Methods and Guidance on Health Risk Assessment of Chemical Mixtures

Linda K. Teuschler¹, Moiz Mumtaz²
Glenn E. Rice³, Richard C. Hertzberg¹
¹U.S. Environmental Protection Agency
²Agency for Toxic Substances and Disease Registry
³Harvard Center for Risk Analysis

Society for Risk Analysis 2005 Annual Meeting
Orlando, FL
December 4, 2005

Workshop Description

This half-day workshop presents intermediate topics and hands-on exercises on risk based methodologies for assessing cumulative health risk from exposure to chemical mixtures, including considerations of multiple route exposures and toxicological interactions. Included are limited descriptions of basic concepts, the introduction of cutting edge chemical mixture health risk assessment issues, explanation of state-of-the-art methods, and hands on exercises for several important classes of chemical mixtures (e.g., pesticides, metals, drinking water disinfection by-products). Workshop topics include: procedures and definitions for selecting among risk assessment methods; methods for incorporating toxicologic interactions data (weight of evidence for interactions; the interaction-based hazard index); discussions of exposure issues unique to chemical mixtures (e.g., environmental transformations); use of physiologically-based pharmacokinetic modeling of interactions and multiple route exposure assessment; and integrating relative potency factors with response addition for mixtures of chemicals representing similar and dissimilar toxic modes of action. The content of this workshop includes a general overview of chemical mixture health risk assessment data evaluation and procedures, a detailed description of several new methods, and in-depth hands-on exercises with test data sets. Discussions include real world examples, exercise results, issues for application of the procedures, and general questions and comments. Participants are asked to bring a calculator.

This course provides information on the latest methods for chemical mixtures health risk assessment. It targets people familiar with chemical mixtures risk assessment who are interested in stretching beyond simple concepts. For example, interested individuals might include those who have: conducted Superfund/RCRA site assessments, worked on Food Quality Protection Act (1996) issues regarding cumulative risk, studied community based risk assessments of multiple chemicals, applied methods based on additivity concepts (e.g., hazard index, response addition) to simple chemical mixtures, been involved with human or toxicological studies on chemical mixtures, or taken an introductory course in Chemical Mixtures Health Risk Assessment. Emphasis will be on the presentation of new approaches and hands-on exercises representing the latest thinking in this area.
Background of Presenters

Linda K. Teuschler
U.S. Environmental Protection Agency (EPA)
Office of Research and Development
National Center for Environmental Assessment - Cincinnati Division
26 W. ML King Dr. (MSA-130)
Cincinnati, OH 45268
513-569-7573
fax: 513-487-2539
teuschler.linda@epa.gov

Linda K. Teuschler has been a Mathematical Statistician with United States Environmental Protection Agency’s (EPA) Office of Research and Development, National Center for Environmental Assessment (NCEA) since November 1989. She received a M.S. in Mathematics from the University of Cincinnati in 1987. She is currently serving as NCEA’s Team Leader for the Chemical Mixtures Focus of Excellence Team. Her specific area of expertise is the development of chemical mixtures health risk assessment methodologies, the technical transfer of these risk assessment methods through the development of guidance documents and publications, and the application of such methods to the risk assessment of mixtures of drinking water disinfection by-products (DBPs) and other contaminant mixtures. More recently, her mixtures research has expanded to incorporate cumulative risk assessment issues. She served on EPA’s Risk Assessment Forum (RAF) Technical Panel that authored and published the 2000 Supplementary Guidance for the Health Risk Assessment of Chemical Mixtures and is now serving on the RAF Technical Panel for Cumulative Risk Assessment. She is a member of the Society for Risk Analysis.

Richard C. Hertzberg
U.S. Environmental Protection Agency (EPA)
National Center for Environmental Assessment
c/o Waste Management Division
61 Forsyth St.
Atlanta, GA 30303-3104
404-562-8663
hertzberg.rick@epa.gov

Rick Hertzberg has been a Mathematical Statistician with United States Environmental Protection Agency’s (EPA) Office of Research and Development, National Center for Environmental Assessment since November 1980. Recently, he has completed a two-year detail with the Rapid Risk Assessment Team within EPA’s newly created Homeland Security Research Center. He received his Ph.D. in Biomathematics in 1977 from the University of Washington, Seattle. Rick is the primary author of both the EPA’s 1986 Mixtures Guidelines and 2000 Supplementary Guidance for the Health Risk Assessment of Chemical Mixtures, and chaired both workgroups that developed those reports. Recently, he has worked on EPA’s Office of Pesticide Programs' Cumulative Risk Work Group, EPA's Risk Assessment Forum cumulative risk technical panel, and external advisory groups on mixture risk for ATSDR, NIOSH and the Dutch Health Council. He also initiated the Interagency Mixed Exposures Research Group to
encourage collaboration and consistency across governmental agencies regarding mixtures risk assessment. His publication record includes journal articles, book chapters and EPA guidance documents. His knowledge of both the toxicologic and statistical issues concerning the risk assessment of complex chemical exposures and his development of methods and models to assess mixture dose response and interaction effects have made him an international expert in this field. Rick is a member of the Society for Risk Analysis, the American Statistical Association and the Sierra Club.

Moiz Mumtaz, Science Advisor
Agency for Toxic Substances and Disease Registry (ATSDR)
Research Implementation Branch
Division of Toxicology
1600 Clifton Rd., MS-E29
Atlanta, GA 30333
770-488-3349
mgm4@cdc.gov

Dr. Moiz Mumtaz has worked as Science Advisor for the Research Implementation Branch, Division of Toxicology, Agency for Toxic Substances and Disease Registry (ATSDR), since August 1992. His involvement in several agencywide activities has led to a) the establishment of a mixtures research program for determining significant human exposures to environmental chemicals, b) the establishment of a computational toxicology laboratory for characterizing the behavior of chemicals after they enter the human body or estimating the toxicity of chemicals based on structure-activity relationships (SAR), and c) the revision of ATSDR guidelines and policy for clearing publications. Dr. Mumtaz obtained his Ph.D. in toxicology from the University of Maryland and received his M.S. in chemistry/entomology from Oregon State University. He also has an M.S. in analytical chemistry from Osmania University, India. Dr. Mumtaz has actively published his research findings in several peer-reviewed journals during the past two decades. These publications have covered a wide range of research areas pertinent to medicine and human health that included but were not limited to dopamine metabolism and mental health, chemical analysis of xenobiotics and environmental chemicals, and health risk assessment of chemicals and susceptible human populations. Dr. Mumtaz is a full member of the Society of Toxicology, the Association of Government Toxicologists, the American Chemical Society — Pesticide Division, the American Society of Pharmacology and Experimental Therapeutics, and the Association of State and Territorial Risk Assessors.
Glenn E. Rice
Harvard Center for Risk Analysis
135 Market St.
Portsmouth, NH 03801
859-331-6005

Glenn Rice is currently a doctoral candidate at the Harvard School of Public Health. Glenn has served as the Chapter President of the Ohio Chapter for the Society of Risk Analysis. He holds a Master’s Degree in Microbiology from Miami University, as well as degrees in Biology and Chemistry from Thomas More College. In March of 1990, Glenn Rice was appointed to the position of Environmental Health Scientist with the U.S. Environmental Protection Agency’s National Center for Environmental Assessment (NCEA). His research interest is human health risk assessment methods. For NCEA, he served as a member of the Cancer Risk Assessment Verification Endeavor (CRAVE Work Group). He has lead both a multimedia exposure assessment team in NCEA and a comparative risk assessment project team. He also served as acting science advisor for the NCEA-Cincinnati Division. He is one of the primary authors of the EPA’s Mercury Study Report to Congress and EPA’s Chemical Mixtures Guidance. Glenn and his wife, Nancy, are the proud parents of five children.
Preliminary Workshop Agenda

Welcome
• Introductions (background, experience, workshop expectations)

Advancements in the Application of Additivity Methods
• Basic additivity theory (dose addition and response addition)
• Considerations of mode of action in grouping mixtures
• Relative Potency Factors (RPF) method
• Integrating RPFs with response addition

Exposure Issues for Chemical Mixtures
• Fate and transport of mixtures in the environment
• PBPK modeling of internal doses
• Calculation of RPFs for external and internal Doses

Hands on Exercise
• Evaluation of drinking water disinfection by-products (DBP)

Break

Advancements in the Application of Toxicological Interactions Data
• Physiology and toxicology of interactions
• Physiologically based modeling of interactions data

Pharmacokinetic Modeling of Pesticides
• Physiologically based modeling to predict interactions
• Two-pesticide example of interactions significance

Hands on Exercise
• Lead, cadmium, zinc interactions problem

Discussion, Wrap Up
Method-Specific User Fact-Sheets

U.S. EPA’s new *Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures* (2000) presents a number of method-specific user fact-sheets, which are intended to provide a concise overview of each currently available mixtures risk assessment method presented in that guidance document. Copies of these fact-sheets are provided here for quick reference. These fact-sheets provide the following information relative to the risk assessment approach:

- **Type of Assessment**: distinguishes whether the approach is a dose-response assessment or whether it combines dose-response and exposure information to perform a risk characterization.
- **Data Requirements**: details the types and amount of data that are needed to carry out the procedure.
- **Section(s)**: refers the user to sections of this document that provide greater detail on the approach.
- **References**: cites reports or publications where the approach has been applied in practice or indicates that this is a new procedure.
- **Strategy of Method**: provides concise directions on how the calculations are performed.
- **Ease of Use**: gives a sense of how much effort, expertise, and data are required in order to apply the approach.
- **Assumptions**: lists the toxicologic or statistical assumptions that are inherently made when the data are treated by applying the approach; the user can then decide if the approach is appropriate for the available data.
- **Limitations**: suggests problems the user may encounter relative to data gaps or quality deficiencies, and statistical modeling requirements or goodness-of-fit issues.
- **Uncertainties**: indicates unknown elements of the analysis that must be considered and characterized in the presentation of the risk assessment (e.g., data are not available, mode-of-action is unknown, scientific judgments are made, exposures are not well characterized, extrapolations are made, etc.).

All references to figures, tables, sections, etc. are from:

The user of this Guidance document can use Figure 2-1 to determine that the data available are directly on the mixture of concern. Then, a procedure is suggested for estimating either a cancer slope factor or a Reference Dose/Concentration (RfD/C) as encapsulated in the following user-information fact sheet.

Approach: Mixture of Concern RfD/C or Slope Factor
Type of Assessment: Dose-Response Toxicity Value
Section(s): 3.1, 3.2
References: Examples can be found on IRIS (U.S. EPA, 2005).
Data Requirements: Toxicity data are available on the mixture of concern. Examples of such data are human epidemiologic data from an occupational setting, human data from a clinical study, or animal toxicology data on the complex mixture.
Strategy of Method: Estimate dose-response toxicity value directly from data on complex mixture of concern, using the same procedures as those used for single chemicals.
Ease of Use: Calculations are simple.
Assumptions: Composition of the test mixture is functionally the same as what is found in the environment. Test data are adequate to account for all sensitive endpoints.
Limitations: Data are rarely available.
Uncertainties: Scientific judgments of the chemical composition of the mixture; toxicologic relevance of the laboratory data to the environmental mixture.

User-Fact Sheet:
Sufficiently Similar Mixture RfD/C or Slope Factor

The user of this Guidance document can use Figure 2-1 to determine that the data available are on a mixture that is sufficiently similar to the mixture of concern. Then, a procedure is suggested for estimating either a cancer slope factor or a Reference Dose/Concentration (RfD/C) as encapsulated in the following user-information fact sheet.

Approach: Sufficiently Similar Mixture RfD/C or Slope Factor

Type of Assessment: Dose-Response Toxicity Value

Section(s): 3.1, 3.2

References: New procedure.

Data Requirements: Toxicity data are available on a mixture that is judged as sufficiently similar to the mixture of concern in the environment. No data are available on the mixture of concern. Examples of such data are human epidemiologic data from an occupational setting, human data from a clinical study, or animal toxicology data on the complex mixture.

Strategy of Method: Estimate dose-response toxicity value using data on the sufficiently similar mixture as a surrogate for data on the mixture of concern, using the same procedures as those used for single chemicals.

Ease of Use: Calculations are simple.

Assumptions: Composition of the sufficiently similar mixture is functionally the same as what is found in the environment. Test data are adequate to account for all sensitive endpoints. Similarity judgment across the mixtures must be made and supported.

Limitations: Availability of data is limited.

Uncertainties: Scientific judgments of sufficient similarity, chemical composition and stability of the two mixtures; toxicologic relevance of the laboratory data to the environmental mixture.
User-Fact Sheet: Comparative Potency

The user of this Guidance document can use Figure 2-1 to determine that the data available are on a group of similar mixtures. Then, a procedure is suggested for using a comparative potency approach to estimating a cancer slope factor as encapsulated in the following user-information fact sheet.

Approach: Comparative Potency

Type of Assessment: Dose-Response Toxicity Values for Cancer, Genetic Toxicity

Section(s): 3.1, 3.3

References: Used for combustion mixtures (Lewtas, 1985, 1988; Nesnow, 1990).

Data Requirements: Method requires short-term data on several similar mixtures including the mixture of concern and at least one data point from a chronic *in vivo* study on one of these mixtures. Examples of such data are *in vitro* mutagenicity assays and chronic rodent bioassays.

Strategy of Method: Estimate dose-response value using relationships across similar mixtures and similar assays to extrapolate to a value for the mixture of concern.

Ease of Use: Calculations involve some statistical modeling and toxicologic judgement. Method is data intensive with short-term assay data required.

Assumptions: Assumes the potency change for similar mixtures across assays is the same for all similar mixtures. Test data are adequate to account for all sensitive endpoints. Similarity judgment across the mixtures must be made and supported.

Limitations: Availability of data is limited.

Uncertainties: Scientific judgments of sufficient similarity relative to chemical composition and toxicologic activity of the mixtures.

User Fact-Sheet:
Geographic Site-Specific Assessments

The user of this Guidance document can follow Figure 2-1 to determine that the data available are on a group of similar mixtures. Then, a procedure is suggested for estimating risk from exposure to the mixture by using a Geographic Site-Specific Assessment, as detailed in the following user-information fact sheet.

Approach: Geographic Site-Specific Assessment
Type of Assessment: Risk Characterization for any Toxic Endpoint
Section(s): 3.1, 3.4
References: Used for cancer assessment of PCBs (U.S. EPA. 1996)
Data Requirements: Method requires both toxicity and exposure data on the mixture’s components.
Strategy of Method: Toxicity data on the commercial mixture are used to estimate a range of toxicity values that are then adjusted for alterations in the mixture’s composition due to environmental factors to produce a risk estimate for the total mixture.
Ease of Use: Complicated to use. Data intensive.
Assumptions: Requires the user to make assumptions about the fate and transport of groups of chemicals.
Limitations: Some data restricted by similarity. Restricted to specific conditions. Limited by data quality.
Uncertainties: Scientific judgment of fate and transport. Accuracy of exposure data.

User Fact-Sheet: Hazard Index

The user of this Guidance document can follow Figure 2-1 to determine that the data available are on the components of the mixture of concern and that there is evidence of toxicologic similarity of the components. Then, a procedure is suggested for estimating a Hazard Index, an indication of risk from exposure to the mixture, as encapsulated in the following user-information fact sheet.

Approach: Hazard Index

Type of Assessment: Risk Characterization for any Toxic Endpoint

Section(s): 4.1, 4.2

References: Used in Superfund site assessments (U.S. EPA, 1989).

Data Requirements: Method requires both toxicity and exposure data on the mixture’s components. Good dose-response data are needed, such as what is available on IRIS (U.S. EPA, 2005).

Strategy of Method: Scale individual component exposure concentrations by a measure of relative potency (typically, divide by a Reference Dose/Concentration (RfD/C)) for components with a similar mechanism-of-action. Add scaled concentrations to get an indicator of risk from exposure to the mixture of concern.

Ease of Use: Easy to calculate.

Assumptions: Applies dose addition which carries with it assumptions of a common mode-of-action and similarly shaped dose-response curves across the components. The common mode-of-action assumption can be met by using a surrogate of same target organ.

Limitations: Exposure data must be at relatively low levels (near no-adverse-effect levels) at which interaction effects are not expected. RfD/C values across components vary in their uncertainty, so other measures of potency may be more appropriate.

Uncertainties: Similarity of mechanism-of-action. Accuracy of exposure data.

User Fact-Sheet: Relative Potency Factors

The user of this Guidance document can follow Figure 2-1 to determine that the data available are on the components of the mixture of concern and that there is evidence of toxicologic similarity of the components. Then, a procedure is suggested for estimating risk from exposure to the mixture by using Relative Potency Factors, as encapsulated in the following user-information fact sheet.

Approach: Relative Potency Factors

Type of Assessment: Dose-Response Assessment for any Toxic Endpoint

Section(s): 4.1, 4.4

References: New Procedure (Hertzberg et al., 1999)

Data Requirements: Method requires both toxicity and exposure data on the mixture’s components. Toxicity data are missing for some components.

Strategy of Method: Scale component exposure concentrations relative to potency of an index chemical (typically the best studied component) following expert committee consensus. Add scaled concentrations. Use dose-response curve of index chemical to generate response estimate for sum of scaled concentrations.

Ease of Use: Complicated to use. Requires some statistical modeling and judgment of relative potency factors.

Assumptions: Based on dose addition which carries with it assumptions of same mode-of-action and similarly shaped dose-response curves across the components. The common mode-of-action assumption can be met using a surrogate of toxicologic similarity, but for specific conditions (endpoint, route, duration).

Limitations: Limited by data quality and similarity. May not have data from all routes of exposure of interest. Same mode-of-action across components may not be known.

Uncertainties: Judgment of relative potency factors. Similarity of toxicologic action. Missing data on some components.

User Fact-Sheet:

Toxicity Equivalence Factor

The user of this Guidance document can follow Figure 2-1 to determine that the data available are on the components of the mixture of concern and that there is evidence of toxicologic similarity of the components. Then, a procedure is suggested for estimating risk from exposure to the mixture by using Toxicity Equivalence Factors, as encapsulated in the following user-information fact sheet.

<table>
<thead>
<tr>
<th>Approach:</th>
<th>Toxicity Equivalence Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Assessment:</td>
<td>Dose-Response Assessment for any Toxic Endpoint</td>
</tr>
<tr>
<td>Section(s):</td>
<td>4.1, 4.4</td>
</tr>
<tr>
<td>References:</td>
<td>Used for dioxins and furans (U.S. EPA, 1989)</td>
</tr>
<tr>
<td>Data Requirements:</td>
<td>Method requires both toxicity and exposure data on the mixture’s components. One well studied chemical.</td>
</tr>
<tr>
<td>Strategy of Method:</td>
<td>Scale component exposure concentrations relative to potency of an index chemical (a well studied component) following expert committee consensus. Add scaled concentrations. Use dose-response curve of index chemical to generate response estimate for sum of scaled concentrations.</td>
</tr>
<tr>
<td>Ease of Use:</td>
<td>Complicated to use. Data intensive. Requires some statistical modeling and judgment of toxicity equivalence factors.</td>
</tr>
<tr>
<td>Assumptions:</td>
<td>Based on dose addition which carries with it assumptions of same mode-of-action and similarly shaped dose-response curves across the components.</td>
</tr>
<tr>
<td>Limitations:</td>
<td>Rare data. Restricted by strong similarity so few chemical classes will quality. Applied to all endpoints and exposure routes. Same mode-of-action across components is established.</td>
</tr>
</tbody>
</table>

User Fact-Sheet:
Response Addition

The user of this Guidance document can follow Figure 2-1 to determine that the data available are on the components of the mixture of concern and that there is evidence of toxicologic independence of action. Then, a procedure is suggested for estimating risk from exposure to the mixture by using Response Addition, as encapsulated in the following user-information fact sheet.

Approach: Response Addition

Type of Assessment: Risk Characterization for any Toxic Endpoint

Section(s): 4.1, 4.5

References: Used extensively for cancer. Used in Superfund site assessments (U.S. EPA, 1989).

Data Requirements: Method requires both toxicity data (measured in percent responding) and exposure data on the mixture’s components. Good dose-response data are needed, such as what is available on IRIS (U.S. EPA, 2005).

Strategy of Method: Risk of an effect is estimated for each component using its dose-response curve at the component’s exposure concentration. Component risks are added, using the independence formula, to yield a risk estimate for the total mixture for the specific exposure.

Ease of Use: Easy to calculate.

Assumptions: Assumes toxicologic independence of action. Assumes interactions are not significant at low exposures.

Limitations: Limited to low exposure concentrations. Slight overestimate of mixture’s upper bound on risk when adding individual component upper bound estimates. Restricted to independence of action.

Uncertainties: Independence of action. Accuracy of exposure data. Individual risk estimates may vary in quality.

User Fact-Sheet: Interaction-based Hazard Index

The user of this Guidance document can follow Figure 2-1 to determine that the data available are on the components of the mixture of concern and that interactions data are available. Then, a procedure is suggested for estimating risk from exposure to the mixture by incorporating information on binary combinations of the components using an Interaction-based Hazard Index, as encapsulated in the following user-information fact sheet.

Approach: Interaction-based Hazard Index

Type of Assessment: Risk Characterization for any Toxic Endpoint

Section(s): 4.1, 4.3

References: New procedure. (Hertzberg et al., 1999)

Data Requirements: Method requires both toxicity and exposure data on the mixture’s components, and interactions data on at least one pair of components.

Strategy of Method: Scale component exposure concentrations by a measure of relative potency (typically, divide by a Reference Dose/Concentration (RfD/C)) for components with a similar mechanism-of-action. Modify this term with data on binary interactions. Add scaled/modified concentrations to provide an indicator of risk from exposure to the mixture of concern.

Ease of Use: Complicated to use.

Assumptions: Assumes binary interactions are the most important. Assumes interaction magnitude is not dose dependent, but depends on component proportions.

Limitations: Limited interactions data are available. Model with relative proportions is untested. Interaction magnitude is often a default because of lack of measurement data.

Uncertainties: Binary interactions used to represent the interactions for the whole mixture. Accuracy of exposure data. Accuracy of default for interaction magnitude.

Definitions

Consistent and clear terminology is critical to the discussion of chemical mixtures risk assessment methodology. U.S. EPA’s *Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures* (2000) presents a number of definitions to articulate the differences among the many terms used to describe chemical mixtures and the types of interactions that may occur among chemicals. Two tables from that document are presented here. Table 1 presents chemical mixtures definitions in terms of specific criteria including the complexity of the mixture, similarity of biologic activity, similarity of chemical structure or mixture composition, the environmental source of the mixture, toxic endpoint, etc. Table 2 provides definitions for terms that are used to describe various types of toxicologic interactions including forms of additivity, antagonism, synergism and other toxicologic phenomena. Tables 1 and 2 can be used by the risk assessor to classify available toxicity and exposure data in order to choose from among the risk assessment methods for chemical mixtures.
Table 1
Definitions of Chemical Mixtures

<table>
<thead>
<tr>
<th>Chemical Mixture</th>
<th>Any set of multiple chemical substances that may or may not be identifiable, regardless of their sources, that may jointly contribute to toxicity in the target population. May also be referred to as a “whole mixture” or as the “mixture of concern.”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components</td>
<td>Single chemicals that make up a chemical mixture that may be further classified as systemic toxicants, carcinogens, or both.</td>
</tr>
<tr>
<td>Simple Mixture</td>
<td>A mixture containing two or more identifiable components, but few enough that the mixture toxicity can be adequately characterized by a combination of the components’ toxicities and the components’ interactions.</td>
</tr>
<tr>
<td>Complex Mixture</td>
<td>A mixture containing so many components that any estimation of its toxicity based on its components’ toxicities contains too much uncertainty and error to be useful. The chemical composition may vary over time or with different conditions under which the mixture is produced. Complex mixture components may be generated simultaneously as by-products from a single source or process, intentionally produced as a commercial product, or may co-exist because of disposal practices. Risk assessments of complex mixtures are preferably based on toxicity and exposure data on the complete mixture. Gasoline is an example.</td>
</tr>
<tr>
<td>Similar Components</td>
<td>Single chemicals that cause the same biologic activity or are expected to cause a type of biologic activity based on chemical structure. Evidence of similarity may include similarly shaped dose-response curves, or, log-probit dose-response curves for quantal data on the number of animals (people) responding and same mechanism of action or toxic endpoint. These components are expected to have comparable characteristics for fate, transport, physiologic processes and toxicity.</td>
</tr>
<tr>
<td>Similar Mixtures</td>
<td>Mixtures that are slightly different, but are expected to have comparable characteristics for fate, transport, physiologic processes and toxicity. These mixtures may have the same components but in slightly different proportions, or have most components in nearly the same proportions with only a few different (more or fewer) components. Similar mixtures cause the same biologic activity or are expected to cause the same type of biologic activity due to chemical composition. Similar mixtures act by the same mechanism of action or affect the same toxic endpoint. Diesel exhausts from different engines are an example.</td>
</tr>
<tr>
<td>Chemical Classes</td>
<td>Groups of components that are similar in chemical structure and biologic activity, and that frequently occur together in environmental samples, usually because they are generated by the same commercial process. The composition of these mixtures is often well controlled, so that the mixture can be treated as a single chemical. Dibenzo-dioxins are an example.</td>
</tr>
</tbody>
</table>
Table 2
Definitions of Toxicologic Interactions between Chemicals*

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additivity</td>
<td>When the "effect" of the combination is estimated by the sum of the exposure levels or the effects of the individual chemicals. The terms "effect" and "sum" must be explicitly defined. Effect may refer to the measured response or the incidence of adversely affected animals. The sum may be a weighted sum (see "dose addition") or a conditional sum (see "response addition").</td>
</tr>
<tr>
<td>Antagonism</td>
<td>When the effect of the combination is less than that suggested by the component toxic effects. Antagonism must be defined in the context of the definition of "no interaction", which is usually dose or response addition.</td>
</tr>
<tr>
<td>Chemical Antagonism</td>
<td>When a reaction between the chemicals has occurred and a new chemical is formed. The toxic effect produced is less than that suggested by the component toxic effects.</td>
</tr>
<tr>
<td>Chemical Synergism</td>
<td>When a reaction between the chemicals has occurred and a different chemical is formed. The toxic effect produced is greater than that suggested by the component toxic effects, and may be different from effects produced by either chemical by itself.</td>
</tr>
<tr>
<td>Complex Interaction</td>
<td>When three or more compounds combined produce an interaction that cannot be assessed according to the other interaction definitions.</td>
</tr>
<tr>
<td>Dose Additivity</td>
<td>When the effect of the combination is the effect expected from the equivalent dose of an index chemical. The equivalent dose is the sum of component doses scaled by their potency relative to the index chemical.</td>
</tr>
<tr>
<td>Index Chemical</td>
<td>The chemical selected as the basis for standardization of toxicity of components in a mixture. The index chemical must have a clearly defined dose-response relationship.</td>
</tr>
<tr>
<td>Inhibition</td>
<td>When one substance does not have a toxic effect on a certain organ system, but when added to a toxic chemical, it makes the latter less toxic.</td>
</tr>
<tr>
<td>Masking</td>
<td>When the compounds produce opposite or functionally competing effects at the same site or sites, so that the effects produced by the combination are less than suggested by the component toxic effects.</td>
</tr>
<tr>
<td>No Apparent Influence</td>
<td>When one substance does not have a toxic effect on a certain organ or system, and when added to a toxic chemical, it has no influence, positive or negative, on the toxicity of the latter chemical.</td>
</tr>
</tbody>
</table>
| Table 2 (cont.)
Definitions of Toxicologic Interactions between Chemicals* |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No Observed Interaction</td>
</tr>
<tr>
<td>Potentiation</td>
</tr>
<tr>
<td>Response Additivity</td>
</tr>
<tr>
<td>Synergism</td>
</tr>
<tr>
<td>Unable to Assess</td>
</tr>
</tbody>
</table>

*Based on definitions in U.S. EPA (1990). These definitions of interaction refer to the influence on observed toxicity, without regard to the actual mechanisms of interaction.
Further Information on Chemical Mixtures Risk Assessment

More information is available for:

Selected Key References

