

Toxicological Review of Ammonia

(CASRN 7664-41-7)

In Support of Summary Information on the Integrated Risk Information System (IRIS)

Supplemental Information

August 2013

NOTICE

This document is a **Revised External Review draft**. This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. It is being circulated for review of its technical accuracy and science policy implications.

National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC

DISCLAIMER

This document is a preliminary draft for review purposes only. This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

CONTENTS

APPENDIX A. A	ASSESSMENTS BY OTHER NATIONAL AND INTERNATIONAL HEALTH AGENCIES A	-1
APPENDIX B. C	CHEMICAL AND PHYSICAL PROPERTY INFORMATION FOR AMMONIA B	-1
APPENDIX C. T	OXICITY INFORMATION FOR SELECTED AMMONIUM SALTS C	-1
APPENDIX D. A	ADDITIONAL DETAILS OF LITERATURE SEARCH STRATEGY STUDY SELECTION AND EVALUATIOND	-1
APPENDIX E. IN A	NFORMATION IN SUPPORT OF HAZARD IDENTIFICATION AND DOSE-RESPONSE ANALYSISE	-1
E.1. T	OXICOKINETICS E	-1
E.2. H	IUMAN STUDIES E-1	15
E.3. A	ANIMAL STUDIES E-3	34
E.4. C	OTHER PERTINENT TOXICITY INFORMATION E-5	53
APPENDIX F. D C	DOCUMENTATION OF IMPLEMENTATION OF THE 2011 NATIONAL RESEARCH COUNCIL RECOMMENDATIONSF	-1
APPENDIX G. S C	SUMMARY OF EXTERNAL PEER REVIEW AND PUBLIC COMMENTS AND EPA's DISPOSITIONG	-1
REFERENCES FO	OR APPENDICES R	-1

TABLES

Table A-1.	Assessments by other national and international health agency assessments for	
	ammonia	A-1
Table B-1.	Chemical and physical properties of ammonia	B-1
Table C-1.	Summary of repeat dose studies of selected ammonium salts following oral	
	exposure	C-2
Table D-1.	Literature search strings*	D-1
Table D-2.	Evaluation of epidemiology studies summarized in Table 1-1 (industrial D-	
	settings/respiratory measures)	D-5
Table D-3.	Evaluation of epidemiology studies summarized in Table 1-2 (use in	
	cleaning/disinfection settings)	D-9
Table D-4.	Evaluation of epidemiology study summarized in Table 1-6 (industrial	
	setting/serum chemistry measures)	D-13
Table E-1.	Ammonia levels in exhaled breath of volunteers	E-8
Table E-2.	Symptoms and lung function results of workers exposed to different levels of	
	TWA ammonia concentrations	E-17
Table E-3.	The prevalence of respiratory symptoms and disease in urea fertilizer workers	
	exposed to ammonia	E-18
Table E-4.	Logistic regression analysis of the relationship between ammonia concentration	
	and respiratory symptoms or disease in exposed urea fertilizer workers	E-19
Table E-5.	Prevalence of respiratory symptoms and cross-shift changes in lung function	
	among workers exposed to ammonia in a urea fertilizer factory	E-21
Table E-6.	Comparison of lung function parameters in ammonia plant workers with controls	E-22
Table E-7.	Evidence pertaining to respiratory effects in humans in relation to ammonia	
	exposure in livestock farmers	E-23
Table E-8.	Studies of respiratory effects in livestock farmers without direct analysis of	
	ammonia exposure	E-26
Table E-9.	Controlled human exposure studies of ammonia inhalation	E-27
Table E-10.	Effect of ammonia in drinking water on the thickness of the gastric antral and	
	body mucosa of the rat stomach	E-35
Table E-11.	Effect of ammonia in drinking water on gastric antral and body mucosa in the	
	stomach of Sprague-Dawley rats administered 0.01% ammonia in drinking water	E-36
Table E-12.	Summary of histological changes observed in pigs exposed to ammonia for 6	
	weeks	E-42
Table E-13.	Acute and short-term inhalation toxicity studies of ammonia in animals	E-47
Table E-14.	Summary of in vitro studies of ammonia genotoxicity	E-53
Table E-15.	Summary of in vivo studies of ammonia genotoxicity	E-55
Table F-1.	The EPA's implementation of the National Research Council's recommendations	_
	in the ammonia assessment	F-3
Table F-2.	National Research Council recommendations that the EPA is generally	
	implementing in the long term	F-8

FIGURES

Figure E-1.	Glutamine cycleG-4	
Figure E-2.	The urea cycle showing the compartmentalization of its steps within liver cellsG-5	

ABBREVIATIONS

ACGIH	American Conference of Governmental	
	Industrial Hygienists	
AEGL	Acute Exposure Guideline Level	
ALP	alkaline phosphatase	
ALT	alanine aminotransferase	
ANOVA	analysis of variance	
AST	aspartate aminotransferase	
ATSDR	Agency for Toxic Substances and Disease	
	Registry	
BMI	body mass index	
BrDU	bromodeoxyuridine	
BUN	blood urea nitrogen	
CAC	cumulative ammonia concentration	
CI	confidence interval	
COPD	chronic obstructive pulmonary disease	
DAP	diammonium phosphateEU	
	endotoxin unit	
FDA	Food and Drug Administration	
FEF	forced expiratory flow	
FEV_1	forced expiratory volume in 1 second	
FVC	forced vital capacity	
GABA	gamma-aminobutyric acid	
HERO	Health and Environmental Research	
	Online	
IgE	immunoglobulin E	
IgG	immunoglobulin G	
IRIS	Integrated Risk Information System	
IC	E00/ lothal concentration	

LOAEL	lowest-observed-adverse-effect level
MAO	monoamine oxidase
MMEF	mean midexpiratory flow
MNNG	N-methyl-N'-nitro-N-nitrosoguanidine
MRL	minimal risk level
NH ₃	ammonia
NH_{4} +	ammonium ion
NIOSH	National Institute for Occupational
	Safety and Health
NOAEL	no-observed-adverse-effect level
NRC	National Research Council
OR	odds ratio
OSHA	Occupational Safety and Health
	Administration
PAS	periodic acid-Schiff
PEF	peak expiratory flow
PEFR	peak expiratory flow rate
PEL	Permissible Exposure Limit
RD_{50}	50% response dose
REL	Recommended Exposure Limit
SD	standard deviation
SIFT-MS	selected ion flow tube mass
	spectrometry
TLV	threshold limit value
TWA	time-weighted average
UF	uncertainty factor
U.S. EPA	U.S. Environmental Protection Agency

LC₅₀ 50% lethal concentration

APPENDIX A. ASSESSMENTS BY OTHER NATIONAL AND INTERNATIONAL HEALTH AGENCIES

1

4 5

6

7 8 Toxicity values and other health-related regulatory limits for ammonia that have been developed by other national and international health agencies are summarized in Table A-1.

Table A-1. Assessments by other national and international health agency assessments for ammonia

Organization	Toxicity value
Agency for Toxic Substances and	Chronic inhalation MRL = 0.1 ppm (0.07 mg/m ³)
Disease Registry (<u>ATSDR, 2004</u>)	Basis: Lack of significant alterations in lung function in chronically exposed
	workers (<u>Holness et al., 1989</u>) and a composite UF of 30 (10 for human
	variability and a modifying factor of 3 for the lack of reproductive and developmental studies)
	$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} + 1$
Acute Exposure Guideline Levels	AEGL-1 (nondisabling) = 30 ppm (21 mg/m) for exposures ranging from 10 mins to 8 hrs to protect against mild irritation
for Hazardous Substances (<u>NRC,</u>	Basis: mild irritation in human subjects (MacEwen et al., 1970)
2008)	AEGL-2 (disabling) = 220 ppm (154 mg/m ³) for a 10-min exposure to 110 ppm (77 mg/m ³) for an 8-hr exposure
	<i>Basis</i> : irritation (eyes and throat; urge to cough) in human subjects (<u>Verberk,</u> <u>1977</u>)
	AEGL-3 (lethal) = 2,700 ppm (1,888 mg/m ³) for a 10-min exposure to 390 ppm (273 mg/m ³) for an 8-hr exposure
	<i>Basis</i> : lethality in the mouse (<u>Kapeghian et al., 1982</u> ; <u>MacEwen and Vernot,</u> <u>1972</u>)
American Conference of	TLV = 25 ppm (17 mg/m ³) ^a TWA for an 8-hr workday and a 40-hr work week
Governmental Industrial	Basis: To protect against irritation to eyes and the respiratory tract. ACGIH
Hygienists (<u>ACGIH, 2001</u>)	stated that irritation is the prime hazard to workers, but that systemic effects
TIV established in 1973	cannot be ruled out based on the findings of reduced feed consumption and
	cited in support of the TIV included papers from the primary literature for the
	years up to 1973; no specific reference served as the basis for the TLV.
National Institute for	REL = 25 ppm (18 mg/m ³) ^a TWA for up to a 10-hr workday and a 40-hr work
Occupational Safety and Health	week
(<u>NIOSH, 2010</u>)	Basis: To project against respiratory and eye irritation. References cited in
REL established in 1992	support of the REL included review documents for the years up to 1992; no specific reference served as the basis for the REL.

Organization	Toxicity value	
Occupational Safety and Health	PEL for general industry = 50 ppm (35 mg/m ³) TWA for an 8-hr workday	
Administration (<u>OSHA, 2006</u>)	Basis: The 1968 ACGIH TLV was promulgated as the OSHA PEL soon after	
PEL established in early 1970s	adoption of the Occupational Safety and Health Act in 1970. The ACGIH TLV from 1968 was intended to protect against irritation of ammonia in humans; no specific reference served as the basis for the 1968 TLV.	
Food and Drug Admistration (FDA, 2011a, b)	Ammonium hydroxide: direct food substance affirmed as generally recognized as safe (21 CFR 184.1139); substance generally recognized as safe when used in accordance with good manufacturing or feeding practices (21 CFR 582.1139).	

Table A-1. Assessments by other national and international health agency assessments for ammonia

^aACGIH andr NIOSH used slightly different ppm to mg/m³ conversion factors.

AEGL = Acute Exposure Guideline Level; MRL = minimal risk level; PEL = Permissible Exposure Limit; REL = Recommended Exposure Limit; TWA = time weighted average; UF = uncertainty factor

1 2 2

3

3 4

14

APPENDIX B. CHEMICAL AND PHYSICAL PROPERTY INFORMATION FOR AMMONIA

5 Many physical and chemical properties of ammonia (NH₃) are related to the pH of ammonia 6 7 in solution (ammonium hydroxide). Ammonium hydroxide is a weak base that is partially ionized in water with a dissociation constant of 1.77×10^{-5} at 25°C that increases slightly with increasing 8 temperature (Read, 1982). At a pH of 8.25, 90% of ammonia will be protonated. At a pH of 7.25, 9 99% of ammonia will be protonated. Thus, a decrease in pH would result in an increase in the 10 ammonium ion (NH_4^+) concentration and an increase in solubility of ammonia in water. At 11 physiological pH (7.4), the equilibrium between NH_3 and NH_4^+ favors the formation of NH_4^+ . 12 Chemical and physical properties of ammonia are listed in Table B-1. 13

Chemical name Ammonia^a Synonym(s) AM-Fol; anhydrous ammonia; ammonia gas; NLM (2012) Nitro-sil; R 717; Spirit of hartshorn NLM (2012) Structure н H_N_H Chemical formula NH_3 NLM (2012) 7664-41-7^a CASRN <u>NLM (2012)</u> 17.031 Lide (2008, pp. 4.46-4.48, 8.40) Molecular weight Form Colorless gas; corrosive O'Neil et al. (2006) Lide (2008, pp. 4.46-4.48, 8.40) Melting point -77.73°C Lide (2008, pp. 4.46-4.48, 8.40) **Boiling point** -33.33°C Odor threshold 53 ppm (37 mg/m³) O'Neil et al. (2006) $2.6 \text{ ppm} (2 \text{ mg/m}^3)$ Smeets et al. (2007) 0.7714 g/L at 25°C Density <u>O'Neil et al. (2006)</u> 0.5967 (air = 1) Vapor density O'Neil et al. (2006) 9.25 Lide (2008, pp. 4.46-4.48, 8.40) pK_a (ammonium ion) Solubility: 4.82×10^{5} mg/L at 24°C Dean (1985, pp. 10-3, 10-23); Water Soluble in ethanol, chloroform, and ether Lide (2008, pp. 4.46-4.48, 8.40); Organic solvents O'Neil et al. (2006) 7.51×10^3 mm Hg at 25°C (AIChE, 1999) Vapor pressure 1.61×10^{-5} atm-m³/mol at 25°C Henry's law constant Betterton (1992)

Table B-1. Chemical and physical properties of ammonia

Conversion factors		Verschueren (2001)
ppm to mg/m ³	1 ppm = 0.707 mg/m ³	
mg/m ³ to ppm	1 mg/m ³ = 1.414 ppm	

Table B-1. Chemical and physical properties of ammonia

^aAmmonia dissolved in water is sometimes referred to as ammonium hydroxide (CASRN 1336-21-6). Ammonium hydroxide does not exist outside of solution.

1

12

3 4 5

APPENDIX C. TOXICITY INFORMATION FOR SELECTED AMMONIUM SALTS

Because of uncertainty concerning the possible influence of anions on the toxicity of 6 ammonium, information on ammonium salts was not used to characterize the effects or to derive 7 reference values for ammonia or ammonium hydroxide. A summary of the subchronic and chronic 8 9 toxicity of selected ammonium salts is presented here as supplemental information. 10 The toxicology literature for ammonium salts includes 13-, 78-, and 130-week ammonium chloride dietary studies in male and female Wistar rats (Lina and Kuijpers, 2004), a 47-week 11 ammonium chloride drinking water study in Sprague-Dawley rats (Barzel and Jowsey, 1969), and 12 13 52- and 104-week ammonium sulfate dietary studies in male and female F344 rats (Ota et al., 14 <u>2006</u>). No inhalation toxicity studies of ammonium salts were found. 15 Ammonium chloride in the diet or drinking water of rats consistently altered the acid-base balance in the body (Lina and Kuijpers, 2004; Barzel and Jowsey, 1969) causing a dose-related 16 hyperchloremic metabolic acidosis in rats as evidenced by increased plasma chloride levels and 17 decreases in blood pH, base excess, and bicarbonate concentration. Ammonium chloride 18 administered in the diet for 130 weeks was also associated with zona glomerulosa hypertrophy of 19 20 the adrenal gland (Lina and Kuijpers, 2004). Kidney weights were not significantly affected by exposure to ammonium chloride for 78 or 130 weeks (Lina and Kuijpers, 2004); liver weights were 21 22 not reported in this study. Dietary administration of ammonium sulfate to rats has not been associated with metabolic 23 acidosis, but this endpoint was not specifically evaluated in the 52- or 104-week studies by Ota et 24 al. (2006). Unlike ammonium chloride, no histopathologic changes in the adrenal gland were 25 observed following ammonium sulfate exposure (<u>Ota et al., 2006</u>). The dose-related effects in male 26 and female rats associated with 52-week exposure to ammonium sulfate were increased liver and 27 kidney weights (Ota et al., 2006). See Table C-1 for study details. 28

Table C-1. Summary of repeat dose studies of selected ammonium salts
following oral exposure

Study design and reference	Results			
Ammonium chloride	Ammonium chloride			
Wistar rat (10/sex/group) 0, 1,590, or 3,050 mg/kg-d (males); 0, 1,800, or 3,700 mg/kg-d (females) administered in diet for 13 wks (<u>Lina and Kuijpers, 2004</u> ; <u>Barzel and</u> Jowsey, 1969)	Body weight: \downarrow (6–17% in males; 11–19% in females) Liver weight: not reported Kidney weight (relative): \uparrow (both dose levels, both sexes, 7–28%) Adrenal weight (relative): \uparrow (high-dose males, 18%) Metabolic acidosis ^a : observed in males and females; severity increased with dose ALP activity: \uparrow at high dose, no change at lower doses			
Wistar rat (15/sex/group) 0, 481, or 1,020 mg/kg-d (males); 0, 610, or 1,370 mg/kg-d (females) administered in diet for 78 wks (<u>Lina and Kuijpers, 2004; Barzel and</u> Jowsey, 1969)	Body weight: no significant change Liver weight: not reported Kidney weight (relative): no significant change Adrenal weight (relative): no significant change Metabolic acidosis ^a : observed in males and females; severity increased with dose ALP activity: not measured			
Wistar rat (50/sex/group) 0, 455, or 1,000 mg/kg-d (males); 0, 551, or 1,200 mg/kg-d (females) administered in diet for 130 wks (<u>Lina and Kuijpers, 2004; Barzel and</u> Jowsey, 1969)	Body weight: no significant change Liver weight: not reported Kidney weight (relative): no significant change Adrenal weight (relative): no significant change Metabolic acidosis ^a : observed in males and females; severity increased with dose ALP activity: not measured Hypertrophy of the adrenal glomerulosa: ↑ incidence (both doses in males, high dose only in females) Chronic progressive nephrosis: ↓ incidence in males at the highest			
Sprague-Dawley rat (11 males/group) 0 or 1,800 mg/kg-d administered in drinking water for 47 wks (<u>Lina and Kuijpers, 2004</u> ; <u>Barzel and</u> <u>Jowsey, 1969</u>)	Body weight: ↓ (13–20% with regular and low-calcium diets, respectively) Kidney weight (relative): not measured Kidney weight (absolute): no change Adrenal weight (relative): not measured Femur weight (relative): ↓ Femur calcium: ↓ Metabolic acidosis: was inferred from measurements of reduced blood pH and plasma carbon dioxide ALP activity: not measured			
Ammonium sulfate	Rody weight: no significant change in males and females			
O, 42, 256, or 1,527 mg/kg-d (males); O, 48, 284, or 1,490 mg/kg-d (females) administered in diet for 52 wks (<u>Ota et al., 2006</u>)	Liver weight (relative): \uparrow in males (7%); \uparrow in females (7%) Kidney weight (relative): \uparrow in males (10%); \uparrow in females (10%) Adrenal weight (relative): \uparrow in males (10%); \uparrow in females (10%) Adrenal weight (relative): no significant change in males and females Metabolic acidosis ^a : not measured ALP activity: not significantly changed (except in females at intermediate dose, 284 mg/kg, % change compared to control ALP activity was -19%)			

Study design and reference	Results
F344 rat (50/sex/group)	Body weight: not measured
0 564 or 1 288 mg/kg-d (males): 0	Liver weight (relative): not measured
0, 504, 011,200 mg/kg- d (males), 0,	Kidney weight (relative): not measured
administered in diet for 104 wks	Adrenal weight (relative): not measured
administered in diet for 104 wks	Metabolic acidosis ^a : not measured
(<u>Ota et al., 2006</u>)	ALP activity: not measured
	Hypertrophy of the adrenal glomerulosa: no change in incidence
	Chronic nephropathy: \uparrow incidence in male rats over control (1/48,
	5/49, and 3/48 in the control, mid, and high dose); increase was
	statistically significant only at the mid-dose

Table C-1. Summary of repeat dose studies of selected ammonium saltsfollowing oral exposure

^aMetabolic acidosis was assessed as decreased base excess in blood, decreased urinary pH, and increased urinary net acid excretion.

ALP = alkaline phosphatase

1 2 5 6

APPENDIX D. ADDITIONAL DETAILS OF LITERATURE SEARCH STRATEGY | STUDY SELECTION AND EVALUATION

Table D-1. Literature search strings*

Database	Set #	Terms	Hits
Initial strategy			
Initial strategy PubMed Date range: 1950's to present Search date: 3/26/2012	1A1	(("Ammonia"[MeSH Terms] OR "ammonium hydroxide" [Supplementary Concept]) AND (("ammonia/adverse effects"[MeSH Terms] OR "ammonia/antagonists and inhibitors"[MeSH Terms] OR "ammonia/blood"[MeSH Terms] OR "ammonia/cerebrospinal fluid"[MeSH Terms] OR "ammonia/pharmacokinetics"[MeSH Terms] OR "ammonia/poisoning"[MeSH Terms] OR "ammonia/toxicity"[MeSH Terms] OR "ammonia/urine"[MeSH Terms]) OR ("hydroxides/adverse effects"[MeSH Terms] OR "hydroxides/antagonists and inhibitors"[MeSH Terms] OR "hydroxides/blood"[MeSH Terms] OR "hydroxides/cerebrospinal fluid"[MeSH Terms] OR "hydroxides/pharmacokinetics"[MeSH Terms] OR "hydroxides/poisoning"[MeSH Terms] OR "hydroxides/cerebrospinal fluid"[MeSH Terms] OR "hydroxides/pharmacokinetics"[MeSH Terms] OR "hydroxides/poisoning"[MeSH Terms] OR "hydroxides/toxicity"[MeSH Terms] OR "hydroxides/urine"[MeSH Terms] OR "hydroxides/toxicity"[MeSH Terms] OR "hydroxides/urine"[MeSH Terms]) OR (("ammonia/metabolism"[MeSH Terms]) OR (("ammonia/metabolism"[MeSH Terms]) OR (("ammonia/metabolism"[MeSH Terms]) AND (animals[MeSH Terms] OR humans[MeSH Terms] OR "endocrine system"[MeSH Terms] OR "hormones, hormone substitutes, and hormone antagonists"[MeSH Terms] OR risk[MeSH Terms] OR cancer[sb]) OR ((ammonia[majr] OR "ammonium hydroxide"[Supplementary Concept]) AND (dose-response relationship, drugfMeSH Terms] OR pharmacokinetics[MeSH Terms] OR	Original: 13,012 Update: 410
		metabolism[MeSH Terms]) AND (humans[MeSH Terms] OR mammals[MeSH Terms]))) OR ((Ammonia [Title] OR "Ammonium hydroxide"[Title] OR "Spirit of hartshorn"[Title] OR Aquammonia[Title]) NOT medline[sb])	
	1A2	Additional Search on Exhaled Breath (inhal* OR (air OR breath OR exhal* OR respiration) OR (biological markers[MeSH Terms] AND (air OR breath OR exhal* OR respiration)) OR ("air pollutants"[MeSH Terms] AND (breath OR exhal*)) OR breath OR (analysis[Subheading] AND breath) OR (respiration[MeSH Terms] OR breath tests[MeSH Terms] OR exhalation[MeSH Terms])) AND (7664-41-7[rn] OR 1336-21-6[rn])	Original: 1,600 Update: 50
ToxLine Date range: 1907-present Search date: 3/26/2012	18	limited to ammon* in title. This covered all synonyms listed to both ammonia and ammonium hydroxide with the exception of "spirit of hartshorn" which found no results when limited to the title.	Original: 2,417 Update: 100

This document is a draft for review purposes only and does not constitute Agency policy. D-1 DRAFT—D0 NOT CITE OR QUOTE

Table D-1. Literature search strings*

Database	Set #	Terms	Hits
TSCATS1, TSCATS2, TSCA recent notices Date range: no limit Search date: 3/26/2012	1C	7664-41-7 1336-21-6	Original: 50 TSCATS1 7 TSCATS2 1 recent notices Update: 0
Toxcenter Date range: 1907-present Search date: 3/27/2012	1D1	((7664-41-7 OR 1336-21-6) not (patent/dt OR tscats/fs)) and (chronic OR immunotox? OR neurotox? OR toxicokin? OR biomarker? OR neurolog? OR pharmacokin? OR subchronic OR pbpk OR epidemiology/st,ct, it) OR acute OR subacute OR Id50# OR Ic50# OR (toxicity OR adverse OR poisoning)/st,ct,it OR inhal? OR pulmon? OR nasal? OR lung? OR respir? OR occupation? OR workplace? OR worker? OR oral OR orally OR ingest? OR gavage? OR diet OR diets OR dietary OR drinking(w)water OR (maximum and concentration? and (allowable OR permissible)) OR (abort? OR abnormalit? OR embryo? OR cleft? OR fetus? OR foetus? OR fetal? OR foetal? OR fertil? OR malform? OR ovum OR ova OR ovary OR placenta? OR pregnan? OR prenatal OR perinatal? OR postnatal? OR reproduc? OR steril? OR teratogen? OR sperm OR spermac? OR spermato? OR spermati? OR spermas? OR spermatob? OR spermato? OR spermato? OR spermato? OR spermatol? OR sperm? OR spermato? OR spermato?? OR spermatol? OR sperm? OR spermato? OR spermato?? OR dolescen? OR infant OR wean? OR ropata? OR newborn OR development OR developmental? OR cutaneous? OR carcinog? OR demis OR skin OR epiderm? OR cutaneous? OR carcinog? OR tumour? OR oncogen? OR precancer? OR neoplas? OR tumor? OR genotox? OR mutagen? OR genetic(w)toxic? OR nephrotox? OR hepatotox? OR endocrin? OR estrogen? OR androgen? OR nephrotox? OR hepatotox? OR endocrin? OR estrogen? OR androgen? OR hormon?) AND (((biosis/fs AND py>1999 AND (hominidae/ct,st,it OR mammalia/ct,st,it OR humans/ct,st,it OR mammals/ct,st,it OR mammal/ct,st,it OR mammalia/ct,st,it)) OR ipa/fs OR (caplus/fs AND 4-?/cc) OR ammonia/ti OR "ammonium hydroxide"/ti OR "spirit of hartshorn"/ti OR aquammonia/ti) Dupicates were removed; Biosis subfile results were date limited to avoid extensive overlap with Toxline	Original: 2,591 Update: No access
	1D2	Additional Search on Exhaled Breath (7664-41-7 OR 1336-21-6) AND (breath OR exhale? OR "expired air")	81
HERO Date range: - present Search date: 3/27/2012	1E	ammonia OR ammonium hydroxide	Original: 5,295 Update: 115 (this represents all of 2012 and 2013; not limited to March 2012 to March 2013)

Database	Set #	Terms	Hits
Combined Reference Set	1	(duplicates eliminated through electronic screen)	Original: 22,400
			Update: duplicates eliminated directly by HERO
Secondary refine	nent		
Combined reference set with additional terms applied	2	(gastrointestinal OR gastro-intestinal OR digestive tract OR stomach* OR (gastric AND (mucosa* OR cancer* OR tumor* OR tumour* OR neoplas*)) OR (ammoni*[title] AND intestin*[title or keyword]) OR genotox* OR (genetic* AND toxic*) OR ames assay* OR ames test* OR aneuploid* OR chromosom*[title] OR clastogen* OR vytogen* OR dominant lethal OR genetic*[title] OR genotox* OR hyperploid* OR micronucle* OR mitotic* OR mutagen*[title] OR mutat*[title] OR recessive lethal OR sister chromatid OR ((kidney* OR renal) AND (toxic* OR poisoning OR adverse OR congestion OR calcif*)) OR nephrotox* OR ((spleen* OR splenic) AND (toxic* OR poisoning OR adverse OR congestion OR enlarged)) OR absorption OR distribution OR metabolism[title or keywords] OR excret* OR PBPK OR toxicokinetic* OR pharmacokin* OR exhal* OR breath OR (expired AND air) OR (respiratory AND (irritation OR symptom* or disease* OR adverse OR chemically induced)) OR lung* OR (pulmonary AND (irritation* OR function*)) OR FVC OR Forced vital capacity OR Forced expiratory volume OR FEV OR FEV1 OR inflammation OR congest* OR edema* OR hemorrhag* OR discharge* OR phlegm* OR cough* OR wheez* OR dyspnea OR bronchitis OR pneumonitis OR asthma* OR nose OR nasal OR throat OR trachea* OR bronchial OR airway* OR (chest AND tightness) OR epithelium* OR epithelia* OR immune OR immun*[title] OR antibod* OR antigen* OR luckocyte* OR lymph* OR lymphocyt* OR monocyt* OR immunosupress* OR (liver* OR granulocyte* OR fatty liver OR clinical chemistry OR (dermal OR skin) AND Lesion*) OR erythema* OR host resistance OR ((bacterial OR bacteria) AND coloniz*) OR fatty liver OR clinical chemistry OR adrenal OR (likert* OR cardiac) AND (function* OR congest* OR toxic* OR poisoning OR adverse)) OR hepatotox* OR fatty liver OR clinical chemistry OR adrenal OR (likert* OR hepatic) AND (function* OR congest* OR toxic* OR poisoning OR adverse)) OR hepatotox* OR fatty liver OR clinical chemistry OR adrenal OR (likert* OR hepatic) AND (function* OR congest* OR roxic* OR poisoning OR adverse)) OR	Original: 9,130 Update: Further narrowing of database not deemed necessary; small enough numbers to do a manual screen

Table D-1. Literature search strings*

Table D-1. Literature search strings*

	Database	Set #	Terms	Hits
	*The literature se PubMed, ToxLine not searched beca updated search (f	arch w TSCAT ause it rom N	vas updated through March 2013 using the same search strategies as previous 'S1, TSCATS2, and TSCA recent notices and HERO databases were searched; T was not accessible. The number of hits is indicated for both the original sear larch 2012 through March 2013).	sly used; oxcenter was rch and the
1				
2 3	Additional Se	arch	Strategy Focused in Cleaning and Hospital Worker Literature	
4	The up	dated	l literature search (through March 2013) identified papers publishe	ed in 2012
5	that included i	nforn	nation on ammonia exposure in health care workers. Because this i	represented
6	an area of rese	arch	that had not been previously identified, EPA conducted additional s	searches
7	focusing on an	nmon	ia use in cleaning scenarios. The references in <u>Dumas et al. (2012</u>)	and in a
8	review paper l	oy <mark>Zoo</mark>	ck et al. (2010) that was cited in <u>Dumas et al. (2012</u>) were reviewed	l looking for
9	data on ammo	nia ex	posure; references in each newly identified publication were also r	eviewed. In
10	addition, a for	ward	search was conducted using a methods paper describing the develo	opment of a
11	job exposure n	natrix	focusing on asthma as a key reference (<u>Kennedy et al., 2000</u>), as th	is work has
12	been instrume	ntal i	n developing this area of research from a focus on job titles to speci	ific tasks and
13	then to specifi	c proc	lucts. This updated and augmented search process led to the ident	ification of
14	seven addition	al ref	erences (<u>Arif and Delclos, 2012; Dumas et al., 2012; Lemiere et al., 1</u>	<u>2012</u> ;
15	<u>Vizcaya et al., 2</u>	<u>2011</u> ;	Zock et al., 2007; Medina-Ramón et al., 2006; Medina-Ramón et al.,	<u>2005</u>) that
16 17	were included	in the	e Toxicological Review.	

Table D-2. Evaluation of epidemiology studies summarized in Table 1-1 (industrial settings/respiratory measures)

Reference	Study setting/ participant selection	Exposure parameters	Outcome measured	Consideration of confounding	Statistical analysis	Comments regarding potential major limitations
Respiratory	symptoms	-	•		•	
Rahman et al. (2007)	Bangladesh, urea fertilizer factory; cross sectional study Exposed: n = 88 (24 ammonia plant workers and 64 urea plant workers) Controls: n = 25 Exposed: production operators in ammonia (low exposure; 24 out of 63 workers participated) ^a and urea (high exposure, 64 out of 77 workers participated) ^b plants, 5–9 out of 15– 19 per shift selected. Excluded if planned to have less than a four-hour work day. Mean age ~40 yrs, mean duration ~18 yrs; never smoked ~52%. Controls: from administration building, 4–7 per day over 5 days selected. Mean age ~43 yrs, mean duration ~16 yrs; never smoked ~72%.	Personal airborne levels of ammonia exposure by two direct-reading methods: Dräger diffusion tube and Dräger PAC III monitoring instrument ^c ; 1 worker per day per measure. Correlation between methods; r = 0.80, but higher absolute values (by four- to fivefold) using Dräger diffusion tubes ^c Concentrations based on PAC III monitoring: Low-exposure group (ammonia plant): 6.9 ppm (4.9 mg/m ³) High-exposure group (urea plant): 26.1 ppm (18.5 mg/m ³)	Respiratory symptoms (5 point scale for severity over last shift), based on Optimal Symptom Score Questionnaire)	Nitrogen dioxide (measured by Drager tubes) was below detection limit in all areas (urea plant, ammonia plant and administration area); other workplace exposures not assessed. Exposure analysis adjusted for current smoking and duration	Fisher's exact test; repeated excluding 33 current smokers or workers with history of previous respiratory disease	Study population and design: "healthy" workers; long duration—potential for lack of complete ascertainment of effect Differences in exposure measurement methods (Dräger diffusion tube and Dräger PAC III monitoring instrument) considered limitation for quantitation of exposure-response relationship but not a limitation for hazard identification due to uncertainty in the absolute value, but not the relative ranking, of exposure
<u>Ballal et al.</u> (<u>1998</u>)	Saudi Arabia; two urea fertilizer factories; cross sectional study; all males Exposed: n = 161 Factory A: n = 84 Factory B: n = 77 Controls: n = 355 Exposed: 20% of workers selected (systematic sample representing different workplaces using payroll lists); 100% participation rate. Mean age 30 yrs, mean duration 51.8 months; never smoked ~59%. Controls: administrative staff from other companies in the area (same	Area monitors (3 sets in each work section taken at least 3 months apart, mean 16 measures per set); spectrophotometric absorption measure. Computed geometric mean concentration per section and cumulative ammonia concentration (a function of both exposure intensity and duration of service) assigned to each worker.	Prevalence of respiratory symptoms and conditions based on the British Medical Research Council questionnaire	Authors stated no other pollutants in workplace. Stratified or adjusted for smoking	Contingency tables (stratified by smoking); logistic regression of exposure measures, adjusted for duration, smoking (yes, no)	Study population and design: "healthy" workers; long duration—potential for lack of complete ascertainment of effect

Table D-2. Evaluation of epidemiology studies summarized in Table 1-1 (industrial settings/respiratory measures)

Reference	Study setting/ participant selection	Exposure parameters	Outcome measured	Consideration of confounding	Statistical analysis	Comments regarding potential major limitations
	sampling system as exposed); participation rate 100%. Mean age 34 yrs, mean duration 73 months; never smoked ~49%.					
Holness et al. (1989)	Canada, sodium carbonate (soda ash) production plant; cross sectional study Exposed: n = 58 Controls: n = 31 Exposed: 52 of 64 available production workers (82%) and 6 maintenance workers; all males. Mean age 39 yrs, mean duration 14.4 yrs, nonsmokers ~29%. Controls from stores and office workers in the plant; excluded if previous ammonia exposure. Participation rate not reported. Mean age 43 yrs, mean duration 12.2 yrs; nonsmokers ~39%. Indication of self-selection of exposed out of workplace based on atopy (lower prevalence of hay fever).	Airborne levels of ammonia (mean = 6.5 mg/m ³ for exposed; mean = 0.2 mg/m ³ for controls) using NIOSH- recommended protocol for personal sampling and analysis (measured over one work-shift per person, mean 8.4 hours)	Prevalence of self- reported symptoms and conditions obtained through questionnaire based on American Thoracic Society questionnaire	Adjusted for smoking (pack-yrs); other workplace exposures not assessed, but study authors note high level of control of exposures in the plant	Comparison between groups by logistic regression. Also analyzed by three categories of exposure.	Study population and design: "healthy" workers; long duration—potential for lack of complete ascertainment of effect Relatively small sample size—potential of not being able to detect a difference between controls and exposed when one might exist Low exposure concentrations—potential that an effect level may not have been reached
Lung functio	on		1			
<u>Rahman et</u> <u>al. (2007</u>)	Bangladesh, urea fertilizer factory; cross sectional study Exposed: n = 88 (24 ammonia plant workers and 64 urea plant workers); production operators in ammonia (low exposure; 24 out of 63 workers participated) ^a and urea (high exposure, 64 out of 77 workers participated) ^b plants, 5–9 out of 15– 19 per shift selected. Excluded if planned to have less than a four-hour work day. Mean age ~40 yrs, mean	Personal airborne levels of ammonia exposure by two direct-reading methods: Dräger diffusion tube and Dräger PAC III monitoring instrument ^c ; 1 worker per day per measure. Correlation between methods; r = 0.80, but higher absolute values (by four- to fivefold) using Dräger diffusion tubes. ^c	Spirometry by standard protocol, beginning and end of shift	Nitrogen dioxide (measured by Dräger tubes) was below detection limit in all areas (urea plant, ammonia plant, and administration area); other workplace exposures not assessed. Exposure analysis adjusted for current smoking and duration.	Paired t-tests compared cross shift differences in lung function within and between plants; analyses repeated excluding workers with previous respiratory diseases. Multiple linear regression analyzed exposure level and change in lung function for n = 23 with both concurrent measure	Study population and design: "healthy" workers; long duration-potential for lack of complete ascertainment of effect Differences in exposure measurement methods (Dräger diffusion tube and Dräger PAC III monitoring instrument) considered limitation for quantitation

Table D-2.	Evaluation of epidemiology studies summarized in Table 1-1 (industrial settings/respiratory
measures)	

Reference	Study setting/ participant selection	Exposure parameters	Outcome measured	Consideration of confounding	Statistical analysis	Comments regarding potential major limitations
	duration ~18 yrs; never smoked ~52%.	Concentrations based on PAC III monitoring: Low-exposure group (ammonia plant): 6.9 ppm (4.9 mg/m ³) High-exposure group (urea plant): 26.1 ppm (18.5 mg/m ³)				of exposure-response relationship but not a limitation for hazard identification due to uncertainty in the absolute value, but not the relative ranking, of exposure
<u>Ali et al.</u> (2001)	Saudi Arabia; urea fertilizer factory; cross sectional study (appears to be same as Factory A in <u>Ballal et al.</u> (1998) Exposed: n = 73 Controls: n = 348 Exposed: 20% of workers selected (systematic sample representing different workplaces using payroll lists); 95% participation rate. Mean age 30 yrs, mean duration 51.8 months; nonsmokers ~49%. Controls: administrative staff from 4 industrial groups (same sampling system as exposed); participation rate 98%. Mean age 34 yrs; nonsmokers ~42%.	Ammonia concentration in air determined by sampling pump with a flow rate of 1 L/min for 4 hours for each measurement and spectrophotometry (i.e., by absorption techniques and comparison to a standard). Computed cumulative ammonia concentration (a function of both exposure level and duration of service) assigned to each worker, dichotomized to high and low at 50 mg/m ³ -yrs	Spirometry by standard protocol, morning measurement, 3 or more replicates	Stratified by smoking status	T-tests and Chi-square tests for comparisons between groups and by exposure level among exposed	Study population and design: "healthy" workers; long duration—potential for lack of complete ascertainment of effect
<u>Bhat and</u> <u>Ramaswamy</u> (1993)	Mangalore; fertilizer chemical plant; cross sectional study Exposed: n = 91 Controls: n = 68 Exposed: 30 urea plant workers, 30 DAP plant workers, and 31 ammonia plant workers; sex of workers not reported; age, sex, height, weight, and duration of exposure were recorded but not reported; duration of exposure dichotomized into two groups (up to 10 yrs and more than	No measurement of exposure made	Spirometry by standard protocol, 3 replicates with highest reading retained for calculation	All smokers excluded from study. Other workplace exposures not assessed.	Paired t-test for comparisons between exposed and controls	Study population and design: "healthy" workers; long duration—potential for lack of complete ascertainment of effect

Table D-2. Evaluation of epidemiology studies summarized in Table 1-1 (industrial settings/respiratory measures)

Reference	Study setting/ participant selection	Exposure parameters	Outcome measured	Consideration of confounding	Statistical analysis	Comments regarding potential major limitations
	10 yrs); smokers excluded. Controls: people having comparable body surface area chosen from the same socio-economic status and sex; smokers excluded; no other information provided on participant selection.					
Holness et al. (1989)	Canada, sodium carbonate (soda ash) production plant; cross sectional study Exposed: n=58 Controls: n=31 Exposed: 52 of 64 available production workers (82%) and 6 maintenance workers; all males, mean age 39 yrs, mean duration 14.4 yrs; nonsmokers ~29%. Controls from stores and office workers in the plant; excluded if previous ammonia exposure. Participation rate not reported. Mean age 43 yrs, mean duration 12.2 yrs; nonsmokers ~39%. Indication of self-selection of exposed out of workplace based on atopy (lower prevalence of hay fever).	Airborne levels of ammonia (mean = 6.5 mg/ m ³ for exposed; mean = 0.2 mg/m ³ for controls) using NIOSH- recommended protocol for personal sampling and analysis (measured over one work-shift per person, mean 8.4 hours)	Spirometry by standard protocol, beginning and end of shift, 3–6 replicates, each worker measured on two test days	Adjusted for smoking (pack-yrs); other workplace exposures not assessed	Baseline lung function compared between groups using linear regression, adjusting for age, height, and pack-yrs (linear regression). Unpaired t-tests compared change in lung function over workshift between groups. Percent predicted lung function at baseline and change in lung function also analyzed by three categories of exposure.	Study population and design: "healthy" workers; long duration—potential for lack of complete ascertainment of effect Relatively small sample size—potential of not being able to detect a difference between controls and exposed when one might exist Low exposure concentrations—potential that an effect level may not have been reached

^aAmmonia plant workers checked temperature, pressure, and concentration of ammonia and checked the pumps, prepared solutions, and checked the revolutions per minute of various motors. These are considered the low-exposure group.

^bUrea plant workers purged solution and washed pipelines, operated various pumps, and washed and cleaned the cooling fluidized bed in the production area. These are considered the highexposure group.

^cBased on communication with technical support at Dräger Safety Inc. (<u>Bacom and Yanosky, 2010</u>), the U.S. Environmental Protection Agency (U.S. EPA) considered the PAC III instrument to be a more sensitive monitoring technology than the Dräger tubes. Therefore, more confidence is attributed to the PAC III air measurements of ammonia for the <u>Rahman et al. (2007</u>) study.

Reference	Study setting/ participant selection	Exposure measure	Outcome measured	Consideration of confounding	Statistical analysis	Comments regarding potential major limitations
Dumas et al. (2012)	France. Nested case-control study of adult asthma cases recruited from pulmonary clinics in 1991–1995; follow-up in 2003–2007. Drawn from the Epidemiological study on the Genetics and Environment in Asthma (EGEA) study (included first degree relatives of cases and population control group). Study base = 1,355: included if had occupation data, excluded if asthma at baseline or and missing data on smoking. Selected if ever worked in hospital (exposure group) and referent group Hospital workers: 179 (43 men, 136 women) Referent group: 545 (212 men, 333 women) Smoking history and age similar for men, but mean age approximately 5 yrs higher in hospital workers) Possible "healthy worker" bias, with underestimation of associations from movement out of jobs or avoidance of specific jobs by affected individuals	 Exposure to specific agents based on three methods (ever exposed, based on all jobs held at least 3 months): Self-report: two job exposure questionnaire modules for health care workers (including frequency of use of specific products) [possible underestimate of exposure] Expert assessment – hospital workers (probability, frequency, intensity; 18 products) Asthma-specific job exposure matrix (22 agents) with expert review Control group: "Never exposed to cleaning/disinfecting products" based on each of the methods described above, plus expert review of additional (broader) information from main occupation questionnaire 	Asthma attack, respiratory symptoms or asthma treatment in the last 12 months (based on standardized questionnaire)	Adjusted for age and smoking status. Additional adjustment for body mass index tested. Association with ammonia stronger than that seen with bleach (OR 1.87 and 0.93, respectively, for ammonia and bleach)	Products analyzed if 5 or more exposed cases. Analyses stratified by sex (small n in men so focused on women). Familial dependence in data accounted for by generalized estimating equations.	
Arif and Delclos (2012)	United States (Texas). Survey of 3,650 licensed health care professionals (physicians, nurses, respiratory therapists, occupational therapists. Response rate 66% (3,650 out of 5,600)	For longest job held: frequency of use of specific products (never/once a month, at least once a week, more than once a day, every day) (for 2,049 of the 3,650, current/most recent job was longest held job) For all jobs: ever been in contact with list of 28 products at least once a month for a period of 6	 Four outcomes, based on structured questionnaire Work Related Asthma Symptoms (WRAS): wheezing/whistling at work or shortness of breath at works that gets better away from work or worse at work Work Related Asthma 	Adjusted for age, sex, race/ethnicity, body mass index, seniority, atopy and smoking status.	Multinomial logistic regression with four asthma outcome categories: WRAS, WEA, OA and none. Oversampling nurses and physicians was accounted for with	Limited exposure assessment (i.e., "ever exposed")

Reference	Study setting/ participant selection	Exposure measure	Outcome measured	Consideration of confounding	Statistical analysis	Comments regarding potential major limitations
		months or longer (ammonia part of general cleaning factor in factor analysis)	 (WRA): same as above and physician-diagnosed asthma (n = 74) Work exacerbated asthma (WEA): onset before began work (n = 41) Occupational asthma (OA): onset after began work (n = 33) 		post-stratification weights	
Lemiere et al. (2012)	Quebec. Case-control study. Workers with work-related asthma (WRA) seen at two tertiary care centers; WRA based on specific inhalation challenges (SIC); reversible airflow limitation or airway hyper- responsiveness (provocative concentration of methacholine inducing a 20% fall in FEV ₁ equal or lower than 8 mg/ml. Controls: Non-work related asthma (NWRA) seen at same clinics but symptoms did not worsen at work. Total n = 153 (33 controls, 120 work related asthma)	Structured interview about last/current job (including job title, tasks, machines, materials), work environment, protective equipment. This information used in conjunction with other material (e.g., technical and material safety data sheets, occupational hygiene literature, data bases and web sites) for expert review and classification of exposure to 41 specific agents, blinded to case status. Semiquantitative estimate (low=1, medium=2, high=3) for intensity, frequency, and confidence.	 Diagnoses made based on reference tests Occupational asthma (OA) if specific inhalation challenge test was positive (n = 67); Work exacerbated asthma (WEA) if specific inhalation test was negative but symptoms worsened at work (n = 53) 	Assessed confounding effects of age, smoking, occupational exposureto heat, cold, humidity, dryness and physical strain; not included in final models because none acted as confounders of exposures under study	Logistic regression	
<u>Vizcaya et al.</u> (2011)	Barcelona, Spain Survey of 1,018 cleaning services to find companies willing to participate; 286 (28%) not eligible (no longer in business); 37 agreed to participate (n workers ranged from 6 to >1,000). 4,993 questionnaires distributed by company representatives to employees; 950 (19%) completed; 33 excluded because of missing data. Total n = 917. Two companies	Standardized questionnaire about cleaning tasks and products used in the last yr Reference group = never cleaners AND current cleaners who had not used bleach, degreasers, multi-purpose cleaners, glass cleaners, perfumed products, air fresheners, mop products, hydrochloric acid, ammonia,	 Current asthma based on structured questionnaire (in past 12 months, woken by an attack of shortness of breath, had an attack of asthma or currently taking any asthma medications (including inhalers, aerosols or tablets) Asthma score: Sum of 	Adjusted for age, country of birth (Spanish vs non-Spanish), sex, and smoking status	Asthma: logistic regression Asthma score: Negative binomial regression (to account for over- dispersion in the data)	Exposure assessment limited (use in past year; no frequency data)

Reference	Study setting/ participant selection	Exposure measure	Outcome measured	Consideration of confounding	Statistical analysis	Comments regarding potential major limitations
	completed non-responder survey (sex, age, nationality, job position); no major differences with responders. Selection bias unlikely.	polishes or waxes, solvents, or carpet cleaners in the last yr	"yes" answers to five questions on asthma symptoms in last 12 months (wheeze with breathlessness, woken up with chest tightness, attack of shortness of breath at rest, attack of shortness of breath after exercise, woken by attack of shortness of breath			
<u>Zock et al.</u> (2007)	Europe (22 sites in 10 countries). Longitudinal study. Random population sample, ages 20–44 yrs (the European Community Respiratory Health Survey), 9-yr follow-up period. Excluded 764 individuals with asthma at baseline. Analysis limited to individuals reporting doing the cleaning or washing in their home (n = 3,503).	At follow-up, standardized interview about use of 15 cleaning products in the home (frequency never, <1 day/week, 1 to 3 days/week, 4 to 7 days/week) Reference group: did not use the product or used <1 day/week	 Incident (since baseline survey) current asthma, defined by asthma attack or nocturnal shortness of breath in the past 12 months or current use of medication for asthma Incident physician- diagnosed asthma, defined as above with confirmation by a physician and information on age or date of first attack Incident (since baseline survey) current wheeze, defined as wheezing or whistling in the chest in last 12 months when not having a cold. 	Adjusted for sex, age, smoking, employment in a cleaning job during follow-up, and study center; heterogeneity by center also assessed. Correlations among products generally weak (Spearman rho < 0.3)	Incident asthma and wheeze: log- binomial regression Incident physician diagnosed asthma: Cox proportional hazards regression, with date on onset defined as reported date of first attack. Referent category = used product never or <1 day/week	Referent group included some exposure (to the product, and to other products); could underestimate risk; although it is an incident study, the exposure information was collected at follow-up so may not reflect pre- disease patterns (if practices changed because of symptoms) or could be influenced by knowledge of outcome
<u>Medina-</u> <u>Ramón et al.</u> (2006)	Cornellà, Spain. Two-week diary and pulmonary function study, 2001– 2002. Female domestic cleaners aged 31–66 yrs with a history of obstructive lung disease, recruited from participants in a nested case–control based on population survey from	2-week diary recordeddaily use of cleaning products and cleaning tasks (checklist of cleaning exposures, number of hours cleaning in each house).	• Respiratory symptoms based on 2-week daily diary (7 symptoms, 5 point intensity scale); summed score for upper respiratory symptoms (blocked nose, throat	Adjusted for respiratory infection, use of maintenance medication and age; daily number of cigarettes smoked, yrs of employment in	Respiratory symptom scores dichotomized as > and <2 for use in logistic regression. PEF analysis based on night time and	Pulmonary function measured by participant; validation of method not reported. Potential for knowledge of exposure to affect reporting of symptoms

Reference	Study setting/ participant selection	Exposure measure	Outcome measured	Consideration of confounding	Statistical analysis	Comments regarding potential major limitations
	2000–2001 (see Medina-Ramón et al. (2005), below). Selected if reported current asthma symptoms or chronic bronchitis in 2000–2001 survey (standard definitions). Excluded if illiterate or unable to complete diary (n = 57). 80 met eligibility criteria; 51 (64%) completed diary. Participants and non-participants similar except for higher prevalence of bronchial hyperresponsiveness and shorter duration of domestic cleaning employment among responders		 irritation, watery eyes) and lower respiratory symptoms (chest tightness, wheezing, shortness of breath and cough). PEF measured with mini- Wright peak flow meter (with training and written instructions); measured morning, lunchtime, night (3 measurements each; highest recorded). Occupational asthma based on analysis of PEF patterns by occupational asthma system (OASYS) 	domestic cleaning and/or weekly working hours in domestic cleaning also assessed and included as necessary	the next morning values; linear regression	
<u>Medina-</u> <u>Ramón et al.</u> (2005)	Cornellà, Spain. Nested case-control study in 2001–2002 of 650 cleaning workers drawn from population- based survey in 2000–2001, 4,521 women ages 30–65 yrs. Cases: 160 identified, 117 still employed in domestic cleaning, 87 (74%) agreed to participate, 40 met final case definition Controls: 386 identified, 281 still employed in domestic cleaning, 194 (69%) agreed to participate, 155 met final control definition	Job-specific questionnaire for cleaning workers, frequency of use of 22 specific products (times per week, month, or yr); summed across each home and personal home and divided into two groups (cut-point = 12 times per yr). Also assessed accidental exposures (e.g., spills) Measurements taken in 10 cleaning sessions to obtain data on exposure to chlorine and ammonia during specific tasks and with specific products (ammonia used in kitchen cleaning; median 0.6–6.4 ppm; peaks >50 ppm)	Case based on asthma and/or bronchitis at both assessments. Asthma = asthma attack or being woken by attack or shortness of breath in past 12 months. Chronic bronchitis = regular cough or regular bringing up phlegm for at least 3 months each yr. Controls: no history of respiratory symptoms in preceding year and no asthma at either assessment.	Correlations among tasks/products reported to be generally weak (but specific values for ammonia and other products not reported). Multivariate model adjusted for age tertile and smoking status (but results for ammonia in this model only reported as "not statistically significant"—no information on effect estimate/variability)	Logistic regression	Results of adjusted model not reported in detail, but confounding unlikely major factor if correlations weak.

Table D-4.	Evaluation of epidemiology study summarized in Table 1-6 (industrial setting/serum chemistry
measures)	

Reference	Study setting/ participant selection	Exposure parameters	Outcome measured	Consideration of confounding	Statistical analysis	Comments regarding major limitations
<u>Hamid and</u> <u>El-Gazzar</u> (1996)	Egypt, urea fertilizer production plant; cross sectional study. Exposed: n = 30 Controls: n = 30 Exposed: workers selected randomly (process not described). Mean age 36 yrs, mean duration 12 yrs. Controls from administrative departments with no known history of ammonia exposure; matched to exposed by age, educational status, and socioeconomic status. Mean age 35 yrs	No direct measurement of ammonia exposure; blood urea was used as a surrogate measure (ammonia is detoxified mainly through the formation of urea in the liver) Mean (\pm SD) mg/dl ($p <$ 0.01) Exposed: 31.9 (\pm 7.6) Controls: 20.3 (\pm 5.1) The reliability of blood urea and correlation with ammonia exposure not reported	Fasting blood sample for AST, ALT (measures of liver function), hemoglobin, catalase enzyme activity as mediator of cell membrane permeability and serum monoamine oxidase enzyme activity as mediator of effects on nervous system	No information on exposure to other contaminants; no information on smoking status	Type of statistical test not reported (EPA assumes to be t-test); data presented as group means ± SD, with <i>p</i> - value.	Study population and design: "healthy" workers; long duration—potential for lack of complete ascertainment of effect Lack of information on smoking, and alcohol use—potential for possible confounding for liver function measures; uncertain affect on enzyme measures

ALT = alanine aminotransferase; AST = asparate aminotransferase; SD = standard deviation

APPENDIX E. INFORMATION IN SUPPORT OF HAZARD IDENTIFICATION AND DOSE-RESPONSE ANALYSIS

5

1

6 E.1. TOXICOKINETICS

7 **Overview**

Ammonia can be absorbed by the inhalation and oral routes of exposure. There is less 8 9 certainty regarding absorption through the skin, although absorption through the eye has been documented. Most of the inhaled ammonia is retained in the upper respiratory tract and is 10 subsequently eliminated in expired air. Ammonia that reaches systemic circulation is widely 11 distributed to all body compartments, although substantial first-pass metabolism occurs in the 12 13 liver, where biotransformation into urea and glutamine occurs. Ammonia exists in the blood as ammonium ion (NH₄⁺). Ammonia is transported in the circulatory system primarily via glutamine 14 15 and alanine, amino acids that are used to transport ammonia to and from tissues. When transported to the liver and kidney, the amide moiety is hydrolyzed via glutaminase forming 16 17 glutamatic acid (glutamate) and NH₄⁺, which is synthesized into urea and excreted in the urine. Ammonia or NH_{4^+} reaching the tissues is utilized for glutamate production, which participates in 18 transamination and other reactions. The principal means of excretion of absorbed ammonia in 19 mammals is as urinary urea; minimal amounts are excreted in the feces and in expired air. 20 Ammonia is endogenously produced in humans and animals. It is an essential mammalian 21 22 metabolite used in nucleic acid and protein synthesis, is necessary for maintaining acid-base 23 balance, and is an integral part of nitrogen homeostasis. Given its important metabolic role, 24 ammonia exists in a homeostatically regulated equilibrium in the body. 25

26 E.1.1. Absorption

27 Inhalation Exposure

- 28 Experiments with volunteers¹ show that ammonia, regardless of its tested concentration in
- 29 air (range, 40–354 mg/m³), is almost completely retained in the nasal mucosa (83–92%) during
- 30 short-term acute exposure (i.e., up to 120 seconds) (<u>Landahl and Herrmann, 1950</u>). However,
- longer-term acute exposure (10–27 minutes) to a concentration of 354 mg/m³ resulted in lower
- retention (4–30%), with expired breath concentrations of 247–283 mg/m³ observed by the end of

¹The human toxicokinetic studies cited in this section did not provide information on the human subjects' research ethics procedures undertaken in the studies; however, there is no evidence that the conduct of the research was fundamentally unethical or significantly deficient relative to the ethical standards prevailing at the time the research was conducted.

Supplemental Information—Ammonia

1 the exposure period (Silverman et al., 1949), suggesting saturation of absorption into the nasal

- 2 mucosa. Nasal and pharyngeal irritation, but not tracheal irritation, suggests that ammonia is
- retained in the upper respiratory tract. Unchanged levels of blood urea nitrogen (BUN), nonprotein 3
- nitrogen, urinary urea, and urinary ammonia following these acute exposures are evidence of low 4
- absorption into the blood. Exposure to a common occupational limit of ammonia in air (18 mg/m³), 5
- assuming 30% uptake into blood, would yield an increase in blood ammonia concentration of 6
- 7 0.09 µg/mL (calculated by IPCS, 1986). This calculated rise would likely be indistinguishable from
- the observed baseline levels of 0.1–1.0 µg/mL (Monsen, 1987; Conn, 1972; Brown et al., 1957) for 8
- 9 healthy controls.
- Data in rabbits and dogs provide supporting evidence for high-percentage nasal retention. 10
- 11 resulting in a lower fraction of the inhaled dose reaching the lower respiratory tract (Egle, 1973;
- Dalhamn, 1963; Boyd et al., 1944). Continuous exposure of rats to up to 23 mg/m³ for 24 hours did 12
- not result in a statistically significant increase in blood ammonia levels $(0.1 \,\mu\text{g/mL}$ above 13
- preexposure levels), whereas exposures to 219–818 mg/m³ led to significantly increased blood 14
- 15 concentrations of ammonia within 8 hours of exposure initiation; blood ammonia returned to
- preexposure values within 12 hours of continuous exposure (Schaerdel et al., 1983). 16
- 17

Oral Exposure 18

- 19 Case reports of human ingestion of household ammonia (ammonium hydroxide) provide
- evidence of oral absorption, but few quantitative data are available. For example, in a fatal case of a 20
- man who drank an unknown amount of a 2.4% solution of ammonium hydroxide, analysis of the 21
- 22 contents of the stomach and blood showed NH_{4⁺} levels of 15.3 mg and 33 μ g/mL, respectively
- 23 (Klendshoi and Rejent, 1966). This blood concentration is about 30-fold higher than the
- 24 concentration of 1 μ g/mL in fasting volunteers, as reported by <u>Conn (1972</u>).
- NH₄⁺ is endogenously produced in the human digestive tract, much of it arising from the 25 bacterial degradation of nitrogenous compounds from ingested food. Approximately 4,200 mg of 26 27 ammonia are produced each day, with >70% of that amount liberated from fecal contents within 28 the colon (Summerskill and Wolpert, 1970). About 99% of the total amount produced (4,150 mg) is 29 systemically absorbed. Evidence suggests that fractional absorption of ammonia increases as the 30 lumen pH increases, and that active transport occurs at lower pH levels (absorption has been detected at a pH as low as 5) (Castell and Moore, 1971; Mossberg and Ross, 1967). NH₄+ absorbed 31 32 from the gastrointestinal tract travels via the hepatic portal vein directly to the liver where, in healthy individuals, most of it is converted to urea and glutamine. 33
- 34

Dermal Exposure 35

36 Quantitative data on absorption from exposure by the dermal route are not available. One

- report of five case histories of workers exposed to anhydrous ammonia via a burst gas pipe 37
- indicated that there was systemic toxicity (vomiting, renal congestion, and delirium), suggesting 38
- dermal absorption; however, the fractional dose from dermal exposure could not be determined 39
- (Slot, 1938). IPCS (1986) concluded that systemic effects from skin and eye exposure are not 40

Supplemental Information—Ammonia

1 quantitatively important. Ammonia is readily absorbed into the eye, and it was found to diffuse

2 within seconds into the cornea, lens, drainage system, and retina (Beare et al., 1988; Jarudi and

<u>Golden, 1973</u>). However, amounts absorbed were not quantified, and absorption into systemic 3

- 4 circulation was not investigated.
- 5

E.1.2. Distribution 6

7 The range of mean ammonia concentrations in humans as a result of endogenous production was reported as 0.1–0.6 µg/mL in arterial blood and 0.2–1.7 µg/mL in venous blood 8 9 (Huizenga et al., 1994). Other baseline levels observed in volunteers range from 1 to $5.5 \,\mu\text{g/mL}$ (Conn, 1972; Brown et al., 1957). Ammonia is homeostatically regulated to remain at low 10 11 concentrations, with 95-98% existing in the blood (at physiological pH) as NH₄+ (da Fonseca-

Wollheim, 1995; Souba, 1987). 12

Ammonia is present in fetal circulation. In vivo studies in several animal species and in 13 vitro studies of human placenta suggest that ammonia is produced within the uteroplacenta and 14 15 released into the fetal and maternal circulations (Bell et al., 1989; Johnson et al., 1986; Hauguel et al., 1983; Meschia et al., 1980; Remesar et al., 1980; Holzman et al., 1979; Holzman et al., 1977; 16 17 Rubaltelli and Formentin, 1968; Luschinsky, 1951). Jóźwik et al. (2005) reported that ammonia levels in human fetal blood (specifically umbilical arterial and venous blood) at birth were 1.0-18 19 1.4 µg/mL, compared to 0.5 µg/mL in the mothers' venous blood. DeSanto et al. (1993) similarly collected human umbilical arterial and venous blood at delivery and found that umbilical arterial 20 ammonia concentrations were significantly higher than venous concentrations; there was no 21 22 correlation between umbilical ammonia levels and gestational age (range of 25–43 weeks of 23 gestation). In sheep, the uteroplacental tissue is the main site of ammonia production, with outputs 24 of ammonia into both the uterine and umbilical circulations (<u>lóźwik et al., 1999</u>). In late-gestation pregnant sheep that were catheterized to allow measurement of ammonia exposure to the fetus, 25 concentrations of ammonia in umbilical arterial and venous blood and uterine arterial and venous 26 27 blood ranged from approximately 0.39 to 0.60 μg/mL (Jóźwik et al., 2005; Jóźwik et al., 1999). 28 Ammonia is present in human breast milk as one of the sources of nonprotein nitrogen

29 (Atkinson et al., 1980).

30

31 Inhalation Exposure

32 Little information was found in the available literature on the distribution of inhaled ammonia. Information on the distribution of endogenously produced ammonia suggests that any 33 34 ammonia absorbed through inhalation would be distributed to all body compartments via the blood, where it would be used in protein synthesis as a buffer, reduced to normal concentrations by 35 36 urinary excretion, or converted by the liver to glutamine and urea (Takagaki et al., 1961). Rats inhaling 212 mg/m³ ammonia 6 hours/day for 15 days exhibited increased blood ammonia (200%) 37 and brain glutamine (28%) levels at 5 days of exposure, but not at 10 or 15 days (Manninen et al., 38 1988), demonstrating transient distribution of ammonia to the brain (metabolic adaptation). 39 40

1 Oral Exposure

Human oral exposure data indicate that ammonia readily enters the portal circulation and is
delivered to the liver, as has been shown to be the case for endogenously produced ammonia (<u>Pitts,</u>
<u>1971</u>; <u>Summerskill and Wolpert, 1970</u>). Un-ionized ammonia is freely diffusible, whereas the NH₄+
is less so, and is relatively confined to the extracellular compartment (Stabenau et al., 1959).

6

7 Dermal Exposure

8 No quantitative data on distribution of ammonia from dermal exposure were located in the 9 available literature.

10

12

11 E.1.3. Metabolism

Endogenously, ammonia is produced by catabolism of amino acids by glutamate

dehydrogenase primarily in the liver and renal cortex, but also in the brain and heart (<u>Souba, 1987</u>).

14 In skeletal muscle, ammonia may be produced by metabolism of adenosine monophosphate via

15 adenylate deaminase. Information on the metabolism of exogenously-introduced ammonia was not

- found in the available literature. Ammonia and NH_{4^+} are metabolized to glutamine mainly in the
- 17 liver via glutamine synthetase in the glutamine cycle (Figure E-1), or incorporated into urea as part
- of the urea cycle as observed in the hepatic mitochondria and cytosol (Figure E-2) (<u>Nelson and Cox</u>,
- 19 <u>2008</u>). Ammonia can be rapidly converted to glutamine in the brain as well (<u>Takagaki et al., 1961</u>).
- 20 <u>van de Poll et al. (2008</u>) reported that the liver removes an amount of ammonia from circulation
- equal to the amount added by the intestines at metabolic steady state, indicating that the gut does
- 22 not contribute significantly to systemic ammonia release.
- 23

24 25

26 Adapted from: <u>Nelson and Cox (2008</u>).

Figure E-1. Glutamine cycle.

29

1 2

3

4

Adapted from: Nelson and Cox (2008).

Figure E-2. The urea cycle showing the compartmentalization of its steps within liver 5 6 cells. 7

Given its important metabolic role, ammonia exists in a homeostatically regulated 8 9 equilibrium in the body. In particular, free ammonia has been shown to be homeostatically regulated to remain at low concentrations, with 95–98% of body burden existing in the blood (at 10 physiological pH) as NH₄+ (da Fonseca-Wollheim, 1995; Souba, 1987). Two studies in rats 11 (Manninen et al., 1988; Schaerdel et al., 1983) provide evidence that ammonia concentrations 12 <18 mg/m³ in air do not alter blood ammonia concentrations. Schaerdel et al. (1983) exposed rats 13 to ammonia for 24 hours at concentrations of 11–818 mg/m³. Exposure to 11 mg/m³ ammonia did 14 not increase blood ammonia concentrations after 24 hours; concentrations of \geq 23 mg/m³ caused an 15 exposure-released increase in blood ammonia, but concentrations at 12- and 24-hour sampling 16 periods were lower than at 8 hours, suggesting compensation by increasing ammonia metabolism 17 through conversion to urea, pyrimidine and polyamine synthesis, incorporation into amino acid 18 19 substrates, and metabolism in nervous system tissue. Rats inhaling 18 mg/m³ ammonia 6 hours/day for 5 days did not exhibit blood or brain ammonia or glutamine levels that were 20 21 different from controls; however, rats inhaling 212 mg/m³ for the same daily exposure exhibited statistically significantly increased levels of blood ammonia (threefold) and brain glutamine 22 23 (approximately 40%) at 5 days of exposure, but not at 10 or 15 days (Manninen et al., 1988). The return of blood and brain ammonia and glutamine levels to control levels with time is consistent 24

- 1 with metabolic adaptation, and these data suggest that animals have a large capacity to handle high 2 concentrations of inhaled ammonia.
- Various disease states can affect the rate of glutamine uptake and catabolism and thereby 3
- affect the blood and tissue levels of ammonia. Abnormally elevated levels of ammonia are 4
- indicative of end-stage renal failure (Davies et al., 1997). Acute renal failure can result in increased 5
- renal glutamine consumption and ammonia production with a decreased capability of eliminating 6
- 7 urea in the urine (Souba, 1987). End-stage liver failure due to fulminant hepatitis or hepatic
- cirrhosis may result in decreased ureagenesis and increased levels of ammonia in blood 8
- 9 (hyperammonemia), leading to increased uptake into the brain and the onset of hepatic
- encephalopathy. The increased metabolic alkalosis associated with hepatic encephalopathy may 10
- 11 result in a shift in the NH₄+/NH₃ ratio in the direction of ammonia, which could pass through the
- blood-brain barrier (Katayama, 2004). In patients with liver cirrhosis and acute clinical hepatic 12
- encephalopathy, the observed trapping of $[^{13}N]$ -ammonia in the brain appeared to be related to a 13
- fivefold increase of ammonia permeability across the blood-brain barrier relative to healthy 14
- 15 controls (Keiding et al., 2010; Keiding et al., 2006). Furthermore, Sørensen et al. (2009)
- demonstrated greater unidirectional clearance of ammonia from the blood to brain cells than 16
- 17 metabolic clearance of ammonia from the blood both in healthy controls and in cirrhotic patients
- with and without hepatic encephalopathy. 18
- 19

20 **E.1.4.** Elimination

Absorbed ammonia, as well as endogenously produced ammonia, is excreted by the kidneys 21 as urea (Summerskill and Wolpert, 1970; Gay et al., 1969; Muntwyler et al., 1956; Davies and 22 23 Yudkin, 1952; Van Slyke et al., 1943) and is a component of sweat (Guyton, 1981; Wands, 1981). 24 Acidosis-stimulated renal excretion of ammonia is mediated by intercalated cell-specific Rh B glycoprotein expression in mice (Bishop et al., 2010; Lee et al., 2010; Lee et al., 2009). In rat kidney, 25 26 NH₄⁺ is secreted into the lumen of the outer medullary collecting duct via H⁺ secretion and parallels ammonia diffusion (Flessner et al., 1992). The inner medullary collecting duct exhibits a Na⁺- and 27 28 K⁺-independent NH_4^+/H^+ exchange activity that may be mediated by an Rh C glycoprotein (Handlogten et al., 2005), which is also expressed in human kidneys (Han et al., 2006). 29 30 Additionally, ammonia is known to be present in the expired air of all humans (Manolis, 1983). Three investigators specifically measured ammonia in breath exhaled from the nose 31 32 (Schmidt et al., 2013; Smith et al., 2008; Larson et al., 1977). Smith et al. (2008) reported median ammonia concentrations of $0.059-0.078 \text{ mg/m}^3$ in exhaled breath from the nose of three healthy 33 34 volunteers (with samples collected daily over a 4-week period); these concentrations were similar to or slightly higher than the mean laboratory air level of ammonia reported in this study of 35 36 0.056 mg/m³. In another study of 20 health volunteers, the mean ammonia concentration in exhaled breath from the nose was 0.032 mg/m³ (range: 0.0092–0.1 mg/m³) (Schmidt et al., 2013). 37 Larson et al. (1977) reported that the median concentration of ammonia collected from air samples 38

exhaled from the nose ranged from 0.013 to 0.046 mg/m³. One sample collected from the trachea 39

via a tube inserted through the nose of one subject was 0.029 mg/m³—a concentration within the
range of that found in breath exhaled through the nose (Larson et al., 1977).

- 3 Higher and more variable ammonia concentrations are reported in breath exhaled from the
- 4 mouth or oral cavity than in breath exhaled from the nose. In studies that reported ammonia in
- 5 breath samples from the mouth or oral cavity, ammonia concentrations were commonly found in
- 6 the range of 0.085–2.1 mg/m³ (<u>Schmidt et al., 2013</u>; <u>Smith et al., 2008</u>; <u>Spanel et al., 2007a</u>, <u>b</u>;
- 7 <u>Turner et al., 2006; Diskin et al., 2003; Smith et al., 1999; Norwood et al., 1992; Larson et al., 1977)</u>,
- 8 and strongly correlated with saliva pH (<u>Schmidt et al., 2013</u>). These higher concentrations are
- 9 largely attributed to the production of ammonia by bacterial degradation of food protein in the oral
- 10 cavity or gastrointestinal tract (<u>Turner et al., 2006; Smith et al., 1999</u>; <u>Vollmuth and Schlesinger</u>,
- 11 <u>1984</u>). This source of ammonia in breath was demonstrated by <u>Smith et al. (1999</u>), who observed
- 12 elevated ammonia concentrations in the expired air of six healthy volunteers following the
- 13 ingestion of a protein-rich meal.
- 14 Other factors that can affect ammonia levels in breath exhaled from the mouth or oral cavity
- 15 include diet, oral hygiene, age, living conditions, and disease state. <u>Norwood et al. (1992</u>) reported
- decreases in baseline ammonia levels (0.085–0.905 mg/m³) in exhaled breath following tooth
- brushing (<50% depletion), a distilled water oral rinse (<50% depletion), and an acid oral rinse
- 18 (80–90% depletion). These findings are consistent with ammonia generation in the oral cavity by
- 19 bacterial and/or enzymatic activity. Several investigators have reported that ammonia in breath
- from the mouth and oral cavity increases with age (<u>Spanel et al., 2007a</u>, <u>b</u>; <u>Turner et al., 2006</u>;
- 21 <u>Diskin et al., 2003</u>), with ammonia concentrations increasing on average about 0.1 mg/m³ for each
- 10 years of life (<u>Spanel et al., 2007a</u>). <u>Turner et al. (2006</u>) reported that the age of the individual
- accounts for about 25% of the variation observed in mean breath ammonia levels, and the
- remaining 75% is due to factors other than age. Certain disease states can also influence ammonia
- 25 levels in exhaled breath. Ammonia is greatly elevated in the breath of patients in renal failure
- 26 (Spanel et al., 2007a; Davies et al., 1997). These studies are further described in Table E-1.
- Because ammonia measured in samples of breath exhaled from the mouth or oral cavity can be generated in the oral cavity and may thus be substantially influenced by diet and other factors,
- ammonia levels measured in mouth or oral cavity breath samples do not likely reflect systemic
- 30 (blood) levels of ammonia. Ammonia concentrations in breath exhaled from the nose appear to
- better represent levels at the alveolar interface of the lung and are thought to be more relevant to
- 32 understanding systemic levels of ammonia (<u>Schmidt et al., 2013; Smith et al., 2008</u>).
- Ammonia has also been detected in the expired air of animals. <u>Whittaker et al. (2009</u>) observed a significant association between ambient ammonia concentrations and increases in exhaled ammonia in stabled horses. Analysis of endogenous ammonia levels in the expired air of rats showed concentrations of 0.007–0.250 mg/m³ (mean = 0.06 mg/m³) (Barrow and Steinhagen, 1980). Larson et al. (1980) reported ammonia concentrations measured in the larynx of dogs exposed to sulfuric acid ranging between 0.02 and 0.16 mg/m³ following mouth breathing and between 0.04 and 0.16 mg/m³ following nose breathing.
- 40

Test subjects	Breath samples	Levels of ammonia in exhaled breath	Methods	Comments	Reference			
Breath samples from the	3reath samples from the nose and trachea							
20 healthy volunteers (13 males and 7 females aged 22–61 yrs)	Subjects fasted overnight and refrained from exercise in the morning before sampling; samples collected between 8 and 11 AM; end-tidal breath samples collected from the nose; subjects breathed continuously into the sampling piece for 3–5 min to obtain stable sample; samples also collected after an acidic mouth wash	Concentrations in exhaled breath from the nose (mg/m ³): Range = $0.0092-0.10$ Mean = 0.032 (95% CI: $0.021-0.042$) Median = 0.024 Concentrations following acidic mouth wash (mg/m ³): Range = $0.011-0.027$ Mean = 0.016 (95% CI: $0.014-0.018$) Median = 0.015	Commercial cavity ring-down spectrometer	Ammonia concentrations in outdoor air were down to 0.0004 g/m ³ , in indoor air were 0.002–0.004 mg/m ³ , and in indoor air in the presence of humans were 0.006– 0.007 mg/m ³	<u>Schmidt et</u> <u>al. (2013</u>)			
Three healthy male volunteers (>30 yrs of age)	Ammonia levels measured in nose-exhaled breath of test subjects each morning about 2 hrs after eating a regular breakfast; samples collected daily over a 4-wk period	Volunteer A = 0.0728 ± 0.000848 mg/m ³ Volunteer B = 0.0777 ± 0.000919 mg/m ³ Volunteer C = 0.0587 ± 0.000848 mg/m ³ (median ammonia levels estimated as geometric mean ± geometric SD)	SIFT-MS analysis	Mean ambient air level of ammonia was 0.056 ± 0.0071 mg/m ³ The authors indicated that ammonia measured in mouth- exhaled breath may be generated in the oral cavity and suggested that concentrations in nose-exhaled breath may better represent systemic conditions (such as metabolic disease)	<u>Smith et al.</u> (2008)			
Sixteen healthy subjects (9 males aged 25–63 yrs and 7 females aged 23– 41 yrs); subgroups tested were all male	Breath samples collected during quiet nose breathing, and direct sampling during a deep inspiration followed by breath- holding with the glottis closed	Ammonia concentrations ranged from 0.013 to 0.046 mg/m ³ during nose breathing (median 0.025 mg/m ³) (five male subjects), and 0.029 mg/m ³ from an air sample collected from the trachea (collected from a tube inserted into one male subject's nose and into the trachea)	Chemiluminescence		<u>Larson et al.</u> (<u>1977</u>)			

Table E-1.	Ammonia	levels in	exhaled	breath	of volunteers
------------	---------	-----------	---------	--------	---------------

Test subjects	Breath samples	Levels of ammonia in exhaled breath	Methods	Comments	Reference
Breath samples from the	e mouth and oral cavity		•	•	•
20 healthy volunteers (13 males and 7 females aged 22–61 yrs)	Subjects fasted overnight and refrained from exercise in the morning before sampling; samples collected between 8 and 11 AM; end-tidal breath samples collected from the mouth; subjects breathed continuously into the sampling piece for 3–5 min to obtain stable sample; samples also collected after an acidic mouth wash	Concentrations in exhaled breath from the mouth (mg/m ³): Range = $0.28-1.5$ Mean = 0.55 (95% CI: $0.42-0.68$) Median = 0.49 Concentrations following acidic mouth wash (mg/m ³): Range = $0.010-0.027$ Mean = 0.015 (95% CI: $0.014-0.018$) Median = 0.015	Commercial cavity ring-down spectrometer	Ammonia concentrations in outdoor air were down to 0.0004 mg/m ³ , in indoor air were 0.002–0.004 mg/m ³ , and in indoor air were 0.006– 0.007 mg/m ³	<u>Schmidt et</u> <u>al. (2013</u>)
Three healthy male volunteers (>30 yrs of age)	Ammonia levels measured in mouth-exhaled breath and in the closed mouth cavity of test subjects each morning about 2 hrs after eating a regular breakfast; samples collected daily over a 4-wk period	Via mouth: Volunteer A = $0.769 \pm 0.000919 \text{ mg/m}^3$ Volunteer B = $0.626 \pm 0.000919 \text{ mg/m}^3$ Volunteer C = $0.604 \pm 0.000919 \text{ mg/m}^3$ Via oral cavity: Volunteer A = $1.04 \pm 0.000990 \text{ mg/m}^3$ Volunteer B = $1.52 \pm 0.00106 \text{ mg/m}^3$ Volunteer C = $1.31 \pm 0.000919 \text{ mg/m}^3$ (median ammonia levels estimated as geometric mean \pm geometric SD)	SIFT-MS analysis	Mean ambient air level of ammonia was 0.056 ± 0.0071 mg/m ³ The authors indicated that ammonia measured in mouth- exhaled breath may be generated in the oral cavity and suggested that concentrations in nose-exhaled breath may better represent systemic conditions (such as metabolic disease)	<u>Smith et al.</u> (2008)

Table E-1	Ammonia l	evels in ex	khaled bre	ath of voluntee	rs
-----------	-----------	-------------	------------	-----------------	----

Test subjects	Breath samples	Levels of ammonia in exhaled breath	Methods	Comments	Reference
Four healthy children	Breath samples collected in	Children = range 0.157–0.454 mg/m ³	SIFT-MS analysis	Ammonia breath levels	Spanel et al.
(two males and two	morning at least 1 hr after	Seniors = 0.224–1.48 mg/m ³		significantly increased with age	<u>(2007a</u>)
females, 4–6 yrs old)	breakfast and at least 1 hr prior to lunch; each volunteer			Some seniors reported diabetes	
Thirteen senior	performed two				
volunteers (11 males	exhalation/inhalation cycles			Measured ammonia level in	
and 2 females, 60–	(both about 5–10 sec in			breath reported for each subject	
83 yrs old); four had	duration)				
type-2 diabetes mellitus					
with onset at ages					
between 50 and 70 yrs,					
and controlled by diet					
All subjects had their regular breakfast without any specific restrictions					
Twenty-six secondary school students (10 males and 16 females, 17–18 yrs old and one 19-yr-old)	Three sequential breath exhalations collected over 5 min following the students listening to a 1-hr presentation (at least 1 hr following breakfast and before lunch); alveolar portion measured (identified using humidity)	Median values reported for: 17-yr-olds = 0.165 mg/m ³ 18-yr-olds = 0.245 mg/m ³	SIFT-MS analysis	Significant differences in ammonia levels in exhaled breath between 17- and 18-yr- olds ($p < 10^{-8}$) were reported (statistical test not reported)	<u>Spanel et al.</u> (2007b)

Table E-1	. Ammonia l	evels in ex	haled brea	ath of volunteers
-----------	-------------	-------------	------------	-------------------

Test subjects	Breath samples	Levels of ammonia in exhaled breath	Methods	Comments	Reference
Thirty healthy volunteers (19 males and 11 females, 24– 59 yrs, 28 Caucasian, 1 African, and 1 mixed race); volunteers were instructed to maintain their normal daily routines and to not rinse out their mouths prior to providing a breath sample	Breath samples collected in the morning prior to lunch at approximately weekly intervals for about 6 mo; some volunteers provided samples more frequently than others; 480 samples collected and analyzed for ammonia	Geometric mean and geometric SD = 0.589 ± 0.00114 mg/m ³ Median = 0.595 mg/m ³ Range = 0.175–2.08 mg/m ³	SIFT-MS analysis	Ammonia breath levels were shown to increase with age Background levels in the testing laboratory were typically around 0.28 mg/m ³	<u>Turner et al.</u> (2006)
Five subjects (two females, three males; age range 27–65 yrs)	Breath samples collected between 8 and 9 AM in three sequential breath exhalations on multiple days (12–30 d) over the course of a month	Ammonia concentrations were 0.298– 1.69 mg/m ³	SIFT-MS analysis	Differences in ammonia breath levels between individuals were significant (<i>p</i> < 0.001; ANOVA test)	<u>Diskin et al.</u> (2003)
Six normal nonsmoking male volunteers (24– 61 yrs old), fasted for 12 hrs prior to testing	Baseline breath sample obtained; breath samples collected 20, 40, and 60 min and 5 hrs following the ingestion of a liquid protein- calorie meal	Premeal levels were 0.2–0.4 mg/m ³ ; Postmeal levels at 30 min were 0.1 mg/m ³ increasing to maximum values at 5 hrs of 0.4–1.3 mg/m ³	SIFT-MS analysis	A biphasic response in breath ammonia concentration was observed after eating	(<u>Smith et al.,</u> <u>1999</u>)
Table E-1. Ammonia levels in exhaled breath of volunteers					

Test subjects	Breath samples	Levels of ammonia in exhaled breath	Methods	Comments	Reference
Fourteen healthy,	Subjects fasted for 8 hrs prior to	Baseline levels varied from 0.085 to	Nitrogen oxide	An 80–90% depletion of volatile	Norwood et
nonsmoking subjects	baseline measurement,	0.905 mg/m ³	analyzer with an	ammonia emissions was seen	<u>al. (1992</u>)
(age range 21–54 yrs)	refrained from oral hygiene		ammonia	within 10 min of acid rinsing;	
performed one or more	after their most recent meal,		conversion channel	<50% depletion of ammonia was	
of the following hygiene	refrained from heavy exercise		(similar to chemi-	seen following tooth brushing or	
maneuvers:	for 12 hrs, and had no liquid		luminescence)	distilled water rinse; gaseous	
(1) acidic oral rinse	intake for several hours; initial			ammonia levels increased after	
(pH 2.5)	breath ammonia was measured			all rinse procedures over time	
(2) tooth brushing	between 8 and 10 AM, then				
followed by acidic oral	subjects performed one or				
rinse	more of the hygiene measures				
(3) tooth brushing	listed (at 30-min intervals for a				
followed by distilled	total 90-min period; samples				
water rinse	collected over 5 min)				
(4) distilled water rinse					
Sixteen healthy subjects	Breath samples collected during	Ammonia concentrations ranged from	Chemiluminescence	The oral cavity appears to be a	Larson et al.
(nine males aged 25–	quiet mouth breathing	0.029 to 0.52 mg/m ³ during mouth		source of breath ammonia; no	<u>(1977)</u>
63 yrs and seven		breathing (median of 0.17 mg/m ³)		attempt was made to control the	
females aged 23–				diet of subjects or standardize	
41 yrs); subgroups				the interval between the last	
tested were all male				meal and the measurement	

Table E-1.	Ammonia	levels in	exhaled	breath	of volunteers
------------	---------	-----------	---------	--------	---------------

Test subjects	Breath samples	Levels of ammonia in exhaled breath	Methods	Comments	Reference
Breath samples: source	nose/mouth/oral cavity) not spe	ecified			
Sixteen healthy, nonsmoking subjects (4 females and 12 males, 29 ± 7 yrs); no significant differences in mean age, height, weight, BMI, or time since last oral intake; 10 subjects tested in each experiment	Experiment 1: single whole- breath samples collected from each subject (same samples immediately reanalyzed within <10 sec to assess instrument specific variability) Experiment 2: three repeat breath samples collected from each subject (to evaluate intra- subject differences); this experiment evaluated differences based on standardization of expiratory pressure and flow Experiment 3: two mixed breath samples and two bag alveolar breath samples collected in short succession from each subject	Experiment 1: $0.843 \pm 0.0601 \text{ mg/m}^3$ (median \pm measurement error) Experiment 2: Nonstandardized = $0.712 \pm 0.130 \text{ mg/m}^3$ (median \pm SD) Standardized = $1.01 \pm 0.113 \text{ mg/m}^3$ (median \pm SD) Experiment 3: Mixed = $0.860 \pm 0.585 \text{ mg/m}^3$ (median \pm SD) Alveolar = $0.920 \pm 0.559 \text{ mg/m}^3$ (median \pm SD)	SIFT-MS analysis This study established that SIFT-MS analysis is reliable and repeatable	Relatively small number of healthy subjects used Did not address the breath of those with disease Intra- and inter-day repeatability were not investigated	Boshier et al. (2010)

Table E-1.	Ammonia	levels in	exhaled	breath o	f volunteers
------------	---------	-----------	---------	----------	--------------

Test subjects	Breath samples	Levels of ammonia in exhaled breath	Methods	Comments	Reference
Eight healthy subjects (average age 39.8 ± 9.6 yrs)	Subjects fasted for 6 hrs prior to samples being collected; subjects breathed normally into collection device for 5 min	Mean breath ammonia = 0.35 ± 0.17 mg/m ³	Fiber optic sensor	This study measured ammonia levels in healthy volunteers compared to <i>Helicobacter pylori</i> positive individuals (five subjects) (data not shown); the experiment also included a challenge with a 300 mg urea capsule to evaluate the urease activity of healthy versus infected individuals (data not shown); the authors concluded that breath ammonia measurement may be feasible as a diagnostic test for <i>H. pylori</i>	Kearney et al. (2002)
Three groups of children were used as test subjects: (1) 68 asthmatic children residing in a National Park in the mountains (mean age 10 yrs, 48 boys, 20 girls) (2) 52 asthmatic children in an urban area (mean age 9 yrs, 35 boys, 17 girls) (3) 20 healthy children from the same urban area as a control group (mean age 10 yrs, 12 boys, 8 girls)	Subjects performed a 5-sec breath-hold and exhaled slowly into collection device	Asthmatic children from National Park = 0.0040 ± 0.0033 mg/m ³ Asthmatic urban children: Mean NH ₃ = 0.0101 ± 0.00721 mg/m ³ Urban children control group: Mean NH ₃ = 0.0105 ± 0.00728 mg/m ³	Chemiluminescence	Both groups of asthmatic children had some subjects on glucocorticoids, often combined with histamine antagonists and/or b2 agonists, while others were left untreated; ammonia concentrations in exhaled breath appeared to be correlated with exposure to urban air	<u>Giroux et al.</u> (2002)

ANOVA = analysis of variance; BMI = body mass index; CI = confidence interval; SD = standard deviation; SIFT-MS = selected ion flow tube mass spectrometry

This document is a draft for review purposes only and does not constitute Agency policy.

1 Physiologically Based Pharmacokinetic Models

2 No physiologically based pharmacokinetic models have been developed for ammonia. An

3 expanded one-compartment toxicokinetic model in rats was developed by <u>Diack and Bois (2005</u>),

4 which used physiological values to represent first-order uptake and elimination of inhaled

- 5 ammonia (and other chemicals). The model is not useful for dose-response assessment of ammonia
- 6 because: (1) it cannot specify time-dependent amounts or concentrations of ammonia in specific
- 7 target tissues, (2) it has not been verified against experimental data for ammonia, glutamate, or
- 8 urea levels in tissues, and (3) it cannot extrapolate internal doses of ammonia between animals and
- 9 humans.
- 10

11 E.2. HUMAN STUDIES

More detailed summaries are provided of epidemiology studies of workers in industrial
 exposure settings that examined respiratory parameters; information from these studies was used
 as the basis for the RfC.

15

16 E.2.1. Occupational Studies in Industrial Worker Populations

17 Holness et al. (1989)

Holness et al. (1989) conducted a cross-sectional study of workers in a soda ash (sodium 18 19 carbonate) plant² who had chronic, low-level exposure to ammonia. The cohort consisted of 58 workers and 31 controls from stores and office areas of the plant. All workers were males 20 21 (average age 43 years), and the average exposure duration for the exposed workers at the plant 22 was 12 years. The mean time-weighted average (TWA) ammonia exposure of the exposed group based on personal sampling over one work shift (mean sample collection time 8.4 hours) was 23 9.2 ppm (6.5 mg/m^3) compared to 0.3 ppm (0.2 mg/m^3) for the control group. The average 24 concentrations of ammonia to which workers were exposed were determined using the procedure 25 recommended by the National Institute for Occupational Safety and Health (NIOSH), which involves 26 the collection of air samples on sulfuric acid-treated silica gel adsorption tubes (NIOSH, 1979). 27 No statistically significant differences were observed in age, height, years worked, 28 29 percentage of smokers, or pack-years smoked for exposed versus control workers. Exposed workers weighed approximately 8% (p < 0.05) more than control workers. Information regarding 30 past occupational exposures, working conditions, and medical and smoking history, as well as 31 32 respiratory symptoms and eye and skin complaints was obtained by means of a questionnaire that 33 was based on an American Thoracic Society questionnaire (Ferris, 1978). Each participant's sense 34 of smell was evaluated at the beginning and end of the work week using several concentrations of pyridine (0.4, 0.66, or 10 ppm). Lung function tests were conducted at the beginning and end of the 35 36 work shift on the first and last days of their work week (four tests administered). Differences in

²At this plant, ammonia, carbon dioxide, and water were the reactants used to form ammonium bicarbonate, which in turn was reacted with salt to produce sodium bicarbonate and subsequently processed to form sodium carbonate. Ammonia and carbon dioxide were recovered in the process and reused.

1 reported symptoms and lung function between groups were evaluated using the actual exposure 2 values with age, height, and pack-years smoked as covariates in linear regression analysis. Exposed workers were grouped into three exposure categories (high = >12.5 ppm [>8.8 mg/m³], medium = 3 6.25–12.5 ppm [4.4–8.8 mg/m³], and low = <6.25 ppm [<4.4 mg/m³]) for analysis of symptom 4 reporting and lung function data. 5 Endpoints evaluated in the study included sense of smell, prevalence of respiratory 6 7 symptoms (cough, bronchitis, wheeze, dyspnea, and others), eye and throat irritation, skin problems, and lung function parameters (forced vital capacity [FVC], forced expiratory volume in 8 9 1 second [FEV₁], FEV₁/FVC, forced expiratory flow [FEF₅₀], and FEF₇₅). No statistical differences in the prevalence of respiratory irritation or eye irritation were evident between the exposed and 10 11 control groups (Table E-2). There was a statistically significant increase (p < 0.05) in the prevalence of skin problems in 12 workers in the lowest exposure category ($<4.4 \text{ mg/m}^3$) compared to controls; however, the 13 prevalence was not increased among workers in the two higher exposure groups. Workers also 14 15 reported that exposure at the plant had aggravated specific symptoms including coughing, wheezing, nasal complaints, eye irritation, throat discomfort, and skin problems. Odor detection 16 17 threshold and baseline lung functions were similar in the exposed and control groups. No changes in lung function were demonstrated over either work shift (days 1 or 2) or over the work week in 18 19 the exposed group compared with controls. No relationship was demonstrated between chronic ammonia exposure and baseline lung function changes either in terms of the level or duration of 20 exposure. Study investigators noted that this finding was limited by the lack of adequate exposure 21 22 data collected over time, precluding development of a meaningful index accounting for both level 23 and length of exposure. Based on the lack of exposure-related differences in subjective 24 symptomatology, sense of smell, and measures of lung function, EPA identified 8.8 mg/m³ as the noobserved-adverse-effect level (NOAEL). A lowest-observed-adverse-effect level (LOAEL) was not 25 26 identified for this study.

27

	Ammonia concentration				
Parameter	Control 0.2 mg/m ³	Exposed <4.4 mg/m ³	Exposed 4.4–8.8 mg/m ³	Exposed >8.8 mg/m ³	
Symptom	•	•	•		
Cough	3/31 (10) ^a	6/34 (18)	1/12 (8)	2/12 (17)	
Sputum	5/31 (16)	9/34 (26)	3/12 (25)	1/12 (8)	
Wheeze	3/31 (10)	5/34 (15)	1/12 (8)	0/12 (0)	
Chest tightness	2/31 (6)	2/34 (6)	0/12 (0)	0/12 (0)	
Shortness of breath	4/31 (13)	3/34 (9)	1/12 (8)	0/12 (0)	
Nasal complaints	6/31 (19)	4/34 (12)	2/12 (17)	0/12 (0)	
Eye irritation	6/31 (19)	2/34 (6)	2/12 (17)	1/12 (8)	
Throat irritation	1/31 (3)	2/34 (6)	1/12 (8)	1/12 (8)	
Skin problems	2/31 (6)	10/34* (29)	1/12 (8)	1/12 (8)	
Lung function (% predicted)					
FVC	98.6	96.7	96.9	96.8	
FEV ₁	95.1	93.7	93.9	95.3	
FEF ₅₀	108.4	106.9	106.2	111.2	
FEF ₇₅	65.2	71.0	67.8	78.8	

Table E-2. Symptoms and lung function results of workers exposed todifferent levels of TWA ammonia concentrations

^aNumber affected/number examined. The percentage of workers reporting symptoms is indicated in parentheses.

*Significantly different from controls, p < 0.05, by Fisher's exact test performed for this review.

Source: Holness et al. (1989).

1

2 Ballal et al. (1998)

Ballal et al. (1998) conducted a cross-sectional study of male workers at two urea fertilizer
factories in Saudi Arabia³. The cohort consisted of 161 exposed subjects (84 from factory A and
77 from factory B) and 355 unexposed controls. Workers in factory A were exposed to air ammonia
levels of 2–130 mg/m³, and workers in factory B were exposed to levels of 0.02–7 mg/m³. Mean

7 duration of employment was 51.8 months for exposed workers and 73.1 months for controls.

8 Exposure levels were estimated by analyzing a total of 97 air samples collected over 8-hour shifts

9 close to the employee's work site. The prevalence of respiratory symptoms and diseases was

- 10 determined by administration of a questionnaire. The authors stated that there were no other
- 11 chemical pollutants in the workplace that might have affected the respiratory system. Smoking
- 12 habits were similar for exposed workers and controls.
- Stratifying the workers by ammonia exposure levels (above or below the American
 Conference of Governmental Industrial Hygienists [ACGIH] threshold limit value [TLV] of

³The process of fertilizer production involved synthesis of ammonia from natural gas, followed by reaction of the ammonia and carbon dioxide to form ammonium carbamide, which was then converted to urea.

- 1 18 mg/m³) showed that those exposed to ammonia concentrations higher than the TLV had 2.2- to
- 2 fourfold higher relative risks for cough, phlegm, wheezing, dyspnea, and asthma than workers
- 3 exposed to levels below the TLV (Table E-3). The relative risk for wheezing was also elevated
- 4 among those exposed to ammonia levels at or below the TLV. Distribution of symptoms by
- 5 cumulative ammonia concentration (CAC, mg/m³-years) also showed 2- to 4.8-fold higher relative
- 6 risk for all of the above symptoms among those with higher CAC (Table E-3). Results of the logistic
- 7 regression analysis showed that ammonia concentration was significantly related to cough, phlegm,
- 8 wheezing with and without shortness of breath, and asthma (Table E-4).
- 9

Table E-3. The prevalence of respiratory symptoms and disease in urea fertilizer workers exposed to ammonia

	Relative risk (95% CI)					
	Exposure	e category	CAC ^a (mg/m ³ -yrs)			
Respiratory symptom/disease	≤ACGIH TLV (18 mg/m³) (n = 138)	>ACGIH TLV (18 mg/m ³) (n = 17)	≤50 (n = 130)	>50 (n = 30)		
Cough	0.86 (0.48–1.52)	3.48 (1.84–6.57)	0.72 (0.38–1.35)	2.82 (1.58–5.03)		
Wheezing	2.26 (1.32–3.88)	5.01 (2.38–10.57)	1.86 (1.04–3.32)	5.24 (2.85–9.52)		
Phlegm	0.79 (0.43–1.47)	3.75 (1.97–7.11)	0.63 (0.31–1.26)	3.03 (1.69–5.45)		
Dyspnea	1.13 (0.62–2.04)	4.57 (2.37–8.81)	1.19 (0.66–2.17)	2.59 (1.25–5.36)		
Chronic bronchitis	1.43 (0.49–4.19)	2.32 (0.31–17.28)	0.61 (0.13–2.77)	5.32 (1.72–16.08)		
Bronchial asthma	1.15 (0.62–2.15)	4.32 (2.08–8.98)	1.22 (0.66–2.28)	2.44 (1.10–5.43)		
Chronic bronchitis and bronchial asthma	2.57 (0.53–12.59)	6.96 (0.76–63.47)	1.82 (0.31–10.77)	8.38 (1.37–45.4)		

^a = one missing value

Source: Ballal et al. (1998).

10

Table E-4. Logistic regression analysis of the relationship between ammonia concentration and respiratory symptoms or disease in exposed urea fertilizer workers

Respiratory symptom/disease	OR (95% CI)
Cough	1.32 (1.08–1.62)*
Phlegm	1.36 (1.10–1.67)*
Shortness of breath with wheezing	1.26 (1.04–1.54)*
Wheezing alone	1.55 (1.17–2.06)*
Dyspnea on effort	0.83 (0.68–1.02)
Diagnosis of asthma	1.33 (1.07–1.65)*

 $*p \leq 0.05.$

OR = odds ratio

Source: Ballal et al. (1998).

1

2 <u>Ali et al. (2001</u>)

3 Results from limited spirometry testing of workers from factory A were reported in a followup study (Ali et al., 2001). The lung function indices measured in 73 ammonia workers and 4 348 control workers included FEV_1 and FVC. Prediction equations for these indices were developed 5 for several nationalities (Saudis, Arabs, Indians, and other Asians), and corrected values were 6 expressed as the percentage of the predicted value for age and height. The FVC% predicted was 7 8 higher in exposed workers than in controls (4.6% increase, $p \le 0.002$); however, workers with 9 cumulative exposure $>50 \text{ mg/m}^3$ -years had significantly lower FEV₁% predicted (7.4% decrease, 10 p < 0.006) and FVC% predicted (5.4% decrease, $p \le 0.030$) than workers with cumulative exposure 11 \leq 50 mg/m³-years. A comparison between symptomatic and asymptomatic exposed workers showed that FEV₁% predicted and FEV₁/FVC% were significantly lower among symptomatic 12 workers (9.2% decrease in FEV₁% predicted, p < 0.001, and 4.6% decrease in FEV₁/FVC%, 13 *p* < 0.02). 14 15

16 **<u>Rahman et al. (2007</u>**)

Rahman et al. (2007) conducted a cross-sectional study of workers at a urea fertilizer 17 factory in Bangladesh that consisted of an ammonia plant and a urea plant. The exposed group 18 consisted of 24 participants of the 63 operators in the ammonia plant and 64 participants of the 77 19 20 operators in the urea plant; 25 individuals from the administration building served as a control group. Mean duration of employment exceeded 16 years in all groups. Personal ammonia 21 exposures were measured by two different methods (Dräger PAC III and Dräger tube) in five to nine 22 23 exposed workers per day for 10 morning shifts in the urea plant (for a total of 64 workers) and in five to nine exposed workers per day for 4 morning shifts from the ammonia plant (for a total of 24 24 workers). Four to seven volunteer workers per day were selected from the administration building 25 as controls, for a total of 25 workers over a 5-day period. Questionnaires were administered to 26

This document is a draft for review purposes only and does not constitute Agency policy.E-19DRAFT—DO NOT CITE OR QUOTE

1 inquire about demographics, past chronic respiratory disease, past and present occupational

2 history, smoking status, respiratory symptoms (cough, chest tightness, runny nose, stuffy nose, and

3 sneezing), and use of protective devices. Lung function tests (FVC, FEV₁, and peak expiratory flow

4 rate [PEFR]) were administered preshift and postshift (8-hour shifts) to the 88 exposed workers

5 after exclusion of workers who had planned to have less than a 4-hour working day; lung function

6 was not tested in the control group. Personal ammonia exposure and lung function were measured

7 on the same shift for 28 exposed workers. Linear multiple regression was used to analyze the

8 relationship between workplace and the percentage cross-shift change in FEV₁ (Δ FEV₁%) while

9 adjusting for current smoking.

10 Mean exposure levels at the ammonia plant determined by the Dräger tube and Dräger PAC

11 III methods were 25.0 and 6.9 ppm (17.7 and 4.9 mg/m³), respectively; the corresponding means in

12 the urea plant were 124.6 and 26.1 ppm (88.1 and 18.5 mg/m³) (<u>Rahman et al., 2007</u>). Although

13 the Dräger tube measurements indicated ammonia levels about 4–5 times higher than levels

14 measured with the PAC III instrument, there was a significant correlation between the ammonia

15 concentrations measured by the two methods (p = 0.001). No ammonia was detected in the control

area using the Dräger tube (concentrations less than the measuring range of 2.5–200 ppm [1.8–

17 141 mg/m³]). The study authors observed that their measurements indicated only relative

18 differences in exposures between workers and production areas, and that the validity of the

19 exposure measures could not be evaluated based on their results. Based on an evaluation of the

20 two monitoring methods and communication with technical support at Dräger Safety Inc. (Bacom

21 <u>and Yanosky, 2010</u>), EPA considered the PAC III instrument to be a more sensitive monitoring

technology than the Dräger tubes. Therefore, the PAC III air measurements were considered the
more reliable measurement of exposure to ammonia for the <u>Rahman et al. (2007</u>) study.

24 The prevalence of respiratory irritation and decreased lung function was higher in the urea plant than in the ammonia plant or in the administration building. Comparison between the urea 25 plant and the administration building showed that cough and chest tightness were statistically 26 higher in the former; a similar comparison of the ammonia plant and the administration building 27 showed no statistical difference in symptom prevalence between the two groups (Table E-5). 28 Preshift measurement of FVC, FEV₁, and PEFR did not differ between urea plant and ammonia plant 29 30 workers. Significant cross-shift reductions in FVC and FEV_1 were reported in the urea plant (2 and 3%, respectively, $p \le 0.05$), but not in the ammonia plant. When controlled for current smoking, a 31 significant decrease in Δ FEV₁% was observed in the urea plant ($p \le 0.05$). Among 23 workers with 32 33 concurrent measurements of ammonia and lung function on the same shift, ammonia exposure was 34 correlated with a cross-shift decline in FEV_1 of 3.9% per unit of log-transformed ammonia concentration in ppm. EPA identified a NOAEL of 4.9 mg/m³ and a LOAEL of 18.5 mg/m³ in the 35 36 Rahman et al. (2007) study based on increased prevalence of respiratory symptoms and a decrease

37 in lung function.

38

Table E-5. Prevalence of respiratory symptoms and cross-shift changes in lung function among workers exposed to ammonia in a urea fertilizer factory

Parameter	Ammonia plant (4.9 mg/m³)ª	Urea plant (18.5 mg/m ³) ^a	Administration building (concentration not determined) ^b
Respiratory symptom	15		•
Cough	4/24 (17%) ^c	18/64 (28%)*	2/25 (8%)
Chest tightness	4/24 (17%)	21/64 (33%)*	2/25 (8%)
Stuffy nose	3/24 (12%)	10/64 (16%)	1/25 (4%)
Runny nose	1/24 (4%)	10/64 (16%)	1/25 (4%)
Sneeze	0/24 (0%)	14/64 (22%)	2/25 (8%)
Lung function param	eters (cross-shift percentage c	hange) ^{d,e}	
FVC	0.2 ± 9.3 (Pre-shift: 3.308; Post-shift: 3.332)	-2.3 ± 8.8 (Pre-shift: 3.362; Post-shift: 3.258)	No data
FEV ₁	3.4 ± 13.3 (Pre-shift: 2.627; Postshift: 2.705)	-1.4 ± 8.9 (Pre-shift: 2.701; Post-shift: 2.646)	No data
PEFR	2.9 ± 11.1 (Pre-shift: 8.081; Post-shift: 8.313)	-1.0 ± 16.2 (Pre-shift: 7.805; Post-shift: 7.810)	No data

^aMean ammonia concentrations measured by the Dräger PAC III method.

^bConcentrations in the administration building were rejected by study authors due to relatively large drift in the zero levels.

^cValues are presented as incidence (prevalence expressed as a percentage).

^dCalculated as ([postshift - preshift]/preshift) × 100.

 $^{\rm e}$ Values are presented as mean \pm standard deviation (SD).

*Statistically significant ($p \le 0.05$) by Fisher's exact test, comparing exposed workers to administrators.

Source: Rahman et al. (2007).

1

2 Bhat and Ramaswamy (1993)

3 A cross-sectional study of workers exposed to fertilizer chemicals in a plant in Mangalore, India

4 (<u>Bhat and Ramaswamy, 1993</u>) showed significant reduction in lung function parameters

5 (PEFR/min and FEV₁) compared to a control group. The exposed group consisted of 91 workers

6 who underwent lung function testing, and included 30 urea plant workers, 30 diammonium

7 phosphate (DAP) plant workers, and 31 ammonia plant workers. The controls were a group of 68

- 8 people having comparable body surface area and were chosen from the same socioeconomic status
- 9 and sex. All smokers were excluded from the study to avoid the effect of smoking on lung function.
- 10 Other workplace exposures were not assessed. The duration of exposure was dichotomized into
- 11 two groups (≤ 10 and >10 years), but no exposure measurements were made.

Lung function parameters (FVC, FEV₁, and PEFR/minute) were measured by a standard

13 spirometry protocol for all workers in the study, and the highest of three replicates were retained

- 1 for calculation. A comparison of FVC, FEV₁, and PEFR/minute was made between controls and
- 2 fertilizer workers as a whole and also between controls and urea workers, DAP workers, and
- 3 ammonia workers individually. The ammonia plant workers showed a significant decrease in FEV₁
- 4 (p < 0.05) and PERF/minute (p < 0.001) when compared to controls, but no significant decrease in
- 5 FVC (Table E-6). PEFR/minute, a measure of airflow in the bronchi, was reduced in all plant
- 6 workers (urea, DAP, and ammonia), indicating that these fertilizer chemicals affected the larger
- 7 airways. The reduction of FEV₁, a measure of the amount of air that can be exhaled in 1 second, in
- 8 ammonia plant workers suggested that ammonia can enter into the smaller bronchioles and cause
- 9 bronchospasm. NOAEL and LOAEL values were not identified by the authors of this study or by
- 10 EPA due to the lack of exposure concentration measurements in this study.
- 11

Table E-6. Comparison of lung function parameters in ammonia plantworkers with controls

	Controls (n = 68)	Ammonia Plant (n = 31)
Parameter	(mean ± standard error)	(mean ± standard error)
FVC	3.43 ± 0.21	3.19 ± 0.07
FEV ₁	2.84 ± 0.10	2.52 ± 0.1*
PEFR/min	383.3 ± 7.6	314 ± 19.9**

*Significantly different from controls (p < 0.05); paired t-test. **Significantly different from controls (p < 0.001); paired t-test.

Source: Bhat and Ramaswamy (1993).

12

13 E.2.2. Studies in Livestock Farmers Exposed to Inhaled Ammonia

- 14 Several studies have investigated respiratory health and other outcomes in livestock
- 15 farmers exposed to ammonia. These and other studies have also demonstrated respiratory effects
- associated with exposure to other constituents in farm worker air (e.g., respirable dust, endotoxin).
- Ammonia exposure was associated with a decrease in lung function measures in five of the seven
- 18 studies (Monsó et al., 2004; Donham et al., 2000; Reynolds et al., 1996; Donham et al., 1995; Preller
- 19 <u>et al., 1995; Zeida et al., 1994; Heederik et al., 1990</u>) examining this outcome (Table E-7). These five
- 20 studies controlled for co-exposures (e.g., endotoxin, dust, disinfectants) (<u>Reynolds et al., 1996</u>;
- 21 <u>Donham et al., 1995; Preller et al., 1995</u>), noted only weak correlations (i.e., Spearman r < 0.20)
- 22 between ammonia and dust or endotoxin (<u>Donham et al., 2000</u>), or observed associations with
- ammonia but not with endotoxin or dust measures (<u>Heederik et al., 1990</u>), and are the studies EPA
- 24 considered to be methodologically strongest (see Literature Search Strategy | Study Selection and
- 25 Evaluation section). In summary, this set of studies provides relatively consistent evidence of an
- 26 association between ammonia exposure and reduced lung function among livestock farmers,
- 27 accounting for endotoxin and dust.
- 28 Some of these farm worker studies also included analyses of respiratory outcomes in 29 relation to exposure, based on ammonia measurements. The studies analyzing prevalence of

- 1 respiratory symptoms (including cough, phlegm, wheezing, chest tightness, and eye, nasal, and
- 2 throat irritation) in relation to ammonia provide generally negative results (<u>Melbostad and Eduard</u>,
- 3 <u>2001</u>; <u>Preller et al., 1995</u>; <u>Zejda et al., 1994</u>). Two other studies reported an increased prevalence of
- 4 respiratory symptoms in pig farmers (<u>Choudat et al., 1994; Crook et al., 1991</u>). The authors of these
- 5 studies measured air ammonia, but did not include a direct analysis of respiratory symptoms in
- 6 relation to ammonia (Table E-8).
- 7

Table E-7. Evidence pertaining to respiratory effects in humans in relation toammonia exposure in livestock farmers

Study de	esign and reference	Results			
Lung function					
Monsó et al. (2004)		COPD, Odds ratio (95% CI), by guartile of			
105 never-smoking farme	ers (84 males, 21 females) working	ammonia (1 [°]	st and 2 nd gr	roups = referent)	
inside animal confineme	nt buildings; sampled from the	ppm	OR	(95%CI)	
European Farmers' Study	r; mean age 45 yrs	0 to 10	1.0	(referent)	
Exposure: Area samples	(confinement building, morning)	>10–17	0.73	(0.17, 3.20)	
	Median	>17-60	1.32	(0.34, 5.12)	
ammonia	10 ppm (7 mg/m ³)	Adjusted for	age, gende	er, types of farming	
total dust	5.6 mg/m ³	Monsó et al. (<u>2004</u>)		
total endotoxin	687.1 units/m ³				
Outcome: Lung function	(standard spirometry, before and				
after shift; chronic obstru	active pulmonary disease (COPD)				
defined as $FEV_1 < 70$ (n =	18; 17%).				
Donham et al. (2000) (Ur	nited States, Iowa)	OR (95%CI) f	or 3% or gr	reater cross-shift	
257 poultry workers (30%	6 women, 70% men); 150 controls	decline in FEV ₁ , by quartile of ammonia			
(42% women, 58% men	; postal workers and electronics	ppm	OR	(95%CI)	
plant)		>0 to ≤5	1.88	(0.68, 5.14)	
Exposure: Personal samp	oles (workshift)	5 to ≤12	1.93	(0.72, 5.17)	
	Mean	12 to ≤25	4.25	(1.60, 11.2)	
ammonia	18.4 ppm (13 mg/m ³)	>25	2.45	(0.88, 6.85)	
total dust	6.5 mg/m ³	Adjusted for a	age, years w	vorked in poultry industry,	
respirable dust	0.63 mg/m ³	gender, smok	ing status, o	education.	
total endotoxin	1,589 EU/m³ (0.16 μg/m³)	In linear regression, ammonia was statistically			
respirable endotoxin	58.9 EU/m³ (0.006 μg/m³)	significant predictor of 5% decline in FEF ₂₅₋₇₅ (p =			
Outcome: Lung function (standard spirometry, before and		0.045; Beta not reported)			
after work shift)		Correlations b	oetween an	nmonia and other exposures	
		relatively wea	ık (Spearma	an r < 0.20).	

Study des	sign and reference		R	esults
Reynolds et al. (1996) (Un	iited States, Iowa)	Correlatio	n between cro	ss-shift decline in FEV ₁ and
151 men ≥18 yrs of age er	nployed at swine farms and spent	ammonia:	Spearman r =	0.18 (p < 0.05); strongest for
time in swine confinemen	t buildings (mean years of	0-6 and 10	0-13 yrs duratio	on
employment = 12.4); a far	m comparison group	Predictive	model relating	g ammonia to cross-shift
(nonconfinement product	ion) was included (number not	change in	FEV ₁ develope	d at baseline was
given). Follow-up study of	Donham et al. (1995).	corrobora	ted by Time 2 (data; dust and endotoxin did
Exposure: Personal sampl	es (workshift)	not add to	the significant	ce of ammonia as predictor
	Geometric Mean (Time 2)		U	
ammonia	5.15 ppm (4 mg/m ³)			
total dust	3.45 mg/m^3			
respirable dust	0.26 mg/m^3			
total endotoxin	176.12 EU/m ³			
respirable	11.86 EU/m ³			
endotoxin				
Ammonia levels similar a	t time 1 (5.65 ppm), but total			
dust and respirable dust	higher at time 1 than time 2			
Outcome: Lung function (standard spirometry, before and			
after work shift at two tim	ies, two years apart (same season)			
Donham et al. (1995) (Uni	ited States Iowa)	Ammonia	was significant	predictor of cross-shift
201 man > 18 yrs of age employed at swine farms and spent		decline in	lung function (included with age duration
time in swine confinement huildings (mean years of		smoking t	total dust resp	irable dust and total
$c_{\rm intern}$ in switte commentent buildings (mean years of complexity) and $c_{\rm intern}$		endotovin	in the models	as well as interaction terms)
(nonconfinement product	ion) was included (number not		orrelations wer	as well as interaction terms)
(noncommentent product	iony was included (number not	lung funct	ion and exposi	re to total dust respirable
Evnosure: Dersonal sampl	oc.	dust rospi	irable endotox	in and ammonia: dust was
Exposure . Tersonal sampl	Geometric Mean	related to	all lung function	nn, and annhoma, dust was
ammonia	$5.64 \text{ ppm} (4 \text{ mg/m}^3)$	results mo	an lung luncuc	coss measures and duration
	$4 53 \text{ mg/m}^3$	strata_st	rongest for 7-0	a vrs duration): exposure to
respirable dust	0.23 mg/m^3	ammonia	concentration	$s \text{ of } >7.5 \text{ nnm} (5 \text{ mg/m}^3)$
total endotoxin	202.35 FII/m^3	were nred	lictive of a $>3\%$	decrease in FEV.
respirable endotoxin	16 59 EU/m ³	were preu		
Outcome: Lung function (standard spirometry before shift			
and then after a minimum	of 2 hrs of exposure)			
		Chara a (:[t]
Heederik et al. (1990) (Ne	thelands)	Change (mi) in cross-sn	Ift lung function per
27 pig farmers (mean age	of 29 yrs; 43% current smokers)	5 mg/m	Increase in am	(monia
Exposure: Area samples, u	te an individual exposure measure	51/0	Beta (SE)	(p-value)
of specific tasks to calcula	te an individual exposure measure	FVC	-3 (35)	
	$\Gamma_{\rm c} = 1000$		-112 (38)	(< 0.05)
ammonia total dust	5.6 mg/m		-330 (131)	(< 0.05)
total and at a win	1.57 IIIg/III		-170 (335)	
	24 IIg/III		-505 (300)	(< 0.05)
outcome: Lung function (Mondoy, Tuesday, and Friday)		-404 (215)	(< 0.05)
arter work shift, taken on	wonday, ruesuay, and Friday)	IVIEF ₂₅	-/U (1/9)	
		Results fro	om ruesday m	easures presented;
		other day	s reported to b	be similar patterns
		but not as	strong	ali na ang ang ang ang ang ang ang ang ang
		INO associa	ation between	aust or endotoxins with the
		lung funct	ion variables.	

Table E-7. Evidence pertaining to respiratory effects in humans in relation to ammonia exposure in livestock farmers

Table E-7. Evidence pertaining to respiratory effects in humans in relation to
ammonia exposure in livestock farmers

Study o	Study design and reference			Results			
Lung function and respi	iratory symptoms						
Preller et al. (1995) (Ne	therlands)	Association between ammonia and lung					
194 swine farmers (94 v	vith chronic respiratory symptoms,	function (n =	= 106)				
100 without symptoms)	; 106 with complete data for lung		Beta	(SE)	(p-value)		
function analysis.	function analysis.			(0.13)	(0.36)		
Exposure: Personal sam	ples (two workshifts; winter and	FEV_1 (I)	-0.27	(0.13)	(0.022)		
summer)		MMEF (l/s)	-0.68	(0.23)	(0002)		
	Mean	PEF (I/s)	-0.77	(0.43)	(0.039)		
ammonia	2 mg/m ³	Adjusted for	age, hei	ight, smo	king,		
total dust	2.7 mg/m^{3}	endotoxin, d	lisinfecti	on variab	les		
total endotoxin	112 ng/m ³	Stronger patte	erns see	n in symp	otomatic group (n =		
Long-term average exp	posure derived based on measured	55).					
values and model base	ed on farm characteristics and tasks	No association	n with re	espiratory	symptoms (chronic		
Outcome: Lung function	n (standard spirometry, single	cough, chroni	c phlegn	n, wheezi	ng, shortness of		
measure); standardized	questionnaire for respiratory	breath, chest	tightnes	ss)			
symptoms							
<u>Zejda et al. (1994</u>)		Correlation	coefficie	ents (Spea	arman r) with		
54 male swine producer	rs (mean age = 36.3 yrs; mean	ammonia					
duration of employmen	duration of employment = 10.7 yrs)				with hr/day		
Exposure: Area samples	5				interaction		
	Mean	FVC (% pred	icted)	0.18	-0.13		
ammonia	11.3 ppm (8 mg/m ³)	FEV ₁ (% pred	dicted)	0.18	-0.16		
total dust	2.93 mg/m ³	FEV ₁ /FVC		0.00	-0.06		
respirable dust	0.13 mg/m ³	FEF (% predi	cted)	0.08	-0.09		
total endotoxin	11,332 units/m ³	Adjusted for	age, he	eight, and	smoking		
Exposure measures cate	egorized into tertiles (cut-points						
10.2 and 12.7 ppm) for	some analyses.	Some symptoms associated with ammonia					
Outcome: Lung function	n (standard spirometry, single	exposure—hours/day interaction but it is difficult to					
measure); respiratory sy	mptoms-based on standardized	distinguish these effects from the other exposures					
questionnaire (cough, p	hlegm, chest wheeze, chest	and interactions in the analyses (particularly					
tightness)		endotoxin)					
Respiratory symptoms	(without lung function measures)	1					
Melbostad and Eduard	<u>(2001</u>)	Negative corr	elation (r = -0.64)	with total symptom		
Survey of 8,482 farmers	and spouses; exposure study	prevalence					
conducted in 102 farme	rs						
Exposure: personal sam	ples						
	Range						
ammonia	0 to 8.2 ppm (0–6 mg/m³)						
total dust	0.4–5.1 mg/m³						
total endotoxin	500–28000 EU/m ³						
fungal spores	0.02–2.0 10°/m ³						
bacteria	0.2–48 10°/m°						
Outcome: Respiratory s	ymptoms (standard questionnaire);						
eye, nose, and throat in	ritation, cough, chest tightness, and						
wheezing.							

EU = endotoxin unit (10 EU/ng)

¹

Subjects	Methods	Exposure conditions	Results	Reference
29 farm workers; 48 electronic factory workers (controls)	20 pig houses were monitored for dust and ammonia concentrations; respiratory symptoms were determined by questionnaire; lung function tests were performed; 24 subjects provided blood samples to determine IgE and IgG antibody levels No mention of controlling for dust and other airborne contaminant exposures in the statistical evaluation of ammonia	Mean airborne ammonia concentrations ranged from 1.5 to 13.23 ppm (1–9 mg/m ³) and mean dust concentrations ranged from approximately 2 to 21 mg/m ³ . Mean concentrations of airborne dust and ammonia increased significantly in winter due to restricted ventilation	Respiratory symptoms included chest tightness, wheeze, nasal and eye irritation (23/29 farm workers); 3/29 farm workers had impaired lung function (decreased FEV ₁ and FVC); 3 farmers had IgE antibodies to pig squames or urine; specific IgG antibodies were found in 14 workers to pig squames, and 9 to pig urine, suggesting an allergic response	<u>Crook et al.</u> (1991)
102 pig farmers (mean age 39.7 yrs; mean duration of employment of 15.7 yrs) who worked at least half-time in a swine confinement building; 51 male dairy farmers (mean age 40.1 yrs; mean duration of employment of 20.3 yrs) and 81 male dairy industry workers (controls; mean age 38.5 yrs; mean duration of employment of 15.7 yrs) The use of nonpig farmers as a reference group is debatable since they may be exposed to various airborne contaminants	Lung function tests were given to subjects before and after a methacholine challenge; respiratory symptoms were determined by questionnaire Co-exposures to other airborne contaminants not controlled for	Mean total dust level of 2.41 mg/m ³ ; mean airborne ammonia concentration of 8.5 mg/m ³ ; mean personal ammonia exposure of 3.23 mg/m ³ ; carbon dioxide—range of 1,000 to 5,000 ppm	Pig and dairy farmers had higher prevalence of reported cough and morning phlegm; bronchial hyperreactivity to methacholine was higher for pig and dairy farmers compared to controls	<u>Choudat et</u> <u>al. (1994</u>)

Table E-8. Studies of respiratory effects in livestock farmers without direct analysis of ammonia exposure

EU = endotoxin unit (10 EU/ng); MMEF = mean midexpiratory flow; COPD = chronic obstructive pulmonary disease.

2

1

3

1 E.2.3. Controlled Human Inhalation Exposure Studies

- Controlled exposure studies conducted with volunteers to evaluate irritation effects and
- 3 changes in lung function following acute inhalation exposure to ammonia are summarized in
- 4 Table E-9.
- 5

2

Table E-9. Controlled human exposure studies of ammonia inhalation

Subjects	Exposure conditions	Results	Reference
25 healthy volunteers (mean age 29.7 yrs), and 15 mild/moderate persistent asthmatic volunteers (mean age 29.1 yrs)	2–500 ppm (1–354 mg/m ³) (ocular and nasal exposure) for various durations lasting up to 2.5 hrs; baseline lung function was recorded prior to exposure	Irritation threshold, odor intensity, and annoyance were not significantly different between healthy volunteers and asthmatics; nasal irritation threshold = 129 ppm (91 mg/m ³); ocular irritation threshold = 175 ppm (124 mg/m ³); there were no changes in lung function (FEV ₁) for subjects in either group	<u>Petrova et al.</u> (2008) ⁶
24 healthy female volunteers age 18–45 yrs (mean age 29.9 yrs)	0.03–615.38 ppm (0.02– 435 mg/m ³) (nasal exposure) for a maximum of 2 sec; pre- exposure measurements included rhinoscopic exam, screening for chemical sensitivities, allergies, respiratory disease, general health, and prior chemical exposure by personal interview	Both the static and dynamic methods showed similar averages for detection thresholds for the odor and irritancy of ammonia; mean odor detection threshold of 2.6 ppm (2 mg/m ³) (both static and dynamic) and mean irritation thresholds of 31.7 or 60.9 ppm (22 or 43 mg/m ³) for static and dynamic methods, respectively	<u>Smeets et al.</u> (2007) ^b
43 healthy male volunteers age 21–47 yrs; one group of 30 men not familiar with the smell of ammonia and 10 men exposed to ammonia regularly at the workplace	0, 10, 20, 20 + 2 peak exposures at 40 and 50 ppm (0, 7, 14, 14 + 2 peak exposures at 28 and 35 mg/m ³) on 5 consecutive days for 4 hrs/d in an exposure chamber	Subjects familiar to ammonia reported fewer symptoms than naïve subjects; at concentrations ≤14 mg/m ³ , there were no significant differences in symptoms reported between the groups; the perceived intensity of symptoms was concentration-dependent in both groups	<u>Ihrig et al.</u> (2006) ⁶
12 healthy volunteers (7 females, 5 males) 21–28 yrs old	5 and 25 ppm (4 and 18 mg/m ³) for three separate exposures in inhalation chamber for 1.5 hrs resting and 1.5 hrs exercising on a stationary bike; 1–4 volunteers were exposed on each occasion; lung function and nasal lavage were performed before and after exposure	Reported discomfort in eyes, detection of solvent smell, headache, dizziness, and feeling of intoxication were significantly increased at 4 mg/m ³ ; there were no changes in lung function or exhaled nitric oxide levels in exposed individuals; exposure did not result in upper-airway inflammation or bronchial responsiveness	Sundblad et al. (2004) ^b

Subjects	Exposure conditions	Results	Reference
Six healthy volunteers (two males and four females, 25–45 yrs old) and eight volunteers with mild asthma (four males and four females, 18– 52 yrs old)	16–25 ppm (11–18 mg/m ³) for 30-min sessions with 1 wk between sessions; lung function was measured before and after exposure	No significant changes in lung function in healthy subjects at any concentration; decreased FEV ₁ and increased bronchial hyperreactivity were reported in asthmatics exposed to dust and ammonia, but not to ammonia alone; exposure to dust alone caused similar effects, suggesting that dust was responsible for the effects	<u>Sigurdarson et</u> <u>al. (2004</u>) ^b
Eight healthy male volunteers (23–28 yrs old)	Exposed for 4 hrs at 1-wk intervals to swine confinement buildings; mean airborne ammonia concentration of 20.7 ppm (15 mg/m ³); also exposed to airborne dust, bacteria, endotoxin, and molds	Decreased expiratory flows (FEV ₁), increased neutrophils in the nasal wash, and increased white blood cell count The relationship between environmental and human variables was evaluated. The only significant correlation ($r = 0.74$; $p <$ 0.04) was between ammonia and interleukin. Thus, changes in lung function may not be caused by ammonia exposure only.	<u>Cormier et al.</u> <u>(2000</u>)
Unspecified number of volunteer subjects	Acute exposure up to 15 sec, 1 time/d at unspecified concentrations; also a separate exposure of 10 inhaled breaths via mouthpiece at unspecified concentrations; there was no mention of pre-exposure examinations	The lachrymatory threshold was 55 ppm (39 mg/m ³) and bronchoconstriction was seen at 85 ppm (60.1 mg/m ³)	<u>Douglas and</u> <u>Coe (1987</u>) ^a
18 healthy servicemen volunteers, 18–39 yrs old	50–344 mg/m ³ for a half-day (session day 2); sessions on days 1 and 3 acted as controls; all volunteers underwent a preliminary examination prior to exposure	No effect at 71 mg/m ³ ; reduced expiratory minute volume at concentrations ranging from 106 to 235 mg/m ³ compared to controls (not dose-dependent); exercise tidal volume was increased at 106 mg/m ³ , but reduced at higher concentrations in a dose-dependent manner	<u>Cole et al.</u> (1977) ^b
Six male and female volunteers, 24–46 yrs old	25, 50, and 100 ppm (18, 35, and 71 mg/m ³) ammonia for 6 hrs/d, 1 time/wk over 6 wks; occasional brief exposure to 150–200 ppm (106–141 mg/m ³); there was no mention of pre-exposure examinations	Habituation to eye, nose, and throat irritation after 2–3 wks with short-term adaption; there were no significant differences for common biological indicators, physical exams, or in normal job performance when compared to control subjects; continuous exposure to 71 mg/m ³ became easily tolerated and had no effect on general health after acclimation occurred; brief exposure to 106–141 mg/m ³ produced lacrimation and transient discomfort	<u>Ferguson et al.</u> (1977) ^ª

Table E-9. Controlled human exposure studies of ammonia inhalation

Subjects	Exposure conditions	Results	Reference
15 volunteers, 18–53 yrs old	50, 80, 110, and 140 ppm (35, 57, 78, and 99 mg/m ³) for 2 hrs in an exposure chamber; there was no mention of preexposure examinations	No effect on vital capacity or FEV ₁ ; 99 mg/m ³ caused severe irritation and could not be tolerated; reported eye irritation increased with concentration	Verberk (1977) ^a
Seven male volunteers with an average age of 31 yrs	30, 50, and 90 ppm (21, 35, and 64 mg/m ³) for 10 min in an inhalation chamber; physical and neurological examinations were conducted prior to exposure	Increased eye erythema at 64 mg/m ³ compared to 21 and 35 mg/m ³ exposure; 64 mg/m ³ did not produce significant bronchiospasm or severe lacrimation; intensity of odor perception was reported as higher at 21 and 35 mg/m ³ than at 64 mg/m ³	<u>MacEwen et al.</u> (1970) ^b
Seven male volunteers	500 ppm (354 mg/m ³) for 30 min from masked breathing apparatus for nose and throat inhalation; there was no mention of preexposure examinations	Hyperventilation (50–250% increase above controls) characterized by increased breathing rate and expiratory minute volume (i.e., volume of air exhaled in 1 min); no coughing was induced, excessive lacrimation occurred in two subjects; two subjects reported nose and throat irritation that lasted 24 hrs after exposure; no changes were reported in nitrogen metabolism or in blood or urine urea, ammonia, or nonprotein nitrogen	<u>Silverman et al.</u> (<u>1949</u>) ^a

Table E-9.	Controlled human	1 exposure	studies of	f ammonia	inhalation
------------	-------------------------	------------	------------	-----------	------------

^aThis controlled-exposure study did not provide information on the human subjects research ethics procedures undertaken in the study; however, there is no evidence that the conduct of the research was fundamentally unethical or significantly deficient relative to the ethical standards prevailing at the time the research was conducted.

^bInvestigators reported the use of ethical standards involving informed consent by volunteers and/or study approval by an Institutional Review Board or other ethics committee.

1 2

Twelve healthy volunteers exposed to 4 and 18 mg/m³ ammonia on three different

- 3 occasions for 1.5 hours in an exposure chamber while exercising on a stationary bike reported
- 4 discomfort in the eyes and odor detection at 4 mg/m³ (<u>Sundblad et al., 2004</u>). Eye irritation was
- 5 also shown to increase in a concentration-dependent manner in 15 volunteers exposed to ammonia
- 6 for 2 hours in an exposure chamber at concentrations of 35, 57, 78, and 99 mg/m³; ammonia
- 7 concentrations of 99 mg/m³ caused severe and intolerable irritation (<u>Verberk, 1977</u>). The
- 8 lachrymatory threshold was determined to be 39 mg/m³ in volunteers exposed to ammonia gas
- 9 inside tight-fitting goggles for an acute duration of up to 15 seconds (<u>Douglas and Coe, 1987</u>). In
- 10 contrast, exposures to up to 64 mg/m³ ammonia gas did not produce severe lacrimation in seven
- volunteers after 10 minutes in an exposure chamber, although increased eye erythema was
- 12 reported (MacEwen et al., 1970). Exposure to 354 mg/m³ of ammonia gas for 30 minutes through a
- 13 masked nose and throat inhalation apparatus resulted in two of seven volunteers reporting
- 14 lacrimation and two of seven reporting nose and throat irritation that lasted up to 24 hours after

1 exposure (Silverman et al., 1949). 2 Petrova et al. (2008) investigated irritation threshold differences between 25 healthy volunteers and 15 mild-to-moderate persistent asthmatic volunteers exposed to ammonia via the 3 eyes and nose at concentrations of $1-354 \text{ mg/m}^3$ for durations lasting up to 2.5 hours. Irritation 4 threshold, odor intensity, and annoyance were not significantly different between the two groups. 5 The nasal and eye irritation thresholds were reported to be 91 and 124 mg/m³, respectively. 6 7 Smeets et al. (2007) investigated odor and irritation thresholds for ammonia vapor in 24 healthy female volunteers at concentrations of 0.02–435 mg/m³. This study found a mean odor detection 8 9 threshold of 2 mg/m³ and a mean irritation threshold of 22 or 43 mg/m³, depending on the olfactometry methodology followed (static versus dynamic, respectively). Irritation thresholds may 10 11 be higher in people who have had prior experience with ammonia exposure (Ihrig et al., 2006). Thirty male volunteers who had not experienced the smell of ammonia and 10 male volunteers who 12 had regular workplace exposure to ammonia were exposed to ammonia vapors at concentrations of 13 0, 7, 14, and 35 mg/m³ on 5 consecutive days (4 hours/day) in an exposure chamber; an additional 14 15 group was exposed to 14 mg/m³ plus two peak exposures to 28 mg/m³ for 30 minutes. Volunteers in the group familiar to the smell of ammonia reported fewer symptoms than the nonhabituated 16 17 group, but at a concentration of 14 mg/m^3 , there were no differences in perceived symptoms between the groups. However, the perceived intensity of symptoms was concentration-dependent 18 19 in both groups, but was only significant in the group of volunteers not familiar with ammonia exposure (<u>Ihrig et al., 2006</u>). Ferguson et al. (1977) reported habituation to eye, nose, and throat 20 irritation in six male and female volunteers after 2–3 weeks of exposure to ammonia concentrations 21 22 of 18, 35, and 71 mg/m³ during a 6-week study (6 hours/day, 1 time/week). Continuous exposure to even the highest concentration tested became easily tolerated with no general health effects 23 24 occurring after acclimation. Several studies evaluated lung functions following acute inhalation exposure to ammonia. 25 Volunteers exposed to ammonia (lung only) through a mouthpiece for 10 inhaled breaths of gas 26 experienced bronchioconstriction at a concentration of 60 mg/m^3 (Douglas and Coe, 1987); 27 28 however, there were no bronchial symptoms reported in seven volunteers exposed to ammonia at 29 concentrations of 21, 35, and 64 mg/m³ for 10 minutes in an exposure chamber (MacEwen et al., 30 <u>1970</u>). Similarly, 12 healthy volunteers exposed to ammonia on three separate occasions to 4 and 18 mg/m^3 for 1.5 hours in an exposure chamber while exercising on a stationary bike did not have 31 32 changes in bronchial responsiveness, upper airway inflammation, exhaled nitric oxide levels, or lung function as measured by vital capacity and FEV_1 (Sundblad et al., 2004). In another study, 33 34 18 healthy servicemen volunteers were placed in an exposure chamber for 3 consecutive half-day sessions. Exposure to ammonia at concentrations of 50–344 mg/m³ occurred on the second 35 36 session, with sessions 1 and 3 acting as controls (Cole et al., 1977). The no-effect concentration was determined to be 71 mg/m³. Exercise tidal volume was increased at 106 mg/m^3 , but then 37 decreased at higher concentrations in a concentration-dependent manner (Cole et al., 1977). 38 Decreased FEV₁ and FVC were reported in eight healthy male volunteers exposed to a mean 39

40 airborne ammonia concentration of 15 mg/m³ in swine confinement buildings for 4 hours at

1 1-week intervals; however, swine confinement buildings also include confounding exposures to

- 2 dust, bacteria, endotoxin, and molds, thereby making measurement of effects due to ammonia
- 3 uncertain in this study (<u>Cormier et al., 2000</u>).
- 4 Differences in lung function between healthy and asthmatic volunteers exposed to ammonia
- 5 were evaluated in several studies. There were no changes in lung function as measured by FEV₁ in
- 6 25 healthy volunteers and 15 mild/moderate persistent asthmatic volunteers after ocular and nasal
- exposure to 1–354 mg/m³ ammonia at durations lasting up to 2.5 hours (<u>Petrova et al., 2008</u>). In
- 8 another study, six healthy volunteers and eight mildly asthmatic volunteers were exposed to 11–
- 9 18 mg/m³ ammonia, ammonia and dust, and dust alone for 30-minute sessions, with 1 week
- 10 between sessions (<u>Sigurdarson et al., 2004</u>). There were no significant changes in lung function as
- measured by FEV_1 in the healthy volunteers for any exposure. A decrease in FEV_1 was reported in
- 12 asthmatics exposed to dust and ammonia, but not to ammonia alone; similarly, increased bronchial
- 13 hyperreactivity was reported in asthmatics after exposure to dust and ammonia, but not to
- 14 ammonia alone. Exposure to dust alone caused similar effects, suggesting that dust was responsible
- 15 for decreased lung function (<u>Sigurdarson et al., 2004</u>).

In summary, volunteer studies demonstrate that eye irritation can occur following acute exposure to ammonia at concentrations as low as 4 mg/m³. Irritation thresholds may be higher in people who have had prior experience with ammonia exposure, and habituation to eye, nose, and throat irritation occurs over time. Lung function was not affected in workers acutely exposed to ammonia concentrations as high as 71 mg/m³. Studies comparing the lung function of asthmatics and healthy volunteers exposed to ammonia do not suggest that asthmatics are more sensitive to the lung effects of ammonia.

23

24 E.2.4. Case Reports of Human Exposure to Ammonia

Oral exposure to ammonia most commonly involved ingestion of household cleaning 25 solutions or biting into the capsules of ammonia smelling salts, which are commonly found in first 26 27 aid kits. Young children, generally <4 years old, have been reported as "biting into" or ingesting 28 smelling salts capsules. The acute effects included drooling, erythematous and edematous lips, 29 reddened and blistered tongues, dysphagia, vomiting, and oropharyngeal burns (Robertson et al., 30 2010; Rosenbaum et al., 1998; Wason et al., 1990; Lopez et al., 1988). Delayed effects were not noted in these cases. Gilbert (1988) reported ammonia intoxication characterized by lethargy, 31 32 restlessness, irritability, and confusion in a 37-year-old man following surgery. Most other cases of 33 ammonia ingestion involved household cleaning solutions and detergents. Many cases were 34 intentional; however, not all were fatal. <u>Klein et al. (1985</u>) described two cases of ingestion of approximately 30 mL and "two gulps" of Parson's sudsy ammonia (ammonia 3.6%; pH 11.5), 35 36 respectively. The first case resulted in a white and blistered tongue and pharynx, and esophageal burns with friable, boggy mucosa; and in the second case, several small esophageal lesions with 37 mild to moderate ulceration and some bleeding were reported. There were no oropharyngeal 38 burns in the second case and no delayed complications in either case. Christesen (1995) reported 39 that of the 11 cases involving accidental or intentional ingestion of ammonia water by adults 40

1 (≥15 years old), 2 cases exhibited acute respiratory obstruction and 1 case developed an

2 esophageal stricture 3 months postinjury. In cases involving fatalities, evidence of laryngeal and

- 3 epiglottal edema, erythmatous esophagus with severe corrosive injury, and hemorrhagic esophago-
- 4 gastro-duodeno-enteritis was noted (<u>Klein et al., 1985</u>; <u>Klendshoj and Rejent, 1966</u>). <u>Dworkin et al.</u>
- 5 (2004) reported a case of ingestion of contaminated chicken tenders, prepared and served in a
- 6 school cafeteria, by approximately 157 students and 6 teachers. The onset of acute symptoms
- 7 occurred within an hour of ingestion, and included headache, nausea, vomiting, dizziness, diarrhea,
- 8 and burning mouth. In a case of forced ingestion of an unknown quantity of dilute ammonia (<u>Dilli et</u>
- 9 <u>al., 2005</u>), a 14-year-old boy presented with difficulty speaking, ataxic gait, isochoric pupils, and
- 10 evidence of brain edema. There were no burns to the eyes or mouth and no indication of gastric
- 11 pathology. It was only after the patient was able to communicate that ammonia was involved that
- 12 appropriate treatment, followed by a satisfactory outcome, was achieved. In general, these acute
- 13 gastrointestinal exposures produce effects that reflect the corrosive nature of ammonia. The
- relevance of these acute effects to effects associated with chronic low-level exposure to ammonia isunclear.
- 16 Inhalation is the most frequently reported route of exposure and cause of morbidity and
- 17 fatality, and often occurs in conjunction with dermal and ocular exposures. Acute effects from
- 18 inhalation have been reported to range from mild to severe, with mild symptoms consisting of nasal
- and throat irritation, sometimes with perceived tightness in the throat (<u>Price and Watts, 2008</u>;
- 20 Prudhomme et al., 1998; Weiser and Mackenroth, 1989; Yang et al., 1987; O'Kane, 1983; Ward et al.,
- 21 <u>1983; Caplin, 1941</u>). Moderate effects are described as moderate to severe pharyngitis;
- 22 tachycardia; frothy, often blood-stained sputum; moderate dyspnea; rapid, shallow breathing;
- 23 cyanosis; some vomiting; transient bronchospasm; edema and some evidence of burns to the lips
- and oral mucosa; and localized to general rhonchi in the lungs (<u>Weiser and Mackenroth, 1989</u>; <u>Yang</u>
- 25 <u>et al., 1987; O'Kane, 1983; Ward et al., 1983; Couturier et al., 1971; Caplin, 1941</u>). Severe effects
- 26 include second- and third-degree burns to the nasal passages, soft palate, posterior pharyngeal
- 27 wall, and larynx; upper airway obstruction; loss of consciousness; bronchospasm, dyspnea;
- 28 persistent, productive cough; bilateral diffuse rales and rhonchi; production of large amounts of
- 29 mucous; pulmonary edema; marked hypoxemia; local necrosis of the lung; deterioration of the
- 30 whole lung; and fatality. Delayed effects of acute exposure to high concentrations of ammonia
- 31 include bronchiectasis; bronchitis; bronchospasm/asthma; dyspnea upon exertion and chronic
- 32 productive cough; bronchiolitis; severe pulmonary insufficiency; and chronic obstructive
- 33 pulmonary disease (Lalić et al., 2009; Leduc et al., 1992; Bernstein and Bernstein, 1989; Flury et al.,
- 34 <u>1983; Ward et al., 1983; Stroud, 1981; Close et al., 1980; Taplin et al., 1976; Walton, 1973; Kass et</u>
- 35 <u>al., 1972; Slot, 1938</u>).
- Respiratory effects were also observed following chronic occupational exposure to ammonia. After 18 months and 1 year on the job, respectively, two men developed cough, chest tightness, and wheezing, typically after 2–6 hours from the beginning of each work day, but not on weekends or holidays. In another case, progressive deterioration of the clinical condition of a 68-year-old male was documented for 4 years, and development of diffuse interstitial and severe

1 restrictive lung disease was reported following long-term repetitive occupational exposure to

2 ammonia at or above the odor recognition level of 3–50 ppm (Brautbar et al., 2003). Lee et al.

3 (1993) reported a case of a 39-year-old man who developed occupational asthma 5 months after

4 beginning a job requiring the polishing of silverware. The room in which he worked was poorly

5 ventilated. The product used contained ammonia and isopropyl alcohol and the measured

6 ammonia concentration in the breathing zone when using this product was found to be 6-

7 11 mg/m³.

8 Acute dermal exposure to anhydrous (liquid) ammonia and ammonia vapor has resulted in

9 caustic burns of varying degrees to the skin and eyes. There are numerous reports of exposures

10 from direct contact with anhydrous ammonia in which first-, second-, and third-degree burns

11 occurred over as much as 50% of the total body surface (<u>Lalić et al., 2009</u>; <u>Pirjavec et al., 2009</u>;

12 <u>Arwood et al., 1985</u>). Frostbite injury has also been reported in conjunction with exposure to

13 sudden decompression of liquefied ammonia, which is typically stored at -33°F (<u>George et al., 2000</u>;

14 <u>Sotiropoulos et al., 1998; Arwood et al., 1985</u>). However, direct contact is not a prerequisite for

burn injury. Several reports have indicated that burns to the skin occurred with exposure to

ammonia gas or vapor. <u>Kass et al. (1972</u>) reported one woman with chemical burns to her

abdomen, left knee, and forearm and another with burns to the feet when exposed to anhydrous

18 ammonia gas released from a derailed train in the vicinity. Several victims at or near the scene of

an overturned truck that had been carrying 8,000 gallons of anhydrous ammonia were reported as

20 having second- and third-degree burns over exposed portions of the body (<u>Burns et al., 1985; Close</u>

21 <u>et al., 1980; Hatton et al., 1979</u>). In a case involving a refrigeration leak in a poorly ventilated room,

workers located in an adjacent room reported a "burning skin" sensation (<u>de la Hoz et al., 1996</u>),

23 while in another case involving the sudden release of ammonia from a pressure valve in a

refrigeration unit, one victim received burns to the leg and genitalia (<u>O'Kane, 1983</u>).

In addition to the skin, the eyes are particularly vulnerable to ammonia burns due to the highly water-soluble nature of the chemical and the ready dissociation of ammonium hydroxide to release hydroxyl ions. When ammonia or ammonia in solution has been splashed or sprayed into

the face (accidently or intentionally), immediate effects include temporary blindness,

29 blepharospasm, conjunctivitis, corneal burns, ulceration, edema, chemosis, and loss of corneal

30 epithelium (<u>George et al., 2000; Helmers et al., 1971; Highman, 1969; McGuiness, 1969; Levy et al.</u>

31 <u>1964; Abramovicz, 1925</u>). The long-term effects included photophobia, progressive loss of

32 sensation, formation of bilateral corneal opacities and cataracts, recurrent corneal ulcerations,

33 nonreactive pupil, and gradual loss of vision (<u>Yang et al., 1987</u>; <u>Kass et al., 1972</u>; <u>Helmers et al.</u>,

34 <u>1971; Highman, 1969; Osmond and Tallents, 1968; Levy et al., 1964; Abramovicz, 1925</u>). White et

35 <u>al. (2007</u>) reported a case with acute bilateral corneal injury that developed into bilateral uveitis

³⁶ with stromal vascularization and stromal haze and scarring, and pigmented keratic precipitates

37 that resulted in legal blindness. An increase in intraocular pressure, resembling acute-angle closure

38 glaucoma, was reported by <u>Highman (1969</u>) following ammonia intentionally sprayed into the eyes

39 during robbery attempts.

1 E.3. ANIMAL STUDIES

2 E.3.1. Oral Exposure

3 Hata et al. (1994)

In a study designed to look at the effects of ammonia on gastric mucosa histology and cell 4 kinetics, Hata et al. (1994) exposed groups of male Donryu rats (6 rats/group/time interval) to 5 drinking water containing 0, 0.02, or 0.1% ammonia for durations up to 24 weeks. Based on an 6 7 assumed body weight of 267 g and daily water intake of 37 mL (subchronic values for male 8 Sprague-Dawley rat (U.S. EPA, 1988)); the doses were estimated to be 0, 28, or 140 mg/kg-day. 9 After 1, 3, and 5 days and 1, 4, 8, 12, and 24 weeks from the start of exposure, the gastric mucosa in the fundic gland region and the antrum was examined histologically. In addition, the labeling index 10 11 of gastric mucosal tissue was measured using either a double labeling technique with 12 bromodeoxyuridine (BrDU) and 3H-thymidine (weeks 8 and 24) or the flash labeling technique 13 with BrDU (other weeks). A dose-related decrease in the height of the glandular ducts of the gastric mucosa was 14 15 observed in the fundic region (by week 4) and in the pyloric region (by week 8). There was a decrease in periodic acid-Schiff (PAS)-positive mucus only in the early stages of ammonia exposure 16 (through day 3 of exposure). The labeling index in gastric mucosa glands was increased at earlier 17 time points (up to week 1 for fundic glands and to week 4 for pyloric glands), indicating enhanced 18 cell cycling subsequent to repeated erosion and repair; however, at later time points up to 24 weeks 19 of exposure, the labeling index was decreased, consistent with reduced capability of the generative 20 21 cell zone of the mucosal region. The authors reported that there was no ammonia-induced gastritis 22 or ulceration. Based on histological changes in the gastric mucosa, EPA identified a LOAEL of 0.02% ammonia in drinking water; a NOAEL was not identified. 23

24

25 Kawano et al. (1991); Tsujii et al. (1993)

26 Kawano et al. (1991) investigated the hypothesis that the bacterium *Helicobacter pylori*, which produces a potent urease that increases ammonia production, plays a significant role in the 27 28 etiology of chronic atrophic gastritis. Male Sprague-Dawley rats (6/group) were given tap water or 29 0.01 or 0.1% ammonia ad libitum for 2 or 4 weeks. The daily dose of 0.01 and 0.1% ammonia in 30 drinking water, based on a weight of 230 g for male rats and a water consumption of 50 mL/day, was estimated to be 22 and 220 mg/kg-day, respectively. The effect of ammonia on the antral 31 32 mucosa was estimated by three measurements of the thickness of the mucosa about $175 \,\mu m$ from the pyloric ring in the antral mucosa. The parietal cell number per gland was determined at three 33 34 locations in the oxyntic glandular area. 35 Mucosal lesions were not observed macro- or microscopically. There was a statistically significant decrease in mean antral mucosal thickness with increasing dose and duration of 36

- 37 exposure (Table E-10). Parietal cell number per oxyntic gland decreased in a statistically
- 38 significant dose- and time-dependent fashion. The index of PAS Alician blue positive intracellular
- 39 mucin was significantly lower in the antral and body mucosa with 0.1% ammonia; the index was

- 1 significantly lower only for the antral mucosa with 0.01% ammonia. The authors suggested that
- 2 administration of ammonia in drinking water causes gastric mucosal atrophy. Based on the
- 3 reduction in antral mucosal thickness, EPA identified a LOAEL of 22 mg/kg-day; a NOAEL was not
- 4 identified.
- 5

Table E-10. Effect of ammonia in drinking water on the thickness of the gastric antral and body mucosa of the rat stomach

	Thickness of mucosa (μ m); mean ± standard error of the mean				
		Percent ammonia in drinking water			
Length of treatment	Control (tap water)	0.01%	0.1%		
Antral mucosa					
2 wks	270 ± 18	258 ± 22	217 ± 40*		
4 wks	276 ± 39	171 ± 22*	109 ± 12**'***		
Body mucosa					
2 wks	574 ± 116	568 ± 159	591 ± 183		
4 wks	618 ± 154	484 ± 123	440 ± 80*'***		

*Statistically significant by Student's t-test; (*p* < 0.05) versus control group.

**Statistically significant by Student's t-test; (p < 0.01) versus control group.

***Statistically significant by Student's t-test; (p < 0.01) versus 2-week treatment group.

Source: Kawano et al. (1991).

6

7 In a follow-up study of the effect of ammonia produced from *H. pylori*, <u>Tsujii et al. (1993</u>) 8 studied the subchronic effect of ammonia in drinking water on the cell kinetics of the gastric 9 mucosa of the stomach. Six groups of male Sprague-Dawley rats (36 rats/group) were given 0.01% ammonia in drinking water for 3 days, or 1, 2, 4, or 8 weeks; ammonia solutions were changed 10 daily. Tap water was provided for the balance of the 8-week study. A control group was given tap 11 water for 8 weeks. Based on the initial body weight (150 g) and estimated daily water intake 12 (50 mL), the daily dose at a drinking water concentration of 0.01% ammonia was estimated to be 13 14 33 mg/kg-day. Cellular migration was measured by labeling cells with BrDU at different time periods and measuring the incorporation of this modified nucleoside with a histochemical 15 16 technique using anti-BrDU monoclonal antibodies. Antral and body mucosa thickness was measured as described in <u>Kawano et al. (1991</u>). The measurement of cell proliferation in the 17 18 gastric mucosa was estimated using the labeling index in gastric pits (ratio of labeled nuclei to total 19 nuclei in the proliferation zone). 20 As in <u>Kawano et al. (1991</u>), no mucosal lesions were found macroscopically or

21 microscopically. The antral mucosal thickness decreased significantly at 4 and 8 weeks of

- treatment (Table E-11), but there was no effect on the body mucosa. Cell migration preceded the
- 23 decrease in thickness of the antral mucosa. The rate of cell migration (cells/day) toward the
- 24 mucosal surface was significantly greater for 0.01% ammonia-treated rats compared to the control

- 1 at 4 and 8 weeks of treatment. Cell proliferation, as estimated from the labeling index, was
- 2 significantly increased after 1 week for the antral and body mucosa. The authors concluded that
- 3 0.01% ammonia increased epithelial cell migration in the antrum leading to mucosal atrophy. EPA
- 4 identified a LOAEL of 33 mg/kg-day based on decreased thickness of the gastric antrum; a NOAEL
- 5 was not identified.
- 6

Table E-11. Effect of ammonia in drinking water on gastric antral and body mucosa in the stomach of Sprague-Dawley rats administered 0.01% ammonia in drinking water

	Thickness of mucosa (μm) ^a				
Length of treatment	Antral mucosa	Body mucosa			
Control (tap water only)	283 ± 26	534 ± 27			
3 d	305 ± 45	559 ± 50			
1 wk	272 ± 31	542 ± 28			
2 wks	299 ± 26	555 ± 37			
4 wks	159 ± 29*	531 ± 32			
8 wks	168 ± 26*	508 ± 29			

^aExtracted from Figure 3 of <u>Tsujii et al. (1993</u>); mean ± SD.

*Statistically significant by Student's t-test. (p < 0.05) versus control (tap water only) group.

Source: Tsujii et al. (1993).

7

8 <u>Fazekas (1939</u>)

9 Fazekas (1939) administered ammonium hydroxide to 51 rabbits (strain and sex not 10 specified) via gavage every other day initially and, later, daily in increasing amounts of 50–80 mL as 11 either a 0.5 or 1.0% solution. The exact duration of the study is not reported, but it is clear from the 12 data that by the end of the experiment, some rabbits received only three or four doses before dying as a result of intoxication in 5.5 days, and other rabbits received over 80 doses and survived for up 13 to 17 months. The daily dose (mg/kg-day) was estimated using the weight of adult rabbits from 14 standard growth curve for rabbits (3.5–4.1 kg) (U.S. EPA, 1988). Based on a daily gavage volume of 15 50–80 mL, daily doses for the rabbits receiving 0.5 and 1.0% ammonia solutions were 16 17 approximately 61–110 and 120–230 mg/kg-day, respectively. Toxicological endpoints evaluated 18 included fluctuations in body weights, changes in blood pressure measured at the central artery of 19 the ear in 10 rabbits after lengthy treatment, and changes in the weight, fat, and cholesterol content 20 of adrenals. For comparison purposes, the weight of the adrenals from 41 healthy rabbits of similar 21 age and body weight were also determined. The average weight of adrenals from these 41 control 22 rabbits was 400.0 ± 13.4 mg.

- 23 <u>Fazekas (1939)</u> reported that differences in mean adrenal weight in ammonium hydroxide-24 treated animals were significant, although there was no description of the statistical analysis 25 performed in this study. Chemical analysis and the advances from treated relation of the statistical analysis
- 25 performed in this study. Chemical evaluation of the adrenals from treated rabbits revealed fat and

- 1 cholesterol content 4.5 and 6.5 times greater than controls, respectively. At the beginning of the
- 2 experiment, a greater weight loss was observed among those rabbits receiving ammonium
- 3 hydroxide more frequently (daily) at higher doses. Body weights fluctuated among treated rabbits
- 4 and generally decreased initially and gradually increased in the later months, only to drop again a
- 5 few weeks before death. Body weights for controls were not reported. Thirteen rabbits exhibited
- 6 weight increases after the initial loss that persisted until the end of the experiment. Dissection of
- 7 these rabbits revealed enlarged adrenals (800–1,340 mg) and fatty tissue surrounding the kidneys,
- 8 mesentery, and pericardium. This fat accumulation was not observed in untreated controls.
- 9 Histology revealed enlarged cells of the zona fasciculata of the adrenal cortex that were rich in lipid.
- 10 The blood pressure of rabbits before dosing ranged from 60 to 74 mm Hg and dropped with initial
- exposure (during the first 5–10 minutes that lasted up to 7 hours) to 20–30 mm Hg. Following
- 12 several months of ammonium hydroxide treatment, a moderate elevation in blood pressure of 10–
- 13 30 mm Hg was found in 8/10 rabbits. In the other two rabbits, the blood pressure increased from
- 14 the initial values of 62 and 65–90 mm Hg during the first 7 months of treatment and remained
- 15 almost unchanged at this level until sacrifice.
- In summary, Fazekas (1939) concluded that initial decreases in blood pressure and effects of emaciation in rabbits following gavage treatment with ammonium hydroxide is associated with the hypofunction of the cortical or medullary substance of the adrenal gland. The authors also concluded that the subsequent increases in blood pressure and body weight could be attributed to hypertrophy of the adrenal cortex. This study is limited by lack of reporting detail and inadequate study design. EPA did not identify a NOAEL or LOAEL from this study.
- 22

23 <u>Toth (1972</u>)

24 Toth (1972) evaluated whether hydrazine, methylhydrazines, and ammonium hydroxide play a role in tumorigenesis in mice. Solutions of hydrazine (0.001%), methyl hydrazine (0.01%), 25 methyl hydrazine sulfate (0.001%), and ammonium hydroxide (0.1, 0.2, and 0.3%) were 26 27 administered continuously in the drinking water of 5- and 6-week-old randomly bred Swiss mice 28 (50/sex) for their entire lifetime. For ammonium hydroxide, the study authors reported the average daily drinking water intakes for the 0.1, 0.2, and 0.3% groups as 9.2, 8.2, and 6.5 mL/day 29 30 for males, respectively, and 8.3, 6.5, and 4.8 mL/day for females, respectively. Given these rates and assuming average default body weights of 37.3 and 35.3 g for males and females, respectively (U.S. 31 32 EPA, 1988), the approximate continuous doses for ammonium hydroxide are 250, 440, and 520 mg/kg-day for males and 240, 370, and 410 mg/kg-day for females. Additionally, groups of 33 34 C3H mice (40/sex) were exposed to ammonium hydroxide in the drinking water at a concentration of 0.1% for their lifetime. Average daily water consumption for these mice was reported as 7.9 and 35 36 8.4 mL/day for males and females, respectively. The approximate equivalent doses for these mice assuming the same default body weights as above (U.S. EPA, 1988) are 191 and 214 mg/kg-day for 37 males and females, respectively. Data were not reported for a concurrent control group. Mice were 38 monitored weekly for changes in body weights, and gross pathological changes were recorded. The 39 animals were either allowed to die or were killed when found in poor condition. Complete 40

- 1 necropsies were performed on all mice, and the liver, kidney, spleen, lung, and organs with gross
- 2 lesions were processed for histopathological examination. Data on body weights were not
- 3 reported.
- 4 For Swiss mice, tumor incidence at the 0.3% ammonium hydroxide concentration was as
- 5 follows: malignant lymphomas: 3/50 (males), 9/50 (females); and lung adenoma or
- 6 adenocarcinoma: 7/50 (males), 4/50 (females). Tumor incidence at the 0.2% ammonium
- 7 hydroxide concentration was: malignant lymphomas: 7/50 (males), 10/50 (females); lung adenoma
- 8 or adenocarcinoma: 5/50 (males), 8/50 (females); and breast tumors: 4/50 (females). Tumor
- 9 incidence at the 0.1% ammonium hydroxide concentration was: malignant lymphomas:
- 4/50 (males), 10/50 (females); lung adenoma or adenocarcinoma: 5/50 (males), 12/50 (females);
- and breast tumors: 1/50 (females). The denominators were not adjusted for survival, and
- 12 concurrent control data were not provided. For a second strain of mice (C3H) that received 0.1%
- 13 ammonium hydroxide in drinking water, the incidence of adenocarcinomas of the mammary gland
- in female mice was 60%. The incidence of breast tumors in the corresponding untreated control
- 15 mice was 76%. Other tumors were identified in treated mice, but were of low incidence. <u>Toth</u>
- 16 (1972) concluded that ammonium hydroxide was not carcinogenic in either strain of mouse.
- 17 Because concurrent control tumor incidence was not provided other than the incidence of breast

18 tumors in C3H female mice, the incidence of tumors in treated mice cannot be independently

- 19 compared to control tumor incidence.
- 20

21 **Tsujii et al. (1995); Tsujii et al. (1992b)**

Tsujii et al. (1992b) and Tsujii et al. (1995) evaluated the role of ammonia in H. pylori-22 23 related gastric carcinogenesis. *H. pylori* is a bacterium that produces a potent urease, which 24 generates ammonia from urea in the stomach, and has been implicated in the development of gastric cancer. <u>Tsujii et al. (1992b</u>) and <u>Tsujii et al. (1995</u>) pretreated groups of 40–44 male 25 Sprague-Dawley rats with the initiator N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in the 26 drinking water for 24 weeks before administering 0.01% ammonium solution as a drinking fluid for 27 28 24 weeks. Based on an average body weight of 523 g for male Sprague-Dawley rats during chronic 29 exposure (U.S. EPA, 1988) and a reported water consumption rate of 0.05 L/day, the approximate 30 continuous dose administered to these rats is 10 mg/kg-day. In each study, an additional group of 40–43 rats given tap water for 24 weeks following pretreatment with MNNG served as controls. 31 32 The study protocol did not include a dose group that received ammonia only in drinking water. Stomachs from rats surviving beyond 45 weeks were examined histologically for evidence of ulcers, 33 34 lesions, and tumors. <u>Tsuiii et al. (1995)</u> also evaluated serum gastrin levels from blood collected at 30 and 46 weeks and mucosal cell proliferation in animals surviving to 48 weeks by calculating the 35 36 labeling index (percentage ratio of labeled nuclei to total number of nuclei in the proliferation zone) and the proliferation zone index (fraction of the gastric pit occupied by the proliferation zone). 37 Tsujii et al. (1992b) and Tsujii et al. (1995) observed a significantly greater incidence of 38 gastric cancers among rats receiving ammonia after pretreatment with MNNG compared to rats 39

40 receiving only MNNG and tap water (p < 0.01, χ^2 test). Seventy percent of MNNG+ammonia-treated

- 1 rats versus 31% of control rats developed gastric tumors in the first study (<u>Tsujii et al., 1992b</u>).
- 2 The number of gastric cancers per tumor-bearing rat in this study was 2.1 ± 1.4 among treated rats
- 3 and 1.3 ± 0.6 among control rats (p < 0.01, χ^2 test).
- 4 In the second study, 66% of rats dosed with ammonia and pretreated with MNNG developed
- 5 gastric cancers compared to 30% of the control rats (<u>Tsujii et al. (1995</u>). The numbers of gastric
- 6 tumors per rat in this study were also significantly higher among MNNG+ammonia-exposed rats
- 7 compared to controls (p < 0.001, Mann-Whitney test), suggesting that ammonia was a promoter. In
- 8 the absence of an ammonia-only treatment group, however, it is not possible to distinguish with
- 9 certainty between possible promotion and initiator activity. The degree of differentiation of
- 10 adenocarcinomas in control and ammonia-treated rats was significantly different. Ammonia-
- 11 treated rats also demonstrated a significantly higher incidence of larger tumors (5.3 mm compared
- 12 to 4.4 mm for controls) and of gastric cancers penetrating the muscularis propria or deeper
- 13 (p < 0.01, 22% compared to 12% of controls). In this study, the labeling index and the proliferation
- 14 zone index were statistically significantly elevated in ammonia-exposed rats compared to controls
- 15 in the fundic mucosa and antral mucosa.
- 16 <u>Tsujii et al. (1995</u>) explored the hypothesis that ammonia might increase intragastric pH,
- 17 leading to an increase in serum gastrin, a trophic hormone in the gastric fundus mucosa and a
- 18 possible proliferating factor in gastric epithelial cells. The investigators found no significant effects
- 19 on serum gastrin levels and concluded that serum gastrin does not appear to play a significant role
- 20 in ammonia-induced promotion.
- 21

22 E.3.2. Inhalation Exposure

23 Anderson et al. (1964)

24 Anderson et al. (1964) exposed a group of 10 guinea pigs (strain not given) and 10 Swiss albino mice of both sexes continuously to 20 ppm (14 mg/m³) ammonia vapors for up to 6 weeks 25 (anhydrous ammonia, purity not reported). Controls (number not specified) were maintained 26 27 under identical conditions except for the exposure to ammonia. An additional group of six guinea 28 pigs was exposed to 50 ppm (35 mg/m^3) for 6 weeks. The animals were observed daily for 29 abnormal signs or lesions. At termination, the mice and guinea pigs were sacrificed (two per group 30 at 1, 2, 3, 4, and 6 weeks of exposure), and selected tissues (lungs, trachea, turbinates, liver, and spleen) were examined for gross and microscopic pathological changes. No significant effects were 31 32 observed in animals exposed for up to 4 weeks, but exposure to 14 mg/m³ for 6 weeks caused darkening, edema, congestion, and hemorrhage in the lung. Exposure of guinea pigs to 35 mg/m^3 33 34 ammonia for 6 weeks caused grossly enlarged and congested spleens, congested livers and lungs, and pulmonary edema. 35

36

37 <u>Coon et al. (1970</u>)

<u>Coon et al. (1970</u>) exposed groups of male and female Sprague-Dawley and Long-Evans rats,
 male and female Princeton-derived guinea pigs, male New Zealand rabbits, male squirrel monkeys,
 and purebred male beagle dogs to 0, 155, or 770 mg/m³ ammonia for 8 hours/day, 5 days/week for

1 6 weeks (anhydrous ammonia, >99% pure). The investigators stated that a typical loaded chamber

2 contained 15 rats, 15 guinea pigs, 3 rabbits, 3 monkeys, and 2 dogs. Blood samples were taken

- 3 before and after the exposures for determination of hemoglobin concentration, packed erythrocyte
- 4 volume, and total leukocyte counts. Animals were routinely checked for clinical signs of toxicity. At
- 5 termination, sections of the heart, lung, liver, kidney, and spleen were processed for microscopic
- 6 examination in approximately half of the surviving rats and guinea pigs and all of the surviving dogs
- 7 and monkeys. Sections of the brain, spinal cord, and adrenals from dogs and monkeys were also
- 8 retained, as were sections of the thyroid from the dogs. The nasal passages were not examined in
- 9 this study.

Exposure to 155 mg/m^3 ammonia did not result in any deaths or adverse clinical signs of 10 11 toxicity in any of the animals. Hematological values were within normal limits for the laboratory and there were no significant gross alterations in the organs examined. Microscopic examination 12 showed evidence of focal pneumonitis in the lung of one of three monkeys. Exposure to 770 mg/m³ 13 14 caused initial mild to moderate lacrimation and dyspnea in rabbits and dogs. However, these 15 clinical signs disappeared by the second week of exposure. No significant alterations were observed in hematology tests or upon gross or microscopic examinations at the highest dose. 16 17 However, consistent nonspecific inflammatory changes (not further described) that were more extensive than in control animals (incidence not reported) were observed in the lungs from rats 18 19 and guinea pigs in the high-dose group.

<u>Coon et al. (1970</u>) also exposed rats (15–51/group) continuously to ammonia (anhydrous 20 ammonia, >99% pure) at 0, 40, 127, 262, 455, or 470 mg/m³ for 90-114 days. Fifteen guinea pigs, 21 22 three rabbits, two dogs, and three monkeys were also exposed continuously under similar conditions to ammonia at either 40 or 470 mg/m³. No significant effects were reported in any 23 24 animals exposed to 40 mg/m³ ammonia. Exposure of rats to 262 mg/m³ ammonia caused nasal discharge in 25%; nonspecific circulatory and degenerative changes in the lungs and kidneys were 25 26 also demonstrated (not further described, incidence not reported), which the authors stated were 27 difficult to relate to ammonia inhalation. A frank effect level at 455 mg/m³ was observed due to 28 high mortality in the rats (50/51). Thirty-two of 51 rats died by day 25 of exposure; no 29 histopathological examinations were conducted in these rats. Exposure to 470 mg/m³ caused death 30 in 13/15 rats and 4/15 guinea pigs and marked eye irritation in dogs and rabbits. Dogs experienced heavy lacrimation and nasal discharge, and corneal opacity was noted in rabbits. 31 32 Hematological values did not differ significantly from controls in animals exposed to 470 mg/m³ 33 ammonia. Histopathological evaluation of animals exposed to 470 mg/m³ consistently showed 34 focal or diffuse interstitial pneumonitis in all animals and alterations in the kidneys (calcification and proliferation of tubular epithelium), heart (myocardial fibrosis), and liver (fatty change) in 35 36 several animals of each species (incidence not reported). The study authors did not determine a NOAEL or LOAEL concentration from this study. EPA identified a NOAEL of 262 mg/m³ and a 37 LOAEL of 455 mg/m³ based on nonspecific inflammatory changes in the lungs and kidneys in rats 38 exposed to ammonia for 90 days. 39

1 **Stombaugh et al. (1969)**

Stombaugh et al. (1969) exposed groups of Duroc pigs (9/group) to measured

- 3 concentrations of 12, 61, 103, or 145 ppm ammonia (8, 43, 73, or 103 mg/m³) continuously for
- 4 5 weeks (anhydrous ammonia, purity not reported). Endpoints evaluated included clinical signs,
- 5 food consumption (measured 3 times/week), weight gain (measured weekly), and gross and
- 6 microscopic examination of the respiratory tract at termination. A control group was not included.
- 7 In general, exposure to ammonia reduced food consumption and body weight gain, but because a
- 8 control group was not used, it could not be determined whether this reduction was statistically
- 9 significant. Food efficiency (food consumed/kg body weight gain) was not affected. Exposure to
- $\geq 73 \text{ mg/m}^3$ ammonia appeared to cause excessive nasal, lacrimal, and mouth secretions and
- 11 increased the frequency of cough (incidence data for these effects were not reported). Examination
- 12 of the respiratory tract did not reveal any significant exposure-related alterations. The study
- 13 authors did not identify a NOAEL or LOAEL concentration from this study.
- 14

2

15 Doig and Willoughby (1971)

Doig and Willoughby (1971) exposed groups of six specific-pathogen-free derived Yorkshire 16 17 Landrace pigs to 0 or 100 ppm ammonia (0 or 71 mg/m³) continuously for up to 6 weeks. The mean concentration of ammonia in the control chamber was 8 ppm (6 mg/m^3). Additional groups 18 19 of pigs were exposed to similar levels of ammonia as well as to 0.3 mg/ft³ of ground corn dust to simulate conditions on commercial farms. Pigs were monitored daily for clinical signs and changes 20 in behavior. Initial and terminal body weights were measured to determine body weight gain 21 22 during the exposure period. Blood samples were collected prior to the start of each experiment and 23 at study termination for hematology (packed cell volume, white blood cell, differential leukocyte 24 percentage, and total serum lactate dehydrogenase). Two pigs (one exposed and one control) were necropsied at weekly intervals, and tracheal swabs for bacterial and fungal culture were taken. 25 26 Histological examination was conducted on tissue samples from the lung, trachea, and bronchial 27 lymph nodes. 28 During the first week of exposure, exposed pigs exhibited slight signs of conjunctival

- 29 irritation including photophobia and excessive lacrimation. These irritation effects were not
- 30 apparent beyond the first week. Measured air concentrations in the exposure chambers increased
- to more than 150 ppm (106 mg/m³) on two occasions. <u>Doig and Willoughby (1971</u>) reported that,
- 32 at this concentration, the signs of conjunctival irritation were more pronounced in all pigs. No
- 33 adverse effects on body weight gain were apparent. Hematological parameters and gross pathology
- 34 were comparable between exposed and control pigs. Histopathology revealed epithelial thickening
- in the trachea of exposed pigs and a corresponding decrease in the numbers of goblet cells (see
- Table E-12). Tracheal thickening was characterized by thinning and irregularity of the ciliated
- 37 brush border and an increased number of cell layers. Changes in bronchi and bronchioles,
- 38 characterized as lymphocytic cuffing, were comparable between exposed and control pigs.
- 39 Similarly, intraalveolar hemorrhage and lobular atelectasis were common findings in both exposed
- 40 and control pigs. Pigs exposed to both ammonia and dust exhibited similar reactions as those pigs

- 1 exposed only to ammonia, although initial signs of conjunctival irritation were more severe in these
- 2 pigs, and these pigs demonstrated lesions in the nasal epithelium similar to those observed in the
- 3 tracheal epithelium of pigs exposed only to ammonia.
- 4

	Thickness of tracheal epithelium (μm)		Number of tracheal goblet cells (per 500 μm)	
Duration of exposure (wks)	Control	$71 \text{ mg/m}^3 \text{ NH}_3$	Control	71 mg/m ³ NH₃
1	15.7	21.0	13.6	24.0
2	20.4	29.3	22.7	10.3
3	20.4	36.6	18.9	7.3
4	21.8	36.2	18.3	10.7
5	19.3	33.2	20.2	10.0
6	18.9	41.6	20.0	1.3
Mean ± SD	19.4 ± 2.1	32.9 ± 7.2	18.9 ± 3.0	10.6 ± 7.5

Table E-12. Summary of histological changes observed in pigs exposed to ammonia for 6 weeks

Source: Doig and Willoughby (1971).

5

Doig and Willoughby (1971) concluded that ammonia exposure at 71 mg/m³ may be
detrimental to young pigs. The authors suggested that although the structural damage to the upper
respiratory epithelium was slight, such changes may cause severe functional impairment. The
study authors did not identify a NOAEL or LOAEL concentration from this study. EPA identified a
LOAEL of 71 mg/m³ based on damage to the upper respiratory epithelium. A NOAEL could not be
identified from this single-concentration study.

12

13 Broderson et al. (1976)

Broderson et al. (1976) exposed groups of Sherman rats (5/sex/dose) continuously to 10 or 14 15 150 ppm ammonia (7 or 106 mg/m³, respectively) for 75 days (anhydrous ammonia, purity not reported). The 7 mg/m³ exposure level represented the background ammonia concentration 16 17 resulting from cage bedding that was changed 3 times/week. The 106 mg/m³ concentration resulted from cage bedding that was replaced occasionally, but never completely changed. F344 18 19 rats (6/sex/group) were exposed to ammonia in an inhalation chamber at concentrations of 0 or 20 250 ppm (177 mg/m³) continuously for 35 days. Rats were sacrificed at the end of the exposure 21 period, and tissues were prepared for histopathological examination of nasal passages, middle ear, 22 trachea, lungs, liver, kidneys, adrenal, pancreas, testicle, mediastinal lymph nodes, and spleen. Histopathological changes were observed in the nasal passage of rats exposed to 23 106 mg/m³ for 75 days (from bedding) or 177 mg/m³ for 35 days (inhalation chamber). Nasal 24 lesions were most extensive in the anterior portions of the nose compared with posterior sections 25 of the nasal cavity. The respiratory and olfactory mucosa was similarly affected with a three- to 26 fourfold increase in the thickness of the epithelium. Pyknotic nuclei and eosinophilic cytoplasm 27

1 were observed in epithelial cells located along the basement membrane. Epithelial cell hyperplasia

2 and formation of glandular crypts were observed, and neutrophils were located in the epithelial

- 3 layer, the lumina of submucosal glands, and the nasal passages. Dilation of small blood vessels and
- 4 edema were observed in the submucosa of affected areas. Collagen replacement of submucosal
- 5 glands and the presence of lymphocytes and neutrophils were also observed. No histopathological
- 6 alterations were seen in control rats (7 mg/m³ from bedding or 0 mg/m³ from the inhalation
- 7 chamber). <u>Broderson et al. (1976</u>) did not identify a NOAEL or LOAEL from this study. EPA
- 8 identified a NOAEL of 7 mg/m³ and a LOAEL of 106 mg/m³ based on nasal lesions in rats exposed to
- 9 ammonia (from bedding) for 75 days.
- 10

11 Gaafar et al. (1992)

Gaafar et al. (1992) exposed 50 adult male white albino mice under unspecified conditions 12 to ammonia vapor derived from a 12% ammonia solution (air concentrations were not reported) 13 for 15 minutes/day, 6 days/week for up to 8 weeks. Twenty-five additional mice served as 14 15 controls. Starting the fourth week, 10 exposed and 5 control mice were sacrificed weekly. Following sacrifice, the nasal mucosa was removed and examined histologically. Frozen sections of 16 17 the nasal mucosa were subjected to histochemical analysis (succinic dehydrogenase, nonspecific estrase, acid phosphatase, and alkaline phosphatase [ALP]). Histological examination revealed a 18 19 progression of changes in the nasal mucosa of exposed rats from the formation of crypts and irregular cell arrangements at 4 and 5 weeks; epithelial hyperplasia, patches of squamous 20 metaplasia, and loss of cilia at 6 weeks; and dysplasia in the nasal epithelium at 7 weeks. Similar 21 22 changes were exaggerated in the nasal mucosa of rats sacrificed at 8 weeks. Neoplastic changes 23 included a carcinoma in situ in the nostril of one rat sacrificed at 7 weeks, and an invasive 24 adenocarcinoma in one rat sacrificed at 8 weeks. Histochemical results revealed changes in succinic dehydrogenase, acid phosphatase, and ALP in exposed mice compared to controls 25 (magnitude of change not reported), especially in areas of the epithelium characterized by 26 dysplasia. Succinic dehydrogenase and acid phosphatase changes were largest in the superficial 27 layer of the epithelium, although the acid phosphatase reaction was stronger in the basal and 28 29 intermediate layers in areas of squamous metaplasia. The presence of ALP was greatest in the 30 goblet cells from the basal part of the epithelium and basement membrane. In summary, Gaafar et al. (1992) observed that ammonia exposure induces histological 31 32 changes in the nasal mucosa of male mice that increase in severity over longer exposure periods. Corresponding abnormalities in histochemistry suggest altered cell metabolism and energy 33 34 production, cell injury, cell proliferation, and possible chronic inflammation and neoplastic transformation. The study authors did not determine a NOAEL or LOAEL concentration from this 35 36 study. EPA did not identify a NOAEL or LOAEL because air concentrations were not reported in the study. 37

38

1 **Done et al. (2005)**

2 Done et al. (2005) continuously exposed groups of 24 weaned pigs of several breeds in an

3 experimental facility to atmospheric ammonia at 0, 0.6, 10, 18.8, or 37 ppm (0, 0.4, 7, 13.3, or

4 26 mg/m³) and 1.2, 2.7, 5.1, or 9.9 mg/m³ inhalable dust for 5 weeks (16 treatment combinations).

- 5 The concentrations of ammonia and dust used were representative of those found commercially. A
- 6 split-plot design was used in which one dust concentration was allocated to a "batch" (which
- 7 involved five lots of 24 pigs each) and the four ammonia concentrations were allocated to the four
- 8 lots within that batch. The fifth lot served as a control. Each batch was replicated.
- 9

 $2 \times [4 \text{ dust concentrations } \times 4 \text{ ammonia concentrations } + 4 \text{ controls}] = 40 \text{ lots total}$

10

In total, 960 pigs (460 males and 500 females) were used in the study; 560 pigs were given postmortem examinations. Blood was collected from 15 sows before the start of the experiment and tested for porcine reproductive and respiratory syndrome virus and swine influenza. Five sentinel pigs were sacrificed at the start of each batch, and lung, nasal cavity, and trachea, together with material from any lesions, were examined postmortem and subjected to bacteriological examination.

Postmortem examination involved examination of the pigs' external surfaces for condition 17 18 and abnormalities, examination of the abdomen for peritonitis and lymph node size, internal gross examination of the stomach for abnormalities, and gross examination of the nasal turbinates, 19 thorax, larynx, trachea, tracheobronchial lymph nodes, and lung. Pigs were monitored for clinical 20 signs (daily), growth rate, feed consumption, and feed conversion efficiency (frequency of 21 observations not specified). After 37 days of exposure, eight pigs from each lot were sacrificed. 22 23 Swabs of the nasal cavity and trachea were taken immediately after death for microbiological analysis, and the pigs were grossly examined postmortem. On day 42, the remaining pigs were 24 removed from the exposure facility and transferred to a naturally ventilated building for a recovery 25 period of 2 weeks. Six pigs from each lot were assessed for evidence of recovery and the remaining 26 27 10 pigs were sacrificed and examined postmortem.

28 The pigs in this study demonstrated signs of respiratory infection and disease common to 29 young pigs raised on a commercial farm (Done et al. (2005). The different concentrations of ammonia and dust did not have a significant effect on the pathological findings in pigs or on the 30 31 incidence of pathogens. In summary, exposure to ammonia and inhalable dust at concentrations 32 commonly found at pig farms was not associated with increase in the incidence of respiratory or 33 other disease. The study authors did not identify a NOAEL or LOAEL concentration from this study. EPA identified a NOAEL of 26 mg/m³, based on the lack of respiratory or other disease following 34 35 exposure to ammonia in the presence of respirable dust.

36

37 <u>Weatherby (1952</u>)

Weatherby (1952) exposed a group of 12 guinea pigs (strain not reported) to a target
 concentration of 170 ppm (120 mg/m³) 6 hours/day, 5 days/week for up to 18 weeks (anhydrous

1 ammonia, purity not reported). The actual concentration measured in the exposure chamber

- 2 varied between 140 ppm (99 mg/m³) and 200 ppm (141 mg/m³). A control group of six guinea
- 3 pigs was exposed to room air. All animals were weighed weekly. Interim sacrifices were conducted
- 4 at intervals of 6 weeks (four exposed and two control guinea pigs), and the heart, lungs, liver,
- 5 stomach and small intestine, spleen, kidneys, and adrenal glands were removed for microscopic
- 6 examination; the upper respiratory tract was not examined.
- 7 No exposure-related effects were observed in guinea pigs sacrificed after 6 or 12 weeks of
- 8 exposure. However, guinea pigs exposed to ammonia for 18 weeks showed considerable
- 9 congestion of the spleen, liver, and kidneys, and early degenerative changes in the adrenal gland.
- 10 The most severe changes occurred in the spleen and the least severe changes occurred in the liver.
- 11 The spleen of exposed guinea pigs contained a large amount of hemosiderin, and kidney tubules
- 12 showed cloudy swelling with precipitated albumin in the lumens and some urinary casts
- 13 (cylindrical structures indicative of disease). The incidence of histopathological lesions was not
- reported. EPA identified the ammonia concentration of 120 mg/m³ to be a LOAEL based on
- 15 congestion of the spleen, liver, and kidneys and early degenerative changes in the adrenal gland. A
- 16 NOAEL could not be identified in this single-concentration study.
- 17

18 *Curtis et al. (1975)*

- 19 Curtis et al. (1975) exposed groups of crossbred pigs (4–8/group) to 0, 50, or 75 ppm ammonia (0, 35, or 53 mg/m³) continuously for up to 109 days (anhydrous ammonia, >99.9%) 20 pure). Endpoints evaluated included clinical signs and body weight gain. At termination, all pigs 21 22 were subjected to a complete gross examination and representative tissues from the respiratory 23 tract, the eye and its associated structures, and the visceral organs (not specified) were taken for 24 subsequent microscopic examination. Weight gain was not significantly affected by exposure to ammonia, and the results of the evaluations of tissues and organs were unremarkable. The 25 turbinates, trachea, and lungs of all pigs were classified as normal. The study authors did not 26 27 identify a NOAEL or LOAEL from this study. EPA identified a NOAEL of 53 mg/m³ based on the 28 absence of effects occurring in pigs exposed to ammonia; a LOAEL was not identified from this 29 study.
- 30

31 E.3.3. Reproductive/Developmental Studies

32 Diekman et al. (1993)

- Diekman et al. (1993) reared 80 crossbred gilts (young female pigs) in a conventional grower from 2 to 4.5 months of age; pigs were exposed naturally during that time to *Mycoplasma hypopneumoniae* and *Pasteurella multocida*, which causes pneumonia and atrophic rhinitis, respectively. At 4.5 months of age, the pigs were transferred to environmentally regulated rooms where they were exposed continuously to a mean concentration of ammonia of 7 ppm (range, 4– 12 ppm) (5 mg/m³; range, 3–8.5 mg/m³) or 35 ppm (range, 26–45 ppm) (25 mg/m³; range, 18–
- 39 32 mg/m³) for 6 weeks (<u>Diekman et al., 1993</u>). A control group was not included in this study. The
- 40 low concentration of ammonia was obtained by the flushing of manure pits weekly and the higher

1 concentration of ammonia was maintained by adding anhydrous ammonia (purity not reported) to

2 manure pits that were not flushed. After 6 weeks of exposure, 20 gilts from each group were

- 3 sacrificed, and sections of the lungs and snout were examined for gross lesions. In addition, the
- 4 ovaries, uterus, and adrenal glands were weighed. The remaining 20 gilts/group were mated with
- 5 mature boars and continued being exposed to ammonia until gestation day 30, at which time they
- 6 were sacrificed. Fetuses were examined for viability, weight, and length, and the number of copora
- 7 lutea were counted.
- 8 Gilts exposed to 25 mg/m³ ammonia gained less weight than gilts exposed to 5 mg/m³
- 9 during the first 2 weeks of exposure (7% decrease, p < 0.01), but growth rate recovered thereafter.
- 10 Mean scores for lesions in the lungs and snout were not statistically different between the two
- 11 exposure groups, and there were no differences in the weight of the ovaries, uterus, and adrenals.
- 12 Age at puberty did not differ significantly between the two groups, but gilts exposed to 25 mg/m³
- 13 ammonia weighed 7% less (p < 0.05) at puberty than those exposed to 5 mg/m³. In gilts that were
- 14 mated, conception rates were similar between the two groups (94.1 versus 100% in low versus
- 15 high exposure, respectively). At sacrifice on day 30 of gestation, body weights were not
- 16 significantly different between the two groups. In addition, there were no significant differences
- between the two groups regarding percentage of lung tissue with lesions and mean snout grade.
- 18 Number of corpora lutea, number of live fetuses, and weight and length of the fetuses on day 30 of
- 19 gestation were not significantly different between treatment groups. <u>Diekman et al. (1993</u>) did not
- 20 identify NOAEL or LOAEL concentrations for maternal or fetal effects in this study. EPA did not
- 21 identify NOAEL or LOAEL values from this study due to the absence of a control group and due to
- 22 confounding exposures to bacterial and mycoplasm pathogens.
- 23

24 E.3.4. Acute and Short-term Inhalation Toxicity Studies

Table E-13 provides information on animal studies of acute and short-term inhalation
 exposure to ammonia.

Animal	Ammonia concentration (mg/m ³)	Duration	Parameters examined	Results	Reference
Rats					
Female Porton rats (16/group)	0 or 141	Continuous exposure for 4, 8, or 12 d	Histology of the trachea	 4 d: transitional-stratified appearance of the epithelium 8 d: gross change with disappearance of cilia and stratification on luminal surface 12 d: increased epithelial thickness 	<u>Gamble and Clough</u> (1976)
Male OFA rats (27/group)	0 or 354	Continuous exposure for 1– 8 wks	Body weight, organ weights, airway structure, cell population, alveolar macrophages	No deaths occurred; decreased food consumption and body weight gain; increased lung and kidney weights; at 3 wks, nasal irritation and upper respiratory tract inflammation, but no effect on lower airways; slight decrease in alveolar macrophages; no histopathological effects seen at 8 wks, suggesting adaptation to exposure	<u>Richard et al. (1978a</u>)
Male and female Wistar rats (5/sex/group)	9,898–37,825; no mention of control group	10, 20, 40, or 60 min	Clinical signs, pathology, LC ₅₀	Eye irritation, eye and nasal discharge, dyspnea; hemorrhagic lungs on necropsy; 10-min $LC_{50} = 28,492 \text{ mg/m}^3$ 20-min $LC_{50} = 20,217 \text{ mg/m}^3$ 40-min $LC_{50} = 14,352 \text{ mg/m}^3$ 60-min $LC_{50} = 11,736 \text{ mg/m}^3$	<u>Appelman et al.</u> (1982)
Male Crl:COBS CD Sprague-Dawley rats (8/group)	11, 23, 219, and 818; arterial blood collected prior to exposure served as control	24 hrs	Clinical signs, histology, blood pH, blood gas measurement	No clinical signs of toxicity, no histologic differences in tracheal or lung sections, no change in blood pH or pCO ₂ , minor changes in pO ₂	Schaerdel et al. (1983)
Male Crl:COBS CD Sprague-Dawley rats (14/group)	3, 17, 31, 117, and 505; arterial blood collected prior to exposure served as control	3 and 7 d	Hepatic cytochrome P450 content and ethylmorphine- N-demethylase activity	No dose-related change in P450 content or enzyme activity	Schaerdel et al. (1983)

Table E-13. Acute and short-term inhalation toxicity studies of ammonia in animals
	Ammonia				
Animal	concentration (mg/m ³)	Duration	Parameters	Results	Reference
Male Long-Evans rats (4/group)	70 and 212; results were compared to "control", but it was not clear if the authors were referring to historical or concurrent controls	6 hrs	Clinical signs, behavioral observation	Decreased running, decreased activity	<u>Tepper et al. (1985</u>)
Female Wistar rats (5/group)	0, 18, or 212	6 hrs/d for 5, 10, or 15 d	Blood ammonia, urea, glutamine, and pH; brain ammonia, glutamine; histopathology of lungs, heart, liver, and kidneys (light and electron microscopy)	Brain and blood glutamine increased; slight acidosis (i.e., decreased blood pH) at 212 mg/m ³ ; lung hemorrhage observed in some exposed rats	<u>Manninen et al.</u> (<u>1988</u>)
Female Wistar rats (5/group)	0, 18, or 212	6 hrs/d for 5 d	Plasma and brain ammonia and amino acid analysis	Increase in brain and plasma glutamine concentrations; increased brain/plasma ratio of threonine	<u>Manninen and</u> <u>Savolainen (1989</u>)
Female albino rats (8/group)	0, 848–1,068	3 hrs	Mortality, respiratory movement, and O_2 consumption	No deaths reported; inhibition of external respiration and decreased O ₂ consumption	<u>Rejniuk et al. (2007)</u>
Male Sprague- Dawley rats (number/group not given)	Air concentration not given; ammonia vapor added to inspiratory line of ventilator; controls exposed to same volume of room air	20 sec	Activity of upper thoracic spinal neurons	Lower airway irritation, activation of vagal pulmonary afferents and upper thoracic spinal neurons receiving pulmonary sympathetic input	<u>Qin et al. (2007a, b</u>)
Male rats (10/group)	0, 848–1,068 at the beginning and end of the exposure period	3 hrs	Oxygen consumption	Decreased O_2 consumption	<u>Rejniuk et al. (2008)</u>

Animal	Ammonia concentration (mg/m ³)	Duration	Parameters examined	Results	Reference
Male Wistar rats (4/group)	0, 92–1,243; the preexposure period was used as the control for each animal	45 min	Airway reflexes by the changes in respiratory patterns elicited by ammonia in either dry, steam-humidified, or aqueous aerosol- containing atmospheres	Ammonia-induced upper respiratory tract sensory irritation is not affected to any appreciable extent by wet atmospheres (with or without aerosol) up to 1,243 mg/m ³	<u>Li and Pauluhn (2010)</u>
Mice					
Mice (20/group, species, sex not specified)	6,080–7,070; no controls	10 min	LC ₅₀	LC ₅₀ = 7,056 mg/m ³	<u>Silver and McGrath</u> (1948)
Male Swiss albino mice (4/group)	5,050–20,199; no controls	30–120 min	LC ₅₀	LC ₅₀ (30 min) = 15,151 mg/m ³	<u>Hilado et al. (1977</u>)
Albino mice (sex not specified; 6/dose)	Air concentration not measured; results were compared to "control", but it was not clear if the authors were referring to historical or concurrent controls	Continuously for 2 or 5 d	Regional brain metabolism (cerebral cortex, cerebellum, brainstem); MAO, enzymes of glutamate and gamma- aminobutyric acid (GABA) metabolism, and (Na ⁺ -K ⁺)- ATPase; amino acid levels in the brain	Altered activities of MAO, glutamate decarboxylase, ALT, GABA-transaminase, and (Na ⁺ -K ⁺)-ATPase; increased alanine and decreased glutamate	<u>Sadasivudu et al.</u> (1979); <u>Sadasivudu</u> and Radha Krishna Murthy (1978)
Male Swiss-Webster mice (4/group)	Concentrations not given; baseline levels established prior to exposure	10 min	Reflex decrease in respiratory rate was used as an index of sensory irritation; RD_{50} = the concentration associated with a 50% decrease in the respiratory rate	RD ₅₀ = 214 mg/m ³	<u>Kane et al. (1979</u>)

Animal	Ammonia concentration (mg/m ³)	Duration	Parameters examined	Results	Reference
Male albino ICR mice (12/dose)	0–3,436	1 hr (14-d followup)	Clinical signs, body weight, organ weight, histopathology, LC ₅₀	Eye and nose irritation, dyspnea, ataxia, seizures, coma, and death; decreased body weight and increased liver to body weight ratio in mice surviving to 14 d; effects in the lung included focal pneumonitis, atelectasis, and intralveolar hemorrhage; liver effects included hepatocellular swelling and necrosis, vascular congestion; LC ₅₀ = 2,990 mg/m ³	<u>Kapeghian et al.</u> (1982)
Male Swiss-Webster mice (16–24/group)	0 or 216	6 hrs/d for 5 d	Respiratory tract histopathology	Lesions in the nasal respiratory epithelium (moderate inflammation, minimal necrosis, exfoliation, erosion, or ulceration); no lesions in trachea or lungs	<u>Buckley et al. (1984</u>)
Male albino ICR mice (12/dose)	0, 954, 3,097, or 3,323	4 hrs	Hexobarbitol sleeping time, microsomal protein content, liver microsomal enzyme activity	Increased hexobarbitol sleeping time (3,097 mg/m ³), increased microsomal protein content and aminopyrene-N-deethylase and aniline hydroxylase activities (3,323 mg/m ³)	<u>Kapeghian et al.</u> (1985)
Male albino ICR mice (12/dose)	0, 81, or 233	4 hrs/d for 4 d	Microsomal protein content, liver microsomal enzyme activity	No dose-dependent effects on microsomal enzymes	<u>Kapeghian et al.</u> (1985)
Male Swiss mice (6/dose)	71 and 212; data collected during the 2 d separating each ammonia exposure served as the control baseline	6 hrs	Clinical signs, behavioral observation	Decreased running, decreased activity	<u>Tepper et al. (1985</u>)
Mice (sex not specified; 4/group)	3, 21, 40, or 78, lowest measured concentration was the nominal control group	2 d	Responses to atmospheric ammonia in an environmental preference chamber with four chambers of different concentrations of ammonia	No distinguishable preference for, or aversion to, different ammonia concentrations	<u>Green et al. (2008</u>)

Animal	Ammonia concentration (mg/m ³)	Duration	Parameters examined	Results	Reference
Male OF1 mice (4/group)	0, 92–1,243; the preexposure period was used as the control for each animal	45 min	Airway reflexes by the changes in respiratory patterns elicited by ammonia in either dry, steam-humidified, or aqueous aerosol containing atmospheres	Ammonia-induced upper respiratory tract sensory irritation is not affected to any appreciable extent by wet atmospheres (with or without aerosol) up to 1,243 mg/m ³	<u>Li and Pauluhn (2010)</u>
Rabbits	·				
Female New Zealand White rabbits (7–9/dose)	0, 35, or 71	2.5–3.0 hrs	Lung function	Decreased respiratory rate at both concentrations	<u>Mayan and Merilan</u> (1972)
Rabbits (species, sex, number/dose not specified)	0, 707–14,140	15–180 min	Lung function, death	Bradycardia at 1,768 mg/m ³ ; arterial pressure variations and blood gas modifications (acidosis indicated by decreased pH and increased pCO ₂) at 3,535 mg/m ³ ; death occurred at 4,242 mg/m ³	<u>Richard et al. (1978b</u>)
New Zealand White rabbits (sex not specified; 16 total; 8/dose)	Peak concentrations: 24,745–27,573; concurrent controls tested	4 min	Lung function, heart rate, blood pressure, blood gases	Lung injury was evident after 2–3 min (decreased pO ₂ increased airway pressure)	<u>Sjöblom et al. (1999</u>)
Cats	•	•	•	•	•
Mixed breed stray cats (sex not specified; 5/group)	0 or 707	10 min	Lung function, lung histopathology on 1, 7, 21, and 35 d postexposure	Lung function deficits were correlated with lung histopathology; acute effects were followed by chronic respiratory dysfunction (secondary bronchitis, bronchiolitis, and bronchopneumonia)	Dodd and Gross (1980)

Animal	Ammonia concentration (mg/m ³)	Duration	Parameters examined	Results	Reference
Pigs				1	
Young pigs (sex not specified; 2/group)	0, 35, 71, or 106	Continuous exposure for 4 wks	Clinical signs, food consumption, body weight, gross necropsy, organ weight, histopathology	Lethargy and histopathological alterations in the tracheal and nasal epithelium were observed at 71 and 106 mg/m ³ ; decreased body weight occurred at all concentrations (7–19% decrease from control)	<u>Drummond et al.</u> (1980)
Male and female Belgian Landrace pigs (4/group)	0, 18, 35, or 71	6 d	Clinical signs, body weight, lung function	Lethargy and decreased body weight gain (all concentrations); no effect on lung microvascular hemodynamics and permeability	<u>Gustin et al. (1994</u>)
Belgian Landrace pigs (sex not specified; 4/group)	0, 18, 35, or 71	6 d	Clinical signs, body weight, neutrophil count, and albumin in nasal lavage fluid	Nasal irritation (increased neutrophils in nasal lavage fluid) and decreased body weight gain at all concentrations	<u>Urbain et al. (1994</u>)
Landrace-Yorkshire pigs (sex not specified; 4/group)	0 or 42	15 min/d for 8 wks	Thromboxane A2 (TXA2), leukotriene C4 (LTC4), and prostaglandin (PGI2) production	Significant increases in TXA2 and LTC4, no significant effect on PGI2 production	<u>Chaung et al. (2008</u>)
Hybrid gilts (White synthetic Pietrain, white Duroc, Landrace, Large White) (14 pigs/group)	<4 (control) or 14	15 wks	Salivary cortisol, adrenal morphometry, body weight, food conversion efficiency, general health scores, play behavior; reaction to light and noise intensity tested concurrently	Decreased salivary cortisol, larger adrenal cortices, less play behavior, no measurable impact on productivity or physiological parameters	<u>O'Connor et al. (2010</u>)

1 E.4. OTHER PERTINENT TOXICITY INFORMATION

2 Genotoxicity Studies

- 3 Information on in vitro and in vivo ammonia genotoxicity studies is presented in
- 4 Tables E-14 and E-15, respectively.
- 5

Table E-14. Summary of in vitro studies of ammonia genotoxicity

			Results ^b			
			Without	With		
Endpoint	Test system	Concentration ^a	activation	activation	Comments	Reference
Genotoxicity stu	idies in prokaryo	tic organisms				
Reverse mutation	Salmonella typhimurium (TA98, TA100, TA1535, TA1537, TA1538); Escherichia coli (WP2 uvrA)	25,000 ppm (17,675 mg/m ³) ammonia vapor	_	_ _	Plate incorporation assay with ammonia vapor	<u>Shimizu et</u> <u>al. (1985</u>)
Reverse mutation, streptomycin resistance	<i>E. coli</i> (B/SD-4 strains)	0.25% ammonia	+ (T) ^d	No data	Plate incorporation assay	<u>Demerec et</u> <u>al. (1951</u>)
Genotoxicity stu	ıdies in nonmamı	malian eukaryotid	c organisms			
Chromosomal aberrations	Chick fibroblasts	Not available	+	No data	Cultures immersed in buffered ammonia solution	<u>Rosenfeld</u> (1932)
Genotoxicity stu	ıdies in mammali	an systems				
DNA double strand breaks	Rabbit gastric mucosal or KATO III cells	0.1 mM NH_3 in solution	No data	-	15-min incubation with 0.1 mM ammonia	<u>Suzuki et</u> al. (1997)
DNA fragmentation	Rabbit gastric mucosal cells	0.1 mM NH_3 in solution	No data	-		<u>Suzuki et</u> al. (1997)
Chromatin condensation	Rabbit gastric mucosal or KATO III cells	0.1 mM NH_3 in solution	No data	_	15-min incubation with 0.1 mM ammonia	<u>Suzuki et</u> al. (1997)

			Res	ults ^b		
Endpoint	Test system	Concentration ^a	Without activation	With activation	Comments	Reference
DNA fragmentation	Gastric epithelial cell line MKN45	0.001 mM NH_3 in solution	No data	_e	5-hr incubation; cytoplasmic levels of mono- and oligonucleosomes measured	<u>Suzuki et</u> al. (1998)

Table E-14. Summary of in vitro studies of ammonia genotoxicity

^aLowest effective dose for positive results; highest dose tested for negative or equivocal results.

^b+ = positive; - = negative; (T) = toxicity reported.

^cExogenous metabolic activation used; S9 liver fractions from male Sprague-Dawley rats pretreated with pentachlorobiphenyl (KC500).

^dOnly positive in treatments using toxic levels of ammonia (98% lethality).

^eComparison was to elevated mono- and oligonucleosomes levels associated with monochloramine (NH₂Cl); control (untreated) value not reported.

1

Endpoint	Test system	Dose/ concentration ^a	Results ^b	Comments	Reference				
Genotoxicity studie	Genotoxicity studies in mammalian systems								
Chromosomal aberrations	Human lymphocytes	88.28 μg/m ³	+ ^c	22 healthy workers occupationally exposed	<u>Yadav and</u> Kaushik (1997)				
Sister chromatid exchange	Human lymphocytes	88.28 μg/m ³	+ ^c	to ammonia in an Indian fertilizer factory (ambient concentration of 0.0883 mg/m ³); 42 nonexposed factory staff served as control subjects	<u>Yadav and</u> <u>Kaushik (1997</u>)				
Micronucleus formation	Swiss albino mice	12.5–50 mg/kg	+	Intraperitoneal injections for 24–48-hr expression times	<u>Yadav and</u> Kaushik (1997)				
Sex-linked recessive lethal mutations	Drosophila melanogaster	Not available	— (T)	Inhalation exposure to ammonia as vapor at a concentration killing the majority of flies	<u>Auerbach and</u> <u>Robson (1947</u>)				
Dominant lethal mutations	D. melanogaster	Not available	— (T)	Inhalation exposure to ammonia as vapor at a concentration killing the majority of flies	<u>Auerbach and</u> <u>Robson (1947</u>)				
Dominant lethal mutations	D. melanogaster	Not available	+ (T) ^d	Dominant lethal assay; inhalation exposure up to 318 mg/m ³ ammonia, 6 hrs/d for 5 d	<u>Lobasov and</u> <u>Smirnov</u> (1934)				

Table E-15. Summary of in vivo studies of ammonia genotoxicity

^aLowest effective dose for positive results; highest dose tested for negative or equivocal results.

^b+ = positive; - = negative; (T) = toxicity reported.

^cFrequencies of chromosomal aberrations, sister chromatid exchanges, and mitotic index all increased with increased duration of exposure. This study is difficult to interpret because of small samples sizes and confounding factors of smoking and alcohol consumption. In addition, the levels of ammonia in the plant seemed low compared to other fertilizer plant studies (see, for example, Section 1.1; <u>Rahman et al., 2007; Ali et al., 2001; Ballal et al., 1998</u>); the accuracy and reliability of the sampling and measurement could not be determined.

^dSurvival after exposure was <2%.

APPENDIX F. DOCUMENTATION OF IMPLEMENTATION OF THE 2011 NATIONAL RESEARCH COUNCIL RECOMMENDATIONS

1 2 Background: On December 23, 2011, The Consolidated Appropriations Act, 2012, was 3 signed into law (U.S. Congress, 2011). The report language included direction to EPA for the 4 5 Integrated Risk Information System (IRIS) Program related to recommendations provided by the National Research Council (NRC) in their review of EPA's draft IRIS assessment of formaldehyde 6 7 (NRC, 2011). The report language included the following: 8 9 The Agency shall incorporate, as appropriate, based on chemical-specific data sets and biological effects, the recommendations of Chapter 7 of the National Research 10 Council's Review of the Environmental Protection Agency's Draft IRIS Assessment of 11 Formaldehyde into the IRIS process...For draft assessments released in fiscal year 12 2012, the Agency shall include documentation describing how the Chapter 7 13 recommendations of the National Academy of Sciences (NAS) have been 14 implemented or addressed, including an explanation for why certain 15 recommendations were not incorporated. 16 17 18 The NRC's recommendations, provided in Chapter 7 of the review report, offered 19 suggestions to EPA for improving the development of IRIS assessments. Consistent with the 20 direction provided by Congress, documentation of how the recommendations from Chapter 7 of the NRC report have been implemented in this assessment is provided in the tables below. Where 21 22 necessary, the documentation includes an explanation for why certain recommendations were not incorporated. 23 The IRIS Program's implementation of the NRC recommendations is following a phased 24 approach that is consistent with the NRC's "Roadmap for Revision" as described in Chapter 7 of the 25 formaldehyde review report. The NRC stated that, "the committee recognizes that the changes 26 27 suggested would involve a multi-year process and extensive effort by the staff at the National Center for Environmental Assessment and input and review by the EPA Science Advisory Board and 28 others." 29 30 Phase 1 of implementation has focused on a subset of the short-term recommendations, such as editing and streamlining documents, increasing transparency and clarity, and using more 31 tables, figures, and appendices to present information and data in assessments. Phase 1 also 32 focused on assessments near the end of the development process and close to final posting. The 33 34 IRIS ammonia assessment is the first in Phase 2 of implementation, which addresses all of the

- 1 short-term recommendations from Table F-1. The IRIS Program is implementing all of these
- 2 recommendations but recognizes that achieving full and robust implementation of certain
- 3 recommendations will be an evolving process with input and feedback from the public,
- 4 stakeholders, and external peer review committees. Chemical assessments in Phase 3 of
- 5 implementation will incorporate the longer-term recommendations made by the NRC as outlined
- 6 below in Table F-2, including the development of a standardized approach to describe the strength
- 7 of the evidence for noncancer effects. On May 16, 2012, EPA announced (U.S. EPA, 2012c) that as a
- 8 part of a review of the IRIS Program's assessment development process, the NRC will also review
- 9 current methods for weight-of-evidence analyses and recommend approaches for weighing
- scientific evidence for chemical hazard identification. This effort is included in Phase 3 of EPA's
- 11 implementation plan.
- 12
- 13

Table F-1. The EPA's implementation of the National Research Council's recommendations in the ammonia assessment

NRC recommendations that EPA is implementing in the short term	Implementation in the ammonia assessment
General recommendations for completing the IRIS form assessments (see p. 152)	aldehyde assessment that EPA will adopt for all IRIS
 To enhance the clarity of the document, the draft IRIS assessment needs rigorous editing to reduce the volume of text substantially and address redundancies and inconsistencies. Long descriptions of particular studies should be replaced with informative evidence tables. When study details are appropriate, they could be provided in appendices. 	Implemented. The overall document structure has been revised in consideration of this NRC recommendation. The new structure includes a concise Executive Summary and an explanation of the literature review search strategy, study selection criteria, and methods used to develop the assessment. The main body of the assessment has been reorganized into two sections, Hazard Identification and Dose-Response Analysis, to help reduce the volume of text and redundancies that were a part of the previous document structure. Section 1 provides evidence tables and a concise synthesis of hazard information organized by health effect. More detailed summaries of the most pertinent epidemiology and experimental animal studies are provided in Appendix E. Information on chemical and physical properties and toxicokinetics is now provided in Appendices B and E.1, respectively. The main text of the Toxicological Review is approximately 50 pages, which is a major reduction from previous IRIS assessments. Technical and scientific edits were performed to eliminate any redundancies or inconsistencies.

Table F-1. The EPA's implementation of the National Research Council's
recommendations in the ammonia assessment

	NRC recommendations that EPA is	
	implementing in the short term	Implementation in the ammonia assessment
2.	Chapter 1 needs to be expanded to describe more fully the methods of the assessment, including a description of search strategies used to identify studies with the exclusion and inclusion criteria articulated and a better description of the outcomes of the searches and clear descriptions of the weight-of-evidence approaches used for the various noncancer outcomes. The committee emphasizes that it is not recommending the addition of long descriptions of EPA guidelines to the introduction, but rather clear concise statements of criteria used to exclude, include, and advance studies for derivation of the RfCs and unit risk estimates.	Implemented. Chapter 1 has been replaced with a Preamble that describes the application of existing EPA guidance and the methods and criteria used in developing the assessment. The term "Preamble" was chosen to emphasize that these methods and criteria are being applied consistently across IRIS assessments. The new Preamble includes information on identifying and selecting pertinent studies, evaluating the quality of individual studies, weighing the overall evidence of each effect, selecting studies for derivation of toxicity values, and deriving toxicity values. These topics correspond directly to the five steps that the NRC identified in Figure 7-2 of their 2011 report. A new section, Literature Search Strategy Study Selection and Evaluation, provides detailed information on the search strategy used to identify health effect studies, search outcomes, and selection of studies for hazard identification; the complete search string is provided in Appendix D. This information is chemical-specific and has been designed to provide enough information that an independent literature search would be able to replicate the results. This section also includes information on how studies were selected to be included in the document and provides a link to EPA's Health and Environmental Research Online (HERO) database (www.epa.gov/hero) that contains the references that were cited in the document, along with those that were considered but not cited
3.	Standardized evidence tables for all health outcomes need to be developed. If there were appropriates tables, long text descriptions of studies could be moved to an appendix of deleted.	Implemented. In the new document template, standardized evidence tables that present key study findings that support how toxicological hazards are identified for all major health effects are provided in Section 1.1. More detailed summaries of the most pertinent epidemiology and experimental animal studies are provided in Appendix E.

Table F-1. The EPA's implementation of the National Research Council's recommendations in the ammonia assessment

	NRC recommendations that EPA is	Implementation in the ammonia according
╞	implementing in the short term	Implementation in the ammonia assessment
	All critical studies need to be thoroughly evaluated with standardized approaches that are clearly formulated and based on the type of research, for example, observational epidemiologic or animal bioassays. The findings of the reviews might be presented in tables to ensure transparency.	Partially implemented. Information in Section 4 of the Preamble provides an overview of the approach used to evaluate the quality of individual studies. The evaluation of epidemiology and animal studies of ammonia, including consideration of the extent to which studies were informative and relevant to the assessment, is provided in the Literature Search Strategy Study Selection and Evaluation section, and tables to support the evaluation of study quality for epidemiology studies are provided in Appendix D. Consistent with findings of the study quality review, study design information and results of ammonia studies are included in the evidence tables in Section 1.1. Additional information on study characteristics is found in Appendix E. Summaries of individual studies for ammonia are presented in text format only. EPA is developing standardized study summary tables that will replace written study summaries to clearly present more detailed study summary information and key study characteristics. As more rigorous systematic review processes are developed, they will be utilized in future assessments.
	5. The rationales for the selection of the studies that are advanced for consideration in calculating the RfCs and unit risks need to be expanded. All candidate RfCs should be evaluated together with the aid of graphic displays that incorporate selected information on attributes relevant to the database.	Implemented. The Dose-Response Analysis section of the new document structure provides a clear explanation of the rationale used to select and advance studies that were considered for calculating toxicity values. Rationales for the selection of studies advanced for reference value derivation are informed by the weight of evidence for hazard identification as discussed in Section 1.2. Graphical displays that describe the database (by health endpoint) are provided in Section 1. In the case of ammonia, the database did not support development of multiple candidate RfC's. Such values have been developed previously for other chemicals and will be developed in future assessments, where the data allow.
	5. Strengthened, more integrative, and more transparent discussions of weight of evidence are needed. The discussions would benefit from more rigorous and systematic coverage of the various determinants of weight of evidence, such as consistency.	Partially implemented. The new Hazard Identification (Section 1) provides a strengthened and more integrated and transparent discussion of the weight of the available evidence. This section includes both standardized evidence tables to present the key study findings that support how potential toxicological hazards are identified and exposure-response arrays for each potential toxicological effect. Weight-of-evidence discussions are provided for each major effect (Section 1.1.1 Respiratory Effects, Section 1.1.2 Gastrointestinal Effects, Section 1.1.3 Immune System Effects, and Section 1.1.4 Other Systemic Effects). A more rigorous and formalized approach for characterizing the weight of evidence will be developed as a part of Phase 3 of the implementation process.

Table F-1. The EPA's implementation of the National Research Council's recommendations in the ammonia assessment

NRC recommendations that EPA is	Implementation in the ammonia accomment
Implementing in the short term	Implementation in the ammonia assessment
General Guidance for the Overall Process (see p. 164)	I
 7. Elaborate an overall, documented, and quality- controlled process for IRIS assessments. 8. Ensure standardization of review and evaluation approaches among contributors and teams of contributors; for example, include standard approaches for reviews of various types of studies to ensure uniformity. 9. Assess disciplinary structure of teams needed to conduct the assessments. 	Implemented. EPA has created Chemical Assessment Support Teams to formalize an internal process to provide additional overall quality control for the development of IRIS assessments. This initiative uses a team approach to making timely, consistent decisions about the development of IRIS assessments across the Program. This team approach has been utilized for the development of the ammonia assessment. Additional objectives of the teams are to help ensure that the necessary disciplinary expertise is available for assessment development and review, provide a forum for identifying and addressing key issues prior to external peer review, and monitor progress in implementing the NRC recommendations.
Evidence Identification: Literature Collection and Collat	ion Phase (see p. 164)
 10. Select outcomes on the basis of available evidence and understanding of mode of action. 11. Establish standard protocols for evidence 	Partially implemented. A new section, Literature Search Strategy Study Selection and Evaluation, contains detailed information on the search strategy used for the ammonia assessment, including key words used to identify relevant health effect studies. A complete search string is provided in Appendix D. Figure LS-1 depicts the study selection strategy and the number of references obtained at each stage of literature screening. This section also
identification. 12. Develop a template for description of the search	includes information on how studies were selected to be included in the document and provides a link to an external database (<u>www.epa.gov/hero</u>) that contains the
 approach. 13. Use a database, such as the Health and Environmental Research Online (HERO) database, to capture study information and relevant quantitative data. 	references that were cited in the document, along with those that were considered but not cited. Each citation in the Toxicological Review is linked to HERO such that the public can access the references and abstracts to the scientific studies used in the assessment. Section 3 of the Preamble summarizes the standard protocols for evidence identification that are provided in EPA guidance. For each potential toxicological effect identified for ammonia, the available evidence is informed by the mode of action information as discussed in Section 1.1. As more rigorous systematic review processes are developed, they will be utilized in future assessments.

Table F-1. The EPA's implementation of the National Research Council's	
recommendations in the ammonia assessment	

NRC recommendations that EPA is		
implementing in the short term	Implementation in the ammonia assessment	
Evidence Evaluation: Hazard Identification and Dose-Re	sponse Modeling (see p. 165)	
14. Standardize the presentation of reviewed studies in tabular or graphic form to capture the key dimensions of study characteristics, weight of evidence, and utility as a basis for deriving reference values and unit risks.	Implemented. Standardized tables have been developed that provide summaries of key study design information and results by health effect. The inclusion of all positive and negative findings in each health effect-specific evidence table supports a weight-of-evidence analysis. In addition, exposure-response arrays are utilized in the assessment to provide a graphical representation of points of departure for various effects resulting from exposure to ammonia. The exposure-response arrays inform the identification of doses associated with specific effects and the weight of evidence for those effects.	
15. Develop templates for evidence tables, forest plots, or other displays.	Implemented. Templates for evidence tables and exposure-response arrays have been developed and are utilized in Section 1.1.	
16. Establish protocols for review of major types of studies, such as epidemiologic and bioassay.	Partially implemented. General principles for reviewing epidemiologic and experimental animal studies are described in Section 4 of the Preamble. Standardized systematic review is an ongoing process.	
Selection of Studies for Derivation of Reference Values	and Unit Risks (see p. 165)	
 17. Establish clear guidelines for study selection. a. Balance strengths and weaknesses. b. Weigh human vs. experimental evidence. c. Determine whether combining estimates among studies is warranted. 	Implemented. EPA guidelines for study selection, including balancing strengths and weaknesses and weighing human vs. experimental evidence, are described in the Preamble (Sections 3–6). These guidelines have been applied in Section 2 of the ammonia assessment to inform the evaluation of the weight-of-evidence across health effects and the strengths and weaknesses of individual studies considered for reference value derivation. In the case of ammonia, the database did not support the combination of estimates across studies. In future assessments, combining estimates across studies will be routinely considered.	
Calculation of Reference Values and Unit Risks (see pp. 165-166)		
 18. Describe and justify assumptions and models used. This step includes review of dosimetry models and the implications of the models for uncertainty factors; determination of appropriate points of departure (such as benchmark dose, no-observed- adverse-effect level, and lowest observed-adverse- effect level), and assessment of the analyses that underlie the points of departure. 10. Previde combaction of the stick estimation of the stick estick estimation of the stick estimation of the	Implemented as applicable. The rationale for the selection of the point of departure (a no-observed- adverse-effect level; NOAEL) for the derivation of the inhalation reference value for ammonia is transparently described in Section 2. No modeling was applied in the derivation of the reference value. An oral reference value was not derived.	
processes (for example, a statistical or biologic model fit to the data) that are used to develop a unit risk estimate.	there is inadequate information to assess the carcinogenic potential. Therefore, a unit risk estimate for cancer was not derived.	

Table F-1. The EPA's implementation of the National Research Council'srecommendations in the ammonia assessment

NRC recommendations that EPA is implementing in the short term	Implementation in the ammonia assessment
20. Provide adequate documentation for conclusions and estimation of reference values and unit risks. As noted by the committee throughout the present report, sufficient support for conclusions in the formaldehyde draft IRIS assessment is often lacking. Given that the development of specific IRIS assessments and their conclusions are of interest to many stakeholders, it is important that they provide sufficient references and supporting documentation for their conclusions. Detailed appendixes, which might be made available only electronically, should be provided when appropriate.	Implemented. The new template structure that has been developed in response to the NRC recommendations provides a clear explanation of the literature search strategy, study selection criteria, and methods used to develop the ammonia assessment. It provides for a clear description of the decisions made in developing the hazard identification and dose-response analysis. Information contained in the Preamble and throughout the document reflects the guidance that has been utilized in developing the assessment. As recommended, supplementary information is provided in the accompanying appendices.

Table F-2. National Research Council recommendations that the EPA isgenerally implementing in the long term

NRC recommendations that EPA is generally	
implementing in the long term	Implementation in the ammonia assessment
 Weight-of-Evidence Evaluation: Synthesis of Evidence for Hazard Identification (see p. 165) 1. Review use of existing weight-of-evidence guidelines. 2. Standardize approach to using weight-of-evidence guidelines. 3. Conduct agency workshops on approaches to implementing weight-of-evidence guidelines. 4. Develop uniform language to describe strength of evidence on noncancer effects. 5. Expand and harmonize the approach for characterizing uncertainty and variability. 6. To the extent possible, unify consideration of outcomes around common modes of action rather than considering multiple outcomes separately. 	As indicated above, Phase 3 of EPA's implementation plan will incorporate the longer-term recommendations made by the NRC. On May 16, 2012, EPA announced (U.S. EPA, 2012c) that as a part of a review of the IRIS Program's assessment development process, the NRC will also review current methods for weight-of-evidence analyses and recommend approaches for weighing scientific evidence for chemical hazard identification. In addition, EPA will hold a workshop on August 26, 2013, on issues related to weight of evidence to inform future assessments.
 Calculation of Reference Values and Unit Risks (see pp. 165–166) 7. Assess the sensitivity of derived estimates to model assumptions and endpoints selected. This step should include appropriate tabular and graphic displays to illustrate the range of the estimates and the effect of uncertainty factors on the estimates. 	As discussed in Section 1.2, the respiratory system is the primary and most sensitive target of inhaled ammonia toxicity. There is some evidence that inhaled ammonia may be associated with toxicity to target organs other than the respiratory system, but the evidence for these associations is weak. Therefore, these endpoints were not considered appropriate for the development of candidate or alternative reference values. In addition, no modeling was performed in this assessment. Assessing the
	sensitivity of the inhalation reference value to model assumptions and endpoint selection was not possible.

APPENDIX G. SUMMARY OF EXTERNAL PEER REVIEW AND PUBLIC COMMENTS AND EPA's DISPOSITION

7 **RESOLUTION OF PUBLIC COMMENTS ON DRAFT TOXICOLOGICAL**

8 **REVIEW (dated June 2012)**

1

5 6

9 The Toxicological Review of Ammonia was released for a 60-day public comment period on June 8, 2012. Public comments on the assessment were submitted to EPA by the American 10 Chemistry Council (ACC; dated August 6, 2012), the Fertilizer Institute (TFI; dated August 7, 2012),⁴ 11 and a private individual (Unger; dated June 8, 2012). The submission by Unger was a request for 12 13 information related to a specific site and did not contain comments on the Toxicological Review. A summary of major public comments provided in these submissions and EPA's response to these 14 15 comments follow. The comments have been synthesized and paraphrased and are organized to follow the order of the Toxicological Review. The reviewers made several editorial suggestions to 16 clarify specific portions of the text. These changes were incorporated in the document as 17 appropriate and are not discussed further. The full submissions by public commenters are 18 available on the docket at http://www.regulations.gov (Docket ID No. EPA-HQ-ORD-2012-0399). 19 20 21 **Comments on the Preface** 22 **Comment:** The ACC recommended that EPA expand the Preface of the Toxicological Review to 23 24 include: All the factors that can prompt a chemical review (e.g., EPA statutory, regulatory, or 25 • program-specific implementation needs; availability of new scientific information or 26 methodology that might significantly change the current IRIS information) and list the 27 factors that led to the initiation of the ammonia review (e.g., availability of new studies). 28

⁴American Chemistry Council (ACC). (2012) Re: Request for Public Comment on the EPA's Draft Toxicological Review of Ammonia: In Support of the Summary Information in the Integrated Risk Information System (IRIS). Docket #EPA-HQ-ORD-2012-0399; FRL-9683-8. Submitted by Kimerbly Wise, Ph.D., Senior Director, Chemical Products & Technology Division, ACC, on behalf of the Center for Advancing Risk Assessment Science and Policy, managed by ACC. Dated August 6, 2012.

Fertilizer Institute (TFI). (2012) Re: Comments on external review draft human health assessment titled "Toxicological Review of Ammonia: In Support of the Summary Information on the Integrated Risk Information System (IRIS)" (EPA/635/R-11/013A). Docket ID No. EPA-HQ-ORD-2012-0399. Submitted by William C. Herz, Vice President of Scientific Programs, The Fertilizer Institute. Dated August 7, 2012.

1	 Description of the scope and limitations of an IRIS assessment and how any derived
2	toxicity values should be used, especially in conjunction with exposure information to
3	make informed risk management determinations. (ACC, p. 2)
4	
5	EPA Response: Some of this information is found in the Preface; other information is in the
6	Preamble. The Preface serves as a brief introduction to the assessment; it is the Assessment
7	Manager talking directly to the reader. The Preamble, on the other hand, describes the scope of the
8	IRIS program and the process for developing IRIS assessments, and provides a brief overview of
9	EPA guidance and methods.
10	Accordingly, the factors that led to the initiation of the ammonia review, including the
11	availability of new studies, are described in the Preface. The Preface also discusses EPA's interest in
12	an assessment of ammonia (e.g., listings under the Comprehensive Environmental Response,
13	Compensation, and Liability Act [CERCLA] and Toxics Release Inventory [TRI]). More general
14	information not specific to ammonia is provided in the Preamble.
15	
16	Comment: The ACC stated that the Preface could be improved by including information relating to
17	any cooperative agreements, contracts, or memoranda of understanding that the Agency has in
18	place that may have informed the development of the assessment. (ACC, p. 2)
19	
20	EPA Response: EPA agrees that information relating to cooperative agreements, contracts, or
21	memoranda of understanding is important, and that is why information on the Memorandum of
22	Understanding with the Agency for Toxic Substances and Disease Registry (ATSDR) had been
23	present in the Preface (p. viii) and in the Literature Search Strategy Study Selection and Evaluation
24	section (p. xxvii) of the public comment draft. It has been retained in the external review draft.
25	
26	Comment: The ACC recommended that the Preface present the findings of other regulatory
27	agencies and discuss why conclusions and toxicity values in other agency assessments were similar
28	to or different than the draft IRIS assessment. In particular, ACC suggested that it would be useful
29	to explain how the processes used to evaluate ammonia by the ATSDR and EPA differed. (ACC, p. 2)
30	
31	EPA Response: Information summarizing other assessments, specifically that of <u>ATSDR (2004</u>),
32	was provided in Table A-1. This information was provided in the Preface of the public comment
33	draft. The Preface also states that assessments prepared by other health agencies were prepared
34	for different purposes using different methods and could consider only the studies that were
35	available at the time that those assessments were developed. It is beyond the scope of an individual
36	IRIS assessment to provide a general critique of methodological differences across assessment
37	programs in different agencies at different times.
38	

1 **Comments on the Preamble**

2 3

Comment: The ACC observed that the Preamble provides an abbreviated view of EPA policies,

- 4 guidance, and standard practices that omits critical information and may unduly lead readers to
- 5 incorrectly interpret EPA guidance. ACC did not consider it appropriate to use the Preamble as a
- 6 means to communicate to the public new criteria, guidance, or approaches that have not been
- 7 properly peer reviewed, and stated that the adoption of new approaches should be done through an
- 8 open and robust process that involves peer review and stakeholder participation. ACC identified a
- 9 number of specific examples of the above. (ACC, p. 3)
- 10

11 **EPA Response:** EPA appreciates the comments on the Preamble. In response to these comments,

- 12 revisions were made throughout the Preamble to make sure that this section provides a clear
- 13 overview of the application of existing Agency guidance and the methods and criteria used in
- 14 developing IRIS assessments. Among these revisions are:
- Clarification that IRIS assessments cover the hazard identification and dose-response
 sections of the risk assessment process
- 17 Inclusion of public meetings as part of the process for IRIS assessment development
- Expansion of the types of human studies considered (to include population-based surveys)
 when evaluating epidemiological evidence
- 20 Expanded discussion of the evaluation of individual study quality
- Revised discussion of Agency guidance related to evaluating overall weight of evidence,
 including the use of standard descriptors and consideration of mechanistic information or
 methodological differences to explain differing results
- Expanded discussion of the use of mechanistic data to identify adverse outcome pathways
 and modes of action
- Additional discussion of approaches used to derive a point of departure
- Clarification of the Agency practice for applying uncertainty factors to account for human
 variation
- Inclusion of organ- or system-specific reference values and a corresponding rationale for
 each of their derivations
- 31

32 Comments on the Literature Search

33

34 **Comment:** The ACC recommended improving the transparency of the literature search by including

- 35 in Figure LS-1 more detailed information regarding the criteria used by EPA to include or exclude
- 36 studies from consideration in the assessment and a breakdown of the number of studies excluded
- 37 in each exclusion category, by generating separate figures with study selection criteria for human,
- 38 animal, and supporting studies, and by explaining what is meant by conducting a literature search
- 39 using "standard practices." (ACC, p. 9)

1 2 EPA Response: The Literature Search Strategy | Study Selection and Evaluation section, including Figure LS-1, represents one of EPA's initial efforts to increase the level of detail in and transparency 3 of the literature search strategy and output. EPA recognizes that documentation of the ammonia 4 literature search is not fully consistent with a systematic review approach, and is working to more 5 fully implement systematic review practices in other ongoing assessments. To provide further 6 7 details of the ammonia literature search, the search string used in the literature search and other 8 details of the search strategy were added in a new appendix to the Toxicological Review (Appendix 9 D, Table D-1). Although additional figures to detail study selection criteria for human, animal, and other supporting studies were not added, the text in the Literature Search Strategy | Study Selection 10 11 and Evaluation section was expanded to describe study selection in greater detail. To ensure that all key references on ammonia toxicity have been identified and considered, external peer 12 reviewers will be asked, as part of their charge, to identify any missing studies relevant to the 13 14 assessment. 15

16 Comment: The ACC recommended that the Toxicological Review provide a clear correlation as to 17 how the data (evidence) tables connect to the literature search strategy, and specific information as 18 to how and why studies were selected from the literature search for further consideration. More 19 specifically, the ACC noted that of the 75 human studies identified in the literature search, only 10 three were included in evidence tables. (ACC, p. 10)

21

EPA Response: In general, the more informative studies for evaluating the health effects of chronic 22 23 exposure to a chemical are carried forward into evidence tables. EPA appreciates the comment on 24 study selection, and the text in the Literature Search Strategy | Study Selection and Evaluation section was expanded to describe the study selection process in more detail, and in particular the 25 study quality considerations that informed study selection. Briefly, six occupational epidemiology 26 27 studies involving industrial exposure to ammonia (identified in Figure LS-1) are summarized in 28 evidence tables (i.e., Tables 1-1 and 1-6). An additional seven epidemiology studies of workers 29 exposed to ammonia when used as a cleaning product or disinfectant were identified through a 30 literature search update (March 2012–March 2013); documentation of these studies was added to 31 Figure LS-1 and results of the studies were summarized in a new evidence table (Table 1-2). 32 Studies of ammonia-associated effects in livestock farmers (n = 10), controlled-exposure (volunteer) studies involving exposures ranging up to four hours in duration (n = 12), and human 33 34 case reports (n = 44) were considered less informative than studies of workers exposed to ammonia in industrial settings or through the use of cleaning products and were not included in 35 36 evidence tables; however, findings from these studies were summarized as supporting evidence in the text of Section 1.1 and in more detail in Appendix E.2. The numbers of studies in Figure LS-1 37 were updated consistent with the updated literature search. 38 39

1 **Comments on the Evidence Tables**

2

3 **Comment:** The ACC recommended expanding the evidence tables to include the specific statistical

- 4 tests used by study authors to obtain p-values, confidence in exposure measurements (low,
- 5 medium, high), and narrative about the exposure quantification provided in the text. The ACC also
- 6 suggested that the entries in the table entitled, Evidence pertaining to respiratory effects in animals
- 7 following inhalation exposure, and the accompanying exposure-response array (Figure 1-1) be
- 8 ordered in terms of adversity, occurrence within the mode of action, and/or test species. (ACC, p.
- 9 10)
- 10

11 **EPA Response:** Evidence tables are used to summarize the design and results of the most informative studies. The evidence table and synthesis text are meant to be complementary, not 12 redundant. To be an effective tool, the entries in an evidence table are focused on information that 13 describes the relationship between the exposure (dose) and an outcome. In general, other 14 15 information important to understanding the results of individual studies in the context of the available literature for that health endpoint are included in the accompanying synthesis text. 16 17 In the ammonia assessment, the specific statistical tests used by the study authors were identified in study summaries in Appendix E.2 and E.3 when that information was available; these 18 19 tests were not repeated in the evidence tables. In a few instances where the name of the statistical test had not been identified in the study summary, the appendix was revised to identify the test. 20 Study evaluation tables for epidemiology studies were added to new Appendix D (Tables D-2, D-3, 21 22 and D-4); statistical analyses and additional exposure information that would inform an evaluation of the confidence in exposure measurements was included in these tables and discussed in the 23 24 Literature Search Strategy | Study Selection and Evaluation section. Consistent with the National Research Council (NRC) recommendations to reduce the volume of text and address redundancies, 25 26 additional narrative on exposure quantification and confidence in exposure measures was not 27 added to the evidence tables. 28 The EPA agrees that an appropriate grouping of entries in an evidence table can be helpful 29 in understanding and integrating the available health effects information. Studies of the respiratory

- 30 effects of ammonia in Table 1-3 (Evidence pertaining to respiratory effects in animals following
- inhalation exposure) and the accompanying exposure-response array (Figure 1-1) were organized
 by location of the effect in the respiratory tract (i.e., lung versus upper respiratory tract) in the
- 33 public comment draft. The available information on ammonia respiratory effects does not support
- 34 further ordering by level of adversity or mode of action. EPA agrees, however, that more consistent
- organization by species would be appropriate. The order of entries in Tables 1-3 and 1-7 and
- 36 Figures 1-1 and 1-4 were revised to provide a more consistent grouping by species.
- 37

Comment: The ACC recommended that the RfC be added to Figure 1-1 to illustrate where the RfC falls relative to the lowest-observable-adverse-effect levels or the no-observed-adverse-effect levels noted in the relevant scientific studies. (ACC, p. 10)

1	
2	EPA Response: Figure 1-1 is part of the hazard identification for ammonia in Chapter 1, Hazard
3	Identification, of the Toxicological Review, and is intended to provide a graphical representation of
4	qualitative evidence of respiratory effects associated with inhalation exposure to ammonia.
5	Because derivation of the RfC is not presented until Chapter 2, Dose-Response Analysis, the
6	addition of the RfC to Figure 1-1 would be out of sequence and potentially confusing.
7	
8	Comments on Hazard Identification
9	
10	Comment: TFI recommended that the discussion of acute gastrointestinal health effects of
11	intentional or accidental ingestion of household cleaning solutions or ammonia inhalant capsules be
12	limited to an appendix or eliminated altogether from the Toxicological Review. (TFI, p. 2)
13	
14	EPA Response: EPA agrees that the synthesis of evidence for gastrointestinal effects of ammonia
15	would benefit from additional discussion of the acute nature of the gastrointestinal findings in
16	humans. Therefore, the discussion of acute gastrointestinal health effects of intentional or
17	accidental ingestion of ammonia or ammonia-containing solutions (Section 1.1.2 and Appendix E.2)
18	was revised to provide more context for these findings, i.e., that the acute effects appear to reflect
19	the corrosive properties of ammonia and their relevance to effects associated with chronic low-
20	level exposure to ammonia is unclear.
21	
22	Comment: TFI requested that the Hazard Identification section of the Toxicological Review include
23	some qualitative discussion regarding potential confounding factors, such as co-exposure to other
24	ambient chemicals, particulates or dust, that may be associated with ammonia exposure in urea
25	production areas and in sodium carbonate production areas and a qualitative statement that the
26	exposures and NOAEL are expected to be underestimates of the ammonia inhalation exposure.
27	(TFI, p. 2-3)
28	
29	EPA Response: EPA appreciates this comment. Consideration of potential confounding was
30	addressed more fully in Tables D-2, D-3, and D-4 on the evaluation of epidemiology studies (see
31	Appendix D), and in text in the Literature Search Strategy Study Selection and Evaluation section
32	of the external review draft. Consideration of co-exposure to other agents in the livestock farmer
33	studies was also addressed in Appendix E and Tables E-7 and E-8. Section 2.2.1 was revised to
34	clarify the rationale for selection of the NOAEL from <u>Holness et al. (1989</u>) as the POD for the
35	ammonia RfC.
36	
37	Comment: The ACC stated that the draft assessment needs to provide sufficient detailed
38	information concerning how the ammonia literature was used to derive toxicity values and how a
39	study's strengths or weaknesses were used to inform the weight of evidence. The ACC

- 1 recommended that EPA add a table that specifically denotes the strength and weaknesses of a study
- 2 and the reasons for excluding studies. (ACC, p. 11)
- 3

EPA Response: For epidemiology studies, study evaluation tables were added to a new Appendix D 4 (Tables D-2, D-3, and D-4); these tables were used to support EPA's evaluation of the extent to 5 which a study was considered informative and relevant to the assessment in the section Literature 6 7 Search Strategy | Study Selection and Evaluation. Because the animal studies were, in general, from the older toxicological literature, limited in terms of study design and reporting of results, and not 8 9 carried forward for RfC derivation, a table was not necessary to convey the limitations of animal studies. Additional text describing the body of animal toxicology literature was, however, added to 10 11 the Literature Search Strategy | Study Selection and Evaluation section. 12 **Comment:** TFI commented that undue emphasis was placed on a handful of recent studies at the 13 expense of a substantive database of studies on the relationship between the effects of ammonia 14 15 and human health and as such does not provide adequate context for hazard identification. (TFI, p. 2) 16 17 EPA Response: EPA appreciates the comment but wishes to point out that all available human and 18 19 experimental animal studies were considered in assessing the hazards of ammonia exposure. Based on a study evaluation process described in the Literature Search Strategy | Study Selection 20 and Evaluation section and synthesis of the hazard information in Section 1.1 of the Toxicological 21 22 Review, EPA concluded that the most informative studies for dose-response analysis were the 23 studies by Holness et al. (1989), Rahman et al. (2007), Ballal et al. (1998), and Ali et al. (2001). 24 These four studies, which were published over the last 2 decades, provided data most suitable for dose-response analysis. 25 26 27 **Comments on Dose-Response Analysis** 28 29 **Comment:** The ACC observed that although the narrative on page 2-2 of the draft assessment 30 indicates that the evidence for associations of ammonia with toxicity to target organs other than the respiratory system is weak, Figure 2-1 does not give any indication as to why the immune system 31 32 effects or other systemic effects were not selected for dose-response analysis. (ACC, p. 11) 33 34 **EPA Response:** EPA appreciates the comment. The original purpose of this figure was to compare graphically effect levels for ammonia across a range of target organs, including the respiratory 35 36 system, liver, kidney, heart, eyes, and the immune system. As discussed in Section 1.2.1, however, the hazard potential for the immune system and other systemic targets is weak compared to the 37 hazard potential for the respiratory system. Because Figure 2-1 does not capture the strength of 38 evidence for a given organ system and because the available literature identifies only respiratory 39

- 1 effects as a hazard from inhaled ammonia, EPA recognizes that the information presented in this
- 2 figure may be misleading. Accordingly, this figure was removed from the Toxicological Review.
- 3
- 4 **Comment:** The ACC commented that the selection of the critical study (<u>Holness et al., 1989</u>) was
- 5 not clearly supported because (1) no statistically significant differences were noted between the
- 6 control and exposed groups for respiratory irritation, (2) no changes in lung function were
- 7 observed between control and exposed groups, and (3) no relationship between level or duration of
- 8 ammonia exposure and lung function changes was demonstrated. The ACC also noted that the
- 9 <u>Holness et al. (1989</u>) study was often mischaracterized as part of a body of literature that
- 10 consistently demonstrates an increased prevalence of symptoms. (ACC, p. 11)
- 11

12 **EPA Response:** EPA recognizes that the <u>Holness et al. (1989</u>) study did not find a significant

- 13 association between level or duration of exposure to ammonia and respiratory symptoms or
- 14 changes in lung function under the conditions of exposure in that plant. The choice of <u>Holness et al.</u>
- 15 (1989) as the principal study was made only in the context of the entire database, including studies
- 16 of workers exposed to higher workplace concentrations of ammonia than in the <u>Holness et al.</u>
- 17 (1989) study, where a relatively high level of control of exposures resulted in relatively low
- 18 ammonia levels in the plant. Specifically, the study by <u>Holness et al. (1989</u>) was selected as the
- 19 principal study only with support from the findings from three other cross-sectional occupational
- studies by <u>Rahman et al. (2007)</u>, <u>Ali et al. (2001</u>), and <u>Ballal et al. (1998</u>). <u>Holness et al. (1989</u>) was
- chosen as the principal study over <u>Rahman et al. (2007</u>) and <u>Ballal et al. (1998</u>) because confidence
- in the exposure measures used by <u>Holness et al. (1989</u>) were higher, because <u>Holness et al. (1989</u>)
- evaluated both respiratory symptoms and lung function, and because the estimate of the NOAEL
- from <u>Holness et al. (1989</u>) was higher. <u>Ali et al. (2001</u>), a companion study to <u>Ballal et al. (1998</u>),
- examined lung function in workers in only one of the two plants studied by <u>Ballal et al. (1998</u>) and
- was less useful for RfC derivation. Clarifying text was added to Section 2.2.1 of the Toxicological
- 27 Review.

EPA regrets that there were a couple of instances where the <u>Holness et al. (1989</u>) study was incorrectly cited as one of the studies that reported an increased prevalence of respiratory

- 30 symptoms associated with ammonia exposure. Those citations have been removed.
- 31
- 32 **Comment:** TFI requested that EPA select either 50 ppm (35.4 mg/m³) or 25 ppm (17.7 mg.m³) as
- the POD for derivation of the RfC (as opposed to 8.8 mg/m³), or that the actual range of data in the
- ³⁴ "highest occupational exposure" category from the <u>Holness et al. (1989</u>) study be retrieved to
- 35 determine a representative and justifiable POD value from the referenced study. TFI also suggested
- that the NOAEL selected for RfC derivation should be consistent with the Acute Exposure Guideline
- 37 Level (AEGL)-1 value of 21 mg/m³. (TFI, p. 3-4)
- 38
- 39 **EPA Response:** The rationale for selecting 8.8 mg/m³ from the <u>Holness et al. (1989</u>) study as the
- 40 NOAEL was expanded in Section 2.2.1.

1 In general, an acute emergency response value, such as an AEGL-1, is not a scientifically 2 supported basis for deriving an RfC, defined as an estimate of a continuous inhalation exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable 3 risk of deleterious effects during a lifetime. AEGLs are applicable to emergency exposure periods 4 from 10 minutes to 8 hours. The AEGL-1 of 21 mg/m³ for ammonia is based on a study in which 2 5 of 6 human volunteers experienced faint irritation (confined only to the upper respiratory tract) 6 7 after exposure to 21 mg/m^3 for 10 minutes. Thus, the AEGL-1 for ammonia does not provide a 8 scientifically sound point of departure for the chronic RfC. 9 10 **Other Key Issues:** 11 **Comment:** The ACC noted that the discussion of endogenous production of ammonia was not 12 adequate and considered the rationale used to justify setting an RfC at a level equivalent to the 13 internal human breath level to be unclear. The ACC recommended that clear justification for setting 14 15 an RfC that is within the range of natural human breath levels be provided. (ACC, p. 11) 16 17 **EPA Response:** The RfC is not at the level of internal human breath. The RfC is several fold above ammonia concentrations in breath exhaled from the nose and trachea. Concentrations in breath 18 19 exhaled from the nose and trachea are expected to correlate with levels at the alveolar interface of the lung or in the tracheo-bronchial region. These concentrations are thought to be more relevant 20 to understanding systemic levels of ammonia than ammonia in breath exhaled from the mouth or 21 22 oral cavity, which largely reflect production of ammonia via bacterial degradation of food protein. 23 This information was provided in Section 2.2.4 and as a key issue in the Executive Summary. To 24 ensure that this issue is adequately addressed in the Toxicological Review, external peer reviewers will be asked, as part of their charge, whether the discussion of endogenous ammonia in the 25 26 Toxicological Review is scientifically supported and clearly described. 27 28

1

2 3

4	
5	Multiple references published in the same year by the same author(s) have been assigned a
6	letter (e.g., 1986a, 1986b) based on author(s), year, and title. Those same letters have been
7	retained for the appendices.
8	
9	Abramovicz, I. (1925). Ocular injury caused by liquid ammonia. Br J Ophthalmol 9: 241-242.
10	ACGIH (American Conference of Governmental Industrial Hygienists). (2001). Ammonia [TLV/BEI].
11	In Documentation of the threshold limit values and biological exposure indices. Cincinnati,
12	OH.
13	AIChE (American Institute of Chemical Engineers). (1999). Ammonia H3N. In TE Daubert; RP
14	Danner; HM Sibul; CC Stebbins (Eds.), Physical and thermodynamic properties of pure
15	chemicals: Evaluated process design data. Philadelphia, PA: Taylor & Francis.
16	Ali, BA: Ahmed, HO: Ballal, SG: Albar, AA, (2001), Pulmonary function of workers exposed to
17	ammonia: a study in the Eastern Province of Saudi Arabia. Int I Occup Environ Health 7: 19-
18	22.
19	Anderson, DP: Beard, CW: Hanson, RP. (1964). The adverse effects of ammonia on chickens
20	including resistance to infection with Newcastle disease virus. Avian Dis 8: 369-379.
21	Appelman LM: ten Berge WF: Reuzel PGI (1982) Acute inhalation toxicity study of ammonia in
22	rats with variable exposure periods. Am Ind Hyg Assoc I 43: 662-665.
23	http://dx.doi.org/10.1080/15298668291410387
24	Arif. AA: Delclos. GL. (2012). Association between cleaning-related chemicals and work-related
25	asthma and asthma symptoms among healthcare professionals. Occup Environ Med 69: 35-
26	40. http://dx.doi.org/10.1136/oem.2011.064865
27	Arwood, R: Hammond, I: Ward, GG. (1985), Ammonia inhalation, I Trauma 25: 444-447.
28	Atkinson SA: Anderson CH: Bryan MH (1980) Human milk: comparison of the nitrogen
20	composition in milk from mothers of premature and full-term infants. Am I Clin Nutr 33
30	811-815.
31	ATSDR (Agency for Toxic Substances and Disease Registry) (2004) Toxicological profile for
32	ammonia [ATSDR Tox Profile] Atlanta GA: IIS Department of Health and Human Services
33	Public Health Service, http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=11&tid=2
34	Auerbach C: Robson IM (1947) Tests of chemical substances for mutagenic action Proc Pou Soc
35	Fdinh B Biol 62: 284-291
26	Bacom A: Vanoslav M (2010) E mails dated June 22, 2010 from Michael Vanoslav Dräger Safety
30 27	Inc. Technical Support Detection Products to Amber Bacom SPC Inc. contractor to NCEA
38	ORD II'S EPA Available online
30	Ballal SC: Ali BA: Albar AA: Abmed HO: al-Hasan AV (1998) Bronchial asthma in two chemical
39 40	fertilizer producing factories in eastern Saudi Arabia. Int I Tuberc Lung Dis 2: 330-335
41	Derrow C: Steinbagen MII (1000) NII2 concentrations in the emired sin of the rate importance to
41 42	<u>barrow, CS; Steiningen, WR.</u> (1960). NRS concentrations in the expired an of the rat: importance to inhalation toxicology. Toxicol Appl Pharmacol 53: 116-121
42	Percel UC Leavent L (10(0). The effects of characteristic and ellectic devicities on here two even
45	<u>barzer, US; Jowsey, J.</u> (1969). The effects of chronic acid and alkali administration on bone turnover in adult rate. (Jin Sci (Lond) 26: 517-524
44	III auuri tais. Ciiii Sci (LOIIU) SU: S17-524.
45	<u>Beare, JD; Wilson, KS; Marsn, KJ.</u> (1988). Ammonia burns of the eye: an old weapon in new hands
40	[Euronal]. Di meu j (Unin Kes Eu j 290: 590.

1	Bell, AW; Kennaugh, JM; Battaglia, FC; Meschia, G. (1989). Uptake of amino acids and ammonia at
2	mid-gestation by the letal lamb. Q J Exp Physiol 74: 635-643.
3 4	toxic ammonia fumes [Abstract]. J Allergy Clin Immunol 83: 173.
5 6 7	Betterton, EA. (1992). Henry's law constants of soluble and moderately soluble organic gases: Effects in aqueous phase chemistry. In JO Nriagu (Ed.), Gaseous pollutants: Characterization and cycling (pp. 1-50). New York, NY: Wiley.
8 9	<u>Bhat, MR; Ramaswamy, C.</u> (1993). Effect of ammonia, urea and diammonium phosphate (DAP) on lung functions in fertilizer plant workers. Indian J Physiol Pharmacol 37: 221-224.
10 11 12	Bishop, JM; Verlander, JW; Lee, HW; Nelson, RD; Weiner, AJ; Handlogten, ME; Weiner, ID. (2010). Role of the Rhesus glycoprotein, Rh B glycoprotein, in renal ammonia excretion. Am J Physiol Renal Physiol 299: F1065-F1077. http://dx.doi.org/10.1152/ajprenal.00277.2010
13 14 15	Boshier, PR; Marczin, N; Hanna, GB. (2010). Repeatability of the measurement of exhaled volatile metabolites using selected ion flow tube mass spectrometry. J Am Soc Mass Spectrom 21: 1070-1074. http://dx.doi.org/10.1016/j.jasms.2010.02.008
16 17	Boyd, EM; MacLachlan, ML; Perry, WF. (1944). Experimental ammonia gas poisoning in rabbits and cats. J Ind Hyg Toxicol 26: 29-34.
18 19 20	Brautbar, N: Wu, MP: Richter, ED. (2003). Chronic ammonia inhalation and interstitial pulmonary fibrosis: A case report and review of the literature [Review]. Arch Environ Health 58: 592-596. <u>http://dx.doi.org/10.3200/AEOH.58.9.592-596</u>
21 22	Broderson, JR: Lindsey, JR: Crawford, JE. (1976). The role of environmental ammonia in respiratory mycoplasmosis of rats. Am J Pathol 85: 115-130.
23 24 25	Brown, RH; Duda, GD; Korkes, S; Handler, P. (1957). A colorimetric micromethod for determination of ammonia; the ammonia content of rat tissues and human plasma. Arch Biochem Biophys 66: 301-309. http://dx.doi.org/10.1016/S0003-9861(57)80005-8
26 27 28	Buckley, LA; Jiang, XZ; James, RA; Morgan, KT; Barrow, CS. (1984). Respiratory tract lesions induced by sensory irritants at the RD50 concentration. Toxicol Appl Pharmacol 74: 417-429. http://dx.doi.org/10.1016/0041-008X(84)90295-3
29 30	<u>Burns, TR; Mace, ML; Greenberg, SD; Jachimczyk, JA.</u> (1985). Ultrastructure of acute ammonia toxicity in the human lung. Am J Forensic Med Pathol 6: 204-210.
31	Caplin, M. (1941). Ammonia-gas poisoning: forty-seven cases in a London shelter. Lancet 26: 95-96.
32 33	<u>Castell, DO; Moore, EW.</u> (1971). Ammonia absorption from the human colon. The role of nonionic diffusion. Gastroenterology 60: 33-42.
34 35 36 37	<u>Chaung, HC; Hsia, LC; Liu, SH.</u> (2008). The effects of vitamin A supplementation on the production of hypersensitive inflammatory mediators of ammonia-induced airways of pigs. Food and Agricultural Immunology 19: 283-291. http://dx.doi.org/10.1080/09540100802471546
38 39 40	<u>Choudat, D; Goehen, M; Korobaeff, M; Boulet, A; Dewitte, JD; Martin, MH.</u> (1994). Respiratory symptoms and bronchial reactivity among pig and dairy farmers. Scand J Work Environ Health 20: 48-54.
41 42	<u>Christesen, HB.</u> (1995). Prediction of complications following caustic ingestion in adults. Clin Otolaryngol Allied Sci 20: 272-278.
43 44	<u>Close, LG: Catlin, FI: Cohn, AM.</u> (1980). Acute and chronic effects of ammonia burns of the respiratory tract. Eur Arch Otorhinolaryngol 106: 151-158.
45 46 47	<u>Cole, TJ; Cotes, JE; Johnson, GR; Martin Hde, V; Reed, JW; Saunders, MJ.</u> (1977). Ventilation, cardiac frequency and pattern of breathing during exercise in men exposed to O-chlorobenzylidene malononitrile (CS) and ammonia gas in low concentrations. Q J Exp Physiol 62: 341-351.

1 2	<u>Conn, HO.</u> (1972). Studies of the source and significance of blood ammonia. IV. Early ammonia peaks after ingestion of ammonium salts. Yale J Biol Med 45: 543-549.
3 4 5	Coon, RA; Jones, RA; Jenkins, LJ, Jr; Siegel, J. (1970). Animal inhalation studies on ammonia, ethylene glycol, formaldehyde, dimethylamine, and ethanol. Toxicol Appl Pharmacol 16: 646-655. http://dx.doi.org/10.1016/0041-008x(70)90069-4
6 7	Cormier, Y: Israël-Assayag, E: Racine, G: Duchaine, C. (2000). Farming practices and the respiratory health risks of swine confinement buildings. Eur Respir J 15: 560-565.
8 9	Couturier, Y: Barbotin, M: Bobin, P: Derrien, JP. (1971). [3 cases of toxic lung caused by ammonia vapors and sulfureted hydrogen]. Bulletin Soc Med Afr Noire Lang Fr 16: 250-252.
10 11 12 13	<u>Crook, B; Robertson, JF; Glass, SA; Botheroyd, EM; Lacey, J; Topping, MD.</u> (1991). Airborne dust, ammonia, microorganisms, and antigens in pig confinement houses and the respiratory health of exposed farm workers. Am Ind Hyg Assoc J 52: 271-279. http://dx.doi.org/10.1080/15298669191364721
14 15 16	Curtis, SE; Anderson, CR; Simon, J; Jensen, AH; Day, DL; Kelley, KW. (1975). Effects of aerial ammonia, hydrogen sulfide and swine-house dust on rate of gain and respiratory-tract structure in swine. J Anim Sci 41: 735-739.
17 18	<u>da Fonseca-Wollheim, F.</u> (1995). The influence of pH and various anions on the distribution of NH4+ in human blood. Eur J Clin Chem Clin Biochem 33: 289-294.
19 20 21	Dalhamn, T. (1963). Effect of ammonia alone and combined with carbon particles on ciliary activity in the rabbit trachea in vivo, with studies of the absorption capacity of the nasal cavity. Air Water Pollut 7: 531-539.
22 23 24	Davies, BM; Yudkin, J. (1952). Studies in biochemical adaptation; the origin or urinary ammonia as indicated by the effect of chronic acidosis and alkalosis on some renal enzymes in the rat. Biochem J 52: 407-412.
25 26	Davies, S: Spanel, P: Smith, D. (1997). Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int 52: 223-228.
27 28 29 30	de la Hoz, RE; Schlueter, DP; Rom, WN. (1996). Chronic lung disease secondary to ammonia inhalation injury: a report on three cases. Am J Ind Med 29: 209-214. http://dx.doi.org/10.1002/(SICI)1097-0274(199602)29:2<209::AID- AJIM12>3.0.CO;2-7
31	Dean, JA. (1985). Lange's handbook of chemistry. New York, NY: McGraw-Hill.
32 33	Demerec, M; Bertani, G; Flint, J. (1951). A survey of chemicals for mutagenic action on E coli. Am Nat 85: 119-135.
34 35	<u>DeSanto, JT; Nagomi, W; Liechty, EA; Lemons, JA.</u> (1993). Blood ammonia concentration in cord blood during pregnancy. Early Hum Dev 33: 1-8.
36 37	<u>Diack, C; Bois, FY.</u> (2005). Pharmacokinetic-pharmacodynamic models for categorical toxicity data. Regul Toxicol Pharmacol 41: 55-65. <u>http://dx.doi.org/10.1016/j.yrtph.2004.09.007</u>
38 39 40	Diekman, MA; Scheidt, AB; Sutton, AL; Green, ML; Clapper, JA; Kelly, DT; Van Alstine, WG. (1993). Growth and reproductive performance, during exposure to ammonia, of gilts afflicted with pneumonia and atrophic rhinitis. Am J Vet Res 54: 2128-2131.
41 42 43	Dilli, D; Bostanci, I; Tiraş, U; Hatipoğlu, N; Dallar, Y. (2005). A non-accidental poisoning with ammonia in adolescence. Child Care Health Dev 31: 737-739. http://dx.doi.org/10.1111/j.1365-2214.2005.00552.x
44 45	Diskin, AM; Spanel, P; Smith, D. (2003). Time variation of ammonia, acetone, isoprene and ethanol in breath: a quantitative SIFT-MS study over 30 days. Physiol Meas 24: 107-119.
46 47	Dodd, KT; Gross, DR. (1980). Ammonia inhalation toxicity in cats: A study of acute and chronic respiratory dysfunction. Arch Environ Health 35: 6-14.

1	Doig, PA: Willoughby, RA. (1971). Response of swine to atmospheric ammonia and organic dust. J
2	Am Vet Med Assoc 159: 1353-1361.
3	Done, SH; Chennells, DJ; Gresham, AC; Williamson, S; Hunt, B; Taylor, LL; Bland, V; Jones, P;
4	<u>Armstrong, D; White, RP; Demmers, TG; Teer, N; Wathes, CM.</u> (2005). Clinical and
5 6	pathological responses of weaned pigs to atmospheric ammonia and dust. Vet Rec 157: 71- 80
7	Donham KI: Cumro D: Reynolds SI: Merchant IA (2000) Dose-response relationships between
8	occupational aerosol exposures and cross-shift declines of lung function in poultry workers:
9	recommendations for exposure limits. J Occup Environ Med 42: 260-269.
10	Donham, KI: Reynolds, SI: Whitten, P: Merchant, IA: Burmeister, L: Popendorf, WI, (1995).
11	Respiratory dysfunction in swine production facility workers: dose-response relationships
12	of environmental exposures and pulmonary function. Am J Ind Med 27: 405-418.
13	Douglas, RB; Coe, JE. (1987). The relative sensitivity of the human eye and lung to irritant gases.
14	Ann Occup Hyg 31: 265-267.
15	Drummond, JG; Curtis, SE; Simon, J; Norton, HW. (1980). Effects of aerial ammonia on growth and
16	health of young pigs. J Anim Sci 50: 1085-1091.
17	<u>Dumas, O; Donnay, C; Heederik, DJ; Héry, M; Choudat, D; Kauffmann, F; Le Moual, N. (2012).</u>
18	Occupational exposure to cleaning products and asthma in hospital workers. Occup Environ
19	Med 69: 883-889. <u>http://dx.doi.org/10.1136/oemed-2012-100826</u>
20	<u>Dworkin, MS; Patel, A; Fennell, M; Vollmer, M; Bailey, S; Bloom, J; Mudahar, K; Lucht, R. (</u> 2004). An
21 22	outbreak of ammonia poisoning from chicken tenders served in a school lunch. J Food Prot 67: 1299-1302.
23	Egle, JL, Jr. (1973). Retention of inhaled acetone and ammonia in the dog. Am Ind Hyg Assoc J 34:
24	533-539. http://dx.doi.org/10.1080/0002889738506894
25	Fazekas, IG. (1939). Die durch ammoniak hervorgerufene experimentelle
26	nebennierenhypertrophie. Endokrinologie 21: 315-337.
27	FDA. Direct food substances affirmed as generally recognized as safe (GRAS): Ammonium
28	hydroxide, 21 CFR § 184.1139 (2011a).
29	http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1139
30	FDA. Substances generally recognized as safe: General purpose food additives: Ammonium
31	<u>hydroxide, 21 CFR § 582.1139</u> (2011b).
32	http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=582.1139
33 34	<u>Ferguson, WS; Koch, WC; Webster, LB; Gould, JR.</u> (1977). Human physiological response and adaption to ammonia. J Occup Environ Med 19: 319-326.
35	Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev
36	Respir Dis 118: 1-120.
37	Flessner, MF; Wall, SM; Knepper, MA. (1992). Ammonium and bicarbonate transport in rat outer
38	medullary collecting ducts. Am J Physiol 262: F1-F7.
39 40	<u>Flury, KE; Dines, DE; Rodarte, JR; Rodgers, R.</u> (1983). Airway obstruction due to inhalation of ammonia. Mayo Clin Proc 58: 389-393.
41	Gaafar, H; Girgis, R; Hussein, M; el-Nemr, F. (1992). The effect of ammonia on the respiratory nasal
42	mucosa of mice. A histological and histochemical study. Acta Otolaryngol 112: 339-342.
43 44	Gamble, MR: Clough, G. (1976). Ammonia build-up in animal boxes and its effect on rat tracheal epithelium. Lab Anim 10: 93-104.
45	Gay, WM; Crane, CW; Stone, WD. (1969). The metabolism of ammonia in liver disease: a comparison
46 47	of urinary data following oral and intravenous loading of [15N]ammonium lactate. Clin Sci (Lond) 37: 815-823.

1 2	George, A; Bang, RL; Lari, AR; Gang, RK; Kanjoor, JR. (2000). Liquid ammonia injury. Burns 26: 409-413.
3 4	<u>Gilbert, GJ.</u> (1988). Acute ammonia intoxication 37 years after ureterosigmoidostomy. South Med J 81: 1443-1445.
5 6	<u>Giroux, M: Brémont, F: Salles, JP: Rey, E: Della Massa, JP: Ferrières, J.</u> (2002). Exhaled NH3 and excreted NH4+ in children in unpolluted or urban environments. Environ Int 28: 197-202.
7 8 9	Green, SM; Machin, R; Cresser, MS. (2008). Effect of long-term changes in soil chemistry induced by road salt applications on N-transformations in roadside soils. Environ Pollut 152: 20-31. http://dx.doi.org/10.1016/j.envpol.2007.06.005
10 11 12	<u>Gustin, P; Urbain, B; Prouvost, JF; Ansay, M.</u> (1994). Effects of atmospheric ammonia on pulmonary hemodynamics and vascular permeability in pigs: interaction with endotoxins. Toxicol Appl Pharmacol 125: 17-26. <u>http://dx.doi.org/10.1006/taap.1994.1044</u>
13 14	<u>Guyton, AC.</u> (1981). The body fluids and kidneys. In Textbook of medical physiology (6th ed.). Philadelphia, PA: WB Saunders Company.
15 16	Hamid, HA: El-Gazzar, RM. (1996). Effect of occupational exposure to ammonia on enzymatic activities of catalase and mono amine oxidase. J Egypt Public Health Assoc 71: 465-475.
17 18 19 20	Han, KH; Croker, BP; Clapp, WL; Werner, D; Sahni, M; Kim, J; Kim, HY; Handlogten, ME; Weiner, ID. (2006). Expression of the ammonia transporter, Rh C glycoprotein, in normal and neoplastic human kidney. J Am Soc Nephrol 17: 2670-2679. http://dx.doi.org/10.1681/ASN.2006020160
21 22 23	Handlogten, ME; Hong, SP; Westhoff, CM; Weiner, ID. (2005). Apical ammonia transport by the mouse inner medullary collecting duct cell (mIMCD-3). Am J Physiol Renal Physiol 289: F347-F358. <u>http://dx.doi.org/10.1152/ajprenal.00253.2004</u>
24 25	Hata, M; Yamazaki, Y; Ueda, T; Kato, T; Kohli, Y; Fujiki, N. (1994). Influence of ammonia solution on gastric mucosa and acetic acid induced ulcer in rats. Eur J Histochem 38: 41-52.
26 27	<u>Hatton, DV; Leach, CS; Beaudet, AL; Dillman, RO; Di Ferrante, N.</u> (1979). Collagen breakdown and ammonia inhalation. Arch Environ Occup Health 34: 83-87.
28 29 30	Hauguel, S: Challier, JC: Cedard, L: Olive, G. (1983). Metabolism of the human placenta perfused in vitro: glucose transfer and utilization, O2 consumption, lactate and ammonia production. Pediatr Res 17: 729-732. <u>http://dx.doi.org/10.1203/00006450-198309000-00009</u>
31 32	Heederik, D; van Zwieten, R; Brouwer, R. (1990). Across-shift lung function changes among pig farmers. Am J Ind Med 17: 57-58.
33 34	Helmers, S; Top, FH, Sr; Knapp, LW, Jr. (1971). Ammonia injuries in agriculture. J Iowa Med Soc 61: 271-280.
35	Highman, VN. (1969). Early rise in intraocular pressure after ammonia burns. Br Med J 1: 359-360.
36 37	Hilado, CJ: Casey, CJ: Furst, A. (1977). Effect of ammonia on Swiss albino mice. J Combustion Toxicol 4: 385-388.
38 39 40	Holness, DL; Purdham, JT; Nethercott, JR. (1989). Acute and chronic respiratory effects of occupational exposure to ammonia. AIHA J 50: 646-650. http://dx.doi.org/10.1080/15298668991375308
41 42	Holzman, IR: Lemons, JA: Meschia, G: Battaglia, FC. (1977). Ammonia production by the pregnant uterus (39868). Proc Soc Exp Biol Med 156: 27-30.
43 44	Holzman, IR: Philipps, AF: Battaglia, FC. (1979). Glucose metabolism, lactate, and ammonia production by the human placenta in vitro. Pediatr Res 13: 117-120.
45 46	<u>Huizenga, JR; Tangerman, A; Gips, CH.</u> (1994). Determination of ammonia in biological fluids [Review]. Ann Clin Biochem 31 (Pt 6): 529-543.
47	Ihrig, A: Hoffmann, J: Triebig, G. (2006). Examination of the influence of personal traits and

1	habituation on the reporting of complaints at experimental exposure to ammonia. Int Arch
2	Occup Environ Health 79: 332-338. <u>http://dx.doi.org/10.1007/s00420-005-0042-y</u>
3 4	<u>IPCS</u> (International Programme on Chemical Safety). (1986). Environmental health criteria: Ammonia. (EHC 54). Geneva, Switzerland: World Health Organization.
5	http://www.inchem.org/documents/ehc/ehc/ehc54.htm
6	Jarudi, NI; Golden, B. (1973). Ammonia eye injuries. J Iowa Med Soc 63: 260-263.
7 8	Johnson, RL; Gilbert, M; Block, SM; Battaglia, FC. (1986). Uterine metabolism of the pregnant rabbit under chronic steady-state conditions. Am J Obstet Gynecol 154: 1146-1151.
9	Jóźwik, M: Jóźwik, M: Pietrzycki, B: Choinowski, M: Teng, C: Jóźwik, M: Battaglia, FC. (2005).
10	Maternal and fetal blood ammonia concentrations in normal term human pregnancies. Biol
10	Lécuite M. Tong C. Moschie, C. Pottaglie, EC. (1000). Contribution of branched shein amine agida to
12 13	uteroplacental ammonia production in sheep. Biol Reprod 61: 792-796.
14	Kane, LE; Barrow, CS; Alarie, Y. (1979). A short-term test to predict acceptable levels of exposure to
15 16	airborne sensory irritants. Am Ind Hyg Assoc J 40: 207-229. <u>http://dx.doi.org/10.1080/15298667991429516</u>
17 18	<u>Kapeghian, JC; Jones, AB; Waters, IW.</u> (1985). Effects of ammonia on selected hepatic microsomal enzyme activity in mice. Bull Environ Contam Toxicol 35: 15-22.
19 20	Kapeghian, JC; Mincer, HH; Jones, AB; Verlangieri, AJ; Waters, IW. (1982). Acute inhalation toxicity
20	Vers L Zewel N. Delars CA. Heleen M. (1072). Dranchiesterie fellewing environis huma of the
21 22	respiratory tract: A review of two cases [Review]. Chest 62: 282-285.
23 24	Katayama, K. (2004). Ammonia metabolism and hepatic encephalopathy. Hepatology Research 30S: 73-80. <u>http://dx.doi.org/10.1016/j.hepres.2004.08.013</u>
25 26	<u>Kawano, S; Tsujii, M; Fusamoto, H; Sato, N; Kamada, T.</u> (1991). Chronic effect of intragastric ammonia on gastric mucosal structures in rats. Dig Dis Sci 36: 33-38.
27 28	<u>Kearney, DJ; Hubbard, T; Putnam, D.</u> (2002). Breath ammonia measurement in Helicobacter pylori infection. Dig Dis Sci 47: 2523-2530.
29 30 31	Keiding, S; Sørensen, M; Bender, D; Munk, OL; Ott, P; Vilstrup, H. (2006). Brain metabolism of 13N- ammonia during acute hepatic encephalopathy in cirrhosis measured by positron emission tomography. Hepatology 43: 42-50. <u>http://dx.doi.org/10.1002/hep.21001</u>
32 33 34	<u>Keiding, S; Sørensen, M; Munk, OL; Bender, D.</u> (2010). Human (13)N-ammonia PET studies: The importance of measuring (13)N-ammonia metabolites in blood. Metab Brain Dis 25: 49-56. <u>http://dx.doi.org/10.1007/s11011-010-9181-2</u>
35 36 37	Kennedy, SM; Le Moual, N; Choudat, D; Kauffmann, F. (2000). Development of an asthma specific job exposure matrix and its application in the epidemiological study of genetics and environment in asthma (EGEA). Occup Environ Med 57: 635-641.
38 39	Klein, J: Olson, KR: McKinney, HE. (1985). Caustic injury from household ammonia. Am J Emerg Med 3: 320.
40 41	<u>Klendshoj, NC; Rejent, TA.</u> (1966). Tissue levels of some poisoning agents less frequently encountered. J Forensic Sci 11: 75-80.
42 43	Lalić, H; Djindjić-Pavicić, M; Kukuljan, M. (2009). Ammonia intoxication on workplacecase report and a review of literature [Review]. Coll Antropol 33: 945-949.
44 45	Landahl, HD; Herrmann, RG. (1950). Retention of vapors and gases in the human nose and lung. Arch Environ Occup Health 1: 36-45
т <i>э</i> 16	Larson T. Frank R. Covert D. Holub D. Morgan M (1090) The chamical neutralization of inheled
40 47	sulfuric acid aerosol. Am J Ind Med 1: 449-452.

1	Larson, TV; Covert, DS; Frank, R; Charlson, RJ. (1977). Ammonia in the human airways:
2	Neutralization of inspired acid sulfate aerosols. Science 197: 161-163.
3	Leduc, D; Gris, P; Lheureux, P; Gevenois, PA; De Vuyst, P; Yernault, JC. (1992). Acute and long term
4	respiratory damage following inhalation of ammonia. Thorax 47: 755-757.
5 6	Lee, HS; Chan, CC; Tan, KT; Cheong, TH; Chee, CBE; Wang, YT. (1993). Burnisher's asthma - a case due to ammonia from silverware polishing. Singapore Med J 34: 565-566.
7	Lee HW: Verlander IW: Bishon IM: Igarashi P: Handlogten ME: Weiner ID (2009) Collecting
8	duct-specific Rh C glycoprotein deletion alters basal and acidosis-stimulated renal ammonia
9 10	excretion. Am J Physiol Renal Physiol 296: F1364-F1375.
10	
11	Lee, HW; Verlander, JW; Bishop, JM; Nelson, RD; Handlogten, ME; Weiner, ID. (2010). Effect of
12	intercalated cell-specific Rh L glycoprotein deletion on basal and metabolic acidosis-
13 14	stimulated renal ammonia excretion. Am J Physiol Renal Physiol 299: F369-F379.
15	Lemiere C. Bégin D. Comus M. Forget A. Boulet J.D. Cérin M. (2012). Comunitional rich fostore
15	<u>Lemiere, C; Begin, D; Camus, M; Forget, A; Boulet, LP; Gerin, M.</u> (2012). Occupational risk factors
10	http://dx.doi.org/10.1136/oemed-2012-100663
19	Law DM: Divertie MB: Litzow TI: Henderson JW (1964) Ammonia hurns of the face and
10	respiratory tract. IAMA 190: 873-876.
20	Li WI · Pauluhn I (2010) Comparative assessment of the sensory irritation potency in mice and
20	rats nose-only exposed to ammonia in dry and humidified atmospheres. Toxicology 276:
22	135-142. http://dx.doi.org/10.1016/j.tox.2010.07.020
23	Lide, DR. (2008), CRC handbook of chemistry and physics. In DR Lide (Ed.), (88th ed.), Boca Raton,
24	FL: CRC Press.
25	Lina, BAR; Kuijpers, MHM. (2004). Toxicity and carcinogenicity of acidogenic or alkalogenic diets in
26	rats; effects of feeding NH(4)Cl, KHCO(3) or KCl. Food Chem Toxicol 42: 135-153.
27	Lobasov, M; Smirnov, F. (1934). Nature of the action of chemical agents on mutational process in
28	Drosophila melanogaster: II. The effect of ammonia on the occurrence of lethal
29	transgenations. C R Biol 3: 174-176.
30 31	Lopez, GP; Dean, BS; Krenzelok, EP. (1988). Oral-exposure to ammonia inhalants: A report of 8 cases [Abstract]. Vet Hum Toxicol 30: 350.
32	Luschinsky HI (1951) The activity of glutaminase in the human placenta Arch Biochem Biophys
33	31: 132-140.
34	MacEwen, ID: Theodore, I: Vernot, EH. (1970). Human exposure to EEL concentrations of
35	monomethylhydrazine. In Proceedings of the first annual conference on environmental
36	toxicology. Wright-Patterson Air Force Base, OH: Aerospace Medical Research Laboratory.
37	MacEwen, ID: Vernot, EH. (1972). Toxic hazards research unit annual report: 1972. (AMRL-TR-72-
38	62). Wright-Patterson Air Force Base, OH: Aerospace Medical Research Laboratory.
39	Manninen, A: Anttila, S: Savolainen, H. (1988). Rat metabolic adaptation to ammonia inhalation.
40	Proc Soc Exp Biol Med 187: 278-281.
41	Manninen, ATA; Savolainen, H. (1989). Effect of short-term ammonia inhalation on selected amino
42	acids in rat brain. Pharmacol Toxicol 64: 244-246.
43	Manolis, A. (1983). The diagnostic potential of breath analysis [Review]. Clin Chem 29: 5-15.
44	Mayan, MH; Merilan, CP. (1972). Effects of ammonia inhalation on respiration rate of rabbits. J Anim
45	Sci 34: 448-452.
46	McGuiness, R. (1969). Ammonia in the eye [Letter]. Br Med J 1: 575.
47	<u>Medina-Ramón, M; Zock, JP; Kogevinas, M; Sunyer, J; Basagaña, X; Schwartz, J; Burge, PS; Moore, V;</u>

1 2	<u>Antó, JM.</u> (2006). Short-term respiratory effects of cleaning exposures in female domestic cleaners. Eur Respir J 27: 1196-1203. <u>http://dx.doi.org/10.1183/09031936.06.00085405</u>
3	Medina-Ramón, M: Zock, IP: Kogevinas, M: Sunver, I: Torralba, Y: Borrell, A: Burgos, F: Antó, IM.
4	(2005). Asthma, chronic bronchitis, and exposure to irritant agents in occupational
5	domestic cleaning: A nested case-control study. Occup Environ Med 62: 598-606.
6	http://dx.doi.org/10.1136/oem.2004.017640
7 8	<u>Melbostad, E; Eduard, W.</u> (2001). Organic dust-related respiratory and eye irritation in Norwegian farmers. Am J Ind Med 39: 209-217.
9 10	<u>Meschia, G; Battaglia, FC; Hay, WW; Sparks, JW.</u> (1980). Utilization of substrates by the ovine placenta in vivo. Fed Proc 39: 245-249.
11 12	Monsen, ER. (1987). The journal adopts SI units for clinical laboratory values. J Am Diet Assoc 87: 356-358.
13	Monsó E: Riu E: Radon K: Magarolas R: Danuser B: Iversen M: Morera I: Nowak D (2004)
13 14 15	Chronic obstructive pulmonary disease in never-smoking animal farmers working inside confinement buildings. Am J Ind Med 46: 357-362. http://dx.doi.org/10.1002/ajim.20077
16 17	Mossberg, SM; Ross, G. (1967). Ammonia movement in the small intestine: Preferential transport by the ileum. J Clin Invest 46: 490-498. <u>http://dx.doi.org/10.1172/JCI105551</u>
18 19	Muntwyler, E; Iacobellis, M; Griffin, GE. (1956). Kidney glutaminase and carbonic anhydrase activities and renal electrolyte excretion in rats. Am J Physiol 184: 83-90.
20	Nelson, DL; Cox, MM. (2008). Amino acid oxidation and the production of urea. In DL Nelson; AL
21 22	Lehninger; MM Cox (Eds.), Lehninger principles of biochemistry (5th ed., pp. 680, 683). New York, NY: W.H. Freeman & Co.
23 24 25	NIOSH (National Institute for Occupational Safety and Health). (1979). NIOSH manual of analytical methods: Second edition, volume 5. (DHEW (NIOSH) Publication No. 79-141). Cincinnati, OH.
26 27	NIOSH (National Institute for Occupational Safety and Health). (2010). NIOSH pocket guide to chemical hazards: Ammonia. <u>http://www.cdc.gov/niosh/npg/npgd0028.html</u>
28 29	NLM (National Institutes of Health, National Library of Medicine). (2012). ChemIDplus: Ammonia. Bethesda, MD: National Library of Medicine. <u>http://chem.sis.nlm.nih.gov/chemidplus/</u>
30 31 32	Norwood, DM; Wainman, T; Lioy, PJ; Waldman, JM. (1992). Breath ammonia depletion and its relevance to acidic aerosol exposure studies. Arch Environ Occup Health 47: 309-313. http://dx.doi.org/10.1080/00039896.1992.9938367
33 34 35	NRC (National Research Council). (2008). Acute exposure guideline levels for selected airborne chemicals: Volume 6. Washington, DC: The National Academies Press. http://www.nap.edu/catalog.php?record_id=12018
36 37 38	NRC (National Research Council). (2011). Review of the Environmental Protection Agency's draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press. http://www.nap.edu/catalog/13142.html
39	O'Connor, EA; Parker, MO; McLeman, MA; Demmers, TG; Lowe, JC; Cui, L; Davey, EL; Owen, RC;
40	Wathes, CM; Abeyesinghe, SM. (2010). The impact of chronic environmental stressors on
41 42	growing pigs, Sus scrofa (part 1): Stress physiology, production and play behaviour. Animal 4: 1899-1909. <u>http://dx.doi.org/10.1017/S1751731110001072</u>
43 44	<u>O'Kane, GJ.</u> (1983). Inhalation of ammonia vapour: A report on the management of eight patients during the acute stages. Anaesthesia 38: 1208-1213.
45 46 47	O'Neil, MJ; Heckelman, PE; Koch, CB; Roman, KJ. (2006). Ammonia. In The Merck index: An encyclopedia of chemicals, drugs, and biologicals (14th ed.). Whitehouse Station, NJ: Merck
4/	& CO., IIIC.

1	OSHA. Table Z-1: Limits for air contaminants, 29 CFR § 1910.1000 (2006).
2	http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=
3	<u>9992</u>
4	Osmond, AH; Tallents, CJ. (1968). Ammonia attacks [Letter]. Br Med J 3: 740.
5	<u>Ota, Y; Hasumura, M; Okamura, M; Takahashi, A; Ueda, M; Onodera, H; Imai, T; Mitsumori, K; Hirose,</u>
6 7	<u>M.</u> (2006). Chronic toxicity and carcinogenicity of dietary administered ammonium sulfate in F344 rats. Food Chem Toxicol 44: 17-27. <u>http://dx.doi.org/10.1016/j.fct.2005.06.001</u>
8	Petrova, M; Diamond, J: Schuster, B; Dalton, P. (2008). Evaluation of trigeminal sensitivity to
9 10	ammonia in asthmatics and healthy human volunteers. Inhal Toxicol 20: 1085-1092. <u>http://dx.doi.org/10.1080/08958370802120396</u>
11 12	<u>Pirjavec, A; Kovic, I; Lulic, I; Zupan, Z.</u> (2009). Massive anhydrous ammonia injury leading to lung transplantation. J Trauma 67: E93-E97. <u>http://dx.doi.org/10.1097/TA.0b013e31817fd93f</u>
13 14	<u>Pitts, RF.</u> (1971). The role of ammonia production and excretion in regulation of acid-base balance [Review]. N Engl J Med 284: 32-38. <u>http://dx.doi.org/10.1056/NEJM197101072840110</u>
15	Preller, L: Heederik, D: Boleii, ISM: Vogelzang, PFI: Tielen, MIM. (1995). Lung function and chronic
16 17	respiratory symptoms of pig farmers: Focus on exposure to endotoxins and ammonia and use of disinfectants. Occup Environ Med 52: 654-660.
18 19	Price, S; Watts, JC. (2008). Ammonia gas incident [Letter]. Anaesthesia 63: 894-895. http://dx.doi.org/10.1111/j.1365-2044.2008.05625.x
20	Prudhomme, JC; Shusterman, DJ; Blanc, PD. (1998). Acute-onset persistent olfactory deficit
21 22	resulting from multiple overexposures to ammonia vapor at work. J Am Board Fam Pract 11: 66-69.
23	Qin, C; Foreman, RD; Farber, JP. (2007a). Afferent pathway and neuromodulation of superficial and
24	deeper thoracic spinal neurons receiving noxious pulmonary inputs in rats. Auton Neurosci
25	131: 77-86. <u>http://dx.doi.org/10.1016/j.autneu.2006.07.007</u>
26	Qin, C; Foreman, RD; Farber, JP. (2007b). Inhalation of a pulmonary irritant modulates activity of
27 28	Physiol 293: R2052-R2058. <u>http://dx.doi.org/10.1152/ajpregu.00154.2007</u>
29 30	Rahman, MH; Bråtveit, M; Moen, BE. (2007). Exposure to ammonia and acute respiratory effects in a urea fertilizer factory. Int J Occup Environ Health 13: 153-159.
31 32	Read, AJ. (1982). Ionization constants of aqueous ammonia from 25 to 250C and to 2000 bar. Journal of Solution Chemistry 11: 649-664. <u>http://dx.doi.org/10.1007/BF00650397</u>
33	Rejniuk, VL; Schafer, TV; Ivnitsky, JJ. (2008). Ammonia potentiates the lethal effect of ethanol on
34	rats. Bull Exp Biol Med 145: 741-743.
35	Rejniuk, VL; Schafer, TV; Ovsep'yan, RV; Ivnitsky, JJ. (2007). Effect of atmospheric ammonia on
36	mortality rate of rats with barbiturate intoxication. Bull Exp Biol Med 143: 692-704.
37	Remesar, X; Arola, L; Palou, A; Alemany, M. (1980). Activities of enzymes involved in amino-acid
38	metabolism in developing rat placenta. Eur J Biochem 110: 289-293.
39	<u>Inttp://dx.doi.org/10.1111/j.1432-1033.1980.tb04867.x</u>
40 41	<u>Reynolds, SJ; Donham, KJ; Whitten, P; Merchant, JA; Burmeister, LF; Popendorf, WJ.</u> (1996).
42	pulmonary function in swine production workers. Am I Ind Med 29: 33-40.
43	http://dx.doi.org/10.1002/(SICI)1097-0274(199601)29:1<33::AID-AJIM5>3.0.CO;2-#
44	Richard, D; Bouley, G; Boudene, C. (1978a). [Effects of ammonia gas continuously inhaled by rats
45	and mice]. Bull Europ Physiol Resp 14: 573-582.
46	Richard, D; Jouany, JM; Boudène, C. (1978b). [Acute inhalation toxicity of ammonia in rabbits]. C R
47	Acad Sci Hebd Seances Acad Sci D 287: 375-378.

1	Robertson, JL; Kolmakova-Partensky, L; Miller, C. (2010). Design, function and structure of a
2	monomeric ClC transporter [Letter]. Nature 468: 844-847.
3	http://dx.doi.org/10.1038/nature09556
4	Rosenbaum, AM; Walner, DL; Dunham, ME; Holinger, LD. (1998). Ammonia capsule ingestion
5	causing upper aerodigestive tract injury. Otolaryngol Head Neck Surg 119: 678-680.
6	Rosenfeld, M. (1932). [Experimental modification of mitosis by ammonia]. Archiv fur
7	experimentelle Zellforschung, besonders Gewebeziichtung 14: 1-13.
8	Rubaltelli, FF; Formentin, PA. (1968). Ammonia nitrogen, urea and uric acid blood levels in the
9	mother and in both umbilical vessels at delivery. Biol Neonat 13: 147-154.
10	<u>http://dx.doi.org/10.1159/000240142</u>
11 12	<u>Sadasivudu, B; Radha Krishna Murthy, C.</u> (1978). Effects of ammonia on monoamine oxidase and enzymes of GABA metabolism in mouse brain. Arch Physiol Biochem 86: 67-82.
13 14	<u>Sadasivudu, B; Rao, TI; Murthy, CR.</u> (1979). Chronic metabolic effects of ammonia in mouse brain. Arch Physiol Biochem 87: 871-885.
15 16	Schaerdel, AD; White, WJ; Lang, CM; Dvorchik, BH; Bohner, K. (1983). Localized and systemic effects of environmental ammonia in rats. J Am Assoc Lab Anim Sci 33: 40-45.
17	Schmidt, FM; Vaittinen, O; Metsälä, M; Lehto, M; Forsblom, C; Groop, PH; Halonen, L. (2013).
18 19	Ammonia in breath and emitted from skin. J Breath Res 7: 017109. http://dx.doi.org/10.1088/1752-7155/7/1/017109
20	Shimizu, H: Suzuki, Y: Takemura, N: Goto, S: Matsushita, H. (1985). The results of microbial
21	mutation test for forty-three industrial chemicals. Sangyo Igaku 27: 400-419.
22	Sigurdarson, ST; O'Shaughnessy, PT; Watt, JA; Kline, JN. (2004). Experimental human exposure to
23 24	inhaled grain dust and ammonia: towards a model of concentrated animal feeding operations. Am J Ind Med 46: 345-348. <u>http://dx.doi.org/10.1002/ajim.20055</u>
25 26	Silver, SD: McGrath, FP. (1948). A comparision of acute toxicities of ethylene imine and ammonia to mice. J Ind Hyg Toxicol 30: 7-9.
27 28	Silverman, L; Whittenberger, JL; Muller, J. (1949). Physiological response of man to ammonia in low concentrations. J Ind Hyg Toxicol 31: 74-78.
29 30 31	Sjöblom, E; Höjer, J; Kulling, PE; Stauffer, K; Suneson, A; Ludwigs, U. (1999). A placebo-controlled experimental study of steroid inhalation therapy in ammonia-induced lung injury. J Toxicol Clin Toxicol 37: 59-67.
32	Slot, GMJ. (1938). Ammonia gas burns: An account of six cases. Lancet 10: 1356-1357.
33 34 35	Smeets, MA; Bulsing, PJ; van Rooden, S; Steinmann, R; de Ru, JA; Ogink, NW; van Thriel, C; Dalton, PH. (2007). Odor and irritation thresholds for ammonia: a comparison between static and dynamic olfactometry. Chem Senses 32: 11-20. <u>http://dx.doi.org/10.1093/chemse/bjl031</u>
36 37	Smith, D: Spanel, P: Davies, S. (1999). Trace gases in breath of healthy volunteers when fasting and after a protein-calorie meal: a preliminary study. J Appl Physiol 87: 1584-1588.
38 39 40	Smith, D; Wang, T; Pysanenko, A; Spanel, P. (2008). A selected ion flow tube mass spectrometry study of ammonia in mouth- and nose-exhaled breath and in the oral cavity. Rapid Commun Mass Spectrom 22: 783-789. <u>http://dx.doi.org/10.1002/rcm.3434</u>
41 42 43	<u>Sørensen, M; Munk, OL; Keiding, S.</u> (2009). Backflux of ammonia from brain to blood in human subjects with and without hepatic encephalopathy. Metab Brain Dis 24: 237-242. <u>http://dx.doi.org/10.1007/s11011-008-9126-1</u>
44 45	Sotiropoulos, G; Kilaghbian, T; Dougherty, W; Henderson, SO. (1998). Cold injury from pressurized liquid ammonia: a report of two cases. J Emerg Med 16: 409-412.
46 47	<u>Souba, WW.</u> (1987). Interorgan ammonia metabolism in health and disease: a surgeon's view [Review]. JPEN J Parenter Enteral Nutr 11: 569-579.

1	Spanel, P; Dryahina, K; Smith, D. (2007a). Acetone, ammonia and hydrogen cyanide in exhaled
2	breath of several volunteers aged 4-83 years. J Breath Res 1: 011001.
3	http://dx.doi.org/10.1088/1752-7155/1/1/011001
4	Spanel, P: Dryahina, K: Smith, D. (2007b). The concentration distributions of some metabolites in
5	the exhaled breath of young adults. J Breath Res 1: 026001.
6	http://dx.doi.org/10.1088/1752-7155/1/2/026001
7	Stabenau, JR; Warren, KS; Rall, DP. (1959). The role of pH gradient in the distribution of ammonia
8	between blood and cerebrospinal fluid, brain and muscle. J Clin Invest 38: 373-383.
9	http://dx.doi.org/10.1172/JCI103811
10	Stombaugh, DP; Teague, HS; Roller, WL. (1969). Effects of atmospheric ammonia on the pig. J Anim
11	Sci 28: 844-847.
12	Stroud, S. (1981). Ammonia inhalation - a case report. Crit Care Nurse 1: 23-26.
13	Summerskill, WH: Wolpert, F. (1970). Ammonia metabolism in the gut. Am I Clin Nutr 23: 633-639.
14	Sundhlad RM: Larsson RM: Acevedo E: Ernstgård L: Johanson C: Larsson K: Palmherg L (2004)
14	Acute respiratory effects of exposure to appropria on healthy persons. Scand I Work Environ
16	Health 30: 313-321.
17	Suzuki H: Mori M: Suzuki M: Sakurai K: Miura S: Ishii H (1997) Extensive DNA damage induced
18	by monochloramine in gastric cells. Cancer Lett 115: 243-248.
19	Suzuki, H; Seto, K; Mori, M; Suzuki, M; Miura, S; Ishii, H. (1998). Monochloramine induced DNA
20	fragmentation in gastric cell line MKN45. Am J Physiol 275: G712-G716.
21 22	<u>Takagaki, G; Berl, S; Clarke, DD; Purpura, DP; Waelsch, H.</u> (1961). Glutamic acid metabolism in brain and liver during infusion with ammonia labelled with nitrogen-15. Nature 189: 326.
23 24	Taplin, GV; Chopra, S; Yanda, RL; Elam, D. (1976). Radionuclidic lung-imaging procedures in the assessment of injury due to ammonia inhalation. Chest 69: 582-586.
25	Tepper, JS: Weiss, B: Wood, RW. (1985). Alterations in behavior produced by inhaled ozone or
26	ammonia. Toxicol Sci 5: 1110-1118.
27	Toth, B. (1972). Hydrazine, methylhydrazine and methylhydrazine sulfate carcinogenesis in Swiss
28	mice. Failure of ammonium hydroxide to interfere in the development of tumors. Int J
29	Cancer 9: 109-118.
30	Tsujii, M; Kawano, S; Tsuji, S; Fusamoto, H; Kamada, T; Sato, N. (1992a). Mechanism of gastric
31	mucosal damage induced by ammonia. Gastroenterology 102: 1881-1888.
32	<u>Tsujii, M; Kawano, S; Tsuji, S; Nagano, K; Ito, T; Hayashi, N; Fusamoto, H; Kamada, T; Tamura, K.</u>
33	(1992b). Ammonia: a possible promotor in Helicobacter pylori-related gastric
34	carcinogenesis. Cancer Lett 65: 15-18.
35	<u>Tsujii, M; Kawano, S; Tsuji, S; Ito, T; Nagano, K; Sasaki, Y; Hayashi, N; Fusamoto, H; Kamada, T.</u>
36	(1993). Cell kinetics of mucosal atrophy in rat stomach induced by long-term
37	administration of ammonia. Gastroenterology 104: 796-801.
38	Tsujii, M; Kawano, S; Tsuji, S; Takei, Y; Tamura, K; Fusamoto, H; Kamada, T. (1995). Mechanism for
39	ammonia-induced promotion of gastric carcinogenesis in rats. Carcinogenesis 16: 563-566.
40	Turner, C; Spanel, P; Smith, D. (2006). A longitudinal study of ammonia, acetone and propanol in the
41 42	exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS.
-T2 12	IIS Congress (2011) Consolidated Appropriations Act 2012 (Bub I No. 112.74, 127 CTAT. 704)
43 44	112th U.S. Congress, http://www.gpo.gov/fdsys/pla/DIAW_112publ74/pdf/DLAW
45	112mbl74ndf
16	US FPA (US Environmental Protection Agency) (1988) Recommendations for and documentation
40 47	of hiological values for use in risk assessment [EPA Report] (FPA /600 / 6-87 / 008)
.,	or protogram variates for use in this assessment [In threport]. (In the over or 1000).
1	Cincinnati, OH. <u>http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=34855</u>
----------------	--
2	U.S. EPA (U.S. Environmental Protection Agency). (2012a). Advances in inhalation gas dosimetry for
3	derivation of a reference concentration (rfc) and use in risk assessment [EPA Report].
4	(EPA/600/R-12/044). Washington, DC.
5	http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=244650
6 7	U.S. EPA (U.S. Environmental Protection Agency). (2012b). Benchmark dose technical guidance.
8	http://www.epa.gov/raf/publications/pdfs/benchmark_dose_guidance.pdf
9	U.S. EPA (U.S. Environmental Protection Agency). (2012c). EPA announces NAS' review of IRIS
10	Assessment development process. Available online at
11	http://yosemite.epa.gov/opa/admpress.nsf/0/1ce2a7875daf093485257a000054df54?Ope
12	<u>nDocument</u>
13 14 15	<u>Urbain, B; Gustin, P; Prouvost, JF; Ansay, M.</u> (1994). Quantitative assessment of aerial ammonia toxicity to the nasal mucosa by use of the nasal lavage method in pigs. Am J Vet Res 55: 1335-1340.
16	<u>van de Poll, MC; Ligthart-Melis, GC; Olde Damink, SW; van Leeuwen, PA; Beets-Tan, RG; Deutz, NE;</u>
17	Wigmore, SJ; Soeters, PB; Dejong, CH. (2008). The gut does not contribute to systemic
18	ammonia release in humans without portosystemic shunting. Am J Physiol Gastrointest
19	Liver Physiol 295: G760-G765. <u>http://ux.uoi.org/10.1152/ajpgi.00555.2007</u>
20 21	ammonia. J Biol Chem 150: 481-482.
22	Verberk, MM. (1977). Effects of ammonia in volunteers. Int Arch Occup Environ Health 39: 73-81.
23	http://dx.doi.org/10.1007/BF00380887
24 25	<u>Verschueren, K.</u> (2001). Ammonia. In Handbook of environmental data on organic chemicals. New York, NY: John Wiley & Sons.
26	Vizcaya, D; Mirabelli, MC; Antó, JM; Orriols, R; Burgos, F; Arjona, L; Zock, JP. (2011). A workforce-
27 28	based study of occupational exposures and asthma symptoms in cleaning workers. Occup Environ Med 68: 914-919. <u>http://dx.doi.org/10.1136/oem.2010.063271</u>
29 30	<u>Vollmuth, TA; Schlesinger, RB.</u> (1984). Measurement of respiratory tract ammonia in the rabbit and implications to sulfuric acid inhalation studies. Toxicol Sci 4: 455-464.
31	<u>Walton, M.</u> (1973). Industrial ammonia gassing. Occup Environ Med 30: 78-86.
32	<u>Wands, RC.</u> (1981). Alkaline materials. In GD Clayton; FE Clayton (Eds.), Patty's industrial hygiene
33	and toxicology: Volume 2B: Toxicology (3rd rev. ed., pp. 3045-3070). New York, NY: John
34	Wiley & Sons.
35 36	<u>Ward, K; Murray, B; Costello, GP.</u> (1983). Acute and long-term pulmonary sequelae of acute ammonia inhalation. Ir Med I 76: 279-281.
37	Wason, S: Stephan, M: Breide, C. (1990). Ingestion of aromatic ammonia 'smelling salts' capsules
38	[Letter]. Am J Dis Child 144: 139-140.
39	http://dx.doi.org/10.1001/archpedi.1990.02150260017009
40	Weatherby, JH. (1952). Chronic toxicity of ammonia fumes by inhalation. Proc Soc Exp Biol Med 81:
41	300-301.
42	Weiser, JR; Mackenroth, T. (1989). Acute inhalatory mass ammonia intoxication with fatal course.
43	Exp Pathol 3/: 291-295.
44 45	<u>WNITE, UE; Park, MS; Kenz, EM; Kim, SH; Ritenour, AE; Wolf, SE; Cancio, LC.</u> (2007). Burn center treatment of natients with severe anhydrous ammonia injury: case reports and literature
46	review [Review]. I Burn Care Res 28: 922-928.
47	http://dx.doi.org/10.1097/BCR.0b013e318159a44e

Supplemental Information—Ammonia

1 2 3	Whittaker, AG; Love, S; Parkin, TD; Duz, M; Hughes, KJ. (2009). Stabling causes a significant increase in the pH of the equine airway. Equine Vet J 41: 940-943. http://dx.doi.org/10.2746/042516409X474383
4 5	<u>Yadav, JS; Kaushik, VK.</u> (1997). Genotoxic effect of ammonia exposure on workers in a fertilizer factory. Indian J Exp Biol 35: 487-492.
6 7	Yang, GY; Tominack, RL; Deng, JF. (1987). An industrial mass ammonia exposure. Vet Hum Toxicol 29: 476-477.
8 9 10	Zejda, JE; Barber, E; Dosman, JA; Olenchock, SA; McDuffie, HH; Rhodes, C; Hurst, T. (1994). Respiratory health status in swine producers relates to endotoxin exposure in the presence of low dust levels. J Occup Med 36: 49-56.
11 12 13 14	Zock, JP; Plana, E; Jarvis, D; Antó, JM; Kromhout, H; Kennedy, SM; Künzli, N; Villani, S; Olivieri, M; Torén, K; Radon, K; Sunyer, J; Dahlman-Hoglund, A; Norbäck, D; Kogevinas, M. (2007). The use of household cleaning sprays and adult asthma: An international longitudinal study. Am J Respir Crit Care Med 176: 735-741. <u>http://dx.doi.org/10.1164/rccm.200612-17930C</u>
15 16	Zock, JP; Vizcaya, D; Le Moual, N. (2010). Update on asthma and cleaners [Review]. Curr Opin Allergy Clin Immunol 10: 114-120. <u>http://dx.doi.org/10.1097/ACI.0b013e32833733fe</u>
17 18	