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INTRODUCTION

At first glance, the topic of physiologically based
pharmacokinetic/pharmacodynamic (PBPK/PD) modeling
appears to be outside the central theme of this book.
However, with the advances of modern biology and
computational technology, it is just a matter of time
for any area of biomedical sciences to be integrated
with computer science. Two aspects are particularly
important for the application of PBPK/PD modeling in
cancer research, thus underscoring the relevance for the
inclusion of this chapter in the book: (1) incorporation of
PBPK/PD modeling in any biomedical research can avoid
unnecessary experiments, thereby conserving precious
resources, and (2) computer simulations (i.e., in silico
experimentation) using validated PBPK/PD models will
minimize animal usage.

The intent of this chapter is to (1) introduce the gen-
eral concept and background knowledge of PBPK/PD
modeling; (2) provide some examples of application
of PBPK/PD modeling; (3) illustrate the utility of
PBPK/PD modeling, particularly in the pharmaceutical

drug development process; and (4) project future devel-
opment on “second-generation” PBPK/PD modeling and
In silico toxicology. An emphasis was given to intro-
ducing the concepts of PBPK/PD modeling rather than
the details of its techniques and processes. For more
detailed background and conceptual information on PBPK
modeling, the readers are referred to our earlier intro-
ductory discussion (Yang and Andersen, 1994) and the
two “timeless papers” by Bischoff and Brown (1966)
and Dedrick (1973). For more extensive information, par-
ticularly regarding modeling techniques, the reader should
consult the two future books from our laboratories (Reddy
et al.,• 2004; Yang et al., 2004).ž Q2

WHAT IS PHYSIOLOGICALLY BASED
PHARMACOKINETICS? WHAT ARE THE
DIFFERENCES BETWEEN PBPK AND
CLASSICAL PHARMACOKINETICS?

Physiologically based pharmacokinetics (PBPK), as the
name implies, is a special branch of pharmacokinetics
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where physiology and anatomy of the animal or human
body as well as the biochemistry of the chemical or chem-
icals of interest are incorporated into the conceptual model
for computer simulation. Classical pharmacokinetics refer
to those empirical noncompartmental or compartmental
pharmacokinetic studies routinely practiced in the pharma-
ceutical industry (van de Waterbeemd and Gifford, 2003).
As will be illustrated later, the compartments of a PBPK
model have anatomic and physiologic significance. This
is a major difference from empirical noncompartmental
or compartmental pharmacokinetic modeling approaches.
PBPK models can be used to describe concentration–time
profiles in individual tissue/organ and in the plasma or
blood. When the concentration of a certain target tissue,
rather than the plasma concentration, is highly related to a
compound’s efficacy or toxicity, PBPK modeling will be
a more useful tool than classical pharmacokinetic models
for describing PBPK/PD relationships and thus make a
better prediction of the time course of drug effects result-
ing from a certain dose regimen for the compound of
interest. Furthermore, PBPK models in combination with
absorption simulation and quantitative structure–activity
relationship (QSAR) approaches will bring us closer to
a full prediction of drug disposition for pharmaceutical
new entities and help streamline the selection of lead
drug candidates in the drug discovery process (van de
Waterbeemd and Gifford, 2003). Lastly, unlike empirical
noncompartmental and compartmental pharmacokinetics,
PBPK modeling is a powerful tool for extrapolation, be
it for interspecies, interroutes, interdoses, interlife stages,
and so on.

The concept of PBPK had its embryonic development
in the 1920s and 1940s; for a more detailed early
history, readers are referred to two books which are in
preparation (Reddy et al., 2004; Yang et al., 2004). PBPK
modeling blossomed and flourished in the late 1960s and
early 1970s in the chemotherapeutic area mainly due to
the efforts of investigators with expertise in chemical
engineering process design and control. Two notable
pioneers in this development are Kenneth B. Bischoff,
then at the University of Texas, Austin, Texas, and Robert
Dedrick of Biomedical Engineering and Instrumentation
Branch, Division of Research Services, National Institutes
of Health, Bethesda, Mariland. Two timeless publications
by these investigators are, respectively, “Drug Distribution
in Mammals” (Bischoff and Brown, 1966) and “Animal
Scale-Up” (Dedrick, 1973); these articles are highly
recommended to those who are interested in PBPK
modeling. In the mid-1980s, two articles on PBPK
modeling of styrene and methylene chloride (Andersen
et al., 1987; Ramsey and Andersen, 1984) started yet
another “revolution” in the toxicology and risk assessment
arena. Today, there are more than 700 publications directly
related to PBPK modeling on industrial chemicals,

drugs, environmental pollutants, and simple and complex
chemical mixtures (Reddy et al., 2004).

A PBPK model, graphically illustrated in Figure 23.1,
reflects the incorporation of basic physiology and
anatomy. The compartments actually correspond to
anatomic entities such as liver, lung, and so on, and
the blood circulation conforms to the basic mammalian
physiology. In this specific model, a published example on
methylene chloride, it is quite obvious that the exposure
route of interest is inhalation because the lung and gas
exchange compartments are prominently displayed with
intake (CI) and exhalation (CX) vapor concentrations
indicated. Oral and/or dermal exposures may be added
easily to the gastrointestinal tract compartment or general
venous circulation, respectively. Some tissues (e.g., richly
or slowly perfused tissues in Fig. 23.1) are “lumped”
together because there is insufficient evidence to conclude
that each of these tissues is kinetically distinct enough for
the specific chemical to warrant a separate compartment.

If one draws an analogy of the “scale-up” from a
laboratory chemical engineering process to a chemical
plant to the scale-up of a mouse to a human, one finds
that both situations are governed by a great number
of physical and chemical processes. In mammals, the
physical processes (i.e., mass balance, thermodynamics,
transport, and flow) often vary in a predictable way.
However, chemical processes such as metabolic reactions
may vary greatly and are less predictable among species.
These physical and chemical processes interact in the body
such that the pharmacokinetics of any given chemical
between one species and another may be more (or less)
predictable depending on the amount of background
information available.

HOW DOES A PHYSIOLOGICALLY BASED
PHARMACOKINETIC MODEL WORK?

A PBPK model applies fundamental physiologic, bio-
chemical, and engineering principles to describe the dis-
tribution and disposition of chemicals in the body at any
given time. The process and approach may be summarized
in a flowchart (Fig. 23.2). Once the chemical of interest
and the problems needing to be addressed are identified,
a thorough literature evaluation is conducted.

The fundamentals of PBPK modeling are to identify
the principal organs or tissues involved in the disposition
of the chemical of interest and to correlate the chemical
absorption, distribution, metabolism, and excretion within
and among these organs and tissues in an integrated and
biologically plausible manner. A scheme is usually formed
where the normal physiology is followed in a graphi-
cal manner (i.e., a conceptual model as in Fig. 23.1).
Within the boundary of the identified compartment (e.g.,
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Figure 23.1. Graphical representation of a PBPK model for methylene chloride. (Andersen
et al., 1987).

an organ or tissue or a group of organs or tissues), what-
ever “comes” in must be accounted for via whatever
“goes out” or whatever is transformed into something
else. This “mass balance” is expressed as a mathemati-
cal equation with appropriate parameters carrying biologic
significance. A series of such equations representing all of
the interlinked compartments are formulated to express a
mathematical representation, or model, of the biologic sys-
tem. This model can then be used for computer simulation
to predict the time course behavior of any given parame-
ter. Three sets of parameters are needed for PBPK model
building: physiologic parameters (e.g., ventilation rates,
cardiac output, organs as percent body weight), thermody-
namic parameters (e.g., tissue partition coefficients, flow
rates), and biochemical parameters (e.g., Km and Vmax).
Most, if not all, of the parameters for laboratory animals
are available in relevant literature, such as the Biologi-
cal Data Book and the special report by the International
Life Sciences Institute (ILSI) on the compilation of physi-
ologic parameters for PBPK models (Brown et al., 1997).
When information gaps exist, the solution is either an
empirical one via experimentation or through allometric
extrapolation, usually based on a power function of the
body weight (Lindstedt, 1987).

The U.S. Environmental Protection Agency (EPA)
guidance document (2002) includes a very nice discussion
on “modeling the data.” Although it is not necessarily for
PBPK modeling, the discussion reflects some “dos” and
“don’ts” on computer modeling. We quote some of the
passages below:

The• selection of a mathematical model structure to fit ž Q3

the data being analyzed should be guided by the biology
of the common mechanism of toxicity, the toxicokinet-
ics of the chemicals, and the observed shapes of their
dose-response curves and the experimental designs used
to generate the data. If available, pharmacodynamic and
pharmacokinetic data should be considered in order to
account for tissue concentrations and to aid in defin-
ing dose-response relationships across different species,
routes and time-frames of exposure . . . .

. . . Although it is not possible to recommend the use
of specific models, a few points that should be considered
in modeling the data follow:

ž Modeling of individual animal data is desir-
able; however, if this is not practical, then use
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Figure 23.2. Flowchart illustrating processes involved in PBPK. (From M. E. Andersen,
Pharmacokinetics in Risk Assessment, Drinking Water and Health, National Academy Press,
Washington, D.C., 1987, pp. 8–23.)

of summary data such as means and standard
deviations can be alternatives

ž Care should be taken with modeling high-dose
data (particularly extreme doses) because the
model shape in the low-dose region can be
influenced by high-dose data

ž Log transformation of data should be justified
because such a transformation may distort the
dose-response curve

ž Data variability should be described by appro-
priate statistical techniques and reflected in the
potency estimate (e.g., by weighting the data
in the fitting procedure)

ž Confidence intervals or limits should be
included in the analysis because they can
be valuable for evaluating the influence of
variability on the potency estimates

ž An estimate for the uncertainty of the model
used in the analysis should be included

ž The statistical fitting method used must be
clearly described.

For the most well-studied chemicals or drugs, it is likely
that the biochemical constants such as Km’s and Vmax’s
are known and readily retrievable from the information
data base. However, it must be made clear here that
the Km, Vmax, and KF (first-order rate constant) in a
PBPK model (known as in vivo Km, Vmax, KF for a
given chemical) such as the ones given in Figure 23.1 are
hybrid constants of all the saturable or linear metabolic
pathways, respectively, for the chemical of interest in
the organ and/or body. They are different from the
in vitro Km, Vmax, or KF of a given pure enzyme.
While they are not directly interchangeable, the in vitro
constants in the literature may be used to estimate
in vivo constants for modeling purposes (Kedderis and
Lipscomb, 2001; Lipscomb et al., 1998). Also, for most
well-known chemicals, it is likely that enough is known
about the mechanism of toxicity to be incorporated
into the model for computer simulation. Physiologic
constants such as organ volumes and blood flow rates
are usually available in the literature for the common
laboratory animals as well as humans. Therefore, at
least in those instances of “well-known” chemicals, a
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model may be conceptually illustrated as in Figure 23.1
and mathematically represented by a number of mass
balance differential equations. Computer simulations may
be made for any number of desired time course endpoints
such as the blood levels of the parent compound, liver
level of a reactive metabolite, and similar information
on different species, at lower or higher dose levels,
and/or via a different route of exposure. The experimental
pharmacokinetic data may then be compared with PBPK
model simulation to see if they are superimposable upon
each other. If this is indeed the case, the model is
consistent with actual results. Validation of the PBPK
model with data sets other than the working set (or training
set) to develop the model is necessary. Once validated, the
PBPK model is ready for extrapolation to other animal
species, including humans. However, if the experimental
data and PBPK model simulation are not consistent,
the model might be deficient because critical scientific
information might be missing or certain assumptions
are incorrect. The investigator, with knowledge of the
chemical and a general understanding of the physiology
and biochemistry of the animal species, can design and
conduct critical experiments for refining the model to
reach consistency with experimentation (Fig. 23.2). This
refinement process may be repeated again and again
when necessary; such an iterative process is critically
important for the development of a PBPK model. There
is always the possibility that a good model may not
be obtained at the time because of the limitation of
our knowledge on the chemical. An emphasis must
be made here that the investigator and the knowledge
possessed are the single most important determinant of
the outcome of the results; mathematical modeling and
advanced computational capabilities are nothing more
than good tools.

MYTHS ABOUT PHYSIOLOGICALLY BASED
PHARMACOKINETICS; ARE THEY REAL?

Common belief is that PBPK modeling is highly resource
intensive and very difficult to do, particularly involving
interactive pharmacokinetics or pharmacodynamics. This
warrants some special discussion: First, by the time
chemicals such as drugs or pesticides reach the stage of
commercialism, many types of studies have already been
conducted, including pharmacokinetic studies. Thus, they
are already resource intensive during the developmental
stage to become successful chemicals in commerce. The
important point is how may quantitative, time course
data useful for PBPK model development be generated
during the product development phase? The data required
for PBPK modeling are really not too much different
from those required for the classical pharmacokinetics

in the present IND/NDA (investigational new drug
application/new drug application) process. A slight new
orientation to the existing battery of studies would
generate adequate quantitative time course data for PBPK
modeling. Thus, it is definitely not any more resource
intensive from the existing requirements. Furthermore, if
the incentive (e.g., regulatory guideline-driven scientific
studies) is there, such quantitative, time course data would
have been automatically generated during the product
development phase. In fact, PBPK modeling, being a
hypothesis testing tool in toxicology, may be utilized
to conduct many different kinds of experiments on a
computer (i.e., in silico toxicology).

A great deal of research effort has been devoted to
the development of simple, high-throughput, and in vitro
predictive tools in the pharmaceutical industry (van de
Waterbeemd and Gifford, 2003). While these short-term,
rapid assays certainly offer some utility, particularly in
the early drug development process, an inherent danger
of such tools is the “by-pass” of integrated mammalian
physiology and architecture of the body. In that regard,
development of in silico toxicology such as PBPK/PD
modeling and other biologically based computer model-
ing has the advantage of integrating whole-body phar-
macokinetics and pharmacodynamics with computational
technology. The resulting predictive tools will minimize
unnecessary experiments and improve the attrition rate of
drug or chemical product development with much more
scientific validity and confidence. In that sense, PBPK/PD
modeling, once integrated as a part of the product devel-
opment plan, will actually save expenses and resources as
well as minimize unnecessary animal experiments.

Second, while PBPK modeling is by no means a
very easy technology, it is not any more difficult than
some of the classical pharmacokinetic and statistical mod-
eling carried out in the routine product development
process. Furthermore, excellent training opportunities
(e.g., www.cvmbs.colostate.edu/enhealth/cett/) are avail-
able, and the development of software is such that more
and more user-friendly tools are going to be available.

PHYSIOLOGICALLY BASED
PHARMACODYNAMIC MODELING

Using plain English, pharmacokinetics can be considered
as “What the body does to the chemicals,” and pharma-
codynamics can thus be considered as “What the chemi-
cals do to the body.” Physiologically based pharmacody-
namic (PBPD) modeling is therefore computer simulation
of pharmacologic or toxicologic effects of chemicals or
drugs based on the biology of chemical/drug–receptor
interactions. From the point at which a chemical or a
drug enters into the body to the point of pharmacologic or
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toxicologic effect, it is a continuum of pharmacokinetics
and pharmacodynamics. It is difficult to distinguish where
pharmacokinetics end and pharmacodynamics start. When
we consider the pharmacology or toxicology of a chem-
ical or a drug, we must consider both pharmacokinetics
and pharmacodynamics to have a full understanding. To
consider either area alone is to understand only part of
the picture.

PBPK modeling preceded PBPD modeling by many
years because of the slower and later advances of mecha-
nistic understanding of modes of action of chemicals and
drugs. It is a natural course of evolution that PBPK blos-
somed and flourished first because it was developed based
on the fundamentals of mammalian physiology, analytical
chemistry, engineering principles of mass transport and
mass balance, and desk-top computer hardware and soft-
ware development. These were all well-developed areas
in the earlier days. PBPD modeling is dependent upon the
mechanistic basis of chemical/drug–receptor interactions,
and the biology associated with it took time to mature. The
recent trend is such that more and more PBPD modeling
work is evident. PBPK modeling has matured to the point
that research endeavors are centered around more com-
plex systems (e.g., multichemical interactions, subcom-
partmentalization of organs) or special problem-driven
models (e.g., dermal uptake of chemicals from showers,
exposure dose reconstruction). As will be discussed later,
the “delumping” of organ and tissue compartments and
the linkage of PBPK models with other types of bio-
logically based models may lead us to second-generation
PBPK/PD modeling.

DATA REQUIREMENTS FOR PBPK OR PBPD
MODELING

What are the specific data needed for building PBPK mod-
els? Obviously, well-conducted in vivo pharmacokinetic
data are essential, and usually the more the data sets (e.g.,
different doses, routes, species), the better. In each study,
time course blood and tissue concentration data are essen-
tial. These time course data should include at least the
following tissues and organs: blood (or plasma if blood
cell binding is not an issue), liver (organ of metabolism),
kidney (representing well-perfused organs/tissues), muscle
(representing slowly perfused organs/tissues), and target
organ(s)/tissue(s). We also need other PBPK-modeling
specific information, such as (1) physiologic constants,
including body size, organ and tissue volumes, blood flow,
and ventilation rates; (2) biochemical constants, includ-
ing the chemical-specific metabolic rate constants such
as Vmax and Km, partition coefficients for tissues; and
(3) mechanistic factors such as target tissues, metabolic
pathways, and receptor interactions. Enzyme kinetic data,

particularly human data, of at least the key metabolic pro-
cesses will be important for the PBPK model. In vitro
determination of tissue partition coefficients and enzyme
kinetic data is relatively straightforward and inexpen-
sive. With modern genetic engineering technologies, many
human enzymes are available commercially. Thus, hereto-
fore unavailable human enzyme kinetic information for
many of the environmentally important chemicals are
within easy reach for many laboratories. These experi-
ments should be performed.

For PBPD modeling, the data requirement is much
more variable because of the many different types of
chemical/drug–receptor interactions. Thus, it is much
more of a compound-specific nature. However, as a rule
of thumb, quality time course data on the key biologic
processes to be modeled are essential.

PBPK OR PBPK/PD MODELS FOR CHEMICAL
INTERACTIONS (INTERACTIVE PBPK
OR PBPK/PD MODELS)

Human exposure to chemicals is rarely, if ever, to single
chemicals. In the area of clinical pharmacology, adverse
drug interactions are undoubtedly serious concerns. For
instance, Lazarou et al. (1998) estimated that there were
over 2.2 million cases of serious adverse drug reactions
(ADRs) in hospital patients in 1994 in the United States
and among these cases 106,000 were fatal. During their
hospital stay, the patients in the survey statistics were
given an average of eight drugs. Comparing with other
statistics of causes of death, these investigators (Lazarou
et al., 1998) indicated that ADRs became the fourth to the
sixth leading cause of death for that year in the United
States. Thus, it is important to discuss the issues related
to the development of interactive PBPK/PD modeling
(see particularly the example given later on the work
of Kanamitsu et al., 2000).

From the perspective of interactive PBPK/PD model-
ing, two aspects need to be addressed: pharmacokinetic
interactions and pharmacodynamic interactions. Because
PBPD modeling is a relatively recent effort and few
such models are available for even single chemicals, we
will concentrate all our discussion on interactive PBPK
models. The most ideal and scientifically defensible data
requirement for establishing an interactive PBPK model
is that each component chemical in the mixture already
have its respective established PBPK model and that there
are many pharmacokinetic data sets in laboratory animals
as well as in humans available for each of these compo-
nent chemicals. The interactive PBPK model is then built
on the basis of known pharmacokinetic interactions. For
instance, the component chemicals may inhibit each oth-
ers’ biotransformation. The individual PBPK models may
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then be linked together at the liver compartment by intro-
ducing competitive inhibition (or other types of inhibition)
terms in the mass balance differential equation.

In some cases, even more specific and stringent data
requirements are needed; an example may be the ultralow-
dose pharmacokinetic data in perinatal developmental
stages of laboratory animals for extrapolation to human
fetuses and babies using PBPK modeling. This area is
still in its infancy and further development is antici-
pated.

APPLICATION OF PBPK/PD MODELING

Dosing Schedule of a Chemotherapeutic Agent

Methotrexate is a folate analogue and a well-known
cancer chemotherapeutic agent. This is one of the
chemotherapeutic agents which was studied extensively
with PBPK modeling. The mechanism of toxicity is
due to the binding of methotrexate to dihydrofolate
reductase, a key enzyme in DNA synthesis, leading to
cessation of DNA synthesis and cell death. In some
organs (liver, kidney, intestine, and marrow) and many
tumors, methotrexate undergoes metabolism to active
polyglutamate derivatives (even more potent inhibitors for
dihydrofolate reductase). Because these polyglutamates
are retained in some tissues far longer than the parent
compound, it has been suggested that this effect is
of great importance for the antineoplastic property of
methotrexate.

Table 23.1 shows the toxicity of methotrexate to mice
under a variety of dosing schedules (Morrison et al.,
1987). Obviously, toxicity does not directly correlate
with total dose. Decreasing total dose by a factor of
117 (350/3) led to an increase, rather than a substantial
decrease, in toxicity. In addition, the area under the
plasma concentration–time curve (AUC), a frequently
used pharmacokinetic parameter for bioavailability, did
not correlate with toxicity. For instance, the AUC for a
bolus dose of 350 mg/kg is about two orders of magnitude

greater than that of the 96-h infusion at 0.8 µg/h•, yet ž Q4
toxicity is higher with infusion.

The reason for the above phenomenon turned out to
be intimately associated with the pharmacokinetics of
methotrexate (and its polyglutamate metabolites) and the
threshold and length of time that dihydrofolate reductase
is inhibited (thus inhibition of DNA synthesis). At a bolus
dose of 350 mg/kg, even though there is a short period of
very high blood and tissue concentration, the inhibition
of DNA synthesis did not persist long enough to cause
lethality in at least some of the mice. At an infusion
rate of 0.8 µg/h• for 96 h, even though the blood and ž Q5
tissue levels were low, they were nevertheless high enough
to cause sustained inhibition of DNA synthesis, which
ultimately translated into higher lethality in the animals.
These scientific discoveries eventually led to the revision
of the methotrexate PBPK model by incorporating the
inhibition of DNA synthesis into the model.

From the modeling perspective, the iterative process
of making new scientific discoveries and then refining the
PBPK model by incorporating such new information into
the model is a wonderful illustration of what we discussed
in relation to Figure 23.2. An even more significant
illustration is the fact that a validated methotrexate PBPK
model can be used to conduct all the experiments in
Table 23.1 on a computer. With such complicated dosing
schedules, it is apparent how the lives of hundreds of mice
may be saved and how much time and resources may be
diverted to other more efficient usages.

“Electronic Rats”

One of our earlier examples was the PBPK/PD modeling
of a toxicologic interaction between kepone (also known
as chlordecone) and carbon tetrachloride (CCl4) based on
mechanisms of interactive toxicity and the application
of computer technology in acute toxicity studies. This
was a collaboration among three research groups: Melvin
E. Andersen, CIIT (presently CIIT Centers for Health
Research); Harihara M. Mehendale, Northeast Louisiana

Table 23.1. Dosing Schedule Dependence of Methotrexate Toxicity in Mice

Dose
(mg/kg) Schedule

Total Dose
(mg/kg)

Peak Plasma
Concentration (M) Effect

350 Single dose 350 10−3 LD50
25 Twice daily 50 10−4 LD50
3 Every 3 h, 5 times, rest 8 h,

then every 3 h, 3 times
24 10−5 >LD50a

0.5 Every 3 h, 20 times 10 10−6 >LD50a

0.8 µg/h Infusion 96 h 3 10−8 >LD50a

a Higher toxicity than LD50.

Source: Morrison et al., 1987.
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Figure 23.3. A conceptual PBPD model for CCl4 and Kepone interaction. KMIT = rate
constant for mitosis; KBIR = rate constant for cell birth; KINJ = rate constant for cell injury;
KDIEI = rate constant for general cell death; KDIE1 = rate constant for cell death due to injury;
KPH = rate constant for phagocytosis (El-masri et al., 1996).

University (presently University of Louisiana at Monroe);
and our Quantitative and Computational Toxicology group
at Colorado State University. The details of this study
may be found elsewhere (El-masri et al., 1996). Briefly,
CCl4 is a well-known hepatotoxin. Following free-radical
formation through the P450 enzyme system, the toxicity
of CCl4 can be an accumulation of lipids (steatosis,
fatty liver) and degenerative processes leading to cell
death (necrosis). Kepone is found in the environment
as a result of photolytic oxidation of Mirex, a pesticide
used for the control of fire ants, or as a pollutant from
careless and irresponsible discharge. At relatively low
levels (e.g., 10 ppm in the diet), even repeated dosing
of kepone in the diet up to 15 days caused no apparent
toxicity to the liver. The toxicologic interaction between
kepone and CCl4 was reported by Curtis et al. (1979).
They illustrated that a 15-day dietary exposure of male
rats to kepone at 10 ppm, an environmentally realistic
level, markedly enhanced liver toxicity produced by
an i.p. injection of a marginally toxic dose of CCl4
(100 µL/kg). This toxicologic interaction is unique in
that (1) unlike many other toxicologic interaction studies
which were usually dealing with acute toxicity at very
high doses, kepone in this instance was administered at
a very low environmental level; (2) CCl4 was also dosed
at a low, marginally toxic level; and (3) the magnitude
of toxicologic interaction, 67-fold, is very large. The
mechanism of this toxicologic interaction was elucidated
by Mehendale’s group through a series of studies to be the
impairment, by kepone, of the liver’s regeneration process.
These mechanistic studies were summarized in a number
of publications (Mehendale, 1984, 1991, 1994).

As shown in Figure 23.3, a PBPD model was con-
structed by El-masri et al. (1996) based on the mechanism
of toxicologic interaction between kepone and CCl4. This
PBPD model was verified by literature information, and
it was capable of providing time course computer simu-
lations of mitotic, injured, and pyknotic (dead) cells after
treatment with CCl4 alone or with kepone pretreatment.
This PBPD model was further linked with Monte Carlo
simulation to provide predictability of the acute lethality
of CCl4 alone and in combination with kepone. As shown
in Table 23.2, the a priori predictions of lethality were in
very good agreement with experimentally derived values
except at very high CCl4 levels. In this latter case, the
underprediction of lethality was due to toxicity other than
in the liver, that is, the neurotoxic effects of CCl4 on the
central nervous system. When this study was first pre-
sented at the International Congress of Toxicology Sym-
posium in 1995, a reporter for Food and Chemical News
wrote a section titled “Colorado Researchers Use Elec-
tronic Rats.” Although it was somewhat amusing at the
time, the term “electronic rats” nevertheless reflects our
ultimate goal of in silico toxicology.

Clonal Growth in Relation to Carcinogenesis

The U.S. National Toxicology Program (NTP) and its
predecessor, the National Cancer Institute’s Carcinogen-
esis Bioassay Program, collectively, form the world’s
largest toxicology program (NTP, 2002). In its nearly 40
years of operation, fewer than 600 chemicals have been
studied for carcinogenicity and other chronic toxicities
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Table 23.2. PBPK/PD Modeling and Monte Carlo
Simulation of Kepone/CCl4 Toxicologic Interaction

Dose Observedbž Model Predictiona

Kepone %
(ppm)
Dead

CCl4
(µL/kg)

Dead
Rats

Percent
Dead

Deadž
Rats

0 100 0 0.0 0
0.0
0 1000 1–2 13.2 1

11.1
0 3000 3 32.8 4

44.4
0 6000 4–5 47.8 8

88.8
10 10 0 0.0 0

0.0
10 50 4–5 47.5 4
44.4
10 100 8–9 84.0 8
88.8

a Mortalities in 48 h, given a hypothetical condition of n = 9; Monte
Carlo simulation, n = 1000.
bActual lethality studies (n = 9).

Source: Modified after Yang et al., Toxicol. Lett., 82/82 : 497–504, 1995.

(NTP, 2002, 2003). These “gold standard” chronic tox-

ž Q6

ž Q7

icity/carcinogenicity studies are extremely expensive (i.e.,
up to several million dollars per chemical), require large
number of animals (i.e., about 2000 animals per chemical),
and are lengthy (i.e., 5–12 years per chemical). Thus, con-
sidering the approximately 80,000 chemicals in commerce
(NTP, 2002), the number of compounds for which we
have adequate toxicology information for risk assessment
so far is miniscule. With the mode and rate of study-
ing these chemicals as indicated above, it is unlikely that
our society will ever have thorough toxicology informa-
tion on the majority of the chemicals that we use now or
may use in the future. Considering further the “real-world”
issue of the health effects of chemical mixtures, it would
be impossible to obtain adequate information on most of
the chemicals or chemical mixtures that humans might be
exposed to using the conventional approach (Yang, 1994,
1997). Thus, the PBPK/PD modeling approach described
below represents a possible alternative to the expensive
and time-consuming cancer bioassays.

We have used a modification of the medium-term
bioassay of Ito and co-workers (1989a,b) to study the car-
cinogenicity of chlorobenzenes. The Ito assay involves
the sequential administration of a potent initiator, diethyl-
nitrosamine (DEN), followed by chemical treatment and
mitogenic stimulation of hepatocyte growth via partial
hepatectomy. As shown in Figure 23.4, this protocol
allows the evaluation of carcinogenic potential within

DEN+corn oil

s s
DEN+HCB, PECB, TECB, or DCB

 s ss s s

s  s s

HCB, PECB, TECB or DCB

Sacrifices

DEN

PH

14(Days)1 23 26 28 47 56

Figure 23.4. Experimental design for initiation–promotion
study and estimated parameters for clonal growth model. The
initiation agent, DEN, was administered i.p. (200 mg/kg) at
week 0. HCB, PECB, TECB, or DCB was delivered by gavage
starting week 2 at dose of 0.1 mmol/kg per day, 7 days/week. A
two-thirds partial hepatectomy was performed on all animals on
week 3. Liver tissues were collected 23, 26, 28, 47, and 56 days
following initial DEN dosing. Concurrent controls without DEN
initiation were also performed for all groups (Ou et al., 2003).

eight weeks by identification of glutathione S-transferase
placental form (GST-P) positive preneoplastic foci as end-
point marker lesions. A large number of chemicals have
been tested using this protocol. When compared with the
two-year chronic bioassay, results from the Ito medium-
term bioassay have correctly identified 97% of genotoxic
hepatocarcinogens and 86% of the known nongenotoxic
hepatococarcinogens (Ogiso et al., 1990). The principal
modification of this protocol in our laboratory is the incor-
poration of pharmacokinetics and pharmacodynamics by
conducting time course studies on tissue dosimetry, cell
division rates, cell death rates, and GST-P foci formation.

To collect experimental data, briefly, as shown in
Figure 23.4, male Fisher 344 rats, 8 weeks of age,
were initiated with a single dose (200 mg/kg i.p.)
of diethylnitrosamine. Two weeks later, animals were
exposed to daily gavage consisting of 0.1 mmol/kg 1,4-
dichlorobenzene (DCB), 1,2,4,5-tetrachlorobenzene
(TECB), pentachlorobenzene (PECB), or hexachloroben-
zene (HCB) in corn oil vehicle for 6 weeks. Partial hep-
atectomy was performed 3 weeks after initiation. Liver
weight, 5-bromo-2′-deoxyuridine labeling index for analy-
sis of cell division rate, and number and volume of GST-P
positive foci were measured at 23, 26, 28, 47, or 56 days
after initiation•. ž Q8

We then used a clonal growth stochastic model (Ou
et al., 2001, 2003; Thomas et al., 2000) to describe the
dynamic growth of preneoplastic foci during the Ito
medium-term bioassay. The clonal growth model is based
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Portion of two-stage model applicable
to GST-P data
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Figure 23.5. Simple two-stage model of carcinogenesis. The
analysis presented here focuses on normal and initiated
states (Ou et al., 2003).

on the two-stage model of carcinogenesis (Moolgavkar
and Luebeck, 1990; Moolgavkar and Venzon, 2000),
where the carcinogenesis process is described by the
two critical rate-limiting steps: (a) from normal to ini-
tiated cells and (2) from initiated cells to malignant states
(Fig. 23.5). The model allows the incorporation of rele-
vant biologic information such as the kinetics of tissue
growth and differentiation and mutation rates. The clonal
growth stochastic model adopts a discrete-time numerical
approach, where the time axis is decomposed into a series
of time intervals, where parameters are allowed to change
between but not with segments. To represent the multi-
plicity of the cellular states and the time-varying nature of
the numerous cell behavior variables, the numerical model
resorts to a recursive simulation. The growth of normal
liver is described deterministically, whereas other cellular
events use stochastic simulation. This approach facilitates
description of the complex biologic process with time-
dependent values.

A combination of experimental toxicology and com-
puter simulation described above was used to analyze
clonal growth of GST-P enzyme-altered foci during
liver carcinogenesis in an initiation–promotion regimen
for DCB, TECB, PECB, and HCB. The clonal growth
stochastic model (Ou et al., 2001, 2003; Thomas et al.,
2000) incorporating the hypothesis of two initiated cell
populations (referred to as A and B cells) (Fig. 23.5)
was successfully used to describe the foci development
data for four chlorobenzenes (Fig. 23.6 presented as an
example for HCB and PECB). The B cells are initiated
cells that display selective growth advantage under condi-
tions that inhibit the growth of initiated A cells and normal
hepatocytes. A sensitivity analysis of model parameters
indicated that the net growth rate of B cells during the two-
week regenerative period following partial hepatectomy
is among the most sensitive parameters for determining

the final foci volume. Furthermore, the estimated val-
ues of this model parameter among four chlorobenzenes
appear to be positively correlated with the induction of
CYP2B1/2, CYP1A2, c-fos, enlarged liver, and final foci
volume, indicating that examining effects of chemicals
on regenerative responses following partial hepatectomy
may be a way to understand the carcinogenicity potential
of chlorobenzene compounds. While TECB, PECB, and
HCB all increased significant foci volume, only HCB had
effects on normal hepatocyte proliferation. The use of a
two-cell hypothesis for the description of DEN control
data (with partial hepatectomy) also indicated the pres-
ence of multiple phenotypes of initiated clones following
DEN treatment, with resistant phenotypes arising during
early carcinogenesis.

As initiation–promotion protocols are widely used in
the study of carcinogenesis, the clonal simulation of foci
growth, in combination with PBPK modeling, will be a
useful quantitative tool for examining the time course of
a dose–concentration relationship at critical target tissues
and concentration-dependent pharmacodynamic changes
at cellular levels during carcinogenesis.

HOW ARE PBPK/PD MODELS VALIDATED?
HOW CAN THEY BE USEFUL PREDICTIVE
TOOLS?

To develop a PBPK/PD model, quantitative time course
experimental data sets are essential for comparisons with
computer simulations. As indicated earlier, the goal and
the hope are that computer simulations are superimposable
with experimental data. The data sets used for model
building are working sets (or training sets). For model
validation, it is very important that data sets other than
the working sets are used to compare with the model
simulation results. For instance, assume• a PBPK/PD ž Q9

model was developed using PK and PD data sets from
intravenous dosing of two dose levels of drug A reported
by laboratory X. The validation of this PBPK/PD model
for drug A should be carried out using different data sets
such as PK and PD following oral and dermal dosing
of drug A reported, respectively, by laboratories Y and
Z. Generally, the more different data sets used in the
validation process, the more robust the PBPK/PD model.

Once a PBPK/PD model is validated, it may be used
for predictive purposes. However, the present state-of-the-
art is such that the predictive capability is limited to the
very compound for which the PBPK/PD model is devel-
oped, or at the very least to close analogues with the
same mechanism of action. For example, Kanamitsu et al.
(2000), using a PBPK model, predicted in vivo drug–drug
interaction between triazolam and erythromycin based on
in vitro enzyme kinetic studies using human liver micro-
somes and recombinant human cytochrome P450 3A4
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Figure 23.6. Comparison of the clonal model outputs with experimental measurements of foci
growth for PECB and HCB congeners. Time-dependent changes in foci growth were measured
in animals subjected to an initiation/promotion protocol using DEN as an initiator and PECB or
HCB as a promoting agent. Using the standard stereologic methods, two-dimensional transection
data of GST-P foci were converted to three-dimensional foci number (foci number/cm3) and foci
volume (volume percentage of foci) in the liver. To illustrate the stochastic nature of foci growth,
the figures here show results from five runs of simulation. For comparison, experimental data
of Jang et al. (1993)• (triangle symbols) and simulation results for the DEN controls withoutž Q1
partial hepatectomy (lower solid gray lines) are shown along with those of the DEN controls (Ou
et al., 2003).

(CYP3A4). The mechanistic basis for this drug–drug
interaction which involved 15 fatalities in Japan in 1993
is a mechanism-based inhibition (or “suicide inhibi-
tion,” meaning the enzyme metabolizes a chemical to
a reactive metabolite which, in turn, irreversibly inac-
tivates the enzyme) for macrolide antibiotics, such as
erythromycin. Once the enzyme is permanently inacti-
vated, its metabolism of the other coadministered drug
is impaired, leading to a scenario of “drug overdose.”
With the present state-of-the-art, Kanamitsu et al. (2000)
should be able to use their PBPK model to predict poten-
tial serious dose-limiting toxicities for combination thera-
pies involving macrolide antibiotics and coadministered
drugs metabolized by CYP3A4 provided certain basic
PK parameters are known for the drugs involved as
well as in vitro enzyme kinetic information using human
CYP3A4. When more and more such mechanistic infor-
mation is available for classes of chemicals, it is likely that

reaction rules may be established for certain molecular
attributes, and reaction network modeling (see the fol-
lowing section on second-generation PBPK/PD model-
ing) may be linked with PBPK/PD modeling such that
more generalized prediction of toxicities might become
a reality.

FUTURE PERSPECTIVES: IN SILICO
TOXICOLOGY AND SECOND-GENERATION
PBPK/PD MODELING

In essence, in silico toxicology means integrating com-
puter modeling with focused, mechanistic animal exper-
imentation such that experiments which are impractical
(e.g., too large, too expensive) or impossible (e.g., human
experiments with carcinogens) to perform are conducted
on a computer. We believe that utilization of computer
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modeling is essential in the studies of toxicology of chem-
icals/drugs, chemical/drug mixtures, and their risk/safety
assessment. The area of biology, in general, will be well
served by the application of computer technology as an
alternative research method to conserve resources and
minimize the killing of laboratory animals. Looking into
the future, we believe that the linkage of PBPK modeling
and “reaction network modeling,” described briefly in the
following two subsections, has the potential of providing
a computer simulation platform for complex biologic sys-
tems involving chemicals/drugs, chemical/drug mixtures,
and/or multiple stressors. For a more detailed discussion,
the readers are referred to three publications (Liao et al.,
2002; Yang et al., 2003a,b) from our laboratory.

BUILDING A SECOND-GENERATION PBPK/PD
MODEL

In classical pharmacokinetics and physiologically based
pharmacokinetics, human or animal bodies were often
described by a few compartments. By second-generation
PBPK/PD modeling, we refer to integrating PBPK with
reaction network modeling, thus including many more
compartments (i.e., a delumping process). Our thoughts
may best be explained in this way: If one draws a parallel
between an oil refinery, where application of the reaction
network modeling approach has been very successful,
and a human body, the individual processing units in the
oil refinery may be considered as equivalent to the vital
organs of the human body. Even though the cell or organ
may be much more complicated, the complex biochemical
reaction networks in each organ may be modeled and
linked much the same way as the modeling of the entire oil
refinery through linkage of the individual processing units.

REACTION NETWORK MODELING

From the perspective of its original application in
petroleum engineering, a Reaction Network Model is a
tool for predicting the amounts of reactants, intermediates,
and products as a function of time for a series of
coupled chemical reactions (potentially numbering in the
tens of thousands of reactions for some systems). It is
usually a mathematical or symbolic formulation suitable
for solution on the computer. A reaction network model
builder is a tool for the computer generation of a reaction
network model. The model builder can thus be used not
only to solve the kinetic equations of interest but also
to generate the reaction mechanisms, rate constants, and
reaction equations themselves.

Essentially, the model builder works as follows:

1. The concentrations of the species to be reacted or
metabolized are input to the model builder.

2. For each species in turn, the model builder performs
a test against each of a set of “reaction rules” to
determine whether or not the species is susceptible
to a particular chemical reaction.

3. If it is not susceptible to any reactions, no further
action is taken on this species.

4. If it is susceptible, a transformation of the species
into one or more product species is performed based
on the particular chemical reaction.

5. Each of these product species then undergoes the
same susceptibility tests and a similar transforma-
tion sequence. This leads to a linking of all reactants
with intermediates and, ultimately, with final prod-
ucts. This linking forms the structure of the chemical
“reaction network.”

6. After the reaction network is established, the
rate constants for the reactions are retrieved or
are computed.

7. The coupled differential equations governing the
reaction kinetics for the network are then formulated
by the model builder.

8. Finally, the kinetic equations, that is, the model
equations, are solved numerically, leading to the
concentrations of all species as a function of time.

More details on reaction network modeling, particularly
the initial application to biomedical research, are avail-
able in a number of recent publications (Klein et al.,
2002; Liao et al., 2002; Reisfeld and Yang, 2003; Yang
et al., 2003a,b).

CONCLUSION

It is fitting to conclude with some recent testimonials from
reputable scientists for the importance of the integration
of different fields and the central role computer modeling
will play in biology:

In an AAAS Plenary Lecture on February 13, 1998,
Dr. Harold Varmus, then Director of the National
Institutes of Health, emphasized, among others,
two specific themes: “Discoveries in biology and
medicine depend on progress in many fields of
science” and “Methods that dramatically expand
biological data also demand new modes of analysis
and new ways to ask scientific questions.” He said,
“In short, biology is not only for biologists.”• ž Q10

Craig Venter of the human genome fame stated, “If we
hope to understand biology, instead of looking at
one little protein at a time, which is not how biology
works, we will need to understand the integration
of thousands of proteins in a dynamically changing
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environment. A computer will be the biologist’s
number one tool.”• (Bulter, 1999).ž Q11

Tyson and colleagues (2001) indicated, “Many promi-
nent molecular biologists have pointed out the press-
ing need for theoretical and computational tools to
show the spatial and temporal organization implicit
in the way the macromolecules are ‘wired together’
to create a living cell.”•ž Q12

PBPK models have proven useful in uncovering deter-
minants of disposition of carcinogens and other com-
pounds in the body; PBPD cancer models have shown the
role of mutation and cell proliferation in the time course of
tumor development. Both of these types of models initially
lacked considerable biologic detail due to limitations of
our knowledge of fundamentals of cell and molecular biol-
ogy. The revolution in genomic technologies in the past
decade has revolutionized the database to support mech-
anistic modeling of chemical disposition and of biologic
responses and these technologies now provide a basis for
expansion of these models with increasing biologic detail.
Reaction network models of cell constituents and genetic
regulatory networks of cellular controls appear particu-
larly attractive candidates for approaches to uncover the
interactions and perturbations controlling neoplastic trans-
formations and growth.

Another contemporary extension of PBPK/PD models
is closely tied to current attempts to unravel the circuitry
of living cells and to discover the manner in which these
circuits lead to biologic function and health. Mathemat-
ical models of gene networks and their perturbation by
disease or by chemical exposures are now being devel-
oped (Andersen and Barton, 1999). In some cases, simple
prokaryotic cells with specific circuit elements (e.g., bio-
logic oscillators, switches, amplifiers) have been produced
and examined by laboratory experiments and by compu-
tation (Guet et al., 2002; Hasty et al., 2002; McMillen
et al., 2002). These computational models evaluate the
protein networks within cells, the genetic control of these
networks, and the logic of cellular responses affected by
these networks (Alm and Arkin, 2003; Davidson et al.,
2002; Ferrell, 2002).

Gene network modeling in intact animals will
inevitably draw on PBPK and reaction network models
to track concentrations of endogenous and exogenous
signaling compounds and on PBPD models to simulate
consequences of the interactions of these compounds
with signaling pathways within cells. Reverse engineering
approaches attempt to uncover the circuitry of working
cells (Csete and Doyle, 2002). Large-scale simulation
modeling that has formed the major core of PBPK/PD
models remains important in examining these genetic
regulatory networks. However, these types of models are
being augmented by Boolean approaches using on–off

logic to increase the scope of genomic coverage (Bolouri
and Davidson, 2002). Efforts in understanding genetic
networks may be especially important in providing
insights into neoplastic diseases in which cell signaling
networks become impaired or deranged (Hahn and
Weinberg, 2002; Hanahan and Weinberg, 2000).
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