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DISCLAIMER

This report has been reviewed in accordance with U.S. Environmental Protection Agency
policy and approved for publication.  Mention of trade names or commercial products does not
constitute endorsement or recommendation for use.

ABSTRACT

Tolerance values provide a measure of the sensitivity of aquatic organisms to
anthropogenic disturbance and have historically provided a useful tool for assessing the
biological condition of streams and rivers.  However, the tolerance values that are currently
available are limited by the geographical areas in which they can be applied, and do not provide 
diagnostic information as to the causes of the impairment in streams.  This report reviews and
compares methods for estimating tolerance values from field data and for applying them to assess
the biological condition of streams and to diagnose the causes of impairment.  The intent of this
report is to provide a resource of state, tribal, and regional biologists who wish to use tolerance
values to help interpret biological data.

Methods for estimating tolerance values first model (either explicitly or implicitly) the
relationship between a given taxon and an anthropogenic stressor gradient (the taxon-
environment relationship).  Then, a single representative value is extracted from this relationship,
which is designated as the tolerance value.  Three types of tolerance values are expressed on a
continuous scale: (1) the weighted average, (2) cumulative percentiles, and (3) the maximum
point of the taxon-environment relationship.  A fourth type is categorical and classifies the shape
of the taxon-environment relationship.   All types of tolerance values provide fairly comparable
rankings of tolerance among different taxa.

After tolerance values are estimated, metrics can be computed that summarize the
tolerance information of all the taxa observed at a test site.  Two types of metrics can be
computed: compositional metrics and the mean of observed tolerance values.  Compositional
metrics apply categorical tolerance values and summarize characteristics of different groups of
taxa (e.g., the relative abundance of tolerant taxa).  The mean of observed tolerance values can be 
computed for any continuously valued tolerance value.  Virtually all metrics are found to be
strongly associated with observed stressor levels.  The means of weighted average tolerance
values are consistently and strongly associated with observed stressor levels in the data analyzed
for this report.  Ultimately, metrics values at test sites must be compared with reference
distributions to determine whether conditions at test sites differ significantly from expectations.

The main areas of uncertainty with the tolerance value methodology are discussed.  Some
of these uncertainties and additional implementation issues must be addressed to more fully
facilitate the use of tolerance values for the management of the nation’s waters.
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PREFACE

This document, Estimation and Application of Macroinvertebrate Tolerance Values, was

prepared by the National Center for Environmental Assessment.  The document is a technical

review of statistical methods for estimating macroinvertebrate tolerance values from field data.  It

also reviews different methods for applying tolerance values for assessing biological conditions

of streams and rivers and for diagnosing the causes of impairment.  The purpose of this document

is to provide a technical resource for states, tribes, and regions that wish to use tolerance values

to interpret stream biological data.

This final document reflects a consideration of all comments received on an External

Review Draft dated September 2004 (EPA/600/P-04/116A).
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1.  INTRODUCTION

Benthic macroinvertebrates are widely collected and used to assess the condition of

streams and rivers.  One approach for interpreting biological assessment data is to group taxa

according to their perceived tolerance or sensitivity to anthropogenic disturbances.  After these

groups, or tolerance values, are established, the condition of new sites can be assessed on the

basis of whether taxa from tolerant or sensitive groups are predominantly collected.  Tolerance

values have historically played an integral role in biological assessment.  One set of tolerance

values (the saprobrien system) was derived in the early 1900s in central Europe by documenting

differences in microorganism assemblages collected at progressively larger distances downstream

from sewage outfalls.  Other early examples of assigning tolerance values to macroinvertebrates

include those of Chutter (1972), who assigned tolerance values to South African

macroinvertebrates using best professional judgement, and the Biological Monitoring Working

Party (BMWP) (Armitage et al., 1983), which assigned tolerance values to macroinvertebrate

families observed in Great Britain.  In North America, Hilsenhoff (1987) developed tolerance

values with respect to a gradient of organic pollution, and these values are still widely used

today.  Lenat (1993) refined Hilsenhoff’s approach, defining tolerance values with respect to a

more comprehensive list of anthropogenic disturbances. 

Tolerance values have been used successfully to assess the condition of running waters,

but in recent years two issues have arisen regarding the widespread application of these values. 

First, the application of tolerance values in regions that differ from where they were originally

derived has been questioned.  For example, most tolerance values (e.g., Hilsenhoff, 1987; Lenat,

1993) have been estimated using data collected in the midwestern and eastern United States, and

these tolerance values have then been modified for use elsewhere in the country.  However,

regional species pools differ substantially in different areas of the United States, and as a result,

many of the taxa collected outside of the midwestern and eastern U.S. have not been assigned

tolerance values.  Furthermore, the stressor gradients commonly observed in other regions can

differ from the organic pollution gradients for which the Hilsenhoff tolerance values were

originally designed.  A more comprehensive examination of the estimation of tolerance values

and their general applicability to other regions is required.  

The second issue is a growing interest in extending the use of tolerance values from

simple assessments of stream condition to diagnoses of the causes of impairment.  Over a

thousand streams are currently listed on the U.S. Environmental Protection Agency’s (EPA’s)

303(d) list as being biologically impaired, but the causes of the impairment are unknown, which

severely hinders effective management actions.  If organisms that are sensitive or tolerant to

particular anthropogenic stressors can be identified, the presence or absence of different
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organisms in impaired streams can potentially help identify possible sources of impairment.  

Although most current organism tolerance values have been defined with respect to a single

gradient of anthropogenic disturbance (e.g., Hilsenhoff, 1987), the potential for estimating

tolerance values with respect to particular stressors has been described in a few studies: Slooff

(1983) showed that aquatic macroinvertebrates differ in their sensitivity to different stressors, and

in more recent work, Chessman and McEvoy (1998) attempted to estimate tolerance values that

discriminated between different types of anthropogenic disturbance.  The tolerance values

developed by Chessman and McEvoy had limited discriminatory powers, but they did illustrate

the potential power of the method.

To address these issues, EPA and the Council of State Governments convened a

workshop in February 2004 in Corvallis, OR.  Workshop attendees were selected for their

experience in deriving and applying tolerance values and included biologists from environmental

protection agencies in western states, EPA staff, academics, and industry representatives

(Appendix A).  The program consisted of a day of presentations of current methods for deriving

tolerance values, followed by a day of discussion within smaller breakout groups and half a day

of discussion that included the full group.  

This report continues the effort initiated by the workshop by synthesizing and expanding

on the deliberations of the attendees.  In particular, this report (1) reviews the ecological theory

that underlies the concept of tolerance values, (2) reviews methods for computing tolerance

values from field data, (3) reviews methods for applying tolerance values in stream assessments,

(4) identifies uncertainties and research priorities in the derivation and application of tolerance

values, and (5) identifies practical issues hindering the broader use of tolerance values in

monitoring and assessment programs.  The methods discussed in this report can be used to

estimate both general disturbance tolerance values (for assessing biological condition) and

stressor-specific tolerance values (for diagnosing the causes of impairment).  However, the

examples provided in the report focus more specifically on the issues pertaining to diagnosis of

cause.  The intent of this report is to provide a resource for state, tribal, and regional biologists

who wish to use tolerance values to help interpret biological data for evaluating biological

condition and for diagnosing the causes of stream impairment.

2.  THEORETICAL UNDERPINNINGS

2.1.  UNIMODAL NICHE MODELS

Ecological niche theory suggests that individual species are often unimodally distributed

along environmental gradients.  This distribution dictates that the probability of a species’
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Figure 1.  Theoretical unimodal distribution of species
occurrence.

occurrence or abundance has a maximum value at some point along an environmental gradient

(e.g., with regard to temperature, Figure 1).  This point is known as the species optimum. 

Probabilities of finding a species and the expected abundance of a species decrease as conditions

depart from the species optimum.  Unimodal distributions are thought to arise over evolutionary

time scales as species specialize to optimally exploit certain habitat conditions or resources

through the process of adaptive radiation (niche diversification) (Odum, 1971).  Each species is

simultaneously affected by a variety of factors, but for simplicity, discussion is restricted here to

a single environmental gradient.

Species differ in their optima and in the range of conditions about their optima in which

they can persist, so unimodal response functions vary in their location along a particular gradient

and in the width of the curves.  Furthermore, the frequency of occurrence and abundance of

different species can vary greatly, so the maximum values of the response functions will differ

among species (Figure 2).  Thus, for a given species pool, a diverse set of species–environment

relationships are expected along a particular gradient, and if we sample streams at different

points along that gradient, we would expect to find a different assemblage of species.  Based on

the responses shown in Figure 2, we would expect to find species B, C, and D in a 7°C stream,

whereas we would expect to find species C and E in a 25°C stream.  This shift in 
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Figure 2.  Different unimodal relationships within a
species pool.  Letters indicated different species.

assemblage composition across environmental gradients is the basic theory that underlies the

notion of tolerance values.  That is, if we can construct species–environment relationships for

environmental gradients that are influenced by human activities, we can potentially predict

assemblage changes that are likely to occur as human activity alters conditions at a site.  We can

also identify those species that are likely to disappear with increased human stress (i.e., sensitive

species) and those species that should thrive in anthropogenically stressed sites (i.e., tolerant

species).  

Many environmental factors vary not only in response to human activities, but also

exhibit considerable variability due to natural factors.  For example, stream temperature changes

naturally with the elevation of the stream, but it also can be changed by the removal of riparian

vegetation that shades the stream.  Species–environment relationships can be estimated

regardless of whether the changes in the environment are due to natural or anthropogenic causes. 

However, when strong natural and anthropogenic factors influence a particular environmental

variable, additional care must be exercised when interpreting the observed changes in species

assemblage (see Section 4.2).

The range of conditions in which a species is observed in the field is an estimate of its

realized niche.  The realized niche is a function of the effects of both environmental gradients

and biological interactions.  In contrast, the fundamental niche defines the range of conditions in

which an organism could persist, excluding the effects of any biological interactions.  In theory,

the fundamental niche is an inherent characteristic of a species and is therefore invariant across

all geographical regions.  However, species pools change across different regions, so the realized
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Figure 3.  Monotonic responses to an environmental
gradient.  Letters indicate different species.

niche of a particular species may shift as different biological interactions affect its ability to

persist.  Because many stream ecosystems are structured by disturbance rather than by biological

interactions, the realized niches for many species may provide reasonable approximations to the

fundamental niches (Allan, 1995).  Differences between fundamental and realized niches are

discussed further in Section 5.3.1.

2.2.  NON-UNIMODAL MODELS

The unimodal model may not be applicable to all types of environmental gradients.  For

certain anthropogenic stressors (e.g., pesticides), a more appropriate model may be one in which

the abundance or the probability of observing a particular species decreases monotonically with

increasing levels of the stressor.  As levels of such stressors increase, the rate at which expected

abundances or capture probabilities change may differ among species, but the optimum for all

species would be identical, where the stressor level is zero (Figure 3).  Therefore, these

differences are more subtle than those that would be observed between unimodally distributed

species at opposite ends of a gradient (e.g., species B and E in Figure 2). 

Non-unimodal relationships also appear when environmental gradients are incompletely

sampled.  For example, if observations were collected only up to 16°C, then the probability of

occurrence for species A in Figure 1 would be observed to be monotonically increasing with

respect to temperature. 
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Figure 4. Examples of ecological tolerance (A) and
biological assessment tolerance (B).  Magnitude of human
disturbance increases from left to right.

2.3.  DEFINITIONS

The use of the term “tolerance” in biological assessments differs from the ecological use

of the word.  The ecological definition of tolerance refers to the niche breadth, or the range of

conditions that an organism can withstand (Odum, 1971).  Based on this definition, more tolerant

organisms can withstand a broader range of conditions, regardless of the location of their species

optimum.  To quantify niche breadth, we would measure the range of conditions over which a

particular taxon can persist.

In biological assessment, the term tolerance is generally used with respect to a gradient of

anthropogenic stress.  That is, a tolerant organism is one that is likely to be found in a site that

has been highly altered or degraded by human activities.  Many species would be considered

tolerant by both ecological and biological assessment definitions.  For example, species A in

Figure 4 would likely be observed in a degraded site, and is therefore tolerant in terms of

biological assessment.  It is also found in conditions that span the entire observed gradient, and is

therefore ecologically tolerant.  However, some species thrive in degraded sites but have a

narrow niche breadth.  These species are tolerant in the context of biological assessment even

though they are not tolerant in the ecological sense (species B in Figure 4).  For this report we

use tolerance strictly in the sense of biological assessment and use niche breadth when referring 

to the range of conditions within which an organism can persist.  Similarly, we define a sensitive

taxon as one that tends to decline in abundance or occurrence probability as anthropogenic stress

increases.  We further define a tolerance value as a single value that represents the tolerance of a

taxon to a particular stressor gradient.  This value can have the units and range of the sampled

gradient, or it can be rescaled to an arbitrary range (e.g., 1–10). 
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Both single and composite stressor gradients are applicable when considering tolerance

values.  A single-stressor gradient is defined by a single environmental attribute (e.g.,

temperature) that changes with the intensity of human activity.  Composite-stressor gradients

represent simultaneous changes in many different environmental attributes (e.g., temperature,

toxicant concentrations, physical habitat quality) that occur with increased human activity.  For

example, an aggregate gradient of human disturbance would be considered a composite-stressor

gradient.  In general, the methods for estimating tolerance values described in this report can be

applied to both composite-stressor and single-stressor gradients, although defining an appropriate

gradient becomes more difficult with multiple stressors.  These issues are explored in greater

detail in Section 5.2.1.

2.4.  TYPES OF TOLERANCE VALUES

A tolerance value can be thought of as any single number that represents the

characteristics of a species’ relationship with an environmental gradient.  Ideally, tolerance

values should capture the critical aspects of the entire species–environment relationship, provide

a consistent ranking of different species in terms of their tolerance for a particular stressor, and

provide the means for analyzing data on species occurrences to derive inferences regarding the

environmental conditions at a site.  Because species–environment relationships vary greatly in

their functional forms, it is difficult to completely characterize the relationship with one value. 

However, single tolerance values have proven to be a useful tool for biological assessment,

where more complete representations of the species–environment relationship are usually too

cumbersome to use regularly.  

In general, given species–environment relationships for different species, four approaches

can be used to derive tolerance values: (1) central tendencies, (2) environmental limits, (3)

optima, and (4) curve shapes.  Tolerance values expressed in terms of central tendencies attempt

to describe the average environmental conditions under which a species is likely to occur;

tolerance values expressed in terms of environmental limits attempt to capture the maximum or

the minimum level of an environmental variable under which a species can persist; and tolerance

values expressed in terms of optima define the environmental conditions that are most preferred

by a given species.  These three types of tolerance values are expressed in terms of locations on a

continuous numerical scale that represents the environmental gradient of interest. 

The fourth type of tolerance value relies on a classification of curve shape to group

species.  Species are first classified by the shape of their species–environment relationship into

three groups: (1) monotonically increasing, (2) monotonically decreasing, and (3) unimodal

(Yuan, 2004).  Then, when an increasing value of the environmental variable can be attributed to

human activities, those species with monotonically increasing species–environment relationships



8

are designated as tolerant and those with monotonically decreasing relationships are designated

as sensitive.  Species with unimodal species–environment relationships are designated as

intermediately tolerant.  These classifications differ from previously discussed tolerance values

because they yield categorical rather than continuous values. 

3.  ESTIMATING TOLERANCE VALUES FROM FIELD DATA

Given the different types of tolerance values defined in the previous section, how does

one estimate these values from field data?  Analytical approaches for estimating tolerance values

can be divided into two main groups:  (1) methods that directly estimate tolerance values from

field data (direct methods) and (2) methods that first require estimations of species–environment

relationships using regression techniques, and then estimate tolerance values from the regression

relationship (indirect methods).  Central tendencies and environmental limits can be estimated

using methods from the first group, whereas optima and curve shape require methods from the

second group.  In the following section we describe in more detail the methods for estimating

each type of tolerance value.

Until now, discussion has focused on distinct species and their relationship with

environmental gradients, because ecological theory hypothesizes that the fundamental niche of a

given species is invariant.  However, species level identifications are not always available, so as

we turn to field data, the focus of the discussion is broadened to consider any level of taxonomic

resolution (i.e., taxon-environment relationships).  The ramifications of defining tolerance values

for higher levels of taxonomy are discussed in Section 4.1.3.4.

Throughout this section methods are illustrated using macroinvertebrate data collected by

the EPA’s Environmental Monitoring and Assessment Program-Western Pilot Project (EMAP-

West) (see Appendix B).  Two representative environmental gradients are considered in

particular: stream temperature and the amount of bedded fine sediment.  Both stream temperature

and the amount of bedded fine sediment vary naturally (e.g., with changes in elevation) and can

vary due to human activities (e.g., from logging).  These two stressors have been identified as

particularly relevant to western streams.

3.1.  DIRECT METHODS

3.1.1.  Central Tendencies (Weighted Averages) 

Weighted averaging (WA) has long been used in ecology as a simple, robust approach for

estimating the central tendencies of different taxa, or in our case, tolerance values (ter Braak and

Looman, 1986).  WA and all its variants (e.g., partial least-square WA, ter Braak and Juggins,
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1993) operate on the same basic principle.  The tolerance value, uwa, for species j is estimated by

computing the mean of the environmental variable of interest at the sites in which the species is

observed:

(1)

where N is the total number of sites and xi is the value of the environmental variable of interest at

site I.  For presence/absence data, Yij is equal to 1 when species j is present and 0 when species j

is absent, and for abundance data, Yij is the abundance of species j at site I. 

When using weighted averages, a uniform distribution of samples across the

environmental gradient is preferred because each location on the gradient will then receive an

equal weight.  Because environmental gradients are rarely uniformly sampled, weighted average

tolerance values are often biased away from the “true” central tendency of the taxon-environment

relationship.  One solution to this problem is to average samples along the gradient that fall

within equal width bins and then to use these binned data to compute the weighted average. 

However, this procedure is not generally recommended because the true central tendency is

rarely of interest.  Instead, we are usually interested in the tolerance values of different taxa

relative to one another.  Within a given data set, all weighted average tolerance values are

computed using the same set of environmental data, and therefore, any bias arising from a

nonuniform distribution of data will be the same for all taxa and their relative placement along

the axis will generally be preserved.  Comparisons of weighted average tolerance values across

different data sets are more problematic and are discussed in much greater detail in Section 3.3.4.

Weighted average tolerance values can be further refined if information regarding the

strength of the association between taxon occurrence or abundance and the environmental

gradient of interest is available.  Then, tolerance values for taxa that are not strongly associated

with the gradient can be omitted from future inferences.  We return to this topic in Section

4.1.3.2.

3.1.2.  Environmental Limits (Cumulative Percentiles)

Environmental limits can be estimated by computing cumulative percentiles (CPs) from

field data.  An empirical CP is estimated for a given value of the environmental variable (x0) as

follows:
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Figure 5.  Empirical cumulative distribution method for defining
tolerance values.  Cumulative percentile value shown is 0.75.  The point
at which the dashed line intersects the horizontal axis is the tolerance
value for that taxon.

(2)

where I = 1 if xi < x0 and I = 0 if xi $ x0 and other variables are as defined in eq 1.  For presence/

absence data, the numerator is the number of occurrences of taxon j at sites in which the value of

the environmental variable is less than the cutoff value, and the denominator is the total number

of occurrences of taxon j.  Plots of CP as a function of x0 are shown in Figure 5 for three genera. 

A CP tolerance value would be estimated by fixing CP at a prescribed value and computing the

x0 that corresponds to that value of CP for all taxa.  Then, x0 is an estimate of the tolerance value. 

To estimate the maximum level of a stress under which a taxon could persist, CP would be fixed

at a relatively high value (e.g., 0.75). 

Different practitioners have used different CP values to define tolerance values.  Lenat

(1993) tried different threshold probabilities and found that a value of 0.75 was most effective. 

Relyea et al. (2000) used a value that ranged from 0.97 to 0.99, depending on the taxon.  The

uncertainty in defining x0 for a given cumulative percentile increases as the percentile value

increases, so the selection of the CP value requires that one balance competing factors: higher

percentiles may more accurately express the environmental limit of an organism, but the error in

empirically defining tolerance values using higher percentiles also increases.  In Figure 5, a CP

value of 0.75 is shown, which yields a temperature tolerance value of approximately 13°C, 16°C,
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and 19°C, respectively, for the three taxa.  This same CP value is used in all example

computations.

3.2.  INDIRECT METHODS

3.2.1.  Regression Estimates of Taxon-Environment Relationships

To estimate tolerance values on the basis of taxon optima or curve shape, one first must

estimate a taxon-environment relationship for each combination of taxon and environmental

variable.  In addition to providing a means of computing these additional tolerance values,

regression estimates of the taxon-environment relationship provide the additional benefit of

allowing one to quantify the strength of the association between a given environmental gradient

and changes in the occurrence probability or abundance of a taxon.  Combinations of taxon and

environmental gradients that are not strongly associated can then be excluded from future

inference.  

To estimate taxon-environment relationships one usually must apply constraints on the

form of the relationship.  Two main types of constraints are possible.  First, one can assume that

the taxon-environment relationship follows a pre-specified functional form.  After the functional

form is specified, differences in taxon-environment relationships can be summarized by

comparing the parameters of the regression relationships. We refer to these methods as

parametric regressions.  Second, one can require only that the taxon-environment relationship

vary slowly and smoothly over the range of observations.  In this case, the relationship cannot be

described using a few simple parameters.  We refer to these methods as nonparametric

regressions.  

Ordinary linear regression methods cannot be applied in either of these cases because

both taxon presence/absence data and taxon abundance data are not normally distributed. 

Instead,  “generalized” regression methods are used, which adapt linear regression approaches to

non-normal distributions (Hastie and Pregibon, 1992).  In the case of presence/absence data, the

response variable is modeled as a binomial distribution; in the case of abundance data, a negative

binomial distribution is often assumed.

3.2.1.1.  Parametric Regressions

A common assumption for taxon-environment relationships is that the distribution of a

particular taxon is unimodal with respect to environmental gradients (see Section 2.1).  Then, in

the case of presence/absence data, a convenient model for the probability of observing a

particular taxon, following ter Braak and Looman (1986), is as follows:
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(3)

where p is the probability of observing the taxon, and the left side of the equation is the logit

transformation of this probability.  Additionally, x is the value of the environmental variable, u is

the species optimum (the point along the environmental gradient where the probability of

observing the species is maximized), t is a measure of the niche breadth, and a is related to the

maximum probability of observation.  The constants b0, b1, and b2 can be determined using

standard maximum likelihood estimation methods for fitting a curve to observed data and a

generalization of linear regression methods (i.e., generalized linear models, GLMs).  Then the

parameters u, t, and a can be determined as follows: , , and

 Examples of taxon-environment relationships estimated using eq 3 for two

genera, Heterlimnius and Malenka, with respect to stream temperature are shown in Figure 6. 

The computed curves closely track the observed capture probabilities for both genera. 

Confidence limits broaden for Heterlimnius as temperatures decrease to the minimum values,

because data were sparse in that region.

A similar model can be specified for abundance data as follows:

(4)

where A is the observed abundance in a sample and the other variables are defined as above. 

Abundance, A, is assumed to follow a negative binomial distribution, with a log-mean value

equal to the right hand side of eq 4.  With negative binomial distributions, the residual variance

of A is a function of the mean value and one additional parameter that quantifies the degree to

which the variance differs from a simple Poisson distribution (White and Bennetts, 1996). 

Abundance is loosely defined here because this modeling approach can be applied to both

absolute and relative abundances.  Solving the regression is somewhat more complicated because

of the additional parameter, although GLMs can again be used. 
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Figure 6. Relationship between probability of occurrence and
temperature for Heterlimnius (left) and Malenka (right). Solid line
is mean relationship between probability of occurrence and
temperature determined by logistic regression.  Dotted lines are
estimated 90% confidence limits about the location of the regression
curve.  Each open circle represents the average occurrence probability
in approximately 10 samples surrounding the indicated temperature.

Examples of taxon-environment relationships estimated using eq 4 and relative

abundance data are shown for the same two genera (Heterlimnius and Malenka) in Figure 7. 

From the data, it is evident that Heterlimnius tends to occur with greater relative abundance than

does Malenka.  Observations of relative abundance data also appear more variable than those of

presence/absence data, but notice that each point in Figure 7 represents a single observation,

whereas each point in Figure 6 represents the average of approximately 10 samples.  Overall, the

shapes of the relationship curves and the locations of the taxon optima were virtually identical for

models using presence/absence and models using relative abundance, and this similarity held true

for most taxa considered in this report.  Therefore, attention is focused primarily on

presence/absence relationships for the remainder of the report.  Furthermore, because of the

increased complexity associated with modeling abundance data, the use of presence/absence data

for estimating taxon-environment relationships is recommended in most cases.

One potential advantage of explicitly estimating taxon-environment relationships is that

the approach allows consideration of more variables than just the stressor of interest.  That is,

potential covarying factors can be taken into account by adding additional terms to the regression

model.  Multivariate models present other difficulties, though, so for simplicity, we consider only
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Figure 7. Relationship between relative abundance and
temperature for Heterlimnius (left) and Malenka (right).  Solid line
is mean relationship determined between relative abundance and
temperature determined by a negative binomial regression.  Dotted
lines are estimated 90% confidence limits about the location of the
mean relationship.  Open circles represent observations.  Thirteen
observations with abundances greater than 50 are not shown for
Heterlimnius and three observations with abundances greater than 50
are not shown for Malenka.    

single-variable models in this report.  The use of multiple variables is discussed further in

Section 5.1. 

The use of parametric functions to describe the taxon-environment relationship is both a

strength and a weakness of the parametric approach.  On the one hand, these functions provide

the means to summarize the taxon-environment relationship using a short list of pre-defined

parameters.  On the other hand, the a priori assumption of a functional form may restrict the

taxon-environment relationship to a shape that is not fully supported by field observations.  

Inspection of plots of observed data and modeled functional fits can help establish whether the

assumed functional forms are appropriate.

3.2.1.2.  Nonparametric Regressions

Many researchers have noted that unimodal relationships cannot be expected for all taxa

across all gradients (Austin and Meyers, 1996; Oksanen and Minchin, 2002).  To address this

issue, a modeling approach is often used that requires only that the modeled function vary

smoothly and slowly over the modeled range.  Here, the distribution of a given taxon is modeled

as follows:
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(5)

where p is defined as before, s0 is a constant, and s represents a nonparametric smooth curve that

is fit through the data. 

The locations of the mean responses for each point along a nonparametric curve, s, are

determined through an iterative procedure that uses data in a local neighborhood around each

point.  The “local” nature of the fit differs fundamentally from that of a parametric model, which

computes a best fit based on the entire set of data.  Thus, nonparametric responses have the

potential to capture smaller scale variations in response.  Near the edges of the domain, though,

sufficient data do not exist on both sides of the point of interest, and increasing amounts of data

must be drawn from within the sampled range; therefore, the width of the neighborhood

broadens, and the fit is less local than in the center of the domain (Hastie and Tibshirani, 1999). 

This boundary effect is evident in Figure 8, where the response determined by

nonparametric regression for Heterlimnius at low temperatures differs substantially from the

response found by parametric regression (Figure 6).  The probability of occurrence, as

determined by nonparametric regression, continues to increase all the way to the lowest

temperature, whereas the parametric-derived response decreases at the lowest temperature. 

Because the neighborhood used by the nonparametric curve increases as it approaches low

temperatures, it incorporates more of the high-occurrence probabilities at slightly higher

temperatures, which may have the effect of maintaining a high-occurrence probability all the way

to the boundary of the data.  In contrast, the parametric model forces a fit to a unimodal curve

and decreases.  

In both cases, the confidence limits are very broad at the lower boundary of the data, so

the “true” response is impossible to determine from this data set.  However, the observed

frequency of occurrence at the lowest temperature (the left-most point in Figure 6) suggests that

occurrence probabilities for Heterlimnius may decrease at the lowest temperature, a feature that

is missed by the mean nonparametric response.  In general, responses near the edges of the

sampled gradient must be interpreted with caution.  

A commonly used approach to fitting nonparametric curves is known as the generalized

additive model (GAM) (Hastie and Tibshirani, 1999), which allows for more than one

explanatory variable, each associated with its own nonparametric smooth curve.  For now,

though, we consider only a single explanatory variable and again defer discussion of multiple

variables to Section 5.1.  The flexibility of nonparametric regressions also complicates its use
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Figure 8. Relationship between probability of occurrence and
temperature for Heterlimnius (left) and Malenka (right).  Solid line
is mean relationship between probability of occurrence and
temperature determined by logistic regression.  Dotted lines are
estimated 90% confidence limits about the location of the regression
curve.  Each open circle represents the average occurrence probability
in approximately 10 samples surrounding the indicated temperature.  

because there are no parameters with which the modeled relationship can be represented.  

Instead, a numerical representation of the entire curve must be stored for further analysis (e.g., to

extract tolerance values).

3.2.1.3.  Model Performance and Overfitting

Different species will vary in the degree to which their occurrence can be predicted by a

particular environmental gradient, and quantifying these differences can be useful for

characterizing the performance of different models of taxon-environment relationships.  One

useful way to quantify the performance of a model is to examine the relationship between the

false positive rate and the true positive rate.  The true positive rate is the proportion of sites at

which a taxon was predicted to be present and sites where it was actually observed.  The false

positive rate is the proportion of sites at which the taxon was predicted to be present and sites

where it was not observed.  At a set of test sites, given the values of the environmental gradient

and given a model for the taxon-environment relationship, we first compute the predicted

probability of occurrence for that taxon.  To compare predicted probabilities with actual

observations of presence and absence, we then specify a threshold probability above which the
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taxon is predicted to be present and below which the taxon is predicted to be absent.  An example

of this comparison is shown in Table 1 for Heterlimnius and a threshold probability of 0.5.  The

true positive rate in this case is 71/(49+71), or 0.59, and the false positive rate is 54/(195+54), or

0.22.  

Table 1. Observed versus predicted occurrences for Heterlimnius

Taxon Predicted absent Predicted present

Absent 195 54

Present 49 71

As the threshold value of p is increased, both false and true positive rates increase.  We

can quantify the trade-off by computing false and true positive rates over a range of threshold

values and plotting them against one another (Figure 9).  The resulting curve is known as the

receiver operating characteristic (ROC) curve, and the area under this curve provides a measure

of the classification strength of the model (Manel et al., 2001).  The 1:1 line indicates the

position of the ROC curve for a model in which the false positive rate is the same as the true

positive rate, regardless of the choice of threshold value.  Such a model has no classification

power, and therefore this area (0.5) is the lowest possible ROC value.  The area under the ROC

curve approaches 1 as classification strength increases.  In the example shown in Figure 9, the

area under the ROC curve is 0.8. The minimum ROC value for an “acceptable” model varies

with different studies.  For this report, we selected a value of 0.55 as a provisional cut-off value. 

This cut-off value is relatively low compared to the more commonly-used value of 0.7 (Hosmer

and Lemeshow, 2000).  However, the use of the model here differs from conventional regression

models in that we are interested only in characterizing the taxon–environment relationships and 

not interested in actually predicting the presence or absence of different taxa.  The effects of 

using other cut-off values are explored in Section 4.1.3.2.

Overfitting the data can be an issue when developing taxon-environment relationships. 

To avoid overfitting regression models, it is generally recommended that at least 10 to 15

observations of the response variable being modeled occur in the data set for each degree of

freedom in the explanatory variables.  For example, to model the presence or absence of a taxon

with an overall frequency of occurrence of 20%, we would require 50–75 samples for each

degree of freedom that is contemplated.  (Note that for a very common taxon that occurs at a

majority of sites, the appropriate definition of an “observation” for this purpose is the absence of



18

Figure 9.  Receiver operator characteristic
(ROC) curve for Heterlimnius.  Dashed line
shows 1:1 line.  Area under the ROC curve is
0.8. 

the taxon at a site.)  Because most unimodal relationships require at least two degrees of freedom

to specify (e.g., the quadratic relationship shown in eq 3), we would require 100–150 samples for

each variable.  Species–abundance relationships suggest that many taxa are observed infrequently 

and only a few are relatively common.  Thus, the number of taxa for which regression models

can be developed may be limited. 

3.2.2.  Optima

After a taxon-environment relationship is modeled by regression, defining the optimum

tolerance value is fairly straightforward.  The optimum value in parametric regressions is

explicitly defined (eqs 3 and 4).  For nonparametric regressions, one numerically locates the

point of maximum modeled occurrence probability along the regression relationship. Optima for

species–environment relationships that increase or decrease monotonically are necessarily

located at the edges of the environmental gradient.  Thus, all species with monotonically

increasing relationships would have the same maximum point, as would all species with

monotonically decreasing relationships.  In a region containing many such species, it can be

difficult to distinguish between their relative tolerances for a given stressor gradient.

Furthermore, the edges of the environmental gradient are usually defined only by the range of

conditions sampled and can therefore vary between data sets. 
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3.2.3.  Curve Classification

The process of curve classification can be accomplished analytically or graphically,

depending on whether parametric (GLM) or nonparametric (GAM) regressions are used to define

the taxon-environment relationship.  In a parametric regression as defined by eq 3, the curve can

be classified according to the statistical significance of different coefficients in the regression. 

More specifically, if the quadratic term in eq 3 reduces the model deviance by a statistically

significant amount, then the relationship is unimodal.  Otherwise, the model equation reduces to

a linear relationship, and the relationship can be classified as increasing or decreasing, depending

upon the sign of linear coefficient (b1 in eq 3).  In rare cases, the quadratic term is statistically

significant but the sign of the coefficient (b2 in eq 3) is positive, indicating that the relationship is

concave up.  In these cases, the data and the estimated taxon-environment relationship should be

examined more carefully to identify reasons for the anomalous behavior.

A graphical approach to curve classification is required for nonparametric regressions, in

which the maximum modeled occurrence probability is compared with the confidence limits on

either side of the taxon optima.  If a horizontal line drawn through the maximum mean

occurrence probability deviates from the upper confidence limits on both sides of the taxon

optima (e.g., Malenka in Figure 10), then the taxon is designated as unimodal.  If the line

deviates from the upper confidence limit only on the right-hand side of the taxon optimum (e.g.,

Heterlimnius in Figure 10), then the taxon is designated as a decreaser; if it deviates only on the

left-hand side (e.g., Hydropsyche in Figure 10), then the taxon is designated as an increaser.  A

parallel set of conditions can be specified with regard to the lower confidence limit.  Assuming

that human activities cause an increase in the value of the environmental gradient, increasers

would be identified as tolerant taxa, decreasers would be identified as intolerant taxa, and

unimodal taxa would be designated as intermediately tolerant.  

3.3.  COMPARING DIFFERENT TOLERANCE VALUES

3.3.1.  Continuous Tolerance Values

We computed tolerance values for sediment and temperature using six different methods:

(1) weighted averages (WA), (2) cumulative 75th percentile (CP75), (3) parametric regressions

combined with the point of maximum occurrence probability (GLMMAX) , (4) parametric

regressions combined with curve shape classification (GLMCL), (5) nonparametric regressions

combined with the point of maximum occurrence probability (GAMMAX), and (6)

nonparametric regressions combined with curve shape classification (GAMCL).  In both GLM 
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Figure 10. Graphical approach for classifying curve shape for Heterlimnius,
Malenka, and Hydropsyche.  Solid line is mean response, dotted lines are estimated
90% confidence limits about mean response, dashed line is location of maximum mean
response for comparison with confidence limits.  

and GAM models, only a single explanatory variable was specified, and it was modeled with two

degrees of freedom.  Tolerance values were derived only for taxa that occurred in at least 20

sites.  Additionally, GLMMAX, GAMMAX, and curve classification tolerance values were

computed only for models for which ROC > 0.55.  All tolerance values are tabulated in

Appendix C.  

All sets of tolerance values except those determined by curve shape classification were

compared by computing correlation tables and examining scatter plots.  Overall, tolerance values

derived by different methods were highly correlated.  All types of continuous temperature

tolerance values (GLMMAX, GAMMAX, WA, and CD75) were strongly correlated with r,

ranging from 0.88 to 0.97 (Table 2).  Correlation coefficients between different types of sediment

tolerance values were also high, varying from 0.84 to 0.98 (Table 3).  The weakest correlation 

Table 2.  Correlation coefficients for temperature tolerance values 

Method GAMMAX WA CD75

GLMMAX 0.96 0.89 0.88

GAMMAX 0.93 0.91

WA 0.97
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Table 3. Correlation coefficients for sediment tolerance values

Method GAMMAX WA CD75

GLMMAX 0.98 0.84 0.87

GAMMAX 0.88 0.90

WA 0.97

found was between GLMMAX and WA, primarily because taxon-environment relationships

were often monotonic and GLMMAX tolerance values were pinned at either edge of the sampled

domain (Figure 11).  This same phenomenon was observed for temperature, but a smaller

proportion of taxon-environment relationships for temperature were monotonic and the

correlation coefficients were not as strongly affected. 

Figure 11. Comparison of optima tolerance value determined by
parametric logistic regression model (GLMMAX) and weighted
average tolerance values (WA) for temperature.  Each point represents a
different taxon.  Axis scales are nominally in units of NC.  Points have been
jittered to more clearly show overlapping points.

The close relationships between different types of tolerance values is not surprising, given

that they were estimated from the same set of data.  The main reasons for differences likely stem

from uncertainties in estimating the point of maximum occurrence probability for gradients that
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were only partially sampled.  The distribution of samples across the gradient also influences

differences between WA and GLMMAX or GAMMAX tolerance values (ter Braak and Looman,

1986).

3.3.2.  Tolerance Classifications

We compared curve classification tolerance values estimated by different methods using a

confusion matrix, in which each position in the matrix corresponds to a combination of GLMCL

and GAMCL categories and the number in that position is the number of taxa for which a

particular combination of tolerance classifications was found.  For example, 35 taxa were

identified as sensitive to elevated temperature by both GAMCL and GLMCL and 33 taxa were

classified as intermediately tolerant by GLMCL and as sensitive by GAMCL (Table 4). 

Comparisons of curve classification tolerance values for fine sediment are shown in Table 5.

Table 4. Confusion matrix for temperature tolerance classifications

           GAM
GLM

Sensitive Intermediate Tolerant

Sensitive 35 0 0

Intermediate 33 16 21

Tolerant 0 0 30

Table 5. Confusion matrix for sediment tolerance classifications

GLM
GAM    

Sensitive Intermediate Tolerant

Sensitive 69 0 0

Intermediate 16 1 9

Tolerant 0 0 27

In general, the GLMCL reliance on the statistical significance of the quadratic term

yielded many more intermediately tolerant classifications (i.e., unimodal) than did the graphical

classification of GAMCL.  That is, the quadratic term was often statistically significant, but the

confidence intervals surrounding the relationship were too broad to permit a graphical

classification of the relationship as unimodal.  The taxon-environment relationship for

Heterlimnius (Figure 6) provides a good illustration of this effect.  Here, the unimodal response
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was statistically significant, but the confidence intervals at the lowest temperatures were so broad

that the graphical method classified this relationship as monotonically decreasing.  For our

purposes, classifications into tolerant and sensitive categories are more directly useful. 

Furthermore, the graphical classification method can be applied to both parametric and

nonparametric regression results, so we focus only on GAMCL categories for the remainder of

this report.  

3.3.3.  Comparisons Between Continuous and Categorical Tolerance Values

Curve classifications provide a broad characterization of taxa into tolerant or sensitive

categories that complement continuous tolerant values (e.g., CP75, WA).  In previous analyses,

taxa have been classified as tolerant or sensitive on the basis of an existing continuous tolerance

value.  For example, Klemm et al. (2002) categorized taxa that had already been assigned

tolerance values ranging from 0 to 10.  In their scheme, taxa with tolerance values less than or

equal to 4 were classified as sensitive and taxa with tolerance values greater than or equal to 6

were classified as tolerant.  One concern with this approach is that the threshold value used to

discriminate between tolerant and sensitive taxa is determined through best professional

judgement and may not accurately capture the point at which taxon-environment relationships

actually exhibit a substantive change (e.g., a shift from a decreasing relationship to an increasing

relationship).  

To further explore this issue, consider the distribution of WA optima values for sediment

computed from EMAP-West data (Figure 12).  We can probably assume that taxa that have low

sediment optima are sensitive to excess fine sediment and taxa that have high sediment optima

are tolerant.  In the middle of the range, though, it is difficult to identify a single WA optimum

value below which we are confident that all taxa are sensitive or above which we are confident

that all taxa are tolerant.  Similarly, taxa that have low temperature optima are likely to be

sensitive to elevated temperature and taxa that have high temperature optima are likely to be

tolerant to elevated temperature, but taxa with moderate optima are difficult to categorize (Figure

12).  A potential solution to this dilemma is to designate taxa with tolerance values falling in the

middle of the range as indifferent, following Klemm et al. (2002).  However, this approach is

conservative, and it is likely that some taxa that are truly sensitive or tolerant will be classified as

indifferent.  
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Figure 12.  Histogram of weighted average tolerance values for temperature (left) and fine
sediment (right). 

Tolerance values based on curve shape classifications provide a good alternative to

continuously ranked tolerance values.  Curve shape classification provides a direct measure of

whether a taxon increases or decreases in response to anthropogenic stress, a more definitive

classification than can be achieved with continuous tolerance values.  We look again at the

distribution of WA optima for temperature and sediment, this time color-coded for tolerance

classification in terms of curve shape (Figure 13).  As expected, taxa classified by curve shape as

tolerant are clustered to the right-hand side of the histogram, with high WA optima, and those

classified as sensitive are clustered to the left-hand side of the histogram.  At moderate WA

optima values, though, the correspondence between the value of the optima and the tolerance

classification is much weaker.
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Figure 13.  Histogram of weighted average tolerance values for temperature
(left) and fine sediment (right) classified by curve shape.  Shading in bars
indicate numbers of taxa within each group classified as sensitive (open),
intermediately tolerant (hatched), and tolerant (gray).  Black bars indicate taxa for
which classifications were not assigned.

3.3.4.  Effects of Regional Characteristics

All tolerance values discussed above depend on the range of conditions under which they

are derived.  This dependence stems from the fact that the range of sampled conditions imposes

arbitrary limits on the functions used to compute tolerance values.  A simple example of this

effect can be seen in Figure 14, in which we consider a taxon-environment relationship that

increases linearly with temperature.  In the left plot, samples are collected across a range of

temperatures from 5 to 30°C, whereas in the right plot, samples are collected across half the

range.  In the first case the weighted average is 22°C and in the second case the weighted average

is 13°C.  Similar changes in tolerance values would be observed for values derived by

cumulative percentile methods.

Optima and curve classification tolerance values are somewhat less susceptible to this

effect, but none are immune.  For example, optima tolerance values for monotonically increasing

or decreasing taxon-environment relationships are located onthe edge of the sampled gradient. 

These values therefore vary with the range of conditions sampled.  Curve classification, on the

other hand, can be sensitive to the sampled range because species identified as monotonically

increasing could be identified as unimodal in a data set that samples a broader range of
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Figure 14. Illustrations of effect of gradient length. Solid circle indicates
location of the weighted average tolerance value.

conditions.  Thus, regardless of the derivation method, very different tolerance values could be

derived for a given species, depending on the range of data that are collected.  

We must consider the effects of regional characteristics when comparing tolerance values

across regions or when using tolerance values derived from different study areas in the same

assessment.  When comparing tolerance values, the absolute values derived in different study

areas will always require that the range of conditions sampled in each of the study areas be

considered.  Alternatively, the relative rankings of sensitivity should be relatively insensitive to

the range of sampled conditions, so comparisons of relative rankings across study areas should be

fairly straightforward.  Furthermore, direct comparisons of species–environment relationships are

also possible.

One of the potential strengths of using tolerance values for assessment is that once a

tolerance value is derived for a species, it can be used wherever that species is observed. 

However, as discussed above, the generality of a tolerance value across different regions is

influenced by the data set from which it was derived and the range of conditions sampled in that

data set.  In certain cases, it may be necessary to use tolerance values derived from different data

sets within the same assessment.  In such cases, tolerance values must be examined to ensure that

they are based on the same ranges of environmental conditions.
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4. APPLYING TOLERANCE VALUES IN ASSESSMENT

On their own, tolerance values provide valuable information about the relative sensitivity

of different taxa to different types of anthropogenic stressors.  For example, taxa lists at impaired

and reference sites can be compared in terms of the presence or absence of taxa with different

tolerance values to infer possible sources of stress.  The loss of particularly sensitive taxa could

also provide an early indication of impairment.  However, to most effectively apply tolerance

values for biological assessment, biological metrics that summarize the observations of many

different tolerant and sensitive taxa at a given test site are required.  These summaries must then

be compared with baseline conditions to ascertain whether observed changes are statistically or

biologically significant.  Therefore, evaluating the efficacy of different tolerance value derivation

methods requires that we consider them in conjunction with biological metrics and baseline

conditions. 

  

4.1.  BIOLOGICAL METRICS

Biological metrics provide the means of summarizing the tolerance values of all of the

different taxa observed at a test site.  The available types of metrics differ for categorical and

continuous tolerance values, so we discuss them in two separate sections.  

We assess the performance of different metrics by comparing their values at independent

test sites with observations of stressor levels at those same sites.  Ideally, metric values should be

strongly associated with the observed stressor level, and the variability about this mean response

should be low.  These characteristics would suggest that small changes in the stressor level could

be detected with the biological metric.  We compare the performance of biological metric values

computed at different sites using data collected in Oregon by the Oregon Department of

Environmental Quality (DEQ) (Appendix B).  To compute metrics values, taxon abundance data

from Oregon streams were combined with tolerance values estimated previously from EMAP-

West data (Appendix C).  Observations of stream temperature and fine bedded sediment were

also available at each of the sites.  The Oregon data were collected from a small area within the

larger EMAP-West region and constitute a completely independent set of data.

4.1.1.  Metrics Based on Categorical Tolerance Values

Compositional metrics summarize compositional characteristics of a sampled

assemblage, and metrics that incorporate aspects of tolerance values (i.e., tolerance value

metrics) have frequently been shown to distinguish between degraded and reference streams

(Barbour et al., 1999).  Examples of tolerance metrics include the relative abundance of tolerant
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or sensitive taxa, the proportion of total taxa that are tolerant or sensitive, and the richness of

tolerant or sensitive taxa.

We used GAMCL classifications estimated from EMAP-West data to group taxa

collected in Oregon into sensitive and tolerance categories.  Then, we computed values at the

Oregon sites for relative abundance of tolerant (RABN.TOL) and sensitive taxa (RABN.SEN),

richness of tolerant (RICH.TOL) and sensitive (RICH.SEN) taxa, and proportion of total taxa of

tolerant (PTAX.TOL) and sensitive (PTAX.SEN) taxa.  Computed metric values were then

plotted against observed values of stream temperature and fine sediment.  All of the temperature-

specific metrics exhibited strong relationships with the observed temperature (Figure 15).  The

proportion of total taxa that were sensitive appeared particularly strongly related to stream

temperature.  Many sediment-specific metrics also exhibited reasonably strong relationships with

the sediment gradient (Figure 16).  As with temperature, the proportion of total taxa that were

sensitive exhibited the least variability in its relationship with observed sediment levels.  

Metrics quantifying characteristics of tolerant taxa were more weakly associated with

observed stressor levels, and the magnitude of variability about the mean values was substantially

greater.  This higher variability can likely be explained by the relatively low richness of tolerant

taxa observed (temperature-tolerant taxon richness increased to only about four taxa at the

warmest sites in the study area, and sediment-tolerant taxon richness increased to only about two

taxa at sites with high percentages of sands and fines).  Low richness, then, contributed to high

variability in relative abundance values and proportions of total taxa because the presence or

absence of a single taxon could cause large changes in the values of these metrics.   

But why is tolerant taxon richness so much lower than sensitive taxon richness? 

Definitive answers to this question are elusive.  One reason may be that fewer taxa were

identified as tolerant than as sensitive.  For example, a total of 71 of the taxa found in Oregon

were classified as sensitive to elevated temperature, whereas only 44 were classified as tolerant. 

However, the difference in the number of sensitive versus tolerant taxa does not seem large

enough to explain the strong differences observed in richness.  Another contributing factor may

be that sites with elevated temperature and increased fine sediment sites may also be affected by

other stressors, the aggregate effect of which is to strongly depress taxon richness.  The potential

effects of such co-occurring stressors require further study.

To quantify the variability in the association between each metric and the stressor

gradient of interest, a nonparametric smoothing spline (as seen in eq 5) was fit to each

combination of tolerance value metric and stressor gradient (shown as solid lines in the Figures

15 and 16).  Nonparametric curves were chosen because there was no a priori reason to expect

that the relationships between metrics and stressor gradient would be linear.  An R2 statistic 
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Figure 15.  Relationship between temperature tolerance metrics and observed
temperature in Oregon.  PTAX.SEN: proportion of total number of taxa classified as
sensitive; RABN.SEN: relative abundance of sensitive taxa; RICH.SEN: taxon richness
of sensitive taxa; PTAX.TOL: proportion total taxa classified as tolerant; RABN.TOL:
relative abundance of tolerant taxa; RICH.TOL: taxon richness of tolerant taxa.  Solid
line shows position of a smoothing spline fit through the data.

expressing the proportion of variability in the biological metric that was associated with changes

in the stressor level was then computed (Table 6).  In general, changes in temperature accounted

for more variability in the temperature tolerance metrics than did sediment in the sediment

tolerance metrics.  Also, environmental observations accounted for more variability in metrics

related to sensitive taxa than metrics related to tolerant taxa. 
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Figure 16.  Relationship between sediment tolerance metric and observed
sediment in Oregon. Vertical axis abbreviations and symbols as in Figure 15.

Table 6.  R2 values for spline fits between metric and stressor level

Metric Temperature Sediment

PTAX.SEN 0.53 0.39

RABN.SEN 0.50 0.19

RICH.SEN 0.35 0.23

PTAX.TOL 0.30 0.09

RABN.TOL 0.12 0.02

RICH.TOL 0.23 0.05
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4.1.2.  Metrics Based on Continuous Tolerance Values

All of the metrics defined in the previous section can be computed using continuous

tolerance values, as long as the continuous tolerance value are first converted to categories (see

Section 3.3.3).  However, a more natural metric to compute—one that makes use of the full range

of values—is the mean tolerance value of taxa observed at a site.  If abundance data are

available, the tolerance values of each taxon can be weighted by the observed abundance.  The

computation of these mean tolerance values can be expressed as follows: 

(6)

where um is the mean tolerance value, N is the number of taxa, and uj is the tolerance value for

taxon j.  Yij is defined as previously: for presence/absence data, Yij = 1 when a taxon j is present,

and Yij = 0 when taxon j is absent from site I; for abundance data Yij is the abundance of taxon j at

site I.  This formula was used by Hilsenhoff (1987) and Lenat (1993) and in weighted average

inferences of environmental conditions (e.g., Birks et al., 1990). The only differences between

various analyses are the tolerance value that is used and whether abundance or presence/absence

data are applied.

To compare the performance of different tolerance values, continuous tolerance values

(WA, CP75, GLMMAX, and GAMMAX) were computed from EMAP-West data for

temperature and fine sediment.  Then, the mean of the tolerance values for taxa observed in each

test site in Oregon were computed.  A nonparametric smoothing spline was then fit to the

relationships between the mean sediment and temperature tolerance values and observed

sediment and temperature, and an R2 statistic computed for each fit.  The results are summarized

in Table 7.

Overall, the mean sediment and temperature tolerance values were strongly associated

with observed sediment levels and temperature.  All types of temperature tolerance values

accounted for comparable proportions of the variability in the observations, with R2 ranging from

0.49 to 0.56.  For sediment, GAMMAX and GLMMAX performed particularly poorly, with R2 =

0.31 and 0.28, respectively.  For any given type of tolerance value, temperature was more

strongly associated with the mean temperature tolerance value than was sediment with the mean

sediment tolerance value.  WA and CD75 consistently exhibited less variance in their

relationships with each environmental variable than did GLMMAX and GAMMAX.



32

Table 7.  R2 values for spline fits between mean tolerance values and
observed temperature and sediment in Oregon (One outlier dropped from
sediment data.)

Method Temperature Sediment

WA 0.56 0.45

CD75 0.56 0.42

GLMMAX 0.49 0.28

GAMMAX 0.49 0.31

Overall, compared with the compositional metrics computed from categorical tolerance

values (Table 6), the mean tolerance values exhibited less variable relationships with the

observed levels of temperature and sediment.  These higher R2 values likely are a result of two

factors.  First, the compositional metrics used only two categories to represent tolerance values,

whereas the mean tolerance values captured the full range of tolerance values.  Second, each

mean tolerance value depended on changes in both tolerant and sensitive organisms, so both

increasing and decreasing taxa influenced the final mean value.  Compositional metrics

disaggregate increasing and decreasing responses into distinct groups, which may lessen their

ability to represent the overall variability in the system.

4.1.3.  Performance of Tolerance Value Metrics

We observed systematic differences in the performance of tolerance value metrics across

different stressors and across different types of tolerance values.  In this section we discuss some

of the reasons for these differences.  

4.1.3.1.  Characteristics of the Stressor Gradient

We observed a consistent difference in the performance of the tolerance value metrics for

the two stressors considered as examples in this section: temperature tolerance metrics were

always more strongly correlated with temperature observations than were the corresponding

comparisons computed for sediment.  This performance difference across stressors may reflect

(1) differences in the distribution of the sampled values for the two gradients, (2) differences in

the mechanisms by which temperature and sediment affect biota, and (3) differences in our

ability to measure these gradients.  

First of all, a relatively uniform distribution of stream temperatures was sampled in the

EMAP-West.  In contrast, the percentage of fine sediment in sampled streams was generally low,
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and the distribution of fine sediment levels was strongly skewed.  A skewed distribution of the

underlying environmental gradient has been shown to degrade the accuracy of weighted average

optima (ter Braak and Looman, 1986) and would similarly degrade the accuracy of all other types

of tolerance values.  One way to mitigate the effects of a skewed distribution is to stratify and

resample the existing data such that all locations on the environmental gradient are equally

represented, but this procedure can introduce errors.  

Second, the mechanisms by which stream temperature can influence stream

macroinvertebrates are direct and relatively well understood.  For cold-blooded organisms such

as stream macroinvertebrates, virtually all metabolic processes are linked to environmental

temperature, so stream temperature is necessarily a strong determinant of assemblage

composition (Allan, 1995).  Conversely, the mechanisms by which fine sediment affect stream

invertebrates are less well understood and in many cases, less direct.  Some proposed

mechanisms by which fine sediment can affect aquatic insects include reducing habitat by filling

interstitial spaces on stream bottoms and increasing the scour of the stream bottom in high-flow

events (Wood and Armitage, 1997).  Because of these mechanistic uncertainties, taxon-

environment relationships for fine sediment are likely to be less precise than those for

temperature.  

The final difference between the two stressors is in the precision with which

measurements can be collected.  Quantifying the composition of a heterogeneous stream bottom

is accomplished by measuring a relatively small number of individual particles collected at

prescribed locations.  Stream temperature is relatively homogeneous throughout the stream. 

Measurements of substrate composition are therefore likely to be somewhat more variable than

measurements of temperature.  Note, however, that both temperature and sediment exhibit a high

degree of temporal variability, which is measured poorly by one-time samples.  

All of the factors discussed above may influence the predictive performance of the

tolerance values.  Determining the relative contribution of each factor to the observed difference

in predictive accuracy requires further study. 

4.1.3.2.  Acceptance Criteria for Tolerance Values

Inherent in the GAM and GLM approaches was a model acceptance criterion whereby

models with classification accuracy below a certain limit (ROC # 0.55) were rejected and no

tolerance value was computed.  No model acceptance criteria are typically imposed on WA or

CD computations, although in our case we did limit WA and CD optima computations to those

taxa that occurred in at least 20 sites.  In additional tests (Table 8), we explored the effects of

tightening the acceptance
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Table 8.  R2 values for models with ROC > 0.65 criteria imposed

Method Temperature Sediment

WA 0.60 0.40

CD75 0.60 0.38

GLMMAX 0.55 0.29

GAMMAX 0.60 0.28

criteria to ROC > 0.65, which omitted additional taxa from the computation of the metric values.  

We then recomputed average tolerance values for GLMMAX and GAMMAX using this reduced

set of taxa.  For comparison, we also recomputed average tolerance values for WA and CD75

using this same reduced set of taxa.  The effects of the change in acceptance criteria differed for

temperature and sediment.  For temperature, tightening the ROC criteria slightly increased R2

values.  The R2 for GAMMAX, WA, and CD75 were all 0.60, while the R2 for GLMMAX was

slightly less.  In contrast, for sediment, tightening the criteria actually decreased R2 values for

WA and CD75, while R2 values for GAMMAX and GLMMAX were essentially unchanged.  

As noted, the distribution of sediment observations in the EMAP-West data set were

strongly skewed to the right, which created difficulties for statistical modeling.  Many taxa that

exhibited strong relationships with the sediment gradient may have failed to meet the acceptance

criteria because of this distribution.  Thus, for skewed distributions, it seems likely that the ROC

> 0.65 criterion was too stringent.  On the other hand, for gradients that are sufficiently and

evenly sampled (such as temperature), a more restrictive ROC criterion may improve

performance.

4.1.3.3.  Specificity of Response

We can test for the specificity of response for different tolerance value metrics by

examining their relationship with other environmental gradients.  Ideally, a tolerance value

metric would exhibit a strong relationship with the stressor for which it was designed and would

show no relationship with other gradients.  Examples of these comparisons are shown in Figures

17 and 18, where temperature compositional metrics are plotted against the sediment gradient

and sediment compositional metrics are plotted against the temperature gradient.  Most

temperature metrics did not exhibit strong relationships with the sediment gradient.  The relative

abundance, richness, and proportion of total taxa of temperature-sensitive taxa decreased with

increasing fine sediment, but these relationship were less strong and more variable than those
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Figure 17.  Temperature tolerance metrics plotted versus percent sands and fines. 
Vertical axis abbreviations and symbols as in Figure 15.

observed between the same metric and stream temperature (Figure 15).   Metrics derived from

temperature-tolerant taxa all showed no response to the sediment gradient. 

Sediment tolerance metrics were less specific to the sediment gradient, as all metrics

exhibited a relationship with the temperature gradient.  Sediment-sensitive metrics all initially

decreased gradually with increasing temperature but then decreased at a faster rate at higher

temperatures.  Sediment-tolerant metrics all increased with increasing temperature, and R2 values

for these relationships were even higher than those observed for fine sediment. 
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Figure 18.  Sediment tolerance metrics plotted versus temperature.  Vertical axis
abbreviations and symbols as in Figure 15.

We can perform the same type of comparison using mean tolerance values.  In Figure 19,

mean WA tolerance values for fine sediment are plotted versus observed stream temperature, and 

mean WA tolerance values for temperature are plotted versus observed fine sediment.  Here,

mean sediment tolerance values showed a fairly strong relationship with temperature, whereas

mean temperature tolerance values were specific to stream temperature and were not associated

with fine sediment.

Results from this exercise suggest that the sediment tolerance classifications are less

specific to sediment than the temperature tolerance classifications are to temperature.  However,

both performed reasonably well, as most metrics and inference indices explained more variability

in the stressor of interest than in the covarying stressor.  The notable exception to this trend was

the sediment-tolerant taxa metrics, and their poor performance can likely be attributed to the

distribution of observed sediment values and perhaps to the low richness of sediment-tolerant

taxa observed at any given site (see Section 4.1.1).  
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Figure 19.  Mean weighted average (WA) tolerance values for sediment
plotted against observed temperature (left), and mean WA tolerance value
for temperature plotted against observed sediment (right).

Generalizing the present findings to a broader array of stressors is challenging. 

Covariance in stressors is common, however, and in many cases tolerance values will provide

only one line of evidence toward a diagnosis of the most likely cause of impairment.  Other lines

of evidence will often be needed to supplement the information provided by tolerance values. 

4.1.3.4.  Effects of Taxonomic Resolution of Tolerance Values

Tolerance values for the examples considered thus far have been computed at the genus

level.  In some monitoring programs, taxa are identified only to the family level.  For certain

applications, this level of identification may be sufficient; however, as taxonomic resolution

coarsens, we can less confidently assume that an invariant fundamental niche is associated with

each taxon.  A single family may contain numerous genera, each of which may contain numerous

species and all of which may have slightly different niches.  Conversely, for certain families, we

may expect to find only one or two species, and in these cases family-level identification may be

sufficient.  Furthermore, aggregation to genus or even family is often necessary because of

limitations on taxonomic identification accuracy.

To explore the effects of taxonomic resolution, we computed tolerance values in EMAP-

West at the family level and used these values to compute average tolerance values in Oregon. 

The R2 values for comparisons between average tolerance values and environmental observations

are shown in Table 9.  
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Table 9. R2 values for family-level tolerance values

Method Temperature Sediment

WA 0.44 0.34

CD75 0.42 0.34

GLMMAX 0.28 0.30

GAMMAX 0.29 0.31

As expected, a substantial deterioration in predicted accuracy is observed, as R2 decreased

for virtually all methods (compare with values in Table 7).  A similar deterioration in

performance was observed when tolerance values compositional metrics were computed using

family-level identification.  These results suggest that for the stressors considered here,

taxonomic identification to genus level provides indicators that are more closely associated with

observed stressor levels.

4.2.  REFERENCE CONDITIONS

Reference conditions refer to streams or sites that are in their natural condition,

unaffected by human activities.  These conditions establish the basis of comparison from which

we can evaluate the biotic condition of other streams (Bailey et al., 1998).  Reference conditions

are often approximated within a study area using the “best” sites that are available, that is, sites

that are the least disturbed by human activities.  Biological characteristics of assemblages in

these least-disturbed streams provide baseline expectations, and departures from these

expectations are often associated with human activities.  With tolerance values, we can infer

stressor-specific characteristics of streams; however, we still need to know expected values for

these characteristics at the least-disturbed sites within the study area to determine whether

changes have occurred.  The values of tolerance metrics and inference indices computed at least-

impacted sites determine this baseline distribution.  Departures from this distribution then can

provide evidence for the existence of a particular stressor. 

To demonstrate one approach for applying baseline conditions, we used 31 reference sites

in western Oregon, supplied by the Oregon DEQ (ODEQ, 2004).  These sites were used to

compute reference distributions for all of the metrics that we have considered (RABN.TOL,

RABN.SEN, PTAX.TOL, PTAX.SEN) for temperature and fine sediment.  We also used mean

WA tolerance values for sediment and temperature at reference sites.  We then examined data

from a single, randomly selected site at which biological data had been collected but for which

other environmental data were not available.  At this test site, we computed metric values for
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temperature and sediment and compared them with reference distributions (Figure 20).  Test site

observations of temperature metric values were all located close to the median value observed

within reference sites.  In contrast, test site observations of metric values for sediment departed

from reference distributions.  More specifically, we observed that PTAX.SEN and RABN.SEN

were less than reference expectations, whereas PTAX.TOL,  RABN.TOL, and WA were all

greater than reference expectations.  

All of these indicators consistently suggest that sediment levels at the test site are

elevated and are influencing the macroinvertebrate assemblage.  Sediment metrics also can

indicate an increase in temperature (as seen in Section 4.1.3.3), but in this case, the complete

absence of a change in the temperature-specific metrics seems to suggest that no change in

temperature has occurred.  A follow-up visit to this site would be necessary to confirm whether

these inferences are accurate.  

The results are somewhat surprising, given that the method was relatively crude.  Note

though that this test involved only a single sample, and more samples are required to draw

substantive conclusions. Refining the descriptions of least-disturbed sites by grouping

biologically similar sites (Clarke et al., 2002) may further reduce the variability of the reference

distributions and improve the discriminatory power of tolerance metrics and indices.  Also, in

cases where the presence of more than one stressor is indicated, we may have to examine the

magnitude of the effect of each stressor to identify the stressor that is responsible for the greatest

proportion of degradation.
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Figure 20.  Comparison of temperature (top) and sediment (bottom)
tolerance metrics at a single test site (shown as a solid triangle) with
reference distributions (shown as box and whisker plots).  Horizontal lines in
the boxes correspond to the 25th, 50th, and 75th percentiles of the reference
distribution.  Whiskers extend away from the boxes a distance equal to two times
the distance between the 25th and 75th percentiles.  Open circles represent samples
falling outside the range defined by the whiskers. 



41

5.  AREAS OF UNCERTAINTY AND RESEARCH PRIORITIES

On the basis of the results shown in the previous section, stressor-specific tolerance

values appear to be a promising tool for monitoring the condition of streams and informing

diagnoses of the causes of impairment in streams.  Broader application of this approach requires

the resolution of a few key areas of uncertainty: causal links between taxon occurrences and

environmental gradients must be established for tolerance values, stressor gradients of interest

must be clearly defined and measured, and basic ecological questions regarding the response of

stream communities to anthropogenic stress must be addressed. 

5.1.  CAUSAL RELATIONSHIPS

The tolerance values described in this report were all estimated from field data and

therefore are subject to the limitations imposed by such data.  That is, the analysis of field data 

provides only correlative relationships and does not necessarily provide any evidence of

causation.  Thus, a tolerance value defined in terms of one stressor may, in fact, be an indicator

for a different, covarying stressor or natural gradient.  Covariation among stressors is common. 

The two stressors discussed extensively in this report—elevated stream temperature and

increased fine bedded sediment—can be strongly correlated when they originate from the same

human activity.  For example, logging removes vegetative cover, which increases sediment

loading and also reduces shading to the stream (thus increasing stream temperature). 

Furthermore, both temperature and fine sediment fraction increase naturally as high-gradient

mountain streams transition to low-gradient valley-bottom streams.  Tolerance values can be

applied most effectively if they are specific to the stressor of interest; therefore, the effects of

covariation of variables must be controlled to whatever extent possible.  

We briefly addressed the issue of correlated stressors in the previous section by

examining the specificity of the derived relationships and plotting relationships between

temperature tolerance metrics and observed fine sediment and between sediment tolerance

metrics and observed stream temperature.  Results were mixed, but both sediment and

temperature tolerance metrics exhibited some strong relationships with the correlated stressor

gradient.  Uncertainties regarding the causal relationships underlying some of the temperature

and sediment tolerance values do exist.  Furthermore, these tests were limited in scope.  It is very

possible that other, unsampled environmental gradients also could be correlated with the derived

tolerance metrics.  

How then do we increase our confidence in the relationship between tolerance values and

the stressors for which they were derived?  One approach is to compare taxon-environment

relationships across different data sets and different regions.  We would expect environmental
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Figure 21. Comparison of taxon-environment relationships for Glossosoma
and Malenka.  Dashed line is relationship computed using Oregon data.  Solid
line computed using date from EMAP-West.

gradients in different regions to covary in different ways.  Furthermore, if a particular taxon-

environment relationship truly represented the fundamental niche for a given taxon, then we

would expect it to remain similar regardless of location. Thus, if a given taxon-environment

relationship remained similar across different regions, we could be more confident that the

estimated taxon-environment relationship reflected an actual causal relationship.  An example of

such a comparison is shown in Figure 21, where the relationship between probability of

occurrence of two genera, Glossosoma and Malenka, and stream temperature are plotted.  Two

relationships for each genera are shown, one derived using EMAP-West data and one derived

using Oregon data.  The shapes of the relationships for Glossosoma appear different: probability

of occurrence reached a maximum in Oregon at about 14°C, whereas it plateaued in EMAP-West

at 10°C and remained high for lower temperatures.  However, occurrence probabilities in both

regions decreased as temperatures increased above 14°C.  Taxon-environment relationships for

Malenka were very similar.  Both peaked at approximately 15°C and decreased on either side of

the peak.

These two examples highlight some of the difficulties inherent in comparing taxon-

environment relationships.  First, the maximum probability of occurrence of a given taxon is

likely to be different across different regions, so taxon-environment relationships will be shifted

up or down on the plot relative to one another.  Second, the range and distribution of

observations differ across regions, so we must attribute different levels of confidence to the

different parts of each curve.  Further work is required to develop methods for more quantitative

comparisons.  For now though, qualitative comparisons can provide some evidence of a common
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and causal response to a given gradient.  For the cases shown in Figure 21, we would probably

attribute more confidence to a causal relationship between Malenka and temperature than

between Glossosoma and temperature.

  As discussed in Section 3.3.4, the absolute values of tolerance values depend on the data

set from which they were derived, and comparing tolerance values across regions probably will

not yield insights into the strength of causal relationships.  However, if tolerance values are

summarized using biological metrics and the relationships of these metrics with gradients in a

different region are examined (as with the examples shown in Section 4), these analyses can

provide further evidence of causality.  Again, the reasoning here is that the covariance structure

of stressors differs across regions, and if tolerance metrics and inference indices derived using

data from one region are strongly correlated with the stressor of interest in a second region, then

it is more likely that the tolerance values reflect a true causal relationship. 

Another approach for increasing the confidence assigned to correlative relationships is to

attempt to control for other possible sources of covariance by including additional variables in

regression models.  The main weakness of this approach is that we cannot be sure that all

appropriate gradients are included or even that included gradients are appropriately modeled. 

Furthermore, including some natural gradients may be counterproductive.  For example, the size

of a stream is known to be strongly correlated with the type of organisms that are observed. 

However, it is unlikely that stream size is the actual causal agent.  Instead, stream size is

correlated with factors such as stream temperature and flow regime that directly influence the

abundance of different taxa.  Thus, including some natural variables in our models can actually

impede our ability to accurately define taxon-environment relationships.  Completely excluding

natural covariates is not a satisfactory solution either.  If, for example, the stressor of interest is

stream temperature, then including stream size may partially control for the effects of flow

regime, which could be useful.  

After covariates are included in models, the resulting taxon-environment relationship for

the stressor of interest can only be interpreted as being conditional on fixed values of the other

covariates.  Thus, tolerance values based on these taxon-environment relationships are also

conditional on the values of the other covariates.  This additional level of complexity in defining

tolerance values must be explored in detail and is beyond the scope of this report.  In the analyses

presented here, we have used only a single explanatory variable in our models.

The strongest approach for increasing our confidence in causal relationships is to use

controlled experiments because responses determined through experiment provide powerful

evidence of causality.  Laboratory experiments, however, are limited in the types of stressors that

can be tested and in the types of organisms that can be bred and they do not often replicate the

complexity of natural ecosystems.  Thus, laboratory dosing tests can reveal that different
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macroinvertebrates undergo increased mortality at increased stress and show the different

physiological mechanisms that determine whether a particular species is tolerant or sensitive, but

these findings do not account for more complex ecological mechanisms (e.g., increased

predation, decreased competitive ability) that affect organism survival.  A wealth of species-

specific sensitivity data that were developed from traditional laboratory toxicity tests are

available, and there is a great potential for using these data to inform and complement field-

derived tolerance values.  However, more research is required to compare and contrast results

derived from laboratory experiments and those derived from field studies.  Recent work

combining microcosm and field experiments have shown potential for bridging these gaps

(Clements, 2004).

5.2.  DEFINING STRESSOR GRADIENTS

Another necessary step for broadening the applicability of tolerance values is developing

tolerance values for all of the stressors that are commonly observed in streams.  In this report, we

have focused on elevated stream temperature and increased percentages of fine sediments as

examples of stressors.  Previous efforts to develop tolerance values (e.g., Hilsenhoff, 1987) have

focused on nutrient enrichment and organic pollution gradients.  Good data sets exist for some

stressors (e.g., increased metals and acidification), and the derivation of tolerance values using

the methods described in this report should be straightforward.  More research will be required to

appropriately define and sample other common stressors before tolerance values can be

developed.  

5.2.1.  General-disturbance Gradients

The framework for the biological condition gradient (Davies, 2001) defines a set of

narrative descriptions of biological changes in response to a general human-disturbance gradient. 

The response of sensitive and tolerant taxa figures prominently in this framework, but identifying

tolerant or sensitive taxa is hampered by the ambiguity inherent in defining a general human-

disturbance gradient.  In this report, we have focused on stressor gradients that can be readily

quantified by field measurements.  Unfortunately, no obvious environmental attribute or set of

attributes exists that can accurately define a general human-disturbance gradient.  Various proxy

measures have been proposed, but all have important issues that must be resolved before they can

be applied to tolerance values.  It has been suggested, for example, that a land use metric (e.g.,

percent urban land use in the catchment) provides a good proxy for the human-disturbance

gradient; indeed, in many cases, urban land use has served as a useful proxy for disturbance (e.g.,

Wang et al., 2001).  However, the management decisions we hope to inform with tolerance

values are often concerned with directing future remediation efforts.  If tolerance values are
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defined in terms of an urban gradient, then the only logical remediation or mitigation scheme

would be removal of the urban land use, an option that is rarely feasible.  Thus, defining

tolerance values with regard to a land use gradient would not necessarily provide useful

suggestions for management.  Moreover, the proxy measures of a human-disturbance gradient

would change between regions with different sets of dominant stressors; thus, no consistent

definition of the gradient or of the associated tolerance values would be possible.

An analytical approach for defining a general disturbance gradient would be to first apply

an ordination analysis (e.g., principle components analysis) to stressor data collected from the

study area and then estimate tolerance values with respect to the primary axis of the ordination. 

For this exercise, the use of randomly collected data would be critical to accurately capture the

relative frequency with which different anthropogenic stressors affect streams within the study

area.  The primary axis would then presumably capture a general disturbance gradient, and

tolerance values estimated with respect to this gradient would represent generally tolerant and

generally sensitive taxa for the study area.  This approach would likely under-represent human

activities that may cause severe degradation but are limited in spatial extent.  Furthermore,

natural gradients (e.g., elevation or catchment area) may confound the disturbance gradient

described by an ordination approach (as discussed in Section 5.1), so care should be taken to

select samples that minimize natural differences between streams. 

An alternative to attempting to define a general disturbance gradient is the use of

tolerance values that do not require an explicit definition of a gradient.  This type of approach has

not been described in this report because it differs fundamentally from methods based on taxon-

environment relationships.  One such approach relies on predictive models (Hawkins, 2003) and

quantifies tolerance values from differences between an observed and a modeled frequency of

occurrence for a taxon.  Thus, the relative tolerance value for a given taxon is based only on how

often the taxon is observed across an anthropogenically influenced study area relative to

reference expectations.  If the tolerance values are derived using data that are collected in a

randomized design in a particular region, they could provide an accurate depiction of taxa that

increase and taxa that decrease in response to the dominant human activities in a region.  In both

the predictive modeling and the ordination axis approaches, the general-disturbance tolerance

values derived would be unique to a particular region.  This restriction seems reasonable, given

that dominant stressors differ between different regions.  In contrast, the relative rankings of

tolerance and sensitivity derived with respect to individual stressor gradients would be expected

to be more stable between regions.
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5.2.2.  Indirect Stressor Gradients

The models described in this report apply most effectively to environmental gradients that

directly influence the health and fecundity of a particular organism.  These direct gradients would

include factors such as the temperature and acidity of the stream.  Many other factors can

influence species survival but are difficult to measure directly.  Usable physical habitat, for

example, is a requirement for all organisms, but a complete understanding of how different

stream macroinvertebrates utilize physical features in the stream is still lacking.  We must

therefore resort to indirect measures to quantify many environmental gradients.  The indirect

gradients for physical habitat may include measures of the percentage of fine sediment on the

stream bottom (Wood and Armitage, 1997) or measures of the quantity and distribution of large

woody debris (e.g., Lakly and McArthur, 2000).  Another important indirect gradient is nutrient

concentration.  High concentrations of nutrients generally do not directly influence

macroinvertebrates; rather, they alter the trophic status of a stream, placing certain insects at a

competitive disadvantage (Biggs, 2000).  Taxon-environment relationships can be derived with

respect to any measured gradient, but the precision of the relationships, as well as their

applicability beyond the region in which they were derived, become more uncertain as the

mechanisms become less direct.  

Resolving these issues requires that we improve our understanding of the mechanisms by

which different anthropogenic stressors affect stream biota.  Tolerance values can then be defined

in terms of the appropriate proximal factor.  With nutrients, for example,  the optimal solution

may be to estimate tolerance values for different periphyton taxa instead of for

macroinvertebrates, because periphyton respond directly to nutrient concentrations in streams.

5.2.3.  Sampling Issues

The number of stressors for which tolerance values can currently be defined is also

limited by the types of data that are readily available.  Standard protocols for sampling streams

often rely on randomized sampling of riffles and a one-time visit to each stream.  These protocols

constrain the types of stressors for which tolerance values can be derived.  Randomized

sampling, while providing a statistical valid sample from which population statistics can be

estimated, does not always provide the best data for inferring taxon-environment relationships

because stressor gradients are also sampled in proportion to their distribution in the region.  This

distribution would be suitable for computing tolerance values for some widely distributed

stressors.  For other stressors that are not as prevalent, a randomized sampling design does not

provide enough samples at high levels of stress to accurately compute tolerance values.  The

distribution of sediment measurements in the EMAP-West data (Section 4.1.3.1) provides a good

illustration of this phenomenon.  Other sampling designs should be considered for such stressors. 
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Riffles often contain the greatest density and diversity of macroinvertebrates, but sampling of

riffles can reduce our ability to discern the effects of stressors (such as sedimentation) that

initially would affect depositional areas in the stream.  Depending on the stressor of interest,

different habitats may be more appropriate to sample.  Transect designs, in which random

locations are sampled along prespecified reach transects, can also address this issue. 

A one-time visit provides efficient sampling of a broad array of sites, but may not 

provide information on stressors that have high temporal variability.  Pulse additions of

sediment, toxicants, and nutrients are poorly quantified by a single visit.  Understanding of such

stressors would be improved if sampled in temporally resolved studies. Other environmental

factors also exhibit high variability but can be effectively measured with a single grab sample as

long as the total number of samples is relatively high.  For example, stream temperature varies

considerably on seasonal and daily cycles, so a single grab sample of  temperature does not

necessarily provide useful information for a single stream.  However, if one considers grab

temperature measurements from a large sample of streams, then the seasonal and daily variations

often are manifested as random noise, and useful patterns of taxon responses to temperature can

be extracted. 

There is clearly much to be gained by analyzing existing data sets.  However, directed

studies toward specific stressors, in which the samples are collected along the full gradient,

appropriate habitats are sampled, and temporal resolution of samples designed to accurately

characterize the stressor, would greatly enhance existing understanding of a broader array of

anthropogenic stressors.  Other existing data sets collected with different designs and protocols

(e.g., Superfund) can potentially be mined.  Controlled manipulations, either in the lab or in the

field, can supplement knowledge derived from field data, especially in cases where a well-

designed field sampling campaign to capture the same stressors is too costly. 

5.3.  FUNDAMENTAL ECOLOGY

The derivation and application of tolerance values are closely linked with a fundamental

understanding of stream ecology.  Many uncertainties regarding tolerance values are also areas of

active research in stream ecology.  Many examples of related basic ecological questions exist, but

here we focus only on two main areas: the role of biological interactions and the temporal

characteristics of stream ecosystems.

5.3.1.  Biological Interactions

To derive tolerance values that are applicable beyond the immediate study area (see

Section 2.1), we need to assume that biological interactions are relatively unimportant and that

realized niches are similar to fundamental niches.  These assumptions are broad and are likely
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violated in many cases.  Different stream types will have different strengths of biological

interactions.  For example, we would expect communities in streams with stable flow regimes to

be more strongly influenced by biological interactions than are communities in streams that are

disturbed by frequent floods (Allan, 1995).  We would also expect certain taxa to be more subject

to biological interactions than others.  A vast body of ecological research in both terrestrial and

aquatic systems exists that examines these effects (e.g., Ives, 1995). However, for the practical

purposes of applying tolerance values, we need specific guidelines on the types of streams and

the types of taxa for which biological interactions are likely to be important.  Such specific data

are not widely available. 

5.3.2.  Temporal Characteristics of Stream Communities

Disturbance and recovery from disturbance are key factors in the structure of stream

communities.  Stream communities are dynamic, constantly changing biological systems.  Most

streams are exposed to strong, natural disturbances, and the stream community observed at any

point in time is a manifestation of the trajectory of recovery from the last major disturbance (e.g.,

flood).  Other temporally influenced factors include natural cycles of hatching and emergence

and episodic anthropogenic disturbances, such as toxicant pulses.  With regard to tolerance

values, we need to better understand the extent to which a single snapshot of a stream community

reflects a response to the environmental gradient of interest and the extent to which it reflects

temporally evolving factors.  Other issues to be addressed include the extent to which the

conditions observed are a consequence of the initial conditions and zoogeographical history of

the stream and to what extent they are a consequence of legacy effects of past human activities.  

All of these issues can potentially influence the generality of tolerance values derived from a

particular study area, and further research is required to identify scenarios in which temporally

evolving factors play an important role.

6.  IMPLEMENTATION

As an assessment tool, tolerance values are applicable to many different aspects of water

quality management.  They can help improve assessments of the condition of streams, identify

the sources of impairment for effective preparation of total daily maximum loads, and direct and

monitor restoration activities.  Our intent in preparing this report was first to present and review

the methods for deriving tolerance values so that states and tribes can derive tolerance values for

use in their own programs.  Second, our hope is that this report will lay the foundations for the

development of a national or several regional databases of tolerance values that can be used
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directly by states and tribes that may not have the resources to derive tolerance values from their

own data.  For both of these objectives, two implementation issues must be addressed:

information management and taxonomic quality assurance.

6.1.  INFORMATION MANAGEMENT

The applicability and utility of tolerance values would be vastly enhanced if analyses

conducted in different study areas were conveniently accessible.  A repository of tolerance values

analyses would provide an opportunity for those developing their own tolerance values to

compare their results with others from similar locations.  These comparisons would also help

accumulate evidence of causality, as described in Section 5.1.  Finally, a database of tolerance

values (e.g., see Appendix C) could potentially be applied directly to assessment questions by

entities that do not have the resources to develop their own tolerance values. However, as

discussed earlier, a database of tolerance values may not be the most useful format for

assessments because absolute tolerance values vary with regional characteristics.  The tolerance

values listed in Appendix C should be regarded as specific to the western United States and to

the range of conditions sampled in the data set.  Storing information for the entire taxon-

environment relationship derived from different analyses would provide data that are more easily

compared between locations.  Then, when tolerance values are required for assessment, the

stored taxon-environment relationships can be further processed.  

A more ambitious vision of regional databases would involve storing and sharing the raw

data collected by different states, tribes, or regions.  Pooling raw data collected by different

entities could lengthen the sampled environmental gradients of interest and increase sample

sizes, potentially increasing the accuracy of derived taxon-environment relationships. 

Combining raw data however, requires that sampling protocols be compatible, and states differ in

the types of habitats they sample, the sampling intensity within those habitats, and the number of

individuals that they identify from each sample and in many other details of sampling procedures. 

These differences must be reconciled before raw data can be effectively combined.  Methods

exist for quantifying sampling differences (e.g., Cao et al., 2002) and reconciling different data

sets, so these issues are tractable.  Providing a regional repository for raw data may be less

immediately useful to state and tribal water quality programs.  

6.2.  TAXONOMIC QUALITY ASSURANCE

With tolerance values, assessments of site conditions can hinge on the presence or

absence of particular taxa, so ensuring the accuracy of taxonomic identifications is critically

important.  Taxonomists are needed to catalogue the diversity of species in studies of biodiversity

(Blackmore, 2002).  Unfortunately, fewer people are choosing taxonomy as field of study and
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there is a dearth of qualified taxonomists.  A certification program for taxonomy could help

reinvigorate the field by raising the stature of the profession and establishing minimal levels of

expertise for taxonomists involved in biological assessment. 

7.  CONCLUSIONS AND RECOMMENDATIONS

Macroinvertebrate tolerance values have great potential for improving our ability to

effectively manage the waters of the United States.  Tolerance values derive from fundamental

concepts of ecology and effectively represent variations in the relationships between different

species and environmental gradients of interest.  In our review of methods for deriving and

applying tolerance values, we found that WA provides one of the simplest, most robust

approaches for estimating the relative sensitivity of different taxa.  Weighted averages are

therefore recommended as a first estimate of the tolerance values for different taxa.

Other compositional metrics (e.g., relative abundance of sensitive taxa) provide

additional information regarding the effects of different stressors on stream assemblages and can

enhance diagnoses of the causes of impairment.  However, these metrics require that differences

between sensitive and tolerant taxa be defined more clearly, and for this purpose, modeling the

taxon-environment relationship with GLMs or GAMs provides an invaluable tool.  After taxon-

environment relationships are defined by regression models, different taxa can be categorized as

tolerant or sensitive on the basis of curve classification techniques, and then different

compositional metrics can be computed.  An added benefit of explicitly modeling the taxon-

environment relationship is that the strength of the relationship between a particular taxon and a

particular environmental gradient can be quantified.  Taxa that are only weakly associated with

the gradient of interest can then be excluded from use in metrics. 

Tolerance values at both the family and the genus level were examined.  Genus-level

values accounted for more variability in environmental observations; however, for certain

metrics, family-level identifications sufficed, and in all cases, family identifications still provided

useful information.  We therefore recommend that organisms be identified to the finest

taxonomic level possible, but note that tolerance values can provide a useful tool for data

collected at coarser taxonomic resolutions.

Comparing the values of tolerance values metrics at test sites with baseline conditions at

least-impaired sites is a critical step for the effective application of tolerance values.  Without

baseline conditions, it is difficult to establish expected values for tolerance value metrics and

therefore difficult to determine whether changes have occurred.
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To achieve the potential of tolerance values, more research is required to resolve specific

uncertainties regarding the importance of biological interactions and to expand our knowledge

base to all stressors that are important in streams.  Research priorities include comparing and

contrasting species sensitivities derived from lab and field studies, mining existing databases to

derive tolerance value for other stressor gradients, and performing directed field studies for

stressors for which data do not currently exist.  

On the practical side, the utility of tolerance values would be broadened if databases of

taxon-environment relationships were conveniently accessible, along with tools for deriving

different tolerance values from those taxon-environment relationships.  Furthermore, a national

certification program for taxonomy would greatly strengthen the taxonomic basis for routinely

applying tolerance values in water quality management.
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APPENDIX A: ATTENDEES AT THE WESTERN TOLERANCE VALUES
WORKSHOP, CORVALLIS, OREGON (FEBRUARY 3–5, 2004)

Name Organization

Steve Austin Navajo Environmental Protection Agency

Robert Bennetts Greater Yellowstone Network

Wease Bollman Rhithron Associates, Inc.

Darren  Brandt Idaho Department of Environmental Quality

Daren  Carlisle U.S. Geological Survey

Bruce Chessman Center for Natural Resources, New South Wales Department of
Infrastructure, Planning and Natural Resources

Will Clements Colorado State University

Bob Danehy Weyerhauser

Doug Drake Oregon Department of Environmental Quality

Dave Feldman Montana Department of Environmental Quality

Leska Fore Statistical Design

Jeroen Gerritsen TetraTech

Rick Hafele Oregon Department of Environmental Quality

Jim Harrington California Game and Fish

Chuck  Hawkins Utah State University

Lil Herger U.S. EPA Region 10

Alan Herlihy Oregon State University

Shannon Hubler Oregon Department of Environmental Quality

Dave Huff Oregon Department of Environmental Quality

Susan  Jackson U.S. EPA Office of Water

Jerry Jacobi New Mexico Department of Environmental Quality

Phil Kauffman U.S. EPA Office of Research and Development

Jeff Kershner U.S. Forest Service

Tina Laidlaw U.S. EPA Region 8

Phil Larsen U.S. EPA Office of Research and Development

Dave Lenat North Carolina Department of Environment and Natural Resources

Gary Lester EcoAnalysts

Amanda Mays Council of State Governments
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Sue Norton U.S. EPA Office of Research and Development

Pete Ode California Game and Fish

Yandong Pan Portland State University

Mike Paul Howard University

Rob Plotnikoff Washington Department of Environmental Quality

Amina Pollard U.S. EPA Office of Research and Development

Andrew  Rehn California Game and Fish

Christina Relyea Idaho State University

Bobbye Smith U.S. EPA Region 9

Patti Spindler Arizona Department of Environmental Quality

Jan Stevenson Michigan State University

Glenn Suter U.S. EPA Office of Research and Development A

Patti Tyler U.S. EPA Region 8

John Van Sickle U.S. EPA Office of Research and Development

Ian Waite U.S. Geological Survey

Lori Winters U.S. EPA Office of Research and Development

Bob  Wisseman

Lester Yuan US EPA Office of Research and Development

Jeremy ZumBerge Wyoming Department of Environmental Quality
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APPENDIX B:  DATA DESCRIPTION

Two data sets were used to illustrate the analysis methods described in this report: one

contained data collected by the U.S. Environmental Protection Agency’s Environmental

Management and Assessment Program-Western Pilot Project (EMAP-West) from 2000 to 2001,

and the other contained data collected in western Oregon by the Oregon Department of

Environmental Quality from 1999 to 2000 (Figures B-1 and B-2).  Both organizations used a

similar sampling protocol.  A reach 40 times the wetted width of the stream was delineated for

sampling.  Stream temperature was measured at the time of sampling.   Substrate composition

was estimated by summarizing the size distribution of particles at five locations on 21 transects. 

For the EMAP-West, macroinvertebrate samples were collected at eight randomized locations in

riffles using a modified D-frame kicknet (500 :m mesh) by disturbing a 1 ft2 area for 30 seconds. 

In Oregon, samples were collected by disturbing 2 ft2 areas at four randomized locations. 

Samples from both studies were composited and spread on a gridded pan and picked from

randomly selected grid squares until at least 500 organisms were collected.  Each organism was

then identified to the lowest possible taxonomic level (usually genus or species). 

A total of 392 complete samples in EMAP-West and 271 complete samples from Oregon

were available for analysis.
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Figure B-1.  Map of sampling locations for Western Environmental
Monitoring and Assessment Program (EMAP-West).

Figure B-2.  Map of sampling locations in Oregon.
APPENDIX C:  TOLERANCE VALUES
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Table C-1.  Temperature tolerance values (°C) derived using EMAP-West data

Name GLMM AX GLMCL GAMM AX GAMCL WA CD75

TROMBIDIFORMES

Atractides    . .    . . 14.5 17.4

Hygrobates    . .    . . 14.7 17.6

Lebertia    2 S    2 S 12.8 15.2

Protzia 11.9 I 10.8 S 12.9 15.2

Sperchon    .    . 14.3 17.8

Sperchonopsis 15.7 I 14.9 T 14.4 16.3

Testudacarus   11 I  9.9 S 12.2   14

Torrentico la 15.1 I 13.8 I 14.2 16.2

VENEROIDA

Pisidium 17.1 I 17.1 T   15 18.2

BASOMM ATOPHORA

Physa 29.1 T 29.1 T 16.9 19.5

COLEOPTERA

Agabus    . . 19.5 T 15.5 19.5

Cleptelmis 14.6 I   14 I   14 15.7

Dubiraphia 29.1 T 27.2 T 16.8 19.8

Eubrianax   16 I 16.5 I 15.4 17.3

Helichus 16.8 I 16.5 T 15.6 17.3

Heterlimnius  7.7 I    2 S 10.9 13.2

Hydraena    . .    . . 14.6   17

Lara 11.9 I 11.6 I 12.1   14

Microcylloepus 29.1 T 29.1 T 19.2 22.9

Narpus   14 I 13.5 I 13.7 15.7

Optioservus 16.8 I 17.1 I 14.9 17.5

Ordobrevia 17.1 I 17.1 T   16   18

Oreodytes 16.5 I   16 T 15.2 16.5

Psephenus 22.3 I 29.1 T 18.7 21.3

Zaitzevia 16.5 I   16 I 14.8 17.3

DIPTERA

Antocha 13.8 I 12.9 I 13.6 15.5

Atherix 29.1 T 19.5 T 16.2 18.2

Atrichopogon 29.1 T 29.1 T 16.9 20.7

Brillia  8.6 I    2 S   12 14.6

Cardiocladius 19.8 I 20.9 T   17 19.6
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Table C-1.  Temperature tolerance values (°C) derived using EMAP-West data
(continued)

Name GLMM AX GLMCL GAMM AX GAMCL WA CD75

Chelifera    2 S  4.7 S 12.3 14.6

Chironomus 29.1 T 29.1 T 17.7 22.9

Cladotanytarsus 29.1 T 29.1 T 16.6 19.5

Clinocera    2 S    2 S 10.7 12.7

Corynoneura 10.8 I  9.4 S 13.2 15.3

Cricotopus 29.1 T 29.1 T 15.2 18.8

Cryptochironomus 29.1 T 29.1 T 17.6 21.5

Diamesa    2 S    2 S   11 13.1

Dicranota    2 S    2 S   13 15.6

Dicrotendipes 29.1 T 29.1 T 18.8 20.3

Dixa 12.4 I 11.3 S 13.1 15.2

Eukiefferiella    2 S    2 S 13.4 16.1

Glutops  7.5 I    2 S   10 11.7

Heleniella    2 S  9.1 S 12.6 14.7

Hemerodromia 22.3 I 22.8 T 17.3 19.6

Hexatoma 14.3 I 13.2 I 13.9 16.1

Hydrobaenus    2 S    2 S  9.8 12.7

Krenosmittia    2 S    2 S 10.4 12.4

Larsia    . . 29.1 T   15 19.6

Limnophila    2 S    2 S 12.6 15.2

Limnophyes    . . 12.4 T 14.4 17.3

Maruina 29.1 T 29.1 T   17   21

Micropsectra    2 S    2 S 12.6 15.1

Microtendipes 20.3 I 20.9 T   16 18.9

Nanocladius 15.1 I 16.5 S 14.3 18.2

Neoplasta 16.5 I 17.1 T 15.5   18

Nilotanypus 29.1 T 29.1 T 18.6 20.9

Oreogeton    2 S    2 S 10.2 11.9

Orthocladius    2 S    2 S 12.1   14

Pagastia  5.6 I    2 S 11.9 14.7

Parakiefferiella    . .    2 S 13.4 17.8

Parametriocnemus 11.6 I 10.5 S 13.6 16.3

Paraphaenocladius    2 S    2 S 10.5 12.9

Paratanytarsus 17.6 I   19 T 15.7 19.1

Paratendipes 29.1 T 29.1 T 17.1   22

Parorthocladius    2 S    2 S 10.3 12.5
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(continued)

Name GLMM AX GLMCL GAMM AX GAMCL WA CD75
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Pentaneura 21.4 I 24.4 T 17.5 21.3

Pericoma    2 S    2 S   11 12.7

Phaenopsectra 29.1 T 20.6 T 15.6 18.6

Polypedilum 29.1 T 29.1 T   16 19.1

Potthastia 29.1 T 17.9 T 15.4 18.2

Prosimulium    2 S    2 S  9.7 10.6

Pseudochironomus 29.1 T 29.1 T 18.2 22.7

Rheocricotopus    .   11 S 13.9 16.6

Rheotanytarsus 21.2 I 25.3 T 15.7 18.9

Simulium 17.6 I 17.6 T 14.8 17.7

Stempellina    2 S    2 S 11.5   14

Stempellinella    2 S    2 S 12.6 14.8

Synorthocladius    . .    . . 14.7 16.4

Tanytarsus 29.1 T 29.1 T 16.7 20.6

Thienemanniella 29.1 T 29.1 T   15 18.1

Thienemannimyia 23.9 I 29.1 T 15.9 18.9

Tipula    2 S    2 S 12.5 16.2

Tvetenia    2 S    2 S 12.8 15.4

Wiedemannia    2 S    8 S 12.3 14.7

EPHEMERO PTERA

Acentrella 19.5 I 20.6 T   17 19.6

Ameletus  5.8 I    2 S 10.8 13.2

Baetis   14 I 13.8 S 14.1   17

Caenis 29.1 T 29.1 T 18.2 19.8

Caudatella  8.3 I  6.7 S 11.1   13

Cinygma    2 S    2 S  9.6 12.4

Cinygmula    2 S    2 S 10.9 13.2

Diphetor   14 I 13.8 I 13.8 16.3

Drunella  7.7 I  6.4 S 11.9   14

Epeorus    2 S    2 S 12.6 15.1

Ephemerella    2 S    2 S 12.7 15.4

Fallceon 29.1 T 29.1 T 19.4 22.2

Ironodes 11.6 I   11 S 12.4 15.1

Paraleptophleb ia  9.1 I    2 S 12.6   15

Rhithrogena  7.5 I  3.4 S 12.3 14.7

Serra tella 13.8 I 13.2 I 13.6   16
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(continued)

Name GLMM AX GLMCL GAMM AX GAMCL WA CD75
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Tricorythodes 29.1 T 29.1 T 18.5 22.4

HEMIPTERA

Ambrysus 29.1 T 29.1 T 18.9 22.7

LEPIDOPTERA

Petrophila 29.1 T 29.1 T 20.5 23.8

ODONATA

Argia 22.5 I   25 T 18.5   22

Ophiogomphus 29.1 T 29.1 T 18.5 24.5

PLECOPTERA

Calineuria 15.7 I   16 I 14.8   17

Despaxia 11.3 I 10.8 S 11.8 13.1

Doroneuria  9.1 I    8 S   11 13.2

Hesperoperla 12.9 I 12.7 I 13.2 15.2

Isoperla    . . 14.9 S 13.8 17.4

Malenka 14.6 I 14.6 I   14 16.1

Megarcys  7.5 I  3.4 S  9.8 11.7

Pteronarcys 13.8 I 13.5 S 13.6   16

Skwala    2 S 11.6 S 13.3 15.6

Suwallia    2 S  6.4 S 11.5 13.2

Sweltsa  5.3 I    2 S 11.4 13.6

Visoka  6.7 I    2 S   10 11.9

Yoraperla    8 I  5.8 S 10.9 13.1

Zapada    2 S    2 S 11.7 14.1

TRICHOPTERA

Agapetus 15.7 I 15.4 I 14.8 16.3

Amiocentrus    2 S  9.1 S   13 15.1

Anagapetus    2 S    2 S 10.2 12.4

Apatania 11.6 I 11.3 S   12 13.4

Arctopsyche 11.3 I 10.5 S 12.2 13.7

Brachycentrus    . . 11.9 S 13.3   16

Cheumatopsyche 28.6 I 29.1 T 18.9 22.7

Dicosmoecus 29.1 T 29.1 T 15.7 20.7

Dolophilodes    2 S  7.5 S 11.6 13.1

Ecclisomyia    2 S    2 S 10.3 11.9

Glossosoma  9.7 I    2 S 12.2 14.9

Helicopsyche 29.1 T 29.1 T 17.2 20.4
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(continued)

Name GLMM AX GLMCL GAMM AX GAMCL WA CD75
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Hydropsyche 22.3 I 24.7 T 16.4 19.2

Hydroptila 22.5 I   25 T 17.8 20.4

Lepidostoma 12.1 I 11.9 S 13.1 15.7

Micrasema  8.8 I  7.5 S 12.9 15.6

Neophylax 11.9 I   11 S 12.7 14.9

Neothremma  6.4 I    2 S  9.5 10.5

Ochrotrichia 29.1 T 29.1 T 17.5 20.6

Oecetis 29.1 T 29.1 T 16.6 22.9

Oligophlebodes  9.1 I  7.7 S 10.5 12.1

Parapsyche  6.9 I    2 S 11.4 14.2

Polycentropus 29.1 T 29.1 T 17.6 20.4

Rhyacophila    2 S    2 S 11.9 14.8

Wormaldia 17.1 I 16.8 I 15.3 17.8

AMPHIPODA

Hyalella 20.1 I 21.2 T 16.5 19.1

TRICLADIDA

Polycelis    2 S    2 S 10.4 12.4

CD75 = cumulative 75th percentile 

GAMCL = generalized additive model - curve shape class

GAMM AX = generalized additive model - maximum point (optimum)

GLM CL = generalized linear model - curve shape class

GLMM AX = generalized line model - maximum point (optimum)

I =  intermediately tolerant

S = sensitive 

T =  tolerant 

WA = weighted averaging 
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Table C-2.  Sediment tolerance values (percent sands and fines) derived from EMAP-West
data  

Name GLMM AX GLMCL GAMM AX GAMCL WA CD75

TROMBIDIFORMES

Atractides 0 S 15.7 S 22.9 34.3

Hygrobates    . . 97.1 T 31.2 41

Lebertia 0 S 0 S 22.4 29.8

Protzia 0 S 0 S 14.4 19.2

Sperchon    . .    . . 25.9 37.1

Sperchonopsis 0 S 0 S 19.6 25.7

Testudacarus 21.6 I 17.7 S 19.3 27.6

Torrentico la 0 S 0 S 16.1 22.1

VENEROIDA

Pisidium 97.1 T 97.1 T 42.5 67

BASOMM ATOPHORA

Physa 97.1 T 97.1 T 38.3 57.1

COLEOPTERA

Agabus 97.1 T 97.1 T 39.4 56.2

Cleptelmis    . . 35.3 T 26.4 38

Dubiraphia 97.1 T 97.1 T 55.7 74.3

Eubrianax 11.8 I 7.8 S 12.6 17.1

Helichus    . .    . . 24.6 35.2

Heterlimnius 0 S 0 S 20.7 29.5

Hydraena    . . 32.4 S 25.5 36.2

Lara    . .    . . 22.7 32.4

Microcylloepus    . . 32.4 T 29.6 34.3

Narpus 0 S 22.6 S 22 35

Optioservus 34.3 I 30.4 S 26.3 37.1

Ordobrevia 0 S 0 S 10 12.4

Oreodytes 97.1 T 37.3 T 29.9 37.1

Psephenus 0 S 0 S 17.4 24.8

Zaitzevia 0 S 0 S 20 27.6

DIPTERA

Antocha 7.8 I 0 S 15 21.9

Atherix 0 S 0 S 14.2 16.2

Atrichopogon 25.5 I 19.6 S 21.8 37.1

Brillia 0 S 0 S 20.2 31.4

Caloparyphus 33.4 I 31.4 S 25.9 36.2

Cardiocladius 24.5 I 25.5 S 20.9 29.5
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Table C-2.  Sediment tolerance values (percent sands and fines) derived from
EMAP-West data (continued)

Name GLMM AX GLMCL GAMM AX GAMCL WA CD75

Chelifera 23.5 I 21.6 S 22.3 32.4

Chironomus 97.1 T 97.1 T 45.9 58.1

Cladotanytarsus 97.1 T 97.1 T 36 57.1

Clinocera 0 S 0 S 19.2 27.6

Corynoneura 0 S 0 S 23.9 34.3

Cricotopus 97.1 T 97.1 T 31 47.6

Cryptochironomus 80.5 I 86.3 T 55.3 68.6

Diamesa 0 S 0 S 12.7 17.1

Dicranota    . .    . . 28.9 40

Dicrotendipes 97.1 T 97.1 T 53.7 74

Dixa    . .    . . 23.6 36.2

Eukiefferiella 0 S 0 S 22.7 32.4

Glutops 0 S 17.7 S 20.2 27.6

Heleniella 0 S 0 S 19.6 28.6

Hemerodromia 97.1 T 64.8 T 33.7 55.2

Hexatoma 0 S 0 S 20.7 28.6

Hydrobaenus    . .    . . 23.1 33.3

Krenosmittia    . .    . . 24 33.7

Larsia 97.1 T 74.6 T 34.1 45.7

Limnophila 97.1 T 97.1 T 31.8 51.4

Limnophyes 97.1 T 97.1 T 33.4 46.7

Maruina 16.7 I 14.7 S 16.8 24.8

Micropsectra 0 S 0 S 21.7 31.4

Microtendipes    . .    . . 27.2 36.2

Nanocladius    . . 60.8 . 28.2 49

Neoplasta 0 S 0 S 19.4 34.3

Nilotanypus 97.1 T 97.1 T 33.8 55.2

Oreogeton 0 S 0 S 16.2 17.1

Orthocladius    . .    . . 24.8 38.1

Pagastia 16.7 I 10.8 S 20.5 30.5

Parakiefferiella 62.8 I 70.6 T 37.6 57.1

Parametriocnemus    . . 29.4 S 26.6 35.2

Paraphaenocladius 0 S 0 S 23.2 35

Paratanytarsus 97.1 T 97.1 T 44.1 60

Paratendipes 97.1 T    . . 33.7 50.5

Parorthocladius 0 S 0 S 15.9 24.8
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EMAP-West data (continued)

Name GLMM AX GLMCL GAMM AX GAMCL WA CD75
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Pentaneura 97.1 T 97.1 T 34.5 54.3

Pericoma    . .    . . 25.6 39.7

Phaenopsectra 97.1 T 97.1 T 33.2 54.3

Polypedilum 97.1 T 69.7 T 30.1 50.5

Potthastia 0 S 0 S 12.6 18.1

Prosimulium 0 S 0 S 18 26.9

Pseudochironomus 49.1 I 50 T 33.3 45.7

Rheocricotopus 0 S 0 S 22.5 31.4

Rheotanytarsus    . .    . . 27.4 40

Simulium 97.1 T 77.5 T 28.8 40

Stempellina 97.1 T 85.4 T 33.2 55.2

Stempellinella 0 S 0 S 20 26.9

Synorthocladius 21.6 I 22.6 S 19.5 30.5

Tanytarsus 97.1 T 97.1 T 36.3 58.1

Thienemanniella    . .    . . 28 38.1

Thienemannimyia 97.1 T 97.1 T 31.7 49

Tipula 65.7 I 73.6 T 40.9 57.1

Tvetenia 0 S 0 S 22.5 32.4

Wiedemannia 0 S 0 S 13.5 20

EPHEMERO PTERA

Acentrella    . . 97.1 T 27 45.7

Ameletus 0 S 0 S 19.7 29.5

Baetis 0 S 0 S 24.2 34.3

Caenis 64.8 I 72.6 T 54.2 68.6

Caudatella 0 S 0 S 14.2 21

Cinygma 97.1 T 97.1 T 32.5 46.7

Cinygmula 0 S 0 S 17.8 26.9

Diphetor 0 S 0 S 21.7 32.4

Drunella 0 S 0 S 16.7 25.7

Epeorus 0 S 0 S 13.3 20

Ephemerella    . .    . . 23.9 31.4

Fallceon 97.1 T 97.1 T 42.1 60.6

Ironodes 0 S 0 S 15.8 26.1

Nixe    . . 97.1 . 27.5 36.2

Paraleptophleb ia 0 S 0 S 21.7 32.4

Rhithrogena 0 S 0 S 12 16.2



Table C-2.  Sediment tolerance values (percent sands and fines) derived from
EMAP-West data (continued)

Name GLMM AX GLMCL GAMM AX GAMCL WA CD75

66

Serra tella 0 S 0 S 18.1 25.7

Tricorythodes 97.1 T 97.1 T 39.5 60.6

HEMIPTERA

Ambrysus 48.1 I 47.1 T 37 47.6

LEPIDOPTERA

Petrophila    . . 30.4 S 25.1 33.7

ODONATA

Argia 97.1 T 97.1 T 40.4 66.7

Ophiogomphus 97.1 T 73.6 T 39.1 62.7

PLECOPTERA

Calineuria 0 S 0 S 12.8 17.9

Despaxia 0 S 0 S 16.1 24.4

Doroneuria 12.8 I 0 S 17.8 26.9

Hesperoperla 0 S 0 S 18.2 27.6

Isoperla 37.3 I 35.3 I 28.4 36.2

Malenka 0 S 0 S 23.9 34.3

Megarcys 0 S 0 S 13.7 15.2

Pteronarcys 0 S 0 S 14.4 26.7

Skwala 0 S 0 S 21.4 30.5

Suwallia 0 S 0 S 12.9 17.1

Sweltsa 0 S 0 S 17.3 24.4

Visoka 0 S 0 S 16.6 26.9

Yoraperla 0 S 0 S 19 27.6

Zapada 0 S 0 S 21.2 31.4

TRICHOPTERA

Agapetus 0 S 0 S 22 26.7

Amiocentrus 0 S 0 S 19.8 31.4

Anagapetus 0 S 0 S 15 26.1

Apatania 0 S 0 S 15.2 18.1

Arctopsyche 0 S 0 S 11.3 14.3

Brachycentrus 31.4 I 31.4 S 24.6 35.2

Cheumatopsyche 61.8 I 70.6 T 39.4 60.6

Dicosmoecus 19.6 I 17.7 S 17.7 26.7

Dolophilodes 0 S 0 S 14.6 26.1

Ecclisomyia 0 S 0 S 14 20

Glossosoma 0 S 0 S 16.9 26.7



Table C-2.  Sediment tolerance values (percent sands and fines) derived from
EMAP-West data (continued)

Name GLMM AX GLMCL GAMM AX GAMCL WA CD75
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Gumaga 0 S 0 S 21.2 28.6

Helicopsyche    . . 35.3 T 29.9 38.1

Hydropsyche    . .    . . 28.1 41

Hydroptila 71.6 I 97.1 T 38.1 55.2

Lepidostoma 0 S 0 S 18.7 27.6

Micrasema 0 S 0 S 21.8 32.4

Neophylax 0 S 0 S 15.3 21.9

Neothremma 18.6 I 18.6 S 16.9 23.5

Ochrotrichia 27.5 I 23.5 S 22.8 33.3

Oecetis 49.1 I 57.9 T 36.1 58.1

Oligophlebodes 0 S 0 S 16.2 20

Parapsyche 0 S 0 S 17.5 26.7

Polycentropus 0 S 0 S 20.1 29.5

Rhyacophila 0 S 0 S 18 26.7

Wormaldia 0 S 12.8 S 20 27.6

AMPHIPODA

Hyalella 86.3 I 97.1 T 58.3 76.2

TRICLADIDA

Polycelis 0 S 0 S 19.9 29.5

CD75 = cumulative 75th percentile 

GAMCL = generalized additive model - curve shape class

GAMM AX = generalized additive model - maximum point (optimum)

GLM CL = generalized linear model - curve shape class

GLMM AX = generalized line model - maximum point (optimum)

I =  intermediately tolerant

S = sensitive 

T =  tolerant 

WA = weighted averaging 
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APPENDIX D: EXAMPLE STATISTICAL SCRIPTS

This appendix provides short scripts that perform the statistical analyses described in the report. 
R, a free software package for statistical computations, is used for these computations.  More
information on R and the package itself are available from http://www.r-project.org/.  If you wish
to run the scripts provided in this section, please visit the R web page and install R on your
computer.

D.1. R: BASIC SYNTAX

Variable names in R can be composed of combinations of letters, numbers, and periods.  They
are case sensitive. 

x, y, X, Y, flow.rate 

(Note that in this and all subsequent sections, R commands can be run by typing text directly into
the R Console window.  R commands are shown in the Courier font.)

Use the assignment operator, <-, to assign a value to a variable.

x <- 1 # Assign a single value to the variable x

x <- c(1,3,2) # Assign a vector of numbers to x

x <- c(T,F,T) # Assign a vector of logical values to x

x <- list(colors = c(“red”, “blue”, “black”), numbers = c(1,3)) 

# Assign a list of dissimilar objects to x

(Comments are preceded with a “#” and are ignored by R.)

The value of any variable can be examined by typing the variable name, or by using the print
command:

x

print(x)

Simple mathematical and statistical operations can be performed on different vectors.

x + y # Addition

x - y # Subtraction

x * y # Multiplication

x / y # Division

mean(x) # Arithmetic mean

var(x) # Variance

sum(x) # The sum of all the elements of x
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The most commonly used format for storing data is the data frame, which is a list of objects of
the same length.  Data frames allow one to combine logical, numerical, and factor data in a single
data structure.  

site.name <- c(“A”, “B”, “C”, “D”) # A site label stored as a 

#   factor

pH <- c(7.6, 6.0, 4.0, 8.2) # Site pH stored as a 

#   numerical vector

abund.baetis <- c(103, 204, 602, 301) # Baetis abundance stored as 

#   a numerical vector

sampled.spring <- c(T, T, F, T) # Sampling season stored as a 

#   logical vector

all.data <- data.frame(site.name, pH, abund.baetis, sampled.spring)

# All data combined together 

#   as a data frame

The elements of a vector can be referred to in a variety of ways.

x[1] # The first element of the vector x

x[1:3] # The first three elements of vector x

x[c(T,T,F)]  # The first two elements of x (assuming that x

#   has three elements)

x[-1] # All of x except for the first element

We can also refer to different subsets of a data frame in a variety of ways.  

all.data$pH # The element labelled “pH” from the data frame 

#   all.data

all.data[, “pH”] # The same column labelled “pH”

all.data[, 2] # The second column of the data.frame

all.data[1,] # The first row of the data.frame

Within R, you can access help pages on a particular command by typing, 

help(<command name>)

For example:

help(glm)

help(mean)

D.2. LOADING DATA

Data formatted as tab-delimited text can be loaded easily with, 

data.set <- read.delim(<filename>)  # Loads a tab-delimited data file
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A typical site-environment file would contain the environmental data for each site listed in each
row of the file, with each field delimited with tabs: 

SITE.ID TEMP SED
A 13 40
B 17 20
C 15 10
...

In the above example, data on stream temperature (TEMP) and fine sediment (SED) is recorded
for each site.

A typical site-species file would contain the abundances of different species observed at a site:

SITE.ID BAETIS MALENKA ...
A 55 3 ...
B 22 10 ...
C 4 0 ...
...

Assuming that both site-species and site-environment data are available as tab-delimited text
files, they can be loaded into R with the following commands.

# Load tab-delimited files

site.species <- read.delim(“site.species.txt”)

env.data <- read.delim(“env.data.txt”)

ls() # Check to see if new data frames are listed

The two data sets can be merged into a single data frame (matching environmental and biological
data) with the following command:

dfmerge <- merge(site.species, env.data, by = “SITE.ID”)

D.3. ESTIMATING TOLERANCE VALUES FROM FIELD DATA

D.3.1. Weighted Averages

The basic formula for a weighted average tolerance value (eqn 1) can be represented in R as
follows:

WA <- sum(Y*x)/sum(Y)

where Y is a vector containing the abundance of the taxon of interest at each sample.  Y can also
contain presence/absence data coded as 1 for present and 0 for absent.  x is vector containing the
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value of the environmental variable of interest at each sample, and sum computes the sum of the
values of a numerical vector.

Use a for loop to create weighted averages for many different taxa using previously loaded data. 
To run this script, first make sure that you have loaded biological data and merged them into a
single data frame (see previous section).

First designate the taxa for which you want to compute tolerance values.

taxa.names <- c(“ACENTRELLA”, “DIPHETOR”, “AMELETUS”)

The for loop then repeats the computation for each of the selected taxa.

WA <- rep(NA, times = length(taxa.names))

# Define a WA to be vector of a length the same as the 

# number of taxa of interest

for (i in 1:length(taxa.names)) {

WA[i] <- sum(dfmerge[,taxa.names[i]]*dfmerge$temp)/

sum(dfmerge[,taxa.names[i]])

}

names(WA) <- taxa.names

print(WA)

D.3.2. Cumulative Percentiles

Use a for loop similar to that used for weighted averages to compute cumulative percentile
tolerance values (eqn 2) for different taxa: 

# Define a storage vector for the cumulative percentile

CP <- rep(NA, times = length(taxa.names)) 

# Sort sites by the value of the environmental variable

dftemp <- dfmerge[order(dfmerge$temp), ] 

# Select a cutoff percentile

cutoff <- 0.75

# Specify three plots per page

par(mfrow = c(1,3), pty = “s”)

for (i in 1:length(taxa.names)) {

# Compute cumulative sum of abundances

csum <- cumsum(dftemp[,taxa.names[i]])/sum(dftemp[,taxa.names[i]])

# Make plots like Figure 5

plot(dftemp$temp, csum, type = “l”, xlab = “Temperature”, 

ylab = “Proportion of total”, main = taxa.names[i]) 
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# Search for point at which cumulative sum is 0.75

ic <- 1

while (csum[ic] < 0.75) ic <- ic + 1

# Save the temperature that corresponds to this 

#   percentile.

CP[i] <- dftemp$temp[ic] 

}

names(CP) <- taxa.names

print(CP)

D.3.3. Parametric Regressions

Parametric regressions for presence/absence of different taxa (eqn 3) can be computed as
follows.  We store each model in a list.

# Create storage list

modlist.glm <- as.list(rep(NA, times = length(taxa.names)))

for (i in 1:length(taxa.names)) {

# Create a logical vector that is true if taxon is 

# present and false if taxon is absent.

resp <- dfmerge[,taxa.names[i]]>0

# Fit the regression model and store the results in a list.

# Here, poly(temp,2) specifies that the

# model is fitting using a second order polynomial of the 

# explanatory variable.  glm calls the function that fits

# Generalized Linear Models.  We specify in this case that

# the response variable is distributed binomially.

modlist.glm[[i]] <- glm(resp ~ poly(temp,2), data = dfmerge, 

family = “binomial”)

print(summary(modlist.glm[[i]]))

}

Plot model results (similar to Figure 6) as follows.

par(mfrow = c(1,3), pty = “s”) # Specify 3 plots per page

for (i in 1:length(taxa.names)) {

# Compute mean predicted probability of occurrence

# and standard errors about this predicted probability.

predres <- predict(modlist.glm[[i]], type= “link”, se.fit = T)

# Compute upper and lower 90% confidence limits

up.bound.link <- predres$fit + 1.65*predres$se.fit

low.bound.link <- predres$fit - 1.65*predres$se.fit

mean.resp.link <- predres$fit

# Convert from logit transformed values to probability.
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up.bound <- exp(up.bound.link)/(1+exp(up.bound.link))

low.bound <- exp(low.bound.link)/(1+exp(low.bound.link))

mean.resp <- exp(mean.resp.link)/(1+exp(mean.resp.link))

# Sort the environmental variable.

iord <- order(dfmerge$temp)

# Define bins to summarize observational data as

# probabilities of occurrence

# Define the number of bins

nbin <- 20

# Define bin boundaries so each bin has approximately the same

# number of observations.

cutp <- quantile(dfmerge$temp, 

probs = seq(from = 0, to = 1, length = 20))

# Compute the midpoint of each bin

cutm <- 0.5*(cutp[-1] + cutp[-nbin])

# Assign a factor to each bin

cutf <- cut(dfmerge$temp, cutp, include.lowest = T)

# Compute the mean of the presence/absence data within each

# bin.

vals <- tapply(dfmerge[, taxa.names[i]] > 0, cutf, mean)

# Now generate the plot,

 # Plot binned observational data as symbols.

plot(cutm, vals, xlab = “Temperature”, 

ylab = “Probability of occurrence”, ylim = c(0,1),

main = taxa.names[i])

# Plot mean fit as a solid line.

lines(dfmerge$temp[iord], mean.resp[iord])

# Plot confidence limits as dotted lines.

lines(dfmerge$temp[iord], up.bound[iord], lty = 2)

lines(dfmerge$temp[iord], low.bound[iord], lty = 2)

}

D.3.4. Nonparametric Regression

Nonparametric regressions (eqn 5) can be computed with a set of commands similar to those
of parameteric regressions.

library(gam) # Load GAM library

modlist.gam <- as.list(rep(NA, times = length(taxa.names)))

for (i in 1:length(taxa.names)) {

# Create a logical vector that is true if taxon is 

#   present and false if taxon is absent.
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resp <- dfmerge[, taxa.names[i]]>0 

# Fit the regression model, specifying two degrees of freedom

# to the curve fit.

modlist.gam[[i]] <- gam(resp ~ s(temp, df = 2), data = dfmerge, 

family = “binomial”)

print(summary(modlist.gam[[i]]))

}

Plot model results (similar to Figure 8) as follows.

par(mfrow = c(1,3), pty = “s”)

for (i in 1:length(taxa.names)) {

predres <- predict(modlist.gam[[i]], type= “link”, se.fit = T)

up.bound.link <- predres$fit + 1.65*predres$se.fit

low.bound.link <- predres$fit - 1.65*predres$se.fit

mean.resp.link <- predres$fit

up.bound <- exp(up.bound.link)/(1+exp(up.bound.link))

low.bound <- exp(low.bound.link)/(1+exp(low.bound.link))

mean.resp <- exp(mean.resp.link)/(1+exp(mean.resp.link))

iord <- order(dfmerge$temp)

nbin <- 20

cutp <- quantile(dfmerge$temp, probs = seq(from = 0, to = 1, 

length = 20))

cutm <- 0.5*(cutp[-1] + cutp[-nbin])

cutf <- cut(dfmerge$temp, cutp, include.lowest = T)

vals <- tapply(dfmerge[, taxa.names[i]] > 0, cutf, mean)

plot(cutm, vals, xlab = “Temperature”, 

ylab = “Probability of occurrence”, ylim = c(0,1),

main = taxa.names[i])

lines(dfmerge$temp[iord], mean.resp[iord])

lines(dfmerge$temp[iord], up.bound[iord], lty = 2)

lines(dfmerge$temp[iord], low.bound[iord], lty = 2)

}

D.3.5. Assessing Model Fit

The area under the ROC curve for each model can be computed by first imagining a pair of
sites where the species of interest is present at one site and absent at the other.  We would
expect the probabilities of occurrence predicted by the regression model would be greater at
the site where the species is present than at the site where the species is absent.  The area
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under the ROC is equivalent to the proportion of all such pairwise comparisons in which this
condition is satisfied.  The following script performs this computation.

# Define storage vector for ROC

roc <- rep(NA, times = length(taxa.names))

for (i in 1:length(taxa.names)) {

# Compute mean predicted probability of occurrence

predout <- predict(modlist.glm[[i]], type = “response”)

# Generate logical vector corresponding to presence/absence

resp <- dfmerge[, taxa.names[i]] > 0

# Divide predicted probabilities into sites where

# species is present (“x”) and sites where the species is

# absent (“y”).

x <- predout[resp]

y <- predout[! resp]

# Now perform all pairwise comparisons of x vs. y

# and store results in a matrix

rocmat <- matrix(NA, nrow = length(x), ncol = length(y))

for (j in 1:length(x)) {

rocmat[j,] <- as.numeric(x[j] > y)

}

# Summarize all comparisons to compute area under ROC

roc[i] <- sum(rocmat)/(length(x)*length(y))

}

names(roc) <- taxa.names

print(roc)

D.3.6. Optima

The optimum tolerance value can be found by identifying the maximum point on the fitted
regression curve.

opt <- rep(NA, times = length(taxa.names))

for (i in 1:length(taxa.names)) {

predout <- predict(modlist.glm[[i]], type = “response”)

# Find the index number of the maximum probability

imatch <- match(max(predout), predout)

# The optimum is value of the environmental variable

# at the maximum probability.

opt[i] <- dfmerge$temp[imatch]

}

names(opt) <- taxa.names

print(opt)
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D.3.7. Curve Shape

Curves shapes can be classified into increasing, decreasing, or unimodal, by comparing the
mean responses to the confidence intervals.  Note that unimod.test is an R function, a
series of commands that is executed when unimod.test is called.

unimod.test <- function(mnr, ubnd, lbnd) {

# Find the maximum and minimum predicted mean probabilities

lmax <- max(mnr)

lmin <- min(mnr)

# Find index locations for these probabilities

imax <- match(lmax, mnr)

imin <- match(lmin, mnr)

x.out <- F

y.out <- F

# Compare mean predicted probability to the left of maximum point 

# with upper confidence bound.  Store a T in x.out if

# any point in the mean response deviates from the 

# upper confidence limit

if (imax > 1) {

x.out <- sum(lmax == pmax(lmax, ubnd[1:(imax-1)])) > 0

}

# Store a T in y.out if any point in the mean probability

# to the right of the maximum point deviates from the upper

# confidence limit

if (imax < length(ubnd)) {

y.out <- sum(lmax == pmax(lmax, 

ubnd[(imax+1):length(ubnd)])) > 0

}

# Perform same set of tests for lower confidence limit

a.out <- F

b.out <- F

if (imin > 1) {

a.out <- sum(lmin == pmin(lmin, lbnd[1:(imin-1)])) > 0

}

if (imin < length(lbnd)) {

b.out <- sum(lmin == pmin(lmin, 

lbnd[(imin+1):length(lbnd)])) > 0

}

# The information on where the mean curve deviates from the

# confidence limits tells us its curve shape...

if (x.out & y.out) {

return(“Unimodal”)

}

if (a.out & b.out) {

return(“Concave up”)
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}

if (x.out | b.out) {

return(“Increasing”)

}

if (y.out | a.out) {

return(“Decreasing”)

}

if (! (x.out | y.out | a.out | b.out)) {

return(NA)

}

}

tolcl <- rep(“”, times = length(taxa.names)) 

for (i in 1:length(taxa.names)) {

predres <- predict(modlist.gam[[i]], type= “link”, se.fit = T)

# Compute upper and lower 90% confidence limits

up.bound.link <- predres$fit + 1.65*predres$se.fit

low.bound.link <- predres$fit - 1.65*predres$se.fit

mean.resp.link <- predres$fit

# Convert from logit transformed values to probability.

up.bound <- exp(up.bound.link)/(1+exp(up.bound.link))

low.bound <- exp(low.bound.link)/(1+exp(low.bound.link))

mean.resp <- exp(mean.resp.link)/(1+exp(mean.resp.link))

# unimod.test requires that the responses be sorted by 

# the value of the environmental variable.

iord <- order(dfmerge$temp)

tolcl[i] <- unimod.test(mean.resp[iord], up.bound[iord], 

low.bound[iord])

}

names(tolcl) <- taxa.names

print(tolcl)

D.4. APPLYING TOLERANCE VALUES IN ASSESSMENT

In this section metric values are computed using the same data from which the tolerance
values were calculated.  Typically, one would develop tolerance value using a calibration data
set, and then compute metrics for a second, independent set of test data.  

First, expand the list of taxa to include all taxa in the data set that occur in at least 20 sites.

# Get names of all taxa in the data set

taxa.names.init <- names(site.species)[-1]

# Compute the number of occurrence of each taxon

getocc <- function(x) sum(x>0)

numocc <- apply(site.species[, taxa.names.init], 2, getocc)

# Save all taxa names that occur in at least 20 sites
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taxa.names <- taxa.names.init[numocc >=  20]

Now, recompute nonparametric regression and curve classifications for this expanded list of
taxa.

D.4.1. Richness

The richness of sensitive taxa can be computed as follows:

# Select only taxa for which tolerance values have been computed.

mat1 <- as.matrix(dfmerge[, taxa.names])

# Convert data to presence-absence. 

mat2 <- as.numeric(mat1 > 0) 

dim(mat2) <- dim(mat1)

# Select sensitive taxa

sens <- as.numeric(tolcl == “Decreasing”)

# %*% performs a matrix multiplication, which gives the taxa 

# present at a site that were classified as intolerant

sens.rich <- mat2 %*% sens

# Plot resulting metric against observed temperature.

plot(dfmerge$temp, sens.rich, xlab = “Temperature”, 

ylab = “Sensitive richness”)

The same operation can be repeated to compute the richness of tolerant taxa.

D.4.2. Proportion Total Taxa

The proportion of observed taxa that are sensitive taxa can be computed using the sensitive
richness computed in the last section.

tot.rich <- apply(mat2, 1, sum) # Compute total richness

# The command “apply” applies the same operation to the 

# rows or columns of a matrix.  

# In this case, we compute the sum for each of the rows

# of the matrix.

# The proportion of taxa sensitive is computed with 

# simple division.

ptax.sens <- sens.rich/tot.rich

# Plot resulting metric against observed temperature.

plot(dfmerge$temp, ptax.sens, xlab = “Temperature”, 

ylab = “Proportion taxa”) 
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D.4.3. Relative Abundance

The relative abundance of sensitive taxa can be computed as follows:

# Only select taxa for which tolerance classifications 

# have been computed.

mat1 <- as.matrix(dfmerge[, taxa.names])

# Select sensitive taxa

sens <- as.numeric(tolcl == “Decreasing”)

# Use matrix multiplication to compute the number of

# sensitive individuals collected

abn.sens <- mat1 %*% sens

# Compute total abundance.

abn.tot <- apply(mat1, 1, sum)

# Compute relative abundance of sensitive taxa

relabn.sens <- abn.sens/abn.tot

# Plot resulting metric against observed temperature.

plot(dfmerge$temp, relabn.sens, xlab = “Temperature”, 

ylab = “Relative abundance”)

The same operation can be repeated to compute the relative abundance of tolerance taxa.

D.4.4. Mean Tolerance Value

First, compute weighted averages or another continuous tolerance value for the expanded list
of taxa.  

The mean tolerance value observed at a site can be computed as follows,

# Only select taxa for which tolerance values

#   have been computed. 

mat1 <- as.matrix(dfmerge[, taxa.names])

# First get total abundance

tot.abn <- apply(mat1, 1, sum)

# Use matrix multiplication to compute the sum of all 

# observed tolerance values, and then divide by total 

# abundance to get the mean tolerance value.

mean.tv <- (mat1 %*% WA)/tot.abn

plot(dfmerge$temp, mean.tv, xlab = “Temperature”, 

ylab = “Mean weighted average”)
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In this example, weighted average tolerance values have been used.  Other continuous
tolerance values such as optima or cumulative percentiles can be substituted in as well.  Also,
the mean computed here is weighted by abundance. 


