

November 23, 2009

MULTISTAGE WEIBULL TIME-TO-TUMOR MODEL
IN EPA’S BENCHMARK DOSE SOFTWARE (BMDS)

SOURCE CODE INSTALLATION AND DESCRIPTION

BATTELLE
505 King Avenue

Columbus, OH 43201-2693

EPA Contract Number EP-C-05-030
Work Assignment 4-17

Prepared for

John Fox, Work Assignment Manager
National Center for Environmental Assessment

Office of Research and Development
U.S. ENVIRONMENTAL PROTECTION AGENCY

Washington, DC 20460

Marla Smith, Project Officer
Engineering and Analysis Division
Office of Science and Technology

Office of Water
U.S. ENVIRONMENTAL PROTECTION AGENCY

Washington, DC 20460

EPA Disclaimer

The material in this document has not been subject to Agency technical and policy
review. Views expressed by the authors are their own and do not necessarily reflect
those of the U.S. Environmental Protection Agency. Mention of trade names, products,
or services does not convey, and should not be interpreted as conveying, official EPA
approval, endorsement, or recommendation. Do not quote or cite this document.

Battelle Disclaimer

This report is an interim work prepared for the United States Government by Battelle and
is for discussion purposes only. In no event shall either the United States Government
or Battelle have any responsibility or liability for any consequences of any use, misuse,
inability to use, or reliance upon the information contained herein, nor does either
warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or
applicability of the contents hereof.

 ii November 23, 2009

Table of Contents

Page

1.0 INTRODUCTION AND OBJECTIVES .. 1

1.1. Intended Audience .. 1

2.0 COMPILING AND INSTALLING THE SOURCE CODE .. 2

2.1. Installing the MinGW GNU Compilers and Other Utilities 2
2.2. Installing BMDS ... 3
2.3. Compiling the Multistage Weibull Model .. 4
2.4. Setting the Silent Mode option in donlp3 .. 6

3.0 COMPONENT FILES WITHIN THE SOURCE CODE... 6

3.1. Relationships Among Component Files ... 6
3.2. Descriptions of Component Files.. 9

3.2.1. Components model.h and model.c .. 9
3.2.2. Components input.h and input.c ... 10
3.2.3. Components process.h and process.c ... 11
3.2.4. Components check.h and check.c.. 11
3.2.5. Components estimate.h and estimate.c ... 12
3.2.6. Components output.h and output.c ... 15
3.2.7. Components utilities.h and utilities.c.. 15
3.2.8. Components gev.h and gev.c... 20
3.2.9. Components donlpfun.h and donlpfun.c ... 28

List of Figures

Page

Figure 1. Diagram describing the file component relationships..8

 iii November 23, 2009

MULTISTAGE WEIBULL TIME-TO-TUMOR MODEL
IN EPA’S BENCHMARK DOSE SOFTWARE (BMDS)

SOURCE CODE INSTALLATION AND DESCRIPTION

1.0 INTRODUCTION AND OBJECTIVES

A time-to-tumor model describes the probability of a test subject exhibiting a tumor response,
such as tumor onset or death from tumor, by a specified observation time t when the subject is
exposed to a toxin at a given dosage rate. A computer module has been developed to allow for
time-to-tumor modeling within EPA’s Benchmark Dose Modeling Software (BMDS) System
using a multistage Weibull model. This document explains how to compile and install the source
code for Version 1.6 of the BMDS time-to-tumor module. It is a technical presentation that
describes the relationships between the component files in the source code, and it specifies the
declarations and functions contained in each individual component file.

This document is one of a series of documents that details the development and use of the time-
to-tumor model within BMDS. The other documents in this series include:

• “Multistage Weibull Time-to-Tumor Model in EPA’s Benchmark Dose Software
(BMDS): Methodology Description,” which details the algorithms and statistical
methodology used to fit the model, estimate model parameters and the benchmark dose
(BMD), and calculate profile likelihood confidence intervals.

• “Multistage Weibull Time-to-Tumor Model in EPA’s Benchmark Dose Software

(BMDS): Testing Document,” which presents the approach and outcome of validation
and verification efforts associated with the development of this module within BMDS.

• “Multistage Weibull Time-to-Tumor Model in EPA’s Benchmark Dose Software

(BMDS): Basic User Installation and Guide,” which describes the installation process,
the command line execution of the module, and the format of the input and output files
for this module.

1.1. Intended Audience

This document is written for users who wish to examine, compile, and perhaps modify the source
code for the BMDS multistage Weibull time-to-tumor module. To ensure a sufficient
understanding and benefit from the contents of this document, the reader should have familiarity
with the following:

1. Intermediate familiarity with C programming and basic familiarity with Makefile
scripting.

2. Knowledge of Microsoft Windows XP at an intermediate level. Familiarity with the
use of command shell and modification of internal settings.

 October 22, 2009 1

3. Intermediate-to-advanced familiarity with mathematics and statistics, along with
some familiarity with the methodology and algorithms in the time-to-tumor module,
as described in the Methodology Description document.

Familiarity with the base BMDS source code is not required, because the module was developed
as a semi-independent entity from other modules in the system.

For instructions on installing the pre-compiled version of the module, or on setting up input files
and running the module, please consult the Basic User Installation and Guide document.

2.0 COMPILING AND INSTALLING THE SOURCE CODE

The module described in this document adds a multistage Weibull time-to-tumor modeling
capability to BMDS. The current release of the module (Version 1.6) will generate estimates for
model parameters (with asymptotic standard errors and correlation matrix), the BMD (with
profile likelihood confidence interval), and an analysis of deviance table. Other targeted module
capabilities, including slope estimation, may be activated in future releases as development and
testing are completed.

The source code installation instructions presented in this document are for users running the
Windows XP SP2 operating system with Internet connection. The user may be required to have
administrative privileges in order to install this module. (Please consult your IT personnel
regarding such privileges.)

2.1. Installing the MinGW GNU Compilers and Other Utilities

Because it was created semi-independently from other BMDS modules, the BMDS multistage
Weibull time-to-tumor module can potentially be integrated with any BMDS version. However,
in terms of input and output file structures, the module was initially developed to be consistent
with a beta release of BMDS Version 1.4. It was compiled using gcc-3.4.2. All development
and testing was performed using Windows XP Service Pack (SP) 2.

Links to the MinGW downloads are available at http://www.mingw.org/download.shtml#hdr1.
The following steps are used to unpack and install the compilers and other required executable
utilities:

1. Download the MinGW Setup Wizard. The recommended versions are 5.0.0 or higher
(MinGW-5.0.0.exe, etc.).

2. Run the MinGW Setup Wizard. Note the directory where you choose to install

MinGW, e.g, in C:\MinGW. The directory name will be referenced in this
documentation as (MinGW_HOME).

 October 22, 2009 2

http://www.mingw.org/

3. Select the required MinGW components for download, unpacking, installation. In the
Wizard, select the current version of MinGW, full installation, and the following
components:

a. base tools (includes w32api, binutils, and gcc-core)
b. gcc-g++ compiler
c. gcc-g77 compiler
d. mingw32-make

The other components (ada, java and objective C compilers) and compiler source
codes are not required. (Although it is possible to separately download the
components individually, the Wizard simplifies installation and removal, and avoids
any difficulties with unpacking tar / gzip files using Winzip.)

4. Edit the executable path, if required. To examine the path, execute the following

sequence:

My Computer [right click] > Properties > Advanced [tab] > Environment Variables [button] >
System Variables [scroll box] > Path [select and highlight] > Edit [button].

If the Variable value box does not include the MinGW executables directory
(MinGW_HOME)\bin, edit the string by adding in the directory name at the beginning,
ending with a semicolon (;) separator. The variable value should look something
like:

C:\MinGW\bin;%SystemRoot%\system32;%SystemRoot%;%SystemRoot%\Syst
em32\Wbem;C:\ORANT\BIN

Optional: Rename mingw32-make.exe to make.exe in (MinGW_HOME)\bin. Make sure that it does
not clash with another executable also called make.exe in any of the path directories. Then, to
run “Make”, type ‘make’ instead of ‘mingw32-make‘ at the command prompt.

2.2. Installing BMDS

To install BMDS, download the ZIP file containing the BMDS software from the EPA website
and unzip the contents of the ZIP file into a user selected file (e.g. “C:\Documents and
Settings\jd\BMDS”). The directory name for the file will be referenced in this document as
(BMDS_HOME). Check to make sure that both donlp3 and as274 have been installed by looking in
the Assist subfolder, which should include both subfolders donlp3 and as274_fc. Otherwise, unzip
the donlp3.zip and as274_fc.zip into directories (BMDS_HOME)\Assist\donlp3 and
(BMDS_HOME)\Assist\as274_fc, respectively. In the last step, unzip MSW_src.zip into
(BMDS_HOME)\Time-to-Tumor.

 October 22, 2009 3

2.3. Compiling the Multistage Weibull Model

The steps to compiling the multistage Weibull time-to-tumor module within BMDS are as
follows. Illustrations provided within a given step include command prompts, user entries
provided at these prompts (specified in bold), and results generated by these user entries.

1. Edit the file Makefile.conf in (BMDS_HOME). Verify that the following settings are
specified for the following seven variables within the file Makefile.conf. If any settings
need to be changed, make the appropriate changes to this file using a text editor:

 CC = gcc (or CC = gcc32 if gcc32.exe is available in (MinGW_HOME)\bin)
 LN = g77
 STRIP = strip
 RM = del
 CP = copy
 MORE_CFLAGS = -DWIN32
 BMDS_HOME = ..

2. Open up a command line window. Execute the sequence Start > Run..., then type ‘cmd’ in

the box.

3. Go to the (BMDS_HOME) directory. Type the cd command at the command prompt along
with the name of the directory in which BMDS was installed in order to go to this
directory:

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\jd> cd "\BMDS"

C:\Documents and Settings\jd\BMDS>

4. Check the path to the MinGW executables. Type ‘echo %path%’ at the command prompt.

The returned value should include the directory of MinGW executables, like the example
in Step 4 of Section 2.1. If it does not, add to the path (only for the current Windows
session) by pasting the following command in the command window, replacing
“(MinGW_Home)” by the actual pathname

> path (MinGW_Home)\bin;(MinGW_Home);%PATH%

5. Check installation and compilation of the BMDS archive library. Type the dir command
at the command prompt in order to list the contents of the “Assist” subdirectory (or check
the contents of this subdirectory within Windows Explorer):

C:\Documents and Settings\jd\BMDS> dir Assist

12/12/2005 08:56 AM <DIR> .
12/12/2005 08:56 AM <DIR> ..
11/17/2005 09:37 AM 7,118 allo_memo.c
11/17/2005 09:37 AM 385 allo_memo.h
12/12/2005 08:55 AM <DIR> as274_fc

 October 22, 2009 4

etc....

Verify that this list includes the file libassist.a, and no files with extension ‘.o’. If
this verification fails,

a. If libassist.a does not exist in this subdirectory, go to the Assist subdirectory

(using the cd command) and “Make” the archive library in the command line
window:

C:\Documents and Settings\jd\BMDS> cd Assist

C:\Documents and Settings\jd\BMDS\Assist> mingw32-make

gcc32 -Wall -g -DWIN32 -DASSIST -c -o confint.o confint.c
gcc32 -Wall -g -DWIN32 -DASSIST -c -o ERRORPRT.o ERRORPRT.c
gcc32 -Wall -g -DWIN32 -DASSIST -c -o gettimeofday.o
gettimeofday.c
etc....

b. Verify that libassist.a has been created.
c. Delete all files with extension .o by typing ‘del *.o’ at the command prompt.
d. Return to (BMDS_HOME), going up one parent directory by typing ‘cd ..’ at the

command prompt.

6. Unzip the ZIP file containing the multistage Weibull time-to-tumor source code and
executable. Place the ZIP file named MSW.ZIP into the BMDS_HOME folder in which you
will install the file. Extract the contents of MSW.ZIP within this folder by executing the
following sequence:

a. Right click on the file “MSW.ZIP.”
b. Select the WinZip option.
c. Left click on the “Extract to Here” option.

The folder should include the executable program msw.exe and a subfolder Test Inputs.

7. Compile the multistage Weibull time-to-tumor executable. Go to subdirectory

(BMDS_HOME)\Time-to-tumor (using the cd command) and “Make”, e.g.,

C:\Documents and Settings\jd\BMDS> cd Time-to-Tumor

C:\Documents and Settings\jd\BMDS\Time-to-Tumor> mingw32-make

gcc32 -ansi -O3 -ffloat-store -I../Assist/donlp3 -
I../Assist/as274_fc/C -I../Assist -c -o utilities.o utilities.c
gcc32 -ansi -O3 -ffloat-store -I../Assist/donlp3 -
I../Assist/as274_fc/C -I../Assist -c -o input.o input.c
etc.....

8. Move executable and other files to the appropriate locations. Move the executable

msw.exe to the directory (BMDS_HOME)\bin. Move the folder Test Inputs to the
directory (BMDS_HOME)\TestData, and rename the folder MSW.

 October 22, 2009 5

2.4. Setting the Silent Mode option in donlp3

The donlp3 optimizer can be used in two different modes that differ based on the level of
performance messages which are sent to the standard output. When the optimizer runs in Silent
mode, neither the results protocol nor the messages protocol is written to the standard output.
The level of optimizer messages written to output can be controlled by setting the following
parameters in the model.h file:

• DONLP_SILENT – 1/0 (TRUE/FALSE). The Silent mode can be turned on by setting
this parameter to 1/TRUE. The default and recommended mode of operation for the
donlp3 optimizer is 0/FALSE.

• DONLP_TE0 – 1/0(TRUE/FALSE). In combination with the SILENT parameter, this

parameter controls the level of messages sent to the standard output. The recommended
setting for this parameter is 1/TRUE.

When running the multistage Weibull module, the recommended values for these two parameters
are DONLP_SILENT = 0/FALSE and DONLP_TE0 = 1/TRUE.

3.0 COMPONENT FILES WITHIN THE SOURCE CODE

3.1. Relationships Among Component Files

Figure 1 shows the major relationships between most of the component files in the ANSI C
software for the BMDS multistage Weibull time-to-tumor module.

The header file model.h appears at the top of the component file relationship structure. It
contains #include statements for headers of ANSI C standard libraries, definitions of global
constants, definitions and declarations of global structures and variables. The contents of
model.h are commonly accessed and used throughout the software. Therefore, they are included
in all program files. Containing the main() function, the program file model.c is at the center
of the relationship structure. The main() function serves as the “backbone” of the relationship
structure, because it specifically lays out the sequence in which the software carries out
particular tasks. These tasks are split across the following five program files:

1. input.c: Inputs (most of) the model information and all the data from the
input batch file.

2. check.c: Checks the model information and the data for consistency.
3. process.c: Pre-processes the input information and data to prepare for

estimation.

 October 22, 2009 6

 October 22, 2009 7

4. estimate.c: Carries out all estimations (e.g., model parameters, confidence
intervals, BMD)

5. output.c: Prints all the results into output file.

 October 22, 2009 8

Figure 1. Diagram describing the file component relationships
[Note: The graph excludes utilities.h, utilities.c, the BMDS library libassist.a, and other program components (e.g., ANSI C standard library).]

donlp3

as274c

process.h

check.h

model.h

model.c

output.c input.c

check.c

input.h

process.c

output.h

estimate.h

estimate.c

donlpfun.h

donlpfun.c

gev.h

gev.c

Header #include

Function calls

Software package

Program file (.c)

Header file (.h)

Symbol:

Header file (.h)

Three additional program files exist:

• donlpfun.c: Contains functions that interface to the donlp3 optimization
software.

• gev.c: Contains functions that are specific to the multistage Weibull/GEV
model, e.g., log-likelihoods, automatic starting values, etc.

• utilities.c: Contains general utility functions.

The header file utilities.h is also included in all other program files. This header file avoids
the need for an extern statement when accessing functions in utilities.c, which are used by
different functions in the other files. Note that utilities.h and utilities.c have been
excluded from Figure 1 so as not to obscure the major relationships between the file components.

In addition to the component files, the BMDS multistage Weibull time-to-tumor module also
requires the public domain software packages donlp3 (for optimization) and asc274c (for linear
regression). Figure 1 shows both “header #include” and “function call” links for the software
packages. Both include header files (.h) because they were written in ANSI C.

Note that for clarity, the BMDS library libassist.a as well as the standard ANSI C libraries,
have been excluded from Figure 1.

3.2. Descriptions of Component Files

3.2.1. Components model.h and model.c

The header file model.h consists of:

a. #include <*****.h> statements for ANSI C library headers,

b. Definitions of preprocessor constants and functions, and

c. Definitions or declarations of global structures and variables.

Note that model.h does not include any declarations for functions, and all program files (.c)
incorporate the header file with the #include "model.h" statement.

The model.c file only consists of a single function:

a. void main(int argc, char *argv[])
Description: “Backbones” the software module. Reads the single argument to the
executable containing the character string the batch input filename (argv[1]),
opens up the input stream, determines model type, sets global functions for the
model type, and calls (external or global) functions in the following sequence:

 October 22, 2009 9

1. input(): Input information and analysis data in
the batch file.

2. check(): Carry out consistency checks of the
input information and analysis data.

3. process(): Process the input information and
analysis data.

4. g_s_fun.init(): Initialize and set up the model, e.g., set
parameter names.

5. mle(): Fit the model by maximum likelihood
estimation, estimate BMD, and calculate
profile likelihood confidence intervals.

6. g_s_fun.clear(): Clean up the model results, e.g., free
dynamic memory, reverse re-
parameterization.

7. output(): Output the results
8. process_clr(): Free dynamic memory (data summary

structures)
9. input_clr(): Free dynamic memory (data structure)

Arguments:

int argc: Number of arguments in executable
(should equal 2).

char *argv[]: Array, size argc, of character strings.
argv[1] should contain (directory
name and) batch file name.

3.2.2. Components input.h and input.c

The header file input.h contains declarations for functions stored within input.c.

The input.c file consists of the following functions:

a. void input(FILE *p_file)
Description: Calls info_in(), dynamically allocates space for the data
structure, calls data_in(), and reallocates space for data structure to adjust for
the number of observations in the data.
Arguments:

FILE *p_file: Pointer to file input stream.

b. void input_clr(void)
Description: Frees the dynamically allocated space in the data structure.

c. void info_in(FILE *p_file)

Description: Reads in modeling information from the batch file.
Arguments:

 October 22, 2009 10

FILE *p_file: Pointer to file input stream.

d. void data_in(FILE *p_file)
Description: Reads in data from the batch file.
Arguments:

FILE *p_file: Pointer to file input stream.

3.2.3. Components process.h and process.c

The header file process.h contains declarations for functions stored in process.c.

The process.c file consists of the following functions:

a. void process(void)
Description: Dynamically allocates space for parameter MLEs asymptotic
covariance matrix, calls info_prc(), dynamically allocates space for data
summary structures, calls data_prc(), and reallocates space for data summary
structures to adjust for the number of category levels in the data.

b. void process_clr(void)

Description: Frees the dynamically allocated space parameter MLEs asymptotic
covariance matrix and the data summary structures.

c. void info_prc(void)

Description: Processes modeling information, e.g., counts number of free
parameters.

d. void data_prc(void)

Description: Processes data, grouped by dosage and response categories.

3.2.4. Components check.h and check.c

The header file check.h contains declarations for functions stored in check.c.

The check.c file consists of the following functions:

a. void check(void)
Description: Calls info_chk() and data_chk().

b. void info_chk(void)

Description: Checks modeling information for consistency, e.g., model
specification, I/O files, optimization inputs, BMD calculations.

 October 22, 2009 11

c. void data_chk(void)
Description: Checks data input, in terms of both expected data size and individual
data elements.

3.2.5. Components estimate.h and estimate.c

The header file estimate.h consists of

a. Declarations for structures used in profile likelihood confidence interval
calculations, and

b. Declarations for functions in check.c.

The check.c file consists of the following functions:

a. struct s_donlp3_return s_donlp_ml(double *pd_start)
Description: Maximizes the log-likelihood. Sets starting values in global
optimization input structure, and calls (external or global) functions in the
following sequence:
1. reset_eval(): Reset the evaluation of the log-

likelihood.
2. g_s_fun.scale(): Set internal scaling values.
3. donlp3(): Carry out the optimization.
4. reset_scale(): Reset internal scaling values.
Arguments:

double *pd_start: Pointer to array of starting values (free
model parameters only).

b. void mle(void)

Description: Carries out all MLE calculations. Calls the following functions
in sequence:
1. parm_ml(): Calculate the MLEs of free paremeters.
2. g_s_fun.n_inv_cov(): Calculates the (−2 ×) Hessian of the log-

likelihood at the MLEs.
3. INVMAT(): Inverts the (−2 ×) Hessian to calculate

asymptotic covariance matrix.
4. g_s_fun.start_reset(): Reset starting values (if

g_s_mle.s_bmd.b_calc = 1)
5. bmd(): Carries out the BMD calculations (if

g_s_mle.s_bmd.b_calc = 1).

c. void parm_ml(double *pd_l, double *pd_fixed, size_t
un_parm, unsigned int b_init, size_t un_start,
double *pd_start, unsigned int b_store)

 October 22, 2009 12

Description: Calculates the MLEs of the free parameters. Calls the following
functions in sequence:
1. g_s_fun.set(): Sets up the model log-likelihood.
2. g_s_fun.start(): Calculates automatic starting values (if

b_init = 0).
3. donlp_init(): Sets the optimization input parameters

(mostly to default).
4. s_donlp_ml(): Maximizes the log-likelihood un_start

times, using different sets of starting
values.

Subsequently, the result with the largest log-likelihood goes through the
following additional refinement:
5. g_s_fun_refine(): Sets up the refinement, e.g., fixing free

parameter values that are very close to
their boundaries.

6. g_s_fun.set(): Sets up the model log-likelihood.
7. s_donlp_ml(): Maximizes the log-likelihood.
Arguments:

double *pd_l: Pointer for returning the maximum of
the log-likelihood function.

double *pd_fixed: Pointer to array of fixed model
parameters.

size_t un_parm: Number of model parameters.
unsigned int b_init: Starting value option indicator (0 =

automatic, 1 = user specified).
size_t un_start: Number of starting value sets.
double pd_start: Pointer to array of starting values (if

b_init = 1).
unsigned int b_store: Starting value storage indicator (0 = do

not store, 1 = store).

d. void bmd(double *pd_start)
Description: Calculates the MLE of the BMD. Carries out a root search using the
zeroin() function on d_bmd_zi(), the defining function for BMD. Calls
pl_conf() function to calculate the profile likelihood confidence interval if
g_s_mle.s_bmd.s_conf.b_calc = 1.
Arguments:

double *pd_start: Pointer to array of starting values (free
model parameters only) for profile
likelihood confidence interval
calculations, i.e., pl_conf() function.

e. void pl_conf(struct conf *ps_conf, double *pd_parm, size_t

un_parm, double d_mle, double *pd_start, double
*pd_lim)

 October 22, 2009 13

Description: Calculates the profile likelihood confidence interval for a parameter
MLE (e.g., the BMD).
Arguments:

struct conf *ps_conf: Pointer to profile likelihood calculation
structure for inputs (e.g., confidence
level) and outputs (e.g., confidence
bounds).

double *pd_parm: Pointer to array of input parameters in
parameter defining function calculations
(e.g., benchmark risk level for BMD).

size_t un_parm: Number of input parameters in
parameter defining function calculations.

double d_mle: MLE of the parameter.
double *pd_start: Pointer to array of starting values.
double *pd_lim: Pointer to 2-dimensional array,

specifying the search boundary limits for
the profile likelihood confidence bounds.

f. struct s_donlp3return s_donlp_pl(double *pd_start, double

d_x)
Description: Calculates the profile log-likelihood function.
Arguments:

double *pd_start: Pointer to array of starting values,
returning optimized parameters.

double d_x: Parameter value.
Return: Structure of type s_donlp3return, containing the profile log-

likelihood value, the optimized free parameters, and returned optimum
and diagnostics from donlp.

g. double d_pl_zi(int nparm, double parm[], double x, double

gtol)
Description: Defines the function used by the root search function zeroin() to
find the profile likelihood confidence bounds for a parameter.
Arguments:

int nparm: Number of parameters, set to the number
of free model parameters.

double parm[]: Array of length 3 * nparm + 1.
double x: Parameter value.
double gtol: Tolerance level for root search

convergence (not used).
Note: the array parm[] consists of the following components:

[0 to nparm-1] Optimized free model
and parameters of the profile log-
[nparm to 2*nparm-1] likelihood at the search

interval boundaries for the
current root search algorithm

 October 22, 2009 14

iteration. One of the two
components is updated with a
function call to d_pl_zi, the
choice depending on whether
the profile log-likelihood at x
is above or below the cut-off.

[2*nparm to 3*nparm-1] Array used to store the
midpoint of the two sets of
free model parameters, i.e.,
the starting values in the
constrained optimization to
evaluate the profile log-
likelihood at x.

[3*nparm] Cut-off value for the profile
log-likelihood

Return: Value of the profile log-likelihood function at x minus the cut-off value.

3.2.6. Components output.h and output.c

The header file output.h contains declarations of the following function stored in output.c:

a. void output(void)
Description: Opens the output stream to the .out file specified in the input
batch file, outputs the modeling results into the file, and closes the output
stream.

3.2.7. Components utilities.h and utilities.c

The header file utilites.h contains declarations for functions stored in utilities.c. This
header file is included in all .c files, because utilities.c contains utility functions that are
used throughout all .c files.

The utilities.c file consists of the following functions:

Functions for messaging

a. void error(const char *sz_file, const int n_line, const
char *fmt, ...)

Description: Prints error messages to stderr and terminates the program by
calling the exit() function.
Arguments:

const char *sz_file: Pointer to character string with filename
where the error occured.

const int n_line: Line number where the error occured.

 October 22, 2009 15

const char *fmt: Pointer to character string with the error
message.

...: Arguments printed in the error message.

b. void print(const char *sz_file, const int n_line, const
char *fmt, ...)

Description: Prints messages to stderr.
Arguments:

const char *sz_file: Pointer to character string with filename
where the error occured.

const int n_line: Line number where the error occured.
const char *fmt: Pointer to character string with the error

message.
...: Arguments printed in the error message.

Functions for model parameters

c. void parm_set(struct parm *ps_parm, const double *pd_fixed,

char **psz_name, size_t un_value)
Description: Sets up the model parameter structure addressed by the pointer
*ps_parm.
Arguments:

struct parm *ps_parm: Pointer to address of model parameter
structure.

const double *pd_fixed: Pointer to array of fixed model
parameters.

char **psz_name: Pointer to array of character strings with
the model parameter names.

size_t un_value: Number of model parameters.

d. void parm_ins(struct parm *ps_parm, double *pd_free)
Description: Inserts free model parameter values in array pd_free into
model parameter structure addressed by the pointer *ps_parm.
Arguments:

struct parm *ps_parm: Pointer to address of model parameter
structure.

double *pd_free: Pointer to array of free model
parameters.

e. void parm_free_ext(double *pd_free, struct parm *ps_parm)

Description: Extracts free model parameter values from model parameter
structure addressed by the pointer *ps_parm into array pd_free.
Arguments:

double *pd_free: Pointer to array of free model
parameters.

 October 22, 2009 16

struct parm *ps_parm: Pointer to address of model parameter
structure.

f. void parm_print (struct parm *ps_parm, unsigned int

un_flag)
Description: Prints model parameter values in model parameter structure
addressed by the pointer *ps_parm to stdout.
Arguments:

struct parm *ps_parm: Pointer to model parameter structure.
unsigned int un_flag: Flag for print detail options (0 = Basic, 1

= Detailed).

g. size_t un_free_fixed (double *pd_fixed, size_t un_parm)
Description: Counts number of free model parameters in fixed model
parameter array.
Arguments:

double *pd_fixed: Pointer to array of size un_parm
containing fixed model parameter
values. Free parameters are set to
preprocessor constant DBL_NAN.

size_t un_parm: Number of model parameters.
Return: Number of free model parameters.

Functions for data structure

h. int n_data_cmp(const struct data *ps_1, const struct data

*ps_2)
Description: Compares data structure elements by dose and response
categories. Used by qsort()
Arguments:

const struct data *ps_1: Pointer to data structure element.
const struct data *ps_2: Pointer to data structure element.

Return: If ps_1 has higher dose category, or same dose but higher response
category, then return +1. If dose and response categories are the same, return 0.
Otherwise, return −1.

i. void data_set(int n_loc)

Description: Extracts n_loc th observation from data structure array, and
copies each element into global variables d_dose, c_resp, d_time, and
un_sub (and d_sub).
Arguments:

int n_loc: Observation number.

Functions for array summation

j. double d_sum(const double *pd_a, size_t un_a)

 October 22, 2009 17

Description: Sums the first un_a elements of array pd_a, minimizing
floating point errors.
Arguments:

const double *pd_a: Pointer to array, length at least pd_a.
size_t un_a: Number of elements to sum.

Return: The sum of the elements.

k. int n_sum_cmp(const double *pd_1, const double *pd_2)
Description: Compares array elements for sorting in summation. Used by
qsort().
Arguments:

const double *pd_1: Pointer to array element.
const double *pd_2: Pointer to array element.

Return: If pd_1 has higher value, then return +1. If values are the same, return
0. Otherwise, return −1.

l. double d_sum_rec(double *pd_x, size_t un_x)

Description: Sums first two elements in array pd_x (sorted from smallest to
largest), then resorts. Used recursively by double d_sum().
Arguments:

double *pd_x: Pointer to array of length un_x.
size_t un_x: Number of elements in array pd_x.

Return: Sum of the two elements.

m. double d_sum_pow (double **ppd_a, size_t un_a, double d_x,
int n_start, int n_step)

Description: Sums elements of array *ppd_a in a power sequence, starting at
n_start and step size of n_step, i.e.,

∑
≤×+

=

×+×+

astepstart

stepstart

ninn
i

inn
stepstart xinna

,...1,0

][

Uses d_sum() function to minimize floating point errors.
Arguments:

const double *ppd_a: Pointer to array pointer, length at least
un_a.

size_t un_a: Largest index of summed array element.
double d_x: Power term.
int n_start: Starting index.
int n_step: Step size.

Return: Power sum of the elements.

Functions for output of optimization information

n. void start_print(void)
Description: Prints optimization starting values, starting log-likelihood, and
internal scaling values to stdout.

 October 22, 2009 18

o. void opt_print(void)

Description: Prints optimization results to stdout.

Other functions

p. void *p_vec_alloc(size_t un_n, size_t un_val)
Description: Dynamically allocates memory for un_n elements of size
un_val.
Arguments:

size_t un_n: Number of elements.
size_t un_vale: Size of elements.

Return: Pointer to start of allocated memory.

q. void reset_eval(void)
Description: Reset log-likelihood evaluation flags.

r. void reset_scale(void)

Description: Reset optimization internal scaling values (to 1.0).

s. double d_log(double d_x)
Description: Safe log function.
Arguments:

double d_x: Logarithm.
Return: If d_x > 1.0e-50, then ANSI C function log(d_x); otherwise,
log(1.0e-50).

t. double d_exp(double d_x)

Description: Safe exponential function.
Arguments:

double d_x: Exponent.
Return: If d_x < 1.0e+02, then ANSI C function exp(d_x); otherwise,
exp(1.0e+02).

u. d_pow(double d_x, double d_y)

Description: Safe power function.
Arguments:

double d_x: Base.
double d_y: Exponent.

Return: If d_x > 0, then ANSI C function pow(d_x, d_y); otherwise, 0.

v. double d_intpow(double d_x, int i_n)
Description: Safe integer power function.
Arguments:

double d_x: Base.

 October 22, 2009 19

int i_n: Integer exponent.
Return: ANSI C function pow(d_x, (double) i_n).

w. double computeProb(double dose, double t, unsigned int

modelType)
 Description: function to compute probability of response for the MSW model.
 Arguments:
 double dose dose value
 double t time t0
 int modelType Incidental or Fatal tumor model
 Return:
 double probability of positive response

x. compute_response(unsigned int modelType)
Description: function to compute estimated number of positive responses at each
dose level.

 Argument:
 int modelType Incidental or Fatal tumor model

3.2.8. Components gev.h and gev.c

The header file gev.h contains declarations for functions stored in gev.c.

The gev.c file consists of the following:

a. Definitions of preprocessor constants,

b. Definitions and declaration of structures, and

c. Definitions and declarations of arrays and variables

All definitions and declarations above are specific to the multistage Weibull or GEV model.

The gev.c file also consists of the following functions:

Function for setting up the model

a. void gev_fun(void)
Description: Sets up the global functions structure for the Multistage Weibull
model.

Functions required for the global functions structure

b. void gev_init(void)

Description: Initializes the multistage Weibull and GEV calculations. Calls
the following functions in sequence:

 October 22, 2009 20

1. msw_gev_fixed_init(): Sets up fixed model parameter arrays for
multistage Weibull and GEV.

2. parm_set(): Sets up model parameter structures.
Called multiple times to set up both local
and global multistage Weibull and GEV
model parameters.

3. msw_gev_free_conv(): Converts (free model parameter)
optimization starting values from
multistage Weibull to G EV.

Also carries out additional initializations, including dynamic allocation to the
intermediate calculation structure ps_gev_calc, setting b_t_0_0 the flag to
indicate whether multistage Weibull location parameter t0 = 0, and calling
donlp_init() to initialize the optimization input parameters.

c. void gev_clr(void)

Description: Converts all multistage GEV parameter structure output,
including MLEs and automatic starting values, to multistage Weibull, and
frees dynamic memory in intermediate calculation structure ps_gev_calc.

d. void gev_set(unsigned int b_reset, size_t un_parm)

Description: Sets up the multistage GEV model for estimations. Resets all the
local model parameter structures and global parameter structure g_s_parm (if
b_reset = 1), and sets the appropriate boundaries for the optimization.
Arguments:

unsigned int b_reset: Flag for resetting (0 = No reset, 1 =
Reset).

size_t un_parm: Number of model parameters.

e. double d_gev_l(void)
Description: Calculates the multistage GEV log-likelihood function. Note:
the parameters in the model are set by the global model parameter structure
g_s_parm.
Return: Multistage GEV log-likelihood function value.

f. double d_gev_lgrad(unsigned int un_p)

Description: Calculates the gradient of the multistage GEV log-likelihood
function for un_pth model parameter. Note: the parameters in the model are set
by the global model parameter structure g_s_parm.
Arguments:

unsigned int un_p: Index of the model parameter for which
the gradient is calculated.

Return: Gradient of multistage GEV log-likelihood function value for un_pth
model parameter.

 October 22, 2009 21

g. double d_gev_nl(unsigned int un_loc)
Description: Calculates the un_locth non-linear constraint function used for the
optimization, including model parameter constraints and, if required, BMD
defining function constraints. Note: the constraints are determined by the global
model parameter structure g_s_parm, and if required, by the global BMD
calculation parameter array g_pd_bmd.
Arguments:

unsigned int un_loc: Index of the nonlinear constraint that is
calculated.

Return: un_locth non-linear constraint function value.

h. double d_gev_nlgrad(unsigned int un_p, unsigned int un_loc)
Description: Calculates the un_pth model parameter gradient for the un_locth
non-linear constraint function used for the optimization, including model
parameter constraints and, if required, BMD defining function constraints. Note:
the constraints are determined by the global model parameter structure
g_s_parm, and if required, by the global BMD calculation parameter array
g_pd_bmd.
Arguments:

unsigned int un_loc: Index of the nonlinear constraint for
which the gradient is calculated.

unsigned int c: Index of the model parameter for which
the gradient is calculated.

Return: un_pth model parameter gradient for un_locth non-linear constraint
function value.

i. double d_gev_bmd(double d_bmd)

Description: Calculates the defining function for the benchmark dose (BMD).
Note: the model parameters in the defining function is determined by the global
model parameter structure g_s_parm, and the BMD type is determined by the
global MLE structure g_s_mle.
Arguments:

double d_bmd Benchmark dose.
Return: BMD defining function value at d_bmd.

j. void gev_start(double **ppd_start, size_t un_parm)

Description: Calculates sets of automatic starting values for the MLEs of the
multistage GEV model (free) parameters. Note: the number of automatic starting
value sets is determined by g_s_parm_info.s_search.un_start. Calls the
following functions in sequence:
1. un_free_fixed(): Counts the number of free model parameters

in multistage GEV model with γ and μ fixed.
2. gev_start_0(): Fits separate restricted 0-stage GEV model

for each dose level at central point of the
search grid over γ and μ.

 October 22, 2009 22

3. gev_start_reg(): Fit a linear regression model of the
estimated values from the restricted 0-stage
GEV models onto a polynomial over the
dose levels.

4. gev_start_grid(): Using the estimates for the polynomial
regression as starting values for the central
point of the search grid, fit restricted
multistage GEV models at all the grid points
over γ and μ. Only returns grid points and
associated parameter estimates with the
highest maximized log-likelihood.

Note: minor set-up function calls have been omitted from the above sequence for
clarity.
Arguments:

double **ppd_start Pointer to array pointers (i.e., 2-D
matrix), containing returned sets of
automatic starting values.

size_t un_parm Number of model parameters.

k. void gev_scale(void)
Description: Automatically sets the internal scaling for the optimizations.

l. void gev_refine(double *pd_fixed, double *pd_free, unsigned

int b_store)
Description: Sets up therefinement of the multistage GEV model parameter
MLEs. Converts, fixed and free multistage GEV model parameters to multistage
Weibull. Checks closeness of the multistage Weibull model parameters to their
boundaries, and fixes those that are close at the boundaries. Converts refined
fixed and free model multistage Weibull model parameters back to multistage
GEV model parameters.
Arguments:

double *pd_fixed Pointer to array of returned (multistage
GEV) fixed model parameters.

double *pd_free Pointer to array of free (multistage GEV)
model parameters.

int b_store Flag for updating MLE parameter
structure (g_s_mle.s_parm) with
refined fixed parameters.

m. int n_msw_inv_cov(double **ppd_inv_cov, double *pd_fixed)

Description: Calculates the inverse asymptotic convariance of the multistage
Weibull parameter MLEs (i.e., −0.5 Η Hessian of the log-likelihood).
Arguments:

double **ppd_inv_cov: Pointer to array pointer (i.e., 2-D matrix)
returning the inverse asymptotic
convariance.

 October 22, 2009 23

double *pd_fixed: Array pointer containing the multistage
Weibull fixed model parameters for the
refined parameter MLEs.

Return: Gradient of multistage GEV log-likelihood function value for un_pth
model parameter.

n. void gev_start_reset(double *pd_start)

Description: Resets starting values (that may have been changed, e.g., by
adjustments made in the refined MLE optimization) for BMD calculations.
Arguments:

double *pd_start: Array pointer returning multistage GEV
free model parameters.

Support functions for Multistage Weibull − Multistage GEV model parameters

o. void msw_gev_fixed_conv(void)

Description: Converts local multistage Weibull fixed model parameter array to
local multistage Weibull fixed model parameter array.

p. void msw_gev_free_conv(struct parm *ps_gev_parm, const

struct parm *ps_msw_parm)
Description: Converts free parameters in multistage Weibull model parameter
structure to free parameters in multistage GEV model parameter structure.
Arguments:

struct parm *ps_gev_parm: Array pointer to multistage GEV model
parameters (modified by function).

struct parm *ps_msw_parm: Array pointer to multistage Weibull
model parameters.

q. void gev_msw_free_conv(struct parm *ps_msw_parm, const

struct parm *ps_gev_parm)
Description: Converts free parameters in multistage GEV model parameter
structure to free parameters in multistage Weibull model parameter structure.
Arguments:

struct parm *ps_msw_parm: Array pointer to multistage Weibull
model parameters (modified by
function).

struct parm *ps_gev_parm: Array pointer to multistage GEV model
parameters.

r. void gev_msw_conv(struct parm *ps_parm, double *pd_fixed)

Description: Converts ps_parm model parameter structure from multistage GEV
to multistage Weibull.

 October 22, 2009 24

Arguments:
struct parm *ps_parm: Structure pointer to multistage GEV

model parameters (modified by
function).

double *ps_fixed: Array pointer to fixed multistage
Weibull model parameters.

s. void msw_gev_fixed_init(void)

Description: Initializes the local multistage Weibull and multistage GEV fixed
parameter arrays.

Support functions for calculation of Multistage GEV log-likelihoods

t. void gev_calc_set(int n_loc)

Description: Sets pointers to addresses in multistage GEV log-likelihood
intermediate calculation structure array ps_gev_calc.
Arguments:

int n_loc: Index number for structure array
ps_gev_calc.

u. unsigned int un_gev_updt(const double d_free[], unsigned

int *pb_frst)
Description: Determines update requirements for multistage GEV log-likelihood
intermediate calculations, based on the free parameter array d_free.
Arguments:

const double d_free[]: Array of multistage GEV free
parameter values.

unsigned int *pb_frst: Pointer to flag (0 = Do not reset all
calculations, 1 = First calculation of
log-likelihood, i.e., reset every
calculation).

Return: Binary valued flag of update requirements, which is the sum of 0 and any
of the following constants.

GAM_FLAG = 1: Require update of γ parameter value
components.

MU_FLAG = 2: Require update of μ parameter value
components.

POLY_FLAG = 4: Require update of polynomial (i.e.,
(bi) components.

v. void gev_updt(void)

Description: Updates multistage GEV log-likelihood intermediate calculations,
depending on the flag returned by un_gev_updt().

 October 22, 2009 25

Support functions for automatic starting values

w. double d_gam(int i)
Description: Calculates γ search grid value.
Arguments:

int i: Search grid index.
Return: Value of γ[i] search grid point.

x. double d_mu(int i, int j)

Description: Calculates μ search grid value.
Arguments:

int i: First search grid index.
int j: Second search grid index.

Return: Value of μ[i, j] search grid point.

y. void gev_start_0(double *pd_y)
Description: Fits separate 0-stage GEV models restricted to the search grid center
[0, 0] for each dosage level.
Arguments:

double *pd_y: Array pointer to values of the
estimated b0 parameter for each
dosage level (returned).

z. void gev_start_reg(double *pd_start, double *pd_y, size_t

un_parm)
Description: Carry out a linear regression of the b0 parameter estimates from the
restricted 0-stage GEV models on polynomial of dosage levels.
Arguments:

double *pd_start: Estimated polynomial regression
parameters.

double *pd_y: Array pointer to values of the
estimated b0 parameter for each
dosage level.

size_t un_parm: Number of model parameters.

aa. void gev_start_grid(double **ppd_start, size_t un_parm,
double *pd_start)

Description: Fits restricted full-stage GEV model at each point on the search grid.
Selects estimates from grid points with the highest log-likelihood as potential
starting-values.
Arguments:

double **ppd_start: Pointer to array pointer (i.e., 2-D
matrix) of returned sets of automatic
starting values.

size_t un_parm: Number of parameters in the model.

 October 22, 2009 26

double *pd_start: Array pointer to starting values for
the central gridpoint [0, 0].

bb. void gev_start_full(double **ppd_start, double *pd_l, int

*pn_gam, int *pn_mu, size_t un_parm,
int i, int j, unsigned int b_cold)

Description: Fits restricted full-stage GEV model at grid point [i, j].
Arguments:

double **ppd_start: Pointer to array pointer (i.e., 2-D
matrix) of returned sets of automatic
starting values.

double *pd_l: Array pointer to stored values of the
maximized log-likelihood
(modified).

int *pn_gam: Array pointer to stored index of the γ
grid point, i.e., index i (modified).

int *pn_mu: Array pointer to stored index of the μ
grid point, i.e., index j (modified).

size_t un_parm: Number of parameters in the model.
int i: First grid point index.
int j: Second grid point index.
unsigned int b_cold: Flag for “cold” restart of donlp

optimization.

cc. void gev_start_set(double d_gam, double d_mu, double *pd_b,
size_t un_b)

Description: Sets the (local) fixed parameter arrays for restricted multistage GEV
and Weibull models.
Arguments:

double d_gam: Value of the fixed γ value.
double d_mu: Value of the fixed μ value.
double *pb_b: Array pointer to the fixed bi values.
size_t un_b: Size of the array pb_b.

dd. void as274c(int np, int nobs, double y[], double **X,

double beta[])
Description: Interfaces to the linear regression module as274.
Arguments:

int np: Number of parameters.
int nobs: Number of observations.
double y[]: Array of response values, size nobs.
double **X: Design matrix, size nobs by np.
double beta[]: Least squares parameter estimates

(returned), size np.

 October 22, 2009 27

Support functions for asymptotic standard error

ee. double d_msw_lhess(unsigned int un_p1, unsigned int un_p2)
Description: Calculates the Hessian of the multistage Weibull log-likelihood.
Arguments:

unsigned int un_p1: First parameter index.
unsigned int un_p2: Second parameter index.

Return: Value of the Hessian for the parameters with indeces un_p1 and un_p2.

Support functions for gradients of non-linear constraints

ff. double d_gev_bmdgrad(double d_bmd, unsigned int un_p)
Description: Calculates the gradient of the BMD defining function.
Arguments:

double d_bmd: Value of the benchmark dose.
unsigned int un_p: Parameter index.

Return: Value of the gradient for the parameter with index un_p.

3.2.9. Components donlpfun.h and donlpfun.c

The header file donlpfun.h contains declarations for functions stored in donlpfun.c that were
not declared by the donlp header file o8para.h.

The donlpfun.c file consists of the following functions:

a. void scale(double *pd_vec, int n_p, unsigned int b_dir)
Description: Carries out internal scaling and unscaling for the optimization.
Arguments:

double *pd_vec: Pointer to vector of n_p values to be
scaled / unscaled (modified).

int n_p: Number of parameter values.
unsigned int b_dir: Flag for scaling direction (0 =

unscale, 1 = scale).

b. void donlp_init(double d_tau0, double d_del0, int n_nreset,
int n_nsilent, int n_cold, double d_big)

Description: Sets the optimization parameters in the global optimization
parameter structure gs_opt.
Arguments:

double d_tau0: Tuning parameter limiting level of
boundary violations by (non-bound)
constraints during optimization.

double d_del0: Tuning parameter determining the
initial binding of (non-bound)
constraints.

 October 22, 2009 28

int n_reset: Maximum number of resets.
int n_silent: Flag for diagnostic output.
int n_cold: Flag for “cold” start.
double d_big: Value of the largest floating point

value allowed in the optimization
search.

The donlpfun.c file also consists of functions required by donlp. Please read the donlp user
document for more details on these functions. The functions include:

c. void user_init_size(void)
Description: Sets the dimensions and other sizes of the optimization.

d. void setup(void)

Description: Currently inactive.

e. void solchk(void)
Description: Sets the number and prints the message of the donlp diagnostics.
Sets and unscales the solution.

f. void user_init(void)

Description: Sets the optimization parameters. Sets the model parameter
search boundary values.

g. void ef(DOUBLE x[], DOUBLE *fx)

Description: Calculates the objective function, i.e., − log-likelihood.

h. void egradf(DOUBLE x[], DOUBLE gradf[])
Description: Calculates the gradient of the objective function, i.e. gradient of
− log-likelihood.

i. void econ(INTEGER type, INTEGER liste[], DOUBLE x[], DOUBLE

con[], LOGICAL err[])
Description: Calculates the non-linear constraint functions.

j. void econgrad(INTEGER liste[], INTEGER shift, DOUBLE x[],

DOUBLE **grad)
Description: Calculates the gradients of the non-linear constraint functions.

k. void eval_extern(INTEGER mode)

Description: Currently inactive.

 October 22, 2009 29

	Marla Smith, Project Officer
	Office of Science and Technology
	1.0 INTRODUCTION AND OBJECTIVES
	1.1. Intended Audience

	2.0 COMPILING AND INSTALLING THE SOURCE CODE
	2.1. Installing the MinGW GNU Compilers and Other Utilities
	2.2. Installing BMDS
	2.3. Compiling the Multistage Weibull Model
	2.4. Setting the Silent Mode option in donlp3

	3.0 COMPONENT FILES WITHIN THE SOURCE CODE
	3.1. Relationships Among Component Files
	3.2. Descriptions of Component Files
	3.2.1. Components model.h and model.c
	3.2.2. Components input.h and input.c
	3.2.3. Components process.h and process.c
	3.2.4. Components check.h and check.c
	3.2.5. Components estimate.h and estimate.c
	3.2.6. Components output.h and output.c
	3.2.7. Components utilities.h and utilities.c
	3.2.8. Components gev.h and gev.c
	3.2.9. Components donlpfun.h and donlpfun.c

