

EPA/635/R-14/352 Preliminary Materials www.epa.gov/iris

Preliminary Materials for the Integrated Risk Information System (IRIS) Toxicological Review of Butyl Benzyl Phthalate (BBP) (CASRN 85-68-7)

September 2014

NOTICE

This document is comprised of **preliminary materials**. This information is distributed solely for the purpose of pre-dissemination review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. It is being circulated for review of its technical accuracy and science policy implications.

National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC

DISCLAIMER

This document is comprised of preliminary materials for review purposes only. This information is distributed solely for the purpose of pre-dissemination review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

CONTENTS

PR	EFACE	ix
1.	INTRODUCTION	1-1
	1.1. BBP IN THE ENVIRONMENT	1-1
	1.1.1. Production and Use	1-1
	1.1.2. Environmental Fate	1-1
	1.1.3. Human Exposure Pathways	1-2
	1.2. SCOPE OF THE ASSESSMENT	1-3
2.	METHODS FOR IDENTIFYING AND SELECTING STUDIES	2-1
	2.1. DRAFT LITERATURE SEARCH AND SCREENING STRATEGY	2-1
	2.2. SELECTION OF CRITICAL STUDIES IN EARLY STAGES OF DRAFT DEVELOPMENT	2-16
	2.2.1. General Approach	. 2-16
	2.2.2. Exclusion of Studies	. 2-17
	2.3. STUDY CHARACTERISTICS THAT WILL BE CONSIDERED IN THE FUTURE EVALUATION AND SYNTHESIS OF THE CRITICAL EPIDEMIOLOGICAL STUDIES FOR BBP	2-18
	2.4. STUDY CHARACTERISTICS THAT WILL BE CONSIDERED IN THE FUTURE EVALUATION AND SYNTHESIS OF THE CRITICAL EXPERIMENTAL STUDIES FOR BBP	2-33
	STRUTESIS OF THE CRITICAL EXPERIMENTAL STODIES FOR BDP	2 55
3.	PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS	
3.		3-1
3.	PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS	3-1 3-1
3.	PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS 3.1. DATA EXTRACTION FOR EPIDEMIOLOGICAL AND EXPERIMENTAL STUDIES: PREPARATION OF PRELIMINARY EVIDENCE TABLES	3-1 3-1 3-2
3.	PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS	3-1 3-1 3-2 3-2
3.	 PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS	3-1 3-1 3-2 3-2 3-6
3.	 PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS	3-1 3-1 3-2 3-2 3-6 3-9
3.	 PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS. 3.1. DATA EXTRACTION FOR EPIDEMIOLOGICAL AND EXPERIMENTAL STUDIES: PREPARATION OF PRELIMINARY EVIDENCE TABLES. 3.2. EPIDEMIOLOGICAL STUDIES. 3.2.1. Sexual Differentiation Measures. 3.2.2. Male Reproductive Effects in Humans 3.2.3. Male Pubertal Development in Humans 	3-1 3-1 3-2 3-2 3-6 3-9 3-11
3.	 PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS	3-1 3-1 3-2 3-2 3-6 3-9 3-11 3-16
3.	 PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS	3-1 3-1 3-2 3-2 3-6 3-9 3-11 3-16 3-17
3.	 PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS	3-1 3-1 3-2 3-2 3-6 3-9 3-11 3-16 3-17 3-20
3.	 PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS	3-1 3-1 3-2 3-2 3-6 3-9 3-11 3-16 3-17 3-20 3-24
3.	PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS. 3.1. DATA EXTRACTION FOR EPIDEMIOLOGICAL AND EXPERIMENTAL STUDIES: PREPARATION OF PRELIMINARY EVIDENCE TABLES. 3.2. EPIDEMIOLOGICAL STUDIES. 3.2.1. Sexual Differentiation Measures. 3.2.2. Male Reproductive Effects in Humans 3.2.3. Male Pubertal Development in Humans 3.2.4. Semen Parameters and Infertility 3.2.5. Female Reproductive Effects in Humans 3.2.6. Female Reproductive Effects in Humans 3.2.7. Gynecological Conditions in Humans 3.2.8. Pregnancy Related Outcomes	3-1 3-1 3-2 3-2 3-6 3-9 3-11 3-16 3-17 3-20 3-24 3-28
3.	PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS. 3.1. DATA EXTRACTION FOR EPIDEMIOLOGICAL AND EXPERIMENTAL STUDIES: PREPARATION OF PRELIMINARY EVIDENCE TABLES. 3.2. EPIDEMIOLOGICAL STUDIES. 3.2.1. Sexual Differentiation Measures. 3.2.2. Male Reproductive Effects in Humans 3.2.3. Male Pubertal Development in Humans 3.2.4. Semen Parameters and Infertility 3.2.5. Female Reproductive Effects in Humans 3.2.6. Female Reproductive Effects in Humans 3.2.7. Gynecological Conditions in Humans 3.2.8. Pregnancy Related Outcomes 3.2.9. Immune Effects in Humans	3-1 3-1 3-2 3-2 3-6 3-9 3-11 3-16 3-17 3-20 3-24 3-28 3-40

This document is a draft for review purposes only and does not constitute Agency policy.

	3.2.12. Neurodevelopmental Effects in Humans3-	43
	3.2.13. Obesity Effects in Humans3-	47
	3.2.14. Diabetes Effects in Humans3-	·52
	3.2.15. Cardiovascular Effects in Humans3-	·56
	3.2.16. Cancer Effects in Humans3-	·58
	3.3. EXPERIMENTAL STUDIES	-59
	3.3.1. Male Reproductive Effects	-59
	3.3.2. Female Reproductive Effects	·82
	3.3.3. Developmental Effects	.07
	3.3.4. Liver Effects	.25
	3.3.5. Kidney Effects	.39
	3.3.6. Pancreatic Effects	.56
	3.3.7. Hematopoietic Effects	.62
	3.3.8. Thyroid Effects	.79
	3.3.9. Immune Effects	.86
	3.3.10. Neurological Effects	.88
	3.3.11. Other Toxicity Effects	.89
	3.3.12. BBP Metabolite Studies	.96
	3.4. PRELIMINARY MECHANISTIC INFORMATION FOR BBP	15
4.	REFERENCES	4-1

TABLES

Table 2-1.	Database search strategy for BBP	2-2
Table 2-2.	Summary of additional search strategies for BBP	2-2
Table 2-3.	Inclusion criteria used to identify animal studies of health-related endpoints,	
	supporting data, or secondary literature	
Table 2-4.	Summary of search terms: targeted epidemiology search	2-10
	Inclusion criteria used to identify epidemiology studies of health-related endpoints	
Table 2-6.	Summary of additional search strategies for epidemiology studies of phthalate	
	exposure in relation to health-related endpoints	
	Primary source epidemiological studies examining health effects of BBP	
Table 2-8.	General and outcome-specific considerations for BBP study evaluation	2-30
Table 2-9.	Questions and relevant experimental information for the evaluation of experimental	
	animal studies	2-34
Table 3-1.	Evidence pertaining to BBP and sexual differentiation effects in humans	3-2
	Evidence pertaining to BBP and reproductive hormones in adult men	
	Evidence pertaining to BBP and the timing of male puberty or sex hormones in boys	3-9
Table 3-4.	Evidence pertaining to BBP and semen parameters or infertility in adult men or	
	couples	
	Evidence pertaining to BBP and reproductive hormones in adult women	
	Evidence pertaining to BBP and timing of female puberty or sex hormones in girls	
	Evidence pertaining to BBP and gynecological conditions in humans	
	Evidence pertaining to BBP and pregnancy outcomes in humans	
	Evidence pertaining to BBP and allergy/immune effects in humans	
	Evidence pertaining to BBP and asthma/wheezing and hypersensitivity in humans	
	. Evidence pertaining to BBP and thyroid hormones in humans	
	. Evidence pertaining to BBP and pulmonary function in humans	
	. Evidence pertaining to BBP and neurodevelopmental effects in humans	
	 Evidence pertaining to BBP and obesity in humans 	
	. Evidence pertaining to BBP and diabetes/insulin resistance in humans	
	. Evidence pertaining to BBP and cardiovascular disease risk factors in humans	
	 Evidence pertaining to BBP and cancer in humans 	3-58
Table 3-18	. Evidence pertaining to male reproductive puberty effects and indicators of	
	reproductive development following oral exposure to BBP	3-59
Table 3-19	. Evidence pertaining to male reproductive toxicity following oral exposure to BBP:	
	Alterations in hormone concentrations, mating, and sperm decrements	3-64
Table 3-20	. Evidence pertaining to male reproductive toxicity following oral exposure to BBP:	
	Histopathological changes and malformations in adults and offspring	3-69
Table 3-21	. Evidence pertaining to male reproductive toxicity following oral exposure to BBP:	
	Decrease in androgen-dependent tissue weights	
	Evidence pertaining to female reproductive toxicity following oral exposure to BBP	3-82
Table 3-23	. Evidence pertaining to pregnancy outcomes following oral exposure to BBP:	
	Measures of embryotoxicity	3-97
Table 3-24	. Evidence pertaining to developmental effects following oral exposure to BBP:	
	Teratogenicity	3-107
Table 3-25	. Evidence pertaining to developmental effects following oral exposure to BBP:	
	offspring body weight	3-116

Table 3-26.	Evidence pertaining to liver effects in animals following oral and inhalation exposure to BBP	2 175
Table 3-27.	Evidence pertaining to kidney effects in animals following oral and inhalation	
Table 2 20	1	3-139
Table 3-28.	Evidence pertaining to pancreatic effects in animals following oral and inhalation exposure to BBP	3-156
Table 3-29.	Evidence pertaining to hematopoietic effects in animals following oral and	
	inhalation exposure to BBP	3-162
Table 3-30.	Evidence pertaining to thyroid effects in animals following oral exposure to BBP	.3-179
Table 3-31.	Evidence pertaining to immune effects in animals following oral exposure to BBP	.3-186
Table 3-32.	Evidence pertaining to neurological effects in animals following oral exposure to	
	ВВР	3-188
Table 3-33.	Evidence pertaining to other toxicity effects in animals following oral exposure to	
	ВВР	3-189
Table 3-34.	Evidence pertaining to toxicity effects in animals following exposure to BBP	
	metabolites	3-196
Table 3-35.	Summary of mechanistic endpoints evaluated following BBP administration	.3-216

FIGURES

Figure 1-1.	Chemical structure of BBP.	1-1
Figure 2-1.	Literature search approach for BBP	2-8
Figure 3-1.	Exposure-response array of male reproductive puberty effects and indicators of	
	reproductive development following oral exposure to BBP	3-63
Figure 3-2.	Exposure-response array of male reproductive toxicity following oral exposure to	
	BBP: alterations in hormone concentrations, mating, and sperm decrements	3-68
Figure 3-3.	Exposure-response array of male reproductive toxicity following oral exposure to	
	BBP: external and internal malformations.	3-74
Figure 3-4.	Exposure-response array of male reproductive toxicity following oral exposure to	
	BBP: decrease in androgen-dependent tissue weights.	3-81
Figure 3-5.	Exposure response array of female reproductive toxicity following oral exposure to	
	BBP: weights and pregnancy outcomes	3-95
Figure 3-6.	Exposure response array of other female reproductive parameters following oral	
	exposure to BBP	3-96
Figure 3-7.	Exposure-response array of pregnancy outcomes following oral exposure to BBP	3-105
Figure 3-8.	Exposure-response array of fetal measures following oral exposure to BBP	3-106
Figure 3-9.	Exposure-response array of developmental effects following oral exposure to BBP:	
	teratogenicity	3-114
Figure 3-10). Exposure-response array of developmental effects following oral exposure to BBP:	
	malformations	3-115
Figure 3-11	. Exposure-response array of developmental effects following oral exposure to BBP:	
	fetal body weight	3-123
Figure 3-12	2. Exposure-response array of developmental effects following oral exposure to BBP:	
	pup weight	3-124
Figure 3-13	8. Exposure-response array of liver weight effects following oral exposure to BBP	3-137
Figure 3-14	. Exposure-response array of liver histopathological effects following oral exposure	
	to BBP	3-138
Figure 3-15	5. Exposure-response array of kidney weight effects following oral exposure to BBP	3-154
	This document is a draft for review purposes only and does not constitute Agency policy. vi DRAFT—DO NOT CITE OR	OUOTE
	vi DRAFT—DO NOT CITE OR	QUUIE

Figure 3-16.	Exposure-response array of kidney histopathological effects following oral	
	exposure to BBP	. 3-155
Figure 3-17.	Exposure-response array of pancreatic effects following oral exposure to BBP	.3-161
Figure 3-18.	Exposure-response array of hematopoietic effects following oral exposure to BBP:	
	spleen and thymus weights	. 3-177
Figure 3-19.	Exposure-response array of hematopoietic histopathological effects following oral	
	exposure to BBP	. 3-178
Figure 3-20.	Exposure-response array of thyroid effects following oral exposure to BBP	. 3-185
Figure 3-21.	Exposure response array of other health effects following oral exposure to BBP	. 3-195
Figure 3-22.	Summary of in vivo or in vitro mechanistic data by mechanistic category following	
	oral exposure to BBP	. 3-217

ABBREVIATIONS

ADME	absorption, distribution, metabolism,
ADME	-
	and excretion
AGD	anogenital distance
ALT	alanine aminotransferase
ANOVA	analysis of variance
BBP	butyl benzyl phthalate
BMI	body mass index
BP	blood pressure
BPA	bisphenol A
BW	body weight
CASRN	Chemical Abstracts Service Registry
COOPU	Number
СССЕН	Columbia Center for Children's
	Environmental Health
CERHR	Center for the Evaluation of Risks to
_	Human Reproduction
CI	confidence interval
Con A	Concanavalin A
DBP	dibutyl phthalate
DEP	di-ethyl phthalate
DEHP	di(2-ethylhexyl)phthalate
DHEAS	dehydroepiandrosterone
DIBP	diisobutyl phthalate
DINP	diisononyl phthalate
DNA	deoxyribonucleic acid
DPP	dipentyl phthalate
EPA	Environmental Protection Agency
FEV_1	forced expiratory volume in 1 second
FSH	follicle stimulating hormone
FVC	forced vital capacity
GD	gestational day
E2	estradiol
feNO	fractional exhaled nitric oxide
GGT	gamma glutamyl transferase
HOMA	homeostatic model assessment
-	homeostatic model assessment of
nomin	insulin resistance
HERO	Health and Environmental Research
IIERO	Online
HOME	Health Outcomes and Measures of the
HOME	Environment
IcE	
IgE ICC	immunoglobulin E intra-class correlation coefficient
IL	interleukin
IRIS	Integrated Risk Information System
IQR	interquartile range
ISAAC	International Study of Asthma and
LADO	Allergies in Children
LABC	levator ani bulbocavernosus
LH	luteinizing hormone
LOD	level of detection
LOQ	level of quantification
m-RNA	messenger ribonucleic acid

MBP	monobutyl phthalate
MBzP	monobenzyl phthalate
MCPP	mono-(3-carboxypropyl) phthalate
MDI	mental delay index
MECPP	mono(2-ethyl-5-carboxypentyl)
	phthalate
MEHHP	mono-(2-ethyl-5-
	hydroxyhexyl)phthalate
MEHP	mono-(2-ethylhexyl) phthalate
MEOHP	mono-(2-ethyl-5-oxohexyl) phthalate
MEP	monoethyl phthalate
MGH	Massachusetts General Hospital
MIBP	monoisobuyl phthalate
MMEF	maximal midexpiratory flow
MMP	monomethyl phthalate
MOA	mode of action
MW	molecular weight
NCEA	National Center for Environmental
	Assessment
NHANES	National Health and Nutrition
	Examination Survey
NHS	Nurses Health Study
NIOSH	National Institute for Occupational
	Safety and Health
NRC	National Research Council
NTP	National Toxicology Program
OR	odds ratio
ORD	Office of Research and Development
PAH	polycyclic aromatic hydrocarbon
PCB	polychlorinated biphenyl
РСО	polycystic ovarian morphology
PCOS	polycystic ovarian syndrome
PDI	psychomotor delay index
PEF	peak expiratory flow
PND	postnatal day
PNW	postnatal week
PPS	preputial separation
PVC	polyvinyl chloride
RfD	reference dose
SD	standard deviation
SE	standard error
SFF	Study for Future Families
SHBG	sex-hormone binding globulin
T3	triiodothyronine
T4	thyroxine
TSCATS	Toxic Substances Control Act Test
TCU	Submissions
TSH	thyroid stimulating hormone
VOC	volatile organic compound
WHO	World Health Organization

This document is a draft for review purposes only and does not constitute Agency policy.

2 **PREFACE**

3 This draft document presents preliminary materials for an assessment of butyl benzyl 4 phthalate (BBP) prepared by the United States Environmental Protection Agency's (EPA) Integrated 5 Risk Information System (IRIS) Program. These preliminary materials include a planning and 6 scoping summary, information on the approaches used to identify pertinent literature, results of the 7 literature search, approaches for selection of studies for hazard identification, presentation of 8 critical studies in evidence tables and exposure-response arrays, and mechanistic information for 9 BBP. This material is being released for public review and comment prior to a public meeting, 10 providing an opportunity for the IRIS Program to engage in early discussions with stakeholders and 11 the public on data that may be used to identify adverse health effects and characterize dose-12 response relationships. 13 The planning and scoping summary includes information on the uses of BBP, occurrence of 14 BBP in the environment, and the rationale and scope for the development of the assessment. This 15 information is responsive to recommendations in the 2009 National Research Council (NRC) report 16 Science and Decisions: Advancing Risk Assessment (NRC, 2009) related to planning and scoping in 17 the risk assessment process. 18 The preliminary materials are also responsive to the NRC 2011 report *Review of the* 19 Environmental Protection Agency's Draft IRIS Assessment of Formaldehyde (NRC, 2011). The IRIS 20 Program's implementation of the NRC recommendations is following a phased approach that is 21 consistent with the NRC's "Roadmap for Revision" as described in Chapter 7 of the formaldehyde 22 review report. The NRC stated that "the committee recognizes that the changes suggested would 23 involve a multi-year process and extensive effort by the staff at the National Center for 24 Environmental Assessment and input and review by the EPA Science Advisory Board and others." 25 Phase 1 of implementation has focused on a subset of the short-term recommendations, such as 26 editing and streamlining documents, increasing transparency and clarity, and using more tables, 27 figures, and appendices to present information and data in assessments. Phase 1 also focused on 28 assessments near the end of the development process and close to final posting. Phase 2 of 29 implementation is focused on assessments that are in the beginning stages of assessment 30 development. The IRIS BBP assessment is in Phase 2 and represents a significant advancement in 31 implementing the NRC recommendations. In the development of this assessment many of the 32 recommendations are being implemented in full, while others are being implemented in part. 33 Achieving full and robust implementation of certain recommendations will be an evolving process 34 with input and feedback from the public, stakeholders, and independent external peer review. 35 Phase 3 of implementation will incorporate the longer-term recommendations made by the NRC,

including the development of a standardized approach to describe the strength of evidence for
 noncancer effects.

3 In May 2014, the NRC released their report reviewing the IRIS assessment development 4 process. As part of this review, the NRC reviewed current methods for evidence-based reviews and 5 made several recommendations with respect to integrating scientific evidence for chemical hazard 6 and dose-response assessments. In their report, the NRC states that EPA should continue to 7 improve its evidence-integration process incrementally and enhance the transparency of its 8 process. The committee did not offer a preference but suggests that EPA consider which approach 9 best fits its plans for the IRIS process. The NRC recommendations will inform the IRIS Program's 10 efforts in this area going forward. This effort is included in Phase 3 of EPA's implementation plan. 11 The literature search strategy, which describes the processes for identifying scientific 12 literature, screening studies for consideration, and identifying primary sources of health effects 13 data, is responsive to NRC recommendations regarding the development of a systematic and 14 transparent approach for identifying the primary literature for analysis. The preliminary materials 15 also describe EPA's approach for the selection of critical studies to be included in the evidence 16 tables, as well as the approach for evaluating methodological features of studies that will be 17 considered in the overall evaluation and synthesis of evidence for each health effect. The 18 development of these materials is in response to the NRC recommendation to thoroughly evaluate 19 critical studies with standardized approaches that are formulated and based on the type of research 20 (e.g., observational epidemiology or animal bioassays). In addition, NRC recommendations for 21 standardized presentation of key study data are addressed by the development of the preliminary 22 evidence tables and preliminary exposure-response arrays for primary health effect information. 23 EPA welcomes all comments on the preliminary materials in this document, including the 24 following:

• the clarity and transparency of the materials;

25

26

27

28

- the approach for identifying pertinent studies;
- the selection of critical studies for data extraction to preliminary evidence tables and exposure-response arrays;
- any methodological considerations that could affect the interpretation of or confidence in study results; and
- any additional studies published or nearing publication that may provide data for the evaluation of human health hazard or dose-response relationships
- The preliminary evidence tables and exposure-response arrays should be regarded solely as
 representing the data on each endpoint that have been identified as a result of the draft literature
 search strategy. They do not reflect any conclusions as to hazard identification or dose-response
 assessment.
 After obtaining public input and conducting additional study evaluation and data
- 38 integration, EPA will revise these materials to support the hazard identification and dose-response
- 39 assessment in a draft Toxicological Review that will be made available for public comment.

1

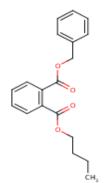
2 **1. INTRODUCTION**

This introduction contains a planning and scoping summary for the Integrated Risk
Information System (IRIS) assessment of butyl benzyl phthalate (BBP). The planning and scoping
summary includes information on the properties, sources, and uses of BBP, occurrence and fate of
BBP in the environment, potential for human exposure, and the rationale for the development of
this assessment.

8 1.1. BBP IN THE ENVIRONMENT

9 1.1.1. Production and Use

10BBP (Chemical Abstract Service Registry Number [CASRN] 85-68-7) is a plasticizer used in a


11 wide range of materials including polyvinyl chloride (PVC)-based flooring, other plastics, adhesives,

12 coatings for automobiles, polyvinyl and cellulose resins, organic intermediates, sealants, foams,

13 inks, car care products, and cosmetics (<u>HSDB, 2009</u>). Between 50 and 100 million pounds were

14 imported or manufactured in United States in 2012 (<u>http://www.epa.gov/oppt/cdr/index.html</u>).

15

16

17 Figure 1-1. Chemical structure of BBP (<u>HSDB, 2009</u>).

18 1.1.2. Environmental Fate

19 If released to air, BBP will exist in both the vapor and particulate phases in the atmosphere.

20 Vapor-phase BBP will be photolytically degraded with a half-life of about 1.5 days. Particulate-

21 phase BBP will be removed from the atmosphere by wet or dry deposition. Once in soil, BBP is

tightly absorbed given a high organic carbon partition coefficient (Koc). Binding to soil organic

- 23 material limits volatilization as a route of dissipation. Biodegradation in aerobic soil and water is
- 24 expected to occur over days or weeks. Anaerobic biodegradation rates are expected to be slower. If

1 released into water, BBP is expected to adsorb to suspended solids and sediment. Measured

2 bioconcentration factors of 9.4–772 suggest that concentrations in aquatic organisms may vary, but

3 metabolism of the chemical diminishes the likelihood of accumulation (<u>HSDB, 2009</u>). As noted by

4 <u>Wormuth et al. (2006)</u>, the majority of phthalates that are found in the environment come from

5 slow release from plastics and other phthalate-containing articles. Certain waste streams, sludges,

6 and contaminated sites, however, may contain higher levels of phthalates than other sites.

7 1.1.3. Human Exposure Pathways

8 The manner that humans are exposed to phthalates, along with the magnitude of exposures, 9 has changed over time as the quantities and uses of phthalates have changed. Human exposure to 10 phthalates occurs mainly in occupational or household settings because they are used and released 11 from products in the home environment. Environmental concentrations of phthalates are typically 12 the highest in house dust and they may be present in food due to the use of phthalates in packaging 13 and food preparation materials. For most phthalates, food ingestion is the dominant pathway of 14 exposure, with dust exposures (ingestion and dermal contact) and inhalation also being important 15 in some circumstances. Infant and toddler exposures occur due to teething and playing with plastic 16 toys that contain phthalates (Wormuth et al., 2006).

The presence of phthalates or their metabolites in a body matrix, such as blood or urine, provides evidence of exposure to that chemical. The predominant metabolite of BBP in humans is monobenzyl phthalate (MBzP). Zota et al. (2014) evaluated the prevalence and temporal trends of MBzP in urine samples collected as part of the National Health and Nutrition Examination Survey (NHANES) conducted between 2001 and 2010. MBzP was found in more than 98% of the urine samples for each time period, and MBzP levels decreased recently, starting at about 10.4 ng/mL in the 2001–2002 cycle and dropping to about 7.0 ng/mL in the 2009–2010 cycle.

24 Intake exposures can be estimated on a pathway-basis by combining exposure media 25 concentrations and contact rates. Using this approach, <u>Clark et al. (2011)</u> determined a median 26 intake of BBP of between 0.5 and $1.5 \,\mu$ g/kg-day for various lifestages as defined by the authors: 27 adults (20–70 years of age), teens (12–19 years of age), children (5–11 years of age), toddlers 28 (0.5-4 years of age), and infants (0-0.5 years of age). Toddlers had the highest intake noted. 29 Pathways the authors assessed include ingestion of food, drinking water, dust/soil, and inhalation 30 of air. Ingestion of food accounted for more than half of the total exposure for all age groups except 31 infants, with the remainder primarily due to incidental ingestion of dust and a minor contribution 32 due to inhalation of indoor air. For both the formula- and breast-fed infants, ingestion of dust 33 accounted for approximately 94% of exposure, with ingestion of food comprising most of the 34 remainder. Ingestion of food represented approximately 60% of total exposure for the adults and 35 inhalation of spray paints comprised most of the remainder in the estimates by Wormuth et al. 36 (2006), who determined total intakes of $<0.5 \,\mu$ g/kg-day, except for infants and toddlers, who had 37 intakes between 0.5 and 1.0 μ g/kg-day.

1 <u>Wittassek et al. (2011)</u> reported median intakes of BBP in the range of 0.1–0.9 μg/kg-day based

- 2 on a literature survey or urinary biomonitoring data and intake estimates provided therein. Their
- 3 review included U.S. estimates generated using data from the NHANES 2001–2002 cycle to
- 4 ascertain exposures in the range of $0.7-0.9 \,\mu$ g/kg-day. <u>Qian et al. (2014)</u> used NHANES 2007–2008
- 5 data and found a median intake of 0.3 μ g/kg-day and a 95th percentile intake of 1.7 μ g/kg-day.
- 6 <u>Christensen et al. (2014)</u> combined the data from NHANES 2005–2008 and found similar results to
- 7 <u>Qian et al. (2014)</u>, with a median over that time span of 0.2 μg/kg-day and a 95th percentile intake
- 8 of 1.0 μ g/kg-day.

9 **1.2. SCOPE OF THE ASSESSMENT**

10 The National Research Council has recommended that, "cumulative risk assessment based on 11 common adverse outcomes is a feasible and physiologically relevant approach to the evaluation of 12 the multiplicity of human exposures and directly reflects EPA's mission to protect human health" 13 (NRC, 2008, p11). They envisioned facilitating the process by "defining the groups of agents that 14 should be included for a given outcome" (NRC, 2008, p12). In humans, the NRC cited results from 15 the NHANES that demonstrate exposure to multiple phthalates in most people (NRC, 2008, p23-16 25). Recent reports on human exposure to phthalates suggest that the indoor environment is 17 thought to contribute to over 60% of BBP exposure in children (CHAP, 2014, Appendix E1, p. 35) 18 and 94% of exposure in infants (<u>Clark et al., 2011</u>). The unique exposure scenarios and potential 19 sensitivities of children contribute to the need for an assessment of phthalate toxicity. This IRIS 20 assessment will help to inform EPA programs and regions of the potentially unique vulnerabilities 21 of children to BBP exposure and enable future cumulative risk assessments that assess effects on 22 human health outcomes that might be associated with BBP and other phthalates. EPA's previous 23 IRIS assessment of BBP (U.S. EPA, 1993) included an oral reference dose (RfD) and qualitative 24 cancer assessment (classified as Group C, a possible human carcinogen). Since that time, a number 25 of experimental animal and epidemiological studies have been published for BBP.

1

2

3

2. METHODS FOR IDENTIFYING AND SELECTING

4 The National Research Council (NRC, 2011) recommended that the U.S. Environmental 5 Protection Agency (EPA) develop a detailed search strategy utilizing a graphical display 6 documenting how initial search findings are narrowed to the final studies that are selected for 7 further evaluation on the basis of inclusion and exclusion criteria. Following these 8 recommendations, a literature search and screening strategy was applied to identify literature 9 related to characterizing the health effects of butyl benzyl phthalate (BBP). This strategy consisted 10 of a search of online scientific databases and other sources, casting a wide net in order to identify all 11 potentially pertinent studies. In subsequent steps, references were screened to exclude papers not pertinent to an assessment of the health effects of BBP, and remaining references were sorted into 12 categories for further evaluation. Section 2.1 describes the literature search and screening strategy 13 14 in detail. The NRC (NRC, 2011) further recommended that after studies are identified for review by 15 utilizing a transparent search strategy, the next step is to summarize the details and findings of the 16 most pertinent studies in the evidence tables. The NRC suggested that such tables should provide a 17 link to the references, and include details of the study population, methods, and key findings. This 18 approach provides for a systematic and concise presentation of the evidence. The NRC also 19 recommended that the methods and findings should then be evaluated with a standardized 20 approach. The approach that was outlined identified standard issues for the evaluation of 21 epidemiological and experimental animal studies. Section 2.2 describes the approach taken for BBP 22 for selecting studies to be included in the preliminary evidence tables and exposure-response 23 arrays. Section 3 presents the selected studies in preliminary evidence tables and exposure-24 response arrays, arranged by health effect.

DRAFT LITERATURE SEARCH AND SCREENING STRATEGY 2.1. 25

26 The literature search for BBP was conducted in four online scientific databases, including 27 PubMed, Toxline, Web of Science, and the Toxic Substances Control Act Test Submissions (TSCATS) 28 database, in December 2012; the search was repeated in August 2013 and in April 2014. This 29 document is complete through April 2014. Additional updates will be performed at regular (e.g., 6-30 month) intervals. The detailed search approach, including the search strings is presented in 31 Table 2-1. The search strings and search terms described for BBP captured studies using the parent 32 compound and metabolites. This search of online databases identified 1,105 citations (after 33 electronically eliminating duplicates). The computerized database searches were also 34 supplemented by a manual search of citations from other regulatory documents (Table 2-2);

> This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR OUOTE

- 1 63 citations were obtained using these additional search strategies. In total, 1,166 citations were
- 2 identified using online scientific databases and additional search strategies.

3 Table 2-1. Database search strategy for BBP

Database (search date)	Keywords ^a	
PubMed 04/2014 08/2013 12/2012	"1-butyl 2-(phenylmethyl) ester 1,2-Benzenedicarboxylic acid"[tw] OR "benzyl butyl ester Phthalic acid"[tw] OR "Benzyl butyl phthalate"[tw] OR "Benzyl butylphthalate"[tw] OR "Benzyl n-butyl phthalate"[tw] OR "Butyl benzyl phthalate"[tw] OR "Butyl phenylmethyl 1,2- benzenedicarboxylate"[tw] OR "butyl phenylmethyl ester 1,2-Benzenedicarboxylic acid"[tw] OR "Butylbenzyl phthalate"[tw] OR "n-Butyl benzyl phthalate"[tw] OR "Palatinol BB"[tw] OR "Santicizer 160"[tw] OR "Sicol"[tw] OR "Unimoll BB"[tw] OR (("BBP"[tw] OR BzBP[tw]) AND (phthalic OR phthalate OR phthalates))	
Web of Science 04/2014 08/2013 12/2012	TS="1-butyl 2-(phenylmethyl) ester 1,2-Benzenedicarboxylic acid" OR TS="benzyl butyl ester Phthalic acid" OR TS="Benzyl butyl phthalate" OR TS="Benzyl butylphthalate" OR TS="Benzyl n-butyl phthalate" OR TS="Butyl benzyl phthalate" OR TS="Butyl phenylmethyl 1,2- benzenedicarboxylate" OR TS="butyl phenylmethyl ester 1,2-Benzenedicarboxylic acid" OR TS="Butylbenzyl phthalate" OR TS="n-Butyl benzyl phthalate" OR TS="Palatinol BB" OR TS="Santicizer 160" OR TS="Sicol" OR TS="Unimoll BB" OR ((TS="BBP" OR TS="BzBP") AND (TS="phthalic" OR TS=phthalate*))	
Toxline 04/2014 08/2013 12/2012	@OR+("1-butyl 2-(phenylmethyl) ester 1,2-Benzenedicarboxylic acid"+"benzyl butyl ester Phthalic acid"+"Benzyl butyl phthalate"+"Benzyl butylphthalate"+"Benzyl n-butyl phthalate"+"Butyl benzyl phthalate"+"Butyl phenylmethyl 1,2-benzenedicarboxylate"+"butyl phenylmethyl ester 1,2-Benzenedicarboxylic acid"+"Butylbenzyl phthalate"+"n-Butyl benzyl phthalate"+"Palatinol BB"+"Santicizer 160"+"Sicol"+"Unimoll BB"+@term+@rn+85-68-7) +@NOT+@org+pubmed+pubdart+crisp+tscats	
TSCATS2 08/2013	85-68-7	

4 5 6

metabolites.

7

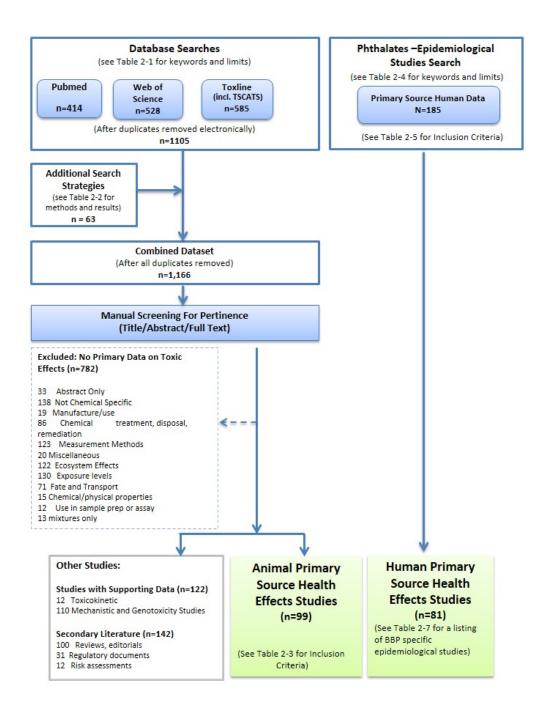
8

Table 2-2. Summary of additional search strategies for BBP

^aThe search strings and search terms described above captured studies using the parent compound and

Approach used	Source(s)	Date performed	Number of additional citations identified
Manual search from reviews conducted by other	<u>CPSC (2010)</u> . Toxicity review of butyl benzyl phthalate (BBP).	06/2013	1 citation
international and federal agencies	ECJRC (2007). European Union risk assessment report butyl benzyl phthalate.	06/2013	33 citations

Electronic forward Search	Aso et al. (2005). A two generation reproductive toxicity study of butyl benzyl phthalatein rats. The Journal of Toxicological Sciences, 30, 39-58.	06/2013	0 citations
through Web of Science	Tyl et al. (2004). Reproductive toxicity evaluation of dietary butyl benzyl phthalate (BBP) in rats. Reproductive Toxicology, 18, 241-264.	06/2013	0 citations
	Nagao et al. (2000). Effect of butyl benzyl phthalate in Sprague-Dawley rats after gavage administration: a two- generation reproductive study. Reprod Toxicol 14(6): 513- 532.	06/2013	1 citation
Electronic backward Search	Aso et al. (2005). A two generation reproductive toxicity study of butyl benzyl phthalatein rats. The Journal of Toxicological Sciences, 30, 39-58.	06/2013	0 citations
through Web of Science	Tyl et al. (2004). Reproductive toxicity evaluation of dietary butyl benzyl phthalate (BBP) in rats. Reproductive Toxicology, 18, 241-264.	06/2013	4 citations
	Nagao et al. (2000). Effect of butyl benzyl phthalate in Sprague-Dawley rats after gavage administration: a two- generation reproductive study. Reprod Toxicol 14(6): 513- 532.	06/2013	3 citations
References obtained during the assessment process	BBP references obtained from submissions, full study reports from HERO, or in previous assessment	08/2014	63 citations


Background	Searched a combination of CASRNs and synonyms on the	12/2012	7 citations added
Check	following databases:		
	ACGIH (<u>http://www.acgih.org/home.htm</u>)		
	ATSDR (<u>http://www.atsdr.cdc.gov/substances/index.asp</u>		
	CalEPA Office of Environmental Health Hazard Assessment		
	(http://www.oehha.ca.gov/risk.html)		
	OEHHA Toxicity Criteria Database		
	(http://www.oehha.ca.gov/tcdb/index.asp)		
	Biomonitoring California-Priority Chemicals		
	(http://www.oehha.ca.gov/multimedia/biomon/pdf/Priori		
	tyChemsCurrent.pdf)		
	Biomonitoring California-Designated Chemicals		
	(http://www.oehha.ca.gov/multimedia/biomon/pdf/Desig		
	natedChemCurrent.pdf)		
	Cal/Ecotox Database		
	(http://www.oehha.ca.gov/scripts/cal_ecotox/CHEMLIST.		
	ASP)		
	OEHHA Fact Sheets		
	(http://www.oehha.ca.gov/public_info/facts/index.html)		
	Non-cancer health effects Table (RELs) and Cancer		
	Potency Factors (Appendix A and Appendix B)		
	(http://www.oehha.ca.gov/air/hot_spots/index.html)		
	CPSC		
	(http://www.cpsc.gov)		
	eChemPortal		
	(http://www.echemportal.org/echemportal/participant/p		
	age.action?pageID=9)		
	Environment Canada – Search entire site		
	(http://www.ec.gc.ca/default.asp?lang=En&n=ECD35C36)		
	Toxic Substances Managed Under CEPA		
	(http://www.ec.gc.ca/toxiques-		
	toxics/Default.asp?lang=En&n=98E80CC6-1)		
	Final Assessments (<u>http://www.ec.gc.ca/lcpe-</u>		
	cepa/default.asp?lang=En&xml=09F567A7-B1EE-1FEE-		
	73DB-8AE6C1EB7658)		
	Draft Assessments (<u>http://www.ec.gc.ca/lcpe-</u>		
	cepa/default.asp?lang=En&xml=6892C255-5597-C162-		
	95FC-4B905320F8C9)		
	EPA Acute Exposure Guideline Levels		
	(http://www.epa.gov/oppt/aegl/pubs/chemlist.htm)		
	EPA – IRISTrack/New Assessments and Reviews		
	(http://cfpub.epa.gov/ncea/iristrac/) to find dates		
	(<u>http://www.epa.gov/ncea/iris/index.html</u>) to find data EPA NSCEP		
	(<u>http://www.epa.gov/ncepihom/</u>) EPA RfD/RfC and CRAVE meeting notes		
	-		
	EPA Science Inventory		
	(http://cfpub.epa.gov/si/)		
	(<u>http://www.fda.gov/</u>)		

	1
Federal Docket	
(<u>www.regulations.gov</u>)	
Health Canada First Priority List Assessments	
(http://www.hc-sc.gc.ca/ewh-	
<pre>semt/pubs/contaminants/psl1-lsp1/index-eng.php)</pre>	
Health Canada Second Priority List Assessments	
(http://www.hc-sc.gc.ca/ewh-	
semt/pubs/contaminants/psl2-lsp2/index-eng.php)	
IARC	
(http://monographs.iarc.fr/htdig/search.html)	
ITER (TERA database)	
(http://iter.ctcnet.net/publicurl/pub_search_list.cfm)	
NAP – Search Site	
(http://www.nap.edu/)	
NCI	
(<u>http://www.cancer.gov</u>)	
NCTR	
(http://www.fda.gov/AboutFDA/CentersOffices/OC/Office	
ofScientificandMedicalPrograms/NCTR/default.htm)	
National Institute for Environmental Health Sciences	
(NIEHS)	
http://www.niehs.nih.gov/	
NICNAS (PEC only covered by eChemPortal)	
(http://www.nicnas.gov.au/industry/aics/search.asp)	
NIOSH	
(http://www.cdc.gov/niosh/topics/)	
NIOSHTIC 2	
(http://www2a.cdc.gov/nioshtic-2/)	
NTP - RoC, status, results, and management reports	
(http://ntpsearch.niehs.nih.gov/query.html)	
OSHA	
(http://www.osha.gov/dts/chemicalsampling/toc/toc_che	
msamp.html)	
RTECS	
http://www.ccohs.ca/search.html	
(http://www.fda.gov/)	
Federal Docket	
(<u>www.regulations.gov</u>)	
Health Canada First Priority List Assessments	
(http://www.hc-sc.gc.ca/ewh-	
<pre>semt/pubs/contaminants/psl1-lsp1/index-eng.php)</pre>	
Health Canada Second Priority List Assessments	
(http://www.hc-sc.gc.ca/ewh-	
semt/pubs/contaminants/psl2-lsp2/index-eng.php)	
IARC	
(http://monographs.iarc.fr/htdig/search.html)	
ITER (TERA database)	
(http://iter.ctcnet.net/publicurl/pub_search_list.cfm)	

NAP – Search Site	
(http://www.nap.edu/)	
NCI	
(<u>http://www.cancer.gov</u>)	
NCTR	
(http://www.fda.gov/AboutFDA/CentersOffices/OC/Office	
ofScientificandMedicalPrograms/NCTR/default.htm)	
National Institute for Environmental Health Sciences	
(NIEHS)	
http://www.niehs.nih.gov/	
NICNAS (PEC only covered by eChemPortal)	
(http://www.nicnas.gov.au/industry/aics/search.asp)	
NIOSH	
(http://www.cdc.gov/niosh/topics/)	
NIOSHTIC 2	
(http://www2a.cdc.gov/nioshtic-2/)	
NTP - RoC, status, results, and management reports	
(http://ntpsearch.niehs.nih.gov/query.html)	
OSHA	
(http://www.osha.gov/dts/chemicalsampling/toc/toc_che	
msamp.html)	
RTECS	
http://www.ccohs.ca/search.html	
FDA (http://www.fda.gov/)	
(<u>http://www.fda.gov/</u>) Federal Docket	
(www.regulations.gov)	
Health Canada First Priority List Assessments	
(<u>http://www.hc-sc.gc.ca/ewh-</u>	
semt/pubs/contaminants/psl1-lsp1/index-eng.php)	
Health Canada Second Priority List Assessments	
(<u>http://www.hc-sc.gc.ca/ewh-</u>	
<pre>semt/pubs/contaminants/psl2-lsp2/index-eng.php) upp</pre>	
IARC	
(<u>http://monographs.iarc.fr/htdig/search.html</u>)	
ITER (TERA database)	
(<u>http://iter.ctcnet.net/publicurl/pub_search_list.cfm</u>)	
NAP – Search Site	
(<u>http://www.nap.edu/</u>)	
NCI	
(<u>http://www.cancer.gov</u>)	
(http://www.fda.gov/AboutFDA/CentersOffices/OC/Office	
ofScientificandMedicalPrograms/NCTR/default.htm)	
National Institute for Environmental Health Sciences	
(NIEHS)	
http://www.niehs.nih.gov/	
NICNAS (PEC only covered by eChemPortal)	
(http://www.nicnas.gov.au/industry/aics/search.asp)	
NIOSH	
(<u>http://www.cdc.gov/niosh/topics/</u>)	

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

	NIOSHTIC 2 (http://www2a.cdc.gov/nioshtic-2/) NTP - RoC, status, results, and management reports (http://ntpsearch.niehs.nih.gov/query.html) OSHA (http://www.osha.gov/dts/chemicalsampling/toc/toc_che msamp.html) RTECS http://www.ccohs.ca/search.html
1 2	These citations were screened using the title, abstract, and in limited instances, full text for
-3	pertinence to examining the health effects of BBP exposure. The citations were then screened using
4	inclusion criteria (Table 2-3) describing specific information to help identify primary source health
5	effect data, mechanistic and/or genotoxic data, as well as resources useful in preparation of the BBP
6	package. The process for screening the literature is described below and is shown graphically in
7	Figure 2-1.
8 9	• 99 references were identified as animal studies with health effects data and were considered for data extraction to evidence tables and exposure-response arrays.
10 11	• 122 references were identified as supporting studies; of these, 12 were toxicokinetic studies and 110 were mechanistic and genotoxicity studies.
12 13 14	• 142 references were identified as secondary literature (e.g., reviews and editorials, risk assessments, and regulatory documents); these references were kept as additional resources for development of the Toxicological Review.
15 16 17 18 19	• 782 references were excluded because these studies did not include primary source data evaluating BBP in relation to any kind of toxicity or health endpoint, and did not provide either supporting information (e.g., toxicokinetic or mechanistic/genotoxic data) or secondary literature information (see Figure 2-1 for and Table 2-3 for inclusion categories and criteria).
20 21 22	Note that some studies were identified as belonging to multiple categories. As a result, the total number of studies in a given category may be less than the sum of the individual studies listed in subcategories.

1

Note: Studies containing multiple information categories were sorted into multiple tags. For this reason, the
 subcategory numbers do not always add up to the category total.

Figure 2-1. Literature search approach for BBP.

5

4

1 2

Table 2-3. Inclusion criteria used to identify animal studies of health-related endpoints, supporting data, or secondary literature

Inclusion criteria^a Did the study evaluate effects of BBP or its metabolites known to be formed in humans? • • Did the study evaluate effects in a tissue (organ) or cells derived from a tissue (organ)? Did the study evaluate cellular, biochemical or molecular effects relevant to any mode of action? ٠ or Does the study include information from other agencies, risk assessments, or reviews that would aid in ٠ the development of a toxicological review of BBP?

^aIf the answer is "no" to any of these criteria questions, the study was placed under "Excluded: No Primary Data on Toxic Effects"

7 Six foreign language studies reporting pertinent evidence for hazard characterization 8 and/or dose-response were identified. These studies by <u>Agramunt et al. (2011)</u>; <u>Li et al. (2004)</u>; 9 Timofievskava et al. (1988); Timofievskava et al. (1980); Tyrkiel et al. (2007); and Zhuang et al. 10 (2008) were tagged under "kept for possible further review" (not shown in figure). A translation 11 was requested for the study by Zhuang et al. (2008) as it is one of the two available studies 12 reporting endpoints considered relevant to neurological effects. The remaining foreign language 13 studies report evidence for effects already described in English language publications and 14 captured in the BBP draft evidence tables. They will be considered individually for translation and 15 inclusion in evidence tables during development of the draft assessment of the available evidence 16 of BBP-induced health effects. 17 Sixteen human studies were also identified from the initial literature search using the 18 search strings presented in Table 2-1. However, work being done concurrently on the development 19 of other phthalate preliminary materials revealed that this set of BBP epidemiology studies was

- 20 incomplete. Epidemiology studies frequently examine multiple compounds (e.g., metabolites of 21
- several different phthalates). The indexing terms and abstracts may not include a comprehensive 22 list of all of the specific phthalates examined, resulting in the inappropriate exclusion of studies and
- 23 the potential for introduction of bias in the selection process. Specifically, "negative" studies (i.e.,
- 24 studies that did not demonstrate an association between exposure and disease) are potentially
- 25 more likely to be missed than "positive" studies. This issue did not arise in the search process for
- 26 experimental (animal toxicology) studies, for which the test compound is virtually always identified
- 27 through search terms or key word searches of abstracts.
- 28 Another issue encountered in the development of the search and screening process for the
- 29 phthalate epidemiology studies relates to the duplication of efforts involved in the development of
- 30 EPA's health assessments for several individual phthalates (e.g., BBP, dibutyl phthalate [DBP],
- 31 diisobutyl phthalate [DIBP], di(2-ethylhexyl)phthalate [DEHP], di-ethyl phthalate [DEP], diisononyl

phthalate [DINP], and dipentyl phthalate [DPP]). In contrast to animal toxicology studies, most of the epidemiology studies examine more than one phthalate, resulting in considerable overlap in the sets of studies identified using individual-phthalate search terms. Full text screening of the same

4 studies identified in multiple searches results in an inefficient use of resources.

1 2

3

5 For these reasons, EPA developed a process for identifying epidemiological studies

- 6 evaluating phthalates by performing a single broad search to create a listing of epidemiological
- 7 studies of all phthalates mentioned above, from which the selection of studies examining potential
- 8 health effects of an individual phthalate could be drawn. This list records each of the phthalates
- 9 included in the study, based on information in the methods section of the paper, and the outcome(s)
- 10 examined. This literature search for epidemiological studies examining phthalates in relation to
- 11 health-related endpoints (from which the BBP studies were drawn) was conducted in PubMed, Web
- 12 of Science, and ToxNet databases in June 2013, using keywords and limits described in Table 2-4;
- 13 the search was updated in December 2013 and in June 2014. For this search, "phthalate" (and
- 14 related terms) rather than names of specific phthalates was used as the foundation of the search,
- 15 along with terms designed specifically to identify epidemiological studies. These terms were based
- 16 on terms used in previously identified epidemiology studies of six different phthalates.

17 Table 2-4. Summary of search terms: targeted epidemiology search

Database, search date	Terms	Hits	
June 2013 search PubMed 06/2013 No date restriction	(phthalate OR phthalates OR phthalic acid) AND (human OR case-control OR pregnancy OR cohort OR workers OR children OR survey)	Imported: 2,505 After duplicates deleted: 2,482	
Web of Science 06/2013 No date restriction	(TS="phthalic acid" OR TS="phthalate" OR TS="phthalates") AND (TS="humans" OR TS="human" OR TS="case-control" OR TS="pregnancy" OR TS="cohort" OR TS="workers" OR TS="child" OR TS="children" OR TS="survey")	Imported: 1,840 After duplicates deleted: 1,836	
ToxNet 06/2013 No date restriction	(phthalate OR phthalates OR phthalic acid) AND (human OR case-control OR pregnancy OR cohort OR workers OR children OR survey)	Imported: 2,505 After duplicates deleted: 2,426	
Merged Reference Set	Merged dataset, with duplicates eliminated through electronic screen	4,127	
	Epidemiology articles meeting inclusion criteria	127	
December 2013 search	PubMed Web of Science ToxNet Merged Reference Set Additional epidemiology articles meeting inclusion criteria	155 249 114 350 22	

This document is a draft for review purposes only and does not constitute Agency policy. 2-10 DRAFT—DO NOT CITE OR OUOTE

June 2014	PubMed	184
search	Web of Science	409
	ToxNet (was not searched because no articles have been found solely through this source in all the previous searches)	0
	Merged Reference Set Additional epidemiology articles meeting inclusion	494
	criteria	24

1

2 More than 4,000 citations were identified through this search. These were then screened 3 using inclusion criteria describing specific population (i.e., human), exposure measures, 4 comparison, and health effects (Table 2-5). Note that other studies obtained in the search, for 5 example mechanistic and pharmacokinetic studies, are excluded from consideration with respect to 6 the specific objective of this search (i.e., identification of epidemiology studies), but could be 7 included in other steps in the assessment. Duplicate citations of the same article were excluded and 8 articles written in a language other than English were retained for subsequent review. Earlier 9 analyses that are updated in a subsequent paper (e.g., with a larger sample size) are not included as 10 a primary paper, but may be used as background material regarding study methods.

11Table 2-5. Inclusion criteria used to identify epidemiology studies of health-12related endpoints

	Inclusion criteria
٠	Is the study population humans?
	and
•	Is exposure to one or more phthalate (parent compound or metabolite(s) ^a
	- measured in air, dust, or biological tissue?
	- based on knowledge of industrial hygiene (occupational settings)?
	- based on knowledge of specific contamination sites or accidental exposure?
	and
٠	Does the study compare a health effect in higher versus lower or no exposure?
	and
•	Does the study include a measure of one or more primary health effect endpoints relating to
•	 sexual differentiation measures (e.g., male genital malformations, anogenital distance, gender-related play behavior)
	- male reproductive effects (e.g., steroidal and gonadotropin hormone levels, measures of male- mediated infertility)?
	- female reproductive effects (e.g., steroidal and gonadotropin hormone levels, measures of female- mediated infertility, gynecological conditions)?
	- pregnancy outcomes (e.g., birth weight, gestation age)?

	Inclusion criteria - puberty (male and female) (e.g., timing of development, precocious puberty, gynecomastia)?
	- neurodevelopment (infants and children) (e.g., standardized tests of reflexes, behavior, ar intelligence)?
	- thyroid effects (e.g., thyroid stimulating hormone and thyroid hormones, subclinical and clinic thyroid disease)?
	- immune system effects (e.g., asthma, allergies, IgE levels, skin prick tests)?
	- pulmonary function (e.g., standardized test of lung volume, diffusing capacity)?
	- neurological effects (adults) (e.g., peripheral neuropathy, vision or hearing or other sensory tests)?
	- liver effects (e.g., cholestasis, biomarkers of liver function)?
	- kidney effects (e.g., end stage renal disease, biomarkers of kidney function)?
	- diabetes and measures of insulin resistance?
	- obesity (and other measures of adiposity)?
	- cardiovascular disease (cause-specific incidence or mortality)?
	- cardiovascular risk factors (e.g., triglyceride and lipid levels, blood pressure or hypertension)?
	- cancer (cause-specific incidence or mortality)?
	or
•	Does the study include a measure of one or more secondary health effect endpoints (to be considere within context of mechanistic evidence) relating to
	- oxidative stress?
	- inflammation?
	- gene expression?

4 One hundred and seventy-three epidemiological studies examining one or more phthalate 5 in relation to one or more endpoints were identified by the searches conducted through June 2014 6 (127 in the initial search, 22 in the December 2013 update and 24 in the June 2014 update) 7 (Figure 2-1). Other strategies were also used to supplement this broad search for epidemiology 8 studies of phthalates, resulting in the identification of 12 additional publications (Table 2-6), for a 9 total of 185 epidemiological studies. From this set of all of the epidemiological studies examining 10 any phthalate, 81 studies analyzed one or more health effects in relation to a measure of BBP (Table 2-7). 11

1 2

Table 2-6. Summary of additional search strategies for epidemiology studies of phthalate exposure in relation to health-related endpoints

Approach used	Date performed	Number of additional citations identified
Testing and refinement of search terms based on terms used for the identified articles within each category	June 2014	6
Review of references cited in the identified list of epidemiology studies ("backward" search)	July 2014	1
Electronic forward search through Web of Science of 1–3 studies within each health endpoint category (early studies within each category generally selected to maximize potential for citation in subsequent publications) ^a	July 2014	5

^aThe following studies were used to conduct the forward searches (Trasande et al. (2013b); James-Todd et al. (2012); Lind and Lind (2011); Boas et al. (2010); Cho et al. (2010); Engel et al. (2010); Lopez-Carrillo et al. (2010); Wolff et al. (2010); Adibi et al. (2009); Chou et al. (2009); Hatch et al. (2008); Wolff et al. (2008); Meeker et al. 7 (2007); Stahlhut et al. (2007); Hauser et al. (2006); Reddy et al. (2006a); Jonsson et al. (2005); Swan et al. (2005); 8 Bornehag et al. (2004); Hoppin et al. (2004); Aschengrau et al. (1998); Heineman et al. (1992); Nielsen et al. 9 (1989); Nielsen et al. (1985)) 10

11 12

Table 2-7. Primary source epidemiological studies examining health effects of BBP

Outcome category	Reference ^a	BBP measure
Sexual differentiation measures (Table 3-1)	Lin et al. (2011a) Main et al. (2006) Suzuki et al. (2012) Swan (2008) Swan et al. (2010)	MBzP (maternal urine) MBzP (breast milk) MBzP (maternal urine) MBzP (maternal urine) MBzP (maternal urine)
Male reproductive (semen parameters, infertility, and hormones) (Tables 3-2 and 3-3)	Buck Louis et al. (2014) Hauser et al. (2006) Hauser et al. (2007) Joensen et al. (2012) Jonsson et al. (2013) Kranvogl et al. (2013) Kranvogl et al. (2014) Liu et al. (2012) Meeker et al. (2009a) Mendiola et al. (2011) Mendiola et al. (2012) Toshima et al. (2012) Tranfo et al. (2012) Wirth et al. (2008)	MBzP (urine) MBzP (urine)
Male pubertal development (Table 3-4)	Ferguson et al. (2014b) Mieritz et al. (2012) Mouritsen et al. (2013b)	MBzP (maternal urine) MBzP (urine) MBzP (urine)

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE 2-13

Outcome category	Reference [®]	BBP measure
Female pubertal development (Table 3-5)	<u>Chen et al. (2013)</u> <u>Chou et al. (2009)</u> <u>Frederiksen et al. (2012)</u> <u>Hart et al. (2013)</u> <u>Lomenick et al. (2010)</u> <u>Mouritsen et al. (2013b)</u>	MBzP (urine) MBzP (urine) MBzP (urine) MBzP (maternal serum) MBzP (urine) MBzP (urine)
Female reproductive (infertility, hormones, gynecological conditions) (Tables 3-6 and 3-7)	Buck Louis et al. (2013) Hart et al. (2013) Huang et al. (2010) Itoh et al. (2009) Reddy et al. (2006a) Reddy et al. (2006b) Sathyanarayana et al. (2014) Upson et al. (2013) Weuve et al. (2010)	MBzP (urine) MBzP (urine) MBzP (maternal serum) MBzP (urine) BBP (plasma) BBP (plasma) MBzP (maternal urine) MBzP (urine) MBzP (urine)
Pregnancy-related outcomes (fetal growth, preterm birth, pregnancy loss) (Table 3-8)	Ferguson et al. (2014c) Ferguson et al. (2014a) Huang et al. (2014b) Meeker et al. (2009b) Philippat et al. (2012) Suzuki et al. (2010) Toft et al. (2012) Wolff et al. (2008)	MBzP (maternal urine) MBzP (maternal urine) BBP (cord blood) MBzP (maternal urine) MBzP (maternal urine) MBzP (maternal urine) MBzP (maternal urine) MBzP (maternal urine)
Allergy (rhinitis, eczema) (Table 3-9)	Ait Bamai et al. (2014) Bornehag et al. (2004) Callesen et al. (2014b) Callesen et al. (2014b) Callesen et al. (2014a) Hoppin et al. (2013) Hsu et al. (2012) Just et al. (2012b) Kanazawa et al. (2010) Kolarik et al. (2008) Sun et al. (2009) Wang et al. (2014)	BBP (dust) BBP (dust) MBzP (urine) BBP (dust) MBzP (urine) BBP (dust), MBzP (urine) MBzP (maternal urine) BBP (dust) BBP (dust) BBP (dust) MBzP (maternal urine)
Asthma (Table 3-10)	Ait Bamai et al. (2014) Bertelsen et al. (2013) Bornehag et al. (2004) Callesen et al. (2014b) Callesen et al. (2014a) Hoppin et al. (2013) Hsu et al. (2012) Just et al. (2012a) Kolarik et al. (2008) Sun et al. (2009)	BBP (dust) MBzP (urine) BBP (dust) MBzP (urine) BBP (dust) MBzP (urine) BBP (dust), MBzP (urine) MBzP (urine) BBP (dust) BBP (dust)
Pulmonary Function (Table 3-11)	<u>Cakmak et al. (2014)</u> <u>Hoppin (2004)</u>	MBzP (urine) MBzP (urine)

Outcome category	Reference ^a	BBP measure
Neurodevelopment (Table 3-12)	<u>Braun et al. (2014)</u> <u>Chopra et al. (2014)</u> <u>Kobrosly et al. (2014)</u> <u>Téllez-Rojo et al. (2013)</u> Whyatt et al. (2012)	MBzP (maternal urine) MBzP (urine) MBzP (maternal urine) MBzP (maternal urine) MBzP (maternal urine)
Thyroid (Table 3-13)	<u>Boas et al. (2010)</u> Dirtu et al. (2013) Huang et al. (2007) Meeker et al. (2007)	MBzP (urine) MBzP (urine) MBzP (urine) MBzP (urine)
Obesity (Table 3-14)	Buser et al. (2014) Dirtu et al. (2013) Hart et al. (2013) Hatch et al. (2008) Song et al. (2014) Stahlhut et al. (2007) Svensson et al. (2011) Teitelbaum et al. (2012)	MBzP (urine) MBzP (urine) MBzP (maternal serum) MBzP (urine) MBzP (urine) MBzP (urine) MBzP (urine) MBzP (urine) MBzP (urine)
Diabetes and insulin resistance (Table 3-15)	<u>Huang et al. (2014a)</u> James-Todd et al. (2012) <u>Svensson et al. (2011)</u> <u>Stahlhut et al. (2007)</u> <u>Sun et al. (2014)</u> <u>Trasande et al. (2013a)</u>	MBzP (urine) MBzP (urine) MBzP (urine) MBzP (urine) MBzP (urine) MBzP (urine)
Other cardiovascular disease risk factors (Table 3-16)	<u>Shiue (2014)</u> <u>Trasande et al. (2013b)</u>	MBzP (urine) MBzP (urine)
Cancer (Table 3-17)	Aschengrau et al. (1998) Lopez-Carrillo et al. (2010)	Work history MBzP (urine)

1 2

The literature for both epidemiological and animal studies will be regularly monitored for

3 the publication of new studies. The documentation and results for this supplementary search can

4 be found on the Health and Environmental Research On-line (HERO) website¹

5 (<u>http://hero.epa.gov/BBP</u>) and (<u>http://hero.epa.gov/phthalates-humanstudies</u>).

¹HERO is a database of scientific studies and other references used to develop EPA's risk assessments aimed at understanding the health and environmental effects of pollutants and chemicals. It is developed and managed in EPA's Office of Research and Development (ORD) by the National Center for Environmental Assessment (NCEA). The database includes more than 1,400,000 scientific articles from the peer-reviewed literature. New studies are added continuously to HERO.

Note: The HERO database will be regularly updated as additional references are identified during assessment development. Therefore, the numbers of references (by tag) displayed on the HERO webpage for BBP may not match the numbers of references identified in Figure 2-1 (current through September 2014).

2.2. SELECTION OF CRITICAL STUDIES IN EARLY STAGES OF DRAFT DEVELOPMENT

3 2.2.1. General Approach

4 Each study retained following the literature search and screen was evaluated for aspects of 5 design, conduct, or reporting that could affect the interpretation of results and the overall 6 contribution to the synthesis of evidence for determination of hazard potential. Much of the key 7 information for conducting this evaluation can generally be found in the study's methods section 8 and in how the study results are reported. Importantly, this evaluation does not consider study 9 results or, more specifically, the direction or magnitude of any reported effects. For example, 10 standard issues for evaluation of experimental animal data identified by the NRC and adopted in 11 this approach include consideration of the species and sex of animals studied, dosing information 12 (dose spacing, dose duration, and route of exposure), endpoints considered, and the relevance of 13 the endpoints to the human endpoints of concern. Similarly, observational epidemiologic studies in 14 this approach for evaluation should consider the following: 15 • Approach used to identify the study population and the potential for selection 16 bias 17 Study population characteristics and the generalizability of findings to 18 other populations 19 • Approach used for exposure assessment and the potential for information 20 bias, whether differential (nonrandom) or nondifferential (random) • Approach used for outcome identification and any potential bias 21 • Appropriateness of analytic methods used 22 23 • Potential for confounding to have influenced the findings • Precision of estimates of effect 24 25 Availability of an exposure metric that is used to model the severity of • 26 adverse response associated with a gradient of exposures 27 28 To facilitate the evaluation outlined above, evidence tables are constructed that 29 systematically summarize the important information from each study in a standardized tabular 30 format as recommended by the NRC (NRC, 2011). In general, the evidence tables include all studies 31 that inform the overall synthesis of evidence for hazard potential. At this early stage of study

1 evaluation, the goal is to be inclusive. Exclusion of studies may unnecessarily narrow subsequent

2 analyses by eliminating information that might later prove useful. Premature exclusion might also

3 give a false sense of the consistency of results across the database of studies by unknowingly

4 reducing the diversity of study results. However, there may be situations in which the initial review

5 of the available data will lead to a decision to focus on a particular set of health effects and to

6 exclude others from further evaluation.

7 2.2.2. Exclusion of Studies

8 After the literature search was manually screened for pertinence, studies were excluded if 9 fundamental flaws were identified in their design, conduct, or reporting. The BBP experimental 10 animal database consists of studies designed to examine repeat-dose oral toxicity (including 11 chronic, subchronic, and short-term duration studies) and endpoint-specific toxicities (including 12 reproductive and developmental toxicity). All studies involved administration of BBP via oral or 13 inhalation routes. Acute or short-term studies are generally less pertinent for characterizing health 14 hazards associated with chronic exposure; there are 25 acute and short-term studies that are not 15 summarized in the preliminary evidence tables. In addition, studies using atypical exposure routes 16 (e.g., intraperitoneal or subcutaneous exposure) (4 studies), and studies that used a single high 17 dose (6 studies) when other multi-dose studies with similar endpoints were available, were also 18 not included in the preliminary evidence tables. Nevertheless, these studies will still be evaluated 19 as possible sources of supporting health effects information during assessment development. Two 20 studies were identified that involved administration of very low doses (≤ 1 ppm) of BBP. Following 21 the recommendations of a NTP-CERHR (2003) review, these studies were not included in the 22 evidence tables due to: (1) lack of dose-response data; (2) lack of analytical data on levels of BBP 23 in drinking water; (3) failure of the original laboratory to duplicate their findings; and (4) inability 24 of other reputable laboratories to duplicate the findings. In addition, five studies were not 25 summarized in the preliminary evidence tables because they presented data previously published 26 in other studies that are included in the preliminary evidence tables; four studies were not 27 summarized due to co-administration of other chemicals at the time of dosing; and one study was 28 not included in the preliminary evidence tables due to the presence of a respiratory infection 29 reported in the control colony. The remaining studies are all sources of health effects data that may 30 be used in the assessment. The studies summarized in the evidence tables are considered the 31 "critical" studies from which the study methods and results are presented in preliminary evidence 32 tables and exposure-response arrays (Section 3).

2.3. STUDY CHARACTERISTICS THAT WILL BE CONSIDERED IN THE FUTURE EVALUATION AND SYNTHESIS OF THE CRITICAL EPIDEMIOLOGICAL STUDIES FOR BBP

4 Several considerations will be used in EPA's evaluation of epidemiological studies of human 5 health effects of BBP. These considerations include aspects of the study design affecting the 6 internal or external validity of the results (e.g., population characteristics and representativeness, 7 exposure and outcome measures, confounding, data analysis), focusing on specific types of bias 8 (e.g., selection bias; information bias due to exposure misclassification), and other considerations 9 that could otherwise influence or limit the interpretation of the data. A study is externally valid if 10 the study results for the study population can be extrapolated to external target populations. An 11 internally valid study is free from different types of biases, and is a prerequisite for generalizing 12 study results beyond the study population. These issues are outlined in the Integrated Risk 13 Information System (IRIS) Preamble, and are described below.

14 Study Population

Evaluation of study population characteristics (including key socio-demographic variables and study inclusion criteria) can be used to evaluate external validity (i.e., generalizability) and to facilitate comparison of results across different study populations. Some aspects of the selection process may also affect the interval validity of a study, resulting in a biased effect estimate.

19 The general considerations for evaluating issues relating to the study population include 20 adequate documentation of participant recruitment, including eligibility criteria and participation 21 rates, missing data, and loss to follow-up. This information is used to evaluate internal study 22 validity related to selection bias. Different types of selection bias that may occur include the 23 healthy worker effect, differential loss to follow up, Berkson's bias (relating to selection of 24 participants in hospital-based, case-control studies), and participation bias. It is important to note 25 that low participation rates, or differences in participation rates between exposed and non-exposed 26 groups or between cases and controls, is not evidence of selection bias. Rather, selection bias arises 27 from a differential pattern of participation with respect to both the exposure and the outcome, i.e., 28 patterns of participation that would result in a biased effect estimate. An example of differential 29 participation would be when people with high levels of exposure and the outcome of interest are 30 more likely to participate than people with low levels of exposure and the outcome.

The available BBP studies have generally examined metabolites from many different phthalates within the context of research on environmental exposures. Most of these studies rely on objective exposure measures (e.g., biomonitoring data), some of which are collected prior to onset of the outcomes being examined (e.g., in the prospective pregnancy cohort studies). Study participants generally do not have knowledge of the study hypothesis or their exposure to BBP and thus, knowledge of exposure or exposure level is unlikely to result in differential participation with respect to outcomes. These study features should minimize the potential for selection bias.

1 However, EPA will consider the possibility that a particular concern about the specific sources of

2 BBP, in conjunction with knowledge of specific health outcomes, may motivate people to participate

3 in a study or to continue participation throughout a follow-up period. In the absence of evidence

4 that any of these scenarios is likely to occur in a study, EPA will not consider selection bias as a

5 limitation of a study.

6 Exposure Considerations

7 General considerations for evaluating exposure include: (1) identifying how exposure can 8 occur (e.g., exposure sources, routes and media); (2) determining appropriate critical exposure 9 period(s) for the outcomes under study; (3) evaluating variability in the exposure metrics of 10 interest (e.g., temporal and spatial variability for environmental measures or inter-individual 11 variability for biomonitoring data) that can impact different types of exposure metrics (e.g., 12 cumulative, average, or peak exposure); (4) determining if an appropriate analytical methodology 13 was employed (e.g., choice of biological matrix, sampling protocol, quantification approach); 14 (5) evaluating the choice of exposure surrogate evaluated (e.g., constituent chemical or group/ 15 mixture); and (6) evaluating the classification of individuals into exposure categories. These six 16 considerations help determine the accuracy and precision of the exposure estimates, and the 17 likelihood of measurement error with respect to the exposure metrics used. Nondifferential 18 misclassification of exposure categories, for example, can also result from measurement error and 19 is expected to predominantly result in attenuated effect estimates (Blair et al., 2007). 20 Some common sources of exposure to BBP include polyvinyl chloride (PVC) flooring, food, 21 and food packaging material (Zota et al., 2014) with the primary route of exposure occurring 22 through ingestion and some exposure occurring via inhalation and dermal routes (see 23 Section 1.1.3). Thus, exposure to BBP is typically from multiple sources, and occurs episodically on 24 a daily basis. Exposure to BBP may be decreasing; a recent study of the U.S. general population 25 found that urinary concentrations of the BBP metabolite, MBzP, have decreased somewhat over 26 time and were 32% lower in 2009–2010 compared to 2001–2002 (Zota et al., 2014). 27 Urine provides an integrated measure of phthalate exposure from all sources. 28 Measurement of BBP metabolites, rather than the parent compound, is preferred because the 29 parent compound is metabolized very quickly and does not provide an accurate measure of 30 exposure. The simple monoester metabolite, MBzP, is the most commonly measured BBP 31 metabolite in epidemiologic studies. MBzP accounts for an estimated 73% of the urinary excretion 32 of BBP (Anderson et al., 2001). This value is based on data from a 24-person (all adults) controlled 33 dosing study (Koch et al., 2012). EPA considers the use of MBzP to be a good proxy for total BBP 34 exposure.

Although urine measures are most commonly used in epidemiological studies of phthalate
 exposure, measures in serum, semen, and breast milk have also been used. Studies examining BBP
 metabolites in breast milk or serum have generally reported low levels of detection. One study in
 Taiwan reported that MBzP above the limit of detection was found in 10% of breast milk samples

1 from 30 women and 10% of the corresponding 30 cord blood samples. The correlation between 2 MBzP in maternal urine and breast milk was -0.27 and for maternal urine and cord blood was 3 -0.09 (Pearson correlation of log-transformed levels) (Lin et al., 2011b). Hogberg et al. (2008) 4 reported that few breast milk (3 out of 42) samples in a study in Sweden had detectable MBzP 5 concentrations. Another study conducted among 60 men ages 18–26 years found that 10% of 6 serum samples and 18.6% of seminal plasma samples had MBzP concentrations above the limit of 7 detection (Frederiksen et al., 2010). Correlation coefficients between MBzP measured in urine and 8 these other samples were not calculated because the detection rates were low (Frederiksen et al., 9 2010). The lower detection rate in tissues other than urine reduces EPA's confidence in BBP 10 metabolite measures in these biological matrices. 11 Given their first-order kinetics with half-lives on the order of hours (\sim 5–12 hours for 12 MBzP) (Koch and Angerer, 2007), urinary phthalate metabolite concentrations peak shortly after 13 exposure. Thus, for single-time exposure scenarios (rather than multi-source, multiple time 14 exposure scenarios), urine sampled during this time of peak concentration could lead to 15 overestimates of average daily intake, and conversely, measurements made after concentrations 16 have peaked and declined could lead to underestimates of intake. One study conducted among 17 139 pregnant women in Puerto Rico found that sampling time was not a significant predictor of 18 urinary MBzP concentrations; that is, there was little difference in MBzP levels for women whose 19 samples were collected in early morning, morning, early afternoon, or evening time periods 20 (geometric mean specific gravity adjusted MBzP 4.5, 3.9, 4.2, and 4.7, respectively, for these four 21 periods, p = 0.74) (<u>Cantonwine et al., 2014</u>). Urinary measures of BBP metabolite concentrations in 22 epidemiological studies are generally conducted using spot urine samples (i.e., collected at time of a 23 clinic or study examination visit) rather than at a specified time (e.g., first morning void) or in 24 24-hour urine samples. Although the time of sample collection described above may affect the 25 accuracy of an estimated intake for a single individual, studies of other phthalates (e.g., DEHP) have 26 demonstrated that on a group level, spot urine samples provide a reasonable approximation of 27 concentrations that would have been observed using full-day urine samples (Christensen et al., 28 2014) and that a single spot sample was reliable in ranking subjects according to tertile of MBzP 29 (Teitelbaum et al., 2008). Based on this information, EPA does not consider the reliance on spot 30 urine samples for exposure estimation (including ranking of individuals into different BBP 31 categories) to be a major limitation for epidemiological studies. However because of the potential 32 for greater inaccuracy of estimates in the "tails" of the distribution, EPA will include additional 33 considerations (e.g., discussion of analysis of residuals, outliers) when evaluating analyses based on 34 use of BBP metabolites as continuous measures. Another potential limitation of measurement of BBP metabolites in urine is the 35 36 reproducibility of phthalate metabolite concentrations over time; that is, how well does a single

- 37 measure reflect the key exposure metric (average, peak) for the critical exposure window of
- 38 interest. For many short-lived chemicals, considerable temporal variability in exposure level is

1 expected, and thus, repeated measures in the critical exposure window are preferred over a single 2 measurement. Reproducibility is usually evaluated with the intraclass correlation coefficient (ICC), 3 a measure of the 'between-individual' variance divided by the total variance (between and within 4 individuals). A higher ICC indicates greater reproducibility (i.e., lower within-person variance). An 5 ICC of 0.64 for MBzP was reported in a study of 25 Hmong women ages 19–51 years with samples 6 collected 2–4 weeks apart (Peck et al., 2010). For MBzP measures in 46 women ages 35–49 years, a 7 moderate correlation was seen over a period of 2 days (ICC of 0.34 unadjusted, 0.53 creatinine-8 adjusted) (Hoppin et al., 2002). Similar values were seen in two studies in men with longer 9 sampling periods (approximately 3 months): in 33 men ages 18–22 years, the ICCs for MBzP in spot 10 urine samples were 0.38 (unadjusted) and 0.39 (osmolality-adjusted) in (Frederiksen et al., 2013), 11 and in 11 men with up to 9 spot urine samples collected on 3 consecutive days in each of 3 monthly 12 cycles, the ICC was 0.43 (Hauser et al., 2004). In studies of reproducibility of measures during 13 pregnancy, <u>Cantonwine et al. (2014)</u> reported ICCs of 0.37 and 0.41 (unadjusted and specific-14 gravity adjusted) when comparing urine samples taken at approximately 18, 22, and 26 weeks of 15 gestation. ICCs of 0.35 and 0.28, respectively, were seen before pregnancy and in early pregnancy 16 (Braun et al., 2012), and an ICC of approximately 0.65 was seen over a 6-week period in the last 17 trimester (Adibi et al., 2008). Among women participating in the Nurses' Health Study (NHS) (in 18 2000–2001 for NHS and in 1996–1999 for NHS II), the ICC for samples collected 1–3 years apart 19 was 0.33 for all samples, and was 0.31 for first-morning samples (Townsend et al., 2013). Data for 20 children are sparse, limiting the ability to examine this source of uncertainty in this population: one 21 study evaluated variability in children aged 6–10 years old over a 6-month period (Teitelbaum et 22 al., 2008) and reported ICCs of 0.47 (unadjusted) and 0.62 (creatinine-adjusted). The available data 23 highlight the value of repeated exposure measures collected during the appropriate critical period 24 for the outcome(s) under study. 25 Based on these studies, however, EPA does not consider the use of a single measurement to 26 be a major limitation in studies in adults in which the measure of exposure is closely aligned with 27 the relevant window(s) of exposure, if known, for the effect under study. EPA has greater 28 uncertainty, however, about measurements taken outside of the relevant time window (e.g., several 29 years after diagnosis, or the difference between first and third trimesters of pregnancy), and about measurements taken in children. 30 31 Some studies present analyses using a combined "high molecular weight" phthalate 32 measure based on the summation of DEHP metabolites and MBzP. Because MBzP does not 33 represent a major contributor to this summation, EPA has not included data from these studies in 34 the BBP evidence tables.

EPA will also consider the potential for differential misclassification of biomarker measures
of exposure, for example in situations in which a health outcome (e.g., diagnosis with diabetes or
cancer) could lead to a behavioral change that result in a change in BBP exposure. This type of

scenario adds an additional challenge to the interpretation of the BBP metabolites as valid
 measures of exposure in a relevant time window(s) with respect to disease development.

The distribution of exposure will also be considered in evaluating individual studies and
when comparing results among groups of studies. One consideration is the contrast of exposure
levels (i.e., the difference between "high" and "low"): a study with a very narrow contrast may not

6 have sufficient variability to detect an effect that would be seen over a broader range. Another

7 consideration is the absolute level of exposure, as different effect estimates may be expected in

8 studies examining different exposure levels even if they had similar exposure contrasts.

9 Primary Outcome Measures

10 The general considerations for evaluating issues relating to accuracy, reliability, and

11 biological relevance of outcomes include adequate length of follow-up to evaluate the outcomes of

12 interest, and use of appropriate ascertainment methods to classify individuals with regard to the

13 outcome (e.g., high sensitivity and specificity). With respect to continuous measures, such as

14 hormone concentrations or semen parameters, EPA will consider, in addition to assessing whether

15 reported parameters are outside normal physiological range, evidence of smaller changes in the

16 distribution of a parameter that may represent an effect on a population level [e.g., as is the case for

17 early childhood exposure to lead and decrements in intelligence as measured by IQ (<u>U.S. EPA</u>,

18 <u>2013</u>).

19 Issues relating to the assessment of the specific primary health effects are discussed below20 and summarized in Table 2-8 at the end of Section 2.3.

21 <u>Sexual differentiation</u>

22 Cryptorchidism and hypospadias are two disorders of the development of the male

23 reproductive system. Cryptorchidism, or undescended testes, can be present at birth (congenital

24 cryptorchidism) or can occur later during infancy and childhood (acquired cryptorchidism).

25 Surgical correction (orchiopexy) is recommended in cases of cryptorchidism that do not resolve

26 during infancy because long-term complications include impaired sperm production and increased

27 risk of testicular cancer (<u>Virtanen et al., 2007</u>). Retractile testes can move back and forth between

28 the scrotum and the abdomen; this condition usually resolves by puberty and is not associated with

29 reproductive or other complications. Classification criteria for cryptorchidism that involve

30 testicular positioning are commonly used in clinical research (John Radcliffe Hospital

31 <u>Cryptorchidism Study Group, 1988; Scorer, 1964</u>). EPA will consider the definition used and age

32 range in interpreting studies of cryptorchidism or related outcomes.

33 In animal toxicology studies, anogenital distance (AGD) is a routine marker to assess

34 endocrine disruption; this marker has only recently been adapted for use in epidemiological

35 studies. One study in adult men reported associations between decreased AGD and measures

relating to infertility (<u>Eisenberg et al., 2011</u>); most studies have used this measure in infants,

37 however, as a marker of endocrine environment during development. It is important to consider

1 general size, in addition to sex, in the evaluation of AGD, for example by incorporating birth weight

2 or length (e.g., calculation of "anogenital index" by dividing AGD by weight). With regard to

3 reproducibility of this measure, a low degree of between-observer variability was found using a

4 standardized protocol and trained observers (<u>Romano-Riquera et al., 2007</u>; <u>Salazar-Martinez et al.</u>,

5 <u>2004</u>). Because of the importance of size and age in the interpretation of this measure, EPA has

6 greater confidence in studies with measures taken at birth or over a narrow age range and lesser

7 confidence in studies among a group spanning a larger age range.

8 Gender-related behaviors, as measured by the Pre-School Activities Inventory (Golombok

9 <u>and Rust, 1993</u>) or other scales, have also been examined in relation to direct or indirect measures

10 of fetal testosterone levels, including studies of BBP. This outcome measure has been examined in

11 studies of relatively rare genetic conditions (e.g., congenital adrenal hyperplasia and complete

12 androgen insensitivity syndrome), as well as studies focusing on the normal variability seen in the

13 general population (<u>reviewed in Hines, 2006</u>). EPA will consider evidence pertaining to the

14 reliability and validity of the Pre-School Activities Inventory in its evaluation of studies using this

15 scale.

16 <u>Male and female reproductive outcomes</u>

17 The BBP literature includes studies of reproductive and gonadotropin hormone levels in

18 men and studies of semen parameters that can be indicative of reduced fertility. The details of the

19 laboratory procedures, including information on the basic methods, level of detection, and

20 coefficient of variation, are important considerations for hormone assays and measures of semen

21 parameters. The World Health Organization (WHO) laboratory methods for analysis of sperm

counts and semen parameters (see, for example, WHO, 1999) are generally recognized as standards

23 in this field. EPA will consider studies that reference these methods, regardless of which revision

24 used, to be reliable measures.

Much of the focus of the research on male steroidal and gonadotropin hormones in the BBP
database concerns testosterone. One issue with respect to these measures is the estimation method
used for free testosterone. Based on the analysis by Vermeulen et al. (1999), EPA will consider
estimates based on total testosterone divided by immunoassay-derived sex-hormone binding

29 globulin (SHBG) levels to be most reliable.

The BBP literature also includes studies of reproductive hormones in women. In addition to
 the general considerations regarding hormone assays noted above, timing within a menstrual cycle
 for studies of pre- and peri-menopausal women and timing with respect to gestational age for
 studies of women during pregnancy are also be an important considerations for interpretation of

34 reproductive hormone concentrations.

Other female reproductive outcomes included in the BBP literature include endometriosis.
Endometriosis can be symptomless, or can lead to surgical intervention; it is often diagnosed as
part of a work-up for infertility. Variability in clinical presentation and in access and use of health
care services present considerable challenges to conducting epidemiological studies of this

1 condition (Holt and Weiss, 2000). Confirmation of "case" and "control" status (i.e., presence or 2 absence of endometriosis) by ultrasound or clinical evaluation is recommended to reduce outcome 3 misclassification, and representation of the source population should be carefully considered. 4 Infertility is generally defined clinically and for research purposes as the inability to 5 conceive a clinically-recognized pregnancy after 12 months of intercourse of regular frequency 6 without use of contraceptives. Fecundity or fecundability are terms for the capacity for reproduction. "Time to pregnancy" (i.e., the number of cycles of unprotected intercourse before 7 8 conception) has been used as a measure of fecundability in studies of environmental and 9 occupational exposures (Baird et al., 1986; Baird and Wilcox, 1985). Time to pregnancy is a 10 measure of a couple's fecundability, incorporating effects that can be manifested through the male 11 or female (or both). Considerations in time to pregnancy studies include the source of data (i.e., 12 retrospective or prospective designs), and incorporation of information on "non-pregnancy 13 planners" (Weinberg et al., 1994). 14 Timing of male and female puberty, and conditions of unusual pubertal development 15 Pubertal development in humans is often assessed using timing of peak height velocity ("growth spurt") and secondary markers of sexual development. Secondary markers for females 16 17 include breast development (thelarche) and pubic hair development (pubarche), and age at first 18 period (menarche). Secondary markers for males include gonadal development (gonadarche) and 19 pubic hair development, and age at first sperm emission (spermarche). 20 Evaluation of breast, pubic hair, and gonadal development is frequently performed using 21 the Tanner stages (Marshall and Tanner, 1970, 1969), which places the individual in one of five 22 stages, ranging from pre-pubertal (stage 1) to adult maturation (stage 5). However, the process of 23 this staging is not straightforward, and is most reliable when performed by trained personnel 24 (rather than by the individual or a parent, for example) (Slough et al., 2013; Schlossberger et al., 25 <u>1992</u>; <u>Espeland et al., 1990</u>). Age at menarche is considered to more reliable when assessed via 26 self-report (Koprowski et al., 2001), although reliability may decrease with increasing time since 27 menarche (<u>Cooper et al., 2006</u>). Additionally, hormone levels may sometimes be used to evaluate 28 pubertal development. Individuals may vary widely in the timing of these developmental 29 milestones. 30 Several clinical syndromes are known to disrupt the timing and order of markers of 31 pubertal development. Considerations in the diagnosis of either precocious or delayed puberty 32 include the diagnostic criteria used and the source of the information (e.g., whether collected from 33 medical records or from self- or parental report). For females, precocious puberty is usually 34 defined as the onset of puberty before the age of 8 years, while delayed puberty is usually defined 35 as the lack of pubertal development by the age of 13 years (Marshall and Tanner, 1969); 36 corresponding ages in male are before the age of 9 years for precocious puberty and lack of pubertal development by the age of 14 years for delayed puberty (Marshall and Tanner, 1970). 37 38 Clinical evaluation would involve hormone assays to distinguish between gonadotropin dependent 1 ("central"), gonadotropin independent ("peripheral"), or a combination of both (<u>Traggiai and</u>

- 2 <u>Stanhope, 2003</u>) forms of these conditions.
- 3 <u>Pregnancy-related outcomes</u>

4 Infant birth weight and gestational age are two outcomes commonly used in reproductive 5 epidemiology studies. EPA considers analyses of the various indices for both outcomes (fetal 6 growth and gestational age) to be informative with respect to hazard identification, but will 7 consider each separately as they address different issues. Gestational duration can be measured as 8 a continuous outcome or dichotomous outcome such as preterm birth. Preterm births include 9 infants delivered earlier than 37 gestational weeks, and those delivered earlier than 32 gestational 10 weeks are classified as very preterm births. Different measures of fetal growth restriction are often 11 examined in epidemiological studies. In addition to the continuous measure of birth weight, 12 another commonly used measure of fetal growth restriction is the categorical variable of low birth 13 weight (defined as <2,500 g). Small for gestational age (defined as birth weight less than the 10th 14 percentile for the gestational birth weight distribution) is considered a better measure of fetal growth rate as it takes into consideration gestational duration, and would be preferred over a 15 16 measure of birth weight in a study that includes preterm births. Birth weight and gestational 17 duration can also be examined as continuous variables, often in analysis that excludes preterm or 18 low birth weight births, so that the focus of the analysis is on variability within the "normal" range. 19 EPA considers birth weight obtained from medical records to be a reliable source as this is a 20 very accurate and precise measurement. Although more prone to measurement error than birth 21 weight measures, gestational age can be estimated from several approaches. Some of these include 22 ultrasonography, estimates based on date of last menstrual period based on maternal recall, or 23 from clinical examination based on antenatal or newborn assessments (which may include an 24 ultrasound). Menstrual dating of gestational age dependent on maternal recall of the last menstrual 25 period can be subject to considerable measurement error in some cases, so ultrasonography-based 26 estimates may be considered more accurate (Savitz et al., 2002; Taipale and Hiilesmaa, 2001). 27 Expectant mothers can encounter pregnancy loss either through a stillbirth (fetal death 28 after 20 gestational weeks) or from a spontaneous abortion also known as a miscarriage (fetal 29 death during the first 20 gestational weeks). Pregnancy loss can occur even before a clinically 30 recognized pregnancy; early pregnancy (or "subclinical") loss, determined by measurement of 31 human chorionic gonadotropin, is very common, accounting for approximately 20% of pregnancies 32 (Wilcox et al., 1988). Thus, complete ascertainment of pregnancy loss requires this type of 33 monitoring for subclinical loss.

34 Immune-related outcomes: allergy and asthma

Skin prick testing is a standard method for assessing atopy (allergic disease) used in some
epidemiologic studies. Other studies use an assessment protocol based on reported history of
symptoms (e.g., rhinitis, hay fever) or specific types of allergies. These can be considered

1 complementary types of measures: skin prick tests provide information on a defined set of 2 potential antigens to which a person may be exposed, and symptom-based evaluations provide 3 information on experiences of individuals and the variety of exposures they encounter. Studies 4 comparing questionnaire responses with skin prick tests in children have reported relatively high 5 specificity (89–96%) and positive predictive value (69–77%) for self-reported history of pollen or 6 pet dander allergy or for answers to a combination of questions incorporating itchy eyes with nasal 7 congestion in the absence of a cold or flu (Braun-Fahrländer et al., 1997; Dotterud et al., 1995). The 8 validity was somewhat lower for a more restricted set of questions (nasal congestion in the absence 9 of a cold or flu; specificity 83%, positive predictive value 52%) (Braun-Fahrländer et al., 1997). 10 Based on these data, EPA considers allergy history based only on rhinitis symptoms to have a 11 greater likelihood of outcome misclassification compared with those based on a combination of 12 symptoms. 13 Epidemiologic studies of asthma typically use a questionnaire-based approach to define 14 asthma based on symptoms relating to wheezing episodes or shortness of breath, reported history 15 of asthma attacks, or use of asthma medication, usually for a period defined as "current" or in the 16 past year. Much of this work is based upon the American Thoracic Society questionnaire (Ferris, 17 <u>1978</u>) or subsequent instruments that built upon this work, including the International Society of 18 Arthritis and Allergies in Children Questionnaire and the European Community Respiratory Health 19 Survey. These questionnaire-based approaches have been found to have an adequate level of 20 specificity and positive predictive value for use in etiologic research (Rayault and Kauffmann, 2001;

21 Pekkanen and Pearce, 1999; Burney et al., 1989; Burney and Chinn, 1987). EPA considers

outcomes defined over a recent time period (e.g., symptoms in the past 12 months) to be more

23 relevant within the context of concurrent exposure measurements compared with outcomes

24 defined over a lifetime (e.g., ever had asthma).

25 <u>Pulmonary function</u>

26 The American Thoracic Society has published guidelines for equipment performance 27 requirements, validation, guality control, test procedures, and reference equations for each type of 28 spirometric measurement (Miller et al., 2005), as well as the interpretation of testing results 29 (Pellegrino et al., 2005). Lung function varies by race or ethnic origin, gender, age, and height, and 30 is best compared when normalized to the expected lung function based on these variables (Pellegrino et al., 2005; Hankinson et al., 1999). Some measures (e.g., forced expiratory volume in 31 32 1 second [FEV₁] and peak expiratory flow [PEF]) exhibit diurnal variation (Chan-Yeung, 2000; 33 Lebowitz et al., 1997); thus, time of day of the lung function measures should also be considered.

34 <u>Neurodevelopment</u>

With respect to neurodevelopmental outcomes, a major consideration is the assessment
tool(s) used by the study investigators; details of the assessment method, or references providing
this information, should be provided. In addition, EPA also looks for discussion of (or reference to)

1 validation studies and the appropriateness of the tool for evaluation in the specific study population

2 (e.g., age range, language).

3 <u>Thyroid</u>

Thyroid-related endpoints examined in epidemiological studies of BBP include thyroid
hormones (triiodothyronine, T3, and thyroxine, T4) and thyroid stimulating hormone (TSH) (or
thyrotropin) produced by the pituitary.

As with other hormone assays, the details of the laboratory procedures, including
information on the basic methods, limit of detection, and coefficient of variation, are important
considerations for the hormone assays. Thyroid hormones are generally measured in serum,
although they may also be measured in dried blood spots, such as are collected from newborn
infants in screening for congenital hypothyroidism. Studies in older age groups have also shown a
very high correlation (r = 0.99) between thyroid hormone levels measured in dried blood spots and
levels in serum (Hofman et al., 2003).

With respect to thyroid hormones, time of day and season of sampling are two main 14 15 potential sources of variability. For example, serum TSH measured shortly after midnight may be 16 as much as twice as high as the value measured in late afternoon (Brabant et al., 1991; Weeke and 17 Gundersen, 1978). The evidence with respect to seasonal variability is mixed (Plasqui et al., 2003; 18 Nicolau et al., 1992; Simoni et al., 1990; Behall et al., 1984; Postmes et al., 1974) and this effect is 19 likely to be smaller than that of time of day. The impact of these sources of variation will depend on 20 whether they are also related to BBP (i.e., whether BBP levels vary diurnally or seasonally). If this 21 is the case, failure to address these factors in the design or analysis could result in confounding of 22 the observed association, with the direction of this bias determined by the direction of the 23 association between these factors and BBP. If this is not the case, the lack of consideration of time 24 of day or seasonality would result in greater variability in the hormone measures, and would thus 25 result in more imprecise (but not biased) estimates was located. EPA has not found studies 26 examining seasonal variation in BBP levels. With respect to variability relating to time of day, as 27 noted previously, one study of 139 pregnant women in Puerto Rico reported little variation by 28 sampling time (early morning, morning, early afternoon, or evening) of specific gravity-adjusted 29 MBzP (Cantonwine et al., 2014)). Based on these data, EPA does not consider the lack of 30 consideration of time of day or season in the analysis of thyroid outcomes to be a likely source of 31 bias, but recognizes the limited nature of the available data.

32 <u>Obesity</u>

Most of the study of obesity measures in the BBP database are based on body mass index
(BMI, calculated as kg/m²) or waist circumference using measurements taken as part of the data
collection protocol. BMI is highly correlated with body fat, and standardized cut-points have been
established for characterization of "normal" (BMI between 18.5 and 24.9 kg/m²), "overweight"
(BMI between 25.0 and 29.9 kg/m²), and "obese" (BMI ≥ 30.0 kg/m²) categories. Waist

- 1 circumference is also highly correlated with body fat, and is a more direct measure of abdominal
- 2 obesity. EPA notes that use of self-reported weight (e.g., report of pre-pregnancy weight) would
- 3 not be considered to be as reliable as actual measurements.
- 4 Diabetes and measure of insulin resistance

5 In the BBP database, diabetes has been assessed by a variety of biomarkers of glucose and 6 insulin and by self-report of diabetes diagnosis. Oral glucose tolerance testing and glycosolated 7 hemoglobin (HbA1c) are used clinically and in epidemiological research (Selvin et al., 2011). Self-8 report of prevalent diabetes can have high sensitivity and specificity in comparison to diagnosed 9 diabetes based on validated medical record data (Oksanen et al., 2010; Leikauf and Federman, 10 2009). The biomarker-based classifications, however, offer an added advantage of being able to 11 include undiagnosed disease. EPA will consider these points in assessing the reliability and validity 12 of the diabetes measures used in the studies. None of the currently available studies assessed 13 diabetes through cause of death data; sensitivity of diabetes assessed using cause of death data is 14 low, even if underlying and other contributing cause of death fields are included (<u>Cheng et al.</u>, 15 2008). 16 Insulin resistance, a marker of diabetes risk, can be measured using the homeostatic model

- 17 assessment (HOMA) method, a physiologically-based structural model, using fasting glucose and
- 18 insulin or C-peptide concentrations. HOMA is a validated tool for the estimation of insulin
- 19 resistance in epidemiology studies, and requires a single measurement of fasting glucose and
- 20 insulin (<u>Wallace et al., 2004</u>). Although the mean of three samples taken at 5-minute intervals
- 21 results in a more precise estimate, insulin resistance estimated using a single baseline
- 22 measurement is well correlated with that using the mean of three measurements when used to
- estimate a group mean. Therefore, EPA does not consider the use of a single measurement as an
- 24 input to the HOMA model to be a limitation.
- 25 <u>Cancer</u>

With respect to studies of cancer, EPA considers the source of the outcome data (e.g., cause of death data, hospital cancer registry data, hospital discharge data, histopathology reports) in its evaluation of the accuracy of the data. An additional issue is the validity of mortality data as a representation of cancer incidence; mortality data for cancer types with a high survival rate may underrepresent disease incidence, require additional considerations with respect to determining appropriate time windows of exposure, and may lead to biased risk estimates if survival is related to exposure.

33 Confounding

The general considerations for evaluating issues relating to potential confounding include
consideration of which factors may be potential confounders (i.e., those that are strongly related to
both the exposure and the outcome under consideration, and are not intermediaries on a causal

- 1 pathway), adequate control for these potential confounders in the study design or analysis, and
- 2 where appropriate, quantification of the potential impact of mismeasured or unmeasured
- 3 confounders. Uncontrolled confounding by factors that are positively associated with both the
- 4 exposure (e.g., BBP) and health endpoint of interest, and those that are inversely associated with
- 5 both exposure and health endpoint, will result in an upward bias of the effect estimate.
- 6 Confounding by factors that are positively associated with exposure and inversely associated with
- 7 the health endpoint (or vice versa) will result in a downward bias of the effect estimate.

8 <u>Potential confounding by other phthalates</u>

- 9 Few studies have reported results of analyses evaluating the correlation between MBzP and
- 10 metabolites of other phthalates. In an analysis conducted by EPA of 5,109 samples from the
- 11 2003–2008 National Health and Nutrition Examination Survey (NHANES) participants aged
- 12 \geq 6 years, the pairwise Spearman correlation coefficient between MBzP and monoethyl phthalate
- 13 (MEP) (the primary metabolite of DEP) was low (0.28). A more moderate correlation was seen
- 14 between MBzP and DEHP metabolites (correlations of approximately 0.5); higher correlations were
- 15 seen with monoisubutyl phthalate (MIBP) (the primary metabolite of DIBP, Spearman r = 0.58) and
- 16 with MBP (the primary metabolite of DBP, Spearman r = 0.70). Similar or somewhat lower
- 17 correlations were seen between MBzP and other phthalate metabolites in 463 men seen in an
- 18 infertility clinic (<u>Hauser et al., 2006</u>), in 319 pregnancy women (<u>Whyatt et al., 2012</u>), and in
- 19 600 reproductive age women in a study of endometriosis (<u>Buck Louis et al., 2013</u>). EPA will
- 20 evaluate the potential for confounding by examining the similarity of the results seen with different
- 21 metabolites. Thus, for example, lack of adjustment for MBzP would not be considered a limitation
- in a study in which an association was seen with MBzP that was not seen with MBP; however, this
- 23 lack of adjustment would be considered a limitation if an association of similar or higher
- 24 magnitude was seen for both of metabolites.
- 25 <u>Potential confounding by demographic factors</u>
- Age, race/ethnicity, and sex are considered important explanatory factors for most types of
 outcomes measured in epidemiological research. In NHANES 2009–2010 data, urinary MBzP levels
- decreased with age (geometric means of 15.1, 8.54, and 5.94 μ g/g-creatinine, respectively, in ages
- 29 6-11, 12–19, and ≥ 20 years) (CDC, 2013). Smaller differences were seen when comparing
- 30 distributions by sex (geometric means of 6.21 and 7.29 μ g/g-creatinine, respectively, in males and
- females), and by ethnicity (geometric means of 7.53, 6.83, and 6.50 μg/g-creatinine, respectively, in
- 32 Mexican Americans, non-Hispanic whites, and non-Hispanic blacks). EPA will consider these
- 33 differences in assessing the potential influence of demographic factors on observed effect estimates
- 34 for BBP.

1 <u>Potential confounding by other factors</u>

2 Some of the health effects under consideration may have strong associations with other risk

3 factors. For example, smoking is associated with increased risk of low birth weight and preterm

4 births, and with infertility. Abstinence time is strongly related to sperm concentration measures.

5 In evaluating the potential for confounding by any of these factors, EPA will review evidence

6 pertaining to the strength and direction of its association with BBP (or its metabolites).

7 Data Analysis

8 The general considerations for evaluating issues relating to data analysis include adequate 9 documentation of statistical assumptions and analytic approach (including addressing skewness of 10 exposure or outcome variable and shape of exposure-response), consideration of sample size and 11 statistical power, and use of appropriate statistical methods for the study design.

12 One other issue specific too much of the BBP literature concerns the optimal approach to

13 addressing urinary volume or dilution in the analysis of spot urine or first morning void samples.

14 Options include use of creatinine- or specific gravity-adjusted metabolite concentrations, or use of

unadjusted concentrations. Although use of some kind of correction factor has been advocated for

16 studies of obesity (<u>Goodman et al., 2014</u>), a simulation study reported that creatinine-adjusted

17 exposure measures may produce biased effect estimates for outcomes that are strongly related to

18 factors affecting creatinine levels, of which obesity is a prime example (<u>Christensen et al., 2014</u>).

19 EPA recognizes the lack of consensus at this time, as well as the need for continued research into

20 the potential bias introduced by different analytic approaches. Based on current understanding of

21 this issue, EPA prefers results using unadjusted concentrations for outcomes strongly related to

22 creatinine levels; for other outcomes, EPA does not have a basis for preferring one type of analysis

23 over another.

24Table 2-8. General and outcome-specific considerations for BBP study25evaluation

General considerations	
Study population	 Study population and setting: geographic area, site, time period, age and sex distribution, other details as needed (may include race/ethnicity, socioeconomic status)
	 Recruitment process; exclusion and inclusion criteria, knowledge of study hypothesis; knowledge of exposure and outcome
	 Participation rates: total eligible; participation at each stage and for final analysis group and denominators used to make these calculations
	Length of follow-up, loss to follow-up
	 Comparability: participant characteristic data by group, data on non- participants

Exposure	 Biological matrix or target tissue/organ (e.g., urine, serum, semen, breast milk) 	
	Level of detection (LOD) or level of quantitation (LOQ)	
	 Exposure distribution (e.g., central tendency, interquartile range), proportion < LOD 	
Analysis	 Consideration of data distribution including skewness of exposure and outcome measures 	
	• Consideration of influence of "tails" in analysis based on continuous exposure measure	
	 Consideration of analytic approaches exploring different shapes of exposure- response 	
	Consideration of values below LOD or LOQ	
	Consideration of creatinine or other approach to adjust for urine volume.	
	 Presentation of effect estimates, rather than statement regarding presence or absence of statistical significance 	
	Outcome-specific considerations	
Sexual differentiation	AGD: protocol, training procedures, standardization and inter-rater reliability	
Measures	Cryptorchidism: definition	
	Gender related play behavior: reliability and validity of measurement scale	
Consideration of confounding	 AGD: variability by size (e.g., birth weight), sex, age; temporal trends in BBP exposure if study spans several years and includes a wide age range 	
	Cryptorchidism, preterm birth	
Relevant exposure time window(s)	 In utero for outcomes assessed in infancy; for acquired cryptorchidism, other time window(s) during childhood may also be relevant 	
Steroidal and	Type of assay	
gonadotropin hormones (adults; sex- specific) Measures	 Sensitivity/detection limits, coefficient of variation; number of samples below LOD 	
Consideration of confounding	Age, day or phase of menstrual cycle (if cycling)	
Relevant exposure time window(s)	Up to 6 mo preceding hormone sample collection	
Sperm parameters Measures	• Type of assay (e.g., WHO protocol)	
Consideration of confounding	 Age, smoking, BMI, abstinence time (consider if these are related to exposure) 	

Relevant exposure time window(s)	Up to 6 mo preceding semen sample collection
Infertility Measures	Definition, source of data
Consideration of confounding	 Age, smoking, alcohol use, heavy metal exposure, radiation time (consider if these are related to exposure)
Relevant exposure time window(s)	Time preceding or during attempt to become pregnant
Timing of puberty Measures	• Source of data (e.g., self-report, physician assessment)
Consideration of confounding	• Age, sex, ethnicity, body size, nutritional status (consider if these are related to exposure)
Relevant exposure time window(s)	 In utero? Up to 12 mo preceding transition from one stage to another stage?
Gestational age Measures	• Source of data and estimation procedure (ultrasound; last menstrual period or clinical assessment)
Consideration of confounding	• Smoking, pregnancy complications, assisted reproduction technologies (consider if these are related to exposure)
Relevant exposure time window(s)	• In utero
Birth weight Measures	• Source of data (e.g., medical records, birth certificate)
Consideration of confounding	 Gestational age, maternal age, ethnicity, infections, pregnancy complication (e.g., pre-eclampsia), nutritional intake, smoking, alcohol/drug use, weight gain during pregnancy; maternal height/BMI, heavy metal exposures (consider if these are related to exposure)
Relevant exposure time window(s)	In utero
Immune – allergy and asthma Measures	 Number of allergens used in skin prick testing or allergen-specific IgE assay; sensitivity/specificity of specific questions used in history assessment
Consideration of confounding	• Age, family history (consider if these are related to exposure)
Relevant exposure time window(s)	• For current conditions (e.g., asthma in past 12 mo): up to 12 mo preceding outcome assessment
Respiratory (noncancer) – pulmonary function Measures	Standard protocol
Consideration of confounding	Age, sex, height, smoking
Relevant exposure time window(s)	Up to 6 months preceding pulmonary function measures
Neurobehavioral	Standardized assessment tool, validation studies for specific study

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE 2-32

Measures	population (e.g., age group, geographic location)
INICASULES	אסטמומנוטוו (כ.צ., מצב צויטעף, צבטצו מטווור וטכמנוטוו)
	Blinding of assessor to exposure
Consideration of	Age, sex, socioeconomic status
confounding	
Relevant exposure time window(s)	In utero; early childhood
Thyroid	Assay used and evidence from validation studies, if available
Measures	 Sensitivity/detection limits, coefficient of variation; number of samples below LOD
	 Time of day and season when samples for thyroid hormone (and TSH) collected
Consideration of confounding	 Age, sex, smoking, iodine, radiation exposure (consider if these are related to exposure)
Relevant exposure time window(s)	Varies by lifestage (i.e., infants, children, adults)
Obesity Measures	• Source of data (e.g., measured or self-reported weight and height)
Consideration of confounding	 Age, sex, ethnicity, caloric intake, physical activity (consider if these are related to exposure)
Relevant exposure time window(s)	• Not established (likely to be more than one, including in utero)
Diabetes and insulin resistance Measures	 Source of data (e.g., biomarkers of insulin or glucose, medical records, self- report)
Consideration of confounding	Age, sex, ethnicity
Relevant exposure time window(s)	• Not established (likely to be more than one, including in utero)

1

2

3 4

2.4. STUDY CHARACTERISTICS THAT WILL BE CONSIDERED IN THE FUTURE EVALUATION AND SYNTHESIS OF THE CRITICAL EXPERIMENTAL STUDIES FOR BBP

- 5
 - Beyond the initial methodological screening described above in Section 2.2.2,
- 6 methodological aspects of a study's design, conduct, or reporting will be considered again in the
- 7 overall evaluation and synthesis of the pertinent data that will be developed for each health effect.
- 8 Some general questions that will be considered in evaluating experimental animal studies are
- 9 presented in Table 2-9. These questions are, for the most part, broadly applicable to all
- 10 experimental studies.

Table 2-9. Questions and relevant experimental information for theevaluation of experimental animal studies

Methodological feature	Question(s) considered
Test animal	Based on the endpoint(s) in question, are concerns raised regarding the suitability of the species, strain, or sex of the test animals on study?
Experimental setup	Are the timing, frequency and duration of exposure, as well as animal age and experimental group allocation procedures/ group size for each endpoint evaluation, appropriate for the assessed endpoint(s)?
Exposure	Are the exposure conditions and controls informative and reliable for the endpoint(s) in question, and are they sufficiently specific to the compound of interest?
Endpoint evaluation procedures	Do the procedures used to evaluate the endpoint(s) in question conform to established protocols, or are they biologically sound? Are they sensitive for examination of the outcome(s) of interest?
Outcomes and data and reporting	Were data reported for all pre-specified endpoint(s) and study groups, or were any data excluded from presentation/ analyses?

3 4 5

6 7 Note: "Outcome" refers to findings from an evaluation (e.g., steatosis), whereas "endpoint" refers to the evaluation itself (e.g., liver histopathology).

Evaluation of some specific methodological features identified in Table 2-9, such as

8 exposure, is likely to be relatively independent of outcome. Other methodological features, in

9 particular those related to experimental setup and endpoint evaluation procedures, are generally

10 outcome specific (i.e., reproductive and developmental toxicity). In general, experimental animal

11 studies will be compared against traditional assay formats (e.g., those used in guideline studies),

12 with deviations from the protocol evaluated in light of how the deviations could alter interpretation

13 of the outcome in question. A full evaluation of all critical studies will be performed as part of the

14 critical review and synthesis of evidence of hazard identification for each of the health endpoints

15 identified in the evidence tables presented in Section 3.

16

1

2

3

3.PRELIMINARY EVIDENCE TABLES AND EXPOSURE-RESPONSE ARRAYS

3.1. DATA EXTRACTION FOR EPIDEMIOLOGICAL AND EXPERIMENTAL STUDIES: PREPARATION OF PRELIMINARY EVIDENCE TABLES

6 The evidence tables present data from studies related to a specific outcome or endpoint of 7 toxicity. At a minimum, the evidence tables include the relevant information for comparing key 8 study characteristics such as study design, exposure metrics, and dose-response information. 9 Evidence tables will serve as an additional method for presenting and evaluating the suitability of 10 the data to inform hazard identification for butyl benzyl phthalate (BBP) during the analysis of hazard potential and utility of the data for dose-response evaluation. For each critical study 11 12 selected, key information on the study design, including characteristics that inform study quality, 13 and study results pertinent to evaluating the health effects from subchronic and chronic oral 14 exposure to BBP are summarized in preliminary evidence tables. 15 Epidemiological studies are presented first where each study per table is listed in reverse chronological order. Animal studies are then presented where each study per health endpoint is 16 17 presented in order by duration, followed by species and strain. Finally, animal metabolite studies 18 are also presented as monobutyl phthalate (MBP) and monobenzyl phthalate (MBzP) are thought to 19 contribute to developmental toxicity. Inclusion of these studies may help to inform the hazard 20 identification for BBP. Most results are presented as the percent change from the control group; an 21 asterisk (*) indicates a result that has been calculated and reported by study authors to be 22 statistically significant compared to controls (p < 0.05). Unless otherwise noted in a footnote, doses 23 presented in the animal evidence tables were those reported by the study authors. 24 The information in the preliminary evidence tables for BBP is also displayed graphically in 25 preliminary exposure-response arrays. In these arrays, a significant effect (indicated by a filled 26 circle) is based on statistical significance by the study authors. The complete list of references 27 considered in preparation of these materials can be found on the Health and Environmental 28 Research On-line (HERO) website at http://hero.epa.gov/BBP and http://hero.epa.gov/phthalates-29 humanstudies.

30

1 **3.2. EPIDEMIOLOGICAL STUDIES**

2 3.2.1. Sexual Differentiation Measures

3 4 Table 3-1. Evidence pertaining to BBP and sexual differentiation effects inhumans

Reference and study design	Results	
Anogenital distance (AGD)		
Suzuki et al. (2012) (Japan) Population: 111 male infants from birth cohort study, time period not given Outcome: AGD measured 1–3 d after birth (AGD1 to anterior genitalia, mean 45.8 mm, 14.8 mm/kg; AGD2 to posterior genitalia, mean 20.3 mm, 6.6 mm/kg) Exposure: Maternal urine samples, mean 29 wks of gestation MBzP in urine (ng/mL): Median 75 th percentile Unadjusted 3.57 8.73 SG-adjusted 4.73 10.8 Analysis: Linear regression considering gestational week, birth order, maternal age, maternal smoking during pregnancy, maternal environmental tobacco smoke exposure, maternal urinary daidzein (soy isoflavone) and equol (a urinary metabolite of daidzein) concentrations, and environmental tobacco smoke (smoking status of husbands of nonsmoking women) as potential confounders	Association between MBzP and AGD measures reported as not statistically significant (quantitative results not reported)	
Swan (2008) (United States; Minnesota, Missouri, California) Population: 106 boys from birth cohort study (SFF), 2000–2002, mean age 12.8 mo (0–36 mo) Outcome: AGD (to posterior genitalia) measured at 0–36 mo (mean 70.4 mm, 7.1 mm/kg) Exposure: Maternal urine sample, 3 rd trimester MBzP in urine (ng/mL): Median 75 th percentile Unadjusted 8.3 23.5 Analysis: Regression analysis using mixed model adjusting for age and weight percentile Related references: Swan et al. (2005) (exposure data and analysis of smaller sample size with less robust method of adjustment for variation by size)	Percent change in AGD per interquartile increase in MBzP concentration (<i>p</i> -value) MBzP –0.4 (0.826)	

Reference and study design	Results
Cryptorchidism or testicular position	
Swan (2008) (United States; Minnesota, Missouri, California) Population: 106 boys from birth cohort study (SFF), 2000–2002, mean age 12.8 mo (0–36 mo) Outcome: Incomplete testicular descent assessed at clinical exam (10% prevalence) Exposure: Maternal urine sample, 3 rd trimester MBzP in urine (ng/mL): Median 75 th percentile Unadjusted 8.3 23.5 Analysis: Logistic regression, adjusting for age and weight percentile Related references: Swan et al. (2005) (exposure data)	MBzP reported as not associated with testicular position (quantitative results not reported)
Main et al. (2006) (Denmark, Finland) Population: 62 cases, 68 controls from two pregnancy cohorts, born 1997–2001, age 3 mo Outcome: Cryptorchidism, at birth and/or 3 mo Exposure: Breast milk samples collected 1–3 mo of age MBzP in breast milk (μg/L), all samples:	Median MBzP in breast milk (μg/L) Controls Cases 1.20 1.25 (<i>p</i> >0.40)
Median (range) Denmark 0.9 (0.2–14) Finland 1.3 (0.4–26) Analysis: Mann-Whitney U-test for comparison of MBzP concentrations in boys with and without cryptorchidism	

Reference and study design	Results		
Infant hormone levels			
Lin et al. (2011a) (Taiwan) Population: 155 infants (81 boys, 74 girls) from birth cohort, born 2000–2001 Outcome: Cord blood hormone levels Exposure: Maternal urine sample 3 rd trimester	Pearson correlation coefficient (r) and r coefficient (β), log-MBzP (μ g/g Cr) and c hormone level (regression adjusted for smoking habit, gestational age, parity, a contraceptive drugs)	cord blood maternal a	ge, BMI,
MBzP in urine (percentile): Median 75 th 95 th		r	β
Unadjusted (ng/mL) 8.85 15.1 40.3	Boys		
Cr-adjusted (µg/g Cr) 15.6 25.9 43.9 Analysis: Pearson correlation analysis and linear	Free testosterone (ng/dL)	0.05	NR
regression adjusted for variables shown in the results	Estradiol (pg/mL)	0.14	0.11
column	Free testostone:estradiol ratio	-0.03	-0.01
	Girls		
	Free testosterone (ng/dL)	-0.18	NR
	Estradiol (pg/mL)	-0.20*	0.00
	Free testostone:estradiol ratio	-0.10	0.10
	NR = not reported *p <0.10; all other p-values >0.10		
Main et al. (2006) Population: 130 male infants from two pregnancy	Spearman correlation coefficient (p-val and serum hormone level (n = 96 boys)	ue), MBzP (µg/L)
cohorts (cryptorchidism cases and controls combined for this analysis), born 1997–2001, age 3 mo	SHBG (nmol/L)	0.188 (0.	.074)
Outcome: Serum steroidal and gonadotropin	Free testosterone (nmol/L)	-0.007 (0	.951)
hormone levels in infants, samples collected when breast milk samples delivered to hospital	Testosterone (nmol/L)	0.115 (0.	271)
Exposure: Breast milk samples collected 1–3 mo of	LH (IU/L)	0.049 (0.	.643)
age MBzP in breast milk (μg/L), all samples: Median (range) Denmark 0.9 (0.2–14) Finland 1.3 (0.4–26) Analysis: Cases and controls combined for analysis of association between metabolite concentration and	FSH (IU/L)	0.045 (0.	668)
hormone analysis using partial Spearman correlation coefficients adjusted for country of birth			

Reference and study design	Results
Gender-related play	
Swan et al. (2010) (United States; Minnesota, Missouri, California, Iowa) Population: 145 children from birth cohort study (SFF), 2000–2002 and 2002–2005 (Iowa), ages 4–7 yrs; second follow-up Outcome: Gender-specific play based on Pre-School Activities Inventory (24 items completed by parent or caregiver; subscores of male-oriented items and female-oriented items and a composite score consisting of male summation minus the female summation scores) Exposure: Maternal urine sample, 3 rd trimester MBzP in urine (ng/mL); distribution not reported for this analysis; EPA assumed similar distribution as seen in Swan et al. (2005) MBzP in urine (ng/mL): Median 75 th percentile Unadjusted 8.3 23.5 Analysis: Regression analysis using Generalized Linear Models, considering creatinine, sex and age of child, maternal age, parental education, number of same and opposite sex siblings, ethnicity, clinic location, and parental attitude as potential covariates Related references: Swan et al. (2005) (exposure data)	log-MBzP reported as not associated with masculine or composite activity score (quantitative results not reported)

1 2

3

BMI = body mass index; FSH = follicle stimulating hormone; LH= luteinizing hormone; SFF = Study for Future

Families; SHBG = sex-hormone binding globulin

3.2.2. Male Reproductive Effects in Humans 1

Table 3-2. Evidence pertaining to BBP and reproductive hormones in adult 2 3 men

Reference and study design	Results
Jurewicz et al. (2013) (Poland) Population: 269 men from infertility clinic with normal sperm concentration (20–300 million/mL) or slight oligozoospermia (15–20 million/mL); mean age 32 yrs; time period not reported; MBzP measured in 268 samples Outcome: Plasma testosterone, E2, and FSH Exposure: Urine sample, collected at same time as plasma sample MBzP in urine: Geometric mean (SD) Unadjusted (µg/L) 8.3 (3.2) Cr-adjusted (µg/g Cr) 6.9 (3.5) Analysis: Linear regression, adjusting for variables shown	Regression coefficient (p-value) for increase in hormone unit change in log = MBzP (adjusted for age, smoking, medical history [mumps, cryptorchidism, testes surgery, testes trauma], abstinence time, and urinary creatinine)Testosterone (ng/mL)-0.09 (0.52)E2 (pg/mL)0.87 (0.11)FSH (IU/L)0.26 (0.096)
in results column Joensen et al. (2012) (Denmark) Population: 881 men from general population, assessed at military conscript exam*, 2007–2009, median age 19.1 yrs (5 th –95 th percentile: 18.4–22.0 yrs) Outcome: Serum steroidal and gonadotropin hormones Exposure: Urine sample, collected at same time as serum sample for hormone analysis MBzP in urine (ng/mL): Median 95 th percentile Unadjusted 34 164 Analysis: Linear regression considering age, BMI, smoking, alcohol consumption, time of blood sampling, assay type, ethnicity, BMI squared, in utero exposure to tobacco smoke, previous or current diseases, recent fever, and recent use of medication as potential covariates *As reported by Ravnborg et al. (2011)	Results for individual phthalate metabolites (including MBzP) reported as "few significant associations" with free testosterone, estradiol, SHBG, LH, inhibin-B, or FSH (quantitative results not reported); analyses adjusted for age, BMI, smoking, alcohol consumption, and time of blood sampling (and assay type for inhibin-B only)
Mendiola et al. (2012)(United States; Minnesota, Missouri, California, Iowa, Boston)Populations:425 fertile men with pregnant partners enrolled in birth cohort study (SFF), 1999–2005; mean age 32 yrs; 425 men who were male partners of infertile couples seeking evaluation (MGH); 2000–2004, mean age 36 yrsOutcome:Serum steroidal and gonadotropin hormones Exposure: Urine sample, collected at same time as serum sample for hormone analysis MBzP in urine (ng/mL): Median 90 th percentile SFF: Unadjusted 12.549.8	Authors report "no associations between any hormone levels [testosterone, estradiol, SHBG, LH, inhibin-B, or FSH] and any urinary metabolites of phthalates other than DEHP" [including MzBP] (quantitative results not reported)

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design	Results
MGH: Unadjusted 8.2 24.9 All: Unadjusted 9.8 41.2 Analysis: Pearson correlation coefficients of log(10)-transformed MzBP and hormone measures (bivariate analysis); linear regression considering age, age square, BMI, smoking status, ethnicity, urinary creatinine concentration (SFF models) or specific gravity (MGH models), time of sample collection, time of collection squared, and study center (SFF vs MGH) for each population separately and for the pooled population Related references: This is a pooled analysis of a study of fertile men (<u>Mendiola et al., 2011</u>) and men from infertile couples (<u>Meeker et al., 2009a</u>)	
Mendiola et al. (2011) (United States; Minnesota, Missouri, California, Iowa, New York) Population: 425 fertile men with pregnant partners enrolled in birth cohort study (SFF), 1999–2005, mean age 32 yrs Outcome: Serum steroidal and gonadotropin hormones Exposure: Urine sample, collected at same time as serum sample for hormone analysis; data reported in <u>Mendiola</u> et al. (2012) MBzP in urine (ng/mL): Median 90 th percentile Unadjusted 12.5 49.8 Analysis: Pearson correlation coefficients of log(10)-transformed MzBP and hormone measures (univariate analysis); linear regression considering age, age square, BMI, smoking status, ethnicity, urinary creatinine concentration, time of sample collection, and time of collection squared	Authors report "little or no association with metabolites of phthalate other than DEHP" [including MzBP] with testosterone, estradiol, SHBG, LH, inhibin-B, or FSH (quantitative results not reported)
Meeker et al. (2009a) (United States; Boston) Population: 425 men from subfertility clinic, 2000–2004; mean age 36 yrs Outcome: Serum steroidal and gonadotropin hormones Exposure: Urine sample, collected at same time as serum sample MBzP in urine (ng/mL) (percentile): Median 75 th percentile 95 th percentile	Regression coefficient (95% CI) for change in hormone with IQR increase in adjusted MBzP concentration (adjusted for age, BMI, smoking, season and time of day sample was collected, and [for testosterone and estradiol only] SHBG)Untransformed hormone level (0.0 = no effect) Testosterone (ng/dL)4.58 (-7.91, 17.0)
SG-adjusted8.2015.940.6Analysis:Linear regression using untransformed(testosterone, estradiol) or natural logarithm transformed(free androgen index, FSH, LH) hormone levels;considering age, BMI, smoking status, race, previousinfertility example, prior ability to impregnate partner,and season and time of sample collection as potential	Estradiol (pg/mL) -0.21 (-1.53, 1.09) Inhibin B (pg/mL) 1.81 (-6.54, 10.2) Ln-transformed hormone level (1.0 = no effect) Free androgen index 1.03 (0.99, 1.07) FSH (IU/L) 0.98 (0.92, 1.04)
covariates Related references: <u>Duty et al. (2005)</u>	LH (IU/L) 1.00 (0.95, 1.05) SHBG (nmol/mL) 1.00 (0.95, 1.04)

This document is a draft for review purposes only and does not constitute Agency policy.

Reference and study design	Results	
	Prolactin (ng/mL) 1.01 (0.96, 1.06)	
Jonsson et al. (2005) Population: 234 men from general population, assessed at military conscription exam in 2000; ages 18–21 yrs Outcome: Serum steroidal and gonadotropin hormones	Mean difference (95% Cl), highest (≥7.71 nmol/mmolCr) compared with lowest quartile of MBzP(≤1.10 nmol/mmol Cr)Testosterone (nM)-0.03 (-2.1, 2.0)	
Exposure: Urine sample, collected at same time as serum sample for hormone analysis MBzP in urine (percentile): Median 75 th 95 th	Free testosterone (T/SHBG) 0.06 (-0.05, 0.2) Estradiol (pM) 0.7 (-5.3, 6.7)	
Median 75 th 95 th Unadjusted (ng/mL) 16 37 74 Adjusted (nmol/mmol Cr) 4.4 7.6 19 Analysis: Mean difference between high and low quartiles	FSH (IU/L) 0.1 (-0.5, 0.7) LH (IU/L) 0.4 (-0.2, 1.0)	

1 2 3

CI = confidence interval; DEHP = di(2-ethylhexyl)phthalate; E2 = estradiol; IQR = interquartile range; MGH =

Massachusetts General Hospital; SD = standard deviation

1 3.2.3. Male Pubertal Development in Humans

2 3

Table 3-3. Evidence pertaining to BBP and the timing of male puberty or sex hormones in boys

Reference and study design	Results				
Ferguson et al. (2014b) (Mexico) Population: 115 boys ages 8–14 yrs from a birth cohort (Early Life Exposure in Mexico to	OR (95% CI) for adrenarche or puberty per interquartile increase in In-transformed MBzP (adjusted for child age, BMI z-score, and urine specific gravity)				
Environmental Toxicants, participants enrolled during first trimester 1994–2004); follow up initiated in 2010 Outcome: Adrenarche or puberty, based on Tanner staging by physician (pubic hair stage ≥2; genitalia stage ≥2 or testicular volume >3 mL);	Tanner stage or testicular volume	Maternal urine (prenatal)	re basis Child urine		
serum hormone level Exposure: Maternal urine sample (n = 107) from third trimester or child's urine sample (n = 113)	Pubic hair (stage ≥2) Genitalia	0.27 (0.08, 0.94)	0.73 (0.21, 2.58) 1.71 (0.78, 3.76)		
collected at time of Tanner staging and serum collection Unadjusted MBzP in urine (ng/mL): Median 95 th percentile	(stage ≥2) Testicular volume	0.76 (0.41, 1.41)	2.17 (0.80, 5.87)		
Maternal sample5.2015.4Child's sample5.6019.9Analysis:Logistic regression for analysis of puberty onset, adjusting for variables shown in	(>3 mL) Percent change (95% CI) in serum hormone level per interquartile increase in In-transformed MzBP (adjusted for urine specific gravity, child age, and BMI z-score)				
results column; linear regression for analysis of	Exposure basis				
hormone levels, considering age, BMI z-score, socioeconomic status, and maternal smoking potential covariates	Serum hormone	Maternal urine (prenatal)	Child urine		
	Testosterone	3.82 (-18.4, 32.1)	-23.5 (-47.3, 11.1)		
	Free testosterone	-3.21 (-24.6, 24.3)	-28.3 (-51.5, 6.04)		
	SHBG	11.0 (2.33, 20.3)	7.77 (-5.56, 23.0)		
	DHEAS	-3.35 (-14.0, 8.58)	8.49 (-9.56, 30.2)		
	Estradiol	-1.18 (-8.36, 6.57)	-10.2(-20.1, 0.96)		
	Inhibin B	-4.81 (-12.8, 3.95)	9.50 (-4.40, 25.4)		

Reference and study design		Results		
Mouritsen et al. (2013b) (Denmark)	Median age (yrs) at development by MBzP level			
Population: 53 boys from population-based cohort (COPENHAGEN Puberty Study), 2006–2010; age		Low		High
11 yrs Outcome: Adrenarche or puberty, based on Tanner staging by physician (pubarche = pubic hair	Pubarche (pubic hair stage ≥2)	12.1		11.4
stage ≥2 and testicular volume >3 mL); serum hormone level Exposure: Urine sample, first morning sample;	Testicular volume >3 mL	11.6		11
data reported in Mouritsen et al. (2013a),	Median hormone cor	ncentration by I	MBzP level	
Supplemental Material MBzP in urine (ng/mL):		Low		High
Geometric mean Maximum 49 1,660	Testosterone (nmol/L)	<0.23		<0.23
(based on larger sample of 84 boys) Analysis: Two-tailed Mann-Whitney U-test for comparisons between groups, comparing median	DHEAS (µmol/L)	2.14	(p	1.33 <0.05)
comparisons between groups, comparing median hormone levels and pubertal stage in "high" and "low" phthalate groups (based on above or below group mean excretion)	Adione (nmol/L)	1.46		1.13
	Estradiol (pmol/L)	<18		<18
	FSH (IU/L)	1.38		1.5
	LH (IU/L)	0.25		0.28
Mieritz et al. (2012) (Denmark)	MBzP concentration	(ng/mL) by grou	qu	
Population: 38 boys with pubertal gynecomastia and 190 age-matched controls drawn from 555 boys from population-based cohort		Group 1 (n = 38)	Group 2 (n = 189)	Group 3 (n = 517)
(COPENHAGEN Puberty Study), 2006–2008; ages	Median	56.79	47.20	47.70
6–19 yrs Outcome: Anthropometry, pubertal stage (pubic	95 th percentile	211.0	185.3	219.2
hair and genital development), presence of gynecomastia, and serum testosterone Exposure: Urine sample, first morning sample MBzP in urine (ng/mL): Median 95 th percentile Group 3 47.70 219.2 (boys without gynecomastia, all ages) Analysis: Two-tailed Mann-Whitney U-test for comparisons between groups; linear regression	Group 1 = boys with Group 2 = boys with matched) Group 3 = boys with No association betwe puberty or serum tes reported)	out palpable gyr out palpable gyr een MBzP conce	necomastia (a necomastia (a entration and	all ages) I timing of
with age adjustment for association with serum testosterone; probit analysis with phthalate concentrations divided in quartiles for analysis of puberty timing				

OR = odds ratio

1 3.2.4. Semen Parameters and Infertility

2 3

Table 3-4. Evidence pertaining to BBP and semen parameters or infertility in adult men or couples

Reference ^a and Study Design	Results	
Kranvogl et al. (2014) Population: 136 men from couples seeking	Spearman correlation coefficient, MBzP and parameters:	sperm
infertility treatment (mean age 36.2 yrs, range 24–54 yrs), 2012	Sperm concentration	-0.014
Outcome: Semen analysis	Sperm motility	0.058
Exposure: Urine sample, collected at same time as semen sample MBzP in urine	(<i>p</i> >0.05 for both parameters)	
Unadjusted (μg/L) 3.5 20.7 Cr-adjusted (μg/g Cr) 2.9 15.5 Analysis: Spearman correlation		
(Jurewicz et al. (2013)) (Poland) Population: 269 men from infertility clinic with normal sperm concentration (20–300 million/mL) or slight oligozoospermia (15–20 million/mL); mean age 32 yrs; time period not reported; MBzP	Regression coefficient (<i>p</i> -value) for change in parameter with unit change in log-MBzP (ad smoking, medical history [mumps, cryptorch surgery, testes trauma], abstinence time, an creatinine)	justed for age, idism, testes
measured in 268 samples Outcome: Semen analysis Exposure: Urine sample, collected at same time	Log-transformed sperm concentration (million/mL)	-0.07 (0.25)
as semen sample	Sperm motility (%)	1.86 (0.10)
MBzP in urine:	Abnormal sperm morphology (%)	1.17 (0.28)
Geometric mean (SD) Unadjusted (µg/L) 8.3 (3.2) Cr-adjusted (µg/g Cr) 6.9 (3.5) Analysis: Linear regression, adjusting for variables shown in results column	DNA fragmentation index	-0.05 (0.20)
Joensen et al. (2012) (Denmark) Population: 881 men from general population, assessed at military conscript exam*, 2007–2009, median age 19.1 yrs (5 th –95 th percentile: 18.4–22.0 yrs) Outcome: Semen analysis Exposure: Urine sample, collected at same time as semen sample MBzP in urine (ng/mL): Median 95 th percentile Unadjusted 34 164 Analysis: Linear regression, considering age, BMI, smoking, alcohol consumption, ethnicity, BMI squared, in utero exposure to tobacco smoke, previous or current diseases, recent fever, recent use of medication, abstinence time, and time from ejaculation to analysis as potential covariates	Results for individual phthalate metabolites reported as "few significant associations" wi count, or percentage progressively motile sp results not reported; analyses adjusted for a [volume, concentration, and count] or time to analysis [progressively motile]; percent of normal sperm was left unadjusted)	th sperm volume, berm (quantitative bstinence time from ejaculation

Reference ^a and Study Design	Results			
*As reported by <u>Ravnborg et al. (2011)</u>				
Liu et al. (2012) (China) Population: 97 men from subfertility clinic,	-	· ·	BzP (adjusted for and alcohol use)	age, BMI,
2009–2010; mean age 32 yrs Outcome: Semen analysis; results dichotomized above and below WHO reference values; n = 43 with normal semen parameters Exposure: Urine sample, collected at same time as semen sample MBzP in urine: Median 66 th percentile Unadjusted (ng/mL) <lod* 0.06<br="">Cr-adjusted (µg/g Cr) <lod 0.07<br="">Analysis: Logistic regression, considering age, BMI, abstinence time, smoking, alcohol use, and</lod></lod*>	MBzP Tertile 1 (low) 2 3 (high) (trend <i>p</i>)	Sperm concentration <20 × 10 ⁶ /mL (n = 11) 1.0 (referent) 3.1 (0.4, 26.4) 1.2 (0.2, 6.9) (0.87)	Sperm motility <50% motile (n = 34) 1.0 (referent) 0.7 (0.2, 3.4) 1.4 (0.5, 4.0) (0.47)	Semen volume <2 mL (n = 15) 1.0 (referent) 0.5 (0.1, 4.8) 0.3 (0.1, 1.6) (0.33)
education as potential covariates *LOD = 0.15 ng/mL Toshima et al. (2012) (Japan) Population: 42 men visiting gynecology clinic for infertility consultation in 2010; mean age 37 yrs Outcome: Semen analysis; results also dichotomized above and below WHO reference values (semen volume of 1.5 mL, sperm concentration of 15 × 10 ⁶ /mL, and motility of 40%) Exposure: Urine sample, collected on same day as semen sample MBzP in urine (ng/mL): Geometric mean (SD) SG-adjusted 9.73 (3.12)	sperm concentration or motility (quantitative results not reported) Authors reported no statistically significant association between urinary MBzP and semen volume, sperm concentration, or sperm motility analyzed by linear regress			
Analysis: Urine concentrations compared between dichotomized groups using t-test; linear regression between SG-adjusted MBzP and continuous outcome variables, considering age, abstinence time, BMI, smoking status, frequency of consumption of vegetables, fruits, and coffee, and presence of detectable levels of equol potential covariates				
 Wirth et al. (2008) (United States, Michigan) Population: 45 male partners seen in infertility clinic, time period not reported; mean age 34 yrs Outcome: Semen analysis Exposure: Urine sample, collected at same time as semen sample (all between 7 and 11 am) MBzP in urine (ng/mL) (percentile): 	Low s concen <20 × 1 1.4 (0.3	perm tration Low .0 ⁶ /mL < 	50% motile 3 (0.3 <i>,</i> 5.5) ^b	Abnormal sperm morphology 0.9 (0.2, 3.0) ^c
Median 75 th 95 th 17.4 31.3 166.6 Analysis: Dichotomized outcomes (above and	^a Adjusted for race (whites, nonwhites) and specific gravity ^b Adjusted for age, alcohol use (≤3 and >3 servings/wk), an specific gravity ^c Adjusted for specific gravity			

Reference ^a and Study Design			F	Results	
below WHO reference values), MBzP dichotomized at median or divided into tertiles; age, education (3 levels), income (3 levels), race, BMI (3 levels), current smoking status, and alcohol use (2 levels) considered as potential confounders; specific gravity also included in all models	Results of tertile analysis not reported				
Hauser et al. (2007) (United States; Boston) Population: 379 male partners from subfertility clinic, 2000–2004; mean age 36 yrs Outcome: Sperm DNA damage assessed by neutral comet assay Exposure: Urine sample, collected at same time	-	quartile rang ing status) extent	ge incr Tail d		amage associated zP (adjusted for age %DNA tail
as semen sample MBzP in urine (ng/mL) (percentile): Median 75 th 95 th SG-adjusted 7.9 15.0 46.2 Analysis: Linear regression, considering age, abstinence time, smoking status, and race as potential covariates Related reference: Duty et al. (2003b)					0.11 (-1.56, 1.77)
Hauser et al. (2006) (United States; Boston) Population: 443 male partners from subfertility clinic 2000–2004; mean age 36 yrs	abstinence	e time, and s	smokir	ng; compariso	adjusted for age, n group = 210 men e parameters)
Outcome: Semen analysis; results dichotomized above and below WHO reference values Exposure: Urine sample, collected at same time as serum sample for hormone analysis	MBzP quartile	Sperm concentrat <20 × 10 ⁶ /		Sperm motility <50% motile	Sperm morphology <4% normal
MBzP in urine (ng/mL) (percentile):	1 (low)	1.0 (refere	ent) 1	L.0 (referent)	1.0 (referent)
Median 75 th 95 th SG-adjusted 8.0 15.5 40.6	2	1.1 (0.4, 2	.6)	1.3 (0.7, 2.3)	0.7 (0.3, 1.4)
SG-adjusted 8.0 15.5 40.6 Analysis: Logistic regression, considering age,	3	1.1 (0.4, 2	.5) 2	1.3 (0.8, 2.3)	0.9 (0.4, 1.7)
race, BMI, abstinence time, and smoking as	4 (high)	1.9 (0.8, 4	.3)	1.3 (0.7, 2.3)	1.1 (0.6, 2.1)
potential covariates Related references: (<u>Hauser et al. (2005</u>); <u>Duty</u>	(trend p)	(0.13)		(0.36)	(0.76)
<u>et al. (2004); Duty et al. (2003a)</u>)	Regression coefficient (95% CI) for sperm motion parameters by quartile of MBzP (ng/mL) (adjusted for age, smoking, and abstinence time)				
	MBzP (ng/mL) quartile	Straight lin velocity (μm/s)	'	Curvilinear velocity (μm/s)	Linearity (%)
	1 (low)	1.0 (refere	ent) 1	L.0 (referent)	1.0 (referent)
	2	0.66 (-2.01, 3.3	34) (1.44 (-3.10, 5.99)	-0.23 (-2.12, 1.66)
	3	0.11 (-2.59, 2.8	B1) (1.29 (-3.29, 5.88)	-1.13 (-3.04, 0.77)
	4 (high)	-1.31		-1.20	-0.69

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE 3-13

Reference ^a and Study Design	Results
	(-3.98, 1.36) (-5.73, 3.34) (-2.58, 1.20)
	(trend <i>p</i>) (0.29) (0.60) (0.33)
	MBzP quartile cut points: 0.04–4.2, 4.2–8.0, 8.0–15.3, 15.5–540.2 ng/mL
	No interaction with PCBs
Jonsson et al. (2005) Population: 234 men from general population, assessed at military conscription exam in 2000; ages 18–21 yrs	Mean difference (95% CI), highest (≥7.71 nmol/mmol Cr) compared with lowest (≤1.10 nmol/mmol Cr) quartile MBzP (positive difference indicates lower value in highest exposure quartile)
Outcome: Semen analysis Exposure: Urine sample, collected at same time	Sperm concentration (× 10^6 /mL) 7.2 (-16, 31)
as semen sample	Sperm motility (%) –4.3 (–10, 1.6)
MBzP in urine (percentile): Median 75 th 95 th	Sperm damage (chromatin integrity) -0.3 (-3.7, 3.1)
Median 75 th 95 th Unadjusted (ng/mL) 16 37 74 Adjusted (nmol/mmol Cr) 4.4 7.6 19 Analysis: Mean difference between high and low quartiles	
Infertility	
Buck Louis et al. (2014)(United States; Michigan and Texas)Population: 501 couples discontinuing contraception and attempting to achieve pregnancy; recruited from 16 counties using population sampling. Women's mean age 30.0 yrs, men's mean age 31.8 yrs; 2005–2009Outcome: Time to pregnancy as assessed by diaries recording intercourse and menstruation, home-fertility monitoring to detect ovulation, and home pregnancy testsExposure: Urine samples from both partners, collected at enrollment (beginning of pregnancy attempt)Unadjusted MBzP in urine (ng/mL) among couples achieving pregnancy: Geometric mean (95% CI)Women4.61 (4.06–5.23) Men 2.79 (2.44–3.19)Analysis: Fecundability ORs calculated using Cox models, adjusting for variables shown in results column	Fecundability OR (95% CI) per unit increase in log-transformed MBzP scaled by SD (adjusted for female age, difference in couples' ages, research site, and both partners' urinary creatinine, BMI, and serum cotinine; in addition, results for exposure in each partner adjusted for exposure in the other partner, and models accounted for left truncation or time off contraception)Women0.98 (0.81, 1.20)Men0.80 (0.67, 0.97)

Reference ^a and Study Design	Results			
Tranfo et al. (2012) (Italy) Population: 56 infertile couples from assisted	MBzP concentratio couples	n in urine (μg/g Cr)	in fertile and i	nfertile
reproduction center, 56 fertile couples (parents of one or more children, living in same area),		Fertile	Infertile	<i>p</i> -value
time period not reported; mean age 39-40 yrs in	Median	8.80	12.37	0.009
both groups Outcome: Primary or secondary infertility as	95 th percentile	85.32	88.10	
assessed by WHO criteria (cause attributed to males in 8/56 couples) Exposure: Urine sample MBzP in urine, fertile couples: Median 95 th percentile Cr-adjusted (μg/g Cr) 8.8 85.32 Analysis: Mann-Whitney U-test for comparison of MBzP concentrations by group	Sex-stratified comp though the <i>p</i> -value results not reporte	was slightly higher		

1 2 3

DNA = deoxyribonucleic acid; LOD = level of detection; PCB = polychlorinated biphenyl; WHO = World Health

Organization

1 3.2.5. Female Reproductive Effects in Humans

Table 3-5. Evidence pertaining to BBP and reproductive hormones in adult women

Reference and study design		Results	
Maternal hormones during pregnancy	•		
Sathyanarayana et al. (2014) (United States; Minnesota, Missouri, California) Population: 180 mothers from birth cohort (SFF), recruited during pregnancy, 1999–2002	Regression coeffic maternal log-tran with unit increase stratified by sex o	sformed serum he in log-transforme	ormone level
Outcome: Serum hormone levels, samples collected during prenatal clinic visit Exposure: Maternal urine sample, collected during 2 nd or 3 rd trimester		Mothers with male fetus (n = 94)	Mothers with female fetus (n = 86)
MBzP in urine (ng/mL): Median 75 th percentile	Testosterone (total)	0.06 (-0.07, 0.19)	-0.13 (-0.26, 0.01)
Unadjusted 11.0 38.6 Analysis: Linear regression, log-transformed MBzP, and log-transformed hormone level	Testosterone (free)	0.07 (-0.07, 0.21)	-0.10 (-0.25, 0.04)
	Estradiol	-0.03 (-0.12, 0.07)	-0.10 (-0.23, 0.03)
Hart et al. (2013) (Australia) Population: 123 mothers from birth cohort (Western Australian Pregnancy Cohort), whose mothers were recruited at 18 wks of gestation between 1989 and 1991 Outcome: Reproductive and gonadotropin hormone levels in maternal serum collected at 18 and 34–36 wks of	Correlation coeffi maternal serum h MBzP in maternal	ormone level and	
gestation Exposure: Maternal serum samples (n = 123) collected at 18 and 34–36 wks of gestation (combined aliquot from	Androstene- dione (nmol/L)	-0.006	-0.045
both time periods) MBzP in serum (ng/mL):	DHEAS (µmol/L)	-0.057	-0.132
Median 90 th percentile MBzP 1.26 3.87	Testosterone (pmol/L)	-0.009	-0.063
Analysis: Correlation between quartiles of serum MBzP and log-transformed hormone levels	SHBG (nmol/L)	-0.123	-0.149
	Free testosterone (pmol/L)	0.037	0.027
	Free testosterone index	0.053	0.033
	p >0.10 for all cor	relations	

4

1 3.2.6. Female Pubertal Development in Humans

2 3

Table 3-6. Evidence pertaining to BBP and timing of female puberty or sexhormones in girls

Reference and study design	Results			
Precocious puberty or thelarche				
<u>Chen et al. (2013)</u> (Taiwan) Population: 71 girls with central precocious puberty from pediatric endocrinology clinic and 29 controls from schools recruited 2006–2009; mean ages 8.1 and 6.8 yrs, respectively	Mean (95% Cl) Unadjusted (ng/mL)) MBzP in cases Controls 2.45 (0.70, 18.4)	and controls Cases 6.22 (0.70, 167)	(<i>p</i> -value) (0.002)
Outcome: Premature puberty based on appearance of thelarche, pubic hair or menarche before 8 yrs of age; Tanner staging and serum levels of LH releasing hormone used for additional classification Exposure: Urine sample (child's), collected at same time as clinical assessment MBzP in urine of controls: Mean (95% CI) Unadjusted (ng/mL) 2.45 (0.70, 18.4) Cr-adjusted (µg/g Cr) 3.74 (0.95, 50.4) Analysis: MBzP concentrations in cases and controls compared with Mann-Whitney U-test	Cr-adjusted (μg/g Cr)	3.74 (0.95, 50.4)	9.0 (1.14, 172)	(0.005)
Frederiksen et al. (2012) (Denmark) Population: 24 girls with precocious puberty (n = 13 with central precocious puberty, n = 6 with early normal puberty, n = 5 with premature thelarche) from outpatient clinic, 2008–2009 and 184* age-matched controls from population-based cohort (COPENHAGEN Puberty Study), recruited from high schools 2006–2008; age 7.4–9.9 years Outcome: Precocious puberty, early normal puberty, or premature thelarche, based on Tanner staging by physician Exposure: Urine sample (child's), collected at clinical evaluation MBzP in urine (ng/mL), controls: Median 95 th percentile Unadjusted 48 212 (based on larger sample of 725 controls) Analysis: MBzP concentrations in cases and controls compared with Mann-Whitney U-test *Study reports number of controls inconsistently; text	Median (range Controls 54 (4.6–779	e) MBzP (ng/ml Precocio pubert) 38 (7.5–1	ous y (/	controls <i>p</i> -value) (<0.05)

Reference and study design	Results		
Lomenick et al. (2010) (United States, Ohio and Kentucky) Population: 28 girls with central precocious puberty, 28 age- and race-matched controls; all recruited from pediatric endocrinology clinic, 2005–2008; mean age 7 yrs Outcome: Central precocious puberty defined based on clinical standards (appearance of physical characteristics of puberty before 8 yrs of age, with laboratory confirmation of central origin of breast	Mean ± SE MBzP in cases and controls Central precocious Controls puberty (p-value) Unadjusted 42.8 ± 8.8 40.2 ± 8.4 (0.81) (ng/mL) Cr-adjusted 40.5 ± 7.1 50.6 ± 11.4 (0.92) (µg/g Cr)		
development); no cases had received medical treatment prior to urine sample collection Exposure: Urine sample (child's), collected at clinical evaluation MBzP in urine of controls: Mean ± SE Unadjusted (ng/mL) 42.8 ± 8.8 Cr-adjusted (µg/g Cr) 40.5 ± 7.1 Analysis: MBzP concentrations in cases and controls compared with Wilcoxon rank-sum test			
Chou et al. (2009) (Taiwan) Population: 30 girls with premature thelarche and	Unadjusted MBzP in urine; mean ± SD (ng/mL)		
26 girls with central precocious puberty from pediatric endocrinology clinic; 33 controls from school exams;	Central precocious Premature thelarche Controls puberty cases cases		
mean ages 6.7, 8.0, and 8.2 yrs, respectively, in the groups, time period not reported Outcome: Premature puberty based on appearance of any physical characteristics of puberty before 8 yrs of age Exposure: Urine sample (child's) collected at same time as clinical assessment MBzP in urine (ng/mL), controls: Mean ± SD Unadjusted 3.3 ± 6.1 Analysis: One-way ANOVA comparing MBzP concentrations between groups	3.3 ± 6.1 12.7 ± 33.0 7.4 ± 9.4 <i>p</i> >0.3 for comparison with controls		
Pubertal development (general population)			
Hart et al. (2013) (Australia) Population: 121 girls from birth cohort study (Western Australian Pregnancy Cohort), whose mothers were recruited at 18 wks of gestation 1989–1991; follow-up at ages 14–16 yrs Outcome: Age at menarche Exposure: Maternal serum samples (n = 123) collected at 18 and 34–36 wks of gestation (combined aliquot from both time periods) MBzP in serum (ng/mL): Median 90 th percentile	Authors reported no association between MBzP and a at menarche (quantitative results not reported) Authors reported no correlation between MBzP and serum SHBG, FSH, total testosterone, free androgen index, anti-Müllerian hormone, or inhibin B in adolescents (quantitative results not reported by study authors)		
Median 90 th percentile Unadjusted 1.26 3.87			

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design		Res	ults	
Analysis: Correlation between log-transformed MBzP and age at menarche				
Mouritsen et al. (2013b) (Denmark)	Median age (yrs) at development by MBzP level			
Population: 47 girls from population-based cohort (COPENHAGEN Puberty Study), 2006–2010; age 10 yrs			Low	High
Outcome: Adrenarche or puberty, based on Tanner	Pubarche (p hair stage ≥2		10.8	10.8
pubic hair stage ≥2); serum hormone level Exposure: Urine sample, first morning sample; data reported in <u>Mouritsen et al. (2013a), Supplemental</u>	Pubarche (b stage ≥2)	reast	10.5	10.2
Material	Median hori	mone concentrat	tion by I	MBzP level
Geometric mean Maximum			Low	High
MBzP in urine (ng/mL):37433(based on larger sample of 84 girls)Analysis:Two-tailed Mann-Whitney U-test forcomparisons between groups, comparing median	Testosteron (nmol/L)	e <	<0.23	<0.23
	DHEAS (µmo	ol/L)	1.03	0.83
hormone levels and pubertal stage in "high" and "low" phthalate groups (based on above or below group	Adione (nmo	ol/L)	1.63	1.3
mean excretion)	Estradiol (pr	mol/L)	19	20
	FSH (IU/L)		2.12	1.82
	LH (IU/L)		0.08	0.11
Frederiksen et al. (2012) (Denmark) Population: 725 healthy girls ages 5.6–19.1 yrs from		95% CI) (yrs) at ei age 2, by quartil	-	o breast stage 2 or BzP
COPENHAGEN Puberty Study cohort, recruited from high schools during 2006–2008 Outcome: Stage of breast or pubic hair development;	MBzP quartile	Breast stage (n = 394)	2	Pubic hair stage 2 (n not reported)
Serum steroid and gonadotropin hormones	1 (low)	9.66 (9.16, 10.	14)	10.96 (10.67, 11.27)
Exposure: Urine sample (child's), collected at time of pubertal stage assessment	2	9.92 (9.44, 10.	40)	11.25 (10.93, 11.58)
MBzP in urine (ng/mL), all 725 participants:	3	10.10 (9.63, 10	.55)	10.95 (10.68, 11.24)
Median 95 th percentile Unadjusted 48 212 Analysis: Probit analysis, results verified using Pool- Adjacent-Violators algorithm	4 (high)	10.06 (9.59, 10	.54)	11.39 (11.08, 11.72)
	exposure gro lower preval with increas did not rema for skewed a	oups (quantitativ lence of detectal ing MBzP quartil	ve result ole testo e; howe cer a con oetweer	e similar across MBzP ts not reported). A osterone was seen ever, the association rrection was applied n quartiles

ANOVA = analysis of variance; DHEAS = dehydroepiandrosterone; SE = standard error

1 3.2.7. Gynecological Conditions in Humans

Table 3-7. Evidence pertaining to BBP and gynecological conditions in humans

Reference and study design	Results		
Endometriosis			
Buck Louis et al. (2013) (United States, California and Utah) Population: 473 women undergoing laparoscopy or laparotomy and 127 population age- and residence-matched	OR (95% CI) for endometriosis per unit increase in In-MBzP, by cohort (adjusted for age, BMI, and creatinine)		
referents, 2007–2009; ages 18–44 yrs; confirmed cases of endometriosis matched to women without endometriosis	Operative cohort 0.84 (0.65, 1.07)		
within each cohort: operative cohort 190 cases,	Population cohort 1.47 (0.76, 2.85)		
238 controls; population cohort 14 cases, 127 controls Outcome: Endometriosis confirmed by surgery (operative cohort) or MRI (population cohort) Exposure: Urine sample	Adjusted OR (95% CI) for endometriosis per unit increase in In-MBzP in operative cohort (sensitivity analysis)		
MBzP in urine (ng/mL), unadjusted: Geometric mean	Endometriosis stage 3 and 4 0.77 (0.52, 1.14) (n = 339)		
Operative cohort-controls7.82Population cohort-controls6.46Analysis: Student's t-test or Wilcoxon test for continuous	Visual/histological confirmed 1.02 (0.72, 1.42) endometriosis (n = 473)		
data; logistic regression, adjusting for age, BMI, and creatinine; sensitivity analyses conducted restricting cohort to endometriosis stages 3 and 4 diagnoses or visually and	Comparison with women with 0.79 (0.59, 1.07) postoperative diagnosis normal pelvis (n = 320)		
histologically confirmed endometriosis, and referent group consisting of women with postoperative diagnosis of normal pelvis	Note: Concentrations were log transformed and rescaled by their SDs for analysis		
Upson et al. (2013) (United States, Washington) Population: 92 incident endometriosis cases, 195 controls frequency-matched on age, all members of a large health	OR (95% CI) for endometriosis by quartile MzBP (adjusted for In-transformed urinary creatinine, age, and reference year)		
care system and enrolled in Women's Risk of Endometriosis Study, 1996–2001; ages 18–49 yrs	MBzP quartile (ng/mL) OR (95% Cl)		
Outcome: Endometriosis confirmed by surgery; for each	1 (≤2.0) 1.0 (referent)		
case, reference date assigned by date of first visit for symptoms leading to diagnosis; reference dates randomly	2 (2.0–4.0) 1.7 (0.8, 3.8)		
assigned to controls based on case distribution	3 (5.0–11.5) 1.5 (0.6, 4.0)		
Exposure: Urine sample, collected after enrollment (2001–2002)	4 (>11.5) 1.3 (0.4, 4.0)		
MBzP in urine, controls:	(trend <i>p</i> -value) (0.80)		
Median (interquartile range) Unadjusted (ng/mL) 5.0 (2.0–11.5) Analysis: Logistic regression (quartiles of exposure), covariates considered based on directed acyclic graph; final model adjusted for variables shown in results column	Adjustment for education, smoking status, and alcohol consumption did not alter the results		

Reference and study design	Results			
Huang et al. (2010) (Taiwan) Population: 28 endometriosis cases, 36 leiomyoma cases, n = 16 adenomyosis cases, n = 29 controls recruited from the laparotomy patients in medical center, 2005–2007; mean ages ~38, 41, and 36 yrs, respectively	OR (95% CI) for case status by MBzP above compared with below the median (for endometriosis, adjusted for GSTM1 polymorphism and BMI; for leiomyomas and adenomyosis, adjusted for GSTM1 polymorphism and age)			
Outcome: Clinical diagnosis of endometriosis, leiomyoma, or adenomyosis confirmed by pathology	Endometrio	osis Leiomyomat	a Adenomyosis	
Exposure: Urine sampleMBzP in urine, controls:Median (range)Unadjusted (ng/mL)5.9 (2.1–26.2)Cr-adjusted (µg/g Cr)8.9 (2.1–38.7)Analysis: Logistic regression, considering age, BMI, and	1.07 (0.35, 3.2	1.40 8) (0.48, 4.05)	1.33 (0.29, 6.13)	
GSTM1 polymorphism as covariates <u>Weuve et al. (2010)</u> (United States, NHANES)			ondition by quartile	
Population: 87 endometriosis cases, 151 leiomyomata cases, 1,020 controls from population-based survey (NHANES), 1999–2004; ages 20–54 yrs, mean age ~36 yrs	of MBzP (ng/mg Cr) (adjusted for age, race/ ethnicity, age at menarche, current pregnancy status and current breast-feeding status)			
Outcome: Self-reported diagnosis of endometriosis or leiomyomata; median time since diagnosis, 9 yrs Exposure: Urine sample, collected at time of survey	MBzP quartile	Endometriosis	Leiomyomata	
MBzP in urine, controls:	1 (low)	1.0 (referent)	1.0 (referent)	
Geometric mean (SE) Cr-adjusted (ng/mg Cr) 14.1 (0.6)	2	0.84 (0.37, 1.89)	1.11 (0.59, 2.07)	
Analysis: Logistic regression, adjusting for variables shown	3	1.17 (0.47, 2.94)	1.16 (0.64, 2.13)	
in results column	4 (high)	1.17 (0.42, 3.27)	1.14 (0.54, 2.39)	
	(trend <i>p</i>)	(0.6)	(0.8)	
Itoh et al. (2009) (Japan) Population: 57 endometriosis cases, 80 controls; all seeking evaluation for infertility Outcome: Clinical diagnosis of endometriosis (American Fertility Society stages II–IV) by laparoscopy; controls were	OR for endometriosis by MBzP (μg/g Cr), above compared with below the median (adjusted for menstrual regularity and average menstrual cycle length) OR (95% CI) = 1.38 (0.65, 2.91)			
stages 0–1	Median MBzP in urine by stage of endometriosis			
Exposure: Urine sample MBzP in urine, controls: Median 75 th percentile	Endometrio stage	sis Unadjusted (μg/L)	Cr-adjusted (μg/g Cr)	
Unadjusted (μg/L) 3.2 6.5 Cr-adjusted (μg/g Cr) 1.8 3.3	0	3.0	1.8	
Cr-adjusted (μg/g Cr) 1.8 3.3 Analysis: Logistic regression, adjusting for variables shown	1	3.7	1.9	
in the results column	Ш	4.6	2.9	
		3.3	2.0	
	IV	4.4	2.0	
	(trend <i>p</i>)	(0.06)	(0.37)	

Reference and study design	Results		
Reddy et al. (2006a) (India)	Plasma BBP, mean ± SD, μg/mL		
Population: 49 endometriosis cases, 38 gynecology patient controls (group 1), 21 tubal sterilization controls (group 2),	Control 1	Control 2	Endometriosis
time period not reported; mean age ~27 yrs	0.12 ± 0.20	0.11 ± 0.22	0.66 ± 0.61
Outcome: Endometriosis based on laparoscopy (American Fertility Society severity staging) Exposure: Plasma sample BBP in plasma (μ g/mL): Mean \pm SD Control group 1 0.12 \pm 0.20 Control group 2 0.11 \pm 0.22 Analysis: Two-sample t-test for comparisons between groups; correlation analysis for association with severity (details not reported)	$p \le 0.0002$ compared with either control group BBP concentration positively correlated with severity (r = 0.73, $p < 0.0001$)		
Reddy et al. (2006b) (India) Population: 85 endometriosis cases, 135 tubal sterilization	Plasma BBP, mean \pm SD (µg/mL), by stage of endometriosis		by stage of
controls, from subfertility clinic, 1999–2005; mean age ~31 yrs	Controls	0.14	± 0.26
Outcome: Endometriosis based on laparoscopy (American	Stage I	0.28	± 0.38
Fertility Society severity staging) Exposure: Plasma sample	Stage II	0.67	± 0.50
BBP in plasma (μg/mL):	Stage III	0.98	± 0.59
Mean ± SD Controls 0.14 ± 0.26	Stage IV	1.27	± 0.61
Analysis: ANOVA for concentration comparisons across stages	p <0.05 for difference between means		
Polycystic ovarian syndrome			
Hart et al. (2013) (Australia) Population: 121 girls from birth cohort study (Western Australian Pregnancy Cohort), whose mothers were recruited at 18 wks of gestation between 1989 and 1991;	Correlation coefficient (<i>p</i> -value) between log- transformed MBzP and parameter		
	Uterine volume ((mL) r≤	0.20 (<i>p</i> ≥0.17)
follow-up at ages 14–16 yrs	Ovarian volume	(cm³) r≤	0.10 (<i>p</i> ≥0.29)
Outcome: Uterine volume, ovarian volume, and antral	Antral follicle cou	unt r≤	–0.01 (<i>p</i> ≥0.25)

Reference and study design	Results
follicle count measured by ultrasound; PCO defined as ≥1 ovary more than 10 cm ³ or ≥12 follicles between 2 and 9 mm in diameter; PCOS defined either as (1) presence of at least two of: polycystic ovarian morphology, clinical or biochemical hyperandrogenism, or oligo-anovulation; or (2) oligo-anovulatory menstrual cycles with either clinical or biochemical hyperandrogenism; all clinical assessments conducted on d 2–5 of menstrual cycle Exposure: Maternal serum samples (n = 123) collected at 18 and 34–36 wks of gestation (combined aliquot from both time periods) MBzP in serum (ng/mL): Median 90 th percentile MBzP 1.26 3.87 Analysis: Correlation between log-transformed MBzP and uterine volume, ovarian volume, and antral follicle counts; MBzP concentrations in PCO or PCOS cases and controls compared calculated using t-tests or Mann-Whitney U-tests	Authors reported no association between MBzP and polycystic ovarian syndrome using either definition (quantitative results not reported)

1 2 3

NHANES = National Health and Nutrition Examination Survey; PCO = polycystic ovarian morphology;

PCOS = polycystic ovarian syndrome

1 3.2.8. Pregnancy Related Outcomes

2

Table 3-8. Evidence pertaining to BBP and pregnancy outcomes in humans

Reference and study design		Res	ults	
Fetal growth (birth weight, birth length, head circumf	erence)			
Huang et al. (2014b) (China) Population: 207 women delivering at one hospital in Chongqing between 2011 and 2012, aged 18–35 yrs, with no history of tobacco or alcohol use; mean age	Regression coefficients (95% CI) for change in clinical measurement at birth with increase in BBP (as categorical variable, detectable or not detectable) (adjusted for gestational age)			
28 yrs		Girls		Boys
Outcome: Standard clinical measures at birth Exposure: Cord blood sample BBP in cord blood (μg/L): Median 75 th percentile 95 th percentile All samples (<lod) 0.99="" 89.87<br="">Analysis: Linear regression, adjusting for variables shown in results column</lod)>	Birth weight (g)	-76 (-208	, 56)	128 (–30, 287)
	Birth length (cm)	-0.18 (-0.99	9, 0.64) 0	.48 (-0.42, 1.39)
	Head circumference (mm)	-4.07 (-14.5	7, 6.43) 4.8	82 (-2.31, 11.94)
Philippat et al. (2012) (France) Population: 72 cases with undescended testis or hypospadias, 215 matched controls from two birth cohorts (EDEN and PELAGIE), 2002–2006 Outcome: Standard clinical measurements at birth Exposure: Maternal urine sample, collected between 6 and 19 (PELAGIE) or between 24 and 30 (EDEN) wks of gestation MBzP in urine (ng/mL): Median 95 th percentile Measured 17.7 116.6 Standardized* 21.7 209.2 Analysis: Cases and controls combined for this analysis; weighted linear regression using tertiles or In-transformed urine concentrations, adjusting for variables shown in results column; analysis by tertiles for evaluation of possible non-monotonic relationship; analyses corrected for oversampling of malformation cases *Standardized for sampling conditions and gestational age at collection	Regression coefficient (95% CI) for change in birth outcome by MBzP tertile and per unit change in In-MBzP (standardized, ng/mL) (adjusted for gestational duration, maternal pre-pregnancy weight and height, maternal smoking, maternal education, parity, recruitment center, urine creatinine, and mode of delivery as potential covariate; head circumference model also adjusted for mode of delivery)			
	MBzP tertile (µg/L)	Birth weight (g)	Birth length (cm)	Head circumference (cm)
	1 (<17.6)	0 (referent)	0 (referent)	0 (referent)
	2 (17.6–57.2)	14 (-141, 170)	0.0 (-0.7, 0.7)	-0.2 (-0.8, 0.4)
	3 (≥57.2)	-50 (-223, 123)	0.1 (-0.9, 0.7)	-0.3 (-0.9, 0.3)
	(trend <i>p</i> - value)	(0.43)	(0.88)	(0.32)
	ln (MBzP)	-23 (-71, 24)	0.1 (-0.3, 0.2)	0.0 (-0.2, 0.2)

Reference and study design		Results	
Suzuki et al. (2010) (Japan) Population: 149 infants from birth cohort, 2005–2008 Outcome: Standard clinical measurements at birth	Pearson's correlation coefficient between MBzP (mg/g Cr) or high MW phthalate (molar concentration) and birth outcome High MW		
Exposure: Maternal urine sample, gestation wks $9-40$ (mean \pm SD = 29 ± 8 wks)	Birth outcome	MBzP (mg/g Cr)	phthalate (molar concentration)
MBzP in urine: Median 75 th percentile	Birth weight (g)	0.005	-0.096
Unadjusted (ng/mL) 3.46 11.2	Birth length (cm)	-0.030	-0.064
Cr-adjusted (mg/g Cr) 4.70 9.83			
Analysis: Pearson's correlation analysis for individual metabolites and high MW phthalates (∑MBzP, MEHP, MEHHP, and MEOHP molar concentration)	Head circumference (cm)	-0.113	-0.072
	Gestational age (wks)	0.069	0.043
	<i>p</i> >0.5 for all correlations		
Wolff et al. (2008) (United States, New York City) Population: 382 singleton live births without medical complications from birth cohort (Mt. Sinai Children's Environmental Health study), 1998–2002 Outcome: Standard clinical measurements at birth	Regression coefficient (95% CI) for change in birth outcome with unit increase in In-MBzP (ng/mL) (adjusted for race/ethnicity, infant sex, gestational age at delivery, In-creatinine, prenatal smoking, prepregnancy BMI, maternal education, and marital status)		
Exposure: Maternal urine sample, third trimester	Birth weight (g) 1.4 (-34, 37)		
MBzP in urine (ng/mL): Median 75 th percentile	Birth length (cm)	().20 (0.00, 0.40)
Unadjusted 22 50	Head circumference		.11 (-0.02, 0.25)
Analysis: Linear regression, adjusting for variables shown in results column	Restricted to observations with creatinine \geq 20 mg/dL		
Preterm birth (<37 wks) and gestational age			
(Ferguson et al. (2014a); Ferguson et al. (2014c)) (United States; Boston) Population: 130 cases, 352 controls from pregnancy cohort (study of predictors of pre-eclampsia, enrolled first trimester), 2006–2008; controls	OR (95% CI) for preterm birth per unit increase in In-transformed MBzP (geometric mean of visits 1–3) (adjusted for urine specific gravity, maternal age, race/ethnicity, education level, and insurance provider (Ferguson et al., 2014a)		
randomly selected from those delivering \geq 37 wks of	All preterm	1.09 (0	0.86, 1.38)
gestation; mean age 33 yrs Outcome: Preterm birth (<37 wks of gestation; gestational age estimated from first trimester	Spontaneous preterm	1.41 (1	02, 1.95)
ultrasound) Exposure: Maternal urine samples (one to four	[Results weaker than those seen with DEHP metabol		EHP metabolites]
samples at median 9.7, 17.9, 26.0, and 35.1 wks of gestation; last sampling period not included for mothers who had already delivered) SG-adjusted MBzP in urine (μ g/L), geometric mean of visits 1–3:	OR (95% CI) for preterm birth per unit increase in In-transformed MBzP at each study visit (adjusted for urin specific gravity, maternal age, race/ethnicity, education level, and insurance provider) (<u>Ferguson et al., 2014c</u>)		
Geometric mean 75 th percentile	Visit 1	1.02 (0	0.73, 1.43)
Controls 6.34 10.9	Visit 2	1.07 (0	0.73, 1.55)
	1		
Cases 6.85 13.4 Analysis: Logistic regression, considering maternal	Visit 3	1.00 (0	0.68, 1.48)

This document is a draft for review purposes only and does not constitute Agency policy.

Reference and study design	Results
provider, BMI at first study visit, smoking status, alcohol use, parity, use of assisted-reproductive technology, and sex of infant as potential covariates; additional analyses conducted for subgroup with preterm labor or premature rupture of membranes ("spontaneous preterm," n = 57) <u>Ferguson et al. (2014c)</u> provides the analysis based on individual sample results for each of the four visits	
Huang et al. (2014b) Population: 207 women delivering at 1 hospital in Chongqing between 2011 and 2012; aged 18–35 yrs and with no history of tobacco or alcohol use; mean age 28 yrsOutcome: Preterm birth (<37 wks of gestation; gestational age estimated from last menstrual period)Exposure: Cord blood sample BBP in cord blood (µg/L): Median 75 th percentile 95 th percentile All samples (<lod) </lod) 0.99 89.87Analysis: Logistic and linear regression, adjusting for variables shown in results column	OR (95% CI) for preterm delivery per increase in MBzP (as categorical variable, detectable or not detectable)(adjusted for maternal age, BMI, frequency of prenatal exam, and pregnancy history); with additional stratification by history of intravenous infusions (26% of total, 55% of preterm birth group) Total sample (n = 207) 9.97 (3.25, 30.53) No intravenous infusions 0.06 (0.01, 0.58) (n = 154) Intravenous infusions (n = 53) 0.16 (0.04, 0.63) [History of intravenous infusions present in 26% of total and 55% of preterm birth group] Regression coefficient (95% CI) for change in gestational age (wks) with change in BBP (as categorical variable, detectable or not detectable) (adjusted for maternal age, BMI, frequency of prenatal examination, history of intravenous infusions therapy, and pregnancy history):
	-1.05** (-1.59, -0.51)
Meeker et al. (2009b)(Mexico)Population: 30 cases, 30 controls (term births) frompregnancy cohort, 2001–2003.Outcome: Preterm birth (<37 wks of gestation),	OR (95% CI) for preterm birth by MBzP above compared with below the median (adjusted for marital status, maternal education, and infant sex and gestational age at time of urine sample)

Reference and study design	Results		
	Cr-unadjusted (µg/L	.) 2	2.5 (0.8, 8.5)
	SG-adjusted (µg/L)	2	2.2 (0.7, 6.7)
	Cr-adjusted (µg/g C	r) 2	2.2 (0.7, 6.7)
Wolff et al. (2008)(United States, New York City)Population:382 singleton live births withoutmedical complications from birth cohort (Mt. SinaiChildren's Environmental Health study), 1998–2002Outcome:Standard clinical measurements at birthExposure:Maternal urine sample, third trimesterMBzP in urine (ng/mL):Median 75 th percentileUnadjusted2250Analysis:Linear regression, adjusting for variablesshown in results column	Regression coefficie age with unit increa race/ethnicity, infar In-creatinine, prena maternal education Gestational age (wk Restricted to observ	se in In-MBzP (ng/m nt sex, gestational ag tal smoking, pre-pre , and marital status) s) 0.0	nL) (adjusted for ge at delivery, egnancy BMI, 7 (–0.07, 0.22)
Early pregnancy loss			
Toft et al. (2012)(Denmark)Population:48 women with pregnancy loss, 80 with pregnancies ending in a live birth from cohort of couples planning first pregnancy, 1992–1994Outcome:Any pregnancy loss (n = 48), early (subclinical) embryonal loss (pregnancy identified by elevation in human chorionic gonadotropin; n = 32) or clinically-identified pregnancy loss (n = 16)Exposure:Urine samples (one conception cycle, one preconception cycle)MBzP in urine (ng/mL), among live births: Mean Live birth 20.3Maximum 117Analysis:Logistic regression, adjusting for variables shown in results column	OR (95% CI) for any in the preconceptio for age, BMI, smokin MBzP in the other c MBzP Tertile 1 (low) 2 3 (high) OR (95% CI) for type (ng/mL) in the conce smoking, alcohol an preconception cycle	n cycle or conception ng, alcohol and caffe ycle) Preconception cycle 1.0 (referent) 1.38 (0.53, 3.62) 0.59 (0.21, 1.65) es of pregnancy loss eption cycle (adjuste d caffeine intake, ar	n cycle (adjusted eine intake, and Conception cycle 1.0 (referent) 1.72 (0.63, 4.69) 2.10 (0.74, 5.88) by tertile MBzP ed for age, BMI,
	MBzP tertile	pregnancy loss	loss
	1 (low)	1.0 (referent)	1.0 (referent)
	2	2.39 (0.70, 8.22)	1.08 (0.25, 4.66)
	3 (high)	3.11 (0.87, 11.09)	0.96 (0.20, 4.59)

MEHHP = mono-(2-ethyl-5-hydroxyhexyl)phthalate; MEHP = mono-(2-ethylhexyl) phthalate; MEOHP = mono-

1 2 (2-ethyl-5-oxohexyl) phthalate; MW = molecular weight

1 3.2.9. Immune Effects in Humans

-)
~

Table 3-9. Evidence pertaining to BBP and allergy/immune effects in humans

Reference and study design	Results				
Ait Bamai et al. (2014) Population: Children (n = 122, ages <15 yrs) and adults (n = 374, ages	dust) (adjusted fo	OR (95% CI) for allergic condition by tertile of BBP in floor dust (μ g/g dust) (adjusted for gender, age strata, smoking status, dampness index, furry pets inside the home, Der 1, and sum of other phthalates)			
≥15 yrs) living in 148 detached dwellings in which at least 25 mg of dust was	BBP tertile	Full sample	Children	Adults	
collected; 2006 follow-up of 2003	Allergic rhinitis				
baseline survey Outcome: Allergic condition assessed by	1 (low)	1.0 (referent)	1.0 (referent)	1.0 (referent)	
self-administered questionnaire (positive response to: in the past 2 yrs have you	2	1.27 (0.64, 2.52)	1.90 (0.63, 5.75)	0.85 (0.39 <i>,</i> 1.86)	
been seen at a hospital for allergic rhinitis, allergic conjunctivitis, or atopic dermatitis?); parents completed	3 (high)	1.98 (0.98, 4.03)	3.04 (0.92, 10.0)	1.29 (0.60, 2.80)	
questionnaires for children <6 yrs old)	(trend <i>p</i> -value)	(0.058)	(0.068)	(0.51)	
Exposure: Dust samples		Allergic con	ijunctivitis		
BBP in dust (μg/g dust) (percentile): Median 75 th	1 (low)	1.0 (referent)	1.0 (referent)	1.0 (referent)	
Floor dust (n = 148)1.93.9Multi-surface dust (n = 120)1.73.9	2	0.65 (0.23, 1.83)	0.66 (0.14, 3.12)	0.64 (0.19, 2.17)	
Analysis: Generalized linear mixed effects model, considering gender, age strata (<15, ≥15 yrs, smoking status (personal	3 (high)	1.40 (0.56, 3.49)	1.48 (0.33, 3.56)	1.34 (0.47, 3.79)	
and environmental tobacco smoke), furry	(trend <i>p</i> -value)	(0.46)	(0.61)	(0.59)	
pets in home, signs of dampness, Der 1 (not defined by authors), other		Atopic de	ermatitis		
phthalates dust, airborne fungi,	1 (low)	1.0 (referent)	1.0 (referent)	1.0 (referent)	
formaldehyde, total VOC, and building characteristics as potential covariates	2	3.69 (1.41, 9.68)	4.02 (1.01, 14.5)	3.40 (0.78, 14.8)	
	3 (high)	5.46 (2.06, 14.48)	6.55 (1.71, 25.3)	4.54 (1.06, 19.4)	
	(trend <i>p</i> -value)	(0.001)	(0.007)	(0.041)	
	<i>p</i> -value for age interaction >0.2 for all endpoints				
	adjusted ORs for a 9.81 (1.06, 91.23) No other significa or stratified by ag	urface dust stratific allergic conjuctiviti in BBP tertile 2 an ntly increased adju e) were observed i multisurface dust.	s in children; ORs (d 7.71 (0.85, 69.97 Isted ORs (either in n analyses using Bl	95% Cl) were) in tertile 3. 1 the full sample	

Reference ar	nd study design	Results				
Wang et al. (2014) Population: 218 ch cohort, born 2004– age 2 (n = 218) and	ildren from birth 2005; follow-up at age 5 (n = 191)	OR (95% CI) for atopic dermatitis by quartile of MBzP (µg/g Cr) (adjusted for gender, gestational age, maternal education, maternal history of atopy, and prenatal environmental tobacco smoke exposure)				
	ermatitis based on e (three questions— nd going for at least	MBzP quartile (μg/g Cr)	Age 2 y	vrs A	ge 5 yrs	
	ash in last 12 mo; ever	1 (<1.9048)	1.0 (refer	rent) 1.0	(referent)	
diagnosed with ato		2 (1.9048–4.4776)	1.10 (0.44-	-2.69) 1.12	(0.43–2.88)	
doctor?); total seru	m IgE al urine sample, third	3 (4.4776–8.2000)	0.93 (0.37-		(0.22–1.61)	
	nples in children (ages	4 (>8.2000)	2.50 (1.08-		(0.81-4.87)	
Cr-adjusted MBzP in Geom At 3 rd trimester 1 Age 2 3 Age 5 3	n urine (μg/g Cr): etric mean (SE) 1.84 (1.11) 8.76 (1.10) 8.46 (1.08) gression and logistic	Regression coefficient (<i>p</i> -value) for log-serum total IgE at 2 yrs of ag according to log-urine phthalate metabolite concentrations at age 2 yrs (adjusted for gestational age, maternal education, maternal history of atopy, and prenatal environmental tobacco smoke exposure)				
regression of log tra		All children (n = 218)		0.008 (0.84)		
	stational age, parity,	Boys (n = 114)		0.016 (0.74)		
family income, pare of breast feeding, to	ind carpets in home,	Girls (n = 104)		-0.006 (0.96)		
(<u>Callesen et al. (201</u> (2014b)) (Denmark)	a	Median BBP in dust (examination, from <u>C</u>			ed on clinical	
88 atopic dermatitie 242 healthy control based survey (Danis	s from population-		Controls (n = 242)	Rhinoconjunctivit (n = 81)	Atopic is dermatitis (n = 88)	
	hildren's Health); ages	Home	3.9	3.5	3.9	
3–5 yrs; 2008 Outcome: Allergic r	hinoconjunctivitis or	Daycare	15.4	16.6	15.4	
atopic dermatitis ba and parent intervie	ased on clinical exam w; allergic	Weighted average	7.8	8.9	7.7	
rhinoconjunctivitis recurrence of at lea symptoms (pruritus sneezing spells >20,	st two or more nasal , runny nose,	dermatitis) OR (95% CI) for rhinoconjunctivitis or atopic dermatitis (number of				
stenosis/mouth bre symptoms (itching, or watery secretion	eathing) and ocular conjunctival injection, in both eyes) when is; atopic dermatitis ence of at least 3 of					

Preliminary Materials for the IRIS Toxicological Review of Butyl Benzyl Phthalate

Reference and study design	Results			
features; 70% of rhinoconjunctivitis and 50% of atopic dermatitis cases were IgE	MBzP quartile	Rhinoconjunctivitis (71 cases, 216 controls)	Atopic dermatitis (76 cases, 216 controls)	
positive based on 20 allergen tests Exposure : BBP concentration in dust	1 (low)	1.0 (referent)	1.0 (referent)	
samples from bedroom and daycare	2	1.48 (0.68, 3.23)	1.23 (0.58, 2.63)	
centers (<u>Callesen et al., 2014a</u>); MBzP in urine samples from subset of population	3	0.89 (0.39, 2.01)	0.69 (0.31, 1.55)	
(76 with rhinoconjunctivitis, 81 with atopic dermatitis, and 222 controls) (<u>Callesen et al., 2014b</u>) BBP in dust (µg/g dust) among controls: Median	4 (high)	1.18 (0.56, 2.48)	1.43 (0.72, 2.88)	
Home 3.9 Daycare 15.4 Weighted* average 7.8 (*weighted by assumed time spent in each environment) MBzP in urine (ng/mL) of controls: Median 95 th percentile Unadjusted 13.7 71.4 Analysis: Mann-Whitney U-test for concentration comparisons between groups; logistic regression for ORs, considering sex, breastfeeding <3 mo, antibiotic use, single allergic predisposition, visible mold, visible moisture, window condensation, cat or dog in the home, pet avoidance, changed cleaning habits, smoking in the home, and social class as potential covariates				

Reference and study design	Results			
Hoppin et al. (2013) ^a (United States, NHANES) Population: 2,325 participants in population-based survey (NHANES), 2005–2006; ages ≥6 yrs	Prevalence and OR (95% CI) for allergy symptoms and allergic sensitization per unit change in log-transformed urinary MBzP lev (adjusted for age, race/ethnicity, gender, BMI, creatinine, and cotinine) Children (n = 779)			
Outcome: Self-administered questionnaire current allergy symptoms (hay fever, allergy, itchy rash, rhinitis) in	Hay fever (n = 3.6% 0.42 (0.22, 23)			
past year; allergic sensitization as	Rhinitis (n = 188)	27.6%	1.02 (0.62, 1.67)	
measured by serum IgE (19 allergen specific IgEs, ≥0.35kU/L) Exposure: Urine sample collected same	IgE sensitization (any)	46.1%	1.18 (0.74, 1.86)	
day as serum sample; data reported in Unadjusted MBzP in urine (μg/L)	Adults (n = 1,546)			
(percentile): Median 75 th 95 th	Hay fever (n = 88)	7.4%	1.68 (1.09, 2.59)	
Children 17.98 37.79 106.75 Adults 7.57 17.37 57.37	Rhinitis (n = 498)	35.4%	1.24 (1.01, 1.52)	
Analysis: Logistic regression, adjusting for variables shown in results column and	IgE sensitization (any)	44.0%	1.41 (0.96, 2.06)	
sampling weights; separate analyses for children (ages 6–17 yrs) and adults (>17 yrs)	Authors reported that adjustment for poverty income ratio did not alter ORs			
Just et al. (2012b) York City)	RR (95% CI) for IQR increase in log-transformed MBzP among all reporters (adjusted for specific gravity, sex, and race/ethnicity)			
Population: 376 children from birth cohort (CCCEH), born 1999–2006; 376	Eczema (by 24 mo)		1.52 (1.21, 1.91)	
completed at least 1 of 4 follow-ups in yr 1 and 1 of 4 follow-ups in yr 2;	OR (95% CI) for interq consistent reporters o		log-transformed MBzP among	
339 continued through 60 mo (4 follow- ups between 24 and 60 mo)	Eczema (by 24 mo)		1.91 (1.23, 2.97)	
Outcome: Mother's report of doctor-	Eczema (late onset)		0.90 (0.51, 1.58)	
diagnosis of eczema (telephone and in- person interviews; early onset: reported at or before age 24 mo; late onset: first reported between 24 and 60 mo; total	Regression coefficient concentration and log for specific gravity, se	total IgE in early o	nset eczema cases (adjusted	
serum IgE Exposure: Maternal urine sample, third	IgE (at 60 mo)		-0.14 (-0.41, 0.13)	
trimester MBzP in urine (ng/mL):				
Percentile Geometric mean 25 th 75 th				
Unadjusted 13.6 5.7 31.1 Analysis: Poisson and logistic regression,				
considering sex, race/ethnicity, prenatal exposure to tobacco smoke, maternal				
age and education, marital status,				
maternal self-report of asthma, and maternal log total IgE as potential covariates				

Reference and study design		Results		
Hsu et al. (2012) ^a (Taiwan) Population: 59 cases (48 with allergic rhinitis, 36 with eczema), 42 controls, ages 3–9 yrs, recruited through kindergartens and day care centers,	OR (95% CI) for allergic rhinitis or eczema by quartile of exposure (adjusted for age, sex, presence of fever, medication use, parents' smoking status, parents' allergy history, parents' education, and mo of sampling)			
2005–2006. Outcome: Allergic rhinitis or eczema;	BBP quartile, dust (μg/g dust)	Rhinitis	Eczema	
initial case/control status determined	1 (0.08–1.00)	1.0 (referent)	1.0 (referent)	
through parent report of history; final	2 (1.00-1.00)	1.0	1.0	
status determined by clinical examination	3 (1.01–3.88)	2.04 (0.50, 8.33)	2.00 (0.42, 9.58)	
Exposure: Settled dust samples from	4 (3.89-40.16)	7.01 (1.75, 28.17)	7.71 (1.67, 35.61)	
child's major and minor activity rooms;				
urine samples collected at clinical examination	(trend <i>p</i>)	0.006	0.011	
BBP in dust, all subjects: Median 75 th percentile	MBzP quartile, urine (μg/g Cr)	Rhinitis	Eczema	
Dust (µg/g) 1.0 3.9	1 (0.97–2.56)	1.0 (referent)	1.0 (referent)	
MBzP in urine, all subjects:	2 (2.57–5.11)	1.27 (0.33, 4.84)	2.48 (0.59, 10.50)	
Median 75 th percentile Unadjusted (µg/L) 4.8 11.8	3 (5.12–12.87)	1.18 (0.30, 4.69)	1.42 (0.30, 6.74)	
Cr-adjusted (µg/g Cr) 5.1 12.9	4 (12.88–217.16)	2.31 (0.55, 9.70)	2.27 (0.46, 11.26)	
Analysis: Logistic regression adjusting for variables shown in the results column	(trend <i>p</i>)	>0.05	>0.05	
	OR for all cases (at least one among asthma, rhinitis, or eczema) significantly elevated in highest quartile BBP in dust (OR = 5.82 , 95% CI = 1.52 , 22.32 ; trend $p = 0.01$)			
Kanazawa et al. (2010) (Japan) Population: 134 residents (41 dwellings), including 33 reporting at least one symptom and 101 with no reported	concentration (adju	ilar results with additio	-fold increase in BBP istory of allergy, and time nal adjustment for moldy	
symptoms	Multi-surface dust	(mg/kg)	1.9 (0.8–4.7)	
Outcome: Self-reported "sick house syndrome" symptoms (fatigue; feeling	Floor dust (mg/kg)		1.7 (0.5–6.0)	
heavy-headed; headache; nausea/ dizziness; difficulty concentrating; itching, burning or irritation of the eyes; irritated, stuffy, or runny nose; hoarse, dry throat; cough; dry or flushed facial skin; scaling/itching of the scalp or ears; and dry, itching or red-skinned hands) Exposure: Air and dust sample in dwellings BBP in room air (ng/m ³): Median Range Total concentration <2.9 <2.9-26.6 BBP in dust (mg/kg): Median Range				
Multi-surface2.4<0.2-35.8Floor4.2<0.2-52.1				

Reference and study design	Results			lts
Analysis: Logistic regression, adjusting for variables shown in the results column				
Sun et al. (2009) (China) Population: Cases of rhinitis (n = 89) or eczema (n = 56) and controls (n = 331 and 118 for rhinitis and eczema analysis, respectively), all students of Tianjin	OR for rhinitis and eczema comparing BBP in dust (μ g/g dust) above and below the median (adjusted for age, gender, smoking, atopy, and building age) reportedly did not reach statistical significance (quantitative results not reported)			
University who had participated in a	Median co	ncentration	BBP in dust (μ	g/g dust)
cross-sectional study of allergic symptoms and environmental factors;			Cases	Control
2006–2007	Rhinitis		20.11	26.05
Outcome: Self-reported symptoms from	Eczema		19.40	22.51
questionnaire. Rhinitis = in past 12 mo, had a problem with sneezing, or a runny, or a blocked nose when not having a cold or the flu, or sneezing, or a runny, or a blocked nose, or itchy-watery eyes after contact with furred animals or after contact with pollen; eczema = in past 12 mo, had an itchy rash; controls responded no to questions on asthma/wheeze, rhinitis, and eczema Exposure: Surface dust sample in dorm rooms BBP in dust (μ g/g): Median 75 th percentile 26.22 42.03 Analysis: Logistic regression for OR, considering age, gender, passive smoking, smoking, pet raising, atopy, and building age as potential covariates; Mann-Whitney U-test for comparison between BBP concentrations of cases and controls; t-test for comparisons between log transformed concentrations	<i>p</i> >0.35 for	[.] Mann-Whit	ney and t-test	S
Kolarik et al. (2008) (Bulgaria)	Concentrat	tion BBP in d	ust (mg/g dus	t)
Population: 100 cases, 77 controls from population-based survey (ALLHOME		Median	Mean	<i>p</i> -value for Dunnett test
study), 2004–2005; ages 2–7 yrs	Controls	0.32	0.45	(0.37)
Outcome: Cases: positive response to	All cases	0.38	0.53	(0.34)
wheezing during the last 12 mo, rhinitis	Rhinitis	0.32	0.49	(0.58)
during the last 12 mo, when not having a cold, or itching rash eczema in the last 12 mo; controls: negative response to all three questions and other questions on bictory of wheeping acthma alloray	Eczema	0.40	0.60	(0.21)
history of wheezing, asthma, allergy symptoms or diagnosis in past Exposure: Surface dust samples from children's bedrooms				

Reference and study design	Results			
BBP in dust (mg/g): Geometric mean All homes 0.32 Analysis: Dust concentrations compared between case and control homes overall, and between cases with specific symptoms in the preceding 12 mo and controls, using Mann-Whitney U-test (untransformed data) and Dunnett test (log-transformed data)				
Bornehag et al. (2004) ^a (Sweden) Population: 198 cases, 202 controls from population-based cohort (Dampness in Buildings and Health cohort) (n = 10,852), 2001–2002; ages	OR (95% CI) for case status by quartile of BBP in dust (mg/g dust) (adjusted for sex, age, smoking in home, type of building, construction period, flooding during preceding 3 yrs, and DEHP in dust) BBP quartile			
2-7 yrs	(mg/g dust)	Rhinitis (n = 79)	Eczema (n = 115)	
Outcome: Rhinitis or eczema (cases	1 (≤0.05)	1.0 (referent)	1.0 (referent)	
report at least two incidents of rhinitis or eczema in the preceding year, and at	2 (0.05–0.13)	1.03 (0.44, 2.39)	0.84 (0.40, 1.76)	
follow-up 1.5 yrs later)	3 (0.13–0.25)	1.23 (0.53, 2.88)	1.45 (0.71, 2.97)	
Exposure: Surface dust samples from children's bedrooms BBzP in dust (mg/g): Median All homes 0.135 Analysis: Logistic regression adjusting for variables shown in results column	4 (0.25–45.55)	3.04 (1.34, 6.89)	2.56 (1.24, 5.32)	

^aAdditional results for this study are presented in the asthma table.

CCCEH = Columbia Center for Children's Environmental Health; ISAAC = International Study of Asthma and Allergies in Children; IgE = immunoglobulin E; VOC = volatile organic compound

6

Table 3-10. Evidence pertaining to BBP and asthma/wheezing and hypersensitivity in humans

Reference and study design	Results				
Ait Bamai et al. (2014) $(Japan)^a$ Population: Children (n = 122, ages <15 yrs) and adults (n = 374, ages \geq 15 yrs) living in 148 detached dwellings in which at least 25 mg of dust was collected; 2006 follow-up	(µg/g dust) (ad	ljusted for gender ex, furry pets insic	a by tertile of BBP i r, age strata, smokir de the home, Der 1,	ng status,	
of 2003 baseline survey	BBP tertile	Full sample	Children	Adults	
Outcome: Bronchial asthma assessed by self-	1 (low)	1.0 (referent)	1.0 (referent)	1.0 (referent)	
administered questionnaire (positive response to: in the past 2 yrs have you been seen at a hospital for bronchial asthma?);	2	3.46 (0.82, 14.55)	3.30 (0.57, 19.2)	3.63 (0.39 <i>,</i> 34.2)	
parents completed questionnaires for inhabitants <6 yrs old	3 (high)	2.97 (0.78, 11.35)	2.98 (0.51, 17.4)	2.96 (0.29, 30.2)	
Exposure: Dust samples BBP in dust (μg/g dust) (percentile): Median 75 th	(trend <i>p</i> -value)	(0.11)	(0.23)	(0.36)	
Floor dust (n = 148) 1.9 3.9 Multi-surface dust (n = 120) 1.7 3.9	<i>p</i> -value for age interaction = 0.95				
Analysis: Generalized linear mixed effects model, considering gender, age strata (<15, ≥15 yrs), smoking status (personal and environmental tobacco smoke), furry pets in home, signs of dampness, Der 1 (not defined by authors), other phthalates dust, airborne fungi, formaldehyde, total VOC, and building characteristic as potential covariates	using BBP measurements in multisurface dust d			•	

Reference and study design	Results				
(<u>Callesen et al. (2014a);</u> <u>Callesen et al.</u> (2014b)) ^a (Denmark)	Median BBP in dust (µg/g), by case-control status based on clinica examination, from <u>Callesen et al. (2014a)</u>				
Population: 72 asthma cases, 242 healthy					
controls group from population-based	Controls (n = 242) Asthma (
survey (Danish Indoor Environment and	Home	3.9	2.9		
Children's Health); ages 3–5 yrs; 2008	Daycare	15.4	18.3		
Outcome: Asthma based on clinical exam	-	-			
and parent interview. Asthma diagnosed by	Time-weighted	7.8	8.2		
recurrence of at least two of three	(p >0.05 for all tests)				
symptoms: cough, wheeze, and shortness of					
breath within the previous 12 mo (symptoms	Similar results when ba	sed on case status defir	ned by parent		
not triggered by respiratory infections); and doctor diagnosis of asthma in combination	questionnaire data (n =	110 cases)			
with ongoing treatment; 47% of asthma					
cases were IgE positive based on 20 allergen	OR (95% CI) for bronchi	-			
tests	reclassification of some				
Exposure : BBP concentration in dust samples	examination and elimin		-		
from bedroom and daycare centers (Callesen	covariates) by quartile of breastfeeding <3 mo, sr				
et al., 2014a); MBzP in urine samples from	predisposition (<u>Calleser</u>	-	u single allei gic		
subset of population (68 with asthma and					
222 controls) (<u>Callesen et al., 2014b</u>)	1 (low)	1.0 (ref	erent)		
BBP in dust (µg/g), controls:	2	1.18 (0.5	5, 2.55)		
Median	2	-	-		
Home 3.9	3	0.63 (0.2	0, 1.53)		
Daycare 15.4	4 (high)	1.11 (0.5	1, 2.44)		
Time-weighted 7.8 (weighted by assumed time spent in each					
environment)					
MBzP in urine (ng/mL) of controls:					
Median 95 th percentile					
Unadjusted 13.7 71.4					
Analysis: Mann-Whitney U-test for					
concentration comparisons between groups;					
logistic regression for ORs, considering sex,					
breastfeeding <3 mo, antibiotic use, single					
allergic predisposition, visible mold, visible					
moisture, window condensation, cat or dog	g				
in the home, pet avoidance, changed					
cleaning habits, smoking in the home, and					
social class as potential covariates					

Reference and study design	Results		
Bertelsen et al. (2013) (Norway) Population: 623 children from birth cohort (Environment and Childhood Asthma study),	OR (95% CI) for current asthma by quartile of MBzP (μg/L) (adjusted for urine specific gravity, sex, parental asthma, and household income)		
born 1992–1993; children with current asthma over-sampled (follow-up	1: ≤16.9 (referent)	1 (referent)	
2001–2004); ages 10 yrs	2: >16.9-29.2	0.70 (0.39, 1.3)	
Outcome: Current asthma (parental report of history of asthma plus ≥ 1 of the following:	3: >29.2-52.9	0.83 (0.45, 1.5)	
dyspnea, chest tightness, and/or wheezing in	4: >52.9	1.3 (0.75, 2.4)	
previous 12 mo; use of asthma medications in previous 12 mo; positive exercise challenge test)			
Exposure: First morning urine sample(child's), collected at study examinationMBzP in urine (µg/L) (percentiles):Median75 th 95 th Unadjusted29.352.9128.7SG-adjusted30.853.2135.3Analysis:Logistic regression, adjusting forvariables shown in the results column			
Hoppin et al. (2013) ^a (United States, NHANES) Population: 2,325 participants in	Prevalence and OR (95% CI) for as in log-transformed urinary MBzP race/ethnicity, gender, BMI, creat	level (adjusted for age,	
population-based survey (NHANES), 2005–2006; ages ≥6 yrs	Children (n = 779)		
Outcome: Self-administered questionnaire	Asthma (n = 65) 8	3.4% 1.06 (0.33, 3.45)	
(asthma, wheeze in past year) Exposure: Urine sample collected same day	Wheeze (n = 80) 10	0.7% 0.92 (0.35, 2.37)	
as serum sample	Adults (n = 1,546)		
Unadjusted MBzP in urine (μg/L) (percentile):	Asthma (n = 116) 7	7.4% 1.46 (1.01, 2.11)	
Median 75 th 95 th	Wheeze (n = 219) 10	6.6% 1.78 (1.22, 2.60)	
Children 17.98 37.79 106.75 Adults 7.57 17.37 57.37 Analysis: Logistic regression, adjusting for variables shown in results column and sampling weights; separate analyses for children (ages 6–17 yrs) and adults (>17 yrs)	Authors reported that adjustmen alter ORs	t for poverty income ratio did not	

Reference and study design	Results		
Just et al. (2012a) (United States, New York) Population: 244 children from birth cohort (CCCEH), born 1999–2006; follow-up in 2006–2010, ages 4.9–9.1 yrs	(adjusted for s of feNO collect	pecific gravity, age, sex	ncrease in In-MBzP (ng/mL) <, race/ethnicity, time of day similar results with additional MEP, and MEHHP)
Outcome: Measured feNO (1–3 measures per child), measured seroatopy (specific IgE	% Differe	nce (95% CI)	<i>p</i> -value
to dust mite, cockroach, or mouse allergens,	6.8 (1	l.1, 12.9)	0.019
≥0.35 IU/mL), wheeze within past year or in subsequent year (based on parent report at feNO study visit and at the next study visit), with additional information to model	change in MBz	P (adjusted for specific	ver 2-yr follow-up) by log unit gravity, age at atopy ure, sex, and race/ethnicity)
wheezing phenotype		1.08 (0.89,	1.32)
Exposure: Urine sample (child's), collected at time of feNO measurement MBzP in urine (ng/mL): Geometric mean (95% CI)		P (adjusted for specific	at age 5 or 7 yrs) by log unit gravity, sex, and
Unadjusted 24 (20–28)		Subjects in feNO	Entire CCCEH
Analysis: Generalized estimating equation regression models adjusted for variables		study only	cohort
shown in results column	Age 5	0.94 (0.72, 1.22) n = 202	1.00 (0.83, 1.22) n = 350
	Age 7	1.12 (0.81, 1.54) n = 161	1.07 (0.85, 1.34) n = 289
Hsu et al. (2012) ^a (Taiwan) Population: 9 cases, 42 controls, ages 3–9 yrs, recruited through kindergartens and	sex, presence o	of fever, medication us	f exposure (adjusted for age, se, parents' smoking status, cation, mo of sampling)
day care centers, 2005–2006.	BBP quartile, d	ust (µg/g dust)	Asthma
Outcome: Initial case/control status determined through parent report of history;	1 (0.08–1.00)		1.0 (referent)
final status determined by clinical	2 (1.00-1.00)	1	1.0
examination. Exposure: Settled dust samples from child's	3 (1.01-3.88)	1	4.21 (0.35, 50.98)
major and minor activity rooms; urine	4 (3.89–40.16	5)	3.54 (0.32, 39.06)
samples collected at clinical examination BBP in dust, all subjects:	(trend <i>p</i>)		(>0.05)
Median 75 th percentile	MBzP quartile,	urine (μg/g Cr)	Asthma
Dust (µg/g) 1.0 3.9 MBzP in urine, all subjects:	1 (0.97–2.56)	1	1.0 (referent)
Median 75 th percentile	2 (2.57–5.11)		Not reported
Unadjusted (μ g/L) 4.8 11.8	3 (5.12–12.87		4.63 (0.15, 144.06)
Cr-adjusted (µg/g Cr) 5.1 12.9 Analysis: Logistic regression adjusting for	4 (12.88–217	-	68.52 (1.08, >999)
variables shown in the results column		.10)	
	(trend <i>p</i>)		(0.03)

Reference and study design	Results		
Sun et al. (2009) (China) Population: 233 cases of asthma/wheezing, rhinitis, or eczema, and 194 controls, all students of Tianjin University who had participated in a cross-sectional study of allergic symptoms and environmental	the median (adjusted	for age, gender, sm ot reach statistical s	/g dust) above and below oking, atopy, and building ignificance (quantitative dust)
factors; 2006–2007		Cases	Control
Outcome: Self-reported symptoms from questionnaire Asthma/wheezing = in past	Wheezing	20.11	23.81
Outcome: Self-reported symptoms from questionnaire. Asthma/wheezing = in past 12 months, have you had wheezing or whistling the in the chest; have you had dry cough at night for more than 2 wks, apart from a cough associated with a cold or chest infection; controls responded no to questions on asthma/wheeze, rhinitis, and eczema Exposure: Surface dust sample in dorm rooms BBP in dust (μ g/g): Median 75 th percentile 26.22 42.03 Analysis: Logistic regression for OR, considering age, gender, passive smoking, smoking, pet raising, atopy, and building age as potential covariates; Mann-Whitney U-test for comparison between BBP concentrations of cases and controls; t-test for comparisons between log transformed	(<i>p</i> >0.5 by Mann Whit		23.01
Bornehag et al. (2004) ^a (Sweden) Population: 106 cases, 177 controls from population-based cohort (Dampness in Buildings and Health cohort); n = 10,852;	(adjusted for sex, age	, smoking in home,	BBP in dust (mg/g dust) type of building, eding 3 yrs, and DEHP in
2001–2002; ages 2–7 yrs Outcome: asthma/wheezing without a cold,	BBP quartile (mg/g du	ust) As	sthma (n = 106)
in the preceding year, and at follow-up	, 1 (≤0.05)		1.0 (referent)
1.5 yrs later	2 (0.05–0.13)	0.	.67 (0.33, 1.38)
Exposure: Surface dust samples from children's bedrooms	3 (0.13–0.25)	0.	.88 (0.43, 1.80)
BBP in dust (mg/g): Median All homes 0.135 Analysis: Logistic regression adjusting for variables shown in results column	4 (0.25–45.55)	1.	.87 (0.92, 3.81)

¹ 2 3 4 5

^aAdditional results for this study are presented in the allergy/immune table.

feNO = fractional exhaled nitric oxide; MEP = monoethyl phthalate

1 **3.2.10.** Thyroid Effects in Humans

2

Table 3-11. Evidence pertaining to BBP and thyroid hormones in humans

Reference and study design	Results		
Dirtu et al. (2013) (Belgium) Population: 152 overweight or obese adults from weight loss cohort (ENDORUP) seen at weight management clinic, 43 age- and sex-matched controls from hospital staff and	Regression coefficient (<i>p</i> -value) for change in hormone level with unit change in In-MBzP (adjusted for age, weight loss, and sex, or stratified by sex) (0.0 = no effect)		
other volunteers, enrolled 2009–2012; among obese/ overweight group, 65 received bariatric surgery and 87 received standard diet and lifestyle counseling; follow-up 3,	Full sample Men Women Overweight/obese group		
6, and 12 mo Outcome: Serum thyroid hormone levels (details of blood collection were not reported)	Free T4 -0.10 -0.14 -0.10 (0.34) (0.23) (0.37)		
Exposure: Urine sample (24-hr) MBzP in urine (ng/mL): Median 75 th percentile 90 th percentile	TSH 0.11 (0.19) 0.03 (0.83) 0.16 (0.13) Referent group		
Controls61120Obese (at baseline)81625Analysis: Linear regression, adjusting for variables shown in results column1010	Free T4 0.30 (0.06) 0.45 (0.15) 0.21 (0.29) TSH 0.30 (0.06) -0.11 0.44 (0.02) (0.75) (0.75) (0.75)		
Boas et al. (2010) (Denmark) Population: 758 children from birth cohort study, born 1997–2001; examined 2006–2007, ages 4–9 yrs Outcome: Serum thyroid hormone levels (nonfasting	Regression coefficient (<i>p</i> -value) for change in hormone level with unit change in In-MBzP (adjusted for sex and age) (0.0 = no effect) Unadjusted MBzP Cr-adjusted MBzP		
sample) Exposure: Urine sample (child's), collected same day as serum samples Unadjusted MBzP in urine (µg/L):	T3 -0.05 (0.016) -0.03 (0.27) Free T3 -0.08 (0.032) -0.02 (0.71)		
Median75th percentileBoys1737Girls1231Cr-adjusted MBzP in urine (µg/g Cr):	T4 -2.34 (0.026) -2.90 (0.027) Free T4 -0.19 (0.059) -0.32 (0.012) TSH -0.01 (0.47) 0.00 (0.96)		
Median 75 th percentile Boys 26 49 Girls 20 42	IGF-1 -0.01 (0.38) 0.00 (0.74) IGFBP-3 -0.01 (0.27) 0.00 (0.91)		
Analysis: Linear regression, adjusting for variables shown in the results column	Similar patterns seen in analyses stratified by gender. Units for hormone analyses were not reported in the publication		

Reference and study design	Results		
Meeker et al. (2007) (United States, Boston) Population: 408 male partners from subfertility clinic, 2000–2004; mean (± SD) age 36 (± 5.3) yrs Outcome: Serum thyroid hormone levels Exposure: Urine sample, collected same day as serum samples MBzP in urine (ng/mL): Median 75 th percentile 95 th percentile SG-adjusted 8.16 15.7 42.4 Analysis: Linear regression, considering age, BMI, smoking status, race, previous examination for infertility, prior impregnation of partner, timing of blood and urine samples, and time of day as potential covariates	Regression coefficient (95% CI) for change in hormone level per IQR change in SG-adjusted MBz (ng/mL, after back-transformation from In-MBzP) (adjusted for age, BMI, current smoking, and time of blood sample)Untransformed hormone levels (0.0 = no effect) Total T3 (ng/mL)0.001 (-0.018, 0.021) Free T4 (ng/dL)Free T4 (ng/dL)-0.017 (-0.046, 0.011) Ln-transformed hormone levels (1.0 = no effect)TSH (µIU/mL)1.01 (0.94, 1.08)		
Huang et al. (2007)(Taiwan)Population: 76 pregnant women undergoing amniocentesis due to age >35 yrs or abnormal α- fetoprotein or β-hCG test, 2005–2006Outcome: Serum thyroid hormone levels collected during 2 nd trimesterExposure: Urine sample, collected same day as serum samples MBzP in urine: Median 75 th percentile 95 th percentile Unadjusted (ng/mL) 0.9 0.9 33.4 Cr-adjusted (µg/g Cr) 3.7 6.0 24.0Analysis: Spearman correlation analysis; linear regression, adjusting for variables shown in results column	Spearman correlation coefficient between holevel and MBzPUnadjustedCr-adjuMBzP (ng/mL)MBzP (μgT3 (ng/dL)-0.084-0.07T4 (µg/dL)0.0340.04Free T4 (ng/dL)-0.0070.08TSH (µIU/mL)-0.080-0.12All coefficients p >0.05Adjusted regression coefficient (p-value) for coIn In-T4 with change in In-MBzP (adjusted forBMI, gestational age, and other phthalatemetabolites [MEP, MBP, MEHP, MMP])T4 (nmole/L)0.032 (0.224	sted /g Cr) /5 0 .3 .3 hange age,	

MMP = monomethyl phthalate; T3 = triiodothyronine; T4 = thyroxine; TSH = thyroid stimulating hormone

1 **3.2.11.** Pulmonary Function in Humans

- 1
_

Table 3-12. Evidence pertaining to BBP and pulmonary function in humans

Reference and study design	Results			
Cakmak et al. (2014) (Canada) Population: 3,147 participants* in population-based survey (Canadian Health	Change in pulmonary function (95% CI) per interquartile range increase in Cr-adjusted urinary MBzP (adjusted for age, sex, smoking, fasting, income education, and PM _{2.5})			-
Measures Survey), ages 6–49 yrs Outcome: Pulmonary function based on		FEV_1	FVC	FEV _{1/} FVC
FVC and FEV_1 (expressed as percent of values predicted based on age, height, and sex)	All participants (n = 3,071)	-0.9 (-1.6, -0.2)	-0.6 (-1.2, 0.1)	-0.5 (-0.9, -0.1)
Exposure: Urine sample collected at same	By age			
time as pulmonary function testing MBzP in urine (μg/g Cr), all participants: Geometric mean (95%Cl)	Age 6–16 (n = 1,642)	-0.6 (-1.5, 0.3)	-0.7 (-1.6, 0.2)	0.0 (-0.5, 0.5)
Cr-adjusted 16.4 (15.84–16.98) Analysis: Linear regression, generalized linear mixed models (weighted based on	Age 17–49 (n = 1,505)	-0.5 (-1.5, 0.6)	0.4 (-0.6, 1.4)	-0.8 (-1.4, -0.2)
sampling weights), considering BMI,	By sex			
ethnicity, education, income, passive smoking, current smoking, and ambient conditions on day of lung function	Male (n = 1,555)	0.8 (-1.5, 3.1)	0.6 (-2.6, 3.6)	-0.1 (-1.3, 1.1)
measures (temperature, relative humidity, barometric temperature, nitrogen dioxide, ozone, and fine particulates (PM _{2.5}) as potential covariates; stratified by age (6–16, 17–49 yrs) and sex *Study reports number of participants inconsistently; Table 3 reports 3,071 participants, while the Methods section and all other data tables report 3,147 participants.	Female (n = 1,592)	-0.3 (-2.1, 1.5)	-0.6 (-2.4, 1.2)	0.1 (-0.8, 1.0)
Hoppin et al. (2004) NHANES) Population: 240 participants in population-based survey (NHANES III), 1988–1994; ages 20–60 yrs	measure per int	ficient (SE) for cha erquartile range in usted for age, age	ncrease in MBzP (19.77 ng/g
Outcome: FVC, FEV1, PEF, MMEF			β (SE)	
Exposure: Urine sample, collected at time			Men	Women
of pulmonary function testing	FVC	-	-74 (68)	64 (63)
Mean (SD) MBzP in urine: Men Women	FEV1	-	-52 (56)	34 (54)
Unadjusted (ng/mL) 22 (3.0) 22 (2.9)	PEF		226 (196)	-153 (155)
Cr-adjusted (ng/g Cr) 17 (2.5) 23 (2.4) Analysis: Linear regression, stratified by	MMEF	-	76 (136)	-61 (120)
sex and adjusted for variables shown in results column	<i>p</i> >0.05 for all; results among nonsmokers only showed no significant associations for either men or women			

3.2.12. Neurodevelopmental Effects in Humans 1

Table 3-13. Evidence pertaining to BBP and neurodevelopmental effects in 2 3 humans

Reference and study design	Results			
Neurobehavioral measures in school-aged children	1			
Chopra et al. (2014) (United States, NHANES) Population: 1,493 participants in population- based survey (NHANES), 2001–2004, ages 6–15 yrs Exposure: Urine sample collected same day as NHANES exam MBzP in urine (μg/g Cr) (percentile):	Geometric mean (95% by diagnosis Neither condition (n = 1,262)	% CI) Cr-adjusted Attention deficit disorder only (n = 56)	Learning Learning disorder only (n = 116)	ne (µg/g Cr) Both conditions (n = 56)
Median 75 th 95 th Cr-adjusted 24.7 48.7 96.3 Outcome: Attention deficit disorder or learning disorder as reported by parent	28.7 (26.6, 31.0) (trend <i>p</i> -value = 0.14)	25.8 (17.6, 38.0))	28.8 (22.3, 37.3)	46.6 (29.0, 75.1)
Analysis: Logistic regression, considering age, sex, race, household income, low birth weight, health insurance coverage, routine source of healthcare, mental health professional use in past yr, child blood lead level, maternal age at birth, and maternal smoking during pregnancy as potential covariates	OR (95% CI) per 10-fo transformed MBzP (a income, log-transform during pregnancy)	djusted for sex,	age, race, ho	usehold
	Attention deficit diso	rder only (n = 11	2)	1.5 (0.7, 3.4)
	Learning disorder only (n = 173)			1.2 (0.6, 2.5)
	Both conditions (n = 56)			2.0 (0.6, 6.3)
	Authors reported no i and phthalate concer reported)			
Kobrosly et al. (2014) (United States; Minnesota, Missouri, California, Iowa) Population: 153 children (n = 76 girls, n = 77 boys) from birth cohort study (SFF), born	Regression coefficien child behavior checkli MBzP (adjusted for se creatinine, and family	ist per unit incre ex, age, mother's	ase in In-trar	nsformed
2000–2005, ages 6–10 yrs in 2010 follow-up Outcome: Child Behavior Checklist completed by		Boys		Girls
parent	Anxiety/depression	-0.06 (-0.25, 0	.13) –0.20 (-0.39, -0.01)
Exposure: Maternal urine sample, 3 rd trimester (mean 26.6 wks)	Withdrawn	0.02 (-0.14, 0.	17) –0.13	(-0.29, 0.02)
MBzP in urine (ng/mL):	Somatic complaints	0.0 (-0.15, 0.1	16) –0.08	(-0.24, 0.07)
Geometric mean (95% CI) Unadjusted 6.6 (5.3, 8.2)	Social problems*	0.06 (-0.10, 0.	22) -0.14	(-0.30, 0.02)
Analysis: Linear regression, considering sex, age,	Thought problems	-0.06 (-0.22, 0	.11) -0.04	(-0.20, 0.12)
mother's education, urinary creatinine, family stress measure, and race/ethnicity as potential	Attention problems	0.0 (-0.18, 0.1	9) -0.10	(–0.29, 0.08)
covariates	Rule-breaking behavior	0.08 (-0.07, 0.3	23) -0.10	(-0.25, 0.05)
	Aggressive behavior	0.19 (-0.01, 0.4	40) 0.0 (-	-0.21, 0.20)

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design	Results			
	Internalizing behavior	-0.04 (-0.25,	0.18) -0.2	2 (-0.44, 0.0)
	Externalizing behavior	0.18 (-0.03,	0.40) -0.04	4 (-0.25, 0.17)
	Total problems	0.10 (-0.20,	0.40) -0.22	1 (–0.51, 0.10)
	*Sex interaction <i>p</i> -value = 0.05; all other interaction <i>p</i> -values >0.05			tion <i>p</i> -values
Neurobehavioral outcomes in infants and prescho	ol-aged children			
Braun et al. (2014) (United States)Population: 175 children from birth cohort in Ohio (HOME cohort, recruited during pregnancy, 2003–2006). Follow-up at ages 4–5 yrsOutcome: Autistic behaviors based on Social Responsiveness Scale completed by mother; 65 item scale, higher score = more autistic behaviorsExposure: Maternal urine samples, 16–26 wks of 	Regression coefficien unit increase in log-t for maternal demog symptoms, caregivin	transformed Cr raphic and peri	-adjusted MB natal factors, c, and serum c	zP (adjusted depressive
Téllez-Rojo et al. (2013) (Mexico) Population: 135 children from birth cohort (Early Life Exposure in Mexico to Environmental Toxicants cohort; mothers recruited during first trimester, 1997–2003)	Regression coefficien neurodevelopment MBzP (adjusted for b weight-for-age, child and laboratory)	score per unit i birthweight, bro	ncrease in ma eastfeeding p	ractices,
Outcome: Mental and psychomotor development based on Bayley Scales of Infant Development-II (assessed by trained examiner, videotaped for quality control assessment)		Total sample (n = 135)	Boys (n = 64)	Girls (n = 71)
tested at 24, 30, and 36 mo of age Exposure: Maternal urine sample, 3 rd trimester	MDI	0.30 (-1.11, 1.73)	1.30 (-0.37, 2.97)	-0.72 (-2.45, 1.01)
MBzP in urine (ng/mL): Geometric mean (95% CI) SG-adjusted 3.54 (2.94, 4.26) Analysis: Linear regression for longitudinal data, stratified by sex and adjusted for variables	PDI	0.10	1.79	-1.21 (-3.31, 0.88)
shown in results column Related reference: <u>Ettinger et al. (2009)</u>				

Reference and study design	R	esults	
Whyatt et al. (2012) (United States, New York City) Population: 297 children from birth cohort (CCCEH), born 1999–2006; 3-yr follow-up, mean age 36 mo (range 27–42 mo) Outcome: Mental, psychomotor and behavioral	gestational age and sex, and quality of care-taking		
development at 3 yrs based on Bayley Scales of Infant Development-II (assessed by trained	Boys	(n = 140)	Girls (n = 157)
examiners) and Child Behavior Checklist (completed by parent)		-0.45 23, 1.32)	-1.07 (-2.48, 0.33)
Exposure: Maternal urine sample, 3rd trimester MBzP in urine (ng/mL): Geometric mean		-0.57 74, 1.60)	-1.05 (-2.77, 0.67)
Unadjusted 19.0 Analysis: Linear and logistic regression adjusting for variables shown in results column; Wald test used to detect sex differences	Adjusted OR (95% CI) for risk (score ≤85) per In-unit increa model adjusted for one or m gravity, race/ethnicity, mater alcohol consumption, child's quality of care-taking enviror	se in maternal In-N ore of the followin mal marital status gestational age an	MBzP (each g: specific and prenatal
		Boys (n = 140)	Girls (n = 157)
	MDI	0.89 (0.64, 1.25)	0.94 (0.66, 1.35)
	PDI	0.96 (0.66 <i>,</i> 1.39)	1.25 (0.80, 1.95)
	Regression coefficient (95% (per unit increase in maternal gravity; ethnicity; maternal IC satisfaction during pregnance and BPA; and child's sex and	In-MBzP (adjusted Q, demoralization, y and prenatal expo	l for specific hardship,
		Boys (n = 129)	Girls (n = 148)
	Emotionally reactive	0.34 (-0.008, 0.69)	0.26 (-0.05, 0.57)
	Anxious/depressed	-0.05 (-0.46, 0.35)	0.51 (0.17, 0.85)
	Somatic complaints	-0.23 (-0.63, 0.17)	0.42 (0.10, 0.73)
	Withdrawn behavior	0.24 (-0.09, 0.58)	0.61 (0.29, 0.93)
	Internalizing behavior	0.29 (-0.83, 1.42)	1.79 (0.88, 2.69)
	Effect modification by gende anxious/depressed, somatic behavior (<i>p</i> -values of 0.035,	complaints, and int	-
	OR (95% CI) for child's score	in the borderline o	r clinical range

Reference and study design	Results		
	(compared to normal) per unit increase in maternal In-MBP (adjusted for specific gravity, maternal demoralization and satisfaction during pregnancy, and child's sex and age at testing)		
		Borderline	Clinical
	Somatic complaints	0.83 (0.59 <i>,</i> 1.15)	1.20 (0.78, 1.86)
	Withdrawn behavior	0.79 (0.48, 1.28)	1.57 (1.07, 2.31)
	Internalizing behavior	1.38 (1.01, 1.90)	1.43 (1.01, 1.90)

BPA = bisphenol A; FEV1= forced expiratory volume in 1 second; FVC = forced vital capacity; HOME = Health

Outcomes and Measures of the Environment; MDI = mental delay index; MMEF = maximal midexpiratory flow;

PAH = polycyclic aromatic hydrocarbon; PDI = psychomotor delay index; PEF = peak expiratory flow

5

1 3.2.13. Obesity Effects in Humans

2

Table 3-14. Evidence pertaining to BBP and obesity in humans

Reference and study design	Results			
Buser et al. (2014) (United States, NHANES) Population: Participants in population-based survey (NHANES), 2007–2010, ages ≥6 yrs [sample size not reported] Outcome: BMI measured at exam; divided	OR (95% CI) in children (6–19 yrs of age) for obesity or overweigh comparing highest quartile urinary MBzP (>27.58 ng/mL) with lowest quartile (≤5.66 ng/mL) (adjusted for age, race/ethnicity, calorie intake, serum cotinine, urinary creatinine, and income level)			
into obese (BMI z-score ≥95 th percentile in	,	Obese	Overweight	
children, BMI ≥30 in adults) and overweight (BMI z-score $85^{th}-95^{th}$ percentiles in children,	All	2.15 (0.80, 5.57)	1.50 (0.75, 3.02)	
BMI 25–29.9 in adults)		3.99 (1.20, 13.23)	3.23 (1.12, 9.34)	
Exposure: Urine sample, collected at same		0.84 (0.23, 3.06)	1.01 (0.45, 2.24)	
time as exam Unadjusted MBzP in urine (ng/mL) Geometric mean (SE): Ages 6–19 yrs 11.94 (0.63) Ages ≥20 yrs 5.88 (0.25) Analysis: Logistic regression, considering	OR (95% CI) in ac comparing highe lowest quartile (race/ethnicity, ca	dults (≥20 yrs of ag st quartile urinary <2.66 ng/mL) (adju alorie intake, recre	ge) for obesity or overweight MBzP (>143.04 ng/mL) with usted for age, gender, eational activity, serum cotinine, cohol intake, and diabetes)	
age, race/ethnicity, sex, urinary creatinine,		Obese	Overweight	
poverty income ratio, calorie intake, and serum cotinine as potential covariates in	All	1.09 (0.80, 1.47)	0.88 (0.64, 1.21)	
analyses of ages 6–19 yrs; or age,	Men	0.97 (0.59, 1.58)	0.89 (0.55, 1.43)	
race/ethnicity, sex, education, diabetes, alcohol consumption, cigarette smoking, calorie intake, vigorous recreational	Women	1.06 (0.61, 1.83)	0.78 (0.44, 1.37)	
activities, urinary creatinine, and serum cotinine as potential covariates in analyses of ages ≥20 yrs)				
Song et al. (2014) (United States) Population: 977 Controls from nested case- control study of incident diabetes in the NHS (n = 393, mean age 65.6 yrs, followed until 2010) and NHS II (n = 577, mean age 45.6 yrs,	(adjusted for col status, smoking s	nort origin, age at s status, physical act dex score, caloric	5 CI) by quartile urinary MBzP sample collection, menopausal tivity, alcohol use, alternative intake, baseline body weight,	
followed until 2009) Outcome: Change in body weight based on self-reported data from biennial questionnaires; self-reported body weights in these cohorts of registered nurses was highly	MBzP quartile (median concentration, nmol/L)	Annual rate of v	veight change in kg/yr (95% CI)	
accurate: a correlation coefficient of 0.96	1 (20)		0.0 (referent)	
was observed between self-reported weight	2 (47)	(0.29 (0.13, 0.44)	
and measured weights among 184 NHS	3 (90)	(0.33 (0.17, 0.48)	
participants Exposure: Urine sample collected at	4 (252)		0.42 (0.26, 0.57)	
beginning of follow-up period (collected 2000–2001 for NHS; 1995–2000 for NHS II) MBzP in urine (nmol/L):	(trend <i>p</i> <0.001)		· · · · · · ·	
Median by quartile Unadjusted 20, 47, 90, 252				

Reference and study design		Result	ts	
Analysis: Logistic regression, mixed-effect models for prospective annual weight change rate by quartile MBzP using product terms between concentrations and year after baseline; adjusting for variables shown in results column				
Hart et al. (2013)(Australia)Population: 121 girls from birth cohort study(Western Australian Pregnancy Cohort),whose mothers were recruited at 18 wks ofgestation between 1989 and 1991; follow-upat ages 14–16 yrsOutcome: Offspring BMI (height and weightmeasured at clinic visit on d 2–5 of menstrualcycle)Exposure: Maternal serum samples (n = 123)collected at 18 and 34–36 wks of gestation(combined aliquot from both time periods)MBzP in serum (ng/mL):Median90 th percentileUnadjusted1.263.87Analysis: Correlation between log-transformed MBzP and BMI	Authors reported no as absolute value or a phthalate metabolite p = 0.345–0.931)	as age- and gen	der-adjusted z-	-score) and any
Dirtu et al. (2013) (Belgium) Population: 152 overweight or obese adults from weight loss cohort (ENDORUP) seen at	Regression coefficien with unit change in In or stratified by sex) ((n-MBzP (adjuste		
weight management clinic, 43 age- and sex-		Full sample	Men	Women
matched controls from hospital staff and other volunteers, enrolled 2009–2012; among obese/overweight group, 65 received	Overweight/ obese group	0.12 (0.16)	0.09 (0.56)	0.08 (0.45)
bariatric surgery and 87 received standard diet and lifestyle counseling; follow-up 3, 6, and 12 mo	Referent group	-0.11 (0.48)	0.08 (0.77)	-0.08 (0.67)
Outcome: Waist circumference measured at each follow-up visit Exposure: Urine sample (24-hr sample) MBzP, in urine (ng/mL) (percentile): Median 75 th 90 th				
Controls 6 11 20 Obese 8 16 25 (at baseline) Analysis: Linear regression, adjusting for variables shown in results column; treatment of repeated urinary phthalate measures was not specified				

Reference and study design	Results	
Teitelbaum et al. (2012)(United States, NewYork City)Population: 387 children (80 boys, 307 girls)in child development cohort (Growing UpHealthy Study), 2004–2008; Hispanic andblack), 6–8 yrs at enrollmentOutcome: BMI and waist circumferencemeasured 1 yr after enrollment; normalweight = BMI <85 th percentile (n = 2,284);overweight = BMI ≥85 th percentile (n = 578)Exposure: Urine sample, collected atenrollmentCr-adjusted phthalates in urine (µg/g Cr),median:MBzP ∑high MW phthalatesBoys49.6356.0Girls34.0326.6High molecular weight phthalate metabolitesincluded MECPP, MEHHP, MEOHP, MEHP,and MBzP.Analysis: Linear regression, considering sex,age at baseline, sedentary hours, metabolicequivalent hours, caloric intake, race,ethnicity, season of urine collection, familyincome, and parent education as potentialcovariates; restricted to children withcreatinine ≥10 mg/dL	Full sample results, regression coefficie body metric per unit change in In-MBz creatinine, age, sex, sedentary hours, r Hispanic ethnicity, caloric intake, seaso level) BMI (kg/m ²) Waist circumference (cm)	P (μg/g Cr) (adjusted for metabolic equivalent hours,
Svensson et al. (2011) (Mexico) Population: 182 women; healthy controls without diabetes from case-control study of breast cancer, 2007–2008; mean age 54 yrs Outcome: BMI, waist circumference, and waist:height ratio Exposure: First morning urine sample collected at time of clinical evaluation Cr-adjusted MBzP in urine (µg/g Cr): Geometric mean (SD) No diabetes 7.0 (2.9) Analysis: Spearman correlation coefficient Related references: Lopez-Carrillo et al. (2010)	Spearman correlation coefficient betw measure and In-MBzP in urine (µg/g Cr BMI (kg/m ²) Waist circumference (cm) Waist/height ratio (<i>p</i> >0.05 for all parameters)	-

Reference and study design	Results					
Hatch et al. (2008) (United States, NHANES) Population: 4,369 (2,251 males, 2,118 females) participants in population-based survey (NHANES), 1999–2002; ages 6–80 yrs Outcome: BMI, waist circumference (measured)	Regression coefficient (95% CI) for change in body metric per quartile increase in unadjusted MBzP (μ g/L), by age (age, creatinine, height, race/ethnicity, socioeconomic status, fat intake, dairy intake, fruit and vegetable intake, physical activity, TV/video and computer use, and smoking status, and for women, menopausal status, parity)					
Exposure: Urine sample, collected at time of obesity measurement	MBzP quartile	6–11 yrs β	12–19 yrs β	20–59 yrs β	60–80 yrs β	
MBzP in urine (μ g/g Cr):	Waist circumference, males					
Range of geometric means in different age- sex groups = 10–35 Analysis: Linear regression, adjusting for	1 (low)	1.0 (referent)	1.0 (referent)	1.0 (referent)	1.0 (referent)	
variables shown in results column; separate analyses by sex-age group (ages 6–11, 12–19, 20–59, 60–80 yrs)	2	2.52 (-1.71, 6.74)	2.14 (-0.99, 5.28)	1.27 (-1.34, 3.87)	-0.11 (-3.65, 3.43)	
	3	2.42 (-1.43, 6.27)	1.36 (-1.47, 4.19)	4.87 (2.18, 7.56)	-1.84 (-5.61, 1.93)	
	4 (high)	0.55 (-3.31, 4.40)	3.10 (-0.67, 6.88)	6.63 (3.42, 9.84)	-3.18 (-7.64, 1.29	
	(trend p)	(0.85)	(0.15)	(<0.0001)	(0.09)	
	Waist cire	cumference, fe	emales			
	1 (low)	1.0 (referent)	1.0 (referent)	1.0 (referent)	1.0 (referent)	
	2	1.69 (-1.63, 5.02)	2.48 (-0.68, 5.64)	3.55 (0.51, 6.59)	-1.33 (-5.24, 2.59)	
	3	1.33 (-1.75, 4.41)	0.59 (-2.86, 4.05)	2.08 (-1.62, 5.79)	-2.18 (-6.26, 1.91)	
	4 (high)	-0.50 (-3.66, 2.66)	1.46 (-3.06, 5.98)	3.18 (-0.90, 7.26)	-2.41 (-6.65, 1.84)	
	(trend <i>p</i>)	(0.65)	(0.74)	(0.29)	(0.24)	
	BMI, mal	es				
	1 (low)	1.0 (referent)	1.0 (referent)	1.0 (referent)	1.0 (referent)	
	2	1.05 (-0.60, 2.71)	0.60 (-0.65, 1.86)	0.47 (-0.53, 1.48)	-0.35 (-1.60, 0.89)	
	3	1.09 (-0.36, 2.54)	0.21 (-0.85, 1.27)	1.70 (0.65, 2.76)	-1.27 (-2.97, 0.42)	
	4 (high)	-0.13 (-1.53, 1.28)	0.84 (-0.47, 2.15)	2.35 (1.04, 3.65)	-1.59 (-3.43, 0.24)	
	(trend <i>p</i>)	(0.80)	(0.3)	(0.0002)	(0.06)	
	BMI, fem	ales				
	1 (low)	1.0 (referent)	1.0 (referent)	1.0 (referent)	1.0 (referent)	
	2	0.52	1.42	1.26	-0.67	

Reference and study design	Results				
		(-0.89, 1.92)	(-0.07, 2.91)	(-0.11, 2.62)	(-2.13, 0.80)
	3	0.68 (-0.50, 1.85)	0.53 (-0.96, 2.01)	0.78 (-1.01, 2.56)	-0.72 (-2.85, 1.40)
	4 (high)	-0.18 (-1.43, 1.08)	0.84 (-0.97, 2.65)	0.82 (-1.26, 2.90)	••••
	(trend <i>p</i>)	(0.80)	(0.59)	(0.62)	(0.49)
Stahlhut et al. (2007)(United States, NHANES)Population:1,451 men in population-based survey (NHANES), 1999–2002; ages >18 yrs; excluded if taking insulin, oral hypoglycemic agents, or sex hormone agonists/antagonistsOutcome:Waist circumference (measured) Exposure:Exposure:Urine sample, collected at time of obesity measurement MBzP in urine (µg/g Cr): Median Cr-adjustedCr-adjusted14.2 Analysis:Linear regression, adjusting for variables shown in results column	age, age- activity le creatinin Waist circumfe (n = 1,29 Increase	squared, race, evel, smoking e e, glomerular f rence 2)	fethnicity, fat i exposure base iltration rate, B	se in In-MBzP (ntake, calorie i d on cotinine, u serum ALT, and ± SE (<i>p</i> -value) 1.09 ± 0.36 (0.005) n in 3 rd quartile	ntake, physical irinary d GGT)

ALT = alanine aminotransferase; GGT = gamma glutamyl transferase; NHS = Nurses' Health Study

1 **3.2.14.** Diabetes Effects in Humans

Table 3-15. Evidence pertaining to BBP and diabetes/insulin resistance in humans

Reference and study design	Results				
Diabetes diagnosis					
Sun et al. (2014) (United States) Population: 971 incident diabetes cases and 970 controls from among participants in the NHS (394 cases and 393 controls, mean age 65.6 yrs, 2000–2008) and NHS II (577 cases and 577 controls, mean age 45.6 yrs, 1996–2007) Outcome: Incident type 2 diabetes assessed	OR (95% CI), highest compared with lowest quartile MBzP, adjusting for matching factors including age at sample collection, race, fasting status, time of sample collection, menopausal status, use of hormone replacement therapy (NHS II only), urinary creatinine levels, BMI, smoking status, postmenopausal hormone use (NHS only), oral contraceptive (NHS II only), physical activity, alcohol use, family history of diabetes, history of hypercholesterolemia or hypertension, and alternative healthy eating index score				
in biennial follow-up questionnaires. Confirmed based on: (a) self-report of	MBzP quartile NHS NHS II				
elevated fasting glucose \geq 7.0 mmol/L,	1 (low)	1 (referent)	1 (referent)		
random plasma glucose ≥11.1 mmol/L, or plasma glucose ≥11.1 mmol/L and at least	2	0.91 (0.55, 1.51)	0.85 (0.50, 1.44)		
one symptom (excessive thirst, polyuria,	3	0.85 (0.51, 1.40)	1.08 (0.62, 1.86)		
weight loss, or hunger); (b) no symptoms but elevated glucose on two separate	4 (high)	0.82 (0.48, 1.43)	1.14 (0.65, 2.01)		
occasions; or (c) treatment with insulin or oral hypoglycemic medication Exposure: Urine sample, collected at beginning of follow-up period (2000–2002 for NHS; 1996–2001 for NHS II) Unadjusted MBzP in urine (μg//L): Median by quartile NHS I 3.5, 7.2, 13.4, 31.8 NHS II 8.8, 17.2, 33.3, 87.1 Analysis: Conditional logistic regression, adjusting for variables shown in results column	(p-value for trend)	(0.54)	(0.44)		

Reference and study design		Re	esults			
James-Todd et al. (2012) (United States, NHANES) Population: 215 cases, 1,235 controls from population-based survey (NHANES), 2001–2008; women ages 20–79 yrs Outcome: Positive response to, "Other than during pregnancy, have you ever been told by a doctor or health professional that	creatinine, a time, total ca physical activ	ge, race/ethnicity, e aloric intake, total fa vity; little change wi cumference)	tile of MBzP (adjust ducation, poverty st at intake, smoking st th additional adjustr 1.0 (referent)	atus, fasting atus, and		
you have diabetes or sugar diabetes?" Exposure: Urine sample, collected at time	2		0.78 (0.41–1.49)			
of survey	3		1.80 (1.16–2.81)			
MBzP in urine (units not reported): Geometric mean Unadjusted 9.7 (based on larger sample of 2,350 women) Analysis: Logistic regression, adjusting for variables shown in the results column	4 (high)					
Svensson et al. (2011) (Mexico)	OR (95% CI) per unit increase in In-MBzP (adjusted for creatinine					
Population:221 women with diabetes,182 healthy without diabetes from case- control study of breast cancer, 2007–2008; mean age 54 yrsOutcome:Self-reported diabetesExposure:First morning urine samplesMBzP in urine (µg/g creatinine): Geometric mean (SD)No diabetes7.0 (2.9)Diabetes3.8 (3.9)Analysis:Logistic regression, adjusted for variables shown in the results column (age and waist-height ratio not found to be potential confounders)	and educatio	•	0.55, 1.00)			
Markers of insulin resistance	1					
Huang et al. (2014a) (United States, NHANES) Population: 3,083 participants in population-based survey (NHANES), 2001–2008; ages 12–<80 yrs; self-reported non-diabetic, non-pregnant participants	MBzP (adjust creatinine, to and smoking MBzP	ted for age, gender, otal caloric intake, tr status)	arker for diabetes b race/ethnicity, fasti riglycerides, educatio	ng time, urinary		
Outcome: Fasting blood glucose; fasting	quartile	Fasting glucose	Fasting insulin	HOMA-IR		
insulin; HOMA-IR	1 (low)	referent	referent	referent		
Exposure: Urine sample at time of clinical exam Cr-adjusted MBzP in urine (µg/g Cr):	2	-0.30 (-1.48, 0.87)	0.77 (0.16, 1.39)	0.21 (0.06, 0.37)		
Median 75 th percentile Men 10.4 19.5	3	-0.06 (-1.25, 1.13)	1.09 (0.39, 1.79)	0.26 (0.09, 0.44)		
Women 13.4 23.8 Analysis: Logistic regression, adjusting for	4 (high)	-0.24 (-1.49, 1.02)	1.44 (0.50, 2.38)	0.37 (0.15, 0.59)		

Reference and study design		Re	sults		
variables shown in the results column	(p-value for trend)	(0.7058)	(0.0070)	(0.0028)	
Trasande et al. (2013a) (United States, NHANES) Population: 760 participants in the 2003–2008 NHANES, 12–19 yrs old	concentration (μ continuous age,	OR (95% CI) for insulin resistance and In-urinary metabolite concentration (μ M), adjusted for urinary creatinine, BMI category, continuous age, race/ethnicity, caregiver education, poverty-income ratio, gender, serum cotinine, and caloric intake			
Outcome: HOMA-IR, calculated as fasting	Ln-MBzP		1.20	6 (0.97, 1.63)	
glucose (mmol/L) multiplied by fasting insulin (μU/mL divided by 22.5	Ln-Σhigh MW ph	thalates	1 4'	5 (1.13, 1.87)	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Regression coeff increase in In-uri urinary creatinin	icient (95% CI) fc nary metabolite e, BMI category, ion, poverty-inco	or increase in li concentration continuous ag	n-HOMA-IR per unit (μM), adjusted for ge, race/ethnicity, der, serum cotinine,	
ΣHigh MW phthalates = sum of MBzP, MCPP, MEHP, MECPP, MEHHP, MEOHP;	Ln-MBzP		0.02	2 (-0.08, 0.13)	
urinary concentration of MBzP alone not reported	Ln-Σhigh MW ph	thalates		6 (0.13, 0.40)	
or categorical variable; categorical analysis used cut point of 4.39, reflecting >2 SD above the mean HOMA-IR for normal weight adolescents with normal fasting glucose in NHANES 1999–2002. Linear and logistic regression analyses, adjusting for variables shown in results column. HOMA- IR and urinary phthalate measures natural- log transformed for analysis.					
James-Todd et al. (2012) (United States, NHANES) Population: 2,092 women without history of diabetes with various measures of insulin resistance from population-based survey (NHANES), 2001–2008; women age	median value (95 of MBzP (Model education level,	5% CI) of glucose 1 adjusted for ur poverty status, fa moking status, a	and insulin pa ine creatinine asting time, to ind physical ac	rom first quartile) in arameters by quartile , age, race/ethnicity, tal caloric intake, ctivity; Model 2 also	
20–79 yrs Outcome: (Among women without history	MBzP Quartile	Мо	del 1	Model 2	
of diabetes, fasting blood glucose (FBG)	Fasting glucose (mg/dL)			
(n = 985), HOMA-IR (n = 971), glycosolated	1 (low)		erent)	(referent)	
hemoglobin A1c (n = 2,092) Exposure: Urine sample, collected at time	2	-	70, 1.70)	0.77 (-1.11, 2.64)	
of survey					
MBzP in urine (units not reported):	3		3.24, 0.98)	-1.08 (-3.34, 1.18)	
Geometric mean Unadjusted 9.7	4 (high)	-2.27 (-4	4.76, 0.21)	-2.80 (-5.32, -0.28)	
Unadjusted 9.7 Analysis: Logistic regression, adjusting for	Ln (HOMA)				
,	1 (low)	(refe	erent)	(referent)	
variables shown in the results column					
variables shown in the results column	2	0.09 (-0	.07, 0.25)	-0.01 (-0.12, 0.11)	

This document is a draft for review purposes only and does not constitute Agency policy.3-54DRAFT—DO NOT CITE OR QUOTE

Reference and study design		Results	
	4 (high)		
	A1c (%)		
	1 (low)	(referent)	(referent)
	2	0.01 (-0.04, 0.06)	-0.01 (-0.05, 0.04)
	3	0.00 (-0.05, 0.05)	-0.03 (-0.08, 0.01)
	4 (high)	-0.03 (-0.09, 0.03)	-0.03 (-0.09, 0.02)
Stahlhut et al. (2007) (United States, NHANES)Population:1,451 men in population- based survey (NHANES), 1999–2002; ages >18 yrs; excluded if taking insulin, oral hypoglycemic agents, or sex hormone agonists/antagonistsOutcome:HOMA-IR Exposure: Urine sample, collected at time of obesity measurement MBzP in urine: Median Cr-adjusted (µg/g Cr)14.2 Analysis: Linear regression, adjusting for variables shown in results column	age, age-squared, ra activity level, smoki	nt per unit increase in In-N ace/ethnicity, fat intake, ca ng exposure based on coti lar filtration rate, serum Al B ± SE (p-value) 0.061 ± 0.022 (0.005)	alorie intake, physical nine, urinary

HOMA-IR = homeostasis model assessment of insulin resistance; MCPP = mono-(3-carboxypropyl) phthalate;

MECPP = mono(2-ethyl-5-carboxypentyl) phthalate

4

1 3.2.15. Cardiovascular Effects in Humans

2 3

Table 3-16. Evidence pertaining to BBP and cardiovascular disease riskfactors in humans

Reference and study design		Results		
Shiue (2014) (United States, NHANES) Population: 2,489 participants in population-based survey (NHANES),	OR (95% CI) for high blood pressure per unit increase in log- transformed MBzP (adjusted for urinary creatinine, age, sex, ethnicity, BMI, and sampling weights)			
2011–2012; ages ≥20 yrs		1.40 (1.15, 1.69)		
Outcome: High blood pressure (BP) (systolic blood pressure ≥140 mmHg and diastolic blood pressure ≥90 mmHg)	Mean ± SD MBzP in uri normal and high blood	ine (units not given) in p pressure	articipants with	
Exposure: Urine sample collected at time of clinical exam	Normal BP (n = 2,180)	11.21 ±	: 19.74	
MBzP in urine (units not given):	High BP (n = 309)	16.91 ±	29.84*	
Mean ± SDNormal BP11.21 ± 19.74High BP16.91 ± 29.84Analysis:Survey-weighted logisticregression, adjusting for variables shown inresults column; t-test for comparisonbetween concentrations	* <i>p</i> <0.001			
Trasande et al. (2013b) (United States, NHANES) Population: 2,447 children in population- based survey (NHANES), 2003–2008; ages 8–19 yrs old	(adjusted for sex, calor		ching,	
Outcome: Systolic BP and diastolic BP z-score (based on CSC norms, sex, and age);		∑High MW phthalates	MBzP	
prehypertension (BP ≥90 th percentile for	Systolic BP	0.04 (-0.002, 0.08)	0.03 (-0.02, 0.08)	
age/height/sex); fasting serum triglycerides (n = 906; high = ≥100 mg/dL); nonfasting	Diastolic BP	0.004 (-0.04, 0.04)	0.03 (-0.02, 0.09)	
high density cholesterol (HDL; n = 2,555;	Triglycerides	-0.28 (-2.55, 2.06)	not reported	
low = <40 mg/dL) Exposure: Urine sample, collected at time	HDL	0.42 (-0.31, 1.15)	not reported	
of BMI measurement ∑High MW phthalates in urine (μM):	OR (95% CI) for BP ≥90 phthalates	th percentile per unit inc	crease in In-	
Geometric mean BP <90 th percentile 0.541 BP ≥90 th percentile 0.509		∑High MW phthalates	MBzP	
Σ High MW phthalates = sum of MECPP,	BP ≥90 th percentile	0.94 (0.82, 1.09)	1.12 (0.87, 1.44)	
MCPP, MEHHP, MEOHP, MEHP, and MBzP	High triglycerides	1.06 (0.90, 1.24)	not reported	

Reference and study design		Results	
Analysis: Logistic regression for pre- hypertension (BP $\ge 90^{th}$ percentile)	Low HDL	0.93 (0.80, 1.07)	not reported
classification; linear regression for systolic BP and diastolic BP z-score and triglycerides and HDL as continuous variable; all models adjusted for variables shown in results column	stratified analyse between ∑high N	covariates examined in suppler as showed a statistically significa AW phthalates and systolic BP for ce/ethnicity (Hispanics), cotinin 85 th percentile)	nt association or gender (males),

BP = blood pressure; HDL = high density lipoprotein

1 3.2.16. Cancer Effects in Humans

2

Table 3-17. Evidence pertaining to BBP and cancer in humans

Reference and study design	Results					
Lopez-Carrillo et al. (2010) (Mexico) Population: 233 incident cases, 221 population	Geometric mea and by menopa	· ·	P in urine (μg/	g Cr), all subjects		
controls matched by age and residency, ≥18 yrs of age, >1 yr in study area, 2007–2008; mean		Cont	rols	Cases		
age 53 yrs; participation rates: 94.8% of cases	All	6.27 (5.3	88, 7.31)	5.43 (4.81, 6.13)		
and 99.5% of controls	Pre-menopause	e 7.22 (5.6	57, 9.20) 5	5.29* (4.42, 6.34)		
Outcome: Histologically-confirmed breast cancer	Post-menopaus	e 5.84 (4.8	80, 7.10)	5.51 (4.68, 6.49)		
Exposure: Urine sample (for cases, urine collected on average 2 mo after diagnosis, but before treatment) MBzP in urine, controls: Geometric mean Cr-adjusted (μg/g Cr) 6.27 Analysis: Logistic regression, adjusting for variables shown in results column	* <i>p</i> <0.05					
	current age, age	OR (95% CI) for breast cancer, by tertile of MBzP (adjusted for current age, age at menarche, parity, menopausal status, and other phthalate metabolites)				
	MBzP tertile (µg/g Cr)	Full sample	Pre- menopause	Post- menopause		
	1 (0-5.18)	1.0 (referent)	1.0 (referent	t) 1.0 (referent)		
	2 (5.19–10.79)	0.60 (0.37, 0.98)	0.36 (0.15, 0.89)	0.71 (0.38, 1.30)		
	3 (10.8–259)	0.46 (0.27, 0.79)	0.22 (0.08, 0.61)	0.61 (0.31, 1.19)		
	(trend <i>p</i>)	(0.008)	(0.006)	(0.169)		
	Urinary MBzP was inversely associated with breast cancer risk					
Aschengrau et al. (1998) (United States,	Incidence (%) of	f females with p	orobable expos	sure to BBP		
Massachusetts) Population: 261 incident cases, 753 population	Cas	ses	Controls			
controls of similar age and race; both cases and	26/261 ((10.0%)	100/7	753 (13.3%)		
controls were permanent residents of five Cape Cod towns Outcomes: Breast Cancer diagnosis (1983–1986) Exposure: Occupational exposure to xenoestrogens (including phthalates) based on self-reported full-time jobs held since age 18; exposure determined for each job using the NIOSH Occupational Exposure Survey Database,		P (adjusted for a ne interview, far d personal histo	age at diagnos nily history of	is or index year, breast cancer, age		
	Any BBP exposu	ıre	0.7	' (0.4, 1,2)		
	BBP-only expos	ure	0.9	0 (0.3, 2.9)		
chemical production and usage information, and the expert judgment of a certified industrial hygienist Analysis: Logistic regression, adjusting for	BBP+other xenc	pestrogens	0.7	7 (0.4, 1.2)		
variables shown in results column						

3 4

NIOSH = National Institute for Occupational Safety and Health

1 **3.3. EXPERIMENTAL STUDIES**

2 3.3.1. Male Reproductive Effects

3 4

Table 3-18. Evidence pertaining to male reproductive puberty effects andindicators of reproductive development following oral exposure to BBP

Reference and study design		Res	sults ^a		
<u>Tyl et al. (2004)</u>	PPS or AGD (percent char	nge compar	ed to control)		
Rat (CD); 30 F0 and 30 F1 parental	mg/kg-day	0	50	250	750
rats/sex/dose	F1 age at PPS	0	1	-1	11*
0, 750, 3,750, 11,250 ppm 0, 50, 250, 750 mg/kg-day ^b	F1 age at PPS adjusted for body weight	0	0.2	-1	11*
Diet	F1 neonatal AGD	0	-2	-8*	-17*
Multigenerational study	F2 neonatal AGD	0	0	-3	-14*
	Nipple retention (number per male or percentage of males)				
	F1 nipples (number per male)	0	0	0	0.72*
	percent of F1 males with at least one nipple on PNDs 11–13	0	0	0	19*
	percent of F1 males with at least one areolae PNDs 11–13	3	0	1	32*
	areolae (number per F1)	0	0	0	1.29*
	percent of F2 males with at least one nipple on PNDs 11–13	0	0	0	16*
	F2 number of nipples/male	0	0	0	0.51*
	percent of F2 males with at least one areola on PNDs 11–13	2	5	5	72*
	F2 number of areolae	0.05	0.12	0.19	3.14*

Reference and study design	Results ^a							
Hotchkiss et al. (2004)	Nipple retention (number per male rat)							
Rat (Sprague-Dawley); 6 pregnant females/dose	mg/kg-day		0	500				
0, 500 mg/kg-day Gavage	areolae (number per F1 neonatal male)		0	1.1				
GDs 14–18	nipples (number per F1 adult male)	0		1				
	AGD (percent change compared to control)							
	neonatal AGD ^c	0%		-13*				
	adult AGD ^c	0%		-2				
<u>Gray et al. (2000)</u>	PPS or AGD (percent change compared to control)							
Rat (Sprague-Dawley);	mg/kg-day	0		750				
13–19 pregnant females/dose 0, 750 mg/kg-day	litter mean age at PPS		0	3				
Gavage	AGD		0	-26*				
GDs 14-PND 3	Nipple retention (number or percentage per neonatal male)							
	nipples (number per neonatal male)	0		5.1*				
	percent of neonatal males with areolae	0		70*				
	PPS (% incidence)							
	incomplete PPS due to genital malformation	0/19		9/46* (20%)				
<u>Nagao et al. (2000)</u>	PPS or AGD (percent change compared to control)							
Rat (Sprague-Dawley); 25/sex /dose	mg/kg-day	0	20	100	500			
0, 20, 100, 500 mg/kg-day	AGD at birth	0	0	-4	-8*			
Gavage	age at PPS	0	0.5	0.2	3*			
Multigenerational study								

Reference and study design	Results ^a PPS (% incidence)							
<u>Aso et al. (2005)</u>								
Rat (Crj:CD(SD)IGS); 24/sex/dose	mg/kg-day	0	100	200	400			
0, 100, 200, 400 mg/kg-day Gavage	F1 complete PPS	23/24 (96%)	17/24 (71%)	22/24 (92%)	14/24* (58%)			
Multigenerational study	AGD (percent change compared to control)							
	Absolute change							
	F1, AGD, males	0	1	-2	-3			
	F2, AGD, males	0	-12*	-8	-14*			
	Relative change							
	F1, AGD, males	0	0	-1	-2			
	F2, AGD, males	0	-8*	-8*	-12*			
Ema and Miyawaki (2002)	AGD (percent change compared to control)							
Rat (Wistar); 16 pregnant females/dose	mg/kg-day	0	250	500	1,000			
	AGD ^c	0	-1	-20*	-35*			
0, 250, 500, 1,000 mg/kg-day								
Gavage	AGD adjusted for BW ^c	0	-4	-21*	-32*			
GDs 15-17								
<u>Ahmad et al. (2014)</u>	AGD or developmental milestones (percent change compared to control)							
Rat (Albino); P0, female (6/group)	mg/kg-day	0	4	20	100			
0, 4, 20, 100 mg/kg	AGD							
Gavage	F1 male AGD PND 25	0	-1	-1	-2			
GD 14 to parturition	F1 male AGD PND 5	0	-6	-6	-8			
	Developmental milestones							
	F1 male eye opening	NR	NR	NR	NR			
	F1 male fur formation	NR	NR	NR	NR			
	F1 male pinna detachment	NR	NR	NR	NR			
	F1 male testis descend	-	0	1	0			

Reference and study design	Results ^a						
TNO (1998a)	PPS (percent change compared to control)						
Rat (Wistar); P0, female (28/group)	mg/kg-day	0	0.015	0.147	0.442		
0, 100, 1,000, 3,000 μg/L (equivalent to 0.016, 0.171, 0.489 mg/kg-day, average of reported intake over premating, gestation, and lactation)	F1 male PPS	NR	NR	NR	NR		
Drinking water							
F0 females: 2 weeks prior to mating, through mating, gestation, and lactation; F0 males: during mating; F1 animals were not treated after weaning							

*Statistically different from controls (*p* <0.05) as reported by study authors.

^aPercent change compared to control calculated as 100 × ((treated value – control value) ÷ control value).

^bCalculated as follows: [% in diet × intake food/water (mg)] ÷ body weight (kg) = mg/kg-day.

^cValues reported by the study authors were estimated from published graphs using "Grab It!", a Microsoft Excel based free software application used to digitizes data from image files. Publisher: <u>www.datatrendsoftware.com.</u>

BW = body weight; GD = gestation day; PND = postnatal day; PPS = preputial separation; NR = not reported

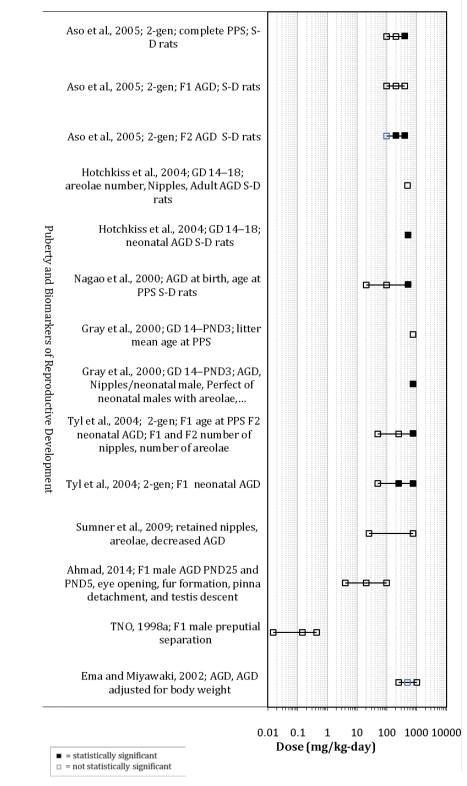


Figure 3-1. Exposure-response array of male reproductive puberty effects and indicators of reproductive development following oral exposure to BBP.

1

2

Table 3-19. Evidence pertaining to male reproductive toxicity following oral 1 2 exposure to BBP: Alterations in hormone concentrations, mating, and sperm 3 decrements

Reference and study design	Results ^a						
<u>Götz et al. (2001)</u>	Mating behavior (percent change compared to control)						
Rat (Wistar (Crl:WI)); 10–15 pregnant females/group	mg/L	0 10					
0, 10 mg/L BBP to pregnant females during the whole pregnancy and during lactation	% male-typical mounting behavior	0				-39*	
Drinking water							
<u>NTP (1997b)</u>	Sperm parameters (perc	cent ch	ange co	mpared to	control)		
Rat (F344); 15 males/dose	mg/kg-day	0		20	200	2	2,200
0, 300, 2,800, 25,000 ppm 0, 20, 200, 2,200 mg/kg-day	sperm motility	0		-8	-3	me	Not easured
Diet 10-week modified mating study	epididymal sperm concentration	0		-13	-30	-	-100*
	abnormal epididymal sperm	pididymal 0 –13 –3				Not measured	
	Note: Percentages of motile and abnormal sperm were not measure the high dose due to an absence of sperm.					neasur	ed at
<u>NTP (1997b)</u>	Sperm parameters (perc	cent inc	idence)				
Rat (F344); 15 males/dose	mg/kg-day	0	30	60	180	550	'High'
0, 300, 900, 2,800, 8,300, 25,000 ppm	seminiferous tubule hypospermia	0	0	0	0	0	100*
0, 30, 60, 180, 550, "high" mg/kg-day ^b	epididymal hypospermia	0	0	0	0	0	100*
Diet							
26 weeks							
<u>Tyl et al. (2004)</u>	Sperm count (percent cl	hange d	compare	ed to contro	ol)		
Rat (CD); 30 F0 and 30 F1 parental	mg/kg-day	0		50	250		750
rats/sex/dose 0, 750, 3,750, 11,250 ppm 0, 50, 250, 750 mg/kg-day	F1 epididymal sperm 0 4 2 count						-21*
Diet	Mating, fertility, and sp	erm pa	ramete	e rs (raw per	centages)		
Multigenerational study	F1 mating index (%)	96	.7	96.7	93.3	-	70.0*
	F1 fertility index (%)	10	0	96.6	92.9	8	81.0*
	F1 motile sperm (%)	68	.6	74.0	71.7	ļ	52.1*

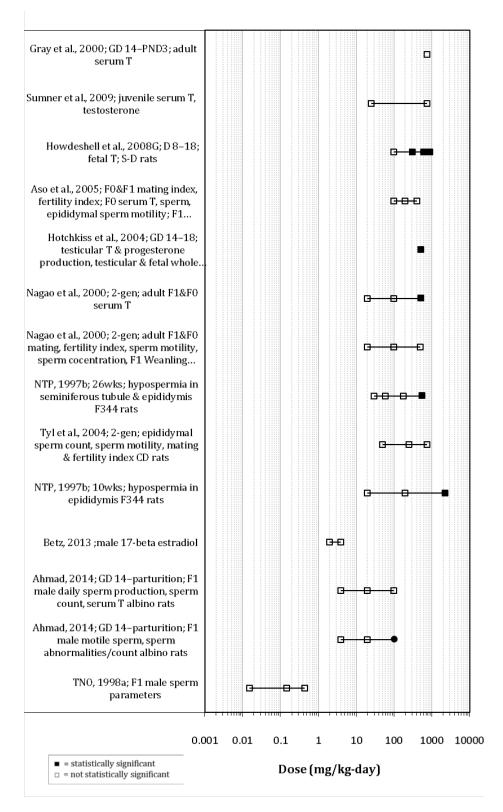
This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design		Res	sults ^a				
	F1 progressively motile sperm (%)	57.3	61.2	60.1	42.1*		
Hotchkiss et al. (2004)	Fetal hormones (percent	t change con	npared to cor	ntrol)			
Rat (Sprague-Dawley); 6 pregnant	mg/kg-day	C)	5	00		
females/dose 0, 500 mg/kg-day	testicular testosterone production	C)	-2	15*		
Gavage	testicular testosterone concentration	C)	-3	35*		
GDs 14–18	fetal whole-body testosterone concentration	C)	-7	71*		
	testicular progesterone production	C)	-3	33*		
	• .	hically, but magnitude of change (percent chang by study authors in text.					
<u>Gray et al. (2000)</u>	Adult hormones (percen	t change con	npared to co	ntrol)			
Rat (Sprague-Dawley);	mg/kg-day	C)	7	750		
13–19 pregnant females/dose 0, 750 mg/kg-day	adult serum testosterone	C)	26			
Gavage							
GD 14-PND 3	Note: Study authors indi numbers were significan shown.						
<u>Nagao et al. (2000)</u>	Mating, fertility, and spo	erm paramet	ters (raw per	centages)			
Rat (Sprague-Dawley); 25/sex/dose	mg/kg-day	0	20	100	500		
0, 20, 100, 500 mg/kg-day	F0 mating index (%)	96	96	96	100		
Gavage	F0 fertility index (%)	91.7	83.3	95.8	96		
Multigenerational study	F0 sperm motility (%)	96	94	94	95		
	F0 progressively motile sperm (%)	93	80	78	81		
	F1 mating index (%)	100	94.7	90.9	91.7		
	F1 fertility index (%)	77.3	77.8	95	77.3		
	F1 adult males sperm motility (%)	95	96	97	88		
	F1 adult males progressively motile sperm (%)	83	83	85	77		

Reference and study design		Res	sults ^a				
	Testosterone and sperm concentration (percent change compared to control)						
	F0 serum testosterone	0	3	-23	-46*		
	F0 sperm concentration	0	0	-5	-2		
	F1 weanling males serum testosterone	0	33	-11	0		
	F1 adult males serum testosterone	0	23	8	-44*		
	F1 adult males sperm concentration	0	-9	-4	-9		
<u>Aso et al. (2005)</u>	Testosterone and sper	m count (perc	ent change c	ompared to c	ontrol)		
Rat (Crj:CD(SD)IGS); 24 mated pairs	mg/kg-day	0	100	200	400		
of F0 parents/dose	F0 serum testosterone	0	Not ev	aluated	-42		
0, 100, 200, or 400 mg/kg-day	FO sperm in testes	0	6	-8	-2		
Gavage	Mating, fertility, and sp	perm parame	ters (raw per	centages)			
Multigenerational study	F0 mating index (%)	100	91.7	95.7	95.8		
	F0 fertility index (%)	83.3	86.4	90.9	91.3		
	F0 epididymal sperm motility (%)	71	65	74	58		
	F1 mating index (%)	91.3	91.7	83.3	83.3		
	F1 fertility index (%)	76.2	95.5	85	65		
	Epididymal sperm (per	cent incidence	?)				
	F1 spermatozoa decreased in epididymal lumina	0	4	8	13		
	Note: Spermatozoa decreased in the epididymal lumina of FO males at 400 mg/kg-day also (quantitative data not reported).						
	F1 sperm in testes, caudal epididymis	Not affected	1				
	epididymal sperm motility and abnormalities	No treatmer authors	nt-related eff	ect observed	by study		

Reference and study design	Results ^a							
Howdeshell et al. (2008)	Fetal testicular test	Fetal testicular testosterone (percent change compared to control)						
Rat (Sprague-Dawley); 4–9 pregnant	mg/kg-day	0	100	300	600	900		
females/dose		0	6	-22*	-66*	-90*		
0, 100, 300, 600, 900 mg/kg-day								
Gavage								
GDs 8–18								

¹ 2 3 4 5


*Statistically different from controls (*p* <0.05) as reported by study authors.

^aPercent change compared to control calculated as 100 × ((treated value – control value) ÷ control value).

^bThe high-dose group corresponds to 25,000 ppm BBP; a reliable estimate of dose could not be calculated. The

- study authors estimated doses for all but the high-dose group based on measured body weights and food
- 6 consumption. Food consumption was not measured in the 25,000 ppm BBP group due to excessive scattering of

7 feed and because the mean body weight of this group was 30% lower than controls.

1 2

3

Figure 3-2. Exposure-response array of male reproductive toxicity following oral exposure to BBP: alterations in hormone concentrations, mating, and sperm decrements.

Table 3-20. Evidence pertaining to male reproductive toxicity following oral exposure to BBP: Histopathological changes and malformations in adults and offspring

Reference and study design			Result	s			
<u>NTP (1997b)</u>	Testes and epididymal h	istopath	ology (percent i	ncidence)		
Rat (F344); 15 males/dose	mg/kg-day (F0 males)	0		20	200		2,200
0, 300, 2,800, 25,000 ppm 0, 20, 200, 2,200 mg/kg-day	atrophic seminiferous tubules	0		7	0		100*
Diet 10-week modified mating study	seminiferous tubule, giant cells	0		0	0		67*
	seminiferous tubule necrosis	0		0	0		20
	epididymal hypospermia	0		7	0		100*
	chronic inflammation of epididymal tail	0		0	0		27*
	epididymal tail detritus	0		0	0		73*
<u>NTP (1997b)</u>	Testes and epididymal h	istopath	ology (percent i	ncidence)		
Rat (F344); 15/dose	mg/kg-day	0	30	60	180	550	High
0, 300, 900, 2,800, 8,300, 25,000 ppm	atrophic seminiferous tubules	0	0	0	7	0	100*
0, 30, 60, 180, 550, "high" mg/kg-day ^a	seminiferous tubule, giant cells	0	0	0	0	0	33*
Diet							
26 weeks	epididymal tail detritus	0	0	0	7	0	87*
<u>Tyl et al. (2004)</u>	Malformations and histo	patholog	gical cl	nanges (p	ercent inc	idence)
Rat (CD); 30 F0 and 30 F1 parental rats/sex/dose	mg/kg-day (F1 parental males)	0		50	250		750
0, 750, 3,750, 11,250 ppm 0, 50, 250, 750 mg/kg-dayª Diet	number of F1 weanlings with at least 1 reproductive tract malformation	0		0	0		25*
Multigenerational study	percentage of F1 weanlings with at least 1 reproductive tract malformation	0		0	0		33*
	adult F1 testicular lesions	10		0	14		82
	adult F1 epididymal lesions	7		0	11		54

Reference and study design		Result	S		
Hotchkiss et al. (2004)	Malformations (percent in	ncidence)			
Rat (Sprague-Dawley), 6 pregnant females/dose	mg/kg-day (F1 males with malformations)	0	0 500		
0, 500 mg/kg-day	ventral prostate	0		2.9	
Gavage	seminal vesicle	0		11.8	
GDs 14-18	epididymis	0		11.8	
	testes	0		11.8	
	Note: No significant effects of gestational BBP exposure on the in of external or internal reproductive malformations.				
<u>Gray et al. (2000)</u>	Malformations (percent in	ncidence)			
Rat (Sprague-Dawley);	mg/kg-day (F1 males)	0		750	
13–19 pregnant females/dose	cleft phallus	ND		29	
0, 750 mg/kg-day	hypospadias	ND		29	
Diet	vaginal pouch	ND		16	
GD 14-PND 3	ventral prostate agenesis	ND		27	
	seminal vesicle agenesis	ND		38	
	epididymides agenesis	ND		67	
	fluid-filled testes	ND		67	
	undescended testes	ND		22	
	absent testes	ND		9	
	absent gubernacular cord	ND		57	
	Note: Data in Figure 6 sho controls; statistical signific			lata (ND) for	
Piersma et al. (1995)	Histopathological change	s (percent incid	lence)		
Rat (WU); 10/sex/dose	mg/kg-day (F0 males)	0	250 500	1,000	
0, 250, 500, 1,000 mg/kg-day	testicular degeneration	10	30 30	100*	
Gavage Reproductive toxicity study	accompanied by leydig cell hyperplasia and appearance of cellular debris				

Reference and study design	Results						
<u>Nagao et al. (2000)</u>	Histopathological changes (percent incidence)						
Rat (Sprague-Dawley); 25/sex/dose	mg/kg-day	0	20	100	500		
0, 20, 100, 500 mg/kg-day	Adult F0 males						
Gavage	atrophic seminiferous tubules (bilateral)	10	NE	NE	0		
Multigenerational study	epididymal cell debris (bilateral)	10	NE	NE	0		
	lymphocytic infiltration of prostate interstitium	40	NE	NE	40		
	lymphocytic/ neutrophilic infiltration of prostate epithelium	10	NE	NE	10		
	Weanling F1 males						
	atrophic seminiferous tubules (bilateral)	0	0	0	10		
	decreased spermatocytes in seminiferous tubules (bilateral)	0	0	0	90*		
	decreased spermatogonia in seminiferous tubules (bilateral)	0	0	0	30		
	leydig cell hyperplasia (bilateral)	0	0	0	10		
	epididymal abnormality	0	NE	NE	0		
	prostate abnormality	0	NE	NE	0		
	seminal vesicle and coagulating gland abnormality	0	NE	NE	0		
	Adult F1 males						
	atrophic seminiferous tubules (right side)	0	0	0	60*		
	atrophic seminiferous tubules (left side)	0	0	0	30		
	decreased germ cells in seminiferous tubules (right side)	0	0	0	40*		

Reference and study design	Results						
	decreased germ cells in seminiferous tubules (left side)	0	0	0	10		
	diffuse dilatation of seminiferous tubule (left side)	0	0	0	10		
	testicular interstitial edema (right side)	0	0	0	40*		
	testicular defect (right side)	0	0	0	10		
	spermatic granuloma of the rete testis (right side)	0	0	0	10		
	multinucleated giant cell seminiferous tubule (left side)	0	0	0	10		
	epididymal lesions	0	0	0	50*		
	lymphocytic infiltration of prostate interstitium	30	NE	NE	40		
	lymphocytic/plasma cell infiltration of the prostate epithelium	20	NE	NE	20		
<u>Aso et al. (2005)</u>	Histopathological change	s (percent	incidence)				
Rat (Crj:CD(SD)IGS); 24/sex/dose	mg/kg-day (adult F1 males)	0	100	200	400		
0, 100, 200, 400 mg/kg-day	softening of testis	0	4	8	17		
Gavage	aplasia of epididymis	0	0	0	4		
Multigenerational study	hypoplasia of epididymis	0	0	0	17		
	leydig cell hyperplasia	0	4	0	21*		
	atrophy of seminiferous tubules	4	4	13	38*		
	residue germ cells in epididymis lumen	0	4	13	4		
	aplasia of epididymis (unilateral)	0	0	0	8		
	partial aplasia of epididymis (unilateral)	0	0	0	13		
	partial aplasia of epididymis (bilateral)	0	0	0	4		

Reference and study design	Results						
		Note: Incidence of Leydig cell hyperplasia of the testes was increased in F0 adult males in the 400 mg/kg-day group.					
<u>BIBRA (1978)</u>	Histopathological changes (incidence)						
Rat (Wistar); 27/sex/group or	mg/kg-day	0	151	381	960		
45/sex/group (control); interim sacrifices of 9 controls/sex/group and 6 treated rats/sex/group at 2 and 6 weeks	epididymis; sperm 1/27 -/0 -/0 0/1 retention cyst histopathology						
0, 2,000, 5,000, 12,000 ppm 0, 151, 381, 960 mg/kg-day (males) ^c 0, 171, 422,1,069 mg/kg-day (females)	No histological lesions v seminal vesicles, or test	,	study autho	ors in the pros	strate,		
Diet							
14 weeks							

8

*Statistically different from controls (p <0.05) as reported by study authors.

^aThe high-dose group corresponds to 25,000 ppm BBP; a reliable estimate of dose could not be calculated. The

study authors estimated doses for all but the high-dose group based on measured body weights and food

consumption. Food consumption was not measured in the 25,000 ppm BBP group due to excessive scattering of feed and because the mean body weight of this group was 30% lower than controls.

CERHR = Center for the Evaluation of Risks to Human Reproduction; NTP = National Toxicology Program

9 NE = not examnied

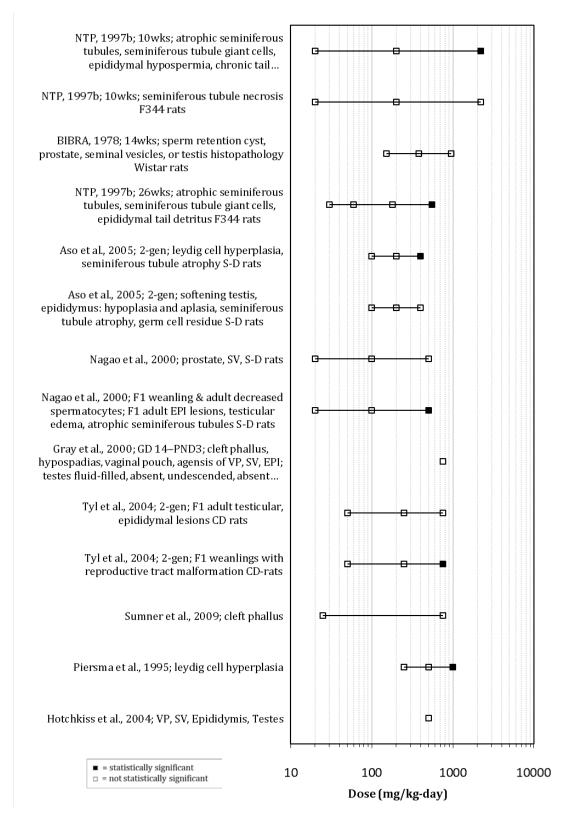


Figure 3-3. Exposure-response array of male reproductive toxicity following oral exposure to BBP: external and internal malformations.

Table 3-21. Evidence pertaining to male reproductive toxicity following oral exposure to BBP: Decrease in androgen-dependent tissue weights

Reference and study design			Resul	ts ^a			
<u>NTP (1997b)</u>	mg/kg-day	0		20	200		2,200
Rat (F344); 15 males/dose	Absolute weight (percen	nt chan <u>c</u>	ge comp	pared to a	control)		
0, 300, 2,800, 25,000 ppm	ventral prostate	0		1	-1		-55*
0, 20, 200, 2,200 mg/kg-day	right testes	0		-8	0		-70*
Diet	right epididymis	0		-7	-10		-57*
10-week modified mating study	right cauda	0		-11	-19		-69*
	Relative weight (percent	t chang	е сотр	ared to co	ontrol)		
	ventral prostate	0		1	1		-36*
	right testes	0		-8	3		-58*
<u>NTP (1997b)</u>	mg/kg-day	0	30	60	180	550	'High'
Rat (F344); 15 males/dose	Absolute weight (percen	t chang	ge comp	pared to a	control)		
0, 300, 900, 2,800, 8,300,	right testes	0	4	7	3	5	-70*
25,000 ppm 0, 30, 60, 180, 550, "high"	right epididymis	0	3	ND	ND	5	-47*
mg/kg-day ^b	right cauda epididymis	0	-13	ND	ND	-7	-52*
Diet	Relative weight (percent	t chang	e comp	ared to c	ontrol)		
26 weeks	right testes	0	-2	-3	1	2	-56*
<u>Tyl et al. (2004)</u>	Percent change compare	d to co	ntrol				
Rat (CD); 30 F0 and 30 F1 parental	mg/kg-day	0		50	250		750
rats/sex/dose	Absolute weight (F1 ma	les)					
0, 750, 3,750, 11,250 ppm							
0, 50, 250, 750 mg/kg-day	ventral prostate	0		-12	-7		-26*
Diet	seminal vesicles	0		1	-1		-18*
Multigenerational study	paired testes	0		1	1		-21*
	paired epididymis	0		2	3		-11*
	weanling testes	0		3	8*		-26*
	Relative weight (F1 male	es)					
	ventral prostate	0		-13	-10		-18*
	weanling testes	0		3	7*		-10*

Reference and study design		Results ^a						
Hotchkiss et al. (2004)	Absolute weight (percen	t change com	pared to	control)				
Rat (Sprague-Dawley); 6 pregnant	mg/kg-day	0		5	00			
females/dose	glans penis	0		-	-3			
0, 500 mg/kg-day	ventral prostate	0		-	14			
Gavage	seminal vesicles	0		-	-6			
GDs 14-18	paired testes	0		-	-1			
	whole epididymis	0		-	-2			
	whole cauda epididymis	0		-	-4			
	caput corpus epididymis	0		-	-4			
	LABC	0		- <u>-</u>	10*			
	Note: Tissue weight data	adjusted for	body wei	ghts were not	reported.			
<u>Gray et al. (2000)</u>	Absolute weight (percen	t change com	pared to	control)				
Rat (Sprague-Dawley);	mg/kg-day	0		750				
13–19 pregnant females/dose	ventral prostate	0		-4	12*			
0, 750 mg/kg-day Gavage	seminal vesicles with coagulating glands	0		-3	38*			
GD 14-PND 3	glans penis	0		-1	19*			
	LABC	0		-3	34*			
	testes	0			reduction at D 2)			
	paired epididymis	0		-2	25*			
	cauda epididymis	0		-4	12*			
	caput corpus epididymis	0		-2	26*			
	Note: Tissue weight data	adjusted for	body wei	ghts not repor	rted.			
Piersma et al. (1995)	Absolute weight (percen	t change com	pared to	control)				
Rat (WU); 10/sex/dose	mg/kg-day	0	250	500	1,000			
0, 250, 500, 1,000 mg/kg-day	Adult F0 males							
Gavage	testes and epididymis	0	-2	-2	-14*			
Reproductive toxicity study								

Reference and study design		Re	esults ^a					
<u>Nagao et al. (2000)</u>	Absolute weight (percent change compared to control)							
Rat (Sprague-Dawley); 25/sex/dose	mg/kg-day	0	20	100	500			
0, 20, 100, 500 mg/kg-day	Adult male F0							
Gavage	testes	0	-1	3	-2			
Multigenerational study	paired epididymis	0	-2	1	-3			
	ventral prostate	0	3	7	1			
	Seminal vesicle	0	-2	-2	-3			
	Weanling male F1 offspri	ng						
	testes	0	4	0	-12*			
	paired epididymis	0	7	-1	-9*			
	prostate and seminal vesicle	0	3	-1	-9			
	Adult male F1 offspring (postweaning)							
	testes	0	0	-3	-12*			
	paired epididymis	0	-3	-5	-21*			
	ventral prostate	0	-3	-7	-14*			
	seminal vesicle	0	-3	-1	-10			
	Relative weight (percent	change co	mpared to co	ontrol)				
	Adult male F0							
	testes	0	0	2	5			
	paired epididymis	0	0	0	5			
	ventral prostate	0	0	0	8			
	seminal vesicle	0	0	-3	3			
	Weanling male F1 offspri	ng						
	testes	0	2	-1	-6*			
	paired epididymis	0	5	-2	-3			
	Adult male F1 offspring (postweaning)							
	testes	0	4	5	0			
	paired epididymis	0	0	0	-10			
	ventral prostate	0	0	0	-9			
	seminal vesicle	0	3	7	3			

Reference and study design	n Results ^a						
<u>Aso et al. (2005)</u>	Absolute weight (percent change compared to control)						
Rat (Crj:CD(SD)IGS); 24/sex/dose	mg/kg-day	0	100	200	400		
0, 100, 200, 400 mg/kg-day	Adult male F0						
Gavage	right testes	0	5	4	-1		
Multigenerational study	left testes	0	3	4	-2		
	right epididymis	0	3	2	-5		
	left epididymis	0	2	2	-6*		
	ventral prostate	0	-13	-4	-18		
	seminal vesicle	0	-2	0	-7		
	Adult male F1 offspring	g (postweanir	ng)				
	right testes	0	-1	-1	-5		
	left testes	0	1	-3	-5		
	right epididymis	0	-1	-7	-17*		
	left epididymis	0	-7	-12*	-16*		
	ventral prostate	0	1	-9	-13		
	seminal vesicle	0	-5	-9	-13*		
	Relative weight (percent change compared to control)						
	Adult male F0						
	right testes	0	3	0	0		
	left testes	0	0	0	-3		
	right epididymis	0	9	0	0		
	left epididymis	0	0	0	0		
	ventral prostate	0	-15	-8	-15		
	seminal vesicle	0	-3	-3	-9		
	Adult male F1 offspring	g (postweanir	ng)				
	right testes	0	0	3	0		
	left testes	0	0	0	-3		
	right epididymis	0	0	0	-9		
	left epididymis	0	0	-9	-9		
	ventral prostate	0	0	-9	-9		
	seminal vesicle	0	-3	-7	-10		
	Autopsy findings (perc	ent incidence)				
	Adult male F1 offspring	g (postweanir	ng)				

Reference and study design	Results ^a					
	small testis	0	0	0	25*	
	small epididymis	0	0	0	13	
<u>TNO (1998a)</u>	Percent change compared	l to contro	ol			
Rat (Wistar); P0, female (28/group)	mg/kg-day	0	0.015	0.147	0.442	
0, 100, 1,000, 3,000 μg/L (equivalent to 0.016, 0.171, 0.489 mg/kg-day, average of reported intake over	F1 male caudal epididymis, absolute weight (left)	0	-3	-1	-4	
premating, gestation, and lactation)	F1 male caudal epididymis, relative	0	-1	-1	3	
Drinking water	weight (left)					
F0 females: 2 weeks prior to mating, through mating, gestation, and lactation; F0 males: during mating; F1 animals were not treated after	F1 male epididymis, relative weight	0	0	-1	-1	
weaning	F1 male epididymis absolute weight	0	0	-1	-2	
	F1 male prostate, relative weight	0	-4	-3	-4	
	F1 male prostate, absolute weight	0	-4	-2	-4	
	F1 male seminal vesicles, absolute weight	0	-5	1	-3	
	F1 male seminal vesicles, relative weight	0	-4	0	-2	
	F1 male testis, absolute weight (left)	0	0	-3	-3	
	F1 male testis, relative weight (left)	0	0	-3	-3	
Ahmad et al. (2014)	Absolute weight (percent	change co	ompared to co	ntrol)		
Rat (Albino); P0, female (6/group)	mg/kg-day	0	4	20	100	
0, 4, 20, 100 mg/kg	F1 male epididymis	0	-3	-4	-13*	
Gavage	F1 male prostrate	0	-2	-2	-12*	
GD 14 to parturition	F1 male seminal vesicle	0	-1	-1	-11	
	F1 male testis	0	-1	-1	-2	

Reference and study design	Results ^a						
<u>BIBRA (1978)</u>	Percent change compared to control						
Rat (Wistar); 27/sex/group or	mg/kg-day	0	151	381	960		
45/sex/group (control); interim sacrifices of 9 controls/sex/group and 6 treated rats/sex/group at	male gonad relative weight	0	7	8	7		
2 and 6 weeks	male gonad weight	0	-2	0	-1		
0, 2,000, 5,000, 12,000 ppm 0, 151, 381, 960 mg/kg-day (males) ^d 0, 171, 422, 1,069 mg/kg-day (females)							
Diet							
14 weeks							

6 7

8

*Statistically different from controls (p <0.05) as reported by study authors.

^aPercent change compared to control calculated as 100 × ((treated value – control value) ÷ control value).

^bThe high-dose group corresponds to 25,000 ppm BBP; a reliable estimate of dose could not be calculated. The

study authors estimated doses for all but the high-dose group based on measured body weights and food

consumption. Food consumption was not measured in the 25,000 ppm BBP group due to excessive scattering of feed, and because the mean body weight of this group was 30% lower than controls.

LABC = levator ani bulbocavernosus; ND = not determined

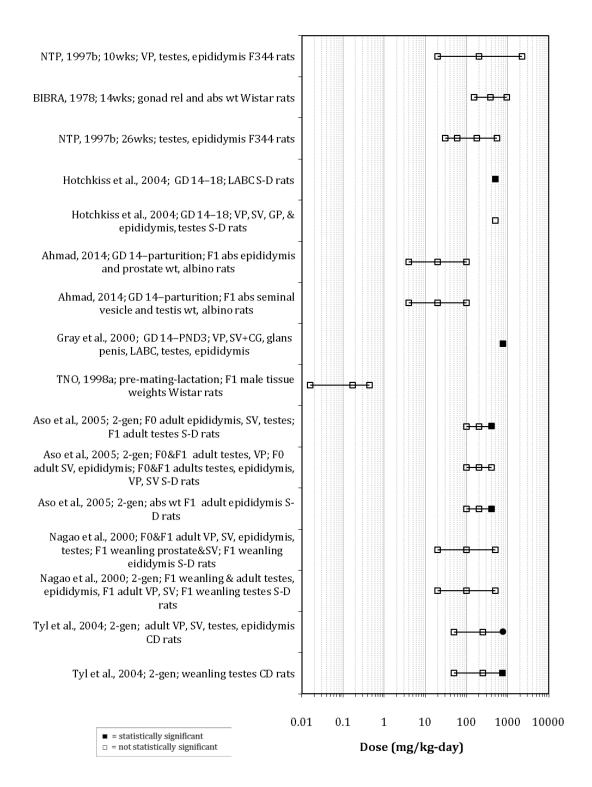


Figure 3-4. Exposure-response array of male reproductive toxicity following oral exposure to BBP: decrease in androgen-dependent tissue weights.

3.3.2. Female Reproductive Effects 1

2 3

Table 3-22. Evidence pertaining to female reproductive toxicity following oral exposure to BBP

Reference and study design		Re	sults ^ª			
Reproductive tissue weights						
<u>Moral et al. (2007)</u>	Absolute uterine we	ight (percent ch	ange compai	red to control)	
Rat (Sprague-Dawley CD);	mg/kg-day		0		500	
10 pregnant females/dose 0, 500 mg/kg-day from PND 2 to 20	day 21		0		20	
Gavage	day 35		0		24	
Female offspring were evaluated at	day 50		0		11	
21, 35, 50, and 100 days	<i>day 100</i> 0 5					
	Relative uterine wei					
	day 21		0	2	27*	
	day 35	0			23	
	day 50		0		11	
	day 100	0		6		
<u>Götz et al. (2001)</u>	Absolute weight (per	rcent change co	mpared to co	ontrol		
Rat (Wistar (Crl:WI)); 10–15/group	mg/L		0		10	
0, 10 mg/L BBP to pregnant females during the whole pregnancy and during lactation	ovarian weight		0	-	-40*	
Drinking water						
<u>Nagao et al. (2000)</u>	Absolute weight (per	rcent change co	mpared to co	ontrol)		
Rat (Sprague-Dawley);	mg/kg-day	0	20	100	500	
20–25 breeding pairs/group/generation; organ	F0 ovaries	0	0	-4	-11*	
weights assessed in 20–24 F0 females/group and 41–46 F1 female weanlings/group	F1 ovaries	0	2	-7	-16*	
0, 20, 100, 500 mg/kg-day	F0 uterus	0	-8	10	18	
Gavage	F1 uterus	0	-2	3	2	
Multigenerational study	Relative weight (per	cent change con	npared to cor	ntrol)		
	F0 ovaries	0	2	-3	-11*	
	F1 uterus	0	-4	4	13*	
	F0 uterus	0	0	18	18	
	F1 ovaries	0	0	-6	-9	

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE 3-82

Reference and study design	Results ^a						
<u>Tyl et al. (2004)</u>	Absolute weight (percent change compared to control)						
Rat (CD); 30 breeding	mg/kg-day	0	50	250	750		
pairs/group/generation; organ weights assessed in 30 F0	F0 adults ovaries	0	8	3	-13*		
females/group, 30 F1 adult	F0 adult uterus	0	-1	3	-75*		
females/group, 67–81 F1 female weanlings/group, and 43–87 F2 female weanlings/group	F1 weanlings ovaries	0	6	3	-24*		
0, 750, 3,750, 11,250 ppm 0, 50, 250, 750 mg/kg-day ^b	F1 weanlings uterus	0	-2	4	-20*		
Diet	F1 adults ovaries	0	3	3	2		
Multigenerational study	F1 adults uterus	0	0	9	20*		
	F2 weanlings ovaries	0	0	-6	-19*		
	F2 weanlings uterus	0	5	16*	-14		
	Relative weight (percent change compared to control)						
	F0 adults ovaries	0	-3	-7	-19*		
	F0 adults uterus	0	-1	3	-17*		
	F1 weanlings ovaries	0	4	3	-4		
	F1 weanlings uterus	0	-4	4	3		
	F1 adults ovaries	0	2	0	9*		
	F1 adults uterus	0	-1	6	28*		
	F2 weanlings ovaries	0	-2	-6	-8		
	F2 weanlings uterus	0	4	13	-2		
<u>Aso et al. (2005)</u>	mg/kg-day	0	100	200	400		
Rat (Crj:CD(SD)IGS); 24 breeding	Absolute weight (percen	t change co	ompared to co	ntrol)			
pairs/group/generation; organ weights assessed in 19–20 F0	F0 right ovary	0	-4	1	-7		
females/group and 12–19 F1 females/group	F0 left ovary	0	0	-3	-4		
0, 100, 200, 400 mg/kg-day	F0 uterus	0	-8	-9	-4		
Gavage	F1 right ovary	0	12	3	-8		
Multigenerational study	F1 left ovary	0	10	2	-5		
	F0 uterus	0	1	8	12		
	Relative weight (percent	change co	mpared to cor	ntrol)			
	F0 right ovary	0	-4	-4	-7		
	F0 left ovary	0	-1	-8	-4		
	F0 uterus	0	-8	-15*	-4		

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design	Results ^a					
	F1 right ovary	0	7	-3	-9	
	F1 left ovary	0	6	-3	-7	
	F1 uterus	0	-4	0	8	
<u>NTP (1989)</u>	Percent change compared	d to conti	rol			
Rat (Sprague-Dawley);	mg/kg-day	0	420	1,100	1,640	
27–30 pregnant females/dose	gravid uterine weight	0	4	0	-42*	
0, 420, 1,100, 1,640 mg/kg-day						
Diet						
GDs 6–15; dams sacrificed on GD 20						
<u>NTP (1990)</u>	Percent change compared	d to conti	rol			
Mouse (CD-1); 27–30 pregnant females/dose (except n = 14 in the high-dose group)	mg/kg-day	0	182	910	2,330	
	gravid uterine weight	0	3	-7	-85*	
0, 182, 910, 2,330, 4,121 mg/kg-day	Note: The 4,121 mg/kg-da				on of 14	
Diet	dams since all litters were	e complet	tely resorbed			
GDs 6–15; dams sacrificed on GD 17						
<u>Ema et al. (1998)</u>	Percent change compared	d to conti	rol			
Rat (Wistar); 7–10 pregnant	mg/kg-day	0	250	500 750	1,000	
females/dose	ovary weight (day 9	0	-2	-9 -13*	-17*	
0, 250, 500, 750, 1,000 mg/kg-day	pseudopregnancy) ^c					
Gavage						
GDs 0–8; dams sacrificed on GD 20	uterine weight (day 9 pseudopregnancy) ^c	0	1	-34 -42*	-47*	
	Percent change compared	to conti	rol			
BIBRA (1978) Rat (Wistar); 27/sex/group or	mg/kg-day	0	rol 171	422	1069	
				422 8	1069 -5	
Rat (Wistar); 27/sex/group or 45/sex/group (control); interim sacrifices of 9 controls/sex/group and 6 treated rats/sex/group at	mg/kg-day female gonad relative	0	171			
Rat (Wistar); 27/sex/group or 45/sex/group (control); interim sacrifices of 9 controls/sex/group and 6 treated rats/sex/group at 2 and 6 weeks 0, 2,000, 5,000, 12,000 ppm 0, 151, 381, 960 mg/kg-day (males) ^b 0, 171, 422, 1,069 mg/kg-day	mg/kg-day female gonad relative weight female gonad absolute	0	171 0	8	-5	

Reference and study design	Results ^a						
<u>TNO (1998a)</u>	Percent change compared to control						
Rat (Wistar); P0, female (28/group)	mg/kg-day	0	0.016	0.171	0.489		
0, 100, 1,000, 3,000 μg/L (equivalent to 0.016, 0.171,	F1 female absolute ovary weight	0	6	-1	3		
0.489 mg/kg-day, average of reported intake over premating, gestation, and lactation)	F1 female absolute uterus weight	0	-3	-2	1		
Drinking water	F1 female relative	0	3	-3	1		
F0 females: 2 weeks prior to mating, through mating, gestation, and lactation; F0 males: during mating; F1 animals were not treated after weaning	ovary weight F1 female relative uterus weight	0	-5	-4	0		
Gross necropsy of reproductive organ	15						
<u>Tyl et al. (2004)</u>	Percent incidence						
Rat (CD); 30 breeding	mg/kg-day	0	50	250	750		
pairs/group/generation; gross necropsy performed in 30 adult	F0 fluid-filled uterus	0	3	0	0		
females/generation	F1 fluid-filled uterus	0	0	3	10		
0, 750, 3,750, 11,250 ppm 0, 50, 250, 750 mg/kg-day ^b	Note: Study authors re unknown, as the affect state that increased ut	ed females w	ere in estrus a	at sacrifice. T	hey also		
Diet	incidence of fluid filled	-		incly due to	iner cuscu		
Multigenerational study							
<u>BIBRA (1978)</u>	Response incidence						
Rat (Wistar); 27/sex/group or	mg/kg-day	0	171	422	1069		
45/sex/group (control); interim sacrifices of 9 controls/sex/group and 6 treated rats/sex/group at	female uterus distended	0	-	-	1		
2 and 6 weeks	female ovary histopathology	No histolo	ogical lesions v	vere noted in	the ovaries		
0, 2,000, 5,000, 12,000 ppm 0, 151, 381, 960 mg/kg-day (males) ^b 0, 171, 422, 1,069 mg/kg-day (females) ^b							
Diet							
14 weeks							

Reference and study design		R	esults ^a		
Puberty					
<u>Tyl et al. (2004)</u>	Percent change compar	ed to contro)		
Rat (CD); 30 breeding	mg/kg-day	0	50	250	750
pairs/group/generation; onset of puberty assessed in 26–28 F1 litters/group	F1 age at vaginal opening	0	2	-1	9*
0, 750, 3,750, 11,250 ppm 0, 50, 250, 750 mg/kg-day ^b	F1 age at vaginal opening adjusted for body weight	0	0	-1	9*
Diet	body weight				
Multigenerational study					
<u>Moral et al. (2011)</u>	Percent change compar	ed to contro	ol		
Rat (Sprague-Dawley CD); 10 pregnant females/dose	mg/kg-day	0	120		500
0, 12, 500 mg BBP/kg-day from	day of vaginal opening	0	-1		6*
day 10 post-conception to delivery Gavage	body weight (g) at day of vaginal	0	0		2
Litters were euthanized at 21, 35, 50 and 100 days	opening				
Moral et al. (2007)	Development of the ma	ammary gla	nd (number of t	erminal end	buds)
Rat (Sprague-Dawley CD);	mg/kg-day		0	5	00
10 pregnant females/dose	day 21		0		1
0, 500 mg/kg-day from PND 2 to 20					
Gavage	day 35		0	-	-1
Female offspring were evaluated at	day 50		0		24
21, 35, 50, and 100 days	day 100		0	8	32
	Development of the ma	ammary gla	nd (number of t	erminal duci	ts)
	day 21		0		6
	day 35		0	-	12
	day 50		0	-	13
	day 100		0		8
	Development of the ma	ammary gla	nd (number of a	alveolar buds	5)
	day 21		0	-	29
	day 35		0	-	-8
	day 50		0	-	12
	day 100		0		0

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design		Re	sults ^a			
	Development of the mammary gland (number of type 1 lobules)					
	<i>day 21</i> 0		0			
	day 35		0	30 -1		
	day 50		0			
	<i>day 100</i> 0	:	8			
Nagao et al. (2000)	Percent change compare	d to control				
Rat (Sprague-Dawley):,	mg/kg-day	0	20	100	500	
20–25 breeding pairs/group/generation; onset of puberty assessed in 39–48 F1 females/group (2 pups per litter)	F1 age at vaginal opening	0	2	1	3	
), 20, 100, 500 mg/kg-day						
Gavage						
Multigenerational study						
Г <mark>NO (1998а)</mark>	No significant difference		e sexual matu	uration as mea	sured by	
Rat (Wistar); P0, female (28/group)	vaginal opening from PN	D 32 to 45				
0, 100, 1,000, 3,000 μg/L (equivalent to 0.016, 0.171, 0.489 mg/kg-day, average of reported intake over premating, gestation, and lactation)						
Drinking water						
F0 females: 2 weeks prior to mating, through mating, gestation, and						
lactation; F0 males: during mating; F1 animals were not treated after weaning						
F1 animals were not treated after weaning						
1 animals were not treated after weaning Reproductive performance	Percent change compare	ed to control				
F1 animals were not treated after weaning Reproductive performance Götz et al. (2001) Rat (Wistar (Crl:WI)),	Percent change compare		0	1	.0	
F1 animals were not treated after		1	2.7	19	9.7	

Reference and study design	Results ^a						
<u>Tyl et al. (2004)</u>	Mating or fertility index (percent change compared to control)						
Rat (CD); 30 breeding	mg/kg-day	0	50	250	750		
pairs/group/generation	F0 mating index	0	-3	0	0		
0, 750, 3,750, 11,250 ppm 0, 50, 250, 750 mg/kg-day ^b	F0 fertility index	0	7 4		4		
Diet							
Multigenerational study	F1 mating index	0	0	-4	-28*		
	F1 fertility index	0	-3	-7	-19*		
Bayer (1998)	Mating or fertility inde	x (percent ch	ange compared to control)				
Rat (Wistar), 28/sex/group	Drinking water			nge compared to control)			
0, 1, 3 ppm	mg/kg-day	0	0.11		0.35		
0, 0.11, 0.35 mg/kg-day for drinking water	Gestation index	0	0		0		
0, 0.09, 0.28 mg/kg-day for diet	Fertility index	0	5		14		
Drinking water and diet	Diet						
emales dosed through mating,	mg/kg-day	0	0.9		0.28		
gestation, and lactation (males only	Gestation index	0	0		0		
through cohabitation with females)	Fertility index	0	22		9		
<u>Nagao et al. (2000)</u>	Mating or fertility inde	x (raw percen	itages)				
Rat (Sprague-Dawley);	mg/kg-day	0	20	100	500		
20–25 breeding pairs/group/ generation; F0 reproductive	F0 mating index (%)	96	96	96	100		
performance assessed in	F0 fertility index (%)	91.7	83.3	95.8	96		
25 breeding pairs/group; F1 reproductive performance assessed	F1 mating index (%)	100	94.7	90.9	91.7		
in 20–24 breeding pairs/group	F1 fertility index (%)	77.3	77.8	95	77.3		
0, 20, 100, 500 mg/kg-day							
Gavage							
Multigenerational study							
Aso et al. (2005)	Mating or fertility inde	x (percent ch	ange compar	ed to contro	1)		
Rat (Crj:CD(SD)IGS); 24 breeding	mg/kg-day	0	100	200	400		
pairs/group/generation	F0 mating index	0	-8	-4	-4		
0, 100, 200, 400 mg/kg-day							
Gavage	F0 fertility index	0	4	9	10		
Multigenerational study	F1 mating index	0	0	-9	-9		
	F1 fertility index	0	25	12	-15		

Reference and study design	Results ^a						
Piersma et al. (1995)	Mating or fertility index (raw percentages)						
Rat (WU); 10 breeding pairs/dose	mg/kg-day	0	250	500	1,000		
0, 250, 500, 1,000 mg/kg-day	F0 mating index (%)	100	100	90	90		
Gavage	F0 fertility index (%)	90	80	78	44		
Males: 29 days (14 days premating, up to 14 days mating); females: up to 55 days (14 days premating through PND 6)							
<u> [NO (1998b)</u>	Percent change compare	d to control					
Rat (Wistar); P0, female (28/group)	mg/kg-day	0	0.1	90	0.280		
D, 1,000, 3,000 μg/L (equivalent to D.190, 0.280 mg/kg-day during premating as calculated by study authors) Drinking water	P0 female duration of gestation	0	0		1		
	P0 female fecundity index (%)	96	82	2	96		
Drinking water	P0 female fertility index (%)	93	82	2	93		
F0 females: 2 weeks prior to mating, through mating, gestation and lactation; F0 males: mating period only; F1: did not receive additional treatment after weaning	P0 female gestation index (%)	100	96		92		
	P0 female mating index (%)	96	100		96		
	P0 female pre-coital time	0	7		23		
TNO (1998a)	Percent change compare	d to control					
Rat (Wistar); P0, female (28/group)	mg/kg-day	0	0.016	0.171	0.489		
0, 100, 1,000, 3,000 μg/L (equivalent to 0.016, 0.171,	P0 female duration of gestation	0	0	1	0		
0.489 mg/kg-day, average of reported intake over premating, gestation, and lactation)	F1 female estrus cycle length	0	-4	-4	-5		
Drinking water	P0 female pre-coital time	0	8	-14	-6		
F0 females: 2 weeks prior to mating,	Raw percentages						
through mating, gestation, and lactation; F0 males: during mating; F1 animals were not treated after	P0 female fecundity index (%)	96	82	88	86		
weaning	P0 female fertility index (%)	89	82	82	86		
	P0 female gestation index (%)	96	100	96	100		
	P0 female mating index (%)	93	100	93	100		

This document is a draft for review purposes only and does not constitute Agency policy.

Reference and study design	Results ^a Response						
	P0 females pregnant	25/26	23/28	23/26	24/28		
Monsanto (1993)	Fertility index (raw pe	ercentages)					
Rat (Wistar); 12 males/group	mg/kg-day	0	116	235	458		
0, 0.2, 0.4, 0.8% BBP or	litter 1 9	92	79	83	75		
0, 116, 235, 458 mg/kg-day (F) and 0, 252, 580, 1,078 mg/kg-day (M)	litter 2 8	38	96	88	92		
Diet							
Multigenerational study							
Ahmad et al. (2014)	P0 female gestation le			-	treated		
Rat (Albino); P0, female (6/group)	groups (graphical pres	sentation rep	ported by stu	dy authors)			
0, 4, 20, 100 mg/kg							
Gavage							
GD 14 to parturition							
<u>Saillenfait et al. (2003)</u>	Percent pregnant (rav	w percentag	es)				
Rat (Sprague-Dawley); P0, female (9–10/group)	mg/kg-day	0	560	1,120	1,690		
	P0 female percent	100	78	90	100		
0, 1.8, 3.6, 5.4 mmol/kg (equivalent	pregnant						
to 560, 1,120, 1,690 mg/kg as calculated by study authors)	Note: statistical significance not evaluated by study authors						
Gavage							
Single dose on GD 10; sacrificed GD 21							
<u>Saillenfait et al. (2003)</u>	Percent pregnant (rav	v percentag	es)				
Mouse (OF-1); P0, female	mg/kg-day	0	280	560 1,12	.0 1,690		
(22–24/group) 0, 0.9, 1.8, 3.6, 5.4 mmol/kg	PO female percent pregnant	82	83	70 83	68		
(equivalent to 280, 560, 1,120, 1,690 mg/kg as calculated by study authors)	Note: Statistical significance not evaluated by study authors						
Gavage							
Single dose on GD 8; sacrificed GD 18							

Reference and study design		Re	esults ^a				
Biomarkers of reproductive develop	ment						
<u>Aso et al. (2005)</u>	AGD (percent change compared to control)						
Rat (Crj:CD(SD)IGS); 24 breeding	mg/kg-day	0	100	200	400		
pairs/group/generation; AGD assessed in 19–21 F1 litters/group	F1 AGD at PND 4	0	10*	8	6		
and 13–20 F2 litters/group	F1 AGD/BW ^{1/3} at	0	10*	9*	8*		
0, 100, 200, 400 mg/kg-day	PND 4						
Gavage	F2 AGD at PND 4	0	-9	-6	-3		
Multigenerational study	F2 AGD/BW ^{1/3} at PND 4	0	-5	-9	1		
<u>Nagao et al. (2000)</u>	AGD (percent change co	ompared to a	control)				
Rat (Sprague-Dawley);	mg/kg-day	0	20	100	500		
20–25 breeding pairs/group/generation; AGD	F1 AGD at birth	0	-8	0	0*		
assessed in 128–167 F1 female pups/group	Note: F1 AGD at birth reported as significantly increased at 500 mg/kg-day by study authors (pg. 518), but data reported in table do not indicate an						
0, 20, 100, 500 mg/kg-day	increase.						
Gavage							
Multigenerational study							
<u>Tyl et al. (2004)</u>	AGD (percent change co	ompared to a	control)				
Rat (CD); 30 breeding	mg/kg-day	0	50	250	750		
pairs/group/generation; AGD assessed in 26–28 F1 litters/group	F1 AGD at PND 0	0	1	-4	-4		
and 17–29 F2 litters/group	F2 AGD at PND 0	0	-1	-2	1		
0, 750, 3,750, 11,250 ppm 0, 50, 250, 750 mg/kg-day ^b							
Diet							
Multigenerational study							
Pregnancy outcomes							
<u>Nagao et al. (2000)</u>	mg/kg-day	0	20	100	500		
Rat (Sprague-Dawley);	Number of implantations/litter (percent change compared to control)						
20–25 breeding pairs/group/generation	F0 dams for F1 litter	0	6	11	6		
0, 20, 100, 500 mg/kg-day	F1 dams for F2 litter	0	5	-4	-6		
Gavage	Number of live pups/lit	ter (percent	change comp	ared to contro	ol)		
Multigenerational study	F0 dams for F1 litter	0	6	14	7		
	F1 dams for F2 litter	0	4	-9	-11		

This document is a draft for review purposes only and does not constitute Agency policy.3-91DRAFT—DO NOT CITE OR QUOTE

Reference and study design		R	Results ^a				
	F0 dams for F1 litter	100	99	9	9.5	96.7*	
	F1 dams for F2 litter	97.8	95.4	9	9.7	97.6	
	mg/kg-day	0	50	2	250	750	
	Number of implantatio	ons/litter (pe	ercent chan	ge compo	ared to co	ntrol)	
	F0 dams for F1 litter	0	-11		-5	-10	
	F1 dams for F2 litter	0	-5		-4	-22*	
	Number of live pups/li	tter (PND 0)	(percent cl	hange coi	mpared to	o control)	
	F0 dams for F1 litter	0	-8		1	-2	
	F1 dams for F2 litter	0	-1		0	-20*	
	4-Ray survival index (%) (raw perce	entages)				
	F0 dams for F1 litter	97.2	96.3	9	7.5	92.6	
	F1 dams for F2 litter	98.3	98.1	9	6.9	95.4	
Piersma et al. (1995)	Percent change compai	red to contro	ol				
Rat (WU); 10 breeding pairs/dose	mg/kg-day	0	250	5	500	1,000	
0, 250, 500, 1,000 mg/kg-day Gavage	number of implantations/dam	0	19		-6	37	
Males: 29 days (14 days premating, up to 14 days mating); Females: up	number of live pups/litter	0	21	-	-11	-84*	
to 55 days (14 days premating through PND 6)	Raw percentages						
(nrough PND 6)	postnatal mortality PNDs 1–6 (%)	2.1	2.6		4.8	46.7	
<u>Aso et al. (2005)</u>	mg/kg-day	0	100	2	200	400	
Rat (Crj:CD(SD)IGS); 24 breeding	Number of implantations/litter (percent change compared to control)						
pairs/group/generation	F0 dams for F1 litter	0	-13	-6		-6	
0, 100, 200, 400 mg/kg-day							
Gavage	F1 dams for F2 litter	0	6	-19		-4	
Multigenerational study							
Saillenfait et al. (2003)	Percent change compared to control						
Rat (Sprague-Dawley); P0, female	mg/kg-day	0	560	1,120	1,690	1,690	
(9–10/group) 0, 1.8, 3.6, 5.4 mmol/kg (equivalent to 560, 1,120, 1,690 mg/kg as calculated by study authors)	P0 female implants/litter	0	9	2	1	22	
Gavage							

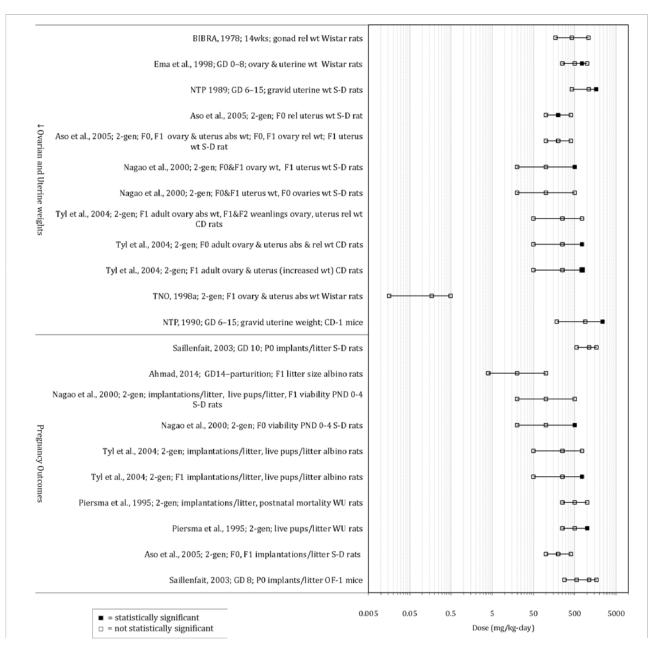
Reference and study design			R	Results ^a				
Single dose on GD 10; sacrificed GD 21								
Bayer (1998)	Lacation index (percent ch	ange co	mpared to c	ontrol)			
Rat (Wistar), 28/sex/group 0, 1, 3 ppm	Drinking water							
0, 0.11, 0.35 mg/kg-day for drinking water	mg/kg-day	0		0.11		0.35		
0, 0.09, 0.28 mg/kg-day for diet		0		0		-6		
Drinking water and diet	Diet							
Females dosed through mating,	mg/kg-day	0		0.09		0.28		
gestation, and lactation (males only through cohabitation with females)		0		-8		-3		
<u>Monsanto (1993)</u>	Live birth index	(raw perc	entages)					
Rat (Wistar); 12 males/group	mg/kg-day	0		116	235		458	
0, 0.2, 0.4, 0.8% BBP or	litter 1	97		98	100		99	
0, 116, 235, 458 mg/kg-day (F) and 0, 252, 580, 1,078 mg/kg-day (M)	litter 2	98		98	99		99	
-, -,, , 0, 0, (,	Viability index (raw percentages)							
Diet	litter 1	100		97	100		97	
Multigenerational study	litter 2	98		96	100		99	
<u>Saillenfait et al. (2003)</u>	Percent change o	compared	to contr	ol				
Mouse (OF-1); P0, female	mg/kg-day		0	280	560	1,120	1,690	
(22–24/group) 0, 0.9, 1.8, 3.6, 5.4 mmol/kg (equivalent to 280, 560, 1,120, 1,690 mg/kg as calculated by study authors)	P0 female implar litter	nts/	0	-3	-9	-4	9	
Gavage								
Single dose on GD 8; sacrificed GD 18								
Ahmad et al. (2014)	Percent change o	compared	to contr	ol				
Rat (Albino); P0, female (6/group) 0, 4, 20, 100 mg/kg	mg/kg-day		0	4		20	100	
	F1 combined litte	er size	0	-1		-5	15	
Gavage								
GD 14 to parturition								

¹ 2 3

*Statistically different from controls (p <0.05), as reported by study authors.

^aPercent change compared to control calculated as 100 × ((treated value – control value) ÷ control value).

4 ^bCalculated as follows: [% in diet × intake food/water (mg)] ÷ body weight (kg) = mg/kg-day.


- 1 ^cValues reported by the study authors were estimated from published graphs using "Grab It!", a Microsoft Excel based free software application used to digitizes data from image files. Publisher: www.datatrendsoftware.com.
- 2 3 4

Mating index = (number copulated/number cohabitated) × 100; fertility index = (number of pregnant/number

5 6 7 copulated) × 100, ; gestation index = (number of pregnant females/number of sperm-positive females) × 100;

lactation index = (number of live pups after three weeks/number of live pups after four days (after culling)) × 100;

fecundity index = (number of females pregnant/number of females mated) × 100; viability index = (number of live 8 pups on day 21/number of live pups on day 4 (after culling)) × 100

1 2 3

Figure 3-5. Exposure response array of female reproductive toxicity following oral exposure to BBP: weights and pregnancy outcomes.

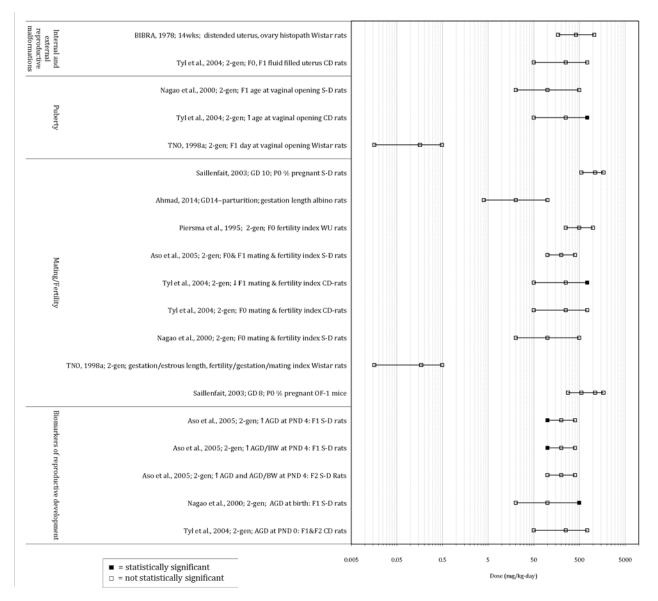


Figure 3-6. Exposure response array of other female reproductive parameters following oral exposure to BBP.

2 3

Table 3-23. Evidence pertaining to pregnancy outcomes following oralexposure to BBP: Measures of embryotoxicity

Reference and study design	Results ^a								
NTP (1989)	Raw percentages								
Rat (Sprague-Dawley);	mg/kg-day	0	420)	1,100	1,640			
27–30 pregnant females/dose	resorptions/litter (%)	3.5	3.8		3.8	40.2*			
0, 420, 1,100, 1,640 mg/kg-day									
Diet	litters with	32.1	44.4		43.3	86.2*			
GDs 6–15; dams sacrificed on GD 20	resorptions (%)								
	Percent change compo	ared to con	trol						
	number of live fetuses/litter	0	5		2	-33*			
Ema et al. (1990)	Raw percentages or ro	ntios							
Rat (Wistar); 13–17 pregnant	mg/kg-day	0	185	375	654	974			
females/dose	postimplantation	7.6	9.0	16.4	12.1	100*			
0, 0.25, 0.5, 1.0, 2.0% 0, 185, 375, 654, 974 mg/kg-day	loss/litter (%)								
Diet	total loss/litter (%)	12.7	13.6	25.4	19.8	100*			
GDs 0–20; dams sacrificed on GD 20	sex ratio (M:F)	100:108	110:118	67:102	73:87	NA			
	pre-implantation loss/litter (%)	5.6	5.2	10.5	8.8	13.6			
	Percent change compared to control								
	number of live fetuses/litter	0	-4	-19*	-12	-100			
	Note: All litters were lost at the high dose.								
Ema et al. (1992b)	Raw percentages or ratios								
Rat (Wistar); 11 pregnant	mg/kg-day	0	0	974	974	974			
females/dose		(ad libitum)	(pair fed)	(GDs 0–20)	(GDs 0-11)	(GDs 11–20)			
0 [ad libitum controls], 0 [pair fed controls], or 974 mg/kg-day ^b					•	-			
	postimplantation loss/litter (%)	9.2	16.7	100*	100*	13.4			
Diet									
GDs 0–20, 0–11, or 11–20; dams sacrificed on GD 20	litters resorbed (%)	0	0	100*	100*	0			
	sex ratio (M:F)	57:78	64:68	NA	NA	67:67			
	pre-implantation loss/litter (%)	6.2	6.4	3.4	7.2	3.9			

This document is a draft for review purposes only and does not constitute Agency policy.3-97DRAFT—DO NOT CITE OR QUOTE

Reference and study design			Resu	ts ^a							
	Percent change comp	ared to ad	libitum	control							
	number of live fetuses/litter	0	-2	2 -10)0* -:	100*	-1				
<u>Ema et al. (1992a)</u>	Raw percentages or re	atios									
Rat (Wistar); 11–12 pregnant females/dose 0 [ad libitum controls], 0 [pair fed	mg/kg-day	0 (ad libitum)	0 (pair fed)	974 (GDs 0–20)	974 (GDs 0-7)	974 (GDs 7-16)	974 (GDs 16-20)				
controls], or 974 mg/kg-day ^b Diet	postimplantation loss/litter (%)	9.2	16.7	100*	24.8*	55.8*	11.7				
GDs 0-20, 0-7, 7-16, or 16-20;	total loss/litter (%)	14.3	22	100*	29.6*	59.1*	17.6				
dams sacrificed at GD 20	litters resorbed (%)	0	0	100*	0	17	0				
	sex ratio (M:F)	57:78	64:68	NA	54:59	37:36	62:70				
	pre-implantation loss/litter (%)	6.2	6.4	3.4	6.7	6.7	4.1				
	Percent change comp	ared to ad	libitum	control							
	Number of live fetuses/litter	0	-2	-100*	-16	-50*	-2				
<u>Ema et al. (1992c)</u>	Raw percentages or re	atios									
Rat (Wistar); 10 pregnant	mg/kg-day	0		500	750		1,000				
females/dose 0, 500, 750, 1,000 mg/kg-day	postimplantation loss/litter (%)	8.2		14.7	81.7*		100*				
Gavage	litters resorbed (%)	0		0	30		100*				
GDs 7–15; dams sacrificed at GD 20	sex ratio (M:F)	57:64		62:58	11:14	Ļ	NA				
	Percent change comp	ared to co	ntrol								
	number of resorptions and dead fetuses/litter	0	67	833	*	1,05	50*				
	number of live fetuses/litter	0	-1	-79)*	-1	00				
<u>Ema et al. (1993)</u>	Raw percentages or re	atios									
Rat (Wistar); 10 pregnant	mg/kg-day	0		600	750		1,000				
females/dose	Postimplantation loss	s/litter (%)									
0, 600, 750, 1,000 mg/kg-day											
Gavage	exposed GDs 7–9	15.5		14.3	52.8*	:	74.3*				
GDs 7–9, 10–12, or 13–15; dams sacrificed at GD 20	exposed GDs 10–12	13.1		7.8	32.1*		88.7*				

This document is a draft for review purposes only and does not constitute Agency policy.3-98DRAFT—DO NOT CITE OR QUOTE

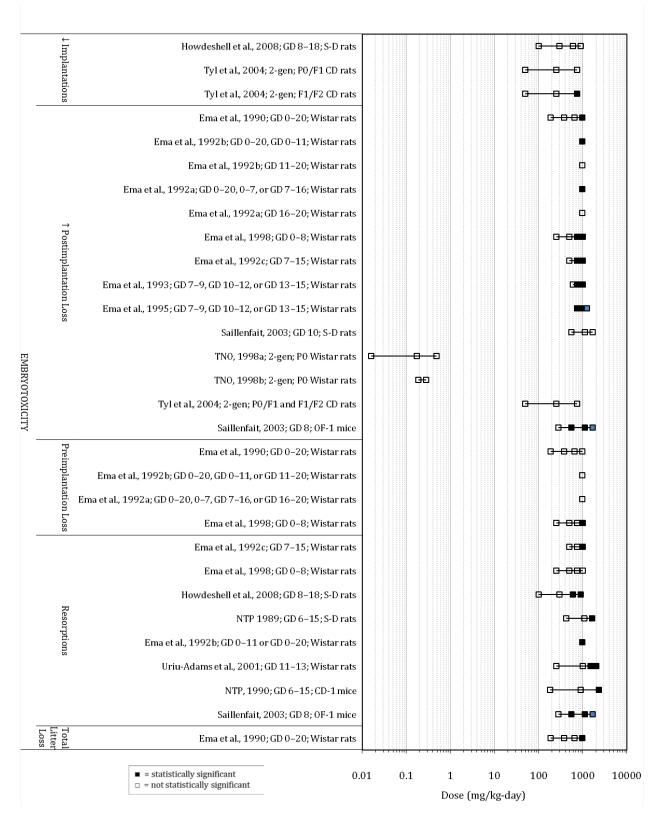
Reference and study design		R	esults ^a					
	Sex ratio (M:F)							
	exposed GDs 7–9	65:60	59:65	36:33	17:21			
	exposed GDs 10–12	54:67	48:81	55:44	13:4*			
	exposed GDs 13–15	57:71	55:55	41:32	26:29			
	Number of resorptions to control)	s and dead fe	etuses/litter (percent chang	e compared			
	exposed GDs 7–9	0	31	363*	581*			
	exposed GDs 10–12	0	-35	176*	659*			
	exposed GDs 13–15	0	65	288*	435*			
	Number of live fetuses	s/litter (perce	ent change co	mpared to co	581* 659* 435* ntrol) -70* -86* -57*			
	exposed GDs 7–9	0	-1	-45*	-70*			
	exposed GDs 10–12	0	7	-18	-86*			
	exposed GDs 13–15	0	-14	-43*	-57*			
	Percentage of litters re	esorbed (per	cent change c	ompared to co	ontrol)			
	exposed GDs 7–9	0	0	10	30			
	exposed GDs 10–12	0	0	10	70*			
	exposed GDs 13–15	0	0	0	20			
Ema et al. (1995)	Raw percentages or ra	tios						
Rat (Wistar); 10–12 pregnant	mg/kg-day	0	750	1,000	1,250			
females/dose	Sex ratio (M:F)							
0, 750, 1,000, 1,250 mg/kg-day								
Gavage	exposed GDs 7–9	68:87	45:44	26:27	NA			
GDs 7–9, 10–12, or 13–15; dams	exposed GDs 10–12	68:87	64:60	20:12*	NA			
sacrificed at GD 20	exposed GDs 13–15	68:87	51:39*	27:29	NA			
	Post implantation loss	/litter (%)						
	exposed GDs 7–9	17.5	49.2*	69.6*	100*			
	exposed GDs 10–12	17.5	30.0*	81.8*	100*			
	exposed GDs 13–15	17.5	45.9*	68.0*	100*			
	Number of live fetuses	s /litter (perce	ent change co	mpared to co	ntrol)			
	exposed GDs 7–9	0	-43*	-66*	-100*			
	exposed GDs 10–12	0	-20	-79*	-100*			
	exposed GDs 13–15	0	-42*	-64*	-100*			
	Note: All litters were re	esorbed at th	e high dose.					

Reference and study design			Results ^a			
Ema et al. (1998)	Raw percentages or r	atios				
Rat (Wistar); 7–10 pregnant	mg/kg-day	0	250	500	750	1,000
females/dose 0, 250, 500, 750, 1,000, mg/kg-day	pre-implantation loss/litter (%)	4.7	5.5	4.0	8.1	16.9*
Gavage	postimplantation loss/litter (%)	7.2	6.5	18.6	29.7*	43.7*
GDs 0–8; dams sacrificed on GD 20	sex ratio of live fetuses (M:F)	79:62	72:57	55:54	32:40	18:30*
	litters resorbed (%)	0	0	11	0	0
	Percent change comp	ared to con	trol			
	number of live fetuses/litter	0	1	-14	-27	-51*
	number of dead or resorbed fetuses/ litter	0	-9	164	236	409
Piersma et al. (2000)	The study authors rep	orted dose	-depender	nt increases	s in numbe	rs of
Rat (Harlan Cpb-WU); 4–10 pregnant females/dose	resorptions for both e dose (data shown gra		eriods, with	100% reso	orption at t	he high-
0, 270, 350, 450, 580, 750, 970, 1,250, 1,600, 2,100 mg/kg-day						
GDs 6–15 or 6–20; dams sacrificed on GD 21						
Uriu-Adams et al. (2001)	Resportions (raw per	centages)				
Rat (Wistar); 9–17 pregnant	mg/kg-day	0	250	1,000	1,500	2,000
females/dose	resorptions (%)	13.08	7.82	11.52	23.84	53.73*
0, 250, 1,000, 1,500,						
2,000 mg/kg-day	Percent change comp	ared to con	trol			
Gavage						
GDs 11–13; dams sacrificed on GD 20	number of resorptions/litter	0	-9	30	247*	653*
	number of live fetuses/litter	0	10	-1	-2	-45*

Reference and study design		F	lesults ^a						
Ema and Miyawaki (2002)	Raw percentages or ro	ntios							
Rat (Wistar); 16 pregnant	mg/kg-day	0	250	500	1,000				
females/dose	sex ratio (M:F)	127:107	105:111	111:113	108:93				
0, 250, 500, 1,000 mg/kg-day									
Gavage	postimplantation	6.4	7.9	7.2	15.2				
GDs 15–17; dams sacrificed on	loss/litter (%)								
GD 21	Percent change compared to control								
	number of live fetuses/litter	0	-8	-4	-14*				
	number of resorptions/litter	0	38	13	138				
	number of dead fetuses/litter	0	-50	-50	100				
<u>Tyl et al. (2004)</u>	Raw percentages								
Rat (CD); 30 breeding pairs/dose/generation 0, 750, 3,750, 11,250 ppm 0, 50, 250, 750 mg/kg-day ^b	mg/kg-day	0	50	250	750				
	F1 post implantation loss/litter (%)	15.79	17.65	8.77	14.18				
), 50, 250, 750 mg/kg-day ^b Diet Aultigenerational study	F2 post implantation loss/litter (%)	10.02	8.75	6.67	7.06				
	Percent change compared to control								
	F1 number of implantations/litter	0	-11	-5	-10				
	F2 number of implantations/litter	0	-5	-4	-22*				
	F1 number of live pups/litter	0	-8	1	-2				
	F2 number of live pups/litter	0	-1	0	-20*				
Howdeshell et al. (2008)	Raw percentages								
Rat (Sprague-Dawley); 4–9 pregnant	mg/kg-day	0	100	300 600	900				
females/dose	fetal mortality (%)	2.9	0	2.2 12.2*	33.3*				
0, 100, 300, 600, 900 mg/kg-day									
Gavage	Percent change compo	ared to contr	ol						
GDs 8–18; dams sacrificed on GD 18	number of implantations/litter	0	9	9 –15	-15				

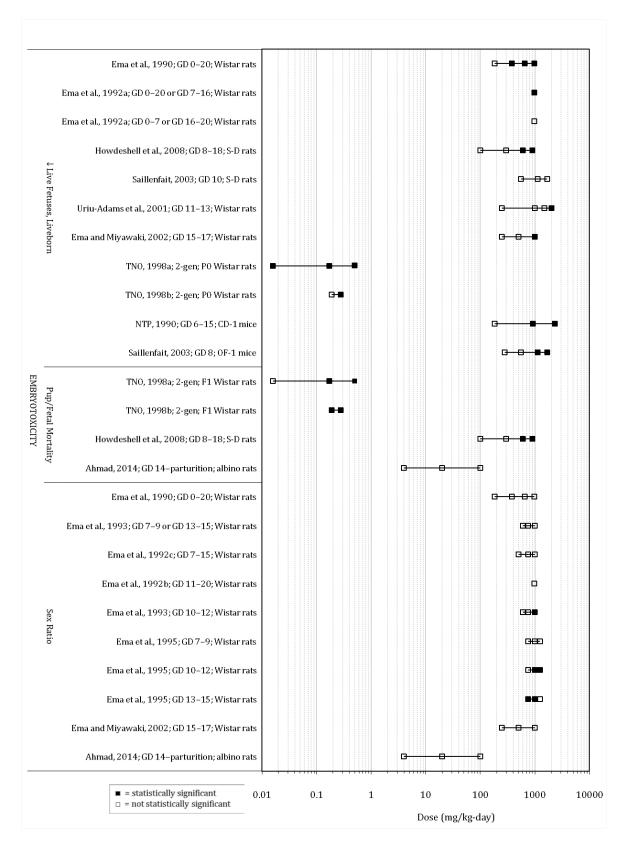
Reference and study design		R	esults	3		
	number of live fetuses	0	11	7	-24*	-64*
	total resorptions	0	-100	0	275*	900*
TNO (1998b)	Response					
Rat (Wistar); PO, female (28/group)	mg/kg-day	0		0.190		0.280
0, 1,000, 3,000 μg/L (equivalent to 0.190, 0.280 mg/kg-day during	P0 females with all stillborn pups	0		1		2
premating as calculated by study authors)	PO females with stillborn pups	5		2		4
Drinking water						
F0 females: 2 weeks prior to mating, through mating, gestation, and lactation; F0 males: mating period only; F1: did not receive additional treatment after weaning	PO females, stillborn	13 8		28*		
	P0 female, live born	286		240		249
	number of litters lost entirely days 0–7	1		2		5
	F1 combined sex ratio (number of males)	154		123		128
	Response (% ± SE)					
	P0 female postimplantation loss	10.74 (± 2.	.823)	11.19 (± 4.423)	17.8	8 (± 5.563)
	Response (%)					
	F1 combined pup mortality, day 4 (%)	10		4.6*		17*
	F1 combined, Viability index, days 4–7 (%)	100		100		100
	P0 female maternal body weight	-		effect on female ut the treatmer	-	-

Reference and study design		Re	esults ^a		
<u>TNO (1998a)</u>	Response				
Rat (Wistar); PO, female (28/group)	mg/kg-day	0	0.016	0.171	0.489
0, 100, 1,000, 3,000 μg/L (equivalent to 0.016, 0.171, 0.489 mg/kg-day, average of reported intake over	stillborn pups	1	0	0	0
premating, gestation, and lactation)	PO females with stillborn pups	4	0	0	5
Drinking water					
F0 females: 2 weeks prior to mating, through mating, gestation, and lactation; F0 males: during mating;	P0 female, live born	237	233*	212*	241
F1 animals were not treated after weaning	F1 combined pup mortality, day 4 (number of pups)	2	2	30*	29*
	F1 combined sex ratio (number of males)	121	125	106	126
	P0 female, stillborn	15	0*	0*	7
	PO female, postimplantation loss	16.22 (± 4.273)	9.33 (± 1.883)	13.87 (± 4.421)	11.34 (± 2.755)
Ahmad et al. (2014)	Response				
Rat (Albino); P0, females (6/group)	mg/kg-day	0	4	20	100
0, 4, 20, 100 mg/kg Gavage	F1 combined sex ratio (M/F)	0.47	0.52	0.55	0.59
GD 14 to parturition	Response (% ± SE)				
	F1 combined fetal mortality (%)	4 (± 4)	2.78 (± 2.78)	8.21 (± 5.64)	7.47 (± 3.53)
	F1 combined live birth index (%) PND 1	96 (± 4)	97.22 (± 2.78)	91.79 (± 5.64)	92.53 (± 3.53)
	F1 combined, live pups/litter	8 (± 1.22)	8.17 (± 1.19)	7.4 (± 0.93)	8.83 (± 0.4)
	F1 combined viability index PND 4	94 (± 6)	93.17 (± 3.17)	89.79 (±5.25)	89.19 (± 3.69)
	F1 combined weanling index (%) PND 21	94 (± 6)	80.48 (± 8.01)	81.21 (± 13.4)	89.19 (± 3.69)
	P0 female, maternal body weight gain		: gain was sigr s on GD 21 co	-	


Reference and study design			Results ^a				
Saillenfait et al. (2003)	Response (% ± SE) or p	ercent cha	nge compa	red to con	trol		
Rat (Sprague-Dawley); P0, female	mg/kg-day	0	56)	1,120	1,690	
(9–10/group) 0, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 560, 1,120, 1,690 mg/kg as calculated by study authors)	P0 female percent of postimplantation loss/litter	6.06 (± 1.27)	6.6 (± 1.4		13.86 : 0.91)	15.55 (± 3.87)	
Gavage	P0 female percent of	6.06	6.6	2 1	13.86	15.55	
Single dose on GD 10; sacrificed	resorptions/litter	(± 1.27)	(± 1.4	16) (±	: 0.91)	(± 3.87)	
GD 21	P0 female live fetuses/litter	0	9		-7	-9	
NTP (1990)	Raw percentages						
Mice (CD-1); 27–30 pregnant	mg/kg-day	0	182	910		2,330	
emales/dose (except n = 14 in the nigh-dose group)	litters with resorptions (%)	55	46		63	100*	
0, 182, 910, 2,330, 4,121 mg/kg-day							
Diet	resorptions/litter (%)	7	4.7	7	11.8	91.3*	
GDs 6–15; dams sacrificed on GD 17	Percent change compared to control						
	number of live fetuses per litter	0	4		-9*	-77*	
	Note: The 4,121 mg/kg 14 dams, since all litte				er evaluatio	n of	
Saillenfait et al. (2003)	Response (% ± SE) or p	ercent cha	nge compa	red to con	trol		
Mouse (OF-1); P0, female	mg/kg-day	0	280	560	1,120	1,690	
(22–24/group) 0, 0.9, 1.8, 3.6, 5.4 mmol/kg	P0 female, percent of postimplantation loss/litter	5.85 (± 2.19)	10.89 (± 2.61)	22.27* (± 5.24)	50.41* (± 7.53)	77.40* (± 5.14)	
(equivalent to 0, 280, 560, 1,120, 1,690 mg/kg as calculated by study authors)	P0 female percent of resorptions/litter	5.53 (± 2.05)	10.02 (± 4.56)	19.13* (± 4.56)	48.1* (± 7.91)	73.76* (± 4.78)	
Gavage							
Single dose on GD 8; sacrificed on GD 18	P0 female live fetuses/litter	0	-6	-23	-48*	-75*	

*Statistically different from controls (*p* <0.05), as reported by study authors.

^aPercent change compared to control calculated as 100 × ((treated value – control value) ÷ control value).


^bCalculated as follows: [% in diet × intake food/water (mg)] ÷ body weight (kg) = mg/kg-day.

AL=

Figure 3-7. Exposure-response array of pregnancy outcomes following oral exposure to BBP.

Figure 3-8. Exposure-response array of fetal measures following oral exposure to BBP.

3

1 3.3.3. Developmental Effects

2 3

Table 3-24. Evidence pertaining to developmental effects following oralexposure to BBP: Teratogenicity

Reference and study design		Re	esults ^a		
NTP (1989)	Raw percentages				
Rat (Sprague-Dawley);	mg/kg-day	0	420	1,100	1,640
27–30 pregnant females/dose 0, 420, 1,100,1,640 mg/kg-day	fetuses malformed/litter (%)	2.0	0.9	5.9	52.8*
Diet GDs 6–15; dams sacrificed on GD 20	litters with malformed fetuses (%)	25.0	14.8	46.7	96.3*
	fetuses with variations/litter (%)	19.0	25.4	41.0*	71.4*
	Percent incidence				
	number of litters with external malformation	0	0	10	52*
	number of litters with skeletal malformations	11	11	30	89*
	number of litters with visceral malformations	18	4	33	78*
Ema et al. (1990)	Percent incidence				
Rat (Wistar); 13–17 pregnant	mg/kg-day	0	185	375	654
females/dose 0, 0.25, 0.5, 1.0, 2.0% 0, 185, 375, 654, 974 mg/kg-day	number of litters with external anomalies	0	6	0	15
GDs 0–20; dams sacrificed on GD 20	number of litters with skeletal anomalies	13	6	13	23
	number of litters with skeletal variation	40	47	27	69
	number of litters with delayed ossification in sternebrae	20	35	27	38

Reference and study design	Results ^a						
	number of litters with internal anomalies	0		0	0		8
	Note: All litters were	e lost at the	high dose.				
<u>Ema et al. (1992b)</u>	Percent litter Incider	nce					
Rat (Wistar); 11 pregnant females/dose; 132–135, 88–89, and 44–46 fetuses/group examined for	mg/kg-day	0 (ad libitum)	0 (pair fec	974 d) (GD 0–20	5	974 (GDs 0-11)	974 (GDs 11–20)
external, skeletal, and internal malformations, respectively	external malformations	9	0	NA		NA	82*
0 ad libitum controls, 0 pair fed controls, or 974 mg/kg-day ^b	cleft palate	0	0	NA		NA	82*
Diet	skeletal malformations	0	18	NA		NA	82*
GDs 0–20, 0–11, or 11–20; dams	fused sternebrae	0	9	NA		NA	73*
sacrificed on GD 20	internal malformations	0	0	NA		NA	0
	Percent fetal incidence						
	mg/kg-day	0 (ad libitum)	0 (pair fed)	974 (GDs 0–20)	(G	74 Ds 11)	974 (GDs 11-20)
	all external malformations	1	1	NA	N	A	54*
	cleft palate	0	0	NA	N	A	54*
	all skeletal malformations	0	2	NA	N	A	27*
	fused sternebrae	0	1	NA	N	A	25*
	internal malformations	0	0	NA	N	A	0
	Note: All litters were	e lost in grou	ips treated	d from GI	Os 0−20) and 0-	-11.
<u>Ema et al. (1992a)</u>	Percent litter incider	nce					
Rat (Wistar); 11–12 pregnant females/dose; 73–135, 49–90, and 24–46 fetuses/group examined for	mg/kg-day	0 (ad libitum)	••	974 (GDs 0–20)	974 (GDs 0-7)	974 (GDs 7–16)	9974 (GDs 16–20)
external, skeletal, and internal malformations, respectively 0 ad libitum controls, 0 pair fed	external malformations	9	0	NA	0	100*	0
controls, or 974 mg/kg-day ^b	cleft palate	0	0	NA	0	100*	0
Diet GDs 0–20, 0–7, 7–16, or 16–20;	skeletal malformations	0	18	NA	9	90*	18

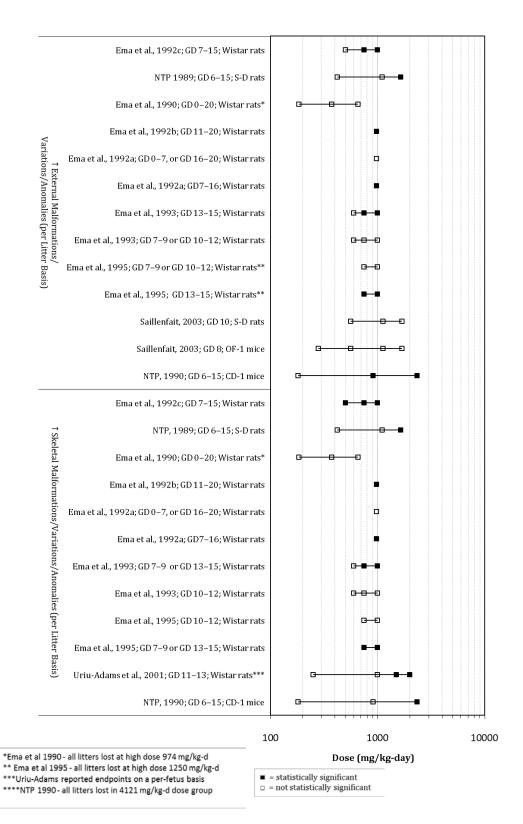
This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design			Result	ts ^a							
dams sacrificed on GD 20	fused sternebrae	0	9	NA	0	90*	0				
	internal malformations	0	0	NA	0	22	0				
	Percent fetal inciden	се									
	external malformations	1	0	NA	0	93*	0				
	cleft palate	0	0	NA	0	93*	0				
	skeletal malformations	0	2	NA	1	78*	3				
	fused sternebrae	0	1	NA	0	78*	0				
	internal malformations	0	0	NA	0	8	0				
	Note: All litters were	lost in the	group tr	eated fro	m GDs 0–	20.					
<u>Ema et al. (1992c)</u>	Percent litter inciden	се									
Rat (Wistar); 10 pregnant	mg/kg-day	0		500	750		1,000				
females/dose; 25–121, 16–81, and 9–41 fetuses/group examined for external, skeletal, and internal	external malformations	0		0	100*		NA				
malformations, respectively	cleft palate	0		0	100*		NA				
0, 500, 750, 1,000 mg/kg-day											
Gavage GDs 7–15; dams sacrificed on GD 20	skeletal malformations	10		30	57*		NA				
	fused sternebrae	0		0	57*		NA				
	internal malformations	0		0	60*		NA				
	dilation of renal pelvis	0		0	60*		NA				
	Percent fetal inciden	се									
	external malformations	0		0	48*		NA				
	cleft palate	0		0	48*		NA				
	skeletal malformations	1		4	31*		NA				
	fused sternebrae	0		0	25*		NA				
	internal malformations	0		0	33*		NA				
	dilation of renal pelvis	0		0	33*		NA				

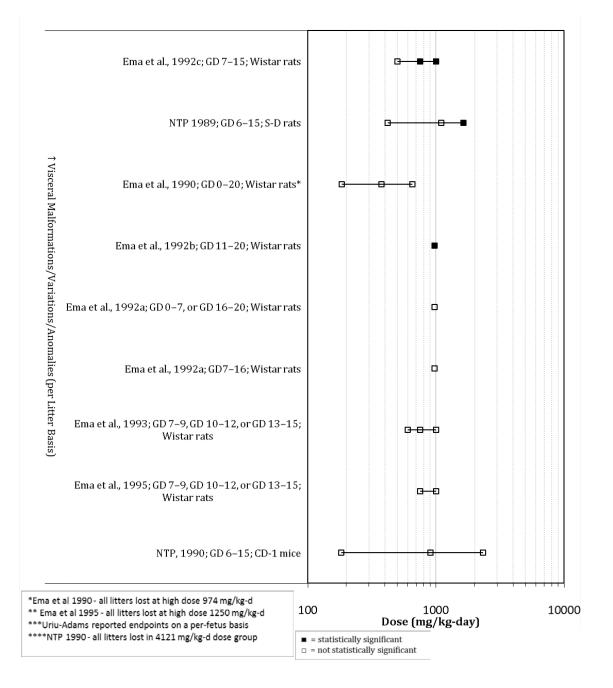
Reference and study design		Results ^a						
	Note: All litters we	ere lost at the hig	h dose.					
Ema et al. (1993)	Percent litter incid	ence						
Rat (Wistar); 10 pregnant	mg/kg-day	0	600	750	1,000			
females/dose; 38–125, 25–83, and 13–42 fetuses/group examined for	External malforma	itions						
external, skeletal, and internal	GDs 7–9	0	0	0	29			
malformations, respectively	GDs 10–12	0	0	11	33			
0, 600, 750, 1,000 mg/kg-day								
Gavage	GDs 13–15	0	10	70*	100*			
GDs 7–9, 10–12, or 13–15; dams	Skeletal malforma	tions						
sacrificed on GD 20	GDs 7–9	10	30	56*	86*			
	GDs 10–12	10	20	11	0			
	GDs 13–15	0	20	70*	100*			
	Internal malformations							
	GDs 7–9	0	0	11	29			
	GDs 10–12	0	0	11	0			
	GDs 13–15	0	0	0	0			
	Percent fetal incidence							
	External malformations							
	GDs 7–9	0	0	0	5			
	GDs 10–12	0	0	1	6			
	GDs 13–15	0	2	47	82			
	Skeletal malforma	tions						
	GDs 7–9	1	5	20	44			
	GDs 10–12	1	2	2	0			
	GDs 13–15	0	5	42	97			
	Internal malforma	tions						
	GDs 7–9	0	0	4	15			
	GDs 10–12	0	0	3	0			
	GDs 13–15	0	0	0	0			
	vertebral malform	Note: Specific malformations that were significantly increased included vertebral malformations (GDs 7–9), fusion of sternebrae (GDs 13–15), and cleft palate (GDs 13–15).						

Reference and study design		R	lesults ^a					
<u>Ema et al. (1995)</u>	Percent litter incide	ence						
Rat (Wistar); 10–12 pregnant	mg/kg-day	0	750	1,000	1,250			
females/dose; 53–155, 35–102, and 18–53 fetuses/group examined for	External malformations							
external, skeletal, and internal malformations, respectively	GDs 7–9	0	0	33	NA			
	GDs 10–12	0	9	40	NA			
0, 750, 1,000, or 1,250 mg/kg-day	GDs 13–15	0	67*	100*	NA			
Gavage	Skeletal malforma	tions						
GDs 7–9, 10–12, 13–15; dams	GDs 7–9	8	64*	89*	NA			
sacrificed on GD 20	GDs 10–12	8	9	0	NA			
	GDs 13–15	8	67*	100*	NA			
	Internal malforma	tions						
	GDs 7–9	0	18	22	NA			
	GDs 10–12	0	9	0	NA			
	GDs 13–15	0	0	0	NA			
	Percent fetal incidence							
	External malforma	ations						
	GDs 7–9	0	0	6	NA			
	GDs 10–12	0	1	6	NA			
	GDs 13–15	0	48	82	NA			
	Skeletal malforma	tions						
	GDs 7–9	1	19	54	NA			
	GDs 10–12	1	1	0	NA			
	GDs 13–15	1	44	97	NA			
	Internal malforma	tions						
	GDs 7–9	0	7	11	NA			
	GDs 10–12	0	2	0	NA			
	GDs 13–15	0	0	0	NA			
	Note: All litters we that were significa (GDs 7–9), fusion/a (GDs 13–15), and c	ntly increased ir absence of ribs (ncluded vertel (GDs 7–9), fus	bral malformat	ions			

Reference and study design	Results ^a					
Piersma et al. (2000) Rat (Harlan Cpb-WU); 4–10 pregnant females/dose 0, 270, 350, 450, 580, 750, 970, 1,250, 1,600, 2,100 mg/kg-day	The study authors rep anomalies in the "mid There was a dose-dep lumbar ribs in groups resorbed at higher do exposed on GDs 6–20	Idle or high bendent ind exposed to ses); the e	n doses" (o crease in t o 270–1,29 ffect was	quantitativ he occurre 50 mg/kg- more pror	ve data not ence of extr day (all litte	provided). a 13 th ers were
GDs 6–15 or 6–20; dams sacrificed on GD 21						
<u>Uriu-Adams et al. (2001)</u>	Percent change comp	ared to cor	ntrol			
Rat (Wistar); 9–17 pregnant	mg/kg-day	0	250	100	1,500	2,000
females/dose; 8–16 litters/dose (36–119 fetuses/dose) were examined for anomalies and	crown rump length, males	0	1	1	-1	-6*
malformations 0, 250, 1,000, 1,500,	crown rump length, females	0	0	1	-2	-10*
2,000 mg/kg-day Gavage	Skeletal malformatior	15				
GDs 11–13; dams sacrificed on GD 20	ossification sites, metacarpals	0	-5	-4	-9	-32*
	ossification sites, metatarsals	0	-4	-2	-16*	-27*
	ossification sites, sternum	0	-11	-8	-36*	-62*
	number of rudimentary ribs/fetus	0	0	2,150*	6,800*	7,250*
	Raw percentages					
	fetuses with rib anomaly (%)	1.79	2.38	23.30*	82.64*	92.26*
	External malformatio	ons				
	fetuses with cleft palate/litter (%)	0	0	2.3	27.5*	52.9*
	Note: Study authors d statistical unit of com	-	ort wheth	er the litte	er or the fet	us was the
<u>Saillenfait et al. (2003)</u>	Response (%)					
Rat (Sprague-Dawley); F1, combined	mg/kg-day	0	5	60	1,120	1,690
(100–123/group) 0, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 560, 1,120, 1,690 mg/kg as calculated by study authors)	F1 combined percent of malformed fetuses	0	()*	0.9*	5*


Reference and study design	Results ^a								
Gavage									
Single dose on GD 10; sacrificed GD 21									
Saillenfait et al. (2003)	Response (%)								
Mouse (OF-1); F1, combined	mg/kg-day	0	280	560	1,120	1,690			
(35–221/group)	F1 combined,	0	0*	2.1*	9.1*	42.9*			
0, 0.9, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 280, 560, 1,120, and 1,690 mg/kg as calculated by study authors)	percent of malformed fetuses								
Gavage									
Single dose on GD 8; sacrificed GD 18									
<u>NTP (1990)</u>	mg/kg-day	0	182		910	2,330			
Mouse (CD-1); 27–30 pregnant	Raw percentages								
emales/dose (except n = 14 in the high-dose group)	litters with gross malformations (%)	10	0		27	67*			
0, 182, 910, 2,330, 4,121 mg/kg-day									
Diet	litters with skeletal malformations (%)	21	11		43	100*			
GDs 6–15; dams sacrificed on GD 17									
	litters with visceral malformations (%)	7	7		23	33			
	malformed fetuses/litter (%)	4.4	2.4		13.6*	89.3*			
	litters with malformed fetuses (%)	31	18		60*	100*			
	fetuses with variations per litter (%)	29	26.2		35.9	98.4*			
	litters with variations (%)	86	82		97	100			
	Note: The 4,121 mg/kg 14 dams, since all litte				er evaluatio	on of			

*Statistically different from controls (p <0.05), as reported by study authors.


^aPercent change compared to control calculated as 100 × ((treated value – control value) ÷ control value).

^bCalculated as follows: [% in diet × intake food/water (mg)] ÷ body weight (kg) = mg/kg-day.

This document is a draft for review purposes only and does not constitute Agency policy.3-113DRAFT—DO NOT CITE OR QUOTE

Figure 3-9. Exposure-response array of developmental effects following oral exposure to BBP: teratogenicity.

2

3 4

Figure 3-10. Exposure-response array of developmental effects following oral exposure to BBP: malformations.

5

Table 3-25. Evidence pertaining to developmental effects following oralexposure to BBP: offspring body weight

Reference and study design		Re	esults ^a					
Fetal body weight								
<u>NTP (1989)</u>	Percent change co	mpared to contro	1					
Rat (Sprague-Dawley CD);	mg/kg-day	0	420		1,100	1,640		
27–30 pregnant females/dose	Fetal body weight	(litter means)						
0, 420, 1,100, 1,640 mg/kg-day								
Diet	all	0	-3		-3	-21*		
GDs 6–15; dams sacrificed on GD 20	males	0	-3		-3	-20*		
	females	0	0		-3	-21*		
<u>Ema et al. (1990)</u>	Percent change co	mpared to contro	1					
Rat (Sprague-Dawley); 13–17	mg/kg-day	0	185	375	654	974		
pregnant females/dose	Fetal body weight	(litter means)						
0, 0.25, 0.5, 1.0, 2.0%								
0, 185, 375, 654, 974 mg/kg-day	males	0	2	5*	-7*	NA		
Diet								
	females	0	2	3*	-7*	NA		
GDs 0–20; dams sacrificed on GD 20								
	Note: All litters were lost at the high dose.							
<u>Ema et al. (1992b)</u>	Percent change co	mpared to contro	1					
Rat (Wistar); 11 pregnant	mg/kg-day	0	0	974	974	974		
females/dose		(ad libitum)	(pair fed)	(GDs 0–20)	(GDs 0-11)	(GDs 11–20)		
0 ad libitum controls, 0 pair fed controls, or 974 mg/kg-day			icuj	0 20,	0 11,	11 20)		
	Fetal body weight	(litter means)						
Diet								
GDs 0–20, 0–11, or 11–20; dams	males	0	-8*	NA	NA	-22*		
sacrificed on GD 20	females	0	-10*	NA	NA	-19*		
	Note: Statistical re group. Fetal body significantly lower treated on GDs 0–	weights in the gr than pair fed con	oup treated	d on GDs	11–20 we	re also		

Reference and study design			Results	a						
Ema et al. (1992a)	Percent change compo	ared to cont	rol							
Rat (Wistar); 11–12 pregnant females/dose 0 ad libitum controls, 0 pair fed	mg/kg-day	0 (ad libitum)	0 (pair fed)	974 (GDs 0–20)	974 (GDs 0–7)	974 (GDs 7–16)	974 (GDs 16-20)			
controls, or 974 mg/kg-day	Fetal body weight (litter means)									
Diet		·								
GDs 0–20, 0–7, 7–16, or 16–20;	males	0	-8*	NA	-7*	-11*	-17*			
dams sacrificed on GD 20	females	0	-10*	NA	-9*	-12*	-18*			
	Note: Statistical results are shown for comparison to ad libitum control group. Fetal body weights in the groups treated on GDs 16–20 were also significantly lower than pair fed controls. All litters were lost in the group treated on GDs 0–20.									
<u>Ema et al. (1992c)</u>	Percent change compo	ared to cont	rol							
Rat (Wistar); 10 pregnant	mg/kg-day	0	50	00	750	1	,000			
females/dose	Fetal body weight (lit	ter means)								
0, 500, 750, 1,000 mg/kg-day										
Gavage	males	0	-	5	-18*		NA			
GDs 7–15; dams sacrificed on GD 20	females	0		4	-18*		NA			
	Note: All litters were l	ost at the hi	gh dose	•						
<u>Ema et al. (1993)</u>	Percent change compo	ared to cont	rol							
Rat (Wistar); 10 pregnant	mg/kg-day	0	60	0	750	1	L,000			
females/dose	Male fetal body weig	ht (litter me	ans)							
0, 600, 750, 1,000 mg/kg-day										
Gavage	exposed GDs 7–9	0	-1	3	-15*	-	-18*			
GDs 7–9, 10–12, or 13–15; dams	exposed GDs 10–12	0	5	5	-6		-14*			
sacrificed on GD 20	exposed GDs 13–15	0	3	5	-2		-5			
	Female fetal body we	ight (litter r	neans)							
	exposed GDs 7–9	0	-1	3	-16*		-16*			
	exposed GDs 10–12	0	4	Ļ	-4		-9			
	exposed GDs 13–15	0	-	1	-5		-6			

Reference and study design		Results ^a							
<u>Ema et al. (1995)</u>	Percent cho	inge (compar	ed to con	trol				
Rat (Wistar); 10–12 pregnant	mg/kg-day			0	750)	1,000		1,250
females/dose	Male fetal	body	weight	(litter m	eans)				
0, 750, 1,000, 1,250 mg/kg-day									
Gavage	exposed GL)s 7–9	9	0	-14	*	-17*		NA
GDs 7–9, 10–12, or 13–15; dams	exposed GL	Ds 10-	-12	0	-5		-14*		NA
sacrificed on GD 20	exposed GL	Ds 13-	-15	0	-3		-8		NA
	Female fetal body weight (litter means)								
	exposed GL)s 7–9)	0	-16	*	-17*		NA
	exposed GL	Ds 10-	-12	0	-5		-15*		NA
	exposed GL)s 13-	-15	0	-3		-5		NA
	Note: All litters were lost at the high dose.								
<u>Ema et al. (1998)</u>	Percent change compared to control								
Rat (Wistar); 7–10 pregnant	mg/kg-day			0	250	500	750		1,000
females/dose	Fetal body	weig	ht (litte	r means)					
0, 250, 500, 750, 1,000 mg/kg-day									
Gavage	males			0	0	-14*	-32*		-45*
GDs 0-8; dams sacrificed on GD 20	females			0	-2	-14*	-33*		-40*
<u>Piersma et al. (2000)</u>	Percent cho	inge (compar	ed to con	trol				
Rat (Harlan Cpb-WU); 4–10 pregnant females/dose	mg/kg- day	0	270	350	450	580	750	970	1250
0, 270, 350, 450, 580, 750, 970, 1,250, 1,600, 2,100 mg/kg-day	fetal weight ^b	0	-4	-5	-5	-7	-15	-22	-28
Gavage									
GD 6–15 or GD 6–20 ; dams sacrificed on GD 21	Note: The s weight for l and 2,100 r	both	exposur	e period					
<u>Uriu-Adams et al. (2001)</u>	Percent cho	inge (compar	ed to con	trol				
Rat (Wistar); 9–17 pregnant	mg/kg-day			0	250	1,000	1,500)	2,000
females/dose	Fetal body	weig	ht (litte	r means)					
0, 250, 1,000, 1,500, 2,000 mg/kg-day	males			0	2	4	-7*		-18*
Gavage	maies			0	2	4	-1		10

Reference and study design			Results ^a						
GDs 11–13; dams sacrificed on GD 20	females	0	1	3	-9*	-22*			
Ema and Miyawaki (2002)	Percent change compa	red to cont	trol						
Rat (Wistar); 16 pregnant	mg/kg-day	0	250		500	1,000			
females/dose	Fetal body weight (litte	etal body weight (litter means)							
0, 250, 500, 1,000 mg/kg-day									
Gavage	males	0	4		0	-17*			
GDs 15–17; dams sacrificed on GD 21	females	0	4		-1	-14*			
<u>NTP (1990)</u>	Percent change compa	red to cont	trol						
Mouse (CD-1); 27–30 pregnant	mg/kg-day	0	182		910	2,330			
females/dose (except n = 14 in the high-dose group)	Fetal body weight (litter means)								
0, 182, 910, 2,330, 4,121 mg/kg-day	All	0	1		-4	-17*			
Diet	males	0	2		-3	-16*			
	females	0	2		-3	-14*			
GDs 6–15; dams sacrificed on GD 17									
	Note: The 4,121 mg/kg 14 dams, since all litter				ter evaluati	on of			
<u>Saillenfait et al. (2003)</u>	Percent change compa	red to cont	trol						
Mouse (OF-1); F1, combined	mg/kg-day	0	280	560	1,120	1,690			
(35–221/group) 0, 0.9, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 280, 560, 1,120, 1,690 mg/kg as calculated by study authors)	F1 combined, mean fetal weight/litter	0	-2	-2	-8	16*			
Gavage									
Single dose on GD 8; sacrificed GD 18									
Pup body weight			· · ·						
<u>Piersma et al. (1995)</u>	Percent change compa	red to cont	trol						
Rat (WU); 10 breeding pairs/dose	mg/kg-day	0	250		500	1,000			
0, 250, 500, 1,000 mg/kg-day Gavage	mean pup weight on PND 1	0	-1		-7*	-29*			
Males: 29 days (14 days premating, up to 14 days mating); females: up	mean pup weight on PND 6	0	3		-1	-43*			

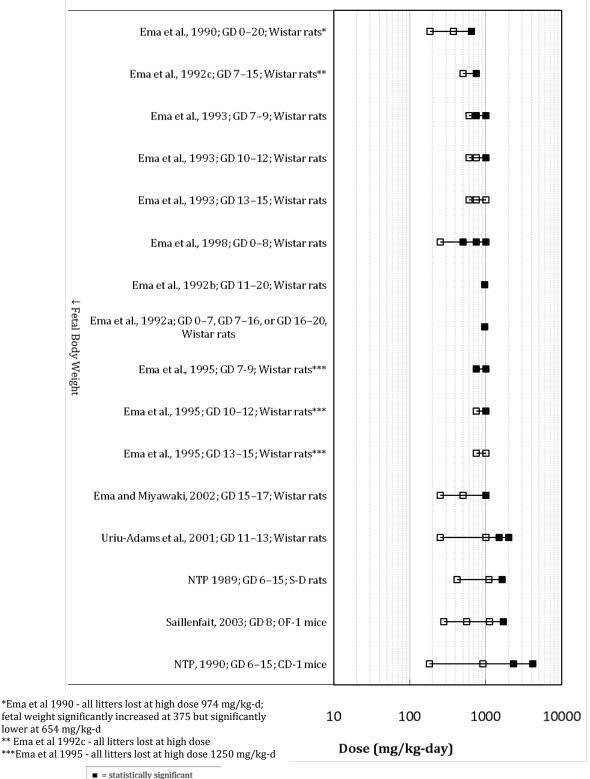
Reference and study design				Results ^a				
to 55 days (14 days premating through PND 6)	Note: The statistic reported.	cal unit c	of comp	oarison (litte	r or individual pu	ıp) was not		
<u>Bayer (1998)</u>	Percent change compared to control							
Rat (Wistar), 28/sex/group 0, 1, 3 ppm	Drinking water							
0, 0.11, 0.35 mg/kg-day for drinking	mg/kg-day	0		0.11	0.3	5		
water 0, 0.09, 0.28 mg/kg-day for diet	mean pup weight on PND 0							
	Males	0		0	3			
Drinking water and diet	Females	0		0	4			
Females dosed through mating,	mean pup weight	mean pup weight on PND 21						
gestation, and lactation (males only through cohabitation with females)	Males	0		2	5			
	Females	0		3	6			
	Diet							
	mg/kg-day	0		0.09	0.2	8		
	mean pup weight	on PND	0					
	Males	0		2	3			
	Females	0		2	4			
	mean pup weight	on PND	21					
	Males	0		-3	0.4			
	Females	0		-3	-0.7	7		
Nagao et al. (2000)	Percent change co	ompared	to con	trol				
Rat (Sprague-Dawley);	mg/kg-day		0	20	100	500		
20–25 breeding pairs/group/ generation	F1 mean pup wei	ght						
0, 20, 100, 500 mg/kg-day	males PND 0		0	0	-6*	-7*		
Gavage	females PND 0		0	2	-6*	-6*		
Multigenerational study	males PND 14		0	0	-1	-8*		
	females PND 14		0	1	-3	-8*		
	males PND 21		0	1	-1	-7*		
	females PND 21		0	1	-2	-7*		
	Note: There were no significant differences in F1 body weight at PND 4 or PND 7; there were no significant differences in F2 body weight at any time point. The study authors did not state whether the litter or the individual was the statistical unit of comparison.							
<u>Tyl et al. (2004)</u>	Percent change co	ompared	to con	trol				
Rat (CD); 30 breeding	mg/kg-day		0	50	250	750		
pairs/group/generation	Litter mean pup b	ody we	ight at	PND 0				

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design	Results ^a							
0, 750, 3,750, 11,250 ppm								
0, 50, 250, 750 mg/kg-day⁵	F1 male	0	3	-1	-9*			
Diet	F1 female	0	5	1	-7*			
Multigenerational study	F2 male	0	1	-2	-5			
	F2 female	0	2	0	-5			
Aso et al. (2005)	Note: Study authors repo	rt significa	nt lowered boo	dyweights or	n PND 0 in F			
Rat (Crj:CD(SD)IGS); 24 breeding pairs/group/generation		males ≥100 mg/kg-day and F2 males and females at 100 and 400 mg/kg-day. (Data shown graphically - Figure 1-4).						
0, 100, 200, 400 mg/kg-day								
Gavage								
Multigenerational study								
Ahmad et al. (2014)	Percent change compared	d to contro	I					
Rat (Albino); P0, female (6/group)	mg/kg-day	0	4	20	100			
0, 4, 20, 100 mg/kg	F1 male, pup weight	0	-3*	-4*	-5*			
Gavage	(M) PND 1							
GD 14 to parturition	F1 male, pup weight (M) PND 21	0	-13*	-22*	-16*			
TNO (1998a)	Percent change compared	d to contro	1					
Rat (Wistar); PO, female (28/group)	mg/kg-day	0	0.016	0.171	0.489			
0, 100, 1,000, 3,000 μg/L (equivalent to 0.016, 0.171, 0.489	F1 combined pup weight PND 1	0	0	3	2			
mg/kg-day, average of reported intake over premating, gestation, and lactation)	F1 combined pup weight PND 14	0	-1	1	0			
Drinking water	F1 female, pup weight PND 21	0	-5	1	-3			
F0 females: 2 weeks prior to mating, through mating, gestation, and lactation; F0 males: during mating; F1 animals were not treated after	F1 male, pup weight PND 21	0	-1	3	0			
weaning	F1 combined pup weight preculling	0	0	5	2			
	F1 combined pup weight PND 7	0	-1	4	1			
TNO (1998b)	Percent change compared	d to contro	1					
Rat (Wistar); PO, female (28/group)	mg/kg-day	0	0.1	190	0.280			
0, 1,000, 3,000 μg/L (equivalent to 0.190, 0.280 mg/kg-day during	F1 combined, pup weight PND 1	0		2	8			
premating as calculated by study authors)	F1 combined, pup	0		2	9			

This document is a draft for review purposes only and does not constitute Agency policy.3-121DRAFT—DO NOT CITE OR QUOTE

Reference and study design		Results ^a					
Drinking water	weight PND 4 preculling						
F0 females: 2 weeks prior to mating, through mating, gestation and lactation; F0 males: mating period only; F1: did not receive additional treatment after weaning	F1 combined, pup weight PND 7	0	2	6			

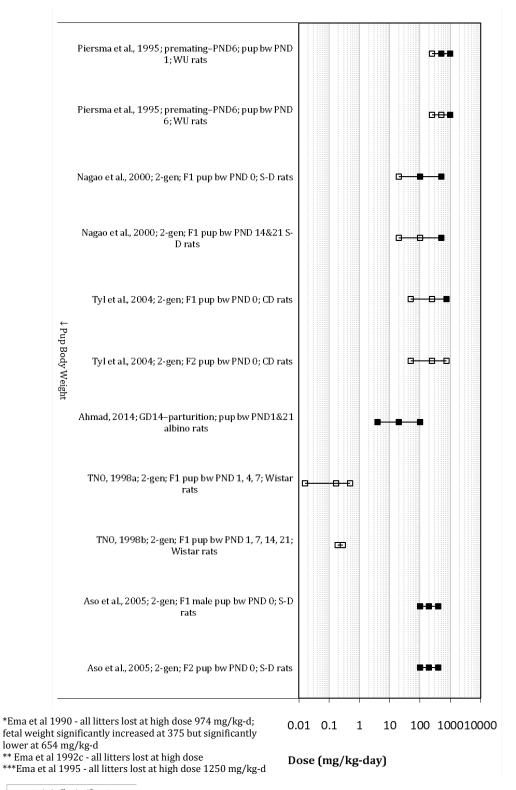

*Statistically different from controls (p <0.05), as reported by study authors.

^aPercent change from controls calculated as 100 × ((treated value – control value) ÷ control value).

^bValues reported by the study authors were estimated from published graphs using "Grab It!", a Microsoft Excel

based free software application used to digitizes data from image files. Publisher: <u>www.datatrendsoftware.com</u>.

4 5 6


statistically significant
 not statistically significant

1 2

3

Figure 3-11. Exposure-response array of developmental effects following oral exposure to BBP: fetal body weight.

This document is a draft for review purposes only and does not constitute Agency policy.3-123DRAFT—DO NOT CITE OR QUOTE

= statistically significant

 \Box = not statistically significant

1 2 3

Figure 3-12. Exposure-response array of developmental effects following oral exposure to BBP: pup weight.

1 3.3.4. Liver Effects

2 3

Table 3-26. Evidence pertaining to liver effects in animals following oral andinhalation exposure to BBP

Reference and study design			Results ^a		
Liver weight ^b					
<u>NTP (1989)</u>	Maternal liver weig	ht, GD 20 (µ	percent change c	ompared to contr	rol)
Rat (Sprague-Dawley CD);	mg/kg-day	0	420	1,100	1,640
30 females/group	absolute weight	0	4	5	1
0, 420, 1,100, 1,640 mg/kg-day					
Diet	relative weight	0	0	7*	13*
GDs 6-15					
<u>BIBRA (1978)</u>	Liver weight (percer	nt change co	ompared to contr	rol)	
Rat (Wistar); 27/sex/group or	mg/kg-day (M)	0	151	381	960
45/sex/group (control); interim sacrifices of 9 controls/sex/group and	absolute weight; 2 weeks	0	0	5	17
6 treated rats/sex/group at 2 and 6 weeks	absolute weight; 6 weeks	0	1	-4	5
0, 2,000, 5,000 12,000 ppm 0, 151, 381, 960 mg/kg-day	absolute weight; 14 weeks	0	-4	-1	18*
(males) 0, 171, 422, 1,069 mg/kg-day (females)	relative weight; 2 weeks	0	3	6	25*
Diet	relative weight; 6 weeks	0	6*	3	19*
14 weeks	relative weight; 14 weeks	0	4	8*	28*
	mg/kg-day (F)	0	171	422	1,069
	absolute weight; 2 weeks	0	5	5	11
	absolute weight; 6 weeks	0	3	7	11*
	absolute weight; 14 weeks	0	4	3	15*
	relative weight; 2 weeks	0	2	5	19*
	relative weight; 6 weeks	0	0	5	17*
	relative weight; 14 weeks	0	4*	5*	21*

Reference and study design				Results ^a				
NTP (1997b)	Liver weight (perce	nt chan	ge comp	ared to cont	rol)			
Rat (F344); 15 males/group	mg/kg-day	0		20	20	00	2,200	
0, 300, 2,800, 25,000 ppm 0, 20, 200, 2,200 mg/kg-day	absolute weight	0		1	()	-24*	
Diet	relative weight	0		2	2	2	6*	
10 weeks								
NTP (1997b)	Liver weight (perce	nt chang	ge comp	ared to cont	rol)			
Rat (F344); 15 males/group	mg/kg-day	0	30	60	180	550	ND	
0, 300, 900, 2,800, 8,300, 25,000 ppm 0, 30, 60, 180, 550, "high" mg/kg-day ^c	absolute weight relative weight	0 0	7 2	13 3	3 3	17* 14*	-3 42*	
Diet								
26 weeks								
NTP (1997b)	Liver weight, 15 months (percent change compared to control)							
Rat (F344); 60/sex/group; assessed in 10 rats/sex/group at 15-month interim sacrifice	mg/kg-day (Mal)e	0		120	24	10	500	
	absolute weight	0		4	()	2	
0, 3,000, 6,000, 12,000 ppm	relative weight	0		4	7	7	12*	
(males); 0, 6,000, 12,000, 24,000 ppm (females)	mg/kg-day (F)	0		300	60	00	1,200	
), 120, 240, 500 mg/kg-day	absolute weight	0		2	8	3	-3	
(males); 0 300, 600, 1,200 mg/kg-day (females)	relative weight	0		2	e	5	26*	
Diet								
2 years								
<u> [v] et al. (2004)</u>	Liver weight (perce	nt chang	ge comp	ared to cont	rol)			
Rat (CD); 30 F0 and F1 parental	mg/kg-day	0		50	25	50	750	
rats/sex/group	Absolute weight							
0, 750, 3,750, 11,250 ppm	F0 males	0		-1	8	3	13*	
0, 50, 250, 750 mg/kg-day	F1 males	0		1	10)*	5	
Diet	F0 females	0		4	ç)	15*	
Multigenerational study	F1 females	0		1	8	3	6	
xposure 10 weeks prior to	Relative weight							
mating and through mating, gestation, and lactation periods	F0 males	0		1	Z	1	16*	
(females) or 21 days after	F1 males	0		0	6	5	16*	
mating (males)	F0 females	0		4	g)	19*	

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design			Results ^a		
	F1 females	0	0	4	6
Nagao et al. (2000)	Liver weight (percent	t change d	compared to con	trol)	
Rat (Sprague-Dawley);	mg/kg-day	0	20	100	500
25 sex/generation/group	Absolute weight				
0, 20, 100, 500 mg/kg-day	F0 males	0	-3	1	11*
Gavage	F1 males	0	0	-8	0
Multigenerational study	F0 females	0	1	2	6
F0 males and females: exposure	F1 females	0	0	-2	1
for 12 weeks prior to mating, 2 weeks cohabitation, and until	Relative weight				
necropsy at 23 weeks of age (males) or postpartum day 22 (females); F1 animals: from weaning until necropsy at PND 22	F0 males	0	-1	1	20*
	F1 males	0	4	-1	15*
	F0 females	0	2	2	5
	F1 females	0	-1	-3	0
Aso et al. (2005)	Liver weight (percent	t change d	compared to con	trol)	
24 sex/generation/group	mg/kg-day	0	100	200	400
	Absolute weight				
0, 100, 200, 400 mg/kg-day	F0 males	0	5	9	14
Gavage	F1 males	0	5	5	12
Multigenerational study	F0 females	0	3	12*	11*
F0 and F1 exposed for 4 weeks	F1 females	0	3	7	10
prior to mating, through mating for 10 weeks, and until weaning	Relative weight				
of offspring (females) or	F0 males	0	3	5	14*
necropsy (males)	F1 males	0	5	8*	18*
	F0 females	0	3	6*	10*
	F1 females	0	-1	1	8*
Monsanto (1983)	Liver weight (percent	t change d	compared to con	trol)	
Rat (Sprague-Dawley);	mg/kg-day	0	51	218	789
25/sex/group; interim sacrifice of 10 rats/sex/group at 7 weeks	Absolute weight				
0, 51, 218, 789 mg/m ³	male (7 weeks)	0	0	7	18*
Inhalation (whole-body)	female (7 weeks)	0	1	4	17*
13 weeks	male (13 weeks)	0	9	9	24*
	female (13 weeks)	0	4	5	11*
	Relative weight				
	male (7 weeks)	0	0	10*	18*

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results ^a										
	female (7 weeks)			0	1		1		13*		
	male (13 v	veek	s)		0	7		6		21*	
	female (13	3 wee	eks)		0		4		5		12*
<u>NTP (1990)</u>	Liver weight, GD 17 (percent change compared to control)										
Mouse (Swiss albino CD-1);	mg/kg-day		(0	182	910)	2,33	30	4,121	
28–30 females/group (except n = 14 in 4,121 group)	absolute v	veigł	ht	(D	0	-1		-15	*	NE
0, 182, 910, 2,330, 4,121 mg/kg-day	relative we	eight	t	(D	0	2		26 [°]	*	NE
Diet											
GDs 6-15											
<u>NTP (1997a)</u>	Liver weig	ht, a	nd lib	itum	and v	veight	-match	ed (pe	ercent ch	ange co	ompared to
Rat (F344); 50–60/sex/group;	control										
interim sacrifice of 10 rats/sex/group at 15 months	mg/kg-day	/ (M))		(ad tum)	500 (ad libitum)		0 (weight-matched)		500 (weight matched)	
0, 12,000 ppm (males); 0, 24,000 ppm (females)	absolute w	veigł	nt		0		2	0		20*	
0, 500 mg/kg-day (males); 0,	relative weight			0	ź	12*		0		22*	
1,200 mg/kg-day (females) Diet	mg/kg-day (F)			(ad tum)	1,200 (ad libitum)		0 (weight-matched)		1,200 (weight- matched)		
4 exposure protocols: ad libitum							·				
feeding, weight-matched controls, restricted feed	absolute weight			0		-3		0		64*	
(2 years), and restricted feed	relative weight			0	26*		0		51*		
(lifetime)	Feed-restricted 2 years or lifetime (percent change compared to control)										
2 years to lifetime	mg/kg-day (M) 0 500										
	absolute weight		ht	0			6				
	relative weight		t	0		11*					
	mg/kg-day (F)			0			1,200				
	absolute weight		ht	0			-1				
	relative weight		0				20*				
<u>Piersma et al. (2000)</u>	Liver weight (percent change compared to control)										
Rat (Harlan Cpb-WU); 10 females/group	mg/kg- day	0	270	350	450	580	750	970	1,250	1,600	2,100
0, 270, 350, 450, 580, 750, 970, 1,250, 1,600, 2,100 mg/kg-day	Relative liver weight ^d										
Gavage	short	0	8	6	6	6	11	11	19	13	22

This document is a draft for review purposes only and does not constitute Agency policy.3-128DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results ^a							
GD 6–15 or 6–20	exposure (GDs 6–15)							
	long exposure (GDs 6–20)	57	13 1	16 18 31	30			
	Note: No data with respect to absolute liver weight were provided by study authors.							
<u>Ahmad et al. (2014)</u>	Liver weight (percent change compared to control)							
Rat (Albino); P0, female	mg/kg-day	0	4	20	100			
(6/group) 0, 4, 20, 100 mg/kg	F1 male absolute liver weight	0	-3	-3	-6			
Gavage								
GD 14 to parturition								
<u>TNO (1998a)</u>	Liver weight (perce	nt change	compared to	control)				
Rat (Wistar); P0, female	mg/kg-day	0	0.016	0.171	0.489			
(28/group)	Absolute weight							
0, 100, 1,000, 3,000 μg/L								
(equivalent to 0.016, 0.171, 0.489 mg/kg-day, average of reported intake over premating, gestation, and lactation)	F1 female	0	3	4	2			
	F1 male	0	0	4	0			
Drinking water	Relative weight							
F0 females: 2 weeks prior to	F1 female	0	1	2	1			
mating, through mating, gestation, and lactation; F0 males: during mating; F1 animals were not treated after weaning	F1 male	0	1	3	1			
Liver histopathology			-	·				
<u>NTP (1989)</u>	No histopathological effects were observed in the livers of control or high-dams (10/group); other groups were not examined.							
Rat (Sprague-Dawley CD); 30 females/dose								
0, 420, 1,100, 1,640 mg/kg-day								
Diet								
GDs 6-15								
<u>BIBRA (1978)</u>	Percent incidence							
Rat (Wistar); 27/sex/dose or	mg/kg-day (M)	0	151	281	960			

Reference and study design	Results ^a							
45/sex/group (control)	Individual cell or focal necrosis							
0, 2,000, 5,000, 12,000 ppm	2 weeks	0	33	0	0			
0, 151, 381, 960 mg/kg-day (males); 0, 171, 422,	6 weeks	0	17	0	83*			
1,069 mg/kg-day (females);	14 weeks	11	7	13	50*			
interim sacrifices of 9 controls/sex/group and	Inflammatory cells							
6 treated rats/sex/group at 2 and 6 weeks	2 weeks	11	17	67*	0			
Diet	6 weeks	78	17*	67	67			
14 weeks	14 weeks	78	80	80	71			
	Bile duct hyperplasia							
	6 weeks	0	17	33	33			
	14 weeks	4	7	27	0			
	Portal vacuolation/fatty change							
	2 weeks	0	0	0	0			
	14 weeks	11	0	7	0			
	Occasional foci of hemorrhage							
	14 weeks	0	0	7	0			
	Percent incidence							
	mg/kg-day (F)	0	171	422	1,069			
	Individual cell or focal necrosis							
	2 weeks	0	0	0	0			
	6 weeks	0	0	0	0			
	14 weeks	0	13	0	0			
	Inflammatory cells							
	2 weeks	67	50	33	50			
	6 weeks	89	50	33*	67			
	14 weeks	56	67	73	53			
	Bile duct hyperplasia							
	6 weeks	0	0	0	0			
	14 weeks	0	0	0	0			
	Portal vacuolation/fatty change							
	2 weeks	11	0	0	0			
	14 weeks	11	7	0	0			
	Occasional foci of hemorrhage							

Reference and study design	Results ^a							
	14 weeks	0	0	0	0			
<u>NTP (1997b)</u>	No significant effec			authors in control o	or high-dose			
Rat (F344); 15 males/group	animals (quantitative data not shown).							
0, 300, 2,800, 25,000 ppm 0, 20, 200, 2,200 mg/kg-day								
Diet								
10 weeks								
<u>NTP (1997b)</u>	No significant effec			authors in control o	or high-dose			
Rat (F344); 15 males/dose	animals (quantitative data not shown).							
0, 300, 900, 2,800, 8,300, 25,000 ppm 0, 30, 60, 180, 550, "high" mg/kg-day ^c Diet								
26 weeks								
	Dercent incidence o	t study tor	mination					
NTP (1997b)	Percent incidence a	-		240	F.00			
Rat (F344); 60/sex/group	mg/kg-day (M)	0	120	240	500			
0, 3,000, 6,000, 12,000 ppm (males); 0, 6,000, 12,000,	granuloma	0	0	0	14			
24,000 ppm (females)	mg/kg-day (F)	0	300	600	1,200			
0, 120, 240, 500 mg/kg-day (males); 0 300, 600, 1,200 mg/kg-day (females)	cytoplasmic vacuolization of hepatocytes	14	12	4	0			
Diet								
2 years	Note: At 2 years, the incidences of granulomas (in males) and cytoplasmic vacuolization of hepatocytes (in females) were not considered significant the study authors.							
<u>Tyl et al. (2004)</u>	Percent incidence a	t study terr	nination					
Rat (CD); 30 F0 F1 parental	mg/kg-day	0	50	250	750			
rats/sex/dose	Histopathological I	esions ^e						
0, 750, 3,750, 11,250 ppm								
0, 50, 250, 750 mg/kg-day	F0 males	0	0	0	28			
Diet	F1 males	0	0	0	0			
Multigenerational study	F0 females	3	0	7	30			
Exposure 10 weeks prior to mating and through mating, gestation, and lactation periods (females) or through 21 days after end of mating (males)	F1 females	0	0	0	17			

This document is a draft for review purposes only and does not constitute Agency policy.3-131DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results ^a						
<u>Nagao et al. (2000)</u>	Percent incidence						
Rat (Sprague-Dawley);	mg/kg-day	0	20	100	500		
25 sex/generation/group; assessed in 10 control and high-	Fatty change; periportal						
dose rats/sex/group	F0 males	30	NE	NE	0		
0, 20, 100, 500 mg/kg-day	F1 males	20	NE	NE	0		
Gavage	Fibrosis; capsule/subcapsule; diaphragmatic nodule						
Multigenerational study	F0 females	10	NE	NE	0		
F0 males and females: exposure	Granulation; subca	psule; foc	al				
for 12 weeks prior to mating, 2 weeks cohabitation, and until	F0 females	10	NE	NE	0		
necropsy at 23 weeks of age (males) or postpartum day 22 (females); F1 animals: exposure from weaning until necropsy	F1 females	10	NE	NE	0		
<u>Aso et al. (2005)</u>	-			re observed by the st	-		
Rat (Crj:CD(SD)IGS); 24 sex/generation/group	F0 or F1 parental males or females (quantitative data not reported).						
0, 100, 200, 400 mg/kg-day							
Gavage							
Multigenerational study							
F0 and F1 exposed for 4 weeks prior to mating, through mating for 10 weeks, and until weaning of offspring (females) or necropsy (males)							
Monsanto (1983)	Percent incidence						
Rat (Sprague-Dawley);	mg/kg-day (M)	0	51	218	789		
25/sex/group; interim sacrifice of 10 rats/sex/group at 7 weeks	tiny granulomas, 7 weeks	20	30	20	0		
0, 51, 218, 789 mg/m ³	tiny granulomas, 13 weeks	7	0	7	7		
Inhalation (whole-body)	focal necrosis, 7 weeks	0	0	0	0		
13 weeks	lymphoid focus, 7 weeks	0	0	10	0		
	mg/kg-day (F)						
	tiny granulomas, 7 weeks	30	20	10	0		

Reference and study design	Results ^a							
	tiny granulomas, 13 weeks (focal)	0	7 0	7				
	focal necrosis, 7 weeks	0	10 0	0				
	lymphoid focus, 7 weeks	0	0 0	0				
NTP (1990) Mouse (Swiss albino CD-1); 28–30 females/group (except n = 14 in 4,121 group); assessed in 10 dams/group (except the high-dose) 0, 182, 910, 2,330, 4,121	No significant treat (quantitative data r		ffects were observed	d by study authors				
mg/kg-day Diet								
GDs 6–15; necropsy at GD 17								
<u>NTP (1997a)</u>	Percent incidence (d	ad libitum and	weight-matched pro	tocols)				
Rat (F344); 50–60/sex/group; interim sacrifice of	mg/kg-day (M)	0 (ad libitum)	0 (weight-matched	500 3)				
10 rats/sex/group at 15 months	15 months							
0, 12,000 ppm (males); 0, 24,000 ppm (females) 0, 500 mg/kg-day (males); 0, 1,200 mg/kg-day (females)	basophilic focus	60	20	10				
	granuloma	0	0	10				
	inflammation; subacute	0	10	10				
Diet 4 exposure protocols: ad libitum feeding, weight-matched	hepatocyte; cytoplasmic vacuolization	20	30	0				
controls, restricted feed	lobules, necrosis	0	0	20				
(2 years), and restricted feed (lifetime)	2 years							
2 years to lifetime	basophilic focus	44	40	28				
	granuloma	0	0	14				
	inflammation; subacute	0	0	8				
	hepatocyte; cytoplasmic vacuolization	12	18	8				
	lobules, necrosis	4	4	2				
	Percent incidence (ad libitum and weight-matched protocols)							

Reference and study design		Results ^a						
	mg/kg-day (F)	0 (ad libi	tum) 0 (w	eight-matched)	1,200			
	15 months							
	basophilic focus	100		70	90			
	granuloma	10		20	0			
	2 years							
	centrilobular; necrosis	2		4	0			
	hepatocyte; vacuolization cytoplasmic	14		2	0			
	lobules, necrosis	12		2	12			
	Percent incidence	(Feed-restri	cted; 2 year	s or lifetime protocol	s)			
	mg/kg-day (M)	0 (2 years)	500 (2 years)	0 (lifetime)	500 (lifetime)			
	15 months							
	basophilic focus	10	0	NA	NA			
	granuloma	0	10	NA	NA			
	hepatocyte; vacuolization cytoplasmic	20	0	NA	NA			
	At study terminati	on (2 years	or lifetime)					
	basophilic focus	32	30	14	24			
	granuloma	2	0	2	6			
	inflammation; subacute	4	4	0	0			
	hepatocyte; vacuolization cytoplasmic	8	0	4	8			
	lobules, necrosis	2	6	10	10			
	Percent incidence	(Feed-restri	cted; 2 year	s or lifetime protocol	s)			
	mg/kg-day (F)	0 (2 years)	1,200 (2 years)	0 (lifetime)	1,200 (lifetime)			
	15 months							
	basophilic focus	100	30	NA	NA			
	granuloma	10	0	NA	NA			
	inflammation; subacute	10	0	NA	NA			

Reference and study design			Resu	lts ^a	
	At study terminatio	n (2 years	or lifetime)		
	basophilic focus	80	82	64	76
	granuloma	16	16	22	10
	inflammation; subacute	6	6	2	0
	centrilobular; necrosis	0	0	2	0
	hepatocyte; vacuolization cytoplasmic	0	2	12	0
	lobules, necrosis	12	4	8	8
<u>NTP (1982)</u>	Percent incidence				
F344 rats; 50 sex/group	mg/kg-day (F)	0		550	1,100
0, 6,000, 12,000 ppm	necrosis; NOS	0	0 2		0
0, 474, 947 mg/kg-day (males); 0, 550, 1,100 mg/kg-day	necrosis; focal	4		0	4
(females)	necrosis; diffuse	0		2	0
Diet	basophilic cyto change	88		69	70
28 weeks (males) or 103 weeks (females)	Note: Males were n	ot examine	ed histopat	hologically.	
<u>NTP (1982)</u>	Percent incidence a	t study teri	mination		
B6C3F ₁ mice; 50 sex/group	mg/kg-day (M)	0		474	947
0, 6,000, 12,000 ppm	necrosis; focal	2		0	0
0, 474, 947 mg/kg-day (males); 0, 550, 1,100 mg/kg-day (females)	necrosis; hemorrhagic	0		2	0
Diet	mg/kg-day (F)	0		550	1,100
103 weeks	necrosis; NOS	0		0	2
	necrosis; focal	2		0	0

6

7

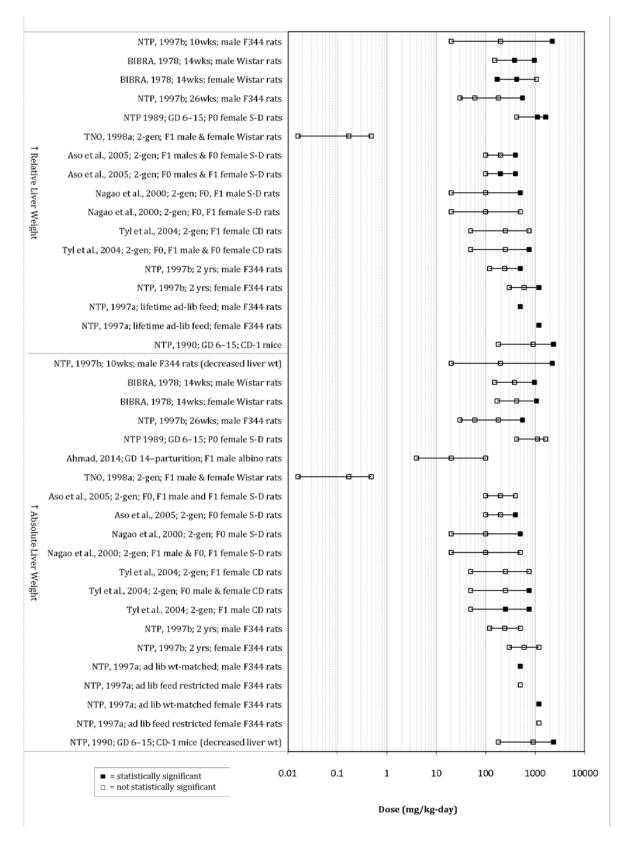
8

*Statistically significant (p < 0.05) relative to controls based on statistics performed by the study authors.

^aPercent change compared to control calculated as 100 × ([treated value – control value] ÷ control value).

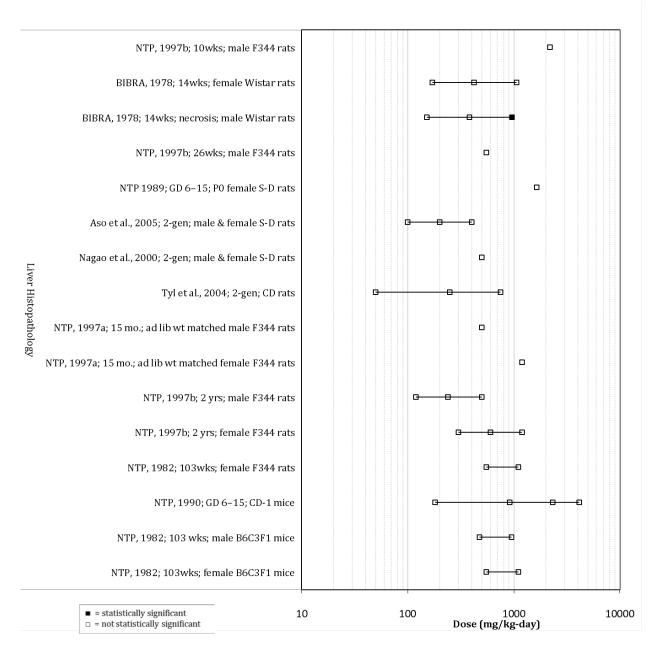
^bAll studies reported relative weight in addition to absolute weight; where patterns were similar only relative weight is included in this table.

^cThe high-dose group corresponds to 25,000 ppm BBP; a reliable estimate of dose could not be calculated. The study authors estimated doses for all but the high-dose group based on measured body weights and food consumption. Food consumption was not measured in the 25,000 ppm BBP group due to excessive scattering of


9 feed, and because the mean body weight of this group was 30% lower than controls.

^d Values reported by the study authors were estimated from published graphs using "Grab It!", a Microsoft Excel

11 based free software application used to digitizes data from image files. Publisher: <u>www.datatrendsoftware.com</u>.


- 1 ^eHistopathology reported by (Tyl et al. (2004)) includes: subtle to slight changes including diffuse cytomegaly,
- 2 3 4 5 6 variable karyomegaly, reduced cytoplasmic glycogen, increased cytoplasmic eosinophilia (increased numbers of peroxisomes), increased cytoplasmic granularity.

F = female(s); M = male(s); ND = not determined; NE = not examined; NA = not applicable, NOS = not otherwise specified

Figure 3-13. Exposure-response array of liver weight effects following oral exposure to BBP.

3

1 2 3

Figure 3-14. Exposure-response array of liver histopathological effects following oral exposure to BBP.

1 3.3.5. Kidney Effects

2 3

Table 3-27. Evidence pertaining to kidney effects in animals following oral and inhalation exposure to BBP

Reference and study design			Results						
Kidney weight ^{a,b}									
<u>BIBRA (1978)</u>	Kidney weight (percent change compared to control)								
Rat (Wistar); 27/sex/dose or	mg/kg-day (M)	0	151	381	960				
45/sex/group (control); interim sacrifices of 9 controls/sex/group and 6 treated rats/sex/group at	absolute weight, 2 weeks	0	3	6	1				
2 and 6 weeks	absolute weight, 6 weeks	0	2	0	-5				
0, 2,000, 5,000, 12,000 ppm 0, 151, 381, 960 mg/kg-day (males); 0, 171, 422, 1,069 mg/kg-day (females) Diet	absolute weight, 14 weeks	0	-2	1	4				
	relative weight, 2 weeks	0	6	7*	6				
	relative weight, 6 weeks	0	7*	7*	8*				
	relative weight, 14 weeks	0	6	8*	12*				
14 weeks	mg/kg-day (F)	0	171	422	1,069				
	absolute weight, 2 weeks	0	7	3	-1				
	absolute weight, 6 weeks	0	7	6	5				
	absolute weight, 14 weeks	0	2	6	12*				
	relative weight, 2 weeks	0	3	3	6				
	relative weight, 6 weeks	0	4	3	10*				
	relative weight, 14 weeks	0	3	8*	19*				
<u>NTP (1997b)</u>	Right kidney weight (µ	percent ch	nange compared	to control)					
Rat (F344); 15 males/group	mg/kg-day	0	20	200	2,200				
0, 300, 2,800, 25,000 ppm 0, 20, 200, 2,200 mg/kg-day	absolute weight	0	-2	3	-25*				
Diet	relative weight	0	-1	5	6				
10 weeks									

This document is a draft for review purposes only and does not constitute Agency policy.3-139DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results							
<u>NTP (1997b)</u>	Right kidney weight	t (percent	change	compare	ed to cont	rol)		
Rat (F344); 15 males/group								
0, 300, 900, 2,800, 8,300, 25,000 ppm 0, 30, 60, 180, 550, "high" mg/kg-day ^d								
Diet								
26 weeks								
	mg/kg-day	0	30	60	180	550	ND	
	absolute weight	0	0	7	-2	11	-20*	
	relative weight	0	-5	-2	-3	8	18*	
<u>NTP (1997b)</u>	Right kidney weight	t, 15 mon	ths (per	cent chai	nge comp	ared to cor	ntrol)	
Rat (F344); 60/sex/group; assessed	mg/kg-day (M)	0		120		240	500	
n 10 rats/sex/group at 15-month nterim sacrifice	absolute weight	0	10			4	6	
0, 3,000, 6,000, 12,000 ppm (males); 0, 6,000, 12,000, 24,000 ppm (females) 0, 120, 240, 500 mg/kg-day	relative weight	0	9*		10*		16*	
	mg/kg-day (F)	0	300 600		600	1,200		
	absolute weight	0	8 9*		9*	-7		
(males); 0 300, 600, 1,200 mg/kg-day (females)	relative weight	0						
Diet				8		7	21*	
2 years								
<u>Tyl et al. (2004)</u>	Kidney weight (perc	ent chan	ge comp	pared to a	control)			
Rat (CD); 30 F0 and F1 parental	mg/kg-day	0		50		250	750	
rats/sex/group	Absolute weight							
0, 750, 3,750, 11,250 ppm								
0, 50, 250, 750 mg/kg-day	F0 males	0		-3		7*	8*	
Diet								
Multigenerational study	F1 males	0		3		12*	-4	
Exposure 10 weeks prior to mating and through mating, gestation,	F0 females	0		2		6*	6	
and lactation (females) or through	F1 females	0		2		8*	6	
21 days after end of mating (males)	Relative weight							
· ·	F0 males	0		-1		3	10*	
	F1 males	0		2		7*	5	
	F0 females	0		2		6*	9*	
	F1 females	0		1		5	4	

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design			Results		
<u>Nagao et al. (2000)</u>	Kidney weight (percen	t change co	ompared to con	trol)	
Rat (Sprague-Dawley);	mg/kg-day	0	20	100	500
25 sex/generation/group	Absolute weight				
0, 20, 100, 500 mg/kg-day					
Gavage	F0 males	0	-3	2	7
Multigenerational study	F1 males	0	0	1	4
F0 males and females: exposure for 12 weeks prior to mating, 2 weeks cohabitation, and until necropsy at 23 weeks of age	F0 females	0	3	7*	7*
	F1 females	0	1	6	4
	Relative weight				
(males) or postpartum day 22 (females); F1 animals: exposure	F0 males	0	-2	2	14
from weaning until necropsy	F1 males	0	4	9*	18*
	F0 females	0	5	8*	6*
	F1 females	0	0	5	5
<u>Aso et al. (2005)</u>	Kidney weight (percen	t change co	ompared to con	trol)	
Rat (Crj:CD(SD)IGS); 24 sex/generation/group	mg/kg-day	0	100	200	400
	Absolute weight				
0, 100, 200, 400 mg/kg-day					
Gavage	F0 males left kidney	0	6	8*	9*
Multigenerational study	F1 males left kidney	0	-1	0	0
F0 and F1 exposed for 4 weeks prior to mating	F0 females left kidney	0	17	12*	12*
for 10 weeks, and until weaning of offspring (females) or necropsy (males)	F1 females left kidney	0	6	7	6
()	F0 males right kidney	0	4	7	8
	F1 males right kidney	0	0	0	0
	F0 females right kidney	0	3	11*	8*
	F1 females right kidney	0	9	12	5
	Relative weight				
	F0 males left kidney	0	3	7	10*
	F1 males left kidney	0	0	0	3
	F0 females left kidney	0	6	6	12*

This document is a draft for review purposes only and does not constitute Agency policy. 3-141

Reference and study design			Results		
	F1 females left kidney	0	3	3	6
	F0 males right kidney	0	3	3	10
	F1 males right kidney	0	0	0	3
	F0 females right kidney	0	3	6	6*
	F1 females right kidney	0	3	6	3
<u>Monsanto (1983)</u>	Kidney weight (perce	ent change cor	npared to con	trol)	
Rat (Sprague-Dawley);	mg/kg-day	0	51	218	789
25/sex/group; interim sacrifice of 10 rats/sex/group at 7 weeks	Absolute weight, left				
0, 51, 218, 789 mg/m ³	males, 7 weeks	0	2	8	22*
Inhalation (whole-body)	females, 7 weeks	0	-2	8	13
13 weeks	males, 13 weeks	0	5	8	18*
	females, 13 weeks	0	3	6	14*
	Absolute weight, righ	it kidney			
	males, 7 weeks	0	1	11*	21*
	females, 7 weeks	0	0	10	12*
	males, 13 weeks	0	1	7	17*
	females, 13 weeks	0	4	7	12*
	Relative weight, left H	Kidney			
	males, 7 weeks	0	3	11*	22*
	females, 7 weeks	0	-2	4	10
	males, 13 weeks	0	3	5	15*
	females, 13 weeks	0	3	7	15*
	Relative weight, right	: kidney			
	males, 7 weeks	0	1	13*	20*
	females, 7 weeks	0	0	6	9
	males, 13 weeks	0	0	4	14*
	females, 13 weeks	0	4	8	13*

Reference and study design			Results						
<u>NTP (1989)</u>	Kidney weight (per	cent change co	mpared to	contr	ol)				
Rat (Sprague-Dawley CD); 30 females/group	mg/kg-day (Maternal)	0	420		1,100	16,40			
	Absolute weight								
0, 420, 1,100, 1,640 mg/kg-day									
	left kidney	0	1		2	2			
Diet	right kidney	0	2		2	2			
GDs 6-15	Relative weight								
	left kidney	0	0		7	20*			
	right kidney	0	0		3	16*			
<u>NTP (1990)</u>	Right kidney weigh	t, GD 17 (percer	nt change	сотра	ared to control,)			
Mouse (Swiss albino CD-1); 28–30	mg/kg-day	0	182	910	2,330	4,121			
females/group (except n = 14 in 4,121 mg/kg-day group)	absolute weight	0	0	5	10	NE			
0, 182, 910, 2,330, 4,121 mg/kg- day	relative weight	0	0	8	62*	NE			
Diet									
GDs 6–15									
<u>NTP (1997a)</u>	Kidney weight, ad l	ibitum and weig	ght-match	ed (pe	rcent change c	ompared to			
Rat (F344); 50–60/sex/group;	control)								
interim sacrifice of 10 rats/sex/group at 15 months		_	500		0	500			
0, 12,000 ppm (males); 0, 24,000	mg/kg-day (M)	0 (ad libitum)	(ad libitum)	(weight matched)	(weight matched)			
ppm (females) 0, 500 mg/kg-day (males); 0,	absolute weight	0	6		0	20*			
1,200 mg/kg-day (females)	relative weight	0	16*		0	15*			
Diet									
4 exposure protocols: ad libitum									
feeding, weight-matched controls, restricted feed (2 years), and restricted feed (lifetime)	mg/kg-day (F)	0 (ad libitum)	1,200 (ad libitum		0 (weight matched)	1,200 (weight matched)			
Diet	absolute weight	0	-6	/	0				
2 years	relative weight	0	22*		0	30*			
2 years	Kidney weight, Feed-restricted; 2 years or lifetime (percent change compared								
	Kidney weight, Feed to control)		ears or life	etime (20*			
			-	etime (20* e compared			
	to control)	d-restricted; 2 y)	etime (percent chang	20* e compared			

This document is a draft for review purposes only and does not constitute Agency policy. 3-143 DRAFT-DO NOT CITE OR QUOTE

Reference and study design						Resu	ults				
	mg/kg-day (F)				0				1200	
	absolute we	igh	t			0 -4			-4		
	relative weig	ght				0				16*	
Piersma et al. (2000)	Percent cha	nge	сот	parea	l to coi	ntrol					
Rat (Harlan Cpb-WU); 10 females/group	mg/kg-day	0	270	350	450	580	750	970	1,250	1,600	2,100
1, 270, 350, 450, 580, 750, 970,1,250, 1,600, 2,100 mg/kg-day	Relative kidı	Relative kidney weight ^c									
Gavage	short exposure (GDs 6–15)	0	2	1	4	10	10	16	20	19	33
GDs 6–15 or 6–20; dams sacrificed on GD 21	long exposure (GDs 6–20)	0	-1	-3	2	6	11	14	20	36	24
	Note: No da study autho		vith r	espeo	ct to al	osolute	kidney	/ weigł	nt were	provide	d by
<u>Ahmad et al. (2014)</u>	Kidney weig	ht (perce	ent ch	ange d	compar	ed to c	ontrol,)		
Rat (Albino);	mg/kg-day				0		4		20		100
PO, female (6/group)	F1 male abs	olut	e		0		-1		-1		-11*
0, 4, 20, 100 mg/kg	weight										
Gavage											
GD 14 to parturition											
<u>TNO (1998a)</u>	Kidney weig	ht (perce	ent ch	ange d	compar	ed to c	ontrol,)		
Rat (Wistar); P0, female (28/group)	mg/kg-day				0		0.016	5	0.160	(0.481
	Absolute we	eigh	t								
0, 100, 1,000, 3,000 μg/L											
(equivalent to 0.016, 0.171, 0.489 mg/kg-day, average of reported	F1 female				0		-3		1		1
intake over premating, gestation,	F1 male				0		-2		4		1
and lactation)	Relative wei	ght									
Drinking water											
F0 females: 2 weeks prior to	F1 female		-		0		-4*		-1		0
mating, through mating, gestation, and lactation; F0 males: during mating; F1 animals were not treated after weaning	F1 male				0		-1		3		2

Reference and study design		R	lesults		
Kidney histopathology					
NTP (1997b)	Percent incidence				
Rat (F344); 60/sex/dose; assessed	mg/kg-day (M)	0	120	240	500
in 10 rats/sex/group at 15-month interim sacrifice and 50 rats/sex/group at study termination 0, 3,000, 6,000, 12,000 ppm (males); 0, 6,000, 12,000, 24,000	nephropathy, 15 months renal tubule;	100 100	100 100	100 100	90 100
	pigmentation, 15 months				
ppm (females) 0, 120, 240, 500 mg/kg-day (males): 0, 300, 600, 1, 200 mg/kg-	nephropathy, 2 years	96	94	100	96
(males); 0 300, 600, 1,200 mg/kg- day (females)	renal tubule; pigmentation, 2 years	98	96	100	100
Diet	mineralization, 2 years	0	2	4	0
2 years	transitional epithelium hyperplasia, 2 years	12	20	12	2
	mg/kg-day (F)	0	300	600	1,200
	nephropathy, 15 months	70	100	100	100
	renal tubule; pigmentation, 15 months	100	100	100	100
	mineralization, 15 months	100	90	90	80
	nephropathy, 2 years	68	94*	86*	90*
	renal tubule; pigmentation, 2 years	98	98	98	94
	mineralization, 2 years	86	68*	74	70*
	transitional epithelium hyperplasia, 2 years	0	6	14*	8
<u>Nagao et al. (2000)</u>	Percent incidence				
Rat (Sprague-Dawley);	mg/kg-day (M)	0	20	100	500
25 sex/generation/group; assessed n 10 control and high-dose	Basophilic tubule in co	rtex			
rats/sex	FO	NA	NE	NE	NA

This document is a draft for review purposes only and does not constitute Agency policy. 3-145 DRAFT-DO NOT CITE OR QUOTE

Reference and study design		Results							
0, 20, 100, 500 mg/kg-day									
Gavage	F1	100	NE	NE	100*				
Multigenerational study	Cast, cortex/medulla								
F0 males and females: exposure	FO	20	NE	NE	40				
for 12 weeks prior to mating, 2 weeks cohabitation, and until	F1	20	NE	NE	40				
necropsy at 23 weeks of age	Eosinophilic bodies								
(males) or postpartum day 22 (females); F1 animals: exposure	FO	70	NE	NE	50				
from weaning until necropsy	F1	30	NE	NE	10				
	Mineralization								
	FO	30	NE	NE	0				
	F1	40	NE	NE	30				
	Cyst; medulla								
	FO	10	NE	NE	0				
	Degeneration; vacu	olar, with hyali	ne droplet; pro	oximal tubular	epithelium				
	FO	10	NE	NE	0				
	Cellular infiltration, lymphocyte, interstitium								
	F1	0	NE	NE	10				
	Dilatation, renal pelvis								
	F1	10	NE	NE	10				
	Fibrosis; focal, subc	apsule							
	F1	10	NE	NE	0				
	mg/kg-day (F)	0	20	100	500				
	Basophilic tubule in	cortex							
	FO	20	NE	NE	50				
	F1	40	NE	NE	50				
	Fibrosis; focal, subc	apsule							
	FO	10	NE	NE	0				
	Mineralization; pap	illa							
	F1	20	NE	NE	0				
	Dilatation; renal pel	vis; right side							
	F1	10	NE	NE	0				
	Dilatation, collectin	g tubule, medu	lla, and papilla						
	F1	0	NE	NE	10				

Reference and study design	Results									
Hotchkiss et al. (2004)	Percent incidence in male offspring at 3 months of age									
Rat (Sprague-Dawley);	mg/kg-day	C)	500						
6 litters/group	hydronephrosis	3	}	30*						
0, 500 mg/kg-day										
Gavage	Note: Individual perc			on a per anim	nal basis and					
GDs 14–18	included both left and right tissues.									
BIBRA (1978)	Percent incidence									
Rat (Wistar); 27/sex/dose or	mg/kg-day (M)	0	151	381	960					
45/sex/group (control); interim sacrifices of 9 controls/sex/group	Early nephrosis	Early nephrosis								
and 6 treated rats/sex/group at 2 and 6 weeks	2 weeks	33	33	17	0					
	6 weeks	67	17	17	17					
0, 2,000, 5,000, 12,000 ppm 0, 151, 381, 960 mg/kg-day										
	14 weeks	33	67	33	14					
(males) ^c 0, 171, 422, 1,069 mg/kg-day	Basophilia and tubular hyperplasia									
(females)	2 weeks	44	50	33	17					
Diet										
14 weeks	6 weeks	0	33	83*	33					
	14 weeks	26	0	0	43					
	Foci of inflammatory cells									
	2 weeks	0	17	0	0					
	6 weeks	0	17	0	0					
	14 weeks	0	7	0	7					
	Foci of calcium at co	rticomedullar	y junction							
	14 weeks	0	0	0	0					
	Transitional cell hyp	erplasia								
	14 weeks	0	7	0	0					
	mg/kg-day (F)	0	171	422	1,069					
	Early nephrosis									
	2 weeks	0	0	17	17					
	6 weeks	0	0	0	0					
	14 weeks	7	0	0	0					
	Basophilia and tubu	lar hyperplasia	9							
	2 weeks	33	50	33	33					
	6 weeks	11	17	0	0					

This document is a draft for review purposes only and does not constitute Agency policy.

3-147

Reference and study design	Results									
	14 weeks	0	7	13	0					
	Foci of inflammatory	r cells								
	2 weeks	0	0	0	0					
	6 weeks	0	0	0	17					
	14 weeks	0	0	0	0					
	Foci of calcium at co	rticomedullary jur	nction							
	14 weeks	0	0	0	7					
	Transitional cell hyperplasia									
	14 weeks	0	0	0	0					
<u>NTP (1997a)</u>	Percent incidence									
Rat (F344); 50–60/sex/group;	Ad libitum and weigh	t-matched								
interim sacrifice of 10 rats/sex/group at 15 months 0, 12,000 ppm (males); 0, 24,000 ppm (females) 0, 500 mg/kg-day (males); 0, 1,200 mg/kg-day (females)	mg/kg-day (M)	0 (ad libitum)	0 (weight matched)		500					
	nephropathy, 15 months	100	90		90					
Diet	inflammation; suppurative, 2 years	0	2		8					
4 exposure protocols: ad libitum feeding, weight-matched controls,	mineralization, 2 years	0	2		0					
restricted feed (2 years), and restricted feed (lifetime)	nephropathy, 2 years	96	96		96					
2 years to lifetime	transitional epithelium; hyperplasia, 2 years	12	0		2					
	mg/kg-day (F)	0 (ad libitum)	0 (weight matched)		1,200					
	mineralization, 15 months	100	90		80					
	nephropathy, 15 months	70	20		100					
	hydronephrosis, 2 years	0	4		2					
	mineralization, 2 years	86	98		70					
	nephropathy, 2 years	68	64		90					

Reference and study design		F	Results		
	transitional epithelium; hyperplasia, 2 years	0	8		8
	Feed-restricted; 2 yea	rs or lifetime			
	mg/kg-day (M)	0 (2 years)	500 (2 years)	0 (lifetime)	500 (lifetime)
	mineralization, 15 months	0	10	NA	NA
	nephropathy, 15 months	80	100	NA	NA
	hydronephrosis, 2 years	0	0	0	2
	mineralization, 2 years	10	8	12	10
	nephropathy, 2 years	86	92	98	98
	transitional epithelium; hyperplasia, 2 years	2	4	4	2
	Feed-restricted; 2 yea	rs or lifetime			
	mg/kg-day (F)	0 (2 years)	1,200 (2 years)	0 (lifetime)	1,200 (lifetime)
	mineralization, 15 months	100	80	NA	NA
	nephropathy, 15 months	100	90	NA	NA
	hydronephrosis, 2 years	0	2	0	0
	inflammation; suppurative	0	0	0	4
	mineralization, 2 years	92	68	90	62
	transitional epithelium; hyperplasia, 2 years	2	40	4	58
<u>Monsanto (1983)</u>	Percent incidence				
Rat (Sprague-Dawley);	mg/kg-day (M)	0	51	218	789
25/sex/group; interim sacrifice of 10 rats/sex/group at 7 weeks	Focal scar				
0, 51, 218, 789 mg/m ³	6 weeks	10	0	10	0

Reference and study design			Results				
Inhalation (whole-body)	Lymphoid foci						
13 weeks	6 weeks	10	0	0	10		
	13 weeks	0	7	0	7		
	Tubular basophilia						
	6 weeks	20	0	0	0		
	13 weeks	7	0	0	0		
	Small cysts						
	6 weeks	0	0	0	0		
	13 weeks	0	7	0	0		
	Pelvic dilation						
	6 weeks	10	0	0	10		
	13 weeks	0	0	7	7		
	Tiny granuloma						
	13 weeks	0	0	7	0		
	Focal interstitial nephritis						
	13 weeks	0	0	0	7		
	Percent incidence						
	mg/kg-day (F)	0	51	218	789		
	Focal Scar						
	6 weeks	0	0	0	0		
	Lymphoid foci						
	6 weeks	0	0	10	0		
	13 weeks	0	7	0	0		
	Tubular basophilia						
	6 weeks	10	0	0	0		
	13 weeks	0	0	0	0		
	Small cysts						
	6 weeks	20	0	0	10		
	13 weeks	0	7	0	0		
	Pelvic dilation						
	6 weeks	10	0	0	10		
	13 weeks	7	0	0	0		
	Tiny granuloma						

This document is a draft for review purposes only and does not constitute Agency policy.3-150DRAFT—DO NOT CITE OR QUOTE

Reference and study design		ļ	Results			
	13 weeks	0	0	0	0	
	Focal interstitial neph	ritis				
	13 weeks	0	0	0	0	
NTP (1982)	Percent incidence					
36C3F ₁ mice, 50/sex/group	mg/kg-day (M)	0	474	94	17	
), 6,000, 12,000 ppm	mineralization	2	0	()	
), 474, 947 mg/kg-day (males); 0, 550, 1,100 mg/kg-day (females)	inflammation, interstitial	2	2	2	1	
	nephropathy	0	2	()	
Diet	mg/kg-day (F)	0	550	1,1	00	
103 weeks	mineralization	0	0	-	2	
	inflammation, interstitial;	2	2	(5	
	nephropathy	2	0	(כ	
	tubule; regeneration; NOS	0	2	(כ	
NTP (1982)	Percent incidence					
344 rats; 50 sex/group	mg/kg-day (F)	0	550	1,1	.00	
), 6,000, 12,000 ppm	mineralization	2	0		2	
), 474, 947 mg/kg-day (males); 0, 550, 1,100 mg/kg-day (females)	hydronephrosis	0	2	(C	
Diet	inflammation, interstitial;	0	0	2	2	
28 weeks (males) or 103 weeks	nephropathy	68	64	4	0	
females)	tubule; regeneration; NOS	2	2	(0	
	Note: Males were not examined histopathologically.					
<mark>[y] et al. (2004)</mark>	No significant treatme			• •		
Rat (CD); 30 F0 and F1 parental rats/sex/group	F0 or F1 parental male	es or females	(quantitative data	not reported)).	
D, 750, 3,750, 11,250 ppm D, 50, 250, 750 mg/kg-day						
Diet						
Multigenerational study						

Reference and study design	Results
Exposure 10 weeks prior to mating and through mating, gestation, and lactation (females) or through 21 days after end of mating (males)	
<u>Aso et al. (2005)</u>	No significant treatment-related effects were observed by study authors in
Rat (Crj:CD(SD)IGS); 24 sex/generation/group	F0 or F1 parental males or females (quantitative data not reported).
0, 100, 200, 400 mg/kg-day	
Gavage	
Multigenerational study	
F0 and F1 exposed for 4 weeks prior to mating, through mating for 10 weeks, and until weaning of offspring (females) or necropsy (males)	
NTP (1990)	Histopathology at GD 17 was evaluated, but no significant treatment-related
Mouse (Swiss albino CD-1); 28–30 females/group (except n = 14 in 4,121 mg/kg-day group); assessed in 10 dams/group (except the high- dose)	effects were observed by study authors (quantitative data not reported).
0, 182, 910, 2,330, 4,121 mg/kg- day	
Diet	
GDs 6–15	
<u>NTP (1989)</u>	Histopathology at GD 20 was evaluated, but no histopathological effects
Rat (Sprague-Dawley CD); 30 females/group	were observed in the kidneys of control or high-dose dams (10/group); other groups were not examined.
0, 420, 1,100, 1,640 mg/kg-day	
Diet	
GDs 6–15	
<u>NTP (1997b)</u>	No significant effects reported by study authors in control or high-dose
Rat (F344); 15 males/group 0, 300, 2,800, 25,000 ppm 0, 20, 200, 2,200 mg/kg-day	animals (quantitative data not reported).
Diet	
10 weeks	

Reference and study design	Results
<u>NTP (1997b)</u>	No significant effects reported by study authors in control or high-dose
Rat (F344); 15 males/group	animals (quantitative data not reported).
0, 300, 900, 2,800, 8,300, 25,000 ppm 0, 30, 60, 180, 550, "high" mg/kg- day ^d	
Diet	
26 weeks	

1 2 3

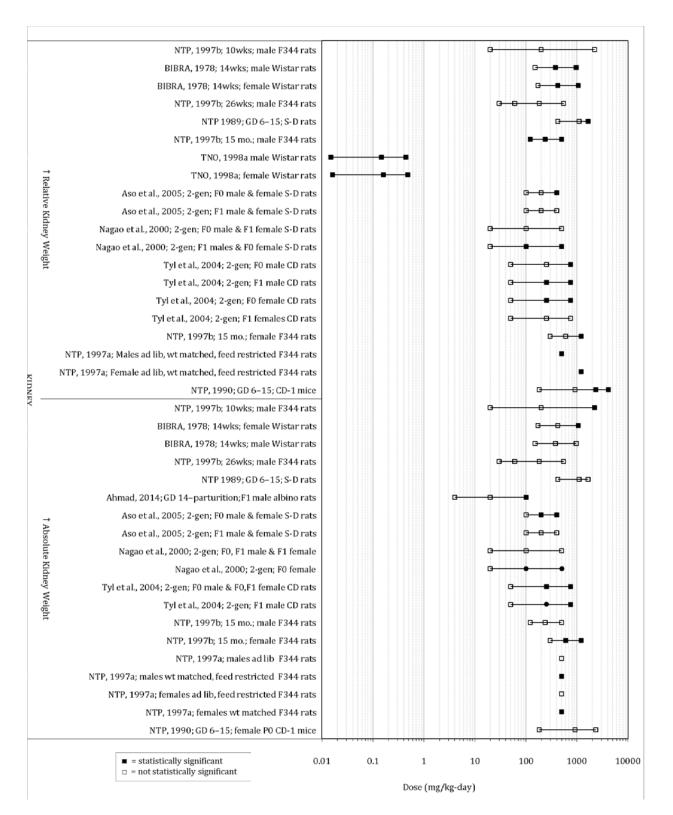
*Statistically significant (p < 0.05) relative to controls based on statistics performed by the study authors.

^aPercent change compared to control calculated as 100 × ((treated value – control value) ÷ control value).

4 ^bAll studies reported relative weight in addition to absolute weight; patterns were similar, and only relative weight 5 is included in this table.

is included in this table.
 ^c Values reported by the study authors were estimated from published graphs using "Grab It!", a Microsoft Excel

7 based free software application used to digitizes data from image files. Publisher: <u>www.datatrendsoftware.com</u>.


^dThe high-dose group corresponds to 25,000 ppm BBP; a reliable estimate of dose could not be calculated. The

9 study authors estimated doses for all but the high-dose group based on measured body weights and food
 10 consumption. Food consumption was not measured in the 25,000 ppm BBP group due to excessive scattering of

11 feed, and because the mean body weight of this group was 30% lower than controls.

12

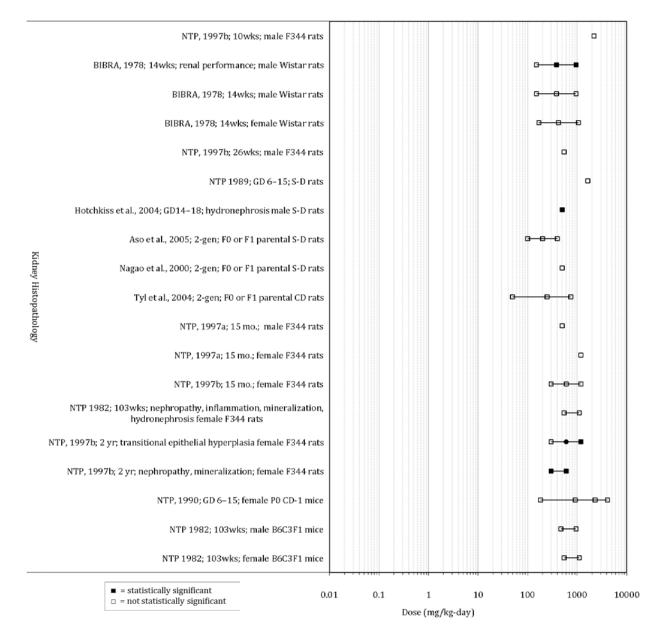

13 NE = not examined; NOS = not otherwise specified

Figure 3-15. Exposure-response array of kidney weight effects following oral exposure to BBP.

1 2 3

4

1 2

Figure 3-16. Exposure-response array of kidney histopathological effects following oral exposure to BBP.

4

3

1 3.3.6. Pancreatic Effects

2 3

Table 3-28. Evidence pertaining to pancreatic effects in animals following oraland inhalation exposure to BBP

Reference and study design		Re	esults				
Pancreas weight ^a							
<u>Tyl et al. (2004)</u>	Pancreas weight (percent change compared to control)						
Rat (CD); 30 F0 and F1 parental rats/sex/group	mg/kg-day	0	50	250	750		
	Absolute weights						
0, 750, 3,750, 11,250 ppm							
0, 50, 250, 750 mg/kg-day ^b	F0 males	0	-5	-7	-2		
Diet			-5	-7	-2		
Multigenerational study	F1 males	0	9	14*	14*		
Exposure 10 weeks prior to mating	F0 females	NR	NR	NR	NR		
and through mating, gestation, and lactation (females) or through	F1 females	NR	NR	NR	NR		
21 days after end of mating (males)	Relative weights						
	F0 males	0	-3	-10	1		
	F1 males	0	9	9	25*		
	F0 females	NR	NR	NR	NR		
	F1 females	NR	NR	NR	NR		
	Note: No effect reported by study authors on female pancreas weights (quantitative data not reported).						
Pancreas histopathology							
<u>BIBRA (1978)</u>	Percent incidence						
Rat (Wistar); 27/sex/treatment group	mg/kg-day (M)	0	151	381	960		
or 45/sex/group (control)	focus of exocrine hyperplasia; 6 weeks	0	NE	NE	0		
0, 2,000, 5,000, 12,000 ppm 0, 151, 381, 960 mg/kg-day (males) ^b ; 0, 171, 422, 1,069 mg/kg-day (females) ^b ; interim sacrifices of 9 controls/sex/group and 6 treated rats/sex/group at 2 and 6 weeks	incidental pancreatic lesion; 14 weeks	7	0	7	0		
	marginal islet enlargement;	0	57*	20*	0		
Diet	14 weeks						
14 weeks	pancreatic lesions	0	0	53*	93*		
	mg/kg-day (F)	0	171	422	1,069		
	focus of exocrine hyperplasia; 6 weeks	11	NE	NE	0		

Reference and study design		R	esults				
	incidental pancreatic lesion; 14 weeks	0	NE	NE	0		
	marginal islet enlargement; 14 weeks	0	NE	NE	0		
	pancreatic lesions, 14 weeks	0	NE	NE	0		
	Lesions include islet enlargement with cell vacuolation, peri-islet congestion, peri-islet inflammatory cell infiltration, and slight fibrosis the endocrine pancreas; occasional pyknotic nuclei, acinar atrophy, periacinar inflammatory cell infiltrate, and fibrosis observed less frequently in the exocrine pancreas. The severity of these lesions increased in a dose-related manner.						
<u>NTP (1997b)</u>	-	No significant effects reported by study authors in control or high-dose					
Rat (F344); 15 males/group	animals (quantitative d	ata not repo	orted).				
0, 300, 2,800, 25,000 ppm 0, 20, 200, 2,200 mg/kg-day ^b							
Diet							
10 weeks							
<u>NTP (1997b)</u>	No significant effects re		-	n control or h	igh-dose		
Rat (F344); 15 males/group	animals (quantitative d	ata not repo	orted).				
0, 300, 900, 2,800, 8,300, 25,000 ppm 0, 30, 60, 180, 550, "high" mg/kg-day ^b							
Diet							
26 weeks							
<u>NTP (1997b)</u>	Percent incidence						
Rat (F344); 60/sex/group; assessed in	mg/kg-day (M)	0	120	240	500		
10 rats/sex/group at 15-month interim sacrifice and 50 rats/sex/group at study termination	<i>acinus hyperplasia</i> 8 14 (2.1) 18 (2.3) (severity ^b) (2.5)						
0, 3,000, 6,000, 12,000 ppm (males);	acinus adenoma	6	4	6	20		
0, 6,000, 12,000, 24,000 ppm (females)	acinus carcinoma	0	0	0	2		
0, 120, 240, 500 mg/kg-day (males) ^b ; 0 300, 600, 1,200 mg/kg-day (females) ^b	acinus carcinoma or adenoma	6	4	6	22		

Reference and study design	Results					
Diet	Females	0	300	600	1,200	
2 years	acinus hyperplasia (severity ^c)	2 (3.0)	8 (2.5)	4 (2.5)	0 (-)	
	acinus adenoma	0	0	0	4	
<u>NTP (1982)</u>	Percent incidence					
B6C3F ₁ mice; 50/sex/group	mg/kg-day (M)	0	47	74	974	
0, 6,000, 12,000 ppm	inflammation; NOS	0	()	2	
0, 474, 947 mg/kg-day (males) ^b ; 0, 550, 1,100 mg/kg-day (females) ^b	inflammation; focal	0	2	2	0	
Diet	atrophy; NOS	0	2	2	2	
103 weeks	acinus; atrophy, focal	0	2	2	0	
	mg/kg-day (F)	0	55	50	1,100	
	dilatation/ducts	2	()	0	
	cystic ducts	0	2	2	2	
	inflammation; NOS	0		2	0	
	abscess; NOS	0	2	2	0	
	atrophy; NOS	0	2	2	0	
	acinus; atrophy, NOS	5	()	0	
	acinus; atrophy, focal	0	()	2	
	acinar-cell adenoma	0	()	2	
	leiomyosarcoma; metastatic	0	2	2	0	
<u>NTP (1982)</u>	Percent incidence					
F344 rats; 50 sex/group	mg/kg-day (F)	0	55	50	1,100	
0, 6,000, 12,000 ppm	inflammation; NOS	0	2	2	0	
0, 474, 947 mg/kg-day (males) ^b ; 0, 550, 1,100 mg/kg-day (females) ^b	inflammation; focal	0	()	2	
Diet	atrophy; NOS	0	2	2	2	
28 weeks (males) or 103 weeks	acinus; atrophy, NOS	2	()	0	
(females)	acinus; atrophy, focal	6		2	2	
	pancreatic islets; islet-cell adenoma	0	7	7	0	
	Note: Males were not ex	kamined hist	opathologica	illy.		

Reference and study design	Results							
Monsanto (1983)	Percent incidence							
Rat (Sprague-Dawley); 25/sex/group;	mg/kg-day (M)	0	51 2	18 789				
interim sacrifice of 10 rats/sex/group at 7 weeks	yellow pigment; peri- islet; 13 weeks	7	0	0 0				
0, 51, 218, 789 mg/m ³								
Inhalation (whole-body)	periacinar round	0	0	0 7				
13 weeks	cells; 13 weeks							
	mg/kg-day (f)	0	51 2	18 789				
	yellow pigment; peri- islet; 13 weeks	0	0	0 0				
	periacinar round cells; 13 weeks	0	0	0 0				
	Note: No significant histopathological effects were observed by study authors in rats sacrificed at interim.							
<u>NTP (1997a)</u>	Percent incidence							
Rat (F344); 60/sex/group; interim	Ad libitum and weight-matched							
sacrifice of 10 rats/sex/group at 15 months 0, 12,000 ppm (males); 0,	mg/kg-day (M)	0 (ad libitum	0 (weight- matched					
		control)	control)	500				
24,000 ppm (females) 0, 500 mg/kg-day (males) ^b ; 0, 1,200 mg/kg-day (females) ^b	acinus; hyperplasia	8	4	24				
Diet	acinus; adenoma	6	0	20*				
Three studies: (1) ad libitum feeding	acinus; carcinoma	0	2	2				
and weight-matched controls, (2) restricted feed (2 years), and (3) restricted feed (lifetime)	acinus; carcinoma or adenoma	6	2	22				
Diet								
2 years to lifetime	mg/kg-day (F)	0 (ad libitum control)	0 (weight- matched control)	1,200				
	acinar hyperplasia	2	0	0				
	acinus, adenoma	0	0	4				
	Feed restricted; 2 years		0	4				
	mg/kg-day (M)	, 0		500				
	acinus, focal hyperplasia	0		6				
	acinus, adenoma	0		0				
	mg/kg-day (F)	0		1,200				

This document is a draft for review purposes only and does not constitute Agency policy.3-159DRAFT—DO NOT CITE OR QUOTE

Reference and study design		Results		
	acinar cell, hyperplasia	0	0	
	acinus, adenoma	0	0	
	Feed-restricted, lifetime			
	mg/kg-day (M)	0	500	
	acinus hyperplasia	0	4	
	acinus, adenoma	0	2	
	mg/kg-day (F)	0	1,200	
	acinar cell, hyperplasia	0	2	
	acinus, adenoma	0	2	
	There were no significant-treatment-related effects in females relative to ad libitum or weight-matched controls or in males and females in the restricted feed studies compared to their respective control groups.			

*Statistically significant (p < 0.05) relative to controls based on statistics performed by the study authors.

^aPercent change compared to control calculated as 100 × ((treated value – control value) ÷ control value).

^bCalculated as follows: [% in diet × intake food/water (mg)] ÷ body weight (kg) = mg/kg-day.

^cAverage severity in affected animals where 1 = minimal; 2 = mild; 3 = moderate; 4 = marked.

NE = not examined; NOS = not otherwise specified

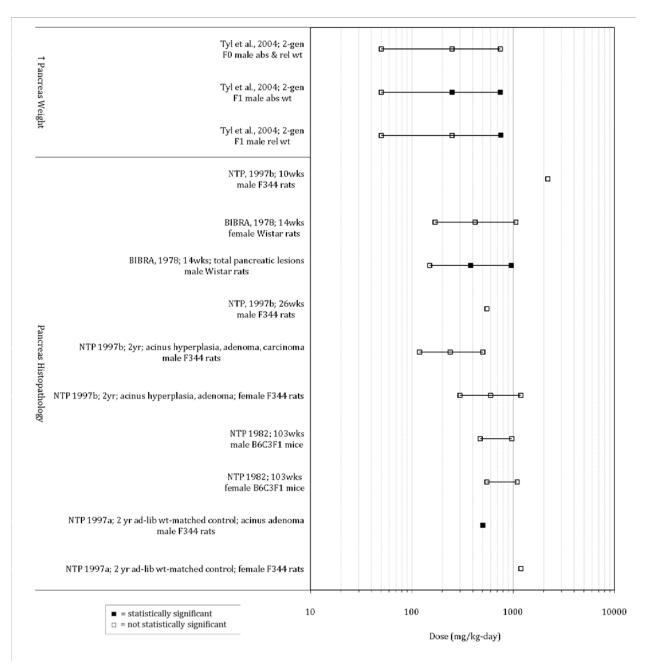


Figure 3-

1

2

3

Figure 3-17. Exposure-response array of pancreatic effects following oral exposure to BBP.

3.3.7. Hematopoietic Effects 1

2 3

Table 3-29. Evidence pertaining to hematopoietic effects in animals following oral and inhalation exposure to BBP

Reference and study design		Res	ults			
Spleen weight ^a						
<u>Tyl et al. (2004)</u>	Spleen weight, PND 21 (percent change compared to control)					
Rat (CD); 30 F0 and F1 parental	mg/kg-day	0	50	250	750	
rats/sex/group; assessed in 54–86 male offspring/group and	Absolute weight					
43–87 female offspring/group	F1 males	0	0	-1	-29*	
(≥3 sex/litter/group if possible)	F2 males	0	4	1	-27*	
0, 750, 3,750, 11,250 ppm						
0, 50, 250, 750 mg/kg-day ^b	Relative weight					
Diet	F1 males	0	1	-3	-12*	
Multigenerational study	F2 males	0	4	0	-18*	
Exposure 10 weeks prior to mating	Absolute weight					
and through mating, gestation, and lactation (females) or through	F1 females	0	8	-5	-34*	
21 days after end of mating (males)	F2 females	0	8	4	-26*	
	Relative weight					
	F1 females	0	6	-4	-14*	
	F2 females	0	6	1	-17*	
<u>BIBRA (1978)</u>	Spleen weight (percent	change comp	ared to contro	1)		
Rat (Wistar); 27/sex/group or	mg/kg-day (M)	0	151	381	960	
45/sex/group (control); interim sacrifices of 9 controls/sex/group	Absolute weight					
and 6 treated rats/sex/group at	2 weeks	0	-6	-2	-19	
2 and 6 weeks	6 weeks	0	-7	-10	-24*	
0, 2,000, 5,000, 12,000 ppm	14 weeks	0	-10	-7*	-4	
Diet: 0, 151, 381, 960 mg/kg-day	Relative weight					
(males) ^b ; 0, 171, 422, 1,069 mg/kg-day (females) ^b	2 weeks	0	0	0	-14*	
3 months	6 weeks	0	-5	-5	-14*	
	14 weeks	0	-5	0	5	
	mg/kg-day (F)	0	171	422	1,069	
	Absolute weight					
	2 weeks	0	0	0	-8	
	6 weeks	0	0	5	0	

This document is a draft for review purposes only and does not constitute Agency policy. 3-162

Reference and study design		Res	ults				
	14 weeks	0	0	-5	0		
	Relative weight						
	2 weeks	0	-3	0	0		
	6 weeks	0	-4	0	8		
	14 weeks	0	0	-5	5		
<u>Aso et al. (2005)</u>	Spleen weight (perce	nt change compo	ared to contro	1)			
Rat (Crj:CD(SD)IGS);	mg/kg-day	0	100	200	400		
24 sex/generation/group; assessed in male offspring/litter in F1 and F2	Absolute weight, PND 21						
offspring	F1 males	0		2	4.6.*		
0, 100, 200, 400 mg/kg-day			1	3	-16*		
Gavage	F2 males	0	-12	-8	-25*		
Multigenerational study	Relative weight, PND	21					
F0 and F1 exposed for 4 weeks prior	F1 males	0	-2	4	-13*		
to mating, through mating for 10 weeks, and until weaning of	F2 males	0	-9	-8	-20*		
offspring (females) or necropsy	Absolute weight, study termination						
(males)	F0 males	0	-7	-5	-4		
	F1 males	0	-6	-7	-8		
	F0 females	0	-2	6	-2		
	F1 females	0	2	2	-2		
	Relative weight, stud	y termination					
	F0 males	0	-7	-7	0		
	F1 males	0	-7	-7	-7		
	F0 females	0	-6	0	-6		
	F1 females	0	-6	-6	-6		
<u>Nagao et al. (2000)</u>	Spleen weight (perce	nt change compo	ared to contro	1)			
Rat (Sprague-Dawley);	mg/kg-day	0	20	100	500		
25 sex/generation/group	Absolute weight						
0, 20, 100, 500 mg/kg-day	F0 males	0	8	4	-1		
Gavage	F1 males	0	-6	-3	-12*		
Multigenerational study	F0 females	0	-1	1	-1		
F0 males and females: Exposure for	F1 females	0	-4	6	1		
12 weeks prior to mating, 2 weeks cohabitation, and until necropsy at	Relative weight						
23 weeks of age (males) or until	F0 males	0	14	7	7		
postpartum day 22 (females); F1	F1 males	0	0	7	0		

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design	Results						
animals were exposed from weaning	F0 females	0		0	5		0
until necropsy at PND 22	F1 females	0		-5	5		5
Thymus weights ^a							
<u>NTP (1997b)</u>	Thymus weight (perce	ent change co	ompare	d to cont	rol)		
Rat (F344); 15 males/group	mg/kg-day	0		20	200	2	,200
0, 300, 2,800, 25,000 ppm	absolute weight	0		6	-2	-14	
0, 20, 200, 2,200 mg/kg-day ^b	relative weight	0		6	0		23*
Diet							
10 weeks							
<u>NTP (1997b)</u>	Thymus weight (perce	ent change co	ompare	d to cont	rol)		
Rat (F344); 15 males/group	mg/kg-day	0	30	60	180	550	ND
0, 300, 900, 2,800, 8,300,	absolute weight	0	5	52	3	12	-27
25,000 ppm 0, 30, 60, 180, 550, "high" mg/kg-day ^b	relative weight	0	1	46	6	12	10
Diet							
26 weeks							
<u>Tyl et al. (2004)</u>	Thymus weight (perce	ent change co	ompare	ed to conti	rol)		
Rat (CD); 30 F0 and F1 parental	mg/kg-day	0		50	250		750
rats/sex/group; assessed in 54–86 male offspring/group and	Absolute weight						
43–87 female offspring/group	F1 male	0		7	1		-17*
(≥3 sex/litter/group if possible)	F2 male	0		-3	-5		-14*
0, 750, 3,750, 11,250 ppm							
0, 50, 250, 750 mg/kg-day ^b	F1 female	0		2	-3		-22*
Diet							
Multigenerational study	F2 female	0		-3	-5		-15*
Exposure 10 weeks prior to mating	Relative weight						
and through mating, gestation, and lactation (females); or for 21 days after mating (males).	F1 male	0		6	0		2
	F2 male	0		-2	-6		-2
	F1 female	0		0	-2		-2
	F2 female	0		-5	-8		-4
	Note: Thymus weights There were no signific offspring.				-		

Reference and study design	Results Thymus weight (percent change compared to control)						
<u>Nagao et al. (2000)</u>							
Rat (Sprague-Dawley); 25 sex/generation/group	mg/kg-day	0	20	100	500		
	Absolute weight						
0, 20, 100, 500 mg/kg-day	F0 males	0	-12	-15	-10		
Gavage	F1 males	0	-4	-18	-12		
Multigenerational study	F0 females	0	-10	2	-6		
F0 males and females: Exposure for	F1 females	0	5	-13	13		
12 weeks prior to mating, 2 weeks cohabitation, and until necropsy at	Relative weight						
23 weeks of age (males) or PND 22	F0 males	0	-9	-14	-3		
(females); F1 animals: Exposure from weaning until necropsy at	F1 males	0	0	-12	0		
PND 22	F0 females	0	-9	2	-7		
	F1 females	0	5	-14	13		
<u>Aso et al. (2005)</u>	Thymus weight, PND 2	21 (percent cha	nge compared	l to control)			
Crj:CD(SD)IG rats,	mg/kg-day	0	100	200	400		
24 rats/sex/generation/group; assessed in 1 male/litter in F1 and F2	Absolute weight						
offspring	F1 male	0	6	5	6		
0, 100, 200, 400 mg/kg-day	F2 male	0	-1	3	-8		
Gavage	Relative weight						
Multigenerational study	F1 male	0	4	5	9		
F0 and F1 exposed for 4 weeks prior to mating, through mating for 10 weeks, and until weaning of offspring (females) or necropsy (males).	F2 male	0	4	2	-2		
Other changes							
<u>Piersma et al. (2000)</u>	Histopathological effe	cts in the splee	en at GD 21				
Rat (Harlan Cpb-WU); 10 females/group	Dose related increase in the extent of extramedullary hematopoiesis (data presented graphically). The severity of the effect was reportedly increased. The effect was classified as normal (0), minimal (1), slight (2), moderate (3), marked (4), or severe (5). It was also noted in the study report that, "pregnant controls showed elevated extramedullary hematopoiesis compared to nonpregnant females (quantitative data not reported), which was further increased after exposure in all dose groups."						
0, 270, 350, 450, 580, 750, 970, 1,250, 1,600, 2,100 mg/kg-day							
Gavage							
GDs 6-15 or 6-20							

Reference and study design	n Results							
BIBRA (1978)	Percent incidence							
Rat (Wistar); 27/sex/group or 45/sex/group (control); interim sacrifices of 9 controls/sex/group	mg/kg-day (M)	0	151	381	960			
	Hemorrhage in medulla/congested; thymus							
and 6 treated rats/sex/group at 2 and 6 weeks	6 weeks	22	NE	NE	0			
0, 2,000, 5,000, 12,000 ppm	14 weeks	0	NE	NE	0			
0, 151, 381, 960 mg/kg-day (males) ^b ; 0, 171, 422, 1,069 mg/kg-day	Atrophy of medullas; thymus							
(females) ^b	14 weeks	0	NE	NE	0			
Diet	Hemorrhage/conges	ted; lymph node	s					
14 weeks	14 weeks	7	NE	NE	7			
	mg/kg-day (F)	0	171	422	1,069			
	Hemorrhage in medulla/congested; thymus							
	6 weeks	22	NE	NE	0			
	14 weeks	4	NE	NE	7			
	Atrophy of medulla; thymus							
	14 weeks	4	NE	NE	0			
	Hemorrhage/congested; lymph nodes							
	14 weeks	4	NE	NE	7			
	Note: It is unclear based on the study report if the spleen was examined histopathologically. However, no effects were reported.							
NTP (1997b)	Spleen and thymus w							
Rat (F344); 15 males/group	effects reported in cc reported).	ontrol or high-dos	trol or high-dose animals (quantitative data not					
0, 300, 2,800, 25,000 ppm 0, 20, 200, 2,200 mg/kg-day ^b								
Diet								
10 weeks								
NTP (1997b)	Spleen and thymus w							
Rat (F344); 15 males/group	effects reported in control or high-dose animals (quantitative da reported).							
0, 300, 900, 2,800, 8,300, 25,000 ppm 0, 30, 60, 180, 550, "high" mg/kg-day ^b								
Diet								
26 weeks								

Reference and study design	Results					
<u>NTP (1997b)</u>	Percent incidence					
Rat (F344), 60/sex/group; assessed	mg/kg-day (M)	0	120	240	500	
in 10 rats/sex/group at 15-month interim sacrifice and 50	15 months					
rats/sex/group at study termination 0, 3,000, 6,000, 12,000 ppm (males); 0, 6,000, 12,000, 24,000 ppm (females) 0, 120, 240, 500 mg/kg-day (males) ^b ; 0 300, 600, 1,200 mg/kg-day	lymph node: deep cervical; hemorrhage	50	NE	0	0	
	lymph node: mediastinal; hemorrhage	100	NE	100	100	
(females) ^b Diet 2 years	lymph node: mandibular; hemorrhage	20	0	10	0	
	lymph node: mesenteric; hemorrhage	0	0	20	0	
	spleen: hematopoietic cell proliferation	20	0	0	10	
	spleen: pigmentation; hemosiderin	100	100	100	70	
	2 years					
	bone marrow: hypercellularity	2	8	2	0	
	lymph node: iliac; hemorrhage	4	0	0	0	
	lymph node: mediastinal; hemorrhage	22	23	0	0	
	lymph node: pancreatic; hemorrhage	0	5	0	5	
	lymph node: mandiubular; congestion	2	4	0	0	
	lymph node: mandibular; hemorrhage	8	6	4	12	
	lymph node: mesenteric; hemorrhage	2	6	0	8	
	spleen: hematopoietic cell proliferation	4	16	10	14	

Reference and study design		Results					
	spleen: pigmentation; hemosiderin	28	2	4	12		
	thymus: hemorrhage	2	2	0	0		
	mg/kg-day (F)	0	300	600	1,200		
	15 months						
	lymph node: mediastinal; hemorrhage	NE	100	100	100		
	lymph node: mandibular; hemorrhage	0	0	0	10		
	spleen: hematopoietic cell proliferation	10	30	30	30		
	spleen: pigmentation; hemosiderin	100	100	100	100		
	thymus: hemorrhage	0	11	0	0		
	2 years						
	bone marrow: hypercellularity	2	4	0	2		
	lymph node: mediastinal; hemorrhage	8	9	6	7		
	lymph node: pancreatic; hemorrhage	0	0	6	0		
	lymph node: renal; hemorrhage	0	18	13	0		
	lymph node: mandibular; hemorrhage	10	18	6	10		
	lymph node: mesenteric; hemorrhage	6	6	6	4		
	spleen: hematopoietic cell proliferation	20	24	16	28		
	spleen: pigmentation; hemosiderin	38	40	42	58		
	thymus: hemorrhage	2	0	2	2		

Reference and study design	Results					
Aso et al. (2005) Crj:CD(SD)IG rats, 24 rats/sex/generation/group; assessed in 1 male/litter in F1 and F2 offspring	Spleen and thymus were examined histopathologically. No significant treatment-related effects observed in F0 or F1 parental males or females (data not provided).					
0, 100, 200, 400 mg/kg-day						
Gavage						
Multigenerational study						
F0 and F1 exposed for 4 weeks prior to mating, through mating for 10 weeks, and until weaning of offspring (females) or necropsy (males).						
Monsanto (1983)	Percent incidence					
Rat (Sprague-Dawley);	mg/kg-day	0	51	218	789	
25/sex/group; interim sacrifice of 10 rats/sex/group at 7 weeks	Males					
0, 51, 218, 789 mg/m ³	sinusoidal congestion, 6 weeks	10	0	0	0	
Inhalation (whole-body)						
13 weeks	yellow-brown pigment, 13 weeks	0	0	0	0	
	Females					
	sinusoidal congestion, 6 weeks	20	0	0	0	
	yellow-brown pigment, 13 weeks	0	0	0	7	
<u>NTP (1997a)</u>	Percent incidence					
Rat (F344); 50–60/sex/group;	Ad libitum and weight matched					
interim sacrifice of 10 rats/sex/group at 15 months						
0, 12,000 ppm (males); 0,	mg/kg-day (M)	0 (ad libitum)	0 (weight- matched) 500			
24,000 ppm (females) 0, 500 mg/kg-day (males) ^b ; 0, 1,200 mg/kg-day (females) ^b	lymph node: deep cervical; hemorrhage, 15 months	50	NE		0	
Diet						
4 exposure protocols: ad libitum feeding, weight-matched controls, restricted feed (2 years), and restricted feed (lifetime)	lymph node: mediastinal; hemorrhage, 15 months	100	NE		100	
Diet	lymph node:	20	20)	0	

Reference and study design 2 years to lifetime	Results					
	mandibular; hemorrhage, 15 months					
	lymph node: mesenteric; hemorrhage, 15 months	0	0	0		
	spleen: hematopoietic cell proliferation, 15 months	20	0	10		
	spleen: pigmentation; hemosiderin, 15 months	100	90	70		
	bone marrow: hypercellularity, 2 years	2	4	0		
	lymph node: iliac; hemorrhage, 2 years	4	0	0		
	lymph node: mediastinal; hemorrhage, 2 years	22	29	0		
	lymph node: pancreatic; hemorrhage, 2 years	0	0	5		
	lymph node: mandiubular; congestion, 2 years	2	0	0		
	lymph node: mandibular; hemorrhage, 2 years	8	17	12		
	lymph node: mesenteric; hemorrhage, 2 years	2	6	8		
	spleen: hematopoietic cell proliferation, 2 years	4	12	14		
	spleen: pigmentation; hemosiderin, 2 years	28	4	12		
	thymus: hemorrhage, 2 years	2	0	0		
	mg/kg-day (F)	0 (ad libitum)	0 (weight- matched)	1,200		

Reference and study design	Results					
	lymph node: mediastinal; hemorrhage, 15 months	NE	٢	NE	100	
	lymph node: mandibular; hemorrhage, 15 months	0		0	10	
	spleen: hematopoietic cell proliferation, 15 months	10	1	10	30	
	spleen: pigmentation; hemosiderin, 15 months	100	1	00	100	
	bone marrow: hypercellularity, 2 years	2		4	2	
	lymph node: mediastinal; hemorrhage, 2 years	8	2	23	7	
	lymph node: renal; hemorrhage, 2 years	0		8	0	
	lymph node: mandibular; hemorrhage, 2 years	10	1	16	10	
	lymph node: mesenteric; hemorrhage, 2 years	6		4	4	
	spleen: hematopoietic cell proliferation, 2 years	20		8	28	
	spleen: pigmentation; hemosiderin, 2 years	38	2	26	58	
	thymus: hemorrhage, 2 years	2		0	2	
	Feed-restricted, 2 years of	or lifetime				
	mg/kg-day (M)	0 (2 years)	500 (2 years)	0 (lifetime)	500 (lifetime	
	lymph node: mediastinal; hemorrhage, 15 months	100	NE	NA	NA	

Reference and study design	Results					
	lymph node: mandibular; hemorrhage, 15 months	10	10	NA	NA	
	spleen: pigmentation; hemosiderin, 15 months	0	10	NA	NA	
	thymus: hemorrhage, 15 months	10	10	NA	NA	
	bone marrow: hypercellularity, 2 years	4	4	2	4	
	lymph node: deep cervical; hemorrhage, 2 years	0	0	4	0	
	lymph node: iliac; hemorrhage, 2 years	0	0	0	4	
	lymph node: mediastinal; hemorrhage, 2 years	8	11	0	9	
	lymph node: pancreatic; hemorrhage, 2 years	0	5	4	0	
	lymph node: mandibular; hemorrhage, 2 years	10	15	12	10	
	lymph node: mesenteric; hemorrhage, 2 years	4	2	0	4	
	spleen: hematopoietic cell proliferation, 2 years	10	8	16	8	
	spleen: pigmentation; hemosiderin, 2 years	12	8	16	6	
	mg/kg-day (F)	0 (2 years)	1,200 (2 years)	0 (lifetime)	1,200 (lifetime)	
	lymph node: mediastinal; hemorrhage, 15 months	100	0	NA	NA	
	lymph node: mandibular; hemorrhage, 15 months	0	30	NA	NA	

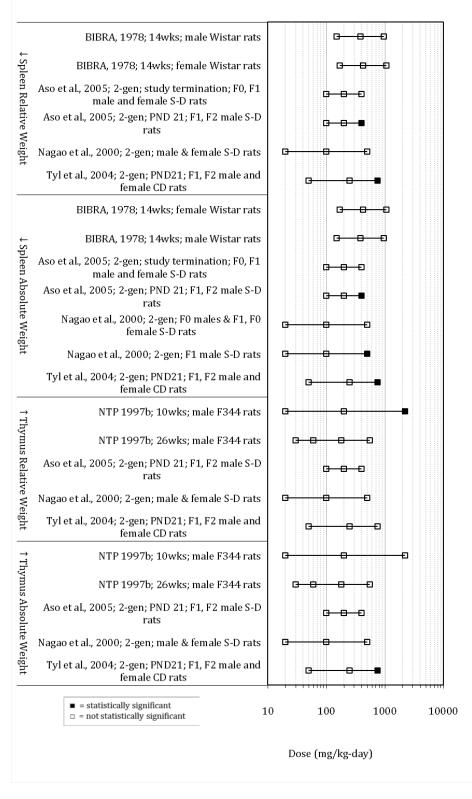
This document is a draft for review purposes only and does not constitute Agency policy. 3-172

Reference and study design	Results					
	lymph node: mesenteric; hemorrhage, 15 months	0	10	NA	NA	
	spleen: hematopoietic cell proliferation, 15 months	30	10	NA	NA	
	spleen: pigmentation; hemosiderin, 15 months	90	90	NA	NA	
	bone marrow: hypercellularity, 2 years	0	2	4	2	
	lymph node: mediastinal; hemorrhage, 2 years	10	13	5	6	
	lymph node: renal; hemorrhage, 2 years	10	13	0	0	
	lymph node: mandibular; hemorrhage, 2 years	10	14	12	14	
	lymph node: mesenteric; hemorrhage, 2 years	4	4	4	4	
	spleen: hematopoietic cell proliferation, 2 years	26	16	26	16	
	spleen: pigmentation; hemosiderin, 2 years	42	36	36	48	
	thymus: atrophy, 2 years	0	2	0	0	
	thymus: hemorrhage, 2 years	0	0	2	0	
<u>NTP (1982)</u>	Percent incidence					
F344 rats; 50/sex/group	mg/kg-day (F)	0	55	50	1,100	
0, 6,000, 12,000 ppm 0, 474, 947 mg/kg-day (males) ^b ; 0,	bone marrow: hypoplasia	0	2	1	0	
550, 1,100 mg/kg-day (females) ^b Diet	spleen: pigmentation; NOS	0	2	2	0	

Reference and study design	Results					
28 weeks (males) or 103 weeks	spleen: hemosiderosis	6	4		8	
(females)	lymph node: mediastinal; hemorrhage	0	0		2	
	lymph node: pancreatic; hemorrhage	0	0		2	
	lymph node: mesenteric; hemorrhage	0	0		4	
	thymus: hemorrhage	0	4		4	
	thymus: atrophy	0	4		7	
	Note: Males were not ex	amined histor	pathologically	/.		
NTP (1982)	Percent incidence					
B6C3F ₁ mice; 50/sex/group	mg/kg-day (M)	0	47	4	947	
0, 6,000, 12,000 ppm 0, 474, 947 mg/kg-day (males) ^b ; 0, 550, 1,100 mg/kg-day (females) ^b	bone marrow: hyperplasia; hematopoietic	0	2		0	
Diet 103 weeks	lymph node: mesenteric; hemorrhage	0	4		14	
	thymus: atrophy	0	0		5	
	mg/kg-day (F)	0	55	0	1,100	
	bone marrow: hyperplasia; hematopoietic	6	2		2	
	spleen: congestion; nos	0	0		2	
	spleen: hyperplasia; hematopoietic	4	2		0	
	thymus: atrophy	5	0		0	
BIBRA (1978)	Percent change compare	d to control				
Rat (Wistar); 27/sex/group or	mg/kg-day (F)	0	171	422	1,069	
45/sex/group (control); interim sacrifices of 9 controls/sex/group and 6 treated rats/sex/group at	hemoglobin concentration	0	0	2	4	
2 and 6 weeks 0, 2,000, 5,000, 12,000 ppm	hematocrit (packed cell volume)	0	0	2	0	
D, 151, 381, 960 mg/kg-day (males) ^b D, 171, 422, 1,069 mg/kg-day	spleen histopathology	No lesions w	ere noted in t	the spleen		
(females) ^b	mg/kg-day (M)	0	151	381	960	

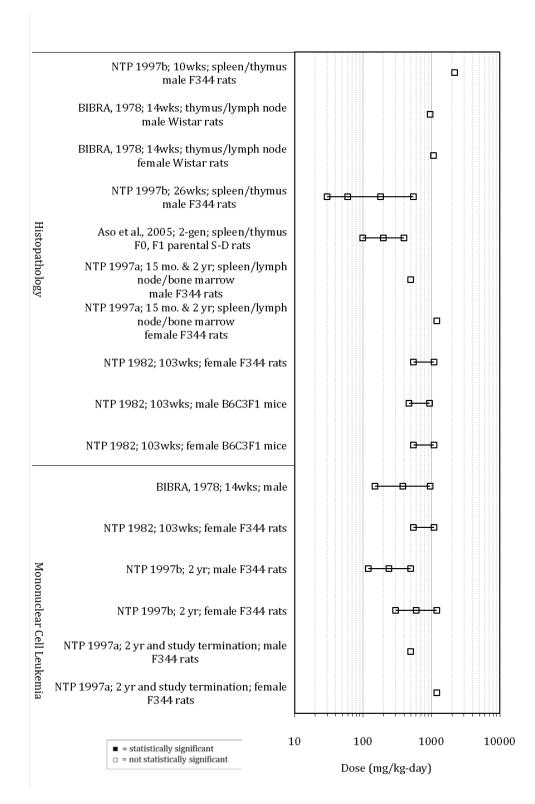
Reference and study design	Results					
Diet	hemoglobin	0	2	2	-6	
14 weeks	concentration					
	hematocrit (packed cell volume)	0	0	0	-9*	
	spleen histopathology	No les	sions were no	oted in the	spleen	
Mononuclear cell leukemia						
<u>NTP (1982)</u>	Percent incidence					
B6C3F ₁ mice; 50/sex/group	mg/kg-day (M)	0	47	4	947	
0, 6,000, 12,000 ppm 0, 474, 947 mg/kg-day (males) ^b ; 0,	leukemia, multiple organs	2	0		0	
550, 1,100 mg/kg-day (females) ^b	mg/kg-day (F)	0	55	0	1,100	
Diet						
103 weeks	leukemia, liver	0	0		2	
<u>NTP (1982)</u>	Percent incidence					
F344 rats; 50/sex/group	mg/kg-day (M)	0	47	4	947	
0, 6,000, 12,000 ppm 0, 474, 947 mg/kg-day (males) ^b ; 0,	mononuclear cell leukemia	NE	N	E	NE	
550, 1,100 mg/kg-day (females) ^b	mg/kg-day (F)	0	55	0	1,100	
Diet 28 weeks (males) or 103 weeks	mononuclear cell leukemia, total	14	14	1	36	
(females)	multiple organs	12	12	2	34	
	spleen	0	2		2	
	liver	2	0		0	
<u>NTP (1997b)</u>	Percent incidence at study	termination	1			
F344 rats; 60/sex/group; assessed in	mg/kg-day (M)	0	120	240	500	
10 rats/sex/group at 15-month interim sacrifice and 50 rats/sex/group at study	mononuclear cell leukemia	62	56	68	60	
termination	mg/kg-day (F)	0	300	600	1,200	
0, 3,000, 6,000, 12,000 ppm (males);						
0, 6,000, 12,000, 24,000 ppm (females) 0, 120, 240, 500 mg/kg-day (males) ^b ; 0 300, 600, 1,200 mg/kg-day (females) ^b	mononuclear cell leukemia	42	40	42	38	
Diet						
2 years						

Reference and study design		Results					
<u>NTP (1997a)</u>	Percent incidence at st	Percent incidence at study termination					
F344 rats; 50–60/sex/group; interim	Ad libitum and weight-matched						
sacrifice of 10 rats/sex/group at 15 months 0, 12,000 ppm (males); 0,	mg/kg-day (M)	0 (ad libitum)	0 (weight- matched)	500			
24,000 ppm (females) 0, 500 mg/kg-day (males) ^b ; 0, 1,200 mg/kg-day (females) ^b	mononuclear cell leukemia	62	30	60			
Diet 4 exposure protocols: ad libitum feeding, weight-matched controls, restricted feed (2 years), and restricted feed (lifetime) 2 years to lifetime	mg/kg-day (F)	0 (ad libitum)	0 (weight- matched)	1,200			
	mononuclear cell leukemia	42	26	38			
	Feed restricted 2-year exposure						
	mg/kg-day (M)	0		500			
	mononuclear cell leukemia	42		54			
	mg/kg-day (F)	0		1,200			
	mononuclear cell leukemia	32		36			
	Feed restricted lifetim	e exposure					
	mg/kg-day (M)	0		500			
	mononuclear cell leukemia	78		72			
	mg/kg-day (F)	0		1,200			
	mononuclear cell leukemia	58		78			


*Statistically significant (p < 0.05) relative to controls based on statistics performed by the study authors. ^aPercent change compared to control calculated as $100 \times ([treated value - control value] \div control value).$

7

^bCalculated as follows: [% in diet × intake food/water (mg)] ÷ body weight (kg) = mg/kg-day.


NE = not examined; NOS = not otherwise specified

Preliminary Materials for the IRIS Toxicological Review of Butyl Benzyl Phthalate

1 2 3

Figure 3-18. Exposure-response array of hematopoietic effects following oral exposure to BBP: spleen and thymus weights.

1 2 3

Figure 3-19. Exposure-response array of hematopoietic histopathological effects following oral exposure to BBP.

1 3.3.8. Thyroid Effects

2 3

Table 3-30. Evidence pertaining to thyroid effects in animals following oral exposure to BBP

Reference and study design	Results ^a				
Thyroid weight					
<u>Aso et al. (2005)</u>	Thyroid weight (perce	nt change com	pared to cont	rol)	
Rat (Crj:CD(SD)IGS);	mg/kg-day	0	100	200	400
24 rats/sex/generation/group	Absolute weight				
0, 100, 200, 400 mg/kg-day	F0 males	0	-6	5	9
Gavage	F1 males	0	0	3	21
Multigenerational study	F0 females	0	-4	-6	10
	F1 females	0	5	-2	-1
to mating, through mating for 10 weeks, and until weaning of	Relative weight				
offspring (females) or necropsy	F0 males	0	-10	0	10
(males)	F1 males	0	0	2	24*
	F0 females	0	-4	-12	9
	F1 females	0	0	-8	-3
<u>Nagao et al. (2000)</u>	Thyroid weight (perce	nt change com	pared to cont	rol)	
Rat (Sprague-Dawley);	mg/kg-day	0	20	100	500
20-25 rats/sex/generation/group	Absolute weight				
0, 20, 100, 500 mg/kg-day					
Diet	F0 males	0	2	7	0
Multigenerational study	F1 males	0	3	5	7
F0 males and females: Exposure for	F0 females	0	12	1	8
12 weeks prior to mating, 2 weeks cohabitation, and until necropsy at	F1 females	0	-9	-2	4
23 weeks of age (males) or PND 22	Relative weight				
(females); F1 animals: Exposure from weaning until necropsy at	F0 males	0	3	6	9
PND 22	F1 males	0	-3	3	11*
	F0 females	0	14	0	7
	F1 females	0	-10	-2	4

Reference and study design		Res	sults ^ª			
BIBRA (1978)	Thyroid weight (percent change compared to control)					
Rat (Wistar); 27/sex/group or	mg/kg-day (M)	0	151	381	960	
45/sex/group (control); interim sacrifices of 9 controls/sex/group	Absolute weight					
and 6 treated rats/sex/group at	2 weeks	0	6	8	4	
2 and 6 weeks	6 weeks	0	20*	-18	-13	
0, 2,000, 5,000, 12,000 ppm	14 weeks	0	4	3	4	
0, 151, 381, 960 mg/kg-day (males) ^b 0, 171, 422, 1,069 mg/kg-day	Relative weight					
(females) ^b	2 weeks	0	10	8	10	
Diet	6 weeks	0	26*	-11	-2	
14 weeks	14 weeks	0	14	14	17	
	mg/kg-day (F)	0	171	422	1,069	
	Absolute weight					
	2 weeks	0	19	29*	35*	
	6 weeks	0	-18*	-15	-13	
	14 weeks	0	-1	-3	1	
	Relative weight					
	2 weeks	0	10	28*	43*	
	6 weeks	0	-19*	-17	-8	
	14 weeks	0	-2	-2	5	
<u>Tyl et al. (2004)</u>	No significant treatmer				-	
Rat (CD); 30 F0 and F1 parental rats/sex/group	weight were reported i provided).	n F0 or F1 par	ental males oi	females (da	ta not	
0, 750, 3,750, 11,250 ppm 0, 50, 250, 750 mg/kg-day ^b						
Diet						
Multigenerational study						
Exposure 10 weeks prior to mating and through mating, gestation, and lactation (females) or through 21 days after end of mating (males)						

Reference and study design	Results ^a						
Thyroid hormones							
Nagao et al. (2000) Rat (Sprague-Dawley);	Percent change compared to control at study termination (F0 and F1 parental animals) or PND 22 (F1 weanling rats)						
20–25 parental rats/sex/generation/group;	mg/kg-day (M)	0	20	100	500		
37–48 F1 offspring/group (from 18–24 litters/group)	TSH F0, parental	0	-9	-12*	-10		
0, 20, 100, 500 mg/kg-day	T3 F0, parental	0	0	0	-11*		
Gavage	T4 F0, parental	0	0	-4	-21*		
Multigenerational study	TSH F1, parental	0	12	1	5		
F0 males and females: Exposure for	T3 F1, parental	0	14	14	14		
12 weeks prior to mating, 2 weeks cohabitation, and until necropsy at	T4 F1, parental	0	10	-1	-21*		
23 weeks of age (males) or PND 22	TSH F1, weanling	0	-1	-15*	-19*		
(females) F1 animals: Exposure from weaning until necropsy at PND 22	T3 F1, weanling	0	23*	8	-8		
	T4 F1, weanling	0	4	2	2		
	mg/kg-day (F)	0	20	100	500		
	TSH F0, parental	0	12*	1	6		
	T3 F0, parental	0	13	13	13		
	T4 F0, parental	0	-5	-16	-21*		
	TSH F1, parental	0	-5	-7	-10		
	T3 F1, parental	0	0	0	0		
	T4 f1, parental	0	12	8	10		
	TSH F1, weanling	0	3	0	9		
	T3 F1, weanling	0	0	-17*	-33*		
	T4 F1, weanling	0	4	4	9		
	Note: TSH, T4, and T3 f	or all other life	estages exami	ned were not	t affected.		
<u>NTP (1997b)</u>	Percent change						
Rat (F344); 60/sex/group; assessed	mg/kg-day (M)	0	120	240	500		
in 10 rats/sex/group at 6, 8, and/or 15 months and at study termination	тѕн						
0, 3,000, 6,000, 12,000 ppm (males); 0, 6,000, 12,000, 24,000 ppm (females)	6 months	0	167	100	33		
	8 months	0	200*	100	100		
0, 120, 240, 500 mg/kg-day (males) ^b ; 0 300, 600,	15 months	0	0	100*	0		
1,200 mg/kg-day (females) ^b	study termination	0	-50	-50	0		
Diet	ТЗ						

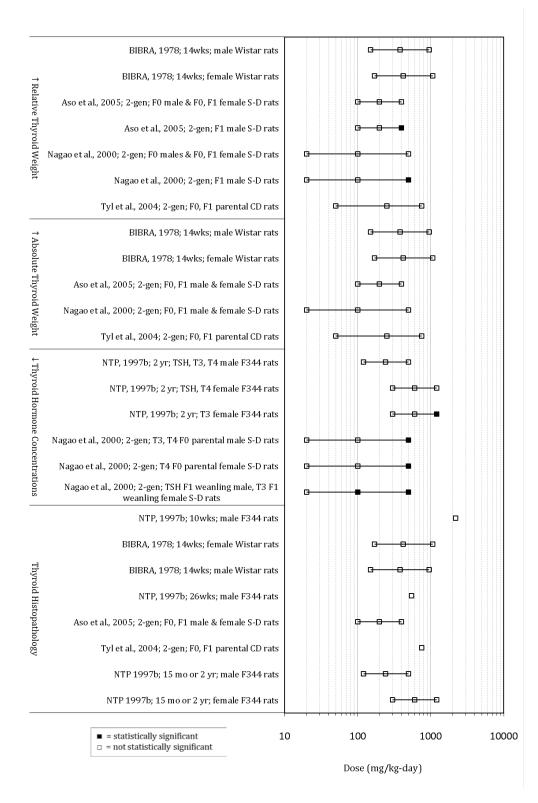
This document is a draft for review purposes only and does not constitute Agency policy.3-181DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results ^a					
2 years						
	6 months	0	25	3	-4	
	15 months	0	-1	7	1	
	study termination	0	-32	3	0	
	Т4					
	6 months	0	0	0	0	
	15 months	0	0	25	-25	
	study termination	0	-25	0	0	
	mg/kg-day (F)	0	300	600	1,200	
	TSH					
	6 months	_	-50	0	-100	
	15 months	-	0	100	100	
	study termination	-	0	0	0	
	тз					
	6 months	_	15	-5	-30*	
	15 months	-	-1	-7	-22*	
	study termination	-	-22	-25	-36*	
	Т4					
	6 months	_	0	0	-25	
	15 months	-	0	0	-33*	
	study termination	_	0	0	0	
Thyroid histopathology	L					
<u>NTP (1997b)</u>	Percent incidence					
Rat (F344); 60/sex/group; interim	mg/kg-day (M)	0	120	240	500	
sacrifice of 10 rats/sex/group at 5 months	Ultimobranchial cyst					
0, 3,000, 6,000, 12,000 ppm (males);	15 months	0	0	10	20	
0, 6,000, 12,000, 24,000 ppm	2 years	4	4	2	4	
(females) 0, 120, 240, 500 mg/kg-day	C-cell, hyperplasia					
(males) ^b ; 0 300, 600, 1,200 mg/kg-day (females) ^b	15 months	0	0	10	0	
Diet	2 years	8	20	24	14	
2 years	Follicle, cyst					
	15 months	0	0	10	10	
	2 years	4	4	0	8	

This document is a draft for review purposes only and does not constitute Agency policy.3-182DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results ^a					
	mg/kg-day (F)	0	300	600	1,200	
	Ultimobranchial cyst					
	15 months	10	30	0	0	
	2 years	4	2	2	0	
	C-cell, hyperplasia					
	15 months	0	10	10	0	
	2 years	12	12	14	6	
	Follicle, cyst					
	2 years	0	2	2	0	
	Follicular cell, hyperp	lasia				
	2 years	0	0	0	2	
Rat (F344); 15 males/group 0, 300, 2,800, 25,000 ppm 0, 20, 200, 2,200 mg/kg-day ^b	dose animals (quantit	ative data not r	eported).		-	
Diet						
10 weeks						
<u>NTP (1997b)</u>	No significant effects	-		ported in cor	trol or high	
Rat (F344); 15 males/group	dose animals (quantit	ative data not r	eported).			
0, 300, 900, 2,800, 8,300, 25,000 ppm 0, 30, 60, 180, 550, "high" mg/kg-day ^b						
Diet						
26 weeks						
<u>Aso et al. (2005)</u>	No significant treatme				ogy were	
Rat (Crj:CD(SD)IGS); 24 rats/sex/generation/group	reported by the study	authors in F0 o	r F1 parental	animals.		
0, 100, 200, 400 mg/kg-day						
Gavage						
Multigenerational study						
F0 and F1 exposed for 4 weeks prior to mating, through mating for 10 weeks, and until weaning of offspring (females) or necropsy (males)						

Reference and study design	Results ^a
<u>Tyl et al. (2004)</u>	No significant treatment-related effects on thyroid histopathology were
Rat (CD); 30 F0 and F1 parental rats/sex/group	reported by the study authors in control or high-dose parental males or females (data not provided).
0, 750, 3,750, 11,250 ppm 0, 50, 250, 750 mg/kg-day ^b	
Diet	
Multigenerational study	
Exposure 10 weeks prior to mating and through mating, gestation, and lactation (females) or through 21 days after end of mating (males)	
<u>BIBRA (1978)</u>	No significant treatment-related effects on thyroid histopathology were
Rat (Wistar); 27/sex/group or 45/sex/group (control); interim sacrifices of 9 controls/sex/group and 6 treated rats/sex/group at 2 and 6 weeks	reported by the study authors for males or females.
0, 2,000, 5,000, 12,000 ppm 0, 151, 381, 960 mg/kg-day (males) ^b 0, 171, 422, 1,069 mg/kg-day (females) ^b	
Diet	
14 weeks	


*Statistically significant (*p* < 0.05) relative to controls based on statistics performed by the study authors.

^aPercent change compared to control calculated as 100 × ((treated value – control value) ÷ control value).

^b Calculated as follows: [% in diet × intake food/water (mg)] ÷ body weight (kg) = mg/kg-day.

5

Preliminary Materials for the IRIS Toxicological Review of Butyl Benzyl Phthalate

1 2

3

Figure 3-20. Exposure-response array of thyroid effects following oral exposure to BBP.

1 3.3.9. Immune Effects

2 3

Table 3-31. Evidence pertaining to immune effects in animals following oralexposure to BBP

Reference and study design	Results						
BIBRA (1978)	Leukocyte count (percen	nt change com	pared to co	ntrol)			
Rat (Wistar); 27/sex/group or	mg/kg-day	0	151	381	960		
45/sex/group (control); interim sacrifices of 9 controls/sex/group	male	0	-10	-10	-4		
and 6 treated rats/sex/group at 2 and 6 weeks	mg/kg-day	0	171	422	1,069		
0, 2,000, 5,000, 12,000 ppm 0, 151, 381, 960 mg/kg-day (males) 0, 171, 422, 1,069 mg/kg-day (females)	female	0	-16	-5	-8		
Diet							
14 weeks							
<u>Butala et al. (2004)</u>	Percent change compare	d to control					
B6C3F ₁ mice, 10 female mice/dose	Doses (%)	C)	1	.00		
0, 100% BBP	serum IgE	C)	6	5.1		
10 applications of 50 μL BBP over 2 weeks then challenged with BBP 7 days later. Animals sacrificed 7 days after challenge.	IL-4 from Con A- stimulated lymph node cells	C)	-	52		
	IL-13 from Con A- stimulated lymph node cells	C)	:	36		
	IL-4 m-RNA from stimulated lymph nodes	C)	2	66		
	IL-4 m-RNA from stimulated lymph nodes				hicle control background		
Dearman et al. (2009)	Percent change compare	d to control					
	Doses (%) 0	5	10	50	100		
BALB/c mice, 10 mice/dose	Antibodies						
	<i>IgE</i> : No effect (data not r	eported)					

Reference and study design		Results						
0, 5, 10, 50, or 100% BBP								
Dermal	lgG:	0	-9	12	-9	29		
15 applications of 100 μL at site of ovalbumin injection (21-day treatment period consisting of 5 consecutive days of treatment followed by 2 days of rest)								
Ovalbumin s.c. injections: initial injection of 1 μ g on study day 0; follow-up injections of 0.1 μ g on study day 10 and 15								

1 2 3

Con A = Concanavalin A; IL = interleukin; m-RNA = messenger ribonucleic acid

1 3.3.10. Neurological Effects

2 3

Table 3-32. Evidence pertaining to neurological effects in animals followingoral exposure to BBP

Reference and study design	Results
Zhuang et al. (2008)	Neurobehavioral effects in F1 offspring
Rat (Wistar); 20 females/dose; neurobehavioral development was assessed in 15–45 pups/sex/dose 0, 0.05, 0.25, 0.75% 0, 50, 250, 750 mg/kg-day (dams) Diet Dams: PNW 4 through mating, gestation, and lactation; F1 pups: GD 0–PNW 6	In F1 male rats, the following changes were observed: statistically significantly impaired cliff avoidance on PND 7 in high-dose rats (score of 41 vs 61 points in controls) and statistically significantly depressed air righting on PND 14 in all exposure groups (~30–40% lower than controls ^a based on visual inspection of data shown graphically). Other statistically significant neurobehavioral differences were also reported in male offspring, including delayed surface righting on PND 3 (mid-dose group only), increased locomotion in the open field test (low and high doses) and delayed escape latency in the Morris water maze test (low dose only, on 5 th day only). No significant neurobehavioral effects were observed in F1 females.
<u>Betz et al. (2013)</u>	Fear (freezing) during cue phase of fear conditioning
Rat (Sprague-Dawley); male (NR)	Significant decreased expression of fear during Cue phase with 10 ppm exposure.
0, 5, 10 ppm (equivalent to 0, 2, 4 mg/kg-day as indicated by study authors)	Fear (freezing) during inter-trial interval phase of fear conditioning
Drinking water	Significant decrease in expression of fear during inter-trial interval phase with 10 ppm exposure.
Daily for 15 weeks (PND 40-140)	Open field activity in inner portion
	No significant change.
	Open field activity in outer portion
	No significant change.
	Open field grooming activity
	No significant change.
	Open field rearing activity
	No significant change.
	Social test (contact behavior)
	No significant change.
	Social test (non-contact behavior)
	Increased sniffing and approaching (non-contact behavior) with both treatment.
	Social test (self-directed behavior)
	No significant change.

1 3.3.11. Other Toxicity Effects

2 3

Table 3-33. Evidence pertaining to other toxicity effects in animals following oral exposure to BBP

Reference and study design		Re	esults		
Body-weight effects ^a					
BIBRA (1978)	Body weight (percent cho	ange compa	red to control	1)	
Rat (Wistar)	mg/kg-day (M)	0	151	381	960
27/sex/group or 45/sex/group	day 14	0	-5	-2	-5
(control); interim sacrifice of 9 controls/sex/group and 6 treated	day 39	0	-4	-8*	-11*
rats/sex/group at 2 and 6 weeks	day 98	0	-8*	-8*	-7*
0, 2,000, 5,000, 12,000 ppm					
0, 151, 381, 960 mg/kg-day (males) ^b ; 0, 171, 422,	mg/kg-day (F)	0	171	422	1,069
1,069 mg/kg-day (females) ^b	day 14	0	2	-1	-8*
Diet	day 39	0	2	2	-3
14 weeks	day 98	0	0	-3	-5*
<u>Nagao et al. (2000)</u>	Percent change compared	d to control			
Rat (Sprague-Dawley);	mg/kg-day (M)	0	20	100	500
20–25 parental rats/sex/ generation/group	F0, parental	0	-2	0	-7*
(15–24 litters/generation/group)	PND 0, F1	0	0	-6*	-7*
0, 20, 100, 500 mg/kg-day	PND 4, F1	0	3	-5	-6
Gavage	PND 7, F1	0	2	-3	-6
Multigenerational study	PND 14, F1	0	0	-1	-8*
F0 males and females: exposure for	PND 21, F1	0	1	-1	-7*
12 weeks prior to mating, 2 weeks cohabitation, and until necropsy at 23 weeks of age (males) or	PND 22, F1 (weanling terminal body weight)	0	-2	1	-6*
postpartum day (females); F1 animals: exposure from weaning	Body weight gain, PNDs 22–91, F1	0	-3	-7	-9
until necropsy at PND 22 Note: Litters were culled to 8 rats/litter (4/sex, if possible) at	F1, adult (terminal body weight)	0	-4	-7*	-13*
PND 4. At PND 22 (F1) or PND 21	PND 0, F2	0	0	0	-3
(F2), 2 rats/sex/litter were sacrificed	PND 4, F2	0	3	5	0
	PND 7, F2	0	4	5	-2
	PND 14, F2	0	5	4	-5
	PND 21, F2	0	4	3	-8
	mg/kg-day (F)	0	20	100	500

Reference and study design	Results						
	F0, parental	0		-2	-1		1
	PND 0, F1	0		2	-6*		-6*
	PND 4, F1	0		3	-6		-6
	PND 7, F1	0		1	-5		-6
	PND 14, F1	0		1	-3		-8*
	PND 21, F1	0		1	-2		-7*
	PND 22, F1 (terminal weanling body weight)	0		1	-1		-9*
	Body weight gain, PNDs 22–91, F1	0		0	3		2
	F1, adult (terminal body weight)	0		1	1		0
	PND 0, F2	0		2	0		-3
	PND 4, F2	0		4	7		0
	PND 7, F2	0		4	4		-4
	PND 14, F2	0		9	4		-8
	PND 21, F2	0		4	2		-12
<u>NTP (1997b)</u>	Percent change compare	d to cont	rol				
Rat (F344); 15 males/group	mg/kg-day	0	30	60	180	550	ND
0, 300, 900, 2,800, 8,300,	terminal body weight	0	7	10	2	3	-30*
25,000 ppm 0, 30, 60, 180, 550, "high" mg/kg-day ^b	body weight change	0	11	16	4	5	-44*
Diet							
26 weeks							
NTP (1997b)	Percent change compare	d to cont	rol				
Rat (F344); 15 males/group	mg/kg-day	0		20	200		2,200
0, 300, 2,800, 25,000 ppm	terminal body weight	0		0	-1		-29*
0, 20, 200, 2,200 mg/kg-day ^b	body weight change	0		-1	-3		-45*
Diet							
10 weeks							
<u>NTP (1997b)</u>	Body weight (percent ch	ange con	npared	to contro))		
Rat (F344); 60 sex/group; interim	mg/kg-day (M)	0		120	240		500
sacrifice of 10 rats/sex/group at 15 months	at interim sacrifice	0		0	-6*		-9*
0, 3,000, 6,000, 12,000 ppm	at 69 weeks	0		0	-1		-6

This document is a draft for review purposes only and does not constitute Agency policy.3-190DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results						
(males); 0, 6,000, 12,000,	at study termination	0	-2	-4	-6		
24,000 ppm (females) 0, 120, 240, 500 mg/kg-day	mg/kg-day (F)	0	300	600	1,200		
(males) ^b ; 0 300, 600,	at interim sacrifice	0	0	1	-23*		
1,200 mg/kg-day (females) ^b	at 69 weeks	0	-1	-5	-25		
Diet							
2 years	at study termination	0	2	-3	-27		
<u>Tyl et al. (2004)</u>	Body weight (percent che	ange compa	red to control)			
Rat (CD); 30 F0 and F1 parental	mg/kg-day (M)	0	50	250	750		
rats/sex/group	adult F0 at necropsy	0	-3	4	-2		
0, 750, 3,750, 11,250 ppm							
0, 50, 250, 750 mg/kg-day ^b	adult F1 at necropsy	0	1	4	-9*		
Diet	F1 offspring at	0	0	1	-18*		
Multigenerational study	necropsy						
Exposure 10 weeks prior to mating and through mating, gestation, and	F2 offspring at necropsy	0	0	2	-11*		
lactation (females); or for 21 days after mating (males)	mg/kg-day (F)	0	50	250	750		
	adult F0 at necropsy	0	0	0	-4		
	adult, F1 at necropsy	0	1	3	-6*		
	F1 offspring at necropsy	0	2	0	-22*		
	F2 offspring at necropsy	0	3	3	-11*		
	Note: No biologically sign authors for FO parental m			orted by the	study		
Hazleton Laboratories (1958)	Body weight (percent che	ange compa	red to control)			
Rat (Sprague-Dawley);	mg/kg-day (M)	0	4	31	1,551		
10/sex/group	males	0	-	-1	-21*		
0, 0.5, 2.0% (0, 5,000, 20,000 ppm)							
0, 431, 1,551 mg/kg-day (males) ^b ; 0, 490, 1,765 mg/kg-day (females) ^b	mg/kg-day (F)	0	4	90	1,765		
o, 190, 1,709 mg/ ng nay (remaies)	females	0	-	-1	-11		
Diet							
90 days							

Reference and study design	Results							
Aso et al. (2005)	Body weight (percent change compared to control)							
Rat (Crj:CD(SD)IGS);	mg/kg-day (M)	0	100	200	400			
24 rats/sex/generation/group	F0, parental	0	2	4	-1			
0, 100, 200, 400 mg/kg-day								
Gavage	F1, parental	0	0	-2	-4			
Multigenerational study	F1, offspring at PND 21	0	3	0	-2			
F0 and F1 exposed for 4 weeks	F2, offspring at PND 21	0	-4	0	-7			
prior to mating, through mating for 10 weeks, and until weaning of	mg/kg-day (F)	0	100	200	400			
offspring (females) or necropsy	F0, parental	0	0	6	1			
after mating (males)	F1, parental	0	4	6	1			
	Note: The study authors in lowered at PND 0 at 100 m 100 and 400 mg/kg-day in were observed in F1 femal	ig/kg-day a F2 males a	and higher in F and females. N	¹ male offspi No significant	ring and at effects			
<u>Betz et al. (2013)</u>	No significant change in bo	ody weight	reported by t	he study auth	nors.			
Rat (Sprague-Dawley); male (NR)								
0, 5, 10 ppm (equivalent to 0, 2, 4 mg/kg-day as indicated by study authors)								
Drinking water								
Daily for 15 weeks (began PND 40 and ended PND 140)								
<u>Ahmad et al. (2014)</u>	Body weight (percent char	ige compa	red to control,)				
Rat (Albino);	mg/kg-day	0	4	20	100			
PO, female (6/group)	F1 adult male	0	-1	-2*	-4*			
0, 4, 20, 100 mg/kg								
Gavage								
GD 14 to parturition								
Urinary bladder histopathology								
NTP (1997b)	Percent incidence							
Rat (F344); 60 sex/group;	mg/kg-day (M)	0	120	240	500			
10 rats/sex/group sacrificed at 15 mo	transitional epithelium; hyperplasia	0	0	0	4			
0, 3,000, 6,000, 12,000 ppm	hemorrhage	0	2	0	0			
(males); 0, 6,000, 12,000,	1				0			

Reference and study design	Results						
0, 120, 240, 500 mg/kg-day (males) ^b ; 0 300, 600, 1,200 mg/kg-day (females) ^b	transitional epithelium; papilloma	nce data not	it provided)				
Diet 2 years	adenocarcinoma, metastatic, intestine large, colon	0	0	2	0		
	mg/kg-day (F)	0	300	600	1,200		
	transitional epithelium; hyperplasia	8	0	2	20*		
	transitional epithelium; papilloma	2	0	0	4		
	edema	2	0	2	0		
	hemorrhage	0	0	2	0		
<u>BIBRA (1978)</u>	Percent incidence						
Rat (Wistar); 27/sex/group or	mg/kg-day (M)	0	151	381	960		
45/sex/group (control); interim sacrifices of 9 controls/sex/group and 6 treated rats/sex/group at	proteinaceous deposits; 6 weeks	11	NE	NE	0		
2 and 6 weeks 0, 2,000, 5,000, 12,000 ppm	proteinaceous deposits; 14 weeks	4	NE	NE	0		
0, 151, 381, 960 mg/kg-day (males) ^b	hyperplasia; 14 weeks	0	NE	NE	7		
0, 171, 422, 1,069 mg/kg-day (females) ^b	mg/kg-day (F)	0	171	422	1,069		
Diet	proteinaceous deposits; 6 weeks	0	NE	NE	0		
14 weeks	proteinaceous deposits; 14 weeks	0	NE	NE	0		
	hyperplasia; 14 weeks	0	NE	NE	0		
NTP (1997b)	No significant treatment-r						
Rat (F344); 15 males/group	animals (quantitative data	not report	ed).				
0, 300, 2,800, 25,000 ppm 0, 20, 200, 2,200 mg/kg-day ^b							
Diet							
10 weeks							
NTP (1997b)	No significant treatment-	related effe	ects reported i	in control or	high-dose		
Rat (F344); 15 males/group	animals (quantitative data	not report	ed).				
0, 300, 900, 2,800, 8,300, 25,000 ppm 0, 30, 60, 180, 550, "high" mg/kg-day ^b							

Reference and study design	Results						
Diet							
26 weeks							
<u>NTP (1997a)</u>	Ad libitum feeding, weig	sht-matched p	protocol (pe	rcent incid	lence)		
Rat (F344); 50–60/sex/group; interim sacrifice of	mg/kg-day (M)	0 (ad libitum	•	veight- ched)	500		
10 rats/sex/group at 15 months 0, 12,000 ppm (males); 0,	transitional epithelium hyperplasia	0		0	4		
24,000 ppm (females) 0, 500 mg/kg-day (males) ^b ; 0, 1,200 mg/kg-day (females) ^b	mg/kg-day (F)	0 (ad libitum	``	veight- ched)	1,200		
Diet 4 exposure protocols: ad libitum	transitional epithelium hyperplasia	8		0	20		
feeding, weight-matched controls, restricted feed (2 years), and	Feed-restricted, 2 years	or lifetime (p	ercent incide	ence)			
restricted feed (lifetime) 2 years to lifetime	mg/kg-day (M)	0 (2 years)	500 (2 years)	0 (lifetim)	500 e) (lifetime)		
	transitional epithelium hyperplasia	2	4	0	2		
	mg/kg-day (F)	0 (2 years)	1,200 (2 years)	0 (lifetim	1,200 e) (lifetime)		
	transitional epithelium hyperplasia	0	28	0	32		

*Statistically significant (*p* <0.05) relative to controls based on statistics performed by the study authors.

^aPercent change compared to control calculated as 100 × ((treated value – control value) ÷ control value).

^bCalculated as follows: [% in diet × intake food/water (mg)] ÷ body weight (kg) = mg/kg-day.

ND = not determined; NE = not examined

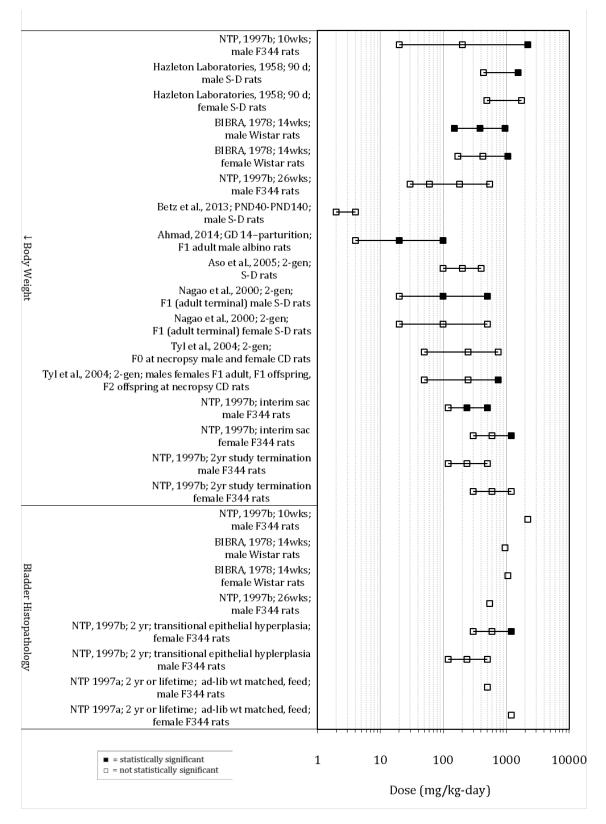


Figure 3-21. Exposure response array of other health effects following oral exposure to BBP.

1 3.3.12. BBP Metabolite Studies

2 3

Table 3-34. Evidence pertaining to toxicity effects in animals followingexposure to BBP metabolites

Reference and study design			Re	esults by	endpoi	nt [#]	
Developmental body weight							
<u>Ema et al. (1996a)</u>	Body weight of live fetuses (g, litter mean ± SD)						
MBzP	Dose		0	37	5	500	625
Rat (Wistar); P0, female (11–15/group)	female		3.93	3.5	-	3.43	2.97 (± 0.27)*
0, 375, 500, 625 mg/kg-day		(± 0.13)	(± 0.1	.8)*	(± 0.15)*	
Gavage	male	4.2	2 (± 0.18)	3.91 (±		3.67	3.38 (± 0.18)*
GDs 7–9; dams sacrificed on GD 20						(± 0.28)*	
<u>Ema et al. (1996a)</u>	Body w	eight of liv	/e fetuse	s (g, litter	r mean ±	SD)	
MBzP	Dose	0		250	375	500	625
Rat (Wistar); P0, female (10–12/group)	female	3.7		3.73	3.78	3.45	2.8 (± 0.21)*
0, 250, 375, 500, 625 mg/kg-day		(± 0.	1) (±	: 0.22)	(± 0.21)	(± 0.43)*	
Gavage	male	4.0		4.04	4.06	3.74	3.42
GDs 10–12; dams sacrificed on GD 20		(± 0.1	13) (±	: 0.23)	(± 0.23)	(± 0.3)	(± 0.76)*
<u>Ema et al. (1996a)</u>	Body w	eight of liv	ve fetuse	s (g, litter	r mean ±	SD)	
MBzP	Dose	0		250	375	500	625
Rat (Wistar); P0, female (10–17/group)	female	3.8	6	3.8	3.77	3.81	3.59 (± 0.22)
0, 250, 375, 500, 625 mg/kg-day		(± 0.1	12) (±	: 0.26)	(± 0.13)	(± 0.19)	
Gavage	male	4.1		4.03	3.97	4 (± 0.13)	4.17
GDs 13–15; dams sacrificed on GD 20		(± 0.1	12) (±	: 0.22)	(± 0.22)		
<u>Ema et al. (1996b)</u>	Body w	eight of liv	/e fetuse	s (g, litter	r mean ±	SD)	
MBzP	Dose	0	250	313	375	5 438	500
Rat (Wistar); P0, female (10–14/group)	female	3.84	3.64	3.65	3.52	2 3.57	3.35
0, 250, 313, 375, 438, 500 mg/kg-day		(± 0.12)	(± 0.28)	(± 0.19) (± 0.2	4)* (± 0.21))* (± 0.2)*
Gavage	male	4.08	3.97	3.93	3.84		3.59
GDs 7–15; dams sacrificed on GD 20		(± 0.21)	(± 0.26)	(± 0.25) (± 0.1	15) (± 0.3)	* (± 0.12)*

Reference and study design	Results by endpoint [#]						
<u>Ema et al. (1996c)</u>	Body weight of live fetuses (g, litter mean ± SD)						
MBP	Dose	0	50	00	625	750	
Rat (Wistar); P0, female (10–11/group)	female	3.77 (± 0.16	•	46	3.26	3.15 (± 0.26)*	
0, 500, 625, 750 mg/kg-day			(± 0.	09)* (±	± 0.17)*		
Gavage	male	4.05 (± 0.16	-	74	3.58	3.52 (± 0.17)*	
GDs 7–9; dams sacrificed on GD 20			(± 0.	13)* (:	± 0.17)*		
<u>Ema et al. (1996c)</u>	Body weig	ht of live fetus	es (g, litte	er mean ± S	D)		
MBP	Dose	0	50	00	625	750	
Rat (Wistar); P0, female (10–14/group)	female	3.77 (± 0.16	5) 3.53 (±	±0.35) 3.5	3 (± 0.26)	2.95 (± 0.53)*	
0, 500, 625, 750 mg/kg-day	male	4.05 (± 0.16	5) 3.78 (±	±0.3)* 3.8	1 (± 0.19)	3.1 (± 0.4)*	
Gavage							
GDs 10–12; dams sacrificed on GD 20							
<u>Ema et al. (1996c)</u>	Body weig	ht of live fetuse	es (g, litte	er mean ± S	D)		
MBP	Dose	0	50	00	625	750	
Rat (Wistar); P0, female (10–15/group)	female	3.77 (± 0.16	5) 3.77 (±	±0.17) 3.6	8 (± 0.17)	3.5 (± 0.12)	
0, 500, 625, 750 mg/kg-day	male	4.05 (± 0.16	5) 3.97 (±	±0.18) 3.9	9 (± 0.26)	3.81 (± 0.04)	
Gavage							
GDs 13–15; dams sacrificed on GD 20							
<u>Ema and Miyawaki (2001)</u>	Body weig	ht of live fetus	es (g, litte	er mean ± S	D)		
MBP	Dose	0	250	500	750	1,000	
Rat (Wistar); P0, female (16/group)	female	3.17	3.15	2.8	2.58	2.32	
0, 250, 500, 750, 1,000 mg/kg-day		(± 0.22)	(± 0.15)	(± 0.3)*	(± 0.23))* (± 0.29)*	
Gavage	male	3.35	3.42	3.01	2.71	2.47	
GDs 0–8, with outcomes determined on GD 20		(± 0.25)	(± 0.1)	(± 0.36)*	(± 0.3)	* (± 0.29)*	
<u>Ema et al. (2003)</u>	Body weig	ht of live fetus	es (g, litte	er mean ± S	D)		
MBzP	Dose	0	16	57	250	375	
Rat (Wistar); P0, female (16/group)	female	4.63 (± 0.2)) 4.58 (±0.2) 4.3	9 (± 0.24)	3.67 (± 0.56)*	
0, 167, 250, 375 mg/kg-day	male	4.95 (± 0.25	5) 4.95 (±	± 0.24) 4.	7 (± 0.3)	3.82 (± 0.65)*	
Gavage							
GDs 15–17; dams sacrificed on GD 21							

Reference and study design	Results by endpoint [#]							
Saillenfait et al. (2003)	Body weigh	t of live fetus	ses (g, litte	r mean ±	SE)			
MBP	Dose	0	56	0	1,120	1,690		
Rat (Sprague-Dawley); P0, female (14–15/group)	male and female	5.28 (± 0.0	7) 5.15 (±	0.16) 5	.19 (± 0.15)	5.25 (± 0.16)		
0, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 560, 1,120, 1,690 mg/kg as calculated by study authors)								
Gavage								
GD 10; dams sacrificed on GD 21								
<u>Saillenfait et al. (2003)</u>	Body weigh	t of live fetus	ses (g, litte	r mean ±	SE)			
MBzP	Dose	0	280	560	1,120	1,690		
Rat (Sprague-Dawley); P0, female (12–14/group)	male and female	5.04 (± 0.18)	5.25 (± 0.2)	5.14 (± 0.18		4.93 (± 0.06)		
0, 0.9, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 280, 560, 1,120, 1,690 mg/kg as calculated by study authors)								
Gavage								
GD 10; dams sacrificed on GD 21								
<u>Saillenfait et al. (2003)</u>	Body weigh	t of live fetus	ses (g, litte	r mean ±	SE)			
MBP	Dose	0	280	560	1,120	1,690		
Mouse (OF-1); P0, female (24–25/group)	male and	1.19	1.16	1.23	1.14	1.04		
0, 0.9, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 280, 560, 1,120, and 1,690 mg/kg as calculated by study authors)	female	(± 0.02)	(± 0.03)	(± 0.05	5) (± 0.03)) (± 0.04)*		
Gavage								
GD 8; dams sacrificed on GD 18								
<u>Saillenfait et al. (2003)</u>	Body weigh	t of live fetus	ses (g, litte	r mean ±	SE)			
MBzP	Dose	0	280	560	1,120	1,690		
Mouse (OF-1); PO, female (20–23/group)	male and	1.21	1.24	1.21	1.13	1.11		
0, 0.9, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 280, 560, 1,120, 1,690 mg/kg as calculated by study authors)	female	(± 0.03)	(± 0.05)	(± 0.02	2) (± 0.02)) (± 0.07)		
Gavage								
GD 8; dams sacrificed on GD 18								

Reference and study design	Results by endpoint [#]							
Developmental embryotoxic effects								
<u>Ema et al. (1996a)</u>	Percent p	ostimplantation	loss per litt	er (mear	n)			
MBzP	Dose	0	0 375 500					
Rat (Wistar); P0, female (11–15/group)		10.2	18.9		25.7*	90.6*		
0, 375, 500, 625 mg/kg-day								
Gavage								
GDs 7–9; dams sacrificed on GD 20	Maternal	adjusted weight	gain (g, me	an ± SD)	·			
	Dose	0	375		500	625		
		53 (± 12)	37 (± 1:	1)* 4	12 (± 9)	23 (± 13)*		
	Maternal	food consumpti	on		<u>.</u>			
	Significant decrease in all treatment groups during treatment, but only remained significantly lower after treatment in the 625 mg/kg group							
	Number of litters totally resorbed							
	Dose	0	375		500	625		
		0	0		0	9*		
	Number of live fetuses per litter (mean ± SD)							
	Dose	0	375		500	625		
		12.7 (± 1)	11.6 (± 2	2.2) 10	.6 (± 2.8)	1.4 (± 2.6)*		
	Number of resorptions and dead fetuses per litter (mean \pm SD)							
	Dose	0	375		500	625		
		1.5 (± 0.8)	2.7 (±	2) 3.	6 (± 2.7)	12.8 (± 2.5)*		
	Sex ratio	of live fetuses (n	nale/female	:)				
	No significant change in sex ratio (male/female): 67/73 (control), 63/65 (375 mg/kg), 56/61 (500 mg/kg), 9/8 (625 mg/kg)							
<u>Ema et al. (1996a)</u>	Percent p	ostimplantation	loss per litt	er (mea	n)			
MBzP	Dose	0	250	375	500	625		
Rat (Wistar); PO, female (10–12/group)		15.5	16.9	15.3	54.8*	90.4*		
0, 250, 375, 500, 625 mg/kg-day	Maternal	adjusted weight	: gain (g, me	an ± SD)				
Gavage	Dose	0	250	375	500	625		
GDs 10–12; dams sacrificed on GD 20		47 (± 10) 2	.5 (± 7)*	41 (± 6)	29 (± 12)'	* 31 (± 9)*		
	Maternal	food consumpti	on					
	Significant decrease in food consumption during treatment as well as the remainder of gestation for all dose groups							
	Number of litters totally resorbed							

Reference and study design	Results by endpoint [#]								
	Dose	0	250	375	500	625			
		0	0	0	3	7*0			
	Number	of live fetuses	per litter (n	nean ± SD)					
	Dose	0	250	375	500	625			
		11.8	11.5	11.5	6.6	1.4 (± 2.5)*			
	Number	(± 1.8) of resorptions	(± 2.1) and dead fo	(± 1.6) etuses per li	(± 5.8)*	SD)			
	Dose	0	250	375	500	625			
		2 (± 1.9)	2.4 (± 1.6)	2.2 (± 1.9)	8.2 (± 5.7)*	13.5 (± 2.4)*			
	Sex ratio	of live fetuses	(male/fem	ale)					
	-	icant change ir 50 mg/kg), 54/ mg/kg)	•		• •	ntrol),			
<u>Ema et al. (1996a)</u>	Percent	postimplantati	on loss per	litter (mean	ı)				
MBzP	Dose	0	250	375	500	625			
Rat (Wistar); P0, female (10–17/group)		18.8	12.8	28.3	61.4*	94.2*			
0, 250, 375, 500, 625 mg/kg-day	Materna	l adjusted wei	ght gain (g,	mean ± SD)					
Gavage	Dose	0	250	375	500	625			
GDs 13–15; dams sacrificed on GD 20		47 (± 7)	29 (± 16)*	23 (± 7)*	29 (± 14)*	25 (± 11)*			
	Materna	l food consum	ption						
	-	nt decrease in f nt, but only cor <g group<="" td=""><td></td><td>•</td><td>• .</td><td>•</td></g>		•	• .	•			
	Number	of litters totall	y resorbed						
	Dose	0	250	375	500	625			
		0	0	0	5*	11*			
	Number	of live fetuses	per litter (n	nean ±SD)					
	Dose	0	250	375	500	625			
		11.4 (± 2.2)	13.3 (± 1.2)	10 (± 3.7)	5.6 (± 5.6)*	0.8 (± 2.5)*			
	Number	of resorptions	and dead fo	etuses per li	tter (mean ±	SD)			
	Dose	0	250	375	500	625			
		2.5 (± 1.5)	2 (± 1.2)	3.8 (± 3.2)	8.9 (± 5.6)*	13.5 (± 3.2)*			
	Sex ratio	of live fetuses	(male/fem	ale)					

Reference and study design	Results by endpoint#No significant change in sex ratio (male/female): 64/61 (control),71/75 (250 mg/kg), 60/40 (375 mg/kg), 38/41 (500 mg/kg),5/5 (625 mg/kg)									
<u>Ema et al. (1996b)</u>	Percent postimplantation loss per litter (mean)									
MBzP	Dose 0 250 313 375 438									
Rat (Wistar); PO, female (10–14/group)		15.8	8.3	18.7	23.8	36.6*	82.3*			
0, 250, 313, 375, 438, 500 mg/kg-day	Food consumption during pregnancy									
Gavage										
GDs 7–15; dams sacrificed on GD 20	-	tly lower tł 0 at 500 m		ol on GDs 7	'–15 at ≥	250 mg/kg	and on			
	Live fetus	ses per litte	er (mean 🗉	±SD)						
	Dose	0	250	313	375	438	500			
		11.8	12.9	11.6	10.8	9.2	2.4 (± 3.3)*			
		(± 2.1)	(± 2.3)	(± 1.5)	(± 2.9)	(± 5.2)				
	Number of resorptions and dead fetuses per litter (mean ±SD)									
	Dose	0	250	313	375	438	500			
		2.2 (± 1.5)	1.2 (± 1.5)	2.8 (± 1.7)	3.4 (± 3)	5 (± 4.4)	12.2 (± 4.2)*			
	Number of litters totally resorbed									
	Dose	0	250	313	375	438	500			
	Dose	0	0	0	0	2	6*			
	Sex ratio of live fetuses									
	Sex ratios (male/female): 54/76 (control), 65/64 (250 mg/kg), 74/65 (313 mg/kg), 55/53 (375 mg/kg), 55/65 (438 mg/kg), 13/11 (500 mg/kg)									
	Weight g	ain during	pregnanc	У						
	Significantly lower than control on GDs 7–15 at ≥313 mg/kg, and on GDs 15–20 at 500 mg/kg; adjusted weight gain significantly lower that control at 500 mg/kg									
<u>Ema et al. (1996c)</u>	Adjusted	maternal b	ody weig	ght gain						
MBP	No signifi	cant chang	e							
Rat (Wistar); PO, female (10–11/group)	Maternal	food intak	e during	pregnancy	(g, mea	n ± SD)				
0, 500, 625, 750 mg/kg-day	Dose		0	500	6	25	750			
Gavage		384	(± 22)	366 (± 27)	355 (± 20)*	336 (± 30)*			
GDs 7–9; dams sacrificed on GD 20	Number of litters totally resorbed									
	Dose		0	500	6	25	750			
			0	0		1	3			

This document is a draft for review purposes only and does not constitute Agency policy. DRAFT-DO NOT CITE OR QUOTE

Reference and study design		Results by endpoint [#]							
	Number of	live fetuses per l	itter (mean ±	SD)					
	Dose	0	500	625	750				
		12.3 (± 2.4)	12.1 (± 1.9)	10.3 (± 4.1)	5.9 (± 4.5)*				
	Percent po	stimplantation lo	ss per litter (/	mean)					
	Dose	0	500	625	750				
		13.3	18.4	27.8*	57.7*				
	Sex ratio o	f live fetuses							
	59/64 (con	No significant change in sex ratio of live fetuses (male/female): 59/64 (control), 53/68 (500 mg/kg), 46/66 (625 mg/kg), 30/35 (750 mg/kg)							
Ema et al. (1996c)	Adjusted m	naternal body we	ight gain						
MBP	No significa	int change							
Rat (Wistar); PO, female (10–14/group)	Maternal f	ood intake during	g pregnancy (g	g, mean ± SD)					
0, 500, 625, 750 mg/kg-day	Dose	0	500	625	750				
Gavage		384 (± 22)	387 (± 16)	370 (± 27)	349 (± 28)*				
GDs 10–12; dams sacrificed on GD 20	Number of litters totally resorbed								
	Dose	0	500	625	750				
		0	0	0	9*				
	Number of live fetuses per litter (mean ±SD)								
	Dose	0	500	625	750				
		12.3 (± 2.4)	11.2 (± 2.8)	7.5 (± 3.8)*	1.8 (± 3.3)*				
	Percent po	Percent postimplantation loss per litter (mean)							
	Dose	0	500	625	750				
		13.3	24.6	46.4*	86.9*				
	Sex ratio o	Sex ratio of live fetuses							
	No significant change in sex ratio of live fetuses (male/female): 59/64 (control), 58/54 (500 mg/kg), 40/42 (625 mg/kg), 15/10 (750 mg/kg)								
Ema et al. (1996c)	Adjusted m	naternal body we	ight gain						
MBP	No significa	int change							
Rat (Wistar); PO, female (10–15/group)	Maternal f	ood intake during	g pregnancy (g	g, mean ± SD)					
0, 500, 625, 750 mg/kg-day	Dose	0	500	625	750				
Gavage		384 (± 22)	372 (± 22)	370 (± 18)	350 (± 21)*				
GDs 13–15; dams sacrificed on GD 20	Number of litters totally resorbed								
	Dose	0	500	625	750				

This document is a draft for review purposes only and does not constitute Agency policy.3-202DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results by endpoint [#]								
	PO, female	0	0	2	2	12*			
	Number of live fetuses per litter (mean ±SD)								
	Dose	0	500	0 62	25	750			
		12.3 (± 2	2.4) 8.6 (±	3.5) 4.6 (±	3.4)*	0.6 (± 1.5)*			
	Percent pos	timplantatio	n loss per lit	ter (mean)					
	Dose	0	500	0 62	25	750			
		13.3	34.7	7* 66.	8*	95.5*			
	Sex ratio of	live fetuses	·		·				
	No significant change in sex ratio of live fetuses (male/fem 59/64 (control), 55/40 (500 mg/kg), 25/26 (625 mg/kg), 3/6 (750 mg/kg)								
Ema and Miyawaki (2001)	Adjusted ma	aternal weigh	nt gain (g, m	ean ± SD)					
MBP	Dose	0	250	500	750	1,000			
Rat (Wistar); P0, female (16/group)		33 (± 13)	38 (± 9)	31 (± 10)	37	25 (± 12)			
0, 250, 500, 750, 1,000 mg/kg-day					(± 13))			
Gavage GDs 0–8 with outcomes determined on		ljusted weigh ally significan				g uterus) was controls			
GD 20	Number of live fetuses per litter (mean ±SD)								
	Dose	0	250	500	750	1,000			
		14.1	13.7	13.9 (± 2.4)					
		(± 1.6)	(± 2.7)		(± 2.7				
		resorptions a		-		-			
	Dose	0	250	500	750	1,000			
		1.4 (± 1.5)	1 (± 1)	1.7 (± 1.7)	2.4 (± 2)	3.7 (± 3.1)*			
	Percent pos	timplantatio	n loss per lit	ter (mean)	<u>.</u>				
	Dose	0	250	500	750	1,000			
		9.1	6.4	11.3	15.9	26.3*			
		ation loss = (r mplantations)		esorptions ar	id dead f	fetuses/			
	Percent pre	implantation	loss per fen	nale (mean)					
	Dose	0	250	500	750	1,000			
		5.9	8.7	9.8	19.2	20.2*			
		of pregnant f ea – number c		-					

Reference and study design	Results by endpoint [#]								
	Percent preimplantation loss per litter								
	Dose	0	250 50	00 750	1,000				
		5.9	8.7 3.	7 7.6	8.7				
		of litters; preim f implantations)	•						
	Sex ratio of	live fetuses (m	ale/female)						
	No significant difference in sex ratio (males/females): 121/104 (controls), 120/99 (250 mg/kg), 108/100 (500 mg/kg), 98/80 (750 mg/kg), 77/74 (1,000 mg/kg)								
Ema et al. (2003)	Body weigh	nt gain during pi	regnancy						
MBzP Rat (Wistar); P0, female (16/group) 0, 167, 250, 375 mg/kg-day	≥167 mg/kg	Maternal body weight gain significantly decreased on GDs 15–18 at ≥167 mg/kg and GDs 18–21 at ≥250 mg/kg; adjusted weight gain significantly reduced at ≥250 mg/kg							
Gavage	Food consu	mption during	pregnancy						
GDs 15–17; dams sacrificed on GD 21	Maternal food consumption significantly decreased on GDs 15–18 at ≥167 mg/kg and GDs 18–21 at ≥250 mg/kg								
	Number of litters totally resorbed								
	Dose	0	167	250	375				
		0	0	0	0				
	Number of	live fetuses per	litter (mean ±	SD)					
	Dose	0	167	250	375				
		14.1 (± 1.8	3) 12.8 (± 1.9) 13.8 (± 0.8)	13.2 (± 1.9)				
	Number of	resorptions and	l dead fetuses	per litter (med	n ±SD)				
	Dose	0	167	250	375				
		1.4 (± 1.1)	0.7 (± 0.9)	1.1 (± 0.8)	1.3 (± 1.9)				
	Percent pos	stimplantation	oss per litter (mean)					
	Dose	0	167	250	375				
		9.7	5.3	8.1	10.9				
	Sex ratio of	live fetuses (m	ale/female)						
	No significant change in sex ratio of live fetuses (male/female): 105/101 (control), 109/96 (167 mg/kg), 107/114 (250 mg/kg), 117/94 (375 mg/kg)								
Saillenfait et al. (2003)	Number of	live fetuses per	litter (mean ±	SD)					
MBP	Dose	0	560	1,120	1,690				
Rat (Sprague-Dawley); P0, female	1	.3.46 (± 0.77)	13.92 (± 0.55)	13.5 (± 0.69)	12.77 (± 0.67)				
(14–15/group)	Percent pos	stimplantation	oss per litter (mean ± SE)					

This document is a draft for review purposes only and does not constitute Agency policy.3-204DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results by endpoint [#]							
0, 1.8, 3.6, 5.4 mmol/kg (equivalent to	Dose	0	5	60	1,120	1,690		
0, 560, 1,120, 1,690 mg/kg as calculated by study authors)		2.1 (± 1.0	8) 4.38 (± 1.77) 1	79 (± 1.28)	6.1 (± 1.99)		
Gavage	Percent	resorptions	per litter (m	nean ± SE)				
GD 10; sacrificed on GD 21	Dose	0	5	60	1,120	1,690		
		2.1 (± 1.0	8) 4.38 ((± 1.77) 1	79 (± 1.28)	6.1 (± 1.99)		
Saillenfait et al. (2003)	Number of live fetuses per litter (mean ±SE)							
MBzP	Dose	0	280	560	1,120	1,690		
Rat (Sprague-Dawley); P0, female (12–14/group)		13.77 (± 1.08)	12.83 (± 1.15)	13.67 14.1 (± 1.14) (± 0.5		13.75 (± 1.7)		
0, 0.9, 1.8, 3.6, 5.4 mmol/kg (equivalent	Percent	postimplant	ation loss p	er litter (m	iean ± SE)			
to 0, 280, 560, 1,120, 1,690 mg/kg as calculated by study authors)	Dose	0	280	560	1,120	1,690		
Gavage GD 10; sacrificed on GD 21		1.61 (± 0.87)	4.1 (± 1.67)	7.44 (± 4.07)	6.2 (± 1.81)	8.93 (± 8.93)		
GD 10, Sachineed on GD 21	Percent resorptions per litter (mean ± SE)							
	Dose	0	280	560	1,120	1,690		
		1.61 (± 0.87)	4.1 (± 1.67)	7.44 (± 4.07)	6.2	8.93 (± 8.93)		
Saillenfait et al. (2003)	Numbo	r of live fetus	. ,		· · ·			
MBP	Dose	0	280	560	-/1,120	1,690		
Mouse (OF-1); P0, female (24–25/group)	DOSE	12.35	12.38	6.64	2.32	2.33		
0, 0.9, 1.8, 3.6, 5.4 mmol/kg (equivalent		(± 0.88)	(± 0.71)	(± 0.91)		(± 0.58)*		
to 0, 280, 560, 1,120, 1,690 mg/kg as calculated by study authors)	Percent	postimplant	ation loss p	er litter (m	iean ± SE)			
Gavage	Dose	0	280	560	1,120	1,690		
GD 8; sacrificed on GD 18		9.59 (± 2.76)	11.25 (± 2.5)	40.83 (± 6.22)'	83.31 * (± 5.03)*	82.42 (± 4.31)*		
	Percent resorptions per litter (mean ± SE)							
	Dose	0	280	560	1,120	1,690		
		9.3 (± 2.76)	10.21 (± 2.48)	40.15 (± 6.17)*	82.21 (± 4.96)*	80.66 (± 4.45)*		
Saillenfait et al. (2003)	Numbe	r of live fetus	es per litter	(mean ±SI	Ξ)			
MBzP	Dose	0	280	560	1,120	1,690		
Mouse (OF-1); P0, female (20–23/group)		11.07 (± 1.4)	11.25 (± 1.1)	12.11 (± 0.88)	12.82 (± 0.54)	7.5 (± 1.58)		
0, 0.9, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 280, 560, 1,120, 1,690 mg/kg as calculated by study authors)	Percent	postimplant						

This document is a draft for review purposes only and does not constitute Agency policy.3-205DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results by endpoint [#]							
Gavage	Dose	0	280	560	1,120	1,690		
GD 8; sacrificed on GD 18		14.17 (± 7.15)	14.69 (± 3.16)	7.8 (± 2.51)	12.24 (± 2.57)	47.38 (± 10.45)*		
	Resorpt	ions per litt	er (mean ±	SE)				
	Dose	0	280	560	1,120	1,690		
		14.17 (± 7.15)	14.69 (± 3.16)	7.8 (± 2.51)	10.99 (± 2.39)	45.95 (± 10.35)*		
Developmental teratological effects								
<u>Ema et al. (1996a)</u>	Number	of fetuses	with extern	al malformatio	ons			
MBzP	Dose	0	37	75 50	00	625		
Rat (Wistar); PO, female (11–15/group)		0	() :	1			
0, 375, 500, 625 mg/kg-day	Number	of fetuses	with intern	al malformatio	nalformations			
Gavage	Dose	0	37	75 50	00	625		
GDs 7–9; dams sacrificed on GD 20		0	2 6		6	10		
	Dilation	of renal pel	vis					
	Number	of fetuses	with skelet	al malformatio	ns			
	Dose	0	37	75 50	00	625		
		2	(5	7	10		
		usion or abs vertebral ar		s, fusion or abs ies	ent cervical,	/thoracic/		
<u>Ema et al. (1996a)</u>	Number	of fetuses	with extern	al malformatio	ons			
MBzP	Dose	0	250	375	500	625		
Rat (Wistar); P0, female (10–12/group)		0	0	0	0	0		
0, 250, 375, 500, 625 mg/kg-day	Number	of fetuses	with intern	al malformatio	ons			
Gavage	Dose	0	250	375	500	625		
GDs 10–12; dams sacrificed on GD 20		1	0	0	0	0		
	Number	of fetuses	with skelet	al malformatio	ns			
	Dose	0	250	375	500	625		
		1	1	0	1	0		

Reference and study design			Result	s by endpo	oint [#]		
<u>Ema et al. (1996a)</u>	Number o	of fetuses v	vith extern	al malform	ations		
MBzP	Dose	0	250	375	5	00	625
Rat (Wistar); PO, female (10–17/group)		1	0	3	1	11	1
0, 250, 375, 500, 625 mg/kg	Mainly cle	eft palate					
Gavage	Number o	of fetuses v	vith intern	al malforma	ations		
GDs 13–15; dams sacrificed on GD 20	Dose	0	250	375	5	00	625
		0	0	0		0	0
	Number o	of fetuses v	vith skelet	al malforma	ations		
	Dose	0	250	375	5	00	625
		0	3	6	1	13	3
	Mainly fu	sion of the	sternebrae	2			
<u>Ema et al. (1996b)</u>	Number o	of fetuses v	vith extern	al malform	ations	-	<u>.</u>
MBzP	Dose	0	250	313	375	438	500
Rat (Wistar); PO, female (10–14/group)		0	1	1	0	13	1
0, 250, 313, 375, 438, 500 mg/kg-day	Mainly cle	eft palate					
Gavage	Number o	of fetuses w	vith intern	al malforma	ations		
GDs 7–15; dams sacrificed on GD 20	Dose	0	250	313	375	438	500
		0	0	7	6	10	5
	Included I	mainly dilat	ation of re	nal pelvis a	nd hypop	plasia of t	he kidney
	Number o	of fetuses w	vith skeleta	al malforma	ations		
	Dose	0	250	313	375	438	500
		0	1	8	12	13	6
		mainly fusion of ribs or ste		nce of cervio	cal verte	bral arche	es, fusion or
<u>Ema et al. (1996c)</u>	Number o	of fetuses v	vith extern	al malform	ations		
MBP	Dose		0	500	625		750
Rat (Wistar); P0, female (10–11/group)			0	0	5		4
0, 500, 625, 750 mg/kg-day	Mainly cle	eft palate a	nd agenesi	s of the low	er body		
Gavage	Number o	of fetuses w	vith intern	al malforma	ations		
GDs 7–9; dams sacrificed on GD 20	Dose		0	500	625		750
			0	0	3		0
	Dilation o	f renal pelv	is and hyp	oplasia of ki	idney		
	Number o	of fetuses v	vith skeleta	al malforma	ations	<u>.</u>	
	Dose		0	500	625		750

This document is a draft for review purposes only and does not constitute Agency policy. 3-207 DRAFT-DO NOT CITE OR QUOTE

Reference and study design		Re	sults by end	point [#]				
		1	10	10	14			
	Mainly fusion and/or absence of cervical vertebral arches							
Ema et al. (1996c)	Number of f	fetuses with ex	ternal malfor	mations				
MBP	Dose	0	500	625	750			
Rat (Wistar); P0, female (10–14/group)		0	0	0	1			
0, 500, 625, 750 mg/kg-day	Number of f	fetuses with int	ernal malfor	mations				
Gavage	Dose	0	500	625	750			
GDs 10–12; dams sacrificed on GD 20		0	3	1	0			
	Dilation of t	he renal pelvis						
	Number of fetuses with skeletal malformations							
	Dose	0	500	625	750			
		1	0	0	0			
Ema et al. (1996c)	Number of f	etuses with ex	ternal malfor	mations				
MBP	Dose	0	500	625	750			
Rat (Wistar); P0, female (10–15/group)		0	1	16	9			
0, 500, 625, 750 mg/kg-day	Mainly cleft	palate						
Gavage	Number of f	fetuses with int	ernal malform	mations				
GDs 13–15; dams sacrificed on GD 20	Dose	0	500	625	750			
		0	0	0	0			
	Number of f	etuses with sko	eletal malform	nations				
	Dose	0	500	625	750			
		1	6	10	5			
	Mainly fusio	n of the sterne	brae					
<u>Saillenfait et al. (2003)</u>	Percent of n	nalformed fetu	ses (%)					
MBP	Dose	0	560	1,120	1,690			
Rat (Sprague-Dawley); PO, female		0	0	0	0			
(14–15/group)	Statistical sig	gnificance not e	evaluated					
0, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 560, 1,120, 1,690 mg/kg as calculated by study authors)								
Gavage								
GD 10; sacrificed on GD 21								

Reference and study design			Results	by endpo	pint [#]	
<u>Saillenfait et al. (2003)</u>	Percent o	f malformed f	etuses			
MBzP	Dose	280	!	560	1,120	1,690
Rat (Sprague-Dawley); P0, female		0 ^a		0.6	0	0
(12–14/group)	Statistical	significance n	ot evalua	ted		
0, 0.9, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 280, 560, 1,120, 1,690 mg/kg as calculated by study authors)						
Gavage						
GD 10; sacrificed on GD 21						
Saillenfait et al. (2003)	Percent o	f malformed f	etuses			
MBP	Dose	0	280	560	1,120	1,690
Mouse (OF-1); P0, female (24–25/group)		0	0.4	2	9.8	34.7
0, 0.9, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 280, 560, 1,120, and 1,690 mg/kg as calculated by study authors)	Statistical	significance n	ot evalua	ted		
Gavage						
GD 8; sacrificed on GD 18						
<u>Saillenfait et al. (2003)</u>	Percent o	f malformed f	etuses			
MBzP	Dose	0	280	560	1,120	1,690
Mouse (OF-1); P0, female (20–23/group)		0	0	0	3.2	22.9
0, 0.9, 1.8, 3.6, 5.4 mmol/kg (equivalent to 0, 280, 560, 1,120, and 1,690 mg/kg as calculated by study authors)	Statistical	significance n	ot evalua	ted		
Gavage						
GD 8; sacrificed on GD 18						
Female reproductive effects						
<u>Ema et al. (1996a)</u>	Number o	of implantatio	ns per litt	t er (mean	± SD)	
MBzP	Dose	0	3	375	500	625
Rat (Wistar); PO, female (11–15/group)		14.2 (±	1) 14.4	(± 1.5) 1	.4.3 (± 1.1)	14.2 (± 1.6)
0, 375, 500, 625 mg/kg-day						
Gavage						
GDs 7–9; dams sacrificed on GD 20						
Ema et al. (1996a)	Number o	of implantatio	ns per litt	ter (mean	± SD)	
MBzP	Dose	0	250	375	500	625
Rat (Wistar); PO, female (10–12/group)		14 (± 0.6)	13.9	13.7	14.8 (± 1.7)	14.9 (± 1.4
0, 250, 375, 500, 625 mg/kg			(± 1.4)	(± 1.8)		

This document is a draft for review purposes only and does not constitute Agency policy.3-209DRAFT—DO NOT CITE OR QUOTE

Reference and study design			Res	ults by en	dpoin	t [#]	
Gavage							
Dams dosed on GD 10–12 and sacrificed on GD 20							
<u>Ema et al. (1996a)</u>	Number o	of implanta	tions pe	er litter (m	ean ± S	D)	
MBzP	Dose	0	250	37	'5	500	625
Rat (Wistar); P0, female (10–17/group)		13.9 (± 1)			(±1) 1	4.6 (± 0.8)	14.2 (± 1.5)
0, 250, 375, 500, 625 mg/kg-day			(± 1.	5)			
Gavage							
GDs 13–15; dams sacrificed on GD 20							
<u>Ema et al. (1996b)</u>	Number o	of implanta	tions pe	er litter (m	ean ± S	D)	
MBzP	Dose	0	250	313	375	438	500
Rat (Wistar); P0, female (10–14/group)		14	14.1	14.3	14.2	14.2	14.6 (± 1.1)
0, 250, 313, 375, 438, 500 mg/kg-day		(± 1.3)	(± 2.1)	(± 1.7)	(± 0.9)	(± 1.5)	
Gavage							
GDs 7–15; dams sacrificed on GD 20							
<u>Ema et al. (1996c)</u>	Number o	of implanta	tions pe	er litter (m	ean ± S	D)	
MBuP	Dose	ŗ	0	500		625	750
Rat (Wistar); P0, female (10–11/group)		14.2	(± 1.1)	15 (± 1.3)) 14.2	2 (± 1.3)	14.5 (± 1.9)
0, 500, 625, 750 mg/kg-day							
Gavage							
GDs 7–9; dams sacrificed on GD 20							
<u>Ema et al. (1996c)</u>	Number o	of implanta	tions pe	er litter (m	ean ± S	D)	
MBP	Dose		0	500		625	750
Rat (Wistar); P0, female (10–14/group)		14.2	(± 1.1)	14.8 (± 0.	8) 14	.5 (± 1.3)	13.6 (± 2.2)
0, 500, 625, 750 mg/kg							
Gavage							
GDs 10–12; dams sacrificed on GD 20							
<u>Ema et al. (1996c)</u>	Number o	of implanta	tions pe	er litter (m	ean ± S	D)	
MBP	Dose		0	500		625	750
Rat (Wistar); P0, female (10–15/group)		14.2	(± 1.1)	14.4 (± 2	4) 14	.5 (± 2.3)	14.2 (± 1.7)
0, 500, 625, 750 mg/kg-day							
Gavage							
GDs 13–15; dams sacrificed on GD 20							

Reference and study design	Results by endpoint [#]								
Ema and Miyawaki (2001)	Number o	of corpora lu	tea per litte	er (mean :	± SD)				
MBP	Dose	0	250	500	750	1,000			
Rat (Wistar); P0, female (16/group)		16.5	16 (± 1.2)	16.2 (±	•	15.9 (± 0.9)			
0, 250, 500, 750, 1,000 mg/kg-day		(± 1.2)			(± 1.8)				
Gavage	n = numb	er of litters							
GDs 0-8 with outcomes determined on	Number	of implantati	ons per fen	nale (mea	ın ± SD)				
GD 20	Dose	0	250	500	750	1,000			
		15.5 (± 1.3)	14.6 (± 2.5)	14.6 (± 4.2)	-	12.7 (± 5.1)*			
	n = number of pregnant females								
	Number	of implantati	ons per litt	er (mean	± SD)				
	Dose	0	250	500	750	1,000			
		15.5 (± 1.3)	14.6 (± 2.5)	15.6 (± 1.5)		14.5 (± 1.3)			
	n = numb	er of litters							
<u>Ema et al. (2003)</u>	AGD								
MBzP	-	ented graphi	cally; no sig	nificant e	effect on AGD	of female			
Rat (Wistar); P0, female (16/group)	fetuses								
0, 167, 250, 375 mg/kg-day	AGD per	cube root of	body weigh	nt ratio					
Gavage	Data pres	ented graphi	cally; no sig	nificant e	effect in fema	le fetuses			
GDs 15–17; dams sacrificed on GD 21	Number	of corpora lu	tea per litte	er (mean :	± SD)				
	Dose	0		167	250	375			
		15.7 (±	±1.1) 15.1	. (± 1.3)	15.9 (± 1.2)	16.1 (± 1.1)			
	Number	of implantati	ons per litt	er (mean	± SD)				
	Dose	0		167	250	375			
		14.3 ((± 2) 13.5	(± 1.5)	15.1 (± 1.2)	14.8 (± 1.2)			
Saillenfait et al. (2003)	Number	of implantati	ons per litt	er (mean	± SE)				
MBP	Dose	0		560	1,120	1,690			
Rat (Sprague-Dawley); P0, female (14–15/group)		13. (± 0.		4.62 0.63)	13.75 (± 0.68)	13.62 (± 0.69)			
0, 1.8, 3.6, 5.4 mmol/kg (equivalent to	Percent p	regnant							
0, 560, 1,120, 1,690 mg/kg as calculated by study authors)	Dose	0		560	1,120	1,690			
Gavage		79)	93	86	87			
GD 10; sacrificed on GD 21	Statistica	significance	not evaluat	ed					

Reference and study design			Results b	y endpoint	#				
<u>Saillenfait et al. (2003)</u>	Number o	f implantatio	ons per litte	r (mean ± SE	E)				
MBzP	Dose	0	280	560	1,120	1,690			
Rat (Sprague-Dawley); P0, female (12–14/group)		14 (± 1.09)	13.5 (± 1.26)	14.5 (± 0.94)	15.08 (± 0.45)	15 (± 0.71)			
0, 0.9, 1.8, 3.6, 5.4 mmol/kg (equivalent	Percent pregnant								
to 0, 280, 560, 1,120, 1,690 mg/kg as calculated by study authors)	Dose	0	280	560	1,120	1,690			
Gavage		93	92	86	93	75			
GD 10; sacrificed on GD 21	Statistical	significance r	not evaluate	ed					
<u>Saillenfait et al. (2003)</u>	Number o	f implantatio	ons per litte	r (mean ± SE	;)				
MBP	Dose	0	280	560	1,120	1,690			
Mouse (OF-1); P0, female (24–25/group) 0, 0.9, 1.8, 3.6, 5.4 mmol/kg (equivalent		13.45 (± 0.89)	13.71 (± 0.65)	11.27 (± 1.04)	12.73 (± 0.72)	13.24 (± 0.75)			
to 0, 280, 560, 1,120, 1,690 mg/kg as calculated by study authors)	Percent pregnant								
	Dose	0	280	560	1,120	1,690			
Gavage									
GD 8; sacrificed on GD 18		83	88	88	96	88			
	Statistical	significance r	not evaluate	ed					
<u>Saillenfait et al. (2003)</u>	Number o	f implantatio	ons per litte	r (mean ± SE	E)				
MBzP	Dose	0	280	560	1,120	1,690			
Mouse (OF-1); P0, female (20–23/group)		11.93	13.06	13.05	14.59	14.5			
0, 0.9, 1.8, 3.6, 5.4 mmol/kg (equivalent		(± 1.34)	(± 1.27)	(± 0.83)	(± 0.41)	(± 0.66)			
to 0, 280, 560, 1,120, 1,690 mg/kg as calculated by study authors)	Percent pr	egnant							
Gavage	Dose	0	280	560	1,120	1,690			
GD 8; sacrificed on GD 18		71	80	83	86	86			
	Statistical	significance r	not evaluate	ed					
Male hormones	•								
<u>Shono et al. (2000)</u>	Testostero	one content o	of the teste	s (pg/testis,t	estis mean 🗉	± SE)			
МВР	Dose		0	300					
Rat (Wistar-King A)		852	(± 80.3)	50.9 (± 3.8	3)*				
Equivalent to 0 and 300 mg/kg-day									
Gavage									
GDs 15–18									

Reference and study design	Results by endpoint [#]				
Male malformations					
<mark>Shono et al. (2000)</mark> MBP Rat (Wistar-King A)	Degree of transabdominal testicular migration (number of units from bladder neck where 100 U = distance from bladder neck to lower pole of kidney; mean ± SE)				
Equivalent to 0 and 300 mg/kg-day	Dose 0 300				
Gavage	9.3 (± 1.9) 57.9 (± 2.6)*				
GDs 15–18	Epididymis: nonneoplastic lesions				
	Poorly developed epididymis				
	Testis: nonneoplastic lesions				
	No remarkable changes in the morphological features of Sertoli and Leydig cells				
<u>Shono et al. (2000)</u> MBP Rat (Wistar-King A)	Degree of transabdominal testicular migration (number of units from bladder neck where 100 U = distance from bladder neck to lower pole of kidney; mean ± SE)				
Equivalent to 0 and 300 mg/kg-day	Dose 0 300				
Gavage	9.3 (± 1.9) 24.5 (± 5.2)*				
GDs 11-14					
<u>Shono et al. (2000)</u> MBP Rat (Wistar-King A)	Degree of transabdominal testicular migration (number of units from bladder neck where 100 U = distance from bladder neck to lower pole of kidney; mean ± SE)				
Equivalent to 0 and 300 mg/kg-day	Dose 0 300				
Gavage	9.3 (± 1.9) 12.3 (± 5.9)				
GDs 7–10					
Male puberty, reproductive developme	nt				
Ema et al. (2003)	AGD				
MBzP	Data presented graphically; AGD significantly reduced at 250 and				
Rat (Wistar); PO, female (16/group)	375 mg/kg in male fetuses				
0, 167, 250, 375 mg/kg-day	AGD per cube root of body weight ratio				
Gavage GDs 15–17; dams sacrificed on GD 21	Data presented graphically; significantly lower in 250 and 375 mg/kg groups than in control group				
	Degree of transabdominal testicular ascent (number of units from bladder neck where 100 U = distance from bladder neck to lower pole of kidney; mean ± SD)				
	Dose 0 167 250 375				
	18.9 (± 0.3) 18.4 (± 2.3) 23.8 (± 7.1)* 40.1 (± 8.2) ²				

This document is a draft for review purposes only and does not constitute Agency policy.3-213DRAFT—DO NOT CITE OR QUOTE

Reference and study design	Results by endpoint [#]								
	Number of fetuses with undescended testes								
	Dose	0	10	67	250	375			
		2	-	1	21	79			
<u>Shono and Suita (2003)</u> MBP	bladder n	Degree of transabdominal testicular ascent (number of units from bladder neck where 100 U = distance from bladder neck to lower pole of kidney; mean ± SD)							
Rat (Wistar-King A); P0, female (6/group)	Dose	0	125	250	500	1,000			
0, 125, 250, 500, 1,000 mg/kg-day Gavage		8.5 (± 1.3)	9.5 (± 1.4)	18.5 (± 1.9)*	33.7 (± 2.8)*	58.6 (± 2.1)*			
GDs 15–17; half of sacrificed on GD 20	Percent o	f fetuses wi	th undescei	nded testis					
for fetal examination; remaining offspring examined PNDs 60–70	Dose	0	125	250	500	1,000			
		0	0	25*	61.1*	76.9*			

6

*Result is statistically significant (p < 0.05) based on analysis of data by study authors. [#]Results are presented as the raw data as reported by the study authors.

 - = for controls, no response relevant; for other doses, no quantitative response reported; (n) = number evaluated from group; NR = not reported

1 3.4. PRELIMINARY MECHANISTIC INFORMATION FOR BBP

2 The systematic literature search for BBP also identified studies evaluating mechanisms of 3 action considered potentially relevant to effects observed following exposure to BBP. Studies were 4 included if they evaluated mechanistic events following exposure BBP or metabolites, or contained 5 information relevant to the mechanistic understanding of BBP toxicity. Reviews or analyses that do 6 not contain original data are not included here, but may be considered in later stages of assessment 7 development.

8 The diverse array of mechanistic studies presented here includes investigations of the 9 cellular, biochemical, and molecular mechanisms underlying toxicological outcomes. For this 10 preliminary evaluation, information reported in each study was extracted into a database (in the 11 form of an Excel spreadsheet) that will facilitate future evaluation of mechanistic information. This 12 information is being made available to provide an opportunity for stakeholder input, including the 13 identification of relevant studies not captured here.

- The information extracted from each study and included in the database, corresponds to thecolumn headings in the spreadsheet, and is as follows: link to HERO record (contained within a URL
- 16 that links to the study abstract in the HERO database), HERO ID, author(s), year, molecular
- 17 formulation, in vitro/in vivo, species, cell type, endpoint(s) (i.e., mechanistic outcomes), assay, and
- 18 mechanistic category. The database supports sorting capabilities, e.g., data can be organized by
- 19 assay. The database is available through HERO at [http://hero.epa.gov/index.cfm?
- 20 <u>action=reference.details&reference_id=2451132</u>]. To access the database, click on the link at the
- 21 top of the web page and select "download" and then "ok" to view the spreadsheet in Excel. This
- spreadsheet may also be saved to your desktop by downloading and selecting "save." The resulting
- 23 inventory of BBP mechanistic studies consists of 31 mechanistic outcomes from 18 in vivo studies,

as well as 266 mechanistic outcomes from 84 in vitro assays. Table 3-35 presents a summary of the
mechanistic outcomes recorded in the database from each study identified.

- 26 The mechanistic categories developed here are not mutually exclusive and are designed to
- 27 facilitate the analysis of similar studies and experimental observations in a systematic manner.
- 28 This process will allow the identification of mechanistic events that contribute to mode(s) of action
- 29 (MOAs) and/or adverse outcome pathways (AOPs) following BBP exposure. The mechanistic
- 30 categories assigned to each mechanistic outcome reported by an individual study are as follows:
- 31 (1) mutation, including investigations of gene and chromosomal mutation; (2) DNA damage,
- 32 including indicator assays of genetic damage; (3) DNA repair; (4) oxidative stress; (5) cell death and
- division (this captures a broad range of assays, but it is useful to consider them together as
- 34 observations resulting from cell cycle alterations; (6) pathology, which includes morphological
- evaluations pertaining to the dysfunction of organs, tissues, and cells; (7) epigenetic effects, which
- 36 are observations of heritable changes in gene function that cannot be explained by changes in the
- 37 DNA sequence; (8) receptor-mediated and cell signaling effects; (9) immune system effects;
- 38 (10) cellular and molecular adsorption, distribution, metabolism, and excretion (ADME);

- 1 (11) cellular differentiation and transformation; (12) cellular energetics; and (13) "other," to
- 2 capture those mechanistic outcomes not easily assigned to a defined category. Mechanistic
- 3 outcomes in the "other" category include gene expression, proteomics and metabolomics arrays,
- 4 hormone production, and markers of angiogenesis. The ADME category above includes studies
- 5 reporting the cellular metabolism of BBP, thermodynamics of protein binding, and cellular
- 6 transport.
- 7
- 8 9

Table 3-35. Summary of mechanistic outcomes evaluated following BBPadministration

Mechanistic	Total # outcomes/		In vivo mes/#	(# studies)) In vitro (# outcomes/#			/# stu	t studies)	
category	# studies	Total	Rat	Mouse	Total	Human	Primate	Rat	Mouse	
Mutation ^a	9/9	0	0	0	9/9	0	0	0	5/5	
DNA damage	6/4	1/1	0	1/1	5/3	1/1	0	0	4/2	
DNA repair										
Oxidative stress ^b	8/5	3/2	0	2/1	5/3	0	0	0	5/3	
Cell death and division ^c	86/43	1/1	1/1	0	86/43	58/28	0	10/7	12/9	
Pathology ^d	12/9	3/3	2/2	1/1	9/7	1/1	0	6/4	0	
Epigenetics	3/2	1/1	1/1	0	2/1	2/1	0	0	0	
Receptor-mediated and cell signaling ^e	81/38	5/5	3/3	0	76/34	34/18	6/1	5/3	3/2	
Immune system ^f	8/5	0	0	0	8/5	3/1	0	0	3/2	
Cellular & molecular ADME	4/4	1/1	0	1/1	3/3	3/3	0	0	0	
Cellular differentiation and transformation	26/11	2/2	0	2/2	24/11	14/4	0	2/1	8/6	
Cellular energetics	1/1	0	0	0	1/1	1/1	0	0	0	
Other ^g	53/25	14/8	11/5	1/1	38/19	26/10	0	8/5	1/1	
Total	297/94		31/18	3			266/84			

10

^aDatabase included four outcomes in four studies utilizing *Salmonella typhimurium*.

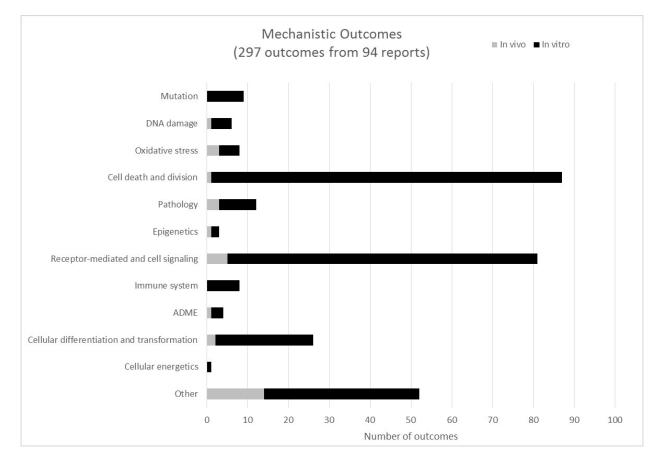
12 ^bDatabase included one outcome in one study utilizing fish in vivo.

^cDatabase included one outcome in one study/each utilizing porcine or avian cells, and four endpoints from one
 study of cultured bovine cells.

^dDatabase included one outcome in one study/each utilizing porcine or hamster cells.

^eDatabase included one outcome in one study/each utilizing fish or frogs in vivo; one endpoint from one study

using fish cells, two outcomes from one study/each using hamster or avian cells, five endpoints from two studies


using frog cells, and nine outcomes from five studies using bovine cells in vitro.

^fDatabase included two outcomes in one study using rabbit cells in vitro.

- ^gDatabase included two outcomes in one study/each using fish in vivo, as well as porcine, bovine or frog cells in
 vitro; endpoints primarily consisted of gene expression, proteomics and metabolomics arrays, hormone
 production, and markers of angiogenesis.
- Notes: The number in rows may not sum to "total" amounts as several studies evaluated multiple species or
 employed both in vivo and in vitro models. The mechanistic categories in italics and in gray shading had no BBP specific information available.
- 9 Information summarized in Table 3-35 and Figure 3-14 and detailed in the mechanistic
- 10 database can be used to ascertain the breadth and scope of available mechanistic studies. At this
- 11 preliminary stage, study results are not presented. Additionally, the inclusion of a study in the
- 12 spreadsheet does not reflect conclusions reached as to mechanistic study quality or relevance.
- 13 After the epidemiological and experimental studies on each health effect have been synthesized,
- 14 mechanistic studies will be reviewed and findings synthesized to evaluate potential MOAs and/or
- 15 AOPs, which can be used to inform hazard identification and dose-response assessment, specifically
- 16 addressing questions of human relevance, susceptibility, and dose-response relationships.
- 17

4

8

18

Figure 3-22. Summary of in vivo or in vitro mechanistic data by mechanistic category following oral exposure to BBP.

2 **4.REFERENCES**

1

3	Adibi, JJ; Whyatt, RM; Williams, PL; Calafat, AM; Camann, D; Herrick, R; Nelson, H; Bhat,
4	HK; Perera, FP; Silva, MJ; Hauser, R. (2008). Characterization of phthalate exposure
5	among pregnant women assessed by repeat air and urine samples. Environ Health
6	Perspect 116: 467-473. <u>http://dx.doi.org/10.1289/ehp.10749</u> .
7	Adibi, JJ; Hauser, R; Williams, PL; Whyatt, RM; Calafat, AM; Nelson, H; Herrick, R; Swan,
8	SH. (2009). Maternal urinary metabolites of Di-(2-Ethylhexyl) phthalate in relation to the
9	timing of labor in a US multicenter pregnancy cohort study. Am J Epidemiol 169: 1015-
10	1024. http://dx.doi.org/10.1093/aje/kwp001.
11	Agramunt, S; Kogevinas, M; Carreras, R. (2011). [Anogenital distance in newborns: a sensitive
12	marker of prenatal hormonal disruption] [Review]. Med Clin (Barc) 137: 459-463.
13	http://dx.doi.org/10.1016/j.medcli.2010.03.024.
14	Ahmad, R; Gautam, AK; Verma, Y; Sedha, S; Kumar, S. (2014). Effects of in utero di-butyl
15	phthalate and butyl benzyl phthalate exposure on offspring development and male
16	reproduction of rat. Environ Sci Pollut Res Int 21: 3156-3165.
17	http://dx.doi.org/10.1007/s11356-013-2281-x.
18	Ait Bamai, Y; Shibata, E; Saito, I; Araki, A; Kanazawa, A; Morimoto, K; Nakayama, K; Tanaka,
19	M; Takigawa, T; Yoshimura, T; Chikara, H; Saijo, Y; Kishi, R. (2014). Exposure to
20	house dust phthalates in relation to asthma and allergies in both children and adults. Sci
21	Total Environ 485-486: 153-163. <u>http://dx.doi.org/10.1016/j.scitotenv.2014.03.059</u> .
22	Anderson, WA; Castle, L; Scotter, MJ; Massey, RC; Springall, C. (2001). A biomarker approach
23	to measuring human dietary exposure to certain phthalate diesters. Food Addit Contam
24 25	18: 1068-1074. <u>http://dx.doi.org/10.1080/02652030110050113</u> .
25 26	Aschengrau, A; Coogan, P; Quinn, M; Cashins, L. (1998). Occupational exposure to estrogenic chemicals and the occurrence of breast cancer: An exploratory analysis. Am J Ind Med
20	34: 6-14. <u>http://dx.doi.org/10.1002/(SICI)1097-0274(199807)34:1<6::AID-</u>
28	AJIM2>3.0.CO;2-X.
29	Aso, S; Ehara, H; Miyata, K; Hosyuyama, S; Shiraishi, K; Umano, T; Minobe, Y. (2005). A two-
30	generation reproductive toxicity study of butyl benzyl phthalate in rats. J Toxicol Sci 30:
31	39-58. <u>http://dx.doi.org/10.2131/jts.30.839</u> .
32	Baird, DD; Wilcox, AJ. (1985). Cigarette smoking associated with delayed conception. JAMA
33	253: 2979-2983. http://dx.doi.org/10.1001/jama.1985.03350440057031.
34	Baird, DD; Wilcox, AJ; Weinberg, CR. (1986). Use of time to pregnancy to study environmental
35	exposures. Am J Epidemiol 124: 470-480.
36	Bayer AG. (1998). Butyl benzyl phthalate (BBP): developmental reproduction study in Wistar
37	rats with application in the diet or drinking water. (Report No. 28215). Wuppertal,
38	Germany.
39	Behall, KM; Scholfield, DJ; Hallfrisch, JG; Kelsay, JL; Reiser, S. (1984). Seasonal variation in
40	plasma glucose and hormone levels in adult men and women. Am J Clin Nutr 40: 1352-
41	1356.
42	Bertelsen, RJ; Carlsen, KC; Calafat, AM; Hoppin, JA; Håland, G; Mowinckel, P; Carlsen, KH;
43	Løvik, M. (2013). Urinary biomarkers for phthalates associated with asthma in

1		Norwegian	children.	Environ	Health	Perspect	121:	251-256.
2		http://dx.doi.o	org/10.1289/eh	<u>p.1205256</u> .				
3	Betz,	A; Jayatilaka,	S; Joshi, J; H	Ramanan, S;	Debartolo, I	D; Pylypiw, I	H; Franke,	<u>E.</u> (2013).
4		Chronic expo	sure to benzy	yl butyl phth	alate (BBP)	alters social	interactio	on and fear
5		conditioning	in male adult	rats: Alterat	ions in amy	gdalar MeCP	2, ERK1/2	2 and ER α .
6		Neuro Endocr	inol Lett 34: 3	47-358.				
7	<u>BIBR</u>	(British Indu	0		,	· / 1		
8		• · · •	rats with Santi	,	, ,	· · ·		0
9	<u>Blair,</u>	A; Stewart,						
10		confounding a	-		-	0		-
11		exposures [Re						
12	Boas,	M; Frederikser						
13			<u>4.</u> (2010). Ch					
14		function, insu				nviron Health	n Perspect	118: 1458-
15		-	x.doi.org/10.12					
16	Bornel	nag, CG; Sund						
17		Engman, LC.						
18		and phthalates				tudy. Environ	Health Pe	erspect 112:
19			tp://dx.doi.org					
20	<u>Brabar</u>	nt, G; Prank, I						
21		regulation of		-	etion. J Clir	n Endocrinol	Metab 72	2: 145-150.
22	D	http://dx.doi.o				1		
23	Braun-	Fahrländer, C;						
24		<u>JC.</u> (1997). V						
25		population of						
26	D	and Immunolo						
27	<u>Braun</u> ,	JM; Smith, K						
28		-	urinary phth	Environ	Health		120:	
29 30		during pr http://dx.doi.o	regnancy.		Health	Perspect	120.	739-745.
30 31	Braun	JM; Kalkbren			K· Calafat /	M. Siödin A	· Hauser	R. Webster
32	<u>Draun</u> ,	<u>GM; Chen, A</u>						
33		chemicals and						
34		children: th	-	-		alth Perspe		513-520.
35		http://dx.doi.o		•		ann reispe	ct 122.	515 520.
36	Buck I	Louis, GM; Pet			han M· Sun	daram R·Sta	nford I V	arner MW·
37	<u>Duck I</u>	Kennedy, A;						
38		Bisphenol A		•		-		
39		Diagnosis	and Outco					2-169.e162.
40		http://dx.doi.o		•	·			2 109.0102.
41	Buck I	Louis, GM; Su				EF: Maisog.	J: Kannan	K . (2014).
42			enol A, phtha					
43		Fertility and						
44		http://dx.doi.o			· ·			• •
		-						

1	Burney, P; Chinn, S. (1987). Developing a new questionnaire for measuring the prevalence and
2	distribution of asthma. Chest 91: 79S-83S.
3	http://dx.doi.org/10.1378/chest.91.6_Supplement.79S.
4	Burney, PG; Laitinen, LA; Perdrizet, S; Huckauf, H; Tattersfield, AE; Chinn, S; Poisson, N;
5	Heeren, A; Britton, JR; Jones, T. (1989). Validity and repeatability of the IUATLD
6	(1984) Bronchial Symptoms Questionnaire: an international comparison. Eur Respir J 2:
7	940-945.
8	Buser, MC; Murray, HE; Scinicariello, F. (2014). Age and sex differences in childhood and
9	adulthood obesity association with phthalates: Analyses of NHANES 2007-2010. Int J
10	Hyg Environ Health 217: 687-694. <u>http://dx.doi.org/10.1016/j.ijheh.2014.02.005</u> .
11	Butala, JH; David, RM; Gans, G; Mckee, RH; Guo, TL; Peachee, VL; White, KL, Jr. (2004).
12	Phthalate treatment does not influence levels of IgE or Th2 cytokines in B6C3F1 mice.
13	Toxicology 201: 77-85. <u>http://dx.doi.org/10.1016/j.tox.2004.04.004</u> .
14	Cakmak, S; Dales, RE; Hebbern, C; Saravanabhavan, G. (2014). The Association Between
15	Urinary Phthalates and Lung Function. J Occup Environ Med 56: 376-381.
16	http://dx.doi.org/10.1097/JOM.00000000000137.
17	Callesen, M; Bekö, G; Weschler, CJ; Sigsgaard, T; Jensen, TK; Clausen, G; Toftum, J; Norberg,
18	LA; Høst, A. (2014a). Associations between selected allergens, phthalates, nicotine,
19	polycyclic aromatic hydrocarbons, and bedroom ventilation and clinically confirmed
20	asthma, rhinoconjunctivitis, and atopic dermatitis in preschool children. Indoor Air 24:
21	136-147. <u>http://dx.doi.org/10.1111/ina.12060</u> .
22	Callesen, M; Bekö, G; Weschler, CJ; Langer, S; Brive, L; Clausen, G; Toftum, J; Sigsgaard, T;
23	Høst, A; Jensen, TK. (2014b). Phthalate metabolites in urine and asthma, allergic
24	rhinoconjunctivitis and atopic dermatitis in preschool children. Int J Hyg Environ Health
25	217: 645-652. <u>http://dx.doi.org/10.1016/j.ijheh.2013.12.001</u> .
26	Cantonwine, DE; Cordero, JF; Rivera-González, LO; Anzalota Del Toro, LV; Ferguson, KK;
27	Mukherjee, B; Calafat, AM; Crespo, N; Jiménez-Vélez, B; Padilla, IY; Alshawabkeh,
28 29	<u>AN; Meeker, JD.</u> (2014). Urinary phthalate metabolite concentrations among pregnant women in Northern Puerto Rico: Distribution, temporal variability, and predictors.
29 30	Environ Int 62: 1-11. http://dx.doi.org/10.1016/j.envint.2013.09.014.
31	CDC (Centers for Disease Control and Prevention). (2013). Fourth national report on human
32	exposure to environmental chemicals, updated tables, September 2013. (CS244702-A).
33	Atlanta, GA.
34	http://www.cdc.gov/exposurereport/pdf/FourthReport_UpdatedTables_Sep2013.pdf.
35	Chan-Yeung, M. (2000). Spirometry and tests of bronchial hyperresponsiveness in population
36	studies [Review]. Int J Tuberc Lung Dis 4: 633-638.
37	CHAP (Chronic Hazard Advisory Panel on Phthalates and Phthalate Alternatives). (2014).
38	Chronic Hazard Advisory Panel on phthalates and phthalate alternatives (with
39	appendices). Bethesda, MD: U.S. Consumer Product Safety Commission, Directorate for
40	Health Sciences. http://www.cpsc.gov/en/Regulations-LawsStandards/Statutes/The-
41	Consumer-Product-Safety-Improvement-Act/Phthalates/Chronic-Hazard-Advisory-Panel-
42	CHAP-on-Phthalates/.
43	Chen, CY; Chou, YY; Wu, YM; Lin, CC; Lin, SJ; Lee, CC. (2013). Phthalates may promote
44	female puberty by increasing kisspeptin activity. Hum Reprod 28: 2765-2773.
45	http://dx.doi.org/10.1093/humrep/det325.

1	Cheng, WS; Wingard, DL; Kritz-Silverstein, D; Barrett-Connor, E. (2008). Sensitivity and
2	specificity of death certificates for diabetes: as good as it gets? Diabetes Care 31: 279-
3	284. <u>http://dx.doi.org/10.2337/dc07-1327</u> .
4	Cho, SC; Bhang, SY; Hong, YC; Shin, MS; Kim, BN; Kim, JW; Yoo, HJ; Cho, IH; Kim, HW.
5	(2010). Relationship between environmental phthalate exposure and the intelligence of
6	school-age children. Environ Health Perspect 118: 1027-1032.
7	http://dx.doi.org/10.1289/ehp.0901376.
8	Chopra, V; Harley, K; Lahiff, M; Eskenazi, B. (2014). Association between phthalates and
9	attention deficit disorder and learning disability in U.S. children, 6-15 years. Environ Res
10	128: 64-69. http://dx.doi.org/10.1016/j.envres.2013.10.004.
11	Chou, YY; Huang, PC; Lee, CC; Wu, MH; Lin, SJ. (2009). Phthalate exposure in girls during
12	early puberty. J Pediatr Endocrinol Metab 22: 69-77.
13	Christensen, KL; Makris, SL; Lorber, M. (2014). Generation of hazard indices for cumulative
14	exposure to phthalates for use in cumulative risk assessment. Regul Toxicol Pharmacol
15	69: 380-389. http://dx.doi.org/10.1016/j.yrtph.2014.04.019.
16	Clark, KE; David, RM; Guinn, R; Kramarz, KW; Lampi, MA; Staples, CA. (2011). Modeling
17	Human Exposure to Phthalate Esters: A Comparison of Indirect and Biomonitoring
18	Estimation Methods. Hum Ecol Risk Assess 17: 923-965.
19	http://dx.doi.org/10.1080/10807039.2011.588157.
20	Cooper, R; Blell, M; Hardy, R; Black, S; Pollard, TM; Wadsworth, ME; Pearce, MS; Kuh, D.
21	(2006). Validity of age at menarche self-reported in adulthood. J Epidemiol Community
22	Health 60: 993-997. http://dx.doi.org/10.1136/jech.2005.043182.
23	CPSC (U.S. Consumer Product Safety Commission). (2010). CPSC staff toxicity review of 17
24	phthalates for consideration by the Chronic Hazard Advisory Panel - 2010.
24 25	phthalates for consideration by the Chronic Hazard Advisory Panel - 2010. <u>http://www.cpsc.gov/PageFiles/126213/toxreview.pdf</u> .
	1
25	http://www.cpsc.gov/PageFiles/126213/toxreview.pdf.
25 26	http://www.cpsc.gov/PageFiles/126213/toxreview.pdf. Dearman, RJ; Betts, CJ; Beresford, L; Bailey, L; Caddick, HT; Kimber, I, an. (2009). Butyl
25 26 27	 <u>http://www.cpsc.gov/PageFiles/126213/toxreview.pdf</u>. <u>Dearman, RJ; Betts, CJ; Beresford, L; Bailey, L; Caddick, HT; Kimber, I, an.</u> (2009). Butyl benzyl phthalate: effects on immune responses to ovalbumin in mice. J Appl Toxicol 29:
25 26 27 28	 <u>http://www.cpsc.gov/PageFiles/126213/toxreview.pdf</u>. <u>Dearman, RJ; Betts, CJ; Beresford, L; Bailey, L; Caddick, HT; Kimber, I, an.</u> (2009). Butyl benzyl phthalate: effects on immune responses to ovalbumin in mice. J Appl Toxicol 29: 118-125. <u>http://dx.doi.org/10.1002/jat.1388</u>. <u>Dirtu, AC; Geens, T; Dirinck, E; Malarvannan, G; Neels, H; Van Gaal, L; Jorens, PG; Covaci, A.</u> (2013). Phthalate metabolites in obese individuals undergoing weight loss: Urinary
25 26 27 28 29	 <u>http://www.cpsc.gov/PageFiles/126213/toxreview.pdf</u>. <u>Dearman, RJ; Betts, CJ; Beresford, L; Bailey, L; Caddick, HT; Kimber, I, an.</u> (2009). Butyl benzyl phthalate: effects on immune responses to ovalbumin in mice. J Appl Toxicol 29: 118-125. <u>http://dx.doi.org/10.1002/jat.1388</u>. <u>Dirtu, AC; Geens, T; Dirinck, E; Malarvannan, G; Neels, H; Van Gaal, L; Jorens, PG; Covaci, C</u>
25 26 27 28 29 30	 http://www.cpsc.gov/PageFiles/126213/toxreview.pdf. Dearman, RJ; Betts, CJ; Beresford, L; Bailey, L; Caddick, HT; Kimber, I, an. (2009). Butyl benzyl phthalate: effects on immune responses to ovalbumin in mice. J Appl Toxicol 29: 118-125. http://dx.doi.org/10.1002/jat.1388. Dirtu, AC; Geens, T; Dirinck, E; Malarvannan, G; Neels, H; Van Gaal, L; Jorens, PG; Covaci, <u>A</u>. (2013). Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake. Environ Int 59: 344353. http://dx.doi.org/10.1016/j.envint.2013.06.023.
25 26 27 28 29 30 31	 http://www.cpsc.gov/PageFiles/126213/toxreview.pdf. Dearman, RJ; Betts, CJ; Beresford, L; Bailey, L; Caddick, HT; Kimber, I, an. (2009). Butyl benzyl phthalate: effects on immune responses to ovalbumin in mice. J Appl Toxicol 29: 118-125. http://dx.doi.org/10.1002/jat.1388. Dirtu, AC; Geens, T; Dirinck, E; Malarvannan, G; Neels, H; Van Gaal, L; Jorens, PG; Covaci, A. (2013). Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake. Environ Int 59: 344353.
25 26 27 28 29 30 31 32	 http://www.cpsc.gov/PageFiles/126213/toxreview.pdf. Dearman, RJ; Betts, CJ; Beresford, L; Bailey, L; Caddick, HT; Kimber, I, an. (2009). Butyl benzyl phthalate: effects on immune responses to ovalbumin in mice. J Appl Toxicol 29: 118-125. http://dx.doi.org/10.1002/jat.1388. Dirtu, AC; Geens, T; Dirinck, E; Malarvannan, G; Neels, H; Van Gaal, L; Jorens, PG; Covaci, A. (2013). Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake. Environ Int 59: 344353. http://dx.doi.org/10.1016/j.envint.2013.06.023. Dotterud, LK; Kvammen, B; Lund, E; Falk, ES. (1995). An evaluation of atopic diseases in relation to immediate skin test reactions among schoolchildren in the Sor-Varanger
25 26 27 28 29 30 31 32 33	 http://www.cpsc.gov/PageFiles/126213/toxreview.pdf. Dearman, RJ; Betts, CJ; Beresford, L; Bailey, L; Caddick, HT; Kimber, I, an. (2009). Butyl benzyl phthalate: effects on immune responses to ovalbumin in mice. J Appl Toxicol 29: 118-125. http://dx.doi.org/10.1002/jat.1388. Dirtu, AC; Geens, T; Dirinck, E; Malarvannan, G; Neels, H; Van Gaal, L; Jorens, PG; Covaci, A. (2013). Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake. Environ Int 59: 344353. http://dx.doi.org/10.1016/j.envint.2013.06.023. Dotterud, LK; Kvammen, B; Lund, E; Falk, ES. (1995). An evaluation of atopic diseases in relation to immediate skin test reactions among schoolchildren in the Sor-Varanger community. J Eur Acad Dermatol Venereol 5: 240-249. http://dx.doi.org/10.1111/j.1468-
25 26 27 28 29 30 31 32 33 34	 http://www.cpsc.gov/PageFiles/126213/toxreview.pdf. Dearman, RJ; Betts, CJ; Beresford, L; Bailey, L; Caddick, HT; Kimber, I, an. (2009). Butyl benzyl phthalate: effects on immune responses to ovalbumin in mice. J Appl Toxicol 29: 118-125. http://dx.doi.org/10.1002/jat.1388. Dirtu, AC; Geens, T; Dirinck, E; Malarvannan, G; Neels, H; Van Gaal, L; Jorens, PG; Covaci, A. (2013). Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake. Environ Int 59: 344353. http://dx.doi.org/10.1016/j.envint.2013.06.023. Dotterud, LK; Kvammen, B; Lund, E; Falk, ES. (1995). An evaluation of atopic diseases in relation to immediate skin test reactions among schoolchildren in the Sor-Varanger community. J Eur Acad Dermatol Venereol 5: 240-249. http://dx.doi.org/10.1111/j.1468-3083.1995.tb00112.x.
25 26 27 28 29 30 31 32 33 34 35	 http://www.cpsc.gov/PageFiles/126213/toxreview.pdf. Dearman, RJ; Betts, CJ; Beresford, L; Bailey, L; Caddick, HT; Kimber, I, an. (2009). Butyl benzyl phthalate: effects on immune responses to ovalbumin in mice. J Appl Toxicol 29: 118-125. http://dx.doi.org/10.1002/jat.1388. Dirtu, AC; Geens, T; Dirinck, E; Malarvannan, G; Neels, H; Van Gaal, L; Jorens, PG; Covaci, A. (2013). Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake. Environ Int 59: 344353. http://dx.doi.org/10.1016/j.envint.2013.06.023. Dotterud, LK; Kvammen, B; Lund, E; Falk, ES. (1995). An evaluation of atopic diseases in relation to immediate skin test reactions among schoolchildren in the Sor-Varanger community. J Eur Acad Dermatol Venereol 5: 240-249. http://dx.doi.org/10.1111/j.1468-
25 26 27 28 29 30 31 32 33 34 35 36	 http://www.cpsc.gov/PageFiles/126213/toxreview.pdf. Dearman, RJ; Betts, CJ; Beresford, L; Bailey, L; Caddick, HT; Kimber, I, an. (2009). Butyl benzyl phthalate: effects on immune responses to ovalbumin in mice. J Appl Toxicol 29: 118-125. http://dx.doi.org/10.1002/jat.1388. Dirtu, AC; Geens, T; Dirinck, E; Malarvannan, G; Neels, H; Van Gaal, L; Jorens, PG; Covaci, A. (2013). Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake. Environ Int 59: 344353. http://dx.doi.org/10.1016/j.envint.2013.06.023. Dotterud, LK; Kvammen, B; Lund, E; Falk, ES. (1995). An evaluation of atopic diseases in relation to immediate skin test reactions among schoolchildren in the Sor-Varanger community. J Eur Acad Dermatol Venereol 5: 240-249. http://dx.doi.org/10.1111/j.1468-3083.1995.tb00112.x. Duty, SM; Silva, MJ; Barr, DB; Brock, JW; Ryan, L; Chen, Z; Herrick, RF; Christiani, DC; Hauser, RC. (2003a). Phthalate exposure and human semen parameters. Epidemiology
25 26 27 28 29 30 31 32 33 34 35 36 37	 http://www.cpsc.gov/PageFiles/126213/toxreview.pdf. Dearman, RJ; Betts, CJ; Beresford, L; Bailey, L; Caddick, HT; Kimber, I, an. (2009). Butyl benzyl phthalate: effects on immune responses to ovalbumin in mice. J Appl Toxicol 29: 118-125. http://dx.doi.org/10.1002/jat.1388. Dirtu, AC; Geens, T; Dirinck, E; Malarvannan, G; Neels, H; Van Gaal, L; Jorens, PG; Covaci, A. (2013). Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake. Environ Int 59: 344353. http://dx.doi.org/10.1016/j.envint.2013.06.023. Dotterud, LK; Kvammen, B; Lund, E; Falk, ES. (1995). An evaluation of atopic diseases in relation to immediate skin test reactions among schoolchildren in the Sor-Varanger community. J Eur Acad Dermatol Venereol 5: 240-249. http://dx.doi.org/10.1111/j.1468-3083.1995.tb00112.x. Duty, SM; Silva, MJ; Barr, DB; Brock, JW; Ryan, L; Chen, Z; Herrick, RF; Christiani, DC;
25 26 27 28 29 30 31 32 33 34 35 36 37 38	 http://www.cpsc.gov/PageFiles/126213/toxreview.pdf. Dearman, RJ; Betts, CJ; Beresford, L; Bailey, L; Caddick, HT; Kimber, I, an. (2009). Butyl benzyl phthalate: effects on immune responses to ovalbumin in mice. J Appl Toxicol 29: 118-125. http://dx.doi.org/10.1002/jat.1388. Dirtu, AC; Geens, T; Dirinck, E; Malarvannan, G; Neels, H; Van Gaal, L; Jorens, PG; Covaci, A. (2013). Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake. Environ Int 59: 344353. http://dx.doi.org/10.1016/j.envint.2013.06.023. Dotterud, LK; Kvammen, B; Lund, E; Falk, ES. (1995). An evaluation of atopic diseases in relation to immediate skin test reactions among schoolchildren in the Sor-Varanger community. J Eur Acad Dermatol Venereol 5: 240-249. http://dx.doi.org/10.1111/j.1468-3083.1995.tb00112.x. Duty, SM; Silva, MJ; Barr, DB; Brock, JW; Ryan, L; Chen, Z; Herrick, RF; Christiani, DC; Hauser, RC. (2003a). Phthalate exposure and human semen parameters. Epidemiology 14: 269-277. Duty, SM; Singh, NP; Silva, MJ; Barr, DB; Brock, JW; Ryan, L; Herrick, RF; Christiani, DC;
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	 http://www.cpsc.gov/PageFiles/126213/toxreview.pdf. Dearman, RJ; Betts, CJ; Beresford, L; Bailey, L; Caddick, HT; Kimber, I, an. (2009). Butyl benzyl phthalate: effects on immune responses to ovalbumin in mice. J Appl Toxicol 29: 118-125. http://dx.doi.org/10.1002/jat.1388. Dirtu, AC; Geens, T; Dirinck, E; Malarvannan, G; Neels, H; Van Gaal, L; Jorens, PG; Covaci, A. (2013). Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake. Environ Int 59: 344353. http://dx.doi.org/10.1016/j.envint.2013.06.023. Dotterud, LK; Kvammen, B; Lund, E; Falk, ES. (1995). An evaluation of atopic diseases in relation to immediate skin test reactions among schoolchildren in the Sor-Varanger community. J Eur Acad Dermatol Venereol 5: 240-249. http://dx.doi.org/10.1111/j.1468-3083.1995.tb00112.x. Duty, SM; Silva, MJ; Barr, DB; Brock, JW; Ryan, L; Chen, Z; Herrick, RF; Christiani, DC; Hauser, RC. (2003a). Phthalate exposure and human semen parameters. Epidemiology 14: 269-277. Duty, SM; Singh, NP; Silva, MJ; Barr, DB; Brock, JW; Ryan, L; Herrick, RF; Christiani, DC; Hauser, R. (2003b). The relationship between environmental exposures to phthalates and
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	 http://www.cpsc.gov/PageFiles/126213/toxreview.pdf. Dearman, RJ; Betts, CJ; Beresford, L; Bailey, L; Caddick, HT; Kimber, I, an. (2009). Butyl benzyl phthalate: effects on immune responses to ovalbumin in mice. J Appl Toxicol 29: 118-125. http://dx.doi.org/10.1002/jat.1388. Dirtu, AC; Geens, T; Dirinck, E; Malarvannan, G; Neels, H; Van Gaal, L; Jorens, PG; Covaci, A. (2013). Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake. Environ Int 59: 344353. http://dx.doi.org/10.1016/j.envint.2013.06.023. Dotterud, LK; Kvammen, B; Lund, E; Falk, ES. (1995). An evaluation of atopic diseases in relation to immediate skin test reactions among schoolchildren in the Sor-Varanger community. J Eur Acad Dermatol Venereol 5: 240-249. http://dx.doi.org/10.1111/j.1468-3083.1995.tb00112.x. Duty, SM; Silva, MJ; Barr, DB; Brock, JW; Ryan, L; Chen, Z; Herrick, RF; Christiani, DC; Hauser, RC. (2003a). Phthalate exposure and human semen parameters. Epidemiology 14: 269-277. Duty, SM; Singh, NP; Silva, MJ; Barr, DB; Brock, JW; Ryan, L; Herrick, RF; Christiani, DC; Hauser, R. (2003b). The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay. Environ Health Perspect
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	 http://www.cpsc.gov/PageFiles/126213/toxreview.pdf. Dearman, RJ; Betts, CJ; Beresford, L; Bailey, L; Caddick, HT; Kimber, I, an. (2009). Butyl benzyl phthalate: effects on immune responses to ovalbumin in mice. J Appl Toxicol 29: 118-125. http://dx.doi.org/10.1002/jat.1388. Dirtu, AC; Geens, T; Dirinck, E; Malarvannan, G; Neels, H; Van Gaal, L; Jorens, PG; Covaci, A. (2013). Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake. Environ Int 59: 344353. http://dx.doi.org/10.1016/j.envint.2013.06.023. Dotterud, LK; Kvammen, B; Lund, E; Falk, ES. (1995). An evaluation of atopic diseases in relation to immediate skin test reactions among schoolchildren in the Sor-Varanger community. J Eur Acad Dermatol Venereol 5: 240-249. http://dx.doi.org/10.1111/j.1468-3083.1995.tb00112.x. Duty, SM; Silva, MJ; Barr, DB; Brock, JW; Ryan, L; Chen, Z; Herrick, RF; Christiani, DC; Hauser, RC. (2003a). Phthalate exposure and human semen parameters. Epidemiology 14: 269-277. Duty, SM; Singh, NP; Silva, MJ; Barr, DB; Brock, JW; Ryan, L; Herrick, RF; Christiani, DC; Hauser, R. (2003b). The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay. Environ Health Perspect 111: 1164-1169. http://dx.doi.org/10.1289/ehp.5756.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	 http://www.cpsc.gov/PageFiles/126213/toxreview.pdf. Dearman, RJ; Betts, CJ; Beresford, L; Bailey, L; Caddick, HT; Kimber, I, an. (2009). Butyl benzyl phthalate: effects on immune responses to ovalbumin in mice. J Appl Toxicol 29: 118-125. http://dx.doi.org/10.1002/jat.1388. Dirtu, AC; Geens, T; Dirinck, E; Malarvannan, G; Neels, H; Van Gaal, L; Jorens, PG; Covaci, A. (2013). Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake. Environ Int 59: 344353. http://dx.doi.org/10.1016/j.envint.2013.06.023. Dotterud, LK; Kvammen, B; Lund, E; Falk, ES. (1995). An evaluation of atopic diseases in relation to immediate skin test reactions among schoolchildren in the Sor-Varanger community. J Eur Acad Dermatol Venereol 5: 240-249. http://dx.doi.org/10.1111/j.1468-3083.1995.tb00112.x. Duty, SM; Silva, MJ; Barr, DB; Brock, JW; Ryan, L; Chen, Z; Herrick, RF; Christiani, DC; Hauser, RC. (2003a). Phthalate exposure and human semen parameters. Epidemiology 14: 269-277. Duty, SM; Singh, NP; Silva, MJ; Barr, DB; Brock, JW; Ryan, L; Herrick, RF; Christiani, DC; Hauser, R. (2003b). The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay. Environ Health Perspect 111: 1164-1169. http://dx.doi.org/10.1289/ehp.5756. Duty, SM; Calafat, AM; Silva, MJ; Brock, JW; Ryan, L; Chen, Z; Overstreet, J; Hauser, R.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	 http://www.cpsc.gov/PageFiles/126213/toxreview.pdf. Dearman, RJ; Betts, CJ; Beresford, L; Bailey, L; Caddick, HT; Kimber, I, an. (2009). Butyl benzyl phthalate: effects on immune responses to ovalbumin in mice. J Appl Toxicol 29: 118-125. http://dx.doi.org/10.1002/jat.1388. Dirtu, AC; Geens, T; Dirinck, E; Malarvannan, G; Neels, H; Van Gaal, L; Jorens, PG; Covaci, A. (2013). Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake. Environ Int 59: 344353. http://dx.doi.org/10.1016/j.envint.2013.06.023. Dotterud, LK; Kvammen, B; Lund, E; Falk, ES. (1995). An evaluation of atopic diseases in relation to immediate skin test reactions among schoolchildren in the Sor-Varanger community. J Eur Acad Dermatol Venereol 5: 240-249. http://dx.doi.org/10.1111/j.1468-3083.1995.tb00112.x. Duty, SM; Silva, MJ; Barr, DB; Brock, JW; Ryan, L; Chen, Z; Herrick, RF; Christiani, DC; Hauser, RC. (2003a). Phthalate exposure and human semen parameters. Epidemiology 14: 269-277. Duty, SM; Singh, NP; Silva, MJ; Barr, DB; Brock, JW; Ryan, L; Herrick, RF; Christiani, DC; Hauser, R. (2003b). The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay. Environ Health Perspect 111: 1164-1169. http://dx.doi.org/10.1289/ehp.5756.

1	Duty, SM; Calafat, AM; Silva, MJ; Ryan, L; Hauser, R. (2005). Phthalate exposure and
2	reproductive hormones in adult men. Hum Reprod 20: 604-610.
3	http://dx.doi.org/10.1093/humrep/deh656.
4	ECJRC (European Commission, Joint Research Centre). (2007). European Union risk
5	assessment report, benzyl butyl phthalate (BBP). (EUR 22773 EN). Luxembourg: Office
6	for Official Publications of the European Communities.
7	http://publications.jrc.ec.europa.eu/repository/bitstream/111111111111/10948/1/benzylbutyl
8	phthalatereport318.pdf.
9	Eisenberg, ML; Hsieh, MH; Walters, RC; Krasnow, R; Lipshultz, LI. (2011). The relationship
10	between anogenital distance, fatherhood, and fertility in adult men. PLoS ONE 6:
11	e18973. http://dx.doi.org/10.1371/journal.pone.0018973.
12	Ema, M; Murai, T; Itami, T; Kawasaki, H. (1990). Evaluation of the teratogenic potential of the
13	plasticizer butyl benzyl phthalate in rats. J Appl Toxicol 10: 339-343.
14	http://dx.doi.org/10.1002/jat.2550100506.
15	Ema, M; Itami, T; Kawasaki, H. (1992a). Effect of period of exposure on the developmental
16	toxicity of butyl benzyl phthalate in rats. J Appl Toxicol 12: 57-61.
17	http://dx.doi.org/10.1002/jat.2550120112.
18	Ema, M; Itami, T; Kawasaki, H. (1992b). Embryolethality and teratogenicity of butyl benzyl
19	phthalate in rats. J Appl Toxicol 12: 179-183. <u>http://dx.doi.org/10.1002/jat.2550120305</u> .
20	Ema, M; Itami, T; Kawasaki, H. (1992c). Teratogenic evaluation of butyl benzyl phthalate in rats
21	by gastric intubation. Toxicol Lett 61: 1-7.
22	Ema, M; Itami, T; Kawasaki, H. (1993). Teratogenic phase specificity of butyl benzyl Phthalate
23	in rats. Toxicology 79: 11-19.
24	Ema, M; Kurosaka, R; Amano, H; Ogawa, Y. (1995). Comparative developmental toxicity of n-
25	butyl benzyl phthalate and di-n-butyl phthalate in rats. Arch Environ Contam Toxicol 28:
26	223-228. http://dx.doi.org/10.1007/BF00217620.
27	Ema, M; Harazono, A; Miyawaki, E; Ogawa, Y. (1996a). Characterization of developmental
28	toxicity of mono-n-benzyl phthalate in rats. Reprod Toxicol 10: 365-372.
29	http://dx.doi.org/10.1016/0890-6238(96)00082-2.
30	Ema, M; Harazono, A; Miyawaki, E; Ogawa, Y. (1996b). Developmental toxicity of mono-n-
31	benzyl phthalate, one of the major metabolites of the plasticizer n-butyl benzyl bhthalate,
32	in Rats. Toxicol Lett 86: 19-25. http://dx.doi.org/10.1016/0378-4274(96)03665-X.
33	Ema, M; Kurosaka, R; Harazono, A; Amano, H; Ogawa, Y. (1996c). Phase specificity of
34	developmental toxicity after oral administration of mono-n-butyl phthalate in rats. Arch
35	Environ Contam Toxicol 31: 170-176. http://dx.doi.org/10.1007/BF00212362.
36	Ema, M; Miyawaki, E; Kawashima, K. (1998). Reproductive effects of butyl benzyl phthalate in
37	pregnant and pseudopregnant rats. Reprod Toxicol 12: 127-132.
38	http://dx.doi.org/10.1016/S0890-6238(97)00127-5.
39	Ema, M; Miyawaki, E. (2001). Effects of monobutyl phthalate on reproductive function in
40	pregnant and pseudopregnant rats. Reprod Toxicol 15: 261-267.
41	http://dx.doi.org/10.1016/S0890-6238(01)00131-9.
42	Ema, M; Miyawaki, E. (2002). Effects on development of the reproductive system in male
43	offspring of rats given butyl benzyl phthalate during late pregnancy. Reprod Toxicol 16:
44	71-76.
45	Ema, M; Miyawaki, E; Hirose, A; Kamata, E. (2003). Decreased anogenital distance and
46	increased incidence of undescended testes in fetuses of rats given monobenzyl phthalate,

1	a major metabolite of butyl benzyl phthalate. Reprod Toxicol 17: 407-412.
2	http://dx.doi.org/10.1016/S0890-6238(03)00037-6.
3	Engel, SM; Miodovnik, A; Canfield, RL; Zhu, C; Silva, MJ; Calafat, AM; Wolff, MS. (2010).
4	Prenatal phthalate exposure is associated with childhood behavior and executive
5	functioning. Environ Health Perspect 118: 565-571.
6	http://dx.doi.org/10.1289/ehp.0901470.
7	Espeland, MA; Gallagher, D; Tell, GS; Davison, LL; Platt, OS. (1990). Reliability of Tanner
8	stage assessments in a multi-center study. Am J Hum Biol 2: 503-510.
9	http://dx.doi.org/10.1002/ajhb.1310020506.
10	Ettinger, AS; Lamadrid-Figueroa, H; Téllez-Rojo, MM; Mercado-García, A; Peterson, KE;
11	Schwartz, J; Hu, H; Hernández-Avila, M. (2009). Effect of calcium supplementation on
12	blood lead levels in pregnancy: A randomized placebo-controlled trial. Environ Health
13	Perspect 117: 26-31.
14	Ferguson, KK; Mcelrath, TF; Meeker, JD. (2014a). Environmental phthalate exposure and
15	preterm birth. JAMA Pediatr 168: 61-67.
16	http://dx.doi.org/10.1001/jamapediatrics.2013.3699.
17	Ferguson, KK; Peterson, KE; Lee, JM; Mercado-García, A; Goldenberg, CB; Téllez-Rojo, MM;
18	Meeker, JD. (2014b). Prenatal and Peripubertal Phthalates and Bisphenol-A in Relation
19	to Sex Hormones and Puberty in Boys. Reprod Toxicol 47: 70-76.
20 21	http://dx.doi.org/10.1016/j.reprotox.2014.06.002.
22	Ferguson, KK; Mcelrath, TF; Ko, YA; Mukherjee, B; Meeker, JD. (2014c). Variability in urinary phthalate metabolite levels across pregnancy and sensitive windows of exposure for the
22	risk of preterm birth. Environ Int 70C: 118-124.
	1
2/	http://dx.doj.org/10.1016/j.envint.2014.05.016
24 25	http://dx.doi.org/10.1016/j.envint.2014.05.016.
25	Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev
25 26	Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120.
25 26 27	 Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120. Frederiksen, H; Jørgensen, N; Andersson, A. (2010). Correlations between phthalate metabolites
25 26 27 28	 <u>Ferris, BG.</u> (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120. <u>Frederiksen, H; Jørgensen, N; Andersson, A.</u> (2010). Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope
25 26 27 28 29	 Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120. Frederiksen, H; Jørgensen, N; Andersson, A. (2010). Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol 34: 400-410.
25 26 27 28	 Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120. Frederiksen, H; Jørgensen, N; Andersson, A. (2010). Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol 34: 400-410. Frederiksen, H; Sørensen, K; Mouritsen, A; Aksglaede, L; Hagen, CP; Petersen, JH;
25 26 27 28 29 30	 Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120. Frederiksen, H; Jørgensen, N; Andersson, A. (2010). Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol 34: 400-410. Frederiksen, H; Sørensen, K; Mouritsen, A; Aksglaede, L; Hagen, CP; Petersen, JH; Skakkebaek, NE; Andersson, AM; Juul, A. (2012). High urinary phthalate concentration
25 26 27 28 29 30 31	 Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120. Frederiksen, H; Jørgensen, N; Andersson, A. (2010). Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol 34: 400-410. Frederiksen, H; Sørensen, K; Mouritsen, A; Aksglaede, L; Hagen, CP; Petersen, JH; Skakkebaek, NE; Andersson, AM; Juul, A. (2012). High urinary phthalate concentration associated with delayed pubarche in girls. Int J Androl 35: 216-226.
25 26 27 28 29 30 31 32	 Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120. Frederiksen, H; Jørgensen, N; Andersson, A. (2010). Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol 34: 400-410. Frederiksen, H; Sørensen, K; Mouritsen, A; Aksglaede, L; Hagen, CP; Petersen, JH; Skakkebaek, NE; Andersson, AM; Juul, A. (2012). High urinary phthalate concentration
25 26 27 28 29 30 31 32 33	 Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120. Frederiksen, H; Jørgensen, N; Andersson, A. (2010). Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol 34: 400-410. Frederiksen, H; Sørensen, K; Mouritsen, A; Aksglaede, L; Hagen, CP; Petersen, JH; Skakkebaek, NE; Andersson, AM; Juul, A. (2012). High urinary phthalate concentration associated with delayed pubarche in girls. Int J Androl 35: 216-226. http://dx.doi.org/10.1111/j.1365-2605.2012.01260.x.
25 26 27 28 29 30 31 32 33 34	 Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120. Frederiksen, H; Jørgensen, N; Andersson, A. (2010). Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol 34: 400-410. Frederiksen, H; Sørensen, K; Mouritsen, A; Aksglaede, L; Hagen, CP; Petersen, JH; Skakkebaek, NE; Andersson, AM; Juul, A. (2012). High urinary phthalate concentration associated with delayed pubarche in girls. Int J Androl 35: 216-226. http://dx.doi.org/10.1111/j.1365-2605.2012.01260.x. Frederiksen, H; Kranich, SK; Jørgensen, N; Taboureau, O; Petersen, JH; Andersson, AM.
25 26 27 28 29 30 31 32 33 34 35	 Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120. Frederiksen, H; Jørgensen, N; Andersson, A. (2010). Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol 34: 400-410. Frederiksen, H; Sørensen, K; Mouritsen, A; Aksglaede, L; Hagen, CP; Petersen, JH; Skakkebaek, NE; Andersson, AM; Juul, A. (2012). High urinary phthalate concentration associated with delayed pubarche in girls. Int J Androl 35: 216-226. http://dx.doi.org/10.1111/j.1365-2605.2012.01260.x. Frederiksen, H; Kranich, SK; Jørgensen, N; Taboureau, O; Petersen, JH; Andersson, AM. (2013). Temporal variability in urinary phthalate metabolite excretion based on spot,
25 26 27 28 29 30 31 32 33 34 35 36	 Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120. Frederiksen, H; Jørgensen, N; Andersson, A. (2010). Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol 34: 400-410. Frederiksen, H; Sørensen, K; Mouritsen, A; Aksglaede, L; Hagen, CP; Petersen, JH; Skakkebaek, NE; Andersson, AM; Juul, A. (2012). High urinary phthalate concentration associated with delayed pubarche in girls. Int J Androl 35: 216-226. http://dx.doi.org/10.1111/j.1365-2605.2012.01260.x. Frederiksen, H; Kranich, SK; Jørgensen, N; Taboureau, O; Petersen, JH; Andersson, AM. (2013). Temporal variability in urinary phthalate metabolite excretion based on spot, morning, and 24-h urine samples: considerations for epidemiological studies. Environ Sci
25 26 27 28 29 30 31 32 33 34 35 36 37	 Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120. Frederiksen, H; Jørgensen, N; Andersson, A. (2010). Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol 34: 400-410. Frederiksen, H; Sørensen, K; Mouritsen, A; Aksglaede, L; Hagen, CP; Petersen, JH; Skakkebaek, NE; Andersson, AM; Juul, A. (2012). High urinary phthalate concentration associated with delayed pubarche in girls. Int J Androl 35: 216-226. http://dx.doi.org/10.1111/j.1365-2605.2012.01260.x. Frederiksen, H; Kranich, SK; Jørgensen, N; Taboureau, O; Petersen, JH; Andersson, AM. (2013). Temporal variability in urinary phthalate metabolite excretion based on spot, morning, and 24-h urine samples: considerations for epidemiological studies. Environ Sci Technol 47: 958-967. http://dx.doi.org/10.1021/es303640b.
25 26 27 28 29 30 31 32 33 34 35 36 37 38	 Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120. Frederiksen, H; Jørgensen, N; Andersson, A. (2010). Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol 34: 400-410. Frederiksen, H; Sørensen, K; Mouritsen, A; Aksglaede, L; Hagen, CP; Petersen, JH; Skakkebaek, NE; Andersson, AM; Juul, A. (2012). High urinary phthalate concentration associated with delayed pubarche in girls. Int J Androl 35: 216-226. http://dx.doi.org/10.1111/j.1365-2605.2012.01260.x. Frederiksen, H; Kranich, SK; Jørgensen, N; Taboureau, O; Petersen, JH; Andersson, AM. (2013). Temporal variability in urinary phthalate metabolite excretion based on spot, morning, and 24-h urine samples: considerations for epidemiological studies. Environ Sci Technol 47: 958-967. http://dx.doi.org/10.1021/es303640b. Golombok, S; Rust, J. (1993). The measurement of gender role behaviour in pre-school children: a research note. J Child Psychol Psychiatry 34: 805-811. Goodman, M; Lakind, JS; Mattison, DR. (2014). Do phthalates act as obesogens in humans? A
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	 Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120. Frederiksen, H; Jørgensen, N; Andersson, A. (2010). Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol 34: 400-410. Frederiksen, H; Sørensen, K; Mouritsen, A; Aksglaede, L; Hagen, CP; Petersen, JH; Skakkebaek, NE; Andersson, AM; Juul, A. (2012). High urinary phthalate concentration associated with delayed pubarche in girls. Int J Androl 35: 216-226. http://dx.doi.org/10.1111/j.1365-2605.2012.01260.x. Frederiksen, H; Kranich, SK; Jørgensen, N; Taboureau, O; Petersen, JH; Andersson, AM. (2013). Temporal variability in urinary phthalate metabolite excretion based on spot, morning, and 24-h urine samples: considerations for epidemiological studies. Environ Sci Technol 47: 958-967. http://dx.doi.org/10.1021/es303640b. Golombok, S; Rust, J. (1993). The measurement of gender role behaviour in pre-school children: a research note. J Child Psychol Psychiatry 34: 805-811. Goodman, M; Lakind, JS; Mattison, DR. (2014). Do phthalates act as obesogens in humans? A systematic review of the epidemiological literature. Crit Rev Toxicol 44: 151-175.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	 Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120. Frederiksen, H; Jørgensen, N; Andersson, A. (2010). Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol 34: 400-410. Frederiksen, H; Sørensen, K; Mouritsen, A; Aksglaede, L; Hagen, CP; Petersen, JH; Skakkebaek, NE; Andersson, AM; Juul, A. (2012). High urinary phthalate concentration associated with delayed pubarche in girls. Int J Androl 35: 216-226. http://dx.doi.org/10.1111/j.1365-2605.2012.01260.x. Frederiksen, H; Kranich, SK; Jørgensen, N; Taboureau, O; Petersen, JH; Andersson, AM. (2013). Temporal variability in urinary phthalate metabolite excretion based on spot, morning, and 24-h urine samples: considerations for epidemiological studies. Environ Sci Technol 47: 958-967. http://dx.doi.org/10.1021/es303640b. Golombok, S; Rust, J. (1993). The measurement of gender role behaviour in pre-school children: a research note. J Child Psychol Psychiatry 34: 805-811. Goodman, M; Lakind, JS; Mattison, DR. (2014). Do phthalates act as obesogens in humans? A systematic review of the epidemiological literature. Crit Rev Toxicol 44: 151-175. http://dx.doi.org/10.3109/10408444.2013.860076.
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	 Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120. Frederiksen, H; Jørgensen, N; Andersson, A. (2010). Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol 34: 400-410. Frederiksen, H; Sørensen, K; Mouritsen, A; Aksglaede, L; Hagen, CP; Petersen, JH; Skakkebaek, NE; Andersson, AM; Juul, A. (2012). High urinary phthalate concentration associated with delayed pubarche in girls. Int J Androl 35: 216-226. http://dx.doi.org/10.1111/j.1365-2605.2012.01260.x. Frederiksen, H; Kranich, SK; Jørgensen, N; Taboureau, O; Petersen, JH; Andersson, AM. (2013). Temporal variability in urinary phthalate metabolite excretion based on spot, morning, and 24-h urine samples: considerations for epidemiological studies. Environ Sci Technol 47: 958-967. http://dx.doi.org/10.1021/es303640b. Golombok, S; Rust, J. (1993). The measurement of gender role behaviour in pre-school children: a research note. J Child Psychol Psychiatry 34: 805-811. Goodman, M; Lakind, JS; Mattison, DR. (2014). Do phthalates act as obesogens in humans? A systematic review of the epidemiological literature. Crit Rev Toxicol 44: 151-175. http://dx.doi.org/10.3109/10408444.2013.860076. Götz, F; Thieme, S; Dörner, G. (2001). Female infertilityeffect of perinatal xenoestrogen
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	 Ferris, BG. (1978). Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1-120. Frederiksen, H; Jørgensen, N; Andersson, A. (2010). Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol 34: 400-410. Frederiksen, H; Sørensen, K; Mouritsen, A; Aksglaede, L; Hagen, CP; Petersen, JH; Skakkebaek, NE; Andersson, AM; Juul, A. (2012). High urinary phthalate concentration associated with delayed pubarche in girls. Int J Androl 35: 216-226. http://dx.doi.org/10.1111/j.1365-2605.2012.01260.x. Frederiksen, H; Kranich, SK; Jørgensen, N; Taboureau, O; Petersen, JH; Andersson, AM. (2013). Temporal variability in urinary phthalate metabolite excretion based on spot, morning, and 24-h urine samples: considerations for epidemiological studies. Environ Sci Technol 47: 958-967. http://dx.doi.org/10.1021/es303640b. Golombok, S; Rust, J. (1993). The measurement of gender role behaviour in pre-school children: a research note. J Child Psychol Psychiatry 34: 805-811. Goodman, M; Lakind, JS; Mattison, DR. (2014). Do phthalates act as obesogens in humans? A systematic review of the epidemiological literature. Crit Rev Toxicol 44: 151-175. http://dx.doi.org/10.3109/10408444.2013.860076.

1	Gray, LE, Jr; Ostby, J; Furr, J; Price, M; Veeramachaneni, DNR; Parks, L. (2000). Perinatal
2	exposure to the phthalates DEHP, BBP, and DNIP, but not DEP, DMP, or DOTP, alters
3	sexual differentiation of the male rat. Toxicol Sci 58: 350-365.
4	http://dx.doi.org/10.1093/toxsci/58.2.350.
5	Hankinson, JL; Odencrantz, JR; Fedan, KB. (1999). Spirometric reference values from a sample
6	of the general US population. Am J Respir Crit Care Med 159: 179-187.
7	http://dx.doi.org/10.1164/ajrccm.159.1.9712108.
8	Hart, R; Doherty, DA; Frederiksen, H; Keelan, JA; Hickey, M; Sloboda, D; Pennell, CE;
9	Newnham, JP; Skakkebaek, NE; Main, KM. (2013). The influence of antenatal exposure
10	to phthalates on subsequent female reproductive development in adolescence: A pilot
11	study. Reproduction 147: 379-390. http://dx.doi.org/10.1530/REP-13-0331.
12	Hatch, EE; Nelson, JW; Qureshi, MM; Weinberg, J; Moore, LL; Singer, M; Webster, TF.
13	(2008). Association of urinary phthalate metabolite concentrations with body mass index
14	and waist circumference: a cross-sectional study of NHANES data, 1999-2002. Environ
15	Health 7: 27. <u>http://dx.doi.org/10.1186/1476-069x-7-27</u> .
16	Hauser, R; Meeker, JD; Park, S; Silva, MJ; Calafat, AM. (2004). Temporal variability of urinary
17	phthalate metabolite levels in men of reproductive age. Environ Health Perspect 112:
18	1734-1740. <u>http://dx.doi.org/10.1289/ehp.7212</u> .
19	Hauser, R; Williams, P; Altshul, L; Calafat, AM. (2005). Evidence of interaction between
20	polychlorinated biphenyls and phthalates in relation to human sperm motility. Environ
21	Health Perspect 113: 425-430. <u>http://dx.doi.org/10.1289/ehp.7305</u> .
22	Hauser, R; Meeker, JD; Duty, S; Silva, MJ; Calafat, AM. (2006). Altered semen quality in
23	relation to urinary concentrations of phthalate monoester and oxidative metabolites.
24	Epidemiology 17: 682-691. http://dx.doi.org/10.1097/01.ede.0000235996.89953.d7.
25	Hauser, R; Meeker, JD; Singh, NP; Silva, MJ; Ryan, L; Duty, S; Calafat, AM. (2007). DNA
26	damage in human sperm is related to urinary levels of phthalate monoester and oxidative
27	metabolites. Hum Reprod 22: 688-695. <u>http://dx.doi.org/10.1093/humrep/del428</u> .
28	Hazleton Laboratories. (1958). Final report subacute feeding: Albino rats. (878213590). Falls
29	Church, VA: Hazelton Laboratories.
30	Heineman, EF; Olsen, JH; Pottern, LM; Gomez, M; Raffn, E; Blair, A. (1992). Occupational risk
31	factors for multiple myeloma among Danish men. Cancer Causes Control 3: 555-568.
32	http://dx.doi.org/10.1007/BF00052753.
33	Hines, M. (2006). Prenatal testosterone and gender-related behaviour [Review]. Eur J Endocrinol
34	155: S115-S121. <u>http://dx.doi.org/10.1530/eje.1.02236</u> .
35	Hofman, LF; Foley, TP; Henry, JJ; Naylor, EW. (2003). Assays for thyroid-stimulating hormone
36	using dried blood spotted filter paper specimens to screen for hypothyroidism in older
37	children and adults. J Med Screen 10: 5-10.
38	http://dx.doi.org/10.1258/096914103321610734.
39	Hogberg, J; Hanberg, A; Berglund, M; Skerfving, S; Remberger, M; Calafat, AM; Filipsson, AF;
40	Jansson, B; Johansson, N; Appelgren, M; Hakansson, H. (2008). Phthalate diesters and
41	their metabolites in human breast milk, blood or serum, and urine as biomarkers of
42	exposure in vulnerable populations. Environ Health Perspect 116: 334-339.
43	http://dx.doi.org/10.1289/ehp.10788.
44	Holt, VL; Weiss, NS. (2000). Recommendations for the design of epidemiologic studies of
45	endometriosis [Review]. Epidemiology 11: 654-659.

1 Hoppin, J. (2004). The Norwegian Mother and Child Study: Environmental Spec. 2 (CRISP/2004/ES044008-04). Hoppin, J. Hoppin, JA; Brock, JW; Davis, BJ; Baird, DD. (2002). Reproducibility of urinary phthalate 3 4 metabolites in first morning urine samples. Environ Health Perspect 110: 515-518. Hoppin, JA; Ulmer, R; London, SJ. (2004). Phthalate exposure and pulmonary function. Environ 5 6 Health Perspect 112: 571-574. 7 Hoppin, JA; Jaramillo, R; London, SJ; Bertelsen, RJ; Salo, PM; Sandler, DP; Zeldin, DC. 8 (2013). Phthalate exposure and allergy in the U.S. population: Results from NHANES 9 Environ Health Perspect 2005-2006. 121: 1129-1134. 10 http://dx.doi.org/10.1289/ehp.1206211. Hotchkiss, A; Parks-Saldutti, L; Ostby, J; Lambright, C; Furr, J; Vandenbergh, J; Gray, L. 11 (2004). A mixture of the "antiandrogens" linuron and butyl benzyl phthalate alters sexual 12 differentiation of the male rat in a cumulative fashion. Biol Reprod 71: 1852-1861. 13 14 http://dx.doi.org/10.1095/biolreprod.104.031674. Howdeshell, KL; Wilson, VS; Furr, J; Lambright, CR; Rider, CV; Blystone, CR; Hotchkiss, AK; 15 16 Gray, LE, Jr. (2008). A mixture of five phthalate esters inhibits fetal testicular 17 testosterone production in the Sprague-Dawley rat in a cumulative, dose-additive manner. Toxicol Sci 105: 153-165. http://dx.doi.org/10.1093/toxsci/kfn077. 18 HSDB (Hazardous Substances Data Bank). (2009). Butyl Benzyl Phthalate. Bethesda, MD: 19 20 National Library of Medicine. http://toxnet.nlm.nih.gov/cgibin/sis/search/f?./temp/~WJ4rXP:1. 21 22 Hsu, NY; Lee, CC; Wang, JY; Li, YC; Chang, HW; Chen, CY; Bornehag, CG; Wu, PC; Sundell, J; Su, HJ. (2012). Predicted risk of childhood allergy, asthma and reported symptoms 23 using measured phthalate exposure in dust and urine. Indoor Air 22: 186199. 24 http://dx.doi.org/10.1111/j.1600-0668.2011.00753.x. 25 Huang, PC; Kuo, PL; Guo, YL; Liao, PC; Lee, CC. (2007). Associations between urinary 26 27 phthalate monoesters and thyroid hormones in pregnant women. Hum Reprod 22: 2715-2722. http://dx.doi.org/10.1093/humrep/dem205. 28 Huang, PC; Tsai, EM; Li, WF; Liao, PC; Chung, MC; Wang, YH; Wang, SL. (2010). 29 Association between phthalate exposure and glutathione S-transferase M1 polymorphism 30 in adenomyosis, leiomyoma and endometriosis. Hum Reprod 25: 986-994. 31 32 http://dx.doi.org/10.1093/humrep/deq015. Huang, T; Saxena, AR; Isganaitis, E; James-Todd, T. (2014a). Gender and racial/ethnic 33 34 differences in the associations of urinary phthalate metabolites with markers of diabetes 35 risk: national health and nutrition examination survey 2001-2008. Environ Health 13: 6. 36 http://dx.doi.org/10.1186/1476-069X-13-6. Huang, Y; Li, J; Garcia, JM; Lin, H; Wang, Y; Yan, P; Wang, L; Tan, Y; Luo, J; Qiu, Z; Chen, 37 38 JA; Shu, W. (2014b). Phthalate levels in cord blood are associated with preterm delivery 39 and fetal growth parameters in Chinese women. PLoS ONE 9: e87430. http://dx.doi.org/10.1371/journal.pone.0087430. 40 Itoh, H; Iwasaki, M; Hanaoka, T; Sasaki, H; Tanaka, T; Tsugane, S. (2009). Urinary phthalate 41 monoesters and endometriosis in infertile Japanese women. Sci Total Environ 408: 37-42 42. http://dx.doi.org/10.1016/j.scitotenv.2009.09.012. 43 James-Todd, T: Stahlhut, R: Meeker, JD: Powell, SG: Hauser, R: Huang, T: Rich-Edwards, J. 44 (2012). Urinary phthalate metabolite concentrations and diabetes among women in the 45

1	National Health and Nutrition Examination Survey (NHANES) 2001-2008. Environ
2	Health Perspect 120: 1307-1313. <u>http://dx.doi.org/10.1289/ehp.1104717</u> .
3	Joensen, UN; Frederiksen, H; Jensen, MB; Lauritsen, MP; Olesen, IA; Lassen, TH; Andersson,
4	AM; Jørgensen, N. (2012). Phthalate excretion pattern and testicular function: a study of
5	881 healthy danish men. Environ Health Perspect 120: 1397-1403.
6	http://dx.doi.org/10.1289/ehp.1205113.
7	John Radcliffe Hospital Cryptorchidism Study Group. (1988). Clinical diagnosis of
8	cryptorchidism. Arch Dis Child 63: 587-591.
9	Jonsson, BAG; Richthoff, J; Rylander, L; Giwercman, A; Hagmar, L. (2005). Urinary phthalate
10	metabolites and biomarkers of reproductive function in young men. Epidemiology 16:
11	487-493. http://dx.doi.org/10.1097/01.ede.0000164555.19041.01.
12	Jurewicz, J; Radwan, M; Sobala, W; Ligocka, D; Radwan, P; Bochenek, M; Hawuła, W;
13	Jakubowski, L; Hanke, W. (2013). Human urinary phthalate metabolites level and main
14	semen parameters, sperm chromatin structure, sperm aneuploidy and reproductive
15	hormones. Reprod Toxicol 42: 232-241.
16	http://dx.doi.org/10.1016/j.reprotox.2013.10.001.
17	Just, AC; Whyatt, RM; Miller, RL; Rundle, AG; Chen, Q; Calafat, AM; Divjan, A; Rosa, MJ;
18	Zhang, H; Perera, FP; Goldstein, IF; Perzanowski, MS. (2012a). Children's Urinary
19	Phthalate Metabolites and Fractional Exhaled Nitric Oxide in an Urban Cohort. Am J
20	Respir Crit Care Med 186: 830-837. <u>http://dx.doi.org/10.1164/rccm.201203-03980C</u> .
21	Just, AC; Whyatt, RM; Perzanowski, MS; Calafat, AM; Perera, FP; Goldstein, IF; Chen, Q;
22	Rundle, AG; Miller, RL. (2012b). Prenatal exposure to butylbenzyl phthalate and early
23	eczema in an urban cohort. Environ Health Perspect 120: 1475-1480.
24	$\frac{\text{http://dx.doi.org/10.1289/ehp.1104544}}{\text{http://dx.doi.org/10.1289/ehp.1104544}}.$
25	Kanazawa, A; Saito, I; Araki, A; Takeda, M; Ma, M; Saijo, Y; Kishi, R. (2010). Association
26	between indoor exposure to semi-volatile organic compounds and building-related
27	symptoms among the occupants of residential dwellings. Indoor Air 20: 72-84.
28 29	http://dx.doi.org/10.1111/j.1600-0668.2009.00629.x. Kobrosly, RW; Evans, S; Miodovnik, A; Barrett, ES; Thurston, SW; Calafat, AM; Swan, SH.
30	(2014). Prenatal Phthalate Exposures and Neurobehavioral Development Scores in Boys
31	and Girls at 6-10 Years of Age. Environ Health Perspect 122: 521-528.
32	http://dx.doi.org/10.1289/ehp.1307063.
33	Koch, HM; Angerer, J. (2007). Di-iso-nonylphthalate (DINP) metabolites in human urine after a
34	single oral dose of deuterium-labelled DINP. Int J Hyg Environ Health 210: 9-19.
35	http://dx.doi.org/10.1016/j.ijheh.2006.11.008.
36	Koch, HM; Christensen, KL; Harth, V; Lorber, M; Brüning, T. (2012). Di-n-butyl phthalate
37	(DnBP) and disobutyl phthalate (DiBP) metabolism in a human volunteer after single
38	oral doses. Arch Toxicol 86: 1829-1839. <u>http://dx.doi.org/10.1007/s00204-012-0908-1</u> .
39	Kolarik, B; Bornehag, CG; Naydenov, K; Sundell, J, an; Stavova, P; Nielsen, O. (2008). The
40	concentrations of phthalates in settled dust in Bulgarian homes in relation to building
41	characteristic and cleaning habits in the family. Atmos Environ 42: 8553-8559.
42	http://dx.doi.org/10.1016/j.atmosenv.2008.08.028.
43	Koprowski, C; Coates, RJ; Bernstein, L. (2001). Ability of young women to recall past body size
44	and age at menarche. Obes Res 9: 478-485. <u>http://dx.doi.org/10.1038/oby.2001.62</u> .

1	Kranvogl, R; Knez, J; Miuc, A; Vončina, E; Vončina, DB; Vlaisavljević, V. (2014).
2	Simultaneous determination of phthalates, their metabolites, alkylphenols and bisphenol
3	A using GC-MS in urine of men with fertility problems. Acta Chim Slov 61: 110-120.
4	Lebowitz, MD; Krzyzanowski, M; Quackenboss, JJ; Orourke, MK. (1997). Diurnal variation of
5	PEF and its use in epidemiological studies. Eur Respir J 10: S49-S56.
6	Leikauf, J; Federman, AD. (2009). Comparisons of self-reported and chart identified chronic
7	diseases in inner-city seniors. J Am Geriatr Soc 57: 1219-1225.
8	http://dx.doi.org/10.1111/j.1532-5415.2009.02313.x.
9	Li, WL; Ji, YB; Yang, YN; Yang, B. (2004). [Reproductive toxicity and functional mechanism
10	of the environmental hormone butylbenzyl phthalate]. Huan Jing Ke Xue 25: 1-6.
11	Lin, L; Wang, S; Chang, Y; Huang, P; Cheng, J; Su, P; Liao, P. (2011a). Associations between
12	maternal phthalate exposure and cord sex hormones in human infants. Chemosphere 83:
13	1192-1199. http://dx.doi.org/10.1016/j.chemosphere.2010.12.079.
14	Lin, S; Ku, H; Su, P; Chen, J; Huang, P; Angerer, J; Wang, S. (2011b). Phthalate exposure in
15	pregnant women and their children in central Taiwan. Chemosphere 82: 947-955.
16	http://dx.doi.org/10.1016/j.chemosphere.2010.10.073.
17	Lind, PM; Lind, L. (2011). Circulating levels of bisphenol A and phthalates are related to carotid
18	atherosclerosis in the elderly. Atherosclerosis 218: 207-213.
19	http://dx.doi.org/10.1016/j.atherosclerosis.2011.05.001.
20	Liu, L; Bao, H; Liu, F; Zhang, J; Shen, H. (2012). Phthalates exposure of Chinese reproductive
21	age couples and its effect on male semen quality, a primary study. Environ Int 42: 78-83.
22	http://dx.doi.org/10.1016/j.envint.2011.04.005.
23	Lomenick, JP; Calafat, AM; Melguizo Castro, MS; Mier, R; Stenger, P; Foster, MB;
24	Wintergerst, KA. (2010). Phthalate exposure and precocious puberty in females. J Pediatr
25	156: 221-225. http://dx.doi.org/10.1016/j.jpeds.2009.09.047.
26	Lopez-Carrillo, L; Hernandez-Ramirez, RU; Calafat, AM; Torres-Sanchez, L; Galvan-Portillo,
26 27	Lopez-Carrillo, L; Hernandez-Ramirez, RU; Calafat, AM; Torres-Sanchez, L; Galvan-Portillo, M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME. (2010). Exposure to phthalates and
	M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME. (2010). Exposure to phthalates and
27	M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME. (2010). Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118: 539-544.
27 28	M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME. (2010). Exposure to phthalates and
27 28 29	M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME. (2010). Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118: 539-544. http://dx.doi.org/10.1289/ehp.0901091.
27 28 29 30	 <u>M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME.</u> (2010). Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118: 539-544. http://dx.doi.org/10.1289/ehp.0901091. <u>Main, KM; Mortensen, GK; Kaleva, MM; Boisen, KA; Damgaard, IN; Chellakooty, M;</u>
27 28 29 30 31	 <u>M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME.</u> (2010). Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118: 539-544. <u>http://dx.doi.org/10.1289/ehp.0901091</u>. <u>Main, KM; Mortensen, GK; Kaleva, MM; Boisen, KA; Damgaard, IN; Chellakooty, M; Schmidt, IM; Suomi, AM; Virtanen, HE; Petersen, JH; Andersson, AM; Toppari, J;</u>
27 28 29 30 31 32	 <u>M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME.</u> (2010). Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118: 539-544. <u>http://dx.doi.org/10.1289/ehp.0901091</u>. <u>Main, KM; Mortensen, GK; Kaleva, MM; Boisen, KA; Damgaard, IN; Chellakooty, M; Schmidt, IM; Suomi, AM; Virtanen, HE; Petersen, JH; Andersson, AM; Toppari, J; Skakkebaek, NE.</u> (2006). Human breast milk contamination with phthalates and
27 28 29 30 31 32 33	 M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME. (2010). Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118: 539-544. http://dx.doi.org/10.1289/ehp.0901091. Main, KM; Mortensen, GK; Kaleva, MM; Boisen, KA; Damgaard, IN; Chellakooty, M; Schmidt, IM; Suomi, AM; Virtanen, HE; Petersen, JH; Andersson, AM; Toppari, J; Skakkebaek, NE. (2006). Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ
27 28 29 30 31 32 33 34	 <u>M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME.</u> (2010). Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118: 539-544. <u>http://dx.doi.org/10.1289/ehp.0901091</u>. <u>Main, KM; Mortensen, GK; Kaleva, MM; Boisen, KA; Damgaard, IN; Chellakooty, M; Schmidt, IM; Suomi, AM; Virtanen, HE; Petersen, JH; Andersson, AM; Toppari, J; Skakkebaek, NE.</u> (2006). Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect 114: 270-276. <u>http://dx.doi.org/10.1289/ehp.8075</u>.
27 28 29 30 31 32 33 34 35	 <u>M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME.</u> (2010). Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118: 539-544. <u>http://dx.doi.org/10.1289/ehp.0901091</u>. <u>Main, KM; Mortensen, GK; Kaleva, MM; Boisen, KA; Damgaard, IN; Chellakooty, M; Schmidt, IM; Suomi, AM; Virtanen, HE; Petersen, JH; Andersson, AM; Toppari, J; Skakkebaek, NE.</u> (2006). Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect 114: 270-276. <u>http://dx.doi.org/10.1289/ehp.8075</u>. <u>Marshall, WA; Tanner, JM.</u> (1969). Variations in pattern of pubertal changes in girls. Arch Dis
27 28 29 30 31 32 33 34 35 36	 M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME. (2010). Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118: 539-544. http://dx.doi.org/10.1289/ehp.0901091. Main, KM; Mortensen, GK; Kaleva, MM; Boisen, KA; Damgaard, IN; Chellakooty, M; Schmidt, IM; Suomi, AM; Virtanen, HE; Petersen, JH; Andersson, AM; Toppari, J; Skakkebaek, NE. (2006). Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect 114: 270-276. <u>http://dx.doi.org/10.1289/ehp.8075</u>. Marshall, WA; Tanner, JM. (1969). Variations in pattern of pubertal changes in girls. Arch Dis Child 44: 291-303.
27 28 29 30 31 32 33 34 35 36 37	 <u>M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME.</u> (2010). Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118: 539-544. <u>http://dx.doi.org/10.1289/ehp.0901091</u>. <u>Main, KM; Mortensen, GK; Kaleva, MM; Boisen, KA; Damgaard, IN; Chellakooty, M; Schmidt, IM; Suomi, AM; Virtanen, HE; Petersen, JH; Andersson, AM; Toppari, J; Skakkebaek, NE.</u> (2006). Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect 114: 270-276. <u>http://dx.doi.org/10.1289/ehp.8075</u>. <u>Marshall, WA; Tanner, JM.</u> (1969). Variations in pattern of pubertal changes in girls. Arch Dis Child 44: 291-303. <u>Marshall, WA; Tanner, JM.</u> (1970). Variations in the pattern of pubertal changes in boys. Arch
27 28 29 30 31 32 33 34 35 36 37 38	 <u>M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME.</u> (2010). Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118: 539-544. <u>http://dx.doi.org/10.1289/ehp.0901091</u>. <u>Main, KM; Mortensen, GK; Kaleva, MM; Boisen, KA; Damgaard, IN; Chellakooty, M; Schmidt, IM; Suomi, AM; Virtanen, HE; Petersen, JH; Andersson, AM; Toppari, J; Skakkebaek, NE. (2006). Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect 114: 270-276. <u>http://dx.doi.org/10.1289/ehp.8075</u>.</u> <u>Marshall, WA; Tanner, JM.</u> (1969). Variations in pattern of pubertal changes in girls. Arch Dis Child 44: 291-303. <u>Marshall, WA; Tanner, JM.</u> (1970). Variations in the pattern of pubertal changes in boys. Arch Dis Child 45: 13-23.
27 28 29 30 31 32 33 34 35 36 37 38 39	 <u>M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME.</u> (2010). Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118: 539-544. <u>http://dx.doi.org/10.1289/ehp.0901091</u>. <u>Main, KM; Mortensen, GK; Kaleva, MM; Boisen, KA; Damgaard, IN; Chellakooty, M; Schmidt, IM; Suomi, AM; Virtanen, HE; Petersen, JH; Andersson, AM; Toppari, J; Skakkebaek, NE. (2006). Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect 114: 270-276. <u>http://dx.doi.org/10.1289/ehp.8075</u>.</u> <u>Marshall, WA; Tanner, JM.</u> (1969). Variations in pattern of pubertal changes in girls. Arch Dis Child 44: 291-303. <u>Marshall, WA; Tanner, JM.</u> (1970). Variations in the pattern of pubertal changes in boys. Arch Dis Child 45: 13-23. <u>Meeker, JD; Calafat, AM; Hauser, R.</u> (2007). Di(2-ethylhexyl) phthalate metabolites may alter
27 28 29 30 31 32 33 34 35 36 37 38 39 40	 M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME. (2010). Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118: 539-544. http://dx.doi.org/10.1289/ehp.0901091. Main, KM; Mortensen, GK; Kaleva, MM; Boisen, KA; Damgaard, IN; Chellakooty, M; Schmidt, IM; Suomi, AM; Virtanen, HE; Petersen, JH; Andersson, AM; Toppari, J; Skakkebaek, NE. (2006). Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect 114: 270-276. <u>http://dx.doi.org/10.1289/ehp.8075</u>. Marshall, WA; Tanner, JM. (1969). Variations in pattern of pubertal changes in girls. Arch Dis Child 44: 291-303. Marshall, WA; Tanner, JM. (1970). Variations in the pattern of pubertal changes in boys. Arch Dis Child 45: 13-23. Meeker, JD; Calafat, AM; Hauser, R. (2007). Di(2-ethylhexyl) phthalate metabolites may alter thyroid hormone levels in men. Environ Health Perspect 115: 1029-1034.
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	 <u>M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME.</u> (2010). Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118: 539-544. <u>http://dx.doi.org/10.1289/ehp.0901091</u>. <u>Main, KM; Mortensen, GK; Kaleva, MM; Boisen, KA; Damgaard, IN; Chellakooty, M; Schmidt, IM; Suomi, AM; Virtanen, HE; Petersen, JH; Andersson, AM; Toppari, J; Skakkebaek, NE. (2006). Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect 114: 270-276. <u>http://dx.doi.org/10.1289/ehp.8075</u>.</u> <u>Marshall, WA; Tanner, JM.</u> (1969). Variations in pattern of pubertal changes in girls. Arch Dis Child 44: 291-303. <u>Marshall, WA; Tanner, JM.</u> (1970). Variations in the pattern of pubertal changes in boys. Arch Dis Child 45: 13-23. <u>Meeker, JD; Calafat, AM; Hauser, R.</u> (2007). Di(2-ethylhexyl) phthalate metabolites may alter thyroid hormone levels in men. Environ Health Perspect 115: 1029-1034. <u>http://dx.doi.org/10.1289/ehp.9852</u>.
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	 M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME. (2010). Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118: 539-544. http://dx.doi.org/10.1289/ehp.0901091. Main, KM; Mortensen, GK; Kaleva, MM; Boisen, KA; Damgaard, IN; Chellakooty, M; Schmidt, IM; Suomi, AM; Virtanen, HE; Petersen, JH; Andersson, AM; Toppari, J; Skakkebaek, NE. (2006). Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect 114: 270-276. <u>http://dx.doi.org/10.1289/ehp.8075</u>. Marshall, WA; Tanner, JM. (1969). Variations in pattern of pubertal changes in girls. Arch Dis Child 44: 291-303. Marshall, WA; Tanner, JM. (1970). Variations in the pattern of pubertal changes in boys. Arch Dis Child 45: 13-23. Meeker, JD; Calafat, AM; Hauser, R. (2007). Di(2-ethylhexyl) phthalate metabolites may alter thyroid hormone levels in men. Environ Health Perspect 115: 1029-1034. <u>http://dx.doi.org/10.1289/ehp.9852</u>. Meeker, JD; Calafat, AM; Hauser, R. (2009a). Urinary metabolites of di(2-ethylhexyl) phthalate
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	 M; Needham, LL; Ruiz-Ramos, R; Cebrian, ME. (2010). Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 118: 539-544. http://dx.doi.org/10.1289/ehp.0901091. Main, KM; Mortensen, GK; Kaleva, MM; Boisen, KA; Damgaard, IN; Chellakooty, M; Schmidt, IM; Suomi, AM; Virtanen, HE; Petersen, JH; Andersson, AM; Toppari, J; Skakkebaek, NE. (2006). Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect 114: 270-276. <u>http://dx.doi.org/10.1289/ehp.8075</u>. Marshall, WA; Tanner, JM. (1969). Variations in pattern of pubertal changes in girls. Arch Dis Child 44: 291-303. Marshall, WA; Tanner, JM. (1970). Variations in the pattern of pubertal changes in boys. Arch Dis Child 45: 13-23. Meeker, JD; Calafat, AM; Hauser, R. (2007). Di(2-ethylhexyl) phthalate metabolites may alter thyroid hormone levels in men. Environ Health Perspect 115: 1029-1034. http://dx.doi.org/10.1289/ehp.9852. Meeker, JD; Calafat, AM; Hauser, R. (2009a). Urinary metabolites of di(2-ethylhexyl) phthalate are associated with decreased steroid hormone levels in adult men. J Androl 30: 287-297.

This document is a draft for review purposes only and does not constitute Agency policy.

1	metabolites in relation to preterm birth in Mexico city. Environ Health Perspect 117:
2	1587-1592. http://dx.doi.org/10.1289/ehp.0800522.
3	Mendiola, J; Jørgensen, N; Andersson, AM; Calafat, AM; Silva, MJ; Redmon, JB; Sparks, A
4	Drobnis, EZ; Wang, C; Liu, F; Swan, SH. (2011). Associations between urinary
5	metabolites of di(2-ethylhexyl) phthalate and reproductive hormones in fertile men. Int J
6	Androl 34: 369378. <u>http://dx.doi.org/10.1111/j.1365-2605.2010.01095.x</u> .
7	Mendiola, J; Meeker, JD; Jørgensen, N; Andersson, AM; Liu, F; Calafat, AM; Redmon, JB;
8	Drobnis, EZ; Sparks, AE; Wang, C; Hauser, R; Swan, SH. (2012). Urinary
9	concentrations of di(2-ethylhexyl) phthalate metabolites and serum reproductive
10	hormones: Pooled analysis of fertile and infertile men. J Androl 33: 488-198
11	http://dx.doi.org/10.2164/jandrol.111.013557.
12	Mieritz, MG; Frederiksen, H; Sørensen, K; Aksglaede, L; Mouritsen, A; Hagen, CP;
13	Skakkebaek, NE; Andersson, AM; Juul, A. (2012). Urinary phthalate excretion in 555
14	healthy Danish boys with and without pubertal gynaecomastia. Int J Androl 35: 227-235.
15	http://dx.doi.org/10.1111/j.1365-2605.2012.01279.x.
16	Miller, MR; Hankinson, J; Brusasco, V; Burgos, F; Casaburi, R; Coates, A; Crapo, R; Enright, P;
17	van Der Grinten, CP; Gustafsson, P; Jensen, R; Johnson, DC; Macintyre, N; Mckay, R;
18	Navajas, D; Pedersen, OF; Pellegrino, R; Viegi, G; Wanger, J; Force, AET. (2005).
19	Standardisation of spirometry. Eur Respir J 26: 319-338
20	http://dx.doi.org/10.1183/09031936.05.00034805.
21	Monsanto (Monsanto Company). (1983). Thirteen-week inhalation toxicity of santicizer 160
22	plasticizer vapor-aerosol to sprague-dawley rats with cover memo. (878213601).
23	Monsanto (Monsanto Company). (1993). Dietary one-generation reproduction study with buty
24	benzyl phthalate in rats with cover letter dated 040793. (TSCATS/424178).
25	http://www.ntis.gov/search/product.aspx?ABBR=OTS0538169.
26	Moral, R; Wang, R; Russo, IH; Mailo, DA; Lamartiniere, CA; Russo, J. (2007). The plasticizer
27	butyl benzyl phthalate induces genomic changes in rat mammary gland after
28	neonatal/prepubertal exposure. BMC Genomics 8: 453. http://dx.doi.org/10.1186/1471-
29	<u>2164-8-45</u> .
30	Moral, R; Santucci-Pereira, J; Wang, R; Russo, IH; Lamartiniere, CA; Russo, J. (2011). In uterc
31	exposure to butyl benzyl phthalate induces modifications in the morphology and the gene
32	expression profile of the mammary gland: an experimental study in rats. Environ Health
33	10: 5. <u>http://dx.doi.org/10.1186/1476-069X-10-5</u> .
34	Mouritsen, A; Frederiksen, H; Sørensen, K; Aksglaede, L; Hagen, C; Skakkebaek, N; Main, K;
35	Andersson, A; Juul, A. (2013a). Supplemental data: Urinary phthalates from 168 girls
36	and boys measured twice a year during a 5 year period: Associations with adrenal
37	androgen levels and puberty [Supplemental Data]. J Clin Endocrinol Metab 98.
38	Mouritsen, A; Frederiksen, H; Sørensen, K; Aksglaede, L; Hagen, C; Skakkebaek, N; Main, K;
39	Andersson, A; Juul, A. (2013b). Urinary Phthalates from 168 Girls and Boys measured
40	twice a year during a 5 Year Period: Associations with Adrenal Androgen Levels and
41	Puberty. J Clin Endocrinol Metab 98: 3755-3764. <u>http://dx.doi.org/10.1210/jc.2013-1284</u> .
42	Nagao, T; Ohta, R; Marumo, H; Shindo, T; Yoshimura, S; Ono, H. (2000). Effect of butyl benzyl
43	phthalate in Sprague-Dawley rats after gavage administration: a two-generation
44	reproductive study. Reprod Toxicol 14: 513-532.

1	Nicolau, GY; Haus, E; Plîngă, L; Dumitriu, L; Lakatua, D; Popescu, M; Ungureanu, E; Sackett-
2	Lundeen, L; Petrescu, E. (1992). Chronobiology of pituitary-thyroid functions. Rom J
3	Endocrinol 30: 125-148.
4	Nielsen, J; Akesson, B; Skerfving, S. (1985). Phthalate ester exposureair levels and health of
5 6	workers processing polyvinylchloride. AIHA J 46: 643-647. http://dx.doi.org/10.1080/15298668591395463.
7	Nielsen, J; Fåhraeus, C; Bensryd, I; Akesson, B; Welinder, H; Lindén, K; Skerfving, S. (1989).
8	Small airways function in workers processing polyvinylchloride. Int Arch Occup Environ
9	Health 61: 427-430. http://dx.doi.org/10.1007/BF00386474.
10	NRC (National Research Council). (2008). Phthalates and cumulative risk assessment: The task
11	ahead. Washington, DC: National Academies Press.
12	http://www.nap.edu/catalog.php?record_id=12528.
13	NRC (National Research Council). (2009). Science and decisions: Advancing risk assessment.
14	Washington, DC: National Academies Press. http://www.nap.edu/catalog/12209.html.
15	NRC (National Research Council). (2011). Review of the Environmental Protection Agency's
16	draft IRIS assessment of formaldehyde. Washington, DC: National Academies Press.
17	http://www.nap.edu/catalog/13142.html.
18	NTP-CERHR (NTP Center for the Evaluation of Risks to Human Reproduction). (2003). NTP-
19	CERHR monograph on the potential human reproductive and developmental effects of
20	butyl benzyl phthalate (BBP). Research Triangle Park, NC: National Toxicology Program
21	Center for the Evaluation of Risks to Human Reproduction.
22	NTP (National Toxicology Program). (1982). Carcinogensis bioassay of butyl benzyl phthalate
23	(CAS No. 85-68-7) in F344/N rats and B6C3F1 mice (feed study). (NTP TR 213).
24	Research Triangle Park, NC.
25	NTP (National Toxicology Program). (1989). Developmental toxicity evaluation of butyl benzyl
26	phthalate (CAS NO. 85-68-7) administered in feed to CD rats on gestational days 6 to 15.
27	(NTP-89-246). Research Triangle Park.
28	http://www.ntis.gov/search/product.aspx?ABBR=PB90115346.
29	NTP (National Toxicology Program). (1990). Final report on the developmental toxicity of butyl
30	benzyl phthalate (CAS No. 85-68-7) in CD-1-Swiss mice [NTP] (pp. 281 pp). (90-114).
31	Research Triangle Park, NC.
32	http://www.ntis.gov/search/product.aspx?ABBR=PB91129999.
33	NTP (National Toxicology Program). (1997a). Effect of dietary restriction on toxicology and
34	carcinogenesis studies in F344/N rats and B6C3F1 mice. (NIH pub. no. 97-3376; NTP
35	TR 460). Research Triangle Park, NC. http://ntp.niehs.nih.gov/?objectid=070A674C-
36	<u>9392-953F-80A7F3BC5DCCB3FB</u> .
37	NTP (National Toxicology Program). (1997b). NTP toxicology and carcinogenesis studies of
38	butyl benzyl phthalate (CAS No. 85-68-7) in F344/N rats (feed studies) [NTP]. (NTP TR
39	458; NIH Publication No. 97-3374). Research Triangle Park, NC.
40	http://ntp.niehs.nih.gov/results/pubs/longterm/reports/longterm/tr400499/abstracts/tr458/i
41	<u>ndex.html</u> .
42	Oksanen, T; Kivimäki, M; Pentti, J; Virtanen, M; Klaukka, T; Vahtera, J. (2010). Self-report as
43	an indicator of incident disease. Ann Epidemiol 20: 547-554.
44	http://dx.doi.org/10.1016/j.annepidem.2010.03.017.
45	Peck, J; Sweeney, A; Symanski, E; Gardiner, J; Silva, M; Calafat, A; Schantz, S. (2010). Intra-
46	and inter-individual variability of urinary phthalate metabolite concentrations in Hmong

1	women of reproductive age. J Expo Sci Environ Epidemiol 20: 90-100.
2	http://dx.doi.org/10.1038/jes.2009.4.
3	Pekkanen, J; Pearce, N. (1999). Defining asthma in epidemiological studies [Review]. Eur
4	Respir J 14: 951-957. http://dx.doi.org/10.1034/j.1399-3003.1999.14d37.x.
5	Pellegrino, R; Viegi, G; Brusasco, V; Crapo, RO; Burgos, F; Casaburi, R; Coates, A; van Der
6	Grinten, CP; Gustafsson, P; Hankinson, J; Jensen, R; Johnson, DC; Macintyre, N;
7	Mckay, R; Miller, MR; Navajas, D; Pedersen, OF; Wanger, J. (2005). Interpretative
8	strategies for lung function tests. Eur Respir J 26: 948-968.
9	http://dx.doi.org/10.1183/09031936.05.00035205.
10	Philippat, C; Mortamais, M; Chevrier, C; Petit, C; Calafat, AM; Ye, X; Silva, MJ; Brambilla, C;
11	Pin, I; Charles, MA; Cordier, S; Slama, R. (2012). Exposure to phthalates and phenols
12	during pregnancy and offspring size at birth. Environ Health Perspect 120: 464-470.
13	http://dx.doi.org/10.1289/ehp.1103634.
14	Piersma, AH; Verhoef, A; Dortant, PM. (1995). Evaluation of the OECD 421 reproductive
15	toxicity screening test protocol using butyl benzyl phthalate. Toxicology 99: 191-197.
16	http://dx.doi.org/10.1016/0300-483X(95)03029-F.
17	Piersma, AH; Verhoef, A; Te Biesebeek, JD; Pieters, MN; Slob, W. (2000). Developmental
18	toxicity of butyl benzyl phthalate in the rat using a multiple dose study design. Reprod
19	Toxicol 14: 417-425.
20	Plasqui, G; Kester, AD; Westerterp, KR. (2003). Seasonal variation in sleeping metabolic rate,
21	thyroid activity, and leptin. Am J Physiol Endocrinol Metab 285: E338-E343.
22	http://dx.doi.org/10.1152/ajpendo.00488.2002.
23	Postmes, TJ; Van Hout, JC; Saat, G; Willems, P; Coenegracht, J. (1974). A radioimmunoassay
24	study and comparison of seasonal variation in plasma triiodothyronine and thyroxine
25	concentrations in normal healthy persons. Clin Chim Acta 50: 189-195.
26	http://dx.doi.org/10.1016/0009-8981(74)90366-0.
27	Qian, H; Chen, M; Kransler, KM; Zaleski, RT. (2014). Assessment of chemical coexposure
28	patterns based upon phthalate biomonitoring data within the 2007/2008 National Health
29	and Nutrition Examination Survey. J Expo Sci Environ Epidemiol.
30	http://dx.doi.org/10.1038/jes.2014.24.
31	Ravault, C; Kauffmann, F. (2001). Validity of the IUATLD (1986) questionnaire in the EGEA
32	study. Int J Tuberc Lung Dis 5: 191-196.
33	Ravnborg, TL; Jensen, TK; Andersson, AM; Toppari, J; Skakkebaek, NE; Jørgensen, N. (2011).
34	Prenatal and adult exposures to smoking are associated with adverse effects on
35	reproductive hormones, semen quality, final height and body mass index. Hum Reprod
36	26: 1000-1011. <u>http://dx.doi.org/10.1093/humrep/der011</u> .
37	<u>Reddy, BS; Rozati, R; Reddy, BV; Raman, NV.</u> (2006a). Association of phthalate esters with
38	endometriosis in Indian women. BJOG 113: 515-520. <u>http://dx.doi.org/10.1111/j.1471-</u> 0528 2006 00025 r
39 40	<u>0528.2006.00925.x</u> . Reddy, BS; Rozati, R; Reddy, S; Kodampur, S; Reddy, P; Reddy, R. (2006b). High plasma
40 41	concentrations of polychlorinated biphenyls and phthalate esters in women with
42 43	endometriosis: A prospective case control study. Fertil Steril 85: 775-779. http://dx.doi.org/10.1016/j.fertnstert.2005.08.037.
43 44	Romano-Riquera, SP; Hernandez-Avila, M; Gladen, BC; Cupul-Uicab, L, eaA; Longnecker, MP.
44 45	(2007). Reliability and determinants of anogenital distance and penis dimensions in male
45 46	newborns from Chiapas, Mexico. Paediatr Perinat Epidemiol 21: 219-228.
40	new oorns from emapas, mexico. 1 acutati refinat Epitemioi 21. 219-220.

1	Saillenfait, AM; Sabate, JP; Gallissot, F. (2003). Comparative embryotoxicities of butyl benzyl
2	phthalate, mono-n-butyl phthalate and mono-benzyl phthalate in mice and rats: in vivo
3	and in vitro observations. Reprod Toxicol 17: 575-583. http://dx.doi.org/10.1016/S0890-
4	<u>6238(03)00102-3</u> .
5	Salazar-Martinez, E; Romano-Riquer, P; Yanez-Marquez, E; Longnecker, MP; Hernandez-
6	Avila, M. (2004). Anogenital distance in human male and female newborns: a
7	descriptive, cross-sectional study. Environ Health 3: 8-13.
8	http://dx.doi.org/10.1186/1476-069x-3-8.
9	Sathyanarayana, S; Barrett, E; Butts, S; Wang, CW; Swan, SH. (2014). Phthalate exposure and
10	reproductive hormone concentrations in pregnancy. Reproduction 147: 401-409.
11	http://dx.doi.org/10.1530/REP-13-0415.
12	Savitz, DA; Terry, JW; Dole, N; Thorp, JM; Siega-Riz, AM; Herring, AH. (2002). Comparison
13	of pregnancy dating by last menstrual period, ultrasound scanning, and their combination.
14	Am J Obstet Gynecol 187: 1660-1666.
15	Schlossberger, NM; Turner, RA; Irwin, CE. (1992). Validity of self-report of pubertal maturation
16	in early adolescents. J Adolesc Health 13: 109-113.
17	Scorer, CG. (1964). The descent of the testis. Arch Dis Child 39: 605-609.
18	Selvin, E; Steffes, MW; Gregg, E; Brancati, FL; Coresh, J. (2011). Performance of A1C for the
19	classification and prediction of diabetes. Diabetes Care 34: 84-89.
20	http://dx.doi.org/10.2337/dc10-1235.
21	Shiue, I. (2014). Higher Urinary Heavy Metal, Phthalate, and Arsenic but Not Parabens
22	Concentrations in People with High Blood Pressure, U.S. NHANES, 2011-2012. Int J
23	Environ Res Public Health 11: 5989-5999. <u>http://dx.doi.org/10.3390/ijerph110605989</u> .
24	<u>Shono, T; Kai, H; Suita, S; Nawata, H.</u> (2000). Time-specific effects of mono-n-butyl phthalate
25	on the transabdominal descent of the testis in rat fetuses. BJU Int 86: 121-125.
26	Shono, T; Suita, S. (2003). Dose-dependent effect of phthalate ester on testicular descent in pre-
27	and post natal rats. Urol Res 31: 293-296. <u>http://dx.doi.org/10.1007/s00240-003-0330-5</u> .
28	Simoni, M; Velardo, A; Montanini, V; Faustini Fustini, M; Seghedoni, S; Marrama, P. (1990).
29	Circannual rhythm of plasma thyrotropin in middle-aged and old euthyroid subjects.
30	Horm Res 33: 184-189.
31	Slough, JM; Hennrikus, W; Chang, Y. (2013). Reliability of Tanner staging performed by
32	orthopedic sports medicine surgeons. Med Sci Sports Exerc 45: 1229-1234.
33	http://dx.doi.org/10.1249/MSS.0b013e318285c2f7.
34	Song, Y; Hauser, R; Hu, FB; Franke, AA; Liu, S; Sun, Q. (2014). Urinary concentrations of
35	bisphenol A and phthalate metabolites and weight change: a prospective investigation in
36	US women. Int J Obes (Lond). <u>http://dx.doi.org/10.1038/ijo.2014.63</u> .
37	Stahlhut, RW; van Wijngaarden, E; Dye, TD; Cook, S; Swan, SH. (2007). Concentrations of
38	urinary phthalate metabolites are associated with increased waist circumference and
39	insulin resistance in adult U.S. males. Environ Health Perspect 115: 876-882.
40	http://dx.doi.org/10.1289/ehp.9882.
41	Sun, Q; Cornelis, MC; Townsend, MK; Tobias, DK; Eliassen, AH; Franke, AA; Hauser, R; Hu,
42	FB. (2014). Association of Urinary Concentrations of Bisphenol A and Phthalate
43	Metabolites with Risk of Type 2 Diabetes: A Prospective Investigation in the Nurses'
44	Health Study (NHS) and NHSII Cohorts. Environ Health Perspect 122: 616-623.
45	http://dx.doi.org/10.1289/ehp.1307201.
	<u> </u>

1	Sun, YX; Wang, ZG; Wang, DS; Zhang, YF; Sundell, J. (2009). Concentration of phthalate in
2	dorm rooms and its association with asthma and allergy. In Proceedings of the
3	international symposium on heating ventilating and air conditioning. Nanjing, China:
4	Southeast University.
5	Suzuki, Y; Niwa, M; Yoshinaga, J; Mizumoto, Y; Serizawa, S; Shiraishi, H. (2010). Prenatal
6	exposure to phthalate esters and PAHs and birth outcomes. Environ Int 36: 699-704.
7	http://dx.doi.org/10.1016/j.envint.2010.05.003.
8	Suzuki, Y; Yoshinaga, J; Mizumoto, Y; Serizawa, S; Shiraishi, H. (2012). Foetal exposure to
9	phthalate esters and anogenital distance in male newborns. Int J Androl 35: 236-244.
10	http://dx.doi.org/10.1111/j.1365-2605.2011.01190.x.
11	Svensson, K; Hernández-Ramírez, RU; Burguete-García, A; Cebrián, ME; Calafat, AM;
12	Needham, LL; Claudio, L; López-Carrillo, L. (2011). Phthalate exposure associated with
13	self-reported diabetes among Mexican women. Environ Res 111: 792-796.
14	http://dx.doi.org/10.1016/j.envres.2011.05.015.
15	Swan, SH; Main, KM; Liu, F; Stewart, SL; Kruse, RL; Calafat, AM; Mao, CS; Redmon, JB;
16	Ternand, CL; Sullivan, S; JLCINEHPF, T; A, P. (2005). Decrease in anogenital distance
17	among male infants with prenatal phthalate exposure. Environ Health Perspect 113:
18	1056-1061. <u>http://dx.doi.org/10.1289/ehp.8100</u> .
19	Swan, SH. (2008). Environmental phthalate exposure in relation to reproductive outcomes and
20	other health endpoints in humans [Review]. Environ Res 108: 177-184.
21	$\frac{\text{http://dx.doi.org/10.1016/j.envres.2008.08.007}}{\text{NH}}$
22	Swan, SH; Liu, F; Hines, M; Kruse, RL; Wang, C; Redmon, JB; Sparks, A; Weiss, B. (2010).
23	Prenatal phthalate exposure and reduced masculine play in boys. Int J Androl 33: 259-
24 25	269. <u>http://dx.doi.org/10.1111/j.1365-2605.2009.01019.x</u> .
25 26	Taipale, P; Hiilesmaa, V. (2001). Predicting delivery date by ultrasound and last menstrual period in early gestation. Obstet Gynecol 97: 189-194.
20 27	<u>Teitelbaum, SL; Britton, JA; Calafat, AM; Ye, X; Silva, MJ; Reidy, JA; Galvez, MP; Brenner,</u>
28	<u>BL; Wolff, MS.</u> (2008). Temporal variability in urinary concentrations of phthalate
29	metabolites, phytoestrogens and phenols among minority children in the United States.
30	Environ Res 106: 257-269. http://dx.doi.org/10.1016/j.envres.2007.09.010.
31	Teitelbaum, SL; Mervish, N; Moshier, EL; Vangeepuram, N; Galvez, MP; Calafat, AM; Silva,
32	MJ; Brenner, BL; Wolff, MS. (2012). Associations between phthalate metabolite urinary
33	concentrations and body size measures in New York City children. Environ Res 112:
34	186-193. http://dx.doi.org/10.1016/j.envres.2011.12.006.
35	Téllez-Rojo, MM; Cantoral, A; Cantonwine, DE; Schnaas, L; Peterson, K; Hu, H; Meeker, JD.
36	(2013). Prenatal urinary phthalate metabolites levels and neurodevelopment in children at
37	two and three years of age. Sci Total Environ 461-462: 386390.
38	http://dx.doi.org/10.1016/j.scitotenv.2013.05.021.
39	Timofievskaya, LA; Ivanova, NI; Balynina, ES. (1980). [Toxicology of esters of o-phthalic acid
40	and hygienic standards for them]. Gig Tr Prof Zabol 0: 28-29.
41	Timofievskaya, LA; Balynina, ES; Ivanova, NI. (1988). [Regular features of the toxicity and
42	accelerated standardization of o phthalic acid esters]. Gig Tr Prof Zabol 0: 52-55.
43	TNO (Central Institute for Nutrition and Food Research). (1998a). Oral developmental
44	reproduction study with butyl benzyl phthalate in Wistar rats; 1899 Initial study. Report
45	V98.408 final.

- <u>TNO</u> (Central Institute for Nutrition and Food Research). (1998b). Oral developmental reproduction study with butyl benzyl phthalate in Wistar rats; 1975 follow up study. Report V98.408 final.
 <u>Toft, G; Jönsson, BA; Lindh, CH; Jensen, TK; Hjollund, NH; Vested, A; Bonde, JP.</u> (2012).
- Association between Pregnancy Loss and Urinary Phthalate Levels around the Time of
 Conception. Environ Health Perspect 120: 458-463.
 http://dx.doi.org/10.1289/ehp.1103552.
- 8 Toshima, H; Suzuki, Y; Imai, K; Yoshinaga, J; Shiraishi, H; Mizumoto, Y; Hatakeyama, S;
 9 Onohara, C; Tokuoka, S. (2012). Endocrine disrupting chemicals in urine of Japanese
 10 male partners of subfertile couples: A pilot study on exposure and semen quality. Int J
 11 Hyg Environ Health 215: 502-506. http://dx.doi.org/10.1016/j.ijheh.2011.09.005.
- <u>Townsend, MK; Franke, AA; Li, X; Hu, FB; Eliassen, AH.</u> (2013). Within-person reproducibility of urinary bisphenol A and phthalate metabolites over a 1 to 3year period among women in the Nurses' Health Studies: a prospective cohort study. Environ Health 12: 80. <u>http://dx.doi.org/10.1186/1476-069X-12-80</u>.
- 16 <u>Traggiai, C; Stanhope, R.</u> (2003). Disorders of pubertal development. 17: 41-56.
 17 <u>http://dx.doi.org/10.1053/ybeog.2003.0360</u>.
- 18 Tranfo, G; Caporossi, L; Paci, E; Aragona, C; Romanzi, D; De Carolis, C; De Rosa, M;
 19 Capanna, S; Papaleo, B; Pera, A. (2012). Urinary phthalate monoesters concentration in
 20 couples with infertility problems. Toxicol Lett 213: 15-20.
 21 <u>http://dx.doi.org/10.1016/j.toxlet.2011.11.033</u>.
- Trasande, L; Spanier, AJ; Sathyanarayana, S; Attina, TM; Blustein, J. (2013a). Urinary
 phthalates and increased insulin resistance in adolescents. Pediatrics 132: e646-e655.
 <u>http://dx.doi.org/10.1542/peds.2012-4022</u>.
- Trasande, L; Sathyanarayana, S; Spanier, AJ; Trachtman, H; Attina, TM; Urbina, EM. (2013b).
 Urinary Phthalates Are Associated with Higher Blood Pressure in Childhood. J Pediatr 163: 747-753.e741. <u>http://dx.doi.org/10.1016/j.jpeds.2013.03.072</u>.
- Tyl, RW; Myers, CB; Marr, MC; Fail, PA; Seely, JC; Brine, DR; Barter, RA; Butala, JH. (2004).
 Reproductive toxicity evaluation of dietary butyl benzyl phthalate (BBP) in rats. Reprod Toxicol 18: 241-264. <u>http://dx.doi.org/10.1016/j.reprotox.2003.10.006</u>.
- Tyrkiel, EJ; Dobrzynska, MM; Derezinska, E; Ludwicki, JK. (2007). [Effects of subchronic
 exposure of laboratory mice to benzylbutyl phthalate (BBP) on the quantity and quality
 of male germ cells]. Rocz Panstw Zakl Hig 58: 677-686.
- 34 U.S. EPA (U.S. Environmental Protection Agency). (1993). Integrated Risk Information System
 35 (IRIS) assessment for butyl benzyl phthalate (BBP). Available online at
 36 <u>http://www.epa.gov/iris/subst/0293.htm</u>.
- 37 <u>U.S. EPA</u> (U.S. Environmental Protection Agency). (2013). Integrated science assessment for
 38 lead [EPA Report]. (EPA/600/R-10/075F). Research Triangle Park, NC.
 39 <u>http://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=514513</u>.
- 40 <u>Upson, K; Sathyanarayana, S; De Roos, AJ; Thompson, ML; Scholes, D; Dills, R; Holt, VL.</u>
 41 (2013). Phthalates and risk of endometriosis. Environ Res 126: 91-97.
 42 <u>http://dx.doi.org/10.1016/j.envres.2013.07.003</u>.
- 43 Uriu-Adams, JY; Kevin Reece, C; Nguyen, LK; Horvath, BJ; Nair, R; Barter, RA; Keen, CL.
- 44 (2001). Effect of butyl benzyl phthalate on reproduction and zinc metabolism.
 45 Toxicology 159: 55-68.

DRAFT-DO NOT CITE OR OUOTE

1	Vermeulen, A; Verdonck, L; Kaufman, JM. (1999). A critical evaluation of simple methods for
2	the estimation of free testosterone in serum. J Clin Endocrinol Metab 84: 3666-3672.
3	http://dx.doi.org/10.1210/jcem.84.10.6079.
4	Virtanen, H; Bjerknes, R; Cortes, D; Jørgensen, N; Rajpert-De Meyts, E; Thorsson, A; Thorup,
5	J; Main, K. (2007). Cryptorchidism: classification, prevalence and long-term
6	consequences [Review]. Acta Paediatr 96: 611-616. http://dx.doi.org/10.1111/j.1651-
7	2227.2007.00241.x.
8	Wallace, TM; Levy, JC; Matthews, DR. (2004). Use and abuse of HOMA modeling [Review].
9	Diabetes Care 27: 1487-1495.
10	Wang, IJ; Lin, CC; Lin, YJ; Hsieh, WS; Chen, PC. (2014). Early life phthalate exposure and
11	atopic disorders in children: A prospective birth cohort study. Environ Int 62: 48-54.
12	http://dx.doi.org/10.1016/j.envint.2013.09.002.
13	Weeke, J; Gundersen, HJ. (1978). Circadian and 30 minutes variations in serum TSH and thyroid
14	hormones in normal subjects. Acta Endocrinol 89: 659-672.
15	Weinberg, CR; Baird, DD; Wilcox, AJ. (1994). Sources of bias in studies of time to pregnancy.
16	Stat Med 13: 671-681.
17	Weuve, J; Hauser, R; Calafat, AM; Missmer, SA; Wise, LA. (2010). Association of exposure to
18	phthalates with endometriosis and uterine leiomyomata: findings from NHANES, 1999-
19	2004. Environ Health Perspect 118: 825-832. http://dx.doi.org/10.1289/ehp.0901543.
20	WHO (World Health Organization). (1999). WHO laboratory manual for the examination of
21	human semen and sperm-cervical mucus interaction (4th ed.). Cambridge, UK:
22	Cambridge University Press.
23	Whyatt, RM; Liu, XH; Rauh, VA; Calafat, AM; Just, AC; Hoepner, L; Diaz, D; Quinn, J; Adibi,
24	J; Perera, FP; Factor-Litvak, P. (2012). Maternal Prenatal Urinary Phthalate Metabolite
25	Concentrations and Child Mental, Psychomotor, and Behavioral Development at 3 Years
26	of Age. Environ Health Perspect 120: 290-295. http://dx.doi.org/10.1289/ehp.1103705.
27	Wilcox, AJ; Weinberg, CR; O'Connor, JF; Baird, DD; Schlatterer, JP; Canfield, RE; Armstrong,
28	EG; Nisula, BC. (1988). Incidence of early loss of pregnancy. N Engl J Med 319: 189-
29	194. http://dx.doi.org/10.1056/NEJM198807283190401.
30	Wirth, J; Rossano, M; Potter, R; Puscheck, E; Daly, D; Paneth, N; Krawetz, S; Protas, B;
31	Diamond, M. (2008). A pilot study associating urinary concentrations of phthalate
32	metabolites and semen quality. Sys Biol Reprod Med 54: 143-154.
33	http://dx.doi.org/10.1080/19396360802055921.
34	Wittassek, M; Koch, HM; Angerer, J; Brüning, T. (2011). Assessing exposure to phthalates - the
35	human biomonitoring approach [Review]. Mol Nutr Food Res 55: 7-31.
36	http://dx.doi.org/10.1002/mnfr.201000121.
37	Wolff, MS; Engel, SM; Berkowitz, GS; Ye, X; Silva, MJ; Zhu, C; Wetmur, J; Calafat, AM.
38	(2008). Prenatal phenol and phthalate exposures and birth outcomes. Environ Health
39	Perspect 116: 1092-1097. <u>http://dx.doi.org/10.1289/ehp.11007</u> .
40	Wolff, MS; Teitelbaum, SL; Pinney, SM; Windham, G; Liao, L; Biro, F; Kushi, LH; Erdmann,
41	C; Hiatt, RA; Rybak, ME; Calafat, AM. (2010). Investigation of relationships between
42	urinary biomarkers of phytoestrogens, phthalates, and phenols and pubertal stages in
43	girls. Environ Health Perspect 118: 1039-1046. <u>http://dx.doi.org/10.1289/ehp.0901690</u> .
44	Wormuth, M; Scheringer, M; Vollenweider, M; Hungerbuhler, K. (2006). What are the sources
45	of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal 26:
46	803-824. http://dx.doi.org/10.1111/j.1539-6924.2006.00770.

- <u>Zhuang, MZ; Li, YF; Li, T.</u> (2008). [Effects of butyl benzyl phthalate on neurobehavioral development of rats]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 26: 285-288.
- Zota, AR; Calafat, AM; Woodruff, TJ. (2014). Temporal trends in phthalate exposures: findings
 from the national health and nutrition examination survey, 2001-2010. Environ Health
 Perspect 122: 235-241. <u>http://dx.doi.org/10.1289/ehp.1306681</u>.
- 6