APPENDIX B

Data Integration Rules

Data Integration Rules - Maine

Several questions arose during the data compilation process:

- 1. If traits data for taxa are available from multiple sources, which source should we use? What if they differ?
- 2. How do we assign genus-level traits information if only species-level information is available? What if trait states vary among species within the genera?
- 3. What if traits are co-occurring (more than one trait state is appropriate and is therefore listed)? This was particularly relevant for functional feeding group and habit traits

Integration rules were developed to maintain consistency when addressing these issues. For most of the traits, the Poff et al. 2006 Traits Matrix was given top priority. If the Traits Matrix lacked information for certain taxa, the USGS traits database (Vieira et al. 2006) received next highest priority, followed by the U.S. EPA's 1970s publications. Weighted average and maximum likelihood calculations received top priority for the temperature preference and tolerance trait assignments. All OTUs in the state biomonitoring databases, including rare taxa, were included Maine traits table. This is because the database is meant to be a 'living' document; the intent is that people using the database can fill in or update information as it becomes available. People using the database are encouraged to check the trait information and customize it as necessary so that the information is more accurate for taxa occurring in their region (in particular functional feeding group (FFG) and habit, for which only primary trait state assignments were made).

The trait information that was entered into the Maine traits table came from a number of different sources. Sometimes the sources had slight differences in how traits were categorized and in some of the thresholds that were used when assigning trait states. Another issue was that trait information for certain taxa was available from several different sources, so a decision had to be made about which source to use (sources were generally in agreement, but sometimes slight differences existed). Because of these issues, decisions had to be made during the entry process. One involved interpreting literature in order to get the trait state information into a standardized and usable format for analyses. The other involved deciding which source to use. 'Rules' were developed for the following trait state entries: voltinism, development, life span, dispersal, armoring, size, rheophily, functional feeding group, habit, tolerance values and thermal preference and tolerance. They are summarized in **Maine Tables 1** through **11**.

Maine Table 1. Integration rules that were used when assigning voltinism trait states to taxa.

Trait	Source	Original trait states	Assigned trait states
Voltinism	Poff et al. 2006	semivoltine	semivoltine
		univoltine	univoltine
		bi- or multivoltine	bi- or multivoltine
Voltinism	Vieira et al. 2006	< 1 Generation per year	semivoltine
		1 Generation per year	univoltine
		> 1 Generation per year	bi- or multivoltine
Rules:	2. use the Vieira et al. 20 Many of the Vieira entrie a. the trait state that wa b. if different trait state If it mentioned that o c. if Volt_ comments w	6 entries (for genus-level matches) 606 entries 6 swent to species-level. If trait states varied amount is most frequently recorded was used (= majority is occurred with the same frequency, the Volt_Cone state was more typical than another, the more was not helpful, the trait state with the higher num was one 'univoltine' entry and one 'semivoltine'	rules) comments field was referenced. e typical state was used. aber of generations was chosen.

Maine Table 2. Integration rules that were used when assigning development trait states to taxa.

Trait	Source	Original trait states	Assigned trait states
Development	Poff et al. 2006	Fast seasonal	Fast
		Slow seasonal	Slow
		Non-seasonal	Non
Dev_Speed	Vieira et al. 2006	Fast seasonal	Fast
		Slow seasonal	Slow
		Non-seasonal	Non
Rules:	1. use the Poff et al. 20 2. use the Vieira et al. 2	06 entries (for genus-level match 2006 entries	nes)

Maine Table 3. Integration rules that were used when assigning life span trait states to taxa.

Trait	Source	Original trait states	Assigned trait states
Adult Life Span	Poff et al. 2006	very short	very short
		short	short
		long	long
Adult_lifespan	Vieira et al. 2006	hours	very short
		days	very short
		weeks	short
		months	long
Rules:	1. use the Poff et al. 200	06 entries (for genus-level matche	es)
	2. use the Vieira et al. 2	2006 entries (reference Adult_lifes	span_comments if necessary)

Maine Table 4. Integration rules that were used when assigning dispersal trait states to taxa.

Trait	Source	Original trait states	Assigned trait states
Female dispersal	Poff et al. 2006	low (< 1 km flight before laying eggs)	low
		high (> 1 km flight before laying eggs)	high
Adult dispersal	Vieira et al. 2006	1 km or less	low
		10 km or less	high
		10 m or less	NA
		100 km or less	high

	100 km of febb	8
Rules:	1. use the Poff et al. 2006 entries (for genus-level matches)	
	2. use the Vieira et al. 2006 entries	
Notes:	in the Poff et al. 2006 table, it specifies 'female dispersal.'	
	in the Vieira et al. 2006 traits database, it specifies 'Adult dispersal.'	
	It was assumed that the information was compatible between	
	sources.	
	In Vieira et al. 2006, there is an entry '10 m or less.'	
	It appears that this was a typo (it likely should have been '10 km or less').	
	Therefore this category was excluded.	

Maine Table 5. Integration rules that were used when assigning armoring trait states to taxa.

Source	Original trait states	Assigned trait states
Poff et al. 2006	none (soft-bodied forms)	none
	poor (heavily sclerotized)	poor
	good (e.g., some cased caddisflies)	good
Vieira et al. 2006	Soft	none
	All sclerotized	poor
	Partly sclerotized	poor
	Hard shelled	good
1. use the Poff et al. 2006 entries (for genus-level matches)		
Notes: In the Poff et al. 2006 table, it does not mention 'partly sclerotized.'		d' were assigned to the 'poo
	Poff et al. 2006 Vieira et al. 2006 1. use the Poff et al. 20 2. use the Vieira et al. In the Poff et al. 2006 sclerotized.'	Poff et al. 2006 none (soft-bodied forms) poor (heavily sclerotized) good (e.g., some cased caddisflies) Vieira et al. 2006 Soft All sclerotized Partly sclerotized Hard shelled 1. use the Poff et al. 2006 entries (for genus-level matches) 2. use the Vieira et al. 2006 entries In the Poff et al. 2006 table, it does not mention 'partly

Maine Table 6. Integration rules that were used when assigning size (at maturity) trait states to taxa.

Trait	Source	Original trait states	Assigned trait states
Size at maturity	Poff et al. 2006	Large (length > 16 mm)	large
		Medium (length 9-16 mm)	medium
		Small (length < 9 mm)	small
Max_Body_Size	Vieira et al. 2006	Large (length > 16 mm)	large
		Medium (length 9-16 mm)	medium
		Small (length < 9 mm)	small
Rules:	1. use the Poff et al. 2006	entries (for genus-level matches)	
	2. use the Vieira et al. 200	06 entries	
	If more than one trait stat	e was assigned (i.e. there was variation a	mong species within a genus):
	a. the category that was n	nost frequently recorded was used (major	ity rules)
	b. if different categories v	were recorded the same number of times,	the 'medium' entry was used
	(i.e. if there was one 'sma	ll' entry and one 'medium' entry, the med	ium entry was used)

Maine Table 7. Integration rules that were used when assigning rheophily trait states to taxa.

Rheophily	Poff et al. 2006 Vieira et al. 2006	Depositional only Depositional and erosional Erosional	depo depo_eros eros
Rheophily	Vieira et al. 2006	Erosional	• –
Rheophily	Vieira et al. 2006		eros
Rheophily	Vieira et al. 2006		
		Current_quiet	depo
		Current_slow	depo
		Current_fast_lam	eros
		Current_fast_turb	eros
		More than one:	if both quiet and slow, depo
		quiet & slow	depo
		quiet and/or slow and fast (either lam or turb)	depo_eros
Flow_pref	EPA 1970s	Standing	depo
		Slight	depo
		Standing-slight	depo
		Standing and flowing	depo_eros
		Moderate	eros
		Moderate-fast	eros
		Fast	eros
		More than one:	
		some combination of standing and/or slight and moderate and/or fast	depo_eros

Maine Table 8. Integration rules that were used when assigning (primary) functional feeding group trait states to taxa.

Integration Rules for FFG:

Only one FFG category was assigned to each taxa. The following rules were used:

- 1. use the Poff et al. 2006 entries (for genus-level matches)
- 2. use the Vieira et al. 2006 entry (Feed_mode_prim)
- 3. use the WSA entry from the Benthics Master Taxa table
- 4. use the RBP2 1999 entry from the Benthics Master Taxa table
- 5. use the USEPA 1990 Draft entry from the Benthics_Master_Taxa table

If more than one category was assigned within a genus, the one that occurred most frequently was entered (=majority rules)

If different states were recorded the same number of times, the next source was used as a 'tie-breaker' (i.e. if Vieira et al. 2006 had two species listed as CN and two as SP, and the WSA entry was SP, I used SP)

If unable to resolve based on these sources, one was randomly selected.

Maine Table 9. Integration rules that were used when assigning (primary) habit trait states to taxa.

Integration Rules for Habit:

Only one habit category was assigned to each taxa. The following rules were used:

- 1. use the Poff et al. 2006 entries (for genus-level matches)
- 2. use the Vieira et al. 2006 entry (Habit_prim)
- 3. use the WSA entry from the Benthics_Master_Taxa table
- 4. use the RBP2 1999 entry from the Benthics_Master_Taxa table
- 5. use the USEPA 1990 Draft entry from the Benthics_Master_Taxa table

If more than one category was assigned within a genus, the one that occurred most frequently was entered (=majority rules)

If different states were recorded the same number of times, the next source was used as a 'tie-breaker' (i.e. if Vieira et al. 2006 had two species listed as CN and two as SP, and the WSA entry was SP, I used SP)

If unable to resolve based on these sources, one was randomly selected.

Maine Table 10. Integration rules that were used when assigning tolerance values to taxa.

Integration Rules for Tolerance:

Only one tolerance value was assigned to each taxa. The following rules were used:

- 1. use the WSA entry
- 2. use the RBP2 1999 entry
- 3. use the USEPA 1990 Draft entry

If there were more than two values from a source, the median value was used.

If there were two entries, the higher value was used (i.e. if assigned values were 2 & 3, the 3 was used)

NOTE: if state-specific tolerance values were provided, those were also incorporated into the traits table.

Maine Table 11. Integration rules that were used when assigning thermal preference and tolerance values to taxa.

Traits	Source	Original trait states	Assigned trait states
Thermal preference	Poff et al. 2006	cold_cool	$Rank_opt = 3$, $Rank_tol = 3$
		cool_warm	Rank_opt = 4, Rank_tol=5
		warm	Rank_opt = 5, Rank_tol=3
Thermal_pref	Vieira et al. 2006	Cold stenothermal (<5 C)	Rank_opt = 3, Rank_tol=3
		Cold-cool eurythermal (0-15 C)	Rank_opt = 3, Rank_tol=4
		Hot euthermal (>30 C)	Rank_opt = 5, Rank_tol=3
		No strong preference	Rank_opt = 4, Rank_tol=5
		Warm eurythermal (15-30 C)	Rank_opt = 5, Rank_tol=4
		More than one:	
		combination of colder and warmer categories	Rank_opt = 4, Rank_tol=5
Thermal preference	EPA 1970s	Eurythermal (≥15 C)	Rank_opt = 5, Rank_tol=4
		Euthermal (>30 C)	Rank_opt = 5, Rank_tol=3
		Mesothermal (15-30 C)	Rank_opt=5, Rank_tol=4
		Metathermal (5-15 C)	Rank_opt=3, Rank_tol=3
		Oligothermal (<15 C)	Rank_opt = 3, Rank_tol=4
		Stenothermal ($\leq 5 \text{ C}$)	Rank_opt = 3, Rank_tol=3
Temp_Opt_Rank		Wide range - no apparent preference	Rank_opt = 4, Rank_tol=5
Temp_Tol_Rank		More than one:	
		combination of colder and warmer categories	Rank_opt = 4, Rank_tol=5

Rules:

1. use the values generated by Lei Zheng (or from other databases, like Brandt and Yuan)

1. use the Poff et al. 2006 entries (for genus-level matches)

3. use the Vieira et al. 2006 entries

4. use the EPA1970s entries

If more than one trait state was assigned (i.e. there was variation among species within a genus): the category that was most frequently recorded was used (majority rules)

Data Integration Rules - Utah

Several questions arose during the data compilation process:

- 1. If traits data for taxa are available from multiple sources, which source should we use? What if they differ?
- 2. How do we assign genus-level traits information if only species-level information is available? What if trait states vary among species within the genera?
- 3. What if traits are co-occurring (more than one trait state is appropriate and is therefore listed)? This was particularly relevant for functional feeding group and habit traits

Integration rules were developed to maintain consistency when addressing these issues. For most of the traits, the Poff et al. 2006 Traits Matrix was given top priority. If the Traits Matrix lacked information for certain taxa, the USGS traits database (Vieira et al. 2006) received next highest priority, followed by the U.S. EPA's 1970s publications. Weighted average and maximum likelihood calculations received top priority for the temperature preference and tolerance trait assignments. All OTUs in the state biomonitoring databases, including rare taxa, were included Utah traits table. This is because the database is meant to be a 'living' document; the intent is that people using the database can fill in or update information as it becomes available. People using the database are encouraged to check the trait information and customize it as necessary so that the information is more accurate for taxa occurring in their region (in particular functional feeding group (FFG) and habit, for which only primary trait state assignments were made).

The trait information that was entered into the Utah traits table came from a number of different sources. Sometimes the sources had slight differences in how traits were categorized and in some of the thresholds that were used when assigning trait states. Another issue was that trait information for certain taxa was available from several different sources, so a decision had to be made about which source to use (sources were generally in agreement, but sometimes slight differences existed). Because of these issues, decisions had to be made during the entry process. One involved interpreting literature in order to get the trait state information into a standardized and usable format for analyses. The other involved deciding which source to use. 'Rules' were developed for the following trait state entries: voltinism, development, life span, dispersal, armoring, size, rheophily, functional feeding group, habit, tolerance values and thermal preference and tolerance. They are summarized in **Utah Tables 1** through **11**.

Utah Table 1. Integration rules that were used when assigning voltinism trait states to taxa.

Trait	Source	Original trait states	Assigned trait states
Voltinism	Poff et al. 2006	semivoltine	semivoltine
		univoltine	univoltine
		bi- or multivoltine	bi- or multivoltine
Voltinism	Vieira et al. 2006	< 1 Generation per year	semivoltine
		1 Generation per year	univoltine
		> 1 Generation per year	bi- or multivoltine
Rules:	 use the Vieira et al. 200 Many of the Vieira entries a. the trait state that was 	went to species-level. If trait states varied am most frequently recorded was used (= majority	y rules)
	If it mentioned that or	occurred with the same frequency, the Volt_C he state was more typical than another, the more s not helpful, the trait state with the higher nur	e typical state was used.
		vas one 'univoltine' entry and one 'semivoltine'	

Utah Table 2. Integration rules that were used when assigning development trait states to taxa.

Trait	Source	Original trait states	Assigned trait states
Development	Poff et al. 2006	Fast seasonal	Fast
		Slow seasonal	Slow
		Non-seasonal	Non
Dev_Speed	Vieira et al. 2006	Fast seasonal	Fast
		Slow seasonal	Slow
		Non-seasonal	Non
Rules:	1. use the Poff et al. 20 2. use the Vieira et al. 2	06 entries (for genus-level match 2006 entries	nes)

Utah Table 3. Integration rules that were used when assigning life span trait states to taxa.

Trait	Source	Original trait states	Assigned trait states
Adult Life Span	Poff et al. 2006	very short	very short
		short	short
		long	long
Adult_lifespan	Vieira et al. 2006	hours	very short
		days	very short
		weeks	short
		months	long

Utah Table 4. Integration rules that were used when assigning dispersal trait states to taxa.

Trait	Source	Original trait states	Assigned trait states
Female dispersal	Poff et al. 2006	low (< 1 km flight before laying eggs)	low
		high (> 1 km flight before laying eggs)	high
Adult dispersal	Vieira et al. 2006	1 km or less	low
		10 km or less	high
		10 m or less	NA
		100 km or less	high

Rules:	1. use the Poff et al. 2006 entries (for genus-level matches)
	2. use the Vieira et al. 2006 entries
Notes:	in the Poff et al. 2006 table, it specifies 'female dispersal.'
	in the Vieira et al. 2006 traits database, it specifies 'Adult dispersal.'
	It was assumed that the information was compatible between
	sources.
	In Vieira et al. 2006, there is an entry '10 m or less.'
	It appears that this was a typo (it likely should have been '10 km or less').
	Therefore this category was excluded.

Utah Table 5. Integration rules that were used when assigning armoring trait states to taxa.

Trait	Source	Original trait states	Assigned trait states	
Armoring	Poff et al. 2006	none (soft-bodied forms)	none	
		poor (heavily sclerotized)	poor	
		good (e.g., some cased caddisflies)	good	
Armor	Vieira et al. 2006	Soft	none	
		All sclerotized	poor	
		Partly sclerotized	poor	
		Hard shelled	good	
Rules:	 use the Poff et al. 2006 entries (for genus-level matches) use the Vieira et al. 2006 entries 			
Notes:	In the Poff et al. 2006 table, it does not mention 'partly sclerotized.'			
	In the Vieira et al. 2006 table, 'partly sclerotized' and 'all sclerotized' were assigned to the 'poor' category.			

Utah Table 6. Integration rules that were used when assigning size (at maturity) trait states to taxa.

Trait	Source	Original trait states	Assigned trait states		
Size at maturity	Poff et al. 2006	Large (length > 16 mm)	large		
		Medium (length 9-16 mm)	medium		
		Small (length < 9 mm)	small		
Max_Body_Size	Vieira et al. 2006	Large (length > 16 mm)	large		
		Medium (length 9-16 mm)	medium		
		Small (length < 9 mm)	small		
Rules:	1. use the Poff et al. 2006 entries (for genus-level matches)				
	2. use the Vieira et al. 2006 entries				
	If more than one trait stat	e was assigned (i.e. there was variation as	mong species within a genus):		
	a. the category that was most frequently recorded was used (majority rules)				
	b. if different categories v	vere recorded the same number of times,	the 'medium' entry was used		
	(i.e. if there was one 'sma	ll' entry and one 'medium' entry, the med	ium entry was used)		

Utah Table 7. Integration rules that were used when assigning rheophily trait states to taxa.

	Depositional only Depositional and erosional Erosional Current_quiet Current_slow Current_fast_lam Current_fast_turb e than one: quiet & slow quiet and/or slow and fast (either lam or turb) Standing Slight Standing-slight	depo depo_eros eros depo depo eros eros if both quiet and slow, depo depo_eros depo depo_eros depo depo
More	Erosional Current_quiet Current_slow Current_fast_lam Current_fast_turb e than one: quiet & slow quiet and/or slow and fast (either lam or turb) Standing Slight	eros depo depo eros eros if both quiet and slow, depo depo depo_eros depo
More	Current_quiet Current_slow Current_fast_lam Current_fast_turb e than one: quiet & slow quiet and/or slow and fast (either lam or turb) Standing Slight	depo depo eros eros if both quiet and slow, depo depo depo_eros depo
More	Current_slow Current_fast_lam Current_fast_turb e than one: quiet & slow quiet and/or slow and fast (either lam or turb) Standing Slight	depo eros eros if both quiet and slow, depo depo depo_eros depo
Ç	Current_fast_lam Current_fast_turb e than one: quiet & slow quiet and/or slow and fast (either lam or turb) Standing Slight	eros eros if both quiet and slow, depo depo depo_eros depo
Ç	Current_fast_turb e than one: quiet & slow quiet and/or slow and fast (either lam or turb) Standing Slight	eros if both quiet and slow, depo depo_eros depo
Ç	e than one: quiet & slow quiet and/or slow and fast (either lam or turb) Standing Slight	if both quiet and slow, depo depo_eros depo
Ç	quiet & slow quiet and/or slow and fast (either lam or turb) Standing Slight	depo depo_eros depo
	quiet and/or slow and fast (either lam or turb) Standing Slight	depo_eros depo
	Standing Slight	depo
Flow_pref EPA 1970s	Slight	
	9	deno
	Standing-slight	асро
	Standing singin	depo
	Standing and flowing	depo_eros
	Moderate	eros
	Moderate-fast	eros
	Fast	eros
More	e than one:	
	e combination of standing and/or slight and erate and/or fast	depo_eros

Utah Table 8. Integration rules that were used when assigning (primary) functional feeding group trait states to taxa.

Integration Rules for FFG:

Only one FFG category was assigned to each taxa. The following rules were used:

- 1. use the Poff et al. 2006 entries (for genus-level matches)
- 2. use the Vieira et al. 2006 entry (Feed_mode_prim)
- 3. use the WSA entry from the Benthics Master Taxa table
- 4. use the RBP2 1999 entry from the Benthics Master Taxa table
- 5. use the USEPA 1990 Draft entry from the Benthics_Master_Taxa table

If more than one category was assigned within a genus, the one that occurred most frequently was entered (=majority rules)

If different states were recorded the same number of times, the next source was used as a 'tie-breaker' (i.e. if Vieira et al. 2006 had two species listed as CN and two as SP, and the WSA entry was SP, I used SP)

If unable to resolve based on these sources, one was randomly selected.

Utah Table 9. Integration rules that were used when assigning (primary) habit trait states to taxa.

Integration Rules for Habit:

Only one habit category was assigned to each taxa. The following rules were used:

- 1. use the Poff et al. 2006 entries (for genus-level matches)
- 2. use the Vieira et al. 2006 entry (Habit_prim)
- 3. use the WSA entry from the Benthics_Master_Taxa table
- 4. use the RBP2 1999 entry from the Benthics_Master_Taxa table
- 5. use the USEPA 1990 Draft entry from the Benthics_Master_Taxa table

If more than one category was assigned within a genus, the one that occurred most frequently was entered (=majority rules)

If different states were recorded the same number of times, the next source was used as a 'tie-breaker' (i.e. if Vieira et al. 2006 had two species listed as CN and two as SP, and the WSA entry was SP, I used SP)

If unable to resolve based on these sources, one was randomly selected.

Utah Table 10. Integration rules that were used when assigning tolerance values to taxa.

Integration Rules for Tolerance:

Only one tolerance value was assigned to each taxa. The following rules were used:

- 1. use the WSA entry
- 2. use the RBP2 1999 entry
- 3. use the USEPA 1990 Draft entry

If there were more than two values from a source, the median value was used.

If there were two entries, the higher value was used (i.e. if assigned values were 2 & 3, the 3 was used)

NOTE: if state-specific tolerance values were provided, those were also incorporated into the traits table.

Utah Table 11. Integration rules that were used when assigning thermal preference and tolerance values to taxa.

Traits	Source	Original trait states	Assigned trait states
Thermal preference	Poff et al. 2006	cold_cool	Rank_opt = 3, Rank_tol=3
		cool_warm	Rank_opt = 4, Rank_tol=5
		warm	Rank_opt = 5, Rank_tol=3
Thermal_pref	Vieira et al. 2006	Cold stenothermal (<5 C)	Rank_opt = 3, Rank_tol=3
		Cold-cool eurythermal (0-15 C)	Rank_opt = 3, Rank_tol=4
		Hot euthermal (>30 C)	Rank_opt = 5, Rank_tol=3
		No strong preference	Rank_opt = 4, Rank_tol=5
		Warm eurythermal (15-30 C)	Rank_opt = 5, Rank_tol=4
		More than one:	
		combination of colder and warmer categories	Rank_opt = 4, Rank_tol=5
Thermal preference	EPA 1970s	Eurythermal (≥15 C)	Rank_opt = 5, Rank_tol=4
		Euthermal (>30 C)	Rank_opt = 5, Rank_tol=3
		Mesothermal (15-30 C)	Rank_opt=5, Rank_tol=4
		Metathermal (5-15 C)	Rank_opt=3, Rank_tol=3
		Oligothermal (<15 C)	Rank_opt = 3, Rank_tol=4
		Stenothermal ($\leq 5 \text{ C}$)	Rank_opt = 3, Rank_tol=3
Temp_Opt_Rank		Wide range - no apparent preference	Rank_opt = 4, Rank_tol=5
Temp_Tol_Rank		More than one:	
		combination of colder and warmer categories	Rank_opt = 4, Rank_tol=5

Rules:

1. use the values generated by Lei Zheng (or from other databases, like Brandt and Yuan)

1. use the Poff et al. 2006 entries (for genus-level matches)

3. use the Vieira et al. 2006 entries

4. use the EPA1970s entries

If more than one trait state was assigned (i.e. there was variation among species within a genus): the category that was most frequently recorded was used (majority rules)

Data Integration Rules - North Carolina

Several questions arose during the data compilation process:

- 1. If traits data for taxa are available from multiple sources, which source should we use? What if they differ?
- 2. How do we assign genus-level traits information if only species-level information is available? What if trait states vary among species within the genera?
- 3. What if traits are co-occurring (more than one trait state is appropriate and is therefore listed)? This was particularly relevant for functional feeding group and habit traits

Integration rules were developed to maintain consistency when addressing these issues. For most of the traits, the Poff et al. 2006 Traits Matrix was given top priority. If the Traits Matrix lacked information for certain taxa, the USGS traits database (Vieira et al. 2006) received next highest priority, followed by the U.S. EPA's 1970s publications. Weighted average and maximum likelihood calculations received top priority for the temperature preference and tolerance trait assignments. All OTUs in the state biomonitoring databases, including rare taxa, were included North Carolina traits table. This is because the database is meant to be a 'living' document; the intent is that people using the database can fill in or update information as it becomes available. People using the database are encouraged to check the trait information and customize it as necessary so that the information is more accurate for taxa occurring in their region (in particular functional feeding group (FFG) and habit, for which only primary trait state assignments were made).

The trait information that was entered into the North Carolina traits table came from a number of different sources. Sometimes the sources had slight differences in how traits were categorized and in some of the thresholds that were used when assigning trait states. Another issue was that trait information for certain taxa was available from several different sources, so a decision had to be made about which source to use (sources were generally in agreement, but sometimes slight differences existed). Because of these issues, decisions had to be made during the entry process. One involved interpreting literature in order to get the trait state information into a standardized and usable format for analyses. The other involved deciding which source to use. 'Rules' were developed for the following trait state entries: voltinism, development, life span, dispersal, armoring, size, rheophily, functional feeding group, habit, tolerance values and thermal preference and tolerance. They are summarized in **NC Tables 1** through **11**.

NC Table 1. Integration rules that were used when assigning voltinism trait states to taxa.

Trait	Source	Source Original trait states Assigned trait states			
Voltinism	Poff et al. 2006	et al. 2006 semivoltine semivoltine			
		univoltine	univoltine		
		bi- or multivoltine	bi- or multivoltine		
Voltinism	Vieira et al. 2006	< 1 Generation per year	semivoltine		
		1 Generation per year	univoltine		
		> 1 Generation per year	bi- or multivoltine		
Rules:	 use the Poff et al. 2006 entries (for genus-level matches) use the Vieira et al. 2006 entries Many of the Vieira entries went to species-level. If trait states varied among species within a genus: a. the trait state that was most frequently recorded was used (= majority rules) 				
 b. if different trait states occurred with the same frequency, the Volt_Comments field was re If it mentioned that one state was more typical than another, the more typical state was use c. if Volt_ comments was not helpful, the trait state with the higher number of generations was not helpful. 			omments field was referenced. e typical state was used.		
	For example, if there v	vas one 'univoltine' entry and one 'semivoltine'	entry, the 'univoltine' entry was chosen.		

NC Table Table 2. Integration rules that were used when assigning development trait states to taxa.

Trait	Source	Original trait states	Assigned trait states
Development	Poff et al. 2006	Fast seasonal	Fast
		Slow seasonal	Slow
		Non-seasonal	Non
Dev_Speed	Vieira et al. 2006	Fast seasonal	Fast
		Slow seasonal	Slow
		Non-seasonal	Non
Rules:	1. use the Poff et al. 20	06 entries (for genus-level match	nes)
	2. use the Vieira et al. 2	2006 entries	

NC Table Table 3. Integration rules that were used when assigning life span trait states to taxa.

Trait	Source	Original trait states	Assigned trait states
Adult Life Span	Poff et al. 2006	very short	very short
		short	short
		long	long
Adult_lifespan	Vieira et al. 2006	hours	very short
		days	very short
		weeks	short
		months	long
Rules:		06 entries (for genus-level matche	•

NC Table Table 4. Integration rules that were used when assigning dispersal trait states to taxa.

Trait	Source	Original trait states	Assigned trait states
Female dispersal	Poff et al. 2006	low (< 1 km flight before laying eggs)	low
		high (> 1 km flight before laying eggs)	high
Adult dispersal	Vieira et al. 2006	1 km or less	low
		10 km or less	high
		10 m or less	NA
		100 km or less	high

Rules:	1. use the Poff et al. 2006 entries (for genus-level matches)
	2. use the Vieira et al. 2006 entries
Notes:	in the Poff et al. 2006 table, it specifies 'female dispersal.'
	in the Vieira et al. 2006 traits database, it specifies 'Adult dispersal.'
	It was assumed that the information was compatible between
	sources.
	In Vieira et al. 2006, there is an entry '10 m or less.'
	It appears that this was a typo (it likely should have been '10 km or less').
	Therefore this category was excluded.

NC Table Table 5. Integration rules that were used when assigning armoring trait states to taxa.

Trait	Source	Original trait states	Assigned trait states
Armoring	Poff et al. 2006	none (soft-bodied forms)	none
		poor (heavily sclerotized)	poor
		good (e.g., some cased caddisflies)	good
Armor	Vieira et al. 2006	Soft	none
		All sclerotized	poor
		Partly sclerotized	poor
		Hard shelled	good
Rules:	 use the Poff et al. 2 use the Vieira et al. 	006 entries (for genus-level matches) 2006 entries	
Notes:	sclerotized.'	table, it does not mention 'partly	
	In the Vieira et al. 200	06 table, 'partly sclerotized' and 'all sclerotize	d' were assigned to the 'poo

NC Table Table 6. Integration rules that were used when assigning size (at maturity) trait states to taxa.

Trait	Source	Original trait states	Assigned trait states			
Size at maturity	Poff et al. 2006	Large (length > 16 mm)	large			
		Medium (length 9-16 mm)	medium			
		Small (length < 9 mm)	small			
Max_Body_Size	Vieira et al. 2006	Large (length > 16 mm)	large			
		Medium (length 9-16 mm)	medium			
		Small (length < 9 mm)	small			
Rules:	1. use the Poff et al. 2006 entries (for genus-level matches)					
	2. use the Vieira et al. 2006 entries					
	If more than one trait state was assigned (i.e. there was variation among species within a genus):					
	a. the category that was most frequently recorded was used (majority rules)					
	b. if different categories were recorded the same number of times, the 'medium' entry was used (i.e. if there was one 'small' entry and one 'medium' entry, the medium entry was used)					

NC Table Table 7. Integration rules that were used when assigning rheophily trait states to taxa.

Rheophily Vieira	et al. 2006 et al. 2006	Depositional only Depositional and erosional Erosional Current_quiet Current_slow Current_fast_lam Current_fast_turb re than one:	depo depo_eros eros depo depo eros eros
		Erosional Current_quiet Current_slow Current_fast_lam Current_fast_turb re than one:	eros depo depo eros eros
		Current_quiet Current_slow Current_fast_lam Current_fast_turb re than one:	depo depo eros eros
		Current_slow Current_fast_lam Current_fast_turb re than one:	depo eros eros
Elow prof ED	Мо	Current_fast_lam Current_fast_turb re than one:	eros eros
Elow prof ED	Мо	Current_fast_turb re than one:	eros
Elow prof ED	Mo	re than one:	
Flow prof ED	Mo		10141 1.4 1.1 1
Flow prof ED			if both quiet and slow, depo
Flow prof ED		quiet & slow	depo
Flow prof ED		quiet and/or slow and fast (either lam or turb)	depo_eros
riow_piei Er	A 1970s	Standing	depo
		Slight	depo
		Standing-slight	depo
		Standing and flowing	depo_eros
		Moderate	eros
		Moderate-fast	eros
		Fast	eros
	Mo	re than one:	
		e combination of standing and/or slight and lerate and/or fast	depo_eros

NC Table Table 8. Integration rules that were used when assigning (primary) functional feeding group trait states to taxa.

Integration Rules for FFG:

Only one FFG category was assigned to each taxa. The following rules were used:

- 1. use the Poff et al. 2006 entries (for genus-level matches)
- 2. use the Vieira et al. 2006 entry (Feed_mode_prim)
- 3. use the WSA entry from the Benthics_Master_Taxa table
- 4. use the RBP2 1999 entry from the Benthics Master Taxa table
- 5. use the USEPA 1990 Draft entry from the Benthics_Master_Taxa table

If more than one category was assigned within a genus, the one that occurred most frequently was entered (=majority rules)

If different states were recorded the same number of times, the next source was used as a 'tie-breaker' (i.e. if Vieira et al. 2006 had two species listed as CN and two as SP, and the WSA entry was SP, I used SP)

If unable to resolve based on these sources, one was randomly selected.

NC Table Table 9. Integration rules that were used when assigning (primary) habit trait states to taxa.

Integration Rules for Habit:

Only one habit category was assigned to each taxa. The following rules were used:

- 1. use the Poff et al. 2006 entries (for genus-level matches)
- 2. use the Vieira et al. 2006 entry (Habit_prim)
- 3. use the WSA entry from the Benthics_Master_Taxa table
- 4. use the RBP2 1999 entry from the Benthics_Master_Taxa table
- 5. use the USEPA 1990 Draft entry from the Benthics_Master_Taxa table

If more than one category was assigned within a genus, the one that occurred most frequently was entered (=majority rules)

If different states were recorded the same number of times, the next source was used as a 'tie-breaker' (i.e. if Vieira et al. 2006 had two species listed as CN and two as SP, and the WSA entry was SP, I used SP)

If unable to resolve based on these sources, one was randomly selected.

NC Table Table 10. Integration rules that were used when assigning tolerance values to taxa.

Integration Rules for Tolerance:

Only one tolerance value was assigned to each taxa. The following rules were used:

- 1. use the WSA entry
- 2. use the RBP2 1999 entry
- 3. use the USEPA 1990 Draft entry

If there were more than two values from a source, the median value was used.

If there were two entries, the higher value was used (i.e. if assigned values were 2 & 3, the 3 was used)

NOTE: if state-specific tolerance values were provided, those were also incorporated into the traits table.

NC Table Table 11. Integration rules that were used when assigning thermal preference and tolerance values to taxa.

Traits	Source	Original trait states	Assigned trait states
Thermal preference	Poff et al. 2006	cold_cool	Rank_opt = 3, Rank_tol=3
		cool_warm	Rank_opt = 4, Rank_tol=5
		warm	Rank_opt = 5, Rank_tol=3
Thermal_pref	Vieira et al. 2006	Cold stenothermal (<5 C)	Rank_opt = 3, Rank_tol=3
		Cold-cool eurythermal (0-15 C)	Rank_opt = 3, Rank_tol=4
		Hot euthermal (>30 C)	$Rank_opt = 5$, $Rank_tol = 3$
		No strong preference	Rank_opt = 4, Rank_tol=5
		Warm eurythermal (15-30 C)	Rank_opt = 5, Rank_tol=4
		More than one:	
		combination of colder and warmer categories	Rank_opt = 4, Rank_tol=5
Thermal preference	EPA 1970s	Eurythermal (≥15 C)	Rank_opt = 5, Rank_tol=4
		Euthermal (>30 C)	$Rank_opt = 5$, $Rank_tol = 3$
		Mesothermal (15-30 C)	Rank_opt=5, Rank_tol=4
		Metathermal (5-15 C)	Rank_opt=3, Rank_tol=3
		Oligothermal (<15 C)	Rank_opt = 3, Rank_tol=4
		Stenothermal ($\leq 5 \text{ C}$)	Rank_opt = 3, Rank_tol=3
Temp_Opt_Rank		Wide range - no apparent preference	Rank_opt = 4, Rank_tol=5
Temp_Tol_Rank		More than one:	·
		combination of colder and warmer categories	Rank_opt = 4, Rank_tol=5

Rules:

1. use the values generated by Lei Zheng (or from other databases, like Brandt and Yuan)

1. use the Poff et al. 2006 entries (for genus-level matches)

3. use the Vieira et al. 2006 entries

4. use the EPA1970s entries

If more than one trait state was assigned (i.e. there was variation among species within a genus): the category that was most frequently recorded was used (majority rules)