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PREFACE 

 

Approaches for the Application of Physiologically Based Pharmacokinetic (PBPK) 

Models and Supporting Data in Risk Assessment addresses the application and evaluation of 

PBPK models for risk assessment purposes.  PBPK models represent an important class of 

dosimetry models that are useful for predicting internal dose at target organs for risk assessment 

applications.  This report is primarily meant to serve as a learning tool for U.S. Environmental 

Protection Agency (EPA) scientists and risk assessors who may be less familiar with PBPK 

modeling.  In addition, it can be informative to PBPK modelers within and outside EPA because 

it provides an overview of the types of data and models that EPA requires for consideration of a 

model for use in risk assessment.  A draft of this document underwent a public comment period 

and external peer review in 2005, and this final report incorporates many of the relevant 

comments and suggestions received in response to the draft report. 
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EXECUTIVE SUMMARY 
 

Physiologically based pharmacokinetic (PBPK) models represent an important class of 

dosimetry models that are useful for predicting internal dose at target organs for risk assessment 

applications.  Approaches for the Application of Physiologically Based Pharmacokinetic (PBPK) 

Models and Supporting Data in Risk Assessment addresses the following questions:  Why are 

risk assessors interested in using PBPK models?  How are PBPK models evaluated for use in a 

risk assessment?  What are the questions or data gaps in a risk assessment that can be addressed 

by PBPK models?  However, this document is not meant to serve as formal U.S. Environmental 

Protection Agency (EPA) guidance. 

The text is organized into four chapters.  Chapter 1 outlines the scope of the document, 

the intended audience, and the topics covered in the remaining chapters.  Chapter 2 presents the 

rationale for using PBPK models in risk assessment and the pharmacokinetic data and models 

needed to derive a reference dose (RfD), a reference concentration (RfC), and unit risk estimates 

in cancer risk assessment (e.g., cancer slope factor).  Chapter 3 describes how models are 

evaluated, the main model characteristics to review, and the on-going development of acceptance 

criteria for model use in risk assessment.  Chapter 4 discusses applications of PBPK model 

simulations within the current EPA risk assessment framework.  The appendix contains a 

comprehensive list of publications, current as of the end of 2005, relating to PBPK modeling and 

its use in health risk assessment.  

PBPK models consist of a series of mathematical representations of biological tissues and 

physiological processes in the body that simulate the absorption, distribution, metabolism, and 

excretion of chemicals that enter the body.  PBPK models are designed to estimate an internal 

dose of a proposed toxic moiety to a target tissue(s) or some appropriate surrogate dose metric 

for a target tissue dose.  The choice of an internal dose metric is based on an understanding of the 

chemical’s mode of action.  The internal dose metric (sometimes called the biologically effective 

dose) replaces the administered dose in the derivation of the quantitative dose-response 

relationship, with the intent of reducing the uncertainty inherent in risk assessments based on an 

applied dose.  This reduction in uncertainty and the improved scientific basis for the dose-

response value are the main advantages of PBPK models and the reasons for the growing interest 

in their use.  PBPK models also can simulate an internal dose from exposure conditions of 

interest where no data are available, i.e., they can extrapolate to conditions beyond those of the 
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data set used to develop the model.  An important and active area of research is the 

characterization of the uncertainty in risk assessments based on PBPK model results compared 

with the uncertainty in results based on the administered dose.   

PBPK models exist for a wide range of chemicals with varying properties.  The vast 

majority of PBPK modeling efforts to date have focused on chemicals that distribute 

systemically within the body and cause systemic effects, although the models’ applicability for 

describing the pharmacokinetics of other chemicals, such as reactive gases, has been successfully 

demonstrated.  Because this document is intended to describe some of the basic principles of 

PBPK modeling and its use in risk assessment, it primarily draws upon the experience and 

literature concerning chemicals with systemic distributions.    

Examples of PBPK model applications in risk assessments include interspecies 

extrapolation of the dose-response relationship (based on estimates of the internal dose), route-

to-route extrapolation, estimation of response from varying exposure condition, estimation of 

human variability (within the whole population or subpopulations), and high-to-low dose 

extrapolation.  PBPK models used in risk assessments would, at a minimum (1) contain a 

compartment that is either identified with the target tissue, contains the target tissue, or is 

identified as a surrogate for the target tissue; (2) have defensible physiological parameter values 

that are within the known plausible range; and (3) have undergone a thorough evaluation for 

their structure, implementation, and predictive capability.   

Evaluation of PBPK models intended for risk assessments includes a review of the model 

purpose, model structure, mathematical representation, parameter estimation (calibration), and 

computer implementation.  Criteria for acceptance of a PBPK model for use in risk assessment 

include the following:  (1) the model represents the species and life stage of relevance to a 

particular risk assessment, (2) it has been evaluated and peer-reviewed for the adequacy of its 

structure and parameters, and (3) it provides adequate simulations of the concentration of the 

toxic moiety (parent chemical or metabolite) in the target organ (or a surrogate compartment) 

following the relevant route(s) of exposure and over the time-course for which the chemical is 

present in that tissue.   

When a PBPK model is available for the appropriate test species, it is used to estimate the 

value of internal dose metrics, which are then used to derive a given point of departure (e.g., no-

observed-adverse-effect level, lowest-observed-adverse-effect level, benchmark dose, 

benchmark concentration) for use in dose-response analyses for toxicity endpoints, including 
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cancer, chronic toxicity, and other toxicity endpoints.  Some risk assessment applications can be 

accomplished using only a model for the test species, e.g., prediction of the toxicity in that 

species by another route of exposure for purposes of route extrapolation.  For most applications, 

a human version of the PBPK model is also developed to estimate an administered dose to a 

human that would result in the equivalent internal dose in a human that led to the observed 

toxicity in a test species or, less frequently, the biologically effective dose from a human clinical 

or epidemiology study.  PBPK model analysis is accepted as a scientifically sound approach to 

estimating the internal dose of a chemical at a target site and as a means to evaluate and describe 

the uncertainty in risk assessments.   
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1.  INTRODUCTION 

 

1.1.  SCOPE OF THE DOCUMENT 

The objective of this document is to provide a description of approaches for using 

physiologically based pharmacokinetic (PBPK) data and models in human health risk 

assessment.  Its primary focus is on the evaluation and use of PBPK models for predicting 

internal dose at target organs in risk assessment applications.  Many of the past efforts on PBPK 

modeling have focused on water-insoluble gases that cause systemic toxicity (i.e., producing 

effects remote from the site of exposure) and on some nonvolatile organics.  This document 

primarily draws on the experience and literature resulting from these efforts.  These approaches 

can also be applied to agents such as reactive gases and particulate matter where the target organ 

is the respiratory tract, generally in conjunction with specialized respiratory tract modeling (e.g., 

computational fluid dynamic [CFD] modeling).  Guidance concerning alternative approaches to 

dosimetry modeling should also be consulted for determining a reference concentration (RfC) 

value (U.S. EPA, 1994).  The discussions herein are conceptually applicable, in a broad sense, to 

many kinds of dosimetry models and a wide range of substances. 

In developing this document, it was assumed that risk assessors are familiar with some 

basic concepts of pharmacokinetics and that model developers are familiar with some of the 

basic concepts of risk assessment; therefore, the document serves as an overview of PBPK 

modeling and its application in risk assessment.  Appropriate references to secondary review 

articles and reports from which additional information can be obtained are provided.  

Finally, it is important to realize that the application of PBPK models in risk assessment 

is evolving.  Thus, this document does not specify (or recommend) when the effort to construct 

and apply PBPK modeling is justified; rather, it highlights some of the benefits of PBPK 

modeling in risk assessment. 

 

1.2.  INTENDED AUDIENCE 

The document was prepared with two primary audiences in mind:  (1) risk assessors who 

need to know about the potential applications of PBPK models in risk assessments, and (2) 

PBPK model developers who need to better understand how their efforts can help improve health 

risk assessment. 
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1.3.  ORGANIZATION OF THE DOCUMENT 

The remaining three chapters form the core of this document.  They describe what risk 

assessors need in terms of pharmacokinetic data, and why (Chapter 2); how to evaluate PBPK 

models for use in risk assessments (Chapter 3); and how to use PBPK models in risk assessments 

to address specific areas of uncertainty (Chapter 4). 

Chapter 2 addresses data needs in terms of reference dose (RfD) and RfC derivation as 

well as predictive estimates in cancer risk assessment.  It also contains a brief discussion on the 

minimal data requirements for constructing PBPK models, as well as the use of pharmacokinetic 

data and PBPK models to improve exposure assessments.  

Chapter 3 presents an approach and some criteria for evaluating PBPK models intended 

for use in risk assessments that will facilitate the assessor’s decision regarding whether or not an 

available model is adequate and scientifically defensible for use in reducing uncertainties in a 

given risk assessment.  The PBPK modeling issues are considered under each of the following 

topic areas:  model structure, mathematical description, parameter estimation (calibration), 

computer implementation, and evaluation.  Current criteria as well as accepted methods are 

identified and then assembled to facilitate the identification of PBPK models that meet the 

requirement for use in risk assessment.   

Chapter 4 discusses how PBPK models and data can be applied within the current U.S. 

Environmental Protection Agency (EPA, or the Agency) risk assessment framework to address 

specific areas of uncertainty.  The following types of PBPK model applications in risk 

assessment are presented in this chapter:  high-dose to low-dose, interspecies, intraspecies, route-

to-route, and scenario extrapolations; mixture risk assessment; and linkage with 

pharmacodynamic models.  This chapter also highlights how PBPK models are used in cancer 

and noncancer assessments.   

Finally, the appendix provides a list of publications relating to PBPK modeling and its 

use in health risk assessment. 
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2.  PHARMACOKINETIC DATA AND MODEL NEEDS IN RISK ASSESSMENT 

 

2.1.  PHARMACOKINETICS AND DOSIMETRY MODELING 

Pharmacokinetics (pharmakon + kinetics; pharmakon (Greek) = drugs and poisons; 

kinetics = change as a function of time) involves the study of the time course of the parent 

chemical or metabolite concentrations or amounts in biological fluids, tissues, and excreta and 

the construction of mathematical models to interpret such data (Wagner, 1981).  The time course 

of the concentration of a chemical or its metabolite in biota is determined by the rate and extent 

of absorption, distribution, metabolism, and excretion (ADME).  The pharmacokinetics or 

ADME of a substance determines the delivered dose or the amount of chemical available for 

interaction in the tissues.  Relating adverse response observed in biota to an appropriate measure 

of delivered dose (e.g., concentration of the toxic chemical in the target tissue) rather than 

administered dose or exposure concentration is likely to improve the characterization of many 

dose-response relationships (see Section 2.2.). 

A range of modeling approaches is used to characterize exposures and the resulting 

delivered doses.  The variety of approaches reflects differences in chemical and physical 

characteristics (e.g., stable or reactive gases, particulate matter, lipophilic organics, water-soluble 

compounds), differences in pharmacokinetic properties, and the ability of compounds to cause 

contact site or systemic toxic effects (U.S. EPA, 2004, 1994; Andersen and Jarabek, 2001; 

Overton, 2001).   

Exposure to many drugs and toxicants occurs via the oral route and causes systemic 

effects, and many simple (e.g., one- and two-compartment) pharmacokinetic models have been 

used to analyze the pharmacokinetics of such exposures (Renwick, 2001; O’Flaherty, 1981). 

Generally, these compartment models contain a central compartment that represents the whole 

body (or plasma) where distribution occurs nearly instantaneously (one-compartment model) or 

an additional compartment (two-compartment model) where the distribution is affected by 

additional processes such as metabolism or sequestration into fat.  Compartment models help 

characterize a chemical’s kinetic behavior, and they are useful in deriving values for a chemical 

or drug’s distribution in the body or clearance from the blood (i.e., half-life).   

The values derived from a compartment model analysis, however, apply only to the 

conditions of the study from which the experimental data were obtained.  To better represent the 

biological determinants of a chemical’s disposition in the body and predict the internal dose that 
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would result from different exposure regimens (including hypothetical exposures where no data 

are available), models have evolved with multiple compartments and mathematical descriptions 

of the real physiological processes and tissues most likely to affect chemical disposition (e.g., 

absorption from the gut or lung, cardiac output, metabolism in the liver, renal clearance).  These 

models are called physiologically based pharmacokinetic (PBPK) models, and they are the focus 

of this document.   

The need to predict behaviors of volatile anesthetics, including compounds now used 

exclusively as industrial chemicals, was a driving force for the development of PBPK models 

(Krishnan and Andersen, 2001).  The general principles developed in these early PBPK 

modeling efforts for systemically distributed compounds are also applicable to other compounds.  

For example, the respiratory tract is a frequent site of both exposure and toxicity, and it has been 

a particular focus for a range of modeling approaches, including those developed to simulate the 

kinetics of gases of various reactivities and solubilities, as well as particulate matter (see U.S. 

EPA, 1994).  More recently, the kinetics of reactive gases and particulate matter within the 

respiratory tract are simulated with advanced approaches such as two-dimensional and three-

dimensional CFD modeling (U.S. EPA, 2004; Martonen et al., 2001; Overton, 2001; Kimbell et 

al., 1993).  

The role of metabolism is a significant factor in the development of PBPK models.  

Saturable metabolism results in nonlinear relationships between the level of administered dose 

and the levels of the internal dose for a parent or metabolite.  In combination with other 

physiological and chemical events, the resulting administered dose-response relationship can 

quickly become difficult to resolve with simple analytical tools.  PBPK models provide an 

excellent means to account for multiple process interactions and nonlinearities and to provide 

insight into the whether the parent chemical or the metabolite is the main form (or toxic moiety) 

leading to adverse effects.  

Metabolism has also played an important role in the development of models for 

respiratory tract toxicities.  Nasal or other respiratory tract toxicities following exposure to many 

volatile organic compounds has often been linked to the generation of a toxic metabolite in 

respiratory tract tissues.  To simulate the kinetics and resulting toxicities for these compounds, 

CFD models have been coupled with PBPK models.  The CFD models describe the deposition of 

the chemical in different regions of the nose, and the PBPK model then simulates the tissue 

absorption, metabolic, and clearance processes (Frederick et al., 2002; Bogdanffy et al., 2001).  
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Other complex kinetic events in the respiratory tract are also being modeled, including the 

kinetics for compounds that are relatively water soluble and that exhibit fractional absorption, or 

the so-called “wash-in, wash-out” effect (Perkins et al., 1995; Medinsky et al., 1993; Johanson, 

1991).  

Although the approaches detailed in the earlier RfC methodology (U.S. EPA, 1994) do 

not address many of these more recent advances, there is recognition of the need for additional 

approaches that address these and other challenging aspects of respiratory tract dosimetry. 

The relevant modeling approach, therefore, depends on the physical and chemical 

characteristics of the material, the method and route of exposure or delivery, and the toxicities 

under consideration.  All of these modeling approaches attempt to describe the dose delivered to 

the relevant areas of the body, whether that is a region of the respiratory tract or skin or systemic 

delivery through the blood supply to target organs.  These approaches permit estimation of some 

measure of delivered dose for improved understanding of the dose-response relationship. 

 

2.2.  DOSE-RESPONSE AND MEASURES OF DELIVERED DOSE 

Dose-response relationships that appear unclear or confusing at the administered dose 

level can become more understandable when expressed on the basis of internal dose of the 

chemical.  Figure 2-1 depicts the case of a hypothetical chemical for which the correlation between 

dose and response is weak or complex (Panel A).  However, once the relationship is based on 

internal dose, there emerges a clear and direct relationship between dose and response (Panels B 

and C).  The major advantage of constructing dose-response relationships on the basis of internal 

or delivered dose is that it can provide a stronger biological basis for conducting extrapolations and 

for comparing responses across studies, species, routes, and dose levels (Melnick and Kohn, 2000; 

Benignus et al., 1998; Aylward et al., 1996; Andersen et al., 1987; Clewell and Andersen, 1985). 

Relating blood and tissue concentrations with response in exposed organisms has long 

been recognized in pharmacology (e.g., Wagner, 1981).  In pharmacokinetics, the target tissue 

dose that most closely relates to an adverse response is often referred to as the internal “dose 

metric” (Andersen and Dennison, 2001).  Dose metrics used in risk assessment applications, 

ideally, reflect the biologically active form of the chemical (parent chemical, metabolites, or 

adducts), its level (concentration or amount), duration of internal exposure (instantaneous, daily, 

lifetime, or a specific developmental period), and intensity (peak, average, or integral), as well as  
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Figure 2-1.  Relationship between the exposure concentration and adverse 
response for a hypothetical chemical.  Panel A depicts the case of a chemical 
for which the correlation between dose and response is weak or complex, along 
with equally plausible curve fits (linear, Hill, and Weibull).  This dose-response 
relationship is improved when it is based on an appropriate measure of internal 
dose (Panels B and C). 

 

 

the appropriate biological matrix (e.g., blood, target tissue, surrogate tissues).  For assessment of 

health risks related to lifetime exposure of systemically acting chemicals, in the absence of mode 

of action (MOA) information to the contrary, the integrated concentration of the toxic form of 

chemical expressed as the daily average (i.e., average daily area under the concentration vs. time 

curve, or area under the curve [AUC]) in target tissue has been considered to be an appropriate 

dose metric (Clewell et al., 2002a; Voisin et al., 1990; Collins, 1987). 
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 When the toxicant is not the parent 

chemical but a reactive intermediate, the 

amount of metabolite produced per unit 

time or the amount of metabolite in target 

tissue over a period of time (e.g., mg 

metabolite/L tissue during 24 hr) has been 

used as the dose metric (Andersen and 

Dennison, 2001).  For developmental 

effects, the dose surrogate is defined in the 

context of the window of exposure during a 

particular gestational event (e.g., Luecke et 

al., 1997; Welsch et al., 1995).   

Box 2-1.  Examples of dose metrics useful for 
exploring dose-response relationships 
 
Parent chemical 

• Peak concentration 
• Average concentration 
• Amount or quantity 
• AUC (integral) 

 
Metabolite 

• Peak concentration 
• Average concentration 
• Amount or quantity 
• Rate of production 
• Cumulative rate of formed/time/L tissue 
• AUC (integral) 

 
Miscellaneous 

• Receptor occupancy (extent/duration) 
• Macromolecular adduct levels 
• Depletion of cofactors 

Even though the AUC and rate of 

metabolite formation are among the most 

commonly investigated dose metrics, other 

surrogates of tissue exposure may also be appropriate for risk assessment purposes, depending on 

the chemical and the MOA (Clewell et al., 2002a).  Dose metrics that may be used to derive 

dose-response relationships for risk assessment are listed in Box 2-1; evaluation of dose metrics 

for use in risk assessment is further discussed in Section 4.2.  Finally, it should be noted that 

PBPK models can also be useful for hypothesis testing, particularly with regard to choosing 

among potential dose metrics.  This is discussed further in Chapters 3 and 4, and particularly in 

Section 4.5.5. 

 

2.3.  PHARMACOKINETIC DATA NEEDS IN RISK ASSESSMENT 

The quantitative dose-response assessment portion of the risk assessment process can be 

used to determine a point of departure (POD) for one or more of the most sensitive critical 

effects.  The POD is the dose-response point that marks the beginning of a low-dose 

extrapolation, and it can be the no-observed-adverse-effect level (NOAEL) or the lowest-

observed-adverse-effect level (LOAEL) for an observed incidence or the lower bound on dose 

for an estimated incidence or change in response level from a benchmark dose (BMD) analysis.  

The quantitative characterization relates the administered dose to the observed responses in 

laboratory or field studies.  In some cases, data are available to relate an internal dose at a target 
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tissue to the response, but generally the internal dose-response relationship is derived from a 

model analysis.  An understanding of the MOA leading to the most sensitive endpoint is used to 

determine the most appropriate dose measure for deriving a POD.  Noncancer and nonlinear 

cancer assessments derive a POD for use in risk assessment based on the available data.  This 

process often requires conduct of interspecies, high-dose to low-dose, duration, and/or exposure 

route extrapolations of the dose-response from available data to the likely human exposure 

conditions and most sensitive human subpopulations.  

These extrapolations assume that when the value of the internal dose metric is identical in 

two situations (rat vs. human, oral vs. inhalation, 6-hr exposure vs. 24-hr exposure), the two 

administered doses are pharmacokinetically equivalent.  For example, exposure of rats to 50 ppm 

toluene for 6 hr and of humans to 17.7 ppm toluene for 24 hr yields the same blood AUC (3.8 

mg/L/hr), implying that these exposure scenarios in rats and humans are pharmacokinetically 

equivalent (Figure 2-2).  The example in Figure 2-2 demonstrates that pharmacokinetic 

equivalence is not always linear equivalence; if one assumes that all aspects of the 

pharmacokinetics of toluene in humans is identical to those in rats, an equivalent 24-hr exposure 

would be 12.5 ppm (i.e., 6 hr × 50 ppm is equivalent to 24 hr × 12.5 ppm), not 17.7 ppm.  

Knowledge of the MOA supports the choice of the dose metric.  For example, the most 

appropriate dose metric to characterize the dose-response relationship for reactive gases that 

cause contact site toxicity is the total amount of chemical in the target tissue over time, whereas 

for the anesthetic effects of a volatile organic, the current (or peak) concentration in the blood is 

the most appropriate dose metric.  For the latter, the acute effects are more (or entirely) 

dependent on concentration rather than on total amount over time, so extrapolations are best 

conducted using that dose metric. 

PBPK models are often intended to estimate target tissue dose in species and under 

exposure conditions for which little or no data exist.  Thus, if a complete pharmacokinetic data 

set were available, then there would be no need to develop a PBPK model.  Such an optimal 

pharmacokinetic data set for risk assessment would consist of the time-course data on the most 

appropriate dose metric associated with exposure scenarios and doses used in the critical studies 

chosen for the assessment (e.g., animal bioassays or human clinical and epidemiological studies) 

and relevant human exposure conditions.  An example of such a dose metric is the concentration 

of a toxic metabolite in target tissue over a 24-hr period in the test species and in humans.  This 

information would be obtained for the window of exposure, route and scenario of exposure  
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Figure 2-2.  Rat-human extrapolation of exposure concentrations of toluene 
based on equivalent dose metrics (AUC [area under the curve] of toluene in 
blood, 3.8 mg/L/hr).  Rat exposures are for 6 hr to 50 ppm; human exposures are 
for 24 hr to 17.7 ppm.  Both exposures yield the same AUC, as determined using 
species-specific PBPK models published by Tardif et al. (1997).  Similar 
exercises can be done to determine the exposure concentrations that yield 
equivalent peak concentrations (Cmax) in rats and humans. 

 
 

associated with the critical study as well as for the window of susceptibility, appropriate route, 

and exposure scenarios in humans. 

In almost all cases, however, the optimal data set is not available, and often the available 

animal pharmacokinetic data may be limited.  In the absence of experimental kinetic data on the 

biologically active form of a chemical in target tissues, data on blood concentration of the parent 
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chemical, urinary metabolite levels, or fraction absorbed may be used as a surrogate for the 

tissue levels.  These and other subsets of pharmacokinetic data can be used to develop a PBPK 

model to estimate the level of the toxic moiety of interest, and the uncertainty in those estimates 

can be formally characterized.   

 

2.4.  PHARMACOKINETIC MODELS IN RISK ASSESSMENT 

2.4.1.  Regulatory Needs and Considerations 

Regulatory agencies such as EPA derive dose-response values based on the current 

understanding of a dose-response relationship.  Reference values correspond to an estimate of a 

daily exposure to the human population (including sensitive subgroups) that is likely to be 

without an appreciable risk of deleterious effects during a lifetime.  The reference values 

developed at EPA include RfC for chronic inhalation exposures and RfD for chronic oral 

exposures.  For chronic oral and inhalation cancer risk assessments with an unknown or a linear 

MOA (e.g., mutagenic carcinogens), EPA develops unit risk estimates, including the cancer 

slope factor (CSF) for oral exposures and the inhalation unit risk (IUR).  The underlying 

assumption in these derivations is that the exposure concentration (or applied dose) of a parent 

chemical results in an internal exposure of the putative toxic form of the chemical in a target 

organ that will be less than or equal to a level that is not associated with significant adverse 

responses during a lifetime (reference value) or that yields a likely risk at or below the estimated 

lifetime risk (unit risk). 

Even though a key factor in the induction of adverse effects is the presence of the toxic 

form of a chemical in the target organ, it is rare that data are available on the time course of the 

toxic moiety in the target tissue(s) in humans.  Even in animal studies, it is more practical to 

obtain measures of blood, plasma, and urinary concentrations of toxic chemicals and their 

metabolites than the actual toxic moiety level in the relevant tissue.  Pharmacokinetic models are 

therefore used to estimate the tissue concentration of toxic substances.   

Among the compartmental pharmacokinetic models, PBPK models are the most 

appropriate and useful for conducting the extrapolations needed to derive reference values 

because they model the underlying physiological and chemical processes that determine 

chemical disposition, and they can be used to predict target organ concentrations for hypothetical 

exposures (Krishnan and Andersen, 2001; Andersen, 1995; Leung, 1991; Rowland, 1985; 

Himmelstein and Lutz, 1979).  By simulating the kinetics and dose metric of chemicals, PBPK 
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models can reduce the uncertainty related to interspecies, intraspecies, route-to-route, duration, 

and high-dose to low-dose extrapolations needed to derive RfC, RfD, and cancer unit risk 

estimates.  The following sections discuss how the PBPK models are used in health risk 

assessment.  Figure 2-3 provides an overview of the development and use of PBPK models for 

risk assessment; it should be noted that model development can occur within academic, industry, 

and governmental bodies, and often involves collaboration or sharing of information. 

 

Problem 
Identification 

Literature 
Evaluation 

Toxic 
Mechanisms 

Physiological 
Constants 

Biochemical 
or Metabolic 

Constants

Model 
Formulation 

Simulation 

Comparison 
to Data 

Experimentation 

Refine Model

Application in 
Risk Assessment 

OK 
not OK 

 

Figure 2-3.  Basic flowchart of PBPK model development. 

 

 
2.4.2.  Use of PBPK Models in Dose-Response Assessment 

 PBPK models are useful for performing various forms of extrapolations where the data 

necessary for predicting risks to humans are not available and cannot easily (or ethically) be 

obtained.  The primary advantage gained by using PBPK models in risk assessment is their 

ability to relate toxicity responses in a test species to humans and outcomes observed in smaller 

populations to likely outcomes in the general population.  Thus, foremost among the 

extrapolations afforded by PBPK models are inter- and intra-species extrapolations.  
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 In risk assessments based on nonlinear MOAs (e.g., most noncancer assessments), RfC 

and RfD values are derived from PODs (i.e., NOAEL, LOAEL, or benchmark concentration 

[BMC]) to derive a human equivalent concentration (HEC) or dose.  In RfC derivation, 

pharmacokinetic adjustments, called dosimetric adjustment factors (DAFs), are applied to 

account for species differences in chemical disposition.  These factors are dependent on the 

nature of the inhaled toxicant and MOA, as well as the endpoint (local effects vs. systemic 

effects).  Dosimetry data in the test animals and humans (e.g., deposition data, region-specific 

dosimetry, blood concentration of systemic toxicants), if available, can help estimate the DAF.  

In the absence of such data, knowledge of critical parameters or mathematical models in the test 

species and humans can be useful in estimating the DAF.  Similar methods are employed in RfD 

derivation.  

 An alternative to the use of DAFs is to employ models to make interspecies 

extrapolations. A variety of computational tools are available for determining the uptake and 

deposition of gases and particulates in nasal pathways and the respiratory tract (U.S. EPA, 2004; 

Bogdanffy and Sarangapani, 2003; Hanna and Lou, 2001; Tran et al., 1999; Bush et al., 1998; 

Asgharian et al., 1995; Jarabek, 1994; Kimbell et al., 1993).  Although PBPK models have most 

frequently been applied to systemically acting gases and vapors, they have also been applied, in 

conjunction with other models (e.g., CFD), to more locally acting gases.  Another limitation to 

DAFs is that they do not account for metabolism, so PBPK modeling approaches would clearly 

be preferable for metabolized compounds if adequate data are available.   

PBPK models are also useful for incorporating variability in chemical disposition into a 

risk assessment.  There are numerous determinants of a chemical’s disposition in the body (e.g., 

protein levels, enzyme activity levels, tissue volumes, breathing rates, cell proliferation rates) 

(e.g., Dorne et al., 2002, 2001a, b; Walton et al., 2001).  Focusing on individual determinants of 

disposition is useful for understanding their mechanistic basis and potential impacts on dosimetry 

and response, but such an approach can easily lead to unrealistic estimates of total variability of a 

chemical as well as toxic response (Lipscomb, 2004) because the magnitude of variability 

associated with such individual determinants may be neither cumulative nor additive.  The net 

impact of various determinants on chemical disposition is more properly evaluated by integrating 

the available information with a PBPK or biologically based dose-response (BBDR) model. 

Two additional forms of extrapolation amenable to PBPK modeling include route and 

duration adjustments.  The PODs in critical toxicity studies are not always obtained for exposure 
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scenarios of interest to risk assessment.  Ideally, the POD used in the RfC process would be the 

inhalation route-specific NOAEL, LOAEL, or BMC.  Route-to-route extrapolation, however, can 

be conducted on the basis of equivalent potential doses when information on the POD is 

available only for a noninhalation route of exposure (e.g., oral route) (Pauluhn, 2003).  

Historically, simplistic assumptions were used to convert the NOAEL (mg/kg/day) associated 

with an oral exposure route to equivalent inhaled concentration, based on breathing rate and 

body weight of the test species.  Such simplistic approaches, however, incorrectly assume that 

the rates of ADME and tissue dosimetry of chemicals are the same for a given total dose, 

regardless of the exposure route and intake rate.  PBPK modeling is useful for conducting route-

to-route extrapolation on the basis of equivalent delivered dose from PODs identified from the 

NOAEL, LOAEL, or BMC (e.g., oral to inhalation). 

As mentioned above, RfC and RfD values are intended for continuous exposure of human 

populations, such that the POD used in an RfC derivation (for example) would correspond to 24 

hr/day exposures (U.S. EPA, 1994).  Because the PODs are frequently obtained from animal 

exposures or occupational exposures that occur for 6 to 8 hr/day, 5 days/wk, adjustment to a 

continuous 24-hr exposure is conducted on the basis of hours per day and days per week (i.e., 

6/24 × 5/7), which essentially results in a lower concentration for continuous exposures (U.S. 

EPA, 2002).   Depending on the dose metric identified or hypothesized to be the most 

appropriate for the chemical and endpoint, the duration-adjusted exposure values can be obtained 

with PBPK models (U.S. EPA, 2002; Jarabek, 1994).  This approach is based on the expectation 

that the pharmacodynamic aspect does not change between the various durations of within-day 

exposures (<24 hr).   

As discussed in detail in Chapter 4, PBPK models can also be used to convert a POD in a 

critical cancer study to an appropriate dose metric.  Here again, simpler approaches such as body 

weight scaling can be replaced with PBPK models capable of inter- and intra-species 

extrapolation as well as route-to-route extrapolation.  These models can also facilitate high-dose 

to low-dose extrapolation by converting exposure concentrations in critical studies into predicted 

dose metric values.   

 

2.4.3. Use of Pharmacokinetic Data and Models in Exposure Assessment 

The conventional approach to exposure assessment involves the calculation of applied 

dose for each route of exposure based on information about the concentration of the chemical in 
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the medium, frequency and duration of exposure, rate of contact with the medium, and body 

weight of the individual (Paustenbach, 2000).  With increased data availability, however, 

absorbed dose can be calculated (U.S. EPA, 1992).  In order to calculate absorbed dose, 

pharmacokinetic data such as time-course data on concentration or total quantity in alveolar air, 

urine, or blood are required (Paustenbach, 2000).  Estimating a delivered dose from biomarker 

data, absorbed dose, or applied dose, in fact, may not be straightforward.  PBPK models provide 

a means to improve these estimates and to fully utilize available data. 

PBPK models can be used in conjunction with an exposure assessment to improve the 

quantitative characterization of the dose-response relationship and the overall risk assessment.  

PBPK models can be used to identify and evaluate the relationship between an applied dose and 

biomonitoring or biomarker data, or between an applied dose, biomarker level, and internal 

target tissue dose (e.g., Timchalk et al., 2004, 2001; Csanady et al., 1996; Fennell et al., 1992; 

Krishnan et al., 1992).  PBPK models have also been used to establish biological exposure 

indices (e.g., breath, blood, or breath concentrations) to protect workers from harmful exposures 

to solvents (Droz et al., 1999; Thomas et al., 1996a; Kumagai and Matsunaga, 1995; Leung, 

1992; Perbellini et al., 1990) or in epidemiology studies to reconstruct human exposures over 

time (Canuel et al., 2000; Roy and Georgopoulos, 1998; Vinegar et al., 1990).  Comprehensive 

PBPK models are being developed that provide estimates of an internal tissue dose from 

multiroute (oral, inhalation, dermal) or multichemical exposures (Levesque et al., 2002; Liao et 

al., 2002; Corley et al., 2000; Rao and Ginsberg, 1997; Roy et al., 1996; Georgopoulos et al., 

1994).  The net tissue dose associated with a multiroute (aggregate) and/or multichemical 

(cumulative) exposure are especially useful for advancing risk assessment beyond the one 

chemical, one exposure route paradigm.  

 

2.4.4.  Pharmacokinetic Models in Risk Assessment:  Summary 

Adverse tissue responses are more directly and closely related to the internal target tissue 

dose of the toxic moiety than to the concentration of the parent chemical in the environment.  

Therefore, the scientific basis of, and confidence in, risk assessments are enhanced when they are 

supported by estimates of the internal tissue dose.  Data for the internal tissue dose levels, 

however, are generally not available, and the relationship between external and internal dose 

may not be easily resolved.  PBPK models provide a means of estimating the internal dose for 

many different exposure regimens based on what is known about the physiology of the test 
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species and humans and the chemical of interest.  PBPK models reduce the uncertainty in dose-

response and exposure assessment and fully utilize the available data. 

In the context of dose-response assessment, PBPK models have application in: 

 

1. Interspecies extrapolation of pharmacokinetically equivalent doses (RfD, RfC, CSF, 
and IUR),  

 
2. Estimation of the pharmacokinetic component variability (RfC and RfD derivation), 

 
3. Route-to-route extrapolation of the POD (RfC, RfD, CSF, and IUR), 
 
4. Duration adjustment of the POD (RfC and RfD derivation), and 

 
5. High-dose to low-dose extrapolation (CSF and IUR).  

 

In the context of exposure assessment, PBPK models are useful for 

 

1. Converting applied dose into tissue dose, 
2.   Calculating tissue dose associated with multiroute and multimedia exposures, and 
3.   Relating biomarker data to tissue dose and potential dose by exposure reconstruction. 
 

PBPK models vary in their quality, transparency, and predictive capability, and they must 

undergo a rigorous evaluation if the model is to be used in a risk assessment.  The process and 

criteria for evaluating a PBPK model are the subject of the next chapter.  
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3.  EVALUATION OF PBPK MODELS INTENDED FOR USE IN  
RISK ASSESSMENT 

 

PBPK models intended for risk assessment applications should be evaluated for quality 

and transparency.  There are no published criteria or well-defined standards for evaluating PBPK 

models; however, several publications have addressed good modeling practices and approaches 

for evaluating and documenting biological models intended for risk or safety assessments (Clark 

et al., 2004; Andersen et al., 1995; Yates, 1978).  Evaluation of PBPK models intended for risk 

assessment applications includes considerations for model purpose, model structure, 

mathematical representation, parameter estimation, computer implementation, and predictive 

capacity as well as sensitivity, variability, and uncertainty analyses.  Each of these issues is 

discussed in detail in the following sections.  Although these considerations are provided in 

separate sections, it is important to realize that model evaluation, from development through to 

application, can be an iterative process. 

 

3.1.  MODEL PURPOSE 

Not all PBPK models are developed to support risk assessments.  Some are developed to 

be used as research tools for testing biological hypotheses or for guiding improved experimental 

design.  The purpose for which a PBPK model is developed influences its structure, level of 

detail, and model parameterization (e.g., species).  Thus, the structure of a PBPK model designed 

for use in research may not serve the intent and purposes of one applied in risk assessment, and 

the complexities and capabilities of PBPK models vary according to their intended use.  PBPK 

models are generally developed to accomplish one or more of three objectives:  

• To integrate diverse sets of pharmacokinetic data on a particular chemical;   

• To investigate the pharmacokinetic basis of the toxicity of a chemical that appears to 
be complex at the administered dose level; and/or  

• To predict tissue dosimetry for situations other than those directly measured in 
animals or humans (i.e., extrapolation). 

 

All PBPK models are simplified representations of biological systems of varying 

complexities and are designed to predict the behavior and outcome of biological processes 

affecting the chemical pharmacokinetics in an in vitro or an in vivo system.  Some PBPK models 
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are designed specifically to integrate diverse data sets in efforts to uncover mechanistic 

determinants of the pharmacokinetics of a specific chemical and to aid in the interpretation of a 

chemical’s mode(s) of action (Haddad et al., 1998; Clewell and Andersen, 1987).  However, 

such PBPK models are not always intended for use in predicting the pharmacokinetic behavior of 

a chemical under exposure conditions and species in animal toxicity studies that might be 

important to risk assessment.  Models designed for such purposes must integrate diverse sets of 

pharmacokinetic data and also must be capable of predicting available in vivo pharmacokinetic 

data sets.  Models with defined “predictive capabilities” are valuable for risk assessment because 

they provide confidence that such models can also predict the in vivo pharmacokinetics for 

chemicals under exposure conditions where little or no such data exist (e.g., the animals in the 

toxicity study or the humans in risk assessment scenarios).  Thus, models with this form of 

predictive capacity afford risk assessors the ability to extrapolate across species, dose levels, and 

exposure scenarios.  For more on model purpose, the reader is referred to Clark et al. (2004).  

For application in risk assessment, the preferred PBPK model is one that is capable of 

predicting the pharmacokinetics and tissue dose of the potential toxic moiety of a chemical under 

conditions applicable to critical studies in animals or humans and human environmental 

exposures.   

 

3.2.  MODEL STRUCTURE 

The structure of a PBPK model in large part depends on the purpose for which the model 

is developed and the philosophy of the modeler.  There is virtually no limit to the number and 

complexity of compartments in a model intended to describe molecular/cellular events (see 

Figure 3-1).  Parsimony in selecting model structures, however, is an important and guiding 

principle in developing models for use in risk assessments.  The complexity of PBPK models 

used in risk assessment is often constrained by limited data available to calibrate and test the 

model and the need for risk assessors to defend the model assumptions and the values derived 

from model simulations. 

The simplest conceptual model represents the organism as a one-compartment system.  

One- and two-compartment kinetic models are useful in characterizing the toxicokinetics of a 

chemical for any given data set, but they are not useful for extrapolating beyond the data used to 

develop the model.  PBPK models differ from one- or two-compartment models by representing 

many more physiological, physicochemical, and biochemical processes in the species of interest, 
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and they can be used to predict internal dose levels for hypothetical exposure regimens based on 

what is known about the toxicokinetics of a chemical.  In most PBPK models, tissues are 

represented by specific compartments, each with a unique set of physiological (i.e., blood flows) 

and physicochemical (i.e., partition coefficients) parameters.  Target tissues are generally 

represented individually (e.g., brain) and nontarget tissues are lumped together (e.g., slowly 

perfused tissues).  Depending on the available data, PBPK models intended for risk assessment 

applications would, preferably, include the target organ as one of the compartments.  More often, 

a PBPK model would be capable of estimating blood concentration, which is often used as a 

surrogate for tissue concentrations.  Major portals of entry (e.g., lung, gastrointestinal tract), 

storage organs (e.g., adipose tissue), metabolism/transformation sites (e.g., liver, kidney) as well 

as elimination routes (e.g., renal, pulmonary, fecal) would be included if at all possible.  

It is often acceptable to mathematically describe ADME of chemicals in PBPK models in 

lumped or whole-body surrogate compartments without a highly resolved physically 

representation in all of the tissues where these processes occur (Krishnan and Andersen, 2001), 

provided that this lack of physical representation does not interfere with a model’s use as an 

extrapolation tool.  When data are available to support more complex representations, the PBPK 

model can be elaborated to represent more complex mechanistic and biological interactions.  For 

example, the liver can be divided into separate compartments depending on the localization of 

enzymatic activity.  Figure 3-1 provides examples of PBPK model structures that have been 

commonly used to simulate the kinetics of volatile and nonvolatile substances.  Note that these 

models facilitate the simulation of the concentration of chemicals or their metabolites in the 

target organ or a surrogate tissue (usually blood). 

Frequently, compartments in PBPK models are assumed to be homogenously and 

completely mixed reactors.  This means that the concentration of the chemical anywhere in the 

tissue is the same and related by the partition coefficient to the concentration of the chemical in 

venous blood.  This assumption is typically used unless there are data to support more elaborated 

descriptions, such as diffusion-limited compartments.  

Ideally, the structure of a PBPK model intended for risk assessment applications would 

contain the target organ (or a surrogate tissue) as well as compartments representing tissues of 

unique physiological and biochemical relevance to the pharmacokinetics of the chemical in 

question.  
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Figure 3-1.  Sample PBPK model structures.  (A) A four-compartment model 
for simulating perfusion-limited tissue uptake of inhaled chemical.  Gas exchange 
through lungs is indicated with arrows, and metabolism is described in liver.  (B) 
A model for simulating diffusion-limited tissue uptake and multi-route exposures.  
Dotted lines represent the separation of cellular matrix and tissue blood 
components. 
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3.3.  MATHEMATICAL REPRESENTATION 

Once the qualitative aspects of the model structure are deemed acceptable, the next step 

in the evaluation is mathematical representation.  Here the focus is on the adequacy of the 

number and form of mathematical equations used to represent the tissues and processes in the 

real system being modeled.  Model code, rationale, and supporting documentation should be 

readily available to the reviewer.  In PBPK modeling, each tissue compartment is generally 

described with a mass-balance ordinary differential equation that describes changes in the 

amount of chemical in the tissue over time.  These changes result from chemical distribution in 

and out of the tissue and clearance processes (e.g., metabolism or excretion) in the tissue.  For 

chemicals distributing to tissues by passive processes, the tissue:blood partition coefficients 

describe the relationship between tissue and blood concentrations.  Descriptions of this blood 

flow-limited uptake have been used successfully in many of the past efforts in PBPK modeling 

that dealt with small-molecular-weight organics.  For other compounds, including some with 

high-molecular-weight or significant protein binding, membrane diffusion can be the rate-

limiting process; for these chemicals, uptake is described with differential equations for the 

tissue blood and cellular matrix subcompartments (Krishnan and Andersen, 2001; Andersen, 

1995; Leung, 1991; Rowland, 1985).  Tables 3-1 and 3-2 provide examples of commonly used 

mathematical representations for tissue compartments and physiological processes that determine 

chemical disposition.  Note that mass balance differential equations have units of mass per time 

(e.g., mg/hr) or sometimes concentration per time (e.g., mg/L/hr). 

The rates of metabolism in PBPK models have typically been described as first-order, 

saturable Michaelis-Menten (i.e., shifting from first order to zero order) or second-order 

processes.  At low concentrations, metabolic clearance frequently appears linear, or first order, 

with respect to plasma concentration.  At higher concentrations, metabolic clearance can become 

saturated and a constant amount of chemical is metabolized per unit time (i.e., zero-order 

kinetics).  Second-order processes and requisite equations are more complex and may be based 

on a reversible equilibrium relationship (e.g., macromolecular binding) or the concentrations of 

chemical and cofactors required for metabolism (e.g., conjugation reactions).  In each case, the 

reason for using a particular description should be clearly provided.  PBPK models using 

particular mathematical descriptions of tissue uptake, metabolism, and protein binding without 

any justification cannot be used confidently for risk assessment applications.  For example, if 

enzyme-mediated metabolism is described as a first-order process in a PBPK model, the 
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Table 3-1.  Equations of a four-compartment PBPK model to simulate the 
inhalation exposure of volatile organic compounds   

Tissue compartments Equationsa

Arterial bloodb

b

p
c

pc

P
QQ

CinhQCvQ
Ca

+

×+×
=

 

Liver ( )
l

l
lll

CvKm
CvV
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+

×
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l Adt
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dA
A +×=  

l

l
l V
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l
l P

C
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−×=  
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f Adt
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f

f
f V

A
C =  
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Table 3-1.  Equations of a four-compartment PBPK model to simulate the 
inhalation exposure of volatile organic compounds (continued) 

s EquationsaTissue compartment

Venous blood 

Qc

CvQsCvQrCvQfCvQl
Cv

srfl ×+×+×+×
=  

Alveolar air 

bP
Ca

Calv =  

a Equations are from Ramsey and Andersen (1984). 
b The steady-state arterial blood equation in this example is used for chemicals that reach rapid equilibrium in blood, 

such as highly fat-soluble volatile chemicals.  In other cases, a detailed mass-balance equation for the arterial blood 
may be needed. 

 
A = amount (mg) 
a = arterial blood 
alv = alveolar air  
b = blood:air  
C = concentration (mg/L or mmol/L)  
c = cardiac output  
f = fat 
inh = inhaled air 
Km = Michaelis-Menten affinity constant (mg/L)  
l = liver 
P = partition coefficient 
p = pulmonary ventilation  
 

Q = flow rate (L/hr-1)  
r = richly perfused tissues 
s = slowly perfused tissues  
t = tissue:blood 
V = volume (L)  
v = mixed venous blood  
vf = venous blood leaving fat  
vl = venous blood leaving liver  
Vmax  = maximal velocity of enzymatic reaction (mg/hr-1) 
vr = venous blood leaving richly perfused tissue  
vs = venous blood leaving poorly perfused tissue 

 
 

Table 3-2.  Equations used for describing diffusion-limited uptake in PBPK 
models 

Subcompartments Equations 

( ) [ ] ( )
Pt

CC
PACCQ

dt
dC

V outintt
211

1
−

×−−×=  
Tissue blood 

 

[ ] ( )
Pt

CCPA
dt

dCVt
212

2
−

×=  
Cellular matrix 

A = amount (mg) 
C = concentration (mg/L or mmol/L) 
in = inflow 
out = outflow 
PA = permeability-area coefficient 

Q = flow rate (L/hr-1) 
t1 = tissue blood 
t2 = cellular matrix 
V = volume (L) 
Pt = tissue:blood partition coefficient 
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3.4.1.  Physiological Parameters 

The physiological parameters used in PBPK models should either correspond to those 

obtained in the experimental pharmacokinetic study or be within the range of plausible values for 

the species and life stage.  Peer-reviewed compilations of ranges and reference values of 

physiological parameters for adult animals and humans are available (Brown et al., 1997; Davies 

gerova, 1995; Leg 1991; Arms and Travis, 

es 3-3 through 3-6), yet no such comp  respect to physiological 
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Table 3-3.  Commonly used physiological parameters for mice, rats, and 
humans 

Physiological parametersa Mouse Rat Human 

Body weight (BW) (kg) 0.025 0.25 70 

Tissue volume (fraction of BW)    

Liver 0.055 0.04   0.026 

Fat 0.1 0.07   0.19 

Org  ans 0.05 0.05   0.05

Muscle and skin 0.7 0.75   0.62 

Cardiac output (Qc) (L/min) 0.017 0.083   6.2 

Tissue perfusion (fraction of Qc)    

Liver 0.25 0.25   0.26 

Fat 0.09 0.09   0.05 

Organs 0.51 0.51   0.44 

Muscle and skin 0.15 0.15   0.25 

Minute volume (L/min) 0.037 0.174   7.5 

Alveolar ventilation (L/min) 0.025 0.117   5 
aMany PBPK models often lump certain tissues together into single compartments such as rapidly/richly and
slowly/poorly perfused compartments. 

 
Source:  Adapted from Travis and Hattemer-Frey (1991). 

 

 

Table 3-4.  Range of values of the volume and perfusion of select tissues in 
the mouse  

 

Tissue
Volume 

(% body weight) 
Regional blood flow 
(% cardiac output)  

   5–14a  Adipose 

Brain 1.35–2.03 3.1–3.5 

Heart 0.4–0.6 5.9–7.2 

Kidneys 1.35–1.88   7–11.1 

Liver 4.19–7.98  

Lungs 0.66–0.86  

Muscle 35.8–39.9 12.2–19.6 

Skin 15.9–20.8 3.3–8.3 
a Varies proportionately with body weight. 
 
Source:  Adapted from Brown et al. (1997). 
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Table 3-5.  Range of values of the volume and perfusion of select tissues in
the rat  

 

Volum ody weight) 
Regional blo
(% cardiac output) Tissue e (% b

od flow 

Adipose 4.6–12a  

Br 0.83 1.5–2.6 ain 0.38–

Heart 0.27–0.4 4.5–5.1 

Ki –0.91 9.5–19 dneys 0.49

Liver 2.14–5.16 13.1–22.1 

Lungs (upper respiratory) 0.37–0.61 11.1–17.8 

Muscle 35.4–45.5  

Skin 15.8–23.6  
a Varies proportionately with body weight. 
 
Sour ted from Brown et al. (1997). 
 

a Varies proportionately with body weight. 
 
S dapted from Brown et al. (1997). 

 

pregnant women, children).  Physiologica s for specific subgroups is an area of active 

research, and there are some published references for some parameter values (Gentry et al., 

2004; Pelekis et al., 2003; Hattis et al., 2003; Price et al., 2003a, b; Haddad et al., 2001a; 

., 1994).   

Regional blood flow 
(% cardiac output) 

ce:  Adap

 

 

Table 3-6.  Range of values of perfusion of select tissues in humans  

Tissue 

Adipose   3.7–11.8a

Brain 8.6–20.4 

Heart 3.8–8 

Kidney 12.2–22.9 s 

Liver 11–34.2 

Muscle 5.7–42.2 

Skin 3.3 –8.6  

ource:  A
 

l parameter

Schoeffner et al., 1999; Luecke et al
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In PBPK models for organic chemicals, the sum total of the volumes of compartments 

corresponding to soft tissues is smaller than the body weight; sometimes 85% of the body weight 

(100% [body weight] – 15% [estim n based o

skeletal/structural components as percent body weight]) is used (Brown et al., 1997).  Even 

though the tissue volumes (expressed in li eded for PBPK modeling, tissue weights 

(kg) are usually used with the assumption o sity (L = kg).  This ass  is a 

r ation because tissue densities typically range from 0.9 kg/L for fat to 1.06 

kg/L for muscle (Mendez and Keys, 1960

 ow rates in the m ld add up to cardiac o intaining 

m nce in PBPK models requires th  all flows to the compartments be equal to 

th diac output, although other errors in uations can result in a lack f mass balance.  

he ratio of cardiac output to alveolar ventilation rate is roughly 1 in a resting individual but 

Rodahl, 1970).  The specification of cardiac output 

independent of the value of ventilation rate is unacceptable, particularly if the ratio 

(ventilation:perfusion) is not in the normal physiological range.  Frequently in PBPK models, 

ventilat  specified for the 

individual animal or human being simulated.   

The values of common physiological parameters for a test species or human vary 

depending on body weight.  To simplify the recalibration of certain parameter values when 

species, all tissue volumes are expressed as fractions of body 

n body weight, the volumes n be readily calculated by 

ing the body weight by the corresponding fractional value.  Similarly, because the 

ation rate are related to b olic rates and/or body 

er than to body weight, these models can be specified as a power function of body 

om 0.67 to 0.75 (e.g., Tardif et al., 1997; Andersen et al., 

sed on cross-species analyses for adult animals and may 

not be appropriate for all life stages. 

le PBPK model would contain tissue volumes, flow rates, and 

 

ate of nonperfused portio n the weight of 

ters) are ne

f unit den umption

easonable approxim

).   

The tissue blood fl odel shou utput.  Ma

ass bala at the sum of

e car  model eq  o

T

decreases with activity (Astrand and 

ion rate, cardiac output, and tissue perfusion rates and tissue volumes are

running the model for a different 

weight such that, for any give  in liters ca

multiply

cardiac output and alveolar ventil asal metab

surface rath

weight, with the exponent varying fr

1987).  These scaling functions are ba

An acceptab

ventilation:perfusion ratios that are within physiological limits.  The sum total of the tissue 

volumes should not exceed the body weight, and the sum total of tissue blood flow rates should 

equal cardiac output.  
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3.4.2.  Partition Coefficients 

Tissue distribution is dependent on a variety of processes, including passive diffusion, 

active transport, and cellular concentrations of lipid and binding proteins, among others.  

Partition coefficients describe the steady-state concentration in the tissue compared with blood or 

for volatiles in blood versus air.  Calibration of PBPK models for partition coefficients has 

sometimes been done by fitting model simulations to in vivo data.  In such cases, 

pharmacokinetic data collected following a single bolus dose or repeated doses leading to steady 

state are analyzed with the PBPK model to estimate the tissue:blood partition coefficients 

(Gabrielsson and Bondesson, 1987; Gallo et al., 1987; Lam et al., 1982; Chen and Gross, 1979).  

Steady-state data provide the most straightforward data for model calibration; however, they 

require correction for tissues in which there are significant specific binding or metabolic 

processes.  In tissues where there is a significant level of metabolism or binding, the calculation 

of an apparent tissue:blood partition coefficient should account for the amount of chemical 

consumed by such processes (Chen and Gross, 1979).   

The tissue:blood, skin:water, skin:air, and blood:air partition coefficients required for 

PBPK modeling of volatile organic chemicals are conveniently determined in vitro using the vial 

equilibration method (Beliveau and Krishnan, 2000; Kaneko et al., 1994; Gargas et al., 1989; 

Johanson and Dynesius, 1988; Fiserova-Bergerova and Diaz, 1986; Sato and Nakajima, 1979).  

Tissue:blood partition coefficients for nonvolatile chemicals may be estimated in vitro using 

radioactive chemicals in ultrafiltration, equilibrium dialysis, or vial equilibration procedures 

(Murphy et al., 1995; Jepson et al., 1994; Sultatos et al., 1990; Igari et al., 1983; Lin et al., 1982).  

The partition coefficients estimated by these in vitro methods are acceptable, provided 

equilibrium is attained during the experimental conditions.  A time-course analysis should be 

conducted to choose an appropriate time point (at which equilibrium is attained) for determining 

partition coefficients in vitro, and appropriate studies will help demonstrate that metabolism or 

chemical reactions are not depleting the chemical. 

Algorithms based on the consideration of solubility and binding of chemicals in 

biological matrices have also been developed and applied for predicting tissue:blood, tissue:air, 

and blood:air partition coefficients of volatile organic chemicals.  This approach requires 

knowledge of tissue and blood composition in terms of lipid and water contents, the 

octanol:water or oil:water partition coefficients of the chemical, and binding association 

constants, if applicable (e.g., Poulin and Thiel, 2000; Poulin and Krishnan, 1996a, b, 1995).  At 
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the present time, there is no validated animal-replacement approach for predicting association 

constan ).  

:blood 

ng 

r partition 

and 

thods, 

3.4.3.  

dies are 

, 

 tissue proteins determined in vitro or in vivo 

have be  vivo 

so the 

st be 

 

ts for blood or tissue protein binding of organic chemicals (Poulin and Krishnan, 1996b

The biologically based algorithms as such are useful in providing initial estimates of tissue

partition coefficients solely on the basis of the consideration of solubility in water and lipid 

contents of tissues and blood.  A number of other empirical or semiempirical methods relati

molecular structure or physicochemical characteristics to tissue:blood and blood:ai

coefficients of chemicals are also available (Beliveau et al., 2005, 2003; Payne and Kenney, 

2002; Abraham and Weathersby, 1994).  Their use is acceptable, as long as the qualitative 

quantitative aspects of the structural features and physicochemical characteristics of the new 

chemical are within the range of values that were used to calibrate the algorithm. 

Partition coefficients required for PBPK models can be obtained using in vitro me

in vivo data obtained at steady state, or theoretical algorithms within the boundary of valid 

application. 

 

Biochemical Parameters 

Absorption rates, metabolic parameters (e.g., first-order or second-order rate constants, 

maximal velocity, and Michaelis constant), tissue diffusion constants (for describing diffusion-

limited uptake), and transporter activity parameters required for PBPK modeling can be 

determined by fitting a model to data from in vivo studies.  In order to estimate these parameters, 

pharmacokinetic data (e.g., time course of tissue or blood concentration of parent chemicals, 

urinary metabolite levels) obtained following a single bolus dose or infusion may be used.  For 

volatile organic chemicals, data from exhaled breath and closed chamber gas uptake stu

frequently used with success (Gargas et al., 1986; Filser and Bolt, 1981, 1979; Andersen et al.

1980).  Descriptions of serum protein binding have important impacts on tissue distribution and 

clearance, with parameters often estimated in vitro (Himmelstein and Lutz, 1979).  The rate 

constants of chemical reaction with hemoglobin and

en incorporated into the PBPK model to make predictions of these phenomena in

(e.g., Krishnan et al., 1992).  Biochemical parameters estimated from in vivo data using a model 

are dependent on the model structure and values of other parameters (e.g., physiological), 

application of these values in models with different structures or parameter values mu

evaluated with care.  The use of a Bayesian approach is likely to enhance the precision of

parameter estimations from in vivo data by more formally developing and evaluating the 
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uncertainty and accuracy of parameter values and by incorporating multiple data sets into their

derivation (e.g., Vicini et al., 1999). 

Appropriate methods for application of in vitro systems (e.g., freshly isolated 

hepatocytes, microsomes, post-mitochondrial fractions, cytosols) to provide metabolic consta

for incorporation into PBPK models continues to be an active area of investigation.  These data

may be applicable to modeling using the parallelogram approach.  For example, chemical-

specific in vitro metabolic data from cultured hepatocytes can be scaled to represent in vivo l

clearance using in vitro data such as estimates of the number of hepatocytes present per 1 g of 

liver tissue and the average liver weight (in grams) of the species and age group of interest.  In

vitro data for humans can then extrapolated to in vivo by assuming that the same r

 

nts 

 

iver 

 

elationship that 

success

 are several examples of successful application based on appropriate in vitro-in vivo 

scaling methods (Lipscomb et al., 2003, 1998; Hissink et al., 2002; Cole et al., 2001; Mortensen 

, 1997; De Jongh and Blaauboer, 1997, 1996; Reitz et al., 

1996a, ., 

the 

 

 

 

the 

s 

 Many  

fully describes the in vitro to in vivo relationship in animals effectively converts the 

human in vitro data to the in vivo situation. 

There

and Nilsen, 1998; Mortensen et al.

1989; Hwang et al., 1996; Iwatsubo et al., 1996; Kedderis and Held, 1996; Gearhart et al

1990), although the extrapolation of in vitro data to intact animal is not clear in all cases (e.g., 

Haddad et al., 1998, 1997).  But the in vitro studies are particularly useful for evaluating 

extent of metabolism in target tissues, characterizing interindividual differences in metabolism, 

and conducting animal-human extrapolation of metabolism constants based on a parallelogram

approach (Kedderis and Lipscomb, 2001; Thrall et al., 2000; Ploemen et al., 1997; Reitz et al., 

1996b; Andersen et al., 1991).  Receptor binding and DNA-binding properties of chemicals have

also been successfully described with PBPK models on the basis of in vitro-derived data (Farris

et al., 1988; Terasaki et al., 1984).   

Biochemical parameters for PBPK models can be estimated using in vivo data or on 

basis of adequate scaling of in vitro data. 

 

3.5.  COMPUTER IMPLEMENTATION 

Most PBPK models require the use of numerical simulation methods because they 

contain differential equations and descriptions of nonlinear processes, making exact solution

difficult or impossible.  There are a number of integration algorithms and programming 

languages currently available for coding and solving PBPK model equations (Table 3-7). 
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Table 3-7.  Examples of simulation software used for PBPK modeling 

Software Developer/vendor Salient features Examples of application 

Fortran c arba et al. ompiler with 
IMSL library packages, 
C, Pascal, Basic 

Many vendors sell the 
different compiler packages 
available on the market 

Machine language compiler 
packages that require certain 
knowledge of computer 
programming; models can be 
customized to simulate 
specific condition  

Hoang (1995); K
(1990) 

ACSL, ACSL-Tox , or 
acslXtreme (Advance 
Continuous Simulation 
Language) 

The Aegis Technologies 
Group, Inc., Huntsville, AL 

The most commonly used 
for PBPK modeling in the 
toxicology community; 
language designed for 
modeling and evaluating the 
performance of continuous 
systems described by time-
dependent, nonlinear 
differential equations 

Thomas et al. (1996a
(1994) 

); Dong 

SimuSolv Dow Chemical Company, 
Midland, MI (no longer 
distributed outside the 
company) 

dynamic nonlinear systems 
that are translated into 
FORTRAN at run time 

(1984) 

Makes use of ACSL 
language to write the 

Rey and Havranek (1996); 
Ramsey and Andersen 

Matlab The MathWorks, 
Natick, MA 

Mathematical software with 
matrix-related computations, 
numerical integration 
algorithms capable of 
solving systems of ordinary 
differential equations, and 
graphical nonlinear 
simulation (Simulink) 

Easterling et al. (2000) 

Microsoft Excel Microsoft Corporation, 
Redmond, WA 

Neither translation of the 
model nor the compilation 
into a program is required,  
but the user should specify 
integration algorithm and 
interval 

Haddad et al. (1996); 
Johanson and Naslund 
(1988) 

ScoP (Simulation 
Control Program) 

Simulation Resources, Inc., 
Redlands, CA 

An interactive control 
program for constructing 
models; when used with a C 

Menzel et al. (1987) 

compiler, SCoP greatly 
simplifies the construction of 
a simulation program  

Stella Isee Systems, Lebanon, N
(formerly High Performance 

H 

Systems Inc.) 

Macintosh, interactive 
graphical user interface 
software; enables the user to 
generate models with 
diagrams, where a minimal 
knowledge of computer 

Hoang (1995) 

programming is required 
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Table 3-7.  Examples of simulation software used for PBPK modeling 
(continued) 

 Software Developer/vendor Salient features Examples of application 

Mathematica Wolfram Research, Inc., 
Champaign, IL 
 

ns; 

ry 

ter and Murray 
(1998) 

Mathematical software with 
matrix-related computatio
numerical integration 
algorithms capable of 
solving systems of ordina
differential equations 

Burmas

Berkely Madonna Robert Macey and George 
Oster, University of 
California at Berkeley, CA 

er 
he 

 
ealth;  

emic 
utions 

t al. (2003) A general-purpose 
differential equation solv
program developed on t
Berkeley campus under the 
sponsorship of National 
Science Foundation and the
National Institutes of H
currently used by acad
and commercial instit
for constructing 
mathematical models for 
research and teaching 

Reddy e

SONCHES (Simulation 
near Complex 

Hierarchical Ecological 
Systems) 

Central Institute of 
formation 

ademy of 
Sciences of GDR, Berlin 

re Wünscher et al. (1991)  
of Nonli Cybernetics and In

Processes, Ac

A computer system whe
connections between various 
data libraries in the 
preparation and post-
processing of simulation are 
executed by macro 
commands  

 

CMATRIX Robert Ball and Sorell L. 
Schwartz, Georgetown 

DC 

 the 
ental 

e 
 

Ball and Schwartz (1994) 

University, Washington, 

A system that allows
user to create compartm
models based on personal 
biological knowledge, 
leaving the construction and 
numerical solution of the 
differential equations to th
software

BASICA California Department of 
Pesticide Regulation, 
Sacramento, CA 
 

e 
Numerical integration 
algorithms developed by th
Department for PBPK 
modeling 

Dong (1994) 

AVS  
(Application 

zation System) 

Advanced Visual Systems, 
Inc., Waltham, MA 

onal 
 

sm 

Nichols et al. (1994) 

Visuali

A visualization software 
package capable of 
importing processed 
resonance images and 
combining the use of ACSL 
to create three-dimensi
representations of the PBPK
of a chemical in an organi

MCSim Drs. Bois and Maszle  e 
conduct of Bayesian analysis 
with PBPK models but has 
no graphical interface 

Jonsson and Johanson 
(2003) 

Software that facilitates th
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of the c  algorithms to 

obtain tion to differential equations (Reddy et al., 2003; Easterling et al., 2000; 

Burm Murray, 1 ., 1987) s st case

r needs only to evaluate th p

programming language (FORTRAN, BASIC) or spreadsheet (Lotus 1-2-3, QuattroPro, Microsoft 

Excel) is used for modeling, then the modeler should write the codes for an appropriate 

ation G  routines or 

methods).  In such ca ri ation interval, i.e., the 

time interval at which the calculations of the ch r amount) of chemical in 

various compartments are performed, should b t al., 1996; Blancato 

and Saleh, 1994).   

The modeler also needs to be aware of n routine offered by software 

packages, particularly if parameters are to be e ental data by statistical 

n

un-ti red for PBPK modeling and 

parameter optimization; therefore, this aspect r ion. 

The accuracy of computational represen models is evaluated by 

g,” which  err p

PBPK model code m al mathematical 

statements.  To eliminate these errors, it is esse e model code after entry 

into the computer.  Commercially available sim converting the model 

itten in a sou ne  synta errors 

related to incorrect w es.  Ho stic features cannot 

detect errors associated with incorrect mathem tation of a process, even if the code 

 correct p nd

 who uses a PBPK model i  ultimately responsible for 

ensuring that the code and equations are entere ode is subject to routine 

error diagnostic checks; this may include re-co ification can initially be 

 the develope ndivid m e.g., 

peer-reviewers and co-workers) (Clark et al., 2004), and again when used for risk assessment 

purposes. 

ommercially available software packages routinely make use of integration

numerical solu

aster and 998; Menzel et al uch that (for mo s) the modeler or the 

risk assesso at an ap ropriate algorithm was used.  However, if a 

numerical integr  algorithm (e.g., Euler, 

ses, the integration algo

ear, Runge-Kutta

thm as well as the integr

ange in concentration (o

e specified (e.g., Haddad e

the optimizatio

stimated from experim

; predictor-correct

optimization (Holme

possess sufficient spe

s et al., 2000).  The perso

ed, disk space, and r

al and portable computer

me memory requi

equires no formal evaluat

tation of PBPK 

s marketed today 

“debuggin refers to the process of

ay result either from typin

or detection in computer 

g errors or from illogic

ntial to carefully verify th

ulation software, while 

rograms.  Errors in 

codes wr rce language to machi

riting of model cod

language, can detect

wever, such error diagno

atical represen

x/language 

is written in

The modeler

rogramming language a  without typing mistakes.  

n risk assessment is

d correctly and that the c

ding the model.  Such ver

 

done by r, subsequently by i uals not involved in the odel development (
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Solution to the differential equations in a PBPK model need not be evaluated if a highly 

reputable commercial or open source simulation software has been used, although an 

appropriate algorithm should have been selected.  However, it is necessary to ensure that the 

code and equations are entered correctly and that the code is subject to routine error diagn

checks.  When the modeler writes his/her own program, the appropriateness of the integration 

algorithm and integration intervals should be justified; similar concerns would exist init

newly developed commercial or open source software.   

 

3.6.  EVALUATION OF PREDICTIVE CAPACITY 

The purpose of model evaluation is to assess the adequacy of a model and correspondin

parameters to consis

ostic 

ially for 

g 

tently describe the available pharmacokinetic and dose-response data of a 

chemic

 

tion 

odel right (Balci, 

1997).  point.  It 

ccuracy to 

 its 

 extent to which 

those tw

s 

ted to predict outcomes for which it has not been adequately tested, some modelers 

will use the terms “calibrated” to describe a model containing parameters that have been 

al-biological system, as well as to characterize the uncertainty associated with the 

parameter values.  In a risk assessment context, this also involves evaluation of the suitability

and applicability of the model for regulatory and health protection purposes.  Model evalua

includes verification and validation (or calibration).  In brief, model validation deals with 

building the right model, whereas model verification deals with building the m

 Model verification includes many of the topics covered in this chapter up to this

involves an evaluation of the accuracy with which a chemical-biological system has been 

transformed into a model specification (e.g., the model diagram or equations) and the a

which such a diagram or set of equations has been coded into an executable computer program.  

Model validation/calibration, on the other hand, involves substantiating that the model, within

domain of applicability, behaves with satisfactory accuracy. 

It is important to correct a common misunderstanding about what “validated model” 

means.  A model that has been calibrated against one data set and adequately simulates a 

different data set can be said to be “validated,” but it is only validated to the

o data sets accurately represent the larger population, not in any global sense 

independent of the data used to develop and test the model.  PBPK models are used to 

extrapolate to hypothetical exposure conditions or dosing regimens but, again, these 

extrapolations are only valid to the extent that the data used to calibrate and test the model are of 

sufficient quality to support the extrapolations.  To avoid giving the impression that a model ha

been valida
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optimiz

re, 

 

 potential complexity that may come to light during the model evaluation process is the 

ng different measurements within a data 

set.  Fo

el 

e the 

t 

e route 

in of 

it both sets.  In such instances, 

conside hat 

 

um 

d in the 

 of mass 

l judgment 

 for 

ed to fit one (e.g., an “internal” data set and the term “having predictive utility” to 

describe a model that adequately reflects another (e.g., an “external”) data set.  There a

however, some advocates for using “all” of the available data to develop parameter values, and

for that approach the calibration and predictive utility distinctions no longer work.  This issue of 

varying methods and terms used to develop and evaluate PBPK models is a reflection of the 

relative newness of the modeling discipline in risk assessment, and the research community is 

actively working to advance the methodology.  

A

existence of discrepancies between data sets or even amo

r example, when one dosimetry study reports that the sum of all urinary metabolites 

excreted by rats is 20–30% and another study reports 40–50% urinary clearance, no PBPK mod

may be able to simulate both data sets.  When this occurs the modeler will need to evaluat

data sets to identify potential sources of these differences and ultimately may need to use exper

judgment to select one over the other or accept the uncertainty implied if both are acceptable.  

Obvious sources of discrepancies that a model may be able to explain would be due to dos

and dose level.  Differences that could be more difficult to explain with a single model (and a 

single set of parameters) can arise from differences in dose vehicle and animal strain.  In the case 

of strain differences, if the modeler finds that she/he can describe all the data from one stra

rats but not a data set from a different strain, there is at least a reasonable chance that some 

model parameters (e.g., metabolic rate constants) differ for the second strain.  However, if no 

potential sources of variation can be identified for discrepancies between data sets for the same 

strain, vehicle, route, and dose range, then any model will fail to f

ration of the quality of the analysis or other features of the study, or perhaps the one t

is most consistent with all other data sets, can inform the decision of which data to utilize.

It is also possible for a data set to be internally inconsistent.  For example, when the s

of all excreta does not equal the administered dose, or the sum of metabolites measure

blood do not equal the total blood level measured using a radiolabel, then there is a lack

balance in the pharmacokinetic data.  Here too, the modeler must exercise professiona

in determining how to simulate the data and whether some data can be excluded.  For example, a 

model may be able to describe the data from three doses used in a study but not those from a 

fourth dose (that is neither the highest nor the lowest dose).  In this case, a classical 

pharmacokinetic analysis may show that even with an unstructured model, the parameters
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that odd dose must be quite distinct from the others, leading the modeler to conclude that th

was an error or unreported variation in the dosing or data collection.  If a dosing error is 

suggested, then the modeler may try varying the dose for that data set to see whether the model 

can then fit the data.  In the case of a mass balance discrepancy, the modeler may choose to 

normalize the data, forcing it into balance, or to introduce a “loss” term such as binding to tis

components if that is consistent with the biochemistry. 

In the following sections, it is presumed 

ere 

sue 

that all such discrepancies in the data themselves 

have be

 

t 

 

s 

eady-

state le

.  

 such a way 

en dealt with. 

 

3.6.1.  Model Verification  

As mentioned above, verification of a PBPK model involves evaluation of the biological 

plausibility of the model structure and parameters, as described in the documentation, and the 

mathematical correctness of the equations.  Although these topics are discussed in previous 

sections, the issue of verification is being highlighted here in the context of a risk assessor who

may have played no part in the initial development of a model.  In this context, the risk 

assessor(s) must, in essence, retrace the model development in order to understand the model 

well enough for application in regulatory decision making.  This includes assessing the model 

from purpose and structure all the way to examination of the model code in order to ensure that i

mathematically implements the model as described in the documentation.  This examination

includes checking for correctness of statements and functions and correct order of statement 

execution (for languages that are not self-sorting).  Although trivial, checking the mass balance i

important when evaluating errors in model structure that could lead to erroneous increases or 

decreases in the level of the chemical in tissues.  Another check on model behavior is to set the 

exposure level to zero; this is necessary to ensure that the model can accurately represent st

vels of the chemical and that the background level does not change with time in the 

absence of exposure.  

Whether a code-based or a graphical-based software interface is used, it is preferable that 

the language produce, as one output, the set of equations that constitute the PBPK model.  Code-

based representations ease the task of providing sufficient documentation demonstrating that the 

model is actually constructed as may be described in prose within a peer-reviewed publication

To facilitate model verification, the model code would be organized and annotated in

as to facilitate understanding by individuals (e.g., reviewers) other than the original program 
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developer.  This also affords relatively easy translation into a reviewer’s software of choice.  In 

the case of a model intended for use in a risk assessment application, it is imperative to p

documentation of the particular parameter values and simulations that are required to reproduce 

any validation runs and dose metric calculations.  This usually entails the provision of step-b

step directions, either using the language’s scripting capability or in separate documentation, that 

allow reproduction of the validation plots and dose-met

rovide 

y-

ric calculations by following specific 

directio

3.6.2.  Model Validation/Calibration 

uld consider the ability of the model to predict the kinetic behavior 

of the c  

c.  

 

n 

etic 

uired for evaluating the adequacy of model parameters are based on 

compar

ns or by invoking specified program blocks.   

 

Model evaluation sho

hemical under conditions that test the principal aspects of the underlying model structure. 

Ideally, a PBPK model would be compared with data that are informative regarding the 

parameters to which the dose metric predictions are sensitive (this pre-supposes the use of 

sensitivity and uncertainty analysis to identify the parameters of concern; see Section 3.7).  For 

example, validation of a human model based solely on parent chemical data would not 

necessarily provide confidence that the model could be used to predict a metabolite dose metri

The use of parent chemical kinetic data to validate model estimates of metabolism in the human

can be highly misleading because it can be the case that the metabolism parameters have little 

impact on parent chemical concentrations, whereas other uncertain parameters (e.g., ventilatio

rate, blood flow, fat content) can strongly influence model predictions of parent chemical kin

behavior.  However, even in such cases, sensitivity and uncertainty analyses can help to 

characterize the confidence (or lack thereof) with which the model makes predictions (see 

Section 3.7). 

The adequacy of model parameter values may be evaluated in different ways; no single 

method has been accepted or endorsed by the modeling or regulatory community as yet.  

Statistical methods req

ison of simulations with experimental data and depend on whether the objective is to 

perform internal evaluation (in which all model parameters are estimated from the same data 

set), external evaluation (in which different data sets are used for model calibration and testing 

the predictive capability of the model), or semi-external evaluation (in which some of the model 

parameters are based on the data set).  Although no systematic research effort or guidance is 
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available in this regard, there is much interest in developing consistent and acceptable evaluation

methods, and progress is being made.   

To date, PBPK model evaluation generally has not been conducted rigorously from a 

statistical perspective.  Although quantitative tests of goodness of fit often may be a useful aspe

of the evaluation process, they generally are not designed to test hypotheses for PBPK models, 

which can be highly nonlinear and may contain a large number of parameters.  None of the 

classical procedures (e.g., t-, Mann-Whitney, two-sam

 

ct 

ple χ2, and two-sample Kolmogrov tests) 

at determine whether the underlying distributions of the two data sets are similar is applicable 

ll real-world systems and simulations are nonstationary 

and aut

ict the 

rom the 

, 

 involved visual inspection of the plots of model predictions (usually continuous 

and rep

ality 

re 

t 

the 

 

systematic deviation from a scatter around zero.  

th

because the output processes of almost a

ocorrelated.  Furthermore, a question exists as to whether the use of statistical hypothesis 

tests is even appropriate.  Since the model is only an approximation of the actual system, a null 

hypothesis that the system and model are the same is clearly false.  

 Perhaps a more important consideration may be a model’s ability to accurately pred

general behavior of the data in the intended application and whether or not the differences 

between the system and the model are significant enough to affect conclusions derived f

model.  In this regard, Haddad et al. (1995) screened various statistical procedures (correlation, 

regression, confidence interval approach, lack-of-fit F-test, univariate analysis of variance, and 

multivariate analysis of variance) for their potential usefulness in evaluating the degree of 

agreement between PBPK model simulations and experimental data.  According to these authors

the multivariate analysis of variance represents the most appropriate classical statistical test for 

comparing PBPK model predictions with experimental data.   

 For now, however, the most common (if not the most rigorous) approach to model 

evaluation has

resented by solid lines) with experimental values (usually discrete and represented by 

symbols) against a common independent variable (usually time).  The greater the common

between the predicted and experimental data, the greater the confidence in the model structu

and parameters.  The correspondence between predictions and experimental data should be no

only at the level of individual values (e.g., blood concentration values) but also at the level of 

profile (i.e., bumps and valleys in the pharmacokinetic curve).  In other words, the shape of the 

simulated curve should correspond to that of the experimental data and also be one that would 

result in a plot of the residuals (i.e., difference between the simulation and the data) without a
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Figure 3-2 shows several examples of visual evaluations of the adequacy of PBPK model 

predictions.  The models used in panels A and C could be considered adequate because they 

simulat ery 

n all 

 

del parameter values.  For 

xampl

ot fit 

s 

out 

tal and simulated data is to plot the 

r as a 

n 

 

 

to 

arameters are justified (Collins et al., 1999). 

e the behavior of the experimental data even though they do not accurately simulate ev

single experimental datum.  On the other hand, model D would be considered less adequate, and 

further work would be required to refine the model.  Examination of the model simulation in 

panel B suggests that this model is simulating a bolus exposure, whereas the data set (same i

panels) appears to be from an inhalation study, suggesting that the modeler has chosen either the

wrong exposure parameters for the model or the wrong data set for comparison. 

This approach to model evaluation says nothing about the adequacy of the model 

structure or parameters; it only reflects an individual’s judgment of how closely the model 

predicts the observed behavior.  Evaluating the adequacy of model structure and equations is 

fairly straightforward when compared with the evaluation of the mo

e e, inadequacies in PBPK model structures can be inferred simply by observing the 

simulated and experimental pharmacokinetic profiles (Lilly et al., 1998).  If the model cann

the pharmacokinetic profiles for any realistic parameter values, or it can do so only by using 

values that are inconsistent with other data, then one can reasonably conclude that the structure i

inadequate.  

This evaluation of model structure provides the developer an opportunity to think ab

the need for additional compartments, critical determinants of disposition, or different 

quantitative descriptions of the phenomena and to improve the capability of the model 

accordingly.  Again, a useful way of comparing the experimen

residuals (i.e., difference between experimental and simulated data) as a function of time o

function of various controllable variables.  If two or more models fit the experimental data 

equally well, new experiments may be designed to identify the model that more accurately 

predicts the other attributes of the biological system (Kohn, 1995). 

One approach for determining whether the level of complexity (number of parameters) i

a model is justified by the data is to use a nested modeling approach, where the model is reduced

to a simpler (nested) model when one or more parameters is set to zero or some other “baseline” 

value (Collins et al., 1999); however, additional changes to the model may be needed in order to

maintain mass balance.  The increase in goodness-of-fit obtained by allowing those parameters 

be varied can then be evaluated statistically using a χ2 statistic to determine whether the 

additional degrees of freedom afforded by those p
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Figure 3-2.  Comparison of four PBPK model simulations (left, log scale; 
right, linear scale). Solid lines are model simulations overlayed with 
experimental data (symbols).  Models A and C appear to simulate the data 
reasonably well.  Model D seems to underpredict all points, suggesting that 
refinement is necessary.  In model B, there appears to be a mismatch between the 
exposure parameters in the model (apparently bolus) and that of the data set 
(apparently inhalation).   
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There is increasing concern about the relevance and usefulness of external evaluation in 

PBPK modeling.  External evaluation requires that some of the available pharmacokinetic data 

not be used during the model calibration phase, but set aside for evaluating the performance of 

the model.  Not everyone is in agreement with such an approach.  Some investigators argue that 

all the data used for model evaluation can be used to improve the parameter estimates, so that no 

data are “wasted” toward that end.  Such an iterative approach to model evaluation and 

calibration maximizes the use of the available data.  Others, however, argue that this type of 

modeling can become a form of self-fulfilling prophecy. 

The issue of external evaluation is particularly problematic for human data because the 

actual parameters for each individual in a population might be sufficiently different, such that a 

model with a single set of parameters may not be reasonably expected to simulate the observed 

kinetics in all individuals.  Therefore, the process of modeling not only can take into account 

existing information on parameters but also accommodate new information based on fits to 

additional data sets.  In this context, Bayesian analysis utilizing Markov chain Monte Carlo 

(MCMC) calculations is being increasingly explored for use in PBPK modeling (Jonsson and 

Johanson, 2002, 2001; Bois, 2000a, b).  In the Bayesian approach, the prior information on 

parameters is updated on the basis of new pharmacokinetic data, such that the resulting posterior 

estimates consistently describe all data and support better characterization of the uncertainty and 

distribution in the parameter values.  One continuing challenge of the Bayesian approach is how 

to use important data or biological information that are not easily amenable to incorporation into 

MCMC calculations, the concern being that leaving such information out gives undue priority to 

the particular studies that are included.  Thus, posterior distributions always need to be 

scrutinized as to their consistency with existing biological knowledge; for instance, posteriors 

that are strongly inconsistent with (carefully constructed) priors may indicate problems with 

model structure or errors or inconsistencies in the data.  

Cross-validation is another potentially useful approach for model evaluation (Keys et al., 

2003). oss-

validat  “leave-one-

out” cr tion of model 

parame

 In the structure-activity relationship modeling arena (Beliveau et al., 2003), cr

ion uses all of the available data sets by repeated subsampling.  This type of a

oss-validation allows the use of available data both for estimation and evalua

ters.  
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It is likely that no single approach will be sufficient or applicable in all contexts.  Each of

these approaches has its merits and limitations, and their applicability for PBPK model 

evaluation depends on the purpose of the model and data availability.  

There are other important issues concerning parameters for which values are estimated by

optimizing model output to experimental data (“fitting”), including parameter values based on 

posteriors from a Bayesian analysis.  In such instances, the modeler must assess the 

identifiability of the parameter given the data.  The practical reality of modeling biological 

systems is that, regardless of the complexity of the model

 

 

, there will always be some level of 

“model

 

rs.  

for 

s to 

r 

es can be 

 

 are clearly inconsistent with the data 

than to

inty 

 Documentation 

Adequate documentation is critical in the evaluation of a model.  The level of 

documentation for a PBPK model depends on its intended use.  For models developed for 

 error” in the form of inconsistencies or lack of representation of the real biological 

system that can result in systematic discrepancies between the model and the experimental data. 

This type of inherent structural deficiency in all models interacts with deficiencies in the 

identifiability of the model parameters, potentially leading to misidentification of the paramete

Due to the confounding effects of model error and parameter correlation, it is quite possible 

an optimization algorithm to obtain a better fit to a particular data set by changing parameter

values that no longer have any meaningful correspondence to the biological entity the paramete

was initially intended to represent.  This problem can be ameliorated in Bayesian analyses 

through appropriate prior distributions.  It is usually preferable, however, to repeatedly vary the 

model parameters manually before performing an optimization to obtain a sense of their 

identifiably and correlation under various experimental conditions.  Some simulation languages 

aid this process by including routines for calculating parameter covariance or for plotting joint 

confidence region contours.  

Estimates of parameter uncertainty obtained from traditional optimization routin

viewed as lower-bound estimates of true parameter uncertainty because only a local, linearized

variance is typically calculated.  In characterizing parameter uncertainty, it is probably more 

instructive to determine what ranges of parameter values

 accept a local, linearized variance estimate provided by the optimization algorithm.  The 

Bayesian approach, in principle, gives a more global characterization of parameter uncerta

(see Section 3.7.3). 

 

3.6.3.  Model

   3-26



researc

tion of one or more “box 

and arr

 

odeler 

nd 

odel, 

ized, 

 

deler to 

ould be labeled with the names of the key variables associated with 

the com

her 

 

e 

ns (or steady-state approximations) in the model.  Similarly, the arrows in 

e diagram would correspond to the clearance (transport or metabolism processes) in the model.  

he boxes in the diagram should correspond to one of the terms in 

the mas n of the 

hich 

h or hypothesis testing, the documentation need only include sufficient information about 

the model so that an experienced modeler can accurately reproduce its structure and 

parameterization.  Usually this documentation would include a combina

ow” model diagrams together with any equations that cannot be unequivocally derived 

from the diagrams.  For simple models, a well-constructed model diagram, together with a table

of the input parameter values and their definitions, may be all that an accomplished m

would need to create the mathematical equations defining a PBPK model.   

For models submitted in support of a risk assessment, the level of documentation is 

considerably greater.  These models will be subjected to internal and external peer review, a

their structure, supporting data, simulations, and use in the derivation of reference values must be 

completely transparent and reproducible.  In addition to graphical representations of the m

this level of documentation would likely include well-annotated and complete documentation of 

the model code, all data (fully referenced) that were used to calibrate and/or test the model, a 

description of the calibration and testing procedures used, fully referenced sources for all 

parameter values (or the optimization methods, results, and data used in optimizing parameters), 

sensitivity analysis or other rationale that guided the choice of which parameters were optim

simulation run conditions, any additional analyses that help characterize or support the quality of

the model, and all supporting documentation that would be needed by an experienced mo

run the model and accurately reproduce any simulations used (or submitted for use) in deriving 

reference values.  

The model diagram sh

partment or process represented by each box and arrow.  All tissue compartments, 

metabolism pathways, routes of exposure, and routes of elimination must be clearly and 

accurately presented.  The model diagram should also clearly differentiate blood flow from ot

transport (e.g., biliary excretion) or metabolism, and arrows should be used where the direction

of transport could be ambiguous.   

In general, there would be a one-to-one correspondence of the boxes in the diagram to th

mass balance equatio

th

Each of the arrows connecting t

s balance equations for both of the compartments it connects, with the directio

arrow pointing from the compartment in which the term is negative to the compartment in w
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it is positive.  Arrows connected only to a single compartment, which represent uptake and 

excretion processes, are interpreted similarly.   

Interpretation of the model diagram is supplemented by the definition of the model input 

parameters in the corresponding table.  The definition and units of the parameters can indicate 

the nature of the process being modeled (e.g., diffusion-limited vs. flow-limited transport, 

binding vs. partitioning, saturable vs. first-order metabolism).  The values used for all model 

parameters are to be provided, with units.  If any of the listed parameter values are based on 

allomet

 

tion 

 estimation, (2) calculation of dose metrics for critical studies (e.g., animal 

toxicol

 

 values 

 

puter implementation and the situation they are 

modeli

 

ric scaling, the scaling method should be fully described with body weights used to 

obtain the allometric constant and the power of body weight used in the scaling.  Any equations

included to supplement the diagram should be dimensionally consistent and in a standard 

mathematical notation.   

Model documentation plays a critical role in effective transfer of complex biological 

models between model developers and potential users, particularly those who will evaluate the 

model and implement it in risk assessment applications.  Approaches for model documenta

are still evolving, but adequate documentation is essential to the transparency and reproducibility 

of risk assessments.  One approach that can be implemented in many modeling programs that 

have scripting capabilities is to create computer code that reproduces all the key results, although 

not necessarily the full procedure to obtain these results (e.g., optimization, Monte Carlo 

analysis, etc., which sometimes involve multiple software).  The key results are (1) fits to data 

used for parameter

ogy or occupational epidemiological studies) to be used in developing dose-response 

values (e.g., RfC, RfD, CSF, or unit risk), and (3) calculation of human dose metrics used in

developing dose-response values.  Such scripts help to quickly recreate critical numerical

used in the risk assessment and facilitate working with a new model for evaluation or application 

in risk assessment.  However, that also means that these scripts need to be evaluated carefully to

ensure that they are correct in terms of the com

ng.  Finally, if model development and implementation in risk assessment are carried out 

by different people, not all of these scripts would be expected upon completion of model 

development; others would be created during its application in the risk assessment. 

PBPK models intended for use in risk assessment should be evaluated to ensure that they 

provide simulations of pharmacokinetic profiles consistent with the experimental data and that

the parameters (point estimates, range of values, or distributions) are appropriate for the 
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intended application.  Scripts facilitate transparency and reproducibility in modeling by 

recreating fits to kinetic data, estimation of dose metrics in critical studies, and calculation of 

human 

ys 

e both 

ation behaviors, which appear qualitatively different, using the same 

parame

e 

e 

a 

nput 

functio

ity 

dose metrics for development of dose-response values (e.g., RfD, CSFs). 

 

3.7.  SENSITIVITY, VARIABILITY, AND UNCERTAINTY ANALYSES 

In models of biological systems, estimates of the values of model parameters will alwa

have some variance, due both to biological variation and experimental or model errors.  The 

interest in having a PBPK model that describes a variety of data with a consistent set of 

parameters prevents a model from providing an optimal fit to all sets of experimental data.  For 

example, a PBPK model of a compound with saturable metabolism is required to reproduc

the high and low concentr

ter values.  If one were independently fitting single curves with a model, different 

parameter values might provide better fits at each concentration, but they would be relatively 

uninformative for extrapolation. 

 Where only some aspects of the model can be evaluated, it is particularly important to 

assess the uncertainty associated with the aspects that are untested.  For example, a model of a 

chemical and its metabolites that is intended for use in cross-species extrapolation to humans 

would preferably be verified using data in different species, including humans, for both th

parent chemical and the metabolites.  If only parent chemical data are available in the human, th

correspondence of metabolite predictions with data in several animal species could be used as 

surrogate, but this deficiency needs to be carefully considered when applying the model to 

predict human metabolism.   

One of the values of biologically based modeling is the identification of specific data that 

would improve the quantitative prediction of toxicity in humans from animal experiments.  The 

variability, uncertainty, and sensitivity of parameters constituting the PBPK models can also be 

evaluated, which is desirable for models that are used to derive dose-response values.   

 

3.7.1.  Sensitivity Analysis 

Sensitivity analysis provides a quantitative evaluation of how parameters in i

ns influence the dose metric or outcome.  Such an analysis provides insight into how each 

parameter influences estimates of the dose metric and the subsequent dose-response value, and 

which parameter(s) have the greatest impact on the dose-response value estimate.  Sensitiv
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analysis facilitates a focused use of resources for more detailed analysis and for further da

gathering to reduce uncertainty and to better characterize pharmacokinetic variability (Clewell 

al., 1994; Bois et al., 1991; Hetrick et al., 1991).  

ta 

et 

ensitivity analysis for PBPK models typically compares the magnitude of change in 

ges in one 

parame

.g., 

ios 

l 

% 

 

S

output for a defined change in each input parameter.  This process of single chan

ter while all others are held constant is called “local” parameter sensitivity analysis.  This 

analysis yields sensitivity ratios that correspond to the ratio of change in simulation output (e

tissue dose) to change in parameter value.  Figure 3-3 depicts hypothetical sensitivity rat

associated with some input parameters of a PBPK model.  The greater the absolute value of the 

sensitivity ratio, the more important the parameter.  In this example, the sensitivity ratio for 

breathing rate is the highest of all input parameters, indicating that it is the most sensitive mode

parameter for the dose metric.  The sensitivity ratio of 2 for breathing rate signifies that a 1

change in the numerical value of this parameter will result in a 2% change in the dose metric.  
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Figure 3-3.  Sensitivity ratios associated with certain input parameters of a 
hypothetical PBPK model. 

m
e ai
r

ng ax

 ratios greater than 1 (in absolute value) are of concern because this 

results lood 

 

 
 
In practice, sensitivity

in the amplification of input error (Allen et al., 1996).  It is critical that fractional b

flows sum to cardiac output when they are varied in sensitivity analyses or else mass balance will 

be violated and normalized sensitivity ratios much larger than 1 may be obtained for blood flow

parameters. 
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There are several caveats when conducting local parameter sensitivity analyses (such 

described above).  One is that they only show the sensitivity of the model predictions to a change 

in the single parameter when all other parameters

as 

 are held constant.  For example, consider the 

sensitiv

 

h 

 

 is 

fit is ve  sensitive to the intercept by showing that if the intercept is changed while holding the 

slope constant (i.e., standard sensitivity analysis), the value of the line equation changes a lot.  

But if one had started with a larger value of the intercept at the beginning of the modeling 

process, fitting the line to the data would have resulted in a lower value for the slope, such that 

the value of the line equation would not change as much as when only the intercept is increased.  

In short, the parameter estimation process leads to certain correlations between the values of 

parameters that are fixed as inputs and those that are fitted.  Thus, standard sensitivity analysis, 

although very informative about the importance of individual parameters, can overestimate the 

actual impact of changes in individual parameters because it does not account for correlations. 

In the case of Figure 3-3, it might be that starting with a different breathing rate and then 

calibrating Vmax, etc., would have yielded almost identical values for the dose metric and that the 

overall modeling process is insensitive to breathing rate, even though the model predictions are 

sensitive to changes in breathing rate when none 

example would be that blood concentrations can be highly sensitive to oral absorption rate 

constan

, if all the data were obtained at doses where metabolism was saturated, then the 

ity to breathing rate depicted in Figure 3-3.  What would have happened if one had 

known, before starting the modeling process, that the breathing rate was 20% higher than the

default value actually used?  Would the predicted dose metric have then turned out to be 40% 

higher?  Only if none of the other parameters were calibrated to the model data during the 

modeling process.  If in each case (default breathing rate vs. 20% higher) one had started wit

that value of the breathing rate and then calibrated the Vmax and other parameters to the data, the

result would be different values of Vmax, etc., that would compensate to some extent for the 

change in breathing rate.   

As a simple analogy, consider the fit of a straight line to some data, where the intercept

a “known” parameter and the slope is fitted.  After fitting the line, one might determine that the 

ry

of the other parameters are changed.  Another 

ts until steady state is achieved; if the risk assessment is estimating steady-state 

concentrations in humans, estimates of the oral absorption rate constants may be essentially 

irrelevant.  On the other hand, depending on the data at hand, “local” sensitivity analyses may 

underestimate the impact of changing individual parameters due to the nonlinearity of the model.  

For instance
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model f

s 

dividuals may have in a population and the impact of that variability 

on vari

p 

s 

 

 

this inf

meter to 

rlo 

it will be insensitive to the “Km” over a wide range of values, but for making low-dose 

predictions, the Km may be a very sensitive parameter.  Thus, it is important to carry out 

sensitivity analyses under conditions reflecting the studies providing data for model calibration 

(i.e., pharmacokinetic studies), under conditions appropriate for estimating dose metrics in 

critical studies, and finally under conditions appropriate to the risk assessment.  These analyse

help identify the key parameters under the conditions relevant for the various steps in a 

dosimetry-based risk assessment.   

 

3.7.2.  Variability Analysis 

The focus of a variability analysis is to evaluate the range of values that a parameter 

expected to be present in in

ability in the dose metric.  PBPK models can account for interindividual differences in 

specific parameters (e.g., enzyme levels, tissue volumes, body weights, workload) and simulate 

tissue dose variability in populations (Dankovic and Bailer, 1994; Sato et al., 1991).  

Alternatively, PBPK models can simulate an average individual representing a specific subgrou

of the population (e.g., adult women, pregnant women, lactating women, children), and thu

evaluate subgroup-specific tissue dose (Corley et al., 2003; Gentry et al., 2003; Price et al., 

2003b; Sarangapani et al., 2003; Krishnan and Andersen, 1998; Fisher et al., 1997), although this 

latter approach would not provide the probability or likelihood of a particular output for a 

population.   

The magnitude of interindividual variability can be characterized using information such

as the estimated tissue dose corresponding to the 95th percentile and 50th percentile.  To derive

ormation, Monte Carlo simulations based on distributions of input parameters 

(physiological parameters, enzyme content/activity with or without the consideration of 

polymorphism) have frequently been used (Lipscomb et al., 2003; Gentry et al., 2002; Haber et 

al., 2002; Lipscomb and Kedderis, 2002; Timchalk et al., 2002; Bogaards et al., 2001; El-Masri 

et al., 1999; Thomas et al., 1996a, b).  The Monte Carlo method consists of repeated 

computations using inputs selected at random from statistical distributions for each para

generate a statistical distribution for the output, i.e., dose metric (Figure 3-4).  The Monte Ca

approach to variability analysis has been used to evaluate the net impact of the variability of 

critical biochemical and physiological parameters (e.g., Clewell and Andersen, 1996; Portier and 

Kaplan, 1989).  
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Figure 3-4.  Monte Carlo simulation.  In this approach, the distribution of 
internal concentration versus time is simulated by repeatedly (often as many as 
10,000 iterations) sampling input values based on the distributions of individual 
parameters in a population. 

 

 

When conducting variability analysis, it is important to identify correlations in model 

parameters.  For example, cardiac output (QC) and breathing rate (QA) are expected to vary i

proportion to each other, so using independent distributions that might give a very high value of 

Q

n 

er the 

f QC and the distribution of the fAC = QA/QC and multiply the value selected from 

the fAC 

y analyses 

nowledge 

nd 

se analyses to account for biologically supported correlations among 

C with a very low value of QA would be unrealistic.  On the other hand, one could consid

distributions o

distribution by the value selected from the QC distribution to obtain the value of QA to be 

used. 

Conceptually, the Bayesian framework is particularly well suited for variabilit

because it allows a “hierarchical” structure in which parameters can be specified at the 

“population” (e.g., mean and variance, with uncertainty) and “individual” (i.e., drawn from the 

population) levels (Jonsson and Johanson, 2002, 2001), thereby conducting a simultaneous 

analysis of variability and uncertainty.  Moreover, Bayesian analyses combine prior k

about parameters and their variability and uncertainty with data from new experimental studies 

generating “posterior” distributions of the parameters for both the population and individuals 

(along with uncertainty) that reflect both preexisting knowledge and the new data (Bernillon a

Bois, 2000; Johanson et al., 1999; Bois, 1999).  However, care also must be taken in 

implementing the
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parameters, which is as important for Bayesian analyses as it is for “traditional” Monte Carlo 

simulation.  In addition, because the posteriors from Bayesian analyses are calibrated to a 

particular data set, care must be taken when deciding when and how the posterior distributions 

for the PBPK parameters are used to make predictions.  Consideration must be given as to 

whether the subject populations in the data sets represent the population(s) of interest.  For 

example, data from subjects in a controlled human exposure may be only representative of a 

population at rest.  Although the Bayesian analysis may correctly estimate a relatively low 

ventilation rate for this group, that ventilation rate may not be appropriate for the activity level in 

the general population.  Thus, one must chose data sets and parameter values carefully to reflect 

the population of interest in the risk assessment.  In the above example, an additional traditional 

Monte ould be 

replace    

sessment 

applications.  The assessment of the impact of parameter variability on tissue dose, however, is a 

prerequ or a PBPK model intended for use in estimating the interindividual variability 

(pharm

 

ainty in the predicted dose metric, particularly for low-dose exposure situations (Hattis et 

al., 199

ates 

lity 

ed 

od, or a 

is 

Carlo simulation could be performed in which some posterior distributions w

d with distributions considered more representative of the population of interest.

A variability analysis for a PBPK model is not a prerequisite for its use in risk as

isite f

acokinetic component). 

 

3.7.3.  Uncertainty Analysis 

Uncertainty analysis for PBPK models characterizes the impact that a lack of precise 

knowledge about the numerical value of a parameter or model structure itself has on estimates of

the dose metric.  Uncertainty regarding model structure or parameter values may contribute to 

uncert

0).  Uncertainty analysis is particularly useful when a PBPK model does not adequately 

simulate the experimental data.  Such a situation may arise due to either lack of precise estim

of parameter values or inadequacies in the model structure.  In such cases, either a quantitative 

uncertainty analysis or model-directed mechanistic studies might improve the predictive abi

and robustness of the PBPK model (Haddad et al., 1998; Clewell and Andersen, 1987). 

Quantitative uncertainty analyses for specific dose metrics (e.g., amount metabolized, 

tissue concentration of parent chemical at a specific time, cancer estimates) have been conduct

using a traditional Monte Carlo approach, a Bayesian MCMC analysis (Elder, 1999; Gelman et 

al., 1996; Krewski et al., 1995; Farrar et al., 1989), a stochastic response surface meth

fuzzy simulation approach (Nestorov, 2001; Isukapalli et al., 1998).  The latter method 
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particularly useful when statistical distributions of parameters cannot be reliably defined and 

only semiquantitative, qualitative, and vague information is available.   

If there is a lack of confidence regarding the numerical value of a parameter (e.g., 

imprecision due to the method used for parameter estimation), a quantitative analysis of the

uncertainty associated with a parameter(s) of the PBPK model will help characterize the impact 

on the dose metric of interest.  Uncertainty analysis will be of limited utility if the available d

directly inform the dose metrics of interest, such as the case where a model adequately fits 

multiple data sets that directly measure the relevant internal dose following exposure by the 

routes and in species of interest.  However, even predictions from such “well-calibrated” models 

may benefit from uncertainty analysis, particularly if the dose metrics of interest are indirectly 

inferred (e.g., total metabolism when only blood concentrations are measured).  In addition, 

where possible and relevant, uncertainty analysis can be performed to strengthen credibili

 

ata 

ty of 

the PBP

A, 

 Bayesian methods has been released, although active research 

and development are ongoing.  When using the Bayesian approach, care should be taken to 

 model simulations respect the following basic conditions: 

put) 

t 

K model and guide resource allocation for risk assessment-oriented research.  

Sensitivity, uncertainty, and variability analyses should be conducted using acceptable 

statistical methods.  EPA has published guiding principles for Monte Carlo analysis (U.S. EP

1997), but no such guidance for

ensure that the resulting PBPK

• The numerical values of physiological parameters (representing prior or posterior 
distributions) are within known, plausible limits; 

• The sum of tissue volumes is lower than the body weight; 

• The sum of tissue blood flows is equal to cardiac output; 

• The mass balance is respected (chemical absorbed = chemical in body + chemical 
eliminated); and 

• The covariant nature of the parameters is appropriately respected (e.g., the person 
with lowest breathing rate cannot be the one receiving the highest cardiac out

 

While taking advantage of the sophisticated statistical approaches, it is important to 

ensure that the resulting model and parameters are within plausible range or representative of the 

reality. 

Sensitivity, uncertainty, and variability analyses can help improve the credibility of 

PBPK models as well as prioritize research needs to improve the model for risk assessmen
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applications.  However, such analyses may not be required for all PBPK models intended for 

risk assessment applications. 

 

3.8.  DEVELOPING PBPK MODELS FOR USE IN RISK ASSESSMENT: 
STRATEGIES FOR DEALING WITH DATA-POOR SITUATIONS 

3.8.1.  Minimal Data Needs for Constructing PBPK Models 

When an adequately evaluated PBPK model is not available for the species, life stag

and route relevant to a risk assessment application, significant resources may be needed to 

develop such a model, depending on the chemical, the availability of prior information, and the 

complexity of disposition mechanisms being modeled.  The minimal data required for 

developing such models for a chemical in any given species are 

 

• Partition coefficients, 

e, 

y be 

ld be 

limited to the domain of validity and the families of chemicals for which such algorithms have 

been de l

association constants may be obt  Other biochemical parameters 

may be q determined from in vivo 

data.  A i ate of oral absorption and 

the skin perm

respectively, prior to achieving steady state.  Of these, the skin permeability coefficient can be 

obtaine n 

parameters s.  

Finally, some in vivo pharmacokinetic data (at a minimum blood concentration time-course data 

at two d

inimal data set identified above should be available for the species used in the 

critical cific 

• Biochemical constants, 
• Route-specific absorption parameters, and  
• In vivo pharmacokinetic data for model evaluation.  
 

As outlined in this chapter, the partition coefficients required for PBPK modeling ma

estimated using the theoretical algorithms found in the literature.  Their use, however, shou

ve oped and validated.  Biochemical constants such as metabolism rates or binding 

ained using in vitro systems. 

 re uired, such as renal clearance, which currently can only be 

dd tionally, route-specific absorption parameters such as the r

eability constant are required to describe oral absorption and dermal absorption, 

d using available quantitative structure-activity relationships (QSARs).  Such absorptio

 are not required for simulating intravenous administration and inhalation exposure

ose levels) are required for evaluating the PBPK model for a particular route of 

exposure.  

The m

 study.  Human models, however, may be constructed with knowledge of species-spe
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blood solubility/binding characteristics.  Other model parameters, including metabolism rates, 

may be either scaled or kept species-invariant, according to the current state of knowledge 

(Section 4.5).  Of course, the availability of a data set for external evaluation in humans may be a 

on purposes.   

trapolations 

nty to 

 vivo 

ship between in vitro human 

and in vitro test species findings; these data are used to predict the in vivo effects in humans. 

Accord  cannot be collected or is not available for a chemical of 

interes  r which such data are available.  Jarabek 

et al. (1 4 ment and interspecies 

extrapolation of the pharmacokinetics of HCFC-123 (2,2-dichloro-1,1,1-trifluoroethane).  In this 

case, the authors developed rat 

  

ics 

e 

, 

 

OAEL 

ical is established, there would also have been internal systemic exposures to 

its meta in 

limiting factor.  In such cases, surrogate data sets may be used for model evaluati

 

3.8.2.  Surrogate Data for Interspecies and Interchemical Ex

In the absence of human data for model evaluation purposes, surrogate data have been 

used successfully, although it must be noted that surrogate data may add additional uncertai

a risk assessment.  A parallelogram approach can be used to generate surrogate data.  This 

approach uses two data sets:  one demonstrating the relationship between in vitro and in

findings in a test species, and the other demonstrating the relation

ingly, if human data either

t, it may suffice to evaluate a related chemical fo

99 ) used this parallelogram approach for model develop

PBPK models for HCFC-123 as well as a structural analog 

(halothane) by estimating partition coefficients and metabolic constants.  Following the 

evaluation of the rat PBPK model for each of these chemicals, human models were constructed.

The adequacy of the human model for halothane was evaluated using available human in vivo 

data; the model for HCFC-123 was assumed to reasonably simulate the in vivo pharmacokinet

in humans due to the structural and metabolic similarities between the two chemicals, despite th

absence of in vivo human HCFC-123 pharmacokinetic data (Williams et al., 1996; Jarabek et al., 

1994).  This is one practical way of getting around the lack of human data for model evaluation

particularly when external evaluation is intended.  

To deal with situations where there is a lack of data to determine PODs for closely related

chemicals, a family approach has been suggested.  This approach, proposed by Barton et al. 

(2000), is based on the principle that the acceptable concentrations for related chemicals, 

particularly metabolites, can be derived using data on the parent chemical.  Thus, if the N

for the parent chem

bolites.  By determining the external exposure levels for these compounds that result 

the same systemic exposure, the NOAELs for these compounds can be established.  The 
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determination of the internal dose and systemic exposures for the parent chemical and 

metabolites is accomplished using PBPK models, thus facilitating the derivation and 

establishment of the RfD/RfC with a poor database. 

QSAR approaches are also available for constructing inhalation PBPK models for 

volatile organic chemicals in the rat (Beliveau et al., 2003).  Accordingly, the contributions of 

ng, and H in 

benzen

l can 

 

oxic 

 

l limits.   

various molecular fragments (CH3, CH2, CH, C, C=C, H, Cl, Br, F, benzene ri

e ring) toward the parameters of PBPK models have been determined.  With the 

knowledge of the number of the fragments occurring in a given molecule, the partition 

coefficients and the metabolic constants can be obtained and a first-generation PBPK mode

be constructed.  This QSAR approach is useful to initially develop PBPK models for other 

chemicals, as long as the number and nature of fragments in the chemical do not differ from the

ones in the calibration set used in the study (Beliveau et al., 2003). 

 

3.9.  EVALUATION OF PBPK MODELS:  SUMMARY  

The basic criteria for evaluation of PBPK models intended for risk assessment 

applications, as outlined in Sections 3.1 through 3.7, are summarized below.  

• The PBPK model would predict the pharmacokinetics and tissue dose of the t
form of a chemical or a surrogate such as parent compound. 

• The structure of a PBPK model would contain the target organ or a surrogate tissue,
such as blood. 

• The equations chosen to describe ADME would be justified on the basis of known 
mechanisms of such processes for the chemical of interest or by analogy with other 
chemicals.   

• The tissue volumes, flow rates, and ventilation:perfusion ratios specified in the model 
would be within reasonable physiologica

• The power function frequently assumed for scaling of physiological flows on the 
basis of body weight ranges between 0.67 and 0.75 unless species- or individual-
specific data are available. 

• Maximal velocities of metabolism may also be scaled on the basis of body weight, 
typically raised to the 0.75 power, but measured values for specific enzymes in 
humans do not generally correlate with body weight, so the choice of whether and 
how to scale metabolism is at the discretion of the modeler. 
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• Partition coefficients required for PBPK models can be obtained from steady-state in 
vivo or in vitro data or theoretical algorithms in the application domain. 

• Biochemical parameters for PBPK models can be estimated using in vivo data or 
valid in vitro methods. 

• A PBPK model is frequently implemented using commercially available software 
requiring that the model code (but not the coding of integration algorithms) be 
checked.  If the modeler chooses to write his/her own program, then the 
appropriateness of the integration algorithm and integration interval should be 
justified.  The PBPK model code is checked for accuracy of units, mass balance, 
blood flow balance, and behavior at zero dose.   

• Evaluation of the PBPK model structure and parameters should be conducted to 
ensure that the model adequately predicts the pharmacokinetic behavior (i.e., bumps 
and valleys in the concentration vs. time plot) of the chemical and that the parameters 
(point estimates, range of values or distributions) consistently describe available data. 

• A model used in a risk assessment would be accompanied by sufficient 
documentation to support an independent evaluation and reconstruction of the model 
and simulation results.  Scripts facilitate transparency and reproducibility in modeling 
by providing computer code to recreate fits to kinetic data, estimation of dose metrics 
in critical studies, and calculation of human dose metrics for development of dose-
response values (e.g., RfD, CSFs).  A more rigorous verification that may be 
considered by the risk assessor is to independently re-code the model to ensure that 
the documentation is thorough and that there are no bugs in the code. 

• Sensitivity, variability, and uncertainty analyses can help improve the credibility of 
PBPK models by identifying the parameters that have the greatest impact on a model 
output.  In addition, these analyses are useful in prioritizing research needs to improve 
a model for risk assessment application.  Such analyses, however, may not be 
required for all PBPK models intended for risk assessment applications. 
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4.  APPLICATION OF PBPK MODELS IN RISK ASSESSMENT  

 

4.1.  CHOOSING PBPK MODELS APPROPRIATE FOR USE IN RISK ASSESSMENT 

PBPK models are most often used in risk assessments to simulate tissue and blood 

concentrations of a toxic moiety (parent chemical or metabolite) resulting from the dosing 

regimens in the animal toxicity or human studies that are the basis for deriving dose-response 

values (e.g., RfC, RfD, CSFs).  Specifically, the model would be able to simulate the dose 

metrics in the test species and/or in humans for the exposure route and exposure scenario of 

relevance.  For most applications in risk assessment, a PBPK model  

• Would have been developed or calibrated for the species and life stages of relevance 
to the risk assessment, 

• Would be structured and adequately parameterized to simulate uptake via routes 
associated with human exposures as well as the critical study chosen for the 
assessment,  

• Would be able to provide predictions of the time-course of concentration of the toxic 
moiety or appropriate surrogate (parent chemical or metabolite) in the target organ of 
interest or a suitable surrogate compartment, and 

• Must have been peer-reviewed and evaluated for its quality and predictive capability. 
 

Figure 4-1 depicts how the above criteria can be applied for selecting appropriate PBPK 

models.  Basically, a peer-reviewed PBPK model for the relevant species and life stage 

consisting of parameters for simulating relevant routes of exposure and potentially relevant dose 

metrics is appropriate for use in risk assessment. 

The first criterion, though appearing self-evident, is quite fundamental, because the 

models available in the literature sometimes were not parameterized for the specific species and 

life stage used in the critical toxicological study forming the basis of a risk assessment.  For 

example, PBPK models for volatile organic compounds may have been developed in rats, yet 

one of the critical studies in the assessment is in mice.  When the PBPK model has not been 

developed for the species or life stage used in a critical study, additional work may be needed to 

further elaborate the model. 

PBPK models chosen for risk assessment applications would be able to provide 

simulations of the tissue dose of the toxic moiety or an appropriate dose metric for exposure 

scenarios and routes associated with the critical study as well as human exposures.  Finally, 
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Is the PBPK 
model available 
for the test 

species and 
humans?

Are the 
parameters for 

simulating 
relevant routes 

available?

Does the model 
simulate dose 

metrics of relevance 
to risk assessment?

Has the model 
been evaluated and 

peer-reviewed?*

Undertake 
evaluation and   

peer review

Use in                      
risk assessment 

Experimental              
Data                          

Collection

Model 
Development

Yes

Yes

Yes

Yes

No

No

No

No
Start

 
Figure 4-1.  Flowchart for selecting PBPK models appropriate for use in risk 
assessment.  * In this context, the model should be evaluated as described in 
Chapter 3. 

the PBPK model for the relevant species and life stage and exposures corresponding to the 

critical study and risk assessment needs should be peer-reviewed; if it has not been, then efforts 

may be directed towards such a review (see Chapter 3).   
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Peer-reviewed PBPK models that facilitate the prediction of dose metrics for a chemical 

through relevant routes of exposure for the life stage and species used in critical studies are a 

prerequisite for their use in risk assessments.  Most risk assessment applications also require a 

model parameterized for humans if the critical studies were in animals. 

 

4.2.  EVALUATION OF DOSE METRICS FOR PBPK MODEL-BASED ASSESSMENTS 

When using PBPK models in risk assessment (RfD, RfC, and unit risk estimates), the 

basic data needed are 

1. POD and critical effect from one or more key studies,  

2. Peer-reviewed PBPK model for the relevant test species and humans, and 

3. Dose metric appropriate for the risk assessment and supported by the MOA (if 
known). 

 

The methods and challenges associated with the identification of critical effects and 

PODs for an assessment remain the same regardless of whether one uses PBPK models or not.  

The approaches for identifying PODs can be found elsewhere (U.S. EPA, 2005a, 1994).  The 

criteria and issues associated with the selection of PBPK models useful for risk assessment were 

considered in the previous section.  It is worth noting that although a human model is typically 

needed, route extrapolation and some other limited applications can be undertaken with only a 

model for the relevant test species.  The third data need noted above, i.e., the identification of the 

appropriate dose metric, is a key aspect determining the use of PBPK models in risk assessment.   

The dose metric, or the appropriate form of chemical most closely associated with the 

toxicity, varies from chemical to chemical, depending on the MOA and critical effect.  It has two 

basic properties:  the moiety and the measure thereof.  The dose metric for PBPK-based risk 

assessment is chosen following the identification of the potential toxic moiety and evaluation of 

the relationship with the endpoint of concern.  A useful framework for evaluating hypothesized 

MOAs ough 

the fram le to 

noncancer MOAs.  The framework provides useful discussion related to evaluating multiple 

 is included in Guidelines for Carcinogen Risk Assessment (U.S. EPA, 2005b).  Alth

ework specifically deals with carcinogens, the concepts are broadly applicab

MOAs (particularly over dose ranges) and for assessing relevance to humans.  Furthermore, 

available data on closely related chemicals may be used to infer the likely toxic moiety.  
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Similar

peak concentration has 

been related to some neurotoxic effects of solvents (e.g., MacDonald et al., 2002; Benignus et al., 

trichlor ns 

or tetrachlorodibenzodioxin, tissue concentrations of the chemical 

measured during a critical period of gestation have been reported to predict the intensity of 

develop genotoxic effects of benzene 

in mice 996).  

ly, the toxicity data for various exposure routes and modes of administration may be 

compared to infer the potential toxic moiety (IPCS, 2005).   

After the potential toxic moiety has been identified, the appropriate measure of tissue 

exposure to the toxic moiety can be selected (Figure 4-2).  For example, 

1998; Pierce et al., 1998; Bushnell, 1997), such as the correlation of concentration of 

oethylene at the time of testing with observed effects on behavioural and visual functio

(Boyes et al., 2000).  F

mental responses (Hurst et al., 2000).  The gender-specific 

 are related to differences in the rate of oxidative metabolism (Kenyon et al., 1

 

 

 
 

Figure 4-2.  Examples of measure of tissue exposure to toxic moiety for risk 
assessment applications. 
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For chronic effects of chemicals, the integrated concentration of the toxic form of 

chemical in target tissue over time (i.e., AUC), typically determined as the daily average, is often 

conside , 

rsen and 

 al., 

ly 

[Cmax] of the toxic moiety, duration and extent of receptor occupancy, macromolecular adduct 

formation, or depletion of glutathione) (Clewell et al., 2002a).  Table 4-1 lists the dose metrics 

used in a number of PBPK-based cancer and noncancer risk assessments described in the peer-

reviewed literature.  

 When the appropriate dose metric cannot readily be identified, evaluation of the 

relationship with the endpoint of concern can be undertaken with each of the dose metrics to 

identify the one that exhibits the best association (e.g., Andersen et al., 1987; Kirman et al., 

2000).  This becomes particularly important when there are limited or confusing data on the 

plausible MOA of the chemical.  At a minimum, the appropriate dose metric can be identified as 

the one that demonstrates a consistent relationship with positive and negative responses observed 

at various dose levels, routes, and scenarios in a given species.  In other words, the level of the 

dose metric would be lower for exposure conditions that elicit no effect and higher for conditions 

that elicit toxic responses, regardless of the route and exposure scenario (Clewell et al., 2002a).   

Where there is an inadequate basis for prioritizing one dose metric over another, some 

suggest using the most conservative one (the dose metric estimating the highest risk or lowest 

acceptable exposure level) to be health protective (Clewell et al., 2002a).  The use of appropriate 

dose metric can help to reconcile route and species differences in cancer responses, provided 

there are no pharmacodynamic differences.  There has been at least one instance in which PBPK 

model-derived dose measures could not reconcile rat and mouse kidney tumor data (Smith et al., 

1995), ic 

moiety. 

red a reasonable dose metric (Clewell et al., 2002a; Voisin et al., 1990; Andersen et al.

1987; Collins, 1987).  For carcinogens producing reactive intermediates, the amount of 

metabolite produced per unit time and the amount of metabolite in target tissue over a period of 

time (e.g., mg metabolite/L tissue during 24 hr) have been used as dose metrics (Ande

Dennison, 2001; Andersen et al., 1987).  For developmental effects, the dose surrogate is defined 

in the context of the window of exposure for a particular gestational event (e.g., Welsch et

1995).  Although the AUC and rate of metabolite formation figure among the most common

investigated dose metrics, other surrogates of tissue exposure may also be appropriate for risk 

assessment purposes, depending on the chemical and its MOA (e.g., maximal concentration 

indicating the significant role of factors other than the target tissue exposure to tox
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Table 4-1.  Dose metrics used in PBPK model-based cancer and noncancer 
risk assessments 

Chemical Endpoint Dose metric Reference 

Acrylonitrile Brain tumors Peak metabolite 
concentration in target 
tissue 

Kirman et al. (2000) 

Bromotrifluoromethane Cardiac sensitization Concentration of parent 
chemical at the end of 
exposure 

Vinegar and Jepson (1996) 

Butoxyethanol (2-) Forestomach lesions and 
tumors 

Concentration of 
butoxyethanol/ butoxy 
acetic acid in forestomach 

Poet  et al. (2003) 

Chloroform Liver cancer 
 
 

Amount of metabolites 
covalently bound to 
biological macromolecules 
L liver per day; % cell 
kill/day 

Reitz et al. (1990a) 

 Hepatic effects and 
kidney tumor 

Maximal rate of 
metabolism per unit kidney 
cortex volume 

Meek et al. (2002) 

Chloropentafluorobenzene Liver toxicity  AUC of parent chemical in Clewell and Jarnot (1994
liver 

) 

1,4-Dioxane Liver tumors Time-weighted average Leung and Paustenbach 
concentration in liver over 
lifetime 

(1990) 

  Liver AUC Reitz et al. (1990b) 
Ethyl acrylate Forestomach tumors Tissue-specific glutathione 

depletion 
Frederick et al. (1992) 

Ethylene glycol ethers Developmental toxicity Peak concentration and 
average daily AUC of the 
alkoxyacetic acid 
(metabolite) in blood 

Sweeney et al. (2001) 

Formaldehyde Cancer DNA-protein crosslinks Schlosser et al. (2003); 
Casanova et al. (1996)  

Heptafluoropropane Cardiac sensitization Concentration of parent 
chemical at the end of 
exposure 

Vinegar and Jepson (1996) 

Isopropanol Neurobehavioral effects Peak blood concentration Gentry et al. (2002) 
 Developmental/ 

reproductive effects 
AUC of isopropanol and 
its metabolite (acetone) 

Gentry et al. (2002) 

Methoxyacetic acid Developmental effects AUC of parent chemical 
(gestational day 11) 

Clarke et al. (1993, 1992) 

  Maximal concentration of 
parent chemical 
(gestational day 8) 

Welsch et al. (1995) 

Methyl chloroform Hepatic effects Area under the liver 
concentration vs. time 
curve 

Reitz et al. (1988a) 

Methyl mercury Neurological effects Fetal brain concentrations Gearhart et al. (1995) 
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Table 4-1.  Dose metrics used in PBPK model-based cancer and noncancer 
risk assessments (continued) 

Chemical Endpoint Dose metric Reference 

Methyl methacrylate 
e 

ssue 

, 
1999) 

Nasal lesions Amount 
metabolized/time/volum
nasal ti

Andersen et al. (2002

Methylene chloride Cancer Rate of glutathione 
transferase metabolites 
produced/L liver/time 

Andersen et al. (1987) 

Styrene Lung tumors (mouse) Steady-state conce
of ring oxidation 
metabolite mediated by 

ntration ) 

CYP2F 

Cruzen et al. (2002

Tetrachlorodibenzodioxin iochemical responses Kim et al. (2002) B Body burden 
 ancer risk Andersen  et al. (1993)  C Time-weighted receptor 

occupancy 
  regulation of 

y 
Portier et al. (1993) Up/down 

receptor occupanc
 Conolly and Andersen 

(1997) 
 Fraction of cells induced 

Toluene Behavioral effects 
f testing 

Brain concentrations at the 
time o

Van Asperen et al. (2003) 

Trichloroethylene  ) Renal toxicity Metabolite production/L 
kidney/day 

Barton and Clewell (2000

 Neurotoxicity ncentration of Barton and Clewell (2000) Blood co
metabolite 
(trichloroethanol) 

 Cancer (liver lung and 
C 

dichlorovinylcysteine in 

Clewell et al. (2000); 
)  kidney) 

Amount 
metabolized/kg/day; AU
for trichloroacetic acid or 
dichloroacetic acid/L 
plasma; production of 
thioacetylating 
intermediate from 

kidney 

Fisher and Allen (1993

Vinyl acetate Olfactory degeneration 
and tumor development 

 
 with the 

Bogdanffy et al. (2001, 
1999) 

Intracellular pH change
associated
production of acetic acid; 
proton concentration in 
olfactory tissue 

Vinyl chloride Angiosarcoma mg metabolized/L liver;  Clewell et al. (2001);  
  ed/L Reitz et al. (1996b) mg metabolite produc

liver/day 
AUC = area under the curve 

 

An important consideration in risk assessm onducted with a PBPK model is that the 

critical study (i.e., the study upon which the RfC, RfD, or CSF is based) cannot always be 

 

ents c
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selected e 

relation valent dose to the administered animal dose depends on 

the selected dose metric, which from one endpoint to another and with the nature of the 

 route o tion, vehicl ad c 

model is used to calculate the appropriate dose m ch of the endpoints of concern in 

each study (Barton and Clewell, 2000).  To calcul  the model parameters are 

ose for the specie dy, w  a

human study.  In the case of developmental studie essary to estimate parameters 

for a pregnant female or neonate rather than for an average adult, and physiological and 

s m epe he extent pos  use 

study-specific data on animal strain, body weights, age, and activity when selecting parameters 

odel.  The experimental parameters in th  to reproduce the exposure 

cenario performed in the study, and the model is rio

rize the animal exposure to the chemical ta

e often a tions regar  the

characterize the dose metric (Clewell et al., 2002a).  The choices made will depend on the dose 

metric(s) selected (e.g., peak vs. average), the nature of the chemical (e.g., volatile vs. 

ersistent), and the nature ent (acute vs. c, cancer

Frequently, an average da etric such as is

the average daily AUC is the same metric as the t ge concentration, differing 

by only a factor of 24 if the daily AUC was expre rs).  In general, the 

averaging period in the case of cancer is typically e, whereas the averaging 

period in the case of noncancer risk assessment is  considered to be the duration of the 

exposure or, perhaps, a c osu

For short-term exposures, the model must ate period, which 

etr  and the tim

 the period of exposure For short exposure, thi in e 

r exposures, for repeated exposure studies) to obtain dose 

metrics.  If the animals were held for a postexposure period before toxicity was evaluated, the 

odel must be run either until the end of the postexposure period or for a sufficient duration to 

ensure 

sts, 

 on the basis of administered dose or exposure concentration.  This is because th

ship of the HEC or human equi

may vary 

exposure (species, f administra e, duration, etc.).  Inste

etrics for ea

, the pharmacokineti

ate the dose metrics,

set to th s in the toxicity stu hether an experimental

s, it may be nec

nimal study or a 

biochemical parameter ay have to be time d ndent.  To t sible, it is best to

for the m e model are then set

s  run for a sufficient pe d of time to 

characte and, if necessary, its me bolites. 

There ar number of op ding the way in which  model can be run to 

p  of the risk assessm

ily dose m

chroni  vs. noncancer).  

 estimated (note that the average daily AUC 

ime-weighted avera

ssed in terms of hou

taken to be the lifetim

 usually

ritical window of exp re.  

be run for an appropri

ing of the medepends on the dose m ic being used asurement of toxicity in relation 

to .  s is easily done by runn g the model for th

total duration of the exposure (o

m

that the parent chemical or metabolite, depending on dose metric, has been completely 

cleared from the body.  On the other hand, if toxicological evaluations, e.g., neurological te
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were performed during or immediately at the end of the exposure period, then the dose me

might be determined at the time of evaluation.  The resulting dose metric obtained for the total 

duration of the exposure (including any postexposure period) may need to be divided by the 

number of days over which the experiment was conducted to derive the average daily value for 

an integrated measure such as AUC.   

The same approach (running the model for the total duration of the study) can be used to 

calculate dose metrics for longer-term exposures.  This approach would typically be necessa

for models that describe changes in physiology or biochemistry during different life stages (e.g.,

children, elderly).  An alternative approach, which is often attractive for modeling of chr

exposures with time-invariant model parameters, is to estimate the steady-state dose metric.   

There are two principal methods for calculating a steady-state estimate.  In the first, the 

model is run until steady state is reached and then the dose metric is calculated by subtraction.  

For example, in the case of a chronic oral or inhalation exposure conducted 5 days per w

model can be run consecutively for 1 week, 2 weeks, 3 weeks, and so on.  To calcul

tric 

ry 

 

onic 

eek, the 

ate the 

average

 For 

the 

d).  

stem is not linear.  Typically, it is 

sufficie t of 

 

e 

n 

 

 daily AUC for a given week, the value at the end of the previous week is subtracted 

from the value at the end of the current week and the result is divided by 7.  This process is 

repeated until the change in the dose metric from one week to the next is insignificant. 

continuous exposures, the comparison can be made on a daily basis rather than weekly.   

The other method for estimating the steady-state dose metric is to estimate it from a 

single-day exposure.  The model is run for a single-day exposure plus an adequate postexposure 

period to capture clearance of the parent compound or relevant metabolite.  This value of 

single-day dose metric is then modified by the necessary factors to obtain an average daily value 

(e.g., by multiplying by five-sevenths in the case of the 5-day-per-week exposure just describe

This method is faster, but is only approximate if the sy

ntly accurate for estimating average daily AUC when exposures are below the onse

any nonlinearities.  It can be checked against the first method described to determine its accuracy

in a particular case. 

The dose metric calculations needed are determined by the method to be used for th

noncancer or cancer analysis.  If the NOAEL/uncertainty factor (UF) method is being used in a

assessment, a dose metric needs to be calculated only for the NOAEL or LOAEL exposure for a

particular study and endpoint.  On the other hand, if dose-response modeling is going to be 

performed, such as in the BMD approach, dose metrics generally would be calculated for all 
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exposure groups.  The dose metrics are then used in the dose-response model in place of the 

usual exposure concentrations or administered doses.  It is important to remember that when thi

is done, the result of the dose-response modeling will also be in terms of a value of the dose 

metric rather than an exposure concentration or administered dose.  Dose-response modeling is 

more properly conducted on the dose m

s 

etrics because it is expected that the observed effects of a 

chemic  

g 

e 

case of

 

icity 

alf-

ng 

is 

 dose 

metric,  

ng the 

 

 exposure in the animal toxicity study.  When a steady-state dose metric is 

used in

 

al will be more simply and directly related to a measure of target tissue exposure than to a

measure of administered dose.   

To convert an animal dose metric (e.g., at the BMD) to an equivalent exposure 

concentration or administered dose, the pharmacokinetic model must be run repeatedly, varyin

the exposure concentration or administered dose, until the dose metric value is obtained.  In th

 calculating the acceptable human exposure corresponding to a given toxicity study, the 

physiological, biochemical, and exposure parameters in the model are set to appropriate human 

values and the model is iterated until the dose metric obtained for the human exposure of concern

(often continuous or daily lifetime exposure) is equal to the dose metric obtained for the tox

study.  One effective way to do this is to run the model at regular dose intervals (e.g., log or h

log) over a wide dose range.  These results can be used to generate a regression line describi

the relationship between the internal dose metric and the exposure dose or concentration.  Th

regression line can be used to accurately estimate the exposure giving a particular internal

 as can be confirmed by running the model for that exposure.  Plotting the relationship

between exposure and the internal dose metric is also valuable because it demonstrates where 

nonlinearities occur.   

The human dose metrics used for deriving dose-response values can be calculated in an 

analogous way to the dose metric for the toxicity study; i.e., if the dose metric in the toxicity 

study was expressed in terms of an average daily value, the dose metric used for calculati

associated human exposure should also represent an average daily value.  However, it should be

remembered that the exposure scenarios may be different, e.g., continuous human inhalation in 

contrast to a 6-hr/day

 both an experimental animal and the human, the calculation of a steady-state dose metric 

in the human generally requires running the model for a much longer period of time than in the 

animal.  For short-term exposures, where the model has been run for the total duration of the 

toxicity study and the average dose metric value has been calculated, the dose metric used to

calculate associated human exposure is usually obtained for an exposure over the same time 
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period.  An exception to this rule is the case where it is anticipated that the short-term exposu

of concern for the human may represent a short-term excursion against a background of chronic 

exposure.  In this case, a more conservative approach may be preferred, in which a steady-sta

dose metric calculation is used for the human.   

The following section describes applications of PBPK models in risk assessment.  These 

applications relate to high-dose to low-dose extrapolation, interspecies extrapolation, estimating 

intraspecies variability, route-to-

re 

te 

route extrapolation, and duration extrapolation as required for 

RfD de

 
4.3.1.  Interspecies Extrapolation 

rivation, RfC derivation, and cancer risk assessment. 

 
4.3.  REVIEW OF EXTRAPOLATIONS POSSIBLE WITH PBPK MODELS 

Risk assessment applications typically require that extrapolations be made from the 

critical studies (i.e., animal toxicology or human epidemiology studies) to the human exposure 

situation.  These extrapolations of the critical studies are the focus of pharmacokinetic modeling.  

To a significant extent, the models utilize in vitro or in vivo data to enable the model to address 

these extrapolations (e.g., characterize pharmacokinetics at high and low doses, parameterize 

models for test species and humans).  To a more limited degree, extrapolations are made in the 

course of model development, most typically due to limitations on available data for humans, 

such that it is assumed parameters scale in some manner from animals to humans.  As 

pharmacokinetic modeling strives to become increasingly predictive in nature, it is likely that 

predictive tools (e.g., methods to predict partition coefficients) will play larger roles in model 

development. 

The application of PBPK models for interspecies extrapolation of tissue dosimetry is 

performed in several steps.  First, a model for the appropriate species in potential critical toxicity 

studies is developed. Increasingly, a priori predictions of the PBPK model are compared with 

experimental observations to evaluate the adequacy of the structure and the parameter estimates 

of the rodent model.  This sometimes involves refining some or all of the parameters by allowing 

modeling software to estimate the best value for these parameters.  The next step involves using 

species-specific or allometrically scaled physiological parameters in the model and replacement 

of the chemical-specific parameters (e.g., metabolic rates, protein binding constants) with 

appropriate estimates for the species of interest (e.g., humans).  Thus, in this approach, the 
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qualitative determinants of pharmacokinetics are considered to be invariant among the various 

mammalian species.  Qualitative differences between species, if any, can also be factored into 

the existing structure of PBPK models (e.g., if different metabolic pathways existed among 

species) but, obviously, data describing these species differences are required. 

 

stant across species, whereas 

lood:air partition coefficients show some species-dependent variability.  Therefore, the 

 dividing the 

rodent  

e 

vivo 

 parallelogram approach may also be used to predict values for the human PBPK 

 constants obtained in vivo in rodents as well as in vitro 

using rodent and human tissue fractions (Lipscomb et al., 1998; Reitz et al., 1988b).  

Alternatively, for chem  

ical 

For conducting interspecies extrapolation of pharmacokinetic behavior of a chemical, 

quantitative estimates of model parameter values (i.e., partition coefficients, physiological 

parameters, and metabolic rate constants) in the second species are required.  The tissue:air 

partition coefficients of chemicals appear to be relatively con

b

tissue:blood partition coefficients for human PBPK models have been calculated by

tissue:air partition coefficients by the human blood:air partition values (Krishnan and

Andersen, 2001).  The tissue:air and blood:air partition coefficients for volatile organic 

chemicals may also be predicted using appropriate data on the content of lipids and water in 

human tissues and blood (Poulin and Krishnan, 1996a, b). 

Whereas the adult physiological parameters vary coherently across species, the kinetic 

constants for metabolizing enzymes do not necessarily follow any type of readily predictable 

pattern, making the interspecies extrapolation of xenobiotic metabolism difficult.  Therefore, th

metabolic rate constants for xenobiotics are best obtained in the species of interest.  In 

approaches for determining metabolic rate constants are not always feasible for application in 

humans.  The alternative is to obtain such data under in vitro conditions (e.g., Lipscomb et al., 

1998, 2003).  A

model on the basis of metabolic rate

icals exhibiting high affinity (low Km) for metabolizing enzymes, Vmax

has been scaled to the 0.75 power of body weight, keeping the Km species invariant.  This 

approach may be useful as a crude approximation, but it may be used only when other direct 

measurements of metabolic parameters are not available or feasible.  

An example of rat-human extrapolation of the kinetics of toluene using a PBPK model is 

presented in Figure 2-2 (Chapter 2).  Here the structure of the PBPK model developed in rats was 

kept unchanged, but the species-specific parameters were determined either by scaling or 

experimentally, as described above (Tardif et al., 1997).  The model was then able to predict 

accurately the kinetics of toluene in humans.  Whenever the human data for a particular chem
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are not available for evaluation purposes, a corollary approach permitting the use of human data

on similar chemicals may be attempted (Jarabek et al., 1994). 

There are some instances where PBPK models can be used for interspecies extrapola

of toxicity studies without the need of an animal PBPK model.  For example, an

 

tion 

 RfC for 

ethan  

PK 

ith 

e 

acokinetic component) for RfC and 

RfD de

n a 

puts 

ment 

f 

s 

hysiology, tissue 

compos

ell et 

 

m ol has been proposed (Starr and Festa, 2003) using a mice developmental toxicity study

(Rogers et al., 1993) where blood methanol levels were also reported.  By using the blood 

methanol level at the POD from the mice study, a previously published human methanol PB

model (Bouchard et al., 2001) was used to predict the inhalation concentration associated w

the same internal blood methanol level in humans.  This example highlights the advantag

afforded by toxicity studies that also include pharmacokinetic measurements.   

 

4.3.2.  Estimating Intraspecies Variability 

Intraspecies variability for the dose metric can be assessed using PBPK models to 

estimate the magnitude of interindividual variability (pharm

rivations.  For this purpose, population distributions of parameters, particularly those 

relating to physiology and metabolizing enzymes (i.e. genetic polymorphisms), are specified i

Monte Carlo approach, such that the PBPK model output corresponds to distributions of dose 

metric in a population.  Using the Monte Carlo approach, repeated computations based on in

selected at random from statistical distributions for each input parameter (e.g., physiological 

parameters, enzyme content/activity with or without the consideration of polymorphism) are 

conducted to provide a statistical distribution of the output, i.e., tissue dose.  Using the 

information on the dose metric corresponding to a high percentile (e.g., 95th) and the 50th 

percentile, the magnitude of interindividual variability can be computed for risk assess

purposes (Figure 4-3).   

Even though past efforts largely have characterized the impact of the distributions o

parameters in the adult population, variability analyses also need to address different life stage

(e.g., pregnancy, children, aged).  Generally, age-specific changes in p

ition, and metabolic activity (reviewed in O’Flaherty, 1994) can be incorporated into the 

same model structure used for adults (Corley et al., 2003).  Published examples of modeling 

different ages describe predictions for a range of chemicals with different properties (Clew

al., 2004, 2002b; Ginsberg et al., 2004; Sarangapani et al., 2003).  However, some life stages,

notably pregnancy and lactation, require different model structures (i.e., describing the mother 
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4.3.3.  Route-to-Route Extrapolation 

Figure 4-3.  Estimation of an interindividual variability.  In this example, 
interindividual variability describes the variation between the 50th (median) and 
95th percentile values of a dose metric simulated with a probabilistic PBPK 
model. 

 

and the offspring) (Corley et al., 2003; Gentry et al., 2003, 2002).  Characterization of populati

variability across ages and life stages as well as adult variability is an ongoing area of 

development.  PBPK models represent a powerful tool for quantitatively characterizing 

population pharmacokinetic variability for application to risk assessment.  For more informati

the reader is referred to Use of PBPK Models to Quantify the Impact of Human Age and

Interindividual Differences in Physiology and Biochemistry Pertinent to Risk (U.S. EPA, 20

 

There are two different approaches to route extrapolation involving PBPK models.  The 

first one is to use an animal model to extrapolate a POD for one route to a POD by another route 

on the basis of equivalent dose metric.  The second approach would involve the estimation of the 

human POD for one route from the available animal POD for another route on the basis of 

equivalent dose metric.   

 The extrapolation of the kinetic behavior of a chemical from one exposure route to 

another is performed by including appropriate equations to represent each exposure pathway.  
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For sim lating the intravenous administration of a chemical, a single input representing the dose 

administered to the animal can be included in the equation for mixed venous concentration.  Oral 

gavage of a chemical dissolved in a carrier solvent may be modeled by introducing a first-order 

or a zero-order uptake rate constant, and dermal absorption has been modeled by including a 

diffusion-limited compartment to represent skin as a portal of entry (Krishnan and Andersen, 

2001).  After the equations describing the route-specific entry of chemicals into systemic 

circulation are included in the model, it is possible to conduct extrapolations of pharmacokinetics 

and dose metrics.  This approach is illustrated in Figure 4-4 for oral-to-inhalation extrapolation 

of the kinetics of chloroform in rats.  For simulating the inhalation pharmacokinetics, the oral 

dose was set to zero, whereas for simulating chloroform kinetics following oral dosing the 

inhaled concentration was set to zero (Figure 4-4).  Accordingly, 4-hr inhalation exposure to 83.4 

ppm chloroform is equal to an oral dose of 1 mg/kg, as determined with PBPK models on the 

basis of equivalent dose m  (Figure 4-4).  Note that the 

peak co  the 

approp e same peak 

 be 

emical, 

odel and then the atmospheric concentration for a continuous exposure (during a day, window 

e AUC is determined by iterative simulation.  Figure  

4-5 depicts an example of 4-hr to 24-hr extrapolation of the pharmacokinetics of toluene in rats, 

based on equivalent 24-hr AUC (2.4 m

u

etric (i.e., parent chemical AUC in blood)

ncentrations differ by about 10-fold; thus, if peak concentration was thought to be

riate dose metric, higher inhalation exposures would be required to produce th

g/kg oral dose.   as a 1-m

 

4.3.4.  Duration Adjustment 

On the basis of equivalent dose metric, the duration-adjusted exposure values can

obtained with PBPK models (Simmons et al., 2005; Bruckner, 2004; Brodeur et al., 1990; 

Andersen et al., 1987).  For example, if the appropriate dose metric were the AUC of a ch

it would initially be determined for the exposure duration of the critical study using the PBPK 

m

of exposure, or lifetime) yielding the sam

g/L/hr).  The rats exposed to 50 ppm for 4 hr and 9.7 ppm 

for 24 hr of toluene would receive the same dose metric.  Again, it should be noted that 

extrapolations across long durations may not be warranted, as life stage changes and 

pharmacodynamic adaptations (e.g., sensitization and desensitization) may be operational 

(Clewell et al., 2002a).   
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Figure 4-4.  Oral-to-inhalation extrapolation of the pharmacokinetics of 
chloroform on the basis of same area under the curve in blood (7.06 
mg/L/hr).  The oral dose was 1 mg/kg and the inhaled concentration was 83.4 
ppm (4 hr).   

 
Source:  Adapted from Corley et al. (1990). 

 

 

4.3.5.  High-Dose to Low-Dose Extrapolation 

PBPK models facilitate high-dose to low-dose extrapolation of tissue dosimetry b

accounting for the dose-dependency of relevant processes (e.g., saturable metabolism

induction, enzyme inactivation, protein binding, and depletion of glutathione reserves) (Cle

and Andersen, 1987).  Th

y 

, enzyme 

well 

e description of metabolism in PBPK models has frequently included a 

capacity-limited metabolic process that becomes saturated at high doses.  Nonlinearity arising 

from mechanisms other than saturable metabolism, such as enzyme induction, enzyme 
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e exposures in rats, 
based on equivalent A  

 

activation, depletion of glutathione reserves, and binding to macromolecules, have also been 

escribed with PBPK models (e.g., Krishnan et al., 1992; Clewell and Andersen, 1987).  A 

-dose extrapolation needs equations and 

parame he 

 

Figure 4-5.  Duration adjustment (4 hr to 24 hr) of toluen
UC (2.4 mg/L/hr).  The rats were exposed to 50 ppm

toluene for 4 hr and 9.7 ppm for 24 hr.  

Source:  Adapted from Tardif et al. (1997). 
 

 

in

d

PBPK model intended for use in high-dose to low

ters describing dose-dependent phenomena if they occur in the range of interest for t

assessment.  Because the determinants of nonlinear behavior may not be identical across species

and age groups (e.g., maximal velocity for metabolism, glutathione concentrations), these 

parameters are required for each species/age group.  During the conduct of high-dose to low-
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dose extrapolation, no change in the parameters of the PBPK model is required except for the 

administered dose or exposure concentration. 

An example of high-dose to low-dose extrapolation is presented in Figure 4-6.  In this 

figure, both the blood AUC and the amount metabolized over a period of time (12 hr) are plotted 

as a function of exposure concentrations of toluene.  For conducting high-dose to low-dose 

simulation in this particular example, only the numerical value of the exposure concentration 

(which is an input parameter for the PBPK model) was changed during every model run.  All 

other model parameters remained the same.  The model simulations shown in Figure 4-6 indicate 

the nonlinear nature of blood AUC as well as the amount of toluene metabolized per unit time in 

the exposure concentration range simulated.  In such cases, the high-dose to low-dose 

extrapolation of tissue dosimetry should not be conducted assuming linearity but, rather, should 

be performed using tools such as the PBPK models. 

 

4.4.  ROLE OF PBPK MODELS IN REFERENCE CONCENTRATION AND 
REFERENCE DOSE DERIVATION 

4.4.1.  Reference Concentration 

The RfC corresponds to an estimate (with uncertainty spanning perhaps an order of 

magnitude) of continuous inhalation exposure (mg/m3) for a human population, including 

sensitiv uring a 

lifetime

 

where: 

i.e., 
nic-

f 

 

effect in a key study.  Subsequent steps involve (a) adjustment for the difference in duration 

between experimental exposure (e.g., 6 hr) and expected human exposure (24 hr), (b) calculation 

e subgroups, that is likely to be without an appreciable risk of deleterious effects d

 (U.S. EPA, 1994).  Notationally, RfC is defined as: 

 

RfC = POD[HEC]/UF 

POD[HEC] = POD (NOAEL, LOAEL, or BMC) dosimetrically adjusted to an HEC 
 
UF = uncertainty factors to account for the extrapolations associated with the POD (

interspecies differences in sensitivity, human intraspecies variability, subchro
to-chronic extrapolation, LOAEL-to-NOAEL extrapolation, and incompleteness o
database) 

 
 
The starting point for an RfC derivation is the identification of the POD for the critical
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of the HEC, and (c) application of uncertainty factors (UFs).  The benefit of using PBPK mode

in the RfC process is discussed below.  Specifi

ls 

cally, the role of PBPK models in determining the 

POD, duration adjustment factor, and HEC is presented in Sections 4.4.2 through 4.4.6.  It  

 

 
Figure 4-6.  High-dose to low-dose extrapolation of dose metrics using PBPK 

 
Sourc

 

should n 

-

model for toluene.  Inhalation exposures were for 4 hr, and areas under the curve 
and amount metabolized were calculated for 12 hr.  Note that there is a slight 
curve in the top graph around 125 ppm.  

e:  Adapted from Tardif et al. (1997). 
 

 be noted that although the various extrapolations were presented in a hierarchical fashio

earlier in this document (e.g., interspecies, intraspecies, route, duration, and high-dose to low
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dose), the order of extrapolations is changed in this section to more closely parallel the RfC and 

RfD derivation processes. 

 

4.4.2.  Reference Concentration:  Point of Departure 

It is important to realize that currently the POD for RfC derivation cannot be identified or 

established with only pharmacokinetic data or PBPK models in the absence of dose-response 

data.  Integrated pharmacokinetic-pharmacodynamic models (e.g., Timchalk et al., 2002; 

Gearhart et al., 1994, 1990) may be capable of predicting response and thus estimating a POD in 

the future, but this is a research effort that is not yet ready for risk assessment applications.  At 

present, PBPK modeling can be useful for conducting route-to-route extrapolation, duration 

adjustments, inter- and intraspecies extrapolations on the basis of equivalent delivered dose from 

PODs identified in toxicity, epidemiology, or clinical studies. 

 

4.4.3.  Reference Concentration:  Route-to-Route Extrapolation 

Typically, the POD used in the RfC process would be the inhalation route-specific 

NOAEL, LOAEL, or BMC.  These PODs essentially correspond to exposure concentrations in 

an experimental or field study (NOAEL, LOAEL) or to the lower confidence limit (95th 

percentile) of the exposure concentration (BMCL) associated with a specified response level 

(generally in the range of 1 to 10% above background; e.g., BMCL10%) derived from statistical 

analysis of experimental dose-response data (U.S. EPA, 2000a, 1994).   

When information on the POD is available only for a noninhalation route of exposure 

(e.g., oral route), route-to-route extrapolation can be conducted (Pauluhn, 2003).  Historically, 

the NOAEL (m s per 

day and nd 

body w  determine 

sis of equivalent absorbed doses (U.S. EPA, 

1999a) e that the rates of ADME and tissue 

dosimetry of chemicals are the same for a given total dose, regardless of the exposure route and 

intake rate.  These approaches essentially neglect the route-specific differences in 

 

liver for orally absorbed compounds or the lungs for inhaled compounds (Benet et al., 1996).  

g/kg/day) associated with an oral exposure route was converted to m

 then to the equivalent inhaled concentration on the basis of human breathing rate a

eight.  Data on the route-specific fraction absorbed, when available, are used to

illigram

the equivalent inhalation concentration on the ba

.  Such simplistic approaches, however, assum

pharmacokinetics, such as first-pass clearance.  First-pass clearance can arise when chemicals 

undergo extensive metabolism in tissues at portals of entry; this may include the intestines and
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Therefore, route-to-route extrapolation using a more complete pharmacokinetic modeling 

approach, such as PBPK modeling, is preferable, as described in Section 4.3.3. 

t 

 

t 

t, and k is a constant associated 

with that toxic effect.  The rule leads to the conclusion, for example, that doubling the 

ect level.  In 

pharma t is 

 

do not 

internal dose is 

uncerta

s 

tics 

determined 

 

4.4.4.  Reference Concentration:  Duration Adjustmen

An RfC addresses continuous exposure of human populations, so the POD used in its 

derivation should correspond to 24-hr/day exposures (U.S. EPA, 1994).  PODs are frequently 

obtained from animal exposures or occupational exposures that occur for 6 to 8 hr/day, 5 

days/wk, so an adjustment to a continuous 24-hr exposure, resulting in a lower concentration for 

continuous exposures, is conducted on the basis of hours per day and days per week (i.e., 6/24 ×

5/7) (U.S. EPA, 2002).  This simple adjustment assumes that “Haber’s Rule” applies, i.e., tha

for a given chemical  C × t = k,  where C and t are the concentration (mass per unit volume) and 

time needed (at that concentration) to produce some toxic effec

concentration will halve the time needed to produce a comparable eff

cokinetics, the integration of C × t over the exposure-response time frame of interes

also referred to as the AUC.  If the AUC is not the dose metric most associated with the adverse

effect (e.g., sometimes peak concentration is more critical) or various C × t = k regimens 

result in a comparable effect level, then “Haber’s Rule” is not applicable (U.S. EPA, 2002).  

When data indicate that a given toxicity is more dependent on concentration than on duration 

(time), this adjustment would not be used.  If the appropriate measure of 

in, the Agency uses adjustment to a continuous inhalation exposure based on the C × t 

relationship as a matter of health-protective policy (U.S. EPA, 2002).  For additional insights 

into “Haber’s Rule” (as one in a family of power functions) and its use in risk assessment, the 

reader is referred to Miller et al. (2000). 

PBPK models can be used to estimate the value of a proposed internal dose metric that 

would result from various administered doses (U.S. EPA, 2002; Jarabek, 1994).  PBPK model

do not address pharmacodynamic events and assume that these events do not alter the kine

for within-day exposures (<24 hr).  Consistent with the Agency’s policy (U.S. EPA, 2002), the 

dose metric of a chemical for the exposure scenario of the critical study is initially 

using the PBPK model (e.g., 6 hr/day, 5 days/wk); then the atmospheric concentration for a 
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continuous exposure (24 hr/day) during a lifetime or a particular window of exposure that y

the same dose metric is determined by iterative simulation.   

ields 

 

t Factor (Interspecies 
Extrapolation) 

toxicants) are used to estimate the DAF.  In the absence of such data, knowledge of critical 

lood 

n (e.g., 

 

d. 

o 

fic models to make interspecies extrapolations.  A 

variety  

 

 

account for metabolism of the more reactive gases, so PBPK modeling approaches would clearly 

4.4.5.  Reference Concentration:  Dosimetric Adjustmen

In the RfC process, a DAF is applied to the duration-adjusted POD to account for 

pharmacokinetic differences between test species and humans to derive an HEC (U.S. EPA, 

1994).  The DAF depends on the nature of the inhaled toxicant and the MOA as well as the 

endpoint (local effects vs. systemic effects).  Dosimetry data, if available, in the test animals and 

humans (including deposition data, region-specific dosimetry, blood concentration of systemic 

parameters or mathematical models in the test species and humans can be useful in estimating 

the DAF.   

For highly reactive or water-soluble gases that do not significantly accumulate in b

(e.g., hydrogen fluoride, chlorine, formaldehyde, volatile organic esters), the DAF is derived for 

estimates of the delivery of chemical to different regions of the respiratory tract, based on 

regional mass transfer coefficients and differences in surface area and ventilation rates (U.S. 

EPA, 1994).  For poorly water-soluble gases that cause remote effects (e.g., xylene, toluene, 

styrene), PBPK models are identified as the preferred approach.  Absent a PBPK model, the 

DAF is determined on the basis of the ratio of blood:air partition coefficients in animals and 

humans (U.S. EPA, 1994).  For gases that are water soluble with some blood accumulatio

acetone, ethyl acetate, ozone, sulfur dioxide, propanol, isoamyl alcohol) and have the potential

for both respiratory and remote effects, some combination of the above approaches may be use

An alternative to the use of DAFs, discussed in the RfC guidance (U.S. EPA, 1994) is t

employ more elaborate or chemical-speci

 of computational tools are available to determine the uptake and deposition of gases and

particulates in nasal pathways and the respiratory tract (U.S. EPA, 2004; Bogdanffy and 

Sarangapani, 2003; Hanna and Lou, 2001; Tran et al., 1999; Bush et al., 1998; Asgharian et al.,

1995; Jarabek, 1994; Kimbell et al., 1993).  PBPK models are frequently used for systemically 

distributed gases and vapors, but in conjunction with other models (e.g., CFD), they can be used

for locally acting gases with contact site effects.  A limitation of DAFs is that they do not 
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Box 4-1.  Role of PBPK models in the RfC process 

• Route-to-route extrapolation of the point of departure 
• Duration adjustment calculation 
• Dosimetric adjustment factor (i.e., interspecies) 
• Pharmacokinetic component of human variability

on exposure concentration associated with the same dose metric (2.5 mg/m

 

continue to be developed in the 

near future.  

addressed in 

PK 

t 

iated with the unadjusted NOAEL (217 mg/m3, 6 hr/day, 5 days/wk, 13 wks) in the 

rat was

ate 

0.1 

 

inhalati

0 for 

be preferable for these compounds if adequate data are available.  Further applications of PBPK 

models to the more reactive gases and agents are expected to 

Intraspecies extrapolations and the application of UFs in RfC derivation are 

Section 4.4.12. 

 

4.4.6.  Example of PBPK Model Use in Reference Concentration Derivation 

The RfC derivations for m-xylene and vinyl chloride exemplify the application of PB

models.  In the case of m-xylene, using the adjusted NOAEL of 39 mg/m3 as input to the rat 

PBPK model, the steady-state blood concentration was established (0.144 mg/L) (Tardif et al., 

1997).  The human model was then run to determine the exposure concentration yielding tha

same dose metric (HEC = 41 mg/m3) (U.S. EPA, 2003).  In an alternative approach, the dose 

metric assoc

 determined using the PBPK model (time-weighted average blood concentration = 0.198 

mg/L).  Then, the human PBPK model was used to determine the 24-hr exposure concentration 

that would produce this target dose metric (39 mg/m3).  Dividing this value by the appropri

UFs (3 for interspecies pharmacodynamic differences, 10 for interindividual variability, 3 for 

subchronic to chronic extrapolation, and 3 for database deficiency), the RfC was determined (

mg/m3). 

In the case of vinyl chloride, the RfC was derived from the NOAEL for the oral route 

(U.S. EPA, 2000b).  The PBPK model was initially used to derive the dose metric associated 

with the rat NOAEL (0.13 mg/kg/day).  Because systemic toxicity resulted in the same endpoint

regardless of exposure route, a human PBPK model was exercised to determine the continuous 
3) (Clewell et 

al., 1995).  Using a total UF of 30 (3 for toxicodynamic component of interspecies UF and 1

intraspecies variability), the RfC was established (0.1 mg/m3).  

If the available human PBPK 

model is probabilistic in nature, 

accounting for the population 

distribution of parameters 

(biochemical, physiological, and 

physicochemical), the magnitude of the interindividual variability can be estimated (Delic et al., 



2000).  In that case, the intraspecies uncertainty factor might be set to 3 (to account only for 

pharmacodynamic differences). The potential role of the PBPK model in the RfC process is 

summarized in Box 4-1.   

 

e Dose  

n RfD is an estimate (with uncertainty spanning perhaps an order of magnitude) of a 

ely to be 

withou

ntly, the UFs are applied as appropriate.  PBPK models are potentially useful in 

derivin .8 

 and POD for RfD derivation.  

There has been som opin

icity, hem to

et al., 19 a

rivation, partly e est 

ics) may offer the potential for generating 

4.4.7.  Referenc

A

daily exposure to the human population (including sensitive subgroups) that is lik

t an appreciable risk of deleterious effects during a lifetime (Dourson et al., 1992; Barnes 

and Dourson 1988).  It is expressed in units of milligrams per kilogram per day.  An RfD is 

calculated as follows: 

 

RfD = POD/UF 

where:   

POD = NOAEL, LOAEL, or BMD 

UF = uncertainty factors related to extrapolations associated with the POD (i.e., 
interspecies extrapolation, human variability, subchronic-to-chronic extrapolation, 
LOAEL-to-NOAEL extrapolation) or incompleteness of the database. 
 

An RfD derivation begins with the identification of the POD for the critical effect.  

Subseque

g the RfD by estimating the POD and extrapolation factors, as described in Sections 4.4

through 4.4.11. 

 

4.4.8.  Reference Dose:  Point of Departure 

As with RfC derivation, PBPK models are not able to establish a POD in the absence of 

experimental dose-response data.  Development of a BBDR model linked with a PBPK model 

could potentially improve the quantification of the dose-response

e success in devel

cholinesterase inhibition, cytotox

Gearhart et al., 1994, 1990; Reitz 

estimate PODs for RfD de

the models.  New technologies (e.g., toxicogenom

g BBDR models for simple adverse effects (e.g., 

a xicity) (Ashani and Pistinner, 2004; Cox, 1996; 

90 ), but these models are not routinely used to 

du  to limitations on data needed to calibrate and t
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needed data, and more integrated PBPK and BBDR models may be an attainable goal in the n

future. 

 

ear 

.4.9.  Reference Dose:  Route-to-Route Extrapolation and Duration Adjustment  

n generally uses an oral NOAEL, LOAEL, or BMD as the POD.  The 

oral rou e 

 

 

Extrapolation of inhalation data using simple assumptions about 

entilation rate, chemical concentration, and body weight will be inaccurate due to 

pharmacokinetic factors such

n in RfC derivation.  In addition, comparisons of oral PODs with dosimetry based 

route e  be valuable because the vehicle (e.g., corn oil) in 

oral ga

tions. 

For PO s been standard 

practic els 

nding 

.4.10.  Reference Dose:  Interspecies Extrapolation 

can be employed to account for pharmacokinetic 

differen . 

D 

al 

max

4

The RfD derivatio

te-specific NOAEL and LOAEL correspond to experimentally tested doses, whereas th

BMD is obtained from statistical modeling of dose-response data (U.S. EPA, 2000a).   

When an oral POD is unavailable, PBPK models can be useful in deriving such values on

the basis of results obtained for other dosing routes (e.g., inhalation, intravenous, dermal), as

previously described.  

v

 as first-pass clearance, discussed above for route-to-route 

extrapolatio

xtrapolation of inhalation results can

vage studies sometimes alters the toxicity response.   

As with RfCs, chronic RfDs are intended for continuous exposure of human popula

s derived from gavage studies, typically administered 5 days/wk, it haD

e to adjust for continuous exposure using a 5/7 adjustment. Alternatively, PBPK mod

can be used to model human 7-day/wk exposures and thus estimate a dose metric correspo

to a POD determined in experimental animal bioassays.  

 

4

As with RfC derivation, PBPK models 

ces between test species and humans and covert a POD to a human equivalent dose (U.S

EPA, 2002).  Estimation of human pharmacokinetic variability and the application of UFs in Rf

derivation are discussed in Section 4.4.12. 

 
4.4.11.  Example of PBPK Model Use in Reference Dose Derivation 

The RfD derivation for ethylene glycol monobutyl ether exemplifies the current approach 

of PBPK model application (U.S. EPA, 1999b).  In this case, the LOAEL identified in an anim

study (59 mg/kg/day) was provided as input to the PBPK model to determine the Cmax of the 

metabolite butoxy acetic acid in blood (BAA ) (Corley et al., 1997).  The dose metric 
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(BAAmax) associated with the LOAEL was established in the test species (103 μM).  The human 

PBPK model was then run to determine the exposure dose that would give the target dose metric 

(103 μM) (Corley et al., 1997).  The resulting human equivalent dose of 7.6 mg/kg/day was 

-to-

NOAE

r (U.S. 

EPA, 1

se 

as 

alculate the 

ility), 

 

compon

 toxic moiety of chemicals, address 

specific areas of uncertainty associated with derivation of the RfD, as shown in Box 4-2. 

4.4.12.

OAEL, for variability within the human population to 

rotect the most sensitive population (intraspecies variability, UFH), and for poor quality or 

bek, 1994).  The total of 

all UFs

n 

e 

divided by the appropriate UFs (30; 10 for interindividual differences and 3 for LOAEL

L extrapolation) to establish the RfD (0.3 mg/kg/day).  In this particular case, the 

interspecies pharmacodynamic factor was set to 1 because in vitro studies suggested that humans 

are less sensitive than rats to the hematologic effects of ethylene glycol monobutyl ethe

999b). 

When the BMD is available, a similar approach is used to establish the RfD.  In the ca

of ethylene glycol monobutyl ether, initially the dose metric associated with the BMD w

established (BAAmax = 64 μM) and then the human PBPK model was used to back-c

equivalent dose (5.1 mg/kg/day).  Using the appropriate UF (10 for interindividual variab

the RfD was derived (0.5 mg/kg/day) (U.S. EPA, 1999a).  If the human PBPK model accounted

for the population distribution of 

parameters, the pharmacokinetic 

ent of the interindividual variability 

could be addressed as illustrated in the 

dose-response analysis with methyl 

mercury (Clewell et al., 1999). PBPK 

models, by facilitating the simulation of tissue dose of the

Box 4-2.  Role

• Route-to-rout

 of PBPK models in the RfD process 

e extrapolation 
• Duration adjustment 
• Pharmacokinetic component of interspecies 

extrapolations 
• Pharmacokinetic component of human 

variability  

 

  Uncertainty Factors:  Role of PBPK Models 

The UFs and variability factors used in RfC and RfD derivation account for 

extrapolations from test animals to humans (interspecies, UFA), across duration of exposure 

(subchronic to chronic), from LOAEL to N

p

missing data in the database (database deficiency) (U.S. EPA, 1994; Jara

 generally should not exceed 3,000 (U.S. EPA, 2002).  If the NOAEL for a chemical with 

an adequate database has been identified in a chronic study, only the UFA and UFH are used in 

the assessment.  The conventional default value for UFA of 10 is used in RfC and RfD derivatio

as an approximation of cross-species scaling resulting in equivalent effects.  Similarly, th
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default value for UFH of 10 is presumed adequate to account for variability in the human kinetic 

and dynamic processes following exposure and to protect potentially sensitive human 

subpopulations.    

The values for UFA and UFH are based on empirical information for pharmacokinetic

and pharmacodynamics (e.g., isoenzyme levels, enzyme activity levels, tissue volumes, b

rates, cell proliferation rates) (Dorne et al., 2002, 2001a, b; Walton et al., 2001) and science 

policy and historical use.  Extrapolations across species or estimates of interindividual variabili

(e.g., differenc

s 

reathing 

ty 

es arising from genetic polymorphisms), however, are best done on the basis of 

chemic

f 

 PBPK or BBDR model. 

 go beyond de

d m 5; U.S. EPA, 

n’s Inte t CS) 

pment of c m AFs) 

 of using ch ific data in developing values for 

s 

y does 

not use CSAFs per se, due in part to differences in calculation methods. For instance, the Agency 

ic components of interspecies 

variabi  advocates 

 well 

 

ese 

al specific determinants of disposition and effects.  Initially, evaluation of specific 

determinants of interspecies differences or human variability is useful, but simple pooling o

these specific determinants without accounting for covariance or nonlinear interactions can lead 

to unrealistic estimates for either UFA or UFH (Lipscomb, 2004).  The net impact of various 

determinants on the UFA and UFH is more properly evaluated within the integrated and 

physiologically based context of a

When data are available to

subdivided into their toxicokinetic and toxico

2005b).  The World Health Organizatio

has produced guidance on the develo

(IPCS, 2005).  Although the principles

UFs has long been endorsed by EPA (e.g., U.S. EPA, 1994), and many of the guiding principle

in the IPCS document are also components of EPA’s risk assessment approach, the Agenc

fault uncertainty values, these UFs can be 

yna ic components (IPCS, 200

rna ional Programme on Chemical Safety (IP

he ical-specific adjustment factors (CS

emical-spec

often separates the pharmacokinetic and pharmacodynam

lity equally (i.e., 100.5 or 3.16, generally rounded to 3 each), whereas the IPCS

100.6 (4.0) and 100.4 (2.5), respectively (IPCS, 2005).  

When sufficient chemical-specific data are available for PBPK modeling, such models 

are useful for characterizing the magnitude of the pharmacokinetic component of the UFA as

as the UFH used in the RfC and RfD processes.  When using PBPK models to adjust for 

pharmacokinetic differences between species, a factor of 3 (one-half order of magnitude) is 

generally retained to account for remaining uncertainties (U.S. EPA, 2003, 1994; Clewell et al.,

2002a; Jarabek, 1995a).  However, chemical-specific information on the pharmacodynamic 

aspect of inter- and intraspecies differences may inform a further reduction or increase of th
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UFs from default values.  It should be recognized that PBPK and BBDR models are not currently

suitable for characterizing the magnitude of LOAEL-NOAEL, subchronic-chronic, or d

UFs, although rese

 

atabase 

arch in these areas is ongoing (Thomas et al., 1996a).  

 

 on 

.  The 

 

the derivation of an HEC, as described in S

 

ge 

s considerable dissent as to the generality 

of the B

 the 

4.5.  ROLE OF PBPK MODELS IN CANCER RISK ASSESSMENT 

The dose-response assessment portion of cancer risk assessment may vary, depending

MOA considerations.  A CSF can be based on a linear extrapolation from the POD (i.e., high-

dose to low-dose extrapolation), or a nonlinear analysis may be applied (U.S. EPA, 2005b).  

Either approach may also require interspecies or route-to-route extrapolations for the POD

role of PBPK models in conducting these extrapolations is discussed in Sections 4.5.1 through

4.5.5. 

 

4.5.1.  Interspecies Extrapolation 

For gases and particulates, the default procedure for interspecies extrapolation involves 

ection 2.5.4 (Jarabek, 1995a, b; U.S. EPA, 1994).  For 

oral exposures, when a PBPK model is not available, the EPA endorsed scaling of doses for 

carcinogens between species (e.g., rat to humans) according to body mass raised to the three-

fourths power (BW0.75) (U.S. EPA, 2005b, 2002, 1992b).  This procedure presumes that equal 

doses in these units (i.e., in mg/kg0.75/day), when administered daily over a lifetime, will result in

equal lifetime cancer risks across mammalian species.  The three-fourths power scaling 

relationship (sometimes called “Kleiber’s law” from his original proposition in a 1932 article) is 

generally attributed to differences in metabolic rate.  The leading biological rationale for a less-

than-full-power relationship for general metabolic processes (i.e., < BW1) is that exchan

surfaces and distribution networks constrain the concentration and flux of metabolic reactants 

(Enquist et al., 1998; West et al., 1997).  There remain

W0.75 scaling factor, the underlying biological rationale, and the value of the exponent 

(i.e., many proponents advocate a BW0.67 scaling based solely on surface area differences), 

particularly for toxicological effects of xenobiotic chemicals in contrast to endogenous anabolic 

and catabolic processes (Agutter and Wheatley, 2004).  Nonetheless, BW0.75 scaling remains

current EPA default approach (U.S. EPA, 1992b). 

The nature and slope of the dose-response relationship for carcinogens may not be 

identical in test species and humans due to pharmacokinetic and pharmacodynamic differences 
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(Monro, 1994).  If appropriate data are available in both the test species and humans (e.g., tissue 

or blood concentrations), then interspecies extrapolations of an equivalent carcinogenic or safe 

dose can be conducted.  In the absence of a complete data set, PBPK models provide a means to 

haracterize the relationship between the applied dose and the internal dose of a carcinogen in 

 al., 1987).   

 

n 

tional adjustment factor to the cancer slope or unit risk value be considered to account for 

nhanced susceptibility in early life (i.e., to neonates and young children) from exposure to 

MOA (U.S. EPA, 2005a).  Furthermore, when assessing the 

less-tha

nd 

d not be 

 

 

c

the species of interest for subsequent extrapolation to humans (Andersen et

4.5.2.  Intraspecies Variability 

Intraspecies variability in pharmacokinetics or pharmacodynamics has not usually bee

considered in cancer risk assessment.  CSFs have been used without further adjustment to 

account for susceptible populations.  The recent supplemental guidance, however, suggests that 

an addi

e

carcinogens exhibiting a mutagenic 

n-lifetime exposures occurring in childhood, the guidelines stipulate consideration of 

adult-children differences in key exposure factors (e.g., skin surface area, drinking water 

ingestion rates) (U.S. EPA, 2005c). 

PBPK models can be useful in evaluating pharmacokinetic differences among adults a

children and their impact on the internal disposition of chemical carcinogens (Ginsberg et al., 

2004; Clewell et al., 2004; Price et al., 2003b; Gentry et al., 2003; Clewell et al., 2002b).  

However, the quantitation of differences in tissue dose between adults and children woul

account for pharmacodynamic differences related to early-life exposures of neonates and 

children.   

 

4.5.3.  Route-to-Route Extrapolation 

As with RfC and RfD derivation, PBPK models can facilitate the conduct of route-to-

route extrapolation by accounting for the route-specific rate and magnitude of absorption, first-

pass effect, and metabolism (Clewell and Andersen, 1994).  The slope factor or the POD 

associated with one exposure route can be translated into applied dose for another exposure route

by simulating the tissue dose of toxic moiety associated with the exposures by each route (U.S. 

EPA, 2000b; Gerrity et al., 1990).   
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4.5.4.  High-Dose to Low-Dose Extrapolation 

The oral CSF or the IUR can be determined by modeling the relationship between the 

cancer response and the administered dose or exposure concentration (U.S. EPA, 2005a).  

According to the revised cancer guidelines, either a nonlinear (i.e., RfC or RfD) or linear (i.e., 

unit risk estimate) extrapolation based on the POD can be conducted, as appropriate for the 

OA of the carcinogen (U.S. EPA, 2005a).  The use of internal dose or delivered dose in such 

re 

en 

ose 

OD can be converted using a PBPK model to the dose 

metric 

al 

 (U.S. 

).  PBPK models improve 

stimation of the internal dose metric for a 

ant 

role in 

associated with human exposures, the exposure 

oncentration is used as input to human PBPK models to estimate the dose metric, which is then 

multiplied with the dose metric-based slope factor.  In the cancer risk assessments using PBPK 

M

analysis has been encouraged. 

Because high doses of chemicals are often administered in rodent cancer bioassays, the 

number of tumors observed in such studies is not always directly proportional to the exposu

dose.  Thus, the dose-response relationships can appear complex, in part due to nonlinearity in 

the pharmacokinetic processes occurring at high exposure doses.  In other words, the target tissue 

dose of the toxic moiety may be disproportional to the administered doses used in animal 

bioassays (Figure 2-1, Chapter 2).  Therefore, dose-response analysis based on an appropriate 

dose metric may result in linearization of the relationship (Clewell et al., 2002a, 1995; Anders

et al., 1987).  The slope factor derived using the dose metric-response curve has units of (d

metric)-1.  For nonlinear analyses, a P

at which no significant incidence of cancer is expected on the basis of MOA of the 

chemical and dose-response data. 

An integrated PBPK-BBDR model would improve the characterization of a chemic

carcinogen dose-response relationships (e.g., a PBPK model coupled to a clonal expansion and 

progression model); however, most such coupled models are still in the development stage

EPA, 2005b

e

chemical carcinogen and play an import

reducing the uncertainties associated 

with some of the extrapolations used in the 

cancer risk assessment process (Box 4-3). 

 

4.5.5.  Example of PBPK Model Use in Cancer Risk Assessment 

For assessing the cancer risk 

Box 4-3.  Role of PBPK models in cancer risk 
assessment 

• Interspecies extrapolations of pharmacokinetically 
equivalent doses 

• Route-to-route extrapolation 
• High-dose to low-dose extrapolation 
• Intraspecies variability to protect sensitive 

subpopulations 

c
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models, it is assumed that the tissue response associated with a given level of dose metric in the 

target t

s 

o 

days/wk for lifetime (Andersen et al., 1987).  In this case, the 

mouse 

 tumor 

etween tumor prevalence and dichloromethane 

issue is the same in test animals and in humans (e.g., Andersen et al., 1987).  It is a 

reasonable assumption that can be revised as a function of species-specific mechanistic 

information available for a given chemical. 

The demonstration of the applicability of PBPK models in cancer risk assessment wa

first accomplished with dichloromethane, which caused liver and lung tumors in mice exposed t

2,000 or 4,000 ppm 6 hr/day, 5 

PBPK model was used to calculate the tissue dose of metabolites and parent chemical 

arising from exposure scenarios comparable to those of the cancer bioassay study, and their 

relationship to the observed tumor incidence was then examined.  Because the parent chemical 

was nonreactive, Andersen et al. (1987) considered it an unlikely candidate responsible for the 

tumorigenicity.  Hence, the relationship between the tissue exposure to its metabolites and

incidence was examined (Table 4-2).  Whereas the dose metric based on oxidative pathway 

varied little between 2,000 and 4,000 ppm, the flux through the glutathione pathway increased 

with increasing dose of dichloromethane and corresponded well with the degree of 

dichloromethane-induced tumors at these exposure concentrations.  

 

Table 4-2.  Relationship b
metabolites produced by microsomal and glutathione pathways for the 
bioassay conditions (methylene chloride-dose response in female mice)  

 

Microsomal pathway 
dosea

Glutathione pathway 
dosea Tumor number Exposure 

(ppm) Liver (Lung) Liver (Lung) Liver (Lung) 

0 — — — — 6 (60) 

2,000 3,575 (1,531)   85 (63) 1 (123) 33 

4,000 3,701 (1,583) 1,811 (256) 83 (85) 
a Tissue dose is cumulative daily exposure (mg metabolized/ .  Reprinted from Toxicology & 

Applied Pharmacology, vol. 87, Andersen et al., Physiologically based pharmacokinetics and the risk assessment 
process for methylene chloride, pp. 185–205, 1987, with permission from Elsevier. 

volume tissue/day)

 

 

The model prediction of the target tissue dose of the glutathione conjugate resulting from 

6-hr inhalation exposures to 1–4,000 ppm dichloromethane is presented in Figure 4-7.  The 
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estimation of target tissue dose of dichloromethane-glutathione conjugate by linear back-

extrapolation gives rise to a 21-fold higher estimate than that obtained by the PBPK modeli

approach.  This discrepancy arises from the nonlinear behavior of dichloromethane meta

at high-exposure concentrations.  At exposur

ng 

bolism 

e concentrations exceeding 300 ppm, the  

 

dose, b ers f ine), and the expected 
 exp eters (bo
ature occurs ause oxidation reaction  at low inhaled 

centra ecom ed as  conc  incre ove s
 Toxicology & Applied Pharmacology, vol. 87

Andersen et al., Physiologi acokinetics and the risk assessm
cess f ylene , pp. 185–205, 1987, with permission from 

 

 

cytochrome P-450-mediated oxidation pathway is saturated, giving rise to a corresponding 

disproportionate increase in the flux through glutathione conjugation pathway.  By accounting 

for the 

se.  
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Figure 4-7.  PBPK model predictions of glutathione (GST)-pathway 
metabolites in mouse liver.  The three curves are for a linear extrapolation from
the bioassay exposures of 2,000 and 4,000 ppm (upper curve), the expected tissue 

ased on model paramet
ected in ans, based on hum

or the mouse (middle l
an l paramdose

curv
 hum
 bec

mode
s that are favored

ttom line).  The 

con tions b e saturat inhaled entration ases ab everal 
hundred ppm.  Reprinted from , 

ent cally based pharm
pro or meth  chloride
Elsevier.

 

species-specific differences in metabolism rates and physiology in the PBPK model, the 

target tissue dose for humans was estimated to be some 2.7 times lower than that for the mou
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The target tissue dose-based slope factor has subsequently been used for characterizing th

cancer risk associated with human exposures (Haddad et al., 2001a; Reitz et al., 1989; Anderse

et al., 1987).  The case of dichloromethane exemplifies how PBPK models can be used to 

improve the dose-response relationship on the basis of appropriate dose metrics, thus le

e 

n 

ading to 

scientifically sound conduct of interspecies and high-dose to low-dose extrapolations essential 

for cancer risk assessments. 

 

4.6.  MIXTURE RISK ASSESSMENT 

PBPK models facilitate risk assessment of chemical mixtures by estimating the change in 

dose metrics due to multichemical interactions (Haddad et al., 2001b).  For conducting tissue 

dosimetry-based assessments for mixtures, adequately evaluated PBPK models for the mixture in 

the test species and in humans are required and the dose-response values for the individual 

chemicals (e.g., CSF, RfD, RfC) known.  The approach for using PBPK models in risk 

assessment of mixtures of systemic toxicants or carcinogens exhibiting threshold mechanism of 

action, would consist of (Haddad et al., 2001b) 

1. Characterizing the dose metrics associated with dose-response values for the mixture 
 components, 

2. Obtaining predictions of dose metrics of each mixture component in humans, based 
PK model; and 

h 

 

ng the 

2. The dose metric associated with human exposure concentrations can be established 
using mixture PBPK models, and 

3. The results of steps (1) and (2) can be combined to determine the potentially altered 

 

on information on exposure levels provided as input to the mixture PB

3. Determining the sum total of the ratios of the results of steps (1) and (2) for eac
component during mixed exposures. 

Similarly, for carcinogens with slope factor (Haddad et al., 2001b), 

1. The dose metric-based slope factor can be established for each component usi
animal PBPK model, 

cancer response during mixed exposures. 
 

Risk assessments based on the use of PBPK models for single chemicals and mixtures, as

detailed in previous sections, account for only the pharmacokinetic aspect or, more specifically, 
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target tissue exposure to toxic moiety.  If these tissue exposure simulations are combined wi

pharmacodynamic models, then better characterization of dose-response relationships and 

prediction of PODs (NOAEL, BMD, BMC) may become possible. 

 

4.7.  LINKAGE TO PHARMACODYNAMIC MODELS 

The identification of P

th 

ODs by simulation may become possible with the use of BBDR 

odels.  These models would require the linkage of quantitative descriptions of 

 via mechanism of action.  Accordingly, the output of 

PBPK 

ct as 

etric 

BDR models to simulate the quantitative 

influence of these processes on tumor outcome.  Figure 4-8 presents an example of the 

rela

killed (simulated by pharmacodynamic model) for chloroform.  In this case, the 

pharmacod

in the num , 

chloroform ve replications (Page et al., 1997; Conolly and 

utterworth, 1995). 

 noncancer 

endpoi  

simulate th  processes (e.g., cell proliferation rates, hormonal cycle) and 

additio  

onset and p namic models that can be linked with PBPK 

models

esult, in  p  and the extensive data requirements for 

developm

scientific basis of the process of estimating PODs and characterizing the dose-response curve 

m

pharmacokinetics and pharmacodynamics

models is linked to the pharmacodynamic model using an equation that reflects the 

researcher’s hypothesis of how the toxic chemical participates in the initiation of cellular 

changes leading to measurable toxic responses.  For example, certain DNA adducts cause 

mutations, cytotoxic metabolites kill individual cells, and expression of growth factors can a

a direct proliferation stimulus.  In each of these cases, the temporal change in the dose m

simulated by the PBPK model is linked with mathematical descriptions of the process of adduct 

formation, cytotoxicity, or proliferation in the B

tionship between dose metric (simulated by the PBPK model) and fraction of liver cells 

ynamic model consisted of differential equations to simulate time-dependent changes 

ber of hepatocytes in the liver as a function of basal rates of cell division and death

-induced cytolethality, and regenerati

B

Table 4-3 presents a list of pharmacodynamic models for cancer and

nts.  A characteristic of several of these pharmacodynamic models is that they are able to 

e normal physiological

nally account for the ways in which chemicals perturbate such phenomena, leading to the

rogression of injury.  Pharmacody

 are not available for a number of toxic effects and modes of action.  This situation is a 

art, of the complex nature of these modelsr

ent and evaluation of these models for various exposure and physiological conditions. 

With the availability of integrated pharmacokinetic-pharmacodynamic models, the 
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will be significantly enhanced.  Additionally, such a modeling framework will facilitate a 

quantitative analysis of the impact of pharmacodynamic determinants on the toxicity outco

such that the magnitude of the pharmacodynamic component of the 

me, 

interspecies and intraspecies 

factors can be characterized more confidently.  Even though some PBPK models have been used 

 substances (Table 4-1), the need 

for app

in RfD, RfC, and unit risk estimate derivation for a number of

lying such models (where possible) should be continuously explored. 

 
Figure 4-8.  Relationship between the dose metric (µmol metabolized/g 
liver/hr) simulated by PBPK model and the cell killing inferred from 
pharmacodynamic model for chloroform.  Reprinted from Fundamentals of 
Applied Toxicology, vol. 37, Page et al., Implementation of EPA revised cancer 
assessment guidelines:  incorporation of mechanistic and pharmacokinetic data, 
pp. 16–36, 1997, with permission from Oxford University Press. 

 
 

.  
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Table 4-3.  Examples of biologically based models of endpoints and processes 
of toxicological relevance 

 
Toxicity endpoint 

or process Features Chemical studied References 
Cancer Simulation of relative roles of 

initiation, promotion, 
cytolethality, and proliferation 

2-acetylamino fluorine 
Chloroform 
Dimethylnitrosamine 
Formaldehyde 

Conolly et al. (2003); Tan et
al. (2003); Thomas et al. 
(200
(199

Polychlorinated biphenyls 
Pentachlorobenzene 
Saccharin 

 

0); Conolly and Andersen 
7); Conolly and Kimbell 

(1994); Chen (1993); Luebeck 
et al. (1991); Cohen and 
Ellwein (1990); Moolgavkar 
and Luebeck (1990); 
Moolgavkar and Knudson 
(1981); Moolgavkar and 
Venzon (1979); Armitage and 
Doll (1957) 

Cholinesterase 
inhibition 

Simulation of dose-dependent 
inhibition of plasma 
cholinesterase, red blood cell 
acetyl cholinesterase and brain 
acetyl cholinesterase, and 
nontarget B-esterase 

Organophophates Timchalk et al. (2002); 
Gearhart et al. (1994, 1990) 

Developmental 
toxicity 

Simulation of altered cell 
kinetics as the biological basis 
of developmental toxicity  

Methyl mercury Faustman et al. (1999); Leroux 
et al. (1996) 

Estrus cycle Simulation of interactions of 
estradiol and lutenizing 
hormone 

Endocrine-modulating 
substances 

Andersen et al. (1997) 

Gene expression Simulation of induction of 
CYP1A1/2 protein expression 
in multiple tissues 

Tetrachlorodibenzodioxin Santostefano et al. (1998) 

Granulopoiesis Simulation of loss of 
proliferating cells and loss of 

Cyclophosphamide Steinbac  al. (1980) h et

functional cells 
Nephroto elnick (1999) xicity Simulation of induction of 

renal 2µ globulin in male rat 
kidney as a function of 
proteolytic degradation and 
hepatic production 

2,2,4-Trimethyl-2-phenol Kohn and M

Teratoge

and stage of development 

Luecke et al. (1997) nic effect Sensitivity distribution of 
embryo as a function of age 

Hydroxyurea 
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GLOSSARY 
 

Absorbed dose:
boundaries of the

  The amount crossing a specific absorption barrier (e.g., the exchange 
 skin, lun estive tract) through uptake processes. 

Applied dose:  T d to an a rrier and availab
(although not nec  t f the org
 
Area under the curve (AUC):  The concentr ssue
over time.  It is a measure of tissue exposure t  period of
 
Bayesian statistics:  An approach that considers a model’s parameters as 
a probability distribution for describing each parameter.  The distribution 
information and assumptions is called the prior distribution.  Analysis of 

ribu r  assumptions with the new data. 

Benchmark dose (BMD) or benchmark concentration (BMC):  A dose or concentration that 
produces a predet  rate of an adverse effect (called the benchmark 
response) compar

base m odel t
processes at the c vel linking the target organ dose to the adverse effect.   

Cancer slope fac ate of the increased cancer risk from a lifetime exposure 
is ssed of a p

ved gi
upper bound, app  confidence limit. 

Clearance:  Volu t of drug eliminated per unit time by a specified 
he d  unit t

Critical effect:  The first adverse effect, or its known precursor, that occurs to the most sensitive 
species as the dos es. 
 

  ce a biologically sig s in 
the target organ.   

iffusion limited uptake:  Compounds (typically high molecular weight and those with 
gnificant protein binding) where membrane diffusion is often the rate-limiting process. 

Dose metric:  The target tissue dose that is closely related to ensuing adverse responses.  Dose 
metrics used for risk assessment applications should reflect the biologically active form of 
chemical, its level, and duration of internal exposure, as well as intensity. 
 
Dose-response assessment:  The process of determining the relationship between the magnitude 
of administered, applied, or internal doses and biological responses.  Response can be expressed 
as measured or observed incidence or change in level of response, percent response in groups of 

g, and dig
 

he amount presente
essarily having yet crossed

bsorption ba
he outer boundary o

ation of a chemical in ti
o chemicals over a

le for absorption 
anism). 

s or blood integrated 
 time. 

random variables with 
based only on prior 
new data yields a 

posterior dist
 

tion that reconciles the prio

ermined change in response
ed to background. 

 information and

 
Biologically d dose-response (BBDR) 

ellular and molecular le
odel:  A predictive m hat describes biological 

 
tor (CSF):  An estim

to an agent.  Th
generally reser

estimate, usually expre
 for use in the low-dose re

roximating a 95%

in units of proportion (
on of the dose-response relationship.  It is often an 

opulation) affected, is 

 
me containing the amoun
imension of a organ; it has t

 
flow per

e rate of an agent increas

ime. 

Delivered dose: The amount of a substan vailable for nificant interaction

 
D
si
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subjects (or populations), or the probability of occurrence or change in level of response within a 
population.  
 

 exposed 
agnitude, frequency, 

ute, and duration of exposure. 

ical is 
etabolized per unit time.  

eral circulation. 
or example, an orally administered compound may undergo metabolism in the intestines and/or 

ents 

 

oncentration in experimental animal species.  This adjustment may incorporate pharmacokinetic 

 model are performed. 
 

fic 
ount of the chemical available for 

teraction by any particular organ or cell is termed the delivered or biologically effective dose 

arkov-chain Monte-Carlo simulation:  An approach that has frequently been used within a 

pled parameters to several additional experimental 
ata sets, and (c) compare the model’s predictions with the experimental results to obtain 

s are 
ore 

bust distribution that reflects a wider database. 

e over time.  
harmacokinetic models take into account absorption, distribution, metabolism, and elimination 

Exposure assessment:  The process of identifying and evaluating the human population
to a toxic agent by describing its composition and size as well as the type, m
ro
 
First-order process:  A linear metabolic process where a constant fraction of chem
m
 
First-pass effects:  Metabolism that occurs before a compound can enter the gen
F
liver prior to systemic distribution. 
 
Flow-limited diffusion:  The chemical diffuses readily between blood and tissue compartm
and exchange is limited primarily by blood flow. 
 
Half-life:  Interval of time required for one-half of a given substance present in an organ to leave
it through processes other than physical decay.  It is a constant only for mono-exponential 
functions. 
 
Human equivalent concentration (HEC):  The human concentration (for inhalation exposure) 
of an agent that is believed to induce the same magnitude of toxic effect as the exposure 
c
information on the particular agent, if available, or use a default procedure. 
 
Integration interval:  The time interval at which the calculations of the change in concentration 
or amount of chemical in various compartments of the

Internal dose:  A more general term denoting the amount absorbed without respect to speci
absorption barriers or exchange boundaries.  The am
in
for that organ or cell. 
 
M
Bayesian statistical framework to (a) sample each model’s parameters from their prior 
distributions, (b) fit the model with the sam
d
posterior distributions for the model’s parameters that improve the model’s fit.  These step
repeated thousands of times until each parameter’s posterior distribution converges to a m
ro
 
Pharmacokinetic models:  Mathematical descriptions simulating the relationship between 
external exposure levels and the biologically effective dose at a target tissu
P
of the administered chemical and its metabolites.   
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Pharmacodynamic models:  Mathematical descriptions simulating the relationship between a 
biologically effective dose and the occurrence of a tissue response over time. 

tion on the basis of interplay among critical physiological, 
hysicochemical, and biochemical determinants.  

  The dose-response point that marks the beginning of a low-dose 
xtrapolation.  This point can be the lower bound on dose for an estimated incidence or a change 

eference concentration (RfC):  An estimate (with uncertainty spanning perhaps an order of 

time. 
rived from a NOAEL, LOAEL, or benchmark concentration, with uncertainty factors 

enerally applied to reflect limitations of the data used. Generally used in EPA's noncancer 

ups) that is likely to 
e without an appreciable risk of deleterious effects during a lifetime. It can be derived from a 

ents. [Durations 
include acute, short-term, subchronic, and chronic]. 

arget organ:  The biological organ(s) most adversely affected by exposure to a chemical or 

y collecting more and better experimental or 
mulation data. 

 in sensitivity among the members of the 
uman population (i.e., interindividual variability), (b) uncertainty in extrapolating animal data 

to humans (i.e., interspecies uncertainty), (c) uncertainty in extrapolating from data obtained in a 

 
Physiologically based pharmacokinetic (PBPK) model:  A model that estimates the dose to 
target tissue by taking into account the rate of absorption into the body, distribution and storage 
in tissues, metabolism, and excre
p
 
Point of departure (POD):
e
in response level from a dose-response model (BMD, BMC), or a no-observed-adverse-effect 
level or lowest-observed-adverse-effect level for an observed incidence or change in level or 
response.   
 
Potential dose:  The amount ingested, inhaled, or applied to the skin.   
 
R
magnitude) of a continuous inhalation exposure to the human population (including sensitive 
subgroups) that is likely to be without an appreciable risk of deleterious effects during a life
It can be de
g
health assessments. [Durations include acute, short-term, subchronic, and chronic]. 
 
Reference dose (RfD):  An estimate (with uncertainty spanning perhaps an order of magnitude) 
of a daily oral exposure to the human population (including sensitive subgro
b
NOAEL, LOAEL, or benchmark dose, with uncertainty factors generally applied to reflect 
limitations of the data used. Generally used in EPA's noncancer health assessm

 
Steady state:  A variable is said to have attained steady state when its value stays constant in a 
given interval of time, i.e., when its derivative is zero. 
 
T
physical agent.   
 
Terminal half-life:  The terminal half-life is the interval of time for the concentration of the 
drug in a compartment to decrease 50% in its final phase. 
 
Uncertainty:  Uncertainty occurs because of lack of knowledge.  Uncertainty can often be 
reduced with greater knowledge of the system or b
si
 
Uncertainty factors (UFs)/variability factors:  Generally, 10-fold default factors used in 
operationally deriving the reference dose and reference concentration from experimental data.  
The factors are intended to account for (a) variation
h
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study with less-than-lifetime exposure to lifetime exposure (i.e., extrapolating from subchronic t
chronic exposure), (d) uncertainty in extrapolating from a lowest-observed-adv

o 
erse-effect level 

ther than from a no-observed-adverse-effect level, and (e) uncertainty associated with 

uals 
riability; differences for one individual over 

me are referred to as intraindividual variability.  

 process:  A saturated metabolic process where a constant amount of chemical is 
liminated per unit time. 

ra
extrapolation when the database is incomplete.  
 
Variability:  Variability refers to true heterogeneity or diversity.  Differences among individ
in a population are referred to as interindividual va
ti
 
Volume of distribution:  The volume of distribution is the ratio between the administered dose 
and plasma or blood concentration of a chemical. 
 
Zero-order
e
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