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PREFACE 
 

Meaningful estimates of background contaminant levels are a critical component of site 

assessments. A request was submitted by the Ecological Risk Assessment Forum (ERAF) to the 

Office of Research and Development’s Ecological Risk Assessment Support Center (ERASC) 

relating to the issue of background soil trace metal and metalloid (hereafter referred to as 

“chemical”) demarcation at metals contaminated sites.  Specifically, the request pertained to the 

validity of an empirical methodology (geochemical association plots) that utilizes covariation 

between chemical concentrations and concentrations of major soil elemental constituents (i.e., 

reference metals) to identify samples that deviate from “natural” variation.2  Consequently, a 

comprehensive investigation of this methodology was conducted and assumes assessments are 

conducted with chemical and reference metal data collected from reference sites (i.e., 

background data) and site-related locations. This document summarizes the results of this 

investigation as described in the ERASC draft response and two peer-reviewed articles 

(Anderson and Kravitz, 2010, and Anderson et al., 2009). Part 1 of the document tests 

chemical/reference metal associations among uncontaminated soils of contrasting mineralogy 

and chemical/physical composition to help determine the extent of compatible background data 

sets. Chemical/reference metal associations are shown to vary significantly among background 

data sets. Thus, geochemical association plots are a useful screening tool for environmental site 

assessments, but ubiquitous application of generic background data sets could result in erroneous 

conclusions. Additional methodologies are needed as objective lines of evidence to conclude that 

a chemical occurs as site-related contamination. Part 2 of the document proposes a novel 

application to environmental site assessments. This application uses a multivariate-analysis 

methodology utilizing discriminant analysis with clustered chemical concentrations to determine, 

in relative order of magnitude, contaminated chemicals.  

                                                      
2Trace metals and metalloids (i.e., chemicals) are minor constituents of many geologic materials.  In general, 
cationic metals can be found in a variety of silicate and aluminosilicate minerals such as olivines, amphiboles, 
micas, and feldspars (Wilson et al., 2008).  In contrast, high levels of metalloids can be found in sedimentary 
deposits associated with pyritic sulfur-containing materials (Chen et al., 2002; Strawn et al., 2002).  Metamorphic 
rocks comprised of serpentine minerals are also associated with high background chemical levels (Burt et al., 2001; 
Lee et al., 2001).  Because of the variety of sources, regional background chemical levels can vary by up to 
three orders of magnitude (Gustavsson et al., 2001; Wilson et al., 2008).   
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EXECUTIVE SUMMARY 
 

Empirical associations among trace metals and a major (i.e., reference) soil elemental 

constituent, such as iron (Fe), are used during environmental site assessments to screen for 

contaminants of potential concern (COPCs).  These “geochemical association plots” use 

empirical log-log relationships to discern sites with naturally elevated chemical levels from sites 

with anthropogenic contamination.  Point of fact, log-log relationships have been consistently 

observed between chemicals and reference metal concentrations and are often implicitly assumed 

to be constant.  This investigation tests that assumption by using a regional geochemistry data set 

to evaluate background chemical/Fe log-log associations across soils with highly diverse 

composition.  The results indicate that although geochemical associations may be proportional, 

they differ statistically across predominant U.S. Department of Agriculture (USDA) soil orders.  

Also, intraorder variability in geochemical ratios generally ranged multiple orders of magnitude, 

which suggests that the order level of the USDA soil taxonomic system is insufficient to 

reasonably classify background chemical concentrations.  Geochemical association plots are a 

useful screening tool for environmental site assessments, but ubiquitous application of generic 

background data sets could result in erroneous conclusions (Anderson and Kravitz, 2010). 

Reference soils are used to define baseline chemical values during remedial 

investigations and are selected based on professional judgment, usually predicated on factors 

such as soil type, proximity to site, topoedaphic landscape position, and habitat.  Often, however, 

representative reference soils are difficult to delineate.  One could argue that a preferred 

methodology for determining COPCs should be independent of the assessor and capable of 

meaningful interpretation despite potential bias from incompatible reference soils or when 

reference soils cannot be collected at all (e.g., logistic or monetary constraints).  Additional 

methodologies are needed as objective lines of evidence for concluding a chemical occurs as 

site-related contamination—especially for sites with spatially heterogeneous soil composition 

where soil matrix composition can be highly variable.  

A multivariate-analysis methodology utilizing discriminant analysis with clustered 

chemical concentrations is proposed as a novel application to environmental site assessments that 

determine, in relative order of magnitude, contaminated chemicals.  Finite mixture models are 
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presented as a means to assess latent chemical clusters with some basis in statistical inference.  

The methodology is illustrated with a typical localized data set containing total chemical 

concentrations, extracted from bulk soil collected from reference (i.e., background data) and 

site-related locations, obtained from a former military installation in the southeast United States.  

The illustration is particularly applicable because site-related soils inherently possessed higher 

background chemical levels relative to reference soils, which biases conventional analyses.  

However, two distinct chemical signatures were observed within site-related samples illustrating 

the versatility of the proposed methodology.  Using these results along with known information 

regarding the history of contamination at the site, a qualitative and quantitative assessment of 

contaminated chemicals was made.  Results are intended for illustration purposes only and are 

discussed within the context of environmental site assessment.
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1. EVALUATION OF GEOCHEMICAL ASSOCIATIONS AS A SCREENING TOOL 
FOR IDENTIFYING ANTHROPOGENIC CHEMICAL CONTAMINATION 

 
1.1  INTRODUCTION 

 
The focus of this investigation is the bivariate analysis between soil chemical 

concentrations and concentrations of major soil elemental constituents (i.e., reference metals), 

collectively referred to as a geochemical evaluation (NAVFAC, 2003).  Geochemical evaluations 

are currently used to help determine contaminants of potential concern (COPCs) at some 

metals-contaminated sites (NAVFAC, 2003; U.S. EPA, 2007) and are predicated on the 

covariation between chemicals and reference metals, which have been repeatedly documented 

(Hamon et al., 2004; Myers and Thorbjornsen, 2004; Thorbjornsen and Myers, 2007a,b).  In this 

approach, chemicals that produce trends with anomalous observations are assumed to occur as 

site-related contamination.  All uncontaminated soil samples are implicitly assumed to follow 

similar, if not consistent, trends (Hamon et al., 2004; Myers and Thorbjornsen, 2004; 

Thorbjornsen and Myers, 2007a,b).  Although the validity of this assumption has been 

empirically supported (Hamon et al., 2004), it has not been formally tested.   

Soil matrix composition may modify geochemical associations.  Although formal 

causality cannot be inferred from scatter plots alone, covariation between chemicals and 

reference metals reflect soil mineral composition (Lopez et al., 2005) and soil chemical 

sequestration due to chemical adsorption to soil solid phases (Sparks, 2003).  However, total soil 

chemical concentrations are ambiguous in that they provide no information regarding the solid 

phase from which the analyte was extracted. 

Variable geochemical associations could occur across soils with contrasting siliceous and 

hydrous oxide clay minerals.  For example, chemical reactivity (i.e., binding capacity) of 

hydrous oxides is influenced by the degree of crystallinity, which is influenced by various 

pedogenic (i.e., soil forming) factors (Gerth, 2005).  Chemicals also have variable affinities for 

different hydrous oxide minerals (Huelin et al., 2006; Sparks, 2003).  Similarly, cationic trace 

metal affinity for the exchange complex of negatively charged siliceous clay minerals increases 

with surface area, which can be regulated by clay mineral structure and expandability rather than 

total clay content (Meier and Kahr, 1999).  Thus, anomalous observations among geochemical 
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association plots may not necessarily indicate anthropogenic contamination.  Further 

investigation is required to determine applicable background data sets for geochemical 

evaluations of sites based on log-log trace metal/reference metal associations. 

Central to the issue of identifying contaminated samples is identifying appropriate 

background chemical concentrations fundamental to geochemical evaluations. Co-contamination 

of reference metals and spatial heterogeneity could impede accurate conclusions and result in 

statistical uncertainty. Without representative background data or with a predominance of 

suspect site-related data, geochemical evaluations could result in erroneous conclusions if, on 

average, site-related data were collected at a scale impacted by contamination (Molinaroli et al., 

1999; Kazemi et al., 2008; Koptsik et al., 2003; Vanderlinden et al., 2006). Sufficient 

representative background chemical data are fundamentally critical to geochemical evaluations.  

Consequently, the objective of this investigation was to test chemical/reference metal 

associations among uncontaminated soils of contrasting mineralogy and chemical/physical 

composition to help determine the extent of compatible background data sets.  A regional 

geochemistry data set, obtained from the USDA Natural Resource Conservation Service (NRCS) 

Cooperative Soil Survey Program, was used to test the implicit assumption that all 

uncontaminated soil samples follow similar, if not consistent, trends (Hamon et al., 2004; Myers 

and Thorbjornsen, 2004; Thorbjornsen and Myers, 2007a,b).  In this context, the central 

tendencies of the bivariate relationships are evaluated among dissimilar soils in terms of their 

estimated Y-intercept and slope values.  Log-linear relationships between selected chemicals and 

Fe, a surrogate soil reference metal, were analyzed for selected chemicals.  

 

1.2  STATISTICAL ANALYSES 
 

Log-log trace metal/reference metal associations were evaluated across individual pedons 

of the same soil series (i.e., the finest level of US taxonomic classification) and analyzed for 

differences across nine predominant soil orders (i.e., the broadest level of US taxonomic 

classification). Further evaluations on sub-order classifications were operationally difficult 

because most soils were not classified to sub-order levels. Proportionality of geochemical log–

log associations among soil orders was evaluated by analysis of covariance (ANCOVA) with a 
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model described in Anderson and Kravitz, 2010. See that publication for further detail on 

statistical analyses. 

 

1.3  RESULTS AND DISCUSSION 
 

Soils derived from geologic materials with appreciable trace metal concentrations retain a 

similar chemical composition throughout early genesis. However, as soils weather and undergo 

pedogenesis (i.e., chemical/physical transformations), there is a redistribution of analytes, 

organic matter accrual, and secondary (siliceous and hydrous oxide) clay mineral precipitation 

resulting in soil chemical/physical properties with variable similarities to that of the original 

parent material (Minasny et al., 2008). Organic matter and secondary clay minerals both affect 

trace metal retention through ion exchange reactions and semi- to highly stable covalent binding 

(Sparks 2003). Hence, a highly diverse population of reference soils comprised of contrasting 

chemical/physical properties was essential to comprehensively evaluate geochemical trace 

metal/reference metal log–log associations. 

Geochemical trace metal/reference metal log–log associations are usually illustrated with 

Fe, Al, or Mn as the representative soil reference metal. Log-linear relationships between Fe and 

Al concentrations and Fe and Mn concentrations were plotted by Anderson and Kravitz, 2010 

(see Figure 1 in that paper). Because significant associations were observed, trace 

metal/reference associations were evaluated with Fe as the surrogate reference metal. 

Log–log plots are used to compress metal distributions in order to obtain linear 

relationships and assume log-normality for statistical inference. Log–log plots between selected 

trace metals and total soil Fe concentrations are presented in Figure 1. Obvious trends are readily 

apparent with the exception of Cd (and to a lesser extent Pb) where relationships are highly 

variable. Significant interaction was observed for all metals except Cd (Table 2 in Anderson and 

Kravitz, 2010). Interaction indicates a departure from parallelism suggesting disproportional 

relationships among predominant soil orders. However, as discussed in Anderson and Kravitz, 

2010, evidence of disproportionality is marginal at best and can be seen by evaluating trends in 

Figure 1. Thus, further evaluation using a method robust to the influence of sample size was 

necessary. 
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Log trace metal/Fe ratios were calculated according to Eq. 3 in Anderson and Kravitz, 

2010. Figure 2 shows box plots illustrating distributions of ratios among predominant soil orders.  

Interestingly, ratios generally ranged multiple orders of magnitude within individual soil orders 

except for V, which only ranged two orders of magnitude reflecting the lack of variability 

observed in Figure 1.  Numerous extreme data points were observed (i.e., shaded circles) and 

were determined as data below and above the 5th and 95th percentiles, respectively.  Distributions 

of all ratios generally fell on the same scale—except for Cd, which was considerably lower 

(Figure 2).   

Geochemical ratios were evaluated at the order level of USDA soil taxonomy to 

specifically test the broadest hierarchical level of soil classification.  Similar ratios across 

predominant soil orders would support ubiquitous application of generic background data sets for 

site assessments based on geochemical evaluations.  However, nonconstant ratios were observed 

as evidenced by statistically significant differences among soil orders for all chemicals evaluated 

(Table 1).  These results suggest that soil composition affects the ratio of selected chemicals to 

Fe.  Thus, although geochemical associations may be proportional (Figure 1), the application of 

generic background data sets could result in Type II or Type I statistical errors.  Alternatively 

stated, geochemical evaluations can result in the identification of anthropogenic contamination as 

background (contaminated observations at or below the trend line) or identification of 

background as anthropogenic contamination (background observations above the trend line). 

The variability observed in trace metal/Fe ratios within soil orders suggests that the order 

level of soil classification may be too broad of a category to determine applicable background 

data sets for site assessments based on geochemical association. The USDA Soil Taxonomy 

system sub-classifies soils on the basis of mineralogy only at the family (i.e., sub-order) level 

and may provide a better hierarchical scale at which to evaluate trends in geochemical ratios 

(NRCS, 2003). Hence, further study is required to explicitly determine the taxonomic level of 

classification where constant trace metal/reference metal ratios occur. 

Geochemical surveys have repeatedly shown that background chemical concentrations 

strongly depend on geologic and pedogenic processes (Burt et al., 2003; Gustavsson et al., 2001; 

Klassen, 1998; Miretzky et al., 2001; Wilson et al., 2008). Overall, this investigation suggests 

that parent material composition and pedogenic factors may all influence geochemical ratios 

given the diversity of soils evaluated (Burt et al., 2003; Wilson et al., 2008). Assuming consistent 
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effects of geologic and pedogenic processes on geochemical ratios during environmental site 

assessments is an over simplification and may result in erroneous identification of anthropogenic 

contamination.  Site-specific background chemical data should be utilized if ample reference 

sites with similar (i.e., suborder) soil composition can be identified and sampled. 

 

1.4  RATIONALE FOR ALTERNATIVE METHODOLOGY 
 

Although geochemical evaluations provide a tool for assessing potential soil 

contamination, this investigation has quantitatively illustrated that results can be biased if 

site-related soils and/or reference soils are of dissimilar composition, although further study is 

required to explicitly determine the appropriate taxonomic level of classification for geochemical 

evaluations.  Reference soils for background data sets are selected at the discretion of the 

assessor and based on professional judgment usually predicated on factors such as site geology, 

soil type/parent material, proximity to site, topoedaphic landscape position, and habitat.  One 

could argue that a preferred methodology should be independent of the assessor and capable of 

meaningful interpretation despite potential bias from incompatible reference soils or when 

reference soils cannot be collected at all (e.g., logistic or monetary constraints).  Additional 

methodologies are needed as objective lines of evidence for concluding a chemical occurs as 

site-related contamination—especially for sites with spatially heterogeneous soils where soil 

matrix composition can be highly variable. 

Multivariate analysis techniques can simultaneously evaluate multiple chemicals and 

allow the development of a site-specific chemical profile that has been referred to as a signature 

(Ridgway et al., 2003).  Multivariate chemical signatures have been used to identify 

contaminated sites through techniques such as robust multivariate outlier detection (Filzmoser et 

al., 2005), principal component analysis (Imrie et al., 2008; Korre, 1999a), and factor analysis 

(Dragovic et al., 2008; Korre, 1999a; Reimann et al., 2002; Vaccaro et al., 2007).  Formal 

inference among these procedures assumes multivariate lognormality out of convenience because 

it leads to chi-square distributed distance values for significance tests (Filzmoser et al., 2005). 

Univariate and bivariate applications are perfectly acceptable exploratory analyses for 

some situations, but multivariate methods are relatively more comprehensive and can reveal 

features of environmental data that univariate and bivariate methods cannot. The methodology 
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summarized here, from Anderson et al., 2009, is emphasized for sampling schemes that collect a 

large percentage of contaminated samples making it difficult to separate outliers from population 

mixtures. In this context, a method capable of separating samples into categories that represent 

sites with relatively homogeneous multivariate signatures seems logical for reliable inference. 

 
 
2. APPLICATION OF DISCRIMINANT ANALYSIS WITH CLUSTER ANALYSIS TO 

DETERMINE ANTHROPOGENIC CHEMICAL CONTAMINATION 
 

2.1  INTRODUCTION 
 

Cluster analysis (CA) is an assortment of multivariate data analysis methods that aim to 

discover groups of similar observations.  A considerable variety of CA techniques have been 

proposed, as reviewed in specialized texts (Everitt, 1993; Gordon, 1999) as well as general texts 

on multivariate data analysis (Rencher, 2002; Seber, 1984; Venables and Ripley, 1998).  Many 

CA methods summarize information in the form of a matrix giving similarities (or distances) 

relating pairs of observations, as determined using some appropriate index, and generate 

classifications such that observations in a given class are more similar to one another (as 

measured using the chosen index) than to observations in different classes.  Such methodology 

has been driven particularly by the needs of biological taxonomy and ecological community 

analysis.  However, applications to environmental site assessments have increased in recent years 

(Dragovic et al., 2008; Martinez et al., 2007; Mico et al., 2006; Molinaroli et al., 1999). 

In addition to similarity-based procedures, there are recent methods of model-based CA, 

which are based on distributional models (Fraley and Raftery, 2002; Fruhwirth-Schnatter, 2006).  

Basing CA on a probability model leads to likelihood-based statistical inferences, jointly for 

classifying observations and estimating parameters of class-specific distributions.  In practice, 

model-based CA is usually based on the theory of finite mixtures (Fruhwirth-Schnatter, 2006; 

Ter Braak et al., 2003; Yang and Chang, 2005).  A model-based approach assumes that sites can 

be grouped into classes that can be described with distinct multivariate models (Banfield and 

Raftery, 1993).  Results from model-based clustering may be directly useful in the context of 

environmental site assessments possibly leading to discovery of heterogeneity within and/or 

among reference and/or site-related sample soil populations that could cast doubt on standard 
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statistical comparisons.  Multivariate application of model-based CA to environmental site 

assessment remains uninvestigated. 

Discriminant analysis (DA) is commonly applied with samples grouped using CA, in 

order to evaluate the variables that account for cluster differences.  DA methods are based on 

assumptions similar to those of a finite mixture of multivariate normal distributions.  The 

primary advantage of DA is that the classification of samples is used to derive a linear 

combination of the original variables (i.e., the discriminant function) that can serve to 

discriminate among clusters.  Canonical DA allows the identification of a few, orthogonal 

discriminant functions based on the number of classifications, which can be determined by CA 

(see Lambrakis et al., 2004; Mariner et al., 1997; Petalas and Anagnostopoulos, 2006; Sielaff and 

Einax, 2007).  Despite an explosion of data-mining methodologies, basic DA methods continue 

to perform a critical role in many disciplines, particularly for small data sets (Hastie et al., 2009). 

The remainder of this paper illustrates the application of CA and DA to environmental 

site assessments.  The methods are illustrated with a typical localized data set containing total 

soil chemical concentrations, collected from reference and site-related locations, obtained from a 

small arms munitions firing range in the southeast United States.  Specifically, objectives are to 

(1) illustrate the application of CA to define multivariate chemical signatures and (2) illustrate 

the use of DA to characterize differences in chemical signatures among clusters identified with 

CA.  Results are discussed within the context of environmental site assessment. 

 

2.2  MATERIALS AND METHODS 
 

The proposed methodology is illustrated with field data collected during the remedial 

investigation of Ft. McClellan, a former military installation located in Alabama, USA.  Ft. 

McClellan was closed under the Base Realignment and Closure program in 1999.  The Fort 

consisted of the Main Post, Pelham Range, and Choccolocco Corridor covering more than 

18,000 ha (Figure 3).  Firing ranges located in the Choccolocco Corridor (hereafter referred to as 

“Site”) were used for military small arms training during World War II, the Korean War, and the 

Vietnam War, and the potentially affected area was subject to this investigation.  The range was 

abandoned in 1974 and mostly restricted to small arms training. 
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The major soil complexes at the Fort are described in Anderson et al., 2009. Most of the 

reference samples associated with the existing data set came from the Main Post. Other reference 

samples came from the Pelham Range (Figure 3). 

Soil samples were collected and stratified by depth using a stainless steel hollow stem 

hand auger in accordance with ASTM method D1452 (ASTM, 2009). Only samples collected 

from 0–30 cm were used for statistical analyses. Site-related soil samples were analyzed for the 

Target Analyte List (TAL) by U.S. EPA SW-846 analytical methods (U.S. EPA, 2018). All 

chemicals, except mercury, were analyzed with Inductively Coupled Plasma-Atomic Emission 

Spectroscopy (ICP-AES). Reference soil samples were also analyzed for TAL chemicals using 

ICP-AES. Further information on soil collection and analytical measurements techniques are 

described in Anderson et al., 2009. 

Hierarchical cluster analysis (CA) was used to assess patterns of geochemical association. 

Results of this approach are displayed by a tree-like structure called a dendrogram. A 

classification with a specified number of clusters was obtained from the dendrogram. Model-

based CA was implemented using the R package mclust Version 3 (Fraley and Raftery 2002, 

2006) with options set to defaults. 

Multivariate DA was used to summarize between-cluster variability as a function of all 

measured chemicals. Because results from model-based CA suggested three components, DA 

was performed with the three clustered chemical groups (i.e., signatures) allowing estimation of 

within-cluster covariances.  Assuming equal covariance matrices for each cluster leads to the 

method of linear discriminant analysis, while quadratic discriminant analysis (QDA) allows for 

different covariance matrices.  However, discriminant plots for QDA are currently a topic of 

statistical research (Khattree and Naik, 2000; Pardoe et al., 2007).  Discriminant plotting based 

on linear DA gave highly interpretable results, despite results from model-based clustering 

suggesting differences among covariance matrices.  As a result, the structure of the standardized 

linear discriminant function of interest (defined for each chemical as the linear correlation 

coefficient between the canonical scores and actual values) was evaluated in order to determine, 

in relative order of magnitude, the chemicals that best distinguished between inferred 

background and contaminated signatures.  Multivariate DA was conducted using PROC 

DISCRIM in SAS Version 9.2 for Windows. 
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2.3  RESULTS AND DISCUSSION 
 

Summarized total chemical concentrations for both reference and Site-related sample soil 

populations are presented in Table 2. All mean cationic metal levels are elevated in Site-related 

soils relative to reference soils, while the opposite is true for the anionic species (arsenic, 

chromium, and vanadium). This suggests dissimilarity in the chemical/physical matrices of the 

two sample populations, which can be assessed by evaluating relationships between 

concentrations of dominant clay mineral constituents such as aluminum (Al) and iron (Fe). 

Figure 4 shows elevated Al concentrations in Site-related soils relative to Fe concentrations. 

Significantly (p < 0.0001) different intercepts, as determined by Analysis of Covariance, verify 

that differences in soil matrices are in part responsible for elevated cationic trace metal 

concentrations in Site-related soils. This is because 1) Al is a dominant constituent of the clay 

minerals involved in cationic metal sequestration (Sparks, 2003) and 2) neither Al nor Fe 

contamination has ever occurred at the Fort.  Consequently, conventional assessment 

methodologies (e.g., univariate tests, tests of location, and bivariate associations) would likely 

result in high false-positive error. However, assessment of latent chemical signatures can still be 

assessed illustrating the versatility of CA. 

 

2.3.1  Cluster Analysis 
 

 All data were subjected to hierarchical CA to assess the empirical pattern of multivariate 

association among chemical concentrations. A dendrogram depicting clusters that minimize 

within-cluster sum of squared error at all possible cluster configurations is shown in Figure 5. 

The three cluster configuration accounted for over half the variability in chemical concentrations 

(R-square=0.652). Subsequent cluster configurations accounted for increasingly less variability 

(Figure 5). 

 

2.3.2  Discriminant Analysis 
 

 Once divergent chemical signatures have been determined and have been associated with 

a contamination event, the objective is to determine the chemical or chemicals responsible for 

the divergent signatures. Obviously, simple statistics (mean, min, and max) for each chemical 
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within each observed signature are relevant diagnostics. However, for purposes of identifying 

multivariate signatures, DA provides quantitative and graphical results that are particularly suited 

for evaluating the signatures that best account for cluster differences. While the mclust software 

includes DA capabilities, for present, illustrative purposes we prefer the current relatively 

standard approach based on use of specialized canonical DA software. 

The discriminant plot of the standardized canonical coefficients is presented in Figure 6. 

Notably apparent is the vertical separation of all reference and Site-related samples (signatures 1 

and 2 vs. 3) characterized in the first canonical variable (Can 1). Thus, Can 1 quantifies the 

degree to which reference and Site-related samples differ in chemical concentrations, which we 

argue to be the result of differences in soil matrix composition (Figure 2). Can 1 accounted for 

the vast majority (92.5%) of the overall variability in chemical concentrations. However, the 

second canonical variable (Can 2) was still highly significant (p <0.0001) and resulted in roughly 

equal separation of Site-related samples in the horizontal space. Thus, although minor compared 

to the matrix effect, substantive differences in chemical concentrations were also evident 

between Site-related signatures quantified by Can 2 (Figure 6). 

Of primary importance to environmental assessors is the ability to determine 

contaminants among a suite of measured chemicals, with the most important differences between 

site-related and reference subsets.  Typical assessments involve an independent evaluation of 

each chemical using the previously discussed methodologies (NAVFAC, 2003).  Such 

procedures generate large quantities of output, which can be labor intensive to evaluate.  

Multivariate procedures, in general, and our proposed CA with subsequent DA approach provide 

a simultaneous assessment based on information from multiple chemicals.  Using the structure of 

the relevant canonical variable(s) along with known information regarding the history of 

contamination events at a site, both a qualitative and quantitative assessment of contaminated 

chemicals can be made.  By evaluating the structure of Can 2, the relative order of elevated 

chemicals (i.e., chemicals above background) can be determined and is illustrated in Figure 7.  

Cu, Pb, and Zn were determined as the three most elevated chemicals, respectively, and are 

consistent with contamination associated with small arms firing ranges.  Combining site history 

information with these results, one could conclude that Cu, Pb, and Zn are contaminated 

chemicals, while the other chemicals are within background ranges. 
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2.3.3  Potential Applications 
 

A common deliverable from studies designed to investigate the nature and extent of 

contamination are geographic maps of chemical concentrations.  Spatial interpolation methods 

such as kriging are commonplace in Geographic Information Systems and are used to estimate 

spatially continuous chemical distributions within a discretely sampled area.  Usually, however, 

chemical distributions are mapped individually without regard to co-occurring chemicals 

(Johnson and Ander, 2008).  On the other hand, multivariate assessment of complex chemical 

signatures can consolidate output necessary for decision making (Korre, 1999b).  For example, 

classification output from a CA has been used to map multivariate chemical signatures for 

predetermined grid cells within a study site (Martinez et al., 2007).  Alternatively, spatial 

interpolation methods can be applied to discrete variables (Mancho et al., 2006), such as 

categories of chemical concentrations for continuously distributed maps. Another objective of 

environmental site assessments is the development of site-specific benchmarks of chemical 

concentrations that delineate the upper limit of background values. Typically, background 

benchmarks are estimated as the upper tolerance limit (90% coverage and 95% confidence) of a 

reference population of soil samples (U.S. EPA, 2007). Reference soils are selected at the 

discretion of the assessor and based on professional judgment usually predicated on factors such 

as proximity to site, topoedaphic landscape position, and habitat. Inherent in their application is 

the assumption that reference and site-related soils are of similar composition which is 

contradicted in the current study (Figure 4). Thus, methodologies are needed that estimate 

background benchmarks where incompatible reference soils are inadvertently collected (e.g., the 

current study) or when reference soils can not be collected at all (e.g., monetary or logistic 

constraints). 

 

CONCLUSION 
 

Chemical/reference metal associations among uncontaminated soils of contrasting 

mineralogy and chemical/physical composition were tested to help determine the extent of 

compatible background data sets. Chemical/reference metal associations were shown to vary 

significantly among background data sets. Thus, geochemical association plots are a useful 
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screening tool for environmental site assessments, but ubiquitous application of generic 

background data sets could result in erroneous conclusions. Additional methodologies are needed 

as objective lines of evidence to conclude that a chemical occurs as site-related contamination. A 

multivariate-analysis methodology utilizing discriminant analysis with clustered chemical 

concentrations is proposed as a novel application to environmental site assessments that 

determine, in relative order of magnitude, contaminated chemicals. The methodology is 

illustrated with a typical localized data set - from a former military installation in the southeast 

United States - containing total chemical concentrations, extracted from bulk soil collected from 

reference (i.e., background data) and site-related locations. Site-related soils inherently possessed 

higher background chemical levels relative to reference soils, yet two distinct chemical 

signatures were observed within site-related samples, illustrating the versatility of the proposed 

methodology. Using these results, along with known information regarding the history of 

contamination at the site, a qualitative and quantitative assessment of contaminated chemicals 

was made. Copper, lead, and zinc were the contaminated chemicals, while the other chemicals 

were within background ranges. 
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Table 1. Non-parametric Test Results Showing Differences in Trace Metal/Fe Ratios* 

Across Predominant USDA Soil Orders for Selected Trace Metals. 
 
 
Statistic Cd Cr Cu Pb V Zn 

Chi-Square 28.4 37.6 22.8 79.2 22.2 39.6 

Degrees of Freedom 8 8 8 8 8 8 

p-Value 0.0004 <0.0001 0.0036 <0.0001 0.005 <0.0001 
 

*See Eq. 3. in Anderson and Kravitz, 2010 
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Table 2. Summarized Total Chemical Concentrations (mg kg−1) Among Referencea and 
Site-relatedb Sample Soil Populations. 

 
 

Contaminant 
Reference Soils Site-Related Soils 

Mean Std. Dev. Min Max Mean Std. Dev. Min Max 

Antimony 1.02 1.33 0.04 3.57 6.65 4.40 4.30 50.3 

Arsenic 6.59 7.75 1.10 48.5 4.97 2.62 0.57 13.8 

Barium 60.2 54.0 11.2 288 136 197 28.9 2290 

Beryllium 0.39 0.21 0.06 0.87 0.78 0.39 0.37 2.66 

Cadmium 0.17 0.28 0.01 2.01 0.78 1.68 0.50 18.8 

Chromium 18.4 20.5 1.99 134 15.4 7.62 3.80 51.2 

Cobalt 7.10 11.1 0.39 70.9 10.3 20.4 1.14 214 

Copper 6.32 4.30 0.25 23.5 60.0 83.9 4.86 389 

Lead 19.4 14.5 2.89 82.8 410 824 8.44 4640 

Mercury 0.04 0.05 0.01 0.32 0.08 0.11 0.03 1.18 

Nickel 5.08 4.14 0.82 21.8 7.97 6.91 1.07 59.7 

Selenium 0.24 0.14 0.13 1.28 1.03 0.62 0.53 3.79 

Silver 0.18 0.34 0.01 1.87 1.18 0.10 1.05 1.69 

Thallium 0.75 1.32 0.02 3.31 1.23 0.47 0.73 5.68 

Vanadium 29.6 26.4 4.66 158 23.3 11.6 5.66 53.1 

Zinc 20.4 26.7 2.46 209 182 1060 9.74 9540 
 

aNonaffected by Site-related activity; n = 67. 
bPossibly affected by Site-related activity; n = 139. 
  



19 
  

 
 
Figure 1. Log-linear Relationships Between Selected Trace Metal and Fe Concentrations Among Predominant USDA Soil 

Orders. 
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Figure 2. Box Plots Depicting Log Distributions of Geochemical Ratios Among Predominant USDA Soil Orders.  Boxes 

represent the interquartile range (i.e., 25th−75th percentiles) and the center horizontal line represents the 50th percentile or 
median value.  Lower and upper horizontal lines represent threshold values (i.e., 5th and 95th percentiles, respectively) 
beyond which constitute extreme observations represented by the shaded circles. 
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Figure 3. Site Soils Map.  Former Choccolocco Corridor Ranges, Fort McClellan, AL, USA. 
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Figure 4. Geochemical Associations Between Total Soil Aluminum and Iron 
Concentrations Among Reference and Site-related Sample Soil Populations 
Illustrating Incompatible Matrices. 
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Figure 5. Dendrogram Depicting the Hierarchical Clustering of Chemical 

Concentrations. 
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Figure 6. Results from Discriminant Analysis of the Three Significant Chemical 

Signatures Illustrating the Multivariate Separation of Chemical 
Concentrations.  Signature 1 contains 51% of the Site-related soil samples, 
Signature 2 contains the other 49% of the site-related soil samples, and Signature 3 
contains 100% of the reference soil samples. 
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Figure 7. Results from Discriminant Analysis Illustrating, in Order of Relative 

Magnitude, the Contaminants of Potential Concern for Site-related Soils (i.e., 
the second canonical variable). 
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