

EPA/635/R-14/312b External Review Draft www.epa.gov/iris

Toxicological Review of Benzo[a]pyrene

(CASRN 50-32-8)

In Support of Summary Information on the Integrated Risk Information System (IRIS)

Supplemental Information

September 2014

NOTICE

This document is an **External Review draft**. This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. It is being circulated for review of its technical accuracy and science policy implications.

National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC

DISCLAIMER

This document is a preliminary draft for review purposes only. This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement of recommendation for use.

CONTENTS

APPENDIX A.	CHEN	/ICAL PF	OPERTIES AND EXPOSURE INFORMATION	A-1
APPENDIX B.	ASSE	SSMENT	S BY OTHER NATIONAL AND INTERNATIONAL HEALTH AGENCIES	B-1
APPENDIX C.	LITER	ATURE	SEARCH STRATEGY KEYWORDS	C-1
APPENDIX D.			N IN SUPPORT OF HAZARD IDENTIFICATION AND DOSE-RESPONSE	
	ANAL	YSIS		D-1
	D.1.	TOXICC	DKINETICS	D-1
		D.1.1.	Overview	D-1
		D.1.2.	Absorption	D-1
		D.1.3.	Distribution	D-3
		D.1.4.	Metabolism	D-4
		D.1.5.	Elimination	D-11
	D.2.	PHYSIC	LOGICALLY BASED PHARMACOKINETIC (PBPK) MODELS	D-12
		D.2.1.	Recommendations for the Use of PBPK Models in Toxicity Value Derivation	D-14
	D.3.	HUMAI	N STUDIES	D-15
		D.3.1.	Noncancer Endpoints	D-15
		D.3.2.	Cancer-related Endpoints	D-26
		D.3.3.	Epidemiologic Findings in Humans	D-28
	D.4.	ANIMA	L STUDIES	D-38
		D.4.1.	Oral Bioassays	D-38
		D.4.2.	Inhalation Studies	D-58
		D.4.3.	Dermal studies	D-61
		D.4.4.	Reproductive and Developmental Toxicity Studies	D-71
		D.4.5.	Inhalation	D-87
	D.5.	OTHER	PERTINENT TOXICITY INFORMATION	D-91
		D.5.1.	Genotoxicity Information	D-91
		D.5.2.	Tumor Promotion and Progression	D-114
		D.5.3.	Benzo[a]pyrene Transcriptomic Microarray Analysis	D-118

APPENDIX E.			NSE MODELING FOR THE DERIVATION OF REFERENCE VALUES FOR ER THAN CANCER AND THE DERIVATION OF CANCER RISK	
	ESTI	MATES		E-1
	E.1.	NONCA	ANCER ENDPOINTS	E-1
		E.1.1.	Reference Dose (RfD)	E-1
		E.1.2.	Reference Concentration (RfC)	E-28
	E.2.	Cancer	Endpoints	E-31
		E.2.1.	Dose-Response Modeling for the Oral Slope Factor	E-31
		E.2.2.	Dose-Response Modeling for the Inhalation Unit Risk	E-66
		E.2.3.	Dose-Response Modeling for the Dermal Slope Factor	E-75
APPENDIX F.			ATION OF IMPLEMENTATION OF THE 2011 NATIONAL RESEARCH	F-1
APPENDIX G.			F EXTERNAL PEER REVIEW AND PUBLIC COMMENTS AND EPA'S	G-1
REFERENCES FC	DR API	PENDICE	S	R-1

TABLES

Table A-1.	Chemical and physical properties of benzo[a]pyrene	A-2
Table A-2.	Benzo[a]pyrene concentrations in air	A-4
Table A-3.	Benzo[a]pyrene levels in food	A-5
Table A-4.	Levels of benzo[a]pyrene in soil	A-7
Table B-1.	Health assessments and regulatory limits by other national and international	
	agencies	B-1
Table C-1.	Literature search strategy keywords for benzo[a]pyrene	C-1
Table D-1.	Exposure to benzo[a]pyrene and mortality from cardiovascular diseases in a	
	European cohort of asphalt paving workers	D-16
Table D-2.	Exposure to benzo[a]pyrene and mortality from cardiovascular diseases in a	
	Canadian cohort of male aluminum smelter workers	D-18
Table D-3.	Exposure-related effects in Chinese coke oven workers or warehouse controls	
	exposed to benzo[a]pyrene in the workplace	D-23
Table D-4.	Exposure-related effects in Chinese coke oven workers or warehouse controls	
	exposed to benzo[a]pyrene in the workplace, stratified by urinary metabolite	
	levels	D-24
Table D-5.	Background information on Chinese coke oven workers or warehouse controls	
	exposed to benzo[a]pyrene in the workplace	D-25
Table D-6.	Studies examining skin cancer risk in relation to therapeutic coal tar	
	Exposure-related effects in male Wistar rats exposed to benzo[a]pyrene by gavage 5	
	days/week for 5 weeks	D-39
Table D-8.	Exposure-related effects in Wistar rats exposed to benzo[a]pyrene by gavage 5	
	days/week for 5 weeks	D-43
Table D-9.	Means ± SD for liver and thymus weights in Wistar rats exposed to benzo[a]pyrene	
	by gavage 5 days/week for 90 days	D-45
Table D-10	Incidences of exposure-related neoplasms in Wistar rats treated by gavage with	
	benzo[a]pyrene, 5 days/week, for 104 weeks	D-47
Table D-11	. Incidences of alimentary tract tumors in Sprague-Dawley rats chronically exposed to	
	benzo[a]pyrene in the diet or by gavage in caffeine solution	D-51
Table D-12	. Incidence of nonneoplastic and neoplastic lesions in female B6C3F ₁ mice fed	
	benzo[a]pyrene in the diet for up to 2 years	D-53
Table D-13	. Other oral exposure cancer bioassays in mice	D-54
Table D-14	. Tumor incidence in the respiratory tract and upper digestive tract for male Syrian	
	golden hamsters exposed to benzo[a]pyrene via inhalation for lifetime—	
	Thyssen et al. (1981)	D-60
Table D-15	. Skin tumor incidence and time of appearance in male C57L mice dermally exposed	
	to benzo[a]pyrene for up to 103 weeks	D-63
Table D-16	Skin tumor incidence and time of appearance in male SWR, C3HeB, and A/He mice	
	dermally exposed to benzo[a]pyrene for life or until a skin tumor was detected	D-64
Table D-17	. Tumor incidence in female Swiss mice dermally exposed to benzo[a]pyrene for up	
	to 93 weeks	D-65
Table D-18	. Skin tumor incidence in female NMRI and Swiss mice dermally exposed to	
	benzo[a]pyrene	D-66
Table D-19	Skin tumor incidence in female NMRI mice dermally exposed to benzo[a]pyrene	
Table D-20	. Skin tumor incidence in female NMRI mice dermally exposed to benzo[a]pyrene	D-67

Table D-21. Skin tumor incidence and time of appearance in female CFLP mice dermally	
exposed to benzo[a]pyrene for 104 weeks	. D-68
Table D-22. Skin tumor incidence in female NMRI mice dermally exposed to benzo[a]pyrene for life	. D-69
Table D-23. Skin tumor incidence in male C3H/HeJ mice dermally exposed to benzo[a]pyrene for 24 months	. D-70
Table D-24. Mortality and cervical histopathology incidences in female ICR mice exposed to	
benzo[a]pyrene via gavage for 14 weeks	
Table D-25. Means ± SD for ovary weight in female Sprague-Dawley rats	. D-77
Table D-26. Reproductive effects in male and female CD-1 F1 mice exposed in utero to	
benzo[a]pyrene	. D-79
Table D-27. Effect of prenatal exposure to benzo[a]pyrene on indices of reproductive	
performance in F1 female NMRI mice	. D-80
Table D-28. Exposure-related effects in Long-Evans Hooded rats exposed to benzo[a]pyrene by	
gavage daily in utero from GD 14 to 17	. D-84
Table D-29. Exposure-related pup body weight effects in Swiss Albino OF1 mice exposed as pups	
to benzo[a]pyrene in breast milk from dams treated by gavage daily from PND 1	
	. D-85
Table D-30. Pregnancy outcomes in female F344 rats treated with benzo[a]pyrene on GDs	
11–21 by inhalation	
Table D-31. In vitro genotoxicity studies of benzo[a]pyrene in non-mammalian cells	. D-91
Table D-32. In vitro genotoxicity studies of benzo[a]pyrene in mammalian cells	
Table D-33. In vivo genotoxicity studies of benzo[a]pyrene	. D-98
Table D-34. Search terms and the number of studies retrieved from the gene expression	
omnibus and array express microarray repositories	D-118
Table D-35. Mapping of group numbers to time/dose groups	D-121
Table E-1. Noncancer endpoints selected for dose-response modeling for benzo[a]pyrene: RfD	E-2
Table E-2. Summary of BMD modeling results for decreased thymus weight in male Wistar rats	
exposed to benzo[a]pyrene by gavage for 90 days (Kroese et al., 2001); BMR = 1	
SD change from the control mean	E-3
Table E-3. Summary of BMD modeling results for decreased thymus weight in female Wistar	
rats exposed to benzo[a]pyrene by gavage for 90 days (Kroese et al., 2001); BMR	
= 1 SD change from the control mean	E-7
Table E-4. Summary of BMD modeling results for decreased ovary weight in female Sprague-	
Dawley rats exposed to benzo[a]pyrene by gavage for 60 days (Xu et al., 2010);	
BMR = 1 SD change from the control mean	E-11
Table E-5. Summary of BMD modeling results for Morris water maze: escape latency in male	
and female Sprague-Dawley rats exposed to benzo[a]pyrene by gavage for 90	
days (Chen et al., 2012); BMR = 1 SD change from the control mean	E-14
Table E-6. Summary of BMD modeling results for Morris water maze: time spent in quadrant for	
in male and female Sprague-Dawley rats exposed to benzo[a]pyrene by gavage	
for 90 days (Chen et al., 2012); BMR = 1 SD change from the control mean	E-18
Table E-7. Summary of BMD modeling results for elevated plus maze: open arm entries for	
females at PND 70 (Chen et al., 2012); BMR = 1 SD change from the control	
mean	E-21
Table E-8. Summary of BMD modeling results for incidence of cervical epithelial hyperplasia in	
female ICR mice exposed to benzo[a]pyrene by oral exposure for 98 days (Gao	
et al., 2011); BMR = 1 SD change from the control mean	E-25

Table E-9. Tumor incidence data, with time to death with tumor for male Wistar rats exposed by
gavage to benzo[a]pyrene for 104 weeks (Kroese et al., 2001)
Table E-10. Tumor incidence data, with time to death with tumor for female Wistar rats
exposed by gavage to benzo[a]pyrene for 104 weeks (Kroese et al., 2001) E-37
Table E-11. Tumor incidence, with time to death with tumor; B6C3F ₁ female mice exposed to
benzo[a]pyrene via diet for 2 years (Beland and Culp, 1998)
Table E-12. Derivation of HEDs to use for BMD modeling of Wistar rat tumor incidence data
from Kroese et al. (2001) E-43
Table E-13. Derivation of HEDs for dose-response modeling of B6C3F ₁ female mouse tumor
incidence data from Beland and Culp (1998)E-43
Table E-14. Summary of BMD modeling results for best-fitting multistage-Weibull models, using
time-to-tumor data for Wistar rats exposed to benzo[a]pyrene via gavage for
104 weeks (Kroese et al., 2001); BMR = 10% extra risk
Table E-15. Summary of human equivalent overall oral slope factors, based on tumor incidence
in male and female Wistar rats exposed to benzo[a]pyrene by gavage for 104
weeks (Kroese et al., 2001)
Table E-16. Summary of BMD model selection among multistage-Weibull models fit to
alimentary tract tumor data for female B6C3F ₁ mice exposed to benzo[a]pyrene
for 2 years (Beland and Culp, 1998)E-63
Table E-17. Individual pathology and tumor incidence data for male Syrian golden hamsters
exposed to benzo[a]pyrene via inhalation for lifetime—Thyssen et al. (1981)
Table E-18. Summary of BMD model selection among multistage-Weibull models fit to tumor
data for male Syrian golden hamsters exposed to benzo[a]pyrene via inhalation
for lifetime (Thyssen et al., 1981)E-70
Table E-19. Tumor incidence, with time to observation of tumor or death; CeH/HeJ male mice
exposed dermally to benzo[a]pyrene (Sivak et al., 1997; Arthur D Little, 1989)
Table E-20. Skin tumor incidence, benign or malignant in female Swiss or NMRI mice dermally
exposed to benzo[a]pyrene; data from Roe et al. (1970), Schmidt et al. (1973),
Schmähl et al. (1977), Habs et al. (1980), Habs et al. (1984)
Table E-21. Skin tumor incidence, benign or malignant, in C57L male mice dermally exposed to
benzo[a]pyrene; data from Poel (1959)E-80
Table E-22. Skin tumor incidence, benign or malignant, in female CFLP mice dermally exposed to
benzo[a]pyrene; data from Grimmer et al. (1983), Grimmer et al. (1984) E-80
Table E-23. Summary of BMD modeling results for best-fitting multistage-Weibull models, using
time-to-tumor data for male CeH/HeJ mice exposed dermally to benzo[a]pyrene
(Sivak et al., 1997; Arthur D Little, 1989)E-81
Table E-24. Summary of BMD model selection and modeling results using multistage models,
for multiple data sets of skin tumors in mice following lifetime dermal
benzo[a]pyrene exposure
Table E-25. Alternative approaches to cross-species scaling
Table F-1. The EPA's implementation of the National Research Council's recommendations in
the benzo[a]pyrene assessment
Table F-2. National Research Council recommendations that the EPA is generally implementing
in the long term
ווו נווב וטווא נכוווו

FIGURES

Figure A-1.	Structural formula of benzo[a]pyrene	A-1
Figure D-1.	Metabolic pathways for benzo[a]pyrene.	D-5
Figure D-2.	The stereospecific activation of benzo[a]pyrene.	D-7
Figure D-3.	Interaction of PAHs with the AhR	. D-115
Figure D-4.	AhR pathway. For Figures D-4–D-6, the "thermometers" display the fold change	
	gene expression. The numbers under the thermometer represent the group	
	within the two studies (see Table D-34). For instance, NRF2 is upregulated in	
	the 25 mg/kg	. D-122
Figure D-5.	DNA damage pathway. Activation of transcriptional targets of <i>p53</i> , including <i>p21</i>	
	and GADD45, and upregulation of the downstream transcriptional target, PCNA,	
	suggests that <i>p53</i> is activated	. D-123
Figure D-6.	Nrf2 pathway. Nrf2 is upregulated by benzo[a]pyrene exposure, which results in the	
	upregulation of Phase II detoxifying enzymes. This appears to be a	
	compensatory response due to increased oxidative status within cells.	. D-125
Figure E-1.	Fit of linear model (nonconstant variance) to data on decreased thymus weight in	
	male Wistar rats—90 days (Kroese et al., 2001).	E-4
Figure E-2.	Fit of linear model (constant variance) to data on decreased thymus weight in	
	female Wistar rats—90 days (Kroese et al., 2001).	E-8
Figure E-3.	Fit of linear/polynomial (1°) model to data on decreased ovary weight (Xu et al.,	
	2010)	E-11
Figure E-4.	Fit of Hill model to data on Morris water maze test escape latency (Chen et al.,	
	2012)	E-15
Figure E-5.	Fit of Exponential 4 model to data on Morris water maze time spent in target	
	quadrant (Chen et al., 2012)	E-18
Figure E-6.	Fit of exponential model (4) to data on elevated plus maze open arm maze entries	
	(Chen et al., 2012)	
	Fit of log-logistic model to data on cervical epithelial hyperplasia (Gao et al., 2011)	
-	Human fractional deposition.	
-	Rat fractional deposition	E-30
Figure E-10	. Fit of multistage Weibull model to squamous cell papillomas or carcinomas in oral	
	cavity or forestomach of male rats exposed orally to benzo[a]pyrene (Kroese et	
	al., 2001)	E-46
•	. Fit of multistage Weibull model to hepatocellular adenomas or carcinomas in male	
	rats exposed orally to benzo[a]pyrene (Kroese et al., 2001)	E-48
Figure E-12	. Fit of multistage Weibull model to duodenum or jejunum adenocarcinomas in male	
	rats exposed orally to benzo[a]pyrene (Kroese et al., 2001)	E-50
Figure E-13	. Fit of multistage Weibull model to skin or mammary gland basal cell tumors of male	
	rats exposed orally to benzo[a]pyrene (Kroese et al., 2001)	E-52
Figure E-14	. Fit of multistage Weibull model to skin or mammary gland squamous cell tumors of	
F ¹ F F F F F	male rats exposed orally to benzo[a]pyrene (Kroese et al., 2001)	E-54
⊢igure E-15	. Fit of multistage Weibull model to kidney urothelial tumors of male rats exposed	
	orally to benzo[a]pyrene (Kroese et al., 2001)	E-56
Figure E-16	. Fit of multistage Weibull model to squamous cell papillomas or carcinomas in oral	
	cavity or forestomach of female rats exposed orally to benzo[a]pyrene (Kroese	F F C
	et al., 2001)	E-58

Figure E-17.	Fit of multistage Weibull model to hepatocellular adenomas or carcinomas in female rats exposed orally to benzo[a]pyrene (Kroese et al., 2001)	E-60
Figure E-18.	Fit of multistage Weibull model to duodenum or jejunum adenocarcinomas in female rats exposed orally to benzo[a]pyrene (Kroese et al., 2001)	
Figure E-19.	Fit of multistage Weibull model to duodenum or jejunum adenocarcinomas in male rats exposed orally to benzo[a]pyrene (Kroese et al., 2001)	
Figure E-20.	Fit of multistage Weibull model to respiratory tract tumors in male hamsters exposed via inhalation to benzo[a]pyrene (Thyssen et al., 1981); tumors treated as incidental to death.	F-72
Figure E-21.	Fit of multistage Weibull model to respiratory tract tumors in male hamsters exposed via inhalation to benzo[a]pyrene (Thyssen et al., 1981); tumors treated as cause of death.	
Figure E-22.	Fit of multistage Weibull model to skin carcinomas or papilloma for male CeH/HeJ mice exposed dermally to benzo[a]pyrene (Sivak et al., 1997); BMR = 10% extra risk	F-83
Figure E-23.	Fit of multistage Weibull model to skin carcinomas, keratoacanthoma or papilloma for male CeH/HeJ mice exposed dermally to benzo[a]pyrene (Sivak et al., 1997); BMR = 10% extra risk	
Figure E-24.	Fit of multistage model to skin tumors in C57L mice exposed dermally to benzo[a]pyrene (Poel, 1959).	
Figure E-25.	Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970).	
Figure E-26.	Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973).	
Figure E-27.	Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973).	
Figure E-28.	Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977)	
Figure E-29.	Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1980).	
Figure E-30.	Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Habs et al., 1984).	
	Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1983).	
	Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984)	
Figure E-33.	Fit of log-logistic model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984).	E-106
Figure E-34.	Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984), highest dose dropped	
Figure E-35.	Fit of multistage model to skin tumors in male CeH/HeJ mice exposed dermally to benzo[a]pyrene (Sivak et al., 1997).	

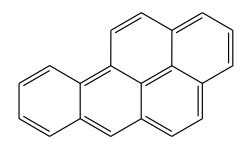
ABBREVIATIONS

1-OH-Py	1-hydroxypyrene
AchE	acetylcholine esterase
ADAF	age-dependent adjustment factor
Ah	aryl hydrocarbon
АНН	aryl hydrocarbon hydroxylase
AhR	aryl hydrocarbon receptor
AIC	Akaike's Information Criterion
AKR	aldo-keto reductase
AMI	acute myocardial infarction
ANOVA	analysis of variance
ARNT	Ah receptor nuclear translocator
AST	aspartate transaminase
ATSDR	Agency for Toxic Substances and
-	Disease Registry
BMC	benchmark concentration
BMCL	benchmark concentration lower
_	confidence limit
BMD	benchmark dose
BMDL	benchmark dose, 95% lower bound
BMDS	Benchmark Dose Software
BMR	benchmark response
BPDE	benzo[a]pyrene-7,8-diol-9,10-epoxide
BPQ	benzo[a]pyrene semiquinone
BrdU	bromodeoxyuridine
BSM	benzene-soluble matter
BUN	blood urea nitrogen
BW	body weight
CA	chromosomal aberration
CAL/EPA	California Environmental Protection
	Agency
CASRN	Chemical Abstracts Service Registry
	Number
CERCLA	Comprehensive Environmental
	Response, Compensation, and Liability
	Act
CHO	Chinese hamster ovary
CI	confidence interval
CYP	cytochrome
CYP450	cytochrome P450
DAF	dosimetric adjustment factor
dbcAMP	dibutyl cyclic adenosine
DIGO	monophosphate
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
EC	European Commission
EH	epoxide hydrolase
ELISA	enzyme-linked immunosorbent assay
EPA	Environmental Protection Agency
EROD	7-ethoxyresorufin-O-deethylase

ETS	environmental tobacco smoke
EU	European Union
Fe_2O_3	ferrous oxide
FSH	follicle stimulating hormone
GABA	gamma-aminobutyric acid
GD	gestational day
GI	gastrointestinal
GJIC	gap junctional intercellular
	communication
GSH	reduced glutathione
GST	glutathione-S-transferase
GSTM1	glutathione-S-transferase M1
hCG	human chorionic gonadotropin
HEC	human equivalent concentration
HED	human equivalent dose
HERO	Health and Environmental Research
	Online
HFC	high-frequency cell
HPLC	high-performance liquid
	chromatography
hprt	hypoxanthine guanine phosphoribosyl
•	transferase
HR	hazard ratio
Hsp90	heat shock protein 90
i.p.	intraperitoneal
i.v.	intravenous
Ig	immunoglobulin
IHD	ischemic heart disease
IRIS	Integrated Risk Information System
LDH	lactate dehydrogenase
LH	luteinizing hormone
LOAEL	lowest-observed-adverse-effect level
MAP	mitogen-activated protein
MCL	Maximum Contaminant Level
MCLG	Maximum Contaminant Level Goal
MIAME	Minimum Information About a
	Microarray Experiment
MLE	maximum likelihood estimate
MMAD	mass median aerodynamic diameter
MN	micronucleus
MPPD	Multi-Path Particle Deposition
mRNA	messenger ribonucleic acid
MS	mass spectrometry
NCE	normochromatic erythrocyte
NCEA	National Center for Environmental
	Assessment
NIOSH	National Institute for Occupational
	Safety and Health
NK	natural-killer

This document is a draft for review purposes only and does not constitute Agency policy.

Supplemental Information—Benzo[a]pyrene


NMDA	N-methyl-D-aspartate
NOAEL	no-observed-adverse-effect level
NPL	National Priorities List
NQO	NADPH:quinone oxidoreductase
NRC	National Research Council
NTP	National Toxicology Program
OECD	Organisation for Economic
	Co-operation and Development
OR	odds ratio
ORD	Office of Research and Development
PAH	polycyclic aromatic hydrocarbon
PBMC	peripheral blood mononuclear cell
PBPK	physiologically based pharmacokinetic
PCA	Principal Components Analysis
PCE	polychromatic erythrocyte
PCNA	proliferating cell nuclear antigen
PND	postnatal day
POD	point of departure
PUVA	psoralen plus ultraviolet-A
RBC	red blood cell
RDDR _{ER}	regional deposited dose ratio for
	extrarespiratory effects
RfC	inhalation reference concentration
RfD	oral reference dose
RNA	ribonucleic acid
ROS	reactive oxygen species
RR	relative risk
S.C.	subcutaneous
SCC	squamous cell carcinoma
SCE	sister chromatid exchange
SCSA	sperm chromatin structure assay
SD	standard deviation
SE	standard error
SEM	standard error of the mean

SHE	Syrian hamster embryo
SIR	standardized incidence ratio
SMR	standardized mortality ratio
SOAR	Systematic Omics Analysis Review
SOD	superoxide dismutase
SRBC	sheep red blood cells
SSB	single-strand break
TCDD	2,3,7,8-tetrachlorodibenzo-p-dioxin
ТК	thymidine kinase
ToxR	Toxicological Reliability Assessment
TPA	12-0-tetradecanoylphorbol-13-acetate
TUNEL	terminal deoxynucleotidyl transferase
	dUTP nick end labeling
TWA	time-weighted average
UCL	upper confidence limit
UDP-UGT	uridine diphosphate-
	glucuronosyltransferase
UDS	unscheduled DNA synthesis
UF	uncertainty factor
UFA	interspecies uncertainty factor
UF _D	database deficiencies uncertainty factor
UF_{H}	intraspecies uncertainty factor
$\rm UF_L$	LOAEL-to-NOAEL uncertainty factor
UFs	subchronic-to-chronic uncertainty
	factor
UVA	ultraviolet-A
UVB	ultraviolet-B
WBC	white blood cell
WESPOC	water escape pole climbing
WT	wild type
WTC	World Trade Center
XPA	xeroderma pigmentosum group A

APPENDIX A. CHEMICAL PROPERTIES AND SXPOSURE INFORMATION

4 Benzo[a]pyrene is a five-ring polycyclic aromatic hydrocarbon (PAH) (Figure A-1). It is a 5 pale yellow crystalline solid with a faint aromatic odor. It is relatively insoluble in water and has 6 low volatility. Benzo[a]pyrene is released to the air from both natural and anthropogenic sources 7 and removed from the atmosphere by photochemical oxidation; reaction with nitrogen oxides, 8 hydroxy and hydroperoxy radicals, ozone, sulfur oxides, and peroxyacetyl nitrate; and wet and dry 9 deposition to land or water. In air, benzo[a]pyrene is predominantly adsorbed to particulates, but may also exist as a vapor at high temperatures (HSDB, 2012). The half-lives for degradation of 10 11 benzo[a] pyrene in soil, air, water, and sediment are 229–309, 0.02–7, 39–71, and 196–2293 days, 12 respectively (<u>HSDB, 2012; GLC, 2007</u>). 13 The structural formula is presented in Figure A-1. The physical and chemical properties of

14 benzo[a]pyrene are shown in Table A-1.

Benzo[a]pyrene

- 16 Figure A-1. Structural formula of benzo[a]pyrene.
- 17

15

	CASRN 50-32-8		
Synonyms	Benzo[d,e,f]chrysene; 3,4-benzopyrene, 3,4-benzpyrene; benz[a]pyrene; BP; BaP	ChemIDplus (2012)	
Melting point	179–179.3°C	<u>O'Neil et al. (2001)</u>	
Boiling point	310-312°C at 10 mm Hg	<u>O'Neil et al. (2001)</u>	
Vapor pressure, at 20°C	5×10^{-7} mm Hg	Verschueren (2001)	
Density	1.351 g/cm ³	IARC (1973)	
Flashpoint (open cup)	No data		
Water solubility at 25°C	$1.6-2.3 \times 10^{-3}$ mg/L	(<u>Howard and Meylan (1997);</u> ATSDR (1995))	
Log K _{ow}	6.04	Verschueren (2001)	
Odor threshold	No data		
Molecular weight	252.32	<u>O'Neil et al. (2001)</u>	
Conversion factors ^a	1 ppm = 10.32 mg/m ³	Verschueren (2001)	
Empirical formula	C ₂₀ H ₁₂	ChemIDplus (2012)	

Table A-1.	Chemical and	physical p	roperties of	benzo[a]pyrene
		P	- op e- e- eo e-	

^aCalculated based on the ideal gas law, PV = *n*RT at 25°C: ppm = mg/m³ × 24.45 ÷ molecular weight.

5 No reference to any commercial use for purified benzo[a]pyrene, other than for research 6 purposes, was found. The earliest research reference for benzo[a]pyrene was related to the 7 identification of coal tar constituents associated with human skin tumors (Phillips, 1983; Cook et 8 al., 1933). It is found ubiquitously in the environment, primarily as a result of incomplete 9 combustion emissions (Boström et al., 2002). It is released to the environment via both natural 10 sources (such as forest fires) and anthropogenic sources including stoves/furnaces burning fossil 11 fuels (especially wood and coal), motor vehicle exhaust, cigarette smoke, and various industrial 12 combustion processes (ATSDR, 1995). Benzo[a]pyrene is also found in soot and coal tars. Studies 13 have reported that urban run-off from asphalt-paved car parks treated with coats of coal-tar 14 emulsion seal could account for the majority of PAHs in many watersheds (Rowe and O'Connor, 15 2011; Van Metre and Mahler, 2010; Mahler et al., 2005). Occupational exposure to PAHs occurs 16 primarily through inhalation and skin contact during the production and use of coal tar and coal-17 tar-derived products, such as roofing tars, creosote, and asphalt (IARC, 1973). Chimney sweeping 18 can result in exposure to benzo[a]pyrene-contaminated soot (ATSDR, 1995). Workers involved in 19 the production of aluminum, coke, graphite, and silicon carbide may also be exposed to

benzo[a]pyrene (see Table A-2). 20

21 Benzo[a]pyrene concentrations have been well documented in samples of ground, drinking, 22 and surface water (HSDB, 2012). An assessment of benzo[a]pyrene emissions in the Great Lakes

1 Region in 2002 indicated that the largest source categories are metal production (33%), petroleum

refineries (11%), residential wood burning (28%), open burning (13%), on-road vehicles (6%), and
off-highway gasoline engines (3%) (GLC, 2007).

4 *Inhalation Exposure.* The Agency for Toxic Substances and Disease Registry (ATSDR, 1995) 5 reported average indoor concentrations of benzo[a]pyrene of 0.37–1.7 ng/m³ for smokers and 6 0.27–0.58 ng/m³ for nonsmokers. Naumova et al. (2002) measured PAHs in 55 nonsmoking 7 residences in three urban areas during June 1999–May 2000. Mean indoor benzo[a]pyrene levels 8 ranged from 0.02 to 0.078 ng/m³; outdoor levels were 0.025–0.14 ng/m³. The authors concluded 9 that indoor levels of the 5–7-ring PAHs (such as benzo[a]pyrene) were dominated by outdoor 10 sources and observed an average indoor/outdoor ratio of approximately 0.7 (Naumova et al., 11 2002). Mitra and Wilson (1992) measured benzo[a]pyrene air levels in Columbus, Ohio, and found 12 elevated indoor levels in homes with smokers. The measured average concentration was 13 1.38 ng/m³ for outdoor air; indoor concentrations were 0.07 ng/m³ for homes with electrical 14 utilities, 0.91 ng/m³ for homes with gas utilities, 0.80 ng/m³ for homes with gas utilities and a 15 fireplace, 2.75 ng/m³ for homes with gas utilities and smokers, and 1.82 ng/m³ for homes with gas 16 utilities, smokers, and a fireplace (Mitra and Wilson, 1992). Mitra and Ray (1995) evaluated data 17 on benzo[a]pyrene air levels in Columbus, Ohio, and reported average concentrations of 0.77 ng/m³ 18 inside homes and 0.23 ng/m³ outdoors. Park et al. (2001) measured an average ambient level of 19 benzo[a]pyrene in Seabrook, Texas during 1995–1996 of 0.05 ng/m³ (vapor plus particulate). Park 20 et al. (2001) also reported average ambient air levels from earlier studies as 1.0 ng/m³ for Chicago, 21 0.19 ng/m³ for Lake Michigan, 0.01 ng/m³ for Chesapeake Bay, and 0.02 ng/m³ for Corpus Christie, 22 Texas. Petry et al. (1996) conducted personal air sampling during 1992 at five workplaces in 23 Switzerland: carbon anode production, graphite production, silicon carbide production, bitumen 24 paving work, and metal recycling. Table A-2 summarizes the benzo[a]pyrene air concentration 25 data from the previous studies.

26

0.00	Maria		Concentration	
Setting	Years	n	(ng/m³)	Reference
Outdoor, urban				
Los Angeles, California	1999–2000	19	0.065	<u>Naumova et al. (2002)</u>
Houston, Texas	1999–2000	21	0.025	<u>Naumova et al. (2002)</u>
Elizabeth, New Jersey	1999–2000	15	0.14	<u>Naumova et al. (2002)</u>
Seabrook, Texas	1995–1996	NA	0.05	Park et al. (2001)
Columbus, Ohio	1986–1987	8	0.23	Mitra and Ray (1995)
Indoor, residential				
Los Angeles, California	1999-2000	19	0.078	Naumova et al. (2002)
Houston, Texas	1999-2000	21	0.020	Naumova et al. (2002)
Elizabeth, New Jersey	1999–2000	15	0.055	Naumova et al. (2002)
Columbus, Ohio	1986-1987	8	0.77	Mitra and Ray (1995)
Columbus, Ohio		10	0.07-2.75	Mitra and Wilson (1992)
Homes with smokers			0.37-1.7	ATSDR (1995)
Homes without smokers			0.27-0.58	ATSDR (1995)
Occupational				
Aluminum production			30-530	ATSDR (1995)
Coke production			150-6,720; 8,000	(<u>Petry et al. (1996);</u> <u>ATSDR</u> (<u>1995)</u>)
Carbon anode production, Switzerland	1992	30	1,100	Petry et al. (1996)
Graphite production, Switzerland	1992	16	83	Petry et al. (1996)
Silicon carbide production, Switzerland	1992	14	36	Petry et al. (1996)
Metal recovery, Switzerland	1992	5	14	Petry et al. (1996)
Bitumen paving, Switzerland	1992	9	10	Petry et al. (1996)

Table A-2. Benzo[a]pyrene concentrations in air

NA = not available.

1

Santodonato et al. (1981) estimated the adult daily intake from inhalation as 9–43 ng/day.

6 The European Commission (EC, 2002) reported benzo[a]pyrene air levels in Europe during the

7 1990s as 0.1–1 ng/m³ in rural areas and 0.5–3 ng/m³ in urban areas. The amount of

8 benzo[a]pyrene is reported to be 5-80 ng per cigarette in mainstream cigarette smoke, but

- 9 significantly higher, 25–200 ng per cigarette in sidestream smoke. Concentrations of
- 10 400–760,000 ng/m³ have been reported in a cigarette smoke-polluted environment (Cal/EPA,

1 <u>2010</u>). The mean intake via inhalation for an adult nonsmoker was estimated as 20 ng/day.

2 <u>Naumova et al. (2002)</u> focused on nonsmoking residences and suggested that typical air exposures

3 are <0.14 ng/m³, which would result in an intake of <3 ng/day assuming an inhalation rate of

4 20 m^{3}/day .

Oral Exposure. The processing and cooking of foods is viewed as the dominant pathway of
PAH contamination in foods (Boström et al., 2002). Among the cooking methods that lead to PAH
contamination are the grilling, roasting, and frying of meats. Raw meat, milk, poultry, and eggs
normally do not contain high levels of PAHs due to rapid metabolism of these compounds in the
species of origin. However, some marine organisms, such as mussels and lobsters, are known to
adsorb and accumulate PAHs from contaminated water (e.g., oil spills). Vegetables and cereal
grains can become contaminated primarily through aerial deposition of PAHs present in the

12 atmosphere (<u>Li et al., 2009</u>).

13 <u>Kazerouni et al. (2001)</u> measured benzo[a]pyrene in a variety of commonly consumed foods

14 collected from grocery stores and restaurants in Maryland (analyzed as a composite from

15 4–6 samples of each food type). The foods were tested after various methods of cooking; the

16 results are reported in Table A-3. The concentrations were combined with food consumption data

17 to estimate intake. The intakes of the 228 subjects ranged from approximately 10 to 160 ng/day,

18 with about 30% in the 40–60 ng/day range. The largest contributions to total intake were reported

19 as bread, cereal, and grain (29%) and grilled/barbecued meats (21%).

2	
	-

Table A-3. Benzo[a]pyrene levels in food

Food	Concentration (ng/g)
Meat	
Fried or broiled beef	0.01-0.02
Grilled beef	0.09–4.9
Fried or broiled chicken	0.08-0.48
Grilled chicken	0.39–4.57
Fish	0.01-0.24
Smoked fish	0.1
Bread	0.1
Breakfast cereals	0.02-0.3
Vegetable oil	0.02
Eggs	0.03
Cheese	<0.005
Butter	<0.005

Food	Concentration (ng/g)
Milk	0.02
Fruit	0.01-0.17

3

Source: Kazerouni et al. (2001).

Kishikawa et al. (2003) measured benzo[a]pyrene levels in cow milk, infant formula, and
human milk from Japan, with means of 0.03 ng/g (n = 14) in cow milk, 0.05 ng/g (n = 3) in infant
formula, and 0.002 (n = 51) in human milk.

7 From the surveys conducted in six EU countries, the mean or national-averaged dietary 8 intake of benzo[a]pyrene for an adult person was estimated in the range of $0.05-0.29 \,\mu g/day$ (EC. 9 <u>2002</u>). Children may be subject to higher oral intake of benzo[a]pyrene. In a Spanish study in which benzo[a]pyrene was detected in foods, children ages 4–9 years old were found to have the 10 11 highest estimated daily intake, as compared to adults and adolescents (Falco et al., 2003). In the 12 United Kingdom, average intakes on a ng kg⁻¹ day⁻¹ basis were estimated for the following age 13 groups: adults, 1.6; 15–18 years, 1.4; 11–14 years, 1.8; 7–10 years, 2.6; 4–6 years, 3.3; and toddlers, 14 3.1-3.8. The major contributors were the oils and fats group (50%), cereals (30%), and vegetables 15 (8%) (EC. 2002). The contribution from grilled foods appeared less important in Europe than in the 16 United States because grilled foods are consumed less often (EC, 2002). In the United States, the 17 ingested dose of benzo[a]pyrene may be much higher than the amount inhaled. A study in New 18 Jersey estimated a daily median total ingested dose of 176 ng based on a urinary biomarker study 19 of 14 adult volunteers over 14 consecutive days, which exceeded the winter inhalation dose 20 (11 ng/day) by 16-fold and the summer/fall inhalation dose (2.3 ng/day) by 122-fold (Buckley et 21 al., 1995). 22 *Dermal Exposure.* The general population can be exposed dermally to benzo[a]pyrene when 23 contacting soils or materials that contain benzo[a]pyrene, such as soot or tar. Exposure can also 24 occur via the use of dermally applied pharmaceutical products that contain coal tars, including 25 shampoos and formulations used to treat conditions such as eczema and psoriasis (IARC, 2010). 26 PAHs are commonly found in all types of soils. <u>ATSDR (1995)</u> reported benzo[a]pyrene 27 levels in soil of 2–1,300 µg/kg in rural areas, 4.6–900 µg/kg in agricultural areas, 165–220 µg/kg in 28 urban areas, and 14,000–159,000 µg/kg at contaminated sites (before remediation). The soil levels 29 for all land uses appear highly variable. The levels are affected by proximity to roads/combustion 30 sources, use of sewage-sludge-derived amendments on agricultural lands, particle size, and organic 31 carbon content. Weinberg et al. (1989) reported that PAH levels in soils generally increased during 32 the 1900s and that sediment studies suggest that some declines may have occurred since the 1970s. 33 An illustration of benzo[a]pyrene levels in soil is presented in Table A-4. 34

Reference	Location	Land type	Concentration mean (µg/kg)
<u>Butler et al. (1984)</u>	United Kingdom	Urban	1,165
Vogt et al. (1987)	Norway	Industrial	321
	Norway	Rural	14
Yang et al. (1991)	Australia	Residential	363
	Poland	Agricultural	22
Trapido (1999)	Estonia	Urban	106
	Estonia	Urban	398
	Estonia	Urban	1,113
	Estonia	Urban	1,224
	Estonia	Rural	6.8
	Estonia	Rural	15
	Estonia	Rural	27
	Estonia	Rural	31
<u>Nam et al. (2008)</u>	United Kingdom	Rural	46
	Norway	Rural	5.3
<u>Mielke et al. (2001)</u>	New Orleans	Urban	276
<u>Nadal et al. (2004)</u>	Spain	Industrial-chemical	100
	Spain	Industrial-petrochemical	18
	Spain	Residential	56
	Spain	Rural	22
Maliszewska-Kordybach et al. (2009)	Poland	Agricultural	30
Wilcke (2000)	Various temperate	Arable	18
	Various temperate	Grassland	19
	Various temperate	Forest	39
	Various temperate	Urban	350
	Bangkok	Urban-tropical	5.5
	Brazil	Forest-tropical	0.3

Table A-4. Levels of benzo[a]pyrene in soil

1

3

4 5

1

APPENDIX B. ASSESSMENTS BY OTHER NATIONAL AND INTERNATIONAL HEALTH AGENCIES

Table B-1. Health assessments and regulatory limits by other national and international agencies

Organization	Toxicity value or determination
Oral value	
(<u>WHO (2003)</u> , <u>1996)</u>)	The guideline value for benzo[a]pyrene in drinking water of 0.7 μ g/L was based on a cancer slope factor of 0.46 (mg/kg-d) ⁻¹ derived from <u>Neal and Rigdon (1967)</u> and a lifetime excess cancer risk of 10 ⁻⁵ .
(<u>Health Canada</u> (2010), <u>1998)</u>)	The Maximum Acceptable Concentration for benzo[a]pyrene in drinking water of 0.01 μ g/L was derived from <u>Neal and Rigdon (1967)</u> using a drinking water consumption rate of 1.5 L/day, a body weight of 70 kg, and a lifetime cancer risk of 5 × 10 ⁻⁷ . (The concentrations of 2, 0.2, and 0.02 μg/L benzo[a]pyrene correspond to lifetime excess cancer risks of 10 ⁻⁴ , 10 ⁻⁵ , and 10 ⁻⁶ .)
Inhalation value	
(<u>WHO (2000)</u> , <u>1997)</u>)	Does not recommend specific guideline values for polycyclic aromatic hydrocarbons (PAHs) in air. A unit risk of 87 (mg/m³) ⁻¹ for benzo[a]pyrene, as an indicator a PAH mixtures, was derived from U.S. EPA's inhalation unit risk from coke oven emissions.
<u>EU (2005)</u>	Target value of 1 ng/m³ benzo[a]pyrene (averaged over 1 calendar year) as a marker of PAH carcinogenic risk. Does not include information for how target value was derived.
Cancer characteri	zation
IARC (2010)	Carcinogenic to humans (Group 1) (based on mechanistic data).
<u>NTP (2011)</u>	Reasonably anticipated to be a human carcinogen. (First classified in 1981.)
<u>Health Canada</u> (1998)	Probably carcinogenic to man.

6 7 8

EU = European Union; IARC = International Agency for Research on Cancer; NTP = National Toxicology Program;

WHO = World Health Organization.

3

4

APPENDIX C. LITERATURE SEARCH STRATEGY KEYWORDS

Database	Set #	Terms	Hits
Initial strategy			
PubMed	1A	("Benzo(a)pyrene"[MeSH Terms] AND (("Benzo(a)pyrene/adverse	5,184
Date range:		effects"[MeSH Terms] OR "Benzo(a)pyrene/antagonists and	
1950's to		inhibitors"[MeSH Terms] OR "Benzo(a)pyrene/blood"[MeSH Terms] OR	
2/14/2012		"Benzo(a)pyrene/pharmacokinetics"[MeSH Terms] OR	
Search date:		"Benzo(a)pyrene/poisoning"[MeSH Terms] OR	
2/14/2012		"Benzo(a)pyrene/toxicity"[MeSH Terms] OR	
		"Benzo(a)pyrene/urine"[MeSH Terms]) OR ("chemically	
		induced"[Subheading] OR "environmental exposure"[MeSH Terms] OR	
		"endocrine system"[MeSH Terms] OR "hormones, hormone substitutes,	
		and hormone antagonists"[MeSH Terms] OR "endocrine	
		disruptors"[MeSH Terms] OR "dose-response relationship, drug"[MeSH	
		Terms] OR ((pharmacokinetics[MeSH Terms] OR metabolism[MeSH	
		Terms]) AND (humans[MeSH Terms] OR animals[MeSH Terms])) OR	
		risk[MeSH Terms] OR (cancer[sb] AND "Benzo(a)pyrene"[majr]) OR	
		("benzo a pyrene/metabolism"[MeSH Terms] AND (humans[MeSH	
		Terms] OR animals[MeSH Terms])))) AND 2008/10/01 : 3000[mhda]) OR	
		((("Benzo a pyrene"[tw] OR "Benzo d, e, f chrysene"[tw] OR "Benzo def	
		chrysene"[tw] OR "3,4-Benzopyrene"[tw] OR "1,2-Benzpyrene"[tw] OR	
		"3,4-BP"[tw] OR "Benz(a)pyrene"[tw] OR "3,4-Benzpyren"[tw] OR "3,4-	
		Benzpyrene"[tw] OR "4,5-Benzpyrene"[tw] OR "6,7-Benzopyrene"[tw] OR	
		Benzopirene[tw] OR "benzo[alpha]pyrene"[tw] OR (("B(a)P"[tw] OR	
		BaP[tw]) AND (pyrene*[tw] OR benzopyrene*[tw] OR pah[tw] OR	
		pahs[tw] OR polycyclic aromatic hydrocarbon[tw] OR polycyclic aromatic	
		hydrocarbons[tw]))) NOT medline[sb]) AND 2008/10/01 : 3000[edat]) OR	
		((("Benzo(a)pyrene"[MeSH Terms] AND (("Benzo(a)pyrene/adverse	
		effects"[MeSH Terms] OR "Benzo(a)pyrene/antagonists and	
		inhibitors"[MeSH Terms] OR "Benzo(a)pyrene/blood"[MeSH Terms] OR	
		"Benzo(a)pyrene/pharmacokinetics"[MeSH Terms] OR	
		"Benzo(a)pyrene/poisoning"[MeSH Terms] OR	
		"Benzo(a)pyrene/toxicity"[MeSH Terms] OR	
		"Benzo(a)pyrene/urine"[MeSH Terms]) OR ("chemically	
		induced"[Subheading] OR "environmental exposure"[MeSH Terms] OR	
		"endocrine system"[MeSH Terms] OR "hormones, hormone substitutes,	
		and hormone antagonists"[MeSH Terms] OR "endocrine	
		disruptors"[MeSH Terms] OR "dose-response relationship, drug"[MeSH	
		Terms] OR ((pharmacokinetics[MeSH Terms] OR metabolism[MeSH	
		Terms]) AND (humans[MeSH Terms] OR animals[MeSH Terms])) OR	
		risk[MeSH Terms] OR (cancer[sb] AND "Benzo(a)pyrene"[majr]) OR	
		("benzo a pyrene/metabolism"[MeSH Terms] AND (humans[MeSH	

Table C-1. Literature search strategy keywords for benzo[a]pyrene

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Database	Set #	Terms	Hits
		Terms] OR animals[MeSH Terms])))) OR (("Benzo a pyrene"[tw] OR "Benzo d, e, f chrysene"[tw] OR "Benzo def chrysene"[tw] OR "3,4- Benzopyrene"[tw] OR "1,2-Benzpyrene"[tw] OR "3,4-BP"[tw] OR "Benz(a)pyrene"[tw] OR "3,4-Benzpyrene"[tw] OR "3,4-Benzpyrene"[tw] OR "4,5-Benzpyrene"[tw] OR "6,7-Benzopyrene"[tw] OR Benzopirene[tw] OR "benzo[alpha]pyrene"[tw] OR ("B(a)P"[tw] OR BaP[tw]) AND (pyrene*[tw] OR benzopyrene*[tw] OR polycyclic aromatic hydrocarbons[tw])))AND ("Benzopyrenes/adverse effects"[MeSH Terms] OR "Benzopyrenes/antagonists and inhibitors"[MeSH Terms] OR "Benzopyrenes/bood"[MeSH Terms] OR "Benzopyrenes/pharmacokinetics"[MeSH Terms] OR "Benzopyrenes/pharmacokinetics"[MeSH Terms] OR "Benzopyrenes/poisoning"[MeSH Terms] OR "Benzopyrenes/toxicity"[MeSH Terms] OR "Benzopyrenes/toxicity"[MeSH Terms] OR "Benzopyrenes/metabolism"[MeSH Terms] NDD ("chemically induced"[Subheading] OR "environmental exposure"[MeSH Terms])) OR "benzopyrenes/metabolism"[MeSH Terms]) AND 1966[PDAT] : 1984[PDAT])) AND (cancer[sb] OR "genes"[MeSH Terms] OR "genetic processes"[MeSH Terms] OR "mutagens"[MeSH Terms] OR "mutagenesis"[MeSH Terms] OR "nervous system diseases"[MeSH Terms] OR "immune system"[MeSH Terms] OR "immune system diseases"[MeSH Terms] OR "immunologic factors"[MeSH Terms] OR "reproductive physiological phenomena"[MeSH Terms] OR ("growth and development"[Subheading] OR "urogenital system"[MeSH Terms] OR "congenital, hereditary, and neonatal diseases and abnormalities"[MeSH Terms] OR "teratogens"[MeSH Terms]))	
ToxLine Date range: 1960's- 2/14/2012 Search date: 2/14/2012	18	(((50-32-8 [rn] OR "benzo a pyrene" OR "benzo d e f chrysene" OR "3 4 benzopyrene" OR "1 2 benzpyrene" OR "3 4 bp" OR "benz (a) pyrene" OR "3 4 benzopyrene" OR "3 4 benzpyrene" OR "4 5 benzpyrene" OR "6 7 benzopyrene" OR benzopirene OR "benzo (alpha) pyrene") AND 2008:2012 [yr] NOT PubMed [org] NOT pubdart [org]) NOT crisp[org]) OR (((50-32-8 [rn] OR "benzo a pyrene" OR "benzo d e f chrysene" OR "benzo def chrysene" OR "3 4 benzopyrene" OR "1 2 benzpyrene" OR "3 4 bp" OR "benz (a) pyrene" OR "3 4 benzopyrene" OR "3 4 benzpyrene" OR "4 5 benzpyrene" OR "6 7 benzopyrene" OR "3 4 benzpyrene" OR "4 5 benzpyrene" OR "6 7 benzopyrene" OR benzopirene OR "benzo (alpha) pyrene") NOT PubMed [org] NOT pubdart [org]) AND (brain OR brains OR cephalic OR cerebral OR cerebrum OR cognition OR cognitive OR corpus OR neurolog corebral OR neurological OR neurology OR neuronal OR neuropathies OR neuropathy OR neurotoxic OR neurotoxicities OR neuropathies OR neuropathy OR neurotoxic OR neurotoxicities OR neuropathies OR neuropathy OR neurotoxic OR neurotoxicities OR antibody OR antigen OR antigenic OR antigens OR autoimmune OR autoimmunities OR autoimmunity OR cytokine OR cytokines OR granulocyte OR granulocytes OR immune OR immunities OR immunologic OR immunological OR immunology OR immunoproliferation OR inflammatory OR interferon OR interferons OR interleukin OR interleukins OR leukocyte OR leukocytes OR lymph OR lymphatic OR	

Database	Set #	Terms	Hits
		lymphocyte OR lymphocytes OR lymphocytosis OR lymphokines OR monocyte OR monocytes) OR (abnormal OR abnormalities OR abnormality OR abort OR aborted OR abortion OR aborts OR cleft OR clefts OR development OR developmental OR embryo OR embryologic OR embryology OR embryonic OR embryos OR fertile OR fertilities OR fertility OR fetal OR fetus OR fetuses OR foetal OR foetus OR foetuses OR gestation OR gestational OR infertile OR infertility OR malform OR malformation OR malformations OR malformed OR malforms OR neonatal OR neonatally OR neonate OR neonates OR newborn OR newborns OR ova OR ovaries OR ovary OR ovum OR perinatal OR perinatally OR placenta OR placental OR placentas OR postnatal OR postnatally OR pregnancies OR pregnancy OR pregnant OR prenatal OR prenatally OR reproduction OR reproductive OR sperm OR spermatid OR spermatogenesis OR spermatocyte OR spermatocytes OR spermatogenesis OR spermatogenic OR teratogenic OR teratogenicities OR teratogenesis OR teratogenic OR teratogenicities OR teratogenesis OR teratogenic OR aneuploid OR aneuploidy OR chromosomal OR chromosome OR chromosomes OR clastogen OR clastogenesis OR clastogenic OR clastogenicities OR clastogenicity OR teratogens OR weaned OR weaning OR weanling OR weanlings OR zygote OR zygotes) OR (ames OR aneuploid OR aneuploidy OR chromosomal OR chromosome OR chromosomes OR clastogenicity OR clastogens OR cytogenesis OR cytogenetic OR clastogenicity OR clastogens OR cytogenesis OR cytogenetic OR genotoxic OR genotoxicities OR genotoxicity OR genotoxin OR genotoxins OR hyperploid OR hyperploidy OR micronuclei OR micronucleus OR mitotic OR mutagen OR mutagenesis OR mutagenicities OR mutagenicity OR mutagens OR mutated OR mutagenicities OR carcinogenic OR carcinogen OR carcinogenesis OR carcinogenic OR carcinogens OR carcinogen OR carcinogenesis OR cocarcinogenic OR carcinogens OR lymphoma OR lymphomas OR neoplasm OR neoplasms OR neoplastic OR oncogene OR oncogenes OR neoplasm OR neoplasms OR neoplastic OR numorigenesis OR tumorigenic OR tumorigenicitie	
TSCATS, TSCATS2, TSCA recent notices Date range: TSCATS2 2000- 2/14/2012; TSCATS, TSCA notices no limit Search date: 2/14/2012	1C	50-32-8	62 TSCATS (health effects) 0 TSCATS2 1 recent notices
Toxcenter Date range: 2000-2/14/2012 Search date:	1D1	((50-32-8 NOT (patent/dt OR tscats/fs)) AND (py>2007 OR ed>20080930) AND (chronic OR immunotox? OR neurotox? OR toxicokin? OR biomarker? OR neurolog? OR pharmacokin? OR subchronic OR pbpk OR epidemiology/st,ct, it) OR acute OR subacute OR Id50# OR Ic50# OR	4,344

Database	Set #	Terms	Hits
2/14/2012		(toxicity OR adverse OR poisoning)/st,ct,it OR inhal? OR pulmon? OR	
		nasal? OR lung? OR respir? OR occupation? OR workplace? OR worker?	
		OR oral OR orally OR ingest? OR gavage? OR diet OR diets OR dietary OR	
		drinking(w)water OR (maximum and concentration? and (allowable OR	
		permissible)) OR (abort? OR abnormalit? OR embryo? OR cleft? OR fetus?	
		OR foetus? OR fetal? OR foetal? OR fertil? OR malform? OR ovum OR ova	
		OR ovary OR placenta? OR pregnan? OR prenatal OR perinatal? OR	
		postnatal? OR reproduc? OR steril? OR teratogen? OR sperm OR	
		spermac? OR spermag? OR spermati? OR spermas? OR spermatob? OR	
		spermatoc? OR spermatog? OR spermatoi? OR spermatol? OR	
		spermator? OR spermatox? OR spermatoz? OR spermatu? OR spermi? OR	
		spermo? OR neonat? OR newborn OR development OR developmental?	
		OR zygote? OR child OR children OR adolescen? OR infant OR wean? OR	
		offspring OR age(w)factor? OR dermal? OR dermis OR skin OR epiderm?	
		OR cutaneous? OR carcinog? OR cocarcinog? OR cancer? OR precancer?	
		OR neoplas? OR tumor? OR tumour? OR oncogen? OR lymphoma? OR	
		carcinom? OR genetox? OR genotox? OR mutagen? OR genetic(w)toxic?	
		OR nephrotox? OR hepatotox? OR endocrin? OR estrogen? OR androgen?	
		OR hormon? OR rat OR rats OR mouse OR mice OR muridae OR dog OR	
		dogs OR rabbit? OR hamster? OR pig OR pigs OR swine OR porcine OR	
		goat OR goats OR sheep OR monkey? OR macaque? OR marmoset? OR	
		primate? OR mammal? OR ferret? OR gerbil? OR rodent? OR lagomorpha	
		OR baboon? OR bovine OR canine OR cat OR cats OR feline OR pigeon?	
		OR occupation? OR worker? OR epidem?) AND (biosis/fs OR (caplus/fs	
		AND (rat OR rats OR mouse OR mice OR guinea pig OR muridae OR dog	
		OR dogs OR rabbit? OR hamster? OR pig OR pigs OR swine OR porcine OR	
		goat OR goats OR sheep OR monkey? OR macaque? OR marmoset? OR	
		primate? OR mammal? OR ferret? OR gerbil? OR rodent? OR lagomorpha	
		OR baboon? OR bovine OR canine OR cat OR cats OR feline OR pigeon?	
		OR occupation? OR worker? OR epidem? OR human? OR hominidae OR	
		mammal? OR subject? OR patient? OR genotox? OR mutat? OR	
		mutag?)))) OR (((50-32-8 NOT (patent/dt OR tscats/fs)) NOT (py>2007 OR	
		ed>20080930)) AND py>1999 AND (((caplus/fs OR biosis/fs) AND (cancer?	
		OR carcinog? OR carcinom? OR cocarcinog? OR lymphoma? OR neoplas?	
		OR oncogen? OR precancer? OR tumor? OR tumour?)/ti,ct,st,it OR (ames	
		assay OR ames test OR aneuploid? OR chromosom? OR clastogen? OR	
		cytogen? OR dna OR dominant lethal OR genetic OR gene? OR genotox?	
		OR hyperploid? OR micronucle? OR mitotic OR mutagen? OR mutat? OR	
		recessive lethal OR sister chromatid)/ti,ct,st,it OR (brain OR cerebral OR	
		cognition OR cognitive OR encephal? OR nerve? OR nervous OR neural	
		OR neurolog? OR neuron? OR neurop? OR neurotox? OR spinal	
		cord)/ti,ct,st,it OR (antibod? OR antigen? OR autoimmun? OR cytokine?	
		OR granulocyte? OR immun? OR inflamm? OR interferon? OR	
		interleukin? OR leukocyte? OR lymph? OR lymphocyt? OR	
		monocyt?)/ti,ct,st,it OR (abnormal? OR abort? OR cleft? OR development	
		OR developmental OR embryo? OR endocrine OR fertil? OR fetal? OR	
		fetus? OR foetal? OR foetus? OR gestation? OR infertil? OR malform? OR	
		neonat? OR newborn? OR ova OR ovaries OR ovary OR ovum)/ti,ct,st,it	
		OR (perinatal? OR placenta? OR postnatal? OR pregnan? OR prenatal? OR	
		reproduc? OR sperm? OR steril? OR teratogen? OR wean? OR	
		zygote?)/ti,ct,st,it) OR ((chronic OR immunotox? OR neurotox? OR	

Database	Set #	Terms	Hits
		toxicokin? OR biomarker? OR neurolog? OR pharmacokin? OR subchronic	
		OR pbpk OR epidemiology/st,ct, it) OR acute OR subacute OR ld50# OR	
		lc50# OR (toxicity OR adverse OR poisoning)/st,ct,it OR inhal? OR	
		pulmon? OR nasal? OR lung? OR respir? OR occupation? OR workplace?	
		OR worker? OR oral OR orally OR ingest? OR gavage? OR diet OR diets OR	
		dietary OR drinking(w)water OR (maximum and concentration? and	
		(allowable OR permissible)) OR (abort? OR abnormalit? OR embryo? OR	
		cleft? OR fetus? OR foetus? OR fetal? OR foetal? OR fertil? OR malform?	
		OR ovum OR ova OR ovary OR placenta? OR pregnan? OR prenatal OR	
		perinatal? OR postnatal? OR reproduc? OR steril? OR teratogen? OR	
		sperm OR spermac? OR spermag? OR spermati? OR spermas? OR	
		spermatob? OR spermatoc? OR spermatog? OR spermatoi? OR	
		spermatol? OR spermator? OR spermatox? OR spermatoz? OR spermatu?	
		OR spermi? OR spermo? OR neonat? OR newborn OR development OR	
		developmental? OR zygote? OR child OR children OR adolescen? OR	
		infant OR wean? OR offspring OR age(w)factor? OR dermal? OR dermis	
		OR skin OR epiderm? OR cutaneous? OR carcinog? OR cocarcinog? OR	
		cancer? OR precancer? OR neoplas? OR tumor? OR tumour? OR	
		oncogen? OR lymphoma? OR carcinom? OR genetox? OR genotox? OR	
		mutagen? OR genetic(w)toxic? OR nephrotox? OR hepatotox? OR	
		endocrin? OR estrogen? OR androgen? OR hormon? OR rat OR rats OR	
		mouse OR mice OR muridae OR dog OR dogs OR rabbit? OR hamster? OR	
		pig OR pigs OR swine OR porcine OR goat OR goats OR sheep OR	
		monkey? OR macaque? OR marmoset? OR primate? OR mammal? OR	
		ferret? OR gerbil? OR rodent? OR lagomorpha OR baboon? OR bovine OR	
		canine OR cat OR cats OR feline OR pigeon? OR occupation? OR worker?	
		OR epidem?) AND (cancer? OR carcinog? OR carcinom? OR cocarcinog?	
		OR lymphoma? OR neoplas? OR oncogen? OR precancer? OR tumor? OR	
		tumour?) OR (ames assay OR ames test OR aneuploid? OR chromosom?	
		OR clastogen? OR cytogen? OR dna OR dominant lethal OR genetic OR	
		gene? OR genotox? OR hyperploid? OR micronucle? OR mitotic OR	
		mutagen? OR mutat? OR recessive lethal OR sister chromatid) OR (brain	
		OR cerebral OR cognition OR cognitive OR encephal? OR nerve? OR	
		nervous OR neural OR neurolog? OR neuron? OR neurop? OR neurotox?	
		OR spinal cord) OR (antibod? OR antigen? OR autoimmun? OR cytokine?	
		OR granulocyte? OR immun? OR inflamm? OR interferon? OR	
		interleukin? OR leukocyte? OR lymph? OR lymphocyt? OR monocyt?) OR	
		(abnormal? OR abort? OR cleft? OR development OR developmental OR	
		embryo? OR endocrine OR fertil? OR fetal? OR fetus? OR foetal? OR	
		foetus? OR gestation? OR infertil? OR malform? OR neonat? OR	
		newborn? OR ova OR ovaries OR ovary OR ovum) OR (perinatal? OR	
		placenta? OR postnatal? OR pregnan? OR prenatal? OR reproduc? OR	
		sperm? OR steril? OR teratogen? OR wean? OR zygote?) AND (medline/fs	
		OR biosis/fs OR (caplus/fs AND (rat OR rats OR mouse OR mice OR guinea	
		pig OR muridae OR dog OR dogs OR rabbit? OR hamster? OR pig OR pigs	
		OR swine OR porcine OR goat OR goats OR sheep OR monkey? OR	
		macaque? OR marmoset? OR primate? OR mammal? OR ferret? OR	
		gerbil? OR rodent? OR lagomorpha OR baboon? OR bovine OR canine OR	
		cat OR cats OR feline OR occupation? OR worker? OR epidem? OR	
		human? OR hominidae OR mammal? OR subject? OR patient? OR	
		genotox? OR mutat? OR mutag?))))))	

Database	Set #	Terms	Hits
Combined Reference Set	1	(duplicates eliminated through electronic screen)	20,700
Secondary refine	ment		
Combined Reference Set with Additional Terms Applied	2	forestomach* OR tongue* OR (auditory AND canal*) OR (ear* AND canal*) OR esophagus* OR esophageal* OR larynx* OR laryngeal* OR pharynx* OR pharyngeal* OR ((lung* OR pulmonary OR skin*) AND (neoplasm* OR tumor* OR tumour* OR papilloma* OR carcinoma*)) OR leukemia* OR leukaemia* OR sperm* OR testic* OR fertilit*OR infertilit* OR testosterone OR ((testis OR testes) AND (weight* OR mass*)) OR epididymis* OR epididymal* OR seminiferous OR ((cervical* OR cervix*) AND hyperplasia*) OR ovary OR ovaries OR ovarian OR primordial OR corpora lutea OR corpus luteum OR estrous* OR estrus* OR thymus* OR spleen* OR spleno* OR immunoglobulin* OR immunoglobin* OR ((immune OR immun*) AND (suppress* OR immunosuppress*)) OR (functional AND observational AND battery) OR neurobehavioral*OR neurobehavioural* OR rotarod* OR nerve* AND conduction* OR locomotor* OR neuromuscular* OR weight* OR neurodevelopment* OR ((neuro* OR brain*) AND (development* OR developing)) OR intelligence* OR cognition* OR cognitive* OR learn* OR memory OR righting*	6,130

APPENDIX D. INFORMATION IN SUPPORT OF HAZARD IDENTIFICATION AND DOSE-RESPONSE ANALYSIS

5 D.1. TOXICOKINETICS

6 D.1.1. Overview

7 Benzo[a]pyrene is absorbed following exposure by oral, inhalation, and dermal routes. The 8 rate and extent of absorption are dependent upon the exposure medium. The presence of 9 benzo[a]pyrene in body fat, blood, liver, and kidney and the presence of benzo[a]pyrene 10 metabolites in serum and excreta demonstrate wide systemic tissue distribution. Benzo[a]pyrene 11 metabolism occurs in essentially all tissues, with high metabolic capacity in the liver and significant 12 metabolism in tissues at the portal of entry (lung, skin, and gastrointestinal [GI] tract) and in 13 reproductive tissues. Stable metabolic products identified in body tissues and excreta are very diverse and include phenols, guinones, and dihydrodiols. These classes of metabolites are typically 14 15 isolated as glucuronide or sulfate ester conjugates in the excreta, but can also include glutathione 16 conjugates formed from quinones or intermediary epoxides. The primary route of metabolite 17 elimination is in the feces via biliary excretion, particularly following exposure by the inhalation 18 route. To a lesser degree, benzo[a]pyrene metabolites are eliminated via urine. Overall, 19 benzo[a]pyrene is eliminated quickly with a biological half-life of several hours.

20 D.1.2. Absorption

The absorption of benzo[a]pyrene has been studied in humans and laboratory animals for
inhalation, ingestion, and dermal exposure. In the environment, human exposure to
benzo[a]pyrene predominantly occurs via contact with insoluble carbonaceous particles (e.g., soot,
diesel particles) to which organic compounds, such as polycyclic aromatic hydrocarbons (PAHs),
are adsorbed.

Studies of workers occupationally exposed to benzo[a]pyrene have qualitatively demonstrated absorption via inhalation by correlating concentrations of benzo[a]pyrene in the air and benzo[a]pyrene metabolites in the exposed workers' urine. Occupational exposures to benzo[a]pyrene measured with personal air samplers were correlated to urine concentrations of benzo[a]pyrene-9,10-dihydrodiol, a specific metabolite of benzo[a]pyrene, in 24-hour aggregate urine samples by <u>Grimmer et al. (1994)</u>. The amount of benzo[a]pyrene extracted from personal

32 air monitoring devices (a surrogate for ambient PAHs) of coke oven workers were correlated with

1 r-7,t-8,9,c 10 tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (trans-anti-benzo[a]pyrene-tetrol, a

2 specific metabolite of benzo[a]pyrene) in the workers' urine by <u>Wu et al. (2002)</u>. In both of these

- 3 studies, only a very small fraction (<1%) of the inhaled benzo[a]pyrene was recovered from urine,
- 4 consistent with studies in animals that find that urine is not a major route of elimination for
- 5 benzo[a]pyrene (as described in the excretion section below). These occupational studies cannot
- 6 be used to quantify absorption through inhalation-only exposure in humans because the
- 7 persistence of benzo[a]pyrene-contaminated particulate matter on surfaces and food may lead to
- 8 exposures via additional routes (<u>Boström et al., 2002</u>). Nevertheless, the observation of
- 9 benzo[a]pyrene metabolites in excreta of exposed humans provides qualitative evidence for
- 10 benzo[a]pyrene absorption, at least some of which is likely to occur via inhalation. This conclusion
- 11 is supported by studies in experimental animals, which indicate that benzo[a]pyrene is readily
- 12 absorbed from carbonaceous particles following inhalation exposure (<u>Gerde et al., 2001</u>; <u>Hood et</u>
- 13 <u>al., 2000</u>).
- 14 Results from studies of animals following intratracheal instillation of benzo[a]pyrene
- provide supporting, quantitative evidence that absorption by the respiratory tract is rapid (<u>Gerde et</u>
- 16 <u>al., 1993; Bevan and Ulman, 1991; Weyand and Bevan, 1987, 1986</u>). Following intratracheal
- 17 instillation of 1 µg tritiated benzo[a]pyrene/kg dissolved in triethylene glycol to Sprague-Dawley
- 18 rats, radioactivity rapidly appeared in the liver (reaching a maximum of about 21% of the
- 19 administered dose within 10 minutes). Elimination of radioactivity from the lung was biphasic,
- 20 with elimination half-times of 5 and 116 minutes (<u>Weyand and Bevan, 1986</u>). In bile-cannulated
- 21 rats, bile collected for 6 hours after instillation accounted for 74% of the administered radioactivity
- 22 (Weyand and Bevan, 1986). The results are consistent with rapid and extensive absorption by the
- 23 respiratory tract and rapid entry into hepatobiliary circulation following intratracheal instillation.
- 24 The respiratory tract absorption may also be affected by the vehicle, since higher amounts of
- 25 benzo[a]pyrene were excreted in bile when administered with hydrophilic triethylene glycol than
- with lipophilic solvents ethyl laurate or tricaprylin (<u>Bevan and Ulman, 1991</u>). Particle-bound
- 27 benzo[a]pyrene deposited in the respiratory tract is absorbed and cleared more slowly than the
- 28 neat compound (<u>Gerde et al., 2001</u>).

29 Studies conducted to assess levels of benzo[a]pyrene metabolites or benzo[a]pyrene-30 deoxyribonucleic acid (DNA) adduct levels in humans exposed to benzo[a]pyrene by the oral route 31 are not adequate to develop quantitative estimates of oral bioavailability. The concentration of 32 benzo[a]pyrene was below detection limits (<0.1 μ g/person) in the feces of eight volunteers who 33 had ingested broiled meat containing approximately 8.6 µg of benzo[a]pyrene (Hecht et al., 1979). 34 However, studies in laboratory animals demonstrate that benzo[a]pyrene is absorbed via ingestion. 35 Studies of rats and pigs measured the oral bioavailability of benzo[a]pyrene in the range of 10–40% 36 (Cavret et al., 2003; Ramesh et al., 2001b; Foth et al., 1988; Hecht et al., 1979). The absorption of 37 benzo[a]pyrene may depend on the vehicle. Intestinal absorption of benzo[a]pyrene was enhanced 38 in rats when the compound was solubilized in lipophilic compounds such as triolein, soybean oil,

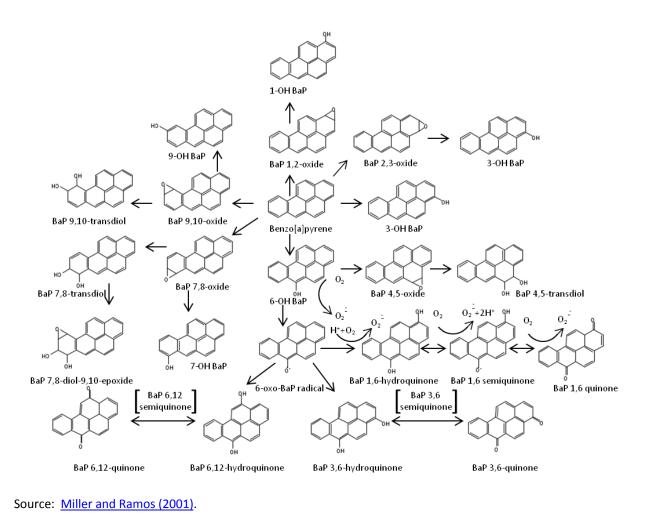
1 and high-fat diets, as compared with fiber- or protein-rich diets (<u>O'Neill et al., 1991</u>; <u>Kawamura et</u>

2 <u>al., 1988</u>). Aqueous vehicles, quercetin, chlorogenic acid, or carbon particles reduced biliary

- 3 excretion of benzo[a]pyrene, while lipid media such as corn oil increased it (<u>Stavric and Klassen</u>,
- 4 <u>1994</u>). The addition of wheat bran to the benzo[a]pyrene-containing diets increased fecal excretion

5 of benzo[a]pyrene (<u>Mirvish et al., 1981</u>).

- 6 Studies of benzo[a]pyrene metabolites or DNA adducts measured in humans exposed
- 7 dermally to benzo[a]pyrene-containing PAH mixtures demonstrate that benzo[a]pyrene is
- 8 absorbed dermally. One study of dermal absorption in volunteers found absorption rate constants
- 9 ranging from 0.036 to 0.135/hour over a 45-minute exposure, suggesting that 20–56% of the dose
- 10 would be absorbed within 6 hours (<u>VanRooij et al., 1993</u>). Dermal absorption rates varied 69%
- 11 between different anatomical sites (forehead, shoulder, volar forearm, palmar side of the hand,
- 12 groin, and ankle) and only 7% between different individual volunteers (<u>VanRooij et al., 1993</u>).
- 13 Metabolism is also an important determinant of permeation, with very low rates observed in
- 14 nonviable skin (<u>Kao et al., 1985</u>). The overall absorbed amount of benzo[a]pyrene in explanted
- 15 viable skin samples from tissue donors (maintained in short-term organ cultures) exposed for
- 16 24 hours ranged from 0.09 to 2.6% of the dose (<u>Wester et al., 1990</u>; <u>Kao et al., 1985</u>). Similar
- 17 amounts of penetration were measured in skin samples from other species including marmosets,
- 18 rats, and rabbits (Kao et al., 1985). Skin from mice allowed more of the dose to penetrate (>10%),
- 19 while that of guinea pig let only a negligible percentage of the dose penetrate (<u>Kao et al., 1985</u>).
- 20 The vehicle for benzo[a]pyrene exposure is an important factor in skin penetration.
- 21 Exposure of female Sprague-Dawley rats and female rhesus monkeys topically to benzo[a]pyrene in
- 22 crude oil or acetone caused approximately fourfold more extensive absorption than
- 23 benzo[a]pyrene in soil (Wester et al., 1990; Yang et al., 1989). The viscosity of oil product used as a
- 24 vehicle also changed skin penetration with increased uptake of benzo[a]pyrene for oils with
- 25 decreased viscosity (<u>Potter et al., 1999</u>). Soil properties also greatly impact dermal absorption.
- 26 Reduced absorption of benzo[a]pyrene occurs with increasing organic carbon content of the soil
- and increased soil aging (i.e., contact time between soil and chemical) (<u>Turkall et al., 2008</u>; <u>Roy and</u>
- 28 <u>Singh, 2001; Yang et al., 1989</u>).


29 D.1.3. Distribution

- No adequate quantitative studies of benzo[a]pyrene tissue distribution in exposed humans
 were identified. <u>Obana et al. (1981)</u> observed low levels of benzo[a]pyrene in liver and fat tissues
 from autopsy samples. However, prior exposure histories were not available for the donors.
- 33 Nevertheless, the identification of benzo[a]pyrene metabolites or DNA adducts in tissues and
- 34 excreta of PAH-exposed populations suggest that benzo[a]pyrene is widely distributed.
- 35 Distribution of benzo[a]pyrene has been studied in laboratory animals for multiple routes
- 36 of exposure, including inhalation, ingestion, dermal, and intravenous (i.v.). Exposure to
- 37 benzo[a]pyrene in various species (Sprague-Dawley rats, Gunn rats, guinea pigs, and hamsters)

- 1 results in wide distribution throughout the body and rapid uptake into well-perfused tissues (i.e.,
- 2 lung, kidney, and liver) (<u>Weyand and Bevan, 1987, 1986</u>). Benzo[a]pyrene and its metabolites are
- 3 distributed systemically after administration via many routes of administration including
- 4 inhalation (or intratracheal instillation), oral, i.v., and dermal exposures (<u>Saunders et al., 2002</u>; <u>Moir</u>
- 5 <u>et al., 1998; Neubert and Tapken, 1988; Weyand and Bevan, 1987, 1986; Morse and Carlson, 1985</u>).
- 6 Intratracheal instillation of radiolabeled benzo[a]pyrene in mice resulted in increased radioactivity
- 7 in lung-associated lymph nodes, suggesting distribution of benzo[a]pyrene or its metabolites via
- 8 the lymph (<u>Schnizlein et al., 1987</u>). Rats with biliary cannulas had high excretion of benzo[a]pyrene
- 9 and benzo[a]pyrene metabolites in bile. The benzo[a]pyrene thioether and glucuronic acid-
- 10 conjugated metabolites in intestines indicated enterohepatic recirculation of benzo[a]pyrene and
- 11 benzo[a]pyrene metabolites (<u>Weyand and Beyan, 1986</u>). The vehicle for delivery of inhalated
- 12 benzo[a]pyrene impacts the distribution, with aerosolized benzo[a]pyrene more readily absorbed
- directly in the respiratory tract than particle-adsorbed benzo[a]pyrene (which is cleared by the
- 14 mucociliary and then ingested) (<u>Sun et al., 1982</u>). Exposure of pregnant rats and mice to
- 15 benzo[a]pyrene via inhalation and ingestion showed a wide tissue distribution of benzo[a]pyrene,
- 16 consistent with other studies, and demonstrated placental transfer of benzo[a]pyrene and its
- 17 metabolites (Withey et al., 1993; Neubert and Tapken, 1988; Shendrikova and Aleksandrov, 1974).
- 18 The reactive metabolites of benzo[a]pyrene are also transported in the blood and may be
- 19 distributed to tissues incapable of benzo[a]pyrene metabolism. Serum of benzo[a]pyrene-treated
- 20 mice incubated with splenocytes or salmon sperm DNA resulted in adduct formation, suggesting
- 21 that reactive benzo[a]pyrene metabolites were systemically distributed and available for
- 22 interaction with target tissues (<u>Ginsberg and Atherholt, 1989</u>).

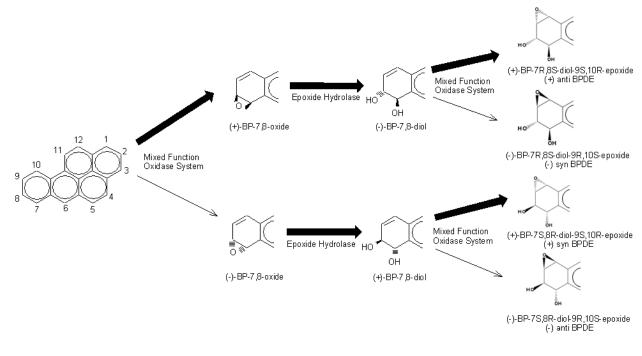
23 D.1.4. Metabolism

- The metabolic pathways of benzo[a]pyrene (Figure D-1) and variation in species, strain,
 organ system, age, and sex have been studied extensively with in vitro and in vivo experiments. In
 addition, there have been numerous studies of exposed humans or animals with subsequent
 detection of benzo[a]pyrene metabolites in tissues or excreta. For example, elevated frequency of a
 detected urinary metabolite (7,8,9,10-tetrol) was observed in patients treated with coal tar
- 29 medication (<u>Bowman et al., 1997</u>), demonstrating extensive metabolism of benzo[a]pyrene in
- 30 humans.

- 1
- 2
- 3

Figure D-1. Metabolic pathways for benzo[a]pyrene.

5


4

6 Phase I metabolism results in a number of reactive metabolites such as epoxides, 7 dihydrodiols, phenols, guinones, and their various combinations that are likely to contribute to the 8 toxic effects of benzo[a]pyrene (e.g., phenols, dihydrodiols, epoxides, and quinones). Phase II 9 metabolism of benzo[a]pyrene metabolites protects the cells and tissues from the toxic effects of 10 benzo[a]pyrene phenols, dihydrodiols and epoxides by converting them to water soluble products that are eliminated. In addition, Phase II metabolism of some benzo[a]pyrene dihydrodiols 11 12 prevents them from further bioactivation to reactive forms that bind to cellular macromolecules. 13 These metabolic process include glutathione conjugation of diol epoxides, sulfation and 14 glucuronidation of phenols, and reduction of quinones by NADPH:quinone oxidoreductase (NQO). 15 Numerous reviews on the metabolism of benzo[a]pyrene are available (Miller and Ramos, 2001; 16 IPCS, 1998; ATSDR, 1995; Conney et al., 1994; Grover, 1986; Levin et al., 1982; Gelboin, 1980). Key 17 concepts have been adapted largely from these reviews and supplemented with recent findings.

> This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR OUOTE

1 Phase I Metabolism

- 2 Phase I reactions of benzo[a]pyrene are catalyzed primarily by cytochrome P450 (CYP450)
- 3 and produce metabolites including epoxides, dihydrodiols, phenols, and quinones (Figure D-2). The
- 4 first step of Phase I metabolism is the oxidation of benzo[a]pyrene that forms a series of epoxides,
- 5 the four major forms of which are the 2,3-, 4,5-, 7,8-, and 9,10-isomers (<u>Gelboin, 1980</u>). Once
- 6 formed, these epoxides may undergo three different routes of metabolism: (1) spontaneous
- 7 rearrangement to phenols; (2) hydration to trans-dihydrodiols catalyzed by microsomal epoxide
- 8 hydrolase (EH); or (3) the Phase II detoxification of binding with glutathione (either spontaneously
- 9 or catalyzed by cytosolic glutathione-S-transferases (GSTs) (<u>IARC, 1983</u>)). The metabolism of
- 10 benzo[a]pyrene to phenols results in five phenol isomers (1-, 3-, 6-, 7, and 9-OH benzo[a]pyrene)
- 11 (Pelkonen and Nebert, 1982). Four benzo[a]pyrene epoxides (2,3-, 4,5-, 7,8-, and 9,10-) are
- 12 hydrated to trans-dihydrodiols. Benzo[a]pyrene-7,8-diol (formed from benzo[a]pyrene-7,8-oxide)
- 13 has been the focus of much of the study of benzo[a]pyrene metabolism. Benzo[a]pyrene-7,8-diol is
- 14 the metabolic precursor to the potent DNA-binding metabolite, benzo[a]pyrene-7,8-diol-
- 15 9,10-epoxide (BPDE). BPDE is formed from trans-benzo[a]pyrene 7,8-diol by multiple mechanisms
- 16 including catalysis by cytochromes (CYPs) (<u>Grover, 1986</u>; <u>Deutsch et al., 1979</u>), myeloperoxidase
- 17 (<u>Mallet et al., 1991</u>), or prostaglandin h synthase (also known as cyclooxygenase) (<u>Marnett, 1990</u>),
- 18 and lipid peroxidation (<u>Byczkowski and Kulkarni, 1990</u>). The diolepoxides can react further by
- 19 spontaneously hydrolyzing to tetrols (<u>Hall and Grover, 1988</u>).
- 20 The metabolism of benzo[a]pyrene proceeds with a high degree of stereoselectivity. Liver
- 21 microsomes from rats stereospecifically oxidize the 7,8-bond of benzo[a]pyrene to yield almost
- 22 exclusively the (+)-benzo[a]pyrene-(7,8)-oxide (see Figure D-2). Each enantiomer of
- 23 benzo[a]pyrene-7,8-oxide is stereospecifically converted by EH to a different stereoisomeric trans
- 24 dihydrodiol. The (+)-benzo[a]pyrene-7,8-oxide is preferentially hydrated to the (-)-trans-
- 25 benzo[a]pyrene-7,8-dihydrodiol enantiomer by rat CYP enzymes and the (–)-trans-
- 26 benzo[a]pyrene-7,8-dihydrodiol is preferentially oxidized by CYP enzymes to (+)-benzo[a]pyrene-
- 27 7R,8S-diol-9S,10R-epoxide [(+)-anti- BPDE], which is the most potent carcinogen among the four
- 28 stereoisomers (Figure D-2). Formation of these stereoisomers does not occur at equimolar ratios,
- 29 and the ratios differ between biological systems. For example, a study in rabbit livers
- 30 demonstrated that purified microsomes oxidized the (-)-benzo[a]pyrene-7,8-dihydrodiol to
- 31 isomeric diol epoxides in a ratio ranging from 1.8:1 to 11:1 in favor of the (+)-anti-BPDE isomer
- 32 (<u>Deutsch et al., 1979</u>).

2 Source: <u>Grover (1986)</u>.

3

4

1

Figure D-2. The stereospecific activation of benzo[a]pyrene.

5 Several studies have attempted to determine which CYP isozyme is predominantly 6 responsible for the metabolism of benzo[a]pyrene. Dermal administration of tritiated 7 benzo[a]pyrene to mice that have an aryl hydrocarbon (Ah) receptor (AhR) knock-out (AhR-/-) 8 had significantly decreased formation of (+)-anti-BPDE-DNA adducts compared to wild type (WT) 9 and 1B1–/– mice (Kleiner et al., 2004). Gavage administration of benzo[a]pyrene in AhR knock-out mice found that the AhR-/- mice (with lower levels of CYP1A1) had higher levels of protein 10 adducts and unmetabolized benzo[a]pyrene than the AhR+/+ or +/- mice (Sagredo et al., 2006). 11 Similarly, CYP1A1 (-/-) knock-out mice administered benzo[a]pyrene in feed for 18 days had 12 13 higher steady-state blood levels of benzo[a]pyrene and benzo[a]pyrene-DNA adducts (Uno et al., 14 2006). These findings establish important roles in benzo[a]pyrene metabolism for CYP1A1, but the 15 relationship is not clear between the CYP enzymes and biological activation or detoxification. 16 Another important factor in evaluating variability in the metabolic activation of 17 benzo[a]pyrene by CYP450s is the effect of functional polymorphisms, which has been the subject 18 of numerous reviews (e.g., Wormhoudt et al., 1999). Recombinant CYP1A1 allelic variants 19 produced BPDE with generally lower catalytic activity and Km values than the WT allele (Schwarz 20 et al., 2001). However, the formation of diol epoxides is stereospecific, with the allelic variants 21 producing about 3 times the amount of (±)-anti-BPDE isomers as compared to the stereoisomer, 22 (±)-syn-BPDE (Schwarz et al., 2001). In a study of occupational exposures to benzo[a]pyrene, no

relationship was observed between benzo[a]pyrene metabolite formation and the CYP1A1 MspI
 polymorphism (<u>Wu et al., 2002</u>).

3 Another pathway of benzo[a]pyrene metabolism is the conversion of benzo[a]pyrene to 4 6-OH benzo[a]pyrene, which can be further oxidized into quinones, primarily the 1,6-, 3,6-, and 5 6,12- isomers. Trans-benzo[a]pyrene-7,8-dihydrodiol can be converted by aldo-keto reductases 6 (AKR) to 7,8-dihydroxybenzo[a]pyrene (benzo[a]pyrene-7,8-catechol), which auto-oxidizes to 7 benzo[a]pyrene-7,8-quinone (BPQ). BPQ can undergo redox cycling in the presence of cellular 8 reducing equivalents. This reaction pathway produces reactive oxygen species (ROS), including 9 peroxide anion radicals, benzo[a]pyrene semiquinone radicals, hydroxyl radicals, and H_2O_2 , which 10 in turn can causes extensive DNA fragmentation (Penning et al., 1999; Flowers et al., 1997; Flowers 11 et al., 1996). 6-Hydroxybenzo[a]pyrene can be oxidized into 6-oxo-benzo[a]pyrene semi-quinone 12 radical and further metabolized into 1,6-, 3,6-, or 6,12-quinones spontaneously, or catalytically by 13 prostaglandin endoperoxide synthetase (Eling et al., 1986). The CYP and AKR enzymes both can 14 metabolize trans-benzo[a]pyrene-7,8-dihydrodiol to different metabolites, BPDE and BPQ. 15 Reconstituted in vitro systems of human lung cells show that CYP enzymes have faster steady-state 16 reaction rate constants than AKR and basal expression of AKR is higher than CYP in lung cells,

17 suggesting that AKR and CYP enzymes compete for metabolism of trans-benzo[a]pyrene-

18 7,8-dihydrodiol (<u>Quinn and Penning, 2008</u>).

19 Phase II Metabolism

The reactive products of Phase I metabolism are subject to the action of several Phase II
conjugation and detoxification enzyme systems that display preferential activity for specific
oxidation products of benzo[a]pyrene. These Phase II reactions play a critical role in protecting
cellular macromolecules from binding with reactive benzo[a]pyrene diolepoxides, radical cations,
or ROS. Therefore, the balance between Phase I activation of benzo[a]pyrene and its metabolites
and detoxification by Phase II processes is an important determinant of toxicity.

The diol epoxides formed from benzo[a]pyrene metabolism by Phase I reactions are not
usually found as urinary metabolites. Rather, they are detected as adducts of nucleic acids or
proteins or further metabolized by glutathione (GSH) conjugation, glucuronidation, and sulfation.
These metabolites make up a significant portion of total metabolites in excreta or tissues. For
example, the identified metabolites in bile 6 hours after a 2 µg/kg benzo[a]pyrene dose by
intratracheal instillation to male Sprague-Dawley rats were 49% glucuronides (quinol
diglucuronides or monglucuronides), 30.4% thioether conjugates, 6.2% sulfate conjugates, and

33 14.4% unconjugated metabolites (<u>Bevan and Sadler, 1992</u>).

34 Conjugation of benzo[a]pyrene with GSH is catalyzed by GSTs. Numerous studies using

35 human GSTs expressed in mammalian cell lines have demonstrated the ability of GST to metabolize

36 benzo[a]pyrene diol epoxides. Isolated human GSTs have significant catalytic activity toward

- 37 benzo[a]pyrene-derived diol epoxides and (±)anti-BPDE with variation in activity across GST
- 38 isoforms (Dreij et al., 2002; Rojas et al., 1998; Robertson et al., 1986). Benzo[a]pyrene quinones

can also be conjugated with GSH (<u>Agarwal et al., 1991</u>; <u>IARC, 1983</u>). This compelling evidence for a
 role of GSTs in the metabolism of reactive benzo[a]pyrene metabolites has triggered several

- 3 molecular epidemiology studies. However, recent studies on the impact of polymorphism on
- 3 molecular epidemiology studies. However, recent studies on the impact of polymorphism on
- 4 adduct levels in PAH-exposed human populations did not show a clear relationship between the
- 5 Phase I (CYP1A1, EH) or Phase II (GST) enzyme polymorphisms and the formation of DNA adducts

6 (<u>Hemminki et al., 1997</u>) or blood protein adducts (<u>Pastorelli et al., 1998</u>).

- 7 Conjugation with uridine diphosphate-glucuronide catalyzed by uridine diphosphate-
- 8 glucuronosyltransferase (UDP-UGT) enzymes is another important detoxification mechanism for
- 9 oxidative benzo[a]pyrene metabolites. UGT isoforms, as well as their allelic variants, are expressed,
- 10 and have glucuronidation activity toward, benzo[a]pyrene-derived phenols and diols in the
- 11 aerodigestive tract (tongue, tonsil, floor of the mouth, larynx, esophagus), but not in the lung or
- 12 liver (Fang and Lazarus, 2004; Zheng et al., 2002). UGT activity also shows significant
- 13 interindividual variability. Incubation of lymphocytes with benzo[a]pyrene resulted in covalent
- 14 binding to protein with a 143-fold interindividual variability and a statistically significant inverse
- 15 correlation between glucuronidation and protein binding (<u>Hu and Wells, 2004</u>).
- Sulfotransferases can catalyze the formation of sulfates of benzo[a]pyrene metabolites. In
 rat or mouse liver, cytosolic sulfotransferase (in the presence of 3'-phosphoadenosine 5'-phospho-
- 18 sulfate) catalyzes formation of sulfates of three benzo[a]pyrene metabolites: benzo[a]pyrene-
- 19 7,8,9,10-tetrahydro-7-ol, benzo[a]pyrene-7,8-dihydrodiol, and benzo[a]pyrene-7,8,9,10-tetrol. The
- 20 benzo[a]pyrene-7,8,9,10-tetrahydro-7-ol-sulfate is able to form potentially damaging DNA adducts
- 21 (<u>Surh and Tannenbaum, 1995</u>). In human lung tissue 3-hydroxybenzo[a]pyrene conjugation to
- sulfate produces benzo[a]pyrene-3-yl-hydrogen sulfate, a very lipid soluble compound that would
- 23 not be readily excreted in the urine (<u>Cohen et al., 1976</u>).
- 24 Although not specific for benzo[a]pyrene, there is now considerable evidence that genetic 25 polymorphisms of the GST, UGT, and EH genes impart an added risk to humans for developing 26 cancer. Of some significance to the assessment of benzo[a]pyrene may be that smoking, in 27 combination with genetic polymorphism at several gene loci, increases the risk for bladder cancer 28 (Moore et al., 2004; Choi et al., 2003; Park et al., 2003) and lung cancer (Alexandrie et al., 2004; Lin 29 et al., 2003). Coke oven workers (who are exposed to PAHs, including benzo[a]pyrene) 30 homozygous at the P187S site of the NQO1 gene (an inhibitor of benzo[a]pyrene-quinone adducts 31 with DNA), or carrying the null variant of the glutathione-S-transferase M1 (GSTM1) gene, had a
- 32 significantly increased risk of chromosomal damage in peripheral blood lymphocytes. Meanwhile,
- 33 the risk was much lower than controls in subjects with a variant allele at the H113Y site of the EH
- 34 gene (<u>Leng et al., 2004</u>).

35 Tissue-Specific Metabolism

- 36 Benzo[a]pyrene metabolism has been demonstrated in vivo in laboratory animals for
- 37 various tissues via multiple routes including inhalation, ingestion, and dermal absorption.
- 38 Metabolism of benzo[a]pyrene at the site of administration such as in the respiratory tract, the GI

1 tract, or the skin impact the amount of benzo[a]pyrene and its form as benzo[a]pyrene or one of the

- 2 metabolites that reach systemic circulation. Nasal instillation or inhalation of benzo[a]pyrene in
- 3 monkeys, dogs, rats, and hamsters resulted in the formation of dihydrodiols, phenols, quinones, and
- 4 tetrols in the nasal mucus and lung (<u>Wolff et al., 1989</u>; <u>Petridou-Fischer et al., 1988</u>; <u>Weyand and</u>
- 5 Lavoie, 1988; Weyand and Bevan, 1987, 1986; Dahl et al., 1985). In rats, the fractions of
- 6 metabolites in the lung at 6 hours after instillation were: 20% unmetabolized benzo[a]pyrene, 16%
- 7 conjugates or polyhydroxylated compounds, 10.7% 4,5-, 7,8-, and 9,10-dihydrodiols, 9.3% 1,6-, 3,6-,
- 8 and 6,12-quinone, and 6.9% 3- and 9-hydroxybenzo[a]pyrene (<u>Weyand and Bevan, 1986</u>). In
- 9 hamsters, approximately 50% of the benzo[a]pyrene instilled was metabolized in the nose (nasal
- 10 tissues had the highest metabolic activity per-gram of the respiratory tract tissues), and the

11 metabolites produced were similar to other species (<u>Dahl et al., 1985</u>).

12 In vitro studies of human and laboratory cells and cell lines provide further quantitative and 13 mechanistic details of the metabolism of benzo[a]pyrene in the cells of the respiratory tract, skin, 14 liver, and other tissues. Tracheobronchial tissues in culture of several species (including humans, 15 mice, rats, hamsters, and bovines) were all found to metabolize benzo[a]pyrene extensively to 16 phenols, diols, tetrols, quinones, and their conjugates (<u>Autrup et al., 1980</u>). The results show a high 17 degree of interindividual variability (a 33-fold difference in human bronchus, a 5-fold variation in 18 human trachea, and a 3-fold difference in bovine bronchus), but minimal variation among 19 individuals of the laboratory animal species (Autrup et al., 1980). Human bronchial epithelial and 20 lung tissue conjugated benzo[a]pyrene metabolites to glutathione and sulfates, but not with 21 glucuronide (Kiefer et al., 1988; Autrup et al., 1978; Cohen et al., 1976). Lung tissue slices exposed 22 to benzo[a]pyrene induced expression of CYP1A1 and CYP1B1 at levels 10–20 times higher than in 23 the liver (<u>Harrigan et al., 2006</u>) and total levels of benzo[a]pyrene-DNA adducts were 24 approximately 2–6 times greater in the lung slices than liver (Harrigan et al., 2004). 25 Benzo[a]pyrene undergoes extensive metabolism in the GI tract and liver after oral 26 administration. In rats after administration of an oral dose, the majority of benzo[a]pyrene 27 detected in organs is as metabolites (Ramesh et al., 2004; Ramesh et al., 2001b; Yamazaki and 28 Kakiuchi, 1989). In rats administered a 100-nmol dose, >90% was recovered in portal blood as 29 metabolites (Bock et al., 1979). Orally administered benzo[a]pyrene produced strong induction of 30 CYP1A1 in the intestine of mice (Brooks et al., 1999). DNA post-labeling studies of mice 31 administered benzo[a]pyrene by gavage demonstrated higher benzo[a]pyrene-DNA adduct levels in 32 CYP1A1(-/-) than CYP1A1(+/+) mice in small intestines (<u>Uno et al., 2004</u>). To compare the 33 relative roles of the liver and intestine in benzo[a]pyrene metabolism and absorption, a 34 multicompartment perfusion system was developed; it was found that benzo[a]pyrene is 35 extensively metabolized by the intestinal Caco-2 cells and that benzo[a]pyrene and its metabolites 36 are transported to the apical side of the Caco-2 cells away from the liver HepG2 cells (Choi et al., 37 2004).

1 Dermal exposure in humans and animals resulted in benzo[a]pyrene metabolism, and the

- 2 permeation of benzo[a]pyrene in skin is linked to benzo[a]pyrene metabolism. Human skin
- 3 samples maintained in short-term organ culture (i.e., human epithelial tissue, samples from human
- 4 hair follicles, and melanocytes isolated from adult human skin) can metabolize benzo[a]pyrene into
- 5 dihydrodiols, phenols, quinones, and glucuronide and sulfate conjugates (<u>Agarwal et al., 1991</u>;
- 6 <u>Alexandrov et al., 1990; Hall and Grover, 1988; Merk et al., 1987</u>). Nonviable skin is unable to
- 7 metabolize benzo[a]pyrene (the permeation into nonviable skin is lower than viable skin) as
- 8 measured in a range of species including humans, rats, mice, rabbits, and marmosets (Kao et al.,
- 9 <u>1985</u>). Viable human skin samples treated with 2 μg/cm² [¹⁴C]-benzo[a]pyrene in acetone and
- 10 incubated for 24 hours produced the following percentages of benzo[a]pyrene metabolites: 52%
- 11 water-soluble compounds, 8% polar compounds, 17% diols, 1% phenols, 2.5% quinones, and 18%
- 12 unmetabolized benzo[a]pyrene (Kao et al., 1985).
- 13 Benzo[a]pyrene that reaches systemic circulation is also metabolized by multiple tissues
- 14 that are targets of benzo[a]pyrene toxicity, including reproductive tissues such as prostate,
- endometrium, cervical epithelial and stromal, and testes (<u>Ramesh et al., 2003</u>; <u>Bao et al., 2002</u>;
- 16 <u>Williams et al., 2000; Melikian et al., 1999</u>).

17 Age-Specific Metabolism

- 18 Metabolism of benzo[a]pyrene occurs in the developing fetus and in children, as indicated
- 19 by DNA or protein adducts or urinary metabolites (<u>Naufal et al., 2010</u>; <u>Ruchirawat et al., 2010</u>; <u>Suter</u>
- 20 <u>et al., 2010; Mielzyńska et al., 2006; Perera et al., 2005a; Tang et al., 1999; Whyatt et al., 1998</u>).
- 21 Transport of benzo[a]pyrene and benzo[a]pyrene metabolites to fetal tissues including plasma,
- 22 liver, hippocampus, and cerebral cortex has been demonstrated in multiple studies (McCabe and
- 23 Flynn, 1990; Neubert and Tapken, 1988; Shendrikova and Aleksandrov, 1974), and benzo[a]pyrene
- is metabolized by human fetal esophageal cell culture (<u>Chakradeo et al., 1993</u>). While expression of
- 25 CYP enzymes are lower in fetuses and infants, the liver to body mass ratio and increased blood flow
- to liver in fetuses and infants may compensate for the decreased expression of CYP enzymes
- 27 (<u>Ginsberg et al., 2004</u>). Prenatal exposure to benzo[a]pyrene upregulates CYP1A1 and may
- 28 increase the formation of benzo[a]pyrene-DNA adducts (<u>Wu et al., 2003a</u>). Activity of Phase II
- 29 detoxifying enzymes in neonates and children is adequate for sulfation, but decreased for
- 30 glucuronidation and glutathione conjugation (<u>Ginsberg et al., 2004</u>). The conjugation of
- 31 benzo[a]pyrene-4,5-oxide with glutathione was approximately one-third less in human fetal than
- 32 adult liver cytosol (<u>Pacifici et al., 1988</u>). The differential Phase I and II enzyme expression and
- activity in the developing fetus and in children are consistent with an expectation that these
- 34 lifestages can be more susceptible to benzo[a]pyrene toxicity.

35 D.1.5. Elimination

Benzo[a]pyrene metabolites have been detected in the urine of exposed humans, but fecal
excretion has not been investigated in any detail. Studies of benzo[a]pyrene elimination in animals

1 following exposure via inhalation, ingestion, and dermal routes have shown that benzo[a]pyrene is

2 excreted preferentially in the feces in multiple species of laboratory animals including rat, mice,

3 hamsters, guinea pigs, monkeys, and dogs (<u>Wang et al., 2003</u>; <u>Likhachev et al., 1992</u>; <u>Wolff et al.</u>,

4 <u>1989; Yang et al., 1989; Petridou-Fischer et al., 1988; Weyand and Bevan, 1987; Sun et al., 1982;</u>

5 <u>Hecht et al., 1979</u>). The metabolites in bile are primarily benzo[a]pyrene conjugates,

- 6 predominantly thioether conjugates of varying extent in different species (Weyand and Bevan,
- 7 <u>1987</u>). Six hours after a single intratracheal instillation of benzo[a]pyrene (2 μg/kg) to male
- 8 Sprague-Dawley rats, relative metabolite levels were 31.2% diglucuronides, 30.4% thioether
- 9 conjugates, 17.8% monoglucuronides, 6.2% sulfate conjugates, and 14.4% unconjugated
- 10 metabolites (<u>Bevan and Sadler, 1992</u>). Rats administered benzo[a]pyrene via i.v. excrete a larger
- 11 fraction in urine than via inhalation or oral exposure, suggesting an important role for
- 12 enterohepatic circulation of benzo[a]pyrene metabolite conjugates (Moir et al., 1998; Weyand and
- 13 <u>Bevan, 1986</u>; <u>Hirom et al., 1983</u>). The vehicle impacts the amount of benzo[a]pyrene excreted and
- 14 may, in part, be due to the elimination rate or to other factors such as the absorption rate. For
- 15 tritiated benzo[a]pyrene administered to Sprague-Dawley rats in hydrophilic triethylene glycol,
- 16 70.5% of the dose was excreted into bile within 6 hours. When the lipophilic solvents, ethyl laurate
- and tricaprylin, were used as vehicles, 58.4 and 56.2% of the dose was excreted, respectively
- 18 (Bevan and Ulman, 1991). In addition to benzo[a]pyrene and its metabolites, adducts of
- 19 benzo[a]pyrene with nucleotides have also been identified as a small fraction of the administered
- 20 dose in feces and urine of animals. The level of BPDE adducts with guanine detected in urine of
- 21 male Wistar rats was dose-dependent. Forty-eight hours after dosing with 100 µg/kg tritiated
- benzo[a]pyrene, 0.15% of the administered benzo[a]pyrene dose was excreted in the urine as an
- adduct with guanine (<u>Autrup and Seremet, 1986</u>). Overall, the data in humans and laboratory
- 24 animals are sufficient to describe benzo[a]pyrene elimination qualitatively, but are limited in
- 25 estimating quantitative rates of elimination.

26 D.2. PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODELS

Several toxicokinetic or pharmacokinetic models of benzo[a]pyrene have been developed
for rodents (rat and hamster). However, human models have only been developed via allometric
scaling, and metabolic parameters in humans have not been calibrated against in vivo toxicokinetic
data or in vitro experiments.

- 31 <u>Bevan and Weyand (1988)</u> performed compartmental pharmacokinetic analysis of
- 32 distribution of radioactivity in male Sprague-Dawley rats, following the intratracheal instillation of
- benzo[a]pyrene to normal and bile duct-cannulated animals (<u>Weyand and Bevan, 1987</u>, <u>1986</u>).
- 34 However, implicit simulation approaches were used, as opposed to physiologically-based
- 35 approaches. The model calculated linear rate constants among compartments, and assumed that
- 36 the kinetics of benzo[a]pyrene and its metabolites were the same.

1 Roth and Vinegar (1990) reviewed the capacity of the lung to impact the disposition of 2 chemicals and used benzo[a]pyrene as a case study. A PBPK model was presented based on data 3 from (Wiersma and Roth (1983a), 1983b)) and was evaluated against tissue concentration data 4 from <u>Schlede et al. (1970</u>). The model was structured with compartments for arterial blood, venous 5 blood, lung, liver, fat, and slowly and rapidly perfused tissues and an adequate fit was obtained for 6 some compartments; however, tissue-level data for calibration and validation of this model were 7 limited. Metabolism in liver and lung was estimated using kinetic data from control rats and rats 8 pretreated with 3-methylcholanthrene to induce benzo[a]pyrene metabolism. In microsomal 9 preparations from control and 3-methylcholanthrene induced rat livers and lungs, benzo[a]pyrene 10 hydroxylase activity was 1,000-fold greater in liver. In isolated rat lungs, the clearance of 11 benzo[a]pyrene was about one-sixth of the clearance in isolated rat livers and in 12 3-methylcholanthrene-pretreated rats the clearance in lungs and livers were of similar magnitude. 13 The PBPK simulations model based on these data showed that for a bolus intravascular injection of 14 benzo[a]pyrene in rats, the majority of benzo[a]pyrene metabolism usually occurs in the liver. 15 Except for cases when rats are pretreated with enzyme-inducing agents or where the exposure 16 occurs via inhalation, the metabolic clearance in the lung is minor. 17 Moir et al. (1998) conducted a pharmacokinetic study on benzo[a]pyrene to obtain data for 18 model development. Rats were injected with varying doses of $[^{14}C]$ -benzo[a]pyrene to 15 mg/kg, 19 and blood, liver, fat, and richly perfused tissue were sampled varying time points after dosing. Moir 20 (1999) then described a model for lung, liver, fat, richly and slowly perfused tissues, and venous 21 blood, with saturable metabolism occurring in the liver. The fat and richly perfused tissues were 22 modeled as diffusion-limited, while the other tissues were flow-limited. The model predicted the 23 blood benzo[a]pyrene concentrations well, although it overestimated the 6 mg/kg results at longer 24 times (>100 minutes). The model also produced a poor fit to the liver data. The model simulations 25 were also compared to data of <u>Schlede et al. (1970</u>), who injected rats with 0.056 mg/kg body 26 weight of benzo[a]pyrene. The model predicted blood and fat benzo[a]pyrene concentrations well, 27 but still poorly predicted liver benzo[a]pyrene concentrations. The model included only one 28 saturable metabolic pathway, and only parent chemical concentrations were used to establish the 29 model. No metabolites were included in the model. This model was re-calibrated by Crowell et al. 30 (2011) by optimizing against additional rodent data and altering partition coefficient derivation. 31 However, it still did not incorporate metabolites, and some tissues continued to exhibit poor model 32 fits. 33 An attempt to scale the Moir et al. (1998) rodent PBPK model to humans, relevant to risk 34 assessment of oral exposures to benzo[a]pyrene, was presented by Zeilmaker et al. (1999a) and 35 Zeilmaker et al. (1999b). The PBPK model for benzo[a]pyrene was derived from an earlier model 36 for 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) in rats (Zeilmaker and van Eijkeren, 1997). Most 37 compartments were perfusion-limited, and tissues modeled included blood, adipose (with diffusion

38 limitation), slowly and richly perfused tissues, and liver. However, there was no separate

- 1 compartment for the lung. The liver compartment featured the AhR-dependent CYP450 induction
- 2 mechanism and DNA adduct formation as a marker for formation of genotoxic benzo[a]pyrene
- 3 metabolites. It was assumed that DNA adduct formation and the bulk benzo[a]pyrene metabolism
- 4 were mediated by two different metabolic pathways. The model was experimentally calibrated in
- 5 rats with the data for 7-ethoxyresorufin-O-deethylase (EROD) and formation of DNA adducts in the
- 6 liver after i.v. administration of a single dose and per os administration of a single or repeated doses
- 7 of benzo[a]pyrene (Zeilmaker et al., 1999a).
- 8 Zeilmaker et al. (1999b) assumed identical values for several parameters in rats and
- 9 humans (i.e., benzo[a]pyrene tissue partition coefficients, AhR concentration in liver, rate constant
- 10 for the decay of the benzo[a]pyrene-CYP450 complex, half-life of the CYP450 protein, fraction and
- 11 rate of GI absorption of benzo[a]pyrene, and rates of formation and repair of DNA adducts in liver).
- 12 The basal CYP450 activity in humans was assumed to be lower than that in rat liver. The
- 13 mechanism of AhR-dependent induction of CYP450 dominated the simulated benzo[a]pyrene-DNA
- 14 adduct formation in the liver. The results of PBPK model simulations indicated that the same dose
- 15 of benzo[a]pyrene administered to rats or humans might produce one order of magnitude higher
- 16 accumulation of DNA adducts in human liver when compared with the rat (Zeilmaker et al., 1999b).
- 17 Even though the model of Zeilmaker et al. (1999b) represents a major improvement in 18 predictive modeling of benzo[a]pyrene toxicokinetics, the interspecies extrapolation introduces
- 19 significant uncertainties. As emphasized by the authors, the conversion of benzo[a]pyrene to its 20
- mutagenic and carcinogenic metabolites could not be explicitly modeled in human liver because no
- 21 suitable experimental data were available. According to the authors, improvement of the model 22 would require direct measurements of basal activities of CYP1A1 and CYP1A2 and formation of
- 23 benzo[a]pyrene-DNA adducts in human liver. Metabolic clearance of benzo[a]pyrene in the lungs
- 24 was also not addressed. Additionally, the toxicokinetic modeling by Zeilmaker et al. (1999b)
- 25 addressed only one pathway of benzo[a]pyrene metabolic activation, a single target organ (the
- 26 liver), and one route of administration (oral). In order to model health outcomes of exposures to
- 27 benzo[a]pyrene, the PBPK model needs to simulate rate of accumulation of benzo[a]pyrene-DNA
- 28 adducts and/or the distribution and fate of benzo[a]pyrene metabolites (e.g., BPDE) that bind to
- 29 DNA and other macromolecules. Alternatively, stable toxic metabolites (e.g., trans-anti-tetrol-
- 30 benzo[a]pyrene) may be used as an internal dose surrogate. While the metabolic pattern of
- 31 benzo[a]pyrene has been relatively well characterized qualitatively in animals, the quantitative
- 32 kinetic relationships between the more complex metabolic reactions in potential target organs are
- 33 not yet well defined.

34 D.2.1. Recommendations for the Use of PBPK Models in Toxicity Value Derivation

- 35 PBPK models for benzo[a]pyrene were evaluated to determine the capability to extrapolate
- 36 from rats to humans, or between oral and inhalation exposure routes. Due to significant
- 37 uncertainties with respect to the inter-species scaling of the metabolic parameters between rats

- 1 and humans, these models were not used for cross-species extrapolation. Furthermore, no
- 2 complete mechanistic PBPK model for the inhalation route was identified, nor was there a model
- 3 for humans that simulates the typical inhalation exposure to benzo[a]pyrene on poorly soluble
- 4 carbonaceous particles. This precluded the model's use for cross-route extrapolation to the
- 5 inhalation pathway.

6 D.3. HUMAN STUDIES

7 D.3.1. Noncancer Endpoints

8 Cardiovascular Endpoints

9 Burstyn et al. (2005) reported the association of death from cardiovascular disease with 10 benzo[a]pyrene exposure in a cohort of 12,367 male European asphalt workers (Table D-1). These 11 workers were first employed in asphalt paving between 1913 and 1999, and worked at least one 12 season. Average duration of follow-up was 17 ± 9 years (mean \pm standard deviation [SD]), 13 encompassing 193,889 person-years of observation. Worker exposure to coal tar was estimated 14 using industrial process and hygiene information and modeling (presented in a previous report), 15 and coal tar exposure was found to be the strongest determinant of exposure to benzo[a]pyrene. 16 Benzo[a]pyrene exposure was assessed quantitatively using measurement-driven mixed effects 17 exposure models, using data collected from other asphalt industry workers, and this model was 18 constructed and validated previously. Due to limited data availability, only information regarding 19 the primary cause of death was collected, and this analysis was limited to diseases of the circulatory 20 system (ICD codes 390–459), specifically ischemic heart disease (IHD: ICD codes 410–414). Diesel 21 exhaust exposure was also assessed in this cohort, but varied little among the asphalt pavers, and 22 was not associated with risk of death from cardiovascular disease. Of the initial cohort, 0.25% was 23 lost to follow-up and 0.38% emigrated during the course of observation. Relative risks (RRs) and 24 associated 95% confidence intervals (CIs) were estimated using Poisson regression, and all models 25 included exposure index for agent of interest (coal tar or benzo[a]pyrene), age, calendar period of 26 exit from cohort, total duration of employment, and country, using the category of lowest exposure 27 as the reference. Confounding by tobacco smoke exposure was considered in relation to the 28 strength of its association with cardiovascular disease and the smoking prevalence in the 29 population. The RR attributed to cigarette smoking in former and current smokers was assumed to 30 be 1.2 and 2, respectively, based upon literature reports. From analysis of smoking incidence in a 31 subcohort, the following smoking distribution was proposed: in the lowest exposure group, 40%32 never-smokers, 30% former smokers, and 30% current smokers; and among the highest exposed, 33 the proportion shifted to 20/30/50%, respectively. 34 Exposed subjects were stratified into quintiles based upon IHD mortality, with 35 83-86 deaths per exposure category, composing approximately 2/3 of the 660 cardiovascular 36 disease-related deaths. Both cumulative and average exposure indices for benzo[a]pyrene were

- 1 positively associated with IHD mortality, with a RR of approximately 1.6 in the highest exposure
- 2 quintile from both metrics, independent of total employment duration. Similar monotonic trends
- 3 were observed for all cardiovascular diseases (combined), although a dose-response relationship
- 4 was evident only for IHD and not hypertension or other individual heart disease categories. Similar
- 5 trends were also observed for coal tar exposure and IHD. Adjusting the RR to account for possible
- 6 confounding by smoking yields a RR of 1.39 under the assumptions mentioned above, and is still
- 7 elevated (1.21) if the contribution of smoking to cardiovascular disease etiology was greater than
- 8 the original assumptions. Furthermore, the RR for the high versus low exposure quintile is
- 9 1.24 even if the distribution of nonsmokers/former smokers/current smokers shifts to 0/30/70%,
- 10 using the original assumptions of cigarette smoke casual potency.
- 11 12

Table D-1. Exposure to benzo[a]pyrene and mortality from cardiovascular diseases in a European cohort of asphalt paving workers

		Cumulati	ive exposure (n	g/m³-yrs)		<i>p</i> -value
Effect measured	0-189ª	189–501	502-931	932-2,012	≥2,013	for trend
Diseases of the circu	latory system					
Deaths	137	145	118	132	128	
RR	1.00	1.08	1.06	1.24	1.42	0.09
95% CI		0.85-1.38	0.80-1.42	0.89-1.71	0.96-2.09	
IHD				·		
Deaths	83	83	84	83	85	
RR	1.00	0.99	1.22	1.24	1.58	0.06
95% CI		0.72-1.36	0.86-1.74	0.82-1.85	0.98-2.55	
		Avera	age exposure (n	g/m³)		<i>p</i> -value
Effect measured	0-68ª	68-105	106-146	147-272	≥273	for trend
Diseases of the circul	atory system	I		1	I	
Deaths	128	142	143	139	108	
RR	1.00	1.30	1.55	1.45	1.58	< 0.001
95% CI		1.01-1.67	1.18-2.05	1.09-1.93	1.16-2.15	
IHD						1
Deaths	83	83	83	86	83	
RR	1.00	1.13	1.33	1.20	1.64	0.02
95% CI		0.82-1.55	0.94-1.90	0.84-1.71	1.13-2.38	

13 14

^aReference category.

Source: Burstyn et al. (2005).

- 15
- 16 17

18 Friesen et al. (2010) examined the association between benzo[a]pyrene exposure and

19 deaths from chronic nonmalignant disease in a cohort of 6,423 male and 603 female Canadian

20 aluminum smelter workers (Table D-2). Inclusion criteria required at least 3 years of continuous

1 employment in either the smelter facility or power-generating station from 1954 to 1997, with 2 worker history collected up through 1999. This cohort was probabilistically linked to the Canadian 3 national mortality database for external comparison to the British Columbia population and 4 calculation of standardized mortality ratios (SMRs), which were adjusted for age, sex, and time 5 period. Ninety-five percent CIs were calculated for the SMRs assuming a Poisson distribution. 6 Internal comparisons were also made during the analysis of IHD mortality in male workers, 7 calculating hazard ratios (HRs) for IHD with or without acute myocardial infarction (AMI) after 8 1969, as AMI could not be differentiated from other IHD on death certificates issued previously. 9 HRs were calculated using Cox regression models, with age as a metamarker of time, also including 10 smoking status, time since first employed and work location status. Smoking information for 77% 11 of this updated cohort was collected by questionnaire, and workers were categorized as 75% ever-12 smokers and 25% never-smokers. Quantitative exposure to coal tar pitch volatiles were estimated 13 by benzo[a]pyrene measurements, calculated by a job classification and time-based exposure 14 matrix, as described in a previous report; annual arithmetic mean values were calculated for 15 exposures from 1977 to 2000, while pre-1977 levels were backwards-extrapolated from 1977 16 values, incorporating major technological changes in time periods as appropriate. 17 Cumulative exposure metrics were highly skewed. Cumulative benzo[a]pyrene with a 18 5-year lag (past benzo[a]pyrene exposure) and cumulative benzo[a]pyrene in the most recent 19 5 years (recent benzo[a]pyrene exposure) were only slightly positively correlated (r = 0.10, 20 p < 0.001). Current benzo[a]pyrene exposure was highly correlated with cumulative exposure for 21 the most recent 5 years of exposure (r = 0.86, p < 0.001), but not with 5-year lagged cumulative 22 exposure (r = 0.03, p < 0.001). Lagged cumulative exposure metrics (0–10 years) were all highly 23 correlated with each other (r = 0.96, all *p*-values < 0.001); lagged metrics for cumulative exposure 24 were used to distinguish between effects of current versus long-term exposure. 25 When exposed workers were pooled and compared externally to non-exposed referents, the 26 IHD and AMI SMRs were all \leq 1.00 for males, and the only significant association in females was an 27 SMR of 1.27 for AMI. For internal comparisons, exposed males were stratified into quintiles based 28 upon IHD mortality, with approximately 56 deaths per exposure category. Five-year lagged 29 cumulative benzo[a]pyrene exposure was significantly associated with elevated risk of IHD 30 mortality, HR = 1.62 (95% CI 1.06–2.46) in the highest exposure quintile, while no association was 31 observed between most recent (5 years) exposure and mortality. Restricting IHD events to only 32 AMI (1969 onward) resulted in similar monotonic trends, albeit of lower statistical significance. No 33 association was observed between benzo[a]pyrene exposure and non-AMI IHD. While there was

- 34 little difference in the exposure-response association among 0-, 2-, and 5-year lagged data, 10-year
- 35 lagged data resulted in a weaker association. All risk estimates were strengthened by the
- 36 incorporation of work status and time-since-hire to account for the healthy worker effect, as
- 37 evidenced by the SMR of 0.87 (95% CI 0.82–0.92) for all chronic nonmalignant diseases combined
- 38 in male exposed workers versus external referents. Using a continuous variable, the authors

- 1 calculated the risk of death from IHD as 1.002 (95% CI 1.000–1.005) per μ g/m³ from cumulative
- 2 benzo[a]pyrene exposure; however, visual inspection of the categorical relationships indicated that
- 3 the association is nonlinear, suggesting that this value may be an underestimate. Restricting the
- 4 cohort to only members who died within 30 days of active employment at the worksite, cumulative
- 5 benzo[a]pyrene exposure was not significantly associated with IHD or AMI, although the HR for the
- 6 highest exposure group was 2.39 (95% CI 0.95–6.05). Exposure-response relationships were
- 7 similarly examined in male smelter workers for chronic obstructive pulmonary disease and
- 8 cerebrovascular disease, but neither was significantly associated with cumulative benzo[a]pyrene
- 9 exposure in either internal or external comparisons.
- 10 11

Table D-2. Exposure to benzo[a]pyrene and mortality from cardiovascular diseases in a Canadian cohort of male aluminum smelter workers

	Categ	orical cumı	<i>p</i> -value for						
Effect measured	0	0 0−7.79 7.79−24.3 24.3−66.7 ≥66.7				trend ^a	Continuous ^b		
All IHD (1957 onward)	All IHD (1957 onward)								
Deaths Person-years of follow-up HR 95% Cl	56 33,111 1 referent	56 37,581 1.11 0.76-1.62	57 34,838 1.48 1.01-2.17	56 31,533 1.28 0.86-1.91	56 13,688 1.62 1.06-2.46	0.053	281 150,751 1.002 1.000-1.005		
AMI (1969 onward)									
	0	0-7.51	7.51–27.7	27.7–67.4	≥67.4				
Deaths Person-years of follow-up HR 95% Cl	35 25,071 1 referent	37 30,454 1.14 0.71–1.82	37 34,621 1.21 0.75-1.96	38 24,081 1.36 0.84-2.45	37 13,261 1.46 0.87-2.45	0.19	184 127,488 1.001 0.997-1.005		

¹² 13

14

^aTwo-sided test for trend using the person-year-weighted mean value for each category as a linear, continuous variable.

^bExposure variable was entered as a continuous, linear variable in the model.

16

17 Source: Friesen et al. (2010).

18 Reproductive and Developmental Endpoints

19 Wu et al. (2010) conducted a study of benzo[a]pyrene-DNA adduct levels in relation to risk 20 of fetal death in Tianjin, China. This case-control study included women who experienced a delayed 21 miscarriage before 14 weeks gestational age (i.e., a fetal death that remained in utero and therefore 22 required surgical intervention). Cases were matched by age and gravidity to controls (women 23 undergoing induced abortion due to an unplanned or unwanted pregnancy). The study excluded 24 women who smoked, women with chronic disease and pregnancy complications, and women with 25 occupational exposures to PAHs. Residency within Tianjin for at least 1 year was also an eligibility

1 criterion. The participation rate was high: 81/84 eligible cases participated and 81/89 eligible 2 controls participated. Data pertaining to demographic characteristics, reproductive history, and 3 factors relating to potential PAH exposure were collected using a structured interview, and samples 4 from the aborted tissue were obtained. In two of the four hospitals used in the study, blood 5 samples from the women (n = 51 cases and 51 controls) were also collected. The presence of 6 benzo[a]pyrene-BPDE adducts was assessed in the blood and tissue samples using high-7 performance liquid chromatography (HPLC). There was no correlation between blood and aborted 8 tissue levels of benzo[a]pyrene adducts (r = -0.12 for the 102 blood-tissue pairs, r = -0.02 for the 9 51 case pairs, and r = -0.21 for the 51 control pairs). (The authors noted that there was little 10 difference between women with and without blood samples in terms of the interview-based 11 measures collected or in terms of the DNA-adduct levels in aborted tissue.) Benzo[a]pyrene-adduct 12 levels were similar but slightly lower in the aborted tissue of cases compared with controls 13 (mean \pm SD 4.8 \pm 6.0 in cases and 6.0 \pm 7.4 in controls, *p* = 0.29). In the blood samples, however, 14 benzo[a]pyrene-adduct levels were higher in cases $(6.0 \pm 4.7 \text{ and } 2.7 \pm 2.2 \text{ in cases and controls},$ 15 respectively, p < 0.001). In logistic regression analyses using a continuous adduct measure, the 16 odds ratio (OR) was 1.35 (95% CI 1.11–1.64) per adduct/10⁸ nucleotide. These results were 17 adjusted for education, household income, and gestational age, but were very similar to the 18 unadjusted results. Categorizing exposure at the median value resulted in an adjusted OR of 19 4.27 (95% CI 1.41–12.99) in the high compared with low benzo[a]pyrene-adduct group. There was 20 no relation between benzo[a]pyrene-adduct levels in the aborted tissue and miscarriage in the 21 logistic regression analyses using either the continuous (adjusted OR 0.97, 95% CI 0.93–1.02) or 22 dichotomous exposure measure (adjusted OR 0.76, 95% CI 0.37–1.54). Associations between 23 miscarriage and several interview-based measures of potential PAH exposure were also seen: 24 adjusted ORs of 3.07 (95% CI 1.31–7.16) for traffic congestion near residence, 3.52 (95% CI 25 1.44–8.57) for commuting by walking, 3.78 (95% CI 1.11–12.87) for routinely cooked during 26 pregnancy, and 3.21 (95% CI 0.98–10.48) for industrial site or stack near residence, but there was 27 no association with other types of commuting (e.g., by bike, car, or bus). 28 Perera et al. (2005a) studied 329 nonsmoking pregnant women (30 ± 5 years old) possibly 29 exposed to PAHs from fires at the World Trade Center (WTC) during the 4 weeks after 09/11/2001. 30 Maternal and umbilical cord blood levels of benzo[a]pyrene (BPDE)-DNA adducts were highest in 31 study participants who lived within 1 mile of the WTC, with an inverse correlation between cord 32 blood levels and distance from the WTC. Neither cord blood adduct level nor environmental 33 tobacco smoke (ETS) alone was positively correlated with adverse birth outcomes. However, the 34 interaction between ETS exposure and cord blood adducts was significantly associated with 35 reduced birth weight and head circumference. Among babies exposed to ETS in utero, a doubling of 36 cord blood benzo[a]pyrene-DNA adducts was associated with an 8% decrease in birth weight 37 (p = 0.03) and a 3% decrease in head circumference (p = 0.04).

1	<u>Perera et al. (2005b)</u> , a reanalysis of <u>Perera et al. (2004)</u> , compared various exposures—
2	ETS, nutrition, pesticides, material hardship—with birth outcomes (length, head circumference,
3	cognitive development). ETS exposure and intake of PAH-rich foods by pregnant women were
4	determined by questionnaire. Levels of BPDE-DNA adducts were determined in umbilical cord
5	blood collected at delivery. The study population consisted of Dominican or African-American
6	nonsmoking pregnant women (n = 214; 24 \pm 5 years old) free of diabetes, hypertension, HIV, and
7	drug or alcohol abuse. Benzo[a]pyrene adducts, ETS, and dietary PAHs were not significantly
8	correlated with each other. However, the interaction between benzo[a]pyrene-DNA adducts and
9	ETS exposure was significantly associated with reduced birth weights (-6.8% ; $p = 0.03$) and
10	reduced head circumference (-2.9% ; $p = 0.04$).
11	Tang et al. (2006) measured BPDE-DNA adducts in maternal and umbilical cord blood
12	obtained at delivery from a cohort of 150 nonsmoking women and their newborns in China.
13	Exposure assessment was related to the seasonal operation of a local, coal-fired power plant;
14	however, airborne PAH concentrations were not measured. Dietary PAH intake was not included as
15	a covariate because it did not significantly contribute to the final models, but ETS, sex, and maternal
16	height and weight were considered as covariates. DNA adduct levels were compared to several
17	birth outcomes and physical development parameters, such as gestational age at birth; infant sex,
18	birth weight, length, head circumference, and malformations; maternal height and pregnancy
19	weight total weight gain; complications of pregnancy and delivery; and medications used during
20	pregnancy.
21	High cord blood adduct levels were significantly associated with reduced infant/child
22	weight at 18 months ($\beta = -0.048$, $p = 0.03$), 24 months ($\beta = -0.041$, $p = 0.027$), and 30 months of age
23	(β = -0.040, <i>p</i> = 0.049); decreased birth head circumference was marginally associated with DNA
24	adduct levels ($\beta = -0.011$, $p = 0.057$). Maternal adduct levels were correlated neither with cord
25	blood adduct levels nor with fetal and child growth. Among female infants, cord blood adduct levels
• •	

were significantly associated with smaller birth head circumference (p = 0.022) and with lower

- 27 weight at 18 months (p = 0.014), 24 months (p = 0.012), and 30 months of age (p = 0.033), and with
- decreased body length at 18 months of age (p = 0.033). Among male infants, the corresponding associations were also inverse, but were not statistically significant.
- Considerable evidence of a deleterious effect of smoking on male and female fertility has
 accumulated from epidemiological studies of time to pregnancy, ovulatory disorders, semen
- 32 quality, and spontaneous abortion (reviewed in <u>Waylen et al., 2009; Cooper and Moley, 2008;</u>
- 33 <u>Soares and Melo, 2008</u>). In addition, the effect of smoking, particularly during the time of the
- 34 perimenopausal transition, on acceleration of ovarian senescence (menopause) has also been
- 35 established (<u>Midgette and Baron, 1990</u>). More limited data are available pertaining specifically to
- 36 measures of benzo[a]pyrene and reproductive outcomes.
- 37 <u>Neal et al. (2008)</u> examined levels of benzo[a]pyrene and other PAHs in follicular fluid and
 38 serum sample from 36 women undergoing in vitro fertilization at a clinic in Toronto, and compared

1 the successful conception rate in relation to benzo[a]pyrene levels. The women were classified by 2 smoking status, with 19 current cigarette smokers, 7 with passive or sidestream smoke exposure 3 (i.e., nonsmoker with a partner who smoked), and 10 nonsmokers exposed. An early follicular 4 phase blood sample and follicular fluid sample from the follicle at the time of ovum retrieval were 5 collected and analyzed for the presence of benzo[a]pyrene, acenapthelene, phenanthrene, pyrene, 6 and chrysene using gas chromatography/mass spectrometry (MS) (detection limit 5 pg/mL). The 7 frequency of nondetectable levels of serum benzo[a]pyrene was highest in the nonsmoking group 8 (60.0, 14.3, and 21.0% below the detection limit in nonsmoking, sidestream smoke, and active 9 smoking groups, respectively). A similar pattern was seen with follicular fluid benzo[a]pyrene 10 (30.0, 14.3, and 10.5% below the detection limit in nonsmoking, sidestream smoke, and active 11 smoking groups, respectively). In the analyses comparing mean values across groups, an assigned 12 value of 0 was used for nondetectable samples. Follicular fluid benzo[a]pyrene levels were higher 13 in the active smoking group (mean \pm standard error [SE], 1.32 \pm 0.68 ng/mL) than in the sidestream 14 $(0.05 \pm 0.01 \text{ ng/mL})$ or nonsmoking $(0.03 \pm 0.01 \text{ ng/mL})$ groups (p = 0.04). The between-group 15 differences in serum benzo[a]pyrene levels were not statistically significant $(0.22 \pm 0.15,$ 16 0.98 ± 0.56 , and 0.40 ± 0.13 ng/mL in nonsmoking, sidestream smoke, and active smoking groups, 17 respectively), and there were no differences in relation to smoking status. Among active smokers, 18 the number of cigarettes smoked per day was strongly correlated with follicular fluid 19 benzo[a]pyrene levels (r = 0.7, p < 0.01). Follicular fluid benzo[a]pyrene levels were significantly 20 higher among the women who did not conceive $(1.79 \pm 0.86 \text{ ng/mL})$ compared with women who 21 did get pregnant (mean approximately 0.10 ng/mL, as estimated from graph) (p < 0.001), but 22 serum levels of benzo[a]pyrene were not associated with successful conception. 23 A small case-control study conducted between August 2005 and February 2006 in Lucknow 24 city (Uttar Pradesh), India examined PAH concentrations in placental tissues (Singh et al., 2008) in 25 relation to risk of preterm birth. The study included 29 cases (delivery between 28 and <36 weeks 26 of gestation) and 31 term delivery controls. Demographic data on smoking history, reproductive 27 history, and other information were collected by interview, and a 10-g sample of placental tissue 28 was collected from all participants. Concentration of specific PAHs in placental tissue was 29 determined using HPLC. In addition to benzo[a]pyrene, the PAHs assayed were naphthalene, 30 acenaphthylene, phenanthrene, fluorene, anthracene, benzo[a]anthracene, fluoranthene, pyrene, 31 benzo[k]fluoranthene, benzo[b]fluoranthene, benzo[g,h,i]perylene, and dibenzo[a,h]anthracene. 32 PAH exposure in this population was from environmental sources and from cooking. The age of 33 study participants ranged from 20 to 35 years. There was little difference in birth weight between 34 cases and controls (mean 2.77 and 2.75 kg in the case and control groups, respectively). Placental 35 benzo[a]pyrene levels were lower than the levels of the other PAHs detected (mean 8.83 ppb in 36 controls for benzo[a]pyrene compared with 25–30 ppb for anthracene, benzo[k]fluoranthene, 37 benzo[b]fluoranthene, and dibenzo[a,h]anthracene, 59 ppb for acenaphthylene, and 200–380 ppm 38 for naphthalene, phenanthrene, fluoranthene, and pyrene; nondetectable levels of fluorine,

- 1 benzo[a]anthracene, and benzo[g,h,i]perylene were found). There was little difference in
- 2 benzo[a]pyrene levels between cases (mean ± SE 13.85 ± 7.06 ppb) and controls (8.83 ± 5.84 ppb),
- 3 but elevated levels of fluoranthene (325.91 ± 45.14 and 208.6 ± 21.93 ppb in cases and controls,
- 4 respectively, p < 0.05) and benzo[b]fluoranthene (61.91 ± 12.43 and 23.84 ± 7.01 ppb in cases and
- 5 controls, respectively, p < 0.05) were seen.

6 Neurotoxicity

7 Niu et al. (2010) studied 176 Chinese coke-oven workers with elevated benzo[a]pyrene 8 exposure and compared them against 48 referents (workers in a supply warehouse), matched by 9 socioeconomic status, lifestyle, and health. Blood levels of monoamine, amino acid and chlorine 10 neurotransmitters were measured, and the World Health Organization Neurobehavioral Core Test 11 Battery was administered to assess emotional state, learning, memory, and hand-eye coordination. 12 The authors self-designed a study questionnaire to gather information on worker education, 13 vocational history, smoking and drinking habits, and personal habits, personal and family medical 14 history, as well as any current symptoms and medications used in the previous several weeks. 15 Workers were excluded from the study for any of the following criteria: if they reported feeling 16 depressed at any point during the previous 6 months; if they had taken medicine in the previous 17 2 weeks that could affect nervous system function; or if they reported undertaking vigorous 18 exercise less than 48 hours previously. "Smoking" was defined as ≥ 10 cigarettes/day during the 19 past year. Similarly, "drinking" was defined as wine/beer/spirits consumed ≥ 3 times/week for the 20 past 6 months. Workplace environmental sampling stations were established at each of the 21 physical work locations, including the referent's warehouse, and dual automatic air sampling 22 pumps collected samples at personal breathing zone height for 6 hours/day, over 3 consecutive 23 days. Benzo[a]pyrene content was determined by HPLC, and relative exposure was compared to 24 post-shift urine levels of a benzo[a]pyrene metabolite, 1-hydroxypyrene (1-OH-Py). Blood was 25 collected in the morning before breakfast; monoamine (norepinephrine and dopamine) and amino 26 acid (glutamate, aspartate, glycine, and gamma-aminobutyric acid [GABA]) neurotransmitter levels 27 were determined by HPLC, acetylcholine levels determined by hydroxyamine chromometry, and 28 acetylcholine esterase (AchE) levels measured in lysed red blood cells (RBCs) using activity kits. 29 Benzo[a]pyrene mean concentrations were 19.56 ± 13.2 , 185.96 ± 38.6 , and 30 $1,623.56 \pm 435.8$ ng/m³ at the bottom, side, and top of the coke oven, respectively, all of which were 31 higher than the mean at the referents' warehouse $(10.26 \pm 7.6 \text{ ng/m}^3)$. The authors did not report 32 stratified analysis by different levels of benzo[a]pyrene exposure, and reported only comparisons 33 between the referents and all exposed workers combined (Table D-3), or between workers grouped 34 by urinary benzo[a]pyrene metabolite 1-OH-Py levels (Table D-4). There were no significant 35 differences in age, education, or smoking or alcohol use between the coke oven and warehouse 36 workers. Urinary 1-OH-Py levels were 32% higher in coke oven workers compared to the referent 37 group, corresponding to the higher levels of benzo[a]pyrene detected in all coke oven workstation 38 compared to the supply warehouse. Performance in two neurobehavioral function tests, digit span

- 1 and forward digit span, were significantly decreased in the exposed oven workers versus the
- 2 control group; when stratified by urinary metabolite level, scores significantly decreased with
- 3 increasing 1-OH-Py levels. Of the neurotransmitters assessed, norepinephrine, dopamine,
- 4 aspartate, and GABA were significantly decreased in exposed versus control workers;
- 5 norepinephrine and aspartate were also significantly and inversely related with 1-OH-Py levels.
- 6 Dopamine levels appeared to decrease with increased urinary metabolite levels, although the
- 7 relationship was not statistically significant. GABA levels were highly variable, and appeared to
- 8 increase with increasing 1-OH-Py levels, although this relationship was not statistically significant.
- 9 Acetylcholine levels were fourfold higher in coke oven workers compared to referents, and AchE
- 10 activity was 30% lower; both acetylcholine and AchE were significantly associated with urinary
- 11 benzo[a]pyrene metabolite levels, although acetylcholine increased and AchE activity decreased
- 12 with increasing 1-OH-Py. The authors reported the results of correlation analysis, indicating that
- 13 digit span scores correlated negatively with acetylcholine and positively with AchE (coefficients of
- 14 –0.230, –0.276 and 0.120, 0.170, respectively), although no indication of statistical significance was
- 15 given. No other associations were reported.

16Table D-3. Exposure-related effects in Chinese coke oven workers or17warehouse controls exposed to benzo[a]pyrene in the workplace

	Ехро	osure group		
Effect measured	Controls (n = 48)	Exposed workers (n = 176)	<i>p</i> -value	
Background information (mean ± \$	SD, incidence or percent)	· · · ·		
Age (yrs)	39.71 ± 7.51	37.86 ± 6.51	0.098	
Education (junior/senior)	23/25	110/66	0.068	
Smoking	77%	64%	0.093	
Drinking	27%	39%	0.140	
Urine benzo[a]pyrene metabolite (μmol/mol creatinine; mean ±	SD)		
1-ОН-Ру	2.77 ± 1.45	3.66 ± 0.67	0.000	
Neurobehavioral function tests (m	ean ± SD)	· · · ·		
Simple reaction time	413.88 ± 95.40	437.39 ± 88.44	0.109	
Digit span	17.31 ± 4.54	15.47 ± 4.08	0.006	
Forward digit span	10.65 ± 2.42	9.25 ± 2.64	0.001	
Neurotransmitter concentrations (mean ± SD)	· · · · ·		
Norepinephrine (ng/mL)	62.54 ± 58.07	40.62 ± 29.78	0.000	
Dopamine (ng/mL)	1,566.28 ± 317.64	1,425.85 ± 422.66	0.029	
Aspartate (µg/mL)	2.13 ± 1.66	1.58 ± 0.99	0.004	
Glutamate (µg/mL)	11.21 ± 5.28	9.68 ± 5.72	0.074	
GABA (µg/mL)	2.52 ± 5.16	1.01 ± 2.21	0.004	
Acetylcholine (µg/mL	172.60 ± 67.19	704.00 ± 393.86	0.000	
AchE activity (U/mg protein)	71.31 ± 46.18	50.27 ± 34.02	0.012	

18

19 Source: <u>Niu et al. (2010)</u>.

 1.56 ± 3.24

665.85 ± 94.34

52.64 ± 4.60

0.964

0.030

0.043

1

2 3

4

urinary metaboli	ite levels					
	Exposure					
Effect measured	0-3.09 µmol/mol creatinine	3.09-3.90 μmol/mol creatinine	3.90-5.53 μmol/mol creatinine			
Number of subjects	33	72	36	<i>p</i> -value		
Neurobehavioral function tests (mean ± SD)						
Digit span	18.24 ± 4.58	16.04 ± 4.24	15.78 ± 3.71	0.003		
Forward digit span	10.85 ± 2.12	9.80 ± 2.86	9.58 ± 2.33	0.019		
Backward digit span	7.20 ± 3.07	6.38 ± 2.55	6.20 ± 2.15	0.089		
Right dotting	152.15 ± 35.43	153.80 ± 31.55	167.22 ± 59.21	0.094		
Neurotransmitter concentrat	ions (mean ± SD)					
Norepinephrine (ng/mL)	67.31 ± 67.45	36.97 ± 23.58	46.75 ± 35.88	0.002		
Dopamine (ng/mL)	1,614.45 ± 683.57	1,482.30 ± 323.66	1,405.06 ± 332.23	0.134		
Aspartate (μg/mL)	2.29 ± 2.13	1.61 ± 0.71	1.47 ± 0.58	0.001		
Glutamate (μg/mL)	11.56 ± 8.92	9.93 ± 4.14	9.06 ± 3.30	0.070		

 1.42 ± 3.44

483.71 ± 57.87

54.98 ± 4.23

 1.40 ± 3.59

334.66 ± 83.75

68.17 ± 9.28

warehouse controls exposed to benzo[a]pyrene in the workplace, stratified by

Table D-4. Exposure-related effects in Chinese coke oven workers or

5

6 Source: <u>Niu et al. (2010)</u>.

Acetylcholine (μ g/mL)

AchE activity (U/mg protein)

GABA (µg/mL)

7 Immunotoxicity

8 Zhang et al. (2012) studied 129 Chinese coke-oven workers with elevated benzo[a]pyrene 9 exposure and compared them against 37 referents (workers in a supply warehouse), matched by 10 socioeconomic status, lifestyle, and health. Area benzo[a]pyrene levels were quantified in the 11 various work areas, and the primary endpoint was the level of early and late apoptosis in 12 peripheral blood mononuclear cells (PBMCs) isolated from each worker subgroup the morning 13 following an overnight fast. The authors self-designed a study questionnaire to gather information 14 on worker education, vocational history, smoking and drinking habits, personal habits, and 15 personal and family medical history, as well as any current symptoms and medications used in the 16 previous several weeks. "Smoking" was defined as ≥ 10 cigarettes/day during the past year, with 17 "smoking index" defined as cigarettes/day × years smoking. Similarly, "drinking" was defined as 18 wine/beer/spirits consumed \geq 3 times/week for the past 6 months, and "drinking index" defined as 19 grams of alcohol consumed/day × years drinking. Exposed workers were categorized by physical 20 worksite location and expected differences in benzo[a]pyrene exposure: 34 oven bottom workers, 21 48 oven side workers, and 47 oven top workers. Workplace environmental sampling stations were 22 established at each of the physical work locations, including the referent's warehouse, and dual

1 automatic air sampling pumps collected samples at personal breathing zone height for 6 hours/day,

2 over 3 consecutive days. Benzo[a]pyrene content was determined by HPLC, and relative exposure

- 3 was compared to post-shift urine levels of a benzo[a]pyrene metabolite, 1-OH-Py. Collected and
- 4 purified PBMCs were incubated with Annexin-V and PI prior to analysis by flow cytometry; early
- 5 apoptotic cells were considered to be Annexin V+/PI-, while late apoptotic cells were considered
- 6 Annexin V+/PI+.

7 All apoptosis data were displayed graphically, and in all groupings, early:late apoptotic

- 8 PBMCs occurred at an approximate 2:1 frequency. PBMC apoptosis was similar in each of the three
- 9 coke oven worker groups, which were all statistically significantly higher than referents
- 10 (approximately twofold) for both early and late apoptosis. While self-reported smoking incidence
- 11 varied significantly among the worker groups, stratification by smoking years or smoking index did
- 12 not reveal any significant association with PBMC apoptosis. Multiple linear stepwise regression
- 13 analysis suggested that urine 1-OH-Py levels and years of coke oven operation were positively
- 14 associated with increased early and late PBMC apoptosis (Table D-5), and that years of ethanol
- 15 consumption was negatively associated with only early apoptosis. These associations were tested
- 16 by stratifying workers into three groups by urinary 1-OH-Py levels or coke oven operation years,
- 17 and in both cases, the groups with the highest urinary metabolite levels or longest oven operating
- 18 experience had statistically significantly higher levels of both early and late apoptotic PBMCs versus
- 19 the lowest or shortest duration groups, respectively. Likewise, when sorted into groups based
- 20 upon years of ethanol consumption, the highest ethanol "years of consumption" group had
- 21 statistically significantly lower early apoptosis rates when compared to the lowest ethanol
- 22 consuming group.

23Table D-5. Background information on Chinese coke oven workers or24warehouse controls exposed to benzo[a]pyrene in the workplace

	Exposure group (ng/m ³ ; mean ± SD)							
Effect measured	10.2 ± 7.6	19.5 ± 13.2	185.9 ± 38.6	1,623.5 ± 435.8				
Number of subjects	37	34	48	47	<i>p</i> -value			
Background information (mean ± SD or %)								
Age (yrs)	37.16 ± 6.00	39.09 ± 5.53	36.98 ± 6.40	37.34 ± 6.78	0.451			
Working years	17.35 ± 7.19	18.58 ± 7.23	16.78 ± 6.90	17.26 ± 7.44	0.742			
Smoking	62.2	64.7	83.3	53.2	0.017			
Drinking	24.3	41.2	39.6	44.7	0.259			
Urine benzo[a]pyrene metabolite (μmol/mol creatinine; mean ± SD)								
1-ОН-Ру	2.78 ± 1.04	3.22 ± 0.81*	3.51 ± 0.55*	3.66 ± 0.58*	0.000			

²⁵ 26 27

*p < 0.05 significantly different from control mean.

28 Source: Zhang et al. (2012).

1

2 D.3.2. Cancer-related Endpoints

3 Benzo[a]pyrene-Induced Cytogenetic Damage

4 Many studies measure cytogenetic damage as biomarkers of early biological effects, which 5 also reflect exposure to genotoxic chemicals. Standard cytogenetic endpoints include chromosomal 6 aberration (CA), sister chromatid exchange (SCE), micronucleus (MN) formation, hypoxanthine 7 guanine phosphoribosyl transferase (hprt) mutation frequency, and glycophorin A mutation 8 frequency (Gyorffy et al., 2008). These biomarkers are often incorporated in multi-endpoint 9 studies with other biomarkers of exposure. Because they indicate related but different endpoints, 10 there is often a lack of correlation between the different categories of biomarkers. 11 Merlo et al. (1997) evaluated DNA adduct formation (measured by [³²P]-postlabelling) and 12 MN in white blood cells (WBCs) of 94 traffic policemen versus 52 residents from the metropolitan 13 area of Genoa, Italy. All study subjects wore personal air samplers for 5 hours of one work shift,

14 and levels of benzo[a]pyrene and other PAHs were measured. Policemen were exposed to 4.55 ng

benzo[a]pyrene/m³ air, compared with urban residents who were exposed to 0.15 ng/m³. DNA
adduct levels in policemen were 35% higher than in urban residents (*p* = 0.007), but MN in urban

17 residents were 20% higher than in policemen (p = 0.02). Linear regressions of DNA adducts and

18 MN incidence, respectively, versus benzo[a]pyrene exposure levels did not reveal significant

19 correlations.

20 Perera and coworkers assessed DNA damage in Finnish iron foundry workers in two 21 separate studies and using three methodologies. Based on results from personal sampling and 22 stationary monitoring in both studies, three levels of benzo[a]pyrene air concentrations were 23 defined: low (<5 ng/m³ benzo[a]pyrene), medium (5–12 ng/m³), and high (>12 ng/m³) (Perera et 24 al., 1994; Perera et al., 1993). In the first study, involving 48 workers, several biomarkers were 25 analyzed for dose-response and interindividual variability (Perera et al., 1993). PAH-DNA adducts 26 were determined in WBCs using an immunoassay and enzyme-linked immunosorbent assay 27 (ELISA) with fluorescence detection. Mutations at the hprt locus were also measured in WBC DNA. 28 The latter assay is based on the fact that each cell contains only one copy of the hprt gene, which is 29 located on the X-chromosome. While male cells have only one X-chromosome, female cells 30 inactivate one of the two X-chromosomes at random. The gene is highly sensitive to mutations such 31 that in the event of a crucial mutation in the gene, enzyme activity disappears completely from the 32 cell. In addition, mutations at the glycophorin A gene locus were measured in RBCs. The 33 glycophorin A mutation frequency was not correlated with either benzo[a]pyrene exposure or 34 PAH-DNA adduct formation. However, both PAH-DNA adduct levels and hprt mutation frequency 35 increased with increasing benzo[a]pyrene exposure. In addition, there was a highly significant 36 correlation between incidence of hprt mutations and PAH-DNA adduct levels (p = 0.004).

In a second study, <u>Perera et al. (1994)</u> surveyed 64 iron foundry workers with assessments 1 2 conducted in 2 successive years; 24 of the workers provided blood samples in both years. Exposure 3 to benzo[a]pyrene, collected by personal and area sampling in the first year of the study, ranged 4 from <5 to 60 ng/m³ and was estimated to have decreased by 40% in the second year. The levels of 5 PAH-DNA adducts were roughly 50% lower in the 2nd year, presumably reflecting decreased 6 exposure. The longer-lived hprt mutations were not as strongly influenced by the decreasing 7 exposure to benzo[a]pyrene. Study subjects who did not have detectable levels of DNA adducts 8 were excluded from the study. As in the previous study, a strong correlation between DNA adduct 9 levels and incidence of hprt mutations was observed (Perera et al., 1993). 10 Kalina et al. (1998) studied several cytogenetic markers in 64 coke oven workers and 11 34 controls employed at other locations within the same plant. Airborne benzo[a]pyrene and seven 12 other carcinogenic PAHs were collected by personal air samplers, which showed ambient 13 benzo[a]pyrene concentrations ranging widely from 0.002 to 50 μ g/m³ in coke oven workers and 14 from 0.002 to 0.063 μ g/m³ in controls. CAs, SCEs, high-frequency cells (HFCs), and SCE 15 heterogeneity index were all significantly increased with benzo[a]pyrene exposure. Except for 16 increases in HFCs, no effect of smoking was observed. Consistent with studies of PAH-DNA adduct 17 formation, reduced cytogenetic response at high exposure levels produced a nonlinear doseresponse relationship. The authors also evaluated the potential influence of polymorphisms in 18 19 enzymes involved in the metabolism of benzo[a]pyrene. GSTM1 and N-acetyl transferase-2 20 polymorphisms were studied and no evidence of the two gene polymorphisms having any influence 21 on the incidence of cytogenetic damage was found. 22 Motykiewicz et al. (1998) conducted a similar study of genotoxicity associated with 23 benzo[a]pyrene exposure in 67 female residents of a highly polluted industrial urban area of Upper 24 Silesia, Poland, and compared the results to those obtained from 72 female residents of another 25 urban but less polluted area in the same province of Poland. Urinary mutagenicity and 1-OH-Py 26 levels, PAH-DNA adducts in oral mucosa cells (detected by immunoperoxidase staining), SCEs, 27 HFCs, CAs, bleomycin sensitivity, and GSTM1 and CYP1A1 polymorphisms in blood lymphocytes 28 were investigated. High volume air samplers and gas chromatography were used to quantify 29 ambient benzo[a]pyrene levels, which were 3.7 ng/m³ in the polluted area and 0.6 ng/m³ in the 30 control area during the summer. During winter, levels rose to 43.4 and 7.2 ng/m³ in the two areas, 31 respectively. The cytogenetic biomarkers (CA and SCE/HFC), urinary mutagenicity, and urinary 32 1-OH-Py excretion were significantly increased in females from the polluted area, and differences 33 appeared to be more pronounced during winter time. PAH-DNA adduct levels were significantly 34 increased in the study population, when compared to the controls, only in the winter season. No 35 difference in sensitivity to bleomycin-induced lymphocyte chromatid breaks was seen between the two populations. As with the study by Kalina et al. (1998), genetic polymorphisms assumed to 36 37 affect the metabolic transformation of benzo[a]pyrene were not associated with any difference in 38 the incidence of DNA damage.

1 In a study of Thai school boys in urban (Bangkok) and rural areas, bulky (including but not 2 limited to BPDE-type) DNA adduct levels were measured in lymphocytes along with DNA single-3 strand breaks (SSBs), using the comet assay, and DNA repair capacity (<u>Tuntawiroon et al., 2007</u>). 4 Ambient air and personal breathing zone measurements indicated that Bangkok school children 5 experienced significantly higher exposures to benzo[a]pyrene and total PAHs. A significantly 6 higher level of SSBs (tail length 1.93 ± 0.09 versus $1.28 \pm 0.12 \mu m$, +51%; p < 0.001) was observed 7 in Bangkok school children when compared with rural children, and this parameter was 8 significantly associated with DNA adduct levels. A significantly reduced DNA repair capacity 9 $(0.45 \pm 0.01 \text{ versus } 0.26 \pm 0.01 \text{ y-radiation-induced deletions per metaphase}, -42\%; p < 0.001)$ was 10 also observed in the city school children, again significantly associated with DNA adduct levels. It 11 was not evident why higher environmental PAH exposure would be associated with lowered DNA 12 repair capacity. However, because the personal breathing zone PAH levels and DNA adduct levels 13 were not associated with each other, it is conceivable that the city school children had a priori 14 lower DNA repair capacities that contributed significantly to the high adduct levels. The authors 15 considered genetic differences between the two study populations as a possible reason for this 16 observation. **D.3.3.** Epidemiologic Findings in Humans

17

18 The association between human cancer and contact with PAH-containing substances, such 19 as soot, coal tar, and pitch, has been widely recognized since the early 1900s (Boström et al., 2002). 20 Although numerous epidemiology studies establish an unequivocal association between PAH 21 exposure and human cancer, defining the causative role for benzo[a]pyrene and other specific PAHs 22 remains a challenge. In essentially all reported studies, either the benzo[a]pyrene exposure and/or 23 internal dose are not known, or the benzo[a]pyrene carcinogenic effect cannot be distinguished 24 from the effects of other PAH and non-PAH carcinogens. Nevertheless, three types of investigations 25 provide support for the involvement of benzo[a]pyrene in some human cancers: molecular 26 epidemiology studies; population- and hospital-based, case-control studies; and occupational 27 cohort studies. In some cohort studies, benzo[a]pyrene exposure concentrations were measured 28 and thus provide a means to link exposure intensity with observed cancer rates. In case-control 29 studies, by their nature, benzo[a]pyrene and total PAH doses can only be estimated.

30 Molecular Epidemiology and Case-Control Cancer Studies

31 Defective DNA repair capacity leading to genomic instability and, ultimately, increased 32 cancer risk is well documented (<u>Wu et al., 2007; Wu et al., 2005</u>). Moreover, sensitivity to mutagen-33 induced DNA damage is highly heritable and thus represents an important factor that determines 34 individual cancer susceptibility. Based on studies comparing monozygotic and dizygotic twins, the 35 genetic contribution to BPDE mutagenic sensitivity was estimated to be 48.0% (Wu et al., 2007). 36 BPDE has been used as an etiologically relevant mutagen in case-control studies to examine the 37 association between elevated lung and bladder cancer risk and individual sensitivity to BPDE-

induced DNA damage. Mutagen sensitivity is determined by quantifying chromatid breaks or DNA
 adducts in phytohemagglutinin-stimulated peripheral blood lymphocytes as an indirect measure of

3 DNA repair capacity.

4 In a hospital-based, case-control study involving 221 lung cancer cases and 229 healthy 5 controls, DNA adducts were measured in stimulated peripheral blood lymphocytes after incubation 6 with BPDE in vitro (Li et al., 2001). Lung cancer cases showed consistent statistically significant 7 elevations in induced BPDE-DNA adducts in lymphocytes, compared with controls, regardless of 8 subgroup by age, sex, ethnicity, smoking history, weight loss, or family history of cancer. The 9 lymphocyte BPDE-induced DNA adduct levels, when grouped by quartile using the levels in controls 10 as cutoff points, were significantly dose-related with lung cancer risk (ORs 1.11, 1.62, and 3.23; 11 trend test, p < 0.001). In a related hospital-based, case-control study involving 155 lung cancer 12 patients and 153 healthy controls, stimulated peripheral blood lymphocytes were exposed to BPDE 13 in vitro (Wu et al., 2005). DNA damage/repair was evaluated in lymphocytes using the comet assay, 14 and impacts on cell cycle checkpoints were measured using a fluorescence-activated cell-sorting 15 method. The lung cancer cases exhibited significantly higher levels of BPDE-induced DNA damage 16 than the controls (p < 0.001), with lung cancer risk positively associated with increasing levels of

17 lymphocyte DNA damage when grouped in quartiles (trend test, *p* < 0.001). In addition, lung cancer

- 18 patients demonstrated significantly shorter cell cycle delays in response to BPDE exposure to
- 19 lymphocytes, which correlated with increased DNA damage.

20 Sensitivity to BPDE-induced DNA damage in bladder cancer patients supports the results 21 observed in lung cancer cases. In a hospital-based, case-control study involving 203 bladder cancer 22 patients and 198 healthy controls, BPDE-induced DNA damage was specifically evaluated at the 23 chromosome 9p21 locus in stimulated peripheral blood lymphocytes (Gu et al., 2008). Deletions of 24 9p21, which includes critical components of cell cycle control pathways, are associated with a 25 variety of cancers. After adjusting for age, sex, ethnicity, and smoking status, individuals with high 26 BPDE-induced damage at 9p21 were significantly associated with increased bladder cancer risk 27 (OR 5.28; 95% CI 3.26–8.59). Categorization of patients into tertiles for BPDE sensitivity relative to 28 controls demonstrated a dose-related association between BPDE-induced 9p21 damage and 29 bladder cancer risk. Collectively, the results of molecular epidemiology studies with lung and 30 bladder cancer patients indicate that individuals with a defective ability to repair BPDE-DNA 31 adducts are at increased risk for cancer and, moreover, that specific genes linked to tumorigenesis 32 pathways may be molecular targets for benzo[a]pyrene and other carcinogens. 33 Due to the importance of the diet as a benzo[a]pyrene exposure source, several population-

and hospital-based, case-control studies have investigated the implied association between dietary
intake of benzo[a]pyrene and risk for several tumor types. In a study involving 193 pancreatic
cancer cases and 674 controls (Anderson et al., 2005), another involving 626 pancreatic cancer
cases and 530 controls (Li et al., 2007), and a third involving 146 colorectal adenoma cases and

38 228 controls (<u>Sinha et al., 2005</u>), dietary intake of benzo[a]pyrene was estimated using food

- 1 frequency questionnaires. In all studies, the primary focus was on estimated intake of
- 2 benzo[a]pyrene (and other carcinogens) derived from cooked meat. Overall, cases when compared
- 3 with controls, had higher intakes of benzo[a]pyrene and other food carcinogens, leading to the
- 4 conclusion that benzo[a]pyrene plays a role in the etiology of these tumors in humans. In a
- 5 supportive follow-up case-control study of colorectal adenomas, levels of leukocyte PAH-DNA
- 6 adducts were significantly higher in cases when compared with controls (p = 0.02), using a method
- 7 that recognizes BPDE and several other PAHs bound to DNA (<u>Gunter et al., 2007</u>).

8 Cohort Cancer Studies

- 9 Epidemiologic studies of workers in PAH-related occupations indicate increased human
- 10 cancer risks associated with iron and steel production, roofing, carbon black production, and
- 11 exposure to diesel exhaust (<u>Bosetti et al., 2007</u>). Exposure to benzo[a]pyrene is only one of
- 12 numerous contributors to the cancer risk from complex PAH-containing mixtures that occur in the
- 13 workplace. Although some occupational cohort studies report measured or estimated inhalation
- 14 exposure concentrations for benzo[a]pyrene, none report biomarkers of internal benzo[a]pyrene
- dose in study subjects (reviewed in <u>Bosetti et al., 2007; Armstrong et al., 2004</u>). Several of these
- 16 cohort studies (summarized below) demonstrate a positive exposure-response relationship with
- 17 cumulative PAH exposure using benzo[a]pyrene—or a proxy such as benzene-soluble matter (BSM)
- 18 that can be converted to benzo[a]pyrene—as an indicator substance. These studies provide insight
- 19 and support for the causative role of benzo[a]pyrene in human cancer.
- 20 <u>Cancer incidence in aluminum and electrode production plants</u>
- Exposure to benzo[a]pyrene and BSM in aluminum smelter workers is strongly associated
 with bladder cancer and weakly associated with lung cancer (Boffetta et al., 1997; Tremblay et al.,
 1995; Armstrong et al., 1994; Gibbs, 1985; Theriault et al., 1984). In an analysis of pooled data from
- nine cohorts of aluminum production workers, 688 respiratory tract cancer cases were observed
- versus 674.1 expected (pooled RR 1.03; CI 0.96–1.11) (Bosetti et al., 2007). A total of 196 bladder
- cancer cases were observed in eight of the cohorts, compared with 155.7 expected (pooled RR 1.29;
- CI 1.12–1.49). Based on estimated airborne benzo[a]pyrene exposures from a meta-analysis of
- eight cohort studies, the predicted lung cancer RR per 100 μ g/m³-years of cumulative
- 29 benzo[a]pyrene exposure was 1.16 (95% CI 1.05–1.28) (<u>Armstrong et al., 2004</u>).
- Spinelli et al. (2006) reported a 14-year update to a previously published historical cohort
 study (Spinelli et al., 1991) of Canadian aluminum reduction plant workers. The results confirmed
- 32 and extended the findings from the earlier epidemiology study. The study surveyed a total of
- 33 6,423 workers with ≥ 3 years of employment at an aluminum reduction plant in British Columbia,
- Canada, between the years 1954 and 1997, and evaluated all types of cancers. The focus was on
- 35 cumulative exposure to coal tar pitch volatiles, measured as BSM and as benzo[a]pyrene.
- 36 Benzo[a]pyrene exposure categories were determined from the range of predicted exposures over
- 37 time from statistical exposure models. There were 662 cancer cases, of which approximately 98%

- 1 had confirmed diagnoses. The overall cancer mortality rate (SMR 0.97; CI 0.87–1.08) and cancer
- 2 incidence rate (standardized incidence ratio [SIR] 1.00; CI 0.92–1.08) were not different from that
- 3 of the British Columbia general population. However, this study identified significantly increased
- 4 incidence rates for cancers of the bladder (SIR 1.80; CI 1.45–2.21) and stomach (SIR 1.46; CI
- 5 1.01–2.04). The lung cancer incidence rate was only slightly higher than expected (SIR 1.10; CI
- 6 0.93–1.30). Significant dose-response associations with cumulative benzo[a]pyrene exposure were
- 7 seen for bladder cancer (p < 0.001), stomach cancer (p < 0.05), lung cancer (p < 0.001), non-
- 8 Hodgkin lymphoma (p < 0.001), and kidney cancer (p < 0.01), although the overall incidence rates
- 9 for the latter three cancer types were not significantly elevated versus the general population.
- 10 Similar cancer risk results were obtained using BSM as the exposure measure; the cumulative
- 11 benzo[a]pyrene and BSM exposures were highly correlated (r = 0.94).
- 12 In several occupational cohort studies of workers in Norwegian aluminum production13 plants, personal and stationary airborne PAH measurements were performed.
- 14 In a study covering 11,103 workers and 272,554 person × years of PAH exposure, cancer
- 15 incidence was evaluated in six Norwegian aluminum smelters (<u>Romundstad et al., 2000a</u>) and
- 16 (<u>Romundstad et al., 2000b</u>). Reported estimates of PAH exposure concentrations reached a
- 17 maximum of 3,400 μg/m³ PAH (680 μg/m³ benzo[a]pyrene). The overall number of cancers
- 18 observed in this study did not differ significantly from control values (SIR 1.03; CI 1.0–1.1). The
- 19 data from this study showed significantly increased incidences for cancer of the bladder (SIR 1.3;
- 20 CI 1.1–1.5) and elevated, but not significant, SIRs for larynx (SIR 1.3; CI 0.8–1.9), thyroid (SIR 1.4;
- 21 CI 0.7–2.5), and multiple myeloma (SIR 1.4; CI 0.9–1.9). Incidence rates for bladder, lung, pancreas,
- and kidney cancer (the latter three with SIRs close to unity) were subjected to a cumulative
- 23 exposure-response analysis. The incidence rate for bladder cancer showed a trend with increasing
- 24 cumulative exposure and with increasing lag times (up to 30 years) at the highest exposure level.
- 25 The incidence of both lung and bladder cancers was greatly increased in smokers. The authors
- 26 reported that using local county rates rather than national cancer incidence rates as controls
- increased the SIR for lung cancer (SIR 1.4; CI 1.2–1.6) to a statistically significant level.
- 28 <u>Cancer incidence in coke oven, coal gasification, and iron and steel foundry workers</u>
- An increased risk of death from lung and bladder cancer is reported in some studies
 involving coke oven, coal gasification, and iron and steel foundry workers (Boström et al., 2002;
- 31 <u>Boffetta et al., 1997</u>). An especially consistent risk of lung cancer across occupations is noted when
- 32 cumulative exposure is taken into consideration (e.g., RR of 1.16 per 100 unity-years for aluminum
- 33 smelter workers, 1.17 for coke oven workers, and 1.15 for coal gasification workers). In an analysis
- 34 of pooled data from 10 cohorts of coke production workers, 762 lung cancer cases were observed
- versus 512.1 expected (pooled RR 1.58; CI 1.47–1.69) (<u>Bosetti et al., 2007</u>). Significant variations in
- 36 risk estimates among the studies were reported, particularly in the large cohorts (RRs of 1.1, 1.2,
- 2.0, and 2.6). There was no evidence for increased bladder cancer risk in the coke production
- 38 workers. Based on estimated airborne benzo[a]pyrene exposures from a meta-analysis of

1 10 cohort studies, the predicted lung cancer RR per 100 μ g/m³-years of cumulative benzo[a]pyrene 2 exposure was 1.17 (95% CI 1.12–1.22) (Armstrong et al., 2004). 3 A meta-analysis of data from five cohorts of gasification workers reported 251 deaths from 4 respiratory tract cancer. compared with 104.7 expected (pooled RR 2.58; 95% CI 2.28–2.92) 5 (Bosetti et al., 2007). Pooled data from three of the cohorts indicated 18 deaths from urinary tract 6 cancers, versus 6.0 expected (pooled RR 3.27; 95% CI 2.06–5.19). Based on estimated airborne 7 benzo[a]pyrene exposures from a meta-analysis of four gas worker cohort studies, the predicted 8 lung cancer RR per 100 μ g/m³-years of cumulative benzo[a]pyrene exposure was 1.15 (95% CI 9 1.11–1.20) (<u>Armstrong et al., 2004</u>). 10 Increased risks were reported in iron and steel foundry workers for cancers of the 11 respiratory tract, bladder, and kidney. In an analysis of pooled data from 10 cohorts, 12 1,004 respiratory tract cancer cases were observed versus 726.0 expected (pooled RR 1.40; 13 CI 1.31–1.49) (Bosetti et al., 2007). A total of 99 bladder cancer cases were observed in seven of the 14 cohorts, compared with 83.0 expected (pooled RR 1.29; CI 1.06–1.57). For kidney cancer, 40 cases 15 were observed compared with 31.0 expected based on four studies (pooled RR 1.30; 95% CI 16 0.95 - 1.77). 17 Xu et al. (1996) conducted a nested case-control study, surveying the cancer incidence 18 among 196,993 active or retired workers from the Anshan Chinese iron and steel production 19 complex. A large number of historical benzo[a]pyrene measurements (1956–1995) were available. 20 The study included 610 cases of lung cancer and 292 cases of stomach cancer, with 959 age- and 21 gender-matched controls from the workforce. After adjusting for nonoccupational risk factors such 22 as smoking and diet, significantly elevated risks for lung cancer and stomach cancer were identified 23 for subjects employed for \geq 15 years, with ORs varying among job categories. For either type of 24 cancer, highest risks were seen among coke oven workers: lung cancer, OR = 3.4 (CI 1.4–8.5) and 25 stomach cancer, OR = 5.4 (CI 1.8–16.0). 26 There were significant trends for long-term, cumulative benzo[a]pyrene exposure versus 27 lung cancer (p = 0.004) or stomach cancer (p = 0.016) incidence. For cumulative total 28 benzo[a]pyrene exposures of <0.84, 0.85–1.96, 1.97–3.2, and \geq 3.2 µg/m³-year, the ORs for lung 29 cancer were 1.1 (CI 0.8–1.7), 1.6 (CI 1.2–2.3), 1.6 (1.1–2.3), and 1.8 (CI 1.2–2.5), respectively. For 30 cumulative total benzo[a]pyrene exposures of <0.84, 0.85–1.96, 1.97–3.2, and \geq 3.2 µg/m³-year, the 31 ORs for stomach cancer were 0.9 (CI 0.5–1.5), 1.7 (CI 1.1–2.6), 1.3 (0.8–2.1), and 1.7 (CI 1.1–2.7), 32 respectively. However, the investigators noted that additional workplace air contaminants were 33 measured, which might have influenced the outcome. Of these, asbestos, silica, quartz, and iron 34 oxide-containing dusts may have been confounders. For lung cancers, cumulative exposures to 35 total dust and silica dust both showed significant dose-response trends (p = 0.001 and 0.007, 36 respectively), while for stomach cancer, only cumulative total dust exposure showed a marginally 37 significant trend (p = 0.061). For cumulative total dust exposures of <69, 69–279, 280–882, and 38 \geq 883 mg/m³, the ORs for lung cancer were 1.4 (CI 1.2–1.9), 1.2 (CI 1.0–2.19), 1.4 (CI 1.0–2.0), and

- 1 1.9 (CI 1.3–2.5), respectively. For cumulative silica dust exposures of <3.7, 3.7–10.39, 10.4–27.71, 2 and $\geq 27.72 \text{ mg/m}^3$, the ORs for lung cancer were 1.7 (CI 1.2–2.4), 1.5 (CI 1.0–2.1), 1.5 (CI 1.0–2.1), 3 and 1.8 (CI 1.2–2.5), respectively. For cumulative total dust exposures of <69, 69–279, 280–882, 4 and \geq 883 mg/m³, ORs for stomach cancer were 1.3 (CI 0.8–2.1), 14 (CI 0.9–2.2), 12 (CI 0.8–1.9), 5 and 1.6 (CI 1.1-2.5), respectively. 6 Exposure-response data from studies of coke oven workers in the United States have often 7 been used to derive quantitative risk estimates for PAH mixtures, and for benzo[a]pyrene as an 8 indicator substance (Boström et al., 2002). However, there are numerous studies of coke oven 9 worker cohorts that do not provide estimates of benzo[a]pyrene exposure. An overview of the 10 results of these and other studies can be obtained from the review of Boffetta et al. (1997). 11 <u>Cancer incidence in asphalt workers and roofers</u> 12 These groups encompass different types of work (asphalt paving versus roofing) and also 13 different types of historical exposure that have changed from using PAH-rich coal tar pitch to the 14 use of bitumen or asphalt, both of which are rather low in PAHs due to their source (crude oil 15 refinery) and a special purification process. Increased risks for lung cancer were reported in large 16 cohorts of asphalt workers and roofers; evidence for increased bladder cancer risk is weak 17 (Burstyn et al., 2007; Partanen and Boffetta, 1994; Chiazze et al., 1991; Hansen, 1991, 1989; 18 Hammond et al., 1976). In an analysis of pooled data from two cohorts of asphalt workers, 822 lung 19 cancer cases were observed versus 730.7 expected (pooled RR 1.14; 95% CI 1.07–1.22) (Bosetti et 20 al., 2007). In two cohorts of roofers, analysis of pooled data indicated that 138 lung cancer cases 21 were observed, compared with 91.9 expected (pooled RR 1.51; 95% CI 1.28-1.78) (Bosetti et al., 22 <u>2007</u>).
- 23 Epidemiology of patients treated with coal tar containing ointments
- 24 In addition to cohorts of workers occupationally exposed to PAH mixtures, another source
- of potential exposure to benzo[a]pyrene is through topical coal tar formulations used for the
- 26 treatment of psoriasis, eczema, and dermatitis. Epidemiological studies examining skin cancer risk
- in relation to various types of topical coal tar exposure are summarized below (see Table D-6); case
- 28 reports, reviews, and studies that did not include a measure of coal tar use (e.g., Alderson and
- 29 <u>Clarke, 1983</u>) are not included.

Table D-6. Studies examining skin cancer risk in relation to therapeutic coal tar

Reference and study details	Results					
General population studies						
Mitropoulos and Norman (2005) (United	Squamou	s cell carcinor	ma (SCC), coal tar/dandr	uff shampoo use:		
States, Arizona)						
	Cases n	Controls	OR ^a	OR ^b		
Case-control study (Southeastern Arizona	(%)	n (%)	(95% CI)	(95% CI)		
Health Study-2), population-based; n = 404	101 (25)	73 (19)	1.50 (1.05, 2.14)	1.28 (0.85, 1.9)		
squamous cell skin cancer cases, 395	101 (23)	, 3 (13)	1.00 (1.00) 2.11 ()	1.20 (0.00) 1.0)		
controls, 1992–1996, age ≥30 yrs; controls	^a Adiusted	for age and g	zender.			
selected using random digit dialing			der, actinic keratosis, cu	rrent number of		
(frequency matched by 5-yr age group and	arm frec	kles, and read	tion of skin to prolonge	d sun.		
gender); limited to whites; details regarding			1 0			
participation rates not reported						
Exposure: Interview, focusing on						
occupational and other sources of sun						
exposure, chemical exposures, and coal						
tar/dandruff shampoo						
Outcome: Incident squamous cell cancer						
from regional skin cancer registry						
Studies of patients with skin conditions						
Roelofzen et al. (2010) (Netherlands)	Skin canc	er (excluding	basal cell carcinoma); in	cludes melanoma		
	and squar	mous cell [nui	mber of cases = 145]			
Cohort (retrospective); total n = 13,200	HR (95% (CI) for use of a	coal tar; referent catego	ry = only used		
(4,315 psoriasis 8,885 eczema patients),	dermatoo	orticosteroid	s:			
identified through hospital records	Psoriasis		1.08 (0.43,			
(manual). Diagnosed 1960–1990 (≥3 visits	Eczema		1.06 (0.62,			
to dermatologist); median age 28 yrs;	Psoriasis	or	1.09 (0.69,	1.72)		
follow-up through 2003 (median follow-up	eczema					
21 yrs)	-		nodels, adjusted for age			
5 0 h · · · · · / ·	-		of body area affected),			
Exposure: Coal tar treatment (pix		-	alendar period, psoralen			
lithantracis and/or liquor carbonis			oy, and smoking (curren			
detergens): 8,062 (39%); duration of use			skin type, history of sur			
obtained from 1,100 users (14%), median = 6 mo		onsumption.	Smoking data imputed f	or 58% of the		
8110	cohort.					
Outcome: Skin cancer diagnosis from						
national cancer registry (operating since						
1989) and cause of death registries, with						
some supplemental questionnaire data						
from 61% of the cohort						
<u>Torinuki and Tagami (1988)</u> (Japan)	No skin ca	ancers observ	ed			
Cohort (prospective); total n = 151 psoriasis						
patients including 43 treated with						
Goeckerman regimen without PUVA						
treatment, mean age 43 yrs; patients						

Reference and study details	Results				
Coal tar use in studies with combined treatme					
(Stern et al. (1998); Stern and Laird (1994)) (United States, 16 centers)	From 1996 follow-up (lin	mited to first occurrence 1986–1996):			
Cohort (prospective); total n = 1,380 psoriasis patients, enrolled between 1975 and 1976 in the PUVA cohort study; mean age 44 yrs; follow-up at 12–15-mo intervals through 1996 (approximately 20 years); 1,049 (91%) patients interviewed at final follow-up Exposure: Non-PUVA treatments (including topical coal tar, ultraviolet B, methotrexate, and ionizing radiation) were collected at start of PUVA treatment and during follow- up; coal tar use was noted to be highly correlated with UVB therapy and thus reported as a single parameter; 'high use' defined as >45 mo topical tar therapy or	UVB/tar, adjusted for ag (head and neck, other), categories from <100 to	OR (95% CI) [n cases] 1.4 (1.0, 2.0) [1,047] 1.5 (1.1, 2.0) [821] osure to UVB/tar to 'low' exposure to ge, sex, geographic area, anatomic site PUVA treatments through 1985 (five 0>336), PUVA treatments after 1985 (≥50, 08 weeks, <208 weeks), and Grenz rays or /never)			
 >300 UVB treatments Outcome: Skin cancer diagnosis reported at follow-up, confirmed by histopathology <u>Stern et al. (1980)</u> (United States, 16 centers) Nested case-control study based on a study following 1,373 PUVA-treated patients (34 incident cases, 24 prevalent cases; 126 controls); matched by age (within 5 yrs), sex, skin type, geographic area, and ionizing radiation; incident cases also matched for number of PUVA treatments; average follow-up 2.7 yrs Exposure: Exposure to coal tar therapy and/or ultraviolet radiation based on follow-up interview; includes exposures before PUVA trial began; coal tar use quantified as number of months in which crude coal tar preparations was used at least weekly; high coal tar exposure defined as > 90 mo of use; high ultraviolet radiation exposure defined as ≥300 sunlamp treatments. Assumption made that coal tar and ultraviolet radiation have the same quantitative effect on risk of skin cancer Outcome: Skin cancer, prevalent cases occurred during follow-up period 	high exposure (≥90 mo	rer (skin cancer type not specified) among of tar use or ≥300 sunlamp treatments) Matched analysis: 4.7 (2.2, 10.0) 5.6 (1.9, 16.2) 3.8 (1.2, 12.5)			

Reference and study details		Resu	ults
Lindelöf and Sigurgeirsson (1993) (Sweden)	SCC with co	oal tar usage:	
Nested case-control study based on a study	Cases	Controls	
following 4,799 PUVA-treated patients (24	n (%)	n (%)	OR (95% CI)
cases, 96 controls); matched by gender,	17 (70)	62 (64)	1.3 (0.5, 3.5)
age, diagnosis, PUVA dose, number of	(Similar res	ults were seen for UVE	3 exposure [OR 1.3, 95% Cl 0.5,
treatments, type of psoralen regimen, site	3.5], reflec	ting the high correlatio	n between these treatments)
of treatment, and skin type; clinic location			
matching utilized when possible; mean age			
52 yrs			
Exposure: Non-PUVA treatments (including			
tar, topical corticosteroids, UVB, and			
anthralin) collected by questionnaire;			
exposure not quantified and duration not			
provided			
Outcome: Skin cancer diagnosis obtained			
from Swedish cancer registry			

1

2 The U.S. Environmental Protection Agency (EPA) noted several limitations with respect to 3 study design and analysis in this literature, precluding the ability to provide a foundation for 4 evaluating the potential association between use of therapeutic coal tar treatment (particularly 5 long-term treatment) and risk of skin cancer. A primary limitation concerns the quality of the 6 exposure assessment. Only one population-based, case-control study was identified (Mitropoulos 7 and Norman, 2005); this study examined self-reported use of coal tar/dandruff shampoo and 8 incidence of squamous cell cancer in a population in Arizona (adjusted OR 1.28, 95% CI 0.85, 1.9). 9 This exposure measure is likely to be highly susceptible to misclassification bias. EPA considered 10 the likelihood of non-differential misclassification to be high; differential misclassification was also 11 considered to be possible, but of lower likelihood. Non-differential misclassification would arise 12 from lack of awareness of the content of shampoos, inability to recall use of individual shampoos, 13 and the lack of specificity of this particular question. Differential misclassification would arise from 14 differential reporting based on disease status. EPA noted similar concerns regarding exposure 15 quality in the nested case-control study conducted among patients receiving psoralen plus 16 ultraviolet-A (PUVA) treatment (in addition to a variety of other treatments, including coal tar 17 treatments and ultraviolet –B [UVB]) by Lindelöf and Sigurgeirsson (1993). Use of coal tar was 18 collected through a mailed questionnaire, with no information on duration of use and no 19 verification with medical records. A large study of psoriasis and eczema patients 20 (n = 13,200 patients) by Roelofzen et al. (2010) with a 21-year follow-up period obtained data on 21 coal tar treatment through manual chart review; this chart review was conducted in 2003 on 22 medical records going back to 1960. Duration of use (median 6 months) was available for only 14% 23 of the patients who had an indication of use. Thus, considerable non-differential misclassification 24 of exposure (coal tar use) is likely, and the limited exposure data did not allow examination of 25 variation in exposure level. Misclassification of disease was also noted to be a limitation of this 26 study in that Roelofzen et al. (2010) included melanoma, in addition to squamous cell skin cancer,

> This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

which introduces a lack of specificity of outcome into the analysis as melanoma is not thought to be
 associated with PAH exposure. Given these issues of exposure and disease misclassification, the
 RRs from these studies do not provide a sound basis for interpretation as no risk, and would be
 expected to diminish effect estimates.

5 A common regimen for treatment of psoriasis and other skin conditions combines coal tar 6 treatment with UVB radiation (referred to as the Goeckerman regimen). One study of this regimen 7 was very small (n = 43 patients) with only 5 of the patients followed for more than 6 years 8 (Torinuki and Tagami, 1988). Two larger Goeckerman treatment studies (280–426 patients) had a 9 longer follow-up period (25 years), but were limited in terms of the choice of referent rates and 10 differences in disease ascertainment between cases and the reference population (Pittelkow et al., 11 <u>1981; Maughan et al., 1980</u>). Specifically, dermatology patients were seen at the Mayo Clinic in 12 Rochester, Minnesota, but the reference rates for cancer were obtained from survey data from 13 Minneapolis-St Paul, San Francisco-Oakland, Iowa, and Dallas-Fort Worth. Therefore, it is unclear 14 whether the reference population appropriately represents the case population. In addition, this 15 combination of UVB and coal tar makes it impossible to attribute risk to either individual 16 component. This limitation effects the interpretation of the results of the PUVA trial studies (Stern 17 et al., 1998; Stern and Laird, 1994; Stern et al., 1980), in which the analysis was conducted using a 18 definition of "high" exposure as >4 months of topical tar therapy or >300 UVB treatments. 19 Similarly, the study by (Lindelöf and Sigurgeirsson (1993)) reported similar prevalence and risk 20 estimates for coal tar use and for UVB, reflecting the high correlation between these treatments. 21 In summary, the available studies examining therapeutic topical coal tar use and risk of skin 22 cancer were limited by low-quality exposure data with high potential of exposure misclassification 23 (e.g., Roelofzen et al., 2010; Mitropoulos and Norman, 2005; Lindelöf and Sigurgeirsson, 1993), 24 small size and short duration of follow-up (e.g., Torinuki and Tagami, 1988), and choice of referent 25 rates and differences in disease ascertainment between cases and the reference population (e.g., Pittelkow et al., 1981; Maughan et al., 1980). In addition, clinic-based studies focused on the 26 27 commonly used regimen of coal tar in conjunction with UVB therapy cannot distinguish effects of 28 coal tar from the carcinogenic effects of UVB (e.g., Stern et al., 1998; Stern and Laird, 1994; Lindelöf 29 and Sigurgeirsson, 1993; Stern et al., 1980). Therefore, the available studies do not provide an 30 adequate basis for examining the potential association between coal tar treated patients and skin 31 cancer.

32 D.4. ANIMAL STUDIES

33 D.4.1. Oral Bioassays

34 Subchronic Studies

35 <u>De Jong et al. (1999)</u> treated male Wistar rats (eight/dose group) with benzo[a]pyrene
 36 (98.6% purity) dissolved in soybean oil by gavage 5 days/week for 35 days at doses of 0, 3, 10, 30,

1 or 90 mg/kg-day (adjusted doses: 0, 2.14, 7.14, 21.4, and 64.3 mg/kg-day). At the end of the

- 2 exposure period, rats were necropsied, organ weights were determined, and major organs and
- 3 tissues were prepared for histological examination (adrenals, brain, bone marrow, colon, caecum,
- 4 jejunum, heart, kidney, liver, lung, lymph nodes, esophagus, pituitary, spleen, stomach, testis, and
- 5 thymus). Blood was collected for examination of hematological endpoints, but there was no
- 6 indication that serum biochemical parameters were analyzed. Immune parameters included
- 7 determinations of serum immunoglobulin (Ig) levels (IgG, IgM, IgE, and IgA), relative spleen cell
- 8 distribution, and spontaneous cytotoxicity of spleen cell populations determined in a natural-killer
- 9 (NK) cell assay.

10 Body weight gain was decreased beginning at week 2 at the high dose of 90 mg/kg-day;

- 11 there was no effect at lower doses (<u>De Jong et al., 1999</u>). Hematology revealed a dose-related
- 12 decrease in RBC count, hemoglobin, and hematocrit at ≥ 10 mg/kg-day (Table D-7). A minimal but
- 13 significant increase in mean cell volume and a decrease in mean cell hemoglobin concentration
- 14 were noted at 90 mg/kg-day, and may indicate dose-related toxicity for the RBCs and/or RBC
- 15 precursors in the bone marrow. A decrease in WBCs, attributed to a decrease in the number of
- 16 lymphocytes (approximately 50%) and eosinophils (approximately 90%), was observed at
- 17 90 mg/kg-day; however, there was no effect on the number of neutrophils or monocytes. A
- 18 decrease in the cell number in the bone marrow observed in the 90 mg/kg-day dose group was
- 19 consistent with the observed decrease in the RBC and WBC counts at this dose level. In the
- 20 90 mg/kg-day dose group, brain, heart, kidney, and lymph node weights were decreased and liver
- 21 weight was increased (Table D-7). Decreases in heart weight at 3 mg/kg-day and in kidney weight
- at 3 and 30 mg/kg-day were also observed, but these changes did not show dose-dependent
- 23 responses. Dose-related decreases in thymus weight were statistically significant at
- 24 $\geq 10 \text{ mg/kg-day}$ (Table D-7).

25Table D-7. Exposure-related effects in male Wistar rats exposed to26benzo[a]pyrene by gavage 5 days/week for 5 weeks

	Dose (mg/kg-d)					
Effect	0	3	10	30	90	
Hematologic effects (mean ± SD; n = 7–8) WBCs (10 ⁹ /L) RBCs (10 ⁹ /L) Hemoglobin (mmol/L) Hematocrit (L/L)	$14.96 \pm 1.9 \\ 8.7 \pm 0.2 \\ 10.5 \pm 0.2 \\ 0.5 \pm 0.01$	$13.84 \pm 3.0 \\ 8.6 \pm 0.2 \\ 10.4 \pm 0.3 \\ 0.5 \pm 0.01$	$13.69 \pm 1.8 \\ 8.3 \pm 0.2^* \\ 9.8 \pm 0.2^* \\ 0.47 \pm 0.01^*$	13.58 ± 2.9 7.8 ± 0.4* 9.5 ± 0.4* 0.46 ± 0.02*	8.53 ± 1.1* 7.1 ± 0.4* 8.6 ± 0.6* 0.43 ± 0.02*	
Serum Ig levels (mean ± SD; n = 7–8) IgM IgG IgA	100 ± 13 100 ± 40 100 ± 28	87 ± 16 141 ± 106 73 ± 29	86 ± 31 104 ± 28 78 ± 67	67 ± 16* 106 ± 19 72 ± 22	81 ± 26 99 ± 29 39 ± 19*	

This document is a draft for review purposes only and does not constitute Agency policy. D-39 DRAFT—DO NOT CITE OR QUOTE

	Dose (mg/kg-d)				
Effect	0	3	10	30	90
IgE	100 ± 65	50 ± 20	228 ± 351	145 ± 176	75 ± 55
<i>Cellularity (mean ± SD; n = 7–8)</i> Spleen (cell number × 10 ⁷) Bone marrow (G/L)	59 ± 15 31 ± 7	71 ± 14 36 ± 5	59 ± 13 31 ± 8	63 ± 10 27 ± 8	41 ± 10* 19 ± 4*
Spleen cell distribution (%) B cells T cells Th cells Ts cells	39± 4 40 ± 9 23 ± 7 24 ± 5	36 ± 2 48 ± 12 26 ± 7 26 ± 6	34 ± 3* 40 ± 9 24 ± 5 24 ± 7	32 ± 4* 36 ± 2 22 ± 4 19 ± 2	23 ± 4* 44 ± 6 26 ± 4 27 ± 5
Body (g) and organ (mg) weights (means; n = 7-8) Body weight Brain Heart Kidney Liver Thymus Spleen Mandibular lymph nodes Mesenteric lymph nodes Popliteal lymph nodes	305 1,858 1,030 1,986 10,565 517 ± 47 551 152 165 19	282* 1,864 934* 1,761* 9,567 472 ± 90 590 123 148 18	$300 \\ 1,859 \\ 1,000 \\ 1,899 \\ 11,250 \\ 438 \pm 64^* \\ 538 \\ 160 \\ 130^* \\ 19$	293 1,784 967 1,790* 11,118 388 ± 71* 596 141 158 17	250* 1,743* 863* 1,626* 12,107* 198 ± 65* 505 89* 107* 10*
Thymus cortex surface area (% of total surface area of thymus; mean ± SD; n = 6–8)	77.9 ± 3.8	74.4 ± 2.2	79.2 ± 5.9	75.8 ± 4.0	68.9 ± 5.2*

7

8

*Significantly (*p* < 0.05) different from control mean. For body weight and organ weight means, SDs were only reported for thymus weights.

Source: <u>De Jong et al. (1999)</u>.

Statistically significant reductions were also observed in the relative cortex surface area of the thymus and thymic medullar weight at 90 mg/kg-day, but there was no difference in cell

9 proliferation between treated and control animals using the proliferating cell nuclear antigen
10 (PCNA) technique. Changes in the following immune parameters were noted: dose-related and

11 statistically significant decrease in the relative number of B cells in the spleen at 10 (13%),

12 30 (18%), and 90 mg/kg-day (41%); significant decreases in absolute number of cells harvested in

13 the spleen (31%), in the number of B cells in the spleen (61%), and NK cell activity in the spleen

14 (E:T ratio was 40.9 ± 28.4% that of the controls) at 90 mg/kg-day; and a decrease in serum IgM

15 (33%) and IgA (61%) in rats treated with 30 and 90 mg/kg-day, respectively. The decrease in the

spleen cell count was attributed by the study authors to the decreased B cells and suggested a

17 possible selective toxicity of benzo[a]pyrene to B cell precursors in the bone marrow. The study

18 authors considered the decrease in IgA and IgM to be due to impaired production of antibodies,

- 1 suggesting a role of thymus toxicity in the decreased (T-cell dependent) antibody production. In
- 2 addition to the effects on the thymus and spleen, histopathologic examination revealed treatment-
- 3 related lesions only in the liver and forestomach at the two highest dose levels, but the incidence
- 4 data for these lesions were not reported by <u>De Jong et al. (1999)</u>. Increased incidence for
- 5 forestomach basal cell hyperplasia (p < 0.05 by Fisher's exact test) was reported at 30 and
- 6 90 mg/kg-day, and increased incidence for oval cell hyperplasia in the liver was reported at
- 7 90 mg/kg-day (p < 0.01, Fisher's exact test). The results indicate that 3 mg/kg-day was a no-
- 8 observed-adverse-effect level (NOAEL) for effects on hematological parameters (decreased RBC
- 9 count, hemoglobin, and hematocrit) and immune parameters (decreased thymus weight and
- 10 percent of B cells in the spleen) noted in Wistar rats at 10 mg/kg-day (the lowest-observed-
- 11 adverse-effect level [LOAEL]) and above. Lesions of the liver (oval cell hyperplasia) and
- 12 forestomach (basal cell hyperplasia) occurred at doses \geq 30 mg/kg-day.
- 13 Knuckles et al. (2001) exposed male and female F344 rats (20/sex/dose group) to 14 benzo[a]pyrene (98% purity) at doses of 0, 5, 50, or 100 mg/kg-day in the diet for 90 days. Food 15 consumption and body weight were monitored, and the concentration of benzo[a]pyrene in the 16 food was adjusted every 3–4 days to maintain the target dose. The authors indicated that the actual 17 intake of benzo[a]pyrene by the rats was within 10% of the calculated intake, and the nominal doses were not corrected to actual doses. Hematology and serum chemistry parameters were 18 19 evaluated. Urinalysis was also performed. Animals were examined for gross pathology, and 20 histopathology was performed on selected organs (stomach, liver, kidney, testes, and ovaries). 21 Statistically significant decreases in RBC counts and hematocrit level (decreases as much as 10 and 22 12%, respectively) were observed in males at doses \geq 50 mg/kg-day and in females at 100 mg/kg-23 day. A maximum 12% decrease (statistically significant) in hemoglobin level was noted in both 24 sexes at 100 mg/kg-day. Blood chemistry analysis showed a significant increase in blood urea 25 nitrogen (BUN) only in high-dose (100 mg/kg-day) males. Histopathology examination revealed an 26 apparent increase in the incidence of abnormal tubular casts in the kidney in males at 5 mg/kg-day 27 (40%), 50 mg/kg-day (80%), and 100 mg/kg-day (100%), compared to 10% in the controls. Only 28 10% of the females showed significant kidney tubular changes at the two high-dose levels 29 compared to zero animals in the female control group. The casts were described as molds of distal 30 nephron lumen and were considered by the study authors to be indicative of renal dysfunction. 31 From this study, male F344 rats appeared to be affected more severely by benzo[a]pyrene 32 treatment than the female rats. However, the statistical significance of the kidney lesions is unclear. 33 Several reporting gaps and inconsistencies regarding the reporting of kidney abnormalities in 34 Knuckles et al. (2001) make interpretation of the results difficult. Results of histopathological 35 kidney abnormalities (characterized primarily as kidney casts) were presented graphically and the 36 data were not presented numerically in this report. No indication was given in the graph that any 37 groups were statistically different than controls, although visual examination of the magnitude of 38 response and error bars appears to indicate a fourfold increase in kidney casts in males compared

1 to the control group (40 compared to 10%). The figure legend reported the data as "percentage

- 2 incidence of abnormal kidney tissues" and reported values as mean ± SD. However, the text under
- 3 the materials and methods section stated that Fisher's exact test was used for histopathological
- 4 data, which would involve the pairwise comparison of incidence and not means. There are
- 5 additional internal inconsistencies in the data presented. The data appeared to indicate that
- 6 incidences for males were as follows: control, 10%; 5 mg/kg-day, 40%; 50 mg/kg-day, 80%; and
- 7 100 mg/kg-day, 100%; however, these incidences are inconsistent with the size of the study
- 8 groups, which were reported as 6–8 animals per group. The study authors were contacted, but did
- 9 not respond to EPA's request for clarification of study design and/or results. Due to issues of data
- 10 reporting, a LOAEL could not be established for the increased incidence of kidney lesions. Based on
- 11 the statistically significant hematological effects including decreases in RBC counts, hematocrit, and
- 12 BUN, the NOAEL in males was 5 mg/kg-day and the LOAEL was 50 mg/kg-day, based on in F344
- 13 rats. No exposure-related histological lesions were identified in the stomach, liver, testes, or
- 14 ovaries in this study.
- In a range-finding study, Wistar (specific pathogen-free Riv:TOX) rats (10/sex/dose group)
 were administered benzo[a]pyrene (97.7% purity) dissolved in soybean oil by gavage at dose levels
- 17 of 0, 1.5, 5, 15, or 50 mg/kg body weight-day, 5 days/week for 5 weeks (<u>Kroese et al., 2001</u>).
- 18 Behavior, clinical symptoms, body weight, and food and water consumption were monitored. None
- 19 of the animals died during the treatment period. Animals were sacrificed 24 hours after the last
- 20 dose. Urine and blood were collected for standard urinalysis and hematology and clinical chemistry
- evaluation. Liver enzyme induction was monitored based on EROD activity in plasma. Animals
- 22 were subjected to macroscopic examination, and organ weights were recorded. The esophagus,
- 23 stomach, duodenum, liver, kidneys, spleen, thymus, lung, and mammary gland (females only) from
- 24 the highest-dose and control animals were evaluated for histopathology. Intermediate-dose groups
- 25 were examined if abnormalities were observed in the higher-dose groups.
- A significant, but not dose-dependent, increase in food consumption in males at
 ≥1.5 mg/kg-day and a decrease in food consumption in females at ≥5 mg/kg-day was observed
- 28 (<u>Kroese et al., 2001</u>). Water consumption was statistically significantly altered in males only: a
- decrease at 1.5, 5, and 15 mg/kg-day and an increase at 50 mg/kg-day. Organ weights of lung,
- 30 spleen, kidneys, adrenals, and ovaries were not affected by treatment. There was a dose-related,
- 31 statistically significant decrease in thymus weight in males at 15 and 50 mg/kg-day (decreased by
- 32 28 and 33%, respectively) and a significant decrease in thymus weight in females at 50 mg/kg-day
- 33 (decreased by 17%) (Table D-8). In both sexes, liver weight was statistically significantly increased
- only at 50 mg/kg-day by about 18% (Table D-8).

	Dose (mg/kg-d)					
Organ	0	1.5	5	15	50	
Liver weight (g; mean ± SD) Males Females	6.10 ± 0.26 4.28 ± 0.11	6.19 ± 0.19 4.40 ± 0.73	6.13 ± 0.10 4.37 ± 0.11	6.30 ± 0.14 4.67 ± 0.17	7.20 ± 0.18* 5.03 ± 0.15*	
Thymus weight (mg; mean ± SD) Males Females	471 ± 19 326 ± 12	434 ± 20 367 ± 23	418 ± 26 351 ± 25	342 ± 20* 317 ± 30	317 ± 21* 271 ± 16*	
Basal cell hyperplasia of the forestomach (incidence with slight severity) Males Females	1/10 0/10	1/10 1/10	4/10 1/10	3/10 3/10*	7/10 7/10*	

Table D-8. Exposure-related effects in Wistar rats exposed to benzo[a]pyrene by gavage 5 days/week for 5 weeks

7

1

2

*Significantly (p < 0.05) different from control mean; n = 10/sex/group.

Source: Kroese et al. (2001).

8 Hematological evaluation revealed only statistically nonsignificant, small, dose-related 9 decreases in hemoglobin in both sexes and RBC counts in males. Clinical chemistry analysis 10 showed a small, but statistically significant, increase in creatinine levels in males only at 11 1.5 mg/kg-day, but this effect was not dose-dependent. A dose-dependent induction of liver 12 microsomal EROD activity was observed, with a 5-fold induction at 1.5 mg/kg-day compared to 13 controls, reaching 36-fold in males at 50 mg/kg-day; the fold induction in females at the top dose 14 was less than in males. At necropsy, significant, dose-dependent macroscopic findings were not 15 observed. 16 Histopathology examination revealed a statistically significant increase in basal cell 17 hyperplasia in the forestomach of females at doses $\geq 15 \text{ mg/kg-day}$ (Kroese et al., 2001). The 18 induction of liver microsomal EROD was not accompanied by any adverse histopathologic findings

18 Induction of liver lincrosonial EKOD was not accompanied by any adverse histopathologic induit

19 in the liver at the highest dose, 50 mg/kg-day, so the livers from intermediate-dose groups were,

20 therefore, not examined. An increased incidence of brown pigmentation of red pulp (hemosiderin)

in the thymus was observed in treated animals of both sexes. However, this tissue was not

22 examined in intermediate-dose groups. This range-finding, 5-week study identified a NOAEL of

23 5 mg/kg-day and a LOAEL of 15 mg/kg-day, based on decreased thymus weight and forestomach

24 hyperplasia in Wistar rats.

25 <u>Kroese et al. (2001)</u> exposed Wistar (Riv:TOX) rats (10/sex/dose group) to benzo[a]pyrene

- 26 (98.6% purity, dissolved in soybean oil) by gavage at 0, 3, 10, or 30 mg/kg body weight-day,
- 27 5 days/week for 90 days. The rats were examined daily for behavior and clinical symptoms and by
- 28 palpation. Food and water consumption, body weights, morbidity, and mortality were monitored.

At the end of the exposure period, rats were subjected to macroscopic examination and organ 1 2 weights were recorded. Blood was collected for hematology and serum chemistry evaluation, and 3 urine was collected for urinalysis. All gross abnormalities, particularly masses and lesions 4 suspected of being tumors, were evaluated. The liver, stomach, esophagus, thymus, lung, spleen, 5 and mesenteric lymph node were examined histopathologically. In addition, cell proliferation in 6 forestomach epithelium was measured as the prevalence of S-phase epithelial cells displaying 7 bromodeoxyuridine (BrdU) incorporation. 8 There were no obvious effects on behavior of the animals, and no difference was observed 9 in survival or food consumption between exposed animals and controls (Kroese et al., 2001). 10 Higher water consumption and slightly lower body weights than the controls were observed in 11 males, but not females, at the high dose of 30 mg/kg-day. Hematological investigations showed 12 only nonsignificant, small dose-related decreases in RBC count and hemoglobin level in both sexes. 13 Clinical chemistry evaluation did not show any treatment-related group differences or dose-14 response relationships for alanine aminotransferase, serum aspartate transaminase (AST), lactate 15 dehydrogenase (LDH), or creatinine, but a small dose-related decrease in γ -glutamyl transferase 16 activity was observed in males only. Urinalysis revealed an increase in urine volume in males at 17 30 mg/kg-day, which was not dose related. At the highest dose, both sexes showed increased levels 18 of urinary creatinine and a dose-related increase in urinary protein. However, no further 19 investigation was conducted to determine the underlying mechanisms for these changes. At 20 necropsy, reddish to brown/gray discoloration of the mandibular lymph nodes was consistently 21 noted in most rats; occasional discoloration was also observed in other regional lymph nodes 22 (axillary). Statistically significant increases in liver weight were observed at 10 and 30 mg/kg-day 23 in males (15 and 29%) and at 30 mg/kg-day in females (17%). A decrease in thymus weight was 24 seen in both sexes at 30 mg/kg-day (17 and 33% decrease in females and males, respectively, 25 compared with controls) (Table D-9). At 10 mg/kg-day, thymus weight in males was decreased by 26 15%, but the decrease did not reach statistical significance.

1 2

Table D-9. Means ± SD^a for liver and thymus weights in Wistar rats exposed to benzo[a]pyrene by gavage 5 days/week for 90 days

	Dose (mg/kg-d)						
Organ	0	3	10	30			
Liver weight (g) Males Females	7.49 ± 0.97 5.54 ± 0.70	8.00 ± 0.85 5.42 ± 0.76	8.62 ± 1.30* 5.76 ± 0.71	9.67 ± 1.17* 6.48 ± 0.78*			
Thymus weight (mg) Males Females	380 ± 60 320 ± 60	380 ± 110 310 ± 50	330 ± 60 300 ± 40	270 ± 40* 230 ± 30*			

8

*Significantly (*p* < 0.05) different from control mean; student t-test (unpaired, two-tailed); n = 10/sex/group. ^aReported as SE, but judged to be SD (and confirmed by study authors).

^aReported as SE, but judged t
Source: <u>Kroese et al. (2001)</u>.

9 Histopathologic examination revealed what was characterized by <u>Kroese et al. (2001)</u> as
 10 basal cell disturbance in the epithelium of the forestomach in males (*p* < 0.05) and females

11 (p < 0.01) at 30 mg/kg-day. The basal cell disturbance was characterized by increased number of

12 basal cells, mitotic figures, and remnants of necrotic cells; occasional early nodule development;

13 infiltration by inflammatory cells (mainly histiocytes); and capillary hyperemia, often in

14 combination with the previous changes (<u>Kroese et al., 2001</u>). Incidences for these lesions (also

described as "slight basal cell hyperplasia") in the 0, 3, 10, and 30-mg/kg-day groups were 0/10,

16 2/10, 3/10, and 7/10, respectively, in female rats and 2/10, 0/10, 6/10, and 7/10, respectively, in

17 male rats. Nodular hyperplasia was noted in one animal of each sex at 30 mg/kg-day. A significant

18 (p < 0.05) increase in proliferation of forestomach epithelial cells was detected at doses

19 ≥10 mg/kg-day by morphometric of analysis of nuclei with BrdU incorporation. The mean numbers

20 of BrdU-staining nuclei per unit surface area of the underlying lamina muscularis mucosa were

21 increased by about two- and three–fourfold at 10 and 30 mg/kg-day, respectively, compared with

22 controls. A reduction of thymus weight and increase in the incidence of thymus atrophy (the report

23 described the atrophy as slight, but did not specify the full severity scale used in the pathology

examination) was observed in males only at 30 mg/kg-day (*p* < 0.01 compared with controls).

25 Respective incidences for thymus atrophy for the control through high-dose groups were 0/10,

26 0/10, 0/10, and 3/10 for females and 0/10, 2/10, 1/10, and 6/10 for males. No significant

27 differences were observed in the lungs of control and treated animals. In the esophagus,

28 degeneration and regeneration of muscle fibers and focal inflammation of the muscular wall were

judged to be a result of the gavage dosing rather than of benzo[a]pyrene treatment.

30 The target organs of benzo[a]pyrene toxicity in this 90-day dietary study of Wistar rats

31 were the forestomach, thymus, and liver. The LOAEL for forestomach hyperplasia, decreased

32 thymus weight, and thymus atrophy was 30 mg/kg-day and the NOAEL was 10 mg/kg-day.

1 Chronic Studies and Cancer Bioassays

2 Kroese et al. (2001) exposed Wistar (Riv:TOX) rats (52/sex/dose group) to benzo[a]pyrene 3 (98.6% purity) in soybean oil by gavage at nominal doses of 0, 3, 10, or 30 mg/kg-day, 5 days/week, 4 for 104 weeks. Mean achieved dose levels were 0, 2.9, 9.6, and 29 mg/kg-day. Additional rats 5 (6/sex/group) were sacrificed after 4 and 5 months of exposure for analysis of DNA adduct 6 formation in blood and major organs and tissues. The rats were 6 weeks old at the start of 7 exposure. The rats were examined daily for behavior and clinical symptoms and by palpation. 8 Food and water consumption, body weights, morbidity, and mortality were monitored during the 9 study. Complete necropsy was performed on all animals that died during the course of the study, 10 that were found moribund, or at terminal sacrifice (organ weight measurement was not mentioned 11 in the report by Kroese et al., 2001). The organs and tissues collected and prepared for microscopic 12 examination included brain, pituitary, heart, thyroid, salivary glands, lungs, stomach, esophagus, 13 duodenum, jejunum, ileum, caecum, colon, rectum, thymus, kidneys, urinary bladder, spleen, lymph 14 nodes, liver pancreas, adrenals, sciatic nerve, nasal cavity, femur, skin including mammary tissue, 15 ovaries/uterus, and testis/accessory sex glands. Some of these tissues were examined only when 16 gross abnormalities were detected. All gross abnormalities, particularly masses and lesions that 17 appeared to be tumors, were also examined.

18 At 104 weeks, survival in the control group was 65% (males) and 50% (females), whereas 19 mortality in the 30 mg/kg-day dose group was 100% after about week 70. At 80 weeks, survival 20 percentages were about 90, 85, and 75% in female rats in the 0, 3, and 10 mg/kg-day groups, 21 respectively; in males, respective survival percentages were \sim 95, 90, and 85% at 80 weeks. 22 Survival of 50% of animals occurred at 104, 104, ~90, and 60 weeks for control through high-dose 23 females; for males, the respective times associated with 65% survival were 104, 104, 104, and 24 \sim 60 weeks. The high mortality rate in high-dose rats was attributed to liver or forestomach tumor 25 development, not to noncancer systemic effects. After 20 weeks, body weight was decreased 26 (compared with controls by >10%) in 30-mg/kg-day males, but not in females. This decrease was 27 accompanied by a decrease in food consumption. Body weights and food consumption were not 28 adversely affected in the other dose groups compared to controls. In males, there was a dose-29 dependent increase in water consumption starting at week 13, but benzo[a]pyrene treatment had 30 no significant effects on water consumption in females. 31 Tumors were detected at significantly elevated incidences at several tissue sites in female

and male rats at doses ≥10 and ≥3 mg/kg-day, respectively (Table D-10) (Kroese et al., 2001). The
tissue sites with the highest incidences of tumors were the liver (hepatocellular adenoma and
carcinoma) and forestomach (squamous cell papilloma and carcinoma) in both sexes (Table D-10).
The first liver tumors were detected in week 35 in high-dose male rats. Liver tumors were
described as complex, with a considerable proportion (59/150 tumors) metastasizing to the lungs.
At the highest dose level, 95% of rats with liver tumors had malignant carcinomas (95/100;
Table D-10). Forestomach tumors were associated with the basal cell proliferation observed

- 1 (without diffuse hyperplasia) in the forestomach of rats in the preliminary range-finding and
- 2 90-day exposure studies. At the highest dose level, 59% of rats with forestomach tumors had
- 3 malignant carcinomas (60/102; Table D-10). Other tissue sites with significantly elevated
- 4 incidences of tumors in the 30 mg/kg-day dose group included the oral cavity (papilloma and
- 5 squamous cell carcinoma [SCC]) in both sexes, and the jejunum (adenocarcinoma), kidney (cortical
- 6 adenoma), and skin (basal cell adenoma and carcinoma) in male rats (Table D-10). In addition,
- 7 auditory canal tumors (carcinoma or squamous cell papilloma originating from pilo-sebaceous
- 8 units including the Zymbal's gland) were also detected in both sexes at 30 mg/kg-day, but auditory
- 9 canal tissue was not histologically examined in the lower dose groups and the controls
- 10 (Table D-10). Gross examination revealed auditory canal tumors only in the high-dose group.
- 11 12

Table D-10. Incidences of exposure-related neoplasms in Wistar rats treated by gavage with benzo[a]pyrene, 5 days/week, for 104 weeks

		Dose (mg/kg-d)				
	0	3	10	30 ª		
Site	Females ^b					
Oral cavity						
Papilloma	0/19	0/21	0/9	9/31*		
SCC	1/19	0/21	0/9	9/31*		
Basal cell adenoma	0/19	0/21	1/9	4/31		
Sebaceous cell carcinoma	0/19	0/21	0/9	1/31		
Esophagus						
Sarcoma undifferentiated	0/52	0/52	2/52	0/52		
Rhabdomyosarcoma	0/52	1/52	4/52	0/52		
Fibrosarcoma	0/52	0/52	3/52	0/52		
Forestomach						
Squamous cell papilloma	1/52	3/51	20/51*	25/52*		
SCC	0/52	3/51	10/51*	25/52*		
Liver						
Hepatocellular adenoma	0/52	2/52	7/52*	1/52		
Hepatocellular carcinoma	0/52	0/52	32/52*	50/52*		
Cholangiocarcinoma	0/52	0/52	1/52	0/52		
Anaplastic carcinoma	0/52	0/52	1/52	0/52		
Auditory canal						
Benign tumor	0/0	0/0	0/0	1/20		
Squamous cell papilloma	0/0	0/1	0/0	1/20		
Carcinoma	0/0	0/1	0/0	13/20*		

0/24 1/24 0/24	0/24	10 Iles ^b	30ª
1/24	0/24	les⁵	
1/24			
1/24			
		2/37	10/38*
0/24	0/24	5/37	11/38*
			2/38
0/24	0/24	0/37	2/38
0/52	7/52*	18/52*	17/52*
0/52	1/52	25/52*	35/52*
0/51	0/50	1/51	8/49*
0/52	3/52	15/52*	4/52
			45/52*
0/52	0/52	0/52	1/52
0/52	0/52	7/52*	8/52*
0/52	0/52	2/52	0/52
0/52	0/52	0/52	3/52
0/1	0/0	1/7	0/33
			4/33
		-	19/33*
0/1	0/0	0/7	1/33
		İ.	
2/52	0/52	1/52	10/51*
			4/51
			5/51
			4/51
-		-	8/51*
			0/51
-	-	-	1/52
	0/24 0/24 0/52 0/52 0/51 0/52 0/52 0/52 0/52 0/52 0/52 0/52 0/52	$\begin{array}{c cccc} 0/24 & 0/24 \\ 0/24 & 0/24 \\ 0/24 & 0/24 \\ \hline \\ 0/52 & 7/52^* \\ 1/52 \\ \hline \\ 0/52 & 1/52 \\ 0/52 & 1/52 \\ 0/52 & 0/52 \\ 0/52 & 0/52 \\ 0/52 & 0/52 \\ 0/52 & 0/52 \\ 0/52 & 0/52 \\ \hline \\ 0/1 & 0/0 \\ 0/2 \\ 0/52 & 0/52 \\ 0/5$	$\begin{array}{c cccccc} 0/24 & 0/24 & 0/37 \\ 0/24 & 0/24 & 0/37 \\ 0/24 & 0/37 \\ 0/37 \\ \hline \end{array}$

¹ 2 3 4 5 6 7 8 9 10

*Statistically significant difference ($p \le 0.01$), Fisher's exact test; analysis of auditory canal tumor incidence was based on assumption of n = 52 and no tumors in the controls.

^aThis group had significantly decreased survival.

^bIncidences are for number of rats with tumors compared with number of tissues examined histologically.

Auditory canal and oral cavity tissues were only examined histologically when abnormalities were observed upon macroscopic examination.

Source: Kroese et al. (2001).

Kroese et al. (2001) did not systematically investigate nonneoplastic lesions detected in rats
 sacrificed during the 2-year study because the focus was to identify and quantitate tumor

1 occurrence. However, incidences were reported for nonneoplastic lesions in tissues or organs in 2 which tumors were detected (i.e., oral cavity, esophagus, forestomach, jejunum, liver, kidney, skin, 3 mammary, and auditory canal). The reported nonneoplastic lesions associated with exposure were 4 the forestomach basal cell hyperplasia and clear cell foci of cellular alteration in the liver. 5 Incidences for forestomach basal cell hyperplasia in the control through high-dose groups were 6 1/52, 8/51, 13/51, and 2/52 for females and 2/50, 8/52, 8/52, and 0/52 for males. Incidences for 7 hepatic clear cell foci of cellular alteration were 22/52, 33/52, 4/52, and 2/52 for females and 8 8/52, 22/52, 1/52, and 1/52 for males. These results indicate that the lowest dose group, 9 3 mg/kg-day, was a LOAEL for increased incidence of forestomach hyperplasia and hepatic 10 histological changes in male and female Wistar rats exposed by gavage to benzo[a]pyrene for up to 11 104 weeks (see Table D-10). The lack of an increase in incidence of these nonneoplastic lesions in 12 the forestomach and liver at the intermediate and high doses (compared with controls) was 13 associated with increased incidences of forestomach and liver tumors at these dose levels. The 14 authors of this study noted that nonneoplastic effects were not quantified in organs with tumors. 15 As an adjunct study to the 2-year gavage study with Wistar rats, Kroese et al. (2001) 16 sacrificed additional rats (6/sex/group) after 4 and 5 months of exposure (0, 1, 3, 10, or 17 30 mg/kg-day) for analysis of DNA adduct formation in WBCs and major organs and tissues. 18 Additional rats (6/sex/time period) were exposed to 0.1 mg/kg-day benzo[a]pyrene for 4 and 19 5 months for analysis of DNA adduct formation. Using the [³²P]-postlabeling technique, five 20 benzo[a]pyrene-DNA adducts were identified in all of the examined tissues at 4 months (WBCs, 21 liver, kidney, heart, lung, skin, forestomach, glandular stomach, brain). Only one of these adducts 22 (adduct 2) was identified based on co-chromatography with a standard. This adduct, identified as 23 10β -(deoxyguanosin-N2-yl)-7 β ,8 α ,9 α -trihydroxy-7,8,9,10 tetrahydro-benzo[a]pyrene, was the 24 predominant adduct in all organs of female rats exposed to 10 mg/kg-day, except the liver and 25 kidney, in which another adduct (unidentified adduct 4) was predominant. Levels of total adducts (number of benzo[a]pyrene-DNA adducts per 10^{10} nucleotides) in examined tissues (from the 26 27 single 10 mg/kg-day female rat) showed the following order: liver > heart > kidney > lung > skin > 28 forestomach \approx WBCs > brain. Mean values for female levels of total benzo[a]pyrene-DNA adducts 29 (number per 10^{10} nucleotides) in four organs showed the same order, regardless of exposure 30 group: liver > lung > forestomach \approx WBCs; comparable data for males were not reported. Mean 31 total benzo[a]pyrene-DNA adduct levels in livers increased in both sexes from about 100 adducts 32 per 10¹⁰ nucleotides at 0.1 mg/kg-day to about 70,000 adducts per 10¹⁰ nucleotides at 30 mg/kg-33 day. In summary, these results suggest that total benzo[a]pyrene-DNA adduct levels in tissues at 4 34 months were not independently associated with the carcinogenic responses noted after 2 years of 35 exposure to benzo[a]pyrene. The liver showed the highest total DNA adduct levels and a 36 carcinogenic response, but total DNA adduct levels in heart, kidney, and lung (in which no 37 carcinogenic responses were detected) were higher than levels in forestomach and skin (in which 38 carcinogenic responses were detected).

1 Groups of Sprague-Dawley rats (32/sex/dose) were fed diets delivering a daily dose of 2 0.15 mg benzo[a]pyrene/kg body weight every ninth day or 5 times/week (Brune et al., 1981). 3 Other groups (32/sex/dose) were given gavage doses of 0.15 mg benzo[a]pyrene (in aqueous 1.5% 4 caffeine solution)/kg every ninth day, every third day, or 5 times/week. The study included an 5 untreated control group (to compare with the dietary exposed groups) and a gavage vehicle control 6 group (each with 32 rats/sex). Rats were treated until moribundity or death occurred, with 7 average annual doses reported in Table D-11 [mg/kg-year, calculated by Brune et al. (1981)]. The 8 following tissues were prepared for histopathological examination: tongue, larvnx, lung, heart, 9 trachea, esophagus, stomach, small intestine, colon, rectum, spleen, liver, urinary bladder, kidney, 10 adrenal gland, and any tissues showing tumors or other gross changes. Survival was similar among 11 the groups, with the exception that the highest gavage-exposure group showed a decreased median 12 time of survival (Table D-11). Significantly increased incidences of portal-of-entry tumors 13 (forestomach, esophagus, and larynx) were observed in all of the gavage-exposed groups and in the 14 highest dietary exposure group (Table D-11). Following dietary administration, all observed 15 tumors were papillomas. Following gavage administration, two malignant forestomach tumors 16 were found (one each in the mid- and high-dose groups) and the remaining tumors were benign. 17 The data in Table D-11 show that the carcinogenic response to benzo[a]pyrene was stronger with 18 the gavage protocol compared with dietary exposure, and that no distinct difference in response 19 was apparent between the sexes. Tumors at distant sites (mammary gland, kidney, pancreas, lung, 20 urinary bladder, testes, hematopoietic, and soft tissue) were not considered treatment-related as 21 they were also observed at similar rates in the control group (data not provided). The study report 22 did not address noncancer systemic effects. 23

Table D-11. Incidences of alimentary tract tumors in Sprague-Dawley rats chronically exposed to benzo[a]pyrene in the diet or by gavage in caffeine solution

Average annual dose (mg/kg-yr)	Estimated average daily dose ^a (mg/kg-d)	Forestomach tumors ^b	Total alimentary tract tumors ^c (larynx, esophagus, forestomach)	Median survival time (wks)
Benzo[a]pyrene by g	avage in 1.5% caffeine	solution		•
0	0	3/64 (4.7%)	6/64 (9.4%)	102
6	0.016	12/64 (18.8%)*	13/64 (20.3%)	112
18	0.049	26/64 (40.1%)**	26/64 (40.6%)	113
39	0.107	14/64 (21.9%)**	14/64 (21.9%)	87
Benzo[a]pyrene in di	iet			•
0	0	2/64 (3.1%)	3/64 (4.7%)	129
6	0.016	1/64 (1.6%)	3/64 (4.7%)	128
39	0.107	9/64 (14.1%)*	10/64 (15.6%)	131

8

9

1

2

3

*Significantly (p < 0.1) different from control using a modified χ^2 test that accounted for group differences in survival time.

**Significantly (p < 0.05) different from control using a modified χ^2 test that accounted for group differences in survival time.

^aAverage annual dose divided by 365 days.

10 ^bNo sex-specific forestomach tumor incidence data were reported by <u>Brune et al. (1981)</u>.

^cSex-specific incidences for total alimentary tract tumors were reported as follows:
 Gavage (control, high dose): Male: 6/32, 7/32, 15/32, 8/32

Gavage (control, high dose):	Male:	6/32, 7/32, 15/32, 8/32
	Female:	0/32, 6/32, 11/32, 6/32
Diet (control, high dose):	Male:	3/32, 3/32, 8/32
	Female:	0/32, 0/32, 2/32

16 17 Source: Brune et al. (1981).

17 18

13 14 15

19 In the other modern cancer bioassay with benzo[a]pyrene, female $B6C3F_1$ mice (48/dose 20 group) were administered benzo[a]pyrene (98.5% purity) at concentrations of 0 (acetone vehicle), 21 5, 25, or 100 ppm in the diet for 2 years (Beland and Culp, 1998; Culp et al., 1998). This study was 22 designed to compare the carcinogenicity of coal tar mixtures with that of benzo[a]pyrene and it 23 included groups of mice fed diets containing one of several concentrations of two coal tar mixtures. 24 Benzo[a]pyrene was dissolved in acetone before mixing with the feed. Control mice received only 25 acetone-treated feed. Female mice were chosen because they have a lower background incidence of 26 lung tumors than male $B6C3F_1$ mice. Culp et al. (1998) reported that the average daily intakes of 27 benzo[a]pyrene in the 25- and 100-ppm groups were 104 and 430 µg/day, but did not report the 28 intake for the 5-ppm group. Based on the assumption that daily benzo[a]pyrene intake at 5 ppm 29 was one-fifth of the 25-ppm intake (about 21 μ g/day), average daily doses for the three

1 benzo[a]pyrene groups are estimated as 0.7, 3.3, and 16.5 mg/kg-day. Estimated doses were

- 2 calculated using time-weighted average (TWA) body weights of 0.032 kg for the control, 5- and
- 3 25-ppm groups and 0.026 kg for the 100-ppm group (estimated from graphically presented data).
- 4 Food consumption, body weights, morbidity, and mortality were monitored at intervals, and lung,
- 5 kidneys, and liver were weighed at sacrifice. Necropsy was performed on all mice that died during
- 6 the experiment or survived to the end of the study period. Limited histopathologic examinations
- 7 (liver, lung, small intestine, stomach, tongue, esophagus) were performed on all control and high-

8 dose mice and on all mice that died during the experimental period, regardless of treatment group.

9 In addition, all gross lesions found in mice of the low- and mid-dose groups were examined

10 histopathologically.

11 None of the mice administered 100 ppm benzo[a]pyrene survived to the end of the study, 12 and morbidity/mortality was 100% by week 78. Decreased survival was also observed at 25 ppm 13 with only 27% survival at 104 weeks, compared with 56 and 60%, in the 5-ppm and control groups, 14 respectively. In the mid- and high-dose groups, 60% of mice were alive at about 90 and 60 weeks, 15 respectively. Early deaths in exposed mice were attributed to tumor formation rather than other 16 causes of systemic toxicity. Food consumption was not statistically different in benzo[a]pyrene-17 exposed and control mice. Body weights of mice fed 100 ppm were similar to those of the other 18 treated and control groups up to week 46, and after approximately 52 weeks, body weights were 19 reduced in 100-ppm mice compared with controls. Body weights for the 5- and 25-ppm groups 20 were similar to controls throughout the treatment period. Compared with the control group, no 21 differences in liver, kidney, or lung weights were evident in any of the treated groups (other organ 22 weights were not measured).

23 Papillomas and/or carcinomas of the forestomach, esophagus, tongue, and larynx at 24 elevated incidences occurred in groups of mice exposed to 25 or 100 ppm, but no exposure-related tumors occurred in the liver or lung (<u>Beland and Culp, 1998; Culp et al., 1998</u>). The forestomach 25 26 was the most sensitive tissue, demonstrated the highest tumor incidence among the examined 27 tissues, and was the only tissue with an elevated incidence of tumors at 25 ppm (Table D-12). In 28 addition, most of the forestomach tumors in the exposed groups were carcinomas, as 1, 31, and 29 45 mice had forestomach carcinomas in the 5-, 25-, and 100-ppm groups, respectively. 30 Nonneoplastic lesions were also found in the forestomach at significantly (p < 0.05) elevated 31 incidences: hyperplasia at \geq 25 ppm and hyperkeratosis at \geq 25 ppm (Table D-12). The esophagus 32 was the only other examined tissue showing elevated incidence of a nonneoplastic lesion (basal cell 33 hyperplasia, see Table D-12). Tumors (papillomas and carcinomas) were also significantly elevated 34 in the esophagus and tongue at 100 ppm (Table D-12). Esophageal carcinomas were detected in 35 1 mouse at 25 ppm and 11 mice at 100 ppm. Tongue carcinomas were detected in seven 100-ppm mice; the remaining tongue tumors were papillomas. Although incidences of tumors of the larynx 36 37 were not significantly elevated in any of the exposed groups, a significant dose-related trend was 38 apparent (Table D-12).

Table D-12. Incidence of nonneoplastic and neoplastic lesions in female
B6C3F1 mice fed benzo[a]pyrene in the diet for up to 2 years

	Incidence (%)				
	Benzo[a]	pyrene conce	entration (ppn	n) in diet	
	0	5	25	100	
	Av	verage daily d	loses (mg/kg-	d)	
Tissue and lesion	0	0.7	3.3	16.5	
Liver (hepatocellular adenoma)	2/48 (2)	7/48 (15)	5/47 (11)	0/45 (0)	
Lung (alveolar/bronchiolar adenoma and/or carcinoma)	5/48 (10)	0/48 (0)	4/45 (9)	0/48 (0)	
Forestomach (papilloma and/or carcinoma)	1/48 ^ª (2)	3/47 (6)	36/46* (78)	46/47* (98)	
Forestomach (hyperplasia)	13/48 ^ª (27)	23/47 (49)	33/46* (72)	37/47* (79)	
Forestomach (hyperkeratosis)	13/48 ^ª (27)	22/47 (47)	33/46* (72)	38/47* (81)	
Esophagus (papilloma and/or carcinoma)	0/48 ^ª (0)	0/48 (0)	2/45 (0)	27/46* (59)	
Esophagus (basal cell hyperplasia)	1/48 ^a (2)	0/48 (0)	5/45 (11)	30/46* (65)	
Tongue (papilloma and/or carcinoma)	0/49 ^a (0)	0/48 (0)	2/46 (4)	23/48* (48)	
Larynx (papilloma and/or carcinoma)	0/35 [°] (0)	0/35 (0)	3/34 (9)	5/38 (13)	

³ 4 5 6 7 8 9 10

1 2

*Significantly different from control incidence (*p* < 0.05); using a modified Bonferonni procedure for multiple comparisons to the same control.

^aSignificant (p < 0.05) dose-related trend calculated for incidences of these lesions.

Sources: <u>Beland and Culp (1998)</u>; <u>Culp et al. (1998)</u>.

Neal and Rigdon (1967) fed benzo[a]pyrene (purity not reported) at concentrations of 0, 1,

10, 20, 30, 40, 45, 50, 100, and 250 ppm to male and female CFW-Swiss mice in the diet.

- 12 Corresponding doses (in mg/kg-day) were calculated¹ as 0, 0.2, 1.8, 3.6, 5.3, 7.1, 8, 8.9, 17.8, and
- 13 44.4 mg/kg-day. The age of the mice ranged from 17 to 180 days old and the treatment time was
- 14 from 1 to 197 days; the size of the treated groups ranged from 9 to 73. There were 289 mice
- 15 (number of mice/sex not stated) in the control group. No forestomach tumors were reported at 0,
- 16 0.2, or 1.8 mg/kg-day. The incidences of forestomach tumors at 20, 30, 40, 45, 50, 100, and
- 17 250 ppm dose groups (3.6, 5.3, 7.1, 8, 8.9, 17.8, and 44.4 mg/kg-day) were 1/23, 0/37, 1/40, 4/40,
- 18 23/34, 19/23, and 66/73, respectively.

¹Calculation: mg/kg-day = (ppm in feed × kg food/day)/kg body weight. Reference food consumption rates of 0.0062 kg/day (males) and 0.0056 kg/day (females) and reference body weights of 0.0356 kg (males) and 0.0305 kg (females) were used (U.S. EPA, 1988) and resulting doses were averaged between males and females.

1 Other Oral Exposure Cancer Bioassays in Mice

2 Numerous other oral exposure cancer bioassays in mice have limitations that restrict their

3 usefulness for characterizing dose-response relationships between chronic-duration oral exposure

- 4 to benzo[a]pyrene and noncancer effects or cancer, but collectively, they provide strong evidence
- 5 that oral exposure to benzo[a]pyrene can cause portal-of-entry site tumors (see Table D-13 for
- 6 references).

7

Species/strain Exposure Results Comments Reference Rat/Sprague-Groups of rats (32/sex/dose) Larynx, esophagus, and Doses are Brune et al. (1981) Dawley were fed diets delivering a forestomach tumors annual daily dose of 0.15 mg averages. benzo[a]pyrene/kg body Dose Nonstandard weight every 9th d or (gavage) treatment 5 times/wk (Brune et al., protocol 6/64 0 1981). Other groups involved 0.016 13/64 (32/sex/dose) were given animals being 0.049 26/64 gavage doses of 0.15 mg treated for 14/64 0.107 benzo[a]pyrene (in aqueous ≤5 d/wk; 1.5% caffeine solution)/kg relatively high Dose every 9th d, every 3rd d, or control (diet) 5 times/wk. incidence 0 compared to 3/64 0.016 3/64 other gavage 0.107 studies. 10/64 Mouse/HalCR Groups of 12-20 mice Incidence with Less-than-Wattenberg (10 wks old) were fed forestomach tumors: lifetime (1972) benzo[a]pyrene in the diet Low, 11/20 (18 wks) exposure (0.1, 0.3, or 1.0 mg/g diet) for Mid, 13/19 (20 wks) duration; only 12–20 wks. Estimated doses High, 12/12 (12 wks) stomachs were were 14.3, 42.0, or examined for 192 mg/kg-d. tumors; tumors found only in forestomach. Mouse/HalCR Groups of nine mice (9 wks Incidence with Less-than-Triolo et al. old) were fed benzo[a]pyrene forestomach tumors: lifetime (1977) in the diet (0, 0.2, or 0.3 mg/g)Control, 0/9 exposure diet) for 12 wks and Low, 6/9 duration; glandular sacrificed. Estimated doses High, 9/9 were 0, 27.3, or 41 mg/kg-d. stomach, lung, and livers from control and exposed mice showed no tumors.

Table D-13. Other oral exposure cancer bioassays in mice

Species/strain	Exposure	Results	Comments	Reference
Mouse/HalCR	20 mice (9 wks old) were given benzo[a]pyrene in the diet (0.3 mg benzo[a]pyrene/g diet) for 6 wks and sacrificed after 20 wks in the study.	8/20 exposed mice had forestomach tumors	Less-than- lifetime exposure duration; only stomachs were examined for tumors; tumors found only in forestomach; no nonexposed controls were mentioned.	Wattenberg (1974)
Mouse/CD-1	20 female mice (9 wks old) were given 1 mg benzo[a]pyrene by gavage 2 times/wk for 4 wks and observed for 19 wks. Estimated dose was 33 mg/kg-d, using an average body weight of 0.030 kg from reported data.	Incidence with forestomach tumors: Exposed, 17/20 (85%) Controls, 0/24	Less-than- lifetime exposure duration; only stomach were examined for tumors; tumors found only in forestomach.	<u>El-Bayoumy</u> (<u>1985)</u>
Mouse/BALB	25 mice (8 wks old) were given 0.5 mg benzo[a]pyrene 2 times/wk for 15 wks.	5/25 mice had squamous carcinomas of the forestomach; tumors were detected 28–65 wks after treatment	Less-than- lifetime exposure duration; the following details were not reported: inclusion of controls, methods for detecting tumors, and body weight data.	<u>Biancifiori et</u> <u>al. (1967)</u>
Mouse/C3H	19 mice (about 3 mo old) were given 0.3 mL of 0.5% benzo[a]pyrene in polyethylene glycol-400 by gavage, once/d for 3 d.	By 30 wks, 7/10 mice had papillomas; no carcinomas were evident	Less-than- lifetime exposure duration.	<u>Berenblum</u> and Haran (1955)

Species/strain	Exposure	Results	Comments	Reference
Mouse/albino	Groups of 17–18 mice were given single doses of benzo[a]pyrene and allowed to survive until terminal sacrifice at 569 d.	Incidence of mice (that survived at least to 60 d) with forestomach papillomas: Incidence (Experiment 1) Dose (μg) (Experiment 2) Control 0/17 0/18 12.5 3/17 2/18 50 0/17 1/17 200 8/17 Not evaluated	Less-than- lifetime exposure duration; GI tract examined for tumors with hand lens; body weight data not reported.	Field and Roe (1965)
Mouse/albino	Groups of about 160 female mice (70 d of age; strain unknown) were given 0 or 8 mg benzo[a]pyrene mixed in the diet over a period of 14 mo.	Gastric tumors were observed at the following incidence: Control, 0/158 8 mg benzo[a]pyrene total, 13/160	Close to lifetime exposure duration; daily dose levels and methods of detecting tumors were not clearly reported.	<u>Chouroulinkov</u> <u>et al. (1967)</u>
Mouse/CFW	Groups of mice (mixed sex) were fed benzo[a]pyrene in the diet (dissolved in benzene and mixed with diet) at 0, 1, 10, 20, 30, 40, 45, 50, 100, or 250 ppm in the diet.	Fore- stomach tumorppm(d)incidence11100/25101100/24201101/23301100/37401101/40451104/405015224/3410011019/2325011866/73	Less-than- lifetime exposure duration; no vehicle control group; animals ranged from 3 wks to 6 mo old at the start of dosing; only alimentary tract was examined for tumors.	<u>Neal and</u> <u>Rigdon (1967)</u>
Mouse/Swiss albino	Groups of mice (9–14 wks old) were given single doses of 0 or 0.05 mg benzo[a]pyrene in polyethylene glycol-400 by gavage. Surviving mice were killed at 18 mo of age and examined for macroscopic tumors.	Forestomach tumor incidence: Carcinoma Dose (µg) papilloma 0 0/65 2/65 50 1/61 20/61	Less-than- lifetime duration of exposure; exposure- related tumors only found in forestomach.	<u>Roe et al.</u> (1970)

Species/strain	Exposure	Results	Comments	Reference
Mouse/ICR	Groups of 20 or 24 mice (71 d old) were given 1.5 mg benzo[a]pyrene by gavage 2 times/wk for 4 wks; terminal sacrifice was at 211 d of age. Estimated dose was about 50 mg benzo[a]pyrene/kg, using an average body weight of 0.03 kg during exposure from reported data.	Incidence of mice with forestomach neoplasms Experiment 1, 23/24 Experiment 2, 19/20	Less-than- lifetime duration of exposure; only stomachs were examined for tumors; tumors found only in forestomach; nonexposed controls were not mentioned.	<u>Benjamin et al.</u> (<u>1988)</u>
Mouse/white	Groups of 16–30 mice were given benzo[a]pyrene in triethylene glycol (0.001–10 mg) weekly for 10 wks and observed until 19 mo.	Tumors in stomach antrum Carcinoma Dose (mg) papilloma 0.001 0/16 0.01 0/26 2/26 2/26 0.1 0/24 5/24 1.0 11/30 12/30 10 16/27 7/27 7/27	Less-than- lifetime exposure duration.	Fedorenko and Yansheva (1967); as cited in <u>U.S.</u> EPA (1991a)
Mouse/A/HeJ	12 female mice (9 wks old) were given standard diet for 25 d, and 3 mg benzo[a]pyrene by gastric intubation on d 7 and 21 of the study. Mice were killed at 31 wks of age and examined for lung tumors.	12/12 exposed mice had lung tumors	Less-than- lifetime exposure duration; only lungs examined for tumors; no nonexposed controls were mentioned.	<u>Wattenberg</u> (1974)
Mouse/A/J	Groups of female mice were fed benzo[a]pyrene in the diet at 0, 16, or 98 ppm for 260 d. Average intakes of benzo[a]pyrene were 0, 40.6, and 256.6 µg/mouse/d. Estimated doses were 0, 1.6, and 9.9 mg/kg-d using a chronic reference body weight value of 0.026 kg (<u>U.S.</u> <u>EPA, 1988</u>).	Incidence of mice surviving to 260 d: Lung tumors Control, 4/21 16 ppm, 9/25 98 ppm, 14/27 Forestomach tumors Control, 0/21 16 ppm, 5/25 98 ppm, 27/27	Close to lifetime exposure duration; A/J strain of mice particularly sensitive to chemically induced cancer; only lungs and stomachs were examined for tumors.	<u>Weyand et al.</u> (1995)

Species/strain	Exposure	Results	Comments	Reference
Mouse/A/J	Groups 40 female mice (8 wks old) were given 0 or 0.25 mg benzo[a]pyrene (in 2% emulphor) by gavage 3 times/wk for 8 wks. Mice were killed at 9 mo of age and examined for lung or forestomach tumors.	Incidence for mice surviving at 9 mo of age: Lung tumors Control, 11/38 Exposed, 22/36 Forestomach tumors Control, 0/38 Exposed, 33/36	Less-than- lifetime duration of exposure; only lungs and GI tract were examined for tumors.	<u>Robinson et al.</u> (1987)

1 D.4.2. Inhalation Studies

2 Short-Term and Subchronic Studies

3 <u>Wolff et al. (1989)</u> exposed groups of 40 male and 40 female F344/Crl rats, via nose only, to

- 4 7.5 mg benzo[a]pyrene/m³ for 2 hours/day, 5 days/week for 4 weeks (corresponding to a TWA of
- 5 0.45 mg/m³). Rats were 10–11 weeks old at the beginning of the experiment. Benzo[a]pyrene
- 6 (>98% pure) aerosols were formed by heating and then condensing the vaporized benzo[a]pyrene.
- 7 The particle mass median aerodynamic diameter (MMAD) was 0.21 μ m. Subgroups of these
- 8 animals (six/sex/dose) were exposed for 4 days or 6 months after the end of the 4-week exposure
- 9 to radiolabeled aluminosilicate particles. Lung injury was assessed by analyzing clearance of
- 10 radiolabeled aluminosilicate particles and via histopathologic evaluations. Body and lung weights,
- 11 measured in subgroups from 1 day to 12 months after the exposure did not differ between controls
- 12 and treated animals. Radiolabeled particle clearance did not differ between the control and treated
- 13 groups, and there were no significant lung lesions. This study identified a NOAEL for lung effects of
- 14 0.45 mg/m^3 for a short-term exposure.

15 Chronic Studies and Cancer Bioassays

- 16 <u>Thyssen et al. (1981)</u> conducted an inhalation study in which male Syrian golden hamsters
- 17 were exposed to benzo[a]pyrene for their natural lifetime. Groups of 24 animals (8 weeks old)
- 18 were exposed by nose-only inhalation to NaCl aerosols (controls; 240 µg NaCl/m³) or
- 19 benzo[a]pyrene condensed onto NaCl aerosols at three target concentrations of 2, 10, or 50 mg
- 20 benzo[a]pyrene/m³ for 3–4.5 hours/day, 5 days/week for 1–41 weeks, followed by 3 hours/day,
- 21 7 days/week for the remainder of study (until hamsters died or became moribund). <u>Thyssen et al.</u>
- 22 (1981) reported average measured benzo[a]pyrene concentrations to be 0, 2.2, 9.5, or 46.5 mg/m³.
- 23 More than 99% of the particles were between 0.2 and 0.5 µm in diameter, and over 80% had
- 24 diameters between 0.2 and 0.3 μ m. The particle analysis of the aerosols was not reported to
- 25 modern standards (MMAD and geometric SD were not reported). Final overall group sizes were
- 26 larger as animals dying during the first 12 months of the study were replaced.
- 27 Review of the individual animal data (including individual animal pathology reports, time28 to-death data, and exposure chamber monitoring data) provided by Thyssen et al. to EPA (<u>U.S. EPA</u>,
- 29 <u>1990</u>) revealed several discrepancies in the reported exposure protocol. The actual exposure

protocol was as follows: 4.5 hours/day, 5 days/week on weeks 1–12; 3 hours/day, 5 days/week on
weeks 13–29; 3.7 hours/day, 5 days/week on week 30; 3 hours/day, 5 days/week on weeks 31–41;
and 3 hours/day, 7 days/week for the reminder of the experiment.

4 Analytical chamber monitoring data were generally recorded about once or twice per week, 5 with some exceptions ranging from no measurements for a 3-week period to as many as five 6 measurements in 1 week. Individual measurements (in mg/m^3) were 0.2-4.52, 1.16-19.2, and 7 0.96-118.6 in the 2, 10, and 50 mg/m³ target concentration groups, respectively. Overall, weekly 8 average exposure concentrations varied two- to fivefold from the overall average for each group 9 over the course of the study, with no particular trends over time (data not shown). The 95% 10 confidence limits for the average exposure level over time in each group varied within 4-7% of the 11 averages. Because some animals were started at different times and the exposure protocol changed 12 over time, each individual animal had an exposure history somewhat different than others in the 13 same exposure group. In order to address this variability, U.S. EPA (1990) used the individual 14 animal data and the chamber monitoring data to calculate a lifetime average continuous exposure 15 for each individual hamster. Group averages of these individual TWA concentrations were 0, 0.25, 1.01, and 4.29 mg/m³ for the control through high-exposure groups. 16 17 Statistical analysis of outcomes was not reported by <u>Thyssen et al. (1981)</u>. Survival was 18 similar in the control, low-, and mid-exposure groups, but was decreased about 40% in the high-19 exposure group. Average survival times in the control, low-, mid-, and high-exposure groups were 20 96.4 ± 27.6, 95.2 ± 29.1, 96.4 ± 27.8, and 59.5 ± 15.2 weeks, respectively. After the 60th week, body 21 weights decreased and mortality increased steeply in the highest exposure group. Histologic 22 examination of organs² revealed an exposure-related increase in the mid- and high-exposure 23 groups of benign and malignant tumors of the upper respiratory tract, including the nasal cavity, 24 larynx, and trachea, and of the upper digestive tract, including the pharynx, esophagus, and 25 forestomach (Table D-13). No lung tumors were observed. Tumors were detected in other sites, 26 but none of these appeared to be related to exposure.

27

²<u>Thyssen et al. (1981)</u> did not report a complete list of organs examined histologically. The individual animal pathology reports documented examination of brain, pituitary, eyes, salivary gland, larynx, pharynx, thyroid, trachea, esophagus, thymus, heart lung, stomach, liver, spleen, pancreas, duodenum, jejunum and ileum, cecum, colon and rectum, kidneys, adrenals, bladder, testicle, epididymides, prostate, submandibular and mesenterial lymph nodes, aorta, sternum, bone, and muscle.

1 2 3

Table D-14. Tumor incidence in the respiratory tract and upper digestive tract for male Syrian golden hamsters exposed to benzo[a]pyrene via inhalation for lifetime—<u>Thyssen et al. (1981)</u>ª

Target exposure concentration	Papillomas, polyps, papillary polyps, or carcinomas (total malignant tumors)						
and (lifetime	Respiratory tract Upper digestive tract		Respiratory tract		e tract		
average continuous exposure) ^b , mg/m ³	Larynx	Trachea	Nasal cavity	Pharynx	Esophagus	Forestomach	Incidence of pharynx or respiratory tract tumors ^c
0	0/23 ^d	0/24	0/23	0/21	0/24	0/24	0/21 ^e
2 (0.25)	0/19	0/20	0/20	0/18	0/20	0/20	0/18
10 (1.01)	11/23 (8) ^f	2/23 (0)	4/23 (1)	9/19 (7)	0/23 (0)	1/23 (1)	17/22 (11) ^f
50 (4.29)	11/23 (8)	3/23 (1)	1/23 (0)	18/22 (17)	2/23 (0)	2/23 (0)	18/22 (17)

4

^aHistopathology incidence data from the raw data obtained from the Thyssen study (<u>Clement Associates, 1990</u>),

6 adjusted to show animals only on study long enough to be at risk of tumor development: at least 1 year (0 2, or

7 10 mg/m³ groups) or until the first tumor occurrence (week 40 in the 50 mg/m³ group). See Table E-17 for a list of
 8 all animals with histopathology results.

9 ^bSee text.

10 ^cExcludes animals with unexamined tissues, unless a tumor was diagnosed in the tissues that were examined.

^dFractions represent the number of animals diagnosed with at least one of the specified tumors, among the

12 animals examined for each tissue.

^eStatistically significant trends by Cochran-Armitage trend test, conducted by EPA: all tumors: p < 0.0001,

14 malignant tumors only: p < 0.0001.

15 ^fIncludes one animal with an in situ carcinoma in the larynx.

16

17 The tumor types observed in the upper respiratory and upper digestive tract were very 18 similar, characterized as polyps, papillomas, papillary polyps, and squamous carcinomas, with the 19 exceptions of one in situ carcinoma and one adenocarcinoma (both in the mid-exposure group), 20 reflecting similar cell types. Consequently, evaluation of the overall cancer hazard included 21 consideration of the joint incidence of these tumor types. The pharynx and larynx (including the 22 epiglottis), clearly the main cancer targets, can be difficult to distinguish given their close proximity. 23 There were a few instances of nasal cavity or trachea tumors among animals without larynx or 24 pharynx tumors. Tumors of the upper digestive tract may have been a consequence of mucociliary 25 particle clearance (Thyssen et al., 1981), but the tumors in the esophagus and forestomach 26 observed in the mid- and high-exposure groups all occurred in animals that also had pharynx or 27 respiratory tract tumors. Overall, there were increasing trends in tumor incidence with increasing 28 exposure, both for the combined incidence of benign or malignant tumors, or for only malignant 29 tumors (Table D-14), and earlier occurrence of tumors with increasing exposure levels. Several 30 studies have investigated the carcinogenicity of benzo[a]pyrene in hamsters exposed by 31 intratracheal instillation. Single-dose studies verified that benzo[a]pyrene is tumorigenic, but do

- 1 not provide data useful for characterizing dose-response relationships because of their design
- 2 (Kobayashi, 1975; Renzik-Schüller and Mohr, 1974; Henry et al., 1973; Mohr, 1971; Saffiotti et al.,
- 3 1968; Gross et al., 1965; Herrold and Dunham, 1962). One multiple-dose study, which utilized very
- 4 low doses (0.005, 0.02, and 0.04 mg once every 2 weeks), failed to find any tumorigenic response
- 5 (Kunstler, 1983). Tumorigenic responses (mostly in the respiratory tract) were found at higher
- 6 dosage levels (0.25–2 mg benzo[a]pyrene once per week for 30–52 weeks) in four multiple-dose
- 7 studies (Feron and Kruysse, 1978; Ketkar et al., 1978; Feron et al., 1973; Saffiotti et al., 1972).
- 8 These studies identify the respiratory tract as a cancer target with exposure to benzo[a]pyrene by
- 9 intratracheal instillation and provide supporting evidence for the carcinogenicity of
- 10 benzo[a]pyrene at portal-of-entry sites.

11 **D.4.3.** Dermal studies

12 Skin-Tumor Initiation-Promotion Assays

- 13 Results from numerous studies indicate that acute dermal exposure to benzo[a]pyrene
- 14 induces skin tumors in mice when followed by repeated exposure to a potent tumor promoter
- 15 (Weyand et al., 1992; Cavalieri et al., 1991; Rice et al., 1985; El-Bayoumy et al., 1982; Lavoie et al.,
- 16 1982; Raveh et al., 1982; Cavalieri et al., 1981; Slaga et al., 1980; Wood et al., 1980; Slaga et al.,
- 17 <u>1978; Hoffmann et al., 1972</u>). The typical exposure protocol in these studies involved the
- 18 application of a single dose of benzo[a]pyrene (typically ≥ 20 nmol per mouse) to dorsal skin of mice
- 19 followed by repeated exposure to a potent tumor promoter, such as 12-O-tetradecanoylphorbol-
- 20 13-acetate (TPA).

21 Carcinogenicity Bioassays

- 22 Repeated application of benzo[a]pyrene to skin (in the absence of exogenous promoters)
- 23 has been variously demonstrated to induce skin tumors in mice, rats, rabbits, and guinea pigs
- 24 (IARC, 2010; IPCS, 1998; ATSDR, 1995; IARC, 1983, 1973). Mice have been most extensively
- 25 studied, presumably because of early evidence that they may be more sensitive than other animal
- 26 species, but comprehensive comparison of species differences in sensitivity to lifetime dermal
- 27 exposure are not available. Early studies of complete dermal carcinogenicity in other species (rats.
- 28 hamsters, guinea pigs, and rabbits) have several limitations that make them not useful for dose-
- 29 response analysis [see <u>IARC (1973)</u> for descriptions of studies]. The limitations in these studies
- 30 include inadequate reporting of the amount of benzo[a]pyrene applied, use of the carcinogen
- 31 benzene as a vehicle, and less-than-lifetime exposure duration.
- 32 This section discusses complete carcinogenicity bioassays in mice that provide the best
- 33 available dose-response data for skin tumors caused by repeated dermal exposure to
- 34 benzo[a]pyrene (Sivak et al., 1997; Higginbotham et al., 1993; Albert et al., 1991; Grimmer et al.,
- 35 1984; Habs et al., 1984; Grimmer et al., 1983; Habs et al., 1980; Schmähl et al., 1977; Schmidt et al.,
- 36 <u>1973; Roe et al., 1970; Poel, 1963, 1959</u>). Early studies of benzo[a]pyrene complete carcinogenicity

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR OUOTE

- 1 in mouse skin (<u>Wynder and Hoffmann, 1959</u>; <u>Wynder et al., 1957</u>) are not further described herein,
- 2 because the investigators applied solutions of benzo[a]pyrene at varying concentrations on the
- 3 skin, but did not report volumes applied. As such, applied doses in these studies cannot be
- 4 determined. Other complete carcinogenicity mouse skin tumor bioassays with benzo[a]pyrene are
- 5 available, but these are not described further in this review, because: (1) they only included one
- 6 benzo[a]pyrene dose level (<u>e.g., Emmett et al., 1981</u>) or only dose levels inducing 90–100%
- 7 incidence of mice with tumors (e.g., <u>Wilson and Holland, 1988</u>; <u>Warshawsky and Barkley, 1987</u>) and
- 8 thus provide no information about the shape of the dose-response relationship; (2) they used a
- 9 1-time/week (e.g., Nesnow et al., 1983) or 1-time every 2 weeks (e.g., Levin et al., 1977) exposure
- 10 protocol, which is less useful for extrapolating to daily human exposure; or (3) they used a vehicle
- 11 demonstrated to interact with or enhance benzo[a]pyrene carcinogenicity (<u>Bingham and Falk</u>,
- 12 <u>1969</u>).
- 13 <u>Poel (1959)</u> applied benzo[a]pyrene in toluene to shaved interscapular skin of groups of
- 13–56 male C57L mice at doses of 0, 0.15, 0.38, 0.75, 3.8, 19, 94, 188, 376, or 752 μg, 3 times/week
- 15 for up to 103 weeks or until the appearance of a tumor by gross examination (3 times weekly).
- 16 Some organs (not further specified) and interscapular skin in sacrificed mice were examined
- 17 histologically. With increasing dose level, the incidence of mice with skin tumors increased and the
- time of tumor appearance decreased (see Table D-15). Doses >3.8 μg were associated with 100%
- 19 mortality after increasingly shorter exposure periods, none greater than 44 weeks. <u>Poel (1959)</u> did
- 20 not mention the appearance of exposure-related tumors in tissues other than interscapular skin.

1
т
2

Table D-15. Skin tumor incidence and time of appearance in male C57L micedermally exposed to benzo[a]pyrene for up to 103 weeks

Dose (µg)ª	Incidence of mice with gross skin tumors	Time o first tumor appearance (wks)	Incidence of mice with epidermoid carcinoma ^b	Length of exposure period (wks)
0 (toluene)	0/33 (0%)	-	0/33 (0%)	92
0.15	5/55 (9%)	42-44 ^c	0/55 (0%)	98
0.38	11/55 (20%)	24	2/55 (4%)	103
0.75	7/56 (13%)	36	4/56 (7%)	94
3.8	41/49 (84%)	21–25	32/49 (65%)	82
19	38/38 (100%)	11-21	37/38 (97%)	25-44 ^c
94	35/35 (100%)	8-19	35/35 (100%)	22-43
188	12/14 (86%)	9–18	10/14 (71%)	20-35
376	14/14 (100%)	4–15	12/14 (86%)	19–35
752	13/13 (100%)	5-13	13/13 (100%)	19–30

^aIndicated doses were applied to interscapular skin 3 times/week for up to 103 weeks or until time of appearance of a grossly detected skin tumor.

^bCarcinomas were histologically confirmed.

^cRanges reflect differing information in Tables 4 and 6 of <u>Poel (1959)</u>.

Source: <u>Poel (1959)</u>.

<u>Poel (1963)</u> applied benzo[a]pyrene in a toluene vehicle to shaved interscapular skin of groups of 14–25 male SWR, C3HeB, or A/He mice 3 times/week at doses of 0, 0.15, 0.38, 0.75, 3.8, 13 19.0, 94.0, or 470 µg benzo[a]pyrene per application, until mice died or a skin tumor was observed. 14 Time ranges for tumor observations were provided, but not times of death for mice without tumors, 15 so it was not possible to evaluate differential mortality among all dose groups or the length of 16 exposure for mice without tumors. With increasing dose level, the incidence of mice with skin 17 tumors increased and the time of tumor appearance decreased (Table D-16). The lowest dose level 18 did not induce an increased incidence of mice with skin tumors in any strain, but strain differences 19 in susceptibility were evident at higher dose levels. SWR and C3HeB mice showed skin tumors at 20 doses $\geq 0.38 \ \mu g$ benzo[a]pyrene, whereas AH/e mice showed tumors at doses $\geq 19 \ \mu g$ 21 benzo[a]pyrene (Table D-16). Except for metastases of the skin tumors to lymph nodes and lung, 22 Poel (1963) did not mention the appearance of exposure-related tumors in tissues other than 23 interscapular skin.

Table D-16. Skin tumor incidence and time of appearance in male SWR, C3HeB, and A/He mice dermally exposed to benzo[a]pyrene for life or until a skin tumor was detected

	SWR Mice		C3HeB	Mice	A/He Mice	
Dose (µg) ^a	Tumor incidence ^b	Time of tumor appearance (wks)	Tumor incidence ^b	Time of tumor appearance (wks)	Tumor incidence ^b	Time of tumor appearance (wks)
0 (toluene)	0/20 (0%)	-	0/17 (0%)	-	0/17 (0%)	-
0.15	0/25 (0%)	-	0/19 (0%)	-	0/18 (0%)	-
0.38	2/22 (9%)	55	3/17 (18%)	81-93	0/19 (0%)	-
0.75	15/18 (83%)	25-72	4/17 (24%)	51-93	0/17 (0%)	-
3.8	12/17 (70%)	25-51	11/18 (61%)	35-73	0/17 (0%)	-
19.0	16/16 (100%)	12-28	17/17 (100%)	13-32	21/23 (91%)	21-40
94.0	16/17 (94%)	9–17	18/18 (100%)	10-22	11/16 (69%)	14-31
470.0	14/14 (100%)	5-11	17/17 (100%)	4–19	17/17 (100%)	4-21

^aIndicated doses were applied 3 times/week for life or until a skin tumor was detected. Mice were 10–14 weeks old at initial exposure.

^bIncidence of mice exposed ≥10 weeks with a skin tumor.

Source: <u>Poel (1963)</u>.

Roe et al. (1970) treated groups of 50 female Swiss mice with 0 (acetone vehicle), 0.1, 0.3, 1, 3, or 9 µg benzo[a]pyrene applied to the shaved dorsal skin 3 times/week for up to 93 weeks; all 13 surviving mice were killed and examined for tumors during the following 3 weeks. The dorsal skin 14 of an additional control group was shaved periodically but was not treated with the vehicle. Mice 15 were examined every 2 weeks for the development of skin tumors at the site of application. 16 Histologic examinations included: (1) all skin tumors thought to be possibly malignant; (2) lesions 17 of other tissues thought to be neoplastic; and (3) limited nonneoplastic lesions in other tissues. As 18 shown in Table D-17, markedly elevated incidences of mice with skin tumors were only found in 19 the two highest dose groups (3 and 9 μ g), compared with no skin tumors in the control groups. 20 Malignant skin tumors (defined as tumors with invasion or penetration of the panniculus carnosus 21 muscle) were detected in 4/41 and 31/40 mice in the 3- and $9-\mu g$ groups, respectively, surviving to 22 at least 300 days. Malignant lymphomas were detected in all groups, but the numbers of cases were 23 not elevated compared with expected numbers after adjustment for survival differences. Lung 24 tumors were likewise detected in control and exposed groups at incidences that were not 25 statistically different.

1 2 3

	Cumulative number of mice with skin tumor/survivors			Skin tumor	Malignant lymphoma	Lung tumor			
Dose (µg) ^a	200 d	300 d	400 d	500 d	600 d	700 d	incidence ^b	incidence ^c	incidence ^c
No treatment	0/48	0/43	0/40	0/31	0/21	0/0	0/43 (0%)	19/44 (43%)	12/41 (29%)
Acetone	0/49	0/47	0/45	0/37	0/23	0/0	0/47 (0%)	12/47 (26%)	10/46 (22%)
0.1	0/45	1/42	1/35	1/31	1/22	1/0	1/42 (2%)	11/43 (26%)	10/40 (25%)
0.3	0/46	0/42	0/37	0/30	0/19	0/0	0/42 (0%)	10/43 (23%)	13/43 (30%)
1	0/48	0/43	0/37	1/30	1/18	1/0	1/43 (2%)	16/44 (36%)	15/43 (35%)
3	0/47	0/41	1/37	7/35	8/24	8/0	8/41 (20%)	23/42 (55%)	12/40 (30%)
9	0/46	4/40	21/32	28/21	33/8	34/0	34/46 (74%)	9/40 (23%)	5/40 (13%)

Table D-17. Tumor incidence in female Swiss mice dermally exposed to benzo[a]pyrene for up to 93 weeks

3 4

5

6

7

8

9

10

11

1

2

^aDoses were applied 3 times/week for up to 93 weeks to shaved dorsal skin.

^bNumerator: number of mice detected with a skin tumor. Denominator: number of mice surviving to 300 days for all groups except the highest dose group. For the highest dose group (in which skin tumors were first detected between 200 and 300 days), the number of mice surviving to 200 days was used as the denominator.

^cNumerator: number of mice detected with specified tumor. Denominator: number of mice surviving to 300 days unless a tumor was detected earlier, in which case, the number dying before 300 days without a tumor was subtracted from the number of animals reported to have been examined.

12 Source: <u>Roe et al. (1970)</u>.

13

14 Schmidt et al. (1973) dermally administered benzo[a]pyrene in acetone to female NMRI 15 mice (100/group) and female Swiss mice. Benzo[a]pyrene was applied to the shaved dorsal skin 16 twice weekly at doses of 0, 0.05, 0.2, 0.8, or 2 μ g until spontaneous death occurred or until an 17 advanced carcinoma was observed. Skin carcinomas were identified by the presence of crater-18 shaped ulcerations, infiltrative growth, and the beginning of physical wasting (i.e., cachexia). 19 Necropsy was performed for all animals, and histopathological examination of the dermal site of 20 application and any other tissues with gross abnormalities was conducted. Skin tumors were 21 observed at the two highest doses in both strains of female mice (see Table D-18), with induction 22 periods of 53.0 and 75.8 weeks for the 0.8 and 2.0 µg NMRI mice and 57.8 and 60.7 weeks for the 23 Swiss mice, respectively. The authors indicated that the latency period for tumor formation was 24 highly variable, and significant differences among exposure groups could not be identified, but no 25 further timing information was available, including overall survival. Carcinoma was the primary 26 tumor type seen after lifetime application of benzo[a]pyrene to mouse skin.

Dose (µg) ^a	Skin tumor incidence (all types)	Incidence of papilloma	Incidence of carcinoma
Female NMRI mice			
0 (acetone)	0/100 (0%)	0/100 (0%)	0/100 (0%)
0.05	0/100 (0%)	0/100 (0%)	0/100 (0%)
0.2	0/100 (0%)	0/100 (0%)	0/100 (0%)
0.8	2/100 (2%)	0/100 (0%)	2/100 (2%)
2	30/100 (30%)	2/100 (2%)	28/100 (28%)
Female Swiss mice			
0 (acetone)	0/80 (0%)	0/80 (0%)	0/80 (0%)
0.05	0/80 (0%)	0/80 (0%)	0/80 (0%)
0.2	0/80 (0%)	0/80 (0%)	0/80 (0%)
0.8	5/80 (6%)	0/80 (0%)	5/80 (6%)
2	45/80 (56%)	3/80 (4%)	42/80 (52%)

Table D-18. Skin tumor incidence in female NMRI and Swiss mice dermally exposed to benzo[a]pyrene

Source: Schmidt et al. (1973).

1

2

^aMice were exposed until natural death or until they developed a carcinoma at the site of application; indicated doses were applied 2 times/week to shaved skin of the back.

9 Schmähl et al. (1977) applied benzo[a]pyrene 2 times/week to the shaved dorsal skin of female NMRI mice (100/group) at doses of 0, 1, 1.7, or 3 µg in 20 µL acetone. The authors reported 11 that animals were observed until natural death or until they developed a carcinoma at the site of 12 application. The effective numbers of animals at risk was about 80% of the nominal group sizes, 13 which the authors attributed to autolysis; no information was provided concerning when tumors 14 appeared in the relevant groups, how long treatment lasted in each group, or any times of death. 15 Necropsy was performed on all mice and the skin of the back, as well as any organs that exhibited macroscopic changes, were examined histopathologically. The incidence of all types of skin tumors 16 17 was increased in a dose-related manner compared to controls (see Table D-19). Carcinoma was the 18 primary tumor type observed following chronic dermal exposure to benzo[a]pyrene, and skin

19 papillomas occurred infrequently. Dermal sarcoma was not observed.

³ 4 5 6 7 8 9 10

Dose (µg) ^a	Skin tumor incidence (all types)	Incidence of papilloma	Incidence of carcinoma
0	1/81 (1%) ^b	0/81 (0%)	0/81 (0%)
1	11/77 (14%)	1/77 (1%)	10/77 (13%)
1.7	25/88 (28%)	0/88 (0%)	25/88 (28%)
3	45/81 (56%)	2/81 (3%)	43/81 (53%)

Table D-19. Skin tumor incidence in female NMRI mice dermally exposed to benzo[a]pyrene

3 4

5 6

1

2

^aMice were exposed until natural death or until they developed a carcinoma at the site of application; indicated doses were applied 2 times/week to shaved skin of the back. ^bSarcoma.

7 8 Source: <u>Schmähl et al. (1977)</u>.

9 10 Habs et al. (1980) applied benzo[a]pyrene to the shaved interscapular skin of female NMRI 11 mice (40/group) at doses of 0, 1.7, 2.8, or 4.6 μ g in 20 μ L acetone twice weekly, from 10 weeks of 12 age until natural death or gross observation of infiltrative tumor growth. Latency of tumors, either 13 as time of first appearance or as average time of appearance of tumors, was not reported. Necropsy 14 was performed on all animals, and the dorsal skin, as well as any organs showing gross alterations 15 at autopsy, was prepared for histopathological examination. Age-standardized mortality rates, 16 using the total population of the experiment as the standard population, were used to adjust tumor 17 incidence findings in the study. Benzo[a]pyrene application was associated with a statistically 18 significant increase in the incidence of skin tumors at each dose level (see Table D-20).

19Table D-20. Skin tumor incidence in female NMRI mice dermally exposed to20benzo[a]pyrene

Dose (µg) ^a	Skin tumor incidence	Age-standardized tumor incidence ^b
0 (acetone)	0/35 (0%)	0%
1.7	8/34 (24%)	24.8%
2.8	24/35 (68%)	89.3%
4.6	22/36 (61%)	91.7%

21

^aMice were exposed until natural death or until they developed a carcinoma at the site of application; indicated
 doses were applied 2 times/week to shaved skin of the back.

^bMortality data of the total study population were used to derive the age-standardized tumor incidence.

2526 Source: <u>Habs et al. (1980)</u>.

27

<u>Grimmer et al. (1984)</u> and <u>Grimmer et al. (1983)</u> applied benzo[a]pyrene (in 0.1 mL of a
 1:3 solution of acetone:dimethyl sulfoxide [DMSO]) to the interscapular skin of female CFLP mice

- 1 (65–80/group) 2 times/week for 104 weeks. Doses were 0, 3.9, 7.7, and 15.4 μ g in the 1983
- 2 experiment, and 0, 3.4, 6.7, and 13.5 µg in the 1984 experiment. Mice were observed until
- 3 spontaneous death, unless an advanced tumor was observed or if animals were found moribund.
- 4 Survival information was not provided; incidences reflect the number of animals placed on study.
- 5 Necropsy was performed on all mice. Histopathological examination of the skin and any other
- 6 organ showing gross abnormalities was performed. Chronic dermal exposure to benzo[a]pyrene
- 7 produced a dose-related increase in skin tumor incidence and a decrease in tumor latency (see
- 8 Table D-21). Carcinoma was the primary tumor type observed and a dose-response relationship
- 9 was evident for carcinoma formation and incidence of all types of skin tumors.

10Table D-21. Skin tumor incidence and time of appearance in female CFLP mice11dermally exposed to benzo[a]pyrene for 104 weeks

Dose (µg)ª	Skin tumor incidence (all types)	Incidence of papilloma	Incidence of carcinoma	Tumor appearance (Wks)
<u>Grimmer et al. (1983</u>	<u>3)</u>			
0 (1:3 Solution of acetone:DMSO)	0/80 (0%)	0/80 (0%)	0/80 (0%)	-
3.9	22/65 (34%)	7/65 (11%)	15/65 (23%)	74.6 ± 16.78 ^b
7.7	39/64 (61%)	5/64 (8%)	34/64 (53%)	60.9 ± 13.90
15.4	56/64 (88%)	2/64 (3%)	54/64 (84%)	44.1 ± 7.66
<u>Grimmer et al. (1984</u>	<u>4)</u>			
0 (1:3 Solution of acetone:DMSO)	0/65 (0%)	0/65 (0%)	0/65 (0%)	-
3.4	43/64 (67%)	6/64 (9%)	37/64 (58%)	61 (53–65) [°]
6.7	53/65 (82%)	8/65 (12%)	45/65 (69%)	47 (43–50)
13.5	57/65 (88%)	4/65 (6%)	53/65 (82%)	35 (32–36)

12

- ^aIndicated doses were applied twice/week to shaved skin of the back.
- ^bMean ± SD.
- 15 ^cMedian with 95% CI.
- 16
- 17 Sources: <u>Grimmer et al. (1984)</u> and <u>Grimmer et al. (1983)</u>.
- 18

 19
 Habs et al. (1984) applied benzo[a]pyrene (in 0.01 mL acetone) to the shaved interscapular

 20
 applied benzo[a]pyrene (in 0.01 mL acetone) to the shaved interscapular

- 20 skin of female NMRI mice at doses of 0, 2, or 4 μ g, 2 times/week for life. Animals were observed
- 21 twice daily until spontaneous death, unless an invasive tumor was observed. All animals were
- 22 necropsied and histopathological examination was performed on the dorsal skin and any other
- 23 organ with gross abnormalities. Chronic dermal exposure to benzo[a]pyrene did not affect body
- weight gain, but appeared to reduce survival at the highest dose with mean survival times of 691,
- 25 648, and 528 days for the 0, 2, and 4 μ g/day groups, respectively. The total length of exposure for

- 1 each group was not reported, but can be inferred from the survival data. Latency also was not
- 2 reported. Benzo[a]pyrene application resulted in a dose-related increase the incidence of total skin
- 3 tumors and skin carcinomas (see Table D-22). Hematopoietic tumors (at 6/20, 3/20, and 3/20)
- 4 and lung adenomas (at 2/20, 1/20, and 0/20) were observed in the controls and in the
- 5 benzo[a]pyrene treatment groups, but did not appear to be treatment related according to the
- 6 study authors.

7 8

Table D-22. Skin tumor incidence in female NMRI mice dermally exposed to benzo[a]pyrene for life

Dose (µg) ^a	Skin tumor incidence (all types)	Incidence of papilloma	Incidence of carcinoma	Mean survival time, days (95% Cl)
0 (Acetone)	0/20 (0%)	0/20 (0%)	0/20 (0%)	691 (600–763)
2	9/20 (45%)	2/20 (10%)	7/20 (35%)	648 (440–729)
4	17/20 (85%)	0/20 (0%)	17/20 (85%)	528 (480–555)

9 10

11

12

14

^aMice were exposed until natural death or until they developed an invasive tumor at the site of application; indicated doses were applied 2 times/week to shaved interscapular skin.

13 Source: Habs et al. (1984).

15 Groups of 23–27 female Ah-receptor-responsive Swiss mice were treated on a shaved area 16 of dorsal skin with 0, 1, 4, or 8 nmol (0, 0.25, 1, or 2 μ g/treatment) benzo[a]pyrene (>99% pure) in 17 acetone 2 times weekly for 40 weeks (Higginbotham et al., 1993). Surviving animals were 18 sacrificed 8 weeks later. Complete necropsies were performed, and tissues from the treated area, 19 lung, liver, kidney, spleen, urinary bladder, ovary, and uterus were harvested for histopathologic 20 examination. Histopathologic examination was performed on tissues from the treated area, lungs, 21 liver, kidneys, spleen, urinary bladder, uterus, and ovaries, as well as any other grossly abnormal 22 tissue. Lung adenomas occurred in each group (1/27, 2/24, 1/23, 1/23), and other tumors were 23 noted in isolated mice (i.e., malignant lymphoma [spleen] in one low-dose and one mid-dose mouse; 24 malignant lymphoma with middle organ involvement in one high-dose mouse; and hemangioma 25 [liver] in one mid-dose mouse) and were not considered dose related. In addition, benzo[a]pyrene 26 showed no skin tumors under the conditions of this bioassay. 27 Sivak et al. (1997) designed a study to compare the carcinogenicity of condensed asphalt 28 fumes (including benzo[a]pyrene and other PAHs) with several doses of benzo[a]pyrene alone. For 29 the purposes of this assessment, the exposure groups exposed to PAH mixtures are not discussed. 30 Groups of 30 male C3H/HeJ mice were treated dermally twice/week to 0, 0.0001, 0.001, or 0.01% 31 $(0, 0.05, 0.5, \text{ or } 5 \mu \text{g})$ benzo[a]pyrene in a 50 μ L volume of cyclohexanone/acetone (1:1) for 32 104 weeks beginning at 8 weeks of age. Mice dying during the exposure period or sacrificed at the 33 24-month termination were necropsied; mice with skin tumors that persisted for 4 consecutive

> This document is a draft for review purposes only and does not constitute Agency policy. D-69 DRAFT-DO NOT CITE OR OUOTE

- 1 weeks with diameters >3 cm were sacrificed before the study termination and also necropsied.
- 2 Skin samples and any grossly observed lesions were subjected to histopathological examination.
- 3 Carcinomas and sarcomas were referred to as carcinomas, whereas papillomas, keratoacanthomas,
- 4 and fibromas were referred to as papillomas. The incidences of mice with skin tumors and mean
- 5 survival times for each group are shown in Table D-23. All high-dose mice died before the final
- 6 sacrifice, and 80% showed scabs and sores at the site of application. The time of first tumor
- 7 appearance was not reported for the tumor-inducing groups, but from a plot of the tumor incidence
- 8 in the high-dose group versus treatment days, an estimate of ~320 days (~43 weeks) is obtained
- 9 for this group. The extent of deaths prior to 1 year in each group was not provided, so the reported
- 10 incidence may underestimate the tumor rate of animals exposed long enough to develop tumors.
- 11 However, the crude skin tumor rates show an increasing trend in incidence.

12Table D-23. Skin tumor incidence in male C3H/HeJ mice dermally exposed to13benzo[a]pyrene for 24 months

Dose (µg)ª	Skin tumor incidence (all types) ^b	Number of mice that died before final sacrifice	Mean survival time (days)
0 cyclohexanone/acetone (1:1)	0/30 (0%)	19	607
0.05	0/30 (0%)	15	630
0.5	5/30 (20%)	15	666
5.0	27/30 (90%)	30	449

14

^aIndicated doses were applied twice/week to shaved dorsal skin.

^bNumber of skin tumor-bearing mice. In the high-dose group, 1 papilloma and 28 carcinomas were detected; in
 the 0.5 μg group, 2 papillomas and 3 carcinomas were detected.

18

19 Source: <u>Sivak et al. (1997)</u>.

20

To examine dose-response relationships and the time course of benzo[a]pyrene-induced
skin damage, DNA adduct formation, and tumor formation, groups of 43–85 female Harlan mice
were treated dermally with 0, 16, 32, or 64 µg of benzo[a]pyrene in 50 µL of acetone once per week
for 29 weeks (Albert et al., 1991). Interscapular skin of each mouse was clipped 3 days before the
first application and every 2 weeks thereafter. Additional groups of mice were treated for 9 weeks
with 0, 8, 16, 32, or 64 µg radiolabeled benzo[a]pyrene to determine BPDE-DNA adduct formation
in the epidermis at several time points (1, 2, 4, and 9 weeks). Tumor formation was monitored only

in the skin.

29 No tumors were present in vehicle-treated or untreated control mice. In exposed groups,

30 incidences of mice with skin tumors were not reported, but time-course data for cumulative

31 number of tumors per mouse, corrected for deaths from nontumor causes, were reported. Tumors

32 began appearing after 12–14 weeks of exposure for the mid- and high-dose groups and at 18 weeks

- 1 for the low-dose group. At study termination (35 weeks after start of exposure), the mean number
- 2 of tumors per mouse was approximately one per mouse in the low- and mid-dose groups and eight
- 3 per mouse in the high-dose group, indicating that most, if not all, mice in each exposure group
- 4 developed skin tumors and that the tumorigenic response was greatest in the highest dose group.
- 5 The majority of tumors were initially benign, with an average time of 8 weeks for progression from
- 6 benign papillomas to malignant carcinomas. Epidermal damage occurred in a dose-related manner
- 7 (more severe in the high-dose group than in the low- and mid-dose groups) and included
- 8 statistically significant increases (compared with controls) in: [³H]-thymidine labeling and mitotic
- 9 indices; incidence of pyknotic and dark cells (signs of apoptosis); and epidermal thickness. Only a
- 10 minor expansion of the epidermal cell population was observed. In the high-dose group, indices of
- 11 epidermal damage increased to a plateau by 2 weeks of exposure. The early time course of
- 12 epidermal damage indices was not described in the low- or mid-dose groups, since data for these
- 13 endpoints were only collected at 20, 24, and 30 weeks of exposure. An increased level of BPDE-
- 14 DNA adducts, compared with controls, was apparent in all exposed groups after 4 weeks of
- 15 exposure in the following order: $64 > 32 > 16 > 8 \mu g$ /week. The time-course data indicate that
- 16 benzo[a]pyrene-induced increases in epidermal damage indices and BPDE-DNA adducts preceded
- 17 the appearance of skin tumors.

18 D.4.4. Reproductive and Developmental Toxicity Studies

19 *Oral*

20 In a study evaluating the combined effects of dibutyl phthalate and benzo[a]pyrene on the 21 male reproductive tract, Chen et al. (2011) administered benzo[a]pyrene alone in corn oil via daily 22 gavage at 5 mg/kg-day to 30 male Sprague-Dawley rats (28–30 days old); a group of 30 rats 23 received only vehicle. Body weight was measured weekly. Groups of 10 rats per group were 24 sacrificed after 4, 8, and 12 weeks of exposure. At sacrifice, blood was collected for analysis of 25 serum testosterone levels by radioimmunoassay. The testes and epididymides were weighed, and 26 the right testis and epididymis were examined microscopically. The left epididymis was used for 27 evaluation of sperm parameters (sperm count and morphology). Oxidative stress, as measured by 28 superoxide dismutase (SOD), glutathione peroxidase, and catalase activity and malondialdehyde 29 levels, was evaluated in the left testis of each rat. Exposure to benzo[a]pyrene did not affect body 30 weight, and no signs of toxicity were seen. Testes and epididymides weights of exposed rats were 31 similar to controls at all time points. Sperm counts and percent abnormal sperm were also similar 32 to controls at 4 and 8 weeks of exposure, but were significantly (p < 0.05) different from controls 33 after 12 weeks of exposure to benzo[a]pyrene (29% decrease in sperm count and 54% increase in 34 percent abnormal sperm). Serum testosterone levels were significantly increased relative to 35 controls after 4 weeks (>2-fold higher) and 8 weeks (\sim 1.5-fold higher) of benzo[a]pyrene exposure, 36 but were comparable to controls after 12 weeks. Histopathology evaluation of the testes revealed 37 irregular and disordered arrangement of germ cells in the seminiferous tubules of treated rats; the

1 authors did not report incidence or severity of these changes. Among measures of testicular

2 oxidative stress, only catalase activity was significantly affected by benzo[a]pyrene exposure,

3 showing an increase of ~50% after 12 weeks of exposure. These data suggest a LOAEL of 5 mg/kg-

4 day (the only dose tested) for decreased sperm count, increased percentage of abnormal sperm,

5 altered testosterone levels, and histopathology changes in the testes following 13 weeks of

exposure.
Chung et al. (2011) evaluated the effects of low-dose benzo[a]pyrene exposure on
spermatogenesis and the role of altered steroidogenesis on the sperm effects. Groups of
20-25 male Sprague-Dawley rats (8 weeks old) were given daily gavage doses of 0, 0.001, 0.01, or

10 0.1 mg/kg-day benzo[a]pyrene in DMSO for 90 consecutive days. At the end of exposure, the

11 animals were sacrificed for removal of the pituitary, testes, and epididymides, and collection of

12 serum and testicular interstitial fluid. Subgroups of each exposure group were used for various

13 analyses. Serum levels of testosterone and luteinizing hormone (LH) were measured, as was

14 testosterone concentration in the interstitial fluid (ELISA). Body and testes weights were recorded.

15 Sections of the testis were analyzed for apoptotic germ cells using the terminal deoxynucleotidyl

16 transferase dUTP nick end labeling (TUNEL) assay. Evaluation of the epididymis included

17 histopathology as well as measurement of caput and caudal epididymal tubule diameters. In

18 addition, sperm were isolated from the cauda epididymis for analysis of sperm number and

19 motility, acrosomal integrity, and immunocytochemistry for ADAM3 (a disintegrin and

20 metallopeptidase domain 3; a sperm surface protein associated with fertilization).

21 Levdig cells were isolated from the right testis of animals from each dose group and 22 cultured with or without human chorionic gonadotropin (hCG) or dibutyl cyclic adenosine 23 monophosphate (dbcAMP) to evaluate testosterone production (<u>Chung et al., 2011</u>). Cultured 24 Leydig cells were also subjected to western blot and immunocytochemistry analyses to evaluate 25 changes in the expression of genes involved in steroidogenesis (steroidogenic acute regulatory 26 protein, p450 side-chain cleavage, and 3β -hydroxysteroid dehydrogenase isomerase). Finally, 27 pituitary gland extracts were evaluated for LH protein content using immunohistochemistry. Data 28 were reported graphically and analyzed by analysis of variance (ANOVA) followed by Duncan's post 29 hoc test, using a *p*-value cutoff of 0.05 for significant difference.

At termination of exposure, body weights of treated animals were similar to controls, as
 were absolute testes weights (<u>Chung et al., 2011</u>). Testosterone concentrations in both serum and
 testicular interstitial fluid were significantly reduced at the high dose of benzo[a]pyrene

33 (0.1 mg/kg-day); based on visual inspection of the data, the mean serum concentration in this

34 group was $\sim 20\%$ of the control and the mean interstitial fluid concentration was $\sim 60\%$ of the

35 control (n = 9 animals/dose for these evaluations). In addition, baseline production of testosterone

by cultured Leydig cells was significantly decreased (~50% based on data shown graphically) at

37 0.1 mg/kg-day. Both hCG- and dbcAMP-stimulated testosterone production measurements were

lower (~60% lower than controls) in Leydig cells from rats exposed to either 0.01 or 0.1

1 mg/kg-day. Serum LH was significantly increased at both 0.01 and 0.1 mg/kg-day (~65–75%

- 2 higher than controls based on visual inspection of graphs); concordant increases in the intensity of
- 3 LH immunoreactivity were evident in pituitary extracts from exposed rats.
- 4 Dose-related increases in the number of apoptotic germ cells, primarily spermatogonia,
- 5 were demonstrated both via TUNEL assay and caspase-3 staining; the number per tubule was
- 6 significantly increased over control at all doses (<u>Chung et al., 2011</u>). Numbers of sperm were lower
 7 in the treatment groups, but did not differ significantly from the control group. However, sperm
- 7 in the treatment groups, but did not differ significantly from the control group. However, sperm
- 8 motility was significantly reduced in exposed groups compared with controls. The authors did not
- 9 report sperm motility for all dose groups, but showed only the significant decrease in the
- 10 0.01 mg/kg-day mid-dose group (~30% lower than controls based on visual inspection of graph).
- 11 Acrosomal integrity (measured by LysoTracker staining) was diminished in sperm heads from
- 12 exposed rats; likewise, the expression of ADAM3 protein was downregulated by exposure to
- 13 benzo[a]pyrene; the authors reported a significant decrease in the 0.01 mg/kg-day group, but did
- 14 not provide details of the analysis of other exposure groups. Histopathology examination of the
- 15 caput and cauda epididymides revealed dose-related decreases in both cauda and caput tubule
- 16 diameters that were statistically significantly lower than controls at all doses (~10–30% smaller
- 17 mean diameter than control based on measurements of 175 tubules collected from five samples in
- 18 each group; data reported graphically).
- 19 Statistically significant effects observed at the lowest dose (0.001 mg/kg-day) of 20 benzo[a]pyrene in this study included decreased caput and cauda epididymal tubule diameters 21 $(\sim 10-15\%)$ lower than controls) and increased numbers of apoptotic germ cells (\sim twofold higher 22 than controls) by TUNEL assay (<u>Chung et al., 2011</u>). The authors reported that "sperm motility was 23 significantly reduced in the benzo[a]pyrene-exposed groups in comparison to that of the control" 24 but provided quantitative data only for the middle dose group, which exhibited a $\sim 30\%$ decrease in 25 percent motile sperm. No statistically significant decrease in sperm count was reported at any 26 dose. The middle dose (0.01 mg/kg-day) is considered to be a LOAEL based on reduced sperm 27 motility.

28 Gao et al. (2011) examined effects of benzo[a]pyrene exposure via on cervical cell 29 morphology. Female ICR mice (18-22 g) were exposed to doses of 0, 2.5, 5, or 10 mg/kg twice per 30 week for 14 weeks, either by gavage or by intraperitoneal (i.p.) injection (for this review, only oral 31 results are reported). After adjustment for equivalent continuous dosing (2/7 days/week), the 32 equivalent daily doses are estimated to be 0.7, 1.4, and 2.9 mg/kg-day. Both vehicle (sesame oil) 33 and untreated control groups were maintained. Body weights were determined weekly. Groups of 34 26 mice per dose per exposure route were sacrificed at the end of exposure for evaluation of 35 cervical weight and histopathology. Additional groups of 10 mice were exposed for 14 weeks and 36 used for determination of lipid peroxidation (malondialdehyde and glutathione-S-transferase 37 levels) and CYP1A1 activity (EROD) in both liver and cervix, as well as creatine kinase activity, AST 38 activity, and IL-6 levels in cervix and serum.

1 Mortality was observed in all exposure groups with the exception of the low-dose oral

- 2 exposure group; the authors did not indicate the timing or causes of death (<u>Gao et al., 2011</u>). There
- 3 were no control deaths. Mortality incidences in the oral exposure groups (low to high dose) were
- 4 0/26 (untreated control), 0/26 (vehicle control), 0/26, 1/36, and 2/26. Benzo[a]pyrene treatment
- 5 resulted in dose-dependent decreases in body weight gain. In the high-dose group of both
- 6 treatments, body weight began to decline after ~7 weeks of exposure. Based on visual examination
- 7 of data presented graphically, mean terminal body weights in the low-, mid-, and high-dose oral
- 8 exposure groups were \sim 10, 15, and 30% lower (respectively) than the vehicle control mean. The
- 9 untreated control mean body weight for the oral exposure group was similar to the vehicle control
- 10 mean body weight. Cervical weight as a function of body weight was not affected by oral
- 11 benzo[a]pyrene exposure. Microscopic examination of the cervix revealed increased incidences of
- 12 epithelial hyperplasia and inflammatory cells in the cervix of all groups of exposed mice, and
- 13 atypical hyperplasia of the cervix in mice exposed to 1.4 or 2.9 mg/kg -day benzo[a]pyrene.
- 14 Statistical analysis of the findings was conducted, but was poorly reported in the publication.
- 15 Table D-24 shows the incidences in the oral exposure groups, along with the results of Fisher's
- 16 exact tests performed for this review.

17Table D-24. Mortality and cervical histopathology incidences in female ICR18mice exposed to benzo[a]pyrene via gavage for 14 weeks

	Dose (mg/kg-d)				
Endpoint	Untreated control	Vehicle control	0.7	1.4	2.9
Mortality	0/26	0/26	0/26	1/26	2/26
Cervical epithelial hyperplasia	0/26	0/26	4/26	6/25*	7/24*
Atypical hyperplasia of cervix	0/26	0/26	0/26	2/25	4/24*
Inflammatory cells in cervix	2/26	3/26	10/26*	12/25*	18/24*

¹⁹

*Significantly different from vehicle control by Fisher's exact test performed for this review (one-sided p < 0.05).

20 21

22 Source: <u>Gao et al. (2011)</u>.

23 24 Levels of malondialdehyde in both the cervix and liver were significantly higher than 25 controls in all dose groups of animals treated by either oral (1.5-2-fold higher in the cervix and26 \sim 3–7-fold higher in the liver after oral exposure, *p* < 0.05) or i.p. exposure. Concomitant decreases 27 in GST activity (\sim 15–50% lower than controls in the cervix and \sim 30–60% lower in the liver after 28 oral exposure, p < 0.05) were also observed at all doses and in both organs and both treatments. 29 EROD activity was increased in the cervix ($\sim 4 - \sim 12$ -fold) and liver ($\sim 12 - \sim 35$ -fold) of all exposure 30 groups. Measurement of creatine kinase and AST activity in the cervix and serum also showed 31 significant increases at all doses and after both exposures ($\sim 1.5-2$ -fold in the cervix, and $\sim 20-50\%$

This document is a draft for review purposes only and does not constitute Agency policy.D-74DRAFT—DO NOT CITE OR QUOTE

1 higher than controls in the liver after oral exposure). Finally, levels of the inflammatory cytokine

2 IL-6 were significantly (p < 0.05) increased in the cervix of all treated mice, and were markedly

3 increased (from more than twofold higher than untreated or vehicle controls at the low dose, to

4 ~sixfold higher at the high dose) in the serum of treated mice.

Based on the observations of decreased body weight and increased cervical epithelial
inflammation and hyperplasia, a LOAEL of 0.7 mg/kg-day (the lowest dose tested) is identified for
this study.

8 Mohamed et al. (2010) investigated multi-generational effects in male mice following 9 exposure of 6-week-old C57BL/6 mice (10/group) to 0 (corn oil), 1, or 10 mg/kg-day 10 benzo[a]pyrene for 6 weeks by gavage. Following final treatment, male mice were allowed to 11 stabilize for 1 week prior to being mated with two untreated female mice to produce an 12 F1 generation. Male mice were sacrificed 1 week after mating. F1 males were also mated with 13 untreated female mice, as were F2 males. The mice of the F1, F2, and F3 generations were not 14 exposed to benzo[a]pyrene. The F0, F1, F2, and F3 mice were all sacrificed at the same age 15 (14 weeks) and endpoints including testis histology, sperm count, sperm motility, and in vitro 16 sperm penetration (of hamster oocytes) were evaluated. These endpoints were analyzed 17 statistically using ANOVA and Tukey's honest significance test and results were reported

18 graphically as means ± SD.

19 Testicular atrophy was observed in the benzo[a]pyrene treatment groups, but was not 20 statistically different than controls. Statistically significant reductions were observed in epididymal 21 sperm counts of F0 and F1 generations treated with the high or low dose of benzo[a]pyrene. For F0 22 and F1 generations, epididymal sperm counts were reduced approximately 50 and 70%, 23 respectively, in the low- and high-dose groups. Additionally, sperm motility was statistically 24 significantly decreased at the high dose in the F0 and F1 generations. Sperm parameters of the F3 25 generation were not statistically different from controls. An in vitro sperm penetration assay 26 revealed statistically significantly reduced fertilization in F0 and F1 generations of the low- and 27 high-dose groups. However, the value of this in vitro test is limited as it bypasses essential 28 components of the intact animal system (U.S. EPA, 1996). Based on decreased epididymal sperm 29 counts of F0 and F1 generations, a LOAEL of 1 mg/kg-day was established from this study (no 30 NOAEL was identified).

31 <u>Arafa et al. (2009)</u> exposed groups of 12 male Swiss albino rats to benzo[a]pyrene in olive 32 oil (0 or 50 mg/kg-day via gavage) for 10 consecutive days, either alone or after similar treatment 33 with 200 mg/kg-day of the flavonoid hesperidin, which has been shown to exert anti-inflammatory, 34 antioxidant, and anticarcinogenic activity. One day after the final dose, the animals were sacrificed 35 for removal of the cauda epididymides and testes. Epididymal sperm count and motility were assessed, as was daily sperm production in the testes. The study authors also investigated the 36 37 testicular activity of LDH, SOD, and GST, as well as GSH, malondialdehyde, and protein content. The 38 testes were examined under light microscope.

Relative testes weights (normalized to body weight) of benzo[a]pyrene exposed-animals 1 2 were significantly decreased compared with controls (35% lower, p < 0.05) (Arafa et al., 2009). In 3 addition, exposure to benzo[a]pyrene alone resulted in significantly decreased sperm count, 4 numbers of motile sperm, and daily sperm production ($\sim 40\%$ decrease from control in each 5 parameter, p < 0.05). Effects on sperm count and production were abolished by hesperidin 6 pretreatment, but the number of motile sperm remained significantly depressed (compared with 7 the control group) in the group exposed to both benzo[a]pyrene and hesperidin. Measures of 8 antioxidant enzymes and lipid peroxidation showed statistically significant induction of oxidative 9 stress in the testes of benzo[a]pyrene-exposed rats. With the exception of the decrease in testicular 10 GSH content (which was partially mitigated), pretreatment with hesperidin eliminated the effects of 11 benzo[a]pyrene on lipid peroxidation and antioxidant enzymes. 12 Xu et al. (2010) treated female Sprague-Dawley rats (6/group) to 0 (corn oil only), 5, or 13 10 mg/kg-day benzo[a]pyrene by gavage every other day for a duration of 60 days. This resulted in 14 TWA doses of 0, 2.5, and 5 mg/kg-day over the study period of 60 days. Endpoints examined 15 included ovary weight, estrous cycle, 17B-estradiol blood level, and ovarian follicle populations 16 (including primordial, primary, secondary, atretic, and corpora lutea). Animals were observed daily 17 for any clinical signs of toxicity and following sacrifice, gross pathological examinations were made 18 and any findings were recorded. All animals survived to necropsy. A difference in clinical signs was 19 not observed for the treated groups and body weights were not statistically different in treated 20 animals (although they appear to be depressed 6% at the high dose). Absolute ovary weight was 21 statistically significantly reduced in both the low- and high-dose groups (11 and 15%, respectively) 22 (see Table D-25). Animals treated with the high dose were noted to have a statistically significantly 23 prolonged duration of the estrous cycle and nonestrus phase compared to controls. Animals in the 24 high-dose group also had statistically significantly depressed levels of estradiol (by approximately 25 25%) and decreased numbers of primordial follicles (by approximately 20%). This study also 26 indicated a strong apoptotic response of ovarian granulosa cells as visualized through TUNEL 27 labeling; however, the strongest response was seen at the low dose; decreased apoptosis was also 28 observed at the high dose. Based on decreased ovary weight following a 60-day oral exposure to 29 benzo[a]pyrene, a LOAEL of 2.5 mg/kg-day was established from this study (no NOAEL was

30 identified).

	Dose (mg/kg-d) ^a 0 2.5 5			
Ovary weight (g)	0.160 ± 0.0146	0.143 ± 0.0098*	0.136 ± 0.0098*	
Body weight (g)	261.67 ± 12.0	249.17 ± 11.2	247.25 ± 11.2	

Table D-25. Means ± SD for ovary weight in female Sprague-Dawley rats

*Statistically different from controls (*p* < 0.05) using one-way ANOVA.

^aTWA doses over the 60-day study period.

Source: <u>Xu et al. (2010)</u>.

8 Zheng et al. (2010) treated male Sprague-Dawley rats to 0 (corn oil only), 1, or 5 mg/kg-day 9 benzo[a]pyrene by daily gavage for a duration of 30 (8/group) or 90 days (8/group). At necropsy, 10 the left testis of each animal was collected and weighed. Testes testosterone concentrations were 11 determined by radioimmunoassay and results were expressed as ng/g testis and reported 12 graphically. Testicular testosterone was statistically significantly decreased in the high-dose group 13 approximately 15% following 90 days of exposure. The low-dose group also appeared to have a 14 similar average depression of testosterone levels; however, the change did not reach statistical 15 significance. Testosterone levels measured in animals sacrificed following 30 days of 16 benzo[a]pyrene exposure were not statistically different than controls. Based on decreased 17 testicular testosterone levels following a 90-day oral exposure to benzo[a]pyrene, a LOAEL of 18 5 mg/kg-day and a NOAEL of 1 mg/kg-day were identified. 19 McCallister et al. (2008) administered 0 or 300 µg/kg-day benzo[a]pyrene by gavage in 20 peanut oil to pregnant Long-Evans rats (n = 5 or 6) on gestational days (GDs) 14–17. At this 21 exposure level, no significant changes were see in number of pups per litter, pup growth, or liver to 22 body weight ratios in control compared to benzo[a]pyrene exposed offspring. Treatment-related 23 differences in brain to body weight ratios were observed only on postnatal days (PNDs) 15 and 30. 24 Decreases in cerebrocortical messenger ribonucleic acid (mRNA) expression of the glutamatergic 25 N-methyl-D-aspartate (NMDA) receptor subunit was significantly reduced (50%) in treated 26 offspring compared to controls. In addition, in utero exposed offspring exhibited decreased evoked 27 cortical neuronal activity in the barrel field cortex when tested at PNDs 90–120. 28 <u>Rigdon and Neal (1965)</u> administered diets containing 1,000 ppm benzo[a]pyrene to 29 pregnant mice (nine/group) on GDs 10-21 or 5-21. The pups were reported as appearing 30 generally normal at birth, but cannibalism was elevated in the exposed groups. These results are in 31 contrast with an earlier study (Rigdon and Rennels, 1964) in which rats (strain not specified) were 32 fed diets containing benzo[a]pyrene at 1,000 ppm for approximately 28 days prior to mating and 33 during gestation. In the earlier study, five of eight treated females mated with untreated males 34 became pregnant, but only one delivered live young. The treated dam that delivered had two live 35 and two stillborn pups; one dead pup was grossly malformed. In the remaining treated females,

1

- 1 vaginal bleeding was observed on GDs 23 or 24. In the inverse experimental design, three of six
- 2 controls mated to benzo[a]pyrene-treated males became pregnant and delivered live young.
- 3 Visceral and skeletal examinations of the pups were not conducted. These studies were limited by
- 4 the small numbers of animals, minimal evaluation of the pups, lack of details on days of treatment
- 5 (food consumption, weight gain), and occurrence of cannibalism.

6 Reproductive Effects of In Utero Exposure Via Oral Route

7 Mackenzie and Angevine (1981) conducted a two-generation reproductive and 8 developmental toxicity study for benzo[a]pyrene in CD-1 mice. Benzo[a]pyrene was administered 9 by gavage in 0.2 mL of corn oil to groups of 30 or 60 pregnant (the F0 generation) mice at doses of 10 0, 10, 40, or 160 mg/kg-day on GDs 7–16 only. Therefore, unlike the standard two-generation 11 study, F1 animals were exposed only in utero. F1 offspring were evaluated for postnatal 12 development and reproductive function as follows. F1 pups (four/sex when possible) were allowed 13 to remain with their mothers until weaning on PND 20. Crossover mating studies were then 14 conducted. Beginning at 7 weeks of age, each F1 male mouse (n = 20-45/group) was allowed to 15 mate with two untreated virgin females for 5-day periods for 25 days (for a total exposure of 16 10 untreated females/F1 male), after which time the males were separated from the females. Fourteen days after separation from the males (i.e., on days 14–19 of gestation), the females were 17 18 sacrificed and the numbers of implants, fetuses, and resorptions were recorded. The F2 fetuses 19 were then examined for gross abnormalities. Similarly, each F1 female mouse (n = 20-55/group), 20 beginning at 6 weeks of age, was paired with an untreated male for a period of 6 months. Males 21 were replaced if the females failed to produce a litter during the first 30-day period. All F2 young 22 were examined for gross abnormalities on day 1 of life and their weights were recorded on day 4. 23 This F2 group was sacrificed on day 20 postpartum, while the F1 female was left with a male until 24 the conclusion of the study. At 6 weeks of age, gonads of groups of 10 male and 10 female F1 mice 25 exposed to 0, 10, or 40 mg/kg-day benzo[a]pyrene in utero were subjected to gross pathology and 26 histologic examinations.

27 No maternal toxicity was observed. The number of F0 females with viable litters at 28 parturition at the highest dose was statistically significantly reduced by about 35% (Table D-26). 29 but progeny were normal by gross observation. Parturition rates of the low- and mid-dose groups 30 were unaffected by treatment, and litter sizes of all treated groups were similar to the control group 31 throughout lactation. However, body weights of the F1 pups in the mid- and high-dose groups were 32 statistically significantly decreased on PND 20, by 7 and 13%, respectively, and in all treated pups 33 on PND 42, 6, 6, and 10% for the low, mid, and high dose, respectively (Table D-26). The number of F1 pups surviving to PNDs 20 and 42 was significantly reduced at the high dose (p < 0.01), by 8 and 34 35 16%, respectively. When F1 males were bred to untreated females and F1 females were mated 36 with untreated males, a marked dose-related decrease in fertility of >30% was observed in both 37 sexes, starting at the lowest exposure. There were no treatment-associated gross abnormalities or 38 differences in body weights in the F2 offspring.

1Table D-26. Reproductive effects in male and female CD-1 F1 mice exposed in2utero to benzo[a]pyrene

	Dose (mg/kg-d) ^a				
Effect	0	10	40	160	
F0 mice with viable litters at parturition	46/60 (77%)	21/30 (70%)	44/60 (73%)	13/30 (43%)*	
Mean ± SEM pup weight (g) at PND 20	11.2 ± 0.1	11.6 ± 0.1	$10.4 \pm 0.1^{*}$	9.7 ± 0.2*	
Mean ± SEM pup weight (g) at PND 42	29.9 ± 0.2	28.2 ± 0.3*	28.0 ± 0.2*	26.8 ± 0.4*	
F1 male fertility index ^b	80.4	52.0*	4.7*	0.0*	
F1 female fertility index ^c	100.0	65.7*	0.0*	0.0*	

³ 4 5

14

*Significantly (*p* < 0.05) different from control by unspecified tests.

^aPregnant F0 mice were administered daily doses of benzo[a]pyrene in corn oil on GDs 7–16.

^bBeginning at 7 weeks of age, each F1 male mouse (20–45/group) was exposed to 10 untreated females over a
 period of 25 days. Index = (females pregnant/females exposed to males) × 100.

^cBeginning at 6 weeks of age, each F1 female mouse (20–55/group) was cohabitated with an untreated male for a period of 6 months.
 10

SEM = standard error of the mean.

13 Source: <u>Mackenzie and Angevine (1981)</u>.

15 Exposure to benzo[a]pyrene caused a marked dose-related decrease in the size of the 16 gonads. In F1 males, testes weights were statistically significantly reduced. Testes from animals 17 exposed in utero to 10 and 40 mg/kg-day weighed approximately 42 and 82%, respectively, of the 18 weight of testes from the control animals (no F2 offspring were produced in the high-dose group). 19 This was confirmed by histopathologic observation of atrophic seminiferous tubules in the 20 40 mg/kg-day group that were smaller than those of controls and were empty except for a basal 21 layer of cells. The number of interstitial cells in the testes was also increased in this group. Males 22 from the 10 mg/kg-day group showed limited testicular damage; although all exhibited evidence of 23 tubular injury, each animal had some seminiferous tubules that displayed active spermatogenesis. 24 Ovarian tissue was absent or reduced in F1 females such that organ weights were not possible to 25 obtain. Examination of available tissue in these females revealed hypoplastic ovaries with few 26 follicles and corpora lutea (10 mg/kg-day) or with no evidence of folliculogenesis (40 mg/kg-day). 27 Ovarian tissue was not examined in highest-dose females. 28 The LOAEL in this study was 10 mg/kg-day based on decreases in mean pup weight (<5%) 29 at PND 42 of F1 offspring of dams treated with 10, 40, or 160 mg/kg-day benzo[a]pyrene, marked 30 decreases in the reproductive capacity (as measured by fertility index) of both male and female F1 31 offspring exposed at all three treatment levels of benzo[a]pyrene (by approximately 30% in males 32 and females), decreased litter size (by about 20%) in offspring of F1 dams, and the dramatic

decrease in size and alteration in anatomy of the gonads of both male and female F1 mice exposed
 to 10 and 40 mg/kg-day benzo[a]pyrene in utero. A NOAEL was not identified.

- 3 In another reproductive and developmental toxicity study, benzo[a]pyrene was
- 4 administered by gavage in corn oil to nine female NMRI mice at a dose of 10 mg/kg-day on
- 5 GDs 7–16; a group of nine controls received corn oil (<u>Kristensen et al., 1995</u>). Body weights were
- 6 monitored. F0 females were kept with their offspring until after weaning (21 days after delivery).
- 7 At 6 weeks of age, one F1 female from each litter (n = 9) was caged with an untreated male. The
- 8 F2 offspring were inspected for gross deformities at birth, weight and sex were recorded 2 days
- 9 after birth, and the pups were sacrificed. The F1 females were sacrificed after 6 months of
- 10 continuous breeding. The effects of benzo[a]pyrene treatment on fertility, ovary weights, follicles,
- 11 and corpora lutea were evaluated. F0 females showed no signs of general toxicity, and there was no
- 12 effect on fertility. F1 females had statistically significantly lower median numbers of offspring,
- 13 number of litters, and litter sizes and a statistically significantly greater median number of days
- 14 between litters as compared with the controls (Table D-27). At necropsy, the F1 females from
- 15 treated F0 females had statistically significantly reduced ovary weights; histologic examination of
- 16 the ovaries revealed decreased numbers of small, medium, or large follicles and corpora lutea
- 17 (Table D-27). Only one dose group was used in this study, with decreased F1 female fertility
- 18 observed following in utero exposure at the LOAEL of 10 mg/kg-day; no NOAEL was identified.
- 19 20

Table D-27. Effect of prenatal exposure to benzo[a]pyrene on indices of reproductive performance in F1 female NMRI mice

Endpoint (median with range in parentheses)	Control ^ª	Benzo[a]pyrene exposed ^a (10 mg/kg-d)
Number of F2 offspring	92 (26–121)	22* (0-86)
Number of F2 litters	8 (3–8)	3* (0–8)
F2 litter size (number of pups per litter)	11.5 (6–15)	8* (3-11)
Number of d between F2 litters	20.5 (20–21)	21* (20-23)
F1 ovary weight (mg)	13 (13–20)	9* (7–13)
Number of small follicles	44 (1–137)	0* (0–68)
Number of medium follicles	9 (5–25)	0* (0–57)
Number of large follicles	14 (6–23)	0* (0–19)
Number of corpora lutea	16 (6–35)	0* (0-14)

21 22 23

24

25

*Significantly (p < 0.05) different from control group by Wilcoxon rank sum test or Kruskall-Wallis two-tailed test.
 ^aGroups of nine female NMRI F0 mice were administered 0 or 10 mg benzo[a]pyrene/kg-day by gavage in corn oil on GDs 7–16. One F1 female from each litter was continuously bred with an untreated male for 6 months.

26 Source: <u>Kristensen et al. (1995)</u>.

27

1 <u>Chen et al. (2012)</u> treated male and female neonatal Sprague-Dawley rats (10/sex/group) 2 with benzo[a]pyrene (unspecified purity) dissolved in peanut oil by gavage daily on PNDs 5–11, at 3 doses of 0.02, 0.2, or 2 mg/kg in 3 mL vehicle/kg body weight, determined individually based upon 4 daily measurements. This time period was described as representing the brain growth spurt in 5 rodents, analogous to brain developmental occurring from the third trimester to 2 years of age in 6 human infants. Breeding was performed by pairs of 9-week-old rats, with delivery designated as 7 PND 0. Litters were culled to eight pups/dam (four males and four females, when possible) and 8 randomly redistributed at PND 1 among the nursing dams; dams themselves were rotated every 9 2–3 days to control for caretaking differences, and cage-side observations of maternal behavior 10 were made daily. One male and female from each litter were assigned per treatment group, and the 11 following physical maturation landmarks were assessed daily in all treatment groups until weaning 12 at PND 21: incisor eruption, eye opening, development of fur, testis decent, and vaginal opening. 13 Neonatal sensory and motor developmental tests were administered to pups during the 14 preweaning period at PNDs 12, 14, 16, and 18, and were behavioral tests administered to rats as 15 adolescents (PNDs 35 and 36) or as adults (PNDs 70 and 71): each rat was only tested during one 16 developmental period. All dosing was performed from 1300 to 1600 hours, and behavioral testing 17 was during the "dark" period from 1900 to 2300 hours, although tests were performed in a lighted 18 environment. Pups were observed individually and weighed daily, the order of testing litters was 19 randomized each day, and all observations were recorded by investigators blinded to group 20 treatment.

21 Sensory and motor developmental tests, including the surface righting reflex test, negative 22 geotaxis test, and cliff aversion test, were performed only once, while the forelimb grip strength test 23 was assessed during three 60-second trials on PND 12. Rat movements during the open-field test 24 were recorded by camera, and two blinded investigators scored movement and rearing separately 25 during a 5-minute evaluation period. Blinded investigators directly observed video monitoring of 26 rat movements during the elevated plus maze, and after a 5-minute free exploration period, 27 recorded number of entries into the closed and open arms, time spent in the open arms, and latency 28 to the first arm entry. Assessment of the Morris water maze was slightly different, in that the rats 29 were habituated to the testing pool by a 60-second swim without a platform on the day prior to 30 testing. The rats were then tested during a 60-second swim with a hidden platform present at a 31 constant position each day for 4 days; on the 5th day, the rats were evaluated during a 60-second 32 probe swim without a platform. The number of times each animal crossed the original platform 33 location and the duration of time spent in the platform quadrant were recorded during this final 34 evaluation. One pup/sex/litter were assigned for behavioral testing to each of four tracks: Track 1, 35 surface righting reflex test, cliff aversion test, and open-field test (PNDs 12–18); Track 2, negative 36 geotaxis test, forelimb grip strength test, and open-field test (PNDs 12–20); Track 3, elevated plus 37 maze, Morris water maze, and open-field test (PNDs 34–36); and Track 4, elevated plus maze,

Morris water maze, and open-field test (PNDs 69–71). All results were presented in graphic form
 only.

3 No significant effects on pup body weight were observed during the 7-day treatment period 4 (PNDs 5–11). Three-way ANOVA (time × benzo[a]pyrene treatment × sex) indicated that effects of 5 benzo[a]pyrene were not sex-dependent throughout the 71-day experiment, so both sexes were 6 pooled together. From this pooled analysis, pups in the 2 mg/kg-day treatment group gained 7 significantly less weight at both PND 36 and 71. There were no differences among treatment 8 groups in incisor eruption, eye opening, development of fur, testis decent, or vaginal opening. 9 For all measurements of neonatal sensory and motor development, results from both sexes 10 were analyzed together since benzo[a]pyrene was reported to have no significant interaction with 11 sex by 3-way ANOVA. No significant differences were observed in either the cliff aversion or 12 forelimb grip strength tests. In the surface righting reflex test, latency was increased in the 13 0.2 mg/kg-day group at PND 12, in the 0.02 and 2 mg/kg-day groups at PND 14, and in only the 14 high-dose group at PND 16; latency was not significantly different in any group at PND 18. At 15 PND 12, there was a dose-related increase in negative geotaxis latency associated with 0.02, 2, and 16 2 mg/kg-day benzo[a]pyrene, which was also present in the 2 mg/kg-day group at PND 14, but 17 returned to control levels at PND 16 and 18. In the open field test, there were no significant 18 differences in either locomotion or rearing activity at PND 18 or 20. At PND 34, the 2 mg/kg-day 19 group exhibited significantly increased movement, but increases in rearing were not significant. At 20 PND 69, increased locomotion was observed in both the 0.2 and 2 mg/kg-day groups, while rearing 21 was significantly increased in only the 2 mg/kg-day treatment group. 22 The elevated plus maze performance was only evaluated in adolescent and adult rats. 23 Unlike the previous tests, 3-way ANOVA revealed a statistically significant interaction between 24 neonatal benzo[a]pyrene treatment and sex, so male and female performance was analyzed 25 independently. No significant differences in PND 35 males were observed, and the only significant 26 observation in PND 35 females was increased time spent in the open maze arms by the 27 2 mg/kg-day treatment group. Significantly decreased latency time to first open arm entry was 28 observed in PND 70 males and females in both 0.2 and 2 mg/kg-day treatment groups; these groups 29 also spent significantly more time in open maze arms, along with the 0.02 mg/kg-day female group. 30 At PND 70, the 2 mg/kg-day males, along with the 0.2 and 2 mg/kg-day females, entered more 31 frequently into open arms and less frequently into closed arms than the vehicle controls. In the 32 Morris water maze, escape latency (time to reach the platform during each of the four testing days) 33 was consistently increased in the 2 mg/kg-day treatment group of both sexes, in both adolescent 34 and adult animals. These increases were statistically significant in both males and females treated

- 35 with 2 mg/kg-day benzo[a]pyrene at both PNDs 39 and 74, and were also significantly elevated in
- 36 0.2 mg/kg-day animals of both sexes at PND 74. Likewise, performance during the 5th test day, in
- 37 the absence of the escape platform, was significantly adversely affected by both metrics (decreased
- time spent in the target quadrant and decreased number of attempts to cross the platform location)

1 in 2 mg/kg-day rats of both sexes at both PNDs 40 and 75. PND 75 females treated with

2 0.2 mg/kg-day benzo[a]pyrene also showed significant decreases in both performance metrics,

- 3 while PND 75 0.2 mg/kg-day males only demonstrated significant differences in "time spent in
- 4 target quadrant." Swim speed was also assessed, but there were no differences among any

5 treatment group at either age evaluated.

6 <u>Jules et al. (2012)</u> treated pregnant Long-Evans Hooded rats with benzo[a]pyrene 7 (unspecified purity) dissolved in 0.875 mL peanut oil by gavage daily on GDs 14–17, at doses of 8 150, 300, 600, and 1,200 µg benzo[a]pyrene/kg body weight, with animals weighed daily. Cage-9 side observations were performed until pup weaning, and litter size was evaluated for each 10 treatment group. Pups from four to five individual litters were analyzed for each endpoint, which 11 was independently repeated for a total of three replicates. Delivery was designated PND 0, and 12 pups were harvested on PNDs 0–15 for benzo[a]pyrene metabolite identification, or for other 13 endpoints as young adults at PND 53. Systolic/diastolic blood pressure and heart rate was 14 recorded by a volume pressure recording sensor and occlusion tail-cuff applied to conscious, non-15 anesthetized animals. Animals were preconditioned to the restraint device and tail-cuff by daily 16 acclimatization sessions during PNDs 46–50, to minimize stress effects during data collection. 17 Cardiac function values were averaged from 15 readings each collected over a 1-minute interval 18 every other minute for 30 minutes on PND 53.

19 No significant differences in litter size or pup weight gain from PND 0 to 15 were reported 20 in any treatment group, and no convulsions, tremors, or abnormal movements were reproducibly 21 observed. Most analytical data were reported graphically, as mean ± standard error of the mean 22 (SEM) of three replicates of 3–5 offspring measured/group. Plasma and heart tissue total 23 benzo[a]pyrene metabolite levels were maximal at PND 0 (the first time point sampled) and 24 progressively decreased from PNDs 0 to 13. Compared to the low-dose group (150 μ g/kg), plasma 25 metabolite levels were significantly elevated in the 600 and $1,200 \mu g/kg$ -day benzo[a]pyrene 26 groups through PND 13, while heart metabolite levels were significantly increased through PND 11. 27 Metabolites in mid-dose group, 300 μ g/kg-day, trended between the 150 and 600 μ g/kg-day group 28 levels from PND 0 to 7, while not achieving statistically significant differences in pair-wise 29 comparisons. Three principal groups of benzo[a]pyrene metabolites were identified. More than 30 70% of the total heart metabolite burden was composed of diol metabolites through PND 13, while 31 the more reactive hydroxyl metabolites increased in relative composition from PND 9 to 13, and the 32 dione population remained constant at $\leq 5\%$. 33 Cardiovascular function was evaluated in pups exposed in utero to 600 or $1,200 \,\mu g/kg$ -day 34 benzo[a]pyrene versus controls (see Table D-28). A dose-related and statistically significant 35 increase in both systolic (20, 50%) and diastolic pressure (30, 80%) was observed in mid- and

36 high-dose pups, respectively. Heart rate was also significantly altered; a 10% increased heart rate

- 37 was reported in the 600 μg/kg-day benzo[a]pyrene group, while the average heart rate of the
- **38** 1,200 μg/kg-day benzo[a]pyrene groups decreased 8%.

1 2

Table D-28. Exposure-related effects in Long-Evans Hooded rats exposed to benzo[a]pyrene by gavage daily in utero from GD 14 to 17

	Dose (mg/kg-d)					
Effect measured	0	0.600	1.20			
Heart rate (bpm; mean ± SEM)	504.6 ± 15.7	554.6 ± 26.2*	466.3 ± 16.9*			
Blood pressure measured by tail cuff (mmHg; me	an ± SEM)					
Systolic pressure	131.6 ± 1.2	151.6 ± 45*	200.4 ± 2.4*			
Diastolic pressure	85.0 ± 4.2	113.0 ± 3.3*	155.6 ± 3.2*			

*Significantly (p < 0.05) different from control mean; n = 4–5/replicate, 3 replicates performed.

Source: Jules et al. (2012).

Bouayed et al. (2009a) treated nursing female Swiss Albino OF1 mice (5/dose group) with 9 benzo[a]pyrene (unspecified purity) dissolved in avocado oil by gavage daily while nursing pups 10 from PND 1 to 14 at 0, 2, or 20 mg/kg-day in 10 mL/kg body weight, individually determined each 11 day. Prior to benzo[a]pyrene treatment, litters were culled to 10 pups (5/sex when possible), and 12 nurturing females were assigned to litters that were stratified randomly to achieve equivalent 13 mean pup litter body weights across the designated treatment groups. As the effects of 14 benzo[a]pyrene on maternal nurturing behavior was unknown, dam behavior was visually 15 monitored daily until weaning. Furthermore, maternal nurturing performance from PND 0 to 21 16 was assessed by two methods: a nest-building test administered twice a day where nest quality/ 17 complexity was scored 15 minutes after cotton material was supplied; and pup retrieval, in which 18 latency to return the displaced pup to the nest was measured twice and averaged, was evaluated 19 once daily At the indicated times, two mice/sex/litter were randomly selected and weighed, and 20 their brains were resected for later mRNA expression analysis (n = 20/group). 21 Pup neuromotor maturation and behavior was assessed during pre-weaning by four 22 standard methods (administered between 10 am and 1 pm on testing days, and in temporal order 23 as indicated): (1) righting reflex test, maximum duration of 120 seconds, administered on PNDs 3, 5, 24 7, and 9; (2) negative geotaxis test, maximum duration of 120 seconds, administered on PNDs 5, 7, 25 9, and 11; (3) forelimb grip test, duration until failure, administered on PNDs 9 and 11; and (4) open 26 *field test*, 6-minute evaluation of locomotor activity and rearing following a 1-minute habituation 27 period, administered on PND 15. Adolescent function was evaluated by three methods: *water* 28 escape pole climbing (WESPOC) test, administered at PND 20, in which the time to find the pole, time 29 to climb the pole, and the time to reach the safety platform were reported; *elevated plus maze*, 30 administered at PND 32 for 5 minutes, in which the latency time to first open arm entry, number of 31 entries into open arms, total number of entries, percent of time spent in open arms, and percent of

32 entries into open arms was determined; and *Y-maze spontaneous alternation test*, administered at

- 1 PND 40 for 5 minutes, in which the percentage of spontaneous alternation was calculated by: [(the
- 2 number of successful overlapping triplets)/(total number of arm entries -2) × 100%].
- **3** Benzo[a]pyrene treatment did not significantly affect the body weight of nursing mothers
- 4 during the 2-week treatment period. Since 3-way ANOVA indicated that changes in pup weight as a
- 5 result of benzo[a]pyrene treatment were not sex-dependent, data from male and female pups were
- 6 combined. Benzo[a]pyrene treatment of nursing mothers was associated with a 8–9% weight gain
- 7 in pups nursing from the 2 mg/kg-day group and a 10–12% weight gain in pups from the 20
- 8 mg/kg-day group at PNDs 12–20 (see Table D-29). While not significantly different from PND 26 to
- 9 40, pup weight in the 20 mg/kg-day group was continuously higher than either the 2 mg/kg-day
- 10 group or vehicle-treated controls. There were no significant differences in pup brain weight or eye
- 11 opening observed. Likewise, benzo[a]pyrene treatment of nursing mothers did not affect nest-
- 12 building interest or quality, and while not significantly impacting pup retrieval time, the retrieval
- 13 latency period was observed to increase with increasing treatment duration in both
- 14 benzo[a]pyrene groups versus controls.

15Table D-29. Exposure-related pup body weight effects in Swiss Albino OF116mice exposed as pups to benzo[a]pyrene in breast milk from dams treated by17gavage daily from PND 1 to 14

Pup body weight (g; mean ± SEM,	Dose (mg/kg-d)						
n = 20)	0	2	20				
PND 0	1.70 ± 0.02	1.73 ± 0.02	1.74 ± 0.02				
PND 4	3.01 ± 0.08	3.08 ± 0.06	3.16 ± 0.04				
PND 8	5.08 ± 0.1	5.26 ± 0.09	5.30 ± 0.08				
PND 12	6.57 ± 0.12	7.16 ± 0.06*	7.39 ± 0.05*				
PND 20	12.51 ± 0.24	13.55 ± 0.25**	13.79 ± 0.14*				
PND 26	17.71 ± 0.49	18.60 ± 0.36	18.35 ± 0.34				
PND 32	24.47 ± 0.55	25.59 ± 0.57	25.38 ± 0.54				
PND 40	30.55 ± 0.94	30.90 ± 0.93	31.78 ± 0.97				

18 19

**p* < 0.001 significantly different from control mean.

20 ***p* < 0.01.

- 2122 Source: Bouayed et al. (2009a).
- 23

Behavioral test data was reported graphically, as mean ± SEM of n = 20/group. For the pre weaning neuromotor developmental tests, benzo[a]pyrene treatment was found to not depend on

sex; therefore, data from male and female pups were combined. Pups nursing from mothers

administered 2 or 20 mg/kg-day benzo[a]pyrene had significantly elevated righting reflex times at

28 PNDs 3–5, which decreased to control times at PNDs 7–9. Only pups from the 20 mg/kg-day

1 treatment group demonstrated significantly increased negative geotaxis latency, which was twofold 2 greater than controls at PNDs 5, 7, and 9, but returned to control levels at PND 11. Interestingly, 3 mice in the 20 mg/kg-day group had increased forelimb grip strength, which was significantly 4 greater than control mice at PNDs 9 and 11, corresponding to increased body weight in the 5 benzo[a]pyrene-treated mice versus controls. Mice in the 2 mg/kg-day group also performed 6 better than controls at PND 9, but were equivalent at PND 11. No treatment or sex-related effects 7 were reported on locomotion or rearing activity during the open field test. Sex-dependency on test 8 performance became evident during the analysis of the WESPOC test data: female pups were not 9 significantly affected using any metric, while males in the 20 mg/kg-day group demonstrated a 10 statistically significantly longer pole-grasping latency (threefold), and took 13 times longer to 11 escape the pole and board the safety platform versus vehicle controls. While performance of male 12 pups from the 2 mg/kg-day group was not statistically significantly worse than vehicle controls by 13 pair-wise comparison, latency for both pole-grasping and escape in this treatment group 14 contributed to a significant trend for treatment dose and these effects. In the evaluation of the 15 elevated plus maze, treatment effects did not appear to depend upon sex, so both male and female 16 performance was analyzed together. Mice in both benzo[a]pyrene treatment groups demonstrated 17 decreased latency time to first entering an open arm (30-50%), as well as entered open arms 18 2 times more frequently and spent twice as much time there versus vehicle controls. While mice in 19 the 2 mg/kg-day treatment group entered into closed arms 20% less frequently than controls, mice 20 in the 20 mg/kg-day group were not significantly different. Likewise, mice nursing from mothers 21 treated with 2 mg/kg-day benzo[a]pyrene performed 15% more spontaneous alternations in the 22 Y-maze spontaneous alternation test compared to controls, while mice in the high-dose group were 23 not significantly different. The brains of pups nursing from the 20 mg/kg-day group expressed 24 approximately 50% lower levels of 5-hydroxytryptamine (serotonin) 1A (5HT1A), and mu 1-opioid 25 (MOR1) mRNA, and a trend was observed in the low-dose group as well. No significant changes in 26 alpha-1D adrenergic or GABA-A mRNA levels were detected.

27 Reproductive Effects in Adults and Repeated Oral Exposure

28 Rigdon and Neal (1965) conducted a series of experiments to assess the reproductive 29 effects of orally administered benzo[a]pyrene to Ah-responsive white Swiss mice. Female animals 30 (number not stated) were administered benzo[a]pyrene at 250, 500, or 1,000 ppm in the feed 31 before or during a 5-day mating period. Based on the initial body weight, the doses can be 32 estimated as 32, 56, and 122 mg/kg-day, respectively. No effect on fertility was observed at any 33 treatment dose, even when animals were fed 1,000 ppm benzo[a]pyrene for 20 days prior to mating, but interpretation of this finding was marred by large variability in numbers of pregnant 34 35 females and litter sizes for both treated and control mice. In separate experiments, the fertility of 36 five male mice/group was not affected by exposure to 1,000 ppm in food for up to 30 days prior to mating with untreated females. Histologic examinations showed that male mice fed 500 ppm 37 38 benzo[a]pyrene for 30 days had spermatozoa present in their testes; further details were not

- 1 provided. The only treatment-related effect was a lack of weight gain related to feed unpalatability.
- 2 While this study suggests that premating exposure of male or female mice to doses up to
- 3 122 mg/kg-day for 20 days may not affect fertility, the sample sizes were too small and the study
- 4 designs were too inconsistent to provide reliable NOAELs and LOAELs for reproductive/
- 5 developmental toxicity.
- 6 In an earlier study (<u>Rigdon and Rennels, 1964</u>), rats (strain not specified) were fed diets
- 7 containing benzo[a]pyrene at 1,000 ppm for approximately 28 days prior to mating and during
- 8 gestation. In this study, five of eight treated females mated with untreated males became pregnant,
- 9 but only one delivered live young. The treated dam that delivered had two live and two stillborn
- 10 pups; one dead pup was grossly malformed. In the remaining treated females, vaginal bleeding was
- 11 observed on GDs 23 or 24. In the inverse experimental design, three of six controls mated to
- 12 benzo[a]pyrene-treated males became pregnant and delivered live young. Visceral and skeletal
- 13 examinations of the pups were not conducted. These studies are insufficiently reported and of
- 14 insufficient design (e.g., inadequate numbers of animals for statistical analysis) to provide reliable
- 15 NOAELs or LOAELs for reproductive effects from repeated oral exposure to benzo[a]pyrene.

16 **D.4.5. Inhalation**

17 Reproductive Toxicity and In Utero Exposure via Inhalation

18 Archibong et al. (2002) evaluated the effect of exposure to inhaled benzo[a]pyrene on fetal 19 survival and luteal maintenance in timed-pregnant F344 rats. Prior to exposure on GD 8, 20 laparotomy was performed to determine the number of implantation sites, and confirmed pregnant 21 rats were divided into three groups, consisting of rats that had four to six, seven to nine, or more 22 than nine conceptuses in utero. Rats in these groups were then assigned randomly to the treatment 23 groups or control groups to ensure a similar distribution of litter sizes. Animals (10/group) were 24 exposed to benzo[a]pyrene:carbon black aerosols at concentrations of 25, 75, or 100 μ g/m³ via 25 nose-only inhalation, 4 hours/day on GDs 11–20. Control animals were either sham-exposed to 26 carbon black or remained entirely unexposed. Results of particle size analysis of generated 27 aerosols were reported by several other reports from this laboratory (Inyang et al., 2003; Ramesh 28 et al., 2001a; Hood et al., 2000). Aerosols showed a trimodal distribution (average of cumulative mass, diameter) <95%, 15.85 μm; 89%, <10 μm; 55%, <2.5 μm; and 38%, <1 μm (<u>Invang et al.</u>, 29 30 2003). Ramesh et al. (2001a) reported that the MMAD (± geometric SD) for the 55% mass fraction 31 with diameters <2.5 μ m was 1.7 ± 0.085. Progesterone, estradiol-17 β , and prolactin concentrations 32 were determined in plasma collected on GDs 15 and 17. Fetal survival was calculated as the total 33 number of pups divided by the number of all implantation sites determined on GD 8. Individual 34 pup weights and crown-rump length per litter per treatment were determined on PND 4 35 (PND 0 = day of parturition).

36Archibong et al. (2001) reported that exposure of rats to benzo[a]pyrene caused37biologically and statistically significant ($p \le 0.05$) reductions in fetal survival compared with the

- 1 two control groups; fetal survival rates were 78.3, 38.0, and 33.8% per litter at 25, 75, and
- 2 100 µg/m³, respectively, and 96.7% with carbon black or 98.8% per litter in untreated controls (see
- 3 Table D-30). Consequently, the number of pups per litter was also decreased in a concentration-
- 4 dependent manner. The decrease was \sim 50% at 75 µg/m³ and \sim 65% at 100 µg/m³, compared with
- 5 sham-exposed and unexposed control groups. No effects on hormone levels were observed on
- 6 GDs 15 or 17 at the low dose. Biologically significant decreases in mean pup weights (expressed as
- 7 g per litter) of >5% were observed at doses \ge 75 µg/m³ (14 and 16% decreases at 75 and
- 8 100 μ g/m³, respectively, *p* < 0.05). Exposure to benzo[a]pyrene did not affect crown-rump length
- 9 (see Table D-30).

10Table D-30. Pregnancy outcomes in female F344 rats treated with11benzo[a]pyrene on GDs 11–21 by inhalation

	Administered concentration of benzo[a]pyrene (µg/m ³)						
Parameter ^a	0 (unexposed control)	0 (carbon black)	25	75	100		
Implantation sites	8.6 ± 0.2	8.8 ± 0.1	8.8 ± 0.5	9.0 ± 0.2	8.8 ± 0.1		
Pups per litter	8.5 ± 0.2	8.7 ± 0.2	7.4 ± 0.5*	4.2 ± 0.1*	3.0 ± 0.2*		
Survival (litter %)	98.9 ± 1.1	96.7 ± 1.7	78.3 ± 4.1*	38.0 ± 2.1*	33.8 ± 1.3*		
Pup weight (g/litter)	10.6 ± 0.1	8.8 ± 0.1	10.5 ± 0.2	9.1 ± 0.2*	8.9 ± 0.1*		
Crown-rump length (mm/litter)	29.4 ± 0.6	29.3 ± 0.5	28.0 ± 0.6	27.3 ± 0.7	27.9 ± 0.7		

12 13

*Significantly different from controls at p < 0.05 by one-tailed post-hoc t-testing following ANOVA.

^aValues presented as means ± SEM.
15

- 16 Source: Archibong et al. (2002).
- 17

18 Benzo[a]pyrene exposure at 75 μ g/m³ caused a statistically significant decrease in plasma

19 progesterone, estradiol, and prolactin on GD 17; these levels were not determined in the rats

20 exposed to $100 \,\mu\text{g/m}^3$ (Archibong et al., 2002). Plasma prolactin is an indirect measure of the

21 activity of decidual luteotropin, a prolactin-like hormone whose activity is necessary for luteal

22 maintenance during pregnancy in rats. Control levels of prolactin increased from GD 15 to 17, but

23 this increase did not occur in the rats exposed to $75 \,\mu g/m^3$. Although the progesterone

- 24 concentration at 75 μ g/m³ was significantly lower than in controls on GD 17, the authors thought
- 25 that the circulating levels should have been sufficient to maintain pregnancy; thus, the increased
- 26 loss of fetuses was thought to be caused by the lower prolactin levels rather than progesterone
- 27 deficiency. The reduced circulating levels of progesterone and estradiol-17β among
- 28 benzo[a]pyrene-treated rats were thought to be a result of limited decidual luteotropic support for
- 29 the corpora lutea. The authors proposed the following mechanism for the effects of benzo[a]pyrene

- 1 on fertility: benzo[a]pyrene or its metabolites decreased prolactin and decidual luteotropin levels,
- 2 compromising the luteotropic support for the corpora lutea and thereby decreasing the plasma
- 3 levels of progesterone and estradiol-17 β . The low estradiol-17 β may decrease uterine levels of
- 4 progesterone receptors, thereby resulting in fetal mortality. Based on biologically and statistically
- 5 significant decreases in pups/litter and percent fetal survival/per litter, the LOAEL was 25 μg/m³;
- 6 no NOAEL was identified.

7 Neurotoxicity and In Utero Exposure via Inhalation

8 To evaluate the effects of benzo[a]pyrene on the developing central nervous system, 9 Wormley et al. (2004) exposed timed-pregnant F344 rats (10/group) to benzo[a]pyrene:carbon 10 black aerosols by nose-only inhalation on GDs 11–21 for 4 hours/day at a concentration of 11 100 µg/m³. Results of particle size analysis of generated aerosols were reported by other reports 12 from this laboratory (Ramesh et al., 2001a; Hood et al., 2000). Particle size analysis of a 100-µg/m³ 13 aerosol showed a trimodal distribution (average of cumulative mass, diameter): <95%, 15.85 μ m; 14 90%, <10 μ m; 67.5%, <2.5 μ m; and 66.2%, <1 μ m; the MMAD ± geometric SD for the latter fraction 15 was $0.4 \pm 0.02 \mu m$ (Hood et al., 2000). Dams were maintained to term and pups were weaned on 16 PND 30. Benzo[a]pyrene reduced the number of live pups to one-third of control values without 17 affecting the number of implantation sites. During PNDs 60–70, electrical stimulation and evoked 18 field potential responses were recorded via electrodes implanted into the brains of the animals. 19 Direct stimulation of perforant paths in the entorhinal region revealed a diminution in long-term 20 potentiation of population spikes across the perforant path-granular cell synapses in the dentate 21 gyrus of the hippocampus of F1 generation benzo[a]pyrene-exposed animals; responses in exposed 22 offspring were about 25% weaker than in control offspring. Additionally, NMDA receptor subunit 1 23 protein (important for synaptic functioning) was down-regulated in the hippocampus of 24 benzo[a]pyrene-exposed F1 pups. The authors interpreted their results as suggesting that 25 gestational exposure to benzo[a]pyrene inhalation attenuates the capacity for long-term 26 potentiation (a cellular correlate of learning and memory) in the F1 generation. 27 In another study by this same group of investigators, Wu et al. (2003a) evaluated the 28 generation of benzo[a]pyrene metabolites in F1 generation pups, as well as the developmental 29 profile for AhR and mRNA. In this study, confirmed-pregnant F344 rats were exposed to 30 benzo[a]pyrene:carbon black aerosols at 25, 75, or 100 μ g/m³ via nose-only inhalation, 31 4 hours/day, for 10 days (GDs 11-21). Control animals either were exposed to carbon black 32 (sham) to control for inert carrier effects or remained untreated. Each benzo[a]pyrene 33 concentration had its own set of controls (carbon black and untreated). Two randomly selected 34 pups were sacrificed on each of PNDs 0, 3, 5, 10, 15, 20, and 30. Body, brain, and liver weights were 35 recorded. Benzo[a]pyrene metabolites were analyzed in the cerebral cortex, hippocampus, liver, 36 and plasma. A dose-related increase in plasma and cortex benzo[a]pyrene metabolite 37 concentrations in pups was observed. Dihydrodiols (4,5-; 7,8-; 9,10-) dominated the metabolite 38 distribution profile up to PND 15 and the hydroxy (3-OH-benzo[a]pyrene; 9-OH-benzo[a]pyrene)

1 metabolites after PND 15 at 100 μ g/m³ (the only exposure concentration reported). Results

2 indicated a dose-related decrease in the ratio of the total number of pups born per litter to the total

- 3 number of implantation sites per litter. The number of resorptions at 75 and 100 μ g/m³, but not at
- 4 25 μg/m³, was statistically significantly increased compared with controls.

5 Adult Male Reproductive Effects and Repeated Inhalation Exposure

6 Invang et al. (2003) evaluated the effect of subacute exposure to inhaled benzo[a]pyrene on 7 testicular steroidogenesis and epididymal function in rats. Male F344 rats (10/group), 13 weeks of 8 age, were exposed to benzo[a]pyrene:carbon black aerosols at 25, 75, or $100 \,\mu\text{g/m}^3$ via nose-only 9 inhalation, 4 hours/day for 10 days. Control animals either were exposed to carbon black (sham) to 10 control for exposure to the inert carrier or remained untreated. Each benzo[a]pyrene 11 concentration had its own set of controls (carbon black and untreated). Aerosols showed a 12 trimodal distribution (average of cumulative mass, diameter): 95%, <15.85 μm; 89%, <10 μm; 55%, 13 <2.5 µm; and 38%, <1 µm (Inyang et al., 2003); an earlier report from this laboratory indicated that 14 the 55% mass fraction had a MMAD \pm geometric SD of 1.7 \pm 0.085 (Ramesh et al., 2001a). Blood

samples were collected at 0, 24, 48, and 72 hours after cessation of exposure to assess the effect of

16 benzo[a]pyrene on systemic concentrations of testosterone and LH, hormones that regulate

- 17 testosterone synthesis. Reproductive endpoints such as testis weight and motility and density of
- 18 stored (epididymal) sperm were evaluated.

19 Regardless of the exposure concentration, inhaled benzo[a]pyrene did not affect testis 20 weight or the density of stored sperm compared with controls. However, inhaled benzo[a]pyrene 21 caused a concentration-dependent reduction in the progressive motility of stored sperm. 22 Progressive motility was similar at 75 and 100 μ g/m³, but these values were significantly lower 23 (p < 0.05) than in any other group. The reduction in sperm motility postcessation of exposure was 24 thought to be the result of benzo[a]pyrene limiting epididymal function. Benzo[a]pyrene exposure 25 to 75 μ g/m³ caused a decrease in circulating concentrations of testosterone compared with controls 26 from the time of cessation of exposure (time 0) to 48 hours posttermination of exposure (p < 0.05). 27 However, the decrease was followed by a compensatory increase in testosterone concentration at 28 72 hours postcessation of exposure. Exposure to 75 μ g/m³ caused a nonsignificant increase in 29 plasma LH concentrations at the end of exposure compared with controls, which increased further 30 and turned significant (p < 0.05) for the remaining time of the study period. The decreased plasma 31 concentration of testosterone, accompanied by an increased plasma LH level, was thought to 32 indicate that benzo[a]pyrene did not have a direct effect on LH. The authors also noted that the 33 decreased circulating testosterone may have been secondary to induction of liver CYP450 enzymes 34 by benzo[a]pyrene. The authors concluded that subacute exposure to benzo[a]pyrene contributed 35 to impaired testicular endocrine function that ultimately impaired epididymal function. For this 36 study, the NOAEL was 25 μ g/m³ and the LOAEL was 75 μ g/m³, based on a statistically significant 37 reduction in the progressive motility of stored sperm and impairment of testicular function with 38 10 days of exposure at 75 μ g/m³.

- 1 In a follow-up study with longer exposure duration, adult male F344 rats (10 per group)
- $2 \qquad \text{were exposed to benzo[a]} pyrene: carbon black aerosols at 75 \ \mu\text{g}/\text{m}^3 \text{ via nose-only inhalation,}$
- 3 4 hours/day for 60 days (<u>Archibong et al., 2008</u>; <u>Ramesh et al., 2008</u>). Rats in the control group
- 4 were subjected to the nose-only restraint, but were not exposed to the carbon black carrier. Blood
- 5 samples were collected at 0, 24, 48, and 72 hours after exposure terminated, and the animals were
- 6 sacrificed for tissue analyses following the last blood sampling. Data were analyzed statistically for
- 7 benzo[a]pyrene effects on weekly body weights, total plasma testosterone and LH concentrations,
- 8 testis weights, density of stored spermatozoa, sperm morphological forms and motility,
- 9 benzo[a]pyrene metabolite concentrations and aryl hydrocarbon hydroxylase (AHH) activity, and
- 10 morphometric assessments of testicular histologies. Relative to controls, the results indicated 34%
- 11 reduced testis weight (p < 0.025), reduced daily sperm production (p < 0.025), and reduced
- 12 intratesticular testosterone concentrations (p < 0.025). Plasma testosterone concentrations were
- 13 reduced to about one-third of the level in controls on the last day of exposure (day 60) and at 24,
- 14 48, and 72 hours later (p < 0.05). However, plasma LH concentrations in benzo[a]pyrene-exposed
- 15 rats were elevated throughout the blood sampling time periods compared with controls (p < 0.05).
- 16 In testis, lung, and liver, AHH activity and benzo[a]pyrene-7,8-dihydrodiol (precursor to the
- 17 DNA-reactive BPDE) and benzo[a]pyrene-3,6-dione metabolites were significantly (p < 0.05)
- 18 elevated relative to controls. Progressive motility and mean density of stored spermatozoa were
- 19 significantly reduced (p < 0.05). Weekly body weight gains were not affected by benzo[a]pyrene
- 20 exposure. These results indicate that a 60-day exposure of adult male rats to benzo[a]pyrene:
- 21 carbon black aerosols at 75 μ g/m³ produced decreased testis weight; decreased intratesticular and
- 22 plasma testosterone concentrations; and decreased sperm production, motility, and density.

23 **D.5. OTHER PERTINENT TOXICITY INFORMATION**

- 24 D.5.1. Genotoxicity Information
- Information regarding the genotoxicity of benzo[a]pyrene in in vitro and in vivo systems ispresented in Tables D-31, D-32, and D-33.

27Table D-31. In vitro genotoxicity studies of benzo[a]pyrene in non-28mammalian cells

	Result		
	+\$9	-\$9	Reference
Endpoint/test system: prokaryotic cells			
Forward mutation			
Salmonella typhimurium TM677	+	_	Rastetter et al. (1982)
S. typhimurium TM677	+	ND	<u>Babson et al. (1986)</u>
Reverse mutation			

	Result		
	+\$9	-\$9	Reference
S. typhimurium TA98, TA1538	+	ND	<u>Ames et al. (1975)</u>
S. typhimurium TA98, TA100, TA1538	+	ND	<u>Mccann et al. (1975)</u>
S. typhimurium TA1538, TA98	+	I	<u>Wood et al. (1976)</u>
S. typhimurium TA98, TA100, TA1537	+	I	<u>Epler et al. (1977)</u>
S. typhimurium TA98, TA100	+	-	Obermeier and Frohberg (1977)
S. typhimurium TA98	+	-	<u>Pitts et al. (1978)</u>
S. typhimurium TA98, TA100	+	ND	Lavoie et al. (1979)
S. typhimurium TA98, TA100	+	I	<u>Simmon (1979a)</u>
S. typhimurium TA98	+	ND	Hermann (1981)
S. typhimurium TA98, TA100	+	ND	Alfheim and Ramdahl (1984)
S. typhimurium TA98, TA100, TA1538	ND	-	<u>Glatt et al. (1985)</u>
S. typhimurium TA97, TA98, TA100	+	-	<u>Sakai et al. (1985)</u>
S. typhimurium TA97, TA98, TA100, TA1537	+	-	<u>Glatt et al. (1987)</u>
S. typhimurium TA97, TA98, TA100	+	ND	<u>Marino (1987)</u>
S. typhimurium TA98	+	-	Alzieu et al. (1987)
S. typhimurium TA98, TA100	+	I	Prasanna et al. (1987)
S. typhimurium TA98	+	ND	<u>Ampy et al. (1988)</u>
S. typhimurium TA98, TA100	+	ND	<u>Bos et al. (1988)</u>
S. typhimurium TA98	+	ND	Lee and Lin (1988)
S. typhimurium TA98	+	ND	Antignac et al. (1990)
S. typhimurium TA98	_	ND	<u>Gao et al. (1991)</u>
S. typhimurium TA98	+	ND	Balansky et al. (1994)
S. typhimurium TA100	+	ND	Norpoth et al. (1984)
S. typhimurium TA100	+	-	<u>Carver et al. (1986)</u>
S. typhimurium TA100	+	ND	Pahlman and Pelkonen (1987)
S. typhimurium TA100	+	ND	Tang and Friedman (1977)
S. typhimurium TA100	+	ND	Bruce and Heddle (1979)
S. typhimurium TA100	+	ND	Phillipson and Ioannides (1989)
S. typhimurium TA100	-	ND	Balansky et al. (1994)
S. typhimurium TA1537, TA1538	+	-	<u>Ames et al. (1973)</u>
S. typhimurium TA1537, TA1538	+	-	<u>Glatt et al. (1975)</u>
S. typhimurium TA1537	+	ND	<u>Oesch et al. (1976)</u>

	Result		
	+\$9	-\$9	Reference
S. typhimurium TA1538	+	ND	Egert and Greim (1976)
S. typhimurium TA1538	+	_	Rosenkranz and Poirier (1979)
S. typhimurium TA1535	-	-	<u>Ames et al. (1973)</u>
S. typhimurium TA 1535	-	-	<u>Glatt et al. (1975)</u>
S. typhimurium TA 1535	-	ND	<u>Mccann et al. (1975)</u>
S. typhimurium TA1535	-	-	<u>Epler et al. (1977)</u>
DNA damage			
Escherichia coli/pol A	+	-	Rosenkranz and Poirier (1979)
E. coli/differential killing test	+	-	<u>Tweats (1981)</u>
E. coli WP2-WP100/rec-assay	+	ND	<u>Mamber et al. (1983)</u>
E. coli/SOS chromotest Pq37	+	_	Mersch-Sundermann et al. (1992)
Endpoint/test system: nonmammalian eukaryotes			
Mitotic recombination			
Saccharomyces cerevisiae D4-RDII	ND	_	Siebert et al. (1981)
S. cerevisiae D3	-	-	<u>Simmon (1979b)</u>

1 2 3

4 5 + = positive; - = negative; ND = not determined.

Table D-32. In vitro genotoxicity studies of benzo[a]pyrene in mammalian cells

	Result		
Assay/test system	+\$9	-\$9	Reference
Forward mutation			
Human AHH-1 lymphoblastoid cells	ND	+	Danheiser et al. (1989)
Human lymphoblast (AHH-1) cells (hprt)	ND	+	<u>Crespi et al. (1985)</u>
Human lymphoblastoid (AHH-1) cell line	ND	+	<u>Chen et al. (1996)</u>
Human fibroblast (MRC5CV1) cell line (hprt)	-	ND	Hanelt et al. (1997)
Human lymphoblast (TK) cells	ND	+	Barfknecht et al. (1982)
Human lymphoblast (TK6) cells	+	ND	<u>Crespi et al. (1985)</u>
Human embryonic epithelial (EUE) cells	ND	+	Rocchi et al. (1980)
Human HSC172 lung fibroblasts	+	-	Gupta and Goldstein (1981)
Human Q3-wp normal lung keratinocytes	+	ND	Allen-Hoffmann and Rheinwald (1984)
Human SCC-13Y lung keratinocytes	ND	+	Allen-Hoffmann and Rheinwald (1984)

This document is a draft for review purposes only and does not constitute Agency policy. D-93 DRAFT—DO NOT CITE OR QUOTE

	Re	sult	
Assay/test system	+\$9	-59	Reference
Mouse <i>lacZ</i> transgenic Muta TM Mouse primary hepatocytes	ND	+	<u>Chen et al. (2010)</u>
Mouse L5178Y/HGPRT	+	-	<u>Clive et al. (1979)</u>
Mouse lymphoma (L5178Y/TK+/-) cells	+	-	<u>Clive et al. (1979)</u>
Mouse lymphoma (L5178Y/TK+/-) cells	+	ND	(<u>Amacher et al. (1980);</u> <u>Amacher and</u> <u>Turner (1980)</u>)
Mouse lymphoma (L5178Y/TK+/-) cells	+	-	Amacher and Paillet (1983)
Mouse lymphoma (L5178Y/TK+/-) cells	+	ND	Arce et al. (1987)
Chinese hamster ovary (CHO) cells (aprt)	+	ND	Yang et al. (1999)
CHO cells (5 marker loci)	+	+	Gupta and Singh (1982)
Chinese hamster V79 cells (co-cultured with irradiated HepG2 cells)	+	ND	Diamond et al. (1980)
Chinese hamster V79 lung epithelial cells	+	ND	Huberman et al. (1976)
Chinese hamster V79 lung epithelial cells	+	ND	Arce et al. (1987)
Chinese hamster V79 lung epithelial cells	+	ND	O'Donovan (1990)
Rat/Fischer, embryo cells/OuaR	ND	+	Mishra et al. (1978)
DNA damage			· ·
DNA adducts			
Human peripheral blood lymphocytes	ND	+	Wiencke et al. (1990)
Human peripheral blood lymphocytes	ND	+	Li et al. (2001)
Human peripheral blood lymphocytes	ND	+	<u>Wu et al. (2005)</u>
Human peripheral blood lymphocytes	ND	+	<u>Gu et al. (2008)</u>
Human fibroblast (MRC5CV1) cell line	+	ND	Hanelt et al. (1997)
Human hepatoma (HepG2) cell line	ND	+	Tarantini et al. (2009)
Hamster tracheal cells	ND	+	Roggeband et al. (1994)
Chinese hamster V79 lung epithelial cells	+	ND	Arce et al. (1987)
Virus transformed SHE and mouse C3H10T1/2 cells	ND	+	Arce et al. (1987)
Mouse lymphoma (L5178Y/TK+/-) cells	+	ND	Arce et al. (1987)
Rat tracheal cells	ND	+	Roggeband et al. (1994)
Unscheduled DNA synthesis			
HeLa cells	+	ND	Martin et al. (1978)
Human fibroblasts	+	ND	Agrelo and Amos (1981)
Human fibroblasts	+	-	Robinson and Mitchell (1981)
Human HepG2	ND	+	Valentin-Severin et al. (2004)
Hamster primary embryo cells	ND	+	Casto et al. (1976)
Hamster tracheal cells	ND	+	Roggeband et al. (1994)

This document is a draft for review purposes only and does not constitute Agency policy.D-94DRAFT—DO NOT CITE OR QUOTE

	Re	sult	
Assay/test system	+S9	-\$9	Reference
Rat hepatocytes	ND	+	Michalopoulos et al. (1978)
Rat tracheal cells	ND	-	Roggeband et al. (1994)
DNA repair		1	
Human mammary epithelial cells	ND	+	Leadon et al. (1988)
Human skin fibroblasts	ND	+	Milo et al. (1978)
Baby hamster kidney (BHK21/c13) cells	ND	+	Feldman et al. (1978)
secondary mouse embryo fibroblasts (C57BL/6) and human lymphocytes	ND	+	Shinohara and Cerutti (1977)
Rat/F344 hepatocytes	ND	+	Williams et al. (1982)
Cytogenetic damage			·
CAs			
Human blood cells	ND	+	<u>Salama et al. (2001)</u>
Human WI38 fibroblasts	+	-	Weinstein et al. (1977)
Chinese hamster lung cells	+	-	Matsuoka et al. (1979)
Chinese hamster V79-4 lung epithelial cells	-	-	Popescu et al. (1977)
Mouse lymphoma (L5178Y/TK+/-) cells	+	ND	Arce et al. (1987)
Rat Liver RL1 cells	+	ND	Dean (1981)
MN			
Human AHH-1 lymphoblastoid cells	ND	+	Crofton-Sleigh et al. (1993)
Human HepG2 liver cells	ND	+	<u>Wu et al. (2003a)</u>
Human lymphoblastoid (TK) cells	ND	+	Fowler et al. (2010)
Human MCL-5 lymphoblastoid cells	ND	+	Crofton-Sleigh et al. (1993)
Human peripheral blood lymphocytes	+	ND	Lo Jacono et al. (1992)
Chinese hamster V79 cells	ND	+	Whitwell et al. (2010)
Chinese hamster V79-MZ cells	ND	+	Matsuoka et al. (1999)
DNA strand breaks			-
Human sperm	+	+	Sipinen et al. (2010)
Human peripheral blood lymphocytes	+	+	Rodriguez-Romero et al. (2012)
Human fibroblast (MRC5CV1) cell line	+	ND	Hanelt et al. (1997)
Human hepatoma (HepG2) cell line	ND	+	Tarantini et al. (2009)
Human prostrate carcinoma (DU145) cell line	ND	+	Nwagbara et al. (2007)
Mouse embryo fibroblast (C3H/10T1/2 CL 8) cells	ND	+	Lubet et al. (1983)
Rat C18 trachea epithelial cells	ND	+	(<u>Cosma and Marchok (1988); Cosma et</u> <u>al. (1988)</u>)
Rat lymphocytes	ND	+	(<u>Gao et al., 1991</u>)
SCEs			

This document is a draft for review purposes only and does not constitute Agency policy.D-95DRAFT—DO NOT CITE OR QUOTE

	Result		
Assay/test system	+\$9	-\$9	Reference
Human C-HC-4 and C-HC-20 hepatoma cells	ND	+	(<u>Abe et al. (1983a)</u> , <u>1983b)</u>)
Human diploid fibroblast (TIG-II) cell line	+	+	Huh et al. (1982)
Human fibroblasts	ND	+	Juhl et al. (1978)
Human blood cells	ND	+	Salama et al. (2001)
Human peripheral blood lymphocytes	ND	+	Rudiger et al. (1976)
Human peripheral blood lymphocytes	ND	+	Craig-Holmes and Shaw (1977)
Human peripheral blood lymphocytes	ND	+	Schonwald et al. (1977)
Human peripheral blood lymphocytes	ND	+	Wiencke et al. (1990)
Human peripheral blood lymphocytes	+	-	<u>Tohda et al. (1980)</u>
Human peripheral blood lymphocytes	+	ND	Lo Jacono et al. (1992)
Chinese hamster Don-6 cells	ND	+	(<u>Abe et al. (1983a)</u> , <u>1983b)</u>)
Chinese hamster V79 lung epithelial cells	+	_	Popescu et al. (1977)
Chinese hamster V79 lung epithelial cells	+	ND	Mane et al. (1990)
Chinese hamster V79 lung epithelial cells	+	ND	Wojciechowski et al. (1981)
Chinese hamster V79 lung epithelial cells	+	ND	Arce et al. (1987)
Chinese hamster V79 lung epithelial cells	ND	+	Kulka et al. (1993a)
CHO cells	+	-	<u>de Raat (1979)</u>
CHO cells	+	_	Husgafvel-Pursiainen et al. (1986)
CHO cells	ND	+	Wolff and Takehisa (1977)
CHO cells	ND	+	Pal et al. (1978)
Chinese hamster lung cells	ND	+	Shimizu et al. (1984)
Rabbit peripheral blood lymphocytes	ND	+	Takehisa and Wolff (1978)
Rat ascites hepatoma AH66-B	ND	+	(<u>Abe et al. (1983a)</u> , <u>1983b)</u>)
Rat esophageal tumor R1	ND	+	(<u>Abe et al. (1983a)</u> , <u>1983b)</u>)
Rat hepatocyte (immortalized) cell lines (NRL cl-B, NRL cl-C, and ARL)	+	ND	Kulka et al. (1993b)
Rat hepatoma (Reuber H4-II-E) cells	ND	+	<u>Dean et al. (1983)</u>
Rat liver cell line ARL18	ND	+	<u>Tong et al. (1981)</u>
Rat pleural mesothelial cells	ND	+	Achard et al. (1987)
Aneuploidy			
Chinese hamster V79-MZ cells	ND	+	Matsuoka et al. (1998)
Cell transformation			
Human BEAS-2B lung cells	ND	+	van Agen et al. (1997)
Human breast epithelial (MCF-10F, MCF-7, T24) cell lines	ND	+	Calaf and Russo (1993)
Baby hamster kidney (BHK21/c13) cells	+	ND	<u>Greb et al. (1980)</u>

This document is a draft for review purposes only and does not constitute Agency policy.D-96DRAFT—DO NOT CITE OR QUOTE

Res		sult	
Assay/test system	+\$9	-S9	Reference
Golden hamster embryo cells	+	ND	<u>Mager et al. (1977)</u>
Syrian hamster embryo (SHE) cells	ND	+	(<u>Dipaolo et al. (1971)</u> ; <u>Dipaolo et al.</u> (<u>1969)</u>)
SHE cells	ND	+	Dunkel et al. (1981)
SHE cells	ND	+	Leboeuf et al. (1990)
SHE cells/focus assay	ND	+	<u>Casto et al. (1977)</u>
Fetal Syrian hamster lung cells	ND	+	(<u>Emura et al. (1987)</u> ; <u>Emura et al.</u> (<u>1980)</u>)
Virus infected rat embryo RLV/RE and RAT cells; mouse embryo AKR/Me cells; Syrian hamster embryo cells	ND	+	<u>Heidelberger et al. (1983)</u>
Virus transformed SHE and mouse C3H10T1/2 cells	ND	+	<u>Arce et al. (1987)</u>
Mouse C3H/10T1/2 embryo fibroblasts	ND	+	(<u>Nesnow et al. (2002</u>); <u>Nesnow et al.</u> (1997))
Mouse embryo fibroblast (C3H/10T1/2 CL 8) cells	ND	+	Peterson et al. (1981)
Mouse embryo fibroblast (C3H/10T1/2 CL 8) cells	ND	+	Lubet et al. (1983)
Mouse SHE cells; BALB/c-3t3 cells; C3H/10T1/2 cells; prostate cells	ND	+	Heidelberger et al. (1983)
Mouse BALB/c-3T3 cells	ND	+	Dunkel et al. (1981)
Mouse BALB/c-3T3 cells	ND	+	Matthews (1993)
Mouse BALB/c-3T3 clone A31-1-1	ND	+	Little and Vetrovs (1988)
Rat/Fischer, embryo cells (leukemia virus transformed)	ND	+	<u>Dunkel et al. (1981)</u>
Rat/Fischer, embryo cells/Oua ^R	ND	+	Mishra et al. (1978)

1 2 3

+ = positive; - = negative; CHO = Chinese hamster ovary; ND = not determined; SHE = Syrian hamster embryo;

TK = thymidine kinase.

Table D-33. In vivo genotoxicity studies of benzo[a]pyrene

1

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
Mutation	Human, blood T lymphocytes (smokers and nonsmokers); hprt locus mutation assay	T-cells of lung cancer patients (smokers and nonsmokers from lung cancer patients and population controls with known smoking status) analyzed for hprt locus mutations.	+	Smokers and nonsmokers	Splicing mutations, base-pair substitutions, frameshift, and deletion mutations observed. Smokers and nonsmokers had GC→TA transversions (13 and 6%, respectively) and GC→AT transitions (24 and 35%, respectively) in hprt gene consistent with in vitro mutagenicity of benzo[a]pyrene.	<u>Hackman</u> <u>et al.</u> (2000)
Mutation, germline	Mouse, T-stock, (SEC × C57BL)F1, (C3H × 101)F1, or (C3H × C57BL)F1 for females; (101 × C3H)F1 or (C3H × 101)F1 for males; dominant-lethal mutation assay	12-wk-old males dosed with benzo[a]pyrene i.p. and mated 3.5–6.5 d posttreatment with 12-wk-old females from different stocks; sacrificed on d 12–15 after vaginal plug was observed; females kept in a 5-hr dark phase to synchronize ovulation 5 wks before the start of the experiment; fertilized eggs collected 9–11 hrs after mating and first- cleavage metaphase chromosomes prepared 20 hrs after mating.	+	500 mg/kg	The percent of dominant lethal mutations were in the order of T-stock = (C3H × 101)F1 > (SEC × C57BL)F1 > (C3H × C57BL)F1.	<u>Generoso</u> <u>et al.</u> (<u>1979)</u>
Mutation, germline	Mouse, male stocks: (101 × C3H)F1; female stocks (A): (101 × C3H)F1, (B): (C3H × 101)F1, (C): (C3H × C57BL)F1, (D):(SEC × C57BL)F1, (E):T-stock females; dominant lethal mutations	In dominant lethal assay, 12-wk-old males dosed i.p. with benzo[a]pyrene and mated with 10–12-wk-old (#1) stock A females; or (#2) stock B females on the day of dosing; or with (#3a) with stocks B, C, and D females 3.5–7.5 d postdosing, or with (#3b) with stocks B, C, D, and E females 3.5–6.5 d postdosing. Control group mated at time corresponding to 1.5–4.5 d posttreatment in the test groups.	+	500 mg/kg	Dominant lethal effects were observed in early to middle (4.5–5.5 and 6.5–7.5 d posttreatment, respectively) spermatozoa and in preleptotene spermatocytes (32.5–33.5 and 34.5–35.5 d posttreatment).	<u>Generoso</u> <u>et al.</u> (<u>1982)</u>

This document is a draft for review purposes only and does not constitute Agency policy.

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
Mutation, germline	Mouse, male stocks: (101 × C3H)F1; female stocks (A): (101 × C3H)F1, (B): (C3H × 101)F1, (C): (C3H × C57BL)F1, (D): (SEC × C57BL)F1, (E): T-stock females; heritable translocations	For heritable translocation assay, males were mated with stocks B and D females 3.5–7.7 d post-benzo[a]pyrene treatment and male progeny screened for translocation heterozygosity.	_	500 mg/kg	No significant differences were observed between treated and control progeny.	<u>Generoso</u> <u>et al.</u> (<u>1982)</u>
Mutations and BPDE- DNA adducts, germline	Mouse, C57BL/6, <i>cll</i> transgenic (Big Blue®)	Benzo[a]pyrene administered i.p. in corn oil on d 0, 1, and 2; sacrificed at d 4, 16, 30, 44, or 119. Caput and cauda epididymal spermatozoa analyzed for <i>cll</i> mutation frequency, and DNA adducts analyzed in testis by liquid chromatography-MS/MS selected reaction monitoring with ¹⁵ N-deoxyguanosine labeling.	+	50 mg/kg	Exposed spermatocytes acquired persistent BPDE-DNA adducts; exposed spermatogonia gave rise to spermatocytes with mutations consistent with a benzo[a]pyrene spectrum (GC>TA transversions).	<u>Olsen et al.</u> (2010)
Mutations and BPDE- DNA adducts, germline	Mouse, C57BL/6 males, WT and Xpc ^{-/-} with pUR288 <i>lacZ</i> reporter gene	Benzo[a]pyrene given via gavage in sunflower oil 3 times/wk for 1, 4, or 6 wks (Xpc ^{-/-}) or 6 wks (WT). Spleen, testis, and sperm cells analyzed for <i>lacZ</i> mutation frequency, and DNA adducts analyzed in testis by [³² P]-postlabeling.	+	13 mg/kg	Statistically significant increases in lacZ mutation frequencies in Xpc ^{-/-} spleen at 4 and 6 wks (dose dependent) and in WT spleen and sperm at 6 wks; DNA adducts were statistically significant in testis in all exposed groups.	Verhofstad et al. (2011)

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
Mutations and BPDE- DNA adducts	Mouse, C57BL/6 <i>lacZ</i> transgenic	Mice dosed with single i.p. injection of benzo[a]pyrene in DMSO; sacrificed 1, 3, 5, 7, 14, 21, and 28 d posttreatment; spleen, lung, liver, kidney, and brain collected, DNA isolated and analyzed for mutations in <i>lacZ</i> reporter gene in <i>E. coli</i> and adducts by [³² P]-postlabeling assay.	+	50 mg/kg	BPDE-dG adduct levels peaked between 5 and 7 d posttreatment, followed by gradual decline; rate of removal highest in lung, liver, and spleen and lowest in kidney and brain; mutant frequencies peaked between 7 and 14 d in lung, spleen, liver, and kidney; brain was not significant at any time point.	Boerrigter (1999)
Mutation	Mouse, C57BL female × T-strain male; somatic mutation assay	Mice mated for a 5-d period; 10.25 d post- appearance of vaginal plug, females injected i.p. with benzo[a]pyrene or vehicle; offspring (pups) scored for survival, morphology, and presence of white near-midline ventral spots and recessive spots.	+	100 or 500 mg/kg	Induced coat color mosaics represent genetic changes (e.g., point mutations) in somatic cells. White near- midline ventral spots and recessive spots represent melanocyte cell killing and mutagenicity, respectively. Benzo[a]pyrene caused high incidence of recessive spots but did not correlate with white near-midline ventral spots.	<u>Russell</u> (<u>1977)</u>
Mutation	Mouse, <i>lacZ</i> transgenic (Muta [™] Mouse)	Benzo[a]pyrene given via gavage in olive oil daily for 28 consecutive d; sacrificed 3 d after last dosing; four organs analyzed for <i>lacZ</i> mutation frequency.	+	25, 50, and 75 mg/kg-d	Highest <i>lacZ</i> mutation frequency observed in small intestine, followed by bone marrow, glandular stomach, and liver.	Lemieux et al. (2011)
Mutation	Mouse, <i>lacZ</i> transgenic (Muta [™] Mouse)	Benzo[a]pyrene given orally in corn oil for 5 consecutive d; sacrificed 14 d after last dosing; 11 organs analyzed for <i>lacZ</i> mutation frequency.	+	125 mg/kg-d	Highest mutation frequency observed in colon followed by ileum > forestomach > bone marrow = spleen > glandular stomach > liver = lung > kidney = heart.	<u>Hakura et</u> <u>al. (1998)</u>

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
Mutation	Mouse, C57BL/6J <i>Dlb-1</i> congenic; <i>Dlb-1</i> locus assay	Animals dosed: (1) i.p. with vehicle or benzo[a]pyrene two, four, or six doses at 96-hr intervals; or (2) single dose of benzo[a]pyrene given i.p. or orally alone or 96 hrs following a single i.p. dosing with 10 μg/kg TCDD.	+	40 mg/kg	Benzo[a]pyrene caused a dose- dependent increase in mutant frequency; i.p. route showed higher mutant frequency than oral route; induction of mutations were associated with Ah-responsiveness.	<u>Brooks et</u> al. (1999)
Mutation	Mouse, C57BL/6 (<i>lacZ</i> negative and <i>XPA^{+/+}</i> and <i>XPA^{-/-}</i>); hprt mutations in T lymphocytes	Gavage in corn oil 3 times/wk for 0, 1, 5, 9, or 13 wks; sacrificed 7 wks after last treatment.	+	13 mg/kg	Mutation sensitivity: $XPA^{-/-} > XPA^{+/+}$.	<u>Bol et al.</u> (<u>1998)</u>
Mutation	Mouse, Cockayne syndrome-deficient (<i>Csb^{-/-}</i>); heterozygous (<i>Csb^{+/-}</i>) and WT controls (<i>Csb^{+/+}</i>); hprt mutation frequency assay	<i>Csb^{-/-}/lacZ^{+/-}</i> and <i>Csb^{+/-}/lacZ^{+/-}</i> mice were dosed i.p. with benzo[a]pyrene 3 times/wk for 5, 9, or 13 wks; for hprt mutation frequency analysis mice were sacrificed 3 wks after last treatment; splenocytes collected; for <i>lacZ</i> mutation frequency analysis, mice were sacrificed 3 d after last treatment and liver, lung, and spleen were collected.	+	13 mg/kg	<i>lacZ</i> mutation frequency detected in all tissues but no differences between WT and <i>Csb^{-/-}</i> mice; hprt mutations significantly higher in <i>Csb^{-/-}</i> mice than control mice. BPDE- dGuo adducts in hprt gene are preferentially removed in WT mice than <i>Csb^{-/-}</i> mice.	<u>Wijnhoven</u> <u>et al.</u> (2000)
Mutation	Mouse, B6C3F ₁ , forestomach H- <i>ras</i> , K- <i>ras</i> , and <i>p53</i> mutations	Benzo[a]pyrene given in feed in a 2-yr chronic feeding study.	+	5, 25, or 100 ppm	68% K-ras (codons 12, 13), 10% H-ras (codon 13), 10% p53 mutations; all G→T transversions.	<u>Culp et al.</u> (2000)
Mutation	Mouse <i>, lacZ/galE</i> (Muta [™] Mouse); skin painting study	Mice topically treated with a single dose or in five divided doses daily; sacrificed 7 or 21 d after the single or final treatment; DNA from skin, liver, and lung analyzed for mutations.	+ ^{Sk} or _ ^{Li,Lu}	1.25 or 2.5 mg/kg (25 or 50 μg/mouse)	Skin showed significant dose- and time-dependent increase in mutation frequency; liver and lung showed no mutations; mutation frequency for single- or multiple-dose regimens was similar.	<u>Dean et al.</u> (<u>1998)</u>

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
Mutation	Mouse, T-strain	Benzo[a]pyrene given to pregnant mice by gavage in 0.5 mL corn oil on GDs 5–10.	+	10 mg/mouse (5 × 2 mg)		Davidson and Dawson (1976)
Mutation	Mouse, 129/Ola (WT); hprt mutations in splenic T lymphocytes	Single i.p. injection followed by sacrifice 7 wks posttreatment.	+	0, 50, 100, 200, or 400 mg/kg	Dose-dependent increase in hprt mutation frequency.	<u>Bol et al.</u> (1998)
Mutation	Mouse, A/J, male	Single i.p. injection followed by sacrifice 28 days posttreatment.	+	0, 0.05, 0.5, 5, or 50 mg/kg	Dose-dependent increase in lung tissue K- <i>ras</i> codon 12 G→T mutation frequency.	<u>Meng et al.</u> (2010)
Mutation	Mouse, CD-1; skin papillomas (Ha- <i>ras</i> mutations)	Female mice were initiated topically with a single dose of benzo[a]pyrene and 1 wk after initiation promoted twice weekly with 5 nmol TPA for 14 wks. One month after stopping TPA application, papillomas were collected and DNA from 10 individual papillomas was analyzed for Ha- <i>ras</i> mutations by polymerase chain reaction and direct sequencing.	+	600 nmol/mouse	About 90% of papillomas contained Ha- <i>ras</i> mutations, all of them being transversions at codons 12 (20% GGA→GTA), 13 (50% GGC→GTC), and 61 (20% CAA→CTA).	Colapietro et al. (1993)
Mutation	Rat, Wistar	Single dose by gavage; urine and feces collected 0–24, 24–48, and 48–72 hrs posttreatment; urine and extracts of feces tested in <i>S. typhimurium</i> TA100 strain with or without S9 mix and β-glucuronidase.	+	0, 1, 5, 10, or 100 mg/kg	Fecal extracts and urine showed mutagenicity ≥1 and 10 mg/kg body weight benzo[a]pyrene, respectively. Highest mutagenic activity observed for 0–24 hrs posttreatment for feces and 24–48 hrs posttreatment for urine with β-glucuronidase ± S9 mix.	<u>Willems et</u> al. (1991)

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
BPDE-DNA adducts	Human, WBCs	96 people occupationally or medically exposed to PAH mixtures (psoriatic patients, coke oven workers, chimney sweeps, and aluminum anode plant workers); adducts measured by HPLC/fluorescence analysis.	+		Percentages of subjects with adduct levels greater than the 95 th percentile control value were 47% (7/15), 21% (4/19), and 3% (1/34) in coke oven workers, chimney sweeps, and controls, respectively.	<u>Pavanello</u> <u>et al.</u> (1999)
BPDE-DNA adducts	Human, WBCs	67 highly exposed coke oven workers were tested for genetic factors that can modulate individual responses to carcinogenic PAHs; adducts measured by HPLC/fluorescence analysis.	+		Levels of BPDE-DNA adducts were significantly associated with workplace PAH exposure (as correlated with urinary excretion of 1-pyrenol), lack of GSTM1 activity, and low nucleotide excision repair capacity.	Pavanello et al. (2005)
BPDE-DNA adducts	Human, peripheral lymphocytes	585 Caucasian municipal workers (52% males, 20–62 years old) from northeast Italy environmentally exposed to PAH mixtures were screened for adducts measured by HPLC/fluorescence analysis.	+		Forty-two percent of the participants had elevated anti- BPDE-DNA adduct levels, defined as >0.5 adducts/ 108 nucleotides (mean, 1.28 ± 2.80 adducts/ 108 nucleotides). Comparison of adduct levels with questionnaire responses indicated that smoking, frequent consumption of PAH-rich meals (>52 versus <52 times/yr), and long time periods spent outdoors (>4 versus <4 hrs/d) were risk factors as all increased BPDE- DNA adduct levels significantly.	Pavanello et al. (2006)

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
BPDE-DNA adducts	Human, maternal and umbilical cord blood	Maternal and umbilical cord blood obtained following normal delivery from 329 nonsmoking pregnant women exposed to emissions from fires during the 4 wks following the collapse of the WTC building in New York City on 09/11/2001.	+		BPDE-DNA adduct levels in cord and maternal blood were highest in study participants who lived within 1 mile of the WTC, with inverse correlation between cord blood levels and distance from WTC.	<u>Perera et</u> <u>al. (2005b)</u>
BPDE-DNA adducts	Human, WBCs	Workers were exposed for 6–8 hrs/d for at least 4–6 mo before blood collection; leukocyte DNA isolated and digested, and benzo[a]pyrene tetrols analyzed by HPLC with fluorescent detection. Low, medium, and high exposure groups correspond to <0.15, 0.15–4, and >4 mg/m ³ of benzo[a]pyrene, respectively.	+	<0.15, 0.15–4, or >4 µg/m ³ of benzo[a]pyrene	PAH exposure, CYP1A1 status and smoking significantly affected DNA adduct levels, i.e., CYP1A1(*1/*2 or *2A/*2a) > CYP1A1*1/*1; occupational > environmental exposure; smokers > nonsmokers; adducts increased with dose and duration of smoking.	<u>Rojas et al.</u> (2000)
BPDE-DNA adducts	Human, WBCs	Coke oven workers were exposed to PAHs and benzo[a]pyrene-WBC DNA analyzed by HPLC-fluorescence detection for BPDE- DNA adducts.	±	0.14 μg/m ³	Median detectable BPDE-DNA adducts in workers versus controls not significant due to low number of subjects (9 workers, 26 controls); 4/9 workers had adducts substantially higher than all controls. No significant difference between smokers and nonsmokers; no correlation with air benzo[a]pyrene levels and adduct levels.	Mensing et al. (2005)
BPDE-DNA adducts	Mouse, <i>lacZ</i> transgenic (Muta [™] Mouse)	Benzo[a]pyrene given via gavage in olive oil daily for 28 consecutive d; sacrificed 3 d after last dosing; four organs analyzed for DNA adducts using [³² P]-postlabeling with nuclease P1 digestion enrichment.	+	25, 50, and 75 mg/kg-day	Highest adduct levels observed in liver, followed by glandular stomach, small intestine, and bone marrow.	Lemieux et al. (2011)

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
BPDE-DNA adducts	Mouse, (Ahr ^{+/+} , Ahr ^{+/-} , Ahr ^{-/-})	Gavage; sacrificed 24 hrs posttreatment.	+	100 mg/kg	No induction of CYP in <i>Ahr^{-/-},</i> but all alleles positive for adduct formation.	<u>Sagredo et</u> al. (2006)
BPDE-DNA adducts	Mouse, C57BL/6J <i>Cyp1a1</i> (+/-) and <i>Cyp1a1</i> (-/-)	Single i.p. injection; sacrificed 24 hrs posttreatment; liver DNA analyzed by [³² P]-postlabeling assay.	+	500 mg/kg	BPDE-DNA adduct levels fourfold higher in <i>Cyp1a1(-/-)</i> mice than <i>Cyp1a1(+/-)</i> mice.	<u>Uno et al.</u> (2001)
BPDE-DNA adducts	Mouse, B6C3F ₁	Benzo[a]pyrene fed in diet for 4 wks (100 ppm) or for 1, 2, 8, 16, and 32 wks (5 ppm); sacrificed and liver, lungs, forestomach, and small intestine collected; DNA analyzed by [³² P]-postlabeling assay.	+	5 ppm (32 wks) and 100 ppm (4 wks)	Linear dose-response in 4-wk study; the 5 ppm groups showed a plateau after 4 wks of feeding.	<u>Culp et al.</u> (2000)
BPDE-DNA adducts	Mouse, BALB/c	Single i.p. injection; sacrificed 12 hrs postinjection; liver and forestomach collected; DNA binding of [³ H]-benzo[a]- pyrene analyzed by scintillation counting.	+	140 μCi/100 g body weight	Liver DNA had threefold higher binding of benzo[a]pyrene than that of forestomach.	<u>Gangar et</u> al. (2006)
BPDE-DNA adducts	Mouse, BALB/cAnN (BALB), CBA/JN (CBA); [³² P]-postlabeling assay	Animals dosed i.p. with or without 24-hr pretreatment with TCDD.	+	50 and 200 mg/kg	Adduct levels similar in both strains dosed with benzo[a]pyrene alone. TCDD pretreatment had a greater suppressive effect on adduct formation in BALB relative to CBA mice at low dose but resulted in no significant difference in adduct levels at high dose.	<u>Wu et al.</u> (2008)
BPDE-DNA adducts	Mouse, BALB/c, skin	Four doses of benzo[a]pyrene topically applied to the shaved backs of animals at 0, 6, 30, and 54 hrs; sacrificed 1 d after last treatment; DNA analyzed by [³² P]-postlabeling assay.	+	4 × 1.2 μmol/ animal	Five adducts spots detected.	<u>Reddy et al.</u> (<u>1984)</u>

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
BPDE-DNA adducts	Mouse, Swiss, epidermal and dermal skin	Single topical application on shaved backs; sacrificed 1, 3, and 7 d posttreatment; epidermal and dermal cells separated; DNA isolated, digested with DNAsel, and estimated DNA binding; adducts separated by HPLC.	+	250 nmol in 150 μL acetone	Both cells positive for benzo[a]pyrene adducts; epidermis > dermis; adducts persisted up to 7 d with a gradual decline in levels.	<u>Oueslati et</u> al. (1992)
BPDE-DNA adducts	Rat, CD, peripheral blood lymphocytes, lungs, and liver	Single i.p. injection; sacrificed 3 d posttreatment; DNA analyzed by Nuclease P1-enhanced [³² P]-postlabeling assay.	+	2.5 mg/animal	BPDE-dG as major adducts and several minor adducts detected in all tissues.	<u>Ross et al.</u> (1991)
BPDE-DNA adducts	Rat, Sprague-Dawley, liver	Single i.p. injection followed by sacrifice at 4 hrs posttreatment; liver DNA isolated and analyzed by [³² P]-postlabeling assay.	+	100 mg/kg	Two adduct spots detected.	<u>Reddy et al.</u> (1984)
BPDE-DNA adducts	Rat, Lewis, lung and liver	Animals received a single oral dose of benzo[a]pyrene in tricaprylin; sacrificed 1, 2, 4, 11, and 21 d postdosing; analyzed liver and lung DNA for BP-DNA adducts by [³² P]-postlabeling assay and urine for 8-oxo-7,8-dihydro-2'-deoxyguanosine adducts by HPLC-electrochemical detection.	+	10 mg/kg	BPDE-dG levels peaked 2 d after exposure in both tissues, higher in lungs than liver at all time points, decline faster in liver than lung; Increased 8-oxo-7,8-dihydro- 2'-deoxyguanosine levels in urine and decreased levels in liver and lung.	Briedé et al. (2004)
BPDE-DNA adducts	Rat, F344; [³² P]-postlabeling assay	Benzo[a]pyrene given in the diet for 30, 60, or 90 d; animals sacrificed and liver and lung isolated and DNA extracted and analyzed for adducts.	+	0, 5, 50, or 100 mg/kg	Adduct levels linear at low and intermediate doses, nonlinear at high dose.	Ramesh and Knuckles (2006)
BPDE-DNA adducts	Rat, Wistar; liver and peripheral blood lymphocyte adducts	Single dose by gavage; sacrificed 24 hrs postdosing; peripheral blood lymphocytes and liver DNA analyzed by [³² P]-postlabeling for BPDE-DNA adducts.	+	0, 10, or 100 mg/kg	At 100 mg/kg dose, total adduct levels in peripheral blood lymphocytes were twofold higher than the levels in liver; adduct profiles differed between peripheral blood lymphocytes and liver.	<u>Willems et</u> <u>al. (1991)</u>

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
CAs	Mouse, C57 (high AHH inducible) and DBA (low AHH inducible) strains; 11-d-old embryos; adult bone marrows	Study used four matings (female × male): C57 × C57; DBA × DBA; C57 × DBA; and DBA × C57; pregnant mice treated orally on GD 11 with benzo[a]pyrene; sacrificed 15 hrs posttreatment; material liver, bone marrow and placenta and embryos collected; male mice dosed similarly and bone marrows collected; individual embryo cell suspensions and bone marrow preparations scored for CAs. Tissue AHH activity measured.	+	150 mg/kg	Levels of CAs: hybrid embryos > homozygous DBA embryos > homozygous C57 embryos; tissue AHH activity: C57 mothers and their embryos > DBA females and their homozygous embryos. No quantitative correlation between benzo[a]pyrene- induced CAs and AHH inducibility. No differences in bone marrow mitotic index of males of different strains between control and treatment groups.	Adler et al. (1989)
CAs	Mouse, 1C3F1 hybrid (101/E1 × C31 × E1)F1; CAs in bone marrow	Single dose by gavage; sacrificed 30 hrs postdosing; bone marrow from femur isolated and analyzed for CAs.	+	63 mg/kg	Significant increase in CAs in benzo[a]pyrene-treated animals compared to controls.	<u>Adler and</u> <u>Ingwersen</u> (1989)
CAs	Rat, Wistar; peripheral blood lymphocytes	Single dose by gavage; sacrificed 6, 24, and 48 hrs posttreatment; blood from abdominal aorta collected, whole blood cultures set up, CAs scored in 100 first- division peripheral blood lymphocytes per animal.	_	0, 10, 100, or 200 mg/kg	No difference between control and treatment groups at any dose or at any sampling time observed.	<u>Willems et</u> al. (1991)
CAs	Hamster; bone marrow	Single, i.p. injection of benzo[a]pyrene dissolved in tricapryline; animals sacrificed 24 hrs post-exposure.	+	25, 50, or 100 mg/kg	Benzo[a]pyrene induced CAs at 50 mg/kg body weight only, with negative responses at the low and high dose.	<u>Bayer</u> (1978)
MN	Mouse, <i>lacZ</i> transgenic (Muta [™] Mouse)	Benzo[a]pyrene given via gavage in olive oil daily for 28 consecutive d; blood samples were collected 48 h after last dose; percent of PCEs and NCEs reported.	+	25, 50, and 75 mg/kg-d	Statistically significant, dose- dependent increases in percent of PCEs and NCEs at all doses.	<u>Lemieux et</u> <u>al. (2011)</u>

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
MN	Mouse, CD-1 and BDF1; bone marrow	Dosed orally once, twice, or thrice at 24-hr intervals; sacrificed 24 hrs after last treatment.	+	250, 500, 1,000, or 2,000 mg/kg	Significant increase at all doses; no dose-response; double dosing at 500 mg/kg dose gave best response.	<u>Shimada et</u> al. (1990)
MN	Mouse, CD-1 and BDF1, peripheral blood reticulocytes	Given single i.p injection; tail blood collected at 24-hr intervals from 0 to 72 hrs.	+	62.5, 125, 250, or 500 mg/kg	Maximum response seen at 48 hrs posttreatment.	<u>Shimada et</u> <u>al. (1992)</u>
MN	Mouse, ICR [Hsd: (ICR)Br]	Benzo[a]pyrene was heated in olive oil and given orally as a single dose; males, females, and pregnant mothers used; pregnant mice dosed on GDs 16–17 and sacrificed on GDs 17–18; micronuclei evaluated in adult bone marrow and fetal liver.	+	150 mg/kg	All groups significantly higher than controls for MN; fetal liver more sensitive than any other group.	<u>Harper et</u> al. (1989)
MN	Mouse, Swiss albino; bone marrow	Given orally in corn oil; sacrificed 24 hrs post-exposure.	+	75 mg/kg		<u>Koratkar et</u> <u>al. (1993)</u>
MN	Mouse, Swiss; bone marrow polychromatic erythrocytes	Given by gavage and sacrificed 36 hrs posttreatment.	+	75 mg/kg		<u>Rao and</u> <u>Nandan</u> (1990)
MN	Mouse, CD-1 and MS/Ae strains	i.p. and oral administration.	+	62.5, 125, 250, or 500 mg/kg	Good dose-response by both routes, strains; i.p. better than oral; MS/Ae strain more sensitive than CD-1 strain.	<u>Awogi and</u> <u>Sato (1989)</u>
MN	Mouse, BDF1, bone marrow	Male and female mice aged 12–15 wks given single i.p. injection of benzo[a]pyrene or corn oil; sacrificed 24, 48, and 72 hrs posttreatment; bone marrow smears prepared, stained with May-Grunwald-Giemsa technique and scored for MN PCEs.	+	0, 25, 50, or 60 mg/kg	Positive at all doses, time points, and sexes tested. Dose- dependent increase in MN observed in both sexes; males responded better than females; highest positive response observed at 72 hrs postinjection.	<u>Balansky et</u> al. (1994)

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
MN	Mouse, HRA/Skh hairless, keratinocytes	Single topical application.	+	0.5, 5, 50, 100, or 500 mg/mouse		<u>He and</u> <u>Baker</u> <u>(1991)</u>
MN	Mouse, HOS:HR-1, hairless; skin micronuclei	Topical application once daily for 3 d; sacrificed 24 hrs after last treatment.	+	0.4, 1, 2, or 4 mg		<u>Nishikawa</u> <u>et al.</u> (2005)
MN	Mouse, HR-1 hairless, skin (benzo[a]pyrene with slight radiation)		+		Exposure to sunlight simulator to evaluate photogenotoxicity and chemical exposure.	<u>Hara et al.</u> (2007)
MN	Rat, Sprague-Dawley, peripheral blood reticulocytes	Given single i.p injection; tail blood collected at 24-hr intervals from 0 to 96 hrs.	+	62.5, 125, 250, 500, or 1,000 mg/kg	Maximum response seen at 72 hrs posttreatment.	<u>Shimada et</u> al. (1992)
MN	Rat, Sprague-Dawley, pulmonary alveolar macrophages	Intratracheal instillation, once/day for 3 d.	+	25 mg/kg		<u>De Flora et</u> <u>al. (1991)</u>
MN	Rat, Sprague-Dawley, bone marrow cells	Intratracheal instillation, once/day for 3 d.	-	25 mg/kg		<u>De Flora et</u> al. (1991)
MN	Hamster; bone marrow	Single, i.p. injection of benzo[a]pyrene dissolved in tricaprylin; animals sacrificed 30 hrs post-exposure.	-	100, 300, or 500 mg/kg		<u>Bayer</u> (1978)
MN	Fish (carp, rainbow trout, clams); blood and hemolymph		+	0.05, 0.25, 0.5, or1 ppm		<u>Kim and</u> <u>Hyun</u> (2006)

This document is a draft for review purposes only and does not constitute Agency policy. D-109 DRAFT—DO NOT CITE OR QUOTE

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
DNA strand breaks	Rat, Sprague-Dawley; comet assay	Instilled intratracheally with: (1) single dose of benzo[a]pyrene in aqueous suspension; sacrificed at 3, 24, and 48 hrs posttreatment; alveolar macrophages, lung cells, lymphocytes, and hepatocytes collected or (2) dose-response study and sacrificed at 24 hrs posttreatment; lungs collected; controls received normal saline instillation; all cells analyzed by comet assay.	+	Experiment #1: 3 mg of benzo[a]pyrene; Experiment #2: dose-response study with 0.75, 1.5, or 3 mg benzo[a]pyrene	All time points showed significant increase in SSBs (Experiment #1); a dose- response in SSBs was observed (Experiment #2).	(<u>Garry et al.</u> (<u>2003a</u>), <u>2003b)</u>)
DNA strand breaks	Aquatic organisms: carp (Cyprinus carpio), rainbow trout (Oncorhynchus mykiss), and clams (Spisula sachalinensis); Comet assay	All organisms acclimatized in tanks for 2 d, water changed every 24 hrs; exposed to benzo[a]pyrene in DMSO in a tank; one- third volume of tank contents changed every 12 hrs; organisms sacrificed at 24, 48, 72, and 96 hrs posttreatment; cell suspensions prepared from liver (carp and trout) or digestive gland (clam) for comet assay.	+	0.05, 0.25, 0.5, and 1 ppm	Significant dose-response for strand breaks observed; carp and trout liver showed highest response at 48 hrs and clam digestive gland showed time- dependent increase at highest concentration.	<u>Kim and</u> <u>Hyun</u> (2006)
DNA strand breaks	Rat, Brown Norway	UDS determined after 5 and 18 hrs of a single intragastric dosing.	-	62.5 mg/kg	Negative at both time points.	<u>Mullaart et</u> al. (1989)
UDS	Rat, F344	Single i.p. injection of benzo[a]pyrene or DMSO; sacrificed at 2 or 12 hrs post- exposure; liver isolated, hepatocyte cultures were set up and incubated with 10 mCi/mL [³ H]-thymidine for 4 hrs; washed and autoradiography performed.	_	100 mg/kg	Benzo[a]pyrene was negative at both time points.	<u>Mirsalis et</u> <u>al. (1982)</u>

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
UDS	Mouse, HOS:HR-1 hairless; skin	Single topical application on two spots on the backs after stripping stratum corneum with adhesive tape to enhance penetration; sacrificed 24 hrs posttreatment, skin isolated [³ H]-thymidine; cultured; epidermal UDS measured.	+	0, 0.25, 0.5, and 1% (w/v) in acetone	UDS index showed a dose- dependent increase up to 0.5% benzo[a]pyrene dose and then plateaued.	<u>Mori et al.</u> (<u>1999)</u>
UDS	Rat, Brown Norway; liver	Single intragastric injection; sacrificed at 5 and 18 hrs post-injection.	-	62.5 mg/kg	Benzo[a]pyrene was negative at both time points.	<u>Mullaart et</u> al. (1989)
UDS	Mouse, (C3Hf × 101)F1 hybrid, germ cells	i.p. injection of benzo[a]pyrene; [³ H]-thymidine injection later.	-	0.3 mL	Concentration not specified.	<u>Sega (1979)</u>
UDS	Mouse, early spermatid	i.p. injection.	-	250–500 mg/kg	Reviewed by <u>Sotomayor and</u> <u>Sega (2000)</u> .	<u>Sega (1982)</u>
SCEs	Hamster; SCEs in bone marrow	8–12-wk-old animals dosed with two i.p. injections of benzo[a]pyrene given 24 hrs apart; animals sacrificed 24 hrs after last treatment; bone marrow from femur isolated and metaphases analyzed.	+	450 mg/kg	Significant increase in metaphase SCEs in benzo[a]pyrene-treated animals compared to vehicle- treated controls.	<u>Roszinsky-</u> <u>Köcher et</u> al. (1979)
SCEs	Hamster	Animals implanted subcutaneously (s.c.) with BrdU tablet; 2 hrs later given phorone (125 or 250 mg/kg) i.p.; another 2 hrs later dosed i.p. with benzo[a]pyrene; 24 hrs post-BrdU dosing, animals injected with colchicine 10 mg/kg body weight, sacrificed 2 hrs later; bone marrow from femur prepared for SCE assay.	+	50 or 100 mg/kg	SCEs increased with low dose of phorone significantly.	<u>Bayer et al.</u> (<u>1981)</u>
SCEs	Hamster; fetal liver	i.p. injection to pregnant animals on GDs 11, 13, or 15; fetal liver SCEs were analyzed.	+	50 and 125 mg/kg	Produced doubling of SCE frequency.	<u>Pereira et</u> al. (1982)
SCEs	Hamster; bone marrow	Not available	+	2.5, 25, 40, 50, 75, or 100 mg/kg	Frequency of SCEs increased ≥40 mg/kg body weight.	<u>Bayer</u> (1978)

This document is a draft for review purposes only and does not constitute Agency policy. D-111 DRA

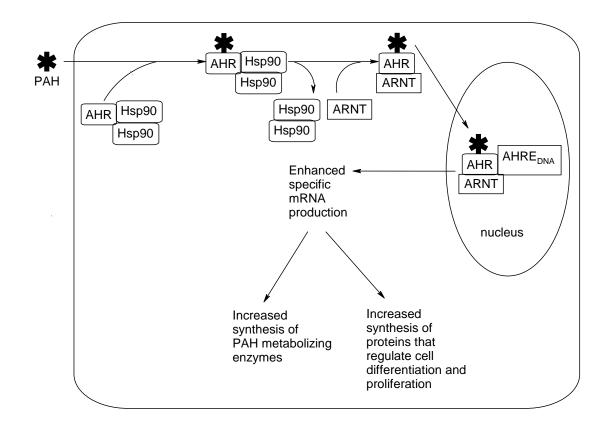
Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
SCEs	Mouse, DBA/2 and C57BL/6, bone marrow cells	Two intragastric injections given; mice implanted with BrdU tablets, sacrificed on d 5, SCEs estimated.	+	10 or 100 mg/kg	SCEs and benzo[a]pyrene-DNA adducts in the order of C57BI/6 (AHH-inducible) < DBA/2 (AHH-noninducible).	Wielgosz et al. (1991)
SCEs	Mouse, DBA/2 and C57BL/6, splenic lymphocytes	Two intragastric injections given; mice killed on 5th day and cells cultured for 48 hrs with BrdU.	+	10 or 100 mg/kg	SCEs and benzo[a]pyrene-DNA adducts in the order of C57BI/6 (AHH-inducible) < DBA/2 (AHH-noninducible).	<u>Wielgosz et</u> al. (1991)
SCEs	Rat, Wistar; peripheral blood lymphocytes	Single dose by gavage; sacrificed 6, 24, and 48 hrs posttreatment; blood from abdominal aorta collected, whole blood cultures set up, SCEs scored in 50 second- division metaphases in peripheral blood lymphocytes per animal.	+	0, 10, 100, or 200 mg/kg	Linear dose-response at any sampling time; however, significant at the highest dose only; no interaction between dose and sampling time.	<u>Willems et</u> al. (1991)
Mutation	Drosophila melanogaster, sex-linked recessive lethal test	<i>Basc</i> males exposed to benzo[a]pyrene were mated with virgin females of Berlin K or <i>mei-9</i> ^{L1} strains.	±	10 mM	Data inconclusive due to low fertility rates of <i>mei-9</i> ^{L1} females.	<u>Vogel et al.</u> (<u>1983)</u>
Mutation	<i>D. melanogaster</i> , sex- linked recessive lethal test	Adult Berlin males treated orally with benzo[a]pyrene.	+	5 or 7.5 mM	Low mutagenic activity.	<u>Vogel et al.</u> (1983)
Mutation	<i>D. melanogaster</i> , Berlin-K and Oregon-K strains; sex- linked recessive lethal test	Benzo[a]pyrene dissolved in special fat and injected into the abdomen of flies.	-	2 or 5 mM	Negative at both doses.	Zijlstra and Vogel (1984)
Mutation	<i>D. melanogaster</i> , sex- linked recessive lethal test	Male Berlin K larvae treated with benzo[a]pyrene for 9–11 d.	+	0.1-4 mM	Threefold enhancement in lethals in treated versus controls.	<u>Vogel et al.</u> (1983)

Endpoint	Test system	Test conditions	Results	Dose	Comment	Reference
Mutation	D. melanogaster, Canton- S (WT) males, FM6 (homozygous for an X-chromosome) females; sex-linked recessive lethal test	Adult male flies were fed on filters soaked in benzo[a]pyrene for 48 or 72 hrs; treated and control males mated with FM6 ^a females, males transferred to new groups of females at intervals of 3, 2, 2, and 3 d; four broods obtained; a group of 100 daughters of each male were mated again; scored for percent lethal.		250 or 500 ppm	Authors report incomplete dissolution of benzo[a]pyrene in DMSO as a possible cause of negative result.	<u>Valencia</u> and <u>Houtchens</u> (1981)
Mutation	<i>D. melanogaster;</i> somatic mutation, eye color mosaicism	Fifty females and 20 females were mated in a culture bottle for 48 hrs allowing females to oviposit; adults were then discarded and the eggs were allowed to hatch; larvae fed on benzo[a]pyrene deposited on food surface and the emerging adult males were scored for mosaic eye sectors.	+	1, 2, or 3 mM	Benzo[a]pyrene was effective as a mutagen; no dose- response observed.	Fahmy and Fahmy (1980)
Cell trans- formation	Hamster, LVG:LAK strain (virus free); transplacental host- mediated assay	Pregnant animals dosed i.p. with benzo[a]pyrene on GD 10; sacrificed on GD 13, fetal cell cultures prepared, 10 × 10 ⁶ cells/plate; 5 d post-culture trypsinized; subcultured every 4–6 d thereafter and scored for plating efficiency and transformation.	+	3 mg/100 g body weight		<u>Quarles et</u> <u>al. (1979)</u>

^aFM6 = First Multiple No. 6 is an X-chromosome with a complex of inversions (to suppress cross-over) and visible markers such as yellow body and white and narrow eyes.

NCE = normochromatic erythrocyte; PCE = polychromatic erythrocyte; UDS = unscheduled DNA synthesis; XPA = xeroderma pigmentosum group A.

1 D.5.2. Tumor Promotion and Progression


2 Cytotoxicity and Inflammatory Response

3 The cytotoxicity of benzo[a]pyrene metabolites may contribute to tumor promotion via 4 inflammatory responses leading to cell proliferation (<u>Burdick et al., 2003</u>). Benzo[a]pyrene is 5 metabolized to *o*-quinones, which are cytotoxic, and can generate ROS (Bolton et al., 2000; Penning 6 et al., 1999). Benzo[a]pyrene o-quinones reduce the viability and survival of rat and human 7 hepatoma cells (Flowers-Geary et al., 1996; Flowers-Geary et al., 1993). Cytotoxicity was also 8 induced by benzo[a]pyrene and BPDE in a human prostate carcinoma cell line (Nwagbara et al., 9 2007). Inflammatory responses to cytotoxicity may contribute to the tumor promotion process. 10 For example, benzo[a]pyrene quinones (1,6-, 3,6-, and 6,12-benzo[a]pyrene-quinone) generated 11 ROS and increased cell proliferation by enhancing the epidermal growth factor receptor pathway in 12 cultured breast epithelial cells (Burdick et al., 2003). 13 Several studies have demonstrated that exposure to benzo[a]pyrene increases the 14 production of inflammatory cytokines, which may contribute to cancer progression. Garcon et al. 15 (2001a) and Garcon et al. (2001b) exposed Sprague-Dawley rats by inhalation to benzo[a]pyrene 16 with or without ferrous oxide (Fe₂O₃) particles. They found that benzo[a]pyrene alone or in17 combination with Fe₂O₃ particles elicited mRNA and protein synthesis of the inflammatory 18 cytokine, IL-1. Tamaki et al. (2004) also demonstrated a benzo[a]pyrene-induced increase in IL-1 19 expression in a human fibroblast-like synoviocyte cell line (MH7A). Benzo[a]pyrene increases the 20 expression of the mRNA for CCL1, an inflammatory chemokine, in human macrophages (N'Diaye et 21 al., 2006). The benzo[a]pyrene-induced increase in CCL1 mRNA was inhibited by the potent AhR

22 antagonist, 3'-methoxy-4'-nitroflavone.

23 AhR-Mediated Effects

24 The promotional effects of benzo[a]pyrene may also be related to AhR affinity and the 25 upregulation of genes related to biotransformation (i.e., induction of CYP1A1), growth, and 26 differentiation (Boström et al., 2002). Figure D-3 illustrates the function of the AhR and depicts the 27 genes regulated by this receptor as belonging to two major functional groups (i.e., induction of 28 metabolism or regulation cell differentiation and proliferation). PAHs bind to the cytosolic AhR in 29 complex with heat shock protein 90 (Hsp90). The ligand-bound receptor is then transported to 30 nucleus in complex with the Ah receptor nuclear translocator. The AhR complex interacts with the 31 Ah responsive elements of the DNA to increase the transcription of proteins associated with 32 induction of metabolism and regulation of cell differentiation and proliferation.

1

2

AHRE_{DNA} = Ah-responsive elements of DNA; ARNT = Ah receptor nuclear translocator.

3 4 Source: Okey et al. (1994).

5

Figure D-3. Interaction of PAHs with the AhR.

6 7

Binding to the AhR induces enzymes that increase the formation of reactive metabolites,

- 8 resulting in DNA binding and, eventually, tumor initiation. In addition, with persistent exposure,
- 9 the ligand-activated AhR triggers epithelial hyperplasia, which provides the second step leading
- 10 from tumor initiation to promotion and progression (<u>Nebert et al., 1993</u>). <u>Ma and Lu (2007</u>)
- 11 reviewed several studies of benzo[a]pyrene toxicity and tumorigenicity in mouse strains with high
- 12 and low affinity AhRs. Disparities were observed in the tumor pattern and toxicity of
- 13 Ah-responsive (+/+ and +/-) and Ah-nonresponsive (-/-) mice. Ah-responsive mice were more
- 14 susceptible to toxicity and tumorigenicity in proximal target tissues such as the liver, lung, and skin.
- 15 For example, <u>Shimizu et al. (2000)</u> reported that AhR knock-out mice (-/-), treated with
- 16 benzo[a]pyrene by s.c. injection or dermal painting, did not develop skin cancers at the treatment
- 17 site, while AhR-responsive (+/+) or heterozygous (+/-) mice developed tumors within
- 18 18–25 weeks after treatment. Benzo[a]pyrene treatment increased CYP1A1 expression in the skin
- 19 and liver of AhR-positive mice (+/- or +/+), but CYP1A1 expression was not altered by
- 20 benzo[a]pyrene treatment in AhR knock-out mice (-/-). <u>Talaska et al. (2006)</u> also showed that
- 21 benzo[a]pyrene adduct levels in skin were reduced by 50% in CYP1A2 knock-out mice and by 90%

1 in AhR knock-out mice compared with WT C57Bl6/J mice following a single dermal application of 2 33 mg/kg benzo[a]pyrene for 24 hours. <u>Ma and Lu (2007)</u> further noted that Ah-nonresponsive 3 mice were at greater risk of toxicity and tumorigenicity in remote organs, distant from the site of 4 exposure (i.e., bone marrow). As an example, <u>Uno et al. (2006)</u> showed that benzo[a]pyrene 5 (125 mg/kg-day, orally for 18 days) caused marked wasting, immunosuppression, and bone 6 marrow hypocellularity in CYP1A1 knock-out mice, but not in WT mice. 7 Some studies have demonstrated the formation of DNA adducts in the liver of AhR knock-8 out mice following i.p. or oral exposure to benzo[a]pyrene (Sagredo et al., 2006; Uno et al., 2006; 9 Kondraganti et al., 2003). These findings suggest that there may be alternative (i.e., non-AhR 10 mediated) mechanisms of benzo[a]pyrene activation in the mouse liver. Sagredo et al. (2006) 11 studied the relationship between the AhR genotype and CYP metabolism in different organs of the 12 mouse. AhR+/+, +/-, and -/- mice were treated once with 100 mg/kg benzo[a]pyrene by gavage. 13 CYP1A1, CYP1B1, and AhR expression was evaluated in the lung, liver, spleen, kidney, heart, and 14 blood, via real-time or reverse transcriptase polymerase chain reaction, 24 hours after treatment. 15 CYP1A1 RNA was increased in the lung and liver and CYP1B1 RNA was increased in the lung 16 following benzo[a]pyrene treatment in AhR+/+ and +/- mice (generally higher in heterozygotes). 17 Benzo[a]pyrene treatment did not induce CYP1A1 or CYP1B1 enzymes in AhR-/- mice. The 18 expression of CYP1A1 RNA, as standardized to β -actin expression, was generally about 40 times 19 that of CYP1B1. The concentration of benzo[a]pyrene metabolites and the levels of DNA and 20 protein adducts were increased in mice lacking the AhR, suggesting that there may be an 21 AhR-independent pathway for benzo[a]pyrene metabolism and activation. The high levels of 22 benzo[a]pyrene DNA adducts in organs other than the liver of AhR-/- mice may be the result of 23 slow detoxification of benzo[a]pyrene in the liver, allowing high concentrations of the parent 24 compound to reach distant tissues. 25 <u>Uno et al. (2006)</u> also demonstrated a paradoxical increase in liver DNA adducts in AhR 26 knock-out mice following oral exposure to benzo[a]pyrene. WT C57BL/6 mice and several knock-27 out mouse strains (CYP1A2-/- and CYP1B1-/- single knock-out, CYP1A1/1B1-/- and 28 CYP1A2/1B1-/- double knock-out) were studied. Benzo[a]pyrene was administered in the feed at 29 1.25, 12.5, or 125 mg/kg for 18 days (this dose is well-tolerated by WT C57BL/6 mice for 1 year, 30 but lethal within 30 days to the CYP1A1-/- mice). Steady-state blood levels of benzo[a]pyrene, 31 reached within 5 days of treatment, were \sim 25 times higher in CYP1A1-/- and \sim 75 times higher in 32 CYP1A1/1B1-/- than in WT mice, while clearance was similar to WT mice in the other knock-out 33 mouse strains. DNA adduct levels, measured by [32P]-postlabeling in liver, spleen, and bone 34 marrow, were highest in the CYP1A1-/- mice at the two higher doses, and in the CYP1A1/1B1-/-35 mice at the mid dose only. Adduct patterns, as revealed by 2-dimensional chromatography, differed 36 substantially between organs in the various knock-out types. 37 AhR signaling may play a role in cytogenetic damage caused by benzo[a]pyrene (Dertinger 38 et al., 2001; Dertinger et al., 2000). The in vivo formation of MN in peripheral blood reticulocytes of

1 C57Bl/6] mice induced by a single i.p. injection of benzo[a]pyrene (150 mg/kg) was eliminated by 2 prior treatment with the potent AhR antagonist 3'-methoxy-4'-nitroflavone. This antagonist also 3 protected AhR-null allele mice from benzo[a]pyrene-induced increases in MN formation, suggesting 4 that 3'-methoxy-4'-nitroflavone may also act through a mechanism independent of the AhR 5 (Dertinger et al., 2000). 6 Several in vitro studies have suggested that the AhR plays a role in the disruption of cell 7 cycle control, possibly leading to cell proliferation and tumor promotion following exposure to 8 benzo[a]pyrene (Andrysík et al., 2007; Chung et al., 2007; Chen et al., 2003). Chung et al. (2007) 9 showed that benzo[a]pyrene-induced cytotoxicity and apoptosis in mouse hepatoma (Hepa1c1c7) 10 cells occurred through a *p53* and caspase-dependent process requiring the AhR. An accumulation

- of cells in the S-phase of the cell cycle (i.e., DNA synthesis and replication) was also observed,
- 12 suggesting that this process may be related to cell proliferation. <u>Chen et al. (2003)</u> also
- 13 demonstrated the importance of the AhR in benzo[a]pyrene-7,8-dihydrodiol- and BPDE-induced
- 14 apoptosis in human HepG2 cells. Both the dihydrodiol and BPDE affected Bcl2 (a member of a
- 15 family of apoptosis suppressors) and activated caspase and p38 mitogen-activated protein (MAP)
- 16 kinases, both enzymes that promote apoptosis. When the experiments were conducted in a cell line
- 17 that does not contain Ah receptor nuclear translocator (see Figure D-3), the dihydrodiol was not
- able to initiate apoptotic event sequences, indicating that activation to BPDE by CYP1A1 was
- 19 required. BPDE did not induce apoptosis-related events in a p38-defective cell line, illustrating the
- 20 importance of MAP kinases in this process. In rat liver epithelial cells (WB-F344 cells), in vitro
- 21 exposure to benzo[a]pyrene resulted in apoptosis, a decrease in cell number, an increase in the
- 22 percentage of cells in S-phase (comparable to a proliferating population of WB-F334 cells), and
- 23 increased expression of cell cycle proteins (e.g., cyclin A) (<u>Andrysík et al., 2007</u>). Benzo[a]pyrene-
- 24 induced apoptosis was attenuated in cells transfected with a dominant-negative mutation of the
- 25 AhR.

26 <u>Inhibition of gap junctional intercellular communication (GJIC)</u>

Gap junctions are channels between cells that allow substances of a molecular weight up to
roughly 1 kDa to pass from one cell to the other. This process of metabolic cooperation is crucial
for differentiation, proliferation, apoptosis, and cell death and consequently for the two epigenetic
steps of tumor formation, promotion, and progression. Chronic exposure to many toxicants results
in down-regulation of gap junctions. For tumor promoters, such as TPA or TCDD, inhibition of
intercellular communication is correlated with their promoting potency (Sharovskaya et al., 2006;
Yamasaki, 1990).

Bláha et al. (2002) surveyed the potency of 35 PAHs, including benzo[a]pyrene, to inhibit
GJIC. The scrape loading/dye transfer assay was employed using a rat liver epithelial cell line that
was incubated in vitro for 15, 30, or 60 minutes with 50 μM benzo[a]pyrene. After incubation, cells
were washed, and then a line was scraped through the cells with a surgical blade. Cells were
exposed to the fluorescent dye lucifer yellow for 4 minutes and then fixed with formalin. Spread of

- 1 the dye from the scrape line into cells remote from the scrape was estimated under a fluorescence
- 2 microscope. Benzo[a]pyrene reduced spread of the dye after 30 minutes of exposure
- 3 (approximately 50% of control). Recovery of GJIC was observed 60 minutes after exposure.
- 4 <u>Sharovskaya et al. (2006)</u> studied the effects of carcinogenic and noncarcinogenic PAHs on
- 5 GJIC in HepG2 cells. Individual carcinogenic PAHs inhibited GJIC in a temporary fashion (70–100%
- 6 within 24 hours), but removal of the PAH from culture reversed the effect. Noncarcinogenic PAHs
- 7 had very little effect on GJIC. Benzo[a]pyrene at 20 μM inhibited GJIC completely within 24 hours,
- 8 while its noncarcinogenic homolog, benzo[e]pyrene, produced <20% inhibition. The effect was not
- 9 AhR-dependent, because benzo[a]pyrene inhibited GJIC in HepG2 cells to the same extent as in
- 10 hepatoma G27 cells, which express neither CYP1A1 nor AhR. The authors concluded that the
- 11 effects of benzo[a]pyrene and benzo[e]pyrene on GJIC were direct (i.e., not caused by metabolites).

12 D.5.3. Benzo[a]pyrene Transcriptomic Microarray Analysis

The objective of this analysis was to use transcriptomic microarray analysis to help inform the cancer mode of action for benzo[a]pyrene. A systematic review and meta-analysis approach was used to: (1) identify studies; (2) analyze the raw data; (3) assess data quality; and (4) combine evidence from multiple studies to identify genes that were reproducibly active across all of the studies.

18 The Gene Expression Omnibus and Array Express microarray repositories were searched 19 for studies that used benzo[a]pyrene as a test chemical and raw data were available. The search 20 terms used and the number of studies retrieved are listed in Table D-34. Many of the search terms 21 included terms for specific PAH mixtures, as benzo[a]pyrene is commonly used as a reference 22 chemical in PAH mixture studies, to ensure the available and usable benzo[a]pyrene microarray 23 data were identified.

24Table D-34. Search terms and the number of studies retrieved from the gene25expression omnibus and array express microarray repositories

Search term	Number of microarray studies retrieved
Coal tar	2
Polycyclic aromatic hydrocarbons	13
B[a]P	52
Diesel	11
Smoke NOT cigarette	16
Benzo[a]pyrene	53
Fuel oil	1
Cigarette smoke	63
Tobacco smoke	16

This document is a draft for review purposes only and does not constitute Agency policy.D-118DRAFT—DO NOT CITE OR QUOTE

2 Forty responsive gene expression datasets were identified, representing 26 peer-reviewed 3 publications. These datasets were further culled for analysis by focusing on publicly available 4 results and species and organs represented by more than one available dataset on the same 5 microarray platform. Crossing microarray platforms and species boundaries adds significant 6 uncertainty to the interpretation with respect to comparisons of the probes being measured, how 7 those different probes align to the genome and are mapped to specific genes, and creates an open 8 question regarding the discovery and mapping of orthologous genes across species. Thus, the 9 analysis included two studies that focused on mouse in vivo transcriptomic studies of the liver 10 (Gene Expression Omnibus accessions: GSE24907 and GSE18789).

The first study (Malik et al., 2012), GSE24907, exposed five male Muta mice (a LacZ transgenic mouse line) per group to 25, 50, or 75 mg/kg benzo[a]pyrene or olive oil vehicle for 28 days by gavage. The second study (Yauk et al., 2011), GSE18789, exposed 27–30-day-old male B6C3F₁ mice to 150 mg/kg benzo[a]pyrene by gavage for 3 days and sacrificed 4 or 24 hours after the final dose. Both studies were subjected to study quality evaluation by the Systematic Omics

16 Analysis Review (SOAR) tool.

1

17 SOAR was developed to assist in the quick and transparent identification of studies that are

18 suitable for hazard assessment development. SOAR consists of a series of objective questions that

19 examine the overall study quality of a transcriptomic microarray study. SOAR combines questions

20 from the Toxicological Reliability Assessment (ToxR) Tool, the Minimum Information About a

21 Microarray Experiment (MIAME) standard, and the Checklist for Exchange and Interpretation of

22 Data from a Toxicology Study. Both studies were determined to be relevant and suitable for hazard

23 assessment development using SOAR.

24 Data Analysis Overview

25 Raw data for both studies were obtained from the Gene Expression Omnibus

26 (<u>http://www.ncbi.nlm.nih.gov/geo/</u>) using the GEOquery package (<u>Davis and Meltzer, 2007</u>) in

27 Bioconductor (a bioinformatics software repository for packages that may be used in the

28 R statistical environment). Each study was pre-processed, normalized, subjected to quality control

analysis (see below) and analyzed independently to determine the number of active genes using a

30 fold-change cut-off, and then a subsequent *p*-value cut-off.

31 Pre-processing involves the acquisition of data, background subtraction (not performed

32 here), and synthesis of gene expression data across multiple probesets (only for Affymetrix data,

and only if analysis is performed on a probeset basis). Normalization is the mathematical

34 adjustment of data to correct. Data were normalized using fastlo within-groups to control for

technical variance (<u>Eckel et al., 2005</u>).

The raw microarray data from both studies were analyzed for quality using Principal
Components Analysis (PCA) and boxplot analysis. PCA is commonly used for cluster analysis based
on the variance within the dataset. The PCA algorithm (in this case, singular value decomposition

This document is a draft for review purposes only and does not constitute Agency policy.D-119DRAFT—DO NOT CITE OR QUOTE

1 was used) can be thought of projecting the data into a multidimensional space, and drawing an axis 2 through the data cloud to explain the largest amount of variance. The next axis is drawn through 3 the cloud to explain the next largest amount of variance while also being orthogonal to the first axis 4 (e.g., the Y-axis is orthogonal to the X-axis in a Cartesian plane). The idea is that samples will 5 naturally cluster in a way that is easily visualized in a simple 2-dimensional plot, where the axis 6 representing the largest variance is the X-axis. For quality control purposes, observation of 7 samples from the same biological grouping (e.g., all of the controls, or all of the samples treated the 8 same way for the same duration) clustered in the X–Y plane is preferable. The samples in 9 GSE24907 separated mostly by group when the normalized data were visualized by PCA. The 10 boxplots exhibited a somewhat compressed interquartile range. Overall, the data were deemed to 11 be of high enough quality to continue analysis, although the compressed interquartile range could 12 manifest data compression issues which may decrease the overall statistical power. 13 The normalized samples in GSE18709 also separated mostly by group; however, one 14 benzo[a]pyrene treated 24-hour sample and one 4-hour control sample clustered distantly from the 15 rest of their groups. This raises concerns that there remains a significant amount of variance in the 16 data that the normalization could not overcome. This variance may decrease the overall statistical 17 power of the meta-analysis. The boxplots of normalized data for this study were more compressed 18 than that for GSE24907. 19 Data were analyzed using limma and an empirical Bayes moderated t-test (Smyth, 2004). 20 Following analysis, active genes were identified. A gene was considered active if it exhibited a

21 1.5-fold-change and a *p*-value <0.1 in at least one condition or group (e.g., time-point or dose). 22 A data mining/pathway analysis approach was undertaken using the GeneGo Metacore 23 software and using the active gene lists. This approach compares the pathways identified from 24 bioinformatics analyses of the active gene lists from both studies. The active gene lists from both 25 studies were analyzed using the GeneGo Metacore software. The data were mined to identify 26 GeneGo Metacore pathways that represent a large number of genes from both datasets. Gene 27 expression data were overlaid only for those conditions where the gene was at least 1.5-fold up- or 28 down-regulated. The GeneGo pathways were analyzed for relevance to the hypothesized mode of 29 action for benzo[a]pyrene, and for pathways that may illustrate new modes of action. This analysis 30 is strictly an exploratory pathway analysis to help inform the interpretation of the transcriptomics 31 data.

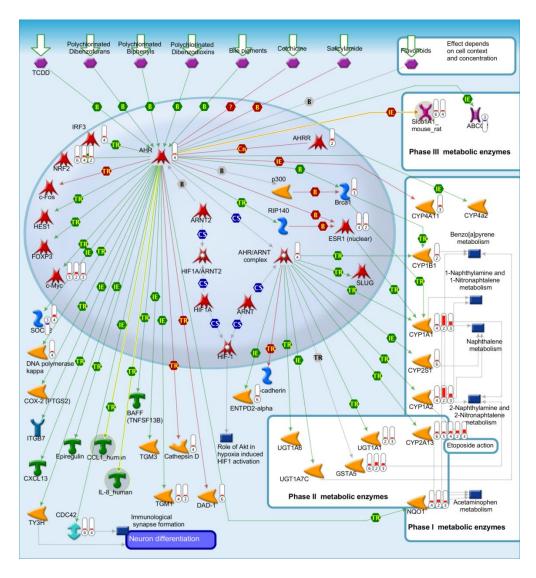
The pathway analysis is a powerful method for comparing study results and identifying consistency than a direct comparison of the active gene list. For instance, differentially expressed gene lists reported in the peer-reviewed literature are not reproducible across similar studies (Shi et al., 2008; Chuang et al., 2007; Ein-Dor et al., 2005; Lossos et al., 2004; Fortunel et al., 2003). In one example, three different studies aimed at identifying genes that confer "stemness" (i.e., genes which are responsible for conferring stem-cell like capabilities) each yielded 230, 283, and 385 active genes, yet the overlap between them was only one gene (Fortunel et al., 2003). This 1 demonstrates that the use of simple Venn diagrams to show the overlap of genes across studies are

- 2 not as informative as pathway analysis, and are less likely to provide support to potential mode-of-
- 3 action hypotheses.
- 4 Three candidate pathways were identified. These are:
- 5 AhR signaling
- DNA damage regulation of the G1/S phase transition
- 7 Nrf2 regulation of oxidative stress

8 Gene differential expression is represented on the pathway map as a "thermometer" next to

9 the protein symbol. Upregulation is symbolized by an upward pointing thermometer, where the

10 length of the red bar represents a relative log2 fold-change. Downregulation is symbolized by a


11 downward pointing thermometer, where the length of the blue bar represents a relative log2 fold-

12 change. A red line connecting proteins represents inhibition. A green line connecting proteins

13 represents activation. A symbol legend accompanies this report.

14 Table D-35. Mapping of group numbers to time/dose groups

Number under thermometer In Figures D-4–D-6	Dose	Time point	Reference
2	150 mg/kg	3-d exposure (sacrificed 4 hrs after final dose)	<u>Yauk et al. (2011)</u>
3	150 mg/kg	3-d exposure (sacrificed 24 hrs after final dose)	<u>Yauk et al. (2011)</u>
4	75 mg/kg	28-d exposure	<u>Malik et al. (2012)</u>
5	50 mg/kg	28-d exposure	<u>Malik et al. (2012)</u>
6	25 mg/kg	28-d exposure	<u>Malik et al. (2012)</u>

1

2

3 4

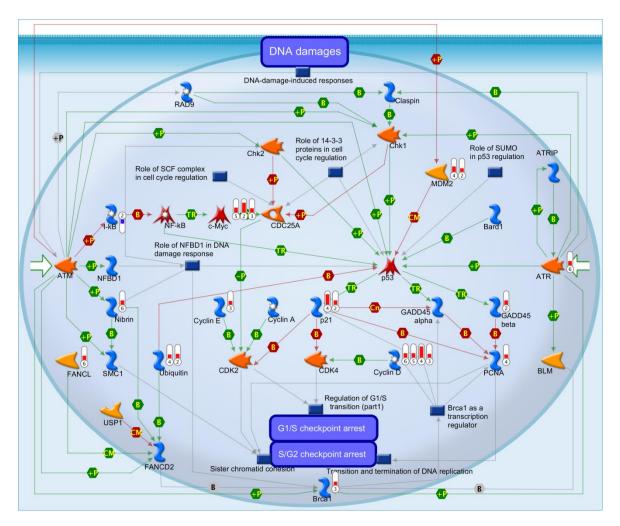

5

Figure D-4. AhR pathway. For Figures D-4–D-6, the "thermometers" display the fold change gene expression. The numbers under the thermometer represent the group within the two studies (see Table D-34). For instance, NRF2 is upregulated in the 25 mg/kg.

6 AhR Signaling

The AhR regulates the transcription of several genes, including xenobiotic metabolism
genes (Figure D-4). It appears that benzo[a]pyrene is activating the AhR in these studies based on
the expression of many of its transcriptional targets. Relevant to further analysis and investigating
the mode of action, the c-Myc gene is upregulated at 4 and 24 hours in the time-course and at the
50 mg/kg dose in the dose-response, while Nrf2 is upregulated at the 4-hour time-point and at the
and 75 mg/kg doses. c-Myc has been shown to be upregulated following exposure to TCDD, and
a putative dioxin response element has been detected in the c-Myc promoter (Dere et al., 2011; Kim

- 1 <u>et al., 2000</u>). The AhR has been demonstrated to bind and regulate the Nrf2 promoter (<u>Dere et al.</u>,
- 2 <u>2011; Lo et al., 2011; Nair et al., 2008</u>).
- 3

4

5

6

7

Figure D-5. DNA damage pathway. Activation of transcriptional targets of *p53*, including *p21* and *GADD45*, and upregulation of the downstream transcriptional target, PCNA, suggests that *p53* is activated.

8 DNA Damage Signaling

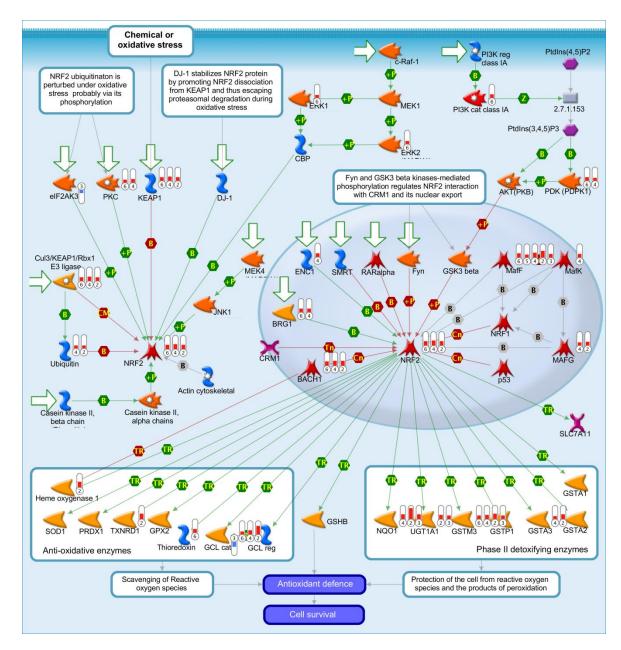
9 The strong upregulation of p21 and MDM2 at 4 hours and 75 mg/kg suggests that *p53* is

10 activated following exposure to benzo[a]pyrene, suggesting that benzo[a]pyrene induces DNA

- 11 damage as early as the 4-hour time-point, and at 75 mg/kg in mice (Figure D-5). MDM2 is a target
- 12 gene of *p53*, and also negatively feedback inhibits *p53* signaling through ubiquitination. Ubiquitin is
- also upregulated at 4 hours and 75 mg/kg, further suggesting that that *p53* may initially be
- 14 upregulated at times prior to 4 hours and prior to sacrifice in the 75 mg/kg groups, and that at the
- 15 time of sacrifice, the *p53* signal may be degraded due to MDM2-mediated ubiquitination. Coupled
- 16 with the upregulation of Cyclin D and PCNA at 75 mg/kg (among other conditions), this suggests a

1 pro-mitotic shift may be occurring which could lead to cellular proliferation in the liver in the mice

2 exposed to 75 mg/kg per day.


3 Nrf2 Signaling

4 Nrf2 transcription may be upregulated by benzo[a]pyrene through activation of the AhR

5 (Figure D-4). The Nrf2 protein heterodimerizes with the MafF protein (<u>Surh et al., 2008</u>; <u>Marini et</u>

6 <u>al., 2002; Kim et al., 2000</u>) to regulate the transcription of Phase II metabolism and anti-oxidative

- 7 enzymes (Figure D-6). Activated *p53* competes with Nrf2 anti-oxidant signaling, perhaps to ensure
- 8 a large oxidative stress response is present in the cell to promote the induction of apoptosis
- 9 (Faraonio et al., 2006). Upregulation of Cul3 at 4 hours and the 75 mg/kg dose in concert with the
- 10 upregulation of ubiquitin at the same time and dose suggests that repression of Nrf2 activity may
- 11 occur. This would support the *p53*-mediated pro-oxidant hypothesis, which is further
- 12 substantiated by the lack of upregulation of anti-oxidant genes at 75 mg/kg, with the exception of
- 13 GCL cat.
- 14

1

2

3

4

Figure D-6. Nrf2 pathway. Nrf2 is upregulated by benzo[a]pyrene exposure, which results in the upregulation of Phase II detoxifying enzymes. This appears to be a compensatory response due to increased oxidative status within cells.

5 Pathway Analysis Summary

Activation of the AhR appears to be present based on the transcriptional data. This may
lead to formation of oxidative metabolites and radicals which may lead to oxidative damage and
DNA damage. Although the alterations to the Nrf2 pathway suggest cells are gearing up for a proapoptotic environment, there is no transcriptional evidence that the apoptotic pathways are being
activated. Thus, there is significant uncertainty as to whether or not apoptosis may occur.

1 The transcriptomics data support a potential mutagenic and cellular proliferation mode of 2 action. The transcriptomics data support the hypothesis that DNA damage is occurring at 4 hours 3 following three daily doses of 150 mg/kg-day of benzo[a]pyrene and 75 mg/kg-day for 28 days. This is supported by the transcriptional activation of *p53* target genes, including p21 and MDM2. 4 5 The transcriptional data further suggest that *p53* signaling may be waning under these conditions, 6 as ubiquitin and MDM2 are both upregulated, and work together to degrade *p53*. Furthermore, the 7 transcriptional upregulation of Cyclin D in the 75 mg/kg-day exposure may result in enough Cyclin 8 D protein to overcome the p21 inhibitory competition for CDK4, allowing for G1/S phase transition 9 to occur. In addition, the upregulation of PCNA in the 75 mg/kg-day exposure group together with 10 upregulation of ubiquitin further supports the argument that cells are moving towards a more 11 G1/S phase transition friendly environment. Translesion synthesis (i.e., a DNA repair/bypass 12 mechanism, whereby DNA adducts are allowed to remain in newly synthesized DNA, so as to allow 13 the cell to continue with DNA synthesis and complete the cell cycle) by ubiquitinated PCNA may 14 favor mutagenesis if the G1/S phase transition occurs by allowing DNA adducts to persist in 15 daughter cells. There are a number of areas of uncertainty within the transcriptomics data that require 16 17 additional research. For instance, transcriptomics data only measure changes in gene expression; 18 these studies did not monitor changes in protein or metabolite expression, which would be more 19 indicative of an actual cellular state change. Inferences of protein activation and changes in protein 20 activity and cellular signaling are made based on the transcriptomics data. Further research is 21 required at the molecular level to demonstrate that the cellular signaling events being inferred are 22 actually taking place, and that these events result in phenotypic changes, consistent with the overall 23 mode of action. The studies also have inherent uncertainty with respect to extrapolation from short 24 term, high dose studies to low dose exposures across a lifetime. In addition, this work uses a 25 hypothesized mode of action in the liver to support an overall mode of action. 26

APPENDIX E. DOSE-RESPONSE MODELING FOR THE DERIVATION OF REFERENCE VALUES FOR EFFECTS OTHER THAN CANCER AND THE DERIVATION OF CANCER RISK ESTIMATES

6 This appendix provides technical detail on dose-response evaluation and determination of
7 points of departure (PODs) for relevant toxicological endpoints, organized by risk value (reference
8 value or cancer risk value). Except where other software is noted, all endpoints were modeled
9 using the U.S. Environmental Protection Agency's (EPA's) Benchmark Dose Software (BMDS) (U.S.
10 <u>EPA, 2012a</u>); version 2.0 or later. The preambles for the cancer and noncancer parts below
11 describe the practices used in evaluating the model fit and selecting the appropriate model for
12 determining the POD, as outlined in the *Benchmark Dose Technical Guidance* (U.S. EPA, 2012b).

13 E.1. NONCANCER ENDPOINTS

14 E.1.1. Reference Dose (RfD)

15 Evaluation of Model Fit

1

16 For each dichotomous endpoint, BMDS dichotomous models were fitted to the data using 17 the maximum likelihood method. For the log-logistic and dichotomous Hill models, slope 18 parameters were restricted to be ≥ 1 ; for the gamma and Weibull models, power parameters were 19 restricted to be ≥ 1 ; and for the multistage models, betas were restricted to be non-negative ($b_i \geq 0$). 20 Each model was tested for goodness-of-fit using a chi-square goodness-of-fit test (χ^2 p-value <0.10 21 indicates lack of fit). Other factors were also used to assess model fit, such as scaled residuals, 22 visual fit, and adequacy of fit in the low-dose region and in the vicinity of the benchmark response 23 (BMR).

24 For each continuous endpoint, BMDS continuous models were fitted to the data using the 25 maximum likelihood method. For the polynomial models, betas were restricted to be non-negative (in 26 the case of increasing response) or non-positive (in the case of decreasing response data); and for 27 the Hill, power, and exponential models, power parameters were restricted to be ≥ 1 . Model fit was 28 assessed by a series of tests as follows. For each model, first the homogeneity of the variances was 29 tested using a likelihood ratio test (BMDS Test 2). If Test 2 was not rejected ($\chi^2 p$ -value ≥ 0.10), then 30 the model was fitted to the data assuming constant variance. If Test 2 was rejected ($\chi^2 p$ -value 31 <0.10), then the variance was modeled as a power function of the mean, and the variance model 32 was tested for adequacy of fit using a likelihood ratio test (BMDS Test 3). For fitting models using

- 1 either constant variance or modeled variance, models for the mean response were tested for
- 2 adequacy of fit using a likelihood ratio test (BMDS Test 4, with $\chi^2 p$ -value <0.10 indicating
- 3 inadequate fit). Other factors were also used to assess the model fit, such as scaled residuals, visual
- 4 fit, and adequacy of fit in the low-dose region and in the vicinity of the BMR.

5 Model selection

6 For each endpoint selected for modeling (see Table E-1), the BMDL estimate (95% lower 7 confidence limit on the benchmark dose [BMD], as estimated by the profile likelihood method) and 8 Akaike's Information Criterion (AIC) value were used to select a best-fit model from among the 9 models exhibiting adequate fit. If the BMDL estimates were "sufficiently close," that is, differed by 10 at most threefold, then the model selected was the one that yielded the lowest AIC value. If the BMDL estimates were not sufficiently close, then the lowest BMDL was selected as the POD. 11

- 12
- 13

Table E-1. Noncancer endpoints selected for dose-response modeling for benzo[a]pyrene: RfD

Study	Endpoint	Species/sex		Doses a	nd effect dat	а	
<u>Kroese et</u>		Rat (Wistar)/	Dose (mg/kg-d)	0	3	10	30
<u>al. (2001)</u>	weight (mg)	male	Mean ± SD ^a	380 ± 60	380 ± 110	330 ± 60	270 ± 40*
<u>Kroese et</u>		Rat (Wistar)/	Dose (mg/kg-d)	0	3	10	30
<u>al. (2001)</u>	weight (mg)	female	Mean ± SD ^a	320 ± 60	310 ± 50	300 ± 40	230 ± 30*
<u>Xu et al.</u>	Ovary	Sprague-	Dose (mg/kg-d) ^b	0	2.5	5	
<u>(2010)</u>	weight (mg) Dawley/	Mean ± SD	0.160 ± 0.0146	0.143 ± 0.0098**	0.136 ± 0.0098**		
<u>Chen et</u>	Morris Sprague-	Dose (mg/kg-d)	0	0.02	0.2	2.0	
<u>al. (2012)</u>	water maze	r maze Dawley/male and female	Escape latency (sec); mean ± SD	9.89 ± 5.76	12.5 ± 5.10	19.1 ± 5.85	33.5 ± 9.93
			Time spent in target quadrant (sec); mean ± SD	33.6 ± 8.92	31.9 ± 8.63	16.6 ± 5.74	11.1 ± 5.12
	Elevated plus maze	Sprague- Dawley/ female	Number of open arm entries	10.24 ± 1.905	10.36 ± 3.048	12.89 ± 2.667	16.39 ± 3.048
<u>Gao et al.</u>		ICR/female	Dose (mg/kg-d) ^c	0	0.71	1.4	2.9
<u>(2011)</u>	epithelial hyperplasia		Incidence	0/26	4/26	6/25	7/24

14

15 *Significantly (p < 0.05) different from control mean; student t-test (unpaired, two-tailed); n = 10/sex/group.

16 **Statistically different (p < 0.05) from controls using one-way analysis of variance (ANOVA).

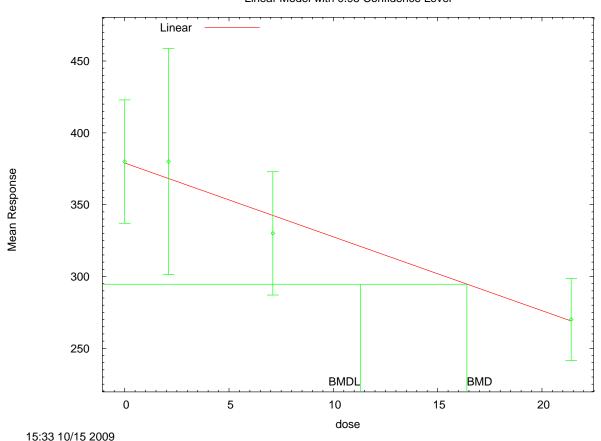
17 ^aReported as standard error (SE), but judged to be standard deviation (SD) (and confirmed by study authors).

^bTime-weighted average (TWA) doses over the 60-day study period. 18

19 ^cDoses converted to mg/kg-day after adjustment for equivalent continuous dosing (2/7 days/week).

1 <u>Modeling results</u>

Below are tables and figures summarizing the modeling results for the noncancer endpoints
modeled (see Tables E-2 through E-8 and Figures E-1 through E-7).


Table E-2. Summary of BMD modeling results for decreased thymus weight in male Wistar rats exposed to benzo[a]pyrene by gavage for 90 days (<u>Kroese et</u> al., 2001); BMR = 1 SD change from the control mean

	Variance	Goodness of fit		BMD _{1SD}	
Model	<i>p</i> -value ^a	<i>p</i> -value	AIC	(mg/kg-d)	(mg/kg-d)
Constant variance					
Linear	0.01	0.74	384.84	12.97	8.97
Nonconstant variance					
Hill ^b	Insufficient degrees of freedom				
Linear, polynomial (2-degree), power ^c	0.30	0.23	380.71	16.40	11.30


⁷ 8 9

^aValues <0.10 fail to meet conventional goodness-of-fit criteria.

^bPower restricted to ≥1.

Linear Model with 0.95 Confidence Level

Figure E-1. Fit of linear model (nonconstant variance) to data on decreased thymus weight in male Wistar rats—90 days (Kroese et al., 2001).

```
Polynomial Model. (Version: 2.13; Date: 04/08/2008)
        Input
                                              Data
                                                                                    File:
C:\USEPA\IRIS\benzo[a]pyrene\RfD\Kroese2001\90day\thymusweight\male\durationadjusted\2Linkrolin.(
d)
        Gnuplot
                                              Plotting
                                                                                    File:
C:\USEPA\IRIS\benzo[a]pyrene\RfD\Kroese2001\90day\thymusweight\male\durationadjusted\2Linkrolin.p
lt
===
   _____
BMDS Model Run
The form of the response function is:
  Y[dose] = beta 0 + beta 1*dose + beta 2*dose^2 + ...
  Dependent variable = mean
  Independent variable = dose
  The polynomial coefficients are restricted to be negative
  The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)
  Total number of dose groups = 4
```

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

```
Total number of records with missing values = 0
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
```

Default Initial	Parameter Values
lalpha =	8.56121
rho =	0
beta 0 =	380.763
beta 1 =	-5.3285

Asymptotic Correlation Matrix of Parameter Estimates

	lalpha	rho	beta_0	beta_1
lalpha	1	-1	0.048	-0.061
rho	-1	1	-0.048	0.061
beta_0	0.048	-0.048	1	-0.84
beta_1	-0.061	0.061	-0.84	1

Parameter Estimates

			95.0% Wald Confidence Interval		
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit	
lalpha	-18.8293	9.75429	-37.9473	0.288754	
rho	4.66515	1.67581	1.38062	7.94967	
beta O	378.954	16.5291	346.558	411.351	
beta_1	-5.14219	1.00497	-7.11189	-3.17249	

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
0	10	380	379	60	84.3	0.0392
2.1	10	380	368	110	78.8	0.475
7.1	10	330	342	60	66.6	-0.591
21.4	10	270	269	40	37.9	0.0908

Model Descriptions for likelihoods calculated

```
Model A1: Yij = Mu(i) + e(ij)
Var$$e(ij)} = Sigma^2
```

```
Model A2: Yij = Mu(i) + e(ij)
Var$$e(ij)} = Sigma(i)^2
```

```
Model A3: Yij = Mu(i) + e(ij)
Var$$e(ij)} = exp(lalpha + rho*ln(Mu(i)))
Model A3 uses any fixed variance parameters that
were specified by the user
```

Model R: Yi = Mu + e(i) Var\$\$e(i)} = Sigma^2

Likelihoods of Interest

Model A1 A2 A3 fitted R	Log(likelihood -189.116991 -183.673279 -184.883626 -186.353541 -196.353362	{	A'S AIC 388.233982 383.346558 381.767253 380.707081 2396.706723
Ex	planation of Tes	ts	
Test 1: Do response (A2 vs. R) Test 2: Are Varianc Test 3: Are varianc Test 4: Does the Mo (Note: When rho=0 t	es Homogeneous? es adequately mo del for the Mean	(A1 vs A2) odeled? (A2 1 Fit? (A3 v	vs. A3)
	Tests of Interes	t	
Test -2*log(Lik	elihood Ratio)	Test df	p-value
Test 1 Test 2 Test 3 Test 4	25.3602 10.8874 2.42069 2.93983	6 3 2 2	0.0002928 0.01235 0.2981 0.2299
The p-value for Test difference between re It seems appropriate	sponse and/or va	riances amo	
The p-value for Test model appears to be a		1. A non-h	nomogeneous variance
The p-value for Test to be appropriate he	-	n .1. The	modeled variance appears
The p-value for Test to adequately describ		n .1. The	model chosen seems
Benchmar	k Dose Computati	.on	
Specified effect =	1		
Risk Type =	Estimated stan	dard deviat	tions from the control mean
Confidence level =	0.95		
BMD =	16.4008		
BMDL =	11.2965		

1 2 3

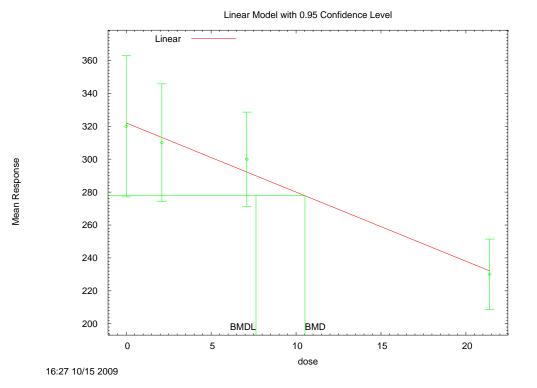
Table E-3. Summary of BMD modeling results for decreased thymus weight in female Wistar rats exposed to benzo[a]pyrene by gavage for 90 days (Kroese et al., 2001); BMR = 1 SD change from the control mean

	Go	odness of fit			
Model (constant variance)	Variance <i>p</i> -value ^a	Mean <i>p</i> -value ^ª	AIC	BMD _{1SD} (mg/kg-d)	BMDL _{1SD} (mg/kg-d)
Hill ^b			NA		
Linear ^c	0.17	0.81	349.12	10.52	7.64
Polynomial (2-degree) ^{c,d}	0.17	0.77	350.80	13.29	7.77
Power ^b			NA		•

4

^aValues <0.10 fail to meet conventional goodness-of-fit criteria.

5 6 7 ^bPower restricted to \geq 1.


^cCoefficients restricted to be negative.

8 ^dLowest degree polynomial with an adequate fit is reported.

9

10 BMD/BMC = maximum likelihood estimate (MLE) of the dose/concentration associated with the selected BMR;

11 NA = not applicable; model failed to generate.

BMDs and BMDLs indicated are associated with a change of 1 SD from the control, and are in units of mg/kg-day.

Figure E-2. Fit of linear model (constant variance) to data on decreased thymus weight in female Wistar rats—90 days (<u>Kroese et al., 2001</u>).

```
_____
                             Polynomial Model. (Version: 2.13; Date: 04/08/2008)
                             Tnput.
                                                                                                                                                                  Data
                                                                                                                                                                                                                                                                                                     File:
\verb|C:USEPA|IRIS|benzo[a]pyrene\RfD|Kroese2001|90day|thymusweight|female|durationadjusted|2Linkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkrolinkr
.(d)
                             Gnuplot
                                                                                                                                                                Plotting
                                                                                                                                                                                                                                                                                                     File:
C:\USEPA\IRIS\benzo[a]pyrene\RfD\Kroese2001\90day\thymusweight\female\durationadjusted\2Linkrolin
.plt
                                                                                                                                                                      Thu Oct 15 16:27:44 2009
  BMDS Model Run
 The form of the response function is:
         Y[dose] = beta 0 + beta 1*dose + beta 2*dose^2 + ...
         Dependent variable = mean
         Independent variable = dose
         rho is set to 0
         The polynomial coefficients are restricted to be negative
        A constant variance model is fit
        Total number of dose groups = 4
        Total number of records with missing values = 0
         Maximum number of iterations = 250
        Relative Function Convergence has been set to: 1e-008
         Parameter Convergence has been set to: 1e-008
```

This document is a draft for review purposes only and does not constitute Agency policy. E-8 DRAFT—D0 NOT CITE OR QUOTE

1

Default Initial Parameter Values alpha = 1 rho = 0 Specified beta_0 = 322.144 beta_1 = -4.2018 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -rho have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix $\ensuremath{)}$ alpha beta O beta 1 1 2.4e-008 -2.3e-008 alpha 1 beta_0 2.4e-008 -0.68 beta_1 -2.3e-008 -0.68 1 Parameter Estimates 95.0% Wald Confidence Interval Estimate 1954.92 322.144
 Std. Err.
 Lower Conf. Limit
 Upper Conf. Limit

 437.134
 1098.16
 2811.69

 9.48287
 303.558
 340.73
 Variable alpha beta_0 -5.84334 -2.56026 beta_1 -4.2018 0.837537 Table of Data and Estimated Values of Interest N Obs Mean Dose Est Mean Obs Std Dev Est Std Dev Scaled Res. _____ ____ -----_____ -----0 10 320 2.1 10 310 7.1 10 300 21.4 10 230
 322
 60

 313
 50

 292
 40

 232
 30
 -0.153 44.2 44.2 -0.237 0.55 44.2 21.4 44.2 -0.159 Model Descriptions for likelihoods calculated Model A1: Yij = Mu(i) + e(ij)Var\$\$e(ij)} = Sigma^2 Model A2: Yij = Mu(i) + e(ij) Var\$\$e(ij)} = Sigma(i)^2 Model A3: Yij = Mu(i) + e(ij)Var = Sigma² Model A3 uses any fixed variance parameters that were specified by the user Model R: Yi = Mu + e(i) Var\$\$e(i)} = Sigma^2 Likelihoods of Interest Log(likelihood) # Param's AIC -171.357252 5 352.714504 -168.857234 8 353.714467 Model A1 A2

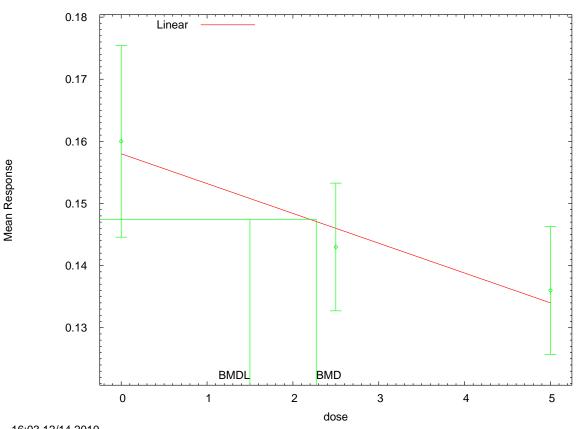
This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR OUOTE

A3 fitted R		З	352.714504 349.124237 366.648303
	Explanation of Te	ests	
(A2 vs Test 2: Are Va Test 3: Are va Test 4: Does t	riances Homogeneous riances adequately r ne Model for the Mea	? (A1 vs A2) nodeled? (A2 vs an Fit? (A3 vs.	. A3)
	Tests of Intere	est	
Test -2*loo	g(Likelihood Ratio)	Test df	p-value
Test 1 Test 2 Test 3 Test 4	24.9338 5.00004 5.00004 0.409733	3 3	0003512 0.1718 0.1718 0.8148
difference betwee	Test 1 is less than en response and/or v iate to model the da	variances among	
	Iest 2 is greater th be appropriate here		geneous variance
The p-value for to be appropria		nan .1. The mo	deled variance appears
The p-value for to adequately de	Test 4 is greater th scribe the data	nan .1. The mo	del chosen seems
Ben	chmark Dose Computat	tion	
Specified effect	= 1		
Risk Type	= Estimated sta	andard deviatio	ns from the control mean
Confidence level	= 0.95		
BMD	= 10.5228		

BMDL = 7.64037

1 Table E-4. Summary of BMD modeling results for decreased ovary weight in 2 female Sprague-Dawley rats exposed to benzo[a]pyrene by gavage for 60 day


female Sprague-Dawley rats exposed to benzo[a]pyrene by gavage for 60 days (<u>Xu et al., 2010</u>); BMR = 1 SD change from the control mean

	Goodne	ss of fit	BMD _{1SD}	BMDL _{1SD}	
Model	<i>p</i> -value		(mg/kg-d)	(mg/kg-d)	
Power		·	NA ^a		
Linear, polynomial (1°)	0.39	-138.67	2.27	1.49	

4 5

3

^aNA = not applicable; model failed to generate.

Linear Model with 0.95 Confidence Level

16:03 12/14 2010

Figure E-3. Fit of linear/polynomial (1°) model to data on decreased ovary weight (<u>Xu et al., 2010</u>).

	Polynomial M	lodel.	(Version:	2.16;	Date:	05/26/2010)			
	Input					Data			File:
C:/USEPA/	BMDS212/Data	/benzo	[a]pyrene/	Bap Ab	sOvaryW	eight/Xu2010	AbsOvaryWeight	Linear 1SD.(d)	
	Gnuplot			_		Plotting	_		File:
C:/USEPA/	BMDS212/Data	/benzo	[a]pyrene/	Bap Ab	sOvaryW	eight/Xu2010	AbsOvaryWeight	Linear 1SD.plt	
				-		Tue Dec 14	13:51:32 2010		

This document is a draft for review purposes only and does not constitute Agency policy.E-11DRAFT—DO NOT CITE OR QUOTE

6

```
The form of the response function is:
  Y[dose] = beta 0 + beta 1*dose + beta 2*dose^2 + ...
  Dependent variable = Mean
  Independent variable = Dose
  rho is set to 0
  Signs of the polynomial coefficients are not restricted
  A constant variance model is fit
  Total number of dose groups = 3
  Total number of records with missing values = 0
  Maximum number of iterations = 250
  Relative Function Convergence has been set to: 1e-008
  Parameter Convergence has been set to: 1e-008
                 Default Initial Parameter Values
                        alpha =
                                  0.000136
                          rho =
                                          0
                                               Specified
                       beta 0 =
                                   0.158333
                                   -0.0048
                       beta 1 =
          Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -rho
                have been estimated at a boundary point, or have been specified by the user,
                and do not appear in the correlation matrix \ensuremath{\boldsymbol{\mathsf{)}}}
                alpha
                           beta_0
                                        beta 1
                   1
   alpha
                           4e-010 -4.5e-010
   beta O
               4e-010
                             1
                                          -0.77
   beta 1
          -4.5e-010
                             -0.77
                                             1
                               Parameter Estimates
                                                      95.0% Wald Confidence Interval
     Variable
                     Estimate
                                     Std. Err.
                                                  Lower Conf. Limit Upper Conf. Limit
                                3.96296e-005
0.00406354
0.00125904
                                                  4.12162e-005 0.000196562
0.150369 0.166298
        alpha
                   0.000118889
        beta O
                    0.158333
       beta 1
                       -0.0048
                                                      -0.00726768 -0.00233232
    Table of Data and Estimated Values of Interest
Dose
          Ν
               Obs Mean
                            Est Mean Obs Std Dev Est Std Dev Scaled Res.
         ___
               _____
____
                            _____
                                       _____
                                                   _____
                                                                 _____
   0
        6
                0.16
                            0.158
                                        0.0147
                                                     0.0109
                                                                    0.374
                                   0.014/ 0.0109
0.0098 0.0109
0.0098 0.0109
             0.143
                                                                  -0.749
 2.5
                            0.146
        6
               0.136
                            0.134
                                                                   0.374
  5
         6
Model Descriptions for likelihoods calculated
               Yij = Mu(i) + e(ij)
Model A1:
         Var$$e(ij)} = Sigma^2
Model A2:
                Yij = Mu(i) + e(ij)
```

Var\$\$e(ij) } = Sigma(i)^2 Yij = Mu(i) + e(ij)Model A3: Var\$\$e(ij) } = Sigma^2 Model A3 uses any fixed variance parameters that were specified by the user Yi = Mu + e(i)Model R: Var\$\$e(i) } = Sigma^2 Likelihoods of Interest Model Log(likelihood) # Param's AIC -137.533190 A1 72.766595 4 6 A2 73.468565 -134.937129 A3 72.766595 4 -137.533190 3 72.335891 -138.671782 fitted R 67.008505 2 -130.017010 Explanation of Tests Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.) Tests of Interest Test -2*log(Likelihood Ratio) Test df p-value 0.01167 Test 1 12.9201 4 2 Test 2 1.40394 0.4956 2 Test 3 1.40394 0.4956 Test 4 0.861408 1 0.3533 The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here The p-value for Test 4 is greater than .1. The model chosen seems to adequately describe the data Benchmark Dose Computation Specified effect = 1 Estimated standard deviations from the control mean Risk Type = 0.95 Confidence level = BMD = 2.27159 BMDL = 1.49968

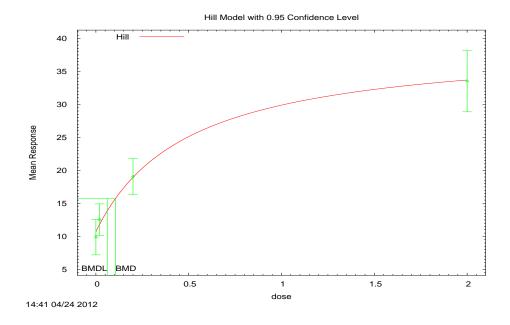
Table E-5. Summary of BMD modeling results for Morris water maze: escape latency in male and female Sprague-Dawley rats exposed to benzo[a]pyrene by gavage for 90 days (<u>Chen et al., 2012</u>); BMR = 1 SD change from the control mean

	Goodnes	Goodness of fit		BMDL _{1SD}
Model ^a	<i>p</i> -value	AIC	BMD _{1SD} (mg/kg-d)	(mg/kg-d)
Hill ^b	0.515	386.3	0.106	0.061
Exponential 4, 5	0.466	386.4	0.115	0.071
Polynomial (2°)	0.423	386.6	0.123	0.083
Linear, power	0.002	396.7	0.543	0.421
Exponential 2, 3	<0.001	400.3	0.815	0.687

5 6

8

1


2

3 4

^aIncludes modeling of heterogeneous variances (BMDS Test 3, p = 0.313).

7 ^bPower parameter n was estimated to be 1 (boundary of parameter space).

- 9 Data from Morris water maze was presented graphically in <u>Chen et al. (2012)</u>, but dose
 10 group means and standard deviations (SDs) were provided upon request by the study authors,
- 11 which enabled modeling of this endpoint. In addition, the data for male and female rats were
- 12 combined for dose-response analysis because there was no substantive difference between males
- 13 and females for each dose group (supported by statistical testing using two-way analysis of
- 14 variance [ANOVA], and allowing for interactions), and because there was no rationale or
- 15 information available suggesting there would be sex-mediated differences for these
- 16 neurobehavioral tests.
- 17

Figure E-4. Fit of Hill model to data on Morris water maze test escape latency (<u>Chen et al., 2012</u>).

```
_____
       Hill Model. (Version: 2.16; Date: 04/06/2011)
       Input Data File: C:\Documents and Settings\jfox\My Documents\ CURRENTWORK\ CAST
plus\BaP\BMDS\hil_Chen.FM.latency_Hil-ModelVariance-BMR1Std-Restrict.(d)
       Gnuplot Plotting File: C:\Documents and Settings\jfox\My Documents\_CURRENTWORK\_CAST
plus\BaP\BMDS\hil Chen.FM.latency Hil-ModelVariance-BMR1Std-Restrict.plt
                                            Tue Apr 24 14:41:26 2012
_____
BMDS Model Run
                 The form of the response function is:
  Y[dose] = intercept + v*dose^n/(k^n + dose^n)
  Dependent variable = Mean
  Independent variable = Dose
  Power parameter restricted to be greater than 1
  The variance is to be modeled as Var(i) = exp(lalpha + rho * ln(mean(i)))
  Total number of dose groups = 4
  Total number of records with missing values = 0
  Maximum number of iterations = 250
  Relative Function Convergence has been set to: 1e-008
  Parameter Convergence has been set to: 1e-008
               Default Initial Parameter Values
                     lalpha =
                                 3.87128
                       rho =
                                      Ω
                                  9.888
                  intercept =
                         v =
                                 23.6385
                         n =
                                0.187055
                         k =
                                 3.47082
```

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -n have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) $% \left(\left(\left({{{\left({{{\left({{{\left({{{\left({{{c}}} \right)}}} \right)}}}}} \right)_{i,j}}} \right)_{i,j}} \right) = 0} \right) = 0, j \in I, j \inI, j \inI, j \inI, j \inI, J \inI$

	lalpha	rho	intercept	v	k
lalpha	1	-0.99	-0.27	0.062	-0.11
rho	-0.99	1	0.24	-0.063	0.12
intercept	-0.27	0.24	1	0.017	0.47
v	0.062	-0.063	0.017	1	0.73
k	-0.11	0.12	0.47	0.73	1

Parameter Estimates

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	0.88775	0.974841	-1.0229	2.7984
rho	0.998033	0.338845	0.33391	1.66216
intercept	10.6545	0.914127	8.86283	12.4461
v	28.7081	3.94381	20.9783	36.4378
n	1	NA		
k	0.494812	0.213359	0.0766351	0.912988

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Data and Estimated Values of Interest

Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
0	2.0	9.89	10.7	5.76	5.08	-0.675
0.02	20	12.5	11.8	5.1	5.33	0.641
0.2	20	19.1	18.9	5.85	6.76	0.0952
2	20	33.5	33.7	9.93	9.01	-0.0706

Model Descriptions for likelihoods calculated

Yij = Mu(i) + e(ij) Model A1: Var\$\$e(ij) } = Sigma^2

Yij = Mu(i) + e(ij) Model A2: Var (ij) = Sigma(i)^2

Yij = Mu(i) + e(ij)Model A3: Var\$\$e(ij)} = exp(lalpha + rho*ln(Mu(i))) Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i)Var\$\$e(i) } = Sigma^2

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-192.799518	5	395.599036
A2	-186.795503	8	389.591006

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

fit	A3 ted R	-187.957975 -188.169983 -234.549118		6 5 2	387.915949 386.339965 473.098237	
	Expl	anation of Te	ests			
(P Test 2: Ar Test 3: Ar Test 4: Do	Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A1 vs A2) Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)					
	Те	sts of Intere	est			
Test -	-2*log(Likel	ihood Ratio)	Test df	1	p-value	
difference k It seems app The p-value model appear The p-value to be appro	0 for Test 1 petween resp poropriate to for Test 2 cs to be app for Test 3 opriate here for Test 4	model the da is less than ropriate is greater th is greater th	variances a ata .1. A non nan .1. Th	0.00 0 0 e appe mong th -homoge e mode	.0001 07356 .3127 .5149 ars to be a he dose levels eneous variance led variance appears l chosen seems	5
	chmark Dose					
Specified ef		1				
-			andard dow	ationa	from the control me	
11			anuaru uevi	acions	TIOW THE CONTROL WE	:a11
Confidence l		0.95 0.106284				

BMDL = 0.0609511

1Table E-6. Summary of BMD modeling results for Morris water maze: time2spent in quadrant for in male and female Sprague-Dawley rats exposed to3benzo[a]pyrene by gavage for 90 days (Chen et al., 2012); BMR = 1 SD change

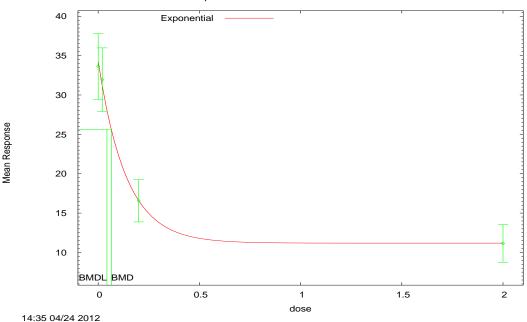
from the control mean

	Goodness of fit		BMD _{1SD}		
Model ^a	<i>p</i> -value	AIC	(mg/kg-d)	(mg/kg-d)	
Exponential 4	0.576	395.4	0.065	0.043	
Exponential 5	NA ^b	397.1	0.084	0.044	
Hill	NA ^b	397.1	0.071	0.038	
Linear, power, polynomial (1°, 2°, 3°)	<0.001	433.1	1.23	0.98	

5 6

8

9


10

11234156789012222

4

 \hat{o} ^aIncludes modeling of heterogenous variances (BMDS Test 3, p = 0.919).

7 ^bNA: insufficient degrees of freedom to evaluate χ^2 .

Exponential Model 4 with 0.95 Confidence Level

Figure E-5. Fit of exponential 4 model to data on Morris water maze time spent in target quadrant (<u>Chen et al., 2012</u>).

```
Exponential Model. (Version: 1.7; Date: 12/10/2009)
Input Data File: C:\Documents and Settings\...\exp_Chen.FM.target_Exp-ModelVariance-
BMR1Std-Down.(d)
BMDS Model Run
The form of the response function by Model:
Model 2: Y[dose] = a * exp$$sign * b * dose}
Model 3: Y[dose] = a * exp$$sign * (b * dose)^d}
```

This document is a draft for review purposes only and does not constitute Agency policy. E-18 DRAFT—DO NOT CITE OR QUOTE

```
Model 4: Y[dose] = a * [c-(c-1) * exp$$-b * dose]]
             Y[dose] = a * [c-(c-1) * exp$$-(b * dose)^d}]
  Model 5:
 Note: Y[dose] is the median response for exposure = dose;
      sign = +1 for increasing trend in data;
      sign = -1 for decreasing trend.
  Model 2 is nested within Models 3 and 4.
  Model 3 is nested within Model 5.
  Model 4 is nested within Model 5.
Dependent variable = Mean
Independent variable = Dose
Data are assumed to be distributed: normally
Variance Model: exp(lnalpha +rho *ln(Y[dose]))
The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)
Total number of dose groups = 4
Total number of records with missing values = 0
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
MLE solution provided: Exact
              Initial Parameter Values
              Variable
                              Model 4
              _____
                              _____
                                 0.666712
                lnalpha
                                  1.04799
                  rho
                                  35.3094
1.97191
                    а
                     b
                     С
                                  0.300675
                     d
                                       1
                 Parameter Estimates
               Variable
                              Model 4
               _____
                               _____
                lnalpha
                                0.601192
                                 1.05452
                   rho
                                 34.3199
                     а
                     b
                                  7.26795
                                 0.325841
                     С
                                       1
                     d
  NC = No Convergence
        Table of Stats From Input Data
          Ν
                    Obs Mean
                               Obs Std Dev
  Dose
  ____
          ___
                   _____
   0
                    33.638.92431.948.633
           20
                                8.924
        20
                   31.94
   0.02
   0.2 20
                   16.56
                               5.744
         20
    2
                   11.15
                               5.117
             Estimated Values of Interest
  Dose
           Est Mean
                        Est Std
                                    Scaled Residual
  ----
           _____
                      -----
                                  _____
                     8.713
                                       -0.3551
0.4069
   0
          34.32
   0.02
              31.19
                          8.285
                         5.939
   0.2
              16.59
                                        -0.02044
```

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR OUOTE

E-19

2	11.18	4.824	-0.03277	
Other model:	s for which l	ikelihoods are	calculated:	
Model A1:	Yij = Var\$\$e(ij)}	Mu(i) + e(ij) = Sigma^2		
Model A2:	Yij = Var\$\$e(ij)}	Mu(i) + e(ij) = Sigma(i)^2		
Model A3:		Mu(i) + e(ij) = exp(lalpha +	log(mean(i))	* rho)
Model R:	Yij = Var\$\$e(ij)}	. ,		

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	-197.0118	5	404.0235
A2	-192.448	8	400.896
A3	-192.5331	6	397.0662
R	-238.8696	2	481.7393
4	-192.6894	5	395.3787

Additive constant for all log-likelihoods = -73.52. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A2 vs. A1) Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 6a: Does Model 4 fit the data? (A3 vs 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	92.84	6	< 0.0001
Test 2	9.127	3	0.02764
Test 3	0.1701	2	0.9185
Test 6a	0.3126	1	0.5761

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 6a is greater than .1. Model 4 seems to adequately describe the data.

Benchmark Dose Computations:

Specified Effect = 1.000000

Risk Type = Estimated standard deviations from control Confidence Level = 0.950000 BMD = 0.0650194 BMDL = 0.0432761

12345678 910

11

Table E-7. Summary of BMD modeling results for elevated plus maze: open arm entries for females at PND 70 (<u>Chen et al., 2012</u>); BMR = 1 SD change from the control mean

	Goodne	Goodness of fit			
Model ^a	<i>p</i> -value ^b	AIC	BMD _{1SD} (mg/kg-d)	(mg/kg-d)	
Exponential (M2) Exponential (M3)	0.107	125.93	1.086	0.845	
Exponential (M4)	0.840	123.51	0.184	0.086	
Exponential (M5)	NA	125.47	0.194	0.087	
Hill	NA	125.47	0.193	0.066	
Polynomial 1° Polynomial 2° Polynomial 3° Power	0.129	125.57	0.964	0.713	

12

^aConstant variance models are presented (BMDS Test 2 *p*-value = 0.46), with the selected model in bold. Scaled

14 residuals for selected model for doses 0, 0.02, 0.2, and 2 mg/kg-d were 0.13, -0.15, 0.03, and -0.003,

15 respectively.

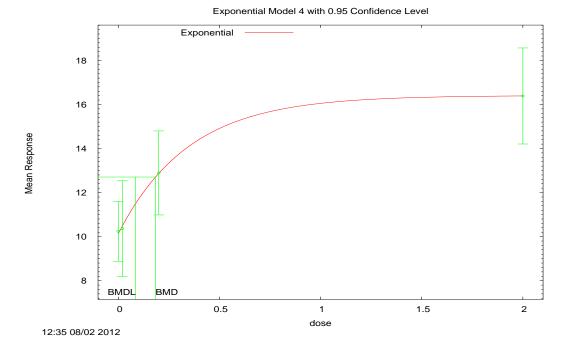
16 For exponential model M3, parameter d = 1, reducing it to M2.

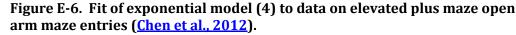
17 For the power model, the power parameter estimate was 1 (boundary of parameter space). For the polynomial

2° and 3° models, the b2 and b3 coefficient estimates were 0 (boundary of parameter space). Consequently,
 these three models all reduced to the polynomial 1° model.

^bExponential M5 and Hill model required four parameters and there are four dose groups, leaving no degrees of
 freedom for the goodness-of-fit test. Therefore, these were not considered for model selection

22 23


For the elevated plus maze data, although effects of exposure were observed across multiple


24 ages and both sexes, the results from female rats at PND 70 were chosen for dose-response

25 analyses as effects in females and older animals were of greater severity. While it is preferred that

26 elevated plus maze results be presented as percent of open arm entries or percent of time in the

- 27 open arms (as a function of total arm entries or time) in order to rule out potential differences in
- 28 motor activity or general exploration (<u>Hogg, 1996</u>), the data provided in the study were sufficient to
- rule out that total arm entries were affected by treatment.
- 30

```
Exponential Model. (Version: 1.7; Date: 12/10/2009)
        Input Data File: C:\Documents and Settings\jfox\My Documents\ CURRENTWORK\ CAST
plus\BaP\BMDS\exp ChenF070 Exp-ConstantVariance-BMR1Std-Up.(d)
        Gnuplot Plotting File: C:\Documents and Settings\jfox\My Documents\ CURRENTWORK\ CAST
plus\BaP\BMDS\exp ChenF070 Exp-ConstantVariance-BMR1Std-Up.plt
                                               Thu Aug 02 12:35:33 2012
 _____
                                            _____
BMDS Model Run
The form of the response function by Model:
     Model 2:
                Y[dose] = a * exp{sign * b * dose}
                 Y[dose] = a * exp\{sign * (b * dose)^d\}
     Model 3:
     Model 4:
                 Y[dose] = a * [c-(c-1) * exp{-b * dose}]
                Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]
     Model 5:
   Note: Y[dose] is the median response for exposure = dose;
         sign = +1 for increasing trend in data;
        sign = -1 for decreasing trend.
     Model 2 is nested within Models 3 and 4.
     Model 3 is nested within Model 5.
     Model 4 is nested within Model 5.
  Dependent variable = Mean
  Independent variable = Dose
  Data are assumed to be distributed: normally
  Variance Model: exp(lnalpha +rho *ln(Y[dose]))
  rho is set to 0.
  A constant variance model is fit.
  Total number of dose groups = 4
  Total number of records with missing values = 0
  Maximum number of iterations = 250
```

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR OUOTE

Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 $\,$

MLE solution provided: Exact

Initial Parameter Values

Variable	Model 4
lnalpha	1.88669
rho(S)	0
a	9.72892
b	1.12212
С	1.76842
d	1

(S) = Specified

Parameter Estimates

Variable	Model 4
lnalpha	1.8877
rho	0
a	10.136
b	2.86365
С	1.61881
d	1

Table of Stats From Input Data

Dose	Ν	Obs Mean	Obs Std Dev
0	10	10.24	1.905
0.02	10	10.36	3.048
0.2	10	12.89	2.667
2	10	16.39	3.048

Estimated Values of Interest

Dose	Est Mean	Est Std	Scaled Residual
0	10.14	2.57	0.1292
0.02	10.49	2.57	-0.1521
0.2	12.87	2.57	0.02563
2	16.39	2.57	-0.002716

Other models for which likelihoods are calculated:

Model A1:	Yij = Var{e(ij)} =	Mu(i) + e(ij) Sigma^2
Model A2:	Yij = Var{e(ij)} =	Mu(i) + e(ij) Sigma(i)^2
Model A3:	2	Mu(i) + e(ij) exp(lalpha + log(mean(i)) * rho)
Model R:	Yij = Var{e(ij)} =	Mu + e(i) Sigma^2

Likelihoods of Interest

This document is a draft for review purposes only and does not constitute Agency policy. E-23 DRAFT—DO NOT CITE OR QUOTE

Model	Log(likelihood)	DF	AIC
A1	-57.73371	5	125.4674
A2	-56.43655	8	128.8731
A3	-57.73371	5	125.4674
R	-71.03323	2	146.0665
4	-57.75397	4	123.5079

Additive constant for all log-likelihoods = -36.76. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R) Test 2: Are Variances Homogeneous? (A2 vs. A1) Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 6a: Does Model 4 fit the data? (A3 vs 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	29.19	6	< 0.0001
Test 2	2.594	3	0.4585
Test 3	2.594	3	0.4585
Test 6a	0.04053	1	0.8404

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here.

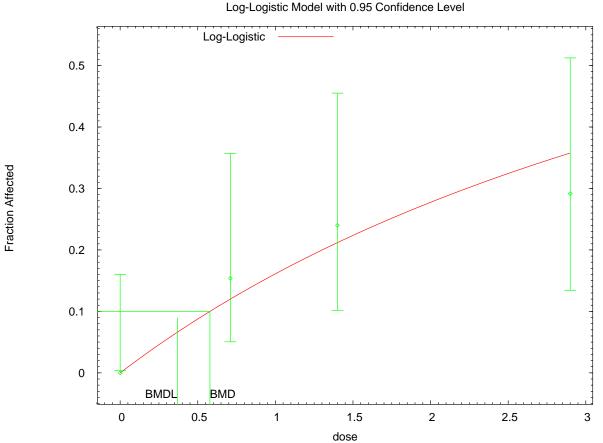
The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 6a is greater than .1. Model 4 seems to adequately describe the data.

Benchmark Dose Computations:

Specified Effect = 1.000000

Risk Type = Estimated standard deviations from control


Confidence Level = 0.950000

BMD = 0.184087

BMDL = 0.0864691

1Table E-8. Summary of BMD modeling results for incidence of cervical2epithelial hyperplasia in female ICR mice exposed to benzo[a]pyrene by oral3exposure for 98 days (Gao et al., 2011); BMR = 1 SD change from the control4mean

	Goodness of fit		BMD _{1SD}	
Model	<i>p</i> -value	AIC	(mg/kg-d)	(mg/kg-d)
Gamma	0.6874	82.2821	0.659	0.452
Logistic	0.1422	88.4607	1.422	1.052
Log-logistic	0.8360	81.7004	0.578	0.369
Probit	0.1544	88.1151	1.326	0.979
Log-probit	0.0775	88.2004	1.012	0.686
Multistage	0.6874	82.2821	0.659	0.452

5 19:01 08/26 2011

Figure E-7. Fit of log-logistic model to data on cervical epithelial hyperplasia (Gao et al., 2011)

```
Logistic Model. (Version: 2.13; Date: 10/28/2009)
       Input Data File: C:\Users\hclynch\Documents\ Active Projects\ FA498 IRIS\xBaP\IASC Aug
2011\bmd modeling\lnl gao 2011 inflamm cells Opt.(d)
                           File: C:\Users\hclynch\Documents\_Active Projects\_FA498
       Gnuplot Plotting
IRIS\xBaP\IASC Aug 2011\bmd modeling\lnl gao 2011 inflamm cells_Opt.plt
_____
BMDS Model Run
The form of the probability function is:
  P[response] = background+(1-background)/[1+EXP(-intercept-slope*Log(dose))]
  Dependent variable = Col3
  Independent variable = Col1
  Slope parameter is restricted as slope >= 1
  Total number of observations = 4
  Total number of records with missing values = 0
  Maximum number of iterations = 250
  Relative Function Convergence has been set to: 1e-008
  Parameter Convergence has been set to: 1e-008
  User has chosen the log transformed model
               Default Initial Parameter Values
                  background =
                              0
                   intercept =
                                 -1.60901
                      slope =
                                      1
         Asymptotic Correlation Matrix of Parameter Estimates
         ( *** The model parameter(s) -background
                                                -slope
              have been estimated at a boundary point, or have been specified by the user,
               and do not appear in the correlation matrix )
           intercept
           1
intercept
                            Parameter Estimates
                                                  95.0% Wald Confidence Interval
     Variable
                                  Std. Err.
                                             Lower Conf. Limit Upper Conf. Limit
                   Estimate
                                   *
   background
                     0
                                                     *
                                      *
                                                     *
                      -1.6502
    intercept
                         1
        slope
* - Indicates that this value is not calculated.
                    Analysis of Deviance Table
     Model
               Log(likelihood) # Param's Deviance Test d.f. P-value

        Full model
        -39.4267
        4

        Fitted model
        -39.8502
        1

   Full model
                                       0.847034 3 0.8382
12.6945 3 0.005346
                                  1
                   -45.7739
                                 1
 Reduced model
         AIC:
                   81.7004
```

This document is a draft for review purposes only and does not constitute Agency policy. E-26 DRAFT—DO NOT CITE OR QUOTE

		Good	lness of Fit	5	Scaled
Dose	EstProb.	Expected	Observed	Size	
0.7100 1.4000	0.1200 0.2119	0.000 3.119 5.297 8.584	4.000 6.000	26	0.532 0.344
$Chi^{2} = 0.8$	36 d.f.	= 3 P-v	value = 0.8360)	
Benchmark	Dose Comput	ation			
Specified ef	fect =	0.1			
Risk Type	=	Extra risk			
Confidence 1	.evel =	0.95			
	BMD =	0.578668			
	BMDL =	0.368701			

1 E.1.2. Reference Concentration (RfC)

2 Candidate studies for the development of the RfC were not amenable to BMD modeling.

3 Dosimetry Modeling for Estimation of Human Equivalent Concentrations

4 As discussed in Section 2.2.2, the human equivalent concentration (HEC) was calculated

5 from the POD_{ADJ} by multiplying by a dosimetric adjustment factor (DAF), which, in this case, was the

6 regional deposited dose ratio (RDDR_{ER}) for extrarespiratory (i.e., systemic) effects. The observed

7 developmental effects are considered systemic in nature (i.e., extrarespiratory) and the normalizing

- 8 factor for extrarespiratory effects of particles is body weight. The RDDR_{ER} was calculated as
 9 follows:
- 10

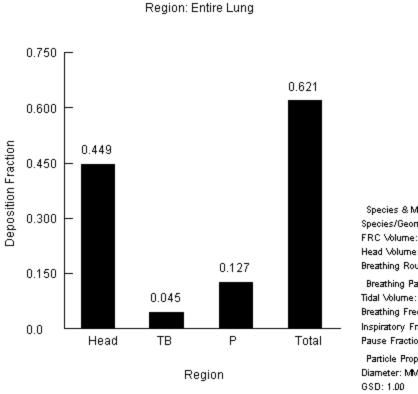
RDDR _{ER} =	BW _H	$(V_E)_A$	$(F_{TOT})_A$
$KDDR_{ER}$ –	BWA	$(V_E)_H$	$(F_{TOT})_{H}$

11 12 where:

13BW = body weight (kg)

14 V_E = ventilation rate (L/minute)15 F_{TOT} = total fractional deposition

16


17 The total fractional deposition includes particle deposition in the nasal-pharyngeal,

18 tracheobronchial, and pulmonary regions. F_{TOT} for both animals and humans was calculated using

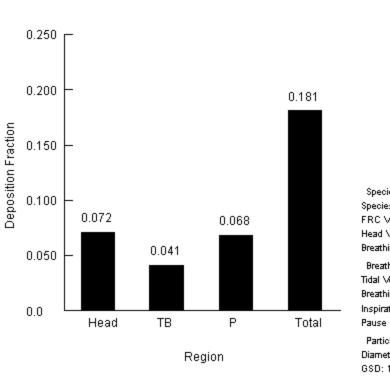
- 19 the Multi-Path Particle Dosimetry (MPPD) model, a computational model used for estimating
- 20 human and rat airway particle deposition and clearance (MPPD; Version 2.0 $\ensuremath{\mathbb{C}}$ 2006, publicly

21 available through the Hamner Institute). See model output below.

Wed, 03/17/2010, 02:07:20 PM EDT

Species & Model Info: Species/Geometry: Human Limited FRC Volume: 3300.00 ml Head Volume: 50.00 ml Breathing Route: nasal

Breathing Parameters: Tidal Volume: 860.00 ml Breathing Frequency: 16.00 1/min Inspiratory Fraction: 0.50 Pause Fraction: 0.00


Particle Properties: Diameter: MMAD: 1.70 µm GSD: 1.00 Concentration: 4.20 µg/m⁴3

1

2

Figure E-8. Human fractional deposition.

```
3456789011234567890123456
111111111111222222222
       Species = humanlimited
      FRC = 3300.0
      Head volume = 50.0
      Density = 1.0
      Number of particles calculated = single
      Diameter = 1.70000000000002 µm MMAD
      Inhalability =
                         yes
      GSD = 1.0
      Breathing interval: One single breath
      Concentration = 4.2
      Breathing Frequency = 16.0
       Tidal Volume = 860.0
       Inspiratory Fraction = 0.5
       Pause Fraction = 0.0
      Breathing Route = nasal
      Region: Entire Lung
      Region: Entire Lung
      Region Deposition Fraction
      Head
               0.449
      ΤВ
               0.045
       Р
               0.127
              0.621
       Total
```


Region: Entire Lung

Wed, 03/17/2010, 02:15:27 PM EDT

```
Species & Model Info:
Species/Geometry: Rat
FRC Volume: 4.00 ml
Head Volume: 0.42 ml
Breathing Route: nasal
Breathing Parameters:
Tidal Volume: 1.80 ml
```

Breathing Frequency: 102.00 1/min Inspiratory Fraction: 0.50 Pause Fraction: 0.00

```
Particle Properties:
Diameter: MMAD: 1.70 µm
GSD: 1.00
Concentration: 4.20 µg/m<sup>4</sup>3
```

1

Figure E-9. Rat fractional deposition.

```
Species = rat
FRC = 4.0
Head volume = 0.42
Density = 1.0
Number of particles calculated = single
Diameter = 1.70000000000002 µm MMAD
Inhalability =
                yes
GSD = 1.0
Breathing interval: One single breath
Concentration = 4.2
Breathing Frequency = 102.0
Tidal Volume = 1.8
Inspiratory Fraction = 0.5
Pause Fraction = 0.0
Breathing Route = nasal
Region: Entire Lung
Region: Entire Lung
Region Deposition Fraction
---
       0.072
Head
ΤВ
       0.041
       0.068
Р
Total
       0.181
```

This document is a draft for review purposes only and does not constitute Agency policy.E-30DRAFT—DO NOT CITE OR QUOTE

1 E.2. Cancer Endpoints

2 E.2.1. Dose-Response Modeling for the Oral Slope Factor

3 Dose-Response Models

Due to the occurrence of multiple tumor types, earlier occurrence with increasing exposure,
and early termination of the high-dose group in the oral carcinogenicity studies (see Appendix D for
study details), methods that can reflect the influence of competing risks and intercurrent mortality
on site-specific tumor incidence rates are preferred. EPA has generally used a model that
incorporates the time at which death-with-tumor occurred as well as the dose; the multistageWeibull model is multistage in dose and Weibull in time, and has the form:

10
$$P(d, t) = 1 - exp[-(q_0 + q_1d + q_2d^2 + ... + q_kd^k) \times (t \pm t_0)^c],$$

11 where P(d, t) represents the lifetime risk (probability) of cancer at dose d (i.e., human equivalent 12 exposure in this case) and age t (in bioassay weeks); parameters $q_i \ge 0$, for i = 0, 1, ..., k; t is the time 13 at which the tumor was observed; and *c* is a parameter which characterizes the change in response 14 with age. The parameter t_0 represents the time between when a potentially fatal tumor becomes 15 observable and when it causes death, and is generally set to 0 either when all tumors are 16 considered incidental or because of a lack of data to estimate the time reliably. The dose-response analyses were conducted using the computer software program MultiStage-Weibull (U.S. EPA, 17 18 2010), which is based on Weibull models drawn from Krewski et al. (1983). Parameters were 19 estimated using the method of maximum likelihood. From specific model fits using stages up to n-1, where n is the number of dose groups, the model fit with the lowest AIC was selected. 20

21 Data Adjustments Prior to Modeling

Two general characteristics of the observed tumor types were considered prior to modeling: allowance for different, although unidentified modes of action, and allowance for relative severity of tumor types. First, etiologically different tumor types were not combined across sites prior to modeling (i.e., overall counts of tumor-bearing animals were not tabulated) in order to allow for the possibility that different tumor types could have different dose-response relationships due to different underlying mechanisms or factors, such as latency. Consequently, all of the tumor types were also modeled separately.

Additionally, the multistage-Weibull model can address relative severity of tumor types to
some extent by distinguishing between tumors as being either fatal or incidental to the death of an
animal in order to adjust partially for competing risks. In contrast to fatal tumors, incidental
tumors are those tumors thought not to have caused the death of an animal. Cause-of-death
information for most early animal deaths was provided by the investigators of both bioassays. In

- 1 the rat study of <u>Kroese et al. (2001)</u>, tumors of the forestomach or liver were the principal cause of
- 2 death for most animals dying or sacrificed (due to moribundity) before the end of the study, while
- 3 tumors of the forestomach were the most common cause of early deaths in the mouse study of
- 4 <u>Beland and Culp (1998)</u>. The incidence data modeled are listed in Tables E-9 (male rats), E-10
- 5 (female rats), and E-11 (female mice).
- 6

Human-equivalent dose (HED) estimates used for dose-response modeling were based on

7 scaling by body weight^{3/4}, as there were no pharmacokinetic models or data to inform another

8 approach. The dose estimates are provided in Tables E-12 (<u>Kroese et al., 2001</u>) and E-13 (<u>Beland</u>

9 <u>and Culp, 1998</u>).

10 Evaluation of Model Fit and Model Selection

11 Each model was examined for adequacy of fit in the low-dose region and in the vicinity of

- 12 the BMR of 10% extra risk. In general, the model fit with the lowest AIC was selected, except when
- model fit near the BMR and in the low-dose region was improved by including an additional stage(parameter) in the model.
- PODs for estimating low-dose risk were identified at doses at the lower end of the observed
 data, generally corresponding to 10% extra risk, where extra risk is defined as [P(d) P(0)]/

17 [1 – P(0)]. The lifetime oral cancer slope factor for humans is defined as the slope of the line from

- 18 the lower 95% bound on the exposure at the POD to the control response (slope factor =
- 19 0.1/BMDL₁₀). This slope, a 95% upper confidence limit (UCL), represents a plausible upper bound
- 20 on the true risk.

21 Overall Risk

22 Although the time-to-tumor modeling helps account for competing risks associated with 23 decreased survival times and other tumors, considering the tumor sites individually still does not 24 convey the total amount of risk potentially arising from the sensitivity of multiple sites (i.e., the risk 25 of developing any combination of the increased tumor types, not just the risk of developing all 26 simultaneously). One approach suggested in the *Guidelines for Carcinogen Risk Assessment* (U.S. 27 EPA, 2005) would be to estimate cancer risk from tumor-bearing animals. EPA traditionally used 28 this approach until the National Research Council (NRC) document Science and Judgment in Risk 29 Assessment (NRC, 1994) made a case that this approach would tend to underestimate overall risk 30 when tumor types occur in a statistically independent manner. In addition, application of one 31 model to a composite data set does not accommodate biologically relevant information that may 32 vary across sites or may only be available for a subset of sites. For instance, the time courses of the 33 multiple tumor types evaluated varied, as is suggested by the variation in estimates of *c*, from 34 1.5 (e.g., male rat skin or mammary gland basal cell tumors), indicating relatively little effect of age 35 on tumor incidence, to 3.7 (e.g., male mouse alimentary tract tumors), indicating a more rapidly 36 increasing response with increasing age (in addition to exposure level). The result of fitting a

37 model with parameters that can reflect underlying mechanisms, such as *z* in the multistage-Weibull

- 1 model, would be difficult to interpret with composite data (i.e., counts of tumor-bearing animals). A
- 2 simpler model, such as the multistage model, could be used for the composite data, but relevant3 biological information would then be ignored.
- Following the recommendations of the <u>NRC (1994)</u> regarding combining risk estimates,
 statistical methods that can accommodate the underlying distribution of slope factors are optimal,
- 6 such as through maximum likelihood estimation or through bootstrapping or Bayesian analysis.
- 7 However, these methods have not yet been extended to models such as the multistage-Weibull
- 8 model. A method involving the assumption that the variability in the slope factors could be
- 9 characterized by a normal distribution is detailed below (<u>U.S. EPA, 2010</u>). Using the results in
- 10 female rats to illustrate, the overall risk estimate involved the following steps:
- 111) It was assumed that the tumor groupings modeled above were statistically independent12(i.e., that the occurrence of a liver tumor was not dependent upon whether there was a13forestomach tumor). This assumption cannot currently be verified, and if not correct, could14lead to an overestimate of risk from summing across tumor sites. However, NRC (1994)15argued that a general assumption of statistical independence of tumor-type occurrences16within animals was not likely to introduce substantial error in assessing carcinogenic17potency from rodent bioassay data.
- 18 2) The models previously fitted to estimate the BMDs and BMDLs were used to extrapolate to a lower level of risk (R), in order to reach the region of each estimated dose-response function where the slope was reasonably constant and upper bound estimation was still numerically stable. For these data, a 10⁻³ risk was generally the lowest risk necessary. The oral slope factor for each site was then estimated by R/BMDL_R, as for the estimates for each tumor site above.
- 24 3) The maximum likelihood estimates (MLE) of unit potency (i.e., risk per unit of exposure)
 25 estimated by R/BMD_R, were summed across the alimentary tract, liver, and jejunum/
 26 duodenum in female rats.
- 4) An estimate of the 95% (one-sided) upper bound on the summed oral slope factor was calculated by assuming a normal distribution for the individual risk estimates, and deriving the variance of the risk estimate for each tumor site from its 95% UCL according to the formula:

95% UCL = MLE + $1.645 \times$ SD.

SD = (UCL - MLE) / 1.645,

- 32 rearranged to:
- 33 34

- where 1.645 is the t-statistic corresponding to a one-sided 95% confidence interval (CI) and
 >120 degrees of freedom, and the SD is the square root of the variance of the MLE. The variances
 (variance = SD²) for each site-specific estimate were summed across tumor sites to obtain the
 variance of the sum of the MLEs. The 95% UCL on the sum of MLEs was calculated from the
 expression above for the UCL, using the variance of the sum of the MLE to obtain the relevant SD
- 40 (SD = variance^{1/2}).

Table E-9. Tumor incidence data, with time to death with tumor for male 1 2 Wistar rats exposed by gavage to benzo[a]pyrene for 104 weeks (Kroese et al., <u>2001</u>)

					N	umbers	of animals v	with:		
									nammary and	
Dose	Wk of	Total	foreston	Oral cavity or forestomach tumors		D or Liver tumors		Basal cell tumors	Squamous cell tumors	Kidney urothelial carcinoma
(mg/kg-d)			Incidental ^a	Fatal ^a	Incidental	Fatal	Incidental	Incidental	Incidental	Incidental
0	44	1	0	0	0	0	0	1	0	0
	80	1	0	0	0	0	0	0	0	0
	82	1	0	0	0	0	0	0	0	0
	84	1	0	0	0	0	0	0	0	0
	89	1	0	0	0	0	0	0	0	0
	90	3	0	0	0	0	0	0	0	0
	91	1	0	0	0	0	0	0	0	0
	92	1	0	0	0	0	0	0	0	0
	93	1	0	0	0	0	0	0	0	0
	94 05	1	0	0	0	0	0	0	0	0
	95 96	2 2	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0
	90 97	1	0	0	0	0	0	0	0	0
	98	1	0	0	0	0	0	0	0	0
	100	3	0	0	0	0	0	1	0	0
	104	1	0	0	0	0	0	0	0	0
	105	1	0	0	0	0	0	0	0	0
	108	7	0	0	0	0	0	0	0	0
	109	22	0	0	0	0	0	0	0	0
3	29	1	0	0	0	0	0	0	0	0
	40	1	1	0	0	0	0	0	0	0
	74	1	0	0	0	0	0	0	0	0
	76	1	0	0	0	0	0	0	0	0
	79	1	0	0	0	0	0	0	0	0
	82	1	0	0	0	0	0	0	0	0
	92	2	0	0	0	0	0	0	0	0
	93	1	0	0	0	0	0	0	0	0
	94 05	1	0	0	0	0	0	0	0	0
	95 08	2	0	0	0	0	0	0	0	0
	98 107	1 10	0 4	0 0	0	0 0	0	0	0	0
	107	10 15	4 2	0	1 3	0	0 0	0 1	0 1	0 0
	108	15 14	2	0	3 0	0	0	0	1 0	0
	109	14	T	U	U	U	0	U	U	U

					Nu	umbers	of animals	with:		
									nammary and	
Dose	Wk of	Total	Oral cavi foreston tumo	nach	Liver tu	nors	Duodenum or jejunum tumors		Squamous cell tumors	Kidney urothelial carcinoma
(mg/kg-d)			Incidental ^a	Fatal ^a	Incidental	Fatal	Incidental	Incidental	Incidental	Incidental
10	39	1	0	0	0	0	0	0	0	0
	47	2	0	0	0	0	0	0	0	0
	63	1	1	0	0	0	0	0	0	0
	68	2	2	0	0	0	0	0	0	0
	69	1	1	0	0	0	0	0	0	0
	77	1	0	0	1	0	0	0	0	0
	80	1	0	0	1	0	0	0	0	0
	81	1	1	0	0	0	1	0	0	0
	84	1	1	0	0	1	0	0	0	0
	86	1	0	0	1	0	0	0	0	0
	90	1	1	0	0	0	0	0	0	0
	95	3	3	0	2	0	0	0	0	0
	97	1	1	0	0	1	0	0	0	0
	100	1	1	0	1	0	0	0	0	0
	102	1	1	0	1	0	0	0	0	0
	103	1	1	0	1	0	0	0	0	0
	104	3	3	0	3	0	0	0	0	0
	107	12	12	0	11	0	0	0	1	0
	108	11	11	0	11	0	0	1	0	0
	109	6	5	0	3	0	0	0	0	0

			Numbers of animals with:							
									nammary and	
Dose	Wk of	Total	foreston	Oral cavity or forestomach tumors		Liver tumors		Basal cell tumors	Squamous cell tumors	Kidney urothelial carcinoma
(mg/kg-d)	death		Incidental ^a	Fatal ^a	Incidental	Fatal	Incidental	Incidental	Incidental	Incidental
30	32	1	1	0	0	0	0	0	0	0
	35	1	1	0	1	0	0	0	0	0
	37	1	1	0	0	0	0	0	0	0
	44	1	0	1	1	0	0	0	0	0
	45	2	2	0	2	0	0	0	0	0
	47	1	1	0	1	0	0	0	0	0
	48	1	1	0	1	0	0	0	0	0
	49	1	1	0	1	0	0	0	0	0
	50	1	1	0	1	0	0	0	0	0
	51	1	1	0	1	0	1	0	0	0
	52	4	3	1	3	1	0	1	1	0
	53	1	1	0	1	0	0	1	0	0
	56	2	1	1	1	1	0	0	0	0
	58	2	2	0	2	0	0	1	0	0
	59	2	2	0	2	0	0	0	0	0
	60	2	1	1	1	1	1	0	0	0
	61	3	2	1	1	2	1	0	0	0
	62	5	5	0	0	4	3	0	0	0
	63	5 2	5	0	4	1	1	2 0	1	2
	64 65	2	2 2	0	1	1 2	0	0 3	0	1 0
	65 66	3 1	2	1 0	1 0	2	0	3 0	2 0	0
	66 67	1 3	1	2	2	1	1	0	1	0
	68	5 1	1	2	1	0	0	0	0	0
	70	2	1	0	1	1	0	1	0	0
	70	1	1	0	1	0	0	1	1	0
	73	1	0	1	1	0	0	1	0	0
	76	1	1	0	0	1	0	1	0	0

^a"Incidental" denotes presence of tumors not known to have caused death of particular animals. "Fatal" denotes

incidence of tumors reported by the study investigators to have caused death of particular animals.

1Table E-10. Tumor incidence data, with time to death with tumor for female2Wistar rats exposed by gavage to benzo[a]pyrene for 104 weeks (Kroese et al.,32001)

				Num	bers of animals v	vith:	
Dose (mg/kg-d)	Wk of death	Total examined	Oral cavity or tum Incidental ^a			nors Fatal	Duodenum or jejunum tumors Incidental
	64	1		0	0	0	0
0	64 60	1	0	0	0	0	0
	69 75	1	0	0	0	0	0
	75	1	0	0	0	0	0
	104	1	0	0	0	0	0
	106	4	0	0	0	0	0
	107	7	0	0	0	0	0
	108	7	0	0	0	0	0
	109	30	1	0	0	0	0
3	8	1	0	0	0	0	0
	47	1	0	0	0	0	0
	52	1	0	0	0	0	0
	60	1	0	0	0	0	0
	65	1	0	0	0	0	0
	76	1	0	0	0	0	0
	77	1	0	0	0	0	0
	83	2	0	0	0	0	0
	85	1	0	0	0	0	0
	86	1	0	0	0	0	0
	88	1	0	0	0	0	0
	93	2	0	0	0	0	0
	94	1	0	0	0	0	0
	97	1	1	0	0	0	0
	107	6	2	0	1	0	0
	107	9	2	0	0	0	0
	100	21	1	0	0	0	0

				Numbers of animals with:				
Dose	Wk of	Total	Oral cavity or tum		Liver tu	mors	Duodenum or jejunum tumors	
(mg/kg-d)	death	examined	Incidental ^a	Fatal ^a	Incidental	Fatal	Incidental	
10	42	1	0	0	0	0	0	
	43	1	0	0	0	0	0	
	44	1	0	0	0	0	0	
	45	1	0	0	0	0	0	
	48	1	0	0	0	0	0	
	55	1	0	0	1	0	0	
	59	1	0	0	0	0	0	
	75	1	0	0	1	0	0	
	76	2	0	0	1	0	0	
	77	2	0	0	0	0	0	
	80	1	1	0	1	0	0	
	81	1	1	0	0	1	0	
	82	1	1	0	1	0	0	
	83	1	0	0	1	0	0	
	85	2	1	0	1	1	0	
	86	1	1	0	0	1	0	
	87	1	0	0	1	0	0	
	88	2	1	0	1	1	0	
	89	1	1	0	0	1	0	
	91	1	0	0	0	1	0	
	95	1	0	0	0	0	0	
	96	1	0	0	0	0	0	
	98	2	2	0	1	1	0	
	99	3	3	0	1	2	0	
	102	1	1	0	0	1	0	
	104	1	1	0	1	0	0	
	105	2	1	0	1	1	0	
	106	1	1	0	0	1	0	
	107	5	5	0	5	0	0	
	108	7	7	0	7	0	0	
	109	4	2	0	2	0	0	

				Num	bers of animals v	vith:	
Dose	Wk of	Total		Oral cavity or forestomach tumors		mors	Duodenum or jejunum tumors
(mg/kg-d)	death	examined	Incidental ^a	Fatal ^ª	Incidental	Fatal	Incidental
30	26	1	0	0	0	0	0
	44	4	4	0	3	1	0
	47	3	3	0	2	1	0
	48	1	1	0	0	1	0
	54	1	0	0	1	0	0
	55	3	3	0	1	2	0
	56	2	2	0	0	2	0
	57	2	2	0	2	0	0
	58	4	3	1	0	4	0
	59	2	1	1	0	2	0
	60	1	0	1	1	0	0
	61	2	2	0	0	2	0
	62	2	2	0	1	1	0
	63	3	3	0	0	3	0
	64	5	5	0	0	5	3
	66	3	3	0	0	3	0
	67	2	1	1	0	2	0
	68	1	1	0	0	1	0
	69	4	3	1	1	3	1
	71	4	3	1	1	3	0
	72	2	1	1	0	2	0

^a"Incidental" denotes presence of tumors not known to have caused death of particular animals. "Fatal" denotes

incidence of tumors indicated by the study investigators to have caused death of particular animals.

Table E-11. Tumor incidence, with time to death with tumor; B6C3F₁female mice exposed to benzo[a]pyrene via diet for 2 years (<u>Beland and Culp, 1998</u>)

1

Dose group				with alimentary tract cell tumors
(ppm in diet)	Wk of death	Total examined	Fatal ^a	Incidental
0	31	1	0	0
	74	1	0	0
	89	2	0	0
	91	1	0	0
	93	2	0	0
	94	2	0	0
	97	2	0	0
	98	2	0	0
	99	1	0	0
	100	2	0	0
	101	2	0	0
	104	1	0	0
	105	29	0	1
5	25	1	0	0
	55	1	0	0
	83	1	0	0
	86	1	0	0
	87	2	0	0
	88	2	0	0
	90	1	0	0
	94	1	0	0
	95	2	0	0
	96	1	0	0
	97	2	0	0
	98	2	0	0
	101	2	0	0
	102	2	0	0
	105	27	0	3

Dose group (ppm in diet)	Wk of death	Total examined		with alimentary tract cell tumors
25	44	1	1	0
	47	1	0	0
	64	1	0	0
	70	1	1	0
	77	1	1	0
	80	1	0	0
	81	1	1	0
	84	2	1	1
	85	1	1	0
	86	1	1	0
	88	1	1	0
	89	1	0	0
	90	4	4	0
	93	3	2	1
	94	2	2	0
	96	3	0	2
	97	1	1	0
	98	1	1	0
	99	2	1	1
	100	1	1	0
	101	1	0	0
	102	2	2	0
	104	1	1	0
	105	13	0	10

Dose group (ppm in diet)	Wk of death	Total examined		vith alimentary tract cell tumors
100	39	1	1	0
	40	1	1	0
	42	1	1	0
	47	2	2	0
	49	1	0	0
	50	1	1	0
	53	1	0	0
	55	3	3	0
	56	1	1	0
	57	1	1	0
	58	1	1	0
	59	3	3	0
	60	1	1	0
	61	3	3	0
	62	5	5	0
	63	4	4	0
	64	3	3	0
	65	2	2	0
	66	3	3	0
	68	1	1	0
	69	2	2	0
	70	2	2	0
	71	1	1	0
	72	1	1	0
	73	1	1	0
	74	1	1	0
	79	1	1	0

^a"Incidental" denotes presence of tumors not known to have caused death of particular animals. "Fatal" denotes

incidence of tumors indicated by the study investigators to have caused death of particular animals.

Table E-12. Derivation of HEDs to use for BMD modeling of Wistar rat tumor incidence data from Kroese et al. (2001)

Benzo[a]pyrene dose (mg/kg-d)	TWA body weight (kg)	Interspecies scaling factor ^a	HED ^b (mg/kg-d)
Male			
3	0.349	0.27	0.54
10	0.349	0.27	1.81
30	0.288	0.25	5.17
Female			
3	0.222	0.24	0.49
10	0.222	0.24	1.62
30	0.222	0.24	4.85

3 4

^aScaling factors were calculated using U.S. EPA (1988) reference body weights for humans (70 kg), and the TWA

body weights for each dose group: rat-to-human = $(TWA body weight/70)^{0.25}$ = scaling factor.

5 6 ^bHED = administered dose × scaling factor.

7 Table E-13. Derivation of HEDs for dose-response modeling of B6C3F₁ female 8 mouse tumor incidence data from **Beland and Culp (1998)**

Benzo[a]pyrene dose in diet (ppm)	Intake (µg/d)	TWA body weight average (kg)	Administered dose ^a (mg/kg-d)	Scaling factor ^b	HED ^c (mg/kg-d)
5	21	0.032	0.7	0.15	0.10
25	104	0.032	3.3	0.15	0.48
100	430	0.027	16.5	0.14	2.32

9

10 ^aAdministered doses in mg/kg-day were calculated from dietary concentrations of benzo[a]pyrene using the TWA

11 body weight and reported food intakes for mice.

^bScaling factors were calculated using U.S. EPA (1988) reference body weights for humans (70 kg), and the TWA 12

body weights for each dose group: mouse-to-human = $(TWA body weight/70)^{0.25}$ = scaling factor. 13

14 ^cHED = administered dose × scaling factor.

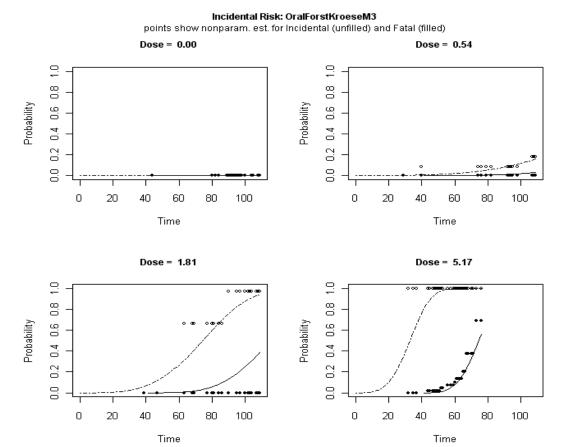
1 Dose-Response Modeling Results

Tables E-14 (male and female rats) and E-16 (female mice) summarize the modeling results
supporting the oral slope factor for benzo[a]pyrene. The model outputs and graphs following each
of these tables (Figures E-10 through E-19) provide more details for the best-fitting models in each
case.

6 7 8

9

Table E-14. Summary of BMD modeling results for best-fitting multistage-Weibull models, using time-to-tumor data for Wistar rats exposed to benzo[a]pyrene via gavage for 104 weeks (<u>Kroese et al., 2001</u>); BMR = 10% extra risk


	Endpoints	Model stages	AIC	BMD ₁₀	BMDL ₁₀ – BMDU ₁₀	Basis for model selection
Male rats	Oral cavity and forestomach: squamous cell tumors	1 2 3	577.8 407.6 229.0	0.104 0.678 0.453	0.281-0.612	Lowest AIC, best fit to low dose data
	Hepatocellular tumors	1 2 3	367.3 301.5 289.1	0.181 0.472 0.651	0.449-0.772	Lowest AIC, best fit to low dose data
	Duodenum and jejunum tumors	1 2 3	69.6 65.9 66.9	2.64 3.04 3.03	2.38-3.87	Best fit to data
	Kidney: uroethelial carcinoma	1 2 3	31.9 31.7 32.8	9.16 5.71 4.65	2.50-9.01	Best fit to data
	Skin and mammary gland: basal cell tumors	1 2 3	110.6 105.1 104.7	1.88 2.58 2.86	2.35-3.62	Lowest AIC, best fit to low dose data
	Skin and mammary gland: squamous cell tumors	1 2 3	63.5 64.3 65.3	3.36 2.75 2.64	1.77-4.42	Best fit to low dose data
Female rats	Oral cavity and forestomach: squamous cell tumors	1 2 3	277.1 211.6 201.0	0.245 0.428 0.539	0.328-0.717	Lowest AIC, best fit to low dose data
	Hepatocellular tumors	1 2 3	595.5 774.9 468.3	0.146 0.370 0.575	0.507-0.630	Lowest AIC, best fit to low dose data
	Duodenum and jejunum tumors	1 2 3	37.9 37.0 37.8	6.00 4.33 3.43	1.95-5.70	Best fit to low dose data

Male Rat (<u>Kroese et al., 2001</u>): Squamous Cell Papilloma or Carcinoma in Oral Cavity or Forestomach

```
_____
        Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
        Solutions are obtained using donlp2-intv, (c) by P. Spellucci
        Input Data File: OralForstKroeseM3.(d)
                                         _____
 _____
              _____
  The form of the probability function is:
  P[response] = 1-EXP$-(t - t 0)^c *
               (beta_0+beta_1*dose^1+beta_2*dose^2+beta_3*dose^3) }
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
Total number of observations = 208
 Total number of records with missing values = 0
 Total number of parameters in model = 6
Total number of specified parameters = 0
Degree of polynomial = 3
Maximum number of iterations = 64
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
                Default Initial Parameter Values
                      С
                          =
                                      3.6
                            =
                      t 0
                                   39.1111
                      beta 0 =
                                         0
                      beta_1 = 8.8911e-009
beta_2 = 1.60475e-031
                      beta 3 = 1.95818e-008
          Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -beta 0 -beta 2
               have been estimated at a boundary point, or have been specified by the user,
               and do not appear in the correlation matrix )
               С
                           t 0
                                      beta 1
                                                   beta 3
                    1
                            -0.53
                                       -0.93
                                                   -0.99
   С
   t 0
                -0.53
                               1
                                        0.47
                                                    0.57
                -0.93
                           0.47
                                          1
   beta 1
                                                    0.9
   beta 3
                -0.99
                             0.57
                                          0.9
                                                       1
                              Parameter Estimates
                                                  95.0% Wald Confidence Interval
                    Estimate
                                   Std. Err.
                                               Lower Conf. Limit Upper Conf. Limit
      Variable
                      3.74559
       С
                                   0.447309
                                                        2.86888
                                                                           4.6223
                      41.4581
                                    2.14975
        t 0
                                                        37.2447
                                                                           45.6716
        beta_0
                       0
                                         NA
                  4.37816e-009
                                 1.07528e-008
                                                   -1.6697e-008
                                                                      2.54533e-008
        beta_1
        beta_2
                        0
                                          NA
        beta 3
                  1.01904e-008
                                 1.94164e-008
                                                   -2.78651e-008
                                                                      4.82458e-008
NA - Indicates that this parameter has hit a bound implied by some inequality constraint
    and thus has no standard error.
              Log(likelihood)
                               # Param
                                                 ATC
                                            229.024
  Fitted Model
                  -108.512
                               6
```

DRAFT-DO NOT CITE OR QUOTE

	С	F	I	U	otal	Expected	Response
DOSE							
0	52	0	0	0	52	0.00	
0.54	44	0	8	0	52	6.77	
1.8	7	0	45	0	52	41.69	
5.2	0	9	43	0	52	49.97	
Minimum	observa	tion ti	me for 1	F tumoı	cont	ext =	44
Benchmark	Dose C	omputat	ion				
Risk Respons	e =	Inc	idental				
Risk Type	=		Extra				
Confidence 1	evel =		0.9				
Time	=		104				
Speci	fied ef:	fect =	ο.	1	0.01		0.001
-		BMD =	0.45	3471	0.06	33681	0.00636659
	Ι	BMDL =	0.28	1044	0.02	86649	0.00285563
	Ι	BMDU =	0.61	2462	0.24	8377	> 0.0509326

19

20

Figure E-10. Fit of multistage Weibull model to squamous cell papillomas or carcinomas in oral cavity or forestomach of male rats exposed orally to benzo[a]pyrene (<u>Kroese et al., 2001</u>).

21

 $12345678901123456\\11123456$

```
Male Rat (Kroese et al., 2001): Hepatocellular Adenoma or Carcinoma
         Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
         Solutions are obtained using donlp2-intv, (c) by P. Spellucci
         Input Data File: LiverKroeseM3.(d)
_____
  The form of the probability function is:
  P[response] = 1-EXP$$-(t - t 0)^c *
                (beta 0+beta 1<sup>*</sup>dose^1+beta 2*dose^2+beta 3*dose^3)}
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
Total number of observations = 208
Total number of records with missing values = 0
 Total number of parameters in model = 6
Total number of specified parameters = 0
Degree of polynomial = 3
Maximum number of iterations = 64
Relative Function Convergence has been set to: 2.22045e-016
 Parameter Convergence has been set to: 1.49012e-008
                 Default Initial Parameter Values
                            = 3.6
                       С
                       t_0
                            -
                                     34.6667
                       beta 0 =
                                         0
                       beta_1 = 2.73535e-009
                       beta 2 = 8.116e-028
                       beta^{-3} = 1.43532e-008
          Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -beta_0 -beta_2
                have been estimated at a boundary point, or have been specified by the user,
                and do not appear in the correlation matrix )
                С
                           t 0
                                       beta 1
                                                    beta 3
                    1
                             -0.84
                                         -0.88
                                                        -1
   С
   t 0
                 -0.84
                                1
                                          0.71
                                                      0.86
   beta 1
                 -0.88
                              0.71
                                           1
                                                      0.86
                  -1
                              0.86
                                          0.86
   beta 3
                                                       1
                               Parameter Estimates
                                                     95.0% Wald Confidence Interval
      Variable
                      Estimate
                                     Std. Err.
                                                 Lower Conf. Limit Upper Conf. Limit
                                     0.629257
        С
                       3.49582
                                                          2.26249
                                                                             4.72914
        t 0
                       40.2211
                                      5.65421
                                                                             51.3032
                                                          29.1391
        beta 0
                        0
                                         NA
                   4.43906e-009
                                  1.76051e-008
                                                    -3.00664e-008
                                                                        3.89445e-008
        beta_1
        beta 2
                            0
                                            NA
                                   6.47999e-008
                                                    -1.03499e-007
        beta 3
                   2.35065e-008
                                                                        1.50512e-007
NA - Indicates that this parameter has hit a bound implied by some inequality constraint
    and thus has no standard error.
               Log(likelihood)
                                # Param
                                                   AIC
                                               289.088
  Fitted Model
                    -138.544
                                   6
                   Data Summary
                     CONTEXT
```

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

U Total Expected Response

F

Т

C

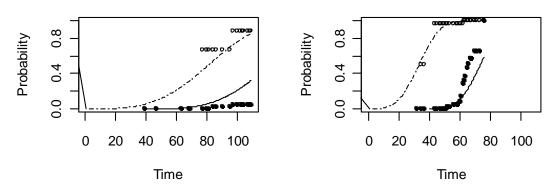
DOSE							
0	52	0	0	0	52	0.00	
0.54	48	0	4	0	52	3.38	
1.8	14	2	36	0	52	36.81	
5.2	3	17	32	0	52	49.55	
Minimum	observa	tion ti	me for i	F tumor	conte	ext =	52
Denehmen	- Deee C						
Benchmar		-					
Risk Respon	se =	Inc					
Risk Type	=		Extra				
Confidence .	level =		0.9				
Time	=		104				
Spec.	ified ef	fect =	0	•	1	0.01	0.001
		BMD =	Ο.	650	7	0.173556	0.0199908
		BMDL =	0.4	486	8	0.0530469	0.00530386

BMDU =


ο.

Incidental Risk: Hepatocellular_Kroese_M3

points show nonparam. est. for Incidental (unfilled) and Fatal (filled)

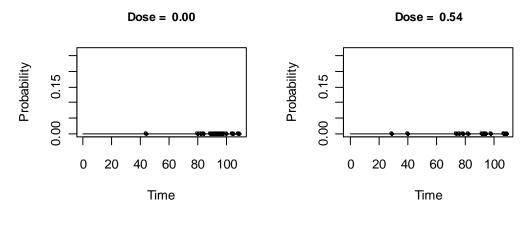

0.352684

> 0.159927

Dose = 5.17

16

Figure E-11. Fit of multistage Weibull model to hepatocellular adenomas or
 carcinomas in male rats exposed orally to benzo[a]pyrene (<u>Kroese et al.</u>,
 <u>2001</u>).


```
Male Rat (<u>Kroese et al., 2001</u>): Duodenum or Jejunum Adenocarcinoma
         Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
         Solutions are obtained using donlp2-intv, (c) by P. Spellucci
         Input Data File: DuoJejKroeseM3.(d)
_____
   The form of the probability function is:
   P[response] = 1-EXP$$-(t - t 0)^c *
                (beta 0+beta 1*dose^1+beta 2*dose^2+beta 3*dose^3)}
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
Total number of observations = 208
Total number of records with missing values = 0
 Total number of parameters in model = 6
Total number of specified parameters = 1
Degree of polynomial = 3
  User specifies the following parameters:
         t 0
               =
                          0
Maximum number of iterations = 64
 Relative Function Convergence has been set to: 2.22045e-016
 Parameter Convergence has been set to: 1.49012e-008
                 Default Initial Parameter Values
                       c = 1.63636
                        t 0
                              =
                                           0
                                               Specified
                        beta 0 = 4.31119e-027
                        beta 1 = 2.96347e - 025
                        beta 2 =
                                           0
                        beta_3 = 1.76198e-006
          Asymptotic Correlation Matrix of Parameter Estimates
          (*** The model parameter(s) -t_0 -beta_0 -beta_1 -beta_2
have been estimated at a boundary point, or have been specified by the user,
                and do not appear in the correlation matrix )
                С
                            beta 3
   С
                    1
                                -1
                    -1
   beta 3
                                 1
                                Parameter Estimates
                                                      95.0% Wald Confidence Interval
      Variable
                       Estimate
                                      Std. Err.
                                                  Lower Conf. Limit Upper Conf. Limit
        С
                       1.77722
                                       2.03042
                                                           -2.20233
                                                                               5.75677
        beta_0
                            0
                                             NA
        beta_1
                              0
                                             NA
        beta 2
                             0
                                             NA
                   9.82635e-007
                                  8.29355e-006
                                                      -1.52724e-005
                                                                          1.72377e-005
        beta 3
NA - Indicates that this parameter has hit a bound implied by some inequality constraint
    and thus has no standard error.
               Log(likelihood)
                                # Param
                                                    AIC
   Fitted Model
                  -28.4387
                                    5
                                                66.8773
                   Data Summary
                      CONTEXT
              С
                     F I
                                  U Total Expected Response
   DOSE
```

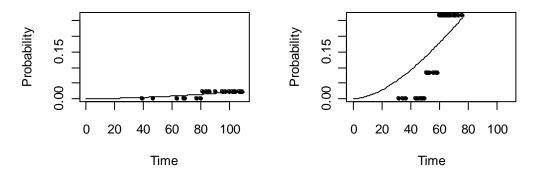
This document is a draft for review purposes only and does not constitute Agency policy.

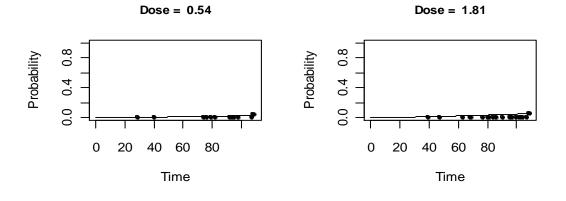
DRAFT-DO NOT CITE OR QUOTE

0 0.54 1.8 5.2	52 52 51 43	0 0 0	0 0 1 9	0 0 0	52 52 52 52	0.00 0.03 1.04 8.96	
Benchmar	ck Dose Co	mputat	ion				
Risk Respor	nse =	Inc	idental				
Risk Type	=		Extra				
Specified e	effect =		0.1				
Confidence			0.9				
Time	=		104				
Specified	effect =	0		1 0.	01	0.001	
1	BMD =	3.0) 3 2 9	1 1.	38578	0.642252	
	BMDL =	2.3	3778	2 0.	418285	0.0420835	
	BMDU =	3.8	3718	3 1.	76166	0.811476	

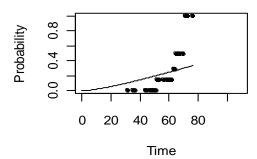
Incidental Risk: DuoJej_Kroese_M3

Dose = 5.17




Figure E-12. Fit of multistage Weibull model to duodenum or jejunum
 adenocarcinomas in male rats exposed orally to benzo[a]pyrene (Kroese et al.,
 2001).

```
Male Rat (Kroese et al., 2001): Skin or Mammary Gland Basal Cell Tumors
                   _____
        Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
        Solutions are obtained using donlp2-intv, (c) by P. Spellucci
        Input Data File: SKinMamBasalKroeseM3.(d)
_____
  The form of the probability function is:
  P[response] = 1-EXP$$-(t - t 0)^c *
               (beta 0+beta 1*dose^1+beta 2*dose^2+beta 3*dose^3)}
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
Total number of observations = 208
Total number of records with missing values = 0
 Total number of parameters in model = 6
Total number of specified parameters = 1
Degree of polynomial = 3
  User specifies the following parameters:
         t 0
              =
                         0
Maximum number of iterations = 64
 Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
                Default Initial Parameter Values
                      c = 1.38462
                             =
                       t 0
                                         0
                                             Specified
                       beta 0 = 3.84298e-005
                       beta 1 = 1.06194e - 028
                       beta 2 =
                                          0
                       beta_3 = 6.84718e-006
          Asymptotic Correlation Matrix of Parameter Estimates
          (*** The model parameter(s) -t_0 -beta_1 -beta_2
have been estimated at a boundary point, or have been specified by the user,
               and do not appear in the correlation matrix )
                           beta O
               С
                                       beta 3
   С
                   1
                               -1
                                           -1
                   -1
                               1
                                          0.99
   beta O
                   -1
                             0.99
   beta 3
                                           1
                              Parameter Estimates
                                                    95.0% Wald Confidence Interval
                      Estimate
                                    Std. Err.
                                                  Lower Conf. Limit Upper Conf. Limit
      Variable
                      1.47227
                                     1.76686
                                                         -1.9907
                                                                            4.93525
        С
                  2.54786e-005
                                   0.000211261
                                                     -0.000388585
                                                                        0.000439542
        beta O
                   0
                                   NA
        beta 1
                             0
        beta_2
                                           NA
        beta_3
                  4.81611e-006
                                    3.49e-005
                                                    -6.35866e-005
                                                                      7.32188e-005
NA - Indicates that this parameter has hit a bound implied by some inequality constraint
    and thus has no standard error.
                                                  AIC
              Log(likelihood)
                               # Param
                                              104.725
  Fitted Model
                   -47.3623
                                  5
                  Data Summary
```


DRAFT-DO NOT CITE OR QUOTE

	С	F	I	U	Total	Expected Response
DOSE						
0	50	0	2	0	52	1.18
0.54	51	0	1	0	52	1.22
1.8	51	0	1	0	52	2.32
5.2	39	0	13	0	52	12.54
Benchmark		-				
Risk Respons	e =	Inc	cidental			
Risk Type	=		Extra			
Confidence l	evel =		0.9			
Time	=		104			
Specified e	effect =	0	. 1	0	.01	0.001
	BMD =	2.	86276	1	.30804	0.606222
	BMDL =	2.	35118	0	.415897	0.0424277
	BMDU =	з.	62258	1	.69571	0.761447

Incidental Risk: Skin_Mam_Basal_Kroese_M3

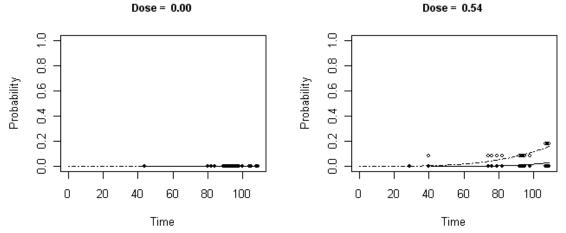
15

16Figure E-13. Fit of multistage Weibull model to skin or mammary gland basal17cell tumors of male rats exposed orally to benzo[a]pyrene (Kroese et al.,182001).

```
Male Rat (<u>Kroese et al., 2001</u>): Skin or Mammary Gland Squamous Cell Tumors
           ______
        Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
        Solutions are obtained using donlp2-intv, (c) by P. Spellucci
        Input Data File: SKinMamSCCKroeseM3.(d)
 _____
  The form of the probability function is:
  P[response] = 1-EXP$$-(t - t 0)^c *
               (beta 0+beta 1*dose^1+beta 2*dose^2+beta 3*dose^3)}
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
Total number of observations = 208
Total number of records with missing values = 0
 Total number of parameters in model = 6
Total number of specified parameters = 1
Degree of polynomial = 3
  User specifies the following parameters:
         t 0
             =
                         0
Maximum number of iterations = 64
 Relative Function Convergence has been set to: 2.22045e-016
 Parameter Convergence has been set to: 1.49012e-008
                Default Initial Parameter Values
                     с = 3
                      t 0
                            =
                                         0
                                            Specified
                      beta 0 =
                                        0
                      beta 1 = 1.25256e-008
                      beta 2 = 1.25627e - 030
                      beta_3 = 3.34696e-009
          Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -t_0 -beta_0
                                                       -beta 2
               have been estimated at a boundary point, or have been specified by the user,
               and do not appear in the correlation matrix )
                          beta 1
               С
                                      beta 3
   С
                  1
                           -0.99
                                          -1
                              1
                -0.99
                                         0.99
   beta 1
                             0.99
   beta 3
                 -1
                                           1
                             Parameter Estimates
                                                    95.0% Wald Confidence Interval
      Variable
                     Estimate
                                    Std. Err.
                                                Lower Conf. Limit Upper Conf. Limit
                                   2.591
                      2.96213
       C
                                                       -2.11613
                                                                           8.04039
                      0
                                         NA
        beta O
                                1.86972e-007
        beta_1
                  1.50104e-008
                                                   -3.51447e-007
                                                                    3.81468e-007
        beta 2
                           0
                                          NA
                   3.9084e-009
                                 4.15374e-008
                                                   -7.75033e-008
        beta 3
                                                                      8.53201e-008
NA - Indicates that this parameter has hit a bound implied by some inequality constraint
    and thus has no standard error.
              Log(likelihood)
                               # Param
                                                 AIC
                                              65.304
  Fitted Model
                  -27.652
                                  5
                  Data Summary
                     CONTEXT
```

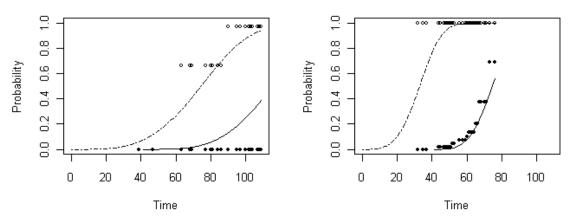
This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE


U Total Expected Response


F

Т

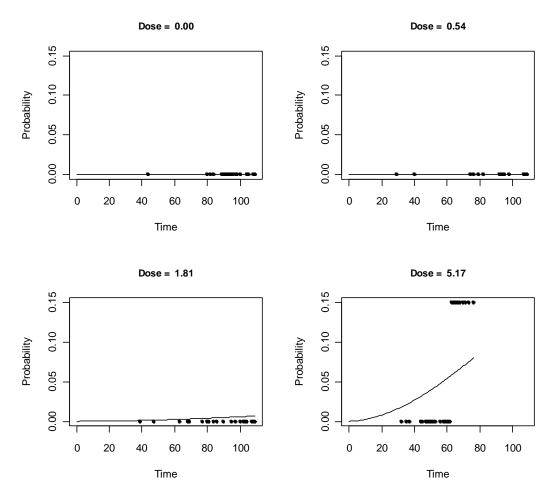
C


DOSE							
0	52	0	0	0	52	0.00	
0.54	51	0	1	0	52	0.42	
1.8	51	0	1	0	52	2.12	
5.2	46	0	6	0	52	5.51	
Benchmar	c Dose Co	mputati	on				
Risk Respons	se =	Inci	dental				
Risk Type	=		Extra				
Confidence 1	level =		0.9				
Time	=		104				
Spec	cified ef	fect =	0.	. 1	0.01		0.001
		BMD =	2.6	4 1 4	0.641	L09	0.070558
		BMDL =	1.76	931	0.211	L043	0.0210552
		BMDU =	4.42	145	2.030	505	> 0.564463

Dose = 5.17

14

Figure E-14. Fit of multistage Weibull model to skin or mammary gland
 squamous cell tumors of male rats exposed orally to benzo[a]pyrene (Kroese
 et al., 2001).


Male Rat (Kroese et al., 2001): Kidney Urothelial Carcinomas

```
Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
         Solutions are obtained using donlp2-intv, (c) by P. Spellucci
         Input Data File: KidneyUrothelialCarKroeseM3.(d)
_____
  The form of the probability function is:
  P[response] = 1-EXP$$-(t - t 0)^c *
                (beta 0+beta 1<sup>*</sup>dose^1+beta 2*dose^2+beta 3*dose^3)}
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
Total number of observations = 208
 Total number of records with missing values = 0
 Total number of parameters in model = 6
 Total number of specified parameters = 1
Degree of polynomial = 3
  User specifies the following parameters:
         t 0
               =
                          0
Maximum number of iterations = 64
 Relative Function Convergence has been set to: 2.22045e-016
 Parameter Convergence has been set to: 1.49012e-008
                 Default Initial Parameter Values
                      c = 1.63636
                             =
                       t 0
                                          0
                                              Specified
                       beta 0 = 3.78734e-027
                       beta_1 = 1.59278e-027
                       beta 2 = 2.718e-024
                       beta_3 = 4.96063e-007
          Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -t_0 -beta_0 -beta_1
                                                                    -beta 2
                have been estimated at a boundary point, or have been specified by the user,
                and do not appear in the correlation matrix )
                С
                            beta 3
   С
                    1
                                -1
                   -1
   beta 3
                                1
                               Parameter Estimates
                                                     95.0% Wald Confidence Interval
      Variable
                      Estimate
                                     Std. Err.
                                                 Lower Conf. Limit Upper Conf. Limit
        С
                       1.74897
                                      3.79403
                                                         -5.68719
                                                                              9.18512
        beta_0
                           0
                                           NA
        beta_1
                             0
                                            NA
        beta 2
                            0
                                            NA
        beta 3
                   3.11107e-007
                                  4.90313e-006
                                                    -9.29885e-006
                                                                       9.92107e-006
NA - Indicates that this parameter has hit a
    bound implied by some inequality constraint
    and thus has no standard error.
               Log(likelihood)
                                # Param
                                                   AIC
                                               32.7956
  Fitted Model
                    -11.3978
                                   5
                   Data Summary
                     CONTEXT
                    F
              C
                           Т
                                  U Total Expected Response
```

This document is a draft for review purposes only and does not constitute Agency policy. E-55 DRAFT—DO NOT CITE OR QUOTE

DOSE							
0	52	0	0	0	52	0.00	
0.54	52	0	0	0	52	0.01	
1.8	52	0	0	0	52	0.29	
5.2	49	0	3	0	52	2.71	
Benchma	ark Dose (Computatio	on				
Risk Respo	onse =	Incio	dental				
Risk Type	=		Extra				
Confidence	e level =		0.9				
Time	=		104				
5	Specified	effect =	0	. 1	0.01	L	0.001
	-	BMD =	4.6	4886	2.12	2413	0.984449
		BMDL =	2.4	9972	0.73	34665	0.0748097
		BMDU =	9.0	1023	3.49	9311	1.61892

Incidental Risk: Kidney_Kroese_M3

16Figure E-15. Fit of multistage Weibull model to kidney urothelial tumors of17male rats exposed orally to benzo[a]pyrene (Kroese et al., 2001).

Female Rat (<u>Kroese et al., 2001</u>): Oral Cavity or Forestomach, Squamous Cell Papilloma or Carcinoma

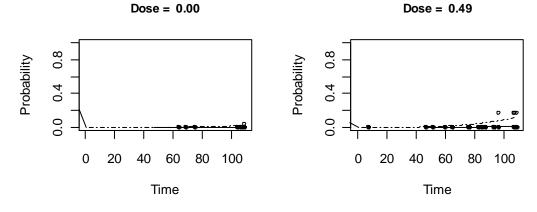
```
Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
         Solutions are obtained using donlp2-intv, (c) by P. Spellucci
        Input Data File: OralForstKroeseF3.(d)
_____
  The form of the probability function is:
  P[response] = 1-EXP$$-(t - t 0)^c *
                (beta 0+beta 1*dose^1+beta 2*dose^2+beta 3*dose^3)}
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
Total number of observations = 208
Total number of records with missing values = 0
Total number of parameters in model = 6
 Total number of specified parameters = 0
Degree of polynomial = 3
Maximum number of iterations = 64
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
                 Default Initial Parameter Values
                       c =
t 0 =
                                        3.6
                       t 0
                                    45.1111
                       beta 0 = 1.11645e-009
                       beta_1 = 4.85388e-009
                       beta_2 =
                                  0
                       beta 3 = 1.95655e-008
          Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -beta_2
                have been estimated at a boundary point, or have been specified by the user,
                and do not appear in the correlation matrix )
                           t 0
                                       beta O
                                                     beta 1
                                                                beta 3
                С
                   1
                            -0.79
                                        -0.92
                                                     -0.93
   С
                                                                     -1
   t 0
                 -0.79
                              1
                                          0.73
                                                      0.72
                                                                    0.8
   beta O
                -0.92
                            0.73
                                          1
                                                      0.79
                                                                  0.92
                                           0.79
                                                        1
   beta 1
                 -0.93
                             0.72
                                                                    0.91
                             0.8
                                          0.92
                                                      0.91
                  -1
   beta 3
                                                                      1
                               Parameter Estimates
                                  90.0% Wald Confidence Interval
Std. Err. Lower Conf. Limit Upper Conf. Limit
0.701117 2.15454
                     Estimate
      Variable
                      3.52871
       С

        46.553
        5.93306

        1.53589e-009
        5.40523e-009

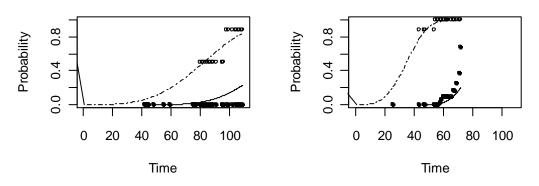
        7.57004e-009
        2.9647e-000

                                      5.93306
                                                     34.9244
-9.05817e-009
        t_0
                                                                              58.1816
        beta O
                                                     _...Jo⊥/e-009
-5.05369e-008
                                                                        1.21299e-008
                                 2.9647e-008
        beta_1
                                                                         6.5677e-008
        beta 2
                        0
                                           NA
                                 7.66404e-008
        beta 3
                  2.53126e-008
                                                       -1.249e-007
                                                                        1.75525e-007
NA - Indicates that this parameter has hit a bound implied by some inequality constraint
    and thus has no standard error.
                                                 AIC
              Param AIC
6 201.024
  Fitted Model -94.5119
```


Data Summary

This document is a draft for review purposes only and does not constitute Agency policy. E-57 DRAFT—DO NOT CITE OR QUOTE

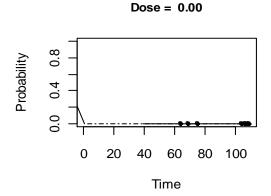
		С	ONTEXT							
	С	F	I	U	Total	Expected	Response			
DOSE										
0	51	0	1	0	52	1.14				
0.49	46	0	6	0	52	4.90				
1.6	22	0	30	0	52	31.81				
4.6	2	7	43	0	52	49.43				
Minimum observation time for F tumor context = 58 Benchmark Dose Computation										
Risk Respon		-	cidental							
Risk Type	=		Extra							
Confidence	level =		0.9							
Time	=		104							
Specified	effect = BMD = BMDL =		5388 3281	0 1		1 981283 345104		0.001 0.0100797 0.00344714		
	BMDU =	ο.	7 1 7 1	2 7	7 0.32	25909		> 0.0806373		

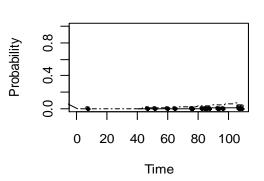

Incidental Risk: OralForstKroeseF3

points show nonparam. est. for Incidental (unfilled) and Fatal (filled)

Dose = 4.58

17


Figure E-16. Fit of multistage Weibull model to squamous cell papillomas or
 carcinomas in oral cavity or forestomach of female rats exposed orally to
 benzo[a]pyrene (Kroese et al., 2001).


This document is a draft for review purposes only and does not constitute Agency policy. E-58 DRAFT—DO NOT CITE OR QUOTE

```
Female Rat (Kroese et al., 2001): Hepatocellular Adenoma or Carcinoma
                  _____
        Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
        Solutions are obtained using donlp2-intv, (c) by P. Spellucci
        Input Data File: LiverKroeseF3.(d)
        Fri Apr 16 09:08:03 2010
 _____
Timer to Tumor Model, Liver Hepatocellular Tumors, Kroese et al, Female
 The form of the probability function is:
  P[response] = 1-EXP$$-(t - t 0)^c *
               (beta 0+beta 1*dose^1+beta 2*dose^2+beta 3*dose^3) }
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
Total number of observations = 208
Total number of records with missing values = 0
Total number of parameters in model = 6
Total number of specified parameters = 0
Degree of polynomial = 3
Maximum number of iterations = 64
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
                Default Initial Parameter Values
                            =
                                      3.6
                      С
                            =
                      t 0
                                   31.7778
                      beta 0 =
                                    0
                      beta 1 = 4.9104e-031
                      beta_2 = 5.45766e-030
                      beta 3 = 3.44704e-008
         Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -beta 0
                                                        -beta 2
                                             -beta 1
               have been estimated at a boundary point, or have been specified by the user,
               and do not appear in the correlation matrix )
                                      beta_3
               С
                           t_0
   С
                   1
                             -0.9
                                          -1
                 -0.9
                                         0.92
   t 0
                              1
   beta 3
                  -1
                             0.92
                                           1
                             Parameter Estimates
                                                  95.0% Wald Confidence Interval
      Variable
                     Estimate
                                   Std. Err.
                                               Lower Conf. Limit Upper Conf. Limit
                      3.11076
                                    0.549208
                                                       2.03434
                                                                          4.18719
       С
        t 0
                      38.6965
                                      5.21028
                                                        28.4846
                                                                          48.9085
        beta O
                          0
                                          NA
        beta 1
                            0
                                          NA
        beta_2
                            0
                                          NA
                  2.94354e-007
                                7.19418e-007
                                                  -1.11568e-006
                                                                     1.70439e-006
        beta 3
NA - Indicates that this parameter has hit a bound implied by some inequality constraint
    and thus has no standard error.
              Log(likelihood)
                               # Param
                                                 AIC
                -228.17
  Fitted Model
                                  6
                                              468.34
```

Data Summary CONTEXT С F Ι U Total Expected Response DOSE 0 52 0 0 0 52 0.00 51 52 3.02 0.49 0 1 0 1.6 13 12 27 0 52 38.36 4.6 1 38 13 0 52 51.36 Minimum observation time for F tumor context = 44 Benchmark Dose Computation Risk Response = Incidental Risk Type = Extra Confidence level = 0.9 Time = 104 Specified effect = 0 0.01 0.001 1 BMD = 0.575127 0.262783 0.12179 0.506633 BMDL = 0.134213 0.0152934 BMDU = 0.629806 0.287232 0.133064

> Incidental Risk: Hepatocellular_Kroese_F3 points show nonparam. est. for Incidental (unfilled) and Fatal (filled)

Dose = 0.49

Dose = 4.58

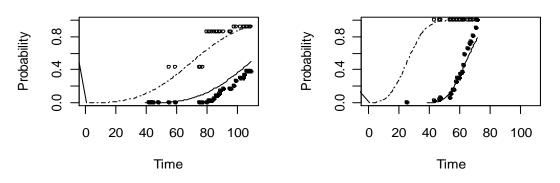


Figure E-17. Fit of multistage Weibull model to hepatocellular adenomas or
 carcinomas in female rats exposed orally to benzo[a]pyrene (Kroese et al.,
 2001).

```
Female Rat (Kroese et al., 2001): Duodenum or Jejunum Adenocarcinoma
                  _____
        Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
        Solutions are obtained using donlp2-intv, (c) by P. Spellucci
        Input Data File: DuoJejKroeseF3.(d)
The form of the probability function is:
  P[response] = 1-EXP$$-(t - t 0)^c *
               (beta_0+beta_1*dose^1+beta_2*dose^2+beta_3*dose^3) }
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
Total number of observations = 208
Total number of records with missing values = 0
 Total number of parameters in model = 6
 Total number of specified parameters = 1
 Degree of polynomial = 3
  User specifies the following parameters:
        t 0
             =
                        0
Maximum number of iterations = 64
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
                Default Initial Parameter Values
                      c = 2.25
t 0 = 0
                       t 0
                                      0
                                            Specified
                      beta 0 =
                                         0
                      beta_1 =
                                        0
                      beta 2 =
                                         0
                      beta 3 = 7.289e-008
          Asymptotic Correlation Matrix of Parameter Estimates
          (*** The model parameter(s) -t 0 -beta 0 -beta 1 -beta 2
               have been estimated at a boundary point, or have been specified by the user,
               and do not appear in the correlation matrix )
               С
                          beta 3
                   1
                               -1
   С
   beta 3
                   -1
                               1
                              Parameter Estimates
                                                   95.0% Wald Confidence Interval
      Variable
                     Estimate
                                    Std. Err.
                                                Lower Conf. Limit Upper Conf. Limit
                      2.32531
                                    3.58729
                                                       -4.70565
                                                                          9.35626
       С
                       0
        beta O
                                          NA
        beta 1
                            0
                                          NA
                           0
        beta 2
                                          NA
        beta 3
                  5.32209e-008 7.98487e-007
                                                   -1.51178e-006
                                                                    1.61823e-006
NA - Indicates that this parameter has hit a bound implied by some inequality constraint
    and thus has no standard error.
              Log(likelihood)
                               # Param
                                                 AIC
                                            37.7569
  Fitted Model
                  -13.8784
                                5
                  Data Summary
                     CONTEXT
             С
                    F
                                U Total Expected Response
                        I
   DOSE
     0
            52
                   0
                          0
                                 0
                                      52
                                            0.00
    0.49
             52
                    0
                          0
                                0
                                      52
                                            0.01
```

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR QUOTE

1.6 4.6	52 48	0 0	0 4	0 0	52 52	0.44 3.57	
Benchmar Risk Respon Risk Type Confidence Time	=	-	ion idental Extra 0.9 104				
Specified	BMD =	3.4 1.9	4 3 1 2 9 4 7 4 7 0 1 0	5 0.	01 56781 560867 61447	0. 0.	001 726615 0584891 21046

Incidental Risk: DuoJej_Kroese_F3

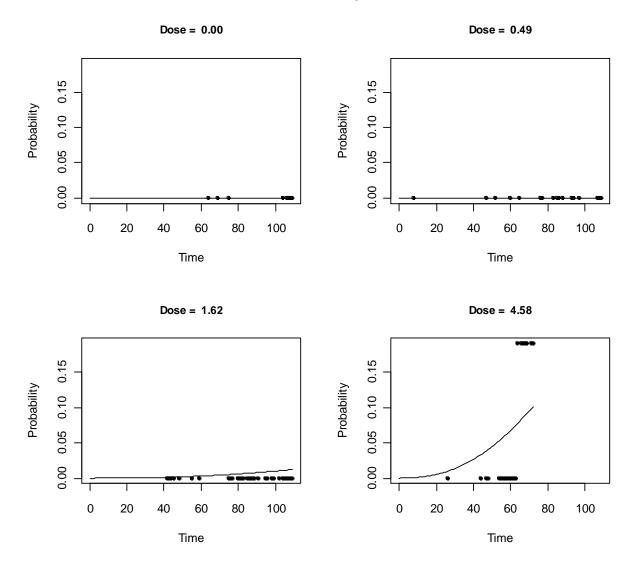


Figure E-18. Fit of multistage Weibull model to duodenum or jejunum
 adenocarcinomas in female rats exposed orally to benzo[a]pyrene (Kroese et
 al., 2001).

Table E-15. Summary of human equivalent overall oral slope factors, based on tumor incidence in male and female Wistar rats exposed to benzo[a]pyrene by gavage for 104 weeks (Kroese et al., 2001)

				Risk va	alue ^a at			Proportion				
Data set	Tumor site	BMD ₀₀₁	BMDL ₀₀₁	BMD ₀₀₁	BMDL ₀₀₁	SD	SD ²	of total variance				
Males	Oral cavity/ forestomach	6.37 × 10 ⁻³	2.86×10^{-3}	1.57×10^{-1}	3.50×10^{-1}	1.17×10^{-1}	1.38 × 10 ⁻²	0.64				
	Liver	2.00×10^{-2}	5.30×10^{-3}	5.00×10^{-2}	1.89×10^{-1}	8.42×10^{-2}	7.09×10^{-3}	0.33				
	Duodenum/ jejunum	6.42×10^{-1}	4.21×10^{-2}	1.56×10^{-3}	2.38×10^{-2}	1.35×10^{-2}	1.82×10^{-4}	0.01				
	Skin/mammary gland: basal cell	6.06×10^{-1}	4.24×10^{-2}	1.65×10^{-3}	2.36×10^{-2}	1.33×10^{-2}	1.78×10^{-4}	0.01				
-	Skin/mammary gland: squamous cell	7.06 × 10 ⁻²	2.11 × 10 ⁻²	1.42×10^{-2}	4.75 × 10 ⁻²	2.03 × 10 ⁻²	4.10×10^{-4}	0.02				
	Kidney	9.84×10^{-1}	7.48×10^{-2}	1.02×10^{-3}	1.34×10^{-2}	7.51×10^{-3}	5.64×10^{-5}	0.00				
	Su	m, risk values	s at BMD ₀₀₁ :	2.25×10^{-1}		Sum, SD ² :	2.17×10^{-2}					
		1.47×10^{-1}										
	Up											
Females	Oral cavity/ forestomach	3.45×10^{-3}	1.01 × 10 ⁻²	2.90×10^{-1}	9.92 × 10 ⁻²	1.16×10^{-1}	1.35×10^{-2}	0.91				
	Liver	1.53×10^{-2}	1.22×10^{-1}	6.54×10^{-2}	8.21×10^{-3}	3.48×10^{-2}	1.21×10^{-3}	0.08				
	Duodenum/ jejunum	5.85 × 10 ⁻²	7.27×10^{-1}	1.71 × 10 ⁻²	1.38×10^{-3}	9.56 × 10 ⁻³	9.13 × 10 ⁻⁵	0.01				
	Su	m, risk values	s at BMD ₀₀₁ :		Sum, SD ² :	1.48×10^{-2}						
		Overall SD										
	Up	per bound o	n sum of risk	estimates ^c :	3.09×10^{-1}							

4 5

^aRisk value = $0.001/BMDL_{001}$.

6 ^bOverall SD = $(sum, SD^2)^{0.5}$.

7 ^cUpper bound on the overall risk estimate = sum of BMD_{001} risk values + 1.645 × overall SD.

8 9 10 Table E-16. Summary of BMD model selection among multistage-Weibull models fit to alimentary tract tumor data for female B6C3F1 mice exposed to benzo[a]pyrene for 2 years (Beland and Culp, 1998)

Model stages	AIC	BMD ₁₀ ^a	BMDL ₁₀ -BMDU ₁₀ ^a	Basis for model selection
1	688.5	0.104		
2	629.2	0.102		
3	624.5	0.127	0.071-0.179	Lowest AIC, best fit to low dose data

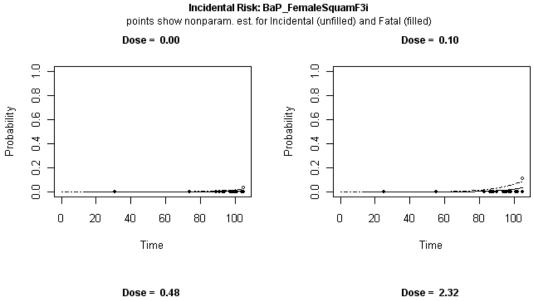
11

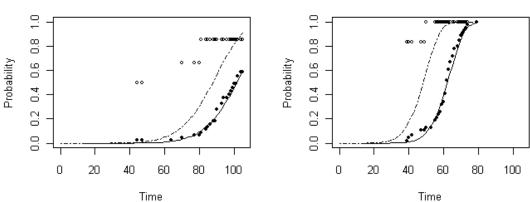
12 ^aEvaluated at 104 weeks Female Mice (Beland and Culp, 1998): Alimentary Tract Squamous Cell Tumors

```
_____
        Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
         Solutions are obtained using donlp2-intv, (c) by P. Spellucci
        Input Data File: C:\msw10-09\benzo[a]pyrene FemaleSquamF3i.(d)
The form of the probability function is:
  P[response] = 1-EXP$$-(t - t 0)^c *
                (beta_0+beta_1*dose^1+beta_2*dose^2+beta_3*dose^3) }
  The parameter betas are restricted to be positive
  Dependent variable = Class
  Independent variables = Dose, time
Total number of observations = 191
Total number of records with missing values = 0
Total number of parameters in model = 6
Total number of specified parameters = 0
Degree of polynomial = 3
Maximum number of iterations = 64
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
                User Inputs Initial Parameter Values
                       c = 2
                              =
                        t 0
                                          15
                        beta 0 =
                                    1.6e-014
                        beta 1 =
                                           0
                        beta_2 =
                                    5.5e-012
                        beta_3 =
                                    4.4e-012
          Asymptotic Correlation Matrix of Parameter Estimates
                С
                     t 0
                                         beta O
                                                      beta 1
                                                                  beta 2
                                                                              beta 3
                    1
                            -0.78
                                          -0.97
                                                       -0.42
                                                                    -0.99
                                                                                 -0.99
   С
                              1
   t_0
                 -0.78
                                           0.76
                                                       0.39
                                                                    0.74
                                                                                 0.84
                 -0.97
                               0.76
                                           1
                                                        0.33
                                                                     0.97
                                                                                  0.96
   beta O
                 -0.42
                               0.39
                                           0.33
                                                         1
                                                                     0.31
                                                                                  0.46
   beta 1
                               0.74
                                           0.97
                                                        0.31
   beta 2
                 -0.99
                                                                       1
                                                                                  0.97
                 -0.99
                             0.84
                                            0.96
                                                       0.46
                                                                     0.97
                                                                                    1
   beta 3
                               Parameter Estimates
                                                      95.0% Wald Confidence Interval
                                     Std. Err.
                     Estimate
      Variable
                                                  Lower Conf. Limit Upper Conf. Limit
                                       1.33874
                       6.92317
       С
                                                            4.29929
                                                                                9.54705
                    13.9429
        t 0
                                       4.96646
                                                           4.20881
                                                                                23.677

        -2.64636e-015
        3.14019e-015

        -2.55825e-014
        2.55825e-014


        -6.76723e-013
        7.93813e-013


        -1.00388e-012
        1.19919e-012

                   2.46916e-016
                                 1.47619e-015
        beta O
        beta 1
                          0
                                   1.30525e-014
                   5.85452e-0143.75144e-0139.76542e-0145.62017e-013
        beta 2
        beta 3
               Log(likelihood)
                                 # Param
                                                    AIC
                     -306.265
                                                 624.53
  Fitted Model
                                    6
                   Data Summary
                      Class
                     F
                                   U Total Expected Response
              С
                           Т
```

This document is a draft for review purposes only and does not constitute Agency policy.

Γ	ose								
	0	47	0		1	0	48	0.93	
	0.1	45	0		3	0	48	3.21	
	0.48	8	23	1	L5	1	47	30.82	
	2.3	1	46		0	1	48	41.91	
Ν	linimum	observ	ration	time	for 1	F tumor	contex	kt =	
Be	enchmarl	< Dose	Comput	tatior	r				
Risk	Respons	se =	-	Incide	ental				
Risk	Туре	=	-	Η	Extra				
Speci	fied et	ffect =	-		0.1				
Confi	dence i	level =	-		0.9				
Time		=	-		104				
		BMD =	-	0.12	26983				
		BMDL =	-	0.070	06103				
		BMDU =	-	0.17	79419				

21

Figure E-19. Fit of multistage Weibull model to duodenum or jejunum
 adenocarcinomas in male rats exposed orally to benzo[a]pyrene (Kroese et al.,
 2001).

This document is a draft for review purposes only and does not constitute Agency policy.E-65DRAFT—DO NOT CITE OR QUOTE

1 E.2.2. Dose-Response Modeling for the Inhalation Unit Risk

2 Modeling Methods

3 As with the tumor data used for the oral slope factor (see Section E.2.1, *Dose Response*-4 modeling for the Oral Slope Factor), there was earlier occurrence of tumors with increasing 5 exposure, and early termination of the high-dose group (Thyssen et al., 1981; see Appendix D for 6 study details). The computer software program Multistage Weibull (U.S. EPA, 2010) was used as 7 described in the analysis of the oral carcinogenicity data. See Section E.2.1 for details of the 8 modeling methods. A previous time-to-tumor analysis (U.S. EPA, 1990) was not used because of 9 several discrepancies between the summarized dose-response data and the individual pathology 10 reports, because the use of age at necropsy rather than the time since first exposure, and because 11 multistage Weibull provides a corrected estimate of the confidence bounds on the BMD.

12 Data Adjustments Prior to Modeling

13As with the oral slope factor (see Section E.2.1, Dose Response-modeling for the Oral Slope

14 *Factor*), etiologically similar tumor types (i.e., benign and malignant tumors of the same cell type)

15 were combined for dose-response modeling. Here the benign tumors (papillomas, polyps, and

16 papillary polyps) were judged to be of the same cell type as the squamous cell carcinomas (SCCs).

17 As described in Section 2.4.2, the overall incidences of benign or malignant tumors in the

18 respiratory tract (larynx, trachea, and nasal cavity) and pharynx were used for dose-response

19 modeling.

20 <u>Thyssen et al. (1981)</u> did not determine cause of death for any of the animals. Since the 21 investigators for the oral bioassays considered the same tumors to be fatal at least some of the time, 22 bounding estimates for the Thyssen et al. (1981) data were developed by treating the tumors 23 alternately as either all incidental or all fatal. In either case, therefore, an estimate of t_0 (the time 24 between a tumor first becoming observable and causing death) could not be estimated and was set 25 to 0. The data analyzed are summarized in Table E-17. Animals without confirmation of one or 26 more of the pharynx or respiratory tract tissues being examined were not included in the 27 incidences, unless a tumor was diagnosed in those that were examined. Group average TWA 28 continuous exposures, based on chamber air monitoring data and individual hamsters' time on 29 study, of 0, 0.25, 1.01, and 4.29 mg/m³ corresponded to the 0, 2, 10, and 50 mg/m³ nominal study 30 concentrations, respectively (U.S. EPA, 1990).

Table E-17. Individual pathology and tumor incidence data for male Syriangolden hamsters exposed to benzo[a]pyrene via inhalation for lifetime-Thyssen et al. (1981)^a

Exposure concentration: target		Inci	-	-	nomas	pillary poly ors)	/ps, or	
(lifetime average continuous exposure) ^b , mg/m ³	Time of tumor observed (d)	Larynx	Pharynx	Trachea	Nasal cavity	Esophagu s	Fore- stomach	Incidence of respiratory tract or pharynx tumors
0	112	0	c	0	0	0	0	_
(0)	270	0	0	0	0	0	0	0
	314	0	0	0	0	0	0	0
	553	0	0	0	0	0	0	0
	577	0	0	0	_	0	0	_
	594	0	_	0	0	0	0	—
	596	0	0	0	0	0	0	0
	611	0	0	0	0	0	0	0
	611	0	0	0	0	0	0	0
	616	0	0	0	0	0	0	0
	619	0	0	0	0	0	0	0
	623	0	0	0	0	0	0	0
	704	0	0	0	0	0	0	0
	710	0	0	0	0	0	0	0
	721	0	0	0	0	0	0	0
	739	0	0	0	0	0	0	0
	751	0	0	0	0	0	0	0
	762	0	0	0	0	0	0	0
	779	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0
	808	0	—	0	0	0	0	—
	847	0	0	0	0	0	0	0
	857	0	0	0	0	0	0	0
	867	—	0	0	0	0	0	—
	868	0	0	0	0	0	0	0
	885	0	—	0	0	0	0	—
	917	0	0	0	0	0	0	0
2	93	_	—	—	0	0	0	—
(0.25)	247	0	0	0	0	0	0	0
	370	0	0	0	0	0	0	0
	407	0	0	0	0	0	0	0
	489	0	0	0	0	0	0	0
	539	0	0	0	0	0	0	0
	554	0	0	0	0	0	0	0
	591	0	0	0	0	0	0	0
	612	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0
	682	0	—	0	0	0	0	—
	690	0	0	0	0	0	0	0
	717	0	0	0	0	0	0	0

Exposure concentration: target		Incid	-	-	nomas	pillary poly	/ps, or	
(lifetime average continuous exposure) ^b , mg/m ³	Time of tumor observed (d)	Larynx	Pharynx	Trachea	Nasal cavity	Esophagu s	Fore- stomach	Incidence of respiratory tract or pharynx tumors
	717 755 788	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
	795 802 808	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
	836 848 925	0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0
10 (1.01)	212 227 357 465	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
	509 530 531 557	0 0 0 1 (1) ^d	0 1 (1) 1 (1) 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 1 1 0
	597 653 695	0 1 (1) 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 1 0
	712 732 773 788	0 1 (1) 0 0	1 (0) 1 (1) 1 (1) 1 (0)	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 1 1 1
	796 803 808 812	1 (1) 1 (1) 0 1 (0)	1 (1) 	0 1 (0) 1 (0)	0 1 (0) 1 (1) ^e	0 0 0	0 0 0 0	1 1 1 1
	812 822 826 826 826	1 (0) 1 (1) 1 (0) 0 1 (1)	 1 (1) 0	0 0 0 0 0	0 0 0 1 (0)	0 0 0 0 0	0 0 0 1 (1)	1 1 1 - 1
	820 848 867 868	1 (1) 1 (0) 1 (1) 0	0 1 (1) 0	0 0 0	0 0 1 (0)	0 0 0	0 0 0	1 1 1 1
50 (4.29)	144 151 178 210				0 0 0 0	0 0 0 0	0 0 0 0	_ _ _
	210 211 213 242 253	0 — — 0	 0	0 — — 0	0 0 0 0	0 0 0 0	0 0 0 0	 0
	255 255 263	_ _			0 0	0	0 0	- 0

Exposure concentration: target		Incid	Incidence of papillomas, polyps, papillary polyps, or carcinomas (total malignant tumors)									
(lifetime average continuous exposure) ^b , mg/m ³	Time of tumor observed (d)	Larynx	Pharynx	Trachea	Nasal cavity	Esophagu s	Fore- stomach	Incidence of respiratory tract or pharynx tumors				
	281	0 ^f	1 (1)	1 (0)	0	0	0	1				
	284	0	0	0	0	0	0	0				
	284	—	—	—	0	0	0	—				
	294	0	0	0	0	0	0	0				
	296	0	0	0	0	0	0	0				
	324	1 (1)	1 (1)	0	0	0	0	1				
	329	0	1 (1)	0	0	0	0	1				
	371	0	—	0	0	0	0	—				
	388	1 (1)	1 (1)	0	0	0	0	1				
	395	0	1 (1)	0	0	0	0	1				
	421	0	1 (1)	0	0	0	0	1				
	436	0	0	0	0	0	0	0				
	442	0	1 (0)	0	0	0	1 (0)	1				
	462	1 (1)	1 (1)	0	0	-	_	1				
	471	0	1 (1)	0	0	0	0	1				
	486	1 (0)	1 (1)	0	0	1 (0)	0	1				
	494	1 (1)	1 (1)	1 (1)	0	0	0	1				
	498	1 (0)	1 (1)	0	0	0	1 (0)	1				
	504	1 (1)	1 (1)	0	0	0	0	1				
	506	1 (1)	1 (1)	0	0	0	0	1				
	572	0	1 (1)	0	0	0	0	1				
	575	1 (1)	1 (1)	0	0	1 (0)	0	1				
	578	1 (0)	1 (1)	0	0	0	0	1				
	717 ^g	1 (1)	1 (1)	1 (0)	1 (0)	0	0	1				

¹ 2

^aHistopathology incidence from (<u>Clement Associates (1990</u>); <u>U.S. EPA (1990</u>)).

3 ^bSee Section D.4.2.

4 ^cTissue was not examined.

^dIn situ carcinoma; not included in overall tumor incidence.

5 6 ^eAdenocarcinoma; not included in overall tumor incidence.

7 ^fMetastasis from pharynx not shown.

8 ^g Necropsy occurred 24 weeks after 79 weeks of exposure.

1 Dose-Response Modeling Results

2 Table E-18 summarizes the modeling results supporting the derivation of an inhalation unit

3 risk value for benzo[a]pyrene. The model outputs and graphs (Figures E-20 and E-21) following

4 Table E-18 provide more details for the best-fitting models under the conditions of taking all

5 tumors to be incidental to the cause of death, or to be the cause of death, respectively.

Table E-18. Summary of BMD model selection among multistage-Weibull models fit to tumor data for male Syrian golden hamsters exposed to benzo[a]pyrene via inhalation for lifetime (<u>Thyssen et al., 1981</u>)

Tumor context	Model stages	AIC	BMD ₁₀ ^a	BMDL ₁₀ ^a	Basis for model selection
All tumors considered incidental to cause of death	1 2	50.5 40.4	0.076 0.254	0.052 0.163	Lowest AIC, best fit to data (BMDU ₁₀ = 0.324)
All tumors considered to be cause of death	1 2	315.0 302.9	0.135 0.468	0.104 0.256	Lowest AIC; best fit to data (BMDU ₁₀ = 0.544)

9

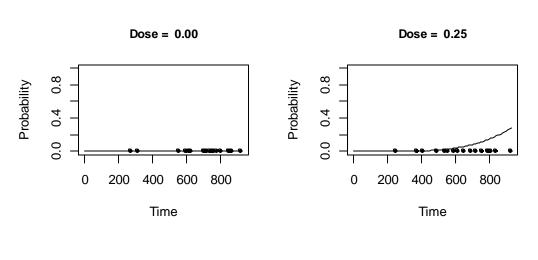
6

7

8

Output for Squamous Cell Neoplasia Following Inhalation Exposure to Benzo[a]pyrene: All Tumors Considered Incidental to Cause of Death

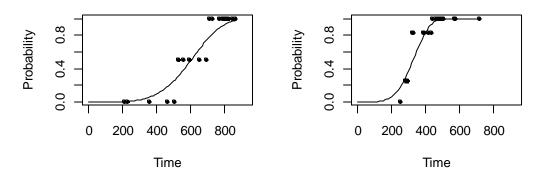
```
______
       Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
       Solutions are obtained using donlp2-intv, (c) by P. Spellucci
       Input Data File: ThyssenInc2sL104noUB70.(d)
       Tue Mar 11 12:58:28 2014
The form of the probability function is:
 P[response] = 1-EXP\{-(t - t 0)^c *
              (beta_0+beta_1*dose^1+beta 2*dose^2) }
 The parameter betas are restricted to be positive
 Dependent variable = CONTEXT
 Independent variables = DOSE, TIME
Total number of observations = 88
Total number of records with missing values = 0
Total number of parameters in model = 5
Total number of specified parameters = 1
Degree of polynomial = 2
 User specifies the following parameters:
       t 0
                       0
             =
Maximum number of iterations = 64
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
               Default Initial Parameter Values
                     С
                          = 4.5
                     t 0
                          =
                                      0
                                           Specified
                     beta_0 = 1.32176e-037
                     beta 1 = 3.02455e-036
                     beta 2 = 2.03765e-013
```


	7								
	(*** Tł ha	ne model ave been	paramete estimate	er(s ed a) -t_0 t a bou	ndary po	Estimates beta_0 -beta_1 int, or have been matrix)		the user,
	С		beta_	2					
С		1		-1					
beta_2		-1		1					
			Pa	aram	eter Es	timates			
							95.0% Wald Co		
С	iable : oeta 0		imate 71714 0			Err. 7627 NA	Lower Conf. Limi 2.84023		f. Limit .59406
	eta 1		0			NA			
	eta_2	5.16891	e-014	3	.13384e	-013	-5.62533e-013	6.6591	1e-013
and t							plied by some ine	quarrey compe	141110
Fitted	Loc	no standa g(likelih -16.			ram 4	40.	AIC	4441107 00100	
Fitted	Loc	g(likelih -16. Data Su	100d) + 2088		ram		AIC		
Fitted	Loc	g(likelih -16. Data Su	100d) = 2088 ummary	‡ Pa	ram 4	40.	AIC		
Fitted	Lo <u>c</u> Model	g(likelih -16. Data Su CON	nood) = 2088 mmary JTEXT	‡ Pa	ram 4	40.	AIC 4176		
	Lo <u>c</u> Model	g(likelih -16. Data Su CON	nood) = 2088 mmary JTEXT	‡ Pa	ram 4 Total 21	40. Expecte 0.00	AIC 4176 d Response		
DOSE	Loc Model C	g(likelih -16. Data Su CON F	nood) # 2088 Immary ITEXT I 0 0	‡ Pa U 0	ram 4 Total 21	40. Expecte 0.00	AIC 4176 d Response		
DOSE 0	Loc Model C 21	g(likelih -16. Data Su CON F 0	nood) + 2088 ummary ITEXT I 0	‡ Pa U 0	ram 4 Total 21	40. Expecte 0.00	AIC 4176 d Response	4441207 00000	
DOSE 0 0.25	Loc Model C 21 19	g(likelih -16. Data Su CON F 0 0	nood) # 2088 Immary ITEXT I 0 0	‡ Pa U 0	ram 4 Total 21	40. Expecte 0.00	AIC 4176 d Response		

0.253569

0.163052

BMD =


BMDL = BMDU =

Incidental Risk: ThyssenInc2sL104noU

2 3

4

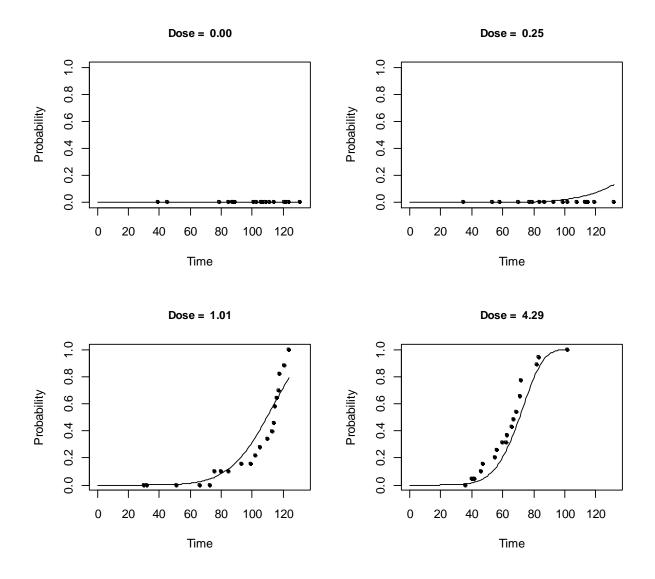
5

678901123456789012234567 11123456789012234567

1

Figure E-20. Fit of multistage Weibull model to respiratory tract tumors in male hamsters exposed via inhalation to benzo[a]pyrene (Thyssen et al., **1981**); tumors treated as incidental to death.

Output for Respiratory Tract Tumors: All Tumors Considered to be Cause Of Death


```
Time of tumor observation was converted to weeks in order to run this form of the multistage-
Weibull model.
   Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
        Solutions are obtained using donlp2-intv, (c) by P. Spellucci
        Input Data File: ThyssenF2sL104noU.(d)
        Thu Mar 13 14:30:45 2014
  The form of the probability function is:
  P[response] = 1-EXP\{-(t - t_0)^c *
               (beta 0+beta 1*dose^1+beta 2*dose^2) }
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
```

```
Independent variables = DOSE, TIME
Total number of observations = 88
```

Total number of records with missing values = 0

```
Total number of parameters in model = 5
Total number of specified parameters = 1
Degree of polynomial = 2
  User specifies the following parameters:
         t 0
              =
                          0
Maximum number of iterations = 64
Relative Function Convergence has been set to: 2.22045e-016
 Parameter Convergence has been set to: 1.49012e-008
                 Default Initial Parameter Values
                       c =
t 0 =
                                          6
                                           0
                                              Specified
                       beta_0 = 2.0496e-036
                        beta 1 = 4.12988e-014
                       beta_2 = 3.37033e-013
          Asymptotic Correlation Matrix of Parameter Estimates
          (*** The model parameter(s) -t 0 -beta 0
                                                            -beta 1
                have been estimated at a boundary point, or have been specified by the user,
                and do not appear in the correlation matrix \ensuremath{)}
                С
                           beta 2
                   1
   С
                                -1
   beta 2
                    -1
                                 1
                               Parameter Estimates
                                                      95.0% Wald Confidence Interval
      Variable
                      Estimate
                                      Std. Err.
                                                   Lower Conf. Limit Upper Conf. Limit
        С
                       6.61992
                                      0.915036
                                                          4.82649
                                                                              8.41336
                                     NA
                        0
        beta O
        beta_1
                             0
                                            NA
                                                     -1.54323e-013 1.97086e-013
                   2.13816e-014
                                   8.96466e-014
        beta 2
NA - Indicates that this parameter has hit a
    bound implied by some inequality constraint
    and thus has no standard error.
               Log(likelihood)
                                # Param
                                                  AIC
                                               303.319
   Fitted Model
                  -147.66
                                  4
                   Data Summary
                      CONTEXT
              С
                     F
                       I
                                  U Total
   DOSE
      0
             21
                   0
                          0
                                        21
                                  0
                    0
    0.25
             19
                           0
                                  0
                                        19
      1
              8
                    17
                           0
                                  0
                                        25
     4.3
             5
                   18
                           0
                                  0
                                        23
   Minimum observation time for F tumor context =
                                                       40
  Benchmark Dose Computation
Risk Response =
Risk Type =
                   Fatal
Risk Type
                          Extra
Specified effect =
                           0.1
Confidence level =
                            0.9
                            104
Time
                =
            BMD =
                       0.467752
           BMDL =
                        0.256206
           BMDU =
                       0.543965
```


2

3

4

Figure E-21. Fit of multistage Weibull model to respiratory tract tumors in male hamsters exposed via inhalation to benzo[a]pyrene (<u>Thyssen et al.</u>, <u>1981</u>); tumors treated as cause of death.

E.2.3. Dose-Response Modeling for the Dermal Slope Factor 1

2 Modeling Methods

3 As with the tumor data used for the oral slope factor (see Section E.2.1, *Dose Response*-4 modeling for the Oral Slope Factor) and the inhalation unit risk (see Section E.2.2, Dose Response-5 *modeling for the Inhalation Unit Risk*), there was earlier occurrence of tumors with increasing 6 exposure, as shown in the individual animal data in the technical report for the National Institute 7 for Occupational Safety and Health (NIOSH) study (Sivak et al., 1997; Arthur D Little, 1989). The 8 computer software program Multistage Weibull (U.S. EPA, 2010) was used for the analysis of the 9 dermal carcinogenicity data. See Section E.2.1 for details of the modeling approach, including 10 evaluation of model fit and model selection. Tumors were classified as incidental because the 11 appearance of tumors generally preceded death by weeks in all cases, and time of first appearance of tumors or time on study without tumors were used for the time input. 12 13 For the other supporting studies identified in Section 2.5.1, multistage models [BMDS; (U.S. 14 EPA, 2012a); v 2.1] were used. See Section E.1.1 for details of fitting the multistage model. The

15 BMDL estimate (95% lower confidence limit on the BMD, as estimated by the profile likelihood 16 method) and AIC value were used to select a best-fit model from among the models exhibiting

17 adequate fit. The data modeled are summarized in Tables E-19 through E-23.

18 Data Adjustments Prior to Modeling

19 For time-to-tumor modeling, no adjustment other than an estimate of daily exposure was 20 used. The data modeled are provided in Table E-19.

21 For the remaining studies, two types of adjustments were considered: (1) for study groups 22 that were reported to end before 104 weeks, but well after 1 year of exposure, it was judged 23 reasonable to assume that the tumor incidence observed at the time of early termination could have 24 been realized in a full lifetime study using a lower dose; and (2) reductions of the group sizes when 25 there was mortality prior to the first appearance of tumors, in order to estimate the effective 26 number at risk. Equivalent lifetime doses were estimated by multiplying the relevant average daily 27 doses by $(L_e/104)^3$, where L_e is the length of exposure, based on observations that tumor incidence 28 tends to increase with age (<u>Doll, 1971</u>). Note that exposure periods <52 weeks would lead to a 29 relatively large adjustment [i.e., $(52/104)^3 = 0.125$, or an eightfold lower dose than administered], 30 reflecting considerable uncertainty in lifetime equivalent dose estimates generated from relatively 31 short studies. This adjustment was applied to all dose groups in <u>Poel (1959)</u> and <u>Roe et al. (1970)</u>, 32 and the highest dose group in Habs et al. (1980) and the grouped data reported by Sivak et al. 33 (1997). The following discussion summarizes how each adjustment was carried out when relevant. 34 Roe et al. (1970) applied benzo[a]pyrene dermally for 93 weeks or until natural death; with 35 the exception of the highest dose group, each group had approximately 20 animals (or $\sim 40\%$ 36 survival) at 600 days (see Table D-17). The tumors were first observed in the lowest and highest

- 37 dose groups during the interval of days 200–300. Mice dying before day 200 were likely not at risk
- 38 long enough for tumor development. However, because tumor incidence and mortality were
- 39 reported in 100-day intervals, mice that had not been on study long enough to develop tumors were

Supplemental Information—Benzo[a]pyrene

1 not easily identifiable. Incidence denominators reflect the number of animals alive at day 200, and

- 2 may thus lead to underestimates of tumor risk if the number of animals at risk has been
- overestimated. Table E-20 summarizes the dose adjustments to estimate equivalent 104-week
 exposures, as well as incidence data adjusted for mortality prior to skin tumor appearance.

5 Schmidt et al. (1973) did not report survival information; instead, the authors provided 6 incidences based on the numbers of mice initially included in each dose group at the start of the 7 study. Overall latency was reported for the two high-dose groups in each series, but these data only 8 describe the survival of mice with tumors (animals were removed from study when a tumor 9 appeared). It is not clear how long exposures lasted overall in each dose group, or whether some 10 mice may have died on study from other causes before tumors appeared. While it is possible that 11 no mice died during the study, all of the other studies considered here demonstrate mortality. 12 However, the data were modeled as reported, with no adjustments, recognizing the possibility of 13 underestimating risk associated with incidences reported and lack of duration of exposure (see

14 Table E-20).

15 <u>Schmähl et al. (1977)</u> reported that reduced numbers of animals at risk (77–88 mice per
 16 dose group compared with the initial group sizes of 100) resulted from varying rates of autolysis.

17 No other survival or latency information was provided, so all exposures were assumed to have

18 lasted for 104 weeks and were modeled as reported. Given the results of the other studies, it seems

- 19 possible that the numbers at risk in each group may be overestimated, which could lead to an
- 20 underestimate of lifetime risk (see Table E-20).

21 Habs et al. (1980) reported age-standardized skin tumor incidence rates, indicating earlier 22 mortality in the two highest dose groups (2.8 and 4.6 µg/application). These rates were used to 23 estimate the number at risk for dose-response modeling, by dividing the number of mice with 24 tumors by the age-standardized rates. Exposure lasted longer than 104 weeks in the two lower 25 exposure groups, at about 120 and 112 weeks, and until about 88 weeks in the highest exposure 26 group. Incidence in the two lower exposure groups may be higher than if the exposure had lasted 27 just 104 weeks. There was mortality in the first 52 weeks of exposure, about 10-15% in the three 28 exposure groups, but because there was no information concerning when tumors first appeared, it 29 is not possible to determine how much the early mortality may have impacted the number of mice 30 at risk in each group (see Table E-20).

Habs et al. (1984) reported mean survival times (with 95% CIs) for each dose group. The
 CIs supported the judgment that the control and lower dose groups were treated for 104 weeks.
 The higher dose group (4 µg/application) was probably treated for <104 weeks, because the upper
 95% confidence limit for the mean survival was approximately 79 weeks. However, since it was

35 not possible to estimate a more realistic duration for this group, an estimate of 104 weeks was used

36 (see Table E-20).

The Poel (1959) study was conducted in male mice and used toluene as the vehicle. In
addition to a control group, there were nine dose groups. All C57L mice in dose groups with
>3.8 μg/application died by week 44 of the study. Therefore, these five dose groups were omitted
prior to dose-response modeling because of the relatively large uncertainty in extrapolating cancer
risk as a result of lifetime exposure. Four dose groups in addition to control remained. Among

these groups, mice survived and were exposed until weeks 83–103. According to the lifespan 1 2 ranges provided, at least one mouse in each dose group died before the first appearance of tumor, 3 but insufficient information was available to determine how many; consequently, the incidence 4 denominators were not adjusted. Although mice in the lowest exposure group were treated up to 5 103 weeks, the control group demonstrated a median survival time of 60 weeks and concluded at 6 week 92, suggesting a lifetime <104 weeks is more relevant for this mouse strain. Doses were 7 adjusted to approximate exposures resulting in the same responses at 104 weeks of exposure for 8 comparability among these lifetime studies. This adjustment had little impact on the lowest 9 exposure level, which had an observed response of 9%, close to the BMR of 10% extra risk; in this 10 case, the adjustment is not expected to affect the BMD_{10} significantly. The dose-response data are 11 summarized in Table E-21. Grimmer et al. (1984) and Grimmer et al. (1983) studied female CFLP mice, using 12 13 acetone:dimethyl sulfoxide (DMSO) (1:3) as the vehicle. Mean or median latency times were 14 reported (as well as measures of variability), but no information concerning overall survival was 15 included in the results. The total of tumor-bearing mice and the reported percentages of mice with 16 any skin tumors was reported, and varied at most one animal from the number of animals initially 17 placed on study. The decreasing latency and variability and increasing tumor incidence with 18 increasing benzo[a]pyrene exposure suggests that exposure probably did not last for the full 19 scheduled 104 weeks in at least the high-dose group. The data reported were modeled under the 20 assumption that at least some animals in each group were treated and survived until week 104 (see 21 Table E-22).

 Table E-19.
 Tumor incidence, with time to observation of tumor or death;

 CeH/HeJ male mice exposed dermally to benzo[a]pyrene^a (Sivak et al., 1997;

Arthur D Little, 1989)

Average daily dose (μg/d)	Time of first appearance of tumor, or time on study (d) ^b	Total examined	Number of animals with papillomas or carcinomas	Average daily dose (μg/d)	Time of first appearance of tumor, or time on study (d) ^b	Total examined	Number of animals with papillomas or carcinomas
0	104	1	0	0.14	354	1	0
	237	1	0		453	1	1
	239	1	0		460	1	0
	444	1	0		509	1	0
	483	1	0		525	1	0
	504	1	0		537	1	0
	509	1	0		560	1	1
	537	1	0		573	1	1
	545	1	0		601	1	0 1 ^b
	590	1	0		663	1 1	
	609	1	0		669 677	1	0 0
	613	1	0		685	1	0
	615 629	2	0 0		701	1	0
		1			701	1	1
	630 658	1	0 0		727	1	0
	699	1 1	0		731	1	0
	719				732	13	0
	719 748	1 11	0 0		7.54	15	0
	Totals	30	0		Totals	30	5
0.014							
0.014	235	1	0	1.4	233	1	0
	238	1	0		234	1	0
	430 446	1	0		235 307	1	0
	446 456	1 1	0 0		307	1 2	1 2
	450	1	0		340	2	2
	403	1	0		362	2	2
	503	1	0		369	3	3
	511	1	0		376	1	1
	590	1	0		383	1	1
	604	1	0		390	1	1
	663	1	0		397	3	3
	680	1	0		404	1	1
	684	1	0		411	5	5
	727	1	0		418	1	1
	747	15	0		440	2	2
		-	-		446	1	1
					474	1	1
	Totals	30	0		Totals	30	27

4 5 6

^aDoses were applied twice/weekly to shaved dorsal skin. Vehicle for all groups was 1:1 cyclohexanone/acetone.

^bFor animals with skin tumors, the time of the tumor; if no skin tumor was observed, the time is the time of death 7 or sacrifice.

8 ^cThe tumor diagnosis was keratoacanthoma. Table E-20. Skin tumor incidence, benign or malignant in female Swiss or

NMRI mice dermally exposed to benzo[a]pyrene; data from Roe et al. (1970), Schmidt et al. (1973), Schmähl et al. (1977), Habs et al. (1980), Habs et al.

3 4

1 2

(1984)

Study	Mouse strain	Dose (µg)	Average daily dose (μg/d)	First appearance of tumor (wks)	Length of exposure (wks)	Lifetime average daily dose (µg/d)	Skin tumor incidence (all types)
<u>Roe et al.</u> (<u>1970)</u> ^{a,b}	Swiss	0 (acetone) 0.1 0.3 1 3 9	0 0.04 0.13 0.43 1.29 3.86	- 29-43 - 57-71 43-57 29-43	93 93 93 93 93 93 93	0.00 0.03 0.09 0.31 0.92 2.76	0/49 (0%) 1/45 (2%) 0/46 (0%) 1/48 (2%) 8/47 (20%) 34/46 (74%)
<u>Schmidt et</u> al. (1973) ^c	NMRI	0 (acetone) 0.05 0.2 0.8 2	0 0.01 0.06 0.23 0.57	- - 53 ^e 76 ^e	104 ^d 104 104 104 104	0 0.01 0.06 0.23 0.57	0/100 (0%) 0/100 (0%) 0/100 (0%) 2/100 (2%) 30/100 (30%)
	Swiss	0 (acetone) 0.05 0.2 0.8 2	0 0.01 0.06 0.23 0.57	- - 58 [°] 61 [°]	104 104 104 104 104	0 0.01 0.06 0.23 0.57	0/80 (0%) 0/80 (0%) 0/80 (0%) 5/80 (6%) 45/80 (56%)
<u>Schmähl et</u> al. (1977) ^c	NMRI	0 (acetone) 1 1.7 3	0 0.29 0.49 0.86	– NR NR NR	104 104 104 104	0 0.29 0.49 0.86	1/81 (1%) 11/77 (14%) 25/88 (28%) 45/81 (56%)
<u>Habs et al.</u> (1980) ^{c,f}	NMRI	0 (acetone) 1.7 2.6 4.6	0 0.49 0.74 1.31	– NR NR NR	128 120 112 88	0 0.49 0.74 0.80	0/35 (0%) 8/34 (24.8%) 24/27 (89.3%) 22/24 91.7%)
<u>Habs et al.</u> (1984) ^c	NMRI	0 (acetone) 2 4	0 0.57 1.14	– NR NR	104 104 104	0 0.57 1.14	0/20 (0%) 9/20 (45%) 17/20 (85%)

5 6 7

^aDoses were applied 3 times/week for up to 93 weeks to shaved dorsal skin.

^bNumerator: number of mice detected with a skin tumor. Tumors were thought to be malignant based on

8 invasion or penetration of the panniculus carnosus muscle. Denominator: number of mice surviving to 29 weeks 9 (200 days).

10 ^cDoses were applied 2 times/week to shaved skin of the back. Mice were exposed until natural death or until they 11 developed a carcinoma at the site of application.

- 12 ^dExposure periods not reported were assumed to be 104 weeks; indicated in italics.
- 13 ^eCentral tendency estimates; range or other variability measure not reported.

14 ^fThe percentages were reported by the authors as age-standardized incidences of animals with local tumors,

15 derived using mortality data from the entire study population. The incidences reflect reported counts of tumor-

16 bearing animals and denominators estimated from the reported age-standardized rates. The authors did not

17 report the percentages of local tumors which were carcinomas or papillomas.

18

19 NR = not reported.

Table E-21. Skin tumor incidence, benign or malignant, in C57L male mice dermally exposed to benzo[a]pyrene; data from Poel (1959)

Study	Mouse strain	Dose (µg)ª	Average daily dose (μg/d)	First appearance of tumor (wks)	Length of exposure (wks)	Lifetime average daily dose ^b	Skin tumor incidence (all types) ^c
<u>Poel (1959)</u>	C57L	0 (toluene)	0	_	92	0.00	0/33 (0%)
		0.15	0.06	42	98	0.05	5/55 (9%)
		0.38	0.16	24	103	0.16	11/55 (20%)
		0.75	0.32	36	94	0.24	7/56 (13%)
		3.8	1.63	21–25	82	0.80	41/49 (84%)

3 4

1 2

^aDoses were applied to interscapular skin 3 times/week for up to 103 weeks or until time of appearance of a

5 grossly detected skin tumor. See Table E-15 for data of five highest dose groups (19–752 µg) in which all mice 6 died by week 44. These groups were not considered for dose-response modeling.

7 ^bSee text in this section for discussion of extrapolation to lifetime average daily doses.

8 ^cTumors were histologically confirmed as epidermoid carcinomas.

9 Table E-22. Skin tumor incidence, benign or malignant, in female CFLP mice 10 dermally exposed to benzo[a]pyrene; data from Grimmer et al. (1983), Grimmer et al. (1984)

11

Study	Dose (µg)ª	Average daily dose (μg/d)	Mean or median time of tumor appearance (wks)	Length of exposure (wks) ^b	Lifetime average daily dose (µg/d)	Skin tumor incidence (all types) ^c
Grimmer et	0 (1:3 acetone:DMSO)	0	_	104	0	0/80 (0%)
al. (1983)	3.9	1.1	74.6 ± 16.8 ^d	104	1.1	22/65 (34%)
	7.7	2.2	60.9 ± 13.9	104	2.2	39/64 (61%)
	15.4	4.4	44.1 ± 7.7	104	4.4	56/64 (88%)
Grimmer et	0 (1:3 acetone:DMSO)	0	-	104	0	0/80 (0%)
<u>al. (1984)</u>	3.4	0.97	61 (53–65) ^e	104	0.97	43/64 (67%)
	6.7	1.9	47 (43–50)	104	1.9	53/65 (82%)
	13.5	3.9	35 (32–36)	104	3.9	57/65 (88%)

12

13 ^aIndicated doses were applied twice/week to shaved skin of the back for up to 104 weeks.

14 ^bAssumed exposure period is indicated in italics.

15 ^cIncidence denominators were calculated from reported tumor-bearing animals and reported percentages.

16 ^dMean ± SD.

17 ^eMedian and 95% confidence limit.

18 **Dose-Response Modeling Results**

19 The modeling results are summarized in Tables E-23 (time-to-tumor modeling of individual

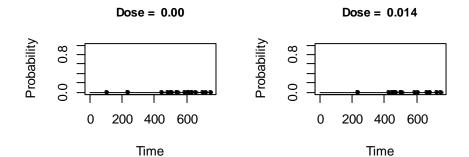
20 data) and E-24 (multistage modeling of group incidence data). The modeling details are provided

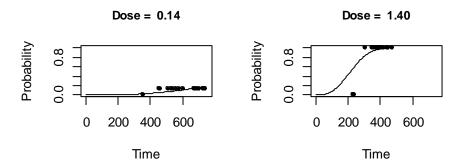
21 with Figures E-22 through E-33.

22 Adequate model fits for the supporting studies were found using the multistage model for

23 all but one of the mouse skin tumor incidence data sets (Table E-24). The data from Grimmer et al.

- 1 (1984) could not be adequately fit by the multistage model initially, and the other dichotomous
- 2 models available in BMDS were used. Due to the supralinear shape of the dose-response data, only
- 3 the log-logistic and dichotomous Hill models provided adequate fits. Also due to the supralinear
- 4 dose-response shape, the POD for slope factor derivation was identified near the lowest response of
- 5 ~70%, because of the lack of data to inform the dose-response relationship at lower doses. Overall,
- 6 model fits demonstrated typical statistical variability at the PODs, with BMDLs generally less than
- 7 twofold lower than corresponding BMDs.
- 8 A comparison of model types was feasible for the NIOSH study data (<u>Arthur D Little, 1989</u>),
- 9 which included the keratoacanthoma in the mid-dose group. The multistage model fit of the
- 10 grouped data reported by (<u>Sivak et al., 1997</u>) yielded BMD₁₀ and BMDL₁₀ values of 0.109 and
- 11 0.058 µg/day, respectively, while the multistage-Weibull fit of the corresponding individual data
- 12 yielded BMD_{10} and $BMDL_{10}$ values of 0.0890 and 0.0514 μ g/day, respectively. Use of the
- 13 multistage-Weibull model was associated with a 10–20% lower POD for these data.


14Table E-23. Summary of BMD modeling results for best-fitting multistage-15Weibull models, using time-to-tumor data for male CeH/HeJ mice exposed16dermally to benzo[a]pyrene (Sivak et al., 1997; Arthur D Little, 1989)


Endpoints	Model stages	AIC	BMD ₁₀ (μg/d)	BMDL ₁₀ -BMDU ₁₀ (µg/d)	Basis for model selection
Skin papilloma or carcinoma	1 2 3	51.9 42.9 44.3	0.0410 0.0985 0.1047	0.0600-0.1466	Lowest AIC, best fit to low dose data
Skin papilloma, keratoacanthoma or carcinoma	1 2 3	53.7 46.2 47.9	0.0391 0.0890 0.0919	0.0514-0.1303	Lowest AIC, best fit to low dose data

```
Male Mice (Sivak et al., 1997; Arthur D Little, 1989): Skin Papilloma or Carcinoma
        Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
        Solutions are obtained using donlp2-intv, (c) by P. Spellucci
        Input Data File: SivakCarPapM2.(d)
 _____
  The form of the probability function is:
  P[response] = 1-EXP\{-(t - t 0)^c *
               (beta_0+beta_1*dose^1+beta_2*dose^2)}
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
Total number of observations = 120
Total number of records with missing values = 0
 Total number of parameters in model = 5
 Total number of specified parameters = 1
 Degree of polynomial = 2
  User specifies the following parameters:
         t 0
             =
                         0
Maximum number of iterations = 64
 Relative Function Convergence has been set to: 2.22045e-016
 Parameter Convergence has been set to: 1.49012e-008
                Default Initial Parameter Values
                                   2.57143
                      С
                           =
                       t 0
                           -
                                         0
                                             Specified
                       beta 0 =
                                          0
                       beta_1 = 5.45626e-028
                       beta 2 = 3.97261e-007
          Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -t 0 -beta 0 -beta 1
               have been estimated at a boundary point, or have been specified by the user,
               and do not appear in the correlation matrix \ensuremath{)}
                           beta 2
               С
                    1
                               -1
   С
   beta 2
                   -1
                                1
                              Parameter Estimates
                                                    95.0% Wald Confidence Interval
      Variable
                      Estimate
                                     Std. Err.
                                                 Lower Conf. Limit Upper Conf. Limit
       С
                      2.75512
                                     0.94014
                                                    0.912478
                                                                           4.59776
                                  NA
                      0
        beta O
        beta_1
                            0
                                           NA
                                                 -1.33315e-006 1.5956e-006
                  1.31225e-007
                                7.47141e-007
        beta 2
\operatorname{NA} - Indicates that this parameter has hit a
    bound implied by some inequality constraint
    and thus has no standard error.
              Log(likelihood)
                               # Param
                                                  AIC
  Fitted Model
                                              42.8557
                     -17.4278
                                   4
                  Data Summary
                     CONTEXT
             С
                    F
                        Т
                                 U Total Expected Response
   DOSE
                        0
0
      0
             30
                   0
                                 0
                                       30
                                             0.00
                  0
0
                                     30
   0.014
             30
                                 0
                                             0.05
                         4
                                     30
                  0
    0.14
             26
                                0
                                            4.38
     1.4
             3
                    0
                          27
                                 0
                                     30
                                            27.72
  Benchmark Dose Computation
Risk Response = Incidental
Risk Type = Extra
Risk Type
                         Extra
Confidence level =
                          0.9
Time
               =
                            748
```

Specified effect =	= 0.1	0.01	0.001
BMD =	= 0.0984828	0.0304167	0.00959688
BMDL =	= 0.0599711	0.00728535	0.000745583
BMDU =	= 0.14663	0.0434989	0.0137323

Incidental Risk: SivakCarPapM2

8 9

10

11

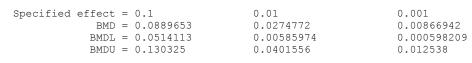
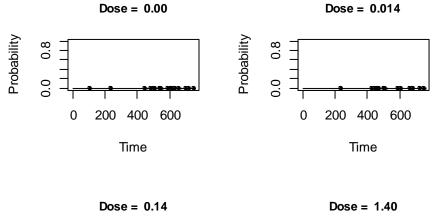
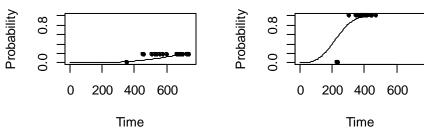

12

Figure E-22. Fit of multistage Weibull model to skin carcinomas or papilloma for male CeH/HeJ mice exposed dermally to benzo[a]pyrene (<u>Sivak et al.,</u> <u>1997</u>); BMR = 10% extra risk.


```
Male Mice (Sivak et al., 1997): Skin papilloma, Keratoacanthoma, or Carcinoma
        Multistage Weibull Model. (Version: 1.6.1; Date: 11/24/2009)
        Solutions are obtained using donlp2-intv, (c) by P. Spellucci
        Input Data File: SivakCarPapKerM2.(d)
_____
  The form of the probability function is:
  P[response] = 1-EXP\{-(t - t 0)^c *
               (beta_0+beta_1*dose^1+beta_2*dose^2)}
  The parameter betas are restricted to be positive
  Dependent variable = CONTEXT
  Independent variables = DOSE, TIME
Total number of observations = 120
Total number of records with missing values = 0
 Total number of parameters in model = 5
 Total number of specified parameters = 1
 Degree of polynomial = 2
  User specifies the following parameters:
        t 0 =
                         0
Maximum number of iterations = 64
 Relative Function Convergence has been set to: 2.22045e-016
 Parameter Convergence has been set to: 1.49012e-008
                Default Initial Parameter Values
                           =
                                        3
                      С
                       t 0
                           =
                                         0
                                             Specified
                      beta 0 = 4.46003e-033
                       beta 1 =
                                        0
                       beta^2 = 3.21731e-008
          Asymptotic Correlation Matrix of Parameter Estimates
          (*** The model parameter(s) -t 0 -beta 0 -beta 1
               have been estimated at a boundary point, or have been specified by the user,
               and do not appear in the correlation matrix \ensuremath{)}
                           beta 2
               С
   С
                    1
                               -1
   beta 2
                   -1
                                1
                              Parameter Estimates
                                                   95.0% Wald Confidence Interval
                                                Lower Conf. Limit Upper Conf. Limit
                     Estimate
                                    Std. Err.
      Variable
                                   0.91338
        С
                      2.97877
                                                       1.18857
                                                                          4.76896
                                      NA
                       0
        beta O
                            0
        beta 1
                                          NA
                                2.0366e-007
                  3.6606e-008
                                                   -3.62561e-007 4.35773e-007
        beta 2
NA - Indicates that this parameter has hit a
    bound implied by some inequality constraint
    and thus has no standard error.
              Log(likelihood)
                               # Param
                                                AIC
  Fitted Model
                     -19.076
                                             46.1521
                                 4
                  Data Summary
                   CONTEXT
                   F
             С
                        I
                                U Total Expected Response
   DOSE
            30 0
30 0
                       0
0
                                0
                                           0.00
    0
                                      30
   0.014
                               0
                                  30
                                          0.05
                  0
                               0
                                   30
30
    0.14
            25
                          5
                                            5.12
                                          27.79
     1.4
             3
                   0
                         27
                                0
  Benchmark Dose Computation
Risk Response = Incidental
Risk Type = Extra
Risk Type
                         Extra
Confidence level =
                          0.9
Time
               =
                           748
```


1

Supplemental Information—Benzo[a]pyrene

Incidental Risk: SivakCarPapKerM2

6 7

12345

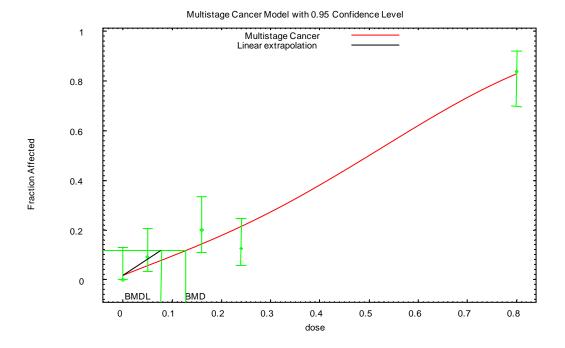
8 Figure E-23. Fit of multistage Weibull model to skin carcinomas,
9 keratoacanthoma or papilloma for male CeH/HeJ mice exposed dermally to
10 benzo[a]pyrene (Sivak et al., 1997); BMR = 10% extra risk.

Table E-24. Summary of BMD model selection and modeling results using multistage models, for multiple data sets of skin tumors in mice following lifetime dermal benzo[a]pyrene exposure

		Goodn fi		BMD ₁			
Data set	Model	<i>p</i> - value	AIC	0 (µg/d)	BMDL ₁₀ (µg/d)	Basis for model selection ^a	Figure number
<u>Poel (1959)</u> Male C57L	Multistage 1° Multistage 2° Multistage 3° Multistage 4°	0.011 0.027 0.053 0.068	191.5 188.6 186.9 186.2	0.070 0.134 0.127 0.123	0.057 0.078 0.078 0.077	No significant improvement in model fit with higher stage	E-24
<u>Roe et al. (1970)</u> Female Swiss	Multistage 1° Multistage 2° Multistage 3°	0.110 0.485 0.485	131.1 123.6 123.6	0.318 0.748 0.748	0.249 0.480 0.480	No significant improvement in model fit with higher stages	E-25
<u>Schmidt et al.</u> (<u>1973)</u> Female NMRI	Multistage 1° Multistage 2° Multistage 3°	0.008 0.609 0.999	162.7 147.4 143.9	0.256 0.329 0.381	0.194 0.287 0.326	No significant improvement in model fit with higher stages	E-26
<u>Schmidt et al.</u> (<u>1973)</u> Female Swiss	Multistage 1° Multistage 2° Multistage 3° Multistage 4°	<0.01 0.514 0.983 0.983	178.0 153.3 151.3 151.3	0.116 0.216 0.282 0.282	0.093 0.192 0.223 0.223	No significant improvement in model fit with higher stage	E-27
<u>Schmähl et al.</u> (<u>1977)</u> Female NMRI	Multistage 1° Multistage 2° Multistage 3°	0.136 0.939 0.939	298.4 296.3 296.3	0.140 0.233 0.233	0.117 0.149 0.143	No significant improvement in model fit with higher stage	E-28
<u>Habs et al.</u> (<u>1980)</u> Female NMRI	Multistage 1° Multistage 2° Multistage 3°	0.0 0.009 0.207	96.5 84.4 76.7	0.063 0.198 0.294	0.050 0.143 0.215	Only model with adequate fit	E-29
<u>Habs et al.</u> (<u>1984)</u> Female NMRI	Multistage 1° Multistage 2°	0.577 1.000	48.4 47.6	0.078 0.171	0.056 0.060	No significant improvement in model fit with higher stage	E-30
<u>Grimmer et al.</u> (<u>1983)</u> Female CFLP	Multistage 1° Multistage 2° Multistage 3°	0.850 0.972 0.972	219.9 221.1 221.1	0.245 0.292 0.292	0.208 0.213 0.213	No significant improvement in model fit with higher stages	E-31
<u>Grimmer et al.</u> (<u>1984)</u> ^b Female CFLP	Multistage 1° LogLogistic Dichotomous- Hill LogProbit Gamma, Weibull Logistic Probit	0.003 0.919 1.000 0.047 0.003 0.0 0.0	205.3 195.8 197.7 200.2 205.3 250.5 255.4	0.132 1.07 0.902 1.33 0.132 2.03 2.29	0.113 0.479 0.533 1.11 0.113 1.76 2.03	(Higher stages did not provide better fit) Lowest AIC among adequately fitting models. (Same as Multistage 1°)	E-32 E-33
	Multistage 1°, high dose dropped	0.499	_	1.21	1.01		E-34

		Goodness-of- fit		BMD1				
Data set	Model	<i>p</i> - value	AIC	0 (µg/d)	BMDL ₁₀ (µg/d)	Basis for model selection ^a	Figure number	
<u>Sivak et al.</u> (<u>1997)</u> Male CeH/HeJ	Multistage 2°	0.059 0.998 0.998	57.8 48.6 48.6	0.109		No significant improvement in model fit with higher stage	E-35	

5


6

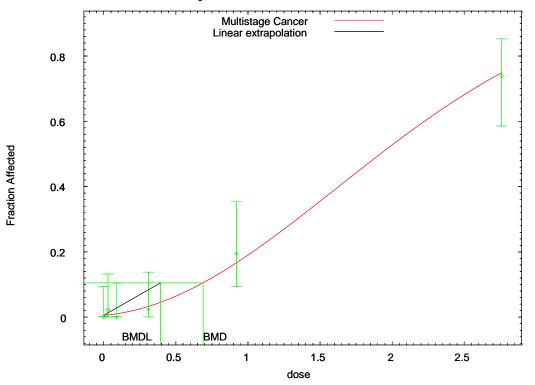
reflected in the observed data. ^bThe POD for<u>Grimmer et al. (1984)</u>, using a BMR of 70% (near response at the lowest dose), was based on the

^aAdequate fit: goodness-of-fit p > 0.05, scaled residuals <2.0, good fit near BMR, lack of extreme curvature not

LogLogistic model. For comparison purposes, the multistage model was it fit to the Grimmer et al. (1984) data

with the highest dose dropped (AIC not provided because it is not comparable to fits of the full dataset).

7


Figure E-24. Fit of multistage model to skin tumors in C57L mice exposed dermally to benzo[a]pyrene (<u>Poel, 1959</u>).

```
Total number of observations = 5
Total number of records with missing values = 0
Total number of parameters in model = 4
Total number of specified parameters = 0
Degree of polynomial = 3
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
                Default Initial Parameter Values
                   Background = 0.0449589
                     Beta(1) =
                                 0.490451
                     Beta(2) =
                                     0
                                 2.68146
                     Beta(3) =
         Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -Beta(2)
               have been estimated at a boundary point, or have been specified by the user,
               and do not appear in the correlation matrix )
           Background
                        Beta(1)
                                     Beta(3)
                1
                           -0.87
Background
                                        0.74
                            1
  Beta(1)
               -0.87
                                      -0.92
                0.74
                           -0.92
                                          1
  Beta(3)
                              Parameter Estimates
                                                    95.0% Wald Confidence Interval
     Variable
                    Estimate
                                               Lower Conf. Limit Upper Conf. Limit
                                    Std. Err.
    Background
                    0.0176699
                                     *
                                                        *
                     0.79766
                                        *
                                                        *
      Beta(1)
                                        *
                                                       *
       Beta(2)
                       0
                                                                         *
                      2.17146
      Beta(3)
* - Indicates that this value is not calculated.
                     Analysis of Deviance Table
               Log(likelihood) # Param's Deviance Test d.f. P-value
     Model
               -87.1835 5
    Full model
  Fitted model
                    -90.4265
                                          6.48606 2
108.86 4
                                                               0.03905
<.0001
                                    3
                                   1
 Reduced model
                    -141.614
                    186.853
         AIC:
                              Goodness of Fit
                                                           Scaled
   Dose Est._Prob. Expected Observed Size
                                                         Residual
  _____
  0.00000.01770.5830.00033-0.7700.05000.05633.0985.000551.1120.16000.14307.86611.000551.2070.24000.212811.9177.00056-1.6050.80000.829340.63541.000490.139
Chi^2 = 5.88 d.f. = 2 P-value = 0.0528
```

Benchmark Dose Computation

Specified effect = 0.1
Risk Type = Extra risk
Confidence level = 0.95
BMD = 0.126567
BMDL = 0.0777875
BMDU = 0.272961
Taken together, (0.0777875, 0.272961) is a 90 % two-sided confidence
interval for the BMD
Multistage Cancer Slope Factor = 1.28555

 $12345678901123456\\11213456$

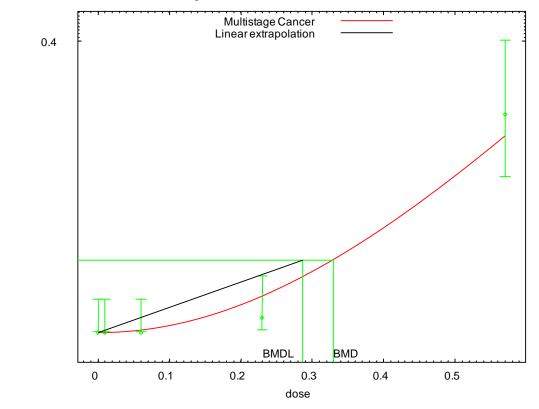
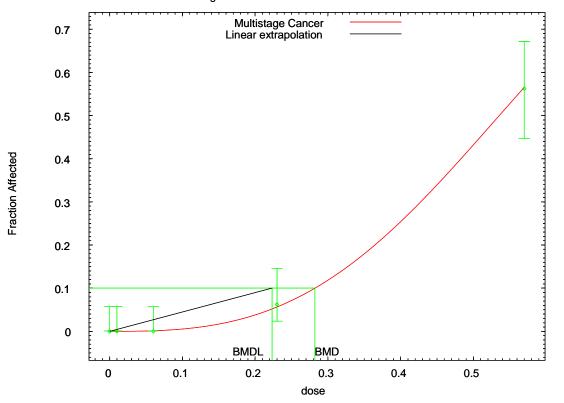

Multistage Cancer Model with 0.95 Confidence Level

Figure E-25. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (Roe et al., 1970).

```
______
        Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008)
        Input Data File: C:\Usepa\BMDS21\Data\msc_benzo[a]pyrene_Roe_1970_Setting.(d)
        Gnuplot Plotting File: C:\Usepa\BMDS21\Data\msc benzo[a]pyrene Roe 1970 Setting.plt
_____
BMDS Model Run
~~~~~~
  The form of the probability function is:
  P[response] = background + (1-background) * [1-EXP(
              -beta1*dose^1-beta2*dose^2-beta3*dose^3-beta4*dose^4-beta5*dose^5)]
  The parameter betas are restricted to be positive
  Dependent variable = tumors
  Independent variable = LADD
Total number of observations = 6
Total number of records with missing values = 0
Total number of parameters in model = 6
Total number of specified parameters = 0
Degree of polynomial = 5
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
               Default Initial Parameter Values
                  Background =
                                       0
                     Beta(1) =
                                0.0962491
```

	Bet Bet	ta(2) = ta(3) = ta(4) = ta(5) =	0.141689 0 0 0			
As	symptotic Corre	elation Matr	ix of Parame	ter Estimate	es	
(estimated a		point, or h	nave been specifi	ed by the user,
	Background	Beta(1)	Beta(2)			
Background	1	-0.57	0.45			
Beta(1)	-0.57	1	-0.94			
Beta(2)	0.45	-0.94	1			
		Param	eter Estimat	es		
				05 00		
Variak	ole Est	timate	Std. Err.		8 Wald Confidence onf. Limit Uppe	
Backgrou		584893	*	*		*
		379152	*	*		*
Beta	. ,	166839	*	*		*
Beta		0 0	*	*		*
Beta Beta		0	*	*		*
	s that this val	-	alculated.			
			viance Table			
	Log(like) del -56		aram's Devi 6	ance Test c	1.f. P-value	
Fitted mod			3 2.	77176 3	0.4282)
Reduced mod	del -118	3.948	1 12	5.529 5		
noudood mot	.01 11					
AI	IC: 123	1.139				
		Good	ness of Fi	t	Scaled	
Dose	EstProb.	Expected	Observed	Size		
0.0000	0.0058	0.275	0.000	47	-0.526	
0.0300	0.0071	0.321	1.000	45	1.204	
0.0900	0.0106	0.444	0.000	42	-0.670	
0.3100	0.0331	1.423	1.000	43	-0.361	
0.9200	0.1664 0.7488	6.821 34.444	8.000	41	0.494	
	0.7488 7 d.f. = 3			46	-0.151	
CIII 2 - 2.37	a.i	5 F-V	aiue - 0.462	0		
Benchmark	Dose Computat:	ion				
Specified eff	fect =	0.1				
Risk Type	= Ext	tra risk				
Confidence le	evel =	0.95				
	BMD = 0	.689131				
	SMDL = 0	.689131 .393806				
E	BMDU = 0					
Taken togethe interval for	er, (0.393806, the BMD	0.952365) i	sa90 %	two-sided c	confidence	

Multistage Cancer Slope Factor = 0.253932


Multistage Cancer Model with 0.95 Confidence Level

Fraction Affected

Figure E-26. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmidt et al., 1973).

```
_____
        Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008)
        Input
                                               Data
                                                                                      File:
C:\USEPA\IRIS\benzo[a]pyrene\dermalslopefactor\Schmidt1973femaleNMRI\2MulSchMS .(d)
                                              Plotting
                                                                                      File:
        Gnuplot
C:\USEPA\IRIS\benzo[a]pyrene\dermalslopefactor\Schmidt1973femaleNMRI\2MulSchMS .plt
  _____
                   _____
BMDS Model Run
  The form of the probability function is:
  P[response] = background + (1-background) * [1-EXP(
               -beta1*dose^1-beta2*dose^2)]
  The parameter betas are restricted to be positive
  Dependent variable = incidence
  Independent variable = dose
Total number of observations = 5
Total number of records with missing values = 0
Total number of parameters in model = 3
Total number of specified parameters = 0
Degree of polynomial = 2
Maximum number of iterations = 250
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
****
    We are sorry but Relative Function and Parameter Convergence
* * * *
     are currently unavailable in this model. Please keep checking
                                                                * * * *
****
                                                                 * * * *
     the web sight for model updates which will eventually
* * * *
                                                                * * * *
     incorporate these convergence criterion. Default values used.
```

Default Initial Parameter Values Background = 0 Beta(1) = 0 Beta(2) = 1.11271 Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -Background -Beta(1) have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) Beta(2) 1 Beta(2) Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit 0 Background * * * * 0 Beta(1) 0.970648 * * * Beta(2) * - Indicates that this value is not calculated. Analysis of Deviance Table Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model -70.8903 5 1 Fitted model -72.6831 3.58562 4 0.465 4 4 <.0001 Reduced model -118.917 1 96.054 AIC: 147.366 Goodness of Fit Scaled Dose Est._Prob. Expected Observed Size Residual _____ 0.00000.00000.0001000.01000.00010.0100.0001000.06000.00350.3490.0001000.23000.05015.0052.0001000.57000.270527.04830.000100 0.000 -0.099 -0.592 -1.378 0.5700 0.2705 0.665 Chi^2 = 2.70 d.f. = 4 P-value = 0.6091 Benchmark Dose Computation Specified effect = 0.1 Risk Type = Extra risk Confidence level = 0.95 0.329464 BMD = BMDL = 0.286624 BMDU = 0.384046 Taken together, (0.286624, 0.384046) is a 90 % two-sided confidence interval for the BMD Multistage Cancer Slope Factor = 0.348889

Multistage Cancer Model with 0.95 Confidence Level

Figure E-27. Fit of multistage model to skin tumors in female Swiss mice exposed dermally to benzo[a]pyrene (<u>Schmidt et al., 1973</u>).

```
______
                                               _____
        Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008)
        Input
                                                 Data
                                                                                        File:
C:\USEPA\IRIS\benzo[a]pyrene\dermalslopefactor\Schmidt1973swissmice\3MulSchMS .(d)
                                                                                        File:
        Gnuplot
                                                Plotting
C:\USEPA\IRIS\benzo[a]pyrene\dermalslopefactor\Schmidt1973swissmice\3MulSchMS .plt
BMDS Model Run
 The form of the probability function is:
  P[response] = background + (1-background) * [1-EXP(
                -beta1*dose^1-beta2*dose^2-beta3*dose^3)]
  The parameter betas are restricted to be positive
  Dependent variable = incidence
  Independent variable = dose
Total number of observations = 5
 Total number of records with missing values = 0
Total number of parameters in model = 4
Total number of specified parameters = 0
Degree of polynomial = 3
Maximum number of iterations = 250
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
* * * *
     We are sorry but Relative Function and Parameter Convergence
                                                                   * * * *
                                                                   * * * *
* * * *
     are currently unavailable in this model. Please keep checking
****
     the web sight for model updates which will eventually
                                                                   * * * *
* * * *
     incorporate these convergence criterion. Default values used.
                                                                   * * * *
```

This document is a draft for review purposes only and does not constitute Agency policy.

DRAFT-DO NOT CITE OR QUOTE

```
Default Initial Parameter Values
                  Background =
                                 0
                     Beta(1) =
                                        0
                     Beta(2) =
                                  0.338951
                     Beta(3) =
                                  3.8728
         Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -Background
                                                 -Beta(1)
               have been estimated at a boundary point, or have been specified by the user,
               and do not appear in the correlation matrix )
                     Beta(3)
              Beta(2)
               1
  Beta(2)
                          -0.99
              -0.99
  Beta(3)
                              1
                             Parameter Estimates
                                                  95.0% Wald Confidence Interval
     Variable
                     Estimate
                                   Std. Err.
                                             Lower Conf. Limit Upper Conf. Limit
                                    *
    Background
                     0
                                       *
     Beta(1)
                           0
                                                      *
                     0.108125
                                       *
                                                      *
       Beta(2)
       Beta(3)
                     4.31441
                                                       *
* - Indicates that this value is not calculated.
                     Analysis of Deviance Table
               Log(likelihood) # Param's Deviance Test d.f. P-value
     Model
                -73.5285
                              5
    Full model
                                                  3
4
  Fitted model
                    -73.6628
                                   2
                                         0.268637
                                                               0.9658
 Reduced model
                    -150.708
                                   1
                                          154.359
                                                              <.0001
                    151.326
         ATC:
                            Goodness of Fit
                                                         Scaled
   Dose Est._Prob. Expected Observed Size
                                                       Residual
 _____
  0.00000.00000.0000.000800.01000.00000.0010.000800.06000.00130.1060.000800.23000.05664.5245.000800.57000.565745.26045.00080
                                                        0.000
                                                        -0.035
  0.0600
                                                        -0.325
                                                         0.230
                                                        -0.059
Chi^2 = 0.16 d.f. = 3 P-value = 0.9833
  Benchmark Dose Computation
Specified effect =
                         0.1
Risk Type
           = Extra risk
Confidence level =
                         0.95
                    0.282007
           BMD =
          BMDT =
                     0.223401
          BMDU =
                      0.309888
Taken together, (0.223401, 0.309888) is a 90 % two-sided confidence
interval for the BMD
                                0.447626
Multistage Cancer Slope Factor =
```

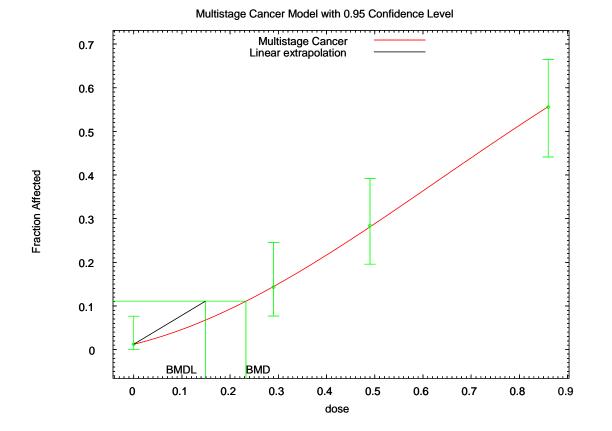
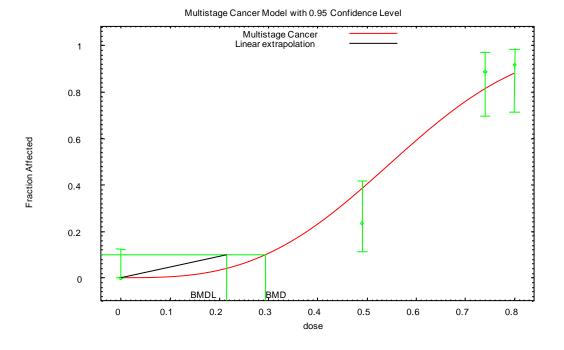



Figure E-28. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (Schmähl et al., 1977).

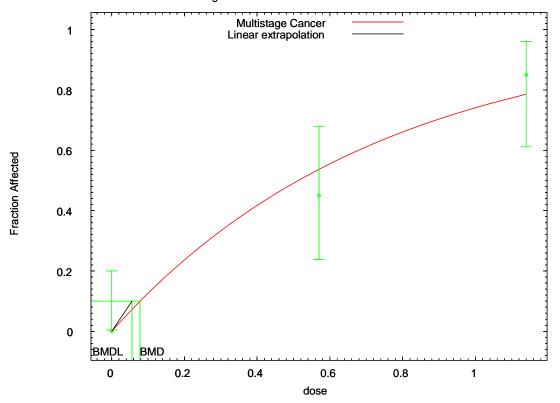
```
_____
        Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008)
        Input
                                                Data
                                                                                       File:
C:\USEPA\IRIS\benzo[a]pyrene\dermalslopefactor\Schmahl1977femaleNMRI\2MulschMS .(d)
                                                                                       File:
        Gnuplot
                                               Plotting
C:\USEPA\IRIS\benzo[a]pyrene\dermalslopefactor\Schmahl1977femaleNMRI\2MulschMS .plt
BMDS Model Run
                        The form of the probability function is:
  P[response] = background + (1-background) * [1-EXP(
               -beta1*dose^1-beta2*dose^2)]
  The parameter betas are restricted to be positive
  Dependent variable = incidence
  Independent variable = dose
 Total number of observations = 4
Total number of records with missing values = 0
Total number of parameters in model = 3
Total number of specified parameters = 0
Degree of polynomial = 2
Maximum number of iterations = 250
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
* * * *
     We are sorry but Relative Function and Parameter Convergence
                                                                  * * * *
****
     are currently unavailable in this model. Please keep checking
                                                                  * * * *
```

Supplemental Information-Benzo[a]pyrene

* * * * the web sight for model updates which will eventually * * * * **** incorporate these convergence criterion. Default values used. **** Default Initial Parameter Values Background = 0.0115034 Beta(1) = 0.284955 Beta(2) =0.750235 Asymptotic Correlation Matrix of Parameter Estimates Background Beta(1) Beta(2) Background 1 -0.67 0.47 Beta(1) -0.67 1 -0.94 Beta(2) 0.47 -0.94 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit 0.0123066 Background * 0.274413 Beta(1) Beta(2) 0.764244 * * * * - Indicates that this value is not calculated. Analysis of Deviance Table Model Log(likelihood) # Param's Deviance Test d.f. P-value -145.127 4 Full model Fitted model -145.13 3 0.00579898 1 0.9393 3 Reduced model -184.158 1 78.0608 <.0001 AIC: 296.261 Goodness of Fit Scaled Dose Est._Prob. Expected Observed Size Residual _____ 0.0000 0.0123 0.997 1.000 81 0.2900 0.1446 11.137 11.000 77 0.003 11.137 11.000 77 0.2900 0.1446 -0.045 0.4900 0.2813 24.756 25.000 88 0.058 45.096 45.000 0.8600 0.5567 81 -0.022 Chi^2 = 0.01 d.f. = 1 P-value = 0.9393 Benchmark Dose Computation Specified effect = 0.1 Risk Type = Extra risk Confidence level = 0.95 BMD = 0.232893 BMDT = 0.148895 BMDU = 0.320396 Taken together, (0.148895, 0.320396) is a 90 % two-sided confidence interval for the BMD Multistage Cancer Slope Factor = 0.671616

Figure E-29. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (<u>Habs et al., 1980</u>).

Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008) Input Data File: M:_BMDS\msc_BAP_HABS1980_MultiCanc3_0.1.(d) Gnuplot Plotting File: M:_BMDS\msc_BAP_HABS1980_MultiCanc3_0.1.plt



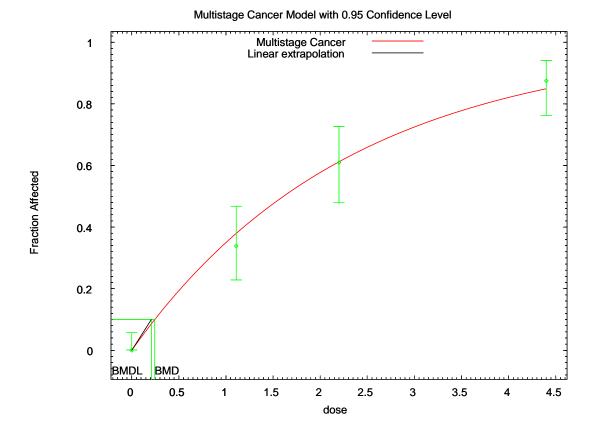
BMDS Model Run

```
The form of the probability function is:
  P[response] = background + (1-background) * [1-EXP(
                -beta1*dose^1-beta2*dose^2-beta3*dose^3)]
  The parameter betas are restricted to be positive
  Dependent variable = NumAff
  Independent variable = LADD
Total number of observations = 4
Total number of records with missing values = 0
Total number of parameters in model = 4
Total number of specified parameters = 0
Degree of polynomial = 3
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
                 Default Initial Parameter Values
                    Background =
                                             0
                       Beta(1) =
                                             0
                       Beta(2) =
                                      4.23649
                       Beta(3) =
                                             0
```

Supplemental Information-Benzo[a]pyrene

	ototic Correlation * The model paramet have been estimat and do not appear	er(s) -Backo ed at a bound	ground -Be dary point, c	eta(1) -Be or have been	eta(2) specified by the user,
	Beta(3)				
Beta(3)	1				
	E	Parameter Est:	imates		
Background Beta(1) Beta(2)	0 0	* *	rr. Lower	Conf. Limit	nfidence Interval Upper Conf. Limit * * * *
* - Indicates t	hat this value is r	not calculated	d.		
	Analysis c	of Deviance Ta	able		
Model Full model	Log(likelihood) -34.8527	# Param's 1 4	Deviance Tes	st d.f. P-v	value
Fitted model Reduced model	-34.8527 -37.3373 -82.5767	1 1	4.96903 95.4478	3 3	0.1741 <.0001
AIC:	76.6745				
		Goodness of	Fit		
Dose E	stProb. Expect	ed Observe	ed Size	Scaleo Residua	al
0.0000 0.4900 0.7400 0.8000	0.0000 0.00 0.3848 13.08 0.8123 21.93 0.8792 21.10 d.f. = 3	00 0.000 32 8.000 33 24.000 02 22.000	35 34 27 24		
0		1 101100 0	2007		
Benchmark Do	se Computation				
Specified effec	t = 0.1				
Risk Type	= Extra risk	2			
	1 = 0.95				
	D = 0.294407				
	L = 0.215151 U = 0.320955				
	(0.215151, 0.32095	5) is a 90	% two-side	d confidence	2
Multistage Cance	er Slope Factor =	0.46479			

Multistage Cancer Model with 0.95 Confidence Level


Figure E-30. Fit of multistage model to skin tumors in female NMRI mice exposed dermally to benzo[a]pyrene (<u>Habs et al., 1984</u>).

```
Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008)
Input Data File: C:\Usepa\BMDS21\mscDax_Setting.(d)
Gnuplot Plotting File: C:\Usepa\BMDS21\mscDax_Setting.plt
```

```
BMDS Model Run
```

```
Default Initial Parameter Values
                  Background = 0
                    Beta(1) =
                                 1.66414
         Asymptotic Correlation Matrix of Parameter Estimates
         ( *** The model parameter(s) -Background
              have been estimated at a boundary point, or have been specified by the user,
              and do not appear in the correlation matrix )
              Beta(1)
  Beta(1)
                 1
                            Parameter Estimates
                                                95.0% Wald Confidence Interval
     Variable
                    Estimate
                                  Std. Err.
                                              Lower Conf. Limit Upper Conf. Limit
                                   *
    Background
                         0
                                      *
      Beta(1)
                     1.35264
* - Indicates that this value is not calculated.
                    Analysis of Deviance Table
     Model
               Log(likelihood) # Param's Deviance Test d.f. P-value
    Full model
                 -22.217
                                3
  Fitted model
                    -22.7878
                                  1
                                         1.14175
                                                    2
                                                              0.565
                                                   2
                                                           <.0001
                   -41.0539
                                  1
                                         37.6739
 Reduced model
         AIC:
                    47.5757
                             Goodness of Fit
                                                        Scaled
           Est._Prob. Expected Observed
   Dose
                                                      Residual
                                            Size
  _____
            _____
          0.0000
   0.0000
                         0.000
                                0.000 20
9.000 20
                                                       0.000
   0.5700
            0.5375
                         10.749
                                                       -0.784
                     15.721 17.000
   1.1400
          0.7860
                                              20
                                                       0.697
Chi^{2} = 1.10
              d.f. = 2 P-value = 0.5765
 Benchmark Dose Computation
Specified effect =
                        0.1
Risk Type
         =
                    Extra risk
Confidence level =
                         0.95
           BMD =
                   0.0778926
                    0.0558466
          BMDL =
          BMDU =
                    0.111853
Taken together, (0.0558466, 0.111853) is a 90 % two-sided confidence
interval for the BMD
Multistage Cancer Slope Factor = 1.79062
```


1 2 3 4567890123456789012345678901234567

Figure E-31. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1983).

```
_____
        Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008)
        Input
                                               Data
                                                                                     File:
C:\USEPA\IRIS\benzo[a]pyrene\dermalslopefactor\Grimmer1983CFLPmice\1MulGriMS .(d)
                                                                                     File:
        Gnuplot
                                              Plotting
C:\USEPA\IRIS\benzo[a]pyrene\dermalslopefactor\Grimmer1983CFLPmice\1MulGriMS .plt
BMDS Model Run
The form of the probability function is:
  P[response] = background + (1-background) * [1-EXP(
               -beta1*dose^1)]
  The parameter betas are restricted to be positive
  Dependent variable = incidence
  Independent variable = dose
 Total number of observations = 4
Total number of records with missing values = 0
Total number of parameters in model = 2
Total number of specified parameters = 0
Degree of polynomial = 1
Maximum number of iterations = 250
Relative Function Convergence has been set to: 2.22045e-016
Parameter Convergence has been set to: 1.49012e-008
* * * *
     We are sorry but Relative Function and Parameter Convergence
                                                                * * * *
* * * *
     are currently unavailable in this model. Please keep checking
                                                                * * * *
```

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

E-102

Supplemental Information-Benzo[a]pyrene

```
**** the web sight for model updates which will eventually
                                                             * * * *
**** incorporate these convergence criterion. Default values used. ****
               Default Initial Parameter Values
                  Background = 0
                    Beta(1) =
                                 0.478645
         Asymptotic Correlation Matrix of Parameter Estimates
         ( *** The model parameter(s) \ \ \mbox{-Background}
              have been estimated at a boundary point, or have been specified by the user,
              and do not appear in the correlation matrix )
             Beta(1)
            1
  Beta(1)
                            Parameter Estimates
                                                95.0% Wald Confidence Interval
     Variable
                    Estimate
                                  Std. Err.
                                             Lower Conf. Limit Upper Conf. Limit
                                   *
    Background
                        0
                                                     *
                    0.430366
                                                     *
                                                                      *
      Beta(1)
* - Indicates that this value is not calculated.
                    Analysis of Deviance Table
     Model
               Log(likelihood) # Param's Deviance Test d.f. P-value
    Full model
                -108.532 4
  Fitted model
                    -108.943
                                  1
                                        0.823537
                                                     3
                                                              0.8438
                                                   3
 Reduced model
                   -186.434
                                  1
                                        155.805
                                                              <.0001
         AIC:
                   219.887
                             Goodness of Fit
                                                        Scaled
   Dose Est._Prob. Expected Observed Size
                                                      Residual
 _____
                        0.000 0.000 80
24.687 22.000 65
   0.0000 0.0000 0.000
1.1100 0.3798 24.687
                                                   -0.000
-0.687
   2.2000 0.6120
                        39.169 39.000
                                                      -0.043
                                              64
                        54.366 56.000
   4.4000 0.8495
                                                       0.571
                                              64
Chi^2 = 0.80 d.f. = 3 P-value = 0.8496
  Benchmark Dose Computation
Specified effect =
                         0.1
Risk Type
           =
                   Extra risk
Confidence level =
                        0.95
          BMD =
                     0.244816
          BMDL =
                     0.208269
          BMDU =
                    0.289606
Taken together, (0.208269, 0.289606) is a 90 % two-sided confidence
interval for the BMD
Multistage Cancer Slope Factor = 0.480148
```

Multistage Cancer Model with 0.95 Confidence Level Multistage Cancer 1 Linear extrapolation 0.8 0.6 Fraction Affected 0.4 0.2 0 BEMD 0 0.5 1.5 2 2.5 3 3.5 1 dose Figure E-32. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (Grimmer et al., 1984).

```
Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008)
         Input Data File: C:\Usepa\BMDS21\Data\msc_benzo[a]pyrene_Grimmer1984_MultiCanc1_0.1.(d)
         Gnuplot
                                                 Plotting
                                                                                         File:
C:\Usepa\BMDS21\Data\msc_benzo[a]pyrene_Grimmer1984_MultiCanc1_0.1.plt
                                                   Wed Apr 27 17:11:28 2011
 [add notes here]
 The form of the probability function is:
  P[response] = background + (1-background)*[1-EXP(
                -beta1*dose^1)]
  The parameter betas are restricted to be positive
  Dependent variable = NumAff
  Independent variable = LADD
Total number of observations = 4
Total number of records with missing values = 0
Total number of parameters in model = 2
Total number of specified parameters = 0
Degree of polynomial = 1
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
                 Default Initial Parameter Values
                    Background =
                                    0.311241
                       Beta(1) =
                                    0.502556
          Asymptotic Correlation Matrix of Parameter Estimates
```

This document is a draft for review purposes only and does not constitute Agency policy.E-104DRAFT—DO NOT CITE OR QUOTE

<pre>(*** The model parameter(s) -Background have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)</pre>						
	Beta(1)					
Beta(1)	1					
		Para	meter Estim	ates		
						fidence Interval
Variab Backgrou		stimate 0	Std. Err *	. Lower	r Conf. Limit *	Upper Conf. Limit *
	(1) O.	-	*		*	*
 * - Indicates 	that this va	alue is not o	calculated.			
	Ar	alysis of De	eviance Tab	le		
Model	Log(like	alihood) # 1	Param's De	viance Tes	std.f. P-v	alue
	lel -95	5.8385	4			
Fitted mod	lel -1(01.643 75.237	1	11.61	3 0	.008846
Reduced mod	let -1,	15.237	T	158./9/	3	<.0001
AI	C: 20)5.287				
		Good	dness of	Fi+		
		6000		110	Scaled	
	EstProb.					
0.9700	0.0000 0.5382	0.000 34.446	43.000	65 64	0.000 2.145	
	0.7816	50.804 62.091	53.000	65	0.659 -3.054	
3.9000	0.9552	62.091	57.000	65	-3.054	
Chi^2 = 14.3	6 d.f. =	3 P-1	value = 0.0	025		
Benchmark	Dose Computat	ion				
Specified eff	ect =	0.1				
Risk Type	= E2	tra risk				
Confidence le	vel =	0.95				
	BMD = 0	.132272				
E	MDL = (0.113427				
E	MDU = (0.154848				
Taken togethe interval for		0.154848)	is a 90	<pre>% two-side</pre>	ed confidence	
Multistage Ca	ncer Slope Fa	actor =	0.881621			

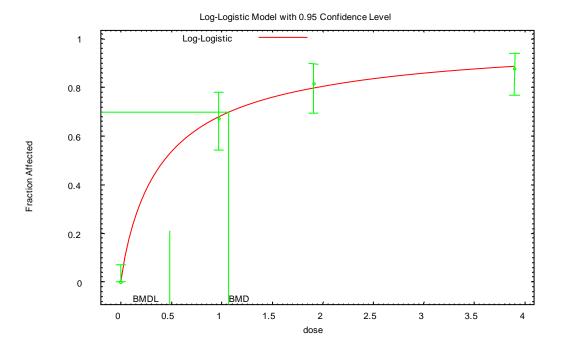


Figure E-33. Fit of log-logistic model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (<u>Grimmer et al., 1984</u>).

```
Logistic Model. (Version: 2.12; Date: 05/16/2008)
        Input
                                                                                         File:
                                                 Data
C:\Usepa\BMDS21\Data\lnl_benzo[a]pyrene_Grimmer1984_Grimmer1984_0.70u.(d)
        Gnuplot
                                                Plotting
                                                                                         File:
C:\Usepa\BMDS21\Data\lnl benzo[a]pyrene Grimmer1984 Grimmer1984 0.70u.plt
                                            _____
BMDS Model Run
               The form of the probability function is:
  P[response] = background+(1-background)/[1+EXP(-intercept-slope*Log(dose))]
  Dependent variable = NumAff
  Independent variable = LADD
  Slope parameter is not restricted
  Total number of observations = 4
  Total number of records with missing values = 0
  Maximum number of iterations = 250
  Relative Function Convergence has been set to: 1e-008
  Parameter Convergence has been set to: 1e-008
  User has chosen the log transformed model
                 Default Initial Parameter Values
                    background =
                                           0
                     intercept =
                                    0.799142
                                    0.894129
                        slope =
          Asymptotic Correlation Matrix of Parameter Estimates
          ( *** The model parameter(s) -background
```

1

This document is a draft for review purposes only and does not constitute Agency policy. E-106 DRAFT—DO NOT CITE OR QUOTE have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix $\)$

	intercept	slope
intercept	1	-0.68
slope	-0.68	1

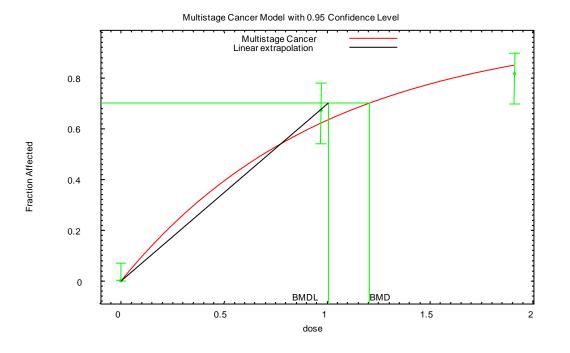
Parameter Estimates

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
background	0	*	*	*
intercept	0.783559	*	*	*
slope	0.922655	*	*	*

* - Indicates that this value is not calculated.

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-95.8385	4			
Fitted model	-95.9236	2	0.17031	2	0.9184
Reduced model	-175.237	1	158.797	3	<.0001


AIC: 195.847

		Good	dness of Fit	_	
Dose	EstProb.	Expected	Observed	Size	Scaled Residual
0.0000 0.9700 1.9100 3.9000	0.0000 0.6804 0.7991 0.8849	0.000 43.543 51.941 57.516	0.000 43.000 53.000 57.000	65 64 65 65	0.000 -0.146 0.328 -0.200

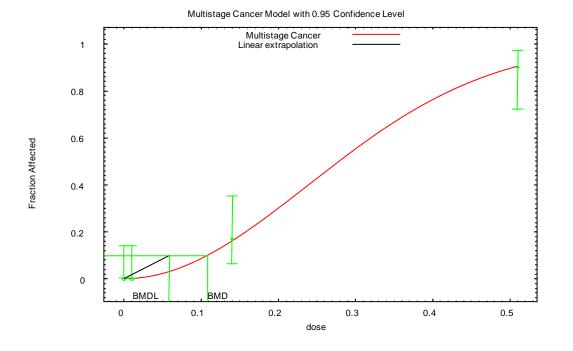
Chi^2 = 0.17 d.f. = 2 P-value = 0.9190

Benchmark Dose Computation

Specified effect	=	0.7
Risk Type	=	Extra risk
Confidence level	=	0.95
BMD	=	1.07152
BMDL	=	0.478669

1

Figure E-34. Fit of multistage model to skin tumors in female CFLP mice exposed dermally to benzo[a]pyrene (<u>Grimmer et al., 1984</u>), highest dose dropped.


```
Multistage Cancer Model. (Version: 1.9; Date: 05/26/2010)
       Input Data File: C:/Usepa/ BaP/msc BaP Grimmer1984 drophidose MultiCanc1 0.7.(d)
       Gnuplot Plotting File: C:/Usepa/_BaP/msc_BaP_Grimmer1984_drophidose_MultiCanc1_0.7.plt
_ _ _ _ _ _
[add notes here]
                  The form of the probability function is:
 P[response] = background + (1-background)*[1-EXP(
              -beta1*dose^1)]
 The parameter betas are restricted to be positive
 Dependent variable = NumAff
 Independent variable = LADD
Total number of observations = 3
Total number of records with missing values = 0
Total number of parameters in model = 2
Total number of specified parameters = 0
Degree of polynomial = 1
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
               Default Initial Parameter Values
                  Background =
                                0.0806622
                    Beta(1) =
                                  0.88595
```

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -Background have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) Beta(1) Beta(1) 1 Parameter Estimates 95.0% Wald Confidence Interval Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit 0 * * * * 0.997117 * * * Variable Background Beta(1) * - Indicates that this value is not calculated. Analysis of Deviance Table Log(likelihood) # Param's Deviance Test d.f. P-value Model Full model -71.5928 3 Fitted model -72.2756 1 Reduced model -134.46 1 1.36568 2 0.5052 125.735 2 <.0001 0.5052 Reduced model 1 AIC: 146.551 Goodness of Fit Scaled Dose Est._Prob. Expected Observed Size Residual 0.0000 0.0000 0.000 0.000 65 0.000 0.9700 0.6199 39.671 43.000 64 0.857 1.9100 0.8511 55.322 53.000 65 -0.809 d.f. = 2 P-value = 0.4992 $Chi^{2} = 1.39$ Benchmark Dose Computation Specified effect = 0.7 = Extra risk Risk Type 0.95 Confidence level = BMD = 1.20745

Supplemental Information-Benzo[a]pyrene

BMDL = 1.00734 BMDU = 1.45789 Taken together, (1.00734, 1.45789) is a 90 % two-sided confidence interval for the BMD Multistage Cancer Slope Factor = 0.6949

Figure E-35. Fit of multistage model to skin tumors in male CeH/HeJ mice exposed dermally to benzo[a]pyrene (<u>Sivak et al., 1997</u>).

```
Multistage Cancer Model. (Version: 1.7; Date: 05/16/2008)
         Input Data File: C:\Usepa\BMDS21\Data\msc benzo[a]pyrene Sivak1993 MultiCanc2 0.1.(d)
         Gnuplot
                                                 Plotting
                                                                                          File:
C:\Usepa\BMDS21\Data\msc_benzo[a]pyrene_Sivak1993_MultiCanc2_0.1.plt
 _____
 [add notes here]
  The form of the probability function is:
  P[response] = background + (1-background) * [1-EXP(
                -beta1*dose^1-beta2*dose^2)]
  The parameter betas are restricted to be positive
  Dependent variable = NumAff
  Independent variable = LADD
Total number of observations = 4
Total number of records with missing values = 0
Total number of parameters in model = 3
Total number of specified parameters = 0
Degree of polynomial = 2
Maximum number of iterations = 250
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
                 Default Initial Parameter Values
                    Background =
                                           0
                       Beta(1) =
                                    0.0936505
                       Beta(2) =
                                     8.67239
```

Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -Background -Beta(1) have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix $\ensuremath{)}$ Beta(2) Beta(2) 1 Parameter Estimates 95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit 0 * Background * * * * Beta(1) 0 8.9375 * * * Beta(2) * - Indicates that this value is not calculated. Analysis of Deviance Table Log(likelihood) # Param's Deviance Test d.f. P-value Model Full model -23.2693 4 Fitted model -23.3009 0.0631003 3 0.9959 1 3 3 <.0001 Reduced model -69.5898 1 92.641 48.6018 AIC: Goodness of Fit Scaled Est. Prob. Expected Observed Dose Size Residual _____ _____ -------0.0000 0.0000 0.000 0.000 30 0.000 0.0270.00030-0.1644.8215.000300.08927.06527.00030-0.040 0.0100 0.0009 0.1400 0.1607 0.5100 0.9022 Chi^2 = 0.04 d.f. = 3 P-value = 0.9982 Benchmark Dose Computation Specified effect = 0.1 Extra risk Risk Type = Confidence level = 0.95 0.108575 BMD = BMDT, = 0.058484 BMDU = 0.129641 Taken together, (0.058484, 0.129641) is a 90 % two-sided confidence interval for the BMD Multistage Cancer Slope Factor = 1.70987

1	Alternative Approaches for Cross-Species Scaling of the Dermal Slope Factor
2	Several publications that develop a dermal slope factor for benzo[a]pyrene are available in
3	the peer-reviewed literature (<u>Knafla et al., 2011</u> ; <u>Knafla et al., 2006; Hussain et al., 1998; Lagoy and</u>
4	Quirk, 1994; Sullivan et al., 1991). With the exception of Knafla et al. (2011), none of these
5	approaches applied quantitative adjustments to account for interspecies differences, although the
6	proposed slope factors were developed to account for human risk. Knafla et al. (2011) qualitatively
7	discuss processes that could affect the extrapolation between mice and humans, including skin
8	metabolic activity adduct formation, stratum corneum thickness, epidermal thickness, etc.
9	Ultimately, the authors apply an adjustment based on the increased epidermal thickness of human
10	skin on the arms and hands compared to mouse interscapular epidermal thickness. They
11	hypothesize that the carcinogenic potential of benzo[a]pyrene may be related to the thickness of
12	the epidermal layer.
13	Because there is no established methodology for cross-species extrapolation of dermal
14	toxicity, several alternative approaches were evaluated. Each approach begins with the POD of
15	0.066 μ g/day that was based on a 10% extra risk for skin tumors in male mice. Based on the
16	assumptions of each approach, a dermal slope factor for humans is calculated. The discussion of
17	these approaches uses the following abbreviations:
18	
19	DSF = dermal slope factor
20	POD_M = point of departure (for 10% extra risk) from mouse bioassay, in µg/day
21	BW $_{M}$ = mouse body weight = 0.035 kg (assumed)
22	BW_{H} = human body weight = 70 kg (assumed)
23	SA_{H} = total human surface area = 19,000 cm ² (assumed)
24	SA_M = total mouse surface area = 100 cm ² (assumed)
25	Approach 1. No Interspecies Adjustment to Daily Applied Dose (POD) in Mouse Model
26	Under this approach, a given mass of benzo[a]pyrene, applied daily, would pose the same
27	risk in an animal or in humans, regardless of whether it is applied to a small surface area or to a
28	larger surface area at a proportionately lower concentration.
29	
30	$DSF = 0.1/POD_M$
31	DSF = $0.1/0.060 \ \mu g/day = 1.7 \ (\mu g/day)^{-1}$
32	
33	Assumptions: The same mass of benzo[a]pyrene, applied daily, would have same potency in
34	mice as in human skin regardless of treatment area.
35	Approach 2. Cross-Species Adjustment Based on Whole-Body Surface-Area Scaling
36	Under this approach, animals and humans are assumed to have equal lifetime cancer risk
37	with equal average whole-body exposures in loading units (μ g/cm ² -day). As long as doses are low

Supplemental Information—Benzo[a]pyrene

1	enough that risk is proportional to the mass of applied compound, the daily dermal dose of
2	benzo[a]pyrene can be normalized over the total surface area.
3 4	POD (μ g/cm ² -day) = POD _{M/SA} (μ g/cm ² -day) = POD _M (μ g/day) / SA _M (cm ²)
5	$POD = (0.060 \ \mu g/day) / 100 \ cm^2 = 0.00060 \ \mu g/cm^2 - day$
6	DSF = $0.1/(0.00060 \mu\text{g/cm}^2\text{-day}) \approx 170 (\mu\text{g/cm}^2\text{-day})^{-1}$
7	
8	Assumptions: Mouse and human slope factors are equipotent if total dermal dose is
9	averaged over equal fractions of the entire surface area. Tumor potency of benzo[a]pyrene is
10	assumed to be related to overall dose and not dose per unit area. For example, a human exposed to
11	$0.01 \mu\text{g}/\text{day}$ on 10cm^2 would be assumed to have the same potential to form a skin tumor as
12	someone treated with 0.01 μ g/day over 19,000 cm ² (assumed human surface area).
13	Approach 3. Cross-Species Adjustment Based on Body Weight
14	Under this approach, a given mass of benzo[a]pyrene is normalized relative to the body
15	weight of the animal or human.
16	
17	$POD_M / BW_M = 0.060 \ \mu g / 0.035 \ kg - day = 1.7 \ \mu g / kg - day$
18	DSF = $0.1/1.7 \mu g/kg$ -day = $0.058 (\mu g/kg$ -day) ⁻¹
19 20	Assumptions. The notes as of noist of contest align turners is valated to be drawsight and
20 21	<i>Assumptions</i> : The potency of point of contact skin tumors is related to body weight, and humans and mice would have an equal likelihood of developing skin tumors based on a dermal dose
21	per kg basis.
22	
24	<i>Issues</i> : Skin cancer following benzo[a]pyrene exposure is a local effect and not likely
25	dependent on body weight.
26	Approach 4. Cross-Species Adjustment Based on Allometric Scaling Using Body Weight to the
27	3/4 Power
28	Under this approach, rodents and humans exposed to the same daily dose of a carcinogen,
29	adjusted for BW ^{3/4} , would be expected to have equal lifetime risks of cancer. That is, a lifetime dose
30	expressed as $\mu g/kg^{3/4}$ -day would lead to an equal risk in rodents and humans. This scaling reflects
31	the empirically observed phenomena of more rapid distribution, metabolism, and clearance in
32	smaller animals. The metabolism of benzo[a]pyrene to reactive intermediates is a critical step in
33	the carcinogenicity of benzo[a]pyrene, and this metabolism occurs in the skin.
34	
25	$POD(ug/day) = POD_{M}(ug/day) \times (BW_{W}/BW_{M})^{3/4}$
35 36	POD (μ g/day) = POD _M (μ g/day) × (BW _H / BW _M) ^{3/4} POD (μ g/day) = 0.060 µg/day × (70 kg / 0.035 kg) ^{3/4} = 17.9 µg/day
36	POD (μ g/day) = 0.060 μ g/day × (70 kg / 0.035 kg) ^{3/4} = 17.9 μ g/day
36 37	
36	POD (μ g/day) = 0.060 μ g/day × (70 kg / 0.035 kg) ^{3/4} = 17.9 μ g/day DSF = 0.1/(17.9 μ g/day) ≈ 0.0056 (μg/day) ⁻¹
36 37 38	POD (μ g/day) = 0.060 μ g/day × (70 kg / 0.035 kg) ^{3/4} = 17.9 μ g/day

- contacting a smaller area of exposed skin could carry the same risk of skin tumors as a lower
 exposure concentration of benzo[a]pyrene that contacts a larger area of skin.
- 3

4 *Issues:* It is unclear if scaling of doses based on body weight ratios will correspond to 5 differences in metabolic processes in the skin of mice and humans.

6 Synthesis of the Alternative Approaches to Cross-Species Scaling

A comparison of the above approaches is provided in Table E-25. The lifetime risk from a
nominal human dermal exposure to benzo[a]pyrene over a 5% area of exposed skin (approximately
950 cm²), estimated at 1 × 10⁻⁴ µg/day, is calculated for each of the approaches in order to judge

10 whether the method yields risk estimates that are unrealistically high.

11 Other Potential Interspecies Adjustments

12 The above discussion presents several mathematical approaches that result from varying 13 assumptions about what is the relevant dose metric for determining equivalence across species. 14 Biological information (that is not presently comprehensive or detailed enough to develop robust 15 models) that could be used in future biologically based models for cross-species extrapolation

- 16 include:
- a. Quantitative information on interspecies differences in partitioning from exposure mediumto the skin and absorption through the skin
- 19 b. Thickness of the stratum corneum between anatomical sites and between species
- 20 c. Thickness of epidermal layer
- 21 d. Skin permeability
- e. Metabolic activity of skin
- 23 f. Formation of DNA adducts in skin

Table E-25. Alternative approaches to cross-species scaling

Approach	Assumptions	Dose metric	Dermal slope factor	Risk at nominal exposure (0.0004 μg/day)ª
1. Mass-per- day scaling (no adjustment)	Equal mass per day (μ g/d), if applied to equal areas of skin (cm ²), will affect similar numbers of cells across species. Cancer risk is proportional to the area (cm ²) exposed if the loading rate (μ g/cm ² -d) is the same. This approach assumes that risk is proportional to dose expressed as mass per day. This approach implies that any combination of loading rate (μ g/cm ² -day) and skin area exposed (cm ²) that have the same product when multiplied will result in the same risk.	μg/day	1.7 per μg/d	7 × 10 ⁻⁴
2. Surface- area scaling	Equal mass per day (μ g/d), if applied to <u>equal fractions</u> of total skin surface (cm ²) will have similar cancer risks. That is, lifetime exposure normalized over the whole body (e.g., 5%-of-the-body lifetime exposure) at the same loading rate (μ g/cm ² -d) gives similar cancer risks across species. This approach assumes that risk is proportional to dose expressed as mass per area per day. This approach implies that risk does not increase with area exposed as long as dose per area remains constant.	µg/cm²-day	170 per μg/cm ² -d	4 × 10 ⁻⁶
3. Body- weight scaling	The skin is an organ with thickness and volume; benzo[a]pyrene is distributed within this volume of skin. Cancer risk is proportional to the concentration of benzo[a]pyrene in the exposed volume of skin. Equal mass per day (μ g/d), if distributed within equal fractions of total body skin will have similar cancer risks. That is, whole-body lifetime exposure (e.g., 5%-of-the-body lifetime exposure) at the same loading rate (μ g/cm ² -d) gives similar cancer risks across species. This approach assumes that risk is proportional to dose expressed as mass per kg body weight per day. This approach implies that any combination of dose (μ g/d) and body weight (kg) that have the same result when divided will result in the same risk.	μg/kg-day	0.058 per μg/kg-d	3 × 10 ⁻⁷
4. Allometric scaling (BW ^{3/4})	Same as for body-weight scaling, except that benzo[a]pyrene distribution and <u>metabolism</u> takes place within this volume of skin. Allometric scaling is generally regarded as describing the relative rate of toxicokinetic processes across species. This approach also is used by EPA to scale oral exposures.	µg/day	0.0056 per μg/d	2 × 10 ⁻⁶

^aCalculated as a central tendency exposure using an average benzo[a]pyrene soil concentration of 100 ppb, rounded to one significant figure (see Appendix A, Table A-4) and standard exposure assumptions from U.S. EPA (2004).

This document is a draft for review purposes only and does not constitute Agency policy.

APPENDIX F. DOCUMENTATION OF IMPLEMENTATION OF THE 2011 NATIONAL RESEARCH COUNCIL RECOMMENDATIONS

5	Background: On December 23, 2011, The Consolidated Appropriations Act, 2012, was
6	signed into law ³ . The report language included direction to the U.S. Environmental Protection
7	Agency (EPA) for the Integrated Risk Information System (IRIS) Program related to
8	recommendations provided by the National Research Council (NRC) in their review of EPA's draft
9	IRIS assessment of formaldehyde ⁴ . The report language included the following:
10	
11	The Agency shall incorporate, as appropriate, based on chemical-specific datasets
12	and biological effects, the recommendations of Chapter 7 of the National Research
13 14	Council's Review of the Environmental Protection Agency's Draft IRIS Assessment of Formaldehyde into the IRIS process For draft assessments released in fiscal year
15	2012, the Agency shall include documentation describing how the Chapter 7
16	recommendations of the National Academy of Sciences (NAS) have been
17 18	implemented or addressed, including an explanation for why certain recommendations were not incorporated.
19	recommendations were not mediporated.
20	The NRC's recommendations, provided in Chapter 7 of their review report, offered
21	suggestions to EPA for improving the development of IRIS assessments. Consistent with the
22	direction provided by Congress, documentation of how the recommendations from Chapter 7 of the
23	NRC report have been implemented in this assessment is provided in the table below. Where
24	necessary, the documentation includes an explanation for why certain recommendations were not
25	incorporated.
26	The IRIS Program's implementation of the NRC recommendations is following a phased
27	approach that is consistent with the NRC's "Roadmap for Revision" as described in Chapter 7 of the
28	formaldehyde review report. The NRC stated that "the committee recognizes that the changes
29	suggested would involve a multi-year process and extensive effort by the staff at the National
30	Center for Environmental Assessment and input and review by the EPA Science Advisory Board and
31	others."
32	Phase 1 of implementation has focused on a subset of the short-term recommendations,
33	such as editing and streamlining documents, increasing transparency and clarity, and using more
34	tables, figures, and appendices to present information and data in assessments. Phase 1 also

³Pub. L. No. 112-74, Consolidated Appropriations Act, 2012.

⁴(<u>ENREF 351</u>). Review of the Environmental Protection Agency's Draft IRIS Assessment of Formaldehyde.

- 1 focused on assessments near the end of the development process and close to final posting. The
- 2 IRIS benzo[a]pyrene assessment is in Phase 2 and represents a significant advancement in
- 3 implementing the NRC recommendations shown in Table F-1 below. The Program is implementing
- 4 all of these recommendations, but recognizes that achieving full and robust implementation of
- 5 certain recommendations will be an evolving process with input and feedback from the public,
- 6 stakeholders, and external peer review committees. Phase 3 of implementation will incorporate
- 7 the longer-term recommendations made by the NRC as outlined below in Table F-2, including the
- 8 development of a standardized approach to describe the strength of evidence for noncancer effects.
- 9 In May 2014, the NRC released their report reviewing the IRIS assessment development process.
- 10 As part of this review, the NRC reviewed current methods for evidence-based reviews and made
- 11 several recommendations with respect to integrating scientific evidence for chemical hazard and
- 12 dose-response assessments. In their report, the NRC states that EPA should continue to improve its
- 13 evidence-integration process incrementally and enhance the transparency of its process. The
- 14 committee did not offer a preference but suggests that EPA consider which approach best fits its
- 15 plans for the IRIS process. The NRC recommendations will inform the IRIS Program's efforts in this
- 16 area going forward.

17Table F-1. The EPA's implementation of the National Research Council's18recommendations in the benzo[a]pyrene assessment

National Research Council recommendations that EPA is implementing in the short term	Implementation status
General recommendations for completing the IRIS for assessments (p. 152 of the NRC report)	maldehyde assessment that EPA will adopt for all IRIS
1. To enhance the clarity of the document, the draft IRIS assessment needs rigorous editing to reduce the volume of text substantially and address redundancies and inconsistencies. Long descriptions of particular studies should be replaced with informative evidence tables. When study details are appropriate, they could be provided in appendices.	Implemented. The overall document structure has been revised in consideration of this NRC recommendation. The new structure includes a concise Executive Summary and an explanation of the literature review search strategy, study selection criteria, and methods used to develop the assessment. The main body of the assessment has been reorganized into two sections, Hazard Identification and Dose-Response Analysis, to help reduce the volume of text and redundancies that were a part of the previous document structure. Section 1 provides evidence tables and a concise synthesis of hazard information organized by health effect. The Supplemental Information provides more detailed summaries of the most pertinent epidemiology and experimental animal studies (Appendix D), as well as information on chemical and physical properties and toxicokinetics (Appendix D). The main text of the Toxicological Review is approximately 130 pages, which is a major reduction from previous IRIS assessments. Technical and scientific edits were performed to

National Research Council recommendations that EPA is implementing in the short term	Implementation status
	eliminate any redundancies or inconsistencies.
2. Chapter 1 needs to be expanded to describe more fully the methods of the assessment, including a description of search strategies used to identify studies with the exclusion and inclusion criteria articulated and a better description of the outcomes of the searches and clear descriptions of the weight- of-evidence approaches used for the various noncancer outcomes. The committee emphasizes that it is not recommending the addition of long descriptions of EPA guidelines to the introduction, but rather clear concise statements of criteria used to exclude, include, and advance studies for derivation of the reference concentrations (RfCs) and unit risk estimates.	Implemented. Chapter 1 has been replaced with a Preamble that describes the application of existing EPA guidance and the methods and criteria used in developing the assessment. The term "Preamble" was chosen to emphasize that these methods and criteria are being applied consistently across IRIS assessments. The new Preamble includes information on identifying and selecting pertinent studies, evaluating the quality of individual studies, weighing the overall evidence of each effect, selecting studies for derivation of toxicity values, and deriving toxicity values. These topics correspond directly to the five steps that the NRC identified in Figure 7-2 of their 2011 report. A new section, Literature Search Strategy and Study Selection, provides detailed information on the search strategy used to identify health effect studies, search outcomes, and selection of studies for hazard identification. This information is chemical-specific and has been designed to provide enough information that an independent literature search would be able to replicate the results. This section also includes information on how studies were selected to be included in the document and provides a link to EPA's Health and Environmental Research Online (HERO) database (www.epa.gov/hero) that contains the references that were cited in the document, along with those that were
	considered but not cited.
3. Standardized evidence tables for all health outcomes need to be developed. If there were appropriates tables, long text descriptions of studies could be moved to an appendix.	Implemented. In the new document template, standardized evidence tables that present key study findings that support how toxicological hazards are identified for all major health effects are provided in Section 1.1. More detailed summaries of the most pertinent epidemiology and experimental animal studies are provided in the Supplemental Information (Appendix D).
4. All critical studies need to be thoroughly evaluated with standardized approaches that are clearly formulated and based on the type of research, for example, observational epidemiologic or animal bioassays. The findings of the reviews might be presented in tables to ensure transparency.	Partially Implemented. Information in Section 4 of the Preamble provides an overview of the approach used to evaluate the quality of individual studies. Critical evaluation of the epidemiologic and experimental animal studies is included in the evidence tables in Section 1.1. As more rigorous systematic review processes are developed, they will be utilized in future assessments.
5. The rationales for the selection of the studies that are advanced for consideration in calculating the RfCs and unit risks need to be expanded. All candidate	Implemented. The Dose-Response Analysis section of the new document structure provides a clear explanation of the rationale used to select and advance studies that

National Research Council recommendations that EPA is implementing in the short term	Implementation status
RfCs should be evaluated together with the aid of graphic displays that incorporate selected information on attributes relevant to the database.	were considered for calculating toxicity values. Rationales for the selection of studies advanced for reference value derivation are informed by the weight-of- evidence for hazard identification as discussed in Section 1.2. In support of the derivation of reference values for benzo[a]pyrene, exposure-response arrays are included that compare effect levels for several toxicological effects (Section 2.1, Figure 2-1; Section 2.2, Figure 2.2). The exposure-response array provides a visual representation of points of departure (PODs) for various effects resulting from exposure to benzo[a]pyrene. The array informs the identification of doses associated with specific effects, and the choice of principal study and critical effects. In the case of the benzo[a]pyrene RfD, the database supported the development of multiple organ/system- specific RfDs. Such values have been developed previously on a case-by-case basis and will be developed in future assessments, where the data allow.
6. Strengthened, more integrative, and more transparent discussions of weight-of-evidence are needed. The discussions would benefit from more rigorous and systematic coverage of the various determinants of weight-of-evidence, such as consistency.	Partially implemented. The new Hazard Identification (Section 1) provides a more strengthened, integrated, and transparent discussion of the weight of the available evidence. This section includes standardized evidence tables to present the key study findings that support how potential toxicological hazards are identified and exposure-response arrays for each potential toxicological effect. Summary discussions are provided as a statement of hazard for each major effect (Section 1.1.1— developmental toxicity, Section 1.1.2—reproductive toxicity, Section 1.1.3—immunotoxicity, Section 1.1.4— other toxicological effects, and Section 1.1.5— carcinogenicity) as well as a general weight-of-evidence discussion for effects other than cancer (Section 1.2.1) and cancer (Section 1.2.2). A more rigorous and formalized approach for characterizing the weight-of-evidence will be developed as a part of Phase 3 of the implementation process.

National Research Council recommendations that EPA is implementing in the short term	Implementation status				
Other specific recommendations (p. # in NRC report)					
General Guidance for the Overall Process (p. 164) 7. Elaborate an overall, documented, and quality- controlled process for IRIS assessments.	Implemented. EPA has created Chemical Assessment Support Teams to formalize an internal process to provide additional overall quality control for the				
8. Ensure standardization of review and evaluation approaches among contributors and teams of contributors; for example, include standard approaches for reviews of various types of studies to ensure uniformity.	development of IRIS assessments. This initiative uses a team approach to making timely, consistent decisions about the development of IRIS assessments across the Program. This team approach has been utilized for the development of the benzo[a]pyrene assessment. Additional objectives of the teams are to help ensure				
9. Assess disciplinary structure of teams needed to conduct the assessments.	that the necessary disciplinary expertise is available for assessment development and review, to provide a forum for identifying and addressing key issues prior to external peer review, and to monitor progress in implementing the NRC recommendations.				
Evidence Identification: Literature Collection and Collation Phase (p. 164) 10. Select outcomes on the basis of available evidence and understanding of mode of action.	Partially Implemented. A new section, Literature Search Strategy and Study Selection, contains detailed information on the search strategy used for the benzo[a]pyrene assessment, including key words used to identify relevant health effect studies. Figure LS-1 depicts the study selection strategy and the number of references obtained at each stage of literature screening.				
11. Establish standard protocols for evidence identification.	This section also includes information on how studies were selected to be included in the document and provides a link to an external database				
12. Develop a template for description of the search approach.	(<u>www.epa.gov/hero</u>) that contains the references that were cited in the document, along with those that were				
13. Use a database, such as the HERO database, to capture study information and relevant quantitative data.	considered but not cited. Each citation in the Toxicological Review is linked to HERO such that the public can access the references and abstracts to the scientific studies used in the assessment. The implementation of these NRC recommendations in the benzo[a]pyrene assessment represents a major advance in the standardization and transparency of evidence identification. Section 3 of the Preamble summarizes the standard protocols for evidence identification that are provided in EPA guidance. For each potential toxicological effect identified for benzo[a]pyrene, the available evidence is informed by the mode-of-action information as discussed in Section 1.1. As more rigorous systematic review processes are developed, they will be utilized in future assessments.				
 Evidence Evaluation: Hazard Identification and Dose-Response Modeling (p. 165) 14. Standardize the presentation of reviewed studies in tabular or graphic form to capture the key dimensions of study characteristics, weight-of- 	Implemented. Standardized tables have been developed that provide summaries of key study design information and results by health effect. The inclusion of all positive and negative findings in each health effect-specific evidence table supports a weight-of-evidence analysis. In				

National Research Council recommendations that EPA is implementing in the short term	Implementation status				
evidence, and utility as a basis for deriving reference values and unit risks.	addition, exposure-response arrays are utilized in the assessment to provide a graphical representation of PODs for various effects resulting from exposure to benzo[a]pyrene. The exposure-response arrays inform the identification of doses associated with specific effects and the weight-of-evidence for those effects.				
15. Develop templates for evidence tables, forest plots, or other displays.	Implemented. Templates for evidence tables and exposure-response arrays have been developed and are utilized in Section 1.1.				
16. Establish protocols for review of major types of studies, such as epidemiologic and bioassay.	Partially Implemented. General principles for reviewing epidemiologic and experimental animal studies are described in Section 4 of the Preamble. The development of standardized protocols for systematic review of evidence is an ongoing process.				
Selection of Studies for Derivation of Reference Values and Unit Risks (p. 165) 17. Establish clear guidelines for study selection.	Implemented. EPA guidelines for study selection, including balancing strengths and weaknesses and weighing human vs. experimental evidence, are described in the Preamble (Sections 3–6). These				
a) Balance strengths and weaknesses.	guidelines have been applied in Sections 3–6). These				
b) Weigh human vs. experimental evidence.	benzo[a]pyrene assessment to evaluate the strengths an				
 c) Determine whether combining estimates among studies is warranted. 	weaknesses of individual studies considered for reference value derivation.				
	In the case of benzo[a]pyrene, the database did not support the combination of estimates across studies. In future assessments, combining estimates across studies will be routinely considered.				
Calculation of Reference Values and Unit Risks (pp. 165–166) 18. Describe and justify assumptions and models used. This step includes review of dosimetry models and the implications of the models for uncertainty factors; determination of appropriate PODs (such as benchmark dose [BMD], NOAEL, and LOAEL), and assessment of the analyses that underlie the PODs.	Implemented. The rationale for the selection of the PODs for the organ/system-specific oral reference values is provided in Section 2.1. The rationale for the selection of the POD and the inhalation dosimetry modeling (for the approximation of a HEC) for the derivation of the inhalation reference value is transparently described in Section 2.2. The BMD modeling for candidate reference values is transparently described in the Supplemental Information (Appendix E).				
19. Provide explanation of the risk-estimation modeling processes (for example, a statistical or biologic model fit to the data) that are used to develop a unit risk estimate.	Implemented. The risk-estimation modeling processes used to develop cancer risk estimates for benzo[a]pyrene are described in Section 2 of the Toxicological Review and in the Supplemental Information (Appendix E).				
20. Provide adequate documentation for conclusions and estimation of reference values and unit risks. As noted by the committee throughout the present report, sufficient support for conclusions in the formaldehyde draft IRIS assessment is often lacking. Given that the development of specific IRIS	Implemented. The new template structure that has been developed in response to the NRC recommendations provides a clear explanation of the literature search strategy, study selection criteria, and methods used to develop the benzo[a]pyrene assessment. It provides for a clear description of the decisions made in developing the				

National Research Council recommendations that EPA is implementing in the short term	Implementation status
assessments and their conclusions are of interest to many stakeholders, it is important that they provide sufficient references and supporting documentation for their conclusions. Detailed appendixes, which might be made available only electronically, should be provided when appropriate.	hazard identification and dose-response analysis. Information contained in the Preamble and throughout the document reflects the guidance that has been utilized in developing the assessment. As recommended, supplementary information is provided in the accompanying appendices. Detailed modeling analyses are presented in the appendices.

Table F-2. National Research Council recommendations that the EPA isgenerally implementing in the long term

National Research Council recommendations that EPA is generally implementing in the long- term (p. # in NRC report)	Implementation status
 Weight-of-Evidence Evaluation: Synthesis of Evidence for Hazard Identification (p. 165) 1. Review use of existing weight-of-evidence guidelines. 2. Standardize approach to using weight-of-evidence guidelines. 3. Conduct agency workshops on approaches to implementing weight-of-evidence guidelines. 4. Develop uniform language to describe strength of evidence on noncancer effects. 5. Expand and harmonize the approach for characterizing uncertainty and variability. 6. To the extent possible, unify consideration of outcomes around common modes of action rather than considering multiple outcomes separately. 	As indicated above, Phase 3 of EPA's implementation plan will incorporate the longer-term recommendations made by the NRC, including the development of a standardized approach to describe the strength of evidence for noncancer effects. On May 16, 2012, EPA announced ⁶ that as a part of a review of the IRIS Program's assessment development process, the NRC will also review current methods for weight-of-evidence analyses and recommend approaches for weighing scientific evidence for chemical hazard identification. In addition, EPA will hold a workshop on August 26, 2013 on issues related to weight- of-evidence.
 Calculation of Reference Values and Unit Risks (pp. 165–166) 7. Assess the sensitivity of derived estimates to model assumptions and endpoints selected. This step should include appropriate tabular and graphic displays to illustrate the range of the estimates and the effect of uncertainty factors on the estimates. 	Multiple, endpoint-specific reference values were derived for benzo[a]pyrene (RfD: Table 2-3 and Figure 2-1; RfC: Table 2-5 and Figure 2-2) and demonstrate the sensitivity of the overall reference values depending on the selection of the overall endpoints.

⁶EPA Announces NAS' Review of IRIS Assessment Development Process (www.epa.gov/iris).

APPENDIX G. SUMMARY OF EXTERNAL PEER REVIEW AND PUBLIC COMMENTS AND EPA'S DISPOSITION

5 6

1

EPA's Response to Selected Major Public Comments on the Public Comment Draft (August 2013) of the IRIS Toxicological Review of Benzo[a]pyrene

7 8 9

Purpose: The Integrated Risk Information System (IRIS) assessment development process of May
 2009, includes release of the draft IRIS assessment for public review and comment and
 independent expert peer review (Step 4). During this step, EPA holds a public meeting to discuss

13 the draft assessment and draft peer review charge. As part of enhancements to the IRIS assessment

14 development process announced in July 2013, in some cases, the IRIS Program may decide to revise

15 the draft assessment and peer review charge after hearing the public's comments about these

16 materials. For a complete description of the IRIS process, visit the IRIS website at

17 <u>www.epa.gov/iris</u>.

18

19 The following are EPA's responses to the scientific issues raised in the public comments received on 20 the draft IRIS Toxicological Review of Benzo[a]pyrene (dated August 2013). The comments have

21 been synthesized and paraphrased, and are organized to follow the order of the Toxicological

22 Review. Editorial changes were incorporated in the document as appropriate and are not discussed

23 further. All public comments provided were taken into consideration in revising the draft

assessment prior to posting for external peer review. The complete set of public comments are

available on the docket at <u>http://www.regulations.gov</u> (Docket ID No. EPA-HQ-ORD-2011-0391).

26

Background: The Toxicological Review of Benzo[a]pyrene was released for a 60-day public
comment period on August 21, 2013. The comment period was subsequently extended to 90 days,
ending on November 21, 2013. During this period, public comments on the assessment were
submitted to EPA by the Utility Solid Waste Activities Group (USWAG), CDM Smith Inc, Pavement

30 submitted to EPA by the Utility Solid Waste Activities Group (USWAG), CDM Smith Inc, Pavemen 31 Coating Technology Council, Electric Power Research Institute (EPRI), Duke Energy, CH2M Hill,

32 Gradient, American Chemistry Council (ACC), Agnes Francisco, Melanie Nembhard, and by Arcadis

on behalf of American Coke and Coal Chemicals Institute, American Fuels and Petrochemical

34 Manufacturers, American Petroleum Institute, Asphalt Institute, Association of American Railroads,

35 Beazer East, Inc. and Pavement Coatings Technology Council. In addition, a public meeting was

- 36 held in December 2013 to provide the public an opportunity to engage in early discussions on the
- draft IRIS Toxicological Review of Benzo[a]pyrene and the draft charge to the peer review panelprior to release for external peer review.
- 30 39

40 RESOLUTION OF PUBLIC COMMENTS ON THE DRAFT TOXICOLOGICAL REVIEW (dated August 41 2013)

1 2

1 <u>CONSIDERATION OF ADDITIONAL LITERATURE</u>

3 **Comment:** Inclusion of supporting data for critical study used to derive the dermal slope factor. The

4 August 2013 public comment draft derived the dermal slope factor from points of departure from

5 two lifetime dermal cancer bioassays that were deemed to be of similar quality (Sivak et al., 1997;

6 <u>Poel, 1959</u>). Gradient identified a report (<u>Arthur D Little, 1989</u>) that presents the original results,

7 including the individual animal data, for the NIOSH dermal study publication (Sivak et al., 1997). In

- addition, Gradient also provided an additional reference, <u>Clark et al. (2011)</u>, for consideration in the
 development of the dermal slope factor.
- 10

EPA Response: EPA has revised the dose response analysis for the derivation of the dermal slope

factor to incorporate the individual animal survival data identified by the public commenter
 (Section 2.5.2 of the Toxicological Review and Appendix E.2.3 of the Supplemental Information).

14 This allowed EPA to utilize the MultiStage-Weibull model, a model that incorporates dose and the

- 14 This anowed EFA to durize the Multistage-weibuil model, a model that incorporates dose and the time at which death with tumor occurred. Use of this model accounts for competing risks
- associated with decreased survival times and other causes of death, including other tumors.
- associated with decreased survival times and other causes of death, including othe 17
- 18 Previously, the PODs from the <u>Sivak et al. (1997)</u> and <u>Poel (1959)</u> studies were considered to be of
- reviously, the PODS from the <u>sivak et al. (1997)</u> and <u>Poel (1999)</u> studies were considered to be of
 similar quality and thus were averaged to derive the dermal slope factor. In consideration of these

additional supporting data, EPA selected the NIOSH dermal study (Sivak et al., 1997; Arthur D Little,

21 <u>1989</u>) as the best available study for dose-response analysis and extrapolation to lifetime cancer

- 22 risk following dermal exposure to benzo[a]pyrene.
- 23

The publication by <u>Clark et al. (2011)</u>, reported results of a lifetime dermal cancer bioassay which
primarily tested polycyclic aromatic hydrocarbon (PAH) mixtures, and included one high dose
group of benzo[a]pyrene as a positive control. EPA considered this study, but did not present <u>Clark</u>
<u>et al. (2011)</u> in the revised assessment due to the availability of several dermal lifetime cancer
bioassays for benzo[a]pyrene with multiple doses which enable greater characterization of the
dose-response relationship, especially in the low dose range.

30

Comment: Further consideration of human skin graft mouse bioassay studies. Arcadis, EPRI and
 CDM Smith recommended increased consideration of studies of PAH exposure in murine models
 with human skin xenografts (Atillasoy et al., 1997; Soballe et al., 1996; Urano et al., 1995; Graem,
 1986). These studies transplanted human skin onto the backs of immunodeficient mice and after

34 <u>1986</u>). These studies transplanted human skin onto the backs of immunodeficient mice and after

35 grafts had been established, treated the skin with carcinogens, including PAHs, and mice did not

develop tumors. The commenters stated that these papers demonstrate that human skin is
 resistant to the skin tumorigenesis that is seen in mouse skin with benzo[a]pyrene and other PAHs.

38

EPA Response: Several studies identified by the commenters used the potent carcinogen 7,12-

40 dimethylbenz(a)anthracene (DMBA) (Soballe et al., 1996; Urano et al., 1995; Graem, 1986) and a

41 single study tested benzo[a]pyrene (<u>Urano et al., 1995</u>). In the studies using benzo[a]pyrene or

42 DMBA alone, tumors were identified at the graft border, and judged to be of mouse skin origin, but

43 no tumors were identified as originating from the human skin graft. The ability of this model

44 system to predict hazard for human skin cancer risk from dermally active procarcinogens is

45 unclear. Though some studies indicate that the skin grafts maintain some metabolic function (<u>Das</u>

46 <u>et al., 1986</u>), it is unclear whether the human skin grafts (some obtained from cadavers) maintain

- 47 the same viability, vascularization, and full metabolic capacity as human skin in vivo (<u>Kappes et al.</u>,
- 48 <u>2004</u>). Potent mutagenic carcinogens such as DMBA, methylcholanthrene,
- 49 methylnitronitrosoguanidine also fail to produce skin tumors in this model system (Soballe et al.,

1 1996; Urano et al., 1995; Graem, 1986). In addition, the treatment time and the period of 2 observation was quite short in all identified studies. The mice with the benzo[a]pvrene-treated 3 human skin grafts in <u>Urano et al. (1995)</u> died within six months after the initial benzo[a]pyrene 4 treatment. In addition, the PAH-treated skin graft mice in Graem (1986) and Soballe et al. (1996) 5 were only followed for an average of 4-7 months from the start of treatment. While six months is 6 generally sufficient for the development of skin tumors in mouse skin (depending on dose level), 7 human latency for squamous cell carcinoma in PAH-exposed occupational cohorts is thought to be 8 greater than 20 years (Young et al., 2012; Voelter-Mahlknecht et al., 2007; Everall and Dowd, 1978). Therefore, the single available study (<u>Urano et al., 1995</u>) evaluating the carcinogenicity of 9 10 benzo[a]pyrene in this model system was considered in the Toxicological Review, but was regarded 11 with low confidence. 12 13 Additional text to clarify these points has been added to Section 1.1.5 of the Toxicological Review. 14 15 **Comment:** Inclusion of studies of patients therapeutically treated with coal tar. Arcadis, EPRI, and 16 CDM Smith suggested the inclusion of epidemiologic studies of skin cancer risk in eczema and 17 psoriasis patients treated therapeutically with a dermatological formulations containing coal tar (a 18 PAH mixture). These commenters suggested that the available epidemiological studies of coal tar 19 treated patients clearly demonstrate that benzo[a]pyrene does not cause skin cancer in humans. 20 21 **EPA Response:** In addition to the comments described above, EPA received comments from the 22 American Petroleum Institute in March 2013 listing references related to therapeutic coal tar use. 23 EPA reviewed the references noted in these comments, as well as those identified through 24 additional review of citations contained in the identified studies and related reviews. Studies that 25 included a measure of coal tar exposure in relation to a measure of skin cancer risk were 26 considered and discussed in the Toxicological Review and Supplemental Information drafts dated 27 August 2013. Specifically, Table D-6 of the Supplemental Information presents a summary of the 28 methodological features as well as the results of these studies. A discussion of this database was 29 also included in Section 1.1.5 of the Toxicological Review and Appendix D.3.3 of the Supplemental 30 Information. Case reports and studies that did not include a measure of coal tar exposure were not 31 included in the August 2013 draft assessment. 32 33 EPA noted considerable limitations to this body of literature, particularly relating to the level of 34 detail pertaining to exposure measures, length of follow-up, and ability to address effects 35 attributable to other types of therapies. A single population-based case-control study was identified (Mitropoulos and Norman, 2005); this study examined self-reported use of coal 36 37 tar/dandruff shampoo and the association with increased incidence of dermal squamous cell 38 carcinomas. EPA considered this exposure measure to be highly susceptible to misclassification. 39 Other epidemiological studies of patients with specific types of skin conditions (e.g., psoriasis, 40 eczema) were limited by the quality of the exposure data and inability to examine variation in 41 exposure level (i.e., duration of use), sample size and duration of follow-up, and choice of referent 42 rates and differences in disease ascertainment between cases and the reference population. In 43 addition, clinic-based studies focused on the commonly used regimen of coal tar in conjunction with 44 ultraviolet (UV) B therapy (e.g., the Goeckerman treatment), and could not distinguish effects of 45 coal tar alone. 46 47 EPA does not consider the identified studies to adequately address the question of the potential 48 association between coal tar treatments and skin cancer due to limitations in design and conduct.

- 1 Thus, EPA disagrees with the commenters' view that these studies demonstrate that
- 2 benzo[a]pyrene does not cause skin cancer in humans.
- 3

4 Although EPA does not consider the available studies sufficient to evaluate the potential association

5 between use of coal tar therapies and risk of skin cancer, acute studies of coal tar treated patients

6 provide in vivo evidence of benzo[a]pyrene-specific genotoxicity (increased BPDE-DNA adducts) in

- human skin (<u>Godschalk et al., 2001; Rojas et al., 2001; Zhang et al., 1990</u>), an early key event in the
 carcinogenic mode of action of benzo[a]pyrene (Figure 1-6 of Section 1.1.5 of the Toxicological
- 9 Review).
- 10
- 11

12 COMMENTS ON THE WEIGHT OF EVIDENCE AND MODE OF ACTION FOR CANCER

13
14 Comment: Use of epidemiological studies to support the weight of evidence for cancer. Arcadis and
15 EPRI commented that the draft benzo[a]pyrene assessment has mischaracterized the evidence
16 supporting an association between benzo[a]pyrene exposure and lung and skin cancers in humans.
17 They further state that the human studies that have been presented are studies of worker groups
18 who were exposed to complex mixtures and it is not possible to attribute the effects of the mixture
19 to one component.

20

21 **EPA Response:** EPA agrees that benzo[a]pyrene exposure in the environment occurs as a complex 22 mixture with many components including other PAHs, and notes in Section 1.1 of the Toxicological 23 Review that accordingly, there are few epidemiologic studies designed to investigate the effects of 24 benzo[a]pyrene, though there are many that have investigated the effects of exposure to PAH 25 mixtures as a whole. EPA's Guidelines for Carcinogen Risk Assessment (U.S. EPA, 2005) emphasize 26 the importance of weighing all of the evidence in reaching conclusions about human carcinogenic 27 potential. Specifically, the guidelines describe that the descriptor of "carcinogenic to humans" can 28 be used when the following conditions are met: (a) there is strong evidence of an association 29 between human exposure and either cancer or the key precursor events of the agent's mode of 30 action but not enough for a causal association, (b) there is extensive evidence of carcinogenicity in 31 animals, (c) the mode or modes of carcinogenic action and associated key precursor events have 32 been identified in animals, and (d) there is strong evidence that the key precursor events that 33 precede the cancer response in animals are anticipated to occur in humans and progress to tumors, 34 based on available biological information. In Section 1.2.2 and Table 1-18 of the Toxicological 35 Review the data for benzo[a]pyrene supporting these four conditions are presented. 36 37 Extensive evidence of carcinogenicity in animal bioassays along with strong and consistent

- 38 mechanistic data for a mutagenic mode of action support conditions (b) and (c) above. Numerous
- 39 studies demonstrate the carcinogenicity of benzo[a]pyrene in multiple species by all tested routes
- 40 of administration. In addition, mechanistic studies provide strong evidence that links the
- 41 metabolism of benzo[a]pyrene to DNA reactive agents with key mutational events in genes that can
- 42 lead to tumor development. These events include the formation of specific DNA adducts and
- 43 characteristic mutations in oncogenes and tumor suppressor genes.
- 44
- 45 Several human exposure studies are available supporting both conditions (a) and (d) above.
- 46 Specifically, epidemiological studies evaluating exposure to PAH mixtures (both occupational
- 47 exposures and tobacco smoke) containing benzo[a]pyrene demonstrate an association with cancer.
- 48 Furthermore, multiple studies have reported benzo[a]pyrene-specific DNA adducts as well as

- characteristic mutations in oncogenes and tumor suppressor genes in humans exposed to PAH
 mixtures.
- 3

EPA recognizes that benzo[a]pyrene is one of many PAHs that could contribute to the observed
increases in cancer in humans exposed to PAH mixtures. However, the combination of strong and
consistent human, animal, and mechanistic evidence for the carcinogenicity of benzo[a]pyrene

- 7 provides the basis for characterizing benzo[a]pyrene as "carcinogenic to humans".
- 8 9

10 <u>COMMENTS ON THE DERIVATION OF THE REFERENCE DOSE AND REFERENCE CONCENTRATION</u>

11

12 Comment: *Metric used to characterize results in the elevated plus maze.* Dose-related differences in

13 number of open arm entries, increased time spent in the open arms, and decreased closed arm

14 entries were observed in the study by <u>Chen et al. (2012)</u>. The number of entries into the open arms

15 was used for benchmark dose modeling to extrapolate a POD for the RfD. Arcadis commented that 16 according to Hogg (1996), the preferred way to express results from the elevated plus maze is as

16 according to <u>Hogg (1996</u>), the preferred way to express results from the elevated plus maze is as 17 percentage of open arm entries (among total arm entries) or percentage of time spent in open arms

percentage of open arm entries (among total arm entries) or percentage of time spent in open arms,
to correct for overall changes in exploration and reduce activity-induced artifacts.

- 10 to correct for overall changes in exploration and reduce activity.
- 20 **EPA Response:** EPA agrees that the optimal way to express elevated plus maze data is in relation
- to the total number of arm entries or to the total amount of time spent in the arms of the maze. The
- reason for presenting the information in such a way is to account for potential differences due to
 changes in general locomotor or exploratory behaviors, rather than changes in anxiety (which is the
- critical effect). While Chen et al. (2012) did not present the data in this manner (EPA's attempts to
- 25 obtain the raw data have been unsuccessful), the authors did present enough information for EPA
- to arrive at the conclusion that general locomotor or exploratory behaviors were not affected by
- exposure. Specifically, as a measure of total locomotor activity and exploration in the elevated plus
- 28 maze test, the *total* number of arm entries between control and benzo[a]pyrene-treated animals
- 29 were calculated from the graphically reported results provided for open and closed arm entries;
- total arm entries were unchanged with treatment (e.g., the number of closed arm entries was

decreased with exposure). Therefore, it is unlikely that the results observed were confounded by a

- 32 general increase in locomotor activity in the benzo[a]pyrene treated animals.
- 33

34 Two additional studies which tested the effects of benzo[a]pyrene exposure in the elevated plus

- 35 maze (<u>Bouayed et al., 2009a</u>; <u>Grova et al., 2008</u>) reported findings consistent with <u>Chen et al.</u>
- 36 (2012), and similarly did not observe an increase in general locomotor activity with treatment.

37 Although they tested higher doses of benzo[a]pyrene than <u>Chen et al. (2012)</u>, both Bouayed et al.

- 38 (2009a) and Grova et al. (2008) observed statistically significant effects of exposure on percentage
- 39 of open arm entries and no effects on the total number of arm entries, the former following oral
- 40 exposure during lactation and the latter following i.p. injection in adulthood. See Section 1.1.1 and
- 41 Section 2.1.1 for discussion of the consistency of the decreased anxiety-like effects in the evidence
- 42 database.
- 43
- 44 Although EPA concluded that the elevated plus maze data presented by <u>Chen et al. (2012)</u> is
- 45 appropriate for use in dose-response modeling, EPA also conducted a sensitivity analysis using the
- 46 metric proposed by <u>Hogg (1996)</u>, expressing the data as a fraction of the open arm entries over the
- 47 total arm entries. The data for this endpoint were only available as group means and standard
- 48 deviations for the open and closed arm entries (separately), presented graphically; the group
- 49 means and standard deviations for total arm entries were not reported, and would ideally be

1 calculated from individual animal data. However, it was feasible to derive inputs for dose-response

2 analysis by summing the group means for open and closed arm entries to yield total arm entries.

- 3 and by using Monte Carlo simulations (assuming a normal distribution) to estimate the variance of
- 4 the ratio of open arm entries to total arm entries. The resulting BMD and BMDL for a one standard
- 5 deviation decrease in mean percentage of open arm entries among total entries were 0.09 and 0.05
- 6 mg/kg-day, respectively. Compared to the BMD and BMDL (POD) of 0.16 and 0.09 mg/kg-day 7 based on the <u>Chen et al. (2012)</u> data, the analysis incorporating total arm entries suggests a lower
- 8 POD for this effect; however, EPA notes that the two sets of results overlap substantially. EPA
- 9 considers the results corroborative of the POD for this effect based on the published data.
- 10

11 **Comment:** Use of decreased anxiety-like effects as a critical effect. Arcadis and ACC questioned why the behavioral effect of "decreased anxiety" observed in rodents tested in the elevated plus maze 12 13 was regarded as an adverse effect given that this test is used in pharmacology to evaluate the

- 14 efficacy of anxiety reducing drugs.
- 15

16 **EPA Response:** A normal level of anxiety is a protective function of the nervous system. A decrease 17 in anxiety, a clear change in nervous system function, can impair an organism's ability to react to a 18 potentially harmful situation. The decreased ability of an organism to adapt to the environment is 19 considered to be an adverse effect (U.S. EPA, 1998). In addition, any functional alteration resulting from developmental exposure is considered biologically significant (U.S. EPA, 1991c). Additional 20

- 21 discussion of the significance of this endpoint has been added in Section 2.1.1 of the Toxicological Review.
- 22 23

24 In contrast to environmental exposure, exposure to drugs is intended to occur at a controlled

- 25 dosage and with a defined periodicity and duration, and drugs are only administered to a subset of
- 26 the population with an underlying, clinically-identified neurological dysfunction that requires
- 27 treatment.
- 28

29 **Comment:** Consideration of additional studies for the derivation of the RfC. Arcadis commented that 30 the RfC should quantitatively consider the NOAELs and LOAELs from Archibong et al. (2002) and 31 Wu et al. (2003a) to develop the RfC based on decreased pup survival. They state that the

32 publication by {Archibong, 1007602} reported a LOAEL for this effect as $25 \,\mu g/m^3$, but that another

- publication, from the same laboratory, <u>Wu et al. (2003a)</u>, reported that this exposure concentration 33
- 34 was a NOAEL. They suggest that both studies can be used quantitatively to establish the point of
- 35 departure for the RfC.
- 36

37 **EPA Response:** The publications by Archibong et al. (2002) and Wu et al. (2003a) were generated by the same laboratory and used identical exposure methods. As both publications reported 38 39 similar results for fetal survival, it appears possible that both reported effects on the same group of 40 exposed dams. EPA notes that reporting for the endpoint of decreased fetal survival met a higher standard in Archibong et al. (2002) compared with Wu et al. (2003a), with Archibong et al. (2002) 41 42 reporting means and variances for implantation sites, pups per litter, and % litter survival and Wu 43 et al. (2003a) reporting decreased survival graphically. Although the focus of this study was on 44 metabolic activation in the liver and brain of exposed offspring, Wu et al. (2003a) did report that 45 "the number of resorptions was more at 75 and 100 μ g/m³ compared to 25 μ g/m³ and was 46 statistically significant," but did not report whether the apparent decrease in birth index at 25 47 $\mu g/m^3$ was statistically significant compared to the vehicle control group. This decrease in fetal 48 survival at 25 μ g/m³ is consistent with the lowest exposure level being a LOAEL rather than a 49 NOAEL as suggested by the commenters. Due to incomplete reporting on this endpoint, the dataset

50 reported by <u>Wu et al. (2003a)</u> was inadequate for the derivation of a candidate RfC. These points

- 1 have been clarified in the discussion of <u>Wu et al. (2003a)</u> in Section 1.1.1 and 2.2.1 of the
- 2 Toxicological Review.
- 3 4

5 GENERAL COMMENTS ON THE QUANTITATIVE CANCER ASSESSMENT

6

7 **Comment:** Apparent threshold in animal cancer bioassays. Arcadis, CDM Smith, and USWAG 8 commented that the animal carcinogenicity studies of benzo[a]pyrene used as the bases of the oral 9 slope factor (Beland and Culp, 1998), inhalation unit risk (Thyssen et al., 1981), and dermal slope 10 factor (Sivak et al., 1997; Poel, 1959), demonstrate threshold exposures for benzo[a]pyrene. They state that plots resulting from EPA's Benchmark Dose Modeling Software show that the bioassay 11 12 data exhibit threshold responses near the origin and that the tumor incidence of 0% at the low 13 doses demonstrate evidence of a threshold below which no cancer effects are seen. 14 15 **EPA Response:** EPA disagrees that the cited studies establish thresholds. Although animal 16 bioassays may seem to suggest thresholds, even the largest studies that are feasible to conduct have 17 insufficient power to detect risk levels of concern for public health. For example, a response of 18 1/50, or 2%, is the lowest response that can be observed in typical carcinogenicity bioassays. Such 19 a study cannot demonstrate a response of 0.1% (1/1000), say, often considered a high level of 20 cancer risk in a human population. If the true cancer rate at a particular exposure level is 0.1%, the 21 experimental outcome in a group of 50 will be 0% about 95% of the time. 22 23 Evidence for thresholds is more solidly determined through consideration of modes of action and 24 toxicokinetic pathways. Without consideration of such information, lack of response at low 25 exposures in animal bioassays cannot be distinguished from lack of statistical power. 26 27 28 COMMENTS ON THE INHALATION UNIT RISK 29 30 **Comment:** Availability of an additional benzo[a]pyrene inhalation study. Arcadis and EPRI 31 commented that an abstract for an unpublished study by Pauluhn et al. (1985) contradicts the 32 findings of carcinogenicity in Thyssen et al. (1981), and recommended that EPA acquire the raw 33 data.

34

35 EPA Response: The study referred to by the commenters, "Long-term inhalation study with benzo[a]pyrene and SO₂ in Syrian golden hamsters," assesses the effects of combined SO₂ and 36 37 benzo[a]pyrene (abbreviated as BP in the abstract) exposure in hamsters. It is unclear how this 38 study provides negative or contradictory evidence because the abstract indicates a carcinogenic 39 response: "[i]n hamsters which were exposed to 2 or 10 mg BP/m³ air without SO₂, a few 40 neoplastic alterations were found". While it would be useful to have another study of inhalation 41 exposure, no further information is available in the published literature, and EPA's attempts to 42 obtain the raw data have been unsuccessful. 43 44 **Comment:** Exceedance of maximum tolerated dose in Inhalation Unit Risk study. In comments 45 submitted by Arcadis and EPRI, it was stated that the exposure concentrations in the inhalation

46 study by <u>Thyssen et al. (1981)</u> likely caused particle overload, exceeding the maximum tolerated

47 dose (MTD), and according to U.S. EPA (2005), data that exceed the MTD should not be used for

- 48 quantitative risk assessment purposes.
- 49

1 **EPA Response:** In <u>Thyssen et al. (1981)</u>, hamsters received time-weighted, average daily

- 2 concentrations of 0.25, 1.01, and 4.29 mg/m³ benzo[a]pyrene condensed onto sodium chloride
- 3 particles (calculated based on weekly exposure chamber measurements). Animals in the low and
- 4 mid benzo[a]pyrene concentration groups had comparable survival to the vehicle control group.
- 5 The study authors reported that decreased survival in the high concentration group was associated
- 6 with increased incidence of tumors in the larynx and pharynx (affecting approximately half of the7 high dose group). The study authors also concluded that particle clearance mechanisms of the
- 8 respiratory epithelium remained intact since the tumors of the upper respiratory and digestive
- 9 tract occurred relatively late in life.
- 10 11

12 13

14

15

16

17

18

EPA's Guidelines for Carcinogen Risk Assessment (U.S. EPA, 2005) distinguish between cancer and other effects when assessing toxicity, e.g.: "If adequate data demonstrate that the effects are solely the result of excessive toxicity *rather than carcinogenicity* [emphasis added] of the tested agent *per se*, then the effects may be regarded as not appropriate to include in assessment of the potential for human carcinogenicity of the agent." No evidence supports that the tumors noted by <u>Thyssen et al.</u> (1981) in the upper respiratory and digestive tract were solely the result of excessive toxicity rather than carcinogenicity. The decreased survival observed in the high dose group appears to be a direct effect of the early occurrence of tumors in this group. Therefore, the <u>Thyssen et al.</u> (1981)

- 19 study was judged to support the derivation of a unit risk.
- 20

Comment: Apparent discrepancies in cancer incidence data used in the derivation of the inhalation
 unit risk. In comments submitted by Arcadis and EPRI, it was noted that the total number of
 animals at risk and the total number of tumors observed in each treatment group from the Thyssen
 et al. (1981) study varied between that publication, a secondary analysis (U.S. EPA, 1990), and
 study design descriptions and tables (D-13, D-14, E-17, and dose-response model output
 summaries) presented in the Toxicological Review.

27

28 EPA Response: Concerning the number of tumor-bearing animals, <u>Thyssen et al. (1981)</u>

summarized only the animals with malignant tumors without identifying them as such; EPA's
review (<u>U.S. EPA, 1990</u>) of the individual animal pathology reports provided by the investigators
(<u>Clement Associates, 1990</u>) showed that totals reported in the publication matched the incidence of

malignant tumors, and that there were benign tumors as well. Table D-13 of the Supplemental
 Information has been revised to reflect the incidence of benign and malignant tumors.

33 34

Concerning the numbers of animals at risk, the totals in <u>Thyssen et al. (1981)</u>, <u>U.S. EPA (1990)</u>, and
the draft Toxicological Review differed because the number of animals examined for histopathology
varied for different tissues:

- Thyssen et al. (1981) reported the overall number of animals evaluated for histopathology,
 but did not clarify when individual tissues were not available for examination.
- The draft Toxicological Review (August 2013) relied on the summaries in <u>U.S. EPA (1990)</u>
 augmented by details from the histopathology reports (<u>Clement Associates, 1990</u>), such as
 clarifications that some tumors were metastases or types not likely related to squamous
 neoplasia. Upon re-review of the histopathology reports, EPA determined that results
 were not available for five low-exposure animals included in the <u>U.S. EPA (1990)</u> analysis.
 EPA has revised the incidence summaries and the dose-response modeling and has
 omitted data for these animals.
- 47

- 1 **Comment:** *Exposure variability in the study used to derive inhalation unit risk.* Arcadis and EPRI
- 2 stated that <u>Thyssen et al. (1981)</u> is inappropriate for dose response modeling given concerns
- 3 regarding variability in exposure concentrations.
- 4

5 **EPA Response:** As discussed in Sections 2.4.1 and 2.4.4 of the Toxicological Review, the lifetime 6 inhalation bioassay by <u>Thyssen et al. (1981)</u>, reported weekly averages of chamber concentrations 7 of benzo[a]pyrene which varied two- to fivefold from the overall average for each group, which 8 exceeds the limit for exposure variability of <20% for aerosols recommended by OECD (2009). 9 Continuous time weighted group average concentrations were calculated for use in dose response 10 modeling under the assumption that equal cumulative exposures are expected to lead to similar 11 outcomes. For risk assessment purposes, EPA generally assumes that cancer risk is proportional to 12 cumulative exposure, and therefore to lifetime average exposure as estimated here, when there is 13 no information to the contrary. Under this assumption, the variability of the chamber 14 concentrations has little impact on the estimated exposure-response relationship.

15

16 <u>COMMENTS ON THE DERMAL SLOPE FACTOR</u>

17

18 **Comment:** Consideration of nonlinear MOAs for dermal carcinogenicity. USWAG commented that 19 EPA failed to consider nonlinear dose-response models to extrapolate from dermal exposure 20 studies to predict cancer risk. USWAG cited the availability of a dermal exposure study in mice (and 21 follow up study) that measured DNA adducts, necrosis, and inflammation after 5 weeks of exposure 22 and observed the tumor response at approximately 8 months of treatment (Albert et al., 1996; 23 Albert et al., 1991). This commenter stated that the observed tumor response in this study was 24 "remarkably nonlinear, with pronounced tumor formation at 35 weeks observed only in the high 25 dose group" and that this study "demonstrated definitively, and quantitatively, that pervasive 26 dermal tissue injury was induced by all benzo[a]pyrene dose levels investigated in this study." They 27 also go on to state that "[t]he studies by (Albert et al. (1996); Albert et al. (1991)) demonstrate that 28 benzo[a]pyrene-induced inflammation, cell killing, and cell replication was highly likely to have 29 occurred at tumorigenic benzo[a]pyrene dose levels used in every bioassay that EPA relied on to 30 calculate a DSF."

31

32 **EPA Response:** EPA agrees that the studies by (Albert et al. (1996); Albert et al. (1991)) appear to indicate that at high doses of benzo[a]pyrene, inflammation promotes the formation of tumors. 33 34 Albert et al. (1991) treated animals with 16, 32, or 64 μ g of benzo[a]pyrene once per week and 35 reported the number of tumors per mouse after 8 months (current standardized rodent cancer bioassays treat animals for 18 to 24 months (U.S. EPA, 2005)). The mice in the 16 and 32 µg dose 36 37 groups had an average of 1 tumor/animal, whereas the animals in the highest dose group had 38 approximately 8 tumors/animal. A follow up to this study, by the same authors, measured DNA 39 adducts, necrosis, and inflammation in treated mice (at the site of exposure) after 5 weeks of 40 dermal exposure. In the 64 μ g/week dose group, statistically elevated levels of DNA adducts, 41 inflammation, and necrosis were reported; however, in the lower dose group (16 μ g/week), DNA 42 adducts were statistically significantly elevated without increases in inflammation and necrosis. 43

44 In comparison, the lifetime dermal cancer bioassay in mice used for the derivation of the dermal

- slope factor, <u>Sivak et al. (1997</u>), used much lower exposure concentrations of benzo[a]pyrene (0.1,
- 46 1 or 10 μ g/week). Even so, after two years of exposure, animals in highest dose group had a tumor
- 47 incidence of 27/30 with dermal scabs and sores reported in 80% of animals. However, the next
 48 dose level down reported tumors in 5/30 animals with no elevation of cytotoxic lesions.
- 48 49

1 Cytotoxicity and mutation are not mutually exclusive modes of action; some observed effects can be

- 2 consistent with more than one mode of action. A mutagen at high doses can cause cytotoxicity and
- 3 regenerative proliferation that is a secondary response to massive DNA damage. As discussed in
- 4 Section 1.1.5 of the Toxicological Review, benzo[a]pyrene is a complete carcinogen; the
- 5 contributing roles of other processes involved in the promotion and progression of
- 6 benzo[a]pyrene-induced tumors, including cytotoxicity, inflammation, and regenerative cell
- 7 proliferation, are acknowledged within the MOA discussion. However, there is insufficient evidence
- 8 that these mechanisms act independently of DNA damage and mutation to produce
- 9 benzo[a]pyrene-induced tumors.
- 10

11 EPA has revised the assessment to provide additional discussion of the (<u>Albert et al. (1996</u>); <u>Albert</u>

- 12 <u>et al. (1991)</u>) studies in the cancer MOA section with particular attention to the observed
- quantitative and temporal relationship between DNA adducts and indicators of cytotoxicity(including inflammation and necrosis).
- 15

Comment: Potential for different mode of action for benzo[a]pyrene-induced tumors in mouse skin
 versus human skin. Arcadis and EPRI commented that PAH-induced mouse skin tumors have a
 different genetic signature than tumors in human skin. They cited Balmain and Harris (2000) as

18 different genetic signature than tumors in numan skin. They cited <u>Baimain and Harris (2000)</u> a 19 support for their hypothesis that PAH-induced tumors in mouse skin have an H-ras mutation

support for their hypothesis that PAH-induced tumors in mouse skin have an H-ras mutation

signature whereas human skin cancers have a p53 mutation signature, therefore showing that
PAHs are not causally related to human skin cancers.

22

EPA Response: The review article cited above (<u>Balmain and Harris, 2000</u>) does not discuss PAH-

induced skin tumors in mouse skin or human skin. This article reviews the association between

25 benzo[a]pyrene exposure from tobacco smoke and p53 mutations in human lung cancer, the

association between sun exposure and p53 mutations in human skin cancer, and the association
between dietary aflatoxin B1 exposure and p53 mutations in human liver cancer.

27 28

29 Benzo[a]pyrene has been shown to be a complete carcinogen in multiple animal species. Skin

30 tumors in mice, rats, rabbits, and guinea pigs have been associated with repeated application of

benzo[a]pyrene to skin in the absence of exogenous promoters (Sivak et al., 1997; Grimmer et al., 1984; Habs et al., 1984; Grimmer et al., 1983; Habs et al., 1980; Schmähl et al., 1977; Schmidt et al., 1984; Grimmer et al., 1984; Habs et al., 1984; Grimmer et al., 1984; Habs et al., 1984; Schmähl et al., 1984; Schmidt e

- 33 <u>1973; Roe et al., 1970; Poel, 1959</u>). The proposed mutagenic MOA for benzo[a]pyrene involves the
- bioactivation of benzo[a]pyrene to DNA-reactive metabolites, direct DNA damage by reactive
- 35 metabolites, formation and fixation of DNA mutations, and clonal expansion of mutated cells. These
- 36 key events have been observed in animals and humans and by multiple routes of exposure (see
- 37 Table 1-17 of the Toxicological Review). Benzo[a]pyrene specific skin adducts have been observed
- in vivo in both benzo[a]pyrene-treated mouse skin and human skin exposed to PAH-mixtures
- 39 (Godschalk et al., 2001; Rojas et al., 2001; Zhang et al., 1990). In addition, studies of dermal
- 40 benzo[a]pyrene exposure in mice have shown increased mutations in several gene targets including

41 the tumor suppressor p53 (<u>Ruggeri et al., 1993</u>), the proto-oncogene H-Ras (<u>Wei et al., 1999</u>;

42 <u>Chakravarti et al., 1995</u>) and the lacz transgene (<u>Miller et al., 2000</u>). Studies which examine

- 43 mutational spectra in human skin tumors thought to be related to PAH exposure are not available in44 the literature.
- 45
- 46 The lack of specific H-ras mutational evidence in humans (due to lack of human studies) or
- 47 suggestive evidence of p53 mutations in UV-induced human skin tumors does not preclude the fact
- 48 that benzo[a]pyrene can initiate DNA damage via DNA adducts. If not adequately repaired, this
- 49 damage can form mutations and mutagenesis is a well-established cause of carcinogenesis.

1 2

3

Text in the mode of action analysis for carcinogenicity (in Section 1.1.5) has been modified to include studies observing additional target gene mutations (in addition to H-ras) in dermally exposed mice (Miller et al., 2000; Ruggeri et al., 1993).

4 5

6 **Comment:** *Exceedance of maximum tolerated dose in studies used to derive the dermal slope factor.* 7 Arcadis and EPRI disagreed with the study that EPA selected for characterizing the dermal slope 8 factor, Sivak et al. (1997), stating that this study included exposure levels that exceeded the 9 maximum tolerated dose (MTD) by causing significant skin toxicity and excessive mortality, and

10 therefore is not suitable for the derivation of the dermal slope factor.

11

12 **EPA Response:** While lower lifetime exposures are preferred for cancer risk estimation, EPA 13 disagrees that studies demonstrating carcinogenicity, with or without causing mortality, should 14 automatically be excluded from cancer risk assessment. EPA's Guidelines for Carcinogen Risk

15 Assessment (U.S. EPA, 2005) distinguish between cancer and other effects when assessing toxicity

16 at exposures at or above the maximum tolerated dose, e.g.: "If adequate data demonstrate that the

17

effects are solely the result of excessive toxicity rather than carcinogenicity [emphasis added] of the 18 tested agent *per se*, then the effects may be regarded as not appropriate to include in assessment of

19 the potential for human carcinogenicity of the agent." Therefore, EPA concluded it is justified in

20 excluding individual *dose aroups* with exposure above the MTD, but not necessarily the entire study.

21

22 Some skin toxicity was noted in the highest dose group with an 80% incidence of scabs and sores.

23 However, the next lower dose group did not produce notable non-cancer skin lesions. An analysis

24 excluding the high dose group from <u>Sivak et al. (1997)</u> (not shown in the assessment) showed no

25 impact on the resulting dermal slope factor (within one significant figure), because the slope factor

26 reflects the dose-response relationship at the lower exposure levels. When reported by study

27 authors, text to clarify incidence of any non-cancerous skin lesions has been added to Section 1.1.5.

28

29 **Comment:** Cross-species extrapolation of dermal slope factor. CDM Smith, Arcadis and EPRI

30 commented that differences between mouse and human skin should be recognized and accounted

31 for in the calculation of the dermal slope factor for skin cancer. Specifically, the commenters stated

32 mouse skin is thinner and more permeable to benzo[a]pyrene and produces more benzo[a]pyrenediol epoxide metabolites than humans. They also stated that aryl hydrocarbon hydroxylase 33

34 inducibility is higher in mice than humans and that DNA-adducts are formed at higher rates in

35 mouse skin and repaired at lower rates relative to human skin. Another commenter, CH2M Hill

36 recommended increased discussion of the uncertainty regarding the method for interspecies

37 scaling of the dermal slope factor.

38

39 **EPA Response:** The key events in the mutagenic mode of action of benzo[a]pyrene are well 40 conserved between species and tissues (see Section 1.1.5 and Table 1-17 of the Toxicological 41 Review). However, the quantitative differences in processes that may presumably affect the 42 carcinogenicity of benzo[a]pyrene are not well known. These processes likely include species (and 43 inter-individual) differences in rates of absorption, metabolism into reactive metabolites, de-44 activation of reactive metabolites, DNA repair, and DNA replication. As mentioned in Section E of 45 the Supplemental Information, biological information is not currently comprehensive or detailed 46 enough to develop robust models for cross-species extrapolation. This assessment evaluated 47 several alternative approaches in Appendix E of the Supplemental Information. Of these potential 48 approaches, allometric scaling using body weight to the ³/₄ power was selected based on observed 49 species differences in the rate of dermal absorption and metabolism of benzo[a]pyrene. Using this

1 approach, rodents and humans exposed to the same daily dose of a carcinogen, adjusted for BW^{3/4},

2 would be expected to have equal lifetime risks of cancer. Several assumptions are made in the use

- 3 of this scaling method. First, it is assumed that the toxicokinetic processes in the skin will scale
- 4 similarly to interspecies differences in whole-body toxicokinetics. Secondly, it is assumed that the
- 5 risk at low doses of benzo[a]pyrene is linear. A charge question on the method used for
- 6 interspecies scaling of the dermal slope factor has been included in the charge to the external peer7 reviewers.
- 8

9 **Comment:** *Uncertainties regarding the implementation of the dermal slope factor.* CH2M Hill

10 suggested that the IRIS assessment for benzo[a]pyrene could be strengthened with increased

discussion of uncertainties in assessing risk from exposure to benzo[a]pyrene in soil. In addition,

they noted that EPA's Risk Assessment Guidelines for Superfund part E (U.S. EPA, 2004)

13 recommend an absorption factor of 13% for benzo[a]pyrene exposure through soil, but that this is

- for systemic absorption and may not be consistent with the mode of action of benzo[a]pyrene in the skin. Another commenter, USWAG, stated that expressing skin cancer risk for benzo[a]pyrene in
- skin. Another commenter, USWAG, stated that expressing skin cancer risk for benzo[a]pyrene in
 terms of (ug/d)⁻¹ is not appropriate because of the implicit assumption that the surface area over
- which exposure occurs is irrelevant.
- 18

EPA Response: The lifetime dermal cancer bioassays available for benzo[a]pyrene reported the 19 total dose applied to skin and reported the general area treated (i.e. dorsal or interscapular area). 20 21 but did not quantify the actual cm² of skin treated. For this reason, the draft dermal slope factor 22 expresses risk of skin tumors from benzo[a]pyrene dermal exposure as risk per ug/d. The 23 assumption of this dose metric is that risk at low doses of benzo[a]pyrene is dependent on absolute 24 dermal dose and not dose per unit of skin, meaning that a higher exposure concentration of 25 benzo[a]pyrene contacting a smaller area of exposed skin could carry the same risk of skin tumors 26 as a lower exposure concentration of benzo[a]pyrene that contacts a larger area of skin. The skin 27 surface area exposed to benzo[a]pyrene contaminated media is an important variable in the exposure assessment calculation of the absolute dermal dose of benzo[a]pyrene. An increase in 28 29 skin area exposed to benzo[a]pyrene contaminated media would result in an increased absolute 30 dermal dose, and therefore an associated increase in risk. Example equations for calculating the 31 absolute dermal dose of benzo[a]pyrene are included below. 32

33 The dermal slope factor is based on applied dose of benzo[a]pyrene in solvent. As environmental 34 dermal exposure is assumed to be predominantly through contaminated soil, it is recommended

- dermal exposure is assumed to be predominantly through contaminated soil, it is recommended that exposure assessment include an adjustment for exposure through soil. In the attached
- 35 that exposure assessment include an adjustment for exposure through soil. In the attached
- example exposure calculations for exposure to benzo[a]pyrene through soil, a soil to skin transfer
 coefficient (Ksoil) of 0.25 was estimated based on a study in monkeys (Wester et al., 1990) which
- coefficient (Ksoil) of 0.25 was estimated based on a study in monkeys (Wester et al., 1990) which
 measured dermal absorption of benzo[a]pyrene from soil as 13% and from acetone as 51%. In the
- 39 acetone vehicle, all of the benzo[a]pyrene contacts the skin after the acetone evaporates, implying
- 40 that 51% of the benzo[a]pyrene contacting the skin is absorbed. The soil experiment found that

41 13% was absorbed, so dividing this by 0.51 indicates that 25% of the benzo[a]pyrene in soil must

- 42 have contacted the skin. This may be a high estimate because <u>Wester et al. (1990)</u> used a low
- 43 carbon soil (0.9%).
- 44

45 Comment: "Real world" validation of dermal slope factor. Arcadis and EPRI recommended that EPA
46 perform calculations to determine if the proposed dermal slope factor is scientifically supportable.
47 These commenters stated that based on their calculations (details not provided to EPA) the current

- 48 dermal slope factor would indicate that benzo[a]pyrene and benzo[a]pyrene-toxic equivalents in
- soil throughout the United States are the cause of 30% of all human skin cancers and that 100% of

- 1 users of pharmaceutical coal tar products should develop skin cancer due to exposure to
- 2 benzo[a]pyrene. The commenters recommended that EPA not derive a dermal slope factor in the
- 3 benzo[a]pyrene assessment, but stated that if a dermal slope factor was included a real world
- 4 validation should be included to determine if the value is scientifically supportable.
- 5 6
- **EPA Response:** The commenters did not provide the exposure equation, benzo[a]pyrene soil
- 7 concentration, or assumptions used in their calculation of a 30% risk estimate. Without these
- 8 details, EPA could not reproduce the exposure and associated risk estimates presented in the
- 9 written comments.
- 10
- 11 EPA has used the proposed dermal slope factor to calculate average daily dermal doses and
- 12 associated risks at those dermal doses. A modified exposure equation, similar to equation 3.11 (for
- 13 dermal absorbed dose upon soil contact) in EPA's Risk Assessment Guidelines for Superfund part E
- 14 (U.S. EPA, 2004), was used to calculate the average-daily dose of benzo[a]pyrene absorbed into the
- skin (not absorbed systemically, which is the original intent of the equation). Central tendency
- 16 exposures using benzo[a]pyrene soil concentrations of 100 ppb (a central estimate of several
- 17 published measurements of uncontaminated sites) and default exposure assumptions result in risk
- 18 estimates of approximately 6 x 10⁻⁶ for average lifetime exposure that occurs during childhood, and
- 19 $1 \ge 10^{-6}$ for average lifetime exposure that occurs during adulthood.
- 20
- 21 Example exposure calculations for risk associated with a central tendency exposure to
- 22 benzo[a]pyrene throughout a lifetime (including childhood) are included below.
- 23

Example Calculations: Estimated Dermal Dose and Risk from Exposure to Benzo[a]pyrene in Soil

LADD _{dermal}	=	<u>C_{soil} × CF × SA × AF × ED × EF × K_{soil} AT</u>
Risk _{dermal}	=	LADD _{dermal} × SF _{dermal} × ADAF
LADD _{dermal} = Lifetime Average Daily	y Dose (ug/day)	
C _{soil} = Soil Concentration (ug/kg)		
CF = Conversion Factor (kg/ug)		
SA = Surface Area of Skin Exposed	(cm ²)	
AF = Soil Adherence Factor (ug/cm AT = averaging time, the period over exposure is averaged (days)		
ED = Exposure Duration (years)		
EF = Exposure Frequency (days/ye K _{soil} = Soil to skin Transfer Coefficie (unitless)		yrene
SF _{dermal} = Dermal Slope Factor for b	enzo[a]pyrene (ı	ıg/day)-1
ADAF = Age Dependent Adjustmen	t Factor (unitless	3)

Central Tendency Exposure (CTE) Dose: Dermal Contact with benzo[a]pyrene in Soil - Child age 1-<2 years

LADD _{dermal}	C_{soil}	CF	SA _{child 1-<6}	AF _{child 1-<6}	ED _{child 1-<6}	EF	K _{soil}	AT
ug/day	ug/kg	kg/ug	cm ²	ug/cm ² -day	years	days/year	unitless	days
3.84E-05	100	1.00E-09	2800	40	1	350	0.25	25550

Risk _{dermal}	LADD SF _{dermal}		ADAF
unitless	ug/day	(ug/day) ⁻¹	
2.30E-06	3.84E-05	0.006	10

4

Central Tendency Exposure (CTE) Dose: Dermal Contact with benzo[a]pyrene in Soil - Child age 2-<6 years

LADD _{dermal}	C_{soil}	CF	SA _{child 1-<6}	AF _{child 1-<6}	ED _{child 1-<6}	EF	K _{soil}	AT
ug/day	ug/kg	kg/ug	cm ²	ug/cm ² -day	years	days/year	unitless	days
1.53E-04	100	1.00E-09	2800	40	4	350	0.25	25550

Risk _{dermal}	LADD	LADD SF _{dermal}	
unitless	ug/day	(ug/day) ⁻¹	
2.76E-06	1.53E-04	0.006	3

Central Tendency Exposure (CTE) Dose: Dermal Contact with benzo[a]pyrene in Soil - Child age 6-<10 years

LADD _{dermal}	C_{soil}	CF	SA _{child 6-<10}	AF _{child 6-<10}	ED _{child 6-<10}	EF	K _{soil}	AT
ug/day	ug/kg	kg/ug	cm ²	ug/cm ² -day	years	days/year	unitless	days
7.81E-05	100	1.00E-09	5700	10	4	350	0.25	25550

Risk _{dermal}	LADD SF _{dermal}		ADAF
unitless	ug/day	(ug/day) ⁻¹	
1.41E-06	7.81E-05	0.006	3

Total CTE	
Riskchild	6.47E-06

LADD _{dermal}	C_{soil}	CF	SA _{adult}	AF_{adult}	$\mathrm{ED}_{\mathrm{adult}}$	EF	K _{soil}	AT
ug/day	ug/kg	kg/ug	cm ²	ug/cm ² -day	years	days/year	unitless	days
1.76E-04	100	1.00E-09	5700	10	9	350	0.25	25550

Central Tendency Exposure (CTE) Dose: Dermal Contact with benzo[a]pyrene in Soil – Adult

Risk _{dermal}	LADD	SF _{dermal}	ADAF
unitless	ug/day	(ug/day) ⁻¹	
1.05E-06	1.76E-04	0.006	1

CTE Assumptions:

 C_{soil} = an assumed concentration of 0.1 ppm or 100 ug/kg; central tendency value based on average of data for all sites (to 1 significant figure) in Table A-4 of Supplemental Information of the Public Comment Draft (dated August 2013) except the 3 high-end urban sites.

 $SA_{child 1-<6 years} = 2800 \text{ cm}^2$ for child residents; average of the 50th percentile values for males and females 1 to <6 years of age (U.S. EPA, 2004, Exhibit 3-5); the child resident was assumed to wear a short-sleeved shirt, and shorts (no shoes); therefore, the exposed skin surface is limited to the head, hands, forearms, lower legs, and feet. $SA_{child 6-<10 years} = 5700 \text{ cm}^2$; adult value assumed based on (U.S. EPA, 2004, Page 3-19).

SA_{adult} = 5700 cm² for adults; average of the 50th percentile values for males and females greater than 18 years of age (<u>U.S. EPA, 2004, Exhibit 3-5</u>); assumed to wear a short-sleeved shirt, short pants and shoes; therefore, the exposed skin surface is limited to the head, hands, lower legs, and forearms.

 $AF_{child 1-<6 years} = 40 \text{ ug/cm}^2-day$ for children; based on the 50th percentile weighted AF for children playing at a daycare center (<u>U.S. EPA, 2004, Exhibit 3-3 and 3-5</u>); weighted based on body parts exposed.

 $AF_{child 6-<10 years} = 10 ug/cm^2-day;$ adult value assumed based on (<u>U.S. EPA, 2004, Page 3-19</u>).

 $AF_{adult} = 10 \text{ ug/cm}^2\text{-}day$ for adult residents; based on the geometric mean weighted AFs for groundskeepers (<u>U.S. EPA</u>, <u>2004</u>, <u>Exhibit 3-3 and 3-5</u>); weighted based on body parts exposed.

AT = averaging time (the period over which the exposure is averaged).

 $ED_{child 1-<2 years} = 1$ year for a child resident.

 $ED_{child 2-<6 years} = 4$ years for a child resident.

 $ED_{child 6-<10 years} = 4$ years for a child resident based on a central tendency residency time of 9 years minus 5 years as a child age 1-<6 years at that residence.

ED_{adult} = 9 years for adults based on a central tendency residency time of 9 years.

EF = 350 days per year; assumes 2 weeks away from the contaminated area each year for vacation.

 $K_{soil} = 0.25$; This estimate was based on a study in monkeys (<u>Wester et al., 1990</u>) which measured dermal absorption of benzo[a]pyrene from soil as 13% and from acetone as 51%. In the acetone vehicle, all of the benzo[a]pyrene contacts the skin after the acetone evaporates, implying that 51% of the benzo[a]pyrene contacting the skin is absorbed. The soil experiment found that 13% was absorbed, so dividing this by 0.51 indicates that 25% must have contacted the skin.

AT = assumed to be 70 years converted to days: 25550 days.

 $SF_{dermal} = 0.006 (ug/day)^{-1}$

ADAF = 10 for children 1-<2 years; 3 for children 2-<10 years.

2 **REFERENCES FOR APPENDICES**

1

3 4	<u>Abe, S; Nemoto, N; Sasaki, M.</u> (1983a). Comparison of aryl hydrocarbon hydroxylase activity and inducibility of sister-chromatid exchanges by polycyclic aromatic hydrocarbons in
5	mammalian cell lines. Mutat Res 122: 47-51. http://dx.doi.org/10.1016/0165-
6	7992(83)90141-0
7	Abe, S; Nemoto, N; Sasaki, M. (1983b). Sister-chromatid exchange induction by indirect
8	mutagens/carcinogens, aryl hydrocarbon hydroxylase activity and benzo[alpha]pyrene
9	metabolism in cultured human hepatoma cells. Mutat Res 109: 83-90.
10	http://dx.doi.org/10.1016/0027-5107(83)90097-0
11	Achard, S; Perderiset, M; Jaurand, MC. (1987). Sister chromatid exchanges in rat pleural
12	mesothelial cells treated with crocidolite, attapulgite, or benzo 3-4 pyrene. Br J Ind Med
13	44: 281-283.
14	Adler, ID; Ingwersen, I. (1989). Evaluation of chromosomal aberrations in bone marrow of
15	1C3F1 mice. Mutat Res 224: 343-345. <u>http://dx.doi.org/10.1016/0165-1218(89)90176-6</u>
16	Adler, ID; Kliesch, U; Kiefer, F. (1989). Clastogenic effects of benzo[a]pyrene in postimplantation
17	embryos with different genetic background. Teratog Carcinog Mutagen 9: 383-392.
18	http://dx.doi.org/10.1002/tcm.1770090606
19	Agarwal, R; Medrano, EE; Khan, IU; Nordlund, JJ; Mukhtar, H. (1991). Metabolism of
20	benzo[a]pyrene by human melanocytes in culture. Carcinogenesis 12: 1963-1966.
21	http://dx.doi.org/10.1093/carcin/12.10.1963
22	Agrelo, C; Amos, H. (1981). DNA repair in human fibroblasts. In FJ de Serres; J Ashby (Eds.),
23	Evaluation of short-term tests for carcinogens: Report of the International Collaborative
24	Program (pp. 528-532). New York, NY: Elsevier/North-Holland.
25	Albert, RE; Miller, ML; Cody, T; Andringa, A; Shukla, R; Baxter, CS. (1991). Benzo[a]pyrene-
26	induced skin damage and tumor promotion in the mouse. Carcinogenesis 12: 1273-
27	1280. <u>http://dx.doi.org/10.1093/carcin/12.7.1273</u>
28	<u>Albert, RE; Miller, ML; Cody, TE; Talaska, G; Underwood, P; Andringa, A.</u> (1996). Epidermal
29	cytokinetics, DNA adducts, and dermal inflammation in the mouse skin in response to
30	repeated benzo[a]pyrene exposures. Toxicol Appl Pharmacol 136: 67-74.
31	Alderson, MR; Clarke, JA. (1983). Cancer incidence in patients with psoriasis. Br J Cancer 47:
32	857-859.
33	Alexandrie, AK; Nyberg, F; Warholm, M; Rannug, A. (2004). Influence of CYP1A1, GSTM1,
34	GSTT1, and NQO1 genotypes and cumulative smoking dose on lung cancer risk in a
35	Swedish population. Cancer Epidemiol Biomarkers Prev 13: 908-914.
36	<u>Alexandrov, K; Rojas, M; Goldberg, M; Camus, AM; Bartsch, H.</u> (1990). A new sensitive
37	fluorometric assay for the metabolism of ()-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene
38	by human hair follicles. Carcinogenesis 11: 2157-2161.

1	Alfheim, I; Ramdahl, T. (1984). Contribution of wood combustion to indoor air pollution as
2	measured by mutagenicity in Salmonella and polycyclic aromatic hydrocarbon
3	concentration. Environ Mol Mutagen 6: 121-130.
4	Allen-Hoffmann, BL; Rheinwald, JG. (1984). Polycyclic aromatic hydrocarbon mutagenesis of
5	human epidermal keratinocytes in culture. PNAS 81: 7802-7806.
6	Alzieu, P; Cassand, P; Colin, C; Grolier, P; Narbonne, JF. (1987). Effect of vitamins A, C and
7	glutathione on the mutagenicity of benzo[a]pyrene mediated by S9 from vitamin A-
8	deficient rats. Mutat Res 192: 227-231.
9	Amacher, DE; Paillet, SC. (1983). The activation of procarcinogens to mutagens by cultured rat
10	hepatocytes in the L5178Y/TK mutation assay. Mutat Res 113: 77-88.
11	<u>http://dx.doi.org/10.1016/0165-1161(83)90242-X</u>
12	<u>Amacher, DE; Paillet, SC; Turner, GN; Ray, VA; Salsburg, DS.</u> (1980). Point mutations at the
13	thymidine kinase locus in L5178Y mouse lymphoma cells. II. Test validation and
14	interpretation. Mutat Res 72: 447-474. <u>http://dx.doi.org/10.1016/0027-5107(80)90118-</u>
15	<u>9</u>
16	Amacher, DE; Turner, GN. (1980). Promutagen activation by rodent-liver postmitochondrial
17	fractions in the L5178Y/TK cell mutation assay. Mutat Res 74: 485-501.
18	<u>http://dx.doi.org/10.1016/0165-1161(80)90179-X</u>
19	Ames, BN; Durston, WE; Yamasaki, E; Lee, FD. (1973). Carcinogens are mutagens: A simple test
20	system combining liver homogenates for activation and bacteria for detection. PNAS 70:
21	2281-2285.
22	Ames, BN; Mccann, J; Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens
23	with the Salmonella/mammalian-microsome mutagenicity test. DNA Repair 31: 347-363.
24	Ampy, FR; Saxena, S; Verma, K. (1988). Mutagenicity of benzo(a)pyrene in uninduced tissues
25	from BALB/c mice and Sprague-Dawley rats as an index of possible health risks using the
26	Salmonella mutagenicity assay. Cytobios 56: 81-87.
27	Anderson, KE; Kadlubar, FF; Kulldorff, M; Harnack, L; Gross, M; Lang, NP; Barber, C; Rothman, N;
28	Sinha, R. (2005). Dietary intake of heterocyclic amines and benzo(a)pyrene: associations
29	with pancreatic cancer. Cancer Epidemiol Biomarkers Prev 14: 2261-2265.
30	http://dx.doi.org/10.1158/1055-9965.epi-04-0514
31	<u>Andrysík, Z; Vondrácek, J; Machala, M; Krcmár, P; Svihálková-Sindlerová, L; Kranz, A; Weiss, C;</u>
32	Faust, D; Kozubík, A; Dietrich, C. (2007). The aryl hydrocarbon receptor-dependent
33	deregulation of cell cycle control induced by polycyclic aromatic hydrocarbons in rat
34	liver epithelial cells. Mutat Res 615: 87-97.
35	http://dx.doi.org/10.1016/j.mrfmmm.2006.10.004
36	Antignac, E; Koch, B; Grolier, P; Cassand, P; Narbonne, JF. (1990). Prochloraz as potent inhibitor
37	of benzo[a]pyrene metabolism and mutagenic activity in rat liver fractions. Toxicol Lett
38	54: 309-315.
39	<u>Arafa, HM; Aly, HA; Abd-Ellah, MF; El-Refaey, HM.</u> (2009). Hesperidin attenuates benzo[alpha]
40	pyrene-induced testicular toxicity in rats via regulation of oxidant/antioxidant balance.
41	Toxicol Ind Health 25: 417-427. <u>http://dx.doi.org/10.1177/0748233709106624</u>

1	Arce, GT; Allen, JW; Doerr, CL; Elmore, E; Hatch, GG; Moore, MM; Sharief, Y; Grunberger, D;
2	Nesnow, S. (1987). Relationships between benzo(a)pyrene-DNA adduct levels and
3	genotoxic effects in mammalian cells. Cancer Res 47: 3388-3395.
4	Archibong, AE; Inyang, F; Ramesh, A; Greenwood, M; Nayyar, T; Kopsombut, P; Hood, DB;
5	Nyanda, AM. (2002). Alteration of pregnancy related hormones and fetal survival in F-
6	344 rats exposed by inhalation to benzo(a)pyrene. Reprod Toxicol 16: 801-808.
7	Archibong, AE; Inyang, FE; Ramesh, A; Hood, DB; Greenwood, M; Nunes, MG; Nayyar, T;
8	Kopsumbut, P; Nyanda, AM. (2001). Reduction in luteotropic activity and embryonic
9	survival in pregnant rats by inhaled benzo(a)pyrene. Toxicologist 60: 274.
10	Archibong, AE; Ramesh, A; Niaz, MS; Brooks, CM; Roberson, SI; Lunstra, DD. (2008). Effects of
11	benzo(a)pyrene on intra-testicular function in F-344 rats. Int J Environ Res Public Health
12	5: 32-40. <u>http://dx.doi.org/10.3390/ijerph5010032</u>
13	Armstrong, B; Hutchinson, E; Unwin, J; Fletcher, T. (2004). Lung cancer risk after exposure to
14	polycyclic aromatic hydrocarbons: A review and meta-analysis [Review]. Environ Health
15	Perspect 112: 970-978. <u>http://dx.doi.org/10.1289/ehp.6895</u>
16	Armstrong, B; Tremblay, C; Baris, D; Thériault, G. (1994). Lung cancer mortality and polynuclear
17	aromatic hydrocarbons: A case-cohort study of aluminum production workers in Arvida,
18	Quebec, Canada. Am J Epidemiol 139: 250-262.
19	Arthur D Little (Arthur D Little Inc.). (1989). Assessment of the cocarcinogenic/promoting
20	activity of asphalt fumes. National Institute for Occupational Safety and Health.
21	http://www.ntis.gov/search/product.aspx?ABBR=PB91110213
22	Atillasoy, ES; Elenitsas, R; Sauter, ER; Soballe, PW; Herlyn, M. (1997). UVB induction of epithelial
23	tumors in human skin using a RAG-1 mouse xenograft model. J Invest Dermatol 109:
24	704-709. <u>http://dx.doi.org/10.1111/1523-1747.ep12340661</u>
25	ATSDR (Agency for Toxic Substances and Disease Registry). (1995). Toxicological profile for
26	polycyclic aromatic hydrocarbons [ATSDR Tox Profile]. Washington, DC: U.S. Department
27	of Health and Human Services. <u>http://www.atsdr.cdc.gov/toxprofiles/tp69.pdf</u>
28	Autrup, H; Harris, CC; Stoner, GD; Selkirk, JK; Schafer, PW; Trump, BF. (1978). Metabolism of
29	[3H]benzo[a]pyrene by cultured human bronchus and cultured human pulmonary
30	alveolar macrophages. Lab Invest 38: 217-224.
31	Autrup, H; Seremet, T. (1986). Excretion of benzo[a]pyrene-Gua adduct in the urine of
32	benzo[a]pyrene-treated rats. Chem Biol Interact 60: 217-226.
33	<u>http://dx.doi.org/10.1016/0009-2797(86)90030-X</u>
34	<u>Autrup, H; Wefald, FC; Jeffrey, AM; Tate, H; Schwartz, RD; Trump, BF; Harris, CC.</u> (1980).
35	Metabolism of benzo[a]pyrene by cultured tracheobronchial tissues from mice, rats,
36	hamsters, bovines and humans. Int J Cancer 25: 293-300.
37	<u>http://dx.doi.org/10.1002/ijc.2910250219</u>
38	Awogi, T; Sato, T. (1989). Micronucleus test with benzo[a]pyrene using a single peroral
39	administration and intraperitoneal injection in males of the MS/Ae and CD-1 mouse
40	strains. Mutat Res 223: 353-356. <u>http://dx.doi.org/10.1016/0165-1218(89)90084-0</u>
41	Babson, JR; Russo-Rodriguez, SE; Rastetter, WH; Wogan, GN. (1986). In vitro DNA-binding of
42	microsomally-activated fluoranthene: evidence that the major product is a fluoranthene

1	N2-deoxyguanosine adduct. Carcinogenesis 7: 859-865.
2	http://dx.doi.org/10.1093/carcin/7.6.859
3	Balansky, R; Mircheva, Z; Blagoeva, P. (1994). Modulation of the mutagenic activity of cigarette
4	smoke, cigarette smoke condensate and benzo[a]pyrene in vitro and in vivo.
5	Mutagenesis 9: 107-112. <u>http://dx.doi.org/10.1093/mutage/9.2.107</u>
6	Balmain, A; Harris, CC. (2000). Carcinogenesis in mouse and human cells: parallels and
7	paradoxes [Review]. Carcinogenesis 21: 371-377.
8	Bao, H; Vepakomma, M; Sarkar, MA. (2002). Benzo(a)pyrene exposure induces CYP1A1 activity
9	and expression in human endometrial cells. J Steroid Biochem Mol Biol 81: 37-45.
10	<u>http://dx.doi.org/10.1016/S0960-0760(02)00045-6</u>
11	Barfknecht, TR; Hites, RA; Cavaliers, EL; Thilly, WG. (1982). Human cell mutagenicity of
12	polycyclic aromatic hydrocarbon components of diesel emissions. Dev Toxicol Environ
13	Sci 10: 277-294.
14	Bayer, U. (1978). In vivo induction of sister chromatid exchanges by three polyaromatic
15	hydrocarbons. In PW Jones; RI Freudenthal (Eds.), Polynuclear aromatic hydrocarbons:
16	Second international symposium on analysis, chemistry, and biology (pp. 423-428). New
17	York, NY: Raven Press.
18	Bayer, U; Younes, M; Siegers, CP. (1981). Enhancement of benzo(a)pyrene-induced sister
19	chromatid exchanges as a consequence of glutathione depletion in vivo. Toxicol Lett 9:
20	339-343.
21	Beland, F; Culp, S. (1998). Chronic bioassay of two composite samples from selected
22	manufactured gas plant waste sites [unpublished report]. (Technical Report 6722.02).
23	Jefferson, AK: National Center for Toxicological Research.
24	Benjamin, H; Storkson, J; Tallas, PG; Pariza, MW. (1988). Reduction of benzo[a]pyrene-induced
25	forestomach neoplasms in mice given nitrite and dietary soy sauce. Food Chem Toxicol
26	26: 671-678. <u>http://dx.doi.org/10.1016/0278-6915(88)90066-X</u>
27	Berenblum, I; Haran, N. (1955). The influence of croton oil and of polyethylene glycol-400 on
28	carcinogenesis in the forestomach of the mouse. Cancer Res 15: 510-516.
29	Bevan, DR; Sadler, VM. (1992). Quinol diglucuronides are predominant conjugated metabolites
30	found in bile of rats following intratracheal instillation of benzo[a]pyrene.
31	Carcinogenesis 13: 403-407. <u>http://dx.doi.org/10.1093/carcin/13.3.403</u>
32	Bevan, DR; Ulman, MR. (1991). Examination of factors that may influence disposition of
33	benzo[a]pyrene in vivo: Vehicles and asbestos. Cancer Lett 57: 173-179.
34 25	http://dx.doi.org/10.1016/0304-3835(91)90212-Z
35	Bevan, DR; Weyand, EH. (1988). Compartmental analysis of the disposition of benzo[a]pyrene in
36	rats. Carcinogenesis 9: 2027-2032.
37 28	Biancifiori, C; Caschera, F; Giornelli-Santulli, F; Bucciarelli, E. (1967). The action of oestrone and
38 39	four chemical carcinogens in intact and ovariectomized BALB/c/Cb/Se mice. Br J Cancer 21: 452-459.
39 40	Bingham, E; Falk, HL. (1969). Environmental carcinogens. The modifying effect of cocarcinogens
40 41	on the threshold response. Arch Environ Health 19: 779-783.
41	on the threshold response. Afth environ nearth 19, 779-783.

1	<u>Bláha, L; Kapplová, P; Vondrácek, J; Upham, B; Machala, M.</u> (2002). Inhibition of gap-junctional
2	intercellular communication by environmentally occurring polycyclic aromatic
3	hydrocarbons. Toxicol Sci 65: 43-51. http://dx.doi.org/10.1093/toxsci/65.1.43
4	Bock, KW; Clausbruch, UC, v; Winne, D. (1979). Absorption and metabolism of naphthalene and
5	benzo(a)pyrene in the rat jejunum in situ. Med Biol 57: 262-264.
6	Boerrigter, ME. (1999). Treatment of lacZ plasmid-based transgenic mice with benzo[a]pyrene:
7	Measurement of DNA adduct levels, mutant frequencies, and mutant spectra. Environ
8	Mol Mutagen 34: 140-147. <u>http://dx.doi.org/10.1002/(SICI)1098-</u>
9	2280(1999)34:2/3<140::AID-EM13>3.0.CO;2-J
10	Boffetta, P; Jourenkova, N; Gustavsson, P. (1997). Cancer risk from occupational and
11	environmental exposure to polycyclic aromatic hydrocarbons [Review]. Cancer Causes
12	Control 8: 444-472. <u>http://dx.doi.org/10.1023/A:1018465507029</u>
13	Bol, SA; van Steeg, H; Jansen, JG; Van Oostrom, C; de Vries, A; de Groot, AJ; Tates, AD; Vrieling,
14	H; van Zeeland, AA; Mullenders, LH. (1998). Elevated frequencies of benzo(a)pyrene-
15	induced Hprt mutations in internal tissue of XPA-deficient mice. Cancer Res 58: 2850-
16	2856.
17	Bolton, JL; Trush, MA; Penning, TM; Dryhurst, G; Monks, TJ. (2000). Role of quinones in
18	toxicology [Review]. Chem Res Toxicol 13: 135-160.
19	<u>http://dx.doi.org/10.1021/tx9902082</u>
20	Bos, RP; Theuws, JLG; Jongeneelen, FJ; Henderson, PT. (1988). Mutagenicity of bi-, tri- and
21	tetra-cyclic aromatic hydrocarbons in the taped-plate assay and in the conventional
22	Salmonella mutagenicity assay. Mutat Res Genet Toxicol 204: 203-206.
23	<u>http://dx.doi.org/10.1016/0165-1218(88)90090-0</u>
24	Bosetti, C; Boffetta, P; La Vecchia, C. (2007). Occupational exposures to polycyclic aromatic
25	hydrocarbons, and respiratory and urinary tract cancers: a quantitative review to 2005
26	[Review]. Ann Oncol 18: 431-446. <u>http://dx.doi.org/10.1093/annonc/mdl172</u>
27	<u>Boström, CE; Gerde, P; Hanberg, A; Jernström, B; Johansson, C; Kyrklund, T; Rannug, A;</u>
28	Törngvist, M; Victorin, K; Westerholm, R. (2002). Cancer risk assessment, indicators, and
29	guidelines for polycyclic aromatic hydrocarbons in the ambient air [Review]. Environ
30	Health Perspect 110 Suppl 3: 451-488.
31	<u>Bouayed, J; Desor, F; Rammal, H; Kiemer, AK; Tybl, E; Schroeder, H; Rychen, G; Soulimani, R.</u>
32	(2009a). Effects of lactational exposure to benzo[alpha]pyrene (B[alpha]P) on postnatal
33	neurodevelopment, neuronal receptor gene expression and behaviour in mice.
34	Toxicology 259: 97-106. <u>http://dx.doi.org/10.1016/j.tox.2009.02.010</u>
35	Bouayed, J; Desor, F; Soulimani, R. (2009b). Subacute oral exposure to benzo[alpha]pyrene
36	(B[alpha]P) increases aggressiveness and affects consummatory aspects of sexual
37	behaviour in male mice. J Hazard Mater 169: 581-585.
38	http://dx.doi.org/10.1016/j.jhazmat.2009.03.131
39	Bowman, ED; Rothman, N; Hackl, C; Santella, RM; Weston, A. (1997). Interindividual variation in
40	the levels of certain urinary polycyclic aromatic hydrocarbon metabolites following
41	medicinal exposure to coal tar ointment. Biomarkers 2: 321-327.
42	http://dx.doi.org/10.1080/135475097231553

1	Briedé, JJ; Godschalk, RW; Emans, MT; De Kok, TM; Van Agen, E; Van Maanen, J; Van Schooten,
2	FJ; Kleinjans, JC. (2004). In vitro and in vivo studies on oxygen free radical and DNA
3	adduct formation in rat lung and liver during benzo[a]pyrene metabolism. Free Radic
4	Res 38: 995-1002. <u>http://dx.doi.org/10.1080/10715760400000976</u>
5	Brooks, RA; Gooderham, NJ; Edwards, RJ; Boobis, AR; Winton, DJ. (1999). The mutagenicity of
6	benzo[a]pyrene in mouse small intestine. Carcinogenesis 20: 109-114.
7	http://dx.doi.org/10.1093/carcin/20.1.109
8	Bruce, WR; Heddle, JA. (1979). The mutagenic activity of 61 agents as determined by the
9	micronucleus, Salmonella, and sperm abnormality assays. Can J Genet Cytol 21: 319-
10	333.
11	Brune, H; Deutsch-Wenzel, RP; Habs, M; Ivankovic, S; Schmähl, D. (1981). Investigation of the
12	tumorigenic response to benzo(a)pyrene in aqueous caffeine solution applied orally to
13	Sprague-Dawley rats. J Cancer Res Clin Oncol 102: 153-157.
14	<u>http://dx.doi.org/10.1007/BF00410666</u>
15	Buckley, TJ; Waldman, JM; Dhara, R; Greenberg, A; Ouyang, Z; Lioy, PJ. (1995). An assessment of
16	a urinary biomarker for total human environmental exposure to benzo[a]pyrene. Int
17	Arch Occup Environ Health 67: 257-266. <u>http://dx.doi.org/10.1007/BF00409408</u>
18	Burdick, AD; Davis, JW; Liu, KJ; Hudson, LG; Shi, H; Monske, ML; Burchiel, SW. (2003).
19	Benzo(a)pyrene quinones increase cell proliferation, generate reactive oxygen species,
20	and transactivate the epidermal growth factor receptor in breast epithelial cells. Cancer
21	Res 63: 7825-7833.
22	Burstyn, I; Kromhout, H; Johansen, C; Langard, S; Kauppinen, T; Shaham, J; Ferro, G; Boffetta, P.
23	(2007). Bladder cancer incidence and exposure to polycyclic aromatic hydrocarbons
24	among asphalt pavers. Occup Environ Med 64: 520-526.
25	<u>http://dx.doi.org/10.1136/oem.2006.029801</u>
26	<u>Burstyn, I; Kromhout, H; Partanen, T; Svane, O; Langård, S; Ahrens, W; Kauppinen, T; Stücker, I;</u>
27	<u>Shaham, J; Heederik, D; Ferro, G; Heikkilä, P; Hooiveld, M; Johansen, C; Randem, BG;</u>
28	Boffetta, P. (2005). Polycyclic aromatic hydrocarbons and fatal ischemic heart disease.
29	Epidemiology 16: 744-750. <u>http://dx.doi.org/10.1097/01.ede.0000181310.65043.2f</u>
30	Butler, JD; Butterworth, V; Kellow, SC; Robinson, HG. (1984). Some observations on the
31	polycyclic aromatic hydrocarbon (PAH) content of surface soils in urban areas. Sci Total
32	Environ 33: 75-85. <u>http://dx.doi.org/10.1016/0048-9697(84)90382-6</u>
33	Byczkowski, JZ; Kulkarni, AP. (1990). Lipid peroxidation-coupled co-oxygenation of
34	benzo(a)pyrene and benzo(a)pyrene-7,8-dihydrodiol in human term placental
35	microsomes. Placenta 11: 17-26.
36	Cal/EPA (California Environmental Protection Agency). (1994). Benzo[a]pyrene as a toxic air
37	contaminant. Sacramento, CA.
38	http://oehha.ca.gov/air/toxic_contaminants/html/benzo%5Ba%5Dpyrene.htm
39	<u>Cal/EPA</u> (California Environmental Protection Agency). (2010). Public health goals for chemicals
40	in drinking water. Benzo(a)pyrene.
41	http://oehha.ca.gov/water/phg/pdf/091610Benzopyrene.pdf
42	Calaf, G; Russo, J. (1993). Transformation of human breast epithelial cells by chemical
43	carcinogens. Carcinogenesis 14: 483-492. <u>http://dx.doi.org/10.1093/carcin/14.3.483</u>

1	Carver, JH; Machado, ML; Macgregor, JA. (1986). Application of modified
2	Salmonella/microsome prescreen to petroleum-derived complex mixtures and
3	polynuclear aromatic hydrocarbons (PAH). Mutat Res Lett 174: 247-253.
4	http://dx.doi.org/10.1016/0165-7992(86)90042-4
5	Casto, BC; Janosko, N; Dipaolo, JA. (1977). Development of a focus assay model for
6	transformation of hamster cells in vitro by chemical carcinogens. Cancer Res 37: 3508-
7	3515.
8	Casto, BC; Pieczynski, WJ; Janosko, N; Dipaolo, JA. (1976). Significance of treatment interval and
9	DNA repair in the enhancement of viral transformation by chemical carcinogens and
10	mutagens. Chem Biol Interact 13: 105-125.
11	Cavalieri, E; Rogan, E; Toth, B; Munhall, A. (1981). Carcinogenicity of the environmental
12	pollutants cyclopenteno-[cd]pyrene and cyclopentano[cd]pyrene in mouse skin.
13	Carcinogenesis 2: 277-281.
14	<u>Cavalieri, EL; Higginbotham, S; Ramakrishna, NV; Devanesan, PD; Todorovic, R; Rogan, EG;</u>
15	Salmasi, S. (1991). Comparative dose-response tumorigenicity studies of
16	dibenzo[alpha,l]pyrene versus 7,12-dimethylbenz[alpha]anthracene,
17	benzo[alpha]pyrene and two dibenzo[alpha,l]pyrene dihydrodiols in mouse skin and rat
18	mammary gland. Carcinogenesis 12: 1939-1944.
19	http://dx.doi.org/10.1093/carcin/12.10.1939
20	Cavret, S; Laurent, C; Feidt, C; Laurent, F; Rychen, G. (2003). Intestinal absorption of 14C from
21	14C-phenanthrene, 14C-benzo[a]pyrene and 14C-tetrachlorodibenzo-para-dioxin:
22	approaches with the Caco-2 cell line and with portal absorption measurements in
23	growing pigs. Reprod Nutr Dev 43: 145-154. <u>http://dx.doi.org/10.1051/md:2003014</u>
24	<u>Chakradeo, PP; Kayal, JJ; Bhide, SV.</u> (1993). Effect of benzo(a)pyrene and
25	methyl(acetoxymethyl) nitrosamine on thymidine uptake and induction of aryl
26	hydrocarbon hydroxylase activity in human fetal oesophageal cells in culture. Cell Biol
27	Int 17: 671-676. <u>http://dx.doi.org/10.1006/cbir.1993.1117</u>
28	Chakravarti, D; Pelling, JC; Cavalieri, EL; Rogan, EG. (1995). Relating aromatic hydrocarbon-
29	induced DNA adducts and c-H-ras mutations in mouse skin papillomas: The role of
30	apurinic sites. PNAS 92: 10422-10426.
31	ChemIDplus. (2012). Benzo(a)pyrene [Database]. Bethesda, MD: National Library of Medicine.
32	Retrieved from http://chem.sis.nlm.nih.gov/chemidplus
33	<u>Chen, C; Tang, Y; Jiang, X; Qi, Y; Cheng, S; Qiu, C; Peng, B; Tu, B.</u> (2012). Early postnatal
34	benzo(a)pyrene exposure in Sprague-Dawley rats causes persistent neurobehavioral
35	impairments that emerge postnatally and continue into adolescence and adulthood.
36	Toxicol Sci 125: 248-261. <u>http://dx.doi.org/10.1093/toxsci/kfr265</u>
37	Chen, G; Gingerich, J; Soper, L; Douglas, GR; White, PA. (2010). Induction of lacZ mutations in
38	MutaMouse primary hepatocytes. Environ Mol Mutagen 51: 330-337.
39	<u>http://dx.doi.org/10.1002/em.20540</u>
40	<u>Chen, L; Devanesan, PD; Higginbotham, S; Ariese, F; Jankowiak, R; Small, GJ; Rogan, EG;</u>
41	Cavalieri, EL. (1996). Expanded analysis of benzo[a]pyrene-DNA adducts formed in vitro
42	and in mouse skin: their significance in tumor initiation. Chem Res Toxicol 9: 897-903.
43	http://dx.doi.org/10.1021/tx960004a

1	Chen, S; Nguyen, N; Tamura, K; Karin, M; Tukey, RH. (2003). The role of the Ah receptor and p38
2	in benzo[a]pyrene-7,8-dihydrodiol and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide-
3	induced apoptosis. J Biol Chem 278: 19526-19533.
4	http://dx.doi.org/10.1074/jbc.M300780200
5	Chen, X; An, H; Ao, L; Sun, L; Liu, W; Zhou, Z; Wang, Y; Cao, J. (2011). The combined toxicity of
6	dibutyl phthalate and benzo(a)pyrene on the reproductive system of male Sprague
7	Dawley rats in vivo. J Hazard Mater 186: 835-841.
8	http://dx.doi.org/10.1016/j.jhazmat.2010.11.078
9	Chiazze, L; Watkins, DK; Amsel, J. (1991). Asphalt and risk of cancer in man [Review]. Br J Ind
10	Med 48: 538-542.
11	<u>Choi, JY; Lee, KM; Cho, SH; Kim, SW; Choi, HY; Lee, SY; Im, HJ; Yoon, KJ; Choi, H; Choi, I;</u>
12	Hirvonen, A; Hayes, RB; Kang, D. (2003). CYP2E1 and NQO1 genotypes, smoking and
13	bladder cancer. Pharmacogenetics 13: 349-355.
14	http://dx.doi.org/10.1097/01.fpc.0000054096.48725.25
15	<u>Choi, S; Nishikawa, M; Sakoda, A; Sakai, Y.</u> (2004). Feasibility of a simple double-layered
16	coculture system incorporating metabolic processes of the intestine and liver tissue:
17	application to the analysis of benzo[a]pyrene toxicity. Toxicol In Vitro 18: 393-402.
18	http://dx.doi.org/10.1016/j.tiv.2003.09.010
19	Chouroulinkov, I; Gentil, A; Guerin, M. (1967). [Study of the carcinogenic activity of 9,10-
20	dimethyl-benzanthracene and of 3,4-benzopyrene given orally]. Bull Cancer 54: 67-78.
21	Chuang, HY; Lee, E; Liu, YT; Lee, D; Ideker, T. (2007). Network-based classification of breast
22	cancer metastasis. Mol Syst Biol 3: 140. <u>http://dx.doi.org/10.1038/msb4100180</u>
23	<u>Chung, JY; Kim, JY; Kim, WR; Lee, SG; Kim, YJ; Park, JE; Hong, YP; Chun, YJ; Park, YC; Oh, S; Yoo,</u>
24	KS; Yoo, YH; Kim, JM. (2007). Abundance of aryl hydrocarbon receptor potentiates
25	benzo[a]pyrene-induced apoptosis in Hepa1c1c7 cells via CYP1A1 activation. Toxicology
26	235: 62-72. <u>http://dx.doi.org/10.1016/j.tox.2007.03.013</u>
27	<u>Chung, JY; Kim, YJ; Kim, JY; Lee, SG; Park, JE; Kim, WR; Yoon, YD; Yoo, KS; Yoo, YH; Kim, JM.</u>
28	(2011). Benzo[a]pyrene reduces testosterone production in rat Leydig cells via a direct
29	disturbance of testicular steroidogenic machinery. Environ Health Perspect 119: 1569-
30	1574. <u>http://dx.doi.org/10.1289/ehp.1003391</u>
31	Clark, CR; Burnett, DM; Parker, CM; Arp, EW; Swanson, MS; Minsavage, GD; Kriech, AJ; Osborn,
32	<u>LV; Freeman, JJ; Barter, RA; Newton, PE; Beazley, SL; Stewart, CW.</u> (2011). Asphalt fume
33	dermal carcinogenicity potential: I. Dermal carcinogenicity evaluation of asphalt
34	(bitumen) fume condensates. Regul Toxicol Pharmacol 61: 9-16.
35	http://dx.doi.org/10.1016/j.yrtph.2011.04.003
36	Clement Associates, Inc, . (1990). Comparative potency approach for estimation of the total
37	cancer risk associated with exposures to mixtures of polycyclic aromatic hydrocarbons in
38	the environment: Appendices.
39	Clive, D; Johnson, KO; Spector, JF; Batson, AG; Brown, MM. (1979). Validation and
40	characterization of the L5178Y/TK+/- mouse lymphoma mutagen assay system. Mutat
41	Res 59: 61-108.
42	Cohen, GM; Haws, SM; Moore, BP; Bridges, JW. (1976). Benzo(a)pyren-3-yl hydrogen sulphate,
43	a major ethyl acetate-extractable metabolite of benzo(a)pyrene in human, hamster and

1	rat lung cultures. Biochem Pharmacol 25: 2561-2570. <u>http://dx.doi.org/10.1016/0006-</u>
2	2952(76)90510-4
3	Colapietro, AM; Goodell, AL; Smart, RC. (1993). Characterization of benzo[a]pyrene-initiated
4	mouse skin papillomas for Ha-ras mutations and protein kinase C levels. Carcinogenesis
5	14: 2289-2295. <u>http://dx.doi.org/10.1093/carcin/14.11.2289</u>
6	Conney, AH; Chang, RL; Jerina, DM; Wei, SJ. (1994). Studies on the metabolism of
7	benzo[a]pyrene and dose-dependent differences in the mutagenic profile of its ultimate
8	carcinogenic metabolite [Review]. Drug Metab Rev 26: 125-163.
9	http://dx.doi.org/10.3109/03602539409029788
10	Cook, JW; Hewett, CL; Hieger, I. (1933). 106. The isolation of a cancer-producing hydrocarbon
11	from coal tar. Parts I, II, and III. J Chem Soc395.
12	http://dx.doi.org/10.1039/JR9330000395
13	Cooper, AR; Moley, KH. (2008). Maternal tobacco use and its preimplantation effects on
14	fertility: More reasons to stop smoking [Review]. Seminars in Reproductive Medicine 26:
15	204-212. <u>http://dx.doi.org/10.1055/s-2008-1042959</u>
16	Cosma, GN; Jamasbi, R; Marchok, AC. (1988). Growth inhibition and DNA damage induced by
17	benzo[a]pyrene and formaldehyde in primary cultures of rat tracheal epithelial cells.
18	Mutat Res 201: 161-168. <u>http://dx.doi.org/10.1016/0027-5107(88)90122-4</u>
19	Cosma, GN; Marchok, AC. (1988). Benzo[a]pyrene- and formaldehyde-induced DNA damage
20	and repair in rat tracheal epithelial cells. Toxicology 51: 309-320.
21	<u>http://dx.doi.org/10.1016/0300-483X(88)90159-X</u>
22	Craig-Holmes, A; Shaw, M. (1977). Effects of six carcinogens on SCE frequency and cell kinetics
23	in cultured human lymphocytes. Mutat Res Environ Mutagen Relat Subj 46: 375-384.
24	http://dx.doi.org/10.1016/0165-1161(77)90014-0
25	Crespi, CL; Altman, JD; Marletta, MA. (1985). Xenobiotic metabolism and mutation in a human
26	lymphoblastoid cell line. Chem Biol Interact 53: 257-271.
27	Crofton-Sleigh, C; Doherty, A; Ellard, S; Parry, EM; Venitt, S. (1993). Micronucleus assays using
28	cytochalasin-blocked MCL-5 cells, a proprietary human cell line expressing five human
29	cytochromes P-450 and microsomal epoxide hydrolase. Mutagenesis 8: 363-372.
30	http://dx.doi.org/10.1093/mutage/8.4.363
31	Crowell, SR; Amin, SG; Anderson, KA; Krishnegowda, G; Sharma, AK; Soelberg, JJ; Williams, DE;
32	Corley, RA. (2011). Preliminary physiologically based pharmacokinetic models for
33	benzo[a]pyrene and dibenzo[def,p]chrysene in rodents. Toxicol Appl Pharmacol 257:
34	365-376. <u>http://dx.doi.org/10.1016/j.taap.2011.09.020</u>
35	Culp, SJ; Gaylor, DW; Sheldon, WG; Goldstein, LS; Beland, FA. (1998). A comparison of the
36	tumors induced by coal tar and benzo[a]pyrene in a 2-year bioassay. Carcinogenesis 19:
37	117-124.
38	Culp, SJ; Warbritton, AR; Smith, BA; Li, EE; Beland, FA. (2000). DNA adduct measurements, cell
39	proliferation and tumor mutation induction in relation to tumor formation in B6C3F1
40	mice fed coal tar or benzo[a]pyrene. Carcinogenesis 21: 1433-1440.
41	http://dx.doi.org/10.1093/carcin/21.7.1433
42	Dahl, AR; Coslett, DS; Bond, JA; Hesseltine, GR. (1985). Metabolism of benzo[a]pyrene on the
43	nasal mucosa of Syrian hamsters: comparison to metabolism by other extrahepatic

1	tissues and possible role of nasally produced metabolites in carcinogenesis. J Natl
2	Cancer Inst 75: 135-139.
3	Danheiser, SL; Liber, HL; Thilly, WG. (1989). Long-term, low-dose benzo[a]pyrene-induced
4 5	mutation in human lymphoblasts competent in xenobiotic metabolism. Mutat Res 210: 143-147. http://dx.doi.org/10.1016/0027-5107(89)90053-5
5 6	Das, M; Asokan, P; Don, PS; Krueger, GG; Bickers, DR; Mukhtar, H. (1986). Carcinogen
7	metabolism in human skin grafted onto athymic nude mice: a model system for the
8	study of human skin carcinogenesis. Biochem Biophys Res Commun 138: 33-39.
9	Davidson, GE; Dawson, GW. (1976). Chemically induced presumed somatic mutations in the
10	mouse. Mutat Res 38: 151-154.
11	Davis, S; Meltzer, PS. (2007). GEOquery: a bridge between the Gene Expression Omnibus (GEO)
12	and BioConductor. 23: 1846-1847. http://dx.doi.org/10.1093/bioinformatics/btm254
13	<u>De Flora, S; D'Agostini, F; Izzotti, A; Balansky, R.</u> (1991). Prevention by N-acetylcysteine of
14	benzo[a]pyrene clastogenicity and DNA adducts in rats. Mutat Res 250: 87-93.
15	http://dx.doi.org/10.1016/0027-5107(91)90165-K
16	De Jong, WH; Kroese, ED; Vos, JG; Van Loveren, H. (1999). Detection of immunotoxicity of
17	benzo[a]pyrene in a subacute toxicity study after oral exposure in rats. Toxicol Sci 50:
18	214-220. http://dx.doi.org/10.1093/toxsci/50.2.21
19	de Raat, WK. (1979). Comparison of the induction by cigarette smoke condensates of sister-
20	chromatid exchanges in Chinese hamster cells and of mutations in Salmonella
21	typhimurium. Mutat Res 66: 253-259.
22	Dean, BJ. (1981). Activity of 27 coded compounds in the RL1 chromosome assay. In FJ de Serres;
23	J Ashby (Eds.), Evaluation of short-term tests for carcinogens: Report of the
24	International Collaborative Program (pp. 570-579). New York, NY: Elsevier/North-
25	Holland.
26	<u>Dean, JH; Luster, MI; Boorman, GA; Lauer, LD; Leubke, RW; Lawson, L.</u> (1983). Selective
27	immunosuppression resulting from exposure to the carcinogenic congener of
28	benzopyrene in B6C3F1 mice. Clin Exp Immunol 52: 199-206.
29	Dean, SW; Coates, A; Brooks, TM; Burlinson, B. (1998). Benzo[a]pyrene site of contact
30	mutagenicity in skin of MutaTM Mouse [Letter]. Mutagenesis 13: 515-518.
31	http://dx.doi.org/10.1093/mutage/13.5.515
32	Dere, E; Lo, R; Celius, T; Matthews, J; Zacharewski, TR. (2011). Integration of genome-wide
33	computation DRE search, AhR ChIP-chip and gene expression analyses of TCDD-elicited
34 25	responses in the mouse liver. BMC Genomics 12: 365. <u>http://dx.doi.org/10.1186/1471-</u>
35 26	2164-12-365 Dertinger SDL antum HBL Silverstone, AEL Casiewisz, TA (2000), Effect of 2' methows 4'
36 37	<u>Dertinger, SD; Lantum, HB; Silverstone, AE; Gasiewicz, TA.</u> (2000). Effect of 3'-methoxy-4'- nitroflavone on benzo[a]pyrene toxicity: Aryl hydrocarbon receptor-dependent and -
37 38	independent mechanisms. Biochem Pharmacol 60: 189-196.
38 39	http://dx.doi.org/10.1016/S0006-2952(00)00314-2
40	Dertinger, SD; Nazarenko, DA; Silverstone, AE; Gasiewicz, TA. (2001). Aryl hydrocarbon receptor
40 41	signaling plays a significant role in mediating benzo[a]pyrene- and cigarette smoke
41	condensate-induced cytogenetic damage in vivo. Carcinogenesis 22: 171-177.
42 43	http://dx.doi.org/10.1093/carcin/22.1.171
-J	<u>mep.//ax.doi.org/10.1000/cdrem/22.1.1/1</u>

1	Deutsch, J; Vatsis, KP; Coon, MJ; Leutz, JC; Gelboin, HV. (1979). Catalytic activity and
2	stereoselectivity of purified forms of rabbit liver microsomal cytochrome P-450 in the
3	oxygenation of the (-) and (+) enantiomers of trans-7,8-dihydroxy-7,8-
4	dihydrobenzo[alpha]pyrene. Mol Pharmacol 16: 1011-1018.
5	Diamond, L; Kruszewski, F; Aden, DP; Knowles, BB; Baird, WM. (1980). Metabolic activation of
6	benzo[a]pyrene by a human hepatoma cell line. Carcinogenesis 1: 871-875.
7	http://dx.doi.org/10.1093/carcin/1.10.871
8	Dipaolo, JA; Donovan, P; Nelson, R. (1969). Quantitative studies of in vitro transformation by
9	chemical carcinogens. J Natl Cancer Inst 42: 867-874.
10	Dipaolo, JA; Donovan, PJ; Nelson, RL. (1971). X-irradiation enhancement of transformation by
11	benzo(a)pyrene in hamster embryo cells. PNAS 68: 1734-1737.
12	Doll, R. (1971). The age distribution of cancer: Implication for models of carcinogenesis. Journal
13	of the Royal Statistical Society Series A 134: 133-166.
14	Dreij, K; Sundberg, K; Johansson, AS; Nordling, E; Seidel, A; Persson, B; Mannervik, B; Jernström,
15	<u>B.</u> (2002). Catalytic activities of human alpha class glutathione transferases toward
16	carcinogenic dibenzo[a,l]pyrene diol epoxides. Chem Res Toxicol 15: 825-831.
17	http://dx.doi.org/10.1021/tx025519i
18	Dunkel, VC; Pienta, RJ; Sivak, A; Traul, KA. (1981). Comparative neoplastic transformation
19	responses of Balb/3T3 cells, Syrian hamster embryo cells, and Rauscher murine
20	leukemia virus-infected Fischer 344 rat embryo cells to chemical compounds. J Natl
21	Cancer Inst 67: 1303-1312.
22	EC (European Commission). (2002). Opinion of the scientific committee on food on the risks to
23	human health of polycyclic aromatic hydrocarbons in food. European Commission,
24	Scientific Committee on Food.
25	Eckel, JE; Gennings, C; Therneau, TM; Burgoon, LD; Boverhof, DR; Zacharewski, TR. (2005).
26	Normalization of two-channel microarray experiments: a semiparametric approach.
27	Bioinformatics 21: 1078-1083. http://dx.doi.org/10.1093/bioinformatics/bti105
28	Egert, G; Greim, H. (1976). Formation of mutagenic N-nitroso compounds from the pesticides
29	prometryne, dodine and carbaryl in the presence of nitrite at pH 1. Mutat Res 37: 179-
30	186. <u>http://dx.doi.org/10.1016/0027-5107(76)90031-2</u>
31	Ein-Dor, L; Kela, I; Getz, G; Givol, D; Domany, E. (2005). Outcome signature genes in breast
32	cancer: is there a unique set? Bioinformatics 21: 171-178.
33	http://dx.doi.org/10.1093/bioinformatics/bth469
34	El-Bayoumy, K. (1985). Effects of organoselenium compounds on induction of mouse
35	forestomach tumors by benzo(a)pyrene. Cancer Res 45: 3631-3635.
36	El-Bayoumy, K; Hecht, SS; Hoffmann, D. (1982). Comparative tumor initiating activity on mouse
37	skin of 6-nitrobenzo[a]pyrene, 6-nitrochrysene, 3-nitroperylene, 1-nitropyrene and their
38	parent hydrocarbons. Cancer Lett 16: 333-337. <u>http://dx.doi.org/10.1016/0304-</u>
39	<u>3835(82)90015-5</u>
40	Eling, T; Curtis, J; Battista, J; Marnett, LJ. (1986). Oxidation of (+)-7,8-dihydroxy-7,8-
41	dihydrobenzo[a]pyrene by mouse keratinocytes: evidence for peroxyl radical- and
42	monoxygenase-dependent metabolism. Carcinogenesis 7: 1957-1963.

1	Emmett, EA; Bingham, EM; Barkley, W. (1981). A carcinogenic bioassay of certain roofing
2	materials. Am J Ind Med 2: 59-64. <u>http://dx.doi.org/10.1002/ajim.4700020110</u>
3	Emura, M; Mohr, U; Riebe, M; Aufderheide, M; Dungworth, DL. (1987). Predisposition of cloned
4	fetal hamster lung epithelial cells to transformation by a precarcinogen, benzo(a)pyrene,
5	using growth hormone supplementation and collagen gel substratum. Cancer Res 47:
6	1155-1160.
7	Emura, M; Richter-Reichhelm, HB; Schneider, P; Mohr, U. (1980). Sensitivity of Syrian golden
8	hamster fetal lung cells to benzo[a]pyrene and other polycyclic hydrocarbons in vitro.
9	Toxicology 17: 149-155. <u>http://dx.doi.org/10.1016/0300-483X(80)90087-6</u>
10	Epler, JL; Winton, W; Ho, T; Larimer, FW; Rao, TK; Hardigree, AA. (1977). Comparative
11	mutagenesis of quinolines [Review]. Mutat Res 39: 285-296.
12	http://dx.doi.org/10.1016/0165-1110(77)90009-4
13	EU (European Union). (2005). Directive 2004/107/EC of the European Parliament and of the
14	council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and
15	polycyclic aromatic hydrocarbons in ambient air. Official Journal of the European Union
16	23: 3-16.
17	Everall, JD; Dowd, PM. (1978). Influence of environmental factors excluding ultra violet
18	radiation on the incidence of skin cancer. Bull Cancer 65: 241-247.
19	Fahmy, MJ; Fahmy, OG. (1980). Altered control of gene activity in the soma by carcinogens.
20	Mutat Res 72: 165-172. <u>http://dx.doi.org/10.1016/0027-5107(80)90234-1</u>
21	Falco, G; Domingo, JL; Llobet, JM; Teixido, A; Casas, C; Muller, L. (2003). Polycyclic aromatic
22	hydrocarbons in foods: Human exposure through the diet in Catalonia, Spain. J Food
23	Prot 66: 2325-2331.
24	Fang, JL; Lazarus, P. (2004). Correlation between the UDP-glucuronosyltransferase (UGT1A1)
25	TATAA box polymorphism and carcinogen detoxification phenotype: significantly
26	decreased glucuronidating activity against benzo(a)pyrene-7,8-dihydrodiol(-) in liver
27	microsomes from subjects with the UGT1A1*28 variant. Cancer Epidemiol Biomarkers
28	Prev 13: 102-109.
29	Faraonio, R; Vergara, P; Di Marzo, D; Pierantoni, MG; Napolitano, M; Russo, T; Cimino, F. (2006).
30	p53 suppresses the Nrf2-dependent transcription of antioxidant response genes. J Biol
31	Chem 281: 39776-39784. <u>http://dx.doi.org/10.1074/jbc.M605707200</u>
32	<u>Fedorenko, Z; Yansheva, N.</u> (1967). [Experimental reproduction of tumors of the antral part of
33	the stomach in mice by administration of various dose of 3,4-benzpyrene]. Gig Sanit 32:
34	168-173.
35	Feldman, G; Remsen, J; Shinohara, K; Cerutti, P. (1978). Excisability and persistence of
36	benzo(a)pyrene DNA adducts in epithelioid human lung cells. Nature 274: 796-798.
37	Feron, VJ; de Jong, D; Emmelot, P. (1973). Letter: Dose-response correlation for the induction of
38	respiratory-tract tumours in Syrian golden hamsters by intratracheal instillations of
39 40	benzo(a)pyrene. Eur J Cancer 9: 387-390.
40	Feron, VJ; Kruysse, A. (1978). Effects of exposure to furfural vapour in hamsters simultaneously
41 42	treated with benzo[alpha] pyrene or diethylnitrosamine. Toxicology 11: 127-144.
42 42	Field, WE; Roe, FJ. (1965). Tumor promotion in the forestomach epithelium of mice by oral
43	administration of citrus oils. J Natl Cancer Inst 35: 771-787.

1	Flowers-Geary, L; Bleczinki, W; Harvey, RG; Penning, TM. (1996). Cytotoxicity and mutagenicity
2	of polycyclic aromatic hydrocarbon ortho-quinones produced by dihydrodiol
3	dehydrogenase. Chem Biol Interact 99: 55-72. <u>http://dx.doi.org/10.1016/0009-</u>
4	<u>2797(95)03660-1</u>
5	Flowers-Geary, L; Harvey, RG; Penning, TM. (1993). Cytotoxicity of polycyclic aromatic
6	hydrocarbon o-quinones in rat and human hepatoma cells. Chem Res Toxicol 6: 252-
7	260. <u>http://dx.doi.org/10.1021/tx00033a002</u>
8	Flowers, L; Bleczinski, WF; Burczynski, ME; Harvey, RG; Penning, TM. (1996). Disposition and
9	biological activity of benzo[a]pyrene-7,8-dione. A genotoxic metabolite generated by
10	dihydrodiol dehydrogenase. Biochemistry 35: 13664-13672.
11	http://dx.doi.org/10.1021/bi961077w
12	Flowers, L; Ohnishi, ST; Penning, TM. (1997). DNA strand scission by polycyclic aromatic
13	hydrocarbon o-quinones: role of reactive oxygen species, Cu(II)/Cu(I) redox cycling, and
14	o-semiquinone anion radicals. Biochemistry 36: 8640-8648.
15	http://dx.doi.org/10.1021/bi970367p
16	Fortunel, NO; Otu, HH; Ng, HH; Chen, J; Mu, X; Chevassut, T; Li, X; Joseph, M; Bailey, C; Hatzfeld,
17	JA; Hatzfeld, A; Usta, F; Vega, VB; Long, PM; Libermann, TA; Lim, B. (2003). Comment on
18	" 'Stemness': transcriptional profiling of embryonic and adult stem cells"
19	and "a stem cell molecular signature" [Letter]. Science 302: 393; author reply
20	393. <u>http://dx.doi.org/10.1126/science.1086384</u>
21	Foth, H; Kahl, R; Kahl, GF. (1988). Pharmacokinetics of low doses of benzo[a]pyrene in the rat.
22	Food Chem Toxicol 26: 45-51. <u>http://dx.doi.org/10.1016/0278-6915(88)90040-3</u>
23	Fowler, P; Whitwell, J; Jeffrey, L; Young, J; Smith, K; Kirkland, D. (2010). Cadmium chloride,
24	benzo[a]pyrene and cyclophosphamide tested in the in vitro mammalian cell
25	micronucleus test (MNvit) in the human lymphoblastoid cell line TK6 at Covance
26	laboratories, Harrogate UK in support of OECD draft Test Guideline 487. Mutat Res 702:
27	171-174. <u>http://dx.doi.org/10.1016/j.mrgentox.2010.02.016</u>
28	Friesen, MC; Demers, PA; Spinelli, JJ; Eisen, EA; Lorenzi, MF; Le, ND. (2010). Chronic and acute
29	effects of coal tar pitch exposure and cardiopulmonary mortality among aluminum
30	smelter workers. Am J Epidemiol 172: 790-799. <u>http://dx.doi.org/10.1093/aje/kwq208</u>
31	Gangar, SC; Sandhir, R; Rai, DV; Koul, A. (2006). Preventive effects of Azadirachta indica on
32	benzo(a)pyrene-DNA adduct formation in murine forestomach and hepatic tissues.
33	Phytother Res 20: 889-895. <u>http://dx.doi.org/10.1002/ptr.1967</u>
34	Gao, M; Li, Y; Sun, Y; Shah, W; Yang, S; Wang, Y; Long, J. (2011). Benzo[a]pyrene exposure
35	increases toxic biomarkers and morphological disorders in mouse cervix. Basic & Clinical
36	Pharmacology & Toxicology Online Pharmacology Online 109: 398-406.
37	<u>http://dx.doi.org/10.1111/j.1742-7843.2011.00755.x</u>
38	Gao, N; Aidoo, A; Heflich, RH. (1991). Analysis of rat lymphocyte activation of benzo[a]pyrene,
39	2-acetylaminofluorene, and several of their metabolites to mutagenic and DNA-
40	damaging species in vitro. Teratog Carcinog Mutagen 11: 65-76.
41	<u>Garçon, G; Gosset, P; Garry, S; Marez, T; Hannothiaux, MH; Shirali, P.</u> (2001a). Pulmonary
42	induction of proinflammatory mediators following the rat exposure to benzo(a)pyrene-
43	coated onto Fe2O3 particles. Toxicol Lett 121: 107-117.

1	<u>Garçon, G; Zerimech, F; Hannothiaux, M; Gosset, P; Martin, A; Marez, T; Shirali, P.</u> (2001b).
2	Antioxidant defense disruption by polycyclic aromatic hydrocarbons-coated onto
3	Fe(2)O(3) particles in human lung cells (A549). Toxicology 166: 129-137.
4	Garry, S; Nesslany, F; Aliouat, E; Haguenoer, JM; Marzin, D. (2003a). Assessment of genotoxic
5	effect of benzo[a]pyrene in endotracheally treated rat using the comet assay. Mutat Res
6	534: 33-43.
7	Garry, S; Nesslany, F; Aliouat, E; Haguenoer, JM; Marzin, D. (2003b). Hematite (Fe(2)O(3))
8	enhances benzo[a]pyrene genotoxicity in endotracheally treated rat, as determined by
9	Comet Assay. Mutat Res 538: 19-29. <u>http://dx.doi.org/10.1016/S1383-5718(03)00082-2</u>
10	Gelboin, HV. (1980). Benzo[alpha]pyrene metabolism, activation and carcinogenesis: Role and
11	regulation of mixed-function oxidases and related enzymes [Review]. Physiol Rev 60:
12	1107-1166.
13	Generoso, WM; Cain, KT; Hellwig, CS; Cacheiro, NL. (1982). Lack of association between
14	induction of dominant-lethal mutations and induction of heritable translocations with
15	benzo[a]pyrene in postmeiotic germ cells of male mice. Mutat Res 94: 155-163.
16	Generoso, WM; Cain, KT; Krishna, M; Huff, SW. (1979). Genetic lesions induced by chemicals in
17	spermatozoa and spermatids of mice are repaired in the egg. PNAS 76: 435-437.
18	Gerde, P; Muggenburg, BA; Lundborg, M; Dahl, AR. (2001). The rapid alveolar absorption of
19	diesel soot-adsorbed benzo[a]pyrene: bioavailability, metabolism and dosimetry of an
20	inhaled particle-borne carcinogen. Carcinogenesis 22: 741-749.
21	<u>Gerde, P; Muggenburg, BA; Sabourin, PA; Harkema, JR; Hotchkiss, JA; Hoover, MD; Henderson,</u>
22	<u>RF.</u> (1993). Disposition of polycyclic aromatic hydrocarbons in the respiratory tract of
23	the beagle dog: II the conducting airways. Toxicol Appl Pharmacol 121: 319-327.
24	Gibbs, GW. (1985). Mortality of aluminum reduction plant workers, 1950 through 1977. J Occup
25	Environ Med 27: 761-770.
26	Ginsberg, G; Hattis, D; Sonawane, B. (2004). Incorporating pharmacokinetic differences
27	between children and adults in assessing children's risks to environmental toxicants
28	[Review]. Toxicol Appl Pharmacol 198: 164-183.
29	http://dx.doi.org/10.1016/j.taap.2003.10.010
30	Ginsberg, GL; Atherholt, TB. (1989). Transport of DNA-adducting metabolites in mouse serum
31	following benzo[a]pyrene administration. Carcinogenesis 10: 673-679.
32	Glatt, H; Bücker, M; Platt, KL; Oesch, F. (1985). Host-mediated mutagenicity experiments with
33	benzo[a]pyrene and two of its metabolites. Mutat Res 156: 163-169.
34	http://dx.doi.org/10.1016/0165-1218(85)90059-X
35	Glatt, H; Seidel, A; Ribeiro, O; Kirkby, C; Hirom, P; Oesch, F. (1987). Metabolic activation to a
36	mutagen of 3-hydroxy-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene, a secondary
37	metabolite of benzo[a]pyrene. Carcinogenesis 8: 1621-1627.
38	http://dx.doi.org/10.1093/carcin/8.11.1621
39	<u>Glatt, HR; Oesch, F; Frigerio, A; Garattini, S.</u> (1975). Epoxides metabolically produced from some
40	known carcinogens and from some clinically used drugs. I. Differences in mutagenicity.
41	Int J Cancer 16: 787-797. http://dx.doi.org/10.1002/ijc.2910160511

1	GLC (Great Lakes Commission). (2007). Assessment of benzo(a)pyrene air emissions in the
2	Great Lakes region: A report of the Great Lakes Regional Toxic Air Emissions Inventory
3	Steering Committee. Ann Arbor, MI.
4	<u>Godschalk, RW; Ostertag, JU; Zandsteeg, AM; Van Agen, B; Neuman, HA; Van Straaten, H; Van</u>
5	Schooten, FJ. (2001). Impact of GSTM1 on aromatic-DNA adducts and p53 accumulation
6	in human skin and lymphocytes. Pharmacogenetics 11: 537-543.
7	Graem, N. (1986). Epidermal changes following application of 7,12-dimethylbenz(a)anthracene
8	and 12-O-tetradecanoylphorbol-13-acetate to human skin transplanted to nude mice
9	studied with histological species markers. Cancer Res 46: 278-284.
10	Greb, W; Strobel, R; Röhrborn, G. (1980). Transformation of BHK 21/CL 13 cells by various
11	polycyclic aromatic hydrocarbons using the method of Styles. Toxicol Lett 7: 143-148.
12	Grimmer, G; Brune, H; Deutsch-Wenzel, R; Dettbarn, G; Misfeld, J. (1984). Contribution of
13	polycyclic aromatic hydrocarbons to the carcinogenic impact of gasoline engine exhaust
14	condensate evaluated by implantation into the lungs of rats. J Natl Cancer Inst 72: 733-
15 16	739. Crimmer C: Brune, H. Deutsch Wenzel, B. Neuisck, KW. Misfeld, J. Timm, J. (1982). On the
16 17	<u>Grimmer, G; Brune, H; Deutsch-Wenzel, R; Naujack, KW; Misfeld, J; Timm, J.</u> (1983). On the contribution of polycyclic aromatic hydrocarbons to the carcinogenic impact of
17	automobile exhaust condensate evaluated by local application onto mouse skin. Cancer
19	Lett 21: 105-113.
20	Grimmer, G; Dettbarn, G; Naujack, K, -W; Jacob, J. (1994). Relationship between inhaled PAH
20	and urinary excretion of phenanthrene, pyrene and benzo(a)pyrene metabolites in coke
22	plant workers. Polycycl Aromat Compd 5: 269-277.
23	http://dx.doi.org/10.1080/10406639408015180
24	Gross, P; Tolker, E; Babyak, MA; Kaschak, M. (1965). Experimental lung cancer in hamsters:
25	repetitive intratracheal applications of two carcinogenic hydrocarbons. Arch Environ
26	Occup Health 11: 59-65.
27	Grova, N; Schroeder, H; Farinelle, S; Prodhomme, E; Valley, A; Muller, CP. (2008). Sub-acute
28	administration of benzo[a]pyrene (B[a]P) reduces anxiety-related behaviour in adult
29	mice and modulates regional expression of N-methyl-D-aspartate (NMDA) receptors
30	genes in relevant brain regions. Chemosphere 73: S295-S302.
31	http://dx.doi.org/10.1016/j.chemosphere.2007.12.037
32	Grover, PL. (1986). Pathways involved in the metabolism and activation of polycyclic
33	hydrocarbons [Review]. Xenobiotica 16: 915-931.
34	<u>http://dx.doi.org/10.3109/00498258609038974</u>
35	Gu, J; Horikawa, Y; Chen, M; Dinney, CP; Wu, X. (2008). Benzo(a)pyrene diol epoxide-induced
36	chromosome 9p21 aberrations are associated with increased risk of bladder cancer.
37	Cancer Epidemiol Biomarkers Prev 17: 2445-2450. <u>http://dx.doi.org/10.1158/1055-</u>
38	<u>9965.EPI-07-2890</u>
39	Gunter, MJ; Divi, RL; Kulldorff, M; Vermeulen, R; Haverkos, KJ; Kuo, MM; Strickland, P; Poirier,
40	MC; Rothman, N; Sinha, R. (2007). Leukocyte polycyclic aromatic hydrocarbon-DNA
41	adduct formation and colorectal adenoma. Carcinogenesis 28: 1426-1429.
42	http://dx.doi.org/10.1093/carcin/bgm022

1	Gupta, RS; Goldstein, S. (1981). Mutagen testing in the human fibroblast diphtheria toxin
2	resistance (HF Dipr) system. In FJ de Serres; J Ashby (Eds.), Evaluation of short-term tests
3	for carcinogens: Report of the International Collaborative Program (pp. 614-625). New
4	York, NY: Elsevier/North-Holland.
5	Gupta, RS; Singh, B. (1982). Mutagenic responses of five independent genetic loci in CHO cells
6	to a variety of mutagens. Development and characteristics of a mutagen screening
7	system based on selection for multiple drug-resistant markers. Mutat Res 94: 449-466.
8	Gyorffy, E; Anna, L; Kovács, K; Rudnai, P; Schoket, B. (2008). Correlation between biomarkers of
9	human exposure to genotoxins with focus on carcinogen-DNA adducts [Review].
10	Mutagenesis 23: 1-18. <u>http://dx.doi.org/10.1093/mutage/gem043</u>
11	Habs, M; Jahn, SA; Schmähl, D. (1984). Carcinogenic activity of condensate from coloquint
12	seeds (Citrullus colocynthis) after chronic epicutaneous administration to mice. J Cancer
13	Res Clin Oncol 108: 154-156. <u>http://dx.doi.org/10.1007/BF00390988</u>
14	Habs, M; Schmähl, D; Misfeld, J. (1980). Local carcinogenicity of some environmentally relevant
15	polycyclic aromatic hydrocarbons after lifelong topical application to mouse skin. Arch
16	Geschwulstforsch 50: 266-274.
17	Hackman, P; Hou, SM; Nyberg, F; Pershagen, G; Lambert, B. (2000). Mutational spectra at the
18	hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus in T-lymphocytes of
19	nonsmoking and smoking lung cancer patients. Mutat Res 468: 45-61.
20	<u>Hakura, A; Tsutsui, Y; Sonoda, J; Kai, J; Imade, T; Shimada, M; Sugihara, Y; Mikami, T.</u> (1998).
21	Comparison between in vivo mutagenicity and carcinogenicity in multiple organs by
22	benzo[a]pyrene in the lacZ transgenic mouse (Muta Mouse). Mutat Res 398: 123-130.
23	http://dx.doi.org/10.1016/S0027-5107(97)00248-0
24	Hall, M; Grover, PL. (1988). Stereoselective aspects of the metabolic activation of
25	benzo[a]pyrene by human skin in vitro. Chem Biol Interact 64: 281-296.
26	Hammond, EC; Selikoff, IJ; Lawther, PL; Seidman, H. (1976). Inhalation of benzpyrene and
27	cancer in man. Ann N Y Acad Sci 271: 116-124. <u>http://dx.doi.org/10.1111/j.1749-</u>
28	<u>6632.1976.tb23100.x</u>
29	<u>Hanelt, S; Helbig, R; Hartmann, A; Lang, M; Seidel, A; Speit, G.</u> (1997). A comparative
30	investigation of DNA adducts, DNA strand breaks and gene mutations induced by
31	benzo[a]pyrene and (+/-)-anti-benzo[a]pyrene-7,8-diol 9,10-oxide in cultured human
32	cells. Mutat Res 390: 179-188. <u>http://dx.doi.org/10.1016/S0165-1218(97)00019-0</u>
33	Hansen, ES. (1989). Cancer incidence in an occupational cohort exposed to bitumen fumes.
34	Scand J Work Environ Health 15: 101-105.
35	Hansen, ES. (1991). Mortality of mastic asphalt workers. Scand J Work Environ Health 17: 20-24.
36	<u>http://dx.doi.org/10.5271/sjweh.1739</u>
37	<u>Hara, T; Nishikawa, T; Sui, H; Kawakami, K; Matsumoto, H; Tanaka, N.</u> (2007). In vivo
38	photochemical skin micronucleus test using a sunlight simulator: detection of 8-
39	methoxypsoralen and benzo[a]pyrene in hairless mice. Mutat Res 631: 1-8.
40	http://dx.doi.org/10.1016/j.mrgentox.2007.03.007
41	Harper, BL; Ramanujam, VM; Legator, MS. (1989). Micronucleus formation by benzene,
42	cyclophosphamide, benzo(a)pyrene, and benzidine in male, female, pregnant female,

1	and fetal mice. Teratog Carcinog Mutagen 9: 239-252.
2	<u>http://dx.doi.org/10.1002/tcm.1770090406</u>
3	Harrigan, JA; Mcgarrigle, BP; Sutter, TR; Olson, J. R. (2006). Tissue specific induction of
4	cytochrome P450 (CYP) 1A1 and 1B1 in rat liver and lung following in vitro (tissue slice)
5	and in vivo exposure to benzo(a)pyrene. Toxicol In Vitro 20: 426-438.
6	<u>http://dx.doi.org/10.1016/j.tiv.2005.08.015</u>
7	Harrigan, JA; Vezina, CM; Mcgarrigle, BP; Ersing, N; Box, HC; Maccubbin, AE; Olson, J. R. (2004).
8	DNA adduct formation in precision-cut rat liver and lung exposed to benzo[a]pyrene.
9	Toxicol Sci 77: 307-314. <u>http://dx.doi.org/10.1093/toxsci/kfh030</u>
10	He, SL; Baker, R. (1991). Micronuclei in mouse skin cells following in vivo exposure to
11	benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene, chrysene, pyrene and urethane.
12	Environ Mol Mutagen 17: 163-168. <u>http://dx.doi.org/10.1002/em.2850170305</u>
13	Health Canada. (1998). Environmental and workplace health. Benzo[a]pyrene. http://www.hc-
14	<pre>sc.gc.ca/ewh-semt/pubs/water-eau/benzo a pyrene/index-eng.php</pre>
15	Health Canada. (2010). Guidelines for Canadian drinking water quality-summary table.
16	Benzo[a]pyrene. http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/2010-sum guide-
17	<u>res_recom/index-eng.php#a14</u>
18	Hecht, SS; Grabowski, W; Groth, K. (1979). Analysis of faeces for benzo[a]pyrene after
19	consumption of charcoal-broiled beef by rats and humans. Food Cosmet Toxicol 17: 223-
20	227.
21	Heidelberger, C; Freeman, AE; Pienta, RJ; Sivak, A; Bertram, JS; Casto, BC; Dunkel, VC; Francis,
22	MW; Kakunaga, T; Little, JB; Schechtman, LM. (1983). Cell transformation by chemical
23	agentsa review and analysis of the literature A report of the US Environmental
24	Protection Agency Gene-Tox Program [Review]. DNA Repair 114: 283-385.
25	Hemminki, K; Dickey, C; Karlsson, S; Bell, D; Hsu, Y; Tsai, WY; Mooney, LA; Savela, K; Perera, FP.
26	(1997). Aromatic DNA adducts in foundry workers in relation to exposure, life style and
27	CYP1A1 and glutathione transferase M1 genotype. Carcinogenesis 18: 345-350.
28	http://dx.doi.org/10.1093/carcin/18.2.345
29	Henry, MC; Port, CD; Bates, RR; Kaufman, DG. (1973). Respiratory tract tumors in hamsters
30	induced by benzo(a)pyrene. Cancer Res 33: 1585-1592.
31	Hermann, M. (1981). Synergistic effects of individual polycyclic aromatic hydrocarbons on the
32	mutagenicity of their mixtures. Mutat Res 90: 399-409. <u>http://dx.doi.org/10.1016/0165-</u>
33	1218(81)90062-8
34 25	Herrold, KM; Dunham, LJ. (1962). Induction of carcinoma and papilloma of the Syrian hamster
35	by intratracheal instillation of benzo[a]-pyrene. J Natl Cancer Inst 28: 467-491.
36 27	Higginbotham, S; Ramakrishna, NVS; Johansson, SL; Rogan, EG; Cavalieri, EL. (1993). Tumor-
37 20	initiating activity and carcinogenicity of dibenzo[a,l]pyrene versus 7,12- dimothylbonz[a]anthracono and bonzo[a]nyrono at low dosos in mouse skin
38 20	dimethylbenz[a]anthracene and benzo[a]pyrene at low doses in mouse skin.
39 40	Carcinogenesis 14: 875-878. <u>http://dx.doi.org/10.1093/carcin/14.5.875</u> Hirom, PC; Chipman, JK; Millburn, P; Pue, MA; Rydstrom, J; Montelius, J; Bengtsson, M. (1983).
	Enterohepatic circulation of the aromatic hydrocarbons benzo[a]pyrene and
41 42	· · · · · · · · · · · · · · · · · · ·
42	naphthalene. In J Rydstrom; J Montelius; M Bengtsson (Eds.), Extrahepatic drug

1	metabolism and chemical carcinogenesis (pp. 275-281). Amsterdam, The Netherlands:
2	Elsvier Science Publishers.
3	Hoffmann, D; Rathkamp, G; Nesnow, S; Wynder, EL. (1972). Fluoranthenes: Quantitative
4	determination in cigarette smoke, formation by pyrolysis, and tumor-initiating activity. J
5	Natl Cancer Inst 49: 1165-1175.
6	Hogg, S. (1996). A review of the validity and variability of the elevated plus-maze as an animal
7	model of anxiety [Review]. Pharmacol Biochem Behav 54: 21-30.
8	Hood, DB; Nayyar, T; Ramesh, A; Greenwood, M; Inyang, F. (2000). Modulation in the
9	developmental expression profile of Sp1 subsequent to transplacental exposure of fetal
10	rats to desorbed benzo[a]pyrene following maternal inhalation. Inhal Toxicol 12: 511-
11	535. <u>http://dx.doi.org/10.1080/089583700402897</u>
12	Howard, P; Meylan, W. (1997). Handbook of physical properties of organic chemicals. Boca
13	Raton, FL: Lewis Publishers.
14	HSDB (Hazardous Substances Data Bank). (2012). Benzo(a)pyrene [Database]. Bethesda, MD:
15	National Library of Medicine. Retrieved from <u>http://toxnet.nlm.nih.gov/cgi-</u>
16	bin/sis/htmlgen?HSDB
17	Hu, Z; Wells, PG. (2004). Human interindividual variation in lymphocyte UDP-
18	glucuronosyltransferases as a determinant of in vitro benzo[a]pyrene covalent binding
19	and cytotoxicity. Toxicol Sci 78: 32-40. http://dx.doi.org/10.1093/toxsci/kfh010
20	Huberman, E; Sachs, L; Yang, SK; Gelboin, HV. (1976). Identification of mutagenic metabolites of
21	benzo[a]pyrene in mammalian cells. PNAS 73: 607-611.
22	Huh, N; Nemoto, N; Utakoji, T. (1982). Metabolic activation of benzo[a]pyrene, aflatoxin B1,
23	and dimethylnitrosamine by a human hepatoma cell line. Mutat Res 94: 339-348.
24	Husgafvel-Pursiainen, K; Sorsa, M; Moller, M; Benestad, C. (1986). Genotoxicity and polynuclear
25	aromatic hydrocarbon analysis of environmental tobacco smoke samples from
26	restaurants. Mutagenesis 1: 287-292.
27	Hussain, M; Rae, J; Gilman, A; Kauss, P. (1998). Lifetime health risk assessment from exposure
28	of recreational users to polycyclic aromatic hydrocarbons. Arch Environ Contam Toxicol
29	35: 527-531.
30	IARC (International Agency for Research on Cancer). (1973). Certain polycyclic aromatic
31	hydrocarbons and heterocyclic compounds. (HEEP/74/11596). Lyon, France.
32	IARC (International Agency for Research on Cancer). (1983). Polynuclear aromatic compounds,
33	part 1: Chemical, environmental and experimental data. Lyon, France: World Health
34	Organization. http://monographs.iarc.fr/ENG/Monographs/vol32/volume32.pdf
35	IARC (International Agency for Research on Cancer). (2010). Some non-heterocyclic polycyclic
36	aromatic hydrocarbons and some related exposures [IARC Monograph] (pp. 1-853).
37	Lyon, France. http://monographs.iarc.fr/ENG/Monographs/vol92/mono92.pdf
38	Inyang, F; Ramesh, A; Kopsombut, P; Niaz, MS; Hood, DB; Nyanda, AM; Archibong, AE. (2003).
39	Disruption of testicular steroidogenesis and epididymal function by inhaled
40	benzo(a)pyrene. Reprod Toxicol 17: 527-537.
41	IPCS (International Programme on Chemical Safety). (1998). Selected non-heterocyclic
42	polycyclic aromatic hydrocarbons [WHO EHC]. In Environmental Health Criteria (pp. CHF

1	174). (CIS/00/00657). Geneva, Switzerland: World Health Organization.
2	http://www.inchem.org/documents/ehc/ehc/ehc202.htm
3	Juhl, HJ; Schürer, CC; Bartram, CR; Kohl, FV; Melderis, H; von Wichert, P; Rüdiger, HW. (1978).
4	Retinoids induce sister-chromatid exchanges in human diploid fibroblasts. Mutat Res 58:
5	317-320.
6	Jules, GE; Pratap, S; Ramesh, A; Hood, DB. (2012). In utero exposure to benzo(a)pyrene
7	predisposes offspring to cardiovascular dysfunction in later-life. Toxicology 295: 56-67.
8	http://dx.doi.org/10.1016/j.tox.2012.01.017
9	Kalina, I; Brezáni, P; Gajdosová, D; Binková, B; Salagovic, J; Habalová, V; Mracková, G; Dobiás, L;
10	Srám, RJ. (1998). Cytogenetic monitoring in coke oven workers. Mutat Res 417: 9-17.
11	Kao, J; Patterson, FK; Hall, J. (1985). Skin penetration and metabolism of topically applied
12	chemicals in six mammalian species, including man: an in vitro study with
13	benzo[a]pyrene and testosterone. Toxicol Appl Pharmacol 81: 502-516.
14	Kappes, U; Schliemann-Willers, S; Bankova, L; Heinemann, C; Fischer, TW; Ziemer, M; Schubert,
15	<u>H; Norgauer, J; Fluhr, JW; Elsner, P.</u> (2004). The quality of human skin xenografts on SCID
16	mice: A noninvasive bioengineering approach. Br J Dermatol 151: 971-976.
17	http://dx.doi.org/10.1111/j.1365-2133.2004.06191.x
18	Kawamura, Y; Kamata, E; Ogawa, Y; Kaneko, T; Uchiyama, S; Saito, Y. (1988). The effect of
19	various foods on the intestinal absorption of benzo(a)pyrene in rats. Shokohin Eiseigaku
20	Zasshi 29: 21-25.
21	Kazerouni, N; Sinha, R; Hsu, CH; Greenberg, A; Rothman, N. (2001). Analysis of 200 food items
22	for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food Chem
23	Toxicol 39: 423-436. <u>http://dx.doi.org/10.1016/S0278-6915(00)00158-7</u>
24	Ketkar, M; Reznik, G; Schneider, P; Mohr, U. (1978). Investigations on the carcinogenic burden
25	by air pollution in man. Intratracheal instillation studies with benzo(a)pyrene in bovine
26	serum albumin in Syrian hamsters. Cancer Lett 4: 235-239.
27	http://dx.doi.org/10.1016/S0304-3835(78)94787-0
28	Kiefer, F; Cumpelik, O; Wiebel, FJ. (1988). Metabolism and cytotoxicity of benzo(a)pyrene in the
29	human lung tumour cell line NCI-H322. Xenobiotica 18: 747-755.
30	http://dx.doi.org/10.3109/00498258809041713
31	Kim, DW; Gazourian, L; Quadri, SA; Romieu-Mourez, R; Sherr, DH; Sonenshein, GE. (2000). The
32	RelA NF-kappaB subunit and the aryl hydrocarbon receptor (AhR) cooperate to
33	transactivate the c-myc promoter in mammary cells. Oncogene 19: 5498-5506.
34	http://dx.doi.org/10.1038/sj.onc.1203945
35	Kim, IY; Hyun, CK. (2006). Comparative evaluation of the alkaline comet assay with the
36	micronucleus test for genotoxicity monitoring using aquatic organisms. Ecotoxicol
37	Environ Saf 64: 288-297. <u>http://dx.doi.org/10.1016/j.ecoenv.2005.05.019</u>
38	<u>Kishikawa, N; Wada, M; Kuroda, N; Akiyama, S; Nakashima, K.</u> (2003). Determination of
39	polycyclic aromatic hydrocarbons in milk samples by high-performance liquid
40	chromatography with fluorescence detection. J Chromatogr B Analyt Technol Biomed
41	Life Sci 789: 257-264. <u>http://dx.doi.org/10.1016/S1570-0232(03)00066-7</u>
42	Kleiner, HE; Vulimiri, SV; Hatten, WB; Reed, MJ; Nebert, DW; Jefcoate, CR; Digiovanni, J. (2004).
43	Role of cytochrome p4501 family members in the metabolic activation of polycyclic

1	aromatic hydrocarbons in mouse epidermis. Chem Res Toxicol 17: 1667-1674.
2	<u>http://dx.doi.org/10.1021/tx049919c</u>
3	<u>Knafla, A; Petrovic, S; Richardson, M; Campbell, J; Rowat, C.</u> (2011). Development and
4	application of a skin cancer slope factor for exposures to benzo[a]pyrene in soil. Regul
5	Toxicol Pharmacol 59: 101-110. <u>http://dx.doi.org/10.1016/j.yrtph.2010.09.011</u>
6	Knafla, A; Phillipps, KA; Brecher, RW; Petrovic, S; Richardson, M. (2006). Development of a
7	dermal cancer slope factor for benzo[a]pyrene [Review]. Regul Toxicol Pharmacol 45:
8	159-168. <u>http://dx.doi.org/10.1016/j.yrtph.2006.02.008</u>
9	Knuckles, ME; Inyang, F; Ramesh, A. (2001). Acute and subchronic oral toxicities of
10	benzo[a]pyrene in F-344 rats. Toxicol Sci 61: 382-388.
11	Kobayashi, N. (1975). Production of respiratory tract tumors in hamsters by benzo[a]pyrene.
12	Cancer Sci 66: 311-315.
13	Kondraganti, SR; Fernandez-Salguero, P; Gonzalez, FJ; Ramos, KS; Jiang, W; Moorthy, B. (2003).
14	Polycyclic aromatic hydrocarbon-inducible DNA adducts: evidence by 32P-postlabeling
15	and use of knockout mice for Ah receptor-independent mechanisms of metabolic
16	activation in vivo. Int J Cancer 103: 5-11. <u>http://dx.doi.org/10.1002/ijc.10784</u>
17	Koratkar, R; Das, UN; Sagar, PS; Ramesh, G; Padma, M; Kumar, GS; Vijay, K; Madhavi, N. (1993).
18	Prostacyclin is a potent anti-mutagen. Prostaglandins Leukot Essent Fatty Acids 48: 175-
19	184. http://dx.doi.org/10.1016/0952-3278(93)90107-8
20	Krewski, D; Crump, KS; Farmer, J; Gaylor, DW; Howe, R; Portier, C; Salsburg, D; Sielken, RL; Van
21	Ryzin, J. (1983). A comparison of statistical methods for low dose extrapolation utilizing
22	time-to-tumor data. Fundam Appl Toxicol 3: 140-160. <u>http://dx.doi.org/10.1016/s0272-</u>
23	<u>0590(83)80075-x</u>
24	Kristensen, P; Eilertsen, E; Einarsdottir, E; Haugen, A; Skaug, V; Ovrebo, S. (1995). Fertility in
25	mice after prenatal exposure to benzo[a]pyrene and inorganic lead. Environ Health
26	Perspect 103: 588-590. <u>http://dx.doi.org/10.1289/ehp.95103588</u>
27	Kroese, ED; Muller, JJA; Mohn, GR; Dortant, PM; Wester, PW. (2001). Tumorigenic effects in
28	Wistar rats orally administered benzo[a]pyrene for two years (gavage studies):
29	Implications for human cancer risks associated with oral exposure to polycyclic aromatic
30	hydrocarbons. (658603 010). Bilthoven, The Netherlands: National Institute for Public
31	Health and the Environment (RIVM).
32	http://www.rivm.nl/bibliotheek/rapporten/658603010.pdf
33	Kulka, U; Doehmer, J; Glatt, HR; Bauchinger, M. (1993a). Cytogenetic effects of promutagens in
34	genetically engineered V79 Chinese hamster cells expressing cytochromes P450. Eur J
35	Pharmacol 228: 299-304. <u>http://dx.doi.org/10.1016/0926-6917(93)90064-W</u>
36	Kulka, U; Paul, D; Bauchinger, M. (1993b). Development of short-term mutagenicity test
37	systems in vitro: metabolic activation of indirectly acting mutagens by three immortal
38	rat hepatocyte lines. Mutagenesis 8: 193-197.
39	http://dx.doi.org/10.1093/mutage/8.3.193
40	Kunstler, K. (1983). Failure to induce tumors by intratracheal instillation of automobile exhaust
41	condensate and fractions thereof in Syrian golden hamsters. Cancer Lett 18: 105-108.
42	http://dx.doi.org/10.1016/0304-3835(83)90123-4

1	Lagoy, PK; Quirk, TC. (1994). Establishing generic remediation goals for the polycyclic aromatic
2	hydrocarbons: Critical issues [Review]. Environ Health Perspect 102: 348-352.
3	<u>Lavoie, EJ; Amin, S; Hecht, SS; Furuya, K; Hoffmann, D.</u> (1982). Tumour initiating activity of
4	dihydrodiols of benzo[b]fluoranthene, benzo[j]fluoranthene, and benzo[k]fluoranthene.
5	Carcinogenesis 3: 49-52. http://dx.doi.org/10.1093/carcin/3.1.49
6	Lavoie, EJ; Bedenko, EV; Hirota, N; Hecht, SS; Hoffmann, D. (1979). A comparison of the
7	mutagenicity, tumor-initiating activity and complete carcinogenicity of polynuclear
8	aromatic hydrocarbons. In PW Jones; P Leber (Eds.), Polynuclear aromatic hydrocarbons
9	(pp. 705-721). Ann Arbor, MI: Ann Arbor Science Publishers, Inc.
10	Leadon, SA; Stampfer, MR; Bartley, J. (1988). Production of oxidative DNA damage during the
11	metabolic activation of benzo[a]pyrene in human mammary epithelial cells correlates
12	with cell killing. PNAS 85: 4365-4368.
13	<u>Leboeuf, RA; Kerckaert, GA; Aardema, MJ; Gibson, DP.</u> (1990). Multistage neoplastic
14	transformation of Syrian hamster embryo cells cultured at pH 6.70. Cancer Res 50: 3722-
15	3729.
16	Lee, H; Lin, JY. (1988). Antimutagenic activity of extracts from anticancer drugs in Chinese
17	medicine. Mutat Res 204: 229-234.
18	Lemieux, CL; Douglas, GR; Gingerich, J; Phonethepswath, S; Torous, DK; Dertinger, SD; Phillips,
19	DH; Arlt, VM; White, PA. (2011). Simultaneous measurement of benzo[a]pyrene-induced
20	Pig-a and lacZ mutations, micronuclei and DNA adducts in Muta Mouse. Environ Mol
21	Mutagen 52: 756-765. <u>http://dx.doi.org/10.1002/em.20688</u>
22	Leng, SG; Zheng, YX; Pan, ZF; Niu, Y; Dai, YF; Wang, YW; Zhang, WZ; Xiao, J; Wang, ZX; Li, T; He,
23	<u>FS.</u> (2004). [A study on the inherited susceptibility of chromosomal damage in peripheral
24	blood lymphocytes among coke oven workers]. Zhonghua Yufang Yixue Zazhi 38: 94-98.
25	Levin, W; Wood, A; Chang, RL; Etal. (1982). Oxidative metabolism of polycyclic aromatic
26	hydrocarbons to ultimate carcinogens [Review]. Drug Metab Rev 13: 555-580.
27	<u>http://dx.doi.org/10.3109/03602538209011087</u>
28	<u>Levin, W; Wood, AW; Wislocki, PG; Kapitulnik, J; Yagi, H; Jerina, DM; Conney, AH.</u> (1977).
29	Carcinogenicity of benzo-ring derivatives of benzo(a)pyrene on mouse skin. Cancer Res
30	37: 3356-3361.
31	Li, D; Day, RS; Bondy, ML; Sinha, R; Nguyen, NT; Evans, DB; Abbruzzese, JL; Hassan, MM. (2007).
32	Dietary mutagen exposure and risk of pancreatic cancer. Cancer Epidemiol Biomarkers
33	Prev 16: 655-661. <u>http://dx.doi.org/10.1158/1055-9965.EPI-06-0993</u>
34	Li, D; Firozi, PF; Wang, LE; Bosken, CH; Spitz, MR; Hong, WK; Wei, Q. (2001). Sensitivity to DNA
35	damage induced by benzo(a)pyrene diol epoxide and risk of lung cancer: a case-control
36	analysis. Cancer Res 61: 1445-1450.
37	Li, P; Li, X; Stagnitti, F; Zhang, H; Lin, X; Zang, S; Zhuo, J; Xiong, X. (2009). Studies on the sources
38	of benzo[a]pyrene in grain and aboveground tissues of rice plants. J Hazard Mater 162:
39	463-468. <u>http://dx.doi.org/10.1016/j.jhazmat.2008.05.064</u>
40	Likhachev, AJ; Beniashvili, DS, h; Bykov, VJ; Dikun, PP; Tyndyk, ML; Savochkina, IV; Yermilov, VB;
41	Zabezhinski, MA. (1992). Relevance of quantitation of benzo(a)pyrene metabolites in
42	animal excretes to evaluate individual human cancer risk [Review]. Prog Clin Biol Res
43	374: 435-452.

1	Lin, P; Hsueh, YM; Ko, JL; Liang, YF; Tsai, KJ; Chen, CY. (2003). Analysis of NQO1, GSTP1, and
2	MnSOD genetic polymorphisms on lung cancer risk in Taiwan. Lung Cancer 40: 123-129.
3	Lindelöf, B; Sigurgeirsson, B. (1993). PUVA and cancer: a case-control study. Br J Dermatol 129:
4	39-41. <u>http://dx.doi.org/10.1111/j.1365-2133.1993.tb03308.x</u>
5	Little, JB; Vetrovs, H. (1988). Studies of ionizing radiation as a promoter of neoplastic
6	transformation in vitro. Int J Radiat Biol Relat Stud Phys Chem Med 53: 661-666.
7	Lo Jacono, F; Stecca, C; Duverger, M. (1992). Mutagenic activation of benzo[a]pyrene by human
8	red blood cells. Mutat Res 268: 21-26. <u>http://dx.doi.org/10.1016/0027-5107(92)90078-</u>
9	<u>G</u>
10	<u>Lo, R; Celius, T; Forgacs, AL; Dere, E; Macpherson, L; Harper, P; Zacharewski, T; Matthews, J.</u>
11	(2011). Identification of aryl hydrocarbon receptor binding targets in mouse hepatic
12	tissue treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol 257: 38-
13	47. <u>http://dx.doi.org/10.1016/j.taap.2011.08.016</u>
14	Lossos, IS; Czerwinski, DK; Alizadeh, AA; Wechser, MA; Tibshirani, R; Botstein, D; Levy, R. (2004).
15	Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six
16	genes. N Engl J Med 350: 1828-1837. <u>http://dx.doi.org/10.1056/NEJMoa032520</u>
17	Lubet, RA; Kiss, E; Gallagher, MM; Dively, C; Kouri, RE; Schechtman, LM. (1983). Induction of
18	neoplastic transformation and DNA single-strand breaks in C3H/10T1/2 clone 8 cells by
19	polycyclic hydrocarbons and alkylating agents. J Natl Cancer Inst 71: 991-997.
20	Ma, Q; Lu, AY. (2007). CYP1A induction and human risk assessment: an evolving tale of in vitro
21	and in vivo studies [Review]. Drug Metab Dispos 35: 1009-1016.
22	<u>http://dx.doi.org/10.1124/dmd.107.015826</u>
23	Mackenzie, KM; Angevine, DM. (1981). Infertility in mice exposed in utero to benzo(a)pyrene.
24	Biol Reprod 24: 183-192.
25	Mager, R; Huberman, E; Yang, SK; Gelboin, HV; Sachs, L. (1977). Transformation of normal
26	hamster cells by benzo(a)pyrene diol-epoxide. Int J Cancer 19: 814-817.
27	Mahler, BJ; Van Metre, PC; Bashara, TJ; Wilson, JT; Johns, DA. (2005). Parking lot sealcoat: an
28	unrecognized source of urban polycyclic aromatic hydrocarbons. Environ Sci Technol 39:
29	5560-5566. <u>http://dx.doi.org/10.1021/es0501565</u>
30	Malik, AI; Williams, A; Lemieux, CL; White, PA; Yauk, CL. (2012). Hepatic mRNA, microRNA, and
31	miR-34a-target responses in mice after 28 days exposure to doses of benzo(a)pyrene
32	that elicit DNA damage and mutation. Environ Mol Mutagen 53: 10-21.
33 34	<u>http://dx.doi.org/10.1002/em.20668</u> <u>Maliszewska-Kordybach, B; Smreczak, B; Klimkowicz-Pawlas, A.</u> (2009). Concentrations, sources,
35 35	and spatial distribution of individual polycyclic aromatic hydrocarbons (PAHs) in
36	agricultural soils in the Eastern part of the EU: Poland as a case study. Sci Total Environ
37	407: 3746-3753. <u>http://dx.doi.org/10.1016/j.scitotenv.2009.01.010</u>
38	Mallet, WG; Mosebrook, DR; Trush, MA. (1991). Activation of (+-)-trans-7,8-dihydroxy-7,8-
39	dihydrobenzo[a]pyrene to diolepoxides by human polymorphonuclear leukocytes or
40	myeloperoxidase. Carcinogenesis 12: 521-524.
41	Mamber, SW; Bryson, V; Katz, SE. (1983). The Escherichia coli WP2/WP100 rec assay for
42	detection of potential chemical carcinogens. Mutat Res 119: 135-144.
43	http://dx.doi.org/10.1016/0165-7992(83)90121-5

1	Mane, SS; Purnell, DM; Hsu, IC. (1990). Genotoxic effects of five polycyclic aromatic
2	hydrocarbons in human and rat mammary epithelial cells. Environ Mol Mutagen 15: 78-
3	82.
4	Marini, MG; Asunis, I; Chan, K; Chan, JY; Kan, YW; Porcu, L; Cao, A; Moi, P. (2002). Cloning MafF
5 6	by recognition site screening with the NFE2 tandem repeat of HS2: analysis of its role in globin and GCSI genes regulation. Blood Cells Mol Dis 29: 145-158.
7	Marino, DJ. (1987). Evaluation of Pluronic Polyol F127 as a vehicle for petroleum hydrocarbons
8	in the Salmonella/microsomal assay. Environ Mutagen 9: 307-316. Marnett, Ll. (1990). Prostaglandin synthase-mediated metabolism of carcinogens and a
9	
10	potential role for peroxyl radicals as reactive intermediates [Review]. Environ Health
11	Perspect 88: 5-12.
12	Martin, CN; Mcdermid, AC; Garner, RC. (1978). Testing of known carcinogens and
13	noncarcinogens for their ability to induce unscheduled DNA synthesis in HeLa cells.
14	Cancer Res 38: 2621-2627.
15	Matsuoka, A; Hayashi, M; Ishidate, M. (1979). Chromosomal aberration tests on 29 chemicals
16	combined with S9 mix in vitro. Mutat Res 66: 277-290.
17	Matsuoka, A; Matsuura, K; Sakamoto, H; Hayashi, M; Sofuni, T. (1998). Spindle disturbances
18	induced by benzo[a]pyrene and 7, 12-dimethylbenz[a]anthracene in a Chinese hamster
19	cell line (V79-MZ) and the stability of the numerical chromosome aberrations that
20	follow. Mutat Res 419: 1-12. <u>http://dx.doi.org/10.1016/S1383-5718(98)00069-2</u>
21	Matsuoka, A; Matsuura, K; Sakamoto, H; Hayashi, M; Sofuni, T. (1999). A proposal for a simple
22	way to distinguish aneugens from clastogens in the in vitro micronucleus test.
23	Mutagenesis 14: 385-389.
24	Matthews, EJ. (1993). Transformation of BALB/c-3T3 cells: III. Development of a co-culture
25	clonal survival assay for quantification of chemical cytotoxicity in high-density cell
26	cultures. Environ Health Perspect 101 Suppl 2: 311-318.
27	Maughan, WZ; Muller, SA; Perry, HO; Pittelkow, MR; O'Brien, PC. (1980). Incidence of skin
28	cancers in patients with atopic dermatitis treated with ocal tar: A 25-year follow-up
29	study. J Am Acad Dermatol 3: 612-615.
30	McCabe, DP; Flynn, EJ. (1990). Deposition of low dose benzo(a)pyrene into fetal tissue:
31	influence of protein binding. Teratology 41: 85-95.
32	<u>http://dx.doi.org/10.1002/tera.1420410109</u>
33	<u>McCallister, MM; Maguire, M; Ramesh, A; Qiao, AM; Sheng, L; Khoshbouei, H; Aschner, M;</u>
34	Ebner, FF; Hood, DB. (2008). Prenatal exposure to benzo(a)pyrene impairs later-life
35	cortical neuronal function. Neurotoxicology 29: 846-854.
36	<u>http://dx.doi.org/10.1016/j.neuro.2008.07.008</u>
37	Mccann, J; Spingarn, NE; Kobori, J; Ames, BN. (1975). Detection of carcinogens as mutagens:
38	bacterial tester strains with R factor plasmids. PNAS 72: 979-983.
39	<u>Melikian, AA; Sun, P; Prokopczyk, B; El-Bayoumy, K; Hoffmann, D; Wang, X; Waggoner, S.</u>
40	(1999). Identification of benzo[a]pyrene metabolites in cervical mucus and DNA adducts
41	in cervical tissues in humans by gas chromatography-mass spectrometry. Cancer Lett
42	146: 127-134. http://dx.doi.org/10.1016/S0304-3835(99)00203-7

1	Meng, F; Knapp, GW; Green, T; Ross, JA; Parsons, BL. (2010). K-Ras mutant fraction in A/J
2	mouse lung increases as a function of benzo[a]pyrene dose. Environ Mol Mutagen 51:
3	146-155. <u>http://dx.doi.org/10.1002/em.20513</u>
4	Mensing, T; Marczynski, B; Engelhardt, B; Wilhelm, M; Preuss, R; Kappler, M; Angerer, J;
5	Kafferlein, HU; Scherenberg, M; Seidel, A; Brüning, T. (2005). DNA adduct formation of
6	benzo[a]pyrene in white blood cells of workers exposed to polycyclic aromatic
7	hydrocarbons. Int J Hyg Environ Health 208: 173-178.
8	http://dx.doi.org/10.1016/j.ijheh.2005.01.023
9	Merk, HF; Mukhtar, H; Kaufmann, I; Das, M; Bickers, DR. (1987). Human hair follicle
10	benzo[a]pyrene and benzo[a]pyrene 7,8-diol metabolism: effect of exposure to a coal
11	tar-containing shampoo. J Invest Dermatol 88: 71-76.
12	Merlo, F; Bolognesi, C; Peluso, M; Valerio, F; Abbondandolo, A; Puntoni, R. (1997). Airborne
13	levels of polycyclic aromatic hydrocarbons: 32P-postlabeling DNA adducts and
14	micronuclei in white blood cells from traffic police workers and urban residents. J
15	Environ Pathol Toxicol Oncol 16: 157-162.
16	Mersch-Sundermann, V; Mochayedi, S; Kevekordes, S. (1992). Genotoxicity of polycyclic
17	aromatic hydrocarbons in Escherichia coli PQ37. Mutat Res 278: 1-9.
18	http://dx.doi.org/10.1016/0165-1218(92)90279-9
19	Michalopoulos, G; Sattler, GL; O'Connor, L; Pitot, HC. (1978). Unscheduled DNA synthesis
20	induced by procarcinogens in suspensions and primary cultures of hepatocytes on
21	collagen membranes. Cancer Res 38: 1866-1871.
22	Midgette, AS; Baron, JA. (1990). Cigarette smoking and the risk of natural menopause [Review].
23	Epidemiology 1: 474-480.
24	Mielke, HW; Wang, G; Gonzales, CR; Le, B; Quach, VN; Mielke, PW. (2001). PAH and metal
25	mixtures in New Orleans soils and sediments. Sci Total Environ 281: 217-227.
26	Mielzyńska, D; Siwińska, E; Kapka, L; Szyfter, K; Knudsen, LE; Merlo, DF. (2006). The influence of
27	environmental exposure to complex mixtures including PAHs and lead on genotoxic
28	effects in children living in Upper Silesia, Poland. Mutagenesis 21: 295-304.
29	http://dx.doi.org/10.1093/mutage/gel037
30	Miller, KP; Ramos, KS. (2001). Impact of cellular metabolism on the biological effects of
31	benzo[a]pyrene and related hydrocarbons [Review]. Drug Metab Rev 33: 1-35.
32	http://dx.doi.org/10.1081/DMR-100000138
33	Miller, ML; Vasunia, K; Talaska, G; Andringa, A; de Boer, J; Dixon, K. (2000). The tumor promoter
34	TPA enhances benzo[a]pyrene and benzo[a]pyrene diolepoxide mutagenesis in Big Blue
35	mouse skin. Environ Mol Mutagen 35: 319-327. <u>http://dx.doi.org/10.1002/1098-</u>
36	<u>2280(2000)35:4<319::AID-EM6>3.0.CO;2-H</u>
37	Milo, GE; Blakeslee, J; Yohn, DS; Dipaolo, JA. (1978). Biochemical activation of aryl hydrocarbon
38	hydroxylase activity, cellular distribution of polynuclear hydrocarbon metabolites, and
39	DNA damage by polynuclear hydrocarbon products in human cells in vitro. Cancer Res
40	38: 1638-1644.
41	Mirsalis, JC; Tyson, CK; Butterworth, BE. (1982). Detection of genotoxic carcinogens in the in
42	vivo-in vitro hepatocyte DNA repair assay. Environ Mol Mutagen 4: 553-562.

1	Mirvish, SS; Ghadirian, P; Wallcave, L; Raha, C; Bronczyk, S; Sams, JP. (1981). Effect of diet on
2	fecal excretion and gastrointestinal tract distribution of unmetabolized benzo(a)pyrene
3	and 3- methylcholanthrene when these compounds are administered orally to
4	hamsters. Cancer Res 41: 2289-2293.
5	Mishra, NK; Wilson, CM; Pant, KJ; Thomas, FO. (1978). Simultaneous determination of cellular
6	mutagenesis and transformation by chemical carcinogens in Fischer rat embryo cells. J
7	Toxicol Environ Health 4: 79-91. <u>http://dx.doi.org/10.1080/15287397809529646</u>
8	Mitra, S; Ray, B. (1995). Patterns and sources of polycyclic aromatic hydrocarbons and their
9	derivatives in indoor air. Atmos Environ 29: 3345-3356. <u>http://dx.doi.org/10.1016/1352-</u>
10	<u>2310(95)00214-j</u>
11	Mitra, S; Wilson, NK. (1992). Pattern of polynuclear aromatic hydrocarbons in indoor air:
12	exploratory principal component analysis. Environ Int 18: 477-487.
13	<u>http://dx.doi.org/10.1016/0160-4120(92)90266-7</u>
14	Mitropoulos, P; Norman, R. (2005). Occupational nonsolar risk factors of squamous cell
15	carcinoma of the skin: a population-based case-controlled study. Dermatol Online J 11:
16	5.
17	<u>Mohamed, E; Song, WH; Oh, SA; Park, YJ; You, YA; Lee, S; Choi, JY; Kim, YJ; Jo, I; Pang, MG.</u>
18	(2010). The transgenerational impact of benzo(a)pyrene on murine male fertility. Hum
19	Reprod 25: 2427-2433. <u>http://dx.doi.org/10.1093/humrep/deq205</u>
20	Mohr, U. (1971). Diethylnitrosamine-induced carcinogenesis. Diaplacental effect. Fortschr Med
21	89: 251-253.
22	Moir, D. (1999). Physiological modeling of benzo(a)pyrene pharmacokinetics in the rat. In H
23	Salem; SA Katz (Eds.), Toxicity assessment alternatives: Methods, issues, opportunities
24	(pp. 79-95). Totowa, NJ: Humana Press.
25	Moir, D; Viau, A; Chu, I; Withey, J; Mcmullen, E. (1998). Pharmacokinetics of benzo[a]pyrene in
26	the rat. J Toxicol Environ Health A 53: 507-530.
27	Moore, LE; Wiencke, JK; Bates, MN; Zheng, S; Rey, OA; Smith, AH. (2004). Investigation of
28	genetic polymorphisms and smoking in a bladder cancer case-control study in Argentina.
29	Cancer Lett 211: 199-207. <u>http://dx.doi.org/10.1016/j.canlet.2004.04.011</u>
30	Mori, M; Kobayashi, H; Sugiyama, C; Katsumura, Y; Furihata, C. (1999). Induction of
31	unscheduled DNA synthesis in hairless mouse epidermis by skin carcinogens. J Toxicol
32	Sci 24: 217-226.
33	Morse, MA; Carlson, GP. (1985). Distribution and macromolecular binding of benzo[a]pyrene in
34 25	SENCAR and BALB/c mice following topical and oral administration. J Toxicol Environ
35	Health 16: 263-276. <u>http://dx.doi.org/10.1080/15287398509530739</u>
36	Motykiewicz, G; Michalska, J; Pendzich, J; Małusecka, E; Strózyk, M; Kalinowska, E; Butkiewicz,
37	<u>D; Mielzyńska, D; Midro, A; Santella, RM; Chorazy, M.</u> (1998). A molecular epidemiology
38	study in women from Upper Silesia, Poland. Toxicol Lett 96-97: 195-202.
39 40	Mullaart, E; Buytenhek, M; Brouwer, A; Lohman, PH; Vijg, J. (1989). Genotoxic effects of
40	intragastrically administered benzo[a]pyrene in rat liver and intestinal cells.
41 42	Carcinogenesis 10: 393-395.
42 42	N'Diaye, M; Le Ferrec, E; Lagadic-Gossmann, D; Corre, S; Gilot, D; Lecureur, V; Monteiro, P;
43	Rauch, C; Galibert, MD; Fardel, O. (2006). Aryl hydrocarbon receptor- and calcium-

1	dependent induction of the chemokine CCL1 by the environmental contaminant
2	benzo[a]pyrene. J Biol Chem 281: 19906-19915.
3	http://dx.doi.org/10.1074/jbc.M601192200
4	Nadal, M; Schuhmacher, M; Domingo, JL. (2004). Levels of PAHs in soil and vegetation samples
5	from Tarragona County, Spain. Environ Pollut 132: 1-11.
6	http://dx.doi.org/10.1016/j.envpol.2004.04.003
7	Nair, S; Doh, ST; Chan, JY; Kong, AN; Cai, L. (2008). Regulatory potential for concerted
8	modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and
9	carcinogenesis. Br J Cancer 99: 2070-2082. http://dx.doi.org/10.1038/sj.bjc.6604703
10	Nam, JJ; Thomas, GO; Jaward, FM; Steinnes, E; Gustafsson, O; Jones, KC. (2008). PAHs in
11	background soils from Western Europe: influence of atmospheric deposition and soil
12	organic matter. Chemosphere 70: 1596-1602.
13	http://dx.doi.org/10.1016/j.chemosphere.2007.08.010
14	Naufal, Z; Zhiwen, L; Zhu, L; Zhou, GD; Mcdonald, T; He, LY; Mitchell, L; Ren, A; Zhu, H; Finnell,
15	R; Donnelly, KC. (2010). Biomarkers of exposure to combustion by-products in a human
16	population in Shanxi, China. J Expo Sci Environ Epidemiol 20: 310-319.
17	http://dx.doi.org/10.1038/jes.2009.19
18	Naumova, YY; Eisenreich, SJ; Turpin, BJ; Weisel, CP; Morandi, MT; Colome, SD; Totten, LA;
19	Stock, TH; Winer, AM; Alimokhtari, S; Kwon, J; Shendell, D; Jones, J; Maberti, S; Wall, SJ.
20	(2002). Polycyclic aromatic hydrocarbons in the indoor and outdoor air of three cities in
21	the US. Environ Sci Technol 36: 2552-2559. <u>http://dx.doi.org/10.1021/es015727h</u>
22	<u>Neal, J; Rigdon, RH.</u> (1967). Gastric tumors in mice fed benzo(a)pyrene: A quantitative study.
23	Tex Rep Biol Med 25: 553-557.
24	Neal, MS; Zhu, J; Foster, WG. (2008). Quantification of benzo[a]pyrene and other PAHs in the
25	serum and follicular fluid of smokers versus non-smokers. Reprod Toxicol 25: 100-106.
26	http://dx.doi.org/10.1016/j.reprotox.2007.10.012
27	Nebert, DW; Puga, A; Vasiliou, V. (1993). Role of the Ah receptor and the dioxin-inducible [Ah]
28	gene battery in toxicity, cancer, and signal transduction [Review]. Ann N Y Acad Sci 685:
29	624-640. http://dx.doi.org/10.1111/j.1749-6632.1993.tb35928.x
30	Nesnow, S; Davis, C; Nelson, G; Ross, JA; Allison, J; Adams, L; King, LC. (1997). Comparison of the
31	morphological transforming activities of dibenzo[a,l]pyrene and benzo[a]pyrene in
32	C3H10T1/2CL8 cells and characterization of the dibenzo[a,l]pyrene-DNA adducts.
33	Carcinogenesis 18: 1973-1978.
34	Nesnow, S; Davis, C; Nelson, GB; Lambert, G; Padgett, W; Pimentel, M; Tennant, AH; Kligerman,
35	AD; Ross, JA. (2002). Comparison of the genotoxic activities of the K-region dihydrodiol
36	of benzo[a]pyrene with benzo[a]pyrene in mammalian cells: Morphological cell
37	transformation; DNA damage; and stable covalent DNA adducts. Mutat Res 521: 91-102.
38	http://dx.doi.org/10.1016/S1383-5718(02)00218-8
39	Nesnow, S; Triplett, LL; Slaga, TJ. (1983). Mouse skin tumor initiation-promotion and complete
40	carcinogenesis bioassays: mechanisms and biological activities of emission samples.
41	Environ Health Perspect 47: 255-268.
42	Neubert, D; Tapken, S. (1988). Transfer of benzo(a)pyrene into mouse embryos and fetuses.
43	Arch Toxicol 62: 236-239. <u>http://dx.doi.org/10.1007/BF00570149</u>

1	Nishikawa, T; Nakamura, T; Fukushima, A; Takagi, Y. (2005). Further evaluation of the skin
2	micronucleus test: results obtained using 10 polycyclic aromatic hydrocarbons. Mutat
3	Res 588: 58-63. <u>http://dx.doi.org/10.1016/j.mrgentox.2005.09.004</u>
4	Niu, Q; Zhang, H; Li, X; Li, M. (2010). Benzo[a]pyrene-induced neurobehavioral function and
5	neurotransmitter alterations in coke oven workers. Occup Environ Med 67: 444-448.
6	<u>http://dx.doi.org/10.1136/oem.2009.047969</u>
7	Norpoth, K; Kemena, A; Jacob, J; Schümann, C. (1984). The influence of 18 environmentally
8	relevant polycyclic aromatic hydrocarbons and clophen A50, as liver monooxygenase
9	inducers, on the mutagenic activity of benz[a]anthracene in the Ames test.
10	Carcinogenesis 5: 747-752. http://dx.doi.org/10.1093/carcin/5.6.747
11	NRC (National Research Council). (1994). Science and judgment in risk assessment. Washington,
12	DC: National Academy Press. <u>http://www.nap.edu/openbook.php?isbn=030904894X</u>
13	NRC (National Research Council). (2011). Review of the Environmental Protection Agency's
14	draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press.
15	http://www.nap.edu/catalog/13142.html
16	<u>NTP</u> (National Toxicology Program). (2011). Report on carcinogens: Twelfth edition (12th ed.).
17	Research Triangle Park, NC: U.S. Department of Health and Human Services, Public
18	Health Service, National Institutes of Health.
19	http://ntp.niehs.nih.gov/ntp/roc/twelfth/roc12.pdf
20	Nwagbara, O; Darling-Reed, SF; Tucker, A; Harris, C; Abazinge, M; Thomas, RD; Gragg, RD.
21	(2007). Induction of cell death, DNA strand breaks, and cell cycle arrest in DU145 human
22	prostate carcinoma cell line by benzo[a]pyrene and benzo[a]pyrene-7,8-diol-9,10-
23	epoxide. Int J Environ Res Public Health 4: 10-14.
24	http://dx.doi.org/10.3390/ijerph2007010002
25	O'Donovan, MR. (1990). Mutation assays of ethyl methanesulphonate, benzidine and
26	benzo[a]pyrene using Chinese hamster V79 cells. Mutagenesis 5 Suppl: 9-13.
27	<u>O'Neil, MJ; Smith, A; Heckelman, PE; Obenchain, JR; Gallipeau, JR; D'Arecca, MA.</u> (2001). The
28	Merck index: An encyclopedia of chemicals, drugs, and biologicals. In MJ O'Neil; A Smith;
29	PE Heckelman; JR Obenchain; JR Gallipeau; MA D'Arecca (Eds.), (13th ed.). Whitehouse
30	Station, NJ: Merck & Co., Inc.
31	O'Neill, IK; Goldberg, MT; El Ghissassi, F; Rojas-Moreno, M. (1991). Dietary fibre, fat and beef
32	modulation of colonic nuclear aberrations and microcapsule-trapped gastrointestinal
33	metabolites of benzo[a]pyrene-treated C57/B6 mice consuming human diets.
34	Carcinogenesis 12: 175-180.
35	Obana, H; Hori, S; Kashimoto, T; Kunita, N. (1981). Polycyclic aromatic hydrocarbons in human
36	fat and liver. Bull Environ Contam Toxicol 27: 23-27.
37	<u>http://dx.doi.org/10.1007/BF01610981</u>
38	Obermeier, J; Frohberg, H. (1977). Mutagenicity studies with praziquantel, a new anthelmintic
39	drug: tissue-, host-, and urine-mediated mutagenicity assays. Arch Toxicol 38: 149-161.
40	OECD (Organisation for Economic Co-operation and Development). (2009). Series on testing
41	and assesment: Number 39. Guidance document on acute inhalation toxicity testing
42	[OECD SIDS]. (ENV/JM/MONO(2009)28; JT03268144). Paris, Fr.

1	http://search.oecd.org/officialdocuments/displaydocumentpdf/?cote=env/jm/mono%2
2	<u>82009%2928&doclanguage=en</u>
3	Oesch, F; Bentley, P; Glatt, HR. (1976). Prevention of benzo(a)pyrene-induced mutagenicity by
4	homogeneous epoxide hydratase. Int J Cancer 18: 448-452.
5	http://dx.doi.org/10.1002/ijc.2910180408
6	Okey, AB; Riddick, DS; Harper, PA. (1994). Molecular biology of the aromatic hydrocarbon
7	(dioxin) receptor [Review]. Trends Pharmacol Sci 15: 226-232.
8	<u>http://dx.doi.org/10.1016/0165-6147(94)90316-6</u>
9	Olsen, AK; Andreassen, A; Singh, R; Wiger, R; Duale, N; Farmer, PB; Brunborg, G. (2010).
10	Environmental exposure of the mouse germ line: DNA adducts in spermatozoa and
11	formation of de novo mutations during spermatogenesis. PLoS ONE 5: e11349.
12	http://dx.doi.org/10.1371/journal.pone.0011349
13	Oueslati, R; Alexandrov, K; Chouikha, M; Chouroulinkov, I. (1992). Formation and persistence of
14	DNA adducts in epidermal and dermal mouse skin exposed to benzo(a)pyrene in vivo. In
15	Vivo 6: 231-235.
16	Pahlman, R; Pelkonen, O. (1987). Mutagenicity studies of different polycyclic aromatic
17	hydrocarbons the significance of enzymatic factors and molecular structure.
18	Carcinogenesis 8: 773-778.
19	Pal, K; Tierney, B; Grover, PL; Sims, P. (1978). Induction of sister-chromatid exchanges in
20	Chinese hamster ovary cells treated in vitro with non-K-region dihydrodiols of 7-
21	methylbenz[a]anthracene and benzo[a]pyrene. Mutat Res 50: 367-375.
22	Park, JS; Wade, TL; Sweet, S. (2001). Atmospheric distribution of polycyclic aromatic
23	hydrocarbons and deposition to Galveston Bay, Texas, USA. Atmos Environ 35: 3241-
24	3249. <u>http://dx.doi.org/10.1016/s1352-2310(01)00080-2</u>
25	Park, SJ; Zhao, H; Spitz, MR; Grossman, HB; Wu, X. (2003). An association between NQO1
26	genetic polymorphism and risk of bladder cancer. Mutat Res 536: 131-137.
27	Partanen, T; Boffetta, P. (1994). Cancer risk in asphalt workers and roofers: review and meta-
28	analysis of epidemiologic studies [Review]. Am J Ind Med 26: 721-740.
29	Pastorelli, R; Guanci, M; Cerri, A; Negri, E; La Vecchia, C; Fumagalli, F; Mezzetti, M; Cappelli, R;
30	Panigalli, T; Fanelli, R; Airoldi, L. (1998). Impact of inherited polymorphisms in
31	glutathione S-transferase M1, microsomal epoxide hydrolase, cytochrome P450
32	enzymes on DNA, and blood protein adducts of benzo(a)pyrene-diolepoxide. Cancer
33	Epidemiol Biomarkers Prev 7: 703-709.
34	Pauluhn, J; Thyssen, J; Althoff, J; Kimmerle, G; Mohr, U. (1985). Long-term inhalation study with
35	benzo(a)pyrene and SO2 in Syrian golden hamsters [Abstract]. Exp Pathol 28: 31.
36	http://dx.doi.org/10.1016/S0232-1513(85)80029-3
37	Pavanello, S; Favretto, D; Brugnone, F; Mastrangelo, G; Dal Pra, G; Clonfero, E. (1999).
38	HPLC/fluorescence determination of anti-BPDE-DNA adducts in mononuclear white
39	blood cells from PAH-exposed humans. Carcinogenesis 20: 431-435.
40	Pavanello, S; Pulliero, A; Saia, BO; Clonfero, E. (2006). Determinants of anti-benzo[a]pyrene diol
41	epoxide-DNA adduct formation in lymphomonocytes of the general population. Mutat
42	Res 611: 54-63. <u>http://dx.doi.org/10.1016/j.mrgentox.2006.06.034</u>

1	Pavanello, S; Pulliero, A; Siwinska, E; Mielzynska, D; Clonfero, E. (2005). Reduced nucleotide
2	excision repair and GSTM1-null genotypes influence anti-B[a]PDE-DNA adduct levels in
3	mononuclear white blood cells of highly PAH-exposed coke oven workers.
4	Carcinogenesis 26: 169-175. http://dx.doi.org/10.1093/carcin/bgh303
5	Pelkonen, O; Nebert, DW. (1982). Metabolism of polycyclic aromatic hydrocarbons: etiologic
6	role in carcinogenesis [Review]. Pharmacol Rev 34: 189-222.
7	Penning, TM; Burczynski, ME; Hung, CF; Mccoull, KD; Palackal, NT; Tsuruda, LS. (1999).
8	Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: generation
9	of reactive and redox active o-quinones [Review]. Chem Res Toxicol 12: 1-18.
10	<u>http://dx.doi.org/10.1021/tx980143n</u>
11	Pereira, MA; Mcmillan, L; Kaur, P; Gulati, DK; Sabharwal, PS. (1982). Effect of benzo[a]pyrene on
12	sister-chromatid exchange in fetal hamster liver exposed in utero. Mutat Res 105: 343-
13	347. <u>http://dx.doi.org/10.1016/0165-7992(82)90105-1</u>
14	<u>Perera, FP; Dickey, C; Santella, R; O'Neill, JP; Albertini, RJ; Ottman, R; Tsai, WY; Mooney, LA;</u>
15	Savela, K; Hemminki, K. (1994). Carcinogen-DNA adducts and gene mutation in foundry
16	workers with low-level exposure to polycyclic aromatic hydrocarbons. Carcinogenesis
17	15: 2905-2910. <u>http://dx.doi.org/10.1093/carcin/15.12.2905</u>
18	<u>Perera, FP; Rauh, V; Whyatt, RM; Tang, D; Tsai, WY; Bernert, JT; Tu, YH; Andrews, H; Barr, DB;</u>
19	<u>Camann, DE; Diaz, D; Dietrich, J; Reyes, A; Kinney, PL.</u> (2005a). A summary of recent
20	findings on birth outcomes and developmental effects of prenatal ETS, PAH, and
21	pesticide exposures [Review]. Neurotoxicology 26: 573-587.
22	http://dx.doi.org/10.1016/j.neuro.2004.07.007
23	Perera, FP; Rauh, V; Whyatt, RM; Tsai, WY; Bernert, JT; Tu, YH; Andrews, H; Ramirez, J; Qu, L;
24	Tang, D. (2004). Molecular evidence of an interaction between prenatal environmental
25	exposure and birth outcomes in a multiethnic population. Environ Health Perspect 112:
26	626-630.
27	Perera, FP; Tang, D; Rauh, V; Lester, K; Tsai, WY; Tu, YH; Weiss, L; Hoepner, L; King, J; Del Priore,
28	<u>G; Lederman, SA.</u> (2005b). Relationships among polycyclic aromatic hydrocarbon-DNA
29	adducts, proximity to the World Trade Center, and effects on fetal growth. Environ
30	Health Perspect 113: 1062-1067.
31	Perera, FP; Tang, DL; O'Neill, JP; Bigbee, WL; Albertini, RJ; Santella, R; Ottman, R; Tsai, WY;
32	Dickey, C; Mooney, LA. (1993). HPRT and glycophorin A mutations in foundry workers:
33	Relationship to PAH exposure and to PAH-DNA adducts. Carcinogenesis 14: 969-973.
34 25	http://dx.doi.org/10.1093/carcin/14.5.969
35	Peterson, AR; Landolph, JR; Peterson, H; Spears, CP; Heidelberger, C. (1981). Oncogenic
36	transformation and mutation of C3H/10T 1/2 clone 8 mouse embryo fibroblasts by
37	alkylating agents. Cancer Res 41: 3095-3099.
38	Petridou-Fischer, J; Whaley, SL; Dahl, AR. (1988). In vivo metabolism of nasally instilled
39 40	benzo[a]pyrene in dogs and monkeys. Toxicology 48: 31-40.
40	http://dx.doi.org/10.1016/0300-483X(88)90056-X
41 42	Petry, T; Schmid, P; Schlatter, C. (1996). The use of toxic equivalency factors in assessing
42	occupational and environmental health risk associated with exposure to airborne

1	mixtures of polycyclic aromatic hydrocarbons (PAHs). Chemosphere 32: 639-648.
2	http://dx.doi.org/10.1016/0045-6535(95)00348-7
3	Phillips, DH. (1983). Fifty years of benzo(a)pyrene [Review]. Nature 303: 468-472.
4	http://dx.doi.org/10.1038/303468a0
5	Phillipson, CE; Ioannides, C. (1989). Metabolic activation of polycyclic aromatic hydrocarbons to
6	mutagens in the Ames test by various animal species including man. Mutat Res 211:
7	147-151.
8	Pittelkow, MR; Perry, HO; Muller, SA; Maughan, WZ; O'Brien, PC. (1981). Skin cancer in patients
9	with psoriasis treated with coal tar: A 25-year follow-up study. Arch Dermatol 117: 465-
10	468.
11	<u>Pitts, JN, Jr; Van Cauwenberghe, KA; Grosjean, D; Schmid, JP; Fitz, DR; Belser, WL, Jr; Knudson,</u>
12	GB; Hynds, PM. (1978). Atmospheric reactions of polycyclic aromatic hydrocarbons:
13	facile formation of mutagenic nitro derivatives. Science 202: 515-519.
14	Poel, WE. (1959). Effect of carcinogenic dosage and duration of exposure on skin-tumor
15	induction in mice. J Natl Cancer Inst 22: 19-43.
16	Poel, WE. (1963). Skin as a test site for the bioassay of carcinogens and carcinogen precursors
17	[IARC Monograph]. In Biology of cutaneous cancers (pp. 611-631). Poel, WE.
18	Popescu, NC; Turnbull, D; Dipaolo, JA. (1977). Sister chromatid exchange and chromosome
19	aberration analysis with the use of several carcinogens and noncarcinogens. J Natl
20	Cancer Inst 59: 289-293.
21	Potter, D; Booth, ED; Brandt, HC; Loose, RW; Priston, RA; Wright, AS; Watson, WP. (1999).
22	Studies on the dermal and systemic bioavailability of polycyclic aromatic compounds in
23	high viscosity oil products. Arch Toxicol 73: 129-140.
24	Prasanna, P; Jacobs, MM; Yang, SK. (1987). Selenium inhibition of benzo[a]pyrene, 3-
25	methylcholanthrene, and 3-methylcholanthrylene mutagenicity in Salmonella
26	typhimurium strains TA98 and TA100. Mutat Res 190: 101-105.
27	Quarles, JM; Sega, MW; Schenley, CK; Ljinsky, W. (1979). Transformation of hamster fetal cells
28	by nitrosated pesticides in a transplacental assay. Cancer Res 39: 4525-4533.
29	Quinn, AM; Penning, TM. (2008). Comparisons of (+/-)-benzo[a]pyrene-trans-7,8-dihydrodiol
30	activation by human cytochrome P450 and aldo-keto reductase enzymes: effect of
31	redox state and expression levels. Chem Res Toxicol 21: 1086-1094.
32	http://dx.doi.org/10.1021/tx700345v
33	Ramesh, A; Greenwood, M; Inyang, F; Hood, DB. (2001a). Toxicokinetics of inhaled
34 25	benzo[a]pyrene: plasma and lung bioavailability. Inhal Toxicol 13: 533-555.
35 26	<u>http://dx.doi.org/10.1080/08958370118859</u> Ramesh, A; Greenwood, M; Inyang, F; Niaz, M; Kopsombut, P; Hood, DB; Archibong, AE;
36 37	<u>Nyanda, AM.</u> (2003). Aryl hydrocarbon hydroxylase (AHH) and benzo(a)pyrene
37 38	metabolite in F-344 rats subchronically exposed to inhaled BaP. Toxicologist 72: 325.
39	Ramesh, A; Inyang, F; Hood, DB; Archibong, AE; Knuckles, ME; Nyanda, AM. (2001b).
39 40	Metabolism, bioavailability, and toxicokinetics of benzo(alpha)pyrene in F-344 rats
40 41	following oral administration. Exp Toxicol Pathol 53: 275-290.
42	Ramesh, A; Inyang, F; Lunstra, DD; Niaz, MS; Kopsombut, P; Jones, KM; Hood, DB; Hills, ER;
43	Archibong, AE. (2008). Alteration of fertility endpoints in adult male F-344 rats by
тJ	A composition of the function

1 2	subchronic exposure to inhaled benzo(a)pyrene. Exp Toxicol Pathol 60: 269-280. <u>http://dx.doi.org/10.1016/j.etp.2008.02.010</u>
2	Ramesh, A; Knuckles, ME. (2006). Dose-dependent benzo(a)pyrene [B(a)P]-DNA adduct levels
4	and persistence in F-344 rats following subchronic dietary exposure to B(a)P. Cancer Lett
5	240: 268-278. <u>http://dx.doi.org/10.1016/j.canlet.2005.09.016</u>
6	Ramesh, A; Walker, SA; Hood, DB; Guillén, MD; Schneider, K; Weyand, EH. (2004).
7	Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons
8	[Review]. Int J Toxicol 23: 301-333. <u>http://dx.doi.org/10.1080/10915810490517063</u>
9	Rao, KP; Nandan, BD. (1990). Modification of benzo(a)pyrene induced chromosomal damage in
10	mouse bone marrow by vitamin A. Bull Environ Contam Toxicol 45: 829-832.
11	http://dx.doi.org/10.1007/BF01701079
12	Rastetter, WH; Nachbar, RB; Russo-Rodriguez, S; Wattley, RV; Thilly, WG; Andon, BM;
13	Jorgensen, WL; Ibrahim, M. (1982). Fluoranthene: Synthesis and mutagenicity of four
14	diol epoxides. J Org Chem 47: 4873-4878. <u>http://dx.doi.org/10.1021/jo00146a011</u>
15	Raveh, D; Slaga, TJ; Huberman, E. (1982). Cell-mediated mutagenesis and tumor-initiating
16	activity of the ubiquitous polycyclic hydrocarbon, cyclopenta[c,d]pyrene. Carcinogenesis
17	3: 763-766. <u>http://dx.doi.org/10.1093/carcin/3.7.763</u>
18	Reddy, M; Gupta, R; Randerath, E; Randerath, K. (1984). 32P-postlabeling test for covalent DNA
19	binding of chemicals in vivo: application to a variety of aromatic carcinogens and
20	methylating agents. Carcinogenesis 5: 231-243.
21	Renzik-Schüller, H; Mohr, U. (1974). Investigations on the carcinogenic burden by air pollution
22	in man. IX. Early pathological alterations of the bronchial epithelium in Syrian gloden
23	hamsters after intratracheal instillation of benzo (a) pyrene. 1. Morphological studies
24	from semithin sections. Zentralbl Bakteriol, Parasitenkd, Infektionskrankh Hyg, Abt 1:
25	Orig, Reihe B 159: 493-502.
26	Rice, JE; Makowski, GS; Hosted, TJ; Lavoie, EJ. (1985). Methylene-bridged bay region chrysene
27	and phenanthrene derivatives and their keto-analogs: mutagenicity in Salmonella
28	typhimurium and tumor-initiating activity on mouse skin. Cancer Lett 27: 199-206.
29	http://dx.doi.org/10.1016/0304-3835(84)90119-8
30	Rigdon, RH; Neal, J. (1965). Effects of feeding benzo[a]pyrene on fertility, embryos, and young
31	mice. J Natl Cancer Inst 34: 297-305.
32	Rigdon, RH; Rennels, EG. (1964). Effect of feeding benzpyrene on reproduction in the rat. Cell
33	Mol Life Sci 20: 224-226. <u>http://dx.doi.org/10.1007/BF02135417</u>
34 25	<u>Robertson, IG; Guthenberg, C; Mannervik, B; Jernström, B.</u> (1986). Differences in stereoselectivity and catalytic efficiency of three human glutathione transferases in the
35 36	conjugation of glutathione with 7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-oxy-7,8,9,10-
30 37	tetrahydrobenzo(a)pyrene. Cancer Res 46: 2220-2224.
38	Robinson, DE; Mitchell, AD. (1981). Unscheduled DNA synthesis response of human fibroblasts,
39	WI-38 cells, to 20 coded chemicals. In FJ de Serres; J Ashby (Eds.), Evaluation of short-
40	term tests for carcinogens: Report of the International Collaborative Program (pp. 517-
41	527). New York, NY: Elsevier/North-Holland.
41	527). New York, NY: Elsevier/North-Holland.

1	Robinson, M; Laurie, RD; Bull, RJ; Stober, JA. (1987). Carcinogenic effects in A/J mice of
2	particulate of a coal tar paint used in potable water systems. Cancer Lett 34: 49-54.
3	<u>http://dx.doi.org/10.1016/0304-3835(87)90072-3</u>
4	Rocchi, P; Ferreri, AM; Borgia, R; Prodi, G. (1980). Polycyclic hydrocarbons induction of
5	diphtheria toxin-resistant mutants in human cells. Carcinogenesis 1: 765-767.
6	Rodriguez-Romero, IM; Gomez-Arroyo, S; Villalobos-Pietrini, R; Martinez-Valenzuela, C; Cortes-
7	Eslava, J; Calderon-Ezquerro, MC; Garcia-Martinez, R; Arenas-Huertero, F; Calderon-
8	Segura, ME. (2012). Evaluation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) adduct levels
9	and DNA strand breaks in human peripheral blood lymphocytes exposed in vitro to
10	polycyclic aromatic hydrocarbons with or without animal metabolic activation. Toxicol
11	Mech Meth 22: 170-183. <u>http://dx.doi.org/10.3109/15376516.2011.623330</u>
12	Roe, FJ; Peto, R; Kearns, F; Bishop, D. (1970). The mechanism of carcinogenesis by the neutral
13	fraction of cigarette smoke condensate. Br J Cancer 24: 788-806.
14	Roelofzen, JH; Aben, KK; Oldenhof, UT; Coenraads, PJ; Alkemade, HA; van de Kerkhof, PC; van
15	der Valk, PG; Kiemeney, LA. (2010). No increased risk of cancer after coal tar treatment
16	in patients with psoriasis or eczema. J Invest Dermatol 130: 953-961.
17	http://dx.doi.org/10.1038/jid.2009.389
18	Roggeband, R; Wolterbeek, AP; van den Berg, PT; Baan, RA. (1994). DNA adducts in hamster
19	and rat tracheas exposed to benzo(a)pyrene in vitro. Toxicol Lett 72: 105-111.
20	Rojas, M; Alexandrov, K; Cascorbi, I; Brockmöller, J; Likhachev, A; Pozharisski, K; Bouvier, G;
21	<u>Auburtin, G; Mayer, L; Kopp-Schneider, A; Roots, I; Bartsch, H.</u> (1998). High
22	benzo[a]pyrene diol-epoxide DNA adduct levels in lung and blood cells from individuals
23	with combined CYP1A1 MspI/Msp-GSTM1*0/*0 genotypes. Pharmacogenetics 8: 109-
24	118.
25	Rojas, M; Cascorbi, I; Alexandrov, K; Kriek, E; Auburtin, G; Mayer, L; Kopp-Schneider, A; Roots, I;
26	Bartsch, H. (2000). Modulation of benzo[a]pyrene diolepoxide-DNA adduct levels in
27	human white blood cells by CYP1A1, GSTM1 and GSTT1 polymorphism. Carcinogenesis
28	21: 35-41. <u>http://dx.doi.org/10.1093/carcin/21.1.35</u>
29	Rojas, M; Godschalk, R; Alexandrov, K; Cascorbi, I; Kriek, E; Ostertag, J; Van Schooten, FJ;
30	Bartsch, H. (2001). Myeloperoxidase463A variant reduces benzo[a]pyrene diol epoxide
31	DNA adducts in skin of coal tar treated patients. Carcinogenesis 22: 1015-1018.
32	http://dx.doi.org/10.1093/carcin/22.7.1015
33	Romundstad, P; Andersen, A; Haldorsen, T. (2000a). Cancer incidence among workers in six
34	Norwegian aluminum plants. Scand J Work Environ Health 26: 461-469.
35	Romundstad, P; Haldorsen, T; Andersen, A. (2000b). Lung and bladder cancer among workers in
36	a Norwegian aluminium reduction plant. Occup Environ Med 57: 495-499.
37	http://dx.doi.org/10.1136/oem.57.7.495
38	Rosenkranz, HS; Poirier, LA. (1979). Evaluation of the mutagenicity and DNA-modifying activity
39	of carcinogens and noncarcinogens in microbial systems. J Natl Cancer Inst 62: 873-892.
40	Ross, J; Nelson, G; Erexson, G; Kligerman, A; Earley, K; Gupta, RC; Nesnow, S. (1991). DNA
41	adducts in rat lung, liver and peripheral blood lymphocytes produced by i.p.
42	administration of benzo[a]pyrene metabolites and derivatives. Carcinogenesis 12: 1953-
43	1955. <u>http://dx.doi.org/10.1093/carcin/12.10.1953</u>

1	Roszinsky-Köcher, G; Basler, A; Röhrborn, G. (1979). Mutagenicity of polycyclic hydrocarbons. V.
2	Induction of sister-chromatid exchanges in vivo. Mutat Res 66: 65-67.
3	<u>http://dx.doi.org/10.1016/0165-1218(79)90008-9</u>
4	Roth, RA; Vinegar, A. (1990). Action by the lungs on circulating xenobiotic agents, with a case
5	study of physiologically based pharmacokinetic modeling of benzo(a)pyrene disposition
6	[Review]. Pharmacol Ther 48: 143-155.
7	Rowe, AA; O'Connor, TP. (2011). Assessment of water quality of runoff from sealed asphalt
8	surfaces. (EPA/600/R-10/178). Cincinnati, OH: U.S. Environmental Protection Agency.
9	Roy, TA; Singh, R. (2001). Effect of soil loading and soil sequestration on dermal bioavailability
10	of polynuclear aromatic hydrocarbons. Bull Environ Contam Toxicol 67: 324-331.
11	Ruchirawat, M; Navasumrit, P; Settachan, D. (2010). Exposure to benzene in various susceptible
12	populations: co-exposures to 1,3-butadiene and PAHs and implications for carcinogenic
13	risk. Chem Biol Interact 184: 67-76. <u>http://dx.doi.org/10.1016/j.cbi.2009.12.026</u>
14	Rudiger, HW; Kohl, F; Mangels, W; Von Wichert, P; Bartram, CR; Wohler, W; Passarge, E. (1976).
15	Benzpyrene induces sister chromatid exchanges in cultured human lymphocytes. Nature
16	262: 290-292.
17	<u>Ruggeri, B; Dirado, M; Zhang, SY; Bauer, B; Goodrow, T; Kleinszanto, AJP. (1993).</u>
18	Benzo[a]pyrene-induced murine skin tumors exhibit frequent and characteristic G to T
19	mutations in the p53 gene. PNAS 90: 1013-1017.
20	http://dx.doi.org/10.1073/pnas.90.3.1013
21	Russell, LB. (1977). Validation of the in vivo somatic mutation method in the mouse as a
22	prescreen for germinal point mutations. Arch Toxicol 38: 75-85.
23	Saffiotti, U; Cefis, F; Kolb, LH. (1968). A method for the experimental induction of bronchogenic
24	carcinoma. Cancer Res 28: 104-124.
25	Saffiotti, U; Montesano, R; Sellakumar, AR; Kaufman, DG. (1972). Respiratory tract
26	carcinogenesis induced in hamsters by different dose levels of benzo[a]pyrene and ferric
27	oxide. J Natl Cancer Inst 49: 1199-1204.
28	<u>Sagredo, C; Øvrebø, S; Haugen, A; Fujii-Kuriyama, Y; Baera, R; Botnen, IV; Mollerup, S.</u> (2006).
29	Quantitative analysis of benzo[a]pyrene biotransformation and adduct formation in Ahr
30	knockout mice. Toxicol Lett 167: 173-182.
31	http://dx.doi.org/10.1016/j.toxlet.2006.09.005
32	Sakai, M; Yoshida, D; Mizusaki, S. (1985). Mutagenicity of polycyclic aromatic hydrocarbons and
33	quinones on Salmonella typhimurium TA97. Mutat Res 156: 61-67.
34	<u>http://dx.doi.org/10.1016/0165-1218(85)90007-2</u>
35	Salama, SA; Sierra-Torres, CH; Oh, HY; Hamada, FA; Au, WW. (2001). Variant metabolizing gene
36	alleles determine the genotoxicity of benzo[a]pyrene. Environ Mol Mutagen 37: 17-26.
37	http://dx.doi.org/10.1002/1098-2280(2001)37:1<17::AID-EM1002>3.0.CO;2-F
38	Santodonato, J; Howard, P; Basu, D. (1981). Health and ecological assessment of polynuclear
39	aromatic hydrocarbons. Park Forest South, IL: Pathotox Publishers.
40	Saunders, CR; Ramesh, A; Shockley, DC. (2002). Modulation of neurotoxic behavior in F-344 rats
41	by temporal disposition of benzo(a)pyrene. Toxicol Lett 129: 33-45.
42	Schlede, E; Kuntzman, R; Haber, S; Conney, AH. (1970). Effect of enzyme induction on the
43	metabolism and tissue distribution of benzo(alpha)pyrene. Cancer Res 30: 2893-2897.

1	Schmähl, D; Schmidt, KG; Habs, M. (1977). Syncarcinogenic action of polycyclic hydrocarbons in
2	automobile exhaust gas condensates. In U Mohr; D Schmahl; L Tomatis; W Davis (Eds.),
3	Air pollution and cancer in man (pp. 53-59). Lyon, France: IARC.
4	Schmidt, KG; Schmähl, D; Misfeld, J. (1973). Investigations on the carcinogenic burden by air
5	pollution in man. VI. Experimental investigations to determine a dose-response
6	relationship and to estimate a threshold dose of benzo(a)pyrene in the skin of two
7	different mouse strains. Zentralbl Bakteriol, Parasitenkd, Infektionskrankh Hyg, Abt 1:
8	Orig, Reihe B 158: 62-68.
9	Schnizlein, CT; Munson, AE; Rhoades, RA. (1987). Immunomodulation of local and systemic
10	immunity after subchronic pulmonary exposure of mice to benzo(a)pyrene.
11	International Journal of Immunopharmacology 9: 99-106.
12	Schonwald, AD; Bartram, CR; Rudiger, HW. (1977). Benzpyrene-induced sister chromatid
13	exchanges in lymphocytes of patients with lung cancer. Hum Genet 36: 261-264.
14	Schwarz, D; Kisselev, P; Cascorbi, I; Schunck, WH; Roots, I. (2001). Differential metabolism of
15	benzo[a]pyrene and benzo[a]pyrene-7,8-dihydrodiol by human CYP1A1 variants.
16	Carcinogenesis 22: 453-459. http://dx.doi.org/10.1093/carcin/22.3.453
17	Sega, GA. (1979). Unscheduled DNA synthesis (DNA repair) in the germ cells of male miceits
18	role in the study of mammalian mutagenesis. Genetics 92: s49-s58.
19	Sega, GA. (1982). DNA repair in spermatocytes and spermatids of the mouse. (CONF-820448-4).
20	Oak Ridge, TN: Oak Ridge National Laboratory.
21	http://www.osti.gov/bridge/product.biblio.jsp?osti_id=5207659
22	Sharovskaya, J; Kobliakova, I; Solomatina, N; Kobliakov, V. (2006). Effect of some carcinogenic
23	and non-carcinogenic polycyclic aromatic hydrocarbons on gap junction intercellular
24	communication in hepatoma cell cultures. Eur J Cell Biol 85: 387-397.
25	http://dx.doi.org/10.1016/j.ejcb.2005.11.006
26	Shendrikova, IA; Aleksandrov, VA. (1974). Comparative penetration of polycyclic hydrocarbons
27	through the rat placenta into the fetus. Bull Exp Biol Med 77: 169-171.
28	Shi, L; Jones, WD; Jensen, RV; Harris, SC; Perkins, RG; Goodsaid, FM; Guo, L; Croner, LJ; Boysen,
29	<u>C; Fang, H; Qian, F; Amur, S; Bao, W; Barbacioru, CC; Bertholet, V; Cao, XM; Chu, TM;</u>
30	<u>Collins, PJ; Fan, XH; Frueh, FW; Fuscoe, JC; Guo, X; Han, J; Herman, D; Hong, H;</u>
31	<u>Kawasaki, ES; Li, QZ; Luo, Y; Ma, Y; Mei, N; Peterson, RL; Puri, RK; Shippy, R; Su, Z; Sun,</u>
32	YA; Sun, H; Thorn, B; Turpaz, Y; Wang, C; Wang, SJ; Warrington, JA; Willey, JC; Wu, J; Xie,
33	<u>Q; Zhang, L; Zhang, L; Zhong, S; Wolfinger, RD; Tong, W.</u> (2008). The balance of
34	reproducibility, sensitivity, and specificity of lists of differentially expressed genes in
35	microarray studies. BMC Bioinformatics 9 Suppl 9: S10. <u>http://dx.doi.org/10.1186/1471-</u>
36	<u>2105-9-S9-S10</u>
37	Shimada, H; Satake, S; Itoh, S; Hattori, C; Hayashi, M; Ishidate, M. (1990). Multiple-dosing
38	effects of benzo[a]pyrene in the mouse bone marrow micronucleus test. Mutat Res 234:
39	179-181.
40	<u>Shimada, H; Suzuki, H; Itoh, S; Hattori, C; Matsuura, Y; Tada, S; Watanabe, C.</u> (1992). The
41	micronucleus test of benzo[a]pyrene with mouse and rat peripheral blood reticulocytes.
42	Mutat Res 278: 165-168.

1	Shimizu, RW; Sun, JD; Li, AP; Newton, GJ; Brooks, AL. (1984). The use of sister-chromatid
2	exchange in Chinese hamster primary lung cell cultures to measure genotoxicity. Mutat
3	Res 130: 333-342.
4	Shimizu, Y; Nakatsuru, Y; Ichinose, M; Takahashi, Y; Kume, H; Mimura, J; Fujii-Kuriyama, Y;
5	Ishikawa, T. (2000). Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl
6	hydrocarbon receptor. PNAS 97: 779-782. <u>http://dx.doi.org/10.1073/pnas.97.2.779</u>
7	Shinohara, K; Cerutti, PA. (1977). Excision repair of benzo[a]pyrene-deoxyguanosine adducts in
8	baby hamster kidney 21/C13 cells and in secondary mouse embryo fibroblasts C57BL/6J.
9	PNAS 74: 979-983.
10	Siebert, D; Marquardt, H; Friesel, H; Hecker, E. (1981). Polycyclic aromatic hydrocarbons and
11	possible metabolites: convertogenic activity in yeast and tumor initiating activity in
12	mouse skin. J Cancer Res Clin Oncol 102: 127-139.
13	Simmon, VF. (1979a). In vitro assays for recombinogenic activity of chemical carcinogens and
14	related compounds with Saccharomyces cerevisiae D3. J Natl Cancer Inst 62: 901-909.
15	Simmon, VF. (1979b). In vitro mutagenicity assays of chemical carcinogens and related
16	compounds with Salmonella typhimurium. J Natl Cancer Inst 62: 893-899.
17	Singh, VK; Singh, J; Anand, M; Kumar, P; Patel, DK; Krishna Reddy, MM; Javed Siddiqui, MK.
18	(2008). Comparison of polycyclic aromatic hydrocarbon levels in placental tissues of
19	Indian women with full- and preterm deliveries. Int J Hyg Environ Health 211: 639-647.
20	http://dx.doi.org/10.1016/j.ijheh.2007.11.004
21	Sinha, R; Kulldorff, M; Gunter, MJ; Strickland, P; Rothman, N. (2005). Dietary benzo[a]pyrene
22	intake and risk of colorectal adenoma. Cancer Epidemiol Biomarkers Prev 14: 2030-
23	2034. http://dx.doi.org/10.1158/1055-9965.epi-04-0854
24	Sipinen, V; Laubenthal, J; Baumgartner, A; Cemeli, E; Linschooten, JO; Godschalk, RW; Van
25	Schooten, FJ; Anderson, D; Brunborg, G. (2010). In vitro evaluation of baseline and
26	induced DNA damage in human sperm exposed to benzo[a]pyrene or its metabolite
27	benzo[a]pyrene-7,8-diol-9,10-epoxide, using the comet assay. Mutagenesis 25: 417-425.
28	http://dx.doi.org/10.1093/mutage/geq024
29	Sivak, A; Niemeier, R; Lynch, D; Beltis, K; Simon, S; Salomon, R; Latta, R; Belinky, B; Menzies, K;
30	Lunsford, A; Cooper, C; Ross, A; Bruner, R. (1997). Skin carcinogenicity of condensed
31	asphalt roofing fumes and their fractions following dermal application to mice. Cancer
32	Lett 117: 113-123. <u>http://dx.doi.org/10.1016/S0304-3835(97)00214-0</u>
33	Slaga, TJ; Gleason, GL; Mills, G; Ewald, L; Fu, PP; Lee, HM; Harvey, RG. (1980). Comparison of
34	the skin tumor-initiating activities of dihydrodiols and diol-epoxides of various polycyclic
35	aromatic hydrocarbons. Cancer Res 40: 1981-1984.
36	<u>Slaga, TJ; Huberman, E; Selkirk, JK; Harvey, RG; Bracken, WM.</u> (1978). Carcinogenicity and
37	mutagenicity of benz(a)anthracene diols and diol-epoxides. Cancer Res 38: 1699-1704.
38	Smyth, GK. (2004). Linear models and empirical bayes methods for assessing differential
39	expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3.
40	http://dx.doi.org/10.2202/1544-6115.1027
41	Soares, SR; Melo, MA. (2008). Cigarette smoking and reproductive function [Review]. Curr Opin
42	Obstet Gynecol 20: 281-291. <u>http://dx.doi.org/10.1097/GCO.0b013e3282fc9c1e</u>

1	Soballe, PW; Montone, KT; Satyamoorthy, K; Nesbit, M; Herlyn, M. (1996). Carcinogenesis in
2	human skin grafted to SCID mice. Cancer Res 56: 757-764.
3	Sotomayor, RE; Sega, GA. (2000). Unscheduled DNA synthesis assay in mammalian
4	spermatogenic cells: an update. Environ Mol Mutagen 36: 255-265.
5	http://dx.doi.org/10.1002/1098-2280(2000)36:4<255::AID-EM1>3.0.CO;2-0
6	Spinelli, JJ; Band, PR; Svirchev, LM; Gallagher, RP. (1991). Mortality and cancer incidence in
7	aluminum reduction plant workers. J Occup Med 33: 1150-1155.
8	Spinelli, JJ; Demers, PA; Le, ND; Friesen, MD; Lorenzi, MF; Fang, R; Gallagher, RP. (2006). Cancer
9	risk in aluminum reduction plant workers (Canada). Cancer Causes Control 17: 939-948.
10	http://dx.doi.org/10.1007/s10552-006-0031-9
11	Stavric, B; Klassen, R. (1994). Dietary effects on the uptake of benzo[a]pyrene. Food Chem
12	Toxicol 32: 727-734. <u>http://dx.doi.org/10.1016/S0278-6915(09)80005-7</u>
13	Stern, RS; Laird, N. (1994). The carcinogenic risk of treatments for severe psoriasis.
14	Photochemotherapy Follow-up Study. Cancer 73: 2759-2764.
15	Stern, RS; Liebman, EJ; Väkevä, L. (1998). Oral psoralen and ultraviolet-A light (PUVA) treatment
16	of psoriasis and persistent risk of nonmelanoma skin cancer. PUVA Follow-up Study. J
17	Natl Cancer Inst 90: 1278-1284.
18	Stern, RS; Zierler, S; Parrish, JA. (1980). Skin carcinoma in patients with psoriasis treated with
19	topical tar and artificial ultraviolet radiation. Lancet 1: 732-735.
20	Sullivan, MJ; Miller, CJ; Custance, SR. (1991). A risk assessment for crude oil in residential
21	surface soils. In EJ Calabrese; PT Kostecki (Eds.), Hydrocarbon contaminated soils, v I:
22	remediation techniques, environmental fate, risk assessment, analytical methodologies,
23	regulatory considerations. Chelsea, MI: Lewis Publishers, Inc.
24	Sun, JD; Wolff, RK; Kanapilly, GM. (1982). Deposition, retention, and biological fate of inhaled
25	benzo(a)pyrene adsorbed onto ultrafine particles and as a pure aerosol. Toxicol Appl
26	Pharmacol 65: 231-244.
27	Surh, YJ; Kundu, JK; Na, HK. (2008). Nrf2 as a master redox switch in turning on the cellular
28	signaling involved in the induction of cytoprotective genes by some chemopreventive
29	phytochemicals [Review]. Planta Med 74: 1526-1539. <u>http://dx.doi.org/10.1055/s-0028-</u>
30	<u>1088302</u>
31	Surh, YJ; Tannenbaum, SR. (1995). Sulfotransferase-mediated activation of 7,8,9,10-tetrahydro-
32	7-ol, 7,8-dihydrodiol, and 7,8,9,10-tetraol derivatives of benzo[a]pyrene. Chem Res
33	Toxicol 8: 693-698. <u>http://dx.doi.org/10.1021/tx00047a008</u>
34	Suter, M; Abramovici, A; Showalter, L; Hu, M; Shope, CD; Varner, M; Aagaard-Tillery, K. (2010).
35	In utero tobacco exposure epigenetically modifies placental CYP1A1 expression.
36	Metabolism 59: 1481-1490. <u>http://dx.doi.org/10.1016/j.metabol.2010.01.013</u>
37	Takehisa, S; Wolff, S. (1978). Sister-chromatid exchanges induced in rabbit lymphocytes by 2-
38	aminofluorene and 2-acetylaminofluorene after in vitro and in vivo metabolic activation.
39	Mutat Res 58: 321-329.
40	Talaska, G; Ginsburg, D; Ladow, K; Puga, A; Dalton, T; Warshawsky, D. (2006). Impact of Cyp1a2
41	or Ahr gene knockout in mice: implications for biomonitoring studies. Toxicol Lett 162: 246-249. http://dx.doi.org/10.1016/i.toxlet.2005.09.020
42	240-249, 1110://0X.001.072/10.1016/1.T0XI@T.2005.09.020

1	Tamaki, A; Hayashi, H; Nakajima, H; Takii, T; Katagiri, D; Miyazawa, K; Hirose, K; Onozaki, K.
2	(2004). Polycyclic aromatic hydrocarbon increases mRNA level for interleukin 1 beta in
3	human fibroblast-like synoviocyte line via aryl hydrocarbon receptor. Biol Pharm Bull 27:
4	407-410.
5	Tang, D; Li, TY; Liu, JJ; Chen, YH; Qu, L; Perera, F. (2006). PAH-DNA adducts in cord blood and
6	fetal and child development in a Chinese cohort. Environ Health Perspect 114: 1297-
7	1300. <u>http://dx.doi.org/10.1289/ehp.8939</u>
8	Tang, D; Warburton, D; Tannenbaum, SR; Skipper, P; Santella, RM; Cereijido, GS; Crawford, FG;
9	Perera, FP. (1999). Molecular and genetic damage from environmental tobacco smoke
10	in young children. Cancer Epidemiol Biomarkers Prev 8: 427-431.
11	Tang, T; Friedman, MA. (1977). Carcinogen activation by human liver enzymes in the Ames
12	mutagenicity test. DNA Repair 46: 387-394.
13	Tarantini, A; Maitre, A; Lefebvre, E; Marques, M; Marie, C; Ravanat, JL; Douki, T. (2009).
14	Relative contribution of DNA strand breaks and DNA adducts to the genotoxicity of
15	benzo[a]pyrene as a pure compound and in complex mixtures. Mutat Res 671: 67-75.
16	http://dx.doi.org/10.1016/j.mrfmmm.2009.08.014
17	Theriault, G; Tremblay, C; Cordier, S; Gingras, S. (1984). Bladder cancer in the aluminium
18	industry. Lancet 1: 947-950.
19	Thyssen, J; Althoff, J; Kimmerle, G; Mohr, U. (1981). Inhalation studies with benzo[a]pyrene in
20	Syrian golden hamsters. J Natl Cancer Inst 66: 575-577.
21	Tohda, H; Khoraguchi; Alkte. (1980). Epstein-Barr virus-transformed human lymphoblastoid
22	cells for study of sister chromatid exchange and their evaluation as a test system. Cancer
23	Res 40: 4775-4780.
24	Tong, C; Brat, SV; Williams, GM. (1981). Sister-chromatid exchange induction by polycyclic
25	aromatic hydrocarbons in an intact cell system of adult rat-liver epithelial cells. Mutat
26	Res 91: 467-473.
27	Torinuki, W; Tagami, H. (1988). Incidence of skin cancer in Japanese psoriatic patients treated
28	with either methoxsalen phototherapy, Goeckerman regimen, or both therapies: A 10-
29	year follow-up study. J Am Acad Dermatol 18: 1278-1281.
30	Trapido, M. (1999). Polycyclic aromatic hydrocarbons in Estonian soil: contamination and
31	profiles. Environ Pollut 105: 67-74. <u>http://dx.doi.org/10.1016/s0269-7491(98)00207-3</u>
32	Tremblay, C; Armstrong, B; Thériault, G; Brodeur, J. (1995). Estimation of risk of developing
33	bladder cancer among workers exposed to coal tar pitch volatiles in the primary
34	aluminum industry. Am J Ind Med 27: 335-348.
35	http://dx.doi.org/10.1002/ajim.4700270303
36	Triolo, AJ; Aponte, GE; Herr, DL. (1977). Induction of aryl hydrocarbon hydroxylase and
37	forestomach tumors ben benzo(a)pyrene. Cancer Res 37: 3018-3021.
38	Tuntawiroon, J; Mahidol, C; Navasumrit, P; Autrup, H; Ruchirawat, M. (2007). Increased health
39	risk in Bangkok children exposed to polycyclic aromatic hydrocarbons from traffic-
40	related sources. Carcinogenesis 28: 816-822. <u>http://dx.doi.org/10.1093/carcin/bgl175</u>
41	Turkall, RM; Abdel-Rahman, MS; Skowronski, GA. (2008). Effects of soil matrix and aging on the
42	dermal bioavailability of hydrocarbons and metals in the soil: Dermal bioavailability of

1	soil contaminants. Paper presented at 23rd Annual International Conference on Soils,
2	Sediments and Water, October 15-18, 2007, Amherst, MA.
3	<u>Tweats, DJ.</u> (1981). Activity of 42 coded compounds in a differential killing test using Escherichia
4	coli strains WP2, WP67 (uvrA polA), and CM871 (uvrA lexA recA). In FJ de Serres; J Ashby
5	(Eds.), Evaluation of short-term tests for carcinogens: Report of the International
6	Collaborative Program (pp. 199-209). New York, NY: Elsevier/North-Holland.
7	U.S. EPA (U.S. Environmental Protection Agency). (1988). Recommendations for and
8	documentation of biological values for use in risk assessment. (EPA/600/6-87/008).
9	Cincinnati, OH: U.S. Environmental Protection Agency, National Center for
10	Environmental Assessment.
11	http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=34855
12	U.S. EPA (U.S. Environmental Protection Agency). (1990). Development of a dose-response
13	model for inhaled B(a)P [EPA Report]. (EPA-600/R-92-135).
14	http://www.ntis.gov/search/product.aspx?ABBR=PB93161016
15	U.S. EPA (U.S. Environmental Protection Agency). (1991a). Dose-response analysis of ingested
16	Benzo(a)pyrene (CAS No. 50-32-8) [EPA Report]. (EPA600R92045).
17	http://www.ntis.gov/search/product.aspx?ABBR=PB93167484
18 19	U.S. EPA (U.S. Environmental Protection Agency). (1991b). Drinking water criteria document for
	polycyclic aromatic hydrocarbons (PAHs). (ECAOCIND010).
20 21	http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9100CSXZ.txt
21	U.S. EPA (U.S. Environmental Protection Agency). (1991c). Guidelines for developmental toxicity
22	risk assessment. (EPA/600/FR-91/001). Washington, DC: U.S. Environmental Protection
25 24	Agency, Risk Assessment Forum. <u>http://www.epa.gov/raf/publications/guidelines-dev-</u> toxicity-risk-assessment.htm
24 25	U.S. EPA (U.S. Environmental Protection Agency). (1996). Guidelines for reproductive toxicity
25 26	risk assessment. (EPA/630/R-96/009). Washington, DC: U.S. Environmental Protection
20 27	Agency, Risk Assessment Forum.
27	http://www.epa.gov/raf/publications/pdfs/REPRO51.PDF
28 29	U.S. EPA (U.S. Environmental Protection Agency). (1998). Guidelines for neurotoxicity risk
30	assessment. (EPA/630/R-95/001F). Washington, DC: U.S. Environmental Protection
31	Agency, Risk Assessment Forum.
32	http://www.epa.gov/raf/publications/pdfs/NEUROTOX.PDF
33	U.S. EPA (U.S. Environmental Protection Agency). (2004). Risk Assessment Guidance for
34	Superfund (RAGS), Volume I: Human health evaluation manual, (part E: Supplemental
35	guidance for dermal risk assessment): Final. (EPA/540/R/99/005). Washington, DC.
36	http://www.epa.gov/oswer/riskassessment/ragse/index.htm
37	U.S. EPA (U.S. Environmental Protection Agency). (2005). Guidelines for carcinogen risk
38	assessment. (EPA/630/P-03/001F). Washington, DC: U.S. Environmental Protection
39	Agency, Risk Assessment Forum. <u>http://www.epa.gov/cancerguidelines/</u>
40	U.S. EPA (U.S. Environmental Protection Agency). (2010). Revised draft: Multistage Weibull
41	time-to-tumor model in EPA's benchmark dose software (BMDS): Methodology
42	description. Washington, DC.
•	

1	U.S. EPA (U.S. Environmental Protection Agency). (2012a). Benchmark Dose Software (BMDS).
2	Version 2.2. Retrieved from <u>http://www.epa.gov/NCEA/bmds/index.html</u>
3	U.S. EPA (U.S. Environmental Protection Agency). (2012b). Benchmark dose technical guidance.
4	(EPA/100/R-12/001). Washington, DC: Risk Assessment Forum.
5	http://www.epa.gov/raf/publications/pdfs/benchmark_dose_guidance.pdf
6	Uno, S; Dalton, TP; Derkenne, S; Curran, CP; Miller, ML; Shertzer, HG; Nebert, DW. (2004). Oral
7	exposure to benzo[a]pyrene in the mouse: detoxication by inducible cytochrome P450 is
8	more important than metabolic activation. Mol Pharmacol 65: 1225-1237.
9	http://dx.doi.org/10.1124/mol.65.5.1225
10	Uno, S; Dalton, TP; Dragin, N; Curran, CP; Derkenne, S; Miller, ML; Shertzer, HG; Gonzalez, FJ;
11	Nebert, DW. (2006). Oral benzo[a]pyrene in Cyp1 knockout mouse lines: CYP1A1
12	important in detoxication, CYP1B1 metabolism required for immune damage
13	independent of total-body burden and clearance rate. Mol Pharmacol 69: 1103-1114.
14	http://dx.doi.org/10.1124/mol.105.021501
15	Uno, S; Dalton, TP; Shertzer, HG; Genter, MB; Warshawsky, D; Talaska, G; Nebert, DW. (2001).
16	Benzo[a]pyrene-induced toxicity: paradoxical protection in Cyp1a1(-/-) knockout mice
17	having increased hepatic BaP-DNA adduct levels. Biochem Biophys Res Commun 289:
18	1049-1056. <u>http://dx.doi.org/10.1006/bbrc.2001.6110</u>
19	Urano, K; Katakai, Y; Tokuda, Y; Ueyama, Y; Nomura, T; Yamamoto, S. (1995). Failure of
20	genotoxic carcinogens to produce tumors in human skin xenografts transplanted to SCID
21	mice. Carcinogenesis 16: 2223-2226. <u>http://dx.doi.org/10.1093/carcin/16.9.2223</u>
22	Valencia, R; Houtchens, K. (1981). Mutagenic activity of 10 coded compounds in the Drosophila
23	sex-linked recessive lethal test. In FJ de Serres; J Ashby (Eds.), Evaluation of short-term
24	tests for carcinogens: Report of the International Collaborative Program (pp. 651-659).
25	New York, NY: Elsevier/North-Holland.
26	Valentin-Severin, I; Thybaud, V; Le Bon, AM; Lhuguenot, JC; Chagnon, MC. (2004). The
27	autoradiographic test for unscheduled DNA synthesis: a sensitive assay for the detection
28	of DNA repair in the HepG2 cell line. Mutat Res 559: 211-217.
29	http://dx.doi.org/10.1016/j.mrgentox.2003.12.007
30	van Agen, B; Maas, LM; Zwingmann, IH; Van Schooten, FJ; Kleinjans, JC. (1997). B[a]P-DNA
31	adduct formation and induction of human epithelial lung cell transformation. Environ
32	Mol Mutagen 30: 287-292. <u>http://dx.doi.org/10.1002/(SICI)1098-</u>
33	<u>2280(1997)30:3<287::AID-EM6>3.0.CO;2-I</u>
34 25	Van Metre, PC; Mahler, BJ. (2010). Contribution of PAHs from coal-tar pavement sealcoat and
35	other sources to 40 U.S. lakes. Sci Total Environ 409: 334-344.
36	http://dx.doi.org/10.1016/j.scitotenv.2010.08.014
37	VanRooij, JGM; Bodelier-Bade, MM; Jongeneelen, FJ. (1993). Estimation of individual dermal
38	and respiratory uptake of polycyclic aromatic hydrocarbons in 12 coke oven workers. Br
39	J Ind Med 50: 623-632. <u>http://dx.doi.org/10.1136/oem.50.7.623</u>
40	Verhofstad, N; van Oostrom, CT; Zwart, E; Maas, LM; van Benthem, J; van Schooten, FJ; van
41	Steeg, H; Godschalk, RW. (2011). Evaluation of benzo(a)pyrene-induced gene mutations
42	in male germ cells. Toxicol Sci 119: 218-223. <u>http://dx.doi.org/10.1093/toxsci/kfq325</u>

1	Verschueren, K. (2001). Handbook of environmental data on organic chemicals. New York, NY:
2	John Wiley & Sons, Incorporated. internal-pdf://Verschueren 2001-
3	2436785413/Verschueren 2001.pdf
4	Voelter-Mahlknecht, S; Scheriau, R; Zwahr, G; Koch, B; Escobar Pinzon, LC; Drexler, H; Letzel, S.
5	(2007). Skin tumors among employees of a tar refinery: the current data and their
6	implications. Int Arch Occup Environ Health 80: 485-495.
7	http://dx.doi.org/10.1007/s00420-006-0155-y
8	Vogel, EW; Zijlstra, JA; Blijleven, WG. (1983). Mutagenic activity of selected aromatic amines
9	and polycyclic hydrocarbons in Drosophila melanogaster. Mutat Res 107: 53-77.
10	http://dx.doi.org/10.1016/0027-5107(83)90078-7
11	<u>Vogt, NB; Brakstad, F; Thrane, K; Nordenson, S; Krane, J; Aamot, E; Kolset, K; Esbensen, K;</u>
12	Steinnes, E. (1987). Polycyclic aromatic hydrocarbons in soil and air: statistical analysis
13	and classification by the SIMCA method. Environ Sci Technol 21: 35-44.
14	<u>http://dx.doi.org/10.1021/es00155a003</u>
15	Wang, JJ; Frazer, DG; Law, B; Lewis, DM. (2003). Identification and quantification of urinary
16	benzo[a]pyrene and its metabolites from asphalt fume exposed mice by microflow LC
17	coupled to hybrid quadrupole time-of-flight mass spectrometry. Analyst 128: 864-870.
18	Warshawsky, D; Barkley, W. (1987). Comparative carcinogenic potencies of 7H-
19	dibenzo[c,g]carbazole, dibenz[a,j]acridine and benzo[a]pyrene in mouse skin. Cancer
20	Lett 37: 337-344. <u>http://dx.doi.org/10.1016/0304-3835(87)90119-4</u>
21	Wattenberg, LW. (1972). Inhibition of carcinogenic and toxic effects of polycyclic hydrocarbons
22	by phenolic antioxidants and ethoxyquin. J Natl Cancer Inst 48: 1425-1430.
23	Wattenberg, LW. (1974). Inhibition of carcinogenic and toxic effects of polycyclic hydrocarbons
24	by several sulfur-containing compounds. J Natl Cancer Inst 52: 1583-1587.
25	Waylen, AL; Metwally, M; Jones, GL; Wilkinson, AJ; Ledger, WL. (2009). Effects of cigarette
26	smoking upon clinical outcomes of assisted reproduction: a meta-analysis [Review].
27	Hum Reprod Update 15: 31-44. http://dx.doi.org/10.1093/humupd/dmn046
28	Wei, SJ; Chang, RL; Merkler, KA; Gwynne, M; Cui, XX; Murthy, B; Huang, MT; Xie, JG; Lu, YP; Lou,
29	YR; Jerina, DM; Conney, AH. (1999). Dose-dependent mutation profile in the c-Ha-ras
30	proto-oncogene of skin tumors in mice initiated with benzo[a]pyrene. Carcinogenesis
31	20: 1689-1696.
32	Weinberg, CR; Wilcox, AJ; Baird, DD. (1989). Reduced fecundability in women with prenatal
33	exposure to cigarette smoking. Am J Epidemiol 129: 1072-1078.
34	Weinstein, D; Katz, ML; Kazmer, S. (1977). Chromosomal effects of carcinogens and non-
35	carcinogens on WI-38 after short term exposures with and without metabolic activation.
36	Mutat Res 46: 297-304. <u>http://dx.doi.org/10.1016/0165-1161(77)90006-1</u>
37	Wester, RC; Maibach, HI; Bucks, DA; Sedik, L; Melendres, J; Liao, C; Dizio, S. (1990).
38	Percutaneous absorption of [14C]DDT and [14C]benzo[a]pyrene from soil. Fundam Appl
39	Toxicol 15: 510-516.
40	Weyand, EH; Bevan, DR. (1986). Benzo(a)pyrene disposition and metabolism in rats following
41	intratracheal instillation. Cancer Res 46: 5655-5661.
42	Weyand, EH; Bevan, DR. (1987). Species differences in disposition of benzo[a]pyrene. Drug
43	Metab Dispos 15: 442-448.

1	Weyand, EH; Chen, YC; Wu, Y; Koganti, A; Dunsford, HA; Rodriguez, LV. (1995). Differences in
2	the tumorigenic activity of a pure hydrocarbon and a complex mixture following
3	ingestion: Benzo[a]pyrene vs manufactured gas plant residue. Chem Res Toxicol 8: 949-
4	954. http://dx.doi.org/10.1021/tx00049a008
5	Weyand, EH; He, ZM; Ghodrati, F; Wu, Y; Marshall, MV; Lavoie, EJ. (1992). Effect of fluorine
6	substitution on benzo[j]fluoranthene genotoxicity. Chem Biol Interact 84: 37-53.
7	Weyand, EH; Lavoie, EJ. (1988). Comparison of PAH DNA adduct formation and tumor initiating
8	activity in newborn mice. Proc Am Assoc Cancer Res 29: 98.
9	Whitwell, J; Fowler, P; Allars, S; Jenner, K; Lloyd, M; Wood, D; Smith, K; Young, J; Jeffrey, L;
10	Kirkland, D. (2010). 5-Fluorouracil, colchicine, benzo[a]pyrene and cytosine arabinoside
11	tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster V79
12	cells at Covance Laboratories, Harrogate, UK in support of OECD draft Test Guideline
13	487. Mutat Res 702: 230-236. <u>http://dx.doi.org/10.1016/j.mrgentox.2010.04.022</u>
14	WHO (World Health Organization). (1996). 14.16. Polycunclear aromatic hydrocarbons. In
15	Guidelines for drinking-water quality Second edition.
16	http://www.who.int/water_sanitation_health/dwg/2edvol2p2c.pdf
17	WHO (World Health Organization). (1997). Guidelines for air qualtiy.
18	http://www.airimpacts.org/documents/local/AQGUIDE.pdf
19	WHO (World Health Organization). (2000). Air qualtiy guidelines for Europe, second edition.
20	Copenhagen, DK. <u>http://www.euro.who.int/document/e71922.pdf/</u>
21	WHO (World Health Organization). (2003). Polynuclear aromatic hydrocarbons in drinking
22	water. (WHO/SDE/WSH/03.04/59). Geneva, Switzerland.
23	http://www.who.int/water_sanitation_health/dwq/chemicals/polyaromahydrocarbons.
24	<u>pdf</u>
25	Whyatt, RM; Santella, RM; Jedrychowski, W; Garte, SJ; Bell, DA; Ottman, R; Gladek-Yarborough,
26	<u>A; Cosma, G; Young, TL; Cooper, TB; Randall, MC; Manchester, DK; Perera, FP. (1998).</u>
27	Relationship between ambient air pollution and DNA damage in Polish mothers and
28	newborns. Environ Health Perspect 106: 821-826.
29	Wielgosz, SM; Brauze, D; Pawlak, AL. (1991). Ah locus-associated differences in induction of
30	sister-chromatid exchanges and in DNA adducts by benzo[a]pyrene in mice. Mutat Res
31	246: 129-137.
32	Wiencke, JK; Mcdowell, ML; Bodell, WJ. (1990). Molecular dosimetry of DNA adducts and sister
33	chromatid exchanges in human lymphocytes treated with benzo[a]pyrene.
34	Carcinogenesis 11: 1497-1502.
35	Wiersma, DA; Roth, RA. (1983a). The prediction of benzo[a]pyrene clearance by rat liver and
36	lung from enzyme kinetic data. Mol Pharmacol 24: 300-308.
37	Wiersma, DA; Roth, RA. (1983b). Total body clearance of circulating benzo(a)pyrene in
38	conscious rats: Effect of pretreatment with 3-methylcholanthrene and the role of liver
39 40	and lung. J Pharmacol Exp Ther 226: 661-667. Wijnbovon, SW: Kool, Hisvan Oostrom, CT: Booms, PR: Mullondors, LH: van Zooland, AA: van
40 41	Wijnhoven, SW; Kool, HJ; van Oostrom, CT; Beems, RB; Mullenders, LH; van Zeeland, AA; van
41 42	<u>der Horst, GT; Vrieling, H; van Steeg, H.</u> (2000). The relationship between benzo[a]pyrene-induced mutagenesis and carcinogenesis in repair-deficient Cockayne
42 43	syndrome group B mice. Cancer Res 60: 5681-5687.
+J	syndrome group o miles cancer nes ou. Juot-Juoz.

-	Wilcke, W. (2000). SYNOPSIS Polycyclic aromatic hydrocarbons (PAHs) in soil A review. J Plant
2	Nutr Soil Sci 163: 229248. <u>http://dx.doi.org/10.1002/1522-</u>
}	<u>2624(200006)163:3<229::AID-JPLN229>3.0.CO;2-6</u>
Ļ	Willems, MI; Roggeband, R; Baan, RA; Wilmer, JW; de Raat, WK; Lohman, PH. (1991).
5	Monitoring the exposure of rats to benzo[a]pyrene by the determination of mutagenic
;	activity in excreta, chromosome aberrations and sister chromatid exchanges in
	peripheral blood cells, and DNA adducts in peripheral blood lymphocytes and liver.
	Mutagenesis 6: 151-158.
	Williams, GM; Laspia, MF; Dunkel, VC. (1982). Reliability of the hepatocyte primary culture/DNA
	repair test in testing of coded carcinogens and noncarcinogens. Mutat Res 97: 359-370.
	http://dx.doi.org/10.1016/0165-1161(82)90003-6
	Williams, JA; Martin, FL; Muir, GH; Hewer, A; Grover, PL; Phillips, DH. (2000). Metabolic
	activation of carcinogens and expression of various cytochromes P450 in human
	prostate tissue. Carcinogenesis 21: 1683-1689.
	http://dx.doi.org/10.1093/carcin/21.9.1683
	Wilson, JS; Holland, LM. (1988). Periodic response difference in mouse epidermis chronically
	exposed to crude-oils or BaP: Males vs. females. Toxicology 50: 83-94.
	<u>http://dx.doi.org/10.1016/0300-483X(88)90123-0</u>
	Withey, JR; Sedden, J; Law, FCP; Abedini, S. (1993). Distribution of benzo[a]pyrene in pregnant
	rats following inhalation exposure and a comparison with similar data obtained with
	pyrene. J Appl Toxicol 13: 193-202. <u>http://dx.doi.org/10.1002/jat.2550130310</u>
	Wojciechowski, JP; Kaur, P; Sabharwal, PS. (1981). Comparison of metabolic systems required
	to activate pro-mutagens/carcinogens in vitro for sister-chromatid exchange studies.
	Mutat Res 88: 89-97.
	Wolff, RK; Griffith, WC; Henderson, RF; Hahn, FF; Harkema, J. R.; Rebar, AH; Eidson, AF;
	Mcclellan, RO. (1989). Effects of repeated inhalation exposures to 1-nitropyrene,
	benzo(a)pyrene, Ga2O3 particles, and SO2 alone and in combinations on particle
	clearance, bronchoalveolar lavage fluid composition, and histopathology. J Toxicol
	Environ Health 27: 123-138. <u>http://dx.doi.org/10.1080/15287398909531283</u>
	Wolff, S; Takehisa, S. (1977). Induction of sister chromatid exchanges in mammalian cells by low
	concentrations of mutagenic carcinogens that require metabolic activation as well as
	those that do not. Dev Toxicol Environ Sci 2: 193-200.
	Wood, AW; Levin, W; Chang, RL; Huang, MT; Ryan, DE; Thomas, PE; Lehr, RE; Kumar, S;
	<u>Koreeda, M; Akagi, H; Ittah, Y; Dansette, P; Yagi, H; Jerina, DM; Conney, AH.</u> (1980).
	Mutagenicity and tumor-initiating activity of cyclopenta(c,d)pyrene and structurally
	related compounds. Cancer Res 40: 642-649.
	<u>Wood, AW; Levin, W; Lu, AYH; Yagi, H; Hernandez, O; Jerina, DM; Conney, AH.</u> (1976).
	Metabolism of benzo[a]pyrene and benzo[a]pyrene derivatives to mutagenic products
	by highly purified hepatic microsomal enzymes. J Biol Chem 251: 4882-4890.
	Wormhoudt, LW; Commandeur, JN; Vermeulen, NP. (1999). Genetic polymorphisms of human
	N-acetyltransferase, cytochrome P450, glutathione-S-transferase, and epoxide
	hydrolase enzymes: Relevance to xenobiotic metabolism and toxicity [Review]. Crit Rev
	Toxicol 29: 59-124. <u>http://dx.doi.org/10.1080/10408449991349186</u>

1	Wormley, DD; Chirwa, S; Nayyar, T; Wu, J; Johnson, S; Brown, LA; Harris, E; Hood, DB. (2004).
2	Inhaled benzo(a)pyrene impairs long-term potentiation in the F1 generation rat dentate
3	gyrus. Cell Mol Biol (Noisy-le-grand) 50: 715-721.
4	Wu, J; Hou, H; Ritz, B; Chen, Y. (2010). Exposure to polycyclic aromatic hydrocarbons and
5	missed abortion in early pregnancy in a Chinese population. Sci Total Environ 408: 2312-
6	2318. <u>http://dx.doi.org/10.1016/j.scitotenv.2010.02.028</u>
7	Wu, J; Ramesh, A; Nayyar, T; Hood, DB. (2003a). Assessment of metabolites and AhR and
8	CYP1A1 mRNA expression subsequent to prenatal exposure to inhaled benzo(a)pyrene.
9	Int J Dev Neurosci 21: 333-346.
10	Wu, MT; Pan, CH; Huang, YL; Tsai, PJ; Chen, CJ; Wu, TN. (2003b). Urinary excretion of 8-
11	hydroxy-2-deoxyguanosine and 1-hydroxypyrene in coke-oven workers. Environ Mol
12	Mutagen 42: 98-105. <u>http://dx.doi.org/10.1002/em.10176</u>
13	Wu, MT; Simpson, CD; Christiani, DC; Hecht, SS. (2002). Relationship of exposure to coke-oven
 14	emissions and urinary metabolites of benzo(a)pyrene and pyrene in coke-oven workers.
15	Cancer Epidemiol Biomarkers Prev 11: 311-314.
 16	Wu, Q; Suzuki, JS; Zaha, H; Lin, TM; Peterson, RE; Tohyama, C; Ohsako, S. (2008). Differences in
17	gene expression and benzo[a]pyrene-induced DNA adduct formation in the liver of three
18	strains of female mice with identical AhRb2 genotype treated with 2,3,7,8-
19	tetrachlorodibenzo-p-dioxin and/or benzo[a]pyrene. J Appl Toxicol 28: 724-733.
20	http://dx.doi.org/10.1002/jat.1331
21	Wu, X; Gu, J; Spitz, MR. (2007). Mutagen sensitivity: a genetic predisposition factor for cancer
22	[Review]. Cancer Res 67: 3493-3495. <u>http://dx.doi.org/10.1158/0008-5472.CAN-06-</u>
23	4137
24	Wu, X; Roth, JA; Zhao, H; Luo, S; Zheng, YL; Chiang, S; Spitz, MR. (2005). Cell cycle checkpoints,
25	DNA damage/repair, and lung cancer risk. Cancer Res 65: 349-357.
26	Wynder, EL; Fritz, L; Furth, N. (1957). Effect of concentration of benzopyrene in skin
27	carcinogenesis. J Natl Cancer Inst 19: 361-370.
28	Wynder, EL; Hoffmann, D. (1959). A study of tobacco carcinogenesis. VII. The role of higher
29	polycyclic hydrocarbons. Cancer 12: 1079-1086. http://dx.doi.org/10.1002/1097-
30	0142(195911/12)12:6<1079::AID-CNCR2820120604>3.0.CO;2-I
31	Xu, C; Chen, J; Qiu, Z; Zhao, Q; Luo, J; Yang, L; Zeng, H; Huang, Y; Zhang, L; Cao, J; Shu, W.
32	(2010). Ovotoxicity and PPAR-mediated aromatase downregulation in female Sprague-
33	Dawley rats following combined oral exposure to benzo[a]pyrene and di-(2-ethylhexyl)
34	phthalate. Toxicol Lett 199: 323-332. <u>http://dx.doi.org/10.1016/j.toxlet.2010.09.015</u>
35	Xu, Z; Brown, LM; Pan, GW; Liu, TF; Gao, GS; Stone, BJ; Cao, RM; Guan, DX; Sheng, JH; Yan, ZS;
36	Dosemeci, M; Fraumeni, JF; Blot, WJ. (1996). Cancer risks among iron and steel workers
37	in Anshan, China, Part II: Case-control studies of lung and stomach cancer. Am J Ind Med
38	30: 7-15. http://dx.doi.org/10.1002/(SICI)1097-0274(199607)30:1<7::AID-
39	AJIM2>3.0.CO;2-#
40	Yamasaki, H. (1990). Gap junctional intercellular communication and carcinogenesis [Review].
41	Carcinogenesis 11: 1051-1058.

1	Yamazaki, H; Kakiuchi, Y. (1989). The uptake and distribution of benzo(a)pyrene in rat after
2	continuous oral administration. Toxicol Environ Chem 24: 95-104.
3	http://dx.doi.org/10.1080/02772248909357480
4	Yang, H; Mazur-Melnyk, M; de Boer, JG; Glickman, BW. (1999). A comparison of mutational
5	specificity of mutations induced by S9-activated B[a]P and benzo[a]pyrene-7,8-diol-9,10-
6	epoxide at the endogenous aprt gene in CHO cells. Mutat Res 423: 23-32.
7	Yang, JJ; Roy, TA; Krueger, AJ; Neil, W; Mackerer, CR. (1989). In vitro and in vivo percutaneous
8	absorption of benzo[a]pyrene from petroleum crude-fortified soil in the rat. Bull Environ
9	Contam Toxicol 43: 207-214.
10	Yang, SYN; Connell, DW; Hawker, DW; Kayal, SI. (1991). Polycyclic aromatic hydrocarbons in air,
11	soil and vegetation in the vicinity of an urban roadway. Sci Total Environ 102: 229-240.
12	http://dx.doi.org/10.1016/0048-9697(91)90317-8
13	Yauk, CL; Jackson, K; Malowany, M; Williams, A. (2011). Lack of change in microRNA expression
14	in adult mouse liver following treatment with benzo(a)pyrene despite robust mRNA
15	transcriptional response. Mutat Res 722: 131-139.
16	http://dx.doi.org/10.1016/j.mrgentox.2010.02.012
17	Young, C; Cherrie, J; Van Tongeren, M; Fortunato, L; Hutchings, S; Rushton, L. (2012). The
18	burden of occupational cancer in Great Britain: Non-melanoma skin cancer. Sudbury,
19	Suffolk: Health and Safety Executive (HSE).
20	http://www.hse.gov.uk/research/rrhtm/rr928.htm
21	Zeilmaker, MJ; van Eijkeren, JCH. (1997). Modeling of Ah-receptor dependent P450 induction I.
22	Cellular model definition and its corporation in a PBPK model of 2,3,7,8-TCDD.
23	(604138.001). Bilthoven, The Netherlands: National Institute of Public Health and the
24	Environment (RIVM). <u>http://www.rivm.nl/bibliotheek/rapporten/604138001.html</u>
25	Zeilmaker, MJ; van Eijkeren, JCH; Kroese, ED. (1999a). PBPK simulated DNA adduct formation:
26	Relevance for the risk assessment of benzo(a)pyrene. (658603 009). Bilthoven, The
27	Netherlands: National Institute of Public Health and the Environment (RIVM).
28	http://www.rivm.nl/bibliotheek/rapporten/658603009.html
29	Zeilmaker, MJ; Van Eijkeren, JCH; Olling, M. (1999b). A PBPK-model for B(a)P in the rat relating
30	dose and liver DNA-adduct level. (RIVM Report 658603 008). Bilthoven, The
31	Netherlands: National Institute of Public Health and the Environment (RIVM).
32	http://www.rivm.nl/bibliotheek/rapporten/658603008.pdf
33	Zhang, HM; Nie, JS; Li, X; Niu, Q. (2012). Characteristic analysis of peripheral blood mononuclear
34	cell apoptosis in coke oven workers. J Occup Health 54: 44-50.
35	http://dx.doi.org/10.1539/joh.11-0155-OA
36	Zhang, YJ; Li, Y; Deleo, VA; Santella, RM. (1990). Detection of DNA adducts in skin biopsies of
37	coal tar-treated psoriasis patients: immunofluorescence and 32P postlabeling. Skin
38	Pharmacol Physiol 3: 171-179. <u>http://dx.doi.org/10.1159/000210867</u>
39	Zheng, SJ; Tian, HJ; Cao, J; Gao, YQ. (2010). Exposure to di(n-butyl)phthalate and
40	benzo(a)pyrene alters IL-1 β secretion and subset expression of testicular macrophages,
41	resulting in decreased testosterone production in rats. Toxicol Appl Pharmacol 248: 28-
42	37. <u>http://dx.doi.org/10.1016/j.taap.2010.07.008</u>

<u>Zheng, Z; Fang, JL; Lazarus, P.</u> (2002). Glucuronidation: an important mechanism for
 detoxification of benzo[a]pyrene metabolites in aerodigestive tract tissues. Drug Metab
 Dispos 30: 397-403. <u>http://dx.doi.org/10.1124/dmd.30.4.397</u>

<u>Zijlstra, JA; Vogel, EW.</u> (1984). Mutagenicity of 7,12-dimethylbenz[a]anthracene and some other aromatic mutagens in Drosophila melanogaster. Mutat Res 125: 243-261.

- 6 <u>http://dx.doi.org/10.1016/0027-5107(84)90074-5</u>
- 7