DRAFT DO NOT QUOTE OR CITE EPA/600/R-11/058a August 2011 External Review Draft

Vulnerability Assessments in Support of the Climate Ready Estuaries Program: A Novel Approach Using Expert Judgment

Volume I

Results for the San Francisco Estuary Partnership

NOTICE

THIS DOCUMENT IS A PRELIMINARY DRAFT. It has not been formally released by the U.S. Environmental Protection Agency and should not at this stage be construed to represent Agency policy. It is being circulated for comment on its technical accuracy and policy implications.

National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC

DISCLAIMER

This document is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

ABSTRACT

The San Francisco Estuary Partnership (SFEP), the San Francisco Bay Conservation and Development Commission, and the Environmental Protection Agency (EPA) collaborated on an ecological vulnerability assessment, using a novel methodology based on expert judgment, to inform adaptation planning under EPA's Climate Ready Estuaries Program. An expert elicitation-type exercise was designed to systematically elicit judgments from experts in a workshop setting regarding climate change effects on two key ecosystem processes: sediment retention in salt marshes and community interactions in mudflats. Specific goals were to assess 1) the relative influences of physical and ecological variables that regulate each process, 2) their relative sensitivities under current and future climate change scenarios, 3) the degree of confidence about these relationships, and 4) implications for management. For each process, an influence diagram was developed identifying key process variables and their interrelationships (influences). Using a coding scheme, each expert characterized the type and sensitivity of each influence under both current and future climate change scenarios. The experts also discussed the relative impact of certain influences on the endpoints. This report shows how particular pathways in such diagrams can be linked to management options in the context of planning documents to identify opportunities for 'mainstreaming' adaptation.

Vulnerability Assessments in Support of the Climate Ready Estuaries Program: A Novel Approach Using Expert Judgment

TABLE OF CONTENTS-OVERVIEW

Volume I: Results for the San Francisco Estuary Partnership

- 1. INTRODUCTION
- 2. EXPERT ELICITATION EXERCISE
- 3. MAKING THE LINK TO MANAGEMENT
- 4. CONCLUSIONS

Volume II: Results for the Massachusetts Bays Program

- 5. INTRODUCTION
- 6. EXPERT ELICITATION EXERCISE
- 7. MAKING THE LINK TO MANAGEMENT
- 8. CONCLUSIONS

Volume III: Lessons Learned

This document is a draft for review purposes only and does not constitute Agency policy.

	IMER	
	CT	
	NTS	
	TABLES	
	FIGURES	
	RS, CONTRIBUTORS AND REVIEWERS	
EXECUI	TIVE SUMMARY	xi
1 11/000	NEUCON	
1.1.	BACKGROUND	
1.2.	PURPOSE AND SCOPE	
	1.2.1. Purpose 1.2.2. Scope	
1.3.	ROADMAP FOR THE REPORT	
1.5.	KOADMAF FOR THE REPORT	1-5
2. EXPE	RT ELICITATION EXERCISE	2-1
2.1.	JUSTIFICATION FOR METHOD	2-1
	2.1.1. Definition and Uses	2-1
	2.1.2. Novel Application	
2.2.	WORKSHOP DESIGN AND METHODOLOGY	
	2.2.1. Workshop Goals and Objectives	
	2.2.2. Approach and Methodology	
	2.2.2.1. Influence Diagrams	
	2.2.2.2. Climate Scenarios	
	2.2.2.3. Expert Facilitation	
	2.2.2.4. Coding Scheme and Exercise	
	2.2.2.5. Typologies for Understanding Influences and Sensitivities	
	2.2.2.6. Understanding Relative Impacts of Influences	
2.3.	2.2.2.7. Key Questions RESULTS	
2.3.	2.3.1. Sediment Retention	
	2.3.1.1. Group Influence Diagram	
	2.3.1.2. Influence Types and Degrees	
	2.3.1.2. Influence Types and Degrees	
	2.3.1.4. <i>Relative Impact</i>	
	2.3.1.5. Confidence	
	2.3.1.6. Interacting Influences	
	2.3.2. Community Interactions	
	2.3.2.1. Group Influence Diagram	
	2.3.2.2. Influence Types and Degrees	
	2.3.2.3. Influence Sensitivity	
	2.3.2.4. Relative Impact	2-20
	2.3.2.5. Confidence	2-21
	2.3.2.6. Interacting Influences	
2.4.	DISCUSSION OF ADAPTATION STRATEGIES	
	2.4.1. Restoration & Conservation	2-22
	This document is a draft for review purposes only and does not constitute Agency policy.	

CONTENTS

	2.4.2.	Sediment Management	2-23
	2.4.3.	Planning & Monitoring	
3 MARIN	лс тнг	E LINK TO MANAGEMENT	3_1
3.1.		INFORMATION ON INFLUENCE TYPE & DEGREE,	J-1
5.1.		TIVITY AND RELATIVE IMPACT TO IDENTIFY KEY	
		GEMENT PATHWAYS	3-1
	3.1.1.		
	5.1.1.	3.1.1.1. Sediment Retention Crosswalk	
		3.1.1.2. Community Interactions Crosswalk	
		3.1.1.3. Information Gaps	
	3.1.2.	Identifying Key Pathways for Management	
		3.1.2.1. Sediment Retention Example	
		3.1.2.2. Community Interactions Example	
3.2.	TOP PA	ATHWAYS AND IMPLICATIONS FOR ADAPTATION	
	PLANN	NING	3-7
	3.2.1.	Top Pathways and Associated Adaptation Options	3-7
		3.2.1.1. Sediment Retention Top Pathways	
		3.2.1.2. Community Interactions Top Pathways	3-11
		3.2.1.3. Top Pathway Caveats	
	3.2.2.	Adaptation Planning	3-15
		۸S	11
4. CONCI 4.1.		ITS FROM THE WORKSHOP EXERCISE	
4.1.	4.1.1.	Group Influence Diagrams	
	4.1.2.	Characterization of Influences	
4.2.		CATION OF WORKSHOP RESULTS	
····	4.2.1.	Top Pathways for Management	
	4.2.2.	Mainstreaming Adaptation into Planning	
4.3.		RAL CONCLUSIONS	
1.51	4.3.1.	Transferability of Results and Method	
	4.3.2.	Utility of Method for Rapid Vulnerability Assessments	
REFERE	NCES		R-1
APPEND	IX A. DI	EVELOPMENTAL PROCESS FOR CLIMATE READY	
		LNERABILITY ASSESSMENT	A-1
A.1.		T KEY GOALS, ECOSYSTEMS, AND ECOSYSTEM PROCESSES	
A.2.		EPTUAL MODELS	
	A.2.1.	General Models	A-2
		A.2.1.1. Salt Marshes	A-2
		A.2.1.2. Mud Flats	A-4
	A.2.2.	Sub-models	A-6
		A.2.2.1. Sediment Retention	A-6
		A.2.2.2. Community Interactions	A-7
A.3.	CONCI	LUSIONS	A-8

APPEND	IX B. EX	XPERT ELICIATION WORKSHOP PREPARATION	
AND IM	PLEME	NTATION	B-1
B .1.	PRE-W	ORKSHOP	B-1
	B.1.1.	Selecting Workshop Participants	B-1
	B.1.2.	"Straw Man" Influence Diagrams	
		Pre-workshop Briefing and Homework Assignment	
	B.1.4.	Consolidated Influence Diagrams	
B.2.	WORK	SHOP	B-4
	B.2.1.	Group Influence Diagrams	
	B.2.2.	Introduction to Climate Scenarios and Confidence	
	B.2.3.	Coding Exercise	B-4
	B.2.5.	-	
	B.2.6.		
B.3.	POST-	WORKSHOP	
	B.3.1.	Review of Workshop Report	
	B.3.2.	Synthesis of Results	
	B.3.3.	Review of Draft Report	B-7
		-	
APPEND	IX C. PA	ARTICIPANT HANDOUT ON CLIMATE SCENARIOS	C-1
APPEND	IX D. PA	ARTICIPANT HANDOUT ON CONFIDENCE	D-1

LIST OF TABLES

Table 1-1. Breakout group participants for the expert elicitation workshop (see Appendix B for further details on selection criteria and credentials)
Table 2-1. Summary of Climate Scenario A ("Lower-Range" Scenario) and ClimateScenario B ("Higher-Range" Scenario): averages for mid-century
Table 2-2. Coding scheme used during the workshop exercise to characterize influences
Table 2-3. Coding scheme used during the workshop exercise to characterize interactive influences 2-6
Table 2-4. Coding scheme used during the workshop exercise to characterize confidence 2-7
Table 2-5. Sediment Retention variable definitions clarified during group discussion
Table 2-6. Sediment Retention group influence judgments
Table 2-7. Sediment Retention group confidence for influences with agreement
Table 2-8. Sediment Retention group interactive influences with agreement under current conditions and Climate Scenarios A and B
Table 2-9. Community Interactions variable definitions clarified during group discussion 2-17
Table 2-10. Community Interactions group influence judgments 2-17
Table 2-11. Community Interactions group confidence for influences with agreement
Table 2-12. Adaptation strategies and associated top pathways for management
Table 3-1. Sediment Retention group crosswalk for comparison of influence type and degree, sensitivity and relative impact for current conditions and climate scenarios
Table 3-2. Community Interactions group crosswalk for comparison of influence type and degree, sensitivity and relative impact for current conditions and climate scenarios
Table B-1. Sediment Retention breakout group participants, affiliations, and qualifications
Table B-2. Community Interactions breakout group participants, affiliations, and qualifications

This document is a draft for review purposes only and does not constitute Agency policy.

Table B-3.	Example of expert elicitation handout for influences under current conditions (Sediment Retention group)	.B-4
Table B-4.	Example of expert elicitation handout for influences under climate scenarios (Community Interactions group)	.B-5
Table B-5.	Example of expert elicitation handout for interactive influences under climate scenarios (Sediment Retention group)	.B-5

LIST OF FIGURES

Figure ES-1. Selected ecosystem processes for the pilot vulnerability assessment xi
Figure ES-2. Top pathways for management of the Net Accretion/Erosion endpoint xii
Figure ES-3. Top pathways for management of the Shorebirds endpointxii
Figure 1-1. Vulnerability assessment process
Figure 2-1. Simplified influence diagram for sediment retention
Figure 2-2. Sediment Retention group influence diagram
Figure 2-3. Sediment Retention group summary influence diagram of sensitivities under current conditions
Figure 2-4. Sediment Retention group summary influence diagrams of sensitivities: variance across current conditions and two climate scenarios
Figure 2-5. Sediment Retention influences indicated as having high <i>relative impact</i> under current conditions
Figure 2-6. Sediment Retention group influences indicated as having high <i>relative</i> <i>impact</i> under climate scenarios
Figure 2-7. Sediment Retention group confidence results for all influences
Figure 2-8. Community Interactions group influence diagram
Figure 2-9. Community Interactions group summary influence diagram of sensitivities under current conditions
Figure 2-10. Community Interactions group summary influence diagrams of sensitivities: variance across current conditions and two climate scenarios
Figure 2-11. Community Interactions influences indicated as having high <i>relative impact</i> under current conditions
Figure 2-12. Community Interactions group influences indicated as having high <i>relative impact</i> under climate scenarios
Figure 2-13. Community Interactions group confidence results for all influences
Figure 3-1. Sediment Retention Example Pathway. Future = Climate Scenario B
Figure 3-2. Community Interactions Example Pathway. Future = Climate Scenario B
This document is a draft for review purposes only and does not constitute Agency policy. viii DRAFT— DO NOT CITE OR QUOTE

Figure 3-3. Top pathways for management of the Net Accretion/Erosion endpoint	3-8
Figure 3-4. Top pathways for management of the Shorebirds endpoint	3-8
Figure A-1. Salt Marsh Conceptual Model	A-3
Figure A-2. Mudflat Conceptual Model.	A-5
Figure A-3. Sediment Retention sub-model.	A-7
Figure A-4. Community Interactions sub-model	A-8
Figure B-1. Sediment Retention "straw man" influence diagram.	В-2
Figure B-2. Community Interactions "straw man" influence diagram	В-2
Figure B-3. Sediment Retention influence diagrams of sensitivities: variance across participants.	B-5
Figure B-4. Community Interactions influence diagrams of sensitivities: variance across participants.	B-5

AUTHORS, CONTRIBUTORS AND REVIEWERS

The National Center for Environmental Assessment (NCEA) within EPA's Office of Research and Development (ORD) was responsible for the preparation of this report. Portions of this report were prepared by ICF Incorporated under EPA Contract Nos. GS-10F-0124J and EP-C-09-009. Jordan West served as the EPA Work Assignment Manager, providing overall direction and coordination of the project, as well as co-author.

AUTHORS

TECHNICAL SUPPORT

U.S. EPA	ICF Incorporat	<u>ed</u>	
Jordan West	Susan Asam	Elizabeth Strange	Peter Scultz
Amanda Babson	Katy Maher	Brock Bernstein	Katharine Hayhoe

CONTRIBUTORS

San Francisco Estuary Partnership Team Judy Kelly, San Francisco Estuary Partnership Steve Goldbeck & Sara Polgar, Bay Conservation and Development Commission

Expert Workshop Participants Dave Cacchione, U.S. Geological Survey John Callaway, UC San Francisco Chris Enright, CA Dept. of Water Resources Letitia Grenier, SF Estuary Institute Bruce Jaffe, U.S. Geological Survey Jessica Lacy, U.S. Geological Survey Lester McKee, San Francisco Estuary Institute Isa Woo, U.S. Geological Survey

Michelle Orr, Philip Williams & Associates Dave Schoellhamer, U.S. Geological Survey Stuart Siegel, Wetlands and Water Resources Mark Stacey, UC Berkeley Diana Stralberg, PRBO Conservation Science Lynne Trulio, San Jose State University

REVIEWERS

The following EPA reviewers provided valuable comments on an earlier draft of this document: Ted DeWitt & Henry Lee, U.S. EPA, Office of Research and Development Tristan Peter-Contesse & Lester Yuan, U.S. EPA, Office of Water Luisa Valiella, U.S. EPA, Region 9

ACKNOWLEDGMENTS

We would like to acknowledge the support of A. Grambsch and M. Slimak of EPA's National Center for Environmental Assessment in the Office of Research and Development, and especially our colleagues in EPA's Global Change Assessment Staff for many helpful discussions during this project. Special thanks to C. Weaver for technical contributions.

EXECUTIVE SUMMARY

The San Francisco Bay estuary is highly vulnerable to climate-related changes including increased water temperatures, changes in precipitation and winds, and sea level rise. Impacts such as increased inundation of coastal wetlands, changes in water availability and quality, and altered patterns of sedimentation and erosion are increasingly interacting with other human stressors such as extractive water uses and land use changes. Thus it is essential that estuary managers become 'climate-ready' by: assessing the vulnerability of natural resources to climate change; considering strategic choices among adaptation strategies in the near term; and engaging in longer term planning based on a range of plausible scenarios of future change. In an era of shrinking budgets coupled with increasingly complex decision-making needs – often taking place in a context of uncertainty and incomplete information – managing natural resources in the face of climate change will be challenging. There is a need for assessment methods that take advantage of existing scientific expertise to help identify robust adaptation strategies, weigh difficult trade-offs, and justify strong action, all in a timely and efficient manner.

The purpose of this project was to carry out a pilot vulnerability assessment for the San Francisco Estuary Partnership's (SFEP) natural resources using expert judgment, the results of which could be linked to adaptation planning. To this aim, EPA's Office of Research and Development collaborated with SFEP and the San Francisco Bay Conservation and Development Commission on a novel expert elicitation exercise for 'rapid' vulnerability assessment. A trial exercise was carried out during a two-day workshop in which two groups of seven experts each focused on two key ecosystem processes: sediment retention in salt marshes and community interactions of shorebirds (Figure ES-1). The exercise, which was based on formal expert elicitation techniques but tailored specifically for qualitative analysis of ecosystem processes, was designed to glean expert information on the sensitivities of ecosystem process components under future climate scenarios. This was followed by group discussions of the implications of the results for management in light of climate change, as well as feedback on the exercise itself.

Figure ES-1. Selected ecosystem processes for the pilot vulnerability assessment.

Sensitivities and Potential Adaptation Responses

Using the experts' judgments on the sensitivities of key ecosystem process components to future climate conditions, it is possible to identify 'top pathways' for which there are available adaptation options. After creating influence diagrams showing the relationships among key process variables (Figures ES-2 and ES-3), the experts generated information on which relationships may show, under future climate change: 1) increasing relative impact on the overall process; 2) increasing sensitivity; and 3) abrupt threshold changes. Based on the amount *This document is a draft for review purposes only and does not constitute Agency policy.*

xi

of expert agreement on each relationship, it is possible to identify 'top pathways' of interest for management. Three top pathways for each process are described below, with accompanying discussion of adaptation options for management.

Figure ES-2. Top pathways for management of the Net Accretion/Erosion endpoint. Colors are used to distinguish different pathways. Red symbols highlight potential changes under future climate conditions.

Figure ES-3. Top pathways for management of the Shorebirds endpoint. Colors are used to distinguish different pathways. Red symbols highlight potential changes under future climate conditions.

Sediment Retention Green pathway: Two relationships in this pathway (Figure ES-2) were indicated by the experts as having increasing relative impact on net accretion and erosion under climate change. The direct effect of organic accumulation through below-ground biomass production already has a high relative impact on the overall process, and this relative impact is expected to increase under sea level rise associated with climate change. Likewise, the effect on freshwater inflow of reservoir management is expected to be of increasingly high relative impact under climate change as freshwater supplies become increasingly variable and human demand continues to increase. Management options under this pathway include:

- Managing reservoirs for steady, lower-volume releases to regulate salinity and favor native marsh vegetative productivity
- Investigating optimal timing of releases relative to the growing season
- Prioritizing releases designed for salinity maintenance compared to high volume pulses to support mineral sediment transport
- 'Stepping up' Spartina (invasive cordgrass) eradication programs since increased salinity regimes favor this invasive species.

Sediment Retention Purple pathway: The climate-related shift in this pathway (Figure ES-2) involves an increase in the sensitivity of net mineral accumulation to changes in sediment size. This is a direct relationship, with larger grain sizes favoring net mineral accumulation since larger grains deposit more readily, are harder to re-suspend and provide larger building blocks for accretion. Increasing sensitivity of net mineral accumulation to sediment size relates to the fact that sediment flux, the other determinant of net mineral accumulation, is expected to continue to decrease because of continuing processes responsible for historical declines from peak sediment inputs in the past and because of potential changes in wave-driven erosive processes. Management options under this pathway include:

• Investigating how changes in land cover (including changes from impervious to permeable pavement systems) may affect sediment size

xii

- Managing reservoirs for high volume pulses to increase transport of larger grain sediments to marshes
- Adjusting policies that prevent coarse sediment from entering the Bay, such as changing Total Maximum Daily Load requirements to allow an increase in sediment loads for streams that do not support salmonids
- Engaging with flood control districts to re-couple stream sediments to wetlands. Sediment Retention Blue pathway: In this pathway (Figure ES-2), the experts identified

the potential for an abrupt threshold change in the effect of wind-generated waves on sediment flux, from a direct to an inverse relationship of increasing relative impact on the overall process. Under current conditions, wind-driven wave action has a net positive effect on sediment flux onto salt marshes, as greater wave energy can mobilize and increase rates of sediment transport from bays and adjacent mudflats deep into marsh systems. However, under future climate conditions a threshold may be crossed because of a change in wave character as water depth increases due to sea level rise. In deeper water, waves behave differently, with less wave energy available for re-suspension of bottom sediments and more energy delivered to the marsh edge, leading to increased erosion. Management options under this pathway include:

- Monitoring wind, waves and sediment fluxes to detect the threshold shift when it occurs, and in the meantime preparing a response plan for after the shift
- Building berms or restoring oyster reefs as protective barriers against wave energy
- Locating sites to deposit dredge materials with a goal of enhancing sediment concentrations on mudflats adjacent to marshes
- Prioritizing development of new tools for reducing wave action on the front of marshes. Community Interactions Green pathway: Both relationships in this pathway (Figure ES-

3) were indicated as having increasing relative impact on the shorebirds endpoint under climate change. A strong direct effect of landscape mosaic (defined as a mixture of habitats for secondary foraging, roosting, and cover from predators that support efficient use of mudflat feeding habitat) already has a high relative impact on shorebirds; and this may increase even further under climate change as mudflat habitats become scarcer and smaller in extent. Likewise, the effect on landscape mosaic of restoration is expected to be of increasingly high relative impact under climate change as individual habitats within the mosaic are differentially impacted by temperature increases, altered precipitation patterns, and water diversions in a context of continuing land use change. Management options under this pathway include:

- Assessing and mapping landscape mosaics to detect changes and support management at the landscape scale
- Managing landscape mosaics through spatial planning designed to prioritize where and how to restore which habitats, in order to ensure a continuum of wetland and upland ecosystems which could migrate inland as sea level rises

- Including 'threshold landscapes' (those about to change from one set of dominant processes to another, or from one state to another) in consideration for restoration
- Supporting legislation or incentives that encourage moving back or blocking of development on lands where there is restoration potential now or in the future.

<u>Community Interactions Purple pathway</u>: This pathway (Figure ES-3) shows a high relative impact of mudflat prey populations on shorebirds. The abundance of prey per unit area will become increasingly important (of increasing relative impact) under climate change as spatial extent of mudflats shrink with sea level rise. Also, there is an abrupt threshold response of the prey community itself to water quality (specifically, dissolved oxygen), from a direct to a very strong direct effect under climate change. As decreases in dissolved oxygen occur with climate change due to increased temperatures and/or eutrophication, prey communities may flag. A critical threshold may occur in the future if dissolved oxygen reaches low enough levels to cause prey populations to crash. Management options under this pathway include:

- Protecting water quality through integrated water resources management, including stormwater management and rainwater-harvesting (which also benefits water conservation)
- Using permeable rather than impervious surfaces to reduce runoff
- Restoring riparian zones to act as natural filters.

<u>Community Interactions Blue pathway</u>: This pathway (Figure ES-3) contains two relationships that the experts identified as sensitive to climate change. The extent of mudflat available for foraging (i.e., the number of hours per acre that mudflats are exposed and therefore accessible) has a direct effect on shorebird populations, and this may become increasingly strong as a threshold effect under climate change. This is because extent of mudflat may become limiting as sea level rises, with available foraging habitat becoming too limited to support shorebird populations. At the top of the pathway, there is a relationship of increasing sensitivity of freshwater inflow to water management practices (specifically, reservoir management and upstream operations). This effect will become increasingly strong as freshwater flows from alternate sources such as precipitation and tributaries become more variable and/or scarce under climate change. This relationship connects back down to the shorebirds endpoint through a series of linked variables having to do with sediment supply, transport and effects on bathymetry (which helps determine extent of mudflat). Management options under this pathway include:

- Managing reservoir water releases to mobilize and transport sediments (e.g., through the use of sediment maintenance flushing flows)
- Improving upstream operations to ensure greater availability of water (for more frequent and/or intense pulse releases)
- Employing integrated water resources management, with an emphasis on shifting from storage more toward conservation uses

• Developing methods for moving coarse sediments into the bay (e.g., by strategically locating dredge spoil sites to enhance sediment supplies to mudflats).

Based on the nature and timing of the sensitivity, some actions can be taken *immediately while others require monitoring and planning for multiple potential futures.* In the case of relationships that are well understood and for which there are management options available, the nature of the expected climate-related shift has implications for when managers may want to take action. In the case of relationships for which the expected climate-related shift is toward increasing relative impact (and especially where the relationship is already of high relative impact under current conditions), action can be taken immediately to put management options into place for positive effects on those pathways. In the case of relationships for which a change in sensitivity is possible under future climate scenarios, the expectation of increasing sensitivity could be considered a 'notification' to managers to further study the relationship in order to anticipate the degree and timing of the impending sensitivity and prepare best management responses. Finally, thresholds are a particular challenge, as it is often impossible to predict exactly when a threshold response will occur. In these cases it will be important to monitor threshold variables to identify the shift when it occurs; in the meantime a manager might act to keep the system 'below' the threshold as long as possible, while preparing a plan for what to do if an unavoidable shift occurs. After a shift occurs, a manager could decide to manage the system differently in its new state, or take no action and instead shift priorities to other goals.

Adaptation Planning

Relating top pathways and associated adaptation options to existing management activities is a path forward for action. The top pathways described above were used to identify adaptation options that could be applied to sensitive ecosystem process components. A variety of additional pathways and associated adaptation options can be further explored using the detailed tables of judgments and lists of strategies provided in this report. The next step toward adaptation planning is to connect the top pathways and adaptation options to existing management activities and plans. Under its current goals, SFEP is already undertaking a variety of activities that can be related to these adaptation options, as described in its annual, mid-term and long-term planning documents. These include specific restoration, sediment management, monitoring and research projects and strategies. The climate change sensitivities and potential adaptation strategies identified in this report can be cross-referenced to these activities, goals and objectives to identify where existing work can be adjusted to better support adaptation. Some examples of such cross-referencing are provided as a starting point for more comprehensive adaptation planning during future planning cycles. The intent is that the results of this

This document is a draft for review purposes only and does not constitute Agency policy.

XV

assessment can be used to prioritize increased investment in projects that take into account specific, known climate sensitivities and make use of particular adaptation options that will be most effective. Assessment results can also assist in priority-setting for long term research and monitoring investment. Besides identifying well-understood relationships, the exercise also revealed gaps in understanding of the system that indicate a need for further investigation of some sensitivities as well as tailored projects to develop new management tools in response.

'Mainstreaming' climate change adaptation into ongoing, iterative planning processes will increase the ability of managers to identify win-win options, weigh multiple trade-offs, and prepare for long-term changes. For SFEP as well as other National Estuary Programs and organizations with well established planning processes, there are benefits to 'mainstreaming' (continuously integrating) adaptation into ongoing planning, rather than developing a stand-alone adaptation plan. The objective is to start with actions that have multiple benefits, i.e., that contribute to current management goals while also responding to climate change. For example, starting with the separate pre-existing plans in support of Baylands Ecosystem Habitat Goals, Subtidal Habitat Goals and Upland Habitat Goals, projects could be designed to coordinate across goals and restore landscape mosaics that will support valued species such as shorebirds not only today, but also under projected climate change (see Green pathway, Figure ES-2).

Since climate change has the potential to intensify and even create new trade-offs, mainstreaming climate change into planning is also important for identifying and weighing conflicts among adaptation options within the context of existing (and emerging) goals. One example identified in this study is the simultaneous need to reduce sediments in salmon stream habitats (under current SFEP goals) *and* increase coarse sediment transport to the Bay (as indicated by the Purple pathway in Figure ES-2). Another example based on comparing adaptation needs for two of the top pathways above is the trade-off between high volume pulses to enable large grain sediment transport (Purple pathway, Figure ES-2) and water availability for steady, lower-volume releases to favor vegetative productivity (Green pathway, Figure ES-2).

Given the long-term nature of the climate change challenge, mainstreaming has an additional advantage over a stand-alone plan in that it helps counteract the tendency to postpone adaptation actions in the face of more immediate challenges. It often may be possible to adjust current practices in ways that achieve adaptation while still fulfilling original goals. Furthermore, thinking ahead as part of planning is essential for anticipating which of today's best practices may become ineffective and even 'maladaptive' as sensitivities change and threshold shifts occur under climate change. Once thresholds have been crossed or other unavoidable changes of significance have occurred, some management goals may have to be revised.

This document is a draft for review purposes only and does not constitute Agency policy.

Evaluation of Expert Judgment Approach

A novel methodology based on expert elicitation was developed and piloted as a tool for 'rapid assessment' of ecological sensitivities to climate change. The aim was to explore whether it is possible to synthesize useful information from experts on key climate sensitivities in the short time frame of a two-day workshop, using expert elicitation techniques. Expert elicitation is a multi-disciplinary process for using expert judgment to inform decision-making when data are incomplete, uncertainties are large, and more than one model can explain available data. The novel methodology introduced in this study is a modification of formal (usually quantitative) expert elicitation that uses qualitative judgments in accordance with complex ecological questions. Influence diagrams (showing the structure of causal relationships among variables) were used successfully to capture the experts' collective understanding of the selected ecosystem processes, under current conditions and under two scenarios of future climate change for a mid-century time frame. A coding scheme was used by the experts to record their judgments, with observational notes and group discussions used to gather additional information.

The result was three categories of information based on the influence diagrams: 1) the direction and strength of the relationships among variables, 2) the changing sensitivities of some relationships to climate change (including potential threshold responses), and 3) the relationships of highest relative impact on the process as a whole. When this wealth of information is combined into a 'crosswalk' of all three categories, it is possible to identify top pathways (see above) comprised of relatively well-understood relationships that are sensitive to climate change and for which management are options available. Managers are encouraged to further 'mine' the tables for other key pathways applicable to their specific sites and to identify potential research priorities based on information gaps.

The expert elicitation exercise developed for this assessment has the potential to be useful for other sites, processes and ecosystems. While an example North Bay site was used as a means to focus the exercise, the variables that ended up in the final influence diagrams are common enough that most of the results may transfer to the entire Bay for these particular ecosystem processes. It is likely that the influence diagrams also could be transferred for use with like ecosystem processes in other estuaries, with minor revisions for place-specific stressors or other process variables; however the characterizations of variable relationships, sensitivity and relative impact would have to be revised, particular to the location. Where information on completely different processes is needed, the general methodology should be transferable to other processes and ecosystems. The strengths of this method include the ability to capture more recent knowledge than would be available from a literature review and more knowledge of the

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR QUOTE

xvii

type that is closely related to management. It is also effective at integrating across disciplines and scales, which is particularly important for ecosystem and climate change assessments.

As a proof of concept for a new type of assessment exercise, this method and its results come with a number of caveats. This was not a comprehensive vulnerability assessment for the whole estuary, so prioritization based on these results should be considered in the broader context of other vulnerable processes, ecosystems and goals. Given the complexity of these systems and instances of uneven agreement among experts, actions based on the top pathways should be taken with care, with each manager considering the applicability of the information to his or her own specific system. Confidence estimates for individual judgments turned out to be challenging, so improvements have been suggested for strengthening this aspect in future assessments. There is also the potential to simplify the coding scheme based on what was learned in this trial run, to improve efficiency and allow experts more time to fill in data gaps. Regardless, the expert elicitation method developed for this study was well suited for achieving the goals of this assessment, and in a time frame much shorter than would be required for more traditional, detailed quantitative modeling. Having a well-supported and timely study to substantiate new and existing ideas can position managers to justify the most appropriate management options and priorities. It also can validate research priorities by highlighting known research gaps. Overall, the method offers opportunities to capture and integrate the existing collective knowledge of local experts, while pushing the boundaries to develop a new understanding of the system and identify robust adaptation options in the face of climate change.

1	1. INTRODUCTION		
2			
3	1.1. BACKGROUND		
4	The San Francisco Bay estuary is highly vulnerable to the impacts of climate change.		
5	Sea level rise, increased air and water temperatures, changes in precipitation, and changes in		
6	storm climatology and winds are already causing increased inundation of coastal wetlands and		
7	marshes, changes in water availability and quality, and altered patterns of sedimentation and		
8	erosion. These impacts are interacting with other anthropogenic stressors such as extractive		
9	water uses and land use changes to make management of estuarine ecosystems more challenging		
10	than ever. While there are many uncertainties regarding the nature of future climate changes and		
11	the response of ecosystems to those changes, estuary managers can 'ready' themselves by		
12	assessing the vulnerability of natural resources to climate change, making strategic choices about		
13	how to implement adaptation strategies ¹ in the near term, and planning for longer term		
14	management under a range of plausible scenarios of future change. It is the aim of EPA's		
15	Climate Ready Estuaries (CRE) Program to assist National Estuary Programs (NEPs) in meeting		
16	such information and planning needs.		
17	As part of the CRE Program, the San Francisco Estuary Partnership (SFEP), the San		
18	Francisco Bay Conservation and Development Commission (BCDC), and EPA's Office of		
19	Research and Development (EPA ORD) collaborated on the design and trial of a novel		
20	methodology for conducting vulnerability assessments for sensitive ecosystems of the San		
21	Francisco Bay estuary. The aim was to develop assessment capabilities using expert judgment to		
22	synthesize place-based information on the potential implications of climate change for key		
23	ecosystem processes, in a form that would enable managers to link the resulting information to		
24	adaptation planning.		
25			
26	1.2. PURPOSE AND SCOPE		
27	1.2.1. Purpose		
•			

The purpose of this project was twofold: to conduct a vulnerability assessment using a novel, expert judgment approach based on expert elicitation methods, and to analyze the implications for adaptation planning. This was not a comprehensive vulnerability assessment for the whole estuary but rather a proof of concept for a new type of assessment exercise, using two key ecosystem processes of salt marsh and mudflat ecosystems as demonstration studies. This was accomplished through a series of steps to: 1) identify key management goals and ecosystem processes essential to meeting those goals; 2) create conceptual models of selected ecosystem

¹ Throughout this report, "adaptation" refers to management adaptation rather than evolutionary adaptation. Management adaptation refers to strategies for the management of ecosystems in the context of climate variability and change (CCSP, 2008a).

This document is a draft for review purposes only and does not constitute Agency policy.

processes; 3) assess ecosystem process sensitivities to climate change; 4) consider resulting
 vulnerabilities with respect to management goals; and 5) explore implications for adaptation
 planning. Steps 1-2 were used to define the scope of the assessment, while steps 3-5 comprise
 the vulnerability assessment itself.

5

6 **1.2.2.** Scope

The scoping process began with a review of the SFEP Comprehensive Conservation and
Management Plan in order to select key management goals upon which to focus the assessment.
The key ecosystem-related goals selected by SFEP in consultation with BCDC and EPA ORD
were:

11 12

13

14

15 16

17

18 19

20

- Restore healthy estuarine habitat to the Bay-Delta, taking into consideration all beneficial uses of Bay-Delta resources
 - Protect and manage existing wetlands
 - Restore and enhance the ecological productivity and habitat values of wetlands
 - Stem and reverse the decline of estuarine plants, fish and wildlife and the habitats on which they depend; and
 - Ensure the survival and recovery of listed and candidate threatened and endangered species, as well as special status species.
- After an information-sharing meeting with local experts to discuss the project and learn about climate change impacts and adaptation work in the region, salt marshes and mudflats were selected as focal ecosystems for the study. These systems were identified as highly relevant to SFEP's management goals due to their ecological productivity, their habitat values for threatened and endangered species, and their sensitivity to changes in climate-related variables such as sea level rise and altered hydrology. For more detailed information on goal and ecosystem selection processes, please see Appendix A.
- 28 The second step in the scoping process was the development of conceptual models to 29 understand the primary drivers and processes of salt marshes and mudflats. The conceptual 30 models were used to explore the linkages among key ecosystem processes within each 31 ecosystem, major stressors of concern, and climate drivers causing altered or new stressor 32 interactions. The models were refined to a set of five or six key ecosystem processes that are 33 essential to the maintenance of salt marsh and mudflat systems. Based on these general 34 conceptual models, two specific processes of concern were selected for further analysis. The 35 purpose was to select good processes for piloting the method, but the choice does not imply that 36 these are necessarily the only important, or the most vulnerable, processes. The processes were selected based on the criteria of being identified by local experts as integral to ecosystem 37 38 function, increasingly sensitive to climate change, and sufficiently well-studied by the scientific 39 community to provide the basis for a more in-depth assessment.

1 The two processes selected for further analysis were sediment retention in salt marshes 2 and community interactions in mudflats (see Executive Summary Figure ES-1). Sediment 3 retention refers to the balance between the processes of removal and deposition of sediment onto 4 a salt marsh. The topic of community interactions in mudflats was narrowed to a tractable 5 "storyline" involving several interdependent species, which was selected based on interviews 6 with local experts who were asked to identify climate-sensitive interactions of interest. The 7 storyline selected was the relationship of two species of mudflat wading birds, the Marbled 8 Godwit and the Western Sandpiper, to their predators and prey. Expanded sub-models were 9 developed for each of the two processes and served as the basis for designing the sensitivity 10 analyses of the subsequent assessment. For more detailed information on process selection and 11 conceptual model development, please see Appendix A.

12 The remaining steps of the assessment – the sensitivity analysis, vulnerability assessment, 13 and analysis of management implications – were accomplished through an expert elicitation-14 style workshop, the results of which make up the core of this report. Expert elicitation is a multi-15 disciplinary process using expert judgment to inform decision-making when empirical data are 16 incomplete, uncertainties are large, more than one conceptual model can explain available data, 17 and technical judgments are required to assess assumptions. During a two day workshop, a 18 novel application of the expert elicitation method was tested using two groups of seven expert 19 participants each. A list of the expert participants for each breakout group is provided in Table 20 1-1 (for additional information on selection criteria and participant credentials, please see 21 Appendix B). The participants assessed the sensitivities of salt marsh sediment retention and 22 mudflat community interactions to climate- and non-climate stressor interactions, with an eye 23 toward informing adaptation. The methodology and results of this expert elicitation exercise are 24 described in the sections that follow.

- 25
- 26 27
- Table 1-1. Breakout group participants for the expert elicitation workshop(see Appendix B for further details on selection criteria and credentials)
- 28

29

1.3. ROADMAP FOR THE REPORT

This report presents a summary of the entire project, including goal selection and conceptual modeling, the expert elicitation methodology, the results of the workshop, and implications for management. Figure 1-1 provides a flow chart of the assessment process and report structure.

- 34
- 35 36

Figure 1-1. Vulnerability assessment process.

Section 2 describes the expert elicitation exercise, including the approach, the exercise,
and the results. Section 3 provides an analysis of the results with respect to how they may be

This document is a draft for review purposes only and does not constitute Agency policy.

- 1 used by estuary managers to understand ecosystem responses to climate change and engage in
- 2 adaptation planning. Section 4 provides key conclusions of the assessment. The appendices
- 3 provide additional detailed information on the activities conducted prior to and following the
- 4 workshop. Appendix A summarizes the goal selection and conceptual modeling processes used
- 5 for scoping the vulnerability assessment. Appendix B provides details on the expert elicitation
- 6 pre-workshop preparations and post-workshop follow-up, including expert selection criteria, pre-
- 7 workshop preparations by participants, and expert feedback. Appendix C and Appendix D
- 8 contain detailed information that was provided to the participants on the development of climate
- 9 scenarios and the methodology for estimating confidence.

1 2

2. EXPERT ELICITATION EXERCISE

3 2.1. JUSTIFICATION FOR METHOD

4 **2.1.1. Definition and Uses**

5 Expert elicitation is a multi-disciplinary process for obtaining the judgments of experts to 6 characterize uncertainty and fill data gaps where traditional scientific research is not feasible or 7 adequate data are not yet available. The goal of expert elicitation is to characterize each expert's 8 beliefs about relationships, quantities, events, or parameters of interest. The expert elicitation 9 process uses expert knowledge, synthesized with experiences and judgments, to produce 10 conclusions about the nature of, and confidence in, that knowledge. Experts derive judgments from the available body of evidence, including a wide range of data and information ranging 11 12 from direct empirical evidence to theoretical insights.

13 Because EPA and other federal regulatory agencies are often required to make important national decisions in the presence of uncertainty, EPA's Science Policy Council formed an 14 15 Expert Elicitation Task Force in April of 2005 to investigate how to conduct and use this method 16 to support EPA regulatory and non-regulatory analyses and decision-making. The result was an 17 Expert Elicitation Task Force White Paper that affirms the utility of using expert elicitation and 18 provides recommendations for expert elicitation "best practices" based on a review of the 19 literature and actual experience within EPA. The draft paper (see 20 http://www.epa.gov/spc/expertelicitation/index.htm) is currently under external peer review 21 through EPA's Science Advisory Board. The best practices outlined in the draft White Paper 22 formed the basis for the design of this project's expert elicitation-style workshop. 23

24 **2.1.2.** Novel Application

25 The specific elicitation exercise used in this assessment was custom-designed by Dr. Max 26 Henrion of Lumina Decision Systems, Inc. Dr. Henrion is a nationally-recognized authority on 27 decision analysis methods and tools, dealing with uncertainty in environmental risk assessment, 28 and expert elicitation. As a member of EPA's Expert Elicitation Task Force, he was uniquely 29 qualified to assist in designing a novel application of expert elicitation methods for use in a two-30 day workshop format. Specifically, Dr. Henrion developed a qualitative coding scheme for 31 expert judgments about the sensitivity of ecosystem processes to physical and ecological 32 variables, using "influence diagrams" to depict the relationships among ecosystem process 33 variables and external drivers such as climate change. This new methodology, described in 34 detail below, explores the utility of expert elicitation for conducting "rapid vulnerability 35 assessments" for ecological systems.

36

1 2.2. WORKSHOP DESIGN AND METHODOLOGY

2 2.2.1. Workshop Goals and Objectives

The overarching goals of the workshop were to: 1) improve the understanding of the sensitivity of selected salt marsh sediment retention and mudflat community interactions processes to the projected impacts of climate change; 2) improve the ability to identify adaptation strategies that mitigate those impacts, given the uncertainties; and 3) demonstrate the applicability of an expert elicitation approach to this type of analysis.

8 The workshop was held March 16-17, 2010, in San Francisco, California, at the BCDC 9 offices. During the workshop, experts were divided into two breakout groups to consider each 10 ecosystem process separately. The seven participants in each breakout group (see Table 1-1) 11 were asked to provide judgments about the ecosystem process under consideration by their 12 group. For each ecosystem process, the specific objectives were to: 1) characterize the relative 13 influences of physical and ecological variables that regulate the process; 2) assess the relative 14 sensitivity of the ecosystem process to key stressors under current conditions and future climate 15 scenarios; 3) assess the degree of confidence in judgments about these relationships; and 4) relate 16 the results of the exercise to adaptation planning through group discussions. Given the range of 17 habitats and issues in the entire San Francisco Bay area, the participants were asked to consider 18 the North Bay (San Pablo Bay) when a more specific spatial scope would be useful during the 19 workshop exercise. In addition, an example site in the North Bay, China Camp, was presented as 20 a particular place upon which to focus when considering management implications; however, 21 issues and options that were not specific to China Camp were also considered during group 22 discussions.

For further details on workshop preparation and implementation, including selectioncriteria for participants, please see Appendix B.

25

26 2.2.2. Approach and Methodology

27 According to protocols put forth in EPA's Expert Elicitation Task Force White Paper, 28 there are a variety of options for gathering and processing expert judgments. The specific 29 elicitation approach used in this workshop was one that asked experts to give their individual 30 judgments independently. This was done to reduce the tendency towards "group-think," i.e., the 31 tendency for many people to go along with the most vocal participant, even if s/he is not the 32 most knowledgeable. Since participants varied in their expertise about different aspects of the 33 system, they were encouraged to make adjustments to their judgments at any time based on any 34 deeper understanding gained during or after group discussions; however, consensus was *not* the 35 goal of the exercise. Rather, the aim was to look at the expert judgments in aggregate, while also 36 retaining information on variance in judgments. This approach is well-suited to the type of 37 qualitative judgments participants were asked to make at the workshop.

1 2

2.2.2.1. Influence Diagrams

Each breakout group participated in the development of an influence diagram of the ecosystem process under consideration by their group. Decision analysts use influence diagrams as a way to define the qualitative structure of causal relationships among variables that experts believe are of greatest importance for understanding the problem being evaluated. Influence diagrams typically represent a subset of a larger, more detailed model such as the conceptual models developed previously (see Appendix A).

9 A simplified influence diagram for sediment retention is provided in Figure 2-1. By 10 convention, the variables in an influence diagram are represented by rectangles (labeled boxes) 11 while arrows between the variables represent causal relationships, or "influences". Sequences of 12 arrows form pathways, all of which ultimately lead to the final variable, or endpoint, of concern. 13 In Figure 2-1, the endpoint that is being evaluated is sediment retention. Interactive effects of 14 multiple variables on each other, or on the endpoint, can occur where two "causal" variables both 15 influence (have arrows into) a common "response" variable. In Figure 2-1, an example 16 interaction is indicated by arrows B and C, where reservoir management and impervious cover 17 together could have an interactive effect on freshwater inflow.

In the case of community interactions, the diagram was constrained to a tractable number of species of interest. It focused on the relationship of two species of mudflat wading birds, the medium-bodied Marbled Godwit and the small-bodied Western Sandpiper, to their predators and prey. Please see Appendix A for a more detailed explanation of this storyline.

- 22
- 23 24

Figure 2-1. Simplified influence diagram for sediment retention.

25 While influence diagrams are widely used and relatively well-understood, our proposed 26 use of qualitative degrees of influence is an innovation in expert elicitation. Typically, an expert 27 elicitation seeks to obtain expert judgments about uncertain quantities in the form of numerical 28 probability distributions. For the ecosystem processes considered during this workshop, there 29 were information, data and time limitations that made quantifying the influences as probability 30 distributions unrealistic. Instead, judgments were based on qualitative types (is the relationship 31 direct, or inverse?) and degrees (is the response small, or large?) of influences. The use of 32 qualitative degrees of influence provides much more detail than simply specifying causal 33 influences with arrows alone, but less specificity than required for quantified probabilities. 34 Participants were provided with "straw man" diagrams (see Appendix B) prior to the 35 workshop. They were asked to review these diagrams and submit their own revised versions the 36 week before the workshop. Diagram submissions were combined into one consolidated draft 37 diagram for each group that served as the starting point for discussion at the workshop. The

38 workshop itself began with each group working together to refine their diagram into a "group *This document is a draft for review purposes only and does not constitute Agency policy.*

1 diagram". The group influence diagram was meant to distill the system to a tractable set of key 2 variables and influences, and as such it was not comprehensive. The groups were given 3 complete freedom to alter any part of the diagram, with the exception of the ecosystem process 4 endpoint, as long as they constrained the diagram to a total of no more than 15 boxes. At the 5 same time, participants were reminded to keep some of the top row stressor or management 6 boxes, since these would serve as key linkages back to management options. Participants were 7 also encouraged to minimize the total number of arrows in the diagram to include only the most 8 key influences. The purpose was to capture the key components and relationships of each 9 ecosystem process in a concise form that could be rapidly assessed in a workshop setting. Once 10 the group diagrams were finalized, all of the participants made their judgments using the same 11 diagram throughout the remainder of the workshop.

12

13 2.2.2.2. Climate Scenarios

14 Dr. Katharine Hayhoe of Texas Tech University, an experienced climate scientist with an 15 extensive background in regional climate assessments, developed two climate change scenarios 16 for use in the expert elicitation exercise. The scenarios represented two distinct but scientifically 17 credible climate futures for a mid-century (2035-2064) time period. (The mid-century time 18 frame was selected by the SFEP partners because of its suitability for adaptation planning.) The 19 projections were based on six leading climate models, using a lower emissions scenario (Climate 20 Scenario A) and a mid-high emissions scenario (Climate Scenario B) to generate values for 21 climate variables for use by the experts in making their judgments (see Table 2-1).

- 22
- 23 24

25

Table 2-1. Summary of Climate Scenario A ("Lower-Range" Scenario) and Climate Scenario B ("Higher-Range" Scenario): averages for mid-century

Under both climate change scenarios, California will retain its Mediterranean climate (cool/wet winters and hot/dry summers) and continue to experience a high degree of variability in precipitation with rising sea levels. By mid-century, the "higher-range" Climate Scenario B (which includes higher emissions and a more sensitive climate) is projected to experience a warmer and somewhat drier climate compared to the "lower-range" Climate Scenario A (with lower emissions and a lesser impact on California's climate).

At the workshop, Dr. Hayhoe provided the participants with an overview of major
climate drivers and regional trends for California. She discussed five main sources of
uncertainty with climate projections, including: (1) the amount of future emissions; (2) the
degree to which the influence of global climate change on local climate is modified by local
factors; (3) the sensitivity of the climate system (as feedbacks are not well understood); (4) the
ability of climate models to simulate climate both globally and locally; and (5) the natural
variability of the climate system. Because of these factors, exact predictions of climate change

are not possible. However, uncertainty can be dealt with by using multiple scenarios to bracket a range of plausible climate futures and identify key vulnerabilities in the system. In order to consistently "bound" the consideration of future climate changes in the workshop exercise, the participants were instructed to use the values provided under Climate Scenarios A and B (Table 2-1) to contextualize their judgments about future effects on the ecosystem processes under consideration. For additional details on the climate scenarios, including data sources, please see Appendix C.

8

9 2.2.2.3. Expert Facilitation

10 Due to the highly technical nature of the exercise, the complexity of the novel 11 methodology that was being used, and the ambitious time line for accomplishing multiple 12 outputs, it was essential that the workshop be run by skilled expert facilitators. These were 13 chosen based on a number of criteria including: proven expertise in facilitating science-based 14 workshops; general knowledge of science behind estuary management (particularly wetlands 15 ecology); and experience working on national coastal issues and/or issues in the San Francisco 16 Bay region. The expert facilitators selected were Dr. Peter Schultz, Principal at ICF 17 International, and Dr. Brock Bernstein, independent consultant and President of the National 18 Fisheries Conservation Center. Dr. Schultz (who served as facilitator for the Sediment Retention 19 group) has served as the Director and Associate Director of the U.S. Global Change Research 20 Program Office, and has two decades of experience in climate and global change research, 21 management, decision support, and communication. Dr. Bernstein (who served as facilitator for 22 the Community Interactions group) is a marine ecologist with research experience in a range of 23 coastal and oceanic environments, including San Francisco Bay, and has worked on a wide 24 variety of management and policy issues.

Prior to the workshop, both facilitators attended training calls in which they were fully briefed on the project background and conceptual models, the workshop goals and objectives, and the expert elicitation exercise. Working together and with the SFEP/BCDC/EPA team, the facilitators contributed to the refinement of the workshop agenda and improvements to the workshop process.

30

31 2.2.2.4. Coding Scheme and Exercise

Participants were asked to characterize each influence in their influence diagram according to the coding scheme presented in Table 2-2, and to indicate their confidence in their judgments using the confidence rankings described below (see next section). Influences were characterized first under current conditions, and then under Climate Scenario A and Climate Scenario B. The extent to which participants agreed in their judgments was variable across the different influences. The rule that was adopted for determining agreement for each influence

was that a majority (4 or more participants) had to have selected the same code. Majority
 agreement among four or more participants was considered to indicate substantial agreement
 across the group.

4 5

6 7

8

9

10

Table 2-2. Coding scheme used during the workshop exercise to characterize influences. "Small" and "large" changes in variables are defined relative to the current range of variation for each variable, with "small" indicating that the variable is within its current range of variation and "large" indicating that the variable has moved outside its current range of variation

- 11 Participants were also asked to characterize interactive influences of their choosing (i.e., 12 those they deemed important), under current conditions and under the climate change scenarios, 13 according to the coding scheme presented in Table 2-3. Since participants were given the option 14 to choose which interactive influences they considered significant and to provide judgments only 15 for those influences, and were limited by time, there were often interactions where only one or 16 two participants provided judgments. Only interactions scored by three or more participants 17 were examined in order to focus on interactions judged by several participants to be significant. 18 Three or more corresponding judgments were used to define agreement for interactive 19 influences.
- 20

21 22

23

Table 2-3. Coding scheme used during the workshop exercise to characterize interactive influences

24 Finally, the participants were asked to assess their current level of scientific confidence in 25 their judgments for each influence or interactive influence using the confidence coding scheme 26 presented in Table 2-4. For each influence, each participant was asked to rate his/her confidence 27 in their judgment based on: (1) the amount of scientific evidence that is available in the expert 28 community to support the judgment; and (2) the level of agreement/consensus in the expert 29 community regarding the different lines of evidence that would support the judgment. The 30 coding options for "amount of evidence" were high (H) or low (L), based on whether available 31 information is abundant and well-studied and understood, versus sparse and mostly 32 experimental/theoretical. The coding options for "level of agreement" were high (H) or low (L), 33 based on whether data, reports, and experience across the scientific community reflect a high or 34 low level of agreement about the influence. Thus it was possible to have four combinations of 35 evidence and agreement when assessing confidence: HH, HL, LH, and LL. The rule for 36 determining agreement in confidence was the same as described above for influences: agreement 37 was defined as a majority (four or more) of the same categorization of confidence level. 38 Similarly using the same rule as above for interactive influences, agreement on confidence for

1	interactive influences was defined as three or more of the same categorization of confidence. For
2	additional details on the method used to assess confidence, please see Appendix D.
3	
4	Table 2-4. Coding scheme used during the workshop exercise to characterize
5	confidence
6	2225 Tour Losin for Holendard Line Lefter and Considerities
7	2.2.2.5. <i>Typologies for Understanding Influences and Sensitivities</i>
8 9	Type and degree of influence The group's level of understanding of the different influences (arrows) in the influence
	The group's level of understanding of the different influences (arrows) in the influence
10	diagram can be gauged by the amount of agreement in participants' selection of influence codes.
11	Sometimes participants agreed on the type of influence, but not necessarily the degree (strength)
12	of the influence. Codes 2-13 (Table 2-2) represent different combinations of types and degrees
13	of influences that can be grouped according to the following typology:
14	Terrese
15	$\underline{\text{Types}}:$
16	Direct relationship = Codes 2, 3, 6, 8, 11, 13
17	Inverse relationship = Codes 4, 5, 7, 9, 10, 12
18	Degrees:
19	Proportional response of Y to $X = Codes 2-5$
20	Disproportional response of Y to $X = Codes 6-13$
21	
22	Codes can also be paired according to the same type and degree of influence, with the
23	only distinction being whether one is considering "X" to be increasing or decreasing. For
24	example 2/3 is a direct proportional influence, with 2 indicating when "X" increases, and 3
25	indicating when "X" decreases, but in both cases "Y" is responding in a directly proportional
26	way. Six combinations of pairings are possible:
27	
28	Pairings by type and degree of influence (where "X" can go up or down):
29	Direct proportional = $2/3$
30	Inverse proportional = $4/5$
31	Direct disproportional, strong response $(xY) = 6/11$
32	Direct disproportional, weak response $(Xy) = 8/13$
33	Inverse disproportional, strong response $(xY) = 7/10$
34	Inverse disproportional, weak response $(Xy) = 9/12$
35	
36	In some cases, participants selected the same exact code, indicating that they had the
37	same understanding of the influence in terms of both type and degree. Or, sometimes
38	participants chose pairings such as 2/3 while their colleagues may only have noted a 2 or a 3; we
	This document is a draft for review purposes only and does not constitute Agency policy.
	2-7 DRAFT DO NOT CITE OR OUOTE

DRAFT— DO NOT CITE OR QUOTE

1	consider these cases to also indicate a correspondence in understanding of type and degree of
2	influence, since the only distinction was whether a participant was thinking of "X" as going up
3	or down (or both).
4	In another group of cases, there was agreement on the type of influence (i.e., whether X
5	affects Y directly or inversely), although there was lack of agreement on the degree of that
6	influence. These latter cases amount to an understanding of how X affects Y, just not the
7	magnitude. It may still be useful for management to know for which influences we at least have
8	some understanding of the type of response, even if we are not sure of the magnitude.
9	Finally, there were cases in which there was such a mixture of codes selected as to
10	indicate no agreement in either type or degree of influence. This indicated that, among this
11	group of experts, the influence was poorly understood or poorly defined.
12	Sensitivity
13	It is also possible to establish a typology for assessing the sensitivity of each influence
14	(i.e., how sensitive variable Y is to changes in X), especially with regard to how those may
15	change under the climate scenarios. Several codes can indicate the same level of sensitivity, so
16	the following groupings were used to indicate three levels of sensitivity:
17	
18	<u>Low sensitivity</u> = Codes 8-9 & 12-13
19	Intermediate sensitivity = Codes 2-5
20	<u>High sensitivity</u> = Codes 6-7 & 10-11
21	
22	This typology was used to document all judgments, along with the following additional
23	categories of judgments:
24	
25	$\underline{No Influence} = Code 0$
26	$\underline{\text{Unknown influence}} = \text{Code 1}$
27	<u>None given</u> = No judgment provided
28	<u>Other</u> = Response provided that does not fit into the coding scheme
29	
30	2.2.2.6. Understanding Relative Impacts of Influences
31	While the coding scheme described above captures the nature of individual influences, it
32	is also of interest to identify which influences and interactions the participants perceived to have
33	the greatest relative impact on the ecosystem process endpoint. Here we define relative impact
34	as the combination of not only sensitivity but also how greatly the variable is changing relative to
35	other variables. There was no coding for this in the workshop exercise; rather, this concept was
36	an emergent property of group discussions that looked at the influence diagram as a whole and

37 identified influences of greatest relative impact in the context of the entire web of influences.

During group discussions that spanned both days of the workshop, information was gleaned as to 1 2 which influences participants perceived to have comparatively greater effects on the ecosystem 3 process endpoints, and whether this varied under the climate scenarios. These discussions were 4 captured in the workshop notes as well as in the influence diagrams, in which the participants 5 identified influences and interactions of highest relative impact (see sections 2.3.1.4 and 2.3.2.4). 6 7 2.2.2.7. Key Questions 8 As described above, there are three categories of information that together comprise the 9 collective understanding of each ecosystem process as represented by its influence diagram: 1) 10 the type and degree of influence between variables, 2) the sensitivity of "response" variables to 11 changes in "affecting" variables, and 3) the relative impact of each variable on the ecosystem 12 process endpoint. For each of the three categories of information, the following key questions 13 are addressed. 14 15 Types and Degrees of Influences: 16 For which influences and interactions was there agreement in participants' judgments (codes), and what were those codes? 17 • How did agreement on influences and interactions vary from current conditions to 18 Climate Scenario A and Climate Scenario B? 19 20 • For influences and interactions for which there was agreement in judgments, how did 21 confidence levels across the participants vary? Did this change under the climate 22 scenarios? 23 24 Sensitivity of Influences: 25 For which influences and interactions was there greatest sensitivity and least 26 sensitivity in the response variable to changes in the "affecting" variable? 27 • Were there any influences or interactions where agreement on sensitivity across 28 participants increased or decreased under the climate scenarios? 29 30 **Relative Impact of Influences:** 31 • Which influences and interactions did the participants indicate have the greatest 32 relative impact on the ecosystem process endpoints? • Were there any influences or interactions for which relative impact changed under the 33 34 climate scenarios? 35 36 Using the data from the coding exercise as well as information that emerged during group 37 discussions, these questions are explored in the results sections that follow. 38 2.3. 39 RESULTS 40 Major outputs of the expert elicitation exercise included the group influence diagrams,

41 the judgments on influences (including interactive influences) along with their confidence

estimates, information on sensitivities (including thresholds), and characterizations of relative
impacts. For the purpose of this study, a threshold is defined (as per Groffman et al., 2006) as a
point at which there is an abrupt change in an ecosystem property (such as a flip in influence
type from direct to inverse), or where a small additional change in a driver produces a large
response (such as a shift from a proportionate to a disproportionately strong response of variable
Y to a change in variable X).

7

8 2.3.1. Sediment Retention

9 2.3.1.1. Group Influence Diagram

10 Figure 2-2 shows the group diagram developed by the Sediment Retention group. 11 Variable definitions that were clarified by the participants during the construction of the diagram 12 are found in Table 2-5. Two main variables, Net Mineral Accumulation and Net Organic 13 Accumulation, influence the endpoint of the balance between Net Accretion and Erosion. 14 Organic and inorganic sediment accumulation processes are both influenced by Inundation 15 Regime, which is influenced by Relative Sea Level and Tides. There is a feedback loop from the 16 endpoint to Inundation Regime. The middle level in the diagram includes Tides, Relative Sea 17 Level, Freshwater Inflow, Sediment Flux, Sediment Size and Wind and Waves. Freshwater 18 Inflow and Inundation Regime are key factors influencing Net Organic Accumulation through 19 plant community composition and production. Of the management and stressor variables, three 20 are related to Water Resource Management: Delta Outflow, Reservoir Management and 21 Channelization. These influence a combination of Sediment Flux and Size and Freshwater 22 Inflow. 23 24 Figure 2-2. Sediment Retention group influence diagram. 25 26
 Table 2-5. Sediment Retention variable definitions clarified during group
 27 discussion 28 29 The 15-box constraint meant that the freshwater and sediment supply variables were not 30 split between Delta and tributary sources, even though much of the discussion on the diagram 31 highlighted the differences in those sources. Without separate variables differentiating between 32 local tributary and Delta freshwater inflow, Delta Outflow and Freshwater Inflow could be 33 considered to effectively act as a single variable. The fourth stressor variable is a Land Use and 34 Land Cover Change variable: Impervious Cover.

35

1 2.3.1.2. Influence Types and Degrees

2 Agreement

The influences upon which participants agreed with respect to type and degree help to establish the nature of those relationships and indicate which are best understood. Table 2-6 presents these results for the Sediment Retention group.

6 7

8

9

10

11 12 Table 2-6. Sediment Retention group influence judgments; columns A-Zrepresent individual influences (arrows) in the influence diagram and rowsrepresent individual respondents: dark green = agreement on influence typeand degree, light green = agreement on type but not degree, gray = noagreement; within columns, green numbers = same (majority) grouping oftype (though degree may be different), pink numbers = disagreement abouttype, red outline = threshold response

13 14

In some cases, participants gave multiple codes for an arrow. When the multiple codes represented one of the pairing types described above in section 2.2.2.5 (e.g., 2/3), both codes are shown, separated by a "/".

18 If multiple codes that do not fall into a pairing were given, both codes are shown, 19 separated by a symbol indicating the nature of the combination. In the first type of combination, 20 multiple codes with "X" going in the same direction (e.g., X is increasing in both codes) are 21 separated by a "^" symbol; and where these codes conflict and would make a difference in 22 determining agreement, those cells were not counted. In cases where a reason was given for 23 multiple codes (such as when boxes had "lumping" problems and participants specified different 24 codes for different variables within the box), then the code that logically corresponded best to 25 other participants' codes (based on the notes column and other inferences) was used.

In the second type of combination, codes with "X" going in different directions (e.g., X is increasing in one code and decreasing in the other) are separated by a "|". Since the response to X can indeed be different depending on whether X is increasing or decreasing, these cells do not represent a conflict but rather the opportunity to consider agreement in both the "X-up" and "Xdown" direction. In these cases it was possible to have agreement in one direction but not the other.

32 The columns in Table 2-6 represent individual influences (arrows) in the group influence 33 diagram, and rows represent individual respondents. Dark green shaded columns indicate 34 agreement on both type and degree of influence; light green shaded columns indicate agreement 35 on type but not degree; gray shaded columns indicate no agreement. Within columns, numbers 36 in green are those that fall into the same (majority) grouping in terms of type of influence (even 37 though degree is different), while codes in pink indicate disagreement about type. Columns 38 outlined in red indicate threshold influences where there was either: 1) a change in type of 39 influence in the climate scenarios compared to current conditions (e.g., from a direct to an

1 inverse relationship), 2) a change in sensitivity (e.g., a change from a proportional to

2 disproportional response, or 3) an indication by multiple participants in their notes or in the

3 group discussions that the influence was likely a threshold relationship of type 1 or 2 above (but

4 for which they did not know in which scenario this would occur). In these cases the type and/or

degree of influence for the relationship would depend on a threshold, the exact location of whichmay be uncertain.

Under current conditions, there were 16 influences for which there was agreement on
both type and degree of influence. There were seven influences for which there was agreement
on type but not degree. There was no agreement for three influences. Relative to the rest of the
diagram, the influences from the top row variables, which represent management options, have
less agreement.

Under Climate Scenario A, there were 17 influences for which there was agreement on both type and degree, which includes all of the same influences as under current conditions plus one additional influence, the feedback from the endpoint to Inundation Regime. There were five relationships for which there was agreement on type but not degree and four relationships had no agreement. The influences for which there was no agreement include two of the same ones as current and two for which there previously was agreement on type but not degree.

18 Under Climate Scenario B, there were 15 influences for which there was agreement on 19 both type and degree. There were six relationships for which there was agreement on type but 20 not degree and five relationships had no agreement. Most of the changes in Climate Scenario B 21 are influences losing agreement on degree or ones that had already changed in Climate Scenario 22 A. Inundation Regime to Wind/Waves settled into agreement on direct disproportional, strong 23 response.

24

25 Thresholds

26 Relationship N (Relative Sea Level on Inundation Regime) and relationship Z (Wind/ 27 Waves on Sediment Flux) were identified to be threshold relationships under the climate 28 scenarios. The threshold of relationship N is related to the marsh response to sea level rise, and 29 is tied to the rate of sea level rise. At the point in the inundation regime where the marsh is no 30 longer able to keep up with sea level rise, the marsh elevation will drop, thereafter experiencing a 31 different inundation regime. The threshold of relationship Z occurs where wind-driven waves 32 change from a source of sediment, adding to net vertical accretion, to a net negative impact 33 through erosion of the marsh edge. This occurs because, as water depth increases due to sea 34 level rise, the effect of wave energy on re-suspension of bottom sediment will decrease while its 35 effect on marsh edge erosion will increase. In both of these cases the type or sensitivity of the 36 influence did not change across the scenarios (direct influence with intermediate sensitivity for 37 both), but the influences were indicated by participants to be important threshold relationships

through the discussion. One possible reason why these thresholds identified in the discussion did not show up in the coding as changes in sensitivity is because participants did not know where the threshold would occur, so they did not want to attach that estimate to a particular climate scenario. Alternatively, it may be that there is a threshold that represents a state change that falls within the range of natural variability, so this method was not sensitive enough to identify the threshold. Relative sea level and wind and waves are both closely tied to climate drivers, making relationships driven by them sensitive to climate change.

8

9 2.3.1.3. Influence Sensitivity

10 Figure 2-3 shows the sensitivity results using the influence diagram, indicating where 11 there is agreement under current conditions. The typology described in Section 2.2.2.5 was used 12 to code sensitivity, with an additional differentiation within the "no agreement" category. In all 13 "no agreement" cases, there was a mixture of codes for intermediate sensitivity along with low 14 and/or high sensitivity; if at least four participants provided judgments, and there were more high 15 sensitivity judgments than low sensitivity judgments, then the dashed arrow was colored orange 16 to indicate intermediate-to-high sensitivity. Under current conditions, 19 influences for which 17 there was agreement were categorized as intermediate sensitivity. Three influences were 18 categorized as low sensitivity, two of which originate from the variable Channelization. There 19 were no instances of agreement on influences with high sensitivity. There was no agreement on 20 sensitivity for four influences.

- 21
- 22 23

24

Figure 2-3. Sediment Retention group summary influence diagram of sensitivities under current conditions.

25 Figure 2-4 compares the sensitivities as in Figure 2-3, across the three scenarios. There 26 were no influences for which the sensitivity category changed between scenarios; the only 27 changes were between no agreement and a type of sensitivity. Under Climate Scenario A, all of 28 the same influences as those under current conditions were again categorized as intermediate 29 sensitivity, with the exception of both Freshwater Inflow and Inundation Regime on Net Organic 30 Accumulation, for which there no longer was agreement. However, Inundation Regime on Net 31 Organic Accumulation showed a trend toward increasing sensitivity (orange arrow), as did 32 Inundation Regime on Wind/Waves. The same three influences as under current conditions were 33 categorized as low sensitivity for both Climate Scenario A and Climate Scenario B. 34

Figure 2-4. Sediment Retention group summary influence diagrams of sensitivities: variance across current conditions and two climate scenarios.

37

1 Under Climate Scenario B, one influence which previously had no agreement (but did 2 show an orange trend), Inundation Regime to Wind/Waves, increased in agreement, which 3 resulted in a categorization of high sensitivity. Three additional intermediate sensitivity 4 influences dropped below the standard of agreement: Wind/Waves on Sediment Size, Sediment 5 Size on Net Mineral Accumulation and the feedback from Net Erosion/Accretion on Inundation 6 Regime, such that the number of influences with no agreement on sensitivity increased to eight. 7 The disagreement shows a trend of some participants estimating increasing sensitivity, with 8 several of the influences characterized as a mix of intermediate and high sensitivity (orange 9 arrows) where there had once been agreement on intermediate sensitivity.

One reason for lack of agreement on changes in sensitivity across scenarios, as well as lack of agreement within scenarios, may have been the degree of variability among participants in their judgements. Overall, there was more variability among participants than across scenarios for any given participant. There were no patterns across participants, such as characterizing only increasing sensitivity. Further description, as well as figures depicting variability in judgments across participants, can be found in Appendix B.

16

17 2.3.1.4. Relative Impact

18 Figure 2-5 Figures 2-5 and 2-6 present the characterizations of relative impact between 19 current and future climate scenarios (the group's discussion did not differentiate between the two 20 future climate scenarios). Six influences were identified as having high relative impact under 21 current conditions. None of these are connected to the management options level within the diagram. We have assumed that these same relationships are still of high impact under the 22 23 climate scenarios unless otherwise noted in the group discussion on climate change impacts. The 24 influences of Net Organic Accumulation on Net Erosion/Accretion and of Wind/Waves on 25 Sediment Flux were identified as having increasing impacts under the climate scenarios. Two 26 new influences, both on Freshwater Inflow and driven by variables in the management options 27 level, were identified as having high relative impact under the climate scenarios: Reservoir 28 Management and Channelization. 29

- 30
- 31 32

Figure 2-5. Sediment Retention influences indicated as having high *relative impact* under current conditions.

Figure 2-6. Sediment Retention group influences indicated as having high *relative impact* under climate scenarios.

34 35

33

36 **2.3.1.5.** *Confidence*

The confidence results shown in Table 2-7 are provided for the Sediment Retentioninfluences for which there was agreement on type. The lack of agreement on confidence for

1	almost half of the judgments is a significant gap, limiting our ability to prioritize around
2	confidence judgments. Eight of the 11 influences for which there was agreement on confidence
3	across all three scenarios were scored as high evidence and high agreement (HH). The
4	influences of Reservoir Management on Sediment Flux and Sediment Size, which were both
5	categorized as HH under current conditions, showed declining confidence under the climate
6	scenarios, with scores of low evidence/high agreement (LH) under Climate Scenarios A and B.
7	Relative Sea Level on Tides, scored as HH under current conditions, also showed declining
8	confidence under the climate scenarios, with a score of low evidence/low agreement (LL) under
9	Climate Scenario A and Climate Scenario B.
10	
11 12 13 14 15	Table 2-7. Sediment Retention group confidence for influences with agreement: NA = No agreement; HH = High evidence, High agreement; HL = High evidence, Low agreement; LH = Low evidence, High agreement; LL = Low evidence, Low agreement
16	The confidence results shown in Figure 2-7 total all judgments across all participants.
17	The total number of HH and HL judgments decreased under the climate scenarios compared to
18	current conditions, and the total number of LH and LL judgments increased under the climate
19	scenarios compared to current conditions. The decrease in the total number of HH judgments
20	from current conditions to the climate scenarios and the corresponding increase in the total
21	number of LL judgments show that influences are less well-understood, probably due to less
22	information being available about future climate conditions.
23	
24 25 26 27	Figure 2-7. Sediment Retention group confidence results for all influences; HH = High evidence, High agreement; HL = High evidence, Low agreement; LH = Low evidence, High agreement; LL = Low evidence, Low agreement.
28	2.3.1.6. Interacting Influences
29	Table 2-8 presents the interactive influences upon which there was agreement for the
30	Sediment Retention group. The interactive influence columns indicate the type of interactive
31	influence and associated number of participants that chose that particular interactive influence
32	type. The confidence columns indicate the confidence judgment and associated number of
33	participants that chose that particular confidence score.
34	
35 36 37 38 39	Table 2-8. Sediment Retention group interactive influences with agreement under current conditions and Climate Scenarios A and B: NA = No agreement; HH = High evidence, High agreement; HL = High evidence, Low agreement; LH = Low evidence, High agreement; LL = Low evidence, Low agreement; () = Number of respondents
40	

1 Under current conditions, there were five interactive influences for which there was 2 agreement among participants in the Sediment Retention group. For each of these interactive 3 influences, Synergy was the type of influence chosen. Among these, there is a cluster of 4 multiple interactions between Inundation Regime, Sediment Flux and Sediment Size on Net 5 Mineral Accumulation. The other two interacting influences identified act on Inundation 6 Regime and Sediment Flux, so they are highly interconnected. There was only agreement on the 7 confidence for two of these interactive influences, both of which were scored as high evidence 8 and high agreement (HH).

9 Under both Climate Scenario A and Climate Scenario B, there was agreement on three of 10 the previous five synergistic interactive influences, with synergy again chosen as the type of 11 interactive influence. Again the same cluster of influences on Net Mineral Accumulation was 12 identified. There was no agreement on confidence for these interactive influences under either of 13 the future climate scenarios.

This lack of agreement on interacting influences was primarily due to not having many influences with enough participants characterizing the same interacting influences. Of the 48 combinations of influences with interactions characterized by participants, only 10 could be considered for agreement with at least three participants making a judgment; half of those had three participants in agreement.

19

20 2.3.2. Community Interactions

21 2.3.2.1. Group Influence Diagram

22 Figure 2-8 shows the group diagram developed by the Community Interactions group. 23 Variable definitions that were developed by the participants during the construction of the 24 diagram are found in Table 2-9. Figure 2-8 shows a high degree of interconnectivity between 25 variables, especially among those directly influencing the endpoint. These variables are Extent 26 of Mudflat (and, therefore, extent of feeding habitat), Predators and Disturbance, Bed Sediment 27 Characteristics and Quality, Shorebird Prey Community and Landscape Mosaic (i.e., where 28 mudflats sit relative to other foraging and roosting habitats such as salt ponds). Many of the 29 variables encompass complex processes, which combine more than one key variable. Defining a 30 metric specific to such broad variables, including whether they are increasing or decreasing, 31 proved to be challenging. The possibility of differing assumptions about definitions among 32 participants complicates interpretation of the results. The variables indirectly affecting the 33 endpoint are primarily physical ones: Mudflat Bathymetry, Tides and Hydrodynamics, Sediment 34 Resuspension and Deposition, Wind/Waves, Water Quality, Freshwater Inflow and Sediment 35 Supply. The management and stressor variables are broad categories: Water Management, 36 Restoration and Land Use Change.

1	
2	Figure 2-8. Community Interactions group influence diagram.
3	
4	Table 2-9. Community Interactions variable definitions clarified during
5	group discussion
6	
7	2.3.2.2. Influence Types and Degrees
8	Agreement
9	Table 2-10 presents the results for the Community Interactions group. As in Table 2-6,
10	the columns in Table 2-10 represent individual influences (arrows) in the group influence
11	diagram, and rows represent individual respondents. Dark green shaded columns indicate
12	agreement on both type and degree of influence; light green shaded columns indicate agreement
13	on type but not degree; gray shaded columns indicate no agreement. Within columns, numbers
14	in green are those that fall into the same (majority) grouping in terms of type of influence (even
15	though degree is different), while codes in pink indicate disagreement about type. For further
16	explanation of table details, see section 2.3.1.2.
17	
18	Table 2-10. Community Interactions group influence judgments; columns A-
19 20	KK represent individual influences (arrows) in the influence diagram and rows represent individual respondents: dark green = agreement on influence
20 21	type and degree, light green = agreement on type but not degree, gray = no
22	agreement; within columns, green numbers = same (majority) grouping of
23	type (though degree may be different), pink numbers = disagreement about
24	type, red outline = threshold response
25	
26	The participants agreed on the type and degree of influence for a smaller fraction of the
27	total number of influences than the Sediment Retention group did. Under current conditions,
28	there were 18 influences for which there was agreement on both type and degree. These are
29	spread throughout the diagram, but it is of note that there was agreement on type for all of
30	influences going into the endpoint and of those, there was also agreement on degree for all but
31	Bed Sediment Characteristics and Quality. There were five influences where there was
32	agreement on type but not degree of influence. There was no agreement for 13 relationships.
33	Under Climate Scenario A, the number of influences for which there was agreement on
34	both type and degree dropped to 12; for those that changed, they split between changing to
35	agreement on type but not degree and to no agreement. The influence of Tides and
36	Hydrodynamics on Extent of Mudflat went from no agreement to agreement on inverse
37	disproportional, strong response. There were nine relationships for which there was agreement
38	on type but not degree. There were 15 relationships for which there was no agreement.
39	Under Climate Scenario B, there were 11 influences for which there was agreement on
40	both type and degree. There were nine relationships for which there was agreement on type but
	This document is a draft for review purposes only and does not constitute Agency policy.
	2-17 DRAFT— DO NOT CITE OR OUOTE

not degree. There were 16 relationships for which there was no agreement, which includes all of
 the same influences under Climate Scenario A along with the influence of Mudflat Bathymetry

3 on Extent of Mudflat.

Agreement for the type and degree of influence remained consistent across the scenarios
for eight relationships. Agreement on type but not degree of influence remained consistent
across the scenarios for three relationships. There were 11 relationships for which there was no
agreement on type or degree of influence across the scenarios.

8 The larger number of influences for which there was no agreement under all scenarios 9 leaves a gap which makes it difficult to understand the type or degree of influence for these 10 relationships. This is partially due to a higher occurrence of no response given for the 11 Community Interactions group. It is not possible to differentiate between lack of response due to 12 insufficient time and disinclination to answer due to lack of knowledge about the influence.

13

14 Thresholds

Four relationships were identified as threshold relationships under the climate scenarios,
based on the notes and discussions. These were: Freshwater Inflow on Tides and

17 Hydrodynamics (Relationship K); Water Quality on Shorebird Prey Community (Relationship

18 S); Bed Sediment Characteristics and Quality on Shorebird Prey Community (Relationship BB);

and Extent of Mudflat on Shorebirds (Relationship DD). Relationship K was characterized as a

20 direct influence of uncertain degree; coding for degree was a mixture of weak, proportional and

21 strong influences with a slight trend toward increasingly strong influences through time. Some

22 participants indicated that winter increases in freshwater flow will be very important as mudflats

reach a threshold of becoming subtidal; this would be especially true during high tides, where

flows could push a system above a threshold and create a large impact on inundation height.
 Relationship S was characterized as direct proportional across the three scenarios. The
 water quality aspect emphasized by the participants as a threshold was dissolved oxygen (DO).
 They noted that small decreases in DO could have a large negative effect on mudflat prey

28 populations as a threshold is reached.

29 Relationship BB was direct proportional under current conditions, but there was no 30 agreement on degree under the climate scenarios. One participant indicated a change to a 31 disproportionately strong response through coding, but other participants did not change their 32 coding or left some blank cells, such that there was no majority agreement on degree under the 33 climate scenarios. However, participants' notes indicated that as habitat becomes more limited, 34 even small areas of poor habitat will have large effects on shorebirds. For this example as well 35 as the previous two threshold influences above, the participants chose to indicate the thresholds 36 through notes (rather than through coding) because they were not sure when (i.e., under which 37 climate scenario) the threshold was most likely to be reached.

1 Relationship DD was unique in being the only threshold influence that was identified 2 clearly through the coding exercise. Under current conditions the relationship was considered 3 direct proportional. Under Climate Scenario A there was agreement that it was still a direct 4 relationship, but there was no agreement on degree because there was a mixture of proportionate 5 and disproportionately strong codes. Under Climate Scenario B the conversion to agreement on 6 a direct disproportionately strong relationship was complete. This reflects the opinion of the 7 participants that as access to foraging habitat on mudflats becomes limiting due to sea level rise 8 and other factors, the effect on shorebird populations will become more extreme.

9

10 2.3.2.3. Influence Sensitivity

11 Figure 2-9 shows the sensitivity results using the influence diagram, indicating where 12 there is agreement under current conditions. The typology described in Section 2.2.2.5 was used 13 to code sensitivity, with an additional differentiation within the "no agreement" category. In all 14 "no agreement" cases, there was a mixture of codes for intermediate sensitivity along with low 15 and/or high sensitivity; if at least four participants provided judgments, and there were more high 16 sensitivity judgments than low sensitivity judgments, then the dashed arrow was colored orange 17 to indicate intermediate-to-high sensitivity. Under current conditions, 19 influences for which 18 there was agreement were categorized as intermediate sensitivity. Five influences were 19 categorized as high sensitivity: both the influence of Restoration and of Land Use Change on 20 Landscape Mosaic, Landscape Mosaic on the endpoint, and both the influence of Tides and 21 Hydrodynamics and of Mudflat Bathymetry on Extent of Mudflat. There was no agreement on 22 sensitivity for 12 influences. There were no instances of agreement on influences with low 23 sensitivity.

24

25 26 27

Figure 2-9. Community Interactions group summary influence diagram of sensitivities under current conditions.

Figure 2-10 compares the sensitivities as in Figure 2-9, across the three scenarios. Under 28 29 Climate Scenario A, 10 influences for which there was agreement were categorized as 30 intermediate sensitivity. Five influences were categorized as high sensitivity: four of the same as 31 under current conditions, with a change the influence of Land Use Change on Landscape Mosaic 32 to no agreement and new agreement for the influence of Predators and Disturbance on the 33 endpoint. The number of influences with no agreement increased substantially to 21. Seven of 34 those are in disagreement because there is a combination of intermediate and high sensitivity 35 (orange arrows). This decrease in agreement reflects a trend of increasing sensitivity for some 36 participants, but not enough to shift to a new category. It could be indicative of either 37 disagreement about at what point such a shift would occur or differing assumptions about what

falls outside the current range of variability, which was left up to each participant to decide basedon their own knowledge and intuition.

- 3
- 4
- 5 6

Figure 2-10. Community Interactions group summary influence diagrams of sensitivities: variance across current conditions and two climate scenarios.

7 Under Climate Scenario B, seven influences for which there was agreement were 8 categorized as intermediate sensitivity. Six influences were categorized as high sensitivity, with 9 the addition of Extent of Mudflat on the endpoint, which had been intermediate under current 10 conditions. This is another way to identify a threshold, when there is a change in sensitivity to a 11 more sensitive category. The number of influences with no agreement increased again to 23; 12 however, for six of these the lack of agreement was due to a mixture of intermediate and high 13 sensitivity codes (orange arrows).

As with the Sediment Retention group, there was more variability in judgments among participants than across scenarios for any given participant. The majority of changes in sensitivity across the climate scenarios are of increasing sensitivity. Further description, as well as figures depicting variability in judgments across participants, can be found in Appendix B.

18

19 2.3.2.4. Relative Impact

20 Figure 2-11 and Figure 2-12 present the characterization of relative impact between 21 current and future climate scenarios (the group's discussion did not differentiate between the two 22 future climate scenarios). Relative impact was distinguished among the influences by indicating 23 primary, secondary or tertiary levels of relative impact. For the Community Interactions group, 24 the relative impacts of five influences were indicated as important under current conditions, 25 based on the discussion. The influences of Landscape Mosaic and of Extent of Mudflat on the 26 endpoint were both identified as having primary impacts. The influences of Predators and 27 Disturbance and of Shorebird Prey Community on the endpoint were identified as having 28 secondary impacts, and the influence of Bed Sediment Characteristics and Quality on the 29 endpoint was identified as having tertiary impact.

30

31 32

Figure 2-11. Community Interactions influences indicated as having high *relative impact* under current conditions.

Figure 2-12. Community Interactions group influences indicated as having high *relative impact* under climate scenarios.

35 36

33 34

A total of 10 influences were indicated as having high relative impact under climate
change conditions for the Community Interactions group (Figure 2-12). Three of the influences
indicated as having high relative impact under current conditions increased in relative impact *This document is a draft for review purposes only and does not constitute Agency policy.*

1 when considering future climate conditions: the influences of Landscape Mosaic, Predators and 2 Disturbance, and of Shorebird Prey Community, each on the endpoint. The relative impact of 3 Extent of Mudflat on the endpoint stayed equally important. Five additional influences were 4 indicated as having high relative impact under the climate change scenarios. In addition, the 5 influence of disease on the endpoint was identified as an influence of emerging impact. Disease 6 was not an original key variable in the influence diagram, as variables were included based on 7 importance under current conditions. This influence was not scored, but was considered to be 8 important by the participants. The influence of Bed Sediment Characteristics on the endpoint 9 was indicated as having high relative impact under current conditions but not under the climate 10 scenarios. It is unclear whether this was intentional or was just not covered in the discussion of 11 relative impact under future climate conditions.

12

13 2.3.2.5. Confidence

14 The confidence results shown in Table 2-11 are provided for the Community Interactions 15 influences for which there was agreement on type. The lack of agreement on confidence for 16 two-thirds of the judgments is a major gap, limiting our ability to prioritize around confidence 17 judgments. Five of the six influences that for which there was agreement on confidence across 18 all scenarios were scored as high evidence and high agreement (HH). The influence of 19 Freshwater Inflow on Net Organic Accumulation was scored as low evidence high agreement 20 (LH) across all scenarios. The HH type of confidence was the most used type of judgment. The 21 dominant pattern on confidence across the climate scenarios was a decrease in the number of 22 influences on which there was agreement.

23 24

25

26 27

28

Table 2-11. Community Interactions group confidence for influences with agreement: NA = No agreement; HH = High evidence, High agreement; HL = High evidence, Low agreement; LH = Low evidence, High agreement; LL = Low evidence, Low agreement

The confidence results shown in Figure 2-13 total all judgments across all participants.
 In total, confidence decreased from current conditions to the climate scenarios, with a decrease in
 the total number of HH and an increase in LL. However, a larger increase was in the total
 number of no answer given, and the decreases in HL and LH are difficult to explain in total.
 Figure 2-13. Community Interactions group confidence results for all

Figure 2-13. Community Interactions group confidence results for all
 influences; HH = High evidence, High agreement; HL = High evidence, Low
 agreement; LH = Low evidence, High agreement; LL = Low evidence, Low
 agreement.

38

1 2.3.2.6. Interacting Influences

2 Under current conditions, there were no interactive influences for which there was 3 agreement among participants in the Community Interactions group. Likewise, under both 4 climate scenarios there were no interactive influences for which there was agreement on the type 5 of interactive influence. This lack of agreement was primarily due to not having many 6 influences with enough participants characterizing the same interacting influences. Of the 24 7 combinations of influences with interactions characterized by participants, only four had at least 8 three participants make any kind of judgment, which was the threshold for agreement, but those 9 were not ever in agreement on a type of interaction.

10 11

2.4. DISCUSSION OF ADAPTATION STRATEGIES

With background on strategic priorities provided by SFEP, the workshop participants discussed the implications of the exercise results for management. Table 2-12 lists adaptation strategies that emerged during the group discussions. The experts discussed a variety of general adaptation strategies as well as some specific adaptation activities that would be responsive to key potential climate-related changes identified through their judgments. The strategies fall into several broad categories, including Restoration & Conservation, Sediment Management and Planning & Monitoring.

19

Table 2-12. Adaptation strategies and associated top pathways for management (see section 3.2 for pathways). SG=Sediment Retention Green pathway; SB=Sediment Retention Blue pathway; SP=Sediment Retention Purple pathway; CG=Community Interactions Green pathway; CB=Community Interactions Blue pathway; CP=Community Interactions Purple pathway.

26

27 **2.4.1. Restoration & Conservation**

28 Restoration was identified as a powerful management tool with a variety of specific 29 planning and prioritization considerations. The experts emphasized the urgency of implementing 30 restoration projects as an immediate priority, taking climate change impacts into consideration in 31 planning. For marsh restoration, the key is getting started early enough so that marshes can be 32 established before rates of sea level rise become too high. As a restored marsh matures, it is 33 better able to keep pace vertically through vegetative production. Similarly for other types of 34 restored habitats, they will be more resilient to changing climate conditions as they mature. The 35 other temporal issue for restoration planning was the need to plan for ecological succession, 36 building a dynamic landscape mosaic that includes habitats that will thrive under future climate 37 conditions. 38 Similar and related considerations apply to conservation strategies. One consideration for 39 conservation could be habitats that are well suited to future climate conditions. Though some

This document is a draft for review purposes only and does not constitute Agency policy.

habitats may not survive climate change (e.g., where there are not long term opportunities for
migration), it may still be important to preserve and restore these habitats in the short and
medium term as interim habitats until alternate habitats that serve similar ecosystem functions
have been established.

5 Available space for habitat migration is a major consideration for both restoration and 6 conservation. On the conservation side, adjacent transitional uplands should be maintained to 7 allow for local habitat migration. Policy options may include regulation or incentives to 8 encourage relocation and to discourage development on lands where there is potential for 9 upslope habitat migration or restoration. The slope of the adjacent uplands is an important factor 10 in such conservation priorities, and the need for improved vertical data as a mapping priority was 11 highlighted in the workshop discussion. Such mapping would help to identify upland areas for 12 restoration adjacent to current healthy marshes, where migration of marshes is possible. The 13 experts especially emphasized the need to identify and prioritize wetland areas for restoration 14 where the adjacent uplands currently include complementary habitats that would contribute to a 15 complete landscape mosaic that could support valued species such as shorebirds that will be 16 stressed by climate change. Another key part of developing and conserving such landscape 17 mosaics is providing for connectivity between multiple habitats. Also underscored was the need 18 to focus restoration efforts in the North Bay because the shoreline of the South Bay is so 19 developed that it precludes the ability of marshes to migrate upland. Finally, many restoration 20 efforts to date have involved fringing marshes. The focus of restoration could be expanded 21 beyond fringing marshes to larger areas where there is available space for multiple habitats. 22 A major spatial planning consideration for restoration is the need to consider the impacts 23 of each project on adjacent and downstream habitats and future restoration projects. In 24 particular, any project that broaches levees in Suisun Marsh will impact downstream sediment 25 budgets and adjacent hydrodynamics. Restoration projects could be coordinated so that projects 26 can be planned and timed to maximize success. Deciding when and where (e.g., how far 27 upstream) to focus restoration of different marsh types will also depend on changes in the 28 salinity gradient; conditions that suit freshwater and brackish marshes will be moving upstream 29 through time under climate change, unless maintaining marsh salinity becomes a priority for 30 Delta freshwater storage policies.

31

32 2.4.2. Sediment Management

33 Sediment management is already a priority within the region and will continue to be an 34 important focus for marsh management in the context of sea level rise and changing precipitation 35 patterns. There is an expectation that sediment supply from the Sacramento Valley will continue 36 to decline due to the cessation of hydraulic mining, but currently it remains elevated above levels 37 prior to the 19th century. It will become increasingly important to support movement of

1 inorganic sediment into restoration sites in the near term, so that salt marshes can build to

2 threshold elevations for vegetation establishment and begin contributing organic sediment to

3 maintain themselves.

4 Changes in sediment supply will require local tributaries and Delta sources to be 5 managed differently. On the tributary side, there are opportunities to reconnect streams to 6 wetlands through flood control districts. An example of a specific option for increasing 7 inorganic sediment loads from local tributaries would be to for regional water boards to consider 8 adjusting sediment TMDLs (Total Maximum Daily Loads) to allow for increases in coarse 9 sediment loads in streams that do not support salmonids. On the Delta side, Integrated Water 10 Management will be increasingly important for maintaining sediment supply, and may prompt a 11 switch in priority from storage to conservation. In the Bay, dredge sediment reuse is an 12 opportunity to redistribute sediment to desired locations. Limiting factors on current use of this 13 technique were discussed by the workshop participants, including the need for best management 14 practices and funding.

While most of the discussion on sediment was about keeping pace vertically with sea level rise, horizontal impacts through marsh edge erosion were also discussed. There is a need to develop ways to reduce wave action on the front sides of marshes. Protecting adjacent mudflats, such as with berms, is one specific option.

19

20 2.4.3. Planning & Monitoring

The final category of adaptation strategies discussed at the workshop addressed planning and monitoring. Many of the above recommendations are based on planning, including prioritizing. The need to develop rapid response plans for catastrophes or contingency plans for when thresholds are passed was emphasized. Preparing the political and funding conditions necessary to implement such plans would be essential.

26 Monitoring will become increasingly important in order to detect when thresholds are 27 being crossed. The scales at which monitoring is focused will have to be adapted to changes in 28 restoration priorities. Monitoring at the landscape scale -- especially for birds and other mobile 29 species that use multiple habitat types -- will be a necessity in order to track potential thresholds. 30 This will likely require coordination among multiple agencies since many habitats and habitat 31 mosaics span jurisdictional boundaries. The current condition and extent of these habitats needs 32 to be monitored and understood now, as the current data are insufficient for a baseline at the 33 landscape level. Examining habitats at a larger scale will also be important for facilitating species movements. It may become necessary to ensure that birds can move among ponds, tidal 34 35 marshes, and mudflats as conditions change. Some species (e.g., clapper rail, salt marsh harvest 36 mouse) may not be able to migrate from degrading areas on their own and may require 37 intervention.

- 1 The discussion of adaptation strategies described above was broad and free-ranging. The
- 2 next section will combine the analysis of the exercise results with the ideas in Table 2-12 to
- 3 discuss top pathways for management given climate change and identify specific adaptation
- 4 options in response.

1 2

3. MAKING THE LINK TO MANAGEMENT

As detailed above, the workshop resulted in a large volume of information on the sensitivities of the sediment retention and community interactions processes to stressor interactions under current conditions and future climate scenarios. The next step lies in organizing this information into a form which managers can use to identify influences of particular importance upon which to focus management interventions and adaptation planning.

8

9 10

3.1. USING INFORMATION ON INFLUENCE TYPE & DEGREE, SENSITIVITY AND RELATIVE IMPACT TO IDENTIFY KEY MANAGEMENT PATHWAYS

11 In the workshop exercise and group discussions, the experts generated three categories of 12 information about the relationships in the influence diagrams: 1) the type and degree of each 13 influence; 2) the sensitivity of each influence (including thresholds); and 3) the high relative 14 impact of certain influences on the endpoints. All three categories of information should be 15 considered in concert when interpreting management implications. This can be done by 16 performing a "crosswalk" of all three categories of information in order to identify pathways of 17 particular interest that connect each endpoint (Net Accretion/Erosion or Shorebirds) to stressors 18 or drivers that can be addressed through particular management activities. The crosswalks as 19 well as example pathways are presented below.

20

21 **3.1.1.** Crosswalks: Influence Type & Degree, Sensitivity and Relative Impact

The crosswalks for Sediment Retention and Community Interactions are presented in Table 3-1 and Table 3-2. For each influence, information on type and degree, sensitivity, and relative impact is listed side-by-side, first for current conditions, followed by Climate Scenarios A and B. This allows for easy comparison of all three categories of information, across all three scenarios. The influences have also been rank-ordered based on the amount of information available for each in terms of agreement on influence type, degree, sensitivity, relative impact and threshold potential.

29

30 3.1.1.1. Sediment Retention Crosswalk

31 32

33

34

35

36

37 38

39

Table 3-1. Sediment Retention group crosswalk for comparison of influence type and degree, sensitivity and relative impact for current conditions and climate scenarios. NA = No agreement; Prop = Proportional; Disprop = Disproportional; L = Low sensitivity; I = Intermediate sensitivity; H = High sensitivity; H-trend = No agreement but trending toward high sensitivity; X = High relative impact; ↑ = Increasing relative impact from current; () = Number of respondents; Ranking column orders the influences according to completeness of information

This document is a draft for review purposes only and does not constitute Agency policy.

1 2

3 For Sediment Retention (Table 3-1), there was agreement on both type and sensitivity for 4 the majority of influences. Especially when coupled with the designation of high relative impact, 5 certain influences emerge as being of special interest for management. These are influences for 6 which we have a good understanding of the nature of the relationships, their sensitivity to 7 changes now and in the future, and their high relative impact on the endpoint of Net 8 Accretion/Erosion. Therefore these are the influences for which management interventions are 9 most likely to have the intended effects. Influences ranked one through three in Table 3-1 fall 10 into this category.

11 Even when not designated as highest relative impact, influences for which there was 12 agreement on type as well as sensitivity are equally important to consider. While not necessarily 13 of highest relative impact, they are well understood and sensitive to change, and may be linked 14 with other influences for important cumulative effects on the endpoint. Influences of rank four 15 and five, and also influence G, fall into this category (Table 3-1). Meanwhile, lack of agreement on one or more of the type and sensitivity categories indicates that more information is needed to 16 17 understand the particular influence. It does not imply that the relationship is not potentially 18 important, but rather that it is not well enough understood by this particular group of experts for 19 managers to be confident about the response to either climate change or management 20 interventions. The remaining nine influences fall into this group. Relationship E (Water 21 Resource Management: Channelization on Freshwater Inflow) and Relationship T (Inundation 22 Regime on Net Organic Accumulation) are interesting cases in that there was no agreement on 23 influence type or sensitivity, but there was agreement on high relative impact. These influences 24 were identified as having high or increasingly-high relative impact under the climate scenarios. 25 This indicates that the influences are not well understood, yet are considered by the experts to 26 have a high relative impact on the ecosystem process endpoint of Net Accretion/Erosion. In the 27 case of these influences as well as the remaining influences in this group, priorities for further 28 investigation (in the form of literature reviews to more deeply assess existing information, 29 followed by new research where understanding is confirmed to be lacking) could be based in part 30 on which of these influences are most critical to understand since they have a high relative 31 impact or have links to other influences of special importance to the endpoint. 32

33

3.1.1.2. Community Interactions Crosswalk

34

Table 3-2. Community Interactions group crosswalk for comparison of
influence type and degree, sensitivity and relative impact for current
conditions and climate scenarios. NA = No agreement; Prop = Proportional;
Disprop = Disproportional; L = Low sensitivity; I = Intermediate sensitivity;
H = High sensitivity; H-trend = No agreement but trending toward high

sensitivity; ↑ = Increasing relative impact from current; () = Number of respondents; Ranking column orders the influences according to completeness of information

1 2

3

4

5 The Community Interactions crosswalk (Table 3-2) also has some influences for which 6 there was agreement on both type and sensitivity. Especially when coupled with the designation 7 of high (or increasing) relative impact across the scenarios, these influences emerge as being of 8 special interest for management. These are influences for which we have a good understanding 9 of the nature of the relationships, their sensitivity to changes now and in the future, and their 10 high relative impact on the Shorebirds endpoint. Therefore these are the influences for which 11 management interventions are most likely to have the intended effects. These influences include 12 Relationships O, GG, Q, DD, EE, FF, and E.

Even when not designated as highest relative impact, influences for which there was agreement on type as well as sensitivity are equally important to consider. While not necessarily of highest relative impact, they are well understood and sensitive to change, and may be linked with other influences for important cumulative effects on the endpoint. Influences for which there was agreement on both type and degree across at least two of the three scenarios include Relationships S, U, Y, HH, I, X and JJ.

19 Meanwhile, lack of agreement on one or more of the type and sensitivity categories indicates that more information is needed on the particular influence. Again, it does not imply 20 21 that the relationship is not potentially important, but rather that it is not well enough understood 22 by this particular group of experts such that more information is needed. The remaining 23 influences all lacked agreement in type and/or sensitivity for at least two of the three scenarios. 24 Relationship K (Freshwater Inflow on Tides and Hydrodynamics) and Relationship AA (Extent 25 of Mudflat on Predators and Disturbance) are cases for which there was no agreement on 26 sensitivity across the climate scenarios, but there was agreement on high relative impact. These 27 influences were identified as having increasingly-high relative impact under the climate 28 scenarios (with Relationship K being designated a threshold response). This indicates that 29 although the influences are not fully understood, they are considered by the experts to have a 30 high relative impact on the Shorebirds endpoint. In the case of influences in this group, priorities 31 for further investigation (through literature reviews and further research where needed) could be 32 based in part on which of these influences are most critical to understand since they have a high 33 relative impact or have links to other influences of special importance to the endpoint. 34 It is notable that the community interactions influence diagram had a larger proportion of 35 influences that were not well understood compared to the sediment retention group. There were 36 eight influences for which there was no agreement on any of the three categories of information, 37 for any of the three scenarios. The larger number of influences in the Community Interactions

38 diagram (36 compared to 26 for Sediment Retention) reflects the complexity of modeling both

This document is a draft for review purposes only and does not constitute Agency policy.

3-3

physical (e.g., sediment supply) and biological (e.g., shorebirds and their prey) components of
the community interactions process, and may have contributed to less agreement among the
participants, especially across scenarios.

4

5 **3.1.1.3.** *Information Gaps*

6 Crosswalks

7 Patterns of information gaps in the crosswalk tables varied for Sediment Retention (Table 8 3-1) compared to Community Interactions (Table 3-2). Influences for Sediment Retention were 9 relatively well understood across type and degree and sensitivity categories of information. 10 However, in quite a few cases, even though there was agreement on type there was not 11 agreement on degree. Where there was agreement under current conditions, the agreement 12 tended to carry across the climate scenarios as well. For Community Interactions, there was far 13 less agreement overall about the nature of the influences, with a greater number of gaps in 14 influence type, degree and sensitivity. Also, compared to Sediment Retention there were more 15 cases where agreement that was present under current conditions was lost under the climate scenarios, indicating a greater uncertainty about how the influences might behave in the future. 16

17 Such information gaps – especially involving influences in otherwise well-understood 18 pathways that link to rich opportunities for management – could be used to prioritize targeted 19 literature reviews and/or scientific research that focuses on key process components of interest. 20 Another method for sorting through and prioritizing "non-agreement" influences for further 21 study might be to start from the perspective of management opportunities. Managers could look 22 at their most tractable and effective management levers currently available, and trace pathways 23 from those down to the endpoint of interest, as a means of identifying and selecting priority 24 influences for research. Examples of promising pathways are presented below.

25

26 *Confidence*

Confidence estimates were not included in the crosswalk tables because of extensive
 information gaps in the form of missing estimates. It is possible that this was partly due to time
 limitations as participants prioritized characterizing the influences before marking confidence.
 However, another problem that may have led to gaps was that the confidence exercise did

However, another problem that may have led to gaps was that the confidence exercise did
 not take into account specialty areas of participant knowledge. Due to the complex and
 interdisciplinary nature of the influence diagrams and the individual specialties of the

33 participants, some participants may have been asked to make judgments on influences for which

34 they felt they had insufficient expertise. In some cases they may have elected to leave those cells

35 blank.

Even where confidence estimates were entered, there is cause for caution in interpreting
 the information. Discussions during and after the exercise revealed some confusion about the

1 definitions of evidence and agreement (as per the confidence handout in Appendix D). In

2 particular, there may have been a misunderstanding related to equating agreement alone (even

3 where there was minimal evidence) with full confidence; that is, a large amount of agreement,

even where little information (data) was available, may have been misconstrued as highest (HH)
confidence in some cases.

Thus, the large number of missing cells for confidence could have been due to one or
more of the following: 1) lack of time; 2) inability to judge confidence in certain influences due
to lack of expertise; and 3) confusion about the confidence definitions and coding scheme.
These problems could be corrected in subsequent workshops through pre-workshop trainings to
clarify the coding scheme, provision of a code to allow participants to indicate lack of expertise
as a reason for leaving a cell blank, and additional time to complete the exercise.

12

13 **3.1.2. Identifying Key Pathways for Management**

14 Using the crosswalk tables (Tables 3-1 and 3-2), it is possible to identify influences that 15 are well understood, become more sensitive, and have a greater relative impact under future 16 climate scenarios. By combining a series of such influences into a pathway to the endpoint, we 17 can begin to identify key responses and changes in variables of interest to management. A 18 "pathway" is defined as a series of connected variables and their influences, beginning with a 19 driver or stressor variable and ending at the endpoint. The purpose is to be able to apply 20 management interventions in order to impact the endpoint. "Management levers" are those 21 variables for which it is possible to intervene with management options; the clearest connections 22 to management options are for the top level variables that are drivers or stressors. When 23 multiple management levers are available for a pathway, the one that was more completely 24 characterized or that had potential changes under the climate scenarios was selected. Two 25 example pathways are discussed below, one for Sediment Retention and one for Community 26 Interactions, to show the process by which these types of pathways can be identified. These will 27 be followed in the next chapter by summary diagrams showing the top three pathways for each 28 process, along with discussion of specific management options.

29

30 **3.1.2.1.** Sediment Retention Example

The pathway of Reservoir Management to Freshwater Inflow (Relationship B) to Net Organic Accumulation (Relationship O) to the endpoint (Relationship U) is a relatively direct route to the endpoint of Net Accretion/Erosion (Figure 3-1). For type and degree of influence, Relationship B was characterized as being an inverse proportional influence under all scenarios. For sensitivity, Relationship B was characterized as having intermediate sensitivity under all scenarios. In terms of relative impact, Relationship B was indicated as an influence with increasing impact under the climate change scenarios.

Figure 3-1. Sediment Retention Example Pathway. Future = Climate Scenario B.

5 Relationship O had less agreement. For type and degree of influence, Relationship O was 6 characterized as being a direct influence under Climate Scenario A (not shown in Figure 3-1), 7 but there was no agreement on type and degree under current conditions or Climate Scenario B. 8 For sensitivity, Relationship O was characterized as having intermediate sensitivity under current 9 conditions, but there was no agreement under the climate scenarios. In terms of relative impact, 10 Relationship O was indicated as having high impact under both current and future scenarios. An 11 area for further investigation would be the source of disagreement on the influence type for 12 current conditions versus Climate Scenario B. Is there a potential for a threshold since multiple 13 participants changed their characterization of type between each scenario? Or was the 14 disagreement based on differences in definitions between participants, as the influence could act 15 differently based on considering a change in timing or volume of flow? In order to use Reservoir Management to impact Net Accretion, it will be necessary to understand the nature of the 16 17 influence of Freshwater Inflow. 18 Relationship U was characterized as a direct proportional influence under all scenarios. It 19 has intermediate sensitivity under all scenarios. In terms of relative impact, it was identified as 20 having high impact under current conditions and increasing impact under the climate scenarios. 21 When examined using all three categories of information, this is a relatively well 22 understood pathway for which there was agreement on type for two of the three influences. 23 Where there is agreement on sensitivity along this pathway, the influences are characterized as 24 intermediate sensitivity, which indicates that they would be responsive to management actions. 25 Each influence has high relative impact, with both Relationships B and U having increased 26 impact under the climate change scenarios. To manage along this pathway, an increased 27 understanding of Relationship O would be important. Understanding the specifics of how the 28 timing or volume of freshwater inflow influences the aboveground and belowground organic 29 processes that lead to net accumulation would complete the pathway so managers can utilize 30 reservoir management to increase net accretion.

31

1 2

3

4

32 **3.1.2.2.** *Community Interactions Example*

The pathway of Restoration on Landscape Mosaic (Relationship E) to the Shorebirds endpoint (Relationship O) is well understood and highly sensitive, and its relative impact will increase in the future (Figure 3-2). The management lever of Restoration is a broad category that constitutes a number of management options. Relationship E was characterized as a direct influence under all scenarios, but there was no agreement on degree of influence. Relationship E was characterized as having high sensitivity under all scenarios. In terms of relative impact,

1 Relationship E was indicated as an influence with increasing relative impact under the climate 2 change scenarios.

- 3
- 4
- 5 6

Figure 3-2. Community Interactions Example Pathway. Future = Climate Scenario B.

7 Relationship O was characterized as a direct, disproportional strong influence under all 8 scenarios. For sensitivity, Relationship O was characterized as having high sensitivity under all 9 scenarios. The relative impact of Relationship O was indicated as primary under current 10 conditions, with increasing relative impact under the climate change scenarios.

11 When examined using all three categories of information, the Restoring the Landscape 12 Mosaic pathway stands out as well understood and likely to be responsive to management 13 options when planning for climate change. Restoration and Landscape Mosaic are broad 14 variables, so a wide variety of accompanying management options fall within this pathway. One 15 management option could be to restore salt marshes adjacent to a mudflat of concern, which 16 would provide a sediment source for the mudflat as well as secondary habitat for the shorebirds.

17 18

3.2. TOP PATHWAYS AND IMPLICATIONS FOR ADAPTATION PLANNING

19 Sections 3.1.2.1 and 3.1.2.2 above have used examples to demonstrate how the results of 20 the expert elicitation exercise can be used to help identify key pathways for management. This 21 method of identifying well-understood pathways that can be traced from endpoints of concern to 22 management levers is a useful way to explore the implications of the workshop results for 23 adaptation planning. In some cases it may be possible to identify management actions for 24 immediate implementation, i.e., where there is sufficient understanding of the relationships 25 among the variables as well as their sensitivities to act with relative confidence in the effects of 26 management interventions. Additional pathways of interest can be identified through further 27 examination of the crosswalk tables (Tables 3-1 and 3-2), using amount of information for which 28 there was agreement (to identify current best-understood influences) as well instances of climate 29 thresholds (indicating potential climate-induced shifts) to identify "top pathways" of interest for 30 management. This section describes three top pathways for the Sediment Retention and 31 Community Interactions processes, as well potential adaptation responses. This is followed by a 32 brief review of SFEP planning documents and discussion of where adaptation activities relating 33 to the top pathways could be linked into these existing plans and strategies. 34

3.2.1. Top Pathways and Associated Adaptation Options 35

36 Three top pathways for each process are presented in Figure 3-3 (Sediment Retention) 37 and Figure 3-4 (Community Interactions). For ease of viewing, each pathway is highlighted by a 38 color (green, purple or blue), and influences that undergo changes under the climate scenarios are This document is a draft for review purposes only and does not constitute Agency policy.

- 1 highlighted with red boxes indicating the nature of the change. Dashed lines indicate
- 2 inconsistent agreement among participants under at least one scenario. The order in which the
- 3 pathways are presented below is not an indication of order of importance. These are all
- 4 management pathways with notable potential for addressing the climate sensitivities identified.
- 5 6

7

8

9

10 11

12 13

14

Figure 3-3. Top pathways for management of the Net Accretion/Erosion endpoint. Blue, green and purple colors are used to distinguish different pathways. Red boxes highlight changes under future climate conditions. * indicates high relative impact under current conditions. ^ indicates increasing relative impact under future conditions. A direct to inverse threshold occurs where there is a direct effect under current conditions that may shift to an inverse effect under future climate conditions. Dashed lines indicate inconsistent agreement across scenarios.

15 Figure 3-4. Top pathways for management of the Shorebirds endpoint. Blue, green and purple colors are used to distinguish different pathways. 16 17 Red boxes highlight changes under future climate conditions. 1° and 2° 18 indicate primary and secondary relative impact under current conditions, 19 respectively. ^ indicates increasing relative impact under future conditions. 20 A direct to strong direct threshold occurs where there is a direct effect under 21 current conditions that may shift to a very strong direct effect under future 22 climate conditions. Dashed lines indicate inconsistent agreement across 23 scenarios. 24

25 3.2.1.1. Sediment Retention Top Pathways

26 Green pathway

27 The Sediment Retention example pathway described in section 3.1.2.1 above is 28 elaborated upon here as the Green top pathway (Figure 3-3). Starting with the Net Accretion/Erosion endpoint and working "up" the diagram, a major determinant of the net 29 30 balance between accretion and erosion is the contribution of organic accumulation by way of 31 below ground biomass production. Organic accumulation has a higher relative impact on the 32 endpoint than mineral accumulation, and this relative impact is expected to increase under 33 climate change. This is because as marshes are challenged to adjust to sea level rise, vegetative 34 processes can respond by increasing below ground biomass productivity, and this may become 35 increasingly important in the context of historical (and continuing) decreases in mineral sediment 36 supplies.

At the next level up the pathway, net organic accumulation is directly affected by
freshwater inflow due to salinity effects. As freshwater flows decrease, salinity increases,
favoring more salt tolerant, but less productive plants in the community. Agreement on the
nature of this relationship was not consistent across the climate scenarios, with some participants
indicating the potential for an inverse relationship depending on whether or not they were

1 considering changes in species composition. If invasive *Spartina alterniflora*, which is favored 2 and has higher productivity than native species under higher salinity regimes, is allowed to 3 become established, then the influence of freshwater inflow could be an inverse relationship in 4 which increased salinity favored vegetative production. However, for the purposes of this 5 discussion we are assuming that the goal is to preserve the native salt marsh habitat; hence we 6 are considering management of the direct relationship.

Finally, freshwater inflow is acutely affected by reservoir management (see top level of pathway). Here, reservoir management refers to the practice of storing and diverting freshwater supplies for flood control, agriculture and other human uses. Thus, an increase in reservoir management typically results in an overall decrease in availability of freshwater flows to salt marshes. This inverse effect on the volume, speed and seasonal availability of freshwater flows is expected to be of increasingly high relative impact under climate change as freshwater supplies become increasingly variable in a context of increasing human demand.

14 The management implications for adaptation given the relationships within this pathway 15 are that managing reservoirs for downstream salinity regulation in favor of native marsh 16 vegetative productivity will require more steady, lower-volume releases. The strategy for such 17 releases relative to the growing season requires further investigation of the effects of timing 18 versus volume of freshwater inflow on net organic accumulation, on a site-specific basis. Given 19 the high relative impact of net organic accumulation compared to net mineral accumulation, a 20 priority could be placed on releases designed for salinity maintenance compared to high volume 21 pulses to support mineral sediment transport (discussed in the Purple pathway below). In 22 addition, since increased salinity regimes favor invasive Spartina, if the goal is to preserve native 23 salt marsh, another important management consideration will be the need to continue or even 24 "step up" invasive species eradication programs.

25

26 *Purple pathway*

Starting with the Net Accretion/Erosion endpoint and working up the Purple pathway
(Figure 3-3), a second major determinant of the balance between accretion and erosion is the
contribution of mineral accumulation. Net mineral accumulation has a direct effect – in
conjunction with organic accumulation – on net accretion.

The next level up the Purple pathway represents the effect on mineral accumulation of sediment size. This is another direct relationship, with larger grain sizes favoring mineral accumulation, since larger grains deposit more readily, are harder to re-suspend and provide larger building blocks for accretion. An important effect of future climate change may be an increasing sensitivity of net mineral accumulation to sediment size. This increase is partly because sediment flux, the other determinant of net mineral accumulation, is expected to continue to decrease, not only because of continuing processes responsible for historical declines

from peak sediment inputs in the past, but also because of potential changes in wave driven
 erosive processes (see Blue pathway description below).

3 At the top level of the diagram, the Purple pathway links sediment size to two 4 management levers: impervious cover and reservoir management. It is likely that changes in 5 impervious cover will have important effects on sediment size, but our understanding of these 6 effects is incomplete. The influence of impervious surfaces on runoff, and resulting impacts on 7 sediment size, is highly dependent on the location of impervious surface relative to other land 8 cover, topography and proximity to water bodies. Workshop participants noted that the effect of 9 impervious surfaces on runoff is much greater than the expected effect of climate driven changes 10 in precipitation and resulting runoff patterns. Meanwhile, the effect of reservoir management on 11 sediment size is better understood. As flow volumes and speeds are reduced, there is a negative 12 impact on transport of large grains.

Management implications for adaptation based on this pathway vary. In the case of the impervious cover management lever, further investigation of the effects of impervious cover on sediment size is greatly needed in order to identify appropriate management strategies. Basic information on how changes in land cover (including changes from impervious to permeable pavement systems) may affect sediment size will be critical as land use change and development continue to increase into the future.

19 With regard to reservoir management, high volume releases will increase transport of 20 larger grain sediments to marshes. However, there is a trade-off to consider between high 21 volume pulses to enable large grain sediment transport and water availability for steady, lower-22 volume releases to favor vegetative production as discussed for the Green pathway (see above). 23 Other options for addressing sediment size through management could include adjusting 24 policies that prevent coarse sediment from entering the Bay. This could include a change in 25 TMDL (Total Maximum Daily Load) requirements for streams that do not support salmonids, to 26 allow an increase in sediment loads. Engaging with flood control districts is another possible 27 avenue for re-coupling stream sediments to wetlands. Current flood control priorities may not 28 take into account the future benefits of downstream wetlands as climate change and associated 29 sea level rise begin to increase the occurrence of flooding due to changes in upstream tidal 30 pulses. Also there is an opportunity to take advantage of strategies that maximize sediment 31 transport to wetlands, with the additional benefit to flood control districts of decreasing their 32 dredging needs.

33

34 Blue pathway

Like the Purple pathway, the Blue pathway (Figure 3-3) starts with the direct effect on net accretion of net mineral accumulation, but from there it diverges. The next step up this pathway concerns the direct relationship of net mineral accumulation to sediment flux, which is

an expression of the rate of sediment supply. All else being equal, increases in sediment flux
 result in increased net mineral accumulation.

3 An important driver of sediment flux is wind driven wave action, and the nature of this 4 relationship will potentially change under future climate conditions. Under current conditions, 5 wave action has a net positive effect on sediment flux onto salt marshes, as greater wave energy 6 can mobilize and increase rates of sediment transport from bays and adjacent mudflats deep into 7 marsh systems. However, under future climate conditions a threshold may be crossed whereby 8 the role of waves as a sediment source will decrease and the erosive effect of waves will 9 increase, leading to a shift from a direct to an inverse relationship. This threshold is caused by a 10 potential change in wave character as water depth increases due to sea level rise. In deeper water 11 waves behave differently, with less wave energy available for re-suspension of bottom sediments 12 and more energy delivered to the marsh edge, leading to increased erosion.

13 While managing wind driven waves may not immediately appear straightforward as a 14 management lever, given the importance of this potential threshold it is necessary to think 15 broadly about adaptation options for this pathway. It would be valuable to monitor wind, waves 16 and sediment fluxes in marshes in order to detect the threshold shift when it occurs. Ideally a 17 response plan would be prepared in advance of such a shift, with the necessary public and 18 management backing and resources in place to implement the plan when needed. Current tools 19 for reducing wave action on the front sides of marshes are limited; such tools need to be further 20 developed and tested in areas where waves are currently having an inverse influence on sediment 21 flux. Existing tools include building berms or restoring oyster reefs as protective barriers against 22 wave energy. Depending on the depth of adjacent water, such barriers could either be designed 23 to reduce wave energy on mudflats or on the marshes themselves. Another adaptation option 24 might be to strategically locate sites to deposit dredge materials with a goal of enhancing 25 sediment concentrations on mudflats adjacent to marshes. This could serve the dual purpose of 26 both increasing sediment fluxes and compensating for changes in water depth above mudflats. 27

28 **3.2.1.2.** Community Interactions Top Pathways

29 *Green pathway*

The Community Interactions example pathway described in section 3.1.2.2 above is elaborated upon here as the Green top pathway (Figure 3-4). Starting with the Shorebirds endpoint and working "up" the diagram, shorebirds are best able to effectively use mudflat foraging habitats only if landscape mosaics – which are defined as a mixture of habitats for secondary foraging, roosting, and cover from predators -- are available in close proximity. Therefore, the presence of such mosaics, including ponds, diked wetlands, seasonal wetlands, and muted tidal wetlands, has a strong positive effect and a high relative impact on shorebird

populations. The high relative impact of this influence is likely to increase even further under
 climate change as mudflat habitats become scarcer and smaller in extent.

At the next level up the pathway, landscape mosaic is directly affected by restoration. Workshop participants noted that small changes in restoration can have the potential for large positive effects on landscape mosaic. The relative impact of restoration on landscape mosaic is likely to increase under climate change as temperatures increase, precipitation patterns change, and water diversions continue to escalate. These effects also will be exacerbated by ongoing and increasing land use changes (especially development), further raising the importance of restoration as a mitigating force.

Management options for adaptation given the relationships in this pathway center on restoration as a key and increasingly critical management activity. Workshop participants noted that there is little monitoring of landscape mosaics currently underway, so there is almost no information on the current status of, or rates of change in, mosaic habitats. Assessment and mapping is needed to detect changes and manage at the landscape scale for shorebirds and other mobile species that use multiple habitats.

16 Given the implications under the climate change scenarios, managers might place a 17 priority on "stepping up" management of landscape mosaics through spatial planning designed to 18 prioritize where and how to restore which habitats. The goal would be to create a continuum of 19 wetland and upland ecosystems, across a range of salinity regimes, which could migrate inland 20 as sea level rises. Workshop participants noted that managers might also include "threshold 21 landscapes" (those that are about to change from one set of dominant processes to another, or 22 from one state to another) in consideration of good landscapes for restoration. As part of spatial 23 planning, restoration should be focused on where there are good opportunities for restoration, 24 where there can be flexibility in management, and where migration inland is possible. Decision 25 makers could even be urged to consider legislation or incentives that encourage moving back or 26 blocking of development on lands where there is restoration potential now or in the future.

27

28 Blue pathway

Starting with the Shorebirds endpoint and working up the Blue pathway (Figure 3-4), another key factor affecting shorebird populations is the extent of mudflat available for foraging (i.e., the acre-hours that mudflats are exposed and therefore accessible). Extent of mudflat has a direct effect of high relative impact on shorebird populations. This direct effect will become increasingly strong, and is considered a threshold effect, under climate change as extent of mudflat may become limiting as sea level rises, with available foraging habitat becoming too limited to support shorebird populations.

Continuing to work up the pathway, a major determinant of extent of mudflat is mudflat
bathymetry, which has a strong direct effect on the extent of mudflat exposed at low tide.

3-12

Mudflat bathymetry is itself directly affected by sediment resuspension and deposition processes,
 which are turn directly affected by sediment supply. A key source of sediment supply is the

3 direct effect of freshwater inflows.

4 An important management lever appears in the form of the sensitivity of freshwater 5 inflow to water management. Workshop participants noted that water management practices 6 (specifically, reservoir management and upstream operations) have an important direct effect on 7 freshwater inflows. This effect will become increasingly strong under climate change. This is 8 because the sensitivity of freshwater inflow to water management may increase in the future as 9 freshwater flows from alternate sources such as precipitation and tributaries become more 10 variable and/or scarce, and as the entire watershed becomes even more highly managed. 11 Implications for adaptation based on this pathway currently center around management of

water releases and sediment supply. Reservoir management of water releases in order to mobilize and transport sediments (e.g., through the use of sediment maintenance flushing flows) could become an increasingly important option; in light of this, continuing to improve upstream operations in order to ensure greater availability of water (to allow more frequent and/or more intense pulse releases) is warranted. Participants noted that an increasingly important technique will be integrated water resources management, with an emphasis on shifting from storage more toward conservation uses.

Attention to management options for directly enhancing sediment supply is also needed. This is especially the case since sediment supply will become increasingly sensitive to restoration as well as water management, with participants noting in their discussions a potential synergistic interaction between the two. Methods for moving sediment (especially coarse sediments) into the bay need to be developed. Adaptation options might include strategically locating dredge spoil sites to enhance sediment supplies to mudflats.

25

26 *Purple pathway*

27 Starting with the Shorebirds endpoint, the Purple pathway (Figure 3-4) begins with a link 28 to the shorebird prev community. Shorebird communities rely on abundant mudflat prev 29 populations, which therefore have a positive effect -- of high relative impact -- on shorebird 30 populations. The abundance of prey per unit area will become increasingly important (of 31 increasing relative impact) under climate change as spatial extent of mudflats shrink with sea 32 level rise. This effect will be magnified if secondary feeding habitats in the landscape mosaic 33 (see Green pathway) continue to be lost due to development and other pressures. 34 Working up the next step of the pathway, shorebird communities are strongly affected by 35 water quality. Specifically, sufficient levels of dissolved oxygen (DO) have a direct positive 36 effect on prey communities. Since this is a direct relationship, this means that as decreases in

37 DO occur with climate change due to increased temperatures and/or eutrophication, prey

communities may flag. A threshold may occur in the future if DO reaches low enough levels to
 cause prey populations to crash.

3 With regard to management implications, the Purple pathway provides further 4 justification for continued prioritization of water quality management. Water quality is already a 5 major concern in the watershed; and for shorebirds, a water quality aspect of special concern 6 may be DO. Oxygen depletion usually results from high rates of microbial and/or algal 7 respiration that exceed the capacity of the water body to replenish oxygen through phytoplankton 8 photosynthesis and diffusion from the air. Excessive inputs of organic material and nutrients, for 9 example from poorly treated sewage discharges or from agricultural activities, can accelerate 10 respiration rates and trigger localized and regional oxygen depletion. Protection and 11 improvement of water quality will be critical through integrated water resources management, 12 which could include stormwater management and rainwater-harvesting (which benefits water 13 conservation as well).

14 Other improvements to water quality could occur through land use decisions (e.g., use of 15 permeable surfaces to reduce runoff) and restoration decisions (e.g., restoration of riparian zones 16 as natural filters). The importance of land use decisions was emphasized by the participants, 17 who discussed a synergistic effect of freshwater inflow on water quality that is dependent on 18 land use change. In summary, water quality is an existing concern for which there are already a 19 variety of management options available; and because the affects of water quality on mudflat 20 prey populations are known and expected to increase with climate change, this is further 21 confirmation of the importance of implementing such options, in conjunction with public 22 education and outreach to explain and justify support for their use.

23

24 3.2.1.3. Top Pathway Caveats

25 Above we have described three pathways that scored as especially promising for 26 successful management application in light of the information provided by the particular group 27 of experts at this workshop. Given the complexity of these systems and instances of uneven 28 agreement among participants, actions based on these pathways should be considered with care. 29 A different set of pathways could be chosen based on additional meaningful criteria that are site-30 specific and specific to individual managers' expertise. Based on their own knowledge of their 31 sites and/or input from different experts, managers are encouraged to examine the potential for 32 additional top pathways for their own particular systems by examining the crosswalk tables and 33 applying their unique knowledge. 34 While top pathways based on the expert knowledge from this workshop are useful, it is

also important to look at gaps in the crosswalk tables where some influences did not show
 agreement in type, degree and/or sensitivity. Lack of agreement does not necessarily mean there
 is no information available; often the experts did not agree based on competing evidence, or as a

result of limitations of the expert elicitation process. Where there are gaps in otherwise-strong
pathways for management, further research – in the form of literature searches, data mining, or
original research if needed – could be highly valuable.

A final consideration is that these diagrams were developed considering the current
condition of each system. At this workshop there was a variable (disease for the Community
Interactions group) that arose as critical to the system under future conditions, even though it had
not been included in the diagram under current conditions. Individual managers should identify
-- and consider management options for -- any other such variables that may be specific to their
system or site.

10

11 **3.2.2.** Adaptation Planning

12 There are multiple ways to go about climate change adaptation planning, including 13 integrating adaptation into existing plans, or developing a stand-alone adaptation plan. This 14 report focuses on the planning options for SFEP, which as an NEP has several key management 15 plans. The SFEP management plans discussed here are used to demonstrate the type of 16 adaptation planning that can be done to address these particular issues. Other organizations can 17 use their particular planning documents to apply the same approach.

18 SFEP's planning documents include a Comprehensive Conservation and Management 19 Plan (CCMP), which articulates long range goals and objectives, a Strategic Plan for mid-term 20 objectives, and an annual Work Plan that lays out short-term actions to implement the goals and 21 objectives. Each of these plans addresses climate change on some level, so it makes sense to use 22 the results of this study to continue integrating climate change into each of these planning scales. 23 In this section we provide some links between SFEP's plans and the top pathways and 24 management options discussed above; this set of examples is not comprehensive, but rather is 25 meant to illustrate how the results of this study can be used to inform adaptation planning. 26 One management strategy outlined in the 1993 CCMP that pertains to the Green 27 Sediment Retention pathway (Figure 3-3) is Action AR-4.1: "Adopt water quality and flow 28 standards and operational requirements designed to halt and reverse the decline of indigenous 29 and desirable non-indigenous estuarine biota" (SFEP, 1993). The relevance of the Green 30 Sediment Retention pathway to this action is that reservoir management activities and their 31 effects on freshwater inflow are considered key to sustaining net organic accumulation through 32 this pathway. While animal species have been the primary focus of this action, it also applies to 33 managing for salt tolerance of plant species with resulting effects on plant productivity and net 34 organic accumulation.

Another relevant action, from the revised 2007 CCMP, is Action DW-1.1: "Conduct
 studies, research, modeling, and analysis of sediment processes and trends to more thoroughly
 understand sediment transport in San Francisco Bay, particularly in light of sea level rise and

This document is a draft for review purposes only and does not constitute Agency policy.

1 changing sediment inputs from the Delta and major tributaries" (SFEP, 2007). This mandate will 2 be important for informing management along both the Blue and Purple Sediment Retention 3 pathways (Figure 3-3) as well as the Blue Community Interactions pathway (Figure 3-4). For the 4 Blue Sediment Retention pathway, the priority research would be monitoring of the potential 5 threshold effect of waves on sediment flux. For the Purple Sediment Retention pathway, 6 information is needed to understand the relationship between impervious cover and sediment. 7 Such understanding could inform where and how to manage impervious cover. In addition, 8 further investigation is needed into reservoir management options that provide pulse events 9 which can increase the supply of large grain sediment. Very similar questions on how water 10 management methods affect sediment supply come up for the Blue Community Interactions 11 pathway, 12 A strategy from the revised 2007 CCMP that relates to the Green Community

Interactions pathway (Figure 3-4) is Action WT-4.1: "Identify, convert, or restore non-wetlands to wetlands or riparian" (SFEP, 2007). While mudflats may not have been the wetlands originally intended for this action, considering mudflats within the landscape mosaic is advisable while implementing strategies of where to restore non-wetlands to wetlands (see also Table 2-12).

In the 2010-2012 Strategic Plan (SFEP, 2010), one of the four key objectives for focusing the implementation of the CCMP is Objective 2: "Support Estuary resilience in the face of climate change". Under Sub-objective 2.3 is "Promote climate adaptation strategies and policies that encourage protection and restoration of Estuary health and reduce damage to the ecosystem". The workshop results of this study can be used to provide specific areas of focus for that objective and for mainstreaming adaptation into applicable actions under the other objectives.

25 Meanwhile, under Objective 1: "Promote integrated watershed stewardship," there is 26 Sub-objective 1.2: "Assist development of regional goals projects and management plans (i.e., 27 Habitat Goals, Subtidal Habitat Goals, Upland Habitat Goals, regional sediment plans)". The 28 abovementioned Goals projects enumerating Baylands Ecosystem Habitat Goals (Monroe et al., 29 1999), Upland Habitat Goals (Weiss et al., 2007; 2008; 2010), and Subtidal Habitat Goals 30 (BCDC, 2010) are highly relevant to the Green Community Interactions pathway (Figure 3-4). 31 Developing projects that coordinate across goals to connect habitat types could serve as a 32 strategy for rebuilding landscape mosaics through restoration projects. The original Baylands 33 Goals report did not take climate change into consideration, but the two newer projects consider 34 climate change as a factor. 35 Many of the current projects in the 2010-2011 Annual Work Plan are examples of

management options that potentially could be informed by the results of this study. For instance,
sediment reduction is an objective or component of 14 of the projects. For both the Blue

1 Community Interactions pathway (Figure 3-4) and the Purple Sediment Retention pathway 2 (Figure 3-3), one management option cited in Table 2-12 is to adjust policies that keep coarse 3 sediment from reaching the Bay. Many of the current projects are based on meeting TMDL 4 restrictions for salmonid streams, which is a competing goal with developing methods to increase 5 sediment supplies into the Bay. Some current projects focus on reducing fine sediment; 6 management practices that target fine sediment only (while allowing coarse sediment) could be 7 developed or expanded to other projects where appropriate. Tools such as those in the 8 "Watershed Scale Mapping of Project Results: Linking On-the-Ground Results to Measurable 9 Regional Outcomes" designed to assist in stopping downstream sediment migration could be 10 adapted to prioritize salmonid streams while allowing increased sediment transport in other 11 streams. Such a tool would distinguish where recommended practices should target fine 12 sediment while maintaining a supply of coarse sediment, versus those streams where it is 13 important to reduce all sediment sizes. Another current project, "Innovative Wetland Adaptation 14 Techniques in Lower Corte Madera Creek Watershed", will provide results that can be used for 15 one of the recommended actions in Table 2-12: "Develop methods to reduce wind/wave action 16 on the front side of marshes". The project includes measurements for wind-wave propagation 17 and attenuation in the marsh as well as developing best practices for flood control. 18 Within each plan are a variety of additional opportunities for incorporating the workshop

19 results. The examples offered here are intended to demonstrate the links, but are not 20 comprehensive. In addition to the adaptation of current management projects and strategies, this 21 study has identified sensitivities that may require the development of entirely new management 22 options. Planning for future projects should identify opportunities to fills those needs and test 23 new methods. Conflicting goals due to trade-offs -- such as the simultaneous need to reduce 24 sediments in salmonid habitats, but increase coarse sediment transport to the Bay – will become 25 increasingly problematic with climate change. Indeed, in some cases such trade-offs may 26 necessitate re-evaluation of habitat goals, and even the application of a "triage" approach to 27 prioritize certain habitats over others in the system.

This document is a draft for review purposes only and does not constitute Agency policy.

1 **4. CONCLUSIONS** 2 3 This report has described the results of a vulnerability assessment aimed at synthesizing 4 place-based information on the potential implications of climate change for key ecosystem 5 processes, with the intent of enabling managers to undertake adaptation planning. The 6 assessment involved identification of key management goals and ecosystem processes, 7 conceptual modeling of those processes, a climate change sensitivity analysis in a workshop 8 setting, and discussions/analysis of the potential applicability of the results for adaptation. The 9 workshop exercise – an expert elicitation sensitivity analysis combined with management 10 discussions – tested a novel approach for conducting "rapid vulnerability assessments" for 11 ecological systems. The sections that follow discuss general observations, insights, and 12 conclusions that emerged from the workshop exercise, from the analyses of management 13 implications, and from our assessment of the methodology's utility for potential use in other 14 locations/ecosystems. 15 16 4.1. **INSIGHTS FROM THE WORKSHOP EXERCISE** 17 **4.1.1.** Group Influence Diagrams 18 Figure 2-2 and Figure 2-8 were developed by the workshop participants based on edits to 19 straw man diagrams prior to the workshop, followed by group discussions and refinement of a 20 final group diagram during the workshop. While the main purpose of the group influence 21 diagrams was to establish a framework for the subsequent sensitivity analysis, these diagrams 22 represent key outputs in and of themselves. The construction of the diagrams proved an 23 interesting group exercise in building a highly constrained representation of a complex system, 24 with only the most critical elements and interrelationships included. The iterative process of 25 distillation into basic diagrams by the two interdisciplinary teams of experts resulted in some 26 interesting differences in the Sediment Retention and Community Interactions diagrams. 27 The Sediment Retention group focused on the physical components of sediment 28 processes as the highest priority factors influencing the balance of salt marsh accretion and 29 erosion in their diagram, with less focus on biological factors. There appeared to be good 30 familiarity with each piece of the diagram across all members of the group; this allowed them to 31 be specific in defining (and hence envisioning the effects of) management-related variables 32 (levers), which may have contributed to the high amount of agreement in judgments during the 33 subsequent coding exercise. The participants reported that given more time they would have 34 distinguished between delta and local tributary sediment and freshwater inputs, but were forced 35 to lump these due to the 15-variable constraint and time limitations. Nevertheless, they were 36 able to agree on an acceptable influence diagram for the exercise, with a tractable number of

unidirectional influence arrows and a few large feedback loops to handle important bidirectional
 influences.

3 The Community Interactions group was also successful in agreeing on an acceptable 4 influence diagram for the exercise. However, their diagram was more complex, with a greater 5 mixture of both physical sediment processes (which maintain mudflats) and biological processes 6 (which affect shorebirds and their prey). In fact, a set of variables similar to the Sediment 7 Retention group's diagram was nested within the Community Interactions diagram; but then the 8 Community Interactions diagram was expanded further to also include a set of variables 9 representing the three biological communities (shorebirds, prey, and predators). Due to this 10 greater complexity, the Community Interactions group was forced to use two more boxes, a 11 larger number of influence arrows, and four bidirectional arrows, resulting in nine more 12 influence arrows than the Sediment Retention group. The complexity also led to less time for 13 defining the management levers specifically, making it more difficult to judge their effects. 14 These factors – combined with varying expertise in the specialty areas of sediment processes 15 versus ecological processes in this interdisciplinary group – may have contributed to the greater 16 numbers of gaps in agreement in the subsequent exercise.

17 While the two groups had different experiences and challenges in building their influence 18 diagrams, both groups were effective in generating a useful representation of their ecosystem 19 process for the sensitivity exercise. Participants reported that the highly constrained diagram-20 building procedure challenged them to focus on the most key elements of the system while still 21 maintaining a sufficiently realistic model for sensitivity analysis. Designing the diagrams while 22 considering current conditions, then applying climate scenarios to the same diagrams during the 23 sensitivity exercise, worked smoothly. The one exception was a disease variable in the 24 Community Interactions diagram that was not in the original diagram, but which emerged as 25 critical to the Community Interactions process under the climate scenarios. This and other 26 complications could be avoided in future workshops by providing the participants with an 27 opportunity for one more revision of the diagrams after being briefed on the climate change 28 scenarios. This would allow them to account for how future climate might raise additional 29 variables for priority consideration in the diagrams.

30

31 **4.1.2.** Characterization of Influences

One technique for ensuring the effectiveness of expert elicitation is to break down the problem (i.e., what are the climate change sensitivities of the selected ecosystem processes) into a set of distinct questions that clearly and explicitly define parameters and relationships of interest (see EPA's white paper at <u>http://www.epa.gov/spc/expertelicitation/index.htm</u>). This was accomplished by way of a systematized coding exercise – using the influence diagrams as a framework – in which the experts made a series of judgments about individual components of

the system, in order to better understand the system as a whole. For each individual influence arrow in the diagram, each expert was asked to characterize the effect of variable "X" on the response variable "Y", including their confidence in that judgment. Based on the results of this novel methodology, some general observations of interest have emerged.

5 Participant notes and discussions revealed that for both processes, while there are many 6 intermediate (and some high) sensitivity relationships among variables that are useful to be 7 aware of for management, it was difficult to detect changes in sensitivities across the scenarios 8 based on this method. Under the climate scenarios, one influence for the Sediment Retention 9 group became highly sensitive and four others showed a trend (but no majority agreement) 10 toward greater sensitivity, but most of the sensitivities remained intermediate. For the 11 Community Interactions group, under the climate change scenarios there were seven influences 12 that trended toward increasing sensitivity, but without majority agreement, while the majority of 13 influences remained intermediate in sensitivity, or lost agreement. It was noted that natural 14 variation in most of the variables is large enough that changes generated by the climate scenarios 15 would not be enough to move the variables outside their current range of variation. In other 16 words, a response in variable "Y" would need to be outside the normal range of variation in 17 order to clearly detect a sensitivity threshold change by way of the coding scheme that was used. 18 Only one threshold (Relationship DD, Table 2-10) was indicated through coding in the 19 Community Interactions group.

20 Yet outside of the coding exercise, there were indications based on participant notes and 21 discussions that additional potential threshold relationships do exist. Identifying thresholds is 22 challenging because while there may be general recognition of the potential for certain threshold 23 effects, it can be very difficult to identify where and when a threshold may occur. Multiple 24 potential thresholds were identified in both processes, through one of two ways. In some cases, 25 participants tried to indicate thresholds with their sensitivity codes, but did so by including two 26 codes under each of the scenarios to signal uncertainty as to when the threshold might occur. 27 Others did not indicate the threshold with their codes at all because they were not sure whether 28 the climate scenarios represented a big enough change to cause threshold exceedance. In these 29 cases, the thresholds indicated in Table 2-6 and were ultimately identified through the 30 participants' notes and discussions as relationships that could change dramatically at some point 31 that is currently difficult to define. 32 Another way of identifying relationships of particular interest for management is to

examine the relative impact of certain influences in the context of the whole process. For both processes, under current conditions the influences identified as having primary impact tended to include variables closer to the endpoints (Figure 2-5 and Figure 2-11) compared to relationships that emerged as high or increasingly-high impact under future climate (Figure 2-6 and Figure 2-

1 12). This implies that variables related to management levers may become increasingly
 2 important as climate changes.

3 Finally, characterization of interactions and confidence were also included in the 4 sensitivity exercise, with mixed results. Trying to consider interactive effects of multiple 5 variables moves the exercise to a much greater level of complexity. The number of possible 6 pair-wise interactions in the influence diagrams was very large, and the challenge of 7 understanding combinations of effects could become very complicated. Thus the participants 8 were not asked to attempt every possible pair-wise combination, but rather were asked to 9 indicate which interactions "leapt out" as well understood and important. Of course, even 10 looking at all pair-wise interactions would be a vast oversimplification because variables interact 11 in greater multiples than just pairs. Nevertheless, while there were only a few pair-wise 12 interactions identified by enough participants to stand out, at least these relationships are 13 sufficiently well understood to merit consideration in management planning. With regard to 14 confidence, the exercise made a good start of acknowledging the need to gauge confidence in the 15 judgments and providing a systematic way for doing so; however, the large number data gaps 16 indicate that there were difficulties with this part of the methodology. Potential reasons for these 17 difficulties, as well as potential improvements, have been discussed in section 3.1.1.3. Both 18 interactions and confidence are concepts that need further refinement and better estimation 19 methods before they can be effectively interpreted for management planning.

20

21 4.2. APPLICATION OF WORKSHOP RESULTS

22 **4.2.1.** Top Pathways for Management

23 When using the workshop results, it is essential to examine all three types of information 24 - influence type, sensitivity, and relative impact - when thinking about management 25 applications. For some questions, one type of information may be useful individually, but 26 because there are gaps and limitations within each type of information, a more complete 27 management picture can be built using all three types together. It is helpful to focus on 28 influences that are well understood, become more sensitive, and have a greater impact under 29 future climate scenarios. In some cases, it is possible to connect a series of influences that meet 30 these criteria to identify a path between the endpoint and a management lever. We have 31 presented what we consider to be three top pathways for management (Figures 3-3 and 3-4) for 32 each process based on the information currently available from the workshop results. These 33 delineate relatively well-understood relationships that are climate sensitive and for which there 34 are consequent implications for management adaptation. 35 The climate-related changes of interest in the top pathways are of three main types: 1)

changes in relative impact under climate change; 2) changes in sensitivity under climate change;and 3) threshold shifts under climate change. In the case of the influences for which relative

This document is a draft for review purposes only and does not constitute Agency policy.

1 impact is likely to increase under one or both future climate scenarios, and especially where 2 relative impact is already high under current conditions, action could be taken immediately. 3 These are influences for which there is sufficient understanding and opportunity to connect to 4 management options that favor desirable outcomes, with increasing relative impact on the 5 process as a whole as climate change continues. In the case of influences for which an increase 6 in sensitivity is expected under climate change, there is still time to further study and anticipate 7 the degree and timing of the sensitivity and to prepare best management responses. An 8 expectation of increasing sensitivity could be considered a notification to monitor and plan for 9 when and how management practices can be adjusted to account for the impending change. 10 Finally, in the case of thresholds, there is often a strong expectation that a threshold shift is 11 likely, but usually a great deal of uncertainty as to exactly when the threshold will be crossed. 12 Monitoring of threshold variables is needed so that managers will be alerted immediately to the 13 shift when it occurs. In the meantime, actions can be taken to attempt to prevent the shift by 14 keeping the system "below" the threshold as long as possible, while preparing a plan for what to 15 do if an unavoidable shift occurs. After a shift occurs, managers should have a plan as to how 16 they will manage the system differently in its new state, or whether they will take no action and 17 instead shift their priorities to other goals.

18 It is important to note at this point that each pathway also sits in the context of other 19 influences with which there could be key interactions, so there may be opportunities for 20 management options beyond those most directly evident from the main pathways. Also, in the 21 case of other management pathways for which there are currently information gaps based on the 22 workshop results, it is vital to remember that lack of agreement does not mean zero 23 understanding of influences or zero degree of sensitivity. Closer inspection can show that the 24 agreement may be split between intermediate and high sensitivity, so the understanding that the 25 sensitivity of the influence is important may be obscured by the distinctions between categories. 26 It is of note that for influences for which there was agreement, the variation among participants 27 was greater than that between scenarios. This could be due to a number of reasons: a limited 28 range between the two mid-century climate scenarios; the number of assumptions each 29 participant was required to make individually for each judgment; and the interdisciplinary and 30 complex nature of the questions. This is an indication that these types of questions do not lend 31 themselves to consulting a single expert, but rather require the combined judgments of a group of 32 experts to complete the full picture. This also highlights the need for caution against relying 33 solely on combined (agreement) information: the nature of the variation across participants is 34 also important to consider. Equally important is the application of local expertise when further 35 examining the results of this study; the local manager is the best expert on his or her unique 36 system and should thus apply an appropriate filter when making final interpretations and 37 decisions based on these results.

1 2

4.2.2. Mainstreaming Adaptation into Planning

3 The vulnerability assessment results for the two ecosystem processes presented here are a 4 big first step in the climate change adaptation planning process. We have given examples of 5 ways to tie the vulnerability assessment results to potential management options as a starting 6 point, but incorporating adaptation fully into management planning will require a more 7 systematic and comprehensive process. Planning is an iterative process, especially for climate 8 change adaptation, which is still a nascent field. Due to this iterative nature, the planning 9 recommendations presented here are based on mainstreaming (continuously integrating) 10 planning into existing planning mechanisms and documents, rather than developing a 11 comprehensive, stand-alone adaptation plan. For SFEP, nearer-term planning includes a multi-12 year Strategic Plan and an Annual Work Plan, both of which provide ways to insert specific 13 management options into projects that are currently underway. In future plans, new projects that 14 specifically incorporate climate adaptation priorities can be added. Repeating vulnerability 15 assessments (once management options have been tested through project implementation) should 16 be part of the iterative process. Finally, this study only covered two ecosystem processes and did 17 not attempt to evaluate relative vulnerability or resilience across different ecosystem processes. 18 The vulnerabilities of additional ecosystems, processes and goals will need to be assessed, taking 19 into account what was most useful in the results of this study for adaptation.

20 Thresholds remain a major unknown, and while much can be done to improve our 21 understanding of factors affecting thresholds, some may only be revealed after they have been 22 crossed. Thus it would be advisable for monitoring plans to be put into place to track indicators 23 of state changes. Contingency plans for management actions once a system has changed states 24 could be developed, as well as contingency planning for ways to respond to catastrophic events 25 such as levee failures or earthquakes. Successful implementation of contingency responses will 26 require that the political and scientific base be put into place now for responding properly 27 following catastrophes or threshold changes. In the meantime, when prioritizing implementation 28 of adaptation actions, it is advisable to start with win-win options that contribute to current 29 management goals and efforts while also responding to current and future climate change. For 30 example, working now to proactively move highways and railroads that are barriers to marsh 31 migration where there is otherwise space for migration is not only advantageous for marshes, but 32 will also prevent damage and disruption to human transportation and infrastructure as inundation 33 from sea level rise continues. Likewise, the practice of working with authorities in flood control 34 districts to re-couple streams to wetlands will not only benefit wetlands but will also improve 35 natural flood control services.

Looking beyond the win-win options, many other actions will force managers to confront
 trade-offs that will require difficult policy decisions. One example highlighted in sections 2.4.2

1 and 3.2.2.1 is the trade-off between increasing coarse sediment supply from tributaries, which 2 comes into conflict with current sediment reduction efforts for salmonid streams. While a first 3 step is to set up different best practices for salmonid and non-salmonid streams, beyond that 4 there may come a decision point when it is no longer possible to meet both goals, so a choice 5 between the two conflicting goals will be necessary. As climate change progresses, there are 6 likely to be more trade-offs, often between short and long term goals. Mainstreaming adaptation 7 planning will provide a better chance of foreseeing conflicts between long and short term goals 8 and identifying opportunities to build support for hard decisions and creative solutions.

9

10 4.3. GENERAL CONCLUSIONS

11 **4.3.1.** Transferability of Results and Method

12 The results of this study were developed for two specific ecosystem processes within two 13 ecosystems. Therefore the question arises as to how transferable the results may be. The 14 sensitivities examined in this study are specific to sediment retention in salt marshes and 15 community interactions of shorebirds in mudflats, so the characterizations of influence type, 16 sensitivity and relative impact cannot be transferred directly to other ecosystems and do not 17 apply to different processes within these ecosystems. However, an example site was used as a 18 way to focus the exercise and was chosen as a representative example of intact ecosystems, thus 19 the results could be transferable to other North Bay locations in which the same ecosystem 20 processes are present. The variables that ended up in the group influence diagrams are general 21 enough that most of the results may transfer to the entire Bay, with only a few specific enough to 22 only apply to the North Bay. In addition, it is likely that the influence diagrams could also be 23 transferred for use with like ecosystems in other estuaries, with minor revisions for place-specific 24 stressors or other process variables. The characterizations of influence type, sensitivity and 25 relative impact would have to be revisited, particular to that location.

26 Where the specific results are not transferable, the methodological process is certainly 27 transferable to other processes, ecosystems and locations. The methodology used for this 28 assessment – an analysis of key ecosystem processes through expert elicitation – is a useful 29 framework for understanding the current state of knowledge and research. The experts in this 30 study were able to share their combined understanding of key processes and how they are 31 expected to respond to climate change. The expert elicitation process also helped to identify 32 where key gaps in understanding exist, what type of research is necessary, and how management 33 should proceed. This methodology is transferrable in that the process used to compile, distill, 34 and assess key information can be replicated. Expert elicitation is used in many fields of study 35 and has been demonstrated here to be useful in understanding localized climate change impacts. 36 Experts can think integratively across studies and disciplines and often have access to more 37 current research and data than is currently available or published. As the climate change

research is consistently evolving, this type of process is useful for synthesizing the most current
 information available. However, as climate change research is consistently changing, new
 information and research will need to be integrated concurrent with management decisions.

4

5

4.3.2. Utility of Method for Rapid Vulnerability Assessments

6 Given that the method is transferable, the question of utility arises: in what cases is this 7 method advantageous? This method could be repeated elsewhere as a "rapid" vulnerability 8 assessment, with opportunity for some of the improvements that have been suggested for some 9 of the limitations. By rapid, we mean assessments that can be carried out within six months to a 10 year, as opposed to assessments based on detailed quantitative modeling that can take many 11 years. Another advantage is that this method is able to capture more recent knowledge than 12 would be available from a literature review. It is also better able to capture more knowledge of 13 the type that is closely related to management, which is less frequently published than scientific 14 studies. Finally, the information is more integrated across disciplines and scales and is designed 15 to better match the scale of adaptation decisions. In some cases new insights about management 16 effectiveness may arise while in other cases existing understanding may be validated. Having a 17 well supported study to substantiate new and existing ideas can position managers to justify the 18 most appropriate management options and priorities. It also can validate research priorities by 19 highlighting known research gaps.

20 The disadvantages are that this method is designed to focus only on a specific piece of the 21 system, compared to initial assessments that often rely on surveying the system more 22 comprehensively (though less deeply), often through literature reviews. The amount of caution 23 required to properly interpret the results is another disadvantage, given multiple limitations and 24 caveats. The method is not intended as a consensus exercise, and the large number of influences 25 without agreement present challenges to either fill those research gaps to improve agreement or 26 to manage around limited information. In addition, this is only one group of experts, and another 27 group could reach different conclusions. Group selection is critical to making sure appropriate 28 areas of expertise and conflicting views on the system are represented. This is another reason 29 why in addition to looking for areas of agreement, the results of individual judgments should also 30 be examined. At the same time, since no participant can have complete expertise in every facet 31 of a system, it is also important that participants have the opportunity to confer amongst 32 themselves and adjust their judgments based on what they learn from each other. 33 Nevertheless, the expert elicitation method developed for this study was well suited for

34 achieving the purpose and goals of the assessment. In addition to achieving the workshop goals, 35 several unexpected benefits emerged from the workshop. Participants reported that the 36 combination of the development of the influence diagrams with systematic judgments facilitated 37 thinking about the system and questions of climate change vulnerability in a different way than

- 1 they had previously. Several expressed an intention to explore adapting the method for use in
- 2 other workshop or classroom settings. Many participants found that the multidisciplinary
- 3 interactions with colleagues were a valuable, personal learning experience and that the group
- 4 together generated new insights about the system and links to management that may not have
- 5 been seen by individuals. In short, the method demonstrated in this project offers opportunities
- 6 to capture and integrate the existing collective knowledge of local experts, while pushing the
- 7 boundaries to develop a new understanding of the system and management options in the face of
- 8 insufficient data and deep uncertainty about future climate.

REFERENCES

BCDC (San Francisco Bay Conservation and Development Commission). (2010) San Francisco Bay Subtidal Habitats Goals Project, Draft Report. San Francisco Bay Conservation and Development Commission, the California Coastal Conservancy, National Oceanic and Atmospheric Administration, and the San Francisco Estuary Partnership. Available online at http://www.bcdc.ca.gov/planning/shg/subtidal_habitat.shtml.

Cayan, D; Bromirski, P; Hayhoe, K; et al. (2008a) Climate change projections of sea level extremes along the California coast. *Clim Change* 87(0): 57–73. DOI: 10.1007/s10584-007-9376-7.

Cayan, DR; Maurer, EP; Dettinger, MD; et al. (2008b) Climate change scenarios for the California region. *Clim Change* 87(Suppl. 1): S21–S42.

Cayan, D; Tyree, M; Dettinger, M; et al. (2009) Climate change scenarios and sea level rise estimates for the California 2008 Climate Change Scenarios Assessment. California Climate Change Center. CEC-500-2009-014-D.

CCSP (Climate Change Science Program). (2008a) Preliminary review of adaptation options for climate-sensitive ecosystems and resources. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Julius, S.H., J.M. West (eds.), J.S. Baron, B. Griffith, L.A. Joyce, P. Kareiva, B.D. Keller, M.A. Palmer, C.H. Peterson, and J.M. Scott (Authors)]. U.S. Environmental Protection Agency, Washington, DC, USA, 873 pp.

CCSP (Climate Change Science Program). (2008b) *Weather and climate extremes in a changing climate*. Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Thomas R. Karl, Gerald A. Meehl, Christopher D. Miller, Susan J. Hassol, Anne M. Waple, and William L. Murray (eds.)]. Department of Commerce, NOAA's National Climatic Data Center, Washington, D.C., USA, 164 pp.

CEC (California Energy Commission). (2006) Our changing climate: assessing the risks to California. A Summary Report from the California Climate Change Center.

CEC (California Energy Commission). (2008) The future is now: An update on climate change science, impacts, and response options for California. A report from the California Climate Change Center California Energy Commission's Public Interest Energy Research Program.

Delta Risk Management Study. (2007) Technical memorandum: Delta Risk Management Study (DRMS) Phase 1.

Dracup, J; Vicuna, S. (2005) An overview of hydrology and water resources studies on climate change: the California experience. The Environmental & Water Resources Institute Congress, Proceedings, American Society of Civil Engineers, May 2005.

Galbraith H; Jones, R; Park, R; et al. (2005) Global climate change and sea level rise: potential losses of intertidal habitat for shorebirds. USDA Forest Service Gen. Tech. Rep. PSW-GTR-191. Available online at http://www.fs.fed.us/psw/publications/documents/psw gtr191/psw gtr191 1119-1122 galbraith.pdf.

Gershunov, A; Douville, H. (2008) Extensive summer hot and cold extremes under current and possible future climatic conditions: Europe and North America. In: Diaz, H; Murnane, R; eds. Climate Extremes and Society. Cambridge, UK: Cambridge University Press; pp 74–98.

Groffman, P.M., Baron, J.S., Blett, T., Gold, A.J., Goodman, I., Gunderson, L.H., Levinson, B.M., Palmer, M.A., Paerl, H.W., Peterson, G.D., Poff, N.L., Rejeski, D.W., Reynolds, J.F., Turner, M.G., Weathers, K.C., and J. Wiens. 2006. Ecological thresholds: The key to successful environmental management or an important concept with no practical application? Ecosystems 9 (1): 1-13, DOI: 10.1007/s10021-003-0142-z

Hayhoe, K; Cayan, D; Field, CB; et al. (2004) Emissions pathways, climate change, and impacts on California. PNAS 101(34): 12422–12427.

This document is a draft for review purposes only and does not constitute Agency policy.

Healey, MC; Dettinger, MD; Norgaard, RB, eds. (2008) The state of Bay-Delta science. Sacramento, CA: CALFED Science Program.

IPCC (Intergovernmental Panel on Climate Change). (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S; Qin, D; Manning, M; et al. (eds.)]. Cambridge, UK: Cambridge University Press; pp. 1–996. Jaffe, BE; Smith, RE; Torresan, LZ. (1998) Sedimentation and bathymetric change in San Pablo Bay: 1856–1983. OPEN-FILE REPORT 98-759. Version 1.0. Available online at http://geopubs.wr.usgs.gov/open-file/of98-759.pdf.

Kneib, R; Simenstad, C; Nobriga, M; et al. (2008) Tidal marsh conceptual model. Sacramento (CA): Delta Regional Ecosystem Restoration Implementation Plan.

Knowles, N. (2009) Potential inundation due to rising sea levels in the San Francisco Bay region. PIER Research Report, CEC-500-2009-023-D, Sacramento, CA: California Energy Commission.

Knowles, N; Cayan, D. (2004) Elevational dependence of projected hydrologic changes in the San Francisco estuary and watershed. *Clim Change* 62: 319–336.

Krone, RB. (1979) Sedimentation in the San Francisco Bay system. In: Conomos, TJ; ed. San Francisco Bay: the urbanized estuary. San Francisco, CA: American Association for the Advancement of Science; pp 85–96.

Lund, J; Hanak, E; Fleenor, W; et al. (2007) Envisioning futures for the Sacramento–San Joaquin Delta. San Francisco, CA: Public Policy Institute of California.

Miller, NL; Hayhoe, K; Jin, J; et al. (2008) Climate, extreme heat, and electricity demand in California. *J Appl Meteorol Climatol* 47: 1834–1844.

Monroe, M; Olofson, PR; Collins, JN; et al. (1999) Baylands ecosystem habitat goals. A report of habitat recommendations prepared by the San Francisco Bay Area Wetlands Ecosystem Goals Project. Oakland, CA: San Francisco Bay Regional Water Quality Control Board. Available online at http://www.sfei.org/node/2123.

Orr, M; Crooks, S; Williams, PB. (2003) Will restored tidal marshes be sustainable? *San Francisco Estuary and Watershed Science* 1: Article 1. Available online at <u>http://www.escholarship.org/uc/item/8hj3d20t</u>.

Page, GW; Whitacre, DF. (1975) Raptor predation on wintering shorebirds. *Condor* 77: 73–78. Available online at <u>http://elibrary.unm.edu/sora/Condor/files/issues/v077n01/p0073-p0083.pdf</u>.

Ralston, DK; Stacey, MT. (2007) Tidal and meteorological forcing of sediment transport in tributary mudflat channels (San Francisco Bay, CA). *Continental Shelf Research* 27: 1510–1527.

Reed, DJ. (1995) The response of coastal marshes to sea-level rise: survival or submergence? *Earth Surface Processes and Landforms* 20(1): 39–48.

Ruhl, CA; Schoellhamer, DH. (2004) Spatial and temporal variability of suspended-sediment concentrations in a shallow estuarine environment. *San Francisco Estuary and Watershed Science* 2: Article 1. Available online at http://repositories.cdlib.org/jmie/sfews/vol2/iss2/art1.

San Francisco Estuary Indicators Team. (2008) Assessment framework as a tool for integrating and communication watershed health indicators for the San Francisco estuary. Technical Report #1.

Schoellhamer, D; Wright, S; Drexler; J; et al. (2007) Sedimentation conceptual model. Sacramento, (CA): Delta Regional Ecosystem Restoration Implementation Plan.

SFEP (San Francisco Estuary Partnership). (1993) Comprehensive Conservation and Management Plan.

SFEP (San Francisco Estuary Partnership). (2007) Comprehensive Conservation and Management Plan.

This document is a draft for review purposes only and does not constitute Agency policy.

SFEP (San Francisco Estuary Partnership). (2010) Strategic Plan for 2010-2012. Available online at <u>http://www.sfestuary.org/userfiles/file/SFEPstratplan.pdf</u>.

Stenzel, LE; Hickey, CM; Kjelmyr, JE; et al. (2002) Abundance and distribution of shorebirds in the San Francisco Bay area. *Western Birds* 33:69–98.

Takekawa, JY; Miles, AK; Schoellhamer, DH; et al. (2006a) Trophic structure and avian communities across a salinity gradient in evaporation ponds of the San Francisco Bay estuary. *Hydrobiologia* 567: 307–327.

Takekawa, JY; Woo, I; Spautz, H; et al. (2006b) Environmental threats to tidal-marsh vertebrates of the San Francisco Bay estuary. *Stud Avian Biol* 32: 176 197. Available online at http://www.sfei.org/bioinvasions/Reports/No489_06_BI_WT_EnviroThreatstoVertebrates.pdf.

U.S. EPA (Environmental Protection Agency). (1997) Terms of environment: glossary, abbreviations and acronyms. 175-B-001. Available online at <u>http://www.epa.gov/OCEPAterms/</u>.

U.S. EPA (Environmental Protection Agency). (2007) Indicator development for estuaries. EPA842-B-07-004

Weiss, SB; Schaefer, N; Branciforte, R. (2007) Study design and methodology for review by the Peer Review Panel. A project of the Bay Area Open Space Council. Available online at http://www.uplandhabitatgoals.org/upload/files/20100517114132_Study%20Design%20and%20Methodology%20f or%20Peer%20Review,%20May%202007.pdf.

Weiss, SB; Schaefer, N; Branciforte, R. (2008) Methodology and Vegetation Representation Analysis. A project of the Bay Area Open Space Council. Available online at http://www.uplandhabitatgoals.org/upload/files/20100909121856_Methodology%20and%20Veg%20Rep%20Analysis%20v2.pdf.

Weiss, SB; Schaefer, N; Branciforte, R. (2010) Riparian/Fish Focus Team Report. A project of the Bay Area Open Space Council. Available online at http://www.uplandhabitatgoals.org/upload/files/20100908211440 Draft% 20RFFT% 20Report% 20090110doc.pdf.

Wright, SA; Schoellhamer, DH. (2004) Trends in the sediment yield of the Sacramento River, California, 1957–2001. *San Francisco Estuary and Watershed Science* 2:2. Available online at http://repositories.cdlib.org/jmie/sfews/vol2/iss2/art2.

Ydenberg, RC; Butler, RW; Lank, DB; et al. (2004) Western sandpipers have altered migration tactics as peregrine falcon populations have recovered. *Proc Biol Sci* 271(1545): 1263–1269.

1 2

APPENDIX A. DEVELOPMENTAL PROCESS FOR CLIMATE READY ESTUARIES VULNERABILITY ASSESSMENT

3

4 A.1. SELECT KEY GOALS, ECOSYSTEMS, AND ECOSYSTEM PROCESSES

5 The SFEP partners participated in several discussions and meetings to outline 6 management priorities, key resources to consult, and other considerations for selecting key goals 7 for the assessment. As a starting point, SFEP's Comprehensive Conservation and Management 8 Plan (CCMP) (SFEP, 1993; SFEP, 2007) was examined and discussed to select four to six key 9 management goals as a focus of the assessment. These goals would help to further refine the 10 analysis to specific ecosystems, ecosystem processes, stressors of concern, and indicators for 11 measuring changes in the ecosystem. Selected management goals included: 12 Restore healthy estuarine habitat to the Bay-Delta, taking into consideration all 13 beneficial uses of Bay-Delta resources; • Stem and reverse the decline of estuarine plants, fish and wildlife and the habitats on 14 which they depend; 15 16 • Ensure the survival and recovery of listed and candidate threatened and endangered species, as well as special status species; 17 • Protect and manage existing wetlands; and 18 19 Restore and enhance the ecological productivity and habitat values of wetlands. • 20 21 Following an October 2008 kickoff meeting with over 30 local experts to share 22 information on climate change impacts and adaptation work in the region, salt marshes and 23 mudflats were selected as two wetland habitats of focus for the project. These systems were 24 identified by the local experts as highly relevant to SFEP's management goals due to their

25 ecological productivity and their habitat values for threatened and endangered species, and are

26 deemed highly sensitive to changes in climate-related variables such as sea level rise and altered

27 hydrology. In order to explore the linkages among such climate-related variables, their

28 interactions with non-climate stressors of concern, and the key ecosystem processes that

29 maintain the systems, a conceptual model was developed for each ecosystem type.

30

31 A.2. CONCEPTUAL MODELS

32 The conceptual models were intended to serve as a framework for further analysis in the 33 vulnerability assessment. The models depicted likely pathways by which climate drivers may 34 directly or indirectly affect interacting stressors that impact ecosystem processes. The process is 35 intended as iterative, as we learn from exploring the first two ecosystem processes, next steps 36 can involve focusing on additional ecosystem processes, or for repeating a similar analysis for 37 additional habitats. The development of the conceptual model has also served to help with the 38 scoping process; we began with a comprehensive list of ecosystem processes and indicators and 39 then chose those more important to and best representing healthy salt marsh functioning. The

1 total number of possible ecosystem processes was narrowed down to five or six key ones for the 2 ecosystem. The models also included a similar number of variables that may serve as indicators 3 for the status of these endpoints. Ecosystem processes and indicators were identified in 4 discussions among SFEP, BCDC, and EPA ORD, as well as through examination of the Delta 5 Regional Ecosystem Restoration Implementation Plan's conceptual models developed by the 6 CALFED Bay-Delta Program (Schoellhamer et al., 2007; Kneib et al., 2008). To ensure 7 consistency with current research, these indicators were cross-walked with indicators developed 8 for the Watershed Assessment Framework, which were being incorporated into a revision of 9 SFEP's CCMP (San Francisco Estuary Indicators Team, 2008).

10 Stressor interactions are stressors that work together to affect ecosystem functioning. 11 These included both non-climate and climate-related influences that stress salt marsh and 12 mudflat ecosystems. Pre-existing stressors and stressor interactions were identified during the 13 development of salt marsh and mudflat conceptual models, and impacts of these stressors of 14 concern were identified using the SFEP Comprehensive Conservation and Management Plan. 15 Climate drivers are climate variables that may impact ecosystem processes directly (e.g., 16 raise water temperature) or indirectly (e.g., cause changes in nutrient inputs). The climate 17 drivers relevant to salt marshes and mudflats were identified by first examining climate drivers 18 for estuarine systems outlined in Synthesis and Assessment Product 4.4: Preliminary review of 19 adaptation options for climate-sensitive ecosystems and resources (CCSP, 2008a), followed by 20 extensive discussions among the SFEP partners. The climate drivers were then mapped to the 21 key processes of each ecosystem, either directly or through interactions with pre-existing 22 stressors. These pathways provided the basis for the development of the conceptual models. The 23 pathways included are intended as a heuristic, without distinguishing between the magnitudes 24 between them. It is not possible to include all possible system components and connections 25 between them. General models are first presented, and then additional detail for individual 26 ecosystem processes is described in the two sub-models.

27

28 A.2.1. General Models

29 A.2.1.1. Salt Marshes

30 The general model for salt marshes in presented in Figure A-1. Climate drivers in the salt 31 marsh conceptual model include: changes in air temperature, changes in precipitation, sea level 32 rise, and changes in storm climatology and wind. Changes in air temperature refers to the 33 variation from the climatological mean surface air temperature in a particular region. Changes in 34 precipitation refers to variation from the climatological mean of the amount, intensity, frequency 35 and type of rainfall, snowfall and other forms of frozen or liquid water falling from clouds in a 36 particular region, changes refer to both the form and flow of precipitation. Sea level rise is 37 defined as "relative sea-level rise," the change in sea level relative to the elevation of the

adjacent land, which can also subside or rise due to natural and human induced factors. Relative
sea-level changes include both global sea-level rise and changes in the vertical elevation of the
land surface. Changes in storm climatology and wind refers to the variation from the
climatological mean of the frequency, intensity and duration of extreme events (such as
hurricanes, heavy precipitation events, drought, heat waves, etc.) and the changes in the direction
and timing of the dominant seasonal winds.

- 7
- 8 9

Figure A-1. Salt Marsh Conceptual Model.

10 Stressor interactions within the salt marsh conceptual model include: changes in water 11 temperature, changes in salinity, sedimentation and erosion, flooding, invasive species, other 12 human uses, land use/land cover change, contaminants, and altered flows/water demand. 13 Changes in water temperature refers to variation in the climatological mean surface water 14 temperature in a particular region. Changes in salinity are measured by changes in the location 15 along the estuary of different salinity zones (e.g., polyhaline, mesohaline, and oligohaline), or changes in vertical stratification based on salinity. Sedimentation and erosion includes the 16 17 transport, deposition, and removal of soil and rock by weathering, mass wasting, and the action 18 of streams, waves, winds and underground water. Flooding is defined as an excess of water that 19 does not recharge ground water beyond time frames typical for watersheds due to high 20 precipitation events, storm surge, or infrastructure damage. Invasive species are alien species 21 (species not native to a particular ecosystem) whose introduction causes, or is likely to cause, 22 economic or environmental harm or harm to human health. Other human uses is a catch all 23 category based on the CCMP which includes the use of the marsh and surrounding area for 24 activities such as fishing, shipping and ports, dredging, transportation projects, sand mining, 25 recreational use, marinas, and industrial uses that may impact the marsh. Land use/land cover 26 change is defined as the current use of marsh and human-induced changes to the marsh or 27 surrounding land, including wetland alteration and expansion of the built environment. 28 Contaminants include material that creates a hazard to the ecosystem by impairing water quality, 29 poisoning or through the spread of disease (e.g., mercury, selenium, PCBs, DDT, chlordane, 30 dieldrin, dioxin, trash and debris, and acid mine drainage). Altered flows/water demand includes 31 upstream water diversions for agricultural, industrial, or urban uses that change the natural flow 32 of freshwater and sediment into the marsh, including leveeing, diking, damming, filling, or 33 channeling. 34 Ecosystem processes in the salt marsh conceptual model include: community

interactions, primary productivity, sediment retention, water retention, nutrient cycling, and
water purification. Community interactions is defined as the interrelations among species within
the ecosystem. Primary productivity is the production of energy by plants and phytoplankton
within the entire system. Sediment retention is the balance between the processes of removal *This document is a draft for review purposes only and does not constitute Agency policy.*

and deposition of suspended sediment. Water retention is defined as the capability to buffer
 against flooding. Nutrient cycling is the process of transfer of nutrients between organisms and
 the water. Water purification is defined as the removal of pollutants and harmful
 microorganisms.

5 Indicators within the salt marsh conceptual model include: species population size, water 6 quality standards, freshwater inflow, sediment quantity, extent of aquatic habitat, and 7 biodiversity. Species population size is defined as the number of similar organisms residing in a 8 defined place at a certain time, including threatened and endangered species, native species, and 9 invasive species. Water quality standards are provisions of State or Federal law which consist of 10 designated uses for waters of the United States, and water quality criteria for such waters based 11 upon such uses. Criteria address the values for water quality indicators (e.g., water temperature, 12 salinity, water contaminant exposure, biological thresholds for water contamination, nutrient 13 concentrations, water toxicity) that are required to support designated uses. Freshwater inflow is 14 the amount of freshwater inflow to the estuary from the watershed. Sediment quantity is defined 15 as suspended sediment concentration. Extent of aquatic habitat is defined as the area of all 16 contiguous, vegetated salt and brackish wetland, or mean width of marsh (may be divided into 17 low or high marsh or by dominant species). Biodiversity is the presence and abundance of 18 different species types (e.g., fish, birds, SAV).

19 The salt marsh conceptual model focuses on a limited number of ecosystem processes 20 that are key to the habitat and region. In some instances, a component of the system may fill 21 roles at multiple levels, and the model does not represent all possible roles a particular 22 component may fill. The model does not take the cumulative effects of climate stressors or 23 tipping points/critical thresholds into account. The model does not include ocean acidification as 24 a climate driver, as current understanding of salt marshes indicate it as secondary compared to 25 the other stressors.

26

27 A.2.1.2. Mud Flats

28 The general model for mudflats is presented in Figure A-2. Climate drivers in the 29 mudflat conceptual model include: changes in air temperature, changes in precipitation, sea level 30 rise, and changes in storm climatology and wind. Changes in air temperature refers to the 31 variation from the climatological mean surface air temperature in a particular region. Changes in 32 precipitation refers to variation from the climatological mean of the amount, intensity, frequency 33 and type of rainfall, snowfall and other forms of frozen or liquid water falling from clouds in a 34 particular region, changes refer to both the form and flow of precipitation. Sea level rise is 35 defined as "relative sea-level rise," the change in sea level relative to the elevation of the 36 adjacent land, which can also subside or rise due to natural and human induced factors. Relative 37 sea-level changes include both global sea-level rise and changes in the vertical elevation of the

This document is a draft for review purposes only and does not constitute Agency policy.

land surface. Changes in storm climatology and wind refers to the variation from the
 climatological mean of the frequency, intensity and duration of extreme events (such as
 hurricanes, heavy precipitation events, drought, heat waves, etc.) and the changes in the direction
 and timing of the dominant seasonal winds.

- 5
- 6

7

Figure A-2. Mudflat Conceptual Model.

8 Stressor interactions within the mudflat conceptual model include: changes in water 9 temperature, changes in salinity, sedimentation and erosion, flooding, invasive species, other 10 human uses, and contaminants. Changes in water temperature refers to variation in the 11 climatological mean surface water temperature in a particular region. Changes in salinity are 12 measured by changes in the location along the estuary of different salinity zones (e.g., 13 polyhaline, mesohaline, and oligohaline), or changes in vertical stratification based on salinity. Sedimentation and erosion includes the transport, deposition, and removal of soil and rock by 14 15 weathering, mass wasting, and the action of streams, waves, winds and underground water. 16 Flooding is defined as an excess of water that does not recharge ground water beyond time 17 frames typical for watersheds due to high precipitation events, storm surge, or infrastructure 18 damage. Invasive species are alien species (species not native to a particular ecosystem) whose 19 introduction causes, or is likely to cause, economic or environmental harm or harm to human 20 health. Other human uses includes the use of the marsh and surrounding area for activities such 21 as fishing, shipping and ports, dredging, transportation projects, sand mining, recreational use, 22 marinas, and industrial uses that may impact the marsh. Contaminants include material that 23 creates a hazard to the ecosystem by impairing water quality, poisoning or through the spread of 24 disease (e.g., mercury, selenium, PCBs, DDT, chlordane, dieldrin, dioxin, trash and debris, and 25 acid mine drainage).

26 Ecosystem processes in the mudflat conceptual model include: community interactions, 27 primary productivity, biomass, nutrient cycling, and key species. Community interactions is 28 defined as the interrelations among species within the ecosystem. Primary productivity is the 29 production of energy by plants and phytoplankton, within the entire system. Biomass is the total 30 mass of biological material within the system or within a particular category or group. Nutrient 31 cycling is the process of transfer of nutrients between organisms and the water. Key species are 32 species which serve as a foundation for other species or fill a similar pivotal role for the rest of 33 the ecosystem (e.g., ecosystem engineers). Indicators within the mudflat conceptual model 34 include: species population size, water quality standards, extent of aquatic habitat, and 35 biodiversity. Species population size is defined as the number of similar organisms residing in a 36 defined place at a certain time, including threatened and endangered species, native species, and 37 invasive species. Water quality standards are provisions of State or Federal law which consist of 38 designated uses for waters of the United States, and water quality criteria for such waters based This document is a draft for review purposes only and does not constitute Agency policy.

A-5

1 upon such uses. Criteria address the values for water quality indicators (e.g., water temperature,

2 salinity, water contaminant exposure, biological thresholds for water contamination, nutrient

3 concentrations, water toxicity) that are required to support designated uses. Extent of aquatic

- 4 habitat is defined as the area of all contiguous, vegetated salt and brackish wetland, or mean
- 5 width of marsh (may be divided into low or high marsh or by dominant species). Biodiversity is

6 the presence and abundance of different species types (e.g., fish, birds, SAV).

7 The mudflat conceptual model focuses on a limited number of ecosystem processes that 8 are key to the habitat and region. In some instances, a component of the system may fill roles at 9 multiple levels, and the model does not represent all possible roles a particular component may 10 fill. The model does not take the cumulative effects of climate stressors or tipping points/critical 11 thresholds into account. The model does not include ocean acidification as a climate driver, as 12 current understanding of salt marshes indicate it as secondary compared to the other stressors.

13

14 A.2.2. Sub-models

15 Following the development of the general ecosystem models, one ecosystem process 16 within each model was chosen to move to the specifics for an individual ecosystem process. The 17 purpose was to select good processes for piloting the method, but the choice does not imply that 18 these are necessarily the only important, or the most vulnerable, processes. Sediment retention 19 was identified as a key salt marsh process because of the importance of sediment supply to allow 20 for marsh development and growth. In the Bay, sediment supply has been declining due to 21 changes in human activities and the use of the land and waterways (Jaffe et al., 1998; Wright and 22 Schoellhamer, 2004). SFEP, BCDC, and other regional partners have done extensive work on 23 examining changes in sediment and how these changes may be influenced by changes in climate. 24 This provided the basis for the development of the sediment retention submodel.

25 Community Interactions was chosen as the second ecosystem process of focus. To select 26 a specific well-constrained "storyline" of interactions between 2-4 species for this process, ICF 27 and EPA consulted with SFEP, BCDC, and regional experts on key sensitivities for this process 28 within the Bay system. The shorebird and mudflats interaction was selected for further study 29 because of the priority status of key species and the climate sensitivities that structure the system. 30 As mudflats may be one of the habitat types most vulnerable to climate changes (especially sea 31 level rise) the interactions among wading shorebirds were identified as a key process for study. 32 This provided the basis for the development of the community interactions submodel.

33

34 A.2.2.1. Sediment Retention

The sediment retention submodel is presented in Figure A-3. It focuses on the balance between the processes of removal and deposition of sediment onto a salt marsh and the resultant ability of the marsh to persist in the face of climate change. The accumulation of sediments and

This document is a draft for review purposes only and does not constitute Agency policy.

1 marsh vertical accretion result from interactions among tidal imports, vegetation dynamics, and 2 depositional processes. Freshwater flow and coastal storms transport and deposit sediments onto 3 the marsh surface, and the roots and stems of marsh vegetation retain sediment that would 4 otherwise be carried away from the marsh by wind and waves. Over time, the accumulation of 5 dead and dying organic matter produces peat, and the combination of peat accumulation and 6 sediment deposition gradually builds up the marsh surface. Ultimately, it is the balance between 7 marsh vertical accretion and sea level rise that determines whether a tidal marsh will persist in 8 the face of rising seas or will convert to tidal flats or open water (Reed, 1995).

- 9
- 10 11

Figure A-3. Sediment Retention sub-model.

12 In the San Francisco Estuary, there is an annual cycle of sediment deposition and 13 resuspension that begins when freshwater flow from the Delta in winter carries pulses of 14 sediment to the bay. Most of this new sediment is deposited in shallow areas and where tidal 15 velocities are lower. In spring and summer suspended sediment concentrations increase again as a result of wind-wave resuspension of bottom sediments (Ruhl and Schoellhamer, 2004). 16 17 Sediment supply will play an increasingly critical role in this process. The supply of sediments 18 is declining as the estuary completes the shift from a system with larger sediment loads as a 19 result of past hydraulic mining to one that has a reduced sediment supply due to the cessation of 20 mining and an increase in tributary dams that trap sediment upstream (Jaffe et al., 1998; Wright 21 and Schoellhamer, 2004).

22 A number of key climate variables (air temperature, precipitation, storm climatology and 23 wind, and sea level rise) and interacting human stressors (e.g., altered flows, dredging/dredge 24 disposal, land use/land cover changes) may impact this process, either directly or indirectly. 25 Increases in winter storms and in strong wind-driven waves may increase erosion of uplands, 26 increasing sediment availability. The North Bay has become somewhat erosional because of an 27 altered balance between riverine sediments and sediment transport. Storms and storm surges 28 may also carry more sediment away from marshes or promote resuspension of bottom sediments, 29 leading to increased suspended sediment concentrations. Sediment deposition and retention on the marsh surface will ultimately depend on marsh geomorphology and surface vegetation (Orr 30 31 et al., 2003).

32

33 A.2.2.2. Community Interactions

The community interactions submodel is presented in Figure A-4. This submodel
focuses on community interactions between two species of mudflat wading birds, the Marbled
Godwit and the Western Sandpiper, and their predators and prey. Inundation and sediment
regimes influence not only mudflat extent, but also mudflat trophic dynamics (Takekawa et al.,
2006a). The trophic structure of North Bay mudflats includes invertebrates within mudflat *This document is a draft for review purposes only and does not constitute Agency policy.*

sediments, shorebirds that feed on mudflat infauna (Stenzel et al., 2002), and Peregrine Falcons
 and Merlins, which prey on shorebirds (Page and Whitacre, 1975; Ydenberg et al., 2004).

3 4

5

Figure A-4. Community Interactions sub-model.

6 A number of key climate variables and interacting human stressors (altered flows, 7 dredging, land use/land cover changes) may impact these trophic interactions, directly or 8 indirectly. Depending on sediment supply, increased inundation from sea level rise may drown 9 mudflats, while an increase in winds and wave action from more frequent and intense storms 10 may change sediment deposition patterns. Because suspended sediment concentrations are 11 sensitive to the extent and elevation of mudflats, as mudflat elevations decrease, suspended 12 sediment concentrations may decrease over time (Orr et al., 2003). If sediment deposition does 13 not keep pace with sea level rise, mudflat invertebrates will become less available for shorebirds. There is limited information on shorebird diets, making it difficult to group shorebirds by 14 15 prey type, but shorebirds can be distinguished based on the depth at which they probe into the sediment for prey. Short-legged shorebirds that are shallow probers, represented by Western 16 17 Sandpiper, forage in the top layer of sediments (< 3 cm) and will lose foraging habitat first. But 18 eventually mudflat invertebrates will also become inaccessible to long-legged deep probers, 19 represented by Marbled Godwit, which penetrate up to 8 cm into the substratum (Takekawa et al. 20 2006a).

21

22 A.3. CONCLUSIONS

23 The analysis of available data for potential indicators and of existing models indicated 24 that there was insufficient information available on metrics for the indicators to answer the 25 sensitivity questions of this assessment using quantitative modeling. However, it was also 26 evident that a vast amount of information local knowledge was available through consultation 27 with regional experts in the processes of interest. This led to the development of the expert 28 elicitation workshop approach described in Chapter 2 of this report. The workshop was meant to 29 serve as an opportunity to supplement current knowledge based on background research and 30 examine potential changes that may occur due to climate influences. The conceptual diagrams 31 described above provided the basis for the development of the initial influence diagrams used at 32 the workshop (as described in Chapter 2 of this report) as well as context for how these 33 ecosystem processes of focus fit with the rest of the ecosystem.

1	APPENDIX B. EXPERT ELICIATION WORKSHOP PREPARATION				
2	AND IMPLEMENTATION				
3					
4	B.1. PRE-WORKSHOP				
5	B.1.1. Selecting Workshop Participants				
6	The SFEP partners developed a list of criteria for selecting highly qualified local experts				
7	who spanned the range of disciplines, science and management continuum, and empirical versus				
8	theoretical research experience needed to collectively characterize the ecosystem processes under				
9	consideration. Criteria for selecting participants included:				
10					
11 12 13 14 15 16 17 18 19 20 21 22 23 24	 Demonstrated understanding of the body of literature with regard to sediment retention OR community interactions (depending on which breakout group), as evidenced by academic training, research, and publications; Demonstrated ability to think of uncertainty in qualitative terms ; Knowledge of science behind estuary management, as evidenced by academic training, research, and publications; Knowledge of estuary management issues as evidenced by academic training, research, and publications; Past work in SFEP region; and Past work with salt marsh development/sediment retention processes (the balance of sediment supply versus loss) OR mudflat development/community interactions (interactions of shorebirds and their predators and prey), depending on the candidate's proposed breakout group. 				
25	These criteria were considered in developing a list of qualified candidates for each				
26	breakout group. Candidates were then contacted to determine their availability and interest in				
27	testing a new method for vulnerability assessment. Workshop participants included the				
28	following individuals:				
29					
30	Sediment Retention Breakout Group:				
31	Dave Cacchione, U.S. Geological Survey				
32	John Callaway, UC San Francisco				
33	Chris Enright, CA Department of Water Resources				
34	Bruce Jaffe, U.S. Geological Survey				
35	Lester McKee, San Francisco Estuary Institute				
36	Dave Schoellhamer, U.S. Geological Survey				
37	Mark Stacey, UC Berkeley				
38					

This document is a draft for review purposes only and does not constitute Agency policy.

1	Community Interactions Breakout Group:		
2	Letitia Grenier, San Francisco Estuary Institute		
3	Jessica (Jessie) Lacy, U.S. Geological Survey		
4	Michelle Orr, Philip Williams & Associates		
5	Diana Stralberg, PRBO Conservation Science		
6	Stuart Siegel, Wetlands and Water Resources		
7	Lynne Trulio, San Jose State University		
8	Isa Woo, U.S. Geological Survey		
9			
10	The expertise of each of the individual participants contributed to the interdisciplinary		
11	complexity of the group. Experts were selected from the management and adaptation research		
12	communities, and represented federal and state government agencies, research and consulting		
13	organizations, and academia. The credentials for each of the participants, including past and		
14	current work and research and areas of expertise, are summarized for the Sediment Retention		
15	group in Table B-1, and for the Community Interactions group in Table B-2.		
16			
17	Table B-1. Sediment Retention breakout group participants, affiliations, and		
18 19	qualifications		
20	Table B-2. Community Interactions breakout group participants,		
	Tuble D 2. Community interactions breakout Group participants,		
21	affiliations, and qualifications		
21 22	affiliations, and qualifications		
	affiliations, and qualifications B.1.2. "Straw Man" Influence Diagrams		
22	B.1.2. "Straw Man" Influence Diagrams An initial "straw man" influence diagram (Figure B-1 and Figure B-2) for each breakout		
22 23	B.1.2. "Straw Man" Influence Diagrams An initial "straw man" influence diagram (Figure B-1 and Figure B-2) for each breakout group was developed by ICF, EPA ORD, SFEP, and BCDC prior to the workshop based on the		
22 23 24 25 26	B.1.2. "Straw Man" Influence Diagrams An initial "straw man" influence diagram (Figure B-1 and Figure B-2) for each breakout group was developed by ICF, EPA ORD, SFEP, and BCDC prior to the workshop based on the more detailed salt marsh and mudflat conceptual models and sediment retention and community		
22 23 24 25 26 27	B.1.2. "Straw Man" Influence Diagrams An initial "straw man" influence diagram (Figure B-1 and Figure B-2) for each breakout group was developed by ICF, EPA ORD, SFEP, and BCDC prior to the workshop based on the more detailed salt marsh and mudflat conceptual models and sediment retention and community interactions submodels developed previously (see Appendix A). The "straw man" influence		
22 23 24 25 26 27 28	B.1.2. "Straw Man" Influence Diagrams An initial "straw man" influence diagram (Figure B-1 and Figure B-2) for each breakout group was developed by ICF, EPA ORD, SFEP, and BCDC prior to the workshop based on the more detailed salt marsh and mudflat conceptual models and sediment retention and community interactions submodels developed previously (see Appendix A). The "straw man" influence diagrams differed from the more comprehensive conceptual models in that they focused on only		
 22 23 24 25 26 27 28 29 	B.1.2. "Straw Man" Influence Diagrams An initial "straw man" influence diagram (Figure B-1 and Figure B-2) for each breakout group was developed by ICF, EPA ORD, SFEP, and BCDC prior to the workshop based on the more detailed salt marsh and mudflat conceptual models and sediment retention and community interactions submodels developed previously (see Appendix A). The "straw man" influence diagrams differed from the more comprehensive conceptual models in that they focused on only those elements of the model that participants believe are most critical for understanding		
 22 23 24 25 26 27 28 29 30 	B.1.2. "Straw Man" Influence Diagrams An initial "straw man" influence diagram (Figure B-1 and Figure B-2) for each breakout group was developed by ICF, EPA ORD, SFEP, and BCDC prior to the workshop based on the more detailed salt marsh and mudflat conceptual models and sediment retention and community interactions submodels developed previously (see Appendix A). The "straw man" influence diagrams differed from the more comprehensive conceptual models in that they focused on only those elements of the model that participants believe are most critical for understanding responses of the ecosystem process to the human and climate stressors under consideration. The		
 22 23 24 25 26 27 28 29 30 31 	B.1.2. "Straw Man" Influence Diagrams An initial "straw man" influence diagram (Figure B-1 and Figure B-2) for each breakout group was developed by ICF, EPA ORD, SFEP, and BCDC prior to the workshop based on the more detailed salt marsh and mudflat conceptual models and sediment retention and community interactions submodels developed previously (see Appendix A). The "straw man" influence diagrams differed from the more comprehensive conceptual models in that they focused on only those elements of the model that participants believe are most critical for understanding responses of the ecosystem process to the human and climate stressors under consideration. The "straw man" influence diagrams were used in the pre-workshop briefing and homework		
 22 23 24 25 26 27 28 29 30 31 32 	B.1.2. "Straw Man" Influence Diagrams An initial "straw man" influence diagram (Figure B-1 and Figure B-2) for each breakout group was developed by ICF, EPA ORD, SFEP, and BCDC prior to the workshop based on the more detailed salt marsh and mudflat conceptual models and sediment retention and community interactions submodels developed previously (see Appendix A). The "straw man" influence diagrams differed from the more comprehensive conceptual models in that they focused on only those elements of the model that participants believe are most critical for understanding responses of the ecosystem process to the human and climate stressors under consideration. The "straw man" influence diagrams were used in the pre-workshop briefing and homework assignment in order to further refine the sediment retention and community interactions influence		
 22 23 24 25 26 27 28 29 30 31 32 33 	B.1.2. "Straw Man" Influence Diagrams An initial "straw man" influence diagram (Figure B-1 and Figure B-2) for each breakout group was developed by ICF, EPA ORD, SFEP, and BCDC prior to the workshop based on the more detailed salt marsh and mudflat conceptual models and sediment retention and community interactions submodels developed previously (see Appendix A). The "straw man" influence diagrams differed from the more comprehensive conceptual models in that they focused on only those elements of the model that participants believe are most critical for understanding responses of the ecosystem process to the human and climate stressors under consideration. The "straw man" influence diagrams were used in the pre-workshop briefing and homework		
 22 23 24 25 26 27 28 29 30 31 32 33 34 	B.1.2. "Straw Man" Influence Diagrams An initial "straw man" influence diagram (Figure B-1 and Figure B-2) for each breakout group was developed by ICF, EPA ORD, SFEP, and BCDC prior to the workshop based on the more detailed salt marsh and mudflat conceptual models and sediment retention and community interactions submodels developed previously (see Appendix A). The "straw man" influence diagrams differed from the more comprehensive conceptual models in that they focused on only those elements of the model that participants believe are most critical for understanding responses of the ecosystem process to the human and climate stressors under consideration. The "straw man" influence diagrams were used in the pre-workshop briefing and homework assignment in order to further refine the sediment retention and community interactions influence diagrams.		
 22 23 24 25 26 27 28 29 30 31 32 33 34 35 	B.1.2. "Straw Man" Influence Diagrams An initial "straw man" influence diagram (Figure B-1 and Figure B-2) for each breakout group was developed by ICF, EPA ORD, SFEP, and BCDC prior to the workshop based on the more detailed salt marsh and mudflat conceptual models and sediment retention and community interactions submodels developed previously (see Appendix A). The "straw man" influence diagrams differed from the more comprehensive conceptual models in that they focused on only those elements of the model that participants believe are most critical for understanding responses of the ecosystem process to the human and climate stressors under consideration. The "straw man" influence diagrams were used in the pre-workshop briefing and homework assignment in order to further refine the sediment retention and community interactions influence		
 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 	B.1.2. "Straw Man" Influence Diagrams An initial "straw man" influence diagram (Figure B-1 and Figure B-2) for each breakout group was developed by ICF, EPA ORD, SFEP, and BCDC prior to the workshop based on the more detailed salt marsh and mudflat conceptual models and sediment retention and community interactions submodels developed previously (see Appendix A). The "straw man" influence diagrams differed from the more comprehensive conceptual models in that they focused on only those elements of the model that participants believe are most critical for understanding responses of the ecosystem process to the human and climate stressors under consideration. The "straw man" influence diagrams were used in the pre-workshop briefing and homework assignment in order to further refine the sediment retention and community interactions influence diagrams. Figure B-1. Sediment Retention "straw man" influence diagram.		
 22 23 24 25 26 27 28 29 30 31 32 33 34 35 	B.1.2. "Straw Man" Influence Diagrams An initial "straw man" influence diagram (Figure B-1 and Figure B-2) for each breakout group was developed by ICF, EPA ORD, SFEP, and BCDC prior to the workshop based on the more detailed salt marsh and mudflat conceptual models and sediment retention and community interactions submodels developed previously (see Appendix A). The "straw man" influence diagrams differed from the more comprehensive conceptual models in that they focused on only those elements of the model that participants believe are most critical for understanding responses of the ecosystem process to the human and climate stressors under consideration. The "straw man" influence diagrams were used in the pre-workshop briefing and homework assignment in order to further refine the sediment retention and community interactions influence diagrams.		

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT— DO NOT CITE OR QUOTE

1 **B.1.3.** Pre-workshop Briefing and Homework Assignment

2 Participants participated in a pre-workshop briefing call and a homework assignment that 3 would be used to develop consolidated influence diagrams to be used at the workshop. The pre-4 workshop briefing call was held on March 2, 2010. This call gave participants a briefing on the 5 background of the project, work to date, the purpose of the workshop, and an overview of the 6 homework assignment. Part of the background material presented was information on an 7 example site for participants to consider when more spatial specificity would be useful during the 8 workshop exercise. China Camp, a site on the southwest shore of San Pablo Bay, was chosen 9 because it includes large wetland areas in a transitional salinity zone with intact adjacent 10 habitats.

11 The homework assignment asked participants to review a number of items: (1) selected 12 articles relevant to the ecosystem process breakout group to which they were assigned (for the 13 Sediment Retention breakout group: Orr et al., 2003; Ruhl and Schoellhamer, 2004; and Wright 14 and Schoellhamer, 2004; for the Community Interactions breakout group: Galbraith et al., 2005; 15 Takekawa et al., 2006; Page and Whitacre, 1975; and Stenzel et al., 2002); (2) conceptual models 16 of the ecosystem and ecosystem process to which they were assigned; and (3) the draft influence 17 diagram for the ecosystem process to which they were assigned. Participants were asked to 18 review the draft influence diagram and provide recommendations on what should be added or 19 removed. Participants were asked to add or subtract variables or relationships until the 20 preliminary influence diagram matched their understanding of the process. We asked 21 participants to include no more than 10-15 variables in the diagram in order to keep it focused on 22 the highest priority influences. We also asked participants to focus on current conditions 23 (including current climate) when reviewing and commenting on the diagram. 24 Participants were asked to provide a quantitative definition for each variable, a metric for 25 measuring the variable, and a range of values for the metric. Participants were also asked to

assign values to the metrics they selected. This could include actual measured values (e.g., 35 km³ of inflow) as well as a range of values (e.g., 5 to 50 km³ of inflow).

28

29 **B.1.4.** Consolidated Influence Diagrams

30 The preliminary diagram for each breakout group was revised prior the workshop based 31 on the participants' homework responses. The process involved examining the participants' 32 responses and constructing a tally of the variables used and influences (arrows) included. 33 Variables and influences that were most frequent across all responses were included in the 34 consolidated influence diagrams. For the both the Sediment Retention and Community 35 Interactions groups, all but one of the participants provided comments on the preliminary 36 influence diagram. Based on the responses from the participants, consolidated influence 37 diagrams were developed for the workshop.

1

2 **B.2. WORKSHOP**

3 **B.2.1. Group Influence Diagrams**

Group influence diagrams were developed during the first day of the workshop. Within their breakout groups, the participants discussed how the consolidated influence diagrams should be refined for use as a final "group" influence diagram. The participants added, removed, or redefined variables based on a group discussion. The group diagrams were to become the basis for the expert elicitation exercise of assigning judgments about influences among variables. The Sediment Retention and Community Interactions group influence diagrams are provided in Chapter 2.

11

12 **B.2.2.** Introduction to Climate Scenarios and Confidence

13 The participants received two handouts designed to orient them to the climate scenarios 14 and to the methodology for assessing confidence. The first handout contained a summary of 15 Climate Scenarios A and B, which was used by the participants in assessing the sensitivity of salt 16 marshes and mudflats across a range of plausible scenarios of climate change. It explained the 17 development of two climate futures in a mid-century (2035-2064) time frame. Participants used 18 these scenarios on Day 2 to make new judgments compared to their judgments under "current 19 conditions" on Day 2. The full climate scenarios handout can be found in Appendix C. 20 The second handout presented explanatory information and a coding scheme for use by 21 the participants in assessing their confidence in each of their judgments under both current 22 conditions and under Climate Scenarios A and B. The full handout may be found in Appendix 23 D.

24

25 **B.2.3.** Coding Exercise

26 Following the development of the group influence diagrams, participants were asked to 27 make their individual judgments on the diagram using the coding scheme. As described in Chapter 2, the participants used the coding scheme to make judgments on the following: (1) type 28 29 and degree of influence for each relationship included in the influence diagram; (2) the 30 associated confidence for each influence judgment; (3) type of interactive influences for 31 relationships of their own choosing; and (4) the associated confidence for each interactive 32 influence judgment. These judgments were done for current conditions (on the first day of the 33 workshop), and Climate Scenario and Climate Scenario (on the second day of the workshop). 34 Example handouts that participants used to make their judgments are provided in Tables B-3, B-35 4, and B-5. 36

Table B-3. Example of expert elicitation handout for influences under current conditions (Sediment Retention group)

This document is a draft for review purposes only and does not constitute Agency policy.

1 2
 Table B-4. Example of expert elicitation handout for influences under
 3 climate scenarios (Community Interactions group) 4 5 Table B-5. Example of expert elicitation handout for interactive influences 6 under climate scenarios (Sediment Retention group) 7 8 **B.2.4.** Variation Across Participants in Sensitivity Judgments 9 For both the Sediment Retention and Community Interactions groups, variability among 10 participants in their judgments contributed to lack of agreement on sensitivities for some 11 influences. Figure B-3 presents the full range of variation among participants of the Sediment 12 Retention group by showing the same trio of figures as shown in Figure 2-4, but broken out for 13 each individual participant. Looking across all the participants, there was more variability 14 between participants than across scenarios for any given participant. There were no patterns 15 across participants, such as characterizing only increasing sensitivity. The changes across the 16 scenarios made by Participant 3 were of only increasing sensitivity, Participant 1 only had one 17 change to decreasing sensitivity, and Participants 2, 6 and 7 had both increases and decreases, 18 sometimes across the scenarios for one influence. Partipants 4 and 5 made no changes in 19 sensitivity across the climate scenarios. 20 21 Figure B-3. Sediment Retention influence diagrams of sensitivities: variance 22 across participants. 23 24 For the Community Interactions group, Figure B-4 presents the full range of variation 25 among participants by showing the same trio of figures as those shown in Figure 2-10, but 26 broken out for each individual participant. Looking across all the participants, we see that there 27 is again more variability between participants than across scenarios for any given participant. 28 The majority of changes in sensitivity type across the climate scenarios are of increasing 29 sensitivity. The changes across the scenarios made by Participants 1, 2 and 4 are of only 30 increasing sensitivity; Participant 5 only had one change, to decreasing sensitivity; Participants 3, 31 6 and 7 had both increases and decreases, but more of the former. 32 33 Figure B-4. Community Interactions influence diagrams of sensitivities: 34 variance across participants. 35 36 **B.2.5.** Exercise Discussions and Report-outs

After participants made their individual judgments on the influence diagram using the
coding exercise, the participants reconvened in their breakout groups for a group discussion.
Participants discussed their reactions to the exercise and how it was structured, individual

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT— DO NOT CITE OR QUOTE

judgments on type and degree of influence, individual judgments on confidence, key issues and
 gaps in understanding. This group discussion often helped to clarify issues that participants may
 have had in understanding the coding scheme or influences that they may have lacked clarity on.

Based on this group discussion, the facilitator helped the participants to identify some key
points that emerged. These key points addressed issues such as key influences, important
pathways, thresholds, significant changes associated with climate change, management
implications, etc. One of the participants from each breakout group presented these key points to
the larger group to summarize the discussion. Following the discussion, participants were given
time to revisit their individual judgments.

10

11 B.2.6. Discussion of Management Implications

Following the breakout group discussions and exercise of making individual judgments, participants gathered in the larger group to discuss management implications. This discussion would help SFEP and BCDC to examine some of the key issues that emerged from the expert elicitation exercise and translating those issues into action. The facilitator led the discussion by asking participants to consider how climate stressors might impact the estuary across a range of management scenarios. The discussion also explored research and data needs, suggestions for water and sediment management, and fundamental shifts in management that may be necessary.

20 B.3. POST-WORKSHOP

21 B.3.1. Review of Workshop Report

22 A report was developed subsequent to the workshop documenting key outputs in two 23 sections: key results and workshop discussions. This report provides a documentation of all of 24 the participant materials, including: participant guidance documents, participant homework 25 responses, handouts and other materials used at the workshop, and individual participant 26 judgments. Key points that emerged during the breakout group and larger group discussions are 27 summarized, as well as the discussion on management implications. Participants were asked to 28 review this report and provide any comments. These comments were incorporated into a final 29 workshop report, which is available upon request from the authors.

30

31 B.3.2. Synthesis of Results

A synthesis of results was developed in order to analyze the participants' individual judgments made at the workshop. The synthesis reviews the objectives of conducting the expert elicitation workshop and identifies key questions that the synthesis of judgments seeks to answer. It reviews the coding schemes used by participants during the workshop and summarizes a coding typology that was used to group codes to characterize types and degrees of influences and sensitivities. Finally, it describes the methodology for analyzing the available judgments and

- 1 presents key results in the form of tables and figures. The contents of this synthesis comprise
- 2 much of the substance of the results sections of this report.
- 3

4 **B.3.3. Review of Draft Report**

5 The workshop report and preliminary results reports were used to develop this technical 6 report to present the synthesis results and place them in the larger context of the implications for 7 management and SFEP's capacity to respond. The draft report was revised based on an internal 8 review by EPA scientists. The report is now under public and expert peer review. Following 9 this review, a final report will be developed that responds to the public and peer-review 10 comments. An additional report that focuses on lessons learned across the two assessments for 11 SFEP and MBP will also be developed.

1 2

APPENDIX C. PARTICIPANT HANDOUT ON CLIMATE SCENARIOS

3 SFEP Workshop Climate Scenarios

This handout is intended to assist participants in assessing the sensitivity of salt marshes and
mudflats across a range of plausible scenarios of climate change. It provides the details of two
distinct but scientifically credible climate futures for a mid-century (2035-2064) time period.²
Participants will use these scenarios in revisiting their assessments of influence completed on the
first day.

10

11 Two Climate Change Scenarios: "Lower-Range" and "Higher-Range"³

12

13 Under both climate change scenarios, California will retain its Mediterranean climate (cool/wet

14 winters and hot/dry summers) and continue to experience a high degree of variability in

15 precipitation with rising sea levels. By mid-century, the "higher-range" scenario (including

16 higher emissions and a more sensitive climate) is projected to experience a warmer and

17 somewhat drier climate compared to the "lower-range" scenario (with lower emissions and a

- 18 lesser impact on California's climate).
- 19

20 Development of the Climate Scenarios

21

22 The two bounding scenarios were developed from a collective group of studies in large part

23 funded by the California Energy Commission (CEC) under the mandate of the Governor's

24 Biennial Climate Change Report. A majority of the climate projections presented here were

25 developed by Cayan et al. (2009), based on projections from 6 leading climate models.⁴ These

- 26 models were selected based on their reasonable representation of historical simulation of
- 27 seasonal precipitation, seasonal temperature, the variability of annual precipitation, and El
- 28 Nino/Southern Oscillation (ENSO). All models were run with both a lower emission scenario
- 29 (B1 SRES) and a mid-high emission scenario (A2 SRES) to capture a range of plausible future

30 emissions trajectories. The "lower-range" and "higher-range" temperature and precipitation

31 scenarios for 2035-2064 compared to 1961-1990 baseline conditions are based on these climate

32 model simulations, for the SRES B1 (lower) and SRES A2 (higher) scenarios, respectively.

- 33 Regional projections were developed by statistical downscaling.⁵
- 34

For a given U.S. coastal location, relative sea level rise may differ from global estimates due to a
 number of factors such as changes in local ocean circulation, ocean density, vertical land motion,

 $^{^{2}}$ These two futures are designed to capture a large part of the uncertainty inherent to future projections that is the result of two key factors: (1) the amount of future emissions of greenhouse gases from human activities that are driving global change, and (2) the ability of scientists to simulate the response of the Earth's climate system to those emissions.

³ The usage of the terms "lower-range" and "higher-range" refers to the scenarios provided in this handout and are not intended to reflect the lowest and highest possible futures.

⁴ U.S. NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1; the National Center for Atmospheric Research (NCAR) Parallel Climate Model (PCM); the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM); the Max Plank Institute ECHAM5/MPI-OM; the Center for Climate System Research of the University of Tokyo MIROC 3.2 medium-resolution model; and the French Centre National de Recherches Meteorologiques (CNRM) models.

⁵ Statistical downscaling methodology includes constructed analogues, bias correction and spatial downscaling of the results from each of the 6 climate models.

This document is a draft for review purposes only and does not constitute Agency policy.

- 1 erosion/sedimentation, gravitational effects, etc. Relative sea level rise in California has
- 2 demonstrated similar rates of rise compared to global estimates (Cayan et al. 2008). Many
- 3 California studies recommend using projections of global sea level rise estimates, which assumes
- 4 relative sea levels continue to rise at the same rate as projected global sea level rise. The "lower-
- 5 range" sea level rise estimate is provided as a mid-range of Rahmstorf (2007) and high-end of
- 6 IPCC TAR. The "higher-range" sea level rise estimate is provided as the high estimate of
- 7 Rahmstorf (2007).
- 8

9 Summary of Climate Scenarios: Averages for Mid-Century

10

		"Lower-Range" Scenario	"Higher-Range" Scenario
	Annual Average ⁷	+2.8°F (1.6°C)	+3.5°F (1.9 °C)
	Average Increase of Winter Temperature ⁸	+2.5°F (1.4 °C)	+2.7°F (1.5 °C)
Temperature ⁶	Average Increase of Summer Temperature ^c	+4.0°F (2.2 °C)	+4.5°F (2.5 °C)
	Extreme Heat Days ⁹	+10 days/year	+16 days/year
	Annual Change ¹⁰	-4.5%	-7%
	Winter change Reduced winter p		on ¹¹
Precipitation		Decline in frequency of precipitation events (exceeding 3mm/day) but not a clear signal in changes of precipitation intensity	
	Heavy Events		

This document is a draft for review purposes only and does not constitute Agency policy.

⁶ Since the 1920s, minimum and maximum daily temperature have been observed to have increased in California with minimum temperature increasing at a greater rate accented by a small cooling trend in the summer (Cayan et al. 2009). These averages are for 2035-2064 projections relative to a 1961 to 1990 baseline for B1 and A2 emission scenarios.

⁷ Approximate results using B1 and A2 emissions scenarios and three global climate models (PCM1, GFDL CM2.1, HadCM3) (CEC 2006).

⁸ These results are for Sacramento, California. This warming is projected to be more moderate along the coastline (50 km from the coast) rising considerably inland (Cayan et al. 2009). These averages are for 2035-2064 projections relative to a1961 to 1990 baseline for B1 and A2 emissions scenarios.

⁹ Extreme heat days are defined as when the daily maximum temperature exceeds the 95th percentile of temperature from the 1961-1990 historical averages of May-September days. 1961-1990 extreme heat days are approximately 8 days/year based on model runs. Results are provided by Cayan et al. (2009) using three climate models (CNRM CM3, GFDL CM2.1, MICRO 3.2; with bias corrected spatial downscaling) for B1 and A2 emissions scenarios. Mid-century projections suggest hot daytime and nighttime temperatures increase in frequency, magnitude, and duration (Cayan et al. 2009). Extreme warm temperatures in California, historically a July and August phenomenon, will increase in frequency and magnitude likely beginning in June and may continue into September (Hayhoe et al. 2004; Gershunov and Douville 008; Miller et al. 2008).

¹⁰ Results are averaged across 6 GCMs using the grid point nearest to Sacramento (Cayan et al. 2009) for B1 and A2 emissions scenarios.

¹¹ These results are provided by CEC (2008).

		"Lower-Range" Scenario	"Higher-Range" Scenario
Sea Level	Total Increase for 2050 ¹²	+30 cm	$+45 \text{ cm}^{13}$
	Hourly Sea Level Exceedances ¹⁴	1343	1438
Storms/Wind ¹⁵	Tendency toward a decline in storms. ¹⁶ Projections suggest an increased tendency for heightened sea level events to persist for more hours. ENSO is not projected to increase in frequency or intensity.		

1 2

What else do these changes mean for our system?

3

Snow Pack Change	For the Sacramento-San Joaquin watershed, April watershed- total snow accumulation projected to drop by 64% by 2060. ¹⁷
Spring Runoff	Spring runoff occurring earlier and reduced overall
Seasonal Changes in Amount	October through February: inflow +20%
of Freshwater Inflow to the	March through September: inflow -20%
Bay from the Delta in 2060 ¹⁸	

4 5

Where can I find additional information?

67 California Climate Change Research Center

8 http://www.climatechange.ca.gov/research/index.html

9

11 <u>www.climatechoices.org/ca</u>

http://tidesandcurrents.noaa.gov/tides10/tab2wc1a.html#128

¹⁰ Union of Concerned Scientists

¹² Sea level rise relative to 2000 levels. This study applies Rahmstorf's methodology of estimating sea level rise as a function of rising temperatures. This study assumes sea level rise along the coast to be the same as global estimates given the observed rate of rise along the southern California coast has been about 17 to 20 cm per century similar to that of global sea level rise (assume no future changes in other factors that affect relative sea level rise such as changes in regional/local ocean circulation, ocean density, etc.) (Cayan et al. 2009). DMRS also provides recommended 2050 global sea level rise estimates relative to 1990 values: 11 cm (direct extrapolation of observed increased during the 20th century), 20 cm (low-end value of Rahmstorf and approx mid-range of IPCC TAR), 30 cm (approx mid-range of Rahmstorf and high-end of IPCC TAR); 41 cm (high end of Rahmstorf) (DMRS 2007).

 $^{^{13}}$ The total difference between mean range and spring range of 1.7 ft (50.3 cm) is slightly larger than the higherrange scenario rise of 45 cm, based on the Point San Pedro tide station.

¹⁴ The hourly sea level exceedance is defined as the maximum duration (hours) when San Francisco sea level exceeds the 99.99th % level (140 cm above mean sea level) based on the GFDL climate change (A2) simulation using the Rahmstorf sea level scheme averaged 2 to 4 hours increase for mid-century (Cayan et al. 2009). ¹⁵ These results are provided by Cayan et al. (2009).

¹⁶ Storm is defined as sea level pressure (SLP) equaling or falling below 1005 millibar (mb).

¹⁷ Results provided by the Bay-Delta watershed model driven by temperature projections from a parallel climate model under a 'business-as-usual' scenario relative to 1995-2005 (precipitation is assumed to remain consistent with today's observations) (Knowles and Cayan 2004).

¹⁸ This study does account for reservoirs, in-stream valley diversions, and in-Delta withdrawals and assumes no future management adaptation or altered demand patterns (Knowles and Cayan 2004).

This document is a draft for review purposes only and does not constitute Agency policy.

1 Works Cited

- 2
- California Energy Commission (CEC). 2006. Our Changing Climate: Assessing the Risks to
 California. A Summary Report from the California Climate Change Center.
- 5
- 6 California Energy Commission (CEC). 2008. The Future is Now: An Update on Climate Change
- 7 Science, Impacts, and Response Options for California. A report from the California Climate
- 8 Change Center California Energy Commission's Public Interest Energy Research Program.
- 9
- 10 Cayan, D., P. Bromirski, K. Hayhoe, M. Tyree, M. Dettinger, & R. Flick. 2008. Climate change
- projections of sea level extremes along the California coast. *Climatic Change* 87(0), 57-73. DOI:
- 12 10.1007/s10584-007-9376-7.
- 13
- 14 Cayan, D., M. Tyree, M. Dettinger, H. Hidalgo, T. Das, E. Maurer, P. Bromirski, N. Graham,
- and R. Flick. 2009. Climate Change Scenarios and Sea Level Rise Estimates for the California
- 2008 Climate Change Scenarios Assessment. California Climate Change Center. CEC-500-2009-014-D.
- 17 18
- 19 Delta Risk Management Study (DRMS) 2007. Technical Memorandum: Delta Risk
- 20 Management Study (DRMS) Phase 1.
- 21

22 Gershunov A., and H. Douville. 2008. Extensive summer hot and cold extremes under current

- and possible future climatic conditions: Europe and North America. In: H. Diaz, and R. Murnane
- 24 (Eds.), *Climate Extremes and Society*. Cambridge University Press.
- 25
- 26 Hayhoe K., D. Cayan, C. B. Field, P. C. Frumhoff, E. P. Maurer, N. L. Miller, S. C. Moser, S. H.
- 27 Schneider, K. N. Cahill, E. E. Cleland, L. Dale, R. Drapek, R. M. Hanemann, L. S. Kalkstein, J.
- 28 Lenihan, C. K. Lunch, R. P. Neilson, S. C. Sheridan, and J. H. Verville. 2004. "Emissions
- 29 pathways, climate change, and impacts on California." *PNAS* 101(34): 12422–12427. Aug. 24;
- 30 Epub Aug. 16, 2004.
- 31
- 32 Knowles, N. and D. Cayan. 2004. Elevational Dependence of Projected Hydrologic changes in
- the San Francisco Estuary and Watershed. *Climate Chan*ge 62: 319-336.
- 34
- 35 Miller, N. L., K. Hayhoe, J. Jin, and M. Auffhammer. 2008. "Climate, Extreme Heat, and
- 36 Electricity Demand in California." *Journal of Applied Meteorology and Climatology*
- 47:1834-1844.

1 2

APPENDIX D. PARTICIPANT HANDOUT ON CONFIDENCE

3 Method for Assessing Confidence in Expert Judgments 4

5 Characterization of uncertainty is a critical component of assessment science. Thus this

6 workshop exercise includes a component in which the expert participants will assess their current

7 level of scientific confidence in each influence for which they are making a judgment. The aim is

8 to provide information on not only degrees of influence among variables, but also the degree of

9 uncertainty associated with each judgment, given the current state of knowledge in the scientific community.

10 11

12 The design of this analysis is derived from general guidance on uncertainty from recent large

13 assessment efforts such as those of the Intergovernmental Panel on Climate Change (IPCC) and

14 the U.S. Climate Change Science Program (CCSP) [e.g., see Moss and Schneider, 2000; IPCC,

15 2004; IPCC, 2005; CCSP, 2008; CCSP, 2009]. One fundamental principle is the distinction

16 between uncertainty expressed in terms of "likelihood" of an outcome versus "level of

17 confidence" in the science underlying the finding. Likelihood is relevant when assessing the

18 chance of defined future occurrence or outcome, and involves assigning numerical probabilities

19 to qualifiers such as "probable," "possible," "likely," "unlikely" (CCSP 2009). In contrast, level 20

of confidence refers to the (qualitative) degree of belief within the scientific community that

knowledge, models, and analyses are accurate, based on the available evidence and the degree of 21 22 consensus in its interpretation. We are taking this latter approach.

23

24 Each expert is asked to rate his/her confidence in each judgment about degree of influence based

25 on: (1) the amount of scientific evidence that is available to support the judgment; and (2) the

26 level of agreement/consensus in the expert community regarding the different lines of evidence

that would support the judgment. These confidence attributes are further described below: 27

28

29 High/low amount of evidence: Is the judgment based on information that is well-studied and

30 understood, or mostly experimental or theoretical and not well-studied? Does your experience in

31 the field, your analyses of data, and your understanding of the literature indicate that there is a

32 high or low amount of information on this influence? Sources of evidence - in order of relative

33 importance – include: 1) peer-reviewed literature; 2) grey literature; 3) data sets; 4) personal

34 observations and personal communications.

35

High/low amount of agreement: Do the studies and reports across the scientific community, as 36 37 well as your own experience in the field or analyzing data, reflect a high degree of agreement 38 about the influence, or do they lead to competing interpretations?

- 39
- 40 Based on the above, levels of confidence in judgments can be sorted into four general categories:
- 41 42

43

44

45

- Well established = high evidence/high agreement (HH);
- Competing explanations = high evidence/low agreement (HL);
- Established but incomplete = low evidence/high agreement (LH);
- Speculative = low evidence/low agreement (LL). •

1 **References**

- 2
- 3 CCSP, 2008: Preliminary review of adaptation options for climate-sensitive ecosystems and
- 4 resources. A Report by the U.S. Climate Change Science Program and the Subcommittee on
- 5 Global Change Research. [Julius, S.H., J.M. West (eds.), J.S. Baron, B. Griffith, L.A. Joyce, P.
- 6 Kareiva, B.D. Keller, M.A. Palmer, C.H. Peterson, and J.M. Scott (Authors)]. U.S.
- 7 Environmental Protection Agency, Washington, DC, USA, 873 pp.
- 8
- 9 CCSP, 2009: Best practice approaches for characterizing, communicating and incorporating
- 10 scientific uncertainty in climate decision making. A Report by the U.S. Climate Change Science
- 11 Program and the Subcommittee on Global Change Research. [Morgan, M.G., H. Dowlatabadi,
- 12 M. Henrion, D. Keith, R. Lempert, S. McBride, M. Small, and T. Wilbanks (Authors)].
- 13 Washington, DC, 156 pp.
- 14
- 15 IPCC, 2004: Workshop on Describing Scientific Uncertainties in Climate Change to Support
- 16 Analysis of Risk and of Options. Working Group I Technical Support Unit, Boulder, Colorado
- 17 [Manning, M., M. Petit, D. Easterling, J. Murphy, A. Patwardhan, H.-H. Rogner, R. Swart and
- 18 G. Yohe (eds.)], May 11-13, 2004, National University of Ireland, Maynooth, Co. Kildare,
- 19 Ireland, 146 pp. Available at:
- 20 <u>http://ipcc-wg1.ucar.edu/meeting/URW/product/URW_Report_v2.pdf</u>.
- 21
- 22 IPCC, 2005: Guidance Notes for Lead Authors of the IPCC Fourth Assessment Report on
- Addressing Uncertainties, 4 pp. Available at: <u>www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-</u>
 uncertaintyguidancenote.pdf.
- 25
- 26 Moss, R. and S.H. Schneider, 2000: Uncertainties in the IPCC TAR: Recommendations to lead
- 27 authors for more consistent assessment and reporting. In: Guidance Papers on the Cross Cutting
- 28 Issues of the Third Assessment Report of the IPCC [Pachauri, R., T. Taniguchi, K. Tanaka
- 29 (eds.)], World Meteorological Organisation, Geneva, Switzerland, 33-51.