C; Hoover, RN; Fraumeni, JF; Johnson, A; 
Karagas, MR; Silverman, DT. (2016). Elevated Bladder Cancer in Northern New England: The Role of Drinking Water and Arsenic. J Natl 
Cancer Inst 108. http://dx.doi.org/10.1093/jnci/djw099

Chen, CL; Chiou, HY; Hsu, LI; Hsueh, YM; Wu, MM; Chen, CJ. (2010a). Ingested arsenic, characteristics of well water consumption and 
risk of different histological types of lung cancer in northeastern Taiwan. Environ Res 110: 455-462. 
http://dx.doi.org/10.1016/j.envres.2009.08.010

Chen, CL; Chiou, HY; Hsu, LI; Hsueh, YM; Wu, MM; Wang, YH; Chen, CJ. (2010b). Arsenic in drinking water and risk of urinary tract 
cancer: A follow-up study from northeastern Taiwan. Cancer Epidemiol Biomarkers Prev 19: 101-110. http://dx.doi.org/10.1158/1055-
9965.EPI-09-0333

El-Masri, HA; Kenyon, EM. (2008). Development of a human physiologically based pharmacokinetic (PBPK) model for inorganic arsenic 
and its mono- and di-methylated metabolites. J Pharmacokinet Pharmacodyn 35: 31-68. http://dx.doi.org/10.1007/s10928-007-9075-z

NRC (National Research Council). (2006).  Assessing the human health risks of Trichloroethylene:  Key scientific issues.  Washington, 
DC: The National Academies Press.  

NRC (National Research Council). (2009). Science and decisions: Advancing risk assessment. Washington, DC: The National Academies 
Press.  http://dx.doi.org/10.17226/12209

NRC (National Research Council). (2013). Critical aspects of EPA's IRIS assessment of inorganic arsenic: Interim report. Washington, 
D.C: The National Academies Press. 

NRC (National Research Council). (2014a). Review of EPA's Integrated Risk Information System (IRIS) process. Washington, DC: The
National Academies Press. http://www.nap.edu/catalog.php?record_id=18764

Wu, C, -C; Huang, Y, -K; Chung, C, -J; Huang, C, -Y; Pu, Y, -S; Shiue, H, -S; Lai, L, -A; Lin, Y, -C; Su, C, -T; Hsueh, Y, -M. (2013). 
Polymorphism of inflammatory genes and arsenic methylation capacity are associated with urothelial carcinoma. Toxicol Appl 
Pharmacol 272: 30-36. http://dx.doi.org/10.1016/j.taap.2013.05.019

http://dx.doi.org/10.1016/j.taap.2013.05.019

	Inorganic Arsenic IRIS Dose-Response Analyses
	Dose-Response: Methods Overview
	RRB Screening of Epidemiological Exposure-Response Data
	Qualitative Review of Dose-Response Feasibility
	RRB Screening Approach
	RRB Screening – Background Estimates of Exposure
	RRB Screening Approach and Results
	RRB Screening Conclusions 
	Dose-Response: Methods Overview
	Model Averaging
	Model Averaging: Bladder Cancer Results for NE Taiwan
	Model Averaging: Conclusions
	Dose-Response: Methods Overview
	Bayesian Meta-Regression:  Effective Counts
	Bayesian Meta-Regression: Exposure Group Means 
	Bayesian Meta-Regression: Dose Conversions
	Bayesian Meta-Regression: Logistic Modeling 
	Bayesian Meta-Regression:  Use of MOA Information
	Bayesian Meta-Regression: Logistic Modeling 
	Bayesian Meta-Regression:  Gamma Prior for Pooled Slope
	Bayesian Meta-Regression:  Modeling Results
	Bayesian Meta-Regression: Lifetable Analysis
	Bayesian Meta-Regression:  Sensitivity Analyses
	Bayesian Meta-Regression:  Fractional Logistic Model
	iAs Dose-Response Methods: Summary
	Acknowledgements	
	References




